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Abstract 

Ovarian cancer is the 5th leading cause of cancer-related death. The disease responds initially 

to treatment which is most often surgical cytoreduction followed by chemotherapy. The 

primary response rates to chemotherapy are approximately 80%. Unfortunately, most 

patients relapse and eventually tumours become refractory to frontline therapy. The lack of 

widely effective therapies at this points leads to a low 5-year survival. Therefore, new 

therapeutic agents or treatment strategies are required.  

It has been reported previously that gain of function mutations of p53 which upregulate the 

mevalonate pathway in breast cancer. TP53 is commonly altered in high grade serous ovarian 

cancer which might suggest that the mevalonate pathway may also be deregulated in ovarian 

cancer. The result reported in this thesis indicate that p53 upregulate the expression of key 

enzymes of the mevalonate pathway in ovarian cancer cell lines. In particular, it was found 

that 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR), the rate limiting enzymes of 

the pathway, geranylgeranyl transferase-I (GGTI), GGTII and farnesyltransferase are 

upregulated in number of ovarian cancer cell lines. These observations suggest that 

pharmaceutical inhibition of the mevalonate pathway may be a promising therapeutic 

approach. 

Pitavastatin, a member of statin family of HMGCR inhibitors, has been found to have 

significant activity against ovarian cancer cells and induce regression of ovarian cancer 

xenografts in mice in previously published result from our laboratory. Although repurposing 

statins for use in oncology is an attractive strategy, there are legitimate concerns about the 

potential for the drug to cause myopathy. Therefore, other pharmacological agents which 

inhibit the mevalonate pathway were evaluated to test the hypothesis that dual inhibition of 

the mevalonate pathway would synergistically cause ovarian cancer cell death. 
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Bisphosphonates, such as zolendronic acid, are inhibitors of farnesyl diphosphate synthase. 

Zolendronic acid, and to lesser extends risedronate, potentiated the activity of pitavastatin in 

several assays assessing the growth and viability of ovarian cancer cells. In contrast, the 

geranylgeranyl transferase I inhibitor, GGTI-2133, antagonised the activity of pitavastatin. 

Similarly, knockdown of either GGTI-β or GGTII-β by RNAi failed to potentiate the activity 

of pitavastatin. However, combined knockdown of both geranylgeranyl transferases 

potentiated the activity of pitavastatin. 

To identify further drugs which could interact synergistically with pitavastatin, a library of 

100 off-patent drugs was screened in combination with pitavastatin in cell growth assays. 

Several compounds were identified which potentiated the activity of pitavastatin and/or had 

notable activity as single agents. The most striking hit from this screen was prednisolone, a 

synthetic glucocorticoid. Subsequent studies confirmed the synergistic interaction between 

prednisolone and pitavastatin in several cell growth and viability assays. To evaluate the 

mechanism underlying this synergistic interaction, publically-available expression data were 

interrogated to identify mevalonate pathway enzymes whose expression was regulated by 

prednisolone. The effect of these candidate genes was then tested in ovarian cancer cells and 

levels of HMGCR, farnesyl diphosphate synthase and geranylgeranyl transferase II were 

found to be reduced. 

These data suggest that drug combinations inhibiting multiple points in the mevalonate 

pathway may increase the therapeutic window for pitavastatin and offer a potential treatment 

for ovarian cancer. 
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1. Introduction  

1.1. Ovarian cancer 

Ovarian cancer (OC) is a group of molecularly and aetiologically distinct diseases that share 

the same anatomical location. It usually presents as complex cystic mass in the pelvis. OC 

consists of abnormal cells found in the ovary, that have the capability to spread or invade 

other tissues of the body and share other hallmarks of cancers (Figure 1-1). The disease tends 

to be diagnosed at an advanced stage, with limited prospects for successful treatment and 

usually poor overall survival. The incidence rates of OC are projected to rise by 15% in the 

UK between 2014 and 2035, to 32 cases per 100,000 females by 2035 (Figure 1-2) (Bast, 

Hennessy and Mills, 2009; Smittenaar et al., 2016; Cancer research UK, 2017). OC is a 

relatively uncommon but fatal disorder and considered as the leading cause of death among  

gynaecological cancers (Jessmon et al., 2017). Although the majority of patients respond 

initially to the treatment (Ledermann et al., 2012), relapse after an initial response to 

treatment can occur  and the development of resistance leads to failure of chemotherapy 

(Ling et al., 2005). The prognosis of OC patients had not changed significantly since three 

decades ago despite significant improvements in the understanding of the biology of the 

malignancy (Vaughan et al., 2011). 

 

The majority of OC patients, approximately 75%, are detected at an advanced stage due to 

the obscure nature of the symptoms and the lack of the precise detection method (Bharwani, 

Reznek and Rockall, 2011; Wright, Bohlke and Edelson, 2016). The lack of early diagnosis 

impairs patients’ prognosis and leads to a poor overall 5-year survival rate of around 40%. 

More specifically, the survival rate varies significantly from 85% for early stage disease to 

25% in the advanced stages (Colombo et al., 2006; Lu et al., 2016). Consequently, it could 

be argued that early diagnosis and resistance to chemotherapy are the key obstacles for 
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successful treatment. This review introduces the present status of our understanding of OC 

pathology and treatment. It also offers insights into the potential of the mevalonate pathway 

(MP) as a promising target for therapy.  

 

 

Figure 1-1 The Hallmarks of Cancer reproduced from (Hanahan and Weinberg, 2011) 

 

Figure 1-2 Observed and Projected Age-standardised Incidence Rates, Females, UK 

(Smittenaar et al., 2016). 
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1.1.1. Epidemiology of ovarian cancer 

Ovarian cancer is one of the most devastating diseases worldwide (Scarlett et al., 2012). It 

is the 5th and 7th leading cause of cancer-related mortality and is responsible for the death of 

approximately 4272, 14000 and 151000 patients per annum, in UK, USA and worldwide, 

respectively (Siegel, Naishadham and Jemal, 2013; Siegel, Miller and Jemal, 2015, 2016; 

Berek et al., 2017; Coburn et al., 2017; Kroeger and Drapkin, 2017). In the UK, OC is the 

5th most common cancer and the annual mortality equates to more than half of total newly 

diagnosed cases (7011 patients) each year (Figure 1-3) (Rooth, 2013; Ovarian cancer 

research UK, 2014). Many risk factors have been recognised which can increase the prospect 

of developing OC. 

 

Figure 1-3: Common Causes of Cancer Deaths in female, UK (Ovarian cancer research 

UK, 2014). 
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1.1.1.1. Age 

Age has a significant impact not only on the incidence and prevalence of OC but also on 

survival rate and prognosis. OC is primarily a disease of old age (Chan et al., 2006). The 

crude and age-standardized annual incidences are 20.9 and 16.2 per 100,000 females in UK, 

respectively. The incidence increases from approximately 5 per 100,000 females in the age 

group 30-34 to approximately 15 per 100,000 females in age group 45-49. After menopause, 

the prevalence of OC represents more than 80% of all diagnosed cases and the incidence 

increases abruptly, reaching a plateau at 69 per 100,000 for female age group 80-84 (Figure 

1-4) (Maas et al., 2005; Ovarian cancer research UK, 2014). 

 

Figure 1-4: Average number of new cases every year and age-specific incidence rates 

of ovarian cancer in UK, 2012-2014 (Cancer research UK, 2017). 

Survival rate of OC patients is inversely influenced by the age. The five-year survival rate 

declines from around 85% for age group 15-39 to less than 30% in the age group over 70 

year (Figure 1-5). In addition, age seems to be prognostic factor for OC treatment. Younger 

women with the disease exhibit better prognosis in comparison to old age women (Maas et 
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al., 2005; Ng, Low and Ilancheran, 2012). The accumulation of somatic mutations during 

lifetime is likely to contribute to the development of OC (Rooth, 2013). For instance, TP53, 

BRCA1, NF1 and CHK2 mutations was more frequently detected in older women with serous 

OC (Encinas et al., 2015). In addition, there is a dramatic increase in the loss of 

heterozygosity of chromosome 17, an event strongly linked to OC, with age reaching 80% 

in the 60-69 years’ group. Therefore, age is considered the most significant risk factor of 

cancer (Pieretti and Turker, 1997). 

 

Figure 1-5: Five-year survival rates of ovarian cancer by age. England 2009-2013 

(Cancer Research UK, 2017). 

 

1.1.1.2. Geographical factors  

There is a considerable variation in the incidence and mortality of OC according to 

geographical location (Figure 1-6). Generally, the incidence is high in Europe and USA 

(developed countries; 9.9 per 100,000) in comparison to Africa and Asia (less developing 

country; 5 per 100,000) (Hennessy, Coleman and Markman, 2009; Bharwani, Reznek and 

Rockall, 2011). In Europe, the incidence varies greatly in different regions and these 

disparities might achieve 40%, with peak incidence noted in Eastern and Northern Europe, 
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but lower incidence in Southern and Western Europe. For example, Lithuania, Latvia and 

Bulgaria had the highest incidence rate (approximately 19 per 100,000). In contrast, Portugal 

and Cyprus were had the lowest rate (7 per 100,000) (Cancer research UK, 2017). In 

addition, the incidence of OC in United States and the United Kingdom is 3–7 times greater 

than in Japan (Berek et al., 2017). The incidence is generally lower in countries with 

Hispanic, Asian and African women (Asia, Africa, Mexico) than predominantly Caucasian 

population countries (Europe, Canada). The reduced life expectancy in less developed 

countries may explain the low incidence, because OC is more prevalent in older women. In 

addition, race, social habits, life style and environmental factors might influence the national 

incidences variation (Chornokur et al., 2013; Lowe et al., 2013; Coburn et al., 2017). 

 

Figure 1-6: Incidence of ovarian cancer in different region worldwide (Reproduced with 

permission from (Chornokur et al., 2013)). NZ: New Zealand; S.E.: South-Eastern; S.C.: South-

Central.  
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1.1.1.3. Reproductive factors 

Several reproductive factors have a potential effect on the risk of OC. Multi-parity and the 

use of oral contraceptive pills for 5 years or more are established protective factors 

(Tworoger et al., 2007; Beral et al., 2008; Tsilidis et al., 2011). Epidemiological studies 

show that the relative risk of OC is inversely related to the number of children and to duration 

of use of oral contraceptive pills (Table 1-1). In addition, some studies illustrate that the risk 

decreased even in case of incomplete pregnancies. The evidence for breast feeding having a 

protective power are conflicting but feeding for more than 18 months has been shown to 

decrease the risk of OC by up to 30% (Jordan et al., 2010, 2012; Pasalich et al., 2013; Ferris 

et al., 2014). Recently, a meta-analysis emphasised the protective role of tubal ligation 

against OC (Cibula et al., 2011).  

Table 1-1 Relative risk of ovarian cancer by parity and duration of oral contraceptive 

use (Cancer research UK, 2017). 

Relative risk for 

OC by parity 

Number of children  Relative risk  

3+  1 

2  1.21 

1  1.60 

0  2.12 

Relative risk for 

OC by duration of 

oral contraceptive 

use (mean) 

Oral contraceptive use  Relative risk 

Never  1.0 

Less than 1 year (0.4 years)  1.0 

1-4 years (2.4 years)  0.78 

5-9 years (6.8 years)  0.64 

10-14 years (11.16 years)  0.56 

15 years or more (18.3 years)  0.42 
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In contrast to the protective factors, infertility and null-parity are assumed to raise the risk 

of OC by increasing the rate of exposure to ovulation. However, there are controversial data 

about in-vitro fertilization; some authors state that there is no association while other show 

there is increased risk of OC in women undergoing in-vitro fertilization (Le et al., 2012; 

Stewart et al., 2013). Endometriosis, which is the growth of endometrium tissue in other 

parts of the body, is also linked with an elevated risk of OC (Stewart et al., 2013; Wang et 

al., 2013). Progesterone, which is raised during pregnancy or supplied by oral 

contraceptives, might have a role in clearing the transformed epithelial cells from the ovarian 

surface (Smith and Xu, 2008). In summary it appears that factors associated with a reduced 

the frequency of ovulation might have a protective effect against OC. 

1.1.1.4. Genetic factors  

Inherited and somatic mutations are associated with an elevated risk of OC (Bast, Hennessy 

and Mills, 2009). Women with a family history (i.e. sister, daughter, and mother) of OC have 

a three-fold increased risk of developing OC (Schorge et al., 2010). Inherited mutations in 

genes such as BRCA1 and BRCA2 and DNA mismatch repair are reported to influence the 

risk of OC (Levy-Lahad and Friedman, 2007).  

BRCA1 or BRCA2 germline mutation account for 90% of inherited OC (Schorge et al., 

2010). However, only 10-15% of women with mutation in BRCA genes develop OC 

(Hennessy, Coleman and Markman, 2009). The lifetime risk of OC is 2% among UK women 

(Sasieni et al., 2011; Cancer research UK, 2017) but the cumulative risk is amplified to 30-

60% in woman with BRCA1 and 15-30% in woman with BRCA2 mutations and a family 

history of breast or OC (Gayther and Pharoah, 2010).  Furthermore,  woman whose family 

suffer from Lynch II syndrome, a hereditary nonpolyposis colorectal malignancy, have a 7% 

chance to develop OC (Bast, Hennessy and Mills, 2009). Genetic and non-genetic factors 
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within families might be the cause of familial aggregation of cancer. However, twin studies 

had suggested the importance of inherited mutation (Gayther and Pharoah, 2010).  

On the other hand, somatic mutations also contribute to the development of OC. The most 

common somatic mutations noted in epithelial OC include TP53, a tumour suppressor gene, 

and K-Ras (11%) and B-Raf (0.5%), signalling molecules. TP53 mutation is observed in 50-

80% of advanced OC. p53 controls the function of many genes involved in DNA repair, cell 

cycle arrest, programmed cell death and differentiation of damaged cells (Despierre et al., 

2010; Bell et al., 2011).  

Other factors that might contribute to OC risk are summarized below (Table 1-2). The key 

documented factors influencing OC risk, such as age, oral contraceptive use and parity, offer 

limited potential for alteration to reduce the incidence of OC. Therefore, factors such as 

hormone replacement therapy and breast feeding might of particular importance (Banks, 

2001). 
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Table 1-2 Summary of some factors influence ovarian cancer risk 

Factors Risk of OC Mechanism References 

Hormone 

replacement 

therapy 

Long term 

use increase 

the risk of 

OC 

Oestrogen might stimulate 

proliferation of ovarian cells  

(Beral et al., 2007; 

Zhou et al., 2008) 

Smoking Increase the 

risk of 

mucinous OC 

Unknown mechanism (Jordan et al., 2006; 

Tworoger et al., 2008) 

Physical 

activity 

Decrease the 

risk of OC 

Reducing oestrogens level, and 

decreasing the occurrence of 

ovulation, and subsequently 

exposure to progesterone in the 

luteal phase of the cycle 

(Chiaffarino et al., 

2007) 

BMI Increase the 

risk of OC 

Adiposity provoke the 

production of endogenous sex 

steroid hormones 

(Olsen et al., 2007) 

NSAID  No 

association, 

or decrease 

the risk have 

been reported  

possibly through the inhibition 

of prostaglandin synthesis, 

which in turn involved in 

promoting cell proliferation and 

inhibiting apoptosis 

(Pinheiro et al., 2009; 

Murphy et al., 2012) 

Hysterectomy Decrease the 

risk of OC 

Several factors have been 

postulated such as reducing 

growth factors, blood supply, 

anovulation and blocking of 

access of carcinogens to ovary 

(Chiaffarino et al., 

2005) 

Talcum 

powder and 

asbestos 

Increase the 

risk of OC 

 

Damage to epithelial cells 

which might induce 

inflammation 

(Schorge et al., 2010; 

Camargo et al., 2011; 

Lowe et al., 2013) 
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1.1.2. Classification of ovarian cancer 

Ovarian cancer is a heterogeneous disease (Domcke et al., 2013; Kroeger and Drapkin, 

2017). The World Health Organization classified OC based on histogenesis of the normal 

ovary, indicating the tissue the tumours appear to be derived from such as epithelial tumour, 

germ cell tumour, sex cord-stromal tumour (Kaku et al., 2003). It has been proposed that 

90% of primary malignant OC arise from either the epithelial surface of the ovary or the 

inclusion cysts or the mullerian system (Cho and Shih, 2009). However, there is a growing 

body of evidence which supports the theory that the primary site of origin of OC may not be 

the epithelial cells of the ovaries. Ovarian epithelial cancers share common characteristics 

that are similar to the cells lining the fallopian tube, endometrium and endocervix, and which 

have an embryological site of origin, the mullerian ducts, that is distinct from that of the 

ovary (Dubeau, 2008). This has raised the possibility that OC may originate in the fallopian 

tube (George, Garcia and Slomovitz, 2016). 

Epithelial OC is categorised into serous (60%), mucinous (12-15%), endometrioid (20-25%) 

and clear cell tumour (4-12%). The majority of serous ovarian carcinoma (90%) are high 

grade serous OC. Other less frequent histological type includes Brenner, mixed epithelial 

type, and undifferentiated carcinomas (Wang et al., 2005; Kroeger and Drapkin, 2017). Each 

subdivision might be further divided according to their behaviour into benign, border line 

(Low malignant potential) and malignant tumour (Mok et al., 2007); or depending on the 

morphological characteristics of the tumour into papillary, glandular and solid tumour 

(Soslow, 2008). 
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1.1.3. Staging of ovarian cancer  

In the absence of metastasis, histological conformation and accurate staging of OC is vital 

for determination of a prognosis and treatment strategy. It is usually done during surgery. 

The International Federation of Gynaecological Oncology (FIGO) developed a system for 

classification of OC. The system classifies OC into four major stages. Each stage is divided 

into sub-stages that reflect certain clinical, pathological, or biological prognostic factors 

(Table 1-3) (Colombo et al., 2006; Decruze and Kirwan, 2006). The stages reflect 

dissemination of the disease from the ovaries into the pelvis, peritoneal cavity and then the 

rest of the body. 

1.1.4. Signs, symptoms and diagnosis  

Ovarian cancer has been described as a silent killer because the symptoms do not commence 

until the late stage of the disease (Goff et al., 2007). The clinical presentation associated with 

OC might be not specific, vague, and usually have a common characteristic with other 

abdominal and gastrointestinal disorder (Goff et al., 2007; Lanceley et al., 2011). The 

majority of the patients are diagnosed at an advanced stage. Despite this, the OC patients 

might have discomfort for several months before diagnosis (Goff et al., 2004), but most of 

the patients symptoms go unreported and unrecognised by the primary clinical care. 

Furthermore, half of the women with OC are not referred to gynaecological cancer clinics 

(Vine et al., 2003). Doctors and patients must be alert to any symptoms to prevent any delay 

in diagnosis (Goff, 2012). The most frequently encountered symptoms with OC are listed 

below (Table 1-4).  
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Table 1-3 FIGO staging of ovarian cancer stage (Berek, et al., 2012) 

Stages Description  

I Tumour confined to ovaries 

IA Growth limited to one ovary; no ascites. No tumour on the external surface; 

capsule intact 

IB Growth limited to both ovaries; no ascites. No tumour on the external 

surfaces; capsules intact 

IC Tumour either Stage IA or IB, but with tumour on surface of one or both 

ovaries, or with capsule ruptured, or with ascites, or with positive peritoneal 

washings 

II Tumour comprising one or both ovaries with pelvic extension 

IIA Extension and/or metastases to the uterus and/or tubes 

IIB Extension to other pelvic tissues 

IIC Tumour either Stage IIA or IIB, but with tumour on surface of one or both 

ovaries, or with capsule(s) ruptured, or with ascites present containing 

malignant cells, or with positive peritoneal washings 

III 

 

 

Tumour involving one or both ovaries with histologically confirmed 

peritoneal implants outside the pelvis and/or positive regional lymph nodes. 

Superficial liver metastases equal Stage III. Tumour is limited to the true 

pelvis, but with histologically proven malignant extension to small bowel or 

omentum  

IIIA 

 

Tumour grossly limited to the true pelvis, with negative nodes, but with 

histologically confirmed microscopic seeding of abdominal peritoneal 

surfaces, or histologic proven extension to small bowel or mesentery 

IIIB Tumour of one or both ovaries with histologically confirmed implants, 

peritoneal metastasis of abdominal peritoneal surfaces, none exceeding 2 cm 

in diameter; nodes are negative 

IIIC 

 

Peritoneal metastasis beyond the pelvis >2 cm in diameter and/or positive 

regional lymph nodes 

IV Growth involving one or both ovaries with distant metastases. If pleural 

effusion is present, there must be positive cytology to allot a case to Stage IV. 

Parenchymal liver metastasis equals Stage IVa.  
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Table 1-4 Ovarian cancer symptoms and their frequency (Goff, et al., 2000) 

Symptom Frequency (% of patients) 

Increased abdominal size 61 

Abdominal Bloating 57 

Fatigue 47 

Abdominal pain 36 

Indigestion 31 

Urinary frequency 27 

Pelvic pain 26 

Constipation 25 

Urinary incontinence 24 

Back pain 23 

Pain with intercourse 17 

Unable to eat normally 16 

Palpable mass 14 

Vaginal bleeding 13 

Weight loss 11 

Nausea 9 

Bleeding with intercourse 3 

Diarrhoea 1 

Deep venous thrombosis 1 

None 5 

 

The confirmation of OC diagnosis is only made by histological analysis of a specimen during 

surgery. However, the urgent referral of suspected cases of OC to the diagnostic centre is 

required. In 1990, Jacobs, et al. established the risk of malignancy index (RMI), which 

combines the result of three independently associated variables to predict the likelihood of 

ovarian malignancy (CA125 blood level, ultrasound examination and menopausal status) to 

overcome the limitation of the ultrasound and CA125 alone. This also facilitates the referral 
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of the suspected patients to gynaecological oncologist (Jacobs et al., 1990; Cancer research 

UK, 2017).  

Carbohydrate antigen 125 (CA125) is a tumour marker for screening, diagnosis, and 

therapeutic  monitoring in OC (Felder et al., 2014). It was first discovered by Bast, Knapp, 

and colleagues (Bast et al., 1981) in 1981 and is also known as MUC16. CA125 is a 22,000 

amino acids protein encoded by MUC16 gene and it is a cell surface transmembrane 

glycoprotein which can be released extracellularly by proteolytic cleavage into body fluids 

such as blood and ascites (Bafna, Kaur and Batra, 2010). In addition, It is expressed by 

epithelial cells in endocervix, endometrium and fallopian tube to protect the luminal surface 

from physical stress (Hung et al., 2013). Elevated levels of CA125 were reported in 90% of 

women with advanced stage OC, but in only 50% of patient at early stage of OC (Gupta and 

Lis, 2009). Finally, utilizing CA125 in diagnosis of OC in the general population is 

complicated by its increase in other conditions such as endometriosis and ovarian cyst 

(Asher, Hammond and Duncan, 2010; Lutz et al., 2011; Babic et al., 2017). 

Human Epididymis protein 4 (HE4) is new cancer specific biomarker which has a relatively 

high sensitivity to detect OC and its expression in non-gynaecological cancers had not been 

observed (Li et al., 2009). The physiological role of HE4, which is encoded by the gene 

WFDC2, has not been identified. However, HE4 protein is upregulated in ovarian 

malignancies compared to benign OC and other type of  carcinomas (Chung et al., 2013; 

Steffensen et al., 2016). Several studies have recognized HE4 level is upregulated in cases 

where CA125 level is not elevated, so HE4 can be used as complementary biomarker for OC 

(Montagnana et al., 2009; Moore et al., 2009; Steffensen et al., 2011). Lastly, improved 

imaging techniques have been employed to diagnose cancerous tissue and angiogenesis at 

an early stages of the disease (Fleischer et al., 2012). 
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1.1.5. Aetiology of ovarian cancer 

There are several theories that explain the aetiology of OC. The earlier theories, incessant 

ovulation, gonadotropin and pelvic contamination theories, were based on the 

epidemiological data. Recently, the dualistic theory had connected the anatomical and 

molecular genetic with OC aetiology. The details anatomy and biology of the ovary in Figure 

1-7 

 

Figure 1-7 Anatomy and biology of the ovary, fallopian tube and uterus  

(a) The fallopian tube is responsible for fluid synthesis and egg transportation which is supported by 

muscular contraction of the tube wall. The fallopian tube comprises two principal types of epithelial 

cell secretory cells and ciliated cells. The small basally-situated cells stand for recently described 

epithelial stem and/or progenitor cells. In addition, immune surveillance plays an important role 

through the presence of immune cells in the epithelium and stromal tissue. 
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(b) The main cells of the ovarian cortex are ovarian surface epithelium (OSE) (these cells are 

implicated in the repair of ovarian surface after ovulation), stromal cells and follicles at various stages 

of maturation, such as theca cells, granulosa cells and oocytes. Theca cells and granulosa cells 

synthesize androgens and oestrogens, respectively, and support the development of oocyte.  

(c) The endometrium is composed of cells of the endometrial epithelium (EME) and endometrial 

stroma (EMS). These cells respond to systemic and paracrine signals and undergo cyclical changes 

during the menstrual cycle and support the nourishment of the embryo during fertilization and 

implantation. Reprinted with permission from (Karnezis et al., 2017). 

 

1.1.5.1. Incessant ovulation theory 

The incessant ovulation theory, which was proposed by Fathalla more than 40 years ago, 

linked the frequency of ovulation and the increased opportunity of developing ovarian 

malignancy (Fathalla, 1971). This theory is supported by the protective effects of the oral 

contraceptive pills (Fathalla, 2016). It was postulated that frequent injury to the ovarian 

epithelial cells, provoked through ovulation in nulliparous women, as a possible mechanism 

associated with development of OC. As consequence of repeated trauma, it was 

hypothesized that the cells required an increased rate of DNA synthesis and cell proliferation 

to repair the disruption of the epithelial cells. The increased rate of DNA synthesis might 

cause replication errors which trigger cells transformation into malignant or premalignant 

phenotype (Schüler et al., 2013).  

In addition, ovulation is accompanied by production of excessive amount of free radicals 

which might also contribute to DNA damage and hence be a causative factor of cancer 

(Murdoch, 2005). In vitro, it is found that frequent subculture of epithelial cells from the rat 

ovaries induces genetic mutation and malignant transformation (Testa et al., 1994). 

However, a  limitation to this theory is that the populations of the epithelial cells of the ovary 

that are affected by repeated repair would not be the same with each ovulation (Smith and 

Xu, 2003) and the use of the progesterone only contraceptive pills, that does not interrupt 
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ovulation, has the same potential in preventing OC as the combined oral contraceptive 

(Landen, Birrer and Sood, 2008). 

1.1.5.2. Gonadotropin stimulation theory 

The early evidence that led to the gonadotropin theory was the development of OC in rodents 

after oophorectomy caused by excessive gonadotropin stimulation (Schüler et al., 2013). 

Gonadotropin hormones (LH and FSH), that are secreted from the pituitary gland, increase 

the oestrogenic stimulus of the surface epithelial cells of ovary to initiate the ovulation 

process. This stimulation might promote malignant cellular transformation by promoting 

production of oestrogen (Fleming et al., 2006; Smith and Xu, 2008). After ovulation, the 

ruptured follicle becomes a corpus luteum which produces progesterone. Progesterone in 

turn, negatively inhibits gonadotropin levels that surge abruptly after menopause. The 

increment in gonadotropin levels in menopause women might contribute to the increased 

risk of OC, because it fosters the inflammatory milieu that could not induce ovulation. 

(Mertens-Walker, Baxter and Marsh, 2012). It has also been suggested that these hormones 

induce the evolution of OC rather than the causation (Landen, Birrer and Sood, 2008).  

1.1.5.3. Pelvic contamination theory 

The pelvic contamination theory hypothesised that inflammation induced by irritation of the 

peritoneum might be linked to the development of OC (Heintz, Hacker and Lagasse, 1985). 

Inflammation resulting from ovulation or exposure to xenobiotics such as asbestos and talc, 

might influence malignant transformation of ovarian epithelial cells (Mok et al., 2007; 

Camargo et al., 2011). Furthermore, endometriosis and pelvic inflammatory disease 

influence the risk of OC (Murdoch, 2005; Lowe et al., 2013). On the other hand, tubal 

ligation and hysterectomy have been shown to reduce the risk through preventing exposure 

of the ovary to environmental factors (Chiaffarino et al., 2005; Ness et al., 2011). 
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1.1.5.4. Dualistic theory 

The dualistic theory was proposed by Shih and Kurman (Shih and Kurman, 2004) and it is 

based on their idea that ovarian carcinoma might be divided into two distinctive broad 

categories (Figure 1-8) depending on analysis of the molecular pathogenesis of benign, 

borderline and malignant OC. Firstly, type I tumours have low proliferative activity, are less 

sensitive to chemotherapy and composed of  low grade serous, endometrioid, mucinous, 

clear cells and Brenner tumours. Type I carcinomas have distinctive molecular pathogenesis 

such as K-Ras mutation for mucinous and serous tumours and B-Raf for serous tumour and 

β-catenin and PTEN mutation for endometrioid tumours. In contrast, type II tumours, such 

as high grade serous, undifferentiated carcinomas and mixed mesodermal malignancy, 

evolve rapidly, are relatively responsive to chemotherapy, lack conclusive precursor lesions 

and are characterized by frequent TP53 mutation and CCNE1 amplification (Fleming et al., 

2006; Landen, Birrer and Sood, 2008; Kurman and Shih, 2010; Jones and Drapkin, 2013; 

Tang et al., 2017). 
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Figure 1-8  Classification of ovarian cancer according to dualistic theory (Jones and 

Drapkin, 2013). 

1.1.6. Treatment  

In UK, a team of different disciplines work together to manage OC including a 

gynaecological oncologist, pathologist, radiologist and non-surgical oncologist and this has 

improved the patient survival (Guppy, Nathan and Rustin, 2005).  

The management plan of OC is principally dependent on the stage of the disease at diagnosis 

and the patients associated co-morbidity. In the early stages of OC, surgery is considered as 

the cornerstone of the treatment plan and alongside tumour debulking, it also aims to confirm 

the diagnosis and inform optimal staging. Optimal staging includes palpation and careful 

inspection of the peritoneal surfaces with biopsies of suspected foci of cancers (Trimbos et 

al., 2003). Also, the standard surgery management includes bilateral salpingo-

oophorectomy, total hysterectomy, omentectomy, lymphadenectomy and removal of the all 

microscopic lesions (Lécuru et al., 2017). In contrast to the early stage disease, adjuvant 
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chemotherapy is essential in advanced stages OC. However, some cases, such as wide spread 

disease and extensive ascites, neoadjuvant therapy is used prior to surgery (Guppy, Nathan 

and Rustin, 2005). The success of surgery is the most important prognostic factors in the 

management of advanced OC (Agarwal and Kaye, 2003). Although the prognosis for 

patients with early stage OC is better than those with advanced disease, 10-30% of the early 

stage OC patients relapse after surgery and require chemotherapy (Colombo et al., 2006).  

1.1.6.1. Chemotherapy 

The chemotherapeutic schedules of OC treatment have been revised over the last 30 years. 

In the 1970, melphalan was replaced by combination therapy of cyclophosphamide and 

doxorubicin. Cisplatin was added to this combination or to doxorubicin alone in the 1980s. 

At the same time, it was established that carboplatin has approximately equivalent efficacy 

to cisplatin, but with a reduced toxicity profile.  In the late 20th century, it was found that 

paclitaxel is effective in the treatment of relapsed platinum-refractory disease. Currently, 

paclitaxel with either carboplatin or cisplatin used as first line chemotherapy for treatment 

of OC. Generally, the drug combination is given every three weeks for 6 cycles (Agarwal 

and Kaye, 2003). 

1.1.6.1.1. Platinum 

Rosenberg discovered cisplatin during an investigation of the electrical field effect on 

bacterial growth. He found that a small amount of platinum reacted with ammonium chloride 

present in medium to inhibit bacterial cell division. In 1967, cisplatin was shown to have 

anticancer activity by inhibiting the development of sarcoma in mouse tumour model 

(Rosenberg, 1985). The clinical applications of cisplatin include testicular, bladder and OC. 

It is also used for osteogenic sarcoma, head and neck cancer, endometrial and cervical cancer 

and non-small cell lung cancer (Reedijk, 1987; Pabla and Dong, 2008; Ahmad, 2010).  
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Platinum’s effect is mediated by aqueous hydrolysis of the drug inside the cell to form active 

species (Agarwal and Kaye, 2003). The cytotoxic effects of platinum complexes are 

mediated via the formation of DNA inter-strand cross links or intra-strand DNA cross links, 

mostly at N7 position of guanine and possible at N3 position of adenine and O6 position of 

cytosine, chelation of the O-atoms and N-atoms of guanine and lastly by cross linking of 

DNA to protein (Katzung, Masters and Trevor, 2012). Binding of platinum to DNA inhibits 

DNA replication and protein synthesis that eventually leads to cancer cell apoptosis (Ahmad, 

2010). The frequently encountered adverse effects of cisplatin are nausea, vomiting, bone 

marrow toxicity, neurotoxicity and nephrotoxicity (Reedijk, 1987; Pabla and Dong, 2008).  

Carboplatin has replaced cisplatin in many chemotherapeutic combination regimens. It has 

a similar pharmacological profile with the advantage of substantially less renal and 

gastrointestinal adverse effects. However, its main adverse effect remains bone marrow 

suppression. In addition, the third generation platinum analogue, oxaliplatin, has similar 

pharmacological activities as carboplatin and cisplatin, but with advantages of additive 

activities against the resistant tumours than the older generations of platinum (Katzung, 

Masters and Trevor, 2012). 

1.1.6.1.2. Paclitaxel 

Taxanes (paclitaxel and docetaxel) are either derived from natural sources or by 

semisynthetic processes. Paclitaxel, an ester alkaloid, was first derived from the Pacific yew 

(Taxus brevifolia) and the European yew (Taxus baccata). Docetaxel, a semisynthetic 

taxane, exhibits less neurotoxicity than paclitaxel. Both drugs act by interfering with the 

normal as well cancer cell mitosis through binding to the β-subunit of tubulin and 

consequently leads to the stabilization of the microtubules and cell cycle arrest (Harries and 

Gore, 2002). Furthermore, taxanes induce apoptosis and have anti-angiogenic properties 
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(Crown and O’Leary, 2000). Paclitaxel is effective in ovarian, advanced breast, non-small 

cell and small cell lung, head and neck, oesophageal, prostate, and bladder cancers. The 

adverse effects of taxane include hypersensitivity, neurotoxicity, bone marrow suppression, 

neutropenia and fluid retention (Katzung, Masters and Trevor, 2012). 

1.1.6.1.3. Pegylated liposomal doxorubicin 

Doxorubicin is a member of the anthracyclin antibiotics family that was isolated from 

Streptomyces peucetius var caesius. Four major mechanisms for the cytotoxic effect of 

doxorubicin have been proposed:(1) topoisomerase II inhibition; (2) blockade of the 

synthesis of DNA and RNA due to inter-chelation into DNA; (3) free radicals production 

via an enzyme-mediated reductive process; (4) changing the fluidity of cellular membrane 

and influencing ion transport (Katzung, Masters and Trevor, 2012).  

Doxorubicin has also been encapsulated in liposomes with a layer of polyethylene glycol to 

produce pegylated liposomal doxorubicin (PLD). The pegylation process improves the 

pharmacokinetic and toxicological properties of the drug and aids in drug delivery to the 

tumour (Thigpen et al., 2005; Shen et al., 2010). PLD has been shown to be useful in 

treatment of relapsed OC (Oskay-Oezcelik et al., 2008) as well as in combination with 

cyclophosphamide in platinum-sensitive cancers. The overall response for the combination 

was 31% and the overall survival was 8.2 months (Floquet et al., 2014).  

1.1.6.1.4. Topotecan  

Topotecan is a semisynthetic analogue of camptothecin. It inhibits the enzyme 

topoisomerase I which participates in key processes during DNA replication, transcription 

and repair mechanism. The enzyme relieves torsional stress by cutting and re-ligating a 

single DNA strand during DNA synthesis. Topoisomerase I binds covalently with DNA to 
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from a complex, and this forms the site of topotecan action. Topotecan stabilizes the complex 

and inhibits  DNA synthesis  (Goff et al., 2007; Lorusso et al., 2010).  

Topotecan is indicated as second line therapy for both platinum-sensitive and platinum 

resistant OC relapsed after platinum-based chemotherapy (Abushahin et al., 2008; Morris et 

al., 2008). Topotecan’s toxicity profile presents less challenges to the oncologist in 

comparison to the doxorubicin and paclitaxel therapy. The adverse effects of topotecan are 

usually short lived, reversible and noncumulative. However, neutropenia, alopecia, 

leukopenia, stomatitis, thrombocytopenia and anaemia are noted in patients using topotecan 

therapy (Dunton et al., 2002). 

1.1.6.1.5. Melphalan 

Melphalan, an alkylating agent which is phenylalanine derivative of nitrogen mustard and 

was initially synthesized in 1953 (Rothbarth, Vahrmeijer and Mulder, 2002). Melphalan 

exerts its cytotoxic effect by inhibiting DNA synthesis through the formation of the intra-

strand and inter-strand cross link and also by causing DNA-protein crosslinks. Cell death is 

usually the result of transfer of melphalan alkyl group to the DNA (Katzung, Masters and 

Trevor, 2012). The major adverse effects of melphalan, especially at large doses, are bone 

marrow suppression including leukopenia and thrombocytopenia and secondary neoplasm 

has also been reported (Rothbarth, Vahrmeijer and Mulder, 2002). Although melphalan was 

first chemotherapeutic agent for the treatment of OC (McGuire and Markman, 2003), it was 

replaced by a combination of cyclophosphamide and doxorubicin (Agarwal and Kaye, 

2003). 

1.1.6.2. Molecularly-targeted therapy 

Molecularly-targeted therapy might be defined as drugs that inhibit the cancerous phenotype 

of tumours by modulating the function of a specific protein or other cellular components. 
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These targets are critical for tumour development and progression and can act as “drivers” 

of carcinogenesis. Examples include c-Kit mutations in gastrointestinal stromal tumours, 

epidermal growth factor receptor mutations in non-small cell lung cancer, HER2 

amplification in breast cancer, and the BCR-ABL translocation in chronic myelogenous 

leukaemia (Ellis and Hicklin, 2009; Huang et al., 2014). Targeted therapy differs from 

traditional chemotherapy by acting selectively on cancer cells and less destructive to normal 

cells. However, the main obstacle to the success of these medications is heterogeneity of the 

cells in tumours and the development of drug resistance (Ellis and Hicklin, 2009).  

1.1.6.2.1. Angiogenesis inhibitors 

Angiogenesis is an essential factor for tumour growth and metastasis. Targeting the 

formation of new blood vessels is a promising strategy in breast, renal and OCs (Weis and 

Cheresh, 2011). The FDA had approved several inhibitors for cancer treatment such as the 

humanized antibody bevacizumab, which binds VEGF-A, the tyrosine kinase inhibitor 

sorafenib, which targets Raf and VEGF and PDGF receptors, and the tyrosine kinase 

inhibitor sunitinib, which targets VEGF and PDGF receptors (Chung, Lee and Ferrara, 

2010). Bevacizumab is a monoclonal antibody directed against vascular endothelial growth 

factor. It displayed substantial single agent activity in OC. However, the 21 % response rate 

was low and the 6-month progression survival rate were less than 50% in platinum-sensitive 

relapsed OC (Burger et al., 2007). Apart from the cost and resistance, hypertension, 

proteinuria, gastrointestinal perforation are the main limitation reported with angiogenesis 

inhibitors (Banerjee and Kaye, 2013).  

A recent  meta-analysis (Y. S. Wu et al., 2017) of 5 clinical trials (Perren et al., 2011; 

Aghajanian et al., 2012; Burger et al., 2012; Pujade-Lauraine et al., 2014; Coleman et al., 

2015)  indicated that bevacizumab combined with traditional chemotherapy significantly 
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prolongs the progression free survival and overall survival in OC patients. It had been 

suggested that these agents are relatively well tolerated and should be considered for further 

study as single agent or in combination with other cytotoxic agents (Banerjee, Bookman and 

Gore, 2011; Burger et al., 2012). The European Medicines Agency approved the use of 

Bevacizumab as first line therapeutic agent in combination with carboplatin and paclitaxel 

for treating advanced stage OC (Sapiezynski et al., 2016). 

1.1.6.2.2. Poly(ADP)Ribose Polymerase (PARP) inhibitors 

PARP enzymes, which was first described over 50 years ago by Mandel, are a family of 

proteins implicated in the regulation of several cellular processes such as DNA-repair, 

inflammation and cell fate. PARP-1, a nuclear enzyme, facilitates DNA repair (mild damage) 

or triggers cell death (severe damage) by binding to both single-stranded and double-

stranded DNA breaks (Wiggans et al., 2015; Meehan and Chen, 2016).  

Therapy directed at DNA repair pathways in OC had gained considerable interest because 

the lifetime risk of OC in women with BRCA mutations is elevated by 39–44% (Banerjee, 

Bookman and Gore, 2011; Shi et al., 2017). PARP inhibitors can kill cancer cells specifically 

by preventing the repair of single strand gaps which may be degenerate into double strand 

breaks in DNA if they encountered by a replication fork. In tumour cells which lack 

functional BRCA genes, replication forks collapse and chromatin breaks leading to loss of 

cell viability (Figure 1-9). However, normal cells which retain single wild type copy of the 

BRCA gene are spared (Farmer et al., 2005). This concept is called synthetic lethality 

because neither PARP inhibitors nor BRCA mutation alone are lethal but the combination 

results in cell death.  
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Figure 1-9 Role of PARP inhibitors in DNA repair and synthetic lethality. 

PARP1 binding to single strand break results in activation of base excision repair. In the presence of 

PARP inhibitors and the lack of DNA repair, DNA replication generates a double strand breaks. In 

homologous recombination deficient cells, the lack of accurate repair of the double strand breaks 

persist resulting in cell death. Reproduced with permission from (Sonnenblick et al., 2014). 

 

1.1.6.2.3. Other signalling molecules 

Several signalling mechanisms are aberrant in ovarian tumours which cause activation of 

oncogenic pathway participating in cell proliferation, angiogenesis, migration and survival. 

Many drugs are under development for targeting cellular changes implicated in malignant 
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transformation such as phosphoinositide 3-kinase/protein kinase B (PI3K/AKT), platelet-

derived growth factor receptor (PDGFR), protein kinase C (PKC) and mitogen-activated 

protein kinase (MAPK). These agents include SF1126 and GSK690693 (PI3 kinase/AKT 

pathway inhibitors), dasatinib (Src inhibitor), sorafenib (Raf and VEGF receptor inhibitor), 

imatinib (PDGFR, c-kit inhibitor), and enzastaurin–LY-31765 (PKC inhibitor). Lastly, 

MORab-003 (Morphotek, Inc.), a monoclonal antibody against the folate receptor which is 

overexpressed in > 90% of OCs, is being evaluated in a phase II trial (Banerjee, Bookman 

and Gore, 2011).  

Preclinical evidence suggests that epidermal growth factor receptor (EGFR) and human 

epidermal growth factor 2 receptor (HER2), tyrosine kinase receptors involved in cell 

proliferation and survival, are potential targets in OC. However, a clinical trial showed that 

the effectiveness of these agents were relatively limited (Teplinsky and Muggia, 2015). 

1.1.7. Cytotoxic drug resistance in ovarian cancer 

Resistance is main obstacle in management of cancer that leads to treatment failure and 

unsatisfactory overall patient survival (Holohan et al., 2013). The response rate to the initial 

treatment of advanced OC is ordinarily high and is successful in 60-80% of patients. 

However, the survival rate has not improved in the last two decades and the 5-year survival 

rate remains as low as 40 % of the total patients (Ling et al., 2005; Kigawa, 2013). The effort 

of incorporation of the newer cytotoxic agents (gemcitabine, liposomal doxorubicin and 

topotecan) to the conventional first line regimen (platinum-taxane) in GOG 182-ICON 5 

study was unsuccessful in improving the overall survival and progression free survival of 

patients with advanced OC after optimal or suboptimal cytoreduction (Bookman et al., 

2009). Therefore, there is a pressing demand to develop new drugs or (re)sensitize cancer 

cells to existing chemotherapy (Witham et al., 2007). 
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Several mechanisms of chemotherapy drug resistance in OC have been suggested, involving 

alterations in drug transport, changes in cellular detoxification, evading the induction of 

apoptosis and increased DNA repair activity (Figure 1-10) (Ling et al., 2005; Kigawa, 2013). 

The potential involvement of multiple resistance mechanisms might contribute to a drug-

resistant phenotype (Witham et al., 2007). 

1.1.7.1. Altered drug flux 

One of the major mechanisms of drug resistance is the decrease in drug accumulation in 

cancer cells by increasing the drug efflux or reducing the uptake or a combination of both 

mechanisms (Tapia and Diaz-Padill, 2013). In 1976, MDR1, which encodes P-gp protein, 

the first member of ATP-binding cassette transporters (ABC) family, was identified 

(Callaghan, Luk and Bebawy, 2014) and represents a major advance in the understanding of 

drug resistance. Generally ABC proteins are efficient large transmembrane pumps involved 

in transport of metabolic products, nutrients, lipids, wide variety of drugs and chemical 

compounds against a concentration gradient (O’Connor, 2007). 

At least eight ABC proteins are recognised in humans to have a role in resistance to cytotoxic 

agents as well as variety of other classes of drugs (Gottesman and Ambudkar, 2001) 

Specifically, P-gp overexpression is implicated not only in chemoresistance and failure of 

chemotherapy but it also associated with poor prognosis in patient with cancers such as OC, 

breast cancer, sarcoma and other malignancies (Ricciardelli et al., 2013). P-gp has been 

reported to decrease intracellular accumulation of platinum-based compounds and other 

cytotoxic drugs and its expression has been shown to correlate with drug resistance. 

Therefore, it is considered as an attractive target to improve the clinical outcome of 

anticancer therapy (Tapia and Diaz-Padill, 2013; Kilari, Guancial and Kim, 2016).  
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Figure 1-10 General principles of drug resistance. 

Drug absorption, distribution, metabolism and elimination control the quantity of drug that reaches 

the tumour. The anticancer activity of a drug can be reduced by: poor drug influx or excessive efflux; 

drug inactivation or lack of activation; alterations in the drug target, such as mutation or changes in 

expression levels; activation of adaptive pro-survival responses; and a lack of cell death induction 

due to dysfunctional apoptosis. Reproduced with permission from (Holohan et al., 2013). 

 

Co-administration of P-gp inhibitors with chemotherapeutic drugs has given mixed results. 

P-gp inhibitors such as Valspodar, might elevate drug plasma concentrations beyond 

acceptable toxicity caused by pharmacokinetic drug interactions which reduce drug 

clearance and metabolism (Fracasso et al., 2001). Yakirevich, et al., (Yakirevich et al., 

2006), studied consecutive sections from 60 patients of ovarian serous carcinoma and 

showed that P-gp is an independent prognostic factor and its expression directly correlated 

with the chemotherapeutic response and was inversely correlated with survival rate.  
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The entry of cisplatin and carboplatin into cancer cells is regulated by copper transporter-1 

(CTR1). This protein is encoded by CTR1 gene and deletion of this gene result in a reduction 

of the intracellular accumulation of cisplatin and ultimately triggers cisplatin resistance in 

various cell line including OC cell lines (Holzer, Manorek and Howell, 2006). In addition, 

ATP7A and ATP7B, copper exporters, have been reported to participate in resistance to 

cisplatin by retaining the drugs in intracellular compartment and blocking their interaction 

with DNA (Samimi et al., 2004). Lastly, overexpression of ATP7A and ATP7B had been 

reported in OC and associated with increased resistance and lower survival rate (Samimi et 

al., 2003). 

1.1.7.2. Increase cellular detoxification  

Glutathione (GSH) is a hydrophilic tripeptide composed of cysteine, glycine and glutamate. 

It is one of the most copious intracellular thiol molecules in cells and  plays a crucial function 

in eliminating the toxicity of various cellular toxins include cisplatin and its analogues 

(Forman, Zhang and Rinna, 2009; Traverso et al., 2013). Cysteine and methionine residues 

have the ability to inactivate the platinum-based drugs by binding to the sulphur atom in 

GSH (Jansen, Brouwer and Reedijk, 2002). This reaction is under the control of the 

glutathione S-transferase and the product is inactive and eliminated from cancer cells  (Wang 

And and Guo, 2007). The role of GSH in acquired and intrinsic drug resistance might be 

explained by increased detoxification and elevated efflux of the cytotoxic drugs (Belotte et 

al., 2014). It has been observed that several tumours with elevated level of GSH might be 

more resistant to chemotherapy (Traverso et al., 2013). It has also been demonstrated that 

acquisition of the resistance to chemotherapy in cell lines derived from OC patients was 

associated with higher levels of GSH and glutathione-dependent enzymes (Lewis, Hayes and 

Wolf, 1988). Therefore, clinical development of a glutathione analog prodrug was initiated 

to reduce intracellular levels of GSH and overcome platinum inactivation. Canfosfamide 
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preferentially targets cancer cells that overexpress glutathione S-transferase. In vitro and in 

vivo antiproliferative activity of canfosfamide on cancer cells with glutathione S-transferase 

overexpression have been shown (Ramsay and Dilda, 2014). In addition, clinical trials 

demonstrated that canfosfamide was well tolerated and improve the clinical outcome when 

combined with standard chemotherapy in relapsed OC and non-small cell lung cancer 

(Sequist et al., 2009; Vergote et al., 2010). 

1.1.7.3. Increased DNA repair activity 

Chemotherapy drug resistance can be mediated by an increase in the capacity of DNA 

damage repair of the cancer cells (Housman et al., 2014). The inter- and intra-strand DNA 

adducts caused by platinum compounds induce cell cycle arrest or apoptosis in cancer cells. 

The cell fate after cytotoxic therapy is dictated by the balance between DNA damage and 

DNA repair (Florea and Büsselberg, 2011). Several DNA repair mechanisms can be 

activated depending on type of lesion inflicted including nucleotide excision repair (NER), 

mismatch repair (MMR), homologous recombination repair (HR) and base excision repair 

(BER) (Torgovnick and Schumacher, 2015).  

NER and MMR are among the well-recognized DNA repair pathways which appear to have 

a crucial function in mediating resistance to the treatment with platinum drug by 

participating in the detection and resolution of cisplatin induced DNA damage. Enhanced 

NER has been shown to be correlated with cisplatin resistance (Torgovnick and Schumacher, 

2015). At least 20 protein involved in the process of NER, the excision of the damaged DNA 

requires dimerization of the excision repair cross-complementing group 1 (ERCC1) with 

xeroderma pigmentosum complementation group F (XPF). The dimerized complex appears 

to play a fundamental role in DNA repair process (Martin, Hamilton and Schilder, 2008; 

Galluzzi et al., 2012).  
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More than 90% of the metastatic testicular cancer is cured by cisplatin. These tumours are 

associated with low levels of the NER proteins (XPA, XPF, ERCC1) and this might explain 

the testicular cell line higher sensitivity to cisplatin therapy in comparison to cell line from 

other tumour (Welsh et al., 2004). However, a GOG study failed to demonstrate an 

association between ERCC1 and platinum sensitivity, overall survival and progression free 

survival in OC patients (Deloia et al., 2012; Rubatt et al., 2012).  

MMR is another mechanism of DNA repair. This mechanism is divided into three steps, 

initiation, excision and resynthesis and involves several proteins including MLH1, MSH2, 

MSH3, MSH6, and PMS2. The marker of the MMR deficiency is microsatellite instability 

which is the occurrence of variable length of unpaired deletions in mono and dinucleotide 

repeats (Helleman et al., 2006). MMR inactivation has been associated with the resistance 

to cisplatin therapy in OC (Vasey, 2003). The MLH1 gene appear to be essential for normal 

physiological function of MMR system (Martin, Hamilton and Schilder, 2008). Cisplatin 

resistance in a significant proportion of OC patients is correlated with MLH silencing 

induced by methylation (Agarwal and Kaye, 2003). 

1.1.7.4. Evasion of apoptosis 

Apoptosis, or programmed cell death, is an irreversible process characterized by chromatin 

condensation, nuclear fragmentation, membrane blebbing and cell shrinkage, and formation 

of apoptotic bodies (Kerr, 2002). The ability to evade programmed cell death is a hallmark 

of the human cancer and is implicated in resistance to chemotherapy (Hanahan and 

Weinberg, 2011).  

The intrinsic apoptotic pathway (Figure 1-11) is regulated by Bcl-2 family proteins and 

includes mitochondrial outer membrane depolarization, release of cytochrome c from the 

mitochondria, apoptosome formation and the subsequent activation of the caspase cascade 
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(Ichim and Tait, 2016). Lethal stimuli induce the interaction of Bid and Bim with Bax and 

Bak inducing their activation and oligomerization in the mitochondrial membrane to form 

pores that allow cytochrome c and other proteins including Smac and Omi to be released 

from the mitochondrial intermembrane space into cytoplasm. Cytochrome c binds to Apaf1 

to form the apoptosome complex which activates caspase-9. In addition, Smac and Omi 

deactivate the IAP proteins, an inhibitors of caspases, to facilitate the commitment of cell 

death (Tait and Green, 2010). 

In the extrinsic apoptotic pathway (Figure 1-11), the initiators are specific transmembrane 

death receptors triggered by their respective ligands. Apoptosis is initiated by the binding of 

death ligands, receptor, adaptor molecules (FADD) and caspase 8 to form the death-inducing 

signalling complex (DISC) (Lavrik, 2014).  This complex triggers a series of events and 

causes activation of effector caspases and cell death (Ichim and Tait, 2016). The death 

receptor family is a main inducer of the pathway and include FAS (also named CD95 /APO-

1), TNF-R1, TRAIL-R1,TRAIL-R2, DR3 and DR6 (Lavrik, 2014).  

Many proteins are involved in apoptosis pathway regulation, which are tumour suppressor 

genes (such as TP53), oncogenes (such as Ras and Akt) and apoptotic machinery proteins 

(Bcl-2 Family) (Agarwal and Kaye, 2003). An increase in the anti-apoptotic proteins and/or 

reduction of the pro-apoptotic molecules can be a major cause of cancer cell resistance to 

cell death signals and consequently this may lead to tumour progression and development of 

clinical drug resistance (Fulda, 2009). Chemotherapeutic drug resistance has been correlated 

with expression of anti-apoptotic proteins (Bcl-2 and Bcl-XL) and the caspase inhibitor, X-

linked inhibitor of apoptosis protein (XIAP) in OC cell lines (Yang et al., 2004, 2005; 

Williams et al., 2005).  
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Figure 1-11 Extrinsic and intrinsic apoptotic signalling pathways  

In the extrinsic apoptotic pathway, the stimulation of death receptor by ligand can activate initiator 

caspases (caspase 8 and caspase 10) by dimerization mediated by adaptor proteins (FAS-associated 

death domain protein (FADD)). The effector caspase 3, 7 is activated by caspase 8 and 10 which 

eventually lead to apoptosis induction. The intrinsic (or mitochondrial) pathway of apoptosis is more 

complicated than the extrinsic pathway and needs mitochondrial outer membrane permeabilization 

(MOMP). BAX and BAK activation process triggered by cell stress activation of BH only protein 

stimulation leading to MOMP. However, Bcl-2 family proteins counteract this process. 

Subsequently, cytochrome c and mitochondria-derived activator of caspases (SMAC) released from 

the mitochondrial intermembrane space into cytosol. SMAC release facilitates apoptosis by opposing 

the caspase inhibitor X-linked inhibitor of apoptosis protein (XIAP). Triggering of apoptosome 

formation by interaction of cytochrome C with apoptotic protease activating factor 1 (APAF1) lead 

to activation of caspase cascade and finally induction of cell death. Caspase-8 cleavage of the 

BH3-only protein BH3-interacting death domain agonist (BID) allows crosstalk of the extrinsic and 

intrinsic apoptotic pathways. ER, endoplasmic reticulum; MCL1, myeloid cell leukaemia 1; tBID, 

truncated BID. Reproduced with permission form (Ichim and Tait, 2016).  
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1.2. Mevalonate pathway 

The diversity of the products of the mevalonate pathway (MP) and their biological activity 

provides an insight into the importance of this pathway  in health and disease (Burg and 

Espenshade, 2011; Ghavami et al., 2017). The cornucopias products of MP, about 30,000 

compounds identified to date and many new chemical structures being described annually, 

are involved in crucial functions necessary for life. For instance, dolichol, ubiquinone, heme 

A, vitamin D, cholesterol, bile acid and steroids are some products of the pathway. These 

metabolites play a fundamental role as  mating pheromones, in reproductive hormones 

synthesis, membrane structure and signal transduction (Sacchettini and Poulter, 1997; 

Osmak, 2012; Dhar, Koul and Kaul, 2013; Likus et al., 2016). In particular the, MP 

intermediate metabolites regulate diverse cellular functions by controlling the function of 

small GTPases proteins (Mullen et al., 2016; Brandi et al., 2017). Disruption in the MP has 

been associated with a number of disorders such as autoinflammatory disease and 

atherosclerosis (Thurnher, Gruenbacher and Nussbaumer, 2013). 

1.2.1. Biochemistry of mevalonate pathway 

The MP can be divided into three main stages. The 20 enzymes of the MP catalyse the 

biochemical reactions which culminate in the formation of the 27 carbon atom structure of 

tetracyclic molecule, cholesterol (Figure 1-12) (Burg and Espenshade, 2011). 
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Figure 1-12: Mevalonate pathway. 

The figure shows the details of the mevalonate pathway biosynthesis. The pathway started by 

condensation of Acetyl-CoA to HMG-CoA, which in turn reduced to Mevalonate. The later product 

is decarboxylated to isopentenyl which involve in synthesis of other intermediate metabolite of the 

pathway. It also shows some of the inhibitors of pathway enzymes such as statins and 

bisphosphonates. HMGCS, Hydroxymethylglutaryl-CoA synthase; HMGCR, 3-Hydroxy-3-

Methylglutaryl-CoA Reductase; GGT-I, geranylgeranyl transferase-I; GGT-II, geranylgeranyl 

transferase-II. 
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The first stage of mevalonate biosynthesis pathway occurs in the cytoplasm while the 

remaining stages take place in the endoplasmic reticulum. In the first stage, acetyl-CoA, 

derived from carbohydrate, amino acid and fatty acid metabolism, supplies two carbon atoms 

for conversion by condensation reactions into the six carbon atom compound 3-hydroxy-3-

methyl-glutarate conjugated to coenzyme A (HMG-CoA). The condensation reaction is 

catalysed by Acetyl-CoA thiolase and HMG-CoA synthase (HMGCS). Further reduction of 

HMG-CoA produces mevalonate and this reaction is catalysed by the enzyme HMG-CoA 

reductase (HMGCR) and is considered the rate limiting step of the MP. HMGCR is 

extensively regulated at multiple levels of transcription, translation and degradation. 

The second stage, which is considered as a branching step leading to the synthesis of many 

intermediate metabolites, involves phosphorylation and decarboxylation of the mevalonate 

molecules to yield isopentenyl pyrophosphate via the action of the mevalonate kinase and 

mevalonate decarboxylase. This molecule is a fundamental precursor to many biological 

compounds required by animals and plant cells. Subsequently, farnesyl pyrophosphate (FPP) 

is produced from the condensation of three isopentenyl moieties (isopentenyl pyrophosphate 

and dimethyl allyl pyrophosphate) in a reaction catalysed by farnesyl synthase. Next, 

geranylgeranyl pyrophosphate synthase (GGPPS) catalyses the addition of isopentenyl 

moiety to farnesyl pyrophosphate to yield geranylgeranyl pyrophosphate (GGPP).  

In the third stage, squalene synthase facilitates the condensation of two molecules of FPP to 

produce squalene, a 30-carbon atom compound with a half dozen double bonds. Finally, 

cholesterol, “the most highly decorated small molecule in biology”, is synthesised from 

lanosterol by three decarboxylation reactions  (Hooff et al., 2010; Burg and Espenshade, 

2011; Berg, Tymoczko and Stryer, 2013; Dhar, Koul and Kaul, 2013; Nelson and Cox, 2013; 

Likus et al., 2016). 
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1.2.2. Regulation of mevalonate pathway 

The MP is precisely regulated at multiple levels (Goldstein and Brown, 1990; Likus et al., 

2016).  This is not surprising because cholesterol synthesis requires carbon atoms and large 

amount of energy (ATP) expenditure. The balance of cholesterol synthesis is maintained by 

controlling both cholesterol synthesis and uptake in which the cholesterol itself is the main 

mediator of this regulation. Cholesterol synthesis is also regulated by negative feedback 

inhibition of HMGCR, since a high intracellular concentration is toxic and associated with 

several disorders (Sharpe and Brown, 2013).  

Cholesterol is mainly produced by the liver and transported to other tissue via low-density 

lipoproteins. This lipoprotein in turn reduces the activity of HMGCR to 10% which is only 

required to maintain production of non-sterols by the MP (Likus et al., 2016). Indeed, 

HMGCR activity is regulated not only by cholesterol concentration but also by other 

intracellular factors (sterol and non-sterol products of the MP) and extracellular factors 

(insulin, tri-iodothyronin, glucagon and cortisol) (Räikkönen et al., 2009; Burg and 

Espenshade, 2011).   

HMGCR is one of the most tightly controlled enzymes in human body and its activity 

regulated by several mechanisms (Goldstein, DeBose-Boyd and Brown, 2006; DeBose-

Boyd, 2008; Kamisuki et al., 2009; Sato, 2010; Burg and Espenshade, 2011; Berg, 

Tymoczko and Stryer, 2013; Spann and Glass, 2013; Luu, Gelissen and Brown, 2017): Sterol 

Regulatory Element Binding Protein (SREBP), a transcription factor that regulates the rate 

of HMGCR expression, acts on sterol response element (SRE), a short sequence of 

nucleotides in the reductase gene, to initiate gene transcription (Figure 1-13). There are three 

mammalian SREBP isoforms (SREBP-1a, SREBP-1c and SREBP-2) which are encoded by 

SREBF1 and SREBF2 genes. They have distinct but overlapping lipogenic transcriptional 
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function. SREBP-1a activates fatty acid and cholesterol biosynthesis, SREBP-1c enhance 

fatty acid biosynthesis, and SREBP-2 regulate cholesterol biosynthesis and uptake (Shao and 

Espenshade, 2012).  

 

Figure 1-13 Regulation of cholesterol synthesis. 

Cholesterol level controls the rate of HMGCR and LDL-R expression. Insulin-induced gene (Insig); 

sterol response element- binding proteins (SREBP); SREBP cleavage-activating protein (SCAP); 

endoplasmic reticulum (ER); site 1 protease (S1P); site 2 protease (S2P); helix–loop–helix domain 

of SREBP (HLH); sterol regulator element (SRE). Reproduced with permission from (Cyster et al., 

2014). 

In low cholesterol conditions, SREBP cleavage-activating protein (SCAP) escorts SREBP 

in small membrane vesicles to the Golgi apparatus. Activation of the SREBP requires the 

activity of two proteolytic enzymes, namely S1P and S2P. The first protease enables the 

dissociation from SCAP and the second one permits the cleavage and release of SREBP from 

the vesicles membrane. The amino-terminal domain, containing a basic helix-loop-helix 

(HLH) transcription factor, is transported to the nucleus and binds to SRE in target genes 

encoding proteins required for cholesterol synthesis (HMGCR) and uptake (LDL receptor) 
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which results in their transcriptional activation. At the same time, LXR-RXR transcription 

factor heterodimers recruit corepressor complexes and actively repress genes encoding 

molecules that facilitate cholesterol efflux, such as ABCA1, and decrease degradation of the 

LDL receptor which result in higher cellular concentrations of cholesterol.  

In contrast, during high intracellular levels of cholesterol, cholesterol and desmosterol cause 

retention of SCAP-SREBP by binding to SCAP. This induces conformational change in 

SCAP which in turn facilitate its binding to another ER protein called Insig. This protein 

prevents the release of SCAP-SREBP complex from the ER.  The proteolytic activity of the 

S1P and S2P enzymes is blocked and SREBP nuclear translocation is prevented. Oxysterols 

and desmosterol bind to LXRs, which causes dissociation of corepressors and recruitment 

of coactivators that induce the transcription of target genes, such as those encoding ABCA1 

which cause lower cellular concentrations of cholesterol. 

In addition to sterol regulation of HMGCR expression, its turnover is also regulated. 

HMGCR comprises 2 domains, the cytoplasmic domain which provides the catalytic activity 

of the enzyme and membrane domain which senses the signals from outside that participate 

in the regulation of reductase degradation. Lanosterol and 25-hydroxycholesterol trigger 

conformational changes of the reductase membrane domain that permits the binding to a 

subset of Insig proteins and ubiquitination of HMGCR. Degradation of the reductase is a 

result of polyubiquitination and dissociation from membrane. 

Lastly, phosphorylation also regulates the reductase enzyme. At low level of ATP, AMP-

protein kinase phosphorylates the reductase enzyme and consequently inhibits cholesterol 

synthesis (Figure 1-14). 
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Figure 1-14 Regulation of HMGCR.  

The HMGCR level is regulated by multiple mechanisms. The left figure shows the process of the 

HMGCR degradation by high cholesterol level. The right figure shows the changes in the HMGCR 

status between active and inactive state by AMPK and HMGCR phosphatase. Reproduced with 

permission form (DeBose-Boyd, 2008). 

 

1.2.3. Deregulation of the mevalonate pathway in cancer  

Deregulation of MP was first reported around 50 years ago in mouse hepatomas (Siperstein 

and Fagan, 1964). Several reports suggest that HMG-CoA reductase play an important role 

in human cancer. Many cancers have been shown to exhibit either increased expression and 

activity of HMGCR or deficient feedback control of the HMG-CoA reductase activity 

(Clendening et al., 2010). The increase cholesterol synthesis may depend on the availability 

of MP precursors such as acetyl-CoA (Cruz et al., 2013).  Cancer cells require de novo lipid 

synthesis for growth. It has been found that increased lipid synthesis participates in the 

pathogenesis of cancer, including ovarian neoplasm (Pyragius et al., 2013). The earliest 

evaluation  the of MP in  cancer was by Fumagalli et al., (1964) (Fumagalli et al., 1964) who 
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reported that human glioblastomas cells synthesize large quantities of cholesterol. In 

addition, the failure of the pathway’s negative feedback inhibition in mouse hepatoma cells 

was reported at the same time by Siperstein and Fagan (Siperstein and Fagan, 1964). 

Furthermore, it has been shown that exogenous mevalonate administration promotes tumour 

growth in xenograft-bearing mice (Duncan, El-Sohemy and Archer, 2004). 

HMGCR is considered as metabolic oncogene as the ectopic expression of full length 

HMGCR increases anchorage dependent growth of cells and cooperates with Ras to 

transform cells (Clendening et al. 2010). The expression of SREBP-2, a transcription factor 

that regulates several MP genes, correlated with viability of prostate tumour cells (Krycer, 

Phan and Brown, 2012). In addition, it was reported that 40% of genes of the MP are either 

amplified or show increased expression (Bell et al., 2011). In contrast, overexpression of 

HMGCR has been correlated with prognosis in ovarian, breast and colorectal cancers 

(Borgquist et al., 2008; Brennan et al., 2011; Bengtsson et al., 2014). Intermediate products 

of the MP (GGPP and FPP) are involved in post-translational modification of several 

important proteins implicated in cell signals, proliferation and differentiation. This includes 

the RAS superfamily of GTPases, a large family of proteins encompasses of more than 150 

members. Ras itself is mutated in about 20% of human cancers. Mutated Ras can be 

stabilized in a constitutively active conformation and efforts are ongoing to develop novel 

therapies that inhibit Ras actions (Konstantinopoulos, Karamouzis and Papavassiliou, 2007; 

Zhang et al., 2013). It has been observed that neoplastic tissue can show not only an increase 

in the rate of cholesterol synthesis but also in the HMGCR activity.  Collectively, this has 

led to the proposal that inhibition of sterol synthesis can impede tumour growth (Thibault et 

al., 1996). Taken together, these findings pointed to the importance not only the cholesterol 

but also reflect the activity of the MP, as driver in cancer. 
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1.2.4. Protein prenylation 

Isoprenylation (“prenylation”) is considered as a key physiological process and one of the 

most important functions of the MP (Wang and Casey, 2016). Many prenylated proteins 

functions as signalling molecules which are activated by extracellular stimuli to control 

intracellular activities. This can include regulation of gene transcription which influences 

diverse biological processes including differentiation, cell division, cell proliferation, vesicle 

transport, nuclear assembly, and cytoskeleton reorganization (Heasman and Ridley, 2008; 

Karnoub and Weinberg, 2008; Nilsson, Huelsenbeck and Fritz, 2011). These post-

translational modifications are essential for protection of Ras superfamily from proteolytic 

degradation, facilitate protein-protein interaction and the most importantly assist anchoring 

to membrane and subcellular localization (Schafer and Rine, 1992; Konstantinopoulos, 

Karamouzis and Papavassiliou, 2007).  

The prenylation process is catalysed by three prenyl transferase enzymes (farnesyl 

transferase and Geranylgeranyl transferase-I and II) and involves the covalent addition of 

the isoprene moiety to the C termini of proteins (details of protein prenylation in Figure 1-15 

and Figure 1-16) (Vinet and Zhedanov, 2010; Li and De Souza, 2011). The addition of 15-

carbon atom farnesyl moiety to proteins (Ras, RhoB and HDJ2) is called farnesylation and 

catalysed by the enzyme farnesyl transferase. In contrast, geranylgeranylation, which include 

the addition of one 20 or two 20 C-atom molecules to proteins (Rab, Rap1A, RhoA, Rac1 

and Cdc42), is catalysed by geranylgeranyl transferase-I (GGT-I) and geranylgeranyl 

transferase-II (GGT-II), respectively (Swanson and Hohl, 2006; Gao, Liao and Yang, 2009; 

Rogers et al., 2011).  

The terminal tetrapeptide amino acid sequences of the protein (CAAX box) is the main 

determinant of the prenylation type. In the CAAX motif, C represent the cysteine residues, 
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A represents an aliphatic amino acid and X a range of other amino acids (Winter-Vann and 

Casey, 2005). Ras farnesylation arises when X is glutamine, methionine or serine while 

geranylgeranylation occurs when X is leucine or phenylalanine amino acid. However, NRas 

and KRas4A can be farnesylated or geranylgeranylated. Rho GTPases are 

geranylgeranylated if X is either leucine or phenylalanine and farnesylated if X are other 

amino acids. In contrast, HRas is only farnesylated. In addition, the CAAX motif is replaced 

by CXC or CC in case of substrates of GGT-II (Shimoyama, 2011; Holstein and Hohl, 2012).  

After prenylation, the AAX tripeptide undergo proteolytic removal by Ras-converting 

CAAX endopeptidase 1 (RCE1) and carboxymethylation by isoprenylcysteine 

carboxylmethyltransferase (ICMT) in the endoplasmic reticulum. They are palmitoylated in 

the Golgi apparatus and then anchored by farnesyl or geranylgeranyl, and palmitoyl moieties 

to plasma membrane. KRas4B does not require palmitoylation to anchor it to the plasma 

membrane. Rho is associated with guanine nucleotide dissociation inhibitors (GDIs), which 

deliver them to their membrane locations (Konstantinopoulos, Karamouzis and 

Papavassiliou, 2007; Wang and Casey, 2016). 
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Figure 1-15 Prenylation of Ras GTPases. 

Prenylation process of Ras GTPase involve the addition of either geranylgeranyl or farnesyl and 

palmitate moiety. FTase, farnesyltransferase; GGT-I, geranylgeranyl transferase I; SAM, S-

adenyosyl methionine; RCE1, Ras-converting CAAX endopeptidase 1; ICMT, carboxymethylation 

by isoprenylcysteine carboxylmethyltransferase.  

 

 Figure 1-16 Prenylation and post-prenylation reactions of Rab GTPases. 

Rab with C terminal C-X-C or C-C residues are geranylgeranylated in both C residues by GGT-II. 

Unprenylated Rab are presented by a REP1 (Rab escort protein 1) to GGT-II. Subsequently only 

RAB GTPases ending in C-X-C undergo carboxymethylation by ICMT. Lastly, these RabGTPases 

bind to RabGDIs, which recognize their two geranylgeranyl moieties and deliver them to their 

membrane locations. RCE1, Ras-converting CAAX endopeptidase 1; ICMT, carboxymethylation by 

isoprenylcysteine carboxylmethyltransferase; SAM, S-adenosylmethionine. Reproduced with 

permission from (Konstantinopoulos, Karamouzis and Papavassiliou, 2007). 



Chapter One | Introduction 

48 

1.2.5. Activation of Ras superfamily proteins 

Ras superfamily proteins possess the same molecular switch system despite the functional 

and structural diversity of their members (Reuther and Der, 2000). The switching system of 

these proteins form is firmly controlled by a complex regulatory network. GTPase activating 

proteins (GAPs), guanine nucleotide exchange factors (GEFs) and guanine nucleotide 

dissociation inhibitors (GDIs) are classes of proteins that control activation of the inactive 

GDP-bound to active GTP-bound conformation (Wennerberg, 2005; Ahearn et al., 2012). 

The activation cycle induces conformational changes resulting in modulation of binding 

affinities to the effector proteins (Agarwal et al., 2009). 

GEFs and GAPs regulate the cycling of Rho and Rab GTPases between active and inactive 

status (Bos, Rehmann and Wittinghofer, 2007). However, the extraction and delivery of 

prenylated inactive Rab and Rho from Rab escort protein 1 (REP1) is catalysed by GDIs 

(Alexandrov et al., 1994). GDI displacement factors (GDFs) are another family of protein 

that interact with Rab and Rho proteins to regulate their detachment from GDIs and 

subsequently transfer to subcellular membranes (O’Neill et al., 2012). In addition, heat-

shock protein 90 (HSP90) involve in the extraction of Rab proteins from membrane by 

stimulating the activity of GDI. The series of activation and inactivation process of Ras 

superfamily is associated with the transduction of an upstream signal to activation of 

downstream effectors by activation of second messenger cascades (Konstantinopoulos, 

Karamouzis and Papavassiliou, 2007). 

1.2.6. Prenylated proteins overview of the classical families 

Guanine nucleotide-binding proteins (G proteins) comprise of two groups of proteins, the 

heterotrimeric G proteins (large G-proteins) and the monomeric small G-proteins (small 

GTPases) (Konstantinopoulos, Karamouzis and Papavassiliou, 2007). The Ras superfamily 
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of small GTPases, a large family of proteins encompasses more than 150 members, which 

accounts for about 0.5-2% of all human proteins  (Reigard et al., 2005; McTaggart, 2006; 

Gao, Liao and Yang, 2009; Vigil et al., 2010). The human Ras superfamily  can be grouped 

into five major branches (Figure 1-17) (Colicelli, 2004; Vigil et al., 2010). Ras, Rho, Rab, 

Ran and Arf are major subfamilies of the Ras superfamily. The family is involved in 

regulation of crucial biological processes such as intracellular signal transduction (Ras), 

reorganization of the cytoskeletal (Rho), gene expression (Ras, Rho), trafficking of the 

intracellular vesicle (Rab), organization of microtubules (Ran) and nucleocytoplasmic 

transport (Ran) (Takai, Sasaki and Matozaki, 2001). The role of the prenylated proteins is 

now evident in the pathogenesis and progression of cancer and similarly in atherosclerosis 

and Alzheimers’ disease (McTaggart, 2006). So, it is reasonable to consider MP as potential 

target in cancer therapy by virtue of its ability to affect the function of Ras family members 

through prenylation (Dudakovic et al., 2008).  

The Ras superfamily is the most studied group of small GTPase proteins. Historically, the 

Ras family, which comprising HRas, KRas, and NRas, were the founding members of the 

Ras-related superfamily. 25 years ago, Valencia et al.,(Valencia et al., 1991)  proposed the 

first classification of this family of proteins which included about 30 family member. Since 

then, the studies of the family have increased exponentially due to the fact that Ras 

superfamily has a great impact on human diseases and also provided a promising target for 

drug development (Rojas et al., 2012).  
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Figure 1-17 Ras superfamily proteins. 

 

1.2.6.1. Ras GTPases 

Ras GTPases affect several different signalling pathways (Figure 1-18) (Coleman, Marshall 

and Olson, 2004). This family consists of 36 members (Vigil et al., 2010) and the most well 

know of these are H-Ras, N-Ras and K-Ras which have been reported to be frequently 

mutated in human cancer (Gysin et al., 2011). Ras proteins are mutated in about 30% of all 

human cancers and up to 90% in pancreatic cancer (Goldfinger and Michael, 2017). 43-65% 

of mucinous OCs were reported to contain mutations in K-Ras proteins (McCluggage, 2011). 

It has been claimed that K-Ras and N-Ras are overexpressed and mutated in OC (Cho and 

Shih, 2009; Gysin et al., 2011; Emmanuel et al., 2014).  However, the activity of wild-type 

Ras is also increased in cancer due to other genetic lesions such as mutational activation or 

increased expression of tyrosine kinases receptors (Fiordalisi, Der and Cox, 2006). 

Activation of these oncogenes result in prolonged activation of Ras proteins and the 

downstream effector signalling pathways which in turn might cause malignant 

transformation (Gysin et al., 2011). 

Rab, 61

Ras, 36

Arf, 27

Rho, 20

Other, 9 Ran, 1

Rab Ras Arf Rho Other Ran
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 Figure 1-18 Ras signalling pathway  

RAS proteins are activated by guanine nucleotide exchange factors (GEFs). This enzyme catalyses 

the exchange of GDP for GTP. These proteins are inactivated by the GTPase activating proteins 

(GAPs) which stimulate the intrinsic RAS GTPase activity. The cell surface receptor complex is 

activated by binding of growth factors. The activated complex which include multiple adapters like 

GRB2 (growth-factor-receptor bound protein 2), SHC (SH2-containing protein) and Gab (GRB2-

associated binding) proteins, recruit SHP2 and SOS. Ras-GTP level is increased by the recruitment 

of SOS which in turn catalyses exchange of GDP nucleotides for GTP on Ras. Conversely, Ras-GTP 

binds to GTPase-activating protein (GAP) such as neurofibromin (NF1) which terminates the 

signalling by accelerating the conversion of the Ras-GTP to Ras-GDP. The Raf-MEK-ERK cascade 

which is usually deregulated in cancer, controls the rate of proliferation. In addition, Ras activates 

the PI3K-Akt pathway which regulate the cell survival. TIAMI are exchange factor for the Rac which 

in turn regulates actin dynamics and, thus cytoskeleton. Lastly, Ras activate phospholipase C 

(PLC) to produce IP3. The hydrolytic product of this enzyme, which regulates calcium signalling 

and diacylglycerol regulates the protein kinase C family (PKC). TKR, tyrosine kinase receptor; GF, 

growth factor; P, phosphate; Y, tyrosine residue. Reproduced with permission from (Schubbert, 

Shannon and Bollag, 2007). 
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1.2.6.2. Rho GTPases 

Rho GTPase subfamily consist of about 20 proteins such as RhoA, RhoB, RhoC, Rac1 and 

Cdc42 (Vigil et al., 2010; Hodge and Ridley, 2016). This family of proteins are 

geranylgeranylated with the exception of RhoB which can be either geranylgeranylated or 

farnesylated (Sarrabayrouse et al., 2017). Active Rho triggers signalling networks to direct 

cellular responses by binding to different effectors molecules. The most important of these 

cellular processes are actin and microtubule cytoskeleton organization, cell division, cell 

adhesion, motility, vesicular trafficking, phagocytosis and transcriptional regulation (Figure 

1-19)(Jaffe and Hall, 2005; Vega and Ridley, 2008).  

It has been shown that Rho GTPase contribute to the survival in some cancer cell type. They 

are also involved in transformation and angiogenesis but unlike Ras GTPases, mutation in 

the Rho subfamily in cancer are rare (Bryan and D’Amore, 2007). Rho expression is 

increased in number of cancers such as skin, liver, colon and ovarian (Vega and Ridley, 

2008; Karlsson et al., 2009). Specifically, RhoA, RhoC and Cdc42 are reported to increase 

their activity and/or expression, while RhoB is down regulated in human tumours (Vega and 

Ridley, 2008; Arias-Romero and Chernoff, 2013; D. Yang et al., 2017). In addition, the 

increased expression of RhoA, Rac and Cdc42 is correlated with prognosis, recurrence and 

progression as well (Kamai et al., 2004; Karlsson et al., 2009). 



Chapter One | Introduction 

53 

 
Figure 1-19 Effectors of Rho GTPases  

Rho family proteins are stimulated by receptors such as receptor tyrosine kinases, G-protein-coupled 

receptors and adhesion receptors (integrins and cadherins). Cell-cell adhesion and cell polarization 

is mediated by effectors of active Cdc42 and Rac1. The activity of Rho proteins is accomplished by 

actin polymerization at cell protrusions, stabilization and capture of microtubules and positioning of 

the cytoskeleton and organelles (such as Golgi, centrosomes and nucleus). One of the important 

mediators of the cytoskeleton organization is p21-activated kinase (PAK) which is an effector of 

Cdc42 and Rac. The active RhoA regulates a number of downstream signalling process include 

membrane retraction by actinomycin based stress fibre contraction, cell division and cell cycle 

progression. The assembly of the proteins machineries which is required for actin polarization are 

initiated by RhoA binding to mDia or Cdc42 binding to N-WASP. MRCK, myotonic dystrophy 

kinase-related Cdc42-binding kinase; F-actin, filamentous actin; IQGAP, IQ motif-containing 

GTPase-activating protein; PAR6, partitioning defective-6; PKN, protein kinase N; PLC, 

phospholipase C; SRA1, specifically Rac1-associated protein-1; mDia, formin mammalian 

diaphanous; N-WASP, neural Wiskott–Aldrich syndrome protein. Reproduced with permission from 

(Iden and Collard, 2008). 
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1.2.6.3. Rab GTPases 

There are more than 60 members of Rab subfamily (Vigil et al., 2010). The main function 

of Rab GTPase is to control vesicle trafficking between organelles which regulates protein 

secretion, endocytosis, recycling and degradation (Figure 1-20) (Recchi and Seabra, 2012; 

Srikanth, Woo and Gwack, 2017). Rab GTPases have been demonstrated to contribute to 

tumour-stromal cell communication and cell cycle progression in some tumour types (Recchi 

and Seabra, 2012). In addition, Rab proteins have been implicated in cancer progression and 

metastasis (Yang et al. 2017). Rab25 has been found to promote migration and invasion of 

cancer and its over-expression also correlates with poor survival in OC (Cheng et al., 2004; 

Caswell et al., 2007). Lastly, a number of proteins from this family are also involved in drug 

resistance. For example, Rab4a and Rab6, are underexpressed in MDR cells while their 

overexpression is associated with increased sensitivity of cancer cells to cytotoxic drugs as 

a result of increased intracellular accumulation. In contrast, Rab8 overexpression in sensitive 

cancer cells enhances their resistance to cisplatin (Recchi and Seabra, 2012). 

1.2.6.4. The Arf family 

The Arf family consist of about 27 proteins and there are three classes of Arf proteins, class 

I (Arfs1–3), class II (Arfs 4–5), and class III (Arf6). They had been implicated in number of 

cellular processes such as vesicle membrane traffic, morphology, metabolism, actin 

cytoskeleton, endocytosis and exocytosis (Kahn, 2003). Despite being a part of the Ras 

superfamily, Arfs are not subjected to prenylation, instead they are localized to membrane 

by the addition of 14 C-atom myristate fatty acid (Konstantinopoulos, Karamouzis and 

Papavassiliou, 2007). The Arf family play a critical role in cancer progression and might be 

a prognostic factor for cancer patients. The aberrant activity or expression of Arf family 

proteins has been shown to have a role in migration, invasion and proliferation (Casalou, 
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Faustino and Barral, 2016). The expression of some Arf proteins were found to be 

upregulated in breast cancer cell lines (Schlienger et al., 2016). Lastly, it was recently 

reported that Arf is negatively correlated with miR-221-3p, whose higher expression is 

associated with better overall survival in epithelial OC patients (Q. Wu et al., 2017). 

 

Figure 1-20 The functions and localization of Rab-GTPase. 

 This figure shows epithelial cells and the localization of selected Rab proteins in the vesicle transport 

pathways. Rab1 is located at the ER (blue) exit sites and the Golgi (grey) intermediate compartment 

and is responsible for mediating the trafficking from the ER to the Golgi apparatus. Rab6, 33 and 40 

mediate trafficking within the Golgi apparatus. The formation of autophagosomes is controlled by 

Rab33 together with Rab24. Lipid droplet formation is mediated by Rab18 and the trafficking 

between the Golgi network and early endosomes is mediated by Rab22. Biosynthetic trafficking from 

Golgi apparatus to plasma membrane is mediated by Rab8. In addition, Rab8 together with Rab10 

and Rab14 involved in GLUT4 vesicle translocation and with Rab17 and Rab23 in ciliogenesis. 

Rab3, 26, 27 and 37 mediate translocations of melanosomes to the cells periphery and also mediate 

several types of regulated exocytic events. The assembly of tight junction between epithelial cells 

are regulated by Rab13. Rab32 and 38 participate in biosynthesis of melanosomes and Rab32 also 
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regulates mitochondrial fission. Rab5 is positioned to early endosomes, phagosomes, caveosomes 

and the plasma membrane stimulate endocytosis and endosome fusion of the clathrin coated vesicles 

(CCVs). Rab5 together with Rab34 mediate micropinocytosis and with Rab14 mediate maturation 

of early phagosomes. Integrin endocytosis is mediated by Rab21. Rab4 mediate the fast-endocytic 

recycling whereas Rab11 and 35 mediate the slow endocytic recycling from early endosomes. Rab15 

is participated in the trafficking from the apical recycling endosomes to the basolateral plasma 

membrane and in trafficking from early endosomes to recycling endosomes. The trafficking form the 

apical recycling endosomes to the apical plasma membrane is regulated by Rab17 and Rab25. 

Maturation of the late endosomes and phagosomes and their fusion with lysosomes is mediated by 

Rab7. Lastly, Rab9 regulate trafficking form the late endosomes to the Golgi networks. Reprinted 

with permission from (Stenmark, 2009). 

 

1.2.6.5. Ran GTPase  

The fundamental cellular function of the Ran GTPase is nucleocytoplasmic transport (Figure 

1-21). The Ran protein is  involved in mitotic spindle assembly, microtubule nucleation and 

dynamics and post-mitotic nuclear assembly (Dasso, 2002). A number of studies have 

showed that Ran GTPase is implicated in cancer cell growth, tumour transformation, 

resistance to apoptosis, tumour aggressiveness and increased metastasis in several types of 

cancers (Abe et al., 2008; Kurisetty et al., 2008; Xia, Lee and Altieri, 2008; Ly et al., 2010; 

Yuen et al., 2012). Ran is differentially overexpressed in cancer tissue as compared with 

normal tissues and its expression is correlated with tumour progression (Kau, Way and 

Silver, 2004). Acute silencing of Ran in cancer cells induces mitochondrial dysfunction and 

causes cell death. Therefore, these evidences suggest that Ran pathway might be an 

important target for cancer treatment (Xia et al. 2008).  
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Figure 1-21 Nucleocytoplasmic Transport by Ran GTPase. 

(a) the GTP (active) and GDP (inactive) cycle of Ran. Guanine nucleotide-exchange factor and 

Regulator of chromosome condensation 1 (RCC1) catalyse the conversion of Ran GDP to Ran GTP, 

which in turn interact with the Karyopherins, a transporter factor for the family of importin-β. In 

contrast, Ran-binding protein-1 (RanBP1) or RanBP2 stimulate Ran GTPase-activating protein, 

RanGAP1 to induce the hydrolysis of GTP to GDP which does not interact strongly with karyopherin. 

There are number of mutation that prevent GTP-GDP cycle of Ran such as RanT24N and RanQ69L. 

(b) The nuclear transport factor-2 (NTF-2) facilitates the active transport of Ran through the nuclear 

pores across the nuclear membrane.  In the nucleus, the chromatin-bound RCC1 catalyses the 

generation of high concentration of the Ran GTP by nucleotide exchange. High concentration of Ran 

GTP induce the separation of the imported complexes by binding to importin-β and ejection of the 

cargo which carry the nuclear localization signal (NLS). On the contrary, the assembly of the export 

complexes, which contain protein with a nuclear export signal (NES), is promoted by binding of the 

RanGTP to the chromosome-region maintenance protein-1 (CRM1).  In cytoplasmic compartment, 

RanGTP hydrolysis is stimulated by RanGAP1 and RanBP1 or RanBP2 to release the exported 

complexes. Reprinted with permission form (Clarke and Zhang, 2008). 

 



Chapter One | Introduction 

58 

1.2.7. Clinical implication 

A significant body of research has demonstrated the importance of the MP in health and 

disease. Inactivation of the MP appears to be fatal in some animal models. Mice deficient in 

HMGCR stop developing at the blastocyst stage, whereas, mice that have squalene synthase 

deficiency demonstrate retardation in growth and defects in neural tubes (Ohashi et al., 

2003). In addition, gunmetal mice, a GGT-II deficient mouse, matures normally but display 

a defect in platelets function and prolongation of the bleeding time (Zhang et al., 2002). 

Mevalonic aciduria (MAU) and Hyperimmunoglobulinaemia D syndrome (HIDS) are two 

inherited disorder caused by mutation in the mevalonate kinase (MK) gene which lead to a 

disruption in the activity of MK, one of the crucial enzyme in MP  (Haas and Hoffmann, 

2006). MAU is a rare autosomal recessive inborn disorder associated with multiple 

abnormalities (Normand et al., 2009). The main sign and symptoms of the disorder are 

recurrent febrile crises and inflammatory episodes, which are also associated with 

psychomotor retardation, failure to thrive, ataxia, cataracts, retinitis pigmentosa, uveitis, 

hepatomegaly, lymphadenopathy, vomiting, diarrhoea, arthralgia, myopathy, skin rash and 

mucosal ulcers. MAU has a poor prognosis and the patients usually die in early childhood 

(van der Burgh et al., 2013).  

In contrast to MAU, in which MK activity is completely abolished, the residual activity of 

the MK is 5-15% in HIDS which is characterized by early childhood onset of recurrent 

febrile attacks, triggered by infection, trauma, stress, surgery and vaccination. Some patients 

may develop neurological symptoms, mental retardation, ataxia, epilepsy and ocular 

disorder. The defect in the MK leads to increases in the concentration of mevalonic acid in 

plasma. In addition, the accumulation of mevalonic acid in plasma is accompanied by a 
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shortage in the production of the downstream products of the MP in both MAU and HIDS 

(Haas and Hoffmann, 2006; Buhaescu and Izzedine, 2007).  

Scientists have failed to produce effective treatment for these disorders in spite of the huge 

improvement in understanding of the molecular pathogenesis of both disorders. However, 

two options are available, etanercept and anakinra, but these drugs have unreliable beneficial 

effects. The counter intuitive use of statins in MAU and HIDS is support by limited and 

conflicting data. Lovastatin can provoke a severe clinical crisis while, simvastatin shows a 

reduction of the febrile attacks in HIDS patients (Buhaescu and Izzedine, 2007). However, 

the clinical crisis might be resolved within one day of corticosteroid administration. 

Administration of vitamin C, vitamin E and ubiquinione-50 for long-term have a stabilizing 

effect on the clinical course and improve the development (Haas and Hoffmann, 2006).  

1.2.8. Mevalonate pathway as therapeutic target 

The foregoing discussion illustrates that pharmacological manipulation of the MP is a novel, 

attractive and promising therapeutic target for the treatment of many disorders such as 

autoimmune disorder, Alzheimer’s disease, atherosclerosis and cancer (Swanson and Hohl, 

2006; Buhaescu and Izzedine, 2007). Statin administration to mice with multiple sclerosis 

(MS), an autoinflammatory disease, at earlier stage reverses the symptoms and prevents the 

progression to recurrent or chronic paralysis (Weber et al., 2006). In transgenic mice of 

Alzheimer disease, the use of statins assists in inverse learning and memory deficits (Li et 

al., 2006). In addition, the immunomodulatory effects of statin might reverse 

neurodegeneration in MS, Alzheimer’s and Parkinson disorders, through reduction of 

protein isoprenylation (Butterfield, Barone and Mancuso, 2011). 

There are multiple pharmacological targets in the MP that might be targeted for treatment of 

cancer (Figure 1-12). Beside statins and nitrogenous bisphosphonates (NBPs) which inhibits 
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the HMG-CoA reductase and Farnesyl pyrophosphate synthase respectively, there are 

number of other drugs which modulate the MP (Table 1.5). In addition, toxic effects in non-

diseased cells might result from complete inhibition of single enzyme activity or from off-

target effects. Hence, targeting more than one enzyme in the MP might be a superior option 

to overcome toxicity and being more effective for the treatment of cancer.  Moreover, many 

studies show that the synergistic effect of MP inhibitors with conventional anticancer drugs 

might augment the therapeutic outcomes (Swanson and Hohl, 2006). 

1.2.9. Mevalonate pathway enzymes inhibitor  

1.2.9.1. Statins 

In 1971, Endo, the father of statins, started searching thousands of fungi with the hope of 

discovering a compound that will be able reduce cholesterol level in human. By the end of 

one year of searching, he found a compound called compactin or mevastatin that inhibits 

HMGCR activity with high potency. However, the compound was soon withdrawn from the 

market because of the suspected adverse effect. In the 1990, the development of the analogs 

of mevastatin opened the way for the marketing authorization of statins such as lovastatin, 

simvastatin and pravastatin (Endo, 2010).  

Globally, statins ranked as the most commonly used drug (Collins et al., 2016). Their main 

indication is to treat hypercholesterolemia particularly for preventing myocardial infarction, 

ischemic heart disease and peripheral arterial disease (Taylor-Harding et al., 2010; Osmak, 

2012). Nonetheless, due to the pleiotropic properties of statins, their beneficial effect have 

been demonstrated in other disease, for instance Alzheimer’s, multiple sclerosis and 

ischemic stroke disorders (Sławińska-Brych, Zdzisińska and Kandefer-Szerszeń, 2014). 

Statins have anti-inflammatory and immunomodulatory effects, neuro-protective effects, 

positive effects on bone metabolism and improve the prognosis in chronic kidney disease. 
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Therefore, statins might be a potential therapeutic option for different disorders (Gazzerro et 

al., 2012). 

Table 1-5 Targets in the MP with anticancer activity. 

Drugs  Site of 

action 

Mechanism of action  References 

Statins  

(Simvastain, 

Fluvastatin, 

Atorvastatin, 

Lovastatin) 

HMGCR -Cell cycle arrest 

-Induction of apoptosis 

and autophagy 

 

(Liu et al., 2009; Li et al., 

2010; Martirosyan et al., 

2010; Scoles et al., 2010; 

Taylor-Harding et al., 

2010; Robinson et al., 

2014) 

Apomine HMGCR -Down regulation of the 

HMGCR by increase 

degradation 

-Induction of apoptosis 

-Cell cycle arrest  

(Edwards et al., 2007; 

Roelofs et al., 2007; 

Moriceau et al., 2010, 

2012) 

NBP 

( Aldronate, 

Ibandronate, 

Clodronate, 

Zoledronic 

acid) 

FPPS -Cell cycle arrest 

-Induction of apoptosis 

-Inhibition of proliferation, 

migration and invasion 

-Antiangiogensis 

(Hashimoto et al., 2007; 

Stresing et al., 2007; 

Mahtani and Jahanzeb, 

2010; Clézardin, 2011; 

Gnant and Clézardin, 2012; 

Winter and Coleman, 2013; 

Okamoto et al., 2014) 

Zaragozic 

acid 

Sequalene 

synthase 

-Reduction of cholesterol 

synthesis  

-Accumulation of the FPP 

products 

(Brusselmans et al., 2007; 

Henneman et al., 2011) 

FTase 

inhibitors  

(Tipifarnib, 

Lonafarnib) 

FTase -Inhibition of protein 

farnesylation which play 

crtical role in growth and 

proliferation 

(Buhaescu and Izzedine, 

2007; Holstein and Hohl, 

2012; Meier et al., 2012; 

Abuhaie et al., 2013; Volpe 

et al., 2013) 

GGT-I 

inhibitors 

( GGTI-2133) 

GGT-I -Cell cycle arrest 

-Inhibition of migration 

and invasion of tumour 

cells 

(Swanson and Hohl, 2006; 

Buhaescu and Izzedine, 

2007) 

GGT-II 

inhibitors 

GGT-II -Interruption of Rab 

protein function   

(Swanson and Hohl, 2006; 

Sane et al., 2010; Wasko, 

Dudakovic and Hohl, 2011) 

Dualprenyltr

ansferase 

inhibitors 

FTase & 

GGT-I 

-Inhibition of both 

farnsylation and 

geranylgeranylation of Ras 

GTPase proteins 

(Lobell et al., 2002; Zhang 

et al., 2009) 
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Statins are either naturally derived or chemically synthesized (Shah et al., 2015). Statins are 

structurally are composed of two components (Figure 1-22), the dihydroxyheptanoic acid 

which is the pharmacophore and the ring system with different substituents. Statins 

competitively inhibit HMGCR enzyme in dose-dependent and reversible manner. The 

stereoselectivity of the HMGCR enzyme to statins depends on chemical structure of the 

pharmacophore which are either an inactive closed lactone ring or active open hydroxy 

carboxylic acid moiety  (Gazzerro et al., 2012). The binding affinity of statins is 1000-fold 

more than the natural substrate for HMGCR enzyme (Clendening and Penn, 2012). The 

function of the ring system is to prevent statins displacement from the enzyme by the natural 

substrate. In addition, the substituents of the ring system are one of the major determinants 

of the pharmacokinetic characteristics of the statins (Wong, Dimitroulakos and Penn, 2002; 

Martirosyan et al., 2010). 

Generally, statins are well tolerated (Collins et al., 2016). The most frequently reported 

adverse effects of the standard doses are mild, such as constipation, flatulence, nausea and 

gastrointestinal pain. Rhabdomyolysis, myopathy, myositis, autoimmune disorders, cardiac 

dysfunctions and elevated liver enzymes are less common but potential serious adverse 

effects of this family of drugs (Gazzerro et al., 2012; Moon et al., 2014). Several factors 

have been recognized to increase the incidence of statins adverse effects such as the age, 

gender, family history, concomitant disease and drug-drug interactions (e.g. cimetidine, 

clarithromycin and erythromycin) (Ahmad, 2014). Even though the safety profile is 

understood, statin therapy requires careful monitoring. 

The antitumour activity of statin is a result of suppression of proliferation, cell cycle arrest 

and induction of apoptosis (Hindler et al., 2006; Matusewicz et al., 2015). Statins induces 

cell cycle arrest at G1/S phase boundary by up-regulation of the cell-cycle inhibitors 
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p21WAF1/CIP1 and/or p27KIP1  and reduce the expression of the CDK2, CDK4, Cyclin D1 and 

Cyclin E (Wong, Dimitroulakos and Penn, 2002; Morgan et al., 2005; Sleijfer et al., 2005; 

Clendening and Penn, 2012; Gazzerro et al., 2012). In addition, others have also reported 

G2/M phase cell cycle arrest in lymphoma cells and breast cancer cells  (Sánchez CA et al., 

2008). 

In contrast, statins activation of the extrinsic apoptotic pathway appears to be dependent on 

tumour type. Statins stimulate caspase-8 activation which amplifies the executioner caspases 

activity in myeloma cells (Cafforio et al., 2005). In prostate cancer cells, simvastatin cause 

activation of caspase-8 through upregulation of TNF-α and FasL (Chapman-Shimshoni et 

al., 2003; Goc et al., 2012). It has been suggested that statins activate the death receptor 

signalling pathway by interruption of cholesterol synthesis which leads to change the 

organization of cholesterol rich membrane raft. Mevastatin administration cause 

spontaneous ligand-independent clustering of Fas and formation of the Fas-FADD 

complexes which led to activation of caspase-8 and apoptosis  (Gniadecki, 2004).  

Numerous preclinical studies have evaluated statin activity against various cancers. It has 

been demonstrated that statins exhibit significantly different cytotoxic potentials. For 

instance, Wong, et al., (Wong et al., 2001) evaluated the antitumour activity of different 

statins (fluvastatin, atorvastatin, and cerivastatin) on human acute myeloid leukaemia cells. 

He found that AML cells are at least ten-fold more sensitive to cerivastatin-induced 

apoptosis in comparison with other statins. Furthermore, Glynn, et al. (Glynn et al., 2008) 

tested the statins’ (simvastatin, lovastatin, mevastatin and pravastatin) ability to inhibit 

tumour growth of lung carcinomas, breast carcinomas and malignant melanomas cell lines. 

Simvastatin had the highest potency compared with lovastatin and mevastatin. In contrast, 

pravastatin was ineffective for inhibiting proliferation. However, cell lines from lung and 
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malignant melanoma were more sensitive to statins in comparison to breast cancer cell lines 

(Swanson and Hohl, 2006). It has also been  concluded that lipophilicity is one of the major 

determinants of statins activity against cancer, as more potent effects are observed with 

lipophilic statins (Martirosyan et al., 2010; Corcos and Le Jossic-Corcos, 2013; Zhang et al., 

2013).  

 

Figure 1-22 Chemical structures of the statin family are shown in their open ring active 

form (Wong, Dimitroulakos and Penn, 2002). 
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Retrospective clinical studies had shown that statins have pleiotropic and multi-favourable 

effects in biological behaviour of tumour (Altwairgi, 2015). Several studies consistently 

demonstrate that patients using statins to control cholesterol have reduced cancer risk and 

cancer related mortality (Cuello F et al., 2013). Meta-analysis and retrospective cohort 

studies revealed that statins improve the overall survival of patients with kidney cancer, 

pancreatic cancer and OC (Habis et al., 2014; Huang et al., 2017; Nayan et al., 2017). In 

prostate cancer, Jespersen et al., (Jespersen et al., 2014) state that statin use is associated 

with reduced risk and Yu et al., (Yu et al., 2014) reported that statins use after cancer 

diagnosis correlated with a decreased risk of mortality. Statins also enhance the therapeutic 

activity and overall survival lung cancer patients receiving EGFR-TK inhibitors therapy 

(Hung et al., 2017). Randomized controlled trial in advanced hepatocellular carcinoma 

patients treated by transcatheter arterial embolization and 5-flurouracil or transarterial 

chemoembolization shows that the median survival time is doubled upon the addition of the 

statin to the previous treatment modality (Kawata et al., 2001; Graf et al., 2008). 

 The Cancer in The Ovary and Uterus Study (case-control study) evaluated the effect of 

statins prior to and following diagnosis of ovarian and endometrial cancers in a subset of 

424 patients and 341 cases as controls. It found that the use of statins for more than 1 year 

before diagnosis was associated with a  reduction in cancer risk and prolonged survival was 

noted among those patients when statins were prescribed after cancer diagnosis (Lavie et al., 

2013). In addition, it is observed that OC risk was reduced by the use of statins and the effect 

was stronger in patients using statins for a prolonged period (Liu et al., 2014). An 

improvement in survival was observed in epithelial OC patients using statin after the 

diagnosis (Elmore et al., 2008). In contrary, others had found no association between statin 

use and cancer incidence. Several meta-analysis did not support a protective effect of statins 

on cancer incidence such as lung cancer, bladder cancer and skin cancer  (Bonovas et al., 
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2005; Kuoppala, Lamminpää and Pukkala, 2008; da Silva et al., 2013; Li, Wu and Chen, 

2014). 

Evaluation of the antitumour activities of statins in clinical trials have had conflicting results 

and are faced by number of difficulties. In 1996, Thibault et al., (Thibault et al., 1996) 

investigated the effect of  2-45 mg/kg/day orally-administered lovastatin in four divided 

doses for one week course in monthly bases. It was found that lovastatin in a dose of 25 mg/ 

kg/day was well tolerated but only 1 minor response out of 88 patients was observed. In 

addition, the author observed that 35 mg/kg was associated with transient adverse effects 

such as myalgia and elevated level of serum creatinine phosphokinase. However, ubiquinone 

co-administration did not prevent the occurrence of the adverse effect but decreased their 

severity. In addition, pravastatin was investigated in advanced hepatocellular carcinoma. 

Random allocation of the patients to either pravastatin group or control group, after standard 

therapy, revealed that statin group had significantly longer median survival as compared to 

the control group (Kawata et al., 2001). Simvastatin (15 mg/kg/day) administered orally for 

multiple myeloma patients on days 1-7 was followed by intravenous infusion of vincristine, 

doxorubicin and dexamethasone orally on day 7 to 10. Haematological (neutropenia and 

thrombocytopenia) and gastro-intestinal toxicity but not rhabdomyolysis was reported. The 

study stopped as the response was insufficient and it was suggested that although simvastatin 

is very effective in vitro, its short half-life might be the main cause for failure of the study. 

In addition, it was proposed that statins with long half-life and continuous administration are 

required to maintain high plasma level in patients which is essential to induce cell death 

(Van Der Spek et al., 2006; van der Spek et al., 2007).  

Lastly, the data from experimental studies illustrate that stains had little toxicity on cells 

from normal tissue (Martirosyan et al., 2010; Corcos and Le Jossic-Corcos, 2013; Zhang et 
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al., 2013). Likewise, some statins might have protective effect against doxorubicin induced 

toxicity on liver, renal and cardiac tissue (El-Moselhy and El-Sheikh, 2014). Statins, in 

combination with radiotherapy in clinical trial, demonstrated a reduction in rectal toxicity 

and also delay the intestinal damage in animal models (Begg, Stewart and Vens, 2011). It 

has been reported that normal cells, for example, ovary, neuronal, lung fibroblast and 

endothelial cells, might be more resistant to collateral damage produced by statins than 

cancer cells (Hindler et al., 2006; Liu et al., 2009; Clendening and Penn, 2012; Sławińska-

Brych, Zdzisińska and Kandefer-Szerszeń, 2014). Taken together, it appears reasonable to 

propose that statins might be  potential candidates for repurposing in cancer therapy 

(Konstantinopoulos, Karamouzis and Papavassiliou, 2007; Gazzerro et al., 2012).  

1.2.9.2. Nitrogenous bisphosphonates  

Nitrogenous bisphosphonates (NBPs) drugs are commonly indicated for management and 

prevention of bone disease such as postmenopausal osteoporosis, corticosteroid-induced 

bone loss, Paget's disease and skeletal lesions due to malignancy (Issat et al., 2007; Bosch-

Barrera et al., 2011). The therapeutic effect of NBPs is mainly through inhibition of bone 

resorption mediated by osteoclasts and reduction of calcium release and other minerals from 

bone. Although, NBPs are widely used, their adverse effects are not well defined. However, 

jaw osteonecrosis is a rare but reported adverse effect (Rennert, Pinchev and Rennert, 2010). 

Bisphosphonates can be classified in to two classes according to structure and mechanism 

of action. The first class is pyrophosphate-resembling bisphosphonates (e.g. clodronate, 

etidronate), which are converted into cytotoxic non-hydrolyzable ATP analogues products 

which decrease mitochondrial membrane potential by inhibiting the ATP-dependent 

enzymes to produce cytotoxic effects. The second class is nitrogen-containing 

bisphosphonate (e.g. alendronate, pamidronate, risedronate, ibandronate and zoledronic 
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acid) which inhibit a crucial enzyme, FFP synthase, in the mevalonate biosynthetic pathway 

(Okamoto et al., 2014; Zekri, Mansour and Karim, 2014). Therefore, NBPs deplete the 

isoprenoid pools and prevent the prenylation process of GTP proteins (Manoukian et al., 

2011).  

Several studies emphasize the ability of NBPs use to reduce the risk of several cancer types 

such as colon and breast cancer (Chlebowski et al., 2010; Rennert, Pinchev and Rennert, 

2010). In addition, evidence suggest that NBPs have direct antitumour activity against 

number of transformed cell lines for instance myeloma, breast, pancreatic, prostate, ovarian, 

colon and hepatic cancer (Siddiqui et al., 2014). The antitumour effects of NBPs include 

inhibition of proliferation by induction of cell cycle arrest and programmed cell death (Shai 

et al., 2014). Furthermore, combining NBPs with the standard anticancer agents enhance the 

therapeutic activity of several regimens in vitro (Horie et al., 2007). 

1.2.9.3. Prenyltransferases inhibitors  

There is major challenge associated with development of direct pharmacological inhibitors 

of Ras. The picomolar affinity of Ras for GTP makes the intervention of the nucleotide-

binding pocket of Ras much more difficult than interfering with ATP-binding pocket of 

kinases (Bommi-Reddy and Kaelin, 2010; Samatar and Poulikakos, 2014) with exception of 

sorafenib which has some Ras kinase inhibitor activity (Asati, Mahapatra and Bharti, 2016). 

It is known that proper Ras function requires prenyl transferase enzyme activity (Maynor et 

al., 2008). This has been prompted the development prenyl transferase inhibitors as potential 

anticancer drugs (Maynor et al., 2008).  

The crystal structure of FTase revealed that the enzyme has two binding sites which are 

involved in recognition of the FPP and  of the CAAX box of the protein substrate (Appels, 

Beijnen and Schellens, 2005). Therefore, several strategies have been developed to inhibit 
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farnesylation of Ras and inhibitors can be divided into three main categories based on site 

and mechanism of action. These are FPP competitive inhibitors, CAAX competitive 

inhibitors and bi-substrate analogue compounds that inhibit both FPP and CAAX (Crul et 

al., 2001; Downward, 2003; Wasko, Dudakovic and Hohl, 2011). However, there are major 

concerns about the action of these inhibitors because Ras proteins can be geranylgeranylated 

when the FTase enzyme is inhibited. Thus, the potential of cross prenylation of Ras by GGTI 

might reactivate these proteins and cause failure of the therapy (Brunner et al., 2003; Appels, 

Beijnen and Schellens, 2005).  

Several FTase inhibitors have been identified in each category and have undergone extensive 

assessment both in vitro and in vivo. The antitumour effects of FTase inhibitors in laboratory 

studies has been associated with induction of programed cell death, inhibiting angiogenesis 

and cell cycle arrest of some cancer cell lines regardless of Ras mutational status (Sebti and 

Hamilton, 2000; Wang, Yao and Huang, 2017). In addition, these inhibitors showed activity 

in vivo on xenografts of nude mice (Yeganeh et al., 2014). However in clinical trials FTase 

inhibitors have generally performed poorly except in myeloid leukaemia and pituitary 

adenomas (Bell, 2004; Asati, Mahapatra and Bharti, 2016). 

Inhibitors of geranylgeranyl transferases (GGTIs) enzymes was not initially considered as a 

promising target due their expected toxic effects (Yeganeh et al., 2014). Like FTase 

inhibitors, GGTIs have displayed a promising result in vivo and in vitro (Berndt, Hamilton 

and Sebti, 2011). These inhibitors induce apoptosis, reduce tumour invasiveness, induce cell 

cycle arrest in several cell lines through preventing Rho isoprenylation, and some of these 

inhibitors act on N-Ras and Rab GTPase as well (Coxon et al., 2001; Kusama et al., 2003). 

Administration of GGTI-2154 to mouse mammary tumour virus Ha-Ras mice, a breast 

cancer model, causes tumour regression by induction of apoptosis (Sun et al., 2003). 
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Additionally, treatment of lung cancer mouse model with GGTI-297 or GGTI-2154 decrease 

the cancer tumour volume by 40 and 60%, respectively (Sun et al., 1999).  

1.3. Background of TP53  

Thirty years ago, an approximately 53 kDa protein which complexes with the viral SV40 T-

antigen was proposed as proto-oncogene in the first decade after its discovery (Brosh & 

Rotter 2009; Lane & Crawford 1979; Linzer et al. 1979). Later on, the potential of increased 

tumourgenicity by overexpression of mutant p53 in p53 null cells was demonstrated (Wolf, 

Harris and Rotter, 1984). In 1989, the Levine laboratory revealed the tumour suppressive 

activity of wild-type p53 overexpression in rat embryo fibroblast and they suggested that 

p53 might block transformation (Finlay, Hinds and Levine, 1989). Therefore, the initial view 

of p53 mislead researchers to consider it as an oncogene because they analysed mutated 

forms of TP53  isolated from tumour cells (Brosh and Rotter, 2009).  

The TP53 gene is widely acknowledged as one of the most frequent genetic alteration in all 

of human malignancies (Levine and Oren, 2009; Oren and Kotler, 2016; Napoli and Flores, 

2017). TP53 mutations range from 5-80% and depend on type, stage, and aetiology of 

cancers  (Petitjean et al., 2007)  and it is found in a broad range of cancers with highest rate 

in OC (47%), colorectal (43%), head/neck (42%), and oesophageal cancers (41%) (Kandoth 

et al., 2013; Sorrell et al., 2013; Cole et al., 2016). Over 96% of high-grade serous OC 

displaying TP53 mutation (Cole et al., 2016; Oren and Kotler, 2016). In addition, TP53 

mutation might be an early molecular event associated with malignant transformation of 

fallopian tube cells to OC (Lee et al., 2007). Li-Fraumeni syndrome patients, an inherited 

germline mutation in p53 allele, are more prone to develop a variety of cancer such as tumour 

of breast, brain, bone, bladder and soft tissue sarcoma (Olive et al., 2004; Brosh and Rotter, 
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2009). These data supported the conclusion that p53 was in fact a tumour suppressor (Levine 

and Oren, 2009).  

1.3.1. Function of wild type p53 

The tumour suppressor p53, guardian of the genome, is a central hub in living cells, which 

is allied to a complex network of signalling pathways. “The functional complexity of p53-

dependent events is the reflection of the complexity of p53 as a protein” (Laptenko and 

Prives, 2006; Goldstein et al., 2010). Functionally, p53 is a stress response protein that is 

activated by different cellular insults such as oncogenic activation and DNA damage (Silwal-

Pandit, Langerød and Børresen-Dale, 2017). Activation of p53 initiates cell cycle arrest, 

senescence or apoptosis by up-regulation or down-regulation of numerous target genes 

(Harris and Levine, 2005; Beckerman and Prives, 2010; Lane, Cheok and Lain, 2010).  

The activities of p53 as well as its half-life are regulated by site-specific modification of 

certain p53 residues (Laptenko and Prives, 2006). Structurally, p53 can be post-

translationally modified by phosphorylation, acetylation and ubiquitination. These 

modifications add another layer of complexity to p53 (Laptenko and Prives, 2006). For 

instance, p53 protein is very short lived under unstressed condition due to its continual 

ubiquitination by MDM2 and proteasomal degradation. In contrast, the half-life is extended 

in stressful condition by phosphorylation to promotes its stabilization and subsequently lead 

to accumulation of p53 protein (Brosh and Rotter, 2009; Beckerman and Prives, 2010).  

The activation of p53 arises after DNA double-strand breaks trigger activation of ataxia-

telangiectasia mutated (ATM), a kinase that phosphorylates the CHK2 kinase, or after 

collapse of the DNA replication forks enrols ATM and RAD3-related (ATR), which 

phosphorylates CHK1 (Kastan and Bartek, 2004). P53 is phosphorylated by both ATM and 

ATR, either directly or through CHK1 and CHK2 (Lavin and Gueven, 2006). This post-
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translational modification prevents the interaction of p53 negative regulators MDM2 and 

MDM4 with activation domains of p53. Thus this post translational modification preventing 

the ubiquitination and turnover of p53 (Wade, Wang and Wahl, 2010). P53 is also activated 

by hyperproliferative signals through stimulating the transcription of ARF which in turn 

antagonize MDM2 by inhibiting the enzyme’s ubiquitin ligase activity (Karni-Schmidt, 

Lokshin and Prives, 2016).  

Activation of the P53 (Figure 1-23) has been proposed as model for cisplatin-induced 

cytotoxicity through up-regulation of pro-apoptotic and down-regulation of the anti-

apoptotic proteins (Agarwal and Kaye, 2003). In contrast, inactivation of the p53 is one of 

mechanisms of cytotoxic drug resistance (Bast, Hennessy and Mills, 2009). Hence, the 

efficacy of cisplatin chemotherapy is higher in OC patients with wild-type TP53 than 

patients with TP53 mutations (Galluzzi et al., 2012). Lastly, it is well known that cell-cycle 

arrest and apoptosis are the main prominent consequences of p53 activation (Chen, 2016). 

 

Figure 1-23 The classical view of p53 activation and response 

P53 is activated in response to different stimuli that induce either DNA damage or Arf stimulation 

and lead to activation of several cellular responses. Reproduced with permission from (Bieging, 

Mello and Attardi, 2014). 
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1.3.2. P53 and cell cycle arrest 

Multiple checkpoint have evolved to monitor and respond to cellular distresses, arresting 

cellular progression until defects are repaired or the environment becomes acceptable to the 

faithful transmission of genetic information (Bartek and Lukas, 2007). Perturbations in 

checkpoint mechanisms not only harmful to the integrity of the genome, but also stimulate 

tumourigenesis and considerably affect the efficacy of cytotoxic drugs (Abbas and Dutta, 

2009).  

The cell cycle is a complex process which is strictly synchronized by multiple factors. 

Cyclins, cyclin dependent kinases (Cdks) and CDK inhibitors are fundamental regulatory 

machine of this process. There are multiple checkpoints to regulate progression through cell 

cycle phases, when DNA damage is detected. P53 mediates cell cycle arrest by 

transcriptional activation of p21WAF1, a negative regulator of cell cycle, which in turn binds 

to and inhibit cyclin E/Cdk2 and cyclin D/Cdk4 complexes to cause cell cycle arrest at G1 

(Chen, 2016). Inhibition of Cdk2 and Cdk4 impedes phosphorylation of Rb and promotes its 

physical association with E2F1. Therefore, blocking the ability of E2F1 to activate gene 

expression that encodes products essential for DNA replication and cell cycle progression 

(Giacinti and Giordano, 2006). P21 also inhibits cellular proliferation by preventing DNA 

replication which is vital for S phase cell cycle progression (Abbas and Dutta, 2009). 

Additionally, P53 is mediator of cell cycle arrest at G2/M phases by inhibiting cyclin B and 

Cdk2 (Deng et al., 1995; Russell et al., 1999). Consequently, p53 maintains genomic 

stability and improves the survival of damaged cells by allowing time for repairing of 

potentially lethal DNA damages (Gatz and Wiesmuller, 2006). 
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1.3.3. P53 and apoptosis

The earliest evidence of p53 acting as mediator of apoptosis was provided by study of 

temperature-sensitive mutant p53 which is discovered by accident owing to a misadjusted 

incubator. At 32ºC, the mutant p53 has a wild type activity but this activity is lost at 37ºC 

(Zhang et al., 1994). It has noted that M1 leukaemia cell line exhibit a typical feature of 

apoptosis upon reactivation of temperature sensitive p53 (Yonish-Rouach et al., 1991). In 

addition, stable transfection of wild-type p53 in human colon tumour-derived cell line EB 

promote morphological features of apoptosis  (Shaw et al., 1992). These studies presented 

the role of p53 as apoptosis stimulator for preventing tumour development (Levine and Oren, 

2009). P53 has the ability to induce a vast number of genes which contribute to different 

steps of  apoptosis signalling (Riley et al., 2008). This includes activation of the extrinsic 

apoptotic pathway through the induction of death receptor, such as Fas and DR5, stimulating 

the dimerization of the receptor, activation of procaspase-8 and activation of caspase-3/7. In 

contrast, stimulation of the Bcl-2 family proteins induces permeabilization of the 

mitochondrial outer membrane, which is the main step in the intrinsic apoptotic pathway 

(Tait and Green, 2010).  

1.3.4. The p53 family: p63 and p73 

Two p53 family gene products were identified decades after discovery of p53, namely p63 

and p73. Both of these genes are ancestors with structural and functional similarity to p53 

(Collavin et al. 2010; Li & Prives 2007). The existence of several variant isoforms of p63 

and p73, which have a vastly different activity, made these members more complex than p53 

itself (Flores et al., 2005). P63 and p73 contain 2 promoter region and as a consequence two 

classes of proteins are encoded: one comprising the N-terminal transactivation domain 

(TAp63, TAp73 which act similarly to wild-type p53) and the other which lack N-terminal 
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transactivation domain (ΔNp63, ΔNp73)  that act primarily in dominant-negative fashion to 

regulate the p53 family (Inoue and Fry, 2014).  

Many studies demonstrate the acquisition of the binding capability of p63/p73 with mutant 

p53. It has been shown that p63 and p73 can associate with each other to form homo- or 

hetero-tetramers. However, both p63 and p73 do not interact with wild-type p53 (Davison et 

al., 1999; Bensaad et al., 2003) but they do interact with mutant p53 (Irwin et al., 2003).  

This interaction has been connected to the ability of some tumour-derived p53 mutants to 

promote resistance to chemotherapy, metastasis and invasion (Flores et al., 2005). The 

binding of p63 and/or p73 isoforms might explain several gain-of-function properties of 

mutant p53 (Adorno et al., 2009; Muller et al., 2009). Genetic studies in mice revealed that 

p63 and p73 have an important function in normal development. In addition, the activity of 

both has been connected to induction of program cell death (Di Agostino et al., 2008). 

However, the precise role of p63 and p73 in tumourigenesis are unclear because they are 

rarely mutated in cancer, albeit with some exceptions (Fridman and Lowe, 2003).  

1.3.5. Therapeutic targeting of p53 in cancer 

The crucial role of p53 in regulation of cellular growth and apoptosis led to its consideration 

as an interesting target for therapy (Zeimet and Marth, 2003). Activation of p53 function of 

various established tumour in animal models can cause tumour regression (Lane, Cheok and 

Lain, 2010). Thus, many studies have investigated methods to restore p53 tumour suppressor 

function. These include wild type p53 gene therapy, reactivation of mutant p53 and relief of 

wild type p53 from overexpressed MDM2. 

The main aim of gene therapy is to re-introduce wild type p53 into tumour cells using several 

approaches. A viral vector is used to introduce an intact cDNA copy of the p53 gene into the 

tumour (Wang and Sun, 2010). Adenovirus-mediated transfer of the p53 gene to reconstitute 
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the wild type activity has shown some efficacy in clinical trial. P53 gene therapy stabilizes 

tumour growth or even cause regression without major toxic effects (Wiman, 2006). A 

combination of p53 gene therapy with traditional chemotherapy might enhance the clinical 

efficacy (Nemunaitis et al., 2000; Swisher et al., 2003). Despite this, adenovirus p53 therapy 

had been restricted to localized intratumoural injection. Therefore, novel method are 

required to overcome the systemic delivery problems for targeting disseminated disease and 

neutralizing antibody against viral antigens (Wiman, 2007; Lane, Cheok and Lain, 2010). 

 P53 Reactivation and Induction of Massive Apoptosis (PRIMA-1) and Mutant p53 

Reactivation and Induction of Rapid Apoptosis (MIRA-1) (Lambert et al., 2009) are 

compounds found to transactivate p53 target genes through restoring the sequence-specific 

DNA binding and mutant p53 conformation to wild type. This restores the expression of 

p21, MDM2 and PUMA in vitro and inhibit tumour growth in vivo (Bykov et al., 2002, 

2005). Another molecule, CP-313198, activates p53 and inhibit tumour growth in vivo as 

well. This compound increases the level of p53 by prevent its ubiquitination independently 

of MDM2 and p53 phosphorylation. However, CP-313198 molecules might have p53 

independent activity (Selivanova and Wiman, 2007). 

Blocking the interaction between p53 and MDM2, which is frequently overexpressed in 

tumours, is an effective approach to prevent wild-type p53 degradation (Bullock and Fersht, 

2001). Several compounds had been identified to do so, such as Nutlin-3a, which efficiently 

stimulate apoptosis in acute myeloid leukaemia and in colon and breast cancer cell lines 

(Wang and Sun, 2010). In addition, Nutlin act synergistically with ABT-737, Bcl-2 

antagonist, to activate the intrinsic apoptotic pathway and induce apoptosis (Kojima et al., 

2006). 
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1.4. Ovarian cancer experimental models  

1.4.1. Ovarian cancer cell lines 

Ovarian cancer cell lines were frequently used tumour models employed to study anti-cancer 

agents in OC (Konstantinopoulos and Matulonis, 2013). Cell lines can provide an insight of 

the molecular diversity and histological subtypes of cancer tissues. In addition, they are 

inexpensive, easy to manage in the laboratory and culture condition of the cell lines can be 

controlled easily. However, there is a lack of some aspects of representation by  cell lines of 

an authentic tumour such as the heterogeneity of the population (Sandberg and Ernberg, 

2005). Usually the OC cell lines are grown attached to the surface of the culture vessels in a 

flat layer. This monolayer form of growth is advantageous for the functional assay and 

microscopic study but generally it is considered not to be entirely physiologically relevant. 

Therefore, the use of spheroids might be an alternative model to evaluate therapy. 

1.4.2. Spheroids 

Spheroids, which are free-floating multicellular aggregate, are thought to more precisely 

represent OC in vivo. It has been shown that these aggregates have similar cellular, molecular 

and biochemical properties to OC (Zietarska et al., 2007; Ahmed and Stenvers, 2013). For 

example, monolayer cell culture was found to be considerably more sensitive to 

chemotherapy than spheroid cancer cells, which is consistent with the observed 

chemoresistance to metastatic cancers (Kobayashi et al., 1993; Achilli, Meyer and Morgan, 

2012). The central region of tumours is poorly vascularized and exhibits an oxygen/nutrient 

and proliferation gradient, which might be associated with accumulation of catabolites and 

limited access to essential component needed for growth (Carlsson and Acker, 1988; 

Friedrich et al., 2009). Aggregates (spheroid) also provide a 3D architecture that is lacking 

in monolayer cultures and which can be used for evaluation of drug combination efficacy 
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(Petrik, 2013). Thus, spheroid culture might provide a model which more closely resembles 

tumours in a clinical setting.
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2. Aims and Objectives 

The aims of this thesis were in three-fold. Firstly, to establish a link between the mevalonate 

pathway and TP53 which is the most frequently mutated gene in OCs. Secondly, to test the 

antitumour activity of the previously described mevalonate pathway inhibitors in 

combination with pitavastatin. Lastly, to identify additional compounds which are 

synergistic with the anticancer activity of pitavastatin. To achieve this, the following 

objectives were set. 

1- Expression and repression of wild-type and mutant TP53 to evaluate their effect on 

the expression of MP enzymes (HMGCR, GGTI, GGTII and FTase). 

2- Evaluate the anti-cancer effects of combinations of zoledronic acid, risedronate or 

GGTI-2133 with pitavastatin and investigate the mechanism of synergy between 

these agents. 

3- Evaluate whether the antitumour activity of pitavastatin can be potentiated by 

combination with off-patent orally available drugs by screening a library of such 

drugs. 
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3.1. Cell culture 

 

3.1.1. Ovarian cell lines 

A panel of ovarian cancer (OC) cells were used in these studies which were either selected 

previously as part of the “NCI-60” panel of cells or because they were subsequently shown 

to be better representative in vitro models of high grade serous ovarian cancer (HGSOC) 

(Table 3-1) (Domcke et al., 2013). 

Table 3-1 Cell line representation of HGSOC 

Cell line Representation of the HGSOC 

Cov-362 

Ovcar-4 

Cov-318 

Ovsaho 

Likely 

Ovcar-3 

Ovcar-8 
Possibly 

Skov-3 

A2780 
Unlikely 

Igrov-1 Hypermutated 

 

A2780 (cisplatin sensitive) and Cis-A2780 (cisplatin resistant) cell lines (ATCC) were 

derived from a human ovarian serous carcinoma (Langdon, 2004; Cree, 2011). CisA2780 

cells were developed by exposing A2780 cell line to increasing concentration of cisplatin. 

CisA2780 are 14 fold more resistant to cisplatin compared to the mother cell line (Behrens 

et al., 1987). 

Cov-318 and Cov-362 cells (European Collection of Authenticated Cell Cultures (ECACC) 

/Sigma Aldrich) were derived from peritoneal ascites and pleural effusion of patients 
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diagnosed with serous carcinoma and endometrioid cancer, respectively (van den Berg-

Bakker et al., 1993). 

Ovcar-3 (ATCC) and Ovcar-4 (NCI) cell lines originated from ascites of patients refractory 

to treatment with cyclophosphamide, adriamycin and cisplatin. Ovcar-3 and Ovcar-4 cell 

line were developed after the diagnosis of progressive poorly differentiated papillary 

adenocarcinoma and adenocarcinoma of the ovary, respectively. The cytological features of 

these cells were consistent with the primary tumour (Hamilton et al., 1983; Louie et al., 

1985).  

Ovcar-5 (ATCC) cell line was derived from patient ascites with ovarian adenocarcinoma but 

prior to the chemotherapy treatment (Hamilton, Young and Ozols, 1984).  

Ovcar-8 and Skov-3 (ATCC) cell lines were derived from carcinoma which is resistant to 

carboplatin and cisplatin, respectively (Hamilton, Young and Ozols, 1984; Buick, Pullano 

and Trent, 1985).  

Igrov-1 cell line (ATCC) was obtained from ovarian carcinoma patient (Bénard et al., 1985).  

Normal Human Ovarian Epithelial (HOE; Applied Biological Materials Inc.) cells originated 

from normal ovarian epithelium and immortalized using SV40 large T antigen (Tsao et al., 

1995). All these cell lines are adherent cells that require trypsin for detachment and sub-

culturing from the culture flask. 

3.1.2. Cell lines growth conditions 

Ovarian cancer cell lines (A2780, CisA2780, Cov-318, Cov-362, Ovcar-3, Ovcar-4, Ovcar-

5, Ovcar-8, Igrov-1 and Skov-3) and HOE cells were grown as monolayer in a humidified 

incubator (NAPCO water jacketed incubator, Precision Scientific) at 37 °C in 5% CO2. 
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Roswell Park Memorial Institute (RPMI 1640; Lonza) medium was used for all cell lines, 

except Cov-318 and Cov-362, for which Dulbecco's Modified Eagle Medium (DMEM, 

Lonza) was the base medium of choice as recommended by ECACC. The base medium of 

all cell lines were supplemented with 10 % (v/v) fetal bovine serum (FBS) (Lonza), 2 mM 

L-Glutamine (Lonza) and 50 IU/mL of Pen-Strep solution (penicillin/streptomycin; Lonza). 

However, Ovcar-3 cells were additionally supplemented with 0.01 mg/mL bovine insulin 

(Lonza) and 1 mM sodium pyruvate (Lonza).  

3.1.3. Ovarian cells subculture  

Cell lines in a T25 culture flask were inspected regularly using light microscopy (Olympus 

CKX41). Once confluent, the monolayer cells were rinsed with 2 mL of phosphate buffer 

saline (PBS) (Lonza) and exposed to 0.01% (v/v) trypsin in PBS and incubated at 37°C for 

2–5 minutes. When the cells had detached, the trypsin was neutralized with 1 mL cell culture 

medium containing 10 % (v/v) FBS. Cells were then centrifuged (150 g, 3 min) and re-

suspended in fresh growth medium and reseeded in T25 or T75 culture flask or tissue culture 

plate for experimentation. Cells were usually subcultured at 1:4 ratios. After several 

passages, cells were discarded (3-4 months) and replaced by new cells from liquid nitrogen 

stocks (Mitry and Hughes, 2012). 

3.1.4. Cryopreservation 

Healthy, contamination free, 50-80 % confluent and low passage number cells in T75 flask 

were collected by trypsinization. The cells pellet was resuspended in chilled growth medium 

containing 8 % (v/v) dimethyl sulfoxide (DMSO, Sigma-Aldrich). 0.3 mL Aliquots were 

transferred into 2 mL cryovials. The cryovials were slowly frozen in freezing container 

containing isopropanol in a Nuaire -80 °C Ultralow freezer (Parker, 2011) and next day 

transferred into liquid nitrogen. 
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To resuscitate cells, frozen cells were thawed rapidly at 37 °C. The medium was removed 

by centrifugation and the cells were resuspended in fresh medium and transferred into T25 

tissue culture flask. After overnight incubation, the growth medium was again replaced to 

remove residual DMSO and dead cells. Cells were grown to an appropriate density for 

experimentation or sub-culture. 

3.1.5. Three-dimensional spheroid culture 

Spheroids, a free-floating multicellular aggregate, are considered more closely represent OC 

in vivo. Multicellular GravityTRAP ULA Plates (InSphero) were used to growth spheroids. 

The plates were wet with 40 µL of medium before seeding cells. The medium was removed 

from the plates and 500 Ovcar-4 or Cov-362 cells in 70 µL growth medium added per well 

followed by brief centrifugation (ALC PK120 Centrifuge) for 1 min at 900 rpm. After 3-5 

day, spheroids could be observed. Thereafter, 30 µL of medium containing vehicle, 

pitavastatin (10µM or 7µM), prednisolone (70µM) or a combination with prednisolone were 

added. Ovcar-4 or Cov-362 cells were incubated for 72 or 120 hours, respectively. 

Intracellular ATP level was quantitated using the cell Titer-Glo Luminescent assay reagent 

(Promega, Madison, WI, USA) as described in 3.5.2.  The Bliss independence criterion was 

calculated to determine the expected effect of the drug combination as described in section 

3.7.2 and this was compared to the observed effect of the combination.  

3.2. Compounds 

Pitavastatin (Livalo, Adooq), Zoledronic acid (Selleckchem), Risedronate (Selleckchem) 

and GGTI-2133 (Sigma-aldrich) Tipifarnib (APExBIO), Prednisolone (Sigma) were 

prepared as 20mM solutions in DMSO except zoledronic acid which was dissolved in H2O. 

The library of compounds evaluated in chapter 6 was a generous gift form Dr. Farahat 

Khanim, School of life Science- Birmingham University. 
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3.3. Cell proliferation assay (sulforhodamine B assay) 

 

5000 cells (or 2500 cells of A2780, CisA2780 and Ovcar-8) were seeded in 80 µL medium 

per well of a 96 well plate. The cells were allowed to adhere for 24 hours. Then, 20 µL of 

18 serial dilutions of individual drugs were added to cells. The cells were incubated for 72 

hours, except for the Cov-318 and Cov-362 which were incubated for 120 hours. 

Subsequently, cells were fixed by adding 100 μL of 10 % (w/v) trichloroacetic acid (Sigma-

Aldrich) and incubated on ice bucket for 30 minutes. The plates washed three times by 

immersion in cold water. After drying, cells were stained with 100 µL of 0.4 % (w/v) 

sulforhodamine B (SRB, Sigma-Aldrich) for 30 minutes. The plate wells washed three times 

in 1 % (v/v) acetic acid (Sigma-Aldrich) to remove excess SRB. Lastly, the dye was 

solubilized in 100 μL Tris base (10mM, pH not adjusted) and the optical density measured 

at 570nm with a microplate reader (Synergy 2 Multi-Mode Microplate Reader-BioTek). 

Graphpad prism 6 (Graphpad Software, Inc.) was used to analyze the data obtained from the 

cell proliferation assay by fitting a four parameter sigmoidal dose response curve for each 

drug to calculate the IC50. The IC50 values obtained from each repeated experiment were used 

to calculate the mean IC50 and associated standard deviation. 

3.4. Cell growth assay for the screening of the library with 

pitavastatin 

 

A panel of 100 off-patent licensed orally-bioavailable drugs were tested alone and in 

combination with pitavastatin in cell growth assays. The experimenter was “blind” to 

compounds names which were labeled with numbers from 1-100. 

Ovcar-4 cell line were seeded (5000 cells/well) overnight in 96-well plate in 80 μL of growth 

medium. The next day, the cells were exposed to vehicle, pitavastatin (10 µM), library 
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compounds, or a combination of pitavastatin and a compound from the library. After 72 hour 

incubation, cells were fixed same as previous described in section 3.3 and relative cell 

number were estimated by measuring the optical density at 570 nm using plate reader as 

described in Section 3.3. Each drug was tested in triplicate in two independent experiments. 

The Bliss independence criterion (Section 3.7.2) was used to analyse the  drug combination 

data (Goldoni and Johansson, 2007; Zhao et al., 2014) and allows calculation of the expected 

effect from the drug combination if their activity were additive. The “Bliss excess” was 

calculated by subtracting the measured effect of combination from the expected additive 

effect. 

3.5. Cell viability assay 

3.5.1. Trypan blue assay 

To evaluate the effect of drug combination on cell viability using the Trypan blue exclusion 

assay, A2780, Ovsaho or Skov-3 cells were seeded at density of 2×105 cells/2mL/well in 6 

well plate. The next day, 20 µL of medium containing vehicle or pitavastatin or zoledronic 

acid or a combination of both were added to the indicated final concentration. After 

incubation for 72 and 96 hours, adherent cells were collected gently by trypsinization and 

combined with the medium that contain non-adherent floating cells. The cells were 

centrifuged at 150 g for 3 minutes and the pellet was re-suspended in 0.5 mL of medium 

then equal volume of cell suspension mixed with equal volume of 0.4 % (v/v) trypan blue 

(Sigma-Aldrich). The viable and non-viable cells were counted by Neubauer 

hemocytometer.  
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3.5.2. Cell Titer-Glo luminescent assay 

A2780, Ovsaho and Skov-3 cells were seeded in 96 well plates as described in the cell 

proliferation assay (Section 3.3). The next day, 20 µL of medium containing vehicle, or 

pitavastatin or zoledronic acid or a combination of both were added to the cells at the 

indicated final concentration. After 72 hours, 25 µL of CellTiter-Glo reagent was added to 

the sample in each well of the 96 well plates. After 2 min shaking (Platform shaker STR6, 

Stuart scientific) and 30 min incubation in dark at room temperature, 100 µL was transferred 

to opaque-walled multiwell plates. The luminescence was measured in a Synergy 2 Multi-

Mode Microplate Reader (BioTek). 

3.5.3. Assessment of apoptosis by Annexin V-FITC/Propidium 

iodide staining 

To measure the effect of drug combination on apoptosis, annexin V and propidium iodide 

(PI) labelling was used. For siRNA transfection studies (Section 3.10), Ovcar-4 cells were 

seeded at a density of 1×105 cell/mL/well in antibiotic free medium in 12-well plates and 

incubated overnight. The cells were transfected with 100 nM of siGGTI-β #6, #7, #8, #9 or 

GGTII-β #5, #6, #7, #8 or non-targeting#1 (NT#1) (Sequences are in Table 3.3) using 1% 

(v/v) Dhamafect-1 (Dharmacon). The next day, the medium was replenished with fresh 

antibiotic free medium and the cells exposed to pitavastatin (10µM) prepared in 20 µL of 

medium and incubated for additional 48 hours.  

To measure the effect of pitavastatin-prednisolone combinations on apoptosis, Ovcar-4 or 

Cov-362 cells were seeded at density of 2×105 cells/2 mL/well in 6-well plate and incubated 

overnight. The medium was replenished and 20 µL of medium containing vehicle or 

pitavastatin or prednisolone or a combination added to the indicated final concentration. 

Ovcar-4 and Cov-362 cells were incubated with drugs for 48 and 72 hours, respectively. 
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For flow cytometry, the cells were labelled using a Annexin-V FITC kit (Miltenyi biotech) 

following the manufacturer’s instructions. After collection of the media from each well, the 

cells were trypsinized and washed in ice-cold PBS and centrifuged at 300 g for 5 minutes. 

The pellets were re-suspended in 1 mL of annexin V binding buffer and centrifuged for 10 

minutes at 300 g. Again, the pellets re-suspended in 100 µL of annexin V binding buffer and 

10 µL of Annexin V were added and incubated for 10 minutes in dark at room temperature. 

The cells were once more washed with 1 mL of annexin V binding buffer. Lastly, cells were 

centrifuged and the pellet was re-suspended in 500 µL Annexin V Binding Buffer and 5 µL 

of propidium iodide (1µg/mL) were added at least 5 min before the analysis by flow 

cytometry. The viability of cells was defined as live (annexin V-negative and PI-negative), 

early apoptotic cells (annexin V-positive and PI-negative), late apoptotic cells or dead cells 

(annexin V-positive and PI-positive) and necrotic cells. 

3.6. Apoptosis assay 

3.6.1. Caspase -3/7, -8 and -9 assay 

Caspase-Glo -3/-7, -8, -9 assay kits were used to determine Caspase-3/7, -8 and -9 activity 

according to the manufacturer’s instructions (Promega, Madison, WI, USA). A2780, 

Ovsaho, Skov-3, Ovcar-4 and Cov-362 5000 cells/80 µL of medium were seeded in 96 well 

plate and incubated overnight. The next day, 20 µL of medium containing vehicle, 

pitavastatin, zoledronic acid, prednisolone or combination were added to each well to the 

indicated final concentration. 

Cells were incubated with drugs for 48 hours or 72 hours for Cov-362 cells. 25 µL of the 

reagent were added to each sample and incubated for 1 hour in dark, with continuous 

shaking. Next, 100 µL of the medium transferred to 96 opaque-walled multiwell plates. 

Lastly, Caspase activities were measured using a microplate reader.  
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A parallel plate was prepared and treated with drug in the same way as that used for the 

caspase assay and this was stained with SRB as described in section 3.3. The results of the 

caspase assay were normalized to the protein content (SRB assay) of the sample.  

3.7. Drug combination analysis  

Drug combinations are common strategy indicated for immune disease, infection and cancer 

treatment. There are several methods for quantitative measurement of the effects of  drug 

combinations (Bijnsdorp, Giovannetti and Peters, 2011). An effect-based Strategy can be 

achieved by calculating the  expected effect of the combination using the Bliss independence 

criterion; a dose based strategy can be achieved by measuring the concentration of drugs in 

a combination required to have the same effect as the single agents and calculating a 

combination index (Foucquier and Guedj, 2015). 

3.7.1. Combination index  

The combination index is the most widely used method for evaluation of the drug 

combination (CI) was developed by Chou and Talalay to allow a quantitative measurement 

of synergy, additivity or antagonism between two agents. 

 

(D)1, indicate the doses of first drug; (D)2, indicate the doses of second drug; D, the dose of 

the drug in combination which inhibit cell growth by X%; (Dx)1 is for (D)1 “alone” that 

inhibits a system X%; (Dx)2 is for (D)2 “alone” that inhibits a system X%.  

The combination index was quoted at fraction affected fa = 0.5 (at which 50% of cells were 

apparently affected) and were calculated and compared to deviation from unity using a 

paired t-test. If the CI = 1, then the interaction between the two drugs is considered additive, 
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whereas, if the CI value is greater than 1 the interaction is antagonistic, but if the CI value is 

smaller than 1, then the interaction is considered synergistic. 

3.7.2. Bliss independence 

Bliss independence (Goldoni and Johansson, 2007) effects were calculated according to the 

following equation to evaluate drug interactions when full dose response curves were not 

performed (e.g. for trypan blue assays and ATP-assay).  

        E(X,Y) =E(X) + E(Y) - E(X)E(Y) 

E(X) and E(Y) are the fractional effect (between 0 and 1) of drug x and y measured by the 

assay. E(X,Y) is the expected effect of the drug assuming Bliss independence. The calculated 

additive effect calculated using the Bliss independence criterion was compared to the 

observed effect of the drug combination measured to quantify the drug interaction. 

3.8. Western blot analysis 

3.8.1. Whole cell lysate  

Ovarian cancer cell lines, A2780, Skov-3, Ovsaho, Ovcar-4 and Cov-362 were seeded in 6 

well plates at a density of 2×105 cell/2 mL medium/ well (same as section 3.5.1). The cells 

were incubated with vehicle, different concentration of the drugs alone, and in combinations 

of the indicated final concentration for 48 hours. After trypsinization, the cells washed with 

ice cold PBS and lysed in a modified Radio immunoprecipitation assay (RIPA) buffer (20 

mM Hepes (CalbioChem), 150 mM sodium chloride (NaCl, Sigma-Aldrich), 2 mM 

ethylene-diamino-tetraacetic acid (EDTA, Sigma-Aldrich), 0.5% sodium deoxycholate 

(Sigma-Aldrich), 1% NP40 (Sigma-Aldrich)). Additionally, 120 µM leupeptin (Sigma-

Aldrich), 10 µM pepstatin (Sigma-Aldrich) and 1 mM phenylmethanesulfonyl fluoride 
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(PMSF, Sigma-Aldrich) were added as protease inhibitors. The lysate was centrifuged at 

14,000 RPM for 15 minutes at 4°C, and the supernatant was collected and stored at -80°C. 

3.8.2. Cytoplasmic and membrane protein fractionation 

A2780 and Skov-3 2×105 cells/ 2 mL medium were seeded in 6 well plates and incubated 

overnight. The next day, 20 µL of medium containing vehicle or pitavastatin or zoledronic 

acid or a combination of both were added to the indicated final concentration (section 3.5.1). 

Membrane and cytoplasm proteins were separated using Mem-PER™ Plus Membrane 

Protein Extraction Kit (Thermofisher) according to the manufacturer’s protocol. The cells 

washed twice with 2 mL of ice cold washing buffer, re-suspended in 0.25 mL cell 

permeabilization buffer and incubated for 15 minutes with constant mixing. The mixture was 

centrifuged at 16000 xg for 15 minutes at 4 °C and the supernatant collected in a new 

eppendorf tube (cytoplasmic fraction). The pellets were re-suspended again in 0.16 mL of 

solubilization buffer and incubated for a further 30 minutes at 4 °C with constant shaking. 

After centrifugation at 16000 x g for 15 minutes at 4 °C, the supernatant was collected 

(membrane fraction) and both the cytoplasmic and membrane fraction were stored at -80°C 

waiting for analysis. 

3.8.3. Bicinchoninic acid protein assay 

The bicinchoninic acid (BCA) protein assay used to determine total protein concentration of 

the samples. Eight standards of Bovine serum albumin (BSA, Sigma-Aldrich) were prepared 

at concentrations between 0.1 and 2 mg/mL. Copper (II) sulphate pentahydrate solution (4%) 

(Sigma-Aldrich) were added to BCA solution (bicinchoninic acid, sodium carbonate, sodium 

tartate and sodium bicarbonate in 0.1 M sodium hydroxide) at a ratio of 1:50 to prepare the 

BCA reagent. 10 µL of each BSA standard or duplicate of each cells lysate (10 µL) were 

added to 100 µL of the BCA reagent. After 30-minute incubation at 37 °C, the absorbance 
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for standards and samples were measured using a plate reader. A calibration curve was fitted 

to the data obtained with BSA using linear regression and used to determine the 

concentration of protein in each sample lysate. 

3.8.4. Gel electrophoresis and immunodetection of proteins using 

SDS-page and western transfer 

Equal amount of protein from each sample cell lysate were first mixed with 5 µL of NuPAGE 

sample buffer (Invitrogen) containing 5 % (v/v) β-mercaptoethanol (Sigma-Aldrich) and 

samples denatured at 70 °C for 15 minutes. Sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE) was used to separate the protein according their molecular 

weight. PageRuler Plus Prestained Protein Ladder (10 to 250 kDa) (Thermo Scientific) and 

denatured samples were added to Tris-Glycine polyacrylamide gradient gel (4-20%) (Nusep) 

in an XCell SureLock Mini Cell (Invitrogen) with Hepes running buffer (100 mM Hepes, 

100 mM Tris and 1% sodium dodecyl sulphate (SDS, Sigma-Aldrich)), and electrophoresis 

performed at 65V for 2 hours. Subsequently, the proteins were transferred from the gel to 

PVDF Amersham Hybond membrane (Hybond-ECL, GE Healthcare) using a freshly 

prepared ice cold transfer buffer (25 mM Tris, 200 mM glycine (Sigma- Aldrich), 0.075 % 

(w/v) SDS and 10 % (v/v) methanol (Sigma-Aldrich)) at 30 V for 2 hours. Next, 5% (w/v) 

skimmed milk powder in Tris-Buffered Saline with Tween (TBST) buffer was added to the 

PVDF membrane as a blocking solution and incubated on a shaker (Stuart Scientific 

Platform, STR6) for an hour at room temperature. The membrane was then incubated 

overnight with primary antibody at 4 °C with continuous shaking. The antibodies used are 

described in Table 3-2.  The following morning, the membrane was washed five times (5 

minutes each) in TBST buffer and incubated with secondary antibody for an hour at room 

temperature with continuous shaking. The membrane was again washed five times (5 

minutes each) with TBST buffer and proteins visualized using UptiLight HRP US 
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chemiluminescent substrate (Interchim) and a FluorChem M Imager. AlphaView SA 

software (Protein Simple) was used to quantify protein bands by measure the total signal in 

the selected area after subtracting the mean background per pixel. The results were then 

normalized to the GAPDH loading control. 

Table 3-2 The primary and secondary antibodies used for protein immunodetection 

Antibody Dilution Product code Supplier 

Anti-Actin 1/5000 #4968 Cell signalling Technology 

Anti-CDC42 1/10000 Ab187643 Abcam 

Anti-RAB6A 1/500 Ab95954 Abcam 

Anti-Ras 1/10000 Ab52939 Abcam 

Anti-RhoA 1/5000 Ab187027 Abcam 

Anti-FDPS 1/5000 Ab153805 Abcam 

Anti-GAPDH 1/5000 Mab374 Millipore 

Anti-GGTII-β 1/1000 Sc365901 Santa cruz 

Anti-GGTI-β 1/1000 Sc376854 Santa cruz 

Anti-HMGCR 1/1000 Ab173830 Abcam 

Anti-IDI1 1/1000 Ab97448 Abcam 

Anti-MVD 1/5000 Ab129061 Abcam 

Anti-P53 1/5000 Ab179477 Abcam 

Anti-NaK ATPase 1/100000 Ab167390 Abcam 

Anti-PARP 1/2000 #95425 Cell signalling Technology 

Anti-mouse 

secondary antibody 1/2000 #7076 Cell Signalling Technology 

Anti-rabbit 

secondary antibody 1/2000 #7074 Cell Signalling Technology 
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3.9. Transient gene transfection 

3.9.1. Plasmid preparation 

Plasmids encoding TP53 and TP53 variants, pCMV-Neo-Bam (vector), pCMV-Neo-Bam 

p53 WT, pCMV-Neo-Bam p53 R175H, pCMV-Neo-Bam p53 R273H, pCMV-Neo-Bam, 

pCMV-Neo-Bam p53 R248W, were obtained from Addgene.  

Luria-Bertani (LB) Agar was prepared by adding Bacto-tryptone (10 g), yeast extract (5 g) 

and NaCl (10 g) to 800 mL of distilled H2O. The pH was adjusted to 7.5 with NaOH and 

then 15 g of agar were added to the medium. Lastly, the volume was adjusted to 1L with 

dH2O and the LB agar sterilized by autoclaving. In addition, LB medium was prepared by 

mixing Bacto-tryptone (10 g), yeast extract (5 g) and NaCl (10 g) in 800 mL of distilled H2O. 

The pH was adjusted to 7.5 with NaOH and the volume adjusted to 1 L with dH2O. The LB 

medium was sterilized by autoclaving. Ampicillin antibiotic was added immediately prior to 

use to a final working concentration of 100 µg/mL. 

Sterile spreaders were used to spread the stab culture of E. Coli carrying the plasmid on a 

Luria-Bertani (LB) Agar. After overnight incubation at 37 °C, picked colonies were used to 

inoculate a sterile conical flask containing 100 mL of LB medium. The flasks were place in 

incubator at 37 °C with continuous shaking (300 RPM) for 20 hours.  

The plasmid was purified from the culture using the HiSpeed Plasmid Midi Kit (Qiagen). 

The collected culture medium was centrifuged at 6000 xg for 15 minutes at 4 °C. The pellets 

were re-suspended in 6 mL of buffer P1 and 6 mL of buffer P2 was added and the tube 

contents mixed by gentle inversion several times. After 5 minutes incubation at room 

temperature, 6 mL of buffer P3 was added and followed by gentle inversion to mix. The 

lysate was added to the barrel of the QIAfilter cartridge and incubated for 10 minutes at room 
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temperature. 4 mL of Buffer QBT was used to equilibrate a HiSpeed Tip. The lysate was 

allowed to pass through the HiSpeed Tip which was subsequently washed with 20 mL of 

buffer QC. The DNA was eluted by 5 mL of buffer QF and precipitated by adding 3.5 mL 

of isopropanol. After incubation for 5 minutes, the eluate was collected with a 

QIAprecipitator and washed with 2 mL of 70 % ethanol. Once dried, the DNA was eluted 

with 1 mL of buffer TE and the concentration of plasmid was determined by 

spectrophotometer (Nanodrop2000) before storage at -20 °C. 

3.9.2. Plasmid transfection 

Expression studies were approved by the Keele genetic modifications of microorganisms 

committee. 32,000 Skov-3 cells per well of a 24 well plate were seeded in 500 µL antibiotic 

free RMPI medium. After an overnight incubation, the medium was replaced with 400 mL 

of fresh antibiotic free medium. Cells were transfected with 0.1 % CMV-Neo-Bam (vector), 

pCMV-Neo-Bam p53 WT, pCMV-Neo-Bam p53 R175H, pCMV-Neo-Bam p53 R273H, 

pCMV-Neo-Bam p53 R248W (Addgene) and 0.2 % of Lipofectamine 2000. The 

transfection mixture was prepared by adding 0.55 µg of DNA to 50 µL of Optimem media 

and 1.1 µL of lipofectamine 2000 (Invitrogen) to a separate aliquot of 50 µL of Optimem. 

The lipofectamine and DNA solutions were mixed and incubated for 30 minutes at room 

temperature to allow DNA-lipofectamine 2000 complex formation. 100 µL of the 

transfection mixture were added to each well of the plate and next day, the medium was 

changed and the cells incubated for a further 48 hours. The transfection efficiency was 

measured using western blotting to assess the expression of p53 level. 
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3.10. Small interfering ribonucleic acid (siRNA) transfections 

 

5000 Ovcar-4 and Ovcar-3 cells were plated in 80 µL of antibiotic-free growth medium per 

well in a 96 well plate and incubated overnight. A solution of 1% DharmaFECT-1 was 

prepared in Optimem (Invitrogen) and incubated for 10 minutes at room temperature. The 

siRNA oligos (Table 3-3) were prepared at 10 times the final concentration required at well 

(100 nM) and then mixed with 1% DharmaFECT-1 solution. The mixture was incubated for 

30 minutes at room temperature to facilitate complex formation between the siRNA and 

liposomes. The growth media on cells was replaced with 80 µL of fresh antibiotic free 

growth media, then 20 µL of siRNA and DharmaFECT-1 mixture were added to each well. 

The same process was made for the non-targeting siRNA control to demonstrate if there are 

any off-target effects on gene expression (off-target gene silencing). The next day, the media 

were replenished with 100 µL of fresh antibiotic free growth media and cells incubated for 

additional 48 hours. Subsequently, cells processed same as in section 3.8.1 for whole cell 

lysate and gene expression was assessed by immunoblotting. 
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Table 3-3 siRNA transfection Oligos 

Gene Name Used Concentration Target Sequence 

P53#smart pool 100nM - 

P53#1 100nM GAAAUUUGCGUGUGGAGUA 

P53#2 100nM GUGCAGCUGUGGGUUGAUU 

P53#3 100nM GCAGUCAGAUCCUAGCGUC 

P53#4 100nM GGAGAAUAUUUCACCCUUC 

GGTI-β#6 100nM CGACUUAAGCCGAGUAAAU 

GGTI-β#7 100nM GAGACAAGCAGGUUGACAA 

GGTI-β#8 100nM GGAUAAAGAGGUGGUGUAU 

GGTI-β#9 100nM CCACAUGAAUGAUUUUAGA 

GGTII-β#5 100nM UUACUUGGCUGGUGGCUUU 

GGTII-β#6 100nM GGAAUAAGUGCUAGUAUCG 

GGTII-β#7 100nM UCUGAGUAUUUGAGAAUGA 

GGTII-β#8 100nM UGGAAUAUGUUAAAGGUCU 

NT#1 100nM UGGUUUACAUGUCGACUAA 

NT#2 100nM UGGUUUACAUGUUGUGUGA 
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3.11. Quantitative reverse transcriptase polymerase chain 

reaction  

3.11.1. RNA extraction from culture cells 

5000 Ovcar-3 and Skov-3cells were plated in 80 µL of antibiotic free medium per well in 96 

well plate and incubated overnight. Cells were harvested using RNeasy mini kit (Qiagen) 

following the manufacturer instruction. 175 µL of RTL buffer, supplemented with 1% β-

mercaptoethanol, were added to each well (usually 2 well were combined to create one 

sample) and pipetted up and down several times to ensure cell lysis. Lysates were centrifuged 

for 3 min at maximum speed (16000xg). The supernatant transferred to a new 1.5 mL tube 

and mixed with 350 µL of 70% ethanol by pipetting up and down several times. Next, 

approximately 700 µL of each sample was transferred to mini spin column placed in 2 mL 

tube and centrifuged for 15 second at 8000 xg and the flow through discarded. The 

centrifugation process was repeated with another 700 µL of RW1 buffer and subsequently 

twice more with 500 µL RPE buffer. The column was dried by centrifugation for 2 minutes. 

Lastly, the spin column was placed in new 1.5 mL tube and 50 µL of RNase free water 

added, incubated for 2 minutes and then centrifuged for 1 minute at 8000xg in order to elute 

the RNA. The purity and concentration of the extracted RNA were measured using a Nano-

Drop2000 spectrophotometer (Thermo fisher scientific). The extracted RNA placed in -20 

°C. 

3.11.2. Synthesis of cDNA by reverse transcriptase 

SuperScript™ III Reverse Transcriptase was used to generate the complementary DNA 

strand (cDNA). The reaction mixtures were maintained in ice during the procedure.  A 

mixture of 11.5 µL of RNA extracted from cells and 1.5 µL (0.5 µg) of Oligo (dT)20 (50 µM) 

were mixed and denatured at 65ºC for 5 minutes in thermal cycler (MJ Research PTC-200 
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Thermal Cycler, USA) and stored on ice. The reaction mixture for each sample was prepared 

by mixing 4 µL of 5X reverse transcriptase RT reaction buffer, 1 µL of dNTP mix (10 mM), 

1 µL of reverse transcriptase and 1 µL of DTT (0.1 M). The reaction mixture (7 µL) was 

added to already prepared RNA mixture. The tubes were exposed to pulse spin using 

centrifuge and transferred to thermal cycler again which include incubation for 5 minutes at 

65 ºC, 30 minutes at 50 ºC, 5 minutes at 85 ºC and lastly cooling down to 4 ºC. 

The concentration and purity of the cDNA was measured using Nanodrop2000 

spectrophotometer. The DNA concentration is dependent on absorbance at 260 nm. The ratio 

of the 260/280nm were used to assess the purity of DNA. The reaction product was diluted 

5 times by adding 80 µL of water and the sample were stored in -20. 

3.11.3. qRT-PCR 

A master mix was prepared by adding 6.25 µL of syber green (Absolute SYBR Green ROX 

mix Thermo Scientific), 0.125 µL of forward and reverse primer (10 mM) (Table 3-4) and 

1.125 µL of nuclease free water for each sample and kept on ice. The master mix was mixed 

gently and collected by brief centrifugation. 7.5 µL reaction mixture were added to each 

wells of optical 8-tube strips, then 5 µL of DNA sample or dH2O were added to each tube in 

duplicate. The optical strips were briefly vortexed to remove any air bubbles and centrifuged 

to collect the reaction mixture at the bottom of the wells. A Stratagene Mx3005P thermal 

cycler (Agilent Technologies) was used to conduct the analysis (Table 3-5). To confirm that 

only one amplicon was detected the dissociation curves were analyzed for each sample. In 

addition, the efficiency of genes was confirmed by measuring the CT value of 4 serial of 4-

fold dilution of samples using qRT-PCR. The standard curve produced from the measured 

CT data and the log of the dilution factors were analyzed by liner regression and implemented 

in the following equation to measure the efficiency.  
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Efficiency = (10-1/slope)-1 

A comparative cycle threshold (CT) method was used to analyses the data, which compares 

the CT value of target gene to the CT value of the reference gene.  

ΔCT= CT (target gene) – CT (reference gene) 

ΔΔCT=2^(-ΔCT) 

Ratio (Fold changes) =
ΔΔCT of treated sample

ΔΔCT of control sample
 

 

Table 3-4 Primer sequences 

Primer 

Name 

Forward (5’ → 3’) Reverse (5’ → 3’) 

HMGCR CAGAATTACGTCAACTTGGATC AGAAGTGATGACAACTGTACTG 

GGTI-β GGATTTCTTACGGGATCGGC TTGTCAACCTGCTTGTCTCG 

GGTII-β CTGGTGGCTTTGTGAACGAC CAGGACCCACCATGAGTAGC 

FT-β CTTTTTGCCTCTATCCGCTCG TGTGTAGGACTCTGCTTCGT 

β-actin GCAAAGTTCCCAAGCACA AAGCAAGCAGCGGAGCAG 
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Table 3-5 Thermal cycling profile for qRT-PCR 

 First segment Second segment Third segment 

 Denaturation of 

DNA strands at 95
◦
C 

for 15 minutes 

Denaturation of the DNA 

at 95
◦
C for 30 second 

For dissociation 

curve at 95
◦
C for 

1 minutes, 55
◦
C 

for 30 second 

and 95
◦
C for 30 

second 

Primer annealing at 60
◦
C 

for 1minute  

DNA strand elongation at 

72
◦
C for 30 second 

Cycle Number  1 40 1 

 

3.12. Statistical analysis 

Number of experiments (n) of independent biological replicate were employed to calculate 

means and standard deviations (mean±SD). GraphPad Prism version 6.0 (GraphPad 

Software, San Diego, USA) was used to generate sigmoid dose response curves and to 

calculate the IC50s. t-tests were performed using Excel to compare two variables. One-way 

ANOVA followed by Tukeys post hoc was used to compare the mean of more than two 

variables. Results were considered statistical significance at P < 0.05. 
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4.1. Introduction 

The early observation of p53 oncogenic properties was misled by the use of mutated clones 

of p53 extracted from cancer cells.  However, Shaulsky, et al., 1991 and Dittmer, et al., 1994 

were the first to report the gain of new functions of mutant p53 (Shaulsky, Goldfinger and 

Rotter2, 1991; Dittmer et al., 1993). While most tumour suppressor genes are inactivated by 

frameshift or nonsense mutation, missense is a common TP53 mutation that is associated 

with cancer and which often generates high levels of a stable mutant p53 (Olivier, Hollstein 

and Hainaut, 2010; Oren and Rotter, 2010; Goh, Coffill and Lane, 2011). Mutated TP53 not 

only abrogates the tumour suppressor function of the wild type TP53 allele via dominant-

negative mechanism, but also endows abnormal oncogenic gain-of-function (GOF) 

properties. This results in enhanced proliferation, metastasis and chemoresistance (Heublein 

and Sabine, 2016; Hientz et al., 2016; Oren and Kotler, 2016).  

TP53 mutation (90%) cluster in the DNA binding domain and about 1300 different single 

base-pair substitution of the core domain of p53 protein have been reported in cancer. 

TP53 missense mutation tend to cluster at hot-spot codons in the DNA binding domain 

(Figure 4-1) (Goldstein et al., 2010). The six most common hotspot mutations are R175, 

G245, R248, R249, R273, and R282 (Mello and Attardi, 2013) and ~20% of TP53 mutation 

occur at R273, R248 and R175 in ovarian cancer (OC) (Brachova, Thiel and Leslie, 2013). 

Mutations outside the DNA binding domain are also reported (Joerger and Fersht, 2007; 

Olivier, Hollstein and Hainaut, 2010). Even in cancers where TP53 mutation is rare, TP53 

function is inactivated by different mechanism such as nuclear exclusion, inactivation of 

p19ARF and interaction with over expressed MDM2 or with a viral protein (Soussi and 

Béroud, 2001). 
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Figure 4-1 Distribution of TP53 missense mutation  

TP53 mutation mostly located at the DBD with the six most common hotspot mutations are R175, 

G245, R248, R249, R273, and R282. PR, proline-rich domain; Reg, carboxy-terminal regulatory 

domain; TA, transactivation domain; Tet, tetramerization domain. Reprinted with permission from 

(Brosh and Rotter, 2009). 

 

TP53 mutation can be categorized according to the effect of mutation on the thermodynamic 

stability of the protein. These mutations can be classified in two groups, DNA contact and 

conformational mutations. The DNA contact group comprise mutations in residues that are 

involved in DNA binding (R273H and R248Q), while the second conformational group 

include mutation that led to global (R175H and R282W) or local (R249S and G245S) 

conformational distortion (Brosh and Rotter, 2009).  

Whereas, several GOF phenotypes have been noted, our understanding of the underlying 

mechanism remains incomplete (Hanel et al., 2013). The nature of the mutation at a 

particular residue can have a profound effect on the phenotype that is observed. For example, 

the p53R248Q mutant is linked with metastasis, whereas the p53R248W mutant is less metastatic 

(Mullany et al., 2015). In addition, the p53R175C mutant was wild-type in its phenotype; 
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R175K, R175P, R175I and R175S trigger only cell cycle arrest; R175N and R175T stimulate 

cell cycle arrest and partially stimulate programed cell death; and R175Y, R175W, R175D 

and R175F do neither (Goh, Coffill and Lane, 2011). The wide spectrum of TP53 mutations 

led to a widely established notion that not all mutations are equivalent in their structural and 

functional effects (Mullany et al., 2015). 

TP53R273 mutations are the most frequent mutation in OC. In this mutation, the amino acid 

residues at position 273 is altered to either histidine (46%) or cysteine (39%), the protein 

DNA target sequence is altered but without deforming the structure of p53 protein and thus 

maintaining its DNA binding ability (Wong et al., 1999; Joerger et al., 2009; Eldar et al., 

2013). In vitro and in vivo studies showed that R273 mutation increase cellular proliferation 

in culture and the liability to develop carcinomas in mice (Olive et al., 2004). Furthermore, 

resistance to cisplatin developed following ectopic overexpression of R273H on a TP53 null 

background cells (Chang and Lai, 2001). The interaction of p53R273H with several proteins 

such as NF, SP1, p63 and SREBP might be the likely cause of tumour progression and  

increased resistance to chemotherapy (Brachova, Thiel and Leslie, 2013). R273H also 

promote TGF-β induced metastasis (Adorno, et al. 2009).  

The second most commonly transformed codon in OC is R248 in which the arginine amino 

acid is replace by tryptophan or glutamine (R248W or R248Q) (Brachova, Thiel and Leslie, 

2013). This alteration affects the interaction of p53 with DNA binding response element 

without significant changes to the structural conformation of p53 (Wong et al. 1999). 

Acceleration of the tumour onset and shortened survival is reported in p53R248Q knock-in 

mice (Hanel et al., 2013). In addition, upregulation of the multidrug resistance gene (MDR1) 

mediated the resistance to doxorubicin and paclitaxel in hepatocellular carcinoma cells 

which harbour p53R248Q (Chan and Lung, 2004).  
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The third well characterized hotspot mutation is R175H, in which the arginine is replaced 

by histidine. The connection between R175H and tumourigenic potential and 

chemoresistance had been reported (Blandino, Levine and Oren, 1999). Transgenic 

expression of p53R175H enhances the proliferation capacity and increases the tumourigenic 

potential (Olive et al., 2004). The interaction of R175H with a number of proteins might 

mediate changes in proliferation, metastasis and chemoresistance. Overexpression of p53R175 

mediates resistance to cisplatin, etoposide and paclitaxel (Blandino, Levine and Oren, 1999).  

In OC, the most frequent hereditary genetic aberrations are germline mutation in BRCA1 

and BRCA2. In contrast, TP53 mutation are a common alteration in sporadic epithelial OC  

(Corney et al., 2008). There is little evidence of p53 mutation in benign and borderline 

epithelial ovarian tumours. Only one in a series of 48 borderline tumours was reported to 

have TP53 mutation and 2 of 48 cases were found to overexpress p53 (Russell, 2001). 

Mutant p53 had been associated with poor clinical outcome in ovarian carcinomas (Corney 

et al., 2008). High grade serous OC  patients with TP53 mutation are more likely to exhibit 

distant metastases and develop resistance to platinum chemotherapy (Kang et al., 2013; 

Zhang et al., 2016). In addition, progression-free survival is significantly shorter in patients 

with p53 mutation compared to patients with wild type p53 activity (Russell, 2001). Mutant 

TP53 is also considered as a poor prognostic factor in colorectal, prostate, lung and breast 

cancer (Yemelyanova et al., 2011; Mantovani, Walerych and Sal, 2016).  

A precise control of metabolism is vital for a normal cellular activity. It is increasingly 

evident that cellular metabolism is aberrant in cancer and plays a key role in maintaining the 

malignant state (Vousden and Ryan, 2009). Recently, several studies had identified a number 

of mevalonate pathway (MP) enzymes as crucial for the survival of different transformed 

cells by supplying sterol and isoprenoids and other products (Blomen et al., 2015; Hart et 
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al., 2015; Wang et al., 2015). In addition, the involvement of MP in several aspects of 

carcinogenesis led to it being considered as a target for therapy (Wong, Dimitroulakos and 

Penn, 2002; Clendening et al., 2010; Clendening and Penn, 2012). In addition, an emerging 

role of mutant TP53 in regulation of MP in breast cancer cells had been reported recently. 

Gain-of-function mutants of p53 interact with the SREBP to stimulate the transcription of 

genes involved in MP activity regulation in breast cancer cell lines (Freed-Pastor et al., 

2012). Therefore, it seems reasonable to evaluate the contribution of TP53 in regulation of 

MP in OC to support the application of statins to the treatment of OC. 

4.2. Aims 

The goal of this chapter was to evaluate the contribution of TP53 to the regulation of MP. 

To do this the effect of ectopic expression of TP53 and siRNA directed to mutant TP53 on 

the expression of MP enzymes, HMGCR, GGTI-β, GGTII-β and FT-β, was examined. 
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4.3. Results 

 

4.3.1. The expression of HMGCR in a panel of ovarian cancer 

cell lines 

It has been demonstrated that the activity of MP is deregulated in several different tumours. 

In order to study the activity of this pathway in OC cell lines, the level of HMGCR was 

measured to confirm if this correlated with mutational and expression of TP53. HMGCR 

enzyme were measured using western blot in a panel of OC cell lines, and compared to the 

level of HMGCR in normal human ovarian epithelial cells (HOE). Quantification of 

HMGCR enzyme levels reveals that all OC cell lines had a higher level of HMGCR protein 

expression than the normal HOE cells and it was statistically significant in A2780, 

CisA2780, Cov-318, Cov-362, Ovcar-3, Ovcar-5, Skov-3 cell lines compared to HOE cells 

(Figure 4-2 A and B).  
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Figure 4-2 The level of HMGCR protein in panel of ovarian cancer cell lines. 

The level of HMGCR was measured using western blot (A) in a panel of OC cell lines and normal 

human epithelial ovarian cell line and quantified (B). GAPDH was used as loading control. HMGCR 

protein were normalized to GAPDH (n = 3, *, P <0.05; **, P <0.01; paired t-test).  
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4.3.2. The expression of GGTI-Β and GGTII-Β in a panel of 

ovarian cancer cell lines 

In addition to HMGCR, the level of the GGTI-β and GGTII-β enzymes of the MP were 

determined by immunoblotting in a panel of OC cell lines (Figure 4-3 A) and quantified 

(Figure 4-4 A and B). The results showed that GGTI-β and GGTII-β protein are 

overexpressed in subset of OC cell lines compared to HOE. However, the differences in 

expression were statistically significant in A2780, CisA2780, Ovcar-4, Ovcar-8, Igrov-1 and 

Skov-3 cell line for GGTI-β and A2780, Ovcar-5, Ovcar-8 and Igrov-1 cell line for the 

GGTII-β. 

     (A) 

 

Figure 4-3 GGTI-β and GGTII-β level in panel of ovarian cancer cell lines. 

The level of GGTI-β and GGTII-β was measured using western blot in a panel of OC cell lines and 

HOE. GAPDH was used as loading control (n = 3).
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Figure 4-4 Quantification of GGTI-β and GGTII-β level in panel of ovarian cancer cell 

lines. 

The level of GGTI-β and GGTII-β was measured using western blot in a panel of OC cell lines and 

HOE and quantified (B and C). GAPDH was used as loading control. GGTI-β and GGTII-β were 

normalized to GAPDH (*, P <0.05; **, P <0.01; paired t-test). 
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4.3.3. P53 status in panel of ovarian cancer cell line 

To investigate the role of TP53 in regulation of MP enzymes in OC, the status of TP53 

mutations was first obtained from a public database (Bouaoun et al., 2016) (Table 4-1). Most 

of the cell lines harbour a mutation in TP53, only HOE and A2780 cell lines have a wild 

type TP53. In common with other cancers, the mutations were mostly in the DNA binding 

domain (Figure 4-5) (Bieging and Attardi, 2012). Ovcar-3 cells had a mutation R248Q, 

which is one of most frequent hotspot mutations in p53 and is considered a gain of function 

mutation. In contrast, Skov-3 cell line is an established cell line that does not express p53 at 

protein level (Mullany et al., 2015). 

 

Table 4-1 TP53 status in a panel of ovarian cancer cell lines (Bouaoun et al., 2016). 

Cell line TP53 status p53 Mutation  

HOE Wild-type - 

A2780 Wild-type - 

CisA2780 Mutated Q136 

Cov-318 Mutated I195F 

Cov-362 Mutated Y220C 

Ovcar-3 Mutated R248Q 

Ovcar-4 Mutated L130V 

Ovcar-5 Mutated - 

Ovcar-8 Mutated Y126C 

Igrov-1 Mutated Y126C 

Skov-3 Null - 
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Figure 4-5 Sites of p53 mutation on ovarian cancer cell line.  

Schematic representation of the 393 amino acid domain structure of human p53 showing the sites of 

mutation in OC cell lines. N-terminal transactivation domain (TAD); proline-rich domain (PR); 

tetrameriszation domain (TET); C-terminal regulatory domain (REG). 

 

 

In addition, the expression of p53 was examined in panel of OC cell lines by western blotting 

(Figure 4-6). The result showed that p53 was most highly expressed in Cov-362, Ovcar-3, 

Ovcar-4 and Ovcar-8 cell lines and to lesser extent in A2780, CisA2780, Cov-318 and Igrov-

1 cell lines. P53 expression was not been detected in Ovcar-5 and Skov-3 cell lines as 

previously reported (Mullany et al., 2015). 
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Figure 4-6 the expression of p53 in a panel of ovarian cell lines. 

The level of p53 was measured using western blot (A) in a panel of OC cell lines and normal HOE 

cell line and quantified (B). GAPDH was used as loading control. P53 protein were normalized to 

GAPDH (n=3, **, P <0.01; paired t-test). 
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The cells were classified according to the TP53 mutational status into wild type and mutated 

TP53 and the level of MP enzymes determine by western blot in section 4.3.1 and 4.3.2 were 

used to compared between these two groups. The results showed that HMGCR level (Figure 

4-7) in cell line that harbour TP53 mutation was significantly higher than in cell lines with 

wild type TP53. However, there were no significant differences in GGTI-β and GGTII-β 

expression between cell lines with wild type TP53 and mutant TP53 (Figure 4-8). 
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Figure 4-7 Comparison of the HMGCR expression in cells with wild type and mutant 

TP53. 

The cell lines were classified according the TP53 status into wild type and mutant TP53 and the level 

of the HMGCR were compared between these two groups of cell lines (Mean ± SD; * P < 0.05; 

unpaired t-test). 
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Figure 4-8 Comparison of the GGTI-β and GGTII-β expression in cells with wild type 

and mutant TP53. 

The cells were classified according the TP53 status into wild type and mutant TP53 and the level of 

the GGTI-β and GGTII-β were compared between these two groups of cell lines (Mean ± SD; * P < 

0.05; unpaired t-test). 

 

The expression of the MP enzymes was compared with that of mutant p53 in CisA2780, 

Cov-318, Cov-362, Ovcar-3, Ovcar-4, Ovcar-8 and Igrove-1 OC cell lines. There was no 

significant correlation between p53 and HMGCR and GGTII-β expression. In contrast, the 

GGTI-β were significantly correlated with p53 expression (R2 = 0.213; p < 0.05) (Figure 

4-9). In addition, when the expression of MP enzymes was compared with sensitivity to 

pitavastatin IC50 in cell growth assays, only GGTI-β showed a statistically significant 

correlation (R2 = 0.463; p < 0.05) (Figure 4-10). Although these correlations were 

statistically significant the correlation coefficient were weak to moderate linear correlation.   
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Figure 4-9 Relationship between the expression of mutant p53 and the expression of 

the mevalonate pathway enzymes in ovarian cancer cell lines. 

The expression of the p53 was correlated with HMGCR (A), GGTI-β (B) and GGTII-β (C) 

expression which are quantified from blotting in CisA2780, Cov-318, Cov-362, Ovcar-3, Ovcar-4, 

Ovcar-8 and Igrov-1 OC cell lines.
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Figure 4-10 Relationship between sensitivity to  pitavastatin and the expression of 

mevalonate pathway enzymes in ovarian cancer cell lines. 

Pitavastatin IC50s correlated to the expression of HMGCR (A), GGTI-β (B) and GGTII-β 

(C) which is quantified from blotting in a panel of OC cell lines. 
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4.3.4. The effect of p53 overexpression on mevalonate pathway 

4.3.4.1. The effect p53 overexpression on HMGCR in Skov-3 cell 

line 

It has been proposed that to understand mutations in TP53, cells lacking p53 can be used to 

overexpress of mutant TP53; alternatively, siRNA can be used to knockdown the TP53 in 

cells harbouring mutated p53 (Brachova, Thiel and Leslie, 2013). Therefore, Skov-3 (TP53 

null) and Ovcar-3 (TP53 R248Q) cells were tested to explore the effect p53 on the MP 

enzymes. 

In order to evaluate the effect of p53 in MP in OC cell lines. Skov-3 were transiently-

transfected with a plasmid encoding mutated TP53 variants R284W, R175H and R273H 

which are the most frequently reported mutation in OC  (Brachova, Thiel and Leslie, 2013). 

Skov-3 cells were also transfected with a plasmid encoding wild-type TP53 variant. The 

expression of HMGCR and p53 was monitored after 48 and 72 hours because transient 

ectopic expression was used in these experiments. The result showed that there is marked 

increase in level of expression of all p53 variants after transfection compared with cells 

transfected with vector. In addition, all p53 variants caused an increase in the level of 

HMGCR expression. However, only wild type and R248W gain of function variant led to a 

significant increase in the expression of HMGCR compared to cells transfected with vector 

measured by immunoblotting after 48 hour of transfection (Figure 4-11). 72 hours after 

transfection p53 was still detectable but the changes in the level of HMGCR were no longer 

significantly different to cells transfected with the empty vector (Figure 4-12). 
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Figure 4-11 The level of HMGCR and p53 in Skov-3 cell line transfected with p53 

after 48 hour incubation. 

Wild type (WT) and p53 variants were over expressed in Skov-3 cell lines. HMGCR and p53 

measured by immunoblotting (A) after 48 hours of incubation and proteins were quantified (B). 

HMGCR were significantly different to expression in cells transfected with vector where shown 

(mean ± S.D., n=3, *, P <0.05; paired t-test). 
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Figure 4-12 The level of HMGCR and p53 in Skov-3 cell line transfected with p53 

after 72 hour incubation. 

Wild type (WT) and p53 variants were over expressed in Skov-3 cell lines. HMGCR and p53 

measured by immunoblotting (A) after 72 hours of incubation and proteins were quantified (mean ± 

S.D., n=3) (B). HMGCR expression was not significantly different to cells transfected with the 

vector. 

 

 

 



Chapter Four | TP53 and Mevalonate pathway 

123 

4.3.4.2. The effect of ectopic p53 transfection on mevalonate 

pathway genes expression 

To confirm that the increase in HMGCR protein was due to increased transcription of 

HMGCR, its mRNA was measured by QPCR. In parallel the expression of genes encoding 

farnesyl and geranylgeranyl transferases GGTI-β, GGTII-β and FT-β was also measured. 

The results showed that there was an increase in mRNA level of all tested MP enzymes in 

Skov-3 cells which were transiently-transfected with plasmids encoding wild type TP53 

variant and mutated TP53 variants R284W, R175H and R273H compared to cells transfected 

with vector. The expression of HMGCR were significantly increased by ectopic expression 

of the wild type TP53 variant and mutant TP53 variants. The increase in HMGCR mRNA 

was most pronounced in cells transfected with R248W variant, in agreement with our 

previous observation of increased HMGCR protein measured by western blotting (Section 

4.3.4.1). GGTI-β expression increased in a pattern similar to that of HMGCR expression 

with R248W variant inducing higher expression than other TP53 variants. In contrast, the 

expression of GGTII-β was consistently and significantly induced by all TP53 variants. 

Lastly, the expression of FT-β were also significantly elevated except in cells transfected 

with R248W, in which the change was not statistically significant (Figure 4-13).  
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Figure 4-13 mRNA expression of HMGCR, GGTI-β, GGTII-β and FT-β genes of Skov-

3 cell line transfected with p53.   

Wild type (WT) and p53 variants were over expressed ectopically in Skov-3 cell lines. Relative 

mRNA expression of HMGCR, GGTI-β, GGTII-β and FT-β genes were measured using QPCR after 

48 hour of transfection. Relative mRNA expression of genes was significantly different compared to 

cells transfected with vector (mean ± S.D., n=3, *, P <0.05, **, P <0.01; ***, P <0.001; one-way 

Anova followed by Tukeys post-hoc). 
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4.3.5. The effect of p53 knockdown on mevalonate pathway 

4.3.5.1. The effect of p53 siRNA transfection on HMGCR 

expression in Ovcar-3 cell line 

The results showed that ectopic overexpression of p53 in Skov-3 cell line cause significant 

increase in level of MP gene expression. To determine if the pre-existing mutation in TP53 

also regulate MP genes, the expression of TP53 in Ovcar-3 cells (which contain a mutation 

in TP53 encoding R248Q) was repressed using four different siRNA oligo’s directed to p53 

mRNA. First, the p53 knockdown was confirmed by western blotting. All of the TP53 

siRNAs showed a reduction by more than 65 % of the p53 protein level compared to cells 

transfect with non-targeting-1 siRNA. Secondly, HMGCR protein levels were decrease 

significantly after transfection with each of thep53 siRNA (Figure 4-14 A). However, the 

quantification revealed that p53#2 and p53#4 oligos induce a reduction in HMGCR level 

which was statistically more significant than p53#1 and p53#3 oligos (Figure 4-14 B). 

 

4.3.5.2. The effect of p53 siRNA transfection on mevalonate 

pathway genes expression. 

RT-QPCR was used to confirm that the knockdown of p53 protein by siRNA directed to 

TP53 reflected reduced transcription of HMGCR. In parallel the expression of GGTI-β, 

GGTII-β and FT-β enzymes was also measured. The expression of HMGCR, GGTI-β, 

GGTII-β and FT-β genes were markedly reduced by transfection of Ovcar-3 cells with four 

separate siRNA directed to TP53 compared to cells transfected with NT#1 siRNA (Figure 

4-15).  

Lastly, it can be summarized that MP enzymes are deregulated in OC. Particularly, HMGCR 

level is higher in OC cell line in comparison to normal human ovarian epithelial cells. In 

addition, p53 play a central role in regulation of MP. Exogenous transfection of Skov-3 cell 
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line with p53 upregulate the expression of key enzymes of MP, such as HMGCR, GGTI-β, 

GGTII-β and FT. in contrast, knockdown of p53 using siRNA downregulate the expression 

of these MP enzymes. 
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Figure 4-14  The level of p53 in Ovcar-3 cell line transfected with non-targeting (NT) 

siRNA or p53 siRNA. 

p53 measured by immunoblotting (A) and quantified (B) after 48 hour of transfection of 

Ovcar-3 cell line with Non-targeting#1 siRNA (NT#1) or 4 different p53 siRNA (#1, #2, #3, 

#4). p53 were significantly different to expression in cells transfected with NT#1 where 

shown (mean ± S.D., n=3, *, P <0.05; **, P <0.01; ***, P <0.001; paired t-test). 
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Figure 4-15 mRNA expression of HMGCR, GGTI-β, GGTII-β and FT-β genes of 

Ovcar-3 cell line transfected with p53 siRNA.  

p53 knockdown using four p53 siRNA and NT#1 siRNA in Ovcar-3 cell lines. Relative mRNA 

expression of HMGCR, GGTI-β, GGTII-β and FT-β genes were measured using QPCR after 48 hour 

of transfection. Relative mRNA expression of genes was significantly different compared to cells 

transfected with NT#1 siRNA (mean ± S.D., n=3, ***, P <0.001; one-way Anova followed by 

Tukeys post-hoc). 
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4.4. Discussion 

Approximately 75% of OC  deaths is caused by HGSOC (Bowtell et al., 2015; Lee et al., 

2015). The tumour suppressor TP53, which is frequently mutated in OC, and up to 99 % in 

HGSOC (Fleury et al., 2015), is considered as a master regulator of diverse cellular process 

in health and disease (Farnebo, Bykov and Wiman, 2010). Once mutated, it is involved in 

several aspect of malignant transformation and resistance to cancer therapy but the actual 

mechanism remains incompletely understood (Brosh and Rotter, 2009). This study describes 

the possible role of p53 in regulation of MP. Exogenous transfection of p53 upregulate the 

level of MP enzymes while knockdown of mutant p53 down regulate the level of MP 

enzymes. Therefore, studying p53 is still an important target to identify their role in 

oncogenesis. 

The expression of MP enzymes, HMGCR, GGTI-β and GGTII-β were determined and the 

result showed high HMGCR expression and to leaser extent of GGTI-β and GGTII-β in a 

panel of OC cell line compared to normal cells. Cancer evolution has been linked with 

metabolic processes that tumour cells successfully hijacks to assist malignant transformation 

(Clendening et al., 2010). For example, ectopic expression of HMGCR promotes 

transformation which led to considered it as a metabolic oncogene (Clendening et al., 2010). 

This increased expression of the HMGCR and other MP enzymes provide the fast-

proliferating malignant cells with copious amount of products which are principally used for 

biosynthesis of the cells component (Parrales and Iwakuma, 2016) to maintain the growth 

and development machinery (Clendening and Penn, 2012). However, there are several 

mechanisms for the regulation of the HMGCR. HIF-1 alpha accumulation increase the level 

and activity of HMGCR by stimulating it is transcription (Pallottini et al., 2008). In addition, 

sterol mediated degradation of HMGCR has been shown to be inhibited by mutations which 

led to increase its enzymatic activity (Lee, Nguyen and Debose-Boyd, 2007). In addition, 
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recent study in our laboratory has defined a promising role for statins in OC (De Wolf et al., 

2017). Regardless of the mechanism by which deregulated HMGCR expression occurs, 

better understanding of the contribution of genes regulating isoprenoid metabolism might 

lead to improved cancer patients care (Clendening and Penn, 2012) and provide a rational 

for the use of the pathway inhibitors as anticancer therapy. 

It was also observed that p53 level were higher than normal cells at least in a subset of the 

OC cell lines. In addition, the status of the p53 has been retrieved form public database and 

this analysis showed that p53 was mutated in most of OC cell lines. Most of the mutation 

are missense and located at DNA binding domain which produce a full-length protein with 

prolonged half-life (Rivlin et al., 2011). In contrast to normal cells, there is a copious 

production of p53 protein in many tumours (Rotter, Abutbul and Ben-Ze’ev, 1983) and this 

tends to accumulate until reach steady state (Rotter, 1983). The accumulation of p53 protein 

causes defect in activation/ repression of target genes to ablate p53-induced apoptosis and 

maintains the malignant phenotype (Wiman, 2007). However, increase of p53 level might 

be a response to stimuli such as DNA damage and hypoxia (Strano et al., 2007; Sionov, 

Hayon and Haupt, 2013). Therefore, it might be suggested that the accumulation is a 

consequence of prolonged stability and extended half-life of the p53 protein by point 

mutation, or it is just a normal physiological response of cells to stimuli in course of 

carcinogenesis process.  

In this study, wild type and several mutant variants of TP53 has been studied to understand 

the relationship between MP and TP53 in OC. The result suggested that p53 controls at least 

four important enzymes of the pathway. Two lines of evidence point to the regulation of MP 

by TP53. Firstly, the ectopic expression of wild type and several mutant p53 variant led to 

increase the expression of HMGCR, GGTI-β and GGTII-β and FT-β in p53 null background 
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OC cell line. Secondly, siRNA directed to R248Q TP53 mRNA significantly decreased the 

level of HMGCR, GGTI-β, GGTII-β and FT-β enzymes. A new role of TP53 has emerged 

in mediating cancer development through regulating the MP. It is found that several enzymes 

of the MP controlled by gain of function of mutant TP53 in breast cancer cells (Freed-Pastor 

et al., 2012; Sorrentino et al., 2014). The result showed that ectopic expression of TP53, 

particularly gain of function variant, increased expression of HMGCR and is likely to be 

common in OC. It reported that gain-of-function mutants p53 prompt the synthesis of 

cholesterol (Laezza et al., 2015; Napoli and Flores, 2017). This hypothesis is supported by 

immunohistochemical studies which have identified HMGCR in 65% of OCs (Brennan et 

al., 2010) as well as other cancer types such as breast, colorectal and gastric tumours 

(Bengtsson et al., 2014; Gustbée et al., 2015; Chushi et al., 2016). In contrast, depletion of 

mutant p53 leads to reduced expression of seven MP genes -HMGCR, MVK, MVD, FDPS, 

SQLE, LSS, DHCR (Freed-Pastor et al., 2012). In addition, the normal morphology 

phenotype of breast cancer cells is restored by knock down of mutant p53 or by inhibition 

of MP by pharmacological agents such as statins (Freed-Pastor et al., 2012).  

The mechanism of the p53 regulation of the MP is not fully understood but much evidence 

points to a role for SREBP, although a direct link between mutant p53 and SREBP has not 

been established. It has been reported that mutant p53 is recruited to gene that encode of the 

MP pathway enzymes by SREBPs to upregulate their expression in breast cancer cells 

(Freed-Pastor et al., 2012). In addition, p53 supresses the expression of the SREBP1c, a 

transcription factor involves in the expression of the two lipogenic enzymes (fatty acid 

synthase and ATP citrate lyase) that regulate fatty acid synthesis. Augmentation of fatty acid 

synthesis in different cancers type has been linked to overexpression of the activity of 

lipogenic enzymes and their inhibition is associated with repression of the cell 

transformation and oncogenesis (Freed-Pastor et al., 2012). Furthermore, another 
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mechanism by which p53 control SREBP are by inhibiting mTOR and activating AMPK. 

The mTOR, which is frequently deregulated in cancer, increases the transcription of SREBP, 

and conversely AMPK inactivates HMGCR by phosphorylation (Budanov and Karin, 2008; 

Mullen et al., 2016). The PI3K/AKT signalling pathway is one of the most frequently altered 

pathway in cancers and especially OC (Sain et al., 2006; Fruman and Rommel, 2014) and 

has also been implicated in regulating the mevalonate pathway. It is activated by multiple 

molecular defects, mainly PIK3CA mutation or amplification (30%)  and PTEN loss (40%) 

(Glaysher et al., 2013). The PI3K/AKT pathway can activate the MP by upregulating the 

transcription, increasing stability or inhibiting the metabolism of the SREBP (Mullen et al., 

2016). Additionally, p53 induction reciprocally downregulates PI3K/AKT activity by 

binding to the PTEN promoter (Singh et al., 2002). These data might provide a further link 

for the p53 role in regulation of MP.  

Interestingly, the data showed that both wild type p53 and mutant p53 increase the 

expression of the MP which might suggest that both the level of the p53 expression and the 

mutational status of p53 are determinant of the pathway activity. It has also been proposed 

that mutant TP53 might retain or exaggerate certain p53 function whereas evading certain 

wild type p53 tumour suppressive activity. Therefore, it might be a remnant of unrecognized 

wild type p53 function is responsible for the maintaining of high level of MP through SREBP 

transcription (Freed-pastor, 2012). In line with this proposition, it is reasonable to propose 

that both wild-type and mutant p53 have a significant role in regulating the expression of 

sterol biosynthesis genes.  

It is well known that mutant p53 cannot activate the expression of its negative regulator 

MDM2, consequently, mutant p53 protein is stabilised and accumulated (Flöter, Kaymak 

and Schulze, 2017). It is possible that this is more pronounced in case of mutant “gain-of 
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function” form which are not subjected to ubiquitination by MDM2. A feed-forward loop is 

formed in cancer cells which harbour a mutant p53. MP enzymes, including HMGCR, are 

upregulated through activation of SREBP transcription by mutant p53. The increase in 

pathway activity and productivity in turn lead to stabilizing the mutant p53 function (Freed-

Pastor and Prives, 2016). In addition, it has recently been reported that statins enhances the 

degradation of mutant p53 protein, a process which is independent on the inhibition of 

protein prenylation (Parrales et al. 2016), supporting the use of statins in the treatment of 

cancers with mutated p53.   

In conclusion, the result suggested that the upregulation of HMGCR enzymes in OC cell 

lines might be involved in malignant transformation in OC. P53, is a pivotal transcription 

factor for control of MP enzymes function in OC and the interplay between p53 and the MP 

suggests that pharmaceutical inhibition of the pathway with statins may be a novel 

therapeutic approach for tumours and warrant a promising role in treatment of OC. 
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5.1. Introduction 

Ovarian cancer (OC) is the 5th leading cause of death in women with more than 14,000 deaths 

reported annually in United States (Siegel, Miller and Jemal, 2016). The disease responds 

initially to treatment but most patients relapse after a period of remission (Vaughan et al., 

2011). Therefore, new therapeutic agents or treatment strategies are required. 

The results of previous chapter suggested that the deregulation of MP might be involved in 

malignant transformation in OC. It is also proposed that p53, which is frequently mutated in 

OC, might be essential transcription factor for control of MP enzymes function in OC and 

the interplay between p53 and the MP suggests that pharmaceutical inhibition of the pathway 

with statins is a novel therapeutic strategy and warrant a promising role in treatment of OC. 

The mevalonate biosynthetic pathway is responsible for the synthesis of several important 

metabolites, producing cholesterol, dolichol, ubiquinone and the isoprenoids farnesol (FOH) 

and geranylgeraniol (GGOH). The rate limiting step in the mevalonate pathway (MP) is 

hydroxymethylglutaryl coenzyme A reductase (HMGCR) which catalyses the production of 

mevalonate (Brennan et al., 2010) and HMGCR has been identified as metabolic oncogene 

which promotes xenograft growth (Clendening et al., 2010; Martirosyan et al., 2010) and 

this has raised interest in the MP as a potential target in oncology. 

Several studies have demonstrated that statins inhibit cell growth and induce apoptosis in 

vitro in cell lines from a range of cancer types (Swanson and Hohl, 2006; Gazzerro et al., 

2012; Osmak, 2012). It has also been reported that statins inhibit tumour xenograft growth 

in mice (Kobayashi et al., 2015; Tsubaki et al., 2015) and recently publish data from our 

laboratory have demonstrated that pitavastatin causes tumour regression in mice fed a 

controlled diet (De Wolf et al., 2017). However, relatively high doses of statins are likely to 

be necessary to achieve an adequate plasma concentration of drug in patients (Dudakovic et 
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al., 2008; Robinson et al., 2014) and this raises concerns about the potential risk of 

myopathy, a side effect commonly associated with statins (Likus et al., 2016). Therefore, it 

desirable to identify drugs which synergize with statins and potentially reduce the dose of 

statin that is necessary to treat patients. 

Bisphosphonates (e.g. zoledronic acid, risedronate) are drugs which are already approved 

for the management and prevention of bone disease and bone metastasis (Stresing et al., 

2007). Bisphosphonates can also inhibit the MP enzyme farnesyl diphosphate synthase 

(Wasko, Dudakovic and Hohl, 2011).  Inhibition of farnesyl diphosphate synthase depletes 

both farnesyl diphosphate and geranylgeranyl diphosphate which in turn are required for 

protein isoprenylation of small G-proteins (Gnant and Clézardin, 2012). Bisphosphonates 

have shown potential anti-cancer activity in different cancer cell lines including ovarian, 

colon and hepatic cells (reviewed in (Stresing et al., 2007)). In addition, several studies 

showed that bisphosphonate use correlates with reduced cancer risk (Rennert, Pinchev and 

Rennert, 2010; Rennert et al., 2014). Bisphosphonates can also enhance the anticancer 

activity of several chemotherapeutic agents in vitro  (Jagdev et al., 2001; Neville-Webbe et 

al., 2005; Horie et al., 2007; Hafeman, Varland and Dow, 2012). 

There are several reasons to believe that drug combinations may be particularly useful in the 

treatment of cancer. Firstly, tumours represents a heterogeneous group of diseases with 

several different pathological mechanisms participating in their evolution (Bertolini, 

Sukhatme and Bouche, 2015). As a consequence, drug combinations inhibiting different 

underlying pathways might theoretically be more effective than single agents because 

multiple cell populations may be simultaneously affected by the drugs (Rodon, Perez and 

Kurzrock, 2010). Secondly, drug combinations can concurrently affect different signalling 

pathways in individual cancer cells. These drugs may act synergistically to increase the 

efficacy of the treatment above that which would be achieved by the single agents alone. 
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Thirdly, during cancer pharmacotherapy, mutation and epigenetic change can activate 

multiple compensatory pathways in cancer cells, leading to the emergence of drug-resistant 

subpopulations. Therefore, drug combinations or multi-targeted drugs may offer a better 

chance of obtaining a sustained clinical response (He et al., 2016; Han et al., 2017). Lastly, 

there is a historical precedent for the use of drug combinations and many traditional 

chemotherapeutic regimens incorporate several different drugs.  

Recent results from our laboratory have suggested that pitavastatin is superior to other statins 

for use in oncology because it is the only statin that is both lipophilic, rendering it more 

potent than hydrophilic statins, and has a suitably long half-life (t1/2 ~11 hour) (Robinson et 

al., 2013; Jiang et al., 2014; Zhang et al., 2016; De Wolf et al., 2017). The latter property is 

important because it has been shown continual inhibition of HMGCR is necessary to induce 

cell death and the troughs in plasma drug concentration between prolonged dosing intervals 

using short half-life statins are likely to compromise the activity of statins (Robinson et al., 

2013). To reduce the dose of pitavastatin necessary in patients, and potentially minimize 

adverse effects, zoledronic acid, risedronate or the geranylgeranyl transferase I inhibitor, 

GGTI-2133 was investigated to determine if they potentiate the activity of pitavastatin. Any 

effective combinations identified could subsequently be evaluated in clinical trials. 

5.2. Aims 

To identify drugs which may reduce the dose of pitavastatin necessary to treat OC, a 

combinatorial drug approach was used. The following objectives were addressed: 

1.  Does zoledronic acid, risedronate and GGTI-2133 potentiate the activity of pitavastatin 

against OC cell lines ? 

2.  Investigate the mechanism of action of pitavsatstin and the mechanism underlying the 

synergy between it and bisphosphonates. 
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5.3. Results  

5.3.1. Antiproliferative activity of pitavastatin, zoledronic acid, 

risedronate and GGTI-2133 against panel of ovarian cancer cell 

lines 

The potential growth inhibitory activities of pitavastatin, zoledronic acid, risedronate and 

GGTI-2133 as single agents were first determined against a panel of OC cell line in order to 

subsequently evaluate them in drug combination studies. Pitavastatin as a single agent 

displayed concentration- and time- and cell line specific growth inhibitory activity against 

tested cell lines with an IC50s ranging from 0.6-14 µM (Table 5-1) (Figure 5-1 A). 

Pitavastatin’s potency was comparable to its reported activity against breast and brain cancer 

cell lines (Jiang et al., 2014). Zoledronic acid displayed lower potency compared to 

pitavastatin and it showed concentration-dependent growth inhibition activity with an IC50s 

ranging from 21-60 µM (Table 5-1) (Figure 5-1 B). It has been reported that zoledronic acid 

inhibits cancer cell growth (10-100 µM) (Tamura et al., 2011). In contrast, risedronate (IC50 

>100 µM) (Figure 5-2 A) and GGTI-2133 (IC50 > 25 µM) (Figure 5-2 B) did not show 

significant activity against OC cell lines at the concentrations tested and an accurate 

estimation of IC50s could not be made. 
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Table 5-1 IC50s of pitavastatin and zoledronic acid.  

IC
50

 (µM) 

Cell line Pitavastatin (n) Zoledronic acid (n) 

HOE 0.59 ± 0.16 (6) 57 ± 6 (5) 

A2780 0.67 ± 0.34 (9) 29 ± 4 (4) 

CisA2780 14.0 ± 7.00 (9) 36 ± 6 (8) 

Cov-318 3.40 ± 1.40 (8) 28 ± 2 (4) 

Cov-362 3.10 ± 0.70 (8) 42 ± 4 (4) 

Ovcar-3 4.60 ± 0.90 (6) 60 ± 4 (6) 

Ovcar-4 5.20 ± 1.20 (4) 51 ± 7 (4) 

Ovcar-5 2.40 ± 1.30 (9) 30 ± 6 (9) 

Ovcar-8 0.40 ± 0.10 (4) 21 ± 3 (4) 

Igrov-1 1.60 ± 0.10 (9) 43 ± 8 (7) 

Skov-3 3.60 ± 1.00 (5) 26 ± 5 (5) 

Ovsaho 0.69 ± 0.12 (5) 44 ± 7 (3) 

Pitavastatin and zoledronic acid IC50s (mean ± S.D.) were calculated from the indicated number (n) 

of experiments. 
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Figure 5-1 Dose response curve of pitavastatin and zoledronic acid against a panel of 

ovarian cancer cell lines.  

Cells were exposed to a range of concentrations of pitavastatin (A) or zoledronic acid (B) for 72 

hours, except for the slow growing cell lines Cov-318 and Cov-362 (120 hours). The numbers of 

surviving cells were estimated using SRB assay. Dose response curve expressed as a fraction of the 

top of the curve which was recognised by curve fitting (mean ± SD, n ≥ 3). “C” on the x-axis indicates 

control samples measured in the absence of the drug.  
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Figure 5-2 Dose response curve of risedronate and GGTI-2133 against a panel of 

ovarian cancer cell lines.  

Cells were exposed to a range of concentrations of risedronate (A) or GGTI-2133 (B) for 72 hours, 

except for the slow growing cell lines Cov-318 and Cov-362 (120 hours). The numbers of surviving 

cells were estimated using SRB assay. Dose response curve expressed as a fraction of the top of the 

curve which was recognised by curve fitting (mean ± SD, n ≥ 3). “C” on the x-axis indicates control 

samples measured in the absence of the drug.  
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5.3.2. Drug combination  

 

Cell growth assays were employed to assess the drug combinations in a panel of OC cell 

lines and combination index were calculated as an indicator of synergy and antagonism. 

5.3.2.1. Pitavastatin and zoledronic acid synergistically inhibit 

the growth of ovarian cancer cell lines 

The lack of potent activity of both bisphosphonates and GG-2133 led to the evaluation of 

these drugs at fixed concentrations, as suggested by  (Bijnsdorp, Giovannetti and Peters, 

2011), in combination with a range of concentrations of pitavastatin in cell growth assays. 

Pitavastatin and zoledronic acid (10µM) displayed synergistic activity in 8 of 11 cell lines 

tested (A2780, CisA2780, Cov-362, Ovcar-4, Ovcar-5, Ovsaho, Igrov-1 and Skov-3 cells), 

additive activity was observed in two cell lines (Cov-318 and Ovcar-8 cells) and antagonism 

was observed in one cell line (Ovcar-3 cells). When pitavastatin was combined with 

risedronate, additive or synergy was observed in 9 of 11 cell lines, although the synergy only 

reached statistical significance in 3 of the cell lines (A2780, Ovcar-5 and Skov-3 cells). An 

antagonistic interaction was observed in two cell lines (Ovcar-3 and Ovcar-8). In contrast, 

most of the cell lines showed an antagonist interaction when GGTI-2133 (5µM) was 

combined with pitavastatin (Figure 5-3). These data suggest that zoledronic acid might be a 

suitable option for the combination with pitavastatin and led to focus on this combination in 

further studies.  
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Figure 5-3 The effect of pitavastatin combinations in cell growth assays.  

To measure the activity of pitavastatin in combination with other agents, the indicated cells were 

simultaneously exposed to a range of pitavastatin concentrations with fixed concentration of 

zoledronic acid (10 µM), or risedronate (10 µM) or GGTI-2133 (5 µM). Combination indices (CI) 

(mean ± S.D., n=3-4) are quoted at a fraction affected of 0.5 and differed significantly from unity 

where indicated (*, P ≤0.05; paired t-test).  
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5.3.2.2. Confirmation of antiproliferative synergistic effect of 

pitavastatin and zoledronic acid combination 

 In order to confirm the synergy observed between pitavastatin and zoledronic acid, A2780, 

Skov-3 and Ovsaho cell lines were tested because the most significant synergy was observed 

in these cell lines. Cell death was first assessed by staining with trypan blue. The 

combination of pitavastatin with zoledronic acid resulted, in all three cell lines, in 

significantly more cell death after 72 and 96 hours of drug exposure than would have been 

expected from an additive effect calculated using the Bliss independence criterion (Figure 

5-4). To confirm these results, a separate measurement of cell viability was used by 

measuring intracellular ATP level. After 72 hours of drug exposure, significantly less ATP 

was measured in cells exposed to the drug combination than that expected effect from an 

additive effect calculated using the Bliss independence criterion (Figure 5-5).  
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Figure 5-4 The effect of pitavastatin-zolendronic acid combinations on cell death.  

Dead cells were measured by trypan blue staining after 72 and 96 hours of exposure to the indicated 

drug concentration. The results (mean ± SD; n = 3) were compared to the effect expected for an 

additive interaction calculated using the Bliss independence criterion (solid line for each drug 

combination) and determined using the measured effect of the individual drugs in each individual 

experiment. Results were significantly different from the expected Bliss effect where shown (*, P < 

0.05; **, P < 0.01; ***, P < 0.001, paired t-test).  
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Figure 5-5 The effect of pitavastatin-zolendronic acid combinations on cell viability.  

Relative cell viability was measured by ATP-celltiter-Glo assay after 72 hour exposure to the 

indicated drug concentration. The results (mean±SD; n = 3) were compared to the effect expected 

for an additive interaction calculated using the Bliss independence criterion (solid line for each drug 

combination) and determined using the measured effect of the individual drugs in each individual 

experiment. Results were significantly different from the expected Bliss effect where shown (*, P < 

0.05; **, P < 0.01; paired t-test).  
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5.3.2.3. The pitavastatin and zoledronic acid combinations 

synergistically induce apoptosis 

Previous studies have shown that statins and bisphosphonates induce apoptosis in cancer cell 

lines  (Liu et al., 2009; Tamura et al., 2011). To confirm that the reduction in cell viability 

and growth is attributable to apoptosis, the effects of drugs alone and in combination on 

caspase activity and PARP cleavage were assessed. The combination of zoledronic acid and 

pitavastatin caused activation of the caspase-8 (Figure 5-6) and caspase-9 (Figure 5-7) as 

well as the effector caspases-3/7 (Figure 5-8). In all three cases, the caspase activation 

elicited by the combination was significantly higher than that of pitavastatin alone. 

(Calculation of the expected effect of the combination using the Bliss criterion was not 

possible in this experiment because of difficulties in accurately measuring maximum caspase 

activation, required to calculate the fractional effect of each drug). Subsequently, 

immunoblot analysis demonstrated that the combination resulted in accumulation of cleaved 

PARP that was greater than that observed with each single agent (Figure 5-8). However, it 

is noticed that pitavastatin alone at both tested concentrations were able to produce 

significant PARP cleavage in Ovsaho cell line in comparison to A2780 and Skov-3 cell line. 

This might indicate that Ovsaho cell line are more sensitive to pitavastatin induced PARP 

cleavage than other cell lines and that the activity of this drug is cell line dependent. 

Importantly, the addition of geranylgeraniol, but not farnesol, blocked the cleavage of PARP 

induced by pitavastatin or the combination (Figure 5-9). Finally, phase contrast microscopy 

revealed that untreated cells remain attached to culture plate and maintained their original 

morphology. In contrast, more pronounced rounding, blebbing or detachment from the plate 

was observed in cells treated with the drug combination than in cells treated with the single 

agents (Figure 5-10).  
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Figure 5-6 The effect of pitavastatin-zolendronic acid combinations on caspase 8 

activity.  

Caspase 8 activity of A2780, Skov-3 and Ovsaho cell lines were measured by Caspase-Glo assays. 

Cells were treated with the indicated concentrations of pitavastatin and zoledronic acid for 48 hour. 

Drug combinations effects were compared to the effect of the pitavastatin (Mean ± SD; n = 3; *, P < 

0.05; **, P < 0.01; paired t-test).  
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Figure 5-7 The effect of pitavastatin-zolendronic acid combinations on caspase 9 

activity.  

Caspase 9 activity of A2780, Skov-3 and Ovsaho cell lines were measured by Caspase-Glo assays. 

Cells were treated with the indicated concentrations of pitavastatin and zoledronic acid for 48 hour. 

Drug combinations effects were compared to the effect of the pitavastatin (Mean ± SD; n = 3; *, P < 

0.05; **, P < 0.01; paired t-test).   
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Figure 5-8 The effect of pitavastatin-zolendronic acid combinations on caspase 3/7 

activity and PARP cleavage.  

Caspase 3/7 activity of A2780, Skov-3 and Ovsaho cell lines were measured by Caspase-Glo assays. 

Cells were treated with the indicated concentrations of pitavastatin and zoledronic acid for 48 hour. 

Drug combinations effects were compared to the effect of the pitavastatin (Mean ± SD; n = 3; *, P < 

0.05; **, P < 0.01; paired t-test). PARP and PARP cleavage were measured by western blot analysis 

(n = 3). 
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      (B)      

 
 

Figure 5-9 The effect of the pitavastatin-zolendronic acid drug combination is blocked 

by geranylgeraniol.  

Cells treated with pitavastatin (A2780 and Ovsaho 1 µM and Skov-3 5µM) and farnesol (10µM) 

geranylgeraniol (10µM) zoledronic acid (10µM) for 48 hour. PARP cleavage was assessed by 

immunoblotting. The results are representative of 3 experiments.  (B) Skov-3 cell line was treated 

with pitavastatin or pitavastatin and zoledronic acid (10µM) and GGOH (10 µM) and FOH (10 µM) 

and after 72 hour relative cell number was determined by staining with SRB.  
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Figure 5-10 Morphological changes of A2780 and Skov-3 cell lines 

morphological changes of A2780 (A) and Skov-3 (B) cell line treated with indicated drug 

concentration for 72 hour were visualized by phase contrast light microscope which revealed that 

untreated cells were attached to culture plate and maintained their original morphology. In contrast, 

it revealed a more pronounced rounding, blebbing or detachment from the plate in cells treated with 

the drug combination than in cells treated with the single agents.  
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5.3.3. The effect of pitavastatin and zoledronic acid on mevalonate 

pathway enzymes and p53 level 

In order to further explore the mechanism of the drug combinations, the effect of the drug 

combination on MP enzymes using western blotting was assessed. The ability of GGOH to 

suppress the effects of pitavastatin led to the hypothesis that the geranylgeranylation branch 

of enzymes of the pathway are more important targets affected by pitavastatin. Pitavastatin 

decreased the level of GGTII-β in A2780 and Ovsaho cell line but without a noticeable 

change in the level of this enzyme in Skov-3 cell line. The reduction in level of GGTII-β 

was blocked by the inclusion of GGOH but not FOH. This might indicate that the pitavastatin 

effects on reduction of GGTII-β is cell line dependent. In contrast, pitavastatin did not a 

significantly affect the level of HMGCR, GGTI-β and p53 levels in A2780, Skov-3 and 

Ovsaho cells. Zoledronic acid, at the concentration tested, did not show significant effect on 

level of the MP enzymes. The combination of pitavastatin and zoledronic acid also reduced 

the level of GGTII-β and this was also ameliorated by the inclusion of GGOH (Figure 5-11).   
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Figure 5-11 The effect of pitavastatin and pitavastatin-zolendronic acid on 

geranylgeranyl transferases.  

A2780, Skov-3 and Ovsaho cell lines were exposed to pitavastatin (1µM, 5µM and 1µM, 

respectively) and zoledronic acid (10µM) with and without geranylgeraniol (10µM) and farnesol 

(10µM) for 48 hours. The levels of HMGCR, GGTI-β, GGTII-β and p53 were measured by 

immunoblotting of whole cell lysate. GAPDH was used as a loading control. The results are 

representative of 3 experiments.  
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5.3.4. Inhibition of both GGTI-β and GGTII-β in combination 

with pitavastatin 

Next the mechanism of action of the drug combinations was considered and in particular 

whether the effect of pitavastatin and pitavastatin drug combinations was mediated through 

inhibition of GGTI or GGTII. It was hypothesized that if inhibition of prenylation by one or 

both of geranylgeraniol transferases was essential for the cytotoxic activity of pitavastatin, 

then knockdown of either or both of them should increase the potency of pitavastatin.  This 

could potentially provide information about which geranylgeranyl modified proteins are 

most crucially affected by pitavastatin. For these studies, Ovcar-4 cells were used because it 

has suggested they are more representative of high grade serous ovarian carcinoma (Domcke 

et al., 2013). 

5.3.4.1. Knockdown of GGTI-β and GGTII-β   

To measure the effects of knockdown of geranylgeranyl transferase, the toxicity of different 

siRNAs targeting GGTI-β and GGTII-β were tested before determining the efficiency of 

knockdown of these enzymes. Ovcar-4 cells were exposed to four different concentrations 

(25, 50, 75 and 100ηM) of siRNA GGTI and GGTII enzymes for 72 hours. It was observed 

that there was no significant effect on cell growth at any of the concentrations tested. A 

concentration of 100nM were used in subsequent studies (Figure 5-12 A). Next, the effect 

of knockdown of GGTI-β and GGTII-β were tested.  All 4 siRNAs targeting each enzyme 

inhibited the expression of these transferases when measured at 72 and 96 hours after 

transfection. (Figure 5-12 B).  
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(A) 

 

(B) 

 

Figure 5-12  The kinetic of knockdown of GGTI-β and GGTII-β. 

Ovcar-4 cells exposed were exposed to 4 different concentrations (25, 50, 75 and 100ηm) of each 

siRNA to GGTI-β and GGTII-β for 72 hours. Cell growth assay were used to determine relative cell 

numbers by staining with SRB (Mean±SD; n=3). (B) Ovcar-4 cells were transfected with the 

indicated siRNA. The level of GGTI-β and GGTII-β expression measured by immunoblotting after 

72 and 96 hours.  
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5.3.4.2. The effect of knockdown of GGTI-β and GGTII-β on 

sensitivity to pitavastatin 

Next the effect of knockdown on GGTI and GGTII on the sensitivity to pitavastatin was 

measured. Knockdown of either GGTI-β or GGTII-β alone using 3 separate siRNA did not 

significantly increase the potency of pitavastatin against Ovcar-4 OC cell line. However, 

inhibition of both GGTI-β and GGTII-β simultaneously using 3 separate siRNA 

combinations resulted in a significant increase in sensitivity to pitavastatin, shown by a 

significant decrease in pitavastatin IC50 compared to control cells exposed to non-targeting 

siRNA (Figure 5-13). Non-targeting siRNA had no significant effect on the sensitivity to 

pitavastatin.                            

 

Figure 5-13 The effect of GGT-Iβ and GGT-II β knockdown on potency of pitavastatin. 

Ovcar-4 cell line was transfected with siRNA of GGT-Iβ (100nM) or GGT-IIβ (100nM) oligos for 

24 hours before exposed to serial drug dilution of pitavastatin (starting concentration 25µM) for 

additional 72hour. The IC50 were calculated from DRC which were determined by Graphpad Prism, 

(one-way Anova followed by Tukeys post-hoc *, P < 0.05) (mean ± S.D., n = 3).  
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5.3.4.3.  Confirmation of the synergy of GGTI-β and GGTII-β 

knockdown by flow cytometry and PARP cleavage 

To confirm the synergy observed following combined knockdown of both geranylgeranyl 

transferases and exposure to pitavastatin, the effect of the combination on apoptosis was 

measured by flow cytometry. Ovcar-4 cell line were incubated with GGTI-β, GGTII-β for 

24 hours alone then exposed to pitavastatin for additional 48 hours. Flow cytometry analysis 

to measure apoptosis by Annexin V/propidium iodide staining revealed that inhibition of 

each the geranylgeranyl transferase enzymes alone or in combination with pitavastatin did 

not alter the sensitivity of Ovcar-4 cells to the drug. Similarly, knockdown of either 

transferase did not augment PARP cleavage induced by pitavastatin. However, when the 

cells were exposed to pitavastatin with concomitant inhibition of both geranylgeranyl 

transferases, there was significantly more Annexin V/PI labelling and more PARP cleavage 

(Figure 5-14 and Figure 5-15 A) compared to treatment of cells with pitavastatin alone. In 

contrast, inhibition of farnesyl transferase with tipifarnib did not augment the activity of 

pitavastatin in cell growth assays because an additive interaction was observed (Figure 5-15 

B).  
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Figure 5-14 The effect of pitavastatin and pitavastatin–siGGTI-β and siGGTII-β 

combinations on apoptosis.  

Ovcar-4 cells were transfected with siRNA to GGTI-β and GGTII-β and exposed to pitavastatin 

(10µM) for 48 hours. After labelling with annexin V/propidium iodide the cells were analysed by 

flow cytometry (results shown are from single representative experiment, n=3).   
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Figure 5-15 the apoptosis induction by geranylgeranyl transferase knockdown with 

pitavastatin in Ovcar-4 cell line. 

(A) The annexin V and propidium iodide positive cells were quantified (mean ± SD, n=3) 

and were significantly different from cells transfected with non-targeting siRNA where 

shown (one-way Anova followed by Tukeys post-hoc *, P < 0.05; **. P < 0.01; ***, P < 

0.001). In parallel, PARP cleavage determined by western blotting. (B) The activity of 

pitavastatin in a cell growth assays were measured in the absence and presence of tipifarnib 

(0.25 µM) and combination index calculated.  
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5.3.5. The effect of pitavastatin and pitavastatin-zolendronic acid 

on the subcellular localization of small GTPases 

The data suggested that blocking geranylgeranylation may be crucial to the cytotoxic activity 

of drug combinations involving pitavastatin. Attachment of geranylgeraniol to small 

GTPases is necessary for their membrane localization and activity. This suggested that the 

drug combination would alter the subcellular localization of small GTPases. A2780 and 

Skov-3 Cells were treated with pitavastatin and/or zoledronic acid for 48 hours, the cells 

fractionated into cytoplasmic and membrane fractions and the distribution of RhoA, CDC42, 

Rab6A and Ras was examined using western blotting. Actin and NaK ATPase were 

measured as loading markers of the cytosolic and membrane fractions respectively. 

Although zoledronic acid used as a single agent did not affect the membrane localization of 

these small GTPases, pitavastatin decreased the proportion of RhoA, CDC42 and Ras 

proteins found in the membrane fraction and also caused a reciprocal increase in the cytosolic 

fraction. When cells were treated with pitavastatin and zoledronic acid, the loss of small 

GTPases from the membrane fraction to the cytosolic fraction was augmented by this 

combination (Figure 5-16). 

Finally, it can be summarized that zoledronic acid potentiate the antiproliferative activity of 

pitavastatin in panel of OC cell lines in several cell growth and apoptosis assays. It is also 

found that inhibition of both geranylgeranyl transferase enzymes are essential to potentiate 

the cytotoxic activity of statins against OC cell lines. 
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Figure 5-16 The effect of pitavastatin and pitavastatin-zolendronic acid combination 

on the subcellular localization of small GTPases.  

Lysates of A2780 and Skov-3 cells that had been treated with indicated drugs for 48 hours were 

fractionated into cytoplasm and membrane and analyzed by immunoblotting. The graphs show the 

fraction recovered in the cytosolic or membrane fractions (n=3). 
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5.4. Discussion 

Failure of cancer treatment is a significant challenge to the modern medicine (Colombo et 

al., 2014). Regrettably, side effects, toxicity to normal tissue and drug resistance limit the 

activity of chemotherapy. Therefore, multi-drug regimens are prescribed for cancer to 

improve the efficacy and reduce the requirement of high drug doses (Marczak, Bukowska 

and Rogalska, 2014). At the same time, it is well known that cancer is a heterogeneous 

cluster of disorders with different molecular mechanisms of pathogenesis. Therefore, 

targeting multiple pathways is beneficial for inhibition of tumour growth and improving 

survival (Clendening and Penn, 2012; Yeganeh et al., 2014). This study indicated that a 

combination of MP inhibitors potentiates the antiproliferative activity of pitavastatin and 

combined inhibition of geranylgeranyl transferase enzymes are required to potentiate the 

cytotoxic activity of statins in OC. 

5.4.1. MP inhibitors single agent activity 

It has been established that pitavastatin is the statin most likely to be effective in the 

treatment of OC (Robinson et al., 2013; De Wolf et al., 2017). Although repurposing statins 

for use in oncology is attractive, there are legitimate concerns about the potential for 

myopathy (Saito, 2011) and this makes it desirable to identify drugs which could potentially 

reduce the dose of pitavastatin administered to patients.  

The result revealed that pitavastatin has concentration-, time- and cell-dependent growth 

inhibitory effects against a panel of OC cell lines. Pitavastatin was more potent than 

zoledronic acid while risedronate and GGTI-2133 were the least effective agents. Beside the 

restriction of the pathway products by MP inhibitors, NBPs may also  act by causing the 

accumulation of  metabolite of MP upstream of the site of inhibition (Okamoto et al., 2014). 
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Accumulation of metabolites such as isopentyl diphosphate, caused by inhibition of the FPP 

synthase leads to the production of another metabolite, ApppI (triphosphoric acid 1-

adenosin-5'-yl ester 3-(3-methylbut-3-enyl) ester), an ATP analogue which is toxic and can 

induce apoptosis by inhibiting mitochondrial ADP/ATP translocase protein (Räikkönen et 

al., 2009). GGTI-2133, an inhibitor of GGTI enzyme, restrains the activity of small GTP 

proteins. GGTI-2133 did not display a potent growth inhibitory activity compared to 

pitavastatin. It has an IC50 for the enzyme inhibition about 40 and 5400 nM for GGTI and 

FT, respectively (Vasudevan et al., 1999). In these studies, concentrations up to 25µM were 

tested, with only modest growth inhibitory effects. This suggests that inhibition of GGTI on 

its own does not have a profound effect on cell growth. This was subsequently confirmed in 

siRNA experiments in which knockdown of GGTI did not appreciably affect cell growth. 

5.4.2. Pitavastatin and MP inhibitors combination activity 

In this study, it was observed that zoledronic acid act synergistically with pitavastatin using 

several different assays and in several different cell lines. The drug combination was 

synergistic when assessed in two cell growth assays, a cell survival assay and also in several 

assays measuring apoptosis. It is observed that PARP cleavage in Ovsaho cell line are more 

prominent than other tested cell lines exposed to pitavastatin alone and in combination with 

zoledronic acid. In addition, the discrepancy between the caspase activity and PARP 

cleavage might be related to the method used for the measurement. This is significant 

because zoledronic acid is a drug in clinical use and so may reasonably be combined with 

pitavastatin in the treatment of cancer patients. Pitavastatin inhibits HMGCR, reducing the 

supply of mevalonate that is used to synthesize isoprenoids and zoledronic acid is known to 

inhibit farnesyl diphosphate synthase (Mukhtar, Reid and Reckless, 2005; Thurnher, 

Nussbaumer and Gruenbacher, 2012; Dhar, Koul and Kaul, 2013; Okamoto et al., 2014) 
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which is also part of the MP. Previous studies have identified synergy between statins and 

zoledronic acid (Budman and Calabro, 2006; Dudakovic et al., 2008; Rogers et al., 2015; 

Elsayed et al., 2016; Göbel et al., 2016). The underlying mechanism of this synergy has not 

been fully elucidated but it likely that statin augment the activity of the FPPS inhibitors by 

additionally restraining protein geranylgeranylation by inhibiting the supply of isoprenoid 

substrates (Issat et al., 2007). In this study, the mechanism underlying synergy between 

pitavastatin and zoledronic acid was further explored. In particular, it was found that 

pitavastatin reduces levels of GGTII-β. This is significant because it demonstrates that the 

drug combination inhibits the MP at three different points. The drug combination also 

profoundly reduces the amount of small GTPases associated with the cell membrane, 

suggesting a potential mechanism by which the drugs trigger apoptosis. It was also noticed 

that simultaneous inhibition of both GGT-I and GGT-II, but not either transferase 

individually, potentiates the activity of pitavastatin. This has significant implications for 

understanding the mechanism by which pitavastatin induces cell death and for drug 

discovery programmes to identify compounds which inhibit geranylgeranyl transferases 

synergistically with pitavastatin. Drugs which inhibit both transferases are likely to be 

necessary. 

This study and several previous studies, have suggested that the cytotoxic effect of statins in 

cancer cells result from inhibiting the synthesis of geranylgeraniol (Zhong et al., 2003; 

Gazzerro et al., 2012; P Jiang et al., 2014). Indeed, the importance of this isoprenoid in 

oncogenesis is underlined by the observation that geranylgeraniol promotes tumour growth 

in xenograft-bearing mice (Duncan, El-Sohemy and Archer, 2004). In this study, 

geranylgeraniol was able to inhibit the cytotoxic effects of the pitavastatin-zoledronic acid 

drug combination in wild-type TP53 (A2780 cells), mutated TP53 (Ovsaho) and cells 

lacking TP53 (Skov-3). This observation is significant because it was proposed that 
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relatively high doses of statins will be necessary to treat cancer to provide an adequate 

plasma concentration (microMolar) of the drug in patients, leading to the concern that high 

concentrations of pitavastatin might be cytotoxic by inhibiting target other than HMGCR. 

This data provides several other lines of evidence in support of pitavastatin exerting its effect 

through inhibition of HMGCR. Firstly, the observation that geranylgeraniol, a product of the 

MP, suppresses the effects of pitavastatin support pitavastatin working through an “on-

target” mechanism. Secondly, our observation of synergy between two sets of drugs 

inhibiting the same pathway (pitavastatin and bisphosphonates) is also consistent with the 

effect of pitavastatin being mediated by HMGCR. Finally, it was also noticed that siRNA 

directed to geranylgeranyl transferases, a part of the MP, potentiated the activity of 

pitavastatin. In summary, the synergy between pitavastatin and several reagents targeting the 

MP strongly supports the argument that pitavastatin, even at microMolar concentrations, acts 

principally through inhibition of HMGCR and the MP. This conclusion is of crucial 

importance to the design of clinical trials, because understanding the mechanism of action 

of a drug is essential for selecting which patients should receive the drug. 

5.4.3. Role of GGTI-Β and GGTII-Β knockdown in potentiation of 

pitavastatin activity 

The suppression of the activity of pitavastatin-zoledronic acid combinations by 

geranylgeraniol suggested that inhibition of the production of this isoprenoid was central to 

the effect of the drug combination. However, this observation did not indicate whether the 

effect of pitavastatin reflects inhibition of geranylgeranylation of a crucial subset of proteins 

or whether inhibition of protein prenylation more broadly underlies the effect of pitavastatin. 

This is not a trivial issue to tackle because around 2% of mammalian proteins undergo post-

translational prenylation (Nguyen et al., 2009). Although, Ras superfamily GTPases are 
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obvious candidates affected by pitavastatin,  the sensitivity of multiple myeloma cells to 

lovastatin was not modulated by ectopic expression of individual constitutively active Ras, 

RhoA, RhoB, Rac1, and Cdc42 small GTPase proteins (Wong et al., 2007). To begin to 

address this, it is first considered which geranylgeranyl transferases might be most 

significantly affected by pitavastatin. It was been hypothesized that if the effects of 

pitavastatin were mediated by preventing the prenylation of a substrate of either GGTI-β or 

GGTII-β, then synergy would be observed between pitavastatin and siRNA to one of these 

geranylgeraniol transferases. It was anticipated that this information could be used to focus 

on substrates for one transferase to search for the proteins whose geranylgeranylation is 

affected by pitavastatin and pitavastatin-zoledronate combinations and which is necessary 

for the cytotoxic activity of these drugs. However, it is found that siRNA to either one of the 

transferase alone was insufficient to potentiate the activity of pitavastatin in both cell growth 

assays and in two apoptosis assays. However, when different siRNA combined to 

simultaneously repress both geranylgeraniol transferase I and II, the potency of pitavastatin 

was increased. This was observed using three separate siRNA combinations. In contrast, 

inhibiting farnesyltransferase by tipifarnib was not synergistic with pitavastatin. This 

confounded an approach to understanding the mechanism of action of pitavastatin and 

pitavastatin/zoledronate because these results did not implicate one single geranylgeranyl 

transferase. Instead, these data suggest that pitavastatin does not exert its cytotoxic activity 

by preventing the geranylgeranylation of a small number of key proteins, rather that 

inhibition of geranylgeranylation of several proteins, whose prenylation is catalysed by 

GGTI-β and GGTII-β, contributes to pitavastatin’s activity. It is likely that these same 

proteins are affected by the pitavastatin-zoledronic acid combination. It cannot rule out, 

however, that the activity of the pitavastatin-zoledronic acid combination depends on 

blocking the prenylation of a small subset of unidentified proteins that can be redundantly 
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isoprenylated by either GGTI-β or GGTII-β. Redundancy between these prenyl transferases 

explains why inhibition of both GGTI-β and GGTII-β was found to be necessary for synergy 

with pitavastatin because one transferase can compensate for the depletion of the other. The 

idea of redundancy between the transferases is plausible because these enzymes do not 

exhibit absolutely inflexible substrate specificity and geranylgeranylation has even been 

reported as a mechanism of resistance to farnesyl transferase inhibitors (Park et al., 2014). 

The apparent redundancy observed between GGT-I and GGT-II also provides important 

information for drug discovery programmes designed to identify compounds which are 

synergistic with pitavastatin. The data suggests that targeting selectively either GGT-I or 

GGT-II may be futile because one transferase may compensate for inhibition of the other. 

Compounds which inhibit both transferases may be necessary. Indeed, the synergy has not 

been observed when pitavastatin combined with GGTI-2133 which inhibits GGTI-β but not 

GGTII-β. Rather, GGTI-2133 was antagonistic with pitavastatin, although this may reflect 

off-target effects of this compound (Vasudevan et al., 1999; Delarue et al., 2007). It has been 

previously shown that MP inhibitors can disrupt cellular signalling mechanism through Ras 

and Rho proteins. RhoB contributes to the process of apoptosis in cancer cells. Apoptosis is 

suppressed upon deletion of this protein and sensitisation of cells to apoptotic stimuli 

following stable expression of RhoB has been reported (Morgan et al., 2005). Therefore, 

inhibition of GGTI by GGTI-2133 might inactivate RhoB and inhibit the induction of 

apoptosis and lead to the antagonism with pitavastatin. 

5.4.4. The effect of drug combination on protein prenylation 

To confirm that pitavastatin, zoledronic acid and the combination of the two drugs resulted 

in altered protein prenylation, the effect of these drugs on several small GTPases were 

measured. It seems reasonable to consider these as relevant targets affected by pitavastatin 
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because small GTPases proteins are involved in regulation of several signalling pathways 

involved in cell growth and survival (Rogers et al., 2011) Pathways known to be regulated 

by small GTPases include the PI3K/AKT and Raf/Mek/MAPK/ERK pathways which 

regulate in cell cycle progression and apoptosis (Swanson and Hohl, 2006). Substrates of 

GGTI-β (RhoA, CDC42) or GGTII-β (Rab6A) as well as of farnesyltransferase (Ras) were 

selected (Park et al., 2014) to evaluate the effect of the pitavastatin-zoledronic acid 

combination. Pitavastatin increased the proportion of all four small GTPases that was found 

in the cytosolic fraction, consistent with inhibition of prenylation. In both cells lines 

pitavastatin also increased the amount of RhoA, Cdc42 and Ras found in the cell membrane, 

suggesting that loss of prenylation may lead to an increase in the abundance of these small 

GTPases. Upregulation of Ras and Rho by statins has been observed previously (Mo and 

Elson, 2004; Göbel et al., 2016) as a result of increase translation or reduced turnover 

(Mohamed, Smith and de Chaves, 2015). In contrast, there appeared to be a reduction in the 

total amount of Rab6A, consistent with our previous results (Robinson et al., 2013). The 

combination of zoledronic acid with pitavastatin increased in most cases the proportion of 

small GTPases found in the cytosolic fraction. Taken together, this study suggests that the 

synergy between pitavastatin and zoledronic acid inhibits the MP at multiple points and leads 

to a profound reduction in the membrane localization of small GTPases. Since several of 

these GTPases regulate cell survival and proliferation, the loss of membrane localization of 

these proteins is likely to contribute to the synergistic inhibition of cell growth and survival. 

It cannot be ruled out, however the possibility that the cytosolic form of these proteins 

inhibits cell growth and survival (Dunford et al., 2006). 

It was observed that pitavastatin, alone and in combination with zoledronic acid, decreases 

the level of GGTII-β. Thus, the pitavastatin-zoledronic acid drug combination inhibits at 

least three points on one biosynthetic pathway and it is likely that this contributes to the 
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synergy which it has been observed in almost all cell lines tested. This is also significant 

because it suggests that reduced GGTII-β is likely to contribute to the activity of these drugs, 

although the mechanism underlying the reduction in GGTII-β is not yet clear. MP enzymes 

are regulated by feedback and feedforward mechanisms (Katz, 2005; Henry et al., 2015). 

The reduced supply of geranylgeraniol may cause changes in the level of the enzyme for 

which it is a substrate. This may explain why pitavastatin altered the level of GGTII. This 

observation also raises the possibility that pitavastatin may be particularly useful in cancers 

in which GGTII-β is either abundantly expressed or mutated such as OC (Lackner et al., 

2005; Ageberg et al., 2011). In addition, overexpression of GGTII enzyme substrate such as 

Rab25, Rab5 and Rab7, has been reported in breast, ovarian, prostate and bladder cancers, 

and some of these substrate mutation is determinant of aggressiveness of cancer and 

predictors of poor outcome (Watanabe et al., 2008). 

Finally, it can be concluded that inhibition of farnesyl diphosphate synthase by zoledronic 

acid offers a promising strategy to increase the efficacy of statins in cancer patients. Statins 

and bisphosphonates generally have a good safety profile and are available clinically in 

relatively cost-effective generic forms (Manzoni and Rollini, 2002; Katz, 2005; Chen and 

Sambrook, 2011), making this approach particularly attractive. The inclusion of zoledronic 

acid alongside pitavastatin in clinical trials of patients with OC warrants urgent 

consideration. Although, it has been recently suggested that statins’ adverse effect might not 

be dependent on the inhibition of protein prenylation (Gee et al., 2015) but these trials will 

need to evaluate whether the inclusion of zoledronic acid potentiates the efficacy of 

pitavastatin without an increased risk of myopathy which is associated with statin use.  

 



 

 

 

 

 

 

 

 

 

 

 

Chapter Six 

 

6. Screening a library of compounds reveals a 

novel synergistic drug combination: 

pitavastatin and prednisolone   
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6.1. Introduction  

The fundamental goal of cancer chemotherapy is eliminating malignant tissues. Combining 

drugs is important strategy for cancer treatment after the failure of single agents (Devita, 

Young and Canellos, 1975). The main rationale for drug combinations involving cytotoxic 

chemotherapy is that this targets several cellular components simultaneously. This offers 

several advantages including augmenting tumour cell killing and correspondingly 

therapeutic efficacy, reducing the occurrence of resistance and potentially minimizing the 

toxicity associated with high dose chemotherapy (Rodon, Perez and Kurzrock, 2010; Al-

Lazikani, Banerji and Workman, 2012).  

The high cost of new molecularly-targeted agents is likely to put significant strain on health 

care budgets in most countries (Bertolini, Sukhatme and Bouche, 2015). The process of new 

drug discovery requires a long time and a considerable cost to translate the agent to the clinic. 

It is currently estimated that it requires approximately $2 billion to bring a new drug to 

market. This results  in the average cost of the new targeted therapy being extremely high, 

with annual treatment costs frequently in the range $50,000-$100,000 per course of 

treatment (Pantziarka, Bouche, Meheus, Sukhatme, Sukhatme, et al., 2014).  

Since 1950, the number of new licensed drugs has fallen by half every decade. A recent 

report has described the process of drug development as a productivity crisis. The crisis is 

particularly problematic for oncology drugs discovery. The number of non-oncological 

drugs approved by FDA between 2003 and 2011 are double the number of oncological drugs 

that approved (Pantziarka, Bouche, Meheus, Sukhatme and Sukhatme, 2014). At the same 

time, the cost of cancer drug approval had increased dramatically and doubled several times 

from 1990 to 2011 (Bertolini, Sukhatme and Bouche, 2015). Therefore, drug redeployment 

is an attractive alternative strategy to develop new treatments. 
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Drug redeployment might be defined as the process of validating and marketing previously 

approved pharmaceutical active agent for new indications outside the scope of their original 

medical uses (Brown and Patel, 2017; Corsello et al., 2017). This offers a promise of rapid 

clinical impact with a low development cost compared to de novo drug development 

(Corsello et al., 2017). The goal of pharmaceutical companies in oncology drug development 

is to obtain market approval by demonstrating that the efficacy and superiority of their drug. 

Pharmaceutical companies may lack incentives to investment in drug combinations because 

this may involve working with competitor pharmaceutical companies. This problem is 

exacerbated in the case of drug repositioning where there may be only a limited period of 

patent protection remaining for their product which minimizes financial return (Keith, 

Borisy and Stockwell, 2005). Despite this, drug repositioning has a potential advantage of 

safer, cheaper and faster validation protocols (Bertolini, Sukhatme and Bouche, 2015). 

Repurposing of known drug with a history of clinical application also comes with a wealth 

of data that is readily available and which includes the pharmacokinetic, pharmacodynamics, 

toxicological and dosing schedules. The availability of this data reduces the duration of 

clinical drug development, which typically ranges from 5-7 years (Ashburn and Thor, 2004). 

The use of generic drugs with low cost is another key advantage of drug repurposing. It 

reduces the potentially high cost of therapy which can impose a substantial strain on the 

public health finance of the developed countries and it can be unaffordable for poor and 

middle income countries (Pantziarka, Bouche, Meheus, Sukhatme and Sukhatme, 2014). 

There are many example of successful drug repositioning which bypass the hindrance 

associated with new drug development and hasten the potential therapeutic discovery 

(Langedijk et al., 2015). One of the accounts of drug repositioning is “The fall and rise of 

thalidomide”, a drug which was originally prescribed to pregnant women for the 

management of morning sickness in 1957 in Germany and England (Raje and Anderson, 
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1999). The drug led to newborns with severe malformations such as deafness, blindness, 

limb growth defects in at least 15,000 children born to a mother who had used thalidomide 

during the first trimester of their pregnancy. In 1964, thalidomide was accidentally 

discovered to be effective for treatment of erythema nodosum laprosum (ENL) which is an 

inflammatory condition of leprosy. The drug was given to relieve the pain of critically ill 

patient with ENL in University Hospital of Marseille although thalidomide is contraindicated 

for pregnant women. The drug relieved not only the pain but also healed the patient’s sores 

(Ashburn and Thor, 2004). Consequently, a follow up study sponsored by WHO of more 

than 4000 ENL patients showed complete remission of the disease within less than two week 

(Brynner and Stephens, 2001). Thalidomide was  reported to inhibit the formation of new 

blood vessels induced in rabbit corneal model explaining the teratogenic effects of this drug  

(Iacopetta et al., 2017). This activity is also clinically useful. In 1994, the antiangiogenic 

activity of thalidomide, which was  discovered at Children’s Hospital in Boston, allowed it 

to be redeployed as candidate in oncology and opened the way for its use in the treatment of 

cancers such as multiple myeloma and breast cancer (Ashburn and Thor, 2004).  

Several other examples of successful drug repositioning such as aspirin, a cyclooxygenase 

inhibitors, to treat coronary-artery disease, sildenafil, a phosphodiesterase inhibitor, which 

is originally developed to treat hypertension and angina and then repurposed to treat erectile 

dysfunction, and the antibiotic erythromycin which is now prescribed for impaired gastric 

motility (Ghofrani, Osterloh and Grimminger, 2006; Corsello et al., 2017). Drug screening 

against leukaemia in samples from patients with chronic lymphocytic and acute myeloid 

leukaemia as well as peripheral blood mononuclear cells  for cytotoxic activity revealed that 

quinacrine, an antimalarial drug, exhibits anticancer activity by intercalating the double 

strand DNA (Eriksson et al., 2015; Jones and Bunnage, 2017). An important lesson from 

drug repositioning stories is that the recognised mechanism of action of drug may not provide 
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a complete picture and drug repurposing may be achievable in a broad range of diseases 

(Ashburn and Thor, 2004). 

Drug repurposing can also be used as a way to discover new drug combinations. 

Combinatorial drug screening had been applied to discover novel synergistic therapeutic 

prospects for treatment of cancer. Screening of drug combinations with ibrutinib, an inhibitor 

of tyrosine kinase, revealed that several PI3K inhibitors and the BCL-2 antagonist ABT199 

(venetoclax) potentiate the activity of the ibrutinib against diffuse large B cell lymphoma 

and chronic lymphocytic leukaemia (Mathews Griner et al., 2014; Cervantes-Gomez et al., 

2015). There are now systematic efforts to identify these potential new drug combinations 

(http://www.ecmcnetwork.org.uk/combinations-alliance-researchers). 

6.2. Steroids 

Steroid hormones can be classified as those having effects on metabolism, inflammation and 

immune function (glucocorticoids), those having salt-retaining activity (mineralocorticoids), 

and those having androgen, estrogen or progesterone activity (sex steroids). Steroids affect 

the major systems of the body, including the cardiovascular, nervous, musculoskeletal and 

immune system. Since 1940, steroids have been usually included in chemotherapy protocols 

for the treatment of hematopoietic malignancies such as acute lymphoblastic leukaemia, 

chronic lymphocytic leukaemia, multiple myeloma, Hodgkin’s lymphoma, and non-

Hodgkin’s lymphoma. They also have some activity against some non-haematological 

malignancy such as prostate and breast cancer (Sionov et al., 2008). Steroids reduce the 

adverse effects of radiotherapy and cytotoxic drug administration. The use of steroids is 

associated with improved appetite, reduced weight loss, decreased fatigue, diminished 

ureteric obstruction, reduced vomiting, diminished swelling and preventing severe immune 

reactions. In addition, they can effectively alleviate the pain associated with metastatic bone 

http://www.ecmcnetwork.org.uk/combinations-alliance-researchers
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disease by preventing the synthesis and release of prostaglandins (Lin and Wang, 2016; 

Sundahl et al., 2016). In addition, steroids have anti-inflammatory and immunosuppressive 

properties, and they are indicated to control many chronic and acute conditions such as 

asthma, inflammatory bowel disease, rheumatoid arthritis, psoriasis, anaphylaxis and septic 

shock. Steroids showed excellent efficacy in the clinic in the treatment of these diseases. 

However, their usage is hampered because of adverse effects (Fleuren et al., 2013).  

The adverse effects of steroids included central adiposity, dyslipidaemia, impaired growth, 

hypokalaemia, myopathy, osteoporosis, glucose intolerance, insulin resistance, diabetes, 

increased risk of infections, pancreatitis, hypertension, cataract, gastrointestinal disease, 

psychologic and neurologic side effects (Fleuren et al., 2013). Short term use of steroids is 

generally associated with mild adverse effects which is reversible upon its discontinuation. 

In contrast, long term use can be associated with more severe adverse effects (Buchman, 

2001). For example, 50 % of patients using steroid for more than 12 months may develop 

osteoporosis because steroids inhibit osteoblast function (Becker, 2013). 

6.2.1. Glucocorticoid receptor (GR) 

There are several member of steroid receptor subfamily: estrogen, estrogen-related receptors 

1 and 2, mineralocorticoids, androgens and progesterone receptors (Schmidt et al., 2004; 

Kumar and Thompson, 2005). The actions of corticosteroids are mediated by glucocorticoid 

receptor (GR). The GR is a ligand-activated transcription factor of the superfamily of nuclear 

receptors. There are α and β isoforms of GR, which are generated by alternative splicing of 

a single gene. The α isoform, which is responsible for transcriptional activation of 

glucocorticoids target genes, is expressed in majority of tissues. In contrast, the function of 

the β isoform remains to be discovered (Lin and Wang, 2016). The conformational changes 

induced by ligand binding to the GR stimulates receptor dissociation and translocation into 
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the nucleus where it subsequently binds to glucocorticoid response elements in the 

regulatory regions of target genes. This is followed by either induction or repression of a set 

of genes in a tissue specific manner (Schoneveld, Gaemers and Lamers, 2004; Löwenberg 

et al., 2008). The GR had also the ability to induce gene expression without direct binding 

to glucocorticoid-response elements through interaction of the GR with other transcription 

factors and this process is known as tethering (Ratman et al., 2013).  

It has been suggested that GR may have a role in tumourigenesis and tumour progression. 

Hence, the potential role of glucocorticoid receptor in non-hematopoietic cancers has been 

confirmed in several immunohistochemical studies. It is observed that about 50% of non-

small cell lung cancer have positive GR immunoreactivity (Lu et al., 2005) and an improved 

therapeutic outcome of non-small cell lung cancer patients has been associated with higher 

expression of GR (Lu et al., 2006). A high percentage of oesophageal squamous carcinomas 

(98.1%) and hepatocellular carcinomas (92.9%) express GR and it has been suggested that  

this may cause dexamethasone induced resistance in those tumour types (Lien et al., 2008). 

In addition, the overall survival in patients with GR positive adenocarcinoma tends to be 

shorter in comparison with GR negative adenocarcinomas (Sionov et al., 2008). A much 

earlier study found that GR expression in 88 % of OC patients (Galli et al., 1981). However, 

a recent study has highlighted that GR is expressed in 39 % of OC and the expression was 

associated with histologic subtype, higher grade, and advanced stage. It is also found that 

GR expression correlates with decreased PFS, in OC patients (Veneris et al., 2017). 

Glucocorticoids have been indicated for the treatment of hormone-refractory prostate cancer 

for many years. However, the alteration of GR expression, function and availability of their 

targets in prostate cancer cells limits the objective response to about 25% of patients. 

Reconstitution of the GR in prostate cancer cells using lentivirus increases the sensitivity of 
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those cells to glucocorticoid anti-proliferative activity. In contrast, alteration of GR function 

or loss of their expression might undesirably affect the sensitivity of cancer cells to the anti-

proliferative effect of steroids (Yemelyanov et al., 2007).  

6.2.2. Glucocorticoids 

Glucocorticoids hormones are derived from cholesterol and are secreted by the adrenal 

gland. The level of these hormones is regulated by the hypothalamic–pituitary–adrenal axis 

(Figure 6-1). At the tissue level, natural glucocorticoid availability is regulated by the 

corticosteroid-binding globulin level in serum and by the local expression of 11β-

hydroxysteroid dehydrogenase (which converts cortisol to cortisone). Disturbance in 

glucocorticoid synthesis causes pathological conditions such as Cushing’s syndrome and 

Addison’s disease (Kadmiel and Cidlowski, 2013).  

The hypothalamic–pituitary–adrenal (HPA) is a biological circuit capable of co-oridinating 

physiological signalling in response to stressful conditions such as severe infection and 

severe blood loss (Herman et al., 2016). An extensive regulatory control is exerted on 

corticosteroid level (Coleman, 1992; McKay and Cidlowski, 2003). For example, in a 

stressed state, the cerebral cortex activates paraventricular nucleus of the hypothalamus to 

produce corticotrophin-releasing hormone (CRH) and vasopressin which are carried by the 

hypophyseal portal system to the pituitary gland (Goncharova, 2013). Both hormones act on 

pituitary to stimulate the release of adrenocorticotropic hormone (ACTH), which in turn acts 

on the adrenal cortex to promote steroid hormone secretion. Corticosteroids regulate 

vascular tone, and metabolic processes on variety of tissues. In addition, steroid hormones 

complete the negative feedback control mechanism by supressing the production of the CRH 

and ACTH from the hypothalamus and pituitary gland, respectively (Papadopoulos and 

Cleare, 2011; Boron and Boulpaep, 2012; Volden and Conzen, 2013). In contrast to natural 
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glucocorticoids, synthetic glucocorticoids such as prednisolone, dexamethasone, and 

budesonide, are artificial compounds that resemble natural glucocorticoids in functions but 

differ in their potency and metabolic clearance (Lin and Wang, 2016).  

 

  

Figure 6-1 Schematic representation of glucocorticoid regulation by the hypothalamic–

pituitary–adrenal axis. Synthesis and release of glucocorticoids is under regulation of 

the hypothalamus (Kadmiel and Cidlowski, 2013). 

 

 

6.2.3. Glucocorticoids and cancer 

Growth arrest and apoptosis induction are among several different functions mediated by 

glucocorticoids (Pufall, 2015). Activation of GR induces apoptosis in number of cells and 

tissues such as of osteoblasts, osteosarcoma, eosinophils, prostate, pancreatic β-islets and 

brain cells (Sionov et al., 2008). There are two phases by which corticosteroids effects 

proceed. The first step is initial growth arrest followed by subsequent stage of cell death. In 

vitro, the initial phase lasts for 24 hours and with continuous administration it will progress 

to cell death which takes 2-3 days. The most commonly observed mechanism of cell death 

is apoptosis, while necrosis and necroptosis had been reported, as well (Pufall, 2015).  
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In haematological malignancies, the mechanism of glucocorticoid-mediated apoptosis 

appears to be complex and involving multiple signalling pathways. Despite studies that have 

lent some insight on the regulation of genes required to induce apoptosis, it is still not well 

defined (Ayroldi et al., 2007). Steroids activate apoptotic pathways by tipping the balance 

of Bcl-2 family apoptosis regulators through upregulation of pro-apoptotic Bim protein and 

downregulation of the anti-apoptotic Bcl-2 proteins. Glucocorticoids have the ability to 

repress the activity of c-Myc and NF-κB, prosurvival transcription factors (Wang et al., 

2003). Progesterone use, which reduced the risk of OC, can induce programmed cell death 

in OC  cells through stimulation of the apoptotic pathways (Han et al., 2013) via activation 

of caspase-8 stimulated by Fas/ FasL signalling pathways (Syed and Ho, 2003). In addition, 

it was reported that apoptosis induced in thymocytes from p53 knockout mice by two 

pathways; the first one initiated by DNA damage which requires p53, and the second is 

stimulated by glucocorticoids and Ca2+ ionophores which is p53-independent (Clarke et al., 

1993). In contrast, the mechanisms of glucocorticoid-mediated growth arrest include 

downregulation of cyclin D1 and D3 and upregulation of p21Cip1 and p57Kip2 (inhibitors of 

cyclin-dependant kinases). In addition, steroids can inhibit the activity of the MAPK and  

Ras signalling pathway (Greenberg et al., 2002; Ayroldi et al., 2007).   

The mechanism of resistance to steroids’ antitumour activity may be provoked by activation 

of SGK1 and MKP1. The anti-apoptotic effects of glucocorticoids were reversed by 

knockdown these genes using siRNA directed to SGK1 or MKP1 in breast epithelial cells 

(Wu et al., 2004). In addition, the expression of the small GTPase RhoB which is a negative 

regulator of proliferation, is stimulated by corticosteroids. RhoB drives inactivation of c-

Myc facilitated by nuclear accumulation of GSK3, which in turn has direct involvement in 

apoptosis induced by steroids. Suppression of RhoB expression by siRNA also inhibits 

glucocorticoid mediated growth arrest (Sionov et al., 2008). However, the corticosteroid-
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induced resistance might be caused by downregulation of apoptosis pathway genes (Herr et 

al., 2003).  

In vitro and in vivo data on the effect of glucocorticoids on solid tumour are controversial, 

they may either promote or suppress tumour progression (Sundahl et al., 2016). The activity 

of several first line therapy were antagonised by corticosteroids (Huang et al., 2000; Lu et 

al., 2006). An extensive statistical analysis of 150 cells derived from either primary 

malignant, solid tumour or established cell lines tested in cell culture or in tumour xenografts, 

suggested that glucocorticoids induced resistance toward cytotoxic therapies in majority 

(89%) of analysed tumour samples (Zhang et al., 2007). In contrast, steroids might also 

inhibit tumour growth, metastasis and sensitize tumour cells to chemotherapy (Leo et al., 

2004; Palmiere et al., 2005; Sundahl et al., 2016). Dexamethasone was shown to potentiate 

the antitumour activity of carboplatin, gemcitabine and adriamycin possibly by increasing 

intracellular drug accumulation in several human cancer xenograft models, including breast, 

colon, lung and glioma cells (Wang et al., 2004, 2007; Moutsatsou and Papavassiliou, 2008). 

Taken together, these data suggest that corticosteroids have dual actions with both pro and 

anti-apoptotic potential in many tissues in which the regulation of cell survival is cell type-

dependent (Schmidt et al., 2004; Wu et al., 2004). 

Steroids have been indicated for advanced breast cancer patients for many years. The doses 

of prednisolone evaluated varied between 10-100 mg daily, and the results reported were 

widely different, as well.  Minton et al., (1981) tested prednisolone (15 mg daily) in 111 

women over the age of 64 with advance breast cancer. Objective response to prednisolone 

therapy were found to be 13/91 assessable patients, and 19/91 achieved stable tumour for at 

least half a year. The median time to progression for responding patients was 15 months and 

for those with stable disease was 9 months (Minton et al., 1981). In addition, administration 
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of 50 to 100 mg of prednisolone daily for three months to forty-five patients with 

disseminated breast carcinoma causes generalized tumour regression in eight patients and 

after one year, two patients are still in regression (Kofman et al., 1958). There is uncertainty 

about the true value of prednisolone, which is a frequent component of combination 

chemotherapy regimen in advanced breast cancer. Despite that, prednisolone has a role in 

improving survival, reducing bone marrow toxicity, antiemetic effect and improving the 

sense of well-being of patients in general (Coleman, 1992). 

6.2.4. Prednisolone 

Prednisolone is a synthetic glucocorticoid. The pharmacokinetic properties of prednisolone 

are complex. It is rapidly absorbed from the gastrointestinal tract with maximum plasma 

level achieved after 1-2 hours of oral administration. Prednisolone has high systemic 

availability ranging from 75-98 % of administered oral dose (Frey, 1987). The drug is 

interconverted between the active form prednisolone and inactive form prednisone (Xu et 

al., 2008). Elimination half-life varies from 2-4 hours. However, the biological half live of 

steroids are much longer and range from 18-36 hours (Becker, 2013).  Hepatic metabolism 

by cytochrome P450 and renal excretion are the main routes of elimination. Steroids are 

largely present in a protein bound form (around 95%), bound to corticosteroid binding 

globulin and to less extent to albumin. The remaining 5% is free and available to exert effects 

on target cells (Katzung, B. G., Masters, S. B., & Trevor, 2012).  

There is evidence that links prednisolone therapy with the MP, at least indirectly. 

Prednisolone presumably causes downregulation of Ras phosphorylation in prednisolone-

sensitive cells. Inhibition of survival protein (AP-1) by prednisolone might be the mediators 

of apoptosis and this inhibitory activity of AP-1 is likely to be suppressed by Ras mutation 

in resistant cells (42% Ras mutation) (Ariës et al., 2015). Prednisolone upregulates the 
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expression of TSC22D3 which in turn decreases the expression of antiapoptotic proteins 

Bcl-XL and increase the activity of capase-8 and caspase-3 in transgenic mice. Furthermore, 

TSC22D3 negatively regulates Ras and Raf induced proliferation (Kajiyama et al., 2010). It 

was observed that trametinib, a MEK1/2 inhibitors, potentiates the anti-proliferative activity 

of prednisolone on myeloma cells with K-Ras and N-Ras mutation (Ariës et al., 2015). 

Steroids have also been evaluated with statins to treat multiple myeloma in clinical trials. 

Simvastatin (15mg/kg/day) was administered orally on days 1-7 of the 28-day cycle, 

followed by intravenous infusion of vincristine, doxorubicin and dexamethasone orally on 

day 7 to 10. The study stopped as the response was insufficient and the reported adverse 

effect were haematological (neutropenia and thrombocytopenia) and gastro-intestinal 

toxicity but not rhabdomyolysis. It is believed that although simvastatin is very effective in 

vitro, its short half-life was the main cause for failure of the study (Robinson et al., 2013). 

Statins with long half-life and continuous administration are required to maintain high 

plasma level in patients (Van Der Spek et al., 2006; van der Spek et al., 2007). 

To reduce the risk of statins causing myopathy, it is desirable to identify drugs which are 

synergistic with pitavastatin. In 2011, Khanim, et al., (Khanim et al., 2011) tested a library 

of 100 licensed oral drug for treatment of multiple myeloma. Drugs in the library were 

selected because of their oral availability, being off-patents with low toxicity. They found 

niclosamide, an anthelmintic drug, displayed significant antiproliferative activity against 

myeloma cell lines.  

To utilize pitavastatin for cancer management, new synergistic combinatorial approaches are 

required. In this study, pharmacological screening of Dr. Khanim’s library was conducted in 

combination with pitavastatin to identify a drug with synergistic activity against OC. The 
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results from the screen identified prednisolone as being synergistic with pitavastatin in a 

panel of OC cell lines.  

6.3. Aims 

To identify drugs which may reduce the dose of pitavastatin necessary to treat OC, a 

combinatorial drug screening approach was used. The growth inhibitory activity of 

pitavastatin was tested in combination with a library of 100-off patent orally available drugs 

against OC cell lines to identify effective combinations which could potentially be further 

evaluated in clinical trials for treatment of OC.
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6.4. Results 

 

6.4.1. Testing library of compound in combination with 

pitavastatin in ovcar-4 cell line 

The Ovcar-4 cells line, which is considered representative of serous OC (Domcke et al., 

2013), was used to identify compounds that synergize with pitavastatin. A panel of 100 off-

patent orally-bioavailable drugs were tested alone and in combination with pitavastatin in 

cell growth assays. To assess whether the compounds potentiated the activity of pitavastatin, 

the expected effect of the compounds if they acted additively was calculated using the Bliss 

independence criterion. Drugs were considered to potentiate the effect of pitavastatin if they 

exhibited a positive “Bliss excess”- those which resulted in more cell death than that 

expected from an additive interaction. Five compounds potentiated the effect of pitavastatin. 

These compounds are prednisolone (71.6 µM), rifampicin (12.2 µM), praziquantel (3.5 µM), 

flutamide (6.22 µM), mefenamic acid (41.4 µM). Six compound showed significant growth 

inhibitory activity against Ovcar-4 cell line when they were tested as single agents: zinc 

acetate (0.323mM), niclosamide (3.2 µM), mebendazole (1.69 µM), desferrioxamine 

mesilate (1.32 µM), methotrexate (1 µM) and bortezomib (0.291 µM) ( Figure 6-2 and 

Appendix I). 

Prednisolone, which is a glucocorticoid drug, showed the most significant synergistic effect 

in combination with pitavastatin with Bliss excess around 0.4. Therefore, it was chosen for 

further analysis in several authenticated OC cell lines (Cov-318, Cov-362, Ovcar-4, Ovcar-

3, Ovsaho).  
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Figure 6-2 The heat map of the bliss excess 

Ovcar-4 cells were exposed to the vehicle, pitavastatin (10µM), library compounds and to a 

combination of individual compound with pitavastatin. A triplicate of each drug addition was made 

and drugs effect measured using SRB assay. The heat map expressed as bliss excess which is 

calculated by subtraction of predicted bliss independence from the observed effects of drug 

combinations. Predicted bliss independence in turn, were calculated from the measured individual 

drug effects. The heat map expressed as mean of two independent experiments.  
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6.4.2. Prednisolone single agent activity in panel of ovarian cancer 

cell line. 

The results of the screen were confirmed in cell growth assays. Firstly, the activity of 

prednisolone (and pitavastatin) used as a single agent was assessed using Ovcar-4, Ovcar-3 

and Ovsaho, Cov-318 and Cov-362 OC cells growing in monolayer culture. Prednisolone, 

showed weak growth inhibitory activity using concentrations up to  500 µM. Complete 

concentration-response curves were not obtained hence IC50s  are reported as ”approximately 

or greater than 500 µM” (Figure 6-3). This agrees with other studies report that 

corticosteroids had insignificant activity against solid tumours (Lin and Wang, 2016; 

Sundahl et al., 2016). 
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Figure 6-3 Dose response cure of prednisolone against a panel of ovarian cancer cell 

lines 

To measure growth inhibitory activity of prednisolone, cells were exposed to the indicated 

concentration of prednisolone for 72 hours (Ovsaho, Ovcar-3, Ovcar-4) or 120 hours (Cov-318, Cov-

362) and stained using SRB assay. The results are expressed as a fraction of the top of the curve 

which was determined by curve fitting (mean ± SD, n ≥ 3). “C” on the x-axis indicates control 

samples measured in the absence of the drug. 
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6.4.3. Pitavastatin single agent activity in panel of ovarian cancer 

cell line 

Pitavastatin’s activity against authenticated OC cell lines growing in monolayer cell culture 

plates were evaluated using SRB assay. Pitavastatin significantly inhibited the growth of all 

of the cells with a IC50s ranging from (1.1 – 4.8µM) (Table 6-1and Figure 6-4). 

Table 6-1 Single agent potency of pitavastatin in cell growth assays 

Cell lines Pitavastatin IC50 (µM) N of experiments 

Cov-318 3.1±0.55 4 

Cov-362 3.3±0.73 4 

Ovcar-3 4.1±0.12 3 

Ovcar-4 4.8±0.56 3 

Ovsaho 1.1±0.27 4 

  

 

 

 

 

 

 

 

Figure 6-4 Dose response cure of pitavastatin against a panel of ovarian cancer cell 

lines 

To measure growth inhibitory activity of pitavastatin, cells were exposed to the indicated 

concentration of pitavastatin for 72 hours (Ovsaho, Ovcar-3, Ovcar-4) or 120 hours (Cov-318, Cov-

362) and stained using SRB assay. Dose response curve expressed as a fraction of the top of the curve 

which was determined by curve fitting (mean ± SD, n ≥ 3). “C” on the x-axis indicates control 

samples measured in the absence of the drug.  
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6.4.4. Pitavastatin combination with prednisolone 

Drug combination studies were subsequently performed in cell growth assays using a fixed 

concentration of prednisolone (70µM) combined with a range of concentrations of 

pitavastatin. At this concentration, prednisolone has no measurable effect when used as a 

single agent, so any change in the pitavastatin IC50 is indicative of drug interaction. 

Prednisolone potentiated the activity of pitavastatin against OC cell line (Ovsaho, Cov-318, 

Cov-362, Ovcar-3 and Ovcar-4), with a significant reduction in pitavastatin IC50s (Figure 

6-5). To confirm this formally, combination indices were calculated. The combination 

showed significant synergy in tested cell lines with a combination index 0.43-0.65 calculated 

using the Chou and Talaly equation (Figure 6-6 and Figure 6-7).  
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Figure 6-5 Pitavastatin IC50 changes after the addition of prednisolone 

The figure shows the changes in pitavastatin IC50 after the addition of fixed dose prednisolone 

(70µM) in panel of OC cell line. All cell lines showed increased sensitivity to pitavastatin effect after 

the addition of prednisolone. The IC50 changes were significant in all the tested cell lines (n=3, **, P 

< 0.01; ***, P < 0.001, respectively, paired t.test). 
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Figure 6-6 Pitavastatin combination with prednisolone in panel of ovarian cancer cell 

lines 

To measure the activity of pitavastatin in combination with prednisolone, cells were exposed to 

indicated concentration of pitavastatin alone and in combination with fixed dose of prednisolone 

(70µM) for 72 hours (Ovsaho, Ovcar-3, Ovcar-4) or 120 hours (Cov-318, Cov-362) and stained using 

SRB assay. Dose response curve are expressed as a fraction of the top of the curve which was 

determined by curve fitting (mean ± SD, n = 3). “C” on the x-axis indicates control samples measured 

in the absence of the drugs. 
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Figure 6-7 Combination indices of pitavastatin with prednisolone 

Combination indices (CI) (Mean ± SD, n=3-4) are quoted at a fraction affected of 0.5. *, ** differed 

significantly from unity where indicated (*, P ≤ 0.05; **, P < 0.01, paired t.test). 

6.4.5. Effect of mevalonate pathway intermediate metabolites on 

the combination 

To determine if the activity of pitavastatin and prednisolone combination in cell growth 

assays had resulted from inhibition of the MP, Ovcar-4 and Cov-362 cells were exposed to 

the combination supplemented with mevalonate, farnesol or geranylgeraniol. The addition 

of mevalonate to cells significantly reduced the growth inhibitory activity of drug 

combination. Furthermore, supplementing the combination with geranylgeraniol but not 

farnesol also significantly prevent growth inhibition (Figure 6-8). These results suggested 

that the growth inhibitory activity of combination is mediated mainly through inhibition of 

MP and most likely by inhibition of geranylgeranylation. 
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Figure 6-8 Addition of mevalonate pathway intermediate metabolite to pitavastatin 

prednisolone combination 

Rescuing the effect of pitavastatin and prednisolone combination by the addition of geranylgeraniol 

(10 µM) and mevalonate (20 µM) but not farnesol (10 µM).  Ovcar-4 and Cov-362 cell lines were 

exposed to serial dilution of pitavastatin in combination with prednisolone (70µM) for 72 and 120 

hours, respectively. The data was represented as a fraction of the top of the curve which was identified 

by curve fitting (mean ± S.D., n = 3). “C” represents the control cells exposed to solvent alone.  
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6.4.6. ATP assay in spheroid cultures  

To recapitulate a tumour environment more closely in vitro, multicellular aggregates 

(spheroid) were used to provide a 3D architecture of OC. The pitavastatin and prednisolone 

drug combination was evaluated using 3D cell culture of Ovcar-4 and Cov-362 by measuring 

ATP levels (Figure 6-9). The combination of prednisolone and pitavastatin reduced ATP 

significantly more than would have been anticipated from the Bliss independence criterion 

if the two drugs had been acting additively (Figure 6-10).  

 

Figure 6-9 Phase contrast microscopy images of ovarian cancer cells aggregates 

Ovcar-4 and Cov-362 (500 cell /well) were seeded in Gravity TRAP ULA Plates (InSphero) to build 

a spheroid structure from monolayer cells. The cells were observed under the phase contrast light 

microscope after 3-5days. Representative image for the Ovcar-4 and Cov-362 OC cell line grown on 

3D culture are shown. 
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Figure 6-10  ATP assay for pitavastatin prednisolone combination 

Cells were treated with the indicated drug concentration for 72 hours (Ovcar-4) or 120 hours (Cov-

362).  The relative viability of Ovcar-4 and Cov-362 spheroid cells were then measured by celltiter-

Glo assay (relative ATP) and expressed as fraction of that measured in control samples treated with 

solvent (mean ± SD; n = 3). The observed drug combinations effects were compared to the effect 

expect if the drug effects were additive and calculated using the Bliss independence criterion (shown 

with a line for each drug combination) and calculated from the measured effect of the individual 

drugs in each individual experiment. The results were significantly different from the Bliss expected 

effect where shown ( *, P < 0.05; paired t-test).  
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6.4.7. The synergistic antiproliferative effect of combination 

involve induction of apoptosis 

To explore the mechanism of pitavastatin and prednisolone combination induced 

cytotoxicity, the cell death process was analysed. To determine whether the decrease in ATP 

activity after exposure to the combination was due to an apoptotic response, morphological 

assessment and annexin V staining was performed. 

Morphological changes were observed under the phase contrast light microscope. Ovcar-4 

cells were incubated with tested agents alone and in combination for 72 hours and compared 

to control, untreated cells. The cells treated with solvent or with prednisolone were attached 

and maintained their original morphology. In contrast, treated cells displayed dramatic 

morphological changes. Cells exposed to pitavastatin alone were detached from plate 

surface, round, shrinking and blebbing, and this was more pronounced in cells treated with 

the drug combination ( 

Figure 6-11). 

To assess Annexin V labelling as a marker of apoptosis, Ovcar-4 and Cov-362 cell lines 

were exposed to pitavastatin or prednisolone or to the combination of pitavastatin and 

prednisolone. On its own, prednisolone had no significant effect on the number of apoptotic 

cells. However, the number of live, early apoptotic and dead cells, defined by Annexin V 

and propidium iodide stained were significantly different from control in both cell lines and 

in both treatment regimens of pitavastatin alone and in combination with prednisolone. 

However, there were significantly more early apoptotic or dead cells in samples treated with 

the drug combination than in cells treated with pitavastatin alone (Figure 6-12, Figure 6-13). 
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Lastly, to confirm further that the reduction in cell viability and cells growth is attributed to 

induction of apoptosis, caspase-3/7 activity and PARP cleavage were assessed for each drug 

either alone and in combination. The combination caused significant activation of the 

effector caspases-3/7. Consistent with this, immunoblot analysis demonstrated that the 

prednisolone and pitavastatin combination caused significant accumulation of cleaved 

PARP that was greater than that observed with control and with each single agent (Figure 6-

14).  

 
 

Figure 6-11 Phase contrast microscopy images of Ovcar-4 cell line 

Ovcar-4 cell line exposed to the indicated drug concentration for 72 hours. Cells were exposed to 

vehicle, pitavastatin alone and in combination with prednisolone and visualized under phase contrast 

light microscope (representative of three experiments).  
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(A) 

 

  
(B) 

 
 

Figure 6-12 The effect of pitavastatin/ prednisolone combination on annexin 

V/propidium iodide staining on Ovcar-4 cell line 

(A) Ovcar-4 cells were exposed to the indicated drug concentrations for 48 hours, the cells were 

labelled with annexin V and propidium iodide and assessed by flow cytometry. The results shown 

are representative of 3 experiments. (B) The graph shows the percent of cells and were compared 

with the control untreated cells (*) or with pitavastatin alone (#). The results (mean ± S.D., n= 3) 

were significantly different were indicated (**, ##, P <0.01; ***, ###, P < 0.001) (ANOVA test 

followed by Tukey's post hoc test). 
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(A) 

  

   
(B) 

 

Figure 6-13 The effect of pitavastatin/ prednisolone combination on annexin V / 

propidium iodide staining on Cov-362 

(A) Cov-362 cells were exposed to the indicated drug concentrations for 72 hours, the cells were 

labelled with annexin V and propidium iodide and assessed by flow cytometry. The results shown 

are representative of 3 experiments. (B) The graph shows the percent of cells and were compared 

with the control untreated cells (*) or with pitavastatin alone (#). The results (mean ± S.D., n= 3) 

were significantly different were indicated (#, P < 0.05; **, ##, P < 0.01; ***, P < 0.001) (ANOVA 

test followed by Tukey's post hoc test). 
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Figure 6-14  Caspase 3/7 and PARP cleavage of Ovcar-4 and Cov-362 cell lines after 

exposure to pitavastatin and prednisolone combination. 

Caspase3/7 activity was measured by Caspase 3/7-Glo assay and the results expressed as fold of 

control (Mean ± SD; N=3). Cells were treated with the indicated concentrations of pitavastatin and 

prednisolone for 48 hours (Ovcar-4) or 72 hours (Cov-362). (n=3, **, P <0.01, ***, P < 0.001; Paired 

t-test). Note that it was not possible to calculate the expected additive effect from the Bliss 

independence criterion in these experiments because of the technical difficulty in accurately defining 

the maximum caspase 3/7 activity. PARP and PARP cleavage were measured for by western blot 

analysis (n=3). 
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6.4.8. The effect of pitavastatin/ prednisolone drug combination 

on mevalonate pathway 

Prednisolone regulates the expression of genes by binding to the glucorticoid receptor. This 

raised the possibility that the synergy between pitavastatin and prednisolone occurred as a 

result of modulating the expression of MP genes. Previous work has identified genes whose 

expression is altered in 3T3-L cells exposed to prednisolone. HMGCR, GGTI, GGTII, 

isopentenyl diphosphate isomerase (IDI1), mevalonate decarboxylase (MVD) and farnesyl 

diphosphate synthase (FDPS) were reported (Fleuren et al., 2013) to show decreased 

expression and so were selected for analysis by immunoblotting. 

The result showed that neither pitavastatin nor prednisolone when used as single agents 

significantly altered the levels of HMGCR, FDPS, IDI1, MVD, GGTI-β. However, the 

combination causes significant reduction in level of HMGCR and FDPS enzyme when 

compared to the control of untreated cells. In contrast, GGTII-β was reduced upon exposure 

to either pitavastatin or prednisolone as single agents as well as in cells exposed to the 

combination of these two drugs (Figure 6-15). 

Lastly, it can be concluded that the antiproliferative activity of pitavastatin against OC cell 

lines is potentiated by prednisolone. The mechanism of this potentiation might be due to 

reduction of the level of HMGCR, FDPS and GGTII-β enzymes level. 
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Figure 6-15 The effect of pitavastatin/ prednisolone combination on mevalonate 

pathway enzymes. 

Ovcar-4 and Cov-362 cell line were exposed to the indicated drug concentrations for 48 hours or 72 

hours, respectively. The level of MP enzymes was detected immunoblotting for HMGCR, GGTI-β, 

GGTII-β, FDPS, MVD, IDI1 and GAPDH, (n = 3).   



Chapter Six | Pitavastatin and Prednisolone 

201 

6.5. Discussion  

Statins in general are well tolerated when used at standard doses as anti-

hypercholesterolemia agent in clinic (Ose et al., 2010). However, to cause apoptosis in 

cancer cells, high doses are likely to be required, creating a challenge for redeployment of 

statins as chemotherapeutic agent. A previous study has suggested that continuous inhibition 

of MP in vitro is required to elicit the anti-cancer activities of statins (Robinson et al., 2013). 

The use of statins at a high dose with continuous administration brings with it the substantial 

risk of an increase in adverse effects. The identification of appropriate drug combinations 

has the potential to increase the therapeutic window for statins. Thus pitavastatin was 

evaluated in combination with library of 100 off-patent drugs. The screen identified 

prednisolone, rifampicin, praziquantel, flutamide, mefenamic acid as hits which potentially 

potentiate the activity of pitavastatin against OC cell line. Of these, prednisolone showed the 

most significant synergy with pitavastatin. In addition, six compounds showed significant 

growth inhibitory activity against Ovcar-4 cell line when they were tested as single agents.  

It is well known that steroids have the ability to induce apoptosis in lymphoid cells (Sionov 

et al., 2008). In contrast to haematological malignancies, steroids as monotherapy show only 

limited activity in breast and prostate cancers but not in other cancer types (Ishiguro et al., 

2014; Lin and Wang, 2016). In accordance with these reports, the results showed that growth 

inhibitory activity of prednisolone were limited against OC cell lines. Despite the limited 

antitumour activity of steroids in solid tumour, it is still indicated as adjuvant therapy to 

reduce the adverse effects associated with cytotoxic drugs (Lin and Wang, 2016). In contrast, 

pitavastatin had significant growth inhibitory activity. It had been discussed previously that 

pitavastatin mediates cell death through reduction of MP intermediate metabolite (Casella et 

al., 2014; Robinson et al., 2014). Inhibition of the MP cause disruption of several GTPase 
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function which are involved in cell signalling, regulating cell cycle progression and cell 

survival (Swanson and Hohl, 2006; Rajalingam et al., 2007). In support of this, statins induce 

apoptosis associated with an increase in release of mitochondrial cytochrome C to cytosol, 

and activation of caspases 3, 8 and 9 (Hoque, Chen and Xu, 2008; Tu et al., 2011).  

The synergy between the pitavastatin and prednisolone combination identified in the screen 

was verified in several assays including cell growth assays in monolayer and in 3D cell 

culture. Phase contrast microscopy shown some features of apoptosis induction (Elmore, 

2007). Cells observation under microscopy revealed more significant rounding, blebbing and 

detachment from the plate in cells treated with the drug combination than in cells treated 

with the single agents. Cell death was mediated, at least in part through induction of 

apoptosis, because the combination synergistically increased caspase activity and PARP 

cleavage. The observation that the combination is synergistic in several assays gives 

confidence in the claim that pitavastatin and prednisolone interact synergistically. 

It had been shown that MP intermediate metabolite, mevalonate and geranylgeranyl 

pyrophosphate reverses statin-induced apoptosis in cancer cells (Wong et al., 2007). In 

addition, in the previous chapter, it has been observed that inhibition of both GGTI and 

GGTII are responsible for the potentiation of pitavastatin activity. To confirm that the 

mechanism of pitavastatin prednisolone combination induced apoptosis in OC cells through 

MP, cells were co-incubated with mevalonate, geranylgeraniol or farnesol. Only mevalonate 

and geranylgeranyl pyrophosphate were able to rescue cell growth, whereas farnesol could 

not rescue cells from the antiproliferative effect of pitavastatin prednisolone combination. 

This confirms that the combination works through inhibition of the mevalonate pathway and 

also suggests that geranylgeranyl transferases play a more critical role than farnesyl 

transferases in the activity of the combination. 
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To unveil the precise mechanism by which prednisolone was synergistic with pitavastatin, 

levels of MP enzymes were investigated by immunoblotting. An earlier study which aimed 

to characterize prednisolone-induced alterations in gene expression was considered. 

HMGCR, GGTI, GGTII, IDI1, MVD and FDPS showed altered expression and so were 

selected for analysis in these experiments (Fleuren et al., 2013). The result revealed that the 

prednisolone-pitavastatin combination cause significant reduction in level of HMGCR and 

FDPS enzymes. However, a reduction of GGTII-β was observed following exposure to 

either drugs when used as single agents or in the combination. This suggests that 

prednisolone-pitavastatin combination is particularly synergistic because multiple points in 

the MP are affected by the drug combination. The effect of steroids on MP enzymes activity 

had been reported previously. Investigation of the short term effects of dexamethasone in rat 

hepatocytes revealed that there is reduction in cholesterol synthesis (Giudetti and Gnoni, 

1998). Dexamethasone also causes down regulation of HMGCR and FTase enzymes activity 

in rat AR 4-2J cells. Specifically, the authors found that there is significant reduction in FT-

α subunit upon treatment of the cells with dexamethasone for 48 hours. In contrast, the β-

subunit of the enzyme was either unchanged or slightly reduced (Lambert and Bui, 1999). 

However, it was claimed that even 50 % reduction of FT activity is not sufficient to prevent 

Ras isoprenylation and Ras protein were even found to accumulate during dexamethasone 

treatment (Lambert and Bui, 1999). Therefore, it is plausible that a relatively small amount 

of enzyme is sufficient to maintain prenylation process, or the interplay between 

prenyltransferases enzymes allows one to compensate for the reduction of one of the other 

enzymes which maintain the cell growth and integrity. It is perhaps for this reason that 

relatively high concentrations of pitavastatin are required to induce apoptosis (Bell et al., 

2011; Cerami et al., 2012; Gao et al., 2013). This highlights the critical role of the 

mevalonate pathway in OC. 
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The identification of at least some of the mechanisms by which the drug combination reduces 

the level of MP enzymes is not trivial because the regulation of MP is extremely complex 

(Dimitroulakos et al., 1999). The enzymes of MP, especially HMGCR, are exposed to a  

stringent level of feedback control mechanisms which is mediated by sterol and non-sterol 

products of the pathway (DeBose-Boyd, 2008). The HMGCR enzyme is regulated at several 

levels including regulation of its catalytic activity, its rate of degradation and synthesis 

(Smith and Johnson, 1989). Oxysterol, which is a natural endogenous regulator of 

cholesterol biosynthesis, is a product of MP participates in cholesterol homeostasis by 

altering enzymes stability and/or activity. It has been reported that oxysterol affects the 

activity of HMGCR, sequalene monooxygenase, FDPS and several enzymes in cholesterol 

biosynthetic pathway (Smith and Johnson, 1989; Schroepfer, 2000). For example, oxysterol 

accelerates the degradation of HMGCR through sterol-sensing domain in an Insig-dependent 

approach  (Luu et al., 2016). Oxysterol prevents the SREBP and SCAP complex from 

translocating to the Golgi complex and the subsequent proteolytic cleavage of SREBPs 

stimulate the transcription of genes encoding most of the enzymes in sterol biosynthetic 

pathway (Horton, Goldstein and Brown, 2002). Therefore, it might be speculated that 

steroids, which have the same ring structure as oxysterols, might  bind to  SREBP (Zhang, 

Dricu and Sjövall, 1997) leading to SREBP degradation and eventually decreasing the 

expression of MP enzymes. Therefore, it is possible that prednisolone triggers the reduction 

of HMGCR and FDPS enzymes either by decreasing transcription or increasing the 

degradation or both. Thus, adding prednisolone to pitavastatin may compensate for the 

reduction in sterols resulting from inhibition of the MP. The loss of the sterols can upregulate 

HMGCR as a result of the sterols no longer activating negative feedback through SREBP. 

Inclusion of prednisolone may prevent upregulation of HMGCR by reactivating the 

negative-feedback mechanism and hence synergize with pitavastatin. 
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In addition to sterols, another line of evidence for a negative feedback regulatory role of the 

pathway products is provided by the steroid hormones (Zhang, Dricu and Sjövall, 1997; 

Dimitroulakos et al., 1999). For example, the addition of either dehydroepiandrosterone or 

5-pregnen-3β-ol to diet strongly supress the HMGCR activity and cholesterol synthesis in 

the liver of mice and rat (Zhang, Dricu and Sjövall, 1997). Furthermore, an in vitro study 

has shown that dehydroepiandrosterone depleted the intracellular mevalonate pool and 

protein prenylation of human colonic adenocarcinoma cells exposed to growth inhibiting 

concentrations of the hormone (Schulz and Nyce, 1991). In contrast, there were more 

complicated responses to the effect of dexamethasone on a Rab protein isoforms on 

pancreatic AR42J cells. Dexamethasone causes downregulation of Rab3A, Rab3C and 

Rab3D, whereas Rab3B was upregulated at the mRNA and protein level (Klengel et al., 

1997).  

The observed synergy of pitavastatin and prednisolone might also be explained by the 

modulation of glucose metabolism induced by statins. It has been reported that inhibition 

of glycolysis enhances the sensitivity of resistant acute lymphoblastic leukemia cells to 

prednisolone therapy (Hulleman et al., 2009). Statins induce cell death by reduction of 

the MP product but the accumulation of the upstream product such as Acetyl CoA, might 

play a role as well. The accumulation of this metabolic precursors blocks glucose uptake 

through feedback inhibition of the glycolysis pathway (Jenkins et al., 2011; Warita et al., 

2014). GLUT1, a glucose transporter protein, is highly expressed in OC and its expression 

was correlated with the tumour type (benign, borderline, or malignant) (Kellenberger et 

al., 2010). In addition, it has been reported that statin cause reduction of GLUT activity 

in number of cells such as hepatic, adipose, muscle, or endothelial origin (Malenda et al., 

2012). Furthermore, the presence of glucose is essential for Akt pathway to promote 

mitochondrial integrity and inhibit cytochrome c release. Therefore, reduction of glucose 
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uptake might promote the process of programed cell death (Robey and Hay, 2006). There 

is considerable evidence that steroids might induce the apoptotic pathway. Although 

prednisolone did not induce caspase activity and PARP cleavage at the concentration tested, 

it was observed following exposure to the combination with pitavastatin. Steroids had the 

ability to induce the pro-apoptotic member of the Bcl-2 family, such as Bim, Bad and Bid 

and/or repress the anti-apoptotic members, such as Bcl-2, Bcl-xL and Mcl-1 (Schlossmacher, 

Stevens and White, 2011). In addition to the caspase-9 and -3 activation, steroids might 

induce the activity of caspase-8, as well (Sionov et al., 2008). The activation of intrinsic and 

extrinsic apoptotic pathway allows procaspase-9 processing which activates the effector 

caspase-3 (van de Donk et al., 2003).  

In conclusion, drug repositioning holds a great opportunity to find new indications and new 

drug combinations. Pitavastatin, but not prednisolone, reduces the viability of OC cells. 

However, the anti-cancer activity of pitavastatin is potentiated significantly upon the 

combination with prednisolone and was found to be mediated through the MP by rescuing 

cells upon the addition of pathway intermediate metabolite. In addition, exploring the 

mechanism of synergy by the combination revealed that there is significant reduction in level 

of HMGCR and FDPS. It has been proposed that because of structural similarity of 

prednisolone and sterols, prednisolone might replace the sterol pool depleted by statins, and 

maintain the negative feedback loop in the pathway. Therefore, there is a potential 

therapeutic advantage of combined application of pitavastatin and prednisolone. Clinical 

trials of prednisolone and pitavastatin are warranted.
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Conclusion and further work 

Drug resistance is one of the main hindrances to improving a patient’s prognosis and 

contributes significantly to the poor survival rate of OC patients (Cruz et al., 2017). 

Therefore, new strategies for treatment of OC are a pressing requirement. Targeting 

metabolic pathways offers an exciting new potential therapy in the treatment of malignant 

disease.  

Understanding the association between MP and malignancy is important for determining 

new therapeutic strategies (Likus et al., 2016). Therefore, several enzymes in MP have been 

evaluated in this study and the results showed that HMGCR, a metabolic oncogene, is 

overexpressed in OC cell lines in comparison to normal ovarian cells and the level of GGTI 

and GGTII is also higher in at least a subset of OC cell line compared to normal cell line. 

This indicated that the MP is deregulated in OC cell lines. The deregulation of MP has been 

linked with carcinogenesis process and resistance to cytotoxic drugs (Mullen et al., 2016). 

Malignant cells are more dependent on metabolites supplied by the pathway compared to 

their normal cellular counterparts (Siperstein, 1970). A previous study found that there is 

elevated level of mevalonate synthesis in breast, lymphoma, leukaemia and prostate cancer 

(Koyuturk et al., 2007) which might be caused by aberrant activation of SREBP, a master 

regulator of the MP enzymes (Swinnen, Brusselmans and Verhoeven, 2006). In addition, the 

role of TP53 in regulation of MP had been evaluated in OC cell lines and it was found that 

ectopic expression of p53 increases the level of MP enzymes and knockdown of the mutated 

p53 form reduces the level of MP enzymes. This highlights the importance of p53, which is 

almost ubiquitously altered in high grade serous OC, in the regulation of the MP. It also 

underscores the potential for MP inhibitors to treat OC. However, evaluation of the effect of 

p53 mutations in the sensitivity of OC cell line to statins therapy might reveal new avenues 
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for more targeted therapeutic interventions. A computational approach using gene expression 

has shown a number of pathways that may result in synthetic lethality if targeted in mutant TP53 

tumours (Wang and Simon, 2013). Additionally, many of the TP53 mutant gain of function 

properties rely on  p63 and p73 (Mantovani, Walerych and Sal, 2016). Therefore, 

investigation of the effects of these two family members deserves further investigation. 

The preclinical studies showed that MP inhibitors are effective in vivo and in vitro (Demierre 

et al., 2005; Kumar et al., 2006; Lim et al., 2009; Kidera et al., 2010; Martirosyan et al., 

2010; Cao et al., 2011; Vallianou et al., 2014; Vogel et al., 2017). The most important 

advantage observed with statins antitumour effects is that they retain their potency against 

OC cell line which is relatively resistant to the chemotherapy (Robinson et al., 2013). 

Previous study found that continual blockade of HMGCR with long half-life statins was 

required for inducing cell death (Robinson et al., 2013). In addition, there are several 

pharmacologically tractable targets in MP which could be evaluated to identify potential 

combination to increase the sensitivity of OC cells to pitavastatin. The result presented in 

chapter 5 showed that inhibition of the FDPS with zoledronic acid and to lesser extend 

risedronate potentiate the activity of pitavastatin. In contrast, inhibition of the GGTI, by 

GGTI-2133 or GGTI-β or GGTII-β using siRNA were unable to increase the sensitivity of 

OC cell lines to pitavastatin. However, the sensitivity of the OC cell lines to pitavastatin 

activity increase by combined inhibition of both GGTI-β and GGTII-β. Therefore, it might 

be argued that the redundant prenylation by the geranylgeranyl transferases enable the cells 

to survive. It has been reported that resistance to FTase inhibitors arise as result of 

redundancy (Park et al., 2014) leading to geranylgeranylation in place of farnesylation. In 

addition, it seems likely that the activity of pitavastatin is driven through inhibition of broad 

range of Ras family of proteins or at least subgroups of these proteins from each transferase. 

This suggests that designing inhibitors that target both transferases might be superior to 
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molecules that inhibit either enzymes. However, this raises a concern about the possible 

adverse effects that might resulted from inhibition of broad range of isoprenylated proteins.  

Screening a library of oral available off-patent drugs for combinatorial application with 

pitavastatin revealed that there are number of compounds that enhance the activity of 

pitavastatin. The results showed that prednisolone significantly potentiated the activity of 

pitavastatin. It is found also that the prednisolone-pitavastatin combination reduces the level 

of HMGCR and FDPS enzymes, which reinforces the importance of these two enzymes 

which were also inhibited by the previously assessed combination of pitavastatin and 

zoledronic acid. These combinations of zoledronic acid or prednisolone and pitavastatin 

might be a suitable option to improve the therapeutic windows of pitavastatin. Evaluation of 

these combinations in clinical trials will determine the usefulness of this strategy in the 

treatment of OC.  

In addition, there are still several compounds that might be a potential candidate for 

combination with pitavastatin. These compounds were identified in the screen described in 

chapter 6 and include rifampicin, praziquantel, flutamide, mefenamic acid. Furthermore, 

evaluating the effect of drugs which showed significant activity against Ovcar-4 cell line 

when they were tested as single agents (zinc acetate, niclosamide, mebendazole, 

desferrioxamine mesilate, methotrexate and bortezomib) may be worthwhile.  

The antitumour activity of statins has been confirmed in OC (Melichar et al., 1998). 

However, to achieve plasma concentration that inhibit the growth, statins may need to be 

used close to their maximum tolerated doses which might cause adverse effects (Robinson, 

2015). Although it has been stated that inhibition of prenyltransferases by statins might not 

be the causative of cytotoxicity in muscle (Gee et al., 2015). Myopathy, and particularly 

rhabdomyolysis remains as one the most devastating consequences of high dose of statins 
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(Chaipichit et al., 2015). The combination of either zoledronic acid or prednisolone with a 

statin might aggravate the myopathy induced by the statin. Therefore, patients should be 

monitored during clinical trials, and laboratory analysis including frequent routine studies 

which include hematological studies, liver function test, urinalyses, and determinations of 

creatine phosphokinase, alkaline phosphatase,  serum calcium, electrolytes and fasting blood 

sugars (Kofman et al., 1958). However, it has been suggested recently that curcumin, a 

natural dietary polyphenol, might supplemented as an adjunct to statin therapy in patients 

with muscle symptoms (Sahebkar et al., 2017).  

Research is underway to identify a therapeutic marker in order to select which patients might 

benefit from treatment with pitavastatin. In this study there were no significant correlation 

between HMGCR level and statin sensitivity in OC cell lines which might indicate that other 

molecular features influence the sensitivity to statins (Goard et al., 2013). It is found that the 

level of GGTI-β were positively correlated with the OC cell line sensitivity to pitavastatin 

activity. The importance of the MP suggests that a complete screening of the expression of 

pathway enzymes using immunohistochemistry tissue microarray might be worthwhile. This 

will provide an overall picture of these enzymes in OC tissue compared to the normal tissue 

counterpart. Looking at this from a slightly different perspective, biomarkers may also 

predict which patients are resistant to pitavastatin. In contrast to GGTI,  a number of Rabs 

are also involved in drug cytotoxic drug resistance (Recchi and Seabra, 2012). For example, 

Rab8 overexpression in sensitive cancer cells enhance the resistance to cisplatin (Shen and 

Gottesman, 2012). In addition, It was reported that Rab25 is overexpressed in OC and it is 

correlated with poor prognosis (Mitra, Cheng and Mills, 2012). The results showed that 

pitavastatin decrease the level of GGTII-β and Rab6A. Therefore, this study highlights the 

significance of GGTI and GGTII enzymes not only in potentiation of the activity of 
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pitavastatin but also as a potential marker for statin sensitivity which warrant further 

evaluation.  

For the pitavastatin combination with zoledronic acid, a number of issues remain to be 

addressed. Although zoledronic acid was synergistic with pitavastatin in the majority of cell 

lines, the drug combination was antagonistic in Ovcar-3 cells. It is also unclear why less 

synergy observed when pitavastatin was combined with risedronate instead of zoledronic 

acid. Indeed, an antagonistic interaction as observed between risedronate and pitavastatin in 

Ovcar-3 cells as well as Ovcar-8 cells. It can currently only be speculated what is the cause 

for these observations. In the case of Ovcar-3 cells the presence of insulin in the Ovcar-3 

growth medium, but not in the media for other cell lines, may contribute. The genetic 

background of the cells is also likely to play a key factor (Jukema et al., 2012), but the 

identification of additional cell lines in which antagonism is observed would be necessary to 

assist in identifying mutations or epigenetic changes which are associated with antagonism 

between bisphosphonates and statins. There is also currently no clear model that links 

reduced protein prenylation and the induction of apoptosis. It has been observed activation 

of both caspase-8 and caspase-9, as well as the effector caspases3/7. This may represent 

separate activation of both the extrinsic and intrinsic pathways or cross-talk between these 

pathways, for example by cleavage of BID. Further studies are required to address these 

issues. 

The consideration of statins selection and dosing frequency in clinical trial for treatment of 

cancer has been mentioned. However, a recent study from our laboratory has implemented 

further consideration of the patient’s diet for successful use of pitavastatin in clinical trials. 

It is found that presence of geranylgeraniol in mouse food may reverse the cytotoxic activity 

of statins and feeding mice with controlled diet led to improve statin efficacy (de Wolf et 
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al., 2017). It is also had been reported that adding high fat diet reduce the activity of statins 

and increase renal tumour cell growth in mice (Koike et al., 2011, 2012). In addition, feeding 

mice with a high fat diet has been found to inhibit the antitumour activity of the monoacyl 

glycerol lipase enzyme in xenograft study (Nomura et al., 2010). Further research could 

determine the effects of different foodstuffs on statin activity and help to establish a guide 

line for suitable food consumption during clinical trials.  

Most of the OC patients are diagnosed at late stage (75%) when the disease has already 

spread beyond the ovary at the diagnosis and those patients have very low cure rate (>20%) 

(Lorusso et al., 2003). Successful adhesion of transformed cells is a key feature for the 

peritoneal spread of OC. Peritoneal metastasis is associated with resistance to chemotherapy 

(Ayantunde and Parsons, 2007). It has been reported that mutant TP53 gain of function 

stimulates adhesion of OC cells to mesothelial cells (Lee et al., 2015). For instance, several 

TP53 mutant variant, such as R175H, R248Q and R273H have been reported to promote cell 

migration and invasion in endometrial and lung cancer cells (Pabla and Dong, 2008; 

Yoshikawa et al., 2010; Yeudall, Wrighton and Deb, 2013). In addition, the role of MP in 

metastasis is well documented (Likus et al., 2016). Therefore, understanding the role of 

different TP53 mutations on cell adhesion, migration and invasion and exploring the role of 

statins might provide a new therapeutic approaches to prevent peritoneal metastasis. 

In addition to prenylation, some of GTPase family proteins are subjected to phosphorylation 

as well. The induction of phosphorylation of Cdc42, RhoA and K-Ras by protein Kinase C 

mediates their relocation from plasma membrane to cytosol (Forget et al., 2002; Bivona et 

al., 2006). However, it is not known whether the translocation induced by phosphorylation 

leads to loss or change in the function of Ras proteins (Berndt, Hamilton and Sebti, 2011). 

For example, K-Ras phosphorylation by PKC mediates its removal from cell membrane to 
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mitochondrial membrane where is interact with BclXL and induces programed cell death 

(Bivona et al., 2006). In addition, phosphorylation of Rab6, RhoE and RalA by aurora kinase 

A activated their functions (Berndt, Hamilton and Sebti, 2011). Therefore, this suggest that 

statins activities might synergize with PKC agonists such as bryostatin or Aurora kinase 

inhibitors. In addition, it is important to peruse a potential role of the unprenylated Ras 

proteins in driving the activity of the MP inhibitors.  

The data presented here has pointed to a role for the inhibition of geranylgeranyl transferase 

enzymes to potentiate the activity of pitavastatin. However, this approach might be 

associated with several adverse effects. Therefore, another major challenge in the field of 

exploring the mechanism of MP inhibitors is to identify the prenyl transferase substrates 

which are responsible for mediating the antitumour activity in different cancer types. It has 

been confirmed experimentally that more than 100 proteins undergo prenylation and several 

hundreds of other proteins also bearing the CAXX box whose prenylation is waiting to be 

confirmed (Maurer-Stroh et al., 2007; Berndt, Hamilton and Sebti, 2011). The importance 

of prenylated proteins in malignant transformation has promoted interest in developing 

inhibitors of the prenyl transferases enzymes as anticancer agents. However, the standard 

method for the following the activity are dependent on individual protein (Berndt and Sebti, 

2011). Therefore, global scale analysis protein prenylation is required to understand and 

interpret the effects of MP inhibitors on signalling transduction pathways which might lead 

to identify the mechanism of action and discover a biomarker for the therapy. 

Taken together, these evidence suggest that the MP is an important target for cancer 

treatment. In addition, these data suggest that drug combinations inhibiting multiple points 

in the MP may increase the therapeutic window for pitavastatin and offer a potential 

treatment option for management of OC. 
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Appendix (I) 

Ovcar-4 cell line (5000 cells/well/96 well plate) were exposed to the vehicle, pitavastatin (10µM), 

library compounds and to a combination of individual compound with pitavastatin for 72 hours. A 

triplicate of each drug addition was made and drugs effect measured using SRB assay (Mean±SD; 

n=2).  
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