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Abstract 

 

Anti-inflammatory drugs such as corticosteroids (CSs) and minocycline (MINO) are 

widely used in the treatment of a range of clinical conditions and to suppress graft 

rejection in stem cell transplantation therapy. However, such treatment is 

associated with adverse effects on brain development. The effects of anti-

inflammatory drug on neural stem cells (NSCs) are largely unknown and the 

molecular mechanisms underlying these effects are poorly documented. The focus 

of this project is to systematically investigate the effects of different anti-

inflammatory drug at different concentrations on the fate of NSCs using two 

different in vitro models. 

In this thesis, it is shown that all three types of CSs (dexamethasone, prednisone 

and methylprednisolone) affect NSCs propagated in monolayers and 

neurospheres. Comparison of the monolayer and neurosphere growth formats for 

NSCs following CS treatment revealed that CS decreased NSCs proliferation and 

neuronal differentiation while accelerated the maturation of oligodendrocytes 

without concomitant effects on cell viability and apoptosis. The findings suggest 

that the difference in the physical format of NSCs does not impact on CS 

influences on these cells with similar results obtained for both culture systems. 

Further, label-free quantitative proteomics was used to study methylprednisolone 

effects on NSCs at the cellular and molecular levels in monolayer cultures. 

Proteomics and bioinformatics analyses revealed that methylprednisolone induced 

downregulation of growth associated protein 43 and matrix metallopeptidase 16 

with upregulation of the cytochrome P450 family 51 subfamily A member 1. These 
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findings support the hypothesis that neurological deficits associated with CS 

treatment mediated via effects on NSCs, and highlight putative target mechanisms 

underpinning such effects. 

Finally, the organotypic spinal cord slice model was used to investigate the 

efficacy of MINO as a combinatorial therapy with transplanted NSCs. The data 

from neurosphere culture showed that MINO had no direct effect on key 

regenerative properties of NSCs such as proliferation and differentiation. While, 

the findings from organotypic spinal cord slice culture showed the astrogliosis and 

activated microglia were reduced and the outgrowth of the nerve fibres was 

increased following a combinatorial therapy. This study demonstrates the utility of 

the organotypic spinal cord slice model to test the efficacy of MINO as a 

combinatorial therapy with transplanted NSCs. 
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Chapter 1  

General Introduction  
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1.1 Central nervous system: injury and disease 

The nervous system is vulnerable to various injuries and diseases. It can be 

damaged by mechanical and chemical causes or affected by inherited genetic 

abnormalities. Neurotrauma [including traumatic brain injury (TBI) and spinal cord 

injury (SCI)] is one of the most main causes of central nervous system (CNS) 

damage (Han et al., 2014). Further, neuroinflammatory diseases such as multiple 

sclerosis, neurovascular diseases such as stroke and neurodegenerative diseases 

such as Alzheimer’s disease, Huntington’s disease and Parkinson’s disease are 

other important causes of CNS damage (Burda and Sofroniew, 2014). The World 

Health Organization (WHO) reported that CNS related injuries and disorders such 

as stroke, neurodegenerative disorders and depression are all in the top 20 

causes of death globally (World Health Organization, 2013). 

Neurological disorders affect millions of people worldwide, for instance, about 2.5 

million people were suffering from SCI and around more than 130,000 new injuries 

every year globally (Thuret et al., 2006). Further, increasing life expectancies are 

predicted to increase the prevalence of neurological disorders in both developed 

and developing countries (World Health Organization, 2006). Neurological injury 

and disease have a negative impact on the lives of patients and their carers 

through stress and the requirement for provision of long-term care (Tsukamoto et 

al., 2013). In addition, there is a great impact on the economy for example, in the 

USA, the annual cost of SCI is estimated around $7.7 billion and around £500 

million in the UK (Adams and Cavanagh, 2004).  
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The CNS consists of different types of cells; neurons, the main functional and 

cellular component of the CNS, are specialised cells that transmit electrical signals 

between different parts of the body. The second type of cells is glial cells, which 

support the neurons. Glial cells are divided into three types: astrocytes, 

oligodendrocytes and microglial cells, each type has a special function and 

different structure (Verkhratsky and Butt, 2007). Astrocytes play a main role in 

providing structural and metabolic support to neurons, in addition to their role in 

synapse formation and maintenance (BrosiusLutz and Barres, 2014; Verkhratsky 

and Butt, 2007). Oligodendrocytes are responsible for myelin production in CNS 

(Fonseca et al., 2013; Salzer, 2013). Myelin is the fatty protective sheath around 

nerve fibres, which plays an important role in increasing the conduction velocity of 

impulses along the axon (White and Krämer-Albers, 2014). Microglial cells are the 

immune cells of the CNS, and have highly similar functions to macrophages 

(Weightman et al., 2016). They play an important role in neuroinflammatory and 

neurodegenerative diseases and neuroprotective and anti-neuroinflammatory 

processes (Banati, 2003; Burda and Sofroniew, 2014). Another important CNS 

subtype is neural stem cells (NSCs) which will be described in greater detail in 

section 1.3. 

CNS injury and disease affects all CNS cell types and can result in progressive 

loss of neurons and glia, therefore the structure and function of the brain or the 

spinal cord is permanently affected. In general, the injury results in three phases 

(BrosiusLutz and Barres, 2014; Burda and Sofroniew, 2014): 

(1) Cell death and inflammation: The response to CNS injury in this phase 

occurs immediately from about a number of seconds to hours. These events 
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include cell death (for neurons and oligodendrocytes) and blood brain barrier 

(BBB) damage. 

(2) Cell proliferation and tissue replacement: This response to CNS injury 

occurs from about two to ten days after the injury. During this phase, the 

inflammatory cells such as microglia and different types of glia cells such as 

astrocytes respond by proliferation and migration into the sites of injury. 

(3) Tissue remodelling: This phase is characterised by tissue remodelling which 

includes the formation of astrocyte scar and extracellular matrix (ECM). These 

events are in response to tissue damage at the end of the first week after the 

injury. 

The capacity of the nervous system to repair or restore function after injury and 

disease is limited, and the regeneration of neuronal axon in the adults CNS is 

limited but can occur in both embryonic and early postnatal nervous system (Ming 

and Song, 2005). 

Various treatment methods have been studied in neurological laboratories to 

improve the axonal regeneration process. Despite the extensive efforts focused on 

developing therapies which can restore function to the neurodegenerative 

diseases and CNS injuries, no treatment is currently effective and adequate to 

tackle this problem (Cao et al., 2002). The treatment of CNS disorders is one of 

the most challenging areas of modern medicine (Tsukamoto et al., 2013). Cell 

transplantation and drug therapy using anti-inflammatory and immunosuppressive 

drugs are major therapeutic approaches used in neurological diseases treatment. 

In this chapter, the role of cell therapy in neurological repair will be discussed in 
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sections 1.2 and 1.3, and then the role of anti-inflammatory and 

immunosuppressive drugs will be discussed in greater detail in section 1.4. 

 

1.2 Cell therapy as potential therapeutic strategies in neurology 

Cell transplantation is one of the most important approaches that are widely used 

to repair damaged tissue and restore neurological function after CNS injury and 

disease. Cell transplantation can enhance axon growth by two ways: (1) 

replacement of damaged neurons and (2) release of molecules such as 

neurotrophic factors to improve the regeneration process (Vishwakarma et al., 

2014). There are many different types of cells that have been used in cell therapy 

due to their potential role in the neurological treatment, such as Schwann cells, 

olfactory ensheathing cells (OECs) and stem cells (Ke et al., 2006).  

Schwann cells: They represent an attractive source for spinal cord repair in 

animal experimental studies. These cells have the ability to de-differentiate, 

migrate, proliferate, express growth promoting factors, and myelinate regenerating 

axons after transplantation into the injury site. Importantly, Schwann cells play 

important role in the endogenous repair of peripheral nerves, and can migrate into 

the injury site (Fortun et al., 2009; Kanno et al., 2015). Also, when Schwann cells 

are transplanted into the lesioned spinal cord they are able to myelinate both 

regenerating and intact central axons (Franklin et al., 1996).  

OECs: A newer method is the transplantation of OECs into areas of SCI to 

enhance functional recovery. OECs are produced from autologous mucosal 

biopsies and can be propagated in culture. After transplantation into the damaged 

tissue, these cells are able to migrate over long distances in the sites of injury and 
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enhance functional recovery such as myelination and sprouting of axons (Ibrahim 

et al., 2006; Ramón-Cueto et al., 2000). 

Uncommitted stem cells: The transplantation of stem cells is another alternative 

method that used to improve the regeneration process (Table 1.1). Stem cells are 

defined as undifferentiated and self-renewing cells which have the ability to 

proliferate and differentiate into specialised types of cells (Fonseca et al., 2013). 

In the 1960s, McCulloch and Till discovered stem cells: they injected cells from 

bone marrow into irradiated mice and they found that the transplanted cells could 

migrate to spleen and form nodules. According to the linear relationship between 

the number of transplanted cells and the number of colonies, they concluded that 

each nodule generated from a single transplanted bone marrow cell (Bajada et al., 

2008; Sharkis, 2005). 

Several types of stem cells are commonly used in transplantation therapies to 

repair damaged tissue after neurological injury and disease. According to the 

potential differentiation of the stem cell, they can be classified into three types: 

totipotent, pluripotent and multipotent (Filippis & Binda 2012; Lodi et al. 2011). 

They can be further divided into two types: embryonic stem cells (ESCs) and non-

embryonic stem cells (Non-ESCs) (Bajada et al., 2008). 

ESCs: They are pluripotent and differentiated cells which can be obtained from 

aborted foetuses. These cells have the ability to generate any undifferentiated cell 

in the body. Although these cells have a great potential in neurological repair, their 

use is still limited due to their ability to form teratoma after transplantation (Ali et 

al., 2014; Bajada et al., 2008).  
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Induced pluripotent stem cell (iPSC): They are generated by reprogramming 

somatic stem cells. The pluripotency of iPSC enables them to differentiate into 

cells of all three germ layers, which makes them extremely valuable tool for the 

potential design of cell therapy protocols (Yamanaka, 2007). These cells are 

identical to ESCs in gene expression pattern and the ability to differentiate. 

Therefore, the using iPSC in regenerative medicine has prevented lots of problem 

such as immune rejection in autologous transplantations, ethical problems and 

tumour formation (Fu et al., 2015; Yamanaka, 2012). 

Non-ESCs: They are multipotent and differentiated cells which can be derived 

from several sources including amniotic fluid, umbilical cord tissue and bone 

marrow (Bajada et al., 2008). For instance, mesenchymal stem cells (MSCs) are 

multipotent cells which can be derived from different sources such as blood and 

bone marrow. MSCs have the ability to differentiate into another type of cells, for 

example, fibroblasts, osteoblasts, chondrocytes, myoblasts, and adipocytes 

(Guilak et al., 2009; Halleux et al., 2001). Most importantly, the transplantation of 

MSCs in the brain show great promise in neurological disease such as stroke, 

because they have the ability to generate neural cells and secrete several growth 

factors (Liu et al., 2009). 
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Table 1.1 Clinical trials of stem cell in neurological treatment 

Trial Sponsor 

(Location) 

Disease 

Target 

Cell Therapy No. 

Patients 

Phase 

City of Hope 

(CA, USA) 

Recurrent high 

grade gliomas 

E. Coli CD-expressing neural 

stem cells 

24 phase I 

 Recurrent high 

grade gliomas 

Carboxylesterase-

expressing neural stem cells 

53 phase I 

Neuralstem Inc. 

(MD, USA) 

Amyotrophic 

lateral sclerosis 

Foetal-derived neural stem 

cells 

18 phase I 

 Amyotrophic 

lateral sclerosis 

Foetal-derived neural stem 

cells 

18 phase II 

 Chronic spinal 

cord injury 

Foetal-derived neural stem 

cells 

4 phase I 

ReNeuron Ltd. 

(UK) 

Stroke Human neural stem cells 12 phase I 

 Stroke Human neural stem cells 41 phase II 

 Lower limb 

ischemia 

Human neural stem cells 9 phase I 

Stem Cells Inc. 

(CA, USA) 

Neuronal ceroid 

lipofuscinosis 

Human CNS stem cells 6 phase I 

 Cervical spinal 

cord injury 

Human CNS stem cells 50 phase II 

 Macular 

degeneration 

Human CNS stem cells 15 phase I/II 

 Thoracic spinal 

cord injury 

Human CNS stem cells 12 phase I/II 

 Pelizaeus-

Merzbacher 

disease 

Human CNS stem cells 4 phase I 

TRANSEURO 

(UK) 

Parkinson’s 

disease 

Foetal-derived dopaminergic 

cells 

40 phase I 

Wroclaw 

Medical 

University 

(Poland) 

Spinal cord 

injury 

Olfactory ensheathing cells, 

autologous 

10 phase I 

Table adapted from (Trounson and McDonald, 2015). 
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1.3 What are NSCs?  

NSCs are one of the most important cells in the CNS because of their ability to 

self-renew and proliferate (De Filippis and Binda, 2012; Lee et al., 2015). After 

some years of debate, it is now accepted that the subventricular zone (SVZ) and 

subgranular zone (SGZ) regions are the main sites of genesis of NSCs in the adult 

mammalian brain (Hao et al., 2014; Qin, 2004). The SVZ lies adjacent to the 

lateral ventricles and provides the olfactory bulb with neurons, whereas the SGZ 

lies within the dentate gyrus of the hippocampus and produces new neurons in the 

granular layer of the dentate gyrus. These neurons are involved in networks that 

modulate mood and short term learning and memory (Santos et al., 2012). Also, 

the periventricular tissue region of the spinal cord is another source for NSCs 

(Mothe and Tator, 2013). NSCs play an important role in endogenous repair and 

transplantation to treat different CNS pathologies because their ability to generate 

region specific neurons, or differentiate primarily into oligodendrocytes when taken 

from the spinal cord (Mothe and Tator, 2013). 

  

1.3.1 Biological properties of NSCs 

The fundamental features of NSCs include: (1) self-renewal, because of their 

ability to proliferate and generate new cells and (2) multipotency, because of their 

ability to differentiate into a number of different neural cell types such as 

astrocytes, neurons and oligodendrocytes (Casarosa et al., 2014; Dai and Sottile, 

2008; Fonseca et al., 2013) (Figure 1.1). NSCs properties have been studied in 

vitro by growing them as a monolayer in medium containing growth factors such 

as epidermal growth factor (EGF) and basic fibroblast growth factor (FGF-2). 
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Interestingly, NSCs can also be grown in vitro as spherical aggregates, called 

neurospheres. Further, these types of cells can be differentiated into neurons, 

astrocytes and oligodendrocytes after the removal of growth factors (Louis et al., 

2013). Both culture systems are described in detail in section 1.3.3.  

 

Figure 1.1 The fundamental properties of NSCs. NSCs are isolated from SVZ 

and then cultured in neurosphere medium in presence of mitogens to form non- 

adherent spherical clusters of cells called neurospheres that can be passaged 

several times (self-renewal). These are then dissociated mechanically and 

enzymatically to a single cell to form secondary neurospheres. The NSCs 

differentiate in the absence of mitogens and in the presence of serum differentiate 

to give rise to three different types of neural cell (multipotency).   
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1.3.2 Terminology used in the classification of uncommitted cells 

There are various terms used by neurobiologists to describe undifferentiated cells 

of the CNS, such as stem cell, precursor cell and progenitor cell. This leads to 

confusion and misunderstanding in the field of NSCs research. To clarify these 

terms, this section refer to the most common terms used in the NSCs field (Lee et 

al., 2015). 

1) Neural progenitor cells (NPCs): These have the ability to proliferate and 

differentiate into more than one type of cell. The most important difference 

between NPCs and the stem cell is that their ability to proliferate is limited and 

they do not exhibit self-renewal (unlike stem cells). NPCs can be unipotent, 

bipotent or multipotent.  

2) NSCs: These cells are self-renewing, multipotent cells which have the ability to 

proliferate without limit, to give rise to multiple types of neural cell.  

3) Neural precursor cells: This term refers to the mixed population of NPCs and 

neural stem cells. 
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1.3.3 Methods used to isolate and propagate NSCs under 

laboratory conditions  

Neurobiological research is focusing on the problems of isolation, maintenance, 

propagation and differentiation of NSCs in both culture and after transplantation 

into the injury sites (Poltavtseva et al., 2002). There are different methods 

designed to isolate and propagate NSCs. NSCs are isolated from CNS of the 

embryonic, postnatal and adult in many species such as mice, rats and humans. 

There are two basic system commonly used to expand NSCs: neurospheres 

(floating cell aggregates, 3-dimensional cultures) and monolayers (adherent, 2-

dimensional cultures) (Louis et al., 2013). 

 

1) The Neurosphere culture system 

Here, NSCs are cultured in the presence of growth factors (e.g. EGF and FGF-2) 

and hormonal supplement (e.g. N2 and B27) to generate “floating” large 

aggregations of cells called “neurospheres” which are produced from a single cell. 

Following 24 h, the single cells begins to proliferate and form clusters. The clusters 

grow in size and become bigger. Following seven days, the clusters called 

neurosphere which typically measures 100-200 µm in diameter and consists of 

around 10,000 cells (Louis et al., 2013). At this stage the neurosphere becomes 

ready to be passaged by dissociation in order to form new neurospheres, under 

the same conditions (Louis et al., 2013) (Figure 1.2). 
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2) The Monolayer culture system 

NSCs may be cultured as an adherent monolayer by mechanical and enzymatic 

dissociation of the neurospheres to give single cells. These are then cultured as a 

monolayer in presence of growth factors (i.e EGF and FGF-2) and by using poly-L-

ornithine and laminin for coating the coverslips. The NSCs from neurosphere and 

monolayer cultures can differentiated to other types of neural cell by removing 

growth factors and adding serum to the medium (Louis et al., 2013).  

 

 

Figure 1.2 The culture systems of NSCs. (A) Phase contrast image showing the 

NSCs can be propagated as neurospheres. (B) Phase contrast image showing 

monolayer of NSCs which adopt a typical bipolar morphology.  
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1.3.4 NSCs as a promising therapeutic approach in neurology  

NSCs have a very important role in CNS during brain development due to their 

ability to generate the main phenotypes of the nervous system, i.e. neurons, 

astrocytes and oligodendrocytes. Experimental studies demonstrate that both 

exogenous and endogenous NSCs can be used to repair neurological 

injuries/diseases. NSCs can reach the site of injury in the adults CNS and 

successfully differentiate to give rise to neurons and glia (Imitola et al., 2004; 

Martino and Pluchino, 2006).  

The progress in studying stem cell biology has opened a new avenue to 

therapeutic strategies to replace lost and damaged neural cells in neurological 

disorders and traumatic nervous system lesion such as stroke, multiple sclerosis, 

SCI and Parkinson’s disease (Bellenchi et al., 2013; Björklund et al., 2003; Lindvall 

and Kokaia, 2006). There are two ways to integrate the functional new neurons 

after neurological injury and disease: (1) by the induction of endogenous stem 

cells (Nakatomi et al., 2002) or (2) by the transplantation of stem cells to repair 

damaged cells (Björklund et al., 2003; Dai and Sottile, 2008; Dietrich and 

Kempermann, 2003; Saha et al., 2012) (Figure 1.3). The role of endogenous 

NSCs and exogenous NSCs transplantation in neurological repair will be 

discussed in more detail in sections 1.3.4.1 and 1.3.4.2, respectively. 
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Figure 1.3 Exogenous and endogenous NSCs strategies in brain repair. (A) 

Schematic drawing representing the transplantation of exogenous NSCs into the 

damaged brain which can generate neurons to replace lost and damaged neural 

cells. (B) Representing the endogenous NSCs found in the SVZ which can migrate 

into the site of injury and differentiate into neurons. Figure adapted from (Kaneko 

et al., 2011).   
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1.3.4.1 The role of NSCs in endogenous repair  

After the discovery of neurogenesis in the adult CNS, extensive research has 

demonstrated that NSCs and progenitor cells can be used to repair 

neurodegenerative disease because of their ability to produce neuronal and glial 

cells (Picard-Riera et al., 2004; Skardelly et al., 2013; Wu and Wang, 2012). 

Neurogenesis persists throughout life time in the adult mammalian brain 

especially, in the SVZ and SGZ and that is due to the persistence of the 

proliferation and differentiation of the NSCs (Bellenchi et al., 2013). 

Many studies are focusing on the role of NSCs in endogenous repair after 

neurological injures. Endogenous NSCs have a potential role in treatment of 

several neurological conditions because they can migrate into the site of injury and 

produce neurons and glial cells (Bellenchi et al., 2013; Lindvall and Kokaia, 2010). 

Efforts have been made to use endogenous NSCs in neurological disease 

treatment such as SCI, Parkinson’s disease and stroke (Arvidsson et al., 2002; 

Dietrich and Kempermann, 2003; Ke et al., 2006; Kokaia et al., 2006). It was 

observed that the proliferation activity of endogenous NSCs increased and new 

neurons appeared in the site of injury to replace the damaged neural cells in 

several neurological conditions (Kaneko et al., 2011). For instance, Ke and 

colleagues demonstrated that the proliferation of endogenous NPCs in the mouse 

SCI model increased after SCI and these cells can differentiate into neurons but 

not astrocytes or oligodendrocytes (Ke et al., 2006). 

Importantly, it has been demonstrated that the endogenous NSCs are involved in 

myelin repair, as they migrate toward the site of injury and differentiate into glial 

cells (Dietrich and Kempermann, 2003). Also, the experimental models of stroke in 
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the adult rat demonstrated that the proliferation of endogenous precursor cells in 

the SVZ increased in order to generate new neurons. The new neurons migrated 

from the SVZ into the damaged area and replaced the neurons destroyed by 

induced stroke (Arvidsson et al., 2002; Lagace, 2012).  

The neuroregenerative process using endogenous NSCs avoids several problems 

such as ethical issues, immunogenicity and risk of tumour formation (Kaneko et 

al., 2011). However, a number of studies have suggested several limitations that 

are associated with the use of endogenous NSCs in neurological repair. For 

example, it was found that endogenous NSCs have limited ability to replace lost 

neural cells and that they become more gliogenic than neurogenic following insult. 

There is evidence that only 0.2% of the dead neurons are replaced due to death of 

most of the new migrating neurons before differentiating into functional neurons. 

Furthermore, several studies suggest that these cells cannot differentiate to 

specific types of neurons which is a potential problem in treatment of specific 

diseases such as Parkinson’s disease, where dopaminergic neurons are lost 

(Kaneko et al., 2011). 
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1.3.4.2 The role of NSCs in transplantation  

The transplantation of NSCs offers a promising strategy to treat several 

neurological conditions by 1) replacing lost neural cells (i.e. neurons and 

oligodendrocytes) 2) secreting a vast array of proteins such as cytokines, growth 

factors, or neurotrophins that could support the survival of remaining cells and 

promote neuronal repair (Drago et al., 2013). 

Several cell transplantation studies have been attempted; some of them have 

been successful and others have not. Rodent experimental studies have shown 

the potential role of NSCs transplantation in treatment a range of neurological 

conditions. For example, multiple sclerosis is one of the most important examples 

of neurological disease characterised by loss of oligodendrocytes. It has been 

demonstrated that adult mouse NSCs derived from the periventricular region 

forebrain transplanted into a mouse model of multiple sclerosis are involved in 

myelin repair, as they differentiated into oligodendrocyte progenitors (Pluchino et 

al., 2003). Further, Yandava et al. transplanted NSCs into the shiverer mouse 

brain. The shiverer mouse is an autosomal recessive mutant characterised by the 

deletion of a large portion in the myelin basic protein (MBP) gene resulting in 

extensive CNS dysmyelination. They observed that the NSCs integrated into the 

SVZ after 24 h, and migrated after 1-2 weeks and then differentiated. Their results 

suggested that NSCs differentiated into oligodendrocytes and that is very useful in 

the treatment of several types of neurological diseases involving white matter 

degeneration (Yandava et al., 1999). In their study, Fricker and colleagues 

successfully transplanted NPCs into the neurogenic region in the adult rat brains. 

They obtained these cells from the embryonic human forebrain and then cultured 

them as a neurospheres (Fricker et al., 1999). It was shown that NSCs play a 
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potential role in Parkinson’s disease treatment due to their ability to generate 

dopaminergic neurons which are affected by Parkinson’s disease; this disease 

causes damage to the nerve cells that generate dopamine (Kitada and Dezawa, 

2012). In addition, the transplantation of NSCs has been shown to promote 

locomotor recovery in SCI which characterised by loss of motor function. It was 

found that human NSCs derived from foetal brain tissue have the ability to 

generate into new neurons and oligodendrocytes, which promote locomotor 

recovery following transplantation into SCI mouse model (Cummings et al., 2005).  

A large number of studies have used NSCs in preclinical studies. Several attempts 

are already being made to translate these studies into the clinical setting (Table 

1.2). There are several clinical trials involving NSCs derived from different cell 

lines and other studies used iPSC, mesenchymal stem cell-derived NSCs, human 

spinal cord-derived NSCs (Barreau and Lépinoux-chambaud, 2016). Phase I 

clinical study employing foetal NSCs have been performed. Children with 

advanced stage Batten’s disease tolerated high doses of foetal NSCs in several 

sites in the brain. They were observed the transplanted cells enhance replacement 

enzyme and provide renewal for cell replacement (Trounson et al., 2011). 

The company ReNeuron in the UK also used foetal NSCs for treatment of stroke 

patients. NSCs were transplanted in patients for 6 to 24 months after stroke using 

a straight-forward neurosurgical implantation into the brain. The NSCs promote 

revascularization by expressing several trophic and pro-angiogenic factors which 

may improve tissue repair after stroke (Trounson et al., 2011). In 2011, clinical 

study in Switzerland used NSCs for chronic thoracic spinal cord injury. They 

observed the NSCs are injected into the spinal cord and migrate to the site of 

injury and generate neurons and oligodendrocytes (Trounson et al., 2011). 
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Furthermore, the company Neuralstem used foetal NSC for the treatment of 

amyotrophic lateral sclerosis. Patients received NSCs in multiple (five to ten) grey 

matter sites of the lumbar region of the spinal cord. The company 

NeuroGeneration Inc. used autologous NSCs which derived from patient brain 

biopsies to treat Parkinson’s disease. These NSCs are cultured in vitro for several 

months and the expanded NSCs differentiated into neurons, astrocytes and 

oligodendrocytes. Patients showed some motor improvement and promoted 

dopamine uptake (Trounson et al., 2011).  

However, several problems make cell therapy a distant goal. One of the 

unresolved issues is that the transplanted cells have a tendency to differentiate 

into astrocytes more than neurons and oligodendrocytes. For example, in a rat SCI 

model, most of the transplanted NSCs differentiated into astrocytes, not neurons 

and oligodendrocytes (Wu et al., 2001). Also, Ogawa et al found that about 5.9% 

of the transplanted cells differentiated into neurons, 4.4% into oligodendrocytes, 

and 32.6% into astrocytes at 5 weeks after transplantation (Ogawa et al., 2002). 

Increased cell death of NSCs after transplantation, and rejection of neural grafts 

are other problems of NSCs transplantation. Furthermore, cells source is another 

important factor that affects the transplantation. As mention in section 1.2, there 

are several types of cells derived from different sources, each type has 

advantages and disadvantages features that contribute to successful 

transplantation. This includes safety issue (e.g., absence of tumour formation) and 

immunogenicity (Pruszak, 2014). Therefore, the use of anti-inflammatory and 

immunosuppressive drugs is necessary to enhance the survival of transplanted 

NSCs and reduce the rejection of grafted cells, as discussed in next section. 
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Table 1.2 NSCs clinical trials in neurological treatment 

StemCells Inc., CA HuCNS-SC® (foetal derived human NSCs) 

Phase I – completed Batten’s Disease (NCL), USA 

Phase I Discontinued for lack of enrolment  

Phase I Pelizaeus-Merzbacher Disease (PMD), USA  

Phase I/II Chronic Spinal Cord Injury, Switzerland 

NeuroGeneration, CA Autologous NSC-derived Neurons 

Phase I–completed Advanced Parkinson’s Disease, USA 

Phase II – clinical hold  

Neuralstem Inc., MD Foetal derived human spinal cord  

Phase I Amyotrophic lateral sclerosis, USA 

ReNeuron, UK  ReN001 Immortalized human NSCs 

Phase I Stroke, UK 

Targeted Delivery of Therapeutics   

City of Hope, CA  HB1.F3.CD Immortalized human NSCS 

Phase I  Recurrent High Grade Glioma, USA 

Table adapted from (Trounson et al., 2011). 

  



22 
 

1.4 Why do anti-inflammatory and immunosuppressive drugs  

have to be used in neurology? 

Inflammation contributes to the pathogenesis of many neurodegenerative diseases 

and the presence of this process leads to the continued loss of neurons in CNS 

(Krause and Müller, 2010). Therefore, the use of anti-inflammatory drugs is 

necessary to reduce the cumulative effects of inflammation in the brain. For 

instance, Alzheimer’s disease is characterised by the presence of many 

inflammatory proteins, which led to the hypothesis that brain inflammation is 

implicated in the pathology of Alzheimer’s disease (Krause and Müller, 2010). Anti-

inflammatory drugs such as corticosteroids (CSs) and minocycline (MINO) are 

widely used to reduce inflammation to avoid any further damage, in addition to 

their use following transplantation to limit cell rejection (Becker, 2013; Coutinho 

and Chapman, 2011). 

The experimental strategies for CNS injury and disease consist primarily of 

allogeneic transplantations. Although the CNS is considered as an 

immunologically privileged site, the immune rejection of transplanted cells and the 

use of immunosuppressive drugs are a major constraint accompanied with 

allogeneic transplantations and may compromise the effectiveness of 

transplantation. Therefore, the autologous transplantation is considered as the 

paradigm of choice for cellular therapy (Barker and Widner, 2004; Schwab et al., 

2006).  

The anti-inflammatory drug, CS is clinically used for treatment of adult and 

paediatric conditions. Importantly, the synthetic CSs such as dexamethasone 

(DEX), prednisone (PRED) and methylprednisolone (MPRED) are widely used in 
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the treatment of neurological disease/injuries such as SCI and also to prevent 

inflammation and rejection following transplantation (Freed et al., 1992; Giusto et 

al., 2014; Mazzini et al., 2015). CSs will be discussed in further detail in section 

1.5. 

Also, MINO is another anti-inflammatory drug which has neuroprotective 

properties and also has the ability to enhance survival of grafted cells (Sakata et 

al., 2012). Animal and clinical studies overwhelmingly suggest that MINO is more 

effective in improving functional outcome when compared with CSs therefore its 

described for many patients with SCI (Wells et al., 2003). This type of anti-

inflammatory drug will be discussed in detailed in section 1.6. 

1.5 What are CSs? 

CS is one of the most important groups of anti-inflammatory and 

immunosuppressive drugs (Rang et al., 2012; Romich, 2010; Vane and Botting, 

1987). These groups are small lipid-soluble molecules which can pass through 

BBB and exert physiological effects on CNS (Riedemann et al., 2010). CSs can be 

divided into four major types which differ in the number of carbon atoms they 

contain, type of receptors they bind, and in their biological activities (Corsini et al., 

2014). 

The basic chemical structure of steroids consists of four rings fused together; three 

six-membered rings (cyclohexane A, B, C) and one five-membered ring 

(cyclopentane D). (Figure 1.4 and Figure 1.5) show chemical structures of several 

synthetic CSs (Corsini et al., 2014; Matura and Goossens, 2000). In general, CSs 

are classified into four groups based on their chemical structure: 
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Group A: Including cortisol, methylprednisolone and prednisone. 

Group B: including triamcinolone, memetasone and budesonide.  

Group C: including betamethasone, dexamethasone and fluocortolone. 

Group D: including betamethasone dipropionate and its ester and clobetasone 

and its ester. 

 

Figure 1.4 The basic chemical structures of steroid hormones. The basic 

chemical structure of steroid consists of four fused rings, three of cyclohexane and 

one of cyclopentane. Figure adapted from (Shahidi, 2001).  

 

                 

                                                     

Figure 1.5 The chemical structures of selected synthetic CSs to be employed 

in this studies. Chemical structures of several synthetic CSs: dexamethasone, 

prednisone and methylprednisolone (Becker, 2013; Inaba and Pui, 2010). 

Dexamethasone Prednisone Methylprednisolone 
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Further, CSs can be classified into two main groups dependent on the types of 

receptor: glucocorticoids (GCs) (primarily regulate carbohydrate metabolism) 

and mineralocorticoids (MCs) (primarily regulate electrolyte homeostasis) 

(Gulino et al., 2009; Riccardi, 2002; Shaikh et al., 2012). The CSs exert their 

effects via interaction with intracellular receptors. There are two types of receptors: 

glucocorticoid receptors (GRs), which are highly expressed in various regions of 

the brain such as the hippocampus and mineralocorticoids receptors (MRs), 

which are also found in high numbers in the hippocampus. Both types of receptors 

are members of the nuclear hormone receptor super family of ligand-activated 

transcription factors (Parker, 1993). 

GR and MR show different affinities to CS (De Kloet, 2004; Falkenstein et al., 

2000a; Hwang et al., 2006). It was found that the synthetic CSs tend to bind on 

one receptor or the other, for example, MR binds corticosterone (CORT) and 

cortisol with a 10 fold higher affinity than GR (Korz and Frey, 2003; Myers and 

Greenwood-Van Meerveld, 2007), while, GR binds preferentially to the synthetic 

CSs, DEX and betamethasone (BETA) (Heberden et al., 2013).  
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1.5.1 By what mechanism do CSs act? 

The anti-inflammatory and immunosuppressive effects of GC are mediated by two 

different mechanisms, genomic (classical) and non-genomic (non-classical) 

mechanisms (Kleiman and Tuckermann, 2007). 

 

1.5.1.1 The genomic (classical) mechanism of CSs 

The GR is found in the cytoplasm in an inactive form as it binds with different 

proteins such as heat shock protein 90 (hsp90). These proteins dissociate and the 

GR become active after it binds with its ligand (Sandi, 1998). Briefly, the genomic 

action of GCs is elicited via binding of GC with GR to form a GR complex within 

the cytoplasm. This complex migrates to the nucleus and binds directly to specific 

DNA sequences called glucocorticoid response elements (GRE) in the promoter 

region of target genes, or interact with other DNA bound transcription factors such 

as nuclear factor-KB (NF-KB) (Ayroldi et al., 2012; Samarasinghe et al., 2012). This 

process can either induce the expression of anti-inflammatory-proteins 

(transactivation), or reduce the production of pro-inflammatory proteins 

(transrepression); this process can take hours or days (Heitzer et al., 2007; 

Kleiman and Tuckermann, 2007) (Figure 1.6).  
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Figure 1.6 The genomic (classical) action of CSs. GCs are fat soluble 

molecules and can therefore cross plasma membrane of target cells. Once inside, 

they bind with the appropriate receptors in the cytoplasm of the cell to form 

complexes of steroid and receptor, these complexes move into the nucleus and 

bind either to specific DNA binding-sites (GRE) or bind to nuclear factor (NF-KB) 

lead to activate or repress the synthesis of proteins. Figure adapted from (van der 

Goes et al., 2014).  
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1.5.1.2 The non-genomic (non- classical) action of CSs 

The mechanism of non-genomic actions of GC is characterised by their rapid 

immunosuppressive and anti-inflammatory effects (within a seconds or minutes) 

(Makara and Haller, 2001; Mikics et al., 2004). Many studies show that these rapid 

effects do not involve interaction with genes but are instead mediated by a 

different pathway: 1) GCs can interact with the cytosolic GR; 2) GCs interact with 

membrane-bound GRs; 3) GCs interact with intracellular protein. These receptors 

then activate the second messengers (cellular signalling pathways) that can lead 

to these rapid effects (Makara and Haller, 2001; Mikics et al., 2004) (Figure 1.7). 

However, the physiological relevance of these non-genomic effects of GC remains 

uncertain (Tasker et al., 2006). Non-genomic actions of steroids are strongly 

suspected to exist, although the exact mechanisms are unclear (Falkenstein et al., 

2000b). 

 

Figure 1.7 The non-genomic (non-classical) action of CSs. The non-genomic 

action of GCs is characterised by rapid second messenger activation, which 

mediates the cellular responses within seconds.  
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1.5.2 Anti-inflammatory and immunosuppressive effects of CS 

The therapeutic effects of CS as anti–inflammatory and immunosuppressive drugs 

have been known and employed since the 1950’s to treat diverse pathologies such 

as respiratory distress syndrome (RDS), asthma, allergies and rheumatoid arthritis 

(Chari, 2014; Rhen and Cidlowski, 2005; Schäcke et al., 2002; Shinwell and 

Eventov-Friedman, 2009).  

CSs may inhibit inflammation by regulating many aspects of the inflammation 

process. They increase the synthesis of several anti-inflammatory proteins and 

decrease the synthesis of inflammatory proteins. CSs significantly reduce the 

survival of inflammatory cells such as eosinophils and T-lymphocytes and increase 

the phagocytosis of apoptotic leukocytes (Liu et al., 1999).  

The survival of eosinophils is dependent on the presence of cytokines such as IL-

5. It was found that CS treatment blocks the effects of these cytokines and leads 

to apoptosis of eosinophils (Liu et al., 1999). Additionally, CSs promote apoptosis 

of T-lymphocytes (Barnes, 1998; Coutinho and Chapman, 2011). A single dose of 

CSs can inhibit the proliferation of the lymphocytes within 4 h. It has found that a 

single dose of PRED induces lymphopenia and this involves both B and T 

lymphocytes (Fauci and Dale, 1974; Greaves, 1976). However, the molecular 

mechanism of action of CSs in promoting apoptosis in eosinophils and T-

lymphocytes is still unknown (Barnes, 1998; Coutinho and Chapman, 2011).  

Moreover, CSs cause depletion of monocytes and reduce the inflammation 

process by blocking responses to macrophage activation factors (Giles et al., 

2001). It was observed that GR are expressed in the inflammatory cells, especially 

macrophages, which have a key role in inflammatory processes (Liu et al., 1999). 
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For instance, CS treatment in patients with asthma increased the synthesis of IL-

10, an anti-inflammatory cytokine produced by macrophages lead to reduce the 

synthesis of many pro-inflammatory cytokines, chemokines and inflammatory 

enzymes (Barnes, 1998; Coutinho and Chapman, 2011; Wang et al., 1995). In 

addition, CSs attenuate the induction of neutrophils and granulocytes to the site of 

inflammation, and reduce their activation and proliferation (Barnes, 1998).  

 

1.5.3 The role of signalling pathways in the anti-proliferative 

effects of CSs 

There are several signalling pathways regulate the proliferation and differentiation 

of NSCs such as β-catenin/TCF, Wnt, and glycogen synthase kinase 3 (GSK-3β). 

Wnt is the most important signalling pathways in neural development and plays a 

major role in the enhancement of the proliferation and differentiation of the NCSs 

(Ille and Sommer, 2005). In 2012, Moors and colleagues studied the effect of DEX 

on the proliferation and differentiation of hNPC. They found that the exposure to 

1µM DEX leads to a reduction in the proliferation and neural differentiation of 

hNPC. The mechanisms underlying the DEX-induced inhibition of the proliferation 

and neural differentiation of hNPC is mediated by the inhibition of the canonical 

Wnt signalling pathway. 

Further, Boku et al. treated NPCs which were obtained from the dentate gyrus of 

adult rats with DEX and lithium to study their effects on the proliferation of these 

cells. They found that DEX decreases the proliferation of these cells without any 

effect on their differentiation and apoptosis. They then treated the cells with 

different concentrations of lithium (the most common drug which is used in the 

http://en.wikipedia.org/wiki/GSK3A
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treatment of stress-related disorders). They observed that there are no effects of 

lithium on the proliferation of NPCs in the absence of DEX whereas in the 

presence of DEX, lithium recovered the proliferation of cells that were decreased 

by DEX. Their findings suggested that the reciprocal effects between DEX and 

lithium on the proliferation of precursor cells are regulated by β-catenin/TCF and 

GSK-3β pathways (Boku et al., 2009). In 2012, Garza and colleagues exposed 

NCSs and NPCs which were isolated from the hippocampus of adult rats to DEX 

and different concentrations of leptin for 48 h in order to study the effects of leptin 

in reversing the action of DEX on neurogenesis and to explore the potential 

mechanisms underlying this process. Their results demonstrated the reciprocal 

effects between leptin and DEX on the neurogenesis process, DEX reduced the 

neurogenesis whereas leptin increased this process via activating the GSK3β/ β-

catenin signalling pathways (Garza et al., 2012). 

Several experimental studies were found that sonic hedgehog signalling pathways 

is involved in the effects of CSs on proliferation and neural differentiation of NSCs. 

Hedgehog signalling pathways play an essential role in the regulation of brain 

development by inducing the proliferation of NPCs of mice. For example, Anacker 

and colleagues studied the effects of cortisol on the proliferation and neural 

differentiation in vitro, in human hippocampal progenitor cells, and in vivo, in 

prenatal stressed rats. They observed that the low concentration of cortisol (1 nM-

100 nM) increased the proliferation and reduced the neurogenesis whereas the 

high concentration of cortisol (1 µM-100 µM) reduced the proliferation and neural 

differentiation in vitro and in vivo. Their data identify the molecular signalling 

pathways which are involved in the effects of cortisol on proliferation and neural 

differentiation. They found that the low and high concentrations of the cortisol 

http://en.wikipedia.org/wiki/GSK3A
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inhibit the hedgehog signalling which is responsible for the enhancement of neural 

differentiation (Anacker et al., 2013). Several GCs such as halcinonide, fluticasone 

propionate, clobetasol propionate, and fluocinonide can activate the hedgehog 

pathway and stimulate stem cell growth by binding with the Smoothened receptor. 

In contrast to the other GCs that binds with the GRs such as DEX which inhibit 

stem cell growth (Wang et al., 2011).  

The gap junction protein connexin-43 signalling molecules were found influence 

proliferation. Samarasinghe and colleagues observed that the exposure of 

embryonic day 14.5 mouse neurosphere cultures to DEX inhibits proliferation of 

NPCs by reducing S- phase progression and promoting cell-cycle exit. Also they 

were observed that a short time of DEX treatment (i.e 1 h) reduced gap junction 

intercellular communication. DEX effects on gap junction intercellular 

communication in NPCs are transcription-independent and mediated through 

plasma membrane GRs. They suggested that non-genomic pathway of DEX 

mediates via the lipid raft protein caveolin-1 associated GRs (Samarasinghe et al., 

2011).  

1.5.4 Clinical uses of CS 

CSs are used clinically to treat several adult and paediatric pathologies such as 

asthma, allergy, and dermatological disorders (Ciriaco et al., 2013; Heine and 

Rowitch, 2009; Lipworth, 1999; Tauber et al., 2006). CSs are also widely used in 

treatment of acute and chronic inflammation such as rheumatoid arthritis, 

inflammatory bowel disease and eczema, as a result of their ability to reduce 

inflammation (Coutinho & Chapman 2011). In addition to their use in the treatment 

of neurologic trauma which consists of acute SCI (ASCI) and TBI because they 
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play an important role in the reduction of brain edema (Han et al., 2014). Of 

particular interest their clinical use during cell transplantation therapy to prevent 

graft rejection (Freed et al., 1992; Giusto et al., 2014; Mazzini et al., 2015). 

DEX is clinically used to treat or prevent respiratory disease such as 

bronchopulmonary dysplasia in premature infants; it is more potent than the 

natural steroid cortisol and can cross the placenta (Seckl 2001; Mutsaers & Tofighi 

2012). The preterm birth rates range from 6 to 15% of all pregnant women and is 

responsible for about 75% of all neonatal deaths in North America and Europe 

(Huang et al., 2001; Matthews et al., 2004, 2002). Premature babies commonly 

suffer serious complications such as RDS, intraventricular haemorrhage and 

necrotizing enterocolitis. Chronic lung disease or bronchopulmonary dysplasia is 

one of the most important causes of mortality and morbidity in preterm babies 

(Huang, 2011). Babies born before 32 weeks have an increased risk of developing 

RDS and the mortality rates are approximately (40-60%) (Peter et al. 2008; Huang 

et al., 2001). Between the end of 1960s and the beginning of 1970s, a series of 

experimental studies conducted by Liggins suggested adoption of CSs for the 

treatment of RDS in preterm born babies. They observed that DEX prevents RDS 

in preterm lambs by enhanced maturation of lung tissue, it was found that the 

foetal lung contains high concentration of GR compared to other organ such as 

foetal skin, kidney, heart, liver and gut (Ballard and Ballard, 1972). Following these 

studies, synthetic CSs have been widely used during antenatal and postnatal 

periods (Moss & Sloboda 2006). 

In 1972, Liggins and Howie performed a landmark randomised controlled trial of 

antenatal CS treatment for pregnant women at high risk of preterm delivery. They 

demonstrated that antenatal CS had been successfully used to reduce 
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intraventricular haemorrhage, RDS, neonatal mortality and necrotizing enterocolitis 

(Crowley et al., 1990; Newnham and Jobe, 2009; Whitelaw and Thoresen, 2000), 

and as such, CSs are now standard treatment in women at risk of preterm 

delivery. A single course of antenatal CS was shown to accelerate lung maturation 

and thus improve infant survival rates. Antenatal CS therapy improves the 

clearance of fatal lung fluid and increase the secretion of lung surfactant (Ballard 

and Ballard, 1972; Mutsaers and Tofighi, 2012). This aids gas exchange, allows 

alveoli to expand on inspiration and prevents alveolar collapse on expiration (Grier 

& Halliday 2003; Bonanno & Wapner 2009; Murphy et al. 2001). There has been a 

trend to increase the number of treatments given to pregnant women at risk of 

preterm birth (Noguchi et al., 2008; Yeh et al., 2004). However, the CS treatment 

causes a detrimental influence in both adult and children as discussed in further 

detail in following sections 1.5.5 and 1.5.6. 

 

1.5.5 Adverse effects of CS use - general effects 

Although CSs have great potential in clinical therapies and treatment of a large 

number of conditions, they carry a risk of a number of general adverse effects 

(Whitelaw and Thoresen, 2000). These effects range from minor to severe. The 

nature and severity of unwanted effects can depend on many factors such as: the 

route of delivery, dosage administration type of CSs, and the length of time 

treatment (Dietrich et al., 2011; Doyle et al., 2005). Neonatal exposure to DEX 

leads to a reduction in foetal growth which is accompanied with several risks 

during the lifespan, such as a production of permanent hypertension and 

hyperglycaemia in rodents and other species of mammals (O’Regan et al., 2001; 
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Seckl, 2001). In several clinical studies, it was found that prenatal and postnatal of 

CSs treatment reduced birth weight and caused several adverse effect in adult life 

such as hypertension, insulin resistance, type 2 diabetes and cardiovascular 

disease deaths (Seckl, 2004). Based on these data, CS have a number of 

detrimental effects including, notably, neurological effects which will be discussed 

in detailed next section 1.5.6. 

 

1.5.6 The neurological effects of CS 

A wide range of experimental studies strongly suggest that CS treatment can 

adversely affect the CNS, particularly the hippocampus. These effects include 

reduced head circumference, neural progenitor cell death and cerebral palsy. 

Therefore, this section will discuss the neurological effects of CS treatment in both 

children and adults based on experimental and clinical research evidence. 

 

1.5.6.1 The neurological effects of CS in paediatric life  

The maternal CSs have little effect on the foetus because the mammalian placenta 

contains an enzyme called 11 beta–hydroxysteroid dehydrogenase type 2 (11β-

HSD2) which protects the foetus from the maternal CS; although at high levels of 

maternal CS and in some pathological conditions the foetus might be exposed to 

excess CSs. The synthetic CSs like DEX and BETA have a low affinity for 11β-

HSD2, meaning they can cross the placenta and exert greater effects on the 

foetus than maternal CSs (Bose et al. 2010). 11β-HSD2 plays an essential role in 
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a protection of the foetus from CORT, hydrocortisone and prednisolone but not 

from synthetic CSs (Heine & Rowitch 2009) (Figure 1.8). 

 

  

Figure 1.8 Some active maternal CSs pass through the placenta to the 

foetus. 11β-HSD is an enzyme found in the mammalian placenta and plays an 

important role to protect the foetus from the high level of maternal CS during 

stress and in certain pathological conditions. In rodents, corticosterone is 

inactivated by conversion to 11-dehydrocorticosterone. In most other mammals, 

including humans, cortisol is inactivated by conversion to cortisone. Synthetic CS 

such as DEX and BETA have low affinity for 11β-HSD therefore they can exert 

greater effect on the foetus compared to maternal CSs. Figure adapted from 

(Seckl, 2001).  
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It was demonstrated that the foetal exposure to CSs during the prenatal period 

caused several adverse effects including delayed brain development and also 

caused cognitive impairment, behavioural and emotional disturbances (Yossuck et 

al., 2006). The experimental research suggests that high levels of CS reduced the 

brain weight in neonatal rats, and caused alteration in social behaviour and 

learning processes (Sousa et al., 2000). Importantly, there is strong evidence that 

the administration of CS during the antenatal and postnatal period exerts effects 

on the hippocampus. The hippocampus is an important structure of the brain 

which contains high density of GR. It is responsible for regulation of cognitive 

function such as learning, memory storage and emotion, therefore any changes in 

the hippocampus composition could lead to mental illness (Karten et al. 2005; 

Cameron & McKay 1999; Boku et al. 2009). At high levels of CS, the brain 

development of the foetus is altered causing persistent structural and functional 

changes and reduced neurogenesis (Whitelaw & Thoresen 2000). The exposure 

of NPCs - obtained from the hippocampus of rats - to DEX during the neonatal life, 

increases the apoptosis of NPCs and reduces neurogenesis (Yu et al., 2010). 

Further, it was observed that high doses of CS cause impairment of neurogenesis 

and enhancement of apoptosis of oligodendrocytes in the brain of newborn 

animals (Chang, 2014). Additionally, the administration of CORT decreased brain 

derived neurotrophic factor (BDNF) in cultured rat hippocampal cells and DEX 

administration downregulating BDNF in all hippocampal regions in vivo, BDNF is 

important for neurogenesis and synaptogenesis, therefore the lower level of this 

protein led to a reduction in cell survival in the hippocampus (Franklin and Perrot-

Sinal, 2006). 
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Moreover, a number of experimental animal studies show the effects of CS on the 

foetal brain development. For instance, Uno et al. gave 0.5, 5 and 10 mg/kg DEX 

to pregnant monkeys; cell counts showed that single and multiple doses of DEX 

led to a reduction in the number of neurons in dentate gyrus area of hippocampus. 

They observed that the severity of effect of DEX was increased with the injection 

of multiple doses (Uno et al., 1990). Gould et al. treated rat pups with CORT and 

aldosterone during the first postnatal week and used [3H] thymidine to label the 

cells in the granule cell layers. They observed in this experiment that the density of 

labelled cells was decreased with both CORT and aldosterone treatment and they 

suggest, based on their results, that the adrenal steroid regulates dentate gyrus 

cell birth and cell death (Gould et al., 1991). Huang et al. (1999) demonstrated that 

a single and repeated dose of BETA (0.5 mg/kg) to pregnant sheep led to a 

reduction of the weight of brain components, including cerebrum, cerebellum, and 

brain stem (Huang et al., 1999). The neurotoxic effects of CS were studied by 

Heine and Rowitch (2009), who observed that the proliferation of the cerebellar 

granule neuron precursors was reduced when mouse pups were treated with 

multiple doses of DEX during the first week after birth (Heine and Rowitch, 2009). 

Table 1.3 summarises several experimental animal studies that investigating the 

effects of CS on the foetal brain development. 
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Table 1.3 Summary of the neurological effects of CS on foetal brain development in animal models 

 

CS 

 

Type of dose 

 

Neurological effects 

 

Region of effects 

 

Animal species 

 

Reference 

DEX Single and multiple Decreases the number 

of neurons  

Dentate gyrus of 

hippocampus 

Pregnant 

monkeys 

(Uno et al., 

1990) 

DEX Multiple Reduces the 

proliferation of granule 

neuron precursors 

Cerebellar Mouse pups (Heine and 

Rowitch, 

2009) 

BETA Single and multiple Reduces the weight of 

brain components 

Cerebrum, cerebellum, 

and brain stem 

Pregnant sheep  (Huang et al., 

1999) 

CORT and 

aldosterone 

Multiple Reduce the 

proliferation of cells  

Dentate gyrus Rat pups (Gould et al., 

1991) 
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Most notably, several human studies have shown that CS therapy increased risk 

of cerebral palsy, along with differences in morphology and structure of the 

offspring’s brain (Choi et al., 2004; Heine and Rowitch, 2009; Murphy et al., 2001; 

Noguchi et al., 2011; Shinwell and Eventov-Friedman, 2009). For example, a 

randomised controlled trial have been performed to study the effects of CS in 

human pregnancy and their outcome in the infant, finding that human infants 

treated with prenatal DEX administration had lower birth weight, lower IQ scores, 

and poor motor and visual coordination skills at school age compared with their 

peers (Stark et al., 2001; Yeh et al., 2004). Yeh et al. reported the two year 

outcome of a randomised controlled trial to study the effect of DEX on preterm 

infants. They administered 0.5 mg/kg/ day DEX to infants which had birth weight of 

500 to 1999 g and had severe RDS. They found that a total of 25 of 63 children 

treated with DEX had neuromotor abnormalities, whereas only 12 of 70 control 

children had neuromotor abnormalities (Yeh et al., 1998). In 1999, O’Shea and 

colleagues reported one year neurological outcome on a randomised controlled 

trial of postnatal CSs for 42 days for preterm infants had low birth weight and had 

chronic lung disease. They observed that 25% of infants had cerebral palsy after 

DEX treatment compared with 7% of control (O’Shea et al., 1999). In 2001, 

Murphy and colleagues found that the cortical brain volume was reduced by 35% 

when compared to full term controls in human premature infants that were 

postnatally treated with DEX (Murphy et al., 2001).  

Collectively, clinical and animal results overwhelmingly suggest that both single 

and multiple courses of CS cause neurological effect in children and increase the 

risk of brain damage.  
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1.5.6.2 The neurological effects of CS in adult life  

A numbers of animals and clinical studies observed a clear link between prenatal 

exposure to CSs and adverse consequences in later life. For example, in animal 

models of antenatal, prenatal and maternal administration of DEX produce 

offspring that appear more anxious as adults. Also, it was found that the prenatal 

DEX exposure is associated with behavioural changes in adults (Welberg and 

Seckl, 2001). It was observed that the antenatal and postnatal treatments of CSs 

are associated with behavioural changes in adults which are frequently 

accompanied by alterations in the hypothalamic- pituitary- adrenal (HPA) axis. 

Importantly, these alterations in the offspring’s HPA axis function have also been 

associated in humans (Wyrwoll and Holmes, 2012). It was found in several clinical 

studies that the prenatal exposure to CSs exerts long-term effects on brain 

structure and function, alters affective behaviours and leads to mental health in 

adults. Moreover, the postnatal treatment of CSs leads to maternal stress and 

behaviorual disorder such as hyperactivity in young people (Khalife et al., 2013).  

Furthermore, a number of animals experimental studies showed that CSs 

treatment in adults are also associated with neurological effects. For example, 

CORT exposure has been associated with increased anxiety in adult rats (Myers 

and Greenwood-Van Meerveld, 2007) and impaired memory (Brabham et al., 

2000). The CS administration has been shown to markedly reduce neurogenesis 

in the SVZ of the adult rat hippocampus. Much Experimental research has studied 

the adverse effects of CS on neurogenesis (Table 1.4). It was observed that the 

high exposure to CSs leads to structural changes in neurons and can reduce 

neurogenesis, especially in the hippocampus (Fuchs and Flügge, 1998; Heberden 

et al., 2013; Reagan and McEwen, 1997). Also, the high level of CORT has an 
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effect on the fate of the NSCs and causes a reduction in neurogenesis and an 

increase in oligodendrogenesis in the hippocampus of adult rats (Chetty et al., 

2014). While, Anacker et al. found that low doses of cortisol causes a reduction of 

neurogenesis in stressed adult rats (Anacker et al., 2013). 

Most importantly, several experiments have studied the neurological effects of CS 

after transplantation. For example, Skardelly and colleagues investigated the 

effects of immunosuppressive drug on the fate of the human neural 

progenitor/stem cells (NPSCs) in vitro. They found that the higher concentrations 

of prednisolone (100 mg/ml and 200 mg/ml) significantly compromised cell 

viability, increased the apoptosis rate, reduced cell proliferation and mainly 

increased differentiation of astrocytes without any effect on neurogenesis 

(Skardelly et al., 2013). Other studies have shown the effects of MPRED following 

neurological injury (Bracken, 2012). For example, Schröter and colleagues studied 

the effects of MPRED after SCI on the NPCs of adult mice. They reported that 

MPRED reduces the proliferation of NPCs in spinal cord and hippocampus, and 

this reduction leads to the inhibition the proliferation of oligodendrocyte progenitor 

cells (OPCs) (Schröter et al., 2009). Although CSs have great potential in clinical 

therapies and treatments of a large numbers of conditions, they carry a risk of a 

number of neurological deficits. Such deficits appear to be due to CS effects on 

NSCs. 
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Table 1.4 Summary of the CS effects on neurogenesis 

CS Neurological effects Reference 

DEX Increases the apoptosis of NPCs and 

reduces neurogenesis 

(Yu et al., 2010) 

DEX Impairs neurogenesis and increases 

apoptosis of oligodendrocytes 

(Chang, 2014) 

CORT Reduces neurogenesis and 

increases oligodendrogenesis 

(Chetty et al., 2014) 

Cortisol Reduces neurogenesis (Anacker et al., 2013) 
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1.6 MINO usage and the possible mechanisms of action 

The therapeutic use of tetracycline has been described in the 1940’s; various 

molecular modifications on tetracycline structure have been employed to promote 

and improve their antibacterial activity, their tissue absorption, and prolong their 

half-life (Garrido-Mesa et al., 2013). MINO is a second-generation semi-synthetic 

tetracycline that is used as an antibiotic and anti-inflammatory drug (Figure 1.9). 

Importantly, MINO shows better absorption with a longer half-life compared to 1st 

generation tetracycline. Recently, several studies have shown the neuroprotective 

potential of MINO (Karimi-Abdolrezaee et al., 2010; Sakata et al., 2012; Wells et 

al., 2003). It has been approved by the medicines and healthcare products 

regulatory agency and by the food and drug administration due to its low toxicity 

and low side effects. MINO is a small, highly lipophilic molecule which can readily 

pass through the BBB, and as such, is used clinically for the treatment of several 

neurological disorders such as cerebral ischemia, TBI and SCI (Festoff et al., 

2006; Pinzon et al., 2008). 

 

Figure 1.9 Chemical structures of tetracycline and MINO. (A) chemical 

structure of first generation tetracycline. (B) chemical structure of second 

generation tetracycline, MINO. Figure adapted from (Garrido-Mesa et al., 2013).  
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MINO has been demonstrated to exert its anti-inflammatory effects by reducing the 

activity of microglia, and subsequently their secretion of factors such as cytokines, 

chemokines, lipid mediators of inflammation and nitric oxide release (Lee et al., 

2003; Yrjänheikki et al., 1998). MINO plays a neuroprotective role and has been 

used to inhibit microglia activation, and modify their toxic effects on NSCs. The 

neuroprotective properties of MINO were mediated by regulating chemokine 

activity causing a decrease in resident and immune cell migration to sites of 

inflammation (Kremlev et al., 2004). Also, several reports have demonstrated that 

the neuroprotective effects of MINO were mediated by regulating nitric oxide 

production. In general, the mechanisms of action of MINO appear to result from 

anti-inflammatory, anti-apoptotic, and antioxidant functions (Figure 1.10). The main 

biological effects of MINO, which are involved in the pathogenesis of several 

neurological conditions, include inhibition of microglial activation. Microglial 

inhibition results in, among others, such as the downregulation of MHC II 

expression, a decrease in cell motility, the inhibition of the p38 MAPK pathway, a 

reduction in prostaglandin E synthase expression or a reduction in the level of 

matrix metalloproteinases (MMPs). The anti-apoptotic effects of MINO include a 

decrease in the mitochondrial calcium overloading, MINO inhibits release several 

apoptotic factors into the cytoplasm such as cytochrome C, resulting in decreased 

caspase activation and nuclear damage. In addition to the antibiotic, anti-

inflammatory and anti-apoptotic effects of MINO, this drug possesses antioxidant 

properties. It directly scavenges free radicals and inhibits molecules such as 

cyclooxygenase 2, induced nitric oxide synthase, and nicotinamide adenine 

dinucleotide phosphate oxidase (Pinkernelle et al., 2013; Plane et al., 2010). 
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Figure 1.10 Multiple mechanisms of MINO account for its useful effects in 

experimental neurology. Figure adapted from (Yong et al., 2004). 
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Importantly, MINO has been successfully used to treat several neurological 

disorders in animal models such as ischemia, stroke, amyotrophic lateral sclerosis, 

multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, Huntington’s 

disease, and SCI (Yong et al., 2004). For example, the neuroprotective effects of 

MINO were investigated in an ischemia animal model, it was found that MINO 

markedly reduced the production of nitric oxide, TNF-α and IL-1β (Suk, 2004). In a 

gerbil model of brain ischemia, Yrjanheikki et al. demonstrated that MINO 

significantly reduced nitric oxide induced by microglia activation and reduced loss 

of pyramidal neurons (Yrjänheikki et al., 1998). Another study in rat model of SCI 

showed that MINO reduced the level of TNF-α at 24 h after SCI (Festoff et al., 

2006). Also, in a Parkinson’s disease model, MINO was found to reduce microglia 

activation with minimal effects on the astrocyte. Further, in the brain of the R6/2 

experimental mouse model of Huntington’s disease, MINO showed effective 

neuroprotective features (Wu et al., 2002). Additionally, MINO has also been 

shown to inhibit the astrocytic response after SCI and subsequently the astrocyte-

mediated release of pro-inflammatory mediators, and reduce scar formation (Teng 

et al., 2004). 
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1.7 Aims of experimental chapters 

The aims of the series of experiments contained in this thesis are to study the 

effect of anti-inflammatory and immunosuppressive drugs on the fate of NSCs. 

Recently, NSCs represent an attractive source for regenerative and cell 

replacement therapies in several neurodegenerative diseases/injuries. These cells 

play an important role firstly, during brain development because of their ability to 

give rise to three main types of neural cells and secondly, as these cells have 

important regenerative properties, they play a major role in endogenous repair. 

Thirdly, they have a potential role in transplant-mediated repair.  

In the context of neural cell therapy, the use of anti-inflammatory and 

immunosuppressive drugs following neural transplantation, is necessary to 

improve graft survival and to avoid cell rejection in host tissue (Sakata et al., 2012; 

Skardelly et al., 2013). Therefore it is of major importance to study the effects of 

these drugs on a variety of physiological processes of NSCs, such as proliferation, 

survival, apoptosis, and differentiation. 

On the other hand, the administration of anti-inflammatory drugs such as CS 

during the antenatal and postnatal period leads to neurodevelopmental impairment 

and affects growth and development of the immature brain (Shinwell and Eventov-

Friedman, 2009). A number of randomised controlled trials from the 1990s, 

observed that CS treatment resulted in elevated risks of neurodevelopmental 

impairment and cerebral palsy in humans (O’Shea et al., 1999). Further, it was 

found that the repeated and prolonged treatments of CS increase this risk (French 

et al., 2004; Wapner et al., 2007).  
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Animal experimental studies have shown that the administration of CS induces 

apoptosis and reduces the neurogenesis and the proliferation of NSCs (Sze et al., 

2013). Also, there is evidence suggesting that CS treatment can also accelerate 

the apoptosis of neurons and oligodendrocytes, induce degenerative changes in 

oligodendrocytes, and delay the formation of myelin (Chari et al., 2006; Huang et 

al., 2001). However, the mechanisms underlying such neurological defects are 

unclear and largely unknown.  

Based on the important role of both NSCs and the anti-inflammatory drugs, 

this thesis focused on the potential effect of anti-inflammatory drugs on 

NSCs. The effect of anti-inflammatory drugs on NSCs fate has not been 

sufficiently explored and the specific mechanisms behind these effects 

remain unclear and not fully understood.  

This thesis studied the effects of different clinically relevant drugs at different 

concentrations and different time of treatments so, this study allowed for a 

systematic comparison of anti-inflammatory drugs on the key regenerative 

properties of NSCs (i.e proliferation, survival, apoptosis, and differentiation) and 

gained insight into the stages at which these drugs may exert their effects.  
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Chapter 3: Histological study to evaluate the effects of CS treatment on  

                    NSCs propagated in monolayer cultures  

The aim of this chapter is to investigate the effects of CS on NSCs grown as a 

monolayer cultures. NSCs are routinely cultured using two distinct culture 

systems: as 2-D adherent cells called monolayers and as 3-D suspension cells 

called neurospheres. Both culture systems are commonly used to propagate and 

expand NSCs for cell transplantation. In this chapter monolayer cultures system 

used to study the effects of CS on NSCs using the histological analysis to address 

the question of whether CS effects are mediated by a direct influence on 

parameters such as the NSCs survival, self-renewal, and differentiation into 

astrocytes, neurons and oligodendrocytes.  

Chapter 4: Histological study to evaluate the effects of CS treatment on  

                    NSCs propagated in neurosphere cultures 

This chapter aims to investigate the effects of CS on NSCs in neurosphere 

cultures. The nature of NSCs population is an important factor that can affect the 

potential mechanisms of repair after transplantation and the type of culture system 

that is used in isolation and propagation of NSCs could impact the heterogeneity 

and differentiation of NSCs. Furthermore, the differences in the features 2-D and 

3-D cultures impact the choice of culture system when using NSCs in 

transplantation after neurological disease/injury. Despite this, it is not known if the 

physical format by which these cells are propagated can impact on drug influences 

on these cells. Therefore it is of major importance to study the effects of CS on 

NSCs parameters such as proliferation, cell cycle, viability, apoptosis and 

differentiation in 3-D culture. 
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Chapter 5: Investigating the mechanisms underpinning the effects of CS on  

                  NSCs 

CSs mediated their anti-inflammatory effects either by genomic or non- genomic 

mechanisms. Many researchers are convinced that most effects of GC are 

mediated by a nuclear genomic mechanism, in this mechanism the expression of 

key genes is regulated by GRs. The GR can modulate the expression of genes 

either by binding to GREs in the promoters of target genes or by binding with other 

transcription factors (Ayroldi et al., 2012; Samarasinghe et al., 2012). The non-

genomic mechanisms are also mediated by the GR to mediate rapid cellular 

effects to GC in the absence of measurable alterations in gene expression 

(Makara and Haller, 2001; Mikics et al., 2004). Therefore it is of vital importance to 

investigate the expression of GRs in NSCs and their daughter cells used in this 

study.  

Although many experiments have been performed to study the effects of CS using 

analysis of gene expression and microarray analyses, no in-depth study of the 

influence of CS treatment upon protein expression has yet been performed in 

NSCs. Proteomic analysis enables identification of potential proteins that show 

altered expression in drug treated cells. As a large number of proteins were 

obtained, sophisticated bioinformatics analysis used for these experiments to 

understand the mechanism behind these effects. Further, proteomic analysis 

enables us to derive novel hypothesis as to the mechanisms via which CSs exert 

their effect on cellular proliferation and differentiation capacity. 

In this chapter, the first experiment was undertaken to investigate the GR 

expression in all types of cells used in this study. Then the molecular mechanisms 
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of CS were highlighted in NSCs monolayer cultures using proteomics and 

bioinformatics analyses. 

Chapter 6: Testing NSCs in a combinatorial therapy using organotypic spinal  

                   cord slice model 

The aim of this chapter is to investigate the utility of organotypic spinal cord slice 

model to study the effects of combinatorial therapy to promote spinal regeneration 

through the direct replacement of neuronal and glial cells using transplanted 

NSCs, with or without anti-inflammatory drug. The organotypic spinal cord slice 

models are widely used as high throughput approach in neurology research to 

study the therapeutic strategies in neurological injury/disease. This type of model 

has several advantages such as: it is easy amenable to experimental manipulation 

and allow control and experimental slices to be derived from the same animal, 

reducing experimental variability (Weightman et al., 2014). Interestingly, the 

organotypic spinal cord slice cultures are more mimetic of in vivo environment due 

to their ability to preserve the tissue architecture and maintain cell-to-cell contact 

(Cho et al., 2007; Sypecka et al., 2015). 

Importantly, many drugs were found to improve behavioural and histological 

outcomes in the experimental animals SCI but have yet to be implemented after 

human SCI. Thus, it is important to evaluate the safety of these drugs in clinically 

relevant models to move from animals to humans. It should be noted that, the use 

of CS such as MPRED has now dramatically declined due to the detrimental side 

effects, also some clinical trials have failed to report its therapeutic benefits 

(Hurlbert, 2000; Sayer et al., 2006). Based on this, MINO was chosen in this 
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chapter as a combinatorial therapy with transplantation of NSCs in organotypic 

spinal cord slice model.  

In the first part of this chapter, the direct effects of MINO have been tested on 

NSCs in neurosphere cultures. The fundamental properties of NSCs have been 

investigated: survival, proliferation and apoptosis, viability, and differentiation after 

MINO treatment. In the second part of this chapter, organotypic spinal cord slice 

culture has been used to investigate the regeneration of SCI following MINO 

treatment and NSCs transplantation.  
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Chapter 2 

Materials and Methods 
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2.1 Materials 

Cell and organotypic spinal cord slice culture: Cell culture reagents were from 

Life Technologies (Paisley, Scotland, UK) and Sigma-Aldrich (Poole, Dorset, UK). 

1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine,4-chlorobenzenesulfonate 

salt (DiD), Foetal bovine serum (FBS), penicillin and streptomycin, Nunc T25 cell 

culture flasks, Nunc 24 well plates, 24 well suspension culture plates and other 

tissue culture-grade plastics were purchased from Fisher Scientific 

(Loughborough, UK). Omnipore membranes (JHWP04700) and Millicell culture 

inserts (PICM0RG50) were from Millipore (Watford, UK). Disposable scalpels and 

size 15 surgical blades were obtained from Swann-Morton (Sheffield, UK). DNase 

I was from Roche (Welwyn, UK). Accutase was from Sigma-Aldrich, human 

recombinant basic fibroblast growth factor (FGF-2) and epidermal growth factor 

(EGF) were purchased from Sigma-Aldrich and R&D Systems Europe Ltd 

(Abingdon, UK), respectively.  

Drugs: Dexamethasone (DEX), 21-phosphate disodium (D4902; ≥97% pure), 

prednisone (PRED), 17α, 21-Dihydroxy-1,4-pregnadiene-3,11,20-trione (P6254; 

≥98% pure), methylprednisolone (MPRED), 6α-methylprednisolone 21-

hemisuccinate sodium salt (M3781; ≥98% pure) and minocycline (MINO), 

minocycline hydrochloride (286710; ≥97% pure) were from Sigma-Aldrich (Poole, 

UK). 

Immunocytochemistry: The following primary antibodies were used: mouse anti-

nestin was from BD Biosciences (Oxford, UK) and rabbit anti-SOX-2 was from 

Millipore (Watford, UK), mouse anti-β-tubulin (TUJ-1) and rabbit anti-β-tubulin 

were from Covance (Princeton, NJ), rabbit anti-glial fibrillary acidic protein (GFAP) 



56 
 

was from DakoCytomation (Ely, UK) and rat anti-myelin basic protein (MBP) was 

from Serotec (Kidlington, UK). A neuronal marker rabbit anti-growth associated 

protein 43 (GAP-43) was from (Abcam, UK). Biotin-conjugated lectin (microglial 

marker; from Lycopersicon esculentum, tomato) and monoclonal, anti-biotin FITC-

conjugated antibodies were from Sigma-Aldrich (Poole, UK). Two glucocorticoid 

receptor antibodies H-300 and BuGR2 were from (Santa Cruz Biotech, USA) and 

(Abcam, UK), respectively. Secondary antibodies (Cy3- and FITC-conjugated) 

were from Jackson Immunoresearch Laboratories Ltd (Westgrove, PA, USA). 

Normal donkey serum (NDS) was from Stratech Scientific (Suffolk, UK) and DAPI 

(4ʹ, 6-diamidino-2-phenylindole) mounting medium was from Vector Laboratories 

(Peterborough, UK).  

Proliferation analysis: Click-iT® Plus EdU Alexa Fluor® 488 Flow Cytometry 

Assay Kit was from Life Technologies (Paisley, Scotland, UK). The muse cell cycle 

kit was from Millipore (Watford, UK). 

Viability analysis: The LIVE/DEAD Viability/Cytotoxicity Assay Kit was from 

Invitrogen (Paisley, UK).  

Apoptosis analysis: Kits for Annexin V and Dead cell was from Millipore 

(Watford, UK). 

Proteomic analysis: Trifluoroacetic acid was from Fisher Scientific 

(Loughborough, UK). Acetonitrile was from VWR Chemicals (Lutterworth, UK), 

Iodoacetamide was from Acros Organics (Geel, Belgium) and Rapigest was from 

Waters Corporation (Milford, MA). Ammonium Bicarbonate (Ambic), protease 

inhibitor cocktail, dithiothreitol, Proteomics-Grade dimethylated trypsin and 

Bradford Reagent were from Sigma-Aldrich (Poole, UK). 
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Animals: Primary cultures were used for all experimental studies performed. 

These were derived from CD1 mice. The care and use of all animals used in the 

production of cell cultures were in accordance with the Animals Scientific 

Procedures Act of 1986 (UK) with approval by the local ethics committee. 

 

2.2 Preparation of media used in primary NSCs culture  

2.2.1 Preparation of neurosphere medium  

Neurosphere medium was prepared with: 3:1 mix Dulbecco’s Modified Eagle 

Medium (DMEM): F12, DMEM and F12 nutrient medium, 2% B27 supplement, 20 

ng/ml FGF-2 and EGF, 4 ng/ml heparin, 50 U/ml penicillin, 50 μg/ml streptomycin. 

Neurosphere medium was stored at 4°C and used within 1 week (Pickard et al., 

2017). 

2.2.2 Preparation of monolayer medium 

Monolayer medium was prepared with: 1:1 mix DMEM:F12, 1% N2 supplement, 

20 ng/ml FGF-2 and EGF, 4 ng/ml heparin, 50 U/ml penicillin, 50 μg/ml 

streptomycin. Monolayer medium was stored at 4°C and used for up to 1 week 

after preparation (Pickard et al., 2017). 

2.2.3 Preparation of differentiation medium  

Differentiation medium was prepared with: 3:1 mix DMEM:F12, 2% B27 

supplement, 4 ng/ml heparin, 50 U/ml penicillin, 50 μg/ml streptomycin, 1% FBS. 

Differentiation medium was stored at 4°C and used for up to 4 weeks after 

preparation. 
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2.3 Coverslip preparation and coating 

It has been observed in our laboratory that NSCs more reliably adhere to nitric 

acid washed coverslips than non-washed glass. Therefore coverslips for all 

adherent NSCs culture were washed in 1% nitric acid and shaken overnight. 

These were then rinsed in deionised water (dH2O) for 3 h (dH2O changes every 30 

min), and sonicated in dH2O for 1.5 h, then in ethanol 70% for 1.5 h and finally in 

ethanol 95% for 1 h with solution changes every 30 min. Prepared coverslips were 

stored in 70% ethanol in large petri dishes at room temperature (RT). To coat 

coverslips for adherent NSCs culture, they were incubated with Poly-L-ornithine 

(MW 30-70 000 Da, 0.002%) at 37°C and 5% CO2 for 1 h. Afterward, poly-L-

ornithine was removed and coverslips were washed once with dH2O. Then 5 

μg/mL laminin was added to each coverslip, plates were incubated at 37°C and 

5% CO2 for 1 h. The laminin was removed and coverslips were washed 3 times 

with dH2O. 

 

2.4 Primary NSCs derivation and maintenance 

NSCs were derived from the SVZ of CD1 mice pups, postnatal day 1-3 (the day of 

birth was designated as postnatal day 0) (Adams et al., 2013). Briefly, the SVZ 

was dissected out and the tissue was mechanically dissociated into a single cell 

suspension in the presence of DNase I. Dissociated cells were then counted and 

plated at 1 x 105 cells/ml in neurosphere medium, for routine maintenance, 

neurospheres were fed every 2-3 days and passaged every 5-7 days using a mix 

of accutase and DNase I. Cells from passages one to three were used for 

experiments. 
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For adherent cultures, neurospheres were dissociated and plated on poly-L-

ornithine and laminin coated coverslips and maintained in monolayer medium.  

For differentiation, the NSCs from both monolayer and neurosphere cultures can 

differentiate into three types of CNS cells, astrocytes, neurons and 

oligodendrocytes by removing the growth factors and adding serum to the 

medium. All stages of NSCs culture (neurospheres, monolayers and differentiated 

cells) have been used in the experiments described in this thesis and their 

generation is illustrated in (Figure 2.1). 

 

 

Figure 2.1 Schematic diagram illustrating the procedures for NSCs culture 

and differentiation. This procedure was performed to setup cultures from 

different litters.  
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2.5 Preparation and dose testing of drugs 

2.5.1 Preparation of CSs 

Three clinical synthetic CSs (DEX, PRED and MPRED) were used in NSCs 

primary culture. These drugs were selected for use in the experimental studies 

because they are widely used in treatment of a large number of clinical conditions 

in both adults and children, such as RDS, chronic lung disease, and in the 

treatment of neurological trauma (ASCI and TBI) (Crowley et al., 1990; Hall and 

Springer, 2004; Han et al., 2014; Moss and Sloboda, 2006; Sayer et al., 2006; 

Short et al., 2000). Stock solution of DEX was prepared at 31.5 mM in 100% 

ethanol (ETOH), while, the stock solutions of PRED and MPRED were prepared at 

117 mM and at 118 mM respectively in Dimethyl sulfoxide (DMSO). Then the 

stock solutions of DEX, PRED and MPRED were diluted in appropriate culture 

medium to the indicated concentration. Cell cultures were treated with three 

different concentrations of CS (0.1 µM, 1 µM and 10 µM). The final concentration 

of ETOH was 0.95% (v/v) at all doses of DEX and for ETOH vehicle controls and 

the final concentration of DMSO was 0.27% (v/v) at all doses of PRED and 

MPRED and for DMS vehicle controls.  

  

2.5.2 Preparation of MINO 

The clinical anti-inflammatory drug, MINO, has cytoprotective properties and 

promotes survival of grafted cells (Sakata et al., 2012). Further, MINO treatment 

has been described for many patients with SCI (Wells et al., 2003). MINO has the 

ability to improve the functional recovery following SCI by reducing lesion size, cell 

death, and altering cytokine expression (Lee et al., 2003; Wells et al., 2003). 
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Previously, it was demonstrated that MINO is more effective in improving 

functional outcome when compared with MPRED (Festoff et al., 2006; Wells et al., 

2003). Therefore, this drug was selected for use in the experimental studies. Prior 

to examining the effect of MINO on NSCs transplantation in the organotypic SCI 

model, the direct effect of MINO was assessed on NSCs in neurosphere cultures. 

Stock solution of MINO was prepared at 33.7 mM in DMSO to obtain a stock 

solution, this solution was then diluted with the respective medium to the final 

concentration of 10 µM. Primary NSCs and organotypic spinal cord slices were 

treated with 10 µM MINO. The final concentration of DMSO was 0.88% (v/v) at 

MINO dose and for vehicle controls.  

 

2.5.3 Verification of drugs concentration 

Spectrophotometry (Genesys 10S UV−vis spectrophotometer, ThermoScientific, 

USA) was used to verify the concentration of drug solutions. The molar 

absorptivity (molar extinction coefficient) at a particular wavelength of each type of 

drugs was known; therefore the absorbance of the drug solutions was measured 

at the particular wavelength to calculate their concentrations using Beer-Lambert 

law: A = e L c 

A = absorbance, e = molar extinction coefficient, c = concentration and L = light 

pathlength. Given this equation below, the concentration can be calculated by: 

c=A/eL. 
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2.5.4 Assessment of the biological potency of selected drugs 

Anti-inflammatory drugs such as CS and MINO are known to affect the 

proliferation and morphology of immune cells, including microglia, the major 

immune component of the CNS (Chao et al., 1992; Ganter et al., 1992; Jenkins et 

al., 2014; Sriram et al., 2006; Zhang et al., 2007). Therefore, primary microglial 

cultures were used as a positive control to assess the biological efficacy of all 

three types of CSs, as well as MINO. Primary microglia were derived from mixed 

glial cultures, which prepared from dissociated cerebral cortices of 

Sprague−Dawley rats at postnatal day 1-3 according to a standard protocol 

(Jenkins et al., 2014), (courtesy of Dr. Stuart Jenkins, Keele University). Microglia 

were plated in 24-well plates coated with poly-D-lysine at a density of 6 x 105 

cells/ml (300 µL/well) using D 10 medium (DMEM with 10% FBS, 2 mM glutaMAX-

I, 1 mM sodium pyruvate, 50 U/mL penicillin, and 50 μg/mL streptomycin). After 24 

h, 10 µM of DEX, PRED, MPRED and MINO were added. Primary microglia cells 

were treated with CSs and MINO for 1-3 days. Cell numbers and morphology were 

monitored using phase-contrast microscopy. 

2.6 Drug treatment of NSCs parent cells in 2-D monolayer 

cultures  

NSCs were cultured as 2-D adherent monolayers in 24-well plates at a density of 

0.65 x 105 cells/ml (600 µL /well). NSCs were treated with CSs at one day post- 

plating by replacing medium with medium containing three different concentrations 

(0.1 μM, 1 μM and 10 μM) of CSs followed by incubation for 48 h. Untreated NSCs 

just had medium replaced with fresh medium (without CS) and vehicle controls for 

DEX contained ETOH whereas vehicle controls for PRED and MPRED contained 

DMSO. 
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2.7 Drug treatment of NSCs parent cells in 3-D neurosphere  

cultures 

NSCs were plated in 24-well suspension cell plates at a density of 1 x 105 cells/ml 

(0.5 mL suspension/well) using neurosphere medium. After 24 h, 0.1 μM, 1 μM 

and 10 μM of CSs and 10 μM of MINO were added for 48 h, the number and size 

of spheres were assessed from phase-contrast micrographs using four biological 

replicates with two technical repetitions in each experiment. Numbers of spheres 

per field were counted and the diameter of sphere was measured across four 

microscopic fields at 100 x magnification. 

2.8 Cryostat sectioning 

For cryostat sectioning, neurospheres from the culture plates were taken and 

placed in 1.5 ml Eppendorf tube and fixed by adding 500 µL of 4% 

paraformaldehyde (PFA) for 15 minutes at RT. They were then centrifuged at 1000 

rpm for 5 minutes and supernatant was removed and washed once with 

phosphate buffered saline (PBS) then centrifuged at 1000 rpm for 5 minutes and 

supernatant was removed. Neurospheres then were incubated in 15% sucrose in 

PBS and then left overnight in this solution at 4°C. The following day, sucrose was 

removed carefully and neurospheres were then embedded within optimum cutting 

temperature (OCT) compound and placed at -80°C. Serial cryostat sections (5 µm) 

were cut with a cryostat microtome (Bright, OTF5000) and affixed to poly-lysine 

slides. Sections were processed for immunocytochemistry as described in section 

2.20.2. Cell counting was carried out in four biological replicates, with two 

technical replicates in each experiment. Two cryostat sections randomly were 

selected for each condition.  
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2.9 NSCs differentiation 

The differentiation assay was performed to assess the effect of anti-inflammatory 

drugs on the proportion of each daughter cell type generated from NSCs parent 

cells. For monolayer cultures, cells were treated with CSs for 48 h then, the 

monolayer medium was replaced with differentiation medium containing the same 

concentrations of CSs. For neurosphere cultures, the spheres were dissociated 

using a mix of accutase and DNase I at 48 h of drug treatment and replated using 

differentiation medium containing 0.1 μM, 1 μM and 10 μM of CS and 10 μM of 

MINO. Differentiated cells from both cultures were cultured for a further 7 days (37 

°C in 95% air: 5% CO2) to produce a mixed cell population typically containing ca. 

85% astrocytes, 10% neurons and 5% oligodendrocytes. Cultures were fed every 

2-3 days then they were fixed with 4% PFA following 9 days of drug treatment. 

The experiments design of differentiation assay is illustrated in (Figure 2.2). 

 

 

Figure 2.2 Schematic diagram illustrating the procedures for differentiation 

assay.  
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2.10 NSCs proliferation assay 

The 5-ethynyl-2’-deoxyuridine (EdU) assay was used to measure the effect of anti-

inflammatory drugs on cellular proliferation rates. Detection of EdU incorporation 

into the DNA was performed with Click-iT1 EdU Alexa Fluor proliferation assay kit, 

following the manufacturer’s instructions. Briefly, 10 μM EdU was added into each 

well followed by incubation at 37° C for 16 h. This incubation time was determined 

by the cell doubling rate for NSCs which is acknowledged to be around 20 h (Bose 

et al., 2010; Sun et al., 2009). The cells were fixed at 48 h of drug treatment in 4% 

PFA for 15 minutes at RT, and then they were washed twice with 3% bovine 

serum albumin (BSA). Then samples were incubated for 20 minutes in 0.5% 

Triton-X 100 in PBS (0.5 mL). Cells were washed twice with 3% BSA and the 

reagent cocktail for EdU detection was distributed over the cells (0.3 mL final 

volume/well). The cells were washed twice with 3% BSA after incubation at RT for 

30 minutes in the dark. In preparation for imaging and analysis, the coverslips 

were mounted on slides using mounting medium containing DAPI and 

fluorescence images were captured from four random fields of the coverslip. 

Counts of nuclei co-expressing the EdU marker and nuclear counterstain (DAPI) 

were classified as proliferating cells (proliferation expressed as a percentage of 

the total cells counted).  
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2.11 Cell cycle analysis 

Cell cycle analysis was performed using the Muse cell cycle kit according to the 

manufacturer’s instructions. For monolayer cultures, cells were enzymatically 

detached using TrypLE, following a few minutes incubation, cells began to detach. 

Wells were washed with PBS to collect any remaining cells and then cells were 

pelleted by centrifugation and cells washed once in PBS and centrifuged again to 

remove and discard the supernatant.  

 

For neurosphere cultures, spheres were collected following 48 h of drugs 

treatment. Cells were pelleted by centrifugation and then washed once in PBS. 

The supernatant removed and discard following centrifugation. The pellets were 

dissociated using a mix of accutase and DNase I and incubation at 37°C and 5% 

CO2 for a few minutes. Following dissociation, cells were centrifuged and then 

washed with PBS and centrifuged again to remove and discard the supernatant. 

After centrifugation, NSCs (1 x 106) were fixed from monolayer or neurosphere 

cultures with 1 ml of 70% cold ethanol and incubated at -20°C for at least 3 h prior 

to staining, as per the Muse Cell Cycle Kit instructions. Subsequently, 200 µL of 

ethanol-fixed cells were washed in PBS and stained for 30 minutes at RT in the 

dark with 200 µL of Muse Cell Cycle Reagent. Cell suspension samples were 

transferred into 1.5 ml microcentrifuge tubes and were analysed using a Muse Cell 

Analyser (EMD Millipore, Darmstadt, Germany). In total, 5000 events were 

recorded for cell cycle analysis and the results are displayed the percentage of 

cells in G0/G1, S and G2/M phases. 
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2.12 Apoptosis assay 

Muse Annexin V and Dead cell kit was used to quantify apoptotic cells. After 48 h 

treatment of NSCs, they were stained with Annexin V, following the manufacturer’s 

instructions. TrypLE was used to detach monolayers, cells were collected and 

wells were washed with PBS to collect any remaining cells. Cells were pelleted by 

centrifugation and washed once in PBS. Then 100 µL of cells in suspension were 

added to 100 µL of the Muse Annexin V and Dead cell reagent and stained for 20 

minutes at RT in the dark. Stained cells were detected using the Muse Cell 

analyser. In total, 2000 events were recorded for apoptosis analysis. The results 

are presented the percentage of apoptotic cells. 

 

2.13 Viability assay 

Cells and slice viability were measured of drug treatment using live/dead 

viability/cytotoxicity kit which contains calcein AM and ethidium homodimer-1. 

Cells and slices were washed with PBS, incubated for 15 minutes with a PBS 

solution consisting of 4 µM calcein AM (produces green fluorescence in live cells) 

and 6 µM ethidium homodimer-1 (produces red fluorescence in dead cells). Cells 

were washed again with PBS, and then mounted for fluorescence microscopy. 

Cellular viability was measured by counting green (LIVE) and red (DEAD) cells 

and expressing the number of LIVE cells as a percentage of total cells (green + 

red) from a total of four images taken at 400 x magnification.  
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2.14 Proteomic and bioinformatics analyses 

In parallel with the histological safety assessments, a proteomics based analysis 

was performed to examine protein expression in NSCs monolayer cultures 

following MPRED treatment. The process of proteomic analysis is briefly illustrated 

in detailed below (Figure 2.3). Briefly, following the isolation of NSCs as detailed in 

section 2.4, they were then cultured as monolayers in 6 wells plates at 1.2 x 105 

cells/ml in 1.5 ml. After one day, they were treated with 10 µM MPRED for 48 h. 

 

Figure 2.3 Schematic diagrams illustrating the procedure for the proteomic 

analysis. 
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2.14.1 Protein extraction 

In order to obtain protein from the NSCs, the cells were enzymatically detached 

using TrypLE (<5 min, RT). Cells were pelleted by centrifugation and washed three 

times in 50 mM Ambic with centrifugation in between each wash. Cell pellets were 

lysed in 100 µL lysis buffer (0.1% Rapigest, 1% DNAse I in 50mM Ambic). Probe 

sonication (Bandelin, Sonopuls) was performed on ice (3 cycles of 15 seconds on, 

5 seconds off, amplitude 50%, pulse 0.5 on 1.0 off) to break apart cell membranes. 

Cell debris was removed by centrifugation and the protein concentration of the 

supernatant fraction of each lysate determined by Bradford assay according to 

manufacturer’s protocol.  

2.14.2 Tryptic digestion of cell lysate proteins 

Protein concentrations were normalised to 100 µg for each sample. Each solution 

was incubated with 10 mM dithiothreitol with shaking (80°C, 15 min) before 

reduction using iodoacetamide (20 mM, 30 min, RT). Trypsin (2 µg) was then 

added to each sample, with incubation at 37°C for 16 h. Remaining tryptic activity 

was terminated, and Rapigest precipitated, by addition of trifluoroacetic acid (1%) 

and acetonitrile (2%) with shaking (60°C, 2 h). Rapigest was pelleted and removed 

by centrifugation and the supernatant taken for mass spectrometry analysis. 

 

2.14.3 Mass spectrometry (MS) 

2.14.3.1 Data Dependent Analysis (DDA) 

Tandem mass spectrometry was performed to identify tryptic peptides. Peptide 

mass spectra were obtained using nanoflow electrospray ionization MS with 

tandem MS. A quadrupole time-of-flight mass spectrometer (QTof Premier, 
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Waters), coupled to nanoflow high performance liquid chromatography (HPLC) 

(Dionex Ultimate 3000, Thermo Fisher Corporation, Hemel Hempstead) was used 

to analyse peptides. Automated switching between MS (survey mode) and MS/MS 

(product ion mode) was used to generate sequence tag-specific product ion 

spectra. The data were analysed using Mascot and Scaffold software (Proteome 

Sciences, Toronto, ON). Mascot is a software tool widely used in mass 

spectrometry data analyses to identify peptides from DDA data and Scaffold was 

used to compare protein expression patterns between samples. 

 

2.14.3.2 Data Independent Analysis (DIA) 

We performed data-independent high-definition MSE analysis (Rodriguez-Suarez 

et al., 2013), with ion mobility separation of precursor and mixed pseudo-product 

ion data using a Synapt G2Si instrument with associated NanoAcquity UPLC 

(Waters Corporation, Wilmslow, Cheshire) (Ansari et al., 2015; Burniston et al., 

2014). Data were analysed using Progenesis QI for proteomics (Non-Linear 

Dynamics, Newcastle upon Tyne), with a High-N (n = 3) quantification being used 

to generate quantification data (Silva et al., 2005). An analysis of variance 

(ANOVA) p value of 0.05 was used as a cut-off for significance of differential 

protein identifications. Pathway analysis to identify differentially-regulated proteins 

was performed using Ingenuity Pathway Analysis (IPA; QIAGEN, Redwood City 

CA, www.qiagen.com/ingenuity). Statistical enrichment is calculated by a right-

tailed Fisher’s exact test. 

  

http://www.qiagen.com/ingenuity
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2.15 Preparation of media used in organotypic spinal cord slices  

2.15.1 Preparation of slicing medium 

Slicing medium was prepared with Earle’s balanced salt solution (EBSS), 

supplemented with 100 U/mL penicillin, 100 μg/mL streptomycin and 250 ng/mL 

amphotericin B, and buffered with 25 mM HEPES. Slicing medium was stored at 

4°C and used for up to 4 weeks after preparation. 

2.15.2 Preparation of culture medium  

Culture medium was prepared with 50% minimum essential medium (MEM), 25% 

heat-inactivated horse serum and 25% EBSS supplemented with 36 mM D-

glucose, 100 U/mL penicillin, 100 μg/mL streptomycin and 250 ng/mL 

amphotericin B. Culture medium was stored at 4°C and used for up to 4 weeks 

after preparation. 

2.16 Production of organotypic spinal cord slices  

Spinal cord slices were prepared from the spinal cord of CD1 mice pups, postnatal 

day 0-5 (Weightman et al., 2014). Briefly, under sterile conditions, mice were 

anaesthetised and rapidly decapitated. The limbs, tail and the abdominal organs 

were removed. The surface of the skin was sprayed with ETOH (95%), a scalpel 

was used to make a dorsal midline incision, and the skin flaps retracted to expose 

the spinal column along with retraction of the thick dorsal neck muscles to 

increase the ease of tissue extraction. Using fine microdissecting Vannas spring 

scissors (Stoelting UK), a midline incision was made along the length of the spine. 

The spinal cords were rapidly dissected out from the thoracolumbar region (using 

the point of attachment of the last true rib to define the upper margin for 

dissection) and placed in ice-cold slicing medium. To obtain the slices, the spine 
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was placed on the chopping plate of McIlwain tissue chopper and sliced 

lengthways in the parasagittal plane (350 μm thickness).  

Five to seven slices could be generated from each spinal cord; slices from the 

extreme lateral margins of the cord showed a tendency to fragment therefore they 

were discarded. The dissection microscope was used to check intact slices to be 

used in experiments then intact slices were transferred to pre-cut Omnipore 

membrane ‘confetti’, resting on the Millicell culture insert membrane (2-3 slices on 

each). The culture inserts were placed within 35 mm Petri dishes to improve their 

isolation and reduce contamination risk (Figure 2.4). A single square Petri dish was 

used to hold 3-4 small Petri dishes to provide further protection against the spread 

of any infection present in the culture. Slices were cultured at the air- medium 

interface with an 80% medium change every two days. Spinal cord slices were 

lesioned after 1 day in vitro (DIV) and fixed at 7 days post-transplantation for a 

total of 9 DIV.  

 

Figure 2.4 The production of organotypic spinal cord slices. Schematic 

diagram illustrating the longitudinal section of spinal cords cut and transferred to 

culture inserts. Figure adapted from (Weightman et al., 2014). 
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2.17 Lesioning spinal cord slices  

The medium was refreshed prior to lesioning which was performed inside a 

laminar flow hood using a dissection microscope at 12.5 x magnification. To 

stabilize the slice during lesioning, the confetti shape was designed with elongated 

tabs on the sides to facilitate the use of forceps to hold the confetti and the wall of 

culture insert together as shown in [Figure 2.5 (A)]. Slices were lesioned after 1 

DIV using a tool developed in the laboratory, constructed from two parallel surgical 

blades (size 15) secured into an empty scalpel holder [Figure 2.5 (B)], with small 

lateral movements made to ensure the complete severance of nerve fibre tracts 

(Weightman et al., 2014). Any remaining tissue between the two lesion margins 

was subsequently removed using an aspirator, fitted with a 200 µL pipette tip. 

 

 

Figure 2.5 Inducing defined lesions in spinal cord slice cultures. (A) 

Photograph of the assembled scalpel blades, demonstrating equal spacing along 

the length of the blades which around 439 µm. (B) Slices were lesioned by griping 

an elongated section (red arrow) of confetti (purple) and the insert wall together 

(grey) using forceps to fix the slice. Figure adapted from (Weightman et al., 2014).   
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2.18 Transplantation procedure 

2.18.1 Preparation of NSCs for transplantation 

NSCs were isolated from the SVZ of CD1 mice pups as described in section 2.4 

and cultured in neurosphere medium. Briefly, on the day of transplantation, the 

neurospheres were dissociated into single cells using a mix of accutase and 

DNase I. Cells were resuspended at 1.2 x104 cells in neurosphere medium and 

0.25 μL was pipetted onto the lesion site of spinal cord slices using a Hamilton 

syringe. After one day of lesion, 10 µM MINO treatment and NSCs transplantation 

were started then the slices were incubated at 37oC in humidified 95% air/5% CO2 

for up to one week with the medium changed every two days. Lesioned slice 

cultures without any treatment were used as control and the treated cultures were 

compared to untreated controls from the same experiment. 

 

2.18.2 Labelled NSCs transplantation into organotypic spinal cord 

slices  

For transplantation of labelled NSCs into lesions of the organotypic spinal cord 

slice model, NSCs were labelled using two different ways: 

 

2.18.2.1 DAPI labelling 

Cell labelling is an essential component of various experimental protocols and 

DNA binding dyes such as DAPI are available for live cell labelling because they 

are membrane permeable, cost-effective, easy methodology for live staining and 

has no effects on NSCs viability (Leiker et al., 2008). Therefore, nuclear dye DAPI 

was used for monitoring transplanted NSCs in this study. DAPI can interact with 

both DNA and RNA, and thus can label the cytosolic as well as the nuclear 
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compartments. NSCs were labelled with DAPI at 20 μg/mL for 20 minutes and 

washed twice in PBS. NSCs were grafted into the sites of lesions as above in 

section 2.18.1. Slices were subsequently fixed 2 h and 1 week post-

transplantation. 

 

2.18.2.2 DiD labelling  

1) Labelling NSCs with DiD in monolayer cultures: A lipophilic carbocyanine 

fluorescent tracking dyes such as DiD have the ability to label the cell membranes 

and stain the entire cell. Interestingly, they are widely used for cell transplantation 

in animal experiments due to their ability to trace neuronal connections in both live 

and fixed tissues. Most importantly, these types of dyes have lower cytotoxicity 

compared to cytoplasmic and nuclear dyes and they are easy and rapid to apply 

(Mohtasebi et al., 2014; Progatzky et al., 2013), for these reasons DiD was chosen 

in this experiment.  

 

NSCs in monolayer culture were labelled with DiD according to the manufacturer's 

description. Briefly, stock solution of the dye was prepared in DMSO at 2.5 mg/mL. 

Then 5 µL of stock solution was added to each 1 mL of cell suspension and 

incubated for 20 minutes at 37°C. The labelled suspension was washed twice by 

centrifugation, the supernatant was removed and then cells were resuspended in 

warm medium. Following the second wash, DiD-labelled NSCs were plated in 24-

well plates with coated coverslip at a density of 0.65 x 105 cells/ml (600 µL/well). 

Images were taken immediately and at four days of labelling. 
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2) Labelling NSCs with DiD before transplantation: NSCs were stained with the 

DiD as above then implanted into the lesion site of spinal cord slices, the images 

were taken at the same day of transplantation and at four days post 

transplantation using dynamic time-lapse microscopy as described in section 

2.21.2.  

 

2.19 Fixation  

Cells and slices were washed with PBS and fixed in 4% PFA for 15-20 minutes at 

RT. Following fixation, cells and slices were washed three times with PBS for 5 

minutes to remove fixative, and stored at 4°C prior to immunolabelling. 

 

2.20 Immunocytochemistry 

2.20.1 Immunostaining of cells seeded as monolayers 

Following fixation, non-specific staining was blocked (blocking solution: 5% NDS, 

0.3% Triton-X-100 in PBS) for 30 minutes at RT. Primary antibodies were diluted 

as follows in blocking solution: nestin 1:200, SOX-2 1:1000, H300 1:100, BuGR2 

1:100, β-tubulin III/TUJ-1 1:1000, GFAP 1:500, MBP 1:200, added to the cells and 

incubated overnight at 4°C. Stained cells were washed three times in PBS, 

blocked for 30 minutes at RT and incubated with the appropriate FITC- or Cy3-

conjugated secondary antibody in blocking solution (1:200 dilution, RT; 2 h). Cells 

were then washed three times with PBS at RT, and mounted with DAPI. Table 2.1 

summarises the antibodies used to detect specific cell types and the 

immunostaining protocols. 
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2.20.2 Immunostaining of cryostat sections 

For staining cryostat sections stored in a freezer, the slides were thawed at RT for 

a few minutes. The samples then were surrounded with a hydrophobic barrier 

using a Pap pen to prevent the spreading of reagent over the entire surface of the 

slide and allow using small quantities of reagent with minimal risk of drying. Then 

samples were rinsed twice with PBS. Immunostaining was performed as above in 

section 2.20.1. 

2.20.3 Immunostaining of organotypic spinal cord slices 

Immunocytochemical staining of slices was performed following the protocol as 

described in section 2.20.1. However, the blocking solution for lectin consisted of 

10% NDS in PBS to reduce non-specific background staining during the longer 

incubation periods. The incubation length of lectin was increased to 36 h (at 4oC) 

to facilitate antibody penetration through the tissue. Whereas the blocking solution 

for TUJ-1 and GFAP staining consisted of 5% NDS in PBS with 0.3% Triton X-100 

and the incubation times were for 24 h at 4oC to further facilitate antibody 

penetration. Samples were incubated with lectin (1:200), (TUJ-1; 1:1000) and 

(GFAP; 1:500) in blocking solution. Following PBS washes, samples were 

incubated with FITC-conjugated secondary antibodies (1:160 anti-biotin, otherwise 

1:200), the incubation times were increased from 2 h at 4oC, to 3 h at 4oC for anti-

biotin and 4 h at RT or 4oC for TUJ-1 and GFAP. Slices were subsequently 

washed three times with PBS and mounted with Vectashield mounting medium 

containing DAPI. 
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Table 2.1 Antibodies and Immunostaining Protocols 

Antibody Supplier Blocking solution in 

phosphate buffered 

saline (PBS) 

Antibody 

concentration 

Description 

Mouse anti-nestin neural stem 

cell marker 

BD Biosciences, 

Oxford, UK 

5% serum, 0.3% Triton 1:200 NSCs cytoskeletal 

protein 

Rabbit anti-SOX-2 neural stem 

cell marker 

Millipore, 

Watford, UK, 

5% serum, 0.3% Triton 1:1000 Transcription factor 

express in NSCs 

Rabbit anti-GFAP astrocyte 

marker 

DakoCytomatio

n Ely, UK 

5% serum, 0.3% Triton 1:500 Cytoskeletal protein in 

astrocytes 

Rabbit anti-TUJ-1 neuron 

marker and mouse anti-TUJ-1 

neuron marker 

Covance, 

Princeton, TJ, 

USA 

5% serum, 0.3% Triton 1:1000 Major constituent of 

microtubules in neuronal 

cell bodies and axons 

Rat anti-MBP, oligodendrocyte 

marker 

Serotec 

Kinlington, UK 

5% serum, 0.3% Triton 1:200 Main component of 

myelin produced by 

oligodendrocytes 
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Rabbit anti-glucocorticoid 

receptor, H300 

Santa Cruz 

Biotech, USA 

5% serum, 0.3% Triton 1:100 Glucocorticoids receptor 

Mouse anti- glucocorticoid 

receptor, BuGR2 

Abcam, U.K. 5% serum, 0.3% Triton 1:100 Glucocorticoids receptor 

Lectin (Lycopersicon 

esculentum, biotin-conjugated), 

microglial marker 

Sigma-Aldrich, 

U.K. 

5% serum 1:160 A protein lectin with 

specific affinity for poly-

N-acetyl lactosamine 

sugar residues which are 

located on the plasma 

membrane and in the 

cytoplasm of microglia 

Rabbit anti- growth associated 

protein GAP-43 

Abcam, U.K. 5% serum, 0.3% Triton 1:500 Major component of the 

motile "growth cones" 

that form the tips of 

elongating axons 
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2.21 Microscopy and image analyses 

2.21.1 Fluorescence microscopy 

A Leica DM IL LED inverted microscope fitted with a DFC 420 C digital camera 

and a pE-300 W CoolLED fluorescence unit, was used to capture images from 

well-plates using the Leica Application Suite imaging software, version 3.3.1. 

Fluorescence images were taken using an Axio Scope A1 microscope equipped 

with an Axio Cam ICc1 digital camera and AxioVision software (release 4.7.1, Carl 

Zeiss MicroImaging GmbH, Goettingen, Germany). Photoshop CS3 (Adobe, USA) 

was used to merge counterpart images; three channels were merged to form 'triple 

merge’ images. At least four microscopic fields were captured per condition for 

subsequent analysis using ImageJ software. To validate proteomic findings 

regarding GAP-43 expression, fluorescence micrographs of control and CS-

treated NSCs and their daughter cells (neurons) were taken. The relative 

expression of GAP-43 protein was quantified using optical density measurements 

of individual cells (minimum of 30 nestin+ NSCs and TUJ-1+ neurons four images 

per condition per culture). Briefly, using ImageJ software, fluorescence images 

were converted to grayscale, inverted and calibrated using an optical density step 

tablet before fluorescent intensity readings were taken from each cell expressing 

GAP-43. Readings were taken to correct for background fluorescence, these 

values then subtracted from the mean fluorescence intensity value obtained from 

the cells, with the resulting value representing a measure of the extent of GAP-43 

expression in NSCs and neurons.  
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2.21.2 Dynamic time-lapse microscopy 

Lesioned spinal cord slices (within 35 mm Petri dishes) at two DIV were placed in 

an incubation chamber (preheated to 37 °C; 5% CO2 /95% humidified air) on an 

time-lapse microscope (Axiozoom V16, AxioCam ICm1 camera Carl Zeiss, 

Germany). Time-lapse imaging commenced on the same day as transplantation of 

NSCs. Lesioned slices 4 days post-transplantation were similarly recorded to 

observe the NSCs labelled with DiD in the injury sites.  

 

2.22 Histological analyses of NSCs culture properties 

Assessment of cell health in monolayer and neurosphere cultures within each 

experimental conditions was quantified via culture characterisation such as 

average cell count (the number of nuclei/image), culture purity (percentage of 

nuclei co-localised with nestin+ or SOX-2+ expression) and incidence of pyknosis 

(as a percentage of healthy plus pyknotic nuclei) which was identified by nuclear 

shrinkage, fragmentation or DNA condensation. Cells were stained with DAPI and 

the percentage of DAPI-stained nuclei exhibiting pyknotic features was expressed 

as a proportion of total DAPI-stained nuclei. 

For daughter cell types (neurons, astrocytes, and oligodendrocytes), the number 

of TUJ-1 (neuron), GFAP (astrocyte) or MBP (oligodendrocyte) expressing cells 

were expressed as a proportion of at least 100 viable DAPI-stained nuclei over a 

minimum of four microscopic fields per condition.  

The culture characteristics, experimental outcomes and cellular assessments in 

NSCs parent cells (monolayer and neurosphere experiments) and their daughter 

cells were quantified using fluorescence images, which were taken from four 

random fields with at least 100 nuclei assessed from each experimental condition.  
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2.23 Histological analyses of organotypic spinal cord slice culture 

2.23.1 Slice viability  

An assay was used to investigate the proportions of live and dead cells within 

slices before and after lesioning, using live/dead staining (Weightman et al., 2016, 

2014). Spinal cords were extracted from P0-P5 mice, lesioned after 1 DIV and 

fixed 8 days post-lesioning (n = 5). Fluorescence micrographs (live; green and 

dead; red) of each slice were captured at 50 x magnification with same exposure 

settings. The micrographs were converted into greyscale, ImageJ software was 

used to calculate the corrected integrated density from both live and dead stained 

micrographs (Weightman et al., 2014).  

 

2.23.2 Astrocyte reactivity analysis  

An assay was devised to quantify the relative expression of GFAP (as a function of 

immunofluorescence intensity) at slice lesion margins versus areas in the body of 

the slice. Spinal cords were extracted from P0-P5 mice, lesioned after 1 DIV and 

fixed 8 days post-lesioning (n = 5). Each half of a lesioned slice was stained with 

GFAP to quantify the relative expression of GFAP at slice lesion margins across 

experimental conditions. Separate images were taken for each half of a lesioned 

slice at 100 x magnifications with the same exposure setting across all images. 

Fluorescence images were converted to grayscale using ImageJ software and 400 

μm lines were drawn into the slice body of each image. Then, three points were 

marked along the length of the lesion margins to show the part of the lesion edge. 

Optical density profiles were measured using ImageJ software (Weightman et al., 

2014). 
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2.23.3 Quantification of nerve fibre outgrowth  

The average outgrowth density and variation of outgrowth density of nerve fibres 

were quantified across lesion sites. Spinal cords were extracted from P0-P5 mice, 

lesioned after 1 DIV and fixed 8 days post-lesioning (n = 5). Fluorescence 

micrographs of slices immunostained with TUJ-1 antibodies were used to generate 

optical density profiles in ImageJ software of the number of TUJ-1+ nerve fibres 

parallel to the lesion margins, across the width of the slice regions demonstrating 

nerve fibre outgrowth. Fluorescence micrographs were generated at 200 x 

magnification. A rectangular grid was subsequently overlaid onto each image, with 

marks at 20 μm intervals along the length of the lesion site. Optical density profiles 

were then generated at the level of each interval, across the width of the slice 

regions with nerve fibre outgrowth (Weightman et al., 2014).  

 

2.23.4 Microglial infiltration analysis  

The number of microglia was quantified in the lesion sites to assess the microglia 

infiltration. Spinal cords were extracted from P0-P5 mice, lesioned after 1 DIV and 

fixed 8 days post-lesioning (n = 5). The numbers of lectin-positive (lectin+) 

microglia were counted within the lesion site of each slice. The total number of 

microglia per unit area per slice was averaged at each experimental condition 

(Weightman et al., 2014).  
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2.24 Statistical analysis  

All experimental data were analysed using Prism statistical analysis software 

(GraphPad, USA; version 7.0) and all data are presented as mean ± standard 

error of the mean (S.E.M). Data were analysed by one-way ANOVA with post-hoc 

analysis carried out using Bonferroni’s multiple comparison test (MCT). Optical 

density measurements of GAP-43 expression were averaged for each 

culture/condition and then analysed by unpaired t test. The numbers of 

experiments (n) relate to the number of cultures, each generated from a different 

litter. 
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Chapter 3 

Histological study to evaluate the 

effects of CS treatment on NSCs 

propagated in monolayer cultures 
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3.1 Introduction 

CSs are small lipid-soluble molecules which can readily pass through the BBB and 

bind to intracellular receptor to exert their effects on the CNS (Joëls, 1997). CSs 

are widely used in the treatment of a range of paediatric/adult clinical conditions, in 

addition to their use following stem cell transplantation therapy to reduce 

inflammation and graft rejection (Garrison et al., 2000; Mazzini et al., 2015; Rhen 

and Cidlowski, 2005). However, a number of neurological studies demonstrate the 

detrimental effects of CS including cerebral palsy and neurodevelopment 

impairment (Chari, 2014; Shinwell and Eventov-Friedman, 2009). There is 

increasing evidence that CSs can adversely influence key biological properties of 

NSCs but the molecular mechanisms underpinning such effects are largely 

unknown (Melanie et al. 2014). This is an important issue to address given the key 

roles NSCs play during brain development and as transplant cells for regenerative 

neurology. 

A number of in vivo and in vitro experimental studies have suggested that at least 

some of the adverse consequences of CS mediated via effect on NSCs. In this 

respect, several studies demonstrated that CSs alter the phenotype of NSCs such 

as proliferation and differentiation. For instance, it was found that the exposure 

of NPCs to DEX leads to a reduction of the differentiation of astrocytes without any 

effects on the neuronal differentiation and oligodendrocytes (Sabolek et al. 2006; 

Wagner et al. 2009). In 2010, Bose et al. found that DEX treatment reduces the 

proliferation of rat NSCs without any effects on the differentiation in vitro 

experimental model (Bose et al., 2010). Similar in vitro and in vivo results have 

shown that DEX reduces the proliferation of adult rat NPCs without any effects on 

differentiation (Kim et al., 2004). Another in vitro study observed that DEX reduces 
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the growth of NPCs without promoting cell death while, in vivo study found that 

DEX significantly reduces the somatic and brain weights (Ichinohashi et al. 2013). 

Also, it was found that CORT markedly decreases the survival and differentiation 

of embryonic NPSCs without any effects on the proliferation in vitro (Odaka et al., 

2016). Additionally, in vitro SCI mouse model have observed the anti-proliferative 

effects of MPRED on the endogenous NPCs (Li et al., 2012). Similar in vitro 

studies have shown the anti-proliferative effects of CS on NPCs derived from the 

adult hippocampus (Obermair et al., 2008; Schröter et al., 2009; Wang et al., 

2014).  

Based on the above studies, CS-mediated reduction in the proliferation of 

NSCs and alteration of their differentiation may account for some of the 

observed behavioural and neurodevelopmental consequences after CS 

treatment. 

In regard to CS effects on the apoptosis of NSCs and NPCs, in 2008, Noguchi et 

al. treated P7 (postnatal seven days) mice with DEX to examine its effect on 

NPCs. They found that DEX induces apoptosis specifically in the NPCs of the 

cerebellar external granule layer. Also, both DEX and BETA were found to induce 

the apoptosis of NPCs in the cerebellar external granule layer of mice (Noguchi et 

al., 2008, 2011). In 2012, Mutsaers and Tofighi studied the effects of CS on the 

phenotype of mouse NSCs and the mechanisms underlying their effect. They 

demonstrated that the exposure of mouse NSCs to CSs increased their 

susceptibility to 2,3-methoxy-1,4-naphthoquinone-induced apoptosis and this 

effect is mediated by the stimulation of GRs (Mutsaers and Tofighi, 2012). Using in 

vivo experimental rat model, Sze and colleagues gave injections of DEX to the 

animals on P1 and then sacrificed these on P2, P3, P5 and P7. They divided the 
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animals into two groups: the first one was treated with DEX and the second group 

injected with the same volume of normal saline as control group. Their findings 

demonstrated that the administration of DEX caused apoptosis of NPCs in the 

hippocampus of rat pups (Sze et al., 2013). Whereas, Bhatt and colleagues found 

that CSs induced the apoptosis of NPCs derived from the SVZ and dentate gyrus 

of the developing rat brain by increasing caspase 3 activity and DNA 

fragmentation. Further, they observed a reduction in the body and brain weights 

following CS treatment compared with the control (Bhatt et al., 2013). The 

discrepancy between these various experiments may be due to the variations in 

experimental design, differences in methodology and the deferent origin of cells. 

Table 3.1 summarises a number of in vitro and in vivo experiments investigating 

CS effects on neural cells.  

Taken together, the findings from above studies suggest that CS treatment 

can detrimentally affect NSCs proliferation, differentiation and survival, 

potentially resulting in neurological deficits. However, the literature 

pertaining to CS effects on NSCs contains contradictory information 

regarding the adverse influence of CS on key biological properties of NSCs 

illustrating the need for a systematic study of CS effects on the fate of NSCs. 

  

As described in the general introduction section 1.3.3, NSCs are routinely 

propagated in neuroscience laboratories using two distinct culture systems: as 2-D 

adherent cells termed monolayers and 3-D cell aggregates in suspension, termed 

neurospheres. Importantly, these two culture systems are used when expanding 

NSCs (including human NSCs) for pre-clinical and clinical cell transplantation. In 
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general, both culture systems of NSCs behave in different manner and that may 

cause an effect on the regenerative outcomes after CS treatment. It is therefore 

important to investigate the effects of CS on the fate of the NSCs propagated in 2-

D and 3-D culture systems. This chapter aims to investigate the effects of three 

clinically relevant drugs of CS on NSCs when grown in monolayer culture.  
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Table 3.1 Summary of in vitro and in vivo experiments investigating effects of CS on neural cells 

Type 

of 

study 

CS Species 

 

Type 

of 

cells 

Neurological effects Reference 

 

 

 

 

In 

vitro 

DEX Rat NPCs Reduces the proliferation of NPCs and the 

differentiation of astrocyte 

(Wagner et al., 2009) 

DEX Rat NPCs Reduces the proliferation of NPCs  (Kim et al., 2004) 

DEX Rat NSCs  Reduces the proliferation of the parent NSCs 

and changes the expression of genes of the 

cell cycle, cellular senescence and 

mitochondrial function 

(Bose et al., 2010) 

DEX Rat NPCs Reduces the growth of NPCs without 

promote cells death 

 

(Ichinohashi et al., 

2013) 

MPRED Mouse NPCs Reduces the proliferation of NPCs by 

changing gene expression 

(Li et al., 2012) 
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In 

vivo 

DEX Mouse NPCs Induces apoptosis specifically in the NPCs of 

the cerebellar external granule layer 

(Noguchi et al., 2008)  

DEX Mouse NSCs Alters the phenotype of NSCs and increase 

their susceptibility to 2,3-methoxy-1,4-

naphthoquinone-induced apoptosis 

(Mutsaers and 

Tofighi, 2012) 

DEX and 

BETA  

Mouse NPCs Induce apoptosis of NPCs (Noguchi et al., 2011) 

DEX Rat NPCs Reduces the body and brain weight and 

induces apoptosis of NPCs 

(Bhatt et al., 2013) 

DEX Rat NPCs Induces apoptosis of NPCs (Sze et al., 2013)  

DEX Rat NPCs Reduces the body and brain weight and 

induces apoptosis in the hippocampus 

(Ichinohashi et al., 

2013) 
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3.2 Chapter objectives  

This chapter was undertaken to investigate the effects of three different types of 

CS at three different concentrations on NSCs in monolayer cultures.  

The objectives of this chapter are: 

1. To investigate the effects of CS on NSCs survival/proliferation. 

2. To investigate the effects of CS on the generation of daughter cells from 

NSCs. 

 

3.3 Results 

3.3.1 Physiological potency of CS preparations 

CSs are known to affect the proliferation and morphology of immune cells such as 

microglia (Jenkins et al., 2014). Therefore, primary microglial cells were used for 

positive-control experiments. Primary microglial cells treated with 10 µM of all 

three types of CS (DEX, PRED and MPRED) to assess the biological efficacy of 

these drug preparations. Phase-contrast microscopy showed there is a reduction 

in cell number and alteration in the morphologies of microglial cells in CS treated 

microglia versus untreated cells. The treated cells were appeared as floating and 

rounded compared to branching ramified untreated cells, confirming the biological 

potency of the CS preparations (Figure 3.1). Also, the spectrophotometrically 

confirmed that drug doses were appropriate for eliciting cellular responses. 
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Figure 3.1 Assessment of the biological efficacy of CS preparations. (A) 

Phase contrast micrograph depicting primary culture of microglia in vehicle control. 

(B, C and D) are showing a reduction in cell number and altered morphologies of 

microglia following CSs treatment (48 h CSs, 10 μM).  
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3.3.2 Effects of CS on the number and proportion of NSCs  

To determine the effects of CS on NSCs, the monolayer cultures were treated with 

three different types of CS (DEX, PRED and MPRED) in various concentrations 

(0.1 μM, 1 μM and 10 μM). The numbers of NSCs were counted after 48 h of 

incubation. Immunostaining for nestin revealed that 10 μM of all three types of CS 

significantly reduced the total counts of NSCs compared with control (Figure 3.2A-

G). Monolayer cultures showed elongated and bipolar morphologies typical of 

NSCs and were of high purity as judged by immunostaining. The number of nestin 

positive cells was quantified in all conditions to assess NSCs ‘stemness’. Here, 

>99% of cells were nestin positive across all conditions. Accordingly, no 

differences in proportions of nestin positive cells were observed between 

treatment conditions and controls (Figure 3.2H-J).  
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Figure 3.2 Effects of CS on the number and proportion of NSCs. Fluorescence 

images showing nestin positive NSCs in vehicle control (A) and 10 μM CSs treated 

NSCs (B, C and D). (E, F and G) Bar charts displaying the total number of NSCs 

per field across treatment conditions following CSs treatment. (H, I and J) Bar 

charts showing the proportions of nestin positive NSCs across all conditions 

following CSs treatment. (48 h CSs; 0.1 μM, 1 μM and 10 μM); **p<0.01 versus 

vehicle control NSCs; one-way ANOVA, Bonferroni’s post-test with error bars 

representing SEM. Cell counting was carried out in six biological replicates, with 

two technical replicates in each experiment.   
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3.3.3 Effects of CS on the proliferation and cell cycle of NSCs  

EdU proliferation assay was used to assess the proliferative capacity of the NSCs 

in monolayer cultures following CS treatment, as detailed previously in Chapter 2 

section 2.10. The highest concentration (10 μM) of CSs significantly decreased 

the percentage of EdU+ cells i.e. decreased the proliferation of NSCs (Figure 3.3). 

Additionally, cell cycle analysis was employed to assess whether the reduction of 

NSCs proliferation is associated with changes in the proportions of cells in 

individual phases of the cell cycle after CSs treatment. The results showed that in 

parallel with reduced proliferation, the exposure of NSCs to the highest 

concentration (10 μM) of CSs led to a significant increase of cells in the G0/G1 

phase and to a parallel decrease of cells in both S and G2/M phases, when 

compared with controls (Figure 3.4). 
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Figure 3.3 Effects of CS on the proliferation of NSCs. Triple merged 

fluorescence images depicting EdU positive NSCs in vehicle control (A) and 10 μM 

CSs treated NSCs (B, C and D), an asterisk denotes double-labelled cells; 

arrowhead indicates NSCs that did not express EdU marker. (E, F and G) Bar 

charts showing proportions of EdU incorporating cells across treatment conditions. 

(48 h CSs; 0.1 μM, 1 μM and 10 μM); **p<0.01 versus vehicle control NSCs; one-

way ANOVA, Bonferroni’s post-test with error bars representing SEM. Proliferation 

assay  was carried out in three biological replicates, with two technical replicates in 

each experiment.    
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Figure 3.4 Effects of CS on the cell cycle of NSCs. (A) Bar chart showing the 

percentage of the cells in G0/G1, S and G2/M phases of cell cycle following DEX 

treatment. (B) Bar chart displaying the percentage of cells in G0/G1, S and G2/M 

phases of the cell cycle following PRED treatment. (C) Bar chart showing the 

percentage of cells in G0/G1, S and G2/M phases of the cell cycle following 

MPRED treatment. (48 h CSs; 0.1 μM, 1 μM and 10 μM); **p<0.01 versus 

untreated and vehicle control NSCs; one-way ANOVA, Bonferroni’s post-test with 

error bars representing SEM. Cell cycle analysis was carried out in three biological 

replicates, with three technical replicates in each experiment.    
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3.3.4 Effects of CS on the viability of NSCs  

Live/dead staining was used to assess the effects of CS on the viability of NSCs. 

NSCs were treated with DEX, PRED and MPRED at three different concentrations 

(0.1 μM, 1 μM and 10 μM). The viability assay was performed following 48 h of 

CSs treatment on NSCs in monolayer cultures. After live/dead staining, the 

majority of cells had normal bipolar NSCs morphologies appearing green (LIVE) 

with small numbers of rounded cells appearing red (DEAD) in all conditions 

(Figure 3.5A-D). Live/dead staining reveals high cellular viability after CS 

treatment at all doses, similar to the viability of control cultures (Figure 3.5E-G). 
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Figure 3.5 Effects of CS on the viability of NSCs. Representative live/dead 

fluorescence images of vehicle control (A) and 10 μM CSs treated (B,C and D) 

NSCs 48 h after CSs treatment. LIVE cells appear green and DEAD cells appear 

red (arrows). (E, F and G) Bar charts showing the proportion of viable cells, (48 h 

CSs; 0.1 μM, 1 μM and 10 μM); no significance; one-way ANOVA, Bonferroni’s 

post-test with error bars representing SEM. Viability assay was carried out in three 

biological replicates, with two technical replicates in each experiment.   
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3.3.5 Effects of CS on the apoptosis and pyknosis of NSCs  

Annexin V staining was used to assess the apoptosis of NSCs following 48 h of 

CSs treatment. NSCs were treated with DEX, PRED and MPRED at three different 

concentrations (0.1 μM, 1 μM and 10 μM). The results showed that the apoptosis 

of NSCs remained low (ca. 4%) across all conditions following CS treatments 

(Figure 3.6A-C). The numbers of pyknotic nuclei (i.e. shrunken or fragmenting 

morphologies) in NSCs monolayer cultures were assessed by DAPI staining 

following CSs treatment. Across all treatment conditions a small proportion (<2%) 

of nuclei were observed as pyknotic (Figure 3.6D-H). These findings suggest that 

all three type of CS did not affect the apoptosis and pyknosis of NSCs in 

monolayer cultures. 
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Figure 3.6 Effects of CS on the apoptosis and pyknosis of NSCs. (A, B and C) 

Bar charts displaying the percentage of apoptotic cells following CSs treatment. 

The pyknosis of NSCs in monolayer cultures were assessed by identifying cells 

with fragmenting and condensing nuclei. (D and E) fluorescent images showing 

the pyknotic nuclei (red arrows indicate same pyknotic nuclei in main image and 

inset). Healthy nuclei were associated with adherent cells and normal nestin 

staining (white arrows indicate same cells in main image and inset). (F, G and H) 

Bar graphs displaying the percentage of pyknotic nuclei following CSs treatment, 

(48 h CSs; 0.1 μM, 1 μM and 10 μM); no significance; one-way ANOVA, 

Bonferroni’s post-test with error bars representing SEM. Apoptosis assay was 

carried out in three biological replicates, with three technical replicates in each 

experiment.  Pyknotic nuclei were carried out in six biological replicates, with two 

technical replicates in each experiment.   
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3.3.6 Effects of CS treatment on the differentiation of NSCs  

Part of the therapeutic potential of NSCs depends on their ability to produce their 

daughter cells for replacing neural cells that are damaged following neurological 

injury and disease. Therefore, the differentiation assay was conducted to assess 

the effects of CS on the proportion of each daughter cell type. Daughter cells 

produced from CS-treated NSCs populations were treated with three different 

types of CS (DEX, PRED and MPRED) in various concentrations (0.1 μM, 1 μM 

and 10 μM). 

Fluorescence micrographs of astrocytes showed similar staining profiles and 

morphologies in vehicle control and treated cultures, suggesting no significant 

difference on astrocyte morphology/maturation following 9 days of CS treatments 

(Figure 3.7A-D). There was also no significant difference in numbers, and 

proportion of astrocytes per field that were derived from NSCs across all treatment 

groups (Figure 3.7E-J). 

 

In contrast to astrocytes, the highest concentration (10 μM) of CSs reduced 

significantly the number and proportion of neurons compared to control (Figure 

3.8A-J). 10 μM CSs treatment also resulted in a significant reduction in the length 

of axons compared to the untreated cells (Figure 3.8K-M). 

 

Additionally, the microscopic observations suggested that oligodendrocytes in 10 

μM of CSs-treated cultures had a greater membrane surface area with extensive 

and complex branching of processes (Figure 3.9A-D). The results also showed no 

difference in the number and proportion of oligodendrocytes generated per field 

after CSs treatment (Figure 3.9E-J). The maturation of oligodendrocytes was 
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confirmed by the total cell area measurements wherein control cells and vehicle 

showed less maturation of oligodendrocytes, while 10 μM CSs-treated cells 

accelerated the maturation profile of oligodendrocytes (Figure 3.9K-M). These 

findings suggested that 10 μM of DEX, PRED and MPRED reduced the number 

and the axonal length of neurons and increased the maturation of 

oligodendrocytes without any effects on the number and proportion of astrocytes 

and oligodendrocytes. 
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Figure 3.7 CSs treatment showed no effect on astrocytes generated from 

NSCs. Representative fluorescence micrographs depicting astrocytes generated 

from vehicle control (A) and 10 μM CSs-treated (B, C and D) differentiated NSCs. 

(E, F and G) Bar charts displaying the total number of GFAP + cells per field. (H, I 

and J) Bar charts showing the proportion of astrocytes. (9 days CSs; 0.1 μM, 1 μM 

and 10 μM); no significance; one-way ANOVA, Bonferroni’s post-test with error 

bars representing SEM. Cell counting was carried out in six biological replicates, 

with two technical replicates in each experiment. 
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Figure 3.8 CSs treatment altered neuron cell number and morphology. 

Fluorescence micrographs of neurons derived from vehicle control (A) and 10 μM 

CSs-treated (B, C and D) differentiated NSCs. (E, F and G) Bar charts quantifying 

the number of TUJ 1+ neurons per field across treatment conditions. (H, I and G) 

Bar charts showing the proportion of neurons across all treatment conditions. (K, L 

and M) Bar charts showing the axonal length of neurons across all conditions. (9 

days CSs; 0.1 μM, 1 μM and 10 μM); **p < 0.01 versus vehicle control; one-way 

ANOVA, Bonferroni’s post-test with error bars representing SEM. Cell counting 

was carried out in six biological replicates, with two technical replicates in each 

experiment.   
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Figure 3.9 CSs treatment increased the maturation of oligodendrocytes. 

Fluorescence micrographs of oligodendrocytes generated from vehicle control (A) 

and 10 μM CSs treated (B, C and D) differentiated NSCs. Note the different 

morphologies and membrane surface areas of MBP+ oligodendrocytes in treated 

cultures. (E, F and G) Bar charts showing the number of oligodendrocytes per field 

across treatment conditions. (H, I and G) Bar charts showing the proportion of 

oligodendrocytes. (K, L and M) Bar charts showing the measurement of 

oligodendrocyte area across treatment conditions. (9 days CSs; 0.1 μM, 1 μM and 

10 μM); *p < 0.05 versus vehicle control; one-way ANOVA, Bonferroni’s post-test 

with error bars representing SEM. Cell counting was carried out in six biological 

replicates, with two technical replicates in each experiment.   
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3.4. Discussion 

This study was performed to investigate the impact of synthetic CSs on NSCs 

using isolated mouse NSCs as in vitro experimental model. All three types of CS 

that were used in this study have clearly affected the primary microglia culture 

proving that the drug concentrations used are physiologically active.  

 

The data presented in this chapter suggests that the exposure to the highest CSs 

concentration induced a reduction in cell number and proliferation of NSCs without 

any effects on viability and apoptosis. The percentage of EdU+ NSCs was 

significantly reduced at this concentration. In parallel, cell cycle assay results 

suggest that CSs treatment on NSCs affect their cell cycle phases.  

 

The findings from this study are in agreement with several previous studies, it was 

demonstrated that CS had inhibitory effect on the proliferation of NSCs. For 

example, the high concentrations of cortisol (100 µM) decreased on the human 

foetal hippocampal progenitor reduce the proliferation and neuronal differentiation 

(Anacker et al., 2013). In contrast, Bose and colleagues found that 48 h treatment 

with 1 µM of DEX led to reduce the proliferation of NSCs with no changes seen in 

the cell survival or differentiation. They observed that DEX changed the 

expression of genes of the cell cycle, cellular senescence and mitochondrial 

function (Bose et al., 2010). Also, Sippel and colleagues reported that DEX 

treatment resulted in reduced the proliferation of NPCs and reduced the 

expression of BRUCE/Apollon, an apoptosis inhibitor protein family member 

family. They demonstrated the essential role of BRUCE in controlling cell division 

in NPCs (Sippel et al., 2009). While, Li and colleagues showed that MPRED had 
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inhibitory effects on the proliferation of NPCs by decreasing the levels of 

endothelin receptor type B protein, which involved in regulating the proliferation 

and apoptosis of endogenous neural precursors cells (Li et al., 2012).  

 

In terms of cellular processes, the present study found that all three types of CS at 

10 µM reduced neurogenesis and axonal length. The differentiation findings from 

this study are broadly in line with several previous studies, for example, Chetty et 

al. found that CORT caused a reduction in the percentage of neurons in the 

hippocampus of adult rats (Chetty et al., 2014). Most importantly, the neurological 

experimental studies have shown that CS at high levels induced changes in 

neurogenesis. Several preclinical studies have demonstrated that GCs, especially 

DEX impaired neurogenesis and induced apoptosis of mature neurons. For 

example, YU and colleagues were used phenotype-specific genetic and antigenic 

markers to examine the fate NPCs which were obtained from the hippocampus of 

rats after neonatal DEX treatment during neonatal development. They were found 

that neonatal DEX treatment induced apoptosis among the proliferating population 

of cells in the dentate gyrus (Yu et al., 2010). In vivo and in vitro experiments 

conducted by Kim and colleagues have studied the effects of DEX on two month-

old-adults rats which were received daily injections of DEX for 9 days their results 

demonstrated that DEX reduced the proliferation and the neurogenesis of NPCs 

(Kim et al., 2004). The effects of CSs on neurogenesis process are implicated in 

the regulation of cognition, mood, depression and emotional dysfunction (Balu and 

Lucki, 2009; Drew et al., 2010; Saxe et al., 2006; Snyder et al., 2012). 
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Also, the present results showed that CSs treatment did not affect the proportion 

of NSCs differentiating into astrocytes or oligodendrocytes. In contrast, Sabolek et 

al. observed that CS exposure led to a reduction in astrocyte differentiation 

(Sabolek et al., 2006). This discrepancy may be due to the variations in culture 

protocols, as they examined the effects of CS on NSCs derived from rat midbrain 

which were differentiated for 14 days in the absence of N2 supplement whereas in 

this present study CSs effect was examined on NSCs derived from SVZ region 

from mouse brain in the absence of growth factor and in the presence of N2 

supplement. Therefore, the discrepancy in these results could be due to the 

differences in methodology and the different origin of NSCs. 

 

Additionally, CSs were found to accelerate the maturation of newly generated 

oligodendrocytes, a finding with potential implications for the myelination process. 

Oligodendrocytes, the myelinating cells of the CNS pass through many stages of 

development before their final maturation to generate myelin sheath (Baumann 

and Pham-dinh, 2001). Therefore, any morphological changes of these cells could 

affect the process of myelination. Jenkins et al. studied direct actions of DEX on 

OPCs in culture. No effects were found on OPC proliferation and survival, or 

oligodendrocyte maturation following DEX treatment (Jenkins et al., 2014). This 

discrepancy could be due to different cultures (mixed culture in this study versus 

purified culture in the study by Jenkins et al) and detection times after CSs 

treatment (9 days in this study versus 72 h in the study by Jenkins et al). The 

interesting suggestion of CS-based effects on the maturity of oligodendrocytes in 

this study may be due to direct effects of CS on the oligodendrocytes or indirect 

effect mediated via other neural cell types (NSCs or neurons). Further, the known 
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CS effects on myelin genesis (Chari et al., 2006; Clarner et al., 2011) may 

alternatively be mediated via changes in the interactions of newly generated 

oligodendrocytes with axons in the developing nervous system; this is normally a 

highly spatially and temporally controlled process. Premature maturation of 

oligodendrocytes can be predicted to result in aberrant myelination. 

  

Taken together, the findings from the histological analysis of this study suggest 

that the low concentrations of CS did not show any effects on NSCs in comparison 

with control group. In contrast, all three types of CS at highest concentration 

reduced the proliferation and neural differentiation of NSCs without any effects on 

their viability and apoptosis.  
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Chapter 4 

Histological study to evaluate the 

effects of CS treatment on NSCs 

propagated in neurosphere cultures 
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4.1 Introduction 

The neurosphere is one of the most useful and commonly used techniques used in 

expanding and propagating NSCs. In 1992, Reynold and Weiss successfully 

isolated neurospheres from adult mouse brains and showed their ability to 

differentiate into neurons and astrocytes (Reynolds and Weiss, 1992). Commonly, 

mouse and rat neurospheres are isolated from embryonic or adult SVZ (Conti and 

Cattaneo, 2010). A single-cell suspension is plated in low-attachment tissue 

culture plastic dishes in the presence of N2 or B27 supplemented and growth 

factors to form floating balls of cells (Conti and Cattaneo, 2010; Jensen and 

Parmar, 2006; Rahman et al., 2015). 

In addition to the important role of neurosphere cultures in isolating and expanding 

NSCs, they have been shown to be very useful as an in vitro model system for 

neurogenesis and neural development studies (Jensen and Parmar, 2006). 

Interestingly, both monolayer and neurosphere culture systems are commonly 

used to propagate and expand NSCs for cell transplantation (Bose et al., 2015; 

Conti et al., 2006; Jensen and Parmar, 2006; Kornblum, 2007) and both systems 

have associated advantages and disadvantages for this purpose (Table 4.1). 
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Table 4.1 Summary of advantages and disadvantages between monolayer 

and neurosphere culture formats for NSCs 

Neurosphere format 

(3-D suspension NSCs) 

Monolayer format 

 (2-D adherent NSCs)  

Technically easy to culture  

 

Technically more challenging 

High cell density in small surface area 

 

Cells occupy greater surface area  

Non-uniformity of cell exposure to 

environmental factors  

Uniform exposure of cells to 

environmental factors  

High survival post-transplantation  

 

Lower viability post-transplantation  

More difficult to monitor single cells  

 

Single cells easily monitored  

Table adapted from (Weinberg et al., 2015). 
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The differences in the features of each culture impact the choice of culture system 

when using NSCs in transplantation after neurological disease/injury. There are 

several factors which may influence the potential mechanisms of recovery after 

transplantation. For example, the nature of the NSCs population is one of these 

factors that could affect the capacity of the transplanted cells. It was observed that 

the original source of engrafted cells, isolation and preparation methods could 

influence the fate of transplanted cells (Hooshmand et al., 2009). Further, the type 

of culture system that is used in isolation and propagation of NSCs could impact 

the heterogeneity and differentiation of NSCs. For example, NSCs maintained as 

monolayer cultures are more homogenous when compared to neurosphere 

cultures, which are a heterogeneous population of cells (Conti and Cattaneo, 

2010; Jensen and Parmar, 2006). It was found that each neurosphere contains in 

addition to NSCs, other types of cells at various stages of differentiation such as 

neurons and glia (Suslov et al., 2002). The heterogeneity of neurospheres 

increases with the sphere size and within longer time in culture because 

neurospheres produce more differentiated cell types (Jensen and Parmar, 2006).  

Interestingly, the transplantation of NSCs grown as neurospheres displays several 

advantages. For example, cells derived from neurosphere cultures are thought to 

show greater survival after transplantation in the site of injury because of their 

ability to maintain cell-cell communication (Mothe et al., 2008). It was found that 

cell transplantation as a neurosphere shows more than a threefold greater survival 

rate after two weeks of transplantation in the intact spinal cord when compared to 

transplantation of dissociated cells. Therefore, transplantation of neurospheres is 

thought to be more useful for enhanced cell survival after transplantation versus 

cells derived from monolayers (Mothe et al., 2008).  
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Furthermore, neurosphere cultures generate more cells within a smaller surface 

area when compared to monolayer cultures (Conti and Cattaneo, 2010; Mothe et 

al., 2008). Importantly, the 3-D neurosphere culture system has been successfully 

applied in Alzheimer's and Parkinson’s disease (Brito et al., 2012; Choi et al., 

2013; Vishwakarma et al., 2014; Zhou et al., 2016). In 2005, Meissner and 

colleagues generated cells from the SVZ in the brains of 1-year-old enhanced 

green fluorescent protein (GFP) mice and produced neurospheres in culture. Then 

they transplanted the cryopreserved neurospheres into 6-hydroxydopamine model 

of Parkinson’s disease. Three weeks after creating the 6-OHDA lesions, the 

cryopreserved neurospheres were thawed and expanded to form new spheres and 

tranplanted into mice.they observed the ability of transplaned cells to differentiate 

to neurons and astocytes (Meissner et al., 2005). Also, the neurospheres were 

sucssufuly transplanted in a mouse model of Alzheimer's disease and restore the 

working memory decline. They were observed that the neurospheres grafts 

survived in the transplantation sites and differentiated into the cholinergic neurons 

folloeing 12 weeks of transplantation (Wang et al., 2006).  

 With regard to NSCs transplantation for multiple patients, the production of large 

numbers of cells is one of most important issues. For instance, it has been found 

that 8-12 foetuses are required to treat one patient with Parkinson’s disease (Ali et 

al., 2014). Neurospheres offer another advantage in addition to their high cell 

density; they are technically easy to culture (Weinberg et al., 2015).  

In general, the two culture systems of NSCs behave in different manners which 

may cause an effect on the mechanisms of repair following transplantation. 

Immunosuppressant drugs play a pivotal role in the survival of transplanted NSCs 

by modulating the immune response following transplantation. It is therefore 

https://www.alzheimers.org.uk/info/20007/types_of_dementia/2/alzheimers_disease
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important to investigate the effects of CS on the fate of NSCs in 3-D culture 

system, focusing on parameters underpinning regeneration such as proliferation, 

differentiation, apoptosis, viability and cell cycle.  

 

4.2 Chapter objectives 

The aim of this study was to systematically investigate the effects of three different 

immunotherapeutic drugs of CS using neurosphere growth formats, a second 

major format of NSCs. It is not known if the physical format by which NSCs are 

propagated can impact the drug influences on these cells. To the best of my 

knowledge, it has never been established whether the effects of CS differ when 

NSCs are grown as a 2-D or 3-D culture system– a question of significant 

important for the neurobiology, neurotransplantation and regenerative medicine 

fields.  

Q: Does CS treatment have different effects on NSCs propagated via 

different growth formats (i.e monolayers versus neurospheres)? 
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4.3 Results 

4.3.1 Effect of CSs on the number and size of neurospheres 

Three different types of CS (DEX, PRED and MPRED) were used at three different 

concentrations (0.1 μM, 1 μM and 10 μM) to assess their effects on NSCs in 

neurosphere cultures. Following 48 h of CS treatment in NSCs cultured as 3-D 

suspension neurospheres, healthy spheres containing phase bright cells were 

observed in controls and other treatment conditions. Phase images and 

quantification analyses revealed no differences in sphere number per field but 

showed differences in sphere diameter when compared between control and the 

highest dose of CSs (10 μM) (Figure 4.1). 
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Figure 4.1 Effect of CSs on the number and size of neurospheres. (A) Phase-

contrast micrograph of neurospheres in vehicle control, (B, C and D) treated 

neurospheres with CSs. (E, F and G) Bar charts showing the average sphere 

number per microscopic field and (H, I and J) bar charts showing neurosphere size 

across all treatment conditions. (48 h CSs; 0.1 μM, 1 μM and 10 μM); *p < 0.05 

versus vehicle control of NSCs; one-way ANOVA, Bonferroni’s post-test with error 

bars representing SEM. Number and size of spheres were assessed in four 

biological replicates, with two technical replicates in each experiment.   
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4.3.2 Effect of CSs on the number and proportion of NSCs in 

neurosphere cultures  

To assess the effects of all three types of CS studied in this thesis, the numbers of 

NSCs were counted after 48 h of CS-treatment in four biological replicates, with 

two technical replicates in each experiment. Cell counts for the 3 D spheres were 

carried out in two cryostat sections taken through the sphere and randomly 

selected for each condition. Immunostaining for nestin and SOX-2 revealed that 

the number of NSCs per field was reduced only at the highest concentration of 

CSs used (Figure 4.2 and Figure 4.3).  

‘Stemness’ was assessed by analysing the proportion of SOX-2 positive cells. 

SOX-2 is a transcription factor that is expressed by self-renewing and multipotent 

stem cells. Therefore, SOX-2 was used to assess the purity of NSCs instead of 

nestin which is intermediate filament protein. Immunostaining for SOX-2 positive 

cells revealed that spheres yielded high purity populations of NSCs across all 

conditions. Importantly, cells following CS treatment also displayed normal 

patterns of NSCs marker staining and regular circular nuclei as judged by DAPI 

staining, indicating NSCs purity was not altered following CS treatment (Figure 

4.3).  
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Figure 4.2 Effect of CSs on the number of NSCs using nestin marker in 3-D 

neurosphere cultures. (A) Fluorescence micrograph displaying nestin positive 

NSCs neurospheres in vehicle control, (B, C and D) treated neurospheres with 10 

μM CSs. (E, F and G) Bar charts showing the total number of NSCs per field 

across all conditions. (48 h CSs; 0.1 μM, 1 μM and 10 μM); *p < 0.05 versus 

vehicle control of NSCs; one-way ANOVA, Bonferroni’s post-test with error bars 

representing SEM. Cell counting was assessed in four biological replicates, with 

two technical replicates in each experiment, two cryostat sections were used for 

each condition.   
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Figure 4.3 Effect of CSs on the number and proportion of NSCs using SOX-2 

marker in 3-D neurosphere cultures. (A) Fluorescence micrograph displaying 

SOX-2 positive NSCs neurospheres in vehicle control, (B, C and D) treated 

neurospheres with 10 μM CSs. (E, F and G) Bar charts showing the total number 

of NSCs per field across all conditions. (H, I and J) Bar charts displaying 
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quantification of the proportions of cells positive for NSCs marker SOX-2 following 

CS treatment across all conditions. (48 h CSs; 0.1 μM, 1 μM and 10 μM); *p < 0.05 

versus vehicle control of NSCs; one-way ANOVA, Bonferroni’s post-test with error 

bars representing SEM. Cell counting was carried out in four biological replicates, 

with two technical replicates in each experiment, two cryostat sections were used  

for each condition.  

 

4.3.3 Effect of CSs on the proliferation and cell cycle of NSCs  

To assess the effects of CS on the proliferation of NSCs in neurosphere cultures, 

an EdU proliferation assay was performed. The percentage of EdU+ cells was 

significantly decreased post CS treatment at the highest concentration (10 μM) 

when compared with controls (Figure 4.4). The cell cycle analysis was performed 

to confirm the EdU assay results. The data showed that the percentage of NSCs 

increased in G0/G1 and reduced in S and G2/M phases at 10 μM of CSs (Figure 

4.5). These findings suggest that all three types of CS at the highest concentration 

had anti-proliferative effects on NSCs in neurosphere cultures.  

  

  



127 
 

 

 

Figure 4.4 Effect of CSs on the proliferation of NSCs in 3-D neurosphere 

cultures. (A) Triple merged fluorescence images depicting EdU+ NSCs in vehicle 

control, (B, C and D) treated neurospheres with 10 μM CSs. (E, F and G) Bar 

charts showing proportions of EdU incorporating cells across all treatment 

conditions. (48 h CSs; 0.1 μM, 1 μM and 10 μM); *p < 0.05 versus vehicle control 

of NSCs; one-way ANOVA, Bonferroni’s post-test with error bars representing 

SEM. Proliferation assay was carried out in three biological replicates, with two 

technical replicates in each experiment, two cryostat sections were used  for each 

condition.  
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Figure 4.5 Effect of CSs on the cell cycle of NSCs in 3-D neurosphere 

cultures. (A) Bar chart showing the percentage of cells in G0/G1, S and G2/M 

phase following DEX treatment. (B) Bar chart showing the percentage of cells in 

G0/G1, S and G2/M phase following PRED treatment. (C) Bar chart displaying the 

percentage of cells in G0/G1, S and G2/M phase following MPRED treatment in 

neurosphere cultures. (48 h CSs; 0.1 μM, 1 μM and 10 μM); *p < 0.05 and 

**p<0.01 compared to untreated and vehicle control of NSCs; one-way ANOVA, 

Bonferroni’s post-test with error bars representing SEM. Cell cycle analysis was 

carried out in three biological replicates, with three technical replicates in each 

experiment.   
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4.3.4 Effect of CSs on the viability, apoptosis and pyknosis of 

NSCs  

To study the effects of CS on NSCs viability, NSCs were cultured as neurospheres 

in the presence of DEX, PRED and MPRED at different concentrations (0.1 μM, 1 

μM and 10 μM). The viability of NSCs was conducted at 48 h of drug treatment. 

The findings showed that NSCs displayed high viability following CS treatment as 

judged by live/dead staining across all conditions, suggesting there is no effect of 

CSs on viability of NSCs in neurosphere cultures (Figure 4.6). Further, muse 

Annexin V and Dead cell kit was used to assess the percentage of apoptotic cells 

in neurosphere cultures at 48 h of CS treatment. No significant differences were 

observed in the apoptosis of cells following CS-treatment at all investigated 

concentrations (Figure 4.7). Additionally, the incidence of pyknosis as judged by 

counting the percentage of cells exhibiting pyknotic nuclei (i.e. shrunken or 

fragmenting morphologies) was also low (<3%) across all conditions, indicating no 

significant differences between CS-treated and untreated (control) NSCs cultures 

(Figure 4.8). These findings suggest that all three types of CS used in this study 

had no effects on the viability, apoptosis and pyknosis of NSCs in neurosphere 

cultures. 
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Figure 4.6 Effect of CSs on the viability of NSCs in 3-D neurosphere cultures. 

(A) Bar chart showing quantification of LIVE cells as a percentage of total cells in 

neurosphere cultures following DEX treatment. (B) Bar chart showing 

quantification of LIVE cells as a percentage of total cells in neurosphere cultures 

following PRED treatment. (C) Bar chart displaying quantification of LIVE cells as 

a percentage of total cells in neurosphere cultures following MPRED treatment. No 

significant differences in the viability were noted between all conditions. (48 h CSs; 

0.1 μM, 1 μM and 10 μM); one-way ANOVA, Bonferroni’s post-test with error bars 

representing SEM. Viability assay was carried out in three biological replicates, 

with two technical replicates in each experiment. 

  



131 
 

         

Figure 4.7 Effect of CSs on the apoptosis of NSCs in 3-D neurosphere 

cultures. (A) Bar chart displaying the percentage of apoptotic cells post DEX 

treatment. (B) Bar chart showing the percentage of apoptotic cells post PRED 

treatment. (C) Bar chart showing the percentage of apoptotic cells post MPRED 

treatment. No significant differences in the apoptosis were noted between all 

conditions. (48 h CSs; 0.1 μM, 1 μM and 10 μM); one-way ANOVA, Bonferroni’s 

post-test with error bars representing SEM. Apoptosis assay was carried out in 

three biological replicates, with three technical replicates in each experiment. 
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Figure 4.8 Effects of CS on the pyknosis of NSC in 3-D neurosphere cultures. 

(A) Bar chart displaying the percentage of pyknotic nuclei counts for all conditions 

following DEX treatment. (B) Bar chart showing the percentage of pyknotic nuclei 

counts for all conditions following PRED treatment. (C) Bar chart displaying the 

percentage of pyknotic nuclei counts for all conditions following MPRED treatment. 

No significant differences between CSs-treated and untreated. (48 h CSs; 0.1 μM, 

1 μM and 10 μM); one-way ANOVA, Bonferroni’s post-test with error bars 

representing SEM. Pyknotic nuclei was carried out in four biological replicates, 

with two technical replicates in each experiment, two cryostat sections were used  

for each condition.  
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4.3.5 Effect of CSs treatment on the differentiation of NSCs  

The influence of CS treatment on the differentiation profile of NSCs in neurosphere 

cultures was a final goal in this study. To study the role of CSs in more detail, 

daughter cells generated from CS-treated neurospheres were treated for further 7 

days with DEX, PRED and MPRED at different concentrations (0.1 μM, 1 μM and 

10 μM). A quantitative histological analysis of daughter cell populations revealed 

that astrocytes were produced in similar numbers and proportions and displayed 

normal morphologies across all conditions following CS treatment (Figure 4.9). In 

contrast to astrocytes, the number and proportion of neurons was significantly 

reduced per field. The length of axons was also significantly reduced compared to 

the control cells after 10 μM CS treatments (Figure 4.10). In addition, the results 

also showed no difference in the number and proportion of oligodendrocytes 

generated per field following CSs treatment. However, the microscopic 

observations demonstrated that oligodendrocytes in 10 μM of CS-treated cultures 

had a greater membrane surface area with extensive and complex branching of 

processes. The total cell area measurement of oligodendrocytes treated with 10 

μM of CSs showed less maturation compared to control cells (Figure 4.11). These 

findings suggested that all three types of CS at 10 μM reduced the neuronal 

differentiation and affected the morphology of neurons and oligodendrocytes 

without any effects on the number and proportion of astrocytes and 

oligodendrocytes. 
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Figure 4.9 CSs treatment showed no effect on the proportion and 

morphology of astrocytes. (A) Representative images of cells positive for the 

neural cell markers GFAP for astrocytes derived from vehicle control neurosphere 

cultures, (B, C and D) treated astrocytes with 10 μM CSs. (E, F and G) Bar charts 

depicting the total number of GFAP+ cells per field. (H, I and J) Bar charts 

quantifying the proportion of cells positive for astrocytes marker GFAP+ after CS 

treatment across all conditions. No significant differences in the morphology and 

proportion of astrocytes were noted between all conditions (9 days CSs; 0.1 μM, 1 

μM and 10 μM); one-way ANOVA, Bonferroni’s post-test with error bars 

representing SEM. Cells counting were carried out in four biological replicates, 

with two technical replicates in each experiment.  
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Figure 4.10 CSs treatment altered neuron cell number, proportion and 

morphology. (A) Fluorescence micrographs of neurons derived from vehicle 

control neurosphere cultures, (B, C and D) treated neurons with 10 μM CSs. (E, F 

and G) Bar charts quantifying the total number of TUJ 1+ neurons per field across 

treatment conditions. (H, I and J) Bar charts showing the proportion of TUJ 1+ 

neurons per field following CS treatment. (K, L and M) Bar charts showing mean 

axon length of neurons across all conditions. (9 days CSs; 0.1 μM, 1 μM and 10 

μM); *p < 0.05 compared to vehicle control; one-way ANOVA, Bonferroni’s post-

test with error bars representing SEM. Cell counting was carried out in four 

biological replicates, with two technical replicates in each experiment.   
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Figure 4.11 CSs treatment increased the maturation of oligodendrocytes. (A) 

Fluorescence micrographs of oligodendrocytes generated from vehicle control 

neurosphere cultures, (B, C and D) treated oligodendrocytes with 10 μM CSs. (E, 

F and G) Bar charts showing the total number of MBP+ oligodendrocytes per field 

across treatment conditions, (H, I and J) bar charts showing the proportion of 

oligodendrocytes across all conditions. (K, L and M) Bar charts showing the 

measurement of oligodendrocytes area across all conditions. (9 days CSs; 0.1 μM, 

1 μM and 10 μM); *p < 0.05 compared to vehicle control of NSCs; one-way 

ANOVA, Bonferroni’s post-test with error bars representing SEM. Cell counting 

was carried out in four biological replicates, with two technical replicates in each 

experiment.   

  

  



140 
 

4.4 Discussion 

The use of immunosuppressive drugs such as CS after transplantation of NSCs is 

necessary to ameliorate engrafting outcomes by increasing cells survival and 

limiting cell rejection in host tissue (Mazzini et al., 2015).The control of stem cell 

activity depends on a diverse array of environmental factors. Mainly, the genetic 

and molecular mediators such as growth and transcription factors which play 

pivotal role in the control of stem cells fate either in vivo or in vitro. For example, 

cell shape is one of the main physical factors that could significantly influence the 

growth and physiology of NSCs (Guilak et al., 2009). Therefore, this study was 

undertaken to evaluate the effects of CS on NSCs properties when they are 

cultured as 3-D suspension neurospheres. It has never been established if the 

effects of CS differ when NSCs are grown as 3-D or 2-D culture system, a very 

important question for the fields of neurobiology, neurotransplantation and 

regenerative medicine. 

 

Emerging knowledge of CS effects on NSCs and the molecular mechanisms 

behind these effects in both 3-D and 2-D growth formats will refine the judgment of 

when and how to use the anti-inflammatory and immunosuppressive drugs 

combined with NSCs. Furthermore, within this knowledge the evaluation of the 

clinical efficacy of NSC transplants will be improved by learning how to reduce the 

cell death rate of these cells and provide a more permissive environment and 

niche in neurological injuries/diseases. 
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The results demonstrated that the low concentrations of CS do not show any 

effects on NSCs in comparison with the control group in neurosphere culture 

systems. At a high concentration (10 µM), all types of CS prominently reduced 

NSCs proliferative capacity (EdU incorporation) in 3-D cultures, followed by an 

alteration of the percentage of the cell cycle phases. Cell viability and cell 

apoptosis remained mostly unaffected under these conditions for all CSs. A 

number of studies have observed that CSs reduced the proliferation of NSCs in 

neurosphere cultures (Abdanipour et al., 2015; Moors et al., 2012; Sundberg et al., 

2006). These findings are in accordance with the present results that show a 

significant reduction in the size of neurospheres which reflects the CSs effect on 

the number and proliferation of NSCs in neurosphere cultures. Further, the data 

showed that the percentage of EdU was markedly reduced within spheres that 

were exposed to (10 μM) CSs at 48 h. A second method used in this study to 

detect NSCs proliferation was cell cycle analysis; there was a prominent increased 

in the percentage of cycling cells entering G0/G1 and reduction in S and G2/M 

phases. Previously, a number of studies have shed light on the inhibitory effects of 

CSs on NSCs cell cycle in neurosphere cultures; they proposed that CSs reduce 

the percentage of cells in S phases via their effects on cell-cycle regulating genes 

(Samarasinghe et al., 2011; Sundberg et al., 2006). Further, the results from the 

current study are in line with several previous studies. For example, Sundberg et 

al. showed the effects of CS on the embryonic rat NSCs. They observed in their 

study, the ability of CSs to reduce the proliferation of embryonic NSCs 

accompanied by a decrease in cyclin D1 (Sundberg et al., 2006). Also, it was 

found that DEX had anti-proliferative effects on the NPCs derived from embryonic 

day 14.5 mouse neurosphere cultures and this effect was confirmed by both a 
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reduction in S- phase progression and enhanced cell-cycle exit (Samarasinghe et 

al., 2011). Another group found that the exposure of NPSCs derived from 

individual male and female mouse embryos (embryonic day 14.5) to 100 nM of 

DEX reduces the proliferation of NPSCs in neurosphere culture and also in vivo 

(Frahm et al., 2016). In 2012, Moors and colleagues studied the effect of CSs on 

the proliferation and differentiation of hNPC. They found that the exposure to 1 µM 

DEX leads to a reduction in the proliferation and neural differentiation of human 

NPCs. The mechanism underlying the DEX-induced inhibition of the proliferation 

and neural differentiation of human NPCs is mediated by the inhibition of the 

canonical Wnt signalling pathway (Moors et al., 2012). Furthermore, 

Ekthuwapranee and colleagues found that three different concentrations of DEX 

(0.1 µM, 1 µM and 10 µM ) lead a reduction in the number of neurospheres for 

NPCs derived from adult rats (Ekthuwapranee et al., 2014). Peffer and colleagues 

demonstrated that lipid raft protein caveolin-1 is required to induce the anti-

proliferative effects of DEX in NPCs (Peffer et al., 2014). 

 

The results presented here also show that the process of neurogenesis is 

negatively affected by CS treatment resulting in effects the number and 

morphology of neurons. Moreover, the findings from the differentiation assay 

shows that CSs treatment increased the maturity of oligodendrocyte which points 

to complex effects of the CS. This finding is of particular interest because any 

alteration in neuron and oligodendrocytes morphology could affect the reciprocal 

interaction between neurons and oligodendrocytes, and the communication 

between neurons and oligodendrocytes which is important in myelin synthesis and 

repair. The detrimental effect of CS on NSCs progeny has been reported. For 
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example, the exposure of human NPCs to DEX led to a reduction of the 

differentiation of neurons without any effects on the differentiation of astrocytes 

and oligodendrocytes (Moors et al., 2012). In contrast, Sundberg and colleagues 

found that 1 µM of DEX and CORT did not affect cell differentiation of embryonic 

NSCs (Sundberg et al., 2006). 

 

At all three different concentrations, none of the three examined CSs induced 

apoptosis or affected viability of NSCs in neurosphere culture systems. In contrast 

to these results, several previous studies demonstrated that the CS does induce 

the apoptosis of NSCs and reduce the viability of these cells. For example, 

Abdanipour and colleagues have found that the high concentration of cortisol 

decrease the viability and proliferation of adult NSCs in neurosphere culture and 

increases the apoptosis and necrosis of these cells (Abdanipour et al., 2015). The 

conflicting results attained by this body of experiments may be related to different 

cell types or CS concentrations being utilised. 

  

The findings presented in this chapter reveal no distinct differences between 

monolayer and neurosphere cultures post CSs treatment. The present study 

showed ca. 40% reduction in the number of NSCs with the highest CSs in 

monolayers culture while only ca. 20% reduction in the number of NSCs with the 

highest CSs in neurospheres culture. Therefore, we suggest the ability of CS to 

induce their effect on NSCs in neurosphere cultures was not as high as that 

observed in the monolayer cultures (Chapter 3). The 3-D nature of neurospheres 

means that cells within the neurosphere may be ‘hidden’ from CS effects, in 

contrast, to monolayer cells which are all exposed to CSs in the media. In general, 
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the cell shape in a 3-D culture system is more rounded in comparison to 2-D 

culture system which generally induces flattened shapes. The surface area that is 

exposed to CSs in monolayer cultures is greater in comparison to neurosphere 

cultures and this may lead to higher influences of CS in 2-D culture. Furthermore, 

the difference in the physical characteristics of neurospheres and monolayers may 

impact the gene expression and cellular function of stem cells after CS treatment, 

resulting in differences in mechanisms that are involved in CS effects. 
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Chapter 5 

Investigating the mechanisms 

underpinning the effects of CS on 

NSCs 

  



146 
 

5.1 Introduction  

The findings from Chapter 3 and 4 found an effect of CS on the proliferation and 

differentiation of NSCs in both culture systems. However, the molecular signalling 

mechanisms by which CS effect proliferation and neurogenesis of NSCs are 

unknown. Therefore, this chapter was undertaken firstly, to assess GR expression 

in NSCs and their daughter cells and if they could be a target of drugs action and 

secondly, to evaluate the molecular mechanisms underpinning the effects of CS 

using proteomics and bioinformatics analyses. 

As discussed previously within the main introduction, CSs exert their effect by 

binding to specific type of receptor. The action of CS is mediated by its binding to 

GR which is activation or repression transcription of target genes. In general, the 

regulation of gene expression by the GR occurs by (1) either the direct binding of a 

GR-ligand complex to specific DNA sequences called GREs that are present in 

target genes, (2) or indirect interaction of GR with other DNA-bound proteins or 

DNA-bound transcription factors, this mechanism called genomic (classical) 

(Samarasinghe et al., 2012; van der Goes et al., 2014). However, the observation 

of rapid effects of CS which cannot be mediated by activation of RNA and protein 

synthesis has prompted the investigators to search for alternative mechanisms, 

this mechanism called non-genomic (non-classical) mechanisms (Peffer et al., 

2014; Samarasinghe et al., 2011; Simoncini and Genazzani, 2003). In non-

genomic mechanism, CSs can interact with the cytosolic and membrane-bound 

GRs to induce modulation of cytoplasmic or cell membrane-bound regulatory 

proteins (Simoncini and Genazzani, 2003). Previously, a number of experimental 

studies have suggested the role of GRs as the main regulator of CS effects on cell 

proliferation and differentiation (Garcia et al., 2004). GRs are found in different 
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brain areas such as the dentate gyrus of the hippocampus. Also, it was found that 

the expression of GR in neuronal precursor cells is higher than that of the MR both 

in vivo and in primary neuronal precursor cell cultures (Boku et al., 2009; Garcia et 

al., 2004). 

Importantly, a number of experimental studies observed that most actions of CS 

are largely considered to be mediated via the GRs involving changes in gene 

expression. For example, they found the pre-treatment with mifepristone (GR 

antagonist) significantly reduced the apoptosis of murine NSCs, suggesting the 

involvement of GRs (Mutsaers and Tofighi, 2012; Sze et al., 2013).  

Most importantly, a number of researches have studied the molecular mechanisms 

underpinning the effects of CS on neural cells by using genomic study. In this 

regards, there are several signalling pathways were involved in the regulation of 

cell proliferation and differentiation of NSCs such as β-catenin/TCF, Wnt, and 

glycogen synthase kinase beta 3 (GSK-3β). Wnt is the most important signalling 

pathways in neural development and plays a major role in the enhancement of the 

proliferation and differentiation of the NSCs (Ille and Sommer, 2005). Moors et al. 

(2012) studied the effects of CS on the proliferation and differentiation of human 

NPC. They found that the exposure to 1 µM DEX leads a reduction in the 

proliferation and neural differentiation of human NPCs (Moors et al., 2012). The 

mechanism underlying the DEX-induced inhibition of the proliferation and neural 

differentiation of human NPCs is mediated by the inhibition of the canonical Wnt 

signalling pathway. 

In 2012, Garza et al. exposed NSCs and NPCs which were isolated from the 

hippocampus of adult rats to CSs and different concentrations of leptin for 48 h in 

http://en.wikipedia.org/wiki/GSK3A
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order to study the effects of leptin in reversing the action of CSs on neurogenesis 

and to explore the potential mechanisms underlying this process. Their results 

demonstrated the reciprocal effects between leptin and CSs on the neurogenesis 

process, CSs reduced the neurogenesis whereas leptin increased this process via 

activating the GSK3β/ β-catenin signalling pathways (Garza et al., 2012). 

Sonic hedgehog is a soluble signalling protein that plays an important role in 

regulating processes during nervous system development and adult hippocampal 

neurogenesis. Further, it was found that Hedgehog signalling pathways plays an 

essential role in the regulation of brain development by inducing the proliferation of 

NPCs of mice. In 2013, Anacker and colleagues studied the effects of cortisol on 

the proliferation and neural differentiation in vitro, in human hippocampal 

progenitor cells, and in vivo, in prenatal stressed rats. They observed that the low 

concentration of cortisol (100 nM) increased the proliferation, reduced the 

neurogenesis and increased the differentiation of astrocytes, whereas the high 

concentration of cortisol (100 µM) reduced the proliferation and neural 

differentiation in vitro and in vivo. Their data identify the molecular signalling 

pathways which are involved in the effects of cortisol on proliferation and neural 

differentiation. They found that the low and high concentrations of cortisol inhibit 

the hedgehog signalling (Anacker et al., 2013). 

Additionally, the lipid raft protein caveolin-1 was found to involve on the inhibitory 

effects of DEX on NPCs (Peffer et al., 2014). While, the analysis of signalling 

pathway in another in vitro study revealed that CORT induces downregulation of 

the extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-

kinase/Akt (PI3K/Akt) signalling pathways, indicating their important roles in the 

reduction of NPSCs viability and their differentiation into neurons and astrocytes 
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following CORT treatment (Odaka et al., 2016). Table 5.1 summarises a number 

of signalling pathways which regulate the proliferation and differentiation of NSCs 

following CS treatment. 

Table 5.1 The role of signalling pathways in regulating of the proliferation 

and differentiation of NSCs following CS treatment 

Compound Type of 

cells 

Neurological effects Type of 

signalling 

pathways 

Reference 

DEX Human 

NPCs 

Reduces the 

proliferation and 

neural differentiation 

Canonical Wnt (Moors et al., 

2012) 

DEX and 

leptin 

NSCs 

and 

NPCs 

Reduces the 

neurogenesis whereas 

leptin increase this 

process 

GSK3β/βcatenin (Garza et al. 

2012) 

Cortisol NPCs Reduces the 

proliferation and 

neural differentiation 

Hedgehog (Anacker et 

al., 2013) 

DEX NPCs Reduces the 

proliferation of NPCs 

Caveolin-1 (Peffer et al., 

2014) 

CORT NPSCs Reduces the viability 

and differentiation of 

NPSCs 

ERK and 

PI3K/Akt 

(Odaka et 

al., 2016) 
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All the above studies give several different mechanisms of action of CS in the 

developing brain using gene expression and microarray analyses. This 

contradiction is the driving force for the intensive search for more accurate 

analysis to determine the mechanism of CSs. Given widespread clinical CS use, 

and the key roles of NSCs in developmental and regenerative processes, there is 

a significant need to investigate the mechanisms mediating CS effects on NSCs. It 

should be noted that the overwhelming majority of studies investigating CS effects 

on NSCs rely exclusively on histological analyses alone. While useful, such 

assays cannot provide an unbiased detailed insight into the molecular 

mechanisms underpinning the observed neurological effects of NSCs. In this 

chapter, proteomic analysis was carried out to provide an insight into the 

molecular changes induced by CS in NSCs. This allows generating independently 

validated and corroborative analyses of CS effects at both the morphological and 

molecular levels, in order to investigate the mechanisms by which this major class 

of anti-inflammatory drugs impact NSCs development and function. Moreover, this 

approach was used to sample cellular proteins in parallel with histological 

observation of cells in culture and provide an unbiased survey, unhindered by prior 

expectation. 

Many types of information cannot be obtained from analysis of transcript levels or 

genetic sequencing. For example, it is impossible to understand the mechanisms 

of disease, aging, and effects of the environment by studying the genome because 

proteins are (largely) responsible for the phenotypes of cells, rather than the 

encoding genes. There is a recognised disparity between alterations in 

transcription and resultant changes to protein levels (Lawless et al., 2016). 

Proteome analysis can, if designed appropriately, characterise protein expression 
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alterations, post-translational modifications and identify the targets of drugs 

(Aebersold and Mann, 2016). The proteomics approach gives a fuller picture of the 

actual state of NSCs following CS treatment and provides a global integrated view 

of cellular processes by studying protein properties on a large scale. Most 

importantly, the proteomics analysis provides more information about the proteins 

and their subcellular localizations compared to genomic analysis (Lawless et al., 

2016; Nagaraj et al., 2011; Shoemaker and Kornblum, 2016). Protein localization 

is one of the most important regulatory mechanisms. In more complex analyses, 

proteomics can aid in the further identification of the subcellular location of each 

protein and create a complete three-dimensional map of the cell indicating where 

proteins are located. Proteomics can also help to develop a complete 3-D map of 

all protein interactions in the cell (Graves and Haystead, 2002). The understanding 

of protein-protein interactions is important information in biology.  For example, the 

process of cell growth, programmed cell death and the decision to proceed via the 

cell cycle are all regulated by signal transduction through protein complexes 

(Graves and Haystead, 2002). Also, protein pathways and networks could be 

investigated by using this analysis. 

Mass spectrometry represents one of the most comprehensive and versatile 

approach in proteomics (Yates et al., 2009). Therefore, proteomics analysis was 

chosen in this study to investigate the molecular mechanism of CSs on NSCs in 

monolayer culture by using mass spectrometry and bioinformatics analysis. 
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5.2 Chapter objectives  

This chapter was undertaken to explore the potential mechanisms underlying the 

effects of MPRED on NSCs in monolayers culture using proteomic and 

bioinformatics analyses.  

The objectives of this chapter are: 

1. To assess GR expression - the target of drug action, in NSCs and their 

differentiated cells (astrocytes, neurons, and oligodendrocytes). 

2. To assess molecular changes in NSCs after CSs treatment using 

proteomics and bioinformatics analyses.  

3. Validate the expression of a key protein found to be altered in proteomic 

analysis 
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5.3 Results 

5.3.1 GR expression in NSCs and their daughter cells 

In order to show the presence of GR in NSCs parent cells, NSCs were treated with 

10 µM of three different types of CS (DEX, PRED and MPRED). Immunostaining 

showed positive staining for GR in NSCs after stimulation with the CS (Figure 

5.1A). The results showed that 10 μM CS treatments induced nuclear translocation 

of GR, with greater intensity of nuclear staining observed following drug 

application (Figure 5.1 B-D). Double staining of cells showed that GR was present 

in cells positive for the NSCs marker nestin. Similar finding were observed in 

NSCs differentiated cells following CS treatment. Double staining of the 

differentiated cells showed that GR was present in cells positive for the astrocyte 

marker GFAP, neuron marker TUJ 1 and oligodendrocyte marker MBP (Figure 

5.2). These results show that GRs are present in NSCs and all their daughter cell 

types, suggesting that these cell types are capable of responding to CS treatment.   
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Figure 5.1 NSCs express GR. (A) Representative fluorescence micrographs 

showing nestin+ NSCs and GR expression in vehicle control cells. (B-D) 

Representative fluorescence micrographs showing nestin+ NSCs and GR 

expression in treated cells. (48 h CSs, 10 μM); n = 3. 
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Figure 5.2 Differentiated cells express GR. Representative fluorescence 

micrographs showing GR expression in vehicle control (A-C): GFAP+ astrocytes 

(A), TUJ 1+ neurons (B), and MBP+ oligodendrocytes (C), compared with CS-

treated cells GFAP+ astrocytes (D, G and J), TUJ 1+ neurons (E, H and K) and 

MBP+ oligodendrocytes (F, I and L), (48 h CSs, 10 μM); n = 3.   
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5.3.2 Molecular analysis of the effect of MPRED on NSCs in  

monolayer culture 

A proteomics analysis was performed to assess the effects of 10 μM MPRED on 

protein expression in NSCs monolayer culture. MPRED is one of the most clinical 

relevant drugs which are widely used in ASCI and TBI treatments due to their 

ability to reduce swelling and inflammation. Also, MPRED used following 

transplantation to improve grafts survival and to avoid cells rejection in the host 

tissue. However, there is much controversy over the use of MPRED, a number of 

previous studies have shown the neurological effects following MPRED treatment 

and these effects are mediated by NSCs. For example, the inhibition effects of 

MPRED on the proliferation of endogenous NPCs following SCI was demonstrated 

in several preclinical studies (Li et al., 2012; Obermair et al., 2008; Schröter et al., 

2009; Wang et al., 2014). Also, through the findings obtained from this present 

study, it has been proved that MPRED has inhibition effect on the proliferation of 

NSCs and neuronal differentiation. The literature pertaining to MPRED effects on 

NSCs contains contradictory information regarding the mechanisms underlying the 

detrimental effects of MPRED. Therefore, the purpose of this section is to 

investigate the potential mechanism of MPRED in primary NSCs monolayer 

culture by studying protein expression profiling. LC-MS/MS DDA and LC-MSE DIA 

were both performed in this study.  
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5.3.3.1 DDA analysis  

The performance of DDA analysis was evaluated to identify key proteins involved 

in the changes observed in NSCs cellular proliferation capability following CS 

treatment. In DDA analysis, peptide ions are selected for fragmentation using the 

initial quadrupole MS analyser; these are then activated by collision with inert 

argon gas molecules at high energy; the unimolecular dissociation products are 

analysed in the time-of-flight mass analyser to observe the product ions. DDA 

analysis was used in this study to verify our protein extraction and digestion 

procedures. DDA analysis generated a large number of MS/MS spectra and the 

Scaffold analysis of DDA data confirmed a core proteome. These 66 ‘core’ proteins 

were found in all conditions (see Appendix 1). A small amount of variation was 

observed in protein profile between conditions (Figure 5.3). This variation is likely 

to result from undersampling resulting from the switching nature of the DDA 

experiment, undersampling being a common observation in QTof experiments on 

instruments of a similar generation (Wang et al., 2010). 
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Figure 5.3 Scaffold analysis of DDA. Venn diagram showing comparative data 

on proteins identified using Scaffold analysis across all conditions; (48 h MPRED; 

10 μM); n = 3.  
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5.3.3.2 DIA analysis  

DIA was used as alternative approach to DDA analysis for identifying and 

quantifying proteins in the samples. DIA analysis isolates and fragments all of the 

molecular species within a given mass-to-charge window, without a precursor ion 

selection step. Therefore, the main differences between the DDA and DIA 

analyses are that the window selection of the quadrupole mass analyser is 

dynamic during DDA, while it is used to scan the complete spectrum during DIA. 

Proteomic analysis was used in this study to provide an unbiased readout of 

molecular phenotype following MPRED treatment. A total of 3,220 quantifiable 

proteins from >20,000 peptide features were identified across the biological and 

technical replicate analyses. IPA was used to examine clustering of differentially-

expressed proteins as nodes within molecular networks (Kalayou et al., 2016). A 

number of proteins showed significantly altered expression levels, however these 

were isolated entities within otherwise unaffected pathways; no entire pathways 

showed strong evidence of being significantly dysregulated. Whilst not linked in a 

canonical pathway, we next sought to identify dysregulated proteins that are 

known to have direct interaction with CSs. There are 72 CS interacting molecules 

identified by IPA, 14 of which were proteins identified by the proteomics approach 

used here. Three of these demonstrated significant differential expression: down-

regulation of matrix metalloproteinase 16 (MMP-16) and GAP-43, and up 

regulation of cytochrome p450 51 A1 (CYP 51 A1) (Figure 5.4A). Relative 

quantification of the peptide features as performed by Progenesis QI showed 

consistent patterns of regulation for the aforementioned CS primary interactors 

(Figure 5.4B). 
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Figure 5.4 Differential protein expressions by NSCs following MPRED 

treatment. (A) IngenuityTM Pathway Analysis was used to cluster identified 

proteins according to biochemical pathways differentiating controls from MPRED-

treated cells. Nodes in red indicate up-regulated proteins while those in green 

represent down-regulated proteins (ANOVA p<0.05, min. 2 fold). Grey nodes 

indicated protein detection without differential expression. Progenesis QI for 

proteomics normalised expression profiles of (B) MMP-16, (C) GAP-43 and (D) 

CYP51A1 illustrating protein abundance in MPRED-treated cells compared with 

controls, (48 h MPRED; 10 μM). Progenesis QI was carried out in three biological 

replicates, with three technical replicates in each experiment.  
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5.3.3.3 MPRED reduce GAP-43 expression in NSCs and their  

differentiated cells  

GAP-43 is a pre-synaptic protein located on the growth cones of axons, plays 

important roles in cytoskeletal dynamics such as axonal growth and guidance and 

in modulating synapse formation (Latchney et al., 2014). The synthesis of GAP-43 

is correlated with the development and regeneration of neurons (Hoffman, 1989). 

Therefore, GAP-43 down regulation could explain the reduced neuronal number 

and axonal growth in our histological analyses. GAP-43 considers as an important 

finding impacting neural development, and hence this protein was chosen for 

further detailed immunohistochemically analysis.  

The results from proteomic analysis were confirmed using immunostaining to 

detect GAP-43. Both NSCs parent cells and their differentiated cells expressed 

GAP-43 in treated and untreated cells. However, a significant reduction in GAP-43 

expression was evident in MPRED treated NSCs and in the neurons derived from 

treated NSCs compared to controls. Quantification of the fluorescence intensity of 

GAP-43 immunostaining revealed that MPRED treated NSCs and neurons 

consistently demonstrated significantly lower optical density values than controls 

(Figure 5.5). 
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Figure 5.5 NSCs and their differentiated cells show a reduction in GAP-43 

expression following MPRED treatment. Fluorescence micrographs showing 

GAP-43 expression in vehicle control (A) and 10 μM MPRED treated (B) NSCs. 

Note the marked reduction in GAP-43 expression following MPRED addition. (A 

and B insets are the same fields with addition of nestin). (C) Bar graph showing 

the optical density measurements of GAP-43 expression in MPRED treated NSCs 

over vehicle controls. (D) Representative fluorescence micrograph of neurons 

derived from untreated NSCs showing extensive GAP-43 expression. (E) 

Fluorescent counterpart to D showing co-localisation of GAP-43 staining with TUJ-

1. (F) Representative fluorescence micrograph of neurons derived from 10 μM 

MPRED treated NSCs showing marked reduction in GAP-43 expression. (G) 

Fluorescent counterpart to F with the addition of TUJ 1. (H) Bar graph showing the 

optical density measurements of GAP-43 expression in MPRED of neurons 

derived from treated NSCs culture over vehicle controls. (48 h MPRD; 10 μM; 

unpaired t test with error bars representing SEM; *p < 0.05. Experiment was 

carried out in three biological replicates, with three technical replicates in each 

experiment.  
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 5.4. Discussion 

This study was performed to elucidate the key proteins involved in the changes 

observed in NSCs monolayer culture following CS treatment. The molecular 

mechanisms of the effects of CS remain unclear and not fully understood. A 

complementary histological and proteomic analyses were carried out to take the 

first step towards a global identification of the molecular changes induced by CS, 

as a basis for understanding the underlying mechanisms of their adverse 

neurodevelopmental effects.  

CSs exert their effect via binding with GRs by genomic and non-genomic 

mechanisms (De Kloet, 2004; Falkenstein et al., 2000; Hwang et al., 2006). Many 

experimental studies have shown that the adverse effects of CS are mediated by 

the activation of GRs. Therefore, it is very important to investigate the presence of 

GRs in all cell types studied in this research. The findings of this current study 

demonstrate that both NSCs and all three of their daughter cell types were found 

to express the GR receptor and therefore, all cell types studied here, can be 

considered to be CS-responsive. Also, this result suggests that NSCs and their 

daughter cells can be directly influenced by CSs, since we found GR to be 

expressed in vitro. 

Mutsaers and Tofighi (2012) demonstrated that the pre-treatment with mifepristone 

could abolish the apoptotic effect of CS and Bose et al. (2010) observed that the 

blocking GR with mifepristone could prevent the effects of CS (Bose et al., 2010). 

Also, Ekthuwapranee and colleagues found that the pre-treatment with 

mifepristone prevent the inhibitory effects of DEX on the number of neurospheres 

(Ekthuwapranee et al., 2014). Moreover, it was demonstrated that the high level of 

cortisol reduced the proliferation of human hippocampal progenitor cell line via 
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GRs (Anacker et al., 2013). All these studies and several similar studies revealed 

that CSs mediate their effect by activation of GRs (Boku et al., 2009; Kim et al., 

2004). 

These previous studies were performed using gene expression and microarray 

analyses, but as far as I am aware, no in-depth study of the influence of CS 

treatment upon protein expression has yet been performed in NSCs. This is 

important as the correlation between transcript and protein expression changes is 

relatively poor, for example only 40% of altered protein expression can be directly 

predicted by changes in transcript levels (Vogel and Marcotte, 2013). Therefore, 

the proteomic analyses are beneficial in this regard, as it enables unbiased 

detection of molecular mechanisms potentially mediating the observed CS effects 

on NSCs proliferation and differentiation. Follow up hypothesis-driven 

investigations can then be performed on specific identified dysregulated proteins 

and their phenotypic influence; these will be the goal of future research. 

Mass spectrometry based proteomics was used in the present study to identify the 

molecular mechanisms underpinning the effects of MPRED on NSCs. Two types 

of analysis, DDA and DIA were performed. The major advantage of DDA analysis 

is the generation of primary structural information from the peptide precursor ion 

selected for fragmentation. However, the DDA process is limited by the 

reproducibility, sensitivity and speed by which the mass spectrometer can 

sequentially acquire product ion spectra. Therefore, DIA analysis was used as an 

alternate method with the capacity to overcome this limitation. DIA systematically 

parallelizes the fragmentation of all precursor ions within a wide mass-to-charge 

ratio (m/z) range regardless of intensity, thereby providing broader dynamic range 

of detected signals, improved reproducibility for identification, better sensitivity, 
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and accuracy for quantification, and, potentially, enhanced proteome coverage 

(Geromanos et al., 2009). Therefore, the proteomic analysis opens up the 

possibility that understanding the mechanisms underlying CSs may allow its 

pharmacological reversal and improve outcome. 

The data presented in this chapter suggest that a potential mechanism 

underpinning the effects of MPRED could be via reduced GAP-43 levels – a 

nervous tissue–specific protein highly expressed in neurons and glial cells. The 

failure of NSCs to express GAP-43 can reduce neurogenesis, increase apoptosis 

of neurons and affect their maturation (Shen et al., 2004). The downregulation of 

GAP-43 can be considered as an important finding that impacted neural 

development, and hence I chose GAP-43 expression for further detailed 

immunohistochemical analysis. The findings showed a reduction in the expression 

of GAP-43 in both NSCs and newly generated neurons following MPRED 

treatment. The synthesis of GAP-43 is correlated with the development and 

regeneration of neurons (Hoffman, 1989), therefore GAP-43 down regulation could 

explain the reduced neuronal number and axonal growth in the histological 

analysis.  

Also, MPRED reduced levels of MMP-16, a member of a family of proteinases 

which regulate biological functions such as neurogenesis, axonal extension, 

differentiation and cell migration in the developing and adult nervous systems. 

MMPs play an essential role by ECM remodelling (Stamenkovic, 2003); the ECM 

and its remodelling regulate many aspects of cellular behaviour such as 

proliferation, migration and differentiation of neural cells and NSCs (Faissner et al., 

2010; Fujioka et al., 2012). The involvement of MMPs in ECM remodelling 

enabling axonal extension and repair after brain injury suggests a contribution to 
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the effects on neurogenesis and growth observed in this study; specifically, 

overexpression of MMPs has been shown previously to increase neurite extension 

and migration of neurons during neuronal development (Larsen et al., 2003; 

Reeves et al., 2003; Reichardt, 1991). 

 

Additionally, the findings from proteomics analysis showed that MPRED increased 

levels of CYP51A1 (aka lanosterol 14 α-demethylase). These finding suggests a 

possible link between the upregulation of CYP51A1, key protein involved in 

cholesterol biosynthesis and the maturation of oligodendrocytes that observed 

following MPRED treatment on NSCs in monolayer culture (Chapter 3). CYP51A1 

is involved in important steps in the biosynthesis of cholesterol (Björkhem et al., 

2004; Debeljak et al., 2003) which is found in high levels in myelin, (Orth and 

Bellosta, 2012). Therefore, any alterations in cholesterol biosynthesis could be 

associated with impairments to oligodendrocyte development and the myelination 

process. 

 

To the best of our knowledge, the effects of MPRED on these three identified 

proteins in NSCs have not been reported to date. Several previous studies 

demonstrated that MPRED exerted inhibitory effects on the proliferation of 

endogenous NPCs in vitro and in vivo after SCI (Schröter et al., 2009). In their 

study, Wang et al. indicated that MPRED reduced the proliferation and effects on 

differentiation of spinal cord-derived NPCs under both normoxic and hypoxic 

conditions. Also, they used polymerase chain reaction and western blot analysis to 

study the molecular mechanisms responsible for the effects of MPRED on NPCs 

and suggest that the down- regulation of HIF-1α and Hes1 play a vital role in this 
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effect (Wang et al., 2014). While gene expression profiles in another study showed 

different molecular mechanism underpinning the anti-proliferative effects of 

MPRED on NPCs. They suggested EdnrB is involved in this effect (Li et al., 2012). 

Microarray analyses comparing gene expression profiles of CSs-treated NSCs 

have yielded important, yet limited, information of the pathways responsible for 

CSs effects. Although, many different genes were identified as CSs-regulated, 

only few genes were reproduced in more than one publication. This suggests that 

RNA-based methods may be limiting and there is growing evidence that levels of 

mRNA transcripts do not necessarily reflect protein amounts (Unwin et al., 2006). 

 

Taken together, this is the first study to use discovery mass spectrometry based 

proteomic approach to investigate the effects of MPRED on NSCs. The 

proteomics and bioinformatics analyses following MPRED treatment suggest that 

the down regulation of GAP-43 and MMP-16, along with upregulation of CYP51A1 

proteins, provide an explanation for the observed histological effects of CS on 

NSCs. However, further systems biology approaches will be required to elucidate 

the differences in the modes of action of all three types of CS on NSCs fate in 

more detail.  
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Chapter 6 

Testing NSCs in a combinatorial 

therapy using organotypic spinal 

cord slice model 
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6.1 Introduction  

As mentioned previously in the main introduction, several types of stem cell 

transplantation strategies such as OECs, Schwann cells and foetal /adult NSCs 

have been widely tested to promote functional recovery following neurological 

injury (Hooshmand et al., 2009). NSCs transplantation offers great potential for 

repair and regeneration in SCI. These cells have the ability to replace lost or 

damaged neural cells and provide neurotrophic factors. Further, NSCs can be 

induced to differentiate into enriched populations of neurons or glial cells (Cao et 

al., 2002). For instance, the transplantation of NSCs populations has been shown 

to promote functional recovery in SCI through integration of myelinating 

oligodendrocytes, neuronal differentiation or by inducing endogenous repair 

(Hooshmand et al., 2009). In 2002, Ogawa and colleagues transplanted in vitro-

expanded neurosphere cells that were derived from rat embryonic spinal cord 

(embryonic day 14.5) into the site of injury in rat spinal cord model. They found 

that transplanted NSCs had the ability to generate neurons and improved motor 

function in vivo following transplantation. Furthermore, they observed the 

formation of synaptic structures of neurons that were differentiated from the 

grafted cells (Ogawa et al., 2002). Another study has shown that human foetal 

NSCs survived and differentiated into neurons and oligodendrocytes following 

transplantation into the contused rat spinal cord at 9 days after injury (Tarasenko 

et al., 2007). All these previous experimental studies support the idea of NSCs 

serving as a promising cell replacement therapy for CNS injury. 
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Previously, several studies demonstrated the ability of NSCs to secrete 

neurotrophic factors. For example, Kamei and colleagues clarified the mechanism 

that underlies promotion of axonal regeneration following transplantation of NPCs 

in the injured rat spinal cord. They found that NPCs secreted BDNF, NT3 and NGF 

before and after differentiation. This result suggested that NPCs may promote 

axonal regeneration via these three types of neurotrophic factors (Kamei et al., 

2007). In 2008, Bottai and colleagues successfully transplanted GFP-labelled 

NSCs into the injured mouse spinal cord and their results showed that NSCs 

significantly improved functional recovery. They observed that the level of BDNF, 

NGF, LIF and NT3 were significantly increased at 48 h after NSCs transplantation 

(Bottai et al., 2008). 

Unfortunately, NSCs application in neurological treatment remains a distant goal, 

as there are many unsolved problems. One of these problems is that the majority 

of implanted NSCs have a tendency to differentiate into astrocytes, but not into 

neurons and oligodendrocytes (Ogawa et al., 2002; Wu et al., 2001).  

Cell death following transplantation is another problem faced in NSCs application. 

Several studies have suggested that the high concentration of extracellular 

glutamate, and increased levels of inflammatory cytokines immediately after injury 

may contribute to the poor survival of NSC transplants (Bottai et al., 2008; 

Tarasenko et al., 2007). 

Also, cell source is one of the main limitations of stem cell transplantation. 

Currently, a wide range of stem cells from different sources are being investigated 

for their potential role in treatment several neurological disorders. For example, 

there are a number of obstacles are associated with the clinical applications of 
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transplantation of both foetal and adult NSCs in vivo including ethical concerns, 

host immune rejection in the absence of anti-inflammatory and 

immunosuppressive drugs and the formation of teratocarcinomas (Steinbeck and 

Studer, 2015; Yu and Silva, 2008). 

Finally, the activation of microglia can also affect NSCs transplantation. Microglia, 

the brain’s resident immune cells, become activated following pathogens, injury, or 

damage, resulting in rapid proliferation and migration towards the lesion site (Tikka 

and Koistinaho, 2001). Activated microglia are able to phagocyte cellular debris 

and toxic substances that have an inhibiting effect on axonal regeneration and 

produce pro-inflammatory cytokines such as IL-1, IL-6, and TNF-α, chemokines 

and nitric oxide into the lesion site (Chao et al., 1992; Merrill et al., 1993; Smith et 

al., 2012; Tikka and Koistinaho, 2001). It was found that the neurotoxic molecules 

that are produced by microglia can contribute to further neuronal damage leading 

to permanent neurological deficit (Festoff et al., 2006). For example, a number of 

neurobiological studies show that activated microglia can affect NSCs 

transplantation. It was observed that both microglia and macrophages surround 

the transplanted NSCs, with the macrophages phagocytosing most of the grafted 

cells (Bottai et al., 2008; Su et al., 2007). An in vitro study was conducted by Cacci 

and colleagues to study the direct effects of microglia on NSCs. They found an 

increase in the apoptosis of NPC and a reduction in neuronal differentiation 

following activation of microglia, due to the high level of pro-inflammatory 

cytokines (Cacci et al., 2008). Also, it was demonstrated that activated microglia 

could be one factor responsible for the low survival rate of grafted NSCs, in that 

they are found to work with T cells to reject transplanted cells (Tambuyzer et al., 

2009). In 2011, Darsalia and colleagues found that transplantation at 48 h resulted 



173 
 

in higher cell survival than transplantation at six weeks following stroke in rat brain, 

because the number of activated microglia was increased at this later time point, 

reaching maximum levels at 1 to 6 weeks following stroke (Darsalia et al., 2011). 

Furthermore, it was found that activated microglia may affect oligodendrocytes and 

myelination (Bosco et al., 2008). Previous study showed that microglial activation 

could impair neurogenesis due to their deleterious effect on the newly formed 

neurons which is mediated via the action of cytokines (Ekdahl et al., 2003). 

For these reasons, the use of anti-inflammatory and immunosuppressive drugs 

following transplantation is necessary to reduce the inflammation and limit cell 

rejection. CSs such as MPRED are used in treatment of neurotrauma including 

SCI, due to their ability to reduce swelling and inflammation and also used to 

suppress graft rejection in stem cell transplantation therapy (Jablonska et al., 

2013; Wells et al., 2003). However, the adverse effects of CS on NSCs 

proliferation and neuronal differentiation that were found in the current study are in 

agreement with previous reports. It is therefore of vital importance to use another 

anti-inflammatory drug, MINO which render improved SCI outcome, without the 

risks associated with high dose CS therapy using clinically relevant animal models. 

MINO would play a pivotal role in several neurological injuries and disease, due to 

their ability to increase the survival of transplanted NSCs, limit cell rejection and 

reduce neuroinflammation such as activated microglia. MINO has demonstrated 

neuroprotective effects in several animal and clinical studies of CNS. For example, 

MINO reduced lesion size and apoptotic pattern following mild contusion injury of 

rat spinal cord models (Lee et al., 2003). Clinical trials have shown the beneficial 

effects of MINO treatment in several neurological disease such as SCI, multiple 

sclerosis, and Huntington disease. A number of clinical trials are under way for the 
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use of MINO to treat the neurological conditions including stroke, multiple 

sclerosis, spinal cord injury, Huntington disease, and Parkinson disease (Plane et 

al., 2010). Based on these evidences MINO was chosen in this chapter as a 

combinatorial therapy with transplantation of NSCs using organotypic spinal 

cord mouse model.  

 

Organotypic slices have been successfully generated from different regions of the 

brain such as hippocampus, striatum, cortex, cerebellum and spinal cord (Cho et 

al., 2007). They consist of thin, 3-D sections of animal brain and/or spinal cord 

tissue. These types of slices can be cultured for long periods (weeks or even 

months) in a dish. Additionally, organotypic slice cultures can preserve their 

cytoarchitecture and cellular inter-relationships during this period of time (De 

Simoni et al., 2006). 

Organotypic spinal cord slices offer unique opportunities to study axonal 

regeneration after traumatic injury. Recently, there have been some organotypic 

spinal cord models developed. One example of this type of model is the one 

developed by Weightman and colleagues (Weightman et al., 2016, 2014), which 

has been used to generate traumatic SCI models. They can provide numerous 

slices in the parasagittal plane from each spinal cord, and have been successfully 

lesioned to generate a SCI model. Also, these contain all neural cell subclasses 

which can be easily detected using standard histological procedures. Furthermore, 

this model allows for the study of different pathological responses such as reactive 

astrocytosis, axonal regeneration and microglial infiltration (Weightman et al., 

2014). The organotypic spinal cord slice cultures offer other advantages, for 



175 
 

instance, they allow live microscopic observation of transplanted cells introduced 

into slices, In addition, this model allows easy visualization of the outgrowth of 

nerve fibres using immunofluorescence, scanning and transmission electronic 

microscopy (Sypecka et al., 2015). Also, the slices cultures are amenable to 

molecular biology methods such as polymerase chain reaction, Western-blot, the 

enzyme-linked immunosorbent assay, chromatography, and spectroscopy  to gain 

a more detailed understanding of the underlying mechanisms controlling the 

process of nerve fibre regeneration and lesion repair (Marsh et al., 2000; Sypecka 

et al., 2015). Electrophysiological recordings (De Simoni et al., 2006) and time 

lapse video microscopy can also be conducted in such slices (Seidl and Rubel, 

2010; Weightman et al., 2016). 

It has to be mentioned, however, that the organotypic spinal cord slices cannot 

represent all the in vivo features including an incomplete immune system and the 

degeneration of the majority of long white matter tracts surrounding gray matter 

indicating that contribution of myelin cannot be mimicked in this type of culture. In 

addition, the use of this model is limited because of lack of uniformity across 

culture substrates. For example, the differences in anatomy between lateral and 

central slices. However, the advantage of organotypic spinal cord slices for being 

easily amenable to experimental manipulation may offset a large part of the 

differences between the in vivo tissue and the organotypic spinal cord slice (Kim et 

al., 2010).  

The SCI is a multifactorial process and complex combinations of therapy are most 

likely to be of benefit for the repair of such injuries, for example use of anti-

inflammatory therapy plus cell transplantation. However, a key point to be noted is 

that the experimental studies into this area of research are very dependent on live 
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animal models of neurological injury. These have a number of disadvantages such 

as ethical issues, expense, technical complexity, large animal numbers and lack of 

reproducibility. In contrast, in vitro experiments have several advantages 

compared to in vivo study. For example, they reduce animals pain and suffering, 

are technically easy to culture, do not require government permission, reduce cost, 

finally, fewer numbers of animals are sufficient to give the data statistical 

significance (Weightman et al., 2016, 2014). Therefore, it would be useful to have 

a ‘dish’ model of spinal cord in which to test such complex combinatorial therapy. 

6.2 Chapter objectives 

This chapter was undertaken to examine whether an in vitro model of SCI based 

on the use of organotypic slices, can be used to evaluate the effects of the 

combination therapy of MINO and NSCs. However, it is important to investigate 

the direct effect of MINO on NSCs proliferation, differentiation, viability and 

apoptosis, to test whether MINO has any negative effect on NSCs before using it 

as a combinatorial therapy with transplanted NSCs.  

The objectives of this chapter are: 

1. To investigate the direct effects of MINO on NSCs survival/proliferation in 

3-D neurosphere cultures  

2. To investigate the effects of MINO on the differentiation of NSCs in 3-D 

neurosphere cultures. 

3. To investigate the utility of longitudinal organotypic spinal cord slice 

model to study the effects of a combinatorial therapy (MINO and NSCs 

transplantation) for neurological repair.  
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6.3 Results 

6.3.1 Effect of MINO on NSCs in neurosphere cultures 

6.3.1.1 Physiological potency of MINO preparations 

Primary microglia cultures were used as positive control to assess the biological 

efficacy of MINO concentration as detailed in Chapter 2 section 2.5.4. Phase-

contrast microscopy showed there was a reduction in cell number of microglia 

following MINO treatment (10 µM) versus untreated cells. Also, the morphologies 

of microglial cells were changed in MINO treated microglia versus untreated cells. 

MINO-treated cells appeared as round cells compared to untreated cells which are 

exhibit ramified morphology, proving that the MINO concentration used is 

physiologically active (Figure 6.1). Additionally, the spectrophotometrically 

confirmed that MINO concentration was suitable for eliciting cellular responses. 

 

Figure 6.1 Assessment of the biological efficacy of MINO preparations. (A) 

Phase contrast micrograph showing primary culture of microglia in vehicle control. 

(B) Phase contrast micrograph depicting a reduction in cell number and changed 

morphologies of microglia post MINO treatment (48 h MINO; 10 µM).  
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6.3.1.2 Effect of MINO on the number and size of neurospheres 

To assess the direct effects of MINO on NSCs in neurosphere cultures, 10 µM of 

MINO was added to NSCs in neurosphere cultures. Following 48 h of MINO 

treatment, phase images and quantification showed that neurospheres number 

and size were similar between control and treated samples, indicating that MINO 

treatment had no adverse effects on NSCs self-renewal (Figure 6.2). 

 

Figure 6.2 Effect of MINO on the number and size of neurospheres. (A) 

Representative phase-contrast micrograph of neurospheres in vehicle control. (B) 

Treated neurospheres with MINO. (C) Bar chart representing the average sphere 

number per microscopic field and (D) bar chart showing the sphere size. No 

significance; one-way ANOVA, Bonferroni’s post-test with error bars representing 

SEM. Number and size of spheres were carried out in three biological replicates, 

with two technical replicates in each experiment, (48 h MINO; 10 μM).   
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6.3.1.3 Effect of MINO on the number and proportion of NSCs 

Immunostaining for nestin and SOX-2 revealed that 10 μM MINO had no 

significant effects on the total number of NSCs (Figure 6.3 and 6.4). To assess 

neurospheres purity, the proportion of SOX-2 positive cells were analysed and the 

immunostaining for this marker revealed that the neurospheres displayed high 

purity populations of NSCs across all conditions (Figure 6.4). Importantly, cells 

after MINO treatment also displayed normal patterns of NSCs marker staining with 

regular rounded nuclei as judged by DAPI staining, indicating ‘stemness’ was not 

changed following MINO treatment (Figure 6.4). 
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Figure 6.3 Effect of MINO on the number of NSCs using nestin marker. (A) 

Fluorescence micrograph displaying nestin positive NSCs neurosphere in vehicle 

control, (B) treated neurospheres with 10 μM MINO. (C) Bar chart showing the 

total number of NSCs per field across all conditions. No significance; one-way 

ANOVA, Bonferroni’s post-test with error bars indicating SEM. Cell counting was 

carried out in four biological replicates, with two technical replicates in each 

experiment, two cryostat sections were used for each condition, (48 h MINO;  

10 μM).  
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Figure 6.4 Effect of MINO on the number and proportion of NSCs using 

SOX-2 marker. (A) Fluorescence micrograph displaying SOX-2 positive NSCs 

neurosphere in vehicle control, (B) treated neurospheres with 10 μM MINO. (C) 

Bar chart showing the total number of NSCs per field across all conditions. (D) Bar 

chart showing quantification of the proportions of cells positive for NSCs marker 

SOX-2 following MINO treatment across all conditions. No significant differences; 

one-way ANOVA, Bonferroni’s post-test with error bars representing SEM. Cell 

counting was carried out in four biological replicates, with two technical replicates 

in each experiment, two cryostat sections were used for each condition, (48 h 

MINO; 10 μM).   
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6.3.1.4 Effect of MINO on the proliferation and cell cycle of NSCs  

In order to study the effects of MINO on NSCs in more details, EdU proliferation 

assay was used to assess the proliferation capacity of NSCs in neurosphere 

culture following MINO treatment. The results showed that 10 μM of MINO had no 

effect on NSCs proliferation. The percentage of EdU+ cells showed there was no 

significant differences between MINO-treated and untreated cells (Figure 6.5). 

Additionally, cell cycle analysis was conducted to assess the effects of MINO on 

the proportions of cells in each individual phase of the cell cycle. The results 

showed that 10 μM of MINO had no effect on the proliferation and cell cycle 

phases of NSCs (Figure 6.6). 
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Figure 6.5 Effect of MINO on the proliferation of NSCs. (A) Triple merged 

fluorescence images depicting EdU positive NSCs in vehicle control and (B) 10 μM 

MINO treated NSCs, (C) Bar chart showing proportions of EdU incorporating cells 

across treatment conditions. No significant differences; one-way ANOVA, 

Bonferroni’s post-test with error bars representing SEM. Proliferation assay was 

carried out in three biological replicates, with two technical replicates in each 

experiment, two cryostat sections were used for each condition, (48 h MINO;  

10 μM).   
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Figure 6.6 Effect of MINO on the cell cycle of NSCs. Bar chart representing the 

percentage of the cells in the G0/G1, S and G2/M phase of the cell cycle following 

MINO treatment. No significant differences; one-way ANOVA, Bonferroni’s post-

test with error bars representing SEM. Cell counting was carried out in three 

biological replicates, with three technical replicates in each experiment, (48 h 

MINO; 10 μM).  
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6.3.1.5 Effects of MINO on the viability, apoptosis and pyknosis of 

NSCs  

Live/dead staining was used to assess NSCs viability at 48 h following MINO 

treatment. The findings showed that NSCs from neurosphere cultures displayed 

high viability post-MINO treatment (Figure 6.7). The percentage of apoptotic cells 

of NSCs were also assessed using muse Annexin V and Dead cell kit. No 

significant differences were observed in the apoptosis of cells post MINO-

treatment across all conditions (Figure 6.8A). Further, the incidence of pyknosis 

after MINO treatment was determined by assessing the percentage of pyknotic 

nuclei, as judged by DAPI-staining (shrunken, fragmenting nuclei were classed as 

pyknotic). The results showed that the number of pyknotic nuclei was low (<2%) 

across all conditions, indicating no significant differences between MINO treated 

and untreated cells (Figure 6.8B). These results suggest that MINO had no effects 

on the viability and apoptosis of NSCs in neurosphere cultures. 

 

Figure 6.7 Effect of MINO on the viability of NSCs. Bar chart showing the 

proportion of viable cells. No significance; one-way ANOVA, Bonferroni’s post-test; 

with error bars representing SEM. Viability assay was carried out in three 

biological replicates, with two technical replicates in each experiment, (48 h MINO; 

10 μM).  
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Figure 6.8 Effect of MINO on the apoptosis and pyknosis of NSCs. (A) Bar 

chart displaying the percentage of apoptotic cells in neurosphere cultures. (B) Bar 

charts showing the percentage of pyknotic nuclei for all conditions. No significant 

differences were noted between all conditions; one-way ANOVA, Bonferroni’s 

post-test with error bars representing SEM. Apoptosis assay was carried out in 

three biological replicates, with three technical replicates in each experiment.  

Pyknotic nuclei were carried out in three biological replicates, with two technical 

replicates in each experiment, (48 h MINO; 10 μM). 

  

6.3.1.6 Effect of MINO treatment on the differentiation of NSCs 

In order to test the effects of MINO on the differentiation profile of NSCs, the 

neurospheres were dissociated at 48 h of MINO treatment and resuspended in 

differentiation medium and treated with MINO for further 7 days. Astrocytes, 

neurons and oligodendrocytes were all produced from MINO-treated NSCs culture 

in similar numbers and proportions across all conditions. Further, all cell types 

showed normal morphologies across all conditions following MINO treatment 

(Figure 6.9). 
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Figure 6.9 Effects of MINO treatment on the differentiation of NSCs. (A) 

Representative fluorescence micrographs depicting astrocytes generated from 

vehicle control and (B) 10 μM MINO treated differentiated NSCs. (C and D) Bar 

charts displaying the total number and the proportion of GFAP+ cells per field, 

respectively. (E) Fluorescence micrographs of neurons derived from vehicle 

control and (F) 10 μM MINO treated differentiated NSCs. (G and H) Bar charts 

quantifying the number and the proportion of TUJ 1+ neurons per field across 
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treatment conditions, respectively. (I) Fluorescence micrographs of 

oligodendrocytes generated from vehicle control and (J) 10 μM MINO treated 

differentiated NSCs. (K and L) Bar charts showing the number and the proportion 

of MBP+ oligodendrocytes per field across treatment conditions, respectively. No 

significance; one-way ANOVA, Bonferroni’s post-test with error bars representing 

SEM. Cells counting were carried out in three biological replicates, with two 

technical replicates in each experiment, (9 days MINO; 10 μM).  

 

6.3.2 NSCs transplantation and MINO as a combinatorial therapy 

in longitudinal organotypic spinal cord model 

Following examination of the direct effects of MINO on NSCs in neurosphere 

cultures, longitudinal organotypic spinal cord slice model was used to assess the 

neuroprotective effects of the combination treatment of MINO and NSCs post-slice 

lesioning. A series of neuropathological assessments were conducted to evaluate 

the features of SCI pathology in lesioned slices. At 1 day post-lesioning, the slices 

were randomly divided into four groups: group SCI (control), group SCI + MINO (in 

which 10 µm of MINO was added with culture medium into spinal cord slices at 2 

DIV), group SCI + NSCs (in which NSCs were transplanted in the sites of injury of 

the slices at 2 DIV) and group SCI + NSCs + MINO (in which NSCs were 

transplanted and 10 µm of MINO was added with culture medium into spinal cord 

slices at 2 DIV) (Figure 6.10). 
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Figure 6.10 schematic showing the experimental design of MINO treatment 

and NSCs transplantation in organotypic spinal cord slice culture.  

 

6.3.2.1 Slice viability before and after lesion induction  

In order to assess the viability of slices, live/dead staining protocol was used to 

assess the slice viability before and after lesioning. The fluorescence microscopy 

provided high viability of intact slices. As expected, dead cells generated by the 

slicing procedure were accumulated around the edges of the slices. The results 

showed that the viability of the slices before lesion was 96.8 ± 1.4% (Figure 6.11A, 

B and C). Also, the viability of lesioned slices was investigated at 8 days post 

lesioning. The fluorescence microscopy showed some dead cells within the lesion 

with high viability in the main body of the slice (Figure 6.11D). The results showed 

the high viability of lesioned slices which found to be approximately 93.3 ± 0.4%. 

These findings demonstrated that the procedures used to induce lesioning did not 

affect slices viability.  
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Figure 6.11 Slice viability before and after lesion induction. (A) Representative 

fluorescence micrographs of a slice stained at 1 DIV with calcein for live cells. (B) 

The same field as (A) stained with ethidium homodimer-1 for dead cells. (C) 

Corresponding merged micrograph of (A) and (B). Dead cells were found around 

the slice edges (white arrows), live cells were found in the main body of the slice. 
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(D) Fluorescence micrographs of a lesioned slice stained at 8 days after lesioning 

with calcein for live cells. (E) The same field as (D) stained with ethidium 

homodimer-1 for dead cells. (F) Corresponding merged micrograph of (D) and (E). 

Few dead cells interspersed around the site of injury (white arrows), with high 

viability in the main body of the slice (white broken lines demarcate lesion 

margins). (G) Bar chart showing the proportion of viable cells. (P5; unpaired t-test 

no significance, with error bars representing SEM). Viability assay was carried out 

in five biological replicates, with three technical replicates in each experiment.  
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6.3.2.2 Labelling the transplanted NSCs  

6.3.2.2a DAPI labelling 

NSCs were labelled with DAPI to distinguish transplanted cells from host cells. At 

1 day after injury, NSCs labelled with DAPI were transplanted into lesion sites of 

organotypic spinal cord slices. Phase and fluorescent images show dissociated 

single NSCs displaying DAPI label at the same day of transplantation (Figure 

6.12A). At 1 week after transplantation, DAPI staining had leaked out from the 

transplanted NSCs. As mention previously in Chapter 2, DAPI is a fluorescent dye 

that binds to DNA and stain the nucleus. Therefore, this observation suggested 

that the nuclear staining was lost during cells division (Figure 6.12B).  

  

Figure 6.12 DAPI labelling of NSCs transplantation in organotypic spinal 

cord slices. (A) Phase contrast micrograph depicting DAPI staining of 

transplanted NSCs in lesioned slice at the same day of labelling. (B) Fluorescent 

micrograph showing TUJ-1+ neurons in the lesion sites (DAPI staining had leaked 

out from cells) in lesioned slice differentiated into neurons post 7 days after 

transplantation.  
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6.3.2.2b DiD labelling 

DiD was used as an alternative dye to DAPI staining to label NSCs, as mentioned 

in detailed in Chapter 2 section 2.18.2.2. NSCs were labelled with DiD in 

monolayer culture before transplanting into spinal cord slices in order to assess 

the ability of DiD to label NSCs. Phase and fluorescent images showed that DiD 

labelled NSCs were attached to the surface of coated coverslip and showed 

normal cell morphology at the same day of labelling, suggesting the ability of DiD 

to label NSCs in monolayer culture (Figure 6.13A). At 4 days post labelling, the 

dye had leaked out from the cells (Figure 6.13B). Then single NSCs were labelled 

with DiD and then transplanted into the site of injury of organotypic slices. 

Dynamic time lapse microscopy was used to trace the transplanted NSCs in the 

lesioned slices. Dynamic time-lapse images showed DiD labelled cells in the 

lesion site of the organotypic SCI model at same day and four days following 

transplantation (Figure 6.13C and D). The observations from these images 

confirmed that cells have been delivered into the lesion. 
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Figure 6.13 DiD labelling of NSCs transplantation in monolayer and 

organotypic spinal cord slices. (A) Phase contrast micrograph depicting DiD 

staining of NSCs cultured in monolayer at the same day of labelling. (B) Phase 

contrast micrograph depicting DiD staining of NSCs cultured in monolayer 

following four days of labelling. (C) Still image taken from dynamic time-lapse 

microscopy representing NSCs labelled with DiD at same day of transplantation in 

organotypic spinal cord slice culture. (D) Still image taken from dynamic time-lapse 

microscopy representing NSCs labelled with DiD following four days of 

transplantation in organotypic spinal cord slice culture. 
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6.3.2.3 The effect of the combinatorial therapy on astrogliosis at  

lesion margins  

Immunostaining of GFAP positive cells was performed to investigate whether the 

combination therapy had any effects on astrogliosis. GFAP staining was observed 

clearly throughout slices and the fluorescent micrograph showed the intense 

reactive of GFAP+ cells at lesion margins (hallmark features of the glial scar) 

(Figure 6.14A-D). Mean fluorescence intensity profiles were used to quantify 

GFAP expression at the first 100 mm adjacent to lesion margins across all 

treatment conditions. The results showed an evident reduction in astrogliosis in 

(SCI + MINO) and (SCI + MINO + NSCs) groups compared to the (SCI) and (SCI 

+ NSCs) groups, (Figure 6.14E). These findings suggest the beneficial effects of 

MINO in astrogliosis reduction compared to transplant NSCs. 
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Figure 6.14 Astrogliosis assessment in lesioned slices. (A) Representative 

fluorescence micrograph showing intensely reactive astrocytes and increased 

GFAP expression at the lesion margin in untreated group. (B) Representative 

fluorescence micrograph showing GFAP expression at the lesion margin following 
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MINO treatment. (C) Fluorescence micrograph displaying intensively reactive of 

GFAP positive cells at the lesion margin following NSCs transplantation. (D) 

Fluorescence micrograph displaying GFAP expression at the lesion margin 

following NSCs transplantation and MINO treatment. (E) Bar graph showing a 

significant reduction in the average optical densities for GFAP+ slices in (SCI + 

MINO) and (SCI + MINO + NSCs) groups compared to the (SCI) and (SCI + 

NSCs) groups. (P5; stained 7 days post treatment); *p < 0.05; one-way ANOVA, 

Bonferroni’s post-test with error bars representing SEM. The experiment was 

carried out in five biological replicates, with three technical replicates in each 

experiment.  

 

6.3.2.4 The effect of the combinatorial therapy on microglial 

infiltration into lesion sites  

Immunostaining of lectin positive cells was performed to assess the effects of 

combinatorial therapy on microglial activation and infiltration within the site of 

injury. Microglia displayed rounded activated morphologies within the lesion site. 

The quantification from immunocytochemistry showed a significant reduction in the 

number of microglia within the lesion site in (SCI + MINO) and (SCI + MINO + 

NSCs) groups compared to the (SCI) and (SCI + NSCs) groups (Figure 6.15). 

These results suggest the beneficial effects of MINO compared to NSCs.  
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Figure 6.15 The effect of the combinatorial therapy on infiltration of microglia 

into lesion sites. (A) Representative fluorescence micrograph of a lesion margin 

8 days post-lesioning shows the infiltration of lectin+ microglia into the lesion site in 

untreated slices (SCI), (white dotted line: lesion margin). (B) Representative 

fluorescence micrograph showing lectin+ microglia in the lesion margin following 
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MINO treatment (SCI+MINO). (C) Fluorescence micrograph showing lectin+ 

microglia in the lesion margin post NSCs transplantation (SCI+NSCs). (D) 

Fluorescence micrograph displaying lectin+ microglia in the lesion margin following 

MINO treatment and NSCs transplantation (SCI+MINO+NSCs). (E) Bar graph 

quantifying numbers of lectin+ microglia in lesion sites across all treatment 

conditions, (P5; stained 7 days post treatment); *p < 0.05; one-way ANOVA, 

Bonferroni’s post-test with error bars representing SEM. The experiment was 

carried out in five biological replicates, with three technical replicates in each 

experiment.  

 

6.3.2.5 The effect of the combinatorial therapy on the nerve fibre 

outgrowth from lesion margins  

After 9 days of culture, nerve fibre outgrowth of TUJ-1+ in untreated slices was 

relatively limited from both margins of the lesion suggesting limited regeneration. 

By contrast, the combined treatment with transplanted NSCs and MINO, slices 

showed slight but significant increase of the process of TUJ-1 positive cells 

compared with (SCI), (SCI + MINO) and (SCI + NSCs) groups. These data 

indicate that the transplanted NSCs, in the presence of MINO made a significant 

improvement in neuronal outgrowth in the organotypic SCI model (Figure 6.16A-

D), as confirmed by quantification of the outgrowth of nerve fibres (Figure 6.16E).  
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Figure 6.16 The effect of the combinatorial therapy outgrowth of nerve fibres 

from lesion margins. (A) Representative fluorescence micrograph of TUJ-1+ 

nerve fibres in lesions in untreated slices (SCI), (white dotted line: lesion margin). 

(B) Representative fluorescence micrograph of limited outgrowth of TUJ-1+ nerve 

fibres in lesions following MINO treatment (SCI+MINO). (C) Representative 

fluorescence micrograph of TUJ-1+ nerve fibres in lesions following NSCs 

transplantation (SCI+NSCs). (D) Representative fluorescence micrograph of 

outgrowths of TUJ-1+ nerve fibres in lesions following MINO treatment and NSC 

transplantation (SCI+MINO+NSCs). (E) Bar chart quantifying TUJ-1+ nerve fibre 

outgrowth density across all treatment conditions, (P5; stained 7 days post 

treatment); *p < 0.05; one-way ANOVA, Bonferroni’s post-test with error bars 

representing SEM. The experiment was carried out in five biological replicates, 

with three technical replicates in each experiment.  
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6.4 Discussion 

Here, the utility of a SCI mouse model was investigated to study the effects of a 

combinatorial therapy consisting of NSCs transplantation and MINO in 

neurological repair. 

In the first part of this chapter, the direct effects of MINO on NSCs in neurosphere 

culture were studied to assess whether MINO has any adverse effect on the fate 

of NSCs. The results showed that 10 μM MINO does not affect NSCs neurosphere 

cultures proliferation, survival, apoptosis and differentiation. Of particular interest 

were the results from the second part- the combinatorial therapy (NSCs and 

MINO) with testing in organotypic spinal cord mouse model. 

MINO, the anti-inflammatory drug, was used as a combinatorial therapy with NSCs 

in organotypic spinal cord mouse model. Much criticism has been generated 

towards the use of CS, a widely used treatment available to patients suffering from 

an ASCI (Bracken, 2012; Hall and Springer, 2004; Wells et al., 2003). The results 

from this current study (Chapter 3 and 4) showed the detrimental effects of CS 

including MPRED on NSCs and these findings are in agreement with many 

previous studies. Interestingly, the clinical trials from the National Acute Spinal 

Cord Injury Study II and III failed to demonstrate the beneficial effects of MPRED 

treatment (Hurlbert, 2000). The harmful effects of MPRED, particularly after high 

doses, have prompted the search for more efficacious neuroprotective agents. 

Importantly, several human trials have shown the clinical potential of MINO in 

treatment of neurodegenerative disorders such as Huntington’s and Parkinson’s 

disease following transplantation of foetal neurons (Blum et al., 2004). It was 

observed that MINO is more effective in improving functional outcomes following 
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SCI when compared with MPRED (Festoff et al., 2006; Wells et al., 2003). MINO 

has the ability to reduce lesion size, cell death, and alter cytokine expression 

following SCI (Lee et al., 2003; Wells et al., 2003).  

MINO is an antibiotic drug that has been widely used in various models of 

neurodegenerative diseases, because it has neuroprotective, anti-inflammatory 

and anti-apoptotic effects (Pinkernelle et al., 2013). Most importantly, MINO was 

shown to have the ability to enhance the survival of grafted cells. In 2006, Karimi-

Abdolrezaee and colleagues demonstrated the ability of transplanted adult brain-

derived NSCs to differentiate into either OPCs or mature oligodendrocytes and 

repair myelin in the presence of growth factors, MINO and cyclosporine A (Karimi-

Abdolrezaee et al., 2006). In 2012, Sakata and colleagues found that the 

transplantation of the MINO-preconditioned NSCs markedly increased the number 

of survived cells and improved neuroprotection in ischemic stroke in rats, 

compared with non-preconditioned NSCs (Sakata et al., 2012). In vitro and in vivo 

experiments conducted by Rueger and colleagues, have shown that MINO 

significantly increased the number of transplanted NSCs in a rat stroke model 

(Rueger et al., 2012).  

Transplantation of NSCs holds promising therapeutic strategy for the treatment of 

SCI, therefore NSCs were used as a combined treatment with MINO to improve 

regeneration outcome following SCI. Cells labelling can be used to distinguish 

transplanted cells from host cells, monitor distribution and migration of target cells 

following transplantation, and understand their biologic mechanisms and the 

therapeutic effect (Kang et al., 2014). However, the labelling of these cells is one 

of the major problems faced in clinical applications. In this study, DAPI and DiD 

dyes were used to label NSCs in vitro. The results from labelling methods found 
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that both methods were of limited use for these experiments given their leakage 

out from the cells within a short time period. Numerous techniques have been 

used to label and track transplanted stem cells in vivo and in vitro. In general, 

there are two types of methods used to label transplanted cells: directly or 

indirectly. Several agents such as fluorescent probes, super-paramagnetic iron 

oxide, and radio- tracers, have been used for direct labeling and tracking method 

(Kang et al., 2014). For example, membrane dyes such as DiD are incorporated 

into cell membrane lipids through hydrophobic interaction. DNA binding dyes such 

as DAPI and Hoechst stains, are used for live cell labeling because they are 

membrane permeable. However, these methods have limitations as a result of the 

phagocytosis of dead cells by host macrophages. Therefore, it is not clear whether 

the imaging signal comes from targeted cells or from macrophages. In order to 

overcome the limitations of direct labeling, indirect labeling method have been 

used such as genetic modifications using nonviral and viral systems (Leiker et al., 

2008). However, genetic modifications have several limitations such as difficulties 

in controlling gene expression and the possibility of tumor formation (Kang et al., 

2014; Leiker et al., 2008). 

The presented data here revealed that 10 μM MINO reduces astrogliosis, a 

functional barrier to nerve fibre regrowth, in the spinal cord slices. The presence of 

astrocytes in the site of injury limits the spinal cord’s ability to repair. Following 

SCI, the astrocytes become hypertrophic, proliferate, and organise into a dense 

astrocytic rich border at the site of lesion to form a glial scar (Fawcett and Asher, 

1999; Yiu and He, 2006). This glial scar forms a barrier to axonal regeneration. Its 

function is to seal the lesion sites and the BBB to prevent further damage 

occurring around the site of the injury (Yiu and He, 2006). The high level of 
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chondroitin sulfate proteoglycans which are produced by reactive astrocytes and 

other neural cell types within the injury site, also act as inhibitors for neurite 

outgrowth and regenerative activity (Siebert et al., 2015). In 2012, Sakata and 

colleagues found that of transplanted NSCs, the majority differentiated into 

astrocytes in rat models of ischemic stroke at 28 days after transplantation. 

Further, they observed some of these cells have the ability to produce glial scar, 

which could delay the recovery process (Sakata et al., 2012). More specifically, 

astrogliosis could produce a physical barrier and block access of oligodendrocyte 

progenitors to demyelinated axons resulting in failure of the remyelination process 

(Coutts and Keirstead, 2008). Therefore, the reduction in astrogliosis may improve 

regeneration following SCI. 

The findings also showed a reduction in activated microglia following MINO 

treatment. This result is in line with other previous results. For example, it was 

found that MINO could effectively reduce neuroinflammation including activated 

microglia and prevent the production of inflammatory cytokines resulting in 

improved neuronal survival (Lee et al., 2003; Tikka and Koistinaho, 2001). 

Finally, the results show that a treatment for SCI with MINO combination with 

NSCs can significantly enhance nerve fibre outgrowth. This finding may be due to 

the inhibitory effects of MINO on astrogliosis and microglia activation post-SCI. 

The findings presented here are in accordance with previous in vitro and in vivo 

studies. For example, in 2013, Pinkernelle and colleagues conducted an in vitro 

model of organotypic spinal cord culture (prepared from neonatal rats, postnatal 

day 4) to investigate effects of MINO on motor neuron survival, astrogliosis and 

microglia. They used two different concentrations of MINO (10 and 100 µM) at two 

different time points (DIV 1 and DIV 4). They found that early treatment 10 µM 
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MINO (DIV 1) resulted in a significantly reduced number of surviving motor 

neurons and microglia activity whereby astroglia activity was unchanged. 

Whereas, MINO treatment from DIV 4 onwards did not significantly alters the 

number of surviving motor neurons. Earlier treatment of 100 µM MINO significantly 

increased the percentage of anti-pan- NF stained area (neurofilaments) of 

organotypic cultures compared to control slices. Anti-pan-NF is a general neuronal 

marker and is commonly used to identify neurons in tissue sections and cultures. 

Also, they were found that a high concentration of 100 µM reduced activated 

microglia and impaired the formation of astrogliosis (Pinkernelle et al., 2013). In 

vivo studies have shown that the survival rates of grafted cells were increased and 

the activated microglia reduced after pre-treatment of these animals with MINO 

(Festoff et al., 2006; Zhang et al., 2003). Further, MINO was found to enhance the 

survival of transplanted adult NPCs in SCI model, in the presence of growth 

factors and immunosuppressant cyclosporine A (Karimi-Abdolrezaee et al., 2006). 

Taken together, the findings presented in this chapter demonstrate the utility of an 

in vitro SCI mouse organotypic model to investigate the efficacy of the 

combinatorial drug and cell therapy in neuropathology. This type of model has a 

number of advantages, for example, slices generated from the same animals can 

be subjected to different treatment conditions and different analyses. The 

differences between slices which are produced from the same litter or even the 

same animal could more confidently be supposed to be due to treatment. Also, 

this type of model is easier to learn and perform compared with in vivo models, 

and moreover, allows some refinement of the treatment before in vivo handling. 

Also, this model demonstrates that three cardinal pathological properties of SCI in 

vivo (astrogliosis, microglial infiltration and nerve fibres outgrowth) can be 
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mimicked in the lesions of organotypic spinal cord slice (Jin et al., 2012; 

Sofroniew, 2009; Zhou and Snider, 2006). This model showed hypertrophic and 

reactive astrocytes in the lesion model which represents hallmark features of the 

glial scar in vivo (Fawcett and Asher, 1999). Microglial infiltration dynamics as 

seen within the lesion model here are broadly comparable with their acute 

infiltration characteristics in vivo (Jin et al., 2012; Loane and Byrnes, 2010). 

Therefore, the acute inflammatory responses can be mimicked within the lesion 

sites in vitro. Furthermore, in vivo studies show that a second, more sustained 

wave of microglial infiltration can occur later within ca. 60 days after lesioning. It 

will be of interest to assess if microglial infiltration is mimicked in this model (Beck 

et al., 2010). Therefore, this study can provide clinically relevant insights into the 

role of combinatorial therapy in neuropathology and can be predicted to be of high 

use in pharmaceutical research. 
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Chapter 7 

Conclusions and Future Directions 
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7.1 Summary of key thesis findings  

The work presented in this thesis has studied the effects of the anti-inflammatory 

and immunosuppressive drugs on the fate of NSCs. The findings obtained in this 

thesis can be summarised as follows: 

 

Chapter 3: Histological study to evaluate the effects of CS treatment on  

                    NSCs propagated in monolayer cultures  

This chapter was undertaken to investigate the effects of three different clinically 

relevant drugs of CS at three different concentrations and different time of 

treatments, therefore this study allowed for a systematic comparison of CSs on the 

fate of NSCs in monolayer culture.  

The highest concentration of CSs used (10 µM) was found to reduce the number 

and proliferation of NSCs in monolayer culture. Cell cycle analysis showed that 10 

μM of CSs led to a significant increase of cells in the G0/G1 phase with a parallel 

decrease of cells in S and G2/M phases, compared with controls. In contrast, 

viability and apoptosis analyses of NSCs did not show any significant effects 

following CS treatment. CS treatment of differentiated cells showed that the 

highest concentration of CSs reduced the genesis of neurons and increased the 

maturation of oligodendrocytes.  
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Chapter 4: Histological study to evaluate the effects of CS treatment on  

                   NSCs propagated in neurosphere cultures  

I have investigated the effects of three different clinically relevant CSs on the fate 

of the NSCs neurosphere culture focusing on parameters underpinning 

regeneration such as proliferation, differentiation, apoptosis, viability and cell 

cycle. The results from this chapter showed that the highest concentration of CSs 

used reduced the number and proliferation of NSCs without any effects on viability 

and apoptosis. The number and proportion of neurons that were generated from 

treated-NSCs was also reduced. In contrast, the maturation of oligodendrocyte 

was increased following 10 μM of CSs. These findings suggest that the differences 

in the physical format of NSCs did not impact on the CS influences on these cells 

with similar results obtained for adherent (monolayer) and suspension 

(neurosphere) cultures. 

 

Chapter 5: Investigating the mechanisms underpinning the effects of CS on 

                  NSCs 

The results from this chapter showed that both NSCs and their daughter cells 

express the GRs and therefore can be considered to be CS-responsive. Further, 

the potential mechanisms underlying the detrimental effects of MPRED on NSCs 

in monolayer culture were explored by using proteomics analysis. The proteomics 

and bioinformatics analyses suggest a hypothesis that the down-regulation of 

major neural development proteins MMP-16 and GAP-43, along with MPRED 

induced upregulation of CYP51A1 proteins could explain the observed histological 

effects of this drug on NSCs. Without significant further work we cannot however 
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conclusively demonstrate a causal relationship between these dysregulation 

events and downstream impact on cellular behaviour. The clustering of these 

proteins within a single network suggests MPRED treatment acts by altering a 

common upstream regulator of these proteins, rather than individual disparate 

nodes being affected in unrelated molecular pathways. Immunocytochemistry of 

GAP-43 confirmed the findings from proteomic results, with both NSCs parent 

cells and the neurons derived from treated NSCs showing a significant reduction in 

GAP-43 compared to controls. 

 

Chapter 6: Testing NSCs in a combinatorial therapy using organotypic spinal  

                  cord slice model 

In this chapter, the utility of a new longitudinal organotypic spinal cord slice injury 

model was investigated to study the effects of another type of anti-inflammatory 

drug, MINO, delivered as a combinatorial therapy with NSCs.  

In the first part of this chapter, several key regenerative properties of NSCs such 

as survival, proliferation and differentiation were evaluated with respect to the 

direct effects of MINO on NSCs in neurosphere culture. The findings from this 

chapter showed that the concentration of 10 μM, MINO did not affect NSCs 

proliferation, viability, apoptosis and differentiation. In the second part of this 

chapter, the 3-D neural tissue arrays (organotypic spinal cord slice cultures) were 

used to examine whether the combination therapy of MINO and NSCs could be 

evaluated in this in vitro injury model. Histopathological analysis demonstrated that 

MINO inhibited astrogliosis and microglia infiltration, and increased nerve fibre 

outgrowth.  
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Collectively, these findings demonstrate the utility of organotypic spinal cord slice 

culture as a useful screening model for testing the effects of the combinatorial 

therapy before commencing pre-clinical animal experiments. This model can 

mimic the in vivo tissue environment and it would be feasible to examine the 

influence of the environmental factors on the transplanted NSCs. Therefore, such 

3-D in vitro models may bridge gaps between isolated cell cultures and in vivo 

investigations.  

 

7.2 Future directions 

There are a number of avenues by which the work presented in this thesis could 

be expanded and built upon to further our understanding of the detrimental effect 

of anti-inflammatory and immunosuppressive drugs on the fate of NSCs and the 

molecular mechanisms underpinning these effects. 

The major challenge lies in the understanding of the mechanisms of action of CS, 

and it is unclear how CS treatments might exert their effects on NSCs. In the work 

(Chapter 5), the findings showed three different proteins clustered within a single 

biological pathway are differentially expressed, and hence could be responsible for 

the mechanisms of action of MPRED on NSCs in monolayer culture. A further step 

in this regard could be conducted; we can expand this study by knocking out the 

three candidate proteins that participate in mediating the histological observations 

such as the reduction in NSCs proliferation and neuronal differentiation following 

CS treatment. The knockout model is a powerful tool to provide information that 

can be used to validate the function of suggested proteins. A variety of methods 

can be employed to knock down or knockout gene expression. For example, the 
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short interfering RNAs (siRNAs) offer a useful tool for studying gene function and 

validating drug targets by knocking down the expression of specific genes (Cejka 

et al., 2006). Also, this technique can be used to silence gene expression with no 

need for genomic manipulation.  

Further, it would be interesting to investigate the mechanisms that underlie the 

anti-proliferative effects of DEX and PRED not only in the monolayer but also in 

neurosphere cultures. This kind of work will provide a comparative study of CSs 

effect and their molecular mechanisms. Proteomics studies of NSCs following CSs 

treatment have the potential to delineate pathways and the means by which CSs 

can induce their effects on NSCs. Also, it will be beneficial to use multiple 

reactions monitoring (MRM) analysis, which is a form of tandem mass 

spectrometry with highly throughput targeted strategies. This analysis allows 

investigating the dysregulated nodes identified in this study. Importantly, this 

approach allows quantification of various proteins in a shorter time (around 10 

proteins in 20 minutes) (Prasad, 2014). Further, the researchers used MRM 

proteomics to analyse the targeted proteins of interest in multiple samples with 

great high-throughput, unlike the traditional mass spectrometry which attempts to 

detect all proteins.  

Also, the aim of this thesis was not only to understand the molecular mechanisms 

behind the effects of CS on NSCs, but also to expand our knowledge and 

understanding of how CSs can influence human health. The findings from this 

study have shown that CS treatment cause a reduction in NSCs proliferation, 

alteration in the cell cycle phases and effects on the differentiation process. These 

in vitro results are certainly far-away from human clinical application; however, 

they could provide a program of experiments that can be useful in the clinical 
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trials. Therefore, it will be interesting to expand this study using human cells. 

Although, the use of primary human cells has several difficulties such as ethical 

considerations and supply, they provide a several advantages compared to the 

use of animal cells. This type of cells has more relevant morphological, 

physiological and biochemical features such as receptors. Further, the human 

NSCs have same advantages as animal cells in culture. For example, human 

NSCs have been propagated as monolayers and neurospheres and provide 

different cell types from different tissues (Lévesque et al., 2009; Liras, 2010; Xu et 

al., 2009).  

 

In the context of combination therapy, the results from Chapter 6 demonstrated the 

utility of organotypic spinal cord culture to assess the efficacy of NSCs 

transplantation combination with MINO in SCI treatment. For future work, it would 

be beneficial to study the key parameters of transplanted NSCs such as survival, 

proliferation and apoptosis post combinatorial therapy using this slice culture 

model. Additionally, electrophysiological recordings can be made before and after 

lesioning, and used to evaluate functional improvement following experimental 

treatments, including transplantation of NSCs. Also, dynamic time-lapse 

microscopy could also be utilised to study the migration of stem cells and provide 

more accurate data compared to fixed tissue. 

In Chapter 6, a slice model of the spinal cord was used as host tissue to test the 

transplantation of NSCs. To further enhance the clinical relevance of this model, 

human cells (e.g. NSCs and ESCs) can be used in slice culture to examine if there 

are any differences in cellular responses following combinatorial therapy 
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compared to the mouse NSCs used in this research. Furthermore, the clinical 

relevance of this model can be improved by using spinal cord slices derived from 

human tissue to test combinatorial therapies for SCI treatment. Our lab is now 

developing human slice models and this could be useful to study the effects of 

combined drug and cell therapy. This type of slice models may provide very useful 

information on human tissue responses to such therapies before their use in 

humans. Significant collaboration with clinical colleagues is necessary to develop 

this pre-clinical model. Finally, it will be of interest to perform proteomics analyses 

using mass spectrometry. Mass spectrometry based proteomics is a powerful and 

versatile tool to profile proteomes, investigate biological regulation through post 

translational modifications, discover biomarkers, study protein interaction and 

protein degradation. For all of these goals proteome coverage, reproducibility and 

quantitative precision are the key to gain a comprehensive and full picture of the 

biology. Therefore, using this approach can examine cellular changes at the 

genetic and molecular level following MINO treatment and NSCs transplantation in 

organotypic slice model. This type of analysis could detect alterations in 

regeneration-associated gene and protein expression from the cells in slice 

culture. 
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Appendix 1 

Core proteome identified in all conditions using DDA experiment 

Accession Protein Name 

1433E_MOUSE 14-3-3 protein epsilon OS=Mus musculus GN=Ywhae 

PE=1 SV=1 

1433F_MOUSE 14-3-3 protein eta OS=Mus musculus GN=Ywhah PE=1 

SV=2 

1433Z_MOUSE 14-3-3 protein zeta/delta OS=Mus musculus GN=Ywhaz 

PE=1 SV=1 

A2A6F8_MOUSE 60S ribosomal protein L23 (Fragment) OS=Mus 

musculus GN=Rpl23 PE=3 SV=1 

A2ACG7_MOUSE Dolichyl-diphosphooligosaccharide--protein 

glycosyltransferase subunit 2 OS=Mus musculus 

GN=Rpn2 PE=4 SV=1 

A2BH06_MOUSE 60S ribosomal protein L11 (Fragment) OS=Mus 

musculus GN=Rpl11 PE=3 SV=1 

ACTB_MOUSE Actin, cytoplasmic 1 OS=Mus musculus GN=Actb PE=1 

SV=1 

ACTC_MOUSE Actin, alpha cardiac muscle 1 OS=Mus musculus 

GN=Actc1 PE=1 SV=1 

ADT2_MOUSE ADP/ATP translocase 2 OS=Mus musculus 

GN=Slc25a5 PE=1 SV=3 

ALDOC_MOUSE Fructose-bisphosphate aldolase C OS=Mus musculus 

GN=Aldoc PE=1 SV=4 

ANXA5_MOUSE Annexin A5 OS=Mus musculus GN=Anxa5 PE=1 SV=1 

AT5F1_MOUSE ATP synthase subunit b, mitochondrial OS=Mus 

musculus GN=Atp5f1 PE=1 SV=1 

ATPA_MOUSE ATP synthase subunit alpha, mitochondrial OS=Mus 

musculus GN=Atp5a1 PE=1 SV=1 

ATPB_MOUSE ATP synthase subunit beta, mitochondrial OS=Mus 
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musculus GN=Atp5b PE=1 SV=2 

B2M1R6_MOUSE Heterogeneous nuclear ribonucleoprotein K OS=Mus 

musculus GN=Hnrnpk PE=2 SV=1 

CALR_MOUSE Calreticulin OS=Mus musculus GN=Calr PE=1 SV=1 

COF1_MOUSE Cofilin-1 OS=Mus musculus GN=Cfl1 PE=1 SV=3 

D3YTT7_MOUSE MCG2650 OS=Mus musculus GN=Rpsa-ps10 PE=3 

SV=1 

D3YUQ9_MOUSE Elongation factor 1-delta (Fragment) OS=Mus musculus 

GN=Eef1d PE=4 SV=1 

D3YYM6_MOUSE 40S ribosomal protein S5 (Fragment) OS=Mus 

musculus GN=Rps5 PE=3 SV=1 

D3YZQ9_MOUSE L-lactate dehydrogenase (Fragment) OS=Mus musculus 

GN=Ldha PE=3 SV=1 

DHSA_MOUSE Succinate dehydrogenase [ubiquinone] flavoprotein 

subunit, mitochondrial OS=Mus musculus GN=Sdha 

PE=1 SV=1 

E0CZ27_MOUSE Histone H3 (Fragment) OS=Mus musculus GN=H3f3a 

PE=3 SV=1 

E9PZ00_MOUSE Sulfated glycoprotein 1 OS=Mus musculus GN=Psap 

PE=4 SV=1 

E9Q4P0_MOUSE Protein 2810422J05Rik (Fragment) OS=Mus musculus 

GN=2810422J05Rik PE=4 SV=1 

EF1A1_MOUSE Elongation factor 1-alpha 1 OS=Mus musculus 

GN=Eef1a1 PE=1 SV=3 

EF1B_MOUSE Elongation factor 1-beta OS=Mus musculus GN=Eef1b 

PE=1 SV=5 

EF2_MOUSE Elongation factor 2 OS=Mus musculus GN=Eef2 PE=1 

SV=2 

ENOA_MOUSE Alpha-enolase OS=Mus musculus GN=Eno1 PE=1 

SV=3 

F6VW30_MOUSE 14-3-3 protein theta (Fragment) OS=Mus musculus 

GN=Ywhaq PE=3 SV=1 
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F8WIX8_MOUSE Histone H2A OS=Mus musculus GN=Hist1h2al PE=3 

SV=1 

 

FAS_MOUSE Fatty acid synthase OS=Mus musculus GN=Fasn PE=1 

SV=2 

FPPS_MOUSE Farnesyl pyrophosphate synthase OS=Mus musculus 

GN=Fdps PE=2 SV=1 

G3P_MOUSE Glyceraldehyde-3-phosphate dehydrogenase OS=Mus 

musculus GN=Gapdh PE=1 SV=2 

G3UXJ6_MOUSE Heterogeneous nuclear ribonucleoprotein Q OS=Mus 

musculus GN=Syncrip PE=4 SV=1 

G3UYV7_MOUSE 40S ribosomal protein S28 (Fragment) OS=Mus 

musculus GN=Rps28 PE=4 SV=1 

G3UZK4_MOUSE 60S ribosomal protein L18 OS=Mus musculus 

GN=Rpl18 PE=4 SV=1 

GRP78_MOUSE 78 kDa glucose-regulated protein OS=Mus musculus 

GN=Hspa5 PE=1 SV=3 

H2AX_MOUSE Histone H2A.x OS=Mus musculus GN=H2afx PE=1 

SV=2 

H2B1B_MOUSE Histone H2B type 1-B OS=Mus musculus 

GN=Hist1h2bb PE=1 SV=3 

H32_MOUSE Histone H3.2 OS=Mus musculus GN=Hist1h3b PE=1 

SV=2 

H4_MOUSE Histone H4 OS=Mus musculus GN=Hist1h4a PE=1 

SV=2 

HS90A_MOUSE Heat shock protein HSP 90-alpha OS=Mus musculus 

GN=Hsp90aa1 PE=1 SV=4 

 

HS90B_MOUSE Heat shock protein HSP 90-beta OS=Mus musculus 

GN=Hsp90ab1 PE=1 SV=3 
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HSP7C_MOUSE Heat shock cognate 71 kDa protein OS=Mus musculus 

GN=Hspa8 PE=1 SV=1 

J3QNR5_MOUSE Uncharacterized protein OS=Mus musculus PE=3 SV=1 

KCRB_MOUSE Creatine kinase B-type OS=Mus musculus GN=Ckb 

PE=1 SV=1 

MDHM_MOUSE Malate dehydrogenase, mitochondrial OS=Mus 

musculus GN=Mdh2 PE=1 SV=3 

PDIA6_MOUSE Protein disulfide-isomerase A6 OS=Mus musculus 

GN=Pdia6 PE=1 SV=3 

PGAM1_MOUSE Phosphoglycerate mutase 1 OS=Mus musculus 

GN=Pgam1 PE=1 SV=3 

PP1A_MOUSE Serine/threonine-protein phosphatase PP1-alpha 

catalytic subunit OS=Mus musculus GN=Ppp1ca PE=1 

SV=1 

PPIA_MOUSE Peptidyl-prolyl cis-trans isomerase A OS=Mus musculus 

GN=Ppia PE=1 SV=2 

PROF1_MOUSE Profilin-1 OS=Mus musculus GN=Pfn1 PE=1 SV=2 

Q14AA6_MOUSE MCG49183 OS=Mus musculus GN=1700009N14Rik 

PE=2 SV=1 

RL12_MOUSE 60S ribosomal protein L12 OS=Mus musculus 

GN=Rpl12 PE=1 SV=2 

RL30_MOUSE 60S ribosomal protein L30 OS=Mus musculus 

GN=Rpl30 PE=2 SV=2 

RLA1_MOUSE 60S acidic ribosomal protein P1 OS=Mus musculus 

GN=Rplp1 PE=1 SV=1 

RLA2_MOUSE 60S acidic ribosomal protein P2 OS=Mus musculus 

GN=Rplp2 PE=1 SV=3 

SERPH_MOUSE Serpin H1 OS=Mus musculus GN=Serpinh1 PE=1 

SV=3 

SMD1_MOUSE Small nuclear ribonucleoprotein Sm D1 OS=Mus 

musculus GN=Snrpd1 PE=2 SV=1 

 



248 
 

TBA1A_MOUSE Tubulin alpha-1A chain OS=Mus musculus GN=Tuba1a 

PE=1 SV=1 

TBA1C_MOUSE Tubulin alpha-1C chain OS=Mus musculus GN=Tuba1c 

PE=1 SV=1 

TERA_MOUSE Transitional endoplasmic reticulum ATPase OS=Mus 

musculus GN=Vcp PE=1 SV=4 

VIME_MOUSE Vimentin OS=Mus musculus GN=Vim PE=1 SV=3 

sp|P52480|KPYM_MO

USE 

Pyruvate kinase isozymes M1/M2 OS=Mus musculus 

GN=Pkm PE=1 SV=4 

sp|P63038|CH60_MOU

SE 

60 kDa heat shock protein, mitochondrial OS=Mus 

musculus GN=Hspd1 PE=1 SV=1 
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