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ABSTRACT 

The construction of layered mafic-ultramafic intrusions has traditionally been attributed to gravity-

driven accumulation, involving the mechanical settling of crystals onto the magma chamber floor, at 

the interface between the crystal mush at the base and overlying replenishing magma, such that the 

layered sequence of cumulates (i.e., the crystal mush) at the floor aggrades upwards. The Rum 

Western Layered Intrusion (WLI) is a ~250 m sequence of layered peridotite cumulates comprising 

the structurally lowest portion of the Rum Layered Suite (RLS). As such, it is taken to represent the 

oldest sequence in the RLS and has been assumed to young upwards. The WLI hosts the largest 

proportion of harrisite, a cumulate composed of skeletal olivine that formed by in situ crystallisation, 

in the Rum layered intrusion. Harrisite layers in the WLI ubiquitously exhibit extremely irregular 

upward-oriented apophyses, up to several metres high and metres across, alongside laterally extensive 

dome-like structures; features consistent with intrusive, sill-like emplacement of harrisite. The 

distribution and abundance of harrisite therefore points to chaotic sill-like emplacement of the 

magmas that produced at least half of the WLI cumulate. This probably occurred various ambient 

crystal mush temperatures and punctuated intervals during cumulate formation. The harrisite layers 
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are associated with numerous Cr-spinel seams occurring along the tops, bases, and interiors of these 

layers, suggesting they formed in situ alongside harrisite sills within the crystal mush. Detailed 

quantitative textural and mineral chemical analysis of Cr-spinel seams support a simple in situ 

crystallisation process for their formation. It is suggested the Cr-spinel seams form within melt 

channels that develop along the same hot tears that allowed the harrisite parental melts to enter the 

crystal mush. The chemistry and texture of Cr-spinel is controlled by the volume of through-flow of 

melt through the melt channel. Where melt flux through channels was high, sulphide and platinum-

group minerals are more abundant, highlighting the key economic implications of this model for the 

platinum-group element enrichment of chromitite horizons in layered intrusions. We also highlight the 

role of infiltration metasomatism at multiple levels of the WLI, where porous percolation of 

interstitial melt and reactive liquid flow played a key role in cumulate formation, supporting the 

notion of layered intrusion growth by incremental sill emplacement. 
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INTRODUCTION 

Our understanding of the way that layered mafic-ultramafic intrusions are constructed is dominated by 

gravity-driven accumulation, where crystal settling from a column of magma produces a crystal pile at 

the magma chamber floor (Wager & Deer, 1939; Brown, 1956; Wager et al., 1960; Jackson, 1961; 

Wadsworth, 1961; Emeleus et al., 1996; Campbell, 1978; Sparks & Huppert, 1984; Huppert et al., 

1986; McBirney & Nicolas, 1997; Holness, 2005; 2007; Tegner et al., 2009; Brandiss et al., 2014; 

Holness et al, 2017; O’Driscoll & VanTongeren, 2017). In open systems, replenishing magma enters 

the chamber at the interface between the resident magma and the crystal pile. Long-held views 

envisage the crystal mush at the floor of the magma chamber solidifying as a static mass, which may 

undergo chemical and thermal exchange with the magma above but is kinematically immobile (see 

discussion by Maier et al., 2013 and references therein). Alternative models for layered intrusion 

development by in situ crystallisation focus on a boundary layer at the magma chamber floor and 



around the intrusion margins as the zone where intrusion growth primarily occurs (O’Driscoll et al., 

2010; Latypov et al., 2013; Latypov et al., 2015).  

The recent identification of out-of-sequence (not upward forming order) layers in the Bushveld 

Complex (South Africa) by Mungall et al. (2016), as well as in the Stillwater Complex by Wall et al 

(2018), by applying high-precision U-Pb geochronology has cast doubt on the classic paradigm that 

all layered intrusions are constructed from the bottom up. Although controversial, Mungall et al. 

(2016) suggest that the platinum-enriched horizons are associated with out-of-sequence layers, which 

develop due to sill-emplacement into semi- or completely solidified cumulate. Layered intrusion 

formation by sill emplacement, where magma replenishment occurs into the crystal mush, has been 

invoked for other layered intrusions (including Rum) based on detailed field evidence (e.g., Bédard et 

al., 1988; Tegner & Robins, 1996; Hepworth et al., 2017). The mechanisms of sill-emplacement in 

layered intrusions require careful consideration of the physical and mechanical state of the crystal 

framework being intruded (Marsh, 2002; Holness et al., 2007; Humphreys & Holness, 2010; Namur 

et al., 2013; Hepworth et al., 2017). Enhancing our understanding of the behaviour of the crystal 

mush and the complex physical and chemical processes that may occur within a semi-solid framework 

during syn-magmatic intrusion is thus an important goal in further elucidating the mechanisms by 

which the precious-metal deposits typically associated with these layered mafic-ultramafic intrusions 

form, as well as the formation of layered intrusions more generally.  

In this contribution, we argue for non-traditional models of layered intrusion construction, 

i.e., sill emplacement. We present detailed field and petrological observations of the Rum Western 

Layered Intrusion (WLI; NW Scotland) and discuss the physical, thermal, and chemical processes 

occurring within the crystal mush that produced the WLI, including a detailed discussion on harrisite 

sills. We argue that our combined evidence points to a sequence of cumulate in the WLI that does not 

young upwards and propose instead that the WLI represents a dynamic and incrementally developed 

crystal mush that was intruded repeatedly by picritic and basaltic magmas. A model is also presented 

for the petrogenesis of Cr-spinel seams throughout the WLI, whereby seams represent melt channels 

formed along hot tears or shear zones that form within the crystal mush. Our conclusions highlight 

implications for the associated platinum-group element (PGE) concentration that must also occur 



within the crystal mush, with key insights for mineralisation in much larger, economically exploited 

layered intrusions. 

 

GEOLOGICAL SETTING 

The Rum Layered Suite 

The Rum Layered Suite (RLS) is a classic example of an open-system layered intrusion. It formed at 

60.53 ±0.08 Ma (Hamilton et al., 1998) as part of the British and Irish Palaeogene Igneous Province 

(BIPIP; Emeleus et al. 1996; Emeleus & Bell, 2005; Emeleus & Troll, 2014). The RLS can be divided 

into three distinct portions; the Eastern Layered Intrusion (ELI), the Central Intrusion (CI), and the 

Western Layered Intrusion (WLI; see below) (Fig. 1). The ELI is well-studied and has traditionally 

been held up as a type example of open-system magma chamber behaviour, with each major 

successive replenishment event represented by the sixteen coupled peridotite-troctolite ± olivine 

gabbro macro-rhythmic units that comprise the intrusion (Brown, 1956; Volker & Upton, 1990). Early 

models invoked batch fractionation of successive cumulus phases and crystal settling to account for 

the transition from ultramafic to felsic cumulate, which was adapted where field observations pointed 

to multiple replenishment events within a single unit (e.g., Renner & Palacz, 1987; Holness et al., 

2005; Holness & Winpenny, 2008). The construction of the ELI from the bottom up has been 

challenged for specific parts of its stratigraphy over the past ~30 years. Bédard et al. (1988) suggested 

that much of the upper portion of the ELI was emplaced as sills. Holness et al. (2005; 2007) focused 

on the Unit 9 peridotite and demonstrated that it was likely to have been emplaced into a pre-existing 

crystal mush, by documenting the effects of magma intrusion on the overlying cumulate. More 

recently, a detailed study of Unit 10 reported evidence for the peridotite portion forming 

incrementally, from numerous, small volume replenishment events within the crystal mush (Hepworth 

et al., 2017).  

 

The Western Layered Intrusion 

The WLI comprises the structurally lowest portion of the RLS and can be sub-divided into three 

composite parts (Fig. 2), from top to bottom as follows: the Ard Mheall Member (AMP), the 



Transitional Member (TSM), and the Harris Bay Member (HBM) (Wadsworth, 1961). Unlike the 

ELI, the WLI consists almost entirely of layered peridotite. The WLI (specifically ‘Harris Bay’) is the 

type locality of harrisite (Harker, 1908), an unusual variety of olivine cumulate comprising coarse, 

skeletal, branching and hopper olivine morphologies (Donaldson, 1974; O’Driscoll et al., 2007a). 

Harrisite is a key example of in situ crystallisation in layered intrusions, first documented by Wager et 

al. (1960). By comparison with the ELI, the WLI has lacked detailed attention in the literature for the 

past ~60 years. The most recent comprehensive description of the WLI is by Wadsworth (1961), 

whilst more recent research has focused on specific aspects of the petrogenesis of harrisite (e.g., 

Donaldson, 1974; 1976; 1982; O’Driscoll et al., 2007a). Wadsworth (1961) suggested that, much like 

the ELI, the WLI also represents an open-system, formed of multiple replenishment events. In the 

absence of obvious macro-rhythmic units, these replenishment events were suggested by Wadsworth 

to be recorded by harrisite layers, with so-called ‘normal’ or granular-textured peridotite representing 

periods between replenishment events, the latter formed by crystal settling of olivine from the 

overlying magma. Subsequently, the limited number of investigations into the formation of the WLI 

has broadly supported these ideas but has revealed more complexity in the variety of inferred magma 

chamber processes, such as invoking mobilisation of crystal slurries from unstable sidewalls (e.g., 

Worrell, 2002; O’Driscoll et al., 2007a). O’Driscoll et al. (2007a) supported some of the original 

concepts of Wadsworth (1961), highlighting the importance of the small volume replenishment 

events, and pointing to rapid crystallisation of harrisite from deeply undercooled picritic magma. The 

latter authors envisaged these processes operating on the magma chamber floor, with crystal settling 

or density current deposition considered to be the main process responsible for the formation of the 

granular-textured peridotite between picritic replenishment events. 

 

FIELD RELATIONSHIPS 

Many of the lithologies described here, such as harrisite and some granular-textured peridotites, are 

not true peridotites in that they contain <50 vol.% olivine. They are more accurately classified as 

olivine gabbro, troctolite, or melatroctolite in the scheme of Le Maitre (2002). However, for ease of 

comparison with the previous literature, we refer to WLI lithologies containing skeletal (or hopper) 



olivine crystals and intercumulus plagioclase ± clinopyroxene as harrisite, and granular olivine-

textured rocks as ‘peridotites’, or as ‘feldspathic peridotite’ where particularly plagioclase-rich. 

Where clinopyroxene is a particularly prominent intercumulus phase (>30 vol.%), as in some of the 

Transitional Member rocks, the prefix ‘wehrlitic’ is applied, and ‘dunitic’ to distinguish particularly 

high (>90 vol.%) cumulus olivine contents. Thus, a ‘wehrlitic peridotite’ is a rock comprising 

abundant cumulus olivine plus intercumulus plagioclase, with >30 vol.% intercumulus clinopyroxene. 

 

The Western Layered Intrusion 

The WLI was remapped as part of this study (Fig. 2). Our new map distinguishes the same three 

members as Wadsworth (1961), but here we propose a new sub-division of the Ard Mheall Member; 

the Ard Mheall Peridotite (AMP) and Upper Ard Mheall Peridotite (UAM). The exposed WLI is a 

roughly ‘half-bowl’-shaped layered body that dips shallowly towards the Long Loch Fault (LLF), the 

putative feeder zone in the centre of the RLS (Fig. 1). The dip of layering varies between the 

UAM/AMP, TSM and HBM. The dip of the layering across all parts of the WLI generally steepens 

with proximity to the LLF (to ~60), with the AMP/UAM showing an average dip of ~20 to the east. 

Some layers within the UAM are noted to dip westward at roughly 20, a feature that is variable 

throughout the member. The TSM dips ~20 to the west like the overlying AMP. The HBM is much 

shallower, dipping ~10 to the west, and its layers are horizontal with distance away from the LLF 

(i.e., in the lower portions of the HBM). Thickness estimates of the different members are consistent 

with those of Wadsworth (1961); the HBM is ~120 m thick, the TSM is ~53 m, and the AMP (incl. 

UAM) is ~245 m thick, totalling approximately 420 m of WLI peridotite cumulate (see Online 

Appendix 1). The contact between the AMP and TSM appears gradual over a vertical distance of a 

few metres, marked by a noticeable change in lithology (to wehrlitic-peridotite). The boundary 

between the TSM and HBM is exposed on the south-eastern edge of the WLI, where there is a sharp 

change from olivine-gabbros to wehrlitic peridotite. 

 

Ard Mheall Member  



Ard Mheall Peridotite (AMP) 

The AMP is the thickest peridotite body in the WLI, comprising approximately 245 m of well-layered 

peridotites that host ubiquitous Cr-spinel seams throughout. It is well-exposed all around Ard Mheall 

Mountain, where the layering dips shallowly (10–15º) towards the CI (Fig. 2), with less exposure in 

the east where the dip of layering also becomes much steeper (40–60º). The AMP was logged in eight 

sections across the WLI; the complete high-resolution versions of the logs are accessible in Online 

Appendix 2. Correlation of individual layers or even packages of layers is not possible over distances 

of more than a few hundreds of metres. Petrological ‘facies’ have been identified in the logged 

sections, which illustrate peridotite variation (and features), and also the relationships between 

peridotite and Cr-spinel seams. A summary of the petrological facies scheme is illustrated in Figure 3.  

 

Harrisite 

Harrisite is the most common peridotite in the AMP and comprises texturally variable olivine 

crescumulate–orthocumulates (see Wager et al., 1960). Harrisite layer thicknesses range considerably 

(i.e., <0.1 m to >5 m). Individual harrisite layers may vary in thickness along strike as well as taper, 

bifurcate, and terminate (Facies A; Figs. 3; 4a). While harrisite layers are generally stratabound in 

nature and define the most obvious layering present in the WLI, the topology of the upper and lower 

surfaces of each layer can vary significantly (Fig. 4b–e). Harrisite layers can be flat on both bounding 

surfaces, or more commonly display prominent apophyses on their upper surfaces (Fig. 4b; Facies B). 

Undulose ‘erosional’ bases (Fig. 3; Facies B) including rarer undercutting apophyses on their lower 

surfaces (Fig. 4d) are also observed. The latter features are not mutually exclusive and can occur 

together in individual layers. The apophyses commonly found in harrisites in the WLI range in 

amplitude from several centimetres to several metres in height. In the case of metre-scale structures, 

they clearly cross-cut existing magmatic layering in granular-textured peridotite (Figs 3: Facies C; 

4e;). Dome-like protrusions of harrisite are also documented, that cross-cut 2–3 metres of overlying 

layering but extend for >10 m laterally (Fig. 3; Facies D). Thick bodies (>1 m) of harrisite contain 

internal layering defined by variable olivine crystal morphology i.e., composite layers (Fig. 3; Facies 

E). Morphological variation in olivine can be significant between layers, although generally hopper 



morphologies dominate over branching and dendritic forms (Fig. 4f). There does not appear to be any 

consistent relationship between olivine morphology and layer thickness, but there is a correlation of 

olivine morphology with structural height through the AMP, with the base containing the highest 

concentration of skeletal and branching olivine habits, while the central and upper portions of the 

AMP contain finer-grained hopper olivine. The morphologies of olivine crystals within individual 

layers (typically <1 mm) occasionally change at the base of the layer, with hopper varieties grading 

into more branching and skeletal varieties with height in the layer (Fig. 3; Facies F). Granular-

textured peridotite autoliths are observed in harrisite layers throughout the AMP ranging from <5 cm 

to >1 m in diameter (Fig. 3; Facies G). Foliation of olivine is observed at the outcrop-scale within 

harrisite. This foliation is non-pervasive but can trace out dome-like structures (Fig. 4g) from the 

alignment of elongate, branching olivine crystals (Figs.3; Facies H; 4j). Vertical (and sub-vertical) 

plagioclase veining is seen most commonly with height approaching the UAM. Clinopyroxene and 

gabbroic pegmatite veins occur sparsely. 

 

Granular-textured peridotite 

Granular-textured peridotite is abundant throughout the AMP. It generally has significantly less 

intercumulus material (i.e., plagioclase and clinopyroxene) than harrisite (i.e., <15 vol.%). Packages 

of granular-textured peridotite are often internally layered, with a relatively limited range of layer 

thicknesses (5–20 cm). Layering is generally defined by the presence of Cr-spinel seams. Layering 

can also be defined by a gradational reduction in porosity (vol.% intercumulus proportion) towards 

the top of an individual layer, reversing sharply with the successive layer, often repeating several 

times in thicker sections of layered rock (Fig. 3; Facies I). Perturbations in fine-scale layering occur in 

close proximity to harrisite layers with high-amplitude apophyses, such as the upward flexure of 

layering adjacent to vertical harrisite contacts (Fig. 4e). Blocks of layered granular-textured peridotite 

are incorporated into harrisite, and from the random attitudes of the layering can be seen to have 

undergone some rotation (Fig. 4i). Coarser-grained (~2–3 mm olivine) bodies of granular-textured 

peridotite taper and terminate like harrisite layers. Where lateral variations in layer thickness occur, 

irregular upper surfaces may also be present (Fig. 3; Facies A and L). An alternating relationship 



between coarse (~2 mm olivine) and finer-grained (≤1 mm olivine) granular-textured peridotite is 

common, where fine-grained peridotite with a lower proportion of intercumulus material (<10%) 

occurs between coarser-grained (and Cr-spinel seam bearing) peridotite bodies (Fig. 3; Facies J), with 

a similar relationship between harrisite and granular-textured peridotite. Layer parallel foliation 

defined by the preferred alignment of tabular olivine crystals is common in granular-textured 

peridotites and is variably pervasive at the outcrop-scale. In both harrisite and granular-textured 

peridotite, clinopyroxene content broadly increases approaching the UAM (where it is >15 vol.%) 

though this abundance can still vary from layer to layer. 

 

Porphyritic peridotite 

A third peridotite type can be identified in the AMP termed ‘porphyritic peridotite’. This peridotite 

forms layers much like the granular-textured peridotite, but contains large, up to 7 cm long 

megacrysts of hopper and tabular olivine (Fig. 4j). The proportion of the olivine megacrysts varies 

significantly, sometimes comprising the bulk of thin peridotite layers or as low as 5 vol.% of a layer 

(Figs. 3; Facies K; 4j). The host material is always fine to medium-grained granular-textured 

peridotite. Porphyritic-peridotite layers where the olivine megacrysts comprise a significant 

proportion (i.e., >50 vol.%) of the layer are ubiquitously thin (<5 cm), and often repeated in regular 

intervals (see Online Appendix 2). Megacrysts are often common with proximity to harrisite bodies, 

but this is not consistent throughout the AMP (Fig. 3; Facies K). Porphyritic peridotite bodies 

typically exhibit a strong foliation, defined by the olivine megacrysts, though fine-grained olivine 

crystals in the groundmass also contribute to the foliation in these cases. O’Driscoll et al. (2007a; 

2015) reported imbrication-like structures in some of the olivine megacrystic layers. This feature was 

not observed during this investigation.  

 

Cr-spinel seams 

Cr-spinel seams are extremely abundant in the AMP (see logs in Online Appendix 2), occurring in all 

varieties of peridotite. Individual seams are not laterally extensive and can rarely be traced for more 

than several tens of metres along strike. The thickness of Cr-spinel seams is highly variable, ranging 



from 2–30 mm. The thickness of individual seams can vary laterally over several metres, as can the 

modal abundance of Cr-spinel in seams. Discrete layers of granular-textured peridotite can be 

relatively enriched in Cr-spinel, creating diffuse seams up to 5 cm thick which can be traced for 

several tens of metres. The textures of many of the Cr-spinel seams in the AMP (and WLI more 

broadly) are comparable to those in the Unit 12 and Unit 10 peridotite in the ELI, which were 

described as ‘chain-textured’ by O’Driscoll et al. (2010) and Hepworth et al. (2017). This texture is 

characterised by Cr-spinel forming chain-like aggregates around cumulus olivine crystals. The 

intercumulus silicate fraction comprises plagioclase with rare clinopyroxene. Unlike Cr-spinel seams 

in the Unit 12 and 10 peridotites, seams in the WLI can also be formed of chromitite (>60 vol.% Cr-

spinel), containing little to no cumulus olivine at all. Thus, the AMP Cr-spinel seams can be divided 

into similar groups as those suggested for Unit 10 by Hepworth et al. (2017), based on their 

relationship to their host peridotite: granular-textured peridotite-hosted seams, boundary seams, 

harrisite-hosted seams, foliated peridotite-hosted seams, and an additional group of chromitite seams.  

Granular-textured peridotite-hosted seams exhibit no textural or mineralogical variation in the 

peridotite above or below the seam (Figs. 3; Facies I) and can be undulose (Figs. 4h; 5a). Boundary 

seams occur with a distinct textural or mineralogical variation in the peridotite on either side of the 

seam, e.g., a Cr-spinel seam between harrisite and granular-textured peridotite (Fig. 5b). Boundary 

Cr-spinel seams occur on the base (Fig. 3; Facies L), the top (Fig. 3; Facies M), or more rarely both 

surfaces of harrisite and granular-textured peridotite layers (Fig. 3; Facies N). Foliated peridotite 

(including harrisite)-hosted seams occur where cumulus olivine defines a foliation within (and less 

commonly outside) the upper and lower limits of the Cr-spinel seam. Harrisite-hosted seams occur 

within harrisite layers and contain Cr-spinel that is coarse-grained (>1 mm in diameter). Chromitite 

seams have little (<5%) or no cumulus olivine within the limits of the Cr-spinel seam and tend to be 

particularly thick (>10 mm) (Fig. 5c). Chromitite seams are most commonly found within harrisite 

layers but can also occur within granular-textured peridotite. Chromitites can also develop laterally 

from another variety of Cr-spinel seam (Fig. 5d). These seams tend to be discontinuous and very 

irregular, with depressions and culminations along strike (Figs. 3; Facies O; 5e). Harrisite-hosted (and 

chromitite) seams in the WLI may occur with vertical or sub-vertical orientations, so are not typically 



stratiform like those reported in Unit 10 of the ELI (Hepworth et al., 2017). Cr-spinel seams in 

granular-textured peridotite can be locally cross-cut by upward-oriented harrisite apophyses (Fig. 4h), 

and by plagioclase veins. In the former case, the Cr-spinel seam is also deformed, following the broad 

amplitude of the underlying harrisites upper surface. 

 

Upper Ard Mheall Member (UAM) 

The UAM is situated at the top of the WLI at Ard Mheall and in the same structural position on the 

eastern side of the WLI, where it contains layers that dip steeply toward the adjacent CI (Fig. 2). In 

both localities, the UAM has a minimum thickness of ~30 m. The boundary between the AMP and 

UAM appears to occur over a 5–10 m thick interval, where mm–cm-sized intercumulus clinopyroxene 

oikocrysts are developed across the boundary. There is a change in outcrop colour from brown to 

grey, marking the transition into the UAM, caused by the increased abundance of intercumulus 

plagioclase and widespread plagioclase veining (Fig. 6a). The UAM is considerably less well-layered 

than the AMP peridotites and where layering does exist, it appears to be caused by the variation in 

abundance of intercumulus phases, particularly clinopyroxene (Fig. 6b). The dip of this layering is 

concordant to that measured in the AMP, dipping shallowly to moderately toward the east. 

Stratabound mm–cm scale plagioclase veining also defines a layering structure in the UAM, which 

dips shallowly to the west. Harrisite is present in the UAM but is less common than in the AMP, 

occurring as vertically-oriented sheets, cross-cutting magmatic layering in the host rock (Figs. 3; 

Facies P; 6c). Broadly, an increase in the abundance of intercumulus clinopyroxene is the most 

distinctive feature of the UAM (Fig.3; Facies Q), where this mineral comprises up to 40 vol.% of the 

wehrlitic peridotites (Fig. 6b, d). Abundant, vertically-oriented plagioclase veins locally cross-cut 

layering and are continuous at the outcrop-scale (Fig. 3; Facies R). Cr-spinel seams are not observed 

throughout the entire UAM. Exposures of the UAM to the east, in closer proximity to the CI, also 

contain abundant intercumulus clinopyroxene. Clinopyroxene veining is also present, in contrast to 

the Ard Mheall UAM exposures. Close to the boundary with the CI, irregularly shaped troctolite 

autoliths (<20 cm) occur in the UAM peridotites, a phenomenon not observed in the western UAM. 

Base-metal sulphides are unusually common in some of the eastern exposures of the UAM.  



The Transitional Member (TSM) 

The TSM is a ~50 m thick layered peridotite body that crops out between the AMP and the HBM (see 

Online Appendix 2 for structural position). The layering has an average dip of ~20º towards the NE. 

The contact between the AMP and TSM is marked by a gradational transition downwards from 

layered feldspathic and dunitic-peridotites (AMP) to a red-weathered wehrlitic-peridotite (TSM) over 

<5 m from the AMP. The TSM is well-layered like the AMP and contains both harrisite and granular-

textured peridotite types (Fig. 7a). The range of thicknesses of layers is like those in the AMP, though 

harrisite layers are generally thinner (i.e., typical range of 0.2–2 m). Fine-scale layering in the 

granular-textured peridotites occurs at the cm-scale, with layers defined by variations in intercumulus 

material and/or the presence of Cr-spinel seams (Fig. 7b). The irregular tops and basal surfaces of 

harrisite layers occur in the TSM (Fig. 7c, d), though the amplitude of the apophyses observed is 

considerably less (<1 m) than in the AMP. Upward-oriented harrisite apophyses sometimes connect 

with overlying harrisite layers (Fig. 7d). Olivine within the harrisite are dominated by coarse-grained, 

bladed to branching shapes, often >10 cm in length (Fig. 7e). Harrisite bodies towards the top of the 

TSM are texturally heterogeneous, with clinopyroxene-poor layers containing large, irregular patches 

of hopper olivine, like morphologies in the AMP (Fig. 7f). The TSM cumulates have noticeably more 

intercumulus material (>20 vol.%) than those in the AMP, and although feldspathic-peridotites exist 

within the member, wehrlitic peridotites are dominant. Feldspathic peridotite is only found adjacent to 

Cr-spinel seams. The wehrlitic peridotites have a high proportion of rounded, cm-sized clinopyroxene 

oikocrysts (Fig. 7a). Cr-spinel seams in the TSM are less common than in the AMP, but display 

identical lithological relationships to those in the AMP (Fig. 7b). The Cr-spinel seams are extremely 

discontinuous, rarely extending laterally for more than a few metres, but they can change significantly 

in thickness and Cr-spinel concentration along strike, like they do in the AMP. Thick sheets (>10 cm) 

of gabbroic pegmatite are also common in the upper portion of the TSM (Fig. 7e). 

 

The Harris Bay Member (HBM) 

The HBM is approximately 120 m thick and comprises the structurally lowest exposed portion of the 

WLI (Fig. 2). The boundary with the overlying TSM is sharp, with a shallow dip <15 toward the N–



NE. In the lowermost part of the HBM, layering is horizontal. A schematic cross section through the 

WLI thus suggests onlap of the HBM by the overlying members (see Online Appendix 1). The contact 

of the HBM with the Western Granite is well-exposed at Harris Bay (Fig. 2), where the HBM clearly 

intrudes into the granite (see Greenwood, 1987 and Online Appendix 3). Discrete sheet-like lobes of 

the HBM protrude into the granite, defining an irregular and complex boundary zone (see Online 

Appendix 3).  

The HBM is well-layered, but unlike the overlying members, consists of a high proportion of 

feldspathic cumulates (e.g., olivine-gabbro). There is a noticeable increase in the proportion of 

gabbroic cumulate towards the top of the member, such that the most olivine-rich lithologies crop out 

towards the base (at sea level). Layer thicknesses are relatively consistent throughout the member, 

with layers rarely exceeding 1 m, and on average are ~0.5 m thick. There is a broad decrease in the 

thickness that individual layers attain towards the top of the HBM, where layers are generally <0.5 m 

(Fig. 8a). Harrisite layers exhibit apophyses on their upper surfaces as reported for the overlying 

members, and large (up to 1 m long) olivine crystals are present in some outcrops (Fig. 8b). Individual 

harrisite layers also bifurcate (Fig. 8c). Granular-textured peridotite layers occur between harrisite 

layers that also display internal, finer-scale layering (1–2 cm thick). Cr-spinel seams are absent in the 

HBM, with layering is defined by relatively small changes in the intercumulus mineralogy. Foliation 

of tabular olivine crystals is present, most commonly surrounding harrisite layers where it may be 

very strong (e.g., Fig. 8d). The thickness of gabbroic layers varies between 0.1–0.5 m thick (Fig. 8e). 

The layers are typically intercalated with harrisite but can form successions of several metres 

comprising gabbro alone. The HBM gabbro is variable in texture and mineralogy at the outcrop scale, 

defining individual layers of melagabbro, gabbro, and leucogabbro (Fig. 8f). Melagabbros are 

particularly coarse-grained (3–5 mm) whereas leucogabbros tend to be fine-grained (~1 mm) (Fig. 8e, 

f).  

 

PETROGRAPHY 

The term cumulus and intercumulus are used here as purely descriptive textural terms, the former 

describing primocryst/phenocryst phases (forming the cumulate framework), and the latter describing 



the material occurring in the interstices of the cumulus phases, with no implied genetic or timing 

implications. 

 

Ard Mheall Member 

Ard Mheall Peridotite 

Harrisite 

The cumulus mineral phase in harrisite is ubiquitously olivine, which varies in abundance depending 

on the dominant crystal morphology. Highly-skeletal harrisites have a sub-equal proportion of 

cumulus and intercumulus material, while hopper olivine-dominated harrisite tends to have a lower 

intercumulus component (i.e., 10–30 vol.%). The morphology of olivine crystals in the AMP is 

variable but strongly dominated by hopper olivine crystal shapes (typical abundances >60 vol.%), 

with subordinate branching and skeletal forms. The crystal size of olivine in harrisite varies 

significantly in the AMP but has an approximate minimum crystal size (length) of 5 mm, including 

within lithologies containing both hopper and skeletal olivine. However, it is not uncommon for 

olivine crystals to greatly exceed 5 cm in length, particularly the highly skeletal and branching 

varieties. Hopper olivine crystals tend to be more restricted in size, with an average grain size of ~1 

cm. Euhedral Cr-spinel crystals are found outside Cr-spinel seams in accessory proportions (<1 

vol.%). Accessory Cr-spinel in harrisites is often coarser-grained than in the other peridotite types, up 

to 1 mm in diameter (Fig. 5f). Finer grained (<0.1 mm) Cr-spinel occurs as rare inclusions in olivine. 

No skeletal Cr-spinel crystals were observed. The intercumulus mineralogy of the AMP harrisites is 

dominated by plagioclase, with clinopyroxene present in typical proportions of <10 vol.%. This is 

consistent across the range of harrisite morphologies. However, approaching the UAM boundary, 

clinopyroxene content increases to >15 vol.%. Intercumulus plagioclase throughout the AMP 

comprises coarse-grained (1–3 cm) oikocrysts. Where present, subordinate intercumulus 

clinopyroxene occurs as similarly-sized oikocrysts. Plagioclase displays patchy optical zoning, 

particularly near Cr-spinel seams (Fig. 9a), and clinopyroxene can also be optically zoned, though this 

is rare (Fig. 9b). The olivine foliation observed at the outcrop-scale is also apparent in thin section, 



controlled by elongate and branching olivine crystals (Fig. 9c). Trace amounts of secondary 

serpentine, chlorite, calcite, epidote and kaersutite occur in the interstices of the olivine framework. 

 

Granular-textured peridotite 

Granular-textured peridotites consist of ~70 vol.% rounded, euhedral (~0.5–3 mm) olivine crystals. A 

subordinate proportion of tabular and hopper olivine morphologies is present in most samples. A 

general observation is that the coarser-grained the peridotite, the greater the proportion of tabular and 

hopper olivine crystals. Euhedral Cr-spinel crystals occur in the interstitial areas and are also rarely 

present as inclusions in olivine. The intercumulus fraction typically comprises <15 vol.% of the 

granular-textured peridotites. For the most part, 1-5 mm plagioclase oikocrysts are dominant, though 

subordinate clinopyroxene oikocrysts of a similar size to the plagioclase also occur. Patchy 

compositional zoning is occasionally observed in both plagioclase and clinopyroxene oikocrysts (Fig. 

9b). The volume proportion of intercumulus material can vary significantly between layers and can be 

as low as ~5 vol.%, where the rock is dunitic-peridotite. In such cases, the olivine triple-junctions 

have apparent dihedral angles approaching 120º (Fig. 9d). Such a texture is also common in granular-

textured peridotite autoliths that occur within harrisite layers. The development of a foliation, carried 

by tabular olivine crystals, is common, especially adjacent to Cr-spinel seams (e.g., Fig. 9c). Trace 

amounts of secondary serpentine, chlorite, epidote, calcite and kaersutite–titano-pargasite amphibole 

occur in the interstices of the olivine framework. 

 

Porphyritic peridotite 

The granular-textured peridotite that contains olivine megacrysts has a similar mineralogy and texture 

to granular-textured peridotite, except for the cm-sized (0.75–7 cm) euhedral olivine crystals that 

predominantly occur concentrated into layers throughout (Fig. 10a), as described above. The finer-

grained granular-textured peridotite hosting the olivine megacrysts is dunitic, with a proportion of 

intercumulus plagioclase <10 vol. %. The olivine crystals in the granular-textured peridotite are fine-

grained (~1 mm) and euhedral, commonly exhibiting apparent dihedral angles at olivine three-grain-

junctions that approach 120º (Fig. 10b). Unlike the fine-grained olivine crystals, the megacrysts 



contain abundant crystallographically-constrained skeletal magnetite inclusions (Fig. 10a, b) (see also 

O’Driscoll et al. 2015). In the porphyritic peridotite, these inclusions only occur in the olivine 

megacrysts (i.e., they are absent in the fine-grained olivine in the granular-textured peridotite). 

However, it should be noted that magnetite inclusions are also observed in other harrisitic olivine 

crystals throughout the WLI (e.g., Fig. 10b, c). 

 

Cr-spinel seams 

Cr-spinel seams in the AMP exhibit a range of textures, but most are chain-textured, where the Cr-

spinel crystals occur poikilitically enclosed in intercumulus plagioclase or clinopyroxene, distributed 

between and around the cumulus olivine crystal framework (Fig. 9c). In chain-textured seams, Cr-

spinel is often observed within embayments in cumulus olivine crystals (Fig. 9a). Chromitite seams, 

where little to no cumulus olivine occurs within the seam, are less common. Cr-spinel crystal 

morphologies in seams vary slightly, depending on their host peridotite. For example, in granular-

textured peridotite hosted Cr-spinel seams, Cr-spinel has a size range of 0.05–0.3 mm, while harrisite-

hosted seams tend to be coarser-grained, with crystals up to ~0.8 mm in size, and an average size of 

0.4 mm. Chromitite seams often host particularly coarse-grained (up to ~1.3 mm-sized) Cr-spinel 

crystals as well (Fig. 9e). Cr-spinel crystals in all seams are mostly euhedral. However, in some 

texturally distinct zones within composite chromitite seams, the crystal faces are notably lobate. It 

should also be noted that this texturally distinct zone in composite chromitite seams is not a uniform 

thickness on seam margins (see Fig. 18). Aggregates of Cr-spinel crystals occur in some samples, 

resulting in irregularly-shaped glomerocrysts. Within these, the constituent crystal boundaries can be 

resolved using reflected light microscopy. In chromitite seams, plagioclase is the only intercumulus 

phase (typically comprising ≤30 vol.% of the seam) and is typically severely altered. In some 

instances, chromitite seams appear to cross-cut olivine crystals, such that a given olivine crystal is in 

optical continuity on either side of the seam, so presumably predates the formation of the seam (Fig. 

9e). This microtextural relationship has previously been reported for Cr-spinel seams in the ELI Unit 

12 peridotite by O’Driscoll et al. (2010). Well-rounded inclusions are very common in coarser-

grained Cr-spinel crystals in harrisite-hosted and chromitite seams. The inclusions define internal 



zones within Cr-spinel crystals or can be concentrated in crystal cores (see Fig. 9e). The inclusions 

have a variety of compositions, including kaersutite, plagioclase, clinopyroxene, and base-metal 

sulphide (in one of the latter instances including a Pt-arsenide grain). Amphibole (kaersutite) is the 

most common type of inclusion. Ilmenite exsolution occurs in Cr-spinel crystals in the WLI but is 

much less a feature of Cr-spinel in seams, than accessory Cr-spinel in the various types of peridotite.  

Base-metal sulphides, alloys and native metals are present in the AMP cumulates, especially in 

close (mm–cm) proximity to Cr-spinel seams. Chromitite seams have a higher abundance of sulphides 

than chain-textured Cr-spinel seams. Common sulphide phases include chalcopyrite (CuFeS2), 

pentlandite (Fe, Ni9S8), chalcocite (Cu2S), heazlewoodite (Ni3S2), with less common bornite 

(Cu5FeS4), pyrrhotite (FeS) and native copper. The sulphides typically attached to the edges of Cr-

spinel crystals. Where base-metal sulphides are in contact with Cr-spinel, the latter displays alteration 

to sieve-textured ferrian chromite (Fig. 9f). Platinum-group minerals (PGM; e.g., sperrylite) with 

upper grainsize limits of ~1 µm, can also be observed, closely associated with base-metal sulphides. 

 

Upper Ard Mheall Member (UAM) 

The texture of the UAM peridotites resembles the granular-textured peridotites in the AMP, but with 

key mineralogical variations. Olivine is the dominant cumulus phase, with sparse cumulus Cr-spinel 

(also occurs as rare inclusions in olivine). Olivine crystals are equant (typically <3 mm), with less 

common tabular and hopper crystal morphologies. Rare harrisite layers are dominated by cm-sized 

hopper olivine crystal morphologies, as observed in the AMP. The volume proportion of intercumulus 

material in the granular-textured peridotite is higher than in the AMP (i.e., 15–25 vol.%). The 

intercumulus mineralogy is dominated by plagioclase but clinopyroxene is more abundant (15–40 

vol.%) than in the AMP. Intercumulus plagioclase oikocrysts are coarse-grained, typically >5 mm, 

with clinopyroxene oikocrysts typically in the size range 0.5–1 cm, occasionally up to ~3 cm. While 

plagioclase oikocrysts tend to be equant, clinopyroxene-oikocrysts are both equant and elongate. 

Patchy compositional zoning is present in both intercumulus phases. A foliation, defined by olivine 

crystals, is locally developed.  

The Transitional Member 



The cumulus mineralogy of harrisites in the TSM comprises coarse-grained, skeletal and bladed 

olivine crystals, up to several cm in size. Rare euhedral Cr-spinel (<0.2 mm) crystals are present 

between olivine crystals. Inclusions (<0.1 mm) of Cr-spinel are also found rarely within olivine. The 

intercumulus volume proportion constitutes >30 vol.% of TSM harrisites and as much as 40–50 

vol.%. The intercumulus proportion is made of coarse-grained plagioclase and clinopyroxene 

oikocrysts, typically as rounded crystal forms (0.5–2 cm in diameter). Plagioclase is slightly more 

abundant than clinopyroxene, typically making up 50–60 vol.% of the intercumulus fraction. Patchy 

compositional zoning is present in both intercumulus phases (Fig. 11a, b). 

Olivine in wehrlitic-peridotites has a very similar texture to that observed in the AMP granular-

textured peridotites. Rounded–equant olivine crystals (0.5–3 mm), with subordinate hopper crystals, 

are dominant. Olivine crystals are smaller in size (≤0.5 mm) near or within some Cr-spinel seams. 

Cumulus clinopyroxene crystals also occur rarely in the wehrlitic-peridotites, displaying weakly 

developed exsolution lamellae (Fig. 11c). The proportion of intercumulus material is >20 vol.%, with 

plagioclase and clinopyroxene the dominant phases. Plagioclase is more abundant than clinopyroxene 

(approximate ratio of 60:40). Both occur as 0.5–2 cm rounded oikocrysts, with some more irregular 

clinopyroxene oikocrysts present. Both intercumulus phases display patchy compositional zoning, 

more commonly in the clinopyroxene (Fig. 11b).  

Feldspathic peridotite in the TSM is dominated by intercumulus plagioclase, comprising >50 

vol.% of the rock. This lithology only occurs near Cr-spinel seams in the TSM (Fig. 11d). Olivine is 

the only cumulus mineral, with a tendency to form elongate, skeletal forms <1 cm in length (Fig. 11a). 

Fine-grained Cr-spinel is present outside the seams, distributed around olivine crystals. Plagioclase 

oikocrysts are rounded–elongate, and 1–5 mm in diameter, and display patchy optical zoning (Fig. 

11a). Intercumulus clinopyroxene is rare (≤5 vol.%) and has a similar size range of sizes to 

plagioclase but exhibits more irregular–rounded crystal shapes. Secondary serpentine, chlorite, 

epidote and particularly kaersutite are present in greater quantities than in the AMP (i.e., 1–3 vol.%) 

in all peridotite types in the TSM. 

Cr-spinel seams are rare in the TSM but share similar characteristics to those found elsewhere in 

the WLI, except that clinopyroxene oikocrysts are more abundant in the seams than plagioclase. Cr-



spinel seams in the TSM have higher proportions of intercumulus material, notably where 

clinopyroxene is the primary intercumulus phase (Fig. 11e), and plagioclase is almost absent (<5 

vol.%). Olivine crystals poikilitically enclosed in intercumulus clinopyroxene are often significantly 

smaller and more rounded than olivines outside of the oikocrysts (Fig. 11f) and can define relict zones 

within the oikocryst where the olivine crystals remain in optical continuity with each other (Fig. 11f). 

Cr-spinel crystals in seams in the TSM are largely subhedral–anhedral and are typically 0.05–0.4 mm 

in diameter. There are larger numbers of fine-grained crystals (~ 0.05 mm), particularly where 

poikilitically enclosed by clinopyroxene. Irregularly-shaped aggregates of Cr-spinel are common.  

Base-metal sulphide minerals are more common in the TSM than in the AMP (Fig. 11g), and 

comprise chalcopyrite, pentlandite and abundant pyrrhotite. The pentlandite has a lower Ni:Fe ratio 

than pentlandite in the AMP, with noticeably lower Ni contents (see Online Appendix 5). Sulphides 

are particularly abundant in feldspathic peridotites but are also common in harrisites and wehrlitic-

peridotites (Fig. 11g). The sulphides are often attached to or close to Cr-spinel crystals. As before, 

alteration of the Cr-spinel where in close proximity to base-metal sulphide is ubiquitous (Fig. 11g). 

 

The Harris Bay Member 

Peridotite 

The cumulus mineralogy of harrisite in the HBM comprises olivine and plagioclase. Olivine typically 

occurs as coarse-grained (up to ~1 m long, in some cases, more commonly ~50 cm), skeletal and 

bladed crystals that do not appear to show any preferred orientation (Fig. 12a). Plagioclase also occurs 

as a cumulus phase. Cumulus plagioclase crystals are coarse-grained (1–5 mm), euhedral–subhedral 

tabular crystals that commonly display optical zonation, including oscillatory zoning (Fig. 12b). 

Intercumulus plagioclase is abundant in harrisite occurring as anhedral oikocrysts, ~1–5 mm in 

diameter, though some larger (up to 10 mm) oikocrysts are also present. Optical zoning is present, 

though less commonly than in cumulus plagioclase, and is not observed as frequently as in the AMP 

and TSM. Intercumulus clinopyroxene comprises ~30–40 vol.% of the total intercumulus fraction, 

with very coarse ~5–20 mm, anhedral oikocrysts that locally display strong, patchy zoning (e.g., Fig. 

12c). Disseminated Cr-spinel crystals (<0.2 mm grainsize) occur throughout the harrisites, in the 



interstices of the silicate framework. Phlogopite and calcic-amphibole are also present in quantities 

ranging between 1–3 vol.%, as well as occasional serpentine, chlorite, calcite and sparse apatite. 

Where present, the amphibole can also exhibit complex optical zoning (Fig. 12d).  

Granular-textured peridotites in the HBM have mineral modes akin to those recorded in harrisite, 

though olivine is not as coarse-grained or skeletal (typically <5 mm), and the overall grainsize of 

plagioclase is also smaller (i.e., <2 mm). Olivine is ubiquitously cumulus, while plagioclase is 

intercumulus and rarely cumulus. Granular-textured peridotites in the HBM are often wehrlitic. 

Plagioclase (cumulus and intercumulus) and intercumulus clinopyroxene exhibit compositional 

zoning. Cr-spinel and magnetite are present as <0.2 mm euhedral–subhedral crystals, typically found 

in the interstices of the olivine framework but also as rare inclusions in olivine. Slightly higher than 

trace abundances (typically 1–3 vol.%) of secondary phlogopite, amphibole, serpentine, chlorite, 

calcite and apatite are also present. 

 

Gabbros 

The olivine-gabbros in the HBM contain olivine, plagioclase and clinopyroxene. There is significant 

variation in the textures between the melagabbros, olivine gabbros, and leucogabbros, although the 

textural configuration of olivine, plagioclase, and clinopyroxene is broadly the same in all gabbro 

types. In the melagabbros, olivine makes up ≤15 vol.% of the mineralogy, and exhibits distinctly 

anhedral, morphologies (0.25–3 mm in length). Olivine is often severely altered to serpentine and 

fine-grained iddingsite-chlorite mixtures. Plagioclase is abundant (>60 vol.%) and exhibits subhedral 

crystal shapes and crystal sizes ranging from 0.5–3 mm. Compositional zonation is ubiquitous in 

plagioclase, with oscillatory zoning rarely observed. Clinopyroxene is also abundant, as cumulus 

crystals ~2–3 mm in diameter and mm to cm-sized oikocrysts. Both intercumulus and cumulus 

pyroxenes are commonly zoned, with distinctly ‘spongy’ rims present on some cumulus crystals. The 

olivine-gabbro is mineralogically like the melagabbro, but exhibits a finer-grained texture, with 

olivine (<1 mm), plagioclase (<2 mm) and clinopyroxene (<3 mm) crystals all consistently smaller. 

Olivine and clinopyroxene are less abundant than in melagabbro, <10 vol.%, and <25 vol.%, 

respectively. Optical zoning is present in both plagioclase and clinopyroxene as in the melagabbros. 



Spinel (mostly magnetite) in the gabbros exhibits highly skeletal morphologies, forming elongated 

needles and blades (Fig. 12f). The leucogabbros are finer-grained than the other gabbro types with 

olivine, plagioclase, and clinopyroxene having grainsizes ≤1 mm. Plagioclase is ubiquitously altered, 

exhibiting a ‘dusty’ appearance as result of saussuritization. Olivine comprises <5 vol.% in the 

leucogabbros and is typically highly altered to iddingsite-chlorite mixtures. Clinopyroxene is cumulus 

in appearance, less altered than plagioclase and typically <1 mm in diameter. Cumulus crystals, and 

rarer intercumulus crystals, of perthitic alkali-feldspar (orthoclase) are present (Fig. 12e). Pockets of 

quartz are also found within the leucogabbros. Apatite is also observed at higher than trace amounts 

within all gabbros. Base metal sulphides (e.g., chalcopyrite and pyrrhotite) are observed in close 

spatial association with spinel in all three gabbro types. 

 

QUANTITATIVE TEXTURAL ANALYSIS 

Crystal Size Distribution (CSD) Analysis  

Method 

Crystal Size Distribution (CSD) analysis provides a means to study the kinematics of crystal 

nucleation and growth in rocks, independent of experimental or thermodynamic methods (Cashman & 

Marsh, 1988; Marsh, 1998; Boorman et al., 2004). Simple crystallisation in open (steady-state)- or 

closed (batch)- magma system end-members should produce a straight (log-linear) CSD profile that 

reflects increasing nucleation of crystals as the magma solidifies (Marsh, 1998). Deviation from an 

ideal log-linear profile (e.g., kinking or curvature) has been attributed to a variety of magmatic 

processes such as crystal accumulation or removal (Marsh, 1998), coexistence of more than one 

crystal population (i.e., in crystal cargos or slurries; Higgins, 1994; Marsh, 1998), and postcumulus 

processes such as crystal annealing, coarsening (e.g., Ostwald ripening) or physical compaction of 

crystal mushes (Higgins, 2002b; Boorman et al., 2004). Recent numerical modelling of crystal 

nucleation and the resultant CSDs by Špillar & Dolejš (2014) suggests that log-linear to concave-

down profiles, the latter often proposed to be caused by crystal coarsening, can be formed by variable 

growth and nucleation rates. Concave-up CSD profiles, often attributed to be the result of mixing 

populations or crystal accumulation, can be produced by heterogeneous nucleation (Špillar & Dolejš, 



2015a). CSD parameters such as characteristic length and intercept have been shown to share a 

relationship irrespective of the volume percentage of the mineral phase analysed (Higgins, 2002a). 

The consideration of closure in CSDs can reveal important information about the quality of CSD 

calculations and the degrees of freedom available to interpret CSD data; i.e., samples which are close 

to or on the closure limit cannot have undergone processes that significantly alter the volumetric 

phase proportions between samples, such as textural coarsening (Higgins, 2002a). Conversely, if a 

population does not come close to its closure limits, more freedom to interpret changes in the 

volumetric abundance exists (Higgins, 2002a). 

The CSDs reported in this study were determined from polished thin-sections and calculated 

following the approach of Higgins (2000; using CSDCorrections version 1.4). Cr-spinel and olivine 

crystals were manually digitised using reflected and cross-polarised light, respectively. Reflected light 

images were used for Cr-spinel to avoid misidentification of annealed opaque crystals in transmitted 

light (see O’Driscoll et al., 2010; Vukmanovic et al., 2013). The digitised images were then processed 

using ImageJ image analysis software (Schneider et al., 2012) to calculate the input parameters for 

CSDCorrections. For Cr-spinel in this study, we employed ‘feret-length’, the length of a square with 

an area equal to the analysed crystal, as our main size parameter, following O’Driscoll et al. (2010). 

No alignment of Cr-spinel is observed in any of the samples (i.e., a ‘massive’ fabric setting was used). 

An aspect ratio of 1:1:1 and roundness factor of 0.5 were input into CSDCorrections. In total, 37 

CSDs were produced from various WLI Cr-spinel seams (see Fig. 13), covering the range of different 

Cr-spinel seam textural types described above. Data were produced for a minimum of 500 crystals in 

each sample, where possible, to produce a statistically robust representation of each seam (Mock & 

Jerram, 2005). As the smallest crystals are easily distinguishable using reflected light, the lower 

crystal size limit is taken as the true lower limit of the sample. The quantification of crystallinity used 

in some CSD derivative plots was calculated using ImageJ, with the R-value calculated within 

CSDCorrections version 1.4 (see. Jerram et al., 1996; Higgins, 2006). 

 

Results 



The CSD plots are presented in Figure 13, with the raw CSD output data provided in Online 

Appendix 3. The different groupings of Cr-spinel seams established based on petrographic 

observations are generally not distinguishable in the CSD dataset. All CSDs display a log-linear 

profile at larger size portions, with deviation in some profiles at smaller size fractions, and reveal a 

range of slope values from -38.0 to -6.4 mm-1. Granular-textured and boundary-type Cr-spinel seams 

(Figs., 13a, b) have very similar slope values (-37.8 to 17.1 mm-1). Harrisite-hosted Cr-spinel seams 

have shallow CSD slopes (Fig. 15c) but can be delineated based on the dominant olivine morphology 

of the host. Specifically, skeletal olivine-dominated harrisite-hosted Cr-spinel seams have slope 

values between -38.0 and -32.0 mm-1, whereas hopper olivine-dominated harrisite-hosted Cr-spinel 

have shallower slope values between -26.6 to -11.8 mm-1. Chromitite seams have the shallowest 

slopes (i.e., ≤ -14 mm-1
; Fig. 13d). Composite chromitite seams display variable CSD profiles across 

the different textural zones, where coarser-grained zones have distinctly shallower slopes than the 

central finer-grained zone (Fig. 13e). Downturns at the smallest size fractions are observed in CSDs 

from Cr-spinel seam types, except for harrisite-hosted seams, in which the downturn is absent in 

skeletal olivine-dominated harrisite-hosted seams, but present in hopper olivine-dominated harrisite-

hosted seams (Fig. 13c). Foliated peridotite-hosted seams have a distinctive CSD profile similar to 

those reported for the Unit 10 peridotite (Hepworth et al., 2017). They display a log-linear profile at 

the largest size portions but have a broadly ‘humped’ profile at the small size fraction. The TSM Cr-

spinel seam CSD profiles show similar patterns to those in the AMP (Fig. 13f), with log-linear 

profiles at larger size portions, and some downturns at smaller size fractions. The data from the TSM 

and AMP show a comparatively restricted range of slope values between -16.3 and -24.1 mm-1, which 

mainly represent the large size fractions of the CSDs. The TSM CSDs exhibit slightly higher 

population densities and complex profile shapes at the smaller size fractions, than the AMP (Fig. 13f) 

CSD derivative diagrams can be found in Online Appendix 4, with selected plots illustrated in 

Figure 14. A characteristic length (CL) versus volumetric proportion plot distinguishes some of the 

Cr-spinel seam as outlined previously (Fig. 14a), such as the chromitite seam group, which plot with 

distinctly higher CL and a relatively high-volume proportion of Cr-spinel, and a harrisitic peridotite-

hosted Cr-spinel seam outlier. The other seam groups cluster closely together with low CL and 



volumetric abundance. The volume percentage of Cr-spinel (calculated in ImageJ) was plotted against 

the crystallinity of each sample (vol.% olivine – assumed to be pre-existing; see Hepworth et al., 

2017), with a good negative correlation (R2 = 0.77; Fig. 14b) suggesting a correlation between the 

availability of space in the crystal framework and Cr-spinel abundance. Most samples plot well below 

the closure limits defined by 100% volumetric abundance. Spatial Distribution parameters, such as R-

value (which quantifies the degree of clustering versus ordering of a grain population; see Jerram et 

al., 1996; 2003; Špillar & Dolejš, 2014; 2015a), plotted against the vol. % Cr-spinel reveal a strong 

positive correlation (R2 = 0.83; Fig. 14c). Furthermore, an increase in crystallinity results in a 

moderate negative correlation with R-value (Fig. 14d), also highlighting a relationship between 

clustering, Cr-spinel abundance, and available space within the crystal mush (i.e., more Cr-spinel 

forms where more space is available). 

 

MINERAL CHEMISTRY 

Methods 

Mineral chemical data were obtained using a JEOL JXA-8900RL electron microprobe at the 

Department of Geochemistry, Geowissenschaftliches Zentrum der Universität Göttingen (GZG) in 

2014 and 2015. The Cr-spinel compositions were obtained using an acceleration voltage of 20 kV 

with a beam current of ~20 nA and a typical beam diameter of 1 μm. Cr-spinel count times on peak 

and background for Mg, Al, Cr, Fe and Si were 15 s and 5 s, respectively, and for V, Ti, Mn, Ni and 

Zn were 30 s and 15 s, respectively. Plagioclase compositions were obtained with an acceleration 

voltage of 15 kV with a beam current of ~15 nA and a typical beam diameter of 20 µm. Plagioclase 

count times on peak and background for Si, Na, K, Ca, Fe and Al were 15 s and 5 s, respectively, and 

for Ba and Sr, were 30 s and 15 s, respectively. Clinopyroxene compositions were obtained with an 

acceleration voltage of 15 kV, a beam current of 15 nA, and a typical beam diameter of 15 µm. 

Clinopyroxene count times on peak and background for Si, Na, K, Ti, Fe, Al, Mg, Ca and Mn were 15 

s and 5 s, respectively, and for Cr and Ni, were 30 s and 15 s, respectively. The ferric iron content of 

Cr-spinel in this study was calculated following Droop (1987), assuming the spinel composition to be 



stoichiometric. Thus, small variations in ferric iron content of Cr-spinel should be treated with caution 

(Quintiliani et al., 2006; O’Driscoll et al., 2010).  

Cr-spinel compositions in eighteen different seams from the AMP (16) and TSM (2) were 

measured in two vertical traverses across each seam, each traverse consisting of ~20 points and 

extending into the host peridotite above and below. In the HBM and UAM where no Cr-spinel seams 

occur, disseminated Cr-spinel crystals were analysed. Plagioclase and clinopyroxene mineral 

chemical data from the AMP, UAM, TSM, and HBM were obtained from selected samples where 

optically zoned and unzoned crystals were observed, to evaluate the maximum range of compositions 

of these phases present in the WLI. A minimum of one rim and one core was analysed per zoned 

crystal in each case, with unzoned crystals analysed as well. Previously published mineral chemical 

analyses of plagioclase and clinopyroxene from the AMP (Worrell, 2002) have been plotted with the 

new data, for comparison.  

 

Results  

The full mineral chemical dataset discussed below can be accessed in Online Appendix 5.  

 

Cr-spinel 

The composition of Cr-spinel in the AMP is highly variable, with some of the most aluminous Cr-

spinel yet documented from the RLS (up to 39 wt.% Al2O3; Cr# [Cr3+/(Cr3+/Al3+)] 0.29). Accessory 

Cr-spinel disseminated throughout the AMP peridotites typically  has higher Cr# and lower Mg# 

[Mg2+/(Mg2+/Fe2+)] values than Cr-spinel that occurs within seams, the latter yielding higher Al2O3 

and MgO values (Figs. 15a). There is significant overlap in the Cr-spinel chemistry of boundary and 

granular-textured peridotite-hosted Cr-spinel seams. However, the chromitite seams have distinctively 

low Cr# and high Mg# values (Fig. 15a). Some compositional variation is also present in harrisite-

hosted Cr-spinel seams, where Cr-spinel has consistently higher Fe2O3 contents (~17.7 wt. %; Fig. 16) 

and elevated TiO2 concentrations (typically ~3 wt. %, and as high at 7 wt. %; Fig. 15b). It is 

noteworthy that the Cr content of the Cr-spinel does not vary substantially between the different seam 

types (overall range is 34 to 38 wt.%). Compositional traverses across Cr-spinel seams of all types 



reveals consistent variations in Cr# (and Mg#), Fe2O3 and TiO2. Specifically, Cr# and Mg# typically 

increase towards the centres of Cr-spinel seams, while Fe2O3 increases towards seam margins (e.g., 

Sample AM6; Fig. 20). In most seams, TiO2 content is constant throughout, except at the outer 

margins where it increases sharply (e.g., Sample AM18; Fig. 17). Chromitite seams display constant 

Cr-spinel compositions within the seam, but these usually change dramatically above and below the 

seam (AM18; Fig. 17). In one relatively thick, texturally composite chromitite seam (AM18; Fig. 20), 

TiO2 concentration remains constant, except at the internal textural boundary, across which a step-

change of ~0.5 wt.% TiO2 occurs (AM18; Fig 17). Compositional zoning of coarse-grained Cr-spinel 

crystals occurs locally in some chromitite seams, e.g., in sample AM18 (Fig. 18) which exhibits an 

increase in TiO2 and Fe2O3 towards the rim of the crystal.  

The composition of Cr-spinel from the UAM shows modest differences to that in the AMP, with 

slightly elevated Cr# and lower Mg# (Fig. 18a). The ferric iron content of UAM Cr-spinel is higher, 

up to 19 wt. % (Fig. 16), whilst TiO2 is similar to that in the AMP. 

Cr-spinel in the TSM exhibits distinctly lower Mg# and higher Cr# values than the AMP, with 

disseminated Cr-spinel displaying some of the lowest Mg# values in the WLI (Figs. 15a, 16). The 

ferric iron content of Cr-spinel is considerably higher in the TSM, with Fe2O3 contents ~28 wt. %, and 

TiO2 also consistently relatively high (~3 wt. %; Fig. 15b). Vertical traverses through Cr-spinel seams 

reveal similar trends to those observed in the AMP, with a broadly symmetrical pattern through the 

Cr-spinel seam with increasing Fe2O3 and Cr# towards the edges of and outside seams. However, 

TiO2 contents remain comparatively constant through the seam traverse, increasing sharply into the 

overlying peridotite (TM1; Fig. 17). The TiO2 content of all Cr-spinel in the TSM traverse is elevated 

compared to AMP traverses (~4 wt.%). Another traverse across a diffuse Cr-spinel seam in the TSM 

shows a broadly similar pattern to TM1 (Fig. 17) with an overall enrichment in TiO2, but a notable 

sharp increase as the boundary into wehrlitic peridotite is crossed. (see Online Appendix 5).  

Cr-spinel in the HBM is disseminated throughout both peridotites and gabbros and no seams are 

present. The Cr-spinels generally have high Cr# and very low Mg# (Fig. 15), and exhibit significant 

Fe-enrichment, particularly Fe2O3, with values as high as 66% wt. %. The HBM Cr-spinel is poor in 

Al2O3 overall, they are best classified as ferrian-chromite–Cr-magnetite (Fig. 16). Like the 



disseminated Cr-spinel in the other members of the WLI, TiO2 contents are relatively elevated (>3 wt. 

%; Fig. 15b). 

 

Clinopyroxene 

Clinopyroxene in the AMP is predominantly diopside, with a limited Mg# range (84–90). Cr2O3 

contents are typically ~1 wt. %, with TiO2 consistently >1 wt.% (Figs. 19a, b). There is no correlation 

between Cr2O3 or TiO2 with Mg#; instead a largely scattered array is observed that corresponds well 

to the data reported by Worrell (2002). Clinopyroxene oikocrysts in the UAM ubiquitously exhibit 

chemical zoning. Weak normal zoning with respect to Cr2O3 is observed, with rims containing lower 

values. TiO2 content also varies significantly between the cores and rims of UAM oikocrysts, with the 

cores characterised by lower (<0.5 wt.%) contents, whilst the rims have similar values (~1 wt.%) to 

the unzoned clinopyroxene of the AMP (Fig. 19b). 

Clinopyroxene in the TSM is also diopside, with lower Mg# (~83) than in the AMP. Normal 

zoning is rarely apparent, but where present is characterised by the variation of TiO2 contents from 

cores to rims of ~0.5 to ~1 wt. %, respectively, up to a maximum rim value of ~1.8 wt. % (Fig. 19b). 

Clinopyroxene in the TSM is unzoned with respect to Cr2O3 content and reveals a scattered array of 

values between 0.72–1.19 wt.% (Fig. 19a). There is a weak positive correlation between Cr2O3 and 

Mg#, and a weak negative correlation with TiO2 and Mg# (Fig. 19b). 

Clinopyroxene in the HBM has a similar composition to that of the overlying members, but is most 

like clinopyroxene of the TSM, with relatively low Mg# and with similar trends in TiO2 and Cr2O3 to 

the TSM (Figs. 19a, b). Clinopyroxene crystals in the HBM are abundantly and strongly normally-

zoned with variation observed in both Cr2O3 and TiO2 contents. The highest TiO2 and lowest Cr2O3 

contents are measured in the rims. Mg# and TiO2 are negatively correlated in HBM clinopyroxene, as 

also observed in the TSM (Fig. 19b). 

 

Plagioclase 

Plagioclase oikocrysts from the UAM consistently have a slightly lower An-content (~81 mol. %) and 

higher FeO contents (up to ~0.5 wt. %) than those in the AMP (Worrell, 2002; Fig. 19c). Plagioclase 



zoning is present, with lower An contents (~70 mol.%) at the rims (Fig. 19c).  

Plagioclase in the TSM is typically normally zoned, though oscillatory zoning and reverse zoning 

are also observed (Fig. 19c). Plagioclase cores have average An-contents ~84 ±2 mol. %, as in the 

AMP, while the rims are less calcic (~66 ±3 mol.%). The FeO content of plagioclase in the TSM is 

elevated (typically >0.4 wt.%) compared to plagioclase in the AMP (Worrell, 2002; Fig. 19c). 

Plagioclase oikocrysts in one harrisite sample in the HBM are normally and oscillatory zoned. The 

An-content of cores is comparable to the other WLI members, with high anorthite values between 72–

86 mol.%. Normally-zoned rims have among the lowest An-contents (~56 mol.%) in the WLI. The 

FeO content of all plagioclase is elevated (>0.3 wt.%) in comparison to the AMP, overlapping with 

the UAM and TSM.  

 

DISCUSSION 

The origin of olivine cumulates in the Western Layered Intrusion 

Sill emplacement of harrisite 

Harrisite is a type example of ‘crescumulate’, as defined by Wager et al (1960). These authors 

envisaged the skeletal, harrisitic olivine as having grown upwards from the magma chamber floor, so 

this texture also represents a key example of in situ crystallisation in layered intrusions. The presence 

of numerous harrisite layers throughout the WLI has been cited as evidence for multiple 

replenishment events in the WLI, with each harrisite taken as representative of a discrete influx of 

picritic magma (Wadsworth, 1961; O’Driscoll et al., 2007a). These studies considered magma 

replenishment to have occurred at the magma chamber floor, where the undercooled picrite 

crystallised harrisitic olivine on the substrate. The replenishment events were thought to have been 

separated by periods of crystal settling and density current (slurries) deposition, to produce the 

granular-textured peridotites (Worrell, 2002; O’Driscoll et al., 2007a). Donaldson (1981) pointed out 

that harrisite layers in the WLI locally terminate laterally and bifurcate and suggested that at least 

some harrisite could therefore form within the crystal mush from expelled intercumulus liquid. A 

similar idea was recently invoked for the Unit 10 peridotite of the ELI, where harrisite bodies with 

irregular contacts (e.g., apophyses on their upper surfaces) were highlighted as evidence for an 



intrusive origin (Hepworth et al., 2017). The latter authors suggested that harrisite bodies in Unit 10 

represent apparently randomly-distributed, sill-like intrusions of picrite. Harrisite layers from the WLI 

bear striking similarities to those in the Unit 10 peridotite, but with some important differences. In the 

HBM, the intercalation of harrisite bodies comprising single or multiple layers (see Greenwood, 1987 

and Online Appendix 3) into the Western Granite, strongly suggests sill emplacement of harrisite into 

its country rocks. The outcrop-scale features described by Donaldson (1982) and Hepworth et al. 

(2017) are observed ubiquitously in the WLI harrisite layers, including bifurcation (Fig. 4a), and 

upward-oriented apophyses (Fig. 4c), as well as rarer undercutting apophyses (Fig. 4d). Harrisite 

apophyses in the WLI protrude into the overlying cumulate as dome-like structures, <1 m vertically, 

but over several metres laterally. Upward-oriented apophyses emanating from some WLI harrisite 

bodies can be several metres high and over a metre wide, forming ‘harrisite columns’ which cross-cut 

and deflect the layering in the host granular-textured peridotite (Fig. 4e). The texture of the harrisite, 

including olivine morphology and grainsize, the proportion of intercumulus material and overall 

mineral mode is unchanged from the layer to the apophyses (including the downward oriented 

apophyses), so we interpret the apophyses as primary magmatic features, and not the result of late-

stage filter-pressing of intercumulus liquid (Donaldson, 1982). Collectively, these observations point 

strongly to an intrusive origin, as sill-like bodies, for most if not all the harrisites in the WLI. 

The distribution of harrisite layers through the WLI appears random, with very little lateral 

correlation between layers (see Online Appendix 1). The source of most magma is postulated to be the 

LLF to the east of the WLI (Fig. 1), in agreement with Emeleus et al. (1996). However, the 

observation that harrisite bodies form vertically-oriented domes and column-like structures, 

deforming the layering in the cumulate that they intrude (Figs. 4e), suggests that at least some 

harrisite could be linked to sub-vertically oriented syn-magmatic conduits within the WLI crystal 

mush (see Fig. 7d). Late-stage peridotite plugs, representing pipe-like magmatic conduits, are 

common in the RLS, cross-cutting the stratigraphy of the layered rocks, and are also well known to 

occur as satellites outside the margins of the RLS (Holness et al., 2012), suggesting that is not an 

unusual mode of magma emplacement on Rum. 



Hepworth et al. (2017) proposed that hot tearing (and shearing) of a crystal mush under lateral 

shear stress formed ideal pathways for magma to migrate into the crystal mush of the Unit 10 

peridotite in the ELI. Similar mechanisms have been invoked to explain melt concentrations within 

spatially restricted lenses or pods in natural silicate crystal mushes (Phillpotts et al., 1996; Geshi, 

2001; Humphreys & Holness, 2010; Namur et al., 2013). There are strong parallels between the field 

and petrographic observations in the WLI and those in the Unit 10 peridotite, including the evidence 

for deformation of layering (Fig. 4i), foliations (Fig. 4g), and the lithological relationships of harrisite. 

The entire cumulate pile also dips towards the feeder zone ~15º. The dip increases (>60º) with 

proximity to the feeder fault, attesting to a similar lateral-dominated stress regime to the Unit 10 

peridotite, suggesting a similar mode of sill emplacement in the WLI. 

 

Petrogenesis of harrisite and the thermal history of the WLI crystal mush 

The WLI contains an extreme variety of olivine crystal sizes and morphologies for a comparatively 

small peridotite body, encompassing a range from mm-sized granular-textured (polygonal) olivine 

crystals to m-sized branching and skeletal varieties (Donaldson, 1974; O’Driscoll et al. 2007a). The 

conditions necessary to form the complex, skeletal and branching olivine crystals that comprise 

harrisite were studied experimentally by Donaldson (1974) where he proposed that harrisite represents 

picritic magma that underwent significant degrees of undercooling. The cause of this undercooling in 

the WLI is still uncertain. Donaldson (1974) speculated that volatile or water exsolution might have 

been responsible for lowering the liquidus of the parental magma, however, given the absence of 

primary hydrous phases (or fluid and melt inclusions), the role of volatiles is unlikely to be 

significant. It might also be expected that harrisites contain more hydrous phases than granular-

textured peridotites, which is not observed. O’Driscoll et al. (2007a) suggested the temperature 

difference between the replenishing picrite and resident magma in the chamber was sufficient to cause 

undercooling, while Hepworth et al. (2017) suggested that the Unit 10 harrisites formed from 

intrusive picrites that undercooled against the mostly solid crystal mush. Given the evidence presented 

here for an intrusive origin for harrisite in the WLI, the latter model may also be appropriate here. 

Harrisite in the WLI typically occurs within granular-textured peridotite (Fig. 4c). The field 



observations presented here show that no harrisite is visibly cross-cut by granular-textured peridotite. 

If the granular-textured peridotites represent an early (pre-harrisite) episode of crystallisation, they 

must have cooled significantly for the requisite undercooling to occur, so that picrite intrusions could 

form harrisites. The field relations reported here show that the rate of magma replenishment into the 

WLI was not necessarily constant and may have been linked to movements on the LLF (Volker & 

Upton, 1990; Emeleus et al., 1996). During periods of relative quiescence, cooling of the crystal pile 

likely occurred, such that a temperature gradient existed between new picrite replenishments and their 

host. The sharp unconformable boundary between the HBM and the TSM might indicate a 

particularly significant time-gap, given the clear change to the parental magma to each.  

Different members of the WLI are characterised by different olivine morphologies. The most 

complex (branching and skeletal) olivine morphologies occur in the lower TSM and HBM, while the 

AMP is dominated by hopper and coarse-grained granular morphologies. From experimental work 

carried out on olivine morphology (e.g., Donaldson, 1974; Lofgren & Donaldson, 1975; Donaldson, 

1976; Faure et al., 2003), it seems reasonable that the variation in olivine morphology both between 

individual peridotite-harrisite layers and between different members might have been caused by 

variable degrees of undercooling. A caveat to this is raised by the work of Means & Park (1994), who 

showed that given sufficient time at high sub-solidus temperatures, complex crystal shapes (i.e., high 

surface area to volume ratio) may revert to more polyhedral shapes. This is driven by textural 

equilibration, where the high interfacial energy in skeletal crystals is thermodynamically unstable and 

reduces to more stable, low surface area forms. Assuming no late stage mechanical remobilisation or 

disruption, it might be expected that the originally skeletal, now polyhedral crystals would remain in 

optical continuity in thin section. This is rarely observed and, where it is observed, can be explained 

by the cut effect of complex skeletal crystal forms. This is not to say that textural equilibration did not 

occur locally, but we interpret the intrusion-scale morphological variation of olivine in the WLI, from 

the HBM and TSM to the AMP, as a primary magmatic feature given how rapidly harrisite has been 

shown to crystallise under these conditions (see O’Driscoll et al., 2007a).  

The laboratory experiments of Donaldson (1976) on olivine morphology provide a useful gauge 

for crystallisation conditions in the WLI. It is speculated that the earliest episode of intrusion would 



have been characterised by the highest thermal gradient into the country rocks, but presumably TC 

did not exceed 250C, or the replenishing magmas would have quenched, with a liquidus temperature 

between 1360 and 1175C (Donaldson, 1976). This would mean that the country rocks were already 

hot (>700C) when the WLI began to form, which is supported by observed radial cooling joints 

around harrisite sills in the Western Granite (see Online Appendix 3). The HBM, containing the 

coarse-grained bladed–skeletal olivine crystals required the steepest thermal gradient (and a 

temperature difference ~200 TC), according to the study of Donaldson (1976), which might 

indicate that the HBM represents the earliest stages of construction of the RLS (see also Greenwood, 

1987; Greenwood et al., 1990). The morphology of olivine in the TSM (and the lowermost AMP) is 

generally coarse-grained and bladed–branching (Fig. 7e), suggesting a slightly reduced T relative to 

the HBM of ~150–200C, and pointing to crystal mush temperatures of ~900C as the TSM and some 

AMP peridotites were being intruded. The AMP exhibits significantly greater variability in olivine 

texture than the other members (Fig. 20). Overall, it is envisaged that the complex interplay between 

small volume replenishments, time, and undercooling resulted in the diverse array of olivine textures 

observed in the AMP peridotites. There is an abundance of layers of harrisite dominated by hopper 

olivine morphologies, suggesting degrees of undercooling of ~50 TC and therefore a relatively hot 

crystal mush. However, there are less common examples of skeletal olivine-dominated harrisite in the 

AMP (see Online Appendix 2), suggesting that the crystal mush had the opportunity to cool 

significantly. These harrisite bodies may therefore represent some of the final magma emplacement 

events of the WLI (Fig. 20). 

 

Syn-magmatic reworking of harrisite in deforming crystal mush 

Some granular-textured peridotite layers contain megacrysts of harrisitic olivine, suggesting that at 

least some granular-textured peridotite formed contemporaneously with harrisite. Furthermore, the 

association of granular-textured peridotite with Cr-spinel seams (Fig. 3; Facies L) suggests a process 

like that proposed for harrisite formation, except that the intruding picrite may have carried an olivine 

cargo (Worrell, 2002), suppressing harrisitic olivine growth (Donaldson, 1976).  



A dynamic, high-crystallinity framework undergoing sufficient shear stress to form hot tears is not 

necessarily conducive to forming fragile skeletal olivine crystals in harrisites. High strain 

environments would likely deform and/or fragment these crystals, particularly as harrisites formed 

within the shear zones and hot tears, i.e., the areas of greatest strain. The WLI, specifically the AMP, 

contains layers of porphyritic peridotite (Fig. 5e, 12), consisting of abundant blocky–rounded, cm-

sized olivine megacrysts, which always carry a strong foliated oriented parallel to layering (Fig. 4j, 

10). The layers are typically thin (<5 cm thick), with a ‘groundmass’ of fine-grained granular-textured 

olivine. Porphyritic peridotite layers are often associated with Cr-spinel seams, usually along the layer 

bases (or more rarely tops). The porphyritic layers themselves are generally Cr-spinel rich (>5%). As 

noted above, the megacrysts have abundant inclusions of skeletal magnetite while the groundmass 

olivine is inclusion free (Fig. 10b, c). The different characteristics of the two olivine populations 

points to an autocrystic origin for the large olivine crystals, i.e., they represent ‘clasts’. O’Driscoll et 

al. (2007a) reported an occurrence of these megacrysts that showed imbrication fabrics at the outcrop-

scale, and consequently suggested they represented fragments of harrisitic olivine that were reworked 

on the magma chamber floor. The presence of the skeletal magnetite inclusions points to deeper 

undercooling of the magmas that crystallised the megacrysts (see Barnes, 1985; Shore & Fowler, 

1999; Godel et al., 2013). 

Given that we suggest harrisite forms within the crystal mush, a re-evaluation of the petrogenesis 

of the porphyritic peridotites is required. We suggest that the porphyritic peridotite layers such as that 

illustrated in Figure 4j are harrisite sills that underwent shearing within the crystal mush, causing 

fragmentation of the large skeletal crystals within the hot tears and shear zones (see Hepworth et al., 

2017), and producing the strong foliations that characterise both the megacrysts and groundmass 

olivine. O’Driscoll et al. (2015) showed that the porphyritic peridotites also exhibit a well-developed 

olivine lineation, supporting the idea that a component of simple shear was involved in fabric 

development. The consistency of thickness of the porphyritic peridotite layers might mean that this 

process is only important where the sill is thin, where magma-static pressure is overcome by shear 

stress, where the inflation rate (or flux rate) in the sill is too low. The relative thinness (< 5 cm) of the 

layers also precludes formation by bed-load transport within sills, particularly as imbrication of 



olivine is not observed within harrisite layers (see Online Appendix 2). The disruption and 

disarticulation of homogenously crystallising harrisite would produce new heterogeneous nuclei, 

suppressing the ability of the magma to undercool, and forming granular-textured olivine (Donaldson, 

1976). 

 

The petrogenesis of Cr-spinel seams in the Western Layered Intrusion 

Textural evidence for in situ crystallisation of Cr-spinel seams within the WLI crystal mush 

The petrogenesis of Cr-spinel seams (chromitites, sensu lato) in layered intrusions is contentious. A 

variety of mechanisms has been proposed to explain the concentration of Cr-spinel in different 

layered intrusions, such as pressure changes and roof-rock assimilation in the Stillwater Complex, 

USA (Lipin, 1993; Spandler et al., 2005), magma-mixing in the Muskox Intrusion in Canada (Irvine, 

1977), and stratified magma columns, crystal slurries, and cumulate assimilation in the Bushveld 

Complex, South Africa (Mondal & Mathez, 2007; Junge et al., 2014; Latypov et al. 2015). There 

have also been several models proposed for the petrogenesis of the Cr-spinel seams found in the RLS, 

including crystal settling and felsic cumulate (magma chamber floor) assimilation by primitive 

magma (e.g., mixing; Irvine; 1975; Henderson & Suddaby, 1971; O’Driscoll et al., 2009a; 2010). 

Though quite different in many respects, the models above are similar in that they all call for 

chromitite formation at the magma chamber floor. The WLI contains hundreds, if not thousands of 

Cr-spinel seams, which suggests numerous replenishment events. An array of outcrop- to crystal-scale 

features point to crystallisation of Cr-spinel seams on Rum in situ (O’Driscoll et al., 2010; Latypov et 

al., 2013). The close spatial association of Cr-spinel with harrisite in the WLI, where the seams occur 

along the bases, tops, and interiors of harrisite layers, also points to the formation of the Cr-spinel 

seams by in situ crystallisation. The presence of near vertically-oriented Cr-spinel seams within 

harrisite bodies also argues against crystal settling (Fig. 5e). The textures of many Cr-spinel seams, in 

which Cr-spinel occurs in the intercumulus spaces around olivine crystals, also makes crystal settling 

difficult to envisage (Jackson, 1961), particularly as the olivine displays corroded and deeply 

embayed shapes (Fig. 9a, f), suggesting a reaction between the two phases (necessarily also involving 

the interstitial melt). The close association of Cr-spinel seams with harrisite also points to formation 



within the crystal mush, as it has been argued above that harrisite forms by intrusion of magma (see 

also Ballhaus, 1988; Latypov et al., 2015). This is particularly true for those seams found within, and 

on the upper surfaces of harrisite layers. Anastomosing Cr-spinel seams (Fig. 5d), as well as those that 

bifurcate, and exhibit braiding are also indicative of intra-mush processes. Similar features have been 

reported for chromitite seams in the Bushveld Complex (Voordouw et al., 2009), where intrusive 

chromitite has also been documented (Mukherjee et al., 2017). The petrographic observation that 

large optically continuous olivine crystals are cross-cut by Cr-spinel seams also constitutes evidence 

for seams forming within the crystal mush (Fig. 9f), as harrisitic olivine (which is cross-cut) requires 

near homogenous crystallisation conditions (Donaldson, 1974; 1976) so must pre-date the spinel and 

not represent overgrowth (see also Hepworth et al., 2017). This feature could not feasibly develop on 

the magma chamber floor. 

The crystal size distribution (CSD) data presented here support the field and petrographic 

evidence; that the Cr-spinel seams formed by in situ crystallisation. The majority of CSD profiles for 

Cr-spinel seams in the WLI are log-linear at the larger size portions (Fig. 13), typical of a relatively 

simple relationship between nucleation and growth, without changing the crystallisation conditions 

(Marsh, 1998). There is a paucity of population densities of larger crystals, often cited as evidence of 

size-dependant sorting (Marsh, 1998; Higgins, 2002b), with similar profiles observed for Cr-spinel 

seams in the ELI (O’Driscoll et al., 2009a; 2010; Hepworth et al., 2017) and in the Coobina Layered 

Intrusion in Western Australia (Barnes & Jones, 2013), where in situ crystallisation has also been 

invoked. The general lack of complexity in the CSD profiles is a feature of all seam types (e.g., 

boundary, granular-textured), where even the population density of the CSD groups is very similar. 

Thus, despite the structural and lithological heterogeneity that is evident from the field observations of 

different Cr-spinel groups (e.g., continuity, host rock lithology, seam thickness, diffusiveness), the 

controls and limitations on Cr-spinel crystal nucleation and growth appear to be similar, suggesting a 

common petrogenetic origin.  

At the smallest size fractions, many of the CSD profiles deviate from log linear behaviour and 

display humped profiles. This reduction in the smallest crystal size fraction could be a function of 

post-crystallisation coarsening or annealing (i.e., Ostwald ripening), resulting in a net loss of the 



smallest crystals with minor increases in the larger grain sizes (see Higgins, 2002b). However, there is 

a lack of fanning in the large size fractions among CSD groups (Fig. 13) so textural coarsening has 

not operated on all size fractions. The prevalence of sharp downturns in the CSDs at small crystal 

sizes has been attributed to filter-pressing in crystal mushes (Higgins, 2002b; 2006). However, we do 

not envisage compaction as having been an important process during the construction of the WLI. 

Although granular-textured and hopper olivine-textured peridotites comprise rounded olivine crystals, 

which will compact if interstitial melt is present (McKenzie, 1984), Worrell (2002) deemed the effects 

of compaction to be negligible in the WLI based on a comprehensive study of olivine CSDs. One 

obvious difference can be found in the skeletal olivine-textured harrisites that yield log-linear Cr-

spinel CSDs with no downturn at small crystal sizes. The Cr-spinel crystal populations in these 

peridotites are fine-grained in contrast to the CSDs for the hopper olivine peridotite-hosted seams and 

are also characterised by much higher nucleation densities. The high nucleation density of Cr-spinel 

may be a primary feature of the seams in skeletal olivine-textured harrisite layers or suggest that the 

process responsible for removing the smallest crystal sizes operated more efficiently in skeletal 

frameworks. For example, the profile shape may be a result of variable through-flow, removing 

smaller crystals i.e., an elutriation effect.  

 

Cr-spinel seam petrogenesis in focused zones of melt-rock reaction in the WLI cumulates 

Textural, petrographic, and field observations suggest that the Cr-spinel seams in the WLI crystallised 

in situ from a process that occurred repeatedly. As noted above, the intimate association of Cr-spinel 

seams with harrisites, whether seams occur within harrisite bodies or along their upper/lower surfaces, 

strongly points to a genetic relationship between them. Furthermore, this evidence also points to a 

ubiquitous formation mechanism for all seam types. Cr-spinel compositions in the WLI are variable, 

essentially the entire range of major element (e.g., Mg#, Cr#) variation reported from the rest of the 

RLS is present within the WLI Cr-spinel (Fig. 15). There is no clear geochemical distinction between 

boundary-type and granular-textured peridotite-hosted Cr-spinel seams (Figs. 15, 16). However, in 

comparison with these, Cr-spinel in harrisite-hosted seams are enriched in Fe2O3, with lower Al2O3 

contents. This relationship has been attributed to the reaction of Cr-spinel with a relatively evolved 



interstitial melt (O’Driscoll et al., 2009a; Lenaz et al., 2011; Leuthold et al., 2014; 2015). The most 

compositionally distinct Cr-spinel population occurs in the chromitite seams. Here, Cr-spinel has the 

highest Al2O3 contents in the WLI (~39 wt.%), as well as in the RLS overall (Cr# 0.29, Mg# 71.4; 

Fig. 15a). High Mg#-low Cr# Cr-spinel characterises the so-called ‘Rum-trend’ (Henderson, 1975; 

Barnes & Roeder, 2001), and is typically present in Cr-spinels at the bases of the ELI unit boundary 

seams. O’Driscoll et al. (2010) suggested that these compositions represent the closest approximation 

to the hybrid magma (picrite plus troctolite) that crystallised the Cr-spinels, a conclusion also reached 

by Bell & Claydon (1992) for Cr-spinel in coeval peridotites of the Skye igneous centre. Titanium 

(Ti4+) is incompatible in Cr-spinel and serves as a potentially useful indicator of magmatic 

environment (Roeder & Campbell, 1985; Scowen et al., 1991; Barnes & Roeder, 2001; Wijbrans et 

al., 2015). In the WLI, the TiO2 content of Cr-spinel is typically ~2 wt. % but can be as high as ~7 wt. 

% in harrisite-hosted seams. Chromitite seams have the lowest TiO2 contents (<1 wt. %); like those 

reported from the unit boundary seams in the ELI by O’Driscoll et al. (2010). These show a 

congruous decrease in TiO2 with Cr# (Fig. 15b). Low initial TiO2 in the parental melt of the Cr-spinel 

seam is a function of the activity of Al2O3 (Kamenetsky et al., 2001), which in turn is controlled by 

the assimilant that triggered Cr-spinel crystallisation. For example, assimilation of plagioclase (or a 

plagioclase-normative liquid) increases Al2O3 in the melt, reducing the potential for uptake of TiO2 

into enter Cr-spinel (O’Driscoll et al., 2009a; 2010). High TiO2 values are therefore attributable to 

postcumulus processes, which are enhanced in the porous skeletal frameworks of harrisite where TiO2 

is consistently high. Conversely, it may be possible that TiO2 activity is buffered in chromitites (<1 

wt.% TiO2), but not in other seam types. There is a linear relationship with decreasing TiO2 as Al3+ 

increases through granular and harrisite, boundary, and chromitite (Fig. 15b). This corresponds more 

strongly with the abundance of Cr-spinel within the seam i.e., the more Cr-spinel per unit volume the 

more aluminous the spinel.  

Electron microprobe traverses taken through seams reveal relatively constant Cr-spinel 

compositions, even in the thickest seams (up to 2cm), until above or below the limits of the seam, 

where Cr-spinel composition changes considerably (Fig. 17; see also Online Appendix 5). Above and 

below the seams, Cr-spinels are relatively enriched in Fe2O3 and TiO2. In contrast, the composite 



chromitite seam (AM18; Fig. 17) exhibits an internal step-change in TiO2 content, which matches the 

position of the textural boundary (see also Online Appendix 5). A similar phenomenon has been 

reported from the UG-2 chromitite in the Bushveld Complex of South Africa, where repeated step-

changes in the TiO2 content of Cr-spinel throughout the seam were interpreted as reflecting 

incremental, rather than instantaneous, construction of the chromitite (Junge et al., 2014). The outer 

edges of the AM18 seam are coarser-grained, and CSD profiles taken from different portions of the 

seam display fanning (Fig. 13e), suggesting textural coarsening of the marginal zones with respect to 

the inner portion. The Cr-spinel crystals in the coarse-grained marginal zones of AM18 have lobate 

grain boundaries (Fig. 18). Compositional zoning also occurs in individual crystals, with enrichments 

of TiO2 and Fe2O3 towards the edges of the crystals (see Fig. 18). These observations indicate a 

crystal-melt disequilibrium reaction during the growth of these crystals. Thus, it seems likely that the 

coarse-grained marginal zones of the composite Cr-spinel seam are the result of a supra-solidus 

textural equilibration process (i.e., annealing). However, it is not immediately clear why the thickness 

of the upper marginal zone is significantly greater than the lower zone (Fig. 18), given that the texture 

of the peridotite is identical on either side. One explanation might be the tendency for melt to migrate 

upwards, particularly as this process is occurring within the crystal mush where small degrees of 

overpressure will occur. This suggestion would necessitate the trapping of melt within this seam (or 

melt channel), with little or no exchange with the adjacent cumulate. 

We find further support for a melt channel model from textural analysis. There is a strong 

correlation between spatial distribution and textural characteristics, which reveal a linear relationship 

between available space within the crystal mush (minimum crystallinity) and Cr-spinel abundance 

(Fig. 14b, c). Chromitite seams have the highest volumetric abundance of Cr-spinel, lowest 

crystallinity, and highest Al3+compositions, suggesting there was more space for melt within the 

channel. Conversely, granular-types have a high crystallinity and lower volumetric abundance, 

something also mirrored in the clustering index (R-value; Fig. 14d), and therefore low Al3+ 

compositions. There is also a decrease in olivine abundance and a change from euhedral to anhedral 

crystals along this trend, with the most anhedral (and presumably corroded) olivine occurring in 



chromitites. Intermediary values also exist, forming a spectrum of textures and compositions, 

corresponding well to volumetric spinel abundance and crystallinity.  

With the evidence presented above, notably of cross-cutting and anastomosing Cr-spinel seams 

(Figs. 5d; 9e), in situ crystallisation, and mineral chemistry, the Cr-spinel seams are best explained by 

progressive melt channel formation within the crystal mush. Each Cr-spinel seam preserves different 

degrees of melt through-flow, where granular-textured peridotite-hosted seams record the lowest 

volume of (porous) melt throughflow, while chromitite seams reflect the highest degree of 

(channelized) through-flow (see Fig. 21). We assessed the likelihood that melt might be able to flow 

through a semi-solid crystal mush over time-scales which fit the experimentally-derived dissolution 

rates of minerals such as plagioclase, considered here to be the critical assimilant that triggered Cr-

spinel crystallisation (O’Driscoll et al., 2010; 2009a; Latypov et al., 2015; Hepworth et al., 2017). 

Using flow equations based on Darcy’s law, the following equation can be determined: 

𝑞 =  
(𝜑)(𝑝𝐵 − 𝑝𝐴)

µ
 

where q is the flux within the channel, ϕ is the permeability of the matrix, pB is the bulk matrix 

density of the crystal mush (~3.049 g/cm3, e.g., for a typical granular-textured peridotite modal 

mineralogy of 70% olivine, 20% plagioclase, 10% pyroxene), pA is the bulk density of the liquid of 

2.66 g/cm3 (Holness et al., 2007), and µ is the viscosity of the liquid determined experimentally 

around ~1 Pa/s/m2 by (Donaldson, 1976), with similar values used by Holness et al. (2007). From 

this, the velocity of melt (v) within the mush can be derived as: 

𝑣 =
𝑞

𝛷
 

where q is the flux determined from equation (1), and φ is the porosity of the bulk matrix (the crystal 

mush). A range of permeability and porosity values are possible, as the degree to which crystal mush 

was solidified when magma injection occurred is not known (see below), but based on previously 

modelled estimates, Holness et al. (2007) used a permeability value of 10-10 m2 and noted that Elliot et 

al. (1997) suggested an even higher permeability of 10-9 m2. The typically orthocumulate texture of 

the WLI peridotites, with crystallinities typically in the range 90–40%, would have had a significant 



melt interstitial fraction. Furthermore, as the olivine crystal size in the WLI is typically > 1 mm, 

permeability could be higher still, i.e., > 10-8–10-7 m2 (von Bargen & Waff, 1986). At a permeability 

value of 10-8m2, we calculate a bulk directional melt velocity of 0.099mm/hr. This value is of the 

same order magnitude as experimental calculations of plagioclase dissolution rates (~0.086 mm/hr; 

Donaldson, 1985) which might be dissolving at a similar rate to the melt flux to produce the Cr-spinel 

saturated liquid, allowing for steady propagation of the channel. The velocity of melt migration 

laterally through the crystal mush over length-scales of 1 m, even given the comparatively low 

porosities of 20% in the granular-textured peridotite, are comparable to crystallisation times of days 

and weeks for harrisitic olivine (O’Driscoll et al., 2007a). A minimum crystallinity of 5% in 

chromitite seams yields velocities of ~m2/hr. We suggest therefore that composite chromitite seams, 

such as AM18 (Fig. 17; 18), where melt through-flow was channelized (i.e., not porous), represent an 

end-member of this process, where flow of melt within the channel progressively decreased 

crystallinity (i.e., olivine) by melt-rock reaction during chromitite development. The rates of melt 

migration calculated above are all in agreement with crystallisation timescales of harrisite from 

months to hours suggested by O’Driscoll et al. (2007a), particularly as we have suggested multiple 

sill-like intrusive events, which will keep the mush nearer to liquidus temperatures, facilitating the 

movement of melt within a hot, semi-solid crystal mush.  

The transition from porous to channelized flow has been studied numerically in upper mantle 

peridotite bodies, including within ophiolites, and explains the formation of dunite bodies therein 

(e.g., Quick, 1981; Kelemen et al., 1995). Critically, this process produces a strong positive-feedback 

effect, whereby, as dissolution proceeds, permeability increases, thus allowing more melt through-

flow, thereby increasing the rate of dissolution and porosity, and so on (Chadam et al., 1986; Ortoleva 

et al., 1987). This process was studied experimentally by Daines & Kolhstedt (1993; 1994) where the 

change from porous to channelized flow was achieved because of disequilibrium within the system 

(i.e., between the hybrid liquid and peridotite crystal mush), producing a porous reaction zone on the 

removal of phases (e.g., clinopyroxene and orthopyroxene). The combined petrographic, textural and 

chemical data presented here illustrate this continuum between porous (granular-type seams) and 

channelized flow (chromitite seams) of a Cr-spinel-saturated reactive melt though the crystal mush, 



where the continuum between these end members is a function of melt volume and dissolution rates, 

with an ultimate control on the composition and texture of Cr-spinel within the seams (Fig. 21). The 

seams form synchronously with harrisite (i.e., picrite sills) in the same hot tears and shear zones, with 

the spatial relationship between the two controlled by how far the sill migrates along the hot tear (see 

Hepworth et al. 2017). Intra-harrisite seams form from the continued flow of melt within the rapidly 

crystallising framework, with multiple generations of melt recorded within Cr-spinel seam melt 

channels (Fig. 21). Based on our discovery of the clinopyroxene-rich roof zone (UAM) to the WLI, 

the evolved components (interstitial melt) of these seam-forming reactions may have escaped upwards 

through the cumulate pile (see discussion below). 

The model presented in Figure 21 helps to solve the long-standing mass balance problem implicit 

in concentrating so much Cr in the seams compared to parental melts with ~3000 ppm Cr (i.e., Upton 

et al., 2002), as more melt has moved through the channel than is represented by the net volume of the 

seam. Our model also helps to account for the elevated base-metal sulphide and PGM populations in 

the chromitites compared to granular-type seams (e.g., Butcher et al., 1999; O’Driscoll et al., 2009b; 

Hepworth et al., 2017). It may be that our model could also be readily applied to a variety of Cr-spinel 

seams (and chromitites) in much larger intrusions such as the Bushveld and Stillwater Complexes, 

where sill emplacement has been recently recognised around chromitite-bearing units (Mungall et al., 

2016; Mukherjee et al., 2017; Wall et al., 2018). Furthermore, it may be of particular importance 

where this PGE-mineralisation is found in conjunction with ultramafic pegmatoids like harrisite (e.g., 

Cawthorn & Boerst, 2006; Mondal & Mathez, 2007; Wilson, 2015).  

 

Late-stage infiltration metasomatism of crystal mush in the WLI: The UAM and TSM members  

The Upper Ard Mheall roof zone 

Clinopyroxene is rare in the AMP, occurring in abundances <10 vol.% throughout most of the 

sequence until the top several tens of metres, where it increases to >20 vol.% across the AMP/UAM 

boundary (Fig. 6a, d). Compositional zoning in clinopyroxene crystals also becomes apparent at this 

interval. Plagioclase veins are very common in the UAM, which coupled with the increase in 

clinopyroxene abundance, points to the upward migration of evolved interstitial melts. The mineral 



chemistry of clinopyroxene is distinct from the underlying AMP, with TiO2 poor, high Mg# cores, 

and slightly lower Mg# and TiO2-rich rims. Cr2O3 contents remain similar (Fig. 19a, b). The rim 

compositions overlap well with clinopyroxene from the underlying AMP, while the UAM 

clinopyroxene cores exhibit distinctly lower Cr2O3 and TiO2 contents than other WLI clinopyroxene 

compositions (Figs. 19a, b). The UAM plagioclase is slightly more evolved (sodic) than that in the 

AMP, as reported by Worrell (2002), and the FeO content of the plagioclase is also marginally higher 

in the UAM than the AMP (Fig. 19c). The presence of more evolved mineral assemblages in the 

UAM supports a process involving the migration of an evolved clinopyroxene-saturated melt upwards 

through the crystal mush, promoting new rim growth onto pre-existing crystals and enriching the very 

top of the WLI mush, i.e., the UAM, in clinopyroxene. The balance of evidence above therefore 

suggests that the UAM represents a metasomatised zone of cumulate. Such a process has been well-

documented for clinopyroxene oikocryst-bearing cumulates in the ELI (Holness et al., 2007; Leuthold 

et al., 2014). It follows that the metasomatising agent came from the crystal pile beneath and that the 

clinopyroxene-rich zone comprising the UAM is the roof zone to the AMP, and hence to the WLI. In 

the cumulate underlying the UAM, the repeated intrusion of new sills is likely to have inhibited 

clinopyroxene crystallisation, buffering the liquidus until later in the evolution of the crystal mush, 

and the evolved liquid was expelled upwards. Such a model is inconsistent with there being a sheet of 

magma above the crystal mush as an escaping clinopyroxene-rich melt would migrate into the 

chamber and presumably be mixed into the resident magma. This suggests instead that the WLI 

crystal mush was directly roofed by country rock and the most westerly dipping layers in the UAM 

may record the orientation of the roof/cumulate boundary (i.e., the same as the orientation of the 

contact with the Western Granite; Greenwood, 1987; Petronis et al. 2009).  

 

The Transitional Member metasomatic horizon 

The TSM is classified as ‘transitional’ because it represents a combination of features from the 

overlying and underlying members and was interpreted to represent an intermediary fractionation 

product of the WLI magma (Wadsworth, 1961). The TSM exhibits similarities to the overlying AMP, 

i.e., identical layering characteristics and lithologies (including Cr-spinel seams), but contains 



abundant clinopyroxene-oikocrysts, a feature more consistent with the underlying gabbroic HBM. 

There are differences in the compositions of the primary minerals in different members. For example, 

the AMP and TSM have very similar plagioclase (core) compositions (An ~80 mol. %), while the 

HBM is more evolved, with more Fe-rich olivine (<Fo 70 mol. %) and more albitic plagioclase (<70 

mol. %; Greenwood, 1987). Indeed, An-contents as low as 56 mol.% are revealed in the HBM (Fig. 

19c). Normally-zoned rims of plagioclase from the TSM show a strong overlap with the plagioclase 

compositions from the HBM. The clinopyroxene compositions of the TSM and HBM overlap 

significantly, with similar trends observed between Mg# and TiO2, while the AMP clinopyroxene 

compositions are scattered, tending to higher Mg# (Fig. 19b). The similarity in clinopyroxene 

chemistry between the HBM and TSM, and TSM plagioclase rim compositions with HBM 

plagioclase points to metasomatism of the TSM by evolved melt from the HBM. Cr-spinel chemistry 

in the TSM and HBM contain the most Fe2O3 and TiO2-rich compositions, with crystals of ferroan-

chromite and Cr-magnetite found alongside Cr-spinel in both members. Textural analysis of the Cr-

spinel seams in the TSM suggests they have formed in a very similar environment to those in the 

AMP, with clear similarities in CSD characteristics (e.g., Figs. 13f; 14). However, Cr-spinel seams are 

not abundant in the TSM, and where present are extremely discontinuous (i.e., only traceable for a 

few centimetres), unlike those in the AMP. Cr-spinel in the TSM is also typically enclosed in 

clinopyroxene oikocrysts with little or no plagioclase present. This is an intriguing observation, as 

abundant Cr-spinel should not be able to co-crystallise in a clinopyroxene-saturated melt, as the 

excess SiO2 should cause spinel to be re-dissolved (Morse, 1980). It is possible that this process has 

occurred and has been responsible for the extreme rarity of Cr-spinel seams in the TSM and heavily 

modified Cr-spinel compositions (Fig. 17; see Leuthold et al., 2014). The patchy zoning and intra-

crystal resorption textures in intercumulus plagioclase in the TSM point to a dissolution process (Fig. 

11a). Furthermore, large oikocrysts of clinopyroxene contain small, rounded and optically continuous 

olivine crystals inclusions (Fig. 11f), similar to textures observed by Barnes et al. (2016) in layered 

pyroxenites. Those authors suggested that this texture arises from infiltration of a comparatively 

siliceous melt, dissolving olivine and precipitating pyroxene (orthopyroxene in their case). However, 

clinopyroxene saturated melts have been shown to be particularly reactive, with the potential to 



dissolve or significantly modify the existing cumulate mineralogy (Holness et al., 2007; Leuthold et 

al., 2014), supporting mineral chemical observations that a reactive clinopyroxene-normative melt 

was present throughout the formation of the TSM. 

Based on the above discussion, we suggest that the TSM represents another metasomatic horizon 

within the WLI. The field observations (e.g., upward gradation of AMP/TSM boundary), and olivine 

morphological constraints discussed above suggest the TSM and AMP are petrogenetically related, 

sharing the same lithological and textural characteristics, while the HBM is distinctly gabbroic. The 

similarity of the TSM and HBM clinopyroxene chemistry and the high abundance of this phase in 

these members compared to the AMP suggest that the clinopyroxene-normative melt was sourced 

from the HBM. The infiltration metasomatic event saturated the crystal mush in clinopyroxene, 

forming large oikocrysts throughout the lowermost 45m of the AMP (now the TSM) and causing 

moderate but pervasive dissolution of existing plagioclase (Fig. 11a), Cr-spinel, and olivine, to 

produce the relict and reabsorption textures (Fig. 11f), and heavily modified Cr-spinel compositions 

(including Cr-magnetite; O’Driscoll et al., 2009a; Leuthold et al. 2014; 2015).  

The HBM could evidently exchange interstitial melt with the TSM, but the relative timing of this 

process to emplacement of either member is still uncertain. The sharp discordant boundary between 

the HBM and TSM signifies a time-gap between both. Historically, it has been considered that 

emplacement of the HBM predates that of the TSM and AMP, and there is no new unambiguous 

evidence in this study to suggest otherwise. However, either intrusion of the AMP magmas into/onto 

the HBM, or intrusion of the HBM into the AMP could equally trigger the upward-percolating fluids 

that metasomatised the TSM. A scenario where the HBM is the younger intrusion would not create 

problems for the undercooling model presented above, provided the time-gap across the unconformity 

between the HBM and TSM was sufficient to allow the requisite undercooling of ~200 TC to form 

the coarse-grained bladed–skeletal olivine crystals that characterise the HBM (Fig. 20). Considering 

recent work on out-of-sequence layering in other layered intrusions (e.g., Mungall et al., 2016), we 

suggest that constraining the relative age of the HBM in the WLI represents an important avenue for 

future research.  

 



CONCLUSIONS 

Contrary to the well-established view of the RLS as a classic example of a layered intrusion; built 

from an upward-younging stratigraphy and gravity settling of crystals to form cumulates at the base of 

the magma chamber floor, we conclude that the WLI originated as a series of sills into an 

incrementally developed crystal mush. Similar interpretations invoking sill emplacement have also 

been put forward for peridotite cumulates in the ELI, highlighting the importance of this underlying 

construction process for cumulates across the RLS (e.g., Hepworth et al., 2017). Our results provide 

evidence that Rum WLI was built-up of multiple, sill-like replenishment events into an incrementally 

developing crystal mush, where sills are best (but not exclusively) represented by harrisite. The 

emplacement of sills is facilitated by slow gravitational collapse of the high-crystallinity cumulate, 

producing hot tears and shear zones enabling magma injection and contemporaneous reworking of 

some crystallising sills, emphasising the dynamic crystal mush. The injection of new magma into the 

crystal mush formed Cr-spinel seams along the same tears and shear zones as invading sills in 

progressively developing (permeable to porous flow) melt channels, which given the high flux rates 

could have further developed as channels. The associated PGE-enrichment must therefore have 

occurred within the crystal mush. Despite the difference in scale between Rum and other intrusions 

(e.g., Bushveld), this conclusion has significant implications for the formation (and mechanism of 

enrichment) of Cr-spinel (and PGE)-horizons more generally in layered intrusions, traditionally 

assumed to occur at the magma chamber floor (e.g., Bushveld; UG2 or Merensky Reef). The 

evolution of the layered WLI crystal mush was likely highly chaotic, given its formation by the 

apparent spatially and temporally random juxtaposition of sills. However, because olivine is abundant, 

the undercooling (approximated from olivine morphology) can be used as a simple proxy for 

temperature (Donaldson, 1976), providing better insight into the WLI system, allowing a simplified 

timeline where sill-emplacement, Cr-spinel seam petrogenesis and metasomatic processes can be 

better understood. Lastly, the evidence for non-aggrading layered igneous bodies presented here has 

important implications for the build-up of other olivine-rich cumulates found at the base of many 

layered intrusions (e.g., Jackson, 1961; Wilson, 2015), where the current structural level is not 

necessarily unambiguous indicator of relative age. 
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FIGURE CAPTIONS 

 

Figure 1. (a) Location of the Isle of Rum within Scotland. (b) Location of the Isle of Rum within 

Scotland. (b) Constituent intrusions of the Rum Layered Series (RLS): CI = Central Intrusion, WLI = 

Western Layered Series, ELI = Eastern Layered Intrusion (adapted from Emeleus, 1994). 

 

Figure 2. Geological map of the Western Layered Series (WLI) mapped as part of this study. Note 

that topographic contours are in feet. Cross-sections of the WLI can be accessed in Online Appendix 

1. 

 



Figure 3. Simplified ‘facies’ scheme depicting lithological relationships of peridotite (and Cr-spinel 

seams) through the AMP, see text for further description. The reader is urged to see the high 

resolution graphic logs in Online Appendix 2.  

 

Figure 4. Field relationships of peridotite in the AMP. (a) Bifurcating harrisite around fine grained 

granular-textured peridotite. Note the high intercumulus plagioclase fraction of granular-textured 

peridotite in contact with harrisite. (b) Irregular harrisite layer with upward oriented apophyses linked 

to the succeeding layer, see also the large branching olivine crystals (arrowed) protruding into the 

granular-textured peridotite. (c) Typical layering of harrisite and granular-textured peridotite, with 

irregular (upper) boundaries of harrisite. Note also the bifurcation in the top right, in the thickest 

harrisite layer. (d) Downward-oriented harrisite apophysis. Note possible continuation of plagioclase-

rich layers through the apophysis. (e) ‘Harrisite column’ with metres high harrisite and deflected 

granular-textured peridotite. (f) Hopper dominated harrisite, with cm-sized rounded–hopper olivine 

crystals. (g) Strongly foliated harrisite with dome-like oriented elongated olivine crystals. 

 

Figure 4 continued. (h) Cr-spinel seam showing a Cr-spinel seam cross-cut by an upward-oriented 

harrisite apophysis (seam outlined), close to which the Cr-spinel suddenly becomes disseminated. (i) 

Block of layered granular peridotite, as shown by layering oriented ~45⁰ from normal shallowly 

dipping layers ~15⁰. (j) ‘Porphyritic peridotite’ layers within granular-textured peridotite. Arrowed 

example is composed almost entirely of strongly aligned cm-sized branching–elongate olivine 

crystals.  

 

Figure 5. Cr-spinel seams in the AMP. (a) High concentration granular-type Cr-spinel seam in coarse-

grained granular-textured peridotite. (b) Boundary-type Cr-spinel seam on the upper surface of 

coarse-grained granular-textured to hopper peridotite. (c) Chromitite seam within harrisite. Note the 

boundary irregularities along strike where Cr-spinel occupies intercumulus space around harrisitic 

olivine. (d) Anastomosing chromitite seam in fine-grained granular-textured peridotite. (e) Multiple-

seams within harrisite layer (arrowed) with various concentrations of Cr-spinel. Note specifically the 



vertical orientation of seams towards the left (arrowed). (f) Very coarse Cr-spinel seam from a 

harrisite-hosted Cr-spinel seam, scale bar = 2 mm.  

 

Figure 6. Field relationships of the UAM. (a) Boundary between the AMP and UAM with distinct 

grey colour change due to the increase of plagioclase abundance. (b) Layering defined by subtle 

changes in intercumulus volume. (c) Sub-vertically oriented hopper-harrisite dyke cross-cutting 

layering. (d) Highly pyroxene-rich (wehrlitic) peridotite layer. 

 

Figure 7. Field relationships of the TSM. (a) Typical layering between harrisite and wehrlitic 

granular-textured peridotite. White scale bar ~5cm (b) Granular-type Cr-spinel seam. Note the highly 

discontinuous nature, even on a cm-scale. (c). Undulose upper surface of harrisite with well-layered 

granular-textured peridotite. (d) Upward oriented apophysis (bridge) linked between harrisite layers 

with granular-textured peridotite in between. (e) Very coarse, highly skeletal olivine. Note also the 

gabbroic pegmatite common in the upper TSM. (f) Complex harrisite in the upper TSM with hopper 

harrisite zones. 

 

Figure 8. Field relationships in the HBM. (a) Typical layering within the upper portions of the HBM 

with harrisite and gabbro layers. (b) Very coarse, highly skeletal olivine (arrowed) in harrisite with 

irregular upper surface (shown by black dashed line). (c) Bifurcating, complex harrisite layer 

(boundaries shown by black dashed lines). (d) Strong foliation of granular-textured peridotite 

(arrowed) beneath harrisite layer. (e) Variation in gabbro textures in succession (arrowed) (f) 

Leucogabbro layer within olivine-gabbro.  

 

Figure 9. Petrography of the AMP. (a) Patchy zoning of plagioclase in proximity to Cr-spinel seam. 

(b) Patchy zoning in rare clinopyroxene oikocryst. (c) Foliated olivine within Cr-spinel seam. (d) 

‘Dunitic-peridotite’ with polyhedral olivine arrangement with 120 triple-junctions (circled). (e) Cr-

spinel seam cross-cutting large olivine crystal (outlined) across the top surface of a chromitite seam 

within harrisite. Note the high birefringence (olivine) inclusions in Cr-spinel close to the large olivine. 



(f) Reflected light image displaying sulphide and metal phases associated with Cr-spinel, including 

sieve texture of Cr-spinel by sulphide. 

 

Figure 10. Porphyritic peridotite in the AMP. (a) Centimetre-sized blocky–elongate olivine crystals 

are part of porphyritic peridotite. Note the narrow (thin black lines), aligned magnetite inclusions 

throughout the crystal (arrowed examples). (b) large, blocky olivine crystals, with skeletal magnetite 

inclusions highlighted in (c).  

 

Figure 11. Petrography of the TSM. (a) High abundance patchy zoning of intercumulus plagioclase, 

with highly skeletal, optically continuous harrisitic olivine. (b) Irregular zoning of clinopyroxene 

(outlined zones) (c) Cumulus and intercumulus (texture) clinopyroxene with exsolution lamellae. (d) 

Discontinuous Cr-spinel seam between wehrlitic and feldspathic peridotite. (e) Cr-spinel seam with 

intercumulus clinopyroxene, also displaying exsolution lamellae. Note the lack of plagioclase. (f) 

Large, intercumulus clinopyroxene with optically continuous, rounded olivine inclusions in circular 

arrangement. (g) Reflected light image showing abundant sulphides, with spatially association with 

Cr-spinel and replacement texture in wehrlitic peridotite. 

 

Figure 12. Petrography of the HBM. (a) Thin skeletal olivine typical in the HBM. (b) Cumulus 

appearing zoned plagioclase (arrowed). (c) Extremely irregular zoning in coarse clinopyroxene 

oikocryst. (d) Typical gabbro from the HBM, with rounded cumulus olivine and abundant 

intercumulus pyroxene. Note the zoning in plagioclase (arrowed). (e) Cumulus (appearing) alkali-

feldspar (orthoclase) with abundant alblitic perthites and rim. (f) Reflected light image of highly 

skeletal spinel (magnetite–Cr-magnetite) from HBM gabbro.  

 

Figure 13. CSD profiles of Cr-spinel seams from the AMP and TSM of Cr-spinel types in this study, 

with representative texture maps of the seam-groups defined in this paper. Output data can be found in 

Online Appendix 3.  

 



Figure 14. Selected CSD derivative plots for Cr-spinel seams in this study. (a) Characteristic length 

(CL) versus volumetric percentage. Note the separation of the chromitite seams. (b) Negative 

correlation (R2 = 0.77) of volumetric percentage of Cr-spinel versus crystallinity for Cr-spinel seams 

with a similar separation of chromitite as in (a). (c) Good correlation between the vol.% abundance of 

Cr-spinel and R-value. (d) Correlation between crystallinity (vol. % olivine) and R-value, suggesting 

a strong relationship with available space and crystallisation of Cr-spinel.  

 

Figure 15. (a) Mg# vs Cr# and (b) Cr# vs TiO2 wt. % plot for Cr-spinel seams from the WLI, 

including reference Cr-spinel from across the RLS. Unit 7, 8, 11, 12 data from O’Driscoll et al. 

(2009a; 2010). Unit 9 data from Holness et al. (2007), Unit 10 data from Hepworth et al. (2017), and 

M9 picrite dyke of Upton et al. (2002) from O’Driscoll et al. (2009a). 

 

Figure 16. Trivalent ternary plots for Cr-spinel from the WLI. Peridotite hosted and other Cr-spinel 

seam data have been added for reference. Unit 7, 8, 11, 12 data from O’Driscoll et al. (2009a; 2010). 

Unit 9 data from Holness et al. (2007), Unit 10 data from Hepworth et al. (2017), and M9 picrite dyke 

of Upton et al. (2002) from O’Driscoll et al. (2009a). Errors are smaller than point size. 

 

Figure 17. Cr-spinel seam traverses through Cr-spinel seams from the WLI. AM6 is a diffuse, 

boundary-type seam, AM18 is a composite chromitite seam from the AMP, while TM1 is a laterally 

discontinuous Cr-spinel seam from the TSM. Note the mirrored trends in AM6 and TM1 on either 

side of the seam, with enhanced TiO2 contents in TM1. Note also the kinks in a stable composition 

through AM18 (arrowed) where textural changes are observed (highlighted), with another potential 

kink within AM6 seam, where the Cr-spinel becomes more diffuse. Errors smaller than point size. 

 

Figure 18. Back-scattered electron image of a single crystal traverse of Cr-spinel from coarse textural 

zone in composite chromitite seam (arrowed) in sample AM18, showing increases in TiO2 and Fe2O3 

towards the lobate rim. Note also the abundance of rounded inclusions (typically with amphibole, 

plagioclase ± sulphide) in the core. Errors are smaller than point size. 



 

Figure 19. Clinopyroxene and plagioclase mineral chemistry from the WLI. (a) Cr2O3 wt. % versus 

Mg# plot for clinopyroxene. (b) TiO2 versus Mg# plot for clinopyroxene. (c) FeO wt.% versus 

anorthite mol. % plot for plagioclase. Data from Worrell (2002) has been added for comparison. See 

text for discussion. 

 

Figure 20. Conceptual model for the formation of the WLI, including simple thermal history depicted 

by olivine texture at each stage (see Donaldson, 1976). (a) Emplacement of the WLI and rapid 

increase in temperature of the crystal mush due to high intrusion rate, restricting the undercooling to 

incoming picrite sills, resulting in granular-textured peridotite (and some hopper dominated harrisite 

sills). (b) After a period of quiescence (or reduced magma flux), the crystal mush cools, such that the 

input of new sills undergo higher degrees of undercooling, producing more hopper and branching 

olivine forms (i.e., harrisite). During the process of sill emplacement, evolved cpx-rich melt will 

migrate to the top of the crystal mush, pooling to form the UAM. (c) As the crystal mush continues to 

cool with time, fresh sills undergo higher degrees of undercooling, forming more complex olivine 

morphologies. Here, the intrusion of the HBM occurred, with the most complex olivine forms, 

suggesting the highest degrees of undercooling (see Fig. 8b). (d) Emplacement of the HBM at the 

base of the WLI produces a metasomatic horizon by partially melting the overlying crystal mush, 

saturating it in clinopyroxene, forming the TSM. Any injection of new sills will form rarer, highly 

complex olivine morphologies due to high degrees of undercooling (found mostly within the HBM).  

 

Figure 21. Conceptual model depicting the petrogenesis of harrisite and Cr-spinel within hot tears and 

melt channels within a layered, shearing, peridotite crystal mush, with petrographic examples of the 

end member and intermediary Cr-spinel seams described in the text.  
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Figure 4 continued. 
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