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Abstract

There have been numerous attempts to develop 3D virtual agents by applying
evolutionary processes to populations that exist in a realistic physical simulation.
Whilst often contributing useful knowledge, no previous work has demonstrated
the capacity to evolve a sequence of increasingly complex behaviours in a single,
unified system. This thesis has this demonstration as its primary aim. A rigorous
exploration of one aspect of incremental artificial evolution was carried out to
understand how subtask presentations affect the whole-task generalisation
performance of evolved, fixed-morphology 3D agents. Results from this work
led to the design of an environment-body—control architecture that can be used
as a base for evolving multiple behaviours incrementally. A simulation based
on this architecture with a more complex environment was then developed
and explored. This system was then adapted to include elements of physical
manipulation as a first step toward a fully physical virtual creature environment
demonstrating advanced evolved behaviours.

The thesis demonstrates that incremental evolutionary systems can be subject
to problems of forgetting and loss of gradient, and that different complexifi-
cation strategies have a strong bearing on the management of these issues.
Presenting successive generations of the population to a full range of objec-
tive functions (covering and revisiting the range of complexity) outperforms
straightforward linear or direct presentations, establishing a more robust ap-
proach to the evolution of naturalistic embodied agents. When combining this
approach with a bespoke control architecture in a problem requiring reactive
and deliberative behaviours, we see results that not only demonstrate success
at the tasks, but also show a variety of intricate behaviours being used. This
is the first ever example of the simultaneous incremental evolution in 3D of
composite behaviours more complex than simple locomotion. Finally, the archi-
tecture demonstrably supports extension to manipulation in a feedback control
task. Given the problem-agnostic controller architecture, these results indicate
a system with potential for discovering yet more advanced behaviours in yet
more complex environments.

Keywords: “artificial evolution”; “neural networks”; “incremental evolution”; “virtual
creatures”; “3d agents”.
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CHAPTER

Introduction

1.1 Overview

3D virtual creatures (3D VCs). The objective is to explore the cutting edge

in evolved 3D VCs and present the problems and some solutions to the
problems that are encountered when engineering such systems. Historically,
there have been numerous attempts to develop 3D VCs by applying evolutionary
processes to populations that exist in a realistic physical simulation. Whilst often
contributing useful knowledge, no previous work has demonstrated the capacity
to evolve a sequence of increasingly complex behaviours in a single, unified
system. This thesis has this demonstration as its primary aim. The work builds
on work previously published in the ECAL and ALIFE conference series.

T his dissertation examines various aspects of the incremental evolution of

1.2 Motivations

One of the earliest and most striking research areas within Artificial Life is the
attempt to generate simulated organisms on an animal scale, whose behaviours
are recognisable analogues of real-world animal activity. Whilst these virtual
creatures are a distinctly technological endeavour, the research programme
can nonetheless offer a great deal to the scientific community beyond a mere
intellectual curiosity. Research in virtual creatures provides new hypotheses
to explore in order to unpick the mechanisms of evolution in the natural world
and explain the origins of intelligent, adaptive behaviour in nature. Additionally,
this synthetic approach to science has tangible practical benefits, facilitating
the construction of a methodology for building advanced intelligent technology.
Finally, in terms of broader, longer-term objectives, virtual creatures are, as
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argued by Channon (2001), crucial to addressing the problem of understanding
artificial open-ended evolutionary (OEE) systems. The potential complexity of
these systems requires an instinctive validation by observation even when metrics
may indicate that ongoing evolutionary activity is taking place. The closer the
medium of expression of this activity is to regular human experience, the more we
can have subjective confidence in our objective measures. A physically-realistic,
evolutionary-expressive environment of the sort ubiquitious in virtual creatures
studies is also then an objective for work in the OEE domain.

The research presented in this thesis is thus concerned with the generation
of varied behaviour in simulated organisms using nature-inspired principles in
order to understand how to build this technology, to explore hypotheses about
how this came to be in nature and to provide a step towards flexible and expres-
sive substrate that would allow a future open-ended evolutionary system to be
validated against intuitive experience.

1.3 Structure of the Thesis

» Chapters 2 and 3 comprise a review of relevant literature, split into two
parts. The first part discusses the general, historical research trends that
have led to the current research topics of evolutionary robotics and evolved
3D virtual creatures, and from this presents the main objectives of this
dissertation in terms of those disciplines. The second part examines re-
search relevant to addressing these research objectives, identifying gaps in
current knowledge and looking at technologies and techniques that can be
employed to advance the current state-of-the-art.

» Chapter 4 presents the first contribution of the research, a detailed investiga-
tion of a technique to guide evolutionary generalisation in a principled way
that has hitherto only been assumed by research in this field. The output
of this chapter is a principled and theoretically-informed understanding of
environmental complexification, explored and articulated with reference to a
3D agent-based baseline task. The work in this chapter has been presented
at ECAL 2013 (Taormina, Sicily) and published in Stanton and Channon
(2013).

» Chapter 5 uses this technique as part of a novel synthesis of a 3D virtual
creature system that demonstrates for the first time multiple evolved be-
haviours that go beyond simple locomotion. This work shows the utility of
the findings from chapter 4 and the potential that such systems have for
further complex, and perhaps unbounded development of behaviours. The
output of this chapter is a novel synthesis of existing and new technology
to produce a system capable of reactive and deliberative behaviours in 3D
virtual creatures and representing a step change in the complexity of such
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1.4

systems. The work in chapter four has been presented at ECAL 2015 (York,
UK) and published in Stanton and Channon (2015).

Chapter 6 takes the neuroevolutionary system developed in chapter 5 and
applies it with an environment requiring physical manipulation of an object
in the agent’s world. Object manipulation is a key component of intelligent
behaviour in 3D environments, whether in nature or in silico. The results
presented here demonstrate the first ever success at such a task using an
evolved architecture capable also of solving deliberative planning problems.
The work described in chapter five has been presented at ALIFE 2016
(Cancun, Mexico) and published in Stanton and Channon (2016).

Finally in chapter 7, an overview of the whole dissertation is presented, the
findings and implications from each chapter discussed and directions for
further research are examined.

Attributions

This work was executed under the supervision of Alastair Channon. Work com-
pleted explicitly by Adam Stanton is as follows:

1.5

Identification of the question of task presentation strategy which constitutes
the research question addressed in chapter 4;

Development of technology (programming, cluster algorithms, visualisations
and design and integration of other technologies and scientific ideas) and
experimental procedure (automated data aggregation, statistical analysis,
and experiment design);

Conception of the 3D river-crossing problem as an environment in which
3D agent behaviour could be incrementally evolved past simple locomotion;

Design and implementation of the hybrid neural network described in chap-
ter 5; and

Adaptation of this technology to the physical 3D environment and subse-
guent experimental design and analysis in chapter 6.

Notes On Terminology

Throughout this thesis, | refer at times variously to 3D agents, virtual creatures
and evolved agents, and combinations of these terms to suit the context. Unless
specified otherwise, at all times when using this terminology | am referring to
fixed-morphology evolved virtual creatures (EVCs), where fixed-morphology is
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in constrast to evolved morphology and means the agent’s physical body plan
remains unchanged over evolutionary time.

In addition, | often refer to the general concept of intelligence and intelligent
behaviours. The MIT Encyclopedia of the Cognitive Sciences defines intelligence
as “the ability to adapt to, shape, and select environments” (Wilson and Keil,
2001, p.409) and it is this broad sense | wish the reader to bear in mind when
considering the text.

Finally, | often use the terms difficult and complex. The OED defines difficult
as ‘needing much effort or skill’ and complex as synonymous with complicated,
‘intricate’, or something that has been made difficult. These meanings, rather
than any more technical senses, are the ones intended in this text.
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Intelligence in Art and Nature

“If you wish to make an apple pie from scratch, you must first invent
the universe.”
—Carl Sagan

behaviour, cast not as an abstract algorithm but as a situated, dynamic

relationship between agents and environments. Artificial Life seeks to
understand the theoretical object of biology through simulation and synthesis of
natural processes. At the interface between Artificial Intelligence and Artificial Life
lies evolved intelligent behaviour, a phenomenon with tangible technological value
as well as the potential to investigate through synthetic means the structures
found in biology, and to demonstrate the products of evolution “as they could be”
rather then as they are. The following literature review first traces a path through
these concepts to justify research in advanced evolved behaviours and explain
how it can make a contribution to science and technology. Then, | define the
boundaries of the research project and discuss the techniques and technologies
that can be used to push beyond the state-of-the-art.

Q rtificial Intelligence research led to a new conceptualisation of intelligent

2.1 Artificial Intelligence

“The study is to proceed on the basis of the conjecture that every
aspect of learning or any other feature of intelligence can in principle
be so precisely described that a machine can be made to simulate it.”
—Proposal for the 1956 Dartmouth College meeting

The scientific and technological research programme called Artificial Intelli-
gence (Al) was born in the middle of the 20th century and seen from its inception

5
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as a discipline concerned with building models of the mind and constructing
intelligent machines. At a time when general-purpose computing machinery had
begun to deliver real results and philosophy began to grapple in earnest with the
possibility of considering “mind” as a physical property of the world amenable
to investigation by scientific methods, the analogy of mind-as-computer (and
therefore the algorithmicity of behaviour in general) took hold and refused to give
way. The decomposition of high-level intelligent behaviours into algorithmic form,
using abstract symbols to represent entities in the world, quickly became the dom-
inant approach to building Al, despite some early efforts in the late 1950s to use
networks of processing elements to simulate intelligent behaviour: “lhuman-like
intelligence] was imagined as a kind of logical reasoning device coupled with a
store of explicit data” (Clark, 1998). This knowledge-based approach was driven
by the advances made in computing theory and hardware, and the emergence
of cognitivism in psychology as a discipline that legitimised the scientific study
of mind in itself (as opposed to study only of its behavioural outcomes) and
whose prevailing explanatory framework was symbolic (i.e. representative) and
systematic. The many early successes of other branches of informatics also
contributed to the sense that computationalism was the best chance of explaining
intelligence and building intelligent machines (Harnad, 1990).

This abstracted, analytical and above all symbolic mode of thinking about in-
telligence entailed many successful applications: chess-playing, theorem-proving
and expert deduction computer programs all began to exceed the best human
performance. Problems whose constituent components and relationships could
be clearly formalised and represented in symbolic form amenable to algorithmic
manipulation became clear targets for the increasingly powerful computational
hardware of the 1960s and 1970s. It was an optimistic time, and many researchers
believed that an increase in computational capacity was the only outstanding
requirement necessary to achieving the construction of an artifact exhibiting
generalised intelligent behaviour. This attitude was encapsulated in the physical
symbol system hypothesis of Newell and Simon (1976) that made this strong
claim about the potential of symbolic Al explicit. However during the same time,
theoretical and practical difficulties became evident in the characterisation of
some putative “intelligent” activities.

As attempts were made to expand symbolic Al to more generalised problems,
even those solved by the simplest of living forms such as controlling a body
or navigating a cluttered environment, it became clear that flexible, adaptable
intelligent behaviour was difficult to neatly conceptualise, difficult to decompose
into logical relationships and difficult to formulate inside tractable algorithms. In
more recent history, research has continued to apply formal, symbolic reasoning
methodologies to difficult problems, automating previously manual processes
and often also improving their efficiency and accuracy. However, high-profile,
expensive projects requiring more generalised intelligent behaviour often failed
to live up to expectations. Some more theoretical thinkers who were interested in
general intelligent behaviour were openly critical of the symbolic, representational

6
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methodology. John Searle’s famous Chinese room argument posits the absurdity
of claiming that a rule-based symbol manipulation machine has any intrinsic un-
derstanding of its inputs and outputs. To illustrate briefly, a non-Chinese speaker
in the room receives Chinese text through a letterbox, looks up a matching an-
swer in a rule book based on the input symbols and posts the corresponding
response back to the world. By contrasting this to the action of a fluent Chinese
speaker in the room who is working without the book, Searle claims a material
difference between the two systems in that the first does not connect the syntax
of the symbols to the semantics in the real world—the symbols are not grounded.
Searle’s conclusion is that this problem precludes the possiblilty of achieving
human- or animal-level intelligence in a symbolic machine because it has no
real knowledge of the world and will forever lack intentionality’ (Searle, 1980).
Although often criticised as unnecessarily restricted to the person’s experience in
the room, the most common reply being that the system as a whole behaves as
if the symbols are grounded as much as any person does (Russell and Norvig,
2003), the argument still highlights the gulf between naturalistic intelligence and
symbolic Al and hints that the computational paradigm may be lacking in its
fundamental assumptions about the abstract nature of intelligent behaviour. A
more convincing argument from a logical perspective also obtains in the physical
symbol system hypothesis. The frame problem asks how a symbol-manipulating
machine, starting from a set of axioms about the world, can maintain an appro-
priately fast and germane behavioural response in the face of a requirement to
perform logical inference about the entire world for an indefinite amount of time
(Dennett, 1981; McCarthy and Hayes, 1969). The conclusion that the combina-
torial explosion entailed by the proposition renders any inferential computation
intractable for real-world problems led to growing support for the alternative hypo-
thesis that intelligent behaviour in the natural world operates according to some
other, non-computational, sub-symbolic paradigm.

Given these intellectual and practical difficulties, a clear and increasing sep-
aration was observed between the logical, knowledge-based intelligence that
is well fitted to highly constrained problems, and Artificial General Intelligence
capable of acting intelligently in an animalistic fashion. The need to design a
machine able to cope gracefully in an uncertain world with multiple competing
goals and partial information drew researchers away from the mainstream, ortho-
dox approach to Al and back toward the ancient underlying aspiration to explain
the history and mechanisms of biological intelligent behaviour. This bifurcation
was anticipated to some extent by Turing in his seminal 1950 work, Computing
Machinery and Intelligence. In this paper, Turing mused on whether machine
intelligence would be best tested by “a very abstract activity, like the playing of
chess”, or whether providing the machine with “the best sense organs money can
buy, and teaching it to understand and speak English” might be better, concluding

TIntentionality: that feature of certain mental states by which they are directed at or about
objects and states of affairs in the world. (Searle, 1980)
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that “both approaches should be tried” (Turing, 1950). The fundamental difference
in perspective between the orthodox and alternative paradigms comes from a dis-
joint view of the nature of intelligence itself. The traditional approach offers a view
of intelligence as a high-level algorithmic process that is limited only by access to
a sufficiently detailed world model and sufficiently powerful computer. Intelligent
behaviour results from an exploratory search through the representation, so is
limited by the amount of available information, the design of the model and the
computational resources on hand. In contrast, the alternative view sees complex
intelligent behaviour as an intrinsic dynamical relationship between agents and
their environments. As noted by Brooks, “The key observation is that the world is
its own best model. It is always exactly up to date. It always contains every detalil
there is to be known. The trick is to sense it appropriately and often enough.”
(Brooks, 1990).

Support for this point of view comes from an argument from evolutionary
history. In slightly later work, Brooks (1991) points out that the bulk of natural
history was spent finding out how to do relatively simple survival-related tasks in
a dynamic environment:

“This suggests that problem solving behavior, language, expert knowl-
edge and application, and reason, are all pretty simple once the
essence of being and reacting are available. That essence is the
ability to move around in a dynamic environment, sensing the sur-
roundings to a degree sufficient to achieve the necessary maintenance
of life and reproduction. This part of intelligence is where evolution
has concentrated its time—it is much harder.”

Ultimately, this paradigm casts adaptive behaviour not as a complex yet
deterministic algorithm that by operating on abstract representations of knowl-
edge dictates the functioning of organisms in the world. Instead, intelligence is
seen as a tightly-woven set of often probabalistic relationships between living
organisms and their environments: a model of the interactions between entities
acquired through the ongoing experiences of ecosystems, species and individuals
(Van Gelder, 1998). Individuals are understood in relation to their worlds and their
interactions, a perspective with an emphasis on the mutual interconnectedness
of environment, body and mind (Tschacher and Bergomi, 2011). Harvey captures
the essence thus: “cognition, as ascribed to animals or potentially to machines,
is something that can only be attributed to the conjunction of an organism and
the world it inhabits.” (Harvey, 1992b). In the next sections, this alternative view
is briefly explored with reference to the contexts of the physical environment
(situatedness) and the body and body movement (embodiment), and brought
together with wider studies of cognition in living systems under Varela’s banner
of enaction. Then | examine practical techniques that can be used to achieve a
level of enactive cognitive behaviour in real autonomous systems.
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2.2 Situated Al

“It was assumed that what the conjurer needed was not the correct
wiring diagram but the correct recipe, according to which the ingredi-
ents would organize themselves into an intelligence.” (Hillis, 1998)
—W. Daniel Hillis, The Pattern on the Stone

The framing of intelligent behaviour as dynamical relationships between
agents and their environments has entailed a great deal of philosophical specula-
tion as well as many concrete efforts to produce machines capable of exhibiting
such behavioural properties. The most fundamental points are that intelligence in
this view is both bottom-up, i.e. reliant on the combination of elementary units
that together produce more complex behaviours, and behaviour-based, that is,
constituting a model of interactions rather than knowledge representation.

As noted by many scholars who have discussed the history of Al and the
emergence of this post-computational approach to understanding cognition, par-
allels can be drawn with the work of 20th century phenomenological philosophers
from the continental school which held that human experience is a contingent
creation founded on material existence in the world. However following the tra-
dition of Brooks (1991) | will leave this discussion to others more qualified than
me, and concentrate on the engineering considerations and their implications for
constructing intelligent technology. This being so, | would like to offer a techno-
logical example to illustrate the necessity and sufficiency of being in the world for
effective control.

In 1788, James Watt popularised an ingenious device that maintained the
power output of steam engines at a near constant strength. The centrifugal gover-
nor is a feedback control architecture that, as the engine’s speed increases, acts
proportionally on a throttle valve that acts to calm the machine. No information
about the engine state is explicitly represented in this system and yet stability is
maintained in the presence of external forces that disturb its operation. It is inter-
esting to note that this analogy has been used for other feedback relationships in
the natural world. Wallace draws the same analogy with evolving systems and
the stabilising mechanism of natural selection:

“The action of this principle is exactly like that of the centrifugal gover-
nor of the steam engine, which checks and corrects any irregularities
almost before they become evident; and in like manner no unbalanced
deficiency in the animal kingdom can ever reach any conspicuous
magnitude, because it would make itself felt at the very first step,
by rendering existence difficult and extinction almost sure to follow.”
(Wallace, 1858)

This self-maintaining, self-governing idea is founded on interactions, not on
knowledge. The concepts inspired scientists and engineers interested in building
life-like artifacts, and the first practical attempts to build devices in this paradigm

9
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are due to early cyberneticists such as W. Ross Ashby, whose homeostat was
able to find a configuration of internal electronic circuits and relays that “leads to a
condition of dynamic internal stability” (Walter, 1950) - a physical manifestation of
a property devised by Ashby called ultrastability (Ashby, 1948). Ashby viewed the
brain as a dynamical system that generates and modulates behaviour, and that
its operation in the face of external pertubations to bring the organism back to a
balance point was the crucial aspect. Even though Ashby’s model was embedded
in discrete mathematics to the extent that he was invited by Turing to simulate
the homeostat on Turing’s new computing machine (Turing, 1946), it was rooted
fundamentally in a continuous, abstracted and biologically-inspired medium that
transcended any particular substrate of implementation.

W Grey Walter’s precocious electronic tortoises, his Machina speculatrix, pro-
vided a more intuitive illustration of these concepts. “Elmer” and “Elsie”, ungainly
wheeled robots equipped with minimal sensory and computational hardware but
nevertheless autonomous in the confines of their environments showed that com-
plex, life-like behaviours could be observed in even extremely simple machines
(Walter, 1950). The tortoises were constructed not with algorithmic logic but with
behaviours arising from the machines’ interaction with the world, mediated by
connections between the effectors and sense organs of their bodies.

Booker describes organisms that show this kind of behaviour-based, just-in-
time activity in an environment as adaptively salient (Booker, 1982). Casting
intelligent behaviour as an adaptation to the task evironment in which the agent
finds itself, he cites Charlesworth: “it does not make sense to talk about adaptation
without something to adapt to. And if one designates intelligence as an important
mode of adaptation, then the intelligent behaviour has to be viewed in terms
of environmentally posed problems” (Charlesworth, 1976). Booker’'s Learning
Classifier System was one of the first implementations of a behavioural controller
designed explicitly with a messy paradigm where inputs match one or many
rules and a cascade of activation happens to cause a direct behavioural change.
Whilst still instantiated in a symbol-manipulating computational machine, Booker’s
approach offers one of the first situated alternatives to traditional Al systems.
This method anticipates Minsky’s later formal treatise on society of mind that
proposes a different understanding of Al in the form of a system comprising a
heterogeneous collection of individual, minimally intelligent agents that together
form the basis for an adaptive, reactive cognitive model (Minsky, 1985).

The theme continues into modern robotics through Valentino Braitenberg’s
thought experiments (or as he terms it, “fictional science”) Vehicles that aimed to
demonstrate the enormous complexity in behaviour afforded by rich environments
to simple organisms that interact with them, and also to uncover the unavoidable
observer-centric interpretation of these behaviours (Braitenberg, 1984). These
vehicles comprised straightforward environmental sensors like light or chemical
detectors, coupled to motors that cause the vehicles to move around. Even with
only one or two links between sensors and motors, Braitenberg’s vehicles demon-
strate that complex, even life-like behaviours could arise when environments are

10
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sufficiently rich. Independently, Wilson produced a dynamic model of a simple
artificial animal (coining the term animat in the process) operating according to
simple, sensorimotor principles (Wilson, 1985). Later, Philip E. Agre’s work explic-
itly rejected formal, plan-based behaviour generation models of human activity
(and by implication, much of the extant cutting-edge research in autonomous
behaviour and automated planning up to this date) in favour of a dynamic model
that treats the agent—environment relationship as composed of categories without
objective identity (Agre, 1988). Agre attempted to define a kind of postmodern,
Heideggerian ontology in an explicity agent-centric schema which, although
strongly reminiscient of predicate logic-based approaches to navigating complex
behavioural problems, did away with the need for explicit representation of objects
in the world. He supported these ideas with a demonstration computer program
called Pengi. “Rather than maintaining elaborate world models and constructing
symbolic plans, Pengi relies heavily on its interactions with the world to organize
its activity.” (ibid.) The concepts of interaction-based intelligence can be found
more starkly applied to behavioural robotics (and much more loosely related
to earlier, GOFAI mechanisms) in Brooks’ work on subsumption-based models
of robot control (Brooks, 1986) where explicit representation and planning are
both proscribed and all behaviour is just-in-time and messy (Brooks, 1991). As in
Agre’s work, the behaviours in this architecture are still specified at design time
but are then selected automatically according to dynamically-arising interactions
between individual behavioural modules and the wider environment in which the
robot is embedded. This model led to robust and life-like operation of Brooks’
robots, beginning with Genghis, a hexapod walking machine able to locomote
effectively over a variety of terrains (Brooks, 1989).

The shift towards interaction-based intelligent behaviour addresses the pri-
mary criticism of symbolic Al-the frame problem. Intelligent agents are no longer
paralysed by interminable ratiocination; they give it their best shot right away
based on the information available to them. There is still a question over rep-
resentation, and how agents behaviour can be said to be grounded in their
sensorimotor experience. Systems like Agre’s and Brooks’ deal with the immedi-
acy and are prima facie without explicit representation. However, they still rely
on external decompositions to operate and so in a sense are still at the risk of
being symbolic manipulations encoded by human designers rather than intrinsic
relationships between real-life entities. The philosophy of embodiment begins to
address this problem.

2.3 Embodiment

In 1921, Jakob von Uexkdill invited his readers to consider the sensory worlds
of animals in their totality and to extrapolate the emergence of the animal’s
behaviours from this (von Uexkill et al., 2010), stressing the relativity of all signs
and signals in nature. Von Uexkiill saw all living beings as embodied subjects
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Figure 2.1: Grey Walter's Tortoises, Elmer and Elsie, near their recharging
station; Braitenberg’s first Vehicle, the simplest demonstration of something that
in a complex environment could display life-like behaviours; Ashby’s homeostat.

that are embedded in an intricate web of intrinsically meaningful relationships,
their Umwelt (Froese et al., 2010), and thus there is an inseparable and only
partially knowable relationship in existence between creatures and the worlds that
they inhabit. This relationship is built through the medium common to both—the
physical world.

In this sense, living creatures by virtue of their embodiment in the world are
grounded. Meaningful interactions occur on a fundamental level and the experi-
ences of organisms have a direct bearing on their behaviours. This grounding
of knowledge in worldly experience not only deals with the criticisms of GOFAI
in the sense of being disembodied and abstracted but more practically makes
the problems of existence more apparent and, due to this, causes the builders
of artificial intelligent entities to adopt a more naturalistic philosophy towards
their construction. The physical aspects of agents’ bodies are taken to be both
pragmatically and theoretically significant and are located and specific. Context-
dependence is a central and enabling feature and activity varies dramatically
dependent on contingent facts about particular circumstances (Wilson and Keil,
2001, p.769). The further view that physical embedding is not only a semantic
resource for determining reference but a material resource for simplifying thought
itself (ibid.) is entailed by the embodied perspective, and naturally implies that
“pbehaviour and cognitive capabilities should emerge out of their interaction with
the world” (Tuci, 2004).

It should be noted that some researchers consider symbol grounding a prob-
lem that has already been solved early in the history of Al, and claim that a lot of
the confusion and debate arising from the question is due to an interdisciplinary
misunderstanding concerning the meaning of the term symbol. However, they
still maintain that a mechanism of automatically grounding symbols escaped
research until relatively recently. As argued by Steels (2008):

“So the key question for symbol grounding is not whether a robot can
be programmed to engage in some interaction which involves the use
of symbols grounded in reality through his sensori-motor embodiment,
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that question has been solved. It is actually another question, well
formulated by (Harnad, 1990): If someone claims that a robot can
deal with grounded symbols, we expect that this robot autonomously
establishes the semiotic networks that it is going to use to relate
symbols with the world.”

2.4 Enaction, Cognition and Life

In a separate and long-standing research direction, biologists Maturana and
Varela also put the dynamical relationship between individuals and their envi-
ronments centre-stage (Maturana and Varela, 1980) in their attempt to reframe
understanding the fundamentals of biological organisms, metabolism and living
systems. In their view, definitions of life and cognition are inextricably linked
through their embedding in the world and there is no sense in which intelligent
behaviour can be quantified or demarcated outside of the complete systems
viewpoint.

Enaction, first articulated by Varela, Thompson, and Rosch in The Embod-
ied Mind (MIT Press, 1991), breaks from computational cognitive science’s
formalisms of information processing and symbolic representations to view cog-
nition as grounded in the sensorimotor dynamics of the interactions between
a living organism and its environment. A living organism enacts the world it
lives in; its embodied action in the world constitutes its perception and thereby
grounds its cognition. Enaction offers a range of perspectives on this exciting
new approach to embodied cognitive science (Varela et al., 1991). More recently,
Solé and Valverde (2013) make clear that physical embedding of evolutionary
processes is crucial if macroevolutive processes are to observed. The physical
environments promote evolutionary emergence on multiple scales, and facilitate
feedback relationships between different layers of the hierarchy.

The work of Andy Clark served as a rally point for ideas of embodiment in
cognitive science and robotics (Clark, 1998), and ideas of situatedness percolated
through to research themes in many other areas, including human psychological
research (Bargh and Chartrand, 1999). And so, from a combination of influences
spanning an enormous intellectual range from theoretical biology, semiotics and
philosophy of mind through to demonstrations of six-legged walking robots, the
field of behaviour-oriented Al emerged, concerned directly with the study of
relationships between brains, bodies and environments and the application of
the ideas to real-world problems (Ziemke, 1998). While the deeper philosophies
of mind concern themselves with the nature of enaction as a way to understand
cognition, new robotics and new Al have taken a more pragmatic approach and
attempted to incorporate these ideas directly into practical, functional artifacts.

As can be seen from the work outlined above, the trend in this behaviour-
based new robotics was clearly toward a highly integrative view of brains, bodies
and environments. The systems perspective elevated the complexities arising
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from physical embedding in the world to the level of those supposed to exist in
natural control architectures like DNA and metabolic networks, and animal brains.
As delightfully illustrated in Chiel and Beer (1997):

“the nervous system is one of a group of players engaged in jazz
improvization, and the final result emerges from the continued give
and take between them. In other words, adaptive behavior is the result
of the continuous interaction between the nervous system, the body
and the environment, each of which have rich, complicated, highly
structured dynamics.”

There is still some debate over whether these principles of situation, em-
bodiment and enaction apply strictly to artifacts in the real world, or whether
simulated worlds can reify objects within them in the same way. In this thesis |
argue for the latter—that provided that agents’ worlds form closed universes in
which the ideas of situatedness and embodiment have maximum validity, then
the end result is the same. This is aligned with the concept of functional validity
(Channon, 2001; Channon and Damper, 1998b), whereby the situatedness of
agents during development correlates directly with their performance (a question
of reality gaps). As argued by Channon:

“if organisms are only ever to inhabit an ‘artificial’ environment then
there should be no concern about them being evolved in that environ-
ment. Their ‘world’ is not a simulation and so the approach suffers
none of the problems that occur when trying to use a simulation to
evolve robots for the real world.”

The myriad interrelations between concepts in new robotics and embodied
cognition research show that the development of intelligent machines in the
behaviour-oriented paradigm is intimately connected to explanations of the nature
of living things in themselves, so it is no surprise that the field shares deep links
and a great deal of overlap with the emerging interdisciplinary field called Artificial
Life, which is the subject of the next section. As described by Steels (1993), in
this field the connection between behaviour-oriented Al and biology is almost
axiomatic: “Intelligence is seen as a biological characteristic, and the core of
intelligence and cognitive abilities is [assumed to be] the same as the capacity of
the living.”

2.5 Artificial Life

Artificial Life (a-life) is a research programme that aims to explain a variety
of biological phenomena, as diverse as metabolic networks and evolutionary
dynamics, as well as characterise the abstract properties of life itself: the rules
governing “life as it could be” (Wilson and Keil, 2001). This aim is most often
approached with a synthetic methodology, where the subtleties of the systems
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under microscope are teased out by building detailed working models (Brooks,
2000).

This is an interdisciplinary undertaking that seeks to investigate the fun-
damental properties of living systems and build artificial systems that display
recognisable properties of organisms and societies from abiotic components.
A-life includes study of biology, chemistry and computer science; the focus in
the present work is on computer science, and on how to engineer life-like sys-
tems in simulation. This endeavour has a distinguished history and is a founding
component of the field.

The earliest examples of a-life systems date back to work by Hungarian
mathematician John von Neumann who regarded life not as a mysterious property
of matter, but rather as a process that could be decomposed and understood
theoretically. Von Neumann conceived the cellular automaton, a mathematical
system that simulated life-like interactions (Von Neumann, 1966) and went on to
theorise that life-like processes could be modelled using a very simple concept
of a universal constructor, a coupled system of rules that, when executed, could
create copies of itself. This work, conceived in 1948 and published posthumously
in 1966, constitutes one of the first attempts to formalise an abstraction of
the natural world by breaking down organisms into functional components (for
example, neurons, muscles, construction mechanism and structural bodies) and
finding logical processes that connect these components in configurations that
result in a stable dynamical reproductive process.

Von Neumann’s research, although pioneering, was undertaken before a
practical method of simulation existed and so was a purely philosophical treatise.
However, the arrival of the digital computer allowed researchers to test their
ideas empirically. In 1970, mathematician John Conway invented Life, a simple,
two-dimensional cellular automaton with uniform rules specifying the behaviour
of each cell. When executed sequentially, the system produces chaotic patterns
resembling the dynamics observed in many real-life processes (Gardner, 1970).
The apparently simple simulation environment—much simpler than von Neumann’s
original conception—produced an unexpected array of stable patterns that were
discovered, analysed and documented by researchers of that time. This is a
classic example of the exciting and unpredictable nature of a-life: simple systems
can produce remarkable results due to the global complexity that arises from
local interaction.

Inspired perhaps by Conway’s Life but certainly by the work of von Neumann,
Chris Langton, one of the founders of the a-life field, attempted to marry the
local-interaction global-behaviour paradigm of the cellular automaton with von
Neumann’s ideal functional decomposition of life-like systems (Langton, 1986). In
this work, Langton breaks down the biochemical processes in living systems into
their functional roles (e.g. catalysis, transport, energy storage) and implements a
simulator of this system. It was discovered that virtual automata, that is, emergent
functional phenomena, arise frequently in the simulation and were observed to
fulfil some of the functional roles identified in real-life systems. Langton argues
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that this process of starting with a set of behavioural primitives and using them
as a set of building blocks to discover more complex behaviours constitutes an
abstraction of the essence of life into any virtual medium and is a crucial step
between building models of life and building examples of life.

Indeed, the original demarcation of the field as a research programme in
itself is due principally to Langton’s work of the 1980s (Brooks, 2000). Origi-
nally, Langton sought to describe the behaviour of living systems in terms of
dynamical systems and cellular automata (Langton, 1986) but then went on to
expand his definition of the field to be “the simulation and synthesis of living sys-
tems” (Langton, 1989), a working encapsulation still accepted by contemporary
researchers.

Philosophical difficulties lurk at the most fundamental levels in a-life; the
question of whether a formal system can really be alive—see e.g. Boden (2000),
or Lenski (2001) for a more accessible presentation—is still an open, and per-
haps unanswerable problem. Philosophers, artists and scientists continue to
explore the theoretical, epistemological framework necessary to pin down a firm
understanding of living systems (Annunziato and Pierucci, 2002; Shanken, 1998),
even as modern thinkers recognise the need for pragmatism in definition-of-life
problems when working towards concrete scientific ends (Pennock, 2012). Re-
searchers with a more traditional background in the biological sciences have
long recognised the new opportunities for study that arise in a-life (Hokkanen,
1999), whilst critical theorists use a-life as a limit biology, posited to exemplify
how the ontological category of nature itself has become unstable: no longer is
matter necessary to describe life, and the elevation of the concept to the realm
of descriptive information, to dynamical systems, invites an understanding of life
simultaneously as a category and a construction (Helmreich et al., 2015). This
is a perspective on the natural world that is as deconstructed as the enactive,
embedded and embodied approach to the theories of meaning and relation in
understanding intelligent behaviour that were outlined in the previous sections.

Notwithstanding, this overarching drive toward increased understanding of the
theory of self-organisation and emergence, as well as the practical problems of
building artifacts to explore the nature of complex systems analogous to biological
ones have at the same time advanced our scientific understanding of the world
and borne fruitful technological innovation in many areas, including robot control,
manufacturing, graphics, games, design, security and telecoms (Kim and Cho,
2006).

Concerning simulation, a-life spans a range of topics. At one end, philosophi-
cal discussion concerning the nature of model-building as it applies to scientific
endeavour is examined. At the other, simulations of natural phenomena with
various simplifying assumptions are played out, with the objective of revealing
important, invariant relationships from the turmoil of complexity that comprises
the myriad parameters and processes governing their evolution.

The synthesis component of Langton’s definition also covers a huge array
of activity; at its purest this synthesis aims to produce artifical living systems—a
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singularity where simulation and synthesis are indistinguishable. More recently
and in general more practically, a-life synthesis covers efforts to produce artificial
phenomena that do not necessarily map out the natural world but are nonetheless
analogous in terms of higher-order emergent properties. This overlaps with
research from other fields and includes exploratory optimisation techniques
such as Evolutionary Algorithms (EAs) and representational modalities such as
Neural Networks (NNs), as well as producing native a-life research like Artificial
Chemistries (ACs) and Virtual Creatures (VCs).

The diversity in a-life is due to the early formation of the research programme
which was rooted in the technological developments that occurred during the late
twentieth century. History shows overlap in ideas and applications between many
different emerging cultures, as described by Penny:

Artificial Life burst onto a cultural context in the early 90s when artists
and theorist were struggling with the practical and theoretical implica-
tions of computing—that is, it was contemporaneous with virtual reality,
bottom-up robotics, autonomous agents, real-time computer graphics,
the emergence of the Internet and the web and a general interest in
interactivity and human-computer interaction. (Penny, 2009)

Despite this heterogeneity, according to Bedau et al., the focus of a-life
research should above all still be on science: “Artificial life is foremost a scientific
rather than an engineering endeavor. Given how ignorant we still are about
the emergence and evolution of living systems, artificial life should emphasize
understanding first and applications second[.]” (Bedau et al., 2000). However,
in the same work, which is an overview written to highlight open challenges
in the field, it is recognised that technological artifacts are one of the clearest
methods for demonstrating this understanding. In particular, the ambition to
“Demonstrate the emergence of intelligence and mind in an artificial living system”,
a problem directly related to understanding whether mind and intelligence are
only meaningful when embodied in living systems. They continue, “The easiest
aspect of mind and intelligence to detect is flexible adaptive behavior, i.e., the
capacity to act appropriately in a complex dynamic environment”, arguing that
this kind of demonstration can help to settle long-standing open problems in a-life
and Al. The point concludes by describing the forms that a useful example of
this property could take: “having increasingly sophisticated forms of this capacity
emerge from increasingly impoverished initial conditions.” (ibid.)

A major open problem in a-life is thus the demonstration of these principles of
intelligence in an artificial system. As a technological effort there is clear advan-
tage in such an achievement and the synthetic methodology found throughout
a-life lends itself naturally to such demonstrations. However, the epistemolog-
ical validity of scientific simulations can be brought into question. This is one
of the criticisms of the a-life discipline as a research programme, a “fact-free
science”, according to Maynard-Smith (Horgan, 1995), so in the next section
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| briefly discuss how the study of a-life can contribute scientifically as well as
technologically.

2.6 Simulation and Modelling

“The story so far: In the beginning the Universe was created. This has
made a lot of people very angry and has been widely regarded as a
bad move.”

—Douglas Adams

The scientific method is founded on the observation of nature and the falsifica-
tion of theories that concern the relationships between the constituent observed
phenomena. Until recently, the empirical observations of the world were carried
out directly, with instruments designed to focus the world on our senses. Since
the advent of the modern day computer, these experiential knowledge-generating
processes have been augmented by a new, automated and algorithmic method-
ology of investigation. The ascendancy of the computational paradigm has had a
revolutionary effect on fundamental scientific research. Computerised numerical
simulations have come to act as scientific instruments in their own right, affording
a temporally-extended view of analytically intractable systems, the long-term
histories of which were hitherto opaque (systems that today are known as com-
plex systems). With these new tools we have explored the furthest reaches of
time and space and refined our understanding of the cosmos on the largest
and smallest scales, an undertaking otherwise impossible due to the difference
in temporal scale from our physical vantage point (Ayala and Forero-Romero,
2013), often with tangible technological results. In all these cases, simulation
enables the execution of thought experiments accurately and quickly, guiding
research directions and suggesting new avenues to explore. Simulation also
allows imperfect models of the world, built through incomplete observations or
with unavoidable assumptions or simplifications, to be examined for consistency.
Sometimes, the ultimate outputs of these simulations are validated empirically to
assert the quality of the conceptualisation itself.

The study of life and living systems is also suffused by the epistemic third-way
of scientific simulation and some of these research themes have coalesced in the
a-life research programme. This interdisciplinary undertaking seeks to investigate
and explain the fundamental properties of living systems through formalisms
and synthesis, in the realm of material things as well as in simulation (Langton,
1989). A-life studies include biological, chemical and computational perspectives
and it was one of the earliest forums for the emerging field of complex systems
science. Research in a-life ranges from the smallest scales (artificial chemistries)
to the largest (social simulations), and from the most abstract (computational
ecosystems of competing program code) to the most grounded (biophysical
simulation of whole organisms).
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The ongoing incursion of simulation into the natural sciences, and particularly
in a-life, is not without drawbacks. As observed by Arnold (2013), “computer
simulations are not material in any sense that would liken them to experiments”
and “experiments are not intertwined with models to such a degree that the
function of models in experiments becomes indistinguishable from the function
of models in simulations”. It follows that in many situations, the strength of
justifications for theories that arise from simulations is reduced and their function
is correspondingly diminished.

These kinds of simulations require external validation of their axioms and
outcomes against empirical data if they are to justify knowledge about the world.
However, in many cases computer simulations can act as proofs-of-concept or
proofs-of-sufficiency. This occurs when the simulation is in a context with an
observable, satisfiable objective but without a need to justify theories that also
apply in nature. In yet other cases, simulations are truly material and have as
much intrinsic empirical validity as real-world experiments.

As Tom Ray writes,

“I would like to suggest that software syntheses in a-life could be
divided into two kinds: simulations and instantiations of life processes.
A-life simulations represent an advance in biological modeling, based
on a bottom-up approach, which has been made possible by the
increase of available computational power.”

he continues:

“The second approach to software synthesis is what | have called
instantiation rather than simulation. In simulation, data structures are
created that contain variables that represent the states of the entities
being modeled. The important point is that in simulation, the data in
the computer is treated as a representation of something else, such
as a population of mosquitos or trees. In instantiation, the data in the
computer does not represent anything else. The data patterns in an
instantiation are considered to be living forms in their own right and
are not models of any natural life form.” (Ray, 1993)

Other literature has addressed these epistemological issues more directly. Fa-
mously, Webb attempted to characterise simulation models of biological behaviour
in a seven-dimensional space (Webb, 2001). By assessing a model’s relevance,
level, generality, abstraction, structural accuracy, performance accuracy, and
medium, Webb argues that a principled approach to biological modelling can be
applied to particular problems. From this, Webb discounts models that are based
on idealisations and argues for realism, physicality, and strong validation on the
assumption that biological behaviour needs to be studied and modelled in context.
Vassie and Morlino (2012) take a different view. In this work, the authors propose
a taxonomy that elucidates distinct relations between the natural and the artificial:

19



CHAPTER 2. INTELLIGENCE IN ART AND NATURE

a comparative approach views artificial systems in the same light as natural
systems and looks at the similarities and differences; a modeling approach uses
artificial systems to learn about features of natural ones; and an engineering
approach, that uses natural systems to draw inspiration for building artefacts.

For the present work, the value of simulation is twofold and is rooted in Vassie
and Morlino’s comparative class. First, simulations can allow us to demonstrate
the emergence of intelligence and mind, through observations of behaviours in
simulated environments, addressing one of the major open problems outlined
above. Within their own closed worlds we can observe how parallels with nature
play out, without making any claim as to their correspondence to natural pro-
cesses, but still benefiting from understanding how the techniques can work to
produce adaptive activity. Second, at the point where simulations and the real
world become one entity we can observe evolutionary mechanisms in action, with
complete access to their histories, and be confident that these process can also
inform our understanding of the natural world, and general principles pertaining
to evolutionary activity wherever it is found.

2.7 Computational Intelligence

| have now presented the Al ambition, the situated, embodied way of getting
there, and the overlap with living systems research in a-life in terms of underlying
philosophies and the grand challenges common to both endeavours. | have also
justified the use of simulations in the production of knowledge. In this section, |
discuss some widely-used technologies that when combined result in a system
that can provide the context in which an enactive intelligence can occur. Two main
threads are important, from the point of view of an enactive artificial intelligence.
First, neural networks, through judicious statistical configuration, can represent
arbitrary subsymbolic relationships between sense experiences and actions
in the world. Second, evolutionary computation is an algorithmic method that
simultaneously implements the statistical training and also ascertains which of
these relationships are pertinent to intentional action by agents in that world.

2.7.1 Neural networks

Artificial Neural Networks (ANNs) are abstract computational structures that
allow intrinsic behavioural relationships to form naturally between agents and
environments. Haykin (1994) defines a neural network as, “a massively paral-
lel distributed processor that has a natural propensity for storing experiential
knowledge and making it available for use”. These computational devices exhibit
a number of desirable properties when used in a control domain: non-linearity,
input-output mapping, adaptivity and fault tolerance (i.e. graceful degradation) all
contribute to their utility as control architectures. The first research in this field,
and perhaps the first work that can be recognised as Al, comprised a model of
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binary artificial neurons whose activation was dependent upon stimulation by
a sufficient number of connected units (McCulloch and Pitts, 1943). McCulloch
and Pitts argued for the general computational properties of these neurons, as
well as their potential for experiencing learning processes (Russell and Norvig,
2003, p.16). Due to the other factors outlined earlier, as well as criticism from
an influential text that underestimated the capabilities of such technology for
real problems (Minsky and Papert, 1969), ANNs were not widely explored for Al
applications for a number of years, although connectionism, an all-encompassing
term for Al and cognitive science founded on these principles, remained a con-
sistent alternative idea to the mainstream. It was only with the popularisation of
ANN technology after the resurgence of the connectionist paradigm that followed
Werbos’s invention and Rumelhart’s later popularisation of the gradient-descent
based error-propagation method of training networks (Rumelhart et al., 1986;
Werbos, 1974) that serious attention was paid to the potential of these devices.
Their capacity to capture important statistical invariances within inputs, to act as
control architectures for autonomous agents and to offer a model of biological
neural control, combined with computational architectures able to rapidly optimise
their performance secured the position of ANNs as a mainstream technology.
In terms of robot control and cognition, they deal with automatically providing
symbols—invariant features are learned—and if this learning takes place making
reference to an external environment then the symbols are effectively grounded.
Moreover, even complex networks allow near real-time updating from input values
and as such they are good for robot control.

2.7.2 Evolutionary computation

What is the source of the delicate complexity ubiquitous in natural systems?
Many explanations have been proposed to this long-standing question and our
understanding of the issue has changed as scientific discoveries have been
made. Today we can appeal to our knowledge of the intricate mechanics of the
natural world when formulating our answer, but we are required to look back
to the work of Charles Darwin and his contemporaries for the first complete
and defining explanatory theory of how the awesome diversity of nature has
arisen. Darwinism has taken centre stage as a unifying theory in Biology for more
than a century. It is agreed, at least in the scientific community, that the process
that we now know as evolution, the natural selection of well-adapted organisms
through reproductive success and their modification in later generations through
an imperfect copying process, is a sufficient explanation for the specialised and
limitless diversity of forms found in nature.

This theory has become an a priori assumption for those seeking to explain
the natural world; in 1973, evolutionary biologist Theodosius Dobzhansky wrote
an essay entitled Nothing in Biology Makes Sense Except in the Light of Evolution
(Dobzhansky, 1973). This phrase has become somewhat embedded in popular
consciousness and stands as a qualitative proof of the explanatory power and
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intellectual reach of Darwin’s hypothesis. Research is now focussed on examining
the contributory environmental factors in the struggle for survival that explain our
observations of the natural world in terms of evolutionary processes, as well as
studying the parameters governing the (non-Darwinian) evolution of the dynamical
system over time and the adaptation of the substrate of those processes to new
ecological niches (called Evolutionary Dynamics).

These evolutionary ideas have exerted intellectual pressure on other areas of
science, and it was only a matter of time before scientists and engineers started to
look to nature for inspiration when searching for novel solutions to computational
challenges. Certain problems, intractable from an analytical viewpoint, seemed
ideal candidates for nature-inspired solutions where stochastic, numerical and
once again constructive methods could be used to find acceptable solutions
within a reasonable amount of time.

Perhaps the first person to think of evolution as an algorithmic process that
could be harnessed and refined in a computational system was Alan Turing. In
musing on how one might go about producing a machine to play the Imitation
game (the parlour game that inspired the Turing Test), he imagined searching
for a “child brain [containing] little mechanism and lots of blank sheets” using a
trial-and-error approach, allowing the fittest to survive and guiding this man-made
evolution with what little domain knowledge is available to the human designer
(Turing, 1950).

The first uses of this algorithmic concept to solve real rather than hypothetical
problems are due to the early works of Box (1957) who applied the concept to in-
dustrial productivity by discovering optimal manufacturing parameters, Friedberg
(1958) who used an evolutionary method to search the space of computer pro-
grams, and Bremermann (1962), who considered the algorithmic time-complexity
benefits of using an evolutionary heuristic to search large parameter spaces.
Ultimately three main strands coalesced from the early experiments. Genetic
algorithms, a general model of adaptive processes (Holland, 1975), evolution-
ary programming, a method to parameterise finite-state automata to achieve
an artificial intelligence (Fogel, 1962), and evolutionsstrategie to solve general
parameter-optimisation problems (Rechenberg, 1973).

All these methods are characterised as stochastic, hill-climbing population-
based optimisation strategies. Since the inception of the general idea of evo-
lutionary search the avenue that has shown most positive results and has by
far the largest corpus of derivative work is optimisation, due probably to the
relatively clear problem specification and evaluation functions found in this area
as well as the flexibility and adaptability of evolutionary computation compared
to other gradient-descent methods of parameter optimisation (Back et al., 1997).
Research has now coalesced into the general field of Evolutionary Algorithms
(EAs) whose root analogy is shared by all three initial approaches.

Their basic mode of operation is as follows. A set of strings that represent
candidate solutions to a problem is maintained by the algorithm. Each individual
solution in the population is given a score, its fitness (performance, rather than
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reproductive fitness), that allows comparison with the other individuals. Typically,
an external objective function is used to provide this fitness metric. The algo-
rithm proceeds by comparing individuals, preserving highly-fit individuals and
generating new candidates to replace weaker solutions. The new solution can be
created in many ways: from random data, from copies of existing individuals or
from some kind of default template. In this way the space of solutions is explored
and the algorithm improves its ‘best- effort’ guess at a solution as time goes by
(Mitchell, 1998). This “black box” functionality makes implementation of this kind
of optimisation process feasible for a wide class of problems, especially those
where the shape of the solution space is not known. However, there are still
constraints that make evolutionary algorithms unsuitable for some problems.

There are many thousands of examples of the EC heuristic being used for
practical application since the early examples cited above, and countless more
studies examining how the algorithms can be optimised for different problems
and algorithmic forms.

As noted earlier, the smoothness of the hypersurface of fithess provided by
the objective function as the population moves around in the function’s domain is
a good indicator of the efficiency of the algorithm. As mutation events occur on the
genotype during the reproduction process, individuals move around on the fitness
surface. The mutation rate parameter is the main control for the trade-off between
the breadth of search (and therefore the avoidance of local optima) and the fine-
grained optimisation around a peak, and translates directly into an approximate
distance moved on the fitness surface. A smooth surface is forgiving if mutation
is too large—overshoots will be corrected in later generations—but as the number
and size of the discontinuities increases, so does the likelihood of a mutation
rendering an individual much less viable than its parent. A related problem is
particularly apparent in the early stages of the algorithm’s progress through a
complex fitness function, when large changes are needed in specific groups of
parameters in order to move away from zero-fitness regions. In this case, many
individuals will score zero fitness and selection will not make progress. This issue
is called the bootstrapping problem and becomes more and more evident as
the required complexity of any viable solution grows. Numerous methods have
been proposed to potentially alleviate this issue, including determining heuristics
that constitute sub-parts of the task and modifying the objective function to
reward solutions with these attributes (Nolfi and Parisi, 1997). This naive solution
necessarily entails a more complex fitness function and is entirely dependent
on the designer’s understanding of the problem domain and the appropriate
heuristics, the overall effect being to increase the difficulty of designing the initial
fitness function. Nolfi notes in later work (Nolfi, 1998) that any heuristic embedded
into the fitness function restricts the available evolutionary trajectories and thus
limits the potential of the search process to find optimal solutions.

Other less straightforward methodologies have been proposed to tackle the
problem of bootstrapping and jagged fitness landscapes. Incremental evolution
uses increasingly complex (more specific) fitness functions to encourage the
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evolutionary process to find proximal solutions at early stages. Once adequate
performance at reduced-complexity tasks has been achieved, the environment is
made more difficult (the fitness landscape becomes less smooth) and the process
continues until an acceptable solution has been found. This technique has been
shown to work very well in some scenarios (e.g. Gomez and Miikkulainen (1997))
but also shown to be less effective than naive methods in others (Christensen
and Dorigo, 2006).

In terms of understanding living systems from a synthetic, a-life perspective,
evolutionary methods are fundamental. Evolution finds itself at the root of many
first-principle definitions of biology’s object of study, e.g. “Life should be defined
by the possession of those properties which are needed to ensure evolution
by natural selection”, (Maynard Smith, 1986), and thus synthetic evolution is a
prime target for research in isolation. In addition, evolutionary simulations can
be used to address a variety of questions about the behaviour of evolution and
the evolution of behaviours observed in the natural world (Todd, 1996), and also
find uses, as described above, as a practical technology for exploring a complex,
high-dimensional search space to solve engineering goals (Lenski, 2004).

2.7.3 Evolutionary design

Evolutionary Design (ED) is a subset of Evolutionary Computation, seen by some
as comprising tools for design optimisation, creative design, evolutionary art,
and evolutionary artificial lifeforms (Bentley, 1999). Whilst there is overlap and
blurring between these categories, as well as with the wider field of EC, they
serve to illustrate that this subfield of EAs is concerned with exploring a large,
high-dimensional and highly heterogeneous search space using the evolutionary
paradigm. Applications are many and varied although some examples are almost
canonical in today’s literature. One classic early study looked at the evolution of
circuit-board designs to discriminate between 1kHz and 10kHz tones (Thompson,
1996). In this work, evolution was found to discover unusual designs that no
human would create, and also to use components in unexpected ways (some
designs showed components disconnected from the main circuit but still nec-
essary to its function; the author speculates that the evolutionary process had
discovered how to use localised electromagnetic effects or interaction through
the power supply wiring to modulate the operation of the FPGA).

ED is not restricted to computer science applications. In Funes and Pollack
(1998, 1999), an evolutionary methodology was used to design load-bearing
structures. This system produces templates for building the structures from Lego
blocks. Saul et al. (2010) applied an evolutionary algorithm to the design of paper-
folding meshes, producing objects with various characteristics selected for by the
process including height, stability and efficiency. Interactive evolution, where a
human oracle acts as the objective function by judging aesthetically the results of
the evolutionary process, has been used in artistic installations (Mignonneau and
Sommerer, 2001; Sommerer and Mignonneau, 1999). Evolutionary approaches

24



CHAPTER 2. INTELLIGENCE IN ART AND NATURE

to design have also been explored as alternatives to a traditional toolchain in 3D
computer graphics (Nishino et al., 2004), allowing users to interactively model
3D objects by using human aesthetic judgements as the objective function being
optimised.

Recent applications of ED in an even wider context include a system to
generate and explore choreographic sequences when planning dancers’ motions
through a space (Eisenmann et al., 2011), as well as the inverse task of training
virtual dancers to ‘move to the music’ (Dubbin and Stanley, 2010). Both of
these systems were also predicated on interactive evolution but they serve to
demonstrate the wide scope of problems that can be addressed using such a
methodology.

The use of interactive methodology in these complex design problems high-
lights a major difficulty in the practical application of evolutionary algorithms
in this context: the difficulty of designing an objective function that effectively
captures both the defining characteristics of a good solution and the relationship
between the independent variables that provide a gradient in solution space
toward this optimum. As argued by Zaera et al. in their paper discussing the
difficulty of evolving collective behaviours in artificial organisms, “formulating an
effective fitness evaluation function for use in evolving controllers can be at least
as difficult as hand-crafting an effective controller design.” (Zaera et al., 1996).
This problem is found throughout the world of ED; it is a good hint at a problem
we are going to run into later: creating fitness functions in order to generate
interesting behaviours in robots or virtual creatures.

2.7.4 Neuroevolution

The application of evolutionary methods to the problem of optimising a neural
network for a given task came swiftly after the resurgence of the connectionist
paradigm that followed Werbos’ invention and Rumelhart’s later popularisation
of the error-propagation (back-prop) method of training networks (Rumelhart
et al., 1986; Werbos, 1974). Instead of adapting the weights of the network
by deterministic gradient descent methods such as back-prop, the network’s
parameters are encoded in a genetic schema and a population of candidate
networks subjected to evolutionary pressure based on fitness in an evaluation
problem. The usual rules of EAs apply, but over time and with enough training
examples to learn from, the population adapts to the problem and learns the
generalisation in the same way. The properties of neural networks outlined
above greatly simplify this process: in particular, systems that exhibit a graceful
degradation in performance can tolerate small changes in their configuration,
meaning that mutation is not catastrophic and thus the fitness landscape being
explored is smooth.

There are many ways to represent the network structure in the EA. Many
parameters can be under evolutionary control: weights, number of units, transfer
functions and other tweaks. The most straightforward is to used a fixed archi-
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tecture and just evolve the network’s weights, an approach first put forward in
Montana and Davis (1989). Montana and Davis used the EA as a direct re-
placement for back-prop as a way to find weights for a set of neural links. Their
algorithm outperformed the standard method, although more recent research
across a range of tasks and training schemes has highlighted that often the
accuracy of the various EA methods is not significantly different from the ac-
curacy reached by backpropagation alone (Cantu-Paz and Kamath, 2005). For
complicated reinforcement learning tasks where supervised training is not pos-
sible, the application of gradient-descent training becomes difficult. Cantu-Paz
and Kamath (2005) also argue for simplicity, showing that for many problems
simple EAs perform as well as more nuanced algorithms. For this reason, evolved
neural networks are often preferable in problems where reward / error signals are
temporally remote.

2.7.5 Incremental evolution

Incremental evolution means two things. On the one hand, it means the gradual
progression of an EA through a range of intemediary converged populations
towards an overall solution. On the other hand, it can mean the gradual or
stepwise changing of an objective function, usually in a direction of increasing
problem complexity, in order to guide an evolving population towards an overall
solution. In some cases it can mean both of these things at the same time, since
they are complementary.

In terms of the second meaning, for the sake of clarity | call this environmental
complexification (see the section Categorisation of Complexification Techniques
below for further detail on this term.) Whilst many researchers have used this
idea with varying degrees of success, no extant work has examined in detail the
mechanisms that underpin this idea, nor have examined a variety of strategies
for performing it.

Inman Harvey’s Species Adaptation Genetic Algorithm (SAGA) paradigm,
motivated by evolution in the natural world, set the stage for the computational
use of incremental evolution by providing an evolutionary mechanism which allows
an evolving species to maintain, at least theoretically, most if not all evolutionary
pathways as potential candidates for exploration, no matter how converged the
population has become to a single point in genotype space (Harvey, 1992a, 1997).
Once a SAGA algorithm is implemented, objective functions can be changed and
the population can be expected to adapt to its new circumstances by traversing
neutral networks - pathways through genotype space that are defined as having
equivalent phenotypic characteristics (usually, fitness) (Harvey, 1997, 2001). The
requirements for the successful implementation of a SAGA-type incremental
process are straightforward: inclusion of mutation as a genetic operator, smooth
fitness landscapes and a redundant (high-dimensional) genotype to phenotype
mapping which permits neutral networks to percolate through genotype space.
In the SAGA literature the term incremental evolution is used in a sense that
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implies continued change, development or acquisition of domain knowledge by
the algorithm over time as converged species roam around in genotype space.
In addition, where there is a gradual change in the presentation of the objective
function as the algorithm progresses, the term environmental complexification,
as mentioned in (Mouret and Doncieux, 2009), is preferred. Finally, the label
incremental evolution is also sometimes applied where intermediate solutions are
moved to a new objective domain entirely; this case is also considered a flavour
of environmental complexification, a point explained in more detail below.
Some of the earliest work which uses the environmental complexification
approach directly is that of Gomez who (in addition to discrete, staged evolution
over subtasks) gradually increased the speed of prey in a pursuit- avoidance
simulation where neural networks were evolved to control simulated predators
(Gomez and Miikkulainen, 1997). This work showed a very large performance
gain by using the incremental approach. The work also identified an interesting
adaptive approach where complexification is dependent upon agent performance
at the current level of complexity. Mouret introduced a more general approach
to rewarding sub-task performance than the hand-designed, staged approach
common until this point (Mouret and Doncieux, 2009). Complex agent behaviour
was evolved incrementally in a two-dimensional task in Robinson et al. (2007)
where agents in a discrete world were evolved to navigate a hostile environment
by avoiding and building bridges over increasingly challenging obstacles. Envi-
ronmental complexification was used to evolve swarm robots in (Kadota et al.,
2012), although the complexification chosen constituted arbitrary, discontinuous
changes to the agents’ environment and not a smooth transition over a range of
difficulties. Notwithstanding, once again the incremental approach delivered a
much higher rate of success in the given task (co-operatively foraging for food
in a two- dimensional environment). Oh and Suk (2013) evolved controllers for
unmanned aerial vehicles first using a non-incremental strategy. This strategy
was found to perform badly as more constraints were added into the objective
function so an incremental, task-subdivision strategy was used instead.

Categorisation of Complexification Techniques

Barlow identified two classes of complexifying training schemes: functional incre-
mental evolution and environmental incremental evolution (Barlow et al., 2004). In
this definition, functional approaches parameterise fitness functions to increase
the apparent difficulty of tasks towards the desired level, whereas environmen-
tal approaches modify the environment around the evolving individuals without
modifying the fitness function, with the same effect. Sub-categories of incremen-
tal evolution identified by Mouret in (Mouret and Doncieux, 2009) are staged
evolution, environmental complexification, fithess shaping and behavioural de-
composition. The most striking of these distinctions, common to both Barlow’s
and Mouret’s work is environmental complexification; this category is of particular
interest as semantically it can encompass all of the other categories identified

27



CHAPTER 2. INTELLIGENCE IN ART AND NATURE

and thus becomes synonymous with the sense of incremental evolution where
the problem is simplified and made progressively more difficult. Additionally, envi-
ronmental complexification is the only category that adequately encompasses
co-evolutionary systems (which can be seen as auto-complexification), that in
turn are the natural precursors to open-ended evolutionary systems, one of the
grand challenges facing the field of a-life.

Incremental Learning in Neural Systems

The idea of incremental learning is not confined to evolutionary algorithms; neural
network research has also considered this both as a problem (learning invari-
ances is a dataset piecewise) and as a solution (tackling complex problems) for
networks generally, outside of any particular training scheme. In the standard
approach of using neural networks, training and application are distinct phases:
all training data are presented to the network and the system learns the invari-
ances and abstractions in that data using some learning algorithm. Then, this
trained network is put to work on unseen data. This method of presentation can
make it difficult for the network to adapt to new, unseen data at a later time
and cause networks to suffer the phenomenon of catastrophic forgetting (Mc-
Closkey and Cohen, 1989), where training on new input cases causes previously
learned knowledge to be lost from the network. In contrast to this, incremental
learning algorithms are designed to allow the neural system to continually adapt
to new information whilst maximising the information available in the network
from previous training. This is an important concept for real world applications
as often data is not available all at once and sometimes learning guides further
exploration, meaning that learning is a continuous process rather than a discrete
activity (Giraud-Carrier, 2000). One popular solution to the catastrophic interfer-
ence problem found in these incremental learning schemes is to rehearse either
already known data or pseudo-data representing the knowledge already in the
network, interleaved with training on new information. See (French, 1999) for an
overview and (Guajardo et al., 2010) for an example of recent work using this
technique.

2.8 Open Problems

This chapter has presented an overview of the embodied, evolved approach
to generating Al in terms of the history, scientific and technical hurdles and
the links between these topics. The final section on Incremental Evolution has
presented some specifics relating to this technology that are explored in a detailed
experiment in chapter 4. The following section gives an overview of the two
high-level, guiding objectives in a-life and Al that are the motivation for this
work: demonstrating advanced behaviours in artificial agents, and providing
a mechanism that opens up a path toward the demonstration of open-ended
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evolutionary processes. | then outline the aims of this thesis. In the next chapter, |
review related work by other researchers that has implications for these ambitions
and outline the work presented in chapters 5 and 6.

Demonstration of advanced behaviours

As noted above, the grand ambition of Al is to understand the nature of intelligent
behaviour, and engineer artifacts that demonstrate it. | also reported that a grand
ambition of a-life is to demonstrate the naturalistic emergence of such behaviours
from increasingly impoverished starting points—meaning more homogeneous,
less decomposed beginnings. This is the major aim and contribution of this thesis:
using the principles of situation, embodiment, neural control and incremental
evolution to achieve a level of behaviour hitherto unseen in systems specifically
designed to automate the entire development process.

Open-ended evolution

One phenomenon that fits neatly into the category of closed computational
structures that offer epistemic grounding equivalent to that of the natural world is
open-ended evolution. This is another grand challenge in a-life; the much-debated
idea that certain evolutionary systems have properties that allow indefinite evo-
lutionary progress in some metric, the Earth’s biosphere being the definitive
example. Although (as we note in a recent paper) discussion continues in the
OEE community about the hallmarks of the phenomenon and potential metrics
to determine its presence (Taylor et al., 2016), like evolution more generally
OEE is not dependent on observations of the material world, provided the sub-
strate and metrics are sufficiently abstract. The earliest working definitions of
the phenomenon were encapsulated in an evolutionary activity metric (Bedau
and Packard, 1992). Originally, this measure classified the Earth’s biosphere as
open-ended, and all other extant artificial systems as not so. Channon’s work
demonstrated the first artifical system capable of passing Bedau and Packard’s
test (Channon, 2001), and then also passed a more difficult test, designed by
Channon to normalise some statistical artifacts. However Channon’s system does
not offer intuitive confirmation of the OEE result through observation—the evolving
entities are too removed from natural human experience to allow this.

Any meaningful metric must have this validation to offer more than an idiosyn-
cractic definition of OEE so a major piece of the required analytical framework
is the demonstration of experimental results that help to confirm the validity
of the metric by offering a meaningful physical or pseudo-physical exposition
of the evolutionary process alongside the statistical measure. The potential of
systems that demonstrate advanced evolved behaviours to contribute here is
large; behavioural changes in evolved agents are similarly understandable as
those in the natural world so the intuitive validation can take place in relatively
controlled circumstances.
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2.9 Thesis Aims

2.9.1 Improving environmental complexification in
incremental evolution

Incremental evolution has been widely applied in a variety of contexts in an
effort to improve the efficiency and power of evolutionary algorithms. However,
this application has generally been ad-hoc, intuitive and often an afterthought
used to improve results on an existing system. The important considerations and
effects of different incremental strategies remain unclear. Therefore, the first aim
of this thesis is to examine how the different methods of applying incremental
evolutionary pressure affect the outcome in a real task. By applying incremental
evolution in a principled way, a theoretically-informed conclusion can be drawn
about best practice in the use of this technology. The first work presented in this
thesis in chapter 4 attempts this examination.

2.9.2 Simultaneous incremental neuroevolution of
intelligence

The demonstration of intelligent behaviour is the long-term objective of Al; the
demonstration of such behaviour emerging from relatively impoverished initial
conditions is a grand aim of a-life. Observing an open-ended evolutionary process
in human-scale artificial organisms is an important validation for theoretical
research in evolution. Hence, the overall objective of this thesis is to use the
principles of simultaneous incremental evolution, neural networks, and enactive
cognition to contribute to the cutting edge of this research, by demonstrating a
system that takes a step forward in these directions. The following chapter looks
in detail at a wide spectrum of research relating to this ambition in order to inform
a practicable approach towards achieving this next step in intelligent behaviour.
(See chapter 3 section 3.3 for a more developed statement of aims for this part
of the thesis.)
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Complex Behaviours in Embodied Artifacts

3.1 Evolution of Behaviours

The scope of possibility for the study and generation of animate activity widened
with the introduction of new building blocks like classifier systems and neural
networks for producing complex behaviour and, in evolutionary algorithms, a
principled system for automatically discovering configurations that exhibit com-
plex, emergent phenomena. The late 1980s and early 1990s saw an explosion in
applications which combined one or both of these techniques with simulations of
self-contained environments composed of specific primitives and rules governing
the interaction of these primitives.

Applications and virtual substrates were diverse but all shared the same
common objective: to observe organised activity on a systems level emerge
from the low-level interactions. These organised behaviours ranged from simple,
self-maintaining patterns in cellular automata through the co-ordinated control
of legged robots (Brooks, 1989; Lewis et al., 1992), control of general robot
behaviours (Beer and Gallagher, 1992; Floreano and Mondada, 1994), simulated
insect behaviours (Beer et al., 1990), control of animat behaviours (Wilson, 1985)
and emergent population dynamics (Packard, 1989).

These pioneering works, heavily reliant on computational capacity, were
severely restricted in scope by the primitive calculating power available at the time.
The explosion of computer power during the 1990s made even more ambitious
a-life projects possible: one of the most well-known of these was Thomas Ray’s
Tierra platform.

Tierra is a complete computational ecosystem (Pichler, 2009). The Tierra
universe is a simplified von Neumann computing architecture, simulated on
a physical machine. Within this universe, populations of computer programs
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evolve to exploit the architecture based on the natural selection principle that
differential reproduction is the only necessary driver of evolutionary progress.
Ray saw the emergence of diverse ecological communities, and found organisms
with distinctly natural characteristics: parasites, immunity, and hyper-parasites
(organisms which co-opted parasitic organisms’ reproductive facility for their own
ends, driving the original parasites to extinction) (Ray, 1992). Ray’s work was
one of the first open-ended simulations where reproductive capacity is directly
linked to the phenotypic expression of the organism’s genotype. No external
intervention occurs in the reproductive process: either the organism is born with
the capacity to reproduce or it isn’t, so after the first generation only those with
the capacity to reproduce can reproduce.’

This is in contrast to most other work of the time, where evolution works only
on a data structure in order to find set of optimal parameters unknown at the
start of the simulation, and is in essence an optimisation process. Ray’s system
was undoubtably ground-breaking and significant even if only the diversity of
emergent phenomena are considered: not only does the system exhibit interesting
individual behaviours but also shows a general increase in complexity. Ray
cites the unrolled loop as an example of this complexification in Tierra. Loop
unrolling is a clever optimisation technique, invented independently of natural
inspiration by humans and yet discovered by the chaotic evolutionary search
within Tierra. The emergence of population-level dynamics where organisms
discover methods of exploiting one-another as well as their static environment
is another. Ray implies that this is suggestive of traditional evolutionary theory
where biotic adaptation is the primary driving force behind the diversification
of organisms. Tierra is not without criticism however; Channon (2001) argues
that the apparent successes of Tierra arise from the simplicity of the underlying
mechanics of the simulation environment rather than any specific adaptations
on the part of the evolutionary process. Notwithstanding, the system shows a
non-trivial emergence of composite behaviours from simple components which
is a fundamental principle of descriptions of life-like systems, and has inspired
a family of similar models, for example, Computer Zoo (Skipper, 1992), Avida
(Adami and Brown, 1994), and Cosmos (Taylor and Hallam, 1997). It can be
argued that just because the abstraction is not what was originally intended, there
is no implication that the emergent phenomena are less valid as novel solutions
to the problem of existence in the Tierra world.

Ray’s Tierra was one branch of a three-way diversification in the lineage of
large-scale life-like simulations. The second and third branches were pioneered
by Larry Yaeger (1993) and Karl Sims (1994). In contrast to Tierra, Yaeger’s
PolyWorld system attempted to abstract at the ethological level rather than at the
level of fundamental metabolics, in order to generate emergent phenomena at
a higher level still, with the objective of exploring a-life systems as mechanisms

TRay’s initial problem of finding a bootstrap to reproductive success was solved by using
hand-designed ancestor organisms imbued with this capability as an initial population.
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for making progress towards artificial intelligence (Yaeger, 1993). This aim was
facilitated chiefly by PolyWorld’s biologically-inspired fundamental building blocks
(i.e. neural processing elements), a naturalistic, 2.5D environment which provides
sensory grounding for the organisms in a way that previous systems had not,
following the argument made by Cliff in his work simulating the neural visual
system of a fly (Cliff, 1991), and an abstraction of base behaviours from the
agents’ worlds—a calculated step away from autonomous embodiment.

Yaeger’s system was inspired by the Braitenberg Vehicles mentioned earlier
(Braitenberg, 1984), where emergent behaviours were imagined in two-wheeled
vehicles with extremely simple and arbitrary control structures connecting sen-
sors to effectors. Yaeger’s extension (aside from creating a real simulation rather
than thought experiments) was to substitute Braitenberg’s control structure with a
neural-network mediated system with a supporting palette of intrinsic interactions
based on intuitions about real-world ethological classes (these are the fundamen-
tal building blocks) and to incorporate the adaptive mechanism of learning (within
the neural network) alongside natural selection. A rudimentary vision system
was also incorporated that supplied the controller with data about the organisms’
environments. The neural system in PolyWorld is a straightforward multi-layer
perceptron customised with evolvable neuronal clustering and topological distor-
tion (in order to facilitate development of the kind of retinatopic maps found in
natural organisms). Learning occurs according to the Hebbian principle (Hebb,
1949) where synaptic efficacy is moderated according to the previous activation
state of the connected units and the evolution of the learning rate (n) parameter:
“neurons wire together if they fire together” (Lowel and Singer, 1992).

Yaeger’s results were intriguing; he found that various species evolved suc-
cessful behaviours which permitted their populations to reproduce and live in
the simulation indefinitely but even more interestingly, individual complex emer-
gent behaviours like adapting speed in the presence of certain visual stimuli,
grazing (slowing in the presence of food) and following other organisms. These
behaviours certainly achieve Yaeger’s original aim of finding complex emergent
behaviours from a simple suite of primitives, and are further examples of the
crossover between real-world emergent phenomena and those of simulated
complex systems.

Although Yaeger’s groundbreaking approach yielded impressive results, they
were marred slightly by the sheer complexity of the underlying simulation. It is
difficult to estimate with any accuracy the appropriate attribution of responsibility
for high-level emergent behaviours to any particular underlying component of
the system, be that the neural architecture, the extensions to this architecture
invented by Yaeger, the Hebbian learning process or simply the range of primitive
behaviours available to the organisms. It is certainly possible that equivalent
behaviours could be found by a simple feed-forward network in an otherwise
identical environment, and it is unclear whether any new behaviours would arise
beyond those relatively simple emergent activities described above using any
control model (see Channon and Damper (1998Db) for a full discussion). Yaeger’s
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Figure 3.1: Tierra (Ray), Polyworld (Yaeger) and Blockies (Sims)

attempt to ground his organisms within their sensorimotor worlds is admirable,
but the simplicity of the underlying model (even with the potential for reflexive
internal complexity) may impose a ceiling on emergent ethological complexity
due simply to the lack of available space to explore.

Karl Sims’ work (1994) is perhaps the best known of the a-life simulations
of the early 1990s. Sims created a virtual universe of rigid, 3D structures and
constraints (joints) between them and evolved the specification both for the bod-
ies and the neuron-like network structures that controlled forces acting on the
constraints (Sims, 1994a). With a focus more on engineering than science, Sims’
work is recognised as groundbreaking primarily because of the step-change in
complexity and realism introduced with a fully 3D environment. It is the opinion
of this author that this work provides the most life-like, engaging and intuitively
accessible demonstration of evolved virtual organisms, principally because of
the natural affinity the human observer has with the world of the evolving organ-
isms. Sims’ demonstrated organisms composed of multiple blocks connected by
powered hinges, evolved using artificial evolution to optimise performance at an
arbitrary task (locomotion, block-following and competition for resource).

To some extent, it is possible to classify each of the three preceding systems
in terms of their scale analogues in the biosphere. Ray’s Tierra (as an extension
of Langton’s work on computational biochemistries) can be seen as focusing on
intra-cellular dynamics; the processes which allow single-cell organisms to sur-
vive and reproduce. PolyWorld also investigates the single-cell, except abstracting
the mechanics of reproduction to the level of interaction between organisms and
the environment. Sim’s work on block creatures then represents multi-cellular
organisms which have to learn to control their own bodies (inter-individual in-
teraction is somewhat an afterthought). Each level of detail reveals higher-level
abstractions of life-like processes in these simulations but also each fundamen-
tally solves the same problem: the marshalling of available base resources in the
environment in order to interact successfully in that environment and participate
in the implicit struggle for for survival.

As noted earlier, results from PolyWorld showing complex behaviours are
scant. However, PolyWorld has still served as a useful model for life-like pro-
cesses. Research using or based on the PolyWorld platform has tended to focus
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on investigating specific aspects of evolutionary dynamics or neuroevolution,
rather then follow the original aims of evolving complex behaviours in order to
approach artificial intelligence. In Yaeger and Sporns (2006) the evolution of neu-
rocontrollers was analysed in the PolyWorld context to discover general trends of
evolving neural systems. Griffith used PolyWorld as a simplified ecological model
in order to investigate the evolution of agents showing an optimal, ideal free distri-
bution of agents to resources (Griffith and Yaeger, 2006). More recently, Yaeger
has used the system to investigate the evolution of complexity and passive versus
driven trends in the complexification of evolving agents (Yaeger, 2009; Yaeger
et al., 2008). It is clear that PolyWorld is a useful tool for simulating evolutionary
activity but has not shown recent promise in the search for artificial intelligence.

Another system which bears some superficial similarity to PolyWorld is Geb
(Channon, 2001; Channon and Damper, 1998b). Although conceived indepen-
dently, Geb has a similar level of abstraction in that a palette of behaviour is
available to a neural network that expresses these actions in by controlling an
agent in a two-dimensional world. The original aim of the Geb system was partly
parallel to that of PolyWorld—to build a simulator with the flexibility to produce
intelligent behaviour through an evolutionary process. Channon’s early work
showed success in this area, developing unexpected and interesting behaviours
(Channon and Damper, 1998a). Although a spartan model compared to Poly-
World, the main focus of Geb is elsewhere, in the search for the first evidence of
open-ended evolutionary systems in artifacts (Channon and Damper, 1998Db).

Common to all of these systems is the problem of the complexity ceiling,
where highly complex behaviours are not accessible due to either the underlying
representation, the evolutionary dynamics or the time available to run the process.
As such, research is driven down a narrower track of investigation of specific
guestions relating to evolutionary processes or autonomous behaviour, and often
loses sight of the original objective—the evolution of advanced, general-purpose
adaptive behaviours.

3.1.1 Virtual environments for intelligent behaviour

As the range of work in the previous section attests, simulations of living sys-
tems have covered a broad spectrum of abstraction but typically aim to exhibit
behaviours at the level above that specified in the model’s design. When building
animat simulations that focus on interactions recognisable at the human scale,
such as moving around, fighting and environmental manipulation, one of the key
distinctions between designs is the physicality in which agents operate, specif-
ically the choice between 2D and 3D environments. A two-dimensional world
such as PolyWorld or Geb abstracts simulations away from the natural physical
domain. Agents in these flat environments generally do not have to solve any
complex physical control problems (Channon and Damper, 1998a), as controllers
are able simply to signal directions in which to move or turn the agent. Such
models can encourage early emergence of more complex composite behaviours
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but preclude the development of novel motor control which may later allow for
a richer interaction between agents and their environments, in the spirit of pure
situated, embodied intelligence. Two-dimensional simulations have not tended
toward clearly displaying the impressive physical interaction observed in nature,
whether or not complex (simulated) non-physical interactions have evolved. This
can be attributed, at least in part, to the fundamental rigidity and paucity of physi-
cal actions in such environments and the lack of situatedness and embodiment
that leads to a diminishment of environmental grounding.

The development of an even more low-level system such as Tierra, Avida,
and Cosmos, whilst allowing evolution free reign over its own operation on a mi-
croevolutive level (also known as the evolution of evolution, or EvoEvo), are even
further abstracted from the intuitive naturalistic domain. Results in these worlds
may be in a sense situated and embodied, but are not recognisable analogues at
common scales and so specialised analysis is required to understand the activity
of evolution in these contexts.

By contrast, having three-dimensional articulated bodies in a 3D world pro-
vides for much greater intricacy in how agents can interact with their environment
and each other. Agents must begin to construct a coordinated motor pattern
that results in basic directional motion before richer behaviours can develop
as composites of these lower-level patterns. The specific characteristics of the
environment are implicitly included in the performance of these motor patterns,
and this couples agents to their environment. This coupling is crucial, together
with the coupling of brain and body, to two key principals of embodied cognition:
“first that cognition depends upon the kinds of experience that come from having
a body with various sensorimotor capacities, and second, that these individual
sensorimotor capacities are themselves embedded in a more encompassing
biological, psychological and cultural context” (Varela et al., 1991). Recent trends
reinforce this point of view, highlighting the importance of morphology and soft
materials in the embodied loop (Pfeifer et al., 2014), and the effect that this can
have on the evolutionary process itself (Corucci et al., 2016).

It is clear that, in terms of the ongoing ambition to evolve advanced life-like
behaviour, both 2D and 3D approaches have been fruitful. For example, using
2D non-articulated agent bodies, early work by Yaeger showed (in a 3D environ-
ment) the emergence of complex collective behaviour (Yaeger, 1993); Channon
demonstrated the first candidate synthetic open-ended evolutionary system using
an agent-based (2D) world (Channon and Damper, 1998a); and Robinson et al.
(2007) evolved agents capable of reactive and deliberative behaviours in novel
and dynamic environments. However, it is in embodied, 3D agents that we begin
to see behaviour that is truly recognisable as intelligent and life-like.
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3.2 The Evolution of Embodied Intelligence

In thinking about how to achieve Artificial Intelligence in its modern, nature-
inspired incarnation we have travelled through the philosophical idea of em-
bodiment, the connection that this has to all living processes, and the practical
methods of capturing and expressing a nonlinear relationship between brain,
body and world using evolution and connectionist networks. We have seen that
intelligent behaviour is an emergent product of a number of components in-
teracting in a complex dynamic and have catalogued some of the important
actors in the show. We have observed that in all cases assumptions are made
about where to base our abstractions, the possible way we can connect the
components together, and mechanisms we can employ to do this so as to move
towards recognisably intelligent behaviour. By designing environments, evolution-
ary algorithms, control architectures and agents with close attention paid to the
underlying philosophical principles of embodied cognition, previous research has
made substantive leaps forward in the search for artificial general intelligence
technology and an understanding of how cognition has developed in nature. The
previous section highlighted some successes from the broader field of research
in this area, but when the above concerns are attended to closely, we can out-
line a category of artifacts that clearly stand apart in terms of their relations to
real-world intelligent behaviour in natural organisms. Embodied machines with
non-linear control architectures, embedded in 3D space analogous to our own,
that are sculpted by a wandering evolutionary process have delivered examples
of intelligent autonomous behaviour that are truly breathtaking. These devices,
whether constructed in the real world or merely reified in their own simulations,
demonstrate viscerally animate, autonomous activity in a fashion unmatched by
other technology to date.

Of course, problems still attend in such systems. For example, in general the
evolutionary process itself is not embodied, in the sense of Watson’s embodied
evolution (Watson et al., 1999) or the previously mentioned work of Channon. In
the taxonomy of Schut et al. (2009) which characterised evolutionary systems
according to their “embeddedness” in time and space, these systems are of type
4 because the capacity of individuals to reproduce is governed by their spatial
location (other examples given include evolving agent societies and on-line robot
evolution—ibid.) In contrast, most work in the evolution of embodied intelligence
is of type 1; the EA lurks in an abstract space receiving fithess assessments of
individuals and remotely orchestrating selection and reproduction with a kind of
omnipotent grace.

These constraints do not affect the overall motivation—the evolution of embod-
ied intelligence—only the modes in which it may be carried out. In the short term,
we need to understand those conditions that are necessary and sufficient to
achieve advanced evolved behaviour. This may entail advanced control architec-
tures, powerful evolutionary algorithms, or complex co-evolutionary environments.
It may simply mean a judicious alignment of much more modest components.

37



CHAPTER 3. COMPLEX BEHAVIOURS IN EMBODIED ARTIFACTS

The following section looks at work in the area of evolved embodied intelligent
behaviour and catalogues the approaches and findings.

3.2.1 Evolutionary robotics

There are obviously strong ties between behavior-oriented Al and
robotics, because the construction of physical agents is seen as a
condition sine qua non for applying the method of the artificial properly.
But the two fields should not be equated. The goal of robotics is to
identify, design, and engineer the most reliable and most cost-effective
solution for a sensorimotor task in a particular, usually fixed and
known, environment. Behavior-oriented Al uses the tools of roboticists
to study biological issues, but very different criteria for success apply.
(Steels, 1993)

The broad principle of Evolutionary Robotics (ER) is to use evolution to
produce useful values for a parameterised robotics system, be that it's body
(morphology), brain (controller), or both (Floreano and Keller, 2010), in order to
design machines capable of performing autonomous behaviours. This definition
has been expanded to include bioinspired robotics that extends beyond evolution-
ary design methodologies (Pfeifer et al., 2005). In the words of Bongard (2013),
“The long-term goal of evolutionary robotics is to create general, robot-generating
algorithms.” Practically however, the approach is “useful both for investigating
the design space of robotic applications and for testing scientific hypotheses of
biological mechanisms and processes” (Eiben, 2014). In general ER is focused
on building robotic machines in the real world, as opposed to a purely simulated
environment. Early ER research used simulations to accelerate the evolutionary
process—time can run much faster in a simulation—but found problems when trying
to transfer the species evolved in silico to real-world analogues. A body of work
was undertaken to solve this problem, including methods of minimal simulation
(Jakobi, 1998) that tested species both in simulation and physically, in order to
maintain evolutionary trajectories successful in both environments. Macinnes and
Di Paolo (2004) explored evolving the morphologies and controllers in simulation
for real robots, using Jakobi’s ideas of minimal simulation, with some success.
Various other versions of this crossover have been tried; Pollack and Lipson
(2000) and Lipson and Pollack (2006) demonstrated real robots (morphologies
and controllers) that were designed by evolution in simulation by using a rapid
prototyping process.

Mahdavi and Bentley (2003) evolved controllers for real robots notionally
based on a snake’s morphology. They found that although evolution in real
robots was difficult, there were advantages in terms of adapting to unexpected
constraints or changes in the environmental parameters.

Lund (2003) evolved controllers and morphologies for Lego robots, both
automatically and with a user-guided design approach, advocating the approach
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on the embodiment argument. This work used a Hox-gene inspired encoding to
lay out the robot’s body and controller plans.

Matsushita et al. (2006) investigated pseudo-passive dynamic walking bipeds
in simulation. It was found that when evolving fine morphology and controller,
pseudo-passive dynamic walkers showed more dynamic stability than actively-
controlled examples. The authors argue that this is due to the compliant compo-
nents in the model functioning as noise filters and passive oscillators.

Samuelsen et al. used a Hox-gene inspired developmental approach, using
a two-level description linked to two different axes of physical development to
evolve simulated robots with potential for transference into a physical machine
(Samuelsen et al., 2013). They then investigated different distance measures in
order to reward diversity in populations of these robots, finding that the lengths,
branching factor and longest depth resulted in species most adapted to the
distance-metric objective function in use (Samuelsen and Glette, 2014).

Bongard (2008) succeeding in producing a robot capable of multiple, chained
behaviours by a scaffolding approach that carefully presented the two tasks. This
was one of the earliest pieces of work to attempt a chain of behaviours. This
work was continued in later work that demonstrated the importance of the order
in which the various tasks were presented to the evolving populations (Auerbach
and Bongard, 2009).

Bongard (2010) used an evolutionary approach to design the morphology of
a robot arm, investigating how the utility of this approach varied according to
task complexity. By demonstrating a relationship between task complexity and
the utility of an evolutionary design mechanism, Bongard provides yet further
evidence that an embodied Al paradigm is important for generalised intelligent
behaviour.

This idea is continued in (Auerbach and Bongard, 2010) where a novel
representation scheme, CPPN-NEAT (based on Stanley’s Neuroevolution of
Augmenting Topologies (NEAT) algorithm (Stanley and Miikkulainen, 2002) and
Compositional Pattern-Producing Networks) is used to evolve controllers and
morphologies at multiple spatial scales; the proposed system worked as a proof
of concept for this approach.

Glette and Hovin (2010) examined the physics simulator PhysX as a platform
for evolving artificial muscle-based robotic locomotion, both in simulation and with
transfer to real-world machines. The system produced stable locomotion when
adapting the cloth feature of PhysX to act as muscle tissue, but the researchers
noted that care must be taken when attending to simulator parameters to avoid
instability.

Faina et al. (2014) used a simulation of modular robots to evolve machines
which could then be built in the real world. The specific architecture lends itself to
rapid physical construction and allows a large number of varied morphologies
with only a few different types of module.

GroB et al. (2011) imagined an ambitious system of real-world fundamental
evolution, where basic building blocks are able to come together in an agitated
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medium to produce living non-biological physical organisms. This is perhaps the
closest that evolutionary robotics has come to the life-as-it-could-be paradigm of
a-life.

Nakamura et al. (2011) used an EA to optimise control parameters for the NN
control of a simulated flat fish in an underwater environment.

Jared Moore’s 2013 work uses and EA to optimise values in a parameterised
sinusoidal controller for a bipedal hopping model (Moore et al., 2013). In Moore
and Clark (2014), he designed a system to produce controller for an underwater
robot using NEAT. Moore researched a novel method of actuating virtual creature
joints (Moore and McKinley, 2014a), and then investigated how these neuromus-
cular connections affect the performance of quadruped agents, finding that for
more complex agents a joint-control coupling was as effective as a simulated
musculature (Moore and McKinley, 2014b). The same research group have also
worked on optimising the parameters for the caudal fin of a robotic fish, finding
through rapid fabrication of the evolved structures that it is possible to search
the design space for successful parameters in simulation, and then transfer to a
physical machine without losing key aspects of the solution’s performance (Clark
et al., 2012).

Nogueira et al. (2013) applied a modulatory neural network to the control of a
Khepera-type robot in simulation, demonstrating a capacity to evolve a foraging
behaviour using simple neuroevolution. The authors comment on the lack of
complexity, and the difficulty of increasing the behavioural output of the system.

Very recently, Central Pattern Generators (CPGs) have been used as compo-
nents of motion primitives in a robot locomotion problem, in order to allow the
robot to switch between locomotive modes to cover uneven or unexpected terrain.
These primitives are combined by a higher level planner to achieve the robot’s
goal (Vonasek et al., 2015).

While there have been many novel results and important successes in the
study of ER, some researchers still criticise the field from the point of view of
lack of generalisation: most ER demonstrations solve toy problems or exist in
contrived environments (Nelson, 2014). Notwithstanding, it is clear from this
survey that ER has contributed to fundamental technologies that allow us to
construct intelligent, autonomous agents in the real world and in simulation.
It has also advanced the sciences of intelligence and behaviour, acting as a
platform for constructive (synthetic) investigations of hypotheses about how these
characteristics of the natural world developed, and has validated the philosophy
of situated Al described in the previous chapter. However, these examples show
that the focus of ER research has mostly been on either basic locomotor control
behaviours, or to investigate the effect that natural principles exert when using
artificial evolution to build robot controllers. Only in a few cases have complex
and varied behaviours been the focus, and even then the scaffolding required to
achieve the results meant that the outcome was more due to design decisions by
the research team than the automatic emergence of such behaviours through
evolution within the platform.
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From the point of view of the ambitions of this thesis, ER research has
shown that technologies like evolved neural networks and the undercurrent of
enactive Al that they embody are a fruitful line of inquiry when aiming to build
general-purpose intelligence artifacts. In addition, Bongard’s work has shown
that an incremental approach can be used to generate increasing complex
behaviours in an evolved Al system. Furthermore, the capacity of an evolutionary
robotics system to generate unbounded diversity is only a small conceptual
step from current frameworks, with the potential to produce machines with highly
heterogeneous behaviours, many of which could be found in nature as convergent
evolutionary answers to the common problems of existence in an uncertain world.

3.2.2 3D virtual creatures

As noted above, results of evolution that are generated from a pure simulation
are often difficult to transplant into physical reality: imperfect sensorimotor sig-
nals and enormously variable environments can expose the limitations of the
assumptions necessary to build artificial analogues. However, the requirement
for evolved robots to exist in the real world can be relaxed and this opens a
swathe of opportunity for exploration of evolved behaviours not possible in physi-
cal machines. These wholly artificial evolved virtual creatures (EVCs) are born
as pure simulations, entirely shaped by the assumptions built into their worlds
by their designers. This research direction has occurred in parallel to real-world
evolutionary robotics, but its initial ambitions were more diverse. Castro and
Gudwin describe virtual creatures succinctly in work that sets out to use virtual
creatures to examine the role of episodic memory in decision-making animats:

“An artificial creature is a special kind of autonomous agent, which
is particularly embodied in a given environment (there may be au-
tonomous agents which are not embodied). A virtual creature, for its
turn, is a special kind of artificial creature, where the environment is a
virtual environment, so the creature’s body is not a concrete one, like
in a robot, but just an avatar in a virtual environment.”(de Castro and
Gudwin, 2010)

In fact, virtual creature ecosystems have a long history at the interface be-
tween science, technology and art. Some of most forward-thinking work in this
area had a focus on educational outreach, creativity and imagination as well as
driving forward technological development.

At the turn of the 21st century, some of the best known examples of digital
biota from the a-life research programme were Tom Ray’s Tierra, Karl Sims’ 3D
virtual creatures and Biota’s Nerve Garden (Jensen, 1999). As noted earlier,
Ray’s work is certainly the most pure from an a-life perspective in that its only
assumption is the computational medium where the coding for reproduction
can take place, but Ray himself sees EVCs as sitting on the same conceptual
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continuum of evolutionary processes that have, to varying degrees, been liberated
from a pure objective optimisation (Ray, 1997). In Nerve Garden the objective was
to synthesise an immersive, networked virtual environment using nature-inspired
principles in which people could interact and explore the world (Damer et al.,
1998, 2003). Ray makes the point that evolved virtual organisms have an intrinsic
beauty and can affect human observers in the same way as natural organisms:
“the creatures may appear beautiful, elegant, sensuous, nervous, bizarre, strange.”
(Ray, 2001). The intuitive correspondence between these artificial organisms and
our experience of the natural world is made clear by Hayles:

“when we attribute to Sims’s virtual creatures motives and intentions,
we interpolate their behaviors into narratives in which events are
causally related to one another and beings respond to their environ-
ments in purposeful ways.” (Hayles, 1999).

One of the earliest and most prevalent examples of EVC applications in the
literature is as a procedural animation technique, either to achieve realistic low-
level behaviours automatically or to provide high-level behaviour and the ability for
entities to adapt to and anticipate situations dynamically in unknown environments
(Duthen et al., 2010). In these systems, only the appearance of autonomous
behaviour is important; in general any means to this end is acceptable.

Perhaps the first such example to be widely published is that of Miller (1988),
whose models of legless figures (snakes and worms) were for the time an
extremely biologically plausible generation of the motions of these animals.

Contemporary to Sims’ 1994 work which is looked at in more detail in a
later section, Terzopoulos produced seminal work on the simulation of fishes.
This graphically-focused but biologically-rooted system had hand-crafted and
yet complex behaviours, and the situated nature of the system led to a much
increased level of graphical realism (Terzopoulos, 1999; Terzopoulos et al., 1997;
Terzopoulos and Rabie, 1995; Terzopoulos et al., 1994), and also began to
achieve a degree of automation in the search for realistic behaviours (Grzeszczuk
and Terzopoulos, 1995).

McKenna and Zeltzer (1990) used the simulation of legged locomotion to
demonstrate the utility of a fast dynamics simulation. Similarly, Raibert and
Hodgins (1991) used a dynamics simulator to produce locomotion in animats
with various numbers of legs. Nikovski (1995) combined an explicit plan-based
scheduling with an evolutionary algorithm to find parameters for legged loco-
motion in a hexapod robot, in simulation. In these cases, although the authors
had a goal of animation, the techniques employed were beginning to touch on
the situated, embodied approach since this had the potential to produce the
most naturalistic appearance. Indeed, Thalmann et al. (1996) discussed how a
complex ‘virtual life’ could be created in simulation, mentioning the problems of
perception and action that arise when trying to automate interactions in such
worlds. This philosophy continued with other groups who wished to automate

42



CHAPTER 3. COMPLEX BEHAVIOURS IN EMBODIED ARTIFACTS

to varying degrees the interactions in virtual environments to achieve a realistic
and yet interestingly novel environment, although the a-life philosophy is explicitly
criticised as not having the aesthetic potential to satisfy the goals of the VL
endeavour (Wang and Mckenzie, 1998).

This approach has continued up to the present, employing increasingly sophis-
ticated simulation and graphical techniques to incrementally increase the realism
of the animations. Liu et al. (1997) used an evolutionary strategy to search for
parameters to achieve predefined gaits in bipedal and hexapod creatures. Heleno
and dos Santos (1998) modelled a river ecosystem using hand-crafted controllers
for various organisms residing within it. Eccles et al. (2000) engineered a graphi-
cal ecosystem by pre-evolution of control parameters for constituent organisms
(bugs and fish) and then a subsequent stage of manual integration into the
ecosystem. The bugs are stuck on the 2D lake surface; only the fish has 3D
motion capability and this is limited to abstract behavioural primitives of move-up,
move-down, etc. However, the creatures in this world were controlled by neural
networks allowing an emergent complexity to unfold when the fully-integrated
ecosystem simulation is run.

Many researchers in this area also found EA-like optimisation techniques
(often combined with a structured search space based on domain knowledge)
to be useful to produce realistic animations. Buendia and Heudin (2000) used
artificial evolution to produce behaviour in video game characters. Their approach
was founded on the principle of the subsumption architecture (Brooks, 1991),
evolving useful values for parameterising an hierarchical behaviour space. Boeing
(2008) used an EA combined with a spline-based representation of skeleton
animation to produce working models which could then be tuned by animators.
In Wampler and Popovi¢ (2009), preset morphologies and gaits were adapted
using a novel optimisation technique to produce realistic gaits in a variety of
3D animal forms. Furukawa et al. (2010) presented a computationally efficient
air-drag simulation and evolved flapping creatures within it to demonstrate its
realism, citing the difficulty of solving Navier-Stokes for the wing parameters as the
reason to use the evolutionary method. Tan et al. (2011) used Covariance Matrix
Adaptation (CMA) to optimise control parameters for simulated fish locomotion
and Nakamura (2015) used evolved neural networks to control a fish. Allen and
Faloutsos (2009) generated high-quality bipedal locomotion using evolved neural
networks created with the NEAT framework, in a realistic physical simulation.
This work included haptic sensors in each foot that detected contact with the
ground and bilateral symmetry in the controller by using two copies of the evolved
controller, one for each leg. Most recently, Geijtenbeek et al. produced extremely
realistic locomotive behaviours for graphical animation using a flexible, muscle-
based approach combined with CMA (Geijtenbeek et al., 2013).

As the potential of larger virtual worlds began to be realised, some research
also took the EVCs in a more generalised direction, either to harmonise research
in the field, engage more of the general populace in the idea of virtual environ-
ments, or to explore very large-scale simulations. Prophet (2001) constructed a
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large, open world and invited users to create creatures in the environment that
would go on to interact and reproduce. Miranda et al. (2001) built a generalised
platform for virtual creatures research called Arena/WoxBox, with the aim of using
the system for a variety of research; behaviour modelling, examination of learning
algorithms, social behaviour, and population dynamics amongst others.

The work discussed above focused on graphics, and in many cases achieved
impressive results. EVCs have been an inspiration across science; in the Black
Shoals arts project, artificial evolution was employed to design articulated crea-
tures which interact with a world of real time financial data. Their phenotypes are
composed of multiple interacting elements in a discrete time simulation of Newto-
nian physics, and a key element of the artwork was to create a world of artificial
‘speculators’ able to ‘feed’ on the shifting real-time patterns of the world’s stock
markets. (Hoile, 2014). However, in any of these examples it can not be claimed
that these artifacts are exhibiting the properties of intelligent, living organisms any
more than a marionette. The similarities are at a surface level only; grounding for
these systems is provided by clever decompositions on the part of the designers.
To generate life-like behaviour more autonomously, we must refer back to the
grand ambitions of a-life, that is, to present intelligent behaviour that has emerged
naturally from increasingly impoverished starting conditions. The philosophies of
enactive Al—chiefly situation and embodiment—are also key: for true realism we
must build systems that automatically ground their own symbols and and whose
behavioural interactions occur as a result of a natural development between
agents and their environments. The system developed by Karl Sims remains the
exemplar for this approach to this day.

3.2.2.1 Karl Sims’s Blockies

In 1994 Sims published the seminal SIGgraph paper in which he presented his
first forays into artificial evolution (Sims, 1994b). As mentioned throughout this
thesis so far, this and the related co-evolutionary work has had a resounding
impact on research across the a-life, computer graphics and artificial evolution
programmes. In these papers and the accompanying video, Sims describes how,
using a bespoke physics engine based on Featherstone’s reduced co-ordinate
approach to rigid-body physics simulation (Featherstone, 1987), virtual creatures
with arbitrary body shapes and behaviours are evolved. Evolution takes place
against a variety of objective challenges - walking, swimming, phototaxis and (in
later work) competition between two creatures for a resource. Sims’s evolutionary
mechanism follows a developmental model, using a recursive graph-generating
grammar to encode body shapes and controller configuration, inspired by the
graph grammar presented in Kitano (1990). Maintaining a population of 300
individuals, Sims’s algorithm follows the normal procedure for implementing
an evolutionary process. Virtual creatures are born in the world according to
the genetic specification, and their reproductive success is determined by their
performance as measured against the external task. A percentage of creatures
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Figure 3.2: Megan Daalder imitates the block creatures of Karl Sims in her 2010
performance piece, “Tribute To Karl Sims”.

survive to reproduce (around 1 in 5) and as time goes by, the species gradually
improves in quality. Sims ran the experiments for 100 generations, with a creature
lifetime of 10 seconds. From Sims’s many runs of the system, a large variety of
diverse body plans and behaviours were observed, although in some cases a
degree of interactive evolution was present as well. Nonetheless, Sims’s work
remains to this day an example of the visceral realism that a-life simulations can
invoke. Sims’s blockies have inspired not only a-life practitioners and computer
graphics researchers, but have also been used to illustrate the power of evolution
as a general, universal principle and as artistic pieces that juxtapose the natural
and the artificial, a noteworthy case being the performance art piece by the artist
Megan Daalder (figure 3.2) whose physical imitation of Sims’s creatures reverses
the arrow of artificiality and imbues the creatures with a realism that escapes
their digital confines.

Sims’s virtual creatures left a lasting legacy and remain an inspiration for
a-life researchers today. The goal of generating ever more interesting behaviours
in virtual creatures is a worthy ambition for graphics and robotics in itself but,
as with evolutionary robotics, the objective also bears directly on two of the
grand challenges of a-life that were outlined earlier: the observation of complex
intelligent behaviours emerging from systems with increasingly impoverished
starting conditions, and the demonstration of ongoing evolutionary activity in an
artificial system. In the following section | examine work that is, in one way or
another, at least in part directly deriviate of Sims’s initial ideas. The first part
looks at systems designed to exhibit only simple behaviours—these systems often
explore one aspect of the generation of behaviour in EVCs. In the second part |
survey systems whose objective is the production of more complex, composite
behaviours. These systems are more aligned with the wider objectives of a-life
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research.

3.2.3 Agents that exhibit a single behaviour

In fact, nearly all recent research is focused on the evolution of a single gross
behaviour in virtual creatures—usually locomotion. This is for a variety of reasons;
often, locomotion is an acceptable objective against which various hypotheses
about sufficiency of conditions or efficiency of algorithms can be tested. As
documented below, much research has been carried out to understand evolu-
tionary systems operating in these contexts, as well as how best to improve our
application of the technologies involved.

Fontijne (2000) implemented Featherstone’s rigid body physics solver and
attempted to follow Sims’s strategy of evolving virtual creatures for various tasks
to test the simulator. Whilst enjoying success with some tasks, those requiring
feedback or oscillation (including locomotion) were out of reach for this system,
potentially due to short run-times.

In (Komosinski and Rotaru-Varga, 2001), an investigation into the benefits
of using indirect encodings when evolving morphology and control of EVCs in
the Framsticks (Komosinski, 2000; Komosinski and Ulatowski, 1998, 1999) en-
vironment. It was found that indirect (recurrent and developmental) encodings
improve the performance of the evolutionary search by restricting the search
space, although a consequence was a clear difference in the appearance of
the behaviours between the indirect methods. This research was continued in a
system that aimed to present gene-phene mappings intuitively, also using EVCs
as the underlying evolutionary objective (Komosinski and Ulatowski, 2004). See
also Komosinski (2003) for an accessible overview of work with this platform.
Stredwick (2005) designed a system of virtual creatures in 3D based on the
SodaRace-type 2D systems (McOwan and Burton, 2005) to explore the mainte-
nance of convergence and stagnation in populations evolving morphology and
behaviour. This study noted the difficulties involved in the analysis of behaviours
resulting from the evolutionary process.

Hornby and Pollack (2001) also examined encodings, using a parametric
Lindenmeyer system (POL-system) to encode the morphology of virtual creatures
with simple oscillating joints and a distance covered metric for the objective func-
tion. This work found that the indirect encoding produced creatures comprising
a larger number of parts and possessed of a higher degree of regularity. This
work has also been extended to incorporate a neurocontroller rather than a
simple oscillator circuit (Hornby et al., 2001), and subsequently to a more generic
generative encoding (Hornby and Pollack, 2002).

Taylor and Massey (2001) reimplemented Sims’s original work using off-the-
shelf physics components.

Teo and Abbass (2002) investigated the use of a Pareto-frontier Differen-
tial Evolution algorithm to parameterise a neural network in order to control
quadruped locomotion whilst minimising the size of the resultant network. The
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same system is then extended to compare various optimisation methods (Teo
and Abbass, 2004).

Shim et al. produced a body of work based, unusually, on simulated flying
creatures. Initially the objective was simple locomotion through the air (Shim
and Kim, 2003), but in this work the authors discovered some of the problems
inherent in evolving multiple behaviours simultaneously: learning to turn was
incompatible with learning stable flight. The neural model of this work was not
generic; it comprised numerous functional (sine, cosine, etc.) units rather than just
a generalised McCulloch-Pitts model. The authors extended this system to a two-
step, incremental evolutionary system to solve the problem of turning (Shim et al.,
2004a,b) and finally analyse their model’s validity in terms of the morphologies
produced for different body masses of creature compared to real-world examples
(Shim and Kim, 2006).

Druhan (2004) used a tree-structured genetic program to represent a con-
struction recipe for virtual creatures, evolving a population of such programs in
an EA with distance moved as the objective.

Marks et al. (2006) apply a hybrid CPG approach to generating gaits in
creatures with varying numbers of limbs, although encountered difficulties in
evolving a realistic gait. They concluded that fine-tuning the parameters of the EA
used to explore the behaviour space (a modified Evolution Strategies approach)
entailed as much effort as a hand-designed controller, and proposed several
routes out of the problem including increasing the complexity of the controlling
networks, restricting the fitness function yet further and applying a form of online
“‘human-in-the-loop” evolution to guide and support the process. Ohono et al.
(2007) used an evolutionary technique to optimise values for a parameterised
sinusoidal controller operating on the intersegmental joints of an evolved 3D
agent with cuboid body parts and presented results showing that by combining
these segments, evolved creatures were able to accomplish tasks otherwise
impossible to achieve. Komosinski and Polak (2009) evolved morphology and
neural control architectures of simulated 3D ski-jumping agents.

Chaumont et al. (2007) presented a system that used artificial evolution in the
Breve environment (Klein, 2003) to find morphology and control parameters for
virtual creatures of two types, walkers and block-throwers (catapults), demonstrat-
ing the potential for comparatively simple architectures to produce impressive
results. This system used simple distance-based objective measures of fithess.
Chaumont et al. found difficulty in producing oscillating motion:

“It appears to be easier for the genetic algorithm to evolve single-
impulse controllers-giving rise to jerks-than controllers producing peri-
odic repetitive motions.” (ibid.)

Kr€ah (2007) used off-the-shelf physics components to recreate Sims’s orig-
inal work, achieving walking and swimming behaviours. In subsequent work,
Stanley’s NEAT algorithm is used and the evolutionary search time with this
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mechanism is compared to a standard EA. The results show that in all cases the
evolutionary time is significantly reduced, whilst the quality of the solutions found
is improved (Krc¢ah, 2008).

Lassabe et al. (2007) used the evolution of virtual creatures’ morphologies
and control architectures to explore the use of classifier systems as controllers,
rather than the (now more traditional) neural-type systems, and to increase the
level of complexity of EVC environments. In this case, the classifiers manipulate
a corpus of motor patterns in order to produce complex joint activations in the
virtual creatures. The rich environment of these creatures was a key part of this
work; its complexity allowed the authors to explore the performance in many
tasks with real-world analogues (i.e. not just walking, but skating, pushing objects
and so on) although in each case only a single behaviour was optimised.

Jones et al. (2008) explored the importance of bilateral symmetry in an eel-like
virtual creature, concluding that this kind of body plan is important for directed
locomotion and energy minimisation and that a correspondingly symmetrical
control architecture is preferred by an evolutionary optimisation process when
constrained by this kind of morphology. Jones’s Ph.D. thesis looked more gener-
ally into how body plan affects neural development, again using virtual creatures
as the platform (Jones, 2010).

Mazzapioda et al. (2009) investigated the use of a generative process that
involved development modulated by regulatory substances (known as artificial
ontogeny) in an EA to produce virtual creatures able to move around in a 3D
environment. The authors noted that this method has a high replicative stability
across experiments, and also that exposure to a more complex environment
produced agents better adapted to simple environments as well. The work also
investigated the use of task-independent fithess measures and concluded that
these measures help to increase the robustness of the evolved solutions, if not
the absolute performance.

Heinen and Oso6rio (2009) looked at the evolution of gait controllers in a
quadruped, specifically, a model of a dog. This work compared finite-state ma-
chine controllers with neural networks, and it was found that the evolved neuro-
controller performed better than the FSM model. The research also looked at the
evolution of morphology as well as control, and adapted the model to bring the
limb segment lengths under evolutionary control. It was found that morphology
evolution achieved significantly higher fitness, but other factors may have been at
play (the authors did not control for absolute size, for example) that confounded
the results.

Valsalam (2010) developed a 3D, fixed-morphology legged robot system to
explore how symmetry can play a role in the development of controllers for such
a robot and concluded that symmetry is an extremely important factor. In this
work, robots evolved with a symmetrical bias showed naturalistic and fluid motion
in contrast to the asymmetric controllers which were less effective, did not scale
and seemed ‘crippled’.

Pilat and Jacob (2008b, 2010) evolved light-following behaviours in virtual
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creatures, training a neural network using an incremental evolutionary approach.
This two step method added rudimentary vision at a later stage in the evolutionary
process, after the species had found a stable locomotive behaviour. Through this
process the authors were able to train the controllers to produce phototaxis even
under modestly varying environmental conditions.

Bainbridge (2010) examined whether digital control networks could be used
as an alternative to the more common floating-point type controllers in virtual
creatures, finding that such controllers offered similar performance to the tradi-
tional type in varied EVC problems - pole balancing and locomotive control of
evolved morphologies.

Hiller and Lipson (2010) evolved multi-material freeform shapes for locomotion,
instead of the more usual rigid-body creatures. These animats were actuated
by periodic volumetric expansion and contraction and the results showed some
success in achieving locomotion.

The soft body approach is taken further in Rieffel et al. (2014) where a virtual
creature platform is used to demonstrate methods of co-discovering soft-robot
morphology and control, including muscle placement on a fixed body shape
and material properties, parameterised material properties, and developmental
encodings. In all cases, the maximum behavioural complexity sought is at the
level of locomotion.

Lehman and Stanley (2011) created a virtual creatures platform, again with
locomotion as the gross objective, to examine novel methods to generate diversity
within evolving populations. In this work, evolution is provided with a novelty
objective that encourages diverse morphologies and a local competition objective
that rewards the winners in local groupings of similar individuals. It was found that
this method discovers more functional morphological diversity than models with
global competition, and thus it is claimed the technique constitutes a principled
approach to combining novelty search with pressure to achieve.

Azarbadegan et al. (2011) attempted to recreate Sims’s work with the added
constraint of understanding how environmental pressures can cause a bipedal
gait. The work hypothesises that pressure to carry and move at the same time
promotes bipedalism and the authors contrived a fithess function to restrict the
design space to solutions exhibiting such characteristics.

Kréah (2012) examined the novelty search concept in more detail in an
evolutionary simulation designed to produce animats with the capability either to
move toward a goal position around an interposed object (a so-called deceptive
task at which greedy optimisers tend to fail) or to move around in an underwater-
type unconstrained environment. These agents used the NEAT algorithm, and
the research found that novelty search was only of benefit where the task was
clearly deceptive.

Bongard (2011) examined how different types of scaffolding interact to assist
the evolutionary process in progressing toward a complex solution. In this work,
legged robots are evolved to perform phototaxis and a synergy is demonstrated
between morphological and environmental scaffolding, provided they are com-
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bined in a particular way (morphological, followed by environmental). This thinking
was further explored in Auerbach and Bongard (2012) (again using EVCs), where
the relationship between environmental complexity and morphological complexity
was tested and a correlation discovered. Most recently, the same platform has
been used to investigate passive versus driven trends in the development of
complexity using a formal metric of morphological complexity and the authors
conclude that different niches exert different selective pressures toward complex
body plans (Auerbach and Bongard, 2014).

Rada and Aguilar (2012) used a particle-swarm optimisation (PSO) algorithm
instead of an EA to find body plans and controllers for virtual creatures in order
to achieve a high-speed locomotion behaviour.

Kou and Kawaguchi (2012) used an evolved sensor-actuator style neural
network (Van de Panne and Fiume, 1993) to control each leg of a quadruped
and concluded that this is a viable method of generating gaits. Similar techniques
have been used to find controllers for other simulated movement behaviours:
Ooe et al. (2013) used an evolved ANN to control a flying creature, finding that
the diversity of input signals about target points increased the generalisation
capability of the evolved controllers.

Ouannes et al. (2012) evolved virtual creatures with neural networks to pro-
duce animats able to move around and search for food in their environments, as
a first step toward the construction of a virtual ecosystem.

In a similar vein, Pilat et al. (2012) evolved foraging agents able to move
towards the closest source of food in their environments. This work claims to
be an effective demonstration of the utility of physical simulation environments
for studying biological phenomena, although this is a preliminary study and is
essentially a proof-of-concept.

Ito et al. (2013) use populations of predator and prey EVCs to examine the
relationship between the evolution of morphology and the evolution of behaviour,
in order to find out which precedes the other. It was found in this model that
morphology tends to precede behaviour when new strategies emerge indepen-
dently, and behaviour precedes morphology when responding to the innovations
of opponents.

Cheney et al. (2013) applied Stanley’s novel Compositional Pattern-Producing
Networks (CPPNs) (Stanley, 2007) as a generative encoding for soft-bodied
creatures in order to achieve locomotion. These creatures are composed of
voxels with various properties, including actuation according to a sinusoidal
input and structural attributes like material stiffness. They found that the CPPN
approach produced faster and more natural gaits in the soft robots compared to
direct encodings.

Tibermacine and Djedi (2014) used Stanley’s NEAT algorithm to generate
locomotive controllers in 3D virtual creatures with a selection of pre-defined mor-
phologies. This was found to be a successful strategy for locomotion generation
in these agents.
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Kr¢ah (2014) used a similarity metric to implement speciation in evolving
populations of virtual creatures, claiming an increase in efficiency compared
to older methods although other differences between systems do make this
comparison harder to use to draw firm conclusions.

Lessin et al. (2014b) demonstrated that much of the control architecture
required for single-task objectives (locomotion, jumping and so on) can be moved
from the traditional NN-like controller to the musculature of the creatures’ bodies,
relieving the monolithic controller of the difficulty of coordinating various parts
of the body to achieve a task. Lessin’s argument is that this paves the way for
more complex processing to occur in the central controller, with physical tasks
delegated to the dynamics of the creature’s physical form.

Ito et al. (2014) co-evolved predators and prey in a 3D VC simulation designed
to examine the interaction between population dynamics and trait evolution. This
work found cyclical dynamics in the short term corresponding to the Lotka-
Volterra type interactions. In the long term, correlations were found between the
population sizes and volume of the prey that led to the emergence of defensive
and non-defensive morphological adaptations.

Moreno et al. (2015) supports the results found in Stanton and Channon
(2013). A complex environment was decomposed into simpler sub-environments
and evolving species trained on these evironments, sequentially. This was com-
pared to a ‘whole task at once’ approach and it was found that the sequential
approach is more reliable and consistent.

O’Kelly and Hsiao (2004) successfully evolved fighting creatures in a simi-
lar manner to Sims’s co-evolutionary research, leveraging the fitness gradient
provided by adaptive opponents to drive the search. Creatures with a variety
of strategies were found, but again these creatures were limited to a single be-
haviour governed by the morphology, even if that behaviour performed multiple
functions simultaneously (typically, moving, attack and defence behaviours).

The work of Thomas Miconi from 2005 to 2008 focused on using evolved 3D
virtual creatures to understand various aspects of evolutionary dynamics. Miconi’'s
first published work in this area re-created the work of Sims but with an aim of well-
adapted general behaviour rather than realistic appearance. To this end, Miconi
replicated the locomotion results from Sims’s work by using general McCulloch-
Pitts neurons in the creatures’ controllers rather than Sims’s tailored signal-
generating units, and also avoided the human-in-the-loop elements of selection
present in Sim’s demonstration (Miconi and Channon, 2005). This system was
subsequently improved but it was noted that a difficulty arises when requiring
oscillation to occur due to the sensorimotor loop rather then endogeneously in
the controller (Miconi and Channon, 2006b). In later work, Miconi implemented a
co-evolutionary system (Miconi and Channon, 2006a), presenting a new analysis
for co-evolutionary activity based on Master Tournament matrices (Floreano
and Nolfi, 1997; Nolfi and Floreano, 1998). He then went on to analyse the
co-evolutionary dynamics occuring in a relatively large, open world in detalil,
concluding that the approach showed promise for generating a more diverse, if
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not open-ended, evolutionary dynamic (Miconi, 2008a). This work also included
the first co-evolutionary fighting creatures (Miconi, 2008b).

As in O’Kelly’s earlier work, even though Miconi’s later EVCs solve multiple
problems in their environments due to the implied nature of fithess in the system,
it is not clear that evolution’s solution has produced distinct behaviours in any
single organism. Rather, the animats adopt a general behaviour pattern that
works equally well for locomotion or fighting—there is no modal change between
behaviours due to environmental stimuli.

Similarly in very recent work, Arita et al. (2016) used eco-evo-devo approaches
to evolve predator-prey virtual creatures.

In terms of virtual creatures in themselves however (as opposed to virtual
creatures whose function is to provide a methodologically-agnostic problem
space in which one can test EA or dynamic control methods), it is less obvious
why behavioural development is so limited. Taylor identifies the issue early on in
the history of EVCs, from a perspective of using evolution to create interesting
behaviour in artificial characters: “the complexity of behaviours that have been
generated so far has been somewhat limited; most of the work has produced
characters that can walk, crawl, swim, jump, or, at best, follow a moving target.”
(Taylor, 2000). This is attributed in this work to the need to codify the goal of
such systems in terms of an objective function to be optimised, and the fact
that complicated objectives frustrate the search when starting from random
initial locations in the search space. Taylor suggests several avenues out of this
problem, including behavioural/task level decomposition of the problem (“there
are no general guidelines to suggest the most appropriate way to do this™—
ibid.), co-evolution, virtual ecologies, lifetime learning, behavioural primitives,
and user-guided evolution. Furthermore, there is a more practical issue in that
the computational overhead required to achieve more generalised evolutionary
dynamics in a 3D, physical simulation is still prohibitive.

3.2.4 Agents with multiple behaviours

To this day there are notably few exceptions to the general approach in EVCs
of producing machines that perform only a single behaviour. Yonekura and
Kawaguchi (2008) demonstrate one such system, where neural feedback through
bodily dynamics allows a dynamical controller to switch between limit cycles and
therefore exhibit qualitatively different behaviours. Although limited in range and
complexity, this work does show at least in principle that this is possible in EVCs.
Pilat and Jacob (2008a) present a general system for performing a-life ex-
periments with EVCs, Creature Academy. This work specifically addresses the
problem of evolving creatures in order to tackle a combined walking—jumping be-
haviour environment by using a two-tiered training regime. Although this involves
two separate behaviours in the early stages of evolution, the behaviours are fused
in the final part of training as the individual component gains are consolidated.
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Spector et al. (2007) presented an ambitious project that involved an energetically-

conserved 3D simulation of interacting, partially connected and actuated, neurally-
controlled blocks, called Division Blocks. Spector describes this work as “an
attempt to extend Sims’s idea to a considerably more open-ended evolutionary
and ecological context”, in order to investigate interactions between development,
form and behaviour. Fitness in this world is implicit; good energy harvesters
survive longer and good reproducers, reproduce more. The research is inter-
esting visually, and certainly is the most ‘open-ended’ work to date in the EVC
programme but the complexity and lack of observable structure in the resulting
morphologies and behaviours is testament once again to the need to carefully
construct such a system from the ground-up rather than throw many components
together into a milieu and observe the results.

Some of Dan Lessin’s recent research focus, culminating in his Ph.D. thesis,
is one of the few efforts that tackles the narrow behavioural repertoire of EVCs
directly. In this work, Lessin’s encapsulation, syllabus, and pandemonium (ESP)
system uses a human-designed syllabus to decompose complex behaviours into
a sequence of smaller learning tasks. These skills are encapsulated (protected
somewhat from evolutionary change) and finally a mechanism is used to resolved
disputes between competing skills or drives within the brain (Lessin et al., 2013).
This system was extended to include full morphological adaptation beyond the
first skill learned, increasing the variety and quality of evolved creature results
(Lessin et al., 2014a).

Rossi and Eiben (2014) compared two different strategies for the evolutionary
learning of multiple tasks in simulated robots, using a (u+ 1) Evolution Strategies
algorithm, where p=1 and A = 1. The work assessed whether learning one task
at a time (building over previously trained individuals) is a better strategy than
trying to learn all the tasks at once. It was found that the incremental strategy
(known in this literature as the Robot School) reduces the learning times and
shows less variance in the quality of the resulting gaits.

3.3 Chapter Summary

ER and EVCs both contribute to the science and technology that together allow
us to construct intelligent, autonomous agents. In both cases, the endeavours
have acted as platforms for constructive (synthetic) investigations of hypotheses
about how the defining characteristics of natural behaviour have developed,
and in both cases have validated the philosophy of situated Al described in the
previous chapter. Whilst differing sometimes in focus—ER’s pull toward real-world
robotics puts emphasis on practicability and engineering, whereas EVCs tend
toward the hypothetical-the underlying problems and solutions overlap to a large
extent.

Techniques like neural networks and incremental evolution have been shown
to be practical solutions in both fields, supporting the more theoretical arguments
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around enactive Al and the subsymbolic new robotics approaches championed
by Brooks. Furthermore, the intuitive, subjective understanding the observer
experiences when observing artificial organisms in physically-realistic environ-
ments lends itself to the notion that validation of OEE theory could naturally be
undertaken in these ‘life-as-it-could-be’ domains. The capacity of these systems
to generate unbounded diversity is only a small conceptual step from current
frameworks. There is potential to produce machines with highly heterogeneous
behaviours, many of which could be found in nature as convergent evolutionary
answers to the common problems of existence in an uncertain world.

It is, however, also clear from the research surveyed that despite this potential,
little research has actually made progress toward complex behaviours in artificial
organisms. Most published work has used ER or EVCs to demonstrate other
principles—those of evolutionary efficiency or compositional heterogeneity for
example—avoiding the larger goal of automatically generating complex behaviours
from increasingly impoverished initial conditions.

Therefore, the further objective of this thesis, (to build upon that described in
section 2.9.2) is to demonstrate a sequence of behaviours evolving in a physically-
realistic, 3D virtual creature environment. This aim is explored in chapters 5 and
6, making use of the techniques and technologies discussed so far and remaining
theoretically aligned with the principles of situated, embodied intelligence.
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CHAPTER

Guiding Incremental Evolution

“Nothing is a waste of time if you use the experience wisely.”
—Auguste Rodin

tion, “Within limited computational constraints, is there a specific strategy

of environmental complexification that maximises the performance of an
incremental evolutionary system whose objective is to produce a controller for 3D
virtual creatures able to solve a general task?”. General principles relating to the
problem in 3D VCs and wider incremental evolutionary systems are proposed
and investigated empirically in a controlled task. The novel result that a strategy
that takes into account the need to revisit and progressively increase levels of
complexity is presented. This chapter is based on work previously published
in the proceedings of the 12th European Conference on Atrtificial Life (ECAL),
Taormina, Sicily.

T he research documented in chapter four can be summarised with the ques-

4.1 Introduction to Chapter

This dissertation has the overarching aim of producing evolved virtual creatures
that display complex adaptive behaviour across a range of different tasks, and
across a range of variation within a single task. As such, it is important to build
evolutionary systems that find generalised behaviours, rather than those that
succeed in only a specific or narrow range of parameters.

The same principle is writ large in biological systems: there are many ex-
amples in nature of problems that, whilst congruent in general terms, differ in
their parameterisation in specific instances. Differences in morphology due to
growth, differences in strength due to available food and differences in the abiotic
environment due to locality are examples of this principle that are common to
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many cognitive entities in the natural world. Evolution’s approximation of this
fuzziness is embedded in the structures and processes of all species, whose
constituent organisms are able to operate effectively in a many-dimensional cloud
of uncertainty.

Generalisation across a relatively sparse set of training examples is also
important even in relatively simplistic evolved 3D VC models. In the simplest case,
a single task whose parameters in specific instances are variable, the degree
to which agents can accommodate the variability is a function of the degree to
which they are exposed to the whole range of task complexity. Presenting all
combinations of parameters during each individual evaluation and incorporating
the agent’s performance measured in each trial into the agent’s overall fitness is
the most straightforward method to address this problem. However, as the number
of parameters and thus combinations increases, computational constraints quickly
render this approach infeasible. Thus, the target of this work is to find evolutionary
approaches in which each agent is evaluated on a small subset of parameters,
in this chapter on a single value for a single behaviour, and yet result in agents
able to perform over the full range of parameters by having evolved generalised
behaviours.

One approach to tackling this problem is to make use of incremental evolution
(see section 2.7.5). Incremental evolution has been used extensively to improve
the quality of evolutionary search in many complex, non-linear problem spaces.
The work in this chapter first disambiguates the lexicon around incremental
evolution, advocating the term environmental complexification to represent the
progressive complexification of the problem domain by incremental exposure to a
range of component complexity. Then, this complexification is divided into two
types of strategy, homogeneous and heterogeneous, and instances of each type
identified. The strengths and weaknesses of strategies are objectively compared.
To summarise, in homogeneous complexification strategies, for any short se-
qguence of successive generations the population is exposed to a single or tightly
clustered range of objective functions, while heterogeneous strategies present
many, covering a range of complexity.

The specific example explored in this chapter is the problem of finding a
controller for a fixed-morphology 3D VC simulated with rigid-body physics, that
allows it to climb over arbitrarily-tall obstacles rather than just those of a specific
(maximal or other) height.

4.2 Complexification Strategies

As noted in section 2.7.5, previous work has successfully leveraged the power of
incremental evolution through successive increases in environmental complexity.
However, attention in extant work has been focused solely on the practical out-
come of using this incremental modification to the canonical strategy as compared
to a non-incremental system, and the particular strategies used to complexify
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the environment have not been examined in detail. A careful investigation of the
complexification approach is necessary both for the reliable practical application
of incremental evolution and the further elucidation of the interplay of agent and
environment in co-evolutionary settings which can ultimately lead to unbounded
evolutionary activity.

The naive strategy presents one single task (often, the most difficult or com-
plex) to the evolving species at every opportunity. The failings of this approach
spurred the development of alternative, progressive strategies, such as monoton-
tically changing tasks as time passes, often in a direction of increasing difficulty
as defined by the experimenter. This linear approach has often been used to
circumvent the bootstrapping problem, one of the first attempts occurring in
(Gomez and Miikkulainen, 1997). The appeal of this approach is strengthened by
the simplicity of its implementation and the broadness of its potential application.
Many task decomposition strategies can also be considered as implementations
of this strategy (with linear or at least monotonic increase in complexity), albeit in
discrete units rather than tweaking a continuous variable. Gomez also proposed
an extension to the linear increase in task complexity where the task is only
changed when the evolving species achieves a certain level of performance
against the current objective function. This interesting strategy has not been
developed in detail by others but it is a good candidate for analysis as it enforces
gradient at every point of decomposition, potentially solving some or all of the
issues described in the introduction to this chapter.

Although not often described in previous work, random presentation of differ-
ent task components may also be useful and finally, drawing upon ideas from
incremental learning in neural systems, a strategy of repeated presentation of
tasks to which the evolving species has already been exposed is proposed.
These strategies may have something to offer beyond linear or adaptive mono-
tonic changes in task complexity.

4.3 Hypotheses

It is anticipated that homogeneous complexification strategies, for example direct
presentation of difficult tasks or linearly-increased complexity, will perform poorly
due to either loss-of-gradient or temporally-local over-fitting (analogous to catas-
trophic forgetting in neural systems), as argued in section 2.7.5. Heterogeneous
strategies are the approach proposed in this chapter to overcoming forgetting,
as an analogue of rehearsal, with smoothly changing heterogeneous strategies,
such as oscillatory strategies, also overcoming the loss-of-gradient problem. For
oscillatory strategies, an amplitude parameter determines the extent to which
the whole range of task complexity is exposed to the evolving species. A gradual
increase of this range may be expected to show improved performance. At very
low frequencies, such a strategy would degenerate to the homogeneous linear
strategy, and at very high frequencies to the random strategy. Thus, the following
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hypotheses are investigated:

H1: Homogeneous strategies will fail to achieve good coverage on the evalua-
tion task.

H2: Heterogeneous strategies (with the possible exception of random) will
achieve better coverage than homogeneous strategies.

H3: Heterogeneous strategies with a range of difficulties increasing over time
will outperform heterogeneous strategies with constant range (other hyperparam-
eters remaining constant).

H4: A heterogeneous strategy using an oscillatory approach, as an analogue
of rehearsal, will exhibit an optimal frequency for any particular problem.

4.4 Methods

The general setup of our experiment is designed to test the above hypotheses
in a task which provides a smooth fitness landscape and neutrality in genotype
space. In this work, the evolution of controllers for three-dimensional agents is
chosen as the base platform, tasked with learning how to walk and climb over an
obstacle. The height of the obstacle represents the complexification parameter
of the system; task difficulty varies somewhat as obstacle height varies but the
ultimate objective for the agents is to deal with every possible obstacle - this
is the most complex case. Thus, the many possible complexification strategies
(that is presentation of tasks of various difficulties) can be assessed, in order to
determine which provide the strongest gradient for the evolutionary system to
climb and the most robust evolved agents.

4.4.1 Physical model

In the tradition founded by Sims (1994b) and continued by many others, all exper-
iments are performed on agents in a three-dimensional virtual world consisting
of collidable rigid bodies connected by powered constraints. Unlike Sims, the
morphology used here is a fixed quadruped which is controlled by a feed-forward
three-layer perceptron augmented by sinusoidal input. The cuboid quadruped
torso (length 0.2m) is supported by four limbs, each comprising an upper and
lower portion (length 0.075m each). Constraints with two degrees of freedom
limit the motion of torso and upper limb at the hips; constraints with one degree
of freedom limit the motions of lower limb and upper limb at the knee. See figure
4.1 for a visual representation. The range of motion of each knee joint is limited
from 0 to 7 radians, so knees cannot bend outward. The maximum torque that
can be applied at any constraint is 0.5 N m. The obstacle is situated 1m from
the agent’s origin and extends to infinity in x and for 0.05m in y. The height of
the obstacle is varied as described elsewhere. The physical simulator used was
Open Dynamics Engine (ODE) version 0.12, using double-precision arithmetic,
the standard big-matrix step function and a step size of 0.02s. Coulomb friction
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Figure 4.1: Visualisation of physical environment. Agent, obstacle and target
location are shown.

left ear right ear

signal

Figure 4.2: Target sensor scheme.

was applied at contacts between the agent, the obstacle and the ground plane
with p=2.

4.4.2 Control system

The agent controller is modelled by a standard three-layer feed-forward neural
network with 12 hidden nodes. Networks receive 4 real-valued inputs in addition to
12 joint-angle sensors. Inputs comprise two sinusoidal oscillators (sine and cosine,
period 1 second), an input describing the target location in relation to agent
position and orientation (as in Reil and Husbands (2002), the difference between
the distances from target to each “ear”, divided by the distance between the ears
across the agent’s torso) and an up-sensor which describes the orientation of the
agent’s head relative to the ground plane. The target sensor scheme is shown in
figure 4.2.

Neural network updates are made synchronously with physics integration.
Each hidden node activation is a weighted sum of its inputs with a hyperbolic
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Figure 4.3: Feed-forward neural network showing transfer functions at each layer
(hyperbolic tangent in the hidden layer; logistic in the output layer). The four
larger input nodes indicate the two sinusoidal inputs, the target sensor and the
orientation sensor; the twelve smaller, the joint-angle sensors. Not all weights
are shown.

tangent activation. Each output node activation is a weighted sum of hidden nodes
with a logistic activation function (see figure 4.3 for an illustration). The output
node’s value propagates to the joint motors of the agent through a proportional-
derivative (PD) controller, in the same manner as described in Reil and Husbands
(2002). The network’s output for a joint is treated as a target angle in the range
of action for that joint. The PD controller applies a torque to the joint relative to
the correction required to achieve the desired position, also applying a damping
factor proportional to the angular velocity of the joint in the previous timestep:

T=kiOy-0)—ky0

where T is the torque applied, ks is the spring constant, k; is the damping
constant, 6, is the target angle and 6 is the current angle. Preliminary experiments
were conducted to ascertain appropriate spring and damper values. The agents
body was positioned in a standing pose and the PD controller used to maintain
that pose in opposition to gravity. The values ks = 0.5 and k; = 0.5 were found to
be acceptable, preventing the agent from collapsing but also allowing the pose to
stabilise. As noted in Reil’'s work, the PD approach applies simple control at the
mechanical level, relieving the controller of basic problems such as standing up
without the agent’s legs buckling under the mass of the torso.

4.4.3 Evolutionary algorithm

Individual genotypes specify floating-point weights for the neural control system.
Initial values for the first generation are drawn from a uniform distribution x € [-1,1].
In each run, the evolutionary simulation is progressed for 5000 generations using
a population of 50 individuals. Individuals are evaluated for 20 simulated seconds

60



CHAPTER 4. GUIDING INCREMENTAL EVOLUTION

and the objective function is defined as the reduction in distance in the x-y plane
to a target position (x., y.) situated on the other side of the obstacle:

F,y) =~/ (o =02+ (2 — )2

At each new generation, individuals are scored according to the objective function
and ranked in order of fitness. The lower half of the population is replaced
with mutated, crossed-over variants of the upper half. Single-point crossover is
implemented at a random point on the genotype and crosses the current parent
individual with another random individual from the best half of the population
(possibly itself). It is necessary to consider the competing conventions problem,
also known as the permutation problem, when implementing recombination
operators in neuroevolution. This problem occurs when two networks compute
the same function by differing mechanisms, meaning that crossover of their
components risks incompatibility. The problem was first described in Montana
and Davis (1989), and adequately addressing it was one of the motivations
of Stanley’s NEAT architecture (Stanley and Miikkulainen, 2002). It has been
found in recent doctoral work that for realistic problems, competing conventions
are extremely rare. Further, crossover operators do not significantly impede the
progress of evolutionary search of weight space, at worst acting as macromutation
operations rather than recombination mechanisms (Haflidason, 2010). Mutation
occurs on average twice per genotype and consists of adding a value drawn from
a Gaussian distribution with ¢ =1 and p = 0.

4.4.4 Experimental set-up

Sixteen possible strategies for environmental complexification have been identi-
fied and tested. Each of these strategies modifies the height of the obstacle in the
environment for the current generation of the species. In every case the maximum
height of the obstacle, tau, is 0.1m. The height function h for generation G and
wavelength A is defined for each strategy as follows:

1. Direct presentation of an environment with complexity = at every generation
(Strategy 1):
h(G)=1

2. Presentation of a randomly complex environment at each generation, with
complexity drawn from a uniform distribution between 0 and t (Strategy 2):
h(G) = x1,x€%0,1)?

3. Gradual complexification of the environment, with complexity interpolated
linearly between 0 and t from generation 0 to generation 4000 and fixed at
7 from generation 4001 to 5000 (Strategy 7):

G
1G) = =&, G <4001,
T otherwise
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4. Oscillating complexification of the environment (A = 50, 100, 200, 400
generations), with complexity following a sinusoidal increase and decrease
over wavelength A with maximum amplitude t (Strategies 3, 4, 5 and 6):

(21

1+sin 5

h(GA) =1 >

5. Oscillating complexification of the environment as above, with maximum
amplitude interpolated linearly between 0 and r from generation 0 to gener-
ation 4000 and fixed at T from generation 4001 to 5000 (Strategies 8, 9, 10

and 11):
) G 1+sin(¥—%) .
h(G,A) =4 %00 -2 G <4001,
) 1+sin(22C-7) .
-2 otherwise

6. Adaptive modification of 3, where h is instead increased by 1% of T when
the population’s average fithess has increased or remained the same and
otherwise decreased by 1% of 7, while being kept in the range [0, 7]. (Strat-
egy 12):

7. Adaptive modification of 5 where the value multiplying the oscillator is
instead increased by 1% of r when the population’s average fithess has
increased or remained the same and otherwise decreased by 1% of 7, while
being kept in the range [0, 7]. (Strategies 13, 14, 15 and 16).

4.5 Results

Table 4.1 shows that no homogeneous complexification strategy (direct, linear or
adaptive) was able to achieve success on all task difficulties, in any experimental
run. In contrast, all heterogeneous strategies did. The adaptive oscillating (1=50)
strategy achieved 100% success in 20% of runs and 95% success in 48% of
runs.

Figure 4.4 shows a complete view for each strategy, with A=50 selected for
each oscillating strategy and each strategy’s 100 runs sorted along the horizontal
axis by proportion of successful evaluations (shown on the vertical axis). Note
that we are primarily interested in the upper portion of this graph, that is in those
populations able to complete the task at most obstacle heights. The adaptive
strategy generated fewer populations than the linear strategy, successful on
fewer than 50% of evaluations (over the full range of obstacle heights) but of
greater interest is that it generated only a comparable number of populations
successful on more than 90% of evaluations. The random strategy, whilst better
than all homogeneous strategies, is by far the worst method of the heterogeneous
strategies. In turn, the simple oscillating strategy is outperformed by the increasing
oscillating and adaptive oscillating strategies.
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Figure 4.4: Performance of various strategies, 100 runs per strategy sorted best

to worst. 1—direct; 2—random; 3—simple oscillating (50); 7—linear; 8—increasing
oscillating (50); 12—adaptive; 13—adaptive oscillating (50).

100

T —_— —_ 1 i T 1
RN
90 ' ! i !
' 1 ' [
80 | | | !
~ o
8 b ! !
= 70 ' '
- . ! |
c i
o ! — . I
= 60 1 ; i
2 | i
> 50 | L
o -
g T ;
=) —
% 40 ; S
a2 —
8 ! ' ! I ' | H ' A R
S 30f 1 i i | ! ! | ! i o iy
i :
a (- | oLt ' |
| | i ! - ' . .
20f 1 i + ! “ L .
1 1 : 1 + 1 *
L | ! :
10 i I ! ' - .
' 1 ! 1
' ' ‘ ' .
i |
0 T ;
T 2 7 12 6 3 4 10 16 15 9 8 14 13

11 5
Strategy

Figure 4.5: Aggregate success rate over all obstacle heights for various strategies,
sorted by median success rate. Each evolved population was evaluated on the
task at heights 0%, 1%, ... 100%. (See Table 4.1 for description of the numerical
labels.)
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Number | Strategy %
success:
95% ||  100%
Homogeneous Strategies

1 Direct 0% 0%
Linear 1% 0%

12 Adaptive 2% 0%

Heterogeneous Strategies

2 Random 13% 5%
3 Simple Oscillating (1=50) 21% 11%
4 Simple Oscillating (1=100) 16% 7%
5 Simple Oscillating (1=200) 17% 8%
6 Simple Oscillating (1=400) 10% 2%
8 Increasing Oscillating (1=50) 39% 16%
9 Increasing Oscillating (1=100) 30% 14%
10 Increasing Oscillating (1=200) 30% 12%
11 Increasing Oscillating (1=400) 29% 10%
13 Adaptive Oscillating (1=50) 48% 20%
14 Adaptive Oscillating (1=100) 44% 16%
15 Adaptive Oscillating (1=200) 26% 9%
16 Adaptive Oscillating (1=400) 31% 9%

Table 4.1: Number of runs achieving success on 95% and 100% of obstacle
heights.

Figure 4.5 shows a box plot of successful evaluations (%) for each strategy
(with whiskers to 1.5 interquartile ranges below and above the lower and upper
quartiles), complete with a range of wavelengths (50, 100, 200 and 400 genera-
tions). Mann-Whitney U tests were performed to examine significant differences
in median number of evaluative successes between strategies and within strate-
gies (by varying wavelength). In table 4.2, a left arrow indicates that the strategy
corresponding to the row number has a significantly higher (p < 0.05) median
success rate than the strategy corresponding to the column number (and an
up arrow vice versa), shown particularly clearly by strategies 8 and 13. Within
each of the increasing and adaptive oscillating strategies, the median number of
successful evaluations was found to be significantly higher (p < 0.05) for strategies
with wavelengths of 50 to 100 generations when compared to the same strategy
with four times the wavelength or higher. Within the simple oscillating strategy,
the long wavelength (400 generations) produced a significantly lower median
(p <0.05) than shorter wavelengths (50, 100, 200 generations).

Strategies which oscillate showed the best performance. No significant dif-
ference was found in median between the increasing and adaptive oscillating
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Table 4.2: Significance table showing one-tailed statistical relationship between
strategies, p < 0.05. Between any two strategies x and y, the arrow in the box
at (x, y) points to the statistically dominant strategy (significantly higher median
value). An empty cell indicates no statistical difference between strategies. Statis-
tical test used was the Mann-Whitney U-test.

strategies at equal wavelengths. It was found that either a linear or an adaptive in-
crease in maximum amplitude over the training time performed significantly better
than simple oscillation. For both increasing oscillating and adaptive oscillating the
two lower wavelengths (50 and 100 generations) showed a significantly higher
(p < 0.05) median number of successful evaluations than the simple oscillating
strategies at all wavelengths.

On average, the adaptive strategy performed significantly better than the
direct, linear and random strategies, and significantly worse than every oscillatory
strategy (except the simple oscillating strategy at wavelength 400 for which there
was no significant difference).

The linear strategy resulted in a significantly higher median number of suc-
cessful evaluations than the direct and random strategies (even though the
random strategy produced more highly fit populations from many more runs) and
a significantly lower median than all other strategies.

On average, the random strategy performed significantly worse than all other
strategies except for the direct method, which was significantly worse than all
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other strategies.

In order to determine whether the poor results of the linear strategy is due to
either evolutionary loss or failure to gain, the proportion of successful evaluations
at each obstacle height was determined throughout the evolutionary progress, for
each strategy. All strategies achieved 8% success at all obstacle heights, with the
exceptions of direct (for which obstacle height is always 100%) and adaptive (low
coverage at high obstacle height). The linear strategy achieved more successful
evaluations than the simple oscillating strategy at all wavelengths during the
evolutionary phase, indicating that its ultimate failure is due to evolutionary loss
rather than a failure to gain. Only 10% of the final populations from linear runs
contained an individual able to walk to the target with no obstacle, compared
to at least 69% for the increasing and adaptive oscillating strategies. Figure 4.6
shows the performance of the linear strategy and the three oscillatory strategies
of wavelength 50 generations, against obstacle height, during evolution.

As in figure 4.5, figure 4.7 shows the number of successful evaluations for
each strategy, but drawn only from those runs able to reach the target with no ob-
stacle (that is eliminating those runs which experienced the greatest evolutionary
loss). It shows that in these cases, linear performance has a range comparable
to the simple oscillatory strategies and a median comparable to the increasing
and adaptive oscillating strategies.

To investigate the dependency of success rate on oscillatory frequency the
simple, increasing and adaptive oscillating strategies were evaluated across as
range of wavelengths from 2 to 10000 generations; figure 4.8 demonstrates
this relationship. As wavelength approaches zero, the proportion of successful
evaluations approaches that of random. As wavelength approaches total evolu-
tionary time (number of generations), the proportion of successful evaluations
approaches that of linear. Between these points, it can be seen that for each
strategy there is an optimal wavelength (for the current algorithm, around 50-100
generations).

4.6 Discussion

It is clear from the results presented above that there is a strong distinction
between the homogeneous and heterogeneous strategies. No homogeneous
strategy achieved 100% coverage of the evaluation task in any run (Table 4.1)
whereas all heterogeneous strategies did. Within the homogeneous category, the
trivial, direct method of presentation was by far the least successful (Figures 4.4
and 4.5). The linear strategy was more successful but the best strategy in this
category was the adaptive strategy. The poor performance of the homogeneous
category can be explained by evolutionary forgetting: these strategies have either
lost evolutionary gradient and drifted away from any early successes (linear) or
over-specialised on later parts of the problem (adaptive).
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of numerical labels; order preserved from Figure 4.5.)

The heterogeneous strategies performed better than the homogeneous group:
all the most successful strategies examined made multiple presentations of easier
tasks at later stages of the evolutionary run, at the expense of fewer consecutive
presentations of very similar tasks. These strategies all performed well at the
hardest task and had the best generalisation performance over the whole range
of tasks, suggesting that our hypothesis has merit.

The random strategy is the least successful strategy in this category. This
may be due to the same problem of gradient loss as in the homogeneous group.
As found in the homogeneous group, the linear and adaptive modifications of the
oscillating strategy showed the best performance of all; the slow increase in task
difficulty maintains a strong evolutionary gradient and the cyclical nature of task
presentation consolidates earlier gains and causes the evolving population to
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Figure 4.8: Strategy performance (% success) against wavelength for oscillating
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prefer generalised solutions abstracted over the whole problem domain.

This consolidation is dependent on the frequency of re-presentation of earlier,
or easier, parts of the task. When investigating this frequency, it can be seen
that a clear optimum exists in the frequency domain where cyclical strategies
are able to maximise this consolidation without losing gradient. This optimum is
likely to be problem-specific and a range of values should be explored for any
given task. However, in the limit of wavelength, that is at very low and very high
frequencies, it can be seen that the performance of the evolving populations
begins to approximate, for low and high frequencies respectively, the linear and
random strategies. This offers an abstract insight into the underlying mechanism
at work - the maintenance of selective pressure and whole-task capability. As
these components reduce in effectiveness due to the change in wavelength, so
the oscillating strategies degenerate into the simpler strategies described above.
The successful cases are those where environmental change is fast enough to
induce a generalisation in the agent’s approach to the task but slow enough to
prevent catastrophic loss of gradient when evaluating partial solutions.

4.7 Conclusions

The points made in the discussion section support the hypotheses outlined earlier
in this chapter. The homogeneous strategies showed weak performance on the
evaluation task, with no strategy achieving full coverage in any run. Conversely
the heterogeneous strategies, including surprisingly the random strategy, all
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achieved full coverage in some runs. Those heterogeneous strategies with a
range of difficulties increasing over time (increasing and adaptive oscillating)
outperformed the simple (constant range) oscillating strategies, showing a much
higher proportion of successful runs. Finally, we demonstrated that oscillating
strategies do exhibit an optimal frequency.

Complexification strategies for incremental evolution offer a powerful mech-
anism for adaptive problem solving. However, this power comes at a price: it is
easy to lose information learned earlier in the process. In order to fully exploit
this power appropriate complexification strategies have to be realised in order to
drive populations along desirable adaptive pathways. There are many options for
formulating these strategies: much previous work has involved, in one manner or
another, a simplification of the objective function and then a progressive complex-
ification as time passes. In this work it was found that many strategies encounter
loss-of-gradient or over-fitting problems. A solution was presented in the form
of heterogeneous complexification strategies which combine solutions to those
problems to deliver robust populations. Our approach can be translated to many
scenarios where progressive complexification is used to guide an incremental
evolutionary process; further exploration of the limitations and advantages of
heterogeneous complexification within different problem domains would be useful
in order to generalise these conclusions. Additionally, the oscillating strategies
exhibited an optimal wavelength for re-presentation. It is unclear whether this op-
timum is task-dependent or whether there is an underlying principle and optimal
wavelength for this type of training; this question also merits further work.

Finally, on the strength of these results, it is advisable that in general while
a random presentation of subtasks or objective difficulty levels is preferable
to a linear increase, as a minimum guideline an increasing heterogeneous
complexification strategy should be used. This rehearsive, cyclical approach
to presentation not only maintains evolutionary gradients but also promotes gen-
eralisation amongst the evolving populations from subtask-specific adaptation to
performance across the super-task.
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CHAPTER

Reactive, Deliberative 3D Virtual Creatures

“We first make our habits, then our habits make us.”
—John Dryden

earlier ideas, leveraging the technical discoveries made in chapter four. The

research question, “Can an evolving 3D virtual creature environment produce
lifelike reactive and deliberative behaviours?” is addressed. The motivation for this
chapter is to take the understanding from chapter four and move away from the
abstract task and a single behaviour, towards navigation and object manipulation,
as well as locomotion. A complex task is chosen that requires these kinds of
behaviours, but also encapsulates the key ideas from chapter four. A novel hybrid
neural network controller is also invented to this end. Results are presented which
show that the simulation produces reactive and deliberative behaviours hitherto
unseen in 3D virtual creatures.

I n chapter five, a 3D virtual creature system is presented which unifies several

5.1 Introduction to Chapter

Living systems exhibit a large variety of coordinated activities at many different
scales. We find, for example, homeostasis, locomotion, learning, group and social
behaviours throughout the natural world. Since the earliest days of Artificial Life,
a defining ambition has been to understand how to engineer systems that exhibit
some of these complex behaviours, either to solve problems or to understand the
underlying principles that gave rise to them in nature (Langton, 1989).

The specification of a model requires assumptions to be made concerning
the degree to which its most basic units and the rules governing their behaviour
are able to act as reliable proxies for their natural analogues. The granularity of
a system has a direct impact on both its speed and its potential to accurately
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mimic nature, and on the strength of conclusions about the natural world based
on phenomena observed to emerge from interactions within it.

The work in this chapter constitutes a first attempt to combine the incremental
neuroevolution of reactive and deliberative behaviours with the neuroevolution of
a 3D agent’s motor control. The overarching aim is the incremental evolution of
sophisticated behaviours, for the population to overcome increasingly complex
challenges in the agents’ environment over evolutionary time.

The challenge is difficult because deliberative behaviour will be limited by
necessary performance in motor control. An incremental approach can take this
subtask-interdependency into account and prevent loss or lack of evolutionary
gradient early in evolution. However, as elucidated in detail in chapter 4, care is
required when designing such incremental steps. Changing selection pressures
too rapidly or too slowly can, respectively, cause evolution to lose gradient or
over-fit to the current challenge. That work also demonstrated that it is necessary
to revisit earlier incremental steps in order to prevent the loss of evolved abilities
and therefore to find general solutions.

There is then a question of how to implement deliberative processing along-
side physical control in a single controller. Deliberative planning systems generally
learn a state-based action policy in order to select the best next state given a
set of available actions. In contrast, flexible control of 3D motion requires a
continuous-time closed-loop control system to keep physical variables within
operational parameters. Also, for locomotive behaviours, an endogeneous oscil-
lation within the controller or body—controller action loop is necessary to achieve
a reliable gait.

The requirements of each of these control systems is fundamentally different;
it is difficult to design an architecture that can effectively learn the two different
problems. The choice is between either an architecture that is general enough to
be capable of both episodic categorisation and time-based close-coupled motor
control, or a combination of the two architectures each tailored to a specific part
of the problem and integrated elsewhere. The work in this chapter opts for the
latter, as a pragmatic step toward a more general architecture.

5.2 Hypothesis

The present work examines the following hypothesis: that it is possible to pro-
duce a sequence of reactive, deliberative behaviours in three-dimensional virtual
creatures using a simultaneous incremental evolutionary paradigm to optimise
an implementation of the hybrid neural architecture detailed below. The “River
Crossing” (RC) task devised by Robinson et al. (2007) is used as the baseline
reactive—deliberative problem. This task is adapted by the addition of a require-
ment of physical motor control in 3D, and the complete problem against which
agents are tested is hereafter referred to as the 3D River Crossing or 3D RC
task.
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The remainder of this chapter presents details of the 3D RC task, the agent
and its hybrid neural architecture, and the evolutionary system, before reporting
qualitative and quantitative results and conclusions. It provides an existence proof
that demonstrates the sufficiency and overall success of the design.

5.3 Methods

The main contribution of this chapter is the novel fusion of multiple neural archi-
tectures, each addressing different aspects of the 3D RC task, in order to enable
the incremental evolution of agents that achieve the full task. This section of
the chapter introduces the environment and physical model and then describes
the hybrid neurocontroller in detail, making reference to the inputs and outputs
defined by the agent—environment relationship. Finally, the evolutionary algo-
rithm is described in terms of the parameters of the neural architecture, and the
experimental set-up is outlined.

5.3.1 Environment and physical model

The environment for the evolutionary problem is a modified version of the RC task
first used in Robinson et al. (2007). In this task, agents exist and move around
in a discrete, 20x20 bounded grid world. Each grid cell has attributes which
can affect the agent: traps kill it, as does water (drowning); grass is neutral and
stones can be picked up and put down. Stones can be placed on water, enabling
bridges to be built. The final attribute, resource, is the agent’s goal. The RC task
is an incrementally difficult challenge, with a staged introduction of difficulties. By
collecting the resource, agents progress through more complicated environments,
eventually arriving at a 20xn-cell river, where n is the increasing width of the river
and thus the difficulty of the bridge-building task.

Figure 5.1: Agent morphology and environment, showing resource in yellow, river
in blue, traps in red and stones in grey.
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The 3D RC environment used in this work extends the 2D RC environment.
Agents have a symmetrical quadruped body plan (figure 5.1) comprised of a
torso (dimensions 1.0x1.0x0.2 cell-widths), four upper limbs (0.5x0.2x0.2), four
lower limbs (0.5x0.2x0.2) and four small sensors (0.05x0.05x0.05). The upper
limbs are attached to the torso at each lower corner with a 2-axis constraint. The
constraint limits the range of motion of the upper limb relative to the torso, to 7
radians around the vertical axis, and = radians around the line lying tangent to
the agent’s torso in the plane of the torso. Lower limbs are connected to upper
limbs via a knee constraint which limits the range of motion between the two parts
to 7 radians around the y-axis. The sensors are attached with fixed constraints
to the centre of each of the four faces of the agent’s torso perpendicular to the
ground plane. The physical simulator used was Open Dynamics Engine (ODE)
version 0.13.1, with friction pyramid approximation for contact response (u = 10.0)
between agent and the ground plane, universal ERP of 0.2 and CFM of 5 x 107°.

In order to bootstrap the evolution of locomotive behaviour, two additional
levels were added at the start of the incremental RC task. The first level distributes
“food” around the RC world. This confers additional fithess on agents once
collected. The second level (“dash”) has only one occupied cell, containing the
resource. These levels together promote locomotive behaviour, and ultimately
optimise the behaviour for speed of movement.

The difficulty of the RC environment is increased incrementally across six
progressively more challenging levels. An agent’s fitness is incremented from zero
by 100 each time it successfully finds the resource, a requirement to progresses
to the next level.

» Level 1: Food. The RC environment contains only cells with the resource
(one cell) and food (probability 1/20 per cell). Interaction with a food cell
removes the food from the environment and increments the agent’s fithess
by 1.

 Level 2: Dash. This level contains only a single resource cell which agents
must discover.

* Level 3: Stones and Traps. This level contains eight traps and twenty stones,
as well as the target resource.

* Level 4: Easy bridge. This level is as level three but with a river of width 1
crossing the terrain.

* Level 5: Medium bridge. As level four, but width 2.
* Level 6: Hard bridge. As level five, but width 4.

On completion of level 6, agents are returned to level 1 and can continue to
accumulate fitness until the time limit of 10 simulated minutes is reached, when
evaluation is terminated. These challenges constitute a strategy of revisiting
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and gradually changing task components, as in the heterogeneous strategies
of chapter four. Agents are exposed to previously-seen examples both through
the revisiting of earlier levels when successful in level 6, but also through the
encapsulation of earlier challenges within later ones. For example, the “easy
bridge” level encapsulates the “stones and traps” level. Whilst the breakdown of
the whole task (success at any level) is less straightforward in this presentation
than in that of chapter four, the underlying principles are exploited in the same
way.

5.3.2 Neural architecture

A neural architecture capable of solving the 2D RC task was a major contribution
of Robinson et al. (2007) and is extended in the present work. In the 3D RC task,
an agent’s neurocontroller transforms sensory inputs into torque values for motor
control, which gives rise to behaviour in the physically simulated environment.
The control system must produce directed locomotive behaviour in the quadruped,
and change locomotive behaviour over the stages and sub-stages of the RC task,
according to external (sensory) and internal (neural) state.

The hybrid neural architecture (figure 5.2) integrates the outputs of the RC
world decision network (DN) and the diffusive shunting model (SM) with the inputs
of the physical network (PN), and then use this information to pilot the agent
through the world by affecting the operation of the agents’ pattern generator (PG)
neurons. This combined architecture is a novel integration of several technologies
from neural network, robot control, and biological modelling literature.

The Decision Network

The DN architecture follows the design laid out in Robinson et al. (2007). The
DN is a standard feedforward neural network which takes inputs representing the
attributes of the agent’s current location in the RC world, and an input indicating
whether or not the agent is currently carrying a stone. The hidden layer contains
four neurons which sum over the inputs and apply a hyperbolic tangent activation
function. The output layer sums over the hidden layer, applies a hyperbolic tangent
activation function and tests at the thresholds -0.3 and 0.3; output neurons have
three possible values: -1, 0 or 1, and determine the iota values used in the SM.
These iota values indicate the saliency of the attributes in the environment, so
the DN outputs iota values for each attribute (resource, stone, water and trap)
except grass (which has an iota value of zero).

The Shunting Model

The SM was first used as a novel approach to motion planning by Meng and Yang
(1998). The approach uses the homomorphism between the varying external
environment and the intrinsic dynamics of the architecture to achieve route
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Figure 5.2: Neural architecture. Attributes at the agent’s position (g=grass,
r=resource, s=stone, w=water, t=trap, c=carrying flag) determine inputs to the
Decision Network [1]. The Shunting Model constructs a landscape using iota
values output by the DN [2] (P=pickup action, R=resource, S=stone, W=water,
T=trap) and the locations of objects [3]. The SM activity landscape is interpolated
[4] at the positions of the animat’s four sensors [5], and these values fed to the
Physical Network [6]. PN outputs are fed to the Pattern Generator Network [7],
which outputs to neuromotor controllers. Links in red are genetically specified.
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generation (planning) without explicitly searching over possible paths. It is a
generalisation of the potential field approach of Glasius et al. (1995), historically
an evolution of the model of neural connectivity first proposed in Hodgkin and
Huxley (1952). The SM uses a locally-connected, topologically-organised network
of neurons to propagate desirable states across the entire network of transitions
in the space. This produces an activity landscape with peaks at target states and
valleys at configurations to avoid. One of the most common implementations of
the SM is the additive model (Grossberg, 1988), which sacrifices gain control
(and thus, stability) for simplicity. This model defines the following differential
equation to model the diffusion of input values across the state landscape:

dx;
l:—Axi+ Z w,-j[xj]++1,-

(5.1)

where each neuron in the SM corresponds to one discrete cell in the environment;
x; is the activation of neuron i, taken to be zero outside of the environment; A is
a passive decay rate; N; is the receptive field of i; w;; is the connection strength
or weight from neuron j to neuron i, specified to be set by a monotonically
decreasing function of the Euclidean distance between cells i and j (zero outside
of the neighbourhood); the function [x]* is max(0, x); and I; is the external input
to neuron i.

This technique was used in Robinson et al. (2007) to model the state space of
the RC problem by directly representing the discrete RC world in the configuration
of the SM, with each cell’s receptive field set to be the eight cells in its Moore
neighbourhood, within which all w;; = w, and external input I; determined by the
attributes present in cell i and the saliency (iota value) for those attributes as
computed by the DN. Neural activations propagate from external input I according
to the local connectivity of the neurons, and the entire network can be considered
a diffusive model that produces landscapes in which following positive gradients
leads to target states. With well-chosen constant multipliers, this method exhibits
no undesirable dynamics and has been found to be considerably versatile in a
variety of subsequent works, including those of Borg and Channon (2011) and
Luo et al. (2014).

In this work, we simplify and clarify the setting of of decay rate and scales
for distance (or weights) and iota values. A stable solution (x!** = x; for all
i) to equation 5.2 is a stable solution (x = 0) to equation 5.1. We absorb the
constant A into the scales for iota values and distances, and set and limit weights
and activation according to neighbourhood size (8) and maximum iota value
(maxI=15), resulting in equation 5.3.

1
(5.2) XY=

Z w,-j[xj]++1',-)

JEN;
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Following the computation of external inputs I by the DN, we zero SM activa-
tions and then iterate equation 5.3 fifty times to allow activity to propagate and
stabilise across the 20x20 array of SM neurons.

1
(5.3) XM =min|< ) [x;]1" +1;, maxI
JEN;

5.3.2.1 The Physical Network

The PN controls the agent’s behaviour in the world. It receives as inputs the SM
activations (interpolated) at the positions of the four sensors located on the four
sides of the agent’s torso. Since the SM represents a neural quantisation of the
continuous landscape in which the sensors move, a single value is calculated for
each sensor using a bilinear interpolation of the SM’s activity values at the four
points around the relevant sensor:

(5.4) alx,y) = fllxl, |y 1a-{xha—-{yh+
U1, [y Q= {yh +
Fllx), [yD1Q—{xh {y} +
FU [y]Hx{y}

where a(x, y) is the interpolated activity at (x, y) e R?, f[i, j] is the SM activation
at the discrete point (i, j) € z? and {x} denotes the fractional part of x.

These four sensor values are normalised (divided by maxI) and then fed into
the PN, together with four values that indicate which sensor has the maximum
value. The PN operates as a standard feedforward neural network where hidden
nodes receive a weighted sum of the inputs. The hidden layer uses a hyperbolic
tangent activation function in order to maintain negative values. The output layer
uses a sigmoid activation function.

5.3.2.2 The Pattern Generator Network

The PG is a set of pre-evolved oscillatory neural circuits which are modelled on
the networks of leaky integrators presented in Beer and Gallagher (1992) and
used for locomotor pattern generation in many subsequent works, including Reil
and Husbands (2002) and Stanton and Channon (2013). The circuits themselves
are three-neuron motifs evolved to produce 1Hz sinusoidal oscillations from an
output node in the presence of an input signal, and to be quiescent otherwise.
Each complete PG network has a set of five identical motifs, initially isolated,
which receive input from the PN via a set of weights and send their outputs to
the final stage of the agent’s controller. The neurons comprising these motifs
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are simple continuous-time leaky integrators, with behaviour governed by the
following equations:

dA; 1
(55) Ti dtl :_A"JFZ wl-jOj
j=0
C— A
(5.6) O; =tanh di— 2

where A; is the activation of a neuron i, O; is the output of neuron i, w;; is
the weight from neuron j to neuron i, «; is the bias of neuron i and 7; is the
time-constant of neuron i. At each iteration of the update algorithm (dt =0.015s),
equation 5.5 computes the change in the activity of the ith neuron for all neurons,
and then equation 5.6 computes the output value for all neurons. It is this output
value that is used by the neuromotor controllers.

To generate the original motif, a population of 1000 randomly initialised three-
neuron networks was created with weights, time-constants and biases defined
by a real-valued genotype. These networks were evaluated against a fitness
function which measured the match between the desired frequency and the
output response by summation of the undesirable (non-target) frequencies found
in the frequency domain after application of Fourier transform. Networks were
simulated for 10 seconds, twice. Once with a high input and a target frequency
of 1Hz, and once with no input and a target quiescent state. Through three-
genome tournament selection, strong candidates were used to generate new,
mutated members of the population using the same evolutionary parameters as
the general system described below.

5.3.2.3 Neuromotor Controllers

In the final stage, 12 motor controllers (one for each degree of freedom in the
agent’s morphology) receive the outputs of the PG network via a weighted sum
and sigmoid activation function. These motor controllers implement a proportional-
derivative (PD) controller, as used by Reil and Husbands (2002), which takes
network outputs to be target angles within each joint’s range of motion and applies
a torque to the joint according to the following formula:

(5.7) T=ky(0s—6)—kq

where T is the torque applied to the joint, k; is the spring constant, k, is the
damping constant, 8, is the target angle and 6 is the current angle. In this work,
ks =0.25 and k; = 0.175 were found to produce stable action at joints using the
same preliminary studies as chapter four. The difference in these values between
this chapter and the previous one is due to minor differences in simulator version,
parameters, and agent morphology. This method has the advantage of relieving
the neurocontroller of the problem of balancing an agent’s weight against the
force of gravity.
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Figure 5.3: Example of a “galloping” locomotive behaviour. Time axis is left to
right, top to bottom.

5.3.3 Evolutionary system

A steady-state evolutionary algorithm was used, in which a population of 150
agents is evaluated in randomly-chosen groups of three and the least-fit individual
from the group replaced by a mutated single-point crossover progeny of the fitter
two.

5.3.3.1 Genetic Representation

Individuals’ neurocontrollers are represented as an array of floating-point values.
The sections are laid out as arrays of weights for each network stage as outlined
above: the DN input—hidden and hidden—output weights, the PN input—hidden and
hidden—output weights, the PG interneuron weights and the PG—motor weights.

5.4 Results

Twenty runs were carried out, each for 10° tournaments.

5.4.1 Qualitative results

In those runs scoring highly on the final level of the task, intricate and diverse
behaviours can be observed as the agents progress through their environmental
challenges. In any single species, several different locomotive strategies can
be observed depending on whether the agent is near or far from its target, and
whether there are obstacles in the way. In the case of a “clear run”, agents
often gallop (figure 5.3) toward the target, whereas if more careful movement
is required agents will progress more slowly, making time to avoid unexpected
sensory conditions (i.e. traps and water). In both cases, directed control is
observed as agents update their heading whilst engaging in locomotion to remain
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Figure 5.4: Bridge building in action. In (a) the agent has already started to build a
bridge and is returning to collect another stone. In (b) the agent has just dropped
a stone and is beginning to turn around. In (c) the agent is carrying a stone to
drop on the water. In (d) the agent has completed the bridge and is about to reach
the resource. The figure also illustrates the SM activity landscape superimposed
on the 3D RC world and shows the changes to this landscape due to the updated
iota values that occur as the agent’s state, and thus DN inputs, vary.
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| Level-Cover | >0% | 20% | 40% | 60% | 80% |
1 (Food) [ 100% | 100% | 100% [ 100% | 100%
2 (Dash) [ 100% | 100% | 100% | 100% | 100%
3 (Traps) | 100% | 100% [ 100% | 100% | 95%
4 (River1) | 85% | 85% | 85% | 30% | 10%
5(River2) | 85% | 65% | 50% | 20% | -
6 (River4) | 65% | 20% | - - -

Table 5.1: Proportion of runs with >0%/20%/40%/60%/80% of their final 1000
tournaments successful at level 1/2/3/4/5/6 of the 3D RC task.

aligned with the target. Agents also often display a distinct “turning” behaviour
which will engage if the agent is beyond some angular threshold away from facing
its target. Figure 5.4 shows an example evolved agent solving 3D RC task.

One of the most lifelike behaviours to be observed is avoidance: due to the
non-spreading negative values in the activity landscape agents can unexpect-
edly encounter a highly negative region. In this case, agents will often crouch
and spring back from the hazard, minimising the chance of falling on it due to
imprecise control or previous momentum. Finally, in the case where no acti-
vation is present on the landscape around the agent, i.e. all directions are of
equal saliency, agents engage in a form of random walk reminiscent of similar
exploratory behaviour that can be seen in many simple animals. The temptation
to interpret these actions in a human or animal context is ever present—agents
can seem to exhibit surprise on encountering an unexpected danger, confusion if
trapped in a mediocre part of the landscape and even happiness as they gallop
toward the resource.

5.4.2 Quantitative results

The fitness scores of the three agents in each tournament were collected. Figure
5.5 shows the progress of the population from a typical run, in solving each level
of the 3D RC task. Table 5.1 shows an overview of the performance of the entire
system by aggregating and examining the results of the final 1000 tournaments
from each run. From this table, it can be seen that every run was able to complete
levels one and two in at least 80% of the final 1000 tournaments, and 95% of runs
were able to complete level three to this standard too. Performance fell sharply
against the bridge-building challenges, although 10% of runs were still able to
complete level four in at least 80% of evaluations. At the hardest level of the task,
65% of runs achieved at least 1 evaluation which was able to complete level
6, and 20% of runs achieved at least 20% evaluations able to complete level 6.
Figure 5.6 shows this aggregate data for all runs and levels and makes clear the
spread of success across the whole problem in the experiment; a clear divide
can be seen between the first half and latter half of the problem.
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Figure 5.5: Progress of a typical run over one million tournaments. The graph
shows the percentage of evaluations successful at completing each level of the
3D RC task, averaged over 1000 tournaments.

When examining the progression of the evolutionary algorithm in individual
runs, it can be seen that the first level of the problem is solved early on in the
search-typically after only 10000 tournaments. Success at level two soon follows
as the problems are similar. Success at the third level (traps and stones, but no
river) also occurs early on, in most runs. Levels four, five and six cause a longer
delay in the search, and solutions do not appear at all in some runs even though
the earlier levels have been solved in similar time to other, successful runs. When
solutions do occur, there is often a delay between the solution for level four and
later levels.
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Figure 5.6: Success rates of all runs. The graph shows the performance of
each 1000000-tournament run, evaluated from the final 1000 tournaments (3000
evaluations) of each run as the number of these evaluations that successfully
completed each level of the 3D RC task. Runs are sorted in descending order for
each level of the task.

5.5 Conclusions

This work demonstrates that a standard evolutionary algorithm is sufficient to
find parameters for a hybrid neural architecture comprised of loosely-coupled
continuous-time and discrete-time neurons to produce reactive and deliberative
behaviour in 3D, rigid-body virtual creatures requiring motion control.

By covering the range of task complexity over evolutionary time, species
experience an evolutionary pressure (no loss of gradient) whilst still being able to
consolidate progress already made. This incremental approach allows species
to first develop a locomotive behaviour, and then to use and adapt this ability to
explore the space of solutions to the bridge-building river-crossing task.

This work has also shown that a hybrid approach to neurocontroller design that
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includes a generalised oscillatory component (in this case, an evolved network
of leaky integrators) is sufficient to produce agents that exhibit task-dependent
behaviours including locomotion, turning and avoidance. The architecture is also
able to optimise the strategy for long-term deliberative planning in the 3D RC
world at the same time.

The integration of a deliberative decision network and a mechanism to gener-
ate reactive behaviour in 3D virtual creatures, via a shunting landscape model,
was successful and shows promise for future, more complex work in this area.
The limitations of the model are due to the simplicity of the decomposition of the
world into the agents’ phenomenal space—there is no reason this relationship
could not be integrated.

Future work will examine behaviour and neural dynamics to determine what
aspects are important. In addition, in order to generalise the applicability of this
work to a broad range of tasks, it will be necessary to remove the problem-
specific aspects of the neural architecture’s design. A first step could be to make
the distinction between the DN, SM and PN less explicit. Ultimately a single
neural type and architecture, with genetically specified parameters, would be the
most general design.

Other possibilities for increasing the coherence in the sensorimotor loop
include finer-grained distinctions in the environment, for example iota values for
boundary conditions, and the addition of noise to smooth behavioural transitions.
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CHAPTER

Object Manipulation in 3D Virtual Creatures

“One touch of nature makes the whole world kin.”
—William Shakespeare

n chapter six, the work of chapter five is extended to involve an additional
I abiotic element.

6.1 Introduction to Chapter

The earlier work in this thesis has examined how a sequence of complex be-
haviours could arise in a 3D virtual creature system. In this chapter, the limits of
the previous system are examined in order to move towards the full brain—body—
environment, dynamical-systems paradigm of adaptive intelligent behaviour.

The 3D River Crossing (3D RC) task, first presented in Stanton and Chan-
non (2015), provides an ideal base from where the evolution of sensorimotor
intelligence and related issues of physical embodiment can be explored. In that
work we adapted the shunting model of Grossberg (1988) and Yang and Meng
(2000), used for the first time in an a-life context in Robinson et al. (2007), to build
an evolutionary environment able to evolve control architectures of 3D virtual
creatures that exhibit both reactive and deliberative behaviours. However, the
problem-solving aspect of the 3D RC task in that work was abstracted from the
physicality of the agent’s morphology. Although each agent’s joint motors were
driven by some of the outputs from its neurocontroller, other neural outputs only
notionally represented manipulation of physical objects in the agent’s world.

An important extension of the earlier work into richer interactions is thus
to introduce aspects of the deliberative problem to the agents’ physical world,
requiring an intricate manipulation of simulated objects to solve the challenge.
In this work, we take a first step toward that goal by investigating whether the
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neural architecture outlined in that work can successfully constitute the control
system for a simple manipulation task: displacement of a physically-modelled
block in the agent’s world, requiring feedback control, hereafter called the block
displacement (BD) task.

Our general approach is to consider populations of agents in a new envi-
ronment that provides the physical block challenge. The agents’ neural control
systems are sensitised to the location of the block by direct interaction with the
shunting model, simplifying the adaptive problem. We investigate evolution on
the BD task from both random (unevolved) populations and from populations of
creatures previously evolved in the 3D RC environment. Hereafter we refer to
random populations as unevolved populations and populations evolved only in
the 3D RC environment as naive populations.

6.2 Hypotheses

The objective of this work is the evolution of agents able to successfully complete
the BD task, as observed through 3D visualisation. In addition, we developed and
tested the following hypotheses in order to further understand the interactions
between the various components of the system and explore the limitations of the
3D RC architecture:

H1. The hybrid architecture is sufficient to achieve feedback control that allows
agents to successfully manipulate and guide an external object;

H2. There is some overlap between the earlier 3D RC task and the BD task due
to the requirement for speedy and accurate movement in both environments;

H3. Species evolved in the 3D RC task show increased performance after
evolution in the BD environment, and the final perfomance is not significantly
different to species evolved from random in the BD environment.

The remainder of the chapter presents an overview of the method used to
generate the agents, and the results of the evolutionary and ablative experiments
designed to test the above hypotheses. We then present conclusions and a
discussion that relates the design of the base system to the observed results.

6.3 Methods

In this section, we describe how the overall objective of implementing a system
capable of using an evolutionary algorithm to produce agents able to manipulate
objects in a 3D, realistic physics world was achieved. The solution is split into
three parts. The first part is the design of the evolutionary problem that the agent
species must evolve to solve; the second part documents the abstractions made
in the agent’s morphology and control architecture that are under the control of
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the evolutionary algorithm and the third part describes the evolutionary algorithm
itself. Finally we describe the data collection scheme we use to collect outputs
from the experiments. In all experiments, simultaneous evaluation of evolutionary
scenarios was facilitated by the use of GNU Parallel (Tange, 2011).

6.3.1 The physical 3D RC problem

The general problem used in this work is an adaptation of the 3D RC task
described in earlier work (Stanton and Channon, 2015), following the same key
ideas described and used to various ends in Robinson et al. (2007) and Borg and
Channon (2011). The innovation in this work is the addition of a requirement for
agents to physically manipulate objects in the environment; in chapter five, only
the body of the agent is physically simulated and all environmental interaction
is through a two-dimensional, grid-world abstraction. In the original RC task,
2-dimensional agents are able to move between discrete cells in a 20x20 grid
world containing hazards (traps and water) and resources (stones and resource.
Stones can be carried by the agent and placed into water, enabling bridges to
be built. Success in this environment is determined by agents’ ability to avoid
hazards and reach the single resource by learning an appropriate action policy
given the current state; this includes capturing an element of deliberative planning
in order to build bridges in worlds containing an otherwise impassable stretch of
water.

This task was adapted in chapter five work to three dimensions (the 3D
RC task), making the problem significantly harder. Agents are embodied in a
four-legged fixed-morphology physical form that is simulated using a Newtonian
rigid-body mechanics system, meaning that physical control (principally, the
locomotive and orienting behaviours required for moving between grid cells) must
be part of any solution. The agent’s position in 3D is projected and quantised to
the 2D RC world and any output from the control architecture translates directly
into motor control in the 3D environment.

This work introduces the Physical 3D RC (P3D RC) task where the physical
problem is extended beyond the agents’ control of their bodies, to the wider
environment. Solutions to the P3D RC task involve manipulation: in addition to
the agents’ bodies, a cube representing a stone in the world is also physically
simulated. Any solution must use physical motor control to manipulate the cube
into a configuration that allows the agent to access the resource objective.

As a step toward the P3D RC task, we first investigate simpler problems where
agents must simply move blocks around in the world, without the requirement to
solve the deliberative component of the RC challenge. This chapter addresses
the first of these challenges, where the problem is to move the environmental
block as far as possible.

As in earlier work and summarised here, agents have a symmetrical quadruped
body plan comprising a torso (dimension 1.0x1.0x0.2), four upper limbs and
four lower limbs (dimensions 0.5x0.2x0.2 each). Upper limbs are attached to the
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torso at each lower corner with a 2-axis constraint, limiting the range of motion
relative to the torso. Knees connect upper libs to lower limbs, constraining their
relative motion to a hinge. Four small sensors are also modelled in the physical
environment as fixed appendages to the agent’s torso; this is for convenience of
updating sensor values based on their position and the sensors have no effect
on the physical operation of the agent. The physical simulator used was Open
Dynamics Engine (ODE) version 0.13.1, with friction pyramid approximation for
contact response (u =10.0) between agent and the ground plane, universal error
reduction (ERP) of 0.2 and force-mixing (CFM) of 5x 107°. In addition to the
agents, a 1 x1x 1 block is simulated at the centre of the environment (p =0.1). On
initialisation, agents are randomly positioned on a circle with radius 5 units from
this point.

6.3.2 Agent control

Given the above problem, a strategy to solve it necessarily requires a control
architecture that receives sensor data from the environment and produces ap-
propriate motor stimulation to guide the agent through the challenges of the
world. We use a bespoke, hybrid neural network (HNN) to this end. The HNN
comprises feed-forward networks for saliency calculation from sensor data, a
locally-connected, topgraphically-organised shunting neural network (Yang and
Meng, 2000) for modelling the agent’s world, a feed-forward bridge between this
model and the motor control parts of the architecture and a series of recurrent
leaky integrator networks in the style of Beer's Continuous-Time RNNs (Beer
and Gallagher, 1992) that actually produce motor output from the control system.
These components we label the decision network (DN), the shunting model (SM),
the physical network (PN) and the pattern generators (PG). Together, these
components are able to successfully solve the 3D RC task, as demonstrated in
the previous chapter, as well as in Stanton and Channon (2015).

Since the details of this hybrid architecture are elucidated in the previous
chapter, only a summary of the architecture is presented below, along with notes
on aspects that have been modified for the present work. See figure 6.1 for a
detailed exposition in graphical form.

In chapter five, the DN and SM follow the ideas presented in Robinson et al.
(2007) closely. Together and properly configured, they provide a neural-like
encoding of a fixed action policy relating current state (position, local objects and
carrying state) to action (preferred movement direction, and a pick-up or put-down
action). In the first part of the present work, the focus is on physical performance
rather than the species’ capacities to learn an appropriate state—action policy. As
such, we hard-code :-values (saliency values) for objects in the agents’ worlds
rather than learn appropriate weights in the DN.

The PN controls the agent’s behaviour in the world. The state transition
landscape produced by the agent’s SM is sampled at four points physically
located on the agent’s body and these values are used as input to this network.

88



CHAPTER 6. OBJECT MANIPULATION IN 3D VIRTUAL CREATURES

Grid-world Environment

[2]
Shunting Landscape

X-y agent sensor
locations (continuous)

\141 / (5]

Bilinear interpolation
of shunting model at (x,y)

byl
cleteclooe

Seenssesee

Physical network

Pattern generator.

Outputs to
joint motors

Figure 6.1: Neural architecture. The agent’s 3D world, containing the agent and
the block, is discretised into a 2D grid (1 and 2); grid locations are given (-values
where salient objects exist and this is used to generate the diffusive shunting
landscape (3). Agents sample the landscape (4) at four different continuous
positions given by their four sensors (5) by interpolation of values around the
sensor location (6). These values pass through a feed-forward network and affect
the dynamical trajectories of pattern generators (7) that ultimately output values
to effectors via weighted links to joint motors (8). Links shown in red are subject
to evolutionary optimisation, both in the pre-evolutionary phase and in the later
block task. This includes the red region around the five preset pattern generators
whose interneuron weights are also variable: within a single generator preset
weights are adapted; across generators weights are initialised at zero but can
also move from this value.

89



CHAPTER 6. OBJECT MANIPULATION IN 3D VIRTUAL CREATURES

Thus, information about desirable state transitions (in this model, directions to
move) is available to the PN and can be used by agents to discriminate important
features of the preferred state configuration relative to the agent’s configuration.
The agent’s configuration can then be updated to climb the gradient in the state
space.

Actual control of the agent’s body to achieve this reconfiguration is mediated
by the PG network. The network is an array of five three-neuron oscillator cir-
cuits, comprising simple leaky-integrator neurons governed by a set of coupled
differential equations, modelled after those of Reil and Husbands (2002). The PG
network receives input from the PN that perturbs the oscillating cycles which in
turn affects the agent’s behaviour in the world. The oscillator circuits are a given
abstraction in the agents’ design, generated by a pre-evolutionary phase that is
documented in previous work and summarised in the next section.

Last, outputs from this network are used as target angles for the various
joints in the agent’s body; actual torques are applied according to a proportional-
derivative (PD) equation based on the difference between the current and desired
angles at the joint.

6.3.3 Evolutionary algorithm
Pre-evolution

As noted above, populations exploring the block task have been pre-evolved in
other environments and also contain specific neural circuits that were produced
in an additional, separate environment. These circuits were produced in isolation:
three-neuron motifs were evaluated for their capacity to stably generate a 1Hz
sinusoidal oscillation in the presence of an input signal and to be quiescent
otherwise using an objective function based on the Fourier transform of their
output over a 10-second window. The major pre-evolutionary phase involved
the simulation of 20 species of agent in the original 3D RC environment. These
species progressed through the documented incremental evolutionary phases of
food collection, sprinting and hazard avoidance; the evolutionary process was
halted before the deliberative part of the incremental challenge. (Specifically,
agent populations were allowed 250k 3-individual tournaments; it was found that
all 20 species had progressed to the deliberative component by this point.) The
20 species, all capable of tropotactic locomotion, were then installed in the block
environment.

Evolutionary Parameters

In all cases the evolutionary algorithm is a three-individual tournament selection-
based optimisation process, operating on a population of 150 genomes. Individ-
uals’ neuro-controllers are represented as an array of floating-point values. On
reproduction, single-point crossover occurs between the two winning individuals
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in the tournament, and Gaussian mutation is applied to alleles of the resulting
child genome with probability 1/1, where uy=0and o =1.

Objective Functions

For the pre-evolution of oscillator circuits, the objective function was the number
of non-1Hz frequencies in the frequency domain of a ten-second sample of the
output neuron’s signal in the input-high state, and the total number of frequencies
in the input-low state. During the pre-evolution of gradient-ascending virtual
creatures, the objective was as defined in (Stanton and Channon, 2015); agents
of high fitness completed many of the incremental stages of the 3D RC task. For
the evolved block-pushing task, the objective is to maximise the distance covered
by the block in the discrete grid-world.

6.3.4 Data collection

To examine hypothesis H1, we collected observations of agent behaviour, includ-
ing extracting trajectory data from the highest-scoring individual from the BD task
under various deafferent sensory conditions. Deafferentation of control inputs
was achieved by systematically disabling sensors, and the agent’s progress in a
controlled version of the BD task was recorded across a two minute time interval.
For each treatment, we examine approach and control. In both cases the block is
positioned at (20,20); for approach the agents start far from the block at (5,5), and
for control they start very close at (18,20). The trajectories followed by agents
and block in the two scenarios illuminate the dependence of the gaits on sensory
feedback. To examine H2, we used mean evolutionary performance data from the
final 1000 tournaments of the 3D RC pre-evolution phase in comparison to the
mean score of the same species in the BD task, evaluated for 2 minute and 10
minute periods. To examine H3, the naive BD score before evolution takes place
of each individual in each population was measured, in 10 randomly initialised
trials. Each trial evaluates the individual for 10 minutes in the BD task. After the
evolutionary phase, we repeat the process. We also collected evaluation data for
each individual in each of 20 populations over 10 trials of 10 minutes each, after
100k tournament evolution when individuals begin with random genotypes.

6.4 Results

Figures 6.2 and 6.3 show the progress of the two different types of run undertaken
over evolutionary time: populations evolved from random starting points and from
populations previously successful in the 3D RC task. One extremely high-fitness
run was noted in the random category; upon visual comparison with other runs,
this species is a classic degenerate solution whose strategy is to rapidly vibrate
the block to achieve high fitness.
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Figure 6.2: Fitness on the BD task (moving average over a 1000-tournament

moving window) for evolution from a random (unevolved) population.
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Figure 6.3: Fitness on the BD task (moving average over a 1000-tournament
moving window) for evolution from a naive (evolved in 3D RC) population.
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Figure 6.4: Comparison of the best individuals from the naive population, and from
populations evolved from the random (unevolved) and naive-evolved populations.

H1: The hybrid architecture is sufficient to achieve feedback control that
allows agents to successfully manipulate and guide an external object

Visualisations of agent behaviour can be seen at https://youtu.be/gZaUvXcdMKS,
and figure 6.5 provides a static view of an agent. The zoopraxiscopic figures,

presented in the style of Eadweard Muybridge (Muybridge, 1887), show a time-
series of snapshots that illustrate how agents approach the block from a distance

(figure 6.6), and manipulate the block in their world (figure 6.7). In order to gauge

the importance of the architectural components, agents were observed under

impoverished sensory conditions. The behavioural results of sensory deafferenta-
tion are presented in figures 6.8 and 6.9. Figure 6.8 shows the planar trajectory

followed by agents approaching the block from a distant point under various

deafferentation conditions; figure 6.9 shows the response of agents to the same

sensory culling in a closer, control scenario.

Figure 6.8 shows an agent that begins at (5,5) and attempts to reach the block
at (20,20). The unaltered agent’s trajectory is shown in the top left; this agent
tends to overshoot its target and then correct by rotating, as the two loops in the
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Figure 6.5: Visualisation of a single agent in the block-displacement world. Agent
is displaying a low, heavy gait suitable for block pushing.

Figure 6.6: Approach gait. The agent is moving toward the block from a distance.
All limbs are contributing to the movement.

Figure 6.7: Control gait. The agent is pushing forward with its ‘back’ limbs,
maintaining the block between its forelimbs.
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2

Figure 6.8: Agent-block trajectories of best agent from best overall trained popu-
lation under various deafferent sensory treatments; approach task.

tion © Block Position Agent Position ¢ Block Position Agent Position ¢ Block Position Agent Position ¢ Block Position

Figure 6.9: Agent-block trajectories of best agent from best overall trained popu-
lation under various deafferent sensory treatments; control task.

path record. All sensors have some effect on this behaviour although sensor 1 is
by far the most pronounced difference in a single cut. In complete deafferentation
(bottom left) the agent moves randomly. In contrast, in figure 6.9, the agent
begins at (18,20), adjacent to the block at (20,20). The unaltered agent pushes
the block in a tight circle to maximise fitness (top left). Sensory deafference does
not have a catastrophic effect as in the approach task; all single cuts still maintain
block movement although the trajectory is less efficient, as does the dual cut of
sensors 1 and 2. Only by cutting sensors 3 and 4 or complete deafferentation was
failure to displace the block at all observed. The figures together demonstrate
that information from the agents’ sensors are being used together to generate
reliable gaits for distance approach and block control.
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H2: There is some overlap between the 3D RC task and the BD task due to
the requirement for speedy and accurate movement in both
environments.

A non-parametric correlation analysis was undertaken between the species’
relative ranks for mean fitness during the final 1000 tournaments of the 250k-
tournament 3D RC pre-evolutionary runs and the mean score on the BD task.
Figure 6.10 presents this correlation graphically for both two minute and ten
minute evaluation times. In the 10m trial we found a statistically significant al-
though weak correlation (p = 0.38; Hy p < 0.05). The correlation between 3D RC
and BD performance in the 2m BD trial is much stronger (o =0.51; Hy p < 0.05).

Correlation of 3D RC Performance and Naive Block Task
Performance, 2m and 10m evaluations

Block Displacement Fitness
—_ N w B~ (&) o~ ~J
o o o o o o o

o

200 220 240 260 280 300 320 340 360
3D RC Fitness

10 minute evaluation 2 minute evaluation

Figure 6.10: Across-species correlation comparing 3D RC performance and
BD performance. Outcomes across the two tasks are more correlated when
evaluation time is shorter (p = 0.51), indicating that movement speed is a factor
in success in the block task and shared between the two problems. However, a
strong gait is required to push the block and this is not selected for in the 3D RC
task, hence the lesser correlation in the 10m task (p = 0.38).

H3: Species evolved in the 3D RC task show increased performance after
evolution in the BD environment, and the final perfomance is not
significantly different to species evolved from random in the BD
environment.

Table 6.1 shows the naive BD score (column 4) compared (column 6) to the
evolved score (column 5) for all 20 species. There is a clear improvement in
all cases over the 25k tournament evolutionary run: the mean fitness over all
naive populations was 37.29, compared to 124.16 in the evolved set (Hy p <
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10'%). Figure 6.2 shows progress of runs beginning from random genotypes over
evolutionary time (100k tournaments in 1k tournament averages). Figure 6.3
shows the same view of populations beginning from naive genotypes, over 25k
tournaments. Both treatments show a levelling off of fitness and there is no
significant difference between the best individual evaluation performance of the
two starting conditions across all replicates, demonstrated by the proximity of the
two treatments’ box plots in figure 6.4. A correlation was found between naive
score and evolved scores across the 20 species (p = 0.59; Hy p < 0.01) but no
correlation between the naive scores and the magnitude of the change in fitness
(p=0.26; Hy p>0.1). Figure 6.11 demonstrates these relationships: §-fitness is
uncorrelated with naive fitness. It was also noted that observed behaviours of
the two types of agent were qualitatively indistinguishable, implying that there
are potentially few avenues to solve the task, but crucially also showing that
the employed decomposition of the task does not hamper the search for this
behaviour.

S3DRC Nve2 Nvel0 Evl10 | §-f
306.78 6.50 38.17 123.07 | 84.90
254.81 425 2442 65.84 |41.43
283.30 6.22 31.10 130.69 | 99.58
281.91 863 51.09 144.80 | 93.72
328.82 9.58 56.36 133.40 | 77.04
271.77 10.29 58.90 147.82 | 88.92
343.80 15.10 42.98 154.68 | 111.70
291.27 1497 64.90 160.82 | 95.92
284.95 758 29.23 110.74 | 81.52
267.79 9.87 23.66 105.04 | 81.38
275.82 10.09 49.98 205.49 | 155.52
251.57 521 36.72 103.01 | 66.29
280.65 8.93 41.19 144.42 | 103.23
310.35 491 19.16 60.29 | 41.13
281.82 8.71 41.98 69.98 | 28.00
273.59 552 2829 130.22 | 101.93
277.03 853 37.01 164.83 | 127.82
278.92 6.99 35.11 87.02 |51.92
280.14 854 26.86 155.60 | 128.74
250.72 4.75 8.71 85.42 | 76.71

=)
Ba&ﬁjaaiaﬁ;jammwmmpwm_u%

Table 6.1: Results table showing all 20 species’ performance in 3D RC, naive
block (2m and 10m evaluation) and evolved block tasks, and difference between
naive and evolved. There is a relationship between prior and post performance,
but not between prior performance and §-fitness.
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Relationship between naive score, evolved score and score delta
250.00

200.00

150.00

100.00

50.00

0.00
0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00

Evolved Fitness Delta Fitness

Figure 6.11: Correlation of evolved fitness with naive fithess (p = 0.59), and delta
fitness with naive fitness (p = 0.26).

6.5 Conclusions and Discussion

We have shown that feedback motor control in evolved agents is possible with
the given architecture, and that the architecture is flexible enough to support
and adapt to a variety of evolutionary scenarios presented sequentially. This
demonstrates that the platform has the potential to support environments that
require even more sensorimotor control and is a reasonable starting point from
where physical complexities can be added into the 3D RC task, eventually ap-
proaching a full physical model of the problem. Observations of the agents’
behaviour gained through 3D visualisation have revealed a rich variety of evolved
strategies for solving the problem. Different classes of gait for approaching and
manipulating the block appear due to the genetic heritage of species, and it is
clear that low, heavy gaits work best for pushing the object in the BD task. From
the deafferentation studies it can be seen that these gaits are not self-generating,
blind gaits that simply aim the agent to the target location, but are more complex
aggregates of sensory data that depend on the agents position relative to the
block in order to successfully achieve increased displacement.

When we consider the two evolutionary scenarios, 3D RC and BD, we found
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some overlap between the two problems. A strong correlation was observed
between performance in the BD challenge before evolution in a two-minute eval-
uation, and performance at the end of the 3D RC task, indicating that some
components of both challenges contribute similarly to relative agent fitness. This
is likely to be the speed and directness of movement in the world which has
a greater effect in a smaller evaluation period. As the evaluation period grows
larger, this correlation decreases indicating that the block-pushing dimension of
fitness in this scenario is not well captured in the 3D RC task and ultimately is the
most important component. (It was also observed by measuring the time taken by
agents to reach the block that most naive species sacrifice movement speed for
block pushing capability during evolution, and this aspect should be investigated
more thoroughly to determine whether this is an artifact or a consistent trend.) We
showed that performance from either starting point (3D RC or unevolved geno-
types) is comparable, demonstrating that an incremental approach incorporating
both types of environment is possible in principle. One extremely high-fitness
run in the random category was noted; upon visual inspection this species is
a classic degenerate solution whose strategy is to rapidly vibrate the block to
achieve high fitness. It is possible that more complex environments (such as 3D
RC) prevent this kind of trivial solution by requiring a richer agent—environment
interface. The results comparing BD fitness before and after evolution demon-
strate that whilst naive performance is an indicator of final performance, it is
not an indicator of how much any particular species will improve. There is a
risk that incrementally presenting new environments to only the most successful
species could exclude good general solutions, a problem potentially mitigated by
heterogeneous presentation of multiple environments.

Further work

The results of this chapter support the conclusion that the P3D RC task is a viable
next-step from the 3D RC task presented in chapter 5, towards an embodied
virtual creature world where animats display complicated chains of discrete
behaviours. It has been demonstrated in this chapter that the block manipulation
task does not conflict with the evolutionary trajectories of agents from the 3D RC
world, and thus the integration of the BD task into the incremental evolutionary
scheme is not precluded from the start.

Ongoing work is toward the P3D RC task: a physically-embodied deliberative
river crossing problem. The next step is to consider not just displacement but also
positioning of the block using the shunting landscape. This is likely to demand
significant revision of the underlying control architecture to incorporate reasoning
about relative positioning. Additionally, the question of whether specific types
of solutions in the 3D RC world have specific performance profiles in the BD
world could be addressed by examining in detail whether some species always
slow down and some always speed up. Additionally, it is possible that evolved
morphology could significantly contribute to physical manipulation behaviours.
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CHAPTER

Conclusions

taken, the discoveries and technical achievements made, and an exposition of

the general principles that | believe are necessary for scientific and technical
progress to continue in the field of evolved intelligent behaviours in 3D virtual
creatures.

I n chapter 7, | conclude the dissertation with an overview of the work under-

7.1 Summary

A-life is a relatively young field of study that brings together under a common
banner research in the fundamentals of life, the practicalities of building adaptive
technology and the new descriptive and predictive paradigms of complex systems
science.

The automatic development of physically-realistic autonomous agents in
closed simulated worlds (commonly known as evolved 3D virtual creatures) has
been a long-term research ambition in a-life. Since their beginnings with the work
of Sims, virtual creatures have inspired and entertained through the visceral
feelings of animacy that they generate in observers. In chapters 2 and 3, the
review of the literature demonstrated how the research has offered a platform for
exploring how to produce intelligent behaviour using artificial evolution, and how
the natural world developed the behavioural complexity that it has. However, it
was also shown that the rate of development of 3D virtual creatures toward more
advanced, more diverse behaviours has been disappointingly slow since early
successes in the 1990s.

A comprehensive theory of open-ended evolution (OEE), the continued and
ever-expanding production of diversity in an evolving ecology, is another major
research program within a-life, part of which is the perhaps closer sub-goal of
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its practical demonstration in an artificial system. Efforts have been made both
to define OEE theoretically and to capture it using statistical metrics applied to
artificial systems. However, it is recognised by many authors that an intuitive
visualisation of OEE in action in an artificial context is a necessary step toward
validating statistical mechanisms that constitute hallmarks of the phenomenon
(Taylor et al., 2016). By producing a system in which we can use the innate biases
that help us as natural organisms to understand complex behaviours in nature,
we can observe open-ended evolution taking place in silico and verify that these
theories or metrics have meaningful correspondence to the natural principle. To
date, all putative OEE demonstrations are opaque and not intuitively valid.

Given these motivations, the primary body of work presented in this disserta-
tion concerns the construction and exploration of 3D virtual creature simulations,
in order to contribute both to the development of research in 3D virtual creature
technology by advancing the state-of-the-art beyond simple locomotion, as well
as to begin to examine its potential for use as a platform for open ended evolu-
tionary systems. These objectives required exploration of evolutionary systems
that may begin to deliver complex behaviours unforeseen at design time, as
well as the specification of a body-brain-environment system that is compatible
with the evolutionary substrate and the design aims of the project. In chapter
4, one aspect of the evolutionary systems necessary to achieve generalised
complex behaviours was explored. In chapter 5, a proof-of-concept architecture
was presented that takes a step forward in this technology, with the evolutionary
system informed by the work in chapter 4. In chapter 6, the ideas were placed in
a more physically realistic environment and their potential for further scaling was
evaluated.

7.2 Contributions

The literature review established that research in 3D virtual creatures has focused
almost exclusively on producing systems that exhibit single behaviours, often
focusing either on wider issues in evolutionary design and using EVCs as a
test-bed, or else examining how more generalised, bio-inspired approaches can
achieve comparable results to the more constrained and directed earlier attempts.
The work reported on in the dissertation thus makes a step forward in the 3D VC
research programme and contributes to wider knowledge in complex evolutionary
design problems, with the following specific contributions (in the order they are
presented in the text):

1. An overview of the field of Artificial Life and the grand ambitions of artificial
open-ended evolutionary activity and 3D virtual creatures research;

2. a detailed description of the current state-of-the-art in virtual agents and
3D virtual creatures;
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3. an investigation into various strategies of environmental complexification
applied as a heuristic in evolutionary algorithms, in order to achieve gener-
alisation across different variations of a task, resulting in the first original
contribution. It is demonstrated that evolutionary forgetting and over-fitting
are real problems in evolutionary adaptation, that much existing research
in applied EAs does not consider this problem systematically, and that the
problems can be countered with appropriate heterogeneous complexifica-
tion strategies;

4. the specification of a 3D agent system able to display increasing diverse and
complex behaviours resulting from random initialisation of an evolutionary
process, offering an original design for controller for such a system and a po-
tential model to use for further development of complex agent-environment
interactions in 3D, physically-realistic spaces; and

5. a further analysis of this brain-body-environment system adapted for phys-
ical manipulation, as a step toward a full 3D implementation able to both
demonstrate increased sensori-motor embedding and situation and also ex-
press the complexities of an open-ended evolutionary system in terms that
allow intuitive validation of hitherto statistical-only metrics of such activity.

7.3 Key Findings, Technologies and Implications

7.3.1 Heterogeneous environmental complexification

The existing literature in evolutionary robotics and evolved 3D virtual creatures
uses a range of techniques to accelerate the exposure of evolving species to
multiple facets of their environments or tasks. This includes ideas such as the
decomposition of tasks into subtasks, progressively increasing some measure
of difficulty, and incrementally adding constraints into the system. These ideas
share a general theme of complexification of the environment and have been
shown in multiple areas to be beneficial, compared to naive environments which
expose agents to the whole task from the outset.

It is not clear how this complexification actually affects the evolutionary system.
What factors are important in successfully complexifying environments, and what
are the underlying mechanisms that govern the operation?

In chapter 4, an experiment was conducted using 3D virtual creatures and an
obstacle traversal task to determine any differences between possible strategies
of complexification. The height of the obstacle was used as a proxy for differ-
ent parametrisations of a more general task, namely successfully climbing the
obstacle at all heights. The hypothesis that the order of presentation of differ-
ent heights during evolutionary time would have a bearing on the success of
adapting to the general task was explored. It was found that more traditional,
intuitive presentations of the sort that are often strategies in virtual creatures
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research such as direct presentation of the hardest task, random presentation
of wall heights and a linearly-increasing wall height are much less efficient that
strategies that adaptively increase based on current performance and, more
importantly, regularly revisit parametrisations already explored at earlier stages
in the task.

The central argument of this chapter is that these strategies solve the twin
problems of overfitting to recent parametrisations (so-called evolutionary forget-
ting) and being unable to find any improvement on current performance through
random mutation (loss-of-gradient). This result has implications for any further
research that attempts problem decomposition and environmental complexifi-
cation using such strategies: the exploratory potential of a species (in terms of
its population size, mutation rate and representation of solution in the problem
space) has a direct bearing on the frequency of re-presentation of earlier parts of
the problem that is necessary to achieve high generalised performance on the
whole task. In addition, when using an extrinsic fitness function, an increase in the
rate of change of the task presentations should be proportional to the derivative
of fitness over time to avoid loss of gradient whilst still driving the population
toward less-frequently presented parametrisations.

It was also demonstrated that there are limit cases in these heterogeneous,
oscillating strategies that approach the results seen in the random strategy (for
very high-frequency oscillations) and the linear strategy (for very low-frequency
oscillations). This result is suggestive of a deeper connection between these
presentation strategies and the underlying evolutionary system and thus implies
a more general result for evolutionary algorithms beyond their use in 3D virtual
creatures.

This generality is hinted at in many other works. The approach would seem
suited to the types of problems where either a clear decomposition across a range
of parameters can be made, or where the principles of the approach are implicit in
the configuration of the evolutionary environment. In the first case, the canonical
example of which is the task in chapter 4, a number of different extensions or
modifications to the task could be used to demonstrate the generality of the
approach. For example, adapting the task to encourage the robot to turn on
the spot according to a signal. Training would proceed by varying the turning
signals according to the heterogeneous approach, and generalisation assessed
in terms of the success over a range of turning signals. In the second case, this is
demonstrated by the success of the design of the system presented in chapter 5:
the 3D RC task encodes the heterogeneous strategy within the individual levels,
which permit the consolidation of progress and yet push towards a proximal
zone of development where agents can out-compete each other according to
Darwinian principles.
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7.3.2 Hybrid control architectures for 3D virtual creatures

The history of research in 3D evolved virtual creatures shows a consistent trend
since the first demonstration of such a system by Karl Sims in 1994: increasing
generality of control architectures and evolutionary set-ups but with an enduring
focus on single behaviours such as locomotion. The central aim of chapter 5 is to
develop a 3D evolved virtual creature system that is able to demonstrate multiple
behaviours from a single starting point. The technology developed to achieve
this takes into account the findings of chapter 4 by structuring the environmental
challenges faced by evolving species in a way that respects the need to revisit
and refresh early successes whilst maintaining evolutionary pressure. Using this
principle, along with current research in robot control and other virtual creatures
work, continues a line of thinking that bridges the gap between representational
and anti-representational Al. The system is the first such demonstration of multiple
behaviours and exhibits an intuitive realism that draws the viewer into the virtual
world.

The working implementation comprises a variety of technology and ideas in au-
tonomous systems and evolutionary methods. A hybrid neural network composed
of problem-solving (deliberative) and physical control (reactive) components al-
lows an action policy to be built that provides a direction for agent behaviour.
The deliberative network takes the current state of the agent in problem-solving
space as input and delivers a measure of salience for all objects in the agents’
environments. The saliency is propagated across a shunting network, a quan-
tised, diffusive model of the agents environment. The resultant landscape is
representative of the next step of a plan which agents can follow to complete a
longer-term goal. The behaviours that implement this plan in the agents’ physical
environment (by activating joint motors to move limbs) are built of a collection
of oscillatory circuits, implemented as as a network of leaky-integrator units (so-
called continuous-time recurrent neurons.) This network responds to changes in
the shunting landscape by sampling the landscape at four spatial co-ordinates
on the agent’s body and propagating values through a feed-forward network.
All of the parameters for the model are found by stochastic gradient descent in
the evolutionary paradigm, based on an error signal from a fitness function that
determines how much progress an agent has made through an incremental evo-
lutionary environment. The environment is an idealisation of a planning-problem,
called the 3D River Crossing (3D RC) task. In this problem, agents must learn
to avoid environment hazards of traps and water, and collect stones to place
on water in order to build a bridge to reach a resource. Informed by the work
of chapter 4, this heterogeneous, incremental presentation provides evolving
species with evolutionary pressure whilst maintaining performance on other parts
of the task. A population of 150 agents in a species compete through 3-individual
tournament-selection over an evolutionary history of 1 million tournaments to
solve the task. Later individuals can be seen to pass through simple locomotion
and avoidance behaviours to discrete behavioural modalities including turning,
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walking, and galloping and, at the same time, performance on the river-crossing
problem increases until agents can solve a river requiring the placement of four
stones in a row.

Aside from being the first such demonstration, the technology also has impli-
cations for research in the deeper a-life objective of demonstrating open-ended
evolution and validating statistical measures of unbounded activity. It can be seen
from this work that 3D virtual creatures could provide a rich substrate upon which
evolutionary processes can operate and, through the intuitive nature of the 3D
space in which they’re embedded, these processes can be laid bare for human
observers to grasp intuitively.

7.3.3 Adapting hybrid architectures to
physical-manipulation tasks

This work adds further weight to the conclusion of chapter 5, that the hybrid neural
architecture, when combined with a heterogeneous environmental complexifica-
tion in the evolutionary system, has potential to continue to display increasingly
complex, lifelike behaviours. Specifically addressing the question of whether mo-
tor control for manipulation can be evolved in the same platform, the conclusion
that it can offers a further, necessary step to increasing the generality of virtual
creature platforms, which in turn opens the possibility of producing increasingly
complex behaviours.

7.4 Limitations and Further Work

Limitations of the work presented in chapter 4 are primarily around the generalisa-
tion of the result to wider classes of evolutionary algorithm and different problem
domains. While the experiments conducted with the wavelength of oscillation in
the heterogeneous strategies suggest a fundamental connection, further work is
required to verify this result in other evolutionary problems. In addition, the effects
of specific parameters of the evolutionary algorithm—for example population size
and mutation rate—on the result are unknown. This further work would usefully
tease out any interplay between these parameters and the optimal configuration
of presentation strategies. More generally, the large number of assumptions
built into the various models constitute a limitation that should be addressed
with future work, a challenge that will continue to inform our understanding of
the interplay of mechanisms that produce intelligent behaviour in artifacts. The
assumption that EVCs could provide a mechanism to observe OEE in action
should also be tested.

Ongoing work from this thesis concerns increasing the poverty of the initial
conditions whilst maintaining the quality of the final results, following the grand
a-life ambition outlined at various earlier points. The removal of pre-evolved
oscillation, the shunting model representation and the omniscient world map are
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all candidates for this impoverishment. The inclusion of vision, more complex
environments offering a greater variety of challenges, multiple species and very
large scale environments could also offer promising research challenges.
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