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Abstract 

Diabetes is a lifelong condition caused by an inability of the body to break down glucose due 

to a defect in either insulin synthesis or the target cells becoming resistant to secreted 

insulin. There are two main types of diabetes, type 1 diabetes mellitus (T1DM) and type 2 

diabetes mellitus. T2DM mainly occurs due to insulin resistant, inability of cells to respond to 

normal levels of insulin, the treatment of T2DM usually involves exercise, diet control, drugs 

and in some cases insulin is needed. In T1DM, the immune system starts to attack the β-

cells, the cells responsible for insulin hormone synthesis and secretion from the endocrine 

pancreas. The aim of T1DM management is to restore carbohydrate metabolism as close to 

the normal condition as possible. To achieve this goal insulin hormone must be provided 

daily. Insulin is given in different ways such as injection (which is the most common method), 

pump and inhalation. Insulin sources can be either recombinant or animal-based. Treatment 

of T1DM is continuous and even with the best treatment options people with diabetes can 

develop serious complications such as acute diabetic coma or other long-term 

complications. These include diabetic cardiovascular disease, diabetic retinopathy, and 

diabetic nephropathy. Injection of insulin and daily monitoring of glucose levels presents a 

substantial burden to both the diabetic patient and also to associated dependents or carers 

i.e paediatric diabetes. So there is a strong need to develop an alternative treatment to 

reduce the burden, enhance control, and even ultimately cure diabetes mellitus.  

 

A recent medical invention is the use of stem cells in the treatment of many disease 

conditions. Stem cells have a remarkable ability to develop into many different cell types. 

Stem cells therapy offers a new method for treating disease such as diabetes. The results of 

many studies demonstrate the capability of mesenchymal stem cells (MSCs) in the treatment 

of bone disease, cardiac disorder, and multiple sclerosis. However, much work remains to 

be done in the clinic and laboratory to optimise the use of these cells.  
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The main aim of this study was to explore the therapeutic effectiveness of MSCs conditioned 

media to restore the viability and function of β-cells. 

 

In order to establish an in vitro model of cytokine driven β-cells apoptosis, pancreatic β-cells 

were treated with rising concentrations of pro-inflammatory cytokines TNF-α, IFN-γ and IL-

1β and endotoxin LPS for 24 h. The optimal concentration of each cytokine or endotoxin was 

assessed by MTT assay. Optimal concentrations were deemed to be those that induced an 

approximate reduction in cell viability of 50%. The cells were treated with the optimal 

concentration and cell viability was monitored over time in addition to assessment of anti-

apoptotic gene induction via qPCR  assay. Mesenchymal stem cells (MSCs) secretome was 

collected as conditioned media and the β-cells cultured in non-conditioned and conditioned 

media during cytokine-driven apoptotic induction. β-cell viability and anti-apoptotic gene 

expression was determined to evaluate the therapeutic effectiveness of mesenchymal stem 

cells conditioned media (MSC-CM) in protecting β-cells from pro-inflammatory cytokines.  

 

We observed a significant increase in the viability of pancreatic β-cell lines cultured in 

conditioned media when compared to those cultured in non-conditioned media. After that, 

we sought to identify a possible candidate that is present in the MSC-CM and help the cells 

to overcome the effect of pro-inflammatory cytokines. We found a high concentration of IL-10 

in our conditioned media, in addition to the presence of IL-4, PIGF and VEGF in variable 

amount. Based on our present findings, cytokine-induced apoptosis is mediated through the 

TRAIL-dependent pathway. However, the addition of MSC-CM blocked cytokine-induced 

apoptosis and downregulated the genetic expression of A20 and TRAIL. Also, IL-10 was 

able to block IFN-γ and TNF-α-induced apoptosis. 
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1.1 Endocrine Pancreas  

The pancreas is a glandular organ, located in the digestive system with endocrine and 

exocrine functions. The adult human pancreas is a 6-10 inch elongated organ weighing 

65 to 160 grams and lying in the abdominal cavity. It lies posterior to the stomach and 

anterior to the kidney. The head of the pancreas is on the right side of the abdomen 

and is connected to the duodenum through a small tube called the pancreatic duct. The 

narrow end of the pancreas called the tail, extends to the left side of the body.(1)(Figure 

1.1). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1 Pancreas position. Anatomical demonstration of pancreas position in 
relation to other organs. The image is reprinted from (http://www.hitachimed.com/self-
learning-activity/docs/AbdominalImagingModule/images/figure-77.jpg). 

 
 

The endocrine portion of the pancreas makes several hormones, which help to regulate 

the body`s metabolism. These hormones are made by specific cell types, which gather 

or cluster together to form small islands (islets) within the pancreas2. The islets are 

called islets of Langerhans and there are about one million islets scattered through the 

adult pancreas. The islets contain five different types of cells (alpha cells, β-cells, delta 

cells, F or PPcells and Epsilon cells) as shown in (Figure 1.2). The β-cells make up 65-
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80% of the total population of islets cells, with alpha cells accounting for 15-20% and 

delta cells accounting for 3-10% of islets cells. F cells also known as pancreatic 

polypeptide cells (PP) make up 3-5% of all islets cells. The recently identified Epsilon 

cells make up less than 1% of all islet cells. The hormones made by these cells 

include.(2):-  

1- Insulin produced by β-cell -, which lowers blood glucose level. 

2- Glucagon produced by alpha cell –, which raises blood glucose levels. 

3- Somatostatin produced by delta cells –, which inhibits the release of insulin and 

glucagon.  

4- Pancreatic Polypeptide produced by F or PP cells – the functions of pancreatic 

polypeptide remain largely unknown it has been suggested that it reduces 

appetite, in response to food intake.(2)  

5- Ghrelin produced by Epsilon cells - again the function is not completely 

understood. 

 
 

Figure 1.2 Diagram of pancreatic islets and surrounding accini. Diagram reprinted 
from (http://www.cell.com/trends/endocrinology metabolism/fulltext/S1043-
2760(12)00049-5) 

http://www.cell.com/trends/endocrinology
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1.2 Insulin Hormone  

Insulin is a small protein with an approximate molecular weight of 5.8 kilodaltons. It has 

two chains, which are held together by disulfide bonds. The amino acid sequence is 

nearly the same in all vertebrates, so the insulin in one mammal is biologically active in 

another. Insulin derived from animal sources like pigs and cows was widely used until 

the 1980s, when recombinant varities became commonplace.(3) β-cells in the pancreas 

are responsible for insulin secretion. Initially, the insulin is synthesized as a single 

chain precursor called preproinsulin, which is converted to proinsulin in the 

endoplasmic reticulum.(4) Proinsulin consists of three parts: a carboxy terminal A chain, 

an amino-terminal B-chain and C-peptide in the middle. Insulin inside the endoplasmic 

reticulum will undergo post-translational modification by several specific 

endopeptidases resulting in the removal of the C-peptide and generation of mature 

insulin. The C-peptide along with the mature insulin will be packed in the Golgi 

apparatus as secretary granules, which accumulate in the cytoplasm4 as shown in 

(Figure 1.3). When the β-cells are stimulated, insulin is exocytosed with an equal 

volume of C-peptide and diffuses into the surrounding capillary blood network.(5) 
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Figure 1.3 Post-translational modifications leading to the production of mature 
insulin. This diagram demonstrates the steps of insulin hormone synthesis starting 
from the polypeptide chain preproinsulin, proinsulin is formed by removal of signal 
peptide and the removal of C-chain lead to the formation of insulin. 
 

 

1.3 Control of insulin secretion 

The primary regulator of insulin secretion is glucose. However, other stimuli that may 

also cause insulin secretion include neurotransmitters, amino acids, and fatty acids.(6) 

The mechanisms behind insulin secretion are complex and not fully understood. 

However, the following process has been established(7):- 
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S S 
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When blood glucose concentration increases, glucose enters the cell by facilitated 

diffusion. This is mediated by glucose transporter proteins (GLUTs). There are 12 types 

of this GLUT transporter, with GLUT2 facilitating glucose entry into the β-cell of the 

pancreas. Glucose is then phosphorylated to glucose-6-phosphate by the action of the 

enzyme glucokinase, which is considered to be a glucosensor for β-cells. The β-cells 

then undergo membrane depolarization (mainly due to an alteration of the ATP:ADP 

ratio along with the closure of the potassium-sensitive KATP channel) and movement of 

extracellular calcium into the cell. This intracellular increase of calcium promotes 

exocytosis of the secretary granules that contain insulin hormone.(7) 

 

 

1.4 Diabetes Mellitus  

Diabetes Mellitus (DM) encompasses a group of autoimmune diseases characterized 

by hyperglycemia. It is characterized by an inability of the pancreas to produce 

sufficient quantities of the insulin hormone as a result of either a defect in insulin 

synthesis (total absence of the insulin hormone, insufficient quantity produced or poor 

quality of the produced insulin), or the target cells becoming resistant to the secreted 

insulin.(8) The body compensates for this elevation in glucose concentration by drawing 

water from intracellular to extracellular compartments in order to dilute the glucose 

concentration and excrete it in the urine. Thus, polyuria, polydipsia, and polyphagia are 

the most common clinical features in people with diabetes.(9)  

 

The primary types of DM include type 1 DM (T1DM), which is characterized by β-cell 

destruction that ultimately leads to an absolute insulin requirement to prevent the 

development of ketoacidosis, coma, and death. It is also called insulin dependent 

diabetes mellitus (IDDM). The second type of DM is Type 2 DM, which results from 
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either a disturbance in insulin action or secretion. It is generally referred to as non-

IDDM and can be treated with diet, exercise, and insulinotropic drugs.(10) 

 

There is other less common subset of DM including: - 

1- Gestational diabetes: develops in pregnant women that have never had 

diabetes before developing hyperglycemia during pregnancy. It affects 4% of 

pregnant women and many proceed to type 2 DM or occasionally T1DM. 

However, the vast majority of women return to normoglycemia postpartum.(11) 

2- Maturity-onset diabetes of the young (MODY): characterized by a monogenic 

defect of β-cell function that leads to mild hyperglycemia in young people. This 

is generally genetic disorder inherited in an autosomal dominant manner.(12) 

3- A genetic variation of DM: In these instances diabetes is secondary to systemic 

disorders involving multiple organ systems of the body e.g. Wolfram syndrome 

or DIDMOAD ( diabetes insipidus, DM, optic atrophy and deafness) Frederic's 

ataxia, dystrophia myotonia and glycogen storage disease.(13) 

 

 

 1.4.1 Type 1 diabetes mellitus 

T1DM is an autoimmune disease in which the immune system produces antibodies 

against β-cells of the pancreas.(14) Causative agents in T1DM include:  

 

1.4.1.1 Genetic 

T1DM is a polygenic disease with several genes contributing to its onset. Two HLA 

(human leukocyte antigen) genes located on chromosome 6 accounts for 40 – 50% of 

the inherited diabetic risk. The first gene that confers risk is called DR (cell surface 

antigen that mediates immune response). It has two forms (DR3, DR4), which are 
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found in about 95% of people with diabetes. The second HLA gene that confers risk for 

diabetes is DQ (a cell surface receptor type protein found on antigen presenting cells) 

and in particular, DQA and DQB are associated with the development of T1DM. Most 

people with diabetes tend to inherit one or more forms of both genes.(15) 

 

Mutation in the insulin gene itself seems to affect the liability of the person to develop 

diabetes. The insulin gene has a short nucleotide sequence of DNA that is organized 

as a tandem repeat called the Variable Number of Tandem Repeat (VNTR) which 

varies in length.(15) The long VNTR regions comprise 140-200 DNA repeats while the 

smaller region has only 26-63 repeats. The probability of developing T1DM is fivefold 

higher in people that inherit two short VNTR compared in those inherit one long 

VNTR.(16) 

 

1.4.1.2 Diet and environment 

Several lines of evidence support the importance of exogenous factors in the 

pathogenesis of T1DM. Studies in identical twins indicate a 13-33% pairwise 

concordance for T1DM suggesting that there is either an inconsonant in the genetic 

information or the exposure to different environmental factors.(17) The geographic 

variations in the occurrence of T1DM in children are obvious even among Caucasians 

living in areas of Europe. In children under 15 years of age, the lowest incidence is 

reported in Macedonia and the highest incidence has been observed in Finland.(17) The 

differing rates are unlikely to be explained by genetics alone.(17) 

 

A link between diet and the development of T1DM where cow's milk triggers an 

autoimmune response has been suggested but no connection has been confirmed 

between the antibodies against proteins in cow's milk and T1DM.(18) Researchers in 
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Northern Finland believe that there is an inverse relationship between vitamin D 

supplementation and the risk of developing T1DM later in life. They propose that the 

ingestion of 2000 IU of vitamin D every day in the first year of life help to prevent 

T1DM.(19) On the other hand, neglecting breastfeeding was associated with a risk of 

T1DM increase in Czech children.(20) Diet plays an important role in the development of 

type 2 DM with obese people at high risk of insulin resistance. Controlling of diet and 

exercise helps in the treatment of type 2 DM. However, the role of diet and exercise in 

T1DM is less well understood. 

 

1.4.1.3 Virus 

A theory proposed by Fairweather and Rose,(21) suggest that T1DM is caused by  

antibodies reacting against a viral infection, predominantly against Coxsackie and 

Rubella viruses. The theory depends on the fact that when there is an autoimmune 

response to viral invasion the antibody will attach to the infected cells along with β-

cells. This cannot be applied to everybody since not everyone infected with these 

viruses will go on to develop T1DM.(21) 

 

 1.4.1.4 Chemical and drugs 

In 1976, a rodenticide was introduced in the United States known as Pyrinuron (Vacor 

N-3-pyridylmethyl-N-p nitrophenyl urea). It was found later to be one of the causes of β-

cell death when ingested either accidently or intentionally.(22) Zanosar (streptozotocin) 

is another example of a chemical that leads to β-cell destruction. It is an antineoplastic 

used in the treatment of pancreatic cancer but will also destroy the β-cells and lead to 

T1DM and is currently used to induce T1DM in animal models.(23) 
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 1.4.2 Autoimmune destruction of β-cells 

The pathophysiological mechanism for each risk factor can differ amongst individuals. 

However, common to all risk factors of T1DM is the resultant autoimmune response 

against β-cells, which involves β-cell autoantigens, B lymphocytes, T lymphocytes, 

macrophage and dendritic cells.(24) 

 

1.4.2.1 Islet autoantibodies  

The immune system has two essential parts, the innate and adaptive immune response 

based on the specificity and speed of the reaction. The innate response is the first line 

of defense of the human body against foreign antigens like bacteria or viruses and 

consists of monocytes, macrophages, neutrophils and positive acute phase proteins, 

which could help in destroying the microbes like c-reactive protein which binds to the 

surface of the bacteria and promote phagocytosis via macrophages.(25) Adaptive 

immunity is a secondary and more complicated immune response that consists of 

antigen-specific reaction via B and T lymphocytes. Adaptive immunity is a highly 

sophisticated process that starts within days or weeks of infection, resulting in 

immunological memory that allows the body to act rapidly in case of subsequent 

exposure.(26) 

 

Despite being a highly organized system, the immune system occasionally fails to 

differentiate between self and non-self-resulting in an exaggerated antibody-mediated 

reaction. Under normal circumstances, the immune system has the ability to distinguish 

the body's own cells from foreign substances that pose a threat. Unfortunately, this 

regulated and efficient system can also turn on self-antigens causing destruction to a 

target tissue and development of autoimmune disorders such as T1DM. Autoantibodies 

against islets cell (ICAs) were first described over thirty years ago.(27) 
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A method used to identify autoantibodies specified for each autoantigen is the 

immunoprecipitation test, which is based on antigen-antibody reaction. For example, in 

children newly diagnosed with diabetes, the use of biochemical analysis of the purified 

immune complexes after standard immunoprecipitation tests was found to be helpful in 

the diagnosis of autoantigens recognized by immunoglobulin.(28) The first autoantigens 

discovered the presence of 64K protein, which was found later to have glutamic acid 

decarboxylase (GAD) activity and also to represent a previously unknown isoform, 

GAD65.(29) 

 

Continued research has subsequently revealed the presence of the phosphatase 

related IA-2 molecule. It is co-precipitated with GAD65 in the sera of patients that 

contain 64K protein.(30) The most recent major islet autoantigens, zinc transporter 

8(ZnT8) was discovered in 2007 by screening for highly expressed, islet β-cell specific 

molecules.(27) The three autoantigens can be labelled by iodination or polymerase chain 

reaction (PCR) making it easy for autoantibodies assays to identify biochemical 

antibodies.(31) 

 

The ability to measure autoantibodies in T1DM using recombinant autoantigens 

opened the door for further identification of several different autoantigens detected by 

autoantibodies in other genetic disorders that involve the immune system.(32) This can 

help in the diagnosis of many autoimmune diseases before the appearance of clinical 

features. Further studies on T1DM revealed that not all autoantigens involved had been 

discovered; ICA reactivity does not always correlate with defined autoantigens 

suggesting the existence of other, unknown, forms of autoantigens.(32) Therefore, ICAs, 

autoantibodies against GAD65, insulin autoantibodies and autoantibodies against IA-2 

can predict the appearance of T1DM even with normal blood glucose 
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concentrations.(33) However, it should be emphasized that despite increased risk, not 

everyone positive for ICAs progresses to T1DM. The time interval between the 

detection of autoantibodies and the development of frank clinical symptoms varies 

among individuals and can range from a few months to years.(32) 

 

 

1.5 Management of T1DM  

 

1.5.1 Insulin therapy 

The management of T1DM requires replenishment of the absolute insulin requirement 

and restoration of glucose homeostasis. This is generally achieved through exogenous 

insulin therapy. For years the first line of treatment for T1DM has been an exogenous 

injection of porcine or recombinant insulin, and more recently, insulin pumps or inhalers 

have been developed. However, the clinical preparations of porcine or recombinant 

insulin differ from endogenous human insulin. Notably, C-peptide is absent in 

exogenously formed insulin.(34) Most of the insulin that are used today are produced 

from non-human sources although the clinical evidence conflicts as to whether this 

insulin is any less likely to produce allergic reactions. Adverse reactions have been 

reported including loss of warning signs, which may result in sufferers slipping into a 

coma through hypoglycaemia, convulsions, memory lapse and loss of concentration.(3)  

 

A high degree of compliance and monitoring is required in order to achieve glycemic 

control and prevent many of the long-term complications associated with T1DM. 

Complications of diabetes can support the theory that inflammation is important in 

T1DM because it is usually associated with increases in inflammatory and oxidative 



13 
 

stress markers like C-reactive protein, nitrotyrosine and vascular cell adhesion 

molecule 1, which are increased in microvascular and cardiovascular complications.(35)  

The shortcomings of current diabetes therapies have promoted research into 

alternative therapies. Whole pancreas or islet transplantations are performed presently, 

but only for patients who meet strict guidelines and whose disease is poorly controlled 

and life-threatening. 

 

1.5.2 Pancreas transplantation 

The purpose of pancreas transplantation is to ameliorate T1DM and produce complete 

insulin independence. The first successful pancreas transplantation in conjunction with 

kidney transplantation was performed by W.D. Kelly and Richard Lillehei from the 

University of Minnesota in 1966. Until about 1990, the procedure was considered 

experimental now it is a widely accepted therapeutic modality. However, pancreas 

transplantation is recommended when diabetes is advanced and complications of the 

disease are having a serious impact on the patient’s quality of life.(36) The pancreas 

transplant is usually performed along with a kidney transplant in patients with kidney 

failure. However, it is also possible to perform independent pancreas transplantation. It 

is a very complicated operation that carries many risks of complications. One in four 

patients needs further surgery in the first few days after transplantation to deal with 

problems such as infection and bleeding. In addition to the risk of rejection due to the 

immune response against the new organ the long-term use of immunosuppressant 

carries it is own risk of complications, such as increased vulnerability to infection and 

cancer.(37) One of the problems associated with pancreas transplantation is the liability 

of developing an increase in the blood glucose level especially if the patient is on 

prednisone treatment that results in the return of diabetes symptoms and the need of 

glucose management.(38)  
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1.5.3 Islet transplantation 

Transplantation of isolated islets is an alternative to whole pancreas transplantation.(39) 

It is generally considered a safer and less invasive procedure and allows the exocrine 

portion of the recipient’s pancreas to remain intact and functioning. The newly 

transplanted cells will produce insulin sufficient to maintain a normal level of blood 

glucose.(40) 

 

The operation involves the implantation of islets into the liver of the patients. 

Immunosuppressant drugs are administered to prevent graft rejection. Follow-up of 

patients that undergo islet transplantation reveals that 75% of patients are insulin 

independent one year after the operation.(41) However, the long-term need for 

immunosuppressive therapy and shortage of donor islets hampered the widespread 

application of islet transplantations. In addition, a five year follow-up of patients 

revealed that only 10% remain insulin independent.(42) 

 

The Edmonton Protocol is the most recent method that is used for islet transplantation. 

Shapiro and Lakey (University of Alberta, Edmonton) developed this protocol. Their 

procedure has some points of difference from its predecessors where the main 

difference is in the use of immunosuppressant drugs (glucocorticoid-free 

immunosuppressant regime) and the infusion of an adequate islet mass, obtained from 

multiple donors into each recipient.(43) There are risks associated with the use of 

immunosuppressive drugs like the development of lymphopenia, which is usually 

associated with an increase in serum levels of the homeostatic cytokines interleukin 

(IL-7) and IL-15, which cause in vivo expansion of CD8+T cells. Ultimately this will 

activate the immune response causing graft failure. Following the Edmonton 
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Protocol(44), nearly 80% of islet transplant recipients remained insulin independent for 

one year only and 10% of the recipients were insulin independent for five years post-

transplant.(44) 

1.6 Diabetic complications 

 

1.6.1 Acute complications 

Nearly all acute complications of diabetes are considered dangerous and represent a 

medical emergency. They are related directly to the glucose concentration in the blood 

and include diabetic ketoacidosis (DKA), which is caused by the breakdown of fatty 

acid into ketone bodies.(45) Under normal conditions this happens periodically when 

there is a need for urgent energy and the body cannot provide it by aerobic means. 

However, if this is sustained it will become a serious problem. Hypoglycemia is also an 

acute condition that is caused by several factors such as too much insulin, or 

incorrectly timed administrations of insulin, or poor management of the type and 

amount of food taken.(46) If these acute conditions are not treated immediately and 

properly it may result in diabetic coma and even death. Furthermore, several acute 

complications including respiratory infection can arise because of an altered immune 

response.(47)  

 

1.6.2 Long-Term Complications  

Long-term complications of T1DM develop gradually, over years. The development 

depends on earlier onset and poor glycemic control. Eventually, long-term 

complications may be disabling or even life-threatening. According to World Health 

Organization, about 80% of diabetic deaths occur due to complications especially in 

low and middle-income countries.(48) 
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1.6.2.1Cardiovascular disease 

Diabetes dramatically increases the risk of various cardiovascular problems, including 

coronary artery disease with angina, heart attack, stroke, atherosclerosis and high 

blood pressure.(49) The central pathological mechanism in macrovascular disease is the 

process of atherosclerosis. Hyperglycaemia induces a large number of alterations at 

the cellular level, which leads to narrowing of arterial walls throughout the body. The 

mechanisms behind atherosclerotic processes involve the following: 

a) Glycosylation of proteins and lipids by a nonenzymatic pathway (glucose reacts 

directly with proteins and lipoproteins in arterial walls) results in changes in 

molecular conformation, which can cause an alteration in enzymatic activity, 

reduction in degradative capacity and interfere with receptor recognition. 

Glycosylated proteins will react with receptors present in all cells specific for the 

atherosclerotic process like endothelial cells, smooth muscle cells, and 

monocyte-derived macrophages. This reaction results in oxidative stress and 

pro-inflammatory responses.(50) 

b) Oxidative stress plays a major role in the development of diabetic 

complications. Cytokines enhance the production of free radicals, which form 

bonds with other compounds resulting in structural and functional changes in 

the tissues and cellular destruction. Therefore, the development of oxidative 

stress is an important step in the pathophysiology of cardiovascular 

complication.  

c) High glucose concentrations activate Protein Kinase C (PKC) by increasing the 

formation of diacylglycerol, which is derived from the hydrolysis of 

phosphatidylinositides or from the metabolism of phosphatidylcholine. The 

elevation of diacylglycerol and subsequent activation of PKC in the vessels can 

persist for a long time. This subsequently causes an alteration in growth factor 
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expression, which is thought to lead to thickening of the capillary basement 

membrane.(51) 

 

These mechanisms are interrelated. For example, hyperglycemia-induced oxidative 

stress promotes both the formation of advanced glycosylation end product and PKC 

activation(51). 

 

1.6.2.2 Diabetic neuropathy 

The changes in the capillary walls such as the thickening of basement membranes and 

endothelial hyperplasia will result in neural dysfunction.(52) Diabetic neuropathy is 

characterized by neural ischemia especially in the limbs where numbness and tingling 

start at the tips of the toes or fingers and radiates centrally. Diabetic neuropathy can be 

classified into peripheral neuropathy (characterized by loss of feeling in the upper and 

lower extremities); proximal neuropathy (causing pain in the thighs, hips or buttocks 

regions); and focal neuropathy (which occurs suddenly causing weakness in any nerve 

in the body).(53) The nerves of the gastrointestinal tract can also be affected by 

neuropathy and the patient will suffer from nausea, vomiting, and diarrhoea or 

constipation.(54) 

 

1.6.2.3 Diabetic retinopathy 

Diabetic retinopathy is the most common microvascular complication of diabetes. The 

risk of developing diabetic retinopathy or other microvascular complications of diabetes 

depends on both the duration and the severity of hyperglycaemia. The UK Prospective 

Diabetes Study (UKPDS) showed that most patients with T1DM develop evidence of 

retinopathy within 20 years of diagnosis.(55)  

 



18 
 

The development of diabetic retinopathy is multifactorial and involves several pathways 

including the polyol pathway, where glucose is converted to sorbitol via the action of 

Aldose reductase. Hyperglycaemia increases the flux of glucose molecules through the 

polyol pathway. Therefore, sorbitol will accumulate causing osmotic stress, which has 

been proposed as an underlying mechanism in the development of diabetic 

retinopathy.(56)  

 

Another well-characterized pathway is damage resulting from the accumulation of 

advanced glycosylated end product (AGEs).  Hyperglycaemia promotes the non-

enzymatic formation of AGEs. Studies in animal models reveal the relationship 

between AGEs and the formation of microaneurysms and pericyte loss. After 26 weeks 

of induced hyperglycaemia, the retinal capillaries of diabetic rats have marked 

accumulation of AGEs. Furthermore diabetic rats treated with aminoguanidine (AGE 

formation inhibitor) have reduced AGE accumulation and reduced histological changes, 

including microaneurysm and pericyte loss.(57)   

 

Free radical and reactive oxygen species are also involved in the development of 

diabetic retinopathy. The use of antioxidants like vitamin E may attenuate some 

vascular dysfunction as have been shown in animal studies but, the treatment with anti-

oxidants has not yet been shown to alter the development or progression of 

retinopathy.(58)  

 

1.6.2.4 Diabetic nephropathy 

People with diabetes are at increased risk of developing renal disorders like urinary 

tract infection, papillary necrosis, and glomerular lesions. The early stages of diabetic 

nephropathy cause an elevated glomerular filtration rate with an enlarged kidney. 
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These changes can be caused by increasing mesangial cell matrix production and 

mesangial cell apoptosis in addition to increased glomerular basement membrane 

thickness and microaneurysm formation.(59) Chronic renal failure could be the end stage 

of diabetic nephropathy. Many of the mechanisms that are involved in the development 

of diabetic retinopathy are also involved in nephropathy.(60)   

 

1.7 Cytokine-driven β-cell apoptosis  

Cytokines are small signalling molecules that can be classified into peptides, proteins, 

and glycoproteins. They also have immunomodulatory properties. They differ 

significantly from classical hormones in that they circulate in much lower concentrations 

(picomolar range) and can be increased in response to trauma and infection.(61) In 

addition, cytokines are produced by specific tissues or cell types and not by specialized 

glands. Their mechanism of action is dependent on paracrine or autocrine signalling 

but not endocrine signalling.(62) 

. 

Cytokines act by releasing a signal at the site of the infected cell (caused by different 

factors like pathogens and injury) to attract other immune molecules to the site. The 

effect of cytokines depends on the availability of the complementary receptor at the cell 

surface and the intracellular signalling produced by this complex, which leads to 

changes in cell functions either by upregulation of selected genes and their 

transcription factors or down-regulation of other genes.(63) Immune-mediated pancreatic 

β-cells loss is a hallmark of T1DM. T-cells produce pro-inflammatory cytokines 

including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-

γ), which are predominant in the early stages of the disease and, which are toxic to β-

cells.(34)  
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1.7.1 IFN-γ 

IFN-γ or type II interferon activates macrophages and induces major histocompatibility 

complex class II (MHC) expression.(64) IFN-γ is the only member of type II interferon 

family and is unrelated structurally, binds to a different receptor and is encoded by a 

separate chromosomal locus when compared with type I interferon. The source of IFN-

γ was first thought to be exclusively from CD4+ T-helper cells (Th1), CD8+ cytotoxic 

lymphocyte, and natural killer cells (NK). However, it is now believed that other cells 

like B-cells and antigen presenting cells (APCs) are also able to produce IFN-γ.(65) 

 

IFN-γ secretion is regulated by cytokines produced by APCs, most notably IL-18 and 

IL-12 as they act as a bridge to link infection with IFN-γ secretion in the innate immune 

response. During the inflammatory process, macrophage recognition of many 

pathogens results in the induction of IL-12 and chemokine production, which in turn 

attracts NK cells to the site of infection, and promotes IFN-γ secretion. In NK cells, 

macrophages and T-cells, the combination of IL-18 and IL-12 stimulate a further 

increase in IFN-γ production. IFN-γ secretion is reduced by interleukin-4 (IL-4), 

interleukin-10 (IL-10) and growth factors like TGF-β.(66) 

 

The IFN-γ receptor is composed of two ligand-binding IFNGR1 and IFNGR2 chains, 

which belong to the class II cytokine receptor family. The binding of IFN-γ to its 

receptor results in the activation of Janus tyrosine kinase (JAK) 1 and signal transducer 

and activator of transcription (STAT)1. STAT1 translocates to the nucleus and controls 

the transcription of the target gene.(67) (Figure 1.4). The gene products activated by 

IFN-γ (also known as interferon-stimulated genes (ISGs)) are responsible for IFN-γ’s 

antiviral, anti- proliferative and immunomodulatory properties.(68) The host defence 

gene protein kinase R (PKR) is one of these genes that is stimulated by IFN-γ and it is 
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thought that PKR is required for the activation of NF-κB. The latter is known to 

stimulate the transcription of genes that play important roles in apoptosis, immune 

modulation, and induction of inflammatory cytokines. Many IFN-γ-inducible genes are 

also TNF-α-inducible, and these genes are usually superinduced by a combination of 

these factors.(69) 

 

1.7.2 TNF-α 

Tumour necrosis factor alpha was first known as an endotoxin-induced glycoprotein, 

which caused hemorrhagic necrosis of sarcomas that had been inoculated into mice.(70) 

TNF-α has since been implicated in a wide range of infectious, inflammatory and 

malignant conditions.(71) TNF-α is produced by activated T-lymphocytes and 

macrophages and is usually not detected in healthy individuals it is only elevated in 

serum and tissues during an inflammatory or infectious diseases.(72) Although, the main 

source of TNF-α is macrophages/monocytes there are other cells that can also secrete 

TNF-α like mast cells, T, and B lymphocytes, NK cells and neutrophils.(73) 
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Figure 1.4 Pro-inflammatory signalling pathways activated by cytokines. This 
figure demonstrates the signal transduction pathways for IFN-γ, TNF-α, and IL-1β. IFN-
γ phosphorylates and activates the STAT1, which will be translocated to the nucleus 
leading to transcription of several genes. TRADD and MYD88 are adapter proteins that 
mediate the action of TNF-α and IL-1β. 

 

TNF-α signal transduction is complicated and not fully defined. The regulation of 

transcription factor NF-κB is a key component of TNF-α signal transduction. Responses 

to TNF-α are triggered by its binding to one of it is two receptors TNFR1 and TNFR2. 

These are tightly regulated on various cell types under normal and disease 

conditions.(74) Based on studies with receptor knockout mice and cell culture work, both 

the pro-inflammatory and apoptotic pathways that are stimulated by TNF-α are largely 

mediated via TNFR1. Signal transduction following activation of TNFR2 is less well 

characterized. However, TNFR2 has been shown to mediate signals that promote 

angiogenesis and tissue repair.(75) 
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TNFR1 is type I transmembrane receptor protein. In a resting state, TNFR1 is 

associated with a silencer of death domain (SODD), which is a cytoplasmic protein that 

is thought to prevent TNFR1 from signaling. However, when TNF-α binds to TNFR1 

SODD is released. The TNFR1 will then activate TNFR-associated death domain 

protein (TRADD), which in turn will activate two additional proteins, the receptor 

interacting protein 1 (RIP-1) and TNFR-associated factor 2 (TRAF-2).(76) This complex 

(TRADD-RIP-1-TRAF-2) is released from TNFR1 inducing subsequent signaling events 

that involve the activation of different mitogen-activated protein kinase; e.g. MEKK-3 

and TAK1, which activate the transcriptional factor NF-κB that results in NF-κB 

translocation to the nucleus and the initiation of gene transcription.(77) The complex can 

also activate the apoptotic signaling kinase-1 through activation of Janus kinase, which 

can phosphorylate and activate transcription factor activating protein-1 (AP-1).(78)  

 

In addition to mediating apoptosis and pro-inflammatory responses via NF-κB and AP-

1, TNFR1 can also stimulate cell death via binding to Fas-associated death domain 

protein (FADD). This involves the binding of TRADD and FADD and the subsequent 

activation of pro-caspase 8, which initiates apoptosis via activation and cleavage of 

pro-caspase 3 (Figure 1.4). The signaling pathways initiated by TNFR2 are less clearly 

defined, but it is thought that TNFR2 can signal by sharing and opposing effects of 

TNFR1.(79) 

 

1.7.3 IL-1β 

IL-1β is another cytokine that has an important role in the immune and inflammatory 

response. Cells activated by IL-1β display an inflamed phenotype and an upregulation 

of genes that encode proteins that directly participate in the immune response.(80) 
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These genes include cytokines, cytokines receptors, acute-phase reactants, growth 

factors extracellular matrix components and adhesion molecules.(81). The IL-1β 

receptor system and associated signal transduction have been under intense 

investigation in the past 10 years, providing a remarkable improvement in our 

understanding of how IL-1β produces its effect. There are two types of IL-1 receptor 

(IL-1R1 and IL-1R2). IL-1R2 is a decoy cytokine receptor that inhibits the activity of it is 

ligands.(82) The binding of IL-1β to IL-1R1, with the help of co-receptor IL-1 receptor 

accessory protein (IL-1RAP), forms a trimeric complex. This complex will stimulate the 

myeloid differentiation primary response gene 88 (MyD88), which will trigger the 

phosphorylation of IL-1 receptor-associated kinase 4 (IRAK 4), which then 

phosphorylates IRAK 1. This in turn will activate TGF-β kinase 1 (TAK1) and TAK1 

binding protein (TAB).(83) From this point, the signal can propagate through two main 

pathways: NF-κB and/or c-Jun N-terminal kinase (JNK). To mediate IL-1β action 

through the NF-κB pathway, the phosphorylated TAK1 activates the inhibitor of NF-κB 

kinase subunit (IKK), which in turn will phosphorylate the NF-κB inhibitor (IKB), which 

gets degraded so that NF-κB kinase is released and transferred to the nucleus.(84) 

TAK1 can also activate MAPK p38, JNK and extracellular signal-regulated kinase 

(ERK) through interacting with MAP kinase (MKK) proteins, resulting in the activation of 

several transcription factors including c-Jun, c-Fos, c-Myc and ATF2, which leads to 

cellular events such as gene expression or cell cycle.(85)(Figure 1.4). 
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1.7.4 Bacterial Lipopolysaccharide (LPS) 

Many studies describe a role for the endotoxin lipopolysaccharide (LPS) in the 

development of autoimmune disease such as T1DM.(86) The outer membrane of the 

gram-negative bacteria contains LPS, which makes them easily recognized by the 

immune cells, which will produce pro-inflammatory cytokines as a defence mechanism 

against this pathogen.(87) It is believed that LPS binding protein (LBP), which is a 

protein produced by the liver and, which circulates in the blood will be the first to 

recognize and bind to LPS and then form a temporary complex with CD14 mediating 

the transfer of LPS to the LPS receptor complex is composed of Toll-like receptor-4 

(TLR4) and lymphocyte antigen 96 (MD2).(88) This is followed by the activation of 

several adaptor proteins such as myeloid differentiation primary response gene 88 

(MyD88).(89) TLR4 signal transduction has been divided into MyD88-dependent and 

MyD88-independent pathways.(90) Several studies on MyD88-deficient macrophages 

proved the importance of this pathway in stimulation the expression of pro-

inflammatory cytokines while the MyD88-independent pathway stimulates type I 

interferon and interferon-inducible genes.(91) The activation of MyD88 results in the 

activation of IL-1 receptor-associated kinase-4 (IRAK-4) and the knock-out of IRAK-4 in 

mice resulted in severely impaired production of pro-inflammatory cytokines after 

stimulation with LPS. (91)  

 

TNF receptor-associated factor 6 (TRAF6) is another adaptor protein that is important 

to the IRAK-4 and IRAK-1 signalling pathway, TRAF6 will activate TAK1(transforming 

growth factor activated kinase-1), which will activate IKK and MAPK (mitogen-activate 

protein kinase) pathways.(92) The activation of IKK will phosphorylate and degraded IkB 

(inhibitor of k light chain gene enhancer in B-cell) and promote the translocation of NF-

κB, which controls the expression of many pro-inflammatory cytokines.(93) 
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Toll-interleukin receptor domain-containing adaptor inducing IFN (TRIF) is an important 

adaptor protein that mediates the MyD88-independent pathway. Studies using TRIF-

deficient macrophages have revealed the importance of this protein in the activation of 

transcription factor IRF3 and the late phase activation of NF-κB and MAPK.(94)  

 

These effects of LPS are not fully understood in people with T1DM. LPS could mediate 

a reduction in insulin secretion and insulin gene expression through stimulation of 

inflammatory responses involving TLR4 and NF-κB which may contribute to β-cell 

dysfunction and death. This would lead to T1DM and is supported by the identification 

of the TLR4 expression in human and mouse islets.(95) In addition a study confirmed 

that toll-like receptors play an essential role in islet allograft rejection.(96) Unfortunately, 

our knowledge regarding the early development of the disease process are far from 

complete there is still a big question of how and why the circulating immune cells 

targeted the β-cells only and not the other cells present in islets (Figure 1.5). 
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Figure 1.5 LPS signalling pathway. This figure outlines the MyD88-dependent and 
independent signal transduction pathways for LPS.  
 
 
1.7.5 The role of pro-inflammatory cytokines in β-cell apoptosis 

The exposure of β-cells to secreted pro-inflammatory cytokines results in an alteration 

of β-cell function and may lead to cell death. Although the reason is unclear, it is well 

established that T1DM is associated with dysregulation of cellular and humoral 

immunity.(97) Th1 cells and their cytokine products (IL-2, IFN-γ, TNF-α, and TNF-β) are 

the mediators of cellular immunity. These cytokines will activate vascular endothelial 

cells to attract circulating leukocytes to the site of infection, which then leads to the 

elimination of antigen-bearing cells.(98) Th1 cytokines induce β-cell destruction directly 

through accelerating activation-induced cell death (apoptosis). Th2 cytokines are 
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effective in stimulating humoral immune responses, which are responsible for 

immunoglobulin production by B-cells. It is also believed that the responses of Th1 and 

Th2 are reciprocally inhibitory, thus, Th2 cytokines (IL-4, IL-10) can inhibit the 

production of Th1 cytokines and these, in turn, can inhibit Th2 cytokines.(99) 

 

Most of our available information regarding the role that T-cells and macrophage-

derived cytokines play in the pathogenesis of T1DM came from studies on genetically 

IDDM animals like nonobese diabetic mice.(100) Based on these results, cytokines were 

shown to induce/and or exacerbate T1DM through direct and indirect mechanisms. The 

possible mechanisms through, which cytokines produce their effect could be listed as; 

1) activation of stress-activated protein kinases such as c-Jun NH2-terminal kinase 

(JNK), extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein 

kinase (MAPK), 

2) triggering endoplasmic reticulum (ER) stress mechanisms, and  

3) The release of death signals from mitochondria.(101)  

 

As mentioned previously, cytokines are able to activate JNK, ERK, and MAPK and 

some researchers suggested that using an inhibitor of these kinases will result in 

blocking cytokine-induced apoptosis in insulin-producing cells. However, these findings 

have not been confirmed in primary β-cells.(102) 

 

ER stress responses are a group of specific cellular mechanisms that result from 

disruption of ER homeostasis. This disruption is induced via changes in Ca+2 

concentrations that trigger the accumulation of unfolded protein and activation of stress 

responses, which aim to restore ER homeostasis and function. These cellular 

responses could involve translational attenuation, up-regulation of ER chaperones, and 
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degradation of misfolded proteins.(103) Prolonged activation of ER stress will end in 

apoptosis, which is driven via the activation of the transcription factor CHOP, MAPK, 

JNK, and caspase-12. β-cells are particularly vulnerable to ER stress due to their high 

rate of protein synthesis.(104) In addition to the ER, mitochondria are an important 

organelle for β-cell function and survival and disruption of mitochondrial homeostasis 

can trigger β-cell apoptosis. Members of the Bcl-2 protein family control the 

mitochondrial response to pro-apoptotic signals by preventing the release of 

cytochrome C, which will prevent the activation of caspase 9 and 3.(105) A study on 

RINm5F cells suggested that cytokines have the ability to disrupt the mitochondrial 

membrane, but that overexpression of Bcl-2 partially protected both mouse(106) and 

human(107) islets against cytokines-induced apoptosis. However, Bcl-2 overexpression 

failed to prevent adenovirus-induced cell death(108) or spontaneous diabetes in NOD 

mice.(109) This indicates the presence of other pathways that could trigger apoptosis 

and/or that Bcl-2-linked mitochondrial events and activation of caspases are late stage 

events in the apoptotic process when the fate of cells has already been decided.(110) 

Other pro-apoptotic genes that could also be activated by cytokines include Bid, Bak, 

and caspase-3(111) with suggestions of cross talk between the mitochondria and ER to 

decide whether β-cells will undergo apoptosis or not.(112) 

 

Autoimmune β-cell destruction begins when autoantigens (i.e. GAD65) are released 

during spontaneous β-cell turnover. The antigens are processed by dendritic cells 

and/or macrophages and presented to helper T cells (CD4+ TH1 cells). Activated 

macrophages secrete IL-12, which activates CD4+ TH1-type T cells. CD4+ T cells 

secrete cytokines such as IFN-α, TNF-α, TNF-β, and IL-2, which cause macrophages 

to become cytotoxic and release β-cell–cytotoxic cytokines (including IL-1 β, TNF-α, 

and IFN- γ). The pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-1β) along with the 
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endotoxin (LPS) are believed to activate NF-KB through their signal transduction 

pathways. The activation and translocation of the NF-KB into the nucleus will stimulate 

the formation of different pro-inflammatory genes like iNOS (inducible nitric oxide 

synthase gene), this could be one of the possible pathways through which pro-

inflammatory cytokines and endotoxin are producing apoptosis in β-cells. 

   

1.8 Apoptosis 

The term apoptosis was first used in 1971 to describe a form of cell death. Apoptosis 

occurs normally in aging and development and as a homeostatic process to keep cell 

populations constant in tissues. It also occurs as a defense mechanism when cells are 

damaged due to diseases and noxious agents, or in response to an immune 

reaction.(113) There are many types of stimuli that can trigger apoptosis, however, not all 

cells die in response to the same stimulus e.g. corticosteroids, which can result in 

apoptosis in some cells while other cells are unaffected or stimulated.(114) 

 

The morphological changes that are associated with apoptotic processes include cell 

shrinkage, chromatin condensation followed by chromatin fragmentation, extensive 

plasma membrane blebbing, followed by nuclear rupture, separation of cell fragments 

into apoptotic bodies ( cytoplasm containing tightly packed organelles, with or without a 

nuclear fragment. The apoptotic bodies will then be phagocytosed by macrophages or 

parenchymal cells and degraded within phagolysosomes.(115) 

 

Apoptosis is a safe process as apoptotic cells do not release their content into the 

surrounding interstitial tissue and are quickly eliminated by macrophages. They do not 

therefore stimulate an inflammatory reaction themselves in contrast to necrosis, which 



31 
 

is considered to be a toxic process due to the rupture of the cell membrane and release 

of cellular contents into adjacent tissues resulting in initiation of inflammatory 

reactions.(116) 

 

There are multiple signal pathways that can trigger apoptosis and these are regulated 

by multiple complicated extrinsic and intrinsic ligands. To date, research indicates that 

there are two main apoptotic pathways: 1) the intrinsic or mitochondrial pathway, and 

2) the extrinsic or death receptor pathway. However, there is evidence that connects 

the two pathways together.(117) The extrinsic pathway involves transmembrane 

receptor-mediated interactions involving receptors that are members of TNF receptor 

gene superfamily such as TNF-α/TNFR1, FasL/FasR, Apo3L/DR3, Apo2L/DR4 and 

Apo2L/DR5.(118) The signal is mediated through a cytoplasmic death domain which will 

transmit the death signal from cell surface to the intracellular signaling that starts with 

activation of adapter proteins like FADD, TRADD, and RIP (based mainly on the type of 

receptors stimulated). This complex will, in turn, activate the pro-caspase 8 and once 

the caspase 8 is activated, the execution phase of apoptosis is triggered.(119) Caspases 

are a family of cysteine proteases that are aspartate-specific, which serve as a 

mediator of apoptosis. Caspase activation occurs following receipt of an intrinsic or 

extrinsic death signal.(120) The intrinsic pathway is initiated by an intracellular signal like 

DNA damage, growth factor withdrawal, or loss of contact with the extracellular matrix. 

These stimuli cause changes in the inner mitochondrial membrane, which lead to the 

opening of the mitochondrial permeability transition pore. This, in turn, will result in the 

release of pro-apoptotic proteins from intermembrane space to the cytosol.(121) The first 

group includes cytochrome C, serine protease HtrA2/Omi, and Smac/DIABLO proteins 

that activate the caspase dependent-mitochondrial pathway. Cytochrome C will bind 

and activate the caspase 9 and Apaf-1forming apoptosome. HtrA2/Omi and 
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Smac/DIABLO proteins promote apoptosis through suppressing the IAP (inhibitors of 

apoptosis protein).(121) The second group of pro-apoptotic proteins consists of 

apoptosis-inducing factor (AIF), endonuclease A, and caspase activated DNase which 

are released in later stages when the cell is committed to death. AIF will transfer to the 

nucleus causing DNA fragmentation. Endonuclease G will also translocate to the 

nucleus where it cleaves nuclear chromatin to produce oligonucleosomal DNA 

fragments. CAD action will also lead to oligonucleosomal DNA fragments and a more 

advanced chromatin condensation.(122) Finally, in the perforin/granzyme pathway, 

cytotoxic T-lymphocyte (CTL) are able to eliminate target cells through the extrinsic 

pathway and FasL/FasR interaction.(123) Perforin and Granzyme are also able to exert 

their cytotoxic effects on tumour cells and virus-infected cells through a novel pathway 

that involves the production of the transmembrane pore-forming molecule perforin with 

subsequent release of granules via the pore and into the target cell.(124) These granules 

have serine protease granzyme A and B within them.(125) Granzyme B has the ability to 

cleave proteins at aspartate residues, which results in activation of caspase 10 and can 

also cleave factors like ICAD.(126) It can also utilize the mitochondrial pathway for 

amplification of the death signal via cleaving the Bid, which is a pro-apoptotic protein 

belonging to the Bcl-2 family. The protease cleaves Bid and it will transfer to the 

mitochondria where it increases mitochondrial permeabilization and the release of 

cytochrome C.(127) Granzyme B can also activate caspase 3 directly. All these stimuli 

will end in apoptosis and cell death.(128) Granzyme A-induced cell death is mainly 

characterized by the formation of single strand DNA nicks. It induces loss of 

mitochondrial inner membrane potential and release of reactive oxygen species (ROS). 

The mitochondrial outer membrane remains intact so there will be no release of 

cytochrome C, serine protease HtrA2/Omi, and Smac/DIABLO proteins.(129) ROS will 

result in the translocation of the ER-associated SET complex, which includes pp32, 
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NM23-H1, Ape1, and TREX1. Granzyme A will cleave the SET complex thus releasing 

inhibition of NM23-H1resulting in apoptotic DNA degradation.(129)(Figure 1.6). 

 

Figure 1.6 Extrinsic and intrinsic activation of apoptosis (this image reprinted 
from Chapter 11of biological significant of apoptosis in ovarian 
cancer http://www.intechopen.com/books/ovarian-cancer-a-clinical-and-
translational-update ). Two types of apoptosis are known: (1) an extrinsic pathway, 
which depends on the presence of death receptor (like TRAIL) that will form death-
inducing signalling complex (DISC) that will initiate series of caspase activation, which 
will end in apoptosis; and (2) an intrinsic pathway initiated by an intracellular signal that 
causes changes in the mitochondrial membrane resulting in the release of cytochrome 
c that eventually lead to apoptosis. 

 

 

1.9 Cell therapy  

Given the limitations of current insulin replacement therapies for those with T1DM and 

the potentially devastating effect of diabetic complications, attention has focused on 

http://www.intechopen.com/books/ovarian-cancer-a-clinical-and-translational-update
http://www.intechopen.com/books/ovarian-cancer-a-clinical-and-translational-update


34 
 

cell-based therapies for the treatment of T1DM. Two hundred years ago James 

Blundell (Guy's Hospital, London, UK) was the first to record human-human blood 

transfusion. This knowledge developed over the years to the advanced cellular 

therapies of our days. Initially, these were based on clinical trial and error and then 

developed a dependency on laboratory science that cares about the necessary critical 

mass and unique challenges in order to justify being a distinct industry in its own right. 

Cell therapy is considered the fourth and most modern therapeutic pillar of global 

healthcare.(130) 

 

Cell therapy has two main approaches to treating patients. Cells are either harvested 

from a patient and expanded or treated and returned back to the same patient (known 

as the autologous method), or the cells are taken from one or a few universal donors 

followed by large-scale expansion and banking of multiple doses (known as allogeneic 

cell therapy).(131) 

 

Cells are prepared in a manufacturing facility and stored under controlled conditions for 

subsequent manipulation and use. Stem cell therapy has the potential to treat a wide 

range of diseases and disorders. The most commonly used stem cell therapies at 

present rely on mesenchymal stem cells due to their plasticity, established isolation 

procedure and capacity for ex vivo expansion.(132) 

 

1.9.1 Stem cells 

Stem cells are a class of undifferentiated cells that are able to differentiate into different 

cell types. Stem cells have two main properties: self-renewal (the ability to go through 

numerous cycle of cell division while maintaining the undifferentiated state), and 

potency, which is the ability to differentiate into specialized cells e.g. cells of the blood, 



35 
 

heart, bones, skin, muscles and many other types of cells.(133). Stem cells come from 

two main sources: embryonic, which are found in the inner cell mass of blastocysts, 

and adult stem cells, found throughout the body and, which act as a repair system for 

the body.(134) In the inner cell mass of the pre-implantation blastocyst, embryonic stem 

cells have the potency to differentiate into all the specialized cells and are known as 

pluripotent cells. Other types of stem cells are classified as being totipotent cells (can 

differentiate into embryonic and extraembryonic cell types, these cells are produced 

from the fusion of an egg and sperm cell. Cells produced by the first few divisions of 

the fertilized egg are also totipotent) , multipotent cells (stem cells that can differentiate 

into number of cells, but only those of a closely related family of cells), oligopotent cells 

(can differentiate into only a few cells such as lymphoid or myeloid stem cells) and 

unipotent stem cells (cells that can produce only one cell type, their own, but have the 

property of self-renewal, which distinguishes them from non-stem cells (examples 

include progenitor cells and muscle stem cells).(135)as shown in (Figure 1.7). 
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Figure 1.7 Types of stem cells. This figure demonstrates the normal development of 
stem cells and types of stem cells in relation to the normal development. Reprinted 
from.https://smediacacheak0.pinimg.com/736x/a2/84/6b/a2846b4886265fc1d1cc81ae5
334ed8a.jpg 
 

 

1.9.2 Mesenchymal stem cells (MSCs) 

Mesenchymal stem cells (MSCs) are multipotent stem cells that have the potential to 

differentiate into many cell types like osteoblasts (bone cells), chondrocytes (cartilage 

cells) and adipocytes (fat cells). MSCs are predominantly isolated from bone marrow, 

but may also be found in other tissues including peripheral blood, cord blood and the 

fetal liver and lung.(136)  

 

In addition to being multipotent, MSCs can achieve limited expansion during in vitro 

culture. It is thought that MSCs response to stress or injury is somewhat similar to the 

innate and adaptive immune response in that MSCs travel to the site of infection when 

supplied exogenously.(124) Also, MSCs have the ability to undergo ex vivo differentiation 

into many cell types.(137) The International Society for cellular therapy proposes minimal 

https://smediacacheak0.pinimg.com/736x/a2/84/6b/a2846b4886265fc1d1cc81ae5334ed8a.jpg
https://smediacacheak0.pinimg.com/736x/a2/84/6b/a2846b4886265fc1d1cc81ae5334ed8a.jpg
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criteria to identify human MSCs like MSCs must be plastic-adherent when maintained 

in culture condition also the flow cytometric analysis demonstrated the expression of 

distinguishing MSCs antigens (CD105, CD73, and CD90), and the absence of 

hematopoietic and endothelial antigens (CD11b, CD14, CD19, CD34, CD45, CD79a, 

and HLA-DR) and also MSCs must differentiate into adipocyte, chondrocyte and 

osteocyte.(138)  

 

1.9.2.1 Development and function of MSCs 

The origin of MSCs is not fully known, it is believed that MSCs are specialized 

connective tissue cells, which are undifferentiated and found in the early stages of fetal 

life.(139) MSCs can easily migrate, unlike epithelial cells, which migrate slowly.(140) MSCs 

have been isolated from different types of tissues like bone marrow.(141) adipose 

tissue,(142) lung tissue(143)and umbilical cord blood(144) suggesting that MSCs may reside 

in all postnatal organs.(145) 

 

MSCs have an immunomodulatory capacity, in addition to an expansion capacity and 

multipotent differentiation capacity. The secretion of soluble factors by the MSCs can 

alter the production of dendritic cells (DCs) causing an increase in the production of 

anti-inflammatory cytokines including IL-10, whilst inhibiting the production of IFN-γ and 

IL-12.(146) MSCs are able to prevent the proliferation of T cells by binding the 

programmed death 1 molecule (PD-1) to its ligands PD-L1 and PD-L2. This binding will 

produce soluble factors (e.g. transforming growth factor beta (TGF-β) or IL-10) that 

inhibit T-cell proliferation through interaction with DCs. MSCs have the ability to 

increase the number of T regulatory cells that suppress the immune response.(147) The 

production of soluble factors by MSCs can suppress the proliferation and IgG secretion 
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of B cells. Therefore, the therapeutic properties of MSCs can be related to their ability 

to release trophic and immunomodulatory factors.(148) 

 

1.9.2.2 Clinical utility of MSCs 

MSCs have generated a great amount of excitement over the past decade as a novel 

therapeutic strategy for different disease conditions such as bone disease,(149) cardiac 

disorder,(150) multiple sclerosis(151) and T1DM(152) as shown by in vivo studies in animal 

models. In experimental animal models of rheumatoid arthritis, a single injection of 

MSCs prevented severe damage of bone and cartilage by inducing T cell hypo-

responsiveness and modulation of inflammatory cytokines like TNF-α.(153) Furthermore, 

experiments on rat models with glomerulonephritis show that the use of MSCs 

accelerates glomerular healing.(154)  The use of MSCs and bone marrow cell co-

transplantation in mice with T1DM supported the regeneration of recipient-derived 

pancreatic insulin secreting cells and prevented the immune response against the 

newly formed β-cells by suppression of T cell responses.(155)  

 

The ability of MSCs to differentiate into multiple lineages, secrete soluble factors that 

have immunosuppressive and anti-inflammatory effects, in addition to their tendency to 

migrate to the site of injury made them an attractive therapeutic candidate. MSCs have 

been used in various clinical trials and have shown promising results. Children with 

osteogenesis imperfecta (clinical condition characterized by a defect in type 1 collagen) 

underwent allogeneic haematopoietic stem cell transplantation (HSCT) and showed an 

improvement in bone structure and function.(156) Also for cardiovascular repair; a pilot 

study involved 69 patients with acute myocardial infarction who displayed a significant 

improvement in cardiac function following MSC administration.(157) There is also clinical 
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trials that test the beneficial effects of MSCs in Crohn's disease and the initial results 

are promising.(158) 

 

1.9.2.3 MSC and tissue repair 

The extraordinary regenerative ability of MSCs along with their immunomodulatory 

properties have opened the door for many studies based on the use of MSCs in tissue 

repair. Studies are performed on animal models with a different type of tissue injuries 

such as skeletal defect, lung injuries, kidney disease, graft versus host disease and 

myocardial infarction.(159) The results showed the ability of MSCs to serve as effective 

therapeutic agents but the mechanism by, which the MSCs work is still unclear. Some 

studies suggest that the repair ability is secondary not to transdifferentiation of MSCs 

into the appropriate cell phenotype or to cell fusion, but rather to the production of 

soluble factors that change the microenvironment of the tissue.(159)  

 

Transforming growth factor, hepatic growth factor, prostaglandins E2 and IL-10 are all 

soluble factors that are secreted by MSCs and, which have been found to suppress T-

cell mediated antigen response in vitro. Burchfield et al stated that secretion of the anti-

inflammatory cytokine IL-10 by MSCs plays a major role in their therapeutic 

effectiveness in mice with myocardial infarction.(160) IL-10 is critical for regulation of the 

immune system, and is involved in the differentiation of T-regulatory cells, which is 

essential for inhibition of autoimmune reactivity and in termination of the inflammatory 

response.(160) IL-10 is one of the anti-inflammatory cytokines that has been confirmed 

to be present in MSCs secretome.(161) Another study suggests a role for TGF-β and IL-

4 in the treatment of mouse model with induced asthma.(162) Furthermore, according to 

Meisel et al MSC inhibition of T-cell proliferation could also be due to a depletion of 

tryptophan (using the indolamine2, 3-dioxygenase enzyme (which induced by IFN-γ 
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and other proinflammatory cytokines) to catalyzes the conversion of tryptophan to 

kynurenine, this conversion has been identified as a major immunosuppressive 

effectors pathway that inhibits T-cell response to autoantigens in vivo) and subsequent 

inhibition of T-cell proliferation.P

(163)
P Inducible nitric oxide synthase heme oxygenase-1 

expressed by MSCs has also been implicated for their immunosuppressive properties. 

It is likely that these mechanisms are not exclusive and that the relative contribution of 

each mechanism to modulating immune response varies in different experimental 

models. It is also interesting to hypothesize that immunomodulation of MSCs in 

different tissues may be mediated by different factors.P

(164)
P 

 

1.9.2.4 Immunomodulatory effect of MSC and diabetes 

The immunomodulatory capacity of MSCs makes the researcher consider the ability of 

MSCs in the treatment of T1DM. In Non-Obese Diabetic mice (NOD), it appears that a 

dysregulation in the immune system leads to the development of autoimmune diabetes, 

a combination of immune cell dysfunction (including T-cells, B-cells, and dendritic 

cells), as well as the presence of inflammatory cytokines, leads to β-cell failure.(165) The 

immunomodulatory properties of MSCs may interrupt autoimmunity. MSCs may have 

the capacity to regulate T1DM by presenting differential levels of negative co-

stimulatory molecules and secreting regulatory cytokines such as transforming growth 

factor and IL-10 that control autoreactive T-cells. MSCs have the ability to suppress B-

cell proliferation and terminal differentiation resulting in the suppression of antigen-

specific antibodies.(166) In addition, it has been observed that MSCs are able to interfere 

in the differentiation, maturation and function of dendritic cells (DCs), which represent 

the most important antigen presenting cells (APC) playing a cardinal role in humoral 

and cellular immune response against foreign and self-antigen they possess a number 

of receptors that increase the uptake of antigen and convert them to major 
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histocompatibility complex that could be recognized by lymphocytes.(167) DCs have the 

capacity to secrete IL-12 and activate T-lymphocyte. Furthermore, MSCs were found to 

inhibit T-cell proliferation and differentiation by interfering in the conversion of naïve 

CD4+ T-cells into T-helper 1 (Th1) effector cells.(168) MSCs have been used to induce 

apoptosis of infiltrated leukocytes in pancreatic islets of non-obese diabetic mouse 

(NOD).(169) MSCs also demonstrate a similar effect in a study that involves human islets 

transplanted into mice in which they increased T-regulatory cell production leading to 

immune tolerance of transplanted human islets.(170) However, the mechanisms 

underlying the immunomodulatory abilities of MSCs are still unclear and need further 

research and clinical trials to prove the effectiveness of MSCs in the treatment of 

T1DM. 

 

 

1.10 Aims of this study 

Owing to their immunomodulatory and self-renewal properties, MSCs have emerged as 

a new therapeutic tool for the treatment of several chronic conditions. Given the 

complex autoimmune pathways involved in the destruction of β-cells in T1DM, we 

hypothesised that MSCs and specifically, MSC-derived products may protect against β-

cell death and theoretically, halt the progression of T1DM. Therefore, the aims of this 

project were: 

• To establish cellular models of cytokine-driven β-cell death. 

• To determine if culturing conditions (oxygen concentration and the presence of 

serum in the culture media) sensitized cells to the effects of cytokines. 

• To explore the therapeutic effectiveness of MSC-CM (MSC conditioned 

medium) in the prevention of β-cell death. 
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• To identify candidate anti-inflammatory proteins from MSC-CM that may protect 

against β-cell death 

• To investigate potential mechanisms by which candidate proteins confer 

protection against β-cell death  
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2.1 Materials 
 

Table 2.1 list of materials, catalogue number and supplier 

Name Catalogue number Supplier 

(3-(4,5-dimethylthiazol-2yl)-2,5diphenyltetrazolium 
bromide M2128 Sigma-Aldrich 

3-isobutyl-1-methylxanthine (IBMX) I7018 Sigma-Aldrich 

4′,6-Diamidino-2-phenylindole (DAPI) D9542 Sigma-Aldrich 

ABTS (2.2-azino-bis(3-ethylbenzothiazolin-6-
sulphonic acid) A3219 Sigma-Aldrich 

ALPCO Elisa kit 80-INSRTH-E01 ALPCO-USA 

Agarose BP1356-500 Fisher Scientific 

Alcian blue A3157 Sigma-Aldrich 

Alizarin red S A5533 Sigma-Aldrich 

Ascorbic acid phosphate A8960 Sigma-Aldrich 

β-glycerophosphate G9422 Sigma-Aldrich 

βTC1.6 cells  CRL-11506™ ATCC 

Bovine serum albumin (BSA) BP9703-100 Fisher Scientific 

Collagenase P solution 17018-029 Fisher Scientific 

Cryopreserved human bone marrow mononuclear 
cells (MNCs) 2M-125C Lonza 

https://www.lgcstandards-atcc.org/Products/All/CRL-11506.aspx
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Calcium chloride 499609 Sigma-Aldrich 

Dexamethasone D2915 Sigma-Aldrich 

Direct Load Wide Range DNA Marker D7058 Sigma-Aldrich 

Dimethyl sulfoxide D2650 Sigma-Aldrich 

Donkey anti goat polyclonal antibody SC-45102 Santa Cruz 
biotechnology 

Donkey anti rabbit polyclonal antibody SC-2089 Santa Cruz 
biotechnology 

Dulbecco’s Modified Eagle Medium (DMEM) BE12-707F Lonza 

Ethidium bromide E1510 Sigma-Aldrich 

Ethanol (absolute) E0650/17 Fisher Scientific 

FBS (foetal bovine serum) DE14-801F Lonza 

Fibronectin F0895 Sigma-Aldrich 

Flow cytometry staining buffer FC001 
R&D system 
biotechne 

Gel Loading Buffer 10816-015 Thermo fisher 

Glucose G7021 Sigma-Aldrich 

Goat anti mouse monoclonal antibody SC-16516 Santa Cruz 
biotechnology 

Goat polyclonal anti-GLUT2 SC-7580 Santa Cruz 
biotechnology 

Goat polyclonal anti-IRS-1 SC-559 Santa Cruz 
biotechnology 
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Hydrogen peroxide (H2O2) 216763 Sigma-Aldrich 

Human IL-10 mini ELISA kit 900-M21 PeproTech 

Human IL-4 mini ELISA kit 900-M14 PeproTech 

Human PIGF-1 ELISA kit 900-K307 PeproTech 

Human VEGF mini ELISA kit 900-M10 PeproTech 

Hepes H-3375 Sigma-Aldrich 

Indomethacin I7378 Sigma-Aldrich 

Insulin I9278 Sigma-Aldrich 

Insulin, Transferrin, Selenium (ITS) I3146 Sigma-Aldrich 

In situ direct DNA fragmentation kit Ab66108 Abcam 

Industrial methylated spirits I99050 Genta Medical 

Isopropanol P/7500/17 Fisher Scientific 

L-Glutamine BE17-605E Lonza 

L-Proline P5607 Sigma-Aldrich 

Methanol M/3900/17 Fisher Scientific 

Mouse monoclonal anti-HNF-1α SC-135939 Santa Cruz 
biotechnology 

Magnesium sulphate M-5921 Sigma-Aldrich 
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Non-essential amino acids BE13-114E Lonza 

DNA-Dye NonTox A9555.1000 VWR 

Magnesium chloride M-8266 Sigma-Aldrich 

Oil Red O O0625 Sigma-Aldrich 

Paraformaldehyde P/0840/53 Fisher Scientific 

Penicillin, streptomycin, amphotericin B BE17-745E Lonza 

Penicillin-Streptomycin (P.S) 17-602F Lonza 

Phosphate buffered saline BE17-516F Lonza 

Phycoerythrin conjugated antibodies CD105 130-098-845 Miltenyi Biotec 

Phycoerythrin conjugated antibodies CD14 130-098-167 Miltenyi Biotec 

Phycoerythrin conjugated antibodies CD19 130-098-168 Miltenyi Biotec 

Phycoerythrin conjugated antibodies CD34 130-098-140 Miltenyi Biotec 

Phycoerythrin conjugated antibodies CD45 130-098-141 Miltenyi Biotec 

Phycoerythrin conjugated antibodies CD73 130-097-932 Miltenyi Biotec 

Phycoerythrin conjugated antibodies CD90 130-098-906 Miltenyi Biotec 

Phycoerythrin conjugated antibodies HLA-DR 130-098-177 Miltenyi Biotec 

Phycoerythrin conjugated antibodies IgG1 130-098-849 Miltenyi Biotec 
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Potassium chloride P9333 Sigma-Aldrich 

Potassium phosphate PHR 1330 Sigma-Aldrich 

Phenol red P0290 Sigma-Aldrich 

Pierce BCA protein assay kit 23221 Thermo fisher 

Quantifast SYBR green RT-PCR kit 204154 Qiagen 

Radio immune precipitate assay buffer (RIPA)  R0278 Sigma-Aldrich 

Rabbit anti-murine IL-10 500-p60 PeproTech 

Rabbit Anti-murine TRAIL 500-P303 PeproTech 

Rabbit polyclonal anti-insulin SC-9168 Santa Cruz 
biotechnology 

Rabbit polyclonal anti-KCNQ1 SC-20816 Santa Cruz 
biotechnology 

Rabbit polyclonal anti-KIR6.2 SC-20809 Santa Cruz 
biotechnology 

Rabbit polyclonal anti-SUR-1 SC-25683 Santa Cruz 
biotechnology 

Recombinant human IFN-γ 300-02 PeproTech 

Recombinant human IL-1β 200-01B PeproTech 

Recombinant human VEGF 100-20B PeproTech 

Recombinant human PIGF 200-04 PeproTech 

Recombinant human IL-4 100-20B PeproTech 
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Recombinant human TNF-α 300-01A PeproTech 

Recombinant murine IL-10 210-10 PeproTech 

Recombinant murine TRAIL 315-19 PeproTech 

RNase Zap R2020 Sigma-Aldrich 

RNeasy mini kit 74104 Qiagen 

Rosewell Park Memorial Institute (RPMI1640) 12-918F Lonza 

SuperScript III One-Step RT-PCR System with 
Platinum Taq High Fidelity DNA Polymerase kit 12574030 

Life 
Technologies/ 
Fisher Scientific 

Sodium Chloride S3014 Sigma-Aldrich 

Sodium Phosphate S-0876 Sigma-Aldrich 

Sodium bicarbonate S-7277 Sigma-Aldrich 

Tris-Acetate-EDTA (TAE) buffer (50X) (2 M Tris 
Acetate, 100 mM Na2EDTA) EC-872 

National 
Diagnostics 

Triton X-100 9002-93-1 Sigma-Aldrich 

Tween 20 66368 Analar 
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2.2 Methods 

 

2.2.1 Cell Models 
All cell culture was performed in an aseptic environment using a laminar flow hood, the hood 

was sterilized by UV light for at least half an hour prior to use and all equipment was 

sterilized with 70% Industrial Methylated Spirit (IMS) (Genta Medical UK) prior to use. 

 

 2.2.1.1 Pancreatic β-cell lines 

BRIN-BD11 cells were a kind gift from Ulster University. The insulin-secreting cell line was 

established after electro-fusion of RINm5F cells with New England Deaconess Hospital rat 

pancreatic islet cells. Morphological studies established that these cells grow as cell 

monolayers with epithelioid characteristics and maintain stability in tissue culture for more 

than 50 passages.(171) βTC1.6 cells were purchased from ATCC (LGC Standards, UK) and 

cultured according to the supplier’s instructions. βTC1.6 cells are an insulinoma cell line 

derived by expression of the SV40 T antigen (Tag) incorporated under control of the insulin 

promoter in transgenic mice.(171) 

 

BRIN-BD11 cells were maintained in a T75 flask with 10-15 ml of warm Rosewell Park 

Memorial Institute (RPMI1640) media (Lonza, UK) supplemented with 10% fetal bovine 

serum (FBS) (Lonza, UK) and 1% Penicillin-Streptomycin (P.S) (Lonza, UK). βTC1.6 cells 

were cultured in a T25 flask with 5-7 ml of warm Dulbecco’s modified Eagle’s (DMEM) media 

(Lonza,UK) supplemented with 15% heat inactivated FBS (Lonza, UK) and 1% P.S (Lonza, 

UK). All cells were maintained in an incubator at an atmosphere of 37 °C and 5% CO2. Cells 

were checked microscopically daily to ensure they were healthy and growing as expected. 

Both cell lines grow as adherent monolayers as shown in Figure 2.1, are round or elongated 

in shape and refract light around their membrane. Cells were discarded if they detached in 

large numbers and/or look shrivelled and grainy/dark in colour, or displayed evidence of 

quiescence.  
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. 

 

 

 

 

 

Figure 2.1 Light micrograph images of pancreatic β-cell lines grown in culture as 
monolayers.(A) BRIN-BD11 cells monolayers, (B) βTC1.6 cells monolayer. X20 
magnification, the scale bar is 100 μm. 

 

Cells were passaged at (80-90)% confluency. Briefly, cells were washed with 4 ml 

phosphate buffer saline (PBS) (Lonza, UK) twice. Pre-heated 1x trypsin/EDTA (2.5ml) 

(Lonza, UK) was added to the flask, which was returned to the incubator for 3-5 mins. The 

flask was gently tapped to aid cellular detachment, which was confirmed microscopically. 

Once detached, an additional 4 ml of media was added to the flask and the resultant 

suspension transferred to a 15 ml centrifuge tube, and the tube centrifuged at 1000 rpm (152 

g) 

 for 2 mins. After centrifugation the solution was aspirated, taking care not to dislodge the 

pellet, which was resuspended in 1 ml of media. The cells were then counted using a 

disposable haemocytometer (Hycor Kova Glasstic slide 10, US) and returned to culture or 

utilized for experimentation. 

 

On occasion cells were also cryopreserved in liquid nitrogen until required. Freezing media 

was made up of 80% FBS (Lonza, UK), 10% dimethyl sulfoxide (DMSO) (Sigma, UK) and 

10% complete media (RPMI or DMEM, Lonza, UK). Briefly cells were detached from the 

flask with 1x trypsin/EDTA (Lonza, UK) resuspended in the freezing media and immediately 

transferred to cryovials and placed in isopropanol filled Mr Frosty freezing container for 

controlled cooling to -80 ᴼC before being transferred to liquid nitrogen storage dewars.       

 

A B 
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2.2.1.2 Isolation and characterization of primary pancreatic islets of Langerhans 

 

2.2.1.2.1 Islets isolation and culture 

Pancreatic islets were isolated from CD1 mice aged 12-16 weeks. All procedures were 

conducted in accordance with the Animals Scientific Procedures Act 1986. Animals were 

euthanized under Schedule 1 methods and the pancreas was excised and transferred to 

Hank’s Balanced Salt Solution (HBSS) transport buffer comprising 8 g/l NaCl, 0.4 g/l KCl, 

0.14 g/l CaCl2, 0.1 g/l MgSo4, 0.1 g/l MgCl2, 0.06 g/l Na2HPO4, 0.06 g/l KH2PO4, 1 g/l 

Glucose, 0.02 g/l phenol red, 0.35 g/l NaHCO3 and 10 mM Hepes The pancreas was 

subsequently chopped into small pieces and placed in collagenase P solution (0.5 mg/ml 

collagenase clostridium histolyticum, (Fisher, UK) in HBSS) to allow enzymatic digestion of 

the exocrine pancreatic tissue. Enzymatic digestion was aided by mechanical disturbance as 

the pancreas solution was shaken in a water bath at 37 ᴼC for 10 minutes. Following this, 

HBSS supplemented with 0.1% Bovine Serum Albumin (BSA; Sigma, UK) was added to stop 

the action of collagenase. Pancreatic tissue was then centrifuged for 5 mins at 1000 rpm 

(152 g) The supernatant was carefully removed and the tissue pellet resuspended in 5 ml 

wash buffer (HBSS + 5% FBS). This step was repeated twice and the homogenised 

pancreas was passed through a fine mesh filter into a 50 ml Falcon tube. The filtrate was 

centrifuged for 5 mins at 1000 rpm during which time the isolated islets formed a pellet at the 

bottom of the Falcon tube. The isolated islets were cultured in a petri dish using RPMI media 

supplemented with 5% FBS and 1% P.S. The islets were maintained in an incubator at 37 

ᴼC and 5% CO2 for a minimum of 24 hours before experimentation.  

 

2.2.1.2.2 Characterization of pancreatic islets 

Freshly isolated islets were fixed with 4% paraformaldehyde (PFA) in 1x PBS (Lonza, UK) 

for 30 mins at room temperature. The islets were subsequently washed three times with 1x 

PBS for 10 minutes. This was followed by permeabilization using 0.3% Triton X-100 (Sigma, 

UK) in 1x PBS for three hours at room temperature. Then a blocking solution (5% BSA, 
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Immunogen Primary anti body Secondary Dilution 
primary secondary 

Insulin Rabbit polyclonal anti-insulin Donkey anti rabbit 
polyclonal anti-insulin 

1:50 1:100 

GLUT2 Goat polyclonal anti-GLUT2 Donkey anti goat 
polyclonal anti-GLUT2 

1:50 1:200 

IRS-1 Goat polyclonal anti-IRS-1 Donkey anti goat 
polyclonal anti-IRS-1 

1:50 1:200 

KCNQ1 Rabbit polyclonal anti-KCNQ1 Donkey anti rabbit 
polyclonal anti-KCNQ1 

1:50 1:100 

HNF-1α Mouse monoclonal anti-HNF-1α Goat anti mouse 
monoclonal anti-HNF-1α 

1:50 1:100 

KIR6.2 Rabbit polyclonal anti-KIR6.2 Donkey anti rabbit 
polyclonal anti-KIR6.2 

1:50 1:100 

SUR-1 Rabbit polyclonal anti-SUR-1 Donkey anti rabbit 
polyclonal anti-SUR-1 

1:50 1:100 

 

0.15% Triton X-100 in 1x PBS) was applied overnight at 4 ᴼC. The following morning, the 

islets were centrifuged for 5 mins at 900 rpm (123 g) and the blocking solution removed and 

replaced with a buffer solution of 1% BSA (Sigma, UK), 0.2% Triton X-100 in 1x PBS for a 

further 40 minutes. The primary and secondary antibodies were diluted in buffer solution as 

shown in Table 2.2 and incubated for 24 hours respectively at 4 ᴼC. The islets were 

examined using laser scanning confocal microscope (Olympus, Japan) sequential narrow 

band filter accounts for spectral bleed-through (FITC excitation set as 473 nm).  

 

  

Table 2.2 Antibody dilutions for immunohistochemistry of pancreatic islets. 

 

2.2.1.3 Culture and characterization of bone marrow-derived mesenchymal cells 
(MSCs) 

Human Bone Marrow Mononuclear cells were purchased from (Lonza, UK). Cells were 

cultured at a density of 1 x 105 mononuclear cells (MNC)/cm2 in T75 flasks. Flasks were pre-

coated with 10 ng /ml of fibronectin (Sigma,UK) in PBS for one hour at room temperature. 

MNC cells were cultured in DMEM media (Lonza,UK) supplemented with 5% FBS 

(Lonza,UK), 1% L-Glutamine (Lonza, UK), 1% Non-essential amino acid (Lonza, UK) and 

1% Penicillin Streptomycin Amphotericin-B (PSA) (Lonza, UK). After one week a 50% media 

change was performed and cells incubated for a further week after which a 100% media 
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change was performed. Following this a routine media changes were carried out twice a 

week. Cells were passaged when needed as described in Section 2.2.1.1.  

 

2.2.1.3.1 Trilineage Differentiation 

In order to evaluate the multipotency of bone marrow mesenchymal stem cells, the cells 

were differentiated into osteogenic, adipogenic and chondrogenic lineages using 

differentiation media. 

 

Cells were seeded into twelve well plates at 1X105 cell/well and grown to 70-80% confluence 

in complete culture media. Once at the required confluency cells were then cultured with 

differentiation media specific for osteogensis, adipogensis and chondrogensis with media 

changes every three/four days. For control purposes bone marrow mesenchymal stem cells 

were cultured in complete grow media for the same duration with identical timing of media 

change. 

 

2.2.1.3.1.1 Osteogenic differentiation 

Osteogenic differentiated media consisted of low glucose DMEM supplemented with 10% 

FBS, 1% NEAA, 1% L-glutamine, 50mM ascorbic acid (Sigma, UK), 10mM 

betaglycerophosphate (Sigma, UK) and 0.1mM dexamethasone (Sigma, UK). 

 

2.2.1.3.1.2 Adipogenic differentiation 

Adipogenic differentiated media consisted of low glucose DMEM supplemented with 10% 

FBS, 1% NEAA, 1% L-glutamine, 0.5mM IBMX(Sigma, UK), 10µg/ml insulin (Sigma, UK), 

100mM indomethacin (Sigma, UK) and 0.5mM dexamethasone. 
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2.2.1.3.1.3 Chondrogenic differentiation 

Chondrogenic differentiation media comprised low glucose DMEM supplemented with 1% 

FBS, 1%NEAA, 1% L-glutamine, 1% ITS (Sigma, UK), 0.1mM dexamethasone, 50mM 

ascorbic acid (Sigma, UK), 40µg/ml L-proline (Sigma, UK), 1% sodium pyruvate (Sigma, UK) 

and 10ng/ml TGF-β3 (Sigma, UK). 

 

2.2.1.3.2 Histological staining  

After 21 days of culture in differentiation media the bone marrow mesenchymal stem cells 

had media removed followed by a wash with PBS and fixation with 4% paraformaldehyde 

(Sigma, UK) in PBS for Adipogenic differentiated cells and 95% methanol (Sigma, UK) for 

Osteogenic and Chondrogenic differentiated cells for 10 minutes before being washed twice 

with PBS. Samples were then covered with the stain according to the anticipated 

differentiation lineage. 

 

2.2.1.3.2.1 Alizarin red for osteogensis  

Osteogenic lineage differentiation was identified with a 2% alizarin red S solution. An 

aqueous solution of 2% (w/v) of alizarin red S (Sigma, UK) was prepared in distal water 

(dH2O) and paper filtered. The cells were covered with the stain for 15 minutes at room 

temperature. The stain was then removed and the cells washed with ddH2O twice followed 

by microscopic observation (Olympus CKX41, Japan), and image capture (1X 2-SLP, 

Micropublisher S-ORTV, Japan).  

 

2.2.1.3.2.2 Oil red O for adipogensis  

Samples were stained with oil red O prepared as 0.5% solution (Sigma, UK) in isopropanol 

(Fisher scientific, UK), to prepare a working solution, a small volume of stock solution diluted 

with ddH2O (3:2). The cells were immersed in oil red O solution for 15 minute followed by 

two ddH2O washes and microscopic observation and image capture as above. 
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2.2.1.3.2.3 Alcian blue for chondrogensis  

To detect glycosaminoglycans secreted by chondrocytes, the cells were stained with 0.1% 

alcian blue solution (Sigma, UK). The alcian blue was prepared as 1% (w/v) alcian blue in 

0.1M aqueous HCl and paper filtered. Then the stain was applied on the cells for 15 minutes 

followed by its removal, ddH2O washes (x2) and microscopic observation and image capture 

as described above. 

 

2.2.1.3.2 Flow cytometry (FACS)  

To test that our MSCs follows the minimum criteria proposed by the Mesenchymal and 

Tissue Stem Cell Committee of the International Society for Cellular Therapy which define 

human MSC, the expression of (CD73, CD90, CD105) which must be positive along with the 

negative (CD14, CD19, CD34, CD45, HLA-DR) was explored using antibodies from (Miltenyi 

biotec, UK). Isotype control IgG1 and IgG2 antibodies were included (Miltenyi biotec, UK). 

To perform FACS MSC cells were first grown to 80-90% confluence in a T75 flask. The cells 

were then washed with PBS (4-5 ml) twice before exposure to trypsin EDTA (3-5 ml) (Lonza, 

UK) for 3-5 minute. Cells were examined under the microscope to ensure detachment and 

then transferred to a 15ml tube and centrifugation at 900 rpm (14 g) for 5 minutes. The 

supernatant was removed and 1ml of buffer solution was added (R & D staining buffer). Cell 

counts were performed and 1X105 cells were placed into 10 X 1.5 microtubes to 

accommodate the 10 different antibodies. Cells were then centrifuged at 300 RPM for 10 

minutes and the supernatant aspirated completely. The cells were resuspended with 100µl 

of R&D buffer solution and for each microtube 10µl of the specific antibodies were added. 

Solutions were mixed well and incubated for 10 minutes in the dark at 4 °C. After that the 

cells were washed by adding 1-2 ml of buffer and centrifuged at 300 RPM for 10 mins. The 

supernatants were aspirated and the cell pellet resuspended in a suitable amount of buffer 

for analysis by flow cytometry (Beckman Coulter Cytomics FC 500). At least 1-3X104 events 

were acquired and the data analysis was carried out using flowing software version 2. The 
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isotopes controls IgG1 and IgG2, were used to establish positive and negative events for 

each antibody measured. The percentage of positive events was determined by using gates 

to exclude 99% of the appropriate control events. 

 

2.2.2 Preparation of conditioned media 

For preparation of MSC conditioned media, the MSCs were allowed to become 80-90% 

confluent in T75 tissue culture flasks. Cells were washed once with 10 ml PBS and twice 

with 10 ml DMEM (serum-free) media. Then the MSCs were conditioned with 15 ml RPMI-

1640 or DMEM media (Lonza, UK) with and without serum. After 24 hour the media were 

collected, centrifuged to remove any cell debris, filtered through 0.2 µm filter and stored at -

80 °C until required for experimental use. 

 

2.2.3 Treatment of pancreatic β-cell lines and primary islets with recombinant 

cytokines and endotoxin  

The pro-inflammatory cytokines; Tumor Necrosis Factor-α (TNF-α), Interferon Gamma (IFN-

γ), and Interleukin-1β (IL-1β) along with bacterial lipopolysaccharide (LPS) isolated from E. 

coli were purchased from PeproTech and Sigma-Aldrich, respectively. These cytokines were 

chosen as they have a well-documented role in triggering β-cell death(34). To explore the 

effect of the above cytokines and endotoxin on cell viability and the induction of apoptosis, 

cell lines were seeded at a density of 5 x 104 cells/well/96-well plate and allowed to attach 

overnight under culture conditions of 5% CO2 and 37 °C. Islets were isolated as described in 

Section 2.2.1.2 and seeded at a density of 25 islets/well/96-well plate and maintained in 

culture overnight. Cell lines and islets were subsequently exposed to cytokines or endotoxin 

as described in the following paragraph and the resultant effect of cell viability and the 

induction of apoptosis assessed as outlined in Sections 2.2.4 and 2.2.5 below. 
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Briefly, cell lines and islets were treated with rising concentrations of TNF-α, IFN-γ, and IL-

1β (0.1 ng/ml - 1000 ng/ml) for 24 h. Similarly, cell lines and islets were exposed to rising 

concentrations of LPS (0.1 µg/ml – 1000 µg/ml) for 24 h. The optimal concentration of each 

cytokine or endotoxin was assessed by MTT (Section 2.2.4) in the first instance. Optimal 

concentrations were deemed to be those that induced an approximate reduction in cell 

viability of 50%. Finally, cell lines were treated with optimal concentrations of cytokines or 

endotoxin for 0 h, 15 mins, 1 h, 2 h, 4 h and 24 h to monitor cell viability over time and to 

allow assessment of anti-apoptotic gene induction as outlined in Section 2.2.6. 

 

2.2.4 Assessment of cell viability by calorimetric MTT Assay 
To evaluate the effect of cytokines on BRIN-BD11, βTC1.6 and islet cell viability and to 

optimise cytokine concentration for subsequent experiments, the MTT (3-(4,5-

dimethylthiazol-2yl)-2,5diphenyltetrazolium bromide) cell viability assay was performed to 

estimate cell metabolic activity using the MTT reagent thiazolyl blue tetrazolium bromide 

(Sigma, UK), which reduces to insoluble formazan by the action of NAD(P) H dependent 

oxidoreductase enzyme. The cells were seeded in 96-well plates at a density of 5 x 104 

cells/well for cell lines, and 25 islets per well for primary cultures and remained in culture 

overnight. The cell lines and islets were exposed to cytokines as described in section 2.2.1 

and 2.2.2. 

 

Following the basic protocol 500μl of MTT reagent (5 mg/ml) (Sigma, UK) was mixed with 

5ml of RPMI1640 media. Media was removed from well plates and 220 μl added to each 

well followed by incubation for 2 hours at 37 °C. MTT solution (195 μl) was then removed 

and 100 μl DMSO added to each well and mixed thoroughly by pipetting before incubating 

again at 37°C for a further 45 minutes. The absorption was measured with a micro-plate 

reader (Dynatech, MR5000 version 3.7) at a wavelength of 570 nm with a reference 

wavelength reading at 650 nm. 
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2.2.5 TUNEL assay for assessment of apoptosis  

Following optimisation of cytokine concentration by MTT, the TUNEL (terminal 

deoxynucleotidyl transferase mediated deoxyuridine triphosphate nick end labelling) assay 

(TUNEL in situ direct DNA fragmentation kit (Abcam, UK)) was employed to ensure that any 

reduction in viability observed resulted from apoptotic processes and not necrosis. The 

principle of the kit depends on the use of terminal deoxynucleotidyl transferase (TdT) 

enzyme catalysis of fluorecein-12-dUTP incorporation into the free 3ˊ-hydroxyl ends of 

fragmented DNA. The fluorescence labelled D terminal deoxynucleotidyl transferase 

mediated deoxyuridine triphosphate nick end labelling DNA can then be detected. 

 

Cell lines were seeded at a density of 5 x 104 cells/well/96-well plates and allowed to 

attached overnight under culture conditions of 5% CO2 and 37 °C. Islets were seeded at a 

density of 25 islets per well and placed in culture overnight. Cell lines and islets were treated 

with the optimal concentration of cytokines identified by MTT assay. The TUNEL assay was 

performed following a modified manufacturer’s protocol as follows; media was first removed 

from cells and islets (islets were gently centrifuged at 1000 rpm prior to each step in the 

following protocol), which were washed once with PBS, and cell lines were fixed with 95% 

methanol for 10 mins (for the islets fixation we followed the steps mentioned in Section 

2.2.1.2.2). The methanol was removed and the cells washed twice with washing buffer 

followed by resuspension in 51 µl of staining solution (10 µl reaction buffer, TDT enzyme 

0.75 µl, 8 µl FITC_dUTP and 32.25 µl ddH2O per well) -. The cells were incubated at 37 ᴼC 

for one hour and the staining solution was then removed. The cells were washed with rinse 

buffer twice after which 50 μl of dapi (4,6-Diamidino-2-phenylinodle) (Sigma, UK) was added 

for 30 mins at room temperature. Images of cell lines were acquired by fluorescent 

microscope (Olympus Fluoview, Nikon Eclipse, Japan) while islets were visualised using a 

laser scanning confocal microscope (Olympus, Japan). 
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2.2.6 Measurement of anti-apoptotic gene induction following cytokine or endotoxin 

exposure 

The ability of cytokines or endotoxin to induce highly-regulated early anti-apoptotic genes in 

pancreatic β-cell lines was assessed by reverse transcription polymerase chain reaction 

(RT-PCR). In the first instance, optimization of primer annealing temperature and 

confirmation of gene induction was established using end-point semi-quantitative RT-PCR. 

Subsequently, gene induction was quantified using real-time RT-PCR. 

 

2.2.6.1Extraction and quantification of total RNA 

Total RNA was isolated using the RNeasy Mini kit (Qiagen, UK) following exposure of BRIN-

BD11 and βTC1.6 cells to cytokines as outlined in Section 2.2.3. Cells were lysed in situ with 

600 μl/well RLT lysate buffer. Vigorous pipetting was carried out to ensure cells were 

completely detached and disrepute, the resulting lysate was transferred to QIAshredder 

minispin column centrifuged at 1700 rpm (439 g) for 2 min. 

 

Following lysis and homogenization the lysate was then transferred to a 1.5 ml microtube to 

which 300 μl of 70% molecular grade ethanol was added. After mixing thoroughly the 

resulting solution was transferred to an RNeasy Mini spin column, which was centrifuged for 

15 sec at 8000 RPM (9731 g) and the flow through discarded leaving total RNA bound to the 

column membrane. To wash the column membrane, 700 μl of RW1 washing buffer was 

added and the column centrifuged at 800 rpm (97 g) for 15 sec. The flow through was 

discarded and 500 μl of RPE washing buffer was added. The column was again centrifuged 

at 800 rpm for 15 sec. The flow through was discarded and this step repeated with an 

extended centrifugation step of 2 mins. The spin column was placed into a fresh, clean, 

collection tube and centrifuged for 1 min at 1000 rpm to ensure the membrane was 

completely dried of washing buffers. The collection tube was discarded and replaced by 1.5 

ml eppendorf tube. RNase-free water (30 μl) was carefully added to the centre of the spin 

column membrane and allowed to soak for 2 mins. The column was then centrifuged for 1 
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min at 1000 rpm and the RNA was eluted from the column into the eppendorf tube below, 

which was immediately transferred to ice. RNA concentration was quantified using a 

Nanodrop 2000 (Thermo Scientific, UK) and stored at -80°C until required. 

 

2.2.6.2 Semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) 

RNA was diluted with nuclease-free distilled water to a final concentration of 25 ng/μl. One 

step RT-PCR was performed with Superscript III RT-PCR platinum Taq High Fidelity Kit 

(Invitrogen). Following manufacturer's instructions a Master Mix was first prepared which 

comprised 6.25 μl reaction mix, 0.25 μl of each relevant primer (10 µmol), and 4.50 μl free 

nuclease water, per sample. Then 1 µl of diluted RNA was aliquoted into a 0.2 ml PCR tube 

on ice. Finally 0.25 μl of Superscript III RT platinum Taq enzyme was added to the Master 

Mix and 11.5 μl from the Master Mix was added to each sample to give a final reaction 

volume of 12.5 μl. Wells with no nucleic acid product were used as a negative control for all 

experiments.  

 

PCR primers were designed using rat gene sequences from NCBI map viewer and designed 

using Primer3 open-source PCR primer design software and obtained from Invitrogen Ltd. 

(Paisley, UK). Designed primers were evaluated in NCBI Primer-BLAST to check specificity 

before being purchased from Invitrogen. Primer sequences and product sizes are listed in 

Table 2.3. PCR cycling conditions are given in Table 2.4. 
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Primers Sequence Product 
size 

β-Actin 
F “ATGCAGAAGGAGATTACTGC” 

218 R “TAAAACGCAGCTCAGTAACA” 

A20 
F “CAGATATCCCATCGTCCTTG” 

262 
R “ATCTAACTTGGCAGCATTGA” 

Trail 
F “AAGAGGTGACTTTGAGAACC 

193 
R “GTTTCTATCTTCTGGCCCAA” 

IL-10RB 
F “CTCCCCAGTATGACTTTGAG” 

259 
R “AAGGCGTACTTTGTCTTCTT” 

IL-10RA 
F “TAGACCACATCCCCTTGTTA” 

175 
R “TAGACCACATCCCCTTGTTA” 

 
TNFRSF10A 
(TRAIL-R1) 

 

F “CAAAGAATCAGGCAATGG” 
196 

R “GTGAGCATTGTCCTCAGG” 

 
TNFRSF10B 
(TRAIL-R2) 

 

F “CAGGTGTGATTCAGGCAC” 
220 

R “CCCACTGTGCTTTGTACC” 

Table 2.3 Primer sequences for RT-PCR 
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Step Temperature (ᴼC) Time Number of cycle 

1-Conversion to 
cDNA 50 30 mins 1 

2-Initial denaturation 94 2 mins 1 

3-Denaturation 94 15 sec 40 

4-Primer annealing 55 30 sec 40 

5-Primer extension 68 1 min 40 

6-Final extension 15 ᴔ  

Table 2.4 RT-PCR cycling conditions 
 

2.2.6.3 Agarose Gel Electrophoresis 

Following RT-PCR amplification, samples were fractionated by agarose gel electrophoresis 

on a 2% gel (2 g of agarose powder (Fisher scientific, USA) was dissolved in 100 ml 1x tris-

acetate EDTA (TAE) buffer (Sigma, UK)). The agarose solution was boiled in a microwave 

oven until the solution was clear and agarose powder was no longer visible. The hot, 

dissolved, agarose solution was immediately poured into an agarose gel case containing a 

comb. After 1 hr at room temperature, the gel had set and was ready to use. The gel was 

placed into the gel tank (Bio-Rad DNA Sub cell) and 5 μl of each PCR sample was mixed 

with 5 μl of DNA NonTox Dye (VWR, UK) and then pipetted into the correct well. For 

comparison of fragment size, direct load wide range DNA marker (Sigma, UK) was also run. 

All gels were run for one hour at 100 V and were viewed using an Ultraviolet Transilluminator 

using Syngene gel documentation system (Cambridge, UK). 

 

2.2.6.4 Quantitative real time-polymerase chain reaction (qRT-PCR) 

Relative gene expression in cell lines treated with cytokines or endotoxin at different time 

points (as described in section (2.2.2)) were assessed using the QuantiFast SYBR Green 

RT-PCR kit (Qiagen, UK). SYBR green is a commonly used fluorescent DNA binding dye, it 

binds to all double stranded DNA and detection is monitored by measuring the increase in 
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fluorescence throughout the cycle at the end of either the annealing or the extension step 

when the greatest amount of double stranded DNA is present. To generate a specific gene 

amplicon a combination of primers and master mix were used. Replicate reactions for each 

gene of interest and for housekeeping genes were performed for each sample. To compare 

the gene expression difference among our samples the ∆∆Ct were calculated. Threshold 

cycle (Ct) value is the cycle number at which the fluorescence generated within the PCR 

reactions, were a detectable amount. ∆Ct value was calculated for each sample as the 

difference between the Ct for the gene of interest and the house keeping gene. ∆∆Ct was 

measured as the difference between ∆Ct values of an experimental sample and the control 

sample, the fold-change in gene expression was measured as 2-(∆∆Ct). 

 

Samples were prepared by adjusting the concentration of RNA to 100 ng/ml in a final volume 

of 3.5 µl of RNA with free nuclease disttilled water and this volume placed into each 

experimental well of a chilled 96 PCR plate (Sigma, UK) and kept on ice till use. A master 

mix of 6.25 µl SYBR green, 1.25 µl of each relevant primer (10 µM) was prepared. 

Immediately before the transfer to the PCR machine 0.125 µl/sample of enzyme was added 

to the master mix thoroughly mixed and 8.8 µl of the master mix was added to each sample 

well, an optical adhesive cover (Thermo fisher, UK) was used to seal the plate and then 

transferred to a Stratagene MX3005P real time thermal cycler. The thermal cycler was 

programmed as shown in Table 2.5. 
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Step Temperature (ᴼC) Time Number of 
cycles 

1-Conversion to cDNA 50 10 mins 1 

2-Initial denaturation 95 5 mins 1 

3-Denaturation 95 10 sec 40 

4-Primer annealing 55 30 sec 40 
5-Primer extension and Fluorescent 

determination 60 30 sec 40 

6-Pre-programmed melt curve and 
Fluorescent determination as 

temperature increased from 60ᴼC to 
95ᴼC 

95 1 mins 1 

60 30 sec 1 

95 30 sec 1 

Table 2.5 qRT-PCR cycling conditions 
 

2.2.7 Stimulation and measurement of insulin secretion from β-cell lines 

To determine the effect of conditioned media on insulin secretion from pancreatic β-cells, 

cell lines were seeded at a density of 1x105 cells/well/24-well plate and allowed to attach 

overnight. Following this step the cells were treated with pro-inflammatory cytokines (IFN-γ. 

TNF-α, IL-1β and endotoxin LPS) with and without conditioned media as described above 

(Section 2.2.3). Glucose solutions were prepared in 1x Hepes buffered saline (HBS 

comprising 10 mM Hepes, 145 mM NaCl, 5 mM Kcl and 1 mM MgSO4) at three different 

concentrations (1.1 mM, 5.6 mM and 16.7 mM D-Glucose). After exposing the cells to 

cytokines for 24 hours the media was removed and the cells were washed twice with 1 ml 

HBS followed by addition of 1.1 mM glucose solution for 40 mins to prime the cells. This step 

was followed by removal of the glucose solution and addition of 1.1, 5.6 or 16.7 mM glucose 

solution for a further 20 mins after which the supernatant was removed and kept at -20 ᴼC 

for further analysis.  

 

Cells were lysed using 200 μl/well/24-well plate RIPA buffer (Sigma, UK) and transferred to 

fresh eppendorf tubes, which were maintained on ice with regular vortexing for 20 mins. 
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Lysates were centrifuged at full speed and 4 °C for 20 mins. The total protein present in the 

resulting supernatants was quantified using the Pierce BCA Protein Assay Kit (Thermo 

scientific, UK). Following the kit instruction BCA working reagent was prepared by adding 50 

parts of BCA reagent A to one part of BCA reagent B, 25 μl of standard, blank and samples 

were added to each well of 96-well plate along with 200μl of working reagent. The plate was 

covered and incubated at 37 ᴼC for 30 mins. The plate was cooled to room temperature and 

read at 562 nm on a microplate reader (Dynatech, MR5000 version 3.7).  

 

2.2.7.1 Insulin Enzyme linked immunosorbent assay (ELISA) 

Insulin secretion into the supernatants was quantified using ALPCO ELISA kits (ALPCO, 

USA) according to the manufacturer’s instructions. Briefly, 10 μl of control, standard and 

samples were added to the provided insulin-coated 96-well microplate. This was followed by 

the addition of 75 μl of working strength conjugate solution to each well. The microplate was 

sealed and incubated for 2 hours on a shaker (700-900 rpm) at room temperature. The 

contents of the wells were then discarded and the plate washed 6 times by filling the wells 

with the provided wash buffer using a wash bottle. The plate was inverted to discard the 

wash buffer and firmly tapped on absorbent paper towel between each washing step. Then 

100 μl of TMB (tetramethyl benzidine) substrate was added to each well and the microplate 

was sealed and incubated for 15 mins at room temperature on a plate shaker (700 – 900 

rpm). Following this step, 100 μl of the provided stop solution was added to each well and 

the plate gently agitated to mix the contents. Absorbance was read using a microplate 

reader (Dynatech, MR5000 version 3.7) at a wavelength of 450 nm. A standard curve was 

plotted using linear regression as shown in Figure 2.2 and insulin values interpolated from 

the x-axis. 
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Figure 2.2 A typical standard curve from insulin ELISA assay. Insulin standards were 
prepared at concentrations of 5.5, 3.0, 1.5, 0.75, 0.25 ng/ml. Values are mean ± SD (n = 3). 
Interpolation of x-axis was used for determination of insulin concentrations of unknown 
samples 

 

2.2.8 Measurement of cytokine and growth factor concentration by Enzyme linked 

immunosorbent assay (ELISA) 

Following identification of candidates from a secretome screen of MSC-CM, ELISA was used 

to quantify the concentration of interleukin-4 (IL-4), interleukin-10 (IL-10), vascular 

endothelial growth factor (VEGF) and placental growth factor (PIGF) in our MSC-CM. ELISA 

development kits were purchased from PeproTech (UK) and assay were developed for each 

cytokine or growth factor according to the manufacturer’s instructions as briefly outlined 

below.  

 

Capture antibody was diluted in PBS to a concentration of 1.0 µg/ml for IL-10, VEGF, PIGF 

and 0.5 µg/ml for IL-4. Capture antibody solution (100 µl/well/96 well plate) was added to a 

96-well Polystyrene Immulon Microtiter plate (Nunc). The plate was sealed with an adhesive 

film and incubated overnight at room temperature. The next day, the capture antibody was 

aspirated from the wells and the plate washed 4 times using 300 µl/well of washing buffer 
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(0.05% Tween-20 in PBS). Following this, 300 µl of blocking buffer (1% BSA in PBS) was 

added to each well and the plates were sealed and left to incubate at room temperature for 

an hour. The plates were then washed again four times using 300 µl/well washing buffer. 

Standards were prepared for IL-4, IL-10, VEGF and PIGF to a concentration of 1ng/ml, 

2.5ng/ml, 1ng/ml and 1 ng/ml respectively. Serial dilutions were conducted for each standard 

to generate standard curves as shown in Figure 2.3. Standards and samples (100 µl/well) 

were added to the plates in duplicate. The plates were sealed and incubated at room 

temperature for two hours. The plates were then washed four times with 300 µl/well washing 

buffer and detection antibody was prepared in PBS as shown in Table 2.5 to a concentration 

of 0.5 µg/ml for IL-10, IL-4, PIGF and to a concentration of 0.25ug/ml for VEGF. Detection 

antibody solution (100 µl/well) was added to each well and the plates were allowed to 

incubate at room temperature for 2 hours. The plates were then washed four times with 300 

µl/well washing buffer and 5.5 µl of avidin-HRP conjugate was diluted in 11 ml diluent 

(0.05% Tween-20, 0.1% BSA in PBS) and 100 µl was added to each well. The plates were 

incubated for 30 mins at room temperature. The plates were once more washed four times 

with 300 µl/well washing buffer and 100 µl of ABTS (2,2'-Azinobis [3-ethylbenzothiazoline-6-

sulfonic acid]-diammonium salt) (Thermo Fisher, UK) liquid substrate was added. The colour 

development was monitored with a microplate reader (Dynatech, MR5000 version 3.7) plate 

reader at 405 nm with a wavelength correction set at 650 nm. 
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Figure 2.3 Typical standard curves from ELISA assays (A) IL-10 standards were 

prepared at concentrations of 2500,2000, 1500,1000, 500, 250, 125, 75, 37.5 pg/ml. (B) 

VEGF, (C) PIGF, (D) IL-4 standards were prepared at concentrations of 1000, 500, 250, 125, 

75, 37.5, 18.5 pg/ml/ Values are mean ± SD (n = 3). Interpolation of x-axis was used for 

determination of cytokine concentrations of unknown samples. IL-10, Interleukin 10; VEGF, 

vascular endothelial growth factor; PIGF, placental growth factor; IL-4, interleukin 4. 

 

2.2.9 Statistical analysis  

Data is presented as mean plus or minus standard deviation (SD) for a given number of 

observations. Groups of data were compared using one way ANOVA test and two-tailed 

unpaired Student t-tests (Graphpad, PRISM software, USA), with significance being 

accepted if P<0.05. 
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Chapter 3 
_________________________________ 

Establishment and characterization of 
in vitro model of cytokine-driven β-cell 

apoptosis 
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3.1 Introduction 

T1DM is a chronic metabolic disorder that is characterized by an inability to release insulin, 

which results from autoimmune destruction of β-cells in the pancreas.(172) β-cells sense 

increasing levels of blood glucose and respond by secreting the insulin hormone through a 

pathway that involves the coupling of glucose uptake and glycolysis with quantitative ATP 

production via the mitochondrial oxidative pathway.(172) Therefore, oxidative phosphorylation 

is essential for normal β-cell function. β-cell dysfunction and reduction in their mass are the 

decisive events in the progression of T1DM. An increase in the concentration of pro-

inflammatory cytokines such as IFN-γ, TNF-α, and IL-1β was detected both in blood and in 

pancreatic islets of people with diabetes. Pro-inflammatory cytokines are secreted from 

activated macrophages that invade the pancreas. These cytokines mediate inflammation 

through upregulating transcription of pro-inflammatory genes in response to the presence of 

a foreign body. However, a lack of regulation of pro-inflammatory cytokine production will 

result in the development of an autoimmune disease like T1DM.(173) There is increasing 

evidence that these cytokines are responsible for β-cell destruction in T1DM. However, the 

mechanisms by which cytokines mediate their effects are still unclear. 

 

Recent studies suggest that β-cells become hypoxic under high glucose conditions due to 

increased oxygen consumption and that pancreatic islets of diabetic mice are moderately 

hypoxic.(174) However, the impact of moderate hypoxia on β-cell number and function is 

unclear.(174) Hypoxia could be defined as the lower level of oxygen than that normally 

experienced by a specific type of cells.(175) Changes in oxygenation could happen as part of 

normal physiological or developmental process and include hypoxia gradients established 

during embryonic development. Alternatively, hypoxia may arise as a result of a pathological 

process like myocardial infarction.(176) Different levels of oxygen will have an impact on 

mitochondrial activity and ATP production and it is also believed that cells undergo very 

large changes in gene expression in response to alterations in oxygenation.(177) However, 
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there is some uncertainty about the precise oxygen concentration experienced by cells in 

normal tissue. 

Some studies suggest that many cells have the ability to adapt to hypoxia through a 

molecular mechanism regulated by hypoxia-inducible factor (HIF-1α).(172) It is believed now 

that HIF-1α has a role in the regulation of systemic metabolism and glucose haemostasis in 

tissue like muscle, liver, and β-cells. There is accumulating evidence that pro-inflammatory 

cytokines can increase mitochondrial reactive oxygen species (ROS) generation resulting in 

their accumulation in the intracellular compartment.(178) These mediators exert their effect on 

transcription factors including HIF-1α by ROS-dependent mechanisms.(179) The activation of 

HIF-1α is believed to have a negative effect on β-cells(174). However, it is still unclear how 

hypoxia affects mitochondrial function in β-cells. In fact, little research has been done on the 

effect of hypoxia on respiratory capacities and mitochondrial coupling states in β-cells. The 

primary aim of this study was to assess the in vitro effect of pro-inflammatory cytokines on β-

cells viability under normoxic (21% O2) and hypoxic (10% O2) culturing conditions. 

The advance in technical and analytical methods has identified several genes that are 

upregulated during the apoptosis process like the zinc finger TNF Alpha-Induced Protein 3 

(A20). A20 has been identified as the most highly regulated anti-apoptotic gene in the 

pancreatic beta cell. (180)A20 was originally characterized as a protein that protects cells from 

TNF-induced cytotoxicity. However, it is now believed that A20 has a dual function as an 

inhibitor of nuclear factor-kB (NF-κB) activation and apoptosis in TNF receptor 1 signalling 

pathway (TNFR1) (Figure 3.1).(180) However, the molecular mechanisms by which A20 

controls its multiple activities are not fully understood. Some studies demonstrate that the 

effect of A20 on cell death, mainly depends on the type of cells and there is some sort of 

balance between, it is anti-apoptotic properties and it impacts on NF-ΚB inhibition with 

consequence for the expression of the anti-apoptotic gene.(180)  
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Another gene that is also found to be upregulated is TNF-related apoptosis-inducing ligand 

(TRAIL), it is a cytokine functioning as a ligand that induces cell death by binding to certain 

death receptors like DR4 and DR5 initiating apoptosis which is caspase 8 dependent which 

will activate a series of effector caspase including caspase 3, 6, and 7 that will lead to cell 

degradation.(181)  Experimental data suggests that TNF-related apoptosis-inducing ligand 

(TRAIL), an immune system modulator protein, is important in the pathogenesis of type 1 

diabetes. Recent evidence from glioblastoma cells now suggests that A20 regulates TRAIL-

mediated apoptosis through inhibition of caspase-8.(181) Prior work has shown that addition of 

recombinant TRAIL protects against beta cell.(182) The TRAIL and A20 genes were upregulated in 

this study in both BRIN-BD11 and βTC1.6 cell lines in normoxia and hypoxia after exposing 

them to cytokines. 
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Figure 3.1TNFR1 signal transduction. This figure elucidate the TNFR1 signal transduction 
and termination by ubiquitin (a) show the early TNF signal transduction that involves 
activation of RIP leading to activation of NF-kB and A20 upregulation.  (b) The late TNF 
signal involves the formation of a quaternary complex from A20 and RIP leading to the 
termination of NF-kB activity. This figure reprinted from the following article (Itching to end 
NF-kB Vigo heissmeyer and Anjana Rao Nature immunology 9, 227-
229(2008)doi:10.1038/ni308-227). 
  
 
 

3.2 Methods 

 

3.2.1 Materials 

Analytical grade reagents and deionized water (Sigma, UK) were used. All chemicals 

employed are listed in Chapter 2, Section 2.1. 
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3.2.2 Cell models 

The pancreatic β-cell lines BRIN-BD11 and βTC1.6 were cultured, maintained and passaged 

as outlined in Chapter 2, Section 2.2.1.1. Primary murine islets were isolated after 

collagenase digestion of the pancreas as described in Section 2.2.1.2. All cell models were 

maintained in an incubator at an atmosphere of 37 °C and 5% CO2 under normoxic (21% 

O2) and hypoxic (10% O2) conditions. 

 

3.2.3 Induction of apoptosis by cytokines and endotoxin 

Cell lines and primary islets were exposed to recombinant IFN-γ, TNF-α, IL-1B and bacterial 

LPS as outlined in Chapter 2, Section 2.2.3. 

 

3.2.4 Measurement of cellular viability and apoptosis 

Changes in cellular viability following cytokine or endotoxin treatment were assessed by 

colorimetric MTT assay as outlined in Chapter 2, Section 2.2.4, whilst induction of apoptosis 

was measured by TUNEL assay as described in Section 2.2.5. 

 

3.2.5 Assessment of early response anti-apoptotic gene induction 

Following treatment of cells with cytokines or endotoxin as outlined in Chapter 2, Section 

2.2.3, the induction of early response anti-apoptotic genes known to be important in β- cell 

survival was assessed by PCR as outlined in Section 2.2.6.  
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CONTROL GLUT 2 HNF 1α KIR6.2

KCNQ1IRS-1INSULIN

3.3 Results 

 

3.3.1 Islets characterization  

Primary pancreatic islets isolated from CD-1 mice were characterized by expression of β-cell 

markers by immunohistochemistry. As shown in Figure 3.2, islets stained positive for the 

glucose transporter GLUT2, transcription factor HNF1α, potassium channel subunits (Kir6.2, 

KCNQ11), insulin, and Insulin Receptor Substrate 1 (IRS-1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Immunostaining images of pancreatic islets isolated from CD-1 mice. 
Confocal laser scanning microscope images showing a positive staining (green) for β-cells 
markers (GLUT2, HNF-1α, KIR6.2, INSULIN, IRS-1, and KCNQ1). Microscope magnification 
used is 20X and the scale bar in all images is 100 µm 
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3.3.2 Exposure to pro-inflammatory cytokines and LPS resulted in a reduction in β-cell 

viability 

The effect of rising concentrations of IFN-γ, TNF-α, IL-1β and LPS on the metabolic activity 

of BRIN-BD11, βTC1.6 and primary islets was first explored via the MTT assay. In this 

instance the MTT assay was being used as a surrogate marker of viability. The aim of these 

experiments was to optimize the concentrations at which cell viability was reduced by 

approximately 50% for use in subsequent experiments. MTT data is presented as 

normalised to the corresponding experimental control in Figures 3.2 – 3.9. Cells were grown 

under normoxic and hypoxic conditions and in the presence or absence of serum to 

determine if oxygen concentration or the inclusion of serum sensitized the cells to any of the 

cytokines or LPS. 

 

3.3.2.1 Determination of pancreatic cell sensitivity to IFN-γ 

Following exposure to 0 - 1 µg/ml IFN-γ, cell viability was assessed (Figures 3.3 and 3.4). In 

all instances, primary islets were more sensitive to the effects of IFN-γ than the β-cell lines. 

As shown in Figure 3.2, exposure to 1 µg/ml IFN-γ resulted in respective reductions of (-

48%) (P<0.0001) and (-47%) (P<0.0001) viability in BRIN-BD11 and βTC1.6 cells grown 

under normoxic conditions in the presence of serum. Under the same growth conditions, 

primary islets displayed a (-47%) (P<0.001) reduction in viability in response to 100 ng/ml 

IFN-γ (Figure 3.2). Similar trends were observed in BRIN-BD11, βTC1.6 and primary islets 

grown under hypoxic conditions in the presence of serum (Figure 3.2). The culture of cells in 

the absence of serum did not significantly affect the results (Figure 3.3). As such, 1 µg/ml 

IFN-γ was chosen for future experiments involving BRIN-BD11 and βTC1.6 cells while 100 

ng/ml IFN-γ was chosen for subsequent experiments involving primary islets. 
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Figure 3.3 Effect of IFN-γ on the viability of pancreatic cells cultured in the presence 
of serum. Following exposure to rising concentration of IFN-γ for 24 h, the cellular viability of 
BRIN-BD11 cells (A, B), βTC1.6 cells (C, D) and primary islets (E, F) grown under normoxic 
or hypoxic conditions was assessed by colorimetric MTT assay. Data are normalized to 
untreated controls and presented as mean ± standard deviation (SD). n=3 *P<0.05, 
**P<0.01, ***P<0.001 and ****P<0.0001 compared with untreated controls. IFN-γ, Interferon 
gamma. 
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Figure 3.4 Effect of IFN-γ on the viability of pancreatic cells cultured in the absence of 
serum. Following exposure to rising concentration of IFN-γ for 24 h, the cellular viability of 
BRIN-BD11 cells (A, B), βTC1.6 cells (C, D) and primary islets (E, F) grown under normoxic 
or hypoxic conditions was assessed by colorimetric MTT assay. Data are normalized to 
untreated controls and presented as mean ± standard deviation (SD). n=3 *P<0.05, 
**P<0.01, ***P<0.001 and ****P<0.0001  compared with untreated controls. IFN-γ, Interferon 
gamma. 
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3.3.2.2 Determination of pancreatic cell sensitivity to TNF-α 

Figure 3.4 demonstrates the ability of 100 ng/ml TNF-α to significantly reduce (P<0.001) the 

viability of BRIN-BD11 (-46%) and primary islets (-47%) as measured by MTT. Under the 

same growth conditions βTC1.6 cells displayed a reduction (-43%) (P<0.001) in viability in 

response to 1 µg/ml of TNF-α. Similar trends were observed in BRIN-BD11, βTC1.6 and 

primary islets grown under hypoxic conditions in the presence of serum (Figure 3.5).  

 

The absence of serum did not significantly impact on βTC1.6 and primary islet viability. As 

such, 1 µg/ml TNF-α was chosen for future experiments involving βTC1.6 cells and 100 

ng/ml TNF-α was chosen for subsequent experiments involving primary islets (Figure 3.6). 

For the BRIN-BD11 cell line, 1 µg/ml was chosen for subsequent experiments in the absence 

of serum (rather than the 100 ng/ml required in the presence of serum) as it showed the 

highest reduction (-29%; P<0.001) under normoxic conditions. However, under hypoxic 

conditions, BRIN-BD11 cells grown without serum showed the highest degree of sensitivity 

in response to 100 ng/ml (-35%; P<0.01) (Figure 3.6).  
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Figure 3.5 Effect of TNF-α on the viability of pancreatic cells cultured in the presence 
of serum. Following exposure to rising concentration of TNF-α for 24 h, the cellular viability 
of BRIN-BD11 cells (A, B), βTC1.6 cells (C, D) and primary islets (E, F) grown under 
normoxic or hypoxic conditions was assessed by colorimetric MTT assay. Data are 
normalized to untreated controls and presented as mean ± standard deviation (SD). n=3 
*P<0.05, **P<0.01, ***P<0.001 compared with untreated controls. TNF-α, Tumour Necrosis 
Factor alpha. 
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Figure 3.6. Effect of TNF-α on the viability of pancreatic cells cultured in the absence 
of serum. Following exposure to rising concentration of TNF-α for 24 h, the cellular viability 
of BRIN-BD11 cells (A, B), βTC1.6 cells (C, D) and primary islets (E, F) grown under 
normoxic or hypoxia conditions was assessed by colorimetric MTT assay. *P<0.05, 
**P<0.01, ***P<0.001 and ***P<0.0001 compared with untreated controls. TNF-α, Tumor 
Necrosis Factor alpha 
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3.3.2.3 Determination of pancreatic cell sensitivity to IL-1β 

Normalized MTT assays demonstrated significant reductions in the metabolic activity as an 

indication of viability of cells under normoxic and hypoxic conditions following exposure to IL-

1β (Figures  

 

3.7 and 3.8). Figure 3.6 demonstrates the ability of 100 ng/ml of IL-1β to significantly reduce 

the viability of BRIN-BD11 cells (-51%; P<0.0001), βTC1.6 cells (-43%; P<0.0001), and 

primary islets (-32%; P<0.01) in the presence of serum. BRIN-BD11 and βTC1.6 cells 

cultured under hypoxic conditions showed a similar trend (Figure 3.7). However, primary 

islets grown under hypoxic conditions were more sensitive to the effects of IL-1β. In this 

instance, 10 ng/ml was able to significantly reduce (-50%; P<0.0001) the viability of the cells.  

 

The culture of cells in the absence of serum did not significantly impact the viability (Figure 

3.7). As such, 100 ng/ml of IL-1β was chosen for future experiments involving BRIN-BD11 

cells, βTC1.6 cells, and primary islets. Consistent trends were observed under hypoxic 

conditions for all cell types (Figure 3.8). 

 

 

  



84 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Effect of IL-1β on the viability of pancreatic cells cultured in the presence 
of serum. Following exposure to rising concentration of IL-1β for 24 h, the cellular viability of 
BRIN-BD11 cells (A, B), βTC1.6 cells (C, D) and primary islets (E, F) grown under normoxic 
or hypoxic conditions was assessed by colorimetric MTT assay. Data are normalized to 
untreated controls and presented as mean ± standard deviation (SD). n=3 *P<0.05, 
**P<0.01, ***P<0.001 and ****P<0.0001 compared with untreated controls. IL-1β, Interleukin-
1 beta. 
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Figure 3.8. Effect of IL-1β on the viability of pancreatic cells cultured in the absence of 
serum. Following exposure to rising concentration of IL-1β for 24 h, the cellular viability of 
BRIN-BD11 cells (A, B), βTC1.6 cells (C, D) and primary islets (E, F) grown under normoxic 
or hypoxic conditions was assessed by colorimetric MTT assay. Data are normalized to 
untreated controls and presented as mean ± standard deviation (SD). n=3 *P<0.05, 
**P<0.01, ***P<0.001 and ****P<0.0001 compared with untreated controls. IL-1β, Interleukin-
1 beta. 
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3.3.2.4 Determination of pancreatic cell sensitivity to LPS 

Normalized MTT assays demonstrated significant reductions in the viability of cells grown 

under normoxic and hypoxic conditions following exposure to LPS. Figure 3.8 shows that 

500 µg/ml of LPS significantly reduced the viability of BRIN-BD11 (-49%; P<0.0001) and 

βTC1.6 (-44%; P<0.0001) cells. Under the same growth conditions, primary islets displayed 

a (-48%; P<0.0001) reduction in viability in response to 10 µg/ml. Similar trends were 

observed in BRIN-BD11, βTC1.6 and primary islets grown under hypoxic conditions in the 

presence of serum (Figure 3.9). In the absence of serum the concentration chosen for 

subsequent experiments involving BRIN-BD11, βTC1.6 and primary islets was also 500 

µg/ml (-30%; P<0.0001), (-51%; P<0.0001), and (-44%; P<0.0001) respectively (Figure 

3.10). For cells grown under hypoxia the dose chosen was 10 μg/ml (-49%; P<0.0001) for 

BRIN-BD11 cells, 500 μg/ml (-41%; P<0.001) for βTC1.6 cells, and 100 μg/ml (-36%; 

P<0.0001) for primary islets.  
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Figure 3.9. Effect of LPS on the viability of pancreatic cells cultured in the presence of 
serum. Following exposure to rising concentration of LPS for 24 h, the cellular viability of 
BRIN-BD11 cells (A, B), βTC1.6 cells (C, D) and primary islets (E, F) grown under normoxic 
or hypoxic conditions was assessed by colorimetric MTT assay. Data are normalized to 
untreated controls and presented as mean ± standard deviation (SD). n=3 *P<0.05, 
**P<0.01, ***P<0.001 and ****P<0.0001 compared with untreated controls. LPS 
lipopolysaccharide.  
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Figure 3.10. Effect of LPS on the viability of pancreatic cells cultured in the absence of 
serum. Following exposure to rising concentration of LPS for 24 h, the cellular viability of 
BRIN-BD11 cells (A, B), βTC1.6 cells (C, D) and primary islets (E, F) grown under normoxic 
or hypoxic conditions was assessed by colorimetric MTT assay. Data are normalized to 
untreated controls and presented as mean ± standard deviation (SD). n=3 *P<0.05, 
**P<0.01, ***P<0.001 and ****P<0.0001 compared with untreated controls. LPS 
lipopolysaccharide.  
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3.3.3 Cytokine-induced apoptosis 

To establish if the reduction in cellular viability was due to programmed cell death 

(apoptosis), the TUNEL assay was performed as outlined in Chapter 2, Section 2.2.5. 

Significant apoptosis was detected in BRIN-BD11 cells by IFN-γ (1 μg/ml in media with and 

without serum) grown under normoxia and hypoxia conditions, TNF-α (100 ng/ml for media 

with serum grown under normoxic and hypoxic conditions, 1 μg/ml for media without serum 

under normoxic conditions, and 100 ng/ml for cells grown under hypoxic condition), IL-1β 

(100 ng/ml for media with and without serum grown under normoxic and hypoxic conditions), 

and LPS (500 μg/ml for media with and without serum grown under normoxic and hypoxic 

conditions). Apoptosis was induced in βTC1.6 cells in response to IFN-γ (1 μg/ml), TNF-α (1 

μg/ml), IL-1β (100 ng/ml) and LPS (500 μg/ml) grown in media with and without serum under 

normoxic and hypoxic conditions. H2O2 was used as a positive control in all instances 

(Figures 3.11-3.18). 
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Figure 3.11. Assessment of IFN-γ-induced apoptosis in pancreatic cell lines grown 
under normoxic and hypoxic conditions in the presence of serum. (A) Fluorescent 
images of IFN-γ-induced apoptosis in BRIN-BD11 and βTC1.6 cell lines grown under 
normoxia and hypoxia after 24 hours of exposure to 1 μg/ml of IFN-γ. Blue staining 
represents DAPI staining of the nuclei, while green staining indicates TUNEL positive cells. 
(B) The % positive TUNEL cells was measured by calculating the number of positive TUNEL 
cells divided by the total number of cells n=3 and presented as mean ± standard deviation 
(SD). ***P<0.001 and ****P<0.0001 compared with untreated controls. 
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Figure 3.12. Assessment of IFN-γ-induced apoptosis in pancreatic cell lines grown 
under normoxic and hypoxic conditions in the absence of serum. (A) Fluorescent 
images of IFN-γ-induced apoptosis in BRIN-BD11 and βTC1.6 cell lines grown under 
normoxic and hypoxic conditions after 24 hours of exposure to 1 μg/ml of IFN-γ.  Blue 
staining represents DAPI staining of the nuclei while green staining indicates TUNEL positive 
cells. (B) The %positive TUNEL cells was measured by calculating the number of positive 
TUNEL cells divided by the total number of cells n=3 and presented as mean ± standard 
deviation (SD).  ***P<0.001 and ****P<0.0001 compared with untreated controls. 
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Figure 3.13. Assessment TNF-α-induced apoptosis in pancreatic cell lines grown 
under normoxic and hypoxic conditions in the presence of serum. (A) Fluorescent 
images of TNF-α-induced apoptosis in BRIN-BD11 and βTC1.6 cell lines grown under 
normoxia and hypoxia after 24 hours of exposure to 100 ng/ml and 1 μg/ml of TNF-α 
respectively. Blue nuclei are DAPI staining and the green nuclei are TUNEL positive nuclei. 
(B) The %positive TUNEL cells was measured by calculating the number of positive TUNEL 
cells divided by the total number of cells n=3 and presented as mean ± standard deviation 
(SD).  ***P<0.001 and ****P<0.0001 compared with untreated controls. 
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Figure 3.14. Assessment of TNF-α-induced apoptosis in pancreatic cell lines grown 
under normoxic and hypoxic conditions in the absence of serum. (A) Fluorescent 
images of TNF-α-induced apoptosis in BRIN-BD11 and βTC1.6 cell lines grown under 
normoxic conditions after 24 hours of exposure to 1 μg/ml of TNF-α. Cells grown under 
hypoxic conditions were exposed to 100 ng/ml (BRIN-BD11 cells) or 1 μg/ml (βTC1.6) of 
TNF-α. Blue nuclei are DAPI staining and the green nuclei are TUNEL positive nuclei. (B) 
The % positive TUNEL cells were measured by calculating the number of positive TUNEL 
cells divided by the total number of cells n=3 and presented as mean ± standard deviation 
(SD). **P<0.01, ***P<0.001 and ****P<0.0001 compared with untreated controls. 
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Figure 3.15. Assessment of IL-1β-induced apoptosis in pancreatic cell lines grown 
under normoxic and hypoxic conditions in the presence of serum. (A) Fluorescent 
images of IL-1β-induced apoptosis in BRIN-BD11 and βTC1.6 cell lines grown under 
normoxia and hypoxia after 24 hours of exposure to 100 ng/ml of IL-1β. Blue nuclei are DAPI 
staining and the green nuclei are TUNEL positive nuclei. (B) The % positive TUNEL cells 
were measured by calculating the number of positive TUNEL cells divided by the total 
number of cells n=3 and presented as mean ± standard deviation (SD). ***P<0.001 and 
****P<0.0001 compared with untreated controls. 
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Figure 3.16. Assessment of IL-1β-induced apoptosis in pancreatic cell lines grown 
under normoxic and hypoxic conditions in the absence of serum. (A) Fluorescent 
images of IL-1β-induced apoptosis in BRIN-BD11 and βTC1.6 cell lines grown under 
normoxic and hypoxic conditions after 24 hours of exposure to 100 ng/ml of IL-1β. Blue 
nuclei are DAPI staining and the green nuclei are TUNEL positive nuclei. (B) The % positive 
TUNEL cells were measured by calculating the number of positive TUNEL cells divided by 
the total number of cells n=3 and presented as mean ± standard deviation (SD). **P<0.01, 
***P<0.001 and ****P<0.0001 compared with untreated controls. 
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Figure 3.17. Assessment of LPS-induced apoptosis in pancreatic cell lines grown 
under normoxic and hypoxic conditions in the presence of serum. (A) Fluorescent 
images of LPS-induced apoptosis in BRIN-BD11 and βTC1.6 cell lines grown under 
normoxic and hypoxic conditions after 24 hours of exposure to 500 μg/ml of LPS. Blue nuclei 
are DAPI staining and the green nuclei are TUNEL positive nuclei. (B) The %positive TUNEL 
cells were measured by calculating the number of positive TUNEL cells divided by the total 
number of cells n=3 and presented as mean ± standard deviation (SD). ****P<0.0001 
compared with untreated controls. 
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Figure 3.18. Assessment of LPS-induced apoptosis in pancreatic cell lines grown 
under normoxia and hypoxia condition in the absence of serum. (A) Fluorescent 
images of LPS-induced apoptosis in BRIN-BD11 and βTC1.6 cell lines grown under 
normoxic conditions after 24 hours of exposure to 500 μg/ml LPS. Cells grown under 
hypoxic conditions were exposed to 10 μg/ml (BRIN-BD11) or 500 μg/ml (βTC1.6) LPS. Blue 
nuclei are DAPI staining and the green nuclei are TUNEL positive nuclei. (B) The %positive 
TUNEL cells were measured by calculating the number of positive TUNEL cells divided by 
the total number of cells n=3 and presented as mean ± standard deviation (SD). ***P<0.001 
and ****P<0.0001 compared with untreated controls. 
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Apoptosis was also assessed in pancreatic islets isolated from CD-1 mice following the 

protocol outlined in Chapter 2 Section 2.2.5. Significant increases in apoptosis were noted in 

response to the cytokines tested in both normoxia and hypoxia and in the presence/ 

absence of serum (Figure 3.19, 3.20). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19. Assessment of apoptosis in pancreatic islets grown under normoxic and 
hypoxic conditions in the presence of serum. Fluorescent images of cytokine-induced 
apoptosis in mice islets after 24 hours of exposure to different cytokines in (A) normoxic and 
(B) hypoxic conditions. Blue nuclei are DAPI staining and the green nuclei are TUNEL 
positive nuclei. Microscope magnification used is 20X and the scale bar in all images is 100 
µm.  
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Figure 3.20. Assessment of apoptosis in pancreatic islets grown under normoxic and 
hypoxic conditions in the absence of serum. Fluorescent images of cytokine-induced 
apoptosis in mice islets after 24 hours of exposure to different types of cytokines in (A) 
normoxic and (B) hypoxic conditions. Blue nuclei are DAPI staining and the green nuclei are 
TUNEL positive nuclei. Microscope magnification used is 20X and the scale bar in all images 
is 100 µm. 
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3.3.4 Assessment of gene expression by qRT-PCR 

 

3.3.4.1 Induction of early response genes in β-cell apoptosis 

Relative gene expression was determined by qRT-PCR for the anti-apoptotic gene tumor 

necrosis factor alpha-inducible protein 3 (TNFAIP3), also known as A20, and pro-apoptotic 

TNF-apoptosis inducing ligand (TRAIL). Both genes are recognized as being important early 

response genes in the apoptotic pathways in the pancreatic β-cell.(189, 190) Expression was 

determined relative to the housekeeping gene β-actin with the untreated controls 

standardized to 1. The induction of both genes following cytokine or LPS treatment is shown 

alongside time dependent reductions in β-cell viability as measured by MTT assay (Figures 

3.21 – 3.36). 

 

3.3.4.1.1 Time-dependent induction of A20 and TRAIL following exposure to IFN-γ 

BRIN-BD11 cell exposure to 1 µg/ml IFN-γ, in the presence of serum, resulted in a time-

dependent reduction in cell viability, which achieved significance after 15 min (P<0.01) in 

normoxia and after 4 h (P<0.01) in hypoxia (Figure 3.21A, B). This was accompanied by a 

time-dependent increase in the expression of TRAIL, which was most pronounced under 

hypoxic conditions (Figure 3.21C, D). Maximal A20 induction was observed in BRIN-BD11 

cells after 2 h (P<0.0001) exposure to IFN-γ under normoxic conditions (Figure 3.21E). 

However, culture of BRIN-BD11 cells under hypoxic conditions resulted in a time-dependent 

increase in A20 expression following IFN-γ exposure (Figure 3.21F). Similar results were 

observed in BRIN-BD11 cells grown in the absence of serum (Figure 3.22). However, in this 

instance, peak induction of A20 was observed after 15 mins (P<0.001) of IFN-γ treatment 

(Figure 3.22E). All other findings followed a similar trend to that described for BRIN-BD11 

cells grown in the presence of serum.  
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Exposure of βTC1.6 cells cultured in the presence of serum to 1 µg/ml IFN-γ resulted in a 

time-dependent reduction in cell viability, which achieved significance after 4 h (P<0.05) in 

normoxia and after 2 h (P<0.001) in hypoxia (Figure 3.23A, B). This was associated with a 

significant (P<0.05-P<0.0001) time-dependent upregulation in TRAIL (Figure 3.23C, D) and 

A20 (Figure 3.23E, F). Consistent trends were observed in all instances in βTC1.6 cells 

grown in the absence of serum and exposed to 1 µg/ml IFN-γ (Figure 3.24).  
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Figure 3.21 Effect of IFN-γ on the viability and relative gene expression over time in 
BRIN-BD11 cells cultured in the presence of serum. Following exposure to 1 μg/ml of 
IFN-γ for 0-24 h, the cellular viability of BRIN-BD11 cells grown under normoxic or hypoxic 
conditions was assessed by colorimetric MTT assay (A, B) and associated with evaluation of 
changes in TRAIL (C, D) and A20 (E, F) gene expression during this time course. Data from 
MTT are normalized to untreated controls and all the data are presented as mean ± standard 
deviation (SD). n=3 *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001 compared with 
untreated controls. IFN-γ, interferon gamma. 
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Figure 3.22 Effect of IFN-γ on the viability and relative gene expression over time in 
BRIN-BD11 cells cultured in the absence of serum. Following exposure to 1 μg/ml of IFN-
γ for 0-24 h, the cellular viability of BRIN-BD11 cells grown under normoxic or hypoxic 
conditions was assessed by colorimetric MTT assay (A, B) and associated with evaluation of 
changes in TRAIL (C, D) and A20 (E, F) gene expression during this time course. Data from 
MTT are normalized to untreated controls and all the data are presented as mean ± standard 
deviation (SD). n=3 *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001 compared with 
untreated controls. IFN-γ, interferon gamma.  
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Figure 3.23. Effect of IFN-γ on the viability and relative gene expression over time in 
βTC1.6 cells cultured in the presence of serum Following exposure to 1 μg/ml of IFN-γ 
for 0-24 h, the cellular viability of βTC1.6 cells grown under normoxic or hypoxic conditions 
was assessed by colorimetric MTT assay (A, B) and associated with evaluation of changes 
in TRAIL (C, D) and A20 (E, F) gene expression during this time course. Data from MTT are 
normalized to untreated controls and all the data are presented as mean ± standard 
deviation (SD). n=3 *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001 compared with 
untreated controls. IFN-γ, interferon gamma.  
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Figure 3.24. Effect of IFN-γ on the viability and relative gene over time in βTC1.6 cells 
cultured in the absence of serum Following exposure to 1 μg/ml of IFN-γ for 0-24 h, the 
cellular viability of βTC1.6 cells grown under normoxic or hypoxic conditions was assessed 
by colorimetric MTT assay (A, B) and associated with evaluation of changes in TRAIL (C, D) 
and A20 (E, F) gene expression during this time course. Data from MTT are normalized to 
untreated controls and all the data are presented as mean ± standard deviation (SD). n=3 
*P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001 compared with untreated controls. IFN-γ, 
interferon gamma. 
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3.3.4.1.2 Time-dependent induction of A20 and TRAIL following exposure to TNF-α 

Exposure of BRIN-BD11 cells to 100 ng/ml of TNF-α in the presence of serum stimulated a 

time-dependent reduction in cellular viability, which achieved significance after 1 h of 

exposure under the normoxic conditions (P<0.01) and after 4 h in hypoxia (P<0.0001) 

(Figure 3.25A, B). The expression of TRAIL increased in a time dependent manner (P<0.01-

P<0.0001) following TNF-α exposure regardless of whether cells were grown in normoxia or 

hypoxia (Figure 3.25C, D). Maximal induction of A20 was observed after 1 h exposure 

(P<0.0001) to TNF-α in BRIN-BD11 cells grown under normoxic or hypoxic conditions 

(Figure 3.25 E, F). Consistent trends were observed for cellular viability (Figure 3.26A, B) 

and TRAIL induction (Figure 3.26C, D) in BRIN-BD11 cells exposed to TNF-α in the absence 

of serum. However, in this instance, maximal induction of A20 was delayed until 4 h 

(P<0.0001) post TNF-α treatment in cells grown in both normoxic and hypoxic conditions 

(Figure 3.26E, F). 

 

Exposure of βTC1.6 cells to 1 µg/ml of TNF-α in the presence of serum stimulated a time-

dependent reduction in cellular viability, which achieved significance after 4 h of exposure 

under normoxic conditions (P<0.01) and after 1 h in hypoxia (P<0.05) (Figure 3.27A, B). 

TRAIL (Figure 3.27C, D) and A20 (Figure 3.27E, F) expression increased in a time-

dependent manner (P<0.05-P<0.0001) regardless of whether cells were grown in normoxia 

or hypoxia. Consistent trends were observed for βTC1.6 cells grown in the absence of 

serum (Figure 3.28). 

  



107 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25. Effect of TNF-α on the viability and relative gene expression over time in 
BRIN-BD11 cells cultured in the presence of serum Following exposure to 100 ng/ml of 
TNF-α for 0-24 h, the cellular viability of BRIN-BD11 cells grown under normoxic or hypoxic 
conditions was assessed by colorimetric MTT assay (A, B) and associated with evaluation of 
changes in TRAIL (C, D) and A20 (E, F) gene expression during this time course. Data from 
MTT are normalized to untreated controls and all the data are presented as mean ± standard 
deviation (SD). n=3 *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001 compared with 
untreated controls. TNF-α, tumour necrosis factor-alpha.  
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Figure 3.26. Effect of TNF-α on the viability and relative gene expression over time in 
BRIN-BD11 cells cultured in the absence of serum Following exposure to 1 μg/ml TNF-α 
for 0-24 h, the cellular viability of BRIN-BD11 cells grown under normoxic or hypoxic 
conditions was assessed by colorimetric MTT assay (A, B) and associated with evaluation of 
changes in TRAIL (C, D) and A20 (E, F) gene expression during this time course. Data from 
MTT are normalized to untreated controls and all the data are presented as mean ± standard 
deviation (SD). n=3 *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001 compared with 
untreated controls. TNF-α, tumour necrosis factor-alpha.  
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Figure 3.27. Effect of TNF-α on the viability and relative gene expression over time in 
βTC1.6 cells cultured in presence of serum Following exposure to 1 µg/ml of TNF-α for 0-
24 h, the cellular viability of βTC1.6 cells  grown under normoxic or hypoxic conditions was 
assessed by colorimetric MTT assay (A, B) and associated with evaluation of changes in 
TRAIL (C, D) and A20 (E, F) gene expression during this time course. Data from MTT are 
normalized to untreated controls and all the data are presented as mean ± standard 
deviation (SD). n=3 *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001 compared with 
untreated controls. TNF-α, tumour necrosis factor-alpha.  
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Figure 3.28. Effect of TNF-α on the viability and relative gene expression over time in 
βTC1.6 cells cultured in the absence of serum Following exposure to 1 μg/ml of TNF-α 
for 0-24 h, the cellular viability of βTC1.6 cells grown under normoxic or hypoxic conditions 
was assessed by colorimetric MTT assay (A, B) and associated with evaluation of changes 
in TRAIL (C, D) and A20 (E, F) gene expression during this time course. Data from MTT are 
normalized to untreated controls and all the data are presented as mean ± standard 
deviation (SD). n=3 *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001 compared with 
untreated controls. TNF-α, tumour necrosis factor-alpha.  
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3.3.4.1.3 Time-dependent induction of A20 and TRAIL following exposure to IL-1β 

Exposure of BRIN-BD11 cells to 100 ng/ml of IL-1β in the presence of serum stimulated a 

time-dependent reduction in cellular viability, which achieved significance after 2 h of 

exposure under the normoxic conditions (P<0.0001) and after 1 h in hypoxia (P<0.001) 

(Figure 3.29A, B). The expression of TRAIL increased in a time dependent manner 

(P<0.0001) following IL-1β exposure regardless of whether cells were grown in normoxia or 

hypoxia (Figure 3.29C, D). Maximal induction of A20 was observed after 2 h exposure 

(P<0.0001) to IL-1β in BRIN-BD11 cells grown under normoxic conditions (P<0.0001) and 

after 4 h in hypoxic conditions (P<0.0001) (Figure 3.29E, F). Consistent trends were 

observed for cellular viability (Figure 3.30A, B) and TRAIL induction (Figure 3.30C, D) in 

BRIN-BD11 cells exposed to IL-1β in the absence of serum. However, in this instance, 

maximal induction of A20 was observed earlier (after 1h; P<0.05-P<0.0001) in cells grown in 

both normoxic and hypoxic conditions (Figure 3.30E, F).   

 

Exposure of βTC1.6 cells to 100 ng/ml IL-1β in the presence of serum stimulated a time-

dependent reduction in cellular viability, which achieved significance after 2 h of exposure 

under normoxic conditions (P<0.01) and after 1 h in hypoxia (P<0.001) (Figure 3.31A, B). 

TRAIL (Figure 3.31C, D) and A20 (Figure 3.31E, F) expression increased in a time-

dependent manner (P<0.05-P<0.0001) regardless of whether cells were grown in normoxia 

or hypoxia. Consistent trends were observed for βTC1.6 cells grown in the absence of 

serum (Figure 3.32). 
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Figure 3.29. Effect of IL-1β on the viability and relative gene expression over time in 
BRIN-BD11 cells cultured in the presence of serum Following exposure to 100 ng/ml of 
IL-1β for 0-24 h, the cellular viability of BRIN-BD11 cells grown under normoxic or hypoxic 
conditions was assessed by colorimetric MTT assay (A, B) and associated with evaluation of 
changes in TRAIL (C, D) and A20 (E, F) gene expression during this time course. Data from 
MTT are normalized to untreated controls and all the data are presented as mean ± standard 
deviation (SD). n=3 *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001 compared with 
untreated controls. IL-1β, interleukin-1beta.  
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Figure 3.30. Effect of IL-1β on the viability and relative gene expression over time in 
BRIN-BD11 cells cultured in the absence of serum Following exposure to 100 ng/ml of IL-
1β for 0-24 h, the cellular viability of BRIN-BD11 cells grown under normoxic or hypoxic 
conditions was assessed by colorimetric MTT assay (A, B) and associated with evaluation of 
changes in TRAIL (C, D) and A20 (E, F) gene expression during this time course. Data from 
MTT are normalized to untreated controls and all the data are presented as mean ± standard 
deviation (SD). n=3 *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001 compared with 
untreated controls. IL-1β, Interleukin-1beta.  
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Figure 3.31. Effect of IL-1β on the viability and relative gene expression over time in 
βTC1.6 cells cultured in the presence of serum Following exposure to 100 ng/ml of IL-1β 
for 0-24 h, the cellular viability of βTC1.6 cells grown under normoxic or hypoxic conditions 
was assessed by colorimetric MTT assay (A, B) and associated with evaluation of changes 
in TRAIL (C, D) and A20 (E, F) gene expression during this time course. Data from MTT are 
normalized to untreated controls and all the data are presented as mean ± standard 
deviation (SD). n=3 *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001 compared with 
untreated controls. IL-1β, interleukin-1beta.  
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Figure 3.32. Effect of IL-1β on the viability and relative gene expression over time in 
βTC1.6 cells cultured in the absence of serum. Following exposure to 100 ng/ml of IL-1β 
for 0-24 h, the cellular viability of βTC1.6 cells grown under normoxic or hypoxia conditions 
was assessed by colorimetric MTT assay (A, B) and associated with evaluation of changes 
in TRAIL (C, D) and A20 (E, F) gene expression during this time course. Data from MTT are 
normalized to untreated controls and all the data are presented as mean ± standard 
deviation (SD). n=3 *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001 compared with 
untreated controls. IL-1β, Interleukin-1beta. 
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3.3.4.1.4 Time-dependent induction of A20 and TRAIL following exposure to LPS 

BRIN-BD11 cells grown in the presence of serum were stimulated with 500 µg/ml of LPS for 

24 h, the normalized MTT assay data showed a significant (P<0.001-P<0.0001) reduction in 

cells viability after 15 min of exposure in normoxia versus 1 h in hypoxia, (Figure 3.33A, B). 

TRAIL was significantly (P<0.0001) upregulated after 2 h of exposure in normoxia versus 15 

min in hypoxia (Figure 3.33C, D). A20 was highly expressed (P<0.05-P<0.001) after 4 h of 

exposure, however, the lower level was detected after 24 h in normoxia (Figure 3.33E). In 

hypoxia there was significant (P<0.001-P<0.0001) upregulation of A20 expression during the 

different exposure time (Figure 3.33F). In the absence of serum the reduction in cellular 

viability was significant (P<0.05-P<0.0001) after 1 h of exposure to 500 µg/ml of LPS in 

normoxia and after 15 min of exposure to 10 µg/ml in hypoxia (Figure 3.34A, B). The TRAIL 

was significantly (P<0.01-P<0.0001) upregulated after 15 min of exposure in both normoxia 

and hypoxia (Figure 3.34C, D). There was significant (P<0.05-P<0.0001) upregulation for 

A20 after 1 h of exposure in normoxia versus 15 min in hypoxia (Figure 3.34E, F). 

 

The exposure of βTC1.6 cells to 500 µg/ml of LPS significantly (P<0.01-P<0.0001) reduced 

the cellular viability after 2 h of exposure in normoxia versus 4 h in hypoxia (Figure 3.35A, 

B). TRAIL (Figure 3.35C, D).  and A20 (Figure 3.35E, F). were significantly (P<0.05-

P<0.0001) upregulated in both normoxia and hypoxia in the presence of serum. In the 

absence of serum a significant (P<0.05-P<0.0001) reduction in cellular viability was noted 

after 1 h of exposure to 500 µg/ml for normoxia versus 15 min in hypoxia (Figure 3.35A, B). 

A significant (P<0.05-P<0.0001) upregulation was noted for TRAIL and A20 in both normoxia 

and hypoxia (Figure 3.36). 
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Figure 3.33. Effect of LPS on the viability and relative gene expression over time in 
BRIN-BD11 cells cultured in the presence of serum. Following exposure to 500 μg/ml of 
LPS for 0-24 h, the cellular viability of BRIN-BD11 cells grown under normoxic or hypoxic 
conditions was assessed by colorimetric MTT assay (A, B) and associated with evaluation of 
changes in TRAIL (C, D) and A20 (E, F) gene expression during this time course. Data from 
MTT are normalized to untreated controls and all the data are presented as mean ± standard 
deviation (SD). n=3 *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001 compared with 
untreated controls. LPS, lipopolysaccharide.  
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Figure 3.34. Effect of LPS on the viability and relative gene expression over time in 
BRIN-BD11 cells cultured in the absence of serum. Following exposure to 500 μg/ml and 
10 μg/ml of IL-1β for 0-24 h, the cellular viability of BRIN-BD11 cells grown under normoxic 
or hypoxic conditions respectively was assessed by colorimetric MTT assay (A, B). This was 
associated with evaluation of changes in TRAIL (C, D) and A20 (E, F) gene expression 
during this time course. Data from MTT are normalized to untreated controls and all the data 
are presented as mean ± standard deviation (SD). n=3 *P<0.05, **P<0.01, ***P<0.001 and 
****P<0.0001 compared with untreated controls. LPS, lipopolysaccharide.  
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Figure 3.35. Effect of LPS on the viability and relative gene expression over time in 
βTC1.6 cells cultured in the presence of serum. Following exposure to 500 μg/ml of LPS 
for 0-24 h, the cellular viability of βTC1.6 cells grown under normoxic or hypoxic conditions 
was assessed by colorimetric MTT assay (A, B) and associated with evaluation of changes 
in TRAIL (C, D) and A20 (E, F) gene expression during this time course. Data from MTT are 
normalized to untreated controls and all the data are presented as mean ± standard 
deviation (SD). n=3 *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001 compared with 
untreated controls. LPS, lipopolysaccharide.  
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Figure 3.36. Effect of LPS on the viability and relative gene expression over time in 
βTC1.6 cells cultured in the absence of serum. Following exposure to 500 μg/ml of LPS 
for 0-24h, the cellular viability of βTC1.6 cells grown under normoxic or hypoxic conditions 
was assessed by colorimetric MTT assay (A, B) and associated with evaluation of changes 
in TRAIL (C, D) and A20 (E, F) gene expression during this time course. Data from MTT are 
normalized to untreated controls and all the data are presented as mean ± standard 
deviation (SD). n=3 *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001 compared with 
untreated controls. LPS, lipopolysaccharide. 
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3.3.5 Assessment of pancreatic islets viability over time 

Islets were exposed to 100 ng/ml of IFN-γ in the presence and absence of serum for 24 h. 

Normalized MTT data showed a significant (P<0.05-P<0.0001) decrease in cellular viability 

after 1 h of exposure in normoxia versus 15 min in hypoxia in the presence and absence of 

serum (Figure 3.37 and 3.38). The pancreatic islets were also exposed to 100 ng/ml of TNF-

α the reduction in viability was significant (P<0.05-P<0.0001) after 1h in normoxia versus 15 

min in hypoxia in the presence and absence of serum (Figure 3.37 and 3.38). For IL-1β the 

pancreatic islets were stimulated with 100 ng/ml in normoxia versus 10 ng/ml in hypoxia in 

the presence of serum and 100 ng/ml in the absence of serum, the reduction in cellular 

viability was significant (P<0.05-P<0.0001) after 15 min of exposure in normoxia and hypoxia 

in the presence of serum and also in normoxia in the absence of serum, while in hypoxia in 

the absence of serum the reduction in cellular viability was significant after 1h. The 

pancreatic islets cultured in the presence of serum were stimulated with 10 µg/ml of LPS in 

normoxic and hypoxia condition. The results showed a significant (P<0.01-P<0.0001) 

reduction in cellular viability after 15 min of exposure in both normoxia and hypoxia (Figure 

3.37). In the absence of serum, the pancreatic islets were stimulated with 500 µg/ml in 

normoxia and 100 µg/ml in hypoxia. The reduction in viability was significant (P<0.01-

P<0.0001) after 1 h of exposure in both normoxia and hypoxia (Figure 3.38). 
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Figure 3.37. Effect of pro-inflammatory cytokines and endotoxin on the viability of 
pancreatic islets cultured in the presence of serum over time. Pancreatic islets were 
exposed to 100 ng/ml of IFN-γ (A, B), 100 ng/ml of TNF-α (C, D) and 100 ng/ml of IL-1β (E, 
F) for 0-24 h in normoxic and hypoxic conditions. The dose of LPS was 10µg/ml in normoxia 
(G) and 100 µg/ml in hypoxia (H). The viability of the islets was assessed by colorimetric 
MTT assay. Data are normalized to untreated controls and presented as mean ± standard 
deviation (SD). n=3. *P<0.05, **P<0.01, ***P<0.001 compared with untreated controls. 
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Figure 3.38. Effect of pro-inflammatory cytokines and endotoxin on the viability of 
pancreatic islets cultured in the the absence of serum over time Pancreatic islets were 
exposed to 100 ng/ml of IFN-γ (A, B), 100 ng/ml of TNF-α (C, D) and 100 ng/ml of IL-1β (E, 
F) for 0-24 h in normoxic and hypoxic conditions. The dose of LPS was 10µg/ml in normoxia 
(G) and 100 µg/ml in hypoxia (H). The viability of the islets was assessed by colorimetric 
MTT assay. Data are normalized to untreated controls and presented as mean ± standard 
deviation (SD). n=3 *P<0.05, **P<0.01, ***P<0.001 compared with untreated controls 
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3.4 Discussion 

There are many reports that confirm the role of pro-inflammatory cytokines in β-cell 

dysfunction and development of T1DM.(173) It is also well documented that pro-inflammatory 

cytokines can be cytotoxic to pancreatic islets in vitro. Most of these reports indicated a 

synergic action of these cytokines that make them lethal.(173),(183) However, the composition 

of and interaction among pro-inflammatory cytokines are thought to vary during the 

development of T1DM, which might explain the different level of protection achieved through 

blocking the action of these cytokines in rat models of autoimmune diabetes.(184) Therefore, 

understanding the apoptotic effect of each cytokine would be useful in elucidation of the 

mechanisms of β-cell apoptosis. In this study, we tested the response of pancreatic β-cell 

lines and pancreatic islets to different individual pro-inflammatory cytokines in rising 

concentrations under both normoxic and hypoxic conditions and in the presence/absence of 

serum, to (1) establish cellular models of β-cell apoptosis and (2) determine if oxygen 

concentration or serum in the culture media sensitized the β-cells to the effects of 

cytokines.(185) 

 

One of the most important pro-inflammatory cytokines is IL-1β, which is considered a pro-

apoptotic cytokine that is known to be responsible for β-cell dysfunction and death.[182]  The 

action of IL-1β as a single agent on β-cells has been mostly studied. Some studies 

described its action as cytostatic (i.e. the effect will disappear when it is removed) and 

suggest that it must be used in combination with other cytokines to cause apoptosis in β-

cells,(184) this suggests that using IL-1β alone will only prime these cells for apoptosis that 

would later develop. The finding in this study confirms that using IL-1β alone was enough to 

produced apoptosis in pancreatic β-cell lines and primary islets. This result agrees with 

several other studies that demonstrate the ability of IL-1β to induce β-cells apoptosis.(187),(185). 
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Other studies combined IFN-γ and TNF-α to induced apoptosis in human islets and rat 

primary β-cells.(184) The mechanism of β-cell damage by these cytokines is realized by a 

synergic action of both cytokines through activation of calcium channels that results in 

mitochondrial dysfunction and activation of several caspases.(188).However, the pathway for 

each cytokine is not clear. The individual use of each cytokine in this study leads to β-cell 

apoptosis at different concentrations. Moreover, we tried to explore the impact of pro-

inflammatory cytokines on β-cells viability under moderate hypoxia. To date, we have had 

little direct knowledge regarding the impact of hypoxia on β-cells function and insulin 

secretion.(189) 

 

Pancreatic β-cells consume a large amount of oxygen in order to perform their action this 

fact renders β-cells very sensitive to hypoxia.(179) Some studies suggest that exposing β-cells 

to 1% O2 for 24 h will induce apoptosis.(179). Other stated a detrimental effect of hypoxia after 

18 h of exposure,(188) even the moderate hypoxia (5% or 7%) induced apoptosis in MIN6 

cells.(174) In this study, we aimed to expose the pancreatic cell lines (BRIN-BD11, βTC1.6) 

and pancreatic islets to moderate hypoxia to demonstrate the response of these cells to pro-

inflammatory cytokines and compare it with normoxic conditions. At first, we tested the 

survival of our β-cells in 2% and 5% O2. However, after 24 h, all cells had died. Therefore, 

we increased the O2 level to 10%. The BRIN-BD11 and βTC1.6 cell lines were able to 

survive and proliferate under this level of moderate hypoxia and after 3 days we were able to 

perform further experiments.  

 

The assessment of cell viability after exposure to rising concentrations of pro-inflammatory 

cytokines and endotoxin demonstrate no difference in cell response, IFN-γ, TNF-α and IL-1β 

along with the endotoxin LPS reduced the viability of cells, in both normoxia and hypoxia 

condition in the presence and absence of serum. Furthermore, we measured the fold change 
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in gene expression for the pro-apoptotic and anti-apoptotic genes in both normoxia and 

hypoxia.  

 

A20 is believed to be a critical negative regulator of the NF-kB signalling pathway that 

response to different stimuli, including pro-inflammatory cytokines.(180) Moreover, A20 has 

been found to be highly upregulated anti-apoptotic protein in cytokine-stimulated primary 

islets and insulinoma cell lines. Consistent with this, overexpression of A20 in islets confers 

resistance to cytokines mediated activation of NF-kB, protecting them from apoptosis in the 

early period after islets transplantation.(180) Some studies suggest that A20 cytoprotective 

effect against apoptosis depends on the abrogation of cytokines-induced NO production.(189 

)(180). The ability of A20 to inhibit NO production is due to transcriptional blockade of iNOS 

induction. A20 inhibit NF-kB at a level upstream of IKB degradation, which demonstrates an 

anti-apoptotic and anti-inflammatory function for A20. These data suggest an important role 

for A20 in β-cell function and T1DM.(189) In this study, we found that A20 was upregulated in 

both BRIN-BD11 and βTC1.6 cell lines in normoxia and hypoxia after exposing them to IFN-

γ, TNF-α, IL-1β and LPS alone with some variation in the time at which maximal induction 

was observed. For example, A20 was upregulated in BRIN-BD11 cells 2 hours after 

exposure to IFN-γ in the presence of serum and after 15 min in absence of serum, while in 

βTC1.6 it was found after 1 h of exposure, This was also true for the rest of the cytokines; in 

fact a consistent difference was noted between BRIN BD11 and βTC1.6 cell lines regarding 

the expression of A20 while the βTC1.6 showed a maximum upregulation after 24 hours in 

all instance, the BRIN BD11 followed a different manner where the maximum A20 

expression was found in the early hours after exposure to cytokines, this may be related to 

the origin of each cell line and the way they response to cytokines (Table 1 and 2 in 

appendix 2). 
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On another hand, an upregulation of TRAIL was found in insulin-secreting MIN6 islets upon 

exposure to TNF-α and IFN-γ in vitro.(190).TRAIL was found to be able to induce a strong 

cytotoxicity and a high rate of apoptosis in a different type of β-cell lines.(191) The protein 

encoded by this gene is structurally related to the TNF family of proteins including TNF-α 

and FasL. It acts through binding to type 1 membrane receptor that mediates apoptosis via a 

cytoplasmic death domain like DR4 and DR5. There is a controversial opinion regarding the 

ability of TRAIL to induce apoptosis in pancreatic β-cells while some are confirming this 

ability.(191) other are suggesting that some β-cells like INS-1 are resistant to TRAIL.(192) In our 

study, we can confirm that BRIN-BD11 and βTC1.6 cells showed TRAIL expression 

upregulated after exposure to different types of pro-inflammatory cytokines. 

 

There was a variation in response to cytokines between primary islets and cell lines. The 

islets appear to be more sensitive than the cell lines used in the current study. For example 

both cell lines showed an approximate 50% reduction in cell viability after exposure to 1000 

ng/ml of IFN-γ while in the islets the 100 ng/ml was enough to produce an approximate 50% 

reduction in cell viability. Consistent results were found for TNF-α, IL-1β and LPS in the 

presence of serum. A similar trend was also found in the absence of serum indicating an 

increase in the sensitivity of the primary islets cells. Although more sensitive to the effects of 

cytokine treatment, results from primary islets followed consistent trends to those observed 

in cell lines. It may be speculated that the transformation process undertaken to generate 

immortal and continually replicating cell lines has resulted in enhanced resistance to insult 

 

3.5 Conclusion 

This study confirms the ability of individual pro-inflammatory cytokines to induce apoptosis in 

pancreatic β-cell lines and primary islets in vitro, which was associated with an increase in 

the expression of TRAIL and A20 in the pancreatic β-cell lines. We also found no significant 
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difference in the response of β-cells to the addition of pro-inflammatory cytokines and LPS 

under normoxic and hypoxic conditions, but the primary islets cells were more sensitive to 

cytokines addition in all instance. 

Although the study has reached it is aims limitations were identified, for example, not 

knowing the actual in vivo oxygen concentration experienced by β-cells in the pancreas 

could be considered one of the limitations of this study. In addition, due to the limited time 

available the effect of the conditioned media under hypoxia condition wasn’t investigated, but 

this is one of our future works as mentioned in Chapter 6. 
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Chapter 4 
________________________________________________________________________________ 

Human bone marrow mesenchymal 
stem cell conditioned media attenuates 

cytokine-induced apoptosis in islets 
and pancreatic β-cell lines. 
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4.1 Introduction 

The Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular 

Therapy (ISCT) propose minimal criteria to define human mesenchymal stem cells (MSCs). 

These are the ability to adhere to a plastic surface when maintained in standard culture 

conditions, positive expression of CD73, CD90 and CD105 surface markers, and negative 

expression of CD45, CD19, CD14, CD45, and HLA-DR, and an ability to differentiate into 

adipocytes, chondrocytes, and osteocytes in vitro after treatment with differentiation-inducing 

agents.(193) MSCs can be purified from different sources including bone marrow, adipose 

tissue, and cord blood.(194) In vivo, MSCs are believed to act as precursors for stromal cells 

that make up the hematopoietic stem cell microenvironment.(195). The first clinical use of 

MSCs was described in 1995 where they served to accelerate hematopoietic recovery after 

bone marrow ablation in the context of post-chemotherapy, hematopoietic stem cells 

transplantation into 15 patients suffering from hematological malignancy.(196) This has been 

followed by many studies with established techniques for ex-vivo expansion and 

administration of MSCs in a series of clinical trials in a wide range of major diseases 

including stroke,(197) heart failure,(198) chronic obstructive pulmonary disease (COPD),(199) and 

liver failure.(200) 

 

The ability of MSCs to rapidly expand from a small clinical sample in to a clinically significant 

cell number, and their safety profile and relative ease of administration, has made MSCs of 

significant clinical interest.(201) Many clinical trials testing MSCs are currently recorded in the 

international registry (www.clinicaltrials.gov). In spite of the promising results for many 

studies, the mechanism of action is still unclear. Some early research suggested the ability 

of certain MSC types to differentiate into functional tissue has helped in restoring the injured 

cells and tissue.(202) However, accumulating evidence now suggests that much of the 

disease modulating activity of these MSCs results from the actions of their secretome.(203) 

http://www.clinicaltrials.gov/
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Soluble factors secreted by MSCs are believed to alter the secretion profile of dendritic cells 

which leads to increased production of anti-inflammatory cytokines like IL-10 and decreased 

production of inflammatory cytokines like IFN-γ and TNF-α.(204) MSCs are also capable of 

blocking T-cell proliferation through the engagement of the inhibitory molecule programmed 

death 1 (PD-1) to their ligands, thereby secreting soluble factors that inhibit T-cell 

proliferation like TGF-β or IL-10. MSCs are able to increase the number of T-regulatory cells 

that inhibit the immune response.(205) Some reports have stated a relationship between 

susceptibility to diabetes induction and development with T-regulatory cell activity and 

expansion of Th17 cells.(206) MSC are capable of rendering T-cells anergic by suppressing 

the differentiation of monocytes to dendritic cells or by blocking dendritic cell maturation.(204) 

MSC can suppress proliferation and IgG production of B-cells through secretion of soluble 

factors.(207) Therefore it seems that MSC therapeutic ability could be based primarily on their 

production of trophic and immunomodulatory factors. 

 

All of the above features make MSCs attractive for treating T1DM. The immunomodulatory 

ability of MSCs has been explored in the past decade to treat immune diseases. A study on 

using MSCs as a treatment for graft-versus-host disease revealed a powerful 

immunomodulatory capacity for the MSCs.(208) Recent clinical trials involving injection of 

MSCs via liver puncture demonstrated a significant reduction in islet cell antibodies (ICA), 

glutamic acid decarboxylase (GAD) and insulin antibodies of two patients over a twelve 

month period indicating a successful immunomodulatory effect on pancreatic β-

cells.(209) However, the results must be interpreted with caution because of the limited 

number of patients involved. Other studies suggest the possibility of differentiating MSCs 

into insulin producing cells under certain conditions.(210) However, a study done by Melton 

and colleagues suggested that new β-cells can only be generated from pre-existing β-cells 

and not from MSCs.(211). Given the above evidence, we speculated that mesenchymal stem 

cell conditioned media (MSC-CM) may exert beneficial immunomodulatory effects on 
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pancreatic β-cell challenged with inflammatory cytokines. Therefore, the aim of this study 

was to explore the therapeutic effectiveness of MSC-CM in protecting β-cells from pro-

inflammatory cytokines.  
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 4.2 Methods 

 

4.2.1 Materials 

Reagents of analytical grade and deionized water were sourced from the same supplier 

(Sigma, UK). All chemicals employed are listed in Chapter 2, Section 2.1. 

 

4.2.2 Cell models 

Human Bone Marrow Mononuclear cells were cultured, maintained and passaged as 

outlined in Chapter 2, Section 2.2.1.3 in addition to the pancreatic β-cell lines described in 

Chapter 2, Section 2.2.1.1 and Primary murine islets mentioned in Section 2.2.1.2. All cell 

models were maintained in an incubator at an atmosphere of 37 °C and 5% CO2 under 

normoxia (21% O2). 

 

4.2.3 Preparation of MSC-CM 

MSC-CM was prepared as outlined in Chapter 2, Section 2.2.1.3. The media was applied 

along with cytokines and LPS as described in Chapter 2, Section 2.2.3. 

 

4.2.4 Measurement of cellular viability and apoptosis 

Changes in cellular metabolic activity following the addition of MSC-CM along with cytokines 

and LPS was assessed by the calorimetric MTT assay as a surrogate marker of viability as 

outlined in Chapter 2, Section 2.2.4, whilst induction of apoptosis was measured by TUNEL 

assay as described in Section 2.2.5. 
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4.2.5 Assessment of early response anti-apoptotic gene induction 

After treatment of cells with the optimal concentration of cytokines and LPS in the presence 

of MSC-CM as outlined in Chapter 2, Section 2.2.3, the induction of early response anti-

apoptotic genes was assessed by PCR as outlined in Section 2.2.6.  

 

4.2.6 Assessment of insulin secretion and protein concentration 

Insulin release and protein concentration for BRIN-BD11 monolayer cells were determined 

as outlined in Chapter 2, Section 2.2.7. 

 

 

4.3 Results 

 

4.3.1 Characterization of Bone Marrow-derived Mesenchymal Stem Cells  

As mentioned in Section 2.2.1. human Bone Marrow Mesenchymal stem cells (hMSC) are 

characterized by trilineage differentiation into adipocyte, chondrocyte and osteocyte. As 

shown in Figure 4.1A, MSCs were positive for alcian blue staining for chondrogensis, alizarin 

red staining for osteogensis, and oil red O staining for adipogensis. In addition cell 

immunophenotype was determined using FACS in which the cells were positive for CD90 

(94%), CD73 (90%) and CD105 (80%) while lack the expression for CD14 (7%), CD19 (6%), 

CD45 (6%), CD34 (5%) and HLA-DR (7%) surface markers (Figure 4.1B, C). 

  



135 
 

Overlay histogram

IgG2   LMD
CD 14 LMD

Overlay histogram

IgG2   LMD
CD 34 LMD

Overlay histogram

IgG1   LMD
CD 19 LMD

Overlay histogram

IgG2   LMD
CD 45 LMD

Overlay histogram

IgG2   LMD
HLA-DR LMD

CD
14

CD
34

CD
19

CD
 4

5
H

LA
-D

R

Overlay histogram

Overlay histogram

IgG1   LMD
CD 73 LMD

IgG1   LMD
CD 90 LMD

Overlay histogram

IgG1   LMD
CD 105 LMD

CD
 7

3
CD

 9
0

CD
10

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

B 

C 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Characterization of human Bone Marrow-derived Mesenchymal Stem Cells 
(hMSCs) (A) Classical Tri-lineage differentiation of MSC into adipocyte, osteocyte, and 
chondrocyte the scale bar equal 100 μm for all images(B) The percentage positive event 
was quantified relative to the relevant isotype control marker; IgG1 (CD73, CD90, CD105, 
and CD19) or IgG2 (CD14, CD34, CD45, and HLA-DR). (C) Expression of typically negative 
(CD14, CD19, CD37, CD45, HLA-DR) and typically positive (CD90, CD73 and CD105) MSC 
markers in the human mononuclear mesenchymal stem cells used in this study. 
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4.3.2 MSC-CM addition increased the resistance of cells towards cytokines and 

endotoxin 

To examine the effect of MSC-CM on cell viability, BRIN-BD11, βTC1.6, and primary islets 

were treated with cytokines and LPS in the presence and absence of MSC-CM. In all 

instances, MSC-CM increased the viability of β-cell lines and primary islets. However, the 

increase in viability of the BRIN-BD11 was greater than that of βTC1.6 and primary islets. 

 

4.3.2.1 Determination of pancreatic cell sensitivity to IFN-γ in the presence of MSC-CM 

In all instances the presence of MSC-CM with serum resulted in a significant increase 

(P<0.05-0.001) in viability of pancreatic cell lines following addition of IFN-γ. The highest 

increase was noted at 1 µg/ml for BRIN-BD11 (P<0.01, +62% Figure 4.2A) and βTC1.6 

(P<0.01, +30% Figure 4.2C). In addition, the presence of MSC-CM significantly increased 

(P<0.05) the resistance of primary islets to the addition of 100 ng/ml of IFN-γ (+26% Figure 

4.2E) as compared to non-conditioned media in the presence of serum. Serum free MSC-

CM also significantly increase (P<0.05-P<0.01) the viability for BRIN-BD11 (Figure 4.2B) 

and βTC1.6 (Figure 4.2D) cell lines. Significant increases in the viability of primary islets 

were observed in the presence of MSC-CM and 100 ng/ml (P<0.01; +31%), or 1 µg/ml 

(P<0.05; +23%) of IFN-γ as compared to non-conditioned media (Figure 4.2F).   
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Figure 4.2. Evaluation of IFN-γ effect on cell viability after the addition of MSC-CM with 
and without serum. Following exposure to rising concentrations of IFN-γ for 24 h, the 
cellular viability of BRIN-BD11 cells (A, B), βTC1.6 cells (C, D) and primary islets (E, F) 
grown in MSC-CM with and without serum was assessed by calorimetric MTT assay. Data 
are normalized to untreated controls and presented as mean ± standard deviation (SD). n=3 
*p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001 compared to non-conditioned media. CMS, 
MSC-CM with serum; CMNS, MSC-CM no serum; IFN-γ, interferon gamma.  
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4.3.2.2 Determination of pancreatic cell sensitivity to TNF-α in the presence of MSC-

CM 

The use of MSC-CM significantly increased (P<0.01-0.001) the viability of BRIN-BD11 

treated with TNF-α at a concentrations ≥ 0.1 ng/ml in the presence of serum. However, the 

highest increase was noted at 100 ng/ml of TNF-α (P<0.001; +67%) as compared to non-

conditioned media (Figure 4.3A). In βTC1.6 cells the increase in viability following addition of 

MSC-CM was significant (P<0.05; +33%) at 1 μg/ml TNF-α in the presence of serum (Figure 

4.3C). Under the same conditions, islets showed a significant increase in viability (P<0.01; 

+14%) at 100 ng/ml TNF-α only as compared to non-conditioned media in presence of 

serum (Figure 4.3E). The culture of cells in MSC-CM without serum did not significantly 

affect the results. As such, MSC-CM was still capable of significantly increasing (P<0.05-

0.0001) the viability of BRIN-BD11 cells treated with TNF-α, with the highest increase noted 

at 1 µg/ml TNF-α (P<0.01; +55%; Figure 4.3B). In βTC1.6 the increase in viability was 

significant (P<0.05; +26%, Figure 4.3D) at 1 μg/ml TNF-α, while in islets, a significant 

increase in viability (P<0.01; +24%) was noted at 100 ng/ml TNF-α as compared to non-

conditioned media in the absence of serum (Figure 4.3F). 
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Figure 4.3. Evaluation of TNF-α effect on cell viability after the addition of MSC-CM 
with and without serum. Following exposure to rising concentrations of TNF-α for 24 h, the 
cellular viability of BRIN-BD11 cells (A, B), βTC1.6 cells (C, D) and primary islets (E, F) 
grown in MSC-CM with and without serum was assessed by calorimetric MTT assay. Data 
are normalized to untreated controls and presented as mean ± standard deviation (SD). n=3 
*p<0.05, **p<0.01,and ***p<0.001 compared with non-conditioned media. CMS, MSC-CM 
serum; CMNS, MSC-CM no serum; TNF-α, tumour necrosis factor alpha.  
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4.3.2.3 Determination of pancreatic cell sensitivity to IL-1β in the presence of MSC-CM 

Consistent with observations for IFN-γ and TNF-α, MSC-CM also significantly increased the 

viability of BRIN-BD11 (P<0.001; +76%; Figure 4.4A), βTC1.6 (P<0.05, +33%; Figure 4.4C) 

and primary islets (P<0.05; +21%; Figure 4.4E) treated with 100 ng/ml of IL-1β as compared 

to non-conditioned media in the presence of serum. In the absence of serum significant 

increases in viability were also noted at 100 ng/ml in BRIN-BD11 cells (P<0.05; +32%; 

Figure 4.4B), βTC1.6 cells (P<0.05; +33%; Figure 4.4D), and primary islets (P<0.05; +16%; 

Figure 4.4F). 
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Figure 4.4. Evaluation of IL-1β effect on cell viability after the addition of MSC-CM with 
and without serum. Following exposure to rising concentrations of IL-1β for 24 h, the 
cellular viability of BRIN-BD11 cells (A, B), βTC1.6 cells (C, D) and primary islets (E, F) 
grown in MSC-CM with and without serum was assessed by calorimetric MTT assay. Data 
are normalized to untreated controls and presented as mean ± standard deviation (SD). n=3 
*p<0.05, **p<0.01, and ***p<0.001 compared with non-conditioned media. CMS, MSC-CM 
serum; CMNS, MSC-CM no serum; IL-1β, Interleukin-1β 
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4.3.2.4 Determination of pancreatic cell sensitivity to LPS in the presence of MSC-CM 

The use of MSC-CM significantly increased (P<0.05-0.0001) the viability of BRIN-BD11 cells 

treated with LPS at concentrations ≥ 0.1 µg/ml in the presence of serum (Figure 4.5A). 

However, the highest increase was noted at 500 µg/ml LPS (P<0.0001; +67%; Figure 4.5A) 

as compared to non-conditioned media. Under the same conditions βTC1.6 cells showed 

significant enhancements in viability (P<0.05-0.01) at doses of 0.1-500 μg/ml LPS with the 

highest increase noted at 500 µg/ml (+17%; Figure 4.5C). In islets there was a significant 

increase in viability (P<0.05-0.01) at concentrations ≥ 1 µg/ml with the highest increase was 

noted at 10 µg/ml (+12%; Figure 4.5E) as compared to non-conditioned media in presence 

of serum. The culture of cells in MSC-CM without serum did not significantly affect the 

results. As such, MSC-CM was still capable of significantly increasing (P<0.05-P<0.0001) 

the viability of BRIN-BD11 cells following the addition of LPS at concentrations ≥100 µg/ml 

(Figure 4.5B). However in βTC1.6 and primary islets the increase in viability was significant 

(P<0.05) only at 500 μg/ml LPS, resulting in respective (+19% Figure 4.5D), (+21% Figure 

4.5F) increases as compared to non-conditioned media.   
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Figure 4.5. Evaluation of LPS effect on cell viability after the addition of MSC-CM with 
and without serum. Following exposure to rising concentrations of LPS for 24 h, the cellular 
viability of BRIN-BD11 cells (A, B), βTC1.6 cells (C, D) and primary islets (E, F) grown in 
MSC-CM with and without serum was assessed by calorimetric MTT assay. Data are 
normalized to untreated controls and presented as mean ± standard deviation (SD). n=3. 
*p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001 compared with non-conditioned media. 
CMS, MSC-CM serum; CMNS, MSC-CM no serum; LPS, Lipopolysachharide. 
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4.3.3 Bone marrow MSC-CM blocks cytokine-induced apoptosis 

The above data showed that the addition of MSC-CM enhanced cell viability following the 

addition of cytokines. In the following experiments, we wished to confirm that the 

enhancement in cell viability resulted from an inhibition of apoptosis. To evaluate the 

effectiveness of MSC-CM in this regard the TUNEL assay was performed. MSC-CM blocked 

cytokine-induced apoptosis in the BRIN-BD11and βTC1.6 cell lines for IFN-γ (Figure 4.6, 

4.7), TNF-α (Figure 4.8, 4.9), IL-1β (Figure 4.10, 4.11), and LPS (Figure 4.12, 4.13). H2O2 

was used as a positive control in all instances. 

 

Please note that in Figures 4.6-4.15, TUNEL images from Chapter 3 have been replicated 

for comparative purposes. This is not intended as a duplication of data, but rather as 

reference images to aid the reader in drawing comparisons on the anti-apoptotic effect of 

MSC-CM treatment, shown in the adjacent panels. 

 

As shown in Figure 4.6, the addition of 1 μg/ml of IFN-γ resulted in the increase in the 

%positive TUNEL cells (60%) for BRIN BD11 and (56%) for βTC1.6. However, the presence 

of MSC-CM reduced the %positive TUNEL cells for both cell lines (7%) for BRIN BD11 and 

(6%) for βTC1.6 indicating the ability of MSC-CM to block IFN-γ induced apoptosis in the 

presence of serum. A similar trend was found in the absence of serum (Figure 4.7). 

 

Consistent results were observed for cells treated with TNF-α. Figure 4.8 demonstrate the 

ability of TNF-α to induce apoptosis in BRIN BD11 (56%) and βTC1.6 (53%) cell lines. 

However, the addition of MSC-CM reduce the % positive TUNEL cells for both cell lines (3%) 

(6%) respectively in the presence of serum. A similar trend was found in absence of serum 

(Figure 4.9).  
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Figure 4.10 demonstrates the ability of 100 ng/ml of IL-1β to induce apoptosis. The 

%positive TUNEL cells were (46%) for BRIN BD11 and (45%) for βTC1.6. However, the 

addition of MSC-CM reduce the %positive TUNEL cells to (3%) and (2%) for both cell lines 

respectively indicating once again the ability of MSC-CM to block apoptosis in the presence 

of serum. A similar trend was found in absence of serum (Figure 4.11). 

 

Consistent results were found for cells treated with 500 μg/ml of LPS (Figure 4.12). The 

%positive TUNEL cell was (47%) for both BRIN BD11 and βTC1.6 cell lines. However, the 

addition of MSC-CM reduces the %positive TUNEL cells for both BRIN BD11 and βTC1.6 

(9%) and (6%) respectively in the presence of serum. A similar trend was found in the 

absence of serum (Figure 4.13) 
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Figure 4.6. Assessment of IFN-γ-induced apoptosis in pancreatic cell lines with and 
without MSC-CM in the presence of serum. A. For comparative purposes, images 
showing IFN-γ–induced apoptosis in the absence of MSC-CM are repeated here (see 
Chapter 3). B. Fluorescent images showing MSC-CM blockage of IFN-γ-induced apoptosis 
in BRIN-BD11 and βTC1.6 cell lines after 24 hours of exposure to 1 µg/ml of IFN-γ. C. The 
%positive TUNEL cells were measured by calculating the number of positive TUNEL cells 
divided by the total number of cells (n=3) and presented as mean ± standard deviation (SD).  
***p<0.001 and ****p<0.0001 compared with untreated controls. CMS, MSC-CM with serum; 
H2O2, hydrogen peroxide; IFN-γ, interferon gamma; MSC-CM, mesenchymal stem cell 
conditioned media.  
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Figure 4.7. Assessment of IFN-γ-induced apoptosis in pancreatic cell lines with and 
without MSC-CM in the absence of serum. A. For comparative purposes, images showing 
IFN-γ–induced apoptosis in the absence of MSC-CM are repeated here (see Chapter 3). B. 
Fluorescent images showing MSC-CM blockage of IFN-γ-induced apoptosis in BRIN-BD11 
and βTC1.6 cell lines after 24 hours of exposure to 1 µg/ml of IFN-γ. C. The %positive 
TUNEL cells were measured by calculating the number of positive TUNEL cells divided by 
the total number of cells (n=3) and presented as mean ± standard deviation (SD).  
***p<0.001 and ****p<0.0001 compared with untreated controls. CMNS, MSC-CM without 
serum; H2O2, hydrogen peroxide; IFN-γ, interferon gamma; MSC-CM, mesenchymal stem 
cell conditioned media. 
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Figure 4.8. Assessment of TNF-α-induced apoptosis in pancreatic cell lines with and 
without MSC-CM in the presence of serum. A. For comparative purposes, images 
showing TNF-α–induced apoptosis in the absence of MSC-CM are repeated here (see 
Chapter 3). B. Fluorescent images showing MSC-CM blockage of TNF-α-induced apoptosis 
in BRIN-BD11 and βTC1.6 cell lines after 24 hours of exposure to 100 ng/ml and 1 µg/ml 
respectively of TNF-α. C. The %positive TUNEL cells were measured by calculating the 
number of positive TUNEL cells divided by the total number of cells (n=3) and presented as 
mean ± standard deviation (SD).  ****p<0.0001 compared with untreated controls. CMS, 
MSC-CM with serum; H2O2, hydrogen peroxide; MSC-CM, mesenchymal stem cell 
conditioned media; TNF-α, Tumour necrosis factor alpha. 
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Figure 4.9. Assessment of TNF-α-induced apoptosis in pancreatic cell lines with and 
without MSC-CM in the absence of serum. A. For comparative purposes, images showing 
TNF-α–induced apoptosis in the absence of MSC-CM are repeated here (see Chapter 3). B. 
Fluorescent images showing MSC-CM blockage of TNF-α-induced apoptosis in BRIN-BD11 
and βTC1.6 cell lines after 24 hours of exposure to 1 µg/ml respectively of TNF-α. C. The 
%positive TUNEL cells were measured by calculating the number of positive TUNEL cells 
divided by the total number of cells (n=3) and presented as mean ± standard deviation (SD).  
**p<0.01 and ****p<0.0001 compared with untreated controls. CMNS, MSC-CM without 
serum; H2O2, hydrogen peroxide; MSC-CM, mesenchymal stem cell conditioned media; 
TNF-α, Tumour necrosis factor alpha. 
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Figure 4.10. Assessment of IL-1β-induced apoptosis in pancreatic cell lines with and 
without MSC-CM in the presence of serum. A. For comparative purposes, images 
showing IL-1β–induced apoptosis in the absence of MSC-CM are repeated here (see 
Chapter 3). B. Fluorescent images showing MSC-CM blockage of IL-1β–induced apoptosis 
in BRIN-BD11 and βTC1.6 cell lines after 24 hours of exposure to 100 ng/ml of IL-1β. C. The 
%positive TUNEL cells were measured by calculating the number of positive TUNEL cells 
divided by the total number of cells (n=3) and presented as mean ± standard deviation (SD).  
****p<0.0001 compared with untreated controls. CMS, MSC-CM with serum; H2O2, 
hydrogen peroxide; IL-1β, interleukin-1 beta; MSC-CM, mesenchymal stem cell conditioned 
media. 
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Figure 4.11. Assessment of IL-1β-induced apoptosis in pancreatic cell lines with and 
without MSC-CM in the absence of serum. A. For comparative purposes, images showing 
IL-1β–induced apoptosis in the absence of MSC-CM are repeated here (see Chapter 3). B. 
Fluorescent images showing MSC-CM blockage of IL-1β–induced apoptosis in BRIN-BD11 
and βTC1.6 cell lines after 24 hours of exposure to 100 ng/ml of IL-1β. C. The %positive 
TUNEL cells were measured by calculating the number of positive TUNEL cells divided by 
the total number of cells (n=3) and presented as mean ± standard deviation (SD).  **p<0.01, 
***p<0.001 and ****p<0.0001 compared with untreated controls. CMNS, MSC-CM without 
serum; H2O2, hydrogen peroxide; IL-1β, interleukin-1 beta; MSC-CM, mesenchymal stem 
cell conditioned media. 
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Figure 4.12. Assessment of LPS-induced apoptosis in pancreatic cell lines with and 
without MSC-CM in the presence of serum. A. For comparative purposes, images 
showing LPS–induced apoptosis in the absence of MSC-CM are repeated here (see Chapter 
3). B. Fluorescent images showing MSC-CM blockage of LPS–induced apoptosis in BRIN-
BD11 and βTC1.6 cell lines after 24 hours of exposure to 500 µg/ml of IL-1β. C. The 
%positive TUNEL cells were measured by calculating the number of positive TUNEL cells 
divided by the total number of cells (n=3) and presented as mean ± standard deviation (SD). 
****p<0.0001 compared with untreated controls. CMS, MSC-CM with serum; H2O2, 
hydrogen peroxide; LPS, lipopolysaccharide; MSC-CM, mesenchymal stem cell conditioned 
media. 
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Figure 4.13. Assessment of LPS-induced apoptosis in pancreatic cell lines with and 
without MSC-CM in the absence of serum. A. For comparative purposes, images showing 
LPS–induced apoptosis in the absence of MSC-CM are repeated here (see Chapter 3). B. 
Fluorescent images showing MSC-CM blockage of LPS–induced apoptosis in BRIN-BD11 
and βTC1.6 cell lines after 24 hours of exposure to 500 µg/ml of IL-1β. C. The %positive 
TUNEL cells were measured by calculating the number of positive TUNEL cells divided by 
the total number of cells (n=3) and presented as mean ± standard deviation (SD). *** 
p<0.001 and ****p<0.0001 compared with untreated controls. CMNS, MSC-CM without 
serum; H2O2, hydrogen peroxide; LPS, lipopolysaccharide; MSC-CM, mesenchymal stem 
cell conditioned media. 
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The MSC-CM was also able to block cytokine-induced apoptosis in primary islets as shown 

in Figures 4.14 and 4.15. It was difficult to count the actual number of positive TUNEL cells 

due to the clustering of islets, but the fluorescent images show a clear apoptosis in the islets 

which was reduced after the addition of MSC-CM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14. Assessment of cytokine-induced apoptosis in pancreatic islets before 
and after the addition of MSC-CM in the presence of serum. (A) Fluorescent images of 
cytokine–induced apoptosis in CD-1 mice islets after 24 hours of exposure to different 
cytokines are shown here again for comparison purpose only. (B) Images of islets after the 
addition of MSC-CM. The MSC-CM was able to block cytokine-inducedapoptosis, the blue 
nuclei are DAPI staining and the green nuclei are TUNEL positive nuclei. IFN-γ (Interferon-
gamma), TNF-α (Tumour necrosis factor-alpha), IL-1β (interleukin-1 beta), and LPS 
(lipopolysaccharide).   
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Figure 4.15. Assessment of cytokine-induced apoptosis in pancreatic islets before 
and after the addition of MSC-CM in the absence of serum. (A) Fluorescent images of 
cytokine-inducedapoptosis in CD-1 mice islets after 24 hours of exposure to different types 
of cytokines are shown here again for comparative purposes only. (B) Images of islets after 
the addition of MSC-CM. The MSC-CM was able to block cytokine-inducedapoptosis, the 
blue nuclei are DAPI staining and the green nuclei are TUNEL positive nuclei. IFN-γ 
(Interferon-gamma), TNF-α (Tumour necrosis factor-alpha), IL-1β (interleukin-1 beta), and 
LPS (lipopolysaccharide).  

A 

B 
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4.3.4 Induction of early response genes important in mediating β-cell apoptosis 

To assess the induction of early response genes important in the mediation of β-cell 

apoptosis, qPCR was performed to assess the expression of TRAIL and A20 mRNA before 

and after the addition of MSC-CM and following exposure of the BRIN-BD11 and βTC1.6 cell 

lines to cytokines or LPS (Figures 4.16-4.23). This was accompanied by assessments of 

cellular viability over times, following exposure to cytokines or LPS in the presence or 

absence of MSC-CM. 

 

4.3.4.1 Times-dependent induction of A20 and TRAIL following exposure to IFN-γ in 

the presence of MSC-CM 

Following exposure to 1 µg/ml IFN-γ, maximal expression of TRAIL was observed after 24 h, 

whilst maximal expression of A20 was observed after 2 h in BRIN-BD11 cells cultured in the 

presence of serum, but absence of MSC-CM. Under serum-free conditions, maximal 

expression of TRAIL and A20 was observed after 24 h and 15 min respectively (Figure 

4.16). However, the addition of MSC-CM significantly (P<0.05-P<0.001) reduced the 

induction of both genes in all instances regardless of whether cells were grown in the 

presence or absence of serum (Figure 4.16). This was accompanied by an IFN-γ-mediated 

times-dependent reduction in cell viability, which was reversed through the addition of MSC-

CM.  

 

The exposure of βTC1.6 to 1 µg/ml of IFN-γ resulted in an increase in the expression of 

TRAIL and A20, the maximal expression was noted after 24 h of exposure for both genes 

and in both media with and without serum (Figure 4.17). However, the addition of MSC-CM 

significantly (P<0.05-P<0.0001) reduced the induction of both genes in all instances 

regardless of whether cells were grown in the presence or absence of serum (Figure 4.17). 

This again was associated with IFN-γ-mediated times-dependent reduction in cell viability, 

which was reversed through the addition of MSC-CM 
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Figure 4.16. Assessment of IFN-γ effect on the viability and relative gene expression 
at different exposure times in BRIN-BD11 cultured in MSC-CM with and without 
serum. Following exposure to IFN-γ (1 µg/ml) at different times, the cellular viability of BRIN-
BD11 cultured in MSC-CM was assessed by calorimetric MTT assay (A, B) associated with 
evaluation of changes in TRAIL (C, D) and A20 (E, F) gene expression during this times 
course. Data from MTT are normalized to untreated controls and all the data are presented 
as mean ± standard deviation (SD). n=3. *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001 
compared with non- conditioned media. IFN-γ, interferon gamma. 
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Figure 4.17. Assessment of IFN-γ effect on the viability and relative gene expression 
at different exposure times in βTC1.6 cultured in MSC-CM with and without serum. 
Following exposure to IFN-γ (1 µg/ml) at different times, the cellular viability of βTC1.6 
cultured in MSC-CM was assessed by calorimetric MTT assay (A, B)  associated with 
evaluation of changes in TRAIL (C, D) and A20 (E, F) gene expression during this times 
course. Data from MTT are normalized to untreated controls and all the data are presented 
as mean ± standard deviation (SD). n=3 *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001 
compared with non-conditioned media. IFN-γ, interferon gamma. 
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4.3.4.2 Times-dependent induction of A20 and TRAIL following exposure to TNF-α in 

the presence of MSC-CM 

Following exposure of BRIN BD11 to 100 ng/ml of TNF-α maximal expression for TRAIL was 

noted after 4 h of exposure whilst the maximal expression for A20 was seen after 1 h of 

exposure in the presence of serum, but absence of MSC-CM. In the absence of serum the 

maximal expression for TRAIL and A20 was noted after 24 h and 2 h respectively (Figure 

4.18). However, the presence of MSC-CM significantly (P<0.05-P<0.0001) reduced the 

induction of both gene regardless of whether the cells were grown in media with or without 

serum as shown in (Figure 4.18). This was accompanied by a TNF-α-mediated times-

dependent reduction in cell viability, which was reversed through the addition of MSC-CM.  

 

In the βTC1.6 cell line, exposure to 1 µg/ml of TNF-α induced a maximal expression for 

TRAIL and A20 after 24 h of exposure in media with and without serum, but absence of 

MSC-CM. However, the addition of MSC-CM significantly (P<0.01-P<0.0001) reduced the 

induction of both as shown (Figure 4.19). 
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Figure 4.18. Assessment of TNF-α effect on the viability and relative gene expression 
at different exposure times in BRIN-BD11 cultured in MSC-CM with and without 
serum. Following exposure to TNF-α (100 ng/ml for media with serum and 1 µg/ml for media 
without serum) at different times, the cellular viability of BRIN-BD11 cultured under MSC-CM 
was assessed by calorimetric MTT assay (A, B)  associated with evaluation of changes in 
TRAIL (C, D) and A20 (E, F) gene expression during this times course. Data from MTT are 
normalized to untreated controls and all the data are presented as mean ± standard 
deviation (SD). n=3 *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001 compared with non-
MSC-CM. TNF-α; Tumour necrosis factor alpha. 
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Figure 4.19. Assessment of TNF-α effect on the viability and relative gene expression 
at different exposure times in βTC1.6 cultured in MSC-CM with and without serum. 
Following exposure to TNF-α (1 µg/ml) at different times, the cellular viability of βTC1.6  was 
assessed by calorimetric MTT assay (A, B)  associated with evaluation of changes in TRAIL 
(C, D) and A20 (E, F) gene expression during this times course. Data from MTT are 
normalized to untreated controls and all the data are presented as mean ± standard 
deviation (SD). n=3 *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001 compared with non- 
conditioned media. TNF-α, Tumor necrosis factor alpha. 
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4.3.4.3 Times-dependent induction of A20 and TRAIL following exposure to IL-1β in 

the presence of MSC-CM 

Following exposure to 100 ng/ml of IL-1β, maximal expression of TRAIL was observed after 

24 h, whilst maximal expression of A20 was observed after 2 h in BRIN-BD11 cells cultured 

in the presence of serum, but absence of MSC-CM. Under serum-free conditions, maximal 

expression of TRAIL and A20 was observed after 15 min and 1 h respectively (Figure 4.20). 

However, the addition of MSC-CM significantly (P<0.05-P<0.0001) reduced the induction of 

both genes in all instances regardless of whether cells were grown in the presence or 

absence of serum (Figure 4.20). This was accompanied by an IL-1β-mediated times-

dependent reduction in cell viability, which was reversed through the addition of MSC-CM.  

 

The exposure of βTC1.6 to 100 ng/ml of IL-1β resulted in increase in the expression of 

TRAIL and A20, the maximal expression was noted after 24 h of exposure for both genes 

and in both media with and without serum (Figure 4.21). However, the addition of MSC-CM 

significantly (P<0.01-P<0.0001) reduced the induction of both genes in all instances 

regardless of whether cells were grown in the presence or absence of serum (Figure 4.21). 

This is again was associated with IL-1β -mediated times-dependent reduction in cell viability, 

which was reversed through the addition of MSC-CM.  
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Figure 4.20. Assessment of IL-1β effect on the viability and relative gene expression at 
different exposure times in BRIN-BD11 cultured in MSC-CM with and without serum. 
Following exposure to IL-1β (100 ng/ml) at different times, the cellular viability of BRIN-BD11 
cultured in MSC-CM was assessed by calorimetric MTT assay (A, B) associated with 
evaluation of changes in TRAIL (C, D) and A20 (E, F) gene expression during this times 
course. Data from MTT are normalized to untreated controls and all the data are presented 
as mean ± standard deviation (SD). n=3 *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001 
compared with non- conditioned media. IL-1β, interleukin-1beta. 

 

  

Media with serum Media without serum 

A B

C D

E F

 

TIMES TIMES 

TIMES TIMES 

TIMES TIMES 

TR
A

IL
 e

xp
re

ss
io

n 
A

20
 e

xp
re

ss
io

n 



164 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21. Assessment of IL-1β effect on the viability and relative gene expression at 
different exposure times in βTC1.6 cultured in MSC-CM with and without serum. 
Following exposure to IL-1β (100 ng/ml) at different times, the cellular viability of βTC1.6 
cultured in MSC-CM was assessed by calorimetric MTT assay (A, B)  associated with 
evaluation of changes in TRAIL (C, D) and A20 (E, F) gene expression during this times 
course. Data from MTT are normalized to untreated controls and all the data are presented 
as mean ± standard deviation (SD). n=3 *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001 
compared with non- conditioned media. IL-1β, interleukin-1beta. 
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4.3.4.4 Times-dependent induction of A20 and TRAIL following exposure to LPS in the 

presence of MSC-CM 

Following exposure to 500 µg/ml of LPS, maximal expression of TRAIL was observed after 

24 h, whilst maximal expression of A20 was observed after 4 h in BRIN-BD11 cells cultured 

in the presence of serum, but absence of MSC-CM. Under serum-free conditions, maximal 

expression of TRAIL and A20 was observed after 4 h for both genes (Figure 4.22). However, 

the addition of MSC-CM significantly (P<0.05-P<0.0001) reduced the induction of both 

genes in all instances regardless of whether cells were grown in the presence or absence of 

serum (Figure 4.22). This was accompanied by an IFN-γ-mediated times-dependent 

reduction in cell viability, which was reversed through the addition of MSC-CM.  

 

The exposure of βTC1.6 to 500 µg/ml of LPS resulted in increase in the expression of TRAIL 

and A20, the maximal expression was noted after 24 h of exposure for both genes and in 

both media with and without serum (Figure 4.23). However, the addition of MSC-CM 

significantly (P<0.05-P<0.0001) reduced the induction of both genes in all instances 

regardless of whether cells were grown in the presence or absence of serum (Figure 4.23). 

This is again was associated with LPS-mediated times-dependent reduction in cell viability, 

which was reversed through the addition of MSC-CM.  
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Figure 4.22. Assessment of LPS effect on the viability and relative gene expression at 
different exposure times in BRIN-BD11 cultured in MSC-CM with and without serum. 
Following exposure to LPS (500 µg/ml) at different times, the cellular viability of BRIN-BD11 
cultured in MSC-CM was assessed by calorimetric MTT assay (A, B) associated with 
evaluation of changes in TRAIL (C, D) and A20 (E, F) gene expression during this times 
course. Data from MTT are normalized to untreated controls and all the data are presented 
as mean ± standard deviation (SD). n=3 *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001 
compared with non-MSC-CM. LPS, lipopolysaccharides 
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Figure 4.23. Assessment of LPS effect on the viability and relative gene expression at 
different exposure times in βTC1.6 cultured in MSC-CM with and without serum. 
Following exposure to LPS (500 µg/ml) at different times, the cellular viability of βTC1.6 
cultured in MSC-CM was assessed by calorimetric MTT assay (A, B)  associated with 
evaluation of changes in TRAIL (C, D) and A20 (E, F) gene expression during this times 
course. Data from MTT are normalized to untreated controls and all the data are presented 
as mean ± standard deviation (SD). n=3 *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001 
compared with non-MSC-CM. LPS, lipopolysaccharides. 
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4.3.5 Assessment of pancreatic islets viability over times 
The islets were treated with 100 ng/ml of IFN-γ in the presence of MSC-CM with and without 

serum in a times course manner started from 15 min to 24 h. The normalized data from MTT 

assay showed a significant increase (P<0.05-<0.01) in cellular viability after 4 h of exposure 

in the presence of serum versus 24 h (P<0.05). In the absence of serum as compared to 

non-conditioned media (Figure 4.24A, B). The pancreatic islets were also exposed to 100 

ng/ml of TNF-α a significant increase (P<0.05-<0.01) in viability was noted after 4 h in 

presence of serum versus 24 h (P<0.05) in absence of serum (Figure 4.24C, D). The viability 

of the cells significantly increased (P<0.05) after 2 h of exposure to 100 ng/ml of IL-1β in 

presence of MSC-CM with serum versus 1 h (P<0.05) of exposure in absence of serum 

(Figure 4.24E, F). Exposing the islets to 10 μg/ml of LPS in the presence of MSC-CM with 

serum resulted in the increment of islets viability (P<0.05) after 1 h of exposure while in 

absence of serum the viability increases after 2 h (P<0.05-<0.01) of exposure to 500 μg/ml 

of LPS (Figure 4.24G, H).  
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Figure 4.24. Effect of pro-inflammatory cytokines and endotoxin at different times 
course on the viability of pancreatic islets cultured in MSC-CM in presence and 
absence of serum. Pancreatic islets were exposed to 100 ng/ml of IFN-γ (A, B), 100 ng/ml 
of TNF-α (C, D), 100 ng/ml of IL-1β (E, F) and LPS in dose of 10 μg/ml in the presence of 
serum and 500 μg/ml in absence of serum (G, H). The viability of the islets was assessed by 
calorimetric MTT assay. Data are normalized to untreated controls and presented as mean ± 
standard deviation (SD). n=3 *p<0.05, **p<0.01, ***p<0.001 as compared to non-conditioned 
media. IFN-γ, Interferon gamma; TNFα, Tumour Necrosis Factor alpha; IL-1β, Interleukin-1 
beta; LPS, Lipopolysaccharide. 

  

IF
N

-γ
 

TN
F-

α 
IL

-1
β 

LP
S 

A B

C D

E F

G H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Media with serum Media without serum 

TIMES TIMES 

TIMES TIMES 

TIMES TIMES 

TIMES TIMES 



170 
 

4.3.6 Assessment of insulin secretion 

Examination of insulin secretion in response to 1.1, 5.6 and 16.7 mM D-glucose before and 

after the addition of MCS-CM revealed that in all instances BRIN-BD11 monolayer cells 

treated with cytokines or LPS in the presence of MSC-CM showed a significant (P<0.01-

P<0.001) higher levels of insulin secretion than those treated with non-MSC-CM (Figure 

4.25). Since we have shown above that MSC-CM protects against β-cell apoptosis in the 

BRIN-BD11 cell line, we wished to determine if the observed increase in insulin secretion 

was a direct consequence of enhanced β-cell survival. Therefore, data was standardized 

according to protein concentration, which acted as a surrogate for cell number in this 

instance.  

 

Following standardization of the data, many of the apparent increases in insulin secretion 

were abolished. However, following stimulation of LPS-treated cells with 1.1 mM D-glucose a 

modest, but significant (P<0.001) increase in insulin secretion was achieved through MSC-

CM (with serum) treatment (Figure4.25). Similar trends were observed in cells challenged 

with IFN-γ (P<0.01), TNF-α (P<0.01) and LPS (P<0.05) prior to exposure to 5.6 mM D-

glucose, and for cells challenged with TNF-α (P<0.05) and IL-1β (P<0.01) prior to exposure 

to 16.7 mM D-glucose (Figure 4.25).  MSC-CM treatment (without serum) resulted in similar 

increases in insulin secretion prior to standardization for protein concentration. However, 

after standardization, no significant differences in insulin release were observed (Figure 

4.26). 
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Figure 4.25. Reversal of cytokine-driven reductions in insulin secretion from 
pancreatic β-cells through addition of MSC-CM (with serum). BRIN-BD11 cells were 
exposed to 1 µg/ml IFN-γ, 100 ng/ml TNFα, 100 ng/ml IL-1β and 500 μg/ml LPS for 24h prior 
to exposure to rising concentrations of D-Glucose 1.1 (A, B), 5.6 (C, D), 16.7 (E, F) mM in 
the presence or absence of MSC-CM with serum. Insulin secretion was measured by ELISA 
and data presented according to insulin concentration (A, C, E) or insulin concentration as a 
function of protein concentration (B, D, F). Data are presented as mean ± standard deviation 
(SD). n=4 *p<0.05, **p<0.01, and ***p<0.001 compared with corresponding treatments in the 
absence of MSC-CM. IFN-γ, Interferon gamma; TNFα, Tumour Necrosis Factor alpha; IL-1β, 
Interleukin-1 beta; LPS, Lipopolysaccharide.  
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Figure 4.26. Reversal of cytokine-driven reductions in insulin secretion from 
pancreatic β-cells through addition of MSC-CM (without serum). BRIN-BD11 cells were 
exposed to 1 µg/ml IFN-γ, 100 ng/ml TNFα, 100 ng/ml IL-1β and 500 μg/ml LPS for 24h prior 
to exposure to rising concentrations of D-Glucose 1.1 (A, B), 5.6 (C, D), 16.7 (E, F) mM in 
the presence or absence of MSC-CM without serum. Insulin secretion was measured by 
ELISA and data presented according to insulin concentration (A, C, E) or insulin 
concentration as a function of protein concentration (B, D, F). Data are presented as mean ± 
standard deviation (SD). n=4 **p<0.01, and ***p<0.001 compared with corresponding 
treatments in the absence of MSC-CM. IFN-γ, Interferon gamma; TNFα, Tumour Necrosis 
Factor alpha; IL-1β, Interleukin-1 beta; LPS, Lipopolysaccharide.  
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4.4 Discussion   

Despite major advances in our understanding of diabetes and ways to treat the disease, it 

still represents a significant cause of mortality and morbidity worldwide.(212) Indeed, one of 

the main complications of diabetes is cardiovascular disease, which is also considered as a 

major cause of death worldwide.(212) Even with the best monitoring for diabetes, people with 

diabetes will eventually develop different types of complications. Treatment with insulin 

rarely prevents the development of diabetic complications and in some cases; the injection 

itself may lead to serious complications if not monitored properly. Therefore, looking for 

alternative ways to treat or even cure diabetes has been a challenge to all researchers. 

Transplantation of pancreatic islets has been used to treat diabetes. However, it’s wide 

spread use has been hampered by immune rejection and an insufficient supply of islets.(41) 

 

Mesenchymal stem cells (MSCs) have emerged as a new therapeutic tool in regenerative 

medicine. The ability of MSCs to differentiate into different cell types from all three germ 

layer in addition to their high ex vivo expansion potency made them an attractive therapeutic 

tool.(193) Several studies have showed that MSC transplantation improved the metabolic 

profiles in some diabetic animal models.(210) However, the mechanisms underlying their 

therapeutic effects are still unclear. Several theories arise to explain the therapeutic ability of 

MSCs in diabetes. One of them demonstrates the potential trans-differentiation of MSCs into 

insulin producing cells by using a specific culture medium supported by insulin promoting 

factors like glucose, this was followed by identification of insulin producing cells based on 

their ability to express genes related to pancreatic functions and development like GLUT2 

and insulin I and II.(213),(214) However, other studies estimated that there is no significant in 

vivo differentiation of MSCs into pancreatic β-cells in adult mice, neither under steady-state 

conditions, nor after administration of STZ that results in tissue injury.(215) Many studies 

suggested that MSCs exert paracrine mechanisms in which MSC-secreted soluble factors 

are capable of promoting the survival of surrounding cells.(216) 
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The first observations of MSC-mediated paracrine effects was in murine models of heart 

disease in which the administration of MSC derived from bone marrow prevented cellular 

differentiation into cardiomyocytes. However, the cardiac function was re-established after 

72 h post injection giving rise to the possibility of paracrine effects.(216) Later Gnecchi and 

colleagues showed that MSC-CM alone enhanced the recovery of ischemic cardiomyocyte 

in vitro.(217) 

 

Other studies suggest that the MSC effect is not only due to secretion of regenerative 

factors, but also due to their ability to produce some factors in response to stimuli.  For 

example, MSCs were found to produce immunomodulatory and regenerative factors in 

response to inflammatory stimuli like IFN-γ,(218) a pro-inflammatory cytokine released during 

the innate immune response and associated with autoimmune diseases like T1DM.(219) The 

exposure of MSCs to IFN-γ induced the secretion of anti-inflammatory factors like TGF-β 

and HGF.(148) 

 

Another inflammatory mediator known to induce regenerative activity is TNF-α. Some 

studies suggested that MSC pre-treatment with TNF-α increased proliferation, mobilization 

and osteogenic differentiation of MSCs.(220) Recently some studies showed that activators of 

innate immunity like LPS and toll like receptor agonists also stimulated the production of 

paracrine factors such as VEGF.(221) Also recently it has been established that pre-

conditioning of MSCs with IFN-γ and TNF-α in vitro prior to cell transplantation may provide 

a potential strategy for activating and increasing MSC immunosuppressive 

transplantation.(220) 
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It is well documented that pro-inflammatory cytokines like IFN-γ, TNF-α and IL-1β play a role 

in the development of T1DM.(180) Many studies confirm the capability of pro-inflammatory 

cytokines to induce apoptosis to pancreatic β-cell lines and primary islets in vitro. An 

increase in the expression of pro-apoptotic gene TRAIL was found in MIN6 β-cell line after 

exposure to TNF-α and IFN-γ in vitro.(181),(180) In addition to that a study on mice models 

showed an over expression of anti-apoptotic gene A20 in β-cell of pancreatic islets that 

exhibited resistant to IFN-γ, TNF-α, and IL-1β which was associated with decreased NF-kB 

induced nitric oxide (NO) production.(189) 

 

Given this evidence, we hypothesized that MSC-CM have the ability to protect pancreatic β-

cell lines from apoptosis and restore their normal function. To prove our hypothesis we 

prepared MSC-CM and applied it to BRIN-BD11, βTC1.6 pancreatic β-cell lines and isolated 

primary islets treated with IFN-γ, TNF-α, IL-1β and LPS in vitro. Our findings confirm the 

following: MSC-CM had protective effects on pancreatic β-cell challenged with cytokines or 

LPS. This increase in cellular viability was associated with an inhibition of cytokine/LPS-

driven apoptosis in all instances and a reduction in the expression of early response genes 

important in β-cell apoptosis. Furthermore, the inhibition of cellular apoptosis also appeared 

to result in enhancements in insulin secretion in BRIN-BD11 cells.  

 

Research into the potential effect of MSC-CM has focused on understanding the mechanism 

behind the paracrine actions of the MSC-CM. Recent reports on methods to isolate and 

concentrate MSC-CM demonstrate experimental protocols for using the trophic factors 

produced by these cells.(222) However, there are still limitations to the therapeutic use of the 

MSC-CM that include possible contamination from animal products, the half-lives of 

molecules secreted by MSCs and the effective dosage needed to produce functional 

response in vivo.(222) 
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Many studies reported the use of MSC-CM in the treatment of different types of diseases 

however, the culture and collection methods used to prepare the MSC-CM varies,(223),(224) for 

example some MSC-CM was prepared using fetal bovine serum or adding other supplement 

containing complete media.(225) others were prepared as serum free media.(226) The basal 

media and types of cells used also vary.(226) Preparation of MSC-CM also varies in culture 

duration from several hours up to five days under different culture condition some used 

normoxia O2 level 20- 21% or under hypoxia condition ranging from 0.5-2%.(227) Nearly all of 

these studies showed successful and promising results however, standardized methods for 

various MSC-CM formation are still undefined.  

 

In our study we used two types of basal media RPMI1640 and DMEM media applied it on 

the bone marrow mesenchymal stem cells monolayer for 24 h in the presence and absence 

of serum. The use of MSC-CM has several advantage over the use of MSC infusion, as 

MSC-CM can be formed, packaged, stored and transported more easily than cells. 

Moreover, there is no need to match the donor and the recipient to avoid rejection problems.  

 

 

4.5 Conclusion 

Based on clinical trials, MSC-CM are relatively safer than intravenous administration of cells 

that could cause complication like vascular occlusion or long term maldifferentiation of 

injected MSCs. The understanding of the paracrine action of stem cell and learning to 

modulate and use them properly provide researchers with a wide range of treatment options 

for different types of disease and the forthcoming advance in defining and applying paracrine 

actions will significantly benefit the regenerative medicine applications in the coming years. 

All the techniques used to culture MSCs and prepare the conditioned media to date are far 

from being standardized. We aim to be consistent in culturing the MSC, preparing and 
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collecting the conditioned media. However, testing different culture methods and various 

protocols for conditioned media preparation will be our aim in our future works.    
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Conditioned media from mesenchymal 
stem cells protect β-cells from TRAIL-

induced apoptosis 
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5.1 Introduction 

It is believed that β-cell mass has been reduced by 70-80% at the time of diagnosis of 

T1DM. It has also been suggested that β-cell loss occurs slowly over many years due to the 

absence of detectable β-cell necrosis and variable degrees of insulitis.(228) This is supported 

by the detection of insulin antibodies years before the appearance of clinical symptoms in 

susceptible individuals.(229)  

 

β-cell apoptosis was found to be the primary reason behind β-cell loss in rodent models of 

T1DM.(230)Apoptosis is a highly complex sophisticated process that is activated by a various 

types of signals, which include extracellular signals, phosphorylation cascades, intracellular 

ATP levels, and expression of pro and anti-apoptotic genes.(231) Although the mechanism is 

still not completely clarified, there are several proposed mechanisms that include: 

expression of Apo-1 and Apo-2L receptors, release of perforin and granzyme by activated 

CD8+T-lymphocytes, secretion of cytokines including IL-1β, IFN-γ, TNF-α by the immune 

cells that attack the islets, and production of nitric oxide by dendritic cells, macrophages, and 

the β-cell themselves, which secrete chemokine following viral infection or exposure to 

cytokines.(24) 

 

Several studies have revealed the ability of cytokines to induce stress response genes that 

are either protective or deleterious for β-cell survival like a nitric oxide-dependent gene that 

induces nitric oxide synthesis, which interferes with electron transfer and inhibits ATP 

synthesis in mitochondria affecting insulin secretion and resulting in β-cell dysfunction.(232),(84) 

It is thought that after receptor binding by IL-1β, TNF-α, and IFN-γ, signalling cascades are 

activated leading to the activation of different transcription factors including NF-κB. In 

addition, IFN-γ signalling involves the activation of Janus kinases (JAKs) leading to the 

activation of signal transducer and activator of transcription (STAT-1). These transcription 
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factors will alter gene expression resulting in deleterious effects on β-cells, culminating in 

apoptosis and death.(233) Another pathway of apoptosis involves the TNF-related apoptosis-

inducing ligand (TRAIL), which is a pro-apoptotic ligand of the TNF family that has the ability 

to initiate apoptosis through the trimerization of its transmembrane receptor and the 

formation of the death-inducing signalling complex (DISC). DISC activates the Fas-

associated death domain (FADD) that results in subsequent activation of several caspases 

specially caspases 3 and 8 resulting in apoptosis and cell death.(234)  

 

Reports describing a balance between pro- and anti-inflammatory cytokines are becoming 

more commonplace.(180) It is agreed that this relation is a very complicated where most anti-

inflammatory cytokines have at least some pro-inflammatory properties.(180), (235) Therefore, 

physiological functions could be determined by several factors including the timing of 

cytokine release and the presence of competing or synergistic factors.(235)  

 

One of the most important anti-inflammatory cytokines is IL-10, which is also known as 

human cytokines synthesis inhibitory factor (CSIF). It is a homodimer protein found within 

the human immune response. CD4+Th2, monocytes, and B-cells are described as the 

primary source of IL-10, which acts as a potent deactivator of macrophage and monocyte 

pro-inflammatory cytokine synthesis.(236) IL-10 downregulates the expression of major 

histocompatibility complex class II, Th1 cytokines, and co-stimulatory molecules on 

macrophages.(236) IL-10 also enhances B-cell survival, proliferation and antibody formation. 

In addition, it blocks the NF-κB pathway and regulates the JAK and STAT signalling 

pathways.(237) Furthermore, it is believed that IL-10 modulates surface expression of the TNF 

receptor family, which could interfere with the biological activity of TNF-α and result in a 

reduction of the pro-inflammatory potential of TNF-α.(238) 
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IL-10 has two receptors; IL-10R1 (also known as IL-10RA) and IL-10R2 (IL-10RB), both of 

which consist of two subunits that are members of interferon receptor family (IFNR).(239) The 

mRNA for IL-10R1 is found in all IL-10 responsive cells, and the neutralization of this 

receptor by anti-IL-10R1 antibody inhibits all IL-10 known activities indicating an important 

role for this receptor in mediating the action of IL-10.(240) IL-10R2 is also found in most 

tissues and cells tested, but its role in IL-10 signalling is not known, some researchers have 

suggested that the principle function of IL-10R2 is to recruit the JAK kinase (TYK2) into the 

signalling complex.(241) The binding of IL-10 to its receptor forms a functional tetramer 

complex consisting of two IL-10R1 subunits and two IL-10R2 subunits (Figure 5.1). This will 

in turn activate phosphorylation of JAK1 and TYK2, which are associated with IL-10R1 and 

IL-10R2, respectively. This, in turn, will stimulate the latent transcription factors STAT3, 

STAT1, and STAT5.(242) Several studies demonstrate a role for STAT3 in mediating IL-10 

expression.(243), (244) The activation and translocation of STAT3 into the nucleus leads to the 

binding of STAT3 to STAT binding elements (SBE), which induce responses including 

induction of suppressor of cytokines signals gene-3(SOCS-3), which will inhibit JAK/STAT-

dependent signal.(243) The role of STAT1 and STAT5 are not completely understood.(244)  

 

Previous work performed within our group characterized the secretome of MSCs (see 

appendix 1). In this Chapter we sought to determine the pathway by which cytokines induce 

apoptosis in β-cells and to identify individual candidate molecules from the MSC secretome 

with a role in overcoming the effects of pro-inflammatory cytokines. 
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Figure 5.1 IL-10 binding to it is ligand initiating a signal transduction resulted in 
activation and translocation of STAT 3. This figure demonstrates the signal transduction 
pathway activated by IL-10 after receptor binding when it will form a homodimeric complex 
that activates TYK2 and JAK1, which in turn stimulates the translocation of STAT3, which 
promotes transcription of a wide range of IL-10 responsive genes like SOCS-3  
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5.2 Methods 

 

5.2.1 Materials 

All chemicals and reagent employed are listed in Chapter 2, Section 2.1. 

 

5.2.2 Cell models 

Pancreatic β-cell lines and Human Bone Marrow Mononuclear cells were cultured, 

maintained and passaged as outlined in Chapter 2, Section 2.2.1.1 and 2.2.1.3 respectively. 

All cell models were maintained in an incubator at an atmosphere of 37 °C and 5% CO2 

under normoxia (21% O2). 

 

5.2.3 Preparation of MSC-CM 

MSC-CM was prepared as outlined in Chapter 2, Section 2.2.1.3.  

 

5.2.4 Measurement of cellular viability and apoptosis 

Changes in cellular metabolic activity were assessed by colorimetric MTT assay as a 

surrogate of viability as outlined in Chapter 2, Section 2.2.4, whilst induction of apoptosis 

was measured by TUNEL assay as described in Section 2.2.5. 

 

5.2.5 Enzyme-linked immunosorbent assay (ELISA)  

ELISA was used to quantify specific candidates from a secretome screen of MSC-CM as 

described in Chapter 2 Section 2.2.8. 

 

5.2.6 Assessment of TRAIL and Anti-TRAIL effect on pancreatic β-cell lines  

To determine the role of TRAIL in cytokine-induced apoptosis, the pancreatic β-cell lines 

BRIN-BD11 and βTC1.6 were seeded as described in Chapter 2 Section 2.2.3. Following 
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that, cell lines were treated with recombinant murine TRAIL for 24 h after which, cellular 

viability was determined using colorimetric MTT assay and in order to ensure that any 

reduction in viability is due to apoptosis TUNEL assay was performed as outlined in Chapter 

2, Section 2.2.5. The specificity of TRAIL-induced apoptosis was established by inhibition of 

apoptotic response using anti-TRAIL antibody. 
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Media with serum Media without serum 

 

5.3 Results 

 

5.3.1 Recombinant TRAIL reduces the viability of pancreatic β-cell lines. 

After treating BRIN-BD11 and βTC1.6 cells with rising concentrations of recombinant murine 

TRAIL (200, 400, and 800 ng/ml) for 24 h, the cellular viability was assessed using a 

colorimetric MTT assay. The viability of BRIN-BD11 and βTC1.6 cells was significantly 

reduced (P<0.001) in all instances (53%-69% reduction in BRIN-BD11) and (54%-70% 

reduction in βTC1.6) in the presence of serum. The absence of serum did not significantly 

alter the pattern of the results (Figure 5.2). As such, 200 ng/ml of recombinant murine TRAIL 

was chosen for subsequent experiments. 

 

 

 

 

 

Figure 5.2. Effect of TRAIL on β-cells viability. Normalized data from MTT assay showing 
the effect of 200, 400, and 800 ng/ml of recombinant murine TRAIL on the viability of BRIN-
BD11 and βTC1.6 cells. Data are normalized to untreated controls and presented as mean ± 
standard deviation (SD). n=3 ***p<0.001 compared with untreated controls. 

 

We next aimed to neutralize TRAIL activity via an anti-TRAIL antibody at different 

concentrations (1, 5, and 10.µg/ml). The results showed that 5 and 10 μg/ml of murine anti-

TRAIL antibody was able to reverse the reduction in the viability of the cells after treating 

them with 200 ng/ml of recombinant murine TRAIL (Figure 5.3), 5 μg/ml was chosen for 

subsequent experiments. 
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Media with serum Media without serum 
 

 

 

 

 

 

 

Figure 5.3 Evaluation of anti-TRAIL antibody effect on viability of cells. Following the 
addition of rising concentrations of murine anti-TRAIL antibody (1, 5, 10 μg/ml) along with 
200 ng/ml of recombinant murine TRAIL, the viability of BRIN-BD11 and βTC1.6 cells was 
assessed by colorimetric MTT assay. Data are normalized to untreated controls and 
presented as mean ± standard deviation (SD). n=3 ***p<0.001 compared with untreated 
controls. 

 

5.3.2 Anti-TRAIL antibody increases the viability of β-cell lines treated with cytokines 

To evaluate the effect of anti-TRAIL antibody on viability of BRIN-BD11 and βTC1.6 cell 

lines treated with cytokines, 5 μg/ml of murine anti-TRAIL antibody was added along with 1 

µg/ml of IFN-γ, 100 ng/ml of IL-1β, 500 μg/ml of LPS for both cell lines in media with and 

without serum. TNF-α was added to BRIN-BD11 cells at concentrations of 100 ng/ml in the 

presence of serum and 1 μg/ml in media without serum. TNF-α addition to βTC1.6 cells was 

at concentrations of 1 μg/ml in media with and without serum. Following this, cellular viability 

was assessed by colorimetric MTT assay. The results showed that in all instances, blocking 

TRAIL resulted in a significant reversal of cytokine-driven reductions in cell viability, for BRIN 

BD11(IFN-γ +61%, P<0.001), (TNF-α +50%, P<0.001), (IL-1β +50%, P<0.001), and (LPS 

+59, P<0.0001) (Figure 5.4A) and βTC1.6 (IFN-γ +64%, P<0.0001), (TNF-α +53%, 

P<0.001), (IL-1β +57%, P<0.0001), and (LPS +60%, P<0.01) (Figure 5.4C) in the presence 

of serum. A similar trend was found in the absence of serum (Figure 5.4B, D). 
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Figure 5.4. Effect of anti-TRAIL on cytokine-driven reductions in β-cell viability. 
Normalized data from MTT assay showing the effect of 200 ng/ml of recombinant murine 
TRAIL, 1 µg/ml of IFN-γ, 100 ng/ml of IL-1β, 500 μg/ml of LPS and TNF-α (100 ng/ml in 
media with serum vs 1 μg/ml in media without serum for BRIN-BD11 and 1 μg/ml for βTC1.6 
in media with and without serum) on the viability of BRIN-BD11 cells (A, B) and βTC1.6 cells 
(C, D) before and after the addition of 5 µg/ml of murine anti-TRAIL antibody. Data are 
normalized to untreated controls and presented as mean ± standard deviation (SD). n=3 
*p<0.05, **p<0.01 ***p<0.001and ****p<0.0001 comparison between before and after anti-
TRAIL antibody addition. IFN-γ interferon gamma, TNF-α tumour necrosis factor alpha, IL-1β 
interleukin-1beta, and LPS lipopolysaccharide. 

  



184 
 

5.3.3 TRAIL-induced apoptosis in pancreatic β-cell lines 

In order to determine if the reduction in cellular viability was due to programmed cell death 

(apoptosis), the TUNEL assay was performed. Significant apoptosis was noted in BRIN-

BD11 and βTC1.6 cells after treatment with 200 ng/ml of recombinant murine TRAIL. 

However, the addition of 5 µg/ml of murine anti-TRAIL antibody significantly reduced 

(P<0.001-P<0.0001) the % positive TUNEL cells (Figure 5.5). 

 

The addition of 5 μg/ml of anti-TRAIL antibody along with 1 µg/ml of IFN-γ (Figure 5.6), 100 

ng/ml of IL-1β (Figure 5.8), 500 μg/ml of LPS (Figure 5.9) and for TNF-α the BRIN BD11 was 

treated with 100 ng/ml in media with serum vs 1 μg/ml in media without serum, while 1 μg/ml 

was used for βTC1.6 in media with and without serum (Figure 5.7), resulted in significant 

reduction (P<0.001-P<0.0001) of % positive TUNEL cells. There was some variation in the 

%positive TUNEL cells among cytokines and endotoxin for both BRIN BD11 (IFN-γ 66%, 

TNF-α 65%, IL-1β 48%, and LPS 52%) and βTC1.6 (IFN-γ 58%, TNF-α 61%, IL-1β 50%, 

and LPS 52%). However, the addition of anti-TRAIL antibody blocked all cytokine and 

endotoxin-induced apoptosis in serum free media suggesting that cytokines may utilize the 

TRAIL ligand in induction of apoptosis. Similar trends were noted in the absence of serum 

indicating that the presence of serum did not sensitized cells to the effects of cytokines 

(Figures 5.6-5.9).  

 

  



185 
 

 

 

                                                                                                     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Media with serum Media without serum 

(A) 

(B) 

B
R

IN
 B

D
11

 
βT

C
1.

6 

DAPI

TUNEL

DAPI

TUNEL

Control 1%H2O
2 

TRAIL TRAIL+Anti- 
TRAIL 

 

Control 1%H2O
2 

TRAIL TRAIL+Anti- 
TRAIL 

 

**** **** *** *** 

c
o

n
tr

o
l(

B
R

IN
)

c
o

n
tr

o
l(

ß
T

C
1

.6
)

1
%

H
2

O
2

(B
R

IN
)

1
%

H
2

O
2

(ß
T

C
1

.6
)

T
R

A
IL

 (
B

R
IN

)

T
R

A
IL

 (
ß

T
C

1
.6

)

T
R

A
IL

+
A

n
ti-

T
R

A
IL

 (
B

R
IN

)

T
R

A
IL

+
A

n
ti-

T
R

A
IL

 (
ß

T
C

1
.6

)0

5 0

1 0 0

1 5 0

%
P

O
S

IT
IV

E
 T

U
N

E
L

 C
E

L
L

S

c
o

n
tr

o
l(

B
R

IN
)

c
o

n
tr

o
l(

ß
T

C
1

.6
)

1
%

H
2

O
2

(B
R

IN
)

1
%

H
2

O
2

(ß
T

C
1

.6
)

T
R

A
IL

 (
B

R
IN

)

T
R

A
IL

 (
ß

T
C

1
.6

)

T
R

A
IL

+
A

n
ti-

T
R

A
IL

 (
B

R
IN

)

T
R

A
IL

+
A

n
ti-

T
R

A
IL

 (
ß

T
C

1
.6

)0

5 0

1 0 0

1 5 0

%
P

O
S

IT
IV

E
 T

U
N

E
L

 C
E

L
L

S

**** ****

*** ***

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Assessment of TRAIL-induced apoptosis in pancreatic cell lines. (A) 
Fluorescent images showing TRAIL-induced apoptosis in BRIN-BD11 and βTC1.6 cells after 
24 h of exposure to 200 ng/ml of recombinant murine TRAIL. Blue staining represents DAPI 
staining of the nuclei while green staining indicates TUNEL positive cells. (B) The % positive 
TUNEL cells were measured by calculating the number of positive TUNEL cells divided by 
the total number of cells n=3 and presented as mean ± standard deviation (SD). ***p<0.001 
and ****p<0.0001 compared with untreated controls. The scale bar in all images equals 
100μm 
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Figure 5.6. Assessment of IFN-γ-induced apoptosis in pancreatic cell lines. (A) 
Fluorescent images showing IFN-γ-induced apoptosis in BRIN-BD11 and βTC1.6 cells after 
24 h of exposure to 1 μg/ml of IFN-γ. Blue staining represents DAPI staining of the nuclei, 
while green indicates TUNEL positive cells. (B) The % positive TUNEL cells were measured 
by calculating the number of positive TUNEL cells divided by the total number of cells n=3 
and presented as mean ± standard deviation (SD).  ***p<0.001 and ****p<0.0001 compared 
with untreated controls.  The scale bar in all images equals 100 µm.  
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Figure 5.7.Assessment of TNF-α-induced apoptosis in pancreatic cell lines. (A) 
Fluorescent images showing the TNF-α-induced apoptosis in BRIN-BD11 and βTC1.6 cells 
after 24 h of exposure to 100 ng/ml in media with serum vs 1 μg/ml in media without serum 
for BRIN-BD11 and 1 μg/ml for βTC1.6 in media with and without serum. Blue staining 
represents DAPI staining of the nuclei while green staining indicates TUNEL positive cells. 
(B) The % positive TUNEL cells were measured by calculating the number of positive 
TUNEL cells divided by the total number of cells n=3 and presented as mean ± standard 
deviation (SD). ***p<0.001 and ****p<0.0001 compared with untreated controls. The scale 
bar in all images equals 100 µm 
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Figure 5.8.Assessment of IL-1β-induced apoptosis in pancreatic cell lines cultured in 
media with and without serum. (A) Fluorescent images showing IL-1β-induced apoptosis 
in BRIN-BD11 and βTC1.6 cells after 24 h of exposure to100 ng/ml of IL-1β. Blue staining 
represents DAPI staining of the nuclei while green staining indicates TUNEL positive cells. 
(B) The % positive TUNEL cells were measured by calculating the number of positive 
TUNEL cells divided by the total number of cells n=3 and presented as mean ± standard 
deviation (SD). ***p<0.001 and ****p<0.0001 compared with untreated controls. The scale 
bar in all images equals 100 µm.  
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Figure 5.9.Assessment of LPS-induced apoptosis in pancreatic cell lines. (A) 
Fluorescent images showing LPS-induced apoptosis in BRIN-BD11 and βTC1.6 cells after 
24 h of exposure to 500 μg/ml of LPS. Blue staining represents DAPI staining of the nuclei 
while green staining indicates TUNEL positive cells. (B) The % positive TUNEL cells were 
measured by calculating the number of positive TUNEL cells divided by the total number of 
cells n=3 and presented as mean ± standard deviation (SD). ***p<0.001 and ****p<0.0001 
compared with untreated controls. The scale bar in all images equals 100 µm.  
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* * * * * * *

* *
* * * *

 BRIN BD11 

βTC1.6 

5.3.4 MSC-CM increases the viability of β-cell lines treated with TRAIL  

In order to assess the ability of MSC-CM to protect pancreatic β-cell lines from TRAIL they 

were treated with 200 ng/ml of recombinant murine TRAIL, in the absence and presence of 

MSC-CM, with and without serum. Thereafter, a colorimetric MTT assay was performed. The 

results showed a significant increase (P<0.01-P<0.0001) in the viability of BRIN-BD11 

cultured in MSC-CM with (+80%) and without (+82%) serum when compared with cells 

cultured without MSC-CM (Figure 5.10). Consistent data was observed in the βTC1.6 cell 

line (Figure 5.10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10.Evaluation of TRAIL effects on viability of cells in the presence of MSC-CM 
Normalized data from MTT assays showing the effect of 200 ng/ml of recombinant murine 
TRAIL on the viability of BRIN-BD11 cells and βTC1.6 cells in the absence and presence of 
MSC-CM with and without serum. Data are normalized to untreated controls and presented 
as mean ± standard deviation (SD). n=3 **p<0.01 ***p<0.001and ****p<0.0001 compared to 
non-MSC-CM treated. 
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5.3.5 MSC-CM blocks TRAIL-induced apoptosis 

To determine the potential role of MSC-CM in the amelioration of TRAIL-induced apoptosis 

cells were exposed to 200 ng/ml of recombinant murine TRAIL in the presence of MSC-CM, 

and compared with those treated in non-MSC-CM. TUNEL results showed a significant 

reduction (P<0.001-P<0.0001) in % positive TUNEL cells in the presence of MSC-CM. 

Treating the BRIN BD11 with 200 ng/ml of TRAIL in the absence of MSC-CM resulted in 

68%positive TUNEL cells and for βTC1.6 75% which was reduced to 4% and 9% 

respectively after MSC-CM addition in media with serum. A similar trend was found in the 

absence of serum (Figure 5.11, 5.12).  
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Figure 5.11.Assessment of TRAIL-induced apoptosis in pancreatic cell lines with and 
without MSC-CM in the presence of serum. (A) Fluorescent images showing TRAIL-
induced apoptosis in BRIN-BD11 and βTC1.6 cells after 24 h of exposure to 200 ng/ml of 
recombinant murine TRAIL. (B) Fluorescent images showing the MSC-CM block TRAIL-
induced apoptosis in BRIN-BD11 and βTC1.6 cell lines. Blue staining represents DAPI 
staining of the nuclei while green staining indicates TUNEL positive cells. (C) The % positive 
TUNEL cells were measured by calculating the number of positive TUNEL cells divided by 
the total number of cells n=3 and presented as mean ± standard deviation (SD). ***p<0.001 
and ****p<0.0001 compared with untreated controls. The scale bar in all images equals 100 
µm. CMS stand for MSC-CM with serum.  
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Figure 5.12.Assessment of TRAIL-induced apoptosis in pancreatic cell lines with and 
without MSC-CM in the absence of serum. (A) Fluorescent images showing TRAIL–
induced apoptosis in BRIN-BD11 and βTC1.6 cells after 24 h of exposure to 200 ng/ml of 
recombinant murine TRAIL. (B) Fluorescent images showing the MSC-CM blocked TRAIL-
induced apoptosis in BRIN-BD11 and βTC1.6 cell lines. Blue staining represents DAPI 
staining of the nuclei while green staining indicates TUNEL positive cells. (C) The % positive 
TUNEL cells were measured by calculating the number of positive TUNEL cells divided by 
the total number of cells n=3 and presented as mean ± standard deviation (SD). ***p<0.001 
and ****p<0.0001 compared with untreated controls. The scale bar in all images equals 100 
µm. CMNS stands for MSC-CM without serum. 
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5.3.6 MSC-CM contains high concentrations of anti-inflammatory IL-10 

Following on from the preceding results with MSC-CM in abrogation of apoptosis we next 

asked what are the responsible component(s) of the MSC-CM? To explore the content of our 

MSC-CM, possible candidates were chosen based on data obtained from a cytokine array 

conducted by one of our colleagues (Appendix 1). 

 

MSC-CM obtained from three independent donors was analyzed for interleukin-4 (IL-4), 

interleukin-10 (IL-10), vascular endothelial growth factor (VEGF) and placental growth factor 

(PIGF) content via quantification utilising commercially available ELISA assays. The results 

showed high concentrations of IL-10 in RPMI1640 (3269 pg/ml) and DMEM media (3038 

pg/ml) in media with serum (Figure 5.13 A, B), and RPMI1640 (2847 pg/ml) DMEM (1912 

pg/ml) in serum free media (Figure 5.13 C, D). VEGF concentrations in conditioned media 

were noted as RPMI1640 with serum (2314 pg/ml) (Figure 5.13 A), and in serum free media 

(1617 pg/ml) (Figure 5.13 C) while, DMEM with serum was 1422 pg/ml (Figure 5.13 B) and, 

and 106 pg/ml without serum (Figure 5.13 D). We also tested the presence of IL-4 in 

RPMI1640 and DMEM conditioned media and the results indicated the presence of 93 pg/ml 

and 106 pg/ml in media with serum, respectively, (Figure 5.13 A, B), and 70 pg/ml and 69 

pg/ml in media without serum, respectively (Figure 5.13 C, D). Finally we explored PIGF 

levels in conditioned RPMI1640 (153 pg/ml) and DMEM (108 pg/ml) in media with serum 

(Figure 5.13 A, B) and without, RPMI1640 (112 pg/ml) and DMEM (79 pg/ml) (Figure 5.13 C, 

D). 

  



195 
 

1

3 2

1 0 2 4

C
o

n
c

e
n

tr
a

tio
n

 (
p

g
/m

l)
N o n -c o n d it io n e d  m e d ia

C o n d it io n e d  m e d ia

IL -1 0 V E G F P IG F IL -  4
1

3 2

1 0 2 4

C
o

n
c

e
n

tr
a

tio
n

 (
p

g
/m

l)

IL -1 0 V E G F P IG F IL -  4

N o n -c o n d it io n e d  m e d ia
C o n d it io n e d  m e d ia

1

3 2

1 0 2 4

C
o

n
c

e
n

tr
a

tio
n

 (
p

g
/m

l)

IL -1 0 V E G F P IG F IL -  4

N o n -c o n d it io n e d  m e d ia
C o n d it io n e d  m e d ia

1

3 2

1 0 2 4

C
o

n
c

e
n

tr
a

tio
n

 (
p

g
/m

l)

IL -1 0 V E G F P IG F IL -  4

N o n -c o n d it io n e d  m e d ia
C o n d it io n e d  m e d ia

A B

C D

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13.Quantifying the content of MSC-CM. The concentration of candidate anti-
inflammatory/anti-apoptotic proteins in MSC-CM was quantified by ELISA assays. The 
results showed a high concentration of IL-10 in MSC-CM while it completely absence from 
non-conditioned media in the presence of serum (A, B) and absence of serum (C, D). n=3 
and presented as mean ± standard deviation (SD). 
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5.3.7 Testing the effect of candidate anti-inflammatory and anti-apoptotic proteins on 

β-cell viability 

The next step was to evaluate the role of IL-4, PIGF, VIGF, and IL-10 addition along with 

cytokines and endotoxin on the viability of BRIN-BD11 and βTC1.6 cells by colorimetric MTT 

assay. These cytokines were randomly chosen from cytokines array done by one of our 

colleagues to examine the MSC-CM content (Appendix 1).  

 

5.3.7.1 IL-4 

The ELISA test confirmed the presence of IL-4 in MSC-CM (0.07-0.1 ng/ml). To test whether 

IL-4 is behind the protective effect of our MSC-CM, we treated the cells with rising 

concentrations of IL-4 (0.01-100 ng/ml) mixed with either 1 µg/ml of IFN-γ, 100 ng/ml of IL-

1β, 500 μg/ml of LPS and for TNF-α (100 ng/ml in media with serum vs 1 μg/ml in media 

without serum for BRIN-BD11 cells and 1 μg/ml for βTC1.6 cells in media with and without 

serum) and measured the viability of the cells by the colorimetric MTT assay. The results 

showed no significant difference in cell viability between cells treated with cytokines alone 

and those treated with a mixture of IL-4 and cytokines (Figures 5.14-5.15).  

  



197 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14.Effect of IL-4 on the cellular viability of BRIN-BD11 cells exposed to 
cytokines and LPS. Evaluation of BRIN-BD11 cell viability after 24 h of exposure to a 
mixture of IL-4 at different doses in ng/ml with 1 μg/ml of IFN-γ with and without serum (A, 
B), 100 ng/ml of TNF-α with serum and 1 μg/ml without serum (C, D), 100 ng/ml of IL-1β with 
and without serum (E, F) and 500 μg/ml of LPS with and without serum (G, H). Data are 
normalized to untreated controls and presented as mean ± standard deviation (SD). 
n=3 ****p<0.0001 as compared to control. IFN-γ (Interferon-gamma), TNF-α (Tumour necrosis 
factor-alpha), IL-1β (Interleukin-1beta), and LPS (Lipopolysaccharide).  
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Figure 5.15.Effect of IL-4 on the cellular viability of βTC1.6 cells exposed to cytokines 
and LPS. Evaluation of βTC1.6 cell viability after 24 h of exposure to a mixture of IL-4 at 
different doses in ng/ml with 1 μg/ml of IFN-γ with and without serum (A, B), 1 μg/ml of TNF-
α with and without serum (C, D), 100 ng/ml of IL-1β with and without serum (E, F) and 500 
μg/ml of LPS with and without serum (G, H). Data are normalized to untreated controls and 
presented as mean ± standard deviation (SD). n=3 ***p<0.001 as compared to control. IFN-γ 
(Interferon-gamma), TNF-α (Tumour necrosis factor alpha), IL-1β (Interleukin-1beta), and 
LPS (Lipopolysaccharide).  
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5.3.7.2 PIGF 

The second candidate tested was placental growth factor (PIGF) the concentration found in 

the MSC-CM equals (0.07-0.1 ng/ml). The pancreatic β-cell lines were treated with rising 

concentrations of PIGF (0.01-100 ng/ml) mixed with either 1 µg/ml of IFN-γ, 100 ng/ml of IL-

1β, 500 μg/ml of LPS and TNF-α (100 ng/ml in media with serum vs 1 μg/ml in media without 

serum for BRIN-BD11 cells and 1 μg/ml for βTC1.6 cells in media with and without serum) 

and then the viability of the cells were measured by the colorimetric MTT assay. The results 

showed no significant difference in cells viability between cells treated with cytokines alone 

and those treated with a mixture of PIGF and cytokines (Figures 5.16-5.17). 
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Figure 5.16.Effect of PIGF on the cellular viability of BRIN-BD11 cells exposed to 
cytokines and LPS. Evaluation of BRIN-BD11 cell viability after 24 h of exposure to a 
mixture of PIGF at different doses in ng/ml with 1 μg/ml of IFN-γ with and without serum (A, 
B), 100 ng/ml of TNF-α with serum and 1 μg/ml without serum (C, D), 100 ng/ml of IL-1β with 
and without serum (E, F) and 500 μg/ml of LPS with and without serum (G, H). Data are 
normalized to untreated controls and presented as mean ± standard deviation (SD). n=3 *** 
p<0.001 as compared to control. IFN-γ (Interferon-gamma), TNF-α (Tumour necrosis factor 
alpha), IL-1β (Interleukin-1beta), and LPS (Lipopolysaccharide).  
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Figure 5.17.Effect of PIGF on the cellular viability of βTC1.6 cells exposed to cytokines 
and LPS. Evaluation of βTC1.6 cell viability after 24 h of exposure to a mixture of PIGF at 
different doses in ng/ml with 1 μg/ml of IFN-γ with and without serum (A, B), 1 μg/ml of TNF-
α with and without serum (C, D), 100 ng/ml of IL-1β with and without serum (E, F) and 500 
μg/ml of LPS with and without serum (G, H). Data are normalized to untreated controls and 
presented as mean ± standard deviation (SD). n=3 *** p<0.001 as compared to control. IFN-γ 
(Interferon-gamma), TNF-α (Tumour necrosis factor alpha), IL-1β (Interleukin-1beta), and 
LPS (Lipopolysaccharide). 
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5.3.7.1 VEGF 

The third candidate tested was vascular endothelial growth factor (VEGF) the concentration 

found was (0.1-2 ng/ml). The pancreatic β-cell lines were treated with rising concentrations 

of VEGF (0.01-100 ng/ml) mixed with either 1 µg/ml of IFN-γ, 100 ng/ml of IL-1β, 500 μg/ml 

of LPS and TNF-α (100 ng/ml in media with serum vs 1 μg/ml in media without serum for 

BRIN-BD11 cells and 1 μg/ml for βTC1.6 cells in media with and without serum) and then 

the viability of the cells was measured by the colorimetric MTT assay. The results showed no 

significant difference in cells viability between cells treated with cytokines alone and those 

treated with a mixture of PIGF and cytokines (Figures 5.18-5.19). 
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Figure 5.18. Effect of VEGF on the cellular viability of BRIN-BD11 cells exposed to 
cytokines and LPS. Evaluation of BRIN-BD11 cell viability after 24 h of exposure to a 
mixture of VEGF at different doses in ng/ml with 1 μg/ml of IFN-γ with and without serum (A, 
B), 100 ng/ml of TNF-α with serum and 1 μg/ml without serum (C, D), 100 ng/ml of IL-1β with 
and without serum (E, F) and 500 μg/ml of LPS with and without serum (G, H). Data are 
normalized to untreated controls and presented as mean ± standard deviation (SD). 
n=3 ***p<0.001as compared to control. IFN-γ (Interferon-gamma), TNF-α (Tumour necrosis 
factor alpha), IL-1β (Interleukin-1 beta), and LPS (Lipopolysaccharide).  
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Figure 5.19. Effect of VEGF on the cellular viability of βTC1.6 cells exposed to 
cytokines and LPS. Evaluation of βTC1.6 cell viability after 24 h of exposure to a mixture of 
VEGF at different doses in ng/ml with 1 μg/ml of IFN-γ with and without serum (A, B), 1 
μg/ml of TNF-α with and without serum (C, D), 100 ng/ml of IL-1β with and without serum (E, 
F) and 500 μg/ml of LPS with and without serum (G, H). Data are normalized to untreated 
controls and presented as mean ± standard deviation (SD). n=3 *** p<0.001as compared to 
control. IFN-γ (Interferon-gamma), TNF-α (Tumour necrosis factor alpha), IL-1β (Interleukin-
1 beta),and LPS (Lipopolysaccharide). 
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5.3.7.4 IL-10 

The ELISA test confirmed the presence of IL-10 in MSC-CM (1.9-3 ng/ml). The pancreatic β-

cell lines were treated with rising concentrations of IL-10 (0.01-100 ng/ml) mixed with either 

1 µg/ml of IFN-γ, 100 ng/ml of IL-1β, 500 μg/ml of LPS and TNF-α (100 ng/ml in media with 

serum vs 1 μg/ml in media without serum for BRIN-BD11 cells and 1 μg/ml for βTC1.6 cells 

in media with and without serum). This was followed by measuring the viability of the cells 

using colorimetric MTT assays. The results showed a significant increase in cell viability in 

cells treated with IFN-γ or TNF-α mixed with IL-10 than those treated with IFN-γ/TNF-α 

alone. The largest effect was noted at 1 ng/ml for all cells cultured with and without serum 

(Figures 5.20-5.21). BRIN-BD11 cells showed a significant increase in viability (+46%; 

P<0.001) with serum and (+64%; P<0.0001) without serum for cells treated with IFN-γ and 

IL-10 compared with IFN-γ alone (Figure 5.20 A, B). Consistently, βTC1.6 cells also showed 

a significant increase in viability (+47%; P<0.01) with serum and (+62%; P<0.01) without 

serum when treated with IFN-γ and IL-10 compared with IFN-γ alone (Figure 5.21 A, B). For 

cell treated with TNF-α and IL-10, significant increases in cell viability (+25% with serum; 

P<0.01) (+39% without serum; P<0.01) were observed in BRIN-BD11 cells (Figure 5.20 C, 

D) and βTC1.6 cells (+29% with serum; P<0.01) (+45% without serum; P<0.01) (Figure 5.21 

C, D). However, no significant differences were observed in cells treated with IL-1β or LPS 

for both cell lines (Figures 5.20-5.21). 
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Figure 5.20. Effect of IL-10 on the cellular viability of BRIN-BD11 cells exposed to 
cytokines and LPS. Evaluation of BRIN-BD11 cell viability after 24 h of exposure to a 
mixture of IL-10 at different doses in ng/ml with 1 μg/ml of IFN-γ with and without serum (A, 
B), 100 ng/ml of TNF-α with serum and 1 μg/ml without serum (C, D), 100 ng/ml of IL-1β with 
and without serum (E, F) and 500 μg/ml of LPS with and without serum (G, H). Data are 
normalized to untreated controls and presented as mean ± standard deviation (SD). 
n=3 *p<0.05, **p<0.01, ***p<0.001, **** p<0.0001.as compared first to untreated control and 
second to IFN-γ/TNF-α IFN-γ (Interferon-gamma), TNF-α (Tumour necrosis factor alpha), IL-
1β (Interleukin-1beta), and LPS (Lipopolysaccharide).  
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Figure 5.21. Effect of IL-10 on the cellular viability of βTC1.6 cells exposed to 
cytokines and LPS Evaluation of βTC1.6 cell viability after 24 h of exposure to a mixture of 
IL-10 at different doses in ng/ml with 1 μg/ml of IFN-γ with and without serum (A, B), 1 μg/ml 
of TNF-α with and without serum (C, D), 100 ng/ml of IL-1β with and without serum (E, F) 
and 500 μg/ml of LPS with and without serum (G, H). Data are normalized to untreated 
controls and presented as mean ± standard deviation (SD). n=3 ** p<0.01, *** p<0.001. as 
compared first to untreated control and second to IFN-γ/TNF-α. IFN-γ (Interferon-gamma), 
TNF-α (Tumour necrosis factor alpha), IL-1β(Interleukin-1beta),and LPS 
(Lipopolysaccharide). 
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 5.3.8 IL-10 blocks IFN-γ and TNF-α-induced apoptosis in pancreatic β-cell lines 

IL-10 increases the viability of β-cells treated with IFN-γ or TNF-α. We next sought to 

determine whether IL-10 conferred this protection via interference with apoptotic processes. 

Cells were treated with a combination of 1 ng/ml of IL-10 mixed with 1 μg/ml of IFN-γ with 

and without serum or TNF-α (100 ng/ml in media with serum vs 1 μg/ml in media without 

serum for BRIN-BD11 and 1 μg/ml for βTC1.6 in media with and without) after which TUNEL 

assays were performed. In all instances, the addition of IL-10 protected against cytokine-

driven β-cell apoptosis and resulted in a significant reduction (P<0.001-P<0.0001) in the % 

positive TUNEL cells when compared with cells exposed to cytokines alone (Figures 5.22, 

5.23). 
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Figure 5.22. Assessment of IFN-γ/TNF-α-induced apoptosis in pancreatic cell lines 
before and after the addition of IL-10 in the presence of serum. (A) Fluorescent images 
showing the ability of IL-10 (1ng/ml) to reduce the % positive TUNEL cells after treating them 
with a combination of IL-10 and 1 μg/ml of IFN-γ or 100 ng/ml of TNF-α for BRIN-BD11 and 
1 μg/ml of TNF-α for βTC1.6 cells. Blue staining represents DAPI staining of the nuclei while 
green staining indicates TUNEL positive cells. (B)The % positive TUNEL cells were 
measured by calculating the number of positive TUNEL cells divided by the total number of 
cells n=3 and presented as mean ± standard deviation (SD). ***p<0.001 and ****p<0.0001 
compared with untreated controls.  The scale in all images equals 100 µm. 
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Figure 5.23. Assessment of IFN-γ/TNF-α-induced apoptosis in pancreatic cell lines 
before and after the addition of IL-10 in the absence of serum. (A) Fluorescent images 
showing the ability of IL-10 (1ng/ml) to reduce the % positive TUNEL cells after treating them 
with a combination of IL-10 and 1 μg/ml of IFN-γ or 1 μg/ml of TNF-α. Blue staining 
represents DAPI staining of the nuclei while green staining indicates TUNEL positive cells 
(B)The % positive TUNEL cells were measured by calculating the number of positive TUNEL 
cells divided by the total number of cells n=3 and presented as mean ± standard deviation 
(SD). ***p<0.001 and ****p<0.0001 compared with untreated controls. The scale in all 
images equals 100 µm. 
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5.3.9 Blocking IL-10 reduces the viability of cells following the addition of IFN-γ/TNF-α 

addition 

To test whether the high IL-10 concentration in MSC-CM was a major contributor to the 

protective effect of MSC-CM, we sought to block IL-10 in our MSC-CM by adding 100 ng/ml 

of anti-IL-10 antibody. Anti-IL-10 treated MSC-CM was applied to the cells along with 1 

μg/ml of IFN-γ with and without serum or TNF-α (100 ng/ml in media with serum vs 1 μg/ml 

in media without serum for BRIN-BD11 cells and 1 μg/ml for βTC1.6 cells in media with and 

without serum). Results of the MTT assay showed that anti-IL-10 treated MSC-CM was no 

longer able to protect cells against IFN-γ or TNF-α-induced cell death (Figure 5.24). 
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Figure 5.24. Evaluation of cells viability after the addition of anti-IL-10 antibody in the 
presence of MSC-CM. The viability of BRIN-BD11 (A, B) and βTC1.6 cells (C, D) was 
assessed by colorimetric MTT assay after the addition of 100 ng/ml of anti-IL-10 along with 1 
μg/ml of IFN-γ and TNF-α (100 ng/ml in media with serum vs 1 μg/ml in media without serum 
for BRIN-BD11 cells and 1 μg/ml for βTC1.6 cells in media with and without serum) in the 
presence of MSC-CM with and without serum. Data are normalized to untreated controls and 
presented as mean ± standard deviation (SD). n=3 **p<0.01 ***p<0.001and ****p<0.0001 
comparison between conditioned and non-conditioned. IFN-γ interferon gamma, TNF-α 
tumour necrosis factor alpha. 
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5.3.10 Blocking IL-10 increases the number of % positive TUNEL cells following the 

addition of IFN-γ/TNF-α 

We next hypothesized that the differences in cell viability in the presence and absence of 

MSC-CM was due to IL-10 interfering in the IFN-γ/TNF-α-induction of apoptosis and that the 

addition of an anti-IL-10 antibody would lead to an increased number of % positive TUNEL 

cells. To test this hypothesis, we treated our cells with 1 μg/ml of IFN-γ or TNF-α (100 ng/ml 

in media with serum vs 1 μg/ml in media without serum for BRIN-BD11 cells and 1 μg/ml for 

βTC1.6 cells in media with and without serum) in the presence of MSC-CM with and without 

an anti-IL-10 antibody and compared it with non-conditioned media. The results showed an 

increase in % positive TUNEL cells after the addition of 100 ng/ml of anti-IL-10 antibody to 

the MSC-CM in the presence and absence of serum. Figure 5.25 and 5.26 demonstrate 

once again the ability of 1 μg/ml of IFN-γ to induce apoptosis in β-cell lines (59%positive 

TUNEL cell) for BRIN BD11 and (57%positive TUNEL cell) for βTC1.6.However, the addition 

of MSC-CM reduced the %positive TUNEL cell to (6%) and (7%) respectively in the 

presence of serum (Figure 25). However, the addition of 100 ng/ml anti-IL-10 antibody 

increased the %positive TUNEL cells for BRIN BD11 (55.9%) and βTC1.6 (58%) in the 

presence of MSC-CM with serum. A similar trend was observed in the absence of serum 

(Figure 26).Cells treated with TNF-α also showed an increase in the %positive TUNEL cells 

in the presence of MSC-CM after the addition of 100 ng/ml of anti-IL-10 antibody, for BRIN 

BD11 (56%) in media with serum and (52%) in media without serum and for βTC1.6 (57%) 

in media with serum and (51%) in media without serum as shown in Figures 5-27 and 5-28. 
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Figure 5.25. Assessment of IFN-γ-induced apoptosis in pancreatic cell lines before 
and after the addition of anti-IL-10 antibody in the presence of MSC-CM with serum. 
(A) Fluorescent images showing the increase in the number of % positive TUNEL cells 
treated with 1 μg/ml of IFN-γ in the presence of MSC-CM after the addition of 100 ng/ml of 
anti-IL-10 to the MSC-CM. Blue staining represents DAPI staining of the nuclei while green 
staining indicates TUNEL positive cells. (B) The % positive TUNEL cells were measured by 
calculating the number of positive TUNEL cells divided by the total number of cells n=3 and 
presented as mean ± standard deviation (SD). ***p<0.001 compared with non-conditioned 
media. The scale bar in all images equals 100 µm. IFN-γ. Interferon gamma 
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Figure 5.26. Assessment of IFN-γ-induced apoptosis in pancreatic cell lines before 
and after the addition of anti-IL-10 antibody in the presence of MSC-CM without 
serum. (A) Fluorescent images showing the increase in the number of % positive TUNEL 
cells treated with 1 μg/ml IFN-γ in the presence of MSC-CM after the addition of 100 ng/ml of 
anti-IL-10 to the MSC-CM. Blue staining represents DAPI staining of the nuclei while green 
staining indicates TUNEL positive cells. (B)The % positive TUNEL cells were measured by 
calculating the number of positive TUNEL cells divided by the total number of cells n=3 and 
presented as mean ± standard deviation (SD). ****p<0.0001 compared with non-conditioned 
media. The scale bar in all images equals 100 µm. IFN-γ. Interferon gamma. 
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Figure 5.27. Assessment of TNF-α-induced apoptosis in pancreatic cell lines before 
and after the addition of anti-IL-10 antibody in the presence of MSC-CM with serum. 
(A) Fluorescent images showing the increase in the number of % positive TUNEL cells 
treated with 100 ng/ml of TNF-α for BRIN-BD11 cells and 1 μg/ml for βTC1.6 cells in the 
presence of MSC-CM after the addition of 100 ng/ml of anti-IL-10 to the MSC-CM. Blue 
staining represents DAPI staining of the nuclei while green staining indicates TUNEL positive 
cells. (B) The % positive TUNEL cells were measured by calculating the number of positive 
TUNEL cells divided by the total number of cells n=3 and presented as mean ± standard 
deviation (SD). ****p<0.0001 compared with non-conditioned media. The scale bar in all 
images equals 100 µm. TNF-α, tumour necrosis factor alpha. 
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Figure 5.28. Assessment of TNF-α-induced apoptosis in pancreatic cell lines before 
and after the addition of anti-IL-10 antibody in the presence of MSC-CM without 
serum. (A) Fluorescent images showing the increase in the number of % positive TUNEL 
cells treated with 1 μg/ml of TNF-α in the presence of MSC-CM after the addition of 100 
ng/ml anti-IL-10 to the MSC-CM. Blue staining represents DAPI staining of the nuclei, while 
green staining indicates TUNEL positive cells (B) The % positive TUNEL cells were 
measured by calculating the number of positive TUNEL cells divided by the total number of 
cells n=3 and presented as mean ± standard deviation (SD). ****p<0.0001 compared with 
non-conditioned media. The scale bar in all images equals 100 µm. TNF-α, tumour necrosis 
factor alpha. 
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5.3.11 TRAIL and IL-10 receptors expression profile in BRIN-BD11 and βTC1.6 cells 

Finally, we confirmed the expression profile of TRAIL receptors (R1, R2) and IL-10 receptors 

(A, B) in BRIN-BD11 and βTC1.6 cells at the transcriptional level by RT-PCR. The 

transcriptional analysis confirmed TRAIL-R1, TRAIL-R2, IL-10RA and IL-10RB mRNA 

expression in both BRIN-BD11 and βTC1.6 cells as shown in (Figure 5.29).  

 

 

 

 

 

 

 

 

 

 

Figure 5.29.TRAIL and IL-10 receptor expression profiles in BRIN-BD11 and βTC1.6 
cells. The TRAIL receptors (R1, R2) and IL-10 receptors (A, B) were expressed in BRIN-
BD11 and βTC1.6 as confirmed by transcriptional analysis. 
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5.4 Discussion  

Insulin replacement is the current primary therapeutic approach for T1DM, an approach that 

seeks to treat the symptoms of diabetes rather than curing it. Although the transplantation of 

islets can now be applied successfully, its widespread use has been hampered by immune 

rejection and insufficient supply of islets.(245)  

 

The progress in understanding several key features of stems cells made in the last ten years 

has led to the development of rational cell therapy protocols. Several studies have shown 

that MSC transplantation can improve the metabolic profile in diabetic animal models.(246) 

However, the mechanisms underlying their therapeutic ability are not clearly known. Some 

studies suggested a cardinal role for the secretome and its paracrine signals rather than 

stem cell differentiation that may mediate many of the regenerative effects observed 

following therapeutic stem cell administration.(247) It is thought that the secretome consists of 

a complex set of molecules released by stem cells that are important for many biological 

functions like replication, cell growth, differentiation, apoptosis and many other 

functions.(248) These molecules could be proteins, growth factors, cytokines, angiogenic 

factors, hormones and extracellular matrix proteins.(203) There are some theories that attempt 

to explain the way by which these soluble factors act. In general, it is thought that they either 

act directly by mediating intracellular pathways in injured cells, or indirectly by inducing the 

secretion of functionally active products from adjacent tissues.(249) 

 

In the present study, we sought to evaluate the anti-apoptotic effect of some of the soluble 

factors secreted by MSCs. Most of the studies within the secretome research community 

demonstrates an important role for the MSCs in the prevention of cell death not only through 

their ability to restore local microenvironments, but also by specifically producing proteins 

that are known for their apoptotic-inhibitory properties like IL-10.(250) Some researchers have 
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also suggested a role for paracrine effects of MSCs based on the ability of MSCs to reduce 

apoptosis of alveolar macrophages when co-cultured at appropriate ratios.(251) Tang and 

colleagues also found that in MSC-treated rats with ischemic hearts the level of pro-

apoptotic factors like Bax and cleaved caspase 3 were reduced, while the levels of pro-

angiogenic factors like VEGF and fibroblast growth factor (FGF) were increased as 

compared to medium treated hearts.(252) The findings of Gnecchi and colleagues also 

confirmed that the ability of MSCs to restore cardiac function is mainly due to secretion of 

paracrine factors rather than myocardial regeneration.(253)(216) 

 

A study that involved the activation of splenocytes in the presence of MSC-CM confirmed the 

presence of high concentrations of IL-10.(254) In our study, the ELISA assay revealed the 

presence of a high concentration of IL-10 in both MSC-CM with and without serum. IL-10 is a 

homodimeric cytokine that modulates the biological activity of immune cells; it binds to a 

tetrameric transmembrane cytokine receptor composed of IL-10RA and two accessory 

molecules of IL-10RB.(255) Several studies that used genetically deficient IL-10 mice have 

illustrated the importance of this cytokine in limiting autoimmune pathology.(256) The 

molecular mechanism by which IL-10 modulates the secretion of pro-inflammatory cytokines 

is still incompletely understood. However, there is a general agreement of IL-10-triggered 

signalling steps in the human and murine system.(257) After binding to its receptor IL-10 starts 

an intracellular signalling pathway that involves JAK1 and TYK2, which is followed by 

tyrosine phosphorylation STAT3 and nuclear translocation, which further results in 

stimulating the expression of the target genes.(161) The activation of STAT3 will activate the 

suppressor of cytokine signalling 3 (SOCS3), which exerts a negative effect on various 

cytokines genes. The role of STAT3 and SOCS3 in IL-10 signal transduction has been well 

established. However, a complete understanding of the molecular mechanisms by which IL-

10 inhibits immune responses remains elusive.(258) A study that explored the ability of IL-6R 

and an engineered erythropoietin receptor (EpoR) to activate STAT3 demonstrated the 
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ability of EpoR to activate STAT3 and produce an anti-inflammatory effect similar to IL-10 

while IL-6R, which also activates STAT3, failed to show anti-inflammatory responses. This 

finding indicated that STAT3 activation is needed, but not sufficient for the anti-inflammatory 

ability of IL-10. Other groups suggested that the IL-10 treatment resulted in diminished NF-

κB activation in response to many stimuli.(258) This could occur via suppression of NF-κB 

translocation to the nucleus and DNA binding, which could be specific for the p65 subunit of 

NF-κB that has a crucial role in inflammatory and immune responses, resulting in induction 

of p50 monomers and homodimer, which act as a transcriptional repressor.(259) Suppression 

of NF-κB would also inhibit dendritic cell maturation and diminish antigen-presenting cell 

function.(260) In the present study treating the β-cells with a mixture of IL-10 and cytokines 

protected the cells from IFN-γ and TNF-α-induced apoptosis, but not from IL-1β, which may 

suggest that the apoptotic pathway of each individual cytokines might not be the same. 

  

The pro-inflammatory cytokines; IFN-γ, TNF-α, and IL-1β play a major role in β-cell 

dysfunction and death. Signal transduction by these cytokines involves binding to a specific 

receptor that results in activation of kinases and/or phosphatase, which will stimulate and 

translocate several transcriptional factors like Apo1, STAT, and NF-κB resulting in up-

regulation of some genes and downregulation of others that will eventually lead to β-cell 

apoptosis and death.(261) A detailed understanding of these genes and their signalling 

pathway and the transcription factor that control them could help us to fully understand the 

mechanisms of β-cell death and may allow us to stop apoptosis at some point. 

 

In this study, we have clarified that pro-inflammatory cytokines-induced apoptosis occurred 

through a TRAIL-dependent mechanism. This was supported by the presence of TRAIL-R1 

and TRAIL-R2 expression in BRIN-BD11 and βTC1.6 cell lines. TRAIL is a member of TNF 

superfamily that has the ability to induce apoptosis.(262) In humans, TRAIL interacts with four 
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transmembrane receptors that belong to the TNF receptor gene family.(263) TRAIL-R1 and 

TRAIL-R2 possess the ability to produce apoptosis while the other receptors cannot 

transduce apoptosis signal so they are known as decoy receptors.(264) The binding of TRAIL 

to TRAIL-R1 and TRAIL-R2 will result in apoptosis via FADD and caspase-dependent 

pathway.(265) 

 

The expression of TRAIL and its receptors are found in many steady-state human cell types, 

but, their functions are still unclear.(266)However, TRAIL has been shown to play an important 

role in intestinal epithelial homeostasis and T-cell-mediated immune modulatory 

function.(267) Here the observation that anti-TRAIL could block cytokine-induced apoptosis 

supports the idea of the involvement of TRAIL in mediating β-cell apoptosis. In contrast to 

our findings, one study demonstrates the ability of TRAIL to downregulate the immune 

response leading to autoimmune disease.(268) However in our findings, blocking TRAIL 

through the addition of anti-TRAIL antibody protected our cells from apoptosis. The reasons 

for this contradictory result could be the poor knowledge of the full physiological function of 

TRAIL and its receptor. 
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5.5 Conclusions 

The understanding of the process of β-cell apoptosis is still growing. Based on our present 

findings, cytokine-induced apoptosis is mediated through a TRAIL-dependent pathway. 

Furthermore, the past ten years have provided new in vitro and in vivo data on the 

immunomodulatory abilities of MSCs. Although there is still debate about the ways in which 

MSCs produce their effect, MSCs are now used to treat many types of diseases including 

autoimmune diseases, and we therefore speculated that MSC-CM could protect the cells 

from cytokine-induced apoptosis, which is now confirmed by our results. The analysis of 

MSC-CM content revealed a high concentration of IL-10. Although treatment of our cells with 

a mixture of IL-10 and cytokines helped reduce IFN-γ and TNF-α-induced apoptosis, it had 

little effect on IL-1β or LPS-induced apoptosis. This is despite the fact that our MSC-CM 

blocked all the cytokines-induced apoptosis, which suggest that additional factors play a key 

role. Given this, further experiments are still needed for full understanding of MSC-CM 

capability and content.  
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6.1 Discussion 

The death and loss of β-cells are the main cause of T1DM. For reasons we do not yet fully 

understand our immune system starts to target the β-cells towards apoptosis whilst 

sparing other islet cells. This leads to the death of β-cells, which result in the absence of 

the insulin hormone that will eventually create hyperglycaemia. 

 

Insulin replacement is the current treatment for T1DM, but this treats only the symptoms of 

diabetes rather than curing it. Progress in the transplantation of pancreatta and islets as an 

alternative treatment for T1DM has been made and transplantation can now be applied 

successfully. However, its widespread use has been hampered by immune rejection and 

insufficient supply. 

 

MSCs have emerged as a new therapeutic tool in regenerative medicine, largely because 

of their ability for self-renewal, differentiation into other cell types and immunomodulatory 

properties. These attributes make them an attractive alternative cell therapy for many 

disease conditions including T1DM. 

 

The aim of this project was to explore the therapeutic effectiveness of MSC conditioned 

media (MSC-CM) in protecting and restoring β-cell function. In the first instance, we 

wanted to establish in vitro models of cytokine-induced β-cells apoptosis. To achieve this 

goal we exposed two β-cell lines and primary islets to different concentrations of pro-

inflammatory cytokines. The role of pro-inflammatory cytokines such as IFN-γ, TNF-α, and 

IL-1β in β-cells loss and development of T1DM is well documented.(180), (181), (269)  Many 

reports suggest that pro-inflammatory cytokines act together in a synergistic way in order 

to produce apoptosis in β-cells.(181) However, the mechanisms underlying pro-inflammatory 

cytokines’ ability to induce β-cell death are not clear.(270). Several signal transduction 
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pathways have been demonstrated to play a role in pro-inflammatory cytokine-mediated 

cell death. However, it still unclear how these pathways are linked to each other. Our 

finding confirms the ability of each individual cytokine to induce apoptosis in pancreatic β-

cells and primary islets.  This was associated with changes in pro-apoptotic and anti-

apoptotic gene expression.   

 

A20 (TNFAIP3) was first known as a TNF-inducible gene.(271), it was cloned from human 

umbilical vein endothelial cells. It is well known that A20 expression is under the control of 

NF-κB and for that reason, A20 is up-regulated by NF-κB-inducing factors such as TNF-α, 

IL-1β, and LPS. When the A20 is up-regulated it acts as a central negative regulator of NF-

κB activation, therefore it is believed that A20 act as an anti-inflammatory.(271) The role of 

A20 as an inhibitor of inflammation is evident in mice.(272) and humans.(273)  

 

The ability of A20 to suppress inflammation, inhibit the NF-κB, and it's reported anti-

apoptotic capabilities when overexpressed in β-cells, associated with knowledge that β-cell 

loss in T1DM is mainly due to apoptosis,(230) lend a strong evidence for A20 modulator 

ability in T1DM. Some reports demonstrate that A20 mRNA is highly expressed in human 

and rat islets after cytokine stimulation, which indicates a physiological protective function 

for A20 in protecting β-cells.(274) Furthermore, some reports demonstrate an up-regulation 

of TRAIL (Apo2 ligand) which is a transmembrane protein related to TNF superfamily and 

play a role in apoptosis via activation of caspase cascade and release of cytochrome c 

from mitochondria.  

 

In this study, we confirmed that A20 and TRAIL are highly expressed in β-cell lines after 

stimulating them with pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-1β) and endotoxin 

LPS.  Also, culturing the cells under hypoxic conditions did not affect the results as 
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stimulating the cells with the same levels of cytokines promoted apoptosis, which was 

accompanied by upregulation of TRAIL and A20 expression.  

 

The use of MSCs as a treatment for T1DM has been the focus of many researchers. Some 

reports demonstrate the ability of MSCs to differentiate into insulin-producing cells through 

using a specific culture media provided with elements that promote insulin secretion like 

glucose, and they confirm that the differentiated islet-like cells express insulin at both the 

mRNA and protein level. Additionally, they are able to control glucose level in non-obese 

diabetic mice (NOD)(275) However, other studies contradict this result and stated that there 

is no significant in vivo differentiation of MSCs into insulin-producing cells in adult mice.(215) 

 

Various studies suggested that MSCs produce their action via paracrine mechanisms 

through secreting a number of soluble factors and that these factors can enhance tissue 

repair without the MSCs themselves. The secreted factors are referred to as secretome, 

microvesicles, or exosome and can be present in the medium where the MSCs are 

cultured and this media is called conditioned media.(276) Some studies suggest the ability of 

MSCs to release factors in response to stimuli like inflammatory stimuli such as IFN-γ and 

TNF-α where the MSCs responded by releasing anti-inflammatory factors like TGF-β and 

HGF. LPS and toll-like receptor agonists have been found to stimulate paracrine factors 

released from MSCs such as VEGF. Also preconditioning of MSCs with IFN-γ and TNF-α 

in vitro prior to cell transplantation may provide a potential strategy for activating and 

increasing MSC immunosuppressive transplantation.(277) 

 

Since T1DM is mainly an autoimmune disease the immunomodulatory properties of MSCs 

represent hope as a way to properly control blood glucose level. However, the mechanism 

by which MSCs can exert their effect is a matter of debate. While MSCs ability to 
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differentiate into insulin producing cells remains controversial, a lot of information is 

accumulating regarding MSCs immunomodulatory properties and these capacities are 

already used in clinical trials.(226) MSCs can modulate immune responses either via a direct 

effect on T-cells through releasing regulatory cytokines like IL-10 or indirectly by inhibition 

of dendritic cells maturation. However, the main mechanisms through which MSCs exert 

their actions have yet to be determined. It has been suggested (and not without 

controversy) that neither the immunomodulatory nor plasticity of MSCs is able to support 

pancreatic regeneration.(170)     

 

Many researches have focused on understanding the mechanisms behind the paracrine 

actions of the MSC-CM. Several protocols have emerged to isolate and concentrate MSC-

CM based on using trophic factors produced by these cells. However, the use of MSC-CM 

as a therapy is still limited; one of the reasons behind this limitation include the possible 

contamination from animal product, the half-lives of molecules secreted by MSCs and the 

proper dose needed to produce a functional response in vivo.(222)  

 

The culture and collection methods used to prepare the MSC-CM varies, some MSC-CM 

was prepared using fetal bovine serum or adding other supplement containing complete 

media while other are prepared without serum. Another parameter is the source of stem 

cells used, culture duration and whether the cells are cultured under normoxia or hypoxia. 

However, nearly all of these studies showed successful and promising results yet a 

standardized method for various MSC-CM formations is still undefined.(225)   

 

Our findings in this study confirm the ability of MSC-CM to block cytokine-induced 

apoptosis and to restore insulin secretion. This was supported by molecular measurement 

for the TRAIL and A20 gene expression. After applying the MSC-CM the results indicated 
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significant down regulation of both genes that may indicate an anti-inflammatory effect for 

MSC-CM. 

 

Identifying the signaling pathways involved in β-cell apoptosis is important because it could 

provide insight information regarding the potential pathogenic mechanism that could help 

in the development of a way to treat T1DM. Some of these signaling pathways have been 

known such as Fas ligand (FasL) and TNF-α, which have been found to cause apoptosis 

in mouse β-cells.(278), (79), (279)TRAIL is another member of TNF family it has membrane 

bound and soluble forms.(280) and acts via type 1 membrane receptor which mediates 

apoptosis through a cytoplasmic death domain.(281), (280)TRAIL has two receptors (TRAIL-

R1 (DR4) and TRAIL-R2 (DR5)) that possess a cytoplasmic death domain and signal 

apoptosis via activation of caspase cascades.(282), (283)  

 

We have shown in this study that TRAIL-R1 and TRAIL-R2 are expressed in β-cell lines 

BRIN-BD11 and βTC1.6 and also prove that TRAIL death pathway is functional in these 

cell lines There are several potential apoptotic pathways that might be functioning in β-

cells like the FasL, perforin, and TNF-α. Recently Fas/FasL has been under investigation 

as an explanation of β-cell death and loss in T1DM.(284) However, it is still unclear which 

pathway is the main pathway that mediates β-cell destruction in T1DM. This does not 

exclude the possibility that TRAIL could be functioning via it is death receptor in a manner 

similar to FasL.(284) In this study using the recombinant murine TRAIL resulted in apoptosis 

of BRIN-BD11 and βTC1.6 β-cell lines indicating a potential role for TRAIL in developing 

T1DM.  

FasL and TNF-α could initiate apoptosis via recruitment of a common adaptor protein 

FADD or TRADD/FADD. Then FADD activates caspase 8 to form death inducing signaling 

complex (DISC), which leads to stimulation of caspase cascades by activating caspase 3 
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as well as triggering the mitochondrial damage via the cleavage of BID (a death agonist 

member of the Bcl-2 family) leading to cell death. Although the stimulation events start the 

different signal cascades, all of them feed into a final common apoptotic pathway that ends 

by the death of the cell.(285), (286) However, there is a debate regarding the role of FADD in 

TRAIL receptor activation. Some initial papers showed that TRAIL stimulates apoptosis 

through FADD-independent pathways, whilst a recent study showed that FADD is needed 

for TRAIL-R1 and TRAIL-R2 mediated apoptosis.(287) Therefore, it is possible that TRAIL 

could use the common FADD-dependent pathway just like other ligands and an FADD-

independent signal transduction pathway through which TRAIL directly stimulates 

caspase-3.(285) It is well known that TRAIL can induce apoptosis in a wide range of 

transformed cells, Although most normal tissue expresses TRAIL-R1 and TRAIL-R2.(288), 

this could be due to the presence of decoy receptors TRAIL-R3 and –R4 as these 

receptors do not have intracellular domain and they are considered to inhibit TRAIL-

induced apoptosis.(289), (285)Clear enhancement of TRAIL expression was found in 

infiltrating cells of islets from people with T1DM.(191). These finding indicated the possibility 

of TRAIL pathway involvement in β-cells death in T1DM due to the infiltration of cytotoxic 

T-cells.(191)However, the actual biological function of TRAIL and its receptor is still unclear.  

 

Our findings in this study suggests the involvement of TRAIL death pathway in β-cell 

apoptosis. Blocking the action of TRAIL via the use of TRAIL antibody inhibited cytokine-

induced apoptosis raising the possibility of a TRAIL-dependent pathway mechanism of 

action in these cells. However, the use of MSC-CM blocks TRAIL and cytokine-induced 

apoptosis. This finding made us ask the question of how the MSC-CM could prevent 

apoptosis.  
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MSCs immunomodulatory properties have been explored to treat autoimmune disease. 

Recent clinical trial data suggests a powerful immune modulatory effect of the MSCs to 

treat graft versus host disease.(208)An additional study showed that using a transwell 

culture system with a semipermeable membrane to separate MSCs from leukocytes did 

not stop the ability of MSCs to suppress inflammation, indicating the presence of soluble 

factors that may play an important role.(290)Among the many candidates that are found to 

be present in the MSC-CM is IL-10.(163) IL-10 was first identified by Mosmann and 

colleague.(291)There are four major T-cells sources of IL-10, these include T-helper 2 (Th2), 

T-regulatory 1 (Tr1), Th1, and Th17.(292)There are other types of cells that are also able to 

secrete IL-10 like monocytes and some subset of DCs. It is indeed difficult to decide which 

cells are the most important producer of IL-10. 

 

IL-10 mediates its action via two receptors: IL-10R1 and IL-10R2. The binding of IL-10 to 

it’s receptor will activate the JAK1 and Tyk2 respectively which in turn will activate STAT3 

that will translocate to the nucleus where it binds to STAT binding element that will 

promote the transcription of various genes.(237) including the suppressor of cytokines signal 

3 (SOCS 3) which in turn will exert negative effects on many cytokines genes.(238)Several 

studies on IL-10 knockout mice demonstrate the ability to limit autoimmune 

pathology.(256)However, the molecular mechanism by which IL-10 modulates the secretion 

of pro-inflammatory cytokines is still unclear.(257)Studies indicate that STAT3 activation is 

necessary, but not sufficient for the anti-inflammatory ability of IL-10. Some research 

suggested that IL-10 treatment resulted in diminished NF-κB activation in response to 

many stimuli.(258)IL-10 has the ability to inhibit NF-κB translocation to the nucleus and 

prevent DNA binding, which could be specific for p65 subunit of NF-κB that has a cardinal 

role in inflammatory and immune response. This results in induction of p50 monomers and 

homodimers which act as transcriptional repressor(259)The suppression of NF-κB by IL-10 
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could explain the large number of stimuli following treatment with IL-10. Suppression of 

NF-κB would also prevent dendritic cell maturation and diminish antigen-presenting cell 

function(260)In the present study treating the β-cells with a mixture of IL-10 and cytokines 

protected the cells from IFN-γ and TNF-α induced apoptosis but not from IL-1β. This may 

suggest that the apoptotic pathway of each individual cytokine is not the same.  

  

 

6.2 Conclusions 

In conclusion, our finding confirms that the in vitro induction of pancreatic β-cells and 

primary islets with individual pro-inflammatory cytokines was enough to produce apoptosis 

in these cells whether they are grown under normoxic or hypoxic culture conditions. The 

presence of serum did not affect the results as most concentrations that had been chosen 

for subsequent experiments remained the same. However, the addition of MSC-CM 

blocked cytokine-induced apoptosis and downregulated the genetic expression of A20 and 

TRAIL. Based on our present findings, cytokine-induced apoptosis is mediated through the 

TRAIL-dependent pathway. The MSC-CM was able to block the TRAIL and cytokine-

induced apoptosis. The analysis of MSC-CM content revealed a high concentration of IL-

10 but, treating our cells with a mixture of IL-10 and cytokines protected the cells against 

IFN-γ and TNF-α-induced apoptosis, but not from IL-1β or LPS despite the fact that our 

MSC-CM blocked all the cytokine-induced apoptosis tested in this study.  

 

6.3 Future directions 

Given this, more experiments are needed to understand the role of the TRAIL death 

pathway in the induction of β-cell apoptosis that should include studies on primary islets. If 

we are able to understand the regulation and control of the TRAIL pathway this may help 

in the treatment and prevention of β-cells apoptosis.  The finding in this study gave 
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promising results regarding the ability of MSC-CM in the treatment of T1DM, and it is 

already used in some disease conditions. Therefore, further analysis of MSC-CM content 

is required in order to fully understand the activity of secreted factors founds in MSC-CM 

like Leptin, Eotaxin, SCF and TGF-β which are noted to be present in a high amount 

based on the cytokines array done by one of my colleagues (appendix 1). Testing, the 

ability of MSC-CM in vivo is essential to determine its capacity and to garner real 

therapeutic benefit from these promising preliminary results in the pancreatic β-cell.  

In addition, testing different methods for MSC culture, various ways to prepare MSC-CM 

and comparing the outcome from different types of conditioned media would help in 

identifying the best way to prepare and use the MSC-CM under normoxia and hypoxia 

condition.  
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N
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R
M

O
X

IA
 Cytokines 

BRIN BD11 cells βTC1.6 

TRAIL maximum 
expression  

A20 maximum 
expression 

TRAIL maximum 
expression 

A20 maximum 
expression 

IFN-γ 24 hours 2 hours 24 hours 24 hours 
TNF-α 4 hours 1 hours 24 hours 24 hours 
IL-1β 24 hours 2 hours 24 hours 24 hours 
LPS 24 hours 4 hours 24 hours 24 hours 

H
Y

P
O

X
IA

  

IFN-γ 24 hours 4 hours 24 hours 24 hours 
TNF-α 24 hours 1 hours 24 hours 24 hours 
IL-1β 24 hours 4 hours 24 hours 24 hours 
LPS 24 hours 4 hours 24 hours 24 hours 

APPENDX -2 

Table (1). The maximum expression of TRAIL and A20 gene noted in BRIN BD11 and 
βTC1.6 cell lines after treating them with cytokines in a time dependent manner (media 
with serum). 

 

 

 

Table (2). The maximum expression of TRAIL and A20 gene noted in BRIN BD11 and 
βTC1.6 cell lines after treating them with cytokines in a time dependent manner (media 
without serum). 
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A Cytokines 

BRIN BD11 cells βTC1.6 

TRAIL maximum 
expression  

A20 
maximum 
expression 

TRAIL maximum 
expression 

A20 maximum 
expression 

IFN-γ 24 hours 15 minute 24 hours 24 hours 
TNF-α 24 hours 2 hours 24 hours 24 hours 
IL-1β 15 minute  1 hours 24 hours 24 hours 
LPS 4 hours 4 hours 24 hours 24 hours 

H
YP

O
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A 

 

IFN-γ 24 hours 4 hours 24 hours 24 hours 
TNF-α 4 hours 24 hours 24 hours 24 hours 
IL-1β 2 hours 1 hours 24 hours 24 hours 
LPS 24 hours 24 hours 24 hours 24 hours 
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