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ABSTRACT 
The interest in the clinical use of stem cell therapies is increasing rapidly, with a need for more 

control over cell populations cultured/expanded in vitro. This is particularly relevant for the 

treatment of neurological disorders such as Parkinson's disease where positive outcome 

measures of clinical trials will be limited by the number of derived neurons and their specific 

sub-types. The aim is to generate enhanced neural cell populations from stem cells through 

the design of the cell-material interface. 

 

The niche micro-environment is complex, being responsible for cell attachment, proliferation 

and differentiation. Material engineering approaches to better control cell responses have 

looked towards surface chemical, topographical and mechanical cues. The many permutations 

of these factors pose a major challenge in the optimisation of biomaterial design. Machine 

learning techniques will be used to assess the impact of surface properties on the biological 

micro-environment. 

 

Cell interaction/response provides computational outputs, with input variables being derived 

from material properties such as surface chemical characteristics (logP, charge, density, 

wettability, etc.) and topography (nano- and micro-scale, aspect ratio, etc). The aim is to 

unravel the relationship between cells and biomaterial surface of in vitro cell culture. In vitro 

experiments and in silico modelling will continually inform each other towards the 

optimisation of neural cell characteristic responses. 

KEYWORDS 
Neural stem cells, nerve tissue engineering, silanes, machine-learning, predictive modelling, 

mathematical optimisation 
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1 INTRODUCTION 
This project is about finding artificial environments to grow and mature stem cells more 

effectively and efficiently for use in therapeutic strategies for neurodegenerative diseases. 

The focus is on optimising the surface chemistry of artificial cell culture environments. 

1.1 NEURODEGENERATIVE DISEASES 

Neurodegenerative disease is the umbrella term for a range of conditions, which primarily 

affect neuron cells of the human brain. Neurons are considered the functional component 

of our nervous system, which includes the brain and spinal cord. Our body’s repair system 

cannot replace dead or damaged neurons well. Examples of neurodegenerative diseases 

include Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease. Such diseases 

are incurable and debilitating conditions that result in progressive degeneration of 

neurons. This causes problems with movement (called ataxias) (Figure 1.1), or mental 

functioning (called dementias). In the UK alone 1 in every 100 people are affected by 

neurodegenerative diseases (1,2) and dementias are responsible for the greatest burden 

of disease with Alzheimer’s representing approximately 60-70% of cases (3). 
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Figure 1.1: Drawing of the human central nervous system. Problems with human movement (ataxia) related with 

neurodegeneration arise to the motor areas of the brain. Taken with permission from (4). 
 

 
Figure 1.2: Drawing of human brain slice comparing healthy brain (left) with dementia brain with Alzheimer’s disease 

(right). Taken with permission from (5). 
 

Neurons interconnect different parts of the nervous system together with their axons. 

Injury to the nervous system can have clinical consequences ranging from impairment of 

musculatory or sensory function, to serious cognitive disruption and death. This is due to 

cell death and communication interruption along axonal pathways that control neurologic 

functions. A key issue faced by surgeons repairing the damaged nervous system is scar 

tissue formation restricting cell communication (6). 
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Once nerve cells degenerate remaining cells compensate to keep biological function intact 

as much as possible. At this stage, symptoms are usually mild and can be like other 

conditions. Once the remaining cells die, the symptoms become profound. With the 

exception of Huntington’s disease, early diagnosis is not yet possible for most 

neurodegenerative diseases (7–11). Drugs to slow or stop the progression of some of these 

diseases are in clinical trials (1,12) however it will takes years before they are fully 

developed. Current approaches for nerve repair is graft transplantation from undamaged 

sites of the same organism (autologous) (13). This method though sacrifices healthy 

functional tissue and does not result in complete repair (14). Tissue engineering 

approaches using cells from our endogenous repair system (stem cells) allows the 

development of cellularised tissue replacement therapies for damaged or degenerated 

brain tissue from injury or pathology (15). 

 

1.2 THE NEED FOR TISSUE ENGINEERING 

A key challenge for tissue engineering therapies is neural alignment and specific re-

connectivity. The nervous system has very limited self-repair capacity and this explains why 

clinical outcomes are poor. Post-injury of the central nervous system (CNS) creates glial 

scars that compromise the ability to regenerate neural circuits that could potentially 

restore function (6). Preclinical studies for cell replacement therapies to treat 

neurodegenerative diseases are currently focused on primary neural stem cell-derived 

populations as the raw tissue material. These are usually induced pluripotent stem cells or 

are cells harvested from embryonic developing brain tissues due to the abundance of 

neurons needed to treat a disease (e.g. cholinergic neurons for Alzheimer’s disease). 

Unfortunately, preclinical research has been trivially successful largely due to inefficient 

differentiation of stem cells to target adult neural populations. 
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Enhancing regeneration capacity necessitates addressing glial scarring and differentiation 

potential shortcomings by directing cellular processes. This necessitates the investigation 

of surface-cell interaction in the search for a synthetic surface material for the cell’s 

microenvironment (16). 

 

1.3 REGENERATIVE MEDICINE: BIOMATERIALS 

Biomaterials are predominantly used for medical applications such as drug delivery, device-

based therapies and cell therapies in tissue engineering. They have been rapidly adopted 

since the 80’s (17) from merely interacting with biological systems to influencing biological 

processes. The European Biomaterials Society defined biomaterials as “material intended 

to interface with biological systems to repair, replace or augment tissue or organ back to 

normal function”. 

 

Nowadays, biomaterials are glorified but are perhaps unexploited (18). Some tissues in the 

human body like skin and liver have excellent regeneration ability after damage. Other 

tissues such as cardiac muscle and the nervous system have poor regeneration ability. The 

new paradigm of regenerative medicine is to extend the quality of life span in ageing 

populations where currently chronic disease is common. This is to reduce some of the 

burden of the healthcare system. The notion here is to use cells to restore diseased or 

damaged tissue and/or cure chronic diseases that were previously managed (symptoms 

treatment). Early in the noughties, cell therapies have been tested for neurodegenerative 

diseases in pilot clinical trial of small scale. Material-based approaches for tissue 

engineering has not been used for neurodegenerative diseases. They have been used in 
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spinal-injury lesion animal models (19) with some functionality returning. The authors used 

poly(lactic-co-glycolic acid) scaffolds with neurons seeded as the implant solution. 

 

Most translational projects for regenerative therapies have been focused on cells. For 

example, foetal neural grafts of cells directly dissected from foetal tissue of the central 

nervous system were used to treat Parkinson’s disease (20). The grafts varied from 

aggravating symptoms to improving diseases progression and reducing the dependency on 

drug medications. The biggest challenge with cell therapies is cell source scarcity; there is 

simply not enough foetal neural tissue to meet patient demands. In the future, cell 

therapies are likely to be most successful treating neurological disorders by replacing 

discrete cell populations e.g. cholinergic neurons (work with acetylcholine) degenerate in 

Alzheimer’s disease and dopaminergic neurons (work with dopamine) degenerate in 

Parkinson’s disease. 

 

 Stem cell therapies 

Stem cells are the raw materials used for tissue engineering. Stem cells are unspecialised 

and are tasked to make copies of themselves (self-renewal) and mature (differentiate) to 

cell types that make up our organs. Stem cells are attractive as a cell source in regenerative 

medicine for scalability reasons. It is a way to alleviate the need for large numbers of cells 

for use in e.g. transplants. Stem cells are situated throughout the human body in organs 

and they have existed since conception and development. 

 

Stem cells are classified in three groups based on their differentiation ability. These classes 

include pluripotent cells that can differentiate to three primary groups of cells that form an 

organism. These groups are ectoderm giving rise to skins and nervous system; endoderm 
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forms gastrointestinal, respiratory tracts, endocrine glands, liver, and pancreas; and 

mesoderm forms bone, cartilage, most of the circulatory system, muscles, connective 

tissue, among other organs/tissues. Embryonic cells can come from: 

 Unused embryos from donations (ES cells) 

 Transferring the nucleus from any somatic cell to an egg cell (ntES cells) 

 Unfertilised eggs by tricking them into developing into embryos using chemical 

treatments 

 

Multipotent cells can differentiate to multiple types but are more restricted compared to 

pluripotent cells. Multipotent cells can differentiate to cell types within a given cell lineage 

or small number of lineages, such as white or red blood cell. Multipotent cells can 

differentiate to oligopotent cells where these are limited to becoming one of a few 

different cell types. Finally, unipotent cells are fully specialised and can reproduce to its 

own cell type. 

 

There are two forms of stem cell therapies regarding donor and recipient. In autologous 

cell therapies, the donor is also the therapy recipient. In this way, the chances of immune 

rejection for the therapy are reduced. This kind of therapy is possible when there is an 

abundance of adult stem cells to work with, either where situated or extracted, 

manipulated and returned. Differentiating cells to desired cell type(s) provides the 

flexibility to produce a wider range of stem cell therapies. 

 

Allogeneic cell therapies use cells from different donor(s). The benefit here is that stem 

cells can be derived from more diverse and multiple sources to target more diverse therapy 

requirements (e.g. mesenchymal stem cells for Crohn’s disease (21). In pharmaceutical 

manufacturing, this approach is promising it form the basis of “off the shelf” products (22). 
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Allogeneic therapies need to consider address immune-rejection before embryonic stem 

cell-derived cells or tissues can be used as medicines. The types of stem cells are mentioned 

next. 

 

 Adult stem cells 

Adult (somatic) stem cells are undifferentiated cells found through tissues in the body after 

development used to replenish dying cells and regenerate damaged tissues. Adult stem 

cells are multipotent and these include neural, hematopoietic, and mesenchymal lineage 

(MSCs) among others. MSCs can be derived from adipose and stromal bone marrow tissues. 

These have been used in the clinic since the noughties because they modulate endogenous 

tissue and immune cells thus making them ideal for injury healing (23,24). 

 

After birth, we humans possess a limited supply of neural stem cells and this provides the 

potential to treat neurodegenerative diseases. In lab cell culture (in vitro), it is difficult to 

derive dopaminergic neurons from adult neural stem cells in addition to the difficulty 

acquiring them in the first place. Because of this, research on treatments for 

neurodegenerative diseases faces slow progression. Clinically, adult stem cells are the 

safest to use due the restriction of possible cell fates. This is also one of their biggest 

drawback – it limits their potential. 

 

 Embryonic stem cells 

Unlike adult stem cells, embryonic stem cells (ESCs) have pluripotent differentiation 

potential. They can form almost any cell type of the developed body. The self-renewal 

ability of ESCs is excellent and this means large cell populations can be produced if required. 

This type of cells were first separated from mice back in the 80’s (25). Human ESCs (hESCs) 
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were first isolated late 90’s by (26). hESCs are derived from the inner cell mass of day 5-7 

blastocysts from residual IVF tissue (27). From small populations of ESCs, one can produce 

very large volumes of cells needed to develop cell and tissue therapies for 

neurodegenerative diseases.  

 

 Induced pluripotent stem cells 

Induced pluripotent stem cells (iPSCs) are derived from mature cells of tissues such as skin 

and through genetic re-programming they were brought back to the embryonic stem cell 

lineage (28). These cells can be derived from individuals and therapies involving these cells 

are autologous. These cells have similar traits as ESCs but since there is no requirement to 

use embryos there are less ethical issues such as destruction of human embryos, abnormal 

cell reprogramming due to the induction of human iPSCs, and tumorigenesis in the process 

of stem cell therapy (29). 

 

 From stem cells to neurons 

There are several methods developed to differentiate pluripotent stem cells to neurons. 

Neurons degenerating in Parkinson’s disease communicate using dopamine and these cells 

have been produced from embryonic stem cells (ESCs) using various techniques. Methods 

providing effective differentiation include the use of co-cultures providing environmental 

cues (30) and/or the addition of signalling molecules (βFGF, N2(31), and Nurr1, LIF, FGF-8, 

4 and 2, Shh (32)). These signalling molecules are derived from morphogens, tropic factors, 

cytokines, or mitogens in complex culture media for ESCs to recapitulate the natural 

environment for the neural lineage. 
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 Foetal neural stem cells 

Foetal neural stem cells (FNSCs) are currently used in cell replacements strategies to 

replace damaged tissue from neurodegenerative diseases. The main reason is FNSC 

differentiation is easier to control and that gives a clear advantage when choosing a cell 

source. 

 

Unlike ESCs, foetal neural stem cells have an advantage in transplantation into animal 

models as they are restricted in differentiating to neural cells and usually they do not divide 

significantly following transplantation (33). This means recipients of FNSCs are less exposed 

to the risk of tumours forming (teratomas) post-transplantation compared to ESCs. 

Teratomas tumours containing cell types from all three germ layers typically attributed to 

uncontrolled differentiation of rapidly dividing stem cells. Because of their cell type 

characteristics, these tumours are typically used as an indicator for pluripotency. Our group 

believes biomaterial approach potential has not been exploited and there is room for 

improvement to control FNSC responses. There are limitations with human FNSCs – 

currently, they do not present a practical route for large-scale therapeutic applications due 

to limited availability and quality of foetal tissue, as well as for ethical reasons (34). 

 

 Cell differentiation complexity 

For cell and tissue replacement therapies, stem cells need to mature (differentiate) to 

target cell populations. Directing high efficiency differentiation is a major challenge when 

creating complex tissues to replace damaged/diseased tissue. This is due to the complexity 

of stem cell differentiation. Work in this area is shedding some light however. Kirks et al. 

(35) followed what we knew at the time for developmental principles and derived in vitro 

functional dopaminergic neurons from ESCs. Through culture media, different signal 
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molecules were provided sequentially. The order decided was in line with the up-regulation 

of molecules during development of dopaminergic neurons in the embryonic midbrain. The 

idea for this work was to understand the process of stem cell development but the scope 

is too wide. 

 

Focusing the scope, others investigated different concentrations of signal molecules 

directing naïve stem cells to different lineages (Figure 1.3: A). Both Wnt and sonic hedgehog 

proteins are good examples exhibiting the concentration gradient effect on neural tube 

development (36). Even at the single cell level the situation is still complicated. Dosing 

signalling molecules as a pulse rather than a steady dose can elicit different responses to 

cells (37,38). Heterogeneous cell responses can occur to individual cells and neighbouring 

cells where both were exposed to the same stimuli. This extends to parts of cell populations 

responding to stimuli and other parts do not (39). These examples are to show the complex 

dynamics of cell behaviour inferring to the lack of effectiveness in current differentiation 

protocols. Perhaps the most promising method to understand cellular systems is to 

combining meticulous experimentation with computation inference in which 

computational techniques are used to infer biological interaction and experimental 

techniques used to validate inferred interactions (40). Advances as such should be able to 

improve stem cell differentiation efficiency, which is a crucial step for clinical therapy 

translation. 
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Figure 1.3: Cell morphogenesis related to signalling molecules. A) Concentration gradient of a morphogen (sonic 

hedgehog, SHH) forming brain tissue during development. B) Reaction and diffusion of morphogens related to zebra 
stripes. Natural patterns elaborately formed through spontaneous activator morphogens (pigment, dark colour) and 
inhibitor morphogens (pigmentless, white colour). C) Dose pulsing. Stimuli usually provides heterogeneous responses 

from cells therefore dosing frequency deserves more consideration. Graph: pulsing doses give temporal effect, which is 
important where adaptable responses to cells is required (38). Taken with permission from (41). 

 

 Optimal cell culture methodologies 

 Spheroid culture methods 

Spheroid methodologies have been used to produce in vitro made organs created from 

spheroids with their ability to self-organise and differentiate to produce tissue-like 

structures. The first structure created was cortical neural spheroids (42) from murine and 

human pluripotent stem cells. The authors used signalling molecules (FGF, Wnt variants) 

and morphogens (BMP) and low cell adhesive cell environments to achieve neural 

aggregation. They found spheroids to self-organise to distinguishable cortex structure with 

relevant markers and positions. The tissue was also found functionally active using calcium 

imaging – a technique that detects very fast oscillations of ionised calcium (Ca2+) waves 
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over distances. The same group produced an optic nerve head (optic cup) using the 

spheroid methodology and a similar approach as their previous work (43). A similar 

approach to (42) was used to generate cortical organoids from hESCs and iPSCs using ECM 

embedding and bioreactor culture to scale up the process (44). The authors discovered that 

iPSCs from small brain disorder (microcephaly) patients exhibited a characteristic of the 

disorder – premature differentiation in organoids. 

 

 Neurospheres 

Expanding FNSCs as neurospheres is a simple solution to address scalability problems. 

These are multicellular 3D floating spheroids containing neural stem cells and progenitors 

(45). Murine neurospheres have been characterised and estimated to contain 1-3% 

oligodendrocytes, 17% neurons, 80% astrocytes and only 0.16% neural stem cells (46) 

(Figure 1.4). Others believe neurospheres contain different populations of stem cells (47). 

With FGF2 or EGF, different effects on cells were observed for each additive. In primitive 

stages of neurospheres in culture, only FGF responsive precursors exist. At low 

neurosphere density, FGF gave more proliferation and cell responses were different. 

Another important point with neurospheres is they can only be reformed and passaged a 

few times before neural stem cell and precursor populations diminish (47). 

 

The location and migration of cells in neurospheres was also investigated. Neural stem cell 

markers (nestin and sox2) and the majority of dividing cells were found at the periphery of 

neurospheres (48). Mature cell markers for neurons and glia (Tuj1 and GFAP) are found at 

the centre of neurospheres. Relevant work where neurospheres were transfected with 

green fluorescence protein (GFP) using magnetic nanoparticle technology (49) found that 

cells were migrating throughout the spheroid. 
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Neurospheres in culture are known to merge (46) and this interferes with clonality as a 

condition in experimental procedures. Efforts have been made to culture neurospheres 

from single cells (50). The authors did achieve in making neurospheres from single cells but 

with a low yield. Neurospheres are believed to be heterogeneous due to cells functioning 

at biological clocks and pace in their cell cycle (51). 

 

The size of the inherently heterogeneous neurospheres can be controlled to the single (rat) 

neurosphere in PMMA mirowells with PEG surface (42,52). Linear relationships were 

discovered between neurosphere and micro-well diameter. Large and small micro-wells 

(800 μm and 200 μm) gave accordingly sized neurospheres (225 μm and 50 μm). 

 
Figure 1.4 Drawing of neural stem cell culture. 1) Aggregation of neural stem cells (NSCs). 2) Neurospheres sustained 

with NSCs with fibroblast growth factor (βFGF) in media. 3) New cell types are formed from proliferation and these tend 
to group by cell type. 4) Adhesion and differentiation of NSCs and progenitors on a sticky laminin coated surface with 

βFGF-free media. Taken with permission from (41). 
 

 Cell niche 

Stem cells have their ability to self-organise into proliferative and differentiating niches 

combined of different cell types. Stem cell niche provides cells with developmental cues 

such as survival, maintenance, proliferation and activation (53). These are rich in extra 

cellular matrix, paracrine-signalling regimes among other specific cell signals (54). These 

signals have a powerful effect on cells as shown by (55) where neural stem cells were 

reverted to a less differentiated state of cells from all three germ layers (mesoderm, 
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ectoderm, and mesoderm). Together, the three germ layers will give rise to every organ in 

the body, from skin and hair to the digestive tract. 

 

Synthetic biomaterials promoting cell self-organisation into proliferative and 

differentiating niches have not been found. Such biomaterials are envisioned to achieve 

niche-like cell microenvironments without the use of expensive reagents such as 

recombinant or highly purified proteins/macromolecules. In fact, it could also be possible 

to promote the isolation of different differentiating and proliferating niches on the same 

material. This means next generation high efficiency biotechnology production for cell 

therapies closer to reach. They key lies in harnessing the stem cell’s natural abilities. 

 

 Biomaterials for in vitro cell culture 

Traditional biomaterials do not have the ability to adapt to living tissues during changing 

pH and body temperature caused by disease. Therefore, biomaterial scientists have been 

endeavouring to create smart biomaterials (56) that mimic living tissues in the last two 

decades (57). 

 

Nerve tissue can be engineered and enhanced by modifying the biomaterial properties such 

as topography, stiffness (compliance), and arguably the most important, the chemistry to 

improve cell and tissue adhesion (58). A biomaterial provides mechanical support, shape, 

and hierarchy architecture with surface chemistry for cell attachment, cell-cell 

communication, as well as proliferation and differentiation for tissue regeneration. To date, 

most synthetic biomaterials are derived for tissue engineering are synthesised either from 

lactic acid, chitosan, alginate, starch, collagen, hyalauronic acid, cellulose, fibrin, silk, and 

their derivatives (57). 
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Stem cells are the raw materials used for tissue engineering. In their natural environment 

(niche), stem cells can divide (proliferate) while keeping key properties intact. The niche 

microenvironment controls stem cell populations from growing uncontrollably (54) with 

two identified switches of senescence p16, p21 proteins signalling cells to stop dividing. In 

addition, the niche provides feedback and cell signalling which influences the activation, 

maintenance and differentiation of stem cells. The natural microenvironment and the 

control it has over neural stem cells is almost impossible to simulate in artificial 

environments (in vitro) (59,60). The closest to such environments are semi-biological which 

are made of a mixture of artificial bulk materials (e.g. glass) coated with biological materials 

(biomaterial) such as laminin protein (61). With biological materials however raise 

pathogenic concerns since they are biologically derived. 

 

Synthetic biomaterials need to display remodelling properties over time to integrate with 

the ECM formed by the encapsulated cells during tissue maturation, and bridge with the 

natural ECM of the potential patients (62,63). This can be achieved through the 

modification of the chemistry with active units that are cleaved under specific biological 

stimuli (64,65). Mimicking the chemical or physical cues of the extra cellular matric 

surrounding cells may not be always necessary for a successful tissue regeneration and 

integration. In the case of soft connective tissues like intestinal and abdominal walls, rapid 

prototyped three-dimensional meshes with macrostructural features can restore tissue 

functionality (66). Biologically modified or “plain” biomaterials have become smarter and 

more instructive templates for cells, the number of biomaterials that truly promote 

integration with the host environment is still limited (58). To improve tissue adhesion 

properties, the chemical design of biomaterials is the most important component. One of 
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the main strategies for engineering bonding materials is their functionalisation with groups 

that can connect to the natural tissue. 

 

Self-assembled biomaterials possess both the physical dimensions of micron- and 

nanoscale ECM fibres and adhesion properties typical of hydrogels. They are generally 

comprised of functionalised amphiphilic polymers and have been successfully employed 

for bone, cartilage, and soft tissue regeneration with promising results (67–70). 

 

In 1989, a research group led by Whitesides studied the interfacial properties of organic 

materials that control chemical properties such as wettability and acidity among others 

(71). At the time, the relationship between the microscopic structures of the biomaterial 

and the macroscopy physical properties were poorly understood. They’ve used long-chain 

thiols adsorbed on gold surfaces and varied the terminal group. The take home message 

was that wettability (hydrophobicity/hydrophilicity) is a macroscopic interfacial property 

was very interesting. In 1992, another revolutionary paper was published titled “How to 

Make Water Run Uphill” by Chaudhury and Whitesides (72). The group demonstrated how 

the very same chemical property was responsible for controlling water droplets going 

against gravity. The authors did this using surfaces that had spatial hydrophobicity gradient 

(vapor deposited decyltrichlorosilane) over 1 cm and by dropping water droplets on the 

most hydrophobic part. The water droplets moved towards the hydrophilic part of the 

gradient due to surface tension acting on the liquid-solid contact line. This inspired 

biomaterial scientists for the potential to control biological responses using cost-effective 

methods and materials. 

 

More recently, research groups have been studying the effect of wettability on cell 

responses (attachment, differentiation, and controlled transfection) using high-throughput 
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approaches to rapidly screen materials. Alexander’s group (2010) (73,74), use 

combinatorial approaches to synthesise materials as polymers on microarrays to identify 

optimal compositions for particular biomedical applications. In addition to wettability, the 

group uses time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray 

photoelectron spectroscopy (XPS). Others (75,76) use both topographical (parallel grooves 

and roughness) and chemical (plasma polymerised allylamine (ppAAm) gradients and 

polystyrene) to study dermal fibroblast and osteosarcoma cell adhesion, morphology, 

orientation, and spreading. The take home message however for both studies is prefer the 

45°-65° water contact angle (WCA) bracket of the surface material with other studies 

finding WCAs around this bracket helps controlling cell attachment and adherence (77–79). 

This suggest it is best practise to avoid extreme hydrophobicity/hydrophilicity in the 

biomaterial design with respect to wettability as this chemical property is a descriptor of 

many chemical properties. The problem is even with the mid-range WCA bracket, there is 

a plethora of surface chemistries to test. 

 

Perhaps the paradigm of one surface property such as wettability to explain cell responses 

needs to shift as it’s too generic as a chemical descriptor. In a study in 1996 for controlling 

neuronal cell attachment, the author (80) found cell attachment was more sensitive to 

charged functionalities (imidazole and carboxylic groups) rather than 

hydrophilic/hydrophobic balance of the photoresist surface. In other studies, long chain 

hydrophobic self-assembled monolayers (SAMs) terminating with amines (-NH2) (formed 

by thiols to gold) sustained the attachment and growth of dorsal ganglia and PC-12h cells 

however no adhesion was observed on alkene (neutral and hydrophobic) or carboxylic acid 

surfaces (low charge and pKa value). This suggests a preference for amines (81). In another 

study, surfaces with a linear increase of amine content with mono, di- or tri-amine 

terminations were studied. Neuron attachment indicated a preference to di/tri-amines, 
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whilst, on monoamine surfaces, perinatal rat cerebella and embryonic mouse spinal cells 

did not attach at all (82). Adding to surface charge evidence – others have shown cell 

attachment on amino surfaces (83) with some suggesting this is due to the positive change 

held by the surface groups providing electrostatic attraction to negatively charge 

membranes inducing cell adherence (84). 

 

Surfaces with hydrophobic character such as phenyl groups hinder hippocampal neuron 

attachment (83) and carboxylic acid terminated surfaces can completely prevent neuronal 

attachment on amino-thiol and lysine coated surfaces (85). When a 1:1 mixture of amino 

and carboxylic acid thiols was used as presenting surface chemistry, a dramatic decrease in 

attachment was observed compared to amine terminated surfaces. The authors discussed 

their findings in terms of electrostatic interactions suggesting a strong relationship 

between amines and the cell membrane at physiological pH, whereas the mixed chemistry 

presents a cationic surface hindering interaction. 

 

The logP is the partition coefficient between water and octanol, as a reliable indicator of 

the hydrophobicity or lipophilicity of (drug) molecules. In an article by Rawsterne et al in 

2007, it was found that cell spreading correlates better with calculated logP of amino acid-

modified surfaces compared to water contact angle (77). Cui et al. studied hippocampal 

cells harvested from 15 day (E15) Sprague-Dawley embryo rats for neuron attachment and 

axon extension (86). They used surfaces with laminin patterned grids on both positively 

charged amino groups (PEI) and negatively charged (hydroxyl) underlying surfaces. After 7 

days, cell soma attached at cross-points of laminin grid pattern. The interesting part is that 

on hydroxyl underlying surfaces, neurites only followed the laminin pattern and extended 

along the grid lines whereas on underlying PEI surfaces, random neurite outgrowth was 

observed. 
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The length of the SAM chain was found to influence cell adherence. In a study investigating 

covalently immobilised adhesive proteins (laminin, collagen, and fibronectin) on surfaces 

with amino-thiols of varying lengths resulted in tighter connections for subsequently 

adhering cells (87). In another study, neuronal cell line PC-12 cells anchored more strongly 

to laminin on more disordered shorted thiols showed by the magnitude and the 

reproducibility of electrical impedance responses derived from receptor mediated linkages 

(88). 

 

 Surface-cell interaction 

In laboratory (in vitro) cell culture the cells would initially sense the surface for binding sites 

using protrusions (89). Once found, the cells attach using receptors called integrins and 

thereafter proceed with survival and development functions such as growth, proliferation 

and differentiation (90,91). Such cell responses/behaviour depends heavily on their 

environment and its features such as chemistry and topography (Figure 1.5). Surface 

topography at the micron level plays an important part in determining cell adhesion and 

surface-bound characteristics (92) however the focus of this project is on the chemical 

component of the biomaterial. 
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Figure 1.5: Cell migration examples. Taken with permission (93). RightsLink license code: 4056030661343, Wolters 
Kluwer Health, Inc. 

 

Biomaterial success depends largely on the biological/surface interface with a few key 

molecular properties investigated and assumed “in action”. In previous studies, cell 

attachment was effected by surface wettability (76,94,95). In one example study, surfaces 

that repel water (less wettable) were observed to enhance the attachment of 

osteosarcoma cells (MG63) but had a negative effect on cell spreading. Optimum cell 

attachment was observed at mid-range contact angles (64°) (76). Others have studied 

another chemical parameter, the measure of solubility (partition coefficient) and its effects 

on cells (77,94). Engler et al. investigated the differentiation of a type of stem cell able to 

give rise to mesenchymal tissue such as muscle, bone, tendon and ligament among others. 

 

One of the studies investigated partition coefficient estimates of (un-tethered) amino acid 

functionalised surfaces and cell spreading (77). Amino acids are the building blocks of 

proteins. It is believed that surface chemical and topographical characteristics influence the 

protein layer composition that is between the surface and cells (Figure 1.6) (90). The 

presenting chemistry (functional groups) at the surface has indirect control of cell 

responses (92,96). Surface chemistry, topography and stiffness (compliance) among other 

properties branching from them dictate the type, amount, and conformation of proteins 

adsorbed (92,96) (Figure 1.6). The focus of this project is primarily on cell responses. 
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Figure 1.6: The components of the cell culture system in artificial environments (in vitro). Adapted with permission from 

Dr Paul Roach. 
 

Cell environments with laminin-coated surfaces are a good choice as they mimic the 

laminin-rich niche and are usually chosen for neural culture protocols (61,97,98). Laminin 

is an extracellular matrix (ECM) protein and provides structural and biochemical support to 

the surrounding cells. Laminin promotes axonal outgrowth and cell adhesion through its 

positive charge followed by integrin binding for enhanced cell attachment (99). Laminin is 

usually part of complex differentiation protocols with cocktails of factors to direct stem 

cells or progenitors to a desired lineage. These factors serve as biological signalling with an 

effort to simulate closer the biological niche. Laminin with its ligands (binding sites), other 

extra cellular coated surfaces, and matrigel owe their success to adhesion molecules and 

integrins (such as α5β1, α8β1, ανβ3 (100)) residing on the cell membrane. Long term cultures 

of neurons (hippocampal) has been achieved for 24 passages on laminin-coated surfaces 

(101). 

 

Surface engineering techniques can be used to develop cell therapies for 

neurodegenerative diseases. These therapies can be realised by defining the inputs of 

manufacturing processes. Perturbations to the cell culture system represent an immense 

challenge to overcome as they can cause disturbances from any direction so systems 

requiring fewer interventions are preferred. The idea here is to harness the stem cell’s 
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inherent ability to proliferate, organise and differentiate. Relevant work has aimed to 

simplify the culture surfaces by using only laminin (102) or synthetic substrates (103). 

However, their culture media and technique are far from simple and controlling cell 

behaviour was not the scope of the study. Tailored cell-population specific culture surfaces 

would have advantages such as reduced cost and incorporation into pre-existing workflows 

compared to optimising culture conditions. Surface materials are easier to adopt and new 

procedures involving these can evolve in the therapy development pipeline. Materials 

should be designed with core cell behaviours to begin with, as it will be difficult to activate 

biological pathways requiring many steps. The culture surface will be impeded with the 

protein layer among other factors that affect cell behaviour. 

 

Crude high throughput studies (94) cannot grasp the mechanisms for rational material 

design. However, a novel drug design method where ligand designs are adapted to 

multiple-targets beforehand experimentation (a priori) has emerged in 2012 (104). This 

method is Pareto-based where ligand designs (resources) are allocated in the most efficient 

manner to target multiple profiles (outputs) and they consider ligand (chemical) design 

trade-offs. There are other examples of this method (105). Biomaterial research needs 

development to find where these design trade-offs occur. Stem cell research has been slow 

to adopt these new biomaterial approaches as often they fail to compare fairly with 

ascertained individual effects and perhaps due to improper computational model 

validation (106). For the former issue, in a study where different substances that govern 

the pattern of tissue development (morphogens) and growth factors were compared for 

maintained and differentiation of neurospheres. The study had clear inputs and outputs 

but an assumption was made that different proteins behave the same way in cell culture, 

which is not true (92,107,108). 
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 Surface-protein interaction 

Proteins are secreted by cells themselves. Proteomics is the study of protein function and 

allows the investigation of the sets of proteins expressed in cells to understand cell 

proliferation and differentiation to specific lineages (109). Secreted proteins comprise vital 

molecules which are encoded with around 10% of the human genome (110). The secreted 

molecules mediate intercellular interactions and are involved in maintaining homeostasis 

at the organ level (111). 

 

The choice of reagents is important to cells in culture. Cells require numerous factors to 

maintain their development and growth in vitro. In their natural environment (in vivo), 

factors are available in biological fluids surrounding cells whereas in vitro they are usually 

added in the form of serum such as foetal calf serum. There are 30 to 40k signalling 

molecules in these serums, many of which are poorly understood as to their interaction 

with their surrounding environment. It is still standard practise to use these serums 

although there is a drive to move away from them for therapy translation (112,113). This 

is because these materials tend to be animal derived materials with a risk of carrying 

pathogens. 

 

Some cell types are sustained better in pre-condition media by another cell type population 

previously cultured. During culture, cells secrete factors to communicate and mediate their 

surroundings and these pre-conditioned media provide better cell culture conditions for 

some cell types compared to unconditioned media. In a study, human embryonic stem cell 

(hESCs) self-renewal and differentiation potential was assessed on protein conditioned and 

unconditioned biological substrate (matrigel). Mass spectrometry revealed 80 extracellular 

proteins in matrix conditioned by hESC (114). 
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The key lever on cell response is the relationship of the biomaterial with adsorbed proteins 

described in detail by (115) and (92). Proteins reach the surface before cells due to their 

smaller size. Once water molecules are moved away the interaction between the surface 

and protein starts and proteins cover the surface (surface conditioning) (92). Figure 1.7 

shows the sequence and interactions of the components of the cell culture system. 

 

Figure 1.7: Interactions between surface-proteins-cells in time and level. Adapted with permission from (92). RightsLink 
license 4050271025585, Springer. 

 

In the adsorption process, proteins undergo structural changes until they become 

energetically favourable. The protein adsorption process is different for each biomaterial 

design. Previously unavailable protein domains can be exposed (116) presenting peptide 

binding sequences for anchoring molecules on the cell membrane such as integrins (117). 

An example of an adhesion molecule for neural cell types is NCAM (118). 
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 Presenting chemistry of biomaterials 

Biomaterial surfaces can be modified with a variety of methods such as chemical gradients 

(41), self-assembled films, surface active bulk additives, chemical reactions and molecular 

grafting (90). The most widely used method to modify the surface chemistry is with self-

assembled monolayers (SAMs) which is a process of coating the surface with molecules 

that form highly ordered structures on specific substrates. SAMs form chemically and 

physically stable covalently attached monolayers on surfaces such as gold and glass (Figure 

1.8). In the literature, SAMs are used to study the effect of well-defined chemistry on 

biological processes such as protein adsorption and cell response. SAMs model biomaterial 

surfaces and relevant work employ thiols on gold surfaces (119–122) and akylsilanes on 

silicon (71,123–127). 

 
Figure 1.8: Self-assembled monolayer on a solid surface. 

 

SAMs provide an efficient and effective method to change the presenting chemistry of the 

biomaterial surface. Changing the atom in the terminal group alters the properties of the 

surface and therefore the protein adsorption and cell interaction.  Studies agree the initial 

cell adhesion to SAMs is greatly affected by the surface functional groups and displacement 

of adsorbed serum proteins with cell adhesive proteins playing an important role in cell 

adhesion (85,107,128). SAMs can be functionalised on surfaces providing the opportunity 

Functional 
group 
 
 
 
 
Linker 
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to tailor the chemical properties of surfaces such as wettability/lipophilicity and acidity. 

These properties can be tuned with the SAM linker and the terminal group (129).SAMs are 

comprised of three parts, the head group, the alkyl chain and the terminal group (Figure 

1.8). The head group anchors the rest of the molecule on the substrate (e.g. 

triethoxysilane). The alkyl chain provides stability of the monolayer due to hydrophobic and 

Van der Waals interactions that influence the SAMs ordering as well. Lastly, the terminal 

group introduces chemical functionality in the monolayer system (130,131). 

 

SAMs allow the investigation of fundamental physical properties of interfacial chemistry, 

solvent molecule interaction and self-organisation and these, most likely, made them 

popular (132,133). A range of functional groups such as alkyl, thiols, carboxylic acids, 

phenols have been studied with each providing a better understanding over molecular 

surface interaction and the role of different molecules in the surface chemistry. Protein 

adsorption has been investigated with SAMs examining surface chemical characteristics 

importance on adsorption kinetics, adsorbed concentration and biological activity of the 

protein layer (71,134). 

 

Understanding the effects of surface chemistry with adsorbed proteins and cells in culture 

will lead towards better neural stem cell control in vitro (90). It is also believed the 

investigation of the interactions between the components of the NSC culture system may 

hide clues as to how connections or mis-connections may arise in the central nervous 

system (CNS) (90,135). It is hoped to direct cells in vitro to develop into functional nervous 

tissue that can be used in therapeutic strategies. 
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1.4 COMPUTATIONAL APPROACHES 

Sciences in molecular biology, regenerative medicine and neurogenesis have unravelled a 

plethora of biological facts such as genome sequences, stem cell therapies, and dividing 

neurons in the adult brain (due to neural stem cells) (136,137). A crucial aim of biology in 

is to understand biological components interaction in a dynamic, parallel or concurrent 

fashion. The spectrum of biological components ranges from molecules, cells, tissues and 

organs to complete organisms. In complex biological systems, interactions of smaller 

components such as molecules and cells induce new, emergent properties that are 

observable at higher scale, on tissues and organs. 

 

The components of biological systems undergoing specific interactions have been defined 

by evolution. These are fundamental processes behind physiological and pathological 

conditions: ranging from tissue formation, response to stem cells therapy and cancers. An 

understanding to the system-level should be the goal. Insights into the function of 

biological systems however cannot result purely from intuitive paradigms due to the 

intrinsic complexity of such systems and experimental limitations. A combination of 

experimental and computational approaches can tackle this problem (138–145). 

 

 Data science and overlapping sub-fields 

Statistics is a branch of mathematics dealing with data. This includes collection, 

organisation, analysis, interpretation, and presentation of data. Statisticians anticipate 

what can go wrong with experiments and fallacies can be drawn from naïve data uses. 

There are techniques to solve an abundance of problems, but the approaches have an 

inherent conservatism attached. It finds what could go wrong through testing of 

hypotheses. Informatics and bioinformatics, after the biology is separated, deal with data 
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infrastructure and matching algorithms. The aims here is to create and manage data stores, 

databases and design efficient matching and query algorithms. Big data is a hot topic these 

days. It is essentially the infrastructure and the platform to perform modelling or 

generating reports. Simulation is an exploratory approach allowing the generation of 

possible outcomes for a given problem. This is useful when certain assumptions are made 

about the data but are not represented in the data itself. Simulations allow the generation 

of variance in the outcomes and the testing of model stability. 

 

Data mining is the discovery of implicit, previously unknown and potentially useful 

information from data. The idea is to automate this process by creating computer programs 

that sift data and seek patterns or regularities. Machine learning (ML), provides the 

technical basis of data mining and is an optimistic field. It overlaps largely with scientific 

methods, math and statistics (Figure 1.9). The notion is to create predictive models aiming 

to be indistinguishable from “correct” models. Perhaps prediction here should be 

rephrased to optimisation problem (146). Predictive analytics is a set of goals and 

techniques with emphasis in constructing models and overlaps with data science. Data 

science represents the ownership and management of the entire modelling process. This 

includes discovering the need, collecting and managing data, building and deploying 

models into production. 
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Figure 1.9: Data science and related sub-fields. Taken with permission from (147). 

 

 Relevant literature 

Data mining has been used to analyse in multiscale registered trials for stem cell-based 

regenerative medicine (148). The authors used chord diagram and phylogenetic-like tree 

visualisations to assist in knowledge discovery of clinical trials registered at 

ClinicalTrials.gov. They screened 5,788 trials, 939 were included and 51% of these were 

related to mesenchymal stem cells (MSCs). More than half the MSC studies concerned 

allogeneic MSCs and received more support from industry than autologous MSC studies. 

The authors found the use of cultured cells have increased greatly since 2009. In trials, the 

use of cells derived from adipose tissue has also increased compared to bone marrow cells. 

The use of adipose-derived stromal cells was predominantly autologous, restricted to 

European countries and supported by industry compared with other MSCs. 
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Another data mining example is the work of a research group that showed the continuous 

depletion of neural stem cell pool, due to their division, might be responsible for age-

related decreased neurogenesis in the adult hippocampus (149). The authors used various 

computational approaches to determine the age-related changes in the pools of stem and 

progenitor cells, Hayes & Nowakowski (150) approach to model the single- and double-

label pulse dose experiments (related to cell staining for microscopy), and to determine the 

parameters of the cell cycle of stem and progenitor cell populations. They found upon 

exiting their quiescent state, adult hippocampal stem cells rapidly undergo a series of 

asymmetric divisions to produce dividing progeny destined to become neurons and mature 

astrocytes. 

 

Adult neurogenesis has benefitted from computational neuroscience. This field is about 

modelling new neuron function and it is unravelling the sophisticated biological processes 

of adult neurogenesis in vivo using data mining, machine learning and simulations. In vivo 

relevant studies fall outside the scope of this project. For those interested, noteworthy and 

recent reviews are in (142,151,152). Protein adsorption on biomaterial has benefitted from 

computational methods in the recent years. Noteworthy literature can be found here 

(92,115,153–156). 

 

Cellular automata (CA) is a ‘top-down’ discrete modelling approach used to simulate cell 

morphogenesis and tissue development (157). CA is a discrete modelling approach that 

captures system-level mechanisms of complex biological phenomena by defining a series 

of decision rules implemented in a parallel and dynamic manner (158). In a typical tissue 

growth model, a cell moves in one of n directions with a certain probability in each 

simulation cycle. A number of simulation cycles are performed iteratively. The advantages 

of such models include the relative simplicity of visualisation, implementation, and its 
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design extensibility and flexibility. Cellular Potts model is an extension of CA and is a 

simulation approach that incorporates mathematical descriptions of cell motility and 

connectivity (159,160). Cellular Potts models can specifically define cell structure in terms 

of shape and volume parameters (161–163), unlike traditional CA. In tissue growth 

simulation, these models foster cell movements in those directions that minimise a local 

energy function (163). The idea is that tissue geometry, area and localisation are regulated 

by favouring stronger bonds, i.e. their contact energies as well as larger cell boundaries 

(164). Thus, the Cellular Potts model is a powerful approach to incorporating quantitative 

cellular information into discrete or cell-based models. 

 

In molecular biology, a group developed a computational tool to analyse and sequence the 

genome-wide data from the mechanism controlling gene expression (DNA methylation, 

(MeDIP-seq data) in human embryonic stem cells (hESCs) along the endodermal lineage 

(165). The group coined their tool MEDIPS and it processes the inherently complex MeDIP-

seq data faster, more accurate, with increased sensitivity and with better correlation with 

sequenced results compared to existing methods. MEDIPS belongs closer to data science 

as a method since it performs a multitude of functions with the MeDIP-seq data. Its 

strength is that it significantly reduces the imbalance of sequenced data generation and 

analysis. The authors were able to investigate the effect of other mechanisms controlling 

gene expression in cells (differential methylation). In addition, MEDIPS allowed the analysis 

of the interplay between silencing genes (DNA methylation), histone modifications, and 

transcription factor binding and show that in contrast to ‘from scratch’ methylation, 

demethylation (activating genes) is mainly associated with regions of low CpG densities in 

regions of the DNA. 
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In relevant work, data mining was used to elucidate regulated gene expression to provide 

insight in disease and development. Yeo et al. (166) have decoded functional RNA elements 

(involved in protein synthesis) in vivo by studying the FOX2 binding protein to identify its 

targets in hESCs. FOX2 is a key regulator of gene editing (exon splicing) for cell survival, 

differentiation and development in the nervous system and other cell types. The mapped 

FOX2 targets revealed other splicing regulators and allowed the creation of a model that 

shed light into binding or skipping splicing events in a position-depended manner. The 

authors did not provide model specifics but they did mention the model was created from 

consensus binding motifs for FOX2 depletion-induced gene editing. FOX2 was discovered 

to be a critical regulator of a splicing network and important to the survival of hESCs. 

 

Wilson et al. (167) found hematopoietic stem cells (HSCs) in mice reversibly switch between 

dormancy and self-renewal contrary to popular belief they are turn over every few weeks. 

The authors used identified the cells using flow cytometry and label-retaining assays (BrdU 

and histone H2B-GFP). They then fit ordinary differential equation (ODE) model(s) on their 

experimental data on one (dormancy) and two-population (dormancy and self-renewal) 

versions. The two-population ODE model had a much better fit on their data and the data 

of a previous, less extensive study (168) in support of the two-population HSC hypothesis. 

The authors used stochastic markov simulations to find when HSCs divide in support of the 

dormancy and self-renewal hypothesis. The results revealed that HSCs divide every 145 

days, or 5 times per lifetime agreeing with experimental findings. 

 

Data mining is found in transcriptional studies as well. A group investigated the proteins 

involved in regulating genes (transcription factors, TF) and their specific interactions with 

targets necessary for programming the synthesis of gene-products such as proteins in 

embryonic stem cells (ESCs) (169). The authors acquired transcription factor and 
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transcription regulator data from the interaction of proteins and DNA within cells and DNA 

sequencing. These factors are known to play different roles in ESC biology as signalling 

pathways (LIF and BMP), self-renewal regulators, and key reprogramming factors. 

Computationally, the authors developed their own approach to find associations between 

TF occupancies and gene expression based on TF-binding data. They then performed k-

means clustering (grouping data based on proximity) and defined five classes of genes that 

are associated with a similar set of transcription factors. Based on these associations 

between binding and expression, they have constructed a transcriptional regulatory 

network model that integrates the two key signalling pathways (LIF and BMP) with the 

intrinsic factors in ESCs. Collectively, the comprehensive computational and experimental 

mapping of TF-binding sites identified important features of the transcriptional regulatory 

networks that define ESC identity (Figure 1.10). 

 
Figure 1.10: Transcriptional regulatory network inferred from real data during embryonic stem cell differentiation. 

Transcription factors are in blue bubbles (nodes). BMP4 and LIF are signalling pathways in cells. Thick arrow represent 
interactions inferred from binding data and both expression experiments whereas thin arrow represent interactions 

inferred from binding data and one expression experiment. RightsLink license 4070220942845, Elsevier. 
 

Computational simulation work in bone tissue engineering with biodegradable scaffolds, 

the geometry of the porous scaffold microstructure is a key factor controlling mechanical 

function of bone-scaffold system in the regeneration process and after. A research group 
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claims to have found the optimal scaffold microstructure design using a three-dimensional 

computation simulation (voxel finite element method) of bone tissue regeneration 

consisting of scaffold degradation and new bone formation (170). The focus of their work 

was developing the computational simulation framework and a comparison with 

experimental results have not been conducted. 

 

Computational methods have been used to understand cell signalling. This field is called 

systems biology where experimental and computational research is integrated. Cookson et 

al. (171), discovered the cell pathways activated by signalling molecules at the single cell 

level are heterogeneous. The authors’ experimental findings agreed with computational 

results. Muller et al. (172) reconstructed an extended stem cell regulatory network from 

gene expression patterns of 150 samples of pluripotent, multipotent and differentiated 

human cells types (the ‘stem cell matrix’ database). Using a computational clustering 

technique, they found that pluripotent stem cells (ESCs and iPSCs) gene expression data 

clustered together. The authors also used an algorithm performing interaction and 

similarity module analysis (MATISSE) to identify a putative pluripotency network (called 

PluriNet). This algorithm searched for connected sub-networks involving pluripotency-

related factors from a pre-compiled background network of human protein-protein and 

protein-DNA interactions including NANOG – a transcription factor involved with self-

renewal of undifferentiated stem cells. Although PluriNet is undirected by the user(s) and 

many interactions have not been experimentally characterised in most cell types, it is still 

a useful method to ‘project’ experimentally derived datasets onto pre-compiled databases 

and interpret new findings from known biological processes (40). Both authors in this 

paragraph used their own data mining methods and discovered new knowledge from their 

existing data. 

 



Page 35 

An example of machine learning (ML) work is the computational model of cell migration in 

three-dimensional matrices (173). The authors used a force-based dynamics approach. The 

model determines overall locomotion velocity vector for speed and direction for individual 

cells based on internally generated forces transmitted into external traction forces. The 

model also considers timescales where multiple attachment and detachment events are 

integrated. Model predictions agree well with experimental findings for both 2D substrata 

and 3D natural tissues and synthetic gels. 

 

Others create their own models from the literature and empirical observations. N’Dri et al. 

(174) created a computational model of cell adhesion and movement using continuum-

kinetics approach. The models considers molecular mechanics and macroscopic (cell-level) 

transport. The model is assessed using an adherent cell, rolling and deforming along the 

vessel wall under imposed shear flows. Experimental findings agree with the model’s 

results and the authors discovered the intracellular viscosity and interfacial tensions 

directly affect the rolling of a cell. In addition, the presence of a nucleus increases the bond 

lifetime, and decreases the cell rolling velocity. Bigger cells roll faster and have decreased 

bond lifetime. In conclusion, the rheological properties of cells have significant effect on 

the adhesion process contrary to what has been hypothesised in the literature. 

 

1.5 PROBLEM DEFINITION 

The problem is that we cannot generate fit for transplantation tissues as we cannot 

guarantee they are free of undifferentiated cells. This makes therapy translation impossible 

as there is no guarantee stem cells will stop dividing and therefore give rise to a risk of 

teratomas (175). Our best in vitro cell environments rely on biologically derived materials. 

There is a drive to move away from such materials (112,113,176) and switch to synthetic 
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materials that are reproducible, with reduced cost and can be made pathogen free 

(90,176). Cell performance for this project is defined as cell cluster area, cell projection for 

neurons and glia, and cell type proportion. The benchmark cell performance is that of the 

in vitro biological environments with laminin. Cell performance observed on synthetic 

materials do not match that of the in vitro biological environment. Bioengineering 

strategies focus on experimental process methodologies in the laboratory. These are costly, 

time consuming and may also be limited by the need to use animal derived tissues (16). 

 

An experimental method to assess stem cell performance on surfaces is to use a chemical 

gradient approach. Gradient surfaces presenting change in overlaid chemistry also present 

a small topogragraphic feature. Although these allow experimental investigations of 

synergistic effects of multiple parameters, they are still limited to 2-3 variables per 

investigation. In addition, the presentation of a gradient may itself have an impact on the 

overall output observations. For example, cell migratory direction hindering differentiation 

potential (16). 

 

A synthetic environment that produces cell performance closer to that of the in vitro 

biological environment has not been found yet (16). Current experimental methodologies 

in the lab for surface engineering rely on intuitive approximate solutions (16,176). Previous 

surface generations with improved cell performance serve as examples for the intuitive 

perturbation of the components of the cell’s microenvironment (16,177). The illustration 

below shows the experimental process in the lab (Figure 1.11). 
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Figure 1.11: Traditional cell culture procedure in the lab. 

 

In synthetic material design, the surface chemical properties to tune and by what degree is 

still unknown. We believe there is room for improvement for cell performance on synthetic 

environments and here we focus on finding better chemical designs that better fit the 

purpose. There are 13 million chemical designs to test, in theory. This means testing all of 

them to find a better chemistry is next to impossible given the time it takes to prepare a 

cell microenvironment and assess cell performance (16). It has taken a total of 6 months 

collectively to test 13 environments with traditional cell culture experiments in the lab. It 

is time to move computationally to solve this problem. Kohn, 2004 (145) mentions the 

adoption of computational methods in biomaterial design is the way forward for tailored 

materials to satisfy the requirements of biomedical applications. 

 

1.6 AIMS AND OBJECTIVES 

The aim is two-fold: 

1. Find synthetic surface chemistries that provide better cell performance than our 

current synthetic standard amine and as close as possible to the in vitro biological 

environment (laminin protein coated) 

2. Explain which chemical properties of the cell’s environment affects cell 

performance and by what degree 

 

The objectives are: 
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1. Find and describe the relationship(s) between chemical parameters and cell 

performance using computational techniques 

2. Create a tool to perform cell culture experiments computationally with the use 

of the models discovered in the previous objective (Figure 1.12 & Figure 1.13) 

3. Use the same tool as previous objective to discover the effect of one or a few 

chemical parameters on cell performance 

4. Validate findings experimentally with cell culture experiments 

Figure 1.12 below shows the end results of the conversion from real chemistries to 

numerical chemistries: 

 
Figure 1.12: (Left) parameters defining the chemical properties of surface chemistries. (Right) A synthetic chemistry 

with its chemical values. 
 

Figure 1.13 below shows a methodology schematic for computational cell culture 

experiments: 

 
Figure 1.13: (Left) computational cell culture experiment logic. (Right) Example outcomes of cell performance. 
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2 MATERIALS AND METHODS 
 

Finding surface chemistries for improved neural cell attachment and differentiation raises 

the question “which synthetic chemical design enhances nerve tissue engineering 

comparable to a biological benchmark?” Answering this effectively necessitates addressing 

a limitation found in the literature which is assessing numerous chemical properties 

simultaneously. For the experimental methodology, data collection is to perform cell 

culture experiments on a variety of surface chemistries and collect morphological cell 

response data for analysis such as correlations and machine learning. Below is the 

methodology to change the presenting chemistry of glass coverslips used as neural cell 

culture surfaces. 

 

2.1 MODIFYING PRESENTING CHEMISTRY OF SURFACES 

The 13 mm coverslips (Thermo) were left in 70% industrial methylated spirit (IMS) for at 

least 24 hours to remove dust and unwanted debris. After rinsing with isopropyl alcohol 

(IPA), the coverslips were air dried immediately prior to modifying their presenting 

chemistry. In previous work, nine synthetic chemistries were used. Some of these have also 

been used in recent work, thirteen in total, shown in Table 2.1 with the surface chemistries 

used in previous work (41) and current work indicated with a P or a C respectively in column 

“Use”. 

 

For each synthetic chemistry, 30 glass coverslips were added in separate vials with 5 ml of 

solvent (toluene, ethanol from Fisher or tetrahydrofuran from Sigma-Aldrich) and 50 μl of 

the silane solution. These were left for 24 to 48 hours for the coverslips to acquire the 
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functionality through a condensation reaction. Glass coverslips have hydroxyl groups at the 

surface, which is the bond site for self-assembly molecules (synthetic chemistries). 

 

Modifying surfaces required a single-step process for the majority of chemistries but two, 

the carboxylic acid surfaces and the in vitro biological control surfaces with PDL and 

laminin. The carboxylic acid terminated surfaces required a two-step process. The 

carboxylic acid functionality is acquired by reacting amine (index 5 in Table 2.1) surfaces 

with succinic anhydride. APTES surfaces were rinsed with toluene then the coverslips were 

placed in a second vial with toluene and 0.005 moles of dissolved (sonicator) succinic 

anhydride for 48-hours to react the terminal amine to form the carboxyl terminal group 

above it. All modified surfaces with synthetic chemistries were: 

 Rinsed with the same solvent used previously then annealed for 1 hour in an oven 

at 150° C (178) 

 Placed in well plates in LFH for cell culture or stored in a desiccator until needed 

 

The in vitro biological surfaces were made ready 1 day before neurosphere micro-culture. 

These surfaces are made with poly-d-lysine (PDL, Sigma-Aldrich) and laminin from 

Engelbreth-Holm-Swarm murine sarcoma basement membrane (Sigma-Aldrich). Coverslips 

were placed in well plates and they were sterilised with 70% IMS then rinsed with IPA in a 

laminar flow hood (LFH) used for cell culture. The coverslips were dried in an oven at 150° 

C for 1 hour. PDL (1:10 dilution) was added on each sterilised coverslip and left for 1 hour 

in the LFH. PDL enhances electrostatic interaction between negatively charged ions on 

laminin. PDL increases the number of positively charged sites available for laminin 

adsorption (179). After rinsing the coverslips with sterilised distilled water 3 times, laminin 

(1:100 dilution) was added and left overnight in an incubator at 37.5° C. Prior to use with 



Page 41 

cells, the laminin surfaces were washed 3 times with sterilised water and air dried for 30 

minutes in the LFH.  

 
Table 2.1: Synthetic chemstries used in previous (41) range from index 1-8 and recent work chemistries range from 

index 3-14. 
 

Index Use IUPAC name Structure 

1 P Phenyl triethoxysilane, Sigma 

2 P N1-(3-Trimethoxysilylpropyl)diethylenetriamine, Sigma 

3 P and C Methyltriethoxysilane, Sigma 

4 P and C 4-oxo-4-((3-(triethoxysilyl)propyl)amino)butanoic acid 

5 P and C (3-Aminopropyl)triethoxysilane, Sigma 

6 P and C Triethyl hydrogen orthosilicate, Sigma 

7 P and C (3-Mercaptopropyl)triethoxysilane, Fluorochem 
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8 P and C N-[3-(Trimethoxysilyl)propyl]ethylenediamine, Sigma 

9 C 2-(Carbomethoxy)ethyltrichlorosilane, Fluorochem 

10 C 3-Cyanopropyltrimethoxysilane, Fluorochem 

11 C N-(6-Aminohexyl)aminomethyltriethoxysilane, 
Fluorochem 

12 C 3-(Methoxy)propyltrimethoxysilane, Fluorochem 

13 C N-Methyl-3-aminopropyltrimethoxysilane, Fluorochem 

14 C n-Butylaminopropyltrimethoxysilane, Fluorochem 
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2.2 SURFACE CHARACTERISATION 

After modifying the presenting chemistry of surfaces, ensuring the chemistry has bonded 

on the underlying bulk material (glass) involves proving it is there using at least three 

techniques/instruments. A popular method is contact angle experiments where a drop of 

a solvent is released and the inner contact angle measured, and other, more advanced 

methods are Raman Spectroscopy and X-ray Photoelectron spectroscopy. In Raman 

spectroscopy, the sample is excited with a laser interacting with the molecular vibrations 

resulting in light (Raman) scattering. This causes an energy shift either up or down and gives 

information about the vibrational modes of the sample. Doing so provides structural 

fingerprint insights and molecules can be identified. X-ray photo electron spectroscopy 

measures the elemental composition by irradiating with an X-ray beam while measuring 

the kinetic energy and number of electrons escaping from the top 10 nm of the sample. 

 

 Contact angle measurements (CAMs) 

All modified surfaces were measured for their water contact angles as a form of chemical 

verification of each chemistry. With the exception of laminin surfaces, modified surfaces of 

each batch of synthetic chemistries were dried in 50° C overnight. Solvents used include 

sterilised and filtered distilled water (dH2O) and decanol for hydrophilicity and lipophilicity 

measures respectively. OneAttension Theta Lite was put to focus and set to 160 frames per 

second to capture with a software trigger for 3 seconds once the syringe was retracted with 

high speed due to the designed mechanism of the instrument. Solvent drop volumes of 1 

to 2 μl of dH2O and decanol respectively were measured using live pendant analysis before 

being dropped on modified surfaces. 
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Freshly made laminin surfaces and the dried synthetic chemistry surfaces were then used 

for decanol contact angle on the side that has not been used previously. Modified surfaces 

were placed on the imaging stage and images were acquired immediately and 

automatically by the software and trigger after the solvent drop was released at room 

temperature. Results were analysed with OneAttension software and the drop shape curve 

was fitted from subpixels using Young-Laplace equation detailed in (180,181). The baseline 

was corrected for each sample. The surface free energy of the solid was calculated with the 

following equation: 𝛾ௌீ = 𝛾ௌ௅ + (𝛾௅ீ ∙  𝑐𝑜𝑠 𝜃஼) 

Equation 2.1: Young’s equation to determine the surface free energy (γୗୋ) of solids. γୗ୐is the interfacial tensions, γ୐ୋ is 
the surface tension, L is liquid phase (solvent), S is solid phase, G is gas/vapour phase, and θେ is the contact angle (180). 
 

 
Figure 2.1: Illustration of contact angle measurement on solid surfaces (Young’s equation). Blue blob is the solvent and 

the gray bar is the solid surface. Taken with permission from (182). 
 

 

 Surface Enhanced Raman Spectroscopy (SERS) 

The instrument Thermo Scientific DXR Raman microscope was fitted with a laser, filter and 

full range grating all designed for 532 nm wavelength. After warming up the laser, 

alignment and calibration of the instrument was conducted as per the manufacturer’s 

manual to enhance the Raman signal and reduce noise. Samples were handled with needle 

tip forceps and placed on a microscope slide. For the SERS technique, gold nano-particles 

(GNP) 30 nm in diameter (OD 1) stabilised in citrate buffer (Sigma-Aldrich) were pipetted 

in 2 μl volume on two debris-free areas of each functionalised silicon wafer and were left 
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to air-dry. The slide with the samples was mounted on the stage and the laser was focused 

on each sample on debris-free areas. 

 

For SERS, the focus was on areas near the edge of concentrated dried gold nanoparticle 

solution indicated by sky to light blue colour. The oscillating electric fields of light rays cause 

GNP electron charge that oscillate with greater amplitude than the frequency of visible light 

(183). Due to this effect and the size of the GNP (30 nm) light is absorbed in the blue-green 

portion of the spectrum (450 nm) (184). Samples were analysed at 4’ exposure time and 75 

sample exposures with 50 μm both slit and pinhole apertures. Data was collected and 

analysed, normalised, smoothed and peaks were identified with OMNIC v8.2 software. 

 

 X-ray Photoelectron Spectroscopy (XPS) 

The XPS analysis was performed with the Theta Probe instrument equipped with a 

monochromatic AlKa x-ray source (Thermo Scientific) as stated by national EPSRC XPS 

user's service (NEXUS) facility at Newcastle University. A high-energy pass (200 eV, step 1.0 

eV) is performed as survey spectra and a low-energy pass (40 eV, step 0.1 eV) is performed 

for high-resolution spectra of the elements of interest (e.g. carbon, nitrogen, oxygen, Table 

2.2). A flood gun was used for charge compensation to deal with electron loss from the 

sample. The XPS analysis of this project’s samples was conducted at the UK National XPS 

facility at Newcastle University under the guidance of Prof P Cumpson. Data acquired were 

analysed with CasaXPS software v2.3. The table below shows X-ray energy (in electronvolts) 

to excite the elements of interest to this study: 
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Table 2.2: X-ray energy level exciting elements of interest. 
 

Energy / eV Element Level
69 Br 3d 

168 S 2p 
284 C 1s 
399 N 1s 
532 O 1s 

 
 

2.3 CELL CULTURE ON MODIFIED SURFACES 

The raw biological material for nerve tissue engineering is cortical tissue was dissected from 

rat embryos aged 16 days. Cortical tissue was chosen for studies as cortical neural 

progenitors and neural stem cells can be sourced over a long period (185,186). Rat tissue 

is similar to human neurospheres (187) and by using it we avoid the trouble of producing 

high quality neurons from human stem cells. Rats gestate for 22 days (E0-E21), so E16 

cortical tissue was selected for dissection as past experiments show that the first markers 

of mature neurons emerge around E15-E17 (186,188). E16 tissue strikes a balance between 

the number of cells acquired and cell lineage determination (185). The older the tissue, the 

more determined it becomes towards the cell lineage destined for mature cell types. 

  

 Neural tissue dissection 

Tools required were sterilized using a glass bead sterilizer (Steri 250, Simon Keller AG) for 

approximately 15 seconds at 250°C. These include large and small scissors (Fine Science 

Tools), bracken forceps (Roboz Surgical Instrument Co) and Dumont forceps (Fine Science 

Tools). After cooling down, the tools were placed in a sterile container. Trypsin and 

deoxyribonuclease (DNase) solutions were thawed at room temperature. Trypsin with 

EDTA solution was made up of 0.1% trypsin and 0.05% DNase I (both from Worthington 

Biochemical Corp., Reading, UK) in Dulbecco's Modified Eagle's Medium (DMEM, Sigma-

Aldrich). DNase solution was made up of 0.05% DNase also in DMEM. Both solutions were 
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kept in 1.5 ml Eppendorf tubes at –20° C. 50 ml tubes (both Greiner Bio-One) were filled 

with DMEM medium and placed on ice. 

 

Sprague-Dawley rats bred in-house at Keele University were sacrificed by approved 

Schedule 1 methods, following guidelines from the UK Animals, Scientific procedures Act, 

1986 and authorization from Keele University’s local ethics committee. The embryos were 

16 days old (E16) with E0 defined as date of observing vaginal plug. After Schedule 1, the 

peritoneum was opened using scissors. First, horizontally through the skin then vertically 

to expose the uterine horns containing the rat embryos. Sterilized forceps were used to lift 

each uterine horn whilst a pair of small scissors was used to trim off tissue attached to the 

abdomen. Uterine horns were transferred into a 50 ml tube and were transported to the 

dissection hood. Uterine horns were then transferred into a sterile 100 mm petri dish 

(Greiner Bio-One). Scissors and forceps were used to remove one embryo at a time and to 

transfer embryos into a petri dish with DMEM medium. 

 

The following dissection steps were performed with a dissection microscope (Leica DMIL 

Inverted Phase Contrast Microscope). Rat brains were then extracted after decapitating 

embryos (recognised Schedule 1 methods for embryos older than 11 days old). Scissors and 

forceps were re-sterilized using the bead sterilizer for 15 s. The embryo heads were split in 

3 groups placed on their side in the petri dish, a vertical cut was made (Figure 2.2A) using 

a pair of small scissors (Fine Science Tools) and the brains were extracted (Figure 2.2B). 

Once ready, each of the brain groups was transferred into a petri dish containing DMEM 

medium (189,190). A longitudinal cut was made along the medial dorsal cortex, close to 

the midline using fine Vannas dissection scissors (Fine Science Tools, Figure 2.2C). It was 

opened up to reveal and remove the ganglionic eminence (heart-shaped structure shown 

in (Figure 2.2). The surrounding tissue remaining is the cortex and this was collected. Tissue 
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pieces were transferred into designated small Eppendorfs containing DMEM for each brain 

group, kept on ice. 

 
Figure 2.2: Dissection of E16 brain tissue. A cut is made above the eyes to expose and extract the rat brain (A, B). 

Another cut is made (C) to expose and remove the ganglionic eminence (D) and the cortex tissue (area shown with 
hashed lines) is collected. Adapted with permission from (191). 

 

The dissected cortical pieces where digested to form single cells with 0.1% trypsin + 0.05% 

DNase in DMEM for 30 minutes at 37 ˚ C. A pellet formed and the trypsin solution is 

aspirated away followed by 3 washes of 200 µl of DMEM with 0.05% DNase (Worthington 

Biomedical Corp) to digest extracellular nucleic acid released by lysed cells making the 

solution less viscous. Once the DNase is aspirated and the cells washed with DMEM, they 

were centrifuged for 3 minutes at 55 g (RCF) and aspirated once again to remove any 

residual enzyme. The cell pellet is suspended in media and mechanically dissociated to 

break the tissue to single cells. 

 

 Neurosphere expansion  

The next step after neural tissue dissection is to expand single cells to neurospheres to 

maximise the number of neural stem cells and progenitors (51). Carrying from the final step 

of tissue dissection, the supernatant of the tube containing a pellet of single cells was 

aspirated. The pellet was then re-suspended in 1 ml of neural progenitor culture media 

(NPC, Table 8.1 in appendices section 8.1) to quench proteolytic activity of any residual 

trypsin following centrifugation. Cell counts were performed with a haemocytometer and 

T25 flasks (Greenier Bio-One) were seeded with 1 million cells/ml. Once seeded with cells, 

5 ml of NPC media was added. NPC media contains βFGF (stem cell mitogen, Gibco aa 10-
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155) promoting neurosphere formation due to cell proliferation (45). Resulting flasks were 

incubated at 5% CO2 at 37 ˚ C. After 48 hours, an additional 2 ml of NPC was added to 

account for neurosphere growth. At this point and every 48 hours, 2 ml NPC media was 

replaced. For medium exchange, the T25 flask was placed upright to rest for 5 minutes to 

sediment the neurospheres and prevent their accidental removal. 

 

 Neurosphere passage 

From a review on neurosphere cultures (192) it was discussed that neural progenitors 

isolated from the developing brain have potential for use in replacement therapies but 

suffer from limited availability and ethical concerns. Neurosphere-expanded cells are not 

easily committed to a neuronal fate and that expression of one gene normally involved in 

neuronal commitment is not sufficient to promote neuronal differentiation in a complex 

environment (192). This means additional methods are required to maximise the number 

of cells within a neurosphere. Passaging for neurospheres is essentially breaking them in 

smaller parts as this obviously controls their size and more importantly the cell types within 

the neurosphere. The reasons behind the passage include: 

 to decrease the chances of necrotic cells at the centre of neurospheres from 

insufficient supply of nutrients from media 

 to increase uniformity in neurosphere size 

 for easier micro-culture technique and analysis 

 to be able to make size comparisons with sphere spreading at designated time 

points in culture 

For the last point, sphere spreading holds information of cell migration away from the 

sphere. In traditional cell culture, passaging is the process where cells are detached and 

transferred to fresh media. In the context of neurospheres, passaging is the process of 
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splitting up the spheres into single cells and transferring them to fresh media to reset their 

size. Remaining suspended single cells form new neurospheres if they are neural stem cells 

and progenitors. 

 

Neurospheres were passaged after 7 days in culture. The neurospheres with NPC media 

were taken from the T25 and centrifuged at 55 g (RCF) for 5 minutes to create a pellet. The 

NPC was aspirated and the neurosphere pellet was re-suspended in 0.5 ml of fresh NPC. 

This was transferred to a 1 ml Eppendorf tube and neurospheres were dissociated 

mechanically to single cells with the pipetting technique. The single cell solution of 0.5 

million cells/ml was transferred to a fresh T25 with 5 ml of NPC media to restart the 

neurosphere formation process. The T25 was incubated (37 ˚ C, 5% CO2) for 2 days. 

 

 Neurospheres micro-culture  

Micro-culture is a method to miniaturise cell culture experiments therefore increasing the 

scale of the study. It addresses the issue of having limited biological material such as cells 

and proteins when testing experimental conditions. Using this method, neurospheres must 

adhere to the modified surfaces and not the well plate before the well is filled with media. 

 

The P1.2 (passaged once plus 2 days re-expansion) neurospheres were taken from the T25 

and centrifuged at 55 g (RCF) for 5 minutes. The supernatant NPC was aspirated and the 

neurosphere pellet was re-suspended in 2 ml differentiation culture media containing fetal 

calf serum to promote cell differentiation. Neurosphere counts were performed using a 

haemocytometer. A stock solution of neurospheres and differentiation media was made to 

provide 30 µl micro-cultures containing 200 neurospheres. During the process of seeding 

cells on modified surfaces, the micro-culture solution was continuously rocked manually to 
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prevent the neurospheres from settling. 30 µl was pipetted on the centre of each dried 

modified surface placed in individual wells in a 24 well plates. For each type of modified 

surfaces, 3 were used for each time point (6 in total), per experiment. The seeded surfaces 

were incubated at 5% CO2 at 37 ˚ C for two hours. An additional 0.5 ml of differentiation 

media was added to every well and the next morning, the wells were topped up to 1 ml. 

From that point and for every 48 hours, 0.5 ml of differentiation media was replaced for 

each well. Micro culturing was performed on all surfaces as shown in Figure 2.3 below: 

 

 
Figure 2.3: Workflow for cell culture on modified surfaces. Starts from top left. From cortical tissue dissection, 

dissociating tissue to single cells, resuspending cells in neural progenitor culture media in T25 flasks and left to grow for 
7 days. Followed by a passage then, 2 days later seeding to modified surfaces. Samples were cultured for up to 7 days 
and samples were fixed and mounted on microscope slides for image capturing and analysis. Adapted with permission 

from (41). 
 

2.4 FIXATION AND IMMUNOCYTOCHEMISTRY 

Fixation is a critical to preserve biological tissues from decay (autolysis) and prepare them 

for immunocytochemistry (ICC). Fixation halts ongoing biochemical reactions and increases 

the mechanical stability of the treated samples. ICC is common technique used to identify 

2 days

30 mins
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cell types using fluorescent light on samples. Anatomical visualisation of specific localised 

proteins (antigens) in cells is possible using a primary antibody that binds to them. The 

principle is simple. A primary antibody (e.g. murine III β-tubulin) attaches to an epitope on 

a cell structure. Next, a secondary antibody (e.g. goat anti-mouse) is added and this 

contains a fluorophore. The fluorophore can be excited with fluorescent light from a UV 

light source and antigen positive cells will fluoresce. 

 

At day 3 and 7, cells were fixed for ICC. In the first step, media was aspirated from the wells 

and cells were fixed with of 4% paraformaldehyde (PFA) solution for 20 minutes at 4˚C to 

better preserve cell morphology (193). After 3 washes with tris buffer solution (TBS, 12 g 

trizma base from MERCK, 9 g NaCl, 1 L dH2O), the wells were inspected for the presence of 

cells under a standard upright lab microscope. With ICC, the antibodies can bind 

undesirably on plastic wells, other cells (false-positives) or debris. This non-specific binding 

issue is dealt with by ‘blocking’ binding sites on the cell’s environment and cells with a 

serum. Samples were blocked for 1 hour at 4 ˚ C with a solution containing goat serum 

(1:20), Triton X (1:500) to digest lipids in cell membrane and allow antibody penetration, 

and TBS. After 3 washes with TBS, the primary antibody solution containing β-III-tubulin 

(neuronal marker, 1:500 dilution, Cambridge biosciences) and GFAP (clonal glial marker for 

astrocytes, 1:1000 dilution, DAKO) was added to bind with mature neural phenotypes. The 

composition of ICC solutions can be found in Table 8.2, in appendices section 8.2. The 

samples were incubated with primary antibody solution overnight at 4 ˚ C. Following 3 

washes with TBS, a secondary antibody solution was added containing the FITC and TRITC 

fluorophore tagged antibodies (Cheshire Sciences). The samples were left in the dark for 

two hours followed by 3 washes with micro-filtered dH2O. After that time, the samples 

were mounted facing down on microscope slides with DAPI mounting media (Vector Labs). 

DAPI is a fluorescent dye that binds to nuclear material within the nucleus. Finally, the 
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samples were sealed with clear nail varnish around the edges to protect them from drying 

and fading, and to stabilise them on the microscope slide. 

 

2.5 MICROSCOPY 

Measuring morphological cell performance is performed from cell culture images captured 

using life sciences microscopes. These are instruments designed for measuring distances 

and cell counts where the area of view is defined with a pixel-to-distance calibration. In this 

sense, with the appropriate calibration, it is possible to take measurements and 

annotations digitally and convert these to real units such as μm, mm, and counts. 

 

 Epi-fluorescence 

Optical fluorescence microscopes work by exciting previously deposited (ICC) antibodies or 

dyes with light (fluoresce) and these would emit light at different wavelengths 

(phosphoresce). High intensity light is split into fluorescent light wavelengths with a 

florescence filter. Fluorescent light makes its first pass through the dichroic filter (beam 

splitter) allowing light of a specific wavelength through. The fluorescent light shines on the 

sample exciting fluorescent material to phosphoresce. The emitted light goes through the 

objective lens and magnifies the sample in view, and then through the dichroic mirror. The 

emission is detected by an ICCD camera (intensified charged coupled device) to provide an 

image (Figure 2.4). 
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Figure 2.4: Epi-fluorescent microscopy schematic. Adapted with permission from (41). 

 

 Morphological cell performance measurements 

Phosphorescent images of coverslips with neurons and glia were captured to assess 

attachment, migration, differentiation, and cell process elongation. The samples were 

scanned with an automated scanning XY stage epi-fluorescence Nikon Ti microscope (Nikon 

Instruments) with 5% overlap percentage. Scans were taken using a 100x objective lens 

with a monochrome Hamamatsu ORCA CCD camera (Hamamatsu Photonics). In addition, 

200x and 400x images were taken for cell counts and to examine cell projections. Three 

filters listed in Table 2.3 (below) were used with as short exposure time as possible. All 

scans were acquired with 1x gain.  

 

Table 2.3: Excitation and emission wavelengths of fluorescence microscopy used for this project. 
 

Filter Excitation/emission wavelength Colour 
DAPI 358/461 nm Blue 
FITC 488/518 nm Green 

TRITC 541/572 nm Red 
 

 

Image analysis to quantify cell performance was performed with NIS elements v3.2 (x64) 

software. Cell responses quantified include: 

1. Cell cluster area. Upon adhesion, neurospheres spread on the culture surface and 

form a cluster. This cluster area was measured in μm2. 
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2. Cell proportions for neurons, glia, and unknown type cells. From all counted cells 

(150-200 per coverslip), the proportion of cell types was determined. 

3. Type I Astrocyte area. In vitro, spreading of type I astrocytes indicates they are 

under stress. In vivo, this is called reactive astrogliosis and it could arise due to injury 

to the nervous system (194). Type I astrocyte spreading area was measured in μm2. 

4. Cell projection lengths. These are neurites for neurons and astrocyte fibres for glia 

(measured in μm). 

Data was imported into Microsoft Excel for validation, manipulation and export. 

 

2.6 STATISTICAL ANALYSES 

Statistics is a branch of mathematics dealing with the collection, analysis, interpretation, 

presentation, and organisation of data. It is necessary to use statistical analyses as the 

sample size is rarely the population size. An oversimplification of statistical tests is they 

tend to measure the risk or how “wrong” one can be with made assumptions. 

 

 Variance tests 

Variance tests are used to investigate whether the variance in data is homogeneous, 

satisfying a parametric assumption before choosing further parametric tests. Parametric 

statistics have a fixed length on parameters whereas non-parametric do not. Levene’s test 

checks the null hypothesis that the variances in different groups are equal (i.e. the 

difference between the variances is zero). This test does a one-way analysis of variance 

(ANOVA) conducted on the deviation scores; that is, the absolute difference between each 

score and the mean of the group from which it came (195). Equal intervals on the variable 

represent equal differences in the property being measured (e.g. the difference between 6 
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and 8 is equivalent to the difference between 13 and 15) (195). Levene’s test uses the mean 

and has better statistical power for symmetric, moderate-tailed, distributions (196). The 

absolute deviations were used with this test to assign equal weights of data spread (195). 

The squared deviation would have emphasised the outliers (197). The Brown–Forsythe test 

on the other hand uses the median instead and is recommended as the choice that provides 

good robustness against many types of non-normal data while retaining good statistical 

power (195). 

 

 Data distribution 

Another parametric assumption to use parametric tests is how normally distributed the 

data is. A normal distribution is has most of the data points cluster around the mean with 

the number tapering off symmetrically either side of the mean to a few extreme values in 

each of the two tails. While the assumption of normally distributed data is not the only one 

that must be satisfied in order to use parametric tests, the arithmetic of such tests is based 

on the parameters describing a symmetrical, bell-shaped curve (Gaussian) (196). Normality 

tests can determine whether sample data has been drawn from a distribution that is 

approximately normally distributed (195). Shapiro–Wilk and Anderson-Darling tests for 

normality are popular in the literature (198–200). The authors found Shapiro-Wilk provides 

a superior omnibus indicator of non-normality judged over the various short/long-tailed, 

asymmetric and symmetric alternatives and over diverse sample sizes used (198). 

Anderson-Darling test detects non-normality around the tails of a distribution (199,200) 

whereas Shapiro-Wilk is better around the centre of a distribution (198). Chen-Shapiro test 

extends the power of Shapiro-Wilk without losing power and also supports limited sample 

size (198,199).  
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If we add together many random variables with all having the same probability distribution 

the sum, as new random variable, will have a distribution that is approximately normal 

(Central Limit Theorem) (195). This theoretical basis explains the reason why so many 

variables in nature appear to have a probability distribution that approximates a bell–

shaped curve (Gaussian). Random biological processes can often be viewed as being 

affected by a great number of random processes with individually small effects (201). The 

sum of all these random components creates a random variable that converges on a normal 

distribution regardless of the underlying distribution of processes causing the small effects 

(202). A Q–Q plot serves as a supplementary method checking for normality visually. It plots 

the data set in equal portions (quantiles) (195). Razali & Wah (2011) mention that Q-Q plots 

is an effective and common tool for visual inspection of data distribution (199) (Figure 2.5). 
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Figure 2.5: Data distributions and corresponding QQ-plots. Taken with permission from (41). 

 

 Correlation 

Discovering better synthetic environments for use in nerve tissue engineering can be 

accelerated computationally by capturing the relationship between the surface chemistry 

and morphological cell responses. This will allow the exploration of environment 
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candidates from their chemical inputs (numerical). The selection of the best candidate 

(environment) from a set of alternatives is called mathematical optimisation. 

 

The simplest form looking for relationships between two variables is correlation tests. 

Dependence is any relationship between two variables or sets of data. Correlations can be 

measured with the use of different indices (coefficients) (195). The coefficient value can 

range from -1 to +1 and this value tells us the strength and direction of correlations. The 

direction is indicated by the sign of the coefficient. A positive coefficient means both 

variables tend to increase together. If one variable tends to increase as the other decreases, 

the coefficient is then negative (195,203). It can inform which surface properties vary with 

cell performance to help understand how to better design biomaterials. The two most 

popular techniques are the parametric Pearson’s coefficient (r), and the non-parametric 

Spearman’s rho coefficient (ρ) (196,203).  

 

Pearson’s r is a correlation measure of a linear dependence between two variables. A 

relationship is linear when a change in one variable is associated with a proportional change 

in the other variable (Equation 2.2). This type of correlation is a parametric test where 

parametric assumptions are satisfied with the data in question. 

𝑟 = ∑ 𝑋𝑌 − ∑ 𝑋 ∑ 𝑌𝑁ඨ൬∑ 𝑋ଶ − (∑ 𝑋)ଶ𝑁 ൰ ට൬∑ 𝑌ଶ − (∑ 𝑌)ଶ𝑁 ൰ 
Equation 2.2: Pearson's correlation equation (195). 𝑋 and 𝑌 are the independed and dependent variables respectively. 

 

Previous data for the first experimental chapter had missing data. This was dealt with 

pairwise deletion to minimise data loss compared to using listwise deletion (complete row). 

Pairwise deletion maximises all data available in analyses. Missing value pairs of either 
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dependent (𝑌௜)  and independent (𝑋௜)  variables are deleted right before a test (e.g. 

correlation) and this can lead to absurdities in other tests (195). For practical reasons in 

bivariate correlation, the same number of values for both 𝑋 and 𝑌 were used (195). 

 

 Effect size of correlations 

A high valued test statistic does not necessarily mean the effect it measures is meaningful 

or important. To address this criticism we can measure the effect size we are testing in a 

standardised way. The effect size value for the correlation is the coefficient itself. An effect 

size is simply an objective and (usually) standardised measure of the magnitude of 

observed effect (195). Cohen (1988, 1992) suggested widely used effect sizes (195): 

 r = .10 (small effect): This effect explains 1% of the total variance. 
 r = .30 (medium effect): Accounts for 9% of the total variance. 
 r = .50 (large effect): Accounts for 25% of the variance.  

The effect size is intrinsically linked to three other statistical properties: 

1) the sample size of population (𝑛) (195,196,204) 

2) probability level (alpha value, 𝑎) and 

3) statistical power (𝛽) (195,196). 

If we know three of these properties then we can calculate the remaining one including the 

coefficient. 

 

 Correlation significance 

Bivariate correlations are a measure of strength of a relationship between two variables. 

Any relationship should be assessed for its significance as well. This significance is 

expressed in probability levels (𝑝) and it tells how unlikely a given correlation coefficient 

will occur given no relationship in the population. This is also known as hypothesis testing 

and it tells us the confidence we are not accepting false positives (type I error). There is 
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also the danger of accepting false negatives (type II error) (195,196). Below is a table with 

the correctness and errors of hypothesis testing:  

 

Table 2.4: Hypothesis testing correctness and errors. 
 

  Truth
  Null hypothesis True Null hypothesis False

Decision

Reject 
Null Hypothesis Type I Error (false positive) Correct Decision 

Fail to reject
Null Hypothesis Correct Decision Type II Error (false negative)

 
 

 

 Type I errors and 𝜶-value 

The probability (𝑝) value is usually decided beforehand and is the threshold for which the 

null hypothesis will be rejected if the value falls below it (false positive). This value is 

denoted as 𝛼 (alpha) value and is called significance level. Values for probability depends 

on the application of the outcome of the test, e.g. in drug research the 𝑝-value is 0.01 for 

99% confidence and for other applications a 𝑝-value of 0.05 for 95% confidence level is 

more common and the minimum value as per Fisher’s criterion (195,196). For example, we 

could take a correlation coefficient value of 0.5 with a 𝑝-value of less than 0.05 and be 95% 

confident the correlation coefficient differs from 0. 

 

 Type II errors and β-value 

Cohen (1992) suggested an acceptable 𝛽  (beta) probability value is 0.2 (or 20%) (false 

negative). The corresponding level of power is 1 –  𝛽 (195,196,204). This gives 80% chance 

of not accepting a false negative. This means that if we took 100 from a population in which 

an effect exists on all, we would not be able to detect an effect in 20 of those samples 

(195,196). 
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There is a trade-off between the two errors; to make a Type I error (false positive) there 

has to be no effect in the population, whereas to make a Type II error (false negative) the 

opposite is true; there has to be an effect we overlooked. So, as the probability of making 

a Type I error decreases, the probability of making a type II error increases (195,204). The 

easiest way to minimise the occurrence of both errors is to increase the population sample 

size (204). 

 

The table below shows the estimated power of Pearson’s correlation coefficient with given 

sample size and 𝛼-value (0.05 or 95% confidence): 
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Table 2.5: Estimates of power (1 − 𝛽) of Pearson's correlation coefficient given effect size (𝑟), sample size (𝑛), and 𝛼 
(𝑝-value). 

 

 

 

For statistical power analysis G*Power v3.1 was used for bivariate normal correlation in 

post hoc type of analysis. This type computes achieved power given 𝛼 probability (𝑝 = 0.05), correlation sample size (𝑛 =  7), and correlation effect size (𝑟/𝜌). The power of 

each correlation coefficient is mentioned under each correlation graph under Power (1 −𝛽). 

 

 Standard error of correlation 

This standard error (SE) is a measure of dispersion from the correlation coefficient (195). It 

is calculated as: 
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𝑆𝐸 = ඨ1 − 𝑟ଶ𝑛 − 2  
Equation 2.3: Correlation coefficient standard error. This is the measure of dispersion from the correlation coefficient. 

 

The correlation coefficient (𝑟) observed within a sample of 𝑋𝑌 values can be taken as an 

estimate (𝑅) of the correlation that exists within the general population of bivariate values 

from which the sample is randomly drawn.  

 

2.7 DATA MINING AND MACHINE LEARNING 

Machine learning is performed using learning algorithms to learn predictive/prescriptive 

models among other types. Correlation finds relationships between two variables, however 

learning algorithms can find relationships for more than two e.g. multiple regression, 

logistic regression. The data preparation step is crucial for machine learning and usually 

takes the longest when building a data driven solution. This is because it will influence the 

model fit and future-predictive ability (generalisation performance). 

 

 Data collection and aggregation 

The predictors of the model are chemical descriptors of the surface chemistry. These 

chemical descriptors were decided from previous work (41,90,205), other relevant 

research groups (77,176) and the literature (206–210).  They were collected using a variety 

of software and methods. For synthetic chemistries, the top 5-6 atoms of the backbone and 

branched side chains were considered. 

 Partition coefficients (logP) for synthetic chemistries were calculated with 

ACD/ChemSketch 2016 for each backbone atom and side chains attached to it. This 

gave 5 levels of logP values. ACD/ChemSketch 2016 is a variant of AlogP calculation 
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method extensively compared among many others in (106,209). For protein logP 

calculation, Ghose & Crippen’s method (211,212) was used. Laminin constituents 

were downloaded from UniProt.org (link) and converted to PDB format using 

OpenBabel v2.4.1. VEGA ZZ v3.1 (213) (publications) was used with NAMD energy 

minimisation for proteins (214–217). This guide written by the author of the 

software was followed. 

 Acidity measures (pKa) were obtained from the literature (218–221) and for 

proteins, the popular ProPKA v3 (206–208,222) was used. 

 Molecular mass is calculated as the sum of atomic weights of each constituent 

element multiplied by the number of atoms of that element in the molecular 

formula. Laminin’s mass was obtained from the literature and this agrees with the 

manufacturer’s specification (223). 

 Molecular volume for synthetic chemistries was found in the literature (224–226) 

or calculated with ChemDraw 2015. For proteins, ProteinVolume v1.3 was used 

(227). 

Obtained values for each chemical input were added in columns. Each row was a different 

chemistry. Cell data were aggregated from previous work (41) and from cells culture on 

modified surfaces. These data include cell migration, and morphology. Multiple cell 

measurements were available for each chemistry so the chemical inputs were duplicated. 

The cell data were designated with the time point in binary (dummy variables) and chemical 

data corresponding to them. These were saved in a flat csv file. 

 

 Dataset selection, cleaning, and pre-processing 

Although not a chemical parameter, the cell culture duration (time point) parameters were 

treated as temporal indicators. Cells remodel their environment in time (59) so an 
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indication of the time in culture helps handling the data. It also allows to include data from 

both time points. After collecting raw cell data, the central tendency was decided based on 

the sample distributions. There are 18 instances of data, one for each coverslip per 

chemistry. 9 of them are for day 3 samples and other 9 for day 7. 

 
 

Surface contact angle measurements were excluded as input features. These would be 

impossible to acquire for theoretical (numerical) chemistries as not all of these can be made 

or are stable to be used. In addition, the ‘ideal’ contact angle would always show on top on 

the ranked numerical chemistries regardless of the chemical design. Chemical inputs were 

projected from raw to their log10 and root (data not shown). These methods retain as much 

information as possible which is necessary for laminin’s chemical values. 

 

2.8 MODEL SELECTION 

Computational models provide the ability to predict future cell outcomes without 

performing the actual cell culture experiment. This is necessary as there is a plethora of 

surface chemical designs to test with cells and there are resource limitations, especially 

time. The predictive models can be interpreted to give insights on which variables are used 

to make a prediction. 

 

Predictive models are discovered with Waikato Environment for Knowledge Analysis 

(WEKA). The popular WEKA workbench developed at Waikato in New Zealand, is a 

collection of state-of-the-art machine learning algorithms (classifiers) and data pre-

processing tools implemented in Java (228–230). It provides extensive support for the 

whole process of experimental data mining, including preparing the input data, evaluating 
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learning schemes statistically and visualising the input data as well as the result of learning. 

Due to its ease of use and abundance of algorithms provided, WEKA has accumulated 13k 

citations leading to mid-2017. 

 

There is an abundance of machine learning algorithms and each has specific parameters 

tuning a model’s predictive performance on future outcomes. Finding the optimal set of 

both, requires problem domain knowledge, know-your-data, theoretical basis of 

algorithms, and value ranges of hyper-parameter boundaries tied with theory and 

discovered empirically. 

 

Standard practices are to split the complete dataset into two parts. 70% for training and 

validation to find classifiers and optimise their parameters and the remaining 30% for 

testing on unseen data to calculate the error rate of the final, optimised method (231). 

Further splitting the training and validation set is required and when data is limited, the 

threshold for doing this is a dilemma. There is a trade-off between using more training data 

for potentially better knowledge representation and using more data for better testing of 

the model or for hyper-parameter discovery. 𝑘-fold cross-validation maximises the use of 

data for both training and testing by binning data to 𝑘 bins of equal size (e.g. 𝑛௧௢௧  =  200 

then 𝑘 =  10 bins each consisting of 𝑛௞  =  20). 𝑘 separate learning experiments are run 

and in each, one 𝑘 subset is selected for validation and the remaining 𝑘 − 1 subsets are 

used for training. This is repeated 𝑘  times averaging the validation results for all 𝑘 

experiments. Although more computationally expensive this maximised the use of data for 

model selection (231). 

 

MultiSearch is a WEKA package that allows the testing of multiple learning algorithm 

parameters in order to find the best values. It chooses these values for each parameter 
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using DefaultSearch. This performs a 2-fold cross validation across the initial space to 

determine the point with the lowest mean absolute error (error metric to optimise). This is 

the centre point and now 10-fold CV evaluates adjacent parameter values. If better 

parameters are found, they are set as the new centre and the search continues until no 

further improvement can be found (king of hill-climbing). For numerical parameters, the 

MathParameter was set to start from the minimum value working its way up to the max 

with an increment value (STEP). For non-numerical values such as true, false among others, 

were tested with ListParameter. For groups of parameters such as those of Support Vector 

Regression with Kernels, ParameterGroup was used. MultiSearch reports the best classifier 

parameter setup by calling “multiSearch.getBestClassifier()”. 

 

A dataset consisting of 10 chemistries and their corresponding cell responses was prepared 

as per section 2.7.1. Each cell output needs its own predictive model therefore, 8 models 

were sought. 10-fold cross-validation was selected as each chemistry has 9 instances for 

each two time points, with a total number of samples 𝑛 =  180 for training and validating 

classifiers. 

 

 Model performance 

The model performance is a collection of prediction metrics used to assess predictive ability 

a.k.a. generalisation performance. Mean absolute error (MAE) is the average of the 

absolute differences between 𝑛 predictions (𝑝) and actual values (𝑎)  and this measure is 

widely used in machine learning (231). For this project, the MAE on its own is insufficient 

to assess model performance. The cell outcomes in experimental results have a central 

tendency and a spread. For the former it is usually average, median or trimmed average 

and the latter is standard deviation. Inherent biological variation goes together with 
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experimental methodologies. It is standard practice to include at least 3 replicates of a test 

condition and perform at least 3 experiments for outcome robustness. Inspired from the 

MAE and biological variation, we believe a better metric is a measure that uses the 

difference between actual and prediction proportional to the average standard deviation 

of all observed samples. This model performance ratio (MPR) is calculated as: |𝑦෤ − 𝑦పෝ|𝜎ത  
Equation 2.4: Model performance ratio. The absolute difference between real median and prediction is standardised by 
the spread of data, the average standard deviations. y෤ is the median of real data, 𝑦పෝ  is the prediction estimate, and 𝜎ത is 

the average standard deviation of all observed samples. 
 

 Attribute evaluation and selection 

Variable selection for machine learning is case-specific meaning for each computational 

problem a different set of data may provide predictions with lower MAE for example. The 

data used directly affect the learning of the model and experimentation to find the best set 

is good practice. 

 

Correlation feature subset evaluation (CfsSubsetEval) (231,232) is a method that evaluates 

the worth of a subset of attributes by considering the individual predictive ability of each 

feature along with the degree of redundancy between them. Subsets of features that are 

highly correlated with the class while having low inter-correlation are preferred. If the — 𝐿 

switch is not set, the acceptance of a feature will depend on its ability to predict the class 

if they have not already been predicted by other features. Its function is as follows: 

𝑀ௌ =  𝑘𝑟௖௙തതതതඥ𝑘 + 𝑘(𝑘 − 1)𝑟௙௙തതതത 

Equation 2.5: Attribute evaluation method: correlation feature subset evaluation (232). 𝑀ௌ is the heuristic merit of a 
feature subset 𝑆 containing 𝑘 features. 𝑟௖௙തതതത is the mean feature-class correlation (f ∊ S). 𝑟௙௙തതതത is the average feature-

feature inter-correlation. 
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CfsSubsetEval evaluates and gives merit scores to attribute subsets found by other search 

algorithms. One method is BestFirst search (231,233) that uses greedy hill-climbing 

technique where it incrementally changes a single element in the attribute subset until a 

better one is found. Once found, the process repeats until no further improvements can be 

found. BestFirst terminates when the performance starts to decline but keeps a list of all 

attribute subsets evaluated along with their performance measure. This technique is called 

backtracking and it allows the algorithm to revisit an earlier subset configuration. The — 𝑁 

parameter is the number of features to keep. 

 

The other one is GreedyStepwise (231,234) shares the greedy trait searching through the 

space of attribute subsets. Like BestFirst, it can progress forward from the empty set or 

backward from the full set. Unlike BestFirst, it cannot backtrack but it does terminate as 

soon as adding or deleting the best remaining attribute decreases the evaluation metric. In 

the ranking mode (— 𝑅), the search is forced to the far side of the search space to go 

through all subsets. Attributes continue to be added even if the addition reduces the merit 

of the current best subset. At each stage, the best attribute is added. At the point where 

additions begin to reduce the overall goodness, the attribute that degrades the subset the 

least is added. The ranking is determined by the order in which attributes are added. The — 𝑁 parameter works only in ranking mode and allows the best 𝑁  attributes from the 

ranked list to be retained. 

 

 Cell cluster area 

Modelling cell cluster area was achieved with RandomTree (235). Decision trees owe their 

name to their tree-like structure. The paths from root to leaf represent classification rules. 

Classification of examples start at the top node – the root – and the value of the attribute 
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it corresponds to this node is logically tested. The example moves down the branch to 

another node that corresponds to a particular value of an attribute and this repeats until 

the example reaches the end node – the leaf – and instead of a logic test, a value of the 

target attribute is given. All examples arriving at the same leaf, the same target value will 

be predicted. Generally, the upper the attributes are on the tree the stronger influence on 

the target variable. 

 

In RandomTrees, trees are learnt from top to bottom with an algorithm known as divide-

and-conquer (DAC). In DAC, the problem is recursively broken down into sub-problems 

until these become simple enough to be solved directly. Features are selected at random 

for each node from 𝐾 number of input variables. Among these, the attribute with most 

information gain is selected for the root and subsequently the same occurs for each node. 

After the root is decided, the examples are split into disjoint sets and the corresponding 

nodes and branches are added to the tree. The simplest splitting criteria for attributes is in 

the test form of: 𝑡 ← (𝐴 < 𝜈) where 𝜈 is one possible threshold value of attribute 𝐴. The 

corresponding set 𝑆௧  contains all training examples for which 𝐴  has values above or 

below 𝜈 . After the dataset is split accordingly to the selected attribute, the procedure 

moves further down recursively for the remaining dataset. The stopping criteria is when 

the remaining examples have the same outcome or no further splitting is possible. For the 

latter, this is due all possible splits have been exhausted or because all remaining splits will 

have the same outcome for all examples. For all other sets, an interior node is added and 

associated with the best splitting attribute for the corresponding set as described. Hence, 

the dataset is successively partitioned into non-overlapping smaller datasets until each set 

contains only examples of the same outcome (pure node). Ultimately, a pure node can 

always be found via successive partitions unless the dataset contains examples with 

identical feature values but different outcome values (contradictions). 
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All attributes were made available (— 𝐾 = 10) each time a node was selected. Decision 

tree models can fit on any training set that does not contain contradictions. This makes 

them more prone to overfitting and come in the form of overly complex trees. At the same 

time, the tree complexity has a crucial effect on its accuracy. Preventing overfitting is 

usually accomplished by limiting the node depth of the tree and setting a minimum for the 

number of instances per leaf (— 𝑀 = 19). The higher this parameter is set, the more 

general the tree will be since having many leaves with a low number of instances yields a 

too granular tree structure. For cell cluster area, the — 𝑑𝑒𝑝𝑡ℎ = 6. In the regression case, 

the outcome probability (mean) is estimated based on a holdout set (backfitting). This 

holdout set — 𝑁 was set to 3 parts. One part is held for backfitting and the remaining parts 

for growing the tree.  

 

 Neuron proportion 

Modelling neuron cell proportion was achieved with LWL and RandomForest. Locally 

Weighted learning (LWL) (236,237) is used to select data then pass them to the classifier to 

construct a model. LWL is a lazy method (instance-based) with memory-based learning. 

Processing data is deferred and they are stored in memory until needed. The need here is 

training classifiers and relevant data are found and used to build them. Relevance is 

measured with Euclidean distance function with nearby points having high relevance. 

Attribute normalization is turned on by default to deal with different units and scales for 

distance calculation. Nearest neighbour local models, simply choose the closest point and 

use its output value. Weighted learning assigns weights using an instance-based method 

and builds a classifier from the weighted instances. The classifier can be selected and the 
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number of neighbours used, which determines the kernel bandwidth, and the kernel shape 

to use for weighting. 

 

The subsets of data used to train each locally weights classifier are determined by a nearest 

neighbours algorithm.  A user-specified parameter 𝑘  controls the number of instances 

used. This is implemented by using a weighting function setting its width to the distance of 

the 𝑘th nearest neighbour. Let 𝐷 be the Euclidean distance to the 𝑞th nearest neighbour 𝑥௤ 𝑑 = ඥ(𝑥 − 𝑞)𝐷(𝑥 − 𝑞). This metric is an important parameter that describes the size 

and shape of the receptive field. All attributes have been normalised before the distance is 

computed. 𝑓 is a weighting function with 𝑓(𝑦) = 0 for all 𝑦 ≥ 1. Weight 𝑤௜ is set for each 

instance 𝑥௤ to: 

𝑤௜ = exp ൬− 12 ൫𝑥௜ − 𝑥௤൯୘𝐷(𝑥௜ − 𝑥௤)൰ 

Equation 2.6: Weighting function of each instance 𝑥௜ before distance computation. 𝑥௜ are the training points. Function 𝐷 is the distance metric describing the size and shape of the receptive field (diagonal matrix) 
 

Instance 𝑥௞ receives weight of 0 so do all instances further away from the test instance, 

and an identical instance to the test one received weight of 1. LWL was set to a linear 

nearest neighbour search with Euclidean distance and all neighbours were included in the 

weighting process.  

 

RandomForest (235) is an ensemble learning technique. They operate by constructing 

numerous decision trees (explained in section 2.8.3) during training and output the average 

prediction of individual trees. Random decision trees correct for the individual decision 

tree’s habit of overfitting to their training set. Bootstrap aggregating (bagging) (238) is 

employed where 𝑁  learners are presented with a randomly sampled subset of training 

points (instances) so that learners will produce different models and their outcome is 
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averaged. Doing so reduces variance as the conditional probability distribution is averaged 𝑁  times. Bagging works best with unstable learners, those that produce differing 

generalisation patterns with small changes to training data. Therefore, bagging does not 

work well with linear models. In addition, RandomSubspace method is used (239) to select 

a uniform number of random samples of features 𝑛 to train classifiers from the full set 𝑁. 

In a situation where discriminative information is spread across the features, will result to 

reduced correlation between estimators. As a rule of thumb 𝑛 = 𝑁/2.  

 

Each tree is constructed from a bootstrap sample from the original dataset. Resulting trees 

are not subject to pruning allowing them to partially overfit their own sample of data. To 

further diversify the classifiers, at each branch in the tree, the decision of which feature to 

split on is restricted to a random subset of 𝑛 size from the full training feature set. The 

random subset is chosen anew for each branching point. Breiman (235) suggests 𝑛 to be 𝑖𝑛𝑡(logଶ 𝑁௣ + 1), where 𝑁௣ is the size of the full feature set. 

 

From relevant instances provided by LWL, further selection of instances and 3 features 

were randomly chosen out of all to construct a classifier. RandomForest iterations was set 

to ( — 𝐼 = 9 ) for the equivalent number of decision trees. The minimum number of 

instances that reach a leaf was set to — 𝑀 = 1 (generalisation term) and the — 𝑑𝑒𝑝𝑡ℎ =0 for unlimited length of trees. 

 

 Type I astrocyte proportion 

Modelling type I astrocyte cell proportion involved RandomSubSpace and IBk. 

RandomSubSpace method is used (239) to select a uniform number of random samples of 

features 𝑛  to train classifiers from the full set 𝑁 . In a situation where discriminative 
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information is spread across the features, will result to reduced correlation between 

estimators. As a rule of thumb 𝑛 = 𝑁/2. 

 

Instance Based k-nearest neighbours (IBk) (240) is a non-parametric method that can be 

used for regression. The input consists of 𝑘 closest training examples in the feature space. 

The output of IBk is the average of the values of its 𝑘  nearest neighbours. Like locally 

weighted learning (LWL), IBk is a lazy method where the function is only approximated 

locally and all computation is deferred until prediction. Weights are assigned to the 

contributions of the neighbours so that the nearer ones contribute more to the average 

than the distant ones. A common weighting scheme, gives each neighbour a weight of 1/𝑑 

where 𝑑  is the Euclidean distance to the neighbour with continuous variables. For 

regression, the neighbours are taken from a set of objects of which their property value is 

known. IBk is sensitive to the local structure of data. The value of each 𝑘 nearest point is 

multiplied by a weight proportional to the inverse of the distance from that point to the 

test point. The most intuitive of IBk is the 1-nearest neighbour classifier that assigns point 𝑥 to the class of its closest neighbour in the feature space presented as 𝐶௡ଵ௡௡(𝑥) = 𝑌(ଵ). 

The nearest neighbour classifier guarantees error rate no worse than twice the minimum 

achievable error rate given the distribution of the data (Bayes error rate). 

 

RandomSubspace chose 8 features (out of 10) in random then passed them to IBk to 

construct the classifier. This was repeated 18 times (— 𝐼 = 18) and the result of all models 

was averaged. IBk selected 10-nearest neighbour (— 𝐾 = 10) of the target class and all 

were averaged to provide the outcome. The weighting scheme selected gives each 

neighbour a weight of 1/𝑑 (—I). IBk minimised the mean squared error (MSE) (−𝐸 switch) 

of residuals. MSE applies more weight for predictions further away from the mean of the — 𝐾 neighbours. 
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 Type II astrocyte proportion 

Modelling type II astrocyte cell proportion was achieved with Support vector regression 

(SVR). SVR is an optimisation algorithm. SVR (241–244) produced models depend only on a 

subset of the training data, because the cost function for building the model ignores any 

training data close to the model prediction. In 𝜀-SVR, the goal is to find a function 𝑓(𝑥) that 

has at most 𝜀 deviation from the actually obtained targets 𝑦௜ for all training data and at the 

same time is as flat as possible. Smaller 𝜀 values means the closer the function needs to be 

to 𝑦௜. Points outside the margin are the vectors supporting the actual regression model. 

Points outside are deemed not important. This characteristic is referred to as sparsity of 

the solution as only a small set of relevant objects present in the input data are considered 

to obtain the regression model. 

 

Consider a dataset ሼ(𝑥ଵ, 𝑦ଵ), … (𝑥௡, 𝑦௡)ሽ  with 𝑥 ∈  𝑅ௗ  (𝑑 -dimensional input space) 

and 𝑦 ∈  𝑅. SVR tries to find the function 𝑓(𝑥), which relates the measured input object 

(e.g. chemical data) to the desired output property of this object (e.g. cell response). The 

formula for this is: 𝑓(𝑥) = 〈𝑤, 𝑥〉 + 𝑏        (𝑤, 𝑥 ∊ 𝑅ௗ) 
Equation 2.7: Support vector regression formula. w and b are the slope and offset respectively of the regression 

function. 
 

Both parameters are estimated by minimising the following cost function: 
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12 ‖𝑤‖ଶ + 𝐶 ෍ 𝐿ఌ(𝑓(𝑥௜), 𝑦௜)௡
௜ୀଵ  

With: 

𝐿ఌ(𝑓(𝑥௜), 𝑦௜) =  ቊif |𝑦௜ − 𝑓(𝑥௜)| ≤ 𝜀otherwise       0|𝑦௜ − 𝑓(𝑥௜)| − 𝜀 

Equation 2.8: Estimating 𝑤 and 𝑏 parameters for support vector regression. 
 

Where ଵଶ ‖𝑤‖ଶ is the term characterising the model complexity. This is the flatness of 𝑓(𝑥) 

and 𝐿ఌ(𝑓(𝑥௜), 𝑦௜). The latter being the 𝜀-insensitive loss function introduced by Vapnik 

(243) which does not penalise errors less than 𝜀 ≥ 0 (Figure 2.6). 𝐶 is the regularisation 

constant that determines the trade-off between the model complexity 𝑓(𝑥)  and the 

amount up to which deviations larger than 𝜀  are accepted. Tuning both 𝜀  and 𝐶  should 

achieve a well-performing model. Literature explaining in greater detail is found in 

(242,244,245). 

 

Figure 2.6: Support vector regression example. Left: a line with radius 𝜀 is fitted to the data. The trade-off between 
model smoothness (model complexity) and data points lying outside the model is determined by 𝐶. 𝜉 are the accepted 

deviations beyond 𝜀 (243). Data points outside 𝜀 are called support vectors and denoted as bold + symbols. These 
support the actual regression model. Right: Vapnik’s 𝜀-insensitive loss function is shown. The slope is determined by the 

regularisation constant 𝐶 and the support vector position is denoted with a bold grey + symbol. RightsLink license 
4081470324618, Elsevier. 
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Sequential Minimal Optimisation regression (SMOreg) is an algorithm proposed by (246) 

for solving the mathematical optimisation problem (quadratic programming) arising during 

training Support Vector Machines (243,245). It works with 𝜀  insensitive loss function. 

SMOreg runs iterations to solve optimisation problems like the one described in Equation 

2.7. It splits the problem into series of tiny sub-problems (2 Lagrange multipliers) that are 

solved analytically (approximately) without the explicitly invoking a quadratic optimiser. 

With SMOreg and the increase of dimensionality, the time required to train SVR models 

increases linearly. 

 

 Kernel 

One of the main reasons support vector machines (SVM) is popular is its ability to model 

complex linear relationships by using a suitable kernel function. The kernel functions 

transform the input space into a high dimensional feature space where non-linear 

relationships can be represented in a linear form. Popular kernels include polynomial, 

Gaussian or radial basis function (RBF) (Table 2.6), and sigmoid. 

 

Table 2.6: Kernels for use in kernelised models such as Support Vector Regression. Kernel functions transform the input 
space from low dimensional to high dimensional feature space where non-linear relationships can be described linearly. 

 
Kernel name Function 

Linear (dot product) 𝑮(𝒙𝟏, 𝒙𝟐) = 𝒙𝟏ᇱ , 𝒙𝟐 
Gaussian (RBF) 𝑮(𝒙𝟏, 𝒙𝟐) = 𝐞𝐱𝐩(−‖𝒙𝟏 − 𝒙𝟐‖𝟐) 

Polynomial 𝑮(𝒙𝟏, 𝒙𝟐) = (𝟏 + 𝒙𝟏ᇱ 𝒙𝟐)𝒑 where 𝒑 is in the set ሼ𝟐, 𝟑, … ሽ
 

 

Peason VII universal kernel (Puk) (247) is the another type of kernel function that can be 

used in support vector machines. The choice of a kernel function depends on the nature of 

data, i.e. the kind of relationship that needs to be. The nature of data is usually unknown 

and the best mapping function must be determined experimentally by apply various kernel 

functions and the one yielding the highest generalisation performance is selected. Puk 
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kernel has excellent flexibility because it can be adapted for many kinds of data by adjusting 

the kernel parameters. It can turn to linear, polynomial, Gaussian, and Sigmoid kernel. 

𝑓(𝑥) =  𝐻ሾ1 + (2(𝑥 − 𝑥଴)ට2ቀ ଵఠቁ − 1𝜎)ଶሿఠ  
Equation 2.9: Pearson VII universal kernel funcion (247). This kernel can be adapted to other kinds of kernels such as 

polynomial, Gaussian, Sigmoid among others by adjusting the parameters ω and σ. 
 

Where 𝐻  is the peak height at the centre of 𝑥଴  of the peak, and 𝑥  represents the 

independed variable. The parameters 𝜔 and 𝜎 control the half (Pearson) width and the 

tailing factor of the peak. 

 

SMOreg’s regularisation constant was set to — 𝐶 = 0.52. This determines the trade-off 

between the model complexity and the amount up to which deviations larger than 𝜀 are 

accepted. The insensitive loss function was set to  — 𝜀 = 0.001 . Each attribute was 

standardised to have zero mean and unit variance with 𝑥ᇱ = ௫ି௫̅ఙ  (where 𝜎 is the standard 

deviation). Puk kernel’s omega parameter was set to — 𝑂 = 0.22 and the sigma was set 

to — 𝑆 = 2.98.  

 

 Proportion of unknown type cells 

SMOreg (246) was used to model unknown type cell proportion with the universal Puk 

kernel both described in the previous section. 

 

SMOreg’s parameter that sets trade-off between the model complexity and the deviations 

larger than 𝜀 are accepted was set to — 𝐶 = 1.12. The insensitive loss function was set 

to — 𝜀 = 0.001. Each attribute was normalised to fall between 0 and 1 have zero mean 
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and unit variance with 𝑧௜ = ௫೔ି୫୧୬(௫)୫ୟ୶(௫)ି୫୧୬(௫). Puk kernel’s omega parameter was set to — 𝑂 =
0.91 and the sigma was set to — 𝑆 = 0.19. 

 

 Neurite length 

Modelling neurite length was achieved with RandomCommittee and RandomTree. 

RandomCommittee (248) builds an ensemble of randomisable base classifiers. Each base 

classifier is built using a different random number seed on the same training data. The final 

prediction is the average of all outcomes from each base classifier. RandomTree (235) is 

explained in section 2.8.3. A decision tree is built where the paths from the root to the leaf 

represent classification rules. The nodes represent a logic test on a particular value of an 

attribute. 

 

RandomCommittee was set to iterate 32 times (— 𝐼 = 32) for the equivalent number of 

RandomTrees. RandomTree was configured to use all features available (— 𝐾 = 10). The 

minimum number of instances reaching a leaf (weight) was set to (— 𝑀 = 7) and the 

maximum depth of the trees to unlimited (— 𝑑𝑒𝑝𝑡ℎ = 0). The outcome probability (mean) 

is estimated on a holdout set (backfitting) set to 5 parts (— 𝑁 = 5). One part for backfitting 

and the remaining for growing the tree. Some classifiers may be unable to provide an 

outcome. This is referred to unclassified instances. This was allowed with the (— 𝑈) switch. 

 

 Type I astrocyte area 

Modelling Type I astrocyte area was achieved with M5Rules. M5Rules (249–251) is a model 

tree technique that deals with continuous class problems. They have a typical decision tree 

structure (e.g. RandomTree) but use linear functions at the leaves (outcome). M5 builds a 

tree by splitting the data based on the values of predictive attributes. The algorithm 
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chooses attributes that minimise intra-subset variation in the class values of instances that 

go down each branch. The algorithm starts with a tree learner applied to full training 

dataset. Next, the best leaf according to a heuristic is turned to a rule and the tree is 

discarded along with all instances covered by the rule. This process occurs recursively to all 

remaining data and stops when all data are covered by at least one rule. This is known as 

the separate-and-conquer (SAC) strategy for learning rules. The trees build at each stage is 

a partial one and this leads to computational efficiency without affecting size and accuracy 

of resulting rules. 

 

For the initial tree, the splitting criterion is based on the standard deviation of the class 

values that reach a node as an error measure for that node. The expected reduction in error 

is calculated by testing each attribute at that node. The attribute that maximises the 

expected error reduction is selected. The standard deviation reduction is calculated by: 

𝑆𝐷௥ = 𝑠𝑑(𝑇) − ෍ |𝑇௜||𝑇| × 𝑠𝑑(𝑇௜)௜  

Equation 2.10: Building initial M5Rules trees. Standard deviation reduction formula to select attributes that minimise 
expected error. 

 

Where 𝑇 is the set of examples that reach the node and 𝑇ଵ, 𝑇ଶ, … are the sets that result 

from splitting the node according to the attribute chosen. Splitting the tree halts when the 

class values of all instances that reach the node vary very slightly or when very few 

instances remain. 

 

The ‘best’ leaf selection heuristic is coverage and the percent root mean squared error. The 

former is the number of instances the rule applies for and the equation for the latter is: 
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% 𝑅𝑀𝑆𝐸 = ට∑ (𝐴௜ − 𝑝௜)ଶ / 𝑁௥ேೝ௜ୀଵට∑ (𝐴௜ − 𝐴̅)ଶ / 𝑁ே௜ୀଵ  

Equation 2.11: 𝐴௜ is the real values for example 𝑖, 𝑝௜ is the prediction by the linear model at the leaf level, 𝑁௥ is the 
number of examples covered by leaf, 𝐴̅ is the mean of real values, and 𝑁 is the total number of examples. 

 

The percent mean squared error favours accuracy at the expense of coverage. Other 

measures may trade-off accuracy against coverage. In the literature, there is no consensus 

on the best measure for rule value as no method proposed so far resolves this problem 

satisfactorily. An extensive theoretical study is in (252). 

 

The expected error of each node is calculated by averaging the absolute difference 

between the predicted value and actual class value of each instance reaching the node. 

These optimistic errors on training data are compensated by multiplying with a factor. This 

factor takes into account the number of parameters in the model representing the class 

value at the node and the number of training examples that reach it. Constructing trees can 

lead to sharp discontinuities between adjacent linear models at the leaves. These 

differences are compensated with a procedure called smoothing. The procedure computes 

a prediction using the leaf model then passes that value back to the root. On its way there, 

the value is smoothed at each node by combining it with the value predicted by the linear 

model for that node that was produced at the time the tree was built. Past experiments 

have shown that smoothing substantially increases the accuracy of predictions (250,253). 

𝑝ᇱ = 𝑛𝑝 + 𝑘𝑞𝑛 + 𝑘  

Equation 2.12: Model tree smoothing procedure to reduce sharp discontinuities inevitably occuring between adjacent 
linear models at the leaves. 𝑝’ is the prediction passed up to the node higher, 𝑝 is the prediction passed to this node 
from below. 𝑞 is the value predicted by the model at this node, 𝑛 is the number of training instances that reach the 

node below, and k is a smoothing constant. 
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The — 𝑁  switch disables pruning (simplifying) the trees generated and the parameter 

determining the minimum number of instances to create a leaf node was set to — 𝑀 = 2. 

 

 Astrocyte fibre length 

Modelling astrocyte fibre length was achieved with AdditiveRegression and Decision 

Stump. AdditiveRegression (254) is a stochastic gradient boosting method that enhances 

the performance of  ‘base’ classifiers. It is a method to increase model complexity and 

improve its fit by combining models learnt from base learners. AdditiveRegression starts 

with a simple predictor such as the mean. Subsequent models from each iteration builds 

the model stage-wise on a subsample of data, drawn at random (without replacement) to 

reduce computation time and add randomness. Randomness reduces the chances of 

overfitting. The residuals left from the previous iteration are modelled again. Overall 

prediction is given by the sum of the collection. 

 

Gradient boosting is usually employed in conjunction with the base learners such as 

decision trees. Each base learners quality of fit is improved using Friedman’s modified 

gradient boosting method (254,255). Consider a function estimate problem with 𝑥 inputs ሼ𝑥ଵ, … 𝑥௡ሽ  and 𝑦 outputs  ሼ𝑦ଵ, … 𝑦௡ሽ . Gradient boosting at the 𝑚 th step would fit a 

decision tree ℎ௠(𝑥) to the pseudo-residuals. These are the gradient of the loss function 

being minimised. Let 𝐽௠ be the number of the base learner’s leaves. The tree partitions the 

input space into 𝐽௠  disjoint regions 𝑅ଵ௠, … , 𝑅௃೘௠  and predict a constant value in each 

region. The output of ℎ௠(𝑥) for input 𝑥 can be written as the sum: 
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ℎ௠(𝑥) = ෍ 𝑏௝௠𝐼(𝑥 ∈ 𝑅௝௠)௃೘
௝ୀଵ  

Equation 2.13: Decision tree fit to the residuals of the gradient of the loss function being minimised. 𝑏௝௠ is the 
predicted value in 𝑅௝௠ region. 𝐼 is a function defined on a set 𝑥 that indicates membership of an element in a subset 𝑅௝௠. 

 

The  𝐼 function returning with a value for a set of 𝑥  of 1 indicates being a member 

of 𝑅௝௠ and 0 if not. The optimal value 𝛾௠ is chosen separately for each of the tree’s regions 

using line search. This method is called TreeBoost (254) and is a basic iterative approach to 

find a local minimum to optimise the loss function, 𝐿. Regularisation is the term used for 

training too closely to the dataset and this leads to degradation of the model’s 

generalisation ability (overfitting). Shrinkage is a method for regularisation that modifies 

the update rule as: 𝐹௠(𝑥) = 𝐹௠ିଵ(𝑥) + 𝜈 ⋅ 𝛾௠ ℎ௠(𝑥),      0 < 𝜈 ≤ 1, 𝛾௝௠ = arg minఊ ෍ 𝐿(𝑦௜, 𝐹௠ିଵ(𝑥௜) + 𝛾௫೔∈ோೕ೘ ) 

Equation 2.14: AdditiveRegression gradient boosting with shrinkage as the regularisation method. 𝐽௠ is the number of 
leaves for the base learner. 𝛾௝௠ is a value chosen with line search that minimises the value of the loss function 𝐿. 

 
Where the 𝜈 parameter is called the learning rate. This parameter was found that small 

values (𝜈 < 0.1) gives fantastic improvement in the model’s generalisation ability over 

gradient boosting without shrinking (𝜈 = 1) (256). It also comes with a price – an increased 

computational time both training and querying as lower learning rate performs more 

iterations and combines more models. 

 

A base learner has been used called DecisionStump (257,258) (DS). Recently it was used as 

a tree for classifying cancer gene expression data (259). DS is also known as 1-rules because 

it consists of a one-level decision tree. It is a decision tree with one internal node (the root) 

where this is immediately connected to the terminal nodes (its leaves). A decision stump 

makes a prediction based on the value of just a single input feature. For continuous 
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features, usually, a threshold feature value is selected, and the stump contains two leaves. 

One for values that fall below and another for values that fall above. DecisionStump 

performs surprisingly well on some commonly used benchmark datasets (UCI repository, 

(257) demonstrating that learners with high bias and low variance may perform well as they 

are less prone to overfitting. In machine learning, decision stumps are often used as 

components (‘base learners’) for ensemble techniques such as boosting and bagging. 

 

Each iteration in AdditiveRegression fits a model to residuals left by the classifier from the 

previous iteration. This parameter — 𝐼  was set to 2. DecisionStump does not have any 

parameters to configure. 

 

2.9 COMPUTATIONAL CELL CULTURE EXPERIMENTS 

A program coined ‘Get-Chem’ was created in php v7 (x64) that automates the process of 

performing cell culture experiments computationally. The program can be used for 

optimisation problems. Chemistries can be screened in minutes to determine cell 

performance. This tool will be used to discover chemistries better than our synthetic 

standard (amine). In addition, manipulating the inputs in conjunction with the use of the 

models can shed light to the chemical input effect on cell performance. Get-Chem takes in 

chemical variables and their possible values then recursively combines them to create 

numerical chemistries (test cases). Predictive models are then called to produce estimates 

of cell performance in pseudo-MIMO (multiple inputs, multiple outputs) fashion. Finally, 

results are stored and sorted in an SQL database. The flowchart of Get-Chem is as follows: 
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Start

End

Generate input 
variables and their 

values

Recursive 
combinations of 

input values

Call WEKA models to 
estimate outputs

Compute distance to 
target

Order chems from 
best to worst

Store 
chemical 
designs

Repeat with smaller increments, min, and max for narrower search

 
Figure 2.7: Get-chem flowchart. This program automates the process of running computational cell culture 

experiments. The user decides the test cases (chemistries) and cell performance estimates are computed for each. 
Results are stored in an SQL database. 

 

 Generating test cases 

The first step was to generate test cases (numerical chemistries). The idea is to list all inputs 

as variables and the possible values they can take. Input variables were decided beforehand 

and the min/max and increments between these are editable in the configuration file of 

the software. The min and max values were discovered by extreme theoretical designs (e.g. 

very electronegative) drawn in ACD/ChemSketch 2016. The increment values determine 

the search width relative to the min/max set previously. Large increments indicate a broad 

search and lower values indicate the opposite, narrow search. Then, recursive 

combinations of these was performed shown below: 
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    private function recursive_combinations($arrays, $i = 0) {
… 
        if ($i == count($arrays) - 1) { 
            return $arrays[$i]; 
        } 
 
        // get combinations from subsequent arrays 
        $tmp = $this->recursive_combinations($arrays, $i + 1); 
 
        $result = array(); 
 
        // concat each array from tmp with each element from $arrays[$i] 
        foreach ($arrays[$i] as $v) { 
            foreach ($tmp as $t) { 
                $result[] = is_array($t) ? 
                    array_merge(array($v), $t) : 
                    array($v, $t); 
            } 
        } 
 
        return $result; 
    } 
 
    public function generate_combinations() { 
… 
        $this->reset_timer('Generating combinations from all input values'); 
 
        $combinationsInput = []; 
        foreach($this->input_values as $valueTypeArray) { 
            $combinationsInput[] = $valueTypeArray; 
        } 
 
        $this->combinations_array = $this->recursive_combinations($combinationsInput); 
        $this->combinations_count = count($this->combinations_array); 
… 
        return true; 
    }  

Code snippet 1: Generating test cases as input vectors. The software takes in input variables with possible values to 
them. Each variable is treated as an array (table) and each arrays are recursively combined to generate test cases. 

 

 Ranking method 

The ranking system is a distance metric for all predicted cell outputs of a chemistry 

compared to the real cell outputs of our target, laminin. The Bray and Curtis statistic is used 

to quantify compositional dissimilarity between two objects, based on counts for each 

(260,261). This metric is normally used in ecology and biology. The dissimilarity index is 

calculated by taking the summed differences between the variables and standardising 
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them with the summed variables of the objects (Equation 2.15). The ranking metric used 

discriminates against smaller values therefore large values in cell outputs have more 

influence in in vitro cell performance. 

𝑑஻஼஽(𝑖, 𝑗) = ∑ ห𝑦௜,௞ − 𝑦௝,௞ห௡ିଵ௞ୀ଴∑ ห𝑦௜,௞ + 𝑦௝,௞ห௡ିଵ௞ୀ଴  

Equation 2.15: Bray and Curtis dissimilarity index (261) between objects 𝑖 and 𝑗. k is the index of a variable and 𝑛 is the 
total number of variable 𝑦. 

 

 Weighting cell performance indicators 

Weights for cell outputs are necessary, as some of the cell performance indicators are more 

important than others for the purposes of this study. The most important cell output is 

monolayer formation in vitro as this is an indication of cells maximising interaction with 

their environment (59). Cell proportion of the cell types investigated is second in order as 

cells perform different functions. A tissue with deviation from the natural cell proportion 

may have undesirable levels of biological function. In addition, undifferentiated cells 

cannot be transplanted into patients (175). Neurons are the functional component of the 

nervous system. These electrically excitable cells process and transmit information through 

electrical and chemical signals occurring via synapses. Once matured to neuron axons, 

these connect to other cells such as neurons, muscles and glands for information 

transmission (262). From macroglial cells, astrocytes were chosen as they are the most 

abundant type in the central nervous system (263) and have numerous projections that link 

neurons to their blood supply. Due to astrocyte abundance, astrocyte fibres have been set 

with lower importance. In vitro, type I astrocyte spreading indicates they are under stress. 

In vivo, this is called reactive astrogliosis and it could arise due to injury to the nervous 

system (194). Type I astrocyte spreading area has medium importance. Cell types not 

investigated include oligodendrocytes, ependymal cells and radial glia (136). The table 

below shows the importance and weights applied to cell outputs:  
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Table 2.7: Cell output weighting for importance in finding a better synthetic environment to culture neural stem cells. 
This weighting is applied after the dissimilarity index is calculated. Higher values have more impact on the rank of cell 

performance associated with numerical chemistries. 
 

Cell variable Weight Importance 
Cell cluster area 0.1 Highest 

Neuron proportion 40 High Proportion of unknown type cells 50 
Neurite length 0.5 Medium-High Type II astrocyte proportion 10 

Type I astrocyte proportion 0.2 
Low Type I astrocyte area 0.1 

Astrocyte fibre length 0.1 
 

 

 Storing results 

Results were saved in a MySQL database (v5.6) and the user can export all or some results 

for further analysis such as sensitivity. The order of these, ascending or descending, is 

determined by their ranking metric value. The code that performs this action is as below: 
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    private function db_export($type, $benchmark = false) {
        $order = [ 
            'closest' => 'ASC', 
            'furthest'=> 'DESC', 
        ]; 
        echo "\n\033[33mNumber of $type results to be exported: \033[0m"; 
 
        while($input = fgets(STDIN)){ 
            if (intval($input)) { 
                $selectFields = "Name, CONCAT('".$this->config['db_table'].".', id) as ID, ".implode(', ', 
array_merge($this->config['input_variables'], $this->config['output_variables'])).", ".$this-
>comparison['code']; 
                if($benchmark) { 
                    $sql = "(SELECT $selectFields FROM " . $this->config['db_table'] . " WHERE Name = '' 
ORDER BY ".$this->comparison['code']." ".$order[$type]." LIMIT " . intval($input) . ")"; 
                    $sql .= " UNION ALL "; 
                    $sql .= "(SELECT $selectFields FROM " . $this->config['db_table'] . " WHERE Name <> '')"; 
                    $sql .= " ORDER BY IF(Name <> '', 0, 1) ASC, ".$this->comparison['code']." " . 
$order[$type] . ";"; 
                } else { 
                    $sql = "SELECT $selectFields FROM ".$this->config['db_table']." ORDER BY ".$this-
>comparison['code']." ".$order[$type]." LIMIT ".intval($input).";"; 
                } 
                break; 
            } else { 
        $fileName = $this->config['exports_path'].$this->db_table.'-'.$type.intval($input).' '.$this-
>get_total_time().'.csv'; 
        $this->reset_timer('Fetching '.intval($input)." $type results from DB"); 
        $data = ''; 
        $result = $this->db->query($sql); 
        $this->reset_timer('Exporting data to '.$fileName); 
        $finfo = $result->fetch_fields(); 
 
        foreach ($finfo as $field) { 
            $data .= $field->name.',';        } 
        $data = rtrim($data, ','); 
        $fp = fopen($fileName, "w"); 
        fwrite($fp, $data); 
 
        while ($row = $result->fetch_row()) { 
            $data = "\n"; 
            foreach($row as $col) { 
                $data .= $col.','; 
            } 
            $data = rtrim($data,',')."\n"; 
            fwrite($fp, $data); 
        } 
        fclose($fp); 
… 
    }  
Code snippet 2: Computational cell culture experiment results. This code shows how data are saved in a database then 

exported by the user choosing the number and the order of results, based on the ranking metric. 
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 Numerical chemistry conversion 

The results contained theoretical (numerical) chemistries and not all of them could be 

synthesised or are stable. Numerical chemistries needed to be converted from theoretical 

ones to ones that can be created in practice. Designs were re-drawn in ACD/ChemSketch 

2016. Using the pKa and logP values for each, the head group and possible side chains of 

the molecule was first drawn. From that, one atom at a time was added to the backbone 

and possible side branches if necessary. The choice of atoms at each level was directed 

from the chemical values of results for each variable. Finally, the molecular mass and 

volume was calculated for the re-constructed chemistries and they were shortlisted only if 

they matched with those of the theoretical chemistries. 

 

 Reassessing converted chemistries 

The re-constructed chemistries have slightly different values than the theoretical ones. 

Reassessment was necessary as another step in the process to validate findings. A separate 

test was conducted from the chemistries that made it in the shortlist. The re-constructed 

chemistries were fed into the same predictive models used previously and the cell outputs 

with their distance to laminin’s was calculated. The next step was to look for the 

chemistries as an off-the-shelf product preferably in the form of self-assembly molecules. 

The similarity search was conducted in e-molecules and ChemSpider with different labile 

groups and without. At this point, some chemistries could not be found and inquiries were 

sent to laboratories to synthesise them. 
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3 DISCOVERING RELATIONSHIPS COMPUTATIONALLY 

3.1 INTRODUCTION 

Finding synthetic cell culture environments where cells perform similarly to the in vitro 

biological control is possible by testing a large number of chemistries. This entails cell 

culture experiments and they come with limitations such as: 

 High costs e.g. materials, reagents, cells 

 Time required e.g. 6 months for 13 environments 

 Personnel to obtain results faster 

 Large number of experiments due to large number of possible environments to test 

 Animals are still required as stem cell source is rat foetal neural stem cells 

Another methodology mitigating these limitations is to move to model cell culture 

experiments on a machine. We coined this methodology “computationally informed 

surface engineering”. 

 

The study of data may shed light in the direction of the computational tools to proceed and 

describe the relationships (if any) between chemical and cell parameters. These 

relationships in the form of computational models will allow testing of millions of 

environments with cells in minutes. We hope to find better candidate synthetic 

environments that will allow us to develop cell therapies in vitro as well as to be able to 

understand the effect of the chemistry of the synthetic environment on cell performance. 

 

This chapter has two aims: 

1. Exploring previous data (41) and testing parametric assumptions 

2. Searching for relationships with correlation tests 
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The objectives are to: 

1. Investigate surface chemistry and cell performance data from synthetic 

environments where nervous tissue was developed from neural stem cells 

2. Compare cell performance with that of the biological control environment 

3. Find relationships between chemical surfaces and cell parameters 

4. Discover insights relating to the effect of chemical properties of the environment 

on cell responses 

 

 Previous work data 

The data for this chapter were acquired from previous work (41). The overlap with this 

project is to improve control of neural cell responses through chemically defined 

microenvironments. The aim is to assess the response of neural stem cells and progenitors 

expanded as spheroids of proliferating cells (neurospheres) in a range of surface 

chemistries (functionalities). Wright et al. (2014) used rat ventral mesencephalon derived 

cells from 12-day old embryos (E12) of rats (41). We discovered that terminal surface 

chemistry directs fractional populations of neurons and astrocytes (264). The authors used 

self-assembly molecules to modify the presenting chemistry of solid surfaces. The 

functional groups include amine (NH2), hydroxyl (OH), carboxyl (COOH), methyl (CH3), 

phenyl (Ph) and thiol (SH). A list of these chemistries is in Table 2.1. Neurospheres spread 

and cells attached and populated surfaces differently in each environment. This will be 

discussed in detail in the Results section (3.2). 

 

The chemistry of culture surfaces was verified with surface chemistry characterisation 

techniques such as contact angle measurements, infrared, Raman, and X-ray photoelectron 

spectroscopy. Data describing the properties of surface chemistries used in experiments 
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have been retrieved from the literature or from peer reviewed computational models. Such 

data define unique chemical designs. The adopted chemical parameters investigated in 

biomaterial sciences are in the table below. These are explained in 2.7.1. 

 

Table 3.1: Chemical parameter and value origin. 
 

Chemical parameter Values acquired from Protein specific methods 

Partition coefficients (logP) ACD/ChemSketch 2016 
(106,209) 

Ghose & Crippen’s method 
(211,212) 

Acidity measures 
(pKa dissociation constant) (218–221) ProPKA v3 (206–208,222) 

Molecular mass Calculated (223) 
Molecular volume (224–226), ChemDraw 2015 ProteinVolume v1.3 (227) 

 
 

Cells from the neurospheres differentiated to neurons and astrocytes, migrated and 

elongation of cell processes was either promoted or retarded. All cell response 

comparisons were against cell performance of the biological environment (glass coated 

with biological material, PDL and laminin). The author demonstrated that the presentation 

of chemical cues provide a path towards improving the robustness of in vitro neural culture 

environments controlling multiple cell responses attributed to surface-cell interactions. 

 

Cell performance was characterised from images of cells cultured in the environment of 

interest. The cells were stained with cell-type-specific dyes to characterise the types, 

morphology and processes and then images are captured through microscopy. 

Morphological cell performance attributes were selected from neuro-regeneration 

literature (41,265,266). These attributes for monolayer cultures included cell cluster size, 

cell density of neurons and astrocytes, and projection length of axons and astrocyte fibres. 

 

The data from previous work (41) were investigated to provide insights as to the direction 

and computational tools to choose for establishing modelling relationships between 
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chemistry and cell performance. For this task, parametric tests are preferred as they 

provide greater statistical power and can handle heterogeneous variance compared to 

nonparametric tests (267). Parametric assumptions are tested on cell data for variance and 

distribution. Correlation tests with significance follow between cell and chemical data in 

the search for relationships, their strength, and direction. Plots of cell data against chemical 

data accompany the relationships discovered. All findings are discussed then the chapter 

ends with conclusions. 

 

3.2 RESULTS 

The cell culture surfaces prepared with synthetic chemistries consist methyl (-CH3), 

carboxyl (-CO2H), amine (-NH2), hydroxyl (-OH), phenyl (-Ph), thiol (-Sh) and the in vitro 

biological standard made of laminin on top of poly-d-lysine (P/LAM) (41). The chemical 

parameters of these environments that were retrieved from the literature consist of the 

partition coefficient (logP), acidity measure (pKa), molecular mass and molecular volume.  

Cell performance consists of scores of cell cluster area, cell densities and ratios of neurons 

and astroglia, and cell projection length of neuron axons and astrocyte fibres. The source 

of the cells is E12 ventral mesencephalon and the cell performance was measured on days 

3, 5 and 7 in culture on modified surfaces. 

 

 Variance tests 

To use parametric tests certain assumptions regarding the data used need to be tested. 

One assumption is homogeneity of variance between different groups. This means the 

variance between cell scores from each environment needs to be almost equal (195) to 

meet this assumption. Parametric tests can perform well even with heterogeneous 
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variance (267), however the variance may be useful to the computational methodology 

proposed here. The variance of same time-point cell data (e.g. day 3) from different 

environments was compared. Levene’s test performs a one-way ANOVA on the differences 

between each score and the mean of the group whereas, the Brown-Forsyth test uses the 

median (195). The tests were set to a significance level of 95%. This means the chances of 

accepting a false positive are less than 5% (𝑝 ≤ 0.05). Here, a false positive is identical 

variance between samples where in actuality, that is not true. Below the variance test 

results where 𝑝 ≥ 0.05 mean that the homogeneity of variance assumption holds and 𝑝 ≤0.05 means the assumption is violated: 

 

Table 3.2: Variance tests (𝐹 − 𝑣𝑎𝑙𝑢𝑒𝑠) on previous data (41). 𝐹 − 𝑣𝑎𝑙𝑢𝑒𝑠 are reported with 2 degrees of freedom 
parameters in brackets (𝑑𝑓1, 𝑑𝑓2). Levene’s test was performed on absolute deviations and uses the mean whereas, 

the Brow-Forsyth test uses the median. Probability values that are 𝑝 ≤ 0.5 reject the null hypothesis meaning the 
assumption of homogeneity of variance is violated. 

 
 Cell Cluster Area Neuron Density Astrocyte Density 

Levene’s p-value p-value p-value 
Day 3 0.00 0.00 0.00 
Day 5 0.00 0.00 0.00 
Day 7 0.00 0.00 0.00 

        
Brown-
Forsyth p-value p-value p-value 

Day 3 0.00 0.00 0.01 
Day 5 0.00 0.00 0.00 
Day 7 0.00 0.00 0.00 

    
 Neuron/Astrocyte Ra. Neuron Axon Length Astrocyte Fibre Length

Levene’s p-value p-value p-value 
Day 3 0.00 0.00 0.00 
Day 5 0.27 0.00 0.00 
Day 7 0.15 0.00 0.00 

        
Brown-
Forsyth p-value p-value p-value 

Day 3 0.00 0.00 0.00 
Day 5 0.32 0.00 0.00 
Day 7 0.20 0.00 0.00 
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As seen in Table 3.2, only Neuron-Astrocyte Ratio on day 5 and day 7 have homogeneous 

variance (𝑝 > 0.05). This ratio is ே௘௨௥௢௡ ஽௘௡௦௜௧௬஺௦௧௥௢௖௬௧௘ ஽௘௡௦௜௧௬ . The variances for the remaining cell 

variables are heterogeneous since the computed probability for each is 𝑝 ≤ 0.05. In time 

point day 3 in the early stages of cell development a few examples of homogeneous 

variance were expected since the neurosphere seeding conditions are identical. It seems 

the chemical properties such as wettability, lipophilicity affect biological interactions as 

soon as the seeding of the cell solution takes place. On day 5 and 7, heterogeneous variance 

was expected as cell performance can vary vastly in different environments (41,265). 

 

 Distribution 

Another parametric assumption is a normal distribution. A normal distribution has most of 

the data points fall in the middle of the range (cluster around the mean) with the number 

tapering off symmetrically either side of the mean to a few extreme values in each of the 

two tails. While normality is not the only assumption for using parametric tests, the 

arithmetic of such tests is based on the parameters describing a symmetrical, bell-shaped 

curve (Gaussian) (196). Normality tests can determine whether sample data has been 

drawn from a distribution that is approximately normally distributed (195). 

 

Popular methods for visual distribution inspection are quantile-quantile (q-q) (199) and box 

plots. Q-Q graphs are actual data plotted against a normally distributed version of given 

data. The original data are arranged in ascending order in percentiles (quantiles) and the 

normally distributed data points are obtained from the z-scores of the original data. Z-score 

is a measure of how many standard deviations below or above the population mean a raw 

data point is. Box-plots are non-parametric and make no assumptions regarding underlying 

data distribution. Popular statistical methods for normal distribution are Shapiro–Wilk and 
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Anderson-Darling (198–200). The former is more sensitive around the centre of the 

distribution whereas the latter at the tails. The figures below show q-q plots:
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 Quantile-quantile (QQ) plots 

 

 

 
 

Figure 3.1: QQ probability plots of Cell cluster area and Cell density variables. This is a graphical method comparing two probability distributions by plotting their quantiles against each other. 
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Figure 3.2: Qauntile-Quantile probability plots of neuron/astrocyte ratio and cell process variables.
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Except for neuron/astrocyte ratios, remaining data have a distribution closer to gamma 

distribution. The image below (left) shows QQ plots where a gamma distribution is 

compared to a normal distribution which is very similar to what is seen in the graphs above. 

 

 
Figure 3.3: Left: normal QQ plot fitted on gamma distribution (𝑘 = 0.5, 𝜃 = 1). Right: normal QQ plot fitted on normal 

distribution. 
 

This is not uncommon in life sciences (268) and most likely the sampling method is not at 

fault despite the presence of possible outliers. Most of the morphological data quantified 

from cell images are from synthetic environments. In most of these, cells do not behave as 

they do in the biological control (laminin) where a distribution closer to normal is expected 

(41). In synthetic environments, smaller values appear more frequently than larger values 

giving right skewed distributions. In addition, this was observed and discussed in detail in 

previous work (41). An example of an approximately normal distribution is shown in 

neuron/astrocyte ratio day 5 and 7.  Below are then box-plots showing the data spread and 

distribution: 
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 Box-plots 

 
 

Figure 3.4: Box-plots of cell cluster area and cell density variables. These show cell variables and their quartiles. Top and bottom whiskers denote the upper and lower quartiles. Box spacing indicate data 
spread and skewness. + indicates the average and the black line inside the box is the median (2nd quartile). Displaying 1-99 percentile of data.

m
m

2

m
m

2

Ce
ll/

m
m

2

Ce
ll/

m
m

2

Ce
ll/

m
m

2

C
el

l/m
m

2

C
el

l/m
m

2

Ce
ll/

m
m

2



Page 103 

 
 

Figure 3.5: Box-plots of neuron/astrocyte ratio and cell process variables. These show cell variables and their quartiles. Top and bottom whiskers denote the upper and lower quartiles. Box spacing indicate 
data spread and skewness. + indicates the average and the black line inside the box is the median (2nd quartile). Displaying 1-99 percentile of data.

m
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The box-plots above show similarities with data distribution findings. Most are gamma 

distributions except for neuron/astrocyte ratios. In a normal distribution, the box is 

expected around the centre of the whiskers and the mean indicated with a +, should be 

overlapping or very close to the median indicated with a line in the box. Cell Cluster Area is 

the area where cells migrate away from the sphere they came in. This measure increases 

with time as expected from developing and migrating cells. 

 

Neurons, the functional component of the nervous system, tend to appear early in the 

culture but later diminish in density. This could mean the neuron population decreases over 

time, that they migrate or, that they are carried away by the rapidly proliferating astrocyte 

“carpet”. The latter is more likely as a similar effect is observed with the supporting cells 

called astrocytes - astrocyte density decreases with time as well. In both “vanishing” 

neuron and astrocyte densities, variation decreases in day 7 ascertaining the effect of cell 

migration. Alone, cell density per mm2 cannot answer whether cell populations die or 

migrate further apart. For this reason, the neuron/astrocyte ratio (NAR) has to be used in 

conjunction to answer the question for the non-proliferating neuron population. Similar 

NAR in different time points means neurons migrated. Reduction in NAR in time points 

means neurons may have died. From the results above, the average NAR value does not 

change with time meaning neurons density decreases mostly due to cell migration. 

 

In Figure 3.5, neuron axons explore the environment searching for other neurons to form 

neural networks (circuits). Their length increases with time, as does the variation. On time 

point day 3, neurons have not had enough time to differentiate and send out processes but 

later on day 5 and 7 they elongate. In vitro, astrocyte fibres are mainly used to envelop 

synapses made by neurons, so they too are exploring for other cells. As with neuron axons, 
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astrocyte fibre length increases with time and the variation increases on day 7. For both 

cell types, projection elongation is expected to reach distant migrating cells. 

 

 Normality tests 

Testing for normal distributions inform statistical whether a distribution is normal or not 

through the test statistic and probability values (𝑝) of false positive risk (𝛼). Shapiro-Wilk 

test detects non-normality around the centre of the distribution whereas, the Anderson-

Darling is better suited for the tails (198). Below are the normality results for each cell 

parameter with the test 𝑝 value: 

 

Table 3.3: Normality tests. Approximate normal distribution are those with 𝑝 ≥ 0.05. 
 

 Cell Cluster Area Neuron Density Astrocyte Density 
Shapiro–Wilk (W) p-value p-value p-value 

Day 3 0.00 0.00 0.00 
Day 5 0.00 0.00 0.00 
Day 7 0.00 0.00 0.00 

    
Anderson—Darling 

(A2) p-value p-value p-value 

Day 3 0.00 0.00 0.00 
Day 5 0.00 0.00 0.00 
Day 7 0.00 0.00 0.00 

    
 Neuron/Astrocyte Ra. Neuron Axon Len. Astrocyte Fibre Len.

Shapiro–Wilk (W) p-value p-value p-value 
Day 3 0.00 0.00 0.00 
Day 5 0.53 0.00 0.00 
Day 7 0.00 0.00 0.00 

    
Anderson—Darling 

(A2) p-value p-value p-value 

Day 3 0.00 0.00 0.00 
Day 5 0.5 0.00 0.00 
Day 7 0.28 0.00 0.00 
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Both normality tests (Shapiro-Wilk, Anderson-Darling) are statistical inference drawing 

conclusions from sample data by emphasising the frequency or proportion of data. This 

inference framework is well established and is the basis for hypothesis testing and 

confidence intervals. From the table above (Table 3.3), only neuron/astrocyte ratio day 5 

and day 7 are normally distributed therefore their averages will serve well as their central 

tendency. From the q-q, box-plots and normality tests (Figure 3.4-Table 3.3), the remaining 

variables have closer to gamma distribution. For these, the median will be used instead as 

the central tendency of each. The central tendencies of cell measurements are required for 

each chemistry to perform correlation testing of two variables (bivariate). The sample size 

needs be equal to the number of environments. 

 

 Correlation and visual relationships 

Correlation shows the statistical relationship between variables. These relationships 

assume dependence and linearity. Pearson’s correlation has an advantage over using 

untransformed data to find correlation between variables but is also sensitive to outliers 

(203). To alleviate this problem, the median is used as the central tendency (196,269) for 

all cell variables except neuron/astrocyte ratio day 5 and 7. Since these two have 

approximately normal distributions, the average is used instead. 

 

Correlation tests are performed on chemical and cell data where measurements were 

taken on 3 time points in culture (day 3, 5 and 7). Correlation significance and frequency 

follow next. After that follows a correlation heat map for all chemical vs cell variable 

combinations. Next, graphs of actual cell and chemical data with moderate-high correlation 

are shown. The order of these graphs is shown in the correlation heat map in Figure 3.9. 

The final section of results consists of correlation graphs between cell variables and 
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partition coefficient (logP) constituents. The purpose of this section is to show the 

relationship of each molecule constituent with cell variables. Each logP variable represents 

the logP value of previous (if any) and current constituents in the molecule. Starting from 

logP5, this represents the logP value of terminal group (2 constituents). LogP4 represents 

the terminal group and the constituent that follows, and this carries until logP1 

representing the logP value of up to 6 constituents of a molecule. Below are graphs of 

correlation significance relative to the sample size and test chosen and in Figure 3.7 are the 

critical correlation values accepted:
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 Correlation significance 

  
Figure 3.6: Correlation significance with sample size 𝑛 = 9. Left: 𝑦 axis is the correlation coefficient (𝐻1) and 𝑥 axis is the 𝑎 probability accepting false positives. Power was set at 1 − 𝛽 = 20% chance 

accepting a false negative. Right: 𝑦 axis is the correlation coefficient (𝐻1) and 𝑥 axis is the 𝛽 probability accepting false negatives and. 𝛼 was set at 5% chance accepting a false positive. 

 

 
Figure 3.7: Critical correlation coefficient accepted as significant with sample size 𝑛 = 9. 𝑦 axis is the probability density for 𝛼 and 𝛽 distributions and 𝑥 axis is the correlation coefficient. Left graph shows the 

critical correlation cofficient for negative correlations and the right one for positive correlations. Correlations ≥ −0.58 or ≤ 0.58 are accepted as significant. 
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With a sample size of 𝑛 = 9, the graphs (Figure 3.6) show the correlation coefficient (𝑟 =0.74) setting the risk of accepting false positives to 5% (left graph) and false negatives (right 

graph) to 20%. Graphs in Figure 3.7 establish thresholds accepting correlations as 

significant if they are ≤ −0.58  or  ≤ 0.58 . Outside of these thresholds, the chance 

accepting a false positive (type I error) and false negatives (type II error) increase. 

Correlations outside the threshold need further evidence to support them. Below are 

graphs with significant correlation frequency and below that are the correlation graphs: 

 
 

 
Figure 3.8: Significant correlations counts. 𝑥 axis represents the chemical variables and the 𝑦 axis represents correlation 

counts. Top left: positive correlation counts, top right: negative correlation counts, and bottom: total correlation 
counts.
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Positive (+) correlation mean as one variable’s value goes up so does the other variable’s 

value. In negative (−)  correlation, as one variable’s value goes up the other one’s 

decreases. From the top left graph in Figure 3.8, the logP (lipophilicity) group has 3-4 

significant positive (+) correlations. From the top right graph, logP3 has most negative (−) 

correlations followed by logP5. The bottom graph shows the frequency of significant 

correlations. More correlations were expected from the popular hydrophilicity measure 

(water contact angle, WCA) and terminal acidity measured (acid dissociation constant, 

pKa). Nevertheless, the surface lipophilicity measures (logP group) are the most interesting 

from the above results. Below is a heatmap of all correlation where the darker a cell is the 

stronger the correlation:
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 Correlation heat map 

Figure 3.9: Correlation heat map between cell and chemical variables ordered by cell variable type and time point. 
Absolute correlation values were used. The darker the square the stronger the correlation. Abbreviations: CCA = Cell 

Cluster Area, ND = Neuron Density, AD = Astrocyte Density, NAR = Neuron-Astrocyte Ratio, NAL = Neuron Axon 
Length, AFL = Astrocyte Fibre Length, D3 = Day 3, D5 = Day 5 , and D7 = Day 7. 

 

The correlation map above in Figure 3.9 shows the absolute correlations and their strength. 

Correlation directionality will be reported and discussed in the foremost section. This 

correlation heat map is to study relationships and patterns for each chemical parameter 

(horizontally), or for each cell parameter per time point (vertically). Significant correlations 
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here are 𝑟 ≥ 0.58 discovered in section 3.2.3.1108. The “interestingness” of the logP group 

is shown clearly with cell densities and processes lengths. Other correlations are apparent 

as well from molecular mass, volume, water contact angle, and acid dissociation constant. 

Next, we investigate each significant correlation with data plots and cell performance 

ranks. 

 

 Cell cluster area (CCA) 

Neurospheres attached within 1-2 hours on modified surfaces and attachment takes longer 

on more hydrophobic surfaces. Upon attaching, the neurosphere breaks and cells 

interacting with the surface differentiate due to cell adhesion molecules (integrin) (48). Glia 

migrate away from the sphere initially, providing a “carpet” for neurons to migrate (270) 

as well as providing them with peptides or small proteins for maintenance (neurotrophic 

factors). Neurons perform independent short-range migrations out of the spheres in a 

process called chain migration (271). 

 

Fluorescence microscopy and chemical markers were used to identify cell types. Cell 

images were captured in three time-points day 3, 5 and 7. Day 3 informs of 

biological/material interface and day 7 informs on biological remodelling of the 

environment. Exceeding 7 days in culture is challenging with differentiated neurons. The 

conversion of neurospheres to cell clusters is relevant to neural stem cell differentiation. 

Larger areas of cell clusters means more stem cells and progenitors differentiate to mature 

nervous cells (271). Below are graphs with raw data of cell cluster areas against chemical 

parameters for all time points. Data selected have significant correlations (𝑟 ≤ −0.58, 𝑟 ≥ 0.58) in at least one time point. Below is a figure with significant correlations between cell 

cluster area vs chemical parameters followed by a cell performance rank table:
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Figure 3.10: Data plots of cell cluster area vs logP3 and logP5. Column 1 (left) represents cell data from day 3; column 2, data form day 5; and column 3, data from day 7. Data point labels represent the 
abbreviations of synthetic chemistries used. The bars indicate the ±median absolute deviation. The standard curve is a linear regression model fitted on data as a reference for linear relationships. 
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The table below shows the cell cluster area ranks for all cell culture environments for 

comparison: 

 

Table 3.4: Cell cluster area rank in culture environments. Ranks are calculated with Bray & Curtis dissimilarity on related 
cell variables from all 3 time points. The lower a chemistry’s rank is to 0 the closer its cell performance is to that of 

laminin’s. Median absolute deviation is ±0.23 mm2. 
 

Environment Median value (mm2) Rank 
P/LAM 0.74 0.00 

NH2 0.64 0.17 
triNH2 0.47 0.23 
diNH2 0.42 0.28 
COOH 0.33 0.38 

CH3 0.27 0.47 
OH 0.24 0.51 
Ph 0.23 0.53 
SH 0.2 0.58 

 
 

Referring to The table below shows the cell cluster area ranks for all cell culture 

environments for comparison: 

 

Table 3.4, laminin (P/LAM) with and amine (NH2) with surfaces give the largest cell cluster 

areas overall. Both environments had a marked difference in area expansion  50%. A 

surprise here is the carboxylic acid surfaces (COOH) had triple expansion on day 7, closing 

in on laminin. Thiol (SH), phenol (Ph), hydroxyl (OH) and methyl (CH3) provide the smallest 

cluster areas overall. Methyl (CH3) cell cluster areas changed very little in time. Median 

absolute deviation of cell cluster area measurements is ±0.23 mm2.  

 

The data show cell cluster area (CCA) to correlate (−)moderate-strong with logP3, logP4, 

and logP5 on both day 5 and 7 (Figure 3.10). In addition, there is a (+) strong correlation 

with water contact angle (WCA) but this is not significant as it falls below the critical 𝑟 

value (< 0.58). (Figure 3.9). Additional evidence in support is required for this relationship.  
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 Neuron density (ND) 

Successful cellular therapies to regenerate nervous tissue depend partly on the amount of 

neurons delivered. Neuronal network is the functional component of the nervous system. 

Cells around the cell cluster but not the dense centre were quantified in stratified random 

sampling. Increasing the density of transplant relevant populations is a key element in 

scaling up the therapy. Cell culture environments with synthetic chemistry provide greater 

degree of control compared to alternatives such as special culture media, and hypoxia as 

an environmental culture condition among others. 

 

Day 3 neural density informs on neural differentiation. At this stage, high density means 

cells reside inside the neurosphere. Low neural density is a strong indicator of 

differentiation. Day 5 and 7 time-points inform on biological remodelling of the 

environment and cell proliferation due to the longer duration in culture (101). In a situation 

where neural density is similar but the cell cluster area is larger means neural cells are 

dividing. In tissue slices and xenografts, higher cell density means smaller extracellular 

volume and amount suggesting cells use the resources in the vicinity quicker (272,273). 

Low cell density promotes internal cell signalling for changes within individual cells 

(autocrine signalling); high cell density promotes cell-cell communication inducing changes 

in nearby cells (paracrine signalling) (274). Cell densities are comparable between different 

environments by standardising the cell counts with their cell cluster area. Below are graphs 

with raw data of neuron density against chemical parameters and right below those are 

the cell performance ranks:
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Figure 3.11: Data plots of neuron density vs logP1 and logP2. Column 1 (left) represents cell data from day 3; column 2, data form day 5; and column 3, data from day 7. Data point labels represent the 
abbreviations of synthetic chemistries used. The bars indicate the ±median absolute deviation. The standard curve is a linear regression model fitted on data as a reference for linear relationships. 
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Figure 3.12: Data plots of neuron density vs logP4 and logP5. Column 1 (left) represents cell data from day 3; column 2, data form day 5; and column 3, data from day 7. Data point labels represent the 
abbreviations of synthetic chemistries used. The bars indicate the ±median absolute deviation. The standard curve is a linear regression model fitted on data as a reference for linear relationships. 
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Figure 3.13: Data plots of neuron density vs water contact angle. Column 1 (left) represents cell data from day 3; column 2, data form day 5; and column 3, data from day 7. Data point labels represent the 

abbreviations of synthetic chemistries used. The bars indicate the ±median absolute deviation. The standard curve is a linear regression model fitted on data as a reference for linear relationships. 
 

Table 3.5: Neuron density rank in culture environments. Ranks are calculated with Bray & Curtis dissimilarity on related cell variables from all 3 time points. The lower a chemistry’s rank is to 0 the closer its 
cell performance is that of laminin’s. Median absolute deviation is ±99 cells/mm2. 

 
Environment Median value (cells/mm2) Rank 

P/LAM 152.87 0.00 
NH2 138.25 0.20 

diNH2 221.01 0.26 
OH 221.75 0.27 

triNH2 223.28 0.29 
COOH 225.30 0.29 

CH3 259.87 0.29 
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SH 288.65 0.31 
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Referring to Table 3.5, laminin environment is our biological standard and matching its 

performance is the priority. The order of results in the table is the mathematical distance 

to laminin’s neuron density. Amine (NH2) is the best performer followed by laminin (P/LAM) 

in providing lowest neuron density. Lowest performers providing high neuron density are 

thiol (SH) and phenol (Ph) followed by carboxylic acid (COOH). Median absolute deviation 

of neuron density measurements is ±99 cells/mm2. 

 

From the graphs above in Figure 3.11 and Figure 3.12, neuron density correlates (+)moderate to strong with logP1, 2, 4, and logP5 on day 5 and (+)strong on day 7. In 

addition, ND has a (−)moderate to strong correlation with WCA on day 3 and 5 (). Thiol is 

changing the relationship with WCA on day 7 and a (−)correlation is expected here as well. 

 

 Astrocyte density (AD) 

Astrocytes are robust glial cells that play several roles in the central nervous system. They 

manage chemical signals (neurotransmitters) exchanged by neurons, strengthen neuron 

connections (synapses) called long-term potentiation (275). They also regulate ion 

concentration (e.g. potassium) in the extracellular space where excess amounts depolarise 

neurons that could result in epileptic activity (276). Other purposes of astrocytes include 

antioxidant defences, anti-inflammatory response, and energy metabolism (275,277). 

 

There is a body of evidence in the literature of the importance of astrocytes in neuro-

regeneration and neuro-repair. During development, ependymal cells and astrocytes form 

glial tubes used by migrating neuron pre-cursors (neuroblasts). In these tubes, astrocytes 

provide support for migrating cells as well as insulation from chemical and electrical signals 

released from surrounding cells. For tissue replacement therapies, astrocyte and neural 

stem cells (NSCs) exhibit a suppressive effect on an allogeneic immune response due to 
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cell–cell interaction (278). This means nervous tissue transplants containing astrocytes are 

more likely to be accepted by the patient’s immune system. 

 

In vitro, astrocytes regulate the ionic or chemical milieu of neurons to aid neuron signalling 

(279). They were also found to direct neurite alignment to a greater extent compared to 

structured surface cues, highlighting their importance for biochemical signalling and 

cellular architecture (279). Lastly, conditioned media with biomolecules produced by 

astrocytes increase NSCs’ proliferation, differentiation, and participate in the modulating 

the cells (280). These findings mean astrocytes have important roles as early as the 

development stage and even the repair stage of the nervous system. 

 

As previously, day 3 astrocyte density informs on differentiation. High density means cells 

reside inside the neurosphere whereas low astrocyte density is a strong indicator of 

differentiation and migration (271). Day 5 and 7 time-points are good indicators of 

proliferation (101). For the purposes of this project, astrocyte density may provide insights 

for the effect of chemistry on neural cells. Below are data plots of astrocyte density vs 

chemical variables followed by the cell performance ranks (Table 3.6):
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Figure 3.14: Data plots of astrocyte density vs logP1 and logP2. Column 1 (left) represents cell data from day 3; column 2, data form day 5; and column 3, data from day 7. Data point labels represent the 
abbreviations of synthetic chemistries used. The bars indicate the ±median absolute deviation. The standard curve is a linear regression model fitted on data as a reference for linear relationships. 
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Figure 3.15: Data plots of astrocyte density vs logP3 and logP4. Column 1 (left) represents cell data from day 3; column 2, data form day 5; and column 3, data from day 7. Data point labels represent the 
abbreviations of synthetic chemistries used. The bars indicate the ±median absolute deviation. The standard curve is a linear regression model fitted on data as a reference for linear relationships. 
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Figure 3.16: Data plots of astrocyte density vs logP5 and Molecular Volume. Column 1 (left) represents cell data from day 3; column 2, data form day 5; and column 3, data from day 7. Data point labels 
represent the abbreviations of synthetic chemistries used. The bars indicate the ±median absolute deviation. 
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Figure 3.17: Data plots of astrocyte density vs pKa. Column 1 (left) represents cell data from day 3; column 2, data form day 5; and column 3, data from day 7. Data point labels represent the abbreviations of 

synthetic chemistries used. The bars indicate the ±median absolute deviation. The standard curve is a linear regression model fitted on data as a reference for linear relationships. 
 

Table 3.6: Astrocyte density rank in culture environments. Ranks are calculated with Bray & Curtis dissimilarity on related cell variables from all 3 time points. The lower a chemistry’s rank is to 0 the closer its 
cell performance is that of laminin’s. Median absolute deviation is ±163 cells/mm2. 

Environment Median value (cells/mm2) Rank 
P/LAM 293.78 0.00 

NH2 295.60 0.08 
diNH2 376.93 0.12 
triNH2 375.20 0.16 
COOH 440.68 0.21 

CH3 465.65 0.23 
SH 525.31 0.28 
Ph 556.93 0.31 
OH 534.02 0.31 
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Lower cell density indicates good cell interaction with their environment. Cell migration is 

indicative of cell differentiation to neurons and glia. Referring to Table 3.6, highest 

performers are laminin (P/LAM) and amine (NH2). Lowest performers are phenol (Ph), 

hydroxyl (OH) and thiol (SH). Median absolute deviation for these measurements is ±163 

cells/mm2. 

 

Astrocyte density (AD) correlates with the logP group (+)strong on day 5 and 7. AD also 

correlates (−)strong with both molecular volume and acid dissociation constant (pKa) of 

the terminal group on day 3. This effect vanished on day 5 and by day 7, (+) weak 

correlations are observed instead. This means, initially AD decreases on more acidic 

surfaces. The interesting part here is the pKa correlation changes to (+)weak by day 5 and 

by day 7, it changes to (+)moderate. 

 

 Neuron/astrocyte ratio (NAR) 

The key challenge in cell therapy translation is controlling the proportion of neurons and 

the purity of transplant population is a critical quality attribute (281). An imbalance in the 

proportion and migration of cells can have adverse effects for transplant recipients. Such 

effects include increase in uncontrolled movement due to the production of serotonin in 

excess or at the wrong location in the transplant (282). Another effect is teratomas from 

progenitors or stem cells if they are present in the transplant tissue (91). Generally, glial 

cells dominate cultures compared to neurons, which are of interest as the functional 

component of the nervous system. This cell proportion imbalance likely occurs due to 

asymmetric cell division of neurons and glia progeny (282).  
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From cell density data, it is possible to obtain the ratio of cells expressed as ே௘௨௥௢௡ ஽௘௡௦௜௧௬஺௦௧௥௢௖௬௧௘ ஽௘௡௦௜௧௬. 

Low cell density coupled together with high neuron percentage is preferred. The former 

means cells have migrated away from the neurosphere and differentiated and the latter is 

an indication of the proportion of neurons. Both help understand the relationship between 

neural cell division and time across different environments. Below is a figure with 

significant correlations between neuron/astrocyte ratio vs chemical parameters followed 

by a table with cell performance ranks:
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Figure 3.18: Data plots of neuron/astrocyte ratio vs logP2 and logP3. Column 1 (left) represents cell data from day 3; column 2, data form day 5; and column 3, data from day 7. Data point labels represent 
the abbreviations of synthetic chemistries used. The bars indicate the ±median absolute deviation. The standard curve is a linear regression model fitted on data as a reference for linear relationships. 
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Table 3.7: Neuron/astrocyte ratio rank in culture environments. Ranks are calculated with Bray & Curtis dissimilarity on 
related cell variables from all 3 time points. The lower a chemistry’s rank is to 0 the closer its cell performance is that of 

laminin’s. Median absolute deviation for the ratio is ±0.07. 
 

Environment Ratio (Neuron/Astrocyte) Rank 
P/LAM 0.35 0.00 

SH 0.35 0.04 
CH3 0.31 0.05 

COOH 0.32 0.06 
Ph 0.32 0.07 
OH 0.30 0.08 
NH2 0.29 0.09 

triNH2 0.57 0.24 
diNH2 0.58 0.25 

 
 

The proportion of neurons standardised by the number of astrocytes expresses the ratio 

between them. A high value of this ratio means more differentiation to neurons than 

astrocytes. The ranks indicate the similarity to laminin’s obtained value for 

neuron/astrocyte ratio. Thiol (SH) has the same neuron percentage (NAR) as laminin. 

Diamine (diNH2) and triamine (triNH2) exhibit the highest differentiation to neurons. Apart 

from amines, remaining environments stacked up favourably to the gold standard laminin. 

 

Diamine (diNH2) and triamine (triNH2) are changing the relationship on day 3 but in later 

time points, they are in line with the rest of the data. Neuron/astrocyte ratio (NAR) 

correlates (−)strong with logP2 and logP3 on day 3,5, and 7 (Figure 3.18). 

 

 Neuron axon length (NAL) 

Functional nerve tissues consist of neural projections to communicate with neighbouring 

cells using electrical conduction across large distances. Neuron axon length is a good 

indicator of this in vitro. One aim of neuro-regenerative biomaterials is to grow and guide 

neurons to specific injury areas and re-wire compromised neural circuits to restore 

function. Biomaterials have been used to successfully guide neuron contact where they 

followed surface cues (283). In a more recent example, neurons have been aligned to 
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nanofiber surfaces (284). The challenge here is to use simple means to control the axon 

length to allow effective re-wiring of a neural circuit for stem cell therapies. Measurements 

were taken for 300 neurons per surface from clearly labelled cells (tuj1) with the entire 

neurite length visible (41). As previously, below is a figure with significant correlations 

between neuron axon length vs chemical parameters followed by a table with cell 

performance ranks:
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Figure 3.19: Data plots of neuron axon length vs logP2 and logP3. Column 1 (left) represents cell data from day 3; column 2, data form day 5; and column 3, data from day 7. Data point labels represent the 
abbreviations of synthetic chemistries used. The bars indicate the ±median absolute deviation. The standard curve is a linear regression model fitted on data as a reference for linear relationships. 

m m

O
H

m m m

O
H

C
O

O
H



Page 131 

 
 

Figure 3.20: Data plots of neuron axon length vs logP4 and logP5. Column 1 (left) represents cell data from day 3; column 2, data form day 5; and column 3, data from day 7. Data point labels represent the 
abbreviations of synthetic chemistries used. The bars indicate the ±median absolute deviation. The standard curve is a linear regression model fitted on data as a reference for linear relationships. 
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Table 3.8: Neuron axon length rank in culture environments. Ranks are calculated with Bray & Curtis dissimilarity on 
related cell variables from all 3 time points. The lower a chemistry’s rank is to 0 the closer its cell performance is that of 

laminin’s. Median absolute deviation is ±168 μm. 
 

Environment Median value (μm) Rank 
P/LAM 746.97 0.00 

NH2 775.23 0.02 
triNH2 780.87 0.04 
diNH2 781.16 0.05 

SH 595.98 0.11 
OH 582.68 0.12 

COOH 562.12 0.14 
Ph 540.69 0.16 

CH3 537.28 0.16 
 

 

The order of the results in Table 3.8 is the mathematical distance to laminin’s neuron axon 

length. The amine group (𝑑𝑖𝑁𝐻ଶ > 𝑡𝑟𝑖𝑁𝐻ଶ > 𝑁𝐻ଶ) showed the longest axons followed 

closely by laminin. Remaining environments had similar axon lengths over all time points. 

Median absolute deviation for these measurements is ±168 μm. 

 

Neuron axon length (NAL) correlates with the logP group. The correlations are (−)strong 

with logP3 and logP5 for all time points. LogP1, logP2 and logP4 correlate (−)moderate to 

strong on day 3 and day 5 (Figure 3.19, Figure 3.20). 

 

 Astrocyte fibre length (AFL) 

Astrocytes have several roles in the nervous system. They manage neurotransmitters, ionic 

regulation, synaptic processing, anti-inflammatory response, antioxidant defences, and 

energy metabolism (275). During development, ependymal cells and astrocytes form glial 

tubes used by migrating neuron precursors. Astrocytes also insulate neurons from chemical 

and electrical signals released from surrounding cells. In addition, conditioned media with 

biomolecules produced by astrocytes increase NSCs’ proliferation, differentiation, and 

participate in modulating the cells (280). 

 



Page 133 

In vivo, astrocyte processes mediate between blood capillaries and other cells transporting 

energy substrates as metabolic fuel for brain activity (285). Astrocyte processes play a key 

role in glial/axonal interactions (279). They contact neuron bodies (somata) and enclose 

active neuron connection (synaptic) terminals (286). They are also associated with another 

glial cell type, oligodendrocytes, in shielding neuron axons (myelination). We know this as 

more astrocytes appear during development in the normal developmental period of 

myelination in the spinal cord  (287). In vitro studies show astrocytes induce 

oligodendrocytes to align their processes with axons thereby controlling the onset of axon 

insulation (myelination) (288). Myelination is an important attribute of oligodendrocytes 

(induced by astrocytes) for developing functional neural circuits. 

 

Astrocyte spreading is related with fibre length as astrocytes extend protrusions to interact 

with other cells and with the surface for migration and attachment (93). For this project, 

astrocyte fibre length is an indicator of the indirect relationship astrocytes have with the 

culture environment. It says more about neuron availability and migration as astrocyte 

processes reach out further for neurons that are sparse or distant. Therefore, the shorter 

the processes the more likely neurons are within the vicinity. Below is a figure with 

significant correlations between astrocyte fibre length vs chemical parameters followed by 

a table with cell performance ranks:
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Figure 3.21: Data plots of astrocyte fibre length vs logP2 and logP3. Column 1 (left) represents cell data from day 3; column 2, data form day 5; and column 3, data from day 7. Data point labels represent the 

abbreviations of synthetic chemistries used. The bars indicate the ±median absolute deviation. The standard curve is a linear regression model fitted on data as a reference for linear relationships.

m m

O
H

m

O
H

m m

C
H

3

m

O
H



Page 135 

 
Figure 3.22: Data plots of astrocyte fibre length vs logP5 and molecular mass. Column 1 (left) represents cell data from day 3; column 2, data form day 5; and column 3, data from day 7. Data point labels 

represent the abbreviations of synthetic chemistries used. The bars indicate the ±median absolute deviation. The standard curve is a linear regression model fitted on data as a reference for linear 
relationships.

m

O
H C
O

O
H

m

C
O

O
H

m

C
O

O
H

m

SH
di

N
H

2
tri

N
H

2

m

di
N

H
2

tri
N

H
2

SH

m

SH
di

N
H

2
tri

N
H

2



Page 136 

 
Figure 3.23: Data plots of astrocyte fibre length vs molecular volume. Column 1 (left) represents cell data from day 3; column 2, data form day 5; and column 3, data from day 7. Data point labels represent 

the abbreviations of synthetic chemistries used. The bars indicate the ±median absolute deviation. The dashed line is linear regression model fitted to indicate linear relationships. 
 

Table 3.9: Astrocyte fibre length rank in culture environments. Ranks are calculated with Bray & Curtis dissimilarity on related cell variables from all 3 time points. The lower a chemistry’s rank is to 0 the 
closer its cell performance is that of laminin’s. Median absolute deviation is ±34 μm. 

 
Environment Median value (μm) Rank 

P/LAM 132.72 0.00 
triNH2 134.02 0.06 
diNH2 124.29 0.07 

OH 143.35 0.08 
CH3 145.01 0.08 
NH2 146.19 0.08 
Ph 148.44 0.08 
SH 153.91 0.08 

COOH 157.88 0.09 

m

SH
Ph
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Best performers are diamine (diNH2), laminin, and triamine (triNH2). On the lower end are 

phenol (Ph), thiol (SH), and carboxylic acid (COOH). Visually, the astrocyte processes are 

not significantly different in the environments. Median absolute deviation for these 

measurements is ±168 μm. 

 

Astrocyte fibre length (AFL) correlates with the logP group. The correlations at time-point 

day 7 are (+)strong and significant with logP2, logP4 and logP5 (Figure 3.21, Figure 3.22). 

In addition, there is a (+)strong correlation with molecular mass on day 3. A similar (+) strong correlation appears with molecular volume on day 3 but by day 7, this 

relationship changes to (−)moderate (Figure 3.23). 

 

 LogP correlations 

The logP group is interesting as strong relationships appear for all cell variables. In this 

section, the interest is in understanding the depth of lipophobicity effect on cell 

performance in modified culture surfaces. The partition coefficient (logP) is a measure of 

compound solubility when placed in settled solutions that are incapable of mixing 

(immiscible) such octanol and water. LogP refers to the concentration ratio of un-ionised 

species of compound. In pharmaceutical sciences, this measure is useful in estimating the 

drug distribution in the body. Lipophilic drugs with high logP are administered to lipophilic 

areas such as the skin (289), gastrointestinal tract (290), and blood-brain barrier (291). 

Lipophobic drugs with low logP are administered in aqueous regions e.g. intravenously. The 

logP is defined experimentally as: 

𝑙𝑜𝑔𝑃௢௖௧/௪௔௧ = 𝑙𝑜𝑔 ቆሾ𝑠𝑜𝑙𝑢𝑡𝑒ሿ௢௖௧௔௡௢௟௨௡ି௜௢௡௜௦௘ௗሾ𝑠𝑜𝑙𝑢𝑡𝑒ሿ௪௔௧௘௥௨௡ି௜௢௡௜௦௘ௗቇ 
Equation 3.1: Calculating partition coefficient experimentally. 
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Nowadays, the logP is estimated computationally using a variety of methods such as atom-

based and fragment-based, among others. Fragment methods are better suited for larger 

molecules compared to atomic methods (106,209). Atomic methods are more accurate for 

smaller molecules (106). 

 

The logP appears in the literature in investigations for its effect on cell adhesion (292), 

attachment and spreading (77). In cell adhesion studies, the logP serves as one of the 

molecular descriptors (input) modelling embryoid body cell adhesion. It is one of the most 

relevant input to the author’s predictive model as it can explain the outcome well (292). In 

cell spreading studies, osteoblast cell spreading was found to correlate with calculated logP 

with a (+)strong relationship (𝑟 = 0.88) (77). These reports compelled the investigation 

of logP and its effect on neural stem cells. 

 

Typically, in protein and cell studies the logP is estimated for a fragment of the surface 

chemistry with multiple constituents. In this project, the logP value granularity will be 

increased by using logP values for up to the top 6 constituents of the chemistry (Figure 

3.24). To our knowledge, this is the first study investigating the logP in this fashion as a 

biological descriptor. 
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Figure 3.24: LogP values for molecule constituents. LogP5 value is the logP value for the terminal group. Moving down 

to logP1 being the logp value for up to the top 6 constituents of the molecule. 
 

LogP values for synthetic chemistries used in this project were calculated for up to the top 

6 constituents of the presenting chemistry. The logP calculation has been extensively 

compared among many others in (106,209) performing very well compared to real logP 

values. Evidence in the literature found cells sense up to 10 nm of surface characteristics 

(293,294). Accounting for the adsorbed protein layer, we believe this to be up to the top 6 

constituents of the surface chemistry. This will be investigated further in a later chapter. 

Below are correlation count graphs followed by plots of individual correlations between 

logP of molecule constituents and cell responses. A short discussion for each cell variable 

group follows the graphs. Plots with the data providing these correlations are shown in 

previous sections within this chapter. Below is a figure with correlation frequencies: 

Constituent 1 

Constituent 2 

Constituent 3 

Constituent 4 

Constituent 5 

Constituent 6 

LogP5 = -0.66 

LogP4 = -0.13 

LogP3 = -2.04 

LogP2 = -1.15 

LogP1 = -0.62 
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 Correlation frequency 

 
 

 
Figure 3.25: LogP significant correlation counts. 𝑥 axis represents the chemical variables and the 𝑦 axis represents 
correlation counts. Top left: positive correlation counts, top right: negative correlation counts, and bottom: total 

correlation counts. 
 

Positive logP constituent correlation count is similar throughout the constituents whereas, 

logP3 and logP5 prevails for negative correlations. From the bottom graph, both positive 

and negative correlation counts were put together. The important parameters for logP are 

in this order  𝐿𝑜𝑔𝑃3 > 𝐿𝑜𝑔𝑃5 > 𝐿𝑜𝑔𝑃4 > 𝐿𝑜𝑔𝑃1 . Below are graphs of correlations 

coefficients with their standard error for each cell variables of all 3 time points. Below is a 
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figure with significant correlations between cell cluster area and neuron density vs all logP 

parameters:
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 Cell cluster area and neuron density 

 
 

Figure 3.26: Correlation graphs. Cell cluster area and neuron density vs partition coefficient (logP) group. Bars are the standard error of correlations. Data points outside the thresholds indicated by dashed 
lines are significant. No significant differences between any correlations for any time point (Kruskal-Wallis test). 
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Cell cluster area on time point day 3 informs of cell differentiation, migration, and 

proliferation. In later time points, CCA informs on cell migration and proliferation (101). On 

time point 3, (−)correlations are observed and the relationship’s strength increases to 

moderate as it moves to the terminal group. On day 5, (−)correlations appear ordered by 

strength 𝑟௟௢௚௉ଷ = −0.67 > 𝑟௟௢௚௉ହ = −0.6 both of which are significant (< −0.58). On day 

7, CCA correlates (−)moderately with 𝑙𝑜𝑔𝑃5 > 𝑙𝑜𝑔𝑃4 and logp3’s correlation changes to (−)weak. LogP5 and logP4 are consistent in their relationship with CCA throughout the 

time points. The important constituents for the effect of lipophilicity on cell cluster area 

are 𝑙𝑜𝑔𝑃4 > 𝑙𝑜𝑔𝑝5 > 𝑙𝑜𝑔𝑃1 > 𝑙𝑜𝑔𝑃2. Here, logP3 needs additional evidence to support 

its effect. 

 

Neuron density (ND) on time point 3 informs on neural differentiation. High density here 

means cells are densely packed. Low neural density is a strong indicator of cell 

differentiation. Day 5 and 7 time-points are good indicators of proliferation (101). On time 

point day 3, there are mostly very weak correlations in both directions (+) and (−). On 

day 5, (+)strong and significant correlations appear with 𝑙𝑜𝑔𝑃5 > 𝑙𝑜𝑔4. By day 7, ND 

correlates with the entire logP group (+)strong. The order in correlation strength at day 7 

is 𝑙𝑜𝑔𝑃1 > 𝑙𝑜𝑔𝑃2 > 𝑙𝑜𝑔𝑃4, all of which are significant. 𝐿𝑜𝑔𝑃5 > 𝑙𝑜𝑔𝑃3 have (+)strong 

relationship although their correlation strength is just below the high critical value (<0.58) therefore not significant. Almost all constituents are important for the lipophilic 

effect on neuron density. LogP3 needs additional evidence to support its effect. Below is a 

figure with significant correlations between astrocyte density and neuron/astrocyte ratio 

vs all logP parameters:
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 Astrocyte density and neuron/astrocyte ratio 

 
 

Figure 3.27: Correlation graphs. Astrocyte density and neuron/astrocyte ratio vs partition coefficient (logP) group. Bars are the standard error of correlations. Data points outside the thresholds indicated by 
dashed lines are significant. No significant differences between any correlations for any time point (Kruskal-Wallis test). 
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Astrocyte density at day 3 informs on differentiation. High density means cells interact 

more among themselves whereas low astrocyte density indicates differentiation and 

migration. Day 5 and 7 time-points are good indicators of proliferation (101). AD has (−)weak correlations with logP1, logP2, and logP4 on day 3. However, on day 5 and 7 (+)strong correlations appear and all of them are significant (𝑟 ≥ 0.58). This means all 

constituents contribute to the lipophobic effect on astrocyte density. The evidence of the 

relationship is strong since correlations appear on both time points related to proliferation. 

The order of correlations in strength for both time points is 𝐿𝑜𝑔𝑃4 > 𝐿𝑜𝑔𝑃1 > 𝐿𝑜𝑔𝑃2 >𝐿𝑜𝑔𝑃5 > 𝐿𝑜𝑔𝑃3. 

 

Controlling the proportion of neurons and the purity of the transplant population is a 

critical quality attribute for cell therapy translation (281). An imbalance in the proportion 

and migration of cells can have adverse effects for transplant recipients such as 

uncontrolled movement (282) and teratomas (91). Cell densities were used to calculate 

neuron proportion expressed as ே௘௨௥௢௡ ஽௘௡௦௜௧௬஺௦௧௥௢௖௬௧௘ ஽௘௡௦௜௧௬. Low cell density coupled together with 

high neuron proportion is preferred. Neuron/astrocyte ratio (NAR) has a significant (−)strong correlation with the second constituent (logP2) of the surface chemistry on day 

5. On day 3 and day 7, (−)strong correlations appear as well but are not significant (>−0.58). LogP3 has the strongest correlations appearing in all time points. For NAR, the 

order of logP correlations in strength appearing is 𝐿𝑜𝑔𝑃3 > 𝐿𝑜𝑔𝑃2. Below is a figure with 

significant correlations between neuron axon and astrocyte fibre length vs all logP 

parameters: 



Page 146 

 Neuron axon and astrocyte fibre length 

 
Figure 3.28: Correlation graphs. Neuron axon and astrocyte fibre length vs partition coefficient (logP) group. Bars are the standard error of correlations. Data points outside the thresholds indicated by 

dashed lines are significant. No significant differences between any correlations for any time point (Kruskal-Wallis test). 
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Functionary nerve tissue consists of neural projections to communicate with neighbouring 

cells using electrical conduction across large sections of tissue. Neuron axon length (NAL) 

is a good indicator of this in vitro. One aim of neuro-regenerative biomaterials is to grow 

and guide neurons to specific injury areas and re-wire compromised neural circuit to 

restore function. NAL correlates (−) strong with logP3 on all time points and 

significant (𝑟 < −0.58). The next one is logP5 with (−)strong correlations on day 3 and 5 

that are significant. On day 7, there is (−)strong relationship but this is not significant (𝑟 >0.58). LogP2 and logP4 both have a (−)strong relationship with NAL on day 3 that is 

significant and another (−) strong relationship on day 5 that is not significant. The 

important constituents for the lipophobic effect on NAL are 𝐿𝑜𝑔𝑃3 > 𝐿𝑜𝑔𝑃5 > 𝐿𝑜𝑔𝑃4 >𝐿𝑜𝑔𝑃2, ordered by correlation strength. 

 

Astrocyte fibres in vitro work with oligodendrocytes to align their processes with axons 

thereby controlling the onset of shielding their terminals (neuron-myelination) (288). It has 

been proposed that reactive astrocytes are linked to axon elongation in spinal axons as well 

(295). Myelination is an important attribute of oligodendrocytes (induced by astrocytes) 

for developing function neural circuits in vitro. For this project, astrocyte fibre length (AFL) 

is an indicator for neuron availability and migration. The shorter astrocyte processes the 

more likely neurons are within the vicinity. On time points day 3 and 5, there are mostly 

very weak correlations in both directions (+) and (−). Strong (+)correlations appear on 

day 7 with logP3, logP2, and logP5 all of which are significant. The important constituents 

for the lipophobic effect on AFL at day 7 are  𝐿𝑜𝑔𝑃3 > 𝐿𝑜𝑔𝑃2 > 𝐿𝑜𝑔𝑃5 , ordered by 

correlation strength. 
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3.3 DISCUSSION 

Here we investigated synthetic environments to control cell performance and relate it with 

the attributes of the biological environment. Cell performance data used in this chapter are 

from E12 Sprague-Dawley rat ventral mesencephalon chosen the maximise the potential 

of forming dopaminergic neurons (41,296). 

 

 Cell cluster area (CCA) 

The evidence in Figure 3.10 and The table below shows the cell cluster area ranks for all 

cell culture environments for comparison: 

 

Table 3.4 and suggest that cell clusters spread more on lipophobic (logP 0.4 to -0.66) 

surfaces. There are some indications for advantageous cell cluster spreading on moderately 

hydrophilic to borderline hydrophobic surfaces (60-89° WCA) but more evidence is 

required in support for this claim. A note the water contact angles obtained with the in-

house instrument (OneAttension Theta Lite) are higher for all surfaces compared to those 

found in the literature. The chemical properties lipophobicity and wettability are not always 

inversely related. In fact, hydrophobic and lipophobic surfaces such as teflon support long-

term neural cultures because they reduce evaporation and pathogen contamination (297). 

Teflon is essentially chained fluorinated carbons. The interesting part is that such materials 

are known to be non-fouling resisting protein adsorption (298). 

 

It is known on hydrophobic surfaces ( 𝑊𝐶𝐴 > 90° ), proteins adapt their secondary 

structure (conformation) to maximise interaction with their hydrophobic parts 

(hydrophobic effect of protein adsorption) (95,116). This means irreversible protein 

adsorption of smaller non-adhesive proteins (299), such as the abundant albumin, leaving 



Page 149 

less potential to displace these with adhesion-mediating proteins, such as vitronectin and 

fibronectin (300). Neuronal survival and differentiation depends on cell adhesion. No 

adhesion means cell death and a study found cells will die within 2 days if this is the case 

(301). In lipophobic and hydrophobic environments, the hydrophobic effect on protein 

adsorption is inhibited. Adsorption strength is weakened although protein denaturation is 

inhibited by a large degree (300,302). As a result, the exchange of non-adhesive serum-

proteins for adhesion-mediating proteins and the accessibility of adhesion sites for the cells 

integrins is significantly improved. Initial cell adhesion is comparable to that observed on 

more wettable surfaces although it is slightly retarded (300). 

 

On the other hand, in lipophilic and super-hydrophobic environments remarkable 

attachment of mesenchymal stem cell (MSC) has been observed but the effect disappeared 

after 3 days in culture (303). Six hours after seeding, they also found cell adhesion was not 

significantly improved on hydrophobic surfaces. After the 24-hour mark, the effect was 

strong and apparent. Reports indicate the temporarily enhanced cell adhesion likely occurs 

due to hydrocarbon chains of self-assembled monolayer (SAMs) interacting with cell 

membranes (304). Adsorption experiments with extra-cellular matrix (ECM) proteins (type 

I collagen, fibronectin, laminin) showed that specific adsorption of these proteins on 

methyl-terminated self-assembled monolayers cannot account for this temporary effect. 

 

 Neuron density (ND) 

The evidence in Figure 3.11 to Figure 3.13 suggest neuron density (ND) is lower in 

lipophobic (logP 0.1 to -0.66) and moderately hydrophilic/borderline hydrophobic surfaces 

with water contact angle (60° to 89° WCA). In hydrophilic surfaces, lower ND could be 

attributed more to cell death instead of migration. This is speculated as cells on hydroxyl 
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(OH) and carboxylic acid (COOH) had increased type I astrocyte spreading, they were larger 

and more elongated which are signs of stress. A similar finding was recorded in (305) with 

embryonic cortical neurons on hydrophilic surfaces.  

 

Generally, hydrophilic surfaces offer enhanced cell adhesion (306) and cell spreading (307). 

We know this as moderately hydrophilic surfaces (40°-60° WCA) were found to be 

conductive to protein adsorption (95,299,308) and cell adhesion (107). There are many 

examples supporting this finding but there are some exceptions as well. In a study, 

moderately hydrophilic surfaces (58° to 74° WCA)  were made with “sticky” (PEI or PDL) 

compounds coated with laminin or fibronectin proteins (301). In these, cells attached well 

and neuron processes emerged from 2 days in culture. That is 15° WCA above the 

previously decided boundary. On the other hand, hydrophobic surfaces (108° WCA) had no 

neuronal adhesion and they died after 2 days (301). 

 

In another study (309) poly(l-lactic acid) (PLLA) nanofiber and film surfaces were made 

hydrophilic with plasma etching then coated with polylysine for cell attachment (39° and 

46° WCA). Although within the moderately wettable range, these worsened motor neuron 

survival when seeded in low cell density (50 cells/mm-2) compared to plasma untreated 

PLLA surfaces (43°, 58° and 68° WCA). 

 

Protein studies found increased adsorption attributed to WCA does not necessarily mean 

increased interaction (“activity”) with cells for cell adhesion (94,310). Clearly, there is more 

to the story than wettability alone as the main chemical property controlling biological 

responses. Studies and reviews are emerging stating this fact after extensive investigations 

involving 20000 samples (311,312). 
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 Astrocyte density (AD) 

From the evidence in Figure 3.14 to Figure 3.16, astrocyte density (AD) decreases in 

lipophobic surfaces (logP 0.1 to -0.66). In 2D in vitro neural cultures, astrocytes are below 

neurons cushioning them (305). Following the same trend as neurons, they migrate better 

on lipophobic surfaces. In the literature, there are similar findings where glial cells 

preferentially attached and proliferated on hydrophilic surfaces (45° to 60° WCA) instead 

of hydrophobic environments (90° to 108° WCA). 

 

Regarding the (−)correlation of AD with acid dissociation constant (pKa), this was only for 

time point day 3. This suggests acidic surfaces will lower AD but this is likely due to cell 

death rather than migration. With correlations, causality is not implied and there is no 

trend in other time points. There is no correlation on day 5 and by day 7, the correlation 

changes to (+)moderate. What can be said from the best performers in lowering AD 

(Figure 3.17), molecules with a terminal group around 8-11 pKa perform better. This pKa 

range is similar to what appears in the drug discovery literature (282). On more acidic 

surfaces such as hydroxyl (OH, pKa 4.5) there is more dehydration and less potential for 

hydrogen bonding. One would expect less competition with water for protein adsorption, 

however hydrogen bonding is one of four processes fundamental to proteins adsorbing 

(115). On these surfaces, protein degradation and limited protein adsorption is expected 

therefore less binding sites for cells limiting cell attachment, differentiation, and viability. 

 

Molecules with low mass and volume (< 33 Da and 45 Å) (e.g. methyl, CH3 and hydroxyl, 

OH) and/or more acidic (OH) do not perform well in lowering AD by day 3 and limit future 

astrocyte migration. It is possible cells interact with silanol groups from glass and this is not 

an ideal environment for cell culture likely due to the concentration of electronegative 
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charge. When the surface charge is distributed, desirable cell responses are observed. For 

example, the carboxylic acid (COOH) surface has a pKa of 4.87 and has 8 constituents in its 

backbone chain whereas, hydroxyl (OH) has pKa value of 4.5 and 1 constituent. The former 

performs better in lowering astrocyte density although their terminal groups are almost 

equally acidic. This adds to the evidence of the importance of the terminal group chemistry 

and the depth of the chemistry allowing more control over cell responses. 

 

Regarding the correlation with astrocyte density (AD) and molecular volume, thiol (SH) and 

phenol (Ph) are changing the relationship from negative to positive on day 5 and 7. 

Negative relationships as shown on day 3 were expected for all time points. This means as 

molecular volume increases, astrocyte density decreases. In self-assembly molecules 

(SAMs), increasing molecular volume (and mass) means adding side chains on any molecule 

constituent in the backbone or increasing SAM chain length. The former will also change 

SAM packing density, which is out of scope for this project so the latter is assumed. 

 

From our results, we know the lower boundary (3 constituents) and the literature has set 

the upper one. SAM chain length was investigated with milk allergen protein binding (β-

lactoglobulin and apo-transferrin) (313). These proteins were bound by activating their acid 

groups and there was higher protein binding on surfaces with shorter amine SAMS (4 

constituents) compared to longer (8 constituents).  Others found similar outcomes with 

long-chain SAMs resisting protein adsorption and cell adhesion with long chains of a non-

fouling material (PEG, 11-13 constituents) (314,315). The authors proposed this occurs due 

to the enhancement of the repulsive interaction forces minimising protein aggregation 

(steric stabilisation) (134). 
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 Neuron/Astrocyte ratio (NAR) 

The evidence in Figure 3.18 and Table 3.7 suggest lipophobic (logP -1 to -2.3) surfaces will 

provide higher neuron to astrocyte ratio. There are indications hydrophilic (WCA 60° to 70°) 

surfaces with reduced terminal group acidity (pKa 8-11) may help increasing neuron 

proportion but these findings require additional evidence. There are larger populations of 

neurons in hydrophilic environments. This is proof that neuron density decreased due to 

cell migration. Our previous hypothesis of lower neuron density attributed to cell death is 

now proven not to be true. 

 

Contrary, in related work, embryonic stem cells from mouse and humans differentiated to 

neurons 2.4 and 1.6 fold respectively on hydrophobic PDMS surfaces (111° WCA) compared 

to the neutral ultra-low-attachment plates (LAC, 23° WCA) (316). In another study, carbon 

nanotubes (CNTs) were treated with nitric acid to turn them more hydrophilic (<90° WCA). 

The authors did not provide exact wettability measures for the surfaces used in their study. 

On these surfaces, laminin adsorption, cell adhesion, and neuron differentiation were 

enhanced compared to the typical standard surface (poly-l-ornithine) commonly used for 

neuron culture (317). Here, the hydrophobicity of CNTs was modulated after acid 

treatment and their topographical effect better mimics the extracellular matrix providing 

enhanced cell responses. 

 

Another contradiction with our findings is the hydrophilic carboxylic acid (COOH) groups 

found to be negative cues for neuron differentiation (317,318). This interpretation depends 

on the application. If maximising neuron population is desirable then yes, COOH surfaces 

are not great compared to diamine (diNH2) and triamine (triNH2). From our findings (Table 

3.7), COOH’s neuron differentiation potential is close to that of laminin’s. 
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Regarding the acid dissociation constant (pKa) correlation, relevant work contradicts our 

findings with good reason. Carbon nanotube (CNTs) scaffolds offer large surfaces and after 

grafting them with a compound (4.65 pKa) called poly(methacrylic acid), they present an 

ideal moiety for protein adsorption. These modified CNTs, “cage” proteins and capture 

growth factors from the cells’ immediate microenvironment. In effect, this regulates cell 

behaviour and enhance differentiation of human embryonic stem cell into neuronal cells 

(313,319). Our culture environments do not possess this feature as they are flat coverslips 

with a much smaller topographical effect. The high ordered structure of self-assembly 

molecules provide a better method to assess the effect of the chemistry on cell behaviour. 

 

 Neuron axon length (NAL) 

The evidence in Figure 3.19 to Table 3.8 suggest lipophobic (logP -1 to -2.3) chemistries will 

maximise NAL possibly due to enhanced cell migration previously discovered. This finding 

is expected as earlier it was discovered cell clusters are larger and neurons migrate to a 

larger degree on lipophobic surfaces. The hypothesis is neuron axons will have to reach out 

further for other neurons to synapse. Regardless of the hypothesis, the literature agrees 

with the finding. In a study, neurite formation of rat noncancerous tumour cells was studied 

on polymer surfaces with a wettability gradient. Neurite volume and length increased on 

the gradient with moderate hydrophilicity (55° WCA) instead of more hydrophobic or 

hydrophilic areas (320). 

 

In another study, the growth and axon length of hippocampal neurons was investigated on 

surfaces with different materials (321). The materials’ wettability ranged from hydrophobic 

(110° WCA) to hydrophilic (35° WCA). All of these were coated with poly-l-lysine (PLL) to 
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create membranes with the same functional groups interacting with cells. As a result, their 

wettability changed to moderately hydrophilic (64° WCA). Axon length was high in 

smoother membranes (175 μm) compared to rougher surfaces with 3x shorter axons (55 

μm). The author suggests smooth membranes modulate the development process of 

neurons hence the longer neurites.  The surface roughness may influence cell motility, or 

hinder the extension and ramification of neuronal processes emerging from the cell soma. 

Perhaps the surface roughness guides the adsorption of adhesion proteins necessary for 

the interaction with membrane surfaces (321). 

 

One of the surfaces providing longer axons is fluorocarbon with PLL coating on top (321). 

Surfaces with fluorocarbon are lipophobic and hydrophobic. Such surfaces have been 

successfully used in long-term neural cultures as they reduce evaporation and pathogen 

contamination (297). From previous findings (section 3.2.3.3), a relationship was 

discovered with cell cluster areas increasing in lipophobic and moderately 

hydrophilic/borderline hydrophobic surfaces. This suggests such surfaces with this 

configuration are interesting to investigate further. This agrees with our own and findings 

from related work (95,299,308) that cell migration increases on moderately hydrophilic 

surfaces. There are exceptions in the literature with examples of good cell migration on 

more hydrophilic surfaces (<60° WCA) (301,309). 

 

 Astrocyte fibre length (AFL) 

The evidence in Figure 3.21 to Figure 3.23 suggests lipophobic (logP -0.6 to -2) 

environments will decrease astrocyte fibre length. This finding is expected as cell cluster 

area is larger, neuron and astrocyte densities are lower in lipophobic surfaces. This means 

cells migrate further away in such environments and astrocytes will reach out further for 
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other cells. There are few studies investigating surface wettability with astrocyte fibre 

length (78,322). Several studies have demonstrated preferential cell adhesion (306) and 

cell spreading (307) on hydrophilic surfaces. In a study, cell spreading was investigated on 

thin film polymers (323). The films were made of poly(acrylonitrile-vinylchloride) (PAN-

PVC) and are moderately hydrophilic (76° WCA). The investigators confirmed the reports 

of others (324–326) that cell migration rate is reciprocally related with cell spreading. 

Astrocytes displayed significantly lower migration rate (15±4 μm/hr) relative to meningeal 

cells (42±5 μm/hr). In addition, astrocyte spread cell area and processes were significantly 

greater (4250±1000 μm2) compared to meningeal cells (2000±300 μm2). 

 

The author attributed these astrocytic responses to differential expression of integrin 

receptors among different cell types. This makes sense as integrin expression has been 

shown to vary among different cell populations within the central nervous system (327). 

Essentially, astrocytes were tightly bound on the surface and there was more effort 

required to migrate hence the large cell spreading. We found astrocyte fibres are larger in 

surfaces with limited cell migration (phenol, Ph and thiol, SH) (Table 3.5, Table 3.6). The 

opposite is observed as well - astrocyte fibres are generally smaller in surfaces with good 

cell migration (amines and laminin). 

 

There is evidence that chemistries with molecular mass 62-90 da and molecular volume 76-

105 Å in their untethered state will do better in lowering astrocyte fibre length (AFL). In 

self-assembly molecules (SAMs), increasing molecular volume (and mass) means adding 

side chains in any molecule constituent in the backbone or increasing SAM chain length. 

The former will also change SAM packing density, which is out of the scope of this project 

so the latter is assumed. In a related study, differences in the chain length of molecules 

used to prepare model surfaces directly influences cell attachment and cell spreading (328). 
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From our results, we found the minimum chain length for self-assembly molecules (SAMs) 

to minimise AFL is 3 constituents. The upper boundary was found to be around 8 

constituents found by protein adsorption and cell adhesion studies (134,313–315). 

 

3.4 NOVELTY 

1) Cell clusters spread more on lipophobic (logP 0.4 to -0.66) surfaces 

2) Neuron density is lower in lipophobic (logP 0.1 to -0.66) and moderately 

hydrophilic/borderline hydrophobic surfaces with water contact angle (60° to 89° WCA) 

3) Astrocyte (AD) density decreases in lipophobic surfaces (logP 0.1 to -0.66) 

4) Acidic surfaces will lower AD but this is likely due to cell death rather than migration 

5) Molecules with low mass and volume (< 33 Da and 45 Å) such as methyl (CH3) and 

hydroxyl (OH) and/or more acidic (OH) do not perform well in lowering AD by day 3 and 

limit future astrocyte migration 

6) Lipophobic (logP -1 to -2.3) surfaces will provide higher neuron to astrocyte ratio. There 

are indications hydrophilic (WCA 60° to 70°) surfaces with reduced terminal group 

acidity (pKa 8-11) may help increasing neuron proportion 

7) Neural stem cells on carboxylic acid terminated surfaces differentiate to the same 

degree as on laminin surfaces 

8) Lipophobic (logP -1 to -2.3) chemistries increases neuron axon length likely due to 

reduced cell migration 

9) In lipophobic (logP -0.6 to -2) environments, decreased astrocyte fibre length is 

observed 

10) Chemistries with molecular mass 62-90 da and molecular volume 76-105 Å (in their 

untethered state) will lower astrocyte fibre length (AFL) 
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4 DESCRIBING RELATIONSHIPS COMPUTATIONALLY 

4.1 INTRODUCTION 

The relationship between the surface-cell has not been described yet. This is because the 

relationship is multi-dimensional (multiple inputs) and traditional experimental 

methodologies are limited to a few inputs (311,312). The main aim of this chapter is to 

describe the relationship between the surface-cell in the form of computational model(s) 

where the chemical inputs are in multiple dimensions. After testing these model(s) for their 

predictive “goodness”, these will be used to screen future chemical designs without 

performing time consuming and costly cell culture experiments. In this way, animal use is 

reduced (3R’s). 

 

The idea is to feed chemical designs in numerical form into predictive models and these 

will provide cell performance estimates. The chemical parameters we chose to investigate 

are partition coefficient (lipophilicity), acid dissociation constant (acidity), molecular 

volume and mass. The values of these parameters define chemical designs. Surface 

topography and stiffness are two more families of surface properties investigated in the 

past (90) but they fall out of scope for this project. The cell performance measures are 

morphological changes in cells such as cell cluster and cell spreading, cell type proportion, 

and cell projection elongation. 

 

This chapter is about computationally modelling the relationship between the chemical 

parameters and cell performance. The models are found using machine learning 

techniques or more precisely supervised learning where the data where labelled with a 

header (column name). Computational models are frequently used to support the 

understanding of complex systems and optimise industrial processes in engineering and 
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physical sciences (329). A computational model is a set of equations that describe how a 

system changes as a function of some variable, such as time. They involve variables 

representing things that change over time and parameters where their values are static or 

change on longer time scales (330).  

 

Machine learning is the automation of building analytical models using algorithms that 

iteratively learn from previous data without being explicitly programmed (331). Machine 

learning evolved from the study of computational learning theory and pattern recognition. 

The idea here is to construct algorithms that can learn from data and make predictions 

without following static instructions. They make data-driven decisions or predictions by 

building a model from sample inputs. Supervised learning is the machine-learning task of 

inferring a function from training data that we know what they are and label them with a 

header (column name). The training data consist of the training examples and each 

example is a pair of an input object and an output value. A supervised learning algorithm 

analyses the training data and produces an inferred function used to map new examples. 

The ideal situation is where the learnt algorithm determined the class labels for new 

examples and this is referred to as generalisation from training data. 

 

The objectives for this chapter include: 

 To discover chemical designs to modify cell culture surfaces. Inspiration comes from 

the literature, laboratory experiments and previous work (41) 

 To perform additional cell culture experiments for more data to establish a stronger 

analytical foundation 

 To computationally model cell performance as a function of cell environment 

properties using machine learning techniques 
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 To perform sensitivity analysis for models to understand the importance each of 

their inputs play in the estimation of the outputs. 

Figure 4.1 below shows the above in a logical order. Steps 5 and 6 belong in the next 

experimental chapter. The criteria for stopping the above cycle is the discovery of synthetic 

environments whose cell performance is better than our current best synthetic 

environment, amine (NH2). Better cell performance means “closer” to that of biological 

environments such as our gold standard, laminin. 

 

Figure 4.1: Workflow to discover better synthetic environments for nervous tissue engineering using data science 
methods and techniques. The process starts from performing experiments. 

 

 Model performance and cross-validation 

Model performance is a model’s predictive ability expressed through an error measure of 

how “wrong” the predictions are compared to real values. A good to way to obtain this 

error measure is by using a trained model on a test dataset made with data that have not 

been used to train the model. Training data will be “sacrificed” and this could be a problem 

if there are not enough data to work with. On the other hand, more testing data is better 

for robustness on predictive performance on future examples. The model error on the 

1. Perform new 
experiments

2. Collect data

3. Train models

4. Model 
sensitivity

5. Test models 
with new data

6. Screen new 
chemistries
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training set (re-substitution error) is calculated by resubstituting training instances into a 

classifier that was constructed from them. It is not a reliable predictor of the true error on 

new data, but it is useful to know. 

 

A better way to assess model performance is through cross-validation (CV). CV maximises 

data used for training and testing by splitting data in 𝑘-parts then fit 𝑘-models. In each 

iteration, training data is made up of of the 𝑘 − 1 parts and the remaining part is used for 

testing. The predictive performance here is the average for all 𝑘-iterations. CV performance 

is still better than the training model performance. 

 

Modelling with cross-validation usually means training data are shuffled for good reasons. 

This is undesirable for our purposes as the data representing each environment is in 9 parts 

(instances). This was performed to retain as much cell output variation as possible without 

data sparsity. This maximises the amount of data used for machine learning but also means 

the data need to stay in their respective group otherwise we risk addition data leak in 

model validation during training. Each cross-validation part is forced to be cell data from 1 

environment but the order of these was randomised in each cross-validation iteration. 

 

Prediction error is the sum from three terms, irreducible error, bias, and variance. 

Irreducible error results from noise from the problem itself and it owes its name to the fact 

there is nothing to be done about it. Bias is the error from violated assumptions made by 

the learning algorithm. High bias means the algorithm will miss the relevant relations 

between features and target (underfitting) e.g. shallow decision trees, low-order/linear 

regression polynomials. The other source of error is variance, and this is the sensitivity to 

small fluctuations in the training set. Here, high variance means trained models will be fit 

on random noise of the training data rather than the intended outputs (overfitting) e.g. 
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deep decision trees, high-order regression polynomials. The goal is to capture the 

regularities in the training data (no underfitting) and simultaneously generalise well in 

unseen data (no overfitting). The reason there is a trade-off is because underfitting is the 

inverse of overfitting and the balance between the two is usually preferred. In cross-

validation, the average error is a measure of bias and the standard deviation of errors is 

the variance. 

 

In practice, there is no analytical way to find the “sweet-spot” of the bias-variance trade-

off. Instead, we must use a suitable measure of prediction error, explore differing levels of 

model complexity (features), and then choose the complexity level that minimises the 

overall error. The key here lies in the selection of an accurate error measure as often grossly 

inaccurate measures are used and these can be deceptive. For this project, the mean 

absolute error (MAE) is selected as the measure of prediction error. This is the mean of the 

absolute difference between real values and estimates. On its own, the MEA cannot tell us 

if the error is acceptable or not for our cause. Here, we will inject domain knowledge and 

define the boundary of “acceptable” error as 1 standard deviation. This new performance 

metric is coined as the model performance ratio (MPR) and is the absolute difference 

between predictions and real values standardised by the average standard deviation. A 

ratio of 1 means the prediction is outside the natural bounds of cell performance and 

classed as unacceptable. We prefer a ratio closer to 0 meaning the “closer” the prediction 

is to real values. 

 

 Linear regression 

Below is the classic approach in modelling for regression problems, linear regression: 
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𝑦ො = 𝛽መ଴ + 𝛽መ௜𝑥௜ + ⋯ + 𝛽መ௣𝑥௣ 

Equation 4.1: Cell cluster area modelling with linear regression. 𝑦ො is the estimate response, 𝛽መ௜ … 𝛽መ௣ are estimated using 
least squares minimisation and 𝑥௜ … 𝑥௣ are the predictors (input variables). 

 

Since we know the values of the input variables, the coefficients 𝛽መ௜ … 𝛽መ௣  are to be 

estimated by choosing values to these where the model minimises the ∑ 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠ଶ (least 

squares method). The coefficients determine the slope of the model fit and tell us the 

“importance” of each predictor. The closer to zero the coefficient is the less important the 

predictor. In other words, the predictor cannot explain the response in linear regression. 

 

The goal is to find a function of 𝑦 with respect to x using a smaller sample of data where 

this is as similar, or ideally, identical to the function fit on the population data. Obtaining 

the population data is almost impossible but there is a way to measure the model fit 

“variation”. The standard error of the coefficients tells us how much sampling variation 

there is if we were to re-sample and re-estimate the coefficients. It is calculated with: 

𝑠𝑒ෞఉ෡ = ට ఙෝమ∑ (௫೔ି௫̅)మ೔  where:  𝜎ොଶ = ଵ௡ିଶ ∑ 𝜀௜̂ଶ௜  

Equation 4.2: Coefficient standard error and standard deviation. 
 

We can use a t-test to evaluate a sample regression coefficient in relation to its standard 

error (332). The t-test here is 𝑡 = ௕೤ೣିఉ೤ೣఙෝౘ , where 𝛽௬௫ is equal to 0. The t-test is the ratio of 

the sample regression coefficient to its standard error. This ratio shows the probability of 

the regression coefficient not being 0 if the 𝑝 value is equal to or smaller than 0.05. This 

means there is 5% or lower chance accepting a false positive. This test can also shows signs 

of collinear predictors. Linear regression assumes the opposite, that there is little to no 

correlation between your input variables (multi/collinearity). Another method to detect 

collinearity is a model producing very high 𝑅ଶ but most of the coefficients are insignificant 
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according to the 𝑝 values of the t-test. This test is not definitive but it is an indication of 

collinearity. 

 

 Collinearity 

The simplest method to begin with regression problems is linear regression. To use this 

method, certain assumptions are made. Classical Linear Regression Model assumes there 

is no exact collinearity between explanatory (predictor/input) variables. If the predictor 

variables are perfectly correlated then regression coefficients become indeterminate 

making model interpretation difficult. This is because changes to the data will produce 

wildly different coefficients. 

 

Perfect or near-perfect collinearity will return a singular or near-singular matrix with a 

determinant of zero. This means the rows or columns of this matrix are proportionally 

interrelated. In other words, one or more of its rows/columns is expressible as a linear 

combination of all or some of rows/columns with the combination being without a constant 

term. This can cause statistical analysis issues such as: 

 Coefficient estimates become less certain and more variable as training data 

changes 

 Prediction intervals are much wider therefore the hypothesis the true coefficient is 

zero cannot be rejected 

 Prediction estimates are not affected and the 𝑅ଶ can still be very high 

 

 Variance inflation factor 

Variance inflation factor (VIF) quantifies the severity of multicollinearity in an ordinary least 

squares regression analysis. It provides an index that measures how much the variance 
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(standard deviation2 of the estimate) of an estimated regression coefficient is increased 

because of collinearity. The magnitude of multicollinearity can be analysed by considering 

the size of the 𝑉𝐼𝐹ఉ෡೔ . It is calculated by taking the ratio of the variance of all model’s 

coefficients divide by the variance of a single coefficient if it were fit alone. VIF is the 

reciprocal of tolerance 1/𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 where tolerance is (1 − 𝑅௜ଶ) and this represents the 

proportion of variance in the 𝑖 th independent variable that is not related to other 

independent variables in the model. 

 

The √𝑉𝐼𝐹మ  indicates how much larger the standard error is, compared with what it would 

be if that variable were uncorrelated with the other predictor variables in the model. For 

example, if the variance inflation factor of a predictor variable were 10.54 (√10.54 =  3.2) 

this means that the standard error for the coefficient of that predictor variable is 3.2 times 

as large as it would be if that predictor variable were uncorrelated with the other predictor 

variables. The rule of thumb for the maximum values of VIF range from 4 to 40 but these 

are set arbitrarily and no best threshold exists (333). 

 

 Chapter related literature 

Relevant applications of data mining and machine learning appears in the literature from 

cell migration and adhesion, gene expression profiling, antifungal solution discovery and 

cancer diagnostics. 

 

An example of machine learning (ML) work is the computational model of cell migration in 

three-dimensional matrices (173). The authors used a force-based dynamics approach. The 

model determines overall locomotion velocity vector for speed and direction for individual 

cells based on internally generated forces transmitted into external traction forces. The 
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model also considers timescales where multiple attachment and detachment events are 

integrated. Model predictions agreed well with experimental findings for both 2D substrata 

and 3D natural tissues and synthetic gels. The logP appears in the literature in investigations 

for its effect on cell adhesion (292), attachment and spreading (77). In cell adhesion studies, 

the logP serves as one of the molecular descriptors (input) modelling embryoid body cell 

adhesion. It is one of the most relevant inputs to the author’s predictive model as it can 

explain the outcome well (292). 

 

In another work (334), different learning algorithms were evaluated for classification and 

prediction of antifungal peptides for use in medicine and agriculture. Antifungal peptides 

are safer and more effective drug candidates against fungal threats. Using computational 

techniques, the authors overcame costly and time-consuming screening new peptides. 

Support vector machines and bagged decision tree (C4.5) had the higher performance 

among other classifiers. Model performance measures were above 80% and for the authors 

this was acceptable for deployment to screen new antifungal peptides. The authors did not 

specify which model performance metrics they have used explicitly but they did mention 

accuracy in model validation. 

 

Remaining articles mentioned below used a machine learning technique called artificial 

neural networks (ANNs). These are computer-based algorithms which are modelled on the 

structure and behaviour of neurons in the human brain and can be taught to recognise and 

categorise complex patterns (335). Pattern recognition is achieved by adjusting the 

parameters of ANNs in the process of minimising prediction error through a process 

resembling learning from experience. ANNs can be adapted to use any type of input data 

and the number of output categories can be specified. 
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Artificial neural networks (ANNs) among others methods, were used to optimise physical 

conditions of bacterial cultures (336). The fermentation conditions serving as the inputs to 

the model are multiple and these are pH, temperature, and inoculum volume (biological 

material that triggers immune response). The output is enzyme production (protease) as 

an indicator of fermentation. Fermentation produces organic acids, gases, or alcohol 

serving as bacterial energy. ANN with radial basis function network was chosen as this has 

a feed-forwards structure excelling in function optimisation for bioprocesses (336). Among 

other methods used, ANNs had better model fit and accuracy as it can represent 

nonlinearities better for this optimisation problem. The authors found a redundant input 

in the process. Inoculum volume did not explain protease production well, despite its 

strong presence in the literature and other relevant work. 

 

Cancer classification often presents diagnostic dilemmas in clinical practice. It is believed 

that the answer lies in cancer gene expression. Standard practice is limited to the detection 

of single gene expression (immunohistochemistry) and thousands of genes are in play, 

typically. The authors collected 6567 gene data from 91 samples. Molecular techniques 

able to handle more genes such as RT-PCR sometimes provide non-definitive diagnosis. 

Artificial neural networks (ANNs) were presented with multi-dimensional gene expression 

data from round blue-cell tumours (337). This tumour data is classed in four distinct 

diagnostic categories serving as the model’s output. The ANNs correctly classified all 

samples and identified genes that are most relevant to the classification. The model has 

been tested with data not used in the training procedure and all cases were correctly 

classified. Correct diagnosis of cancers literally means saving lives and this work did not 

stop there; potential genes as targets for therapy were also discovered. 
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Below are the experimental results for this chapter. The next section is the chemical 

characterisation for the cell culture environments used in experiments. After that, follow 

cell images and graphs of morphological cell performance.  The section after that is about 

the capturing the relationship between surface-cell in the form of computational models. 

Sensitivity analysis of the chemical inputs for the cell models is investigated followed by a 

discussion and conclusions for this chapter. 

 

4.2 RESULTS 
 Surface characterisation 

Surface characterisation is a collection of techniques used to verify the presenting 

chemistry of modified surfaces. Some instruments and techniques are better suited for 

certain bonds and atoms defining the chemistries of these surfaces therefore 2-3 methods 

are necessary. 

 

A list of self-assembly molecules is shown in Table 8.5. Methyl (CH3), carboxyl (COOH), 

amine (NH2), hydroxyl (OH), phenyl (Ph), thiol (SH) have been chosen as a starting point as 

these surface chemistries appeared in different literature (82,83,264,323,338–340). Adding 

to this list aminohexyl (l-diNH2), butylamine (butylNH2), propamine (propylNH2), 

3-methoxy, and carbomethoxy (CBM). These have amine and oxy groups lower down the 

backbone of self-assembly molecules and they were used to investigate the cell sensing 

depth (341,342). The final synthetic surface chemistry terminates with a nitrile group and 

this is to investigate the effect of terminal group bonding on cell behaviour. For a 

benchmark environment, a biological control is necessary and protein (laminin) coated 

environments (P/LAM) have been chosen (41). 
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 Contact angle 

Contact angle measurements (CAMs) reflect chemical and topographical characteristics of 

a material such as surface roughness, polarity, interfacial tension, and surface free energy. 

CAMs give an indication of biological response to materials such as proteins of interest 

adsorbing advantageously to direct cell adhesion and signalling as desired. 

 

Using sessile drop technique of a solvent such as water (polar) or decanol (lipid) is released 

on a surface and the interfacial contact at the edges of the solvent is investigated. Static 

contact angle measurements were performed. In this method, a drop of solvent is released, 

and contact angle measurements are taken immediately after the drop stabilised on the 

surface. A high hydrophilic surface gives a CAM between 0 and 90° (e.g. hydroxyl surface, 

OH) and an angle between 90 and 180 gives low hydrophilicity/high hydrophobicity (e.g. 

methyl surface, CH3). Solvents that form a ball on the surface indicate a high contact angle. 

Surfaces can be hydrophilic and lipophilic at the same time (e.g. teflon). Hydrophilic 

surfaces attract proteins like albumin and hydrophobic materials attract proteins such as 

c3 fibronectin and vitronectin. Below are graphs and a table of water and decanol (lipid) 

contact angles for each environment: 
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Figure 4.2: Contact angle measurements for environments used in this experimental chapter. The inner contact angle of 

a solvent (water/octanol) when it contacts a solid surface can be used as wettability/lipophilicity measures. The error 
bars indicate 1 standard deviation. No significant differences between samples were found (Kruskal-Wallis test with 

Conover-Iman pairwise comparison and Bonferroni correction). 
 

The contact angles were captured near-zero contact time of solvent and surface with a 

camera at 160 frames per second. For both solvent types, this resulted in higher contact 

angles compared to the ones reported in the literature. Methyl (CH3) considered 

hydrophobic has lower contact angles compared to amine (NH2). Since COOH is synthesised 

on top of amine, the lower contact angles compared to amine are expected but this also 

disagrees with the literature (343). Hydroxyl provides similar contact angles with both 

solvents. Although this chemistry is hydrophilic, once soaked with water the contact angle 

rises (344). The diamine (diNH2) with an additional amine (replacing a carbon) has a lower 

water contact angle (WCA) compared to amine but similar decanol contact angle (DCA). 

This is expected as diamine has two polar atoms. Long diamine (l-diNH2) shows a similar 

pattern with higher WCA than diamine due to additional carbon atoms in the backbone 

hence the name long diamine. The cyano surface has a similar WCA with diamine but its 

DCA is higher compared to other nitrogen containing chemistries. This is because the 

solvent retention behaviour is altered due to more lipophilic interactions and less potential 

for hydrogen bonding compared to amines (345). Poly-d-lysine (PDL) and laminin surfaces 

are moderately hydrophilic and moderately lipophilic agreeing with the finding of the 

previous experimental chapter. 

Table 8.5 in appendices shows the data used in the graphs above in addition to literature 

reported water contact angles. Butylamine’s WCA sits between aminohexyl and amine but 

it is higher than cyano’s. On the other hand, butylamine’s DCA is like cyano’s. This suggests 

the terminal group has an effect on wettability also found before (95). This is evident as 

well with propamine, where its amine group is closer the terminal group giving the water 
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contact angles like aminohexyl’s. Carbomethoxy has similar WCA with 3-methoxy but is the 

most lipophobic (high DCA) from all other chemicals used. 

 

 Surface enhanced Raman Spectroscopy (SERS) 

Raman spectroscopy can be used to identify the chemical bonds of a sample surface by 

exciting it with light. Light deflects when it interacts with matter in the same way that 

particles scatter through collisions with other particles. Like infrared spectroscopy, this a 

vibrational technique to collect unique chemical fingerprints (346). Raman spectroscopy 

works with scattered light by the vibrating molecules. Raman has the advantage on low-

frequency modes and water can be used as a solvent. 

 

Surface Enhanced Raman Spectroscopy (SERS) technique is used for bond identification on 

samples where the signal would otherwise be weak. By adding metal particles (e.g. gold) 

and using the Raman instrument on particle pockets adsorbed on the surface the Raman 

signal increases in intensity (347). This technique is termed SERS and it works by combining 

electromagnetic, charge-transfer, and resonance signal enhancement mechanisms (348). 

The existence of this charge-transfer state increases the probability of a Raman transition 

by providing a pathway for resonant excitation. This mechanism is site-specific and analyte-

dependent (349). Below are spectra of modified silicon wafers. Only the regions of interest 

are shown as the silicon peak is so high no other bond excitations are visible. 
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Figure 4.3: Surface enhanced Raman spectroscopy used for chemical characterisation of functionalised surfaces. The 

peaks indicate molecular bonding excitation as shown in the spectra. 
 

The frequencies of vibration depend on the masses of atoms involved and the strength of 

the bonds between them. Light atoms and strong bonds have higher Raman shifts (𝑥 axis), 

and heavy and weak bonds have low Raman shifts. From the results above, methyl (CH3) 

has a peak at high frequency (between 2800-3000 cm-1) indicating a carbon-hydrogen 

vibration. For carboxyl surfaces, the C-O-C vibration around 80 and 950 cm-1 Raman shift is 

a good indicator as reported in this study (350). Thiol (SH) has a weak signal but the 

expected peaks are present and indicated in the graph. Cayno surfaces showed a peak 

around 2330 cm-1 for the presence of nitrogen (351). Below are SERS spectra of the 

remaining surfaces: 
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Figure 4.4: Surface enhanced Raman spectroscopy used for chemical characterisation of functionalised surfaces. The 

peaks indicate molecular bonding excitation as shown in the spectra. 
 

From the above results, amines (NH2, diNH2, and long diNH2) have two characteristic peaks 

around 2330 and 2620 cm-1 Raman shift that is also found in another study (352) 

investigating single amine and diamines self-assembled monolayers. The hydroxyl surface 
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showed a characteristic O-H vibration at 1600 cm-1 and 3-methoxy showed asymmetric C-

O-C vibration with a peak around 1080 cm-1. 
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Figure 4.5: Surface enhanced Raman spectroscopy used for chemical characterisation of functionalised surfaces. The 
peaks indicate molecular bonding excitation marked in the spectra. 
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From the results above, carbomethoxy has two Raman emissions between 1763 and 1776 

cm-1 indicating a carbon-oxygen double bond vibration. Propamine (NH2-prop) surfaces, 

have nitrogen bond excitation around 2330 cm-1 and around 2620 cm-1 Raman shift both 

found in another study (352) as well. On the other hand, butylamine (butylNH2) has 

nitrogen bond vibration around 2330 cm-1 Raman shift at a lower intensity as well. An 

explanation for this is the amine group being closer to the labile group (silane head) 

requiring more energy to detect a signal at 2620 cm-1. 

 

 X-ray Photoelectron Spectroscopy 

XPS is a surface chemistry characterisation technique allowing the investigation of 

elemental composition of solid samples. XPS does not require much sample preparation 

but it is performed in vacuum conditions to avoid atmospheric noise issues. The principle 

of XPS is to irradiate a sample with narrow wavelength band (monochromatic, non-

destructive) x-ray beam. When the atom or molecule absorbs x-ray photon, electrons eject. 

The kinetic energy of electrons depends on the photon energy and the binding energy of 

the electron (i.e. the energy required to remove the electron from the surface). By 

measuring the kinetic energy of the emitted electrons, it is possible to determine which 

elements are near a material’s surface, their chemical states and the binding energy of the 

electron (in electronvolts, eV) (353). Below are XPS spectra of environments used in cell 

culture for this chapter: 
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Figure 4.6: XPS spectra used for chemical characterisation of functionalised surfaces. Spectra in this table are common 

with previous work. Acquired from (41) . 𝑦 axis is electron count per second and 𝑥 axis is binding energy in electronvolts 
(eV). Service provided by the National EPSRC XPS Users’ Service (NEXUS) at Newcastle University. 

 

From the image above, peaks indicating the presence of elements from modified surfaces 

are shown. The presence of carbon, nitrogen, and oxygen is sought as these are contained 

in the self-assembly molecules selected for modifying cell culture surfaces. Methyl has a 

strong carbon signal, and so does carboxyl (COOH) surfaces with the longest carbon (alkyl) 

backbone. COOH has the smoothest nitrogen and oxygen spectra. Biological control 

surfaces with poly-d-lysine and laminin have strong peaks for carbon, nitrogen, and oxygen 

all being common in proteins. Below is the next batch of XPS spectra of environments: 
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Figure 4.7: XPS spectra of nitrogen containing surface chemistries. In the overlay, in blue is long diamine, black is 

diamine, green in amine, and red is cyano. 𝑦 axis is electron count per second and 𝑥 axis is binding energy in 
electronvolts (eV). Service provided by the National EPSRC XPS Users’ Service (NEXUS) at Newcastle University. 

 

From the graphs above, almost all nitrogen containing surfaces have smooth spectra. The 

exception is cyano (R-C≡N) being noisy. It is suspected this is due products from x-ray 
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irradiation or impurities. From the overlay, the intensities for carbon, nitrogen, and oxygen 

are as expected for all the nitrogen-containing chemicals. There is a trend with carbon 

intensity increasing with carbon content in functionalities (𝑙𝑜𝑛𝑔 𝑑𝑖𝑎𝑚𝑖𝑛𝑒 > 𝑑𝑖𝑎𝑚𝑖𝑛𝑒 >𝑐𝑦𝑎𝑛𝑜 > 𝑎𝑚𝑖𝑛𝑒). A similar trend is observed with nitrogen intensity increasing as amine 

content increases(𝑙𝑜𝑛𝑔 𝑑𝑖𝑎𝑚𝑖𝑛𝑒 > 𝑑𝑖𝑎𝑚𝑖𝑛𝑒 > 𝑎𝑚𝑖𝑛𝑒 > 𝑐𝑦𝑎𝑛𝑜) . On the other hand, 

oxygen intensity has an inverse relationship compared to nitrogen. As nitrogen content 

increases, oxygen intensity decreases also found in previous results (264) (𝑐𝑦𝑎𝑛𝑜 >𝑎𝑚𝑖𝑛𝑒 > 𝑑𝑖𝑎𝑚𝑖𝑛𝑒 > 𝑙𝑜𝑛𝑔 − 𝑑𝑖𝑎𝑚𝑖𝑛𝑒). This could be from bonding (x-ray irradiation), 

glass, or contamination. Below is the last batch of XPS spectra for remaining environments 

for this chapter: 
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Figure 4.8: XPS spectra of oxygen containing surface chemistries. In the overlay, in green is 3-methoxy and in red is 

hydroxyl (OH). 𝑦 axis is electron count per second and 𝑥 axis is binding energy in electronvolts (eV). Service provided by 
the National EPSRC XPS Users’ Service (NEXUS) at Newcastle University. 
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On oxygen containing chemistries, strong carbon and oxygen peaks are present as 

expected. 3-methoxy has a longer carbon backbone hence the increased carbon intensity 

in the XPS spectra. The noisy nitrogen spectra showing for both hydroxyl and cyano surfaces 

is attributed to bonding (x-ray irradiation), glass, or contaminants. 
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Figure 4.9: : XPS spectra used for chemical characterisation of functionalised surfaces. In the overlay, in red is 

aminopropyl (NH2propryl), and in green is butylamino (butylNH2). 𝑦 axis is electron count per second and 𝑥 axis is 
binding energy in electronvolts (eV). Service provided by the National EPSRC XPS Users’ Service (NEXUS) at Newcastle 

University. 
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From the graphs above, the peaks of interest are the highest ones in the nitrogen column. 

Almost all graphs have smooth spectra except for butylamine with nitrogen. This can be 

explained by the amine’s position in this chemical being lower and closer to the labile group 

compared to propamine or it is due to x-ray irradiation or impurities. Carbomethoxy has 

stronger carbon (3500 eV) but weaker oxygen peaks (4000 eV)) compared to hydroxyl (OH, 

110 eV/7000 eV) and 3-methoxy (1800 eV/7000 eV) shown in the previous chapter (4). 

Although carbomethoxy has the same carbon atom count as 3-methoxy, its double carbon 

bond increases carbon intensity in the XPS spectra. 

 

From the overlay, the intensities for carbon, nitrogen, and oxygen are as expected for both 

the nitrogen-containing chemicals. As in the previous chapter, carbon intensity increasing 

with carbon content in functionalities  (𝑏𝑢𝑡𝑦𝑙𝑎𝑚𝑖𝑛𝑒 > 𝑎𝑚𝑖𝑛𝑒 − 𝑝𝑟𝑜𝑝) . The nitrogen 

intensity is suspected to be from position of the amine group in the molecule as both 

molecules have one amine each. This also explains why both have almost the same oxygen 

intensity. From previous work (264) and findings from the previous chapter (4), oxygen was 

found to have an inverse relationship with nitrogen meaning as nitrogen content increases, 

oxygen intensity decreases. 

 

Following from the above presented results the surface chemistry characterisation part 

concludes here with confidence that the presenting chemistry of each modified surface is 

what we think it is. 

 

 Cell images and measurements 

This section is about analysing cell images to quantify cell performance relating to their 

visual form and structure (morphologically). Cell performance metrics are necessary to 
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profile each synthetic environment for their effect on tissue formation. Modified surfaces 

were seeded with cell spheres (neurospheres) and on day 3 and 7 these were “fixed” in 

place. Fixation preserves cells and tissues and terminates any ongoing biochemical 

reactions using a cross-linker such as paraformaldehyde typically seen in museums with 

preserved animals in jars. Fixed cells were tagged with fluorescent markers that selectively 

bind to cell types of interest. By shining fluorescent light at different wavelengths, it is 

possible to visualise anatomically target cells. Images of fixed cells were acquired using an 

automated fluorescent microscope (Nikon Ti). 

 

Cell images were analysed with NIS Elements software bundled with the Nikon Ti 

microscope. Essentially, measurements such as length and area are in pixels, the building 

blocks of digital images. Pixels are converted to micrometres and the conversion depends 

on the camera view area and magnification lens used. This calibration allows for the 

conversion to real values. Below are images with example cell measurements of 

morphological performance: 
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Figure 4.10: Example performance measurements of cell morphology continued. Cell body spreading is evident as type I 
astrocyte area; cell projection length is shown as neurite and astrocyte fibre; and cell proportion is derived from counts 

of cell types shown as type I (protoplasmic) and II (fibrous) astrocyte, neuron, and unknown type cells. Blue dots 
indicate the presence of cells (DAPI), red material indicates astrocytes (GFAP), and green material indicates neurons (β 

III tubulin). Scale bar is 100 μm. 
 

 Cell cluster area and spreading 

Cell cluster area is related to cell sphere (neurosphere) spreading early after seeding them 

on modified surfaces, and with cell proliferation especially in the later time point (day 7). 

The effects at play here are both chemical and biological. When neural stem cells and 

progenitors are cultured as spheroids, a clear indicator of differentiation is cell adhesion 

and migration away from the sphere causing it to flatten with time. In the first stage of 

differentiation the neurospheres attach to a high affinity surface. Biological control 

surfaces with adsorbed laminin protein are “good” because they have plenty of adhesion 

ligands specific to neural cells. The neurospheres deconstruct and cells differentiate with 

astrocytes migrating away from the sphere providing the foundation layer for neurons to 

migrate away (270) and release neuron maintenance factors. Environment permitting, 
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neurons also make short range migrations away from the neurospheres independently in 

a process called “chain migration” (271). 

 

Fluorescence microscopy was used with tagging markers to identify astrocyte and neural 

cell populations. Neurospheres were observed to attach on all surfaces initially between 1-

2 hours. Neurospheres attachment on hydrophobic surfaces needed more time compared 

to less hydrophobic surfaces. Below are images of smallest and largest cell clusters from 

synthetic environments and below that follow biological control images for comparison. 

 

The cell cluster graphs below show the differences across different environments and at 

the base of each bar there is an area multiplier. This multiplier is the area increase from the 

theoretical baseline area calculated from the average neurosphere diameter ( ⌀ேௌ ) 

with:  𝐴𝑟𝑒𝑎ேௌ = (𝜋 ⌀ಿೄଶ )ଶ . The average neurosphere diameter was obtained from 27 

neurospheres (3 experiments) prior to seeding on surfaces. 

Here, maximising the cell cluster area/neurosphere spreading is desirable as this increases 

cell differentiation potential. Large cell clusters are observed in biological control 

environments therefore the larger the cluster observed in synthetic environments the 

better. Cell cluster area and graphs are shown below the images: 
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Lowest performance (day 3) Highest performance (day 7) 
Methyl (CH3) Diamine (diNH2) 

  
Biological environments (poly-d-lysine + laminin) 

Lowest performance (day 3) Highest performance (day 7) 

 
Figure 4.11: Cell cluster images from synthetic (top row) and biological (bottom row) environments. The cell clusters are 

encased with a white line. Left image shows the smallest cell clusters and the right one the largest. Blue dots indicate 
the presence of cells (DAPI), red material indicates astrocytes (GFAP), and green material indicates neurons (β III 

tubulin). Scale bar (bottom right) is 1 mm. 
 

Notice the scale bar size for comparison. The smaller the bar the larger the cluster. From 

synthetic environments, methyl (CH3) has the smallest cell clusters in the early time point 

(day 3) and diamine (diNH2) has the largest. The biological control has one of the the largest 

cell clusters in the early time point and by far the largest on the late time point (day 7). The 

graphs below show the median cell cluster area for all environments on both time points: 
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Figure 4.12: Cell cluster area graphs. The graphs show the median cell cluster area from environments used in experiments for both time points side by side with the average between. 𝑦 axis for the area is in 
mm2 and 𝑥 represents the environments sorted by their smallest to largest cell cluster values from day 7. Baseline area is converted from neurosphere diameter discovered prior to seeding at day 0 (D0). The 
multiplier at the base of each bar indicates how many times larger the area is compared to the baseline. The error bars on baseline bar indicates the standard deviation and for the rest indicates the median 

absolute deviation. The labels on top of the bars are the significant differences between groups colour coded by time point. 
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Referring to the graphs in Figure 4.12, methyl (CH3) has the smallest cell clusters on the 

early time point (day 3) with a 1.7-fold increase from baseline area (day 0). Environments 

containing nitrogen terminations (Cyano, l-diNH2, diNH2, NH2) perform better than 

biological control environments (P/LAM) with larger cell clusters. That is 4-fold and 3.5-fold 

increase in cell cluster area from baseline respectively. 

 

In the later time point (day 7), carboxyl (COOH) has the smallest cell clusters with 3.7-fold 

increase from baseline. Diamine (diNH2) has the largest with 18.6-fold increase from 

baseline. Similar findings were observed in previous work (264). From synthetic 

environments, cell clusters spread better on amine environments. Biological control 

environments are good with cluster spreading on day 3 but by day 7 the cluster area are 

almost 3 times larger from the best synthetic scorer, diamine. The lowest performers in 

this time point are acid terminations (COOH, OH, 3-methoxy) which is expected. Their 

average pKa values is 4.5 being the lowest among all synthetic environments. 

 

The bottom graph of Figure 4.12 shows all results side by side. From synthetic 

environments of amine and diamine, provide the largest cell clusters and carboxyl (COOH) 

the smallest. The biological control (P/LAM) was among the highest particularly on the later 

time point with 53-fold area increases from baseline. The best synthetic environment 

(Amine) scored 18-fold area increases from baseline. 

 

The remaining environments are propamine (NH2prop), carbomethoxy (CBM), and 

butylamine (butylNH2). From the graph above, propamine performs almost the same as 

amine on day 3 but the latter has larger cell cluster area on day 7. Butylamine’s 

performance is mediocre and is outperformed by carbomethoxy overall. 
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 Neuron density and proportion 

Successful cellular therapies to regenerate nervous tissue depend partly on the amount of 

neural cells delivered. Neuronal network allows function such as voluntary bodily 

movement. Controlling the density and proportion of transplant relevant cell populations 

is a key element in developing and scaling up cell-based therapy. Cell density tells us how 

close the cells are to each other and cell proportion tells us how many of distinct cell types 

are there compared to total cell counts. In cell therapy translation, controlling the 

proportion of cells and the purity of the transplant population is a critical quality attribute 

(281). An imbalance in the proportion and migration of cells can have adverse effects for 

transplant recipients such as uncontrolled movement (overproduction of serotonin in the 

transplant) (282). Another effect is teratomas from progenitors or stem cells if they are 

present in the transplant tissue (91). 

 

For the purposes of developing therapy grade tissue, a biological benchmark is required 

and we chose laminin environments (41,97) for this. Unfortunately, biologically derived 

materials for surface modification cannot be used in tissue engineering for clinical therapies 

due to concerns over pathogens. Cell culture environments with synthetic chemistry can 

be made pathogen-free and provide greater degree of control compared to alternatives 

such as special culture media, and hypoxia as an environmental culture condition among 

others. 

 

Cell performance measures were obtained from experiments with synthetic environments 

and neural cells. These measures include cell density (cells/mm2) and cell proportion (%) 

for each cell type stained namely neurons, astrocytes type I and II, and unknown/unstained 

cells. Cell densities are comparable between different environments by standardising the 

cell counts with their median cell cluster area. Cell proportion with cell density together 
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inform on cell differentiation and migration. These two parameters can be used 

interchangeably to declare the “best” environment depending on the intended use of the 

tissue. These cell parameters provide additional means to compare environments. For 

example, in the case of similar cell cluster area, the proportion of a cell type (for example 

neurons) will inform on the ideal environment. 

 

Cells around the cell cluster but not the dense centre were quantified in random sampling. 

This is because in the dense centre, cells cannot be distinguished or measured with 

fluorescence imaging. Cell scores were obtained in two time points. Day 3 neural density 

and proportion informs on neural differentiation. At this stage, high density means cells 

reside inside the neurosphere because the environment is not ideal for them. Low neural 

density is a strong indicator of differentiation if the cells survive.  

 

Day 7 time-point is a good indicator of environment remodelling and cell proliferation due 

to the duration of the cell culture (101). A situation where neuron density is similar, but the 

cell cluster area is larger means cells are dividing. In tissue slices and xenografts, higher cell 

density means smaller extracellular volume and amount suggesting cells use the resources 

in the vicinity quicker (272,273). Low cell density promotes internal cell signalling for 

changes within individual cells (autocrine signalling); high cell density promotes cell-cell 

communication inducing changes in nearby cells (paracrine signalling) (274). 

 

Neuron density is related to neuron proportion and cell cluster area. Cell density is derived 

by standardising total neuron count with median cell cluster area. This changes the 

relationship between the cell density and proportion visible as the horizontal distance 

between the green and red data points on the same 𝑥 axis. The ideal environment would 

minimise neuron density and maximise neuron proportion at the same time. Below are cell 
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images of synthetic and biological environments and after that, follow graphs of cell density 

and proportion for each cell type investigated: 

Lowest performance (day 3) Highest performance (day 7) 
Methyl (CH3) Diamine (diNH2) 

 
Biological environments (poly-d-lysine + laminin) 

Lowest performance (day 3) Highest performance (day 7) 

 
Figure 4.13: Neuron density and proportion images from synthetic (top row) and biological (bottom row) environments. 

Left columns shows the highest cell density and the right one the lowest. The more intense green the image is, the 
stronger the presence of neurons. Blue dots indicate the presence of cells (DAPI) and green material indicates neurons 

(β III tubulin). Scale bar (bottom right) is 1 mm. 
 

A visual method to interpret cell density is the green intensity and cell cluster area. The 

more intense that the green is and the larger the cell cluster area the better. For cell 

proportion alone, the greener the image the stronger the presence of neurons regardless 

of green intensity (cell density). From the top left image of Figure 4.13, methyl (CH3) has 

the highest neuron density in the early time point (day 3) and diamine has the lowest 

density in the later time point (day 7). The biological control on day 3 has low cell density 
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and high proportion of neurons. By day 7, laminin has both lower cell density and higher 

neuron proportion compared to the best synthetic scorer (diamine). 

 

On day 3 images, neuron density is high evident by the green intensity. There are more 

neurons on the biological control. On day 7 time point, the difference between the 

synthetic and biological environment is again the green intensity. In the latter, neurons are 

less dense compared to the former. Neuron proportion on the latter time point (day 7) 

should drop because this cell type does not proliferate after differentiation (G0 phase) 

(354,355). The decrease in cell proportion is from lower cell density or it could be from cell 

death. Below are graphs of neuron density and proportion: 
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Figure 4.14: Neuron density and proportion results obtained from cell culture experiments. 𝑦 axis is the cell density 

(cells/mm2) or cell proportion (%) and 𝑥 axis are the environment sorted by lower to higher day 7 cell density for 
comparison. The error bars indicate the median absolute deviation and the labels on top of the bars are the significant 

differences between groups colour coded by time point. 
 

Top row graphs (Figure 4.14) show the median neuron density on the left 𝑦 axis and the 

neuron proportion on the right 𝑦 axis. Day 3 graph (top left) shows amines (NH2, diNH2, l-

diNH2), cyano, thiol (SH) and hydroxyl (OH) to have similar and low neuron density but 

different neuron proportion. The best performance from synthetic environments for this 

time point is from diamine and amine environments with a similar finding from previous 

work (41). Interestingly, the biological control (P/LAM) environments showed slightly 

higher neuron density and second highest neuron proportion. The environment with 

highest neuron proportion is methyl (CH3) but it also comes with the highest neuron density 

meaning neurons migrated the least in these environments. 3-methoxy and carboxyl 

(COOH) are the lowest performers and this outcome is expected. These environments have 

the most acidic termination as show by their pKa value 4.5. 

 

At the later time point (day 7) graph (middle top), diamine (diNH2) is the best performer 

with lowest neuron density but also has the lowest neuron proportion. This could be from 

neuronal death, more differentiation to astrocytes and/or higher astrocyte proliferation. A 
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similar trait is observed with long diamine (l-diNH2) although with slightly higher neuron 

density. Amine (NH2) here is the best balance between lower neuron density and 

proportion after biological environments (P/LAM). Cyano environments perform better 

than expected for both time points. Although thiol (SH) environments were not great at 

day 3, they did well in day 7 and methyl environments did even better with similar neuron 

density and higher neuron proportion. Carboxyl (COOH) is the lowest performer with 

highest neuron density. This means neurons did not migrate as much compared to other 

environments. 

 

Carbomethoxy on the early time point (day 3) has among the second lowest performance 

from the remaining synthetic environments whereas propamine has the best on day 7. The 

biological control has higher neuron density on day 3 than the new synthetic environments 

but the lowest on day 7 due to the massive cell cluster area it promotes. The order of cell 

density performance for day 3 is  𝑝𝑟𝑜𝑝 − 𝑁𝐻2 < 𝐶𝐵𝑀 < 𝑏𝑢𝑡𝑦𝑙𝑁𝐻2 < 𝑃/𝐿𝐴𝑀  and for 

day 7 is 𝑃/𝐿𝐴𝑀 < 𝑁𝐻2𝑝𝑟𝑜𝑝 < 𝑏𝑢𝑡𝑦𝑙 − 𝑁𝐻2 < 𝐶𝐵𝑀 . For cell proportion, the best 

synthetic performer is once again propamine for day 3 and very similar to the biological 

control on day 7. The performance order for this cell parameter at day 3 is 𝑃/𝐿𝐴𝑀 >𝑁𝐻2𝑝𝑟𝑜𝑝 > 𝐶𝐵𝑀 > 𝑏𝑢𝑡𝑦𝑙𝑁𝐻2  and for day 7 is  𝑃/𝐿𝐴𝑀 > 𝑁𝐻2𝑝𝑟𝑜𝑝 > 𝑏𝑢𝑡𝑦𝑙𝑁𝐻2 >𝐶𝐵𝑀. 

 

 Astrocyte density and proportion 

There are two types of astrocytes, where type I has fibroblast-like morphology and type II 

has spindle-like morphology. They are robust glial cells that play several roles in the central 

nervous system. They manage chemical signals (neurotransmitters) exchanged by neurons, 
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strengthen neuron connections (synapses) (356) called long-term potentiation (275) 

among other functions. 

 

We are after lower astrocyte density for all cell types because higher cell density means 

smaller extracellular volume and amount suggesting cells use the resources in the vicinity 

quicker (272,273). In addition, low cell density promotes cell differentiation and internal 

cell signalling for changes within individual cells (autocrine signalling). On the other hand, 

high cell density promotes cell-cell communication inducing changes in nearby cells 

(paracrine signalling) which is undesirable (274). 

 

Cell proportion tells us about differentiation (day 3) and proliferation (day 7). Generally in 

vitro, astrocyte type I cells dominate cultures compared to neurons but the degree of 

dominance can inform on actin stress (357). We know this as after central nervous system 

trauma, proliferative astrocytes give rise to other astrocytes (358,359). Extrapolating from 

this, lower type I astrocyte proportion is desirable. On the other hand, astrocytes type II 

are rare so increasing their proportion is desirable. 

 

Day 3 astrocyte density and proportion leans more on informing on cell differentiation. At 

this stage, high density means cells reside inside the neurosphere because they are 

avoiding interacting with their environment. Low astrocyte density is a strong indicator of 

differentiation. Day 7 time-point is a good indicator of proliferation (101). In a situation 

where cell density is similar, but the cell cluster area is larger means astrocytes are dividing.  

 

Here, the ideal environment would minimise cell density and astrocyte proportion at the 

same time as these cells dominate the cell culture environment compared to other cell 

types. Below are astrocyte type I images, density and proportion graphs: 



Page 195 

Lowest performance (day 3) Highest performance (day 7) 
Methyl (CH3) Diamine (diNH2) 

 
Biological environments (poly-d-lysine + laminin) 

Lowest performance (day 3) Highest performance (day 7) 

 
Figure 4.15: Astrocyte density and proportion images from synthetic (top row) and biological (bottom row) 

environments. Left columns shows the highest cell density (cells/mm2) and the right one the lowest. The more intense 
red the image is, the stronger the presence of astrocytes. Blue dots indicate the presence of cells (DAPI) and red 

material indicates astrocytes (GFAP). Scale bar (bottom right) is 1 mm. 
 

A visual method to interpret cell density here is the red intensity and cell cluster area. The 

more intense the red is and the larger the cell cluster area the better. For cell proportion 

individually, the redder there is in the image the stronger the presence of astrocytes 

regardless of colour intensity (cell density). From the top left image of Figure 4.15, methyl 

(CH3) has the highest astrocyte density in the early time point (day 3) and diamine (diNH2) 

and amine (NH2) have the lowest density in the later time point (day 7). The biological 

control (P/LAM) on day 3 has low cell density and low proportion of astrocytes compared 
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to other environments. Carbomethoxy (CBM) though, has smaller cell cluster area making 

it the lowest performer from the remaining environments.  On the later time point (day 7), 

the biological control (P/LAM) is the best performer with the lowest cell density evident by 

the lower intensity of red. Below are graphs of type I astrocyte density and proportion for 

all environments: 

 

 
Figure 4.16: Type I astrocyte density and proportion results obtained from cell culture experiments. 𝑦 axis is the cell 

density (cells/mm2) or cell proportion (%) and 𝑥 axis are the environment sorted by lower to higher day 7 cell density 
for comparison. The error bars indicate the median absolute deviation and the labels on top of the bars are the 

significant differences between groups colour coded by time point. 
 

Type I astrocyte density is related with type I astrocyte proportion and cell cluster area. Cell 

density is derived by standardising total type I astrocyte count with median cell cluster area. 



Page 197 

This changes the relationship between the cell density and proportion visible as the 

horizontal distance between the green and red data points on the same 𝑥 axis. 

 

Top row graphs (Figure 4.16) show the median type I astrocyte density on the left 𝑦 axis 

and the cell proportion on the right 𝑦 axis. At the early time point (day 3) graph (top left) 

shows NH2, l-diNH2, and Cyano environments perform similarly and well with low cell 

density and cell proportion. Diamine has similar cell density, but the astrocyte proportion 

is higher meaning there is more proliferation/differentiation to astrocytes. Biological 

control (P/LAM) environments have low type I astrocyte density and proportion and serve 

as the benchmark here as well. The environments with highest cell density terminate with 

methyl (CH3) but they also come with the lowest type I astrocyte proportion meaning there 

are more cells of a different type such as neurons. 

 

At the later time point (day 7) graph (middle top), diamine and amine (diNH2, NH2) are the 

best performers with lowest type I astrocyte density but they come with the highest cell 

proportions. This means astrocytes type I dominate the cell clusters in these environments. 

Methyl (CH3) is the best performer offering low cell density and proportion and this is 

unexpected. Carboxyl (COOH) is the lowest performer with highest cell density. This means 

neurons did not migrate as much compared to other environments. 3-methoxy and 

hydroxyl (OH) did not do well either meaning acidic terminations are not great for 

astrocytes type I migration. 

 

The general trend observed is type I astrocyte density starting high on all environments 

shown on day 3 and drop by day 7. The type I astrocyte density on the left of the top row 

show propamine (NH2prop) as the best performer, among the new environments, having 

the lowest cell density for the early time point (day 3). The order of performance for this 
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cell performance metric is 𝑁𝐻2𝑝𝑟𝑜𝑝 < 𝑃/𝐿𝐴𝑀 < 𝑏𝑢𝑡𝑦𝑙𝑁𝐻2 < 𝐶𝐵𝑀. On the later time 

point (day 7) the best performer is the biological control and the order of performance 

is 𝑃/𝐿𝐴𝑀 < 𝑁𝐻2𝑝𝑟𝑜𝑝 < 𝐶𝐵𝑀 < 𝑏𝑢𝑡𝑦𝑙𝑁𝐻2. 

 

In the top right graph, the trend for type I astrocyte proportion is to start high on day 3 and 

go even higher by day 7. From the remaining environment, propamine has the lowest type 

I astrocyte proportion. The order of performance on day 3 is  𝑃/𝐿𝐴𝑀 < 𝑁𝐻2𝑝𝑟𝑜𝑝 <𝑏𝑢𝑡𝑦𝑙𝑁𝐻2 < 𝐶𝐵𝑀. For day 7, propamine has the lead again with lower cell proportion. 

The order of performance in this time point is 𝑃/𝐿𝐴𝑀 < 𝑁𝐻2𝑝𝑟𝑜𝑝 < 𝐶𝐵𝑀 < 𝑏𝑢𝑡𝑦𝑙𝑁𝐻2. 

 

Next, we will investigate the second type of astrocyte (II) found in cultures, astrocyte type 

II. Here, the ideal environment would minimise cell density and maximise astrocyte type II 

proportion at the same time as this cell type is very rare in in vitro cell culture. Below are 

type II astrocyte graphs: 
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Figure 4.17: Astrocyte type II density and proportion results obtained from cell culture experiments. 𝑦 axis is the cell 

density (cells/mm2) or cell proportion (%) and 𝑥 axis are the environment sorted by higher to lower day 7 cell 
proportion. The error bars indicate the median absolute deviation. 

 

Top row graphs (Figure 4.16) show the median type II astrocyte density on the left 𝑦 axis 

and the cell proportion on the right 𝑦 axis. Booth of these cell parameters at zero means 

there were no astrocytes type II present. At the early time point (day 3) graph (top left) 

shows carboxyl environments having the lowest cell density but also the lowest cell 

proportion. There are more type II astrocytes in amine (NH2) and long diamine (ll-diNH2) 

environments but these have slightly higher cell density. Interestingly, biological control 

(P/LAM) environments have the highest proportion of type II astrocyte but also the highest 

cell density. Except for biological environments, there are too few type II astrocytes for a 

meaningful value of cell density. 

 

At the later time point (day 7) graph (middle top), diamine (diNH2) environments perform 

the best from the group with lowest type II astrocyte density and highest cell proportion. 

Long diamine (ldiNH2) and methyl (CH3) are the next best from synthetic environments but 

this was unexpected from the latter. On the previous time point, methyl environments had 

very few type II astrocytes. Hydroxyl (OH) is the lowest performer after carboxyl (COOH) 
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lowest cell density. The clear winner for this time point is biological control environments 

having both lowest cell density and highest cell proportion of this rare cell type. 

 

The trend observed is this cell type can appear on day 3 or day 7 time-point and this 

explains the reason why some day 3 cell density bars are down to zero. The left graph above 

shows astrocyte type II density and as previously, the lower this value the better as 

resource consumption present in the environment is reduced (272,273). On day 3 time 

point, the best performer is propamine (NH2prop) from the remaining synthetic 

environments. ButylNH2 is the worst performer from all synthetic environments tested for 

cell density but it also has the highest proportion of this rare cell type in vitro. The 

performance order for cell density on day 3 is  𝑃/𝐿𝐴𝑀 < 𝑁𝐻2𝑝𝑟𝑜𝑝 < 𝑏𝑢𝑡𝑦𝑙𝑁𝐻2 . 

Carbomethoxy is excluded from the list as no type II astrocytes were found. For day 7, the 

performance order for cell density is 𝑃/𝐿𝐴𝑀 < 𝑏𝑢𝑡𝑦𝑙𝑁𝐻2 < 𝑁𝐻2𝑝𝑟𝑜𝑝 < 𝐶𝐵𝑀. 

 

 Density and proportion of unknown type cells 

“Unknown” cells did not test positive for cell type specific tags used in cell culture 

experiments. The cells tested positive for the generic cell nuclear marker (DAPI) meaning 

they are cells but their cell type is not known. In images, these cells appear their cell bodies 

but their nuclei is visible. They could be ependymal cells, oligodendrocytes, or neural stem 

cells/progenitors. The latter cell group is important to identify since these undifferentiated 

stem cells/progenitors can create tumours or cell proportion/migration imbalance in 

developed tissue (91,282). 

 

Neural stem cells/progenitors cannot be present in transplant tissue (91,282). In fact, this 

cell group is one of the reasons this work focused on synthetic instead of biological 
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environments. It is possible to add a specific stain for these cell types but there is a limit to 

the number of stains used concurrently in cell experiments. Going beyond the 

recommended number of stains (3) increases the chance of false positives. This means cells 

will test positive for more than one cell specific marker (e.g. both neurons and astrocytes). 

The alternative is to test cells with the additional marker in repeat experiments to provide 

definitive answers, but this is depends on resources such as time and funding. 

 

For the purposes of this project, neural stem cells/progenitors are the most important to 

identify from this group as no undifferentiated cells can enter a patient’s brain (91,282). It 

is possible to tag for nestin or sox2 both of which are neural stem cell/progenitor markers 

but there is a limit to the number of stains used concurrently in experiments. The more 

stains used the higher the chances of cross-reactivity meaning false positive binding of 

stains. In other words, cells will appear positive for cell types they do not belong to and the 

experiment would have been ruined. The alternative is to test cells with other stains in 

additional experiments to provide definitive answers, resources permitting. 

 

Since unknown type cells could be stem cells or progenitors, reducing the proportion of 

unknown type cells is desirable. Reducing cell density is also desirable as this increases the 

chances of cell differentiation to neurons or glia. Below are unknown type cell density and 

proportion graphs: 
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Figure 4.18: Density of unknown type cells and proportion results obtained from cell culture experiments. 𝑦 axis is the 

cell density (cells/mm2) or cell proportion (%) and 𝑥 axis are the environment sorted by lower to higher day 7 cell 
proportion. The error bars indicate the median absolute deviation. 

 

Top row graphs (Figure 4.18) show the median unknown type cell density on the left 𝑦 axis 

and the cell proportion on the right 𝑦 axis. For cell density and proportion both being at 

zero means unknown type cells are not present. At the early time point graph (top left) the 

best performer is diamine (diNH2) with no unknown type cells meaning cells differentiate 

in these environments. Very close in performance are hydroxyl (OH) and 3-methoxy 

environments. The lowest performer is methyl (CH3) with the highest unknown type cell 
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density and cell proportion. Interestingly, biological control (P/LAM) is the second lowest 

performer. 

 

At the later time point graph (middle top), carboxyl (COOH), long diamine (l-diNH2) and 

amine is the best performers with lowest cell density and cell proportion. A similar trend is 

observed in methyl (CH3) and biological control (P/LAM) environments with unknown type 

cells from the early time point were differentiating to neurons or astrocytes. Surprisingly, 

diamine at this time point has a small population of unknown type cells. This means the 

tiny proportion of stem cells/progenitors from the early time point have proliferated. 

Cyano environments perform the lowest at this time point with highest cell proportion 

compared to other environments. 

 

As shown in the bottom graphs, overall amine, 3-methoxy, hydroxyl (OH), thiol (SH) provide 

the lowest unknown type cell density and proportion. Diamine environments follow the 

same trend but there are also signs of stem cell/progenitor proliferation at the later time 

point. The lowest performers overall are cyano environments with the same trend in both 

time points and following are methyl (CH3) environments. For the latter environment, cells 

have differentiated on day 7 despite the higher cell density, compared to other 

environments. 

 

 Neurite length 

Neurons projections are electrically conductive and can extend to large sections of nerve 

tissue. The longer the neurites the better as this provides material to work with therefore 

increasing the potential of re-wiring damaged circuitry in the damaged tissue. 
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Neurites are the fine projections outwards from the neuron body. The longest of the 

neurites usually connecting on other neurons is called the axon. Neurite measurements 

were taken for 100 neurons per surface from clearly labelled cells (tuj1) with the entire 

neurite length visible (41). Below are cell images of smallest and largest neurites from 

synthetic and biological environments: 

 

Here, the ideal environment would maximise neurite length to connect to neighbouring 

cells and communicate across large sections of tissue for neural circuitry rewiring. Below 

are cell images of smallest and larger neurites from synthetic and biological environments 

and after these follow neurite length graphs for all environments: 
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Lowest performance (day 3) Highest performance (day 7) 
Hydroxyl (OH) Thiol (SH) 

  
Biological environments (poly-d-lysine + laminin) 

Lowest performance (day 3) Highest performance (day 7) 

 
Figure 4.19: Neurite length images from synthetic (top row) and biological (bottom row) environments. Left columns 

show the shortest neurites and the right one with the longest. Blue dots indicate the presence of cells (DAPI) and green 
material indicates neurons and neurites (β III tubulin). Scale bar (bottom right) is 100 μm. 

 

Neurites are the projections outwards from the neuron body (in green). The longest 

projection of a neuron usually connecting (synapses) to another cell body is the neuron 

axon. Neurite measurements were taken for 100 neurons per surface from clearly labelled 

cells (tuj1) with the entire neurite length visible (41). From the images above (Figure 4.19), 

the top row shows the shortest neurites recorded in methyl (CH3) environments in the early 

time point (day 3). In the top right image are the longest neurites present in thiol (SH) 

environments in the latter time point (day 7). The biological environments (P/LAM), scored 

similarly in both time points. 
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From the remaining environments, carbomethoxy (CBM) has the shortest neurons on day 

3 while propamine (NH2prop) has the longest on day 7 from all environments (3x laminin’s). 

The bottom row images show neurons and neurites from biological environments for 

comparison. For this kind of environment, the neurite length was similar. Below are graphs 

of neurite lengths from all environments used in the study: 

 
Figure 4.20: Neurite length graphs. These results show the median neurite length of environments used in experiments. 𝑦 axis is the length in μm and 𝑥 axis are the environments sorted by their longest to shortest processes from the later 

time point (day 7). The error bars indicate the median absolute deviation. 
 

Graphs in Figure 4.20 show the neurite length on the 𝑦 axis and the environments used in 

the study on the 𝑥 axis sorted by longest to shortest neurites of the later time point (day 

7). Day 3 graph (top left) shows amine (NH2) environments having the longest neurites. The 

lowest performer from the group are carboxyl (COOH) and hydroxyl (OH) environments 

both considered hydrophilic and acidic (pKa 4.5) compared to the rest. Biological (P/LAM) 

environments have medium neurite length. 

 

At the later time point (day 7) graph (middle top), thiol (SH) is the best performer with 

longest neurites. Neuron density and proportion for this environment is mediocre 

compared to other synthetic environments (Figure 4.14).  
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The graph above shows neurite length on the two time-points and their average. For the 

new environments, day 3 performance is in this order 𝑏𝑢𝑡𝑦𝑙𝑁𝐻2 > 𝑁𝐻2𝑝𝑟𝑜𝑝 > 𝐶𝐵𝑀 and 

day 7 performance is 𝑁𝐻2𝑝𝑟𝑜𝑝 > 𝑏𝑢𝑡𝑦𝑙𝑁𝐻2 > 𝐶𝐵𝑀. CBM sits between the two (new) 

amine environments on average. The only significant difference is between day 7 

propamine and the rest of the day 3 scores. 

 

 Type I astrocyte area 

Astrocyte spreading is related with fibre length as astrocytes extend protrusions to interact 

with other cells and with the surface for migration and attachment (93). Astrocytes interact 

with themselves, other glial cells and neurons (194). In biological environments with 

laminin, astrocytes spread more and migrate towards more permissive ECM regions (360). 

In another study (357), astrocyte shape was found to change from stellate to spread when 

serum was absent in the culture. The spread means forming stress fibres and focal 

adhesions (due to Rho activation) because astrocytes are establishing and stabilising 

altered cytoarchitecture. The authors believe the shape of astrocytes modulates their 

interaction with neurons in vivo. The ideal environment will minimise both cell parameters 

or at least match laminin’s performance. Laminin is set as threshold as enhanced astrocyte 

migration was observed (360). 

 

Measurements were taken for 100 astrocytes per surface for type I astrocyte area from 

clearly labelled cells (GFAP) with the entire cell body or fibre length visible. Fibres were 

measured regardless of them being “connected” to other cells. The body of type I 

astrocytes is the red material surrounding the blue blob being the cell nuclei. Astrocyte 
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fibres for both cell types are the fine processes extended outwards from the cell body. The 

smaller the cell area and fibre length the better. 

 

Since type I astrocyte area and astrocyte fibre length is related with forming stress fibres 

(357), the ideal environment will minimise type I astrocyte area or at least match laminin’s 

performance. Laminin is set as threshold as enhanced astrocyte migration was observed 

(360). Below are images of type I astrocyte spreading and astrocyte fibre length: 

 

Lower performance (day 3) Highest performance (day 7) 
Carboxyl (COOH) Methyl (CH3) 

 
Biological environments (poly-d-lysine + laminin) 

Lowest performance (day 3) Highest performance (day 7) 

 
Figure 4.21: Type I astrocyte area and fibre length images from synthetic (top row) and biological (bottom row) 

environments. Left columns shows the largest cell areas and longest fibres (μm2/μm) and the right one the 
smallest/shortest. Blue dots indicate the presence of cells (DAPI) and red material indicates astrocytes (GFAP). Scale bar 

(bottom right) is 100 μm. 
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Type I astrocyte area is the cell body in red, surrounding the cell nuclei (blue spots). 

Astrocyte fibres are the fine processes outwards from the astrocyte body. Measurements 

were taken for 100 astrocytes per surface from clearly labelled cells (GFAP) with the entire 

cell body or fibre length visible (41) regardless of them being “connected” to other cells. 

From the images above (Figure 4.21), the top row shows one of the lowest performer, 

carboxyl (COOH), with largest astrocyte area and longest fibres recorded in the early time 

point (day 3). In the top right image shows one of the highest performer, methyl (CH3) with 

the smallest astrocyte areas and shortest fibres recorded in the latter time point (day 7). 

The biological environments (P/LAM), scored similarly for astrocyte area in both time 

points but the fibre length was slightly longer in the later time point. 

 

From the new environments, butylamine is a low performer with the highest type I 

astrocyte area on day 3 and carbomethoxy is the high performer with the lowest cell area 

on day 7. The differences between the cell performance values across environments is 

insignificant and this clearer in the graphs below: 
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Figure 4.22: Type I astrocyte area graphs. These results show the median type I astrocyte area (top row) of 

environments used in experiments. 𝑦 axis for astrocyte area is the area in μm2 and for the 𝑥 axis, the environment 
sorted by smallest to largest cell areas from the later time point (day 7). The error bars indicate the median absolute 

deviation. 
 

Graphs in the top of Figure 4.22 show the type I astrocyte area on the 𝑦  axis and the 

environments used in the study on the 𝑥 axis sorted by smallest to largest areas from the 

later time point (day 7). Day 3 results shows methyl (CH3), cyano and long diamine (l-diNH2) 

to be the best performers with smallest type I astrocyte area. The lowest performer from 

the group are carboxyl (COOH) and hydroxyl (OH) environments both considered 

hydrophilic and acidic (pKa 4.5) compared to the rest. Biological (P/LAM) environments 

have mediocre type I astrocyte area. 

 

At the later time point (day 7), the best performers with the smallest type I astrocyte area 

are methyl (CH3) and carboxyl (COOH) environments. The latter environment changing 

from being one of lowest performer to be the second highest is unexpected, but this is 

because cell area increased in other environments. It is speculated, carboxyl’s molecular 

complexity has kept cell area to the same level as in the previous time point. Thiol (SH) is 

the lowest performer with largest astrocyte area compared to the rest. 
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Overall thiol and hydroxyl environments are the lowest performers with largest type I 

astrocyte area on average for both time points. Methyl (CH3) environments perform the 

best also found in correlation tests. There is a –correlation with logP and type I astrocyte 

area at day 3 ( 𝑟 = −0.77 ) meaning as lipophilicity increases, type I astrocyte area 

decreases. This cell parameter is similar throughout the time points and environments. In 

the later time point, some differences are observed. Longer duration in cell culture may 

show the environment’s effect clearer for this cell parameter. 

 

Astrocyte Fibre Length 

Bottom graph in Figure 4.22 show the astrocyte fibre length on the 𝑦  axis and the 

environments used in the study on the 𝑥 axis sorted by shortest to longest fibres from the 

later time point (day 7). Day 3 graph (top left) shows diamine (diNH2), thiol (SH) on par with 

biological environments (P/LAM) offering the best performance with shortest astrocyte 

fibres. The lowest performers are carboxyl (COOH) and amine (NH2) environments and for 

the latter, this was not expected. 

 

In the later time point (day 7) graph, the best performers with the shortest astrocyte fibres 

are diamine, methyl (CH3) and carboxyl (COOH) environments. The latter environment 

changing from being one of lowest performers to be the second highest is unexpected, but 

this follows the same trend as in type I astrocyte area. Thiol (SH) and amine are the lowest 

performers with longest astrocyte fibres compared to the rest. 

 

Overall diamine and methyl are the highest performers with shortest astrocyte fibres on 

average and amine environments perform the lowest. This was also found with a +correlation between logP and astrocyte fibre length at day 7 (𝑟 = 0.49) meaning as 

lipophilicity increases so does fibre length. 
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Instead of interpreting the above experimental results like in the previous chapter here, we 

will model cell performance using machine learning techniques. 

 

 Computational cell models 

Computationally models of cell responses allows to perform cell culture experiments in 

silico, thereby accelerating the process of finding better artificial environments for neural 

stem cell/progenitor cell culture in vitro. Better environments are expected to allow cells 

to behave similarly as they do in a biological environment. 

 

 Linear regression 

Linear regression is the first standard in modelling for regression problems. Table 4.1 shows 

the estimated coefficients for the cell cluster area model (day 7): 

 

Table 4.1: Cell cluster area model summary. This is linear regression where the coefficients were estimated using least-
squares method. 

 
Chemical variable Coefficient Standard error 𝑷 > |𝒕|

Partition coefficient - LogP1 -5104.38 1592.10 0.00 
LogP2 14289.27 4192.32 0.00 
LogP3 -8528.60 2385.15 0.00 
LogP4 -401.15 1583.15 0.80 
LogP5 -2950.84 1991.24 0.14 

Molecular mass 46.31 38.64 0.23 
Molecular volume -68.92 54.84 0.21 

pKa 184.59 68.25 0.01 
 

 

The  𝑅ଶ = 0.67  for the above model. The 𝑅ଶ is the proportion of the variance in the 

response variable, predictable from the independent variable(s). The closer this metric is 

to 1 the better the model fit. The mean absolute error (MAE) for this model is 1892 μm2. 
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Four variables were detected with large standard errors and failed significance tests. These 

are LogP4, LogP5, molecular mass, and molecular volume. This warrants investigation for 

collinearity. 

 

4.2.3.1.1 Collinearity 

Collinearity is where two or more predictors are correlated with each other. When 

predictors are highly correlated, model interpretability is difficult as subtle changes in the 

data will provide very different regression coefficients. The simplest method to detect 

multi-collinearity is to examine the correlation coefficient between each pair of the 

predictors. Pair-wise correlation here may be sufficient, but not a necessary condition for 

multi-collinearity. Below is a correlation matrix with the predictor variables: 
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Figure 4.23: Correlation heatmap of chemical input parameters. The darker the cell the stronger the correlation positive (+) or negative (−). The diagonal set of cells with perfect (+) correlation dividing the correlation matrix from the top 

left to the bottom right corner can be ignored. These are correlations with parameters themselves. Very weak 
correlations have a white background and their correlation value is not important to interpret in this example. 

 

As suspected, there is high collinearity between the logP group and molecular mass and 

volume. The correlations for some pairs of the predictors are strong. The next step is to 

assess the severity of multicollinearity. 

 

4.2.3.1.2 Variance inflation factor 

VIF quantifies the severity of multicollinearity in an ordinary least squares regression 

analysis. It provides an index that measures how much the variance (standard deviation2 

of the estimate) of an estimated regression coefficient is increased because of collinearity. 

Below is a table with the VIF results modelling cell cluster area using linear regression: 

 

LogP1
LogP2

LogP3
LogP4

LogP5

MolM
as

s

MolVol
pKa
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Table 4.2: Variance inflation factor for linear regression (least squares). The variance inflation factor value indicates the 
magnitude of multi-collinearity. VIF also indicates the inflation of coefficient standard error compared to if they were 

uncorrelated (rightmost column). 
 

Chemical variable VIF Coefficient SE increase
Partition coefficient - LogP1 7653333.27 2766.47 

LogP2 53065913.60 7284.64 
LogP3 17176625.96 4144.47 
LogP4 7567463.88 2750.90 
LogP5 11971667.26 3460.01 

Molecular mass 2294700969.33 47903.04 
Molecular volume 2441452450.40 49411.06 

pKa 16.25 4.03 
 

 

The table above indicates the two groups logP and molecular mass/volume as the cause of 

multi-collinearity, also found in correlation tests. This makes sense as the logP values are 

derived for the top 6 constituents of the same molecule and the molecular volume is 

related with molecular mass. 

 

When dealing with multicollinearity, the possible avenues here include: 

1. The obvious is additional data, if possible, to find which inputs are more important 

2. Leave the model as is despite the multicollinearity. Multicollinearity does not affect 

the efficiency of extrapolation to new data assuming the same multicollinearity 

pattern in the new data as in the training data will be present. 

3. Drop one or more collinear variables. Doing this may produce a model with 

significant coefficients but information may be lost. Removing such variable(s) adds 

bias in coefficient estimates of remaining predictors that were correlated with the 

dropped variable(s). 

4. Use other methods that are affected less from the effect of multicollinearity e.g. 

random forest 

 



Page 216 

Without removing any predictors 𝑅ଶ = 0.67, the mean absolute error (MAE) is 1892 μm2. 

“Solving” the multicollinearity problem by removing collinear variables leaves LogP3 and 

pKa only and this model returns an R2 of 0.41 and mean absolute error of 2711 μm2. This 

effectively worsens the model as it now makes 819 μm2 additional error on average and 

the model does not fit as well as before. Since we are interested in the predictions more 

than model interpretation, we chose combinations of the above solutions to 

multicollinearity. Solution 1, additional data, is not possible given time and cost limitations 

in performing cell culture experiments. 

 

 Linear-regression alternatives 

The following part of this section is about modelling cell responses using alternative 

methods. Choosing models in practice involves an iterative method to tune the hyper-

parameters of learning algorithms to lower a measure of prediction error. 

 

Selected feature selection methods and algorithms that learn single or ensemble models 

were investigated. The table below shows these with the number of user parameters 

(hyper-parameters) tested: 

 

Table 4.3: Machine learning algorithms and user-parameters discovered in this project. 
 

Type Learning algorithms and user-parameters explored 
Function Support Vector Regression (243,245) 3 

Trees One-level decision tree (257,258) N/A 
Decision tree (235) 2 

Rules Model tree (249–251) 2 
Instance based k-nearest neighbours (240) 2 

Ensemble Ensemble of decision trees (bagging) (235) 3 
  

Support Vector Regression Kernels 
Pearson Universal kernel (247) 2 
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Meta-methods 
Locally Weighted learning (LWL) (236,237) 2 

Gradient boosting with select base classifier (254) 2 
Randomised ensemble with select base classifier (248) 1 

  
Feature evaluation and selection 

Correlation feature subset evaluation (232) 1 
Greedy search (234) 3 

 
 

The complete list of algorithms and user-parameter value ranges tested are shown in 8.3 

in appendices. 

 

 Cross-validation model performance 

Sets of learning algorithms, weighting schemes, ensemble methods and feature selection 

were assessed. The sets with the best model performance (defined as the lowest mean 

absolute error (MAE)) were selected from 10-fold cross-validation. Below is a table with 

the final models, their configurations, and below that follows a table with the prediction 

error: 

 

Table 4.4: Machine-learning algorithms used in this work. For feature selection there must be an evaluator and a 
searcher typically correlation subset evaluator and greedy search. D3 and D7 stand for day 3 and day 7 time points. 

 
10-fold cross-validation model performance 

Target Feature selection Meta-methods Classifier 

Cell cluster 
area N/A N/A 

Decision tree 
(bagging) 
(235,238), 

num features=10, 
min examples = 18, 
allow unclassified 

examples 

Neuron 
proportion Correlation 

subset evaluator 
(232) 

Locally weighted 
learning (236,237),
weighted average, 
Euclidean distance 

Ensemble of 
decision trees 

(235), 
9 trees, 

min features=4 
Random feature 
selection (239), 

k-Nearest 
Neighbours, 
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Type I 
astrocyte 

proportion 

features=8, 
iterations=18 

10 neighbours, 
distance= 𝟏𝑬𝒖𝒄𝒍𝒊𝒅𝒆𝒂𝒏 

Type II 
astrocyte 

proportion 

Greedy 
backwards 
search(234) 

N/A 

Support Vector 
Regression 
(243,245), 𝑪 = 𝟎. 𝟓𝟐,  

standardise data 
Puk (247), 𝑶 = 𝟎. 𝟐𝟐, 𝑺 =𝟐. 𝟗𝟖 

Proportion 
of unknown 

type cells 

Correlation 
subset evaluator 

N/A 

Support Vector 
Regression, 𝑪 = 𝟏. 𝟏𝟐, 

normalise data 

Greedy forward 
search 

Puk, 𝑶 = 𝟎. 𝟗𝟏, 𝑺 =𝟎. 𝟏𝟗 

Neurite 
length N/A 

Randomisable 
ensemble, 
32 models 
averaged 

Decision tree 
(bagging) 
(235,238), 

min features=10, 
min examples=9, 

holdout set=5, 
allow unclassified 

examples 

Type I 
astrocyte 

area 
N/A N/A 

Model tree (249) 
unpruned, 

min instances=2 

Astrocyte 
fibre length 

Correlation 
subset evaluator Gradient boosting 

(254), 
2 models 

One-level decision 
tree (257,258) Greedy forward 

search 
 

 

The table consists of decision tree techniques, k-nearest neighbour, support vector 

regression and model tree. Filter feature selection methods such as correlation feature 

evaluation is used to remove collinear features before training models e.g. neuron 

proportion. This reduces the effect of multicollinearity by keeping predictors that correlate 

well with the response compared to others. Meta methods are used such as locally 

weighted learning, random feature selection, randomised ensemble of classifiers, and 

gradient boosting. Their purposes are to reduce the effect of outliers, prediction error 
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variance, and the effect of multicollinearity additionally. Below is a table with prediction 

error metrics of each model: 

 

Table 4.5: Model performance from 10-fold cross-validation continued. D3 and D7 stand for day 3 and day 7. Model 
performance ratio is derived from the outcomes of all cross-validation iterations. A ratio closer to 0 means the closer 

the prediction is to the median of real outcome values and ratio of 1 means the prediction is outside of 1 standard 
deviation. Average real values and predictions are for all 10 chemistries for the specified cell response. 

 

Target Classifier 
Model 

performance 
ratio 

Average real 
values 

Average 
predictions 

Cell cluster area Decision tree 
(bagging) (235) 

D3 0.07 746.89 μm2 765.22 μm2 

D7 0.13 3650.7 μm2 3274.69 μm2 

Neuron 
proportion 

Ensemble decision 
trees (235) 

D3 0.02 8.99 % 9.01 % 

D7 0.01 4.41 % 4.91 % 

Type I astrocyte 
proportion 

Randomised feature 
(239) k-Nearest 

Neighbours (240) 

D3 0.25 89.84 % 90.55 % 

D7 0.15 94.60 % 94.24 % 

Type II astrocyte 
proportion 

Support Vector 
Regression (243,245)

D3 0.04 0.18 % 0.07 % 

D7 0.27 0.69 % 0.44 % 
Proportion of 
unknown type 

cells 

Support Vector 
Regression 

D3 0.27 0.42 % 0.17 % 

D7 0.13 0.08 % 0.07 % 

Neurite length 

Randomisable 
ensemble of 

decision trees 
(bagging) 

D3 0.02 48.09 μm 47.56 μm 

D7 0.02 77.20 μm 77.75 μm 

Type I astrocyte 
area Model tree (249) 

D3 0.01 29.45 μm2 29.54 μm2 

D7 0.01 36.29 μm2 36.13 μm2 

Astrocyte fibre 
length 

Gradient boosted 
(254) decision trees 

(257,258) 

D3 0.15 29.7 μm 30.98 μm 

D7 0.09 41.68 μm 40.42 μm 
 

 

Each method used is detailed below along with granular cross-validation model 

performance graphs. Where possible, visual representations of the models are presented 

at the bottom of each section or appendices. The order of the algorithms described is 

sequential. 
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 Cell cluster area 

Cell cluster area is related with cell spheres (neurospheres) spreading early after seeding 

them on modified surfaces, and with cell proliferation especially in the later time point (day 

7). The effects in play here are both chemical and biological. Maximising the cell cluster 

area/neurosphere spreading is desirable as this increases cell differentiation potential. 

 

Modelling cell cluster area was achieved with Brieman’s  decision tree algorithm (235) using 

a subset of features chosen at random (239). Decision trees are widely used in 

computational biology due to their accuracy and ease of interpretation. They are used in 

gene expression and clinical data (361) and additionally, assigning protein function and 

predicting splice (protein snapping) sites (362). 

 

For cell cluster area, the maximum tree depth was set to 𝑑𝑒𝑝𝑡ℎ = 6 (tree levels). In the 

regression case, the mean is estimated from one part of the holdout set used (testing) and 

the remaining parts are used to grow the tree (train). This holdout set was set to 𝑁 = 3 

parts. Some trees may be unable to provide an outcome referred to as unclassified 

instances. This was allowed with the (𝑈) switch. This can reduce variance in the final answer 

as some trees will be trained with a smaller set of data (bagging) and may not be able to 

provide a good answer. Below is a representation of the decision tree model for cell cluster 

area:
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Figure 4.24: Cell cluster area model. This is a decision tree made with 4 input variables (D7, MolMass1, pKa, logP3). Nodes (in ovals) are input parameters in question for a logic test. The rectangles are the 

leafs and these are the possible outcomes for cell cluster area for a particular tree. The figures in parenthesis next to the value of each leaf represent the: (number of instances that reached / mean squared 
error in μm2).

Legend 

D7: day 7 time point 

MolMass1: molecular mass 

LogP3: logP of constituent 3 

pKa: acid dissociation constant 
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From the figure above, the time point variable (i.e. D7) is the most important and after that 

follows molecular mass and the logP (lipophilicity) constituent 3 in the self-assembly 

molecule. The latter was found to be a good predictor in both current (𝑟 = −0.58) and 

previous work (41) (𝑟 = −0.67). This means as the surface lipophilicity increases, cell 

cluster area decreases. The final predictor in the model is the acid dissociation constant 

(pKa) that also has a strong +correlation with cell cluster area (𝑟 = 0.57) meaning as the 

pKa value increases (less acidic), so does cell cluster area. 

 

Below are graphs of cross-validation model performance where training data were split to 

the number of environments used in experiments (10 groups). Cell data from one 

environment were used for model testing. This was performed 10 times, and in each 

iteration, the training and test sets are different. This is to maximise the use of training data 

without being subject to data leak introduced by cross-validation. 
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Figure 4.25: Cell cluster area day 3 and day 7 model performance from 10-fold cross validation. 𝑦 axis represents the 

area in mm2 and in the 𝑥 axis are the cell culture environments used in experiments. Blue symbols represent real data 
and the orange symbols are the estimates. The data labels on the right handside show the model performance ratio 
which is a measure of model goodness compared to real values and their standard deviation. The dashed error bars 

represent 1 standard deviation of real data and the solid line represents the standard deviation of estimates. 
 

On average, the mean absolute error (MAE) and model performance ratio (MPR) for the 

early time point is 𝑀𝐴𝐸 = 0.02 𝑚𝑚ଶ and 𝑀𝑃𝑅 = 0.03. For the later time point (day 7), 𝑀𝐴𝐸 = 0.11 𝑚𝑚ଶ and 𝑀𝑃𝑅 = 0.05. In other words, the model fit for both time points is 

remarkably good considering unacceptable model performance ratio 1 and the best 

possible ratio is 0. Even on similar chemistries such as diamine (diNH2) and long diamine 

(ldiNH2), the model predicts these well on both time points. Decomposing the prediction 

error gives bias (average error) for day 3 predictions as low as -1.92 μm2 and the variance 

(prediction standard deviation) to -0.25 mm2. For the later time point, the bias is 66 μm 

and the variance is 2 mm2. The closer these values are to zero the better but since these 

are inverse, we are after a trade-off and this is found for both time points. 

 

 Neuron proportion 

Successful cellular therapies to regenerate nervous tissue depend partly on the amount of 

neural cells delivered. Neuronal network allows function such as voluntary bodily 
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movement. Controlling the density and proportion of transplant relevant cell populations 

is a key element in developing and scaling up cell-based therapy. Neuron proportion tells 

us about differentiation (day 3) and proliferation (day 7). 

 

Modelling neuron cell proportion was achieved with locally weighted learning (236,237) 

and ensemble of decision trees (bagging) (235). This classifier is a popular choice in genomic 

data analysis (363), bioinformatics (364) and life sciences (365) because models produced 

have high prediction accuracy and provide information on feature importance. Importance 

here is correlation and interactions among other features. 

 

Below in Table 4.6, with the ranked inputs from correlation subset evaluator and greedy 

backwards search. After that follows a snippet of the neuron proportion model: 

 

Table 4.6: Neuron proportion feature selection and evaluation. Backwards greedy search: started with all features then 
reduce one a time until there is no improvement in the merit score. The merit scores is the goodness of the remaining 

features in the subset after removing the features in the left. 
 

Features Merit score 
Molecular volume 0.12 

Molecular mass 0.12 
Partition coefficient (logP) – level 3 0.12 

Partition coefficient – level 5 0.12 
Partition coefficient – level 2 0.12 
Partition coefficient – level 4 0.12 
Partition coefficient – level 1 0.23 

Acidity measure (pKa) 0.47 
Day 7 0.47 
Day 3 0 
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RandomTree 
========== 
 
LogP4 < -0.21 
|   MolMass1 < 57.58 
|   |   D3 < 0.5 : 4.16 (9/0.39) 
|   |   D3 >= 0.5 : 8.06 (9/2.16) 
|   MolMass1 >= 57.58 
|   |   D7 < 0.5 
|   |   |   LogP1 < -0.14 : 12.6 (10/18.42) 
|   |   |   LogP1 >= -0.14 : 7.89 (10/7.01) 
|   |   D7 >= 0.5 
|   |   |   LogP4 < -0.37 
|   |   |   |   pKa < 8.57 : 9.36 (19/25) 
|   |   |   |   pKa >= 8.57 : 8.51 (10/3.17) 
|   |   |   LogP4 >= -0.37 : 6.33 (8/5.47) 
LogP4 >= -0.21 
|   D3 < 0.5 
|   |   LogP5 < 1.27 
|   |   |   LogP5 < 0.03 
|   |   |   |   LogP2 < -0.11 : 2.13 (9/0.36) 
|   |   |   |   LogP2 >= -0.11 
|   |   |   |   |   MolVol1 < 106.67 
|   |   |   |   |   |   LogP4 < -0.11 : 3.07 (12/0.38) 
|   |   |   |   |   |   LogP4 >= -0.11 : 2.9 (5/0.92) 
|   |   |   |   |   MolVol1 >= 106.67 : 2.56 (14/0.5) 
|   |   |   LogP5 >= 0.03 : 4.12 (9/1.79) 
|   |   LogP5 >= 1.27 : 6.16 (11/0.88) 
|   D3 >= 0.5 
|   |   pKa < 10.86 
|   |   |   LogP5 < 0.03 
|   |   |   |   LogP4 < -0.11 
|   |   |   |   |   LogP3 < -0.82 : 7.19 (9/7) 
|   |   |   |   |   LogP3 >= -0.82 
|   |   |   |   |   |   MolMass1 < 80.16 : 8.06 (6/0.44) 
|   |   |   |   |   |   MolMass1 >= 80.16 : 7.9 (11/4.99) 
|   |   |   |   LogP4 >= -0.11 : 9.88 (6/4.6) 
|   |   |   LogP5 >= 0.03 : 5.47 (8/4.97) 
|   |   pKa >= 10.86 : 15.99 (5/6.74) 
 
Size of the tree : 37 
 
 
RandomTree 
========== 
 
MolMass1 < 103.64 
|   D7 < 0.5 
|   |   LogP4 < 1.54 
|   |   |   MolVol1 < 104.41 
|   |   |   |   MolMass1 < 85.64  

Snippet 1: Neuron Proportion model. Double click to expand full forest made of 9 decision trees.
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From the snippet above, the top attributes appearing are LogP4, Molecular mass, time 

point variables, and pKa. In previous work, LogP4 was found to have a –correlation with 

neuron density (𝑟 = −0.48) and the pKa with a +correlation (𝑟 = 0.38) but the latter is 

not significant. From this work, we found −correlations with pKa and neuron density and 

proportion ( 𝑟 = −0.68 , 𝑟 = −0.52 ) agreeing with previous work (41). The logP 

correlations suggest that as surface lipophilicity increases, neuron density decreases. 

Normally, lipophilic surface means higher cell density but for neurons, but the rules are 

different. These cells are believed to be on top of an astrocyte carpet in in vitro 2D cultures 

(270) and surface lipophilicity may not affect their cell density as much. Methyl (CH3) 

environments could be the exception to the rule. The pKa correlation suggests as the 

surface pKa increases so does neuron density. Molecular mass and volume are next in 

importance, both found to have –correlations with neuron density 𝑟 = −0.47 and 𝑟 =−0.51  respectively. This means as the molecular mass and volume increase, neuron 

density decreases. 

 

Below are graphs of model performance from cross-validation for each time point:
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Figure 4.26: Neuron proportion day 3 and day 7 model performance from 10-fold cross validation. 𝑦 axis represents cell 

proportion as a percentage and in the 𝑥 axis are the cell culture environments used in experiments. Blue symbols 
represent real data and the orange symbols are the estimates. The data labels on the right handside show the model 
performance ratio which is a measure of model goodness compared to real values and their standard deviation. The 
dashed error bars represent 1 standard deviation of real data and the solid line represents the standard deviation of 

estimates. 
 

On average, the mean absolute error (MAE) and model performance ratio (MPR) for the 

early time point is 𝑀𝐴𝐸 = 0.13 %  and  𝑀𝑃𝑅 = 0.04 . For the later time point (day 7), 𝑀𝐴𝐸 = 0.08 % and 𝑀𝑃𝑅 = 0.05. In other words, the model fit for both time points is 

remarkably good considering unacceptable model performance ratio 1 and the best 

possible ratio is 0. Decomposing the prediction error gives bias (average error) for day 3 

predictions as low as 2.4 % and the variance (prediction standard deviation) is 1.7 %. For 

the later time point, the bias is 1.22 % and the variance is 1.17 %. The closer these values 

are to zero the better but since the two sources of error are inversely related, we are after 

a trade-off that minimises the mean absolute error best. This model owes its low variance 

to the numerous decision trees used. 
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 Type I astrocyte proportion 

Astrocytes are robust glial cells that play several roles in the central nervous system. There 

are two types of astrocytes, where type I has fibroblast-like morphology and type II has 

spindle-like morphology. They manage chemical signals (neurotransmitters) exchanged by 

neurons, and strengthen neuron connections (synapses) (356) called long-term 

potentiation (275) among other functions. We are after lower astrocyte density for all cell 

types because higher cell density means smaller extracellular volume and amount 

suggesting cells use the resources in the vicinity quicker (272,273). Cell proportion tells us 

about differentiation (day 3) and proliferation (day 7). Generally in vitro, astrocyte type I 

cells dominate cultures compared to neurons but the degree of dominance can inform on 

stress (358,359). Extrapolating from this, lower type I astrocyte proportion is desirable. On 

the other hand, astrocytes type II is rare so increasing their proportion is preferred. 

 

Modelling type I astrocyte cell proportion involved random feature selection and k-nearest 

neighbours. Instance-based methods have been used to classify DNA microarray data with 

remarkable model performance (366), and to evaluate biological ontologies (formal 

naming and definitions) (367). Random feature selection method is used (239) to select a 

uniform number of features 𝑛 to train classifiers from the full set 𝑁. In a situation where 

discriminative information is spread across the features, will result to reduced correlation 

between predictors. 

 

Correlation based feature selection with backwards greedy search was used to select and 

evaluate features to predict type I astrocyte proportion. There is no visual representation 

of the resulting model. Instead, sensitivity analysis of the model inputs and their effect on 

the cell outcome is explored in section 4.2.4. Below is a table with the ranked inputs from 

correlation subset evaluator and greedy backwards search: 
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Table 4.7: Type I astrocyte proportion feature selection and evaluation. Backwards greedy search: started with all 
features then reduce one a time until there is no improvement in the merit score. The merit scores is the goodness of 

the remaining features in the subset after removing the features in the left. 
 

Features Merit score 
Molecular volume 0.17 

Partition coefficient (logP) – level 3 0.17 
Partition coefficient – level 5 0.17 

Molecular mass 0.17 
Partition coefficient – level 2 0.17 
Partition coefficient – level 4 0.17 
Partition coefficient – level 1 0.19 

Acidity measure (pKa) 0.38 
Day 7 0.38 
Day 3 0 

 
 

From this work, +correlations were found with type I astrocyte density and logP (𝑟 =0.61). From previous work (41), very similar outcomes are found 𝑟 = 0.79. This means cell 

density increases as the lipophilicity increases on the culture surface. These correlations 

are expected as astrocytes are thought to be closer to the culture surface compared to 

neurons (270). LogP3 also has a –correlation with type I astrocyte proportion (𝑟 = −0.48) 

meaning as surface lipophilicity increases, cell proportion decreases. Molecular volume and 

pKa have –correlations with astrocyte density with the new data (𝑟 = −0.52  and 𝑟 =−0.71 ) and previous ( 𝑟 = −0.62  and 𝑟 = −0.61 ). This means that as the molecular 

volume and pKa increase individually, type I astrocyte density decreases in both situations. 

There are correlations with the remaining predictors, but these are not significant. 

 

Below are graphs of model performance from cross-validation for each time point: 
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Figure 4.27: Type I astrocyte proportion day 3 and day 7 model performance from 10-fold cross validation. 𝑦 axis 

represents cell proportion as a percentage and in the 𝑥 axis are the cell culture environments used in experiments. Blue 
symbols represent real data and the orange symbols are the estimates. The data labels on the right handside show the 
model performance ratio which is a measure of model goodness compared to real values and their standard deviation. 
The dashed error bars represent 1 standard deviation of real data and the solid line represents the standard deviation 

of estimates. 
 

On average, the mean absolute error (MAE) and model performance ratio (MPR) for the 

early time point is 𝑀𝐴𝐸 = 0.58 %  and  𝑀𝑃𝑅 = 0.14 . For the later time point (day 7), 𝑀𝐴𝐸 = 0.4 % and 𝑀𝑃𝑅 = 0.21. In other words, the model fit for both time points is good 

considering unacceptable model performance ratio 1 and the best possible ratio is 0. 

Decomposing the prediction error gives bias (average error) for day 3 predictions as low as 
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0.11 % and the variance (prediction standard deviation) is 3.19 %. For the later time point, 

the bias is 0.26 % and the variance is 3.86 %. The closer these values are to zero the better 

but since the two sources of error are inversely related, we are after a trade-off that 

minimises the mean absolute error best. The variance of predictions for the latter time 

point is sometimes outside the standard deviation of real values but this can be reduced 

with additional data. 

 

 Type II astrocyte proportion 

Astrocytes are robust glial cells that play several roles in the central nervous system. They 

manage chemical signals (neurotransmitters) exchanged by neurons, strengthen neuron 

connections (synapses) (356) called long-term potentiation (275) among other functions. 

Astrocytes were discussed in the previous section to this one. In short, astrocytes type II 

are rare in vitro so increasing their proportion is desirable. 

 

Modelling type II astrocyte cell proportion was achieved with support vector regression 

(SVR). SVR has been successfully used to model biological data in bioinformatics such as 

protein function prediction and gene expression among others (368). It can deal with 

biological variation and generalise well on new data. 

 

Unfortunately, SVR is a “black box” algorithm and the resulting model is difficult to 

interpret. This is because of the kernel trick transforming data to a higher dimension before 

fitting a linear model. This means the original values of support vectors are not shown.  In 

a later chapter, the output of this model will be investigated by tuning one input at a time 

for their effect on cell performance. This is termed as sensitivity analysis (369) and this can 

be found in section 4.2.4. The features chosen to pass for predicting type II astrocyte 



Page 232 

proportion were selected with correlation-based feature selection and backwards greedy 

search: 

 

Table 4.8: Type II astrocyte proportion feature selection and evaluation. Backwards greedy search: started with all 
features then reduce one a time until there is no improvement in the merit score. The merit scores is the goodness of 

the remaining features in the subset after removing the features in the left. 
 

Features Merit score 
Molecular mass 0.27 

Partition coefficient (logP) – level 1 0.27 
Molecular volume 0.27 

Partition coefficient – level 2 0.27 
Partition coefficient – level 4 0.27 
Partition coefficient – level 3 0.27 

Acidity measure (pKa) 0.27 
Partition coefficient – level 5 0.40 

Day 7 0.40 
Day 3 0 

 
 

From this work, significant correlations were found between the logP (lipophilicity), type II 

astrocyte density and proportion. LogP has +correlations with cell density and proportion 

(𝑟 = 0.54 and 𝑟 = 0.51) meaning as the logP value increases so does the density and 

proportion of astrocytes. From one hand, we want to maximise the proportion of type II 

astrocytes but also minimise cell density. Perhaps achieving this is with a paracrine effect 

from high cell density. Surface acidity measure (pKa) was found to +correlate with type II 

astrocyte proportion (𝑟 = 0.44) although not significant. In other words, this means as the 

pKa value increases (less acidic) so does the proportion of astrocytes. 

 

Below are graphs of model performance from cross-validation for each time point: 
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Figure 4.28: Type II astrocyte proportion day 3 and day 7 model performance from 10-fold cross validation. 𝑦 axis 

represents cell proportion as a percentage and in the 𝑥 axis are the cell culture environments used in experiments. Blue 
symbols represent real data and the orange symbols are the estimates. The data labels on the right handside show the 
model performance ratio which is a measure of model goodness compared to real values and their standard deviation. 
The dashed error bars represent 1 standard deviation of real data and the solid line represents the standard deviation 

of estimates. 
 

On average, the mean absolute error (MAE) and model performance ratio (MPR) for the 

early time point is 𝑀𝐴𝐸 = 0.05 %  and  𝑀𝑃𝑅 = 0.05 . For the later time point (day 7), 𝑀𝐴𝐸 = 0.35 % and 𝑀𝑃𝑅 = 0.37. In other words, the model fit for the early time point is 

excellent and for the later time point the fit is good. Decomposing the prediction error gives 

bias (average error) for day 3 predictions as low as -0.04 % and the variance (prediction 
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standard deviation) is 0.31 %. For the later time point, the bias is -0.35 % and the variance 

is 0.77 %. The closer these values are to zero the better but since the two sources of error 

are inversely related, we are after a trade-off that minimises the mean absolute error best. 

Astrocytes type II are rare in cultures and the models appear to fit well with low bias and 

variance but there is room for improvement with additional data for this cell parameter. 

 

 Proportion of unknown type cells 

Unknown type cells are cells that did not test positive for the markers (tags) used in 

experiments. In other words, these cells are unidentified of type but we know they are 

present as their nuclei tested positive (DAPI) and they are visible in cell images. These cells 

could be neural stem cells/progenitors, oligodendrocytes, ependymal cells or microglia. In 

the worst-case scenario, unknown type cells are assumed as neural stem cells/progenitors 

making copies of themselves therefore minimising their proportion is desirable. This is 

because undifferentiated cells cannot enter a patient’s brain in a transplant therapy 

(91,282). 

 

The same variant of support vector regression (246) was used to model unknown type cell 

proportion with the universal Puk kernel both described in the previous section (4.2.3.7). 

Support vector regression (SVR) regularisation constant was set to  𝐶 = 1.12 . This 

determines the trade-off between the model complexity and the amount up to which 

deviations larger than 𝜀 are accepted. As previously, the insensitive loss function was set 

to 𝜀 = 0.001. This time, each attribute was standardised to have zero mean and unit 

variance with 𝑥ᇱ = ௫ି௫̅ఙ  (where 𝜎 is the sample standard deviation). Puk kernel’s omega 

parameter was set to 𝑂 = 0.91 and the sigma was set to 𝑆 = 0.19. 
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As previously, the output cannot be interpreted easily. In section 4.2.4, sensitivity analysis 

(369) is performed to investigate each feature for its effect with the target class. Features 

used to predict this cell parameter are selected using correlation and forward greedy 

search. The features include: 

 

Table 4.9: Proportion of unknown type cells feature selection and evaluation. Forwards greedy search: started with no 
features and added one at a time until there is no improvement in modelling accuracy. The merit score is the goodness 

of the subset after adding the corresponding feature in the left. 
 

Features Merit score 
Acidity measure (pKa) 

0.15 Day 3 
Day 7 

 
 

From this work, the acid dissociation constant has a strong +correlation with unknown 

type cell proportion (𝑟 = 0.75). This means as surface acidity decreases, unknown type cell 

proportion increases with it. The pKa and the day indicators are the best predictors from 

the group for unknown type cell proportion. 

 

Below are graphs of model performance from cross-validation for each time point: 
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Figure 4.29: Proportion of unknown type cells day 3 and day 7 model performance from 10-fold cross validation. 𝑦 axis 
represents cell proportion as a percentage and in the 𝑥 axis are the cell culture environments used in experiments. Blue 
symbols represent real data and the orange symbols are the estimates. The data labels on the right handside show the 
model performance ratio which is a measure of model goodness compared to real values and their standard deviation. 
The dashed error bars represent 1 standard deviation of real data and the solid line represents the standard deviation 

of estimates. 
 

On average, the mean absolute error (MAE) and model performance ratio (MPR) for the 

early time point is 𝑀𝐴𝐸 = 0.19 %  and  𝑀𝑃𝑅 = 0.22 . For the later time point (day 7), 𝑀𝐴𝐸 = 0.08 % and 𝑀𝑃𝑅 = 0.31. In other words, the model fit for both time points is 

good. Decomposing the prediction error gives bias (average error) for day 3 predictions at 

-0.19 % and the variance (prediction standard deviation) is 0.83 %. For the later time point, 

the bias is -0.25 % and the variance is 1.05 %. The closer these values are to zero the better 

but since the two sources of error are inversely related, we are after a trade-off that 

minimises the mean absolute error best. Prediction variance for the later time point is 

larger than the standard deviation of real values. As with astrocytes type II, unknown type 

cells are few in numbers and the models appear to fit well with low bias but prediction 

variance can be decreased with additional data for this cell parameter. 
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 Neurite length 

Functionary nerve tissues consists of neural projections (neurites or axons) to communicate 

with neighbouring cells using electrical conduction across large sections of tissue. Neurite 

length is a good indicator of this in artificial environments (in vitro). One aim of neuro-

regenerative biomaterials is to grow and guide neurons to specific injury areas and re-wire 

compromised neural circuit and restore function. Increasing neurite length is desirable in 

order to connect to neighbouring cells and communicate across large sections of tissue. 

 

Modelling neurite length is achieved here with randomisable ensemble of decision trees. 

Each tree was created from a subset of features selected at random (239) but, unlike 

bagging (random forest), the number of subsets (holdout sets) was not equal to the number 

of trees. In the regression case, the mean is estimated from one part of the holdout set 

used (testing) and the remaining parts are used to grow the tree (train). The benefit of this 

approach is that we can use deeper trees and still reduce the variance in the final answer. 

On top of that, this approach taps into the discriminative information spread across the 

features resulting in reduced correlation between estimators. This led to small 

improvements in predictive performance over Random Forest by reducing the mean 

absolute error in 10-fold cross-validation. 

 

The random ensemble iteration was set to 32 (𝐼 = 32) for the equivalent number of 

decision trees. The decision tree algorithm was configured to choose from all features 

available ( 𝐾 = 10 ). Controlling overfitting was achieved by limiting the number of 

instances reaching a leaf (weight) was set to (𝑀 = 7). To get the specialised trees, the 

maximum depth of the trees to unlimited (𝑑𝑒𝑝𝑡ℎ = 0). In the regression case, the mean is 

estimated from one part of the holdout set used (testing) and the remaining parts are used 

to grow the tree (train). This holdout set was set to 𝑁 = 5 parts. As previously mentioned, 
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some trees may be unable to provide an outcome referred to as unclassified instances. This 

was allowed with the (𝑈) switch. This can reduce variance in the final answer as some trees 

will be trained with a smaller set of data and may not be able to provide a good answer. 

Below is a visual model representation: 
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RandomTree 
========== 
 
D7 < 0.5 
|   LogP2 < 0.78 
|   |   MolMass1 < 405058.55 
|   |   |   LogP4 < -0.37 
|   |   |   |   LogP1 < 0.21 : 0 (0/0) 
|   |   |   |   LogP1 >= 0.21 : 43.06 (8/66.08) 
|   |   |   LogP4 >= -0.37 
|   |   |   |   LogP1 < -1.02 : 32.54 (8/73.52) 
|   |   |   |   LogP1 >= -1.02 : 43.84 (7/17.41) 
|   |   MolMass1 >= 405058.55 : 68.23 (8/142.59) 
|   LogP2 >= 0.78 
|   |   LogP1 < 1.2 : 54.27 (7/166.59) 
|   |   LogP1 >= 1.2 
|   |   |   MolMass1 < 58.62 : 0 (0/0) 
|   |   |   MolMass1 >= 58.62 
|   |   |   |   LogP5 < -0.69 : 38.1 (7/230.35) 
|   |   |   |   LogP5 >= -0.69 : 41.6 (13/118.54) 
D7 >= 0.5 
|   LogP1 < -1.07 : 52.84 (12/127.52) 
|   LogP1 >= -1.07 
|   |   MolVol1 < 93.46 
|   |   |   LogP2 < 1.38 
|   |   |   |   LogP3 < -0.16 : 70.54 (8/109.53) 
|   |   |   |   LogP3 >= -0.16 : 64.75 (6/300.48) 
|   |   |   LogP2 >= 1.38 : 46.36 (8/90.81) 
|   |   MolVol1 >= 93.46 
|   |   |   MolVol1 < 104.41 
|   |   |   |   pKa < 9.91 : 78.87 (7/425.58) 
|   |   |   |   pKa >= 9.91 : 98.53 (12/212.72) 
|   |   |   MolVol1 >= 104.41 
|   |   |   |   LogP2 < 0.96 : 85.8 (7/451.29) 
|   |   |   |   LogP2 >= 0.96 : 62.75 (8/2411.52) 
 
Size of the tree : 33 
 
 
RandomTree 
========== 
 
D7 < 0.5 
|   LogP2 < 0.78 
|   |   LogP4 < -0.37 
|   |   |   LogP3 < -568 : 59.43 (4/120.58) 
|   |   |   LogP3 >= -568 
|   |   |   |   LogP3 < -0.32 : 36.76 (8/178.35) 
|   |   |   |   LogP3 >= -0.32 : 45.26 (8/66.77) 
|   |   LogP4 >= -0.37 
|   |   |   LogP2 < -0.75 : 48.84 (7/33.34)  

Snippet 2: Neurite length model. Double click to expand full set of trees made of 32 randomised decision trees.



Page 240 

The top variables appearing in the decision trees are assumed to be the more important 

ones. These include the time point indicator, logP (lipophilicity), molecular mass and 

volume of the untethered surface chemistry, and surface acidity (pKa). From this work, the 

logP has a +correlation but not significant (𝑟 = 0.37) and from previous work (41) the –correlation is a strong one (𝑟 = −0.81). The difference in the relationship between the 

two studies is attributed to different sampling methodology. Previous work measured 

mature neuron axon length whereas in this work, neurites were measured, that is all 

protrusions from neurons including “immature” ones. From this and previous work, 

molecular mass and volume were both found to +correlate with neurite length (𝑟 = 0.41 

and 𝑟 = 0.46) although these are not significant. This means as molecular mass and volume 

increase, neurite length increases. Lastly, the pKa +correlates with neurite length (𝑟 =0.51) from this work and from the previous work as well (𝑟 = 0.48) although the latter is 

not significant. This means as surface acidity decreases, neurite length increases. 

 

Below are graphs of model performance from cross-validation for each time point: 
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Figure 4.30: Neurite length day 3 and day 7 model performance from 10-fold cross validation. 𝑦 axis is cell projection 

length in μm and in the 𝑥 axis are the cell culture environments used in experiments. Blue symbols represent real data 
and the orange symbols are the estimates. The data labels on the right handside show the model performance ratio 
which is a measure of model goodness compared to real values and their standard deviation. The dashed error bars 

represent 1 standard deviation of real data and the solid line represents the standard deviation of estimates. 
 

On average, the mean absolute error (MAE) and model performance ratio (MPR) for the 

early time point is 𝑀𝐴𝐸 = 1.43 𝜇𝑚  and 𝑀𝑃𝑅 = 0.02. For the later time point (day 7), 𝑀𝐴𝐸 = 2.64 𝜇𝑚 and 𝑀𝑃𝑅 = 0.03. In other words, the model fit for both time points is 

excellent. Decomposing the prediction error gives bias (average error) for day 3 predictions 

at -0.23 μm and the variance (prediction standard deviation) is 14.02 μm. For the later time 

point, the bias is -0.6 μm and the variance is 25.41 μm. The closer these values are to zero 

the better but since the two sources of error are inversely related, we are after a trade-off 

that minimises the mean absolute error best. Prediction variance for both time points is 

small due to the numerous decision trees used. 

 

 Type I astrocyte area 

Astrocyte spreading is related with fibre length as astrocytes extend protrusions to interact 

with other cells and with the surface for migration and attachment (93). Astrocytes interact 

with themselves, other glial cells and neurons (194). Astrocyte spreading means forming 
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stress fibres and focal adhesions (due to Rho activation) because astrocytes are establishing 

and stabilising altered cytoarchitecture (357). Minimising both type I astrocyte area and 

fibre length is preferred, and laminin’s performance sets the upper boundary. 

 

Modelling type I astrocyte area was achieved with model tree algorithm. Model trees have 

been used in toxicological and epidemiological studies due to their flexibility and power, 

and the derived models have informed experts from both fields (370). They are also used 

as a tool to classify new proteins to structural families (371). 

 

The 𝑁  switch disables pruning the trees generated and the parameter determining the 

minimum number of instances to create a leaf node was set to 𝑀 = 16. Below is Snippet 3 

with the output of model for type I astrocyte area consisting of 20 rules: 
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Rule: 1 
IF 
 D3=0 <= 0.5 
 LogP1 <= -0.67 
 LogP1 <= -568.355 
THEN 
 
A1A =  
 0.0019 * LogP1  
 - 0.0288 * pKa  
 + 0.9811 * D3=0  
 + 31.5456 [9/55.953%] 
 
Rule: 2 
IF 
 D3=0 <= 0.5 
 LogP1 <= -0.67 
 LogP1 <= -1.075 
THEN 
 
A1A =  
 -0.5293 * LogP1  
 - 0.0257 * MolVol1  
 - 0.0415 * pKa  
 + 1.1231 * D3=0  
 + 34.9074 [9/63.713%] 
 
Rule: 3 
IF 
 D3=0 <= 0.5 
 MolMass1 <= 52.59 
 LogP1 <= 0.55 
THEN 
 
A1A =  
 -1.2061 * LogP1  
 - 0.0216 * MolMass1  
 + 1.3428 * D3=0  
 + 33.1024 [9/64.828%] 
 
Rule: 4 
IF 
 D3=0 <= 0.5 
 pKa <= 10.655 
 LogP5 <= -0.455 
 MolVol1 <= 106.675 
 LogP1 <= 1.22 
THEN 
 
A1A =  
 -0.7741 * LogP1   

Snippet 3: Type I astrocyte Area (A1A) model from a model tree classifier (M5Rules). The model instances then 
performs logic tests on its features with IF clauses. If all conditions are true the decision goes to a leaf to estimate A1A. 

The estimation is either a classification or a small linear model. In the latter, the values before features are the 
coefficients. The values in braces after the outcome: [number of instances the rule applies for (coverage) / and the 

percentage root mean squared error for instances that reach these leaves]. 
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The logP (lipophilicity) of the untethered surface chemistries appears important, as they 

are included in both rules and linear models at leafs. From this work, logP has a –correlation 

with type I astrocyte area (𝑟 = −0.77). This means as surface lipophilicity increases, type I 

astrocyte area decreases. Molecular mass and volume from this work have –correlations 

(𝑟 = −0.15 and 𝑟 = −0.42) with type I astrocyte area but both are not significant. The 

surface acidity measure (pKa) correlates negatively in the early time point (𝑟 = −0.40) and 

positively in the latter time point (𝑟 = 0.38) but both are not significant. For the former, 

this means as the surface acidity decreases, type I astrocyte area decreases as well. For the 

latter correlation, the inverse is happening. As surface acidity decreases, type I astrocyte 

area increases. 

 

Below are graphs of model performance from cross-validation for each time point: 
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Figure 4.31: Type I astrocyte area day 3 and day 7 model performance from 10-fold cross validation. 𝑦 axis represents 
the area in μm2 and in the 𝑥 axis are the cell culture environments used in experiments. Blue symbols represent real 
data and the orange symbols are the estimates. The data labels on the right handside show the model performance 
ratio which is a measure of model goodness compared to real values and their standard deviation. The dashed error 

bars represent 1 standard deviation of real data and the solid line represents the standard deviation of estimates. 
 

On average, the mean absolute error (MAE) and model performance ratio (MPR) for the 

early time point is 𝑀𝐴𝐸 = 0.87 𝜇𝑚ଶ  and 𝑀𝑃𝑅 = 0.1. For the later time point (day 7), 𝑀𝐴𝐸 = 0.45 𝜇𝑚 ଶand 𝑀𝑃𝑅 = 0.03. In other words, the model fit for both time points is 

excellent. Decomposing the prediction error gives bias (average error) for day 3 predictions 

at -0.36 μm2 and the variance (prediction standard deviation) is 4.24 μm2. For the later time 

point, the bias is 0.05 μm2 and the variance is 6.04 μm2. The closer these values are to zero 

the better but since the two sources of error are inversely related, we are after a trade-off 

that minimises the mean absolute error best. Prediction variance for both time points is 

small due to the design of model tree learning. The “best” rules are selected from 

constructed trees where these reduce the standard deviation of the outcome (estimate). 

 

 Astrocyte fibre length 

Astrocyte spreading is related to fibre length as astrocytes extend protrusions to interact 

with other cells and with the surface for migration and attachment (93). Astrocytes interact 
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with themselves, other glial cells and neurons (194). Minimising both type I astrocyte area 

and fibre length is preferred, and laminin’s performance sets the upper boundary. 

 

Modelling astrocyte fibre length was achieved with gradient boosting and one-level 

decision tree. Stochastic gradient boosting (254) method enhances the performance of  

‘base’ classifiers. It is a method to increase model complexity and improve its fit by 

combining models learnt from base learners. It starts with a simple predictor such as the 

mean. Subsequent models from each iteration build the model stage-wise on a subsample 

of data, drawn at random (without replacement) to reduce computation time and add 

randomness. Randomness reduces prediction variance and therefore overfitting. The 

residuals left from the previous iteration are modelled again. Overall prediction is given by 

the sum of the outputs of the collection of models. 

 

Each iteration of gradient boosting fits a model to residuals left by the classifier from the 

previous iteration. This parameter was set to 𝐼 = 2 for two 1-rule models to be fit. 1-rule 

does not have any hyper-parameters to tune. Features for this learning scheme were 

selected using correlation and backwards greedy search. Below is a table with the ranked 

features: 

 

Table 4.10: Astrocyte fibre length feature selection and evaluation. Forwards greedy search: started with no features 
and added one at a time until there is no improvement in modelling accuracy. The merit score is the goodness of the 

subset after adding the corresponding feature in the left. 
 

Features Merit score 
Day 3 0.56 
Day 7 0.56 

Acidity measure (pKa) 0.22 
Partition coefficient (logP) – level 1 0.08 

Partition coefficient – level 2 0.07 
Partition coefficient – level 3 0.07 
Partition coefficient – level 4 0.07 
Partition coefficient – level 5 0.07 
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Molecular mass 0.07 
Molecular volume 0.07 

 
 

From the table above, the time points are found as important variables, but these are 

categorical and cannot correlate with a numerical response. Previous work (41) found acid 

dissociation constant (pKa) to +correlate with astrocyte fibre length (𝑟 = 0.35) but this is 

not significant. The logP (lipophilicity) of untethered surface chemistries appears as a group 

and with good reason. From this and previous work (41), logP +correlates with astrocyte 

fibre length (𝑟 = 0.49 and 𝑟 = 0.79) both significant. This means as surface lipophilicity 

increases so does astrocyte fibre length. Molecular mass and volume were both found to – correlate with the cell parameter ( 𝑟 = 0.66 ) in previous work. Below is a visual 

representation of the model: 

 
Figure 4.32: Astrocyte fibre length model. The prediction starts with 35.7 μm then goes through through 2 shallow trees 

(stump) where the outcome of both are added together for the final answer. This method is called gradient boosting 
and 𝑛 models are fit on residuals from previous predictions. The number of models fitted is determined by the gradient 

boosting learning rate (shrinkage) (255). 
 

From the model representation above, the day indicator and logP2 were selected. logP 

(lipophilicity) of untethered surface chemistries was found in this and previous work (41) 

to +correlate with astrocyte fibre length (𝑟 = 0.49 and 𝑟 = 0.79) both significant. This 

means as surface lipophilicity increases so does astrocyte fibre length. 

 

Below are graphs of model performance from cross-validation for each time point: 
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Figure 4.33: Astrocyte fibre length day 3 and day 7 model performance from 10-fold cross validation. 𝑦 axis is cell 

projection length in μm and in the 𝑥 axis are the cell culture environments used in experiments. Blue symbols represent 
real data and the orange symbols are the estimates. The data labels on the right handside show the model performance 

ratio which is a measure of model goodness compared to real values and their standard deviation. The dashed error 
bars represent 1 standard deviation of real data and the solid line represents the standard deviation of estimates. 

 

On average, the mean absolute error (MAE) and model performance ratio (MPR) for the 

early time point is 𝑀𝐴𝐸 = 2.11 𝜇𝑚  and  𝑀𝑃𝑅 = 0.1 . For the later time point (day 7), 𝑀𝐴𝐸 = 2.91 𝜇𝑚 and 𝑀𝑃𝑅 = 0.09. In other words, the model fit for both time points is 

excellent. Decomposing the prediction error gives bias (average error) for day 3 predictions 

at 0.06 μm and the variance (prediction standard deviation) is 6.45 μm. For the later time 
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point, the bias is -0.05 μm and the variance is 7.71 μm. The closer these values are to zero 

the better but since the two sources of error are inversely related, we are after a trade-off 

that minimises the mean absolute error best. Even though shallow trees that are prone to 

high bias are used, gradient boosting corrects this by combining multiple models. This lead 

to prediction bias is close to 0 for both time points. Gradient boosting starts with a basic 

prediction then “fixes” it along the way by fitting another model on the residuals left from 

the previous iteration. Variance is low for the same reason, gradient boosting, as 3 models 

are used (average + model 1 + model 2) as shown in Figure 4.32. The next section following 

is sensitivity analysis to unveil the important chemical inputs the models use for prediction. 

 

 Sensitivity analysis 

This section is for investigating the models for the effect of individual chemical parameters 

on cell estimates. This is necessary to expose which chemical inputs matter the most in 

models where their inner workings are not easily interpreted. The modelling results may 

not reflect the real effect because here, we are exploring the inner workings of 

computational models. 

 

A practical and common approach used for sensitivity analysis is where one-factor-at-a-

time is changed to see what effect it produces on the output (372–374). The idea here is to 

tune one input variable while keeping others fixed typically around the centre of their value 

space. This is repeated for each of the input of interest. Sensitivity is then measured by 

observing changes in the output. Any change observed in the output will unambiguously 

be due to the single variable changed. A limitation of this approach is that it cannot detect 

the presence of interactions between input variables such as the ones found in an earlier 
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section (4.2.3.1.1). In the case where multi-collinearity is present then the input’s effect 

may be like the ones it correlates strongly. 

 

The process is as follows: all but one inputs are fixed at their baseline value. The remaining 

input in question is varied between its minimum and the maximum value. The cell models 

are used for cell estimates and the results are collected. These are cleaned for erroneous 

output and each is then tested with bivariate correlation against the input in question. 

Correlation shows the statistical relationship between variables. These relationships 

assume both dependence through in common use and linearity. Pearson’s correlation has 

an advantage over using untransformed data to find correlation between variables but is 

also sensitive to outliers (203). The correlation between an input variable and cell variables 

will capture the effect one has on the other. Correlation significance tests tells us the upper 

and lower thresholds accepting correlations as significant. Significant here means the 

chances of accepting a false positive or false negative are within the threshold of choice 

(5% and 20% respectively). The stronger the correlation (close to 1 or -1), the smaller the 

correlation standard error and the more significant the correlation is. 

 

Theoretical chemical designs were generated from user input and the predictive models 

provided the cell performance estimates. These were collected, and correlation tests were 

performed in pairs. With a sample size of at least 𝑛 = 59, the graphs (Figure 4.34) show 

the correlation coefficient (𝑟 = 0.32) comes with a risk of accepting false positives to 5% 

(left graph) and false negatives (right graph) to 20%. Graphs in Figure 4.35 establish 

thresholds accepting correlations as significant if they are ≤ −0.21 or ≤ 0.21. Outside of 

these thresholds, the chance accepting a false positive (type I error) and false negatives 

(type II error) increase. Correlations between -0.2 and 0.2 are not significant and need 
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further evidence to support them. Below is correlation significance and after that 

correlation graphs for each chemical parameter against all cell parameters: 
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 Correlation significance 

  
Figure 4.34: Correlation significance with a sample size of at least 𝑛 = 59. Left: 𝑦 axis is the correlation coefficient (𝐻1) and 𝑥 axis is the 𝑎 probability accepting false positives. Power was set at 1 − 𝛽 = 20% 

chance accepting a false negative. Right: 𝑦 axis is the correlation coefficient (𝐻1) and 𝑥 axis is the 𝛽 probability accepting false negatives and. 𝛼 was set at 5% chance accepting a false positive. 

 

 
Figure 4.35: Critical correlation coefficient accepted as significant with a sample size of at least 𝑛 = 59. 𝑦 axis is the probability density for 𝛼 and 𝛽 distributions and 𝑥 axis is the correlation coefficient. Left 

graph shows the critical correlation cofficient for negative correlations and the right one for positive correlations. Correlations ≥ −0.21 or ≤ 0.21 are accepted as significant.
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 Cell cluster area and neuron proportion 

Cell cluster area is related with cell sphere (neurospheres) spreading early after seeding 

them on modified surfaces, and with cell proliferation especially in the later time point (day 

7). The effects in play here are both chemical and biological. Maximising the cell cluster 

area/neurosphere spreading is desirable as this increases cell differentiation potential. 

 

Below are correlation graphs between theoretical chemical designs and cell cluster area 

and neuron proportion estimates: 

 
Figure 4.36: Sensitivity analysis of chemical inputs predicting cell cluster area and neuron proportion estimates. 𝑥 axis 

are the chemical inputs and the 𝑦 axis is the correlation coefficient. The dashed lines indicate the upper and lower 
critical correlation value considered significant with sample size of at least 𝑛 = 59. Correlations between 0.20 and -0.20 

are not significant. Error bars is the standard error of correlations. Abbreviations: LogP𝑛 = lipophilicity measure of 𝑛 
constituent of the molecule, mol_mass and mol_vol stand for molecular mass and volume. Data labels indicate 

significant differences between data from the same time point. 
 

From the figure above, the cell cluster area model is mostly affected from the logP 

(lipophilicity) of the 3rd constituent of the surface molecule and surface acidity (pKa). 

Experimentally, logP3 was found to be a good predictor in both current (𝑟 = −0.58) and 

previous work (41) (𝑟 = −0.67). This means as the surface lipophilicity increases, cell 

cluster area decreases. The pKa also has a strong +correlation with cell cluster area (𝑟 =0.57) meaning as the pKa value increases (less acidic), so does cell cluster area. 
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Neuron proportion is affected from logP2 to logP5, molecular mass, volume, and pKa. 

Experimentally, LogP4 was found in previous work to have a –correlation with neuron 

density (𝑟 = −0.48) and the pKa with a +correlation (𝑟 = 0.38) but the latter is not 

significant. From this work, we found −correlations with pKa and neuron density (𝑟 =−0.68), neuron proportion (𝑟 = −0.52) agreeing with previous findings (41). The logP 

correlations suggest that as surface lipophilicity increases, neuron density decreases. It is 

believed neurons are on top of an astrocyte carpet in in vitro 2D cultures (270). The pKa 

correlation suggests as the surface pKa increases so does neuron density. Molecular mass 

and volume were found to have –correlations with neuron density 𝑟 = −0.47 and 𝑟 =−0.51  respectively. This means as the molecular mass and volume increase, neuron 

density decreases. We interpret molecular volume and mass as chemistry complexity. After 

all, environments made with very complex molecules (laminin proteins) are used as the 

biological control in this project. 

 

 Astrocyte type I and II proportion 

There are two types of astrocytes, where type I has fibroblast-like morphology and type II 

has spindle-like morphology. Cell proportion tells us about differentiation (day 3) and 

proliferation (day 7). Below are correlation graphs between theoretical chemical designs 

and astrocyte type I and II proportion estimates: 
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Figure 4.37: Sensitivity analysis of chemical inputs on astrocyte type I and II proportion estimates. The dashed lines 

indicate the upper and lower critical correlation value considered significant with sample size of at least 𝑛 = 59. Data 
labels indicate significant difference between data from the same time point. 

 

Type I astrocyte proportion model is affected by surface molecule logP1, logp3, molecular 

mass, volume and pKa. Cell proportion gives us the cell counts and standardising the latter 

with cell cluster area gives cell density per area (mm2). In other words, cell proportion is 

related with cell density. Experimentally from this and previous work, +correlations were 

found with type I astrocyte density and logP (𝑟 = 0.61 and 𝑟 = 0.79 (41)). This means cell 

density increases as the lipophilicity increases on the culture surface. This adds to the 

hypothesis that astrocytes are closer to the culture surface compared to neurons (270). 

LogP3 also has a –correlation with type I astrocyte proportion (𝑟 = −0.48) meaning as 

surface lipophilicity increases, cell proportion decreases. From this and previous work (41), 

molecular volume has –correlations with astrocyte density (𝑟 = −0.52  and 𝑟 = −0.71 

respectively). A similar relationship is found with pKa in this and previous work (𝑟 = −0.62 

and 𝑟 = −0.61 respectively). This means that as the molecular volume and pKa increase 

individually, type I astrocyte density decreases in both situations. 

 

Type II astrocyte proportion model is affected mainly by surface acidity measure (pKa). 

Experimentally from this work, the pKa was found to +correlate with type II astrocyte 
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proportion (𝑟 = 0.44) although not significant. In other words, this means as the pKa value 

increases (less acidic) so does the proportion of astrocytes. 

 

 Proportion of unknown type cells and neurite length 

Unknown type cells are cells that did not test positive for the markers (tags) used in 

experiments. In other words, these cells are unidentified of type but we know they are 

there as their nuclei tested positive (DAPI) and they are visible in cell images. These cells 

could be neural stem cells/progenitors, oligodendrocytes, ependymal cells or microglia. 

Worst-case scenario, unknown type cells are assumed as neural stem cells/progenitors 

therefore minimising their proportion is desirable. This is because progenitor cells can 

make copies of themselves and undifferentiated cells cannot enter a patient’s brain in a 

transplant therapy (91,282).  

 

Functional nerve tissues consist of neural projections (neurites or axons) to communicate 

with neighbouring cells using electrical conduction across large sections of tissue. Neurite 

length is a good indicator of this in artificial environments (in vitro). One aim of neuro-

regenerative biomaterials is to grow and guide neurons to specific injury areas and re-wire 

compromised neural circuit to restore function. Increasing neurite length is desirable in 

order to connect to neighbouring cells and communicate across large sections of tissue. 

Below are correlation graphs between theoretical chemical designs, unknown type cell 

proportion and neurite length estimates: 
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Figure 4.38: Sensitivity analysis of chemical inputs on unknown type cell proportion and neurite length. The dashed lines 

indicate the upper and lower critical correlation value considered significant with sample size of at least 𝑛 = 59. Data 
labels indicate significant difference between data from the same time point. 

 

Proportion of unknown type cells model is affected by the surface acidity measure (pKa). 

Experimentally, the pKa was found to +correlate with unknown type cell proportion (𝑟 =0.75). This means as surface acidity decreases, unknown type cell proportion increases with 

it. 

 

Neurite length model is affected by all chemical inputs. Experimentally from this work, the 

logP was found to +correlate but not significant (𝑟 = 0.37) and from previous work (41) 

the –correlation is a strong one (𝑟 = −0.81). Both relationships were found in the model 

output. From this work, molecular mass and from previous work data, molecular volume 

were both found to +correlate with neurite length (𝑟 = 0.41 and 𝑟 = 0.46) although none 

of these are significant. This means as molecular mass and volume increase, neurite length 

increases. Lastly, the pKa +correlates with neurite length from this and from the previous 

work (𝑟 = 0.51 and 𝑟 = 0.48) although the latter is not significant. This means as surface 

acidity decreases, neurite length increases. 
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 Astrocyte area and fibre length 

Astrocyte spreading is related with fibre length as astrocytes extend protrusions to interact 

with other cells and with the surface for migration and attachment (93). Astrocytes interact 

with themselves, other glial cells and neurons (194). Astrocyte spreading means forming 

stress fibres and focal adhesions (due to Rho activation) because astrocytes are establishing 

and stabilising altered cytoarchitecture (357). Minimising both type I astrocyte area and 

fibre length is preferred, and laminin’s performance sets the upper boundary. Below are 

correlation graphs between theoretical chemical designs, type I astrocyte area and fibre 

length estimates: 

 

Figure 4.39: Sensitivity analysis of chemical inputs on type I astrocyte area and fibre length. The dashed lines indicate 
the upper and lower critical correlation value considered significant with sample size of at least 𝑛 = 59. Data labels 

indicate significant difference between data from the same time point. 
 

Type I astrocyte area model is affected by all chemical inputs except logP3 and logP4. 

Experimentally from this work, logP has a –correlation with type I astrocyte area (𝑟 =−0.77). This means as surface lipophilicity increases, type I astrocyte area decreases. 

Molecular mass and volume from this work have –correlations (𝑟 = −0.15 and 𝑟 = −0.42) 

with type I astrocyte area and both are not significant. The surface acidity measure (pKa) 

correlates negatively in the early time point (𝑟 = −0.40) and positively in the latter time 

point (𝑟 = 0.38) but both are not significant. For the former, this means as the surface 
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acidity decreases, type I astrocyte area decreases as well. For the latter correlation, the 

inverse is happening. As surface acidity decreases, type I astrocyte area increases. 

 

Fibre length model is affected mostly from the logP2 chemical input. Experimentally from 

this and previous work (41), logP +correlates with astrocyte fibre length (𝑟 = 0.49 and 𝑟 =0.79) both significant. This means as surface lipophilicity increases so does astrocyte fibre 

length. 

 

4.3 DISCUSSION 

In the previous chapter, neural cell responses have been investigated on a range of 

substrates with defined chemical characteristics. Cells respond to their environment 

therefore biomaterial design is key in optimising cell culture for in vitro applications. 

Understanding cell-substrate interactions allows designing surfaces to influence cell 

differentiation and control their morphology. The application of this work can be, for 

example, to generate dopaminergic neurons lost during the progression of Parkinson’s 

disease. Controlling stem cell differentiation to mature dopaminergic neurons is key to 

enhance regeneration of clinical therapies. Here, we added to the previous investigation of 

synthetic environments to control cell performance and match this with that of biological 

environments. Cell performance data used in this chapter are from E16 Sprague-Dawley rat 

cortex chosen the maximise the differentiation potential of neural stem cells and 

progenitors to cholinergic neurons (work with acetylcholine)  that degenerate in 

Alzheimer’s disease (375). This cell type is necessary for memory and learning (376). 
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 Cell performance 

This section details the morphological cell performance observed in cell images. Cell 

performance metrics allows profiling environments for their effect on tissue formation. 

Environments with defined surface chemistry were seeded with cell spheres 

(neurospheres) and at two time points (day 3 and 7), these were “fixed” in place. Fixed cells 

were tagged with fluorescent markers that selectively bind to target cell types. Below is a 

table with the optimisation goal for the cell parameters in this section: 

 

Table 4.11: Cell parameter optimisation intent. 
 

Cell parameter Goal Reason 
Cell density (for all cell 

types) Minimise Increases chance for cell differentiation to 
neurons and glia 

Neuron proportion Maximise Difficult to obtain, functional component of 
nervous system 

Type I astrocyte 
proportion Minimise High proliferation ability and therefore increase 

density and paracrine signalling 
Type II astrocyte 

proportion Maximise Rare in synthetic environments 

Proportion of 
unknown type cells Minimise Lower risk of undifferentiated cells 

 

 Cell cluster area and spreading 

Methyl’s low performance on the early time point can be explained from the lipophilic 

nature of methyl (logP 1.82) where less cell migration is expected to minimise interaction 

with these environments. This means cell clusters do not merge as they do in other 

environments. There is a strong negative correlation with logP and cell cluster area at day 

3 (𝑟 = −0.55) meaning that as the logP value increases (lipophilicity), cell cluster area 

decreases. In addition, methyl environments are the most basic from the group with pKa 

value of 48. Environments containing nitrogen terminations are Cyano, l-diNH2, diNH2, NH2. 

The most lipophilic from this group is long diamine and the least lipophilic is diamine both 

exhibiting similar performance with other nitrogen containing environments as well. This 
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means the mechanism responsible for cell cluster spreading must lie in the head group as 

all of these environments have similar pKa values (9.7) also found in correlation tests (𝑟 =0.55). For the later time point, the low performance of acidic environments COOH, OH and 

3-methoxy is expected. Their average pKa value is 4.5 being the lowest among all synthetic 

environments. 

 

Carbomethoxy and butylamine perform very similarly on both time points and therefore 

on average. All environments in this project terminating with hydroxyl perform lower than 

carbomethoxy. The main difference is carbomethoxy termination is similar with the 

carboxyl (COOH) but with an extra carbon on the hydroxyl group (Figure 4.40). This is a clue 

that the hydroxyl termination does not help increase cell cluster area. 

 

The main difference between propamine and amine is their amine group’s position being 

on the 2nd from the top constituent on the former compared to the very top on the latter. 

In addition, butylamine shows the amine group’s positional effect more clearly.  The trend 

observed is the further up the amine group is the larger the clusters judging by amine and 

diamine. Diamine is still the top synthetic environment although it is similar with amine and 

propamine in terms of pKa value, 10.  

 

Another trend observed is the logP values of the top 3 synthetic environments. It appears 

the lower the logP value the larger the cell cluster area ( 𝑑𝑖𝑎𝑚𝑖𝑛𝑒 > 𝑎𝑚𝑖𝑛𝑒 >𝑎𝑚𝑖𝑛𝑒𝑝𝑟𝑜𝑝). In previous work (264) (section 3.2.3.3) investigating amine, diamine, and 

triamine environment found that as amine content decreases, cell cluster 

area/neurosphere spreading increases. In relevant literature (377) however, a positive 

correlation was found, agreeing with the above finding of this work. 
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CBM COOH diNH2 ButylNH2 

  
 

Figure 4.40: Chemical structures of carbomethoxy (CBM), carboxyl (COOH), butylamine (butylNH2) and diamine (diNH2). 
The constituents circled in red are for comparing the position of molecule constituents between chemistries in each 

group. 
 

 Cell density and proportion 

Cell density is a measure of how close the cells are to each other and cell proportion tells 

us how many of them are there compared to total cell counts. An imbalance in the 

proportion and migration of cells can have adverse effects for transplant recipients such as 

uncontrolled movement (overproduction of serotonin in the transplant) (282). Another 

effect is teratomas from progenitors or stem cells if they are present in the transplant tissue 

(91). Developing therapy grade tissue requires a benchmark environment and laminin was 

found to serve this purpose well (41,97). 

 

Cell density and proportion measures were obtained for two time points – day 3 and day 7. 

These cell responses inform on cell differentiation on the early time point (day 3). At this 

stage, high density means cells reside inside the neurosphere because they are avoiding 

interacting with their environment. The other time point, day 7, is a good indicator of 

proliferation (101). Here, if cell density is similar but the cell cluster area is larger means 

cells are dividing.  
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 Neuron density and proportion 

Cell density is calculated with the total cell type count standardised by the cell cluster area. 

This means, the more neurons found and the larger the cell cluster area the better as this 

minimises the cell density. This kind of cell behaviour is observed in biological environments 

(41,97,378). 

 

As shown in the bottom graphs of Figure 4.14, diamine (diNH2) environments provide the 

lowest neuron density and the lowest neuron proportion with similar findings from 

previous work (264). Methyl (CH3) environments perform the least well, with highest 

neuron density, but they do come with high neuron proportion. The best balance between 

the 2 cell parameters is seen on amine (NH2) environments with low neuron density and 

good neuron proportion. Previous work (41) found very similar trends but the values 

obtained are different due to different sampling methodology in cell counting. 

 

For the early time point, the good performers of cell density are amines (NH2, diNH2, l-

diNH2), cyano, thiol (SH) and hydroxyl (OH) have similar and low neuron density but 

different neuron proportion. The interesting part is that with the exception of hydroxyl, all 

of the other environments in this group have similar acidity measures of 9.8 pKa. We 

hypothesise the difference in neuron proportion could be attributed to the lipophilicity of 

environments. Correlation tests revealed a significant +correlation (𝑟 = 0.54) between 

logP and neuron density at day 3. In addition, –correlations with pKa and neuron density, 

proportion (𝑟 = −0.68, 𝑟 = −0.52) are observed at day 7 meaning as the pKa values 

increases (less acidic), neuron density and proportion decrease. Amine and long diamine 

are more lipophilic compared to diamine, which supports the hypothesis. The exception is 

thiol being the most lipophilic but having the smallest proportion of neurons. A similar 



Page 264 

trend is observed in the latter time point with these environments and thiol and methyl 

both pick up neuron proportion further supporting the hypothesis. 

 

3-methoxy, COOH, and CH3 environments offer higher cell proportion compared to CBM. 

3-methoxy’s termination is like carbomethoxy but the latter performs better in lowering 

neuron density. The difference between the two may not be significant although this 

hypothesis is supported from previous findings (section 3.3.2) where moderately 

hydrophilic/borderline hydrophobic surfaces reduce neuron density. It is suspected that 

CBM’s double bonded oxygen on the carbon (circled in  

Figure 4.41, A) is involved in lowering cell density, as this is the main difference with 

3-methoxy. The answer could be in the termination’s logP values. OH, 3-methoxy, and 

COOH have a logP of around -0.66. Methyl’s (CH3) logP being the worst performer is 1.82. 

CBM on the other hand, has a logP value around -0.08 indicating this value is closer to the 

ideal for oxygen containing molecules and lower neuron density. A molecule having the 

carbomethoxy group has been used for neuroimaging to study dopamine reuptake in 

Alzheimer’s disease patients (379). This could be the explanation for CBM performing 

better in cell density than other oxygen containing surface chemistries with similar cell 

cluster area. 

 

The amines are diamine (diNH2), amine (NH2), propamine (NH2prop), butylamine 

(butylNH2), and aminohexyl (l-diNH2). These show the importance of the position of the 

amine group in the backbone self-assembly molecule used to change the surface chemistry 

of cell culture surfaces. The lower the amine group is found in the backbone of surface 

molecules, the higher the cell density is observed. On butylamine and aminohexyl (l-diNH2) 

environments, lower neuron proportion is observed (Figure 4.14 and  
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Figure 4.41, B). This effect could be related with the carbon content because the two 

environments have the highest count of carbon atoms in their backbones compared to the 

other amines. On day 7, diamine and butylNH2 share something interesting. Both have low 

neuron proportion and an amine group around the 3rd and 4th constituent of the molecule. 

Diamine’s top amine group is the reason lower cell density is observed on this environment. 

 

A. Lower neuron density B. Lower neuron density 

CBM 3-methoxy diNH2 ButylNH2 

  
 

Figure 4.41: Chemical structures of carbomethoxy (CBM), 3-methoxy, diamine (diNH2), and butylNH2 (butylNH2). The 
constituents circled in red are for comparing the position of molecule constituents between chemistries in each group. 

 

 Astrocyte density and proportion 

Cells tend to differentiate to a larger degree to type I astrocytes and these are excellent in 

proliferation than most of the other cell types in the central nervous system. The degree of 

astrocyte proliferation can be used as an indicator of cell stress (358,359). Extrapolating 

from this, lowering type I astrocyte proportion is desirable. For the other type of astrocytes 

(II), increasing their proportion is preferred as they are rare in in vitro cultures. 

 

Type I astrocytes 

As shown in the bottom graphs of Figure 4.16, diamine (diNH2) environments provide the 

lowest neuron density and the lowest neuron proportion with similar findings from 

previous work (264). Methyl (CH3) environments perform the lowest with highest neuron 

density but they do come with high neuron proportion. The best balance between the 2 
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cell parameters is seen on amine (NH2) environments with low neuron density and good 

neuron proportion. Previous work (41) found very similar trends but the values obtained 

are different due to different sampling methodology in cell counting. 

 

For the early time point, the good performers of cell density are nitrogen-containing 

terminations (NH2, diNH2, l-diNH2 and cyano). Diamine has the lowest cell density but also 

comes with highest proportion of type I astrocytes.  Since the pKa (acidity) measure for 

these terminations is similar (9.8), the logP (lipophilicity) of diamine (-0.62) is hypothesised 

to have an effect on type I astrocyte proliferation and differentiation. These findings have 

also appeared in correlation tests revealing 2 correlations with logP on day 3 and 1 with 

pKa on day 7. The first one is a +correlation with type I astrocyte density (𝑟 = 0.61) 

meaning as the logP value increases so does cell density. The other correlation is a –correlation with type I astrocyte proportion (𝑟 = −0.48). At day 7, the –correlation with 

pKa and neuron density means as the pKa value increases, neuron density decreases. 

 

Environments with lower type I astrocyte proportion are methyl and 3-methoxy and both 

have logP values of 1.82 and 1.51 respectively. Thiol has a similar pKa as the amines but the 

highest logP at 2.31. Thiol has among the high cell proportion setting the upper boundary 

for this chemical parameter. Adding to the hypothesis of the effect of lipophilicity on type 

I astrocyte proliferation and differentiation is the cell proportion of methyl (logP 1.82, pKa 

48) in the later time point. It has the lowest cell proportion. Carboxyl environments (logP -

1.43, pKa 4.87) in this time point have the second lowest but also the highest cell density. 

 

Type II astrocyte 

As shown in the bottom graphs, overall diamine and long diamine (diNH2, l-diNH2) 

environments provide the lowest type II astrocyte density and the highest cell proportion. 
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Hydroxyl (OH), carboxyl (COOH), amine and methyl (CH3) environments are not good 

performers with low cell proportion. For the early time point, the proportion and density 

of cells goes up with the logP (lipophilicity) (𝑟 =  0.54, 𝑟 = 0.51) evident in amine, 3-

methoxy and long diamine. For the later time point, it is not clear what drives cell 

differentiation to type II astrocytes. Except for amine and 3-methoxy, the good performers 

maximising type II astrocyte proportion have a pKa value 9.8. 

 

In Figure 4.17, CBM returns as a good performer with type II astrocyte proportion on the 

later time point (day 7). This suggests type II astrocytes differentiation must have happened 

between day 3 and day 7 time-points for CBM environments. For cell proportion on day 3, 

butylamine (butylNH2) is the best performer from all synthetic environments and 

carbomethoxy (CBM) is the worst having no type II astrocytes. The performance order on 

this time point is 𝑏𝑢𝑡𝑦𝑙𝑁𝐻2 < 𝑁𝐻2𝑝𝑟𝑜𝑝 < 𝑃/𝐿𝐴𝑀. For day 7, carbomethoxy (CBM) is the 

best performer and butylamine (butylNH2) is the worst from the remaining environments. 

The order of cell proportion performance on this time point is  𝐶𝐵𝑀 > 𝑁𝐻2𝑝𝑟𝑜𝑝 >𝑃/𝐿𝐴𝑀 >  𝑏𝑢𝑡𝑦𝑙𝑁𝐻2. 

 

Carbomethoxy (CBM) is better compared to 3-methoxy in lowering type I astrocyte density 

on day 3. The main difference with 3-methoxy is CBM’s termination with the double 

bonded oxygen on the carbon (circled in Figure 4.41, A). As previously, the CBM’s 

termination logP value is suspected to be the reason. The low performer methyl (CH3) has 

a logP value of 1.82 being lipophilic whereas CBM has a termination logP value 

around -0.08. Methyl does have the advantage with type I astrocyte proportion compared 

to CBM and this could be due to paracrine signalling inhibiting cell proliferation or because 

of low extracellular matrix resources (272,273). 
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The position of the amine group is important is important for lowering type I astrocyte 

proportion. For surface chemistries where the amine group is on the top such as amine and 

diamine, higher cell proportion is observed on day 3 except for aminohexyl. This could be 

from the higher carbon content of this chemistry as the methyl (CH3) environment has the 

lowest cell density. On surface chemistries where the amine group is lower than the 

termination (butylNH2 and NH2prop), lower cell proportion is observed on day 3. By day 7, 

a similar trend is observed except for butylNH2 with the highest cell proportion. This is 

interesting and warrants deeper investigation. Also, on this time point, all environments 

including the biological control, has an increase in cell proportion showing the proliferative 

ability of this cell type. No significant differences are observed in cell proportion for the 

same time points from the new environments. 

 

Type II astrocytes (Figure 4.17), do not share the proliferative ability of type I astrocytes. 

For the environments with none of this cell type in day 3 but some in day 7 means there 

was cell differentiation to this cell type between the two time points. Cells present on day 

3 but not on day 7 means astrocytes type II did not proliferate or they have died. It is 

possible other cell types proliferated to such degree that reduced the already low chance 

of sampling this cell type during image analysis. 

 

CBM has the highest differentiation potential to type II astrocytes out of other oxygen 

containing self-assembly molecules (COOH, 3-methoxy, OH) on day 7. CBM’s termination 

logP is suspected to be reason (logP -0.08) as this is the main difference spotted between 

the similar 3-methoxy. Although, 3-methoxy does have type II astrocytes present on day 3. 

 

Butylamine (butylNH2) increases type I astrocyte and II proportion just by having the amine 

group near the head group of the self-assembly molecule. The head group is where these 
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molecules adhere on the surface allowing chemical modification. Propamine (NH2prop) 

has its amine group at a good position in the backbone of the molecule (Figure 4.43) as it 

offers low cell density and good proportion of type II astrocytes compared to others. 

 

 Unknown type cells: density and proportion 

The general trend is this cell type can appear in either time point (day 3 or day 7). For cells 

appearing on day and “disappear” by day 7 means they were stem cells/progenitors and 

have differentiated or have died. For unknown type cells appearing only on day 7 means 

they were missed during sampling in image analysis possibly overlaid by other cells, and 

have proliferated. From the left graph above, the top performing environment from the 

remaining surface chemistries is butylamine (butylNH2). The low performer is 

carbomethoxy with higher cell density on both time points. For this cell type, the cell 

proportion drives the trend of cell density resulting in very similar graphs. The order of 

performance for both cell performance metrics of new environments is  𝑏𝑢𝑡𝑦𝑙𝑁𝐻2 <𝐶𝐵𝑀 < 𝑁𝐻2𝑝𝑟𝑜𝑝. There is significant –correlation between cell cluster area and unknown 

type cell proportion at day 3 time point ( 𝑟 = −0.51 ). This adds to the hypothesis 

maximising cell cluster area will maximise cell differentiation to neurons and glia therefore 

minimise unknown type cell proportion. 

 

Unknown type cells on carbomethoxy have a higher proportion compared to other oxygen 

containing surface chemistries (OH, COOH, 3-methoxy). This also gives higher cell densities 

especially on day 3. Figure 4.42 below shows CBM’s chemical structure compared to other 

oxygen containing molecules. The same double bond oxygen favouring type II astrocyte 

proportion may be doing so with unknown type cell types. Afterall, CBM and COOH share 

this and both perform worse than hydroxyl and 3-methoxy. For all of these surface 
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chemistries, their pKa values is around 4.41. Their termination logP value for CBM and 

COOH is -0.08 and -0.54 respectively. For OH and 3-methoxy, their logP values are -0.72 

helping them with keep unknown type cell proportion low. Perhaps CBM is “friendlier” to 

the neural lineage since it is used in neuroimaging to study dopamine reuptake in 

Alzheimer’s Disease (379). 

 

Lower proportion of unknown type cells 
 

OH 3-methoxy COOH CBM 

 

 
 

Figure 4.42: Oxygen containg surface chemistries. Ordered from lower to higher unknown type cell proportion (left to 
right). 

 

From the cell proportion graph (Figure 4.18), similar trends are observed with cell density 

but there is an additional one. From the single amine surface chemistries, amine has the 

lower cell proportion and propamine (NH2prop) has the highest on day 7 (Figure 4.43). In 

between these two is butylamine (butylNH2). The better position for the amine group to 

reduce the proportion of unknown type cells is on the top or (termination) or 5 atoms down 

in the backbone shown in Figure 4.43: 
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Lower proportion of unknown type cells 
 

NH2 ButylNH2 NH2prop 

 
 

Figure 4.43: Nitrogen containing surface chemistries. Encircled in red are the constituents that help increase neurite 
length and in black are those that do not. 

 

 Neurite length 

The lowest performer from the group are carboxyl (COOH) and hydroxyl (OH) environments 

both considered hydrophilic and acidic (pKa 4.5) compared to the rest. Biological (P/LAM) 

environments have medium neurite length. This is expected because in these 

environments neurons have relatively high proportion and low cell density (Figure 4.14) 

meaning neurites do not have to extend far to find other cells. This is shown in amine 

environments with lower cell density than P/LAM and longer neurites. A similar trend was 

expected with diamine environments but this is not the case and this disagrees with 

previous work (41) on this time point. This difference is attributed to the sampling 

methodology. 

 

The day 7 results constitute a good example of the surface chemistry’s effect on neurite 

length. Methyl, carboxyl and amine (CH3, COOH, NH2) environments have the shortest 

neurites. For the first two this is expected as their neuron density and proportion is high. 

For amine being one of the lowest cell density environments, this outcome is unexpected. 

An explanation for this is neurons may be not migrated together with astrocytes in the early 

stages of the culture or neurons may have died. Diamine on the other hand with even lower 
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neuron density and proportion shows the expected behaviour with longer neurites now 

agreeing with previous work (41). 

 

As shown in the bottom graph of Figure 4.20, overall thiol environments provide the slightly 

longer neurites compared to the rest and biological environments the shortest. There is +correlation with pKa (acidity) and neurite length on day 3 (𝑟 = 0.51 ). Methyl (CH3) 

environments perform on the lower end likely due to their high cell density and high pKa 

value 48 setting the upper boundary for this chemical parameter. 

 

Previous work found similar outcomes with these two environments (41) attributing the 

neurite elongation to molecules called epitopes present in the supportive molecule matrix 

(380,381). Another molecule attributed to neurite outgrowth is neural cell adhesion 

molecule (NCAM) present on the surface of neurons and glia (382). Biological (P/LAM) 

environments scored similarly with the earlier time point. For day 7, they have the shortest 

neurites disagreeing with previous work (41). 

 

From Figure 4.20, propamine (NH2prop) shows a good position of the amine group on the 

surface chemistry. For molecules terminating with an amine group, shorter neurite length 

is observed. With respect to their acidity (pKa) values, propamine has the same (9.2) as the 

lowest performer amine. Their terminal logP values are also the same (-0.66) but their 

carbon content is slightly different. Amine has one less carbon in its backbone compared 

to CBM. The interesting part is amine shows the same flatness in neurite length on both 

time points just like biological control environments. Butylamine’s amine group is lower 

than the other amine environments and it performs as second best. This is further evidence 

amine as a terminal group is not good for increasing neurite length. What is interesting is 



Page 273 

butylamine’s logP value (1.82) is the same as the lowest performer, methyl (CH3). This adds 

to the hypothesis that cells sense the 6th constituent of the surface chemistry. 

Longer neurites 
 

NH2prop ButylNH2 NH2 

 
 

Figure 4.44: Nitrogen containing surface chemistries. Encircled in red is the position of the amine group helping increase 
neurite length and in black is the position that does not. 

 

 Type I astrocyte area and astrocyte fibre length 

Significant differences tests revealed that none of the scores is significantly different across 

any environment or time point. Visually, this can also be seen since the error bars (median 

absolute deviation) of day 3 and day 7 of the same environment meet at any point. The 

same goes for error bars between environments for both type I astrocyte area and 

astrocyte fibre length. 

 

For both type I astrocyte area and astrocyte fibre length, none of the scores is significantly 

different across any environment or time point. 

 

In this section, cell images and graphs of cell performance have been presented for all 

environments including the biological control (P/LAM). The chosen central tendency 

measure is the median and the measure of spread is the median absolute deviation. The 

reason for this is the gamma distribution of cell performance measurements although this 

are mainly for graphing purposes. Amine environments offer the largest cell cluster area, 

diamine environments the lowest neuron density, and methyl environments maximise 
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neuron differentiation. Propamine offers the highest proportion of the rare type II 

astrocytes and highest proportion of unknown type cells while the rest of the amines offer 

lower proportion of unknown type cells. Except for propamine, remaining environment 

show no significant differences for neurite length, type I astrocyte area and astrocyte fibre 

length. 

 

The need to model cell responses computationally is to accelerate the discovery of better 

synthetic environments to develop nervous tissue fit enough to be used in therapies. With 

conventional cell culture experiments, it takes 6 months from start to finish, collecting and 

analysing cell data for 13 tissue-engineering environments. Done computationally, this will 

result in lower cost and less time. Below is a discussion for the selected models for 

morphological cell performance. 

 

 

 Computational cell models 

 Cell cluster area 

Cell cluster area is related with cell sphere (neurospheres) spreading early after seeding 

them on modified surfaces, and with cell proliferation. Maximising the cell cluster 

area/neurosphere spreading is desirable as this increases cell differentiation potential 

(383). 

 

The model for cell cluster area uses the time point indicator, molecular mass (chemical 

complexity), logP (lipophilicity) and acid dissociation constant (pKa) to predict cell cluster 

area. These chemical parameters are important factors to control cell cluster area. We 

know this as in cross-validation model selection good models have been found for both 



Page 275 

time points. This model performance is found from splitting data in 10 parts then using 9 

parts to train a model then use the remaining part to validate. This was repeated 10 times 

and in each iteration, the training and validation data are different. This method maximises 

the use of training data to construct predictive models and validating data to test the model 

on “future” data. In other words, as long as prediction error is minimised, the cross-

validation model performance gives a good indication for model robustness. The variance 

of predictions is smaller than the real standard deviation meaning the confidence in the 

predictions is high. The logP and pKa of the terminal group were found important as well 

by sensitivity analysis for model inputs. The former chemical parameter was found to 

correlate strongly with previous (41) and new data. 

 

 Neuron proportion 

Successful cellular therapies to regenerate nervous tissue depend partly on the amount of 

neural cells delivered. Neuronal network allows function such as voluntary bodily 

movement. Controlling the density and proportion of transplant relevant cell populations 

is a key element in developing and scaling up cell-based therapy. As long as we know of the 

proportion of cells, cell density is derived from total cell count standardised by the cell 

cluster area. Neuron proportion tells us about differentiation in the early time point (day 

3) and about proliferation on the later time point (day 7). 

 

The neuron proportion model uses input variables such as time point indicator, chemical 

complexity (molecular mass), logP (lipophilicity), and pKa (acidity) of the terminal group of 

the surface. All of these are important in predicting neuron proportion also found by 

sensitivity analysis for model inputs. We know this as the last two were found to correlate 

in previous work (41) and in this work, the pKa, molecular mass and volume were found to 
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correlate. In addition, the 10-fold cross-validation model fit is excellent for both time 

points. Prediction variance is low for model due to the numerous decision trees used. 

 

 Astrocyte proportion 

Astrocytes are robust glial cells that play several roles in the central nervous system. There 

are two types of astrocytes, where type I has fibroblast-like morphology and type II has 

neuron-like morphology. They manage chemical signals (neurotransmitters) exchanged by 

neurons, strengthen neuron connections (synapses) (356) called long-term potentiation 

(275) among other functions. Astrocyte cell density and proportion can tell us about 

extracellular resources available in the vicinity (272,273) and cell stress (358,359). As 

previously mentioned, cell proportion tells us about differentiation (day 3) and 

proliferation (day 7). 

 

The type I astrocyte proportion model uses the time point indicator, molecular mass and 

volume, logP (lipophilicity) and pKa (acidity) for prediction. These are important factors for 

the model also revealed by sensitivity analysis. The logP was found experimentally to 

correlate with cell proportion in this and previous work (41). The cross-validation model fit 

is good for both time points with low bias but the variance is sometimes outside the real 

standard deviation. More data and variance reduction techniques should help in 

minimising this. 

 

The type II astrocyte proportion model uses the time point indicator, logP (lipophilicity), 

molecular mass and volume, and the pKa (acidity) of the terminal group of the surface 

chemistry. Experimentally from this work, the logP and pKa were found to correlate with 

this cell parameter. The model fit is good with low bias and variance but it is believed that 



Page 277 

more data would help reduce this. Sensitivity analysis for model inputs revealed the main 

effector is the pKa agreeing with experimental findings. 

 

 Proportion of unknown type cells 

Unknown type cells are cells that did not test positive for the markers (tags) used in 

experiments. In other words, these cells are unidentified of type but we know they are 

there as their nuclei tested positive (DAPI) and they are visible in cell images. These cells 

could be neural stem cells/progenitors, oligodendrocytes, or ependymal cells. It is useful to 

know the proportion of this cell type as progenitor cells could be present in this cell group. 

These cells can make copies of themselves and therefore cannot enter a patient’s brain in 

a transplant therapy (91,282). 

 

The unknown type cell proportion model uses the time point indicator and the acidity 

measure of the terminal group. Experimentally from this work, the acid dissociation 

constant (pKa) has a strong correlation. Both model inputs are important predicting 

unknown type cell proportion. The model fit is great for the early time point and good on 

the later one. For both, there is low bias and prediction variance although the latter can be 

reduced with additional data. Sensitivity analysis for model inputs revealed the pKa is the 

more important of the two. 

 

 Neurite length 

Functionary nerve tissues consists of neural projections (neurites or axons) to communicate 

with neighbouring cells using electrical conduction across large sections of tissue. Neurite 

length is a good indicator of this in artificial environments (in vitro). One aim of neuro-

regenerative biomaterials is to grow and guide neurons to specific injury areas and re-wire 
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compromised neural circuit to restore function. Increasing neurite length is desirable in 

order to connect to neighbouring cells and communicate across large sections of tissue. 

 

The neurite length model uses mainly the logP (lipophilicity), molecular mass and volume 

of the untethered surface chemistry, and acidity measure (pKa) of the terminal group. 

Experimentally from this and previous work (41), all the model inputs were found to 

correlate with neurite/axon length. The model fit is very good for both time points with low 

bias and variance due to numerous decision trees used. Sensitivity analysis for model inputs 

revealed all the inputs affect the prediction agreeing with previous findings. 

 

 Type I astrocyte area and astrocyte fibre length 

Astrocyte spreading is related with fibre length as astrocytes extend protrusions to interact 

with other cells and with the surface for migration and attachment (93). Astrocytes interact 

with themselves, other glial cells and neurons (194). Predicting astrocyte fibre length is 

important as it is an indicator of the indirect relationship astrocytes have with the culture 

environment. Astrocyte spreading means forming stress fibres and focal adhesions (due to 

Rho activation) because astrocytes are establishing and stabilising altered cytoarchitecture 

(357). 

 

The type I astrocyte area model uses the lipophilicity measure (logP) of the untethered self-

assembly molecules (SAMs) used to modify the presenting chemistry of culture surfaces. It 

also uses molecular mass and volume, and the acidity measure (pKa) of the SAM terminal 

group. Experimentally from this work, all the chemical parameters mentioned were found 

to correlate with type I astrocyte area. The model fit is excellent with for both time points 

with low bias and variance due to model tree rules selected that minimise the standard 
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deviation of the estimates. Sensitivity analysis revealed all type of chemical inputs affect 

the predictions agreeing with experimental findings. 

 

The fibre length model uses the day indicator and the lipophilicity measure (logP) to predict 

the cell parameter. Experimentally from this and previous work (41), the logP was found to 

correlate with fibre length. The model fit is excellent for both time points, with low bias 

and variance due to combining numerous models using the gradient boosting method. This 

method starts with a simple prediction such as the mean then additional models are fit on 

the residuals left from the previous model. Sensitivity analysis revealed the logP to affect 

the predictions the most agreeing with experimental findings. 

 

4.4 NOVELTY 

 Cell culture experiments 

1) Acidic termination e.g. hydroxyl (OH) inhibit cell cluster area spreading 

2) The further up the amine group is the larger the clusters judging by amine and diamine 

with similar pKa values (~10) 

3) The lower the logP value the larger the cell cluster area ( 𝑑𝑖𝑎𝑚𝑖𝑛𝑒 > 𝑎𝑚𝑖𝑛𝑒 >𝑎𝑚𝑖𝑛𝑒𝑝𝑟𝑜𝑝) 

4) In moderately hydrophilic/borderline hydrophobic surfaces with overall logP ~0, lower 

neuron density is observed 

5) On surfaces with logP ~0, lower density of type I astrocyte density and higher 

proportion of type II astrocyte is observed 

6) The lower the amine group is found in the backbone of surface molecules, the higher 

the neuron density is observed 
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7) Lower neuron proportion is observed on surfaces with higher carbon and some amine 

content 

8) The higher the amine group is on the surface, the higher type I astrocyte density is 

observed 

9) The further up the amine group is on the surface, the higher type I and type II astrocyte 

proportion and the lower the unknown type cell proportion is observed 

10) Surface chemistries with logP values  around -0.72 help with keeping the proportion of 

unknown type cells low 

11) The further up the amine group is on the surface, the shorter neurite length is observed 

12) There is evidence that cells sense the 6th constituent of the surface chemistry 

 

 Chemical inputs used by computational models 

1) Cell cluster area uses the time point indicator, molecular mass (chemical complexity), 

logP (lipophilicity) and acid dissociation constant (pKa) 

2) The neuron proportion model uses the time point indicator, chemical complexity 

(molecular mass), logP (lipophilicity), and pKa (acidity) of the terminal group of the 

surface 

3) Type I astrocyte proportion model uses the time point indicator, molecular mass and 

volume, logP (lipophilicity) and pKa (acidity) for prediction 

4) The type II astrocyte proportion model uses the time point indicator, logP (lipophilicity), 

molecular mass and volume, and the pKa (acidity) of the terminal group of the surface 

chemistry 

5) The unknown type cell proportion model uses the time point indicator and the acidity 

measure of the terminal group 
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6) Neurite length model uses mainly the logP (lipophilicity), molecular mass and volume 

of the untethered surface chemistry, and acidity measure (pKa) of the terminal group 

7) The type I astrocyte area model uses the lipophilicity measure (untethered logP), 

molecular mass and volume, and the acidity measure (pKa) of the SAM terminal group 

8) The fibre length model uses the day indicator and the lipophilicity measure (logP) to 

predict the cell parameter 

 

5 SCREENING SURFACE CHEMISTRIES COMPUTATIONALLY 

5.1 INTRODUCTION 

Each predictive model has the captured relationship between the surface chemistry and 

cell performance. These were discovered using machine learning and data from cell culture 

experiments. The predictive models take chemical designs (in numerical form) as inputs 

and produce estimates of morphological cell performance shown below in Figure 5.1. The 

goodness of the chemical design depends on their cell performance that is compared to a 

target. This target is the cell performance of in vitro biological environments with laminin 

and the comparison is performed with a dissimilarity function from Bray & Curtis (260). 

Performing cell culture experiments using computational models then selecting candidate 

surface chemistries using a ranking system is mathematical optimisation. This method is 

the selection of the best element, with respect to some criteria, from a set of available 

alternatives (384). In a simple form, an optimisation problem is solved by maximising or 

minimising a function by systematically choosing input values from within an allowed set 

and computing the value of the function. To our knowledge, our work is the first to 

mathematically optimise the chemical design of biomaterial surfaces. 
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Figure 5.1: Computational cell culture methodology. The inputs are numerical surface chemistries fed into the system 

with predictive models and the output is cell performance estimates. 
 

Optimisation approaches to biological problems can be classified to exact and approximate 

methods. The former outputs the optimal solution when convergence is achieved but this 

does not occur on every instance and this method is limited to small search domains. 

Approximate methods always output a candidate solution but there is no guarantee this is 

the best one (local minima). Approximate algorithms can be classified as stochastic and 

deterministic. Contrary to deterministic methods, stochastic use a random component and 

this means different solutions may be found given the same input parameters. 

 

Related work focused in optimising culture conditions, scaffold design, and drug delivery 

mechanisms. In a recent study, the parameters for electrical stimulation have been 

optimised for cardiac tissue engineering from rat cardio-myocytes to develop 

transplant-grade tissue. The electrode material, amplitude and frequency of stimulation 

have been systematically varied to determine the optimal conditions for tissue engineering. 

The latter two have been optimised with models of electric fields experienced by cells 

found by solving of Maxwell’s equations with the electro-quasistatic approximation (385). 

The authors discovered non-computationally that carbon electrodes exhibit the highest 

charge-injection capacity and produce cardiac tissues with the best structural and 

contractile properties. Computationally, the findings contribute to defining bioreactor 

design specifications and electrical stimulation regime for cardiac tissue engineering. 

Predictive 
models 

Cell 
performance 

estimates 

Surface 
chemistries 
(numerical) 
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In scaffold design optimisation, recent work focused on the optimisation methodology 

rather than a specific biological target (386). Material and pore architecture (mechanical 

properties) of scaffolds have been optimised for use in tissue engineering. The scaffolds 

were fabricated with the stereolithography method being versatile and provides freedom 

of design. Scaffold morphology is a key factor determining tissue formation, as the pore 

network initially provides the spatial template for cell adhesion and proliferation and the 

deposition of extra-cellular matrix. Mechanical properties of the scaffolds were evaluated 

with in compression (mechanical loading) and numerical simulations of this were 

conducted utilising the nonlinear finite element to generate data. The hyperelastic model 

the authors made was used to predict mechanical behaviour of structures with different 

designed pore architectures. The model fit appears good, but the authors did not provide 

error measures. Nonetheless, the authors showed stereolithography fabrication methods 

can be used to prepare tissue-engineering scaffolds with designs that can be modelled, 

allowing optimisation of the properties of the structures. 

 

 Aims & Objectives 

The aim is to screen surface chemistries rapidly with respect to their cell performance using 

a computer instead of real cell culture experiments. Model estimates of cell performance 

are compared with real data from new cell culture environments. The new data have not 

been included to train the predictive models. This allows testing the true predictive 

performance of the models. Cell performance from synthetic environments is compared to 

a target. This target is the cell performance of in vitro biological environments (laminin, 

P/LAM). 
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The objectives for this chapter include: 

1. To compare cell performance data from new synthetic environments with 

environments from Chapter 4 

2. To test computational models for their predictive performance on the new surface 

chemistries with the new cell performance data not present in model training 

3. To perform mathematical optimisation to screen unexplored surface chemistries 

with respect to their cell performance using predictive models 

 

5.2 RESULTS 

 Model testing 

Machine learning allows computers to learn without being explicitly programmed. By 

learning is implied programs go through existing data and look for patterns to devise 

complex models and algorithms that lend themselves to prediction. These analytical 

models allow practitioners to produce reliable and repeatable decisions and results and 

uncover hidden insights by learning relationships and trends in the data. 

 

Once the computational problem has been defined, the data need to be prepared (pre-

processed) to communicate as much information as possible. This is to create effective 

predictive models using machine-learning programs. Once the models are trained, the next 

step is to test them with data that has not been used to train them. This is necessary if the 

models are to be used in practice. Indirectly, data pre-processing, learning algorithms and 

their tuned parameters are tested in the process as these have an impact on the quality of 

the model learnt. 
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The error measure on an independent test dataset is a good indicator of generalisation 

performance otherwise known as prediction goodness. The performance measure is taken 

directly from using the models on a test dataset. Large prediction errors on the test set 

means there is something wrong with the format of training data typically inadequate 

pre-processing, noise, inconsistency, not enough data, improper learning algorithm, or the 

model is overfit. The latter means the model is specialised to training data and performs 

well only on this. 

 

A performance measure is required to test the learnt models. The one chosen is model 

performance ratio (MPR) derived from the absolute difference between real median and 

prediction standardised by the average (1) standard deviation. A ratio closer to 0 means 

the closer the prediction is to the real median and ratio of 1 means the prediction is outside 

of what is defined as acceptable. This error measure was seen previously in the previous 

chapter for model selection. The values for this were obtained from 10-fold 

cross-validation (231). 

 

For the new test dataset, cell culture experiments were performed in the same fashion as 

previously for both chemistry and cell performance. As previously, the error measures of 

each model were collected and shown in Table 5.1: 

 

Table 5.1: Model performance using the test dataset. This dataset consists of data from 3 chemistries that have not 
been used to train the models. D3 and D7 stand for day 3 and day 7 time points. 

 

Target Classifier Time 
point Avg. value Average 

prediction 

Avg. model 
performance 

ratio 

Cell cluster 
area 

Decision tree 
(bagging) (235) 

D3 0.73 mm2 0.82 mm2 0.12 

D7 1.95 mm2 2.68 mm2 0.19 

D3 8.96 % 9.09 % 0.41 
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Neuron 
proportion 

Ensemble decision 
trees (235) D7 2.88 % 5.49 % 0.55 

Type I 
astrocyte 

proportion 

Randomised feature 
(239) k-Nearest 

Neighbours (240) 

D3 89.44 % 92.43 % 0.39 

D7 96.44 % 94.72 % 0.17 
Type II 

astrocyte 
proportion 

Support Vector 
Regression (243,245)

D3 1.46 % 0.38 % 0.39 

D7 0.96 % 0.44 % 0.44 
Proportion of 

unknown 
type cells 

Support Vector 
Regression 

D3 0.17 % 0.18 % 0.18 

D7 0.65 % 0.18 % 0.29 

Neurite 
length 

Randomisable 
ensemble of decision 

trees (bagging) 

D3 45.37 μm 49.18 μm 0.27 

D7 105.79 μm 93.93 μm 0.73 

Type I 
astrocyte 

area 
Model tree (249) 

D3 27.23 μm2 27.19 μm2 0.03 

D7 43.86 μm2 37.49 μm2 0.24 

Astrocyte 
fibre length 

Gradient boosted 
(254) decision trees 

(257,258) 

D3 29.17 μm 30.97 μm 0.13 

D7 40.81 μm 42.95 μm 0.09 
 

Cell data have been indicated for the time point they belong with binary (0 for day 7 and 1 

for day 3). This is for practical reasons, as one model is needed to predict cell performance. 

Perhaps better models would have been found if the data were split for the two 

time-points. Regardless, all but one of the models perform within the acceptable level 

( 𝑀𝑃𝑅 <  1 ). The above results are dissected and shown below for each model test 

environment. Next, is the model testing for cell cluster area, neuron and type I astrocyte 

proportion: 

  

A B
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Figure 5.2: Model testing for cell cluster area, neuron and astrocyte proportion models. Blue symbols represent real 
data and the orange symbols are the estimates. The data labels on the right handside show the model performance 

ratio which is a measure of model goodness compared to real values and their standard deviation. Dashed error bars 
represent 1 standard deviation of real data and the solid line represents the standard deviation of estimates (𝑛 = 90). 

 

From the results above, all predictions are within the acceptable threshold for model 

performance ratio (𝑀𝑃𝑅 < 1 ). Neuron proportion for carbomethoxy (CBM) on day 7 

(graph D) has the largest MPR value (0.83) from the group. Figure 5.3 shows graphs of 

model test for cell proportion of type II astrocyte and unknown type cells, and neurite 

length: 

C D

E F
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Figure 5.3: Model testing for astrocyte and unknown type cell proportion, and neurite length models. Blue symbols 

represent real data and the orange symbols are the estimates. The data labels on the right handside show the model 
performance ratio which is a measure of model goodness compared to real values and their standard deviation. The 
dashed error bars represent 1 standard deviation of real data and the solid line represents the standard deviation of 

estimates (𝑛 = 90). 
 

From Figure 5.3, CBM’s MPR for type II astrocyte proportion on day 7 (graph B) is the largest 

from this group (0.86). Next, are model test graphs for type I astrocyte area and astrocyte 

fibre length:  

 

A B

C D

E F
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Figure 5.4: Model testing for type I astrocyte area and astrocyte fibre length models. Blue symbols represent real data 
and the orange symbols are the estimates. The data labels on the right handside show the model performance ratio 
which is a measure of model goodness compared to real values and their standard deviation. The dashed error bars 

represent 1 standard deviation of real data and the solid line represents the standard deviation of estimates. 
 

This section was about testing the learnt models on new data that were not used to train 

the models. This is a good method to indicate their real generalisation performance. Model 

testing can tell whether models are underfit (high bias), overfit (high variance) or, the 

desirable, have the balance between the two.  

Table 5.1 shows the average real values, model estimates, and model performance ratios. 

Subsequent graphs show the dissected model testing values for each entry in the table. In 

the next section are the results of computational cell culture experiments and the process 

of filtering the results to reconstruct new surface chemistries. 

 

A B

C D
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 Better synthetic environments 

After the models have been tested and are good to be used in practice, the next step is to 

conduct computational cell culture experiments. This involved generating theoretical 

chemical designs (in numerical form) and passing them to computational models to obtain 

from them cell performance estimates. The next step is to compare the estimates of 

synthetic environments to a target, laminin’s cell performance. The problem described is 

mathematical optimisation since the goal is to find better chemical designs out of a set of 

alternatives (with criteria). The purpose can change by choosing the appropriate target e.g. 

maximise neuron proportion by choosing methyl (CH3). This whole process has been 

automated with made-software named ‘Get-Chem’. 

 

Both training and testing data have been unified into one dataset and this has been used 

to retrain the models with the same configuration as previously (Table 4.5). After this step, 

the theoretical chemical designs were to be defined. Each model input needs a minimum, 

a maximum and step values as shown in the table below (Figure 5.5). 

 

 Computational cell culture setup 

There are thresholds for the values of each model input e.g. max for logP should be no 

more than 5 according to Lipinski’s rule of five (209) for drug likeness. Values above this for 

drugs are toxic for humans. Most upper and lower limits for model inputs were determined 

from the min and max values of chemical variables of existing data. Since the target cell 

performance is from laminin environments, the pKa upper limit was adjusted by removing 

one outlier. Methyl’s pKa value is 48 and this is over 4 times larger than the next one down. 

In addition, methyl environments are considered mediocre at best from this work and 

previous work (264). 
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The table below (Figure 5.5) shows the starting value table for model inputs to generate 

theoretical chemical designs. The lower and upper limits for each model input is the top 

and bottom values respectively. The step value is the increment from the previous value 

until the upper limit is reached. The min/max/step values together determine the 

granularity of mathematical optimisation and computational cost of Get-Chem. 

 

Figure 5.5: Starting value range for model inputs when performing computational cell culture experiments. This set of 
data is recursively combined to provide around 15 million theoretical chemical designs in numerical form. These are 

given to predictive models to estimate cell performance. 
 

To
ta

l v
al

ue
s =

 6
5 

LogP1 LogP2 LogP3 LogP4 LogP5 Mol. Mass 
(Da) 

Mol. 
Vol (Å) pKa D3

-1.93 -1.65 -2.54 -1.22 -1.22 60 75 4.5 0 
-1.43 -1.15 -2.04 -0.72 -0.72 75 90 7.5 1 
-0.93 -0.65 -1.54 -0.22 -0.22 90 105 10.5  
-0.43 -0.15 -1.04 0.28 0.28 105 120 13.5  
0.07 0.35 -0.54 0.78 0.78 120    
0.57 0.85 -0.04 1.28 1.28    
1.07 1.35 0.46 1.78 1.78    
1.57 1.85 0.96 2.28 2.28    
2.07 2.35 1.46 2.78    
2.57 2.85 1.96    

  2.46    
  2.96    
  3.46    

Count 10 10 13 9 8 5 4 4 2 
 

 

The first five variables are the partition coefficients for the top 6 constituents of the surface 

chemistries (Figure 5.6). Mol. Mass and volume stand for molecular mass (Da) and volume 

(Å) and the pKa is the acid dissociation constant (log Ka). The last variable is the time point 

indicator with 1 and 0 values for day 3 and day 7 respectively. When recursively combined, 

this list generates 15 million chemical designs and these are passed to predictive models to 

provide cell performance estimates for each. Once the estimates are fully in place, they are 

weighted for their importance as shown in Table 2.7. Cell performance estimates for each 

theoretical surface chemistries are compared to the cell performance of a target 
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environment, laminin. This provides a cell performance index (CPI) with one value, between 

0 and 1, and the closer this index is to 0 the closer the performance is to the target’s. This 

makes it possible to sort the chemical designs in a desired order and select the ones of 

interest. For example, best performing environments where cell estimates are closer 

mathematically to laminin’s. 

 

 
Figure 5.6: LogP values for molecule constituents. LogP5 value is the logP value for the terminal group. Moving down to 

logP1 being the logp value for up to the top 6 constituents of the molecule. 
 

 From theoretical to synthesisable surface chemistries 

After finding the cell performance index (CPI) of chemical designs, the next step was to 

select the ones performing equal or better (smaller index value) than our synthetic best 

environment for each time point (3-methoxy for day 3 or amine for day 7). The results were 

in the thousands for both time points combined. These however are theoretical surface 

chemistries, some of their chemical values may be near the real ones, and not all of them 

can be synthesised. Good candidate results were filtered for the unique values they can 

take for each model input. The results from the computational experiments provide the 

inclusion list of “good” range of unique chemical values to design surface chemistries (Table 

5.2). These were used to redraw the surface chemistries, and these were fed into predictive 

models again to obtain new cell performance estimates and CPI. 

Constituent 1 

Constituent 2 

Constituent 3 

Constituent 4 

Constituent 5 

Constituent 6 

LogP5 = -0.66 

LogP4 = -0.13 

LogP3 = -2.04 

LogP2 = -1.15 

LogP1 = -0.62 
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Results are filtered using Python (v3.6) to create this inclusion list then chemistries are 

re-designed and their chemical values are extracted. Using the pKa and logP values for 

each, the head group and possible side chains of the molecule was first drawn. From that, 

one atom at a time was added to the backbone and possible side branches if necessary. 

The choice of atoms at each level was directed from the chemical values of results for each 

variable. Finally, the molecular mass and volume was calculated for the re-constructed 

chemistries and they were shortlisted only if they matched with those of the theoretical 

chemistries. Below is a table with the unique values for each model input from surviving 

chemical designs. Surviving here means chemical designs that are equal or better than the 

current synthetic best for each time point. 

Table 5.2: Value range for model inputs to perform computational cell culture experiments at day 3 time point (A) and 
day 7 (B). This set of data contains the unique values of “good” performing cell culture environments. The performance 
for day 3 is predicted be better than the synthetic best (3-methoxy) with cell performance index (CPI)<0.09. For day 7, 

the predicted cell performance is the same as the synthetic best (amine) with CPI 0.28. 
 

A LogP1 LogP2 LogP3 LogP4 LogP5 Mol. Mass Mol. Volume pKa D3

To
ta

l v
al

ue
s =

 3
8 -1.93 -1.65 -2.54 -1.22 -1.22 120 75 7.5 1 

-1.43 -1.15 -2.04 -0.72 -0.72 90 10.5  
-0.93 -0.65 0.46 1.78 -0.22 120  
-0.43 -0.15 1.96 0.28    
0.07 0.35 2.46 0.78   
0.57 0.85 2.96 1.28   
1.07 1.35 3.46 2.28   

Count 7 7 7 3 7 1 3 2 1 
 

B LogP1 LogP2 LogP3 LogP4 LogP5 Mol. Mass Mol. Volume pKa D3

To
ta

l v
al

ue
s =

 3
3 -1.93 0.85 -0.54 -1.22 -1.22 60 75 4.5 0 

-1.43 1.35 0.46 -0.72 -0.72 75 90 13.5  
-0.93  1.96 0.28 90 105  
-0.43  2.46 1.28 105    
0.07  2.96 2.28 120   
0.57  3.46 2.78   

Count 6 2 6 6 2 5 3 2 1 
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 Reassessing discovered surface chemistries 

The re-designed surface chemistries have different chemical values than the theoretical 

ones but are still within the “good” range. Reassessment is necessary as another step in 

the process to verify chemical designs. The re-designed chemistries are fed into the same 

predictive models used previously and the cell outputs with their distance to laminin’s was 

calculated. From the survivors, the next step is to search for chemistries as an off-the-shelf 

product preferably in the form of self-assembly molecules. The similarity search was 

conducted in e-molecules and ChemSpider with different labile groups and without. At this 

point, if chemistries are not found inquiries are sent to laboratories to synthesise them. 

 

The above method for finding chemical designs was applied for better/similar to the 

synthetic best as well as mediocre and bottom performers. The chemistries discovered are 

shown in the figure below: 

 

Good Mediocre Low 
Chem1 - Oxyethanamine Chem2 - Phenol Chem3 - Iodine 

  
Methyl-2-[(trimethylsilyl)oxy] 

ethanamine 
Phenyl 

triethoxysilane 
3-Iodopropyl 

trimethoxysilane
 

Figure 5.7: Discovered off-the-shelf silanes used to change the top chemistry of surfaces for use in tissue engineering. 
The leftmost is predicted to perform as good as our synthetic best whereas the rightmost is predicted to perform low. 

The middle chemical is predicted to be somewhere between the top and bottom performer. 
 

The predicted cell performance index of the discovered surface chemistries is shown with 

the real cell performance index of environments used in cell culture experiments: 
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Figure 5.8: Overall cell performance ranks for cell culture environments. Cell response estimates are weighted according 
to their importance on morphological cell performance. These are passed to a dissimilarity metric called the Bray-Curtis 

(260,261) to calculate the cell performance index. The error bars indicate the standard deviation of the dissimilarity 
metric of real data (𝑛 = 32). 

 

In this section, the “good” chemical designs discovered from computational cell culture 

experiments have been presented in the form of tables. These tables contain value ranges 

for chemical parameters after reassessing reconstructed chemical designs. The reason for 

reconstructing the surface chemistries is due to the conversion from theoretical to 

“synthesisable” chemical designs. The conversion causes value changes in the chemical 

parameters and a method to test the resulting chemistries is feeding them in the same 

computational models used to discover them. Off-the-shelf surface chemistries were 

discovered and presented along with their predicted cell performance index. 

 

5.3 DISCUSSION 

 Model testing 

The model in (Figure 5.2, graph A and B) captured the relationship well between the surface 

chemistry and cell cluster area. Predicting propamine (NH2prop) is challenging as the 

terminal logP and pKa are identical to amine’s, one of the top synthetic environments. Even 

so, with the additional information (logP) of the top 6 constituents in the surface chemistry, 
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the model performs well and the highest MPR score for day 7 is 0.26. This is well below the 

acceptable threshold (𝑀𝑃𝑅 < 1). 

 

Moving to (Figure 5.2, graphs C and D) for neuron proportion. Carbomethoxy is challenging 

predict its cell performance more accurately due to its side-chains on the second 

constituent. The only other environment with side-chains is carboxyl (COOH). Although the 

cross-validation model performs well on COOH, there is not enough data for these surface 

chemistries as there is on side-chain-less environments. Propamine (NH2prop) has the 

same issue as with cell cluster area having the same terminal chemistry values as amine on 

highly influential model inputs, the terminal group logP and pKa. Here, the additional data 

of the remaining molecule does not help as much as it did predicting cell cluster area. 

Butylamine (butylNH2) MPR for day 7 is the second highest (0.56) and it is believed this is 

because the terminal logP of this surface chemistry is the same as best performer for this 

cell performance type, methyl (CH3). 

 

In the same Figure 5.2, graphs E and F show type I astrocyte proportion, propamine is once 

again treated as amine as the position of the amine group is not explicit in the data. This is 

because the terminal logP value is for at least two atoms excluding hydrogens. The current 

chemical data representation does not communicate the amine group being on the very 

top or right below that. Regardless, propamine’s MPR is around 0.5 for both time points. 

Butylamine on the other hand has the highest logP values for logP5-logP2 (Figure 5.6) from 

all other environments. The closest environment in terms of high logP values is thiol and 

this model treats it as that. This can be rectified with cell performance data from additional 

surface chemistries having logP values near butylamine’s logP value range. Even so, the 

MPR for butylamine is 𝑀𝑃𝑅 =  0.4 for both time points. 
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In Figure 5.3, graphs A and B show model testing for type II astrocyte cell proportion. The 

model for both time points show a “flat” prediction as seen previously in cross-validation 

of chapter 4, figures 4.17 and 4.18. It is challenging to interpret the chemical effect on this 

cell performance measure from real data and for learning algorithms as well. This is the 

effect of inadequate data for this rare cell type and chemical parameters resulting in 

models providing unsmoothed predictions. The model performance ratio for both time 

points is within the acceptable threshold (𝑀𝑃𝑅 < 1). 

 

The model for the proportion of unknown type cells (Figure 5.3, graphs C and D) shows a 

similar problem seen with the model of type II astrocyte proportion. Unsmoothed 

predictions once again as these were closer to the real values in cross-validation (chapter 

4, figures 4.19 and 4.20). The model used the time indicator and the pKa values to predict 

this cell response. This did provide acceptable MPR for both time points in both training 

and testing but a confusion is now apparent. The pKa values collected were for groups with 

both acid dissociation constant (pKa) and base dissociation constant (pKb). Both chemical 

measures are helpful for predicting whether a species will donate or accept protons at a 

specific pH value. They describe the degree of ionisation of an acid or base. The pKa values 

are not necessarily for the terminal group and this confused the models apparent from the 

predictions above. This explains why propamine is treated as if it is amine.  

 

Neurite length model was tested, and graphs are shown above (Figure 5.3 graphs E, F). In 

cross-validation model performance, the model fit appeared to be good for both time 

points (figure 4.21, 4.22). The propamine estimate on day 7 are outside the acceptable 

range ( 𝑀𝑃𝑅 > 1 ). This is because there are no significant differences between 

environments from real data. Since there is not enough variation in cell response data, it 

was difficult for the machine-learning programs used to explain the outcome better. It 
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could be the learning algorithms cannot tell the amine group is the second atom from the 

top. Perhaps more predictors or different representation of the chemical data may help. 

 

Model testing for both type I astrocyte area and astrocyte fibre length (Figure 5.4) revealed 

unsmoothed predictions. In other words, the model estimates vary little as shown by the 

prediction standard deviation in the above graphs (solid error bars on estimates). This is 

because there are no significant differences between the scores of these cell performance 

metrics on any environment on any time point (Figure 5.4). Despite this fact, the models 

perform well and are within the acceptable prediction threshold (𝑀𝑃𝑅 < 0.33). 

 

 Reassessing discovered surface chemistries 

The predicted cell performance is different from the real one e.g. amine’s day 7 cell 

performance index (CPI) is 0.43 and it’s predicted CPI is 0.28. This is due to optimising the 

model fit. The models selected are the ones with the lowest prediction error (mean 

absolute error, MAE). Fitting a model to reduce the MAE value means the fit is sometimes 

pulled away from some data points and put between a few (Figure 5.9). Reducing overall 

prediction error meant the model was adjusted in such a way where generalisation 

performance was maximised. Below is a graph of model fit examples comparing an overfit 

model (red line) with “better” fit model (green line): 

 

 
Figure 5.9: Model fit examples comparing an overfit model (red line) with a model with a better generalisation fit (green 

line). 
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Figure 5.7 shows oxyethanamine (chem1), the top performer for day 7, is very similar to a 

fragment of a drug called fluvoxamine (387). This drug has neurogenic properties and 

functions as selective serotonin reuptake inhibitor typically is used to treat 

obsessive-compulsive disorder. It is known to restore the balance of serotonin in the brain. 

Serotonin is a monoamine neurotransmitter (chemical signal) partly synthesised in 

serotonergic neurons of the central nervous system. Since serotonin has some cognitive 

functions including memory and learning (plasticity), this chemistry is interesting and 

warrants deeper investigation with cell culture experiments. 

 

The position of the amine group was discussed in model testing. When the amine group is 

positioned in the second constituent, this provides longer neurites as well as higher 

proportion of unknown type cells. Then again, the values of terminal logP and pKa do not 

communicate the exact position of the atoms for the first 2 constituents until the third one 

is added. Propamine is the only surface chemistry with this kind of molecular configuration 

where this problem surfaced. Although propamine’s data have been added into the final 

models, there is no way of knowing if this is resolved until new surface chemistries are 

tested with cell culture experiments. The fragment of the drug fluvoxamine (387) 

mentioned in the paragraph above, is identical to the molecule with the amine group on 

the very top (termination) as shown in the figure below (B). 

 

The mediocre performer in Figure 5.7, phenyl triethoxysilane (chem2) was also found by 

previous work (41) to perform at a similar level as the predictions from this work. The 

application for this is shared with this work; surface engineering for tissue engineering 

using stem cells. The investigators used ventral mesencephalon neurospheres instead of 

cortex. For previous work (41), the real cell performance index (CPI) for day 7 is 0.11 and 

0.25 for amine and phenol respectively. For this work, the predicted CPI is 0.28 and 0.51 
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respectively. The lower the CPI value the closer the cell performance is to laminin but 

because of the sampling methodology the CPI varies between the previous work (41) and 

this study. In addition, phenyl triethoxysilane has also been investigated for controlling the 

dynamics of cell transition (epithelial-mesenchymal) in heterogeneous cancer cultures 

(388). Cell transition is a process where epithelial cells lose their cell polarity and cell-cell 

adhesion and gain migration and invasive properties to become mesenchymal stem cells. 

Their work (388) is important for developing materials to understand cancer growth, 

differentiation, and invasion. 

 

A. Chem1 - Oxyethanamine B. Oxypropanamine 

 
N-Methyl-2-[(trimethylsilyl)oxy]

ethanamine 
(3-aminopropoxy) 

trimethylsilane 
 

Figure 5.10: Discovered off-the-shelf self-assembly molecules used to change the top chemistry of surfaces for use in 
tissue engineering. In A is the discovered surface chemistry that should perform similarly to amine and in B is the 

fragment of a neurogenic drug called fluvoxamine. 
 

The final surface chemistry, 3-Iodopropyl trimethoxysilane (chem3) has been used to 

modify the surface chemistry of magnetic nanoparticles (MNPs) (388). Functionalised 

MNPs were coupled with polyethylenimine as a transfection reagent for neural cells. The 

application of this work was for multimodal MRI-fluorescence imaging and transfection for 

use in neural cell replacements therapies. 

 

From this work, the above off-the-shelf surface chemistries are already used as fragments 

of neurogenic drugs, tissue engineering using neural stem cells, material development for 
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cancer studies, and MRI imaging and transfection for neural cell replacement therapies. 

These discovered surface chemistries should to be tested in real cell culture experiments 

to ascertain the model findings. These are going to replace the three new types of 

environments used in model testing in this chapter. For now, the discovered surface 

chemistries are educated guesses for the top and bottom discovered surface chemistries 

(oxyethanamine, iodopropyl). For the mediocre surface chemistry (phenol), the predicted 

level of cell performance is very close to the real one. This concludes the final experimental 

chapter. 

 

5.4 NOVELTY 

Using the model performance ratio (MPR), the smaller this value is the lower the prediction 

error (mean absolute error). The MPR informs on the generalisation performance of the 

model and therefore whether it can be used in computational cell culture experiments. The 

ratio comes by standardising the difference between the prediction and the real observed 

median with the average standard deviation observed. MPR values between 0 and 0.33 are 

considered excellent, 0.34 – 0.66 as good, 0.67 – 1 as adequate, and above 1 as needs 

improving. Table 5.3 shows the models and their highest average MPR for both time points: 

 

Table 5.3: Highest average model peformance ratio between two time points for all models. 
 

Model Performance Highest average MPR 
Cell cluster area Excellent 0.19 

Neuron proportion Good 0.55 
Type I astrocyte proportion Good 0.39 

Type II astrocyte 
proportion Good 0.44 

Unknown type cell 
proportion Good 0.29 

Neurite length Adequate 0.73 
Type I astrocyte area Excellent 0.24 
Astrocyte fibre length Excellent 0.19 
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The key novelty points are: 

1) All the models can be used to perform computational cell culture experiments 

2) The automated solution for computational cell culture experiments screened 15 million 

chemical designs in under 30 minutes on a quad core laptop with 16 GB of ram using 

free and open source software 

3) One discovered chemistry has been used in a previous study with similar observed cell 

performance as the one predicted by this methodology 

4) Similar chemistries as two discovered chemistries from this work are used as: 

a) fragments of neurogenic drugs 

b) in tissue engineering using neural stem cells 

c) material development for cancer studies 

d) MRI imaging and transfection for neural cell replacement therapies 

 

6 GENERAL DISCUSSION 

6.1 SURFACE CHEMISTRY OF IN VITRO CELL CULTURE ENVIRONMENTS 

 Lipophobicity 

Lipophobic surfaces provide larger cell clusters (𝑟 = −0.67 on day 5 (41), 𝑟 = −0.58 on 

day 3) and decrease cell density (𝑟 = 0.79  on day 5 and 7 (41), 𝑟 = 0.61  on day 3). 

Lipophobic surfaces also increase neuron proportion on all three time points from previous 

work (41). Cell clusters generally spread more on lipophobic surfaces (logP 0.4 to -0.66). 

This finding does not apply on amine surface chemistries. The lower the logP value the 

larger the cell cluster area and a similar finding was made in another study (377). It is known 

lipophobic environments offer enhanced cell adhesion (107,306) and cell spreading (307) 
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as generally they are conductive to protein adsorption (95,299,308). LogP was found to 

negatively correlate significantly with cell cluster area in previous (41) and this work with 𝑟 = −0.67 ±  0.36 and 𝑟 = −0.58 ±  0.25 respectively. Others have found a relationship 

between the logP of (un-tethered) amino acid surface chemistries and cell spreading (77). 

Lipophobic environments were found to decrease astrocyte fibre length (AFL) on day 7 (𝑟 =0.79 (41), 𝑟 = 0.49). This is related with cell spreading and from relevant work it was found 

these environments enhance AFL (307). A limitation of using calculated logP values is that 

most methods are not tested for their performance on separate test sets (106) but the 

chosen method for this study was one of the top performer for small molecules. 

 

 Lipophilicity 

Lipophilic surfaces decrease type I astrocyte proportion and area on day 3 (𝑟 = −0.48, 𝑟 =−0.77 ). Reducing the proportion of the dominant cell type means the proportion of 

other(s) has increased. This explains the increase type II astrocyte proportion (𝑟 = 0.51). 

In a relevant study (316), embryonic stem cells from mouse and humans differentiated to 

neurons 1.6 and 2.4 and fold respectively on neutral ultra-low-attachment plates (LAC, 23° 

WCA) compared to hydrophobic PDMS surfaces (111° WCA). In another study, carbon 

nanotubes (CNTs) were made hydrophilic using acid treatment. On these environments 

enhanced laminin adsorption, cell adhesion, and neuron differentiation were observed 

compared to a standard type surface (poly-l-ornithine) (317). 

 

 Molecular mass/volume 

Molecular mass/volume is related with chemical complexity. High molecular mass/volume 

was found to lower cell density on day 3 (𝑟 = −0.62 (41), 𝑟 = −0.53) but this is largely due 

to the smaller surface chemistries (OH, CH3) having higher cell density influencing 
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correlation. Surface chemistries reducing cell density are the amines which happen to have 

more mass (Da). This effect is clearer to understand with laminin environments. Laminin is 

the surface chemistry with largest molecular mass and volume. A limitation here is that 

laminin’s chemical and cell performance data were excluded from correlation testing as 

most of laminin’s chemical values are extremes and influenced the relationships found. In 

computational modelling, all of laminin’s data was included in the training dataset because 

the learning algorithms used can find non-linear relationships. This coerces the effect of 

higher molecular mass/volume relating with enhanced cell responses for exploring 

candidate surface chemistries. 

 

 Surface charge (pKa) 

Surface charge (pKa) appeared in the literature for an association with the cell membrane 

in cell adhesion studies (86). Higher pKa values decrease neuron and type I astrocyte 

density on both time points ( 𝑟ே௘௨௥௢௡ = −0.68 , 𝑟஺௦௧௥௢௖௬௧௘ = -0.61 in study (41) and 𝑟஺௦௧௥௢௖௬௧௘ = −0.71 found in this study). High pKa also lowers neuron proportion on day 7 

(𝑟 = −0.52), increases neurite length on day 3 (𝑟 = 0.51) and cell cluster area. In previous 

work (41), no pKa correlation was found with cell cluster area on any time point but from 

this work, positive and significant correlations were found (𝑟 = 0.53 ±  0.25) for both time 

points. This is attributed to a limitation due to the different source of pKa values. The pKa 

values for previous work (41) were collected using software (ACDlabs) whereas for this 

work were collected from experimental results in the literature (206,207,218–222,318). 
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6.2 PREDICTIVE MODELS 

The computational models for each cell response used all or a few available model inputs 

to predict each. These inputs include time point indicator, molecular mass, partition 

coefficient (logP) and pKa. The table below (Table 6.1) shows the model inputs, marked 

with an X, used predictive each cell response. Following is a discussion of each model input 

and its known effects on the cell responses investigated. 

 

Table 6.1: Model inputs used by computational models to predict each cell response. CCA stands for cell cluster area, 
NP for neuron proportion, A1P/A2P for type I and II astrocyte proportion, PUC for proportion of unknown type cells, NL 

for neurite length, A1A for type I astrocyte area, and AFL for astrocyte fibre length. 
 

Model input CCA NP A1P A2P PUC NL A1A AFL
LogP X X X X  X X X 

Molecular 
mass/volume X X X X  X X  

pKa X X X X X X X  
Time point X X X X X   X 

 

For cell cluster area and cell density excluding proportion of unknown type cells, what is 

known experimentally is discussed in the section above (6.1). The model for neurite length 

uses the pKa, logP and molecular mass/volume as inputs. The relationship of logP and 

molecular mass/volume with neurite length has not been reported in the literature. 

Neither has molecular mass/volume and pKa with type I astrocyte area. This could be 

because these chemical parameters in conjunction with the other inputs for each model 

share a non-linear relationship with the cell response. A limitation with machine learning is 

that some variables make more sense to use but in terms of explaining the cell responses 

these may not be as good as others. All chemical parameters were expected to affect cell 

performance since the cells sense up to the 6th constituent of the surface chemistry found 

from this work.  
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 Model testing 

From model testing (section 5.2.1), almost all predictive models perform within the 

acceptable standards set by biological variation (average standard deviation). This means 

the selection of data and pre-processing, machine-learning algorithm and parameter 

tuning were fit for purpose. Cell performance data is required from additional surface 

chemistries with side-chains to reduce the prediction errors found from neuron proportion 

model testing on carbomethoxy. Also, data from surface chemistries with higher logP than 

butylamine is required to reduce type I astrocyte proportion prediction error. A limitation 

here is that additional cell data is required for rare cell responses such as proportion of type 

II astrocyte and unknown type cells. The limited data for these makes it challenging to 

analyse computationally. It is believed that additional data for longer duration cell cultures 

using a greater number of surface chemistries would benefit predictive modelling. 

 

Another limitation is the current chemical data representation does not communicate the 

exact position of an atom in the terminal group. This is because obtaining logP values 

requires at least two functional atoms bonded together. This caused higher prediction 

errors in model testing for neuron proportion and type I astrocyte proportion. The position 

of the oxy and amine groups can have profound effects on cell responses. This is discussed 

in section 5.3.1 and has also been investigated extensively in the literature 

(95,107,323,389–391). Also, the pKa value recorded is not always for terminal group. This 

was realised during testing the proportion of unknown type cells and neurite length models 

on propamine. The models had higher prediction errors compared to other environments 

in model testing especially for neurite length on day 7. This surface chemistry was treated 

as if its amine. 
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Type I astrocyte area and astrocyte fibre length have unsmoothed predictions. This is due 

to the real data the models were trained from are not significantly different which is a 

limitation. This means there is not enough variation to find a better pattern in data and 

factor in a predictive model. The main problem with these two cell responses is the low 

variance. Even in environments where significant differences are observed in other cell 

responses, these two do not vary analogously. Perhaps this could be one of the reasons 

these two cell responses do not receive as much attention in the nerve tissue regeneration 

literature (194). 

 

 Predicting new surface chemistries 

The cell performance index (CPI) is a value calculated by comparing the cell performance 

of an environment compared to a target, the biological control. The closer to 0 the better 

the match with the cell performance of the target. The mediocre surface chemistry 

(phenol) discovered was also used in cell culture experiments from previous work (41). The 

CPI of the real data placed phenol as a mediocre performer agreeing with the predictions. 

This surface chemistry has also been used to control the dynamics of cell transition 

(epithelial-mesenchymal) in heterogeneous cancer cultures (388). The top performing 

surface chemistry should have similar cell performance as amine. Discovering better than 

amine environments requires investigating the predicted top performers. Oxyethanamine 

or oxypropanamine are two top performers available off the shelf. The former is similar 

and the latter is identical to a fragment of a drug called fluvoxamine (387) inhibiting 

serotonin update in the brain. The latter surface chemistry has been added to address a 

limitation. The computational method does not distinguish the atomic position in the first 

2 molecule constituents. Also, another shortcoming is the performance of the top and 

bottom surface chemistries are predictions therefore educated guesses. Until these are 
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tested with real cell culture experiments there is no other way to assess the prediction 

accuracy although the mediocre chemistry predictions were very similar to the real values. 

 

6.3 SUMMARY 

The findings of this work contribute to the body of work concerned with biomaterials and 

surface engineering. It provides a framework for screening potential tissue engineering 

environments used in cell therapies for neurodegenerative diseases such as Huntington’s 

and Parkinson’s diseases. Through the application of data science methods and techniques 

this work accelerates the process of discovering tissue engineering environments for the 

cell therapy in mind. Cell differentiation, migration, and neurite length can be controlled 

from the surface chemistry alone. To our knowledge, this is the first study investigating the 

top 6 constituents of the surface chemistry and eight chemical parameters simultaneously. 

These include the logP (5 part), pKa, molecular mass and volume, and water/decanol 

contact angle. The aim of this work is to find synthetic environments that perform as they 

do in biological in vitro environments (laminin). After testing for parametric assumptions, 

correlation tests revealed relationships between surface chemistry and cell responses in 

pairs. Moved to using multiple (chemical) inputs to describe the relationships in the form 

of non-linear models predicting the cell responses within the discovered boundary of 

biological variation (average 1 standard deviation). This means the predictive models can 

be used in production as part of a mathematical optimisation tool (Get-Chem) where 15 

million theoretical surface chemistries were screened in a matter of minutes. The cell 

performance of theoretical chemistries was compared with laminin’s. From the results, 3 

surface chemistries were selected where 1 was used in a previous study investigating cell 

performance and the predictions were within the acceptable boundary (41). For the other 

2 discovered chemistries, similar molecules have been found to be used as in neurogenic 
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drugs, as reagents for tissue engineering with neural stem cells, as a biomaterial for cancer 

studies, and in MRI imaging and transfection for neural cell replacement therapies. The 

mathematical optimisation tool developed has demonstrated that it can solve a wide 

variety of optimisation problems using free and open source software on a modern laptop. 

 

Further studies are required: cell performance data is required from additional surface 

chemistries with side-chains and higher logP values than butylamine. Additional cell 

response data is required for rare cell responses such as proportion of type II astrocyte and 

unknown type cells. The exact position of atoms in the terminal group needs to be 

communicated in the form of new chemical parameters. The base dissociation constant 

should be added to complement pKa. The performance of the top and bottom surface 

chemistries discovered require experimental validation from cell culture experiments. 

Nevertheless, the findings presented herein provide the first steps towards discovering 

synthetic environments with simple surface chemistries for nerve tissue engineering. 
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8 APPENDICES 

8.1 CELL CULTURE SOLUTIONS 

Table 8.1: Cell culture media used in this project. 
 

Media Component Volume in 50 ml Source 

Neural Progenitor 
Media (NPC) 

Neurobasal 47.8 ml Gibco (Life-
technologies) B27 supplement 0.5 ml 

Penicillin 
Strepromycin 

fungizone (PSF) 
0.5 ml  

L-glutamine 0.125 ml Sigma-Aldrich 30% glucose 0.375 ml 
Basic fibroblast 
growth factor 

(βFGF) 
100 μl (20 ng/ml)  

Heparin 50 μl (5 ng/ml) Sigma-Aldrich 

Differentiation 
media 

Neurobasal 42.5 ml Gibco (Life-
technologies) 

Foetal calf serum 5 ml Biocera 

B27 supplement 0.5 ml Gibco (Life-
technologies) 

Glucose solution 0.375 ml Sigma-Aldrich 
PSF 0.5 ml  

L-glutamine 0.125 ml Sigma-Aldrich 
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8.2 IMMUNOCYTOCHEMISTRY SOLUTIONS 

Table 8.2: Immunocytochemistry antibody solutions used in this project. 
 

Solution Component Volume in 50 ml Source 
Block solution Tris Buffer Solution 47.4 ml  

 Triton X 1:500 dilution Sigma-Aldrich 

 Normal Goat Serum 
(NGS) 1:20 dilution PAA Laboratories 

Primary antibody 
solution 

TBS (1:4 dilution) 49.25 ml  
Triton X 1:500 dilution Sigma-Aldrich 

NGS 1:100 dilution PAA Laboratories 
III-β-tubulin 

antibody (goat host, 
neuronal 

microtubule 
protein, murine 

target) 

1:500 dilution Cambridge 
bioscience 

gFAP antibody 
(rabbit host, glia 
fibrillary acidic 

protein, murine 
target) 

1:1000 dilution DAKO 

Secondary solution TBS (1:4 dilution) 49.2 ml  
 NGS 1:100 dilution PAA Laboratories 

 
FITC tagged 490 nm 

goat anti-mouse 
(green) 

1:300 dilution Cheshire Sciences 

 
TRITC tagged 547 

nm goat anti-rabbit 
antibody (red) 

1:300 dilution Cheshire Sciences 

 
 
 

8.3 MACHINE LEARNING SCHEMES 

Table 8.3: Machine learning algorithms explored with their hyper-parameters and value ranges (392). Default is the 
preset value in WEKA. Entries with citation have been used in the project. Entries marked with an asterisk were used for 

regression only. 
 

Functions 
Classifier Parameter [Value range]/values Default 

Gaussian Process* 

L [0001, 1] 1 
N 0, 1, 2 0 

K 
NormalizedPolyKernel, 

PolyKernel, Puk, 
RBFKernel 

NormalizedPolyKernel

E [2, 5] 0 
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L true, false false 
S [1, 10] 0 
O 1 0 
C [0001, 1] 1 

MultilayerPerceptron* 

L 1 3 
M 1 2 
B true, false false 
H a, i, o , t a 
C true, false false 
R true, false false 
D true, false false 

LinearRegression* 
S 0, 1, 2 0 
C true, false false 
R [1e-7, 10] 1e-7 

SimpleLinearRegression* N/A 

SMOreg* (243,245) 

C 5 0 
N 0, 1, 2 0 
I RegSMOImproved RegSMOImproved 
V true, false false 

K 
NormalizedPolyKernel, 
PolyKernel, Puk (247), 

RBFKernel 
NormalizedPolyKernel

E [2, 5] 0 
L true, false false 
S [1, 10] 0 
O 1 0 
G [0001, 1] 1 

    
Trees 

Classifier Parameter Value range Default 
DecisionStump* 

(257,258) N/A 

M5P 

N true, false false 
M [1, 64] 4 
U true, false false 
R true, false false 

RandomTree* (235) 

M [1, 64] 1 
K 0 0 
K [2, 32] 2 

depth 0 0 
depth [2, 20] 2 

N 0 0 
N [2, 5] 3 
U true, false false 

REPTree* 

M [1, 64] 2 
V [1e-5, 1e-1] 1e-3 
L -1 -1 
L [2, 20] 2 
P true, false false 
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Rules 

Classifier Parameter Value range Default 
DecisionTable* E acc, rmse, mae, auc acc 

M5Rules (249–251) 

N true, false false 
M [1, 64] 4 
U true, false false 
R true, false false 

ZeroR* N/A 
    

Instance based methods 
Classifier Parameter Value range Default 

IBk* (240) 

E true, false false 
K [1, 64] 1 
X true, false false 
F true, false false 
I true, false false 

KStar* 
B [1, 100] 20 
E true, false false 
M a, d, m, n a 

    
Ensemble methods 

Classifier Parameter Value range Default 

RandomForest (235) 

I [2, 256] 10 
K 0 0 
K [1, 32] 2 

depth 0 0 
depth [1, 20] 2 

Stacking X 10 10 

Vote R AVG, PROD, MAJ, 
MIN, MAN AVG 

    
Meta-methods 

Classifier Parameter Value range Default 

LWL (236,237) K [-1, 120] -1 
A LinearNNSearch LinearNNSearch 

AdditiveRegression (254) I [2, 64] 10 
S [1, 0.3] 1 

Bagging (238) 
P [10, 100] 100 
I [2, 28] 10 
O true, false false 

RandomCommittee 
(248) I [2, 64] 10 

RandomSubSpace I [2, 64] 10 
P [1, 0] 1 

    
Attribute evaluation and selection 

Classifier Parameter Value range Default 
CfsSubsetEval (232) L true, false false 
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BestFirst (233) D 0, 1, 2 1 
N [2, 10] 5 

GreedyStepwise (234) 

C true, false false 
B true, false false 
R true, false false 
N [10, 1000] 30 
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8.4 NEURON PROPORTION MODEL 

RandomTree 
========== 
 
LogP4 < -0.21 
|   MolMass1 < 57.58 
|   |   D3 < 0.5 : 4.16 (9/0.39) 
|   |   D3 >= 0.5 : 8.06 (9/2.16) 
|   MolMass1 >= 57.58 
|   |   D7 < 0.5 
|   |   |   LogP1 < -0.14 : 12.6 (10/18.42) 
|   |   |   LogP1 >= -0.14 : 7.89 (10/7.01) 
|   |   D7 >= 0.5 
|   |   |   LogP4 < -0.37 
|   |   |   |   pKa < 8.57 : 9.36 (19/25) 
|   |   |   |   pKa >= 8.57 : 8.51 (10/3.17) 
|   |   |   LogP4 >= -0.37 : 6.33 (8/5.47) 
LogP4 >= -0.21 
|   D3 < 0.5 
|   |   LogP5 < 1.27 
|   |   |   LogP5 < 0.03 
|   |   |   |   LogP2 < -0.11 : 2.13 (9/0.36) 
|   |   |   |   LogP2 >= -0.11 
|   |   |   |   |   MolVol1 < 106.67 
|   |   |   |   |   |   LogP4 < -0.11 : 3.07 (12/0.38) 
|   |   |   |   |   |   LogP4 >= -0.11 : 2.9 (5/0.92) 
|   |   |   |   |   MolVol1 >= 106.67 : 2.56 (14/0.5) 
|   |   |   LogP5 >= 0.03 : 4.12 (9/1.79) 
|   |   LogP5 >= 1.27 : 6.16 (11/0.88) 
|   D3 >= 0.5 
|   |   pKa < 10.86 
|   |   |   LogP5 < 0.03 
|   |   |   |   LogP4 < -0.11 
|   |   |   |   |   LogP3 < -0.82 : 7.19 (9/7) 
|   |   |   |   |   LogP3 >= -0.82 
|   |   |   |   |   |   MolMass1 < 80.16 : 8.06 (6/0.44) 
|   |   |   |   |   |   MolMass1 >= 80.16 : 7.9 (11/4.99) 
|   |   |   |   LogP4 >= -0.11 : 9.88 (6/4.6) 
|   |   |   LogP5 >= 0.03 : 5.47 (8/4.97) 
|   |   pKa >= 10.86 : 15.99 (5/6.74) 
 
Size of the tree : 37 
 
 
RandomTree 
========== 
 
MolMass1 < 103.64 
|   D7 < 0.5 
|   |   LogP4 < 1.54 
|   |   |   MolVol1 < 104.41 
|   |   |   |   MolMass1 < 85.64  

Model 1: Neuron proportion random forest model. Double click to expand. Each node represents a logic test with the 
value of an attribute. At the leaves is the outcome. The figures in parenthesis next to the value of each leaf represent 

the: (number of instances that reached / and the mean squared error). 
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8.5 CHEMICAL VALUE TABLE 

Table 8.4: Chemical characterisation table. These are the chemical inputs of the cell culture environment. LogP stands for partition coefficient which a lipophilicity measure; pKa stands for acid dissociation 
constant; WCA/DCA stand for water/decanol (lipid) contact angle. 

 

Functionality 
LogP1 
(±0.16) 
(393) 

LogP2 
(±0.16) 

LogP3
(±0.16)

LogP4
(±0.16)

LogP5
(±0.16)

Molecular 
mass (da) 

(394) 

Molecular volume
(Å3, ± 0.99) (394) pKa WCA (°) DCA (°) 

Methyl (CH3) 1.82 30.07 45.15 48 (395) 74.33 ± 2.97 45.57 ± 3.22 
Carboxyl (COOH) -1.43 -0.35 0.25 -0.29 -0.54 117.1 103.18 4.87 (396) 70.65 ± 6.74 44.36 ± 2.44 

Amine (NH2) 0.9 0.40 -0.13 -0.66 73.14 91.05 9.27 (397) 92.06 ± 1.83 50.53 ± 4.68 
Hydroxyl (OH) -0.72 32.04 36.84 4.5 (398) 72.42 ± 10.37 71.20 ± 0.35 

Thiol (SH) 2.31 1.78 1.25 0.72 90.19 97.70 10.6 (399) 62.29 ± 3.97 50.73 ± 2.05 
Diamine (diNH2) -0.62 -1.15 -2.04 -0.13 -0.66 88.15 103.49 10.71 (400) 59.10 ± 2.2 48.26 ± 7.15 

Cayno 1.15 0.62 0.08 -0.45 -0.25 83.13 95.87 9.21 (401) 62.41 ± 2.5 71.82 ± 4.2 
Long diamine 

(L-diNH2) 1.46 0.93 0.40 -0.13 -0.66 87.17 108.02 9.27 (397) 65.69 ± 5.77 44.86 ± 7.79 

3-methoxy 1.51 0.98 0.45 -0.08 -0.72 88.15 105.33 4.5 (398) 63.06 ± 4.14 57.95 ± 4.11 

P/LAM -2250.48 ±8% (106,213) 810 kda (223) 58.86 nm3 ±2% 
(227) 

12.5 ± 3.2 
(222) 76.19 ± 4.35 38.54 ± 2.84 
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8.6 CONTACT ANGLE TABLE 

Table 8.5: Chemical characterisation. Contact angle (CA) table for cell culture environments used for this study. The figure followed after ± indicate the 1 standard deviation. WCA stands for water contact 
angle. 

 

Functionality Diamine 
(diNH2) Cyano Thiol 

(SH) 
3-metho

xy 

Aminohex
yl (L-

diNH2) 

Methyl 
(CH3) 

Carboxyl 
(COOH) P/LAM Hydroxyl 

(OH) 
Amine 
(NH2) 

Butylami
ne (NH2) 

Propami
ne (NH2-

prop) 

Carbo 
methoxy 

(CBM) 

Chemical 
structure 

 

 

 

 
 

  

Water CA (°) 59.10 ± 
2.2 

62.41 ± 
2.5 

62.29 ± 
3.97 

63.06 ± 
4.14 

65.69 ± 
5.77 

74.33 ± 
2.97 

70.65 ± 
6.74 

76.19 
± 4.35 

72.42 ± 
10.37 

92.06 ± 
1.83 

74.86 ± 
2.88 

64.97 ± 
4.75 

66.42 ± 
3.77 

Literature 
WCA (°) 

52.3 ± 0.4 
(264) 

55.2 ± 
1.7 

(402) 

74.5 ± 
2.6 (343) N/A 54 ± 2 

(403) 

97.6 ± 
0.05 
(343) 

40.4 ± 2.7 
(343) 

73.3 ± 
3 

(301) 

49.5 ± 3 
(344) 

55.2 ± 
2.8(343) N/A N/A 59.5 ± 2.9 

(404) 

Decanol CA 
(°) 

48.26 ± 
7.15 

71.82 ± 
4.2 

50.73 ± 
2.05 

57.95 ± 
4.11 

44.86 ± 
7.79 

45.57 ± 
3.22 

44.36 ± 
2.44 

38.54 
± 2.84 

71.20 ± 
0.35 

50.53 ± 
4.68 

68.82 ± 
17.26 

44.28 ± 
3.53 

90.73 ± 
5.06 
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8.7 MANUSCRIPTS IN PREPARATION 

Joseph G, Roach P, Fricker RA, Kyriacou T (2018). The effect of partition coefficient (logP) 

of chemically defined surfaces on cell density. 
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surface chemistry. 
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