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Abstract 

 

Human mesenchymal stem cells (hMSCs) have multiple potential roles in regenerative 

medicine. These roles revolve around the exploitation of their multipotent differentiation 

potential, their immunogenic privilege, or the broad range of molecules they secrete. The 

functions of these molecules include stimulation of cell migration during wound repair, 

activation of endogenous tissue-specific stem cell pools, and suppression of T-cell-based 

inflammatory responses. hMSCs have been exploited clinically in the treatment of graft 

versus host disease following bone marrow or organ transplant via systemic administration 

and in other indications including ischemic heart disease, Crohn’s disease, and diabetes 

mellitus. However, the mechanisms underlying the regenerative potential of hMSCs are still 

uncertain. Moreover, the effectiveness of hMSCs-based cell therapy has been doubted 

because the therapeutic actions have often been noticed in the absence of hMSCs homing 

to the target tissues. Thus, indicating that the level of improvement of diseased tissues is 

not reciprocal to the observed target tissue homing/differentiation, suggesting that it may 

play an indirect role in tissue regeneration or it may have a dualistic mode of action. 

 

Irrespective MSCs provide a great promise in the treatment of degenerative disorders and 

inflammatory ailments. However, there are still many challenges to overcome prior to their 

widespread clinical application. For instance, their ambiguous paracrine mechanism 

remains a matter for controversy and exploration; moreover, current in vitro cultures have 

limited success in reflecting many aspects of the in vivo niche – including oxygen level. This 

study focused on the paracrine properties of hMSCs with a particular focus on their role in 

immunosuppression and anti-inflammation. Coupled to this we explored oxygen-

dependent regulation of the paracrine biology of MSCs focussing on a number of important 

paracrine factors with roles in immunomodulation. Serum free-conditioned media (SFCM) 

were used as a model to characterize the immune sentinel function of MSCs. Proteomic 

analysis indicated that SFCM of hMSCs contained various cytokines which may play an 

important role in the suppression of inflammation and that the composition and 
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concentration of SFCM was oxygen dependent. Intermittent hypoxia (IH) initiated a stark 

upregulation of paracrine factor secretion. The therapeutic effectiveness of SFCM was 

reflected via its efficacy across two in vitro cell line models; SFCM suppressed T cell model 

activation (Jurkat) in an oxygen independent manner while the modulation of macrophage 

(THP-1) terminal differentiation was oxygen sensitive. Collectively, IH SFCM suppressed the 

immune response at T cell and antigen presentation levels while air oxygen (21% O2) 

cultured hMSC SFCM supressed the immune response at T cell level and maintain the 

antigen presentation which might elicits the immune response. 

 

These optimized in vitro-culture findings support clinical application of hMSCs and/or their 

secretory factors as a pharmacoregenerative modality for the treatment of non-curative 

diseases, such as, rheumatoid arthritis, Crohn’s disease, myocardial infarction, and 

advanced critical limb diseases. Moreover, this property may be harnessed to produce an 

optimized acellular biological product with immunomodulatory actions similar to hMSCs, 

leading to production of an “off-the-shelf” biological product. The production of such 

biological products will have important economic considerations in cell-based therapy. 
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1.1 Mesenchymal stem cells 
 

hMSCs are stromal cells which are widely distributed throughout the body but commonly 

isolated in vitro from; bone marrow, adipose tissues, and umbilical cord blood1. They are 

characterised by a capacity for finite serial passaging expansion, multiple lineage 

differentiation, and trophic factors secretion together with engraftment potentials, 

regeneration, and immunoregulatory functions2,3. There is some controversy regarding the 

identity of MSCs; however, the International Society for Cellular Therapy has defined 

minimal guidelines for MSCs characterisation including; plastic adherence, multi-lineage 

differentiation into fat, bone, and cartilage, together with a surface expression of stem cell 

markers (CD73, CD90, and CD105), with lacking expression of haematopoietic markers 

(CD34, CD45, CD11a, CD19 or CD79a, CD14 or CD11b and histocompatibility locus antigen 

(HLA)-DR)4. MSCs have potential therapeutic value in inflammatory diseases and it has been 

confirmed that hMSCs mitigate the acute phase of graft versus host disease5,6, manipulate 

the early inflammatory response associated with kidney injury7,8, and improve 

inflammatory phase of immunological diseases like hepatitis9, arthritis10, and organ 

transplantation11. 

 

The main role of hMSCs in bone marrow biology is the regulation of homeostasis of the 

hematopoietic stem cells (HSCs) in an undifferentiated state12. MSCs provide an 

immunosuppression environment within the bone marrow niche, inhibiting autoimmune 

responses by mature T cells until naïve immune cells are released to the periphery13. The 

immunoregulatory properties of hMSCs, together with the in vitro isolation and expansion 

of MSCs, make these cells an attractive candidate for cell biotherapy. Additionally, hMSCs 

are characterised by an intrinsic immune-privileged nature, demonstrated by low 

expression levels of MHCI and no expression of MHCII, protecting them from allogenic 

reactions and NK cytotoxicity14. 

Stem cells can be primarily categorised based on differentiation potential into 4 categories; 

totipotent stem cells which have the capacity to differentiate to all possible cell types, for 
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example, zygote formed at egg fertilisation. Pluripotent stem cells have the ability to 

differentiate into derivatives of the 3 germ layers (ectoderm, mesoderm, and endoderm), 

e.g. embryonic stem cells. Multipotent stem cells have the ability to differentiate into 

multiple cell types of the same family, such as haematopoietic stem cells, which give rise 

ito red blood cells, white blood cells, and platelets15,14. Adult stem cells (ASCs) are thought 

to be present in all tissues; have been isolated from the bone marrow, brain, liver, lung, 

fetal blood, umbilical cord blood, kidneys, adipose tissue, and placentas16. hMSC from bone 

marrow were originally characterised by their plastic adherent spindle-shaped cells with a 

capacity to form colonies called colony-forming unit fibroblasts (CFU-F)17. hMSCs are 

characterised by their multipotent differentiation potential into fat, bone, cartilage, and 

muscle (Figure 1-1)18. Moreover, MSCs trans-differentiation into cell types representative 

of liver, neuron, and astrocytes has been reported19. 

 

Recent studies have confirmed the immunomodulatory properties of MSCs. Mouse and 

human MSCs originating from bone marrow, fetal membrane, placenta, amniotic MSCs, 

dental pulp or umbilical cord, express MHC class I but not MHC class II antigens20,21,14. 

However, some studies have demonstrated that IFNγ can induce upregulation of MHCII on 

MSCs derived from bone marrow, placenta, and umbilical cord22. The up-regulation of MHC 

class II by IFNγ does not elicit alloreactive lymphocyte proliferative responses20,23. These 

data are controversial, because the stimulation of MSCs with high-dose of IFNγ can induce 

the proliferation of allogeneic T cells24,25,26. However, high doses of IFNγ have also been 

noted to reduce the expression of MHCII on MSCs resulting in a loss of the ability of hMSCs 

to act as antigen-presenting cells26. Therefore, it’s believed that MSCs can modulate their 

immunomodulatory properties according to their localised milieu.  
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Figure 1-1. Schematic overview of signalling molecules and transcription factors 

involved in the regulation of differentiation of mesenchymal stem cells (MSCs). 

BMP-2 indicates bone morphogenetic protein-2; EGF, epidermal growth factor; FGF-2, 
fibroblast growth factor-2; LRP5/6, low-density lipoprotein receptor-related protein-5/6; 
MEF2, myocyte enhancer factor-2; MRF, myogenic regulatory factors; Osx, Osterix; PDGF, 
platelet-derived growth factor; RUNX2, runt-related transcription factor-2; TGFb, 
transforming growth factor-β; and VEGF, vascular endothelial growth factor. 

Reprinted from Karantalis et al, 201527 with permission from Circulation Research, License number 4200780800970. 

1.2 In vitro recreation of bone marrow niche physioxia versus air oxygen tension 
 

The anatomical design of bone marrow is complex. The structure consists of haematopoetic 

and adipose cells surrounded by sinusoidal vessels. The cells are arranged in a well-

organised order with progenitors located in foci away from the vessel sinuses while mature 

cells are adjacent to the blood stream enabling gradual escape to the blood according to  

body demands28. This organised morphological architecture positions progenitor cells; 

including MSCs, far away from sinuses under a gradient hypoxic environment (1-6% O2) 

depending their location relative to the sinuses29,30. 
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In healthy tissue, physiological normoxia (physioxia) is a characteristic feature of the 

natural in vivo environment.  MSCs exist within the lower limits of physioxia norms despite 

their perivascular localization in niches adjacent to blood vessels (Figure 1-2). Tissue oxygen 

tension is significantly lower than the inhaled exogenous air (21% O2) and it declines 

gradually as it passes from the lung to the tissues; ranging between 0.1% - 9% with an 

average of 2% O2
31,32,33,34. This intrinsic low physioxic value may be responsible for the 

maintenance of MSC plasticity and proliferation capacity 33,29,32. Recent reports have 

confirmed that in the presence of reprogramming factors physioxic oxygen levels in vitro 

can promote the generation of induced pluripotent stem cells from human adult somatic 

cells35. Likewise in disease, damage, or disorder states tissue injury can be associated with 

inflammatory hypoxia due to the activation of a coagulation cascade with an accompanying 

and subsequent release of MSC chemotactic factors resulting in localisation of migratory 

MSCs in a transiently hypoxic environment36. Some diseases for which MSCs are under 

current clinical trials including ischemic heart disease are characterised by a dualistic 

hypoxia; mechanical hypoxia due to narrowing of coronary blood vessels and biochemical 

hypoxia due to inflammation37. However, most research centres culture and characterise 

stem cells in air oxygen (21% O2) ignoring the importance of the niche-like physioxic 

paradigm and its important role in cell metabolic status, integrity, longevity and 

engraftment potential 38,39,40. 

 

With reference to exposure to different oxygen tensions the journey of the transplanted 

stem cell; from donor to recipient, could be broadly divided into in vitro and in vivo stages. 

The in vitro stage involves isolation and expansion while the in vivo stage includes both 

donor (before isolation) and recipient (after transplantation) physioxia31. Nevertheless, the 

physiological environment of the recipient is compounded due to the introduction of an 

intravenous (IV) dose of hMSCs first into the blood stream and an associated hypoxic shock 

followed by first-pass pulmonary effect (air oxygen)41 as the cells pass through the lungs 

further compounded by the limited free availability of dissolved oxygen in the bloodstream 

and the likely impact of pathological hypoxia42. Tracking the fate cycle of transplanted MSCs 
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before and after IV infusion suggest that exposure to different oxygen tensions may 

modulate the paracrine activity of hMSCs and consequently the efficacy of cell-based or 

cell-free therapy. Moreover, the injured tissues are associated with activation of 

coagulation cascade which is reciprocally associated with oxygen tension36. Interestingly, 

monocyte-macrophage differentiation ensues alongside the initiation of hypoxia in vicinity 

to pathological injury43. Therefore, culturing hMSCs under either a hypoxic or physioxic 

environment to mimic the in vivo milieu might significantly change MSCs behaviour 

including their paracrine and immunomodulatory properties. 

 

 

Figure 1-2. The stem cell niches in bone marrow.  

In the bone marrow haematopoietic stem cells (HSCs) and their progeny populate the 
vascular niche which is surrounded by stromal cells derived from MSCs. Comitted 
progenitors and differentiated cells are distributed in the central and perisinusoidal niches, 
respectively. Quiescent HSCs are in close association with endosteal osteoclasts and bone-
lining cells. As HSCs exit quiescence to proliferative states, they migrate and colonise the 
subendosteal perivascular niche, interacting with both endothelial cells and pericytes. 
Subendosteal sinusoid-derived pericytes serve as a source for new osteoprogenitors, which 
will differentiate into osteoclasts during bone remodelling. 

Reprinted from Grassel S et al, 200744, with permission from Frontiers in Bioscience. 
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MSCs behaviour in cell culture is different depending on the oxygen tension provided. Air 

oxygen pressure, 21%, is often referred to as normoxia whilst lower oxygen tensions, 

between 1% and 5%, are often referred to as hypoxic environments45. However, in regard 

to a cell type found at highest abundance with in the bone marrow, these “hypoxic” 

environments can in fact be considered to be physiologically normoxic (physioxic) whilst 

the air oxygen pressure presents a hyperoxic environment to mesenchymal stem cells46. 

Physiological (2% O2 or 5% O2) environments promote proliferation of MSCs whilst 

decreasing differentiation47. It was also reported that MSC cell expansion under 1% was 

lower than at 3%, indicating that there is a lower-limit to the effects of reducing oxygen 

levels during cell culture. Basciano et al (2011)45 add that lower oxygen tension during 

culture of MSC inhibits cellular differentiation even in differentiation promoting conditions. 

MSCs grown in hypoxic (5% O2) conditions maintain their differentiation potential through 

more passages than their counterparts cultured in air oxygen, which could be clinically 

beneficial by increasing the cells that can be yielded from a patient. As well as affecting 

rates of cell proliferation, changes in oxygen tension also result in changes of gene 

expression and protein production. MSCs in low oxygen environments upregulate 

expression of hepatocyte growth factor (HGF) and vascular endothelial growth factor 

(VEGF)48. Lönne et al (2013)49 describe cord blood derived mesenchymal stem cells 

upregulating expression of fibroblast growth factor 7 (FGF7), VEGF receptor 2, stem cell 

factor receptor and insulin like growth factor binding proteins 3 and 6 when cultured in 

lower than air oxygen concentrations. In contrast, air oxygen resulted in upregulation of 

bone morphogenic protein 4 (BMP4), endothelial growth factor (EGF) and tissue growth 

factor-b1 (TGFb1). Rhijn et al (2013)50 report that adipose derived mesenchymal stem cells 

(ASCs) maintain their immunosuppressive properties when cultured under hypoxia (1% O2). 

ASCs were able to inhibit stimulation of CD4+ and CD8+ T cell by anti-CD3/CD28 under air 

oxygen or physioxic environments. However, they did not aim to demonstrate whether 

either oxygen tension results in more efficient inhibition of the immune response. 
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The idea of optimisation of in vitro culture conditions for MSCs has been a subject of 

controversy over previous decades. Optimisation of oxygen culture conditions should be 

cell-specific because physiological oxygen tension ranges from as high as 12% O2 in arterial 

blood (though primarily complexed to haemoglobin) reaching virtual anoxic levels of 0.1% 

O2 in poorly vascularised tissues including cartilage and brain51. Early studies reported a 

rapid proliferation rate of hMSC in lower than air oxygen tensions, including prolonged 

exposure to 2% O2 resulted in 30 times higher cell number and the cell proliferation 

continued up to passage 7 in comparison to normoxia cultured hMSCs 
34,52. These earlier 

findings have been taken into consideration for culturing, isolation, and expansion of MSCs 

in order to optimise the end product for translational therapy.  

1.3 Mechanism of oxygen level-induced modulation of hMSC biology 
 

Culture of MSCs in air oxygen is a general laboratory practice though it has been reported 

that this atmospheric environment is associated with a reduction in proliferation. For 

instance, fibroblasts isolated from human or mouse show higher proliferation rate at low 

oxygen levels (3% O2) before undergoing senescence53. In line with this, hMSCs exhibited 

higher proliferation rates, lower rates of telomere shortening and decreased oxidative 

stress when cultured in low oxygen tension54. The mechanism of oxygen level driven 

modulation of cellular behaviours is linked to the Hypoxia inducible factors-1a (HIF-1a). Air 

oxygen induces degradation of HIF-1a while hypoxia stabilises HIF-1a because the prolyl-

hydroxylase enzyme uses oxygen as a catalyst cofactor for HIF-1a degradation32,55. HIF-1a 

binds to the RCGTG pentanucleotide present in the nucleic acid sequence of genes of 

interest, known as the hypoxia responsive element (HRE), and activates a group of genes 

that promote adaptation and survival. HIF-1 is a heterodimeric complex consisted of two 

subunits: the constitutively expressed HIF-1b and HIF-1a, which is sensitive to oxygen53.  

 

Many published in vitro proteomic studies conducted on SFCM revealed upregulation of 

measured bioactive factors in hypoxia (1-5% O2) over hyperoxia (20% O2) despite 

differences in the source of isolated MSCs; adipose56,57 or bone marrow58,59,60, and variation 
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in conditioning periods; short or long. Interestingly, leptin and VEGF; hypoxia markers58, 

were reported to be the most sensitive biomolecules to hypoxia by most cells. Alteration 

of these transcription factors could be linked to HIF-1a pathway; hypoxia stabilises HIF-1a 

and keeps MSCs in quiescent proliferation status, maximising the transcription of hypoxia-

responsive genes32,55. 

1.4 Characterization of hMSCs 

1.4.1 Proliferation capacity of MSCs 
 

By seeding bone marrow aspirate into plastic cell culture flasks which contained growth 

media (Parker’s 199), to antibiotics, and foetal calf serum (20%), Friedenstein et al. (1970) 

discovered that bone marrow was comprised of both non-adherent haematopoietic cells 

and an adherent cell population which represented approximately 1 in 10,000 nucleated 

cells. These cells have a clonogenic capacity and colonies originate from single cells. After 

attachment cells start to divide and proliferate into circular colonies18. These colonies 

consist of fibroblastoid cells and are termed Colony Forming Unit–fibroblastic (CFU-f). 

Moreover, Friedenstein detected that some colonies differentiated in vitro into a mass with 

features identical to bone and cartilage. Subsequent studies indicated that these cells were 

multipotent and have the capacity to undergo tri-lineage differentiation, into bone, 

cartilage, and fat cells, and even into muscle cells61. Presently these cells are described as 

mesenchymal stem cells due to their capacity to differentiate into cells of mesenchymal 

lineages or stromal cells because they are originated from stroma which has a maintenance 

function in the hematopoietic stem cell (HSC) microenvironment18. They have been the 

focus of extreme argument in relation to whether they are true stem cells or a multipotent 

progenitor of mesenchymal lineages, thereby it has been given the name “multipotent 

mesenchymal stromal cells” instead of “mesenchymal stem cells”62.  

 

The proliferation of MSCs is an important aspect of their biology. To overcome the inherent 

donor limitations in cell numbers coupled to a requirement to achieve minimum cell 

numbers for hMSC-based therapy, several cycles of in vitro proliferation are required to 
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achieve the goal. Continuous proliferation is associated with telomere shortening and 

continuous telomere shortening is associated with cessation of proliferation and loss of 

viability. A telomere is a sequence of nucleotides that consists of a sequence of repeats of 

TTAGGG and a complementary DNA sequence, AATCCC. Their maintenance is carried out 

by telomerase enzyme, telomerase is a reverse transcriptase that restores the DNA 

repeat63. Telomere function is crucial in providing DNA protection from degradation due to 

continuous replication, however, the telomere undergoes shortening over each cell 

division cycle due to partial replication at each telomere end per cell division cycle64,65.  

 

Samsonraj et al. 2013, demonstrated that hMSCs undergo telomere shortening with sub-

culture and expansion resulting in cessation of proliferation and hence cell senescence63. A 

separate study demonstrated that reduced oxygen culture decreased the rate of hMSCs 

telomere shortening compared to air oxygen cultured cells confirming that telomere 

shortening contributed to cell senescence in these telomerase negative cells and that 

premature senescence in air oxygen was likely linked to oxidative DNA damage occurring 

at the higher oxygen tension38. Moreover, it has been confirmed that both somatic cells 

and MSCs do not express  telomerase activity in comparison to positive control cells65, 

indicating that the mechanism of damage of DNA and telomere erosion in air oxygen 

tension is related to oxidative damage rather than telomere maintenance which is carried 

out by telomerase enzyme. Unlike somatic cells and MSCs, telomerase immortalised cell 

lines, cancer cell lines, and ESC display an unlimited proliferation potential 64,65,66. Reduced 

oxygen culture systems are described as having an impact on different cell aspects 

including proliferation, differentiation, and paracrine behaviour67,51. 

1.4.2 Differentiation capacity and markers of MSCs 
 

The current in vitro standard used to approve the identity of MSCs is their ability to undergo 

tri-lineage differentiation into osteocytes, chondrocytes, and adipocytes. This is readily 

achievable across all three lineages using long established protocols. To produce osteocytes 

from MSCs, cells should be cultured in a monolayer and incubated with a medium 
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containing FBS, vitamin C, β-glycerophosphate, and dexamethasone68. Exposure of MSCs 

to osteogenic media leads to mineralisation indicated by osteogenic nodules formation, 

calcium deposition, alkaline phospahtase expression and via molecular biology techniques 

including RTPCR of target genes including Runx2 and osteocalcin18,69,54.  

 

Producing chondrocytes from MSCs can be achieved by first generating a cell pellet. The 

macro-aggregate is then incubated in a serum-free high-glucose DMEM medium 

supplemented with dexamethasone, ascorbic acid, sodium pyruvate, L-proline, 

transforming growth Factor-b (TGFb), and ITS (insulin, transferrin, selenious acid)70. The 

confirmation of chondrogenic differentiation can be achieved morphologically by staining 

with Alcian blue71. Positively labelled regions represent the precipitated proteoglycans, 

such as, glycosaminoglycans in the cytoplasm of the differentiated cells in response to their 

exposure to target differentiation media71. Further assessment of chondrogenic expression 

can be achieved via gene expression of Sox5, Sox6, Sox9, aggrecan, and type II collagen54. 

The production of adipocytes from MSCs requires a DMEM medium containing FBS, 

dexamethasone, insulin, isobutyl methyl xanthine, and indomethacin72. Adipocyte 

differentiation is morphologically confirmed by the presence of lipid vesicles via oil red O 

staining73. Moreover, the adipogenesis is characterised by induction of genetic 

transcription of peroxisome proliferator-activated receptor gamma (PPAR-γ), C/EBP-α and 

C/EBP-β, and Wnt signalling74. 

 

Reports have suggested that some CFU-f have the capacity to differentiate into all three 

lineages whereas others are restricted to a single lineage e.g. osteogenesis 69,70. 

Subsequent studies have demonstrated a hierarchical paradigm of differentiation of 

human MSCs75. Evidence has now accumulated to show that MSCs are actually dissimilar 

populations with subgroups of different potency75. This phenomenon is applicable to both 

bone marrow MSCs and MSCs from other tissues. Recently, it has been demonstrated that 

MSCs derived from synovial fluid display varying potency of differentiation into bone and 

cartilage and that only 30% of the total colonies examined were able to differentiate into 

fat tissues76. Moreover, MSCs placed in appropriate media are described as having a 
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capacity to differentiate into both skeletal myocytes and tenocytes77,78, with some studies 

reported that the MSCs have the capacity to differentiate into non-mesenchymal lineages 

such as neurons79.  

1.4.3 Immunomodulatory properties of MSCs  
 

MSC-mediated immunoregulation was identified following the observation that MSCs that 

originated from bone marrow inhibited T cell proliferation80,81. This promising evidence 

directed investigators to consider the likelihood that MSCs may have immunoregulatory 

effects. To better clarify the action of MSCs on various immunocytes, the following 

paragraphs provide an overview of each cell class (Figure 1-3). 

 

1.4.3.1 Immunomodulation of innate immune system 

1.4.3.1.1 Neutrophils 
 

Neutrophils are the first line defence mechanism against invader particles; they are the 

most abundant WBC population (40-80%) in circulation82. Myeloperoxidase (MPO) is the 

major neutrophil protein making approximately 5% of its total protein constituents83. MPO 

antibacterial properties emerge following translocation of phagocytosed particles into the 

phagosome where cytoplasmic granules fuse with the phagosome to release their contents 

resulting in digestion of engulfed particles84. Upon activation, neutrophils engulf foreign 

particles and undergo respiratory burst, a phenomena of rapid oxygen consumption 

associated with the release of reactive oxygen species (superoxide radical and hydrogen 

peroxide) from neutrophils as they come into contact with pathogens85. It has been 

reported that MSCs inhibit respiratory burst and delay IL6-dependent pathways of 

apoptosis for both naïve and stimulated neutrophils86. Moreover, exposure of MSCs to 

bacterial endotoxins induces chemokine receptor expression and MSC chemotaxis; where 

they subsequently release inflammatory cytokines and recruit neutrophils in a MIF and IL8 

dependent manner. However, MSCs have no influence on the in vitro expression of 
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adhesion molecules in transwell system, neutrophil phagocytosis and neutrophil 

chemotaxis mediated through IL8, fMLP, or C5a pathways87. 

 

Figure 1-3. Immunological Function of MSCs on different cell types of the innate and 

adaptive immune system.  

Arrows indicate activation, bars indicate blockade of activation, in particular inhibition of 
proliferation, differentiation, cytotoxicity, maturation. MSCs can directly activate Treg 
generation. These Tregs play a significant role in the development of tolerance. 

Reprinted from Plock et al, 201388, with permission from Frontiers in Immunology. 
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1.4.3.1.2 Antigen-presenting cells  
 

The fundamental function of dendritic cells (DCs) is to process and present antigens to 

resting T cells during DCs maturation. The engaged T cells then induce the 

immunostimulatory cytokines propagating the immune response. DCs are divided into two 

lineages, conventional dendritic cells (cDC) with myeloid surface markers and plasmacytoid 

dendritic cells (pDC) with lymphoid surface markers. The DC maturation is inhibited by 

MSCs89 and consequently, the expression of antigens and T cell stimulatory factors, 

including CD40, CD80, and CD86, are reduced90, this process is mediated by IL6 secreted by 

MSCs91. Moreover, the growth of DC is intensely affected by the presence of MSCs via the 

secretion of PGE2 where PGE2 decreases the proportion of cDC while pDC are increased, 

consequently shifting the immune responses more in the direction of Th2 rather than 

Th192. Additionally, MSCs lead to impaired maturation, chemotaxis and antigen 

entrapment and processing by DCs through inhibition of IL2, IL12, IFNγ and TNFa synthesis 

and increased IL10 production93,89. As a direct consequence-lymphocyte stimulation is also 

inhibited. These effects indicated that MSCs have an inhibitory effect on DC phenotype that 

can lead to a reduction in effector T cells coupled to an augmented regulatory T cell 

response94,95.  

1.4.3.1.3 Monocytes/Macrophages 
 

These mononuclear cells, derived from myeloid precursors, are called monocytes while in 

circulation and macrophages upon entry into tissue. Macrophages are subdivided into M1 

and M2 macrophages. MSCs enhanced the differentiation of macrophages towards the M2 

class via PGE2, IDO and MSC-derived IL4 and IL1096,97. Moreover, the synthesis of pro-

inflammatory cytokines, IL1B, IL6, TNFa, and IFNγ, by macrophages were decreased in the 

presence of MSCs via TGFb1 and PGE2 dependent pathways98. In contrast, MSCs intensely 

increase IL10 (an anti-inflammatory cytokine), which is responsible for enhancing the 

synthesis of regulatory T cells96. However, the debris clearance action or the phagocytosis 

of macrophage was not affected by MSCs98,99. 
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1.4.3.1.4 Natural killer cells (NK cells) 
 

NK cells are the crucial cells of innate immunity during immune responses to viral infections 

and cancers100. The cytotoxic activity of quiescent NK cells is suppressed by MSCs through 

downregulation of NKp30 and NKG2D (natural-killer group 2, member D) stimulating 

receptors implicated in NK-cell stimulation and lysis of target cells101. Exposure of resting 

NK cells to activating cytokines, such as interleukin-2 (IL2); promotes either de novo 

expression or an increase of surface density of the activating receptors NKp44, CD69, 

NKp30, and NKG2D. Naïve NK cells proliferate and gain potent cell-killing effects when 

stimulated with IL2 or IL15, however, when NK cells are co-cultured with MSCs and cytokine 

stimulated the latent NK cells, the previously stimulated NK cell proliferation and IFNγ 

synthesis are inhibited100,102. 

 

The immunomodulatory effect of MSCs on previously activated NK cells is less potent than 

against the resting NK cells101. The cytotoxic action of NK cells against MSCs is reliant upon 

the low amount of extracellular expression of MHCI by MSCs and the expression of a 

number of ligands that are identified by stimulated NK cell receptors103. MSCs, both 

autologous and allogenic, are vulnerable to NK cell mediated cytotoxicity which reciprocally 

correlates with the expression of MHCI molecules on MSCs101. Collectively, these 

discoveries confirm the presence of a vigorous in vivo interaction between MSCs and NK 

cells where NK cells incompletely suppress pre-activated MSCs without diminishing their 

intensity to kill MSCs, suggesting that the interaction was entirely regulated by IFNγ level103. 

1.4.3.2 Immunomodulation of adaptive immune system  

1.4.3.2.1 T cells 
 

Stimulation of T cell receptors cause proliferation of T cells and initiates numerous actions 

involving cytokine secretion and cytotoxicity (in the case of CD8+ T cells). MSCs, both 

autologous and allogeneic, inhibit naïve T cell proliferation by arresting T cells in the G0/G1 

phase of the cell cycle103. MSCs inhibit T cell apoptosis and support the survival of T cells 
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that are subjected to overstimulation through the TCR and are committed to undergo 

CD95–CD95-ligand-dependent activation induced cell death104. The antiproliferative action 

of MSCs on T cells is accompanied by persistence of T cells in latency phase that can be 

incompletely reversed by IL2 stimulation105. 

 

Suppression of T cell multiplication by MSCs results in reduced IFNγ synthesis, both in vitro 

and in vivo105. Stimulation of Th2 cells to increase IL4 synthesis, suggesting a change in T 

cells from pro-inflammatory status (IFNγ producing) to anti-inflammatory status (IL4 

producing)106. A key role of T cells is the MHC controlled destruction of virus-infected or 

allogenic cells, which is regulated primarily by CD8+ cytotoxic T lymphocytes (CTls). MSCs 

have been demonstrated to down regulate CTl-mediated cytotoxicity103. In vitro, human 

MSCs treated by viral peptides or transfected with mRNA derived from tumour cells 

appeared to be resistant to damage by CTls. Pre-treatment with IFNγ enhanced MSCs cell-

surface expression of MHCI factors, however, it was nominal at returning CTl-mediated 

killing107,108. 

 

Regulatory T cells, a particular subset of T cells, inhibit the activation of the immune system; 

maintain homeostasis, and auto-antigen tolerance. MSCs stimulate the synthesis of IL10 by 

pDCs thereby initiating the production of regulatory T cells106,109. Moreover, following co-

culture with antigen-specific T cells, MSCs can directly stimulate the proliferation of 

regulatory T cells via secretion of immune-regulatory HLA-G (HLA-G5 isoform)103. 

Collectively, these demonstrate that MSCs can alleviate the strength of the immune 

response by suppression of antigen-specific T-cell proliferation and cytotoxicity and by 

stimulation of the production of regulatory T cell. In the point of view of clinicians, 

continuous suppression of T cell immune reaction by MSCs would leave the host 

susceptible to pathogenic microorganisms. Nevertheless, it may be possible that MSCs 

exhibit active Toll-like receptors (TlRs) which, following contact with microorganism-linked 

ligands, stimulate multiplication, differentiation and chemotaxis of MSCs and their release 

of chemokines and cytokines110,111. Additionally, it has been revealed that MSCs lose the 

capacity to inhibit T cell proliferation as a result of impaired Notch signalling after activation 
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of TLR3 and TLR4112. Consequently, it is plausible that the antigenic determinant linked to 

microorganisms might rescue the T cells from MSCs immunosuppression thereby restoring 

competent T cell immune-reactivity against invader insults112. However, it is also proposed 

that tissue stromal cells may direct regional immune reaction following exposure to 

pathogenic offenses113. 

1.4.3.2.2 B cells 
 

Experimental studies performed on the action of MSCs on the B cell show diverse 

results114,115,116. In vitro studies revealed that MSCs suppress B cells multiplication, 

differentiation, and the expression of chemokine receptors115,117. It is apparent that these 

effects rely on the secretion of soluble factors115 and on cell-cell contact, perhaps mediated 

by binding between pD1 and its ligands117. In contrast, other studies demonstrated that 

MSCs could maintain the survival, multiplication, and differentiation of the antibody-

producing type of B cells from apparently normal subjects116,118 and from SLE (systemic 

lupus erythematosus) child patients116. Although there is a debate in the in vitro studies, it 

should be highlighted that B cell responses are predominantly T cell mediated and 

consequently the ultimate result of the interaction between MSCs and B cells in vivo could 

be considerably affected by MSCs dependent inhibition of T cell function. This hypothesis 

is confirmed by the outcome of the experimental study, using multiple sclerosis paradigms, 

on autoimmune encephalomyelitis in mice injected with plp-peptide (proteolipid protein 

peptide). In this paradigm, the in vivo synthesis of antigen-specific antibodies was 

suppressed by injection of MSCs, in addition to a considerable down regulation of plp-

specific T cell immune reactions, which confirm that these two episodes were closely 

correlated119.  
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1.5 Inflammation 
 

Inflammation is a physiological response of the immune system to foreign particles. The 

reaction involves both the innate and adaptive immune system and requires the 

participation of blood constituents, including plasma proteins, platelets, fluid, and 

leukocytes. The aim of inflammation is destruction of the invader particles and restoration 

of normal tissue homeostasis. Inflammation is a tightly integrated process that is 

orchestrated by biomolecules called cytokines120. Inflammation is generally initiated by 

pathogenic microorganisms known as pathogen-associated molecular patterns (PAMPs), 

for example, bacterial and viral infections, however, inflammatory processes could be 

initiated in absence of pathogens and this type is known as damage-associated molecular 

patterns (DAMPs), for example, Graft vs. Host Disease, arthritic disease, and ischemic heart 

disease121. According to chronicity, inflammation could be acute or chronic, hours versus 

days, respectively. Neutrophils are the major cells in acute inflammation while 

macrophage/T cells dealt with chronic stages120.  

 

Controlled inflammation is considered as beneficial rather than harmful, but when 

inflammation proceeds and is dysregulated it will lead to organ damage. The initial 

recognition of invader particles is mediated by tissue resident mast cells and macrophages, 

leading to release of a group of cytokines, vasoactive amines, eicosanoids, proteolytic 

products, and chemokines. These bioactive factors mediate local exudation and 

extravasation of plasma proteins and neutrophils; which are mainly restricted to the 

systemic circulation. The endothelium lining of the local blood vessels permit selective 

extravasation of leucocyte and prevents erythrocytes, this selectivity is provided by specific 

cytokines, chemokines, and adhesion proteins on a surface of leucocytes, endothelial 

surface, and extravascular spaces122.  

 

Upon extravasation, neutrophils are activated either by direct contact with invader 

particles or via released proinflammatory cytokines (Figure 1-8). Neutrophils kill the 

invader particles by releasing their granule contents, including reactive oxygen and reactive 

nitrogen species, proteinase 3, cathepsin G, and elastase, resulting in digestion of invader 
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particles and the damage extended to include localised host environment123,85. Proper 

acute inflammation results in clearance of the infectious agents followed by repair and 

restoration of function which is mediated mainly by both recruited and tissue resident 

macrophages120. At this stage, the pro-inflammatory prostaglandins were replaced by anti-

inflammatory lipoxins. Lipoxins inhibit neutrophil recruitment, stimulate recruitment of 

monocytes, stimulate dead cell clearance, and initiate tissue resolution and remodelling. 

TGFb released by macrophage have a crucial role in resolution and remodelling of 

events122,124. If clearance of foreign bodies is not achieved by acute inflammation, the 

processing proceeds to advanced stages, involving further accumulation of macrophages 

and T cell activation, however, if these cells fail to remove the invader particles, the 

inflammation will enter chronic status. Chronic inflammation involves formation of 

granulation and lymphoid tissue; at this stage the macrophages cover the granuloma as  

layer  in order to protect the host tissues121,122.  
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Figure 1-4. Schema of neutrophil extravasation cascade. 

In the process of intravascular migration, neutrophil tethers itself to the endothelial cells 
via (1) rolling, (2) adhesion and (3) crawling. Thereafter neutrophil is (4) firmly adhered to 
the luminal surface of the vessel. After approaching to the proper site of extravasation, (5) 
leukocyte transmigrate through the endothelial cells, pericyte and basement membrane. 
In this process of extravasation, neutrophil undergoes (a) intrusion, (b) perivascular 
embedment & crawling, (c) protrusion, and then finally (d) uropod elongation & 
microparticle formation. Microparticles (red dot) are formed in this stage, and usually 
embedded between endothelial cells and pericytes. When extravasation is over, (6) 
leukocyte starts interstitial migration. 
 

Reprinted from Park and Hyun et al, 2016125 with permission from Immune Network Journal.  

 

Host cells recognise inflammatory stimuli by their transmembrane receptors called pattern 

recognition receptors (PRRs), which are expressed by immune cells. The functions of these 

receptors is to sense the presence of invader pathogens or insults from cellular injury126. 

These receptors recognise a particular structure on the microbial surface called pathogen-

associated molecular patterns (PAMPs), or endogenous antigen from host injury called 

damage-associated molecular patterns (DAMPs)121. Examples of PRRs include Toll-like 

receptors (TLRs), C-type lectin receptors (CLRs), RIG-1-like receptors (RLRs), and NOD-like 

receptors (NLRs)120. The engagement of PRRs with antigen whether from PAMPs or DAMPs 

molecules result in transmitting the signal down through post-receptor translation 

pathways to the nucleus. The inflammatory responses are integrated by transcription of 

these genes and their subsequent protein synthesis of proinflammatory cytokines, such as, 

TNFa, IL1B, and IL6 are expressed in response to exposure to pathogenic micro-organism126.  

 

Upon recognition of the antigen, TLRs activate the signalling pathways including NF-kB 

(nuclear factor kappa-light-chain-enhancer of activated B cells), this transcription factor is 

distributed in nearly all cell types in an inactive state through their binding to the inhibitor 

protein, IkB. Upon signal transmission, NF-kB is released from IkB and translocated to the 

nucleus resulting in transcription of target genes. Transcription of target genes results in 

expression of proinflammatory cytokines, such as, TNFa, IL1, IL6, and others120,126. In 

addition to these cytokines, chemokines, and costimulatory factors induce recruitment of 

effector cells, such as neutrophils, monocytes, and macrophages. Neutrophils polarisation 
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results in the release of their toxic substances by a process known as degranulation, this 

process necessitates consumption of a higher amount of oxygen and glucose than normal 

status and is associated with the production of reactive oxygen and nitrogen species, and 

this situation is called respiratory burst. The products of the reaction are toxic to both 

invader particles and host tissues in the vicinity resulting in host collateral injury126.  

 

T cells are the crucial cells of the adaptive immune system. Stimulation of naïve Th cells by 

antigen-presenting cells results in T cell differentiation into effector types, such as, Th1 cells 

(pro-inflammatory), Th2 cells (anti-inflammatory), regulatory T-cells (Tregs), and Th17 

cells120. Th1 cells control host immunity and proinflammatory responses against pathogenic 

microorganism by the production of IFNγ promoting Th1 differentiation. Th1 releases IL2 

and TNFa which stimulate macrophage polarisation and mediate delayed hypersensitivity 

reactions while Th2 produces anti-inflammatory cytokines; IL4, IL5, IL10, and IL13 that 

stimulate Th2 differentiation, B cell proliferation/differentiation, reduction of Th1 

differentiation, regulation of allergic response, and humoral immunity. Additionally, Treg 

produces IL10 and TGFb suppressing T cells, NK cells, B cells, and antigen-presenting cells. 

Treg suppresses Th1 and Th2 proliferation and differentiation120. A cascade of immune 

reaction involving neutrophils, monocytes, and T cells are outlined and summarised in 

Figure 1-9. 
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Figure 1-5. Cascade of immune response in acute and chronic inflammation.  

Initiation of the acute inflammation ensues with alteration in blood flow stimulated by 
PGE2 and PGI2, and LTB4, which are produced from arachidonic acid and stimulate PMN 
recruitment. Excess prostaglandins and leukotrienes contribute to chronic inflammation. 
Cyclooxygenase (COX) production of PGD2 via human PGD2 synthase (hPGD2s) activates 
its receptor DP1, a GPCR that stimulates IL10, an anti-inflammatory cytokine, which blocks 
the path to chronic inflammation. Lipid mediator class switching is the temporal switch in 
inflammatory exudates that activates lipoxin production. LXA4 regulates MCP1 and 
monocyte recruitment and stops LTB4-stimulated PMN influx. Lipoxins and resolvins limit 
further PMN influx to the site and stimulate efferocytosis and the clearance of cellular 
debris by resolving macrophages.  

Reprinted from Buckley et al, 2014124 with permission from Elsevier, License number 4187050083656 
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1.6 Application of MSCs in regenerative immunity and inflammatory diseases 
 

The mode of regeneration of heart, CNS, liver, skeletal muscle, and other organs is primarily 

based on the presence/absence of progenitor stem cells and their differentiation and 

fusion into sites of injury to restore functionality. The reparative programme is based on 

induction of localised tissue progenitor’s stem cells, stimulated reprogramming of other 

cells to maintain tissue homeostasis, stimulated deposition of exogenous cells to injured 

organ, and inhibition of endogenous tissue destructive events. Recent studies have mainly 

focused on regenerative immunity through modulation of immune cell differentiation 

towards regulatory rather than stimulatory means and thereby directing localised events 

toward tissue regeneration127. The area in which MSCs-immunomodulation could find 

application includes diseases with underlying immunopathies, including multiple sclerosis, 

muscular dystrophies, heart failure, and liver fibrosis. In these diseases the effect of MSCs 

is mainly based on modulation of the immune response toward regulatory via 

differentiating cells toward Tregs and M2 macrophages. 

1.6.1 Multiple sclerosis (MS)  
 

MS is an autoimmune disease associated with an inflammatory defect in the external layer 

that surrounds the nerve axon and myelin sheath, resulting in a continuous degeneration 

of the myelin layer. Current studies are focussed on replacing myelinating cells, called 

oligodendrocytes. Originally, oligodendrocytes are derived from neural stem cells 

(oligodendrocyte progenitor cells)127. Generally, it has been considered that inflammation 

suppresses regeneration in CNS, however, recent studies confirm that acute induction of 

inflammation by zymosan particle injection stimulates oligodendrocyte deposition 

mediating tissue regeneration128,129 The positive impact of acute inflammation on 

oligodendrocytes has been approved in zebrafish models confirming that inflammation 

plays a role in regeneration130. Recently, it has been confirmed that activin A exclusively 

expressed by M2 macrophage promotes re-myelination131, providing evidence that 

immunomodulatory products inducing M2 macrophage terminal differentiation might 

have a clinical application in MS132.  
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1.6.2 Muscular dystrophies (MDs) 
 

MDs are a group of muscle breakdown diseases characterised by skeletal muscle wasting 

overtime, muscle protein abnormalities, and degeneration of muscle tissues. The immune 

system has complex roles in the pathogenesis of MD. In a mouse model for Duchenne’s 

muscular dystrophy, MDX mice, TGFb synthesis by macrophage stimulated collagen 

production by fibroblasts and the collagen accumulation is further amplified via pro-fibrotic 

stimuli resulting in M2 macrophage terminal differentiation133. Studies confirmed that 

macrophage M2 terminal differentiation is vital for muscular regeneration; however, 

recent studies confirmed that Tregs and eosinophils play a significant role in modulation of 

muscular regeneration through their influence on satellite and progenitor cells 

differentiation, respectively134,135. 

1.6.3 Heart failure 
 

Cardiac tissue lacks regenerative capacity and subsequently cardiac ischemia is associated 

with deposition of non-contractile fibrous tissues to the site of injury by monocytes where 

subsequently cardiac function is reduced resulting in heart failure127. Some studies have 

suggested that mammalian cardiac tissues have a regeneration capacity, however, there is 

controversy regarding that presence of cardiac stem cells in the heart and the overall 

response of the tissue to the cardiac failure is limited recovery of functionality following 

significant tissue damage136. 

 

Recent studies exploring the role of immune response in heart failure has resulted in an 

improvement in our understanding regarding cardiac immunity, these studies have 

confirmed that the heart has a specific type of myeloid cells and induces a unique immune 

response to insult127. Recognition of monocyte/macrophage subsets and determination of 

their in vivo chemotaxis kinetics to the site of injury will result in advancement of cardiac 

immunity knowledge with potential to lead to either new management approaches or to 

explain the mode of action of current therapy, for example, angiotensin-converting-

enzyme (ACE) inhibitors. With reference to ACE inhibitors, a current therapy for patients 
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with cardiac failure and ischemic heart diseases, this might improve cardiac function and 

reduce the infarct size through anti-inflammatory effects via stimulating specific 

monocyte/macrophage subsets localisation in cardiac tissues. Moreover, initial cardiac 

inflammatory stages were associated with deposition of Ly-6Chi monocytes which 

subsequently exert its regenerative potential through terminal differentiation to Ly-6Chi 

macrophages127. 

1.6.4 Liver fibrosis 
 

The liver is a unique example of adult solid organ regeneration; however, chronic hepatic 

diseases are a worldwide major cause of morbidity and mortality. Pro-inflammatory M1 

macrophages, Kupffer cells, and deposition in the target tissues promote fibrosis by 

stimulation of satellite cells. Conversely, M2 regenerative macrophages and NK cells 

promote regeneration through stimulation of satellite cell apoptosis, and stimulation of 

Wnt pathway resulting in hepatocyte regeneration137,138. Additionally, arginase-1 positive 

M2 macrophages provide hepatic protection against schistosomiasis infestation, not by 

phagocytosis, but rather by inhibition of chronic inflammation and suppression of liver 

fibrosis139 Current therapeutic modalities focus on the dampening of inflammation and 

inhibition of fibrosis through stimulation of M2 macrophages.  

1.7 Current anti-inflammatory medications and MSCs future perspectives 
 

Tissue injury is associated with infiltration of immune cells in injured tissues resulting in 

release of reactive biomolecules which contribute to further tissue damage. Moreover, 

once inflammation becomes chronic, immune cell deposition is associated with further 

damage and tissue remodelling events. Available therapeutic modalities are mainly 

focussed on the inhibition of inflammation, such as, corticosteroid, NSAIDs, and anti-TNFa 

monoclonal antibodies127. Recent studies are directed toward investigation of new 

products with immunoregulatory rather than immunosuppressive effects via stimulation of 

immune cell differentiation toward Tregs and M2 macrophages to direct the immune 

response toward tissue repair rather than degeneration. One suggested manner to induce 
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regenerative immunity is by modulation of immune cell polarisation. Management of spinal 

cord injury involves a dualistic mode of action through the involvement of 

monocyte/macrophages or their terminal differentiation M1/M2 macrophages140.  

 

The creation of new therapeutic modalities in the field of regenerative immunity is 

hampered by the absence of specific markers to distinguish different subsets of immune 

cells resulting in a lack of precise knowledge regarding immunobiology in health and 

disease status. One possible method for the creation of new therapeutic modalities is by 

exploring different subpopulation of tissue resident immune cells in health and disease, for 

instance, the cardiac tissue comprises different subclasses of tissue resident macrophages 

and these subsets vary in their expression markers and functional characteristics141. These 

subsets can be distinguished by their expression of CCR2, Ly-6C, and MHCII; MHCIIlo 

macrophages are responsible for the clearance of debris of injured cardiac tissues by 

phagocytosis. However, MHCIIhi macrophages propagate the immune response beyond 

phagocytosis by presenting phagocytosed particles to T cells, moreover, CCR2+ 

macrophages aggravate tissue injury through release of a different inflammasome in 

response to stimuli, including IL1B127.  

 

These regenerative properties position mesenchymal stem cells at the forefront of a new 

trend in cell-based therapy by restoring the functionality of damaged tissues and escaping 

endogenous remodelling events following tissue injury which are most often associated 

with loss of functionality, however, their immunobiology require further explanation142,143. 

hMSCs exert their mode of action via different aspects including cell trans-differentiation, 

cell-incorporation, trophic factors, exosome production and mitochondrial translation. 

Each one of these modes of action has associated drawbacks, cell trans-differentiation and 

cell-incorporation are queried due to an insufficient amount of hMSCs deposition in target 

tissues, moreover, exosome production and mitochondrial transfer lack reproducibility in 

the production of a measurable standardised product regarding quality and quantity of 

released biological products to generate a standard product. The drawback of the paracrine 

factor includes their mixture nature of both anti-inflammatory and pro-inflammatory 
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molecules and this might explain the modest effects achieved with hMSCs translation in 

clinical trials, for instance, some cytokines/chemokines released by hMSCs could be 

harmful, such as, IL6 and TNFa48. 

 

Nonetheless, accumulating data suggests that the paracrine mode of action could be 

manipulated to overcome some of these limitations via preconditioning or genetic 

engineering. Moreover, single cytokine or cytokine cocktails could be used to treat certain 

diseases. However, the hMSCs-based therapy is characterised by a moderate trend of 

release of trophic factors that are varied based on the localised vicinity suggesting that 

these cells are performing smartly based on the systemic environment and target diseased 

tissue environment aiming to establish a physiological environment48. Further studies are 

needed to define these variables and establish optimised methods of culture and 

preconditioning environments in an attempt to prepare the best biological product for 

bench to bedside transition in near future. 

1.8 Mechanistic immunobiology of MSCs  
 

The molecular mechanism of immunomodulation by MSCs is still incompletely known. 

However, it is believed that cell-to-cell contact and involvement of soluble factors 

cooperate to stimulate MSCs-mediated immunomodulation. Initially, MSCs interact with 

the target cells by means of adhesive molecules, this interaction was confirmed by studies 

revealing that the inactivation of T cell multiplication by MSCs necessitates binding of an 

inhibitory factor called programmed cell death 1 (pD1) by its ligands117. Numerous soluble 

inhibitory factors of the immune system are implicated in MSC-associated 

immunomodulation, these factors are either inducible by MSCs after engagement with 

target cells, or constitutively produced by MSCs, for example, nitric oxide and IDO which 

are secreted by MSCs following exposure to IFNγ released by target cells114,21. These soluble 

factors mediate immunomodulation by different pathways, IDO generated from MSCs 

stimulates the exhaustion of tryptophan, the amino acid which is vital for T cell 

multiplication, from the localised environment. Moreover, IDO was stated to be vital for 

the prevention of multiplication of IFNγ-generating Th1 cells114 which together with PGE2 
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impeded the function of NK cells100,114. Additionally, IFNγ, alone or in combination with the 

immunostimulatory cytokines (TNF, IL1a or IL1B), promoted mouse MSCs to produce 

chemokines that attracted T cells and induced nitric-oxide synthase (iNOS) inhibiting T cell 

activation via the generation of nitric oxide112. The vital role of IFNγ is confirmed by mice-

MSCs which lack the IFNγ receptor (IFNγR1) and appear to have no immunomodulatory 

effects112. MSCs constitutively produce further soluble agents, for instance, transforming 

growth factor-b1 (TGFb1), hepatocyte growth factor (HGF), IL10, PGE2, haem oxygenase-1 

(HO1), IL6 and soluble HlA-G5108,144,145 . In addition, the release of some of these soluble 

agents can be increased by cytokines produced by target cells through their interaction 

with MSCs. For instance, TNF and IFNγ have been shown to increase the constitutive 

production of PGE2 by MSCs106. Another example of the constitutively produced soluble 

factor by MSCs is IL6, it was reported that this factor inhibits the respiratory burst and 

prolong lifespan, by delaying apoptosis, of human neutrophils by stimulating 

phosphorylation of the transcription factor signal transducer and activator of transcription 

3(STAT3)86. In addition, it prevents the differentiation of bone marrow haematopoietic 

stem cells into DCs91. An additional factor produced by MSCs is HLA-G5 which has been 

reported to inhibit T cell multiplication and at the same time suppress the cytotoxicity of 

NK and T cells108,146. IL10, produced following contact between MSCs and stimulated T cells, 

has a crucial task in promoting the secretion of HLA-G5 by MSCs146 

1.9 SFCM composition and hypoxic preconditioning 
 

Although the mechanism of action of hMSCs in regeneration is not fully understood, the 

therapeutic potency is being related to multipotent differentiation, functional 

incorporation, and secretion of strong paracrine factors143,147. However, a number of recent 

in vitro studies148,149,150,49,151confirmed that paracrine factors underline the tissue repairing 

effects of injected MSCs. This has been further supported by in vivo studies in Balb/C mice 

model of excisional wound injury leading to deposition of regulatory macrophages and 

endothelial progenitor cells to the site of injury 152 and hindlimb injury induced by femoral 

artery ligation via collateral angiogenesis and limb remodelling 153. Moreover, it has been 

reported that IV infusion of SFCM promotes regeneration and inhibits cellular damage in a 
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rat model of liver injury154 while localised administration of SFCM to a rat ischemic retinal 

model restored functionality and reduced damage155. Collectively, these confirm that SFCM 

may become a milestone therapeutic tool or a source for discovery of new bioactive 

therapeutic molecules. 

 

Proteomic profiling of SFCM has revealed the presence of different biomolecules156; which 

could be categorised into functional groups (Figure 1-4); including pro-inflammatory, anti-

inflammatory and pleiotropic cytokines, chemokines, growth factors, and angiogenic 

factors157,158,159. The analysed SFCM is generated from various hMSCs sources, like, adipose 

tissue, cord blood159,160, bone marrow aspirate157,16,20, and stem cell lines158. Variation in 

the outcome of these studies is being probably due to variation in the culturing condition 

e.g. oxygen tension; hypoxia versus hyperoxia, conditioning periods, and classical 

monolayer versus 3D conditioning methods161 (Table 1-1). 

 

Table 1-1. Biomolecules present in conditioned media from MSCs-isolated from 

different sources and analysed by various techniques. 

Source of MSCs Type of analysis Measured biomolecules 

Bone marrow-derived 
MSCs 157 

Antibody-array HGF, IGF1, VEGF, and angiogenin 

Adipose-derived MSCs, 
Wharton's Jelly-derived 
MSCs160 

Antibody-based 
immunoassay 

bFGF, VEGF, NGF, SCF, HGF 

Cord blood-derived 
MSCs159 

Antibody array GMCSF, IL1b, IL6, IL8, MCP1, VEGF, FGF 
(4, 7, 9), IP10, and MIP 

human embryonic 
stem cell-derived 
mesenchymal stem 
cells158 

Mass-
spectrometry/Ant
ibody-array 

CCL (1, 5, 11, 15, 16, 23, 24, 26), CSF (1, 
2, 3), CX3CL1, CXCL11, CXCL13, CXCR3, 
EGF, FGF (4, 6, 9, 17), GDNF, HGF, IFNγ, 
IGF1, IGFBP1, IL (2, 3, 7, 10, 12B, 13, 16), 
TNF, VEGF, TGFb 

 

It has been reported that hypoxia (1% O2) plays a great role in MSCs biology revealed by 

microarray screening study. Ohnishi et al. 2007162 demonstrated that the expression of 

many genes were upregulated when rat MSCs were cultured for 24h in 1% O2 compared to 
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air oxygen, including factors involved in cell proliferation, such as, pre-D-cell colony–

enhancing factor 1, heparin-binding epi-dermal growth factor, VEGF-D, and placental 

growth factor.  In a separate study, it has been demonstrated that culturing adipose 

derived-MSCs under a hypoxia environment (0.5% O2) versus normoxia (20% O2) associated 

with modulation of some transcription factors measured by microarray screening, including 

VEGF, MCSF, MIP1, IGFII, HB-EGF, FGF7, and Angiopoietin-like 1163. Moreover, bone 

marrow (BMA) derived and umbilical cord blood (UCB) MSCs respond to hypoxia (1.5% O2) 

confirmed by modulation in transcription of via by stabilizing the HIF-1a protein. When 

their transcriptional profiles were compared, 183 genes in UCB cells and 45 genes in BMA 

were specifically modulated by hypoxia; some of these genes included known hypoxia-

responsive targets such as BNIP3, PGK1, ENO2, and VEGFA, and other genes not previously 

described to be regulated by hypoxia. Several of these genes, namely CDTSPL, CCL20, LSP1, 

NEDD9, TMEM45A, EDG-1, and EPHA3 were confirmed to be regulated by hypoxia using 

quantitative reverse transcriptase polymerase chain reaction164.  
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Figure 1-6. Paracrine effects of cultured MSCs.  

The secretion of a broad range of bioactive molecules is now believed to be the main 
mechanism by which MSCs achieve their therapeutic effect and it can be divided into six 
main categories: immunomodulation, anti-apoptosis, angiogenesis, support of the growth 
and differentiation of local stem and progenitor cells, anti-scarring and chemoattraction. 
The immunomodulatory effects of MSCs consist of inhibition of the proliferation of CD8+ 
and CD4+ T cells and natural killer (NK) cells, suppression of immunoglobulin production by 
plasma cells, inhibition of maturation of dendritic cells (DCs) and stimulation of the 
proliferation of regulatory T cells. The secretion of PGE2, HLAG5, HGF, iNOS, IDO, TGFb, LIF 
and IL10 contributes to this effect. MSCs also limit apoptosis, and the principal bioactive 
molecules responsible for this are VEGF, HGF, IGF1, stanniocalcin-1, TGFb and GM-CSF. In 
addition, MSCs stimulate local angiogenesis by secretion of extracellular matrix molecules, 
VEGF, IGF1, PIGF, MCP1, bFGF and IL6, and also stimulate mitosis of tissue-intrinsic 
progenitor or stem cells by secretion of SCF, LIF, M-CSF, SDF-1 and angiopoietin-1. 
Moreover, HGF and bFGF (and, possibly, adrenomedullin) produced by MSCs contribute to 
inhibition of scarring caused by ischemia. Finally, a group of at least 15 chemokines 
produced by MSCs can elicit leukocyte migration to the injured area, which is important in 
normal tissue maintenance. 
Reprinted from da Silva Meirelles et al, 2009165 with permission from Elsevier, License number 4186760773484 

1.10 Cytokine receptor and mechanism of action 
 

Transformation of information in an organism is carried out by protein biomolecules. The 

formation of the protein-receptor complex is central in processing the signal. The signalling 

pathways are arranged in a cascade of events following engagement of ligand with the 

receptor’s extracellular domain. Upon ligand-receptor engagement, the receptor becomes 

activated and transmits the signal from the extracellular to intracellular compartment 

resulting in stimulation of post-receptor translation pathways166. The engagement of the 

cytokine to its receptor is followed by activation of post-receptor translation pathway 

associated Janus kinases (JAKs). JAK, in turn, activate and phosphorylate signal transducer 

and activator of transcription (STAT) transcription factors resulting in modulation of gene 

transcription, alteration of cellular behaviours, and a cascade of reactions which ultimately 

determine cell fate. The majority of cytokine mechanism of action is based on JAK/STAT 

signalling pathways; however, some cytokines are based on activation of Akt and Erk 

pathways for their mechanism of action. The post-receptor translation pathways is based 

on Ligand-mediated oligomerisation or preformed receptor reorganisation, these models 

are the central concepts in the cytokines mode of action167. 



 

32 
 
 

 

 

Cytokines transmit their signal through complex receptor subunits which fall into different 

categories based on the subtype family of receptors shared between the groups; for 

instance, IL6, IL11, ciliary neurotrophic factor, cardiotrophin-1, cardiotrophin1 and the 

cytokines leukemia inhibitory factor and oncostatin M share gp130. Similarly, IL3, IL5 and 

GMCSF share a subunit of the IL3 receptor. Moreover, the IL2γ receptor is the shared 

subunit for IL2, IL4, IL7 and IL15. This receptor sharing phenomena allows subfamily 

classifications of cytokines and might underpin their functional cross-reactivity166. 

Information about cytokines and cytokine receptors is accumulating, however, its 

noteworthy to mention some general examples to spotlight on the identity of cytokine 

receptors in general; such as, IL4, IL10, IL13, and TGFb, which are the focus of this research. 

The IL10 receptor is a complex structure consisting of tetramers of two principle ligand-

binding subunits (IL10RA or IL10R1) and two accessory signalling subunits (IL10RB or 

IL10R2) (Figure 1-5). Engagement of IL10 ligands to their specific receptor extracellular 

domain of IL10R1 results in activation and phosphorylation of the receptor-associated JAK1 

(Janus kinase1) and TYK2 (Tyrosine Kinase2), which is intrinsically associated with IL10R1 

and IL10R2 in inactive status, respectively. These enzymes phosphorylate characteristic 

tyrosine moieties (Y446 and Y496) on the receptor’s intracellular domain of the IL10R1 

chain. Upon phosphorylation of these tyrosine moieties; their flanking peptide sequences 

function as a docking site for the inactive latent cytoplasmic protein, Signal Transducer and 

Activator of Transcription3 (STAT3). STAT3 binds to these sites via its Src Homology2 (SH2) 

domain which is in turn tyrosine-phosphorylated by the receptor-associated JAKs. The 

STAT3 homodimerises and translocates to the nucleus compartments where it engaged 

with high-affinity SBE (STAT Binding Elements) in the promoters of different IL10-

responsive genes. STAT3 increase transcription of anti-apoptotic and genes of cell-cycle 

events including, BCLXL, CyclinD1, CyclinD2, Cyclin-D3, and Cyclin-A, Pim1, cMyc, and p19 

(INK4D)168.  
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Figure 1-7. The IL10 receptor and a simplified version of signalling from this receptor.  

The functional receptor complex is composed of two subunits each of IL10R1 and IL10R2. 
The Janus tyrosine kinases JAK1 and Tyk2 associate with the cytoplasmic tails of the 
receptor and phosphorylate tyrosine residues in IL10R1, to which STAT3 is recruited. STAT3 
homodimers translocate into the nucleus and bind to STAT elements in several immune 
response genes, including IL10 itself and the SOCS genes. 

 

IL4 and IL13 cytokines have 25% structural similarity, and they are characterised by a 

receptor overlapping phenomena via sharing same receptor subunit (IL4Rα) for their signal 

transduction, IL4 binds to the IL4 receptor α subunit that is a component of both the type 

I (IL4 receptor α and γc) and type II receptor (IL4 receptor α and IL13 receptor α1), whereas 

IL13 is recognised by the IL13 receptor α1 of the type II receptor (Figure 1-6)169. IL13 also 

binds to the IL13 receptor α2 chain with greater affinity than to IL13α1. IL13 receptor α2 

lacks a transmembrane-signalling domain and as a consequence functions as a decoy 

receptor to downregulate IL13 signalling. γc activates Janus kinase (JAK) 3 and IL13 receptor 

α1 activates tyrosine kinase 2 (TYK2) and JAK2. Activated JAKs phosphorylate STAT6 which, 

upon dimerization, translocates to the nucleus where it binds to the promoters of the IL4 

and IL13 responsive genes associated cell polarisation pathway, therefore, IL13 could 

induce many functional properties of IL4170. The signal started with the engagement of the 
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ligand to a second receptor subunit either γC or IL13Rα1 subunit. Despite their structural 

similarities, the engagement of the γC subunit is limited only to IL4; but not IL13, while 

IL13Rα1 could interact with both IL4 and IL13 to form immunological complexes. An 

additional IL13Rα2 subunit exists known as a “decoy receptor” and stimulation of which is 

associated with no response because this subunit lacks the transmembrane signalling 

domain171. The difference between IL4 and IL13 is the sequence of engagement to these 

receptor subunits; IL4 interacts with IL4Rα followed by interaction with IL13Rα1, an effect 

which is reversed in case of IL13 ligand170.  
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Figure 1-8. Interleukin (IL)-13 and IL-4 signaling pathway.  

When the receptor subunits IL-4Rα and IL-13Rα1 bind to their respective ligands, 
heterodimerization occurs (IL-4Rα-IL-13Rα1 or IL-4Rα-γC), which enhances Janus kinase 
(JAK) activity. Subsequently, signaling molecules such as signal transducer and activator of 
transcription (STAT) 6 and STAT3 are phosphorylated and activated. STAT6 and STAT3 are 
transcription factors that can initiate transcription of target genes including eotaxin-3 and, 
potentially, periostin. IRS can initiate other pathways such as PI3K/Akt and Ras/mitogen-
activated protein kinase (MAPK), which can regulate survival and proliferation. The 
function of IL-13Rα2 is unclear but may operate as a decoy or inhibitor.  
 
Reprinted from Cheng et al, 2012169, with permission from American journal of physiology. Gastrointestinal and liver 
physiology 

 
TGFb receptor is slightly different from other cytokines (Figure 1-7). The signalling is 

initiated by the binding of TGFb to its receptors which are serine and threonine kinases; the 

cell membrane TbRI (type 1) and TbRII (type 2) receptors. Ligand-receptor engagement 

produces receptor heterocomplexes and thereby the TbRII activate threonine and serine 

moieties by their phosphorylation in the TTSGSGSG motif of TbRI which results in its 

activation. The phosphorylated TbRI phosphorylates and recruits R-Smad proteins, 

Smad2/3 for TGFb and activin signalling while Smad1/5/8 are for BMP signalling, forming a 

heterocomplex with the Co- Smad, Smad4. The signalling is then translated by translocation 

of Smad complexes to the nucleus to control transcription of the target genes catalysed by 

co-factors172.  
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Figure 1-9. Transforming growth factor (TGFb) signalling pathway.  

TGFb is a pleiotropic cytokine that mediates fibrosis by inducing fibrogenic target genes. 
TGFb is generally secreted as part of a large latent complex bound to latency-associated 
protein and latent-TGFb-binding protein. The active TGFb binds its receptor to initiate 
Smad-dependent and independent signalling. TGFb can also induce a number of Smad-
independent pathways such as Ras, TGFb-activated kinase, RhoA, and phosphatidylinositol-
3-kinase, thereby adding to its pleiotropic effects.  

Reprinted from Cheng et al, 2012169, with permission from American journal of physiology. Gastrointestinal and liver 
physiology 

1.11 Role of hMSCs in suppression of inflammation 
 

Chronic diseases share inflammation as an underlying pathology. According to the duration 

of persistence (hours versus days), inflammation is either acute or chronic, respectively. 

Neutrophils are the principle cell during acute inflammation while macrophages/T cells 

involved in chronic inflammation120. Broadly macrophages are of two types, M1 and M2, 

expressing distinct surface markers and secretome profiles; they also activate distinct 
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subsets of T cells based on the received signal and localised tissue milieu173. The M1 

macrophage subtype characterised by releasing a strong pro-inflammatory cytokines (e.g. 

TNFa, IL12, and IL1B), strong antimicrobial action, and present their antigen to Th1 subsets 

of T cells174. Localised environment plays a great role in modulation of macrophage 

phenotype, for instance, a proinflammatory factors including lipopolysaccharide, IFNγ, and 

GMCSF promote M1 phenotype polarisation and subsequently interaction with Th1 subsets 

of T cells175. Whereas M2 macrophage subtype characterised by releasing strong anti-

inflammatory cytokines (e.g. IL10), expression of high amount of mannose scavenger 

receptor (CD206), and polarised in response to fungal or helminthic infection, apoptotic 

cells, immune complexes and complement component, moreover, polarisation could be 

triggered by MCSF, IL4, IL13, IL10, and TGFb. Finally, M2 polarised macrophage stimulates 

a Th2 subset of T cells176,175.  

 

MSCs emerged as a therapeutic tool for inflammatory diseases following in vitro 

suppression of T cell proliferation in a mixed lymphocyte reaction81. The suppression is 

broad spectrum involving mitogens, peptide antigens, and alloantigen induced T cell 

proliferation and CD3/CD28 antibodies mediated T cell activation177. Additionally, MSCs 

suppresses pharmacological activation of intracellular pathways of T cell, confirming that 

the mechanism of inhibition is a non-T cell receptor-based pathways178, the suppression 

involve different T cell subtypes including both CD4+ and CD8+ as well as naïve T cells80. In 

addition to in vitro evidence, in vivo suppression has been confirmed in experimental 

baboon animal model of skin graft81. The suppression of T cell through transwell system 

confirm that MSCs exerts its immunosuppressive activity through a paracrine mechanism80. 

Moreover, it has been found that MSCs stimulate macrophage differentiation favourably 

toward M2 rather than M1 resulting in immunoregulation179. However, MSCs show 

discrepant results on neutrophil behaviours and functionality82,86,87.  
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1.12 Aims and Objectives 
The primary aims of this study were: 

• Establishment of cellular models to recreate the in vitro immune response using 

Jurkat T cell line and THP-1 monocyte cell line; polarisation of cell lines were 

achieved using chemical stimuli, such as, PMA/PHA. 

• Optimisation of hMSCs culture condition via recreation of niche mimic hypoxia 

model by culturing hMSCs and immune cell lines in both physioxia versus air 

oxygen incubators. 

• Exploring the therapeutic effectiveness of SFCM via their immunosuppression and 

stimulation of regeneration. 

• Analysis of SFCM to identify the biomolecules responsible about 

immunomodulation and regeneration. Investigation the potential mode of action 

of candidate biomolecule(s) confers immunosuppression. 
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2 Chapter 2: Materials and Methods 
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2.1 Materials 

 

Table 2-1. List of materials, catalogue numbers and suppliers (UK distributers). 

 

Catalogue 
number Supplier 

3,3-dimethoxybenzidine  10269880 Fisher Scientific 

(3-(4,5-dimethylthiazol-2yl)-2,5diphenyltetrazolium 
bromide (MTT) M6494 Life Technologies 

2.2-azino-bis (3-ethylbenzothiazolin-6-sulphonic 
acid(ABTS) A3219 Sigma-Aldrich 

3-isobutyl-1-methylxanthine (IBMX) I7018 Sigma-Aldrich 

Acetic acid A6283 Fisher Scientific 

Acetone A/0560/17 Fisher Scientific 

Agarose BP1356-500 Fisher Scientific 

Agarose BP1356-500 Fisher Scientific 

Alcian blue A3157 Sigma-Aldrich 

Alizarin red S A5533 Sigma-Aldrich 

Ascorbic acid phosphate A8960 Sigma-Aldrich 

Bicinchoninic acid B9643-1L Sigma 

B-mercaptoethanol 10368072 Fisher Scientific 

Bovine serum albumin (BSA) BP9703-100 Fisher Scientific 

copper sulphate C2284 Sigma 

Crystal violet HT90132-1L Sigma-Aldrich 

Cytokine array EA-4002 Signosis 

Dexamethasone D2915 Sigma-Aldrich 

Dimethyl sulfoxide D/4121/PB08 Fisher Scientific 

Direct load wide range DNA marker D7058 Sigma-Aldrich 

DPX mounting medium 360294H Analar 

Dulbecco’s Modified Eagle Medium (DMEM) BE12-709F Lonza 

Ethanol (absolute) E0650/17 Fisher Scientific 

Ethidium bromide E1510 Sigma-Aldrich 

Ethylene diamine tetra-acetic acid (EDTA) BP2482-1 Fisher Scientific 

FBS (foetal bovine serum) FB-1001G/500 Biosera 

Fibronectin F0895 Sigma-Aldrich 

Foetal bovine serum FB-1001G/500 Biosera 

Gel loading buffer G2526 Sigma-Aldrich 

Giemsa 48900-1L-F Sigma 

Hemin H9039-1G Sigma-Aldrich 

Human IL-10 standard ELISA kit 900-M21 PeproTech 

Hydrogen peroxide (H2O2) 216763 Sigma-Aldrich 

IL10 ELISA KIT 900-M21 PeproTech 

IL2 ELISA KIT 900-K12 PeproTech 

IL4 ELISA KIT 900-M14 PeproTech 

Indomethacin I7378 Sigma-Aldrich 

Industrial methylated spirits I99050 Genta Medical 
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Insulin I9278 Sigma-Aldrich 

Insulin, Transferrin, Selenium (ITS) I3146 Sigma-Aldrich 

Isopropanol P/7500/17 Fisher Scientific 

L-Glutamine BE17-605E Lonza 

L-Proline P5607 Sigma-Aldrich 

May-Grunwald 205435-25G Sigma-Aldrich 

Methanol M/3900/17 Fisher Scientific 

Non-essential amino acids BE13-114E Lonza 

Oil Red O O0625 Sigma-Aldrich 

Penicillin, streptomycin, amphotericin B BE17-745E Lonza 

Phorbol myristate acetate (PMA) P8139-5MG Sigma-Aldrich 

Phosphate buffered saline BE17-516F Lonza 

Phycoerythrin conjugated antibodies CD105 130-098-845 Miltenyi Biotec 

Phycoerythrin conjugated antibodies CD14 130-098-167 Miltenyi Biotec 

Phycoerythrin conjugated antibodies CD19 130-098-168 Miltenyi Biotec 

Phycoerythrin conjugated antibodies CD197 130-098-124 Miltenyi Biotec 

Phycoerythrin conjugated antibodies CD204 130-107-061 Miltenyi Biotec 

Phycoerythrin conjugated antibodies CD206 130-099-732 Miltenyi Biotec 

Phycoerythrin conjugated antibodies CD25 130-101-428 Miltenyi Biotec 

Phycoerythrin conjugated antibodies CD34 130-098-140 Miltenyi Biotec 

Phycoerythrin conjugated antibodies CD36 130-100-149 Miltenyi Biotec 

Phycoerythrin conjugated antibodies CD45 130-098-141 Miltenyi Biotec 

Phycoerythrin conjugated antibodies CD73 130-097-932 Miltenyi Biotec 

Phycoerythrin conjugated antibodies CD86 130-098-198 Miltenyi Biotec 

Phycoerythrin conjugated antibodies CD90 130-098-906 Miltenyi Biotec 

Phycoerythrin conjugated antibodies HLA-DR 130-098-177 Miltenyi Biotec 

Phycoerythrin conjugated antibodies IgG1isotype 130-098-849 Miltenyi Biotec 

Phycoerythrin conjugated antibodies IgG2a isotype 130-098-849 Miltenyi Biotec 

Phycoerythrin conjugated antibodies REA isotype 130-104-612 Miltenyi Biotec 

Phytohaemaglutinin (PHA) L166 Sigma-Aldrich 

PIGF ELISA KIT 900-K307 PeproTech 

QIAGEN RTPCR KIT 210210 Qiagen 

QIAshredder mnispin columns 79656 Qiagen 

Recombinant human IL10 200-10 PeproTech 

Recombinant human IL13 200-04 PeproTech 

Recombinant human IL4 200-04 Peprotech 

RNase Zap R2020 Sigma-Aldrich 

RNeasy mini kit 74104 Qiagen 

Rosewell Park Memorial Institute (RPMI1640) 12-918F Lonza 

sodium chloride (NaCl) S7653 Sigma-Aldrich 

Sodium pyruvate S8636 Sigma-Aldrich 

TNFa ELIZA KIT 900-K25 PeproTech 

Transforming growth factor B3 100-36E Peprotech 

Tris-Acetate-EDTA (TAE) buffer (50X) (2 M Tris 
Acetate, 100 mM Na2EDTA) EC-872 National Diagnostics 

Trypsin/Versene(EDTA) BE02-007E LONZA 



 

42 
 

Tryptan blue T8154 Sigma-Aldrich 

Tween 20 66368 Analar 

Ultrapure distilled water DNAse free 10977-035 Gibco 

VEGF ELISA KIT 900-M10 PeproTech 

β-glycerophosphate G9422 Sigma-Aldrich 

 

2.2 General cell culture methodology 

 Cell lines 

 

The primary human mesenchymal stem cells (hMSCs) and the cell lines that were used 

in the experiments are tabulated below (Table 2-2).  

 

Table 2-2. Primary cells and cell lines. 

 

 Cell culture techniques 

 

 hMSC isolation 

 

hMSCs were isolated and expanded from human bone marrow aspirates (BMA) by a plastic 

adherent culture technique following a previously published methodology180,181. A total of 

3 human BMA (BMA14 and BMA15, and BMA16) from 3 different donors were purchased 

from Lonza, USA and processed for experimentation (Table 2-2). Whole BMA was seeded 

at a density of 105 mononuclear cells/cm2 on 10 ng/ml fibronectin-coated T75 tissue culture 

flasks in 15ml of growth media (GM) which consist of DMEM supplemented with 5% FBS, 

1% L-glutamine, 1% non-essential amino acids (NEAA) and 1% Penicillin-Streptomycin-

Amphotericin B (PSA) and incubated at 37°C in presence of 5% CO2/95% air in either a 2% 

O2 or 21 %O2 incubator or a 2% O2 work station. For fibronectin coating, 10ml of 10ng/ml 

Cells Description  Source 

hMSCs 
(BMA-14) 

Derived from Human Bone Marrow, Male, Age - 
20 years 

Lonza, USA, code 1M-125, 
Lot No. 0000400307 

hMSCs 
(BMA-15) 

Derived from Human Bone Marrow, Female, 
Age - 36 years 

Lonza, USA, code 1M-125,  
Lot No. 0000419250 

hMSCs 
(BMA-16) 

Derived from Human Bone Marrow, Male, Age - 
29 years 

Lonza, USA, code 1M-125,  
Lot No. 0000444715 

Jurkat  Human acute leukemic T cells Laboratory stock 

THP-1  Human acute monocytic leukaemia cells 



 

43 
 

fibronectin solution in PBS was added to each T75 flask and incubated for 2 hours at room 

temperature. Before use, fibronectin solution was discarded, and the growth media was 

added. The whole bone marrow containing non-adherent (mononuclear cells) and 

adherent cells (hMSC) were maintained in a continuous culture for three weeks in a 

humidified incubator at 37°C in the presence of 5% CO2 and 95% air and different oxygen 

tensions. After 7 days of culture half of media was removed and replaced with antibiotic-

free GM. On the second week, whole media was discarded, cells were rinsed once with PBS 

and growth media was added (15 ml/T75 flask). At the end of the third week, it was possible 

to identify CFU-F derived from single hMSC.  

 

 hMSCs expansion 

 

hMSC were cultured in T75 culture flasks in GM with media changed twice weekly until 

confluent. Once confluent hMSC were washed once with PBS, the PBS aspirated from the 

T75 and 3ml of 1% trypsin/EDTA in PBS solution added to detach the cells from the culture 

plastic. Once the cells had detached from the T75 flask, 3ml of hMSC culture media was 

added to the trypsin/EDTA/cell suspension to quench the effects of trypsin. The media-cell 

suspension was then placed into a 15ml centrifuge tube and centrifuged for 3 minutes at 

180g. After 3 minutes had elapsed the supernatant was aspirated from the centrifuge tube 

to leave a cell pellet. The cell pellet was then re-suspended in 2ml of GM and 1ml of the cell 

suspension was added to two, T75 flask with a further 14ml of hMSC media added. hMSC 

were then cultured with a twice-weekly media change until confluent.  

 Culturing cell lines 

 

Cell lines used in this study were; Jurkat cells and THP-1 cells (Table 2-2). Cells were rapidly 

thawed at 37oC following removal from liquid nitrogen, re-suspended in 10ml of media, 

centrifuged at 180g for 3min, and the supernatant removed. Cells were then re-suspended 

and incubated in antibiotic-free GM; DMEM supplemented with 10% FBS, 1% L-glutamine, 

1% NEAA. Jurkat cells were cultured in both 21% O2 and 2% O2 whereas THP-1 cells failed 

to proliferate at the lower level (Figure 2-1). Therefore, we explored 10% O2 as an 

alternative hypoxic environment for these cell lines.  
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Figure 2-1. Growth curve of THP-1 cells in GM over a 7-day period in 21% O2, 10% O2, 

and 2% O2.  

THP-1 cells failed to proliferate in 2% O2, compared to both 21% O2 and 10% O2. Cell lines 
were cultured in 21% O2 and 10% O2 for subsequent experimentation. Data expressed as 
mean±SD each result represent a replicate of 3 independent experiments (n=3). One-way 
ANOVA were conducted with Tukey’s test to determine pairwise significant difference, 
*P<0.001, * colour indicates that the growth curve in relevant condition is significantly 
higher than 2% O2. 

 

 Cell line sub-culturing and expansion 

 

For sub-culturing Jurkat and THP-1 cell lines, confluent T75 flasks of these cells were 

centrifuged at 180g for 3 min, the supernatant removed, and the cell pellet re-suspended 

in fresh GM and split at 1:4 ratios into T75 tissue culture flasks. Media changes were 

performed twice per week. These cells were seeded at a density of 1x105 cells/ml in 15 ml 

T75 flasks. The media changed twice per week based on their population doubling time (2-

3 days), and reseeded again at same seeding density of 1x105 cells/ml. 

 Cell line cryopreservation 

 

Following expansion, cells were cryopreserved for future use. A confluent flask of cells was 

centrifuged, supernatant removed, and the cell pellet re-suspended in a cryopreservation 

solution composed of 10% DMSO in FBS. Cell concentration for cryopreservation was 2x106 

cells per ml of DMSO-FBS solution. For freezing, the cryovials passed through two stages, 
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transient freezing in Mr. Frosty freezing container stored in -80 freezers for 24hrs before 

being permanently transferred to liquid nitrogen. 

 

 Preparation of SFCM of hMSC 

 

hMSCs (P0 to P3) were grown to 70% confluency in T75 tissue culture flasks in GM. The 70% 

confluent T75 tissue culture flasks were washed twice with 15ml PBS and once with 15ml 

serum free non-conditioned media (SFNCM) and then 20ml of SFNCM added and incubated 

for 24 hours182 in normal culture condition (37ºC, 5% CO2 and 95% air) under different 

oxygen tension (21% O2, 2% O2 and 2% O2 work station). After 24 hours of culture, media 

were collected in 50ml centrifuge tubes. To remove cell debris, if any, SFCM media was 

centrifuged for 3 minutes at 200g, the supernatant was collected and stored at -80ºC. Prior 

use, SFCM was sterile filtered through a 0.2μm cellulose acetate syringe filter. 

 

2.3 In vitro immune cell line activation 

 

As per manufacturer instructions, 5x105Jurkat cell/ml was activated by the addition of 50ng 

of Phorbol Myristate Acetate (PMA) plus 1µg of Phytohaemaglutinin (PHA), while THP-1 

cells were activated by addition of PMA alone. PMA is structurally similar to diacylglycerol 

(DAG), and consequently stimulates the intracellular pathways of PKC which are usually 

activated during in vivo binding of extracellular pathological ligands triggering 

phospholipase C (PLC) enzyme. Activation of PLC results in enzymatic degradation of 

phosphatidylinositol 4,5-bisphosphate (PIP2) to diacylglycerol and inositol 1,4,5-

trisphosphate (IP3). Calcium catalyses the degradation of PIP2, PHA provides a potential 

bottleneck step for calcium release from endoplasmic reticulum resulting in augmentation 

of PMA-induced immune cell activation as indicated by IL2 secretion by Jurkat cells. The 

activation was performed for Jurkat and THP-1 cells cultured in GM, SFNCM, and SFCM. 

 

 

https://en.wikipedia.org/wiki/Phosphatidylinositol_4,5-bisphosphate
https://en.wikipedia.org/wiki/Inositol_trisphosphate
https://en.wikipedia.org/wiki/Inositol_trisphosphate
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2.4 Viability/proliferation assay 

 Cell count for Jurkat and THP-1 cells 

 

Cell counts were performed for the cell lines in a triplicate over 7 days to determine the 

rate of cell growth at a seeding density of 2x105cell/ml, using a haemocytometer. Cell 

counts were performed on the cells in different conditions, including, activated and 

inactivated cells in their GM, SFNCM, and SFCM and under different oxygen tensions, 2% 

O2, 10% O2, and 21% O2. For counting an equal volume of sample and trypan blue were 

loaded into the haemocytometer cell in 4 external squares of counting chamber, cells were 

then counted under a microscope. A mean count was determined from the 4 corner regions 

to give the number of cells per 0.1 µL. To determine the number of cells/mL and the total 

cells the mean number of cells/0.1 µL was multiplied by 104 and the total number of mL of 

cell suspension respectively. If trypan blue was used the dilution factor was also taken into 

account in the calculation. For THP-1 cells, the total cell count is a summation of suspension 

and adherent cells, the adherent cells were counted after being detached using trypsin. 

 

 MTT cell proliferation assay 

 

The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay is based on 

the conversion of MTT into formazan crystals, by NAD(P)H-dependent cellular 

oxidoreductase enzyme expressed by living cells, which determines mitochondrial activity. 

Since for most cell populations, the total mitochondrial activity is related to the number of 

viable cells, this assay is broadly used to measure the in vitro cytotoxic effects of drugs on 

cell lines or primary patient cells. 

To determine cell proliferation, MTT was performed on the three cell lines in a triplicate of 

three T25 flasks for 7 days. The MTT was performed on the cells in different conditions, 

including, activated and inactivated cells in their usual GM, SFNCM, and SFCM, and under 

different oxygen tensions, 2% O2, 10% O2, and 21% O2. 

To perform MTT assay for Jurkat and THP-1 cells, the cells were seeded in a triplicate of 3 

T25 flasks at a concentration of 2x105cells/ml, every day on 8 consecutive days, then MTT 
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were performed on individual flasks. A 100µl cells of each day were placed in a row of 96-

well plate and 10µl of MTT solution was added to each well, the MTT solution was prepared 

by dissolving the powder in PBS to obtain concentration of 5mg/ml; then sterile filtered, 

the plate was incubated at 37°C after addition of MTT for 4 hours, then 50µl of DMSO was 

added to each well to dissolve formazan crystals and the plate was incubated again for 45 

minutes then the optical density of each well was determined by reading at 570nm using 

plate reader.  

2.5 Morphological/histological assessment 

 Trilineage differentiation 

 

Trilineage differentiation of hMSCs was performed by plating 5x104 cells/well in 24 well 

plates, each 3 wells were labelled for a certain lineage and 3 wells as a control for each 

lineage. The plates were incubated with GM overnight, then the next day the media was 

changed to differentiation media (DM). The media of the wells were changed two times per 

week for a period of 3 weeks. The composition of DM is outlined in (Table 2-3) 

For chondrogenesis, the micromass culture system was used. Briefly, 1 x 105 hMSC were re-

suspended in 7μl of complete media and dropped in the centre of a 24-well plate as a 

micromass and cultured for 2 hours in the humidified incubator in the standard culture 

condition allowing them to adhere to the culture surface. Micromasses were then 

replenished with chondrogenic differentiation media and cultured in standard culture 

conditions for three weeks with media change every two days. For control, micromasses 

were cultured with complete growth media for the same duration. 
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Table 2-3. The composition of trilineage differentiation media 

Osteogenic media content Final Conc. 

Ascorbic acid 50µM 

Beta glycerophosphate 10mM 

Dexamethasone 0.1µM 

FBS 10% v/v 

NEAA 1%v/v 

L-glutamine 1%v/v 

DMEM media ………. 

Adipogenic media content Final Conc. 

Dexamethasone 0.5µM 

IBMX (3-Isobutyl-1-
methylxanthine) 

0.5mM 

Insulin 10µg/ml 

Indomethacin 100µM 

FBS 10% v/v 

NEAA 1%v/v 

L-glutamine 1%v/v 

DMEM media  ………. 

Chrondrogenic media content Final Conc. 

ITS (insulin, transferrin, selenite) 1%v/v 

Dexamethasone 0.1µM 

Ascorbic acid 50µM 

L-proline 40µg/ml 

Sodium pyruvate 1%v/v 

TGF-B3 (transforming growth 
factor-B3 

10ng/ml 

FBS 1%v/v 

NEAA 1%v/v 

L-glutamine  1%v/v 

DMEM media  ………. 

 

 Stain preparation 

 

1% Alizarin Red solution was prepared by dissolving 0.5g of Alizarin Red in 50ml of dH2O. 

The solution was filtered with 0.4μm porous filter paper before use. Oil Red O solution was 

prepared by first preparing a stock solution by dissolving 0.175g of Oil Red O powder in 50 

ml of 100% isopropanol. The stock solution was then filtered with 0.4μm filter paper. Oil 

Red O working solution was prepared by adding 3 ml of stock solution to 2ml of dH2O. 1% 

Alcian Blue solution was prepared by dissolving 0.5g of Alcian Blue 8GX in 50ml of 3% acetic 
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acid to prepare 1% Alcian Blue solution (pH 1.5). The solution was filtered using a 0.4μm 

porous paper filter. 

 Evaluation of trilineage differentiation by histological staining 

 

After three weeks, the differentiated hMSC lineage was confirmed by histological staining. 

The mineral deposition by differentiated osteoblasts, lipid accumulation in adipocytes, and 

proteoglycan-rich matrix accumulation in chondrocytes was detected by classical 

histological stains; Alizarin Red, Oil Red O, and Alcian Blue, respectively, following standard 

protocols. Firstly, the media were removed from all wells, followed by twice washing with 

dH2O, then fixed by 0.5ml/well of 10% formalin for 30 minutes incubated at room 

temperature, then formalin was discarded and the adipogenic wells and their controls were 

washed twice with isopropanol and the other wells were washed twice by dH2O. Then for 

osteogenic wells and their control, 500μl/well of Alizarin Red solution was loaded and 

incubated for 10 minutes at room temperature. After incubation, Alizarin Red solution 

discarded, and samples were then washed three times with tap water to remove excess 

dye. For adipogenic wells and their controls, 500 μl/well of Oil Red O working solution was 

loaded and incubated for 10 minutes at room temperature. After incubation, Oil Red O was 

discarded, and samples were washed three times with isopropanol. Images should be taken 

immediately for the adipogenic wells. Finally, to stain chondrogenic wells and their control, 

500μl/well of Alcian Blue was loaded and incubated overnight at room temperature. 

Samples were washed three times with dH2O to remove excess stain and images were 

captured by an inverted light microscope attached with a colour CCD camera. 

 Cytospin 

 

In order to identify the morphological appearance of the Jurkat T cells in GM, SFNCM, and 

SFCM, the cytospin technique was used where the cells were centrifuged under high-speed 

annealing the cells on a slide in a monolayer form which improves their morphological 

appearance. To prepare cytospin slides, 5x104 cells were centrifuged and the supernatant 

removed, following which, the pellets were washed twice in cold PBS solution and then the 

pellets diluted with 1ml of PBS solution. Then the slides were placed into an appropriate 

metal template and the filter paper was fixed to the cytofunnel, then the cytofunnel fixed 
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to the slide by the metal template. The cells were then pipetted into the cytofunnel and 

centrifuged by cytospin-centrifuge at 300g for 2 minutes. Slides were then removed from 

the filter and cytofunnel and examined under the microscope to make sure that the cells 

were annealed properly. Slides were air dried for 15 minutes and fixed with 95% ethanol 

for 15 minutes. Following air drying, the slides were flooded with an excess amount of May-

Grunwald for 5 minutes and the slides were then washed and followed by staining with a 

surplus of Giemsa stain for 15 minutes, then the slides were washed with tap water to 

remove any excess stain. Xylene mounting agent was placed over the slides to fix the cover 

slides. Images were captured for these slides and cell surface area was calculated for 100 

cells using ImageJ software (NIH). For adherent THP-1 cell to the bottom of the wells, the 

cells were stained with May-Grunwald and Giemsa stain. THP-1 cells were scored into 

pancake and spindle shaped cells. 

2.6 Genetic assay 

 

 Ribonucleic acid extraction and processing 

 

 Cell pellet preparation 

 

To conduct genetic study, the cell lines (Jurkat and THP-1 cells) were cultured in GM±PMA, 

SFCM±PMA, and SFNCM±PMA. Pellets of cells at day 0 to day 7 in GM±PMA, SFCM±PMA, and 

SFNCM±PMA were collected, centrifuged (180g for 3min), and freezed in -80°C for 

subsequent RNA extraction. 

 

 Cell lysis and RNA extraction 

 

RNA lysates were obtained by addition of 350μl of lysis buffer (ß-mercaptoethanol: RLT lysis 

buffer at ratio 1:100) to the pellets. The lysis buffer-cell suspension was then transferred 

into a QIAshredder spin column, which was placed into a collection tube. The column/ 

collection tube was then centrifuged for 2 minutes at 1800g. After 2 minutes the shredder 

column was removed and 350μl of 70% ethanol added to the collection tube, then the 

solution transferred into the RNeasy mini-column. The collection tube/column was then 

centrifuged at 1800g for 15 seconds and the flow-through discarded. 700μl of buffer RW1 
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(supplied as part of the Qiagen RNeasy Kit) was placed into the RNeasy mini-column; this 

was then centrifuged for 15 seconds at 1800g and the flow-through discarded. 500μl of RPE 

buffer was then added to the RNeasy mini-column and centrifuged again for 15 seconds at 

1800g, flow-through discarded and 500µl of RPE buffer added again and centrifuged for 2 

minutes at 1800g. The column was then placed into a new collection tube and centrifuged 

at 1800g for 2 minutes to remove excess ethanol. The RNeasy mini-column was then placed 

into a new 1.5ml collection tube and 15μl of RNase-free water added and left to stand for 

5 minutes prior to being centrifuged for 1 minute at 1800g. The flow-through was then 

pipetted directly back onto the RNeasy minicolumn and allowed to stand for a further 5 

minutes and then centrifuged for 1 minute at 1800g. The RNeasy mini-column was then 

discarded and the flow through retained for quantification and subsequent gene expression 

analysis. Samples were frozen at -80°C until analysis could be undertaken. 

 

 Quantitative analysis of RNA extraction 

 

After RNA extraction quantitative analysis of the RNA sample was performed using 

Nanodrop (ND-2000) spectrophotometer to enable correct RNA sample concentration for 

RTPCR (25ng/μl). Briefly, 1μl of RNA sample was loaded onto the pedestal analysis stand 

and read using the RNA quantification tool as part of the ND-2000 software. RNA 

concentration (ng/ml), 260/280 260/230 measurements were recorded. Pre and post 

sample analysis the Nanodrop pedestal was cleaned before each sample run (all samples 

were kept on ice whilst RNA quantitative analysis was performed). The dilution equation 

(C1*V1=C2*V2) was applied to each reading to calculate the dilution of RNA samples to the 

25ng/μl required for RTPCR. (C2=25ng/µl, V2=50µl, C1=provided by Nanodrop and V1=the 

required volume of the sample to be diluted to 50µl to provide the RTPCR-desired 

concentration of 25ng/µl). 
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 Reverse transcription polymerase chain reaction 

 

 Preparation of reaction mix 

 

The PCR reaction tubes were set up to contain 1μl of the sample to be amplified along with 

11.5μl of the reaction mix (including enzyme, gene-specific primers and reaction mix) (Table 

2-4). The reaction tubes are then capped and placed in the thermal cycler for the PCR 

reaction to be initiated. Once the PCR reaction was complete the reaction tubes where 

removed from the thermal cycler, and the content mixed with 1μl of gel loading solution 

using a fresh pipette tip for each of the samples. 

Table 2-4. PCR reaction mix volumes 

 

Chemical Sample Mix Volume Blank Mix 
Volume 

Qiagen-one step RTPCR buffer 5x 2.5µl 2.5µl 

dNTP mix 0.5µl 0.5µl 

Q solution 0.5µl 0.5µl 

RNase free H2O 3.5µl 3.5µl 

Forward Primer 1µl 1µl 

Reverse Primer 1µl 1µl 

Enzyme mix 0.1µl 0.1µl 

Sample (RNA) 1µl 0µl 

RNA free H2O 0µl 1µl 

 

 Thermocycler set up 

 

The gene amplification was performed on the DNA Engine thermal cycler (GENEFLOW). The 

cycle temperature, time and number of cycles used in the amplification of the specific genes 

shown in the following table. 
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Table 2-5. RTPCR thermal cycler set up for primer annealing 

Sub Cycle Temperature Time Number of cycles 

cDNA 
Synthesis  

50ºC 30 mins 1 

pre-denaturing 95ºC 15 mins 1 

Denaturing 94ºC 1 mins 39 cycles 

Annealing * Gene specific 30secs 39 cycles 

Extend 72ºC 30secs 39 cycles 

Extend 72ºC 10mins 1 

Extend 15ºC ∞ 1 

* Gene specific temperature for annealing 

 

 Primer sequences design  

 

The primers for this study were designed using human gene sequences from NCBI Gene 

Viewer. Designed primers (Table 2-6) were evaluated in NCBI Primer-BLAST to check 

binding specificity. Customised primer sets were purchased from Invitrogen, UK. RTPCR was 

performed with a one-step protocol. 
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Table 2-6. RTPCR primer sequences. 

Gene ID Sense sequence (5’ to 3’) Antisense sequence (3’ to 5’) size 

GAPDH GAGTCAACGGATTTGGTCGT GATCTCGCTCCTGGAAGATG 225 

IL2 CCAGGGACTTAATCAGCAAT TGTTTTAAGTGGGAAGCACT 184 

IL2RA AAGGAACCATGTTGAACTGT CTTCTCTTCACCTGGAAGG 251 

IL2RB GTGTACTTGCTGATCAACTG CTGAGTAGGGGTCGTAAGTA 385 

IL2RG GAGATCCACCTCTACCAAAC TTCCACAGAGTGGGTTAAAG 337 

NFATAC2 GCTTGACTTCTCCATCCTC GGCTGGTCTTCCACATCT 385 

PPP3CA CACTCGCTACCTCTTCTTAG AGTCAAAGGCATCCATACAG 220 

Erk GCCTAAGGAAAAGCTCAAAG GTCAAAGTGGATAAGCCAAG 230 

Fos TAGGGAGGACCTTATCTGTG TGCTACTAACTACCAGCTCT 165 

JNK1 GTTTGCCACAAAATCCTCTT TCATCTAACTGCTTGTCAGG 180 

Jun ACTCCCCTAACCTCTTTTCT CATCGCACTATCCTTTGGTA 236 

NF-kB1 TATTTCAACCACAGATGGCA CCATTTGTGACCAACTGAAC 223 

Rela ATCAATGGCTACACAGGACCA CTGCTCTTCTTGGAAGGGGTT 270 

MAPK8 TCTTTGCCAAGTGATTCAGA ACAGACCATAAATCCACGTT 291 

IL10RA AGTCACTTCCGAGAGTATGA TAGACCACATCCCCTTGTTA 175 

IL10RB CTCCCCAGTATGACTTTGAG AAGGCGTACTTTGTCTTCTT 259 

L32 TCCCTTCTCTCTTCCTCG GAATCTTCTACGAACCCTGT 206 

CCL5 GGATTTCCTGTATGACTCCCG TTTGTAACTGCTGCTGTGTG 268 

CCR5 CCCGTAAATAAACCTTCAGAC AGATGAACACCAGTGAGTAG 372 

IL8 CACAAACTTTCAGAGACAGC GTCCACTCTCAATCACTCTC 266 

MCP1 TCGCGAGCTATAGAAGAATC AATAAAACAGGGTGTCTGGG 232 

MIP1A GGTTTCAGACTTCAGAAGGAC GCTCGTCTCAAAGTAGTCAG 260 

IL1B ATTCTCTTCAGCCAATCTTCA TATCCCATGTGTCGAAGAAG 372 

IL12B GCCATTAAAGAATTCTCGGC AGATGAGCTATAGTAGCGGT 223 

TNFa TCTCTCTAATCAGCCCTCTG CAGATAGATGGGCTCATACC 389 

IL10 TCAGCAGAGTGAAGACTTTC CCTTGCTCTTGTTTTCACAG 270 

bNGF GAGAGCGCTGGGAGC GCTGTGATCAGAGTGTAGAA 200 

FGFb CGACCCTCACATCAAGCTA CGTAACACATTTAGAAGCCAGT 263 

GMCSF AAAGGCTAAAGTTCTCTGGA CCTGGAGGTCAAACATTTCT 224 

IGF-1 TAAGGAGGCTGGAGATGTAT GATCTGCAGACTTGCTTCT 209 

IL12A GCCTAAATTCCAGAGAGACC TCATCAATAACTGCCAGCAT 208 

Leptin TCGGGCCGCTATAAGAG GTGACTTTCTGTTTGGAGGA 266 

SCF ACCATTTATGTTACCCCCTG AGTGTTGATACAAGCCACAA 300 

VEGF CTGGAGCGTGTACGTTG GAGTCTCCTCTTCCTTCATTT 382 
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 Agarose gel 

 

The 2% agarose gel was prepared 1 hour prior to electrophoresis by adding 2g agarose 

(electrophoresis quality) to 100ml of 1 x TAE (20ml 50xTAE buffer is added to 980ml of dH2O 

to get a working concentration of 1 x TAE buffer). This was heated using a laboratory 

microwave set to full power until the agarose was fully dissolved and the solution was 

completely clear. Once the agarose was dissolved 5μl of Ethidium bromide solution was 

added, and the solution poured into the gel tray and allowed to solidify with a gel comb in 

place for 1hr. 

 Electrophoresis 

 

The comb was removed from the gel and the gel with the mould placed in the 

electrophoresis tank containing excess 1x TAE buffer ensuring the buffer completely covers 

the gel. The wide range ladder loaded into the first well and samples were loaded in all 

other wells allowing for a blank (including enzyme, gene specific primers and reaction mix 

but without RNA sample) and second wide range ladder to be placed in the final well. 

Samples and blanks were loaded at a volume of 6μl per well with fresh pipette tips for each 

sample and blank. The wide range ladders were loaded at a volume of 6μl. The 

electrophoresis tank was then connected to the Biorad Powerpac 1000 

(100Volts/400mAMPS/37W) and allowed to run for 1hr. 

 Gel imaging 

 

After the allotted 1hr for electrophoresis, the Powerpack was switched off and the gel 

removed from the tank. Gels were imaged on the GelDoc-It2 imager and focused using UVP 

software. Once the gel was focused the image was printed and saved. 

 Microarray  

 

A previous study performed by our group Kay et al183 showed that hMSCs global gene 

expression was altered in different oxygen tensions (21% O2, 2% O2 and 2% O2 workstation). 

In the present study we exploited those datasets further with a focus on the 31 bioactive 

markers identified on the protein arrays. The affymetrix expression values specific to these 
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31 bioactive factors were selected using UCSC Genome browser home 

(https://genome.ucsc.edu) and then uploaded into the Online Microarray Data Mining tool 

(http://www.arraymining.net/R-php-1/ASAP/microarrayinfobiotic.php) to produce the 

heatmap. The heatmap shows green-dark-red colour ranges indicating expression, no 

expression, and repression, respectively. Furthermore, factors with more than one 

affymetrix value were averaged and plotted in a bar chart. 

 

2.7 Proteomic assay 

 Total protein assay 

 

To quantify total protein, a bicinchoninic acid assay is used. The assay relies on the 

production of a cupric-protein complex in basic media, followed by reduction of cupric to 

cuprous. The reduction process is reciprocal to the amount of protein present. In an alkali 

environment, the formed cuprous reacts with the bicinchoninic acid resulting in a 

formation of a bluish-purple coloured complex to be detected at an optical density of 

570nm (Figure 2-2A). A total protein assay was performed on conditioned media generated 

from MSCs. The standard was prepared using 3mg/ml of bovine serum albumin (BSA) 

followed by serial dilutions to prepare 12 samples of different concentrations, following 

which 10µl of the standard or samples were loaded into the 96-well plate, then 100µl of 

reagent were added to each well of the standards and samples. The reagent was prepared 

by mixing 4% copper sulphate solution with the bicinchoninic acid solution at a ratio of 1:50 

respectively. The plate was incubated at 37°C for 1hr then the optical density determined 

by reading at 570nm using plate reader. The concentrations of unknown samples were 

determined from the interpolation of the standard calibration curve (Figure 2-2B). 
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Figure 2-2. BCA total protein assay principle and standard curve.  

(A) A schematic diagram describing 2-steps of BCA total protein assay in presence of cupric 
sulphate as a catalytic subunit resulting in the formation of purple protein-BCA-cupper 
complex, the signal intensity is reflecting the protein quantity. (B)The standard curve of 
BCA assay using a serial dilution of BSA, the concentrations of unknown samples from cell 
lysate were determined from the interpolation of X-axis of the standard curve, data 
expressed as mean±SD (n=3). Interpolation of x-axis was used for determination of protein 
concentrations of unknown samples. 

 

 Flow cytometry 

 

Cell surface marker expression was performed by flow cytometery for hMSCs isolated from 

bone marrow for identity confirmation, THP-1 cells at day 0 and day 3 in GM±PMA, SFCM±PMA, 

and SFNCM±PMA. The principle of the assay is based on the passage of a stream of fluid 

containing the target cells, which are labeled with fluorochrome molecule specific for a 

certain antibody, through an optic system. The optic system consists of a laser beam to 

illuminate the cell particles and optic filters to direct the resulting light signal from a stained 

population at the interrogation point toward specific detectors. The detectors transfer the 

emitted light into an electronically processed format to be further analyzed by computer 

software system (Figure 2-3). For adherent cells like hMSCs, 90% confluent T75 flasks, 

under different oxygen tensions, were utilized to perform the FACs. The flasks were washed 

with 10ml PBS, following which 3ml of 10% trypsin/EDTA in PBS were added to harvest the 

cells. The flasks were examined under microscope to ensure detachment, then 10ml of 



 

58 
 

fresh media was added to neutralize the action of trypsin, then the whole solution was 

transferred into 15ml tubes, centrifuged at 300g for 3min, supernatant removed and the 

pellet washed with excess amount of FACS buffer added. The buffer consists of 0.075% of 

EDTA and 0.5% of BSA dissolved in PBS solution. The solution divided equally into several 

Eppendorf tubes; based on the number of antibodies included in the tested panel (Table 2-

5). The tubes were again centrifuged at 300g for 5 min, the supernatant removed, and the 

cell pellets re-suspended in 1µl of antibodies in a 100µl of FACS buffer with gentle pipetting. 

The stained cells were incubated in the dark in the refrigerator for 10min and then 

centrifuged. The supernatant was removed, and the pellets were washed with 1ml of FACS 

buffer with gentle pipetting and then centrifuged at 300g for 10min. Then the supernatant 

was aspirated completely and finally the cell pellets were resuspended in 200µl of PBS for 

analysis by flow cytometry. For THP-1 (suspension cells); same steps are carried out without 

trypsinization. Results were analysed using a Cyflogic software. 
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Figure 2-3. Schematic diagram describing the principle of flow cytometry. 

The sheath fluid mobilises the cell suspension directing them through laser beam as a single 
event per time, during which both forward (FSC) and side (SSC) scattered light is recorded, 
as well as fluorescence emitted from stained cells. When the laser beam strikes the stream, 
the majority of the photons will pass through unobstructed. Some of these photons will 
diverge slightly, primarily via light diffraction, from their path as they contact the 
membranes of passing cells. A detector is placed in line with the laser path (on the opposite 
side of the stream) and this "scattered" light is collected. Because of the nature of its 
collection, this parameter is referred to as Small Angle Light Scatter (SALS), Forward Angle 
Lights Scatter (FALS), or, most commonly, Forward Scatter (FSC). Forward scatter is 
proportional to cell size; the bigger the cell, the more light is scattered, the higher the 
detected signal. As cells are translucent, many photons will pass through the cytoplasm. If 
the photon strikes an organelle (ER, nucleus, etc), the photon will be reflected at a larger 
angle than those generated by the forward scatter phenomenon. In a typical cytometer, a 
second detector is placed perpendicular to the laser path to collect light scattered in this 
manner. This is known as Wide Angle Light Scatter (WALS), Orthogonal Light Scatter (OLS), 
90° Lights Scatter, or, commonly, Side Scatter (SSC). Side scatter is proportional to cell 
complexity; the more organelles/bits inside the cytoplasm, the lighter scatter, the higher 
the detected signal. 

 

Table 2-7. Antibody panel  

 

Cells Types Antibody markers 

hMSCs Positive markers CD73, CD90, CD105 

Negative markers CD14, CD19, CD34, CD45, HLA-DR 

THP-1 Positive markers CD45, CD105, HLADR 

Negative markers CD14, CD19, CD25, CD34, CD73, 
CD86, CD90, CD197, CD206, 
CD204 

Negative markers CD10, CD197, HLADR 

Isotype 
control 

IgG1 for  
CD19, CD25, CD73, CD86, CD90, CD105, CD206 

IgG2a for 
CD14, CD34, CD36, CD45, HLA-DR 

REA for 
CD197, CD204 

 

 

 

 

http://www.google.com/search?q=define:diffraction&sourceid=mozilla-search&start=0&start=0&ie=utf-8&oe=utf-8&client=firefox-a&rls=org.mozilla:en-US:official
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 Human cytokine ELISA plate array I (colorimetric) 

 

 Principle of the assay 

 

Cytokine array was conducted on SFCM collected from 21% O2, 2% O2, and WS 

environments using a cytokine colorimetric plate array (Signosis). The 96-well clear plate 

was divided into 3 sections, and each section has 4 columns for one sample. In each section, 

31 specific cytokine capture antibodies were pre-coated onto 31 wells, respectively, and 

one blank well (Figure 2-4). The sample, conditioned media, was incubated on the cytokine 

ELISA plate, and the captured cytokine proteins were subsequently detected with a cocktail 

of biotinylated detection antibodies. The test sample was allowed to react with pairs of two 

antibodies, resulting in the cytokines being sandwiched between the solid phase and 

enzyme-linked antibodies. After incubation, the wells were washed to remove unbound-

labelled antibodies. An HRP substrate, TMB, was added to result in the development of a 

blue colour. The colour development was then terminated by the addition of Stop Solution 

changing the colour to yellow. The concentrations of the cytokines were directly 

proportional to the colour intensity of the test sample. Absorbance was measured 

spectrophotometrically at 450nm. 

 Assay procedure  

 

Firstly, the 3 sections of the plate were labelled as 21% O2, 2% O2, and WS SFCM, then the 

film over the plate was removed and 100µl of each conditioned media were loaded into 

their desired 32-wells using multichannel pipette, then the plate was incubated for 2 hours 

at room temperature with gentle shaking. After 2 hours, the plate was forcibly inverted 

over the waste container to expel the contents, then the plate was washed by adding 200µl 

of diluted assay wash buffer, the washing process was repeated two times for a total of 

three washes. After each wash, the liquid was completely removed by firmly tapping the 

plate against a clean tissue. When the washing process was completed, 100µl of diluted 

biotin-labelled antibody mixture was added to each well and incubated for 1 hour at room 

temperature with gentle shaking. Then, the liquid was removed, and the washing process 

was repeated in the same way as above. Subsequently, a 100μl of the diluted streptavidin-

HRP conjugate was added to each well and incubated for 45 minutes at room temperature 
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with gentle shaking. Then, the liquid was discarded, and the washing process was repeated 

in the same way as above except that in the third washing step the plate was incubated for 

10 minutes at room temperature with gentle shaking then the liquid was removed. 

Following which 100µl of the substrate was added to each well and incubated for 30-40 

minutes, in this step the colour of the liquid inside the wells were blue, then, 50µl of stop 

solution was added to each well, in this step the colour of the liquid was changed from blue 

to yellow. The optical density was determined at 450nm using plate reader. This assay 

procedure was repeated four times. 

 

Figure 2-4. Schematic diagram of human Cytokine ELISA plate array.  

The diagram summarizes the steps of the reaction of different materials provided by the 
kit, the captured cytokine proteins in the SF-CM detected with a cocktail of biotinylated 
detection antibodies. The test sample is allowed to react with pairs of two antibodies, 
resulting in the cytokines being sandwiched between the solid phase and enzyme-linked 
antibodies. After incubation, the wells were washed to remove unbound-labelled 
antibodies. A substrate was added to result in the development of a blue colour. The colour 
development is then stopped by the addition of stop solution changing the colour to yellow. 
Reading performed at an optical density of 405nm. 
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 ELISA assay 

 

Cytokine array was validated by focussed detection of IL2, IL4, IL10, TNFa, PIGF1, and VEGF. 

Standard serial dilutions and SFCM in triplicate were loaded into an overnight pre-coated 

surface with a capture antibody specific to these 6 cytokines and blocked for 1 hour by 1% 

BSA-blocking buffer, followed by a 2-hour incubation with diluted detection antibody 

mixture and 30 minutes with diluted avidin-HRP conjuate. Each step was accompanied by 

discarding the contents forcibly and 4 times of washing with diluted detergent buffer. The 

washing buffer was prepared from 0.05% Tween-20 in PBS. Finally, an enzymatic reaction 

initiated by addition of an ABTS-substrate (2,2′-Azino-bis (3-ethylbenzothiazoline-6-

sulfonic acid)) leading to bluish-green colour development within 5-15 minutes during 

which a visible signal was detected at 405nm via plate reader. The concentrations of 

unknown samples were determined by the interpolation of the standard calibration curves 

for each component (Figure 2-5). ELISA assay has been conducted on culture media 

collected from polarised Jurkat T cells and THP-1 monocyte cells for detection of IL2 and 

TNFa/IL10, respectively. The tested culture media has been collected from polarised Jurkat 

or THP-1 cell line models cultured in GM, SFNCM, SFCM, SFNCM+Ligand(s), and 

SFCM+antiLigand(s)AB. The interpolation of unknown samples has been achieved using the 

standard curve for each individual cytokine (Figure 2-5). 
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Figure 2-5. Standard curves used to interpolate the concentrations of detected cytokines. 

 These were IL10 and TNFa secreted from THP-1 cells (A) and IL2 secreted from Jurkat T 
cells (B) following their exposure to PMA or PMA/PHA in different culture conditions. These 
standard curves (A-E) has been considered for interpolation of IL10, TNFa, IL2, IL4, PIGF, 
and VEGF cytokines in SFCM to validate the array profiling. The intensity of visible signal 
determined at optical density 405nm and is reciprocally related to the concentration of 
cytokine standard and represents a replicate of 3 samples. 

 

2.8 Cytokine challenging 

 

This study sought to identify if the immunosuppression of SFCM was cytokine-driven. We 

selected 4 anti-inflammatory cytokines from the cytokine array as targets for SFCM 

mediated immunosuppression, including IL4, IL10, IL13, and TGFb. To identify the 

candidate biomolecule(s), these cytokines were individually tested on the cell line models 

in SFNCM and a cytomix is considered to account for the IL4/IL13 receptor overlapping 

phenomena. Moreover, these cytokines were individually or in combination (IL4/IL13) 

blocked from SFCM with their specific rabbit polyclonal antibodies. The doses were 

identified via dose-response curve via testing a serial dilution of individual cytokine in 

SFNCM on the target cell line models. For Jurkat T cells, MTT was conducted after 24-hrs of 

cell exposure to a serial doses of IL4 (0-10000 pg/ml), IL13 (0-10000 pg/ml), IL10 (0-50 

ng/ml), and TGFb (0-100 ng/ml), the toxic doses were ignored and a highest non-toxic doses 

of each [(IL4 and IL13 (250pg/ml), IL10 (1ng/ml), and TGFb (5ng/ml)] was considered as a 

target dose in subsequent experiments (Figure 2-6). However, the adherent cell counts at 

day 3 were considered as a target response for THP-1 following their exposure to these 

anti-inflammatory cytokines and accordingly the doses were selected. The lowest 

concentration of these cytokines which induce THP-1 adherence and used in subsequent 

experimentation, including [(IL4/IL13 (20ng/ml), and IL10/TGFb (5ng/ml)] used either alone 

or in combinations (Figure 2-7). In the subsequent steps, these cytokines were blocked in 

SFCM either alone or in combinations using an excess amount of rabbit polyclonal 

antibodies. To neutralise these cytokines from SFCM, different concentrations of their 

specific antibodies were used based on the target cytokine. For example, IL10 was 

neutralised by 2μg/ml of anti-human IL10, IL4 neutralised by 100ng/ml anti-human IL4, and 

IL13 neutralised by 200ng/ml anti-human IL13.  
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Figure 2-6. Dose response MTT-based proliferation assay of Jurkat T cells for selected 

anti-inflammatory prominent cytokines. 

 IL4, IL13, IL10, and TGFb were added to SFNCM in normoxia and hypoxia, Data expressed 
as mean±SD, each result represent a replicate of 3 independent experiments (n=3). Two-
sample t-test were conducted to determine the significant difference, *P<0.05 in 
comparison to cytokine devoid SFNCM control group, arrow indicate used concentration in 
subsequent experiments Black bar=control group, green bar=non-toxic dose, and red 
bar=toxic dose. 
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Figure 2-7. Dose-response curve of target anti-inflammatory cytokines (IL4, IL10, IL13, 

and TGFb) on THP-1+PMA cells based on adherent cell count.  

THP-1+PMA cells were cultured in 24-wellplates and exposed to different doses of target 
cytokines for a period of 3 days and the response was determined as an adherent cell 
counted over different doses. The target dose of these cytokines (IL4=20ng/ml, 
IL10=5ng/ml, IL13=20ng/ml, and TGFb=5ng/ml) were determined and used for subsequent 
experiments. IL4/IL13 are combined to induce adherence (no action achieved with single 
cytokine). * P<0.001 when compared to control (cytokine devoid SFNCM). Data expressed 
as mean±SD each result represent a replicate of 3 independent experiments (n=3). Two-
sample t-test were conducted to determine the significant difference, arrows indicated the 
doses used in subsequent experiments. 

 

2.9 Justification of experimental duration of cell line models: 

 

In the present study, the therapeutic effect of SFCM was tested on two in vitro cell line 

models (Jurkat cells and THP-1 cells). The experiments were carried out over 7 days period 

due to the following reasons. Firstly, the population doubling time (PDT) of Jurkat cells and 

THP-1 cells were within 3 days in GM; PDT for Jurkat cells [21% O2 (2.1 days) and 2% O2 (2.2 

days)] and PDT for THP-1 cells [21% O2 (3 days) and 10% O2 (3 days)]. However, our target 

media are serum-free (SFNCM and SFCM), which were associated with extension of PDT; 
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PDT for Jurkat cells [SFNCM21%O2 (5 days), SFNCM2%O2 (5.2 days), SFCM21%O2 (9.5 days), and 

SFCM2%O2 (4 days)] and PDT for THP-1 cells [SFNCM21%O2 (5.5 days), SFNCM10%O2 (4.4 days), 

SFCM21%O2 (5.2 days), and SFCM10%O2 (6 days)]. Therefore, we have extended our 

experiments to cover 7 days. Secondly, the paracrine activity of Jurkat cells (IL2 release) 

and THP-1 cells (IL10/TNFa release) were maximum with first 2 days, however, we sought 

to track the fate of activation of our cell line model and to ensure that Jurkat cells are not 

re-stimulated in SFCM after suppression and THP-1 phenotype (M1 and M2) is not changed 

(transdifferentiation). 

 

2.10 Data collection and statistical analysis 

 

The BMA were collected from 3 donors (Table 2-2) on different timepoints. The generated 

SFCM was utilised for the subsequent experiments. Data in Chapter 3 were collected from 

replicates of SFCM generated from BMA14, BMA15, and BMA16 (n=3). Each set of 

experiments were conducted independently on SFCM collected from these donors. Data 

were normalised to either blank or SFNCM and expressed as mean±SD. One-way ANOVA 

were conducted using Graphpad Prism 6 (CA, USA) with Tukey’s multiple comparison test 

were used to determine pairwise statistical significance (p≤0.05 was considered 

significant), with further analysis performed in Microsoft Excel Spread-sheets application. 

The microarray data were extracted from previously published results. The original data 

were collected from RNA of 4 different donors (n=4). However, we performed our statistics 

on 31 genes matching our cytokine array. Log expression was taken for individual sample. 

Data were expressed as mean±SD. One-way ANOVA were conducted with Tukey’s multiple 

comparison test were used to determine pairwise statistical significance (p≤0.05 was 

considered significant). 

 

In Chapter 4 and 5, SFCM collected from BMA15 (Chapter 4) and BMA16 (Chapter 5) were 

freezed in -80 and used for subsequent experiments. All experiments were conducted in 

replicates of 3 independent samples. For cell count and MTT, cells were seeded in 3 flasks, 

cell count performed every day on the 3 flasks (n=3), while for MTT, a 100µl/well of cell 

suspension from each flask was transferred to a row (12 well) of 96-wellplate (n=36). Data 
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were expressed as mean±SD. Two-sample t-test was conducted using Graphpad Prism 6 

(CA, USA) to compare SFNCM vs. SFCM. 

 

For ELISA, the culture media were analysed, the media was collected from replicates of 3 

flasks following cell activation. Samples from each flask was transferred into 3 wells (n=9). 

Data were expressed as mean±SD. One-way ANOVA were conducted using Graphpad Prism 

6 (CA, USA) with Tukey’s multiple comparison test were used to determine pairwise 

statistical significance (p≤0.05 was considered significant). Fold upregulation was 

considered for those timepoints which were associated with highly significant differences. 

 

Flow cytometry was conducted on THP-1 cells. The cells were seeded in 3 independent 

flasks. Flow cytometry was conducted on each sample at day 3 following exposure to SFCM 

or a cytokine. Data were expressed as mean±SD. One-way ANOVA were conducted using 

Graphpad Prism 6 (CA, USA) with Tukey’s multiple comparison test were used to determine 

pairwise statistical significance (p≤0.05 was considered significant). Fold upregulation was 

considered for those timepoints which were associated with highly significant differences. 
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3 Chapter 3: Physioxia alters human mesenchymal stem cell secretome constituent 

components 
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3.1 Introduction 

 

Mesenchymal stem cells (MSCs), first identified approximately 50 years ago, have a growing 

role in regenerative medicine as a treatment for various diseases and disorders177,96. In 

spite of this the precise mechanisms of action remain unclear though likely related to all or 

a combination of the following; multipotent differentiation, functional incorporation, 

immunomodulation, and secretion of paracrine factors177,143,147. Proteomic profiling of 

serum-free conditioned media (SFCM) from human MSCs (hMSCs) has revealed the 

presence of a range of pleiotropic biomolecules156 within the secretome including VEGF, 

GMCSF, IL10, and leptin58,164. However, precise SFCM composition can vary confusing 

interpretation where variations can result from hMSC source, e.g. adipose tissue, cord 

blood159,160, bone marrow aspirate157,16,20, stem cell lines158, applied culture conditions, 

conditioning periods, and classical monolayer versus 3D conditioning methods161. 

 

Various in vitro studies have reported beneficial effects of hMSC SFCM supporting the 

paracrine hypothesis of the regenerative potential of hMSCs, for instance, CM promotes 

proliferation and migration of alveolar epithelial cells150 and facilitates in vitro wound 

closure model using keratinocyte and fobroblast cell lines151. Topical application of SFCM 

displayed beneficial effects in a Balb/C mouse model of excisional wound injury via 

recruitment of regulatory macrophages and endothelial progenitor cells to the site of 

injury152 and SFCM has improved function recovery in a hindlimb injury induced by femoral 

artery ligation through induction of collateral angiogenesis and limb remodelling153. 

Moreover, it has been reported that IV infusion of SFCM promotes regeneration and 

inhibits cellular damage in a rat model of gentamicin-induced liver injury through 

accelerating proliferation and inhibition of apoptosis154. Further localised administration of 

SFCM in a rat ischemic retinal model restored functionality and reduced the damage via 

inhibition of retinal cell apoptosis and attenuation of ischemic effects155. Collectively, these 

suggest that SFCM may become a milestone therapeutic tool or a source for discovery of 

new bioactive therapeutic molecules (Figure 3-1). 
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Figure 3-1. Schematic diagram describing the possible regenerative paracrine potential 

of the detected bioactive factors in SFCM.  

The prominent action of SFCM has been noted on immune cells and inflammatory 
responses of the immune system due to injuries or antigenic insults. The detected bioactive 
factors dictated to thwart the immune response providing an anti-inflammatory 
environment which encourages regenerative healing mainly through angiogenesis, tissue 
regeneration, chemotaxis and inhibition of immune cells activation and differentiation. (A) 
The role of hMSCs bioactive factors in the immunomodulation, IL10 and TGFb play a crucial 
role in suppression of immune cell proliferation and differentiation providing 
overwhelming evidence that MSCs secretome could be used as a therapeutic modality in 
certain immune diseases. (B) Regenerative potential of hMSCs secretome through releasing 
growth factors, chemotactic factors and angiogenic factors into the localised environments 
promoting the healing process. Arrows indicate activated pathways while T-bars indicated 
inhibited pathways. 

 

The role of oxygen in stem cell biology has been described variously51,184,35,49. Physioxia is 

an inherent feature of the in vivo niche environment in which hMSCs are resident drawing 

largely from the sinusoidal blood network characteristic of bone marrow185,186,29. Physioxia 

is significantly lower than inhaled exogenous air (21% O2) and it declines gradually as it 

passes from the lung to the tissues; ranging between 0.1%- 9% with an average of 2% 

O2
29,31. Also important to note is that the journey of a transplanted stem cell from donor to 

recipient can be broadly divided into in vitro and in vivo stages. The in vitro stage features 

isolation and expansion under non-physiological conditions while the in vivo stage includes 

both donor (before isolation) and recipient (after transplantation) physiological 

environments31. The immediate physiological environment of the recipient will vary 

according to the preferred delivery method but focussing on one currently applied 

intravenous delivery methodology the hMSC dose arrives into the physioxic blood stream 

having previously experienced a long-term association with air oxygen41,42.  

Applying an increasingly in vivo-like physioxia to in vitro hMSC culture modulates the 

transcriptome but it remains to be determined if this manifests itself via an altered 

secretome composition183. An altered secretome would likely impact on the reparative 

action of SFCM and would likely better reflect the behaviour of hMSCs and/or their 

secretome following transplant into in vivo tissues. A range of control parameters can be 

applied to mimic conditions both before isolation and after transplantation drawing 

comparisons to standard in vitro culture conditions.  
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3.2 Aim 

 

Explore the role of different oxygen tensions on the secretome composition of hMSCs using 

air oxygen (21% O2) versus both intermittent hypoxia (2% O2) and physioxia (2% O2 

workstation) models (Figure 3-2).  

 

Figure 3-2. Schematic diagram for in vitro hypoxic model  

The diagram is describing the impact of fluctuation of in vitro oxygen tension on hMSCs 
paracrine signalling during their culturing, isolation and expansion. hMSCs and SFCM were 
collected under these oxygen tensions and used for subsequent experimentation. The 21% 
O2 incubator (air oxygen) shows no fluctuation of oxygen at cellular level during seeding, 
changing media or passaging or opening and closing incubator doors while 2% O2 
incubators (physioxia) were associated with fluctuation of oxygen concentration at cellular 
level during seeding, changing media or passaging, additionally the 2% O2 model 
(intermittent hypoxia) is associated with oxygen swinging due to door opening and closure 
phase. These variations in oxygen level associated with changing in hMSCs transcriptome 
and consequently secretome profile. Grey dotted line (……) indicates oxygen fluctuation 
due to opening and closure of incubator doors, black dotted line (------) indicates oxygen 
downregulation during seeding, changing media and passaging, and solid line refer to 21% 
O2 (upper) and 2% O2 (lower) levels. 
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3.3 Functional classification of biomolecules present in SFCM 

 

Table 3-1. Cytokines of MSCs secretome. 

Anti-inflammatory cytokines                                Pro-inflammatory cytokines 

IL4 Interleukin4187  IFNγ Interferon r156  

IL10 Interleukin10156  TNFa Tumour necrosis factor a156  

IL13 Interleukin13156  IL1a Interleukin-1a156  

TGFb Transforming growth factorb156  IL2 Interleukin-2156  

 IL12 Interleukin-12156  

IL17a Interleukin-17a188  

 

Hematopoetic cytokines156 Growth and trophic factors156  

GCSF Granulocyte colony- stimulating 
factor  

EGF Epidermal growth factor 

GMCSF Granulocyte-macrophage-
colony–stimulating factor  

IGF1 Insulin-like growth factor-1 

SCF Stem cell factor  bNGF b-nerve growth factor 

 PIGF Placental growth factor 

PDGF Platelet-derived growth 
factor 

FGFb Basic Fibroblast growth factor 

Chemokines 

MIP1a (CCL3) Macrophage inflammatory protein-1α (Chemokine (C-C motif) 
ligand 3)189  

MCP1 (CCl2)  monocyte chemotactic protein 1 (chemokine (C-C motif) ligand 
2)156 

Rantes (CCL5) regulated on activation, normal T cell expressed and secreted 
(Chemokine (C-C motif) ligand 5)156 

Eotaxin (CCL11)  eosinophil chemotactic protein (C-C motif chemokine 11)156 

IL8 (CXCL8) Interleukin-8156 

IP10 (CXCL10) Interferon gamma-induced protein 10 (C-X-C motif chemokine 
10)190  

http://en.wikipedia.org/wiki/Macrophage_inflammatory_protein
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Anti-inflammatory cytokines 

 

IL4. Mainly released by CD4+ T cells, basophils, and mast cells it stimulates differentiation 

of CD4+ T cells into Th2 cells and inhibits their differentiation into Th1 cells. IL4 acts as a 

growth factor for T cells, B cells, and mast cells and stimulates MHCII expression by B cells. 

In rheumatic patients, IL4 suppresses the production of several pro-inflammatory factors, 

such as MIP1a, TNFa, IL1, IL6, and IL8 by synovial tissues. Additionally, IFNγ and IL4 

antagonise each other. IL4, acts as a pleiotropic cytokine, influencing Th cell differentiation 

toward Th2 resulting in subsequent release of IL4 and IL10 by Th2. IL4 suppresses Th1 

differentiation, downregulates IL12 production by macrophages, recruits and polarises 

mast cells, stimulates B cell production of antibodies, suppresses macrophage cytotoxicity, 

inhibits parasite killing, and inhibits macrophage NO production192. 

 

IL10. Produced by activated B cells, activated CD4+ T cells, and activated CD8+ T cells. It has 

a broad range of inhibitory activities inhibiting IFNγ synthesis by activated T cells, antigen 

induced T cell proliferation, monocyte-MHCII expression induced by IL4/IFNγ, and IL2-

induced IFNγ production by NK cells. In addition to above it inhibits IL2 and IFNγ production 

by Th1 cells, monocyte/macrophage proinflammatory cytokine production, such as, TNFa, 

MIP1a, MIP2a, TNFa, IL1, IL6, IL8, IL12, and GCSF168. IL10 is a potent inhibitor for MHCII 

expression, the B7 costimulatory molecule, and CD14 expression which is a LPS recognition 

signalling molecule. IL10 inhibits nuclear factor kB (NF-kβ) nuclear translocation after LPS 

stimulation and promotes degradation of messenger RNA for the proinflammatory 

cytokines193. Moreover, IL10 decreases surface expression of TNF receptors and increase 

the sloughing of TNF receptors into the circulation194. Low lung concentrations of IL10 in 

patients with acute lung injury indicate that ARDS is more likely to develop195. The 

Adipokines191 

Resistin adipose tissue-specific secretory factor (ADSF) or  
C/EBP-epsilon-regulated myeloid-specific secreted cysteine-rich 
protein (XCP1) 

Leptin  

Adipo Adiponectine 

PAI1 Plasminogen activator inhibitor-1 

Others 

Angiogenic factor VEGF Vascular endothelial growth factors156  

Pleiotropic cytokine IL6 Interleukin-6156  
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administration of IL10 in experimental animal models of endotoxemia improves survival. 

Human volunteers given IL10 after endotoxin challenge suffer fewer systemic symptoms, 

neutrophil responses, and cytokine production than placebo-treated control subjects196. 

Furthermore, it has been reported that IL10 knockout mice acquires chronic inflammatory 

enteritis that similar to inflammatory bowel disease in humans194. This confirms that IL10 

plasma concentrations are important in limiting the inflammatory signal to gut-associated 

bacteria, therefore, IL10 is in clinical trials for inflammatory bowel disease193,168. 

 

IL13. An anti-inflammatory cytokine produced by activated T cells, it inhibits the NF-kB 

pathway and the synthesis of pro-inflammatory cytokines, such as, IL1B, IL6, IL8, and TNFa 

by monocytes in response of lipopolysaccharide. IL4 and IL13 share 25% structural 

similarities in their amino acid sequences, their receptor shows polymorphism, and they 

share STAT6 as a post-receptor translation pathway. In addition IL13 increases expression 

of MHCII and integrin and decreases CD14 and Fcγ receptors193. 

 

TGFb. Produced by T cells, monocytes, and platelets it exists in 3 isoforms TGFb1, TGFb2, 

and TGFb3, each encoded by separate genes but binding to the same receptor. It inhibits 

proliferation of T cells and NK cells. Upon tissue exposure to insult, the localised platelets 

degranulate and release TGFb. TGFb starts to recruit leucocytes to the site of injury 

initiating the first step of chronic inflammation. TGFb then stimulate its own synthesis by 

leucocyte; stimulate extracellular matrix deposition, and integrin expression stimulating 

cell adhesion. Similar to IL10, TGFb1 inhibits monocytes/macrophages activation; however, 

TGFb is less potent than IL10 in inhibition of macrophages IL1 production. TGFb exert its 

activity based on tissue localised cytokine environment, therefore, presence of other 

cytokines changes the immune response to TGFb thereby TGFb could modulate the active 

immune response into resolution and healing193. 

Pro-inflammatory cytokines 

 

TNFa. Produced by polarised monocyes/macrophages, fibroblasts, mast cells, T cells, and 

NK cells, TNFa and IL1 share proinflammatory activity on target tissues. IL1 and TNFa induce 

fever directly via production of PGE2 by endothelial blood vessels of the hypothalamus or 

indirectly via stimulation of IL1 synthesis. Moreover, TNFa shares some of its 

proinflammatory activity with IL6 and IL11 via induction of acute phase protein by liver. In 
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addition to their paracrine activity, TNFa, TNFb, IL1, and IL6 have endocrine systemic effects 

during their acute production as in bacterial septicaemia. Systemic release of these 

cytokines is responsible for fever and hypertension; a characteristic features of septic 

shock191. 

 

IFNγ. The interferons are a family of proinflammatory cytokines, the most common of this 

family is IFNγ which is produced by activated T cells and NK cells. IFNγ stimulates MHCI and 

II expression by nucleated cells and stimulate phagocytosis193.  

 

IL1a. Produced by phagocytes, keratinocytes, fibroblasts, activated T and B cells, IL1 

stimulates T cell proliferation, stimulates PGE2 synthesis by endothelial blood vessels of 

the hypothalamus resulting in fever, and stimulates histamine release from mast cells 

leading to vasodilation193. 

 

IL2. Produced by activated T cells and results in proliferation of T cells, B cells, and NK cells, 

and stimulates proinflammatory cytokine secretion by activated target cells with increased 

surface MHCII expression197. 

 

IL12. Is produced by professional antigen-presenting cells, such as, B cells, macrophages, 

and dendritic cells. IL12 activity includes stimulation of cytotoxic T cells, stimulation of NK 

cell cytotoxicity, and stimulation of proliferation of polarised T cells and NK cells. IL12 

synthesis is blocked by IL4 and IL10 and the proinflammatory activity of IL12 on Th1 

maturation is inhibited by IL4193. 

 

IL17a. Produced by activated T cells and stimulates IL6 and IL8 synthesis and increase ICAM-

1 expression by activated fibroblasts193. 

 

Growth factors (SCF, EGF, IGF1, bNGF, PIGF1, PDGF, FGFb, VEGF) 

 

Upon injury platelets degranulate releasing their contents, including growth factors such 

as: EGF, PDGF and TGFb156. PDGF acts with IL1 to stimulate recruitment of neutrophils to 

the site of an injury193. In the presence of TGFb, the monocyte is polarised to form the 

macrophage resulting in augmentation of the immune response and debris formation191. 
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FGF, EGF, TGFb, and PDGF are released by macrophages and stimulate granulation tissue 

formation193. VEGF and FGF are released from platelets and stimulate endothelial cell 

proliferation and blood vessel formation198. Furthermore, FGF, TGFb and PDGF stimulate 

fibroblast transition to myofibroblasts which align with the extracellular matrix193. 

 

Colony stimulating factors (GCSF and GMCSF)  

 

When monocytes, T cells, fibroblasts, and endothelial cells are activated by IL1 and TNFa, 

they produce MCSF and GMCSF. MCSF and GMCSF stimulate neutrophils while GMCSF 

stimulates both eosinophils and mononuclear phagocytes193. In the lungs, alveolar 

macrophages produce 3-fold higher GMCSF level than other macrophages and the released 

GMCSF play a role in the pathophysiology of inflammatory phase accompanying asthma175. 

 

Chemokines (IL8, MIP1a, MCP1, IP10, Rantes, Eotaxin) 

 

These factors control immune cell migration and immune cells allocation, they are crucial 

for immune cell movements in health and disease status. They induce chemotaxis of 

neutrophils, monocytes, lymphocytes, basophils, and eosinophils toward the site of injury. 

190. So far, more than 30 chemokines have been characterised, however, IL8 is the most 

extensively studied cytokine and therefore serves as a prototype to which newly discovered 

chemokines are compared48. IL8 is neutrophil chemotactic factor, it stimulates neutrophils 

and other granulocyte chemotaxis, the mechanism of chemotaxis involves increased 

surface expression of the adhesion protein on target cells, including intracellular adhesion 

molecule, ICAM-1 and endothelial leukocyte adhesion molecule, ELAM-1, and thereby 

stimulating neutrophil attachment to the endothelium lining of the blood vessels resulting 

in their diapedesis through the vessel wall193. MCP1 is produced by monocytes and its 

production is enhanced by proinflammatory cytokines, it functions as a chemoattractant 

for the mononuclear cells. MIP1a and MIP1b stimulate chemotaxis of mononuclear cells 

and they are produced by monocytes and T cells199. Eotaxin is a specific chemoattractant 

produced by activated epithelial and endothelial cells and induces chemotaxis of 

eosinophils. IP10 is a chemoattractant which stimulates NK cells and CD8+ T cells 

trafficking.156,200 
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Adipokines (Leptin, Resistin, Adiponectin, and PAI1)  

 

Produced by adipose tissues and macrophages localised within the adipose tissues201. They 

have a metabolic role influencing insulin resistance and stimulation of obesity. Leptins 

function as an appetite suppressor hormone and as a mediator for inflammation induced 

by other cytokines202. Resistin increases insulin resistance in skeletal muscle and liver203. 

Adiponectin is an anti-inflammatory adipokine, it inhibits macrophage function191. 

 

Pleiotropic factors 

 

IL6 is a pleiotropic cytokine produced by firoblasts, phagocytes, and T cells. It stimulates 

acute phase protein release by the liver, stimulates B cell maturation to antibody-producing 

plasma cells, participates in T cell polarisation and differentiation, stimulates IL2 and IL2 

receptor expression, and blocks TNFa production193. IL6 controls the synthesis of some pro-

inflammatory and anti-inflammatory cytokines, reduces the synthesis of IL1, TNFa, IFNγ, 

GMCSF, and MIP2, has no effect on IL10 and TGFb, and stimulates glucocorticoid 

production191. 

3.4 Methods 

 

Primary hMSCs were isolated from human BMA as outlined in section 2.2.2.1 while SFCM 

were generated using standard SFNCM as described in section 2.2.3. Identity of the 

recovered cells was documented by conducting tri-lineage differentiation and flow 

cytometry as discussed in section 2.5.1 and 2.7.2, respectively. Various assays were 

performed on hMSCs and SFCM including proteomic and transcriptional analysis 

investigated in different oxygen tensions. RNA was isolated from hMSCs as previously 

described in section 2.6.1 and isolated RNA was subsequently used for RTPCR using primers 

customised in NCBI (section 2.6.2.3). Total protein composition of SFCM was quantified by 

BCA total protein assay (section 2.7.1) and hybridised onto cytokine array plates (section 

2.7.3). Cytokines contained within the array and brief descriptions of each are outlined in 

table 3-1. Six cytokines of which are randomly selected to quantify using an ELISA based 

technique (section 2.7.4). Previously obtained RNA microarray global gene expression data 
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was reanalysed to identify the differences between oxygen tensions and their effect on 

cytokine gene expression at a quantitative level (section 2.6.3). Relative percentage 

increase (RPI) of any gene in certain condition versus other conditions was determined by 

this equation (RPI=[(X-Y)/Y]*100, those showing RPI>20% upregulation between conditions 

were plotted in Venn diagram and considered for comparison. Proteins showing significant 

modulation at array level were selected to conduct RTPCR (section 2.6.2).  

 

 

 

3.5 Statistical analysis 

 

Statistical analysis was conducted using Graphpad Prism 6 (CA, USA) and with further 

analysis performed in Microsoft Excel Spread-sheets application. One-way ANOVA were 

conducted with Tukey’s multiple comparison test were used to determine pairwise 

statistical significance (p≤0.05 was considered significant). A (P<0.05) was estimated to 

indicate statistical significant differences between groups. 

 

3.6 Results 

 

 Functional differentiation of hMSCs 

 

The identity of hMSCs was confirmed by functional differentiation and flow cytometry 

(Figure 3-3). Fluorescence-activated cell sorting (FACs) was conducted to detect the 

presence of positive surface markers and absence of negative surface markers followed by 

analysis with Cyflogic software. The isolated hMSCs from BMA were positive for surface 

markers [CD73 (91.1±6.8, 94.9±7.6, 96.5±2.2), CD90 (80.9±16, 87.3±16.4, 88.5±13.7), 

CD105 (81.2±19, 81.4±27, 90.2±11.5)] and negative for haematopoietic markers [CD14 

(7±2.6, 9.1±3.7, 7.5±1.4), CD19 (4.4±1.4, 5.6±0.5, 8.6±4.7), CD34 (5.1±0.55, 6.2±0.7, 

7.8±2.4), CD45 (6±1.2, 10.1±3.1, 7.9±2.6), HLADR (9±6.4, 8.5±2.9, 7.4±2.1)], for hMSCs in 

21% O2, 2% O2 and 2% O2 workstation, respectively.  
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The isolated cells were successfully differentiated into adipocytes, chondrocytes, and 

osteocytes upon in vitro exposure to differentiation inducing media. The triglyceride 

vesicles and osteogenic nodules were more abundant in 2% O2 and 2% O2 workstation than 

21% O2 and blue stained glycosaminoglycans observed in all oxygen tensions. 

 

 

 

Figure 3-3. Identity of hMSCs isolated from bone marrow aspirate of 3 different donors 

cultured in 21% O2, 2% O2 and 2% O2WS  

(A) Confirmation of hMSCs positive (CD73, CD90, CD105) and negative marker (CD14, CD19, 
CD34, CD45, HLADR) expression. (B) Confirmed differentiation into adipogenic, osteogenic 
and chondrogenic lineages. Adipogenic and osteoenic differentiation were conducted on 
monolayer cell culture while micromass of (50000 cells/drop) was used for chondroenic 
differentiation. 
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 Transcriptional assessment of hMSCs 

 

hMSCs were isolated and recovered in 21% O2, 2% O2, and 2% O2 WS and transcriptional 

analysis performed on RNA extracted from hMSC under these different oxygen tensions. 

The affymetrix expression values specific to these 31 bioactive factors were selected using 

UCSC Genome browser home and then uploaded into ArrayMining-Online Microarray Data 

Mining, to produce the heatmap (Figure 3-4A and C). The heatmap show green-dark-red 

color ranges indicating expression, no expression and repression, respectively. The 

heatmap indicates that the gene induction is higher in 2% O2 and 21% O2 in comparison to 

the 2% O2WS, with more abundant red and reddish-dark colour in the later; indicating the 

lowest range of gene expression in 2% O2WS.  Moreover, the heatmap shows that samples 

from three experimental conditions cluster together more strongly than across groups. 

 

The gene expression profile showed more than 20% relative percentage upregulation in 

some genes in both 2% O2 and 2% O2WS over 21% O2 (Figure 3-4B); namely TGFb (71.10%, 

47.33%), bNGF (65.86%, 47.03%), MIP1a (33.97%, 28.27%), MCP1 (39.22%, 96.24%) and 

Leptin (107.79%, 94.34%), respectively. Moreover, EGF showed 23.40% increase in 2% 

O2WS over 21% O2. While 21% O2 shows 20% relative percentage upregulation over 2% O2 

and 2% O2WS in some other genes; namely IL1a (52.5%, 86.49%), IGF1 (38.85%, 58.30%) 

and IL8 (79.27%, 127.5%), respectively. Moreover, FGFb showed 22.14% increase in 21% 

O2 over 2% O2. Finally, 2% O2WS induced more than 20% relative percentage upregulation 

over 2% O2 in some genes FGFb (22.29%), GMCSF (27.15%), MCP1 (29.05%) and IL8 

(52.85%). Primers were designed for bioactive factors with significance differences 

(between hypoxia condition versus normoxia) at protein levels of either p<0.1 or p<0.05 

(see Figure 3-5A). RTPCR results indicated that MCP1, SCF, Leptin, IGF1, FGFb, and bNGF 

were clearly expressed with intense bands in 21% O2, 2% O2, and 2% O2 WS. However, IL10 

and MIP1a were entirely below the detection limits in 2% O2WS versus intense band 

expression in 21% O2 and weak band expression in 2% O2. Moreover, VEGF, GMCSF, IL12A, 

IL12B, TNFa were below the detection limits in 21% O2 versus clear band expression in 2% 

O2WS and 2% O2 (Figure 3-4D). 
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Figure 3-4. Bioactive panel transcript analysis across multiple hMSC samples.  

The affymetrix expression values specific to these 31 bioactive factors were selected using 
UCSC genome bowser home. (A) The selected affymetrix values uploaded individually into 
arraymining-online microarray data mining tool, to produce the heatmap. Each column 
represent one sample and each 4 columns represent 4 experiments (n=4) related to specific 
oxygen tension, the heatmap show green-dark-red colour ranges indicating expression, no 
expression and repression, respectively, The dendrogram on the top of heatmap indicates 
that the clustering is better in hypoxia (2% O2 and 2% O2WS) in comparison to 21% O2  (B) 
the log of average values of affymetrix data of the 31 bioactive factors, error bars indicate 
±SEM, One-way ANOVA conducted with Tukey’s multiple comparisons test to determine 
pairwise statistical significance, *^$ p<0.05, * 21% O2 versus 2% O2, ^ 21% versus 2% O2WS 
and $ 2% O2 versus 2% O2WS. (C) Venn diagram showing more than 20% relative 
percentage upregulation of some genes in certain oxygen tension versus others. (D) RTPCR 
of 13 specific genes which demonstrated differential regulation at protein level. 

 

 Proteomic assessment of SFCM 

 

The total protein content of SFCM was determined by Smith assay or bicinchoninic acid 

total protein assay. Analysis in triplicate of three independent samples using 96-wellplates, 

indicated that the normalized total protein concentration (ng/ml) of 2% O2 SFCM 

(361±50.03) was significantly higher (p<0.05 and p<0.001) than that of the 2% O2WS SFCM 

(247.67±49.24) and 21% O2 SFCM (123.33±25.17), respectively. Similarly, total protein 

concentration of 21% O2 SFCM was significantly lower (p<0.05) than 2% O2WS SFCM (Figure 

3-5C). 

 

The presence of bioactive factors in SFCM was assessed qualitatively with a colorimetric 

cytokine array (Figure 3-5A). The overall result clearly indicated that 2% O2 had potentiated 

the hMSCs to synthesize and secrete bioactive factors to a greater extent than in 21% O2. 

However, 2% O2 WS displayed discrepancies with regards to the two other samples and 

presented a mid-point overall. Bioactive factors which showed more than 2 fold 

upregulation in 2% O2 in relation to 21% O2 were Rantes (47 fold), EGF (5.61 fold), IL2 (5.29 

fold), bNGF (4.79 fold), IL17a (4.5 fold), GCSF (4.36 fold), Adiponectin (2.70 fold), IP10 (2.62 

fold), VEGF (2.43 fold), IL6 (2.30 fold), and IGF1 (2.03 fold). Moreover, 2% O2 WS showed 

greater than 2 fold upregulation over 21% O2 with Rantes (6.5 fold), GCSF (3.76 fold), IP10 

(3.19 fold), EGF (3.15 fold), IL17a (3 fold), Adiponectin (2.15 fold), and IL2 (2.14 fold). 
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Notably 2% O2 also showed more than 2 fold upregulation over 2% O2 WS with Rantes (7.23 

fold), bNGF (3.11 fold), IL2 (2.47 fold), MCP1 (2.38 fold), and IL4 (2.30 fold).  

 

These bioactive factors were sub-classified into 9 functional groups, according to previously 

published articles, including anti-inflammatory cytokines (IL4, IL10, IL13 and TGFb), pro-

inflammatory cytokines (TNFa, IFNγ, IL1a, IL2, IL12, and IL17a), Growth factors (EGF, IGF1, 

bNGF, PIGF1, PDGF, FGFb), haematopoetic factors (GCSF, GMCSF, SCF), chemokines 

(MIP1a, MCP1, Rantes, Eotaxin, IL8, IP10), adipokines (Resistin, Leptin, Adiponectin), 

fibrinolytic factor (PAI1), angiogenic factor (VEGF), pleiotropic factor (IL6). The percentage 

of each functional group was determined and plotted as pie charts (Figure 3-5B). These 

indicated differences between the fractions of each subclass in relation to other functional 

group in same and across oxygen tensions (Figure 3-5B). The percentage of these functional 

groups were:  anti-inflammatory cytokine (28%, 20%, 18%), pro-inflammatory cytokines 

(12%, 13%, 17%), growth factors (19%, 20%, 17%), haematopoetic factors (12%, 13%, 14%), 

chemokines (13%, 16%, 15%), adipokines (8%, 7%, 7%), fibrinolytic factor (3%, 3%, 3%), 

angiogenic (4%,5%, 6%) and pleiotropic factor (1%,3%,3% ) in 21% O2 SFCM, 2% SFCM and 

2% O2WS SFCM, respectively. 
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Figure 3-5. Proteomic assessment of hMSCs secretome.  

(A) Cytokine array of SFCM generated from independent donors (n=4) using colorimetric 
array expressed as mean±SEM, One-way ANOVA conducted with Tukey’s multiple 
comparisons test to determine pairwise statistical significance *^$ P<0.1 and **^^$$ 
P<0.05, * 21% O2 versus 2% O2, ^ 21% versus 2% O2WS and $ 2% O2 versus 2% O2WS. (B) 
bioactive factors sub-classified into 9 functional groups and the proportion of cytokine 
functional group in relation to each other in the same oxygen tension determined, results 
expressed as a percentage of the summation of each functional group in relation to other. 
(C) Total protein content of SFCM, the results were normalised to SFNCM. One-way ANOVA 
conducted with Tukey’s multiple comparisons test to determine pairwise statistical 
significance, data expressed as mean±SD, (n=3), * P<0.05 and ** P<0.001. 
 

 

The qualitative assessment was validated by quantitative ELISA for 6 randomly selected 

bioactive factors including; IL2, IL4, IL10, TNFa, PIGF1, and VEGF (Figure 3-6). The results 

followed a similar pattern to the qualitative assessment with 2% O2 generally presenting 

higher expression levels than both 2% O2 WS and 21% O2. The concentration (pg/ml) of IL4 

in 2% O2 (100.80±9.03) and 21% O2 (60.40±13.22) were significantly higher (p<0.05) than 

the values noted for 2% O2WS (25.96±25.88); with no significant difference existing 

between the 2% O2 and the 21% O2. Similarly, the concentration (pg/ml) of IL10 in 2% O2 

(813.27±57.85) and 21% O2 (757.28±5.75) were significantly higher (p<0.05) than the 

concentration noted in 2% O2WS (576.09±15.87); with no significant differences existing 

between the 2% O2 and the 21% O2. The concentration (pg/ml) of VEGF in 2% O2 

(289.82±2.32) and 2% O2WS (293.23±21.30) were significantly higher (p<0.05) than 21% O2 

(262.15±9.81) with no significant difference existing between 2% O2 and 2% O2WS or 2% 

O2WS versus 21% O2. The concentration of (pg/ml) of PIGF1 in 2% O2 (1668.49±197.29) was 

again significantly higher (p<0.05) than 21% O2 (1068.99±99.05) with no significant 

difference existing between 2% O2WS and either 2% O2 or 21% O2. 
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Figure 3-6. ELISA of IL2, IL4, IL10, TNFa, VEGF, and PIGF1 in hMSC SFCM.  

Data expressed as interquartile ranges (the box lengths), extreme values (whiskers) the 
horizontal bar across the box indicates the median and the ends of the vertical lines 
indicates the minimum and maximum data values. The results were collected from the 
SFCM generated from the three bone marrow aspirates (n=3). One-way ANOVA conducted 
with Tukey’s multiple comparisons test to determine pairwise statistical significance, * 
p<0.05, ** p<0.001. 

 

3.7 Discussion 

 

Various in vitro studies148,149,150,49,151 and preclinical animal studies152,153,154,155 have 

reported a beneficial effect of SFCM which supports the paracrine hypothesis of the 

regenerative potential of hMSCs. These findings hold the possibility of creation of cell 

devoid biotherapy, bypassing all cell-transplant associated limitations and obstacles 

coupled with easiest manufacturing processes of production, banking, handling, and 

transportation204. Therefore, many research centres are focusing on SFCM as a model to 

study the efficacy of hMSCs on various degenerative disorders161,205,206,207, in an intention 

to transfer this biological product to clinical settings to substitute the cell-based therapy. 

However, these studies157,159,160,16,20 have been cultured their MSCs in ambient oxygen 
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tension and the generated conditioned media have been collected over different period of 

time. Moreover, various techniques have been used to analyse the conditioned media 

either neat or diluted; resulting in various outcome. In the previous studies58,45 oxygen 

tension seems to have a pivotal role affecting the proliferation, differentiation, and 

transcription, therefore, this study designed to partially identify the role of oxygen tension 

on the transcriptome and secretome profile of some bioactive molecules; using a highly 

sensitive ELISA-based detection technique. 

 

The anatomical design of bone marrow is complex structure consisting of haematopoetic 

and adipose cells surrounded by sinusoidal vessels, the cells are arranged in well-organised 

order with a progenitors located in foci away from the vessel sinuses while mature cells are 

adjacent to the blood stream and they escape to the blood gradually according to body 

demand28, this organised morphological architecture render progenitor cells; including 

MSCs, to be localised far away from sinuses under gradient hypoxic environment (1-6% O2) 

depending on its location from the sinuses29,30. In an attempt to replicate in vivo oxygen-

restrictions the hMSCs in the present study were cultured in vitro in a chronic hypoxia (~2% 

O2) environment provided via a hermetic workstation with all culture processing being 

performed in this oxygen restrictive environment. However, in order to expose hMSCs to a 

wider range of oxygen tension; to mimic in vivo ischemic injury208, a pathological hypoxia 

model was also created by culturing cells in a hypoxia incubator with intermittent air 

flushing due to open/shut phase of the incubator doors with all culture processing being 

performed under an atmospheric environment. Both hypoxia model (2% O2 and 2% O2WS) 

were compared to hyperoxia (21% O2) cultured mesenchymal stem cells (Figure 3-2). 

Collectively, these full scan models together might accurately reflect the possible practical 

effects of oxygen on modulation of proteomic spectrum during clinical application of 

hMSCs and/or the potency of SFCM as a biotherapy. 

 

Recent in vitro publications support the hypothesis of positive impact of hypoxia on growth 

kinetics of MSCs and delayed replicative senescence possibly through reduction in 

mitochondrial respiration and subsequently the generation of reactive oxygen species 

providing better genetic stability and delayed telomere shortening38. In the present study, 

the selected genes for the measured bioactive molecules show relatively better hierarchical 

clustering under chronic hypoxia and pathological hypoxia when compared to hyperoxia; 
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which shows a disordered dendrogram configuration. This is despite that the heat map 

shows a higher expression in both pathological hypoxia and hyperoxia when both are 

compared to chronic hypoxia, while when the probesets or variants of each gene where 

averaged with each other, the results show higher expression of some genes (TGFb, bNGF, 

MIP1a, MCP1, Leptin, and GMCSF) in 2% O2WS and 2% O2 versus 21% O2, and the later 

shows higher levels of IL1a, IGF1, and IL8 in comparison to the formers (Figure 3-4C). The 

discrepancy of gene expression between 2% O2 and 21% O2 in our sample has been 

described by another microarray study58 which was conducted in sever hypoxia (0.5% O2) 

and hyperoxia (21% O2) and concluded that there is better reproducibility in gene 

expression under hypoxia.  

 

The majority of previously published studies have reported that hypoxia positively 

mediates upregulation of chemotactic and growth factors in the MSCs secretome36,58,209. In 

agreement with our findings there is an upregulation in the transcription of VEGF, MIP and 

Leptin and downregulation of IGF1 in severe hypoxia in comparison to hyperoxia in 

microarray data of bone marrow-derived hMSCs58,164. Conversely, our sample shows no 

change in PIGF1 and upregulation in MCP1 versus upregulation in PIGF1 and 

downregulation in MCP1 in the comparative studies58,164. The hypoxia-induced 

transcriptional modulation in our sample is not unique to the bone marrow derived 

hMSCs58, a comparative study164 comparing umbilical cord blood- and bone marrow-

derived hMSCs shows overlapping in transcription of hypoxia-responsive genes between 

both sources, similarly, adipose-derived MSCs show upregulation in some transcription 

factors in hypoxia when compared to hyperoxia163. Furthermore, this phenomenon is not 

limited to the human species confirmed by hypoxia-induced upregulation in the 

transcription of different factors from MSCs isolated from male Lewis rats162,  which 

showed more than 3 fold upregulation in VEGF (8.2), TGFb (3.2), IL1B (3.1), MCP1 (7.4), MIP 

(5.5), and PIGF1 (3.4). 

 

Similarly, proteomic profiling explored a positive impression of 2% O2 on the bioactive 

factors and identified a marked upregulation of individual components in SFCM of 2% O2 

over 2% O2WS and 21% O2, confirmed by upregulated total protein content of the SFCM of 

2% O2 over 2% O2WS and 21% O2. Many published in vitro proteomic studies conducted on 

SFCM have revealed upregulation of measured bioactive factors in hypoxia over hyperoxia 
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despite differences in the source of isolated MSCs; adipose56,57 or bone marrow58,59,60, and 

variation in conditioning periods; short or long. Transient hypoxic exposure of adipose-

derived MSCs56; shows more than one fold upregulation of some measured cytokines 

(GMCSF, IL6, VEGF, IGF1, and TGFb1), likewise, their prolonged hypoxic exposure 

demonstrates upregulation in (GCSF, GMCSF, IGF, MCSF, PDGF, and VEGF) and 

downregulation in EGF. Correspondingly, analysis of SFCM from BMA revealed that hypoxia 

substantially induces the production of some measured biomolecules (bFGF, VEGF, IL6, IL8, 

PIGF) with no changes being reported with others (IGF1, MCP1, TGFb1, and IL1)59,60. 

Interestingly, leptin and VEGF; hypoxia markers58, were reported to be the most sensitive 

biomolecules to hypoxia by most cells. Alteration of these transcription factors could be 

linked to HIF-1a pathway; hypoxia stabilises HIF-1a and keeps MSCs in quiescent 

proliferation status, maximising the transcription of hypoxia-responsive genes32,55. 

 

It has been reported that, the application of critical environment; pathological hypoxia, on 

in vitro cultured MSCs might be responsible for stimulation of normal cellular 

compensatory mechanisms resulting in upregulation of the secreted proteins; providing a 

defence mechanism to protect the cells from the harsh environment and prolong its 

survival153,56,54. For instance, in ischemic injuries; like coronary arterial stenosis, the tissue 

hypoxia is accompanied by upregulated release of certain growth factors resulting in 

collateral angiogenesis153. However, chronic hypoxia mitigated the synthesis and secretion 

of bioactive factors in comparison to pathological hypoxia, validating the intrinsic 

behaviour of MSCs in their endogenous natural niche environment under constant and 

consistent gradient oxygen tension and further subsidises the in vivo paracrine hypothesis 

of MSCs. Unfortunately, limited or no data are available regarding MSCs culturing under 

chronic hypoxia for comparison, validation of this hypothesis necessitate in vivo 

demonstration of same secretory factors by transplanted MSCs. 
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4 Chapter 4: Evaluating the role of hMSC SFCM in a T-cell activation model 
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4.1 Introduction 

 

hMSCs emerged as a therapeutic tool for inflammatory diseases following the 

demonstration of in vitro suppression of T cell proliferation in a mixed lymphocyte 

reaction81. The suppression is broad spectrum involving mitogens, peptide antigens, and 

alloantigen-induced T cell proliferation and CD3/CD28 antibody mediated T cell 

activation177. Additionally, MSCs suppressed pharmacological activation of intracellular 

pathways of T cell, confirming that the mechanism of inhibition was a non-T cell receptor-

based pathway178. The suppression involves different T cell subtypes including both CD4+ 

and CD8+ as well as naïve T cells80. In addition to in vitro evidence, in vivo suppression has 

been confirmed in experimental baboon animal model of skin graft81. The suppression of T 

cells through transwell systems confirms that MSCs exert their immunosuppressive activity 

through a paracrine mechanism80. 

 

T cell activation is a complex process involves cell membrane events, cytoplasmic events, 

and nuclear events. The membrane events started with the recognition of processed 

peptide antigen on MHCII of the APCs by TCR complex210. The interaction started by 

engagement of TCR complex with the peptide presented on the surface of APCs leads to 

the initiation of multiple signalling pathways resulting in activation, proliferation, and 

differentiation211. To achieve an immune response the T cell requires an accessory 

signalling pathway to be activated and unless otherwise engaged the T cell undergoes 

anergy resulting in unresponsiveness212. Among the costimulatory molecules, CD28 and 

CD152 provide the most potent accessory signals212. The activation of the canonical 

transcription pathway based on the collaboration of three distinct nuclear signalling; 

Nuclear Factor-Kappa Beta (NF-ĸB), Activator protein-1 (AP-1), and nuclear factor of 

activated T cells (NFAT), altogether achieve T cell effector function197,213. These nuclear 

events are preceded by cytoplasmic events, including post-receptor translation pathways 

which involve phosphorylation of a group of cytoplasmic enzymes and protein 

biomolecules including phospholipase C (PLC). PLC catalyses the cleavage of 

phosphatidylinositol 4,5-biphosphate (PIP2) into inositol 1,4,5,-triphosphate (IP3) and 

diacylglycerol (DAG)213. These later biomolecules are a potential bottleneck step in the 
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subsequent steps of the immune response and mimicking or tackling of which will impact 

the immune response (Figure 4-1).  

 

Figure 4-1. A schematic diagram describing the canonical T cell signalling pathways. 

Genes transcripted during T cell stimulation by antigen-loaded on surface of antigen-
presenting cells (APCs) are indicated, these pathways include, Calcineurin pathway 
(NFATAC2/PPP3CA), JNK pathway (JNK/Jun), RAS pathway (Erk/Fos), PKC pathway (NF-
kB/Rela), and MAPK pathway (MAPK8), the end result is stimulation of transcription and 
synthesis/release of IL2 and IL2 in turn will binds to its surface IL2-receptor on engaged T 
cell, resulting in stimulation of mTOR pathway with subsequent proliferation. 

 

DAG induces the protein kinase C (PKC) enzyme while IP3 induces a cytoplasmic calcium 

release from endoplasmic reticulum with subsequent calmodulin/calcineurin pathway 

activation culminating in transcription of NFAT. The transcription of NFAT is crucial in the 

synthesis of IL2, IL4, and IL5197. PKC together with other protein tyrosine kinases can 
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activate mitogen-activated protein kinases (MAPKs), including extracellular-regulated 

kinase (Erk), Jun N-terminal kinase (JNK)/stress activated protein kinase (SAPK) and 

p38/Mpk2213. Additionally, PKC induces the Ras/Raf/Erk signalling pathway via p21Ras 

activation pathway. The activated MAPKs participate in cytoplasmic events while the 

activated Erk translocates to the nucleus inducing AP-1 pathway transcriptional factors; 

including Jun/Fos197. Activated NFAT and AP-1 together form a transcriptional activation 

complex, this complex bind to the promoters of cytokine genes inducing their transcription. 

In addition to NFAT and AP-1 signalling pathways, both Ras and PI3-K dependent signalling 

pathways induce the polarisation of NF-kB signalling pathway inducing further strong 

transcription of promotor of cytokines genes214. 

 

Upon activation, naïve T cells undergo polarisation with subsequent IL2 production (Figure 

4-1). The released IL2 binds to an IL2 cell surface receptor of engaged T cell inducing mTOR 

pathway resulting in progression of cell cycle and T cell proliferation212,215. During cell cycle 

progression, the localised cytokine microenvironment determines the fate of 

differentiation of the T cell into either Th1 or Th2 cells. For instance, the presence of the 

pro-inflammatory cytokine IL12 in the surrounding vicinity promotes Th1 differentiation 

while IL4 mediates Th2 differentiation192. Likewise, the presence of IL10 in the T cell milieu 

promotes differentiation toward Treg194. It has been confirmed that these cytokines 

promote their action through latent proteins involving Janus Kinase (JAK) and signal 

transducer and activator of transcription (STAT)168. Different anti-inflammatory cytokines; 

such as, IL4, IL10, and IL12, use various post-receptor translation pathways to induce their 

effector function; such as, STAT6, STAT3, and STAT4, respectively213.  

 

Jurkat an immortalised acute leukemic cell line which has been used by many 

immunologists as a standard surrogate for T cell197,104. Jurkat cells are polarised upon 

exposure to a combination of phorbol ester and a co-stimulator molecule; either ionomycin 

or phytohaemaglutinin (PHA), yielding a robust IL2 release. Phorbol myristate acetate 

(PMA), a structural homologue for DAG, mediates its stimulation via activation of PKC 

resulting in the production of low amount of IL2 which is strongly accentuated by the 

addition of PHA. In the present study the Jurkat cell line is used as a model to test the 
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efficacy of SFCM in the suppression of immune response via conducting a proliferation 

assay on Jurkat T cells and quantification of the amount of IL2 secretion as an activation 

marker. In an attempt to identify the cytokine(s) mediating the immunosuppressive effect 

of SFCM, cytokines with prominent anti-inflammatory activity, and identified in Chapter 3, 

are added individually to SFNCM or blocked from SFCM using their specific neutralising 

polyclonal antibody. 

 

4.2 Aims  

 

The primary aims of this chapter were to:  

• Develop an in vitro polarised T cell line model by stimulating immortalised Jurkat T 

cells using PMA/PHA as an activation tool. 

• Testing the efficacy of SFCM in suppression of immunological aspects 

(proliferation and polarisation) at cellular level compared to SFNCM. 

• Determine the mechanism of action of SFCM by testing the efficacy of main 

cytokines with prominent anti-inflammatory properties on Jurkat T cell line and 

eventually neutralising these cytokines either individually or in combination with 

their specific polyclonal antibodies to identify the restoration potential. 

 

4.3 Methods 

 

Primary hMSCs were isolated from human BMA as described in 2.2.2.1 and SFCM 

generated using standard SFNCM as described in section 2.2.3. The identity of the 

recovered cells was documented via tri-lineage differentiation and flow cytometry as 

described in section 2.5.1 and 2.7.2, respectively. Various assays were performed on Jurkat 

cells cultured in GM, SFNCM, and SFCM, including proliferation assay (cell count and MTT), 

polarisation assay (IL2 ELISA), RTPCR, and morphological assessment (cell surface area), as 

described in sections 2.4, 2.7.4, 2.6.2, and 2.5.2, respectively. These parameters were 

measured in both polarised and non-polarised Jurkat T cells and in both pathological 

hypoxia (2% O2) and air oxygen (21% O2) tensions. The polarisation of Jurkat T cells was 

achieved using PMA/PHA as per section 2.3. Selected cytokines from cytokine array 
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(Chapter 3) with prominent anti-inflammatory properties were tested on Jurkat T cells to 

determine their inhibitory activity based on selected non-toxic dose according to dose-

response curve as described in section 2.8. To identify the mechanism of SFCM, these 

cytokines were individually blocked from SFCM using specific polyclonal antibodies for each 

individual cytokine. The experimentations were performed over a 7-day period to achieve 

full modulation of the response; including a stationary phase for cell count, baseline 

proliferation for MTT, and baseline IL2 secretion for PMA/PHA-induced activation. For 

transcriptional analysis RNA was isolated using Qiagen RNA isolation kits as described in 

section 2.6.1. The proliferation of Jurkat T cells was indicated by MTT as a relative 

proliferation by normalising all values to day 0. The concentration of IL2 already present in 

SFCM was subtracted from day 0 IL2 results of Jurkat culture media activated in SFCM. The 

restoration of immune response achieved by IL10 neutralisation necessitates confirmation 

of IL10 receptor subunits gene expression, including RTPCR conduction on Jurkat RNA as 

described in section 2.6.2. 

 

4.4 Statistical analysis 

 

Statistical analysis was conducted between SFCM and SFNCM using a two-sample t-test for 

most of the measured parameters, whereas for more than 2 groups one-way ANOVA with 

Tukey’s multiple comparisons test to determine pairwise statistical significance, p≤0.05 was 

considered significant. The analysis was performed using using Graphpad Prism 6 (CA, USA). 

Unless otherwise stated all values quoted in the results are mean ± standard deviation. 
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4.5 Results 

 Characterisation of Jurkat T cell line in GM  

 Morphological assessment of Jurkat T cells in GM 

 

We first sought to conform that we had a reliable Jurkat activation model to base our 

subsequent experimentation on. To do this Jurkat cells were activated by seeding 2x105 

cells/ml in GM and exposed to (50ng/ml of PMA and 1µg/ml of PHA) in both normoxia (21% 

O2) and hypoxia (2% O2) environments over 7-days period compared to control non-treated 

group. Morphological assessment of Jurkat T cells following on from polarisation explored 

changes in cell surface area (µm2). To achieve this, we scored 100 cells per 3 fields on each 

slide for replicates of 3 slides. This demonstrated that the surface area was slightly 

increased following on from activation with PMA/PHA over a 7-day period (Figure 4-2). 

However, there was no significant difference between the polarised and non-polarised 

conditions at earlier time-points (0-4), day-4 [21% O2 (GM-PMA/PHA=200±25 and 

GM+PMA/PHA=236±41) and 2% O2 (GM-PMA/PHA=206±18 and GM+PMA/PHA=273±38) (P>0.05)]. 

Significant differences emerged at day-5 and thereafter [21%O2 (GM-PMA/PHA=206±24 and 

GM+PMA/PHA=253±41) and 2% O2 (GM-PMA/PHA=206±29 and GM+PMA/PHA=274±37) (p<0.05)] in 

both oxygen tensions (Figure 4-2C)
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Figure 4-2. Jurkat activation results in an increased surface area.  

A cytospin results of Jurkat T cells in GM±PMA/PHA in both normoxia (21% O2) and hypoxia (2% 
O2) environments over 7-days period. The Jurkat T cells were cultured and samples from 
each day were cytospinned, fixed, and stained with Giemsa-May-Grunwald’s stain. (A and 
B) representative images for each slide at each time-point (n=3), scale bar 100µm, (C) 
Surface area (µm2) of Jurkat T cells in GM±PMA/PHA, data expressed as mean±SD of 3 spots 
for each slide for a total of 3 slides. Two-sample t-test conducted to compare the two 
groups, *p<0.05. 

 

 Proliferation and polarisation of Jurkat T cell in GM 

 

We had determined that PMA/PHA activation resulted in an increase in Jurkat cell surface 

area. We next sought to determine if activation had an effect on either proliferation via 

either cell count or MTT. In the absence of PMA/PHA, cell count showed a trend of lag 

phase, log phase, and finally stationary phase at day-4 [21% O2 (1750000±86602)] or day 6 

[2% O2 (1733333±57735)] (Figure 4-3A). In the presence of PMA/PHA there was a 

significant (p<0.05) reduction of proliferation at all time-points particularly at the start of 

the polarisation phase at day-2, GM-PMA/PHA [21% O2 (766666± 76376)] and 2% O2 (487777± 

63098)] versus GM+PMA/PHA [21% O2 (320000± 43588)] and 2% O2 (276666± 20816)] and 

onward (Figure 4-3A). The growth potential was further confirmed by MTT which showed 

significantly lower proliferation potential in the presence of PMA/PHA as compared to the 

control non-treated group (Figure 4-3B). In the absence of PMA/PHA, MTT was upregulated 

at day-3 [21% O2 (1.9±0.07) and 2% O2 (2.65±0.26)] followed by a decline (p<0.05) 

thereafter reaching minimum at day-7 [21% O2 (1.15±0.05) and 2% O2 (1.55±0.1)]. Addition 

of PMA/PHA to the Jurkat T cells was associated with a reduction in proliferation when 

compared to non-treated control group, MTT day-3 [21% O2 (1.65±0.1) and 2% O2 

(1.62±0.1)]. Moreover, polarisation of Jurkat T cells by PMA/PHA resulted in production or 

release of IL2 (pg/ml) over 7-days reaching a maximum at day-2 [21% O2 (8303±707) and 

2% O2 (10134±1398) (p<0.05)] and which declined thereafter reaching a minimum at day-

7 [21% O2 (3368±429) and 2% O2 (3892±224)] (Figure 4-3C). 
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Figure 4-3. PMA/PHA stimulation results in suppression of proliferation and induction of 
polarisation.  

The proliferation and activation of Jurkat T cells were characterised in GM±PMA/PHA in 
hypoxia (2% O2) and normoxia (21% O2) over 7-days period. The proliferation of Jurkat T 
cells was assessed using haemocytometer-based cell count from 3 independent flasks (n=3) 
(A) and confirmed by colorimetric MTT assay on the three samples using 96-wellplates 
(n=36) (B). The polarisation and differentiation of Jurkat T cells were confirmed by 
detection of IL2 concentration (C) in cell culture media from replicates of 3 independent 
samples (n=9) in presence of PMA/PHA in both hypoxia (2% O2) and normoxia (21% O2). 
Two-sample t-test conducted to compare different groups. Data expressed as mean±SD, 
*p<0.05, **p<0.001. 
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 Gene expression of Jurkat T cell activation pathways in GM 

 

To confirm that the Jurkat T cell was expressing T cell activation pathway genes, a semi-

quantitative RTPCR was conducted on RNA isolated from Jurkat T cells cultured in 

GM+PMA/PHA in both hypoxia (2% O2) and normoxia (21% O2) environment. The results 

indicated that these genes were expressed in these different culture conditions and 

environments, noting that the intensity for some of these genes was modulated over a 7-

day period compared to time 0 (-PMA/PHA), including IL2, IL2RA, IL2RB, IL2RG, NFATAC2, 

JNK, and Erk with no observable alterations occurring with either PPP3CA, Fos, Jun, NF-kB, 

Rela, and MAPK8, indicating that PMA/PHA could simulate the in vivo stimulation of T cells 

by pathogenic antigen (Figure 4-4). 

 

 

 

Figure 4-4. PMA/PHA modulates gene expression of Jurkat T cell line.  

Semi-quantitative RTPCR for RNA from Jurkat T cells in GM+PMA/PHA in both normoxia (21% 
O2) and hypoxia (2% O2) environments over 7-days period. PMA/PHA induced stimulation 
of genes linked to Jurkat T cell activation pathways in GM in comparison to GAPDH, 
including Calcineurin pathway (NFATAC2/PPP3CA), JNK pathway (JNK/Jun), RAS pathway 
(Erk/Fos), PKC pathway (NF-kB/Rela), and MAPK pathway (MAPK8). 
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 Effect of SFCM on the morphology of Jurkat T cells 

 

The morphological assessment of Jurkat T cells following polarisation in SFNCM versus 

SFCM was assessed. The results indicated that the surface area (µm2) was slightly increased 

with the incorporation of PMA/PHA over 7-days period in SFNCM (Fig. 4-5A). However, 

there was no notable differences between the polarised and non-polarised conditions at 

earlier time-points (0-4), day-4 [21% O2 (SFNCM-PMA/PHA=208±26 and 

SFNCM+PMA/PHA=236±35) and 2% O2 (SFNCM-PMA/PHA=205±32 and SFNCM+PMA/PHA=239±33)], 

whereas from day-5 onwards significance emerged [21% O2 (SFNCM-PMA/PHA=210±23 and 

SFNCM+PMA/PHA=250±18) and 2% O2 (SFNCM-PMA/PHA=208±27 and SFNCM+PMA/PHA=241±19) 

(p<0.05)] and thereafter in both oxygen tensions. These differences were minimised in 

SFCM showing with no significant differences between polarised versus non-polarised 

culture conditions at day-5 [21% O2 (SFCM-PMA/PHA=206±21 and SFCM+PMA/PHA=225±14) and 

2% O2 (SFCM-PMA/PHA=203±13 and SFCM+PMA/PHA=218±30) (P>0.05)]. These results suggest 

that SFCM has blocked the increase in surface area associated with activation by PMA/PHA. 
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Figure 4-5. SFCM protects Jurkat T cells from PMA/PHA-induced morphological changes.  

Cytospin results of activated/non-activated Jurkat T cells in SFNCM versus SFCM in both 
normoxia (21% O2) and hypoxia (2% O2) over 7-days period. Jurkat T cells were cultured 
and samples from each day were cytospinned, fixed, and stained with Giemsa-May-
Grunwald’s stain. (A) Surface area (µm2) of Jurkat T cells in SFNCM versus SFCM, data 
expressed as mean±SD (n=3) of 3 spots for each slide for a total of 3 slides, *p<0.05 (B) 
representative images for each slide at each time-point (C) day-3 enlarged to show clear 
cells with large central nucleus resulting in minute cytoplasm a characteristic feature of T 
cells, scale bar 200µm.  

 

 A role for IL10 in SFCM-induced immunosuppression 

 

  IL10 and proliferation of non-polarised Jurkat T cells 

 

4.5.3.1.1             Growth curve suppressed by IL10 

 

In vivo T cell stimulation via antigen presentation on the surface of APCs is associated with 

IL2 production and subsequent proliferation leading to the launch of the immune response. 

However, in vitro polarisation of Jurkat T cells by PMA/PHA resulted in abrogation of 

proliferation and production/release of IL2. In SFNCM, the growth curve followed the 

normal pattern of lag, log, and achieved stationary phase at day-4 (21% O2=530000±17616 

and 2% O2=507000±30600), whereas the maximal growth curve in SFCM was significantly 

lower than that of SFNCM with maximum differences achieved at stationary phase in day-

4 (21% O2=243000±25166 and 2% O2=223000±5770) (Figure 4-6A). In an attempt to identify 

specific biomolecule(s) responsible for this phenotype; cytokines with prominent anti-

inflammatory properties were tested individually including; IL4, IL10, and IL13. The result 

show that these cytokines individually added at certain concentration (see section 2.8 and 

Figure 2-6) induced suppression of proliferation by non-polarised Jurkat T cells in SFCM-

comparable manner in both normoxia (21% O2) and hypoxia (2% O2) environment, day-4 

[(NCM/NCM+IL4  ̴2 fold), (NCM/NCM+IL10 >2 fold), and (NCM/NCM+IL13 >2 fold)] (Figure 4-6B). 

 

To specifically identify the biomolecules responsible for suppression of proliferation in 

SFCM the cytokines (IL4, IL10, and IL13) were individually blocked by their specific 

polyclonal antibodies (see section 2.8). IL10 blockage in SFCM induced a restoration of 
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proliferation in both normoxia (21% O2) and hypoxia (2% O2) environments, day-4 

(NCM/CM+antiIL10  ̴1 fold). IL4/IL13 blockage was associated with no restoration of 

proliferation in either (21% O2) and hypoxia (2% O2) environments, day-4 [(NCM/CM+antiIL4  

̴2 fold) and (NCM/CM+antiIL13   ̴2fold)], suggesting that IL10 serves as a strong anti-

inflammatory in SFCM in comparison to others tested and that the presence of IL10 in SFCM 

is associated with suppression of proliferation regardless of presence or absence of both 

IL4/IL13 (Figure 4-6A and 4-10). Moreover, it has been reported that the IL4/IL13 ligands 

share some structural and functional properties and chemostabilise each other via their 

binding sites on the receptors. In the present study IL4/IL13 are blocked from SFCM with 

their specific polyclonal antibodies resulting in failure to reverse the suppressed 

proliferation induced by SFCM, day-4 (NCM/CM+antiIL4+antiIL13  2̴ fold) (Figure 4-10). 

Additionally, TGFb failed to inhibit proliferation of non-polarised Jurkat T cells in SFNCM, 

day-4 (NCM/NCM+TGFb  ̴1 fold). These results indicate that activation of T cells model mainly 

linked to presence or absence of IL10 (Figure 4-11). 
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Figure 4-6. Proliferation of non-polarised Jurkat T cells restored in IL10-devoid SFCM 

based on cell count. 

Growth curve of non-polarised Jurkat T cells in different conditions (SFNCM, SFCM, 
SFNCM+Ligand, SFNCM+Ligand/antiLigand AB, and SFCM+antiLigand AB) in normoxia (21% O2) and 
hypoxia (2% O2) environments over 7-days periods. The growth curves were obtained by 
haemocytometer-based cell count. SFCM and SFNCM+IL10 produce static growth curve and 
extend the population doubling time in comparison to exponential growth curve and 
reduced population doubling time in SFNCM. Conversely, neutralization of IL10 action by 
an excess amount of rabbit polyclonal IL10 antibodies resulted in partial restoration in 
growth curve and reduce the population doubling time in both SFCM or SFNCM+IL10 
compared to SFNCM. The plateau growth curve in SFNCM between days 5-7 is might be 
related to exhaustion in nutritional substances. Data expressed as mean±SD, each result 
represent a replicate of 3 independent experiments (n=3). (A) Growth curve of non-
polarised Jurkat T cells (B) fold of change achieved by dividing the result in day-4-SFNCM 
by relevant conditions. Data expressed as mean±SD (n=3). 

 

4.5.3.1.2 MTT suppressed by IL10 

 

In SFNCM we noted that proliferation (MTT) increased gradually reaching a maximum at 

day-4 (21% O2=1.95±0.1 and 2% O2=1.8±0.13), whereas the proliferation in SFCM was 

significantly lower than that of SFNCM at all time-points, day-4 (21% O2=1.2±0.06 and 2% 

O2=1.2±0.12) (Figure 4-7A). Following on from our previous observations we sought to 

identify if either IL4, IL10, or IL13 played a prominent role in suppression of proliferation. 

This demonstrated that these cytokines (see section 2.8 and Figure 2-6) individually 

induced suppression of proliferation by non-polarised Jurkat T cells in a SFCM-comparable 

manner in both normoxia (21% O2) and hypoxia (2% O2) environments, day-4 

[(NCM/NCM+IL4  ̴2 fold), (NCM/NCM+IL10  2̴ fold), and (NCM/NCM+IL13  ̴2 fold)] (Figure 4-7B). 

 

To specifically identify the biomolecule responsible for immunosuppression in SFCM, these 

cytokines were again individually blocked by their specific polyclonal antibodies. This 

demonstrated that IL10 neutralisation in SFCM induced restoration of proliferation in both 

normoxia (21% O2) and hypoxia (2% O2) environments, day-4 (NCM/CM+antiIL10  1̴ fold). 

Conversely, IL4/IL13 neutralisation was associated with no restoration of proliferation in 

either normoxia (21% O2) and hypoxia (2% O2) environments, day-4 [(NCM/NCM+antiIL4  2̴ 

fold), and (NCM/CM+antiIL13  ̴2 fold)]. Taken together this suggests that IL10 in SFCM is 

associated with suppression of proliferation. This suppression occurs irrespective of IL4 and 
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IL13 activity (Figure 4-7 and 4-10). IL4/IL13 were blocked from SFCM with their specific 

polyclonal antibodies because IL4/IL13 ligands show structural similarities and receptor 

overlapping. This resulted in a SFCM which continued to suppress proliferation induced by 

SFCM, day-4 (NCM/CM+antiIL4+antiIL13   ̴2 fold) (Figure 4-10). Additionally, TGFb failed to inhibit 

proliferation of non-polarised Jurkat T cells in SFNCM, indicating that activation of T cells 

model mainly linked to presence or absence of IL10 in SFCM, day-4 [(NCM/NCM+TGFb   ̴1 

fold) (Figure 4-11). 



 

109 
 

 

 

 



 

110 
 

 Figure 4-7. Proliferation of non-polarised Jurkat T cells restored in IL10-devoid SFCM 

based on MTT 

Proliferation assay of non-polarised Jurkat T cells in different conditions (SFNCM, SFCM, 
SFNCM+Ligand, SFNCM+Ligand/antiLigand AB, and SFCM+antiLigand AB) in normoxia (21% O2) and 
hypoxia (2% O2) environments over 7-days periods. The proliferation measure was 
obtained by conducting MTT assay at each time point followed by their subsequent 
normalisation to time 0. SFCM and SFNCM+IL10 inhibited the proliferation in comparison to 
SFNCM. Conversely, neutralization of IL10 action by an excess amount of rabbit polyclonal 
IL10 antibody resulted in partial restoration in proliferation in both SFCM and SFNCM+IL10 
compared to SFNCM. The declined proliferation in SFNCM between days 5-7 is might be 
related to exhaustion in nutritional substances. Data expressed as mean±SD, each result 
represent a replicate of 3 independent experiments (n=3). (A) Normalised MTT value of 
non-polarised Jurkat T cells (B) fold of change achieved by dividing the result in day-4 
SFNCM by relevant conditions.  

 

 IL10’s role in the proliferation of polarised Jurkat T cells  

 

4.5.3.2.1 Growth curve suppressed by IL10 

 

We next sought to explore if IL10 had a role in the reduced proliferation rate of PMA/PHA-

polarised Jurkat T cells following on from our earlier observation. To do so Jurkat T cells 

were seeded at density of 2x105 cell/ml exposed to (50ng/ml of PMA and 1µg/ml of PHA) 

in both normoxia (21% O2) and hypoxia (2% O2) environments over 7-days period. These 

experimentations were performed in different culture conditions (SFNCM, SFCM, 

SFNCM+Ligand, SFNCM+Ligand/antiLigand AB, and SFCM+antiLigand AB). The cell count revealed similar 

patterns of suppression of proliferation were noted in either SFCM or SFNCM+Ligand cells 

compared to SFNCM or SFNCM+Ligand+antiLigand with a slight restoration (  ̴1 fold) achieved with 

neutralisation of either anti-inflammatory cytokines (Figure 4-8, 4-10, and 4-11). 

4.5.3.2.2 MTT suppressed by IL10 

 

MTT assay was then conducted on PMA/PHA-polarised Jurkat T cells where proliferation 

appeared to be reduced when compared to non-polarised Jurkat T cells. Similar patterns of 

suppression of proliferation were noted in both SFCM or SFNCM+Ligand cells compared to 

SFNCM or SFNCM+Ligand+antiLigand with no restoration (  1̴ fold) achieved following 

neutralisation of either anti-inflammatory cytokines (Figure 4-9, 4-10, and 4-11). 
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Figure 4-8. Proliferation of polarised Jurkat T cells restored in IL10-devoid SFCM based on cell count. 

Growth curve of polarised Jurkat T cells in different conditions (SFNCM, SFCM, SFNCM+Ligand, SFNCM+Ligand/antiLigand AB, and SFCM+antiLigand AB) in 
normoxia (21% O2) and hypoxia (2% O2) environments over 7-days periods. The growth curve was obtained by haemocytometer-based cell 
count. (A) Growth curve of polarised Jurkat T cells (B) fold of change achieved by dividing the result in day-4 SFNCM by relevant conditions. 
Data expressed as mean±SD, each result represent a replicate of 3 independent experiments (n=3).  
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Figure 4-9. Proliferation of polarised Jurkat T cells restored in IL10-devoid SFCM based on MTT. 

Proliferation assay of polarised Jurkat T cells in different conditions (SFNCM, SFCM, SFNCM+Ligand, SFNCM+Ligand/antiLigand AB, and SFCM+antiLigand AB) 
in normoxia (21% O2) and hypoxia (2% O2) environments over 7-days period. The proliferation was obtained by conducting MTT assay at each 
time point and their subsequent normalisation to time 0. The declined proliferation in SFNCM between days 5-7 is probably related to 
exhaustion in nutritional substances. Data expressed as mean±SD, each result represent a replicate of 3 independent experiments (n=3). (A) 
Normalised MTT value of non-polarised Jurkat T cells (B) fold of change achieved by dividing the result in day-4 SFNCM by relevant conditions. 
Data expressed as mean±SD (n=3). 
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Figure 4-10. IL4/IL13-devoid SFCM failed to restore proliferation. 

Proliferation assay of polarised and non-polarised Jurkat T cells in SFCM±antiIL4±antiIL13 
compared to SFCM in normoxia (21% O2) and hypoxia (2% O2) environments over 7-days 
periods. The growth curves were obtained by haemocytometer-based cell count and the 
results were confirmed by MTT assay. SFCM±antiIL4±antiIL13 suppressed proliferation of 
polarised and non-polarised Jurkat T cells in both normoxia (21% O2) and hypoxia (2% O2). 
(A) proliferation assays including cell count and MTT (B) fold of change achieved by dividing 
the result in day-4 SFNCM by relevant conditions. Data expressed as mean±SD each result 
represent a replicate of 3 independent experiments (n=3). One-way ANOVA were 
conducted with Tukey’s test to determine pairwise significant difference, *p<0.001, * 
colour indicates the significant difference is between the relevant culture condition 
compared to others. 
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Figure 4-11. TGFb failed to suppress proliferation 

Proliferation assay of polarised and non-polarised Jurkat T cells in SFNCM±TGFb compared to 
SFCM in normoxia (21% O2) and hypoxia (2% O2) environments over 7-days period. The 
growth curve was obtained by haemocytometer-based cell count and the results were 
confirmed by MTT assay. TGFb slightly suppressed proliferation of polarised and non-
polarised Jurkat T cels in both normoxia (21% O2) and hypoxia (2% O2). (A) proliferation 
assays including cell count and MTT (B) fold of change achieved by dividing the result in 
day-4 SFNCM by relevant conditions. Data expressed as mean±SD, each result represent a 
replicate of 3 independent experiments (n=3). One-way ANOVA were conducted with 
Tukey’s test to determine pairwise significant difference. *p<0.001, * colour indicates the 
significant difference is between the relevant culture condition compared to others. 

 



 

117 
 

 IL10 role in polarisation of Jurkat T cells 

 

In vivo T cell stimulation occurs following antigen presentation on the surface of the antigen 

presenting cells and is associated with IL2 production where subsequent proliferation leads 

to launching of the immune response. In contrast, in vitro polarisation of Jurkat T cells by 

PMA/PHA results in an abrogation of proliferation and production or release of IL2 (pg/ml). 

We had previously demonstrated that IL2 release from polarised Jurkat cells was equivalent 

in both normoxia (21% O2) and hypoxia (2% O2) and now sought to explore if SFCM 

impacted on its release following activation. We noted a retention of IL2 release following 

PMA/PHA treatment over 7-days which reached a maximum in SFNCM at day-2 [21% O2 

(5305±211) and 2% O2 (5347±327)] and declined thereafter reaching a minimum at day-7 

[21% O2 (258±75) and 2% O2 (145±32)]. However, SFCM suppressed IL2 secretion by 

polarised Jurkat T cells in comparison to SFNCM in both normoxia (21% O2) and hypoxia 

(2% O2), day-2 [21% O2 (2461±178) and 2% O2 (1625±159)] (Figure 4-12A).  

 

Following on from our earlier observations surrounding IL10, IL4, and IL13 we next explored 

whether any or all these cytokines displayed a capacity to block IL2 release. This indicated 

that the cytokines when individually added at certain concentration (see section 2.8 and 

Figure 2-6) induced blockage of IL2 secretion by polarised T cell model in SFCM-comparable 

manner in both normoxia (21% O2) and hypoxia (2% O2) environment, day-2 [(NCM/NCM+IL4 

>2 fold), (NCM/NCM+IL10>2 fold), and (NCM/NCM+IL13>2 fold)] (Figure 4-12B). In addition, 

neutralisation of these cytokines individually by their ligand specific polyclonal antibodies 

resulted in restoration of IL2 secretion in SFNCM, day-2 [(NCM+IL4/NCM+IL4+antiIL4 <2 fold), 

(NCM+IL10/NCM+IL10+antiIL10<2 fold), and (NCM+IL13/NCM+IL13+antiIL13<2 fold)] (Figure 4-12B). 

Further to this IL10 neutralisation in SFCM induced restoration of IL2 secretion, day-2 

(NCM/CM+antiIL10 <2 fold) while IL4/IL13 neutralisation was not associated with restoration 

of IL2 secretion, day-2 [(NCM/CM+antiIL4 >2 fold) and (NCM/CM+antiIL13>2 fold)]. This suggests 

that IL10 in SFCM is associated with suppression of IL2 secretion regardless of presence or 

absence of both IL4/IL13 (Figure 4-12). To address IL4/IL13 polymorphism, we 

simultaneously blocked IL4 and IL13 from SFCM with their specific polyclonal antibodies. 

This again resulted in a failure to reverse the blockage of IL2 secretion, day-2 

(NCM/CMantiIL4/anti13AB  8̴ fold) (Figure 4-13). Additionally, TGFb failed to inhibit IL2 secretion 



 

118 
 

by polarised Jurkat T cells in SFNCM (Figure 4-14), day-2 (NCM/NCM+TGFb <2 fold), indicating 

that activation of T cells model mainly linked to presence or absence of IL10. These results 

together with the previous IL2/IL10 Jurkat gene expression confirmed that the polarisation 

of an immune cell line model in SFCM is mainly linked to IL10 ligands suggesting the 

importance of IL10 post-receptor signalling pathway.   
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 Figure 4-12. IL10-devoid SFCM restored IL2 secretion.  

ELISA-based IL2 detection in T cell (Jurkat) culture media following in vitro activation. (A) 
IL2 assay for the media of activated Jurkat cells cultured in different conditions (SFNCM, 

SFCM, SFNCM+Ligand, SFNCM+Ligand/antiLigand AB, and SFCM+antiLigand AB)
 

in normoxic (21%O2) and 

hypoxic (2%O2) oxygen tension.  IL2 secretion was blocked by SFCM itself and IL4, IL13, and 
IL10 when individually added to non-conditioned media. When these cytokines were 
neutralised individually in SFCM with their specific antibodies, the immune response was 
restored in IL10-devoided SFCM, irrespective of oxygen condition, following activation 
when compared to SFNCM. (A1) IL2 concentration (pg/ml) in Jurkat culture media over 7-
days following activation. Data expressed as mean±SD, each result represent a replicate of 

3 independent experiments (n=3). (A2) Day-2 fold of changes in IL2 concentration in SFNCM 

divided by the concentration in SFCM (red bar), SFNCM+Ligand(green bar), 
SFNCM+Ligand/antiLigand AB (purple bar), and SFCM+antiLigand AB (brown bar) 

 

 

Figure 4-13. IL4/IL13-devoid SFCM failed to restore IL2 secretion. 

ELISA IL2 assay for the media of activated Jurkat cells cultured in different conditions 

(SFNCM, SFCM, SFNCM+antiIL4/antiIL13) in normoxic and hypoxic oxygen tension.  IL2 secretion 

was blocked by SFCM when compared to SFNCM. To overcome IL4 receptor polymorphism 

and IL4/IL13 receptor overlapping, both IL4 and IL13 blocked from SFCM leading to no 

restoration of IL2 secretion from Jurkat cells. (A) IL2 concentration (pg/ml) in Jurkat culture 

media over 7-days following activation. Data expressed as mean±SD, each result represent 

a replicate of 3 independent experiments (n=3). (B) Day-2 fold of changes in IL2 

concentration in SFNCM divided by the concentration in SFCM (red bar), SFNCM+antiIL4/antiIL13 

(brown bar).  
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Figure 4-14. TGFb failed to suppress IL2 secretion.  

ELISA IL2 assay for the media of activated Jurkat cells cultured in different conditions 
(SFNCM, SFCM, SFNCM+TGFb) in normoxic and hypoxic oxygen tension over 7-days period.  
IL2 secretion was blocked by SFCM, while TGFb potentiated IL2 secretion in SFNCM, 
irrespective of oxygen condition, following activation when compared to SFNCM. (A) IL2 
concentration (pg/ml) in Jurkat culture media collected from replicates of 3 independent 
samples (n=9) over 7-days following activation. (B) Day-2 fold of changes in IL2 
concentration in SFNCM divided by the concentration in SFCM (red bar), SFNCM+TGFb (green 
bar). 

 

 SFCM modulated the gene transcription of Jurkat T cell activation pathway 

 

 IL2-linked genes 

 

To confirm that Jurkat T cell is expressing IL2, IL2-receptor subunit genes, and IL10-receptor 

subunit genes, a semi-quantitative RTPCR was conducted on RNA isolated from Jurkat T 

cells cultured in SFCM±PMA/PHA and SFNCM±PMA/PHA in both normoxia (21% O2) and hypoxia 

(2% O2) environment. The results showed that these genes were expressed in these 

different culture conditions and environments, these data suggest that Jurkat T cells 

simulate the T cells in term of IL2 and IL2 receptor subunits expression and that IL10 

receptor expression was found in Jurkat T cells (Figure 4-15). 
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Figure 4-15. SFCM modulates IL2 and IL2 receptor linked genes. 

Semi-quantitative RTPCR for activated Jurkat cells showing IL2, IL2receptor and IL10receptor 
genes. (A) RTPCR for RNA from Jurkat T cells in SFNCM±PMA/PHA versus SFCM±PMA/PHA in 
normoxia (21% O2) and hypoxia (2% O2) oxygen tension resulting in downregulation of IL2 
and IL2receptor subunits gene in SFCM versus SFNCM in comparison to GAPDH (B) RTPCR for 
IL10receptor (subunit A and B) confirming that IL10 receptor subunits expressed by Jurkat cells 
in both normoxia (21% O2) and hypoxia (2% O2) in post-activation phase. 

 

 T cell signalling pathway 

 

The T cell activation involves signalling through different T cell pathways resulting in 

upregulation of certain genes including calcineurin pathway (e.g. NFATAC2/PPP3CA), JNK 

pathway (e.g. JNK/Jun), RAS pathway (e.g. Erk/Fos), PKC pathway (e.g. NF-kB/Rela), and 

MAPK pathway (e.g. MAPK8). Induction of these pathways is associated with synthesis and 

release of IL2 by T cells. Jurkat T cells were stimulated with PMA/PHA resulting in 

modulation of these pathways and IL2 release. Individual genes were selected from each 

pathway and a semi-quantitative RTPCR conducted on these genes using primers 

customised in NCBI. The results showed that SFCM downregulated some of these genes in 

comparison to polarised Jurkat T cells cultured in SFNCM. In calcineurin pathway, hypoxia 

(2% O2) collected Jurkat RNA cultured in SFCM produced faint bands of NFATAC2 and 

PPP3CA genes in comparison to normoxia (21% O2) collected SFCM and SFNCM. Similarly, 

SFCM cultured Jurkat displayed reduced expression of Jun with little effect on JNK gene. In 
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line with that, the RAS pathway is suppressed by SFCM indicated by suppressed bands of 

Erk and Fos with hypoxia (2% O2) collected SFCM induce stronger suppression in 

comparison to normoxia (21% O2) collected SFCM. Comparably, PKC pathway was affected 

indicated by NF-kB/Rela bands suppression in SFCM versus SFNCM. Despite that MAPK8 is 

upregulated by polarisation induced by PMA/PHA, SFCM showed an only weak effect on 

MAPK8 band suppression, however, MAPK8 band suppression was achieved in non-

polarised T cells cultured in SFCM versus SFNCM (Figure 4-16). 
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Figure 4-16. SFCM modulates the gene expression of T cell pathway. 

Semi-quantitative RTPCR for RNA from Jurkat T cells in SFNCM±PMA/PHA versus SFCM±PMA/PHA 

in normoxic and hypoxic oxygen tension over 7-days period, resulting in downregulation of 
genes linked to Jurkat T cell activation pathways in SFCM versus SFNCM in comparison to 
GAPDH. (A) Calcineurin pathway (NFATAC2/PPP3CA). (B) JNK pathway (JNK/Jun). (C) RAS 
pathway (Erk/Fos). (D) PKC pathway (NF-kB/Rela). (E) MAPK pathway (MAPK8). 
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4.6 Discussion 

 

The application of hMSCs in clinical settings is an attractive prospect due to their 

characteristic proliferation and incorporation properties4,3. Most of these clinical trials are 

applied to the immune-mediated diseases including Crohn’s disease, diabetes mellitus, 

GvHD, hepatitis, and rheumatoid arthritis177. However, their first pass pulmonary 

engraftment potential makes the mode of action questionable41,216. Recent in vitro and in 

vivo studies have confirmed that the regenerative mode of action of hMSCs is partially 

linked to the release of trophic factors rather than their functional incorporation 

148,149,153,155. However, the released trophic factors are a mixture of different biomolecules 

with various functions, including pro-inflammatory, anti-inflammatory and pleiotropic 

cytokines, chemokines, growth factors, and angiogenic factors157,158,159. The concentration 

of these cytokine varies depending on the source of hMSCs, their isolation and culture 

protocol159,16,160; some of which is reflective of their de novo synthesis while others are 

present in sufficient quantities suggesting that the mode of action could be linked to a 

candidate molecule(s). The present report describes the mode of action of hMSCs 

secretome by testing the efficacy of SFCM itself and IL4, IL10, IL13, and TGFb anti-

inflammatory cytokines on Jurkat T cell line. 

 

In the present study, oxygen is an important factor for culture and experimentation for 

both hMSCs and in vitro immune response model. Hypoxia is a characteristic feature of 

hMSCs niches, which are under continuous gradient oxygen exposure depending on 

localised tissue microenvironment, such as, bone marrow (1-6% O2), adipose tissue (2-8% 

O2), and neural tissues (1-8% O2)32. The oxygen tension is higher in most endogenous 

tissues compartments (4-14% O2) but still less than that of ambient oxygen tension (~21% 

O2)31. Additionally, the inflammation zone is under a pathological hypoxia due to activation 

of the coagulation cascade and subsequently, the activation of immune cells ensue under 

this pathological hypoxia environemnt36. In this study SFCM were generated and collected 

in a 21% O2 and 2% O2 environment to simulate the in vivo bone marrow environment and 

the created in vitro immune response model. Various in vitro and in vivo studies have 

reported the importance of 2% O2 collected SFCM in comparison to air oxygen SFCM60,152. 

These studies have revealed that recreation of in vivo environment in the culture and 
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application of collected SFCM from 2% O2 stimulate the in vitro healing of injury model and 

promotes in vivo tissue regeneration. In the present study, MSCs were isolated and 

continuously sub-cultured in both normoxia (21% O2) and hypoxia (2% O2) conditions, the 

conditioned media generated were transferred to comparable oxygen tension of the T cell 

line model.  

 

T cell responses to stimuli are associated with modulation in different cell aspects, including 

morphology, polarisation, gene expression, and proliferation. Following their engagement 

in the immunological synapse, T cell morphology change is mediated by an increase in 

cytoplasmic calcium concentration with subsequent modulation of calcium signalling 

pathways, these changes have been reported in the in vitro model of both activated T cell 

and Jurkat cells217. The polarisation of engaged T cell is associated with activation of post-

receptor translation pathways leading to translocation of activated latent protein into the 

nucleus with subsequent DNA transcription of proinflammatory cytokine genes, including 

IL2215 (Figure 4-17). These pro-inflammatory cytokines promote T cell proliferation and 

determine their differentiation fate. In this study, Jurkat T cell was used as T cell model of 

the immune response using PMA/PHA as activation tools. In vitro exposure of Jurkat T cells 

to PMA/PHA result in activation of the cells indicated by IL2 secretion, gene expression, 

abrogation of proliferation, and increase in their surface area. It has been reported that cell 

line exposure to mitogenic stimuli results in their differentiation and suppression of their 

proliferation197. Jurkat T cells showed normal proliferation in growth media, the 

proliferation curve pass through lag, log and stationary phase in non-stimulated GM while 

with their activation the exponential log phase disappeared, and the cells reach plateau 

directly after the lag phase showing no log and stationary phase. RTPCR gene expression 

following activation of Jurkat T cells by PMA/PHA in GM confirmed that PMA/PHA induced 

modulation in several genetic pathways including IL2, IL2RA, IL2RB, IL2RG, NFATAC2, JNK, 

and Erk with no changes happened with PPP3CA, Fos, Jun, NF-kB, Rela, and MAPK8, 

indicating that PMA/PHA could simulate the in vivo stimulation of T cells by pathogenic 

antigen213. 
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It has been reported that the immunosuppressive activity of MSCs is mainly mediated 

through soluble factors. There is a controversy about the signalling biomolecules 

responsible for immunosuppression making the exact mechanism of action 

questionable218,14. Cell-cell contact is not the fundamental requirement for immune 

response suppression and secretion of soluble factors is the requirement to achieve the 

immunosuppression14. However, the secretome profile is a mixture of complex protein-

based bioactive factors, including stem cell factor (SCF), IL6, IL8, IL10, IL12, IFNγ, PGE2 

(prostaglandin E2), vascular endothelial growth factor (VEGF), macrophage colony-

stimulating factor (M-CSF), hepatocyte growth factor (HGF) and transforming growth factor 

-b1 (TGFb1)16,156,219,158.  

 

Di Nicola et al. confirmed that in the in vitro immunosuppressive activity of MSCs could be 

reverted through blocking the effects of both TGFb and HGF80. However, neutralisation of 

either TGFb or HGF individually results in minimal restoration of the immune response, 

while their combinations (TGFb/HGF) achieve a comparable immunosuppression to 

MSCs220. Failure to achieve immunosuppression with TGFb alone has been reported by 

different in vitro studies23,221,90. A study done by Mori et al. concluded that TGFb mediates 

its action synergistically with HGF through JNK-dependent Smad2/3 phosphorylation at 

their promotor regions222. In the present study, TGFb was used to induce 

immunosuppression, the result confirmed that TGFb have no role in SFCM-mediated 

immunosuppression; Jurkat T cells proliferate in SFNCM+TGFb and produced IL2 during 

activation with PMA/PHA when compared with SFCM confirming that TGFb alone have no 

immunosuppressive properties. However, cyclosporine A, a potent immunosuppressive 

agent, show elevated level of intracellular TGFb with upregulation of its receptor suggesting 

that its mechanism of action is mainly linked to TGFb223. These discrepant studies indicate 

that there is a relationship between the mode of action of TGFb and HGF and explain the 

failure to respond to TGFb added to SFNCM in the present study. 
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Figure 4-17. Schematic diagram simplifying the stages of T cell activation in vivo (left 

diagram) and in vitro (right diagram).  

The in vivo stages start with resting T cell which upon antigenic (Ag) stimulation undergo 
activation (A) indicated by IL2 secretion and clonal expansion (P) with subsequent 
differentiation (D) while in vitro, the T cell line (Jurkat cells) are already proliferating in 
culture media while exposure to PMA/PHA leads to their activation and abrogation of 
proliferation associated with IL2 secretion and differentiation, the in vitro model were 
tested for the  action of SFCM on both proliferation and polarisation. JC (Jurkat cells), NJC 
(non-Jurkat cells), PMA (Phorbol Myristate Acetate), PHA (Phytohaemaglutinin), CTC 
(cytotoxic T cells), RTC (regulatory T cells), ET (effector T cells), MTC (memory T cells), APC 
(antigen-presenting cells), TC (T cells), *stimulated cell, ° Naïve cell. 
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Naïve T cells proliferation carried out by IL2 and CD25 (IL2 receptor alpha subunit (IL2Ra)), 

while their maturation is under control of different cytokines, including IL2, IL12, and IFNγ 

which promote Th1 differentiation and IL4, IL5, IL9, IL10, and IL13 which promote Th2 

differentiation171. Hence, IL4 and IL13 are part of the differentiation mechanism of the T 

cells, these two cytokines have 25% structural similarities, and they are characterised by 

receptor overlapping phenomena via sharing same receptor subunit (IL4Rα) for their signal 

transduction, therefore, IL13 could induce many functional properties of IL4170,171. The 

signal started with the engagement of the ligand to a second receptor subunit either γC or 

IL13Rα1 subunit. Despite structural similarities, the engagement of the γC subunit is limited 

only to IL4; but not IL13, while IL13Rα1 could interact with both IL4 and IL13 to form 

immunological complexes.  An additional IL13Rα2 subunit exists known as a “decoy 

receptor” and stimulation of which is associated with no response because this subunit 

lacks the transmembrane signalling domain171. The difference between IL4 and IL13 is the 

sequence of engagement to these receptor subunits; IL4 interacts with IL4Rα followed by 

interaction with IL13Rα1, an effect which is reversed in case of IL13 ligand171,170. In the 

present study, the immunosuppression achieved by either IL4 or IL13, when individually 

tested on Jurkat T cells, confirmed by suppression of proliferation and reduction of IL2 

production. However, neutralisation of IL4/IL13 individually or together induced no 

restoration in the immunosuppressive activity of SFCM, suggesting that alternative 

pathways could be responsible for the immunomodulation achieved by SFCM. Dupilumab, 

human monoclonal antibody, is a new therapeutic approach for the treatment of asthmatic 

patients and its mechanism based on the targeting both IL4 and IL13; the mechanism of 

this antibody is based on the inhibition of IL4/IL13 engagement with the α subunit of IL4 

receptor224. Despite successful immunosuppression achieved by dupilumab and failure to 

achieve immune response restoration following IL4/IL13 neutralisation in SFCM, their 

participation in immunosuppression is not negligible indicated by suppression of 

proliferation and revoked IL2 secretion by Jurkat T cells. The reasonable explanation for 

this phenomenon is the cytokine cross-reactivity and receptor affinity (Figure 4-18), taking 

into consideration that SFCM is a mixture of different cytokines and most cytokines which 

are present in SFCM, such as, IL2, IL4, IL7, IL9, IL15, and IL21 show IL4 receptor sharing170.  
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The response of Jurkat T cells to IL4 and IL13 varies in an oxygen-dependent manner. The 

suppression of immune response indicated by the reduction in IL2 secretion is more potent 

in normoxia (21% O2) than that in hypoxia (2% O2), indicating that hypoxia (2% O2) 

diminishes the IL4 efficacy. Conversely, hypoxia (2% O2) potentiates the efficacy of IL13 on 

the suppression of IL2 in comparison to normoxia (21% O2) environment. However, the 

effect of IL4 and IL13 on Jurkat T cells proliferation is completely different from that of 

polarisation indicated by the higher potency of IL4 in the reduction of proliferation in 

hypoxia (2% O2) compared to normoxia (21% O2). Despite that, the neutralisation of 

IL4/IL13 from SFCM by specific polyclonal antibodies reduced the proliferation slightly 

better in normoxia (21% O2) compared to hypoxia (2% O2). These data indicate that in vivo 

translation of either SFCM or these bioactive factors individually might be associated with 

different response to in vitro results which could be related to hypoxia (2% O2)  itself 

because hypoxia (2% O2)  induces HIF-1a pathway while normoxia (21% O2) blocks HIF-1a 

pathway and participate in the modulation of immune response213. HIF-1a induction 

promotes the generation of Tregs and directs the immune response toward suppression, 

indicating that the differences achieved in this study between normoxia (21% O2) and 

hypoxia (2% O2) response to the tested cytokines are mainly linked to HIF-1a pathway.   
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Figure 4-18. Schematic diagram of the IL4 and IL13 signal transduction pathways. 

IL4 binds to the IL4 receptor a subunit that is a component of both the type I (IL4 receptor 
α and γc) and type II receptors (IL4 receptor α and IL13 receptor α1), whereas IL13 is 
recognised by the IL13 receptor α1 of the type II receptor. IL13 also binds to the IL13 
receptor α2 chain with greater affinity than to IL13α1. IL13 receptor α2 lacks a 
transmembrane-signalling domain and consequently functions as a decoy receptor to 
downregulate IL13 signalling. γc activates Janus kinase (JAK) 3 and IL13 receptor α1 
activates tyrosine kinase 2 (TYK2) and JAK2. Activated JAKs phosphorylate STAT6 which, 
upon dimerization, translocates to the nucleus where it binds to the promoters of the IL4 
and IL13 responsive genes associated IL2 Jurkat cell activation via PMA/PHA stimuli. 

 

IL4/IL13 share the same post-receptor latent proteins and translation pathway (STAT6), and 

the translocation of this second messenger protein to the nucleus results in transcription 

of anti-inflammatory genes171,170; moreover, pharmacological targeting of either cytokine 

alone achieved limited therapeutic activity in comparison to combined therapy171. 

However, IL10 mediates its immunosuppressive activity through a distinct (STAT3) post-

receptor translation pathway168. Various reports have mentioned that IL10 have the unique 

capacity to block the synthesis of proinflammatory cytokines, including TNFa, IFNγ, IL1B, 

and IL6168,194. Moreover, the fact that IL10 post-receptor translation pathways involve 

induction of more than one post-receptor translation pathways including STAT1, STAT3, 

and STAT5. STAT1 and STAT5 are not involved directly in IL10 receptor stimulation, 

however, their knockout is associated with modulation of the cellular response to IL10194. 

These controversial results are conflicting, and clarification required further 

documentation of the immunosuppression activity of SFCM through IL10 receptor blocking 

or JAK1 knockout rather than simple polyclonal antibody neutralisation (Figure 4-19) 
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Figure 4-19. Structure and function of the IL10 receptor.  

Functional IL10 receptor complexes are tetramers composed of two ligand-binding 
subunits (IL10RA) and two accessory signalling subunits (IL10RB). Binding of IL10 to the 
extracellular domain of IL10RA results in a cascade of reaction leading to STAT3 
homodimerization and translocation to the nucleus with subsequent transcription of DNA 
leading to inhibition of IL2 gene transcription and abrogation of the immune response. (A) 
Schematic diagram describing the in vitro inflammatory response model using Jurkat cell 
plus PMA/PHA  indicated by IL2 secretion; (B) IL10 receptor stimulation by its specific ligand 
from SFCM or exogenously added recombinant human IL10 (rhIL10) to the serum-free 
culture media resulted in stimulation of IL10 post-receptor translation pathway (STAT3) 
leading to inhibition of IL2 synthesis/secretion by Jurkat cells; (C) Contrariwise, 
neutralization of IL10 action by excess amount of rabbit polyclonal IL10 antibody resulted 
in restoration of IL2 secretion in both SFCM or SFNCM+IL10. 

  

Tryptophan is an important amino acid for T cell viability and functionality, tryptophan 

catabolised by indoleamine 2,3-dioxygenase (IDO) into Kynurenine depleting the 

availability of tryptophan for T cell resulting in inhibition of T cell proliferation and 

functionality225. IDO participated in the immunosuppression activity of MSCs, however, the 

activation of IDO is dependent on the localised pro-inflammatory environment218. Various 

studies reported that the engraftment of MSCs to the target diseased tissue is associated 

with their activation and IDO expression due to their exposure to proinflammatory 

cytokines including TNFa, IFNγ, and IL221,97. However, in the present study, the SFCM were 

collected from resting MSCs because the cells used were isolated from commercially 

ordered bone marrow aspirates and SFCM were collected without previous priming with 

proinflammatory factors. Therefore, this study confirmed that the immunosuppressive 

activity of MSCs exerted by soluble factors and the suppression is achieved with both 

polarised and non-polarised MSCs indicating a likely non-IDO suppression pathway.  
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Figure 4-20. Schematic diagram summarizing the inhibitory and stimulatory activity of 

differently targeted cytokine biomolecules on Jurkat T cell IL2 activation marker. 

IL4, IL10, IL13 inhibit IL2 secretion while TGFb slightly potentiated IL2 secretion. Reversal 
of IL2 secretion solely achieved in SFCM+antiIL10 AB . 

 

Collectively, the present findings support the suggestion that IL10 plays an 

immunosuppressive role in Jurkat T cell proliferation and activation by reducing the 

secretion of IL2 (Figure 4-20). However, the molecular sites targeted by SFCM in order to 

achieve this effect remain unidentified; moreover, the present study is incompletely 

excluding the role of IL4/IL13 ligands in the immunosuppression achieved by SFCM. In 

addition, further investigation is required to determine the underlying mechanism(s) by 

which MSCs exert their immunomodulatory effect. 
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5 Chapter 5: hMSCs secretome reprograms macrophage differentiation in oxygen 

dependent manner 
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5.1 Introduction 

 

Chronic diseases share inflammation as an underlying pathology. According to the duration 

of persistence; hours versus days, inflammation is either acute or chronic, respectively. 

Neutrophils are the principle cell during acute inflammation while macrophages/T cells are 

involved in chronic inflammation120. Inflammation is classified according to the causative 

factor, whether microbial or non-microbial, into pathogen-associated molecular pattern 

(PAMP) or damage associated molecular pattern (DAMP), respectively121. Broadly 

macrophages are of two types, M1 and M2, expressing distinct surface markers and 

secretome profiles; they also activate distinct subsets of T cells based on the received signal 

and localised tissue milieu173. The M1 macrophage subtype is characterised by the release 

of strong pro-inflammatory cytokines (e.g. TNFa, IL12, and IL1B), strong antimicrobial 

action, and presentation of their antigens to Th1 subsets of T cells174. Localised 

environment plays a great role in modulation of the macrophage phenotype, for instance, 

the proinflammatory factors including lipopolysaccharide, IFNγ, and GMCSF promote M1 

phenotype polarisation and subsequently interaction with Th1 subsets of T cells175.  M2 

macrophage subtype is characterised by the release of strong anti-inflammatory cytokines 

(e.g. IL10), expression of high amount of mannose scavenger receptor (CD206), and 

polarised response to fungal or helminthic infection, apoptotic cells, immune complexes, 

and complement component. Moreover, polarisation can be triggered by MCSF, IL4, IL13, 

IL10, and TGFb. Finally, M2 polarised macrophages stimulate the Th2 subsets of T 

cells176,175. 

 

Access to the primary macrophage is limited by in vitro proliferation and the requirement 

of invasive techniques (tissue biopsy or bronchoscopy) for collection226. To overcome these 

obstacles and to meet the large scale requirement of cells for in vitro experimentation a 

monocyte cell line model was used; the THP-1 cell which is stimulated in vitro by PMA into 

a functional macrophage through stimulation of the protein kinase C pathway227. The 

present study tested the efficacy of SFCM, collected from MSCs cultured in 21% O2 and 2% 

O2, on modulation of THP-1 differentiation towards M1/M2 differentiation via analysis of 

surface marker expression and secretome profile. In an attempt to identify the mode of 
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action, the activity of selected biomolecules were neutralised in SFCM, such as, IL4, IL10, 

IL13, and TGFb, based on previously published data which confirm their contribution into 

THP-1 differentiation into macrophage173. 

 

5.2 Aim  

 

The primary aims of this chapter were to:  

• Develop an in vitro THP-1 macrophage differentiation. 

• Testing the efficacy of SFCM in induction of macrophage terminal differentiation 

and investigation the role of SFCM in direction of macrophage differentiation 

toward M1 or M2 lineages. 

• Identifying the influences of SFCM collected from 2% O2 versus 21% O2 on 

macrophage M1/M2 phenotype differentiation. 

• Identification of individual cytokine roles in modulation of macrophage 

differentiation. 

 

5.3 Methods: 

 

Primary hMSCs were isolated from human BMA as outlined in section 2.2.2.1 with SFCM 

subsequently generated using standard SFNCM as described in section 2.2.3. The identity 

of the recovered cells was documented by conducting tri-lineage differentiation and flow 

cytometry as discussed in section 2.5.1 and 2.7.2, respectively. Various assays were 

performed on THP-1 cells cultured in GM, SFNCM, and SFCM, including histological assays, 

cellular assays, and molecular assays. Histological assay, pancake versus spindle cell shapes 

for morphological assessment, were used as a marker for M1/M2 lineage differentiation as 

described in section 2.5.2. Cellular assays included cell count, adherent cell count, and MTT 

to confirm proliferation as outlined in section 2.4. Molecular assays include IL0/TNFa ELISA, 

surface marker flow cytometry, RTPCR are as described in section 2.7.4, 2.7.2, and 2.6.2, 

respectively. These parameters were measured in both activated and non-activated THP-1 

cells and in 21% O2 and 10% O2. The activation of THP-1 cells were achieved using PMA as 

described in section 2.3.  
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Selected cytokines identified from the cytokine array (described in Chapter 3) were tested 

on THP-1 cells to determine their potential M1/M2 differentiation activity following on 

from dose-response curve as described in section 2.8. To identify the mechanism of SFCM, 

these cytokines were individually blocked from SFCM using specific polyclonal antibodies 

as described in section 2.8, and surface marker expression at day-3 and secretome profile 

at days 1 and 2 were considered as M1/M2 lineage differentiation markers. The 

experimentation was performed over a 7-day period to achieve full modulation of the 

response; including the stationary phase for cell count, baseline proliferation for MTT, and 

baseline TNFa/IL10 secretion for PMA-induced activation. For genetic study RNA was 

isolated using Qiagen RNA isolation kits as described in section 2.6.1. Proliferations of THP-

1 cells indicated by MTT were assessed as a relative proliferation by normalising all values 

to day-0. The concentration of IL10/TNFa already present in SFCM was subtracted from 

day-0 IL0/TNFa to achieve normalisation for results of THP-1 culture media activated in 

SFCM. Day-3 was considered as a time-point for flow cytometry based on the secretome 

results achieved within day-1 (high IL10) and day-2 (high TNFa) for M2 and M1 markers, 

respectively. Positive and negative surface markers were included to confirm that any 

subsequent changes are related to the SFCM or introduced/blocked cytokines to culture 

media. 

 

5.4 Statistical analysis 

 

Statistical analysis was conducted between SFCM and SFNCM using a two-sample t-test for 

most of the measured parameters, whereas for more than 2 groups one-way ANOVA with 

Tukey’s multiple comparisons test to determine pairwise statistical significance, p≤0.05 was 

considered significant. The analysis was performed using Graphpad Prism 6 (CA, USA). 

Unless otherwise stated all values quoted in the results are mean ± SD. 
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5.5 Results 

 

 Characterisation of THP-1 cell line in GM  

 

 Proliferation of THP-1 cell in GM 

 

We have characterised the effects of PMA on various cellular/molecular aspects of THP-1 

cell line including proliferation/viability, morphological aspects, and gene expression 

profile. The effects of PMA on THP-1 cell line were determined based on the total cell count 

and MTT assay (Figure 5-1). To do this THP-1 cells were seeded at a density of 2x105 cells/ml 

in GM and exposed to (50ng/ml of PMA) in both 21% O2 and 10% O2 environments over 7-

days period compared to control non-treated group. In absence of PMA, the growth curve 

followed the standard pattern of lag, log, and stationary phase over a 7-day period. 

However, in the presence of PMA, the growth curve plateaued showing only a slight 

increase in proliferation with time (Figure 5-1A). Total cell counts (cell/ml) were 

significantly higher (p<0.001) in GM-PMA over a 7-day period when compared to GM+PMA in 

both 21% O2 and 10% O2. The maximum difference appeared at day-5 when stationary 

phase was reached [21% O2
 (GM-PMA = 12000±2645 and GM+PMA = 120000±10000) and 10% 

O2 (GM-PMA = 15000±5000 and GM+PMA = 203000±5773)]. These results were confirmed by 

performing the MTT assay which revealed that in the absence of PMA, MTT was slightly 

increased reaching a maximum at day-2 (21% O2 = 1.14±0.02 and 10% O2 = 1.07±0.03) in 

21% O2 and 10% O2. Similarly, in the presence of PMA, MTT slightly increased reaching a 

maximum at day-2 (21% O2 = 1.07±0.03 and 10% O2 = 0.98±0.04) and declined thereafter 

reaching a minimum at day-7 (21% O2 = 0.65±0.015 and 10% O2 = 0.5±0.026) in 21% O2 and 

10% O2. However, PMA significantly (P<0.05) downregulated MTT parallel to the growth 

curve over 7-day time-points and in 21% O2 and 10% O2 conditions (Figure 5-1B). THP-1 

exposure to PMA induced their M0 differentiation and hence increased their attachment 

to the plastic culture surface. Attached cells (cell/well) were counted in the presence and 

absence of PMA indicating that PMA induced significant upregulation (p<0.001) of cell 

attachment starting from day-1 [21% O2
 (GM-PMA = 1000±1000 and GM+PMA = 

112000±10408) and 10% O2 (GM-PMA = 11000±1000 and GM+PMA = 123000±15275)] with 

slight changes thereafter (Figure 5-1C). 
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Figure 5-1. PMA inhibited THP-1 cell proliferation in GM and promoted their attachment. 

Characterisation of the effects of PMA on THP-1 cell proliferation and differentiation. All 
experiments were performed in GM in either 21% O2 or 10% O2. The growth of THP-1±PMA 

cells was assessed using haemocytometer-based cell count (A) and confirmed by 
colorimetric MTT assay, 12 wells were used for each flask for a replicate of 3 flasks (n=36), 
Two-sample t-test were conducted to determine the significant difference between GM-

PMA and GM+PMA (B). (C) The adherent cells were counted in all culture conditions and 
considered as a differentiation marker. Data expressed as mean±SD, each result represent 
a replicate of 3 independent experiments (n=3). Two-sample t-test were conducted to 
determine the significant difference, **P<0.001. 

 

 Activation/Differentiation of THP-1 cell in GM 

 

To further characterise the role of PMA in modulation of the THP-1 behaviour in GM, IL10 

and TNFa were measured in the GM over 7 days following their polarisation with PMA. To 

do this, THP-1 cells were seeded at a density of 5x105 cells/ml in GM and exposed to 
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(50ng/ml of PMA) in both 21% O2 and 10% O2 environments and 1ml of GM were collected 

in replicates (n=3) over 7-days period compared to control non-treated group. 

Characterisation of the paracrine activity of THP-1 in GM+PMA was established through 

measurement of both pro-inflammatory marker (TNFa (M1 marker)) or an anti-

inflammatory (IL10 (M2 marker)). This indicated that PMA stimulated IL10/TNFa secretion 

over a 7-day period reached a maximum at day-2 [IL10 (21% O2 = 981.7±69 and 10% O2 = 

233.7±60) and TNFa (21% O2 = 779.9±64 and 10% O2 = 307.6±53.3)] in 21 %O2 and 10% O2 

environments. Significantly higher (p<0.001) secretion of IL10 (pg/ml) was noted in 21 %O2 

environment and versus significantly (p<0.001) higher secretion of TNFa (pg/ml) in 10% O2 

environment (Figure 5-2A). 

 

For morphological assessment of THP-1 cells in GM, polarised THP-1 cells were scored 

according to their shape into either spindle or pancake-shaped and the subsequent 

percentage of total population determined. This demonstrated that polarisation of THP-1 

cells leads to a significantly higher (p<0.001) number of pancake-shaped vs. spindle-shaped 

cells reaching a maximum at day-2 [21% O2 (pancake shape = 12.2±3.6 and spindle shape = 

4.7±1) and 10% O2 (pancake shape = 14.5±4 and spindle shape = 4.5±1.1)] in both 21% O2 

and 10 %O2 (Figure 5-2B). 

 

Characterisation of surface markers expression by THP-1 in GM+PMA was performed via 

assessment of a group of positive, negative, and target markers representative of 

monocytes and macrophages (M0, M1, and M2). The results indicated that PMA 

significantly upregulated (p<0.001) CD14 [21% O2 (-PMA = 14.5±0.5 and +PMA = 47.1±1.4) 

and 10% O2 (-PMA = 12.3±1.6 and +PMA = 40.9±0.14)] and CD73 [21% O2 (-PMA = 15.1±1 

and +PMA = 80.2±4.3) and 10% O2 (-PMA = 13.3±3 and +PMA = 72.8±2.4)] and significantly 

downregulated (p<0.001) HLADR [21% O2 (-PMA = 46.5±3.3 and +PMA = 25±2.5) and 10% 

O2 (-PMA = 44.6±3.2 and +PMA = 30.3±2.4)]. However, PMA also displayed negative, but 

non-significant impacts on positive markers, such as, CD45 [21% O2 (-PMA = 88.9±1 and 

+PMA = 73.6±2.1) and 10% O2 (-PMA = 93±0.2 and +PMA = 76.7±5.6)], and CD105 [21% O2 

(-PMA = 86.3±1.1 and +PMA = 58.6±4.9) and 10% O2 (-PMA = 84.9±3.8 and +PMA = 

51.6±5.4)] (Figure 5-2C). 
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Figure 5-2 PMA induced THP-1 cell differentiation to M0 macrophages in GM. 

(A) ELISA-based assay for detection of IL10/ TNFa in the THP-1+PMA secretome profile 
following their culture in air oxygen and physioxia in GM. IL10/TNFa secretion is at basal 
levels in GM reflecting THP-1 de novo synthesis of these cytokines. Data expressed as 
mean±SD, each result represent a replicate of 3 independent experiments (n=3). Two-
sample t-test were conducted to determine the significant difference, *P<0.0001. (B) 
Morphological assessment of THP-1 cells after being 3-days cultured in GM+PMA in 21% O2 
and 10% O2, the cells were culture in 24-wellplate in either 21% O2 or 10% O2 and a samples 
from each condition were fixed in replicate of 3 wells/day (for a 7-day period) and stained 
with Giemsa-May-Grunwald stain, 3 spots were considered from each well and 100 cell in 
the field scored according to their shape and their percentage was determined. Data 
expressed mean±SD, each result represent a replicate of 3 independent experiments (n=3). 
Two-sample t-test were conducted to determine the significant difference,*p<0.05, 
**p<0.001. (C) Surface markers expression by THP-1+PMA including positive, negative, and 
target markers induced by activation, the assay were conducted after a 3-day exposure to 
PMA, data expressed as mean±SD, each result represent a replicate of 3 independent 
experiments (n=3). One-way ANOVA were conducted with a tukey’s test to determine a 
pairwise significant difference. *P<0.001. * colour refer to relevant culture condition. 

 

 Modulation of gene expression by polarised THP-1 in GM 

 

To identify the role of PMA in the modulation of gene expression by THP-1+PMA cells in GM 

in 21% O2 and 10% O2 RTPCR was conducted on isolated RNA following their PMA-exposure 

across a group of chemotactic genes (CCL5, CCR5, IL8, MCP1, and MIP1A), proinflammatory 

genes (TNFa, IL1B, and IL12B), and an anti-inflammatory gene (IL10) compared to positive 

control genes (GAPDH and L32) (Figure 5-3). The result showed that PMA upregulated the 

expression of some genes including (IL8, MCP1, IL1B, IL12B, TNFa, and IL10) particularly in 

10% O2 compared to the positively expressed genes, GAPDH and L32, the bands were 

clearly expressed in early time-points over the 7-day period. In 10% O2, IL8 showed stronger 

band expression in comparison to 21% O2, similarly, CCL5 totally disappeared in 21% O2 

versus clear band expression in 10% O2. 
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Figure 5-3. PMA modulated THP-1 gene expression profile. 

Semiquantitative RTPCR for RNA of polarised THP-1 cells in GM in normoxic (21% O2) and 
hypoxic (10% O2) oxygen tension over 7-day period. Targeted genes are classified into 
chemotactic (CCL5, CCR5, IL8, MCP1, and MIP1A), pro-inflammatory (IL1B, IL12B, and 
TNFa), and anti-inflammatory genes (IL10) versus control housekeeping gene GAPDH and 
L32.  

 Role of SFCM in modulation of THP-1 cell line proliferation 

 

 SFCM modulated the growth curve of THP-1 cell line 

 

The growth curve of activated and non-activated THP-1 in SFNCM and SFCM in 21% O2 and 

10% O2 environment were characterised (Figure 5-4). In absence of PMA, growth curves 

followed normal proliferation patterns in 21% O2 and 10% O2 and in SFNCM or SFCM. The 

growth curve (cell/ml) of THP-1 increased gradually in SFCM reaching a stationary phase at 

day-5 [21% O2 (SFNCM-PMA = 37000±10000, and SFCM-PMA = 369±20840) and 10% O2 

(SFNCM-PMA = 387000±20816 and SFCM-PMA = 345000±15000)] and plateaued thereafter. 

Similarly, in the presence of PMA, the growth curve gradually increased with time reaching 

a maximum at day-5 [21% O2 (SFNCM+PMA = 343000±7637, and SFCM+PMA = 247000±15275) 

and 10% O2 (SFNCM+PMA = 340000±24576 and SFCM+PMA = 233000±15275)]. The growth 

curve in SFNCM showed significant upregulation (p<0.001) vs. SFCM over 7-day time-

points. 
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Figure 5-4. SFCM slightly suppressed the growth curve of THP-1±PMA. 

Growth curve of polarised and non-polarised THP-1 cells cultured in SFNCM versus SFCM 
in 21% O2 and 10% O2. The viable cells are counted over 7-days in SFNCM and SFCM and 
the results are compared to each other. PMA slightly suppressed THP-1 proliferation. Data 
expressed as mean±SD, each result represent a replicate of 3 independent experiments 
(n=3). Two-sample t-test were conducted to determine the significant differences. 
**P<0.001, *P<0.05. 

 

 SFCM modulated the MTT of THP-1 cell line 

 

The proliferation of activated and non-activated THP-1 in SFNCM and SFCM in 21% O2 and 

10% O2 environments were characterised via the MTT assay (Figure 5-5). In 21% O2, THP-1-

PMA cell proliferation reached a maximum at day-3 (SFNCM = 1.2±0.03 and SFCM = 

1.18±0.032) in both SFNCM and SFCM with no significant differences noted. However, in 

10% O2, THP-1-PMA cell proliferation in SFNCM was significantly upregulated (p<0.001) 

reaching a maximum at day-3 (SFNCM = 1.2±0.02 and SFCM = 1±0.03) and declined 

thereafter in comparison to SFCM which showed stationary proliferation over all time-

points. Moreover, in the presence of PMA, SFCM showed significant downregulation 

(p<0.001) of proliferation in comparison to SFNCM in 21% O2 and 10% O2 environments. 

Maximum differences were achieved at day-3 [21% O2 (SFNCM = 1.1±0.04 and SFCM = 

0.91±0.05) and 10% O2 (SFNCM = 1.2±0.03 and SFCM = 0.9±0.06)].  
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Figure 5-5. SFCM suppressed the metabolic activity (MTT) of THP-1±PMA compared to 
SFNCM. 

MTT of activated and non-activated THP-1 cells cultured in SFNCM versus SFCM in 21% O2 
and 10% O2. The MTT were performed over 7-days in SFNCM and SFCM and the results 
were normalised to day-0. PMA significantly suppressed THP-1 proliferation. Data 
expressed as mean±SD, each result represent a replicate of 3 independent experiments 
(n=3). Two-sample t-test were conducted to determine the significant differences, *P<0.05, 
**P<0.001. 

 

 SFCM modulation of the adherence potential of THP-1 

 

We next sought to identify if SFCM had an impact on the differentiation potential of THP-1 

as suspension monocytes. Adherent cells were counted in both SFNCM±PMA and SFCM±PMA 

in both 21% O2 and 10% O2 environments (Figure 5-6). The results showed that adherent 

cells were increased at day-1 [21% O2 (SFNCM-PMA = 12300±2516, SFNCM+PMA = 

56700±5773, SFCM-PMA = 7330±5773, SFCM+PMA = 150000±1000)] and 10% O2 (SFNCM-PMA = 

10000±2000, SFNCM+PMA = 21700±2886, SFCM-PMA = 56700±5773, and SFCM+PMA = 

100000±1000)] and plateaued thereafter in all culture conditions. However, SFCM induced 

significant upregulation of adherence (p<0.001) over the 7-days period where this 

upregulation was further induced in presence of PMA starting at day-1 and thereafter. 
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Figure 5-6. SFCM induced attachment of THP-1 cells compared to SFNCM. 

Adherent cell count of activated and non-activated THP-1 cells cultured in SFNCM versus 
SFCM in 21% O2 and 10% O2. The cells were cultured and each day the suspension cells 
were removed leaving the attached cells to the culture plastic. Following trypsinization of 
the adherent cells, the viable cells are counted over 7-days in SFNCM and SFCM and the 
results are compared to each other. Data expressed as mean±SD, each result represent a 
replicate of 3 independent experiments (n=3). Two-sample t-test were conducted to 
determine the significant differences, **P<0.001. 

 

 Role of SFCM in modulation of THP-1 differentiation into M1 versus M2 in 

oxygen-dependent manner 

 

 SFCM induced distinct THP-1 cell morphology in an oxygen-dependent manner 

 

To determine the differentiation patterns of the activated THP-1 in SFCM versus SFNCM, 

the shape of the produced macrophage was used as a baseline parameter (Figure 5-7 and 

5-8). SFNCM induced a low percentage of pancake or spindle shaped THP-1 cells reaching 

a maximum at day-1 [21% O2 (pancake shape = 10.5±1.8 and spindle shape = 5±1) and 10% 

O2 (pancake shape = 8.4±1.5 and spindle shape = 6.8±1.3)] and plateaued thereafter. 

However, SFCM significantly upregulated (p<0.001) the percentage of the scored cells with 

pancake or spindle shape. THP-1 in SFCM displayed a significantly higher (p<0.001) pancake 

percentage in 21% O2 collected SFCM versus a significantly higher (p<0.001) percentage of 
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spindle shaped cells in 10% O2. Modulations in SFCM were achieved at day-1 [21% O2 

(pancake shape = 28±3.3 and spindle shape = 8.6±1.6) and 10% O2 (pancake shape = 8.6±1.6 

and spindle shape = 36±5.6)] and changes plateaued thereafter.   
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Figure 5-7. SFCM modulated the morphology of THP-1 in oxygen-dependent manner. 

Representative images of activated THP-1 cells in GM, SFNCM, and SFCM in 21% O2 and 
10% O2 over 7-days period. The cells were cultured in 24-wellplate in either 21% O2 or 10% 
O2 and samples from each condition were fixed in a replicate of 3 wells/day (for 7-days 
period) and stained with Giemsa-May-Grunwald stain, 3 spots were considered from each 
well for any subsequent analysis, scale bar 100µm.  
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Figure 5-8. SFCM induced THP-1+PMA terminal differentiation compared to SFNCM. 

Representative images of polarised THP-1 cells. Images were taken following 3-days culture 
in SFNCM versus SFCM in 21% O2 and 10% O2, the cells were culture in 24-wellplate in either 
21% O2 or 10% O2 and the samples from each condition were fixed in replicate of 3 
wells/day (for a 7-day period) and stained with Giemsa-May-Grunwald stain, 3 spots were 
considered from each well and 100 cells in the field scored according to their shape and 
their percentage were determined, data expressed as mean±SD, each result represent a 
replicate of 3 independent experiments (n=3). Two-sample t-test were conducted to 
determine the significant differences, *P<0.05, ** P<0.001, scale bar 200µm.  

 

 SFCM induced distinct THP-1 cell gene transcription in an oxygen-dependent 

manner 

 

We next sought to identify the role of SFCM in the modulation of gene expression by THP-

1±PMA cells in 21% O2 and 10% O2 environments (Figure 5-9). The results showed that SFCM 

downregulates the expression of CCR5 by THP-1±PMA particularly in 10% O2 versus SFNCM 

compared to the positively expressed genes, GAPDH and L32. SFCM downregulated a pro-

inflammatory gene, such as, IL1B, IL12B, and TNFa in 21% O2 and 10% O2 but particularly in 

10% O2 collected SFCM. Moreover, SFCM upregulated the expression of IL10 genes in 

comparison to SFNCM in 21% O2 and 10% O2, however, 2% O2 SFCM induced clearer band 

expression in comparison to 21% O2. 
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Figure 5-9. SFCM modulated the gene expression profile of THP-1+PMA compared to 
SFNCM. 

Semi-quantitative RTPCR for RNA of activated and non-activated THP-1 cells in SFNCM 
versus SFCM in normoxic (21% O2) and hypoxic (10% O2) oxygen tension over 7-day period. 
Targeted genes are classified into chemotactic (CCL5, CCR5, IL8, MCP1, and MIP1a), pro-
inflammatory (IL1B, IL12B, and TNFa), and anti-inflammatory genes (IL10) versus control 
housekeeping gene GAPDH and L32.   

 

 SFCM induced distinct THP-1 cell surface marker expression in an oxygen-

dependent manner 

 

To identify the role of polarisation on the modulation of marker expression flow cytometry 

was conducted on THP-1±PMA in both 21% O2 and 10% O2 environments and in SFNCM/SFCM 

(Figure 5-10). The results revealed that in 21% O2 PMA significantly upregulated (p<0.0001) 

the expression of CD73 (SFNCM- = 8.9±1.4, SFNCM+ = 37.8±1.3, SFCM- = 7.3±0.43, and 

SFCM+ = 33.4±0.5), and CD197 (SFNCM- = 9.6±1, SFNCM+ = 91.5±1.2, SFCM- = 40.6±12.3, and 

SFCM+ = 69.1±6.4), whereas 10% O2 PMA showed no induction of specific markers. 

 

We next sought to identify the role of SFCM in induction of terminal differentiation. The 

results revealed that in 10% O2, SFCM significantly upregulated (p<0.0001) the expression 

of CD14 (SFNCM- = 10.9±0.65, SFNCM+ = 13±0.4, SFCM- = 48.2±1, and SFCM+ = 43.1±4.83), 

CD36 (SFNCM- = 52.1±0.9, SFNCM+ = 25.3±1.4, SFCM- = 64.6±0.65, and SFCM+ = 61.3±0.7), 

CD73 (SFNCM- = 7.8±0.5, SFNCM+ = 14.8±1.6, SFCM- = 47±0.37, and SFCM+ = 45.3±0.35), 

whereas 21% O2 SFCM showed a non-specific upregulation of these markers, including 

modulation of CD197 (SFNCM- = 9.6±1, SFNCM+ = 91.5±1.2, SFCM- = 40.6±12.3, and SFCM+ 

= 69.1±6.4)]. 

 

To determine the differentiation patterns of THP-1±PMA in 21% O2 versus 10% O2 SFCM we 

again utilised flow cytometry. This indicated significant differences (p<0.001) between 

SFCM and SFNCM in some markers. The results revealed that in 10% O2, SFCM significantly 

upregulated (p<0.0001) the expression of CD14 (SFNCM- = 10.9±0.65, SFNCM+ = 13±0.4, 

SFCM- = 48.2±1, and SFCM+ = 43.1±4.83), CD36 (SFNCM- = 52.1±0.9, SFNCM+ = 25.3±1.4, 
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SFCM- = 64.6±0.65, and SFCM+ = 61.3±0.7), and CD73 (SFNCM- = 7.8±0.55, SFNCM+ = 

14.9±1.6, SFCM- = 46.9±0.38, and SFCM+ = 45.3±0.35), and CD204 (SFNCM- = 5.4±1.5, 

SFNCM+ = 4.7±0.2, SFCM- = 11.9±5, and SFCM+ = 14.9±5.9), whereas 21% O2 SFCM 

significantly upregulated (p<0.0001) the expression of CD197 [(SFCM- = 40.6±12.3, and 

SFCM+ = 69.1±6.4)] versus 10% O2 [(SFCM- = 20.9±10.8, and SFCM+ = 18.6±0.4)]. 
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Figure 5-10. SFCM modulated surface markers expression in oxygen-dependent manner. 

Flow cytometry-based surface marker expression of THP-1+PMA cells cultured in 21% O2 and 
10% O2, in different culture media; SFNCM-, SFNCM+, SFCM-, SFCM+. Positive and negative 
control markers are included in the panel, including CD19-, CD25-, CD34-, CD86-, CD90-, 
CD45+, and CD105+. The target markers, include CD14, CD73, and HLA-DR (macrophage 
markers), CD197 (M1 macrophage marker) and CD36, CD204, CD206 (macrophage M2 
markers). (A) Comparison between SFCM and SFNCM within the same oxygen tension in 
presence or absence of PMA. (B) Comparison between flow cytometry results of THP-1+PMA 
cells in SFCM21%O2 and SFCM10%O2. CD197 positively induced by 21% O2 SFCM while CD36 
positively induced by 2% O2 SFCM. Despite being M2 macrophage markers, both 
CD204/CD206 were weakly expressed by SFCM. Data expressed as mean±SD each result 
represent a replicate of 3 independent experiments (n=3). One-way ANOVA were 
conducted with Tukey’s test to determine the pairwise significant differences. *P<0.0001. 
**** Colours indicate that the significant difference of relevant culture condition when 
compared to others. 

 

 SFCM induces distinct THP-1 cell secretome in an oxygen-dependent manner 

 

To identify differentiation pattern of THP-1+PMA cell in SFCM versus control SFNCM, the 

secretome profile was analysed by quantification the amount of TNFa and IL10 as a marker 

for M1 and M2, respectively (Figure 5-11). The results showed that the TNFa and IL10 

production by polarised THP-1 was upregulated at day-1 for IL10 [SFNCM (21% O2 = 

540±248, and 10% O2 = 2643±413) and day-2 for TNFa [SFNCM (21% O2 = 422±26, and 10% 

O2 = 304±37 and SFCM (21% O2 = 922±49, and 10% O2 = 373±21)] and downregulated 

thereafter reaching a baseline at day-7 {IL10 [SFNCM (21% O2 = 170.6±160.7, and 10% O2 = 

78.5±23.9) and SFCM (21% O2 = 294.8±278.3, and 10% O2 = 33±18.7)] and TNFa [SFNCM 

(21% O2 = 73±26.4, and 10% O2 = 61±14.7) and SFCM (21% O2 = 31.3±18.7, and 10% O2 = 

50±36)]} whether in SFNCM or SFCM and in 21% O2 and 10% O2. On day-1, IL10 was 

significantly upregulated (p<0.001) in SFCM collected from 10% O2 when compared to 21% 

O2 SFCM or SFNCM. Conversely, TNFa was significantly (P<0.001) upregulated at day-2 in 

normoxic (21% O2) SFCM when compared to hypoxic (2% O2) SFCM or SFNCM. 
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Figure 5-11. SFCM induced TNFa (M1 marker) and IL10 (M2 marker) expression in oxygen-
dependent manner. 

ELISA-based assay for detection of IL10/ TNFa in the THP-1+PMA secretome profile following 
their culture in 21% O2 and 10%O2 under different culture media; SFNCM21%, SFNCM10%, 
SFCM21%, SFCM10%. IL10/TNFa secretion is at basal levels in SFNCM reflecting THP-1 de novo 
synthesis of these cytokines while their release is positively induced by SFCM in oxygen-
dependent manner, 21% O2 SFCM increases TNFa secretion (M1 marker) while 2% O2 SFCM 
increases IL10 secretion (M2 marker), data expressed as mean±SD, each result represent a 
replicate of 3 independent experiments (n=3). One-way ANOVA were conducted with 
Tukey’s test to determine the pairwise significant differences. *P<0.001, * colour indicates 
that the significant difference of relevant culture condition when compared to others. 

 

 Cytokine challenging THP-1 cell 

 

 Surface marker expression 

 

In an attempt to identify the candidate biomolecule(s) responsible for driving the potential 

M1/M2-macrophage lineage differentiation, 4 anti-inflammatory cytokines (IL4, IL10, IL13, 

and TGFb) (Chapter 3) were tested by their addition to SFNCM and their subsequent 

neutralisation from SFCM with specific polyclonal antibodies (section 2.8) using flow 

cytometry to identify specific surface markers expressed by an M1/M2 macrophage (Figure 
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5-12 and 5-13). Negative markers included in the study included CD19, CD25, CD34, CD86, 

and CD90, these markers showed no more than 10% positive expression in all culture 

conditions in presence or absence of these cytokines and in 21% O2 and 10% O2 

environments. CD45 and CD105 were included as positive markers and CD45 was positively 

expressed (>80%) in all culture conditions in presence or absence of these cytokines and in 

21% O2 and 10% O2 environments. However, CD105 was markedly (>2 fold) downregulated 

in SFCM+antiIL10AB in 21% O2 and 10% O2 environments.  

 

In addition to the negative and positive markers mentioned above, certain target markers 

were introduced to identify the differentiation potential of THP-1 cells toward M1 or M2 

following their exposure to these cytokines (Figure 5-13). The results indicate that the 

combination of IL4/IL13 cytokine in SFNCM induced significant CD36-upregulation and 

CD197/HLA-DR-downregulation [CD36 (21% O2 = 33.3±2.5), and (10% O2 = 59±5.1), CD197 

(21% O2 = 50.3±2.9), and (10% O2 = 6.4±0.3), and HLADR (21% O2 = 18.5±2.3), and (10% O2 

= 19.2±3.1)] in comparison to control SFNCM [CD36 (21% O2 = 12.3±0.5), and (10% O2 = 

25.3±1.4), CD197 (21% O2 = 91.5±1.2), and (10% O2 = 29.7±7.5), and HLADR (21% O2 = 

37.7±3) and (10% O2 = 33.9±3.9)] (p<0.001). Neutralisation of IL4/Il13 from SFCM with 

IL4/IL13 specific polyclonal antibodies resulted in CD36-downregulation and CD197/HLA-

DR-upregulation [CD36 (21% O2 = 7.8±0.9) and (10% O2 = 31.9±3), CD197 (21% O2 = 59±2.4) 

and (10% O2 = 71±14.3), and HLADR (21% O2 = 69.9±2.8) and (10% O2 = 30±4.4)] in 

comparison to neat SFCM [CD36 (21% O2 = 29.5±4.9) and (10% O2 = 61.3±0.7), CD197 (21% 

O2 = 69.1±6.4) and (10% O2 = 18.6±1.5), and HLADR (21% O2 = 49.7±6.8) and (10% O2 = 

45.8±2.1)], in 21% O2 and 10% O2 environments. IL10 added to SFNCM induced non-

significant (p>0.05) CD36-upregulation and significant (p<0.001) CD197/HLA-DR-

downregulation [CD36 (21% O2 = 17.3±3.6) and (10% O2 = 32.3±1), CD197 (21% O2 = 

21.4±11) and (10% O2 = 40.8±12.4), and HLADR (21% O2 = 20.2±3.2), and (10% O2 = 10±0.6)]. 

IL10 neutralisation from SFCM with a specific IL10 polyclonal antibody resulted in 

significant (p<0.001) CD36/CD197/HLA-DR-downregulation [CD36 (21% O2 = 9.8±0.9) and 

(10% O2 = 19±0.8), CD197 (21% O2 = 31.8±6.2) and (10% O2 = 20.3±3.5), and HLADR (21% O2 

= 17.5±2.5) and (10% O2 = 18±1.5)] compared to SFCM [CD36 (21% O2 = 29.5±4.9) and (10% 

O2 = 61.3±0.7), CD197 (21% O2 = 69±6.4)and (10% O2 = 18.6±1.5), and HLADR (21% O2 = 

49.7±6.8) and (10% O2 = 45.8±2.1)]. Moreover, TGFb added to SFNCM induced significant 
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(p<0.001) CD197-downregulation [(CD197 = 15.8±2.4)] in 21% O2 and slight CD36-

upregulation [(CD36 = 34±2.4)] in 10% O2. 

 

Figure 5-12. Evaluating the role of anti-inflammatory cytokines in the mode of action of 
SFCM based on surface markers expression (control markers). 

Flow cytometry-based assay for detection of control (positive/negative) surface markers 
on the THP-1+PMA cells following their culture in 21%O2 and 10%O2. THP-1 cultured under 
different culture media in presence or absence of 4 anti-inflammatory cytokines (IL4, IL10, 
IL13, and TGFb) in SFNCM and in SFCM. SFCM tested before and after neutralisation of 
these cytokines with their specific polyclonal antibodies in comparison to control groups 
(SFCM and SFNCM). Data are expressed as mean±SD, each result represent a replicate of 3 
independent experiments (n=3). *>2-fold downregulation in comparison to SFNCM+PMA. 
*colour indicates significant differences in this culture media compared to both SFNCM. A 
cytomix of IL4/IL13 was considered due to IL4/IL13-receptor overlapping. 
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Figure 5-13. Evaluating the role of anti-inflammatory cytokines in the mode of action of 
SFCM based on surface markers expression (target markers). 

Flow cytometry-based assay for detection of target surface markers on the THP-1+PMA cells 
following their culture in 21%O2 and 10%O2. THP-1 cultured under different culture media 
in presence or absence of 4 anti-inflammatory cytokines (IL4, IL10, IL13, and TGFb) in 
SFNCM and in SFCM. SFCM tested before and after neutralisation of these cytokines with 
their specific polyclonal antibodies in comparison to control groups (SFCM and SFNCM). 
Data are expressed as mean±SD each result represent a replicate of 3 independent 
experiments (n=3). *>2-fold upregulation in comparison to SFNCM+PMA. *colour indicates 
differences in this culture media compared to both SFNCM.  
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 Secretome marker expression 

 

In an attempt to identify the candidate biomolecule(s) responsible for the potential 

M1/M2-macrophage lineage differentiation, 4 anti-inflammatory cytokines were tested by 

their addition to SFNCM and their subsequent neutralisation from SFCM with specific 

polyclonal antibodies, using ELISA-based quantification of TNFa/IL10 paracrine markers 

secreted from the M1/M2 macrophage (Figure 5-14).  

In 21% O2, a combination of IL4/13 cytokine in SFNCM induced significant (p<0.001) 

secretion of IL10/TNFa [day-2 (IL10 = 7846.8±492) and (TNFa = 1452±335)] in comparison 

to control SFNCM [day-2 (IL10 = 3897.7±354.5) and (TNFa = 422.1±26.6)] and in 

confirmation their neutralisation from SFCM with IL4/IL13 specific polyclonal antibodies 

resulted in a downregulation of IL10 [day-2 (IL10 = 2505.4±192.9)] and significant (p<0.001) 

upregulation of TNFa [day-2 (TNFa = 2111.4±85.9)] compared to neat SFCM [day-2 (IL10 = 

3204.4±555) and (TNFa = 922.3±49.5)]. While IL10 in SFNCM induced significant (p<0.001) 

secretion of IL10/TNFa [day-2 (IL10 = 14895.6±1481.3) and (TNFa = 2053.6±399)] in 

comparison to control SFNCM [day-2 (IL10 = 3897.7±354.5) and (TNFa = 422.1±26.6)]. 

However, IL10 neutralisation from SFCM with specific IL10 polyclonal antibody resulted in 

significant (p<0.001) downregulation of IL10 [day-2 (IL10 = 1399±122)] secretion compared 

to SFCM [day-2 (IL10 = 3204.4±555) and (TNFa = 922.3±49.5)] with significant upregulation 

(p<0.001) of TNFa [day-2 (TNFa = 1445±42.6)] secretion. Moreover, TGFb added to SFNCM 

induced significant (p<0.001) upregulation of both TNFa/IL10 secretion [day-2 (IL10 = 

6697±411) and (TNFa = 1645.5±73)].  

In 10% O2, the results indicated that a combination of IL4/13 cytokine in SFNCM induced 

significant (p<0.001) secretion of TNFa [day-2 (TNFa = 677.3±103)] with no effect on IL10 

[day-2 (IL10 = 2932.6±65.6)] secretion in comparison to control SFNCM [day-2 (IL10 = 

2352.3±108.1) and (TNFa = 304.7±37)]. Conversely, their neutralisation from SFCM with 

IL4/IL13 specific polyclonal antibodies resulted in significant (p<0.001) downregulation of 

IL10 [day-2 (IL10 = 320.2±154.6)] and upregulation of TNFa [day-2 (TNFa = 465±118.3)] 

compared to neat SFCM [day-2 (IL10 = 6500±1129), and (TNFa = 373.2±21.2)]. While IL10 

in SFNCM induced significant (p<0.001) secretion of TNFa/IL10 [day-2 (TNFa = 

1779.7±327.5), and (IL10 = 5949.1±1425.9)] secretion in comparison to control SFNCM 

[day-2 (IL10 = 2352.3±108.1), and (TNFa = 304.7±37)]. However, IL10 neutralisation from 
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SFCM with specific IL10 polyclonal antibody resulted in significant (p<0.001) 

downregulation of IL10/TNFa [day-2 (IL10 = 798.4±90.5), and (TNFa = 735.6±68.6)] 

secretion compared to SFCM [day-2 (IL10 = 6500±1129.2), and (TNFa = 373.2±21.2)]. 

Moreover, TGFb added to SFNCM induced significant (p<0.0001) upregulation of both TNFa 

secretion [day-2 (TNFa = 1040.9±108.6)] with no effect (p>0.05) on IL10 [day-2 (IL10 = 

3585.4±1700)] secretion compared to SFNCM [day-2 (IL10 = 2352.3±108.1), and (TNFa = 

304.7±37)]. 
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Figure 5-14. Evaluating the role of anti-inflammatory cytokines in the mode of action of 
SFCM based on TNFa/IL10 markers. 

ELISA-based assay for detection of IL10/TNFa in the THP-1+PMA secretome profile following 
their culture in 21%O2 and 10%O2. THP-1 cultured under different culture media in 
presence or absence of 4 anti-inflammatory cytokines (IL4, IL10, IL13, and TGFb) in SFNCM 
and in SFCM. SFCM tested before and after neutralisation of these cytokines with their 
specific polyclonal antibodies in comparison to control groups (SFCM and SFNCM). Data are 
expressed as mean±SD, each result represent a replicate of 3 independent experiments 
(n=3). One-way ANOVA were conducted with Tukey’s test to determine the pairwise 
significant differences, *P<0.001 as compared to SFNCM and SFCM. *colour indicates 
significant differences in this culture media compared to both SFNCM and SFCM.  

 

5.6 Discussion 

 

hMSCs are currently utilised in the therapy of some chronic diseases including Graft versus 

Host disease5,6, ischemic heart disease228,229, Crohn’s disease230, diabetes mellitus231, and 

rejection reaction following organ transplantation232,233. These diseases all share 

inflammation as an underlying pathology. Early in vitro studies on the activity of MSCs on 

immune cells mainly focused on cells derived from lymphoid lineages (T cells, B cells, and 

NK cells) with little or no attention paid for the cells from myeloid lineages particularly 

monocyte/macrophage system179. Macrophages are the key factor in initiation and 

propagation of an immune reaction towards antigen presentation (pro-inflammatory 

action) or regeneration (anti-inflammatory action)174. In vitro234,98 and in vivo96 studies have 

revealed that MSCs generate a macrophage with an immunoregulatory activity. The 

objective of this study is to confirm that SFCM could replace MSCs in the reprogramming 

of the differentiation of the macrophage and ultimately the fate of the immune response 

together with identification of the factors responsible for the mode of action. Finally, we 

tested the hypothesis that the in vitro recreation of an in vivo-like environment may 

modulate the secretome of hMSCs and ultimately the reparative action of SFCM on 

macrophage by reprogramming the THP-1 cell immune-phenotyping. Therefore, we 

explored THP-1 activated in 10% O2 (approximately close to the circulation oxygen 

tension43) versus 21% O2 in SFCM collected from hMSCs cultured in either 2% O2 or 21% 

O2. 
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Oxygen is an important parameter to consider for isolation, recovery, culture, and 

experimentation for both hMSCs and in vitro immune response models. Physioxia is the 

characteristic feature of the MSCs resident microenvironment, dwelling under gradient 

hypoxia in comparison to the systemic milieu. However, in vivo localised microenvironment 

determines the hypoxia, such as, bone marrow (1-6% O2), adipose tissue (2-8% O2), and 

neural tissues (1-8% O2)32. Endogenous tissues and organs are under higher oxygen tension 

(4-14% O2) than MSCs, however, it is still lower than the ambient oxygen tension (~21% 

O2)31. Moreover, inflammation stimulates the coagulation cascade initiating a localised 

hypoxia environment resulting in exposure of localised macrophage to hypoxia during their 

activation phase36. Furthermore, phagocytosis is a characteristic function of macrophages 

and the overall processing of engulfment and digestion of invader particles is oxygen 

dependent, the oxygen requirement for phagocytosis increases and this phenomena is 

known as a respiratory burst where oxygen and nitrogen free radicals are generated serving 

as the bases of the defence mechanism235. However, an anaerobic situation has no negative 

impact on phagocytosis processing suggesting that the mechanism of phagocytosis is 

multimodal. In the hypoxia environment microbial killing is performed based on the 

production of toxic acidic compounds to the microbe or their deprivation from important 

cofactor metals, such as iron236. In the present study, MSCs were isolated and continuously 

sub-cultured in either 21% O2 or 2% O2 conditions and the conditioned media generated 

transferred to the relevant oxygen tension of the monocyte cell line model. THP-1 poorly 

withstood both 2% O2 and 5% O2 environments displayed strong culture characteristics 

under 10% O2. 

 

The stimulation of the macrophage begins with the initiation of the immune response by 

antigen recognition, engulfment, digestion, and processing. Macrophage responses to 

stimuli are associated with modulation in different cellular aspects, including morphology, 

polarisation, gene expression, and proliferation. Macrophages are tissue-specific showing 

differences in their morphology and nomenclature relevant to their resident tissues, such 

as Kupffer cells, microglia cells, alveolar macrophages, and Langerhans cells. Despite that, 

they share common properties regarding their functionalities, either eliciting (M1 

macrophage) or dampening (M2 macrophage) the immune response175. The THP-1 cell line 

is a monocyte cell line that proliferated normally in growth media as suspension cells, 
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following a normal trend of cell line growth showing lag, log, and stationary phases. 

However, their proliferation is blocked by their activation upon exposure to PMA and the 

activated cells are attached to the culture plastic237. However, THP-1 activation with PMA 

has no impact on their differentiation, indicating that their differentiation is mainly based 

on localised cytokine environment, THP-1 cells exposed to PMA showed no expression of 

M1 or M2 markers; THP-1 cells showed minimal IL10/TNFa secretion and low CD14 

expression173 (Figure 5-15).  

 

THP-1 macrophages are induced by PMA to differentiate into M0227, their terminal 

differentiation requires the presence of cytokines; pro-inflammatory cytokines stimulate 

their differentiation into M1 macrophage while pro-healing cytokines stimulate their 

differentiation into M2173. In the present study, THP-1 were induced to achieve terminal 

differentiation in SFCM when compared to SFNCM, however, the differentiation phenotype 

was induced in an oxygen-dependent manner. Hence, activated THP-1 cells in SFCM 

collected from 21% O2 cultured hMSCs lead to the production of an increased M1:M2 

differentiation ratio while SFCM collected from hypoxia (2% O2) cultured hMSCs lead to the 

production of a greater M2:M1 differentiation ratio. THP-1 activated in SFCM collected 

from hypoxia (2% O2) cultured hMSCs induces more M2 macrophages indicated by their 

elongated spindle shape, increased IL10 secretion, and highly positive surface marker 

expression of CD36, and CD14, when compared with THP-1, activated in SFNCM as a control 

group. Conversely, THP-1 activated in SFCM collected from 21% O2 cultured hMSCs induced 

more M1 macrophage differentiation indicated by their pancake-like shape, increased 

TNFa secretion and highly positive surface marker expression of CD197 when compared 

with THP-1 activated in SFNCM as a control group (Figure 5-15). 

 

The morphological changes associated with macrophage differentiation have been related 

to cytoskeleton changes in the geometrical shape of the macrophage following their 

exposure to biochemical stimuli. A study conducted by McWhorter et al.238 reported that 

macrophage differentiation is under the control of the biochemical cues from their 

localised environment. The study concluded that the macrophage exposure to 

proinflammatory factors, such as, LPS/IFNγ promoted a pancake shape phenotype while 
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prohealing factors, such as, IL4/IL13 promoted an elongated spindle shaped morphology. 

In the present study, activated THP-1 in SFNCM showed adherence potential without 

changing their morphological appearances, such as, shape and size. However, in SFCM the 

activated THP-1 cells were enlarged in size in 21% O2 and 10% O2. However, the hypoxic 

(2% O2) SFCM promoted an elongated spindle-shape morphology indicating healing and 

regenerative potential of SFCM collected from hypoxia (2% O2) while normoxic (21% O2) 

SFCM modulated their morphology to a pancake-shape indicating a proinflammatory 

potential of normoxic (21% O2) SFCM (Figure 5-15). These results confirm the anti-

inflammatory and regenerative potential of SFCM collected from 2% O2 versus 21% O2. This 

highlights the importance of in vitro culture conditions on cell behaviour including their 

proteomic translational profile. These morphological changes were subsidised by the cell 

secretome profile and their characteristic surface marker panels. 
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Figure 5-15. Schematic diagram simplifying the proliferation, polarisation, and 
differentiation of THP-1 monocyte cell line in GM, SFNCM, and SFCM.  

THP-1 cells cultured in SFNCM are proliferating and their exposure to PMA results in their 
polarisation into M0 macrophages. SFCM promote their terminal differentiation in an 
oxygen-dependent manner, physioxic (10% O2) SFCM increases M1/M2 differentiation 
ratio while air oxygen (21% O2) increases M2/M1 differentiation ratio. 

 

The differentiated macrophage exhibits modulation in their associated transcriptional 

profile. In the present study activated THP-1 cells were examined at the transcriptional 

level to detect changes in expression of chemotactic, proinflammatory and anti-

inflammatory genes compared to positive control; L32 gene and GAPDH227,237. Activated 

THP-1 had a distinct chemotactic expression pattern of transcription in an oxygen-

dependent manner, the measured chemotactic factors include; CCL5, CCR5, IL8, MCP1, and 

MIP1A, where the most affected chemotactic factor by SFCM was CCR5 showing 

downregulation in expression in comparison to SFNCM. This downregulation was more 

obvious in hypoxic (2% O2) SFCM regardless of activation. Correspondingly, hypoxic (2% O2) 

SFCM suppressed proinflammatory transcriptional profiles indicated by downregulation of 

TNFa, IL1B, and IL12B transcript versus normoxic (21% O2) SFCM. Conversely, hypoxic (2% 

O2) SFCM upregulated IL10 transcription versus normoxic (21% O2) SFCM227.  The 

transcriptional profile induced by SFCM has been translated into the proteomic level by 

measurement of IL10 and TNFa as anti-inflammatory and pro-inflammatory markers, 

respectively (Figure 5-15). The concentration of IL10 and TNFa were quantified using ELISA 

technique, the results indicated that the normoxic (21% O2) SFCM induces THP-1 secretion 

of TNFa in comparison to hypoxic (2% O2) SFCM, GM, and SFNCM while hypoxic (2% O2) 

SFCM induces THP-1 secretion of IL10 in comparison to normoxic (21% O2) SFCM, GM and 

SFNCM. The differences between proliferation of THP-1 in SFCM versus SFNCM should be 

taken to consideration. The THP-1 cell count in SFNCM was higher than that of SFCM, hence 

a fraction of secreted TNFa and IL10 could be related to de novo cellular synthesis. 

Therefore, the results were also presented by determination of the IL10 and TNFa per cell 

and plotting them against each other to exclude any extra amount of released cytokines 

related to their de novo synthesis.  
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Macrophage differentiation can be identified by exploring their distinct surface marker 

expression98,174,175. Activated and non-activated THP-1 cells, in SFCM versus SFNCM in both 

21% O2 and 10% O2 conditions, were tested for their surface marker expression of a panel 

of antibodies, including positive (CD45+, CD73+, CD105+, HLADR+), negative (CD19-, CD25-, 

CD34-, CD86-, CD90-), and target (CD14, CD36, CD197, CD206, CD204) markers173. THP-1 

cultured in different conditions show no modulation in positive and negative markers while 

alterations were clearly observed in CD14 (macrophage marker), CD197 (M1 macrophage 

markers), and CD36 (M2 macrophage markers). Hypoxic (2% O2) SFCM upregulates CD14 

and CD36 surface marker expression and downregulates CD197 surface marker expression 

confirming its potential for THP-1 induction of terminal differentiation toward M2 

macrophage. Conversely, normoxic SFCM upregulated CD14 and CD197 surface marker 

expression and downregulated CD36 surface marker expression confirming its potential for 

THP-1 induction of terminal differentiation towards the M1 macrophage. The control group 

showed no alteration in the expression of these markers in either 21% O2 or 10% O2, and 

the positive and negative markers were tested for comparisons. CD204 and CD206 are also 

commonly used as M2 macrophage markers, THP-1 displayed negative expression of these 

markers in 21% O2 and 10% O2 cultured THP-1 cells. However, different studies conducted 

on primary macrophages to induce their terminal differentiation into M2 macrophages 

have utilised CD206 and CD204 as surface markers. There is no consensus on a macrophage 

surface marker panel to identify the distinct differentiation toward M1 or M2 macrophage, 

CD36 and CD163 are considered as an M2 specific marker and CD197 as an M1 macrophage 

marker and CD14 as a monocyte to macrophage differentiation marker. The present study 

has utilised multiple cellular aspects to confirm the direction of differentiation toward M1 

or M2 macrophage-based on proliferation aspects, morphological characteristic, 

secretome profile, and surface marker expression96,139,236. The consistency in the outcome 

of these different tests on the same cell line using various conditions could indicate the 

prospective direction of the subsequent steps in the future application of the SFCM and/or 

hMSCs in the therapeutic application of inflammatory ailments. 

 

Previous studies have reported that the macrophage localised milieu determines their 

functional differentiation towards definitive types whether M1 or M2173,139. Studies have 

claimed that anti-inflammatory cytokines, such as IL4/IL13 are responsible for the direction 
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of the stimulated macrophages toward M2 terminal differentiation while proinflammatory 

factors, such as, LPS/IFNγ/TNFa are responsible for the direction of macrophages toward 

M1 terminal differentiation. These findings are applicable in both in vivo and in vitro 

studies179,173,139,174. In an attempt to identify the mode of action of SFCM in modulation of 

macrophage differentiation toward either M1 or M2, the present study characterised the 

role of 4 anti-inflammatory cytokines (IL4, IL10, IL13, and TGFb) on activated THP-1, either 

individually or in combination; To identify the mode of action, these cytokines were added 

to SFNCM and were blocked from SFCM by neutralising their activity using specific 

polyclonal antibodies. The study concluded that these cytokines induce much lower action 

than SFCM in the induction of terminal differentiation indicated by low TNFa/IL10 secretion 

and minimal CD14/CD36/CD197 surface marker expression in comparison to SFCM and 

SFNCM. The dose-response curve indicates that IL4/IL13 individually show minimal 

adherence potential, therefore, a combination of IL4/IL13 was based to identify the role of 

both cytokines in the induction of differentiation. IL10 and TGFb alone show a slight 

induction of M2 differentiation indicated by slight increase in IL10 secretion and CD36 

expression (M2 markers)139. 

 

SFCM collected from MSCs exert their immunomodulation through several anti-

inflammatory and pro-inflammatory cytokines. IL10 is present in 21% O2 and 2% O2 

collected SFCM and appears to be the principle anti-inflammatory cytokine and exerts its 

immunosuppression activity on different monocytes/macrophages cellular aspects, such as 

chemokine synthesis, NO synthesis, and HLA-DR expression and costimulatory molecules 

such as IL12 and CD80/CD86194. Combinations or individual application of IL4/IL13 have 

been used extensively to direct monocytes and/or THP-1 differentiation toward regulatory 

rather than pro-inflammatory subtypes139,173. TGFb is a growth factor presents in SFCM and 

might have a role in modulation of immune response139. The post-receptor translation 

pathways for these individual pathways include STAT3 for IL10, STAT6 for IL4 and IL13 and 

TGFb induces Smad pathways. However, in the present study, these cytokines individually 

or in combination failed to induce THP-1 differentiation towards certain lineages in 

comparison to SFCM. 
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Collectively, the present study confirmed that SFCM induced terminal macrophage 

differentiation in an oxygen-dependent manner where individual anti-inflammatory 

cytokine or a combinational cytomix had no effect on the THP-1 secretome profile and 

surface marker expression. Moreover, neutralisation of these cytokines from SFCM results 

in incomplete restoration of pro-macrophagic status. These anti-inflammatory or pro-

inflammatory cytokines have a minimal role in THP-1 differentiation when compared to 

SFCM and this might be partially linked to the growth factors offered by SFCM which 

represent important initial stimuli to induce the conversion of monocytic THP-1 cell line 

and their transfer to macrophage M0 status. This later step is important for subsequent 

direction of macrophage into either M1 or M2 based on the presence of pro-inflammatory  

or anti-inflammatory cues, respectively173,139. These findings suggested that further studies 

required identifying the cytokine or cytomix required to direct the macrophage-lineage 

differentiation. 
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6 Chapter 6: Summative discussion, conclusions, and further work 
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6.1 Summative discussion 

 

Bone marrow cavity is a beehive-mimic structure composed of niches, which are highly 

condensed environment containing various kinds of stromal cells, including endothelial 

cells, reticulocytes, and osteoblasts. Niches structure play an indefinite role in maintaining 

cell survival, proliferation, and differentiation of hematopoietic progenitor cells239. A 

fraction of cells within the bone marrow called mesenchymal stem cells occupy the stromal 

compartment of bone marrow and some other tissues86,4. These cells are plastic-adherent, 

elongated cells, and have proliferation capacity forming colonies (CFU-F). They are also 

characterised by their multipotent differentiation potential into bone, cartilage, ligament, 

tendon, fat, and muscle together with the expression of MSCs surface markers [CD73+, 

CD90+, and CD105+], and lack the expression of haematopoietic markers [CD14¯, CD19¯, 

CD34¯, CD45¯, and HLA-DR¯]17. 

 

The efficacy of MSCs in regeneration might be partially linked to their released bioactive 

factors; such as cytokines, which are either secreted constitutively or regulatory, despite 

that, priming with different in vitro stimuli could modulate the quantity of these factors 

resulting in improved or modulated potency of the cell-based or cell-devoid biotherapy. 

Therefore, socialising MSCs with hypoxia (<5% O2) reprogrammed their intracellular 

machinery to synthesise/secrete more protein-based constituents which might result in 

enhancement of the potency of cell-devoid biotherapy. Furthermore, it could lead to 

overcoming the translation drawback associated with cell-based therapy; replicative 

senescence, poor homing potential, and genetic instability38. Optimization of in vitro 

culture condition might result in production of biological product which might surrogate 

the cell-based therapy or might optimise the efficacy of cell-based therapy on localised 

target tissue, therefore, a comprehensive review of all culture condition is of paramount 

important and in vitro recreation of in vivo stem cell niche through application of various 

biochemical and biophysical stimuli on in vitro cultured cells might lead to production of 

ideal MSCs-based pharmaceutical dosage form with optimised efficacy for regenerative 

therapy31. 
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In this study, serum free-conditioned media (SFCM) were used as a model to characterize 

the immune sentinels function of MSCs156. Proteomic analysis indicates that SFCM of 

hMSCs contain various cytokines which may play an important role in the suppression of 

inflammation and that the composition and concentration of SFCM is oxygen dependent; 

intermittent hypoxia (2% O2) represents a rich resource for paracrine factors. The 

therapeutic effectiveness of SFCM at cellular levels reflected by its potential efficacy on in 

vitro cell line models; SFCM suppresses T cell line model in oxygen independent manner 

while the modulation in macrophage terminal differentiation seems to be oxygen sensitive.  

 

The bone marrow composed of structural subunits called niches. The niche is highly 

sophisticated environment providing support to monitor MSCs survival, proliferation, fate, 

and differentiation28. The compartments inside the niches are characterised by low oxygen 

tension (1-6% O2) in comparison to elsewhere29,30. Accordingly, MSCs in the in vitro cultured 

condition should be optimized to meet these in vivo milieu, however, most research 

centres are culturing their cells in normoxia (  2̴0% O2) environment ignoring the role of 

oxygen in the maintenance of survival, senescence, and genetic changes240. Moreover, the 

injured tissues are associated with activation of coagulation cascade which is reciprocally 

interacted with oxygen tension36. Interestingly, monocyte-macrophage differentiation 

ensues with the initiation of hypoxia in injured vicinity43 (Figure 6-1). Therefore, culturing 

hMSCs under hypoxia (<5% O2) environment to mimic the in vivo milieu might significantly 

change MSCs behaviour including their paracrine and immunomodulatory properties.   

 

The impact of hypoxia on the stem cell biology including their transcriptional profile has 

been studied previously and these studies have confirmed that hypoxia dedicated to 

modulate the paracrine factor secretion58,36,209. Noteworthy to mention upregulation of 

VEGF, MIP, and leptin and downregulation of IGF1 by hypoxia (0.5-1.5% O2) confirmed by 

microarray screening of bone marrow-derived hMSCs58,164. Moreover, hypoxia (1.5% O2)  

modulation of stem cells paracrine activity at transcriptional level extends beyond the 

source of MSCs to affect umbilical cord blood-derived MSCs164, adipose-derived MSCs163, 

and MSCs derived from xenogeneic sources162. This effects have been translated to the 

proteomic levels indicated by modulation in the secretome profile following exposure to 

hypoxia (<5% O2) in comparison to normoxia (21% O2) despite differences in the source of 
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isolated MSCs; adipose56,57 or bone marrow58,59,60, variation in conditioning periods; short 

or long, and duration of exposure to hypoxia; transient hypoxic (O2 < 5%) exposure of 

adipose-derived MSCs56. Leptin and VEGF are considered as a hypoxia biomarkers and their 

overexpression in a hypoxic environment has been reported58. Moreover, injury of tissues 

has been associated with hypoxia stimulating normal endogenous compensatory defence 

mechanism protecting the cells from deleterious impacts of injury 153,56,54. 

 

 

Figure 6-1. A schematic overview of the phases of wound healing over time.  

After the initial homeostasis phase, neutrophils and macrophages dominate the 
inflammation phase, whereas fibroblasts and endothelial cells are predominant during the 
proliferation phase. During the remodelling phase, fibroblasts and endothelial cells 
undergo apoptosis or exit the wound. Finally, the granulation tissue and vascular network 
remodel and mature, which can last for years. The dotted blue line indicates the time 
course of oxygen availability. 

Reprinted from Nauta TD et al43, 2014, with permission from International Journal of Molecular Sciences. 

 

Upon exposure to invader particles, resting T cell undergoes polarisation with subsequent 

IL2 production, the released IL2 binds to an IL2 cell surface receptor of engaged T cell 

inducing mTOR pathway resulting T cell proliferation212,215. The localised cytokine 

microenvironment determines the polarisation of T cell into either Th1 or Th2 cells; for 
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instance, presence of proinflammatory cytokine IL12 in the surrounding milieu promotes 

Th1 differentiation while IL4 mediates Th2 differentiation192. Likewise, the presence of IL10 

in the T cell milieu promotes differentiation toward Treg. It has been confirmed that these 

cytokines promote their actions through latent proteins involving Janus Kinase (JAK) and 

signal transducer and activator of transcription (STAT)168. Different anti-inflammatory 

cytokines; such as, IL4, IL10, and IL12, use various post-receptor translation pathways to 

induce their effector function; such as, STAT6, STAT3, and STAT4, respectively213. The 

present study tested the immune response of activated Jurkat T cells in hMSCs secretome; 

collected as SFCM from hypoxia (2% O2) and normoxia (21% O2) environment. The results 

confirmed that SFCM effectively suppressed the overall immune response indicated by the 

reduction of proliferation and polarisation. The modulation of immune response was 

achieved in both hypoxia (2% O2) and normoxia (21% O2) collected SFCM. This in vitro 

model is considered as a mirror reflecting the behaviour of the SFCM application on in vivo 

T cells and might more precisely reflect the therapeutic efficacy of SFCM on the suppression 

of inflammatory diseases and subsequently potentiate tissue regeneration. 

Immortalised cells are commonly used for research instead of primary cells. They provide 

several advantages, such as, they are cost-effective, easy to use, bypass the regulations and 

ethics associated with the use of human or animal primary cells. Moreover, cell lines are 

characterised by homogeneity providing pure population of cells resulting in consistent 

sample and reproducible results241,242. However, cell lines are genetically modulated which 

might alter their phenotype, native functions, and their responsiveness to stimuli. 

Moreover, cell line sub-culturing can further cause genotypic and phenotypic modification 

over long period of time and genetic drift can cause heterogeneity in cell culture at certain 

timepoint. Hence, cell lines are not a mirror reflecting the behaviour of primary cells and 

may provide discrepant results241.  

 

The limitations of long-term cell lines, such as, Jurkat are recognised, and the relative pros 

of mouse models for studies of T cell development and function are well authenticated. 

Although cultured immortalised T cell lines (e.g. Jurkat) may have lost some of their earlier 

characteristics, however, they keep several remarkable strengths compared with the in vivo 

model systems243. First, the production of transgenic and knockout mice consumes 
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substantial time and facilities; therefore, mouse models are not a reasonable first choice 

for many research centres. Second, germline gene disruptions that involve key signalling 

proteins frequently lead to blocks in T-cell development244. Although such developmental 

blocks provide important information in their own right, investigations into the function of 

the target protein in antigen-responsive, mature T cells become difficult or impossible to 

carry out244. Recently Jurkat cells were shown to be faulty in the expression of two lipid 

phosphatases, PTEN (phosphatase and tensin homologue) and SHIP (SH2-domain-

containing inositol polyphosphate 5’ phosphatase). The biological activity of SHIP 

deficiency in T cells are inadequately understood, however, Loss of PTEN leads to 

constitutive activation of the phosphatidylinositol 3-kinase (PI3K)-signalling pathway, 

which includes the protein serine-threonine kinase, AKT, and the PTK IL2-inducible T-cell 

kinase (ITK) in Jurkat cells243,244. 

A drawback of the use of cell lines is that the malignant background and the cultivation of 

cells under controlled conditions (outside their natural environment) might possibly result 

in different sensitivities and responses compared to normal somatic cells in their natural 

environment245. Also, possibly relevant interactions between the target cells and 

surrounding cells, as in natural tissues, cannot be easily mimicked. However, in vitro co-

cultivation of THP-1 cells with neighbouring cells might be an option to overcome this 

drawback246. 

Unintended effects from in vitro differentiation of THP-1 macrophages, for instance, up-

regulation of specific genes during the differentiation process might overwhelm mild 

effects of specific stimuli, particularly food-derived bioactive compounds237, or can cause 

an increased sensitivity to Lipopolysaccharide (LPS)247,248. However, this might be less of an 

issue if strong stimuli, e.g. drugs or chemical compounds, are applied.  

A number of publications have compared responses between the THP-1 monocytes and 

monocytes isolated from human peripheral blood mononuclear cells (PBMC). These studies 

have included a variety of stimuli and findings as shown in table 6-1. In most cases, both 

types showed relatively similar response patterns. However, differences have been 

reported in the degree of gene expression and cytokine secretion, as well as in gene 

expression baseline. 
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Table 6-1 Examples of studies with compared responses from THP-1 monocytes vs. 

human PBMC–monocytes. 

Stimulation condition Findings 

LPS from Pseudomonas aeruginosa 
or Escherichia coli 10 ng/ml in time 
intervals up to 24 h. 

PBMC monocytes produced greater amount of 
inflammation-related cytokines e.g. TNFa, IL6, 
IL8 and IL10 than do THP-1 monocytes245. 

LPS from Salmonella minnesota 100 
ng/ml for 3 h 

Up-regulation of TLRs 1, 2 and 4 in THP-1 
monocytes. Up-regulation of TLRs 1–5 in PBMC 
monocytes246. 

Human oxidized low density 
lipoprotein 50 μg/ml for 48 h 

Baseline expression levels of TNFa, IL1B, IL6, 
CD14 and CD68 were significantly higher in 
PBMC monocytes compared to THP-1 
monocytes (p<0.05)249. 

Polysaccharide from Ganoderma 
tsugae 4 and 40 μg/ml for 0.5 h 

PBMC monocytes produced IL1a and TNFa in a 
similar fashion to THP-1 cell response250. 

Hyper-branched polysaccharide 
from Ganoderma sinense 0.0001–
1000 μg/ml for 72 h 

Cytotoxicity of the test compounds (XTT 
proliferation assay) was observed to be similar 
for THP-1 and PBMC–monocytes246. 

 

Proper control of immune response in all direction should be the goal of stem cell therapy 

to achieve optimal improvement of injured tissue and determine the fate of the damaged 

organ. The healing or resolution phase is associated with either regeneration and 

restoration of normal tissue functionality or direction of the inflammation toward chronic 

stages involving stimulation of chronic inflammatory cells127. To ensue repair of damaged 

tissue or organ, both pro-inflammatory and anti-inflammatory signalling is recommended, 

and interruption with ether stimuli might be associated with disruption of tissue 

healing251,252. For instance, the tissue regeneration of musculoskeletal is interrupted when 

macrophages are spun by IL10 administration253. In skeletal muscle injury, the M1 

macrophages recruit and stimulate deposition or proliferation progenitor cells while M2 

macrophages stimulate differentiation i.e. M1 and M2 work together to achieve repair, 

dispelling the view of good (M2) and bad (M1) macrophage127. THP-1 macrophage induced 

by PMA to M0227. However, their terminal differentiation requires the presence of 

cytokines; pro-inflammatory cytokines stimulate their differentiation into M1 macrophage 

while pro-healing cytokines stimulate their differentiation into M2173. The present study 

tested the immune response of activated macrophage (THP-1 derived) in the hMSCs 

secretome; collected as an SFCM from hypoxia (2% O2) and normoxia (21% O2) 

environment. The outcome clarified that SFCM induced monocyte-to-macrophage 

https://en.wikipedia.org/wiki/Pseudomonas_aeruginosa
https://en.wikipedia.org/wiki/Escherichia_coli
https://www.thermofisher.com/order/catalog/product/L34357
https://www.thermofisher.com/order/catalog/product/L34357
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differentiation and hypoxia modulates the active constituents of SFCM and directs the net 

balance toward a regulatory rather than a stimulatory immune response through 

increasing the ratio of differentiation of M2/M1 macrophage in comparison to higher 

M1/M2 macrophage differentiation ratio obtained in normoxic SFCM (21% O2). Generation 

of more M2 (regulatory) macrophage might provide a promised therapeutic tool for 

application of hMSCs-educated macrophage in treatment of inflammatory diseases and 

might lead to establishment of allogeneic M1 and M2 macrophage bank using signals from 

SFCM collect from hMSCs of third party donors; moreover, the scope might be extended to 

harness SFCM collected from MSCs of xenogeneic sources.  

 

In an attempt to identify the actual biomolecule(s) modulating the regulatory macrophage 

differentiation in the secretome profile, the study tested those cytokines with prominent 

anti-inflammatory activity on the activated macrophage in order to identify the 

biomolecule which is responsible for the differentiation, if any. Cytokine-driven responses 

were individually determined via the addition of specific neutralising antibodies. The study 

concluded that, activated T cell IL2 secretion was blocked by SFCM itself and IL4, IL13, and 

IL10 when individually added to SFNCM. When these cytokines were neutralised 

individually in SFCM with their specific antibodies, the immune response was restored in 

IL10-devoided SFCM, suggesting that IL10 plays an immunosuppressive role in Jurkat T cell 

proliferation and activation by reducing the secretion of IL2. However, the molecular sites 

targeted by SFCM in order to achieve this effect remain unidentified; moreover, the 

present study is incompletely excluding the role of IL4/IL13 ligands in the 

immunosuppression achieved by SFCM. In addition, further investigation is required to 

determine the underlying mechanism(s) by which MSCs exert their immunomodulatory 

effect. This property may be harnessed to produce biological agents which have 

immunomodulatory actions similar to hMSCs, leading to the production of the “off-the-

shelf” biological products. The production of such biological products will have important 

economical reflection by reducing the cost, obstacles, limitations, and complications of cell-

based therapy. 
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The challenges which are associated with cytokines-based therapy are the main obstacle 

hindering the widespread application of this biotherapy including SFCM. Among these 

challenges are; variability of the product upon collection even from the same cells, SFCM is 

nutritionally depleted by the cells together with the presence of various unwanted waste 

biomolecules, and sterilisation and characterisation are recommended. Despite these 

cones, it’s worthy to mention SFCM pros, such as, SFCM bypass some regulation ethics of 

translation therapy, SFCM is relatively cheap and can be produced in large quantities. 

Moreover, SFCM can be stored in (-80ºC), characterised, processed, and tested. 

Accordingly, the translation of SFCM required being revised wisely, to avoid translation of 

SFCM with different potency. Therefore, large scale production of MSCs and subsequent 

large scale production of SFCM is required to be batch consistent and each batch needs to 

be tested individually using certain markers, such as, IL10, TNFa, and CD markers as target 

markers to ascertain that the batch is immunosuppressing. 

 

6.2 Conclusion: 

 
One of the promising tools in the treatments of the disease is stem cell therapy.  A number 

of different mechanisms have been proposed including direct cell-cell contact and 

paracrine factors, including cytokines, chemokines, chemical messengers, enzymes, and 

extracellular vesicles. Most of these factors play a great role in immune-mediated diseases, 

such as, graft versus host diseases, autoimmune diseases, and neurodegenerative 

disorders. However, the injected dose of the cells is partially retained and engrafted in the 

target tissues confirming that paracrine factors are the key in the mechanism of tissue 

regeneration and immunomodulation. To overcome the limitation of the cell count, stem 

cells are expanded in vitro; hypoxia (<5% O2) recreation of in vivo mimic environment was 

included as one of the parameters in the present study and the achieved results show 

modulation in paracrine contents and potency. However, a number of different parameters 

were absent in the present study and represent confounding factors, such as, 3D context, 

extracellular matrix (structure, topology, and stiffness), and physical factors (flow shear, 

compression, stretch, and electrical signals). These parameters should be included in the 

context of stem cell translation therapy. 
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Testing the efficacy of SFCM on in vitro immune cell line models including, T cell line and 

macrophage cell line. The results confirmed a positive potency of SFCM on modulation of 

in vitro immune response via inhibition of T cell proliferation/polarisation and modulation 

of macrophage activation/differentiation toward regulatory rather than stimulatory. 

However, hypoxia (2% O2) collected SFCM show more regenerative potential than 

normoxia (21% O2) collected SFCM, indicated by modulation of M2:M1 macrophage 

differentiation. However, these results necessitate translation into primary cells to mirror 

the in vivo environment and to confirm the achievement of the same results of the cell line 

models. 

 

IL10 present in SFCM in sufficient amount and is considered as an important anti-

inflammatory cytokine. This thesis has confirmed the importance of IL10 in the suppression 

of T cell line model and its neutralisation from SFCM associated with restoration of immune 

response irrespective of the presence of other anti-inflammatory cytokines (IL4, IL13, and 

TGFb) which showed an only negligible contribution to the overall immunosuppression of 

SFCM. However, neutralisation of IL10 from SFCM might be associated with imbalances 

between pro-inflammatory/anti-inflammatory biomolecules and hence revoking the 

immunosuppression; suggesting that IL10 receptor gene knockout might give a clear-cut 

indication about the mode of action of SFCM. The role of these anti-inflammatory cytokines 

in macrophage M1/M2 differentiation and/or phagocytic activity showed discrepant 

results indicating that SFCM is a complex mixture of different biomolecules with an overall 

beneficial role in modulation of inflammatory ailments. 

 

6.3 Implications for further work: 

 

1. Identification of IL10 linked post-receptor translation pathway (STAT3) by knock-down 

STAT3 gene using Jurkat cell line as an in vitro model. 

2. Identification of a chemical compound having IL10-mimic action through screening a 

library of chemical compounds; which have a chemical side chain that is thought to interact 

with IL10 receptor active epitope. Identification of such compound may change some 
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aspect of cell-based therapy into a small chemical compound having a therapeutic action 

which is partially resembling the cell-based therapy; using Jurkat cell line as an in vitro 

model (e.g. Tofacitinib, Ruxolitinib). 

3. Collection of SFCM from MSCs spheroids versus monolayer might induce stronger 

immunosuppression; this study could be used as a template control for subsequent in vitro 

creation of in vivo-mimic environment. 

4. Augmentation of hMSCs paracrine activity via priming with a cocktail of proinflammatory 

cytokines and/or modification of certain specific gene (in vitro hMSCs engineering). 

5. Rationalization of IL4/IL13 receptor-ligand overlapping; receptor-ligand bi-specificity 

phenomena, using Jurkat cell line as an in vitro model.  

6. Isolation of exosomes from SFCM, identification of its constituents and characterization 

of its immunomodulatory properties. 

7. Translation of SFCM into in vivo by injecting the SFCM into a mice model of chemically-

induced inflammatory diseases (e.g. rheumatoid arthritis and Crohn’s disease). 

8. Preparation of SFCM-based pharmaceutical dosage form with sustained release 

properties; due to a characteristic short duration of action of cytokines, through the 

incorporation of concentrated SFCM into a gel system leading to more convenient dosing 

intervals and suitable dosage form for topical application. 

9. Translation of in vitro MSCs-educated primary immune cells into preclinical animal 

studies; application of in vitro hMSCs-modulated primary leukocyte (T cells and monocytes 

into Tregs and M2 macrophages) into mice model of chemically induced inflammatory 

diseases. 

10. Controlling the direction of SFCM toward anti-inflammatory and regenerative direction 

via capturing the proinflammatory factors with their specific neutralising antibodies and 

vice versa. 
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