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Abstract

We construct an asymptotic approximation to the solution of a transmission problem
for a body containing a region occupied by many small inclusions. The cluster of inclu-
sions is characterised by two small parameters that determine the nominal diameter of
individual inclusions and their separation within the cluster. These small parameters can
be comparable to each other. Remainder estimates of the asymptotic approximation are
rigorously justified. Numerical illustrations demonstrate the efficiency of the asymptotic
approach when compared with benchmark finite element algorithms.
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1 Introduction

Uniform asymptotic approximations for solutions to boundary value problems involving large
clusters of small defects have been constructed in the articles [21, 25, 27, 28] and the mono-
graph [26]. The approximations have been developed for different operators of mathemati-
cal physics and for a range of different boundary conditions imposed on the surfaces of the
small defects. The approach employed in achieving these approximations does not utilise any
strong assumptions on the arrangements of inclusions within the cluster, such as periodically
distributed defects or arrangements which are statistically determined, where alternative con-
ventional techniques such homogenisation are applicable [1, 15].

Here we address the approximation of the solution to a transmission problem for a solid
containing a dense non-periodic arrangement of small inclusions. In particular, such an ap-
proximation is capable of tracing the interaction of defects within a cluster, which is a serious
challenge, especially in regions where fields are likely to rapidly oscillate. Applications of the
problem considered can be found in electrostatics, hydrostatics and steady state heat conduc-
tion. We discuss the model here in the framework of the latter.

Several important approximations for solids containing dilute arrangements of defects, amongst
much else, have appeared in [30, 31]. There, the method of compound asymptotic expansions is
systematically presented for various elliptic boundary value problems of mathematical physics
in singularly perturbed domains. For domains with small defects, the method utilises model
problems posed in domains without any holes, and problems in the exterior of individual small
defects. This approach has led to approximations for energy characteristics associated with
these singularly perturbed problems in perforated domains such as eigenvalues, stress-intensity
factors and capacities.

The method of compound asymptotic expansions has recently played a major role in uni-
form asymptotic approximations for Green’s kernels in domains with several defects for both
scalar [17, 18, 19, 20] and vector problems [22, 23]. In particular, uniform approximations to
singular fields for transmission problems in planar bodies containing several small inclusions
have appeared in [24]. Approximations of this type have been shown to provide results that
give an excellent comparison with those based on benchmark finite element schemes [22, 24].
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Uniform asymptotic approximations for Green’s functions have also been used to model the
movement of obstacles in Hele-Shaw flow [33, 35].

The approximations mentioned above for dilute composites serve the case when the number
of small defects are finite and are situated far apart from each other. However, in the situation
when the number of defects becomes large and they can be close to each other, one needs an
alternative tool to model this scenario.

Large numbers of closely interacting small defects can also produce exciting physical phe-
nomena, as demonstrated in [16], where models for gratings and associated shielding properties,
such as the Faraday cage effect, have been investigated for rings of many small circular obstacles
in both acoustic and electrostatic media.

If the small defects are arranged periodically in some region, then one can employ powerful
homogenisation based techniques to model an effective medium [15]. The technique can also re-
veal additional contributions to the physics of such problems when the number of small particles
within the region increase, while the overall volume occupied within a region remains constant
[8, 15]. Periodic composite materials for both electromagnetism and elasticity have been mod-
elled using the homogenisation approach in [37] and this has been extended to treat problems
where different boundary conditions are supplied on neighboring defects in [10]. This averaging
procedure has led to the effective properties of cubically arranged homogeneous spherical inclu-
sions in an ambient matrix in [11]. For the homogenisation of elastic media containing periodic
arrangements of small inclusions with jumps in the transmission conditions on the interfaces,
see [34].

Other approaches used to establish effective behaviour of composites include the approach
involving potentials in [12], where the effective conductivity of dense arrays of perfectly conduct-
ing spheres or perfectly and non-perfectly conducting cylinders was determined. A functional
equation approach has also been employed in [5] to study the effective conductivity of two-
dimensional doubly periodic systems of inclusions distributed within a matrix having non-ideal
contact conditions.

In addition, the homogenisation technique can treat composites where defect positions do
not exhibit periodicity, but may be specified by some statistical law. For example, see [3]
where the potential for medium containing randomly distributed circular inclusions under ideal
contact conditions is considered. In [13, 14, 36], homogenisation based approximations have
been used to obtain estimates of effective moduli characterising composites for both elastic
and hyperelastic materials containing randomly distributed fibres or defects. For Neo-Hookean
materials, containing periodically placed fibers, that is subjected to different loading conditions,
see [4].

Naturally, one can find many examples of densely perforated materials for which the position
of the perforations are not governed by periodicity or a statistical law. Hence a homogenisation
approach is not applicable when modelling these materials. The method of meso-scale asymp-
totic approximations was developed in [21] to approximate potentials for bodies containing
large non-periodic clusters of small defects, with rigid boundaries. Meso-scale approximations
for solids containing a cluster of voids has appeared in [25]. More recently, the meso-scale
approach has been extended to approximate solutions for problems of the Lamé system for
three-dimensional solids with clouds of defects with rigid boundaries in [27] and when the
traction-free conditions are supplied on small voids [28].

Low-frequency vibration problems for solids with arrays of small inclusions have also been
addressed using a modification of the methods of compound and meso-scale asymptotic approx-
imations. Asymptotics of the first eigenvalue and corresponding eigenfunction of the Laplacian
for domains with a cloud of rigid inclusions have appeared in [29]. Applications of the method
of meso-scale approximations have appeared in [6, 7], where scattering problems for many small
obstacles in the infinite space were considered. In [2], the method of matched asymptotic ex-
pansions has been used to study dynamic problems of wave scattering by clusters of scatterers
of either the hard sound, soft sound or impedance type. There the importance of choosing the
centres of small scatterers to improve the accuracy of the asymptotic approach is also discussed.

Here we adapt the approaches of [26] and [30, 31] to develop the approximation of the
solution to a transmission problem inside a body with many small arbitrary inclusions. Before
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stating the main result of this article, we supply the details of the problem we intend to tackle.
Here, Ω will denote a bounded subset of R3, which we assume contains a material with thermal
diffusivity µO and has smooth boundary ∂Ω. Let ω be a region of Ω, with diameter 1. Contained

in ω will be many small inclusions ω
(k)
ε , 1 ≤ k ≤ N . The kth inclusion has centre O(k), a

smooth interface ∂ω
(k)
ε , a normalized diameter which is characterized by the small dimensionless

parameter ε and is also occupied by a material with thermal diffusivity µIk , 1 ≤ k ≤ N . Another
small non-dimensional parameter d, defined by

d =
1

2
min
j 6=k

1≤j,k≤N

|O(j) −O(k)| ,

is used to illustrate the “closeness” of one inclusion to the other within the cloud ω. Additional
geometric constraints on ω are then given by

dist(∪Nj=1ω
(j)
ε , ∂ω) = 2d and dist(ω, ∂Ω) = 1 .

The parameters N and d satisfy the inequality

N ≤ const d−3 .

Our main objective is to derive the asymptotic approximation to the temperature field uN
satisfying the transmission problem

µO∆uN (x) = f(x) , x ∈ ΩN = Ω\ ∪Nk=1 ω
(k)
ε ,

µIj∆uN (x) = 0 , x ∈ ω(j)
ε , 1 ≤ j ≤ N ,

uN (x) = φ(x) , x ∈ ∂Ω ,

uN (x)
∣∣∣
∂ω

(j)+
ε

= uN (x)
∣∣∣
∂ω

(j)−
ε

, 1 ≤ j ≤ N ,

µO
∂uN
∂n

(x)
∣∣∣
∂ω

(j)+
ε

= µIj

∂uN
∂n

(x)
∣∣∣
∂ω

(j)−
ε

, 1 ≤ j ≤ N ,


(1.1)

where ∂ω
(j)+
ε (∂ω

(j)−
ε ) represents the boundary ∂ω

(j)
ε approached from the exterior (interior).

The function f , describing the heat source in ΩN , belongs to the space L2(Ω), and has a support
satisfying ω ∩ supp f = ∅ and dist(ω, supp f) = O(1). In the temperature condition on ∂Ω we
have φ ∈ L1/2,2(∂Ω).

The construction of the asymptotics of uN relies on the methods of compound and meso-
scale asymptotic expansions, which in turn makes use of model fields defined in the unperturbed
set (without small inclusions) Ω and in the infinite space containing a single small inclusion

ω
(k)
ε , k = 1, . . . , N . Such model fields involve:

1. the solution wf of the Dirichlet problem of Poisson’s equation in Ω;

2. the vector functions D(k)
ε , whose components are the dipole fields for the inclusion ω

(k)
ε .

These fields allow one to construct boundary layers outside small defects in the asymptotic
algorithm.

3. the regular part H of Green’s function G in Ω.

It will also be shown that coefficients near boundary layers in the approximation of uN form
solutions to a certain algebraic system. This system involves derivatives of wf and integral

characteristics pertaining to the small defects ω
(k)
ε , such as the polarization matrix P(k)

ε , 1 ≤
k ≤ N , (see [32]), which is a 3×3 matrix. As is discussed in more detail later, this matrix can be

positive or negative definite. In addition, if P(k)
ε is negative (positive) definite, we assume that

the maximum and minimum eigenvalues λ
(j)
max and λ

(j)
min, respectively, of −P(j)

ε (P(j)
ε ) satisfy

C1ε
3 < λ

(j)
min, and λ(j)

max < C2 ε
3, (1.2)

where C1 and C2 are constants independent of ε.
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Theorem 1 Let
ε < c d , (1.3)

where c is a sufficiently small absolute constant. Then the solution uN (x) admits the asymptotic
representation

uN (x) = wf (x) +
∑

1≤k≤N

C(k) · {D(k)
ε (x)−P(k)

ε ∇yH(x,y)
∣∣∣
y=O(k)

}+RN (x) , (1.4)

where C(k) = (C
(k)
1 , C

(k)
2 , C

(k)
3 )T , 1 ≤ k ≤ N , satisfy the solvable linear algebraic system

∇wf (O(j)) + C(j) +
∑
k 6=j

1≤k≤N

(∇z ⊗∇w)G(z,w)
∣∣∣
z=O(j)

w=O(k)

P(k)
ε C(k) = O , for j = 1, . . . , N . (1.5)

The remainder RN satisfies the energy estimate∫
∪N

k=1ω
(k)
ε ∪ΩN

|∇RN |2 dx ≤ const
{
ε11d−11 + ε5d−3

}
‖∇wf‖2L2(Ω) . (1.6)

As an example, we consider a large cluster of inclusions (N = 64) arranged in cube, as
according to Figure 1, which is embedded in sphere of radius 7. Here f(x) in (1.1) is a radially
symmetric function having support inside the ball of radius 1.5 (further details of the numerical
set up can be found in section 8). The cluster is composed of both thermally insulated inclusions
and inclusions containing materials with different thermal diffusivities (whose values are given
in Figure 1, which are different from that of the ambient matrix. For such a problem, the task
of using the method of finite elements, with the package COMSOL, to obtain the solution uN
can be computationally intensive. In fact, COMSOL could not compute the solution to this
problem in this case. However, the asymptotic formula (1.4) remains efficient and we present
computations for |∇uN |, based on the derivatives of the leading order approximation to uN in
(1.4), along cut-planes which intersect the cloud.

The structure of the article is as follows. In section 2 we introduce model problems which
allow one to construct the formal approximation to uN , and this formal asymptotic procedure
is provided in section 3. There, the algebraic system, concerning coefficients involved in the
asymptotic approximation to uN , is determined and the solvability of this system is discussed
in section 4. The proof of the energy estimate (1.6) for the remainder term involved in the
approximation is provided in section 5, where the completion of the proof of Theorem 1 is also
presented. In section 6, we extend the results of Theorem 1 to the case of the transmission
problem for an infinite medium containing a non-periodic cluster of small inclusions. Following
this, in section 7, we further investigate the algebraic system (1.5) for a large periodic cluster
situated inside a body and from this we derive an auxiliary problem concerning the effective
inclusion ω situated inside the domain Ω. Numerical illustrations are then given in section 8
that show the efficiency of the asymptotic approach in comparison with computations based
on finite element algorithms. In section 9, we give some conclusions and discussion. Finally, in
the Appendix, we present the proofs of auxiliary results needed to prove the solvability of the
algebriac system discussed in section 4 and to facilitate the proof of the energy estimate (1.6)
given in section 5.

2 Model problems

We now introduce model problems posed in either the unperturbed domain Ω or the infinite
space with the small inclusion at the origin, which we use in the formal asymptotic procedure
given in the following section.

1. The solution wf of the Dirichlet problem for Poisson’s equation. Let wf satisfy the problem

µO∆wf (x) = f(x) , x ∈ Ω , (2.1)
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Figure 1: (a) A cluster of 64 inclusions. The colors shown indicate the materials contained in
the inclusion having different thermal diffusivities given by the values 0.74 (green), 1.1 (blue),
0.35 (yellow), 0.54 (light blue) and 0.9 (purple). We assume the ambient matrix is occupied
by a material with thermal diffusivity equal to 1. Here, the inclusions which are red are
thermally insulated. Computations for |∇uN |, based on the asymptotic approximation (1.4), in
the vicinity of the cluster are shown in (b)–(e) along the cut-planes (b) x3 = 1.75, (c) x3 = 2.25,
(d) x3 = 2.75 and (e) x3 = 3.25.
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wf (x) = φ(x) , x ∈ ∂Ω ,

where as before f ∈ L2(Ω), supp f ∩ ω = ∅, dist(ω, supp f) = O(1) and φ ∈ L1/2,2(∂Ω).

Later, we assume that f is extended by zero inside the inclusions ω
(k)
ε , 1 ≤ k ≤ N .

2. The regular part H in Ω. Let H be the regular part of Green’s function G in Ω, which
satisfies

µO∆xH(x,y) = 0 , x,y ∈ Ω ,

H(x,y) = (4πµO|x− y|)−1 , x ∈ ∂Ω ,y ∈ Ω , (2.2)

and G is related to H via

H(x,y) =
1

4πµO|x− y| −G(x,y) . (2.3)

3. The dipole fields for the small inclusion ω
(j)
ε , j = 1, . . . , N . The dipole fields D(k)

j , j = 1, 2, 3,

for the scaled inclusion ω(k) = {ξ : εξ + O(j) ∈ ω(k)
ε }, are now introduced as components of

the vector function D(k) = (D(k)
1 ,D(k)

2 ,D(k)
3 )T , k = 1, . . . , N , which solves the transmission

problem

µO∆D(k)(ξ) = O , ξ ∈ R3\ω(k) ,

µIk∆D(k)(ξ) = O , ξ ∈ ω(k) ,

D(k)(ξ)
∣∣∣
∂ω(k)+

= D(k)(ξ)
∣∣∣
∂ω(k)−

,

µO
∂D(k)

∂n
(ξ)
∣∣∣
∂ω(k)+

− µIk

∂D(k)

∂n
(ξ)
∣∣∣
∂ω(k)−

= (µO − µIk)n(k) ,

D(k)(ξ)→ O as |ξ| → ∞ ,


(2.4)

where ξ = {ξj}3j=1 and n(k) is the unit outward normal to ω(k). The leading order behaviour

of D(k), described in (2.4), can be written explicitly using the 3× 3 symmetric polarization

matrix P(k) = {P(k)
ij }3i,j=1 for the small inclusion. We have

Lemma 1 (see [32]) Let |ξ| > 2, then the vector function D(k) admits the asymptotic rep-
resentation

D(k)(ξ) = −P(k)∇((4πµO|ξ|)−1) +O(|ξ|−3) , (2.5)

where the entries of P(k) = [P(k)
ij ]3i,j=1 are given by

P(k)
ij = (µIk − µO)meas(ω(k))δij − µO

∫
R3\ω(k)

∇D(k)
i (ξ) · ∇D(k)

j (ξ)dξ

−µIk

∫
ω(k)

∇D(k)
i (ξ) · ∇D(k)

j (ξ)dξ , 1 ≤ i, j ≤ 3 . (2.6)

Here, the expression (2.6) shows that the polarization matrix P(k) is symmetric. Further,
after integration by parts and using the definition (2.4) of the components of the vector function
D one can show that

P(k)
ij = (µIk − µO)

{
meas(ω(k))δij +

∫
∂ω(k)

D(k)
i (ξ)

∂ξj
∂n

dSξ

}
, (2.7)

where further integration by parts in ω(k) applied to the second term in the right-hand side
gives ∫

∂ω(k)

D(k)
i (ξ)

∣∣∣
∂ω(k)−

∂ξj
∂n

dSξ =

∫
∂ω(k)

ξj
∂D(k)

i (ξ)

∂n

∣∣∣
∂ω(k)−

dSξ .
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As a result the integral term in (2.7) defines a Gram matrix. Here (2.7) shows that for thermally
insulated inclusions (µIk = 0) the dipole matrix is negative definite. In addition, if µIk > µO

(µIk < µO), this polarization tensor is positive (negative) definite.

By then rescaling, we create the vector functions D(j)
ε (x) = εD(ε−1(x−O(j))) and matrices

P(j)
ε = ε3P(j), 1 ≤ j ≤ N , which are to be used throughout the asymptotic algorithm. Here,

the components of D(j)
ε are then the dipole fields for the inclusion ω

(k)
ε , 1 ≤ k ≤ N .

3 Formal asymptotic procedure

We now formally construct an asymptotic approximation to the solution uN of the transmission
problem (1.1). We prove the following Lemma.

Lemma 2 The formal asymptotic approximation of uN , the solution of (1.1), has the form

uN (x) = wf (x) +
∑

1≤k≤N

C(k) · {D(k)
ε (x)−P(k)

ε ∇yH(x,y)
∣∣∣
y=O(k)

}+RN (x) ,

where C(k), 1 ≤ k ≤ N , are solutions of the algebraic system (1.5) The remainder term RN

then satisfies the problem

µO∆RN (x) = 0 , x ∈ ΩN , ∆RN (x) = 0 , x ∈ ∪Nj=1ω
(j)
ε ,

RN (x) = ψ(x) , x ∈ ∂Ω ,

RN (x)
∣∣∣
∂ω

(k)+
ε

= RN (x)
∣∣∣
∂ω

(k)−
ε

and µO
∂RN

∂n
(x)
∣∣∣
∂ω

(k)+
ε

− µIk

∂RN

∂n
(x)
∣∣∣
∂ω

(k)−
ε

= ϕ(k)
ε (x) ,

for 1 ≤ k ≤ N , where

|ψ(x)| = O
( ∑

1≤k≤N

ε4|C(k)||x−O(k)|−3
)

and

|ϕ(j)
ε (x)| = O

(
ε
{

1 + ε2|C(j)|+
∑
k 6=j

1≤k≤N

ε3|C(k)|
|O(j) −O(k)|4

})
, 1 ≤ j ≤ N .

Proof. We first attempt to satisfy the governing equations in
⋃N

j=1 ω
(j)
ε ∪ΩN and the exterior

boundary condition appearing in (1.1). Therefore, we approximate uN by the field wf defined
in Ω, i.e.

uN (x) = wf (x) +WN (x) . (3.1)

Considering the boundary value problem for WN , we have WN is harmonic inside ∪Nj=1ω
(j)
ε ∪ΩN

and
WN (x) = 0 , x ∈ ∂Ω .

As the function wf is defined everywhere in Ω, WN is continuous across the frontier ∂ω
(j)
ε ,

j = 1, . . . , N . However, the jump in the temperature flux across ∂ω
(j)
ε , j = 1, . . . , N , is

µO
∂WN

∂n
(x)
∣∣∣
∂ω

(j)+
ε

− µIj

∂WN

∂n
(x)
∣∣∣
∂ω

(j)−
ε

= −(µO − µIj )n(j) · ∇wf (x) , j = 1, . . . , N .

As the inclusion ω
(j)
ε , j = 1, . . . , N , is small, we can use Taylor’s expansion of the derivatives

of wf about O(j) in the preceding condition, to obtain

µO
∂WN

∂n
(x)
∣∣∣
∂ω

(j)+
ε

− µIj

∂WN

∂n
(x)
∣∣∣
∂ω

(j)−
ε

= −(µO − µIj )n(j) · ∇wf (O(j)) +O(ε) (3.2)
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for 1 ≤ j ≤ N . We now use the notion of the dipole fields for the inclusions (see Problem 3,
Section 2) to compensate for the error in the above right-hand side and construct WN with the
representation

WN (x) =
∑

1≤k≤N

C(k) · {D(k)
ε (x)−P(k)

ε ∇yH(x,y)
∣∣∣
y=O(k)

}+RN (x) , (3.3)

where in subsequent steps we will identify the algebraic system satisfied by C(k) = (C
(k)
1 , C

(k)
2 , C

(k)
3 )T ,

k = 1, . . . , N .

Then, the field RN is harmonic inside ΩN and ω
(j)
ε , j = 1, . . . , N . According to problem 3

of section 2, the asymptotics of D(k)
ε for |x−O(k)| > 2ε take the form

D(k)
ε (x) =

1

4πµO
P(k)

ε

x−O(k)

|x−O(k)|3 +O

(
ε4

|x−O(k)|3
)
,

where the leading order term here is P(k)
ε ∇y((4πµO|y − x|)−1)

∣∣∣
y=O(k)

. As a result, in using

the boundary condition (2.2) for H, we have from (3.3)

RN (x) = O
( ∑

1≤k≤N

ε4|C(k)||x−O(k)|−3
)
, x ∈ ∂Ω . (3.4)

The function RN satisfies the continuity condition

RN (x)
∣∣∣
∂ω

(j)+
ε

= RN (x)
∣∣∣
∂ω

(j)−
ε

, 1 ≤ j ≤ N . (3.5)

On the other hand, combining (3.2), (3.3) and using once again the far-field representation for

D(k)
ε , k 6= j, provides the condition

µO
∂RN

∂n
(x)
∣∣∣
∂ω

(j)+
ε

− µIj

∂RN

∂n
(x)
∣∣∣
∂ω

(j)−
ε

= −(µO − µIj )n(j) ·
{
∇wf (O(j)) + C(j) +

∑
k 6=j

1≤k≤N

(∇z ⊗∇w)G(z,w)
∣∣∣z=x
w=O(k)

P(k)
ε C(k)

}

+O(ε) +O(ε3|C(j)|) +O
( ∑

k 6=j
1≤k≤N

ε4|C(k)|
|x−O(k)|4

)
, j = 1, . . . , N .

Next, we expand the second order derivatives of G about x = O(j), to give

µO
∂RN

∂n
(x)
∣∣∣
∂ω

(j)+
ε

− µIj

∂RN

∂n
(x)
∣∣∣
∂ω

(j)−
ε

= −(µO − µIj )n(j) ·
{
∇wf (O(j)) + C(j) +

∑
k 6=j

1≤k≤N

(∇z ⊗∇w)G(z,w)
∣∣∣
z=O(j)

w=O(k)

P(k)
ε C(k)

}

+O(ε) +O(ε3|C(j)|) +O
( ∑

k 6=j
1≤k≤N

ε4|C(k)|
|O(j) −O(k)|4

)
, j = 1, . . . , N . (3.6)

Inspecting the last condition then suggests that C(k), 1 ≤ k ≤ N , should satisfy (1.5) to allow
for the removal of the leading order discrepancy in the preceding condition. Finally, combining
(1.5), (3.1) and (3.3)–(3.6) completes the proof of Lemma 2. �

4 Algebraic system and its solvability

Here we prove a result concerning the solvability of the algebraic system (1.5).
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Lemma 3 Let
ε < c d , (4.1)

where c is a sufficiently small absolute constant. Then the linear algebraic system (1.5) is
solvable and we have the estimate

N∑
j=1

|C(j)|2 ≤ Const

N∑
j=1

|∇wf (O(j))|2 . (4.2)

We postpone the proof of this Lemma, in order to rewrite the algebraic system in a way which
will simplify its representation, and we give some auxiliary results.

Representation of the algebraic system and auxiliary results

We begin by rewriting this system as follows. Set

Λ = ((∇wf (O(1)))T , . . . , (∇wf (O(N)))T ) and C = ((C(1))T , . . . , (C(N))T )T ,

and define Pε to be a 3N × 3N block diagonal matrix given by

Pε = diag{P(1)
ε , . . . ,P(N)

ε } .
Let T = [Tij ]

N
i,j=1, be another 3N × 3N matrix, with 3× 3 block entries Tij represented by

Tij =

 (∇z ⊗∇w)G(z,w)
∣∣∣
z=O(j)

w=O(k)

, when j 6= k ,

0I3 , otherwise .

Then, (1.5) takes the equivalent form:

C + TPεC = −Λ . (4.3)

In addition, we introduce the matrix Qε = diag{Q(1)
ε , . . . ,Q(N)

ε } which is a 3N × 3N block
diagonal matrix where

Q(j)
ε =

{
−P(j)

ε , if P(j)
ε is negative definite ,

P(j)
ε , if P(j)

ε is positive definite .
(4.4)

Finally, before presenting the proof of Lemma 3, we note the following result.

Lemma 4 The estimate

|〈TPεC,QεC〉| ≤ Const d−3〈QεC,QεC〉 .
holds.

The proof of the above is found in the Appendix.

Proof of Lemma 3

Taking the scalar product of (4.3) with QεC we arrive at

〈C,QεC〉+ 〈TPεC,QεC〉 = −〈Λ,QεC〉 . (4.5)

We apply the Cauchy inequality to the right-hand side to get

〈C,QεC〉+ 〈TPεC,QεC〉 ≤ 〈Λ,QεΛ〉1/2〈C,QεC〉1/2 .

Next Lemma 4 provides a lower bound for the left-hand side. Consequently we have

〈C,QεC〉1/2
(

1− const d−3 〈QεC,QεC〉
〈C,QεC〉

)
≤ 〈Λ,QεΛ〉1/2 .

As the eigenvalues of Qε are O(ε3) (see (1.2) and (4.4)), one then has

〈C,QεC〉1/2(1− Const ε3d−3) ≤ 〈Λ,QεΛ〉1/2 .

We now recall the constraint (4.1) and it then follows that the algebraic system (4.3) is solvable
and from the preceding inequality it can be determined that the estimate (4.2) holds. Thus the
proof of Lemma 3 is complete. �
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5 The energy estimate for the remainder RN

Here, in several steps, we prove the next lemma.

Lemma 5 Let
ε < c d ,

where c is a sufficiently small absolute constant. Then remainder RN , in the approximation
(1.4), satisfies the energy estimate∫

∪N
k=1ω

(k)
ε ∪ΩN

|∇RN |2 dx ≤ const
{
ε11d−11 + ε5d−3

}
‖∇wf‖2L2(Ω). (5.1)

To prove this Lemma, we first write the problem for RN and based on this we construct auxiliary
functions. These auxiliary functions are then employed to obtain an estimate for the energy of
RN in terms of norms of these functions and their derivatives in L2. We then derive estimates
of the latter norms in terms of ε and d to complete the proof of (5.1).

The problem for RN

The formal asymptotic algorithm leading to (1.4) was given in Section 3, and invertibility of
the system (1.5) was proved in the previous section. Therefore, our objective here is derive the
estimate (5.1). From (1.4), and the problems of section 2, we have that RN is a solution of the
problem

µO∆RN (x) = 0 , x ∈ ΩN and µIj∆RN (x) = 0 , x ∈ ω(j)
ε , 1 ≤ j ≤ N ,

with the exterior boundary conditions

RN (x) = −
N∑

k=1

C(k) ·
{
D(k)

ε (x)−P(k)
ε ∇yH(x,y)

∣∣∣
y=O(k)

}
, x ∈ ∂Ω ,

and the transmission conditions on the interfaces of small inclusions

RN (x)
∣∣∣
∂ω

(j)+
ε

= RN (x)
∣∣∣
∂ω

(j)−
ε

,

µO
∂RN

∂n
(x)
∣∣∣
∂ω

(j)+
ε

− µIj

∂RN

∂n
(x)
∣∣∣
∂ω

(j)−
ε

= −(µO − µIj )n(j) ·
{
∇wf (x) + C(j) − (∇x ⊗∇y)H(x,O(j))P(j)

ε C(j)

+
∑
k 6=j

1≤k≤N

∇x(C(k) · {D(k)
ε (x)−P(k)

ε ∇yH(x,O(k))})
}
, (5.2)

for 1 ≤ j ≤ N . The right-hand side of condition (5.2) also satisfies∫
∂ω

(j)
ε

{
µO

∂RN

∂n
(x)
∣∣∣
∂ω

(j)+
ε

− µIj

∂RN

∂n
(x)
∣∣∣
∂ω

(j)−
ε

}
dSx = 0 , 1 ≤ j ≤ N . (5.3)

Auxiliary functions

In order to derive the energy estimate for RN , we need to construct functions Ψk, k = 0, . . . , N,
such that the conditions

RN (x) + Ψ0(x) = 0, x ∈ ∂Ω and (5.4)

µO

[∂RN

∂n
(x) +

∂Ψj

∂n
(x)
]∣∣∣

∂ω
(j)+
ε

− µIj

[∂RN

∂n
(x) +

∂Ψj

∂n
(x)
]∣∣∣

∂ω
(j)−
ε

= 0 , for 1 ≤ j ≤ N , (5.5)
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are satisfied. In view of the boundary condition (2.2) for H, we choose Ψ0 in the form

Ψ0(x) =
∑

1≤k≤N

C(k) ·
{
D(k)

ε (x)−P(k)
ε

x−O(k)

4πµO|x−O(k)|3
}
, (5.6)

and making use of the algebraic equations (1.5), allows Ψk to take the representation

Ψk(x) = wf (x)− wf (O(k))− (x−O(k)) · ∇wf (O(k))

−C(k) ·P(k)
ε ∇yH(x,O(k)) +

∑
j 6=k

1≤j≤N

C(j) · {D(j)
ε (x)−P(j)

ε ∇yH(x,y)
∣∣∣
y=O(j)

}

−
∑
j 6=k

1≤j≤N

(x−O(k)) · (∇z ⊗∇w)G(z,w)
∣∣∣
z=O(k)

w=O(j)

P(j)
ε C(j) , k = 1, . . . , N , (5.7)

where it is easily checked that the above functions satisfy their respective boundary conditions
(5.4) and (5.5). In addition to this, we note that

∆Ψ0(x) = 0 , x ∈ ΩN and ∆Ψk(x) = µ−1
O f(x) , x ∈

N⋃
j=1

ω(j)
ε ∪ ΩN , (5.8)

where f(x) is extended by zero inside ω. Each Ψk, k = 0, . . . , N , is continuous across the

frontiers of the inclusions ω
(j)
ε , j = 1, . . . , N . Equations (5.3) and (5.5) show that∫

∂ω
(j)
ε

{
µO

∂Ψj

∂n
(x)
∣∣∣
∂ω

(j)+
ε

− µIj

∂Ψj

∂n
(x)
∣∣∣
∂ω

(j)−
ε

}
dSx = 0 , for j = 1, . . . , N . (5.9)

In what follows, we also use the notation B
(k)
r = {x : |x−O(k)| < r}, 1 ≤ k ≤ N , and V = {x :

dist(x, ∂Ω) ≤ 1/2,x ∈ Ω} to describe neighborhoods of the boundaries ∂ω
(k)
ε , 1 ≤ k ≤ N , and

∂Ω, respectively.

Auxiliary estimates for the energy for RN

The next result, which is important in proving Lemma 5, is proved in the Appendix contained
in the Appendix.

Lemma 6 The inequality

‖∇RN‖2L2(∪N
k=1ω

(k)
ε ∪ΩN )

≤ const
{
‖Ψ0‖2L2(V) + ‖∇Ψ0‖2L2(V) +

∑
1≤k≤N

‖∇Ψk‖2L2(B
(k)
3ε )

}
.

holds.

It then remains to estimate the terms in the right-hand side of the inequality in Lemma 6.
Employing the representations (5.6) and (5.7), from Lemma 6 we obtain∫

∪N
k=1ω

(k)
ε ∪ΩN

|∇RN |2 dx ≤ const {‖Ψ0‖2L2(V) + ‖∇Ψ0‖2L2(V) +
∑

1≤j≤3

T (j) +
∑

1≤j≤3

U (j)} ,

(5.10)
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where

T (1) =
∑

1≤j≤N

∫
B

(j)
3ε \ω

(j)
ε

|∇wf (x)−∇wf (O(j))|2 dx ,

T (2) =
∑

1≤j≤N

∫
B

(j)
3ε \ω

(j)
ε

∣∣ ∑
k 6=j

1≤k≤N

∇(C(k) · {D(k)(x)−P(k)
ε ∇yH(x,y)

∣∣∣
y=O(k)

})

−
∑
k 6=j

1≤k≤N

(∇z ⊗∇w)G(z,w)
∣∣∣
z=O(j)

w=O(k)

P(k)
ε C(k)

∣∣2 dx
and T (3) =

∑
1≤j≤N

∫
B

(j)
3ε \ω

(j)
ε

|∇(C(j) ·P(j)
ε ∇yH(x,y)

∣∣∣
y=O(j)

)|2 dx .

Here, U (j), j = 1, 2, 3 are given by T (j), j = 1, 2, 3, with the domains of integration B
(k)
3ε \ω

(k)
ε

replaced ω
(k)
ε , j = 1, . . . , N .

Estimates for T (j), 1 ≤ j ≤ 3

We first estimate the terms involving integrals which are concentrated in the vicinity of the
inclusions. Taylor’s expansion, shows that the term T (1) does not exceed

T (1) ≤ const ε5
N∑

k=1

∣∣∣ ∂2wf

∂xi∂xj
(O(k))

∣∣∣2 ,
and harmonicity of wf in a neighbourhood of ω̄, allows one to use the local regularity result for
harmonic functions [9] to obtain

T (1) ≤ const ε5d−3‖∇wf‖2L2(Ω) . (5.11)

The asymptotics of the dipole fields (see (2.5)) at infinity leads to∑
k 6=j

1≤k≤N

∇(C(k) · {D(k)(x)−P(k)
ε ∇yH(x,y)

∣∣∣
y=O(k)

})

=
∑
k 6=j

1≤k≤N

(∇z ⊗∇w)G(z,w)
∣∣∣z=x
w=O(k)

P(k)
ε C(k) +O

( ∑
k 6=j

1≤k≤N

ε4|C(k)|
|x−O(k)|4

)
.

This, along with Taylor’s expansion of the second order derivatives of G(x,O(k)) about x =
O(j), j 6= k, shows T (2) is majorized by

const ε8
∑

1≤j≤N

∫
B

(j)
3ε \ω

(j)
ε

∣∣∣ ∑
k 6=j

1≤j≤N

|C(k)||O(j) −O(k)|−4
∣∣∣2

≤ const ε11
∑

1≤p≤N

|C(p)|2
∑

1≤j≤N

∑
k 6=j

1≤k≤N

|O(j) −O(k)|−8

where the Cauchy inequality and the fact the volume of B
(j)
3ε \ω

(j)
ε , 1 ≤ j ≤ N , is O(ε3), have

been used in the derivation of the right-hand side of this estimate. The last estimate and
Lemma 3 yield the inequality

T (2) ≤ const
ε11

d9
‖∇wf‖2L2(Ω)

∑
1≤j≤N

∑
k 6=j

1≤k≤N

d6

|O(j) −O(k)|8 .
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where the double sum appearing in the above right hand side can be estimated via a double
integral over the set E = {(X,Y) : X,Y ∈ ω, |X−Y| > d} and then we have

T (2) ≤ const
ε11

d9
‖∇wf‖2L2(Ω)

∫∫
E

dX dY

|X−Y|8 ≤ const
ε11

d11
‖∇wf‖2L2(Ω) . (5.12)

Since the dipole matrix P(j)
ε is O(ε3) and the derivatives of H are bounded in ω we have

T (3) ≤ const ε9
∑

1≤j≤N

|C(j)|2 ≤ const ε9d−3‖∇wf‖2L2(Ω) . (5.13)

Completion of the proofs of Lemma 5 and Theorem 1

Repeating similar steps as in the derivation of (5.11)–(5.13), we can write the estimates

U (1) ≤ const ε5d−3‖∇wf‖2L2(Ω) , U (2) ≤ const ε11d−11‖∇wf‖2L2(Ω) ,

U (3) ≤ const ε9d−3‖∇wf‖2L2(Ω) .

 (5.14)

Next, we estimate the terms containing integrals over neighborhoods of the exterior boundary
∂Ω. Owing to Lemma 1 we have

‖Ψ0‖2L2(V) ≤ const ε8

∫
V

∣∣∣ ∑
1≤k≤N

|C(k)||x−O(k)|−3
∣∣∣2 dx

≤ const ε8
∑

1≤k≤N

|C(k)|2
∑

1≤k≤N

∫
V

dx

|x−O(k)|6 ≤ const ε8d−6‖∇wf‖2L2(Ω) .(5.15)

Finally, we address the second term in the right-hand side of (5.10). Similar reasoning which
led to (5.15) gives

‖Ψ0‖2L2(V) ≤ const ε8
N∑

k=1

|C(k)|2
∑

1≤k≤N

∫
V

dx

|x−O(k)|8 ≤ const ε8d−6‖∇wf‖2L2(Ω) .

This together with (5.11)–(5.15) and (5.10) gives

µO

∫
ΩN

|∇RN |2 dx +
∑

1≤j≤N

µIj

∫
ω

(j)
ε

|∇RN |2 dx ≤ const {ε11d−11 + ε5d−3}‖∇wf‖2L2(Ω)

completing the proof of (5.1) and Theorem 1. �

6 The infinite space with a cluster of small inclusions

The theoretical results of sections 1–5 can be extended to an infinite medium containing a cloud
ω of inclusions. In this scenario, Ω = R3 and the regular part of Green’s function H ≡ 0.

Here, we seek the approximation of the following boundary problem

µO∆uN (x) = f(x) , x ∈ R3\ ∪Nk=1 ω
(k)
ε ,

µIj∆uN (x) = 0 , x ∈ ω(j)
ε , 1 ≤ j ≤ N ,

uN (x)
∣∣∣
∂ω

(j)+
ε

= uN (x)
∣∣∣
∂ω

(j)−
ε

, 1 ≤ j ≤ N ,

µO
∂uN
∂n

(x)
∣∣∣
∂ω

(j)+
ε

= µIj

∂uN
∂n

(x)
∣∣∣
∂ω

(j)−
ε

, 1 ≤ j ≤ N ,

uN (x)→ φ(x) , as |x| → ∞ ,


(6.1)
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where f(x) satisfies the conditions outlined in section 1, and now∫
R3

f(x) dx = µO

∫
R3

∆φ(x) dx . (6.2)

To construct the approximation for uN , we require the field wf which now satisfies equation
(2.1) in R3 and the condition

wf (x)→ φ(x) , as |x| → ∞ .

We have the following theorem.

Theorem 2 Let
ε < c d ,

where c is a sufficiently small absolute constant. Then the solution uN (x) of problem (6.1)
admits the asymptotic representation

uN (x) = wf (x) +
∑

1≤k≤N

C(k) ·D(k)
ε (x) +RN (x) , (6.3)

where C(k) = (C
(k)
1 , C

(k)
2 , C

(k)
3 )T , 1 ≤ k ≤ N , satisfy the solvable linear algebraic system

∇wf (O(j)) + C(j) +
∑
k 6=j

1≤k≤N

(∇z ⊗∇w)((4π|z−w|)−1)
∣∣∣
z=O(j)

w=O(k)

P(k)
ε C(k) = O , (6.4)

for 1 ≤ j ≤ N . The remainder RN satisfies the energy estimate∫
∪N

k=1ω
(k)
ε ∪ΩN

|∇RN |2 dx ≤ const
{
ε11d−11 + ε5d−3

}
‖∇wf‖2L2(R3)

The proof of the above theorem follows closely that presented in sections 1–5 with obvious
modifications. �

7 Connection to an auxiliary problem for the cluster of
inclusions

In this section, we derive the auxiliary problem, which can be used to represent the coefficients
appearing in the asymptotic approximation (1.4) that are solutions to the algebraic system
(1.5), in the case when a periodic cloud is contained inside a body. We begin with a description
of the geometry for a periodic cloud.

7.1 Geometric assumptions for a periodic cluster

We now divide the cloud ω up into many small cubes Q
(j)
d = O(j) +Qd, with Qd = {x : −d/2 ≤

xj ≤ d/2, 1 ≤ j ≤ 3}, where now O(j), 1 ≤ j ≤ N are arranged periodically inside ω. We

assume ε and d satisfy the constraint (1.3) and that for all j, ω
(j)
ε ⊂ Q

(j)
d . In this case, the

inclusions are constructed from the same set Fε, such that ω
(j)
ε = O(j) + Fε, 1 ≤ j ≤ N . Let

Ω\ ∪Nj=1 ω
(j)
ε be occupied by a material with thermal diffusivity µO. Each small inclusion is

assumed to contain the same material, i.e. µIk = µI , 1 ≤ k ≤ N . In this case, the polarization

tensors for the inclusions are identical and P(k)
ε = Pε, 1 ≤ k ≤ N . Here, the matrix Pε can be

(i) negative definite if µO > µI , (ii) or positive definite µO < µI , (see Lemma 1 of section 2).
We assume there exists the following limit

Q = lim
d→0

d−3Pε . (7.1)
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Here we show that if N →∞ (d→ 0 and subsequently ε→ 0) and we have

lim
d→0

C(j) = −∇û(x) , (7.2)

then û is the solution of the auxiliary problem

−µO∆û(x) + χω(x)∇ ·Q∇û(x) + f(x) = 0 , for x ∈ Ωω ∪ ω , (7.3)

where Ωω = Ω\ω and χω is the characteristic function of ω.

7.2 Connection between algebraic system and auxiliary problem

We take the algebraic system (1.5) and rewrite this as

∇wf (O(j)) + C(j) +
∑
k 6=j

1≤k≤N

(∇z ⊗∇w)G(z,w)
∣∣∣
z=O(j)

w=O(k)

(d−3P(k)
ε )C(k)d3 = O .

for 1 ≤ j ≤ N . If N is sufficiently large the above sum can be written as the integral over

ω\Q(j)
d we obtain

∇wf (x)−∇û(x)−
∫
ω\Q(j)

d

(∇z ⊗∇w)G(z,w)
∣∣∣ z=x
w=y

Q∇û(y)dy = O , for x ∈ ω ,

where (7.1) and (7.2) have been implemented. In passing to the limit as N → ∞ we have
d → 0 and the above integral becomes an integral over ω that can be interpreted in the sense
of distributions. Then, we apply divergence throughout the resulting equation, and multiply
through by µO, to obtain

−µO∆û(x) + f(x) +

∫
ω

∇wδ(x−w)
∣∣∣
w=y

·Q∇û(y)dy = 0 , for x ∈ ω ,

from problems 1 and 2 of section 2. Next in assuming x ∈ Ωω ∪ ω we obtain (7.3).

7.3 Auxiliary problem

Above, we derived the auxiliary equation for the body Ω containing a large periodic cluster of
inclusions inside ω. We now state the transmission problem for an effective medium representing
the body with a periodic cluster of inclusions.

The governing equation for û in Ωω is

µO∆û(x) = f(x) , for x ∈ Ωω , (7.4)

whereas in ω we have
∇ · (µOI−Q)∇û(x) = 0 , for x ∈ ω , (7.5)

with I being the 3× 3 identity matrix.
On the exterior ∂Ω, we supply the Dirichlet condition

û(x) = φ(x) , x ∈ ∂Ω , (7.6)

and on the interface ∂ω we set the effective transmission conditions:

û(x)
∣∣∣
∂ω+

= û(x)
∣∣∣
∂ω−

, µO
∂û

∂n
(x)
∣∣∣
∂ω+

= µO
∂û

∂n
(x)
∣∣∣
∂ω−
− n ·Q∇û(x)

∣∣∣
∂ω−

, (7.7)

where n is the unit-outward normal to ω. The matrix

µOI−Q . (7.8)

appearing in (7.5) is the effective stiffness matrix for the periodic cluster ω. Here, in general,
the equation (7.5) may describe an anisotropic medium inside ω.

The problem (7.4)–(7.7) is useful in the case when one has a periodic cluster arranged inside
ω and N is large. As an alternative, one can then forego solving a 3N × 3N algebraic system
(1.5) involving the unknown coefficients C(j) and make use of the approximation

C(j) ' −∇û(O(j)) , 1 ≤ j ≤ N . (7.9)
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7.4 Illustrative examples for clusters with simple geometries

Effective stiffness matrix for large periodic clusters of spherical inclusions

In the case when Fε is a sphere, contains a material with thermal diffusivity µI and has radius
ε, the polarization tensor is diagonal and has the form

Pε = 4πε3µO
µI − µO

µI + 2µO
I .

If we set ε = bd, with b being sufficiently small, then from (7.1), we obtain

Q = 4πb3µO
µI − µO

µI + 2µO
I .

The effective stiffness matrix (see (7.8)) then takes the form µ̂II where µ̂I is the effective thermal
diffusivity of the cluster:

µ̂I = µO

(
1− 4πb3

µI − µO

µI + 2µO

)
. (7.10)

Note that in this case the governing equation (7.5) inside the cloud is the Laplace equation and
the transmission conditions in (7.7) become

û(x)
∣∣∣
∂ω+

= û(x)
∣∣∣
∂ω−

, µO
∂û

∂n
(x)
∣∣∣
∂ω+

= µ̂I
∂û

∂n
(x)
∣∣∣
∂ω−

.

We investigate this case further in the numerical illustrations in the next section. Next, we
show that in particular cases, one can construct the explicit solution for û.

Auxiliary problem a spherical inclusion ω in the infinite space

The results of this section also apply to the case when Ω = R3 discussed in section 6 (see
also Theorem 2 and the algebraic system (6.4)). The governing equations for the auxiliary
problem, connected with the algebraic system (6.4), are then (7.4), (7.5) and (7.7), which are
also supplied with a condition at infinity:

û(x)→ φ(x) , as |x| → ∞ .

In addition, φ(x) satisfies the condition (6.2) given in section 6.
Here we focus on the case when φ(x) = µ−1

O x1 and we assume the domain ω is a sphere
of radius r, with the centre at the origin. In addition we set f(x) ≡ 0. We consider a large
periodic arrangement of spherical inclusions embedded inside this sphere, which are occupied
by a material of thermal diffusivity µI . In this case, following the procedure of the previous
section, one can consider a problem for a spherical inclusion ω, occupied by a material having
an effective thermal diffusivity µ̂I given in (7.10).

Therefore, we look for a solution û to the transmission problem

µO∆û(x) = 0 , x ∈ R3\ω and µ̂I∆û(x) = 0 , x ∈ ω,
û(x)

∣∣∣
∂ω+

= û(x)
∣∣∣
∂ω−

, µO
∂û

∂n
(x)
∣∣∣
∂ω+

= µ̂I
∂û

∂n
(x)
∣∣∣
∂ω−

,

û(x) = µ−1
O x1 +O(|x|−2) as |x| → ∞ .

 (7.11)

The solution û can then be constructed in the explicit form as

û(x) = µ−1
O x1 −Dω(x) , (7.12)

where the function Dω is given by

Dω(x) =


(µ̂I − µO)r3

µO(µ̂I + 2µO)

x1

|x|3 if x ∈ R3\ω ,

(µ̂I − µO)

µO(µ̂I + 2µO)
x1 if x ∈ ω .

(7.13)

We revisit this problem in the numerical simulations presented in the next section.
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8 Numerical illustrations

Here, we produce numerical computations that illustrate the effectiveness of the asymptotic
approach investigated in this article. We consider the case of a spherical body, containing
a cluster of small spherical inclusions described in section 8.1. The model solutions used in
the asymptotic formula of Theorem 1 are easily constructed in this case and they are also
presented in section 8.1. In particular, this consequently allows us to compare our results
with benchmark finite element computations as discussed in section 8.2. Further, we end this
section by comparing the asymptotic approximation with the solution of the auxiliary problem
in section 8.3, for a large periodic cluster of small spherical inclusions.

8.1 Computational geometry and model solutions

Let Ω be the sphere of radius R with centre at the origin and ω
(j)
ε be small spherical inclusions

having centre at O(j) and radius a
(j)
ε .

In this case, ΩN ∪ ω is a spherical body containing a region ω with spherical inclusions. In
section 8.2, ω is considered to be a cube and for this particular configuration we define

ε = R−1 max
k

a(k)
ε and d = R−1 min

1≤i,j≤N
dist(O(j),O(i)) . (8.1)

In what follows, we introduce the model solutions to problems discussed in section 2, for
spherical geometries. We now give the fields associated with the sphere Ω.

Solutions to model problems in Ω

Solution wf to the unperturbed problem. Let wf solve problem 1 in section 2, where φ(x) = 0
and f(x) is taken as

f(x) =

{
R− rf if |x| < rf
0 otherwise .

(8.2)

Note that diam(supp f) = 2rf . In this case, wf has the form:

wf (x) =


1

6µO

(
− |x|

3

2
+ rf |x|2 −

r3
f (2R− rf )

2R

)
, if |x| < rf ,

r4
f

12µO

( 1

R
− 1

|x|
)
, otherwise.

Green’s function in Ω. For the sphere Ω, occupied by a material with thermal diffusivity
µO, the Green’s function for the Dirichlet problem inside this set can be obtained from (2.3),
where the regular part is given as:

H(x,y) =
1

4πµO

R

|y|
1

|x− y| , with y =
R2

|y|2 y .

Dipole fields for the small spherical inclusion ω
(k)
ε , 1 ≤ k ≤ N

We consider a spherical inclusion ω
(k)
ε , with centre O(k), radius a

(k)
ε and we assume this contains

a material with thermal diffusivity µIk . The inclusion is embedded in the infinite space which

contains a material of thermal diffusivity µO. The vector function D(k)
ε , whose components are

the dipole fields for ω
(k)
ε , takes the form

D(k)
ε (x) =


(µIk − µO)(a

(k)
ε )3

µIk + 2µO

x−O(k)

|x−O(k)|3 if x ∈ R3\ω(k)
ε ,

(µIk − µO)

µIk + 2µO
(x−O(k)) if x ∈ ω(k)

ε .
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Figure 2: (a) A cluster of 27 inclusions. The colors shown indicate the normalised thermal
diffusivities of the materials contained in the inclusion having the values 0.74 (green), 1.1
(blue), 0.35 (yellow), 0.54 (light blue) and 0.9 (purple). Here, those which are red correspond
to thermally insulated inclusions (with zero thermal diffusivity). Properties for each inclusion
can be found in Table 1. (b) The slice plot of the solution of the problem outlined in sections
8.1 and 8.2, for a spherical body containing the arrangement of inclusions shown in (a).

The polarization tensor for the small sphere is then

P(k)
ε = 4π(a(k)

ε )3µO
µIk − µO

µIk + 2µO
I .

Note, in accordance with section 2, this matrix is negative (positive) definite when µO > µIk

(µO < µIk).

8.2 Comparison of asymptotic approximation with the finite element
method

For the comparison with the benchmark finite element computations in COMSOL, we consider
a sphere Ω having R = 7. The support of the heat source f is contained inside the sphere of
radius rf = 1.5.

The computations presented in the following sections, concern the normalised function ūN =
µOuN , which corresponds to the solution of (1.1), with µO replaced by 1 and the thermal
diffusivity µIk replaced by the normalised quantity µ̄Ik = µIk/µO, 1 ≤ k ≤ N . In what follows,
we omit the bar denoting the normalised quantities for ease of notation.

Inside the cluster, we assume individual inclusions are either thermally insulated (the case
when the thermal diffusivity inside an inclusion is set to zero) or they contain one of the
materials having non-zero thermal diffusivities found in Table 1.

We arrange small spherical inclusions inside the cube ω with centre (2.5, 2.5, 2.5), having side
length 2, according to the data in Table 1. A visual representation of the cluster, incorporating
the data in Table 1, is also shown in Figure 2(a). For this configuration of the cluster, in
accordance with Table 1 and (8.1), ε = 0.0343 and d = 0.0954.

Discussion of results

The numerical solution for uN , produced by the method of finite elements in COMSOL, is
shown as a slice plot in Figure 2(b). Here, the effect of the non-zero support of the function f
(in (8.2)) can be clearly seen inside the sphere of radius 1.5. This computation took 1 hour 8
min and required a calculation involving 4179829 degrees of freedom.

Next we consider cut-planes that intersect the cluster and are defined by x3 = 1.83, x3 = 2.5
and x3 = 3.16. The quantity |∇uN | computed using the numerical solution in COMSOL, along
these cut-planes in the vicinity of the cluster, is supplied in Figures 3(a) for x3 = 1.83, 3(c)
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Figure 3: Computations for |∇uN |, based on COMSOL results, in the vicinity of the cluster
shown in Figure 2(a) along cut-planes (a) x3 = 1.83, (c) x3 = 2.5 and (e) x3 = 3.16. For
comparison, the computations based on the asymptotic formula (1.4) are given in the figures
on the right-hand side for (b) x3 = 1.83, (d) x3 = 2.5 and (f) x3 = 3.16.
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Table 1: Data for inclusions contained in the cubic cloud ω.

Centre Radius
Normalised
Diffusivity

Centre Radius
Normalised
Diffusivity

(2.56, 2.5, 1.83) 0.24 None (3.12 3.15 3.16) 0.2 1.1
(1.83,2.48, 3.16) 0.15 None (1.78 2.48 2.5) 0.15 0.35
(2.49, 3.19, 3.16) 0.17 None (1.84, 3.18, 2.5) 0.17 0.35
(1.82, 2.52, 1.83) 0.21 0.74 (2.54, 2.51, 2.5) 0.24 0.35
(2.43, 3.18, 1.83) 0.17 0.74 (3.11, 1.83, 3.16) 0.2 0.35
(2.49, 3.19, 2.5) 0.2 0.74 (3.11, 2.51, 3.16) 0.16 0.35
(2.53, 2.49, 3.16) 0.17 0.74 (1.77, 3.19, 1.83) 0.14 0.54
(3.13 2.47 1.83) 0.16 1.1 (3.22, 1.85, 1.83) 0.24 0.54

(2.45, 1.86, 3.16) 0.22 1.1 (1.8, 1.86, 2.5) 0.18 0.54

Centre Radius
Normalised
Diffusivity

(3.13, 1.8, 2.5) 0.24 0.54
(3.15 2.47 2.5) 0.22 0.54

(1.81, 1.82, 1.83) 0.18 0.9
(2.48, 1.81, 1.83) 0.16 0.9
(3.22, 3.19, 1.83) 0.19 0.9
(2.44, 1.83, 2.5) 0.23 0.9
(3.16, 3.16, 2.5) 0.18 0.9
(1.83, 1.84, 3.16) 0.18 0.9
(1.85, 3.14, 3.16) 0.23 0.9

for x3 = 2.5 and 3(e) for x3 = 3.16. The corresponding computations for |∇uN | based on the
derivatives of the leading order asymptotics of (1.4) are shown in Figures 3(b), 3(d) and 3(f).

In this case, COMSOL will compute |∇uN | by differentiating numerically, and hence when
fields are rapidly varying (for instance inside or near the cluster), one would expect some
inaccuracies in the numerical results. On the other hand, formula (1.4) is uniform everywhere
inside the whole domain, and in particular, uniform up to and including the boundaries of the
small inclusions. This formula can be differentiated and used to give an accurate depiction of
the temperature gradient inside the cluster. Here, the results produced in COMSOL were based
on a computationally intensive simulation and required an extremely fine mesh. However, we
can still find non-smooth behaviour in the computations for the temperature gradient based
on the finite element calculations. For instance, in Figure 3(a) at approximately x1 = 3.6
and x2 = 2 the finite element calculations appear to vary in a non-smooth fashion, indicating
some slight numerical error. At this point, in Figure 3(b), the asymptotic formula predicts a
much smoother behaviour in the temperature gradient field. Further refinement of the mesh in
COMSOL would allow one to recover the accurate behaviour of the temperature gradient with
finite elements, which would simultaneously require greater computing power.

We note that there is an excellent qualitative agreement between the computations along
the cut-planes, even in this case where it is apparent the inclusion size is competing with the
separation of the inclusions. In fact, the average absolute error between the results shown in
(i) Figures 3(a) and 3(b) is 3.9× 10−5, (ii) Figures 3(c) and 3(d) is 4.4× 10−5 and (iii) Figures
3(e) and 3(f) is 2.1× 10−5. Thus, there is an outstanding agreement between the results based
on the numerical computations in COMSOL and those from the asymptotic approach.

Since the asymptotic formula (1.4) predicts the correct behaviour of the temperature gra-
dient when compared with independent finite element computations, one can use this formula
for more complicated, larger clusters of spherical inclusions. For N = 64, the corresponding
computations for |∇uN | are shown in Figure 1. There, one would expect a more rapid variation
of the temperature gradient in a neighborhood containing the cluster. In this case, COMSOL
was unable to compute the solution to this problem.
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Figure 4: Clusters of spherical inclusions contained in a sphere, as described in section 8.3.1.
Here we show the cases (a) N = 304 (N1 = 1000), (b) N = 2284 (N1 = 5832) and (c) N = 5880,
(N1 = 13824). Each inclusion is occupied by a material with thermal diffusivity of 0.35.

8.3 Example: Computations for an infinite medium with a large pe-
riodic cluster of inclusions

Now we consider an infinite medium containing a sphere with a periodic arrangement of many
small spherical inclusions. We take Ω = R3 and the domain ω as the sphere of radius 1/2.

Inside ω, we periodically distribute N small identical spherical inclusions ω
(j)
ε .

8.3.1 Geometry of the spherical cluster

We consider the cube Q having side length 1 and centre at the origin. We divide this cube into

N1 = n3 cubes, n ∈ Z, n ≥ 2, denoted by Q
(j)
d , and this is described as follows. We introduce

the set Σ as

Σ :=
{

Oijk : Oijk =
(2i− 1− n

2n
,

2j − 1− n
2n

,
2k − 1− n

2n

)T
, 1 ≤ i, j, k ≤ n

}
,

and we allow P(j) ∈ Σ, 1 ≤ j ≤ N1 such that dist(P(j),P(k)) 6= 0, for j 6= k, 1 ≤ j, k ≤ N1.

Setting d = 1/N
1/3
1 , we then have Q

(j)
d = P(j) + Qd, with P(j) being the centre of the cube

Q
(j)
d , 1 ≤ j ≤ N1.

To create the spherical cluster, we define the collection

Π :=
{

P(j) : Q
(j)
d = P(j) +Qd and Q

(j)
d ⊂ ω for 1 ≤ j ≤ N1

}
,

we say this set has cardinality |Π| = N . Moreover, let the spherical inclusions be given by the

sets ω
(j)
ε = O(j) + Fε, where Fε is a ball of radius ε and centre at the origin. Here, O(j) ∈ Π,

1 ≤ j ≤ N , such that dist(O(j),O(k)) 6= 0, for j 6= k, 1 ≤ j, k ≤ N . In addition, the parameters
ε and d are related by

ε

d
= b =

( 3N1

4πN
β
)1/3

, (8.3)

where β < πN/6N1 (so that b < 1/2, see section 7.4). One can verify that as N1 →∞ that

N1

N
→ meas(Q)

meas(ω)
=

6

π
,

with meas(A) being the three-dimensional measure of the set A. Typical arrangements of
inclusions created according to the description provided here can be found in Figure 4 for
N = 304 (N1 = 1000), N = 2284 (N1 = 5832) and N = 5880 (N1 = 13824). In what follows,
we assume the inclusions are occupied by a material with normalised thermal diffusivity equal
to 0.35, whereas the ambient matrix has thermal diffusivity equal to 1.
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8.3.2 Governing equations for the infinite medium with a large spherical cluster

We consider the boundary value problem:

∆uN (x) = 0 , x ∈ R3\ ∪Nk=1 ω
(k)
ε , (8.4)

µI∆uN (x) = 0 , x ∈ ω(j)
ε , 1 ≤ j ≤ N , (8.5)

uN (x)
∣∣∣
∂ω

(j)+
ε

= uN (x)
∣∣∣
∂ω

(j)−
ε

, 1 ≤ j ≤ N , (8.6)

∂uN
∂n

(x)
∣∣∣
∂ω

(j)+
ε

= µI
∂uN
∂n

(x)
∣∣∣
∂ω

(j)−
ε

, 1 ≤ j ≤ N , (8.7)

where at infinity we prescribe

uN (x) = x1 +O(|x|−2) , for |x| → ∞ . (8.8)

Here, µI = 0.35 and we have used the normalisation of section 8.2.
The results of section 6 are readily adapted to this particular boundary value problem (8.4)–

(8.8), by taking wf (x) = x1. According to the algebraic system (6.4) and the procedure followed
in section 7 (see (7.9) and section 7.4), the coefficients C(j) as N →∞ (and d→ 0) admit the
form

Ĉ = lim
d→0

Cj = −∇û(O(j)) = −∇(x1 −Dω(x))
∣∣∣
x=O(j)

, (8.9)

where û is the solution to the auxiliary problem stated in section 7.4.

8.3.3 Numerical comparison of asymptotic approximation with the solution to the
auxiliary problem

We set x2 = x3 = 0, β = 0.09 (see (8.3)). For various values of N and for −1.5 ≤ x1 ≤ 1.5,
we plot the asymptotic approximation for the normalised functions uN − wf (see (8.4)–(8.8)),
using (6.3) with wf = x1. The line defined by −1.5 ≤ x1 ≤ 1.5, x2 = x3 = 0 passes through the
spherical cluster ω described in section 8.3.1, but does not intersect any of the inclusions. If x1

increases, we see in Figure 5(a) that as we pass through ω (−0.5 ≤ x1 ≤ 0.5), and in particular
the origin, the field undergoes a change in sign. Moreover, between −0.5 ≤ x1 ≤ 0.5, one can
see that the field oscillates and the number of oscillations depends on the number of inclusions
in the cloud, whereas outside this region the field uN − wf decays as expected.

The function û − x1, where û is defined by (7.12)-(7.13) (see section 7.4), is also shown in
Figure 5(a). Note this field does not oscillate inside the region −0.5 ≤ x1 ≤ 0.5, and does not
take into account the presence of individual inclusions. It is apparent that as N increases, we
see the term uN − wf converges to the function û− x1.

On the other hand, as mentioned before, the solution to problem (7.11) is useful in that
it provides an approximation for the coefficients C(j) when N is large and can be used in
the asymptotic approximation (6.3), as opposed to solving the algebraic system (6.4) of size
3N × 3N , which can be computationally intensive.

Indeed, using (8.9) in place of C(j) in (6.3), for N = 5880 (N1 = 13824) we plot the term
uN−wf in Figure 5(b). It is observed that the resulting plot agrees very well with results based
on (6.3), where the coefficients are computed from solving the system (6.4). The procedure
demonstrated here, works well in the case when periodicity is prevalent in the cluster. For
non-periodic clusters, the solution to the auxiliary problem cannot be used to calculate C(j),
1 ≤ j ≤ N . However, in this case, the asymptotic approximation (6.3) with the coefficients
are determined from (6.4) can handle this situation and takes into account a variety of small
inclusions, whose shape and size could be different, along with the material inside each inclusion.

9 Conclusions and discussion

Here, we have constructed and justified a uniform asymptotic approximation for the solution to
a transmission problem in a body containing many inclusions. The approximation contains a
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Figure 5: Approximation to uN − wf plotted for −1.5 ≤ x1 ≤ 1.5, x2 = x3 = 0. In (a),
this term is shown for N = 304, 2282 and 5880, (N1 = 1000, 5832 and 13284, respectively).
In addition in (a) we supply the plot of û − wf (see (7.12), (7.13) and the auxiliary problem
(7.11)), which corresponds to the case “N →∞” and is shown by the red curve. In (b), we plot
the asymptotic approximation (6.3), (6.4) to uN − wf (blue line) and for comparison we show
(6.3) where C(j), 1 ≤ j ≤ N , are computed using the right-hand side of (8.9) (pink line). The
computations in (b) are carried out for the case N = 5880 (N1 = 13284).

term which characterises the mutual interaction of the inclusions within the cluster. This term
makes use of the dipole fields of individual inclusions and weights which are solutions of an
algebraic system involving and integral characteristics for the inclusions. Such a term does not
appear in approximations for dilute composites. We note the approximation developed here
serves the cases when there is a dilute collection of inclusions and when there are non-periodic
arrangements of arbitrary small inclusions in a body, with ε < const d, for a sufficiently small
constant.

The approximation has been shown to agree well with independent finite element compu-
tations in COMSOL and is capable of producing an accurate approximation of the solution
to the transmission problem for a body with a large cluster, where finite element packages
may struggle. In particular, the algebraic system governing the interaction of the inclusions
within the cluster has been linked to an auxiliary problem for an effective inclusion in a body,
that relies on the cloud of inclusions being periodic. A solution of this problem does not take
into account the oscillatory behaviour of the field in the vicinity of the defects in the cluster.
However, this solution provides an effective alternative to the computation of the weights from
the algebraic system, when the number of periodically placed inclusions is large. For large
non-periodic arrangements of inclusions, this approach is not applicable, but the asymptotic
formula constructed here remains efficient in this case.
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Appendix: Proofs of auxiliary results

Before presenting the proof of Lemma 4 (see section 4), we introduce an additional auxiliary
result which we shall use.

First we introduce the piece-wise constant functions Ξ and Θ as

Ξ(x) =

{
P(j)

ε C(j) , for x ∈ B(j)
d/4 , j = 1, . . . , N ,

O , otherwise,
(A.1)

and

Θ(x) =

{
Q(j)

ε C(j) , for x ∈ B(j)
d/4 , j = 1, . . . , N ,

O , otherwise.
(A.2)

We have the next result.

Lemma 7 The identity∑
1≤i,j≤3

∫
Ω

Θi(Z)
∂

∂Zi

∫
Ω

∂

∂Wj
G(Z,W)Ξj(W) dWdZ = 0 . (A.3)

holds.

Proof. Define

g(Z) =
∑

1≤j≤3

∫
Ω

∂

∂Wj
G(Z,W)Ξj(W) dW , (A.4)

so that the integral in the left-hand side of (A.3) becomes∑
1≤i≤3

∫
Ω

Θi(Z)
∂g(Z)

∂Zi
dZ . (A.5)

The function g(Z) of (A.4) satisfies the problem

g(Z) = 0 , Z ∈ ∂Ω .

We apply Laplace’s operator to g (see (A.4)) in Ω, to give

∆Zg(Z) = −
∑

1≤j≤3

∫
Ω

Ξj(W)
∂

∂Wj
(δ(Z−W)) dW

=
∑

1≤k≤N

∑
1≤j≤3

∫
B

(k)

d/4

(P(k)
ε C(k))j

∂

∂Wj
(δ(W − Z)) dW

where the definitions of G and Ξ have be implemented in the derivation of the last result. Next,

it remains to apply integration by parts inside B
(k)
d/4 to the integrals in the above right-hand side

and consider Z ∈ Ω. Thus, ∆g(Z) = 0 almost everywhere in Ω and using Green’s representation
for the function g(Z) we deduce g(Z) = 0, Z ∈ Ω. Further, consulting (A.5) then gives (A.3).
Thus, the proof of Lemma 7 is complete. �

Proof of Lemma 4

The inner product 〈TPεC,QεC〉 appearing in (4.5) can be written as

〈TPεC,QεC〉 =
∑

1≤j≤N

(Q(j)
ε C(j))T

∑
k 6=j

1≤k≤N

(∇z ⊗∇w)G(z,w)
∣∣∣
z=O(j)

w=O(k)

(P(k)
ε C(k)) . (A.6)

The mean value theorem for harmonic functions leads to

(∇z ⊗∇w)G(z,w)
∣∣∣
z=O(j)

w=O(k)

=
48

πd3

∫
B

(k)

d/4

(∇z ⊗∇W)G(z,W)
∣∣∣
z=O(j)

dW .
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Placing this inside the inner sum of (A.6) gives

〈TPεC,QεC〉

=
48

πd3

∑
1≤j≤N

(Q(j)
ε C(j))T

∑
k 6=j

1≤k≤N

∫
B

(k)

d/4

(∇z ⊗∇W)G(z,W)
∣∣∣
z=O(j)

dW (P(k)
ε C(k)) .

A second application of the mean value theorem then yields:

〈TPεC,QεC〉

=
482

π2d6

∑
1≤j≤N

∑
1≤k≤N

(Q(j)
ε C(j))T

∫
B

(j)

d/4

∫
B

(k)

d/4

(∇Z ⊗∇W)G(Z,W) dWdZ (P(k)
ε C(k))

− 482

π2d6

∑
1≤j≤N

(Q(j)
ε C(j))T

∫
B

(j)

d/4

∫
B

(j)

d/4

(∇Z ⊗∇W)G(Z,W) dWdZ(P(j)
ε C(j)) .

(A.7)

Integration by parts shows that∫
B

(j)

d/4

(∇Z ⊗∇W)G(Z,W) dW =

∫
∂B

(j)

d/4

(n(j) ⊗∇Z)TG(Z,W) dSW ,

where n(j) is the unit-outward normal to B
(j)
d/4. Here, both expressions either side of the above

equation are harmonic for Z ∈ B
(j)
d/4, and as a result (A.7), due to the mean value theorem,

becomes

〈TPεC,QεC〉

=
482

π2d6

∑
1≤j≤N

∑
1≤k≤N

(Q(j)
ε C(j))T

∫
B

(j)

d/4

∫
B

(k)

d/4

(∇Z ⊗∇W)G(Z,W) dWdZ (P(k)
ε C(k))

− 48

πd3

∑
1≤j≤N

(Q(j)
ε C(j))T

∫
∂B

(j)

d/4

(∇z ⊗∇W)G(z,W)
∣∣∣
z=O(j)

dW(P(j)
ε C(j)) .

(A.8)

The fact G(x,y) = O(|x− y|−1) allows one to derive the inequality∣∣∣ ∫
∂B

(j)

d/4

(n(j) ⊗∇W)G(z,W)
∣∣∣
z=O(j)

dW
∣∣∣ ≤ Const .

Thus application of the Cauchy inequality and the preceding inequality shows that∑
1≤j≤N

(Q(j)
ε C(j))T

∫
∂B

(j)

d/4

(∇z ⊗∇W)G(z,W)
∣∣∣
z=O(j)

dW(P(j)
ε C(j))

≤ Const
∑

1≤j≤N

|Q(j)
ε C(j)||P(j)

ε C(j)|

≤ Const
∑

1≤j≤N

|Q(j)
ε C(j)|2 , (A.9)

where in the last step the definition of Q(j)
ε in (4.4) has also been used.

The definitions of Θ and Ξ in (A.2) and (A.1), respectively, allow the double sum in (A.8)
to take the equivalent form∑

1≤j≤N

∑
1≤k≤N

(Q(j)
ε C(j))T

∫
B

(j)

d/4

∫
B

(k)

d/4

(∇Z ⊗∇W)G(Z,W) dWdZ (P(k)
ε C(k))

=

3∑
i,j=1

∫
Ω

Θi(Z)
∂

∂Zi

∫
Ω

∂

∂Wj
G(Z,W)Ξj(W) dWdZ .

(A.10)
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Combining (A.6)–(A.9), (A.10) and (A.3) shows that

|〈TPεC,QεC〉| ≤ Const d−3〈QεC,QεC〉 ,

completing the proof of Lemma 4. �

Proof of Lemma 6

Consider the expression

µO

∫
ΩN

∇(RN + χ0Ψ0) · ∇
(
RN +

∑
1≤k≤N

χkΨk

)
dx

+
∑

1≤j≤N

µIj

∫
ω

(j)
ε

∇(RN + χ0Ψ0) · ∇
(
RN +

∑
1≤k≤N

χkΨk

)
dx .

Our goal is to obtain from this an estimate for the energy integral appearing in the left-hand
side of (5.1), via a linear combination of Dirichlet integrals for Ψk, k = 0, . . . , N .

By the definitions of χk, k = 0, . . . , N , the above simplifies to

µO

∫
ΩN

∇(RN + χ0Ψ0) · ∇
(
RN +

∑
1≤k≤N

χkΨk

)
dx

+
∑

1≤j≤N

µIj

∫
ω

(j)
ε

∇RN · ∇(RN + Ψj) dx

Since RN is harmonic inside ∪Nj=1ω
(j)
ε ∪ ΩN and Ψj is harmonic in ω

(j)
ε , after integration by

parts we obtain

µO

∫
ΩN

∇(RN + χ0Ψ0) · ∇
(
RN +

∑
1≤k≤N

χkΨk

)
dx

+
∑

1≤j≤N

µIj

∫
ω

(j)
ε

∇RN · ∇(RN + Ψj) dx

= −µO

∑
1≤k≤N

∫
B

(k)
3ε \ω

(k)
ε

(RN + χ0Ψ0)∆(χkΨk) dx

+µO

∫
∂Ω

(RN + χ0Ψ0)
∂

∂n

{
RN +

∑
1≤k≤N

χkΨk

}
dx

+
∑

1≤j≤N

∫
∂ω

(j)
ε

RN

{
µO

[∂RN

∂n
+
∂Ψj

∂n

]∣∣∣
∂ω

(j)+
ε

− µIj

[∂RN

∂n
+
∂Ψj

∂n

]∣∣∣
∂ω

(j)−
ε

}
dSx .

Here the boundary integrals over ∂Ω and ∂ω
(k)
ε , k = 1, . . . , N , vanish due to conditions (5.4) and

(5.5), respectively. Next, as a result of the fact that supp χ0 ∩ supp χk = ∅, for k = 1, . . . , N ,
we derive

µO

∫
ΩN

|∇RN |2 dx +
∑

1≤j≤N

µIj

∫
ω

(j)
ε

|∇RN |2 dx

= −µO

∫
ΩN

∇RN · ∇
( ∑

0≤k≤N

χkΨk

)
dx−

∑
1≤j≤N

µIj

∫
ω

(j)
ε

∇RN · ∇Ψj dx

−µO

∑
1≤k≤N

∫
B

(k)
3ε \ω

(k)
ε

RN∆(χkΨk) dx .

(A.11)
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In what follows R(k) denotes the mean value of RN on the set B
(k)
3ε , 1 ≤ k ≤ N . Using the

property that χk = 1 in B
(k)
2ε , k = 1, . . . , N , the last integral in (A.11) can be written as

µO

∑
1≤j≤N

∫
B

(j)
3ε \ω̄

(j)
ε

RN∆(χjΨj) dx

= µO

∑
1≤j≤N

∫
B

(j)
3ε \ω

(j)
ε

(RN −R(j))∆(χj(Ψj −Ψj)) dx +
∑

1≤j≤N

R(j)µIj

∫
ω

(j)
ε

∆Ψj dx

+µO

∑
1≤j≤N

R(j)

∫
B

(j)
3ε \ω

(j)
ε

∆(χjΨj) dx + µO

∑
1≤j≤N

Ψj

∫
B

(j)
3ε \ω

(j)
ε

(RN −R(j))∆χj dx

(A.12)

where Ψk is the mean value of Ψj over B
(k)
3ε . Here, we have added the last term appearing on

the right-hand side due to (5.8), and we can neglect third term since using Green’s formula
gives

µO

∫
B

(j)
3ε \ω

(j)
ε

(RN −R(j))∆χj dx = µO

∫
B

(j)
3ε \ω

(j)
ε

(RN −R(j))∆χj dx

+µIj

∫
ω

(j)
ε

(RN −R(j))∆χj dx

= −
∫
∂ω

(j)
ε

{
µO

∂RN

∂n
(x)
∣∣∣
∂ω

(j)+
ε

− µIj

∂RN

∂n
(x)
∣∣∣
∂ω

(j)−
ε

}
dSx = 0 ,

with the last equality being a result of (5.3). Noting this and returning to (A.12), we apply
integration by parts together with (5.9) to yield

µO

∑
1≤j≤N

∫
B

(j)
3ε \ω

(j)
ε

RN∆(χjΨj) dx

= µO

∑
1≤j≤N

∫
B

(j)
3ε \ω

(j)
ε

(RN −R(j))∆(χj(Ψj −Ψj)) dx

+
∑

1≤j≤N

R(j)

∫
∂ω

(j)
ε

{
µO

∂Ψj

∂n
(x)
∣∣∣
∂ω

(j)+
ε

− µIj

∂Ψj

∂n
(x)
∣∣∣
∂ω

(j)−
ε

}
dSx

= µO

∑
1≤j≤N

∫
B

(j)
3ε \ω

(j)
ε

(RN −R(j))∆(χj(Ψj −Ψj)) dx .

(A.13)

In addition, concerning the first integral in the right-hand side of (A.11), this is equivalent to

µO

∫
ΩN

∇RN · ∇
( ∑

0≤k≤N

χkΨk

)
dx = µO

∫
ΩN

∇RN · ∇
(
χ0Ψ0

)
dx

+µO

∑
1≤k≤N

∫
ΩN

∇RN · ∇
(
χk(Ψk −Ψk)

)
dx ,(A.14)

where Ψk is the mean value of Ψk over the ball B
(k)
3ε , and this follows as a result of (5.3), the

definition of RN and

µO

∫
ΩN

∇RN · ∇χkdx = µO

∫
∂ω

(k)
ε

∂RN

∂n

∣∣∣
∂ω

(k)+
ε

dSx = µIk

∫
∂ω

(k)
ε

∂RN

∂n

∣∣∣
∂ω

(k)−
ε

dSx = 0 ,

for 1 ≤ k ≤ N . The combination of (A.11), (A.13) and (A.14) provides the inequality

µO

∫
ΩN

|∇RN |2 dx +
∑

1≤j≤N

µIj

∫
ω

(j)
ε

|∇RN |2 dx ≤ S1 + S2 (A.15)
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where the terms Si, i = 1, 2, are given by

S1 = µO

∣∣∣ ∫
V
∇RN · ∇

(
χ0Ψ0

)
dx
∣∣∣+

∑
1≤j≤N

µIj

∣∣∣ ∫
ω

(j)
ε

∇RN · ∇Ψj dx
∣∣∣

+µO

∑
1≤k≤N

∣∣∣ ∫
B3ε\ω(k)

ε

∇RN · ∇
(
χk(Ψk −Ψk)

)
dx
∣∣∣ ,

S2 = µO

∑
1≤j≤N

∣∣∣ ∫
B

(j)
3ε \ω

(j)
ε

(RN −R(j))∆(χj(Ψj −Ψj)) dx
∣∣∣ . (A.16)

Estimate for the term S1

Cauchy’s inequality applied to S1 leads to

S1 ≤ const
{
µO‖∇RN‖L2(V)‖Ψ0‖L2(V) + µO‖∇RN‖L2(V)‖∇Ψ0‖L2(V)

+µO

( ∑
1≤k≤N

‖∇RN‖2
L2(B

(k)
3ε \ω

(k)
ε )

)1/2( ∑
1≤k≤N

‖∇(χk(Ψk −Ψk))‖2
L2(B

(k)
3ε \ω

(k)
ε )

)1/2

+
( ∑

1≤k≤N

µIk‖∇RN‖2L2(ω
(k)
ε )

)1/2( ∑
1≤k≤N

µIk‖∇Ψk‖2L2(ω
(k)
ε )

)1/2}
, (A.17)

and this together with( ∑
1≤k≤N

‖∇RN‖2
L2(B

(k)
3ε \ω

(k)
ε )

)1/2

≤ const ‖∇RN‖L2(ΩN ) (A.18)

then yields the following majorant for the right-hand side of (A.17)

const
{
µO‖∇RN‖L2(V)‖Ψ0‖L2(V) + µO‖∇RN‖L2(V)‖∇Ψ0‖L2(V)

+µO‖∇RN‖L2(ΩN )

( ∑
1≤k≤N

‖∇(χk(Ψk −Ψk))‖2
L2(B

(k)
3ε \ω

(k)
ε )

)1/2

+
( ∑

1≤k≤N

µIj‖∇RN‖2L2(ω
(k)
ε )

)1/2( ∑
1≤k≤N

µIk‖∇Ψk‖2L2(ω
(k)
ε )

)1/2}
.

Thus,

S1 ≤ const
(
µO

∫
ΩN

|∇RN |2 dx +
∑

1≤j≤N

µIj

∫
ω

(j)
ε

|∇RN |2 dx
)1/2

×
{
µ

1/2
O ‖Ψ0‖L2(V) + µ

1/2
O ‖∇Ψ0‖L2(V) +

( ∑
1≤k≤N

µIk‖∇Ψk‖2L2(ω
(k)
ε )

)1/2

+
( ∑

1≤k≤N

µO‖∇(χk(Ψk −Ψk))‖2
L2(B

(k)
3ε \ω

(k)
ε )

)1/2}
.

By Poincaré’s inequality, we then have

‖Ψk −Ψk‖L2(B
(k)
3ε )
≤ const ε‖∇Ψk‖L2(B

(k)
3ε )

. (A.19)

and this allows for the estimate

S1 ≤ const
(
µO

∫
ΩN

|∇RN |2 dx +
∑

1≤j≤N

µIj

∫
ω

(j)
ε

|∇RN |2 dx
)1/2

×
{
µ

1/2
O ‖Ψ0‖L2(V) + µ

1/2
O ‖∇Ψ0‖L2(V)

+
( ∑

1≤k≤N

µO‖∇Ψk‖2L2(B
(k)
3ε )

)1/2

+
( ∑

1≤k≤N

µIk‖∇Ψk‖2L2(ω
(k)
ε )

)1/2}
. (A.20)
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Estimate for the term S2 and proof of Lemma 6

Next, we return to the term S(2) in (A.16). The Poincaré inequality (A.19) with Ψk replaced
by RN , in conjunction with Minkowski’s inequality leads to the estimate

S(2) ≤ µO

∑
1≤k≤N

‖RN −R(k)‖
L2(B

(k)
3ε )
‖∆(χk(Ψk −Ψk))‖

L2(B
(k)
3ε \ω̄

(k)
ε )

≤ µO

∑
1≤k≤N

ε‖∇RN‖L2(B
(k)
3ε )
{‖(Ψk −Ψk)∆χk‖L2(B

(k)
3ε )

+ 2‖∇χk · ∇Ψk‖L2(B
(k)
3ε )
}

≤ const ε µO

( ∑
1≤k≤N

‖∇RN‖2L2(B
(k)
3ε )

)1/2

×
( ∑

1≤k≤N

{‖(Ψ−Ψk)∆χk‖2L2(B
(k)
3ε )

+ ‖∇χk · ∇Ψk‖2L2(B
(k)
3ε )
}
)1/2

.

A second application of inequalities (A.18) and (A.19) then yields

S(2) ≤ const
(
µO‖∇RN‖2L2(ΩN ) +

∑
1≤j≤N

µIj‖∇RN‖2L2(ω
(j)
ε )

)1/2

×
( ∑

1≤k≤N

µO‖∇Ψk‖2L2(B
(k)
3ε )

)1/2

. (A.21)

Combining (A.20) and (A.21) in (A.15) proves Lemma 6. �
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