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Abstract 

Ovarian cancer is a complex disease characterized by low incidence, accounting for about 4% 

of cancer diagnoses in women, but with rapid progression and higher mortality rate than any 

other gynecological malignancy. Approximately 70 % of the cases are diagnosed late in the 

course of the disease due to unawareness of subtle symptoms and failure of screening 

methods for detecting the disease at early-stage. Although most patients respond well to 

standard treatment, which involves surgery followed by platinum/taxane combination therapy, 

relapse seems unavoidable and the majority of patients presented with chemoresistant disease, 

which is considered as the main obstacle to successful treatment. Reduced susceptibility to 

apoptosis is one of the major causes for the development of resistance to chemotherapy, one 

cause of it is overexpression of pro-survival members of Bcl-2 family. Advances in 

understanding of the molecular mechanisms of the involvement of pro-survival proteins in the 

emergence of resistance to chemotherapy has made them attractive targets for the 

development of new therapies to treat ovarian cancer. BH3 mimetics are agents that 

antagonize the apoptosis inhibitors of Bcl-2 family, and have been shown to potentiate the 

activity of carboplatin against a panel of ovarian cancer cell lines. However, in clinical trials, 

agents that antagonize Bcl-XL were associated with life-threatening thrombocytopenia. To 

avoid this venetoclax was developed to selectively inhibit Bcl-2 and avoid inhibition of Bcl-

XL. Unfortunately, Bcl-XL appears to be more frequently deregulated than Bcl-2 in ovarian 

cancer. In this study, the ability of venetoclax, and the Bcl-XL selective compound WEHI-

539, to potentiate the activity of carboplatin were assessed in ovarian cancer cell lines.  

In addition to the genes encoding the Bcl-2 family of proteins, a number of other genes have 

shown to be overexpressed in drug resistant ovarian cancer. These are potential targets for the 

development of new therapeutic agents to overcome drug resistance. Work from our group 
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previously reported an RNAi screen to assess whether knockdown of some of these genes 

increases the sensitivity to carboplatin or paclitaxel. In the present study, some of these hits 

were validated and branched-chain amino acid dehydrogenase kinase emerged as a potential 

new target for developing chemosensitizing agents. 
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1.1 Overview of the female reproductive system and ovaries 

The ovaries are part of the female reproductive system which includes the Fallopian tubes, 

uterus, vagina, vulva, breasts and the mammary glands (figure 1.1). These organs are 

variously responsible for the formation and transportation of gametes (ova) as well as the 

production of sex hormones (estrogen and progesterone).  The ovaries are a pair of small oval 

shaped glands located on the both sides of the pelvic cavity lateral to the upper part of the 

uterus and supported by the mesovarium and are attached to the uterus by ovarian ligament. 

Suspensory ligaments extend from the mesovarium, and contain the ovarian lymph and blood 

vessels. The main types of cells that form the ovaries are the ovarian surface epithelium, the 

stromal cells, and the germ cells (oocytes). The ovarian surface epithelium is composed of a 

single cell layer of cuboidal-to-flat cells. During ovulation, the ovaries release an ovum, 

which is then travel to the Fallopian tube, where it may be fertilized before further moving 

into the uterus.  

 

Figure 1.1: The female reproductive system and the ovary  

From. http://humananatomylibrary.com/ovary-female-reproductive-system/ 
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1.2 Introduction to Ovarian cancer 

Ovarian cancer (figure 1.2) comprises a growth of the cancerous cells arising from tissues in 

and nearby the ovary. The disease results in high mortality rates because most of patients are 

diagnosed at an advanced stage (where the disease has invaded other parts of the body), and 

therefore, treatment for this pathology is very difficult, prolonged, complex and multimodal 

(1).  

 

Figure 1.2: Ovarian Cancer 

A. A mass in the ovary that is less than 2 cm is a follicle cyst that will resolve spontaneously. 

However, if the growth is persistent and doesn't disappear during the course of a repetitive 

menstrual cycles, then surgery is needed to remove it. B. A typical ovarian cancer, which is 

very dangerous due to the location of ovaries that are in close proximity to various organs and 

therefore, it carries high risk of metastasis. From http://keckmedicine.adam.com. 

 

When compared to other cancers such as prostate or breast cancer, the survival rate of patients 

with ovarian cancer is disappointingly low. One of the main causes of poor survival rate is the 

development of drug resistance following repeated rounds of anti-cancer medications. 

Accordingly, the disease places a real and substantial load on patients and their families (2). 

To improve survival, the disease should be diagnosed at an early stage, so increasing 

awareness of disease symptoms among health professionals, women and patients is crucial. 
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Improved treatment strategies and using targeted therapy and novel drug combinations that 

reduce drug resistance also have the potential to improve survival (3). 

1.3 Epidemiology and incidence 

Ovarian cancer accounts for 4% of all new cases of cancer, and is considered to be the 5th 

most common form of cancer among women, with about 7,000 new cases across the United 

Kingdom and more than 240,000 cases each year worldwide. The incidence rate has 

progressively risen over the past 20 years, especially in those aged 65 and above (4–6). 

Ovarian cancer is regarded as the second most common malignancy of the female genitalia 

following uterine corpus cancer, and unfortunately, it is the most deadly and results in higher 

mortalities than any other gynaecological form of cancer. More than two-thirds of ovarian 

cancer patients are diagnosed with stage III or IV and consequently the disease kills annually 

more than 152,000 patient worldwide with more than 4400 patients in the UK (7–9).  

The incidence of ovarian cancer usually increases with age (figure 1.3), and the incidence 

rates of the disease are highest in countries from north America as well as Europe; rates are 

about 10-folds lower in most parts of Africa and Eastern Asia. Additionally, within each 

country, the incidence rates may differ among ethnic groups (10,11). 

The 5-year survival rate for patients diagnosed with advanced ovarian cancer is very low, 

around 45% and it is less than 30% in patients with late stages of the disease. This variation in 

survival is probably linked to various factors, including the time of diagnosis and the 

effectiveness of treatment (12).  
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Figure 1.3: Average number of new cases each year and age-specific incidence rates of 

ovarian cancer per 100,000 population, females, UK. 2012-2014.  

From (Cancer Research UK, 2014). 

 

The incidence of ovarian cancer markedly increases after the age of 40 and patients in this age 

group account for over 90% of ovarian cancer cases, of these more than half are over 63 

years. The incidence keeps rising with age to reach its peak in those aged 80-84 years. 

Incidence is high in the age group of 50-70 year, with 75% of cases diagnosed in women aged 

more than 55 years (13,14). Additionally, the 5-year survival rates of the disease varies 

according to the age of patient, with higher survival rates in young age group – there is an 

84% survival rate in those less than 39 years old compared to less than 14% survival rate for 

patients  over 85 years (15).  
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1.4 Aetiology of ovarian cancer 

Ovarian cancer is a heterogeneous disease. It can be classified into two broad types 

comprising the low-grade tumours that develop through a gradual process of mutation, grow 

more slowly and which are less responsive to anti-cancer therapy. This type of ovarian cancer 

shares molecular features with low malignant potential neoplasms. On the other hand, high-

grade carcinomas show higher genetic instability, rapid metastasis, sensitivity to 

chemotherapy and absence of distinct detectable precursor lesions (16). Accordingly, the 

heterogeneity among ovarian cancer classes is evident in differences in risk factors, somatic 

and germline mutations, genetic expression and responsiveness to chemotherapy (17). 

Numerous factors are associated with the initiation and subsequent progression of ovarian 

cancer, such as family history, age, overweight, lack of use of a contraceptive pill, not having 

children or not breastfeeding, and early menarche or menopause started later than average. 

Taking fertility drugs and hormone replacement therapy can also increase the risk of 

developing ovarian cancer (18–20). 

The risk of developing ovarian cancer is increased in women who have a close relative 

diagnosed with this disease when compared with those with no family history of the disease 

(21). Even though only about 10% of women with a family history of ovarian cancer develop 

the disease, it has been found that the presence of inherited mutations in the breast and 

ovarian cancer susceptibility genes (BRCA1 and BRCA2) can increase the risk of ovarian 

cancer. The risk of the disease is approximately 40% by 70 years of age in case of mutations 

in BRCA1, while risk is only 10% in BRCA2 mutation carriers (22).  
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A specific inherited mutation in one allele of the human breast cancer tumour suppressor 

genes, BRCA1 or BRCA2, accounts for about 15% of ovarian cancer cases. BRCA1 

mutations are usually associated with female breast, fallopian tube, ovarian and peritoneal 

cancer. In addition, carriers of BRCA2 mutation are at increased risk of a variety of cancers at 

other sites of the body (23). Moreover, females with a family history of breast or ovarian 

cancer are at a two-fold higher risk of developing ovarian cancer than those without this 

history (24). Mutations in the hereditary nonpolyposis colorectal gene constitutes another 

inherited genetic susceptibility to develop ovarian cancer (figure 1.4) (25). 

 

 

Figure 1.4: Development of ovarian cancer in persons with BRCA mutation  

The OSE forms a single layer of cells that are adjacent to the peritoneal mesothelium. The 

process of ovulation causes OSE proliferation and agitation of wound healing to repair the 

ruptured membrane during the release of the follicle. With repeated ovulation and repair 

inclusion cysts can be formed. Such inclusion cysts are a rich environment for the 

development of ovarian cancer, because of  their exposure to the ovarian stroma. Those with a 

mutation in BRCA1 or BRCA2 genes are less able to repair such DNA damage inflicted on 

the cells and so less able to cope with the accumulation of mutations during estrogen exposure 

and proliferation, leading to the initiation of epithelial ovarian tumours (23). 
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1.4.1 Theories of ovarian cancer aetiology 

The clear relationship between patient’s ovulations history and the risk of developing ovarian 

cancer has prompted several theories to explain the causes of ovarian cancer. 

1.4.1.1 Hypothesis 1: The incessant ovulation hypothesis   

This first hypothesis for explaining the aetiology of ovarian cancer was proposed by Fathalla 

in 1971. It speculates that repetitive injury of the ovarian surface epithelium (OSE) during 

ovulation followed by proliferation of cells results in successive accumulation of DNA 

mutations and so results in ovarian cancer. Depending on this hypothesis, serial rounds of 

programmed cell death and repair of OSE at the site of ovulation trigger genetic instability, 

which makes this cell layer more prone to develop into neoplasms (26,27). Murdoch and 

colleagues provided evidence that supported this hypothesis where the cells of the OSE within 

the formative site of ovulation undergo DNA oxidative damage, p53 expression and 

apoptosis. A genetically-altered progenitor cell, with damaged DNA, that is not committed to 

death, could give rise to a transformed phenotype that is hence propagated upon the healing of 

ovulatory wound, Therefore, with each ovulation cycle, there is increased likelihood of 

generating genetically modified and carcinogenic cells in the OSE and this raises the risk of 

ovarian tumour formation (Murdoch et al., 2001). 

1.4.1.2 Hypothesis 2: The pituitary gonadotropin theory 

The gonadotropins, FSH and LH, are essential hormones for regulation of ovarian cells 

function, and a potential role in the pathogenesis of ovarian carcinoma has been suggested. 

Ovarian cancer has been reported to express specific gonadotropin receptors. The role of 

endocrine factors in controlling the normal growth of ovaries may also provide suitable 

conditions for malignant transformation. Furthermore, the presence of high levels of FSH and 

LH in the fluid of ovarian cancer suggests a role for these hormones in the transformation and 

progression of ovarian cancers (29,30). Gonadotropins cause activation of mitogenic 
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pathways, including the extracellular signal-regulated kinase (Erk) pathway, and stimulate 

proliferation and invasion of the ovarian cancer cell (31). During ovulation, gonadotropins 

activate proteolytic enzymes and cytokines to generate an inflammatory-like process, which 

causes rupturing of the OSE layer for the release of the ovum. After rupturing of the follicle 

and the release of the ovum at the OSE, the estrogen-producing follicle is converted to a 

progesterone-producing corpus luteum, which then provides feedback inhibition that reduces 

gonadotropin levels (32). 

During menopause, there is entire exhaustion of the germ cells in the ovary accompanied by 

loss of the follicular structure that surrounds the germ cells, and this cause an absence of 

corpus luteal feedback, leading to high serum gonadotropin and proinflammatory cytokines 

levels. Therefore, high levels of gonadotropin in postmenopausal women might encourage an 

environment of inflammation that cannot contribute to ovulation, but might lead to a high risk 

of developing ovarian cancer, by causing morphological changes in the OSE, and support  

transformation of genetically compromised cells into ovarian cancer (32). 

Failure of apoptosis in the cells of the granulosa and theca following the ovulatory period may 

promote carcinogenesis because the ability of these cells to produce steroid hormones is 

retained (33). Epidemiologic evidence supports this hypothesis and has shown that the risk of 

developing ovarian cancer is reduced in women with multiple pregnancies, breast feeding, 

and those that use oral contraceptives, which has been interpreted as being due to the 

suppression of pituitary gonadotropin secretion in these situations (31). 

1.4.1.3 Hypothesis 3: The androgen/progesterone theory 

The hormonal stimulation theory, also known as the androgen/progesterone theory, proposes 

that androgens (which are elevated after menopause) may support the generation of ovarian 

cancer. In contrast to androgens, progestins protect against the development of the disease. 
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Progesterone contraceptives can reduce the risk of ovarian cancer by reduction of  ovarian 

testosterone levels (34,35). Additionally, the proliferation of cells in ovarian surface 

epithelium may be driven by androgen receptors. It is supposed that the follicles produce 

androgens and create a rich environment of androgen around the epithelial cells. Known 

hyperandrogenic conditions like acne, hirsutism, and polycystic ovarian syndrome, have been 

shown to be associated with increased risk of developing ovarian neoplasms (36). 

1.4.1.4 Hypothesis 4: The inflammation theory 

As a cause for the development of ovarian cancer, the inflammatory theory suggests that 

inflammation may work in conjugation with steroid hormones and ovulation, to increase the 

possibility of developing ovarian epithelium carcinoma (37). According to this theory, repair 

of damaged DNA is impaired, particularly in those with defective function of BRCA1 and 

BRCA2, resulting in high risk of carcinogenesis. In addition, stimulation of inflammation as a 

result of endometriosis, talc or asbestos exposure, or as a result of ovulation itself, may work 

to support the development of ovarian cancer (38). Inhibition of inflammation caused a 

reduction in the incidence of cancer in a study that used anti-inflammatory drugs, where it has 

reported a statistically significant inverse association between anti-inflammatory drugs use 

and cancer risk (39). 

Many mechanisms have been anticipated to explain the beneficial effects of anti-

inflammatory drugs in the reduction of the risk of this disease, including induction of 

apoptosis, inhibition of prostaglandin synthesis mediated by cyclo-oxygenase, or 

improvement of cellular immune response (39). 

The biomarkers of inflammation can be used as a means to monitor the progression of ovarian 

cancer. Such biomarkers can also help to prevent and treat cancer by developing a new anti-
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inflammatory drugs that can also be used as adjuvant to radiotherapy and chemotherapy, 

which by themselves activate NF-kB and mediate resistance (39).  

1.4.1.5 Hypothesis 5: The tubal origin hypothesis 

This is the most recent hypothesis and suggests that the vast majority ovarian cancers 

originate in the fallopian tube, in both high-risk women and in the general population, and 

from where there is no barrier to peritoneal spread (40). Most of the ovarian cancers detected 

in their early stages in women carrying BRCA mutations arise in the fallopian tube (41). Pre-

invasive changes in the fimbriated end of the fallopian tube are usually associated with early 

HGSOC (42). Additionally, disabling of PTEN, a key negative regulator of the PI3K 

pathway, and Dicer, an essential gene for microRNA synthesis, with Amhr2-Cre in mice 

resulted in subsequent spread of fallopian tube cancers to the ovary and then aggressively 

metastasize to the abdominal cavity, leading to ascites and death (43). Research is in progress 

to explore the molecular and genetic basis critical to the development of ovarian cancer that 

originats from fallopian tube (44).  

 

1.5 Types of ovarian cancer  

Ovarian cancer can present in different forms that can be categorized by the type of cells and 

tissue from which they originated. Understanding ovarian cancer type, its stage and grade has 

a great importance in the diagnosis and treatment options of the disease. Age as well can 

affect the susceptibility to different kinds of tumours (45). Generally, the ovaries have three 

types of cells that are able to develop into different types of cancer (figure 1.5): the ovarian 

surface epithelium cells (which is composed of one layer of cells and often times is described 

as modified peritoneal mesothelium) undergo a cancerous conversion to be the origin of 

epithelial ovarian cancer, the germ cells, which give rise to germ cell tumours, and the stromal 
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cells, which grow to form ovarian sex cord-stromal tumours. In addition, as discussed above, 

ovarian cancer may originate from epithelial cells in the fallopian tube. 

Most of ovarian malignancies originate from epithelial cells and so account for about 90% of 

all ovarian cancers and approximately 3% of all cancer types in women (45,46). 

Germ cell tumours develop in the reproductive cells of the ovary. This type of cancer is very 

rare, it comprises around 2-3 % of all ovarian neoplasms and is characterized by rapid growth. 

This kind of tumour usually starts in girls, adolescents, and women of reproductive age. 

Indeed, tumours of ovarian germ cells account for the vast majority of ovarian cancers in 

adolescent women and should always be taken into account in any young woman presented 

with solid mass in the ovaries (47,48). 

 

Figure 1.5: Types of ovarian cancer.  

Types of ovaries cancer according to the origin of cells. Different types of cells in the ovaries 

may develop into different types of cancer cells. The abnormal presence of BRCA1 is 

associated in women with more probability of a predisposition to ovarian cancer that arises 

from these cells. From (49).  
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Ovarian sex cord-stromal tumours are also a very uncommon kind of tumour that constitute 

about 1-8 % of all primary ovarian cancers. Usually, it develops in adolescents and young 

adults. Clinically, these are slow-growing heterogeneous tumours that include several 

pathologic types which originate in the structural tissue that holds the ovaries together and 

produces the female ovarian hormones. The involvement of cells of this tumour type in the 

production of steroid hormones (e.g. estrogens, androgens and corticoids) leads to the 

association of sex cord-stromal tumours with many hormone-mediated syndromes and 

consequently a wide range of clinical symptoms varying from hyperestrogenic manifestations 

to hyperandrogenic virilising states (50–52).  

Ovarian epithelial neoplasms are sub-classified into ovarian serous carcinoma (30–70%), 

ovarian endometrial carcinoma (10–20%), ovarian mucinous carcinoma (5–20%) and clear 

cell carcinoma (3–10%) (53) (figure 1.6), in addition to undifferentiated (1%) (54), and 

transitional cell (Brenner) carcinoma (2%) (55).  
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Figure 1.6: The four major types of epithelial ovarian cancer  

Epithelial ovarian cancer includes: Serous, endometrioid, mucinous and clear cell carcinomas. 

The photos represent tumour sections which are stained with hematoxylin and eosin. From 

(56).  

 

As the most common histotype of epithelial ovarian cancer, the high-grade serous ovarian 

carcinoma (HGSOC) is also considered as an aggressive form of this disease (57). Generally, 

almost all cases of HGSOC have TP53 mutations, which potentially occur in an early stage 

disease. In addition, about 10-15 % of HGSOCs have BRCA mutation (58). 

The vast majority of HGSOCs are likely to originate from fallopian tube epithelia, especially 

the dysplastic lesions in the distal fallopian tube. Therefore, what has been often regarded 

“ovarian” cancer may in fact be tubal in origin (59). Recently, salpingectomy alone has been 

proposed as a prophylactic option to avoid the future development of ovarian cancer (60). 

In addition to these, primary peritoneal cancer arises in the tissue that lines the pelvic and 

abdominal cavities and is characterized by its ability to spread widely inside the peritoneal 

cavity and in most cases it involves the omentum. This type of cancer is very uncommon, 
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however, it shares various histological, pathological and clinical features with epithelial 

ovarian cancer, so it is often described as a type of ovarian cancer and it is often treated in the 

same way (61). 

 

1.6 Clinical Symptoms  

Patients with ovarian cancer are often diagnosed late in the course of the disease because the 

symptoms are subtle and women frequently remain unaware of the disease until it reaches an 

advanced stage; therefore, the disease continues to be known as a “silent killer” (62). 

However, some non-specific and somewhat vague symptoms (table 1.1) may be present such 

as persistent pain in the pelvis or abdomen, increased abdominal size with persistent bloating, 

feeling full quickly after eating and increased urinary output. These symptoms are often 

misdiagnosed as irritable bowel disease or changes that are associated normally with past 

pregnancies, aging and menopause (63,64). However, in the United Kingdom, recent 

guidance has urged clinicians to consider ovarian cancer in patients with these symptoms, 

especially if they are of recent onset and are persistent (65). 
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Table 1.1: Main symptoms of ovarian cancer  

Symptoms Frequency Positive predictive value 

Abdominal pain 53% 0.3% 

Fatigue 39% Unknown 

Abdominal distension 36% 2.5% 

Diarrhea 27% Unknown 

Bloating 17% 0.3 

Pelvic pain 16% Unknown 

Increased urinary frequency 14% 0.2 

Abnormal vaginal bleeding 13% 0.5 

Weight loss 10% Unknown 

 

Positive predictive values for most symptoms are low because the incidence of ovarian cancer 

is relatively low (65). 

 

1.7 Staging, screening and diagnosis 

The vast majority of patients with ovarian cancer are diagnosed at a progressive stage where 

they may develop extra-ovarian disease. While over 90% patients diagnosed with stage I 

ovarian cancer survive for 5 years or more, only about 24-28 % of patients with progressive 

stages (stages III and IV) survive 5 years after diagnosis (Figure 1.7), so improving early 

diagnosis gives a great opportunity for improvements  in ovarian cancer survival (66). 
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Figure 1.7: Percent of cases and 5-years relative survival by stage at diagnosis. From 

(67).  

1.7.1 Staging of ovarian cancer          

Two diagnostic challenges arise when an ovarian mass is detected. The first one is the 

detection of ovarian malignancy and the second is an assessment of tumour spread, so 

accurate diagnosis is significant to avoid unnecessary surgery as most of ovarian masses are 

non-cancerous cysts. Furthermore, the decision of which type of surgery to be done 

(laparoscopy or laparotomy) is influenced by ovarian mass information. Therefore, The 

International Federation of Gynaecology and Obstetrics (FIGO) issued a recommendation for 

staging of ovarian cancer in accordance with laparotomy (table 1.2 (68,69)). Early 

identification of ovarian cancer symptoms can improve prognosis and in this regard it has 

been reported that symptoms of ovarian cancer have diagnostic and predictive importance. In 

addition, patient age and family history might help with estimation of the malignant nature 

and risk of ovarian cancer (70). 
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Table 1.2: FIGO staging and prognosis of ovarian cancer  

Staging Characteristics 

I Growth limited to the ovaries. 

Ia Growth limited to one ovary; no ascites present containing malignant cells. 

No tumour on the external surface; capsule intact. 

Ib Growth limited to both ovaries; no ascites present containing malignant cells. 

No tumour on the external surfaces; capsules intact. 

Ic Tumour either stage Ia or Ib, but with tumour on the surface of one or both 

ovaries, or with capsule ruptured, or with ascites present containing malignant 

cells, or with positive peritoneal washings. 

II Growth involving one or both ovaries with pelvic extension. 

IIa Extension and/or metastases to the uterus and/or tubes. 

IIb Extension to other pelvic tissues. 

IIc Tumour either stage IIa or IIb, but with tumour on surface of one or both 

ovaries, or with capsule(s) ruptured, or with ascites present containing 

malignant cells, or with positive peritoneal washings. 

III Tumour involving one or both ovaries with histologically confirmed 

peritoneal implants outside the pelvis and/or positive regional lymph nodes. 

Superficial liver metastases equals stage III. The tumour is limited to the true 

pelvis, but with histologically proven malignant extension to small bowel or 

omentum. 

IIIa Tumour grossly limited to the true pelvis, with negative nodes, but with 

histologically confirmed microscopic seeding of abdominal peritoneal 

surfaces, or histologic proven extension to small bowel or mesentery. 

IIIb Tumour of one or both ovaries with histologically confirmed implants, 

peritoneal metastasis of abdominal peritoneal surfaces, none exceeding 2 cm 

in diameter; nodes are negative. 

IIIc Peritoneal metastasis beyond the pelvis >2 cm in diameter and/or positive 

regional lymph nodes. 

IV Growth involving one or both ovaries with distant metastases. If pleural 

effusion is present, there must be positive cytology to allot a case to stage IV. 

Parenchymal liver metastasis equals stage IV. 
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1.7.2 Methods of ovarian cancer diagnosis 

Adnexal mass palpitation during examination of the patient’s pelvis is routinely used to 

initiate a diagnostic assessment of ovarian cancer (68). An ultrasound examination is 

commonly used as a diagnostic technique to assess the disease, to aid in planning surgery and 

it can be helpful in the differentiation between a borderline ovarian tumour and ovarian 

cancer. It is rapid non-invasive tool for evaluation of multiple parameters of vascular supply 

and tumour structure (71). 

In patients with advanced disease, cancer antigen 125 (CA125) level in serum is elevated by 

80% or more, however, this biomarker has a controversial role in diagnosis because it is 

inadequate for the detection of early-stage disease. Additionally, CA125 is not specific for 

ovarian cancer and it can be elevated in conditions such as pelvic inflammatory disease, 

endometriosis in addition to other malignancies such as pancreatic and endometrial 

carcinoma. Consequently, in many medical disorders, false-positive results have been noted 

(72). Other studies proposed that the sensitivity and specificity of CA 125 in the diagnosis of 

ovarian cancer are poor, because CA125 is only raised by approximately 50% in stage I of the 

disease and in 75-90% in patients with advanced ovarian cancer (73). 

Various models have been predicted to improve the precision of ovarian cancer diagnosis and 

to clarify whether ovarian disease is benign or malignant. In this regard, the risk of 

malignancy index (RMI) has been developed which is an index including evidence of serum 

CA 125 concentration, menopausal status of the patient and ultrasonography findings; it has 

been concluded that the RMI was the best available tool to test triage patients with potential 

ovarian tumours for referral to tertiary oncology units (73). 

A new diagnostic tool for ovarian cancer is positron emission tomography/computed 

tomography (PET/CT). This is superior to, and more accurate than, Doppler ultrasound  

examination of the  pelvis and abdomino-pelvic CT scan or pelvic MRI  for diagnosis and 
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differentiation between different cases of benign and marginal ovarian malignancies. In 

addition, stage IV disease and co-existing neoplasms can be diagnosed by PET/CT and used 

to inform disease management and prognosis (74).  

Another new diagnostic technique that has recently emerged is the exosomes that are actively 

released by tumours into the peripheral circulation. In general, exosomes are a stable source 

of miRNA. miRNA expression is often deregulated in cancer cells and can be detected by 

distinct exosomal miRNA profiles obtained from the bodily fluids of patients, suggesting that 

exosome-microRNA profiling could be used as substitute diagnostic markers for biopsy 

profiling (75,76).  

1.8 Ovarian cancer therapy 

The standard treatment of ovarian cancer involves histopathological diagnosis and staging, 

followed by cytoreduction (surgical resection) of the tumours and then repeated cycles of IV 

anti-cancer therapy with carboplatin/paclitaxel. Approximately, 70% of patients respond to 

chemotherapy. The main aim of therapy here is to prolong progression free survival and 

overall survival (77). Patients with chemosensitive disease may receive repeated rounds of 

therapy. Once the disease  is resistant to further forms of therapy, the goal shifts to palliative 

care with an aim to improve the quality of patient’s life by minimization of the symptoms of 

ovarian cancer (78,79). 

1.8.1 Surgery 

In spite of significant efforts in developing new strategies for chemotherapy and biologic 

treatment of ovarian cancer, surgery remains the cornerstone in the treatment of this disease. 

It aims to obtain a pathological diagnosis, precisely determine the stage of disease and to 

achieve cancer cytoreduction (80). Debulking or cytoreduction surgery is followed by 

washing of the peritoneal cavity with normal saline to remove as many cancer cells as 
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possible. Generally, patients have bilateral oophorectomy (removal of both ovaries) and/or a 

hysterectomy (removal of the uterus) (81). Surgery alone may be sufficient only in patients 

diagnosed with early disease, but in late stage disease, debulking surgery is generally 

followed by chemotherapy.  

1.8.2 Chemotherapy 

The current gold standard for chemotherapy of ovarian carcinoma is a combination of 

carboplatin with paclitaxel. Studies have revealed that this combination increases survival 

rates with median progression free survival of about 17-30 months and median overall 

survival of 36-65 months (82). However, in early stage patients, the adverse outcomes of 

chemotherapy drastically outweigh beneficial effects and use of conventional chemotherapy is 

not advised in patients with stage I disease (83). In patients with more advanced disease, the 

initial response is often followed by relapse. Patients who relapse within 6 months of initial 

treatment are considered to have primary chemoresistance (84). Patients relapsing after 6 

months are more likely to respond to repeated chemotherapy, but ultimately most tumours 

become chemoresistant and at this point widely effective therapy is lacking. The development 

of drug resistance leads to a poor overall survival rate for ovarian cancer patients (84). Thus, 

chemosensitization strategies and or alternative therapeutics are required to overcome the 

mortality caused by ovarian tumours (85). 

1.8.2.1 Platinum chemotherapy 

The platinum-based drugs cisplatin, carboplatin, and the new members (oxaliplatin, 

satraplatin and picoplatin) are frequently used for the treatment of lung, ovarian, colorectal, 

breast, testicular head, neck, and bladder cancers. In 1978, cisplatin received approval for use 

in the treatment of both testicular and ovarian cancer. The second generation platinum drug 

carboplatin was approved in 1989 for use in ovarian cancer treatment. Carboplatin is a more 
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stable alternative to cisplatin, with similar activity in some types of cancer and less toxicity. 

Adverse effects of platinum-based agents include bone marrow suppression, anaemia, 

neutropenia, decrease immunity to infections, allergic reactions, gastrointestinal disorders, 

neurotoxicity and nephrotoxicity (86,87). It considered as a part of the first line therapy for 

ovarian cancer, especially when combined with a taxane. In 2002, a third-generation 

platinum-based drug, oxaliplatin, was approved by FDA for use in colorectal cancer (88,89).                 

Platinum-based antineoplastic agents induce covalent cross-linking of nitrogen nucleophiles 

in DNA nucleotides and result in DNA damage, primarily at N-7 nitrogen atoms of adenine 

and guanine residues, generating monoadducts and DNA interstrand or intrastrand crosslinks. 

The major DNA adduct formed by carboplatin results from the linkage of two adjacent 

guanine bases by platinum to form an intrastrand crosslinks. In contrast, cisplatin mostly 

causes interstrand crosslinks. This prevents strand separation, inhibiting gene transcription,  

DNA repair and/or DNA synthesis in cancer cells. Carboplatin causes cell cycle arrest in the S 

phase and induces apoptosis if the DNA damage is not properly repaired. The ability to form 

intrastrand crosslinks correlates with the cytotoxic effect of the particular drug (90–92).  

Although the initial response to platinum compounds is high in ovarian cancer, most of 

patients relapse with chemoresistance (93). Different mechanisms of resistance to platinum-

based chemotherapy have been illustrated. These mechanisms can be summerized in two 

major classes: those that prevent cell death occurring following platinum-DNA adduct 

formation and those that limit the cytotoxic platinum-DNA adducts formation. A better 

understanding of the molecular mechanisms of platinum resistance may lead to new 

anticancer strategies that could sensitize ovarian tumours to platinum-based chemotherapy 

(94,95). 
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1.8.2.2 Taxanes 

Taxanes are important family of drugs that were introduced into the oncology therapy field in 

the early 1990s. They are prescribed for the treatment of several types of cancers (96). The 

commonly available taxanes, paclitaxel (Taxol®) and docetaxel (Taxotere®), have become 

widely accepted as very active chemotherapeutic agents with established beneficial effect in 

the treatment of ovarian, breast, head, neck, bladder, lung and oesophagus carcinomas (97–

99). Taxanes produce their cytotoxic effect through inhibition of microtubule function. 

Microtubules play a key role in cell division and are considered as essential components of 

the cytoskeleton. They comprise α and β-tubulin subunits that undergo longitudinal assembly 

into filaments. They can undergo cycles of polymerization and depolymerisation. Taxanes 

bind to β-tubulin, stabilize them by preventing depolymerisation. This inhibits the normal 

formation of mitotic spindles, leading to chronic activation of the spindle-assembly 

checkpoint, mitotic arrest  and ultimately cell death,. Thus, taxanes are considered as mitotic 

poisons (100–102). β-tubulin is the target of this class of compounds so, it has been 

considered as a biomarker for taxane activity and it has been reported that β-tubulin III 

overexpression is associated with resistance to taxanes (103). 

Taxanes also decrease tumour angiogenesis and cell migration, while stimulating the immune 

system against cancers. This latter effect is mediated by increasing the levels of tumour 

necrosis factor alpha (TNF-α) in macrophages. TNF-α is an integral membrane cytokine 

(mTNF-α) usually formed in activated macrophages and monocytes, then released in a soluble 

form (sTNF-α) by the action of the metalloproteinase ADAM-17. Release of sTNF-α from 

cells can then cause either cell death or a cell-survival response, depending on the receptor to 

which it binds (104,105). The antiangiogenic activity of taxanes at low doses was also 

reported in some in vivo models of neovascularization, where administration of low doses of 
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paclitaxel to the chick embryo chorioallantoic membrane resulted in significant 

antiangiogenic activity (106). 

Recently, it has been reported that taxanes can induce a dose-dependent production of soluble 

tumour necrosis factor alpha (sTNF-α) in cancer cells at clinically relevant concentrations, 

and this can contribute to their cytotoxic effect. Deregulation in the cytotoxicity pathway of 

TNF or induction of TNF-dependent NF-kappa B survival genes may, on the other hand, 

contribute to taxane resistance in cancer cells (105).  

Like many other chemotherapeutic agents, therapy with taxanes is accompanied by adverse 

effects such as nausea, vomiting, diarrhoea, bradycardia, hypotension and bone marrow 

suppression. Peripheral neuropathy, myelo-suppression, arthralgia and myalgia are usually 

observed in patients receiving taxanes and where this toxicity accumulates throughout the 

course of treatment, it can be a dose-limiting. Adverse effects of taxanes may be increased by 

disorders that affect drug metabolism and excretion, such as hepatic or renal failure, by 

increasing serum levels of drugs. Additionally, drugs that affect the metabolism and excretion 

of taxanes can increase their toxicity if they are used simultaneously with such drugs (107–

109). Patients quality of life may be adversely affected by taxane-induced cutaneous toxicity 

and skin reactions that includes nail pigmentation, erythema and desquamation, involving 

primarily the hands (110). 

1.8.3 Chemotherapy resistance 

Although there have been extensive advances in current chemotherapeutic strategies, clinical 

drug resistance remains a major obstacle to successful cancer treatment and is still a limiting 

factor in patient survival, a problem that is particularly obvious in the treatment of ovarian 

cancer (111,112). Resistance to chemotherapy can be classified as either intrinsic or acquired. 

Intrinsic resistance reflects the presence of cancer cells that are drug-resistant  prior to  

chemotherapy treatment and following treatment these cells become the dominant population 
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(113). In contrast, acquired chemoresistance reflects the development of chemoresistant cells  

after chemotherapy treatment.  

1.8.3.1 Mechanisms of resistance to chemotherapeutic agents 

Resistance to chemotherapy prevents effective therapy and can ultimately result in patient 

death; therefore, it is important to understand mechanisms of drug resistance (114). Drug 

resistance is now recognised as being multifactorial including both genetic and epigenetic 

alterations in the cancer cells (figure 1.8) (115). These include decreased uptake of a drug into 

cells and/or increased its efflux and this is regarded as one of the major causes of resistance  

in many kinds of tumours (116).  Additional mechanisms include increased repair of damaged 

DNA, loss of p53 function and failure to undergo apoptosis. Furthermore, because of 

heterogeneity of cancer cells in a tumour, more than one mechanism of resistance to 

chemotherapy may be present in a particular tumour (117–119). 
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Figure 1.8: Cellular mechanisms of resistance to chemotherapy  

Cells can develop resistance to chemotherapy by different pathways like augmentation of the 

activity of efflux pumps (such as ATP-dependent transporters) to reduced drug influx and this 

results in removal of the drug, triggering of the de-toxifying proteins (such as. cytochrome P-

450), repairing their damaged DNA, disrupting and evading apoptotic signalling pathways, in 

addition to alteration of the cell cycle checkpoints (120). 

 

The ATP-binding cassette (ABC) family constitute a major mechanism of multidrug 

resistance (MDR). ABC family proteins encode enzymes which function as drug transporters, 

actively pumping drug out of tumour cells (121). The transmembrane drug efflux transporter 

P-glycoprotein “PgP”,  encoded by the MDR1 gene, is the most studied and well-

characterized ABC transporter, which reduces the exposure of the cancer cells to  

chemotherapeutic drugs (122). P-glycoprotein efflux pump has a wide spectrum of substrates, 

allowing resistance to different types of drugs, such as anthracyclines, vinca alkaloids, 

podophyllotoxins, and taxanes, thus restricting their effective use (123). 
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Multiple changes in the DNA methylation can be associated with the development of drug 

resistance. In recent years, it has become evident that cancer cells can gain resistance to 

chemotherapy when abnormal DNA methylation of CpG islands and associated epigenetic 

silencing occurs (124). 

Translational studies involving the prospective collection of tumour samples from the same 

patient before treatment and on clinical relapse are likely to be integral to identifying 

clinically relevant mechanisms of resistance. Circulating blood has been shown to contain free 

tumour DNA and tumour cells in most cancer patients. Detection of such DNA has the 

potential to identify specific genetic and epigenetic changes which highlight as yet unknown 

drug resistance mechanisms (125,126). Aberrant expression of drug resistance-related genes 

is considered as an important contributor to the development of drug resistance. Among all 

these genes, tumour suppressor genes (TSGs) are some of  the key players (127). Tumour 

suppressor genes are wild-type alleles of genes that provide essential regulatory roles in 

different cellular activities, including cell cycle checkpoint responses, cell proliferation, 

differentiation, migration, detection and repair of DNA damage, protein ubiquitination and 

degradation, mitogenic signalling, and tumour angiogenesis, where loss of TSGs function 

contributes to cancer development (128–130). It has been demonstrated that TSGs contribute 

to chemoresistance in many types of solid cancers. For instance, TSGs including p53, Fhit, 

E1A, IL-24, BiKDD and Fus1 are associated with chemoresistance in ovarian, pancreatic and 

lung cancer (127). 

Genes that are associated with epithelial to mesenchymal transition (EMT) have also been 

shown to be responsible for drug resistance in patients with ovarian cancer (131,132). The 

EMT is an important differentiation process during embryogenesis involving effects on 

extracellular matrix components regulation, loss of intracellular cohesion, augmentation of 

cellular migration, in addition to resistance to apoptosis. During cancer progression, tumour 
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cells appear to undergo a form of EMT which supports tumour cell invasion and migration, as 

well as to drug resistance (133). 

 

1.8.3.2. Effect of BRCA1/2 mutations and upregulation of 53BP1 on resistance to 

carboplatin and other chemotherapeutics 

Since the mechanisms of cellular DNA repair play an essential role in determining the 

sensitivity of cells to DNA damaging agents, it is rational to speculate whether a DNA repair 

has a contribution in the emergence of resistance to DNA damaging anti-cancer agents (134). 

Cells are equipped with a wide range of DNA repair pathways to deal with any damage that 

affects the DNA structure caused by exogenous agents or normal metabolic processes. 

Genetic instability is promoted by loss of DNA repair integrity, which can result in 

carcinogenesis (135).  

An additional outcome of defective DNA repair is a hypersensitivity of cells to DNA 

damaging substances, that has been exploited in the extensive use of DNA damaging 

chemotherapy. DNA damaging drugs are potent in patients with known cellular defects in 

DNA repair mechanisms. A commonly studied group of such are those with mutations in the 

tumor suppressor genes, BRCA1 and BRCA2 (136–138).  

BRCA1 and BRCA2 are essential proteins for the first step of DNA double-strand break 

(DSB) /repair by homologous recombination (HR) (139). BRCA1 directly work by binding to 

the phosphorylated CtIP protein and localizes CtIP to DSBs, which then accelerates resection 

of DSB ends to generate 3' overhangs of single-stranded DNA (ssDNA). Subsequently, the 

ssDNA is coated by replication protein A, which is then displaced by the action of 

recombinase protein RAD51 (140). BRCA2 plays a critical role in this step, it directly binds 

to RAD51 and facilitates loading of RAD51 on ssDNA. RAD51 makes a nucleoprotein 

filament on ssDNA and induces the search for a homologous sequence and stimulates strand 
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invasion, that is accompanied by production and resolution of intermediate recombination 

structures (141,142). In addition to binding with BRCA2, BRCA1 forms a protein complex 

with the partner and localizer of BRCA2 (PALB2). Furthermore, BRCA1 has also been 

shown to play a vital role in checkpoint function, chromatin remodeling, transcriptional 

regulation and ubiquitination. Loss of the function of BRCA1/2 promotes chromosomal 

instability, which can result in tumorigenesis (143,144).  

Notably, BRCA1/2 deficiency can result in cellular sensitivity to interstrand DNA 

crosslinking agents such as platinum based compounds in addition to PARP inhibitors (145). 

Interstrand crosslinks are primarily recognized during S phase of the cell cycle as they are 

essential for approaching replication forks to stall, even though the repair of interstrand 

crosslink also occurs in G1 phase (146). Repair of the interstrand crosslink is a complex 

process that occurs after several steps, starting with one strand endonucleolytic excision with 

subsequent translesion synthesis through the interstrand crosslink followed by removal by 

excision. The resulting DSB should be resected to produce ssDNAs followed by repair by 

HR. Since HR is malfunctioning in BRCA1/2-deficient cells, it renders these cells 

hypersensitive to interstrand crosslinking substances (147,148). 

Platinum-based compounds (cisplatin and carboplatin) are effectively used for ovarian 

carcinomas, where patients with BRCA1 and BRCA2 mutations show longer recurrence-free 

intervals than patients with sporadic ovarian tumours, especially when treated with platinum 

compounds (149). However, recurrence of the disease does occur in the vast majority of 

individuals with BRCA1/2-associated ovarian tumour and the recurrent cancer ultimately 

acquire resistance to cisplatin and carboplatin. Several mechanisms have been suggested to 

result in carboplatin resistance including changes in its transport by altering the expression of 

copper transporters and augmented glutathione expression (150). 
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Cells lacking BRCA1 and BRCA2 are highly responsive to PARP inhibitors, where several 

clinical trials of using PARP inhibitors for ovarian cancer patients with BRCA1/2 mutations 

are ongoing (151,152). PARP-1 attaches ADP-ribose to itself and other molecules to 

accelerate repair of single strand breaks (SSBs). PARP inhibition leads to accumulation of 

SSBs, which then can be transformed into DSBs in S phase. HR plays an important role in the 

repair of DSBs during S phase. Thus, PARP inhibition in HR-deficient cells, like BRCA1/2-

deficient cells, leads to cell death (153,154). However, not all of the cancers with BRCA1 and 

BRCA2 mutations are sensitive to the PARP inhibitor, and even for women who respond to 

the therapy, the duration of response is limited (155). The mechanism of clinical resistance to 

PARP inhibitors is not clear, however in ovarian carcinomas with mutated BRCA1 and 

BRCA2 that are treated with a PARP inhibitor, there is a link between the drug benefit rate 

and platinum-free interval, proposing that there may be a common pathway of resistance to 

PARP inhibitors and platinum based compounds (156).  

Additionally, the therapeutic response of cancers with BRCA1/2 deficiency to anti-cancer 

agents may be influenced by other genetic or epigenetic modifications (157). It is possible that 

mutations which suppress other genes in BRCA1 and BRCA2-deficient cells can reverse 

sensitivity of tumour to PARP inhibitors and carboplatin, without restoring BRCA1 and 

BRCA2 themselves (158). It has been reported that the loss of the DNA-damage response 

protein 53P1 in mice with BRCA1-null or BRCA1 exon11 deletion mutation has resulted in 

rescuing the embryonic mortality of BRCA1-deficient mice (159). Furthermore, 

BRCA1/53BP1-deficient cells showed increased growth and proliferation, HR efficiency and 

chromosomal stability relative to BRCA1-deficient cells (160).  

Essentially, 53BP1 deficiency in cells with BRCA1 mutation also restored resistance to PARP 

inhibitor and platinum compounds (161). Some HER2-non-overexpressing (triple negative), 

estrogen receptor-negative, progesterone receptor-negative, BRCA1 and BRCA2-associated 
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breast tumours have reduced 53BP1 expression. This suggests that suppression of BRCA1 

deficiency by the loss of 53BP1 can probably modify the clinical progression of BRCA-

associated neoplasms (161,162).  

The most profound clinical implication of BRCA1/2 and 53BP1 is that secondary BRCA1 

and BRCA2 mutations may predict whether a cancer patient will respond to platinum based 

compounds (163). This may also be applicable for patients treated with PARP inhibitors, 

although there is an additional complication of P-glycoprotein pumps upregulation, which 

contributes to resistance to this class of drugs (164). Moreover, restoration of DNA repair 

plays an important role in acquiring resistance to DNA damaging agents (165). Therefore, 

drug-resistant tumours with secondary BRCA1 and BRCA2 mutations may be re-sensitized to 

those drugs if HR can be inhibited by another agent, such as proteasome inhibitors, HSP90 

inhibitors and CDK inhibitors that have been shown to inhibit RAD51 foci formation. These 

agents may provide a therapeutic option for the treatment of platinum/PARP inhibitor-

resistant cancers in combination with PARP inhibitors and platinum-based compounds (166–

168). 

 

1.8.3.3 Strategies for the treatment of drug resistant disease 

1.8.3.3.1 Pharmacokinetic approaches 

Pharmacokinetic approaches depend on the hypothesis that resistance to chemotherapy occurs 

as a result of inadequate exposure of cancer cells to a  therapeutic drug; therefore, increasing 

drug exposure may improve the patient outcome by preventing the emergence of 

chemoresistant cells (169). High local doses of  anti-cancer agents can be achieved by direct 

intraperitoneal administration of drugs to overcome the problem of low tumour-cell drug 

exposure and to increase local drug concentration (170,171). Several randomized phase II and 

III clinical trials have shown that intraperitoneal administration of  anti-cancer drugs is more 
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effective than standard intravenous chemotherapy in the treatment of advanced ovarian 

cancer, but this is accompanied by increased toxicity (172–174). A major problem with 

the acceptance and usage of the intraperitoneal route of administration is the support required 

to manage toxicities and complications related to therapy (175,176). 

To achieve increased cancer-cell-specific drug delivery, one solution is to use liposomes to 

deliver drugs because they show increased permeability in cancer vasculature relative to 

normal tissue (177). Accordingly, encapsulation of drugs in these substances can be used as 

an alternative way of improving efficiency, non-immunogenicity, biocompatibility and 

solubility of chemotherapeutic agents to deliver them effectively to the site of tumour, such as 

the use of lipid-, polymer- or poly(L)glutamic-acid conjugated paclitaxel (178,179). 

 

1.8.3.3.2 Combination therapy 

The combination of multiple chemotherapeutic agents constitutes a leading strategy for 

targeting drug-resistant cancer. In most types of cancer, using a single-drug may lead to the 

activation of alternative molecular pathways in tumour cells which overcome the effect of 

the drug. Since the evolution of cancer chemotherapy, the combination of anti -cancer 

agents has been shown to improve clinical outcome, induce synergistic effect and delay the 

onset of chemoresistance. Therefore, drug combinations have become the standard first-

line therapy of many types of cancers (180,181). For example, the combination of 

carboplatin and paclitaxel is largely accepted as the gold standard regimen for the treatment of 

ovarian cancer. (182,183). 

The current identification of driver oncogenic pathways has led to the development of a large 

number of targeted agents that are directed to oncogenic drivers to which cancers are 

potentially addicted. This has improved the survival of cancer patients for various types of 

tumour treated with the matched targeted agents. (184,185). There are currently multiple 
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clinical trials for combination of molecular substances that target the main signalling 

pathways, comprising the ErbB family, PI3K-AKT, mTOR kinase, IGF, HGF–c-MET, ALK, 

Wnt, FGFR and MAPK pathways for the treatment of various cancers (186). 

Although therapeutic regimens which combine carboplatin with other cytotoxic drugs are the 

current standard of care for patients with advanced ovarian cancer, the cumulative toxicities 

of these combinations can present barriers for their long-term use (187). There are three main 

limitations for using carboplatin based combinations, including allergy to carboplatin, 

ototoxicity and nephrotoxicity (188). Additionally, knowledge of the status of BRCA1 and 

BRCA2 should be considered as a part of the standard of care for patients diagnosed with 

ovarian carcinoma (189). Interestingly, there is a large body of evidence suggesting benefits 

of targeting pathways that are  involved in maintaining DNA integrity, including BRCA1/2 

signaling. Harboring a germline mutations in BRCA1 and BRCA2 is can predict sensitivity to 

carboplatin. Futhermore, depending on the concept of synthetic lethality, sensitivity to 

carboplatin can be enhanced by the simultaneous promotion of DSBs and hindrance of DSB 

repair by inhibition of the expression of PARP protein (190). Inspite of these strategies 

intratumour genetic heterogeneity can limit sensitivity of tumours to anti-cancer agents and 

can be considered as the main contributor to therapeutic failure. Also it is becoming 

increasingly known that individual cancers may achieve chemoresistance via multiple routes 

simultaneously (polyclonal resistance) (191). Ttumour heterogeneity can be observed at 

several different levels, and may be caused by a number of different factors. Intracellular 

heterogeneity is the heterogeneity that generates first at the cellular level, however continual 

selective outgrowth of any given cell clone give rise to variable degrees of clonal 

heterogeneity (192). Subclones may grow and develop in a sequential linear fashion, or may 

keep diverging, following branched evolutionary paths (193).  
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Tumours diversity is evident at the genetic, epigenetic, proteomic and transcriptomic levels. 

Genomic instability has an effect on DNA sequence, chromosome number and structure with 

some modes of instability compromising genome integrity at different levels simultaneously 

(194). Genomic instability, a common feature of the vast majority of solid tumours including 

ovarian cancer, is responsible for high proportion of intracellular genetic heterogeneity and 

has been related with both poor prognosis in cancer patients in addition to chemoresistance 

(195). Epigenetic, proteomic and transcriptomic heterogeneity may arise because of 

underlying genotypic variation, however it can also reflect stochastic variation between cells, 

cell cycle stage or  hierarchical organisation of cells according to the theory of cancer stem 

cells. Moreover, diverse phenotypes can arise from extrinsic factors which include hypoxia, 

pH and paracrine signalling interactions with cancer and stromal cells (196–198). 

The degree to which metastatic tumors further develop by continual accumulation of 

additional mutations and copy number alterations is still unclear and has yet to be taken into 

account extensively using next-generation sequencing of HGSOC in order to further predict 

successful use of combination therapy (199). 

 

1.8.3.3.3 Sequential therapy 

Sequential therapy is designed to minimize resistance to chemotherapy. One drug is used 

initially and then followed by a second drug. This is designed to eliminate cells that may have 

become resistant to the first therapy. Possible advantages are that the full dose of the most 

potent drug can be administered at first, and then differential sensitivities of cancer cells to 

certain agents can be exploited in subsequent rounds of therapy. Such strategies have shown 

evidence of successful reduction of chemoresistance and provided better tolerability and 

minimal risk of negative interactions between drugs (200,201).  
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1.8.3.3.4 Chemotherapy dosing schedule 

The abolition of treatment-free intervals by administration of continuous doses of anti-cancer 

agents has been shown to result in better efficacy and overcoming of resistance (202). This 

has led to the development of ”dose-dense chemotherapy schedules” and improved overall  

and  disease-free  survival. Administration of dose-dense chemotherapy has been facilitated 

by the introduction of granulocyte colony-stimulating factor, which allowed condensation of 

the chemotherapy courses without producing unwanted toxicity (203).             

 

1.8.3.3.5 Improvement of targeted epigenetic therapies  

The discovery of how cancer cells alter the epigenetic machinery to their own advantage has 

broadened the understanding of how tumours develop resistance to the existing agents. This 

has led to the idea of using “epidrugs” to re-sensitize resistant tumours to chemotherapy. 

(204,205). Modest clinical results have been obtained following the use of epigenetic 

inhibitors (including DNA methylation and histone modifications) in hematological cancer 

(205,206). Second-generation epigenetic inhibitors (such as azanucleoside) have intrinsically 

wider selectivity for their targets (207). Solid malignancies have more genetic and epigenetic 

complexity than hematological cancers, however the epigenome and transcriptome 

biomarkers have been studied for many of these tumour types, and the aberrant expression 

profile of these tumours may be modified by means of epidrugs together in combination with 

conventional and innovative chemotherapeutic agents (208). 

Background information on apoptotic pathways are explained in chapters 3 and 5.  
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2.1 Aims 

Chemoresistance is one of the major obstacles in the way of effective ovarian cancer 

treatment. The research presented here seeks to improve the efficacy of chemotherapy by 

increasing the sensitivity of ovarian cancer cells to chemotherapies by two different strategies. 

  

1. Previous work in our group had shown that the “BH3 mimetics” ABT-737 and 

navitoclax, drugs which stimulate the intrinsic apoptosis pathway. These drugs 

inhibit the Bcl-2 family of proteins including Bcl-2 and Bcl-XL and can sensitize 

ovarian cancer cell to carboplatin. Venetoclax is a selective BH3 mimetic agent 

that was developed to inhibit the apoptosis regulators Bcl-2 and which avoids 

inhibiting Bcl-XL which is associated with thrombocytopenia. Venetoclax, but not 

navitoclax, has received approval for the treatment of leukemia. This raised the 

question whether venetoclax would also be effective in ovarian cancer. To test this 

hypothesis, venetoclax was compared with WEHI-539, a new selective Bcl-XL 

inhibitor to see which agent would most likely be useful as a chemosensitizer in 

ovarian cancer. 

2. Previously, our group has conducted an siRNA screen to identify genes which 

contribute to drug resistance with the goal of using these as targets to develop 

novel chemosensitizers. Several hits from this screen increased the sensitivity of 

ovarian cancer cells to carboplatin and/or paclitaxel. Although one of the hits, 

Autotaxin, has already been pursued by our group, several of the hits still required 

validation. Consequently, these hits were validated by more detailed siRNA 

studies (chapter 5) and BCKDK, one of the validated hits explored in more detail 

(chapter 6).   
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3.1 Ovarian Cancer Cell Lines 

Several ovarian cancer cell lines, in addition to normal human epithelial cells and gene-edited 

cells were used in this research (table 3.1).  

Table 3.1: Description of cell lines 

Cell line Description 

FUOV-1
 This cell line was obtained from the tumour tissue of a woman with high grade 

serous ovarian cancer after hysterectomy
1
 (209). 

OVCAR-8 This cell line was obtained from a high grade ovarian serous adenocarcinoma 

from carcinoma of the ovaries that was resistant to carboplatin
1
 (209). 

OVCAR-4 This cell line was established from the ascites of a woman with high grade 

ovarian serous adenocarcinoma that was resistant to cisplatin
1 

(210). 

Igrov-1 This cell line was derived  from an ovarian carcinoma of a woman that was 

sensitive to chemotherapy treatment
1
 (211). 

OVCAR-3 This cell line was developed from the malignant ascites of a 60 years female 

with progressive ovarian adenocarcinoma following treatment with cisplatin, 

cyclophosphamide and adriamycin
1
 (212). 

Ovsaho This cell line was derived from high grade ovarian serous papillary 

adenocarcinoma
1
 (213). 

COV318 This cell line was established from a peritoneal ascites of woman with ovarian 

epithelial-serous carcinoma
1
 (214).  

COV362 This cell line was established from a pleural effusion of woman with epithelial-

endometroid carcinoma 
1
 (214). 

HOE Human Ovarian Epithelial cell line (HOE) was derived from normal human 

ovary cells and it was and immortalised using SV40 large T antigen
2
.   

HAP-1 Haploid cell line derived from the KBM-7 cells
3
. 

BDK Gene edited haploid cell to lack BCKDK
3
. 

 

1
Supplied from the American Tissue Culture Collection (ATCC). 

2
Supplied from Applied 

Biological Materials (ABM) Inc. 
3
Supplied from ThermoFisher 
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3.2 Cell growth mediums and conditions 

OVCAR-3, OVCAR-4, OVCAR-8, Ovsaho and HOE cell lines were grown in Roswell Park 

Memorial Institute medium (RPMI 1640; Lonza), while COV318, COV362 and Igrov-1 cells 

were grown in Dulbecco's Modified Eagle Medium (DMEM; Lonza). FUOV-1 cells were 

grown in Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/F-12; Lonza). 

HAP-1 and BDK cells were grown in Iscove's Modified Dulbecco's Medium (IMDM; Lonza). 

Growth media were supplemented with 10% fetal bovine serum (FBS; Lonza), 50 µg/ml (50 

IU/ml) penicillin/streptomycin (Lonza) and 2 mM L-Glutamine (Lonza). The growth medium 

of Ovcar-3 cell line was further supplemented with 0.01 mg/ml insulin (Lonza) and 0.11 g/L 

sodium pyruvate (Lonza). Each cell line was incubated in its specific culture medium at 37 ºC 

in 5% CO2 until the cells became confluent. 

3.3 Seeding and harvesting of cells 

When the cells were more than 80% confluent, the growth medium was removed and then 

cells were rinsed with 1 ml of phosphate buffered saline (PBS; Lonza). To detach the cells  1 

ml  0.01% trypsin (Lonza) in PBS was added and the cells incubated at 37 ºC with gentle 

agitation until the cells detached, and 1 ml  growth medium containing FBS was added to 

neutralize the trypsin. The cells were collected by centrifugation (150 g, 3 minutes) at room 

temperature. The supernatant was aspirated and the cell pellets were re-suspended in 5 ml of 

growth medium, then transferred into T25 or T75 flask containing suitable volume of culture 

medium and allowed to grow again for routine passage. For cell proliferation and other 

assays, the cells were counted using a haemocytometer to determine the number of cells 

required for each experiment and then cells were transferred into culture plates as described 

for each experimental procedure.  
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3.4 Cryopreservation of adherent cell lines 

Before cryopreservation, the cells were checked for bacterial, fungal or any other 

contamination and also to ensure the cells were grown in logarithmic phase. The cells to be 

frozen were of low passage number and they were collected by trypsinization as described 

above. The cells were collected by centrifugation (150 g, 3 minutes, 4 C). The supernatant 

was aspirated and the pellets re-suspended in growth medium containing 8% dimethyl 

sulfoxide (DMSO, Sigma-Aldrich) and 10% FBS, then 0.2 ml was transferred into cryovials 

and frozen slowly overnight before being transferred to liquid nitrogen.  

 

3.5 Thawing cells 

The cryovials were removed from the liquid nitrogen and rapidly thawed at 37 °C and then its 

content was added gently into 10 ml pre-warmed growth medium and cells collected by 

centrifugation (150 g, 3 minutes). The supernatant was removed and the pellets were re-

suspended in a culture medium and transferred into T25 flask and kept in incubator for 24 

hours. Next day, the growth medium was replaced and the cells were allowed to grow to be 

used for ordinary sub-culture or experimentation. 

 

3.6 Chemical agents  

Dimethylsulfoxide was used to dissolve the drugs (except PBS for carboplatin) to the 

following final stock concentrations: 20 mM for each of ABT-737 (Abbot Laboratories), 

venetoclax (Abbot Laboratories), WEHI-539 (Medchem Express), 3,6-Dichloro-1-

Benzothiophene-2-Carboxylic acid (DCBC; Sigma-Aldrich) and (S)-2-Chloro-4-

methylvaleric acid (CMVA; Tokyo Chemical Industry “TCI”); 13.5 mM for carboplatin 

(SigmaAldrich) and 5 mM for paclitaxel (Sigma-Aldrich). Cell culture grade branched chain 
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amino acids (leucine, isoleucine and valine; Sigma-Aldrich) were dissolved in growth 

medium at 10 mM. siRNAs (appendix 2) were prepared by dissolving each individual siRNA 

in siRNA buffer (Dharmacon) at a concentration of 20 µM.  

 

3.7 Spheroid (3 Dimensional) culture 

The Spheroid culture was performed using GravityTRAP™ (Tissue Re-aggregation and 

Assay Plate) Ultra-Low Attachment (ULA) plate (InSphero), figure 3.1.  

 

 

Figure 3.1: Components of the GravityTRAP™ ULA Plate 

 

Before seeding of cells, the well of the plate were pre-wet with 40 μl of culture medium to 

prevent any air bubbles forming. 70 μl cell suspension, containing an optimized number of 

cells (2500 cell/well for COV318, 1000 cell/well for FUOV-1 and Ovsaho and 250 cell/well 

for OVCAR-4, HAP-1 and BDK cells), was seeded to the bottom of the well (figure 3.2), and 
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then the whole plate was centrifuged (1000 rpm, 2 minutes) to encourage aggregation of cells 

and spheroid formation. The plate was incubated at 37 °C with a routine daily check to 

observe spheroid maturation. 

Three dimensional aggregates were typically observed within 2-5 days of seeding based on 

the culture conditions and the type of cells and used for experiments as described below. 

 

 

 

 

Figure 3.2: Seeding of cells 
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3.7.1 The CellTiter-Glo cell viability assay 

The CellTiter-Glo luminescent was used to determine the cell viability in three dimensional 

culture and cytotoxicity assays (Promega). This method depends on the measurement of the 

ATP in cells as an indicator of the number of metabolically active cells. The CellTiter-Glo 

reagent was prepared according to manufacturer's instructions. The plates containing the cells 

were allowed to equilibrate to room temperature. For spheroid cultures, the spheroids with the 

growth medium were transferred to opaque-walled 96 well plate and equal volume of 

CellTiter-Glo reagent was added to each well and mixed gently for 2 minutes to allow full 

penetration of the reagent into the three dimensional structure to induce cell lysis. The plate 

was incubated for 10 minutes at room temperature to stabilize the luminescent signal, before 

measurement using a BioTek Synergy 2 multi-mode microplate reader. 

 

3.7.2 Statistical analysis of 3D culture 

The Z-factor or Z-prime value (commonly written as Z') was used to assess the suitability of 

3D cultures for testing drugs (215). The mean signal (μ) and standard deviations (σ) of both 

the samples (s) and negative controls (n) were used to determin Z. 

 

 

Z-factor approach 1 is an ideal value, while a value between 0.5 and 1.0 is an excellent assay, 

between 0 and 0.5 is marginal. A Z-factor values less than 0 is unlikely to produce reliable 

results. 
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3.8 Cell proliferation assay 

Cells were collected by trypsinization as described above (section 3.3) and suspended in 

culture medium (62,500 cell/ml, except for OVCAR-8, HAP-1 and BDK cell lines which 

were prepared at 25,000 cell/ml). 80 µl of the suspension was seeded per each well of 96 well 

plate (to obtain 5000 cells/well for all cell lines except OVCAR-8, HAP-1 and BDK cells, 

which were seeded at 2000 cell/well) and incubated at 37 ºC in 5% CO2 for 24 hours. The 

next day, cells were treated with drugs by adding 20 µl of the drug being tested (typically 18 

different concentrations were used), prepared in growth medium at five times the desired final 

concentration. After 72 hours incubation, the growth medium was removed and the cells were 

fixed using 100 µl of cold trichloroacetic acid 10% (TCA) and incubated for 30 minutes on 

ice. Subsequently, the plates were washed with water, then dried and stained with 100 µl of 

0.4% sulforhodamine B (SRB; Sigma-Aldrich) in 1% acetic acid (Sigma-Aldrich) for 30 

minutes at room temperature. After incubation, the SRB was tipped off and the plates washed 

with 100 µl of 1% acetic acid and allowed to air dry. Then the dye was solubilized by adding 

100 µl of 10 mM/pH10 Tris (Sigma-Aldrich). The optical density was measured at 570 nm by 

using a BioTek Synergy 2 multi-mode microplate reader. 

 

3.8.1 Statistical Analysis and determination of IC50 Value 

The data from cell growth assays was analyzed by using Graphpad Prism software. Non-

linear regression was used to fit a four parameters Hill equation to determine the IC50. The 

mean and standard deviation of IC50 were calculated from at least 3 experimental replicates. 
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3.8.2 Drug combination studies 

Drug combination studies were performed using different ovarian cancer cell lines by 

exposing  them to  different concentrations of traditional  anti-cancer drugs (either carboplatin 

or paclitaxel) combined with the drugs under evaluation. Drug combinations with carboplatin 

and either ABT-737, venetoclax or WEHI-539 were performed by treating the cells 

simultaneously with a range of concentrations of carboplatin combined with  ABT-737, 

venetoclax or WEHI-539 at a 5% ratio of their IC50 values previously determined from single 

agent activity studies. The combination studies of paclitaxel with DCBC or CMVA were 

performed by treating the cells at the same time with a range of concentrations of paclitaxel 

combined with DCBC or CMVA used at either 30 or 100 µM. In each experiment, the 

viability of cells was determined 72 hours after treatment with the given drugs, by fixing the 

cells in 10% TCA, then using the SRB assay described previously.  

 

3.8.2.1 Evaluate of the drug combinations efficacy 

In order to evaluate the effectiveness of the drug combinations, a combination index (CI) was 

calculated using Chou and Talalay equation which provides a quantitative assessment of the 

synergistic, additive or antagonistic effects between two drugs (216,217). Synergy is indicated 

when the CI value between two drugs is less than one (CI<1). However, CI values equals to 

or more than 1, indicates additive and antagonistic effect respectively (table 3.2). 

The CI value for two drugs is defined as      

 

                                                 .................... (1) 

This equation is valid when the two drugs have similar mechanism of action or mutually 

exclusive effect. (D𝑥)1 is the concentration of the first drug as a single agent that inhibits the 
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cell growth by x%. (D𝑥)2 is the concentration of the second drug as a single agent that inhibits 

the growth by x%. (D)1 and (D)2 represent the concentration of the first and the second drugs 

in the combination which inhibit the growth of cells by x%. The values of (D𝑥)1 and (D𝑥)2 

were calculated from the nonlinear regression results by using Graphpad Prism.  

When the combined drugs have a dissimilar mode of action or reciprocally non-exclusive 

mechanism of action, the equation may be modified to: 

 

 

 

Table 3.2: Symbols and description of synergism, additive or antagonism in drug 

combination studies determined by the combination index method. 

(218) 
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3.9 Caspase 3/7 activity assay 

Caspase-Glo Assay (Promega; Madison, USA) was used to quantify apoptosis by 

measurement of the executor caspases, 3 and 7 activities (figure 3.3). The required number of 

cells (62,500 cell/ml, except for OVCAR-8, HAP-1 and BDK cell lines which were seeded at 

25,000 cell/ml) was seeded in 96 well plate and incubated overnight at 37 ºC. The next day, 

cells were exposed to carboplatin alone (final concentration 2 x IC50 measured in cell growth 

assays) and in combination with ABT-737, venetoclax and WEHI-539, and then incubated at 

37 ºC for 48 hours. For experiments with BCKDK inhibitors, cells were exposed to 12 nM 

paclitaxel alone and in combination with 100 µM final concentrations of DCBC or CMVA 

and incubated for 48 hours.  

To measure caspase 3/7 activity assay in siRNA experiments, the cells were transfected with 

100 nM of individual siRNAs (including non-targeting siRNA, which was served as a control 

as described in section 3.14) and incubated for 24 hours. Then, the growth medium was 

removed and replaced with 80 µl of fresh growth medium and the cells were treated with 12 

nM paclitaxel.  

 

 



 

49 
 

 

 

 

Figure 3.3: Caspase-3/7 cleavage of the luminogenic substrate containing the DEVD 

sequence 

 

Caspase 3/7 reagent was prepared according to the manufacturer’s instructions and then kept 

at -80 ºC. To measure the activity of caspase 3/7, 25 μl of Caspase-Glo 3/7 reagent was added 

directly to the cells in each well. The plate was protected from direct light by covering with 

foil, the contents gently mixed and incubated on a rocker for 30 minutes at room temperature. 

Subsequently, 100 μl from each well was transferred to opaque-walled 96 well plate to and 

shielded from light prevent any loss of the luminescence signal. The luminescence was 

measured using a BioTek Synergy 2 multi-mode microplate reader. The compounds being 

tested may significantly inhibit cell growth resulting in significant variation in cell number 

between each condition after treatment;to control for any difference in cell number, parallel 

plates were also prepared and subjected to the same treatment and relative cell number 

estimated by staining with SRB and used normalized to the caspase 3/7 signal. 
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3.10 Trypan blue assay 

Trypan blue is a diazo dye that can be used to measure drug induced cell death due to its 

ability to differentiate between viable and dead cells. (219). 100,000 cell/well were seeded in 

12 well plate and incubated overnight. The next day, drugs were added. For experiments using 

BH3 mimetics, 1, 3 and 0.3 µm of ABT-737, venetoclax and WEHI-539 respectively, were 

added to the cells alone and in combination with 66 µm carboplatin. A duplicate of each plate 

were prepared; one was incubated for 24 hours and the other for 48 hours. After incubation, 

the supernatants were collected into 15 ml tubes, and adherent cells were detached by trypsin 

and mixed with the corresponding supernatant, then centrifuged (150 g, 3 minutes), the 

supernatant was removed and the collected cells were gently re-suspended in 500 µl growth 

medium. Each sample was mixed with an equal volume of trypan blue (SigmaAldrich, 0.4% 

in PBS) and the number of live (exclude stain) and dead (blue stained) cells were counted on a 

haemocytometer. The percentage of viability was calculated according to the following 

equation. 

 

 

Calculated % viability = 100 x number of dead cells/(number of dead cells + number of 

live cells) 
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3.11 Measurement of annexin V/PI labelling  

This assay was performed to detect viable, apoptotic and dead cells. The mechanism by which 

this assay detects the viable or dead cells is shown in figure 3.4 

 

 

 

 

Figure 3.4: Annexin V staining mechanism 

 

Cells were plated and treated in the same way as in the trypan blue assay. After incubation, 

cells were washed with 1 ml of 1 × annexin V binding buffer (Miltenyi Biotec), and collected 

by centrifugation (300 g, 10 minutes). The supernatant was aspirated completely and the cells 

were re-suspend in 100 μl of 1 × annexin V binding buffer and 10 μL of annexin V 
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fluorochrome (Miltenyi Biotec) was added and mixed gently and incubated in the dark for 15 

minutes at room temperature. After incubation the cells were washed with 1 ml of 1 × annexin 

V binding buffer and collected by centrifugation (300 g, 10 minutes). The supernatant was 

removed and the cells re-suspended in 500 μl of 1 × annexin V binding buffer. For detection 

of dead cells 1 μg/ml of PI solution was added immediately prior to analysis by flow 

cytometry. 

 

3.12 Bliss independence criterion 

The Bliss independence criterion was used to determine the expected effect of drug 

combinations in caspase 3/7, trypan blue and annexin V/PI assays. This was used in place of 

the combination index in studies where the full dose response relationship curves were not 

determined, but this method still allows quantification of synergy between two drugs. The 

criterion allows calculation of the expected effect of a drug combination, if the two drugs 

combine additively. This value may be compared to the observed effect of a drug combination 

to evaluate synergy or antagonism between the drugs (220). 

The Bliss independence criterion for two toxic substances is expressed by the following 

equation: 

 

                                      E (x,y) = E (x) + E (y) – E (x)  x  E (y) 

 

Where E(x,y) is the expected effect of the combination and E(x) and E(y) are the effect of 

individual drugs. Paired t-tests were used to compare the expected effect calculated by the 

Bliss independence criterion and the experimentally observed effect of the drug combination. 

The level of significance was at P≤0.05. 
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3.13 Western blot assay 

Western blotting was used for detection of different intracellular proteins from normal human 

epithelial cell line and ovarian cancer cells. Cells were seeded in 12 wells plate and treated 

with drugs as described for the trypan blue and annexin V assays or left untreated to measure 

the basal expression of some proteins. Following incubation of cells, the growth media was 

collected, the adherent cells were detached by trypsinizatoin, mixed with corresponding 

supernatant and centrifuged (250 g, 3 minutes, 4ºC), then the growth medium was removed 

and the cell was washed gently with chilled PBS, centrifuged, aspirated and the obtained 

pellets were kept frozen at -80ºC. To lyse the cell pellets, RIPA (Radio-Immunoprecipitation 

Assay) buffer was used comprising 20 mM Hepes (CalbioChem), 150 mM sodium chloride 

(Sigma-Aldrich), 2 mM EDTA (Sigma-Aldrich), 0.5% sodium deoxycholate (Sigma-Aldrich), 

1% NP40 (Sigma-Aldrich) and freshly supplemented with 18µl of 20mM leupeptin (Sigma-

Aldrich), 15 µl of 10 mM pepstatin (Sigma-Aldrich) and 20 µl of 150 mM 

phenylmethanesulfonyl fluoride (PMSF; Sigma-Aldrich). Phosphatase inhibitors comprising 

0.8 M sodium fluoride and 0.5 M sodium pyrophosphate were added to the mixture as 

required when protein phosphorylation was measured. 100 µl of RIPA buffer was added to 

each sample, mixed and centrifuged (14000 RPM, 10 minutes, 4 ºC). The supernatant was 

collected and frozen at -80 ºC.  

5- 15 µg protein samples (measured using the BCA assay, described below) was mixed with 5 

µl of SDS-Nupage sample buffer (Invitrogen) supplemented with 5% β-mercaptoethanol 

incubated at 80 ºC for 15 minutes. The samples were loaded into 4-20% Tris-Glycine (Nusep) 

polyacrylamide gradient gel using  running buffer (100 mM Tris, 100 mM hepes and 1% 

sodium dodecyl sulphate) and separated at 70 V for 1.5 hours. A prestained protein ladder 

(PageRuler Plus; Thermo Scientific) was loaded on the first wall of each gel for estimating the 

size of each detected protein.  
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The separated proteins were then electro-transferred onto poly(vinylidene difluoride) (PVDF, 

Amersham Hybond P 0.45 µm polyvinylidene difluoride; GE Healthcare Life Sciences) 

membrane using transfer buffer solution (200 mM glycine, 25 mM Tris (SigmaAldrich), 

0.075% SDS and 10% methanol (Sigma-Aldrich)) at 30 V for 1.5 hours.  

Each PVDF membrane was blocked by incubating it in 5% blocking milk solution in Tris 

Buffered Saline (50 mM Tris hydrochloride (pH 7.4), 150 mM NaCl, 0.1% Tween-20) for 1 

hour at room temperature with gentle rocking. The membrane was incubated overnight at 4°C 

with the primary antibody (appendix 1) with gentle rocking. The next day, the membrane 

washed three times with TBST, then incubated, with gentle rocking, for 1 hour at room 

temperature in a solution containing 1:1000 HRP-conjugated anti-rabbit or anti-mouse 

antibodies, then washed three times in TBST. Immuno-reactive bands in the membrane were 

detected in FluorChem M Imager by using UptiLight HRP chemiluminescent substrate 

(Uptima). AlphaView SA software (Protein Simple) was used to quantify the obtained bands 

by measurement the overall number of pixel grey levels in each band area and then normalize 

it to the loading control.  

3.13.1 Protein assay 

Protein concentration was estimated with a bicinchoninic acid (BCA) protein assay kit 

(Sigma-Aldrich). Bovine serum albumin (Sigma-Aldrich) was used as standard and prepared 

at eight different concentrations from 0.1 and 2 mg/ml. The BCA reagent was prepared by 

mixing BCA solution with 4% copper (II) sulphate pentahydrate solution (Sigma-Aldrich) in 

a ratio of 50:1. 100 µL of the prepared reagent was added to 10 µL of the protein lysates and  

BSA standards and incubated at 37ºC for 30 minutes. The optical density was measured at 

570nm by using a BioTek Synergy 2 multi-mode microplate reader. A calibration curve for 

the protein standard was obtained from the absorbance values of the BSA standard and then 

analyzed by linear regression. 
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3.14 Small interfering RNA transfections 

Suspensions of OVCAR-4 or COV362 cells in antibiotic-free growth medium were seeded in 

96 well plates (5000 cell per well) and incubated overnight at 37 ºC in 5% CO2. The next day, 

1% Dharmafect-1 was prepared in a serum-free modified eagle's minimum essential media 

(Opti-MEM, Invitrogen) and incubated for 5 minutes at room temperature before mixing with 

an equal volume of siRNA prepared  in serum free Opti-MEM and incubated for 20 minutes 

at room temperature. The growth medium of the previously seeded cells was replaced with 80 

µl of fresh and pre-warmed antibiotic-free medium and 20 µl of the siRNA/DharmaFECT 1 

mixture was added wells in the 96 well plate. A non-targeting siRNA (NT-1siRNA), which is 

designed not to target known genes, was included as control in all transfections experiments. 

After the addition of transfection mixture, the cells were incubated overnight, the growth 

medium was replaced and the cells were either exposed to a range of concentrations of 

different drugs or left untreated. Cell number was assessed by staining with SRB, or capase-

3/7 activity was measured as described above. Alternatively proteins or mRNA were 

measured by western blotting or qPCR. 

 

3.15 Extraction of RNA from cells 

RNA was isolated from cells using RNeasy Plus Mini Kit (QIAGEN). Cells were harvested 

from 96 well plate either as a lysate or cell pellet and mixed with 350 µl Buffer RLT Plus, 

vortexed for 30 seconds and centrifuged for 3 minutes at high speed. The supernatant was 

carefully removed by pipetting and transferred to a gDNA Eliminator spin column, 

centrifuged (10,000 RPM, 30 seconds) and 350 μl 70% ethanol was added to the flow-

through. The samples were mixed, transferred to an RNeasy spin column, then centrifuged 

(10,000 RPM, 15 seconds) followed by discarding the flow-through and addition of 700 μl of 

RW1 buffer to the RNeasy Mini spin column, centrifuged (10,000 RPM, 15 seconds) and the 
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flow-through was discarded. Then, 500 μl RPE buffer was added to the RNeasy spin column 

and centrifuged for 15 seconds at 10,000 RPM. The flow-through was removed and another 

500 μl RPE buffer was added to the RNeasy spin column and centrifuged for 2 minutes at 

10,000 RPM. The RNeasy spin column was  centrifuged again at high speed for 1 min to dry 

the matrix, then the RNeasy spin column was placed in a new 1.5 ml collection tube and 30 μl 

RNase-free water was added directly to the spin column membrane and centrifuged for 1 min 

at 10,000 RPM to elute the RNA. The samples were checked for the presence of RNA by 

using NanDrop reader and kept at -80 ºC. 

 

3.16 Preparation of complementary DNA (cDNA) from RNA 

To prepare cDNA, 1.5 μl of oligo-dT (0.5 μg/ μl) was added to 12 μl of each RNA sample and 

heated for 5 minutes at 65 ºC to denature RNA secondary structure, then chilled for 2 minutes 

and spun for 10 seconds at 4 ºC. For each sample, 6.5 μl of a mixture containing 4 μl reverse 

transcriptase buffer, 1 μl of 10 mm dNTP (mixture of dATP, dCTP, dGTP and dTTP), 1 μl 

nuclease free water and 0.5 μl reverse transcriptase was added, mixed well and centrifuged for 

10 seconds at 4 ºC and then heated for 30 minutes at 50 ºC, then for 5 minutes at 85 ºC. cDNA 

was quantified by reading the ssDNA using a NanoDrop reader and the samples were stored 

at -80 ºC. 

 

3.17 Quantitative polymerase chain reaction (qPCR) 

qPCR was performed to measure the level of gene expression. To duplicate wells, 5 µl of each 

cDNA template or nuclease-free water as a control was added with 1.25 µl of 1 µM forward 

and reverse primers (appendix 3) and with 6.25 µl of 1X absolute qPCR SYBR Green ROX 

Mix (Thermo Scientific) and nuclease-free water were added to each corresponding well of 
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the tubes that contain cDNA. The reaction mixtures in the 8-tube strips were gently mixed and 

centrifuged to ensure collection of the samples at the bottom of the tubes and get rid of any air 

bubbles. Amplification was performed using the following profile: enzyme activation cycle (1 

cycle, 15 minutes, 95 ºC), in addition to 40 cycles of denaturation (15 second, 95 ºC), 

annealing (15 second, 50-60 ºC) and extension (15 second, 72 ºC). At the end of the reaction, 

the dissociation curve was assessed to confirm that only one amplicon was detected. Results 

were analyzed according to the comparative cycle threshold (CT) method (ΔΔCT Method). 

The amount of targeted DNA was normalized to an endogenous reference gene and relative to 

a calibrator: 2
–ΔΔC

T 

 

3.18 Optimization of transfection conditions 

Transfection conditions were optimized using several different cell lines. COV318, COV362 

and FUOV-1 are seeded at 3000, 4500 or 6000 cell per wells in 10% FCS growth medium 

containing no antibiotics and incubated overnight at 37 ºC in 5% CO2 before transfection. The 

next day, transfection reagent was prepared by mixing different ratios of Lipofectamine2000 

in antibiotic-free Opti-MEM with DsRed plasmid encoding red fluorescent protein to 

optimize the best ratio of transfection. Conditions tested included different DNA 

concentrations ranged from 0.1 to 0.3 μg per well and 1:1-3:1 for Liopfectamine2000:DNA 

ratio.  Lipofectamine2000 combined with the diluted DNA, and incubated at room 

temperature for 30 minutes, then 50 µl of the DNA:Lipofectamine mixture was added to each 

well, then the plate was shaken gently and kept in an incubator for 6 hours. After 6 hours, the 

growth medium was aspirated and changed with 100 µl of growth medium containing no 

antibiotics and incubated for 48 hours. Transfection was assessed by fluorescent microscopy. 
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Chapter 4 

Antagonism of Bcl-XL is necessary for 

synergy between carboplatin and BH3 

mimetics in ovarian cancer cells 
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4.1 Introduction 

Despite many endogenous and pharmacological cues to die, cancer cells have developed 

several mechanisms to block the mitochondrial pathway of apoptosis. Importantly, such 

alterations in the apoptosis pathway are considered as a major contributor  to tumourigenesis 

(221,222). In the context of cancer therapy, suppression of apoptosis can lead to resistance to 

anti-cancer agents. Consequently, promoting apoptosis provides a potential avenue to treat 

drug-resistant disease (223–225).  

Apoptosis was first described in 1972, when it was appeared to be implicated in physiological 

turnover of cells during development and aging, where it was shown to be responsible for 

pivotal cells elimination during normal embryogenesis (226). Since then apoptosis had been 

established as a distinct and important form of programmed cell death, which comprises the 

directed removal of cells. It is characterized by a sequence of changes, including cell 

shrinkage, nuclear condensation and fragmentation, chromatin aggregation, endonucleolytic 

DNA degradation, membrane blebbing and disruption of the of organelle structures, which 

lead to the formation of apoptotic bodies that are then engulfed by neighbouring cells or 

phagocytes (figure 4.1) (227,228). Apoptosis can also protect tissues in case of immune 

reactions or when cells are subjected to damage by disease or harmful agents, like irradiation 

or  anti-cancer drugs that leads to DNA damage in some cells. This can result in apoptosis 

through both p53-dependent and independent pathways (229,230). The Bcl-2 family of 

proteins are critical regulators of the intrinsic apoptosis pathway that eventually affect the 

integrity of the mitochondrial outer membrane (231). 
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Figure 4.1: Morphological changes during apoptosis compared to necrosis  

Necrosis is characterized by cellular swelling, with cellular and nuclear lysis, which 

eventually proceed to inflammation, while apoptosis is marked by blebbing of the cell 

membrane with disruption of the structures of organelle, which eventually leads to the 

formation of apoptotic bodies that are engulfed by the process of phagocytosis, so it does not 

cause inflammation (232). 

 

4.2 Pathways of apoptosis 

Apoptosis can be activated by two main mechanisms, the “intrinsic” pathway which depends 

on changes in mitochondrial permeability and the “extrinsic” pathway that is mediated by 

“death receptors” on the cell surface. These pathways trigger a series of enzymes that belong 

to cysteine aspartyl-specific proteases (caspases), and result in cleavage of the vital proteins 

and dismantle the cell (figure 4.2) (233,234). 
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Figure 4.2: The extrinsic and intrinsic pathways of apoptosis From (235) 

 

4.2.1 Extrinsic apoptosis pathway 

The typical examples of death receptors that activates the extrinsic pathway are Fas (CD95) or 

TNF-α receptor 1. Interaction of Fas with its ligand (FasL) or an agonistic antibody generates 

a death-inducing signalling complex (DISC) that includes the critical adaptor molecule 

FADD. DISC activates the initiator protease caspase-8 that is activated by autoproteolytic 

cleavage which in turn can trigger the activation of downstream effector caspases like 

caspase-3 and caspase-7 that drives apoptosis (236,237). 

4.2.2 Intrinsic apoptotic pathway 

The intrinsic pathway of apoptosis, which is frequently deregulated in cancer, is engaged by 

several intracellular stimuli including DNA damage, hypoxia, oxidative stress and the 

endoplasmic reticulum stress. Such apoptotic stress conditions converge to stimulate 
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mitochondrial outer membrane permeabilization (MOMP). The pathway depends on the 

activation of B cell lymphoma-2 (Bcl-2) family proteins, Bax and Bak, which form a pore in 

the mitochondrial outer membrane (238,239). Increasing MOMP allows the release of soluble 

proteins (e.g., cytochrome c) from  the intermembrane space (IMS) of the mitochondrion into 

the cytosol, where it binds to apoptotic protease activating factor-1 (APAF-1) to form the 

apoptosome. The apoptosome attaches and enhances the activation of initiator caspase-9, 

which then activates caspases-3 and 7. After MOMP and caspase activation, apoptosis occurs 

often within minutes (240). Additionally, second mitochondria-derived activator of caspase 

(SMAC) is also released from the mitochondrion in response to cellular stress, which then 

interferes with the ability of X chromosome-linked inhibitor of apoptosis protein (XIAP) and 

other inhibitors of apoptosis (IAPs) which, otherwise, block the activation of caspase-3, 7 and 

9. Thus, in general, XIAP inhibition has been thought to facilitate apoptosis (241). 

4.3 Apoptosis regulation by Bcl-2 protein family 

The Bcl-2 family of proteins constitute the key regulators of apoptosis which have shown to 

be over-expressed in many human malignancies and considered amongst the most important 

groups of programmed cell death regulators in cancer (242). The complex interactions 

between pro-apoptotic and anti-apoptotic members of the Bcl-2 family of proteins controls the 

commitment to cell death, where they undergo either activation or inhibition depending on 

MOMP (243–246).  

4.3.1 Members of the Bcl-2 family 

Three functionally different groups comprise the Bcl-2 family of apoptosis regulators. These 

are: anti-apoptotic proteins (such as Bcl-2, Bcl-XL, Mcl-1, Bcl-W and Bcl-2A1), that block 

the mitochondrial outer membrane permeability and inhibit the intrinsic apoptosis pathway by 

sequestering the pro-apoptotic proteins (247,248); the pro-apoptotic effector proteins (Bax, 
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Bak and Bok), which directly increase the permeability of the mitochondrial outer membrane 

(249,250);   the pro-apoptotic “BH3-only” regulator proteins (Bim, Bid, Puma, Bad, Hrk, 

Noxa and Bmf), which promote activation of the pore-forming members (251). Bcl-2 family 

members have up to four conserved Bcl-2 homology (BH) domains described as BH1, BH2, 

BH3, and BH4, which correspond to a-helical segments (figure 4.3) (252–254).  

 

Figure 4.3: The members of Bcl-2 family of proteins  

‘TM’ refers to a hydrophobic region in the carboxyl terminus of several of these proteins that 

were originally assumed to be a transmembrane domain. From (255). 

 

The anti-apoptotic members of Bcl-2 family contain all of four BH domains subtypes (BH 1-

4). They mostly localize at the mitochondrial outer membrane because it possesses a 

hydrophobic carboxyl terminal end, although they can be found  in other sub-cellular 
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membranes or present in the cytosol (256). Anti-apoptotic Bcl-2 proteins have been shown to 

have an important cell survival protection role because they can inhibit the response of cells to 

different apoptotic stimuli (257–259).  

The pro-apoptotic members of Bcl-2 family or the “multidomain” proteins (Bax and Bak) 

contain three BH regions (BH 1-3) and lack the fourth one. They are synthesized as inactive 

proteins that can be present either at the mitochondria (for Bak) or in the cytosol (for Bax). 

Following activation, they oligomerize in the mitochondrial membrane and stimulate MOMP 

without the requirement for any other Bcl-2 proteins member. The essential role of Bax and 

Bak in MOMP makes their presence crucial for apoptosis and their combined absence 

generates resistance to MOMP and this results in more cell survival (260). Bcl-2-related 

ovarian killer (Bok), is similar to the multi-BH domain pro-apoptotic proteins with less 

widespread expression and has been proposed to function like Bax/Bak (261,262).  

The pro-apoptotic BH3-only proteins, contain only the third BH domain and are known as 

BH3-only proteins. BH3-only proteins bind to multidomain Bcl-2 family members and/or  

Bax or Bak (222,263). They are considered to promote apoptosis by either directly 

stimulating Bax or Bak or by preventing Bcl-2 apoptosis inhibitors from sequestering and 

inhibiting Bax or Bak. Bcl-2 family members also have a role in non-apoptotic processes, 

such as mitochondrial function, mitochondrial fission and fusion and autophagy (264,265). 

The properties of the most well-studied members of Bcl-2 family are further summarized in 

table 4.1 (241). 

Two  contrasting models have been proposed to explain the mechanism by which Bax and 

Bak are activated by BH3-only proteins. Both models have in common the concept that the 

anti-apoptotic Bcl-2 family proteins such as Bcl-2 and Bcl-XL can bind to Bax and Bak, 

preventing their activation. The direct activation model proposes that BH3-only proteins can 

be considered as activators or sensitizes. Activators, Bim and the cleaved form of Bid (tBid), 
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trigger the activation of Bax and Bak by directly binding to Bak or Bax. BH3-only proteins 

that work as sensitizers (such as Bad) bind to the pro-survival Bcl-2 proteins, antagonising 

their pro-survival activity (266). The indirect activation model proposes that Bak and Bax can 

intrinscially activate unless they are continually inhibited by the Bcl-2 family apoptosis 

inhibitors. In this model,  BH3-only proteins trigger the activation of Bax and Bak in an 

indirect manner by engagement with multiple pro-survival Bcl-2 proteins and prevent them 

from binding and inhibiting Bax and Bak (267). 

 

Table 4.1: Properties of the Bcl-2 family members  
Members Action Mechanism of action Subcellular localization 

Bcl-2  Anti-

apoptotic 

Inhibits apoptosis by 

preservation of 

mitochondrial membrane 

integrity 

(i) Outer mitochondrial membrane 

(ii) Nuclear envelope 

(iii)Membrane of the endoplastic 

reticulum(ER) 

Bcl-XL  Anti-

apoptotic 

Inhibits cytochrome c 

release, that inhibits 

activation of the 

cytoplasmic caspase cascade 

by cytochrome c 

Transmembrane molecule in the 

mitochondria 

Bcl-W  Anti-

apoptotic 

Reduced cell apoptosis 

under cytotoxic conditions 

Exclusively on the mitochondrion 

Mcl-1  Anti-

apoptotic 

Interaction with Bak1, 

Noxa, Bcl-2L11, Bcl-2-

associated death promoter 

Mitochondria, nucleus 

Bax Pro-

apoptotic 

Release of apoptogenic 

factors like cytochrome c, 

activation of caspases 

Cytosol 

Bak Pro-

apoptotic 

Undergoes conformational 

changes during apoptosis 

Integral mitochondrial membrane 

protein 

Bid Pro-

apoptotic 

Direct activator of Bax Cytosol and membrane 

Bim Pro-

apoptotic 

Free Bim binds to Bcl-2 or 

Bcl-XL and inactivates 

their functions 

Free BIM in mitochondria 

Bad Pro-

apoptotic 

Dephosphorylated Bad 

forms a heterodimer 

with Bcl-2 and Bcl-XL, 

inactivating them and thus 

allowing Bax/Bak-triggered 

apoptosis 

Free BAD in mitochondria 
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A modulator of apoptosis-1 (MAP-1) is another BH3 domain-only pro-apoptotic protein. It 

interacts with Bcl-2, Bax and Bcl-XL and itself to form dimers in mammalian cells. MAP-1 is 

linked with Bax through its BH3 domain, and this association assumed to be responsible for 

its caspase-dependent pro-apoptotic function, which is obvious upon overexpression (268).  

4.4 Evasion from apoptosis 

Escaping from apoptosis constitutes one of the major hallmarks of cancer, where it can be a 

part of cellular responses to stress in order to ensure the survival of cells upon experiencing a 

stressful stimuli. Such resistance to death may contribute to uncontrolled cell proliferations, 

tumour progression, carcinogenesis and resistance to anti-cancer agents (269,270). 

There are several routes by which cancer cells can suppress apoptosis and these include the  

imbalance between pro-apoptotic and anti-apoptotic proteins (e.g. over-expression of anti-

apoptotic proteins like Bcl-2 or downregulation of pro-apoptotic proteins such as Bak and 

Bax) or a reduction of caspase function and impaired signalling of death receptor (271). 

Accordingly, the ratio of pro-apoptotic and pro-survival proteins in each cell plays a crucial 

role in the determination of death or survival. (272). In particular, increased expression of  

anti-apoptotic proteins may sequester the BH3 proteins to prevent Bax/Bak activation or they 

may directly inhibit Bax and Bak (267). Figure 4.4 illustrates mechanisms by which cancer 

cells can suppress apoptosis (224). Each defect in the pathways of apoptosis can commit pre-

neoplastic and neoplastic cells to proliferate, survive in addition to enhancement of the 

tumour pathogenesis through the activation of proto-oncogenes (273,274).                   
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Figure 4.4: Mechanisms contributing to evasion of apoptosis and carcinogenesis  

From (224). 

 

4.5 Therapeutic implications of Bcl-2 family proteins 

A dampened response to apoptotic stimuli in cancer cells is associated with resistance to 

chemotherapy (275). The balance between the pro- and anti-apoptotic Bcl-2 family proteins 

regulate cell survival. For example, augmentation in the expression of pro-survival proteins of 

Bcl-2 family, Bcl-XL and Mcl-1 has been observed in different forms of haematopoietic 

tumours and in certain solid malignancies (268,276). Generally, high expression of the 

apoptosis inhibitor Bcl-XL has been linked in many cases to drug resistance (277). High 
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expression of Bcl-XL in ovarian cancers is accompanied with shorter disease free intervals 

after sequential rounds of chemotherapy (278). Additionally, some studies have revealed that 

overexpression of Bcl-XL confers resistance to apoptosis stimulated by a different 

chemotherapeutic agents, including paclitaxel and cisplatin (278,279). 

4.5.1 The prospects for therapeutic use of  BH3 mimetics 

In an effort to develop drugs that can inhibit the pro-survival Bcl-2 family proteins, structural 

analysis revealed a hydrophobic groove on their surface. This groove serves as a binding site 

for the protected BH3 domain of BH3-only proteins and plays a crucial role in the ability of 

pro-survival proteins to bind to and inhibit the pro-apoptotic counterparts. This suggested an 

approach to develop antagonists of Bcl-2 survival protein by synthesizing compounds that 

occupy the hydrophobic groove (280). Bcl-2 homology domain 3 mimetics (BH3 mimetics) 

are the result of extensive work in this field and represent a new class of  anti-cancer drugs 

that mimics the function of BH3-only proteins, by binding to Bcl-2 family proteins. These 

drugs prevent the anti-apoptotic Bcl-2 family members from binding the BH3 domains of pro-

apoptotic proteins and consequentially sensitize cells to apoptosis (281). The introduction of 

BH3 mimetics in the treatment of cancer is regarded as a (partial) fulfilment of the dream of 

many oncologists in the development of drugs that are capable of direct promoting apoptosis 

in cancer cells (282) (figure 4.5).  

The best studied BH3 mimetics are ABT-737 (figure 4.6 A) and its orally bioavailable 

analogue ABT-263 (navitoclax; figure 4.6 B). Both drugs inhibit Bcl-2, Bcl-XL and Bcl-w but 

not Mcl-1 or Bcl-2A1. These drugs prevent sequestration of  BH3 domain-containing proteins 

by anti-apoptotic Bcl-2 proteins, and in this manner initiate MOMP and unleash the 

proteolytic cascade that leads to apoptosis (283,284).  
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Figure 4.5: The effect of BH3 mimetic drugs on pro-survival and pro-apoptotic proteins  

When there is cellular stress, BH3-only proteins either bind to the pro-survival proteins and 

unleash the pro-apoptotic proteins from sequestration or directly activate Bak and Bax. Once 

activated, Bak and Bax oligomerize and stimulate MOMP, causing release of other pro-

apoptotic substances and eventual apoptosis. BH3 mimetics imitate the actions of the BH3-

only proteins (285).The diagram illustrates the selectivity of various BH3 only proteins and 

BH3 mimetics for different Bcl-2 family apoptosis inhibitors. 

 

Preclinical studies of both ABT-737 and navitoclax are consistent with a BH3-mimetic 

mechanism of killing (286,287). ABT-737 was effectively used as a single agent in xenograft 

studies in immunodeficient mice, and the in vivo sensitivity to ABT-737 significantly 

correlated with high expression of the pro-apoptotic protein Bim, and to the extent of its 

association with Bcl-2 (288). Navitoclax has been shown to induce cell death in lymphoma 

and leukaemia cell lines, in addition to tumour regression in xenograft studies of multiple 

myeloma and B-cell lymphoma (289,290). In the majority of these cancers, cells depend on 
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anti-apoptotic Bcl-2 family proteins for survival and the BH3-only proteins cannot induce 

apoptosis because they are sequestered by anti-apoptotic proteins. However, these agents 

displayed potent single agent activity because they unleashed the pro-apoptotic proteins and 

hence induced cell death. If BH3-only proteins are not highly expressed, these agents display 

weak single agent activity due to low dependence of the cells on  Bcl-2 family apoptosis 

inhibitors for continual survival (291,292).  

Using in vitro and xenograft models of ovarian cancer, our group has previously shown that 

ABT-737 and navitoclax can potentiate cytotoxicity induced by carboplatin. In addition, our 

research group demonstrated a successful in vitro combination of navitoclax with carboplatin 

and paclitaxel (293,294). These latter drugs are first line chemotherapy for ovarian cancer. 

This is of great importance in ovarian cancer because the emergence of resistance to 

chemotherapy prevents successful treatment. This notion suggests BH3-mimetics may be 

used to treat patients with drug resistant ovarian cancer, especially when Bcl-2 family of 

apoptosis inhibitors are over-expressed in a drug-resistant form of this disease. However, 

some studies have shown that cancer cells with elevated levels of Mcl-1, an apoptosis 

inhibitor that does not bind these drugs with high affinity, exhibited decreased sensitivity to 

ABT-737 and navitoclax. Likewise, the cells that are initially sensitive to ABT-737 and 

navitoclax can become resistant following over-expression of Mcl-1 (295–297). This suggests 

that ABT-737 and navitoclax may be more effective in cancers in which Bcl-2 and/or Bcl-XL 

are over-expressed, but not for those that show high expression of Mcl-1. Alternatively they 

could be used in combination with other anti-cancer drugs that inhibit Mcl-1 function (282). 

ABT-737 or navitoclax were shown to increase the anti-cancer potency of carboplatin, 

paclitaxel or PARP inhibitors when used in combination, and this suggests their use in 

combination with other anti-cancer drugs for the treatment of different kinds of tumour 

including ovarian cancer (294,298–300).  
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Navitoclax has entered to clinical trials in human hematologic and solid malignancies 

(301,302). However, dose-limiting thrombocytopenia was observed in patients. This was 

likely to be due to the antagonism of the pro-survival function of Bcl-XL in platelets, resulting 

in Bak/Bax-dependent platelet apoptosis. Considering that many cancer patients presented 

with pre-existing thrombocytopenia, particularly in the case of blood malignancies, this 

created a significant clinical obstacle to further development of navitoclax and quenched the 

enthusiasm for Bcl-2 inhibitors that bound to several Bcl-2 family members (303,304).  

In order to solve this problem, re-engineering of navitoclax to develop a compound that 

selectively inhibits Bcl-2 protein but not Bcl-XL led to the synthesis of ABT-199 (venetoclax, 

figure 4.6 C), which is a highly potent, orally bioavailable drug (305). The anti-cancer activity 

of venetoclax has been reported in different types of hematologic malignancies, including 

multiple myeloma, acute myeloid leukaemia, and chronic lymphocytic leukaemia (306–308) 

and as anticipated, this drug had minimal effect on circulating platelets (309). In addition, 

further clinical studies in patients with refractory chronic lymphocytic leukaemia have shown 

that venetoclax does not result in significant thrombocytopenia in cancer patients (310–313), 

where a single dose of venetoclax resulted in immediate antileukemic activity within one day, 

which allowed its successful development for the treatment of chronic lymphocytic leukemia. 

This support the hypothesis that “selective inhibition of Bcl-2 has the potential for the 

treatment of Bcl-2 dependent hematological tumours without triggering thrombocytopenia” 

(310). Additionally, venetoclax suppressed the growth of cancer in several preclinical 

xenograft models of human blood malignancies and showed additive efficacy when used in 

combination with standard chemotherapy (310). In vitro cell culture models showed that 

venetoclax used the mitochondrial pathway of apoptosis to elicit its anti-cancer effect in 

hematopoietic cells with high Bcl-2-expression, but it was not effective in Bcl-XL dependent 

cancer cells. Also, the in vivo potency of venetoclax for solid tumours with high Bcl-XL 
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expression is still unknown (310). Furthermore, this drug has not been used for the treatment 

of ovarian cancer. Initial studies in our laboratory suggested relatively low expression of Bcl-

2 protein in ovarian cancer cell lines compared to other members of  anti-apoptotic proteins, 

particularly Bcl-XL and Mcl-1, which are not potently inhibited by venetoclax. This 

expression pattern has also been reported in clinical samples of ovarian cancer (279) and in 

the cancer genome atlas which shows amplified Bcl-2 or upregulated mRNA in less than 3 % 

of all cases in comparison to Bcl-XL (14%),  Mcl-1 (14%) and Bcl-W (12%) (314). This 

qustioned whether venetoclax would be useful in the treatment of ovarian cancer. Instead, we 

postulated that a selective Bcl-XL inhibitor would be preferable, although strategies to 

overcome the expected thrombocytopenia are likely to be required for clinical use.  

WEHI-539 (figure 4.6 D), a selective Bcl-XL inhibitor (315), was therefore considered for 

evaluation in ovarian cancer. WEHI-539 is a new BH3 mimetic that has 400-fold greater 

affinity for Bcl-XL than other members of anti-apoptotic Bcl-2 family. It provides the first 

highly selective Bcl-XL antagonist that does not potently inhibit Bcl-2 and Bcl-W. This 

distinguishes it from other inhibitors such as navitoclax and ABT-737, which inhibit both Bcl-

2 and Bcl-XL. WEHI-539 also can evoke Bax/Bak-dependent apoptotic responses (316). It 

was hypothesized that WEHI-539 would potentiate the activity of carboplatin in ovarian 

cancer cells, but venetoclax would not. ABT-737, which is less selective Bcl-2 family 

antagonist (Bcl-2, Bcl-XL and Bcl-w inhibitor) was also included in this study as a comparator 

because we have already demonstrated its synergy with carboplatin.  
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Figure 4.6: Chemical structures of some BH3 mimetics  

Chemical structures of some BH3 mimetics including A. ABT-737, B. navitoclax, C. 

venetoclax and D. WEHI-539 (317–320). 

 

4.6 Aim of the study 

The study in this chapter was to evaluate different BH3 mimetics, which differ in their Bcl-2 

family target’s selectivity. In particular, the goal was to confirm the hypothesis that  WEHI-

539, but not the platelet sparing BH3 mimetic venetoclax, would synergize with carboplatin. 
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4.7 Results 

4.7.1 Expression of BCL-2 family proteins and single agent activity 

 

Before exploring the efficacy of drug combinations of carboplatin and BH3 mimetics, the 

expression of Bcl-2 family proteins (Bcl-2, Bcl-XL, Mcl-1 and Bcl-w) and the activity of 

single agent of the three BH3 mimetics (ABT-737, venetoclax and WEHI-539) in cell growth 

assays were  evaluated. The expressions of Bcl-2, Bcl-XL, Mcl-1 and Bcl-w were measured in 

8 ovarian cancer cell lines including OVCAR-4, OVCAR-8, OVSAHO, Igrov-1, OVCAR-3, 

FUOV-1, COV362 and COV318 (figure 4.7). In three of these cell lines (OVCAR-8, 

OVCAR-3 and Igrov-1) synergy between carboplatin and ABT-737 has previously been 

observed (294). These cells were supplemented with five other cell lines, which have recently 

been reported to show close similarity to the high grade serous ovarian carcinoma profile 

(321). OVSAHO, COV362, OVCAR-4, COV318 and FUOV-1 cells are likely HGSOC cells, 

whereas Igrov-1 cells are hypermutated and definitely do not represent HGSOC cells. Full 

description of each cell line is illustrated in materials and methods, table 3.1. 

Bcl-2 expression was highly variable; although it was detectable in five cell lines it was only 

prominent in three cell lines, OVCAR-4, FUOV-1 and COV362. Bcl-XL was readily detected 

in all cell lines. Mcl-1 showed notable expression in five cell lines to a varying degree, and 

Bcl-w was mostly expressed significantly in Igrov-1 cell line (figure 4.7).  

In cell growth assays, ABT-737, venetoclax and WEHI-539 inhibited the growth of cultured 

cells of each cell line with microMolar potencies (table 4.2). There was not a substantial 

variation in potency of these drugs between the different cell lines, with the most prominent 

difference being a six-fold difference in IC50 in COV318 and COV362 cells. 
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Figure 4.7: Expression of Bcl-2 family members  

A. Lysates were obtained from the eight indicated ovarian cancer cell lines and the 

expressions of Bcl-2, Bcl-XL, Mcl-1 and Bcl-w were determined by immunoblotting. The 

experiment shown in the figure is representative of three different experiments. B. The 

proteins in western blot experiments were quantified (mean ± S.D., n = 3) by normalization of 

the intensity of the signal for each band to the corresponding signal intensity of GAPDH in 

the cell line and in the same blot. 
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Table 4.2: Activity of BH3 mimetics in ovarian cancer cell lines cell growth assays  
 

 

The activity of ABT-737, venetoclax and WEHI-539 in ovarian cancer cell lines cell growth 

assays. Cells were exposed to ABT-737, venetoclax or WEHI-539 for 72 hours and the 

surviving cells were estimated by staining with SRB stain. The results are expressed as mean 

± S.D. for the indicated number of experiments shown in parentheses. 

 

 

 

 

 

 

Cell line ABT-737 venetoclax WEHI-539 

OVCAR-8 11 ± 5 (12) 18 ± 6 (13) 9 ± 5 (11) 

OVCAR-3 10 ± 4 (11) 15 ± 5 (12) 9 ± 4 (14) 

IGROV-1 11 ± 1 (12) 14 ± 8 (14) 16 ± 12 (12) 

COV-362 17 ± 3 (10) 4 ± 2 (9) 12 ± 2 (9) 

OVCAR-4 14 ± 5 (8) 15 ± 2 (7) 26 ± 9 (7) 

OVSAHO 7 ± 1 (10) 17 ± 9 (6) 14 ± 1 (6) 

COV-318 20 ± 3 (5) 24 ± 2 (3) 23 ± 5 (3) 

FUOV-1 13 ± 1 (4) 14 ± 6 (3) 27 ± 4 (3) 

IC50 (µM) 
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4.7.2 Drug combination studies 

 

To explore whether ABT-737, venetoclax and WEHI-539 were synergistic when used in 

combination with carboplatin in cell growth assays, drug combination studies were performed 

in six ovarian cancer cell lines: OVCAR-8, OVCAR-3, Igrov-1, COV362, OVCAR-4 and 

OVSAHO. In these studies, the BH3 mimetic was used at a concentration equal to 5% of IC50 

measured previously and combined simultaneously with a range of carboplatin 

concentrations. The BH3 mimetics were used at a fixed concentration because at high 

concentrations these agents are cytotoxic through a mechanism which does not depend on 

inhibition of Bcl-2 family members (294). Additionally, ABT-737 is insoluble at high 

concentrations (>80 µM).  

ABT-737 (which inhibits Bcl-2 and Bcl-XL proteins) was synergistic when used with 

carboplatin in three cell lines (figure 4.8) including, as observed previously, in OVCAR-8 and 

Igrov-1, in addition to COV362. Significant synergy has also previously been reported in 

OVCAR-3 cells (294), but in this study this did not reach statistical significance. WEHI-539, 

the Bcl-XL selective agent, also resulted in significant synergy when combined with 

carboplatin in the same cell lines in addition to OVCAR-3. In OVCAR-4 and OVSAHO cells, 

synergy between BH3 mimetics and carboplatin was not observed. On the other hand, the 

Bcl-2 selective agent, venetoclax, did not show synergistic effect when used with carboplatin 

in any of the studied cell lines and was even antagonistic with carboplatin in three cell lines 

(OVCAR-8, Igrov-1 and OVSAHO). 
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Figure 4.8: Evaluation of drug combinations in cell growth assays 

The indicated cell lines were exposed to a combination of carboplatin and either ATP-737, 

ATP-199 or WEHI-539 for 72 hours. The surviving number of cells was determined by 

staining with SRB stain. Combination indices (mean ± S.D., no. of experiments=3) at fraction 

affected = 0.5 were calculated using Chou and Talalay equation and were shown to be 

significantly different from additivity (CI = 1.0) where indicated (*P ≤ 0.05 and **P ≤ 0.01; 

paired t-test). 
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4.7.3 Cell viability assay and morphology of cells after treatment 

 

To confirm the previous results, the influence of the drug combinations on the viability of 

cells was assessed by trypan blue staining (figure 4.9). The results were broadly consistent 

with those obtained in cell growth assays. In OVCAR-8, COV362, Igrov-1 and Ovcar-3 cells, 

using carboplatin with ABT-737 or WEHI-539 resulted in significantly more cell death than 

that expected effect if the drugs acted additively and calculated by the Bliss independence 

criterion. Although synergy was not observed in OVSAHO cells in cell growth assays, supra-

additive effects of carboplatin and ABT-737 or WEHI-539 were observed in cell viability 

assays with this cell line. Notably, OVSAHO cells express a reasonably high level of Bcl-XL 

protein in comparison to Mcl-1 (figure 4.7). In contrast, the combination of venetoclax and 

carboplatin did not result in supra-additive effects in any of the studied cell lines and in 

OVCAR-8, Igrov-1 and OVSAHO the carboplatin and venetoclax drug combinations resulted 

in an antagonistic effect. Morphological evaluation of the cells by microscopy after 48 hours 

of treatment with drugs (figures 4.10 A, B, C, D, E and F) was consistent with the results 

obtained by trypan blue staining. 

 

 

A 



 

80 
 

 

 

 

B 

C 

D 



 

81 
 

 

 

 

Figure 4.9: The effect of BH3 mimetic combinations on cell viability 

The indicated cells (A. OVCAR-8, B. OVCAR-3, C. Igrov-1, D. COV362, E. OVCAR-4 and 

F. OVSAHO) were treated with 66 μM carboplatin, 1 µM  ABT-737, 3 µM venetoclax or 0.3 

µM WEHI-539 or a combination of carboplatin and the indicated BH3 mimetics as shown, for 

48 hours (24 hours for OVCAR-4). Cell death was determined by microscopy after staining of 

the cells with trypan blue. The data (mean ± SD, n = 3) are expressed as a fraction of the 

number of  live cells that were measured after exposure to with drug vehicle. The expected 

effect of the combination assuming the drugs interacted additively is indicated as a solid 

horizontal line on the bar chart and was calculated using the Bliss independence criterion. 

There is a significant difference between the expected additive effect and the experimental 

results where indicated (*P ≤ 0.05 and **P ≤ 0.01, paired t-test). 
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Figure 4.10: Morphological appearance of cells under light microscope 

The indicated cells were treated with drugs as described in figure 4.9 Photographs were taken 

after 48 hours of drug exposure.  
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4.7.4 Caspase 3/7 activity assay  

In addition to the synergistic effect between carboplatin and the less selective Bcl-2 family 

inhibitors in cell growth assays, previous work in our lab has shown that navitoclax and ABT-

737 potentiate apoptosis induced by carboplatin. To explore the effect of the selective BH3 

mimetics in combination with carboplatin, caspase 3/7 activity, Annexin V/Propidium iodide 

staining and PARP cleavage were assessed. Caspase 3/7 activation by the combination of 

drugs was reminiscent of the activity of drugs on cells. In five out of six cell lines, the 

combinations of either ABT-737 or WEHI-539 with carboplatin significantly augmented 

caspase-3/7 activity more than the expected additive effect of combination calculated using 

the Bliss independence criterion. In the OVCAR-4 cell line, which has relatively low 

expression of Bcl-XL protein (figure 4.7) and in which in cell growth assays synergy was not 

observed (figure 4.8), the effect of combinations of carboplatin with ABT-737 or WEHI-539 

on caspase-3/7 activity did not result in significant differences from additivity. In contrast to 

the synergy observed between ABT-737 and WEHI-539 (which both inhibit Bcl-XL), 

synergistic activation of caspase 3/7 was not observed with combinations of carboplatin and 

the Bcl-2  selective inhibitor venetoclax in any of the studied cell lines (figure 4.11). Indeed, 

antagonism was observed in OVCAR-8 and OVCAR-3 cells. 

A 
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Figure 4.11: The effect of drug combinations on caspase 3/7 activity 

The indicated cell lines (A. OVCAR-8, B. OVCAR-3, C. Igrov-1, D. COV362, E. OVCAR-4 

and F. OVSAHO) were treated with 66 μM carboplatin, 1 µM  ABT-737, 3 µM venetoclax or 

0.3 µM WEHI-539 or a combination of carboplatin and the indicated BH3 mimetics as 

shown, for 48 hours, then the activity of caspase 3/7 was measured. The results in the figures 

are expressed as a fraction of the activity of caspase 3/7 measured in cells treated with 

carboplatin only and were normalized to the viable cell number determined by a cell growth 

assay by staining a parallel sample of cells with SRB stain. The experimental results (mean ± 

S.D., n = 3) were significantly different from the expected additive effect of the drug 

combination (indicated with a horizontal solid line on the bar chart) and calculated from the 

Bliss independence criterion and the effect of the single agents where indicated (*P ≤ 0.05 

and **P ≤ 0.01, paired t-test).  
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4.7.5 PARP cleavage assay  

As single agents, ABT-737, venetoclax or WEHI-539 did not induce noticeable PARP 

cleavage in OVCAR-8, Igrov-1, OVCAR-3, and COV362 cells, (figure 4.12). However, 

venetoclax (Bcl-2 selective) induced cleavage of PARP in only OVCAR-4 cell line, which 

express the least amount of Bcl-XL  of the cell lines tested (figure 4.7).  ABT-737 and WEHI-

539 (which both inhibit Bcl-XL) as single agents resulted in obvious PARP cleavage in 

OVSAHO and OVCAR-4 and cells (figure 4.12). Notably, in OVSAHO cells, in comparison 

to other cell lines, the ratio of Bcl-XL expression in comparison to Mcl-1 was relatively high 

(figure 4.7).  

When used in combination with carboplatin, ABT-737 and WEHI-539 increased the cleavage 

of PARP cleavage induced by carboplatin, especially in the cells (e.g. OVCAR-8, Igrov-1, 

COV-362) where the synergistic effect with carboplatin was prominent in the cell growth 

assay, trypan blue or caspase 3/7 activation assays. The combination of ABT-737 and 

carboplatin also induced very significant PARP cleavage in OVCAR-4 cells; however, the 

single agents have also resulted in significant PARP cleavage in these cells (figure 4.12). In 

contrast to ABT-737 and WEHI, venetoclax (Bcl-2 selective) was unsuccessful in augmenting 

the cleavage of PARP induced by carboplatin. 
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Figure 4.12: The effect of BH3 mimetic and carboplatin combinations on PARP cleavage  

 

The indicated cell lines were treated with 66 μM carboplatin or the indicated BH3 mimetic 

alone and in combination for 48 hours (concentration as indicated in figure 4.9) and the 

cleavage of PARP was assessed by immunoblotting. The results are representative of 3 

independent experiments. 
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4.7.6 Annexin V/PI 

Experiments assessing annexin V/propidium iodide staining, assessed by flow cytometry 

(figures 4.13 A, B, C, D, E and F), confirmed the induction of apoptosis by the BH3 mimetic 

drug combinations in a manner consistent with the previous experiments. Carboplatin in 

combination with ABT-737 and WeHi-537, which both inhibit Bcl-XL, resulted in 

significantly more apoptosis than the expected additive effect of the drugs in OVCAR-8, 

Igrov-1, OVCAR-3 and COV-362 cells, but not in OVCAR-4 cells.  However, venetoclax 

(Bcl-2 selective) once again failed to augment carboplatin activity in all of the studied cell 

lines as shown in figures 4.14 A, B, C, D, E and F. 
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Figure 4.13: The effect of BH3 mimetic combinations on annexin V/propidium iodide 

staining 

OVCAR-8 (A), OVCAR-3 (B), Igrov-1 (C), COV362 (D),  OVCAR-4 (E) and OVSAHO (F) 

cells were treated with the indicated BH3 mimetic (1 µM  ABT-737, 3 µM venetoclax or 0.3 

µM WEHI-539), carboplatin (66 μM) or a combination of carboplatin and BH3 mimetic for 

48 hours, the cells were labelled with annexin V and propidium iodide and analyzed by flow 

cytometer. The results shown in the figures are representative of 3 experiments. The results 

are quantified in figure 4.14. 
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Figure 4.14: The effect of BH3 mimetic combinations on annexin V/propidium iodide 

staining 

The indicated cells were exposed to 66 μM carboplatin or the indicated BH3 (1 µM  ABT-

737, 3 µM venetoclax or 0.3 µM WEHI-539) mimetic for 48h, the cells were labelled with 

annexin V and propidium iodide and assessed by flow cytometery. The percentage of cells 

that stained positive with both annexin V and propidium iodide is shown (mean ± S.D., n = 

3). This was significantly different where shown (paired t-test, *, P < 0.05; **, P < 0.01, ***, 

P < 0.001; ) from the percentage of annexin V/propidium iodide positive cells expected from 

the activity of the single agents and calculated from the Bliss independence criterion.  

 

 

 

 

 

 

F 

C
ontr

ol

C
B
P
T

A
B
T-7

37

A
B
T-1

99

W
E
H
I-5

39

C
B
P
T+A

B
T-7

37

C
B
P
T+A

B
T-1

99

C
B
P
T+W

EH
I-5

39

0

1

2

3

4

*

OVSAHO

R
e

la
ti

v
e

 P
I 
s

ta
in

e
d

 C
e

ll
s

R
e

la
ti

v
e

 a
p

o
p

to
ti

c
 c

e
ll

s
 



 

98 
 

4.8 Discussion 

The efficacy of many anti-cancer agents, such as taxol and platinum-based compounds, 

principally depends on activation of apoptosis (322). Notably, cancer cells often modify and 

suppress their apoptotic mechanisms to survive and dysregulation of apoptosis is considered 

as one of the main contributors to failure of chemotherapeutic agents. This may be caused by 

overexpression of the pro-survival Bcl-2 proteins (323,324). Therefore, one strategy to 

overcome  resistance to chemotherapy is pharmacological inhibition of the overexpressed Bcl-

2 family proteins (325,326).  

Previous work in our lab has shown that navitoclax and ABT-737, (Bcl-2, Bcl-w and Bcl-XL 

inhibitors), can potentiate the cytotoxicity of carboplatin in several ovarian cancer cell lines 

(293,294). The increased sensitivity to carboplatin observed in these studies after combination 

with either ABT-737 or navitoclax was complemented by a reduction in the time at which 

apoptosis was detected by measurement of the number of viable cells, nucleosome formation 

and PARP cleavage. In addition to this in vitro synergy, navitoclax augmented the inhibitory 

effect of carboplatin on tumour xenograft growth in mice beyond that observed by using 

carboplatin alone. 

In the present study, analysis revealed that the three drugs, when tested as single agents, 

produced cytotoxicity in all of the investigated ovarian cancer cell lines, but only at relatively 

high conentrations. These results are consistent with most studies that evaluated BH3 

mimetics in solid tumours (303,327). However, these results are different from those that 

showed massive cell death after using BH3 mimetics in hematological malignancies 

(307,308). A plausible explanation for this could be the “priming of cells for death” by the 

expression of BH3 only proteins and the consequent high dependency of malignant blood 

cells on Bcl-2 (oncogene addiction) for survival (328). Cancer cells often are forced to survive 

in an environment that induces stress. This can cause the cells to constitutively express BH3-
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only proteins. This would induce apoptosis, but cells which also express high levels of  anti-

apoptotic Bcl-2 family proteins to sequester the BH3-only proteins,  have a survival 

advantage. However, the liberation of BH3-only proteins from Bcl-2 apoptosis inhibitors 

would induce cell death and so the cells are considered to be “primed for death” (329). This 

can be considered a form of  oncogene addiction and correlates with sensitivity to BH3 

molecules that bind the  anti-apoptotic Bcl-2 protein. Thus, addiction of the cells to Bcl-2 

family protein will result in sensitivity to a BH3 mimetic that can bind to it. (330) The BH3 

mimetics release the pro-apoptotic BH3 only proteins and consequently are effective as single 

agents. “Priming” has consequently been regarded as the best explanation for responsiveness 

of cancer cells to single agent BH3 mimetic therapy (331).  The evasion of apoptosis due to 

priming can be identified by evaluating the sensitivity of mitochondria to the members of 

apoptosis by an approach called “BH3 profiling”. The ability of peptides corresponding to the 

BH3 domain of BH3 mimetics to induce apoptosis is diagnostic of priming. By considering 

the selectivity of the peptides for different Bcl-2 family members, the identity of the Bcl-2 

protein that is suppressing apoptosis can be deduced (332,333). This can potentially be used 

as a clinical test to identify tumours that are addicted to a particular oncogene and so this test 

may be useful for patient selection. 

In blood malignancies, the overexpressed Bcl-2 is strongly primed with pro-apoptotic Bim 

protein, conferring sensitivity to drugs that provoke its release to initiate apoptosis (figure 

4.15) (330,334). Conversely, in solid tumours, including ovarian cancer,  although there is a 

relatively high expression of Bcl-XL the lack of sensitivity to BH3 mimetics as single agents 

suggests that these cells are ‘‘not primed’’ for death. Rather, the potentiation of apoptosis by 

Bcl-XL is likely to require an additional pro-apoptotic stimulus, such as a chemotherapeutic 

agent that induces the expression of a BH3-only protein.  
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Figure 4.15: Model of BH-3 mimetics induced intrinsic apoptosis 

Bcl-2 sequesters Bim in the mitochondria of cancer cells. Upon exposure to ABT-737, Bim 

displaces and ABT-737 occupies Bcl-2. Free Bim then interacts with Bak or Bax, inducing 

oligomerization leading to the release of cyto c and irreversible commitment to apoptosis. 

Bcl-2 primed with activator BH3-only proteins renders the tumour cells sensitive to BH3-

mimetics and possibly other chemotherapeutics (334). 

 

The ability of selective inhibitors of Bcl-2 and Bcl-XL, venetoclax and WEHI-539 to 

potentiate the activity of carboplatin in ovarian cancer cells has been compared in this study. 

Both ABT-737 and WEHI-539 inhibit Bcl-XL, resulted in potentiation of carboplatin activity 

in several ovarian cancer cell lines using different assays, including cell growth inhibition, 

cell death, activation of caspase 3/7 activity, PARP cleavage and Annexin V/propidium iodide 

staining. ABT-737 and WEHI-539 clearly increased the cell death induced by carboplatin and 
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conferred synergy in several cell lines, whereas when carboplatin was combined with 

venetoclax an additive or even antagonistic interaction was obtained. 

A plausible reason for the synergy may again involve priming of cells to death. Probably, the 

over-expressed Bcl-XL caused sequestration of the apoptosis activators, whose expression was 

induced by the carboplatin, until the apoptotic signal overwhelmed the apoptosis inhibitors. In 

this scenario, synergy is observed because the BH3 mimetic prevents the sequestration of the 

BH3 only protein that is induced by chemotherapy and which would otherwise be sequestered 

by the Bcl-2 family members present. ABT-737 and WEHI-539 are likely to have prevented 

Bcl-XL from sequestering the activators and as a result primed cancer cells closer to the 

threshold for cell death. An alternative possible cause for synergy between carboplatin and 

ABT-737 or WEHI-539, is because Bcl-XL inhibition with these agents was accompanied by 

inhibition of the pro-survival protein Mcl-1 by carboplatin inducing expression of pro-

apoptotic BH3 only proteins. In this scenario, BH3 mimetics which do not bind to Mcl-1, may 

synergize with carboplatin even in cells which express Mcl-1. However, this may not be 

possible in cells that express very high levels of Mcl-1. Previous studies have linked the 

resistance to ABT-737 in several cancer cell lines to high Mcl-1 level (335,336). In this study, 

Mcl-1 was expressed in almost all cell lines with the  lowest level in OVSAHO cells and 

higher levels in OVCAR-4 (the cell line that showed the least response to the combination of 

carboplatin with ABT-737 or WEHI-539). OVCAR-4 cells are consequently less likely to be 

dependent on Bcl-XL for survival and may depend on Mcl-1 instead.  

The pre-eminent exception to the synergy observed between carboplatin and BH3 mimetics in 

this study was OVCAR-4 cell line, where the combination of these agents was additive in all 

assays. This could be explained by the relatively low level of Bcl-XL in OVCAR-4 cells. 

These cells are likely to be less dependent on Bcl-XL, suggesting that synergy may not have 

been observed with carboplatin and drugs inhibiting BclXL because these cells are dependent 
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on other anti-apoptotic members of the Bcl-2 family. However, an alternative explanation is 

suggested by the observation that ABT-737 and WEHI-539, on their own, in OVCAR-4 cells 

induced apoptosis, although with modest potency. Thus, the lack of a synergistic effect 

between carboplatin and BH3 mimetic in OVCAR-4 cell line may reflect the low level of Bcl-

XL, which allowed these compounds to induce apoptosis when they were used as single 

agents, so synergy has not readily been observed. 

The lack of synergy between venetoclax and carboplatin, and the limited expression of Bcl-2 

in ovarian cancer cells, strongly supports the claim that inhibition of Bcl-XL is crucial if BH3 

mimetics are to be effectively used in the management of ovarian cancer. Such a notion has 

fortified by the more common deregulation of Bcl-XL than Bcl-2 in ovarian tumours reported 

in the cancer genome atlas (314). It has also been reported that Bcl-XL overexpression in 

ovarian cancer cells could be responsible for the development of chemoresistance in ovarian 

cancer cells rather than Bcl-2 (278). Also, when Bcl-XL level was evaluated in ovarian tumour 

tissue from a group of patients, tumours with high level of Bcl-XL were less sensitive to 

taxane treatment in comparison to patients with low Bcl-XL level (318).  

In this research, venetoclax failed to augment the cell death induced by carboplatin in some 

assays and was even slightly antagonistic in others. The cause of antagonism between 

venetoclax and carboplatin, which has been noted in this study using several ovarian cancer 

cell lines is uncertain. Venetoclax may inhibit a target other than a Bcl-2 family protein. 

Alternatively, Bcl-2 family proteins have been implicated in cell cycle regulation, and this 

may antagonise the cell cycle dependant effect of carboplatin (337). Whatever the cause of 

antagonism, any proposal for a clinical trial for the evaluation of carboplatin and venetoclax 

combination of ovarian cancer should be viewed with considerable caution. OVCAR-8, 

OVCAR-3 and Igrov-1 cell lines, which show relatively low amounts of Bcl-2, showed the 

most evident antagonism, whereas additivity between venetoclax and carboplatin was 
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observed in COV-362 and OVCAR-4 cells which expressed higher levels of Bcl-2 (figure 

4.7).  

Consequently, inhibition of Bcl-XL is more likely to be effective than inhibition of Bcl-2 for 

the chemosensitization of ovarian cancer cells.  Unfortunately navitoclax, has been closely 

linked to dose dependent thrombocytopenia, and this is also anticipated to occur with WEHI-

539 because both compounds inhibit Bcl-XL. It is possible that a small therapeutic window for 

these compounds may be identified by careful dose escalation studies. Alternatively, novel 

strategies may be developed to minimize thrombocytopenia, such as encapsulation of WEHI-

539 or other Bcl-XL inhibitors in nanoparticles, which has previously shown to be effective in 

enhancement of ABT-737 anti-tumour effects while minimizing thrombocytopenia and other 

systemic side effects (338). As an alternative, it is possible to exploit the “platelet sparing” 

properties of paclitaxel to use it in combination with Bcl-XL inhibitors in ovarian cancer 

especially after the supra-additive effect that has been observed in our lab when paclitaxel 

was combined with navitoclax and carboplatin (293). This may create an adequate medical 

window to make the use of navitoclax possible in patients with ovarian carcinoma. 

In summary, although Bcl-2 has shown to be a vital target in hematological malignancies, 

which depend on Bcl-2 for their survival, the lack of Bcl-2 expression in ovarian cancer and 

lack of synergy of carboplatin with venetoclax raise concerns over whether BH3 mimetics 

will be of use in the treatment of ovarian cancer unless suitable platelet-sparing strategies are 

developed. However, by using a personalized therapeutic approach, it is possible that a 

limited number of patients whose  tumour overexpress Bcl-2, may benefit from drugs such as 

venetoclax. This will require measurement of Bcl-2 level in the tumour and this is particularly 

desirable according to the findings of this research to avoid treatment failure. 
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Chapter 5 

Validating potential drug-resistance genes 
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5.1 Introduction 

One of the major causes of the ineffectiveness of chemotherapeutic agents in patients with 

ovarian cancer is the development of drug resistance that can be acquired during treatment 

course or be inherent (exist prior to treatment) (339). Both types can be caused by multiple 

different mechanisms including modifications to the drug targets, alterations in drug 

metabolism, cellular uptake or efflux, altered sensitivity to apoptosis and altered DNA repair 

(340–342). Resistance to chemotherapy in patients has the features of multidrug resistance, 

representing reduced sensitivity of tumour cells not only to previously utilized anti-cancer 

agents but also to various other agents that have different structure and/or mechanisms of 

action (343,344). Moreover, because cancer is a heterogeneous disease, more than one 

mechanism of chemoresistance may be present simultaneously in any particular case (345). 

Multidrug resistance could occur as a result of the involvement of multiple proteins or genes 

via multistep processes, or multifactorial cross-reactivity. Diverse regulatory factors are 

associated with the development of drug resistance, including both genetic and  epigenetic 

alteration (346).  

The effective treatment of chemoresistant disease is likely to benefit from consideration of the 

resistance mechanisms involved and this requires that the resistance mechanisms are 

identified (347,348). It has been reported that gene expression profiles can be identified and 

correlated with states of chemoresistance (349). A wide variety of genes and epigenetic 

modifications are linked to drug resistance in ovarian cancer, affecting tumour suppressor 

genes modifications and oncogenes. The resistance may be caused by activation of  

oncogenes or downregulation of tumour suppressor genes (350). Increasingly, it is being 

recognized that therapeutic targeting of only one gene or protein that the cells are dependent 

on can lead to ineffective treatment, because another parallel pathway may become active to 

support tumour growth and survival. In such case, simultaneous targeting of two pathways or 
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using drug combinations can result in synergistic lethal relationship (351). Accordingly, 

verifying the causative pathways of platinum and taxane resistance, especially the genes that 

could be responsible for it, may offer a novel strategy for the development of targeted 

therapies to re-sensitize cancer cells to chemotherapy. The combination of a drug which 

inhibits the mechanism of drug resistance with carboplatin or paclitaxel has great therapeutic 

potential to treat ovarian cancer patients (95,352).  

Alterations in the p53 pathway within cancer cells provide an example of genetic 

modifications that may lead to chemresistance (353). The primary role of p53 protein is to 

maintain genomic integrity by regulating cell cycle progression and mediating the responses 

of cells to DNA damage by initiating DNA repair, or  activating apoptosis. These functions 

make it an important tumour suppressor protein (354). It has been reported that genetic 

mutations in the p53 are the main causes for unresponsiveness to high-dose of cisplatin in 

patients with ovarian cancer (355). In contrast to multidrug resistance, it has been shown that 

some cancer cells that have acquired taxane or platinum resistance, can exhibit an inverse 

chemoresistance relationship, developing collateral chemosensitivity to other drugs. This has 

been confirmed by preclinical studies which have revealed marked response to taxane therapy 

in ovarian carcinoma cells that have p53 mutations and are resistant to cisplatin (356). 

Subsequent studies have shown the likely genetic roles BRCA1 in this relationship. Tumours 

with BRCA1 mutations exhibit reduced efficiency in repairing DNA adducts but increased 

sensitivity to platinum-based compounds. Conversely, the response to taxanes in these cells is 

reduced while the opposite is true for cancers with functional BRCA1 (357). 

The past decade has seen novel drug targets being identified by utilizing high-throughput 

screens, functional genomic studies and new sequencing technologies (358–360). 

Furthermore, several microarray studies have previously identified numerous genes with 

altered expression in chemoresistant cancer and which deserve investigation to determine 
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their contribution to drug resistance. Many groups have used RNA interference (RNAi) 

technology to identify genes affecting cell growth and survival, and similarly functional 

genomic screens to identify genes regulating drug resistance are also feasible. This has been 

facilitated by the availability of exogenous short interfering RNA (siRNA) to downregulate 

the expression of targeted gene temporarily to provide an effective technique for performing 

large-scale screens (361,362).  

Previous work in our laboratory has focused on identifying potential determinants of 

carboplatin or paclitaxel sensitivity in order to develop novel drug targets that could be used 

to potentiate the activity of carboplatin or paclitaxel in ovarian cancer cells. This was 

achieved by making use of a report which identified genes whose expression was increased in 

either primary chemoresistant or acquired chemoresistant tumours, compared to chemonaive 

tumours (363). In 2005, our group designed a screen using RNAi technology to knock down 

the expression of some genes and measure the impact on chemosensitivity. Several goals were 

taken in consideration: use a limited number of drug concentrations (two) to attain a 

reasonable throughput; obtain an estimate of the change in sensitivity to rank the hits from the 

screen; use several ovarian cancer cell lines because different cells may acquire resistance via 

different pathways; and detect modest (2-fold) changes in drug sensitivity.  Ninety genes were 

selected for knock down in a panel of 6 ovarian cancer cell lines and the change in sensitivity 

to carboplatin or paclitaxel was evaluated in cell growth assays. To validate the methods used 

in the screen, it was shown that inhibition of FLIP expression increased the sensitivity of 

ovarian cancer cells to paclitaxel and the inhibition of Bcl-XL expression increased the 

sensitivity of cells to carboplatin (364).  

One of the hits that was identified by the screen was ENPP2. ENPP2 encodes autotaxin, 

which is an enzyme that functions as a lysophospholipase D to catalyse the production of the 

survival factors, sphingosine 1- phosphate and lysophosphatidic acid. It has been reported that 
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ectopic expression of autotaxin is responsible for induction of mammary tumourigenesis, 

invasion, and metastases (365). Likewise, it has been shown that autotaxin overexpression can 

protect melanoma and breast cancer cells against paclitaxel-induced cell death (366). 

Additionally, a combination of autotaxin and lysophosphatidic acid-receptor antagonist was 

able to inhibit tumour growth and angiogenesis in non-small cell lung cancer xenografts. In 

our laboratory, we have observed that inhibition of autotaxin by means of siRNA or a drug 

inhibitor enhances cell death induced by carboplatin, whereas overexpression of autotaxin 

delays it (364). 

Another important hit that was identified by the screen was CYR61, This was significant 

because it was subsequently reported to be involved in chemoresistance. CYR61 is a secreted 

matricellular protein located on cell surface and in the extracellular matrix, it binds to 

integrins and regulates numerous cellular activities including cell differentiation, proliferation, 

migration and apoptosis (367). In ovarian cancer, CYR61mRNA is overexpressed in about 

60% of patients (from 2 to 10 fold more than normal ovarian tissues expression). Its 

upregulation is associated with advanced disease stages, where it found to be responsible for 

induction of cell growth and proliferation, as well as resistance to carboplatin (368). 

These results gave confidence that the screen had identified valid regulators of 

chemosensitivity. However, the screen only involved two technical replicates at each drug 

concentration and only one experimental replicate in each of the cell lines. Thus the hits 

required confirmation in additional experiments, and several hits appeared worthy of 

investigation. Thus, the screen contained a potential list of unexplored drug-resistance genes 

that required confirmation before further validation of their role in chemoresistance. 
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5.2 Aims 

The goal of study in this chapter was to confirm that a selection of the hits from the screen 

were valid and then identify which genes to pursue in greater detail. The hits from the screen 

selected for investigation were: CYR61, FABP4, FBLN5, FOXC1, TAGLN, MAPK, FBLN1, 

FOXO1A, LAMA2, EFEMP1, CFHL, PLA2R1 and ENTPD.  
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5.3 Validation of hits previously obtained from a screen to identify genes contributing to 

ovarian cancer drug resistance 

5.3.1. Candidate carboplatin-resistance genes 

5.3.1.1 Knock-downs of the candidate carboplatin-resistance genes 

 

The contribution of candidate genes to drug resistance was assessed in OVCAR-4 cells and in 

some experiments COV-362 cells. These cells have been shown to be a good models of 

ovarian cancer (321) and were derived from patients resistant to chemotherapy. OVCAR-4 

but not COV-362 cells were used in the original screen.  

Prior to evaluating the effect of knock-down, the expression of candidate drug resistance 

genes and the transfection conditions for each siRNA were optimized to ensure efficient 

transfection without notable toxicity. To ensure that knock-down of each of the genes was not 

cytotoxic, OVCAR-4 cells were transfected with  siRNA for each gene (mRNA) and after 72 

hours, the relative number of cells present estimated by staining with SRB and compared to 

cells transfected with non-targeting siRNA.  

The efficiency of gene knock-down was analyzed for 4 separate siRNAs for each of the 

candidate genes. The results revealed variable extent of knock-down of the different targeted 

genes, but at least 2 siRNAs were identified in almost all the genes which caused significant 

knock-down. Although more than 50% knock-down was achieved with most of the genes, 

only 40% knock-down was achieved with CFHL and ENTPD (figure 5.1). In the case of 

PLA2R1, no siRNAs were identified which caused knock-down for this gene.  
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Figure 5.1: Expression of each gene in OVCAR-4 cell line after knock down with 

different individual siRNAs  

OVCAR-4 cells were transfected with each of the indicated siRNA (100nM) and after 72 

hours mRNA isolated from the cells. Knock-down of gene expression was measured by Q-

PCR. The results (n=3, mean±S.D.) are expressed as a fraction of that measured in cells 

transfected with a non-targeting siRNA (NT-1) and normalized to actin. The results were 

significantly different from the expression measured in cells transfected with a NT-1 where 

indicated (paired t-test; *, P< 0.05; **, P< 0.01; *** P< 0.001). 
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5.3.1.2 Effect of genes knock-down on the sensitivity to carboplatin in cell growth assays 

 

To confirm that the hits from the screen, the hits  regulating sensitivity to carboplatin, the 

expression of the selected genes were knocked-down in OVCAR-4 cells using the siRNA 

identified in the previous experiment that caused more than 50% knock-down. The impact on 

sensitivity to carboplatin measured in cell growth assays. Complete concentration response 

curves were obtained and the potency of carboplatin (IC50) compared in cells transfected with 

siRNA targeting the hits or a non-targeting siRNA (figure 5.2 and table 5.1).  

In the case of CYR61 and TAGLN, all the siRNAs tested increased the sensitivity of the cells 

to carboplatin significantly, giving confidence that these were valid hits. For most of the 

remaining genes, a more mixed picture was obtained with some siRNA apparently increased 

sensitivity to carboplatin significantly and some failing to do so, despite all of these siRNA 

giving robust knock-down in the previous experiments. In the case of FOXC1, FOXO1A, 

FBLN5 and EFEMP1, at least two siRNA increased sensitivity to carboplatin, suggesting that 

these also might be valid hits. For MAPK and LAMA2, one siRNA augmented the potency of 

carboplatin. However, for these genes only two siRNAs were  used and further work with 

additional siRNA is desirable to make a final decision about the validity of these hits. In the 

case of FABP4 and FBLN1, none of the siRNA increased sensitivity to carboplatin, 

suggesting these are unlikely to be valid hits. In summary, of ten genes tested, two genes were 

identified where all the tested siRNA increased sensitivity to carboplatin and an additional 

three genes were identified where multiple siRNA increased sensitivity. 
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Figure 5.2: Effect of genes knock-down on the sensitivity of OVCAR-4 cell line to 

carboplatin in cell growth assays 

OVCAR-4 cells were transfected with 100 nM NT-1 or 100 nM of different individual 

siRNAs as indicated.  Cell sensitivity to carboplatin was then evaluated in cell growth assays 

by staining with SRB. The results (n=3, mean± S.D.) are expressed as a fraction of the 

relative number of cells measured in the absence of drug (labelled “C”).  
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Table 5.1: IC50 values of carboplatin following knockdown of selected candidate drug 

resistance genes 

siRNA Carboplatin IC50 (µM) 

NT#1 23.7±3.3 

CYR61#5 13.1±7.1*** 

CYR61#6 9.6±8.3*** 

FABP4#2 21.8±2.8 

FABP4#3 19.0±5.7 

FBLN5#1 20.8±6.9 

FBLN5#2 17.9±1.2* 

FBLN5#3 15.8±6.2** 

FBLN5#4 22.0±4.6 

FOXC1#2 22.1±2.7 

FOXC1#3 18.6±1.4* 

FOXC1#4 15.1±0.6*** 

TAGLN#2 16.8±5.4** 

TAGLN#4 17.4±3.9** 

TAGLN#5 16.3±5.1** 

MAPK#3 17.3±3.5** 

MAPK#9 20.3±6.3 

FBLN1#2 28.2±5.8 

FBLN1#3 26.5±4.5 

FOXO1A#5 21.6±4.3 

FOXO1A#6 6.9±1.8*** 

FOXO1A#7 18.2±4.3* 

FOXO1A#8 23.4±5.1 

LAMA2#1 20.7±6.2 

LAMA2#3 16.9±2.6** 

EFEMP#1 18.0±4.5* 

EFEMP#2 12.6±3.2*** 

EFEMP#3 19.0±5.6 

 

The activity of siRNAs in combination with carboplatin was determined in OVCAR-4 cells 

using the SRB cell growth assay and are significantly different from that measured in the 

same cell line treated with carboplatin after transfection with NT-1 where indicated by using 

paired t-test (*, P<0.05; **, P< 0.01; *** P< 0.001). Results are expressed as mean±S.D.; 

n=3.  
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5.3.1.3 Caspase 3/7 assay 

 

To confirm the results obtained using cell growth assays, the effect of knocking-down the 

expression of genes on the activation of caspase 3/7 by carboplatin was assessed. The siRNA 

on their own did not induce significant activation of caspase 3/7, whereas both carboplatin on 

its own and combinations of siRNA and carboplatin caused robust activation of caspase 3/7. 

To calculate the expected additive effect of the drug and the siRNA, the Bliss independence 

criterion was used. This requires calculation of the effect of each agent expressed as a fraction 

of the maximum caspase activity. Caspase activity is transient in nature and may vary 

according to the potency of the drug being used. This complicates analysis so the maximum 

effect was estimated to be the maximum caspase activity measured in each experiment and 

the fractional effect of each agent calculated from this. In general the caspase 3/7 activity 

observed in  cells transfected with siRNA that increased carboplatin potency in the cell 

growth assays significantly exceeded that observed in cells transfected with NT-1 and treated 

with carboplatin. (figure 5.3).  Exceptions to this included experiments with siRNAs 

EFEMP#1, LAMA2#3, CYR61#5 and MAPK1#3 where the siRNA previously were found to 

increase sensitivity to carboplatin but did not significantly augment caspase 3/7 activity. In 

the case of FABP4#3, the siRNA augmented the caspase activity although it has previously 

failed to increase sensitivity to carboplatin in cell growth assays, Importantly, however, all 

three TAGLN siRNA augmented activation of caspase 3/7 and all three siRNA augmented 

caspase 3/7 activity. 
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Figure 5.3: Relative caspase 3/7 assay in OVCAR-4 cell line following transfection with 

different siRNAs and treatment with carboplatin 

OVCAR-4 cells were transfected with indicated individual siRNAs (100 nM) and after 24 

hours treated with 50 μM carboplatin (denoted “C” in the axis labels). Caspase 3/7 activity 

was evaluated after a further 48 hours. The siRNA or carboplatin could significantly inhibit 

cell proliferation resulting in potential variation in cell number between each condition after 

treatment, therefore parallel samples were also subjected to the same treatment and relative 

cell number estimated by staining with SRB. The activity of caspase 3/7 was then normalized 

to the relative cell number measured in the SRB assay. Results (mean ± SD, n=3) are shown 

after subtraction of activity measured in cells transfected with NT-1 alone value and 

expressed as a fraction of the maximum caspase 3/7 activity obtained in each experiment and 

are significantly different from Bliss expected effect (shown as a horizontal bar) where 

indicated (*, P< 0.05 and **P ≤ 0.01, ***P ≤ 0.001; paired t-test). 
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5.3.2. Candidate palitaxel-resistance gene 

5.3.2.1 Knock-downs of the candidate palitaxel-resistance gene 

 

Only one hit from the siRNA screen to identify genes that regulate sensitivity to paclitaxel 

met the criteria for confirmation experiments. This was BCKDK, the gene encoding branched-

chain amino-acid dehydrogenase kinase (364).  

Four different siRNAs were used to repress the expression of BCKDK in OVCAR-4 and 

COV362 and knock-down was analyzed by qPCR and western blotting. Immunoblotting 

studies demonstrated that although siRNA#3 failed to reduce BCKDK protein, BCKDK was 

reduced in both cell lines after transfection with siRNAs #2 and #4. Intriguingly, siRNA#1 

reduced BCKDK in OVCAR-4 but not COV362 cells (figure 5.4 A and B).  

In support of these observations, qPCR studies showed that BCKDK mRNA was reduced 

following transfection with siRNA#2 and #4 and also in OVCAR-4 cells following 

transfection with BCKDK#1. 
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Figure 5.4: BCKDK expression in OVCAR-4 and COV362 cells following knock down 

with different individual BCKDK siRNAs. 

A. The expression of BCKDK protein was determined by western blotting of protein lysates 

obtained from OVCAR-4 and COV362 cell lines 48 hours after transfection with the 

indicated BCKDK siRNA. B. Knock-down of BCKDK mRNA was also measured by Q-PCR. 

The results are expressed as a fraction of that measured in cells transfected with a non-

targeting siRNA NT-1 and normalized to actin (n=3, mean± S.D.), and are significantly 

different from the expression measured in cells transfected with a non-targeting siRNA NT-1 

where indicated (**, P< 0.01; *** P< 0.001; paired t-test). 

 

5.3.2.2 Effect of BCKDK knock-down on the sensitivity to paclitaxel in cell growth assays 

 

The impact on the sensitivity to paclitaxel after knocking-down the expression of BCKDK 

was explored in OVCAR-4 and COV362 cell lines by using cell growth assays. When 

compared to cells transfected with NT-1, knock-down of BCKDK with siRNA #1, #2 and #4 

in OVCAR-4 increased sensitivity to paclitaxel (figures 5.5 and table 5.2). Similarly, in COV-

362, siRNA #2 and #4 increased sensitivity to paclitaxel (figure 5.6, table 5.2). Reassuringly, 

siRNA#3, which failed to knock-down BCKDK expression, also failed to alter the sensitivity 

to paclitaxel. 
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Figure 5.5: Effect of BCKDK knock-down on sensitivity to paclitaxel in OVCAR-4 cell 

growth assays. 

OVCAR-4 cells were transfected with different individual BCKDK siRNA (100 nM, except 

50 nM for BCKDK #2, as cell growth inhibition has been noticed by using more than this 

concentration) or NT-1 as indicated. The sensitivity of the cells to paclitaxel was subsequently 

measured in cell growth assays. The results (mean± S.D.; n=3) are expressed as a fraction of 

the relative cell number in the absence of paclitaxel (labelled “C”).  
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Figure 5.6: Effect of BCKDK knock-down on sensitivity to paclitaxel in COV362 cell 

growth assays. 

COV362 cells were transfected with different individual BCKDK siRNA (100 nM) and NT-1 

as indicated. The sensitivity of the cells to paclitaxel was subsequently measured in cell 

growth assays. The results (mean± S.D.; n=3) are expressed as a fraction of the relative cell 

number in the absence of paclitaxel (labelled “C”).  
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Table 5.2: Potency of paclitaxel in cells in which BCKDK expression was repressed. 

 

OVCAR-4 COV362 

siRNA Paclitaxel IC50 (nM) siRNA Paclitaxel IC50 (nM) 

NT#1 4.8±0.3 NT#1 3.2±0.2 

BCKDK#1 1.9±0.3*** BCKDK#2 1.9±0.5* 

BCKDK#2 0.96±0.2*** BCKDK#3 3.2±0.2 

BCKDK#4 2.5±0.8** BCKDK#4 2.2±0.2** 

 

The change in potencies of paclitaxel following knock-down of BCKDK by different siRNA 

is reported as the IC50 in these experiments (mean± S.D.; n=3) and are significantly different 

from the potency measured in cells transfected with NT-1 where indicated (*, P< 0.05; **, P< 

0.01; *** P< 0.001; paired t-test). 

 

 

5.3.3.3 Caspase 3/7 assay 

 

To confirm the results obtained in cell growth assays, caspase 3/7 activity was assessed 

following knock-down of BCKDK expression and exposure to paclitaxel. OVCAR-4 cells 

transfected with BCKDK siRNA did not show a significant increase in caspase 3/7 activity. 

Although paclitaxel increased caspase-3/7, this was augmented in cells transfected with 

BCKDK siRNA#1, #2 and #4 and was significantly higher than the effect estimated from the 

Bliss independence criterion if the siRNA and paclitaxel had an additive effect (figure 5.7). 
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Figure 5.7: Relative caspase 3/7 assay in OVCAR-4 cell line after transfection with 

different individual BCKDK siRNAs and treatment with paclitaxel. 

 

OVCAR-4 cells were transfected with indicated individual siRNAs (100 nM; except 

BCKDK#2 which was transfected with 50 nM and after 24 hours treated with 12 nM 

paclitaxel. Caspase 3/7 activity was evaluated after a further 48 hours. The siRNA or 

paclitaxel could potentially significantly inhibit cell proliferation resulting in potential 

variation in cell number between each condition after treatment, therefore, parallel samples 

were also subjected to the same treatment and relative cell number estimated by staining with 

SRB. The activity of caspase 3/7 was then normalized to the relative cell number measured in 

the SRB assay. Results (mean ± SD, n=3) are shown after subtraction of activity measured in 

cells transfected with NT-1 alone value and expressed as a fraction of the maximum caspase 

3/7 activity obtained in each experiment and are significantly different from Bliss expected 

effect (shown as a horizontal bar) where indicated (*, P< 0.05 and **P ≤ 0.01, ***P ≤ 0.001; 

paired t-test). 
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5.4 Discussion 

RNA interference is increasingly being used to conduct high-throughput screens to unveiling 

potential molecular mechanisms for numerous diseases, and to identify novel targets for 

developing effective and safe treatments (369). The work presented in this chapter explored 

the hypothesis that silencing of specific genes, previously shown to be over-expressed in 

recurrent ovarian cancer, may increase the sensitivity of ovarian cancer cells to chemotherapy. 

The genes evaluated were hits from a high-throughput functional screen previously conducted 

in our lab for identification of genes that confer resistance to chemotherapy. Although several 

factors had been taken into account to establish a reliable screen, including specific 

consideration about timing of the addition of chemotherapeutic agents, the concentrations of 

these agents and the choice of cell lines the hits required confirmation before further work 

was warranted. 

Fourteen potential candidate resistance genes (“hits”) from the screen implicated in resistance 

to both carboplatin or paclitaxel were evaluated. The variable extent of knock-down shown 

with CFHL and ENTPD (figure 5.1 A and C) necessitate further experiments to identify 

suitable siRNA, and so they are excluded from the experiments that have investigated the 

impact of knock-down on the sensitivity to carboplatin measured in cell growth assays. In the 

case of PLA2R1, an siRNA which caused knock-down were not identified, instead an 

apparent modest increase in the expression of gene, (which was statistically not significant) 

was noticed and this led to exclusion of this gene from further investigations too.  

The remaining 11 candidate genes were chosen for further investigations to validate them. 

These genes include: BCKDK, CYR61, FABP4, FBLN5, FOXC1, TAGLN, MAPK, FBLN1, 

FOXO1A, LAMA2 and EFEMP1. The hits that have been confirmed in this research include 

CYR61 and TAGLN, which were shown to be a potential candidate gene for carboplatin 

resistance, in addition to BCKDK, that has been shown to be implicated in paclitaxel 
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resistance. The confidence in the  data obtained with these genes is reinforced because all of 

the different siRNA that repressed gene expression also changed drug sensitivity. 

Additionally, potentiation of the activity of chemotherapy by the siRNA targeted against these 

genes was confirmed in a separate assay (caspase 3/7). For FOXC1, FOXO1A, FBLN5 and 

EFEMP1, some siRNA significantly increased sensitivity to carboplatin and some failed to do 

so, therefore this needs to be confirmed by further work. For MAPK and LAMA2, only one 

siRNA increased the potency of carboplatin. However, only two siRNAs were  used for these 

genes and exploring additional siRNA is essential to draw a final decision about the validity 

of these hits.  

One of the gene products identified in the screen was CYR61, Cysteine-rich angiogenic 

inducer 61 also known as CCN family member 1 (CCN1). The encoded protein is part of the 

extracellular matrix, and produced by different cells including endothelial cells, smooth 

muscle cells and fibroblasts. The CCN family (1,2), includes CCN1/Cyr61; connective tissue 

growth factor (CCN2/CTGF); nephroblastoma (CCN3/NOV); and Wnt inducible secreted 

proteins (CCN4-6/WISP1-3) (368). CYR61 binds to multiple integrins in different types of 

cells and has shown to be implicated in regulation of cell survival, proliferation, 

differentiation and apoptosis in addition to their role in inflammatory process, cardiovascular 

development, leukocyte migration, angiogenesis and carcinogenesis (370). The expression of 

CYR61 is regulated by growth factors and cytokines. However, CYR61 can directly control 

migratory processes and cell adhesion and modulate the formation of other chemokines and 

cytokines through autocrine and paracrine feedback loops (371). It has been reported that 

CYR61 is involved during the course of the breast cancer progression to an invasive 

phenotype, where high level of CYR61 promotes breast cancer cell growth and invasion and 

therefore, it could be a potential target for therapeutic treatment of this disease and may 

suggest an approach to inhibit IGF-1 mediated CYR61 induced breast cancer (372,373). It has 
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also been shown that CYR61 works as a key regulator in cancer progression and considered 

as a prostate tumour-promoting factor. Over-expression of CYR61 is a clinically beneficial 

biomarker in prostate cancer patients (374). Furthermore, overproduction of CYR61 in 

ovarian carcinomas has been proposed as an independent and prognositc marker (375).  

Work in this chapter has shown that knock-down of CYR61 increased the sensitivity of cells 

to carboplatin. This finding is in agreement with Lee and his colleagues who found that over-

expression of CYR61 contributes to drug resistance, inhibiting apoptosis induced by 

carboplatin by increasing the levels of NF-B, Bcl-2, Bcl-xL and Mcl-1 in addition to 

decreasing Bax and p53 expression. (376). This is particularly important because it gives 

confidence that the original screen conducted by our group identified bona fide drug 

resistance genes. Additional work is needed with CYR61 to explore if levels of CYR 61 are 

elevated in any of the cell lines used in this study. 

TAGLN, which encodes transgelin was identified as hit in the screen and the validation 

evidence presented here strongly supports this as being an authentic hit. Inhibition of the 

expression of TAGLN in OVCAR-4 cell line using three individual siRNAs, and in each case 

this augmented the activity of carboplatin in both cell growth and caspase-3/7 assays.  

TAGLN, also known as SM22α, is an actin-linking protein that promotes normal cell motility 

and has shown to play a role in differentiation, migration, invasion and tumourigenesis (377). 

Increases or decreases in transgelin expression has reciprocal consequences on cancer 

behaviour, where higher expression might promote metastasis (378). Although the exact role 

of TAGLN in cancer is controversial, some studies have shown that high levels correlate with 

poor prognosis, aggressive tumour behaviour and advanced stage (42,43). It has also been 

found to be upregulated in gastric and colon cancers (381,382). Transgelin expression has an 

impact on metastatic potential in colorectal cancer cell lines, and this may happen in part 
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because of the altered level of downstream target genes that influence cell motility. Some 

studies propose that TAGLN is a potential biomarker for predicting the prognosis of lung 

adenocarcinoma patients and therefore, can be an attractive therapeutic target (383). A recent 

report has suggested that the overexpression of transgelin in tumour cells might predispose to 

chemoresistance, because TAGLN was found to be overexpressed in chemotherapy resistant 

human breast cancer and that suppression of it restored the sensitivity of cells to 

chemotherapy and significantly inhibited cancer cells proliferation, differentiation, metastasis, 

and invasion (384). Controversially, the function of TAGLN is usually linked with increased 

apoptosis in prostate cancer cells and glomerular epithelial cells and also with increased 

senescence in fibroblasts (385,386). TAGLN may suppresses MMP9, a known element of 

invasion, and therefore prevents the migration of colon and prostate cancer cells (387,388). 

The research presented here represents the first study to show an increased sensitivity of 

ovarian cancer cells to carboplatin when TAGLN function is impaired. 

Several studies have suggested the significant contribution of actin binding proteins to 

apoptosis pathway and that actin dynamics play essential role in regulation of apoptosis. 

Malignant transformation cause changes in the organization of the actin cytoskeleton and it is 

postulated that remodeling of actin cytoskeleton by upregulation of actin-linking proteins is 

likely to enable cancer cells to evade apoptosis and develop resistance to chemotherapy. 

Inhibition of actin cytoskeletal remodeling by targeting the proteins that regulate actin 

polymerization is a potential strategy to suppress resistance to chemotherapy (389–391). 

These findings make TAGLN as an important potential target for sensitizing cancer cells to 

the chemotherapy. 

The FOXC1 gene that encodes FOXC1 protein belongs to the forkhead box (FOX) family 

proteins. These are a group of transcription factors that have important role in cell 

proliferation, differentiation, survival and death, in addition to the development and 
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progression of tumours (392–394). FOXC1 has been reported to play essential role in 

embryogenesis, ocular development, in addition to its participation in the development and 

maintenance of the mesenchymal niches for progenitor and haematopoietic stem cells (395). 

FOXC1 has been proposed as a diagnostic marker and therapeutic targets for different types 

of cancer (392–394). Recently, it has been demonstrated that FOXC1 plays a crucial role in 

cancer development and metastasis, where elevated levels of FOXC1 are potentially 

associated with poor prognosis in basal-like breast cancer (396). A novel signalling axis 

including EGFR - NF-κB - FOXC1 has been demonstrated to be critical for basal-like breast 

cancer cell function, endorsing the idea that targeting the FOXC1 pathway could provide 

potential modalities for the treatment of basal-like breast cancer (397). 

The critical role of FOXC1 in tumour development and progression is not only limited to 

breast cancer, as it has also been reported to be involved in many other tumours. For example, 

over-expression of FOXC1 is linked with poor prognosis in pancreatic ductal adenocarcinoma 

(398), hepatocellular carcinoma (399), cervical carcinoma (400), and gastric cancer (401). 

However, the exact role of this gene in ovarian cancer has not yet been determined. In one 

recent study, a significant correlation has been observed between FOXC1 protein level and 

the pathological subtype of ovarian cancer as well as FIGO staging, and this suggests that 

high FOXC1 protein expression may provide a biological marker for benign serous ovarian 

carcinomas and imply a trend towards good prognosis (402). The research in this chapter 

provides the first evidence that downregulation of FOXC1 may increase the sensitivity of 

ovarian cancer cells to carboplatin.  

Similarly, the mammalian forkhead box, O subclass (FOXO) family includes FOXO1A, 

FOXO3A, FOXO4, and FOXO6, serve as transcription factors and are involved in the control 

of several cellular processes such as differentiation, proliferation, metabolism, apoptosis, as 

well as responses to DNA damage (403). FOXO1A and other FOXO family proteins integrate 
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together to support signals from multiple pathways to regulate gene expression (404). 

Therefore, as a well-established negative regulator of the PI3K/Akt signalling pathway, 

FOXO1A downregulation in cancer might impair the therapeutic potential of PI3K/AKT 

inhibitors in the treatment of cancer (405). Increased FOXO1A phosphorylation has been 

implicated in different cancers including gastric carcinoma and therefore, it could serve as an 

important prognostic variable in gastric cancer and may predispose to the development of 

targeted therapy (406). On the other hand it has been shown trastuzumab has the ability to 

inhibit the HER2 overexpressing breast cancer cells proliferation by re-activating FOXO1A 

via blocking of the PI3K/Akt pathway (407). However, its potential role in ovarian cancer has 

not been studied to date. The research presented here suggests that inhibiting FOXO1A may 

increase the sensitivity of ovarian cancer cells to carboplatin. Considering FOXO1A, like 

FOXC1,  is a transcription factor, it is not immediately clear how best to develop drugs to 

inhibit its function. It may be possible to inhibit the pathways that regulate these transcription 

factors and further work is desirable to explore this possibility.  

Transcription factors have the potential to regulate multiple genes and so may contribute to 

drug resistance through several different pathways (408,409). Interestingly, the work here has 

revealed two hits from the forkhead family that serve as transcription factors, and this may 

offer a mechanism for inhibiting multiple drug-resistance pathways simultaneously and 

reduce chemoresistance in ovarian cancer.  

Another hit from the screen that has been performed in this research was EFEMP1 (also 

called fibulin-3), a gene that encodes epidermal growth factor-containing fibulin-like 

extracellular matrix protein 1 (410). Fibulins have been demonstrated to modulate cell 

morphology, adhesion, growth and motility, some of the key hallmarks of cancer (411). 

EFEMP1 is a pivotal extracellular matrix protein and it has been noted that de-regulated 

EFEMP1 gene expression in some forms of solid tumours has a wide range of conflicting 
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roles (412). It is interesting that several hits are extracellular matrix proteins, and this 

confirms the work that the screen was based on, which showed over-expressed proteins were 

enriched in ECM proteins (363). 

EFEMP1 plays an important role in cancer initiation and progression, via both oncogenic and 

tumour-suppressive effects in different tumours. This paradoxical role of EFEMP1 is closely 

linked to tissue-specific expression (413,414). A potential tumour-suppressing role of 

EFEMP1 was demonstrated in a study of sporadic breast cancer, lung cancer and glioblastoma 

multiform, where EFEMP1 was associated with reduced cell migration and invasion (415–

417). In contrast, cervical cancer and pancreatic cancer demonstrate high expression of 

EFEMP1, which plays an important role in development and metastasis and this may link it to 

poor prognosis (418,419). Likewise, FBLN5 is an extracellular matrix protein that belongs to 

fibulin family. It is a multifunctional signalling protein that regulates cell proliferation, 

migration and invasion of normal and cancerous cells (420). In this research, using different 

individual EFEMP1 and FBLN5 siRNAs has resulted in potentiation of carboplatin activity, 

which was significant using two separate siRNA for each gene. Accordingly, EFEMP1 and 

FBLN5 may be valid hits, however, further investigations are desireable 

Arguably, one of the most promising hits validating by the work presented here was BCKDK, 

which encodes the branched chain alpha-ketoacid dehydrogenase kinase. Several different 

siRNAs were used and each shown to increase sensitivity to paclitaxel in both cell growth 

assays and in experiments measuring caspase 3/7 activity. These results were initially 

observed in OVCAR-4 cells and subsequently extended to COV-362 cells. Although this gene 

was identified as hit in the screen conducted by our group for genes conferring resistance to 

paclitaxel, it  did not have any impact in the screen on the activity of carboplatin. 
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The promising results obtained from BCKDK knock-down urged us to further pursue this in 

greater details. The choice of BCKDK for further investigations was strengthened because 

BCKDK is an enzyme, so it is easier to develop drugs to inhibit its activity. TAGLN is, in 

contrast, an ECM protein therefore, it is not clear how it can best be inhibited and a protein-

protein interaction blocker may be required. Likewise, CYR61 is an ECM protein and has 

been identified by others as a resistance gene. On the other hand, FOXO1A and FOXC1 are 

transcription factors, making it challenging to design drugs to inhibit their function. 

In conclusion, there are several hits from the screen that appear to be valid hits, including 

TAGLN, CYR61, BCKDK, FOXC1, FOXO1A, EFEMP1 and FBLN5, where more than one 

siRNA worked in knock-down, cell growth and caspase 3/7 assays however, additional work 

is required to sort out the inconsistencies of some hits. Accordingly, this finding suggests 

around half of the evaluated genes were valid hits. TAGLN and CYR61 clearly showed 

reproducible effects and almost all the siRNA targeting these genes worked in all assays that 

were performed. The same is true for BCKDK but the easy of “drugging” this target lead us to 

prioritize it for further investigations. 
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Inhibition of the branched chain α-keto acid 

dehydrogenase kinase increases the 
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6.1 Introduction   

Following the successful validation of several hits identified by the siRNA screen to discover 

novel regulators of paclitaxel sensitivity, branched-chain α-ketoacid dehydrogenase kinase 

(BCKDK) was selected for further investigation to understand its role as a determinant of the 

sensitivity of ovarian cancer cells to paclitaxel.  

6.2 Overview of branched-chain amino acids metabolism 

The branched chain amino acids (BCAA) leucine, isoleucine, and valine (figure 6.1) are 

essential amino acids that have key role in several physiological and biochemical processes. 

They are considered essential because they must be supplied from exogenous sources as the 

body cannot synthesize them. This makes them an important component of diet (421,422). 

The homeostasis of these compounds is largely regulated by catabolic pathways (423). The 

branched-chain amino acids share a common structural features of a branched-side chain and 

common initial steps of metabolism (424). Branched chain amino acids have a crucial role not 

only as essential amino acid ingredients for protein synthesis (accounting for 35% of the 

essential amino acids in muscle), but also as vital signals to activate mammalian target of 

rapamycin (mTOR) signalling pathway (discussed below) for inhibition of autophagy, cell 

growth, proliferation, migration in cancer cells as well as to stimulate angiogenesis, glucose 

consumption and neurotransmitter synthesis which are collectively provide the perfect 

environment for cancer (425,426). 

 Branched-chain amino acids catabolism is regulated by a network of enzymes, and a key step 

involves the branched-chain α-keto acid dehydrogenase complex (BCKDH) (427). BCKDH 

belongs to a family of the highly conserved mitochondrial α-keto acid dehydrogenases 

complex, which share a similar structure and function and in addition to it include α-

ketoglutarate dehydrogenase, pyruvate dehydrogenase (428,429). BCKDH is found in all 

mammalian cells and its activity varies with the type of tissue and the presence of regulatory 
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enzymes within that tissue (430). Changes in the activity of BCKDH occur in response to the 

type of diet, exercise, some hormones and the BCAAs concentration (431). Low level of 

BCKDH activity leads to maple syrup urine disease, which is a rare inborn error of BCAAs 

metabolism that is characterized by accumulation of branched-chain α-keto acids and can 

cause brain oedema, neurological derangement, mental retardation, seizures, coma, and if not 

treated with lifelong restriction of BCAAs intake it may end with death (432).  

 

 

 

 

Figure 6.1: The chemical structure of BCAAs (leucine, valine and isoleucine)  

The difference in the structure of the three BCAAs (shown as square outlines) gives rise for 

their different molecular weights (117.15 for valine and 131.17 for leucine and isoleucine) 

(433). 
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6.3 Composition of the branched-chain α-keto acid dehydrogenase complex 

The branched-chain α-keto acid dehydrogenase complex consists of three catalytic 

components. A heterotetrameric α2β2 branched chain α-keto acid decarboxylase (E1), forms a 

set of 12 tetramers per complex decorated around a central core. The core comprises a homo-

24 meric complex of dihydrolipoyl-transacylase (E2). Lastly there are six homodimers of the 

dihydrolipoamide dehydrogenase (E3) (434,435). Branched-chain α-keto acid dehydrogenase 

complex is similar to the pyruvate dehydrogenase complex (PDC) in many ways, both are 

located in the mitochondrial matrix space and made-up of a large multi-enzyme complexes 

(436). The E1 and E2 subunits of BCKDH and PDC catalyse similar reactions and need similar 

co-enzymes. The same E3 catalytic component is present in both complexes, and is regulated 

by the same mechanisms, which include covalent modification (437).  

6.4 Branched-chain amino acids catabolism 

The catabolic pathway of BCAAs plays an important role in regulating physiological levels of 

these essential amino acids, which are required for cell metabolism, growth and survival 

(438). The first two steps of BCAAs catabolism starts by using the same enzymes.  The first 

step is a transamination step and uses one of two phosphate-dependent, cytosolic or 

mitocondrial branched-chain amino acid transaminases (BCATc or BCATm) and ends with 

transfer of amino group to α-ketoglutarate to form a set of corresponding branched chain α-

keto acids (BCKAs) and glutamate (439). The reaction is reversible, and can be used to 

generate BCAA from the BCKAs (440). The second step of catabolism is catalyzed by 

BCKDH which causes oxidative decarboxylation of the BCKAs resulting in the formation of 

the corresponding branched chain acyl-CoA esters. This reaction is irreversible, so it results in 

degradation of the BCAAs. Therefore, BCKDH is regarded as a crucial step in BCAA 

catabolism and regulation of its activity is crucial for conserving controlled systemic level of 

both BCAAs and BCKAs (441). Branched chain amino acid catabolism generates NADH, 
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CoA esters and FADH2 which are used for ATP production (442). These products of 

metabolism control the activity of BCKDH by directly inhibiting the enzyme (figure 6.2)  

(443). In addition, two regulatory enzymes are associated with BCKDH through ionic 

interactions and control its activity via reversible phosphorylation/dephosphorylation 

(444,445). Phosphorylation of BCKDH inhibits its catalytic activity and this is catalyzed by 

branched-chain α-keto acid dehydrogenase kinase (BCKDK). Dephophorylation is catalyzed 

by branched-chain α-keto acid dehydrogenase phosphatase (BCKDP) (446). Branched-chain 

α-keto acid dehydrogenase kinase is one of the mitochondrial protein kinases family that is 

expressed widely, although in variable amounts in human tissues. This enzyme is encoded by 

the BCKDK gene on chromosome 16 (447–449). BCKDK is active when bound to BCKDH 

and catalyses the phosphorylation of two serine residues (Ser293 and Ser303) of the BCKDH 

E1α subunit, and completely inactivates the E1 component, thereby restricting BCAAs 

breakdown. The extent of kinase binding to the complex increases the degree to which the 

complex is inactivated (450,451). Inhibition of BCKDH results in increased plasma BCAAs 

and BCKAs levels, a case that happens when the BCAAs becoming limited for protein 

synthesis, for example during starvation (432,452–454). In contrast, if Ser293 is not 

phosphorylated, the activity of BCKDH is unchecked and the BCAAs levels decrease 

dramatically (455). 

Although inhibition of BCKDK prevents BCKDH phosphorylation, dephosphorylation is 

dependent on BCKDP and consequently the activity of BCKDH depends on the relative 

activities of BCKDP and BCKDK (456,457). BCKDP is still not well characterized in terms 

of regulation and its relationship to other phosphatases. Its regulation is an enigma and 

appropriate tools are needed for its study (458–461).   
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Figure 6.2: Schematic overview of BCAA metabolism  

Reversible transamination of amino acids, resulting in the formation of correspoinding 

ketoacids, is catalysed by the cytosolic or mitochondrial branched chain amino acid 

transaminase (BCAT). The activity of the branched chain keto acid dehydrogenase complex 

(BCKDH) in the mitochondria results in generation of CO2 from the 1-carbon of the keto-

acids including α-ketoisocaproate (KIC). Subsequently, further intra-mitochondrial 

metabolism produces different acyl-coenzyme A (R-CoA) esters that leads to the formation of 

acylcarnitines (not displayed) (462). 
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Conversely, when BCAAs are abundant, one of BCAA metabolites, α-ketoisocaproate (KIC, 

generated by transamination of leucine) inhibits BCKDK, reducing its availability for binding 

with BCKDH, promoting activation of BCKDH and BCKA metabolism (463,464).  

The regulation of BCKDH by BCKDK comprises both long and short term mechanisms. 

Short-term regulation is provided by phosphorylation as previously described. Long term 

regulation involves control of BCKDK expression by hormonal signalling and nutritional 

status. Hormonal signalling from insulin, thyroid hormones, sex hormones and glucocorticoid 

regulate BCKDK expression and activity in variable extent (465,466). Additionally, thiamine 

diphosphate, BCKAs, and other factors cause allosteric regulation of the activity of BCKDK 

(438). It is apparent that such regulation provide a key role in maintaining BCAA homeostasis 

under different growth, physiological and disease conditions (467). Additionally, the level of 

protein in diet can increase expression of BCKDK in the liver of rats fed with low protein diet 

(468). 

After  the oxidative decarboxylation of the three BCAAs (figure 6.3), the catabolic pathway 

diverges into different pathways depending on the individual BCAA and the products may 

feed into the citric acid cycle  or mevalonate pathway (469).  
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Figure 6.3: Effect of BCKDK and BCKDP on BCKDH  

BCATm: mitochondrial branched-chain aminotransferase. BCAA: branched-chain amino 

acid. BCKD: branched-chain α-ketoacid dehydrogenase. BCKD kinase, branched-chain α-

ketoacid dehydrogenase kinase. Ile: isoleucine. Leu: leucine. Val: valine. Glu:glutamate. α-

KG:  α-ketoglutarate. OAA: oxaloacetate. TCA cycle, tricarboxylic acid cycle. PP2Cm: 

BCKD phosphatase. (470). BCAT also donates an amino group to an acceptor molecule, 

typically α-KG, to form the amino acid glutamate. 

 

 

6.5 Branched chain amino acids and energy metabolism  

The main by-product from valine catabolism is propionyl-CoA, which is a glucogenic 

precursor of succinyl-CoA, whereas isoleucine catabolism ends with generation of propionyl-

CoA and acetyl-CoA; therefore, isoleucine is considered as both ketogenic and glucogenic. 

Leucine catabolism produces acetyl-CoA and acetoacetyl-CoA which is then completely 



 

150 
 

disposed as CO2, and thus it is strictly regarded as ketogenic (471). Anaplerotic reactions of 

BCAA result in production acetyl-CoA in addition to several carbon products that are then 

entered into the TCA cycle (472). The TCA cycle itself is not able to oxidase all these carbon 

intermediates completely; therefore, it is essential to eliminate such products by cataplerosis. 

Therefore it is evident that both anaplerotic and cataplerotic reactions are coordinated and 

work in equilibrium (473).  

Remarkably, during exercise, branched chain amino acids are oxidized to be used for energy 

production. The rate of the TCA cycle becomes more intense; and the level of the other TCA 

products (particularly malate) are increased. The concentration of intramuscular α-

ketoglutarate reduces, so it is assumed that exercise provokes efficient disposal of α-

ketoglutarate from the TCA cycle (474). It has been shown that prevention of BCAA 

metabolism by deletion of the gene encoding BCATm makes mice intolerant to exercise, 

confirming that catabolism of BCAA is required for exercise performance (475). Acute 

exercise causes activation of the BCKDH by decreasing the activity of BCKDK. 

Consequently, in the course of exercise, BCAA are  metabolized thus replenishing the cycle 

for energy production (476–478). 

6.6 Roles of branched chain amino acids 

Recently, it has been reported that BCAA participate in lipogenesis, lipolysis, glucose 

transport and metabolism. They also work as evolutionary preserved modulators of lifespan, 

in addition to enhancing functional capacities and prolongation of health in different 

organisms (462,479,480). Furthermore, high serum levels of the BCAAs can be considered as 

a biomarker or predictor for the early diagnosis of some chronic diseases in humans (figure 

6.4) (481–483). Branched-chain amino acids were reported to increase insulin secretion (484). 

However, high level of BCAAs results in insulin resistance and type 2 diabetes mellitus 
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possibly due to continued activation of mTOR which causes uncoupling of the insulin 

receptor substrate for insulin receptor. Another probable mechanism is the abnormal 

metabolism of BCAAs may accumulate toxic BCAA metabolites and this might result in 

mitochondrial dysfunction associated with insulin resistance (482,485). Genetic defects in 

BCAAs catabolism (e.g. genetic ablation of the PP2Cm gene) cause several metabolic 

syndromes, including maple syrup urine disease which is characterized by excess of plasma 

BCAA and can be deleterious if untreated (458,486).  

 

 

Figure 6.4: Metabolic effects of BCAA in multiple organ systems  

Leucine, in particular, displays multiple effects in different organs: it stimulates the secretion 

of insulin and plays an important role in CNS food intake regulation in addition to feeding 

behaviour, BCAA in general enhances protein synthesis and inhibits protein breakdown 

especially in muscles. Leucine is transported through the blood–brain barrier via neutral 

amino acid transporter LAT1, affecting neurotransmitter biosynthesis. Furthermore, α-

ketoisocaproate (which is derived from leucine)  is a potent inhibitor of the BCKDK leading 

to activation of BCKDH and increase the oxidation of BCAA (valine and isoleucine) (487) 
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In contrast, low plasma BCAA concentration is also unhealthy, and can happen as a result of 

unrestrained catabolism or malnutrition. BCAA supplementation is essential in many disease 

conditions (488–490). Recently, a number of studies have linked some common metabolic, 

neurologic and cardiovascular diseases with abnormal BCAA levels. The observations from  

these studies have implicated a faulty BCAA catabolic pathway as a  contributing factor to 

both common and rare human diseases (438,491–493). 

6.7 BCAA and protein synthesis  

The initiation step of mRNA translation can be inhibited if tRNA is deacylated (494). 

Branched chain amino acids enhance the initiation step of protein synthesis through the 

production of aminoacyl tRNA derivatives that stimulate the initiation step by reduction of 

tRNA deacylation. BCAAs metabolites may also contribute to the regulation of protein 

synthesis (495). BCAAs (particularly leucine) can increase the rate of protein synthesis and 

also limit the rate of protein degradation (496). This effect is enriched by a transient and small 

increase in serum insulin level. The sensitivity of protein synthesis to insulin can be enhanced 

by infusion of leucine and increasing the concentration of both leucine and insulin is pivotal 

for stimulation of protein synthesis. This mode of regulation of protein synthesis is rational as 

BCAAs provide the building blocks while insulin provides the signal generating energy for 

protein synthesis (497). However, high levels of leucine could be toxic and a suitable dose of 

leucine to deal with cachexia in cancer patients needs to be identified (452,498).  

Leucine in particular has a critical role in stimulation of the protein synthesis via the mTOR 

signalling pathway (499–501). mTOR is a downstream effector of phosphatidylinositol 

(3,4,5)-trisphosphate kinase (PI3K/AKT) and can be found in two different multiprotein 

complexes, mammalian target of rapamycin complex 1 (mTORC1) and mammalian target of 

rapamycin complex 2 (mTORC2). As a key regulator of protein synthesis, the mTOR 

pathway provides close monitoring of the levels of BCAAs and, crucially, the mTORC1 
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signalling pathway is shut down upon BCAAs depletion (502). Conversely, deregulation of 

mTOR can also result in neurological or developmental problems (503). mTOR can be 

activated by various stimuli, such as energy, nutrients, growth factors and stress signals via 

MAPK, PI3K or AMPK to link metabolic pathways with cell growth, proliferation and 

survival (504,505). In case of cancer, the uncontrollable activation of mTOR signalling 

pathway is accompanied by oxidative stress as well as stimulation of proinflammatory 

cytokines release, mediated via the activation of the nuclear transcription factor-κB (NF-κB) 

and this afford a selective advantage to cancer cells by contribution to all of the malignant 

transformation changes, which include unresponsiveness to growth-inhibitory signals, self-

sufficiency in signals of growth, evasion of apoptosis, persistent angiogenesis, unlimited 

replication and tissue invasion in addition to metastasis (506–508). Consequently, it is not 

surprising that high mTORC1 signalling is usually apparent to a significant level in the most 

common forms of human cancers (509). mTORC1 activates p70 S6 kinase, which then 

phosphorylates ribosomal S6 protein, resulting in increased protein synthesis. Activated 

mTORC1 also stimulates production of the protein synthesis initiation complex by 

phosphorylation of eIF4E-binding protein 1 (4E-BP1) (figure 6.5) (510).  

On the other hand, mTORC2, is insensitive to rapamycin, nutrients, stress and energy signals. 

However, it responds to growth factors like insulin. Insulin activates mTORC2 resulting in 

activation of protein kinase B (PKB)/AKT (511). The activated PKB/AKT stimulates some of 

the metabolic functions of insulin such as increasing glucose transport and activation of 

mTORC1 signalling pathway to drive protein synthesis accompanied by cell growth and 

proliferation (512). Deregulation of different components of the mTOR signalling pathway, 

including, PI3K, PKB/AKT, Rheb, S6K1, 4E-BP1, eIF4E, LKB1, TSC1/TSC2 and PTEN, are 

present in several types of cancers (513).  
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Figure 6.5: Essential amino acids regulation of protein synthesis via mTOR pathway  

BCAA can activate protein synthesis via mTOR mediated phosphorylation of p70-S6 kinase 1 

and 2 (S6K1/2) and eukaryotic initiation factor 4E binding protein 1 (eIF4E BP1). Increased 

translation  is promoted by mRNA transcripts with highly structured 5’-untranslated regions 

(UTRs) or translation of terminal oligopyrimidine (TOP) tracts close to the 5’- cap structure. 

Insulin can also stimulates protein synthesis via modulation of the inhibitory effect of 

tuberous sclerosis complexes 1 and 2 (TSC1/2) and protein kinase B (PKB/Akt). 

Phosphorylation of eIF2 (by general control nonderepressing kinase-2 (GCN2)) can regulate 

which mRNA is translated into proteins. Signalling through this pathway causes selective 

translation of mRNA transcripts with specific internal ribosome entry site (IRES) or an 

upstream open reading frames (uORFs). From (514). 

 



 

155 
 

6.8 Branched chain amino acids and cancer 

As a result of altered metabolism and increased growth, cancer cells need more nutrients and 

energy supply compared to non-malignant cells (515). In cancer cells, the causes of altered 

metabolism is multifactorial, including an intrinsic requirements for increased biosynthetic 

intermediates, such as nucleic acids for RNA and DNA syntheses, amino acids for protein 

synthesis and fatty acids for membrane synthesis (516). A low glucose level and hypoxia in 

the tumour microenvironment could also alter cancer cell metabolism (517). Branched chain 

amino acids and glutamine can serve as building blocks and energy substrates for cancer cells 

and their abundance may contribute to growth, proliferation and survival of these cells in 

different tissues (518,519). Additionally, cancer patients usually suffer from cachexia, 

characterized by loss of skeletal muscle mass due to high protein breakdown (520,521). Many 

tumours are deadly at a very low tumour burden (for example, about 1–2% of total body 

weight). Nonetheless, the relatively small tumour mass may become the main site for of 

capturing amino acids and this results in depletion of amino acid pools at other sites of the 

body (522). In this condition, supplementation with BCAAs might be regarded as an essential 

therapeutic intervention to improve outcomes by providing the building blocks to stimulate 

protein synthesis in skeletal muscle. However, this intervention conflicts with potentially, and 

inadvertently, supporting the extensive need of the tumour cells for BCAAs to fuel their 

growth and proliferation. This poses a dilemma to optimize BCAA supplementation because 

it is necessary to balance the demands of the host body with stimulating the growth and 

proliferative need of the tumour (433,523). Isoleucine and leucine have been reported to 

augment neoplasms in rats caused by N-butyl-N-(4-hydroxybutyl) nitrosamine. Positron 

emission tomography (PET) using 11C–leucine pointed to the high tumours uptake of amino 

acid. However, it has not yet been shown that BCAAs can be tumourigenic in the absence of 

oncogenic stimuli. However, BCAA supplementation in cancer patients resulted in increased 
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morbidity (524). These features have driven research in two opposite directions, one to 

investigate BCAA deprivation, in order to reduce tumour protein synthesis, growth and 

proliferation, and the other for BCAA supplementation, with an aim to help maintenance of 

host normal tissue. (331). It has been shown that supplementation of pancreatic cancer mice 

with leucine resulted in enhancement of  tumour growth , whereas leucine-free diet inhibited 

the growth of tumour and stimulated apoptosis, suggesting caution against the idea of leucine 

supplementation to enhance protein synthesis of skeletal muscle in cachectic patients 

(525,526). Also, investigation of the tumour uptake of labelled leucine in children with 

glioma and its relation to glucose metabolism has shown increased leucine uptake in the 

region of angioma revealed a high demand for leucine to support protein synthesis, growth 

and proliferation in tumour more than the normal tissue (527). 

6.8.1 Changes in amino acid uptake, metabolism and protein synthesis in tumours 

Little is known about the tumour utilization of BCAA but, it may be assumed that the primary 

histological type, oncogenic properties of tumours and tumour burden have an impact on the 

relative use of BCAA by cancer cells. The primary histological type could affect the tumour 

uptake, metabolism and protein synthesis. Comparison of FDG uptake by primary non-small 

cell lung cancer (NSCLC) has shown that there are significant differences in FDG uptake and 

utilization in different histologic NSCLC subtypes (528). Additionally, BCAT may regulate 

BCAAs through differing expression levels in different tissue types. Consequently of the 

extent of differentiation of a tumour and its tissue of origin may affect the capacity for BCAA 

oxidation (440).  
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6.8.2 Contribution of BCAA to oncogenesis 

There is growing body of evidence that BCAA metabolism is implicated in oncogenesis. High 

level of BCAA is an early marker for pancreatic cancer (529). BCKDK is over-expressed in 

colorectal cancer and this correlates with worse patient survival and the reduction of BCKDK 

expression slows the in vitro growth of colorectal cancer cells and supports survival of mice 

implanted with cancer xenografts. Mechanistically, in addition to affecting BCAA 

metabolism, BCKDK promotes colorectal cancer by enhancing the MAPK signaling pathway 

through direct MEK phosphorylation and anchorage independent growth, where the process 

above could be inhibited by a BCKDK inhibitors (530). In CML, BCAT1 upregulation 

promotes BCAA production in leukaemia cells by aminating the branched-chain keto acids. In 

vitro and in vivo blocking BCAT1 enzymatic activity or gene expression promote cellular 

differentiation and impairs the propagation of blast crisis CML. Supplementation with 

BCAAs ameliorates the defects caused by BCAT1 knockdown, indicating that BCAT1 exerts 

its oncogenic function through BCAA production in blast crisis CML cells (531). The level of 

BCAA in plasma and tissue is increased in patients with breast cancer, which is often 

accompanied by over-expression of BCAA metabolizing enzymes, and interfering with 

catabolism of BCAA by knocking down of BCAT1 enzyme inhibits the growth of breast 

cancer cells by inhibiting the mTOR-mediated mitochondrial protein synthesis (532). 

Likewise, BCAT1 is overexpressed in ovarian tumors and knockdown of the BCAT1 

expression in ovarian cancer cells led to reduction of cell proliferation, migration and invasion 

and inhibited cell cycle progression. Moreover, BCAT1 suppression resulted in 

downregulation of numerous genes implicated in lipid production and protein synthesis and 

resulted in significantly prolonged survival time in xenograft model of ovarian cancer, 

suggesting its importance in controlling ovarian cancer metabolism (533). Finally, inhibition 
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of BCAT also inhibits the growth of NSCLC tumour allografts in mice and  increases survival 

in a murine model of CML (534).  

Depending on the role of BCAAs in triggering protein biosynthesis and cell motility via its 

effect on activation of mTORC1, it is anticipated that high levels of BCAAs may promote the 

development or maintenance of cancer, inhibition of autophagy and augment invasiveness of 

tumour (535). In addition to its role in boosting of pancreatic cancer growth, high level of 

BCAAs overcome the activity of antineoplastic agents via over-activation of the mTOR 

pathway regulating protein synthesis, and this suggests caution against the supplementation of 

cancer patients with BCAA to resolve cachexia (536). Thus, proper control of BCAA 

concentration and mTORC1 activity is necessary for maintaining homeostatic control over the 

anabolic pathways that support tumour cells growth and proliferation (537). These data 

suggest that BCAA metabolism contributs to oncogenesis and accordingly an improved 

understanding of this may aid in the development of new therapeutic agents (538,539). 

Combined with discovery of BCKDK in our RNAi screen, make it desirable to explore the 

role of BCKDK in cancer, where inhibition of BCKDK is one potential therapeutic strategy to 

enhance BCAA metabolism by activating BCKDH (540,541).  

 

6.9 BCKDK inhibitors 

Inhibition of BCKDK by small molecules, like KIC, encouraged the design and development 

of several KIC analogues that are inhibitors of BCKDK, including clofibric acid, α-

chloroisocaproate (CIC), thiamine pyrophosphate (TPP), S-α-choloro- phenylproprionate 

((S)-CPP), phenylpyruvate and phenylbutyrate (542). Clofibric acid (the active metabolite of 

clofibrate) is hypolipidemic agent, Most of its activity in this setting is presumed to be 

mediated by potential activation of the nuclear receptor peroxisome proliferator-activated 
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receptor α (PPARα), which is a transcription factor that regulates genes implicated in lipid 

metabolism. However, clofibric acid, as well as phenylpyruvic acid, are able to lower BCAA 

levels via inhibition of BCKDK (543–545). α-chloroisocaproate (2-chloro-4-methylvaleric 

acid; CMVA) is also a KIC analogue (figure 6.6) that has been shown to inhibit the 

phosphorylation and inactivation BCKDH through inhibition of BCKDK (546). TPP is 

another BCKDK inhibitor able activate BCKDH and enhances the catabolism of BCAA 

(547). 3,6-dichlorobenzo[b]thiophene-2-carboxylic acid (DCBC; figure 6.6) belongs 

benzothiophene derivatives family. However, DCBC exhibits significantly higher stability 

and improved potency than these compounds (548). Although BCKDK is a kinase, BCKDK 

inhibitors work  through a mechanism distinct from many previously described kinase 

inhibitors. Instead of binding to the site normally occupied by ATP, these compounds bind to 

an allosteric site in the N-terminal domain and trigger helix movements. Such changes in the 

conformation prevent binding to the BCKDH core (542,546). This results in the release of 

BCKDK from the BCKDH core and the subsequent degradation of BCKDK. However, 

benzothiophene carboxylates, including DCBC, can also inhibit of Mcl-1, raising concerns 

about the specificity when used as a research tool (548,549) 

 

Figure 6.6: Chemical structures of some BCKDK inhibitors  

(542,548) 
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6.10 Aims 

The aim of the work in this chapter was to investigate the contribution of BCKDK to the 

sensitivity of ovarian cancer cells to paclitaxel by using siRNA and compounds that inhibit 

BCKDK. This information could help to evaluate whether the development of BCKDK 

inhibitors is warranted for subsequent evaluation in clinical trials. 
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6.11 Results 

6.11.1 Determination of BCKDK and BCKDH expression in cancer cell lines 

Prior to evaluating the effectiveness of paclitaxel and the BCKDK inhibitors combinations, 

the expression of BCKDK and BCKDH in cancer cell lines were first determined. The 

expression of BCKDK and BCKDH were measured in 9 cell lines including normal human 

ovarian epithelial cells (HOE) and  8 ovarian cancer cell lines. This included OVCAR-4 and 

COV362 cells, the two cell lines in which augmentation of paclitaxel activity was observed 

when BCKDK was knocked-down by siRNA (Chapter 5).  

BCKDK was expressed in all 9 cell lines in varying abundance with the highest levels being 

observed in COV362, FUOV-1, Igrov-1 and OVCAR-8, and the lowest levels in COV318 and 

OVCAR-3 cell lines. Although BCKDH was detectable in all cell lines, it was notably 

prominent in COV318, OVCAR-4 and FUOV-1 with very low expression in COV362 cell 

line (figure 6.7 A and B). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used 

for normalization in each of these experiments.  
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Figure 6.7: Expression of BCKDK and BCKDH in different cell lines  

A. Protein lysates were prepared from different cell lines and the expression of BCKDK and 

BCKDH proteins determined by western blotting. B. The western blot results shown in figure 

6.7 A were quantified by normalizing the intensity of the signal for each band to that of the 

GAPDH band in the indicated cell line and in the same western blot (results are expressed as 

mean ± S.D., number of experiments = 3). 
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6.11.2 Single agent activity 

To support the siRNA studies which showed that knock-down of BCKDK increased 

sensitivity to paclitaxel, the BCKDK inhibitors (3,6-Dichloro-1-Benzothiophene-2-

Carboxylic acid (DCBC) and (S)-2-Chloro-4-methylvaleric acid (CMVA) were used as an 

alternative to inhibit BCKDK.  Prior to evaluating the effect of the drug combinations, the 

potency of the BCKDK inhibitors as single agents was assessed in cell growth assays using 

OVCAR-4, COV362, COV318 and FUOV1 cells. The IC50 values derived  from the cell 

growth assays (figure 6.8 and table 6.1) reflect minimal inhibition of cell growth at inhibitor 

concentrations up to 100 µM. 

Table 6.1: IC50 values of DCBC and CMVA in different ovarian cancer cell lines 

 

 

Cell line DCBC CMVA 

IC50 (µM) IC50 (µM) 

OVCAR-4 >210 >340 

COV362 >140 >240 

COV318 >225 >280 

FUOV-1 >200 >280 

 

The activity of DCBC and CMVA was examined in four different ovarian cancer cell lines by 

using the SRB assay technique. The results are expressed as mean ± S.D from 4 different 

experiments. 
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Figure 6.8: Activity of DCBC and CMVA in OVCAR-4 cell growth assays 

The analysis of DCBC and CMVA was conducted in OVCAR-4, COV362, COV318 and 

FUOV-1 cell lines. A, C, E and G represent the activity of DCBC in OVCAR-4, COV362, 

COV318 and FUOV-1 cells, while (B, D, F and H) represents the activity of CMVA in the 

same cells. The figures show mean ± S.D. work for four experiments listed in table 6.1. “C” 

in X-axis indicates control cells (cells were treated with drugs solvent). The activity of drugs 

was measured by SRB assay.  
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the combination evaluated in cell growth assays. Four cell lines, each known to be 

representative of high-grade serous ovarian cancer (321), were selected for these experiments, 

OVCAR-4, COV362, COV318 and FUOV-1. Serial dilution of paclitaxel combined with the 

BCKDK inhibitors, which were used at either 30 or 100 µM fixed concentrations. This design 

was selected because the BCKDK inhibitors on their own had minimal effect when used at 

these concentrations and so any increase in the potency of paclitaxel when the inhibitors were 
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present would clearly be indicative of a synergistic interaction. To formally evaluate synergy, 

the effect of the drug combination was evaluated by calculating the combination index (CI). 

The combined drugs are considered to have a synergistic effect if their CI value is less than 1, 

while values that are around 1 or more than 1 indicate additivity or antagonism respectively 

between the two drugs. Synergy was observed when paclitaxel was combined with both 

DCBC and CMVA in cell growth assays using OVCAR-4, COV318 and FUOV-1 cell lines, 

while additivity was observed when paclitaxel was combined with DCBC and CMVA in 

COV362 (figures 6.9, 6.10, 6.11, and 6.12).  

 

 

 

Figure 6.9: Activity of DCBC and CMVA in OVCAR-4 cell growth assay 

The values of CI were calculated depending on Chou-Talalay method (mentioned in materials 

and methods). The CI values were statistically significant from unity where shown (*, P ≤ 

0.05, **, P ≤ 0.01, paired t-test)  
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Figure 6.10: Activity of DCBC and CMVA in COV362 cell growth assay 

The values of CI were calculated depending on Chou-Talalay method (mentioned in materials 

and methods). The results did not show statistically significant deviation from additivity. 

 

Figure 6.11: Activity of DCBC and CMVA in COV318 cell growth assay 

The values of CI were calculated depending on Chou-Talalay method (mentioned in materials 

and methods). The CI values were statistically significant from unity where shown (*, P ≤ 

0.05, **, P ≤ 0.01, paired t-test)  
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Figure 6.12: Activity of DCBC and CMVA in FUOV-1 cell growth assay 

The values of CI were calculated depending on Chou-Talalay method (mentioned in materials 

and methods). The CI values were statistically significant from unity where shown (*, P ≤ 

0.05, **, P ≤ 0.01, paired t-test)  

 

 

6.11.4 Cell viability assay  

To evaluate whether the synergy in the cell growth assays reflecting potentiation of cell death, 

rather than inhibition of proliferation, the viability of ovarian cancer cells was measured after 

48 hours of treatment with paclitaxel, BCKDK inhibitors and paclitaxel combined with 

BCKDK inhibitors by using the trypan blue assay technique. The results revealed that the 

combination of paclitaxel with either DCBC or CMVA caused significant increase in the 

percentage of dead cells in OVCAR-4 and COV318 and this increase was higher than that 

expected from an additive interaction and calculated from the Bliss independence criterion 

(figure 6.13 and 6.15) respectively. This suggests the drugs caused a synergistic increase in 

cell death. However, consistent with cell growth assays and the low level of BCKDH in these 
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cells, the combination of paclitaxel with 100 µM of either DCBC or CMVA in COV362 did 

not result in significantly higher effect than that expected from the calculated Bliss 

independence criterion as shown in figure 6.14. 

 

 

 

 

 

Figure 6.13: The effect of drug combinations on cell viability in OVCAR-4  

Cells were exposed to combinations of paclitaxel (12 nM) and DCBC (100 µM) or CMVA 

(100 µM) and the number of viable cells determined by staining with trypan blue. The data 

are expressed as mean ± SD (n = 3). The horizontal bar indicates the expected effect if the 

drugs interacted additively and calculated from the Bliss independent criterion. Experimental 

results are significantly different from the expected additive effect where shown  (paired t-

test, *, P ≤ 0.05). 
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Figure 6.14: The effect of drug combinations on cell viability in COV362  

Cells were exposed to combinations of paclitaxel (12 nM) and DCBC (100 µM) or CMVA 

(100 µM) and the number of viable cells determined by staining with trypan blue. The data 

are expressed as mean ± SD (n = 3). The horizontal bar indicates the expected effect if the 

drugs interacted additively and calculated from the Bliss independent criterion. Experimental 

results show no significant difference from the expected additive effect.  

 

Figure 6.15: The effect of drug combinations on cell viability in COV318 

Cells were exposed to combinations of paclitaxel (12 nM) and DCBC (100 µM) or CMVA 

(100 µM) and the number of viable cells determined by staining with trypan blue. The data 

are expressed as mean ± SD (n = 3). The horizontal bar indicates the expected effect if the 

drugs interacted additively and calculated from the Bliss independent criterion. Experimental 

results are significantly different from the expected additive effect where shown  (paired t-

test, *, P ≤ 0.05). 
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6.11.5 Confirmation of cell death by apoptosis. 

6.11.5.1 Western blotting 

During apoptosis, Poly ADP ribose polymerase (PARP) undergoes cleavage to inactivate it. 

To evaluate whether the cell death caused by paclitaxel and BCKDK inhibitors was due to 

apoptosis, PARP cleavage was measured by western blotting using OVCAR-4, COV318 and 

COV362 cells.  Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a loading 

control for protein normalization. After 48 hours of exposure to DCBC, CMVA and paclitaxel 

either alone or in combination, PARP cleavage was higher in cells treated with paclitaxel in 

combination with DCBC or CMVA than that in cells treated with single agents in OVCAR-4 

and COV318 (figure 6.16).  In keeping with the previous studies, in COV362 cells the drug 

combinations did not show significantly more cleavage than that in cells exposed to the single 

agent. 

 

 

Figure 6.16: PARP-cleavage in some ovarian cancer cell lines  

Cells were exposed to paclitaxel (12 nM) or either 100 µM DCBC or CMVA and after 48 

hours cells were lysed and PARP-cleavage was assessed by western blotting of OVCAR-4, 

COV318 and COV362 cell lines. The results are representative of three experiments. PARP,  

Poly (ADP-ribose) polymerase. GAPDH, Glyceraldehyde 3-phosphate dehydrogenase. 
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6.11.5.2 Caspase 3/7 assay  

The cysteine-aspartic proteases (caspase) family of enzymes play an important role in 

programmed cell death. Therefore, the activity of the effector caspases 3 and 7, which 

catalyse PARP cleavage, was assayed in cells following 48 hours of exposure to paclitaxel, 

either alone or in combination with DCBC or CMVA. The BCKDK inhibitors on their own 

did not cause a significant increase in caspase 3/7 activity. However, combinations of 

paclitaxel with DCBC or CMVA resulted in an increase in caspase-3/7 activity which was 

significantly greater than that measured with paclitaxel alone (figure 6.17). 

 

Figure 6.17: Relative caspase 3/7 activity in OVCAR-4 cell line  

Ovcar-4 cells were exposed to paclitaxel (12 nM) or either 100 µM DCBC or CMVA and 

after 48 hours caspase 3/7 activity was measured. To control for potential effects of the drugs 

on cell number after 48 hours, caspase 3/7 activity was normalized to the surviving cell 

number estimated by staining with SRB at the same time and the results of caspase 3/7 assay. 

The  results are expressed as a fraction of that measured in cells treated with paclitaxel alone 

(mean ± SD, n=3). The results were significantly different from those in cells treated with 

paclitaxel alone where indicated (*, P< 0.05, **, P<0.01paired t-test).  
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6.11.6 Evaluation of the effect of BCKDK inhibitors on of BCAA metabolizing enzymes 

In order to confirm that the BCKDK inhibitors did indeed inhibit BCKDK, levels of BCKDK, 

BCKDH and BCKDH phosphorylation were assessed by western blotting. The results showed 

that, consistent with previous reports, the levels of BCKDK were reduced and this was 

associated with a decrease in  BCKDH  phosphorylation in OVCAR-4 and COV318 cells. 

This was also accompanied by an increase in the abundance  of BCKDH (figures 6.18 A and 

B). Quantification of BCKDK, BCKDH and BCKDH phosphorylation protein level 

confirmed these results (figures 6.19). In contrast, in COV362 (the cell line in which synergy 

between paclitaxel and DCBC or CMVA was not observed) there was little effect of the 

BCKDK inhibitors, and the analysis of BCKDK, BCKDH and phosphorylated BCKDH by 

western blot and protein quantification (as shown in figure 6.18 C and figure 6.19) revealed 

no decrease in the abundance of BCKDK, explaining the lack of synergy observed in 

COV362 in the drug combination assays. 
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Figure 6.18: Expression of BCKDK, BCKDH and BCKDHPi in OVCAR-4, COV318 

and COV362 cells after treatment with BCKDK inhibitors 

Lysates were prepared from A. OVCAR-4, B. COV318 and C. COV362 which had been 

exposed to 100 µM of BCKDK inhibitors for 48 hours and the expression of BCKDK, 

BCKDH and BCKDHPi proteins determined by immunoblotting. The blot shown is 

representative of 3 experiments. 
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Figure 6.19: Quantification of BCKDK, BCKDH and BCKDHPi proteins in OVCAR-4,  

COV318 and COV362 cells after treatment with BCKDK inhibitors 

The western blots shown in figures 6.18 A, B and C were quantified by measuring the relative 

intensity of each band and normalizing this intensity to the signal intensity of GAPDH in 

OVCAR-4, COV318 and COV362 cell lines and in the same blot. The results (mean ± S.D., n 

= 3) were normalized to the results obtained with cells exposed to vehicle (“control”). 
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6.11.7 BCKDK gene editing and its impact on paclitaxel sensitivity 

Gene-edited or “knock-out” cells are cells that are genetically engineered to lack one or more  

copies of a particular gene. They provide a useful tool to confirm the specificity of drugs 

because  cells lacking the drug target might be expected to behave similarly to cells treated 

with the drug. BCKDK inhibitors and siRNA were synergistic with paclitaxel, leading to the 

hypothesis that cell gene-edited to lack BCKDK would be more sensitive to paclitaxel than 

the parental cells. Therefore, the activity of paclitaxel was evaluated in commercially 

available HAP-1 cells  lacking the gene encoding  BCKDK. 

HAP-1 is an adherent human (male) chronic myeloid leukemia cell line (KBM-7) which have 

a fibroblast-like morphology (figure 6.20). The majority of commonly used cell lines are 

diploid or even have multiple copies of any particular allele. The haploid cell line has the 

advantage of having only a single copy of each human chromosome, facilitating elimination 

of all functional alleles by CRISPR technology. 

 

         

                                 HAP-1 cells                                                    BDK cells 

 

Figure 6.20: Phase contrast microscopy images of HAP-1 and BDK cells  

The morphological appearance of HAP-1 and BCKDK knock-out cells viewed under light 

microscopy. 
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6.11.7.1. Cell growth assay in HAP-1 and BDK cells 

HAP-1 parental cells and BCKDK knockout cells (“BDK cells”) were evaluated for their 

sensitivity to paclitaxel in cell growth assays. Unexpectedly, the  BDK cells appeared, if 

anything, modestly less sensitive to paclitaxel (table 6.2, figure 6.21) than the HAP-1 parental 

cells. Although this difference was not statistically significant, this was surprising as it was 

not consistent with the earlier studies which suggested that inhibition of BCKDK increased 

sensitivity to paclitaxel. 

 

Table 6.2: IC50 and Hill slope values of paclitaxel in HAP-1 and BDK cell lines 

 

Cell line Paclitaxel 

IC50 (nM) Hill slope 

HAP-1 3.9±1.1 -5.1±0.1 

BDK 4.8±1.1 -3.2±0.3 

 

 

The activity of paclitaxel was examined in cell growth assays using HAP-1 and BDK cells 

(which lack the gene encoding BCKDK) by using the SRB assay. The results are expressed as 

mean ± S.D. from eight different experiments. 
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Figure 6.21: Activity of paclitaxel in HAP-1 and BDK cell growth assays 

Paclitaxel was evaluated in cell growth assays using HAP-1 and BDK cell lines. The figure 

shows mean ± SD for eight experiments listed in table 6.2. “C” in X-axis indicates control 

cells treated with drug vehicle.  

 

6.11.7.2 Cell death and apoptosis confirmation assays of BDK cells exposed to paclitaxel 

To confirm the activity of paclitaxel observed in HAP1 and BDK cells, the activity of the 

drug combination was also assessed in trypan blue exclusion, caspase 3/7 activity and PARP 

cleavage assays. In cell viability studies (figure 6.22), consistent with the apparent decreased 

sensitivity of BDK cells to paclitaxel observed in cell growth assays, paclitaxel killed 

significantly more HAP-1 cells than the gene edited BDK cells. Similarly, the activation of 

caspase-3/7 by paclitaxel in HAP-1 cells was significantly more than that in BDK cell line 

(figure 6.23). Immunoblotting of cell lysates to determine PARP cleavage in both cell lines 

after treatment with paclitaxel revealed that most of PARP was cleaved in HAP-1 cells in 

comparison to BDK cells, which still retained some uncleaved PARP (figure 6.24). Thus, all  

three assays showed exposure to paclitaxel resulted in less cell death in BDK cells compared 

to the parental HAP-1 cells.  
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Figure 6.22: The effect of paclitaxel on cell viability in HAP-1 and BDK cell lines 

HAP-1 and BDK cells were exposed to 5 nM paclitaxel for 24 hours and the percentage of 

viable cells (mean ± S.D., n=3) was determined by staining with trypan blue. There was 

significantly less cell death in the BDK cells compared to the HAP-1 cells (paired t- test, *, P 

<  0.05). 

 

Figure 6.23: Relative caspase 3/7 activity in HAP-1 and BDK cell lines 

HAP1 and BDK cells were exposed to 5 nM paclitaxel for 24 hours and caspase 3/7 activity 

determined. To normalize the caspase activity for any change in cell number which may occur 

as a result of the effect of the drug, a comparable experiment was performed in parallel and 

the relative cell number determined by SRB staining. The results (mean ±S.D., n = 3) are 

expressed as caspase activity measured in HAP-1 cells treated with paclitaxel and normalized 

to the relative cell number in each sample. The was significantly less caspase 3/7 activity  

where indicated (**, P<0.01; paired t-test). 
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Figure 6.24: PARP-cleavage in HAP-1 and BDK cell lines 

HAP-1 and BDK cells were exposed to paclitaxel (5 nM) for 24 hours and PARP-cleavage 

was assessed by western blotting immunoassay. A representative blot is shown (n=3). PARP, 

Poly (ADP-ribose) polymerase. GAPDH,Glyceraldehyde 3-phosphate dehydrogenase. 

 

 

6.11.7.3 Determination of BCAA metabolizing enzymes in HAP-1 and BDK cells 

To explain the results obtained in the previous experiments, which were in apparent 

contradiction to the foregoing studies which suggested that inhibition of BCKDK increased 

sensitivity to paclitaxel, western blotting of BCKDK, BCKDH and BCKDH phosphorylation 

was performed in untreated HAP-1 and BDK cells. The results (figure 6.25) revealed that, as 

expected, BCKDK was not detectable in BCK cells. However, both BCKDH and 

phosphorylated BCKDH were also both significantly reduced, suggesting that the deletion of 

BCKDK from the cells caused alteration in the expression of BCKDH to compensate for the 

loss of inhibitory regulation of BCKDH by BCKDK and presumably an increase in BCAA 

metabolism.  
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Figure 6.25: Expression of BCKDK, BCKDH and BCKDHPi in HAP-1 and BDK cell 

lines 

Protein lysates were prepared from HAP-1 and BDK cells and the expression of BCKDK, 

BCKDH and phosphorylated BCKDH proteins determined by western blotting. GAPDH= 

Glyceraldehyde 3-phosphate dehydrogenase. Representative blots are shonw (n=3). 
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6.13.8 Over-expression of BCKDK in ovarian cancer cell lines 

To complement the results in the previous section, over-expression of BCKDK was explored. 

BCKDK was originally identified in the screen conducted to identify genes which confer drug 

resistance (364) by virtue of its increased expression in chemoresistant compared to 

chemosensitive ovarian cancer (363). Consequently, it was hypothesized that over-expression 

of BCKDK would decrease sensitivity to paclitaxel in cell growth assays.    

First, conditions for transfection of two ovarian cancer cell lines (COV318 and FUOV-1) 

were optimized. These cells were chosen because they are representative of high grade serous 

ovarian cancer and synergy between paclitaxel and BCKDK inhibitors in cell growth assays 

had already been observed in these cells. OVCAR-4 cell line was excluded as it was 

refractory to transfection in previous experiments in our laboratory.  

The cell lines (COV318 and FUOV-1) were transfected with the DsRed plasmid encoding a 

red fluorescent protein and transfection efficiency checked by confocal microscopy. A range 

of cell numbers, lipofectamine 2000 and DNA concentrations were evaluated. The results 

showed that COV318 cells were transfected with higher efficiency than FUOV-1 cells 

(figures 6.26 A, B and C and 6.27 A, B and C).  A ratio of 2:1 DNA: lipfectamine 2000 was 

found to provide the highest efficiency in COV318 cells, while in FUOV-1 the best ratio of 

transfection was 1:3. 
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Figure 6.26: Immunofluorescence microscopy for detection of transient expression of 

DsRed in COV318 cells 

Cells were seeded in 96 well plates at different densities (3000, 4500 or 6000 cell/well), then 

analyzed for DsRed expression as an indication of transfection efficiency. The toxicity of 

lipofectamine 2000 has been checked by using different ratios of DNA: lipofectamine 2000 

and then analyzed by SRB cell growth assay. A. Represents seeding of 3000 cell and 

transfected with  0.2 µg DNA/0.1 µl lipofectamine 2000 (2:1) ratio. B. Represents seeding of 

4500 cell and transfected with 0.2 µg DNA/0.1 µl lipofectamine 2000 (2:1) ratio. C. 

Represents seeding of 6000 cell and transfected with 0.2 µg DNA/0.1 µl lipofectamine 2000 

(2:1) ratio. Photos taken at 60X power using confocal microscope.  
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Figure 6.27: Immunofluorescence microscopy for detection of transient expression of 

DsRed in FUOV-1 cells 

Cells were seeded in 96 well plates at different densities (3000, 4500 or 6000 cell/well), then 

analyzed for DsRed expression as an indication of transfection efficiency. The toxicity of 

lipofectamine 2000 has been checked by using different ratios of DNA: lipofectamine 2000 

and then analyzed by SRB cell growth assay. A. Represents seeding of 3000 cell and 

transfected with  0.1 µg DNA/0.3 µl lipofectamine 2000 (1:3) ratio. B. Represents seeding of 

4500 cell and transfected with 0.1 µg DNA/0.3 µl lipofectamine 2000 (1:3) ratio. C. 

Represents seeding of 6000 cell and transfected with 0.1 µg DNA/0.3 µl lipofectamine 2000 

(1:3) ratio. Photos taken at 60X power using confocal microscope.  
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6.11.9 Evidence that BCKDK inhibitors have an “on target” mechanism of action  

Inhibition of BCKDK is predicted to increase the activity of BCKDH and hence the 

catabolism of BCAA. This suggests that if the BCKDK inhibitors sensitized cells to paclitaxel 

by stimulating BCAA catabolism, addition of exogenous BCAA would reduce the synergy 

between the inhibitors and paclitaxel. However, little is known about the impact of altering 

the BCAA concentration on the growth of ovarian cancer cells. Therefore, the effect of 

various BCAA (leucine, isoleucine and valine) concentrations added to the culture medium 

was first determined. Cell culture medium (which contains 1 mM BCAA already) was 

supplemented with nine different concentrations of each BCAA, from 0.1-10 mM, and the 

effect measured in cell growth assays (figure 6.28 A-E). The results indicated that, in most 

cell lines, the cells could be supplemented with an additional 1 mM BCAA without any 

deleterious effects. 
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Figure 6.28: Effect of BCAA on cell growth in different cell lines 

The effect of a range of concentrations of BCAA on the growth was assessed in the indicated 

cell lines using the SRB assay. The results (mean ± SD, n=3) were expressed as a fraction of 

A570 measured in cells grown in unsupplemented medium.   
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6.11.9.1 Effect of BCAAs on the combination of paclitaxel and BCKDK inhibitors in OVCAR-4 

cell line 

To confirm that CMVA exerted its synergistic effect with paclitaxel in a manner that 

depended on BCAA, synergy between paclitaxel and CMVA was again assessed in cell 

growth assays, but this time using unsupplemented media or media supplemented with an 

additional 1 mM of each BCAA. The drug combination assays were performed using serial 

dilutions of paclitaxel in combination with solvent or 100 µM (fixed concentration) CMVA. 

In the unsupplemented media, synergy was again observed (C.I. < 1.0). However, in media 

supplemented with the BCAA, an additive interaction was observed (figure 6.29 A). This 

suggests that CMVA potentiated the activity of paclitaxel in a manner dependant on BCAAs 

and so is consistent with CMVA having an “on-target” mechanism of action.  

To confirm this, the effect of the drug combination was again measured in cells with 

unsupplemented media and in media containing 1 mM BCAA and the effect of the drug 

combination on PARP cleavage was assessed. Paclitaxel alone induced PARP cleavage and 

this was augmented by the addition of CMVA in cells grown in unsupplemented media. 

However, in the presence of additional BCAA, PARP cleavage was reduced (figure 6.29 B). 
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Figure 6.29: Effect of BCAAs on the combination of paclitaxel and CMVA 

A. Evaluation of CMVA and paclitaxel combinations in SRB cell growth assays. OVCAR-4 

cells were treated with combinations of serial dilution of paclitaxel started from 100 nM with 

100 µM CMVA. After 72 hours, the viable cell number was determined by SRB staining. 

Combination indices (mean ± S.D., n = 3) were significantly different from additivity as 

indicated in the figure in cells that are treated with paclitaxel and CMVA in the absence of 

any added BCAAs (paired t-test **, P ≤ 0.01). The addition 1 mM of each BCAA to the 

growth medium resulted in additivity. B. Representative western blots (n=3) of PARP 

cleavage in OVCAR-4 cell line. Cells were exposed to paclitaxel (12 nM) alone or in 

combination with CMVA (100 µM) for 48 hours. PARP= Poly (ADP-ribose) polymerase. 

Actin was used as a loading control.  

 

 

6.11.10 Evaluation of BCKDK inhibitors in spheroid cultures 

Three dimensional cell cultures can be used as a method to mimic in part the architecture of 

an authentic tumour and potentially improve the clinical relevance of laboratory in vitro 

models. The combination of BCKDK inhibitors and paclitaxel was therefore evaluated using 

cultures of spheroids. Each ovarian cancer cell line was first evaluated to determine if it can 

form a three dimensional spheroid by seeding a variable number of cells in an ultra low 

attachment 96 well plate. The relative cell number was assessed by intracellular ATP. All the 

cell lines tested were able to produce a spheroid like structure after a few days of culture 
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except COV362 which was unable to form an aggregate of cells. Therefore, this cell line 

should be excluded from further studies (figure 6.30).  

HAP-1 and BDK spheroids were subsequently exposed to paclitaxel. Measurement of ATP 

revealed that BDK cells were significantly less sensitive than HAP-1 cells to paclitaxel (figure 

6.31), a result which was consistent with that of two dimensional culture assays.   

Experiments with combining the BCKDK inhibitors with paclitaxel were attempted in 

spheroids from other cell lines. However, the BCKDK inhibitors quenched the luminescence 

that is produced from the ATP CellTiterGlo assay, making it impossible to obtain reliable 

results with the other cell lines.  
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Figure 6.30: Three dimensional cell culture 

The microscopic appearance of different cell lines after seven days of seeding in ULA-plates 

showing the ability of cells to produce three dimensional structure (A: COV318, C:FUOV-1, 

E:COV362, G:OVCAR-4, I:OVSAHO, K:BDK, M:HAP-1). Cells were seeded in 70 μl of 

growth medium at different initial seeding densities (250, 500, 1000, 2500, 5000 or 10000 

cell/well). On day 7, CellTiterGlo reagent was used to check the viability of cells by 

measuring ATP. The bar graphs on the right hand show the mean ± SD results of three 

experiments of mean ATP luminescence and Z’-factors for ATP-based assay at various 

densities of cells for each cell line (B: COV318, D:FUOV-1, F:COV362, H:OVCAR-4, 

J:OVSAHO, L:BDK, N:HAP-1). The values of Z’-factor range from negative to positive 

values, < 0 is considered an unacceptable assay, > 0 an acceptable assay, and > 0.5 as a good 

assay.  
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Figure 6.31: Relative ATP  in paclitaxel treated HAP-1 and BDK cells 

The effect of paclitaxel (30 nM, 72 h) was measured in HAP-1 and BDK cells. Spheroids 

were assessed by measurement of intracellular ATP (mean ± S.D., n = 3). The relative ATP 

activity was significantly higher in BDK spheroids compared to HAP-1 cell line (***, paired 

t-test, P<0.001). The “Control” was HAP-1 and BDK spheroids were exposed to drug vehicle. 
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6.11.11 The involvement of autophagy to cell death induced by Paclitaxel and BCKDK 

inhibitors 

The previous results have identified apoptosis as one possible mechanism for cell death 

induced by a combination of paclitaxel and BCKDK inhibitors in different ovarian cancer cell 

lines. However the contribution of BCAA to mTOR activation, together with the role of 

mTOR as a regulator of autophagy, raised the hypothesis that autophagy also might contribute 

to cell death induced by the drug combination. To evaluate this, autophagy was assessed by 

measurement of LC3-II which is markedly increased when autophagy is stimulated. p62 was 

also evaluated as another marker of autophagy and this protein is degraded during autophagy. 

OVCAR-4 cells were exposed to 12 nM paclitaxel, 100 μM of DCBC, 100 μM of CMVA or a 

combination of paclitaxel with DCBC or CMVA for 48 hours.  

 

 

 

 

Figure 6.32: The effects of BCKDK inhibitors on LC3-II 

OVCAR-4 cell line was exposed to 12 nM paclitaxel, 100 μM DCBC, 100 μM CMVA and 

combination of the given dose of paclitaxel in combination with BCKDK inhibitors for 48 

hours. The expression of LC3-II was determined by western blotting assay. GAPDH was used 

as a loading control.  
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Figure 6.33: The effects of BCKDK inhibitors on p62 

OVCAR-4 cell line was exposed to 12 nM paclitaxel, 100 μM CMVA and combination of the 

given dose of paclitaxel in combination with CMVA for 48 hours. The expression of p62 was 

determined by western blotting assay. Actin was used as a loading control.  

 

Treatment with BCKDK inhibitors alone and in combination with paclitaxel resulted in an 

increase in LC3-II consistent with an activation of autophagy (figure 6.32). However, the 

level of LC3-II can also be increased when there is inhibition of autophagy and the turnover 

of LC3-II is prevented. A very modest decrease in p62 was also observed following treatment 

with CMVA or a combination of CMVA and paclitaxel in comparison to paclitaxel alone 

treated cells (figure 6.33) suggesting that autophagy stimulation was more likely. Further 

work is needed to confirm this. 
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6.12 Discussion 

More than 75% of ovarian cancer patients that respond to chemotherapy ultimately relapse 

typically within 18-36 months after the end of the first treatment with chemotherapy. 

Therefore, it is desirable to develop novel targeted therapies that can re-sensitize the tumour 

to chemotherapy (550,551). To identify appropriate drug targets, genes that are over-

expressed in the drug-resistant form of ovarian cancer were evaluated in the previous chapter 

by assessing the effect of their knock-down on the sensitivity to carboplatin or paclitaxel. One 

of the validated hits from siRNA screen that identified genes which can regulate the 

sensitivity of ovarian cancer cells to chemotherapy was BCKDK. The work described in this 

chapter confirmed that BCKDK regulates sensitivity of ovarian cancer cells to paclitaxel. 

BCKDK is a kinase enzyme involved in the regulation of BCAA catabolism. It is responsible 

for inactivation of BCKDH, which is the rate limiting enzyme in BCAA turnover. Branched 

chain amino acids are regarded as key nutrient molecules that play important role in normal 

function, growth and survival, as well as in providing the main building blocks for synthesis 

of proteins. Furthermore, BCAA possess an effective signalling function that control growth 

and metabolism (321). 

Prior to further work on this gene, the level of BCKDK and BCKDH was determined at basal 

level in eight ovarian cancer cell lines, of which 5 cell lines (OVCAR-4, OVSAHO, FUOV-1, 

COV318 and COV362) closely resemble the profile of high grade serous ovarian cancer 

(321),  in addition to OVCAR-8, OVAR-3 and Igrov-1 and the normal human epithelial cells. 

It was found that both of these enzymes are expressed in all cell lines at varying levels, with 

lower expression of BCKDK and BCKDH in OVCAR-3 and COV362 respectively. The 

human protein atlas shows that most malignant cells including breast, head and nech, thyroid, 

endometrial, prostate and ovarian cancers display variable expression of BCKDK. Therefore, 
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studies of clinical samples, particularly from patients with drug resistant disease, are 

desireable to assess this.  

Since BCKDK knock-down resulted in sensitization of ovarian cancer cell lines to paclitaxel, 

it was speculated that inhibition of BCKDK by chemical compounds could also enhance the 

response of ovarian cancer cells to paclitaxel. For this purpose, two previously described 

BCKDK inhibitors were selected, (S)-2-Chloro-4-methylvaleric acid (CMVA) and 3,6-

Dichloro-1-Benzothiophene-2-Carboxylic acid (DCBC). The IC50s of these compounds were 

determined in cell growth assays using OVCAR-4 and COV362, the cell lines in which the 

activity of paclitaxel was potentiated when BCKDK was repressed by siRNA (chapter 5). In 

addition, COV318 and FUOV-1 cells were also used alongside these cell lines. The 

compounds when used as single agents did not potently induce cell death in any of the cell 

lines. This suggests that in the absence of cytotoxic stimuli, inhibition of BCKDK, and 

presumably stimulation of BCKDH is not cytotoxic under the conditions tested. Our work is 

in consistence with that of Tso and his colleagues who showed that DCBC significantly 

increases residual BCKDH activity in cultured cells as well as primary hepatocytes from a 

mouse model and patients of maple syrup urine disease with minimal toxicity. Administration 

of BCKDK inhibitors for 1 week resulted in nearly complete dephosphorylation of BCKDH 

in kidneys, heart, liver and muscle with reduction in plasma BCAA concentrations with no 

obvious toxicity. Thus, BCKDK inhibitors can provide useful treatment of metabolic 

disorders caused by elevated BCAA concentrations (548). 

Both compounds were synergistic with paclitaxel in all cell lines with the exception of 

COV362 where additivity was observed using several different assays to confirm the synergy 

including cell growth assay, activation of caspase 3/7, cell death measurement assay, and 

PARP cleavage. These results are consistent with those obtained from the gene knock-down 

experiments reported in chapter 5. In COV362 cells, synergy was not observed in any of the 
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assays used to assess the effects of the drug combination. One explanation for this is that the 

compounds only inhibit BCKDK when it is bound to BCKDH (542). In contrast to OVCAR4, 

COV318 and FUOV-1, immunoblotting studies showed that BCKDH was not abundant in 

COV362 and consequently there is unlikely to be a significant pool of BCKDK bound to 

BCKDH. It is, therefore, not suprising that the BCKDK inhibitors were not synergistic with 

paclitaxel in this cell line.  

In an effort to further confirm that the synergy observed between paclitaxel and inhibition of 

BCKDK, the activity of paclitaxel was evaluated in cells lacking BCKDK. HAP-1 cells have 

been genetically engineered to lack BCKDK, and were correspondingly anticipated to show 

increased sensitivity to paclitaxel. In cell growth assays, there was not significant changes in 

sensitivity to paclitaxel in the cells lacking BCKDK. However,  in several additional assays, 

including trypan blue exclusion, PARP cleavage and caspase 3/7 activation the BDK cells 

lacking BCKDK showed reduced sensitivity to paclitaxel. This finding was also confirmed 

using 3D cultures. To explain these results, the basal level of BCAA metabolizing enzymes 

was measured. Unexpectedly, BCKDH was shown to be down-regulated in BDK cells. This is 

consistent with the cells having adapted to the loss of BCKDK. Loss of BCKDK is 

anticipated to prevent the inhibitory regulation of BCKDH by BCKDK and promote BCAA 

metabolism. A decrease in BCKDH may be an adaptive response to restrict the anticipated 

increase in BCAA metabolism in the BCKDK knock-out cells which may lead to deprivation 

of BCAA. Therefore, inactivation of BCKDH provides a mechanism to decrease BCAA 

metabolism and to promote survival. It would be desireable to measure BCAAs in cell 

cultures treated with BCKDK inhibitors to confirm this hypothesis. However, the apparently 

adaptive response of the cells in the BCAA catabolic pathway was associated with a change in 

sensitivity to paclitaxel and this further reinforces the argument that the BCAA metabolic 

pathway contributes to the sensitivity of cells to paclitaxel. 
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The BCKDK inhibitors  reduced phosphorylation of BCKDH, in all the cells lines tested 

except COV362, confirming that the compounds inhibited BCKDK. However, this does not 

on its own rule out the possibility that synergy between paclitaxel and the BCKDK inhibitors 

results from the inhibitors acting through another target. However, several lines of evidence 

support the BCKDK inhibitors acting synergistically with paclitaxel by an “on target” 

mechanism. Firstly, the lack of inhibition of BCKDK in COV362 by the inhibitors and the 

lack of synergy in these cells, contrasts with synergy observed in cells expressing BCKDK in 

which the inhibitors successfully inhibited BCKDK. This supports the argument that the 

drugs work by inhibiting BCKDK, rather than having an off-target effect. Secondly, 

phosphorylation of BCKDH by BCKDK leads to its inactivation. This suggests that the 

BCKDK inhibitors activated the BCKDH complex which would be anticipated to lead to an 

increase in BCAA catabolism. When the cell culture media was supplemented with BCAA, 

the synergistic interaction between the BCKDK inhibitors and paclitaxel was lost. This 

suggests that synergy depends on the concentration of BCAA and is consistent with the 

BCKDK inhibitors modulating the BCAA metabolic pathway. Thirdly, synergy with 

paclitaxel was observed using two chemically distint BCKDK inhibitors which are unlikely to 

share a common target other than BCKDK which contributes to paclitaxel sensitivity. Forthly, 

cells engineered to lack BCKDK appeared to undergo a compensatory change in the 

expression of BCKDH and this resulted in altered sensitivity to paclitaxel. This also supports 

BCKDK regulating sensitivity to paclitaxel. Lastly, three different siRNA inhibiting BCKDK 

expression were also synergistic with paclitaxel (chapter 5). It is unlikely that these would all 

share off-target effects which sensitize cells to paclitaxel. Taken together, these data provide 

strong evidence that inhibition of BCKDK sensitizes cells to paclitaxel. 

The cellular autophagy pathway recycles damaged cellular components and contributes to 

survival during unfavourable growth conditions. BCAA activate mTOR, a regulator of the 
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autophagy pathway, and result in inhibition of autophagy (552,553). On the other hand, 

BCAA starvation stimulates autophagy. Additionally, mTORC1 and autophagy pathways 

play essential roles in protein synthesis and inhibition of protein degradation depending on 

BCAA concentration (554). This led to the hypothesis that BCKDK inhibitors would reduce 

BCAA levels and activate autophagy. To assess this, the autophagy markers LC3-II and p62 

were evaluated in OVCAR-4 cell line following treatment with BCKDK inhibitors and 

paclitaxel. LC3 markedly changed following treatment with BCKDK inhibitors alone and in 

combination with paclitaxel, which may reflect a contribution of autophagy to cell death 

mechanism. However, p62 was not altered significantly, therefore further work is needed to 

define the effect of BCKDK inhibitors on the autophagy pathway. These could include using 

a novel Atg5-Atg12 interaction assay recently developed in our laboratory. Alternatively, the 

use of bafilomycin (an autophagy inhibitor) to measure the level of LC3-II turnover following 

treatment with BCKDK inhibitors may be helpful to distinguish between inhibition and 

stimulation of the autophagy pathway, both of which can lead to accumulation of LC-3II.  

The BCKDK inhibitors used in this study are likely to be insufficiently potent for clinical use 

and new inhibitors are required. Over 26 kinases inhibitors have now been approved by the 

FDA for the treatment of cancer (555,556). However, BCKDK lacks a classical kinase 

domain that is present in most protein kinases and it is considered as an atypical protein 

kinase with a crystal structure closely resembling bacterial histidine kinases. Correspondingly, 

the inhibitors which were used in our research (DCBC and CMVA) have a mode of action 

distinct from the ATP competitive kinase inhibitors. (S)-2-Chloro-4-methylvaleric acid (α-

chloroisocaproate; CMVA) is an analog of the natural KIC with a chlorine atom has 

exchanged the α-carbonyl group in KIC, while DCBC was synthesized based on the structure 

of BCKDK enzyme to produce a potent BCKDK inhibitor. Both compounds work by 

targeting an unique allosteric site in the enzyme, causing deformation of the enzyme’s helix 
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framework and accelerated breakdown of the kinase due to detachment from BCKDH 

(546,548). The atypical kinase structure of BCKDK is important in the development of novel 

inhibitors because it suggests that it will not be productive to screen libraries of known kinase 

inhibitor motifs that bind the “classical” kinase domain present in most serine/threonine or 

tyrosine kinases. However, it does suggest the prospect that compounds that work as allosteric 

modulators may not inhibit other enzymes of the classical kinase family, that constitutes more 

that 500 enzymes, and therefore these compounds may be more selective. Work is underway 

in our laboratory to design improved BCKDK inhibitors. 

In summary, the findings of this research offer a rationale to target BCKDK to re-sensitize the 

ovarian cancer cells to paclitaxel and to overcome resistance to chemotherapy in ovarian 

cancers and probably other forms of cancer by targeting the metabolic pathway of the three 

essential amino acids (leucine, isoleucine and valine). Substantial further work is required to 

develop this initial finding that BCKDK is a regulator of paclitaxel into a novel therapeutic, 

and that is discussed in the final chapter. 
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General discussion, conclusion and 

future work 
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Ovarian cancer accounts for about 240,000 new cases with 152,000 deaths each year 

worldwide. Europe exhibits the highest rates of new cases (11.4 per 100,000) and mortality 

(6.0 per 100,000) (9,557). The prognosis for patients with advanced ovarian cancer is very 

poor (558). Although patients respond well to debulking surgery followed by platinum-taxane 

based chemotherapy  the majority of them relapse, leading to the stubbornly low 5-year 

survival rates (559,560). Therefore, new strategies for more effective treatment of women 

with ovarian cancer are needed to re-sensitize tumours to chemotherapy. In general, 

chemotherapy in ovarian cancer has two principal challenges, one is the adverse effects of the 

cytotoxic agents and the other is the emergence of resistance of the tumour cells towards these 

antineoplastic agents which impedes the effectiveness of therapy (561). The emergence of 

drug resistance, particularly to the standard chemotherapeutic agents like platinum-based 

compounds, is a complex multi-factorial molecular issue (562). Understanding the molecular 

mechanisms of resistance has the potential to help clinicians in selecting patients that will 

benefit from chemotherapy. Such knowledge would spare patients from unnecessary 

cytotoxicity and adverse effects of ineffective treatment. The work in this thesis explored two 

strategies to address this problem. Firstly, to exploit recently developed drugs which sensitize 

cells to apoptosis and which could correspondingly increase the effectiveness of 

chemotherapy in drug-resistant cancer. Secondly, to identify new drivers of drug resistance 

with the intention that these could subsequently be used to develop new chemosensitizing 

agents. 

A major hallmark of cancer is a defect in apoptosis. There are several causes for developing it 

including upregulation of pro-survival members of Bcl-2 family proteins, which also 

predispose to chemoresistance (563). This has made the apoptosis pathway an attractive 

therapeutic target for the development of new therapies to treat this disease (564).  
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Previous work in our laboratory has explored relatively non-selective BH3 mimetics such as 

navitoclax and ABT-737 and demonstrated that these drugs are synergisitic with 

chemotherapy in vitro and in animal studies (294). Since that work was conducted, two new 

BH3 mimetics, venetoclax and WEHI-539, that selectively inhibit the anti-apoptotic Bcl-2 

family proteins, Bcl-2 and Bcl-XL respectively, have been reported (293,297,565). However, 

work presented here, and reported by others (300,318,566) have shown that Bcl-XL is the 

most prominent anti-apoptotic Bcl-2 family protein expressed in ovarian cancer suggesting 

that, amongst Bcl-2 family members, its inhibition is crucial to sensitize ovarian cancer cells 

to chemotherapy. Correspondingly, both  ABT-737 and WEHI-539 (selective Bcl-XL 

inhibitor) were synergistic with carboplatin in the studies presented here. In contrast, the low 

expression of Bcl-2 protein in ovarian cancer predicted that the selective Bcl-2 inhibitors 

venetoclax would be ineffective, and this was found to be the case. Therefore, inhibiting Bcl-

XL remains the most promising strategy for the use of BH3 mimetics as chemosenitizing 

agents in ovarian cancer. Unfortunately, inhibition of Bcl-XL has been associated with 

thrombocytopenia, and this led to the halt of the clinical development of navitoclax (ABT-

263). This questions whether inhibition of the Bcl-2 family of proteins is a viable strategy for 

the treatment of ovarian cancer unless strategies are developed to minimize the 

thrombocytopenia.  

It remains possible that a small proportion of ovarian cancers which are not driven by Bcl-XL 

but rather by Bcl-2 and may benefit from this strategy. Performing proteomic profiling may 

identify ovarian cancer patients whose tumours possess apoptotic vulnerabilities which could 

be targeted in combination with anti-cancer agents to induce cell death. Dissecting the balance 

between the anti-apoptotic and pro-apoptotic protein regulators using BH3 profiling can help 

in identifying drug response predictors. Measuring the expression of known predictors of drug 

response (such as high Bim, Bcl-XL and caspase-3) and resistance (e.g. high Mcl-1, XIAP) 
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(567), possibly in circulating tumour cells, may help to select those patients that may respond 

to BH3-mimetics, and those who most likely to benefit from the addition of Mcl-1 inhibitors 

to the regimen. Mcl-1 is another important anti-apoptotic member of Bcl-2 family proteins, 

and cases with over-expression of Mcl-1 and lower ratio of Bim–Mcl-1 are associated with 

resistance to BH3 mimetics that do not inhibit this protein (568). Although ovarian tumours 

are predominantly addicted to Bcl-XL, inhibiting the anti-apoptotic function of Mcl-1 may 

reduce the “anti-apoptotic” capacity of a cells, sensitize tumours to Bcl-XL targeting strategies 

and potentially minimize thrombocytopenia. This might also allow BH3 mimetics to be used 

without the addition of chemotherapy. Although in the work presented in this thesis showed 

that inhibitors of Bcl-XL were able to potentiate carboplatin activity, carboplatin can indirectly 

inhibit Mcl-1 (566,569) in several  human ovarian cancer cell lines. It is possible that 

carboplatin could be replaced by another Mcl-1 inhibitor. This could be medically exploitable, 

as numerous currently available cyclin-dependent kinase (CDK) inhibitors such as sorafenib 

and seliciclib can, indirectly, downregulate the levels of Mcl-1 and therefore, can be 

effectively combined with BH3-mimetics (570–572). Patients could be potentially selected for 

therapy by testing the efficacy of compounds on cultures of tissues collected from patients 

during surgery. However, repeated debulking surgery in patients who have developed drug-

resistant disease is not common practice in the UK, limiting the supply of appropriate tissue. 

The identification of new biomarkers, for example in a liquid biopsy, that can predict 

response to a BH3 mimetic is probably preferable. 

The critical role for Bim as a mediator of targeted therapy-induced cell death  in different 

types of cancer (573), makes it important predictor for response to BH3-mimetics. Therefore, 

it is suggested  that pre-treatment detection of the Bim expression in ovarian cancer patients 

may indicate the likelihood of response to BH3- mimetics as well as other targeted therapies. 

Additionally, in patients with low Bim levels, it is recommended to use agents that target 
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epigenetic regulators in an aim to increase Bim expression levels and overcome resistance to 

apoptosis in these cancers. 

Limitations of the study were the absence of a full description of the expression of all Bcl-2 

family protein members in the studied cell lines, in addition to the absence of animal models 

to further confirm the results. Although our group has previously reported synergy due to the 

combination of ABT-737 and carboplatin in xengraft models of ovarian cancer (294), it is 

helpful to identify the potency of WEHI-539 or venetoclax in combination with carboplatin in 

these models. As Bim, Bak, Bax and other proapoptotic proteins are essential for driving of 

mitochondrial outer membrane permeability, it would be useful to show if high levels of these 

proteins were responsible for variation in response that have been reported between different 

cell lines. Additionally, it should be taken into account that there is no in vivo cancer model or 

single cell culture method that definitely predict the efficacy of cytotoxic agents in human 

clinical trials. Approaches that are used in this study provide the advantage of human cancer-

derived cell lines, but cannot mimic the heterogeneity and complexity of the interaction 

between cancer cells and the co-evolving microenvironment in the real tumour.  

The second aim of the work presented here was to develop a new strategy to sensitize ovarian 

cancer to chemotherapy.  The identification of genes that are over-expressed in drug resistant 

cancers may provide new targets to senstizie cell to chemostherapy. Additionally, It offers 

further insight into the mechanism of action of chemotherapeutic agents (574). The work 

presented in chapters 5 and 6 identified BCKDK as a potential new target to sensitize cells to 

chemotherapy. However, considerable work is required to achieve this and the mechanistic 

basis behind this synergy warrants further exploration. One possibility is through the 

mTORC1 pathway which is regulated by BCAA. mTORC1 regulates aurora 

phosphophorylation (T288) and also that of Polo-like kinase 1 (plk1) (T210). These are 

essential mitotic regulators. Considering that paclitaxel causing mitotic arrest as a result of its 
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effect on microtubules, this may potentially explain the mechanism of synergy between 

BCKDK inhibitors and paclitaxel.  

Simplistic colourimetric assays are planned for further future studies to better show the 

localization of BCKDK following inhibition in addition to further illustrate the mechanism of 

action of inhibitor. Kinases and phosphatases participate in a variety of cellular processes like 

metabolism, protein-protein interactions, apoptosis as well as gene transcription and 

translation, through protein phosphorylation and dephosphorylation (575).  Accordingly, 

several approaches, including different colorimetric assays, are available to detect these 

enzymes, their functions and activity (576). In general, many analytical techniques have been 

reported for the quantitative determination of enzymes activity, including ion-sensitive field-

effect transistor devices, electrochemistry, colorimetry, Gold nanoparticles (GNP)-

aggregation-based assay and fluorometry (576–580). Among these, optical sensing techniques 

have aroused an interest due to their intrinsic simplicity, accuracy and high sensitivity. Many 

fluorescent probes, including carbon based-nanomaterials, noble metal nanoclusters, quantum 

dots and semiconducting polymer dots have been utilized for the detection of enzymatic 

activity and these may be tried to show the mechanistic effect of BCKDK inhibition and the 

mechanism of action of the inhibitors (581,582). Gold nanoparticles are proven to provide a 

promising colorimetric probe since they can detect enzymatic activity by monitoring the color 

change by naked eye or using UV–vis spectroscopy (583). Although these nanomaterial-based 

approaches displayed good sensitivity and selectivity, the majority of them show some 

drawbacks, such as time-consuming and labor-intensive sample pretreatment. Recently, a 

proposed a method has been reported to quantitatively detect enzymatic activity with the help 

of UV–vis spectroscopy. This method is highly sensitive with a low detection limit. Also it is 

inexpensive and fairly simple by excluding the use of complicated nanomaterials. Moreover, 

it constructs a useful platform for inhibitors screening (584). 
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Generally, the tumour-bearing condition features extensive BCAA breakdown and altered 

BCAA availability, which is accompanied by suppression of protein synthesis and activation 

proteolysis in skeletal muscle and eventually results in skeletal muscle atrophy, erosion of 

lean body mass and involuntary weight loss. Dietary supplementation with BCAA for cancer 

patients is suggested on the basis of these symptoms in attempt to satisfy whole body 

requirements for BCAAs. However, consideration should be made of the demand and supply 

of BCAA to tumours for its invasive and proliferative activities. In general, most of the 

current researches focus of supplementation of patients with BCAAs to reverse cachexia, but 

the need to decide this supplementation should be balanced by the need to avoid providing 

building blocks for cancer growth. It will be interesting to investigate if manipulating BCAA 

metabolism, independent of chemotherapy, can affect the balance between the tumour and 

host in a way that favors the patients. Ovarian cancer may require adequate amounts of 

BCAA as building materials to generate new cells, and this raises the potential for other 

enzymes in the BCAA metabolic pathway to be used as drug targets. Currently, there are 

relatively few medications in clinical trials that particularly target amino acid metabolic 

pathways in tumour cells (585).  

Our work provided valuable insights on the potential impact of metabolic control of BCAA in 

ovarian cancer and has opened the way to add a novel drug target that could be utilized in 

clinical trials to specifically target BCAA metabolism in cancer cells. However, the potential 

use of BCKDK inhibitors as anti-cancer drugs in combination with paclitaxel in ovarian and 

other cancer patients still needs to be validated in animal studies. In addition, further evidence 

is required that tumour cells will be sensitized to the combination of BCKDK inhibitors and 

paclitaxel more than non-tumour tissue.  
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Cancer genetics, tissue of origin and tumor microenvironment can all affect the tumor’s 

metabolic dependencies (586). Both the genetic nature (intrinsic factors) and nurturing 

environment (extrinsic factors) define tumors that arise from normal tissues. Additionally, 

changes in metabolism may contribute to the first differences described between normal and 

tumour tissues and it is possible that BCKDK may play a role in this. However, the increased 

expression of BCKDK in drug-resistant versus chemosensitive tumours suggests its 

predominant role may be later in oncogenesis.  

Understanding the precise contributions of metabolic changes of BCAAs in ovarian cancer 

holds the best hope for identifying patients that may respond to BCKDK inhibitors. It is 

possible that altering BCAA metabolism may be beneficial in several cancer types, not just 

ovarian cancer. To do so, identifying biomarkers that predict response to these agents seems 

to be essential. BCKDH may serve as the most promising biomarker considering the work 

presented in this thesis that showed better responses to BCKDK inhibitors in cells expressing 

BCKDH. Likewise, BCAT could also serve as a biomarker to predict patients that may 

respond to BCKDK inhibitors as it has shown to be over-expressed in many types of cancer. 

Also, the presence of reasonable level of BCKDP to reactivate BCKDH following the 

inhibition of BCKDK should be evaluated prior to the use of BCKDK inhibitors. It is 

reasonable to predict that low levels of BCKDH and/or BCKDP may lead to limited response 

to these agents. Additionally, it is still plausible that elevated plasma level of BCAAs in 

ovarian cancer patients could predict response to BCKDK inhibition, an issue that needs to be 

explored in clinical studies. However, the identification of high level of BCAAs in the plasma 

of patients with early stage of pancreatic cancer encourage measuring these amino acids in 

ovarian cancer (587). NSCLC tumors show increased uptake of BCAAs compared with 

normal lung tissue (534), could also support this hypothesis. The increased requirement for 

amino acid (particularly BCAA) uptake for cancer development and the reprogramming of 
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metabolic pathways to supply tumour with BCAA precedes the diagnosis of cancer by upto 5 

five years (588). This encourages exploring the level of BCAAs uptake by the ovaries to 

identify patients that are predicted to respond to a combination of paclitaxel and BCKDK 

inhibitors. 

Increasing evidence shows that leucine and other BCAAs do not only support biosynthetic 

demands by providing the essential building materials, but also has a nutrient signal 

regulating effect via the activation of mTOR pathway which can lead to hypertrophy as well 

as proliferation and migration of cancer cells (589,590). By controlling cell growth, 

proliferation, translation of protein, and autophagy, this pathway may be as an important 

regulator of cellular function (591). Furthermore, the upregulation of mTOR signalling 

pathway in different types of cancer has made it as an important target for the treatment of 

various types of cancer. Accordingly, it would be interesting to combine the BCKDK 

inhibitors with mTOR inhibitors as a novel targeted combination therapy in patients with 

ovarian cancer.    

The transition from the traditional model of cytotoxic agents that depends one‐size‐fits‐all 

strategy to the most recent personalized medicine approach that instead depends on the 

development of targeted therapy, requires understanding the particular genetic addictions of a 

tumour to predict drug efficacy and hopefully overcome the resistance to chemotherapy.  

Research on innovative trial designs is in progress to optimize the clinical usefulness of the 

targeted agents and hopefully in the next few years BH3-mimetics and BCKDK inhibitors 

may be exploited clinically. However, although targeted therapeutics produced clinically 

significant responses, this can also be followed by the development of drug resistance, which 

is likely to occur with BH3-mimetics and BCKDK inhibitors as well. One way to avoid this is 

to use combinations of these two targeted therapies. It is interesting to speculate on the 

potential for combining BCKDK inhibitors with Bcl-2 inhibitors considering the previous 
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successful combination of BH3 mimetics and kinase inhibitors (592,593). The finding that 

Mcl-1 can be inhibited by existing BCKDK benzothiophene carboxylate inhibitors, raises a 

possible rationale for this combination which may be useful in patients that are resistant to 

navitoclax due to high expression of Mcl-1 (548,549). Furthermore, the level of anti-apoptotic 

Bcl-2 family protein could be explored following treatment with BCKDK inhibitors to check 

if these agents have the potential to block these protein to supplement the effect to the BH3-

mimetics. Also adding BCKDK inhibitors to the combination of carboplatin, Bcl-2 inhibitors 

and paclitaxel could have several potential advantages. The platelet sparing activity of 

paclitaxel may make the use of carboplatin and navitoclax feasible and the inclusion of a 

BCKDK inhibitor may potentiate the efficacy of paclitaxel. However, the use of several drugs 

raises concerns about potential toxicity and proper manipulation of doses is likely to be 

needed. Additionally, identifying ovarian cancer patients who might respond to such a 

combination is essential.   
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Appendix 1: Antibodies used for western blots 

Antibody Dilution Supplier, code 

Anti-Bcl-2 primary antibody 1:1000 Cell Signaling Technology, 2870 

Anti-Bcl-XL primary antibody 1:1000 Cell Signaling Technology, 2764 

Anti-Mcl-1 primary antibody 1:1000 Cell Signaling Technology, 5453 

Anti-Bcl-w primary antibody 1:1000 Cell Signaling Technology, 2724 

Anti-LC3 primary antibody 1:2000 Nanotools, LC3-2G6 

Anti-GAPDH primary antibody 1:5000 Millipore, MAB374 

Anti-PARP primary antibody 1:1000 Cell Signaling Technology, 9542 

Anti-α-Actinin primary antibody 1:1000 Cell Signaling Technology, 3134 

Anti-BCKDH primary antibody 1:1000 Bethyl, A303-790A-M 

Anti-BCKDH, phosphor (S293) primary 

antibody 

1:1000 Bethyl, A304-672A-M 

Anti-BCKDK primary antibody 1:2000 OriGene, TA500685 

Anti-P62 primary antibody 1:1000 Abcam, ab56416 

Anti-mouse IgG, HRP-linked secondary 

antibody 

1:2000 

 

Cell Signaling Technology, 7076 

Anti-rabbit IgG, HRP-linked secondary 

antibody 

1:2000 

 

Cell Signaling Technology, 7074 

 

The antibodies were diluted in tris buffer saline tween (TBST) containing 5% skimmed milk 

powder. 
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Appendix 2: siRNA transfection 

siRNA buffer (Dharmacon) was used to reconstitute the individual siRNA (Dharmacon) to 20 

μM stock solutions, and then used at 100nM final concentration. The details of siRNA target 

sequence are shown below. 

Name Target sequence 

CYR61#2 GGGCAGACCCUGUGAAUAU 

CYR61#4 GGCCAGAAAUGUAUUGUUC 

CYR61#5 GGUCAAAGUUACCGGGCAG 

CYR61#6 GCAGCAAGACCAAGAAAUC 

FABP4#1 GUAGGUACCUGGAAACUUG 

FABP4#2 GAAAUGGGAUGGAAAAUCA 

FABP4#3 GAUGUGAUCACCAUUAAAU 

FABP4#4 GAAAGUCAAGAGCACCAUA 

FBLN5#1 GCAGACGUGCUACAAUUUA 

FBLN5#2 GGACGAGUGUGCAACAGAU 

FBLN5#3 GUGCAAACCUGCGUCAACA 

FBLN5#4 UAACCAAAAUGGCGGGUAU 

FOXC1#1 GAACAACUCUCCAGUGAAC 

FOXC1#2 AAUAGUAGCUGUCAAAUGG 

FOXC1#3 GUCCGGAGCUUUCGUCUAC 

FOXC1#4 ACAAGAAGAUCACCCUGAA 

TAGLN#2 AGAAAGCGCAGGAGCAUAA 

TAGLN#3 CCAGACUGUUGACCUCUUU 

TAGLN#4 CUCGGCAGAUCAUCAGUUA 

TAGLN#5 CCAAAAUCGAGAAGAAGUA 

MAPK1#1 CCAAAGCUCUGGACUUAUU 

MAPK1#3 AAACAGAUCUUUACAAGCU 

MAPK1#4 CAAGAGGAUUGAAGUAGAA 

MAPK1#9 GUACAGGGCUCCAGAAAUU 

FBLN1#1 GACAAUAGCUGCAAAGAUA 

FBLN1#2 CAAGAGUGGCUUUAUACAA 

FBLN1#3 GCGAAUGCAAGACGGGUUA 

FBLN1#4 AAUGAGUGUUUGAGUAUCA 

FOXO1A#5 CCAGGCAUCUCAUAACAAA 

FOXO1A#6 CCAGAUGCCUAUACAAACA 

FOXO1A#7 GGAGGUAUGAGUCAGUAUA 

FOXO1A#8 GAGGUAUGAGUCAGUAUAA 

LAMA2#1 UGACAGUGCUUGCGAAUUU 

LAMA2#2 CGACACAGCUAAAGAUGUA 

LAMA2#3 GAAGUUAGCAAAUGAUGUA 

LAMA2#4 UCACACAGGUGGCCCAUAU 

EFEMP1#1 CAAGCUACCUGUGUCAAUA 

EFEMP1#2 CCAGAGAACCGAUGUGUUU 
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EFEMP1#3 CACCAAAGAUGCGUGAAUA 

EFEMP1#4 CAACUAUACCUGCGUAGAU 

CFHL1#1 CGAAUAACAUGUAGAAAUG 

CFHL1#2 GAGAGUACGUUAUCAAUGU 

CFHL1#3 CCAAACAGAAGCUUUAUUU 

CFHL1#4 CAGCUGAAUUUGUGUGUAA 

PLA2R1#1 GCAAGGAGGUACGCUGUUA 

PLA2R1#2 GAGCAGCCAUUAAGCUUAU 

PLA2R1#3 UAAAAGCGCUAUCCAAGUA 

PLA2R1#4 GCAAAUAUGACUUGGUAUG 

ENTPD1#1 GUAGAAGAAUGCAGGGUUA 

ENTPD1#2 AGAAGUACCUGAGUGAAUA 

ENTPD1#3 GUAAUGAAAUUCUCAGGGA 

ENTPD1#4 ACACAGGCGUGGUGCAUCA 

BCKDK#1 GAAAGGAGCAAGACGAUGA 

BCKDK#2 GCACGUGCAUGAGCUAUAU 

BCKDK#3 GCAGAGGGCCUACGUGAGA 

BCKDK#4 GUACUCGUCUCUCACCAAA 
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Appendix 3: Primer sequences 

Primers were obtained from Sigma-Aldrich. DNase/RNase-free distilled water used to 

reconstitute the primers to 100 μM stock concentration, then diluted to 100 nM as a final 

concentration for each primer in the reaction.  

 

Primer Forward (5’ → 3’) Reverse (5’ → 3’) 

CYR61 AAGAAACCCGGATTTGTGAG TCTTGGTCTTGCTGCATTTC 

FABP4 TGGAAATTGTCTCCAGTGAA CATGCCAGCCACTTTCCT 

FBLN5 CGCTGTGAGGAGCCTTATCT CAAGATGGTAAAGGGCTGGT 

FOXC1 GACCCGGACTCCTACAACAT TGTCCTTCTCCTCCTTGTCC 

TAGLN GCTGAGGACTATGGGGTCAT ACTAGGGTCCTCTGCACTG 

MAPK1 TGCTAGATTCCAGCCAGGAT GAACACCGATGTCTGAGCAC 

FBLN1 GAGACCGGAGATTTGGATGT CAGCGGTCATTCAGATATGG 

FOXO1A GGATAAGGGTGACAGCAACA GTTCCTTCATTCTGCACACG 

LAMA2 AGGGATGTGCATCTGCTATG ATCGCCACATGTGTTATGCT 

EFEMP1 GGATCCTTTGCATGTCAGTG TCTTTGGTGGCAATATGGAG 

CFHL1 ACAATGGTCAGAACCACCAA CTGTTTGGCTGTCCACCTTA 

PLA2R1 CTGTCCAGATGGTTTGGTTG CCAGTTTGACTGGTCTGTGG 

ENTPD1 TCAACTATCTGCTGGGCAAA AAGCTCCAAAGGTTTCCTGA 

BCKDK AATGGCGGTGGACTGTTC AGGATGCTGACAGGCTCA 
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