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Abstro.ot 

Tho work has boon divided into thro~ scctions. 

Soction A 
~~-.• (Chaptors 3 o.nd .1) 

This scction is concorned with tho polymoris~bility of aome 

cyclic oxyg'on compounds. 

Chaptor 3 shows thD.t 1, 3-diox~.n doos not polymoriso, but 

that at low tomporaturos a mixturo of tho oyclio dimor and trimor 

oryst("11lisos from tho monomor in tho prosonoo of co.tionio polymori-

sC\tion oatD.lyat s. 

Chaptar ·1 disoussos tho probloms oonoorned with the prop:'!·ro,.. 

tion and polymorisation of oxopan. Oxo~~ is diffioult to polymeriso. 

Soction B (Chaptors 5 - 8) 

This sootion is ooncornod with the polymoriso.tion of 1,3-

dioxolo.n by triothyloxonium totrnfluorobornte. 

Ch~pter 5 shows th~t this oatalyst is inoffioiont booauso of 

0. compotitivo docomposition in whioh tho oo.to.lyst is oonvortod into 

non-oonducting products (othyl fluoride and boron trifluoride 

ethore.to) • 

Ch~ptor 6 dosoribos a. study of tho dooomposi tion of throe 

triothyloxonium s::t.lts. The ro.to of dooomposition of triethylox~nium 

totrt.l.fluoroboro.te is groD,tor in tho prosonoo of others. A thoory 

involving solvation of tho oxonium ion hoa boon proposod 'to oxplain 

tho rosults. 

Cho.ptor 7 doals with tho dotorminot10n of tho o.ssooio.ti'.:>n 

oonstants of triethyloxonium totr~.fluoroboro,tv and hox~uoropho8pht\te 

from oonduotivity moo.suromonts. ConduotiVity mo~Buromont8 in the 
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prosonco of diothyl oth~r provo thnt oxonium ions E'ro solv~tGd in 

tho presenco of ethors. 

Ohapter 8 is ooncornou wi tb tho scheme proposod to e:x:plo.in 

tho rosults of tho polymorisation of l,3-dio:x:01an by triothylo%onium 

SD.lts. The rcl~tivo m~rits of the work of Y~ma.shittl. and Lyudvig on 

tho polymorisD.tion of oyclic forma.ls with triothy10%onium M.lts is 

discussod. 

Soction 0 (Ohapters 9 and 10) 

This soction is ooncornod with tho ri~exponsion and bQO~ 

bi ting moohnnisms propos~d for tho formo.tion of mJcrocyclic rings 

in tho po1ymorisn.tion of 1, ,3-dio%ol,m by !:'.nhydrous pcrchloric ~lcid. 

Ohaptor 9 describes furthor (md-grou1? ~~.lysis which WOoS 

cD.rriod out in o.n D.ttompt to distingllish between these mocho.nisms. 

Ohaptor 10 discussos tho mechanism of tho polymeriso.tion of 

the cyclio formals and ShOW3 thn.t tho 4-controd tr0.D8ition st~to 

of Plosch o.nd HoetermoJUl m03 be appliod to other orgD.nic roa.ctions 

involving oxygun containing molecu1os. 
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CH1.PTER 1 -
Introduction 

The work to be d~scribed in this thesis is an extonsion of the 

'''ark of Dr. P. H. T'Jostermann who polymorised I, 3-diOXolv.n1 and 

1,3-dioxepan2 with anhydrous 90rchloric acid. The original aim of 

this research was to see whether the novel ring-expansion mechanism 

of Plesch and tlostermannl,2 appliod to other systems. 

Section A deals with the polymerisa-Jility of some cyclic formals 

and ethers wheroas Soction B contains a discussion of tho complox 

situation which arose when 1,3-dioxolan was polymerisod by triethyl­

oxonium tetrafl~oroborate (E~30+BF4). Section C contains further 

evidence for the ring-oxpansion meohanism. 

The present studios on ~ationic polymerisation aro mainly 

concornod with an industrial monomer, l,3-dioxolan and a catalyst, 

triothyloxonium tetrafluoroborate, whioh has beon stud~3d by indust­

rial workers3• Therefore, it is hoped that this thesis will be of 

interest to polymer chemists, whether they be industrialists or 

academics, and come as a useful contribution to the growing fiold 

of oationic polymerisation. 

In reoent years the number of publioations OD tho polymorisation 

of oyclio o~gen oompounds has grown rapidly. i:i~ papers and 

patents on the polymer1sation ot trioxan, related oompounds and 

tetrahydroturan have appear..:;n., but these will only be disoussed where 

they are relevant to the projeot in hand. Therefore, at this stace 
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0. genoral survey of tho polymerisation of l,3-dioxola.n and 1,3-

dioxepan will be given and tho more relovant pa~ore will be discussed 

in grea.ter dotail in the toxt. 

Hill and Carothers4 first investigated tho cyclic fermals. 

Tetramethylenc) pentamothylono and hoxamothylene formals woro 

polymerisod in the prosonco of catalytio quantities of sulphollic 

o acid whon heated to 100-150. However, trimethylene formal 

(l,3-dioxan) did not polymerise and l,3-dioxolan was not mentioned. 

Grosham5 polymerisod l,3-dioxolan with Lewis and mineral acids. 

Ho found that a 25% solution of dioxolan (4/ su1ohurio acid at 100°) 

yielded only a small amount of oil with a molocular weight of 250 

whereas bulk polymorisation (0.02 boron trifluoride at 6°) gave a 

orystalline high polymer of molocular lioight 196,000 (determined by 

viscometry). A pelymer of molecular weight 1580 had negligiblo end-

groups and he therefore oonoluded th['.t it wa.s oyolio. 

Another patent, by Muetterties6, described the produotion of 

high molooular weight poly-l,j-dioxolan with phosphorus pentafluorido 

as tho oatalyst. 

Sinoe tho work so fer desoribed was ohiefly oonoornod lli th tho 

oommercial possibilities of theae polymers, tho detailod ohemistry 

and moohanism of these polymorisations was not investigated. 

Tho equilibrium polymerisation of oyolio formals was first 

obsorved by Strepikheev and Volokhina7, but they ~"ore unable to 

explain their rosults by an equilibrium betwoon monomer and polymer 

oven though the work of Dainton and IVin8 was known at the timo. 

However. Stropikheev and Volokhina did supply tho heats ot pol1-
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mcrisation of tho di-, tri-, tetra.- Dnd pentamoth.Ylone formals, 

which appeared in a rovieH by Dainton a.nd IVin9• 

Diethyl aluminium chloride - water, ethyl aluminium chlorido -

wa.ter, a.cetyl cnloride - motal halide and v.cotic anhydride - 'gerchlorio 

aoid wore reported as catalysts by Okada., Yamashita and IshiilO • 

Although the conditions wore ossentially anhydrous, the monomer was 

dried with calcium hydride and diotillod undor nitrogen before use 

and polymcrisod in bulk, no de~ails of the purification of tho 

catalysts are givon. No reaction curvos wore presentod but tho 

yiolds and intrinsic viscosity of the polym~r at a fixed timo, 

varying from 20 to 48 hours, wore plotted ~ainst various molar 

ratios of the catalyst pairs, listod above. For oxample. tho yield 

ond intrinsic "isoosity of the polymer wore obsorved to pass through 

a maximum a.t an approximately equimolar ratio of wator and diothyl 

aluminium chloride. In equ~librium polymorisations tho yield is 

indepondent of tho oatalyst conoentra.tion. Thoroforo, these results 

must moan that eithor the rate of polymerisation is lo~ 0r tho oatalyst 

is oonsumod during polymorisation. However, the shapo ot both curvos 

indioates tha.t tho molecular weight is dOl>ondent on conversion. The 

yield and intrinsio visoosity also docreased with inoroa.sing tempora-

ture but the authors tailed to rooogniso the system as ono whioh is 

dominated by an equilibrium. 

These authors proposod that an equilibrium betwoon oxonium ions 

and oarboxonium ions existed and that tho active oentre in tho 

polymerisation was tho oarboxonium ion. 

~ ;::: -O-OB2-oH2-o-ci2 "' -O-OB2-CH2.&.cH2 
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'ithis HO.S basud on tho suggestion of Jaa.eks and Kernll tha.t tho 

a.ctive centro for tho polymorisation of triox ...... n is a resona.nce 

stabilised carboxonium ion. 

01co.da ot a112 a.lso report tho co.tionic cooolymorisation of 

1,3-dioxolJ.n with styrone, with boron trifluoride otherato a.s tho 

ca.talyst. This thoy intor11rot as furth~r evidenco in favour of tho 

carboxonium ion mechanism, bocauso Kern ot al13 havo boen ablo to 

copolymerise trioxa.n with styrene, whilst totrahydrofur~, which is 

gonorally supposed to polymerise by a.n oxonium ion mecha.nism, will 

not copolymoriso with st~rone. 

This argumont is exceodingly weak 1n vio\l of tho fa.ot that 

Okada et a114 have thomsolvos roport0d tho cationic co~01ymorisat10n 

of 1,3-dioxolan with tetr~drofura.n with boron trifluorido as tho 

oatalyst. Tho comparison of 1,3-dioxola~ with trioxa.n is tho only 

QVidenoo prosonted 1n favour of tho carboxonium ion mechanism, in 

partioular no analysis tor ~nd-groups is reported. 

H~yashi15 roported that l,3-dioxol~n, l,3-dioxopan and 1,3-

dioxa.n polymorisod in tho 1;>rosenco of mnloio anhydrido and benzoyl 

peroxide. Howovor 1 it will bo shown in Soction A that thoso rosults 

could not bE) ropoat0d. 

Kuoora16 and his ooworkers havo studiod th~ ~olymorisation of 

l,3-dioxolan by ootamothyloyolotetrasiloxMo bisul-phato t\.S tho 

oatalyst. Tho oxperiments woro oarriod out in opon dil'l'.torllotcrs at 

o tomporatura. botlfoon 40-70 and with tho oatalyst oonoontration 

botweon 10-1 to 10-~. Most of tho work w).s conoornod uith kinutio 

measuromonts and their intorprotation. Unfortunatoly, tho kinetio 
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sche'TIc \-lC',S basod on the assumption that the active con·tree aro 

cCl.rboxoni urn ions which Horo SUJposod to bo in cquil ibrium with 

unreactivo tortiary oxonium iOlls. Although tho sohema doos fit tho 

OX'90rimontal rusul ts the basic a.ssumption io not justifiod by any 

supporting exryorimonts. 

Howovor, somo lnterosting phenomena were .)bsorved in the 

presenco of ~1ator17. They obsorved a cocatalytio offect U() to 

50 ppm of H20, but on addition of furthor quantities of wator tho 

roaction becaluo slowor t'li th a longer induction timo. Equili1)ri um 

convorsion wa.s not achioved and tho conversion dopel'ldod on the 

wator concentration. During the "!?olymorisation tho water oonconl.ra-

tion droppod to a constant va.l.uo which \,1 ~·s dopondent on tho initiator 

concontration. Thorofore, watar cocat".lysas tho -polymurisation 

but freo water co.usos tormination. 

Mercuric chlorido and Lcron trifluoride ~thorato were used by 

Gorin and Monnerio18 as catalysts for tho -polyracri8ation of 1,3-

dioxolan. Although the monomer and catalysts wore carrfully dried, 

the polymorisations were carried out in tost-tubes. Th~ir kinetic 

measurements 8~eed with Kuoera's scheme but no diroot evidoneo for 

an oquilibrium between oarboxonium ions and oxoni~n ions was prosonted. 

Yamashita ot al~9 showed th~t tho oomplex of boron trifluorido 

and l,3-dioxolan participatod in th~ initiation bocause a linear 

rel~tionship botweon 10g •. R (tho initial rata of pol~nerisation p 

and log. K (tho oquilibrium oonstant for tho exoho.ngo of uthor 

moleoules) oxistod. The oomplex tormod from 1,3-dioxolan and beron 

trifluorido oould also bo iaolated at low tempor~turo. and this 
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compound initia.tod polymorisation moro ro.pidly th3. boron trifluorido 

othorato. 

Tho follouing sohome W0.S proposGd beoa.use 

+ 
--.... F 3!-0-CH2-CH2-O-CH2 

r) 
~' 

• 
-+ 

o 
L F

3
BO(CH2)2OCH3 _7 CH2CII206a 

NaOMe. 
> 

9 
1.{oOCH~PH2OCH 

2-mothoxyothyl formate W.JS isolo.tod froln a. reO-ction mixture killod 

with sodium mothoxido. It is not cloar from this schomc how ~ropa-

gat ion occurs, tho last ini tiD.tion st.,.gc is obscuro booaufJO 2-methoxy-

othyl formate can '.'lso be formod from a reaction of tho 1, 3-dioxolonium 

SD.lt with sodium mcthox1de o..nd a.lso no quantitative de.ta a.re presented 

to establish tho oxtent of :roaction and this is i·'!',)ortant booe.usc 

boron trifl uorillo etherato is an itlofiicie"t oa.talyst (soo Chaptor 5). 

"iki20 H , Higa.shimura and Okamura produoed g.l.o. e~idonco for 

tho formation of cyolio o~gcn compounds in tho ~lymorisation of 

l,3-dioxolan with boron trifluoride uthora.te nt 350
• Tho chomistry 

of this system has not boon olarifiod, so th~.t tho formation of thoso 

oompounds, in the prosonoo of suoh hiBh o:l.talyst conoontrations 

(~bout lO-~), a.t this tomperature cannot bo usod as ovidenoo for 

21 tho baok-bitins moohanisM ot Jaaoks whioh will be disoussod in 

Chapter 10. However, ponks othor than thoso of monomer and oolvont 

havo boon obsorvod in B.1.0.'s of l,3-dioxol3n and its polymor 

solutions (soo Ohaptor 5). ThoBO ox1ra peaks in tho B.1.0. nro 
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a.lso lJr,.:sont i'lhon tho monorilor is 3nL'.lysod; a.nd they Ct·r)~oar to be due 

to its doco,uposi tion in tho w..l.chin.:. U though diroct oxtro.oolation 

of illY obocrvations to Miki' s is not fc;;".aiblo, my rooul ts do suggost 

thn.t tho compounds which I·';iki isola.tod m"~ havo been forraled in tho 

chroma.tograp~l, 

At tho boginning of my resoa.rch into tho polymorisa.tion of 

l,3-dioxola.n with tricthyloxonium tetrafluoroborato Y~Q.shita rutd 

his ooworkors22 published 0. p".pcr on the sarne topic. Al though 

csaontiall~ ~~nydrous oonditions wero obtainod by distillinB both 

monomor and solvent from oalcium ~rdrido, tho halldlil1g procodure 

for tho ca.talyst is not givon and tho re.?otiona woro o:.'.rried ou~ 

in test-tubes so that 0. sa.mpling toohniquo oould bo used to prepare 

the timo-conv0~sion ourv~o. 

Howevor, thoy failod to rocogniso that only a amnli nroportion 

of tho initiator forms ~ propaeating spooies. In faot thoy asswnod 

tho catalyst to be 100,' offioiont when oaloulating a socond order 

rat. oonstent whioh they erronoously intorpretod as k • 
P 

In 0. later pa.por Yaitl:.lshita23 showod that part of tho induotion 

poriod was duo to ndvontitious wator, but high vacuum techniquos 

did not roduco tho induotion poriod to zero. 

More rocently those workors oxtonded the triotbyloxoniwQ 

tetrafluoroborato oatalysis to 1,3-dioxo~an24 and 1,3,6,-trio%ooan 25. 

The 'l'roooduros waro tho sa.mQ f),8 boforo, but they obviously \lore loss 

oortain of the moohanism and of tho kinotios booauso kp was not 

dvtorminod tor oithor monomor. 

Modvodvv ot a126 havo publiahud sovoral pa~ors conournod with 
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tho !?olymvrisC'.tion of 1, 3··dioxol ~n by tricthyloxoniUl.' hc;xachloroa.nti-

monato. Il'hcy postulato tho a.ctiv~ ocntr..:. to be: a. carboxonium ion 

bocl:l.usc a solution of trieth¥loxonium hoxa.chloroantimono.to D.llsorbs 

at 272 nm whurcD.s in tho :prOBenco of l, 3-dioxol;;>.n tho solution 

'lworbs at 228 nm. They considor tho formor n.bBor~tion to bo due 

to a tertiary oxonium ion 3lld th0 b.ttcr to .'). linoa.:r cEl.rboxonium ion. 

However, thoro is no independent evidonce for the absor~tion of 

oxonium iona in tho u.v., so thl'.'.t tho ~Bigt'lnents arc GrrOn00UB. 

It ia moat probable tho.t tho obsorvod absor'?tion :'l.t 212 nm is due 

to tho SbC16 ion; the abs~rption at 228 ru~ is still obscure because 

Ja.acks27 observed thu absorI'tion of CH
3

CH2 '1~H2 SbC16 (·'no.lo.gous to 

28 
the oarboxoniwn ion postul~ted) at 260 nm, ... 1.nd Ponozek showod 

tha.t the absorption of a Berios of SbC16 S~1tB only variod botween 

5-10 units aw~ from 212 nm whore~.s + -RO SbC1
4 

~boorbB at o.bout 240 nm. 

Also, loIodvodov et 26 0.1 di.d not Bubst~.ntia.to their m~ohanism 

by end-groups a.nalysis and tho roaotion ourves thoy prosentod did 

not appear to reft.oh oquilibrium. 

Chil -0. vorgyM29- 3l and his coworkers hFl.ve publiohu(l. Buveral 

~a.pors on tho polymoriaation of 1,3-dioxolan with iF
3
.Et20 

Tho report B WGro oonoernod with the; kinet ioo of tho b'lo1ymori sa.t ion. 

Ohi1- G~orgyan3l obsorvod tho maximum rate of polymerisation and 

prooooded to treat tho polymorisation m<".thom.lticru.ly a.s t\Il auto-

catalytio roe~tion to produco ourvos whioh fittod tho cxporimont~ 

data.. Muoh of this work is rather pointloBs sinco no eVidonoo was 

prosont0d for tho actual ohomistr,y bGhind tho supposed prOOGSs. 

Plosoh Dnd Uostormann1,2 oonfirmod Grosham'. findiDBs5 tbat 
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thl: polymors nrv cyclic on tho b,'sis of ond-group CllH1.lysis o.nd. 

kin<;tic evidonco and euggootod :l. ring Gxo.:>.nsion moch".niom. Anhydrous 

porchloric acid was tho ca.tD.lyet and the a.otiv. centro Wo.s propos.Jd 

to bo 0. secondary oxonium ion. 

Howover, thoro is muoh evidenov to show th.\t tho activo contrvs 

in tho polymoriso.tion of trioxo.n aro tortiary oxonium ions a.nd for 

this roo.t3011 Jr.n.cks2l boli ..)vcs tho pro-pagati In in tho polymcrisation 

of l, 3-dioxol,'.n to bo through tcrtlary oxonium iOllS. The r(~Bul to 

of his group point:.-.d to tho pr,isonce of tertiary oxonium iono; but 

~e not oonolusive sinco they did not alw~B find tho numbor of 

end groupe to bo oquo.l to the initiator conoentration. Jr>.:lcko 

oxplains this by incomplote protonation of tho polymer, th{1.t is 

p~chloric aci1 is an inofficient initiator' under somo Qxporimental 

condi tions. Ja.a.cks he.s only idontified ono end of the polYIDer so 

that it romains to be soon Ah0ther, under hie oonditione, tho 

oonoentra.t ion of ond-groups for both onds of th3 polymer .'\1'0 tho 

Bcmo. Tho wholo question of tho moohanillm of tilO pol~Pf1l •. :ris.:'\tion of 

oyclio formals is disoussod in Soction C. 

This 1i torature survey on tho po1ymGrisation of tho cyclio 

forma.ls would not be completo without reforonoo to tho thormodyno.mios 

of thoir po1ymorisC'I.tion. Sinoo the work to bi.;J desoribed in thiD 

thesis 1s not oonoernod with the datormin_l.tion of thcr!tlOdym~ic 

paramOtors a disoussion of tho various valuos for tho e'ltho.llJY and 

ontropy of polymorisation i3 not inoluded. llOtloVor, m~ sohools 

have otudiod tho oquilibrium natura of tho polymarisation of 1,3-

dioxol~~ and 1,)-a1o%opan and thoBe roforonooB ~o 1noludo4 tor 
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com'P1utonoss. 

Yamashi ta.34 o.nd hie cOHorkors mc~.sured tho th\.lrmodyno.mic 

pn..rCl.mcters for tho polymoria tion of 1, 3-dioxolD.n, l, 3-dioxop".n ond 

1,3,6-trioxoc:l.ll from tho equilibriwn monomer oonoontrtltions dotorminod 

by gil. c. and n .1.~. R. techniquos a.t various tOlfi-porn.turos. 

Both Yamn.shi tn.34 p.nd Enikolopyan32 , 33 (1, 3-dioxolCl.n) polymorised 

tho monomcrs \fi th boron trifluoride othoro.to tlhich is incffici"mt, 00 

tha.t they Here obligod to use high tcm1;)erC'.tures and high monomor 

concentra.t1ons. At such high monomor c0l'1.c0ntrations th0 use of unit 

conoontro.tion instot:'.d of '..Uli t e.cti Vl ty for tho monomer may lo:~.d to 

s~rious errors. In faet, ox.:>orimonto havo shown th['t tho ceiling 

tC'J1'Peraturo io higher for highor rnonomer oonc-.;ntrationa. Thoroforo 

it is not sur'·,rlsing thn.t their valuos differ froln thoso of Plosch 

and UoetormC1.nnl ,2 Who dotorminod~H Md~S by roaction co.lorimetry ss ss 

in vacuo, with monomor conccmtrD.tions of a.bout li! or loss. 

Horo rooently, Clogg and Ilolia reported vo.luos for tho thermo­

~amic parametors of poly-l,3-dioxolon35 ~ld 'Poly-l,3-~ioxo~o.n36 

d th 11 . th th f ~l h d' t 1,2 an 0130 a.greo w, W1 OSO 0 ~ osc an :'IOS orrnann • 

EnikoloPYRn38 selooted tho roaotion betwoon dimuthyl formal 

o.n.d 1,3-dioxola.."1. oatalyscd by stannio ohloride in o{),rbon totr~ 

ohlorido solution as a model system for detormining tho oquilibrium 

monomor oonoentration for tho polymorisation - dopolymoriaation 

oquilibrium of l,}-dioxolan. 

If r.I reprosents tho dimothyl formal moleoule M,l D th..J 1,3-
lC1 

dioxola.n moleoule then MD+ +D , » limD+ 

lIDD+ +D > I:DDD+ c: 
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oimul£l.to tho 'qolymorieation - dopolymvris:l.tion oquilibrium. Sinco 

trc?nsfor to dimethyl formal occurs in this eyotc,nJ 

::=~Mr -)D .. + ]...1 +i, 

they claim thttt tho reaction allows the ctouormino.tion of Kl ,.,ithin 

a. wido range of conc .. mtra.tion.o':l.nd th!l.t it co.n 0.180 bo om'\:lloyod in 

Co.SOI3 (u.g. hoterogenoous systelUs) ,.,horo this vo.luo c.\Ilot bo doter-

minod by tIl:) clc.noicnl o.pproo.ch. 

By thil3 lDothod Enikolopya.n obtainod valuos for tho floor 

conoontration and tho cntho.1~y of tho po~merisa.tion of 1,3-dio%ol~ 

which agrood with thona of Plosch D.nd 11eatorroann1 • 
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CHAPTER 2 

E!p)r1monto.1 

Part I - ~,1a.torio.lo 

2.1. So1vonta 

2.1.1. Moth-ylano diohloride. This solv~nt (I.C.I. Ltd.) \'1,'.0 purifiod 

a.o dosoribod by'/eis6borgorl • Tha fino.l wa.ter wo.shings h.:1.d to bo 

dono onrofu1ly othorwiso ~~ impuro produot w~s obtainod. Tho 

mothylene diohlorido W~.13 washed until the:) w,-\shings wera noutral. a.nd 

by this timo tho org'ollio phBSf1 hfl.d booome orysto.l 010:\1'. It W').6 

thon dried ovor f:rosh\y ground o."loium ohlorido and fin"lly distilled 

through a 160 om oolwnn f'illad with niokol-gauze rings ;l,t a rofll.LX 

ra.tio of 15:1. Hoo.d and to.il frnotions, oach ccnaistin.g of nbout 

20',' of the tot"l volume, wero r"Jj;)otod :md tho boiling pOint of tho 

middlo fraction was found not to v~y by more that 0.1°, b.p. 

39.0/745 torr (Litoraturol~':J.l/160 torr). Tho f'ra.ctlon",tion W:;l.S 

monitored by g.l.o. and tho only impurity detootablJ in tho middle 

fraotion was ohloroform (about 1:20,000 vol/vol). 

Tho midt!.le fraction was oollootod in d!'.rk bottlas, mixod with 

frvsh phosphorus pontoxide, doco~tod onto 0. furthor portion of 

phosphorus pontoxido, o.nd finolly tho susponsion W·'.S pourod into a 

rosorvoir, attached to tho vacuum lino. The rllsorvoir w.).s th":'ll 

olosed \-lith a mercury 000.1 and the solvent degassed and rofluxod 

for lavoral d~s. 

Gandini
2 

showod thllt tho vacuum distillod methylono diohlorido 

wa.s froe from aoid, within tho limits of dot ... oti·;m (about lO-6u). 

}.{oth1'leno dichloride storad in this w~ wna usod for t:10 m).jority 
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of experiments; hOl"1Ovor for thQ '9olym"ris·.tions h'ith triothyloxonium 

totrD.fluoroborato the solvent t, 'J.B dried ovor c~.lciU!D hydriuo. 

Tho dosing undor vacuwn of mothylone dichlorido h~s b on d~s­

crib cd by Gandini2 ~nd by Longworth25 • 

2.1.2. HOXMO. Tho B.D.H. i;Special for spectroscopy" product W'.s 

distilled .nd storoa ov~r phosphorus pontoxide in ~ reservoir ~ttaohod 

to tho va.ouum lino. 

For gonorn.l la.boratory proooduros 06 potroleum othor W:~.s distilled 

boforo use. 

2.1.3. Dieth.yl oU .. or. Thl B.D.H. p:roduct Wo.s purified a.coording to 

tho method of Voge1 3• It was thon fraction~ly distillod off sodium, 

disoarding lO/~ hoad and tail tractions, b.~,. :.A~/750 torr (Lit.
l 

34.50
/ 

760 torr). Tho othor W(l.S storod over lithium ::>luminium hydride 

undor its own vapour prossuro in a vossol attt\Oh0d to the Vt\Ouwn 

lino via ~ mota.l DiPl valvo7. 

Phials containing vary small quantitios of diothyl othor wora 

proparod by tho vapour prossuro tochniquo dODcri''lod by Jiddulph4• 

2.1.4. Carbon tetrachloride. This solvent (B.D.H. Ltd.) was distillod --- ... .,.-.. 

boforo Usa. 

2.1.5. !-~iO anhYdride. (B.D.H. Ltd.) was roor,ysta11isod throa 

timos from ohlorotorm nnd dried on tho vacuum line, m.p. 54-550 

(Lit. 5 540
). 

2.2. iionomore 

2.2.1. l,):dioxolan. This moncmor (Koob-L1Bht Ltd.) was purified 

by rof1uxing over sodium h7droxide until no moro sodium hydroxido 

was used up. It waa then fractionally distillod, furthor rotluxcd 
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for 24 hours over sodium mot."l, n.nd finally fraotionn.lly distilled 

off sodium md:J.l through ~ 3 ft. oolumn ~t oJ. reflux r~.tio ,of 5: l. 
o 6 0/ A product h~ving b.p. 75.1 /742 torr (Lit. b.p. 15.0 760 torr) 

WD.O collooted. 

The monomor w '.13 then pour0d into)' rosorvoir oontll.ining 1i thi urn 

o.luminium hydride, which w l.S ~\tto.chod to tho Vo.cuum line. llith 

tho 1,3-dioxolan frozon tho vassal w~s dog~ssad and th~ entry tube 

w~s soalod off. Tho monomer w,:·a completoly dvgl'.eeed by ropontod 

froozo-thawing. Tho monomor was isolntod from tho dosing lino by 

a meto.l BiPl valva7 ~d t~o dosing procoduro h~e boon dosoribod in 

moro dotail by \'Iestermo.nn8• 

Although 1,3-dioxol.~ is roportad9 to be stablo to lithium 

aluminium nydrido, tho rosorvoir alw~s neoded dogo.ssing beforo 

each distillation, bac:l.uso thore w".s 0. slight evolution of ea.s. 

Howovor, tho rosults obtained at tho beginning nnd and of a ~o.rticular 

ba.tch wero o.lw~s in exoellont agreomont. 

It is possiblo tha.t the lo.st quantityot ue\.tor only- roooto olowly with 

lithium o.luminium hydrido beoo.usu go.e ohrom~togra.phy haa shown 

that our bost 1,3-dioxol~ still oontainod leBs thnn 5 p.p.m. 

(a.bout 2 x lo-4u)lOot water but tho samplo undor test was 'prop~od 

on tho va.ouum lin~ And than oxpo.od to tho :l.tmosphoro tor s£,,',lpling 

E10 th:\t some w~'.tor may havo boon introduoed by this proooss. 

Rogular degassing wns alae roquired for tho othor oOM?ounds storod 

ovor lithium aluminium nydrido, namely diothyl othor, 1,3-dioxan 

and 1,3-dioxopan and with the last dQgBBoing was still requirod 

avon after throe yOa.r8 8torago. 
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,:i th lDothy1en;.; dich1orid-.:) l':hich is considol'ed to bl,) ;noro 

. 1 ". dlO th th l' h h (';.'Sl Y ur1" ·J.n u eye 1C ct ors, thu eO-saing , onomenOl1 W<:'.S 

11 
f.'1.100 obourV0d • 

I havo also oboorvocl th:'l.t dog,ssing takos lonBcr whon tho volume 

in th.-; roservoir is 10\11, therofor\) I considor th ·.t tho formation of 

the g~s may bo OCl.USoC~ by p:l.rtil\l duoomposition of lithium c.lurninium 

hydrido. 

2.2.2. l,3=Dioxo.n. '.l'his monomor W).s prop<U'od from l,3-nropn.nodiol 

·(B. D.H. Ltd.) ·':'nd parD.formaldohydo (n.D. rI. l"td.) by r. proooduro 

6 8 'nD.logous' to that usei for 1, 3-dioxol~. 

1 molo of 1, 3-propan ~diol, 1. 1 mol v of "PfJ.rc.forlnaldc.;hyd...:. :md 

5/ of orthophosphorio tI.oid woro reaotod in ':\ flr-.ak fi tt-:..d with 0. 

60 em fr:tetion<..\tion eolumn o.ncl cond .. meor. A mixturo of "mtor ~d 

1,3-dioxan distillod over with ~ boiling rnnge of 08-1040
• Tho 

:~.quoous and non-aquoous l~ urs woro sopo.ro.tod by sn! ting out with 

co.lcium chloride. The non-aquoous product was rofluxod ovor sodi~ 

hydroxida until no mora sodium hydroxide ro~.ctvd Wit.'..l ~Z13 _~.oidio 

or hydroxyl oontaining impuritios. Tho product Wl\S fractionatod 

and than rofluxod ovor sodium motal for 24 houra bafora tho fin~l 

f'raotionD.tion. '.rho traction boiling ,~.t 106°/749 torr (Lit. 12 105°/755 

torr) was oolloctod. 

This monomor was storod ovor lithium aluminium hydride ~d 

dosed in the same wa:! ns 1, 3-dioxola.n. 

2.2.3. l,3=Dioxopnn. Thc. propo.ration of this monomor WJ.S !UJelogous 

to that of 1.3-diox4n, exoe~t that tho glyool was 1,4-butanod101. 

Tho produot was puritiod and dosod as dOBoribod8,ll. This b~toh 
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of Ilionomor cont :J.inod n. sHlD.ll q u:J.nt i ty of t etro.hydrofurD.n (1: 50,000 

vol/vol) 0.(1 shoun by g.l. c. :'.nn.lYf3is. 

2.2.4. l,3-Dioxocn.n. This mo-,oroor is doscrib..;d in Section 3.4 of 

2.2.5. 1,3-Dioxono.n. 'rhis is doscribod in Scction 3.5 of this thol3is. 

2.2.6. 1,4-Diox:J.n. 'rhis mono mol' (B.D.H. Ltd.) \-10.9 purifi.;.;d by 

rof1uxing it oVur sodium fer 2 do~s. It W1:'.S r0flux0d ovor, [l.ml 

dist:;.Hod off, lithium n.lumbium hydrido immorlia.toly bGi'oro usc, 

b.p. 100.2°/144 torr (Lit. l 101.3°/160 torr). 

2. 2.1 •. !.Q.t..;:~&~ropYF'lli' J.'his monomor (B.D. H. Ltd.) W1.S purified by 

rof1uxi!1g it over sodium for 2 dn.ys. FinAlly it wo.s rofluxe(l 

over, and distilled oft, lithium aluminium hydrido bofore uaG, 

b.p. 81°/149 torr (Lit. 5 88°/160 torr). 

2.2.8. Oxopan. Soo SGotion 4.3.1 of thio thQsis. 

2.3. Cata.lysts. 

2.3.1. !.oron trifluo~ill9._othora.te. This oom;?ound (B.D.H. Ltd.) 

wo.s fraotion".1ly distillod in :J. ni trogon a.tmosphore. Tho fraotion 

boiling at 124°/142 torr was oollected. This w~s thon rodistilled 

undor roduood prossure (540/20 torr) with a nitrogon blood (1,it. 14 

125.10/160 torr). 

It wa.s quiokly transforrod to a. vassal attnchod to tho vacuum 

lino. Tho boron trifl uorido oth\Jrate wn.s frozen, deg;..1.Bsod .:md tho 

vassal saa.lod at A (Fig. 2.1.). Tho oom-pound W.J·S thOl1 distillod into 

f1a.sk 0, loa.ving a gonerous tn.il fraction. 

The boron trifluoride Gthor3.ta rOMtod with tho mot£l.l BiP11 

v~lva, so tha.t o. sorios of broa.ksea1s ho.d to bo usod for dOElill8 
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(Fig. 2.1.). Thorefore, ea.ch time ? sn.mplt; 1'11.8 required, 0. break-

aeal (a.g. D) "'I.::'.S brokvn o.nd tLe boron trifluoride otheratc distillod 

to tho roo.ctioa vessel vio. tho burette F, D.ncl then tho roservoir 

was closed by soa.ling off d E. It m.l,S noc0saCl.ry to isolo.tc the 

boron trifluoride othoro.to from tho ID3tal va.lvo, G, by tho dry 

va.l vas H and I. 

This method of dosing is rather tedious boco.uso the boron 

trifluoride otherate distils slowly o.nd condenses o.t various points 

in tho vacuum lino. If tho proceduro allows, it is more convcmiunt 

to dose the boron trifluo!"ide ethercl.to into phia.ls which cn.n be 

fused to th0 lino noaror to tho rosorvoir. 

2.3. 2. 1'&ot&!p..x.2..njJE.Li~trn.fluor_oboro.to (Et
3
0+BF'4)' This \le.s 

prepared on tho va.cuum line in tho G.~J'9aratus shown in. Pig. 2.2. Tho 

mothod was bn.sed on tho.t of ~~oerweinl5 in uhich boron trifluoride 

othero.to, opichlorohydrin, al1d diethyl other roo.ct together a.ccording 

to tho equation. 

OH2Cl,H.> Et Et 
........ 2 "-3 + 4 /O.BF3 + .,·0 • 

CH2 
Et Eo(' 

.. \ 
ClCH2'.. 

B 3 + -'CHO + Et30 BF4 
EtOCH'/ 2 3 

L. 

Tho propo.ra.tion D.sBcmbly I was fUBOd to tho va.ouum DJld roc.gont-

supply lin~ and pumpod out for about 3 hours. The throo rOD.otants 

wore then distilled into flo.sk D (3 molos opiohlorobydrin, 4 moloB 

BF3Et20 ~~d 16 moles Et20). aith tho contents of D frozon, tho 

Il.pP<J.1'a.tus Wo.s sealod off from the line at B. Tho roactants wore 
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th,m th:·.wed and mixed by stirring them mngnoticOolly. A 'Proci~0i tr-.to 

was formod which Wo.s ::1. 'liscous oil D.t room torpcrD.turo. Attempts 

to crystalliso this oil woro mado by w~mingt cooling, o.nd sh~king 

but those fai1&d. Stirring is very difficult bOQD.uso of tho visoosi ty 

of the oily pho.se. Howovor, tho oil orystallisos after sto.nding at 

0° for about 12 hourn. This timo oould bo shortoned slightly by 

\-w.shing the oil. \:D.shing \-lJ.S on.rriod out by til taring thu solution 

into flask A through tho sintorod filt~r S and redistilling tho 

oxcass diothyl other bo.ck into fla.sk D by oooling it. !fhercD.s the 

boric a.cid oster is solub~o in diothyl othor; Et30+BF; is insoluble. 

Aftor orystn.llisation tho Et30+BF4 wo,s we.shod o.bout ton times 

in tho mo.nnor described abeve. For this process it is important 

th8.t X is long ·.Inough to hold all tho fil trn.to. Fil trr.1,tion OM bo 

acoomplished easily by slightly warming or cooling tho a,propiato 

flask. When washing WIlS cOffij:lloto, the gl :l.ss Ilbovo S wo,s washod by 

rotluxing tho other in this pnrt of tho apparatus. This w~.s best 

acoomplishod by stroking tho glo.ss with cotton wool so,:\kli:ld in 

liquid nitrog~n. The oontents of A wore frozen to distil tho 

remaining othor into it cmd then A wa.s soalec~, off D.t c. 

Tho tipping devioe II w'~.s soalod to tho va.cuum lin4 (;l,t J 

~d flask D containing Et30+BF; (I) WOos Boaled to II at H-F. Tho 

wholo assombly dOrm to tho broaksoal E was pumped out for about 

3 hours and then E was brokon. The pumping w~s oontinued for a 

further 2 hours. Thon 10 ml of mot~lone diohlorido were distillod 

into D and the wholo assombly was soaled off at J. 

+ -The solution of Et30 BF4 in methyleno diohlorido was thGn 
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distributod into the -phials P by turning the CI.ppc.rn.tUB upsido down. 

Tho al)po.ratus "P.s, onco oo5ai11, rt.ttachod to the vo.cuuln lin.e 

vin. tho broaksun,l G7 and p~~p0d for a further) hours. During this 

o stago tho phin.ls woro coolod to O. A ~lug of motQylono dichlorido 

Ha.S frozen a.t K, tho brear~soal G W:'S brokon, and the methylono 

+ -dichloride distilled out of tho phic..ls ~ IV'wing tho solid Et)O BF 4 

bohind. 

This distillation is ted.ious ::.nd it is advisa.ble to distil tho 

solvont to a recoivor, attached to the vacu~ line, rn.ther th~n 

to distil it diroctly to 'he tra."9. This mothod allot'ls moro control 

of tho r::\to of distilla.tion. l1hon most of tho solvont h."s distilled 

a. concentrated sc\lution of Et)O+BF'4 romains in the phir-.ls. 'rhe 

bulk of tho mot~lono dichlorido was now distilled to tho trap 

(or another flask isolated by a tap) so that the met~leno dichloride 

remaining in the phials could be distilled out. In tho latter 

process some solid remains on the nocks of the phin.ls a.nd this wa.s 

washed back into the phials with small quontitiJs of solvent Which 

wore condon sed in tho nocks of tho -phials by stroking th m with 

ootton wool sooked in liquid nitrog~n. Tho proooss wn.s rcpo~tcd 

until all the solid rema.inod in tho bulb in a dry state. Tho 

+ -solid Et)O BF4 w~s than thoroughly ovac~tod by pumping for a.bout 

ono or two hours before tho phials woro sca.lod off. 

The solid oan bo distributed into phials by this method, 

provided that thore is no moro th~n O.lg to O.2g in oach phial. 

With larger quantitios tho distillation of solvent tram tho p'hials 

becomos too timo-oonsuming and diffioult. Tho quantity in oach 
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phi[1.1 W"~.s doterminod by the mid-point mothod16 (error involvod ± 5mg). 

Tho yi~ld w.').s a.lmost 90;:). Thio Sill t is hygroscopic so th.'.t tho molting 

point W~1.s detormined by strapping a phia.l to a, thermometer and 

w'"1.rming thorn slowly in a.n oil bath. m.p. 91-92° (Lit. l5 m.p. 9l~. 
Phials containing sml:l.ller qunntitios of Et

3
0+BF'4 wore prepared 

by diluting a phial in the tipping devico waich has already been 

describedl1 • Tho solid SD.lt was thun obto.ined by a. ""rocess simila.r 

to that do scribed above. 

Tho use of spocific oonductance a,8 ~ .. calibration method for 

+ -solutions of Et30 BF 4 in mothylene dichloride \.]ill be disoussed in 

Ch~.ptor 5. 
+ -Et30 BF4 proparod in this w~ is stablo for suvernl months at 

0°. After a.bout 3-4 months 0. small q::lantity of oil eo.n bo noticed 

in the phials. Howover, oil formation only occurred in tho phiale 

conta.ining ,:\ .llo.rge" amount of the B~l,lt. A possiblo explp.no.tion is 

tho occlusion of somo solvent which encouragos decomposition. 

2.3.3. !!:iqih.yloxonium hoxo.fluoroo.ntif!>nate. This catalyst \~o.s 

su-ppliod by Dr. H.P. Dreyfuss. It Wo.s roprecipitatod thr;.;e timos 

from methylene dichloride with carbontotrachlorido immediately 

boforo use. 
o m.p. 121-2 • 

Initially, this com~ound ho.d been prepared by mo by the silver 

sD.1t mothod of ~!Oerwein18, but it W·~s impure, even when tho 1?ropo.rn.­

tion was dono on the vacuum lino. m.p. about 1020 (Lit. 19 lllo). 

Triothy10xonij!ID hoxatluorophoephato. This \'IO-S supplied by 

Dr. M.P. Dreyfuss and purified by three preoipita.tions from mot~1one 

diohlorido solution with carbontotraohloride 1mmodiatoly boforo use. 
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Tho s::l.l t W,j.S til torod through D. sintorod g1.::I.£ls fil tor a.nd then 

driod in V11·CUO (20 0 /12 torr), beforo b'~:ing introduc.)d into tho 

conducti vi ty coll whero it \l().S thoroughly ovn.cui1.tod. o m.p. 141-142 • 

2.3.5. Tx:i.othyloxoniwn tGtrachlo~~to. An ~.ttel:rpt '1'"'!.S m."do to 

pr;,.;pn.I'c this undor vo.cuwn by iloorweinsl5 method using borontrichloricl.o. 

UnfortunD.toly, this method 101n.S unsuccossful. 

2.3.6. f\;nh'y;drous perchloric [l.ci~. This acid WD.S prc.pn.rod by 

dohydrD.tion of 72f porchloric a-cid (Ho-pkin [l.nd Hillia.ms) \,li th 

20" oloum. Tho method WD.S derived from Eo.stham :mo. Tauber' 13
20 

i <.:'. 

full doscription is gi von by Gn.ndini o.nd Plosch17• Tho sariouo 

oxplosion haz:::.rd of this procoss h3.s boon oliminD.tod by a now 

mot hod d.Jvolo'Pod in this la.boratory by :'Io.thi0.s11 ; this involvos 

a counter-currant oxtro.ction of porchloric a.cid from a. mixturo of 

oleum and 72/,1, aquoous porchloric a.cid with mothylone dichloride. 

Somo of tho exporimontsdGsc:rtbed in SootionOworo dr)no with pcrchloric 

a.cid proparod in this wa.y. 'rhoro w:).s no a:9po.ront difforenco botween 

tho o.cid sD.mplos proparod by ~i thor mothod. 

2.3.7. Phosphorus 'Ponto.fluorido. 'llhis ca.t~lyEtt ~,o.B proparod by 

thormal docomposition of benzene diazonium hoxafluorophospha.to 

(Ozn.rk-Mo.honing Co.) at 160°. Tho nitrog~n o.nd phosphorus pontn~ 

fluoride genora-tod t-loro bubblod through tho requirod mOllomor or 

monomor solution. Tho dosing t-las cL'.rriod out in glass apparatus 

which was immediatoly immorsod in 3N sodium hydroxide aftor uso, 

to hydrolyso any remaining phos~horuB pentafluoride. 

2.3.8. ~riphonylmothyl totrafluorobora~. A phial containing 0. 

solution of this compound in methylone dichlorido W(l.S availD.ble from 
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Dr. P.Ro aestormcmn. 'l'hc method of propo.r~tion hap boon doscribedl3• 

2.4. Water Phials. A micro- syringe of 10 .ul ca:pD.ci ty, graduo.tod 

in 0.2 pl. tons used to fill smD.ll gl:o.ss 1?hio.ls \-1i th tho requir0d 

quantity of distilled l'mter. The qu-:--ntitics of wo;cor woro quito 

large so that a VCI.CUum filling dovico \'I).S not required. The '?hii.'.1s 

wore carofully dried, fillod with the oorrect amount of water and 

thon soa1ed off with a. small f1a.mo so th:l.t tho oontents did not 

become w:).rm. Th0 addi t ions wore o.t 250 in tho prosonce of l3.rge 

quantitios of 1,)-dio%olo.n in which water is soluble. 

2.5. ~iethY1amine. Phi~ls of this compound W0rc avai1~b1c from 

Dr. Board. Tho preparo.tim and p\ll'ifica.tion of triothyl:t.mino havo 

boen desoribed
2l

• 

2.6. Sodium Phenoxido (NnOP~. 3 mmolo of phonol dissolved in 

12 ml of tetrahydrofuran (frosh1y distilled off potassium) w~s 

trea.ted with .:m 0XCOSS of cloan sodium. The solution WD.S stirred 

magnetically in a nitrogen atmosphere until no more hydrog~n bubbles 

woro produoed. This usually took about 12 hours. Tho vessel wa.s 

then closed with a carefully greasod stopper, and oonnootod to. a va.ouum 

tipping dovicol7 via a breakseal (Fig. 2.3.). Atter tho tipping 

devioo had beon pumped out for o.bout 2 hours the solution "",).s 

frozon, tho broadsoal broken and the solution degassod by freezo­

th';,wing. Tho stirring was continued o.nd the oomplotion of tho 

reaotion w~s det~rmined by tasting tho vacuum with 0. Tesla ooil 

periodioally, with tho solution frozon. !ihon no more hydrog~n w~s 

produood, the a.pparatus w.,.s sOt\lod off tho linG and tho solution 

fil torod through tho sinterod disc S into tho tipping dovioa. Tho 
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ro~ction v0Bsol was now SG~lGd off ~t A ~nd the solution distributed 

into tho phis.ls. Tho 1).mount in tho phi:J.ls W:-.S dotor.·lined. by the 

mid-90int mothod16 
I ~n.d tho COl'l.centrn.tiQn of the solution Wrl.S 

detormined by •• V. spoctroscopy of th..;. contonts of a phi~.l dissolved 

in N sodium hydroxido solution. Thu concentration ostimated in 

this wn.y o.grood vd th tho initial ooncontr"1.tion of 1>henol. 

Phi~ls containing solid sodium phcnoxido wore proparod in a 

W1'J¥ ana.legous to th"1t doscribed in Soot ion 2.3.2. 

2.7. EE.ichloro~_l:!l. This compound (B.D.H. Ltd.) W:1.S fro.ctionl'\lly 

distilled, discarding gon,"rouB hoo,d o.nd tD.il fraotions. .Any wat~r 

presont distilis a.s an azootropo and was thus ro ~.dily rO .. loved. 

b.p. 115°/744 torr (Lit. l 1160/760 torr). 

Tho 'Puro ol:Jiohlorohydrin \,1'~.S pourod into a flask on tho vaouum 

line. The fla.sk wa.s sealod and tho oompound degassod. It wC'.s distillod 

from bulb to bulb on tho vacuum lina. The middle fr~tion (a.bout 

60%) was stored behind a mota.l BiPl valvo7. 

Po.rt II - Appara.tus o,nd Pro9.£!!..l£2! 

2.8. Ul tra.violet a.ncL'Lisibl.~. S'QectrosoopY. The apoot:ra roportod 

in this work woro t.iken on 1). Beokmann DB rooording spootromoter. 

A spooin.l light-tight lid allowing 0. largo amount of free space 

a.bove tho 0011 holder replaced the oonvontiona.l lid when s. speotra-

d . 22 d soopio OV100 wa.s use • In tho "open" experiments 2mm and 10m 

silica. oolls were used. 

2.9. Infrarod S.eootr~ooBY' All infrarod spootra woro run on a 

Porkin-Elmor 257 Grating Infr~od Spootromoter. Tho instrument wa.s 
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calibrated by mer.ms of a. pol;;T:Jtyrono film. 

Iii th high molocuL'I.r l'leigh~: polymors, transpa.ront films wore 

prepared directly on the rock sa.lt plates by ovaporating to drynoss 

a concontr.':1.tod solution in mothylene dichlorido. Low molecular 

weight polymers were soa.nned on sodium ohlorido plates or, as 

lf solutions in oarbontotrachlorido. Tho crystalline dimors a.nd 

trimors wore scannod in ca.rbon tetro.ohlorido or ca.rbou c:lisul!Jh.:i.dc in 

ordor to cover the whole of the speotrum. 0.1 and lmr.1 colls ,-rore 

usod. 

Elmer U-R10 N.rl.R. Spectrometer, providod with Oon intogrl\ting 

circuit and a oomputor of averago tro.nsients, W"1.B used throughout 

this work. This instrument h;:1.s IH rOllonn.noe at 60 Jicsco. -1 o.nd is 

o 
thorrnostatted at 35. Tho position of 'th.:. N.Ji.R. bonds in o·,\rbon 

totrachloride, o.nd mothylone dichloride solution iloro dotor·rdnod by 

reference to T.V.S. at lOt' as an internal sttl.ndard. In a fa,., 

experiments made undor high vaouum, the soda glass tube W,.S sealod 

onto tho vacuum line by moans of a soda g1o.ss-to-pyrox soal. The 

tube was fillod, frozon down and svaled off; it woo8 then that'lod and 

wormed to 350 
so thtl.t thv speotrum oould bo sonnned. 

2.11. Gas liquid C~~motograp& (g.l.o.).All tho e.nalysos woro run 

on a Perkin-Elmer F-ll, fitted with dual oolumn analysor, a flame 

ionisation detootor, ~Q two 3m. silioono oil SE-30/Chromosorb P 

100-120 mosh oolumns. Ocotl.s/ionally 0. Poropak Q p~king w~s used. 

Tho moohine wall adjustod 80 th:':l.t at an attenuation of 1 tho bnso 

lino w~s straight. 
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For tho experiments in uhich ethyl f1uorido 1".nd ethn.no woro 

detoctod, attempts were not mn.C:o tJ sopo.r~,to the so furthor because 

it usuo,lly took somo timo for tho b.'1.so 1ino to bwcomo steady cgain 

and this governed tho time betweon successivo chromn.togr.::>.ms. 

2.12. Thormostats. 

A tomporatureot-35° 111).S obtainod \-lith 0. mush of ~thyL;ne 

dichloride, _80 0 from Dr1ko1d/l.1ethy1n.tod spiro its and tho othor 

tompor."l.turos bolow zero \iOrO obtn.inod by use of t\ "!1inus Seventy 

Thermostat Ba.th" (Townson and Horccr Ltd.). 

A well stirred iC'e-i.l-distillod. w;).ter bo.th in which tho tCr.1-por",­

turc W1.S kopt constant to :!:0.05° was used for tho 00 th.)rmostv.t. 

250 ±0.02° was obta.inod by Do uo11 stirrod wa.tor bath rogu1a.t::.d with 

a. oontact thormvmeter. For to!nporo.tures higher th·'.n this C!.n . 

aUl tra. Thor;il( 3tn.t'l (Sh:::mdon Ltd.) was usod. 

2.13. Conductivity Bridgos. For tho measuremont of associ"'.tion 

oonstants tho Hayne-Korr B22l Universn.1 Bridgo wa.s used. This 

instrwnent which works on tho transformer ratio-arm prinoip1e hs.s 

a. built-in sourco (1,592 cycles soc. -1) and a. laagic-eyo dotootor. 

Tho conductivity rango is 10-lto 10-10 !L -1 with o.n ... ocuraoy of 

Tho ca.po.oit1os .,.nd conductivities ",-ro both 

bn.loncod o.t tho null point. 

Conduotivity mea.suromonts during thv po1ymorisation Cl.nd dooom-

position runs woro mado with a. Chandos Linon.r Conductivity ~:etor 

(rango 10-2 to 10-1~1±1%). 

2.14. ~oll constants. Tho co11 constanta of oonductivity cells 

wore determined by the method of Lind, Zwo1onik and FuOBS23. Sinoe 
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tho ro.ngo of telo l10ro.turu t-la.s smnll, tho colI consto.nt determinod 

... t 250 
WD.S l' d t 11 t u. .:l.pp 10 0 a mOD.surGmen s. 

2.15. Tho P9.1Yil!£r~ti2!l.E. Tho rnto of polyc.Jrisn.tion \'W.s mo,;.surod 

in tho dillltomGtor, fi ttod with oloctrodos for conduct::'.nco mOD.sure-

25 -1 monta ,shown in Fig. 2.4. Cell constant = O.246cm • 

'rhe vessel W:1.S r:l.tta.ched to the vacuum line and pl'.:.:rpod for~.bout 

3 hours. The monomor was distilled into B, the ~oflon taD closed 

and thu solvont was distillod into A. With the solvent frozon, 

tho dil:"1.tomotor W:lS sealed off at C. Tho phial of cat"1.lyst l'l'6 

thon brokon into the methylone d.ichlorido. I.fter thormoDt:J,tting, 

tho sol,ution w.'l.s tipped into tho bulb of ~ho dil::1.t')motol' to m'':;D.sure 

tho conductivity of tho solution. This \-l!loS used to calibrn.to i;ho 

catalyst concentra.tion. The solution wO.s roturnod to A {l,nd tho 

:.<10nomor mixed \'lith it by opening the Toflon tap. Tho so1uti-;,n W·"s 

mixod and thon tippod ba.ck into tho dilatomotor so th't tho roC',ctbn 

and conductivity ohangus could bo followod. In some oxpcriments 

tho tap w~s roplacod by a bro~soa.l but this chango h~4 no off3ct 

on thQ r~;ac.t ions • 

Dopolymoristl.tion was ~ccomplishod by wa.rming tho polymer 

solution to a. tomporn,turo abovo tho coiling tompor·\tur~, T. Tho 
o 

solution was quickly mixod ~d tippod b8~k into tho dil~tomutor 

which was rothormost~ttod. 

After po~orisntion, tho reaction mixturo W~B roturned to A 

for killing. Since high monomer oonoentr~tions woro required 

(up to 4J!) in tho kinetio runs, tho solution was so viscous th "t it 

was nooossary to dopolymoriso tho solution partly in this process. 
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Tho ron.ct~ on mixturo W~.S rother'·,lostattod for D.n hour before killing 

it. 

For sampling 0xporiments, tliO m·:)dific",ti·:Jns of tho dil'1.tomotor 

(Fig. 2.4.) wero usod. + -In tho Et30 BF4 \"lork B was ropln.cod by a 

fl~.sk fitted with a rubb~r soptum (D.nd broakaoal) i Il. gro~sod tn.? 

a.t C allol'lod roduction of tho vn.cuum with nitrogen. tli th HC10 4' 

lower to;rperaturos woro necessary, theroforo tho dilo.tomotor in 

Fig. 2.5. W:l.S usod. The samplos wero tokon l'1ith a syringo agt:'.inst 

a flow of dry nitrogen. Tho nitrog~n W\s driod by oooling it l'1ith 

liquid nitrogen. 

Tho other polymerisations woro mo.de in ovacul'.tod H-tubos 

(lor 2 son.led togcthur in sorios) which allowod tho crushing of 

more than ono paial of catalyst or killing ~ont ~nd tho diVision 

of tho rco.ction solution into two. 

For tho roactions c~.talysed by ,?hosphorus ponta-fluorido tho 

follo\'ling procodure was used. Tho roa.ction vessol I (Fig. 2.6.) 

w.~s soaled to tho vacuum lin:J at A. Aftor ova.cuating it for about 

2 hours tho monomor and/or solvent wero distilled into C, the 

vossol was soaled off D.t A, o.nd tho V.:'.cuum lot down with ni trogon 

by oQoning tho gren.sed tap B. The vessel w~s then opened at A nnd 

the opon tube connected to a P.V.C. tubo whioh vontod tho reaction 

vessol closo to on oxtraction tan. Tho tap W.:.s romovod from tho 

vossel nnd tho vassol wo,s connootod to tho PF
5 

dosing line (II). 

Atter bubbling tho PF
5 

through tho solution, thu generator wo.s 

allowod to cool beforo tho vassol was disoonnootod trom the a.pparatus. 

A was olosed with a rubbor oap and D witb a glass stopp~r and th0 
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vessel .,1:\S thermosto.ttod D.t theappropria.to tcul'poro.ture. The reaction 

was killed with an ~mmonio./[1,lc·hol solution. 

2.16. Polymer Isola.tion. All thu kinetic runs nore tcroinatod 

by oponing the dilo.tomctcr and quickly pouring in cthDnol/:1.mmonil.',. 

Other polymoriso.tions wore tormina.tod Hi th ~,mmoni::1. vapour (from 

0.880 ammonium ~dro%ido) or by breaking ~hio.ls of sodium pheno%ido 

or triethyl~minc. 

Low moloculo.r woight polymers of oyclic formo,la o.ro solublo8 in 

mo.ny solvonts, so th'.'.t pr':"cipitation is D.n inefficiGnt mot hod of 

isol~ting tho polymer. T~erofore, tho polymers woro isolo.tod by 

eva.pora.tion of tho neutralised reCl.ction mixture. Tho polymer was 

further driod by ovacua.ting it (12 torr/35°) for a. fow hours. Tho 

polymer w~s then rodissolved in mothylone dichlorido, carefully 

filtered, .'),nd isol~,ted ~.S bofore. During the distillo.1iion it wa.s 

nocessary to prevent depolymerisation o.nd o%idtl.tion by kee~ing the 

solution a.lka.lino with a.mmonium hydroxid~. Fin~lly, tho polymer 

wO.s pumpod for 24 hours (12 torr/35°) to froo it from romaining 

solvent, ammOnia and wator. 

2.11. Holeoular woi.Kh~ierminatt2!!. Holoculnr ,.,oights wore 

dotermined with 0. lIechrolo.b Vapour ProBsure Osmoneter Uodel 301A, 

with a. non-a.q.UOOUB probo I:\t 31
0

• Tho solv~nt used for .most mea,sure­

ments was l,4-dioxan. Somo molocula.r woights woro detormined in 

oarbon tetra. ohloride solution, but the high moleoular w~ight 

polymors woro insoluble in this. Tho instrument w~s o~libr~t~d With 

triphenyl mothnno ~d triphonyl c~binol. 

The number a.verD~o moleoul~~ woight is dotarminod by this 
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mothod, so thnt the degreos of polymerisation, D.P., quotod ~o 

2.18. !h2.,}~~.£.omE.c!'~~~. In the exporiments on tho docomJ;losition 

of triothyloxonium snl ts whero the r'.to of evolution of othyl 

fluorido was mo~surod ooncurrently with the rate of loss of conduc-

tivity, tho reaction vassol usod wo.s simil~r to th '.t sho\11n in 

Fig. 2.4. oxoopt th .. t tho fl:\sk B \'1L'.S ropl::\ced by ::-. tipping device. 

Tho method and appar~tus are described in Chapter 5 (seo Fig. 5.16.). 

The d~composition reaotions involving only conduct3nco mo~auro-

ments were undortaken in a simplo dil~tometer fittod with eloctrodes 

which h·1.s b.:::on doscribod24• The procedure is describod in Chaptor 6. 

-1 Cell oonstant - 0.305om • 

In experiments in t'lhich tho u. v. spoctra wore takon before and 

after decomposition a vacuum spectrosoopio devico, fitted with 

22 1 olootrodos t Wo.s used. Call oonstant • 0.195cm- • 

2.19. Conductc.noo Hoo.suremonts. These wore cn.rriod out in thCl 

0011 shown in Fig. 2.7. It consistod of an invorted oonical flask 

of 500 ml oapaoity with tho olectrodos fixod noar th~ bottom. The 

two platinum eloctrodes (10m x lorn) wore held about 2 mm o.p~t 

wi th four soda gla.ss bOD.de. Tho platin.um leD.ds l'I;l;t~hed to tho 

olootrodos woro spot-weldod onto 1 mm diamotor tun8Ston rods whioh 

wero fused through tho walls of the flask nnd were oxtorno.lly oonnoe-

tod to two oopper leads. The oxternal wiring wa.S onolosed in glass. 

The call constant • O.096560m-l • 

Tho minimum volume of tho 0011 was 25 ml and a Toflon coatod 

magnetic stirrer was used. 
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+ -For Et30 BF 4' D. phin.l of it \>1.",8 supported in ~, phiD.l-orushing 

dovioe fitted to the co11 through a B29 joint. After pum~ing, 

the phiD.l was brokon into D. smD.l1 qU:"'lltity of solvent. Diothyl 

othor W:J.S addod in a similn,r WD.Y, Ox(~ept th ..... t tho phial w~,s a.lways 

below tho surfaco of tho solution before crushing. 

+ -Et 30 SbF 6 woro weigh (':. on Do dhi tos' Torsion bDol~,nce, tr"',nsf(;rred 

diructly into the oonduotivity 0011 nnd evacuated thoroughly. 

Dilution W:'.S carried out by dosing the solvent into tho 0011, 

by tho normal proooduro2 ,25• Dilutions from 30 to 300 ml 1'10re 

possiblo. 

Tho 0011 W~.s thormostattod :It 0
0 

:lnd the conductivity mC,'I.surod 

on the Uaynr.-Korr B221 Bridge. Thu conduotanoo reading \1'.S tnken 

when the r03.ding W:J,S sto::l.(iymd this W'1.S a good chock on the. t..:;mporo..-

turo of th~ solution. About fiftoen minutes woro allowod for 

stabilisation botweon eaoh o.ddition of solvent rmd tho oom-ploto 

oxporimont took about 2-4 hours. 
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Introduction to Sec~~ 

In this part of the thosis the polymerisability of Bome cyclic 

oxygen compounds is discussed. In particula.r, l,3-dioxan pos:;: an 

interesting problem. 'rhe litera.ture concerning the ,?olymerisation 

of this cyclic formJ.l was conflicting, so thJ.t it presentocL both 

a -polymerisa.bili ty problem and potentially a neu lUonomer for general i­

Bing the ring-expansion mecha.nisml 

Since 1,3-dioxan is a six membered ring with little strain, 

only sketchy attempts nave been made to polymerise it. 

The earliest re"po~t ~oncerning the polymerisation of 1,3-

dioxan was from Vaala and Carlin2• The polymers produoed were from 
and 

l,3-dioxan~substituted 1,3-dioxans (e.g. 4-methyl-l,3-dioxan) by 

reflwcing them w.lth boron trifluoride and acotyl chlfJridd in o,cotio 

acid. The structure of th0 polymer wa.s not exained and it se0mB 

likely that the polymer was not poly-l,3-dioxan. 

Sulphur trioxide3 has also been claimed to polymerise 1,3-

dioxan and some substituted l,)-dioxans and l,3-dioxolans. 

Takakura, Haya.shi and Okamura4 claimed tha.t 1,3-dioxan and 

1,3-dioxolan and l,3-dioxepan will ~olymerise in the presence of 

ma.leic anhydride and benzoyl peroxide. Although they later published5 

details for the polymerisation of trioxan and 3,3-bis-chloromethyl 

oxetan, no further expor1mental results were ~resentod for the 

oyolic formals named above. By analogy with the meohanism proposed 

for trioxan pol~nerisation under the same oonditions the polymerisation 

* of 1, )-dioxolan would have to be initiated by a dioxolonium 

ion. As this oonflicts with other publishod moohanisms for the 

* The oorreot name for this ion i8 1,)Pdioxolan-2-71i~ 
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polymerisation of 1,3-dioxolan it was necessary to attempt the 

polymcris8,tion of l,3-dioxa,n and I, 3-dioxolan under those c.mdi tiona. 

Mercuric halidos6,1 polymerise 1,3-dioxolan but only form 

complexes1 with 1,3-dioxan and 1,4-dioxan and this is another 

indication of the non-polymerisability of these monomers. 

The monomer roactivityr~tios (r) for the oopolymerisation of 

3,3-bis-chloromethyl oxetan with several non-·homol?olymerisablo 

monomers hav0 been determined by Yamashita8 • Since k22 (the rate 

constant for the homopolymerisation of thooa-monomer) is zero, 

they assume the i<1eal case where r l :£.'2 ... I and compare th. va.lues 

for l/rl • They found a linear rela.tion between basioity, as 

measured by Gor~'s method9, and l/rl for tho following co-monomers. 

2-methyltetrahydrofuran, tetrahydropyran, 1,4-dioxan and 4-mothyl-

l,3-dioxolan. However, the reactivity of 4-~henyl-l,3-dioxan was 

much lower and did not lie on tho straight line. 

YamashitalO in his review on the copolymerisation of cyclio 

oJIYgon compounds, reports tha,t tne r 2 for 1,3- and l,4-dioxan, 

4-methyl and 4-phenyl-l, 3-dioxan arc zero with rcs'()eot to 3,3-bie-

ohloromethyloxotan. 

11 Geller has shOtln that 1,4-dioxa,n did not oopolymerise with 

3-methyl-3-chloromethyl oxetan, whereas a small number of tetra-

hydropyran units oould be incorporated into the polymor. 

The heat of polymorisation f:>r 1,3-dioxan is quoted as 0.0 koals/ 

mole12 and the caloulated value tor 0701ohoXQDO iO,-o.7 koals/molel ). 

If the actual value wore slightly negativ~ or the entropy change 

sufficiently positive, then polymerisation of 1,3-dioxan would be 
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possible. The change of entropy (6s) for the hypothetical polymeri­

sation of cyclohexano is -2.5 ca.ls/deg./molel3 ,l4; thorofore, if 

,S is tlle same for the -polymorisation of 1, 3-dioxan, polymerisation 

would only be possiblo if the enthalpy wero sufficiontly negative. 

From this brief roview it is apparont that a systomatic investi-

gation of the polymorisability of l,3-dioxan was neoossary; thorefore, 

Chaptor 3 deals with such a study. 

The reviews available on the thermodynamics of polymorisationl3 ,l5 

are lacking in thermodynamic da.ta for tho equilibrium polymorisation 

of cyclic ethers and ~yCllC formals, with moro than 7 atoms. 

i10 intended, at first, to extend the range of values availablo 

so that they could bo oompared ~lith tho calculated thermodynamic 

12 
data available for cyoloalkancs and oyclic oxygen oompounds. 

Unfortunately, for various reasons this was not possible. However, 

the results obtained are includod in Chapters 3 and 4 so that the 

general problems which oan arise with those monomers should bo on 

reoord. 
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SECTION A - CHAPTER 3 

The Po1ymerisabili t.x; of 1! 3=Dioxan o.nd...!! Noto abo1!t the Prepara.tion 
of 1,3-Dioxoc~~~d l,3-Dioxonan 

This Chapter outlines the various attempts to polymerise 

l,3-dioxan. 

Polymer Nas not formed from 1,3-dioxan in open experiments in 

which the monomer was distilled off lithium aluminium hydride; 

boron trifluoride etherate and anhydrous porch10ric acid woro tho 

catalysts. Therefore, tho experiment, desoribod here Wero carried 

out in vacuo whoreever possible. In experiments whore it WB.S not 

praotical to dose the catalyst under vacu~m (e.g. phosphorus 

pentafluori~e) the monomer was distilled, under vaouwu, into on 

eva.cuatod vossal whioh was soa.led off and openod so tha.t tlry 

nitrogen entered the vessel (seo Fig. 2.6.). 

3.1. Protonation of 1,3=Diox~ 

Theso experiments were oarried out, under vacuum, in tho 

adiabatio calorimetor, whioh has boen fully dosoribed by Pantonl • 

The vessel was fi ttod l'li th electrodes2 for oonductance moo.surements. 

The results ef these experiments are given in Table 3.1. 

When the aoid phial was broken the conduotivity immadiatQ1y inoreased 

to a oonstant value but the temperature remained oonstant. The 

u 1(' J ~u.ol -1 -1 value of'lf 00104 of about 1-- cm l.mole can be oompared 

with that obtained under similar oonditions for l,3-dioxepan3 

-1 -1 -1) (about ~ om l.mole • Sinoe we knew that l,3-dioxepan is 

completely protonated, it follows that l,3-dioxan is, also, oomple-

tely protonated by perohlorio aoid. No polymer was produoed and 



Table 3.1. 

ThE> li'rotonation of l,3-iD.ioxnn in r~·et4ylGl!.L1li.~.1.<?.:FJda, ~t _50
0 

Run No. 1 

[1,3-dioxa~ 1(. 1.8 

[HCI0~/l03M. 1.85 

~rI~-1 -1 11.3 cm . 

I( o~}l-l -1 0.28 cm • 

/( f is tho fj.nal spocific conductivity 

Ko is the initial specific conductivity 

Tab10 3.2. 

2 

1.0 

11.0 

91 

0.21 

Tho A.tteI!1Et~d Polzmorisation of C~clic f2rma1s in Maleic 
A@Ydl?i~_Solill.£..Il._wi t..U~nzolUoroxi<!.o L~.undor ya.cuum, 

at 50e 

Run No. 4 5b 6b 26 5a. 

[i,3-diOXa,~ 1M. 8.0 8.0 8.0 5.2 

l!,3-diOX01a..;} 1M. 8.3 

[Bfl:20J II02
M. 3.0 2.1 2.8 2.6 2.7 

Reaction time I h. 4.5 5 24 52 5 

6a 

8.6 

2.7 

24 
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g.l. c. showed th'3.t protonated 1, 3-diox;·lJl wa.s not converted into 

other chemioal species. 

3.2. The AttemEted Polymerisation of l,}-Dioxan 

3.2.1. Sulphuric Acid 

O.2M sulphuric acid did not polymerise bulk 1,3-dioxan, under 

o 
vaouum, after 20 hours at -35. A small amount of insoluble grease 

wa.s produced but there was insufficient for infrarod spectroscopy. 

3.2.2. Maleic k~dride I B~zoZl peroxide 

Takakura, H8\Yashi and Oka.mura4 have reported th;).t 1,3-dioxan 

is polymerised by benzoyl ~eroxide in the presence of maleic 

anhydride. Therei'ore, this method was used in attempts to polymeriso 

both 1,3-dioxan and 1,3-dioxo18~. 

In these e~eriments (Table 3.2.), large phials oont~ining 
h 

maleio ahydride and benzoyl peroxide, were soaled to tho vacuum 

" line and evaouated for several hours. The monomer was distilled into 

the phial which was then sealed off. The reaction vessel was then 

stored in a thermostatted bath at 500
• In all experiments a pink 

oolour was formec! which eventua.lly turned purple after 30 mins. and 

this colour remained throughout the period of observation. After 

the desired time the phial was quickly opened and the contents 

poured into methanol. The oolour could be disoharged by adding a 

little ammonium hydroxide. No precipitate was formed at this stage; 

however, oocasionally slight precipitation ooourred overnight. The 

infrared speotra of those preoipitates showed that they wero not 

polymers of cyolic formals. The inoreased reaotion time of 52 hours 

(Bun 26) had little effeot on the products. 



~a 3. 3 • 

.!!Lo 01 i",g<l.~~r.i..s..~;ti~-'~.Jl::.I?t~E'.11_l?Y..i~!~!!.YA:t<?..~E'~ Loyclll oric ~ 
i!!..l~1Y.~oMDichl2F-i'i~ _So 1 ut i '':''11 

Run No. 15 

[!, 3-diOX~ /r.i. 11. 7 

j!CI0 4J /10
2
M. 

T / 
f 

°c. -37 

TimG/h. 48 
y' Id .,1 10 II 0 

Run No. 30 

~, 3-diox~/rL 10.0 

~C10 ~ /10
2

Iv1. 1.45 

Tr / °c. -35 

Time/h. 20 

Yiold j; 37 

T
f 

~ Final tomperature 

Bulk 1,3-diQxan a 11.7M. 

4811. 44 40 

11.0 10.6 10.5 

0.7 1.2 0.98 

-39 -39 -39 

20 0.4 0.55 

98 0.5 6.4 

14 17 13 

9.86 9.4 4.7 

16.7 22.0 7.8 

-37 -40 -40 

18 48 48 

)0 32.5 0 

t3 39 38 

10.6 10.3 10.5 

1.25 1.2 1.07 

-39 -39 -39 

1.25 1.0 2 

12.0 9.8 56 

.:1-
20 31 45 

4.7 3.7 10.4 

7.3 1.6 1.45 

-78 -;,5 +49 

19 21 48 

0 1 0 

* This oxporimcmt was carriod out with 1. 65 baso-I1 of dim3r/trimor 
mixture (DP = 2.27) 
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Since poly-l,3-dioxola.n is soluble in methanol I had to presume 

that poly-l,3-dioxan l<1ould behave similEl.rly a.nd therefore I looked 

for soluble oligomers in all the solutions. Thus, the alkaline meth-

anol solutions were freed of methanol and free monomer by distillation 

on a water bo.th. The residue \las further dried at 400 in a vacuum 

oven at 12 torr. Each sample was reduced to a yellow oil which had 

an odour similar to maleic anhydride. Hoxane did not extra.ct 

anything from the oil. These oils eventually went cloudy. 

The infrared spectra of these oils DhowGd tlmt tboywore not polymers 

of l,3-dioxolan or l,3-dioxan becau~e the typioal absorption at 

-1 110O-l200cm due to the formal group wa.S absent. 

Similar spectra were obtained from oils which wero produced 

by direct extraction of the methanol solution with hexane. 

From those spectra it wa.s not possible to decide what the 

products were but they certainly wero not polymers of 1,3-dioxan 

or 1,3-dioxolan. 

, 'd 
~ 

The experiments described here were carried out in vacuo, 

in sealed tubes. Tho solvent and monomer wore distilled into the 

vessel and the acid dosed by orushing a ~hial, containing a solution 

in methylene diohloride, magnetioally. 

The results of these exporiments are given in Table 3.3. 

Orystalline oligomers of DP, 2.2-2.6, were formed when the monomer 

ooncentration was high; they precipitated from solution. When the 

monomer oonoentration was lower as in experiments 18 and 20 those 
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oligomers ''l(;re not formed. rrho tOlll'peraturo of experiment 13 was 

varied between -22oand -550 before it was killod at _400 and oven 

the 10w0r temp0rature of _18 0 (run 20) did not induce oligomerisation. 

In experiment 31, we attempton to polymerise these oligomers but 

they depolymerisod lmder these conditions. 

~herefore, crystalline oligomers of 1,3-dioxan are only formed 

when they can crystalliso from solution. Thus when a non-solvent 

for the oligomers is used (o.g. hexane or diethylether) as a solvent 

for the monomer, oligomerisation does occur oven a,t low monomer 

concentra,tions (see socti~n 3.2.4.). 

In one experiment (48A) quantitative formation of the oyolio 

oligomers occurred. 

At +490 th( reaotion mixture (45) was a olaar, light brown 

solution. A trace of oil was isolatod, the infrared spectrum was 

similar to tha.t of the monomer oxcept for strong absorptions at 

3,500cm-l (hydroXJ'l group) and l,1300m-l (oarbonyl group). 

Although tho kinetics of the oligomerisation wore Dot measured, 

oxperiments 40-45 indioate that there is an induotion poriod. 

3.2.4. Phosphorus~tafluoride 

The phosphorus pentafluoride was generated by heating benzene 

diasonium hexafluorophosphate (phosfluorogen) at 1600
• The gas 

was bubbled through the monomer or monomer solution, whioh had 

been prepared on the vacuum line (see Chapter 2). In most oases 

a oondenser wa,s used to -prevent t~le fluorobenzono passing over. 

However, in the initial attempts somo fluorobenzono l.,8,S oa.rried 

over into the reacti·")n vessel. In one orperiment (12), in whioh 



Ta.blEl.l!A· 

1~.l.B0_m.q,:f'_:h~Cl:~_~!!._of )...L.~~ox[l.n _'!.i_t~ }'ho s-e.horuVent.!:fl uo~lli 

Ln * Run No. T timo Crysta.ls Groase Carbonyl 
M °c days yield t DP yield ,i, DP bond 

11B 11. 7 0 17 0 tra.co + 

46 11. 7 -36 0 0 1 35 2.3 0 0 

11A 11. 7 -36 2 1 0 

12 11.7 -36 3 4 2.96 0.4 8.2 + 

13 11.1 -31 3 41 2.5 0 + 

29 11.7 -35 4 28 2.3 0 0 

28 11.7 -35 5 43 0 0 

23 11.7 -36 5 34 0 0 

3D 11.1 -18 4 0 0 

24 9.3
a 

-11 13 70 0 0 

25 5.9
a -11 13 0 0.2 3.6 0 

3E 5.0a -78 3 0 trace + 

41 2.8a 
-37 0.8 0 trace 

42 2.98 
-78 2 0 0 

35 3.9
b 

-35 1 0 trace 

56 5.9
c 

-39 1.9 31 0 

47 2.8d 
-39 0.8 61 u 

(!F51 about O. 3~1 

a CII;Pl2 solvent; b rysta11inc oligomersj c Et 0 solvent 1.1 baso-M 2 
d 

C6H6 solvent 

* + = present, o • absent in l.R. spectrum. 
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oil was formed, it was possible that some fluorobenzene was prosent 

in the reaction mixture. However, in subsequent experiments where 

fluorobenzeno was allowod into the ruB.ction mixture these oily 

oligomers could not be roproducod. 

Table 3.4. shot.,s tho essential results of those oX!,1eriments. 

Tho oligomers formod had an absorption duo to a carbonyl group in 

their infrared spectra. A oomparison of the speotra of 1,3-dioxan 

oligomers with and without the carbonyl absorption at 1730 om-l 

showed that weak bands at 1450, 965 and 810 cm-l 'l-lere also assooia.tod 

with it. Therefore, the absor~tion at 1730 cm-l appears to be due 

to an aliphatic aldehyde group_ When HCI0
4 

was the catalyst, 

this group was only formod at high temperatures, whereas it \'las 

notioeable in some of the oligomors produood by PF
5 

at _360
• 

However, &8 the dosing teohnique improved tho aldehyde group was 

not noticod so often. 

In experiment 3E, bulk 1,3-dioxan had not polymerised after 

18 hours at 00
• By this time the solution had turned slightly brown; 

the solution wa.s then dilutod \-lith mothylene diohloride to 5M and 

left for 78 hours at _780 before killing it llith ammonia in ethanol. 

Aftar distillation a small quatity of yellow grease remained. There 

was only suffioient for a. woak infrared spectrum and apart from 

-1 absorptions at 1730 and 3500 om it appeared to bo ~oly-l.3-dioxan. 

Sinoe a small quantity of groase was produoed in lE, various reactions 

wore oarried out in order to produoe a higher yield. 

Some cr,ystallina oligomors wore preoipitated from reaction 

mixture 12, but a 0.4% yield of yellow grease was also isolated. 
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This oligomer \Ta.s soluble in carbon totrachlorirlo ~.nd had a J).P. 

of 8.2 but infrared s"9octroscopy ShOt·TCd tha.t an a1dohyde group WEI.S 

-present. 
-1 Tho crYRtall ine 'Product al so B.bsorbe(~ at 1730 cm but 

this \'las proba.b1y duo to tracl;)s of highor molocu1ar "wight oligomer. 

Experiment 13 wa.s carried out so that less oxygen !·w.s I?resent 

in tho system. An H-tubc fitted tii th a cold finger condonser v.nd 

a greas0d te<, wa.s usedo Bonzene diazonium hexaflnorophosphato lli1.5 

placed in the side v.rm Hhich ~m.B fi ttod wi th ~. cold finger condenser 

and tho wholo tie.s attachod to tho va.cuum line and OVD.CUD.tOL'l. for 

several hours. Tho monomer WD.S diet illoC:~ in, tho ap'P,).ratu8 wa.s 

soa.lod off from the lino, and the vacuum let down \'1i th dry ni trogon. 

o 
With tho monomor at -37 the PF5 was generated. 

Al though a larger yield of crystalline oligomors W£l.S formed, 

no grease could be isolated. Tho carbo~l absorntion was still 

presont in the infrarod s~octrum of those oligomers, thoreforo 

the carbonyl grou-p w).s not formed from a reaotion with atmosphoric 

oxygon. 

In run 25 a small yield of grease \-1hich had no carbonyl group 

wa.s 1'roducod. 

Thore Boemed to bo littlo correlation botween exporimontal 

conditions and tho forma.tion of groB.se. Thorofore, He considored 

the possibility that fluorobonzeno affected the roaction and in 

exporiment 29 somo fluorobenzono was doliberatoly allowod into tho 

reaction vessel. The orystalline oligomors uoro still formod but 

without a trace of greaso and infrarod Bp~ctrvscopy shoWGd tho 

absonoe of a. oarbonyl group. 



Tablq_l~· 

];X~~:i~~~~~S .. ~·~~t_~~. P~2 + !!i.= 

Run No. ]As. 3D lOb 22b 21 

~,3-diOX01a~ /M. 14·5 - -
1"2-, 3-dioxa~/H. 1].1 11.7 11.1 4.1

0 

l!hN2+ PF6J /1.10 0.02 0.02 0.02 0.2 0.1 

T / °0 20-140 20 -36 -11 

time/days 1 11 2 15 

yield ;:, 0 0 68 0 

a 1, 3-dioxo1an polymorioed imr.lodiatcly tho temperature of 
tho solution wa.s above 0°. 

b Illi tia.1 poriod of 20 mins. a.t +50° (SU.3 roforonco 5) 

c The solvont \"1£1.8 methylene dichloridoi in tho other 
oxporiment s bulk monomer WD.S used. 
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1!!?.lo 3.6. 

N .11Ji~_.fl..E~~r~~ l.t.3..-D);.<ES::man , 1.,3-D_i .oxa.n & thQ..~£..]},.!Il~ , 
b..l::.Dl.<?x_ll~_¥lCL.l.a.J=.~~~ 

1E P.;>ak PO!,!i tiC!,n ~ 

1,3-di~~ 

1 (Honomcr) 5.18 0
• 6.1b 8.25c 

2.2 t·) 2.6 5.4
a 6.28b 8.25c 

Poak-area ratio 1 2 . 1 . 
Position of protons 2 <1 CI.nd 6 5 

bl=.9J OXO.12,!3.n 

1 (aonomor) 5.34
a 6.31 b 8.35° 

2 5.46
a 6.50b 8.31c 

Peak-aroa. ratio 1 2 2 

Position of protons 2 4 and 7 5 and 6 

113-dioxocan 

1 (Honomor) 5.4
a 6.31 d 8.31d 

Position of protons 2 4 and 3 5,6 and 7 

Poak-arCD. r(3,tio 1 2 : 3 

.LJ=.dioxonan 

1 (lIIonomor) 5.43
a 6.33d 8.31

d 

)1 5.4
0 6.5d 8.53

d 

Position of -protons 2 4 and 9 5,6,7 and 8 

a no fino structure 

b Triplet 

c Quintuplet 

d unresolved 
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Difforent solvcnts t namely hexane and diethyl ether) which arc 

non-solvents for tho crysta.llino dimor at tho reaction tom-pora.turo, 

fa.cili tatcd tho formation of theso cryet.als a.t lowor monomor concont-

ra.tions and higher molecula.r wui~ht gruD.SOS wore not producod (runs 

41 B.nd 56). 

Tho cyclic oligomors d01Jolymcrise in solution uhGn troa.ted 

wi th PF 5 (rUIl. 35). 

3.2.5. Phosfl~~rogon 

Phosfluorogon5 (bonzonediazonium hexafluoro-phosphate) polymerisod 

tGtrahydrofura.n, therefore we toste~ it as a catalyst for tho poly-

Ilerisation of l, 3-dioxan. Tho (;xt>Grimonts l-lorc ca.rricd out in an 

Gva.cuatcd H-tube which containod a. sme.ll quantity of tho catalyst 

in one arm and the monomer and solvent in tho other. 

The results arc sho\"ln in Table 3.5. Tho crystalline oligomors 

wore still formod from bulk monomer a.t low tomperatures (22) but 

they wor~ brown and could not bo purifi~d by standard techniquos. 

In tho other experiments traces of brown groa.sos woro ~roducod. 

EX1?oriment 3A was dono for comparison ancl it ShOl"Cd th~l.t I, 3-dioxolan 

polymorisos ra-pidly Hith this catalyst. 

3.2.6. The struo.tur0.2.f t4.£..9..:r.z.E!.t~.!.i.~'L9Jigo.1!2!:! 

The crysta.lline products woro shown to bo a mixturo of tho 

cyclic dimor and trimer by molecular WE)ight dotorminativn o.ud 

N.M.R. spootroscop,y. Tho DP of thoso products ranged from 2.2 

to 2.6 tlhilst tho1a-N.LR. s·~ectra. (in carbon tetrachlorido) of 

thom sholled tha.t thoro ,.,ere no ond-grou-ps and that thoy must th.;)r<r 

toro be cyclic (Table 3.6.). Evon tlhon tho s'Poctra. lwre rc,. ... run at 
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highor sonsi tivi ties no othor pooJm woro obsarvcd. A similar 

up-field shift 1-1<".8 observed for pratons in thIS 2-, 4- 8.nd 6-posi tions 

as \OID.S obsorved for th..J cyclic dimor of 1 t 3-dioxonan. 

Infrarod spoctroscopy did not show any indication of ond-,~oups, 

oithor. 

Carbon <l.nd hydrogon ;:Ina-lysis of tho 'Product frOiil o:r.pori .. lent 

48A gavo 54.7%c (54.6;', ill thoory) and 9.06', II (9.1. in theory). 

The crystallino oligomors of 1,3-dioxan molted at 8)-07 0 

a.nd 101--104
0 

with slight decomposition. 

Although our molocular \might data. ShOH conclusivoly tho.t a 

mixtur8 is forrllod I decided to test this by differontiCl.l scanning 

calorimotry. One sant'!1lc of DP - 2.3 produced tHO molting T,>oClks o.t 

103.50
, 105

0 
a.rd then a vapourisation poak. A salU,.>lo (DP • 2.()5) 

ho.d ono peak with a shouldor(102.5°). A run at o. lower scanninG 

o 0 s-peed gavo the sh,)uldor at 99 and tho pao.k at 101. It appears 

that the dimor ha.s tho hipor molting point which is about 1020
• 

Unlike poly-l,3-dioxolan and poly-l,3-dioxopan tho oyclic 

oligomors of l,3-dioxan are not susceptiblo to oxida.tivo dogradation, 

producing forma.ldehyde, D.t room to;·aporature. HOi'lovor, Tablu 3.7. 

sholiTS that aftor 2 years tho molocular weights of somo samples 

had dropped to values which woro olosor to th~t of the dimor. 

The possibility of calibrr~ti')n orror wns ruled out ~ moa.suring 

spocimon 53B and this had the samo molooular woight within oxpori-

montal orror. Therefore, the trimor of l,3-dioxn.n 3.i)'pears to r ... vort 

to tho dimer ovor a period of time. 



Run ~b. 

13 

19 

49 

52 

54 

51T 

53 

53C 

59 

55 

!!!.£ }1olQ£~~~:I.~igl];!Lof 1, 3-:DioX2'1....::zoJ._~~_.Q1.J:.5'~~~ 

Product 13ll. 53B 

M. i. (1967) 213 180 

1'1.1'J. (1969) 193 176 

" ",. .~-.... (Dimor) 

Hothod 
beforo 

Extraction 

3, 0.01 torr/.OOo 

S, 0.01 torr/55° 2.3 

0) 49D,O.01 torr/50° 2.4 

S, 49C+D,0.01 torr/50° 2.1 

'~. 14 torr/50° 2.3 

li, H20 2.: 

:3. 53Y, 12 torr/60° 2.05 

R, Hexane 2.3 

Chroma.tography 2.3 

z 

38 29:" 

214 202 

184 178 

116 

Dr 
a.ftor 

eCl. 2.b; HeXd.ne 2.4 
4 

2.6 

A z 2.4; D = 2.1; G - 2.1 

2.3 

2 ,> ... 
A = 2.6; B • 2.3 

x = 2.3; y • 2.05 (I) 

2.2 

2. -~ 

2.3 

[3 IS sublime.tion; R '" rocrystallisa.tion; I = insolublo 

* 1~ fra.otion whioh he.d Bublimod th~ furthoBt. 

of f310w subliml'l.tion 1 A n.ft~r 12 hours, :3 aftor 1 d<ty. 
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Semaration a.ttoTflpts _........ . .... _--
Tho methods usod to attoi.ll:rt tho sopo,ration of tho dimor B.nd 

trimor of 1,3-dioxa.n includod. sublimation, chromatography anl' .. 

roorystD.lliss.tion; hOHovor in llano of those ox,!?orimonts did \-10 

succeod in sc,!?ara.ting the trimer from tho dimer. Tho results givon 

in Ta.ble 3.8. show th.:l,t tho products from 490 and D hD.d DP's of 

2.10 ± 0.05, but theso wero still mixturesv Intorconversion betwoen 

dimer and trimor is o. -p06sibla- roa.son fur our unsuocossful attempts 

at isolating tho dimor bocauso ono product from run 53 hfl.d a DP of 

2.05 which on sublima:t;ion incroasod to 2.2. Tho othor problem conno-

cted with thoso soparations is tho c~so of forme.ldebydo formation 

whon tho cr:rstallino oligomors were hoatod. When hoa.ted in wa.tor 

tho orysta.lline oligomers g~.ve a. poai tive tost for forma.h~.ohydo. 

Uesterma.rm3 ooultl not fro.otionato poly-l, 3-dio:r;olan by column 

chromotogra.phy. Howevor I tried tho same procoss l'fith tho oligomors 

of 1,3-dioxan B.nd this was a.lso unsucoessful. Only 12';', of tho 

produot could bo rooovered from tho colulln by olution nith hoxano, 

bonzeno and thair mixtures o.nd the DP of this fraction wO.s 2.3. It 

appea.rod that depolymorisa.tion occurred on tha chromatog1'3.phic 

column. 
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3.3. Discussion 

lie confirmod the non-polymorisa.bility of 1,3-dioxa.n but we 

wero a.ble to "9roduce oligomers whoso DP ra.nged from 2.2-2.9. He 

showed thorn to bo mixtures of the cyclic dimor and trimor, but we 

did not succeed in separating tho mixture into its componants. 

Oligomers of 1,3-dioxan oould only be formed at high monomer 

concentrations (almost bulk) and only whon they could orystallioo 

from tho reaction mixture. This means that for 1, 3--dioxan, LlH 0 ss 

for oligomerisation must be insufficiently negativi~ to set off tho 

loss of entropy and that the dimer and trimor can only be formed 

when their latont heo.t of crystallis::ttion, L , makes the tota.l o 

enthalpy ch . .ngetH 0 .AH 0 - /L / suffioiently negative. . so ss 0 

3.4. 1,3=Diox~o~~ 

This monomer cannot be preparod 6 easily by the usual method , 

(seo Chapt~r 2 for details), beoause the reaction 

gives only a low yield. Tho oyolic ether tetrahydropyran is more 

sta.ble and is produced by dOAydration of tho glyool in preforonce 

to its reaction with formaldehyde. Normally, a 10 mold)' exoess of 

formaldohyde is used in this synthosis, but the yield of totra­

hydropyran thus obtained was 40% (b.p. 87-88°, 752 torr) and of 

1,3-dioxooan was only. 2, (b.p. 134°, 752 torr). Thoso ~roducts 

woro characterised bw infrared and N.M.R. spootrosooPJ. Variation 
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of tho conditions did not incro'),so the yield of l, 3-dioxooan appreoia-

bly except whon a. lD.rge Qxcose of the glycol (2 mole ~ 1 molo HeHO) 

was used. In this exporiment a yiold of 9.~ 1,3-dioxooan wa.s 

obtained. 

ltli th 6of. aqueous perohloric a.cid a.s c: •. ta.lyst insteed. of 

phosphoric acid, tho whole roaction mixture oharred on hoating. 

This monomer polymerised readily '-lith phosphorus pentafluoride 

as catalyst. The polymorisation was oarried out on the mioroscalo 

and tho -polymor was not examined. 

Only a small yield of 1,3-dioxonan could be isolatod from the 

reaction mixturo of forma.ldohydo and 1, 6-hoxo.nodiol (sto.ndard 

conditions - seu Chapter 2) whc:n it was vacuum distilled ~ a prossuro 

of 12 torr. Tho product was redistillod otf sodium hydroxide 

(b. p. 159-1610/746 torr). Al though th~ infrared spectrum indico,ted 

tha.t tho product was l, 3-dioxonan there \-Toro t)10 scall oxtranoous 

-1 absorptions at 1640 and 3640 cm • Thoso remainod in tho spectrum 

ovon after tho product ha.d boen treated with sodium motal. Most of 

the reactants had formod a gol; extraction with carbon totrachloride 

yieldodan oil whOSE> N.H.R. and infra.rod spectra ShOW0d it to be 

poly-l,3-dioxonan. It wa.s not possiblo to obta,in a. molecular \-lcight 

by va.pour pressure osmometer. 

No monomer could be isolatod uh_:n tho roaction W8.S repoAted 

at a. pressure of 12 torr. 

l-la.ter can be removod from a condensa,tion reaction by azeotropic 

distillation. lHth hexane a.s the solvent ti.10 wa.tor was removed 
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e.zootropically but tho product W"l.S still a gol. 

~lith a.n oxcoss of 1,6-hexanodiol tho roaction mixturo a.lso 

golled. 

With aquoous porchloric acid as tho ca.talyst a violont roaction 

occurrod which producod a charrod mass. Although a srumplo of 

polymer could be isolatod from tho gel, it was not possible to 

determine its molecula.r weight by v~.pour prossure osmometry. 
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As is outlined in tho introduction to S..)cti·'l1. A tho six-mfJmbored 

cyclic ethers havo not boon P01Ylilorieod. l-li th tho oxperience gainod 

in dimorising 1,3-dioxa.n it waa docided to investig:-l.te the polym0ri-

sation of 1,4-dioxan and tetrahydropyran. 

Oxop~.n, a sovon l.l1~mberGd cyclic ethor, is an interesting 

monomer. It can bo pre~arod in low yiold by tho m~thod of Kirmann 

and HamAidol - 4, but it certains two impurities whioh boil very 

closo to oxo~an. This mono~or can be prepa~ad by othvr inothods also 

in 1011 yiGlcl. High tomporaturc dohydr~;tion over alwnin::-.6 (3000
; 

29/~ yiold) or calciwn phoBPhata7 (380°; 30.::' yiold) has boon usod. 

The reaction of potassium hydroxido with 1,6-hcxamethylonobromohydrin8 

ha.s also bean usC)(. Hydrogonation of oxepin9 is o.lso mentionod in 

the li tera.ture as a. method for propa.ring oxepnn. 

In this Chapter tho methods used in an attempt to improve tho 

yield of oxepa.n aro enumoratod for oompleteness. Oxepan polymerisas 

very slowly with the catalysts chosen. 

For tho polymorisa.tions tho monomer lla.S roflU%od over and 

freshly distilled eff lithium aluminium hydrido baforo use. The 

monomer was distilled into tho ree.otion Va8!3ol which WOoD 0. tUbe 

fitted ~ith a ground-glass joint or tho roaction vassol doscribod 

in Fig. 2.5. tor the dosing of PF S' Tho form or vassel lI,".S olosod 

with a ground-glass eto~per sealod with a Toflon sloove. ThG catalyst 

w~S dosad by brenking a phial m~~otically. 



.~.-:hl. 

h,t1.-·Oi OXC'.D 
~-.,--~ 

Run No. 27 34 36 37 

ri'4-dioxal~ It,1. 8.2 5 (, .L; 9.5 3.8 

[catalyst] IN. 0.36 8
. 0.2b o ')c 

.'- 0.07
c 

time/da.ys 3 0.9 1 1 

rr / °c 18 19 19 -36 

!.~ b1 q ..4.!-~. 

~a4.y'c1.ro,Nran 

Run Uo. 53 62 57 61 

[T~ IT. 8.5 :).9 9.9 5 

Q.,3-dioXa.,3 /'·'i. 5.7 

E.ata.1YS~ IrfI. 0.16c 0.2b 0.2b 0.2b 

time/days .3.5 2 3.5 2 

II' / °c I -39 -18 -39 -39 

a. H010 4 D.drlod a.s 3: 1 Ac
2
0 I 70,' aquoous HOlO 4 

b Pli' 
5 

c anhydrous HOl0
4 

Tho solv~nt w's mothyl<me dichlorido a.nc.1. bulk 
THP is 9.9M. 

33 

3.6 

0.07
c 

1 

-19 
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Ta.ble 4.1. gives the detnils of the n.ttoLrpts to polymeriso 

1, ~dioxa.n. 

/ 
10 Acetic nnhydride ~quoous porchloric acid h~s boon suggested 

as a. ca.ta.l.yst for the polymerisD.tion of 1,4-dioxan; thorefor,-" 

exp~riment 27 wC'.s a;tbompted. 'llhu r,:.action mixture turnod brown 

after a fow hours, but no ~olymer was formod. 

In tho uthor experiments th~ solvent \'I·:I.S methyluno dichlorido 

o 
and this was usod so tha.t wo could usa tomper~tur~s lowor thnn 12 

(tho f. p. of 1 t 4-c.ioxan) • In none of tho oJq>oriments 'ftl."l.S thoro D.l'lY 

extonsive polymoriso.tion but smca.rs of yellow groases could be 

isola.ted. Experimont 34 yi.::ldud suffioient for a wonk infr'.rcd 

spoctrum and this ha.d the oxpoctod absorptions for poly-l,4-dioxan. 

From our experience phosphorus ponta.fluorid~ Boemod to be tho 

bost ca.talyst to use in an a.ttompt to polymerise T.il.l'. Sinco 

Westermannll showed tha.t phosphorus pentafluorido and ~drous 

perchloric acid polymerise totrD.hydrofuro.n, both those ca.talysts 

wore also used with T.R.P. In all tho oxperimonts traces of oila 

were producod, but thoro was only sufficiont frQm oxporiment 51 

for a. woak infrared spoctrum. This spoctrum l'T').S not rosolvod but 

it rlid indicate thD.t polytotrabydrofurQ.n lDB\Y ha.vo boen formad. 

Out of curiousity I tried to copolymoriao T.R.P. with 1,3-

dioxan (the conditions are givGn in Ta.blo 4.2. run 61) with 

phosphorus pontaf1uorido but no polymer resultod. Tho cyclic oligo-

more ~f 1, 3-dioxa.n "'oro not formod oi there 



No. ftof. 

P26 

Attomptod Prop£1.rati')r1s of OX:)Dan ---..... - . --_ ........... ....-_ ... ..... ------'~ 

Hothod 

Rofl uxing HD in "xylone\! 801 ut bn \"1i th 
molecular sieves. 

Product 

o 

Roflu..~ine lID in Ilxylonuil solution ",ith 0 

P21 

P28 

P29 

P)O 

P31 

P32 

molocula.r sioves in the pr~Jaenco of 1',' H
3
PO 4. 

As P26 with fino mosh silica golD 

As P26, iixylone;j replacod by doca.lin. 

As P21, coa.rao mosh E;ilic~. gol. 

.'\..8 P26, Anhydr011.a EtOH sol vont 

o 
Holton IID drippod sloNly into 98. H2S04,130 

P31, room tompor<J.turo at 12mm 'Prc!Jf.'.uro 

P4l 15 2molo HD/1mo10 dimothyl sulnhoxido, 24 hra. 
1900 

F53 8,13 Hox8.mothy1ono ch1orohydrin + KOH 

P56 12 6-bromohoxyl aceta.to + JeOH 

P54 I.",. 1, 5-:;>entamuthy1cmc dibromide + ZnO + H20, 150
0 

HD = l,6-hoxanodiol 

o 

o 

o 

o 

Char!'ing 

Charring 

1; oxopan 
+ 4 other 
compounds 
12" oxepa.n 

o 

14,'· 
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4. 4.1. .11!£. .• t~C2.p._~X:3;~io.ll ~~!Yl .. ~.h~-:. ))ll·i?~~.t~.£~ 

Oxopan can bo pl'.)"pared by th;J method of Kirmann Ollcl Hamaid(;.\l: 

l,6-Dibromohe:mno is convorted into l-mothoJry,6-bromohoxano by 

roaction Hi th sodium motht)xidc. Tho product is cycliso(l by dist-

illing it in tho presonce of forric chloride. Thu yiold of tho 

final stago is qu.oted a.s 10;;' but tho highest yiold I obta.ined wo.s 

44;: so th-.t with a. 40-50/ conversion for tho first stOogo tho ovo~ 

all yiold of OXO"OD.l1 from this process \'18.S lOll. 

f'iaroovor, thoro aro '.iWO impuri tios in the final -product n.t a. 

lovel of a.bout 5-l0;~. Tho boiling points of thoE.1u i-:puritios 

arc vory closo to that of oxopan so th t fraction~tion did not 

sepa.ro;to thom. In tho g.l. c. traces the impuri tios wero shown 3.S 

shoulders on tho main ponk and could only be so~arD.ted under oondi-

tions which produood very long rotontion timos. 'rhoreforv~ HO undor-

took a short study to a.ttempt to impruve tho yield and tho purity 

of tho product. 'rabla 4.3. onumer3.tos thoso mothods. 

P53 was analogous to tho propara.tion of oxota.ns by dehydro­

chlorination of tho corresponding ohlorobydrin13• 

Tetrahydropyrall h~'l.S bc(;)n -propared in 90/ yield by h08.ting 

l,5-P(mtanodibromidG with zinc oxide and i·tator in D. 3.:::~.lc;l tube 

a.t 1500 for scv~ral hours but this mothod only yiolded 14 'it oxo~a.n. 

All theso propo.rD.tions exoept P53 1i,olded oxopan oonta.ining 

apparontly tho sa.me impuri tios ~.nl~. oven a. sa.mplo of OXO'9a.n from 

B.A.S.F. had theso impuritios. Furthor work to praparo ozo~an 

should be dirac tad towards dehydrohalogGnation of ·tho hn.lohydrin or 
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tho hydrogonation of ox~pin. 

In somo propa.rations of oxopo.n by KiriU1:l.llil and Hamaido' sl 

method, a. poak at 4.31 't in tho N.l1.R. spoctrum WO.S obsorvod. This 

could be rOlllovod by trca.tment vlith bromin.:.; in carbon tdrachlorido. 

Thus onl,,~ impurity oonta.ins a double bond. IIouev:)r i this treatment 

did not n.ffect tho main iii1puri t ios (g.l. c. ) • 

N.lI~.R. spoctroscopy ShC)\ll'B th.~t th.;l im'Puritios arc charactorisod 

by 0. triplot a.t 8.8 rand a. peNt at 6. 7t. The other protons, duo to 

tho impurities arc undernea.th the main OXOI'ml peaks (tho integration 

is not as closo to the; thoorotical -"loS normally oxpected). This 

indicatos tha.t one of tho impuri tics has a. CH
3
-C-G-X or a CH3-C-X 

group, whoro X is probably an oxygun atom. 

In a. later papcr2, Kirlutlm1 o.nd Hartski reportod th:".t tho 

attompted cyclislJ.tion of comGlounds cOl1to.ining tortio.ry halog~ns 

yioldod only unsa.tura.tod compounds, o.g. 
FoC13 

CH
3
-GH(OCH

3
)-(CH2) 2-G (CH3) 2Cl • CH3-GH(OCH3)-(CH2) 2-C (CH3).cH2 

Thoy concludod tha.t ~rimary hnlogonated oompounds gave ~)od yields 

of tho oxacyclanc wheroas soc0ndnry hnlogon compounds yielded 

mixturos of tho oxacyclano and tho corrosponding olefin. 

Schust~r D~d Lo.ttormann
6a 

also isolatod somo compounds containing 

two doublo bonds from tho dehydration of 1,6-hoxanodiol. 

Tho impuritios, prosont in oxopan, are uroducod in t~o final 

cyclisatbn stago bOCaUAQ they tlore still prosont in tho oxepa.u 

producod, aftor caroful purification of ea.ch of tho intormouiD.to 

products. 

The following mochanism has boon ~roposod for tho cyoliso.tion 
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whore X is Cl or Hr. 

KirlUann and Hart ski 3 proposod this meohanism since tho oorros-

pending oxonium so.lt could bo isolated from tho oyclisc\tion of 

l-Bromo,4-mothoxybutano with antimOIlY""gento.chlorido. This tortin.ry 

oxonium salt produces totrahydropyrn.n on hoating. This is an~logous 

15 
to tho docomposition of tr ... othy10xonium tetraf1uoroborEl.te by hoat 

and in sOlution11 • 

Seven mombered rings are difficult t,) form, so thrJ.t it is not 

surprising that tho more oCl.sily formed ring oompoWlds with fivo 

D.nd six mombors m03 bo prosont in oxc,!?~.n. This mot hod of Kirmann 

a.nd Hamaidel ga.vo 100:1 of totrahydrofuron and 'f.H.P. but only 

7~% of oxepan. Similarly, dimotho~aloanos4 can bo oyo1ised to tho 

oorresponding oxacyc1a.nos by troatmont with a Lowis aCid/hydrogen 

halide mixturE) (o.g. SbC1
5
/HC1). Only 10;:; of oxopan w~.s tlroducod 

whoro3.s tho yields of T.H.P. ::l.n4 "otr~drotura.n wero 9O;h. 

It appeaXB that tho impuritios m~ be othy1 substituted totra­

bydrofurans &ld/or metbyl substitutod totrllbydropyrans, although 

these woro not isolatod. Tho 2-substitutod oom~ounds are tho 

most likely b~causo they could be isolated from tho donydration of 

1,6-hexanodiol vt'·pour with a,lumina,6. (2-motby1totrabydropyran 

b.p. 103°; 2-ethyltotraAydrofuran b.p_ 106°). Franke18 and his 

ooworkors obtainod a 70i: yield of"oxidohox:mo" from tho trE:lntr,lont 



Table 4.4. 

The Bulk Poll!erisation of Oxepan 

Run No. 60A 60B 75 63 600 74 78 70 

[oxep~/M. 8.9 8.9 8.9 8.7* 5.3* 8.9 8.9 8.9 

GatalYS~ /10 •• 4 4 2 0·5 0.4 2 1 2 

oata.lyst + -PhN2-PF6 PF
5 

PF
5 

HC10
4
- HC10

4
- + -Et30 BF4 

T / °c -35 -35 +20 +20 -78 +35 +35 +40 

time / da.y 2 2 9 6 2 1.3 0.7 2 

polymer t t 0 0 t + + + 

t - trace 

+ - polymer 
o - no polymer 
* Solvent is met~lene dichloride 
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of 1, 6-hoxcmodiol .. Ii th a.quo'.)!lS sul··)h.uric a.cid. This w~,s ShOlirJ to bo 

Pr..:;swuab1y thl) c')mpounds Horo oxop<:m, 2-r!Dthyl totrahydropyran, D.nd 

2-othyltotrnhydrofuran. 

By compa.ring the infrared s-poe tro. of oxopa.n c(mtnining 1;" 

and 10~'~ of impurity we suo that tho absorptions of 13£30, 128:J s 

1050 n.nd 940 -1 arc due to tho irapurity. J.£Ihe absorption n.t em 

1380 
-1 is mOBt likely from an ethyl (or ieo'propy1 group) • cm 

Thorofore, infrared and n .lloR. spectroscopy suggest th:",t tho impuri-

ties in oxepa.n D.ro D.n olGfin, met~ 1 substituted ToH.P. a.nd,' or 

ethyl substituted totrahydrofurano 

Since tho olofin pro sent in oxcpan is probably 

CH2=CH-(OH2 ) 4-0110, which can be form:Jd by dohydrobromination 

of I-bromo,6-mothoxyhexane, tho fo11ol1ing mochanism is prol1osud 

for tho formation of 2-othy1totr~drofuran and 2-methy1tctrahydro-

pyran. 

10 

FoC1
3
Br-

t 
J. 

OR '0 
'3./ ". 

!, J 
' ...... 

+ MoBr + FoC1
3 
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It wa.s not possi~le to ob'l,ain OXO")3,n com-rlotoly fr~o from 

impurity. However, various a.ttempts to polymerise sm:>.!l sam'Ples 

of oxopan woro ma.de. Thoso 'Wore only qualita.tive experiments so 

the.t tho catalyst concontrations e.rO only ap9roximate, (Table 4.4.). 

I found it surprisingly difficult to polymorise oxepan, a.s 

polymur Wil.S only producod.o.ftor a. dC\Y a.t 35 0 in tho presence of trietbyl-

oxonium tetrafluoroborato. Under the samo conditions tetrahydrofuran 

polymeriGod ra.~idly. 

It is not possible tc say v1l.1dher the impuritios eO'Polyroorif::od 

but it is quito likely that the imruritics may ha.ve roa.ctcd -prcforen-

tially with thv initiator. Cortainly H.M.R. speotroscopy of th;:; 

polymer indica.tod the prosanco of ethyl groups but thoso coulcl 

have como from tho initiation ros.etion. The po~~ymurproduood in 

reaction 18 was dividod into -two parts; one pa.rt was killorl at 

400 (DP .. 14.3) and the other ps.rt killod at 20° (DP • 46). 

From tho plot of DP against tomporature for exporiment 1S, 

T .. 41.5°. Thoroforo using 6S 0 __ 11 •1 oals/molo/deg. (,~S 0 
o ss ss 

for 1,3-dioxepan • -11.1 cals/mole/deg., -12.8 oals/mo13/dog. for 

bulk polymurisation of 'r.H.F.) an approximate ve'!uG of ~Hss oan be 

oalculated as -3.6 kcals/mole.Thisvaluo io of tho soma order of magni­

tude as that for tho polymorisation of 1,3-dioxGpan (~Hss - -3.1 

± 0.2 kcals/mole). 

Disoussion ---
Tho thurmodJuamios of tho polymerisation of oxe~an has not 

beon studied. However, an a:pproximo.te value for AH ~-Te.s 
BS 
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oalculated from tho coEing tomooratur0 of the bulk "Oolymoris8.tion 

Al thoueh ,~,S liould 
ss 

most likely be diff0ront for tho bulk polymoriaation the value of 

-3.6 kcals/molo a.c;re;:;o with the value for 1 t ,3-diox(:)"9an (. Hss = -3.5 

kcals/mole)l9. 

Tho surprising fa-ct is the appa.rant difficulty tli th which oxepa.n 

polymorisos. Often. tho solubility of the c8.talyst wa.s a problom. 

Triethyloxonium tetre.fluoroborate we.s not roat1.i1y soluble at room 

tempera.ture but !-J'·I.S sufficiontly soluble to oauso polymorisation at 

+35 0
• Solublo catalysts ouch as anhydrous perchloric acid and 

phosphorus pon.tafluoride did not polymorise oxe"an, and only small 

quanti ties of groCl.ses ware isolated. Both those ca.talysto polymoriso 

tetrahydrofuran fairly rapidlyll. 

The only report in tho litera.ture oonoerning tho 1?olymeri-

20 
s~.tion of oxopan is by Gohm and Adam • They, too, found the 

l'0lymerisa.tion to be slow. For 0xa,lplo, 5',': of ':.,hosphorus penta­

fluoride on bull::: monomor only -produood a 15,.'· yield of -polymer 

o 
after 4 d~s at -15. Similarly, aluminium triohlorido only produovd 

18.' of polymor after five days 0.t room temporJ.ture. They a.lso 

sho\'Ied tho.t opichlorohydrin a.ccolora.tod the rU8.ction. 

La! and Trick
2l 

pro9&rad polyoxanan by hoa.ting 1,6-hexancdiol 

with o.<J,f, of BF3Et20 8,nd 0.5', of H2S0
4

, The yield was only 10,'. 

Hobin22 has also propared polyoxol'an by a. similar method. 

It io not known l>lhother the slownoss of tho roaction is due to 

impurities or whother it i8 a proporty of tho molecule. 

Tho impuritios are difficult to romove from oxa~3n. but I 
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have triod to show th,t t hey arc probably 2-ethy1 totrahydrofuran 

an 2-methyltotrahydropyran. 

The boiling point of oxop'an quotud by Kirme.nn an,'. Hamaide
1 

is 116°/760 torr. I found th".t tho fractton at this boiling point 

oontained a large amount of impurity. Evon at 120°/738 torr aome 

impuri ty remained. At best tho im'Puri ty could bo reduced '~o 1'1, 

but this was after most of tho oxepan had boon distilled away. It 

seems tha.t tho figure of 121
0
/741 torr quoted by Schweizer ar~d Parham9b 

is tho more roliable. 

Tetrahydropyran and 1, 4-dioxan woro confirmed to be non-

polymorisablo. Tho cyclic dimor of 1,3-dioxan w~s not formod in 

tho prosenco of totrabydropyran and this is probably due to tho 

higher basici t~ of tctrahydropyran. 
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SEGTIOH B ._---

lntroductivn ----- -
This section of tho Thosis io concorned. with tho polymcrisCl.tion 

of 1,3-dioxo1an cato.1ysed by triethyloxonium totraf1uoroboratG. 

The origina.l rOD.son for trying this cD.talyot W:W tha.t polymor-

is \tion ua.s not oxpected to occur. It was thought tha.t hydrogon 

abstraction from the 2-position of 1,3-dioxo1an would bo tho prafcrrGd 

t · and tbo.t dioxolenium. rea.e l.on, totrafluoroborate would bo 

formod together with ethane and diethyl othor. The 

dioxolenium ion wa.s thought not to ca.talyso tho polymoriss.tionl • 

The cD.talyst was pro~arod undor high vaouum so a.s to romove 

any moisturo completelYl because hydrolysis of triethyloxonium 

tetra.fluoroborate producos fluoroborio acid whioh might WGll oatalyse 

the roaction. 

However, polymorisation does oocur, but the initiation is not 

tho simple unambiguous reaotion whioh Yamashita2 at one timo believed 

it to boo He believed that complete transfor of the othyl cation 

to l,3-dioxolan occurrod. 
I \ 

Chaptor 5 is concorned with the polymorisation and it is sho,"Tn 

there that tho polymeriss.tion is propagated by a muoh lower concont-

ration of ions tho.n is present initia.lly. The main roa.ction is tho 

deoomposition of triothyloxonium tetrafluorobora.to t,.) non-oonductmg 

products. Chapter 6 presents tho results of a stu~ of this ruaction. 

In order to oxplain why tho deoomposition reaotion oontinuos 
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as polymoriaation takos place, and why there is not a oontinued 

incrao.so of active contros. a. study of i;ho degroo of ion a.ssocia.tion 

of triothyloxonium salts in mothylon8 dichloride lof8.S made. Tho 

results arc givon in Chaptor 7. 

This study shows th3.t triothyloxonium sa.l ts ar.;; associa.tod 

in solution a.nd tha.t the tertiary oxanium ion can be solva.ted by 

other moloculos. 

Tho only studies 011 tho polymorisa.tion of 1,3-dio%olan by 

triothyloxonium sa.lts are by Yama.shita.' 8
2 ,3 and Modvodov' s4 schools. 

These papers have been d~rouBsod i~ the gonoral introduotion t? 

this Thosis (Cha.ptor 1), a.nd they show th:').t tho moohanism is faJ:' 

from cloa.r. 

In contraf .. t to this, tho polymorisation of totrahydrofura.n 

has boon studiod by ma.ny workers;tho roviow by Droyfuss and Droyfuss5 

contains 110 roforoncos. In particular, tho polymerisation by 

triothyloxonium totrafluorobora.to has boon studiod by Rosenberg6 

and by TobolSky7. The latter paper is important bocauso it was 

shown thoro by radioactive tracor techniques with c14-lnbollod 

initiator that one end of oach polymer molecule is an othyl group 

(only ono third of tho ethyl groups were labelled, donotod by *). 

Et, + * o ---.Et 
Etl 

BF4, -\' '--, 
* '+ \ EtO( CH2) 4 - 0,,,,,) 

BF4 

.-
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'l'obolsky v,lso showod that tho ra.te of initiation w().o fa.st comparod to 

tho rate of pro"93.gation (.'l.nd that torminA.tion lrTas vory SlO1"1. Thus 

tho reaction curvos could be ana.lysed in terms of an equilibrium 

polymorisation '!rli thout termina,tion. Tho rasul ts HGrO in agr.:.cmont 

t'li th Rosonberg' s6. 

Hheroas Tobolsky7 used a reaction temporo,turo of 0 0
, Dreyfuss8 

found ths.t a.t 300
, termination by reaction with tho anion was notico-

a.blo. Tho stability of thv a,nione was in tho ordor. 

PF-- .-.1'. - ,..., F'" ...... '.:.. 
6 "- ,)0 6 / 

+ -lH th Et30 SbCl61 transfer to a.nion occurred, that is SbCl
5 

\las 

formed which initiatvd tho polymorisa.tion less efficiontly tho,n 

the salt. qowover, initiation by BF3 (from Et30+BF4 roaction) is 

so slow that tho roaction of tho activo centro with its gagonion 

was considerod to bo a tormination. 

It is now gonora.lly agreed thlt tho activo contro is a tortiary 

oxonium ion. If it woro a. carbonium ion it caMc't bo rosonanoo 

stabilisod and so is unlikoly to oxist in the pr0senco of oxygon­

containing moleculos. Rozcnborg6 points out that tho primary 

ca.rbonium ion wO"lld isomeriso to tho more stablo tertiary or S00011-

dary carbonium ion. In oither case, methyl branohos would bo prosont 

in the polymer. In faot, tho polymer has boon shown to bo linoar. 

This scotion of J~he Thesis shows th.3,t with 1, 3-dioxolan tortiro-y 

oxonium ions are the active centres but a rill8-0poning polymorisation 

doos not occur. Tho insta.bility of tho BF'4 ion is still "rave.lont 

but only Booms to occur whon tho attachod groups aro saturatod. For 

instance trietbyloxonium totra.fluoroborate is lll1stablo, but l-othyl­

lH+-l~3-dioxolanium tetrafluoroborato is stable. -
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Thora arc soma diffioultios assooiated with tho scaroh for 

and-groups formod ,·,han oyolio forma.ls aro po1ymerisod by triothyl-

oxonium sa.l te. tii th the tetro.fluorobora.te the end-groups formed in 

polytotra.bydrofuran aro ethyl, fluoride (by termina.tion) a.nd a.n 

unknown ond-group whioh doponds on the killill;'J a.gont. Both othyl 

and fluorido ond-grou~s aro diffioult to detoct by infrarod spootro­

soopy. Tho C-F bond absoI'be at 1,110-1,000 om-1 which is in ·th;; 

region at whioh tho 0-0 bond a.bsorbs. 

Polymo~s wore mado with l,l-dioxolan as the manomor and 

+ -Et 30 BF 4 tho o~,ta.lyst, and ana.lysod. As 0-01 bonds mn3 bo prosent 

duo to transfor to solv~nt, thoso wore also looked for. It was 

ostablishod by infra.rod spootrosoopy of a low molooular weight 

(DP • 5.5) samplo botwoon sodium ohlorido disos thst C-ol bonds 

wore a.bsont. A Ln.ssaigno sodium fusion test woos m..'"\do on throo 

samplos (84, 890, 85). Tho aoidified extract was treatod with 

silver nitrate solution. A procipato was not formed, but tho 

solution from 84 WD.S very slightly clou~. This could ",'loll havo 

boon duo to oocluded mathylono dichloride. 

Samplos of "tho solution from tho sodium fusion tosts wore 

1 tree.tod with Aliza.rin-miroonium reagent. Bach t~,st wa.s nogativo, 

so that crt.rbon-f1uorino bonds :.l~O also absent from tho polymor. 

(Tho scmsitivity of this tost is quotod a.s 100-200~: of o-fluoro­

bonzoic o.oid). 
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Thoso spoctra. worG takon with 1.' solutions in carbon totra.-

chloride. 

Tho spectra. of sovora.l so.mplos of .pvly-l, 3-dioxolan, roo.do "lith 

+ -Et30 BF 4 co.talyst, wore cumparcd. In particular tho spoctruc of 

a. high moloeula.r lioight srunple (DP - 34.6) and ono of DP • 5.5 arc 

tho same. A low moloeular woight polymer (DP = 7.8) pr"pa.red by 

a.nhydrous porehloric acid ca.talysis D.lso ho.d a similar spootrum. 

-1 Tho only difforenco was an OH 'Poak a.t 3,500 em o.nd 0. very small 

8 -1 ··1 a.bsorption a.t 95 em iJ. tho la.ttor spoctrum. rrho puo..1t at U95 em 

seemed to bo o.ssooi[l.tod with the OH group D,S its intensity vo.riad 

with that of tho OR b~nd o.n~ disa.ppoarod wh~n the OR bnnd was absont. 

No othor oxam-plos of tho C-OH stretohing a.ppoaring at fl.b::>ut 900 

em-1 are known, but D. spoctrum of 2-mothoxyotha:nol had C'Jl a.bsor-ption 

at 890 em -1, whieh w.~.s absont from a spoctrum of 1 t 2-dimothoxy-

ethane. This shows that this band is duo to tho OH group. 

As far o.s tho triot~loxonium totratluorobor£l.te polymorisD.tion 

is conoornod, tho following and-groups could bo shown to bo abs~nt. 

OR 3500 om-l 

Vi1131 eth~r 

Carbonyl groups 

Carbon-Chlorin3 

Primary or S~condary ~mino 

Quatornary Ammonium ion (R-.H
3

) 

3,105-3050 em-1 

-1 1.740-1,720 Olll 

-1 750··700 om 

-1 3.500-3,300 om 

-1 3,13<>-3,030 om 

(Tho valuos ara taken from Cross2) 
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End-groups which cannot be d·)tectod ui th certC1.inty by infrarod 

s~octroscopy in tho ~rosonce of tho polymor spoctrum includo cyclic 

ends and mothoxyl groups. 

Similarly, tho s~octra of poly-l,3-dioxopans, prop~~od by a 

Et
3
0+BF'4 polymorisation, wero compared and tho absonco of ond­

groups was also apparont. 

By comp~.ring the spoctrum of poly-1, 3-dioxolan with th,'t of 

diethyl ether the possiblo absorption pOSitions of on othoxy end-

group can bo soon. 

~5 cm-1)2 as it is 

Tho O-<lH
3 

should o.ppoo.r at 1380 cm-1 (1375 

a.t thl.,3 position in dietbyl other. A bond 

a.ppears at 1350 cm -1 t..,hich is most likely duo to tho symmotrical 

deformation vibration of tho OH
3 

group. 

appears at 2980 cm-l (2975-2950 cm-l )2. 

The OH
3 

stretching vibra.tion, 

The tl'10 formor absorptions 

could bo soon in tho presence of the polymer. Hot'levor. theB:; absor:p-

tions aro not presont in tho spectrum of poly-l,3-dioxolan and 

thereforo, it is rea.sonablo to conolude th.:l.t othoxy ond-groups 

aro absent. 

Howevor, with poly-l,3-dioxopan it is not possible to observe 

those absorptions bocauso of tho absorption duo to the polymor. Tho 

addition of diatbyl othor to tho polymor only produced a. small 

sbouldor on one of tho absorptions duo to poly-l.3-dioxop~n. 

Tho polymor of 1,3-dioxolan produood with triothyloxonium 

hoxafluoro~ntimonate as a oatalyst wa.s not so olenn. For instance, 

an OH band wns noticod together with ~ onrbonyl absorption at 

1735 om-l , but the caJ:'bol'¥l group disappoo.rod and the OH group 

was diminiehod whon tho polymorisation was killed with triothylamino 
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insteo,d of' "0.880" !).mmoni~. 

In experimont 181, part of tho r;.;~.cti":in mixturCl une killod with 

ammonia (181A) whilst tho othor ho.l£' WOoS killod with a.nhydrou8 

triothylamino (181B), lSlA had 97.5 monomor units per OB group and 

18lB had 263 monomor units per DB group (soo Sootion C for mothod). 

Tho DP of the polymer \'10.8 14.5. 

This shows the.t OH groups arc producod by tho l'1o.tor in the 

killiD8 agent. This suggests that eithor thoro aro ond-groups 

which rea.ct to produce an OH group or, more likely, that tho polymer 

is cyclic and tha wa.tor 0:len8 the ring. 'rhis has been shown to bo 

the caso for the porchloric acid polymerisation (Scotion 0). Tho 

forma.tion of tho occasiona.l ca.rbonyl group cannot be ox\,>lainod a.'~ 

this time. A o.etailod study of tho polymorisation of cyclio for"i'l<!lls 

with triothyloxonium hexafluoroantimona.tc is requir~d. 

5.1.2. ~~c~~t Magnetio Speotra 

The spectra of low molecular weight samples of poly-l,3-dioxolan 

and poly-l,3-dioxepan wore taken with l()f; solutions in cariJ:,n tetra,-

ohloride, with TMS as the intornal standard. Theso speotra. only 

showed the expocted peaks, and tho'7 values are in oomplote agroo­

ment with the published values3•4; ovon.a.t higb 8entiYitioa DO 

othor peaks were present. 

5.1.3. The Dimor of 1.3=Dioxepan 

As it was not possible to locate ethyl end-sroups ~lith oortainty 

by infrared and N.M.R. speotrosoopy I dooidad to test tho oyolio 

nature of the polymer from 1,3-dioxopan by attompting to isolate 

tho oyolio dimer. liestermann4 had. shown that tho orystalline 
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dimer of 1, 3-dioxepan was formod during tho l)olymorisi.'.tion 

with perchloric acid. as e. cata.lyst. 

In experiment 93 1M 1, 3-dioxepan tl3.S p·:>lymeri sod l",i th 2X10-~l 

triethylo%onium totrafluoroborate at 25°. After tho reaction was 

oomplote, tho roaction mixture W,3.S oquilibratod at 10.70 and killod 

with ammonia vapour. The excoss monomer and solvont were removed 

oarefully at 200 at a pressure of 12 torr, pumping was oontinuod for 

soveral hours at 12 torr/20°. The product contained white orystals. 

These orystals wero isolatod by vaouum sublimation (0.01 torr/60°); 

4.1% of thQ product w:.s i.t'i.l orystalLine dimor. Tho malting point 

was 85-880 which on rosublimation increased to 91-91.5
0 

(Lit. 4 

9<>-920). Tho N.M.R. speotrum asrcod with tha.t quotod by \·iostermann. 

This is goJd ovidence that tho polymarisation of tho cyclic 

+ -formals by Et30 BF4 also produoes cyclio polymor. 

5.2. Tho Kinoti~~~~~e Polymorisation of l'3-~ioxol~~atalysed 

by ~riothYloxonium Tetratluoroborate 

Tho most extensive kinetic study of 1,3-dioxolan and 1,3-

dioxopan polymorisations was by l'Iesterma.nn5• He showod that tho 

polymeris8.tion of 1,3-dioxolan with anhydrous porohlorio acid 

catalyst had an aocolo.ration period followod by a first ordor 

phase, whereas the polymerisation of 1,3-dioxopan. wa.s wholly of 

first order with respeot to monomer. He oxplainod the acooloration 

obsorved for 1,3-dioxolan by the high~r b~sicity of th~ polymer 

oompared to tho monomer. ~'lith 1,3-dio%opan tho basioities of the 

polymer and monomor ara almost tho same. All the evidence pointed 

to tho active species baing seoondary oxonium ions. In the 
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1,3-dioxola.n polymorisations tho porchloric a.cid ,.,;).s not ionisod 

completoly until 251'~ of tho polymorisation had occurrod. l1'his 

was indicatod by conduotivity measuromonts takon during the poly-

morisation. 

Thoro tia.s a linear rolationship betwoon porohloric acid concon-

tration a.nd tho first ordor rata constant (k1) ovor a ton-fold 

concentration range of tho catalyst. Conduotance measurements, 

under conditions such that no polymer w.::>.s formed, showod that 

~ / EoIO ~ was constant for a tan-fold dilution. 

From thoso exporimenvs he conoluded that oach porchloric acid 

molecule yiolded an activo centro. Therefore, tho second order 

rata-const~lts woro interprotod as the rato constants of prop&-

gation (kp). 

(1,3-dioxolan) 
2 Imole-l -1 0° k • 6.2 ± 0.2 X10 min at 

p 

kd ( II ) • 3.4 ± 0.5 XI02 -1 min at 00 

( ) + 5 -1 -1 '" 00 kp 1.3-dioxepan • 1.9 - 0.06 XIO Imole min a~ 

" 
The polymerisat1on of cyclic formals is an equilibrium proooss 

so that the kinetio soheme ot Tobolsky and of Ro .. nberg for tho 

polymorisation of tetr~drofuran by triet~loxonium tetrafluoro­

borate can also be applied to the polymerisation of 1,3-dioxopan 

and for the last half of the pol1meriaation of l,3-dioxolan. 

tiestermann5 has shown this to be tho oase for the pol7Msris&tion 

of cyolic formals by ~drous perchloric acid and his kinetic 

treatment is shown below. 

+ ~ Pn" + PI t'·"" 

k;. 
propagation 
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where Pl is monomer and P: is protonated polymer. 

Above 25f· convorsion for 1, 3-dioxol~ (and wholly for 1,3-

dioxepan) 

CH010 ~J • [P+J 
Lpl ) - m 

km 
p 0 

• a Whoro~+J • 

where me is the equilibrium oonoentration of monomer. 

Substitution for kd gives 

-iJIrl/dt • k a (m-- Jl ) , 
p e 

and substitution for k 
p 

+ dm/dt • kd (mo-II) /mo 

Sinco for 1,3-lioxepan and th0 lator part of tho polymerisation 

of 1 t 3-dioxolan tho rOB.ct ions aro of first order with rospoct to 

monomer, 

-dm/dt • ", (m-me) 

whero ~ • kp& 

Similarly tho first half of tho dopolymorisation of poly-l,3-dioxolan 

was also of first ordor, so that 

• + dm/dt • lc], (me -m) , 
where ~ • kd a /mo 

6 + -Yamashita and his ooworkers used Et30 BF4 to polymerise 

l,3-dioxolan. Thoy oalculatod a sooond order rate oonstant from tho 

maximum rata and identifiod it with k. As will be shown, this 
p 

prooodure ia invalid for this system, beoauso the cat~st 7 is not 

lO~ effioient. M1 8tU~ of this aystom is diloussed in this 
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scot ion of tho Thosis. 

In later studies on the ~olymorisation of 1,3-dioxopan8 and 

1,3,6-trioxooan9 by tho sarno oatalyst Yamashita had booome unoortain 

about the number of active centres. Ho did not calculate k or 
p 

kl but only the maximum rato R. Tho kinetio ourves obtained 
p 

for these monomers arc much the same. The rate of po1ymorlsation 

of l,}-dioxepan is greater than that of 1,3-dioxolan. 

Most of the work of KucoralO and his ooworkers \'laS concernod. 

with kinetic measurements and thoir intorpretation of the polymori-

eation of 1,3-dio%olan by octamothylcyclototrasiloxane bisulphato. 

The exporiments were made under anhydrous conditions with known 

amounts of ~'&ter present. Kucera10a basod his kinetic Bohemo on 

tho assumption that tho active centres are carboxonium icns which 

were supposed to be in equilibrium with unreactive tertiary oxonium 

ions. Although this Bchome doos fit tho azporimental results, the 

basio assumption is not justifiod by any supporting evidonce. The 

rate oonstant for tho propagation was not caloulated. Kucera did, 

however, determine t~o composite rato constants for each part of 

the oonversi0n ourve. 

Gorin and Monnerioll studiod the bulk polymorisation of 1,3-

dioxolan at 250 with merourio chlorido and boronfluorido othorato 

as catalysts. These kinetic experiments wero carriod out in a 

somi-open system. Tho rosults wera found to bo in agrooment with 

the Bchemo proposed by Kuoera and Pichlor10a• Sonsibly, thqr 

refrainod from oaloulating a rato oonstant trom their data. 
12 

Chi1-Gevorgyan haa pol7IDorisod 1,3-dioxo1an in bulk and in 
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methYleno dichlorido solution by boron trifluoride otherato. 

Those oxperimonts woro not oarriod out undor rigourously dry condi-' 

tions since they only used "dry-box" tochniquos and tho monomer 

was distilled off sodium metal before boing stored under dry nitrogen. 

In a footnoto12a it is noted that the rosults wero not roproduoiblo. 

Howevor, he does not oaloulate any rate constants from theso 

results but in a later paper12c prooeeds to explain the acooleration 

period mathematically as an auto-oatalytic offeot although no ovi-

denoe is presented for this assumption. 

LyudVig13 doos, however, suggest a propagation rata constant 

tor tho polymerisation of 1,3-dioxolan oatalysod by triethyloxonium 

hexa.ohloroantimonato. The valuo of k given is 15 lmole-1 min-l 
p 

at 200 but from tho data in the paper kl/o • 5 lmolo-l min-l at 200
• 

The rate oonstant has a muoh lower value than tho one Wostormann5 

obtained. It is probable that a similar effeot ooours with this 

oataly,t as with tho tetrafluoroborate. That is, tho 03talyst 18 

inoffieiont duo to its deoomposition. Tho rolative merits of this 

paper will bo disoussed later as the meohanism proposed seoms to 

be hi,hly unlikely. 

5.2. Experimental Results 

Introduction 

MY polymerisations wero oarriod out in vacuum dilatometers. 

In lat~r experiments a dilatometer with elootrodes for oonduotanoe 

measuroments was used. Tho reaction is so slow that it,was nooossar,v 

to ~e high monomer oonoentrations, and a temporature ot 25° was 

most oonvenient. 
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Tho polymerisa.tion is charactorisod by an induction poriod, 

an accoloration and a first-ordor phase. It is an oquilibrium 

roaction and a typical time-convorsion curvo is givon in. Fig. 5.1. 

Fig. 5.2. shows th::>.t tho last part of tho roacti':;n is of first ord0r 

with rospect to monomer. 

As has boon discussed in the experimental soction of this 

Thosis, tho concentration of tri0thyloxonium tetrafluoroborato is 

a littlo uncertain because of tho method of dosing tho catalyst. 

5.2.2. Effect of Hator 

Only ono experiment (84) was carried out ·to show tho offect 

of wator on the polymorisation. This exporiment was undortakon to 

aid dotermi:r.ation of tho initiation reaction. If HBF 4 had beon 

tho initiator a fastor roaction would havo occurrod (hydrolysis of 

Et
3
0+BF4 is a fast processl4). In fact, tho roaotion slowed down. 

As can be seen in Fig. 5.1. the apparent effoct of the water is to 

react stoichiomotrically with Et
3
0+BF4, thus reducing the conoent­

ration of catalyst. Thoro is also a longor induction poriod in the 

presenco of tho water. Similar results were obtained by Yamashita6,15. 

5.2.3. ROEolymorisation Experiments (Table 5.2.) 

The first attempts (86 and 88) at repolymcri8ation, after 

depolymerisation gave surprising re8ults. Tho pol7Merisation bad 

finishod beforo tho dilatometer could be filled. Thereforo, it 

was necessary to uso a lowor initiator conoentration so that the 

ropolymorisation could bo followed. Tho roaction mixturo 89 was 

warmed to 600 (the oaloulated T • 490
, but I expeoted a slightly c 

higher valuo booauso of tho hiBb monomer oonoentration) and 



Table 5.2. 

Repolymorisation of l,)-Dioxolan at T • +25 0 

% Conversion (oalo.) 

DP 

x 

Induotion period/min 

89 89a 89B 105 105a 

4.0 4.0 4.0 3.0 3.0 

2.0 2.0 2.0 1.0 1.0 

0.045 0.053 0.049 0.018 0.018 

17 

40 

-
o 

49 

16 

110 

* 44 

49 

19.1 

58 

o 

x • ~ of reaction whioh is of first order. 

% This reprosents tho observed part of the roaction but it 
appeared tha.t wholo roaction wO.s first ordor. 

* Estimated from the volumo of polymer solution remaining attar 
sampling, actual yield • 20%. 
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dopolymorisation occurred. Tho dilatomotor was plaoed in D. bath at 

250 and the seoond polymerisation was followed. Tho procodure 

was then repeated. The initial cathetometer readings showed the 

oontraction duo to cooling as woll as polymcriso.ti·jn. 

T!hen a dilatometor is used to follow oquilibriwn polymerisations 

at these monomer concentrations it is necossary to put tho final 

mixture into the side arm for killing. This nocessit~tos partial 

dopol~norisation and rethormostatting with tho solution in the side 

arm. As the yiold of polymor obtained in this w~ did not var,y 

outside exporimental orro:' it is safe to a.ssumo th~·t tho reaotion 

does go to equilibrium after dopolymerisation. The results of the 

repolymerisJ.tion experiments also agroe with this assumption. 

Therefore, I equatod the final contraction th~t ocourred on 

repolymorisation with tha.t of the first polymorisation. 
is 

As is shown in Fig. 5.4., the ~ ropolymcrisation~ a.e oomp-

letely of first ordor with respect to monomor, and tho rato oonstants 

(kl ) oalculated from theso plots aro the samo ruld equal within 

exporimental error, to tho kl oalculated for the first polymer i­

sation (Table 5.2.). 

~lhon oonduotivity mea.surements wero made during the polymori-

sation it WEtS found that the conduotivity oontinuod t·,) drop for 

several hours after tho polymorisa.tion had roached equilibrium. 

Experiment 104 was loft until the oonduotivity wa.s apparently 

oonstant and repolymerisa.tion was thon a.ttempted. Repolymerisation 

ooourred rapidly, as before, thus showing that a loss of activo 

oontres was not responsible for tho conduotivity ohango. Experiment 



Table 5. 3. 

The Po1ymerisation of 3M l,3=Dioxo1an at 250 

Run No. 105 105A 103 102 104 101 106 109 115 

CEt30+BF~/10~ 1.0 1.0 6.0 6.0 6.0 6.0 8.0 12.0 12.0 

/ -1 k1 min 0.018 0.018 0.05 0.052 0.077 0.085 0.127 0.077 0.092 

% Convorsion 48.8 48 48.5 * * 44 51 49.6 49 51 

X 16 58 34 50 33 35 38 50 55 

DP 19.1 21.1 18.0 17.6 25.3 33.0 13.0 

'(I .~ -1 -1 \ ';'_ cm 13.9 19.9 40.1 41.3 57.8 50.7 

f< / JL -lcm-1 
0 

9.6 0.57 19.0 28.0 40.3 34.4 31.7 

~; ,S2. -lcm-l 0.42 0.42 0.9 0.7 1.7 1.5 1.5 

Induction period/ 
min 110 0 60 80 21 23 23 15 19 

* Calculated from dilatomotric contraction. 

x • f, of reaction which is of first order. 

K is tho spooific conductivity of the o~talyst solution beforo 
x addition of monomer. 

to is the speoifio conduotivity at the start of tho experiment. 

tf is the finn1 spooifio oonduotivity, soveral hours attor polymeri­
sat ion had roached equilibrium. 
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105 was undortakon in tho same way. A lou'vr cD.talyst concontra.tion 

wa.s used so tha.t the ra.te of ropo1ymorisation could be moa.ourod. 

Once a.gain tho first order rB.to consta.nts wore the samo. Howover, 

in this cS.se the cD.talyst concentr3.ti ,In wa.s vory low 8.nd a short 

accelora.tion period wa.s noticod (Fig. 5.5.). 

5.2.4. Conductivity Moasuremonts during Polymorisation 

The po~morisation of' l, 3-dioxolan by Et 30+BF'4 is much slOlfor 

than tho corresponding rcaotion catalysod by anhYdrous porchloric 

acid. 

11 dilatomoter contain.ing eloctrodes Wo.s constructed to sec 

whethor conductivity mea.suroments would help to solvo this problom. 
,·fs ... /f 

It was not expocted to bo of much holp bocauso Et30+BF4~s ionic. 

Howevor, a slight change of conductivity cuuld havo bo~.;;n possiblo 

if tho activo contre had a differont mobility to tho triothyloxonium 

ion. As can be soon in Fig. 5.5. theso rW1S aro informativo. Tho 

oonduotivity dropped steadily throughout tho induction. period until 

a slightly fa.ster decrease of conductivity oocurrod due to the 

increased viscosity of the modium and the lesc.er mobility of tho 

polymeric cation. After tho polymorisation had reached oquilibrium 

tho conductivity still continuod to drop. It did not reach a constant 

value until about 1-2 d~s after the polymerisation had finishod. 

It was olear that somo ionio spocios were being lost tha.t woro 

irrelevant to tho polymorisation. In exporiment 105 tho system 

could bo ropolymorisod even after tho conductivity hadte~fhelits 

minilDWll (O.42.".n:-1cm-1)..Dopolymeriso.tion raised tho speoific oonduc­
t 

( ) -1 -1 ( 0) tivitYI( to 0.5y. SL om 25. On polymorisat10n, tho specific 
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conduotivity droppod back to O.4~Sl cm ,but this \lla.s ~ 

due to a viscosity chango during polymerisation. The final conduo-

tivity of tho roaction solution is much smaller than the initial 

conductivity duo to triothyloxonium tetrafluoroborate. Those values 

are listed in Table 5.3. The final conductivity will bo soon (soo 

soction 5.).) to be due to tho activo contro ~nd also Bomo 

dioxolonium totrafluoroborate. 

As shown in Fig. 5.6. the plot f' h k a' t ~ ~t O+BF--' o "C e 1 a.g l.ne ,_) 4 J 

is roasonably linoar o.lthough tho points arE) sc~ttorod oither sido 

of tho line. Much of th~s scatter is due to somo uncerta.inty in 

the catalyst concontr~tion. Theroforo, it W:'\.s docided to usc tho 

conductivity of triothyloxonium tetrafluoroborD.tc sulution before 

addition of mor.omer (h/
x) ;:l.a a. ca.libra.tion. to detonnin.o thE) cD.t~lyst 

\. 

concentration more accuratoly. The plot of kl aga.inst the 

[Et)O+BF4l detormined by this method is given in Fig. 5.7. Tho 

degree of scatter is roducod .. but not completely. I have given less 

woight to oxperimont 102 because this reaction had an unusua.lly 

long induction poriod and was also the first conduotivity oxperimont. 

Also exporiments 106 and 109 are somo w~ out of the calibration 

ra.nge and m~ bo erronoous. Tho valuo of ~/c obtained from this 

-1 -1 plot is 9.5 Imole min • The scatter is not surprising booauso 

tho number of active centres does depend on tho LEt30+BF~but tho 

dopendence noed not necessarily be linoar. 

The calibration was determinod by diluting throe phials oonta.ining 

0.)9,0.68 andO·.4'.mIIDles oftri01UQlo~n1_ tetItaf'1uoroborato roepoo­

tively, with metnylene diohloride in a vacuum conductivity call. 



Tabla 5.5. 

r +:j 0 Tho Values of kl and a.ctu~l !~t30 BF 4 a at 25 

Run No. 105 103 104 102 109 106 

[i, 3-diOXOla3 /H. 3.0 3.0 3.0 3.0 3.0 3.0 

J!t 30+BF'4] a. /103M 1.6 3.5 8.0 8.1 11.0 12.1 

k / . -1 1 m1n 0.018 0.0, L.011 0.052 0.08 0.121 

Fig. 5.6. 

Tho Plot of kl aga.inst ~t30+BF'4J (unoa.libra.ted - Tabla 5.3.) 

Fig. 5.1. 

[ 
+-

Tho Plot of kl against _Et30 BF4J a (oalibra.tod - Ta.ble 5.5.) 
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Ta.b1a 5.4. 

Conductivity data for solutions of Et30+BF4 in 

Mot~v1onG Dich1orido at 25° 

R1Ul 126 

0.129 :!: 0.004 g 
0.678 ± 0.021 mmolos 

~t30+BFiV1O~ 9.69 6.78 4.52 3.39 2.51 

'tV, (.-1 -1 _L. cm 37.2 28.3 21.1 17.4 14.4 

Run 121 

0.086 ± 0.004 g 
0.454 ± 0.021 mmo108 

~t30+BF~/103M 6.49 4·54 3.03 2.27 1.82 

k/IA~-l cm-1 26.3 20.4 15.6 13.0 11.4 

Run 1J1 

0.073 ± 0.004 g 
0.386 ± 0.021 mmo1os 

~t30+BF~J/1O~ 12.9 7.72 3.86 2.57 1.54 

K/p.)l.-l cm-1 47.8 34.4 21.4 16.5 12.1 

1.83 

11.8 

1.45 

10.0 
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Table 5.6. 

ThG Effoot of Tompera.ture on the Po1ymerisat10n 

of 3M l'3=Diox01gn 

Run No. 

[Et30+BF~/10~ 
[Et30+BF4~la. /101M 

~ /min-l 

/ / 
-1 -1 k1 0 1molG min 

log ~ /0 
f.. Conversion 

DP 

K /S;.. -1 
x 

~ /Sl -1 

~ /$2.. -1 

-1 om 

-1 em 

-1 om 

Induction PGriod/min 

T /oC 

103/T / °K-1 

~t30+BF~ a • actunl 

* Estimatod from~o. 

A Using kl /0 as 9.5 

110 

8.0 

9.1 

0.14 

15.5 

1.19 

34 

46 

14.3 

42.1 (25°) 

28.3 (35°) 

1.0 (35°) 

11 

35 

3.25 

A 111 

8.0 

* 6.0 

0.027 

9.5 4.5 

0.98 0.65 

72 

28 

27.4 

60 

25 10.2 

3.36 3.53 

lmo1e-1 min-l from graph (soo Fig. 5.7.) 

x • % of reaction which is of first ordor 
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Ta.ble 5. 7. 

Po1ymorisation of 1.3-Dioxepan at 250 

Run No. 93 94 

~onomo1M. 1.0 2.0 

~t30+BF4JI'103r!. 2.0 2.0 

/ -1 ~ min 0.15 0.14 

% Convorsion * 64.5 14 

DP 6.6% 17.6 

~~ Cyo1io Dimor 4.7 

X 58 43 

Induotion poriod/min 21 11 

* Caloulatod assuming contraction for 
1 t 3-dioxolo.n equals tha.t of 1, 3-dioxepan. 

% ActWl.1 oonvorsion 26;../, at 10.70
• 

X • ~ of roaction whioh is of first ordor. 
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This calibration is also influenced by the orror due to tho mid-

point mothod (sao Chapter 2) but loss than in tho po1ymorisation 

oxperimonts. Tho data arc in Tabla 5.4. and tho calibration graph 

io given in Fig. 5.8. 

5.2.5. Tho Effect of Tomperature 

As the actual concontration of activo oentres is not known. 

Arrhenius va.luos do not moan much. Tho activa.tion energy for tho 

po1ymorise.tion of l,3-dioxola.n by anhydrous perch10ric ooid WC1.S 

found to bo 5.5 kcals/mo1e5• If tho propagation is a ring opening 

rathor than a ring-expansion the activation energy of tho formor 

lD83be highor than the 1a.tter, thorofore an approximate vc-.1ue of tho 

activation energy is useful. Two runs (110 and 111) woro mado at 

temperaturos other than 25°. Using tho oaloulatod catalyst oonoon-

tration. an Arrhenius plot was constructed. Tho activation onergy 

WD.S f01.l11d to bo 8.9 kcals/molo. This is an approximatG va1:uo but 

doos give the order of magnitudo. 

5.2.6. Po1ymorisation ef 1.3:Di~xopan by Triotgy10xonium 

Totrafluoroborate 

The polymerisation of 1.3-dioxopan haa tho samo oharaoteristios 

as tha.t of 1.3-dioxolan with Et
3
0+BF4 oxcopttha,tU-diqxopan~1ae8 

a little faster. Experimont 93 (Table 5.7.) wo.s ki110d at 10.70 

so that a high YiOld5 of tho oyolic dimor oould be obtained. 

k1/o • 75 lmo10-1 m1n-l at 250 

5. 2.7. Tho Poly!orisation of 1.3=Dioxolan with othor oat9lYsts 

Since tho conductivity ohango7 observGd is due to tho 

16 + -doosmposition of Et
3
0 BF4 to boron trifluorido ethorate and ethyl 



TablG 5.8. 

Polymorisation of 1.3=Dioxolan by othor Catalysts at 25 0 

Run No. 108 148 182 130 132 

[Monome~ 1M. 4.0 8.4 3.0 3.0 3.0 

~ - 3 BF 3Et2OJ 110 M. 8.0 

[Et~/103M. 5.1 

[Ph3C+BF4J/102M 1.0 

~t3O+SbF~/101M. - - - 8.0 0.1 

% Conversion * 48.7 46 17.5 44.5 

8.9 * DP 17.7 19.9 23.2 

Polymorisation time/h 24 

Induction poriod/h 2.8 .. 0.25 0.16 

ko ~~1-1 om-1 0.062 0.09 150 4.26 

~ ~a.-1 om-l 0.14 .. 1.22 4.26 

~!A~l -1 0.21 1.24 4.26 om 

k
f 

I;A~J.-l -1 0.13 1.1 2.2 om 

kl Imine·l 0.09 0.34 

X 26 92 

kb • spocifio oonduotivity at the tim~ polymerisation bogan. 

km • maximum speoific conduotivity. 

n killed a.t +550 but did roach equilibrium a.t 25°. 
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fluorido, it 1-1.::1.8 nooosso.ry to ohook th{'l.t noi thlJr of thoso oompounds 

)r)l ymorisod l, 3-dioxolan a.t the sama rato. Dotails of those oxpori-

monta aro in Tablo 5.8. 

lHth boron trifluorido othorato, polymorisation bogan aftor 

an induotion poriod of 2.8 hours and oventually roaohod oquilibrium 

aftar 24 hours. An oquivalont polymorisation with Et30+BF4 would 

ha.vo finishod within an hour. Tho oonduotivity W~·S moa.surod during 

tho polymorisation. Th~so aro tho first oonduotivity moa.suromonta 

made on this systom. Tho initia.l spooifio oonduotivity was 0.062 

{' -1 -1 . h d' 1 ' -1 -1 /A. _L om wh10 rosa stan. 1 y to 0.14 .. u ::- _ om WhOll polymarisD.tion 
/ 

sta.rtod. It roaohod a. maximum o.t k... O.27/.LQ -1 om-l and at thl.l 

-1 -1 ond ha.d drol-ped to O.l~ ':'_ om • 

Tho rata oonstant tm.S not dotormined. 

o The reaotion mixture wo.s then dopolymorisod at 60. The 

'f' 0 .' -1 -1 0 speo1 10 oonductivity was .3.I.l',· om at 25 • 

Thon tho solution was alloned to oquilibro.te a.t +550 boforo 

it was killod with ammonia. A low polym~r (DP • 8.9) oould bo isolG-

tod. Examination by infrarod speotro.oopy showod tho polymor to 

+ -havo the same speotrum as a polym~r made by Et30 BF4 oata.lysis. 

Thus a polymer made with boron trifluorido othorato 0.1so, apparontlY, 

ha.s no end-groups. 

Et~l fluoride does not polymeriso 1,3-dioxolan. 

Ona of the produots from the roaction of Et30+BF4 with 1,3-

dioxolan in mothyleno diohloride solution is dioxolonium 

tetra.f'1uoroborate. Thorofore, catalysis by this compound had to 

bo oonsidored. It oan be formod "in situ" by tho roa.otion of 
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1 j 3-diox.~,1().n with triTlhonylmothyl totro.fluorobor':'.to. Moerwoin11 

"", shown that this remotion is almost quanti to.tivc. The yiold of 

dioxolo.nium totrafluoroborato was 88~b and tho salt prucipi­

to.tod from tho roaction mixturo. Also, :'lostormann5 showod that 

triphonylmethano was producod in 8~ yiold whon triphonylmethyl 

porohlora.te W::1,S reacted with l, 3-dioxolan. 

In a provious attempt5 to polym~rise l,}-dioxolan with 
-'. 

dioxolonium totra.fluoroborate 10101 teIlporaturoB and 10l'T cato.lyst 

concentrations wore used. Under thoso conditions porchloric o.cid 

+ -polymorisos l, 3-dioxolan rtl.pidly but Et 30 BF 4 would not havo 'lJoly-

merisod 1,3-dioxolan. 

TheroforG in experiment 182, 3M l,3-dioxolan wa.s dosed with 

-2 + - k -1 -1 10 M Ph3C BF 4. 0 was about l50,'l n om ,tho vo.luc droppud 

,;-1 -1 6 quickly to 1. 45/"H" cm after mins. Tho ohango in conduotivity 
/ 

occurrod simultanoously with a ohange from yollow to oolourloss 

and tho formation of a white preoipitate whioh is dioXQlvnium 

totrafluoroboro.ta. 

Aftor polymorisation tho mixturo w~s dopolymorisod by wnrming 

it to 50° for 30 mins. Tho white orystals dissolved and tho solution 

turnod slightly yollow. Tho ropolymoriso.tion was fast, as oxpooted, 

but it was still possible to rooord tho last 2~ of tho reaction. 
/" f~-e.. ~ ~ ~p~Ji.N:~ rk.t. ~ ~ ~twe sita-p: 

Al thoughf\1iho oontraction obsorvod w~s 30m which is gro/:-.tor than 
, , 

tho offoot duo to temperatura. ~hG roaction was oomploto in 10 

mins. and tho first ordor rato constant (~) was 0.75 min-I. Tho 

value of ~ for tho first polymerisation was 0.09 min-I. The rate 

was prosumably groater beoauso more activo oontros woro formed whon 
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tho di·,:, .)1011~.1Jjn tctr.1.fluorobora.to dissolved on hea.ting, 

. ·-1 , only incro~sQd from 1.1 to 1.4 .. 

Ethanol roacts with 

t
. 18 ron.c lon : 

dioxolonilUll 

-1 cm • 

snlts by tho foll0wing 

EtOCH2CH20COR + Et~H2BF4 

( 0.) 

Thoreforo, tho polymcrisation mixture wn.s sto.biliscd a.t 25° n.nd 

killed with ethanol. A sample of this solution was analysed by 

g.l. c. for 2-othoxyotl:.yl formate (i. e. (a) whon R :a H) a.nd this was 

found to bo a.bsent. A 4 X 10--\1 solutioI'). of 2-othoxyethyl formate 

in tho ronction mixturo was a.nalysed by g.l.o. ~d the poak duo to 

2-othoxyotbyl formn.to WO·S obsorved. Thoroforo, tho dioxo-

lonium ion was a.bsent in the fin~l polymerisation mixturo. This 

test is not completely conclusive for tho a.bsonco of tho 

dioxolonium ion since Meorwoinl8 had demonstratod roaotion 5.1 • 

.p R U T.'t H . d" d' d 18 d t . ~or • ~e or ~. owevor, Slnca so 1tun 10 1 e oos roa.c ln 3n 

ana.logous manner with dioxolonium salts whon R • H7 Mo or 

Et, tho oxtrapolation of roaction (1) to R • H seems roa.sona.ble. 

Tho polymer wo.s isolatod in tho usual w~. Somo white cr7st~.ls 

wore presont in tho product. Tho polym~r would not dissolve in 

95/' ethanol, thoroforo, a quantita.tivo moa.suromcnt of tho triphtlD3l-

mothano by u.v. speotrosoopy was not possiblo. Tho tripho~lmoth~o 

woos slOWly sublimod from the polymor a.t 50°/12 torr. Tho product 

wa.s dissolvod in 95% othyl alcohol. Tho u.v. spoctrum of this 

solution wa.s idontioal with tho u.v. spectrum of puro tripho~l-
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mothrmc in 95;, othyr-alcohol. Dy mon.ns of tho oxtinction cooffi-

ciont l9 , A (log':)" 262.5 (2.92) the yield of tripho~lmothD.ne m!1.x 

\-IO.S ostimated to be 7C'ffo. 

The infr~rod spoctrum of tho polym~r was id~ntical with tho 

infro.rod spoctrum of poly-l, 3-dioxolo.n propn.rod by othor catD.lysts. 

-1 Thoro WD.S e. ama-ll ba.nd D.t 3,500 cm duo to an OH group. Thore 

t>las no ovidence in tho N.M.R. or infrarod spectra for tripho~l-

mothyl groups. 

Two mochanisms c~n bo writt~n for the polymorisn.tion of 1,3-

dioxolrul by Thoso are ~ossiblo but it 

must bo romomberod tho.t initiation by somo spocies other tho.n this 

ion is not oxcludod. SinDe tho ra.to of polymorisa.tion W(l·S incroo.sod 

whon tho d1~leni.UII salt dissolvod, ini ti3.tion by this 

oompound hns to bo considored. 

--~) a:~CIi2CH2OCOH ~ po1ymor 

BF4 
(A) 

(B) 
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(A) a,n"'.,.;) cc ~.i.d prop~ Ito to form polymer by the ring-ex'9ansion 

Illcchanism. As no carbonyl groups were visiblo in the infra.red 

S~ClC~otru,.Jl, route 5.2. is ~likoly. Tho concentration of dioxolonium 

-2 tetrafl uorobo:O"l,te wa.s 10 M; therefore? if 0.11 the ci..1.talyst had 

formed a. carbonyl group, it would have boen observed in the I.R. 

spectrum. 

rrrietbyloxonium hexafluoroantimonate polymerises 1,3-diox01a.n 

+. - d / 3 -1. -1 ~uch faster then Et30 BF4 an kl c • 3.4 X 10 lmole m1n • Tho 

~olymerisation did not go to equilibrium as shown by a low yield 

of Jolymer. 11ho conversion curve (Fig. 5.11.) shows that the 

, meniscus began to rise after tho maximum contraction 

wa.s reached.. The reason for this is not known. 

The conductivity UClS steady before and aftor polymerisation 

indica.ting the greater stability of this salt. Gas chromotagraphy 

showed that neither ethane nor ethyl fluoride wero ~roduoed. 

8 - ':1,.._ +-
~~hen X 10 It Et30 SbF 6 was used the solution turned yellow 

after 24 hours (the polymerisation was complete in a fow minutes). 

The visible speotrum of this solution had a maximum at 746 nm. 

Colour formation20 has been noticed before when the SbF6 salts 

wero used to polymerise tetrabydrofuran. 

However, with a reaction rata of this magnitude, th~ polymeri­

sation of cyclic formals by Et
3
0+SbF6 can be studied at lower 

temporatures. In this w~ aide reactions, which prevent tho equi11-

brium being set up and Which produce coloured products, could 

probably be made negligible at these temperature. Theroforo, 

a study of this system at low temperatures should lead to a cloaror 



underf1~anding cf tho .lio)'Cm(1risation of cyolic formals. 

').2.8. 'Fhe Rat~_onstants for th(. Polxmoris8:,~i..2:1-2f Cyolio Formals 

Various valuos of tho propagation rate constant (k ) for 
p 

1,3-dioxolan a".ce recorded in tho litera.ture (Table 5.10.). In 

this seotion kp for the polymorisation of 1,3-dioxolan by Et
3
0+BF'4 

is estimated and compared with the other values cited. 

An estimate of the concentration of activo oentros (oa) in 

+ -the polymerisation of l,)-dioxolan by Et)O BF4 oan be made from the 

final conductivity (~f) which is roached aftor decomposition is 

oOf'piete. f.:everal assumptions have to be made to do this. 

(1) That Et30+BF4 has ~eoomposed to non-oonduoti~ products. 

(2) 'l'r .at despi to the ~resonoo of tho dioxol(;lnium ion, tho 

concentration of active contres, 0
80

, oan bo oaloulated fromk f. 

(3) That the oonductance parameter of Et30+BF4 in met~lone 

dichloride can bo extrapolatod to tho -polymerisa.tion solution. 

The effeots of tho size of the polymerio oation, of solvation nnd Qf 

the change of dielootric constant make this a tentative extrapolation. 

+ -Since it was not possible to determino tho conduotivity of Et30 PF6 
+ -in 1M diethyl ether tho parameters for Et30 BF4 in met~lonG dichlo-

ride are used a·s a first approximation. 

(4) That the total oonoentration ot ions is such that ion-

pair formation can be neglooted. 

In Chapter 7 it will be 800n that the equivalent conduotivity 

at infinite dilution'/\02' for Et30+PF6 in mothylene dichlorido at 

00 is ll8.53~1.-l om2 mole-l • From tho crystallographic radii ot 

the B'4 and the PF6 ions tho value Of/\02 tor Et
3
0+BF'4 can be 
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computod from Stokes L8"1 1 and this giVos/~2 _ 136~ __ -1 cm2 mola-1• 

Fig. 5.12. shows tho plot of k1 againstf'\f. From this 

,. -1 -1 -1 • 1.3#.L. om when kl • 0.1 min • Therefore tho oonoentration 
./ 

of nctivo oentres is 

Furthermore, expariments 132 (Et
3
0+SbF6) and 105A (Et

3
0+BF4) show 

that the oonductivity is approximately halved by th& ohange of 

viscosi ty and tho increa.sod size of the oat ion which occurs during 

p01ymorisation. Therefore, tho specific oonductivity duo to the 

mOl marie D.c·~ive c~ntres I;' is about 2 x k:f • Thorefore, from ·.a ,. 

equation 5.5. 0 is approximately 2 x 10-5M. a. 

But kp .. kl lOa 
. -1 

From kl - 0.1 mln -5 3 -1 and 0 • 2 x 10 111 k • kl /0 • 5 x 10 lmolo a 'I;> a 
-1 min 

Experimont 105.1 WB.S a re:r;>olymoriso.tion aftor tho oonductivity had. 

dropped to a. minimum; thorefore, sinoeKa is known e~erimentally 

no visoosity oorreotion is roquired, and in this case 

k1 • 1.8 x 

Therefore, 

-2 . -1 L-' L' -1 -1 10 ml.n andn.o -f\..a • 0.57/,!L om • 

o -0.53 x 10-5M and k -k1 10 -3.4 x 103 lmole-l 
a p a 

-1 min • 

Tho two oaloulated values of kl lOa agree ~lose1y with the 

k • 1.26 x 103 Imole-l min-1 determined by Wostermann5 with porohle-
p 

rio acid at 250• If the meohanism for tho :r;>olymerisation of 1,)-

dioxolan is thEl.t proposod by Plesoh and!estermann3 (ring-expansion 

by sooondary oxonium ions with HOl04) and not that proposod by 

Jaaoks29 (linear propagation by tertiar,y ozonium ions - soo Cha~ter 

10) thou it wo assumo that kp for our tertiar,y oxonium ions and 
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that f()r tho socondary oxo~.ium ions in l'Iostermann's5 system should 

be very similar, this a~ooment shows that our assumptions e~o 

roalistic. On the othor hand, if wo assume tho validity of our 

assuoptions, tho r~su1ts indicate that tho k for secondary and 
p 

tertiary oxonium ions a·rG vary similar. Furthor evidonco for tho 

last point is that kl lea. 3.4 x 103 lmole-l min-l for tho polymori­

sation of 1,3-dioxolan by Et30+SbF6 (experiment 132) is also very 

oloso to the k determined by Uestermann5• 
p 

The above oalculations arQ based on the assumption (2) that 

th(· dioxoloni um ion makes only a. small oontri button to/( t and 

this will ba discussod later. 

On -pag.; 90 we saw that ~ 10 a detormined from t:lO plot of Kr 
c.gainst kl (Fig. 5.12.) whoro kl was determined from 8. polymortsD.tion 

at high total ion oonoontra.tion and ~I 0a dotermined from experiment 

l05A (Tablos 5.9. and 5.2.) whiah was a ropolymorisation at low 

total ion oonoontration, ara simila~. Also the values ot ~ from 

105 at high total ion concontration and kl from l05A at low total 

ion conoontratbn 8.1'13 tho samo. HOl'l in tho exporiments used for the 

plot of K t against ~ the catalyst conoentrati')n 0 was about 10-2M 

and from the assooiation constant K2 wo can caloulate that tho 

oorresponding oonoentration of freo ion.s, 0i' is 2 x lO-4},I (soe 

Chapter 1 for tho prooedure), wheroas 0 whioh is Gqual to tho a 

total ion oonoentration (assumptions 1 and 2), in experiment 105A 

-6 -6 was only 5 x 10 M and under those oonditions 01 • 3 x 10 M. 

Thereforo in most of the polymerisation most of the active 

oentros were ion-pairs whereas in l05A most of tho active oontres 
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l"lCrC froo ion.s. Since the plots of k1 aga.inst c (Fig 5.7.) and 

of kl against ~'~'f (Fig. 5.12.) arc linoar, a.nd oinco kl (105) is 

equa.l to kl (lo5A), and since the ra.te constants for successive 

repolymeris£,!,tions (Ta,ble 5.2.), a.ftor further decomposition '.)f 

+ -Et30 BF 4 had occurred, t-rore tho same, it follows tha.t tho propagation 

rate constant for ion-pairs must bo a.pproxima.toly tho samo as th .... t 

for free ions; in other words the solvatod oxonium ion propagates 

D.t about tho samo rate rogo.rdloss of whethor it is pa.ired or froe. 

Experiment 182 ht'.s shown that dioxolonium tetro.fluoroborate 

Cll.:' polymori so 1, 3-dioxolan. Thorofare, since i... f of th::, polymori-

+ -Ra.tions catalysod by Et30 BF4 depends on the contributions from 

both the dioxolenium and possibly tho l-ethyl-1ll+-l,3-diozolanium 

ions wo noed to decide which of these is tho actual initiator in 

+ -the polymorisations catalyaod by Et30 BF 4. 

If we ostimate tho concontration of dioxolonium tetrafluoroborato 

Cd' it will holp us decide whother tho dioxolonium ion pl~s an 

important part in tho initiati·n of tho polymoriBation. 

In experiment 122 (T'>T
c

) 'thero c wa.s 10-~ Et
3
0+BF4, tho 

concontration of ethane could bo estimatod from the height of the 

g.l.c. peak. From a calibration with gaseous ethano we could estimato 

that 2 x 10-3 mmoles were produced from 21.4 mls of tho roaction 

mixturo. That is, the oonoentration of dioxo1on1um totrat1uoro­

borate, Cd' was about 10-~ at the start of the roaction. In 

experiment 115 (0 • 1.2 x 10-2M) 0d was about ~ x 10-4u. Thorefore 

08 ~ / 2 ~ in experiment 115 where k1 • O. min t k1 0d • 4 x 10 Imo10 

. -1 / m1n • Since ~ 0d 1s less than k1/oa it appears that in this 
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experimont ini tia.tioll ce.nnot bo sole:;ly duo to th.; dioxol()nium ion 

a.nd tha.t it nw.y bo due ;,0 both tho di oxol eni urn onrl tll\;) l-othyl­

Ilt-l,3-dioxola.nium ions. On tho othor hand~ sinc.) Cd is groa.tor 

tha.n c tho dioxolenium ion ms¥ have dcca.Yod to non-conducting 
a 

products a.nd thoreforo making ~.flsumption 2 (po.g0 89) roa.sonable. 

Tho resL1.lts of exp~rim~nt 182 in uhieh 10-21,j dioxoLmiUI:l totrr) .... 

fluorobor~.tr.: wa.s tho ca.t;).lyst, k: f for the rcpolymorisD.tion 'Ims 

_ -1 -1 
only 1.?...u ',,- cm and thoro ws.s no unroa.cted catalyst '9rosent 

(soction 5.2.1.). Moreovor, kl/cs ~ 4 x 103 1mole-l min-l calculated 

fr:),l k f and kl (whore 00. - 2 x 10-5M) was of th.;) SEl.IilO ordor of 

rr.D.gt'l.i tude as kp ( page 90) so that according to conduct i vi ty 

mea.suromon;'s only a small proportion of tho c1).talyst wa.s oonvortod 

1nto activo ccmtros which propagato a.t tho expoctod r~to. 

As woll as this tho l'olymorisD.tion of 1,3-dioxolL\n by 

Et30+SbF6 (132) ga.vo a. va.luo of ~I a of tho se.fiG ordor of magnitude 

as tha.t for tho polymcriso.tion of l,3-dioxolan by porahloric acid. 

Theroforo sinco Et30+SbF6 polymorisoB 1,3-diox·)lan a.t a great~r 

rD.te than Et 30+BF'4 without the formE'.t ion of othano, I beliove 

the activo contro in tho polymoriso.tion of cyclio form.;tls by triotlv'l­

oxonium salts to bo tho l-othyl-lg+-l,3-dioxolanium ion ruld not tho 

dioxolonium ion. 

In an ana.logous proooss, TOb01Sky28 has shown th.·t th0 initiating 

speoies in tho polymorisation of totrahydrofuran by Et30+BF; 10 

tho l-ethyl-l~+-totranydrofuranium cation. Thereforo tho initiation 

of tho polymoris~tion of 1,3-dio%olan by l-ot~l-lg+-l,3-dioxolaniwu 

ion is quito reasonable. 



Tablo 5.10. 

Tho R~to Constants for tho Polymeris~tion of Cyolio Forma.ls 

Monomer C~talyst ~ /0 kl/oa 
-1 . -1 1mo1e m1n 

1,3-dioxol~ HC10
4 

1.26 x 103* 

" + -Et30 BF 4 9.5 3 x 103 

" + -Et30 BF4 2.6 

" + -Et30 SbC16 15 (5.1)1 

" + -Et
3
0 SbF6 3.4 x 103 

l,3-dioxopan HC10
4 1.9 x 105* 

" + -Et30 BF4 75 

o • tot~ oonoontration of initiator 

o • oonoentratton of activo oentres a 

T Referenoe 

°c 

25 \iost erma.nn5 

25 This work7 

30 Yamashita.6 

20 LuydVig13 

25 This work 

0 Uostorma.nn5 

25 This work 

* Those are very probably k1 /oa values, as the initiating 
effioionoy of HC104 appears to be ver,y groa.t. 

i Sao sootion 5.1. for the explanation of tho two values. 



5.2.9. j.'J~c. Jl~ tQ..9.g.~.~t~l.lt ~ _FeEo;:i.~d by othor 1'1 or~q,~ 

The published rato constel1ts for tho polymeris().tion of tho 

cyclic forlJals arc shaND. in Table 5.10. Sinco tho vD.luo of kllca 

(Et 30+BF'4) is approximately equal to tho value of kp (HOIO 4) llotormi­

ned by ~lostermann5 for the polymorist'l.tion of l,3-dioxolan,tho 

k t s of Uostormann for l,3-dioxolan and l,3-dioxopan aJ:'e tho most 
p 

reliablo in the lit~rature. 

For reasons Which ha.vo already boen discusscd Y;1.mushi ta' s6 

valuo for kp is invalid. Similarly; Lyudvig' s13 vD.luo of k 
p 

(li3-dioxolan) is subjoct to tho sarno orrors, booause + -Et30 SbC16 

decomposes in a way similar to Et30+BF;: 

+ -Et 30 SbC16 - ....... EtCl + Sb01
5 

+ Et
2

0 

However, whereas BF
3

oEt20 is an inofficient cata.lyst, :JoDtormo.nn5 

has shown that SbC1
5 

polymcrisos l,3-dioxolo.n rapidly without an 

accolora.tion period. The systom did not go to equilibrium and a 

socond addition of cata.lyst oausod a. further polymerisation lJhioh 

still did not reach equilibrium. Tho polymer contained chlorine. 

Moreover, Lyudvig observed a polymarisation without aD aooolor~.tion 

and sho expla.inod it by assuming th-::.t her monomar wa.s mnoh drier 

than tha.t usod by others~l. It r'.ppoars that thotruc initia.tor of 

Lyudvig's polymorisa.tion mo\y ha.ve boen SbC1
5 

and tht).t tho rate 

dotermining step wa.s the decomposition of tho salt. 

5.3. ~.z'!i.s of Roaotio.~ IU:rlures 

As shown in this Oha.pter, tho polymori3ation of 1,3-dioxolan 

+ -bY Et30 BF4 is oharacterised b.1 tho doo~ of tho oatalyst to non-

ionic spooios. This scotion doals with the results whioh lad us 



to uulicvo tho.t tho mo.in r,;.-),ction is tho s-pontQ.nGous but incomplvto 

+ -docomposition of Et30 DF 4 to ethyl fluoride o.nd boron trifluorido 

ethorato. 

5.3.1. 9as Liq1:l:!.<L9'p";:q,mot.I?U-~~ ~o1,Y-l.J.l-:.Di.9.~ol~ and:. Ao.~.a..i~ 

d2l~~ (Tables 5.11. to 5.13.) 

Samples of tho roaction produots of oJq)orimont 90 yTerO Boalod 

',)ff under vaouwn and then analysed by gas ohromotogI'o.phy. 9013 WD,S 

not killed but opened at 200 and injeotod into tho ohronatograph. 

900 was dopolymerisod, killed with diothylamino at 660 <)·Tc ) and 

thon .:1 sample injooted into tho ohromatograph (Table 5.11.). 

A oomparison of tho chromatograms of 90D f 900 DnQ 1,3-dioxolan 

at column tomporaturus of 600 and 100°, rospectivoly woriJ mado. 

Thoro was no oonsistoncy botltOen tho sizo and tho nwnbor of th(1 

poaks which followod the monomer. In 90B, at 100°, thore is a 

peek ~Ti th a. rotention timo of o.bout 9 mins. Nhen tho samplo sizo 

was doubled this peak increo.sod fourfold. In 900, whoro no polymer 

WtlsprOBont tho poo.k with a rotontion time of 9 mins was absont 

which suggests th1.t it is formod by dooom~oBition of tho -polymer. 

Tho rotention time is too short for it to bo the dimcr, anll tho 

dimor of 1,3-dioxolan h",.s novor boon isolatod from 0. polymoriss.ticln 

mixturo. Tho other panke prosont in tho ohromatograms O~0 very 

small a.nd only oocur D.S bumps in tho baso lino. Thoy 0.100 o.ppO:'lr 

in tho monomu~ but at slightly difforcnt rotonision times. 

At 600
, tor90B, thoro wa.s a peak with a retention tim~ of 

23 mins. Thi s paa.k mll.y bo the same one which WD·S observod at 

100°, sinoe it was also a.bsent from tho ohromatogra.m of 900. Tho 



Ta.b1e 5.11. 

The PGaks obsorvod in tho Gas Chromatograms of Polymorisation Mixtures 
- 5r-r;3-Dioxolan 

Sample CT KA 
°c , 

Rotontion Times (mins) 

D 
4.6) (2.6) (4%104) (6) (1.3) (0.1) 

100 - t1.8 2.2 3.2 12 14 17 

CH2C12 100 - - 2.2 - - - -

90B 100 - -~ I 2.2 4 3.2 3 9.4 11.4 13 22 
(lj1Q) ~1.3x10 )(3.5x10) (4) (0.1) (0.2) (0.1) 

90B 100 - -* I 2.2 3.2 9 11 13 15 19.4 23.4 ('le.) f2.1A'.04)(5e5x103) 30)(0.05)(0.3)(0.05)(0.1)(2.1) 

900 100 ~t Nfl 1.9 I 2.4 3.5 11 12 13.2 18 
2 ~10.2)(2.2Xl04)(1.lXl04 (0.5)(0.5)(0.1)(5.3) 

D 60 - 2.61 3.6 5.9 4 
0.3) (1.7) (1.8xlO) 

20 25 31 
(0.05) (0.1) (110) 

90B 

900 

60 - -* 3.8 7 
~1.6xI04) (4%103) 

60 ~t,NE 1.8! 3.2 5.9' I 2 1'4.5)~1.6x104)(6.3xl04) 

60 - I 4.4 

14 28 36 
(0.1) (10.5) (0.2) 

17 24 31 38 
(0.1) (0.1) (0.5) (0.1) 

EtH 60 - 1.6 

900 

E'tH 



Tablo 5.11. 

Notos 

* The oarly peaks were not looked for. 

I This peak is reducod on diluting with OH20l2 

( ) Tho figure in paronthosis is tho relative height of the peak 
whose retention is given above. Tho smallost poaks wero 
measured a.t an attenuation of 5 x 1 tlhilst thll.t of tho large 
poaks w~s 50 x 102 or 104 

OT • Column tompora.turo, whioh is givon boca.usa the samples wero 
injooto" directly into tho column and the injection port 
temperatura varies with the column temporature. Tho injeotion 
tomperature a.t 1000 W3.S about 1900 and that at 600 wa.s a.bout 
140°. 

KA • Killing agent. 

D • 1,3-dioxolan. 



Table 5.12. 

The Chromatograms of Et30+BF4 solutions in Methylene Dichloride 

Sam;ele Retention times ~minsl 

EtH EtF * CH2C12 F3Et2O o':n 
(a) 

r Et20 

120/11 2 3 3.6 7.4 
( +- 2 (1) ( 3.6xl04) (1.3) Et30 BF4 after 2.2xlO ) 
138 h a.t 250) 

115 1.8 ~.2 3.2 4 i 7.4 7 38 
3.8) (25) (1.7) 2.5XI04) (1.2xl03) 4) (0.4) 

118 2.0 3.7 1.0 ( +-Et)O BF4 a.fter 
(1.4) 3Xl04) (0.1) 10 mins at 25°) 

114 2.3 3.4 4.2 1.8 

(Et30+BF4ID afte 
10 mins at 25°) 

(4) (1.1) 4.5%104) (3xl04) 

BF3Et20 /CH2C12 4.6 9.3 

BF3Et20 /Et2O 4.0 8.0 

" 3.6 1.4 

EtF/CH2C12 2.1 4.5 

" 2.0 3.6 

( ) The figures in parenthesis are the relative peak heights. 

* Possibly Et20 
Column temperature • 60° 

D • l,)-dioxolan 
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ohr0T 1.-':;ogro.m of 90B hLl.d 6 poo.ks folloNing thu monomer \o1hen tested with 

o a. column tomperaturo of 100 , Nherea.s \lith tho samo sizo srunplG at 

o 60 , only throo peaks were observod. No othor snroplos came off tho 

column after [1, furthor tuo hours (Table 5.11.)" 

Tho chromatograms of other sa.mples of monomer also had somo 

S!l1o.11 impurity peaks following it, but they woro roundod and thoir 

rotontion times wero inconsistent. 

From theso experiments 1 I concl udo th...:t docolJ1I>osHi'~)n 0;: tho 

polymer occurs in tho chror!ln.tograph togeth~r with a. smt'l.ll amount 

of docomposi tion of 1, 3-dioxoID.n. 'l'his disagre:.;s \"li th the results 

of i'Uki 22 who isolatod DuvGral cyclic oxygon compoUD.lls from tho 

g.l. c. soparation of poly-I,3-dioxolan solutions -;>roducod by boron 

trifluoride othorG.te:. His rosul ts cann.ot be discn.rded sinco he 

usod different polymerisation a.nd chromatogra.phic conditions. 

In the oo.rly pa.rt of those chromatvgrams a peak with a retention 

time of two mins. \Tas obsorved. At first it \-me tnought to bo 

otha.no but tho retontion time of ethane wn.s slightly shorter. 

Beliover, it W[l.S also l,)rosont in mothylone dichlorido soluti0n of 

+ -Et30 BF 4" Tho othor possible vola.tile compound we.s ethyl f1uorido. 

Tho rotonti n tim~ of an. authentic sa.mple wa.s tho samo, so th~.t 

tho unknown compound w~.s othy1 fluorido (Tabla 5.12.). 'l'horo W:l.S 

a.lso a peak in tho chromatogram of a. pnrtly ducolllposed solution of 

+ -Et30 BF 4' whioh oorrospondod to boron trifluorido otherD.to. Typi-

oa.l chromatogrD.ms of thoso soluti·.)tl.s aro givon in Fig. 5.13. 

'~hon the vacuum sampling dovica, described later, \Ta.s usod to 

sample a roaction mixturo oontaining Et30+BF4 and l,}-dioxolan (115), 
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Table 5.13. 

6 0 -3 +-The g.l.c., at 0, of 10 M Et30 BF4 in 1M 1,3-Di~01an in Methylene 

R~~oride after standing for 3 Months at 200 

Retention time/mins 

relative peak height 

Retention time/mins 

relative peak height 

1.2 x 102 8.8 4 x 10 1.6 x 104 1.7 x 103 

10 13 15 17 22.6 24.6 27 31 35 

15 25 30 6.7 0.3 0.5 1.1 2.6 0.2 

a is ethyl fluoride 

b m~ be diethyl ether 

c is methylene dichloride 

d is 1,3-dioxolan 
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a po::.:~ v.t 1.0 min.s W<'·S obsorvcd in tho chromotogra.;;1. Tho rotontion 

time a.grood ~ii th tho.t of an D.uthontic snm~9lo of othane. 

The other :possibility for this pea.Ie w~s Gthyl chlorido \'1hich 

might have beon formod by o. ha.logon Qxcht'.ngo roa.ction of ethyl 

fl uorido \1i th methylono dich I orido. This wa.s discounted becf1.uso 

ethyl chlorid~ was expectod to ha~e a. longer retention than ethyl 

fl u0rido, a.lso the exchange rea.ction is normally vcry slow a.nd -!ihis 

peak wo.s noticoablo in tho oarliost sa.mplc ano.lysed and its size 

did not incro~so with time. (Soc Table 5.16.) 

Therefore, in solution Et
3
0+BF4 decomposos 

+ -Et 30 BF 4 ) Etlt' + BF 3Et20 

It D.lso roacts with 1,3-dioxolan by hydrog~n ab6tra.cti~.m t09roduco 

dioxolonium tetr(1.fluorobora.tc and ethane. 

----.. Et20 + 0 + Et!! 

1+ 
H DF4 

Other side rOD.ctbns occur in this system :J.S shown by tho 

polymorieation mixtures eventually turning yellow on stoolding. 

Thoroforo, a 1o-
2
M solution Et30+BF4 in 1M 1,}-diox0 laninmethylono 

dichloride W~.s o.llowed to stand for threo months at 20° () T ) c 

beforo analysis by g.l.c. By this time it had turnod brown. 

Tablo 5.13. shows that poaks at 10, 13, 15 and 17 minutes aro due 

to othor compounds which held beon producod. Since this is a very 

complox mixturo nu a.ttompt Wo.B made to isolato tho compounds rOlJpon­

sible for those peaks. However, Ro~onborg23 h(1.s isol~.ted othYl-



Table 5.14. 

N.M.R. Data for the Decomposition Products of 

TrietByloxonium Tetrafluoroborate 

Solvent Compound 1:" values (TMS - 10 ) 

CH % * 3 CH2 

OB2C1
2 

+ _a. 
Et)O BF4 8.4 5.21 

OB2 

+ _ b 
Et30 BF4 8.)0 5.1 

CH
2
C1

2 BF3Et20 8.6 5.75 

001
4 

Et20 8.8 6.6 

CB2C12 EtF 8.76 5.64 

CH2C1
2 Run 150 8.30; 8.5; 8.75 5.0; 5.65 

CH2C1
2 Run 121 8.30; 8.6 5.0; 5.8;6.1 

a Ref. 20 I triplets 

b Thia work * quartets 
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dichlOl'o;wthrI.UO cmd diothyldichlorom~thu.no from a. solution of 

E:t 30+DF'4 in methylcmu dichloride "Ihich hac1 tu.rned broun. Although 

I h::we never observed a. brmTn solution from thl.,) docompositi 'n of 

+ -Et30 BF4 in methylena dichlorido under vacuum, broun solutions 

+ -have b;)en obsorvod l;lh<m Et30 BF 4 solutions arc stored in air. 

These homologuos of methylene dichloride arc ~rosumably preduc~d 
f~ 

frlm alkyla.tion reactions Hith borontri~orido oth~r~.te and/or 

ethyl fluoride. 

5.3.2. ~_~.::"~_. s~~~~ __ 0_: .. ~:l~~BJl4 ttnd .Rol~:V:~cl~~:'~.).~~ (Table 5.14.) 

1'hose spoctra wore mD.do in N .M.R. tubos so~.led to a, va.cuum 

tipping devico via a -pyrex-sodo. glo.ss graded soa.l. '1'ho spoctrD. 

woro taken in mothylone dichloride since Et30+BP4 is insoluble in 

cD.rbon tetra.chlorido Cl.nd no other sol vent \'1~.S a.va.ilab!.:;, on th.;) 

va.cuurn line. An oxternal TtIIS sample was usod :;1·8 a standard a.nd the 

methyl one dichloride did not upsot the spectrUm of tho salt unduly. 

In Run 121, a O.38H solu~ion. of Et30+BF'4 in metbyleno dichlorido 

\Ul.S tipped, undor VD.CUum, into a tubo whioh Wl\O than soa.led off. 

o Tho spectrum wa.s tnkon intermittontly after storago ~t 35 for 

4 hours. No noticeablo cho.n.go w~s observed but a.ftor ono week c.t 

room temporaturo tho snectrum had changed. Th(~ triplut n.t 8.3 C 

WD.S much reduced in siz') o.nd a now triplet appot'l.rod o.t 8.6 t:' .• 

Similarly, the quo.rte'k D.t 5.0t,we.s reducod and o. poa.1.::at 6.2C 

hD.d beon formed. This ShO't-lOd that borontrifl uori<lo e·~llGrt'·to he.d 

been formed from the d~composition of Et
3
0+BF4- Although thore 

wa.s a. small triplot at 5.8,('thoro wO.s no othor avidoncG for ethyl 

fluoride. It was possible th[l.t most of th" ot!'l.yl fJ1.1.orido \1:>S in 
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tho v!J.pour pho.so nbovo "1;110 solution. 

In Run 150 D. 0.5H solution W:J.S docom',Josod at 700 for two hours 

n.nd then ti9pod into th.; tubo b~foro so:)ling off. .Jhen tho N.I'll.R. 

scale \'1:)'S oxpn.nded by two, thruc sots of triplets could 1)0 seon 

at 8.3, 8.5 c.nd C.75't", which Horo assignud to tho moth¥l STOUpS 

of tho salt, ethyl fluoride and boron trifluoride othorato. Tho 

mothylono protons of othyl fluorido woro prl..osumo,bly bJnea.th tho 

l::1.rgo poak due to bJron trifl uorido otherato .:->nd tho i~tegl."o.tion 

a.lao suggosted this. (Fig. ·5.14.) 

This is further proof for the following ro~.ction: 

h.3-Di<2.!£!.~n~_::,;l!.Cl ... r.trj._~?'?c..<mium T.o.i~·:t:luo.r_o.1?.01::0~ 

Tho rD.to of polymorisation of 1,3-dioxolnn by Et30+BF; was 

lowor than expocted and thorofare some ionic spocios presont in 

tho solution "'''ero irroL)vD.nt to tho polymorisD.ti "~no If 'tho chcmicn.l 
nature 

/olJf those ionic species could be id0ntifiod thon thu ini tio.ti,);, could 

bo partio.lly solved. At this stago wo thought that one of -those 

might be the dioxolunium ion. + -Thoroforo, I docidod to lot· Et30 BF4 

roact with a slight excoss of 1,3-dioxolan in mothylono dichloride 

soluti·)n undor vacuum. By distilling off tho solvent ~nd monomer 

::>.nd adding a. fresh portion of mon'.)mor solution it W:.l.S hopod t'.) 

increaso tho yield of tho 1;>roduct which wo.S formed. Tho formation 

of tho volatile com-pound could bo moni torod. by g.l. c. of tho distil-

lata. Tho rosultant product could bo nno.J.ysud b'y N.71.R. s-poctro-

scopy or chomical moans. In this way it was hOp'od to find out 



Table 5.15. 

The Attem;ets to Isolate Produots from the Reaction ot 1.l:Dioxo1an 
+ F- . and Et30 B 4 1n CH2C12 

Run No. 95 97 99 99A 100 100A 

[1 t 3-diOX01~ /M. 110 1.0 1.0 1.0 4.0 2.0 

[Et30+B~/M. 0.75& 0.75
a 0.73b 0.36 O.llb 0.11 

[Hexan~/M. 2.0 

Time/h 2.5 0.5 1 1 0.5 

Temperature/ 00 18 18 18 18 21 21 

& +-EtlO BF4 was prepared at atmospherio pressure. The salt 
whioh was moist with dietby1 ether was introduoed into 
the reaction vessel and thoroughly evacuated. 

b + -Vaouum prepared Et30 BF4" 
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whethor dioxolenium totrafluorobora.to, 2-othyl-1Jt -1, 3-clioxolrmium 

totro.fluorobor8.tc or both \110rO formod. 

How0ver, in Run 95 (Ta.1Jlo 5.15.) tho solution turnod bro\1l1 

whon it WetS cone .ntrD.tod by distilla.tion. 'rho aearly:l peo.lt (-pc3k(a.) 

Ta.ble 5.12.) WS,g stillprosont intheg.l.c.ef the distilln.t.::. 

In Run 97 (Table 5.15) the ren.etion time wos shortor. 'l'hv 

whi te erysto.ls romD.ining after distill~.tion H~ro dissolv(.;d ill. 

methylene dichloride D.nd tippud into D. N.II1.R. tubo, undur vacuum. 

Tho crystD.la ha,d a N.lLR. spectrum identioa.l to that of :st
3
0+HF'4. 

This signified tha.t unroa,ctod Et
3
0+BF'4 Wr\S prdient in tho polymcri·,· 

sa.tion mixture. Run 99 t'kS a repeat of Run 95 using vo.cuum-prElparod 

+ -Et)O BF 4 but thu mixturo still ·turnod brown uhen thQ second n.ddition 

of monomet and methylene dichloride W::J·S mado. 

An a.ttempt (100) to precipita.tv those compounds from n polymori-

so,tion mixturG wi th hox~,no fo.ilGd. Hcxo.ne 1'1.:1.6 addod until tho 

coiling tomporo.turo of tho sl)lution W:1.S higher tho.n the ron.oti:m 

temperature but tho polym~r un.s still precipi ta,tod. 

Al though thoso experilnents wore not satisfactory they did 

+ -shoW tha,t unro':),ctod Et30 BF 4 wo,s presont. This rosul t is in a.greo-

mont with tho kinotic oxporiments and the analysis of tho rco,ction 

solutions. 

In experiments in l.'lhich tho monomer and solvents Horo r0Ialoved 

from live pelymoris1.tione by bulb tv bulb distillo.tion, undor 

v~,cuumt thu polymoriaation of tho distillf:\,to ha.s boon observed. 

Vary proba.bly this can. bo ox:pla,inod aD duo to initiation by the: 

volatilo boron trifluoride etherato. 
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Table .5.16. 

Sampling Experiments - Et30+BF; in OH2012 at 250 

106 * Run No. 105 101 115 

[1, 3-diOX01~ 1M 3.0 3.0 3.0 3.0 

l!t30+BF~I/102M 0.1 0.6 0.8 1.2 

ho·EtF/om 0.6(0.3) 1.9(0.23) 1.0(0.3) 

hf·EtF/cm 2.5(23) 2.1(1.4) 3.4(50} 24.8(7) 

[EtFlIl02Ma 0.014 0.012 0.02 0.14 

ho·EtH/om - 1.5 

ht·EtB/om 1.6 

tl/h 8.2 1.65 1.37 1.7 

ho is the height at the g.l.o. peak initial17. 

ht is the height of the g.l.c. peak tinal17. 

a caloulated from hfEtF. 

122* * 120 

1.0 

1.0 1.1 

34(1.33) 5(0.67) 

163 223 

0.94 1.3 

1.3 

1.1 

-

* These experiments were oarried out UDder vacuum (see rig.5.15.), 
whilst 101, 105 and 106 were oarried out in a nitrogen atmos­
phere (aee Fig. 2.4.). 

% Polymeri.ation time. 

() Reaction time, in howrs, for a&aples. 
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5.3.4. ~a.nmli.!1&,"~~£.~i.~q£.~ 

Tho oxperiments dvscribed hero W0re cnrriod out to obsorve 

l'lhothor tho poa.k (ponk (a) Tablo 5.12.) found oarly in tho g.l,o. 

vo.riod in height throughout tho po1ymorisD.tion. At tho timo! tho 

naturo of tIl0 compound giving this poak l"ln.s uncertain, but it is 

no>1 knotm to be ethyl fl uorido. In Run 101 the roo.cta.nts wero 

dosed undur vacuum. Aftor thu dilatornotor had been filled, tho 

vn.cuum was lot dotrln to (). ni trogon ~tmosphor0 so th,J.t so.mplos c(>ulcl 

be takon through 0. rubbor septulO. During thu dOBing strtgo tho 

rubber septum W<.1.S protoctad by a bro~;:;:;oa.l whioh l-Tn.S brokon in 0. 

stream of dry nitrogen. Runs 105 and 106 'I"ora c~.rriod out in 

much tho sa.mo wn.y, oxcopt th~.t tho dil'J.tomotvr l'l:'l.S is()lated undor 

vacuum, by.'). Teflon tap from tho stlDrpling compartmont (Fig. 2.4.). 

Thus the polymorisa.tion ra.to c:md tho conductivity cho.ngo could be 

observod under clon.ner conditions. In thoso ~xp~riments tho hoight 

of tho ethyl fluoride poak incro[l.sod sl i:;htly during the ::-:olymeri­

sa.tion. Tho final samplos from 105 1J.nd 106 l'lOru t.:l.kon somo hours 

a.ftor polymoriso.tion had coo.sod o.nd uhon tho oonduotivi ty h~.d rO:l.chod 

a constant minimum vn.luo. 

It is obvious from tho figuros in Tablo 5.16. that tho amount 

of othyl fluorido me['!.surod wO.s much loss ·~h~.t tho amount Qxpoctod 

if tho conductivity drop h:l.d boon associatod with tho formation 

of 0thyl fluoride. 

It soomod th~1.t tho proba.blo rOD.son for this was tha.t moat of 

thu Qthyl fluoridG was in th.:.. VB.pOur pha.so. 

In order to provent ovaporation it ws-s noo(;ssary to rostrict 
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tho vapour cpa.co a.bove th,; sn.mplu. This WD.S donu by constructing 

D. dilatomotor uhich W1S ~.ttD.chcd to D. tipping duvico via a Toflon 

to.p (Fig. 5.15.). 

Tho rosul t s for polymorisation 115 vl()rO obtained \":i th this 

dovicu. + -Tho 9rocedure Ut),s a.s follows: tho phia.l of Et30 BF 4 \7,~.S 

brokon o.nu tho co,talyst solution wO.s mixod with tho 1,3-diox0l<:>.n. 

Soma of th~ solutic'n was tippod into the tipping dovic,:). Tho 

tipping device 0-11,S iso1a.ted by closing the T~fl:)n tap. 'rho tip,?ing 

dovice WD.S imi1Jors0d in liquid nitrogen to fruez8 tho solution and 

tho;") soalod off. At this point tho dil:1,tomotor was re1;>1n.cod in the 

b"th at 25° and observations of conductance Nld contrr:>,cti)Il HO.rc 

d~.rtod. Tho solu-~ion ' in tho tipping devico Wo.s distributed into 

phia.ls uhich t'loro immersed in liquid nitrogen o.nd oo.ch phiD.l flO,S 

sOD.lod off with I). short nock. Th0 phials woro stored at 25° and 

oponod D.t cortain tim~s for analysis. During tho tim() tho s,)lution 

WD.S cold it was D.ss1.Unod th';t tho reo.ction tID.S not continuing n.nd 

this time interval was subtro.ctod from tho actual r(;l).ction time. 

III this caso two poa,ks o.ppol),rod in the. g.l. c. at a. rot~ntion 

tim~ of about two mins. (column tompurnturo 60°). One: \"",S shown to 

be ethano and tho oth,)r ethyl fluorido. Unfortunately, this mothod 

we-s not perfect as can be soon by tho t imo lag in tho 'pol 'y"mori-

s~.tion curve (Fig. 5.16.) mOCl.surod by tho g.l. c. techniquo •. 

HO\'lovor, tho othyl fluorido pODk toms much larger tha.n in proviouG 

sampling Qxporiments but the final samplo W<).El tn.kon bofore the 

conductivity had reached a stoady value (Table 5.16.). 

This partly explains why tho concontre.tion of ethyl fluoridQ 
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a:ppon.rs to bo relatively small. Tho other pr:)blom WJ.S th;.>.t distil-

lation from ~hinl to phi[1.1 had obviously occurrod in tho s~mpling 

process a.s eho.m by a. variation in th::. size of tho methylono dich-

loride pea.k. This m~ account for tho time lag muntionvd oarlier 

bocauso tho m·)nomor concontrr-.tion Hould be difforont in oach phial. 

'i thin thoSJ orrors it could bo seen thJ.t both tho othyl fluorid:J 

a.nd tho othan-.J concontrations WElrc rOD.s";n~.bly constant throughout 

tho polymoris:::I.tion. Also the conductivity ch~.ngo soomod to bo 

associ.;"ltod with the forlil~'.tion of atbyl fluorido. 

l~s mallY polymoris::\tiun results Horo avn.ilable, tho tochniquo 

H:'S mado easier by using condi tiona in 1'1hich n.o 'Polym(:r 1m.s f')rmGd 
e. + _ 

(i.e. n.t a T)Tc). Tho ~omposition of Et30 BF4 Wo,s vory slot·; .:'l.t 

250 so th~·t the sampling could b,. dvno m'Jro n.ccurr1.toly using the: 

sta.ndard technique '.)f phi:::l.l pre!>.:\ro.tion24• 

lIith this method exp~rim~nts 120 and 122 \foro co.rriod out. 

Tho results o.ro shown cs gra.phs in Figs. 5.18. and 5.11. Ess.mtia.lly 

the result of thoso exporimonts is th ".t tho ro.to of loss of cOllduc-

+ -tivity is a. mOD.sure of tho rr>.to of d~composition of TI:t 30 BF 4 to 

ethyl fluorido ::md boron trifluoride othoro.to which o.ro non-oonduc-

ting specios. 

5.4. 2,"!¥lmary and some <lQ.~luBionE! 

In Cha.ptor 5, it is shown tht!.t tho polymorisation ~f 1,3-

dioxola.n by triotby1oxonium totrafluorobor~to in mothyleno diohlorido 

solution is vory comp1ica.ted and is oortainly n·Jt the Wlatlbiguoua 

othyl~tion which Yamashita at ono time boliovod it to be. 

Sovor~l factors aro apparent in tho roaction schome. 
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( 1) Et O+BF~ decomposes in s'.)lution 
._::.l._~_,_-,-,-_~ ____ , ________ . ~ .. __ .• 

Et O+BF- = BF Et 0 + EtF 
3 4 3 2 

Tho sn,mo ret'-ction tD.lws placo whon Et30+BF'4 is dry-distilled. 

+ -Et30 BF4 can bo formod from thosu two products if they aro kopt in 

an autoclD.VO for a month25 • Triothyloxonium sa.l ts25 with simplo 

a.nions tl.I'O also unctable. This docomposi th.n is also nno.10gous to 

20 tho tormination obsorved by Droyfuss in the polymorisn.ti011 of 

(2) Jilth¥!£..J s j?rodu~ ,-. 
+F- () 'n Et 30 B 4 + ""V'" 

Tho suggosted reaction is as follo''16: 

= EtH + Et20 + ~ 
T+ BF:; 

This reC',otion is OJlD.logous to tho r;)a.ction of 2-pho~1-1,3-

21 2'6 
dioxola.n with Et

3
0+BF'4 and, th...; reaction of methoxymothyl perchlora.te 

with 1,3-dioxolnn. 

(3) ~t9ll~ of tho monomer occurs as woll, and this can bo 

r:Jpresontod formally by tho roaction 

E~30+ +~)b = Et20 + ~Bt 
but tho mQchanism is much moro complicD.tad (soo Cho.ptor 8). 

(4) Although tho c~talyst is unsta.blo, tho activo centro for tho 

~)olymorie~.tion is sto.ble, o.s shown by tho samo r;;a.ction r~·te boing 

obta.ined n.ftor soveral polymoriso.tion-dopolymoI·is-,.tion cyolos. 

Thoso D.rO oarried out by oooling o.nd hoo.ting ros-pootivoly S'J th:).t 

if tho activo contro \1~ unstable it would cortainly bo docomposod 

o.t tho dopolymorisation tOl.lporn.turo. Also, no fluorine could be 

found in tho polymor which would be prosont if tormina~ion ooourrod 

by reaction wi th th~') Mion. 
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(5) In the prosonce of l,3-dioxolo.n. tho dOCOC'Oo£lition of Et
3
0+BF'4 

in solution is fo.s'~or thr.m in its ~bBoncCl. 

Tho o.ddi tion of 1, 3-dioxolo.n to mathy-lon", dichlorido lowors 

tho dioloctric const.:mt of ~ho modium, \lh1oh in turn incroC1.sos tho 

dogroo of ion D.ssocio.tion. This offect would incro:.'.sc tho ret.to, 

but not thcr[\t~ constan.t, of docomposi tion if this rO:::1.ction is"'!, 

unimoleculo.r ono of tho ion-po.irs, 0.9 soems to be indic3.tod by our 

ovidonco. Thus tho fo.ct that tho ro.to constant is difforont in 

methylono dichloride and ill ll'~ 1, 3-dioxolD,n in mothylone dichloride 

c~,m,ot bo duo to n. dioloctric offoct. 

(6) Tho po1y~eris~tion is ch~xnctorisGd by an induction period, ~ 

o.cceloration and finally 0. first order P3.rt, up to 957~ convorsion. 

Once tho ~ctivo centres h~vo been producud tho rOD.ction is 

totally of fir~.lt ordor. '1'his is th", conclusion fru;n tho ropolymcri-

sD,tion oxporiment. If one usos ,tho fino.1 conductivity of th~ ~',olyrilor 

solution to estimate (soo soction 5.2.8.)the concon.tro.tion of activo 

oontros, c , ono obtains valuGs of kllc whichaoro oitha sameordor a a 

of mo.gni tudo as tho k dotormin~Ht by Ilesterl:uUln5 for polYEloris~,tions 
p 

oo.to.lysod by porohloric o.oid. 

From thoso facts it cem be concluded th':l·t tho inducti':m o,ml 

aocolcro.tion pori ods arc dUG to a slow produotion of activo ountros 

and not to tho autocatalytio roaction suggested by Chil_Gcvorgyan120• 

Since tho polymoriso.tion of l,3-clioxopan also sho\'1s tho sallO 0.00010-

ration patt~rn this shows thnt a difforonco betwoon tho basicity of 

tho polymor and conouer is not solely rosponsiblo for tho induction 

and acooloration. 
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(7) Al though clioxolaniun totrn.fluoroborn.to docs ini tin.to tho 

polymeris·'ti')n of Is 3-dioxolct.n W0 have shr)wn (section 5.2.8.) tho.t 

i i; is far loss officiont tho.n tho l-othyl-llt -1, 3-dioxolanium ion. 

D.nd thorofare ini tia.tion due to tho former co.n bo ncgloc·~od. 

Boron trifl uoric1.e ethora:te p·.,lym(;rises 1 t 3-dioxoln.n '"1.t D. lot1cr 

ro.to (Tablo 5.8.) thruJ. Et
3
0+BF'4 and oo.n thorofore bo rulod. out D.S 

the cat[l.lyst. 

In fa.ct I it seems likoly tho.t BF 3Et20 roacts slot'lly with 

1,3-dioxolo.n to form tho samo activ~_ centre, l-othyl-l.!t-l,3-di.)xo-" 

(8) End-group a.nalysis h~.s prov.JQ negativo. 'l'his suggests thnt 

tho polym~r is cyclic a.nd thGrcforo th[l.t it is form:ld by tho ring-

oxpansivn mochanism. This is discusBod further in Chapt~r 10. 

lihero R :a II or Et. 

Thus, of 1,3-dioxoll:1.n in 

methylene dichlorido thoru aro sovoral obsorva.tions thn.t need oxplan£l-

tion. 

If tho roa.ction producing activo con-tras is slow, why docs the 

concontra.tion of o.ctivo centres, c , not continuo to incroo.so with o. 

time when tho cD.to.lyst is still prosent? 

How is tho dioxoloniwn totrofluorobora.te formod and why doos 

its concontra.tion not inoreaso with timo? 

+ -Uby doos Et)O BF4 decompose in solution? 
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It a!?poorod th . .,:t sol VCl.tirm of th0 vXonium ion rnoiY ox:? 1 lin 

:l.t lua.at some. of tlL ... !3"; phuno:uona. I;'). f~.ot, Cho.pt.Jr G r'.n.d 7 giva 

axparir.1ontD.l oviCl.(mo:':o tO~J!'ov,~ this hypothesis. The wholo m0ch::l.nism 

of tho p·:)lY:lluriso.tion is not discUSDOd horo boca.usc Ch:'.ptor e is 

dovot.;d to tho scheme which I propose to oX?lain ~ rOBul ta. 
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SECTImr D - CHAPTER 6 ------ --

6.1. Introduction 

The chemistry of oxonium salts waG explored by Meerwoinl. He 

showed that triethyloxonium salts with simple anions (e.g. Cl-) 

are unstable and tha.t the tetra.fluorobora.te could be decomposed by 

dry-distilla,tion. tihcn the deoomposi tion products, BF 3Et20 and 

+ -EtF, in Et20 solution, were stored in a bomb for a month, Et30 BF4 

W8.B producod in 7 ?J;(, yield. 

:ureyfuss2 ha.s shown that termina.tion ocouro in the polymerisa.tion 

of tetrabydrofuran by Et
3

0+BF'4 by reaction of tho growing ca.tion 

with the anion and this is analogous to the spontanoous decomposition 

of Et30+BF'4 in solution ~lhich wa.s reportod in Ohe:pter 5. 

The ra.te of the decom~osition of Et
3
0+BF'4 is lower in pure 

methylene dichloride th,ln in the presenoe of 1 t 3-dioxolan, and in 

Chapter 5 I suggested solvation of the tertiary oxonium ions as a 

possible explanation of this fact. Before tho solvation hypothosis 

could be tested I decided to study the decomposition of some triethyl-

oxonium salts to make sure that the different rates of deoomposition 

Here authentio. Since tho ra.te of decomposition of Et
3
0+BF'4 was 

low I decided to use higher temperatures for this study. As other 

+ -ionic species are formed by reaction of Et30 BF4 with the oyolio 

formal s (see Chapter 5) it was deoided to study the docom,?oei tion 

+ - . of Et30 BF4 1n the presence of another ether. Diethyl ether was 

ohosen because transfer of the ethyl group to the ether yields tho 
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sa.me cation. 

Since tho ra.te constant of the decomposition obtained from 

conduct3.l1.ce measurements \>Ia.s tho sDmo, wi thin experimental error, 

a.s that obtained from the r..;te of evolution of ethyl fluoride, 

only tho conductivity of tho solution tla.s used to monitor the 

decomposition in theso studios. The results obtainod arc prosonted 

hero. 

6.2. p;XI!erimental .Resul ts 

The decomposition of triethyloxonium salts in solution is 

SlOl<11 thu'()fore I usod evacuated conductivity cells which allol-led 

the use of tempera.tures higher then the boiling point of tho solvent. 

Because such temporatures wero required to produoe a measurable 

rate somo notos of the procedure are givon here. 

o For temperatures of 40 and less, thG reactionl in most Ca.SOD, 

was measured over a.bout ono quarter lifo. This meant th~.t much of 

the salt romained in solution after tho experiment. As the earlier 

experiments showed a linear dependence of log k on.:t, I made more 

than one ra,te mea.suroment on each solution. At tomperatures of 

600 and 700 (and occasionally B.t 4(
0

) distillation \1i thin tho appa-

ratus wa.s a problem. In order to make Aura th2t tho conductivity 

change was not duo to distillation tho device wa·s removed from the 

constant tomporo.turo ba.th, the contents mixed, and tho 0011ductivi ty 

mea.surements rccontinued after the coll had boen replaced in th() 

bath. Tho coll was out of the bath for less than a minute but a 

break in the first order plot was observed. However, both first 

order plots had the same slope (soe Fig. 6.1.). The conoentration 



Table 6.1. 

The Deoomposition of Et30+B14 in Methylene Diohloride Solution 

Run No. 120 

p:t
3
O+BF4J/102M 1.1 

T / 00 25 

( o)l -1 -1 ko 25 Y'A.n. om 41.1 

I. -1 -1 ko 'P$'l. em 41.1 

Kr /p!>\.-l -1 om 2.83 

~ /h-1 0.02 

ki /h-1 0.018 

Approx. No. of half lives 4 

kl from g.l.o. measurements • 

• k1 from oonduotivity measurements. 

14lA 140 

0.68 1.6 

40 60 

28.4 57 

28.6 48.2 

9.1 0.78 

0.115 1.2 

2 4 

~ is the initial oonduotivity and kt is the final 
oonduotivity. 

141B 

0.1 

70 

9.15 

10.6 

0.56 

2.17 

3 



Table 6.2. 

The Deoomposition of Et30+BF4 in 1M 1,3-Dioxo1an 

Run No. 112 122 1460 146A 142A 146B 146D 142B 

~t30+B~102M 1.33 1.0 1.0 4.2 2.3 2.0 0.8 0.54 

T / 00 25 25 25 40 40 50 60 60 

ko(250)~.~r1 om-1 50 40.4 38 168 78 23.8 

ko /,I<~I...-l om-l 50 40.4 38 246 74.1 112 29 24.04 

k b -1 -1 itt f/A.n.. om 24.6 3.7 30.2 124 25.6 39 11.6 5.5 

k1 /h-1 0.1 

k' /h-1 
1 . 0.1 0.08 0.1 0.62 0.69 2.7 4.7 3.0 

Approx. No. of half-lives 1 3.5 0.5 1.5 1.5 1.5 1.5 2 
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of the salt Has estimated by mea.suring thQ conductivity of tho 

solution at 250 before oach run. The nocossa.ry c~,libra.tion ourvo 

+ -for tho conductivity of Et 0 BF in methylene diohlorido is givon 3 4 

in Chapter 5. 

6.3. 

Tho rate oonstants from oonduotivity mCB.suremonts (lei) aro 

given in Table 6.1. Tho evolution of EtF and thu change of conduo­

tivity ''lith time have been shown in Fig. 5.18. a.nd k~"-:: ~ (for 

the rate of evolution of EtF). 

Th.· Arrhenius plot for these results is shown in Fig. 6.3., 

whilst the activation paramoters, determined from this plot, arc 

given in Ta.ble 6.6. 

In oxperimont 140 a u.v. speotrosoopy oell with eleotrodes for 

oonductivity measurements was used. There tlare no :!,)oaks in tho 

u. v. and vi si bl 0 speotra. down to 220 run taken bofore and after 

deoomposition. 

The rosults of these experimonts are given in Table 6.2. 

Fig. 6.3. shows tho Arrhenius plot and the a.otiva.tion parameters 

oaloulated from this plot are given in Tablo 6.6. Sinoe a yellow 

oolour is of ton produoed tOl'18.rds the ond of the deoomposition tho 

u.v. and visible speotra of solutions 142 and 146 l'lOrO takon before 

and a.fter tho reaotion. Beforo tho decomposition thoro \Jas no 

absorption dO\1n to 220 run, but after decomposition there was a vory 

largo peal: with a maximum a,t about 280 nm. Tho solutions wor0 too 



Table 6.3. 

The Deoomposition of Et30+BF; in the presenoe of D1et~¥1 Ether 

Run No. 135 1450 145A 143A 143B 145B 1448 1441 1440 

l!t 30+BF~ /10
2

M. 1.15 0.5 2.2 0.63 0.45 1.8 0.35 0.48 0.29 

[Et2~/M. 1.0 1.0 1.0 1.0 1.0 1.0 3.0 3.0 3.0 

T / °c 25 25 40 40 60 60 25 40 60 

"'0 (25°)~.tf1 om-
l ~ 

73.9 26.1 20.9 9.6 41.9 21.8 - 12.4 9.3 

ko "'~ 2.. -1 0m -1 36.9 21.6 75 28.1 20.2 64.9 9.6 12.4 9.15 

b -1 -1 ~;"on om 1.8 15.46 68 20.1 6.2 22.1 9.3 9.5 0.44 

k1 /h-1 0.011 - -
~ /h-1 0.016 0.015 0.16 0.2 2·5 3.0 0.02 0.27 3.8 

hf'(EtF) 15·2 * 
A.ppro%. No. ot 
halt-lives 4 0.5 0.3 0.5 2 1.5 - 0.5 3 

IEt~/10~. 0.88% 

* Attenuation • 50 % 1 

% Estimated from ht(EtF) 

! Conductivity ot met~lene dichloride solution betore 
adding diet~l ether. 



Ta.b1e 6.4. 

The Deoomposition of Et
3
0+PF6 in Met~leDe Diohloride 

Run No. 154A 158A 1548 1580 158B 

[Et30+PF~/102M 0.54 1.5 0.34 0.44 1.0 

T / 00 25 25 40 40 60 

ko(250),?u )).-1 om-l 40.3 115 28.1 100 

~ I. -1 -1 ~~. om 40.3 115 28.6 40.9 101 

~ 0sL'1 om-l 28.7 100 21.4 1.8 41.9 
I /-1 k1 h 0.0086 0.01 0.044 0.068 0.25 

Approx. No. of Half lives 0.5 0.5 4 1 
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concentrated for an accura.te figure to bo obtainablo. There we.e 

also a. peak at 41[3 nm. The colour t>las discharged all ncutra.lisa.tion. 

6.5. Bt3.~!~4. with .Di..:~~Y:_~~.~O: .in r~et~l~:.D_ichlo.r~d_~,,:olutio.n 

The rate of docomposition of Et
3
0+BF'4 in the presence of 

Hi a.nd 311 diethyl other wa·s mea.aured. Fig. 6.2. ShOllS ·the evolution 

of ethyl fluorid0 and the loss of oonductivity wHh time (run 135). 
, 

Tho ex-porimental valuos of kl and kl aro ,given in Table 6.3., and 

Fig. 6.3. and Table 6.6. shou the Arrhenius plot o.nd tho o.ctivt\tion. 

pa.rameters for the reaction. The concentrations of Et
3

0+BF'4 shotm 

in Table 6.3. s.ro only estimated because the conductivity of th . .J 

solution \>Ta.s not meD.surod beforo addition of Et
2

0 and insufficiont 

de.ta on tho eonductivi ty of Et30+BF; in the presence of ether were 

available. 

Exporimont 143 was carried out in the spectrometer 0011 whioh 

made it possible to determine the u.v. and visible spootra before 

and after deoomposition. There wa.s no a.bsorption in both oases. 

6.6. + -Et30 PF6 in CH2:'~ 

The docomposition of Et
3
0+PF6 in methylene dichloride wa.s 

mea.sured. The results aro given in Tn.ble 6.4. The Arrhenius plot 

(Fig. 6.3.) gave the a.ctivation parameters in Table 6.5. Loss 

woight ha~ been given to ki, obta.ined from l5BO beoause distillation 

within tho system W3.S diffioul t to oontrol. 

In run 158 the u.v. and Visible speotra were taken before and 

after deoomposi tion. There l'IOre no peaks in tho speotrum bofore 

deoomposition but aftorllards a noticea.blo shift of th0 base lino was 



Table 6.5. 

+ -The N.M.R. of Et30 X in Methylene Dichloride Solution 

x- Solvent Conoentration 7: valuCls (TillS • 10~ 

M Et 0+ Et20 
3 -CH % * CR I CH

2
* be (CH2) CH2 .6t'"(CH2 ) 3 3 

Et
2
0 8.85 6.62 

BF4 8.30 5.10 

BF4 0.96MEt20 0.58 8.40 5.20 +0.1 89 6.5 -0.12 

PF6 0.5 8.30 5.10 

PF6 1MEt2O 0.5 8.35 5.15 +0.05 8.85 6.45 -0.11 

SbF6 0.5 8.30 5.10 

SbF-
6 1MEt20 0.5 8.30 5.10 0 8.8 6.5 -0.12 

i triplets 

* quadruplets 

+ represents a shift to a higher value. 
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observed j ~li thout the forma:tion of a pca.k. A sma.ll amount of a 

white precipi ta.te we.s formod in 1580 and this presumably a.ccounts 

for the spectra.l cha.ngo. This procipi tate is probably phosphorus 

ponto.fluorido otherato since other complexos of PF
5 

arc solids3 

/--
(o.g. PF50,j ). 
6.7. .~t3.0+SbF6 in_ CH2012 

A 2.L~ x lO-2Ueolution of triethyloxonium hoxafluoroo.ntimonato 

in methylene dic1110ridG was docomposod a.t 6013. The ini ti().l conduo-

6 -1 -1 Ij-l -1 tivity dropped from 14·((~-L cm to 103.11' - em in 70 hours. 

-3 -1 The ra'lie constont wa.s 4.5 x 10 h • Tho solution ho.d turnecl very 

slightly yo11ow after 46 hours. The u.v. and visib10 spectra. of 

the solution 1I~fi:) takon. after tho cell had boon oponod to -the C),tmos-

phero. Thoro Hero two peaks ,one a.t 382 run and th0 other a.t 302 nm. 

Gas OhromQ.togTa.phy sh0110d that ethyl fluoride we.s present in 

the solution. Thoro was also t\ peak betwoon those of mothylene 

dichlorido B.nd ethyl fluorido which is bolieved to be diothyl ethor. 

Anothor sma.11 peak with a. rotention time of 11 mins. was not 

identified. 

6.8. !tho N.l.1.,.!t. Spectra of Trieth.y1oxonium Salj;.s in the Pro..f!..Q..l!9..~ 

of Diotpyl Ether 

The;, Arrhon.ius plots for tho decomposition of some triothyl-

oxonium salts arc ehoHn in Fig. 6.3. The slope of tho linE) 1010.S 

groater in tho presence of diothyl ethor. Solvation of the oxonium 

ion by others was thought to be responsible for this phenomenon. 

Thereforo, tho N .M.R. speotra. of throe tortia.t'y oxonium sDl. ts wore 

made in Et20 solution to sco whether the oloso proximity of the 
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Et
2

0 molocule caused a shift in tho spectrum. If the positive 

charge on tho oxonium ion is roducod a.n upfiold shift l'lould be 

expocted. 

Tho results arc shown in Table 6.5.; the t values were the B~mo 

in tHO spectro. of the some solution. There is a. slight upfiold 

shift of up to O.l-e for tho CH2-protons of tho triothyloxonium ion. 

This may be significant since it va.ries from salt til sa.l·t, but it 

WA.S nocessary to disoovor whether this wa.s purely due to a chango 

of the solvent charo.cteristics. Therefore, the N.H.R. spectra. of 

0.51': 1, 4-dioxa.n in methylene dichloride and in ln diet~l other 

solution were made. '1'he 't"va.luos for thE> protons of 1,4-dioxa.n 

(6.4) tIare net a.ffected b,Y tho addi"tion of othor. Thus, it c~,n be 

oonoluded that tho proton shift whioh is obsE>rved when diethyl eth~r 

is added to a. solution of a triethyloxonium sa.lt is duo to an 

interaction with dietbyl ether and not to a. solvent affoct. 

Discussion - . 
Cha.ptcr 7 sho~IS tha.t the assooia.tion constants for ion-pair 

+ - + - 5 -1 0 formation of Et30 DF4 and Et30 PF6 are about 10 1 mole at 0 • 

Caloulation sho1'18 tho.t s,t oonoontrations of less than lO-2roI tho 

concentration of triple ions is much less than the conoontration of 

ion-pairs. ThE>roforo it is propcsod tha.t tho ion-pair is tho 

chomical entity which docomposos. This can be illustr!\tod by tho 

following equation: 

A+B AB x 

where A represent8 l!lt
3
0+, B ropresents BF'4, PF6 or SbF'6 and X repre­

sonts tho products, namol!y BF3, PF
5 

cr SbF
5

, Et20 and EtF. 1\B is 
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IN THE PRESENCE OF DIETHYL ETHER the following soheme is postulatod: 

Et Et 

\. 't-/.0/". 
Et r~t Et 

Tho formation of tho solvated oxonium ion roduoes the effoctive 

posi ti vo ohargo on the oxonium ion. In tho tro.nsi tion sta.te tho 

other is loss strongly bound than in tho initial stato, which is 

tho solvated ion-pa.ir. This oxplo.inl3 tho posi tiveAS1 
f because 

in tho transition state thero will be more degroes of froodom of 

rotntion than in tho iniJliia.l sta.te becauso tho charge donsi ty on 

th0 oxonium ion is less thn,n in tho initial stnte. The activation 

cmergy for the decomposition is higher the.n in tho absence of ether, 

whioh shoHs tha.t more energy is r0quired to form tho tr.')J1.si tion 

st~te from tho solv<.>,tod ion-pair tha.n from tho unsolvated ono. This 

is in agroement with the proposod scheme because tho reducod positive 

charge on the oxonium ion roduces tho attraction botwoon tho cation 

and anion. 

Tho effoct of 1,3-dioxolan on tho rate of dooomposition is 

a.n in.tormodiate oa.se y since 1, 3-dioxolan donates its lone pair of 

olectrons loss efficiontly than diothyl othor. This is shown by tho 

basicity of 1,3-dioxolan, pKb • 6.81, and that of diothyl ether, 

pKb • 5.65. These values wore determined by Okada.4 using Gordy's 

method. 

Thus the rosults of these stUdies on tho deoomposition of 

triothyloxonium salts oan be explained using tho hypotheSis of 

solvation. 
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Introduction - _.r __ . ____ 

Ionic polymeriso.tion is propagated by maoromoloc'll.los end01rl0d 

with rCil.ctive ionic groups. It is thereforu essential to know 

the detailed structure> of thOSE) groups. This is difficult beotl.use 

thoso species may oxist in a. vm-io ~y of forUls; fro.; ions, ion-­

pairs, triple ions or higher ~egateB. As well as this tho ions 

may bo coordin~.ted ui th sol vent rmd/ or monomer molecules. 

Electrolytic conductance is the most direct evidonce for ·the 

existenco of ions in solution and its vn~ia.tion vlith conccmtration 

tho mOGt obvious \my of studying ionic equilibrio.. It is for these 

ro~sons th',).t this study of tho iOll o.ssoci2.tion of triothylo:r.onium 

o £'1.1 to in t:lOthylone dichloride was made. Moreover, it wo,s important 

to decide llhothor tri1;>lo ions were present in solutions uith ooncont­

-2 r"l.tions of about 10 '~and, thereforo, were contributing to the 

rate of deoomp'osition. 

Deo.rdl has determined tho assooiation oonsto.nts (K2) for ion­

pairs of triGt~lmo~~lammonium iodide in metAylono diohloride 

solution at various tcmpora.turos. 'l'he r0sul ts woro analysed by 

Shodlovsky's method and at 00
, K2 • 1.11 x 1051 mole-1 and tho 

equivalent oonduotivity o.t infinite dilution V\02> ~1a.f3 111.8.:.,.:-1 

2 -1 ( om mole t and K3 tho assooi~tion oonstant for ion-pairs to triple 

ions) was 86.9 1mole-1 • 

Apart from the fa.mous ourvos of Fuoss2 and Era-us for tho 

oondactance of tetrn,isoo.mylo.mmonium ni tra.te in 1, 4-dioxen/l1o.ter 
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solutions very fou da.tn. are o.vailo.ble on the conductance of ionic 

solutions in media. of 10\11 dieloctric constD.nt. 

Recently Justico a.nd Trcinor3 hONe reported n. study of -tho 

ion D.sr-.oeiation of totru.-n-·butyla.mmonium perehloratc:s anl~ bromides 

in various mixtures of totrahydrof'llr::m and wat~r at 25°. At 0. 

dieloctric conste.nt of 10 (CH2C12 a.t 0
0

• D ... 10.02) K2 = 2.4 x 104 

lmolo-l (CI0'4). 

~bro recontly, Ledwi th4 gives tho dissocic.tion consta.nts for 

hoxD.chloroo.utimonate so.l ts of stable orgn.nic co.tiona in mothylene 

dichlorido. 

Klo.ges5 gives some del.te for the conductanco of tertiary oxonium 

sDlts in sulphur dioxide solutions but no attempt wan made to 

£I.nalyso tho results. I],'horii>forc, tho results reported here are usc-

ful to both th~ electrochemistry a.nd -i;;lC polymer chomistry of 

oxonium ions. 

The conductivity of solutions of triothyloxonium salts was 

moo.sured in tho vacuum 0011 doscribed in Cha.ptor 2. Uothylene 

dichloride w~s dosod, as described l (Chapter 2) with on ~oouraoy of 

±0.05 ml at room temperature. 'rho volume at 00 
\'1O.S caloulated from 

tho ooefficient of vol umotric 6 expansion (0(. ... 0.00178 cm3 °C-l ). 

Small oo~octions to tho volume dUG to the uso of a va.cuum ~etem 

wero considered but wero not made bocausOBeai'dlc had shotm (for 

a simila.r colI) tha.t this correctil)n Uo.s on17 required, D,t tempera­

o 
turos above 0 , when tho tot~.1 volume of liquid wO.s less than 

30 ml. Tho minimum volumo of this 0011 W8,S 25 ml. The solution 
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concontra.tiona wore cclcul,·tod in molo 1-1 by assuming tho dcnsitios 

of tho solutions to be tho Bo.mo o.s th3.t of tho puro solven.t. Board 

hl"l.d confirmed this for soluti'Jns of motbyltriet:nylamrnonium iodide 

in mothylene dichloride. 

The specific conducti vi ty (~O of tho In.:Jthylone diohlorido '-TO.S 

-1 -1 0 
1. 309 nfl cm at O. Tho values of K in the litero.ture aro 

3 n~:l cm-l (Board1c) and 0.043 n~~l cm-1 at 250 1. 

Et
3
0+BF'4 W3.S dosod by breaking Do phi~,l into mothylen() dichloriA. 

whoroa.s Et
3
0+PF'6 was purified and woighed on EI. llhi tos Torsion 

balo.nco to :1:1'1 g beforo being transferred to tho cvnductivi ty coll 

whore it was thoroughly ovacuated. 

Due to t'I.n uncertainty in tho concontra.tion of this salt the 

reBul ts obta.inod could vnly be analysod by tho limiting lQ.\'1 of 

Ostwald. For a.na.lysls by tho Fuoss-KrD.us a.nd Shedlo-esky oqu~tions 

a.n internal sca.tter of loss tha.n O.l(/~ is r;.;.qulr0d. 

Tho results obtainod arc given in Tablo 1.1., and Fig. 1.1. 

shows the plot of /\ aga.inst c. 

The Ostwa.ld dilution function is generally beliovod to be a 

closo a.pproximation to the boha.viour of strong olectrolytes in 

solvonts of low diolectrio constant and gives tho associa.tion 

constant, Kd , in torms of the equivalent conduotivity ~, tho equivn.­

lent conductivity a.t infini to diluti,m, " 02' Mil tho ooncentration o. 

Kd • l\ 
2

• o/I\02~2 -A) (1) 
8 

Kra.us and Bray roarrMgod this ,.uation. 

1/" • 1/"02 ........ O/Kd~02)2 (2) 



Table 7.1. 

The Conductivity of Et)O+BF; in Methylene Dichloride at OoC 

Run 123 

0/10
2

11... 

Viscosity,tl' • 5.357 mP 

Dielectric Constant, D, • 10.02 

1.406 0.703 0.540 0.440 0.340 0.293 0.260 0.220 0.190 

IVS,-lcm2mole-1 2.94 3.46 3.72 4.00 4.37 4.59 4.78 5.14 5.23 

Run 126 
o/102M. 

1\ 

Run 127 

c/l0~. 

1\ 
Run 131 
b/10~. 

1\ 

Run 124 cont'd 

C/l02M. 

/\ 
Run 125 

0.675 

3.61 

1.34 

3.25 

0.580 

3.60 

0.172 

5.78 

0.473 

0.805 

3.93 

0.417 

4.22 

0.133 

6.44 

0.470 

0.315 

4.63 

0.)24 

4.66 

0.108 

0.353 

0.236 

0.268 

5.94 

0.292 

4.55 

0.088 

7.78 

0.262 

0.189 

5.61 

0.161 

7.08 

0.263 

4.75 

0.077 

8.34 

0.191 

6.02 

0.151 

6.28 

0.223 

c/102M. 0.265 0.189 0.147 0.101 0.078 0.066 0.051 0.041 0.036 0.032 

1\ 5.15 5.80 6.39 7.59 8.40 9.06 9.63 10.56 11.06 11.70 
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Thus, a plot of 1//\ a.ga.inst cl\ ohould bo a strl1.i31rt lino of slopv 

l/Kd ,1\;2 n.l'ld intercopt 1//\02· 

Tho Kraus-BrCly plot is ShOUll in Fig. 7 .2. ~,nd is quito scatterod. 

Extra.polation loa,ds to an improbably 1'Jt-I vo,luQ or"02 (<:l.pprox. 

-1 2 -1 25 It cm molo • Tho upwards conv.::;x D.o,ture of tho curve sug::,usts 

ternary or ,!?orhaps higher associry.tion. 

'l'"w typos of ternary associ,').tion 3.ro ~ossiblo: 

lill + A+--..;-~ A B+ 
2 

AB B - --'" AB2 -+ ~--.-. 

~"hcro f.B is tho ion-pair of A + and :a-. 

If both processos occur - bila.tcrtl.l tornn.ry D.ssociation. tho 

plot duo to Fuoss Q.nd Kraus2 ,9 is used (oquatiGn 5). 

For 

Thon from 

The final equation is 

/\ c~.g(c) .1'02 /K2:\: +/'·03·K3·c(l-"/1\02)/K2-~t (6) 

whore tho g(c) term is giv(;')n by tho follouing oqu~tion in which 

)-t 
S", is the theoretica.l limiting slopo of tho plot of f. agn.inst c:, 

Sf is tho thoorotical limiting slope of tho plot of tho r:-,tiono.l 

f f · t ~ activity coe ficiont ± a.ga.1ns C'V. 

r . 1J 
g(c) • exp L-2.303 Sf (C1vcI\02P~ __ 

---_. X &., •. J I l-~" (cl\I"02) :l/"'02 i( 1-//1\02 ):t 
- _.1 

For further deta.ils soo roferonce 9. 
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At 10vi concontro.tions tho equativn roducos tJ 

,..i i I~ I"~-
F\ c·· \02 K2 ·· + .:'l.03K3 c K2 

.!. 
Thorofore, o. plot of f.. c'"!. against c should be a stNtight lino of 

slope, A'03K
3
Kt with D,n intercept of /\ 02IC;'R:. If only ono proc~ss 

- + . occurs, i. o. oi thor tho formo.tion of 1.:132 or A2B - Ullllo.toral 

t · th th t . d t . I t 10. d tornary associa lon - en 0 aqua lon uc 0:' oos ar 18 use • 

(J\f+ /m)2 c/(1-1'';''02) "'1\~2 /K2 + (21\01'"03 ""1\~2)K3c(1-fY"02)/K2 (8) 

where m. 1 - (S~/A~2)(CA)t 
and f± is definod by - log f:!: .. ~ (c",l'\02r~ 

In instances of unila.toro.l triple ion formL"'.tion at low total ion 

concentra.tion (e.g. diluto solution in r\ solvent of low dioloctric 

consta.nt) tho following simplified oquo.tion ce.n. bo usod. 

, 
\ . 

"tlhere ~ is tho sum of tho limiting conductances of tho triple 

ions I).nd of the simple oa.tions. 

Although unila.toral tornD~Y aosociati0n c~not usually bo 

disti@euished fro~ biln.teru.l terno.ry a.ssociation both those plots 

t·rore mOOo in o.n a.ttompt to estimate tho ".esociation constrmts 

K2 andK
3" Tho overall curva.ture is reducod in both casos, but the 

soparate plots are still curved. This moy moan tht tho curvaturo is 

duo to experimental uncertainty. 

In ordor to a.pply theso equo.ti::>ns a vo.luc: ofA 02 is roquirod. 

+ + 1\ Thereforo, 'iDlting Et 4N a.s a. rea.sonablo ana.logue of Et30, 02 

+ - b t· 11 25° for Et30 BF4 can 0 os lmated • In ethylono dichlorido at 



rl'crn~n','i 1"10-;-.:': for :-:1:-:U+;:/: j,r-... :: 'J;L, -:tt 0° 
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/\c I 

Fig. 7·1· 
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S1 Ul mole . ,0 J 
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0 

0 

0 0 
0 

0 

,,9 0 

o 36°co 0 
r!}joo 

0 
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§ 
0 

0 

o 

_ '1'ho Unilateral Plot 

(Equation 9) 

0 

0 

0 

. 
. .-1_ 
0'5 

. 

o 

o 

The line has been dr<1vi'n to 
elVC CTO:-:l.tef'lt Hcicht to tbe 
most self-corwistcnt runs. 

o 

0 

0 

I 
1.0 

~t O+BF-J (lO-2n) 
3 4 
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o A + - . -1 2 -1 tho viscosity is 7.u5 mP and"02 for Et4N BF4 is 8l.0~~ cm~ molo • 

The viacosity of mothylono dichlorido at 00 is 5.357 m.'P,thon by 

12 A ( ... -) -1 2 -1 N"D.ldon' s ru1~ ,I \ 02 Et 30 :i3F 4 should be about 106 fl. cm molo • 
1 

7. 3.1. J_hJ2.AiJ .. 9:~().x:al.~~£:n.~r.~_FJ.2!_0_~~[ ~~f!t .. 2..::: _<?.9.,~llilJ.;..~lL 

This plot is ohmm in Fig. 7.3. From tho bost stro.ight lin'_' 

slol'O (S) of 9.059 and an intercopt (It) 0.226 are obta.inod. 

Asouming!\02 = 106 and tht •. t'''03 =/\02/3, tho follo~Til'lg voluoCl of 

K2 a.nd K3 are obtained, 

S ... 9.059 =I\03K3 /K2
t 

A l. 
It III 0.226 ·"02 /K2'';: 

Tho binary a.ssociation consto.nt, 5 -1 K2 c 2.2 x 10 Imole 

The bilatera.l toruC,'1,ry const[l.nt~ K
3 

.. 120 1molc-1 

" 1.3. 2. ~J!.l!.i].J!t.g,al2..~1l'..aY..l'J...?~c_.~:;;gD.il!!.'!i._c_ . .::_'?~")~i.i2..12.21 

}.I'ig. 7.4. shows this plot; tho slop(.'; (S) .. 5.5 and the intorcopt 

-2 (It) ... 5 x 10 for tho best straight line. 

From equation (1), It ... A~2 /K2 

But /\ 02 - 106 

If H0 assume that ~ A = ~B = 106/2 

Thon A. 0 ·"03 + ~A 

Sinoe !\ 03 ::'b2 /3 
Thorofore AO _ 88 ~l 2 

cm 

So K2·• 2.2 x 105 lmo1e-1 

Tho unilatorD.l t~rnary constant, -1 
K3 .. 190 Imo1a 

7.3.3. Tho Concentra.tion of Froe Ions ~nd Ion-P~irs --.. ...... ____ .'4-_~ ___ ._ .~_._ .... __ .. __ ._~ 

If c. is concentration of froe ions, 
1 

thon c1 .. -K/2 + (IC! + 4lCdor~/2 



~'. 7.r~. 

A _ (; "U_T'''0 .,"()~' E;t () -r 1, );,,- .;,' (' -j (': ~ •. : () 0 
/' 'V -.. ...... 3- ·6 J.. .... .11"'-2'-1-1.2 ~U ~ 

o 
o 1.0 

tt 
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For c a lO-~l a.nd Kd ... 1/K
2 

,.. 0.45 x 10-5 molo 1-1 

thon c. os 2xlO-~'1 and 
J. 

thorefore conccntrc.tion of ion-pairs - 0.98 x 10-21:. 

But from oquation (5) K
3 

.. l~\2B+']/~dJ [A+] 
JlssU&lling K

3 
.. 120, ~'l.2r~ :I 2.4 x 10-4 ~:I 

-2 This shows thD.t at 10 M tho most abundrult spocies are ion-pairs. 

+ -Since th8 mothod of dosin.g Et30 BF 4 lod to uncorta.intiOB in 

tho concentra.tion of solutions a. similo.r sn.]. t ,tas roquirod for 

o.ccura.tc conducto.nco studios. Et30+PF'6 is less rOD.dily hydrolysed 

a.nd can bCl dosed directly to tho call. OVor tho time period of the; 

experiment th(. amount of docomposi tien ~.t 0
0

, is nogligiblo. 

Thoroforo, it i13 n. suitable tertiary oxonium salt for this ;;;tudy. 

The rosalts of my dilution exp~riments with Et30i-PF'6 aro 

givon in TO-ble 1.2. and tho plot of A O{;:J.inst c is shOlm in Fig. 

7.5. In run 166 tho solution wO.s dilutod and ruooncontrD-tod o.nd 

tho rosults obtained from both processes were consistent. 

Theso data on the conductivity of Et30+PF6 in mothylono dichlo­

ride at 00 for c < 1.3 x 10-~ woro analysod in throe W:l.YO. 

7.4.1. Tho Fu,?-sS-Kraus13 (yK) Birikx Plot (ft2!.o.(.l.3 x 10-3r.11 
s 

The oquation.used i~: 

The derivation of this equation is given in datail by Harnod and 

Owen
14

, so it is not d08cribod horo. 

The paramotors in tho oquation aru as follows: 
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F(Z) = 1- Z[l-Zf _ Z ••••• _Jj-'~~_ 
Va.luos of F(Z) h~v:.: boon cD.lcul",.tod ::md tabulatod, by }:l'uoss13b , 

from tho oqu[l,tLm F(Z) = 4/3 cos
2 

1/3 cos-l(-3(3'~)t/2) 

whero Z = 3/, "'c)}~02)-3/2. y±, the moan molm- activity cooffi-

ciont of free ions? is givon by 

i-log y± = -Sf (0{ c)'~ whoro o(i8 tho (logroo of dissociation. 

From equation (10) 0. plot of F(Z)/" ag:l,illst 

stro.ight 1 ino of It = 1!"02 and S = K2/1\~2. Such 0. plot for 

is shmin in Fig. 1.6. Tho valuo of "02 is thvn usod tv calculC'.t~ .. 
(1.. 

moro .';:l,cctU':J.tc value of F(Z) and y±. Tho roito~ivo proceduro is 
i-

repoated untill\02 is constrmt. K2 is thon obta.inod fl'om tho bost 

vn.luos of F(Z), y± andA
o2

• 'rablc 1.2. givos tho vn.luos ob+.ainocl 

from "'lihis procodure. ~ is the distanco botuoon tho :?oil1t cho.r,gcs 

calculntod from tho :B'uoss15 oquo.tion, which is o. modifica.tion <>f 

h B . 22 t· Th t . h d to· Jorrum oqua ),011. a lB D... = r+ + r w oro r an r (l,ra ,lI1 _ + _ 

the ro,dii of the cation and o.nion rospoctivoly. 

1/K2 = (3000/41/a3N) expo (_o2/nDkT) 

whero N is Avogadros Number 

k is Boltzmann's constant 

D is Dioloctric constant 

e is eloctronic chargo 

(11) 

Tho shortcomings 

and by p~1.11. 

16 of this equation hn.ve boon discussed by Szw:.1.rc 

7.4.2. !ae FU0I!~s¥0::t.Limitillg Law o.nd.,tha Fuoss-~~1 o91!ili~ 

(for c< 1.6 x 10-414) 

If"'i ~ is tho hypothetico.l molar cOnd1.1otanoa of CI.n oloctrolyto 
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if it woro OQ.p1o~~ diBsooiatod into ions ~t a ooncontration 

a(o and d is the ion sizo parameter identified as the olosest 

distalloe of a.pproaoh of free ions (assooia.tion distanoo) then: 

A/Ai - «-

Ai • F(Ao2 ' z,~ 0, d) 

At ea.oh ooncentra.tion, if 1\02 and d are fixed 0<. oan bo itora.tively 

oaloulatod (z is the oharge number of the ions). 

For oaoh point K2 is oaloulated from tho oquation 

K2 .. (1 _ 0(.)/ ~2 oy2 

y is the me~ aotivity ooeffioient of free ions (tho activity of 

ion-pairs is assumed to be unity). For the Limiting Law (L.L.) 

oomputation y is given by tho Debyo- H~okol19 limiting la.w. 

2~ log y • - Az I" 

whore A • (21rN/lOOO)i- e3/2.30~')/1.(Mf4 
I = Ionio strength. iro. z~ • 1. 1-

For tho Fuoss-Hsia equation 20(FH) the Debyo-.Buckel oquation is 

usea, where A and B depend on the solvent. 

- log y. Az3o*/(l + BZdo*> 

whore B • (87r le2/1OOOk)*(M)1 

The average value of K2 is then used with the samo values ofA 02 

and d (F.H. only) to oa.loula.te A al for each point (equation 12). o c 

The standard doviation, (A obs - I\Oalo)/n, is obtained. Tho 

value of d is then inoreasod and the oyola repeated. Now anothor 

valuo of A 02 is ted to the oomputer and the program repeatod. 

Tho best fit is that when the standard deviation is minimiso4. 

" -"a2 - S 0* + Eo lnc + Jlc - J 2!'J.. (12) 



Table 1.2. 

The Equivalent Oonductivity_~f Et30+PF6 in Methylene Dichloride at oOe 

1\ 8 -1 2 -1 Parameters from Fuoss-Kraus computation:- 02. 11 .53s.l om mole 

K2 • 1.260 x 105 lmole-l 

a, · 4.6557 i 

i These points were analysed by Fuoss-Hsia (F.H.) and Limiting 
Law (L.L.) equations. 

* These points were rejeoted after initial oomputation by F.H. 
and L.L. 

Run 162 

o/lolp,rr 0.5838 0.3887 0.2775 0.1882 0.1423% 0.09611% 

1\ 15.360 18.134 20.831 24.416 27.297 31.809 

10~Ay! /F(Z) 5.6986 4.7231 4.0268 3.3320 2.8922 2.3548 -
10~F(Z)~ 6.0271 5.1532 4.5167 3.8805 3.4868 3.00975 
Run 160 

o/10~ 0.3658 0.1829 0.09237 0.06579 

/\ 19.214 25.450 33.448 38.074 

10~Ayi /F(Z) 1.9786 
--

10~F(Z)/1\ - 2.5253 

oontinued ••• 



Table 1.2. oont'd 

Run 1~2 

c/10~ 0.2063 0.1031 0.05157 0.028031* 0.018621* 

1\ 23.865 32.101 42.538 52.765 60.344 

10~f\y'; /F(Z) 3·5290 1.2347 0.96027 -
10~F(Z)/" 3.9621

5 1.8394 1.6147 

Run 166 (by dilution) 

c/10~ 0.1604% 0.089081 0.05~271 0.042201 0.02970% 

1\ 26.200 33.047 39.111 43.742 49.276 

10~'Ay! /F(Z) 3.0914 2.2788 1.7925 1.5°83 1.2229 

10~F(Z)/1\ 3.6253 2.89S5 2.4638 2.2108 1.9699 

Run 166 (by oonoentration) 

o/10~ 0.03463% 0.03320% 0.0479:} 0.07197% 0.1838 

A 46.500 47.223 41.718 36.140 25.794 

103o.Ay'; /F(Z) 1.3337 1.3018 1.6208
5 2.0452 -

102F(Z)/A 2.0844 2.0534 2.3147 2.6584 

Run 16~ 

'V'10~ 1.051 0.8180 0.6118 0.)678 0.2455 0.1498% 

A 12.145 13.479 15.155 18.687 22.068 26.935 

10~A,yi /F(Z} 7.4044 6.6567 5.8458 4.6293 3.8189 2.9869 

103.r(Z)/ " 7.4985 6.8054 6.1000 5.0053 4.2723 3.5302 

oontinued ••• 



Table 7.2. oont'd 

Run 16l 

O/103r4 0.05344% 0.02137% 0.01374% 0.008365% 

/\ 40.923 56.107 64.170 73.186 

10~Ay! /F(Z) 1.7548 1.0193 0.7673 -
103r(Z)#\ 2.3558 1.7351 1.52305 
Run 16~ 

C/10~ 10.874 9.060 7.909 6.795 5.436 3.883 2.718 

A 5.379 5.822 5.955 6.309 6.748 7.532 8.529 

Run 16~ oont'd 

0/10 3M 2.250 1.931 1. 1.504 1.3550 1.0761 

" 9.136 8.640 10.250 10.695 11.0945 
12.166 

10~; /F(Z) 8.3068 

10~F(Z)/" 8.1360 

Run 161 

o/10~! 7.926
5 

" 6.068 

Run 161 

cilo3M k O 19.854 9.906 

1\ 4.776 5.7485 
Run 168 

°cr'10~ 38.956 14.478 

" 4.5987 5.2621 



Table 7. 3. 

Quantities Derived from the Conduotanoe Equations 

Equation A02 10-51: v.obs-t'Oalo)/ No. of points 2 oomputed -1 2 -1 -1 -1 2 -1 A om. mole lmole S2.. om mole 

1 F.K. 118.53 1.260 29 

2 L.L. 118.53 1.251 0.161 19 

3 118.53 1.269 * 16 0.355 

4 111.00 1.227 * 16 0.311 

5 F.B. 118.53 1.220 0.141 19 

6 118.53 1.237 * 16 0.319 

1 111.00 1.195 0.362 * 16 

8 116.00 1.168 * 0.363 16 

* The pointa marked by * in Table 7.2. were omitted in 
the other oyolea of the programme. 
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Where L.L. is equation (12) with only tho S term and c replaoed by 

~c, F.H. is equo.tion (12) with c ropl~ced byo<:.o, 8 is tho slopo 

of tho Limiting law, E dopends on z, ;\02 ruld tho solv~nt and J 1 and 
c 

J 2 are functions of d. For a. detailod account of tho pro~eduro tho 

reader is referred tJ the papers by Fernandoz-Prini 21, Fuoss and 
20 .t 18 

Hsia and by P~C) • 

Tho valuos ofl\02 and K2 obtained by these prooesses arc 

givon in Tablo 1.3. Tho L.L. givesA 02 • 118.53 .Q. -1 cm2 molo-l 

and K2 • 1.269 x 105 Imole-l Whilst tho F.B. equation givos the 

'- A i'l -1 2 -1 botter fit to tho da.ta witrv'02 - l11.00~ cm mole and 

5 -1 K2 • 1~195 x 10 lmole and this oorrosponds to an a.ssooiation 

distanoe, d, of 26.71 

Tho Limiting Law (L.L.) oa.loulation is no different in prin-

ciplo from tho F.K. caloulation since both are ba.sed on 

/\. Q<~02 -',;1\ (o(.O)~ Linos 1, 2, and 3 (Tablo 7.3.) show ~hat 
tho results from both oqu~tion8 agreo. The Blight differonoes are 

due to the computation of loss points in tho caso of L.L. Up to 

lO-~ thero is no evidenoo of ternary associntion. Certainly, 

tornary association bocomos moro likely a.t lO-2M, but thol\,o plot 

shows thnt tho/\ is still decrea.sing with inoreasing ooncontration 

+ -of Et30 PF6• 80 it is likely th'J.t tornary a.ssociation is negligible 

at these oonoentra.tions. A bilatoral temar" plot was modo but 

it wa.s a ourve. 

1.5. T~e Effoct of Dietnyl ether on tho Conductivity of Et30+PF6 

in Mgthyleno Diohlorido solutions 

The solva.tion of oxonium ions by othor moleoulos is a. hypothosis 



Table 7.4. 

The Conductivity of Et30+PF6/CH2C12 in the Presence of Diet~l Ether 

a.t 00 

Run 169 2.315 x 10-5 moles Et30+PF'6 t mole ra.tio Et20:Et30+PF6-2.02:1 

104C/M 0.8638 1.241 1.615 2.395 

/ -1 2 -1 A Sl- cm mole 33.194 29.194 26.048 22.639 

10~'\Y! /F(Z)/sr1om-
1 2.2011

5 
2.6680

5 3.1163 3.7217 -
102F(Z)P\ /~m-2m01e 2.8469 3.2438 3.6151 4.1288 

Run 169 oont' d 

I'b 14.942 12.397 

104c/!JI 3.522 5.323 6.843 9.581 

/ -1 2 -1 " .A. cm mole .. ~ 18.432 16.446 14.920 
- '" 

10~Ay~ /F(Z)/ se1
om-1 4.4774 5.4057 6.0516 

102F(z)Al ALom-2 mole 4.7670 5.5711 6.0936
5 

Run 171 3.357 x 10-5 moles Et3O+PF6. Et20 : PF6 • 1.56 : 1 

I\b 12.658 

104() 2.627 3.938 5.323 7.667 9.832 

1\ 21.538 18.238 16.166 13.943 12.602 

10~Ay; /F(Z) 3.9076 4.7259 5.4347 6.3914 7.1092 -
10~F(Z)/" 4.3542 5.0972 5.7075 6.5508 7.1924 

Run 112 i'.638 x 10-5 moles Et30+PF'6. Et20 : Et30+PF6 • 1.01 : 1 

16.813 

0.4735 0.6552 1.060 1.542 4.847 

41.605 37.073 30.915 26.686 22.278 16.804 

oontinued ••• 



~e._.l~ 4.!.. oont.!.,E; 

Run 172 cont'd 

10~oAy! /F(Z) 1.5875 1.9105 2.4774 3.0053 3.7616 5.2116 -
10~F(Z)/1\ 2.3166 2.5888 3.0829 3.5497 4.2165 5.5041 

Run 113 0.117 x 10-5 moles Et30+PF6 , Et20 : Et30+PF6 • 2.2 : 1 

23.486 

0.2251 0.3215 0.4098 0.5649 0.8779 1.351 2.132 

51.533 46.345 43.680 38.998 33.079 28.047 23.443 

10~AY~ /F(Z) 0.9752 1.2235 1.2235 1.1324 2.2021 2.7699 3.46795 
102F(~)/.'\. 1.8816 7.0834 2.2028 2.4564 2.8766 3.3669 3.9922 

-5 + - + -Run 111 1.194 x 10 moles Et30 PF6, Et20 : Et30 PF6 - 4.4 : 1 

1040 0.4297 0.6174 0.9193 1.462 3.551 

/\ 41.122 36.492 31.872 26.580 18.958 

10A)\y; /F(Z) 1.4146 1.7516 2.1971 2.7862 4.3281 -
10~F(Z)/,I\ 2.3341 2.6156 2.9742 3.5356 4.8522 

-5 + - + -Run 115 0.173 x 10 moles Et30 PF6, Et20 : Et30 PF6 • 9.25 : 1 

I\b 39.275 

1050 0.416 0.5584 0.8016 1.336 2.122 5.153 

" 71.649 69.251 64.583 57.927 51.838 39.200 

104dt\y~ /F(Z) 2.9158 3.4829 4.5862 6.6713 9.2119 15.864 

10~(Z)/I\..- 1.3114 1.4164 1.5141 1.6794 1.8664 2.4380 

I\b • Equivalent oonductivity before addition of Et20 



Table 1.5. 

Parameters trom the Fuoss-ICraus An sis of the C oncluoti vi t of 
6 in the Presenoe of Dietby1 Ether 

Run No. Ratio of Et20 : + -
1\02 10-5x2 Et30 PF6 ~ 

-1 2 -1 1mo1e-1 0 J\.. om mole A 

0 118.531 1.260 4.656 

172 1.01 : 1 110.208 1.070 4.732 

171 1.56 : 1 110.125 1.072 4.731 

169 2.02 · 1 101.423 0.869 4.834 • 

173 2.2 : 1 98.666 0.8292 4.858 

174 4.4 • 1 91.349 0.7248 4.927 · 
175 9.25 : 1 88.422 0.6404 4.993 
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tha.t needs confirming. In Ohapter 6 tho N.H.R. study indicated 

that solvation of oxonium ions occurs, whilst tho results of tho 

polymerisa.tion studios (Chaptors 5 and 8) and tho decomposition 

studios (Cha.pter 6) can be explainod by this nypothosis. Therefore, 

I deoidod to test the theory by a oo~ct,imotrio teohniquo. 

First of all we ~ttomptod to titrate Et
3
0+PF6 by introducing 

diotbyl ether into a solution of it in mothyleno dichloride and 

mea.suring the changes in conductivity. Unfortunatoly the results 

th~t we obtained wore inconsistent boca.uso tho tochniquo W3S unsatis-

fa.ctory. Thorefore we decidod to add small quantitios of other, in 

phials, and thon to diluto the solution, as beforo, and measure K.. 
In these experimonts, tho conductivity of the Et30+PF6 solution 

wa.s mea.surod, the phial of other brokon, and tho dilution continued 

(tho ethe» phial was oovered with the solution when it woa brokon 

so tha.t the diethyl ether did not romain in the vapour phase). The 

Fuoss-~raus equation (10) was used to compute!b2 and 1(2 from tho 

data. In the oalcula.tions, it was assumed that tho quantity of ether 

(1.4 - 0.05 x 10-~) did not affect tho visoosity, the diolectric 

constant or the denSity of the solution. If tho ether had affected 

these parametors the Fuoss-Kraus plots wculd havo been curved (the 

concontra.tion ot ether varies through out each dilution) and they 

woro not. + -The oonoentra.tion of Et30 PF6 was of tho same order of 

magnitude as tha.t of the dietbyl othor, so that corrections would '-
have been required for the visoosity of solutions OVen in tho 

dilution experiments without diotbyl ether. 

Tho values obtained trom tho Fuoes-Kraus computa.tion are in 
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Table 7.5. In FiB- 7.T.1\02 and K2 are plotted with respoct to tho 

ratio of diot~l othor to salt. This shows that )\02 appears to SO 

t t t t a.bout 88 1'\ -1 cm2 mol",-l h K h o an a,symp 0 0 r). .>'- .. w eroll.8 2 reo.o es 

6 x 104 lmole-l • 

These results are considered to be BOod eVidonoe for tho 

solvation of oxonium ions. Tho a, v3luo is only inor~aaed by 

0.34X in the presono~ of dietb71 ethor so th~t it suggests that 

ether-soparated ion-pairs are not formed. This is in agreomont with 

the decomposition b7Pothosis (Cha.pter 6). On tho other hand tho 

ethyl group m~ be oxohanging rapidly with tho Et20 molooule so 

th3.t those measurements onnnot distinguish betwoen tho solvent 

soparated ion-pair and a solvated oxonium ion-pair. Thoroforo 

theso experiments should be repeated using a loss basio other. 

In ordor to extond the measurements to highor conoontrati0ns 

of Et20, an attempt wa,s made to measure the oonduotivity of 

+ -Et30 PF 6 in 1M Et20 but this was unsuooossful bool",USO of unstablo 

rosistanoe roadings. 

+ -It was hoped to oxtond this stu~ to Et30 SbF6 booause it is 

+ -moro sta.ble and appears to be a bottor alkylating agent than Et30 BF 4. 

However, ~he dilutions whioh have boon made gave inconsistent values 

forl\02 and K2• The reason for this 18 not known but those inoonsis­

tenoies m~ be due to ad80rption of tho salt on to tho glass or to 

Do reBCtion with impurities. It is hopod to olarit.1 this in the -. 
near future. 
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SECTION B - CHAPTER 8 

The Mechanism of the Polymerisation of Cyclio Formals by 

Triet4yloxonium Salts 

8.1. The Polymerisation of 1.3-Dioxolan by Et
3
0+BF'4 (This work) 

In Chapter 5 we have seen that the polymerisation of 1,3-

+ - . dioxolan by Et30 BF4 is oharacter1sed by a slow production of active 

oentres (A) whose oonoentration c is very muoh less than the a 
+ -initial oonoentration of Et30 BF4• The oonoentration of stable 

active centres builds up to a stea~ value as shown by the last part 

of the polymerisation and the repolymerisations being of first order 

with respeot to monomer. Any explanation of these observations 

must also take into account the results on the deoomposition of 

Et 30+BF'4 (Chapters 5 and 6). In partioular, we reoall that super­

imposed upon the polymerisation is the formation of ethane which 

only occurs at the start of the reaction and then stops and the 

produotion of ethyl fluoride whioh continues throughout the po~eri-

sat ion and is acoompanied by a reduotion in the specifio conduo-

tivity. The reaction soheme proposed to acoount for our results is 

shown in Fig. 8.1. 

(1) Fast attack of free oations on monomer. 

In the sampling experiments in whioh ethane was observed 

(Chapter 5), the monomer was added to a solution of Et30+BF4 in 

methylene diohloride. The methylene diohloride solution had a tree 

ion oonoentration of about 2 x lO-~ and the oonoentration ot 

dioxoleniWD tetratluoroborate (oaloulated from the amount of ethane 

formed) was ot the lIame order ot magnitude and did not inorease 
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wi th time. Therefore, it is proposed tha.t the dioxolenium f.on is 

produced very ra.pidly by reaction of l,3-dioxole,n with the free 
( 

trietbyloxonium ions present i~ia.lly (reaction 1). 

(3) Fast solva.tion of ion-pairs by monomer 

Our explana.tion of why reaction (1) does not continue is that the 

remaining ion-pairs become solv3.tad by 1,3-dioxola.n (reo.ction 3) form-

ing a relatively stable species and since solvation of anions by 

1 ethers has not been observed , an equilibrium (5) is set up between 

the solvated ion-pairs, the solvated trietbyloxonium ions, a~d the 

unsolvated anions. 

(4) Slow decomposition of (e) competing with route (5), (6), (1) 

and (8). 

(6) Slow eth.vlation of monomer tlhich determines the rate of forma... 

tion of active species (A). 

Chapter 1 shows that at the releva~t salt concentrations the 

concentration of ion-pairs is much greater than the conoentra.tion of 

free ions; therefore the solvated ion-pair (e) cannot rearrange 

directly to A, otherwiso c would continue to increase throughout a 

the polymerisation and after the po~erisation had reached equilib-

rium. Thereforo c would not reach a steady value and the polymeri­a 

sation would not beoome of first order with respect of monomer • 
. " 

On the other h:md, the free ion (B) OM rea;rra~e to form (A) 

which is also involved in an ion-pair, free ion equilibrium. The 

ether-exohange (1) ma.y or ma.y not be slow relative to (6) but 

is more likely to be fast. Therefore, if equilibrium (5) is main-

tained efficiently the yield of A depends on the relative rates of 

(4) and (6). The rate of step (6), R6, must be low, because 
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polymerisation starts only when 8. large enough oonoentration of A 

has been produoed. This is our interpretation of the induotion 

period. 

Sinoe the rate constant for the polymerisation of 1.3-dioxolan 

at loW total ion concentration is the same as that at high total ion 

oonoentration and sinoe the assooia.tion oonstant for tertiar,y 

oxonium ions is about 105 lmole-l (Chapter 1), the propagation rate 

oonstant for ion-pairs must be approximately the same as that for 

tree ions; in other words, the solYBted oxonium ion propagatos at 

about the same rate regardless of whether it is paired or free. 

The so heme proposed (Fig. 8.1.) is not satisfactory in one 

respect beoause it does not explain w~ the polymerisation beoomes 

of first order and why the successive repolymerisationa are totally 

of first order with the same rate constant. If equilibrium (5) 

is maintained efficiently one would expeot a slow build up of A 

during the period after polymeri8ation had oeased and before de­

polymer1sation beoause (C) 1s still present 1n tho solution. There-

fore sinoe we observed the same first order rate oonstant for a 

repolymerisation (105A) whioh was made Bome 20 hours af1er the first 

polymerisation had reached equilibrium we oonclude tha.t the activo 

oentres (A) are stable and that some prooess prevents the equilib-
.. 

rium (5) being maintained. A pos8ible explanation of the latter is 

that when polymer (whioh is 1Il0re basic2 thaD the monolller) progre ... 

sively replaces 1,)-d1oxolan in speoies (B) and (e) the equilibrium 

oonstant ot (5) progressively oha.Dps in favour ot ion-pairs as the 

DP and/or the oonoentration of the po17lll8r inoreases. Coupled with 
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this is the fact that when (0) is solvated by polymer the rate of 

step (4) m~ be greater. 

When Et
3
0+SbF6 is used as the oatalyst, step (4) does not 

oocur, so that the conoentration ot (B) is muoh greater in this 

case. Thorefore, R6 will be oorrespondingly inoreased. Sinoo 

this polymerisation also beoomes of first order with respeot to 

monomer it means that all the Et)O+SbF6 produces active oontres (A). 

/ + -In fact, the kl 0 value for po~erisation ~ Et)O SbF6 is of the 

same order of magnitude aa that for the polymerisation of 1,3-

dioxolan by H0104, where 0 is the initial oonoentration of oatalyst. 

Sinoe Et)0+SbF6 polymerises l,3-dioxolan at a greater rate than 

Et
3
0+BF4 and without the formation of ethane, I believe tho active 

contre in tho polymerisation of oyolio formals by triot~loxonium 

aalta to be the l-et~l-li+-l,3-diOXOlaDium ion. Dioxolenium 

tetrafluoroborate does oatalyse the polymerisation of 1.3-dioxolan. 

but for the reasons disoussed 1n Cbapter 5 we deoided that the 

produotion of polymer from this prooess is n~ligible in this aystom. 

Onoe the active oentre A is produoed, pro~tion is by the 

rine-expansion meohanism whioh is disoussed in detail in Ohapters 

5 and 10. It should be noted here too that the low UP's siBDit.r 
~. 

extensive transfer reactions and tha,t in our view these are at least 

partly due to the mobility of the Et + over all tho olr;1gen atOMS in 

the system 

8.2. The work of Medvedev's sohool 

These authors) observed that a solution of Bt)O+SbC16 in 

etbl'l ohloride absorbs at 272 DIl, that a rMO"ioD 1Ib;t1l1'e ooat&1niDC 
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+ - 8 1 t 3-dioxolan and Bt30 SbC16 absorbs a.t 22 nm, and thll.t 8. solution 

+ -of n-butylvinrl ether and Et30 SbC16 absorbs at 231 nm. Sinoe 

they ~ssumed that the absorptions of the po1ymorising D-butylv1~l 

ethor is due to tho -CH2-GH-O-o 4H9 ion and that tho absorption 

of Et
3
0+SbC16 at 272 nm is due to the Et

3
0+ ion, th87 oonoluded 

that tho a.bsorption at 228nm WhiDhth87 found for tile polymerisll.tion 

+ -of 1,3-diox01an by Et30 SbC16 is due to the oarboltonium ion 

RO(CH2)20~H2 whioh is olosoly related to the oarboltonium ion 

derived L ,m the a.llqlvinyl other. However, thore is no independont 

evidenoe that trialkyloxonium ions a.bsorb near 210 nm or that 

carboxonium ion8 absorb near 230 nm; in tact I havo shown that 

+:- +- +-Et30 BF 4' Et30 PF6 and Et30 SbF6 do not absorb above 220 nm. On 

the other hud, penozek4 has shon tha.t SbC1
5 

and SbC16 absorb at 

270-272 nm in methTlene diohloride and Et~bC14 absorbs at som~ 
what lower wavelengths. Therefore, the mechanism of LyudviS 

at al. i8 enr.ely unoonvinoiDS. 

In ~ oase, the active oentre 08DDot be the oarboltonium ion 

whioh Okada5 and Weiohert6 8ussested, independently, tor the pol,mari­

sation of 1,3-dioltolaD, by analogy with Kern and Jaack's1 meohanism 

tor the polymerisation of trioxan, because it does not explain the 

formation ot maorooyolio rinse. Polymers tree trom end-groups OaD 

only be produoed by this meohanism it an etfecient en&..to-end riDS 

olosure ooours. This is highly unlikely aDd only possible when 

initiation is by protonio acids where the po~or has a hydro~l 

,roup at one end. Por initiation b7 triallqloltonium ions the 

terminal group would be all alko~ sroup so tbat JI&01fOO70110 ft. 
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oould only be formed by a bac~biting meChanism7,8. A prooess 

like this implies tha.t there should be & number of linear fragments 

oorrosponding to the number of ca.talyst molecules. OarefUl examin-

ation of the reaction mixtures haa shown that if such fragments are 

present, their ooncentration is muoh lower than that of the initiator 

(see Oha.pter 5). 

As well as this, Ja.aoks9 has shown that metho~.t~l perohlor&te 

reacts with 1,3-dioxolan to give dimetnyl ether and dioxolenium 

perohlorato. 

CH3OCH2CI0
4 

+ ~ 

Since the organic part of metho~et~l perohlorate is a ve-q 

olose analogue to the oarboxon1um ion formed from 1,3-dioxolan, 

propagation by this ion is effectively ruled out, because the 

dioxolenium ion is an ineffioient initia.tor. 

Westermann2 showed tha.t antimo~entaoblorid. pol1-eriae8 

1,3-dioxolan rapidly without an acoeleration period and tho reaction 

10 did not reach equilibrium. Dreyf'uss has shown that the polyaeri-

+ -sation of tetr~dro:turan by Et30 SbCl6 is oharacterised by a 

transfer to aai.oD· whioh is analogous to the dOOOmp08i tioD of 

~ -
Et

3
0 BF4- SbC15 ia formed whioh can initiate the polymeriaation 

of tetr~droturan but les8 effioiently than the oxonium ion. 

+ -Therefore, in solution Et)O SbelS most probablr decomposes in a 

ma.nner similar to Et)O+B'4 s 

Et)0+Sb016 ) EtCl + SbC1
5 

+ It 20 

Sinoe SbC15 oan polJaerise 1,)-dioxol8D without iD4uotioD 
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period or acoe1eration2, the true initiator in Medvedev's system is 

most likely SbCl5, and the roported absenoe of an acoeleration is 

not due to the absonoe of water, as they h~vo susgGsted. This 

2 theory oould be tested by end-group analysis beoause Westermann 

tOWld absorptions due to ohlorine, oarbo~l and ~droql groups in 

the infrared speotra of polymers made from SbC1
5

, but Wlf'ortWla.tely 

Lyudvig has not oarried out suoh studies on her polymers. 

8.3. The work ot Yamashita's school 

Yao~shitall at one time believed that Et
3
0+B'4 initiated the 

polymerisation of l,3-dioxolan by a simple transfer of the Et group 

to l,3-dioxolan, a process analcscus to the initiaticn of' tetra,.. 

hydrof'uran polymerisation. 

C) + -+ Et30 BF 4 - ...... )~' E'<) + Et20 

g-
4 

He oonsidered the propagation to be similar to the polymer i-

sation of' THF, whioh is a rins-opening polymerisation with a tertiar,r 

The only evidence presented for this assumption was that 

+: -EtOOH2CH2OCH2OCH3 was f'ormed when a reaction mixturo of Et30 BJ' 4 

aDd l,)-dioxolan was killed with sodium methoxide. Aotually, this 

produot oould be formed from both the ions ~Et and 

EtOOH2CH2OCH2~' aDd therefore this does not dittertutiate between 

the riDS-expansion mechanism and a rina-oPeDiDB polJaariaation. 
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. 12 d 1 . + -Yamash1ta also reacte ,3-dioxepan w1th Et30 BF4 under 

conditions suoh that no polymer was formed and killed the resulting 

mixture with sodium methoxide. He identified (by g.l.c.) tetra-

hy"drofuran, C2H50(CH2) 4ooH3' and C2H50(C~) 4oo2H5 but the expeoted 

product C2H50(CH2)4OCH2OCH3 was not present. Therefore he conoluded 

tha.t these oompounds were produced by degradation of small amounts of 

polymer. 
2 However, Hestermann showed that tetrabydrofuran is & 

very perSistent impurit7 in 1,3-dioxepan, 80 that ~ucte tbat 

Yamashita. identified probably oome from the ion, E and the 

C2~O(OH2)4ooH2OCH3 is not formed because initiation probably occurs 

through the l-ethyl tetra.hydroturanium ion. 

Yamashita13 has polymerised l,3,6-trioxocan by Et30+BJ4 and 

showed that the reaction is similar to the polymerisation of other 

cyclio forma.ls, but some oha.in breaking roaction also seems to 

oocur. 

8.4. Oonclusion 

In conclusion, the polymerisation of oyolio formals by 

trietbyloxonium salts has been studied b,y other workers, who 

failed to recogniso that the catalysts were ineffioient. Th~ 

are ineffioient beoause of a oompetitive decomposition roaction 

which ocours through the ion-pair and the rate ot this reacti~ is 

enhanced in the presenoe of an ether (Chapter 6). I have proposed 

the soheme given in Fig. 8.1., in whioh the solvated oxonium ion 

plqs an essential part, to explain the reaulta of the po17llleri-

sation and deoomposition experiments. 
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SECTIOlf C 

The Mechanism of the Polymerisation of OYo110 Formals by ~ydrous 

Perchloric Acid 

Introduction 

Westermann and Plesoh proposed that tho equilibrium polymer i­

sation of 1,3-dioxolanl and 1,3-dioxepan2 by ~drous perohloric 

acid occurred through a 4-centred tr~ition state to produce oyolio 

polymer. ~ 0 
J.~ 

,:;.\ ' 
V· CtO+ 

, H 

~c.,~ 
l-o;--O--

< 

The maohanism proposed was a ring-expansion in whioh the ring 

never opened. This mechanism accounts simply for the olenness of 

the monomer-polymer equilibrium ~nd for the high yields of oyolio 

dimer2 which ore obtain~ble from l,)-dioxan and 1,3-dioxopnn. 

Al though Ja...'\Cks3 agrees th~t the polymers ::t·ro oyolio, he has 

questioned the ring-expunsion meohanism 3nd proposed his own mooh-

nism for tho production of macrooyolio rings. He oonsiders the 
, 

polymoriso.tion to bo~ring opol').ing with bo.ok-biting, whioh is illu ... 
''\'. 

trated in Fig. 0.1. 

If this mechanism is oorrect, each 80104 moleoule must produce 

a. linelU' tra.gment with a. termina.l OH group. Ja....'\Cks· expla.na.tion is 

ba.sed on ~is meoh~ism for the produotion of oyolio polymers trom 

trioxan4 ~d on experiments3 in which tho polymerisation WDS killed 

with sodium ethoxido (see Fig. 0.2.). 

By this method Jaa.oks olaims to be noble to differentiate 

between the tertiar,r oxonium ion (2, Fig. e.l.) ~d the seooDd~ 

oxonium ion (1, Fig. e.l.) beoause on reaction with sodium ethoxide 
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(1) :;roduoes ethMol by proton a.bstr3.otion and (2) produces a. 

polymer with a. termin~l -OEt group. The eth~nol from the former 

rea.ction w~s removed from the polymer by repe~ted dist111o.tion ot 

a.n'J.zeotrope of water o.nd ethanol trom a. solution of the polymer. 

The polymer w~s then hydrolysed in o.queous hydroohloric noid which 

converted the -OEt group into ethanol which w~s determined by g.l.o. 

His results indioa.ted thD.t terti::u-y oxonium ions equiva.lent to 

up to 95/' of the H010 4 could be found, but oonversions of less thM 

95% were Gxpla.ined by the supposition tha.t production of tertia.r.r 

oxonium ions from protonated 1,3-dioxolan and protonated poly-l,3-

dioxolan is a. slow process. In faot, evidenoe WD.S publiehed3b 

showing the slow formation of tertiary oxonium ions a.t the expense 

of seoondnr,y oxonium ions throughout the polymerisa.tion. 

I decided to differentia.te between theso two moohanisms by 

determining the number of hydro~ groups produced in the polymori-

sa.tion of l,3-dioxol~ by H0104 and since neutra.lisa.tion by NaOR 

appears to differentiate between the two meohanisms I o~rried out 

experiments similar to those of Jaacks ~nd ooworkers. As I dis­

liked deoomposing the polymer, I used sodium phenoxide as a. termina-

ting agent beca.use this would enable me to determine tho PhO end-

groups by u.v. speotrosoopy. Fortuna.tely muoh of the back-ground 

work tor this teohnique had. been dona by sa.egusa.5 Who tormin:)ted 

tetrollydrofuro.n polymerisa:tiona by sodium phenoxide. This Section 

describes the results ot the experimonts in whicb the polymeriaation 

of 1,3-dioxole.n by 11)104 waa termino.ted b7 sodium phenotide (Oha.pter 

9). Ohapter 9 also included further results on the nnal1sia of 
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pol:"mors for OR end-groups. Cha.pter 10 disousses tho mori ts of the 

ring-expansion meohanisml and the bock-biting meohanism) for the 

polymorisation of 1,3-dioxol~. 

Referenoes to the Introduotion to Section C 

1. P.R. Plesoh and P.H. Westermann, J. Polymer Soi. 0 •• 1968. 

(16), 3837. 

2. P.R. Pleaoh and P.H. Heeterma.nn, Palmer, 1969, lQ. 105. 

3a. V. Jaaoks. K. Boehlke and E. BberiUB, Makromol. Oham., 1968, 

3b. IC. Boehlke, H. Frauk and V. Jaaoka, Sm. on Macromoleoule., 

Budapest, 1969, Preprint 2/10. 

4. V. Jaacka and W. Kern, Malsr0mol. ° hem. , 1963, ,8, 1. 

5a. T. Saeguaa and S. Mateumoto, J. Polzmer Soi. k1, 1968, ,§, 1559. 

5b. T. Sn.egusa and S. I4atB~tO, Mo.oromolooules, 1968, 1, 442. 



Ta.b1e 9.1. 

~uMtitn.tivo r~o".su:rome~ts of ~dr0!ll GrouEs 
in Po1ymors of lLl:Pioxo1an 

Run No. PHW15 PHW123 FJ128 FJ118A FJ118B FJ119A 

TomporD.turo 15 10 11 12 12 11 
Optical density 0.02 0.04 0.04 0.04 0.122 0.086 
of OR 
Monomer unit_/OB 160 80 80 80 26 31 
DP 13.1 15.0 13.5 13.9 11.6 1.8 
Yiold % 35 40 41 33 33 20 

~t30+SbF&102M -
~OlO J/10~ (0) 0.36 3.00 4.00 6.00 6.00 10.00 

[OH]/10~ (H) 0.45 1.00 1.00 0.11 2.4 0.9 

Y /102M 0.14 0.14 0.13 

Killing agont • 88NH3 .88JH
3 

NH
3
(g) • 88NH3 H2O • 88NH3 

Vapour Va.pour Va-pour Vapour 

Run No. I'J119B FJ180A FJ180B FJ181A FJ181B 

Tomporaturo 11 10 10 10 10 
Optica.1 donsity 0.811 0.023 0.023 0.036 0.012 
of OH 
Monomor units/OH 185 131 131 91 263 
DP 11.9 11.6 11.4 15.4 14.5 
Yield % 20 35 35 31 31 

l!t30+SbF..§1/102M 10.0 10.0 

[HC10J/102
J1 (0) 10.00 10.00 10.00 

@a]/10~ (H) 0.19 0.53 0.53 0.69 0.26 

Y /102M 0.13 0.14 0.14 0.14 0.14 

Killing agent Et3N Et3N Et3N NH3 Et3N 
(+H2O) (+H2O) Vapour (+H2O) 

}t • 2M Exoept 119 M • 1.8M 

Y • Oonoentr~tion ~t end-groups determinod from 
NaDPh exporimc:rnts. 
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~TION C - Q.I!oll>TER .9 

9.1. ijydro;yl Group Determination 

Infrared mOD,surornents ell polymers of 1, 3-dioxol~Jl wero made on 
il\. olton 't£.h 

1/ solutions in carbon tetrn.ohloridet The pock due to the C-H 

-1 stretching frequency D.t 2926 cm of tho CH2 groups in the polymor 

cho.in W1),S used as an internD,l stoJld~.rd r:md D, tho optic."l density 

-1 1 of the hydroxyl grou'Ps'~t 3500 cm was mell,surod. (lesterlllo.nn had. 

ca,librD.ted this systom by :J.dding sm::!ll known qua.nti ties of 1,4-

butanodiol to D, known quantity of D, 10H moloculllr weight polymer 

. -1 (DP • 13.7) and measuring D for tho ausorpt1on at 3500 om • D 

WD.S foun,d to bo diroctly proportional to tho hydroxyl group oonoon-

tro.tion a.nd D.D, opticM density of 0.105 corrospnded to one OR 

group per 30 units of monomer. Ho also shoHed tho,t D rom:l,inod 

unaltered even o.fter tho polymer had boen in the vocuum oven for 

sovora.l davrs .md tha.t a.ny et~lcne glycol uhich might ha.ve been 

formed by hydrolysis wos removed from tho polymer in the isolation 

procodure. 

The results !l·re shown in To.ble 9.1. The tt'fO results ot 

Hestermann (pmn5 and PIDil23) show that my experimenta.l results 

aro consist,ont tli th his. llhon the oOllcontro.tion of OR groups (H) 

is oompo.red 1'ii th tho ooncontro.tion of HCIO 11- Olle eoos that there m~ 

be some substD.noo in Je.~,okst theory. On the other ho.nd, the doter-

minD:tion of OR groups br infre.red spootrosoopy isl'a'tbar ina.ocura.te 

when the number of monomer units p~r OB group is as largo as 160. 

Run FJ128 wn.s killed with ommonie. gas from a oylinder instoe4 
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of ammonia go.s from a rJsevoir of 0.880 .:l.mmonium hydroxide, but 

H romoined the sn.me although the concontr".tion of HClO 4' c, WIlS 

slightly higher. 

If, howevGr, the rea.ction is killed with wD.ter (FJl78B) H is 

incrGo.sGd considerD.bly, so that WG conclude that D. larger portion 

of linear polymer must ha.ve been formed. It is believed tho.t the 

following reaction is responsible for this affect. 

2H20 I 
--""' ...... CH2CH20H 

+ HeHO 
+ HCI04 • H20 

Since H is less tho.n c it a.ppears thD,t somo of thu o.ctivo cantros 03:"e 

o.lso deprotonated by the l-1O.tor molecule. 

In run FJ179 th~ reaction mixturo WD.S divided into two. Half 

of it W:;I.S killod with the vO,pour from 0.880 Nnmonium hydroxide, 

whilst the other he.lf 1ms killed under vo.cuum by brea.1cing a phial 

of anhydrous triethylamine. Killing the reaction with triothyl­

amine (FJ119B) reduoes H by a f~tor of five. If tho polymer 

from tho solution cont~ining triot~lnmine is isola.ted in the usual 

manner, the polymor turns brown. It is, therefore, neoeBse~y to 

trea.t the polymer solution with tTa.ter before tho isolation prooodure 

oan be carried out (FJ179B and FJ180B). There was no evidonoe of 

~ amine groups in the polymers killed with triethylamine (infrared 

spectroscopy) so tha.t deprotonation must occur without ring opening. 

Therofore the Oll groups produced in FJl79A must ha.ve originated 

from a reaction of the active centre with tho small quantitios of 

wo.tor which are present in the ammonia vapour. The following 
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ro~ction accounts for this phenomonon. 

HOCH~2--_.d' OH
2
0H + 

A simila.r obsorvD.tion wO.s ma.do whon Et
3
0+SbF6 W3.S thG polymori­

sation cato.lyst, tha.t is H wns greater whon tho rea.ction WD.S killed 

wi th 0.880 ammonia. va.pour tht'ln when triethylamine was tho killing 

agont. 

In soction 9.2. it will be shown tha.t D. small number of phenoxy 

end-groups a.ro prosent in tho polym~r whon tho r08.ctif)ll is killed 

with sodium phonoxido. Thoro is a linoar relationship betweon tho 

monomer concontra.tion and tho concentrt'l.tion of phenoxy ond-groups. 

Thorefore from the monomer concontration Wo ct'l·n estimato tho c:mcon-

tration of ond-groups oxpectod ~lhon 1,3-dioxole.n is 'Polymorisod by 

HOIO 4. This has been denotod by Y D.nd included in Table 9.1. to 

provide a. mOD.ns of compo.rison botween the rosul ts of both methods 

of end-group o,no.lysis. 

Uhen the reactions are killed wi th triothyl~.mino, a, tho 

ooncentra.tion of hydroxyl groups, is vory oloso to tho conoontration 

predioted by tho sodium phenoxido exporimonts. The differenoe 

between these figuros (Y and rr) is probably due to experimental 

error beoause the OIl bMC! ill tho infrarod speotra. is rD.ther sma.ll 

and this leads to 0. relD.tivoly l.'lrgo error in tho mefl.surements. 

9.2. Exper~~ents with Sodium Phonox~ 

2 Saogusa. has shown thD.t the tertia.ry oxonium ions whioh poly-

merised totrahydrofuran oan be estima.ted qw..ntita.tively by roaction 
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with sodium phenoxide. This rOD.etion introduoes D. phenoxy end-

group whieh C!'1.n be detormin.ed by u.v. spootrosoo"9Y. rrhoroforo 

this method wo·s <'pplicd tlJ tho 1, 3-dioxolEl.n-HC10 4 polymerisation 

systom. 

9.2.1. Met_~ 

Tho polymorisations woro killod with phisls of sodium phenoxido 

which had beon prepo.red on the v;'cuum line. The sodium phonoxide 

w~.s introducod ai thor as (\ solid (S) or os D. solution in totrDl-

hydrofurn.n (L) (Ta.ble 9.2.). 

Thoso roa.ction mixturos lIoro then extrMtod with N aquoous 

sodium hydroxide to remove the oxoess of sodium phonoxido and any 

phenol which w~s producod. Tho aquoous solution WD.S mD.da up to 

250 ml with N sodium hydroxido and tho methYlono diohlorido solution 

WDS driod with anhydrous magnosium sulphe;to aolld mado up to 100 ml 

wi th dry mothylene diohlori(le. A SOpD.rD.ta roferenoe f101ution WF.l.S 

extr~cted in tho SMlO mD.nnar o.nd this blank test showod th::1t tho 

polymer was tro.nsforred a.lmost quanti tativoly (96~~) into tho 

methylene dichlorido. 

Each of tho solutions wa.s subjootod to u.v. speotrosoopy. The 

oonoontration of phenyl other (ROPb) in tho methylene diohlorido 

solution and tho conoontro.tion of PhO in tho D.Q.uoous sodium hydroxido 

woro dotermined by use of the appropr1atelllOlar artinotion ooaffioicmt. 

Examplos of the u.v. speotra obtnined arc shown in Fig. 9.1. 
2n 

Saagusa has shown that phonotolc ~nd 4-metho~butyl· pho~l 

oth~r absorb at 272 nm (sooondary band) ,that the molar extinotion 

coeffioiont, E, is 1.93 x 103 lmole-lom-l , o~d that Beor's Law 
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Tho Qun.nti tD.tivo Estomation of Phono!.! End-GrouEs 

* Run No. 198 183 201 184 185A 185B 186A 186B 1860 

~l/M 2.0 2.0 1.0 0.5 1.0 0.8 1.0 0.88 0.77 

H~10 it/102M 0.65 0.5 0.106 1.78 1.95 1.55 1.07 1.23 1.4 

D270 0.05 0.35 0.27 0.09 0.14 0.045 0.18 0.08 

[ROP~/10~ 1.45 0.27 0.33 0.5 0.13 0.594 - 0.32 
Yiol % 77 4 2 
DP 29 

l!aOp3 j10~ 13.5 26.2 28.5 21.5 17.7 20.1 24.4 

~aOP~ 1103};{ 11.6 - 25.5 28.1 24.0 22.6 8.8 4.7 

T /oC 0 -43 -22 +25 +25 -43 +25 -35 -85 
Na.QPh,phaso L L L L L S S S 

U>~/10~ - - 1.2 

Run No. 188A 188B 189A 1a9B 191A% 191B 192B 195 196 

~J/M 3.0 1.76 2.0 1.01 1.7 1.49 1.7 2.0 1.0 
0104]/102M 0.8 0.4 1.2 0.38 1.27 0.43 0.75 0.64 0.58 

D270 0.6 1.0 1.0 0.11 0.245 0.4 0.2 

[Roplil/lO~ 1.5 3.9 1.3 0.85 1.1 1.4 0.1 
Yio1d% 44.4 73 47 37 10 53 47 67 65 
DP - 9.7 4.9 15.6 17.4 17.8 10.8 

I 

~aOPhl/1031w1 9.0 33 16.2 14.1 12.9 12.3 

[NaOPll} 1103M 6.4 16 14.8 13.1 11.4 10.3 

T / 00 +25 -43 0 -33 0 -16 -16 +25 -64 
N a.QPh, pha.se L - S S L L L L 

[0~/10~ - 2.0 6.6 5.0 3.9 

* In tho prosence of totr~drofurnn 

! Tho prepolymorisod solution WDS mixed at 300 

I The prepolymorisod solution wns mixod at 250 

Tho monomor for all oxcopt 195 and 196 is 1,3-dioxolan. 
195 and 196 - 1,3-dioxopan. 
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a.pplies. The spoctra. of both these phenyl ethers wero th0 some o.s 

t:'. spoctrum of polytotrcllydrofuro.n ,.,i th ~. phonoxy I3nd-group, 60 thD.t 

this spectrum could bo D.ssigned to tho and-group of tho polYI!lor. 

In a, simila.r w~;y I ho,ve shoun tha.t tho 1, 3-dioxolo.n polym~r 

having 0. phenoxy end-group hos o. spoctrum idonticCl.l to thD,t of 

phonotolo (Fig. 9.1.). Tho ma.ximum 3.bsorption of tho socondo.ry 

band l-lO.S o.t 270 nm and E = 1.90 x 103 1mole-l cm-l • Since tho 

spectrum duo to polym~r w:).s vory weak and because B')me rG[l·ctions 

woro killed a.bovo the coiling tom:per1'l.ture the rosul ts l-lOrO not 

corroctod for the o.bsorpti<)n dUG to tho polymer. 

An aqueous sodium hydroxido solution of sodium phenoxido 

absorbs3 a.t 285 nm (secondo~y bond), E • 2.6 x 103 lmole-l em-l • 

9.2.2. Results 

Tho rc~~tion tim~ for tho protono.tions and polymorisations 

described hero woro usually in excess of 20 mins. so t~o.t according 

to Jaacks4 theory tho convorsion of tho secondary ions to tertie~ 

oxonium ions would ho.ve beo~complete. 

The first two oxperiments (183 and 184) wero corriod out accord­

ing to tho c·::mdi tione givon in Table 9.2. In 183, polymer wa.s 

producod whilst 184 wn.s killed ohove tho coiling teml'orc.ture of 

tho systom~ Sinco tho concontrntions of ROPh in the polymers produced 

in exporiments 183 and 184 wore in tho samo ra.tio as tho monomer 

concontrations, \"1e considered o.t first that tho tertiD.ry oxonium 

ions (Beo pa.go 145) wore formed in 0. reaction of H010 4 with CI.n 

impuri ty. 

Therofore, to test this we recycled tho monomor. In oxperiment 
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185, the roo.otion wos killed o.bove T (lud the volo.tiles woro distillod o 

into t1 roaotion vessel isolo.ted by 0. Toflon tl1.p whoro Imother 

HOI0
4 

phio1 wos broken. Houovor, very littlo polymer 1t1D.S produood 

in -tho seoond polymerisation (at -43°) therofore th...:: roaction wO.s 

killed with sodium phenoxido and subjootsd t,) anD.lysis. Tho residuo 

from tho first protona.tion (l85A) oontainod tho expected o':)noentrl»-

tion of ROPh, evon though polymorisation did not ooour. Polymori-

sn.tion probably Wt1S prevontod by tho presenoe of totro.hydrofur:m 

whioh wa.s preforontially protonatod. Thoroforo, this wholo oxperi­

mont W['l.S ropo~.tod (186) tfith solid sodiwu phonoxidG in plo.oo of 

tho solution in totrahydrofur~n. 

Tho o.ppo.ro.tus consistod of t,'IO H-tubes with a Toflon to.,!? 

oonnocting tho horizo.ntal o.rms of oach H-tubo. In one o.t'm of oo,oh 

H-tubo thoro wo.s a phiD.l of HOIO 4 and in tho other a phial of 

NeOPh. Tho first protonation wns mado by breaking an o.oid phio.1 

into tho 1,3-dioxolan solution. After 8 mins. o.t 25°, the rOD.otion 

wo·s killed with Belid sodium phonoxido. Tho roo.otion mixturo turnod 

red nnd ovontuo.lly oolourless lii th tho production at &piDk prcoipi ta.to. 

If the time tho solution remains ooloured is a measure of tho time 

required to kill a.ll tho activo oontros then solid sodium phonoxide 

is ineffioient for this purpose. Howevor, tho volo.tilos woro 

distilled to tho second roo.otion vessel by oooling it with iood 

water. Tho residue (186A) in tho first roaotion wn.S isola.tod by 

the Tenon tap, romoved and ano.lysed. 

When the acid phial "ms broken into the distillo.to from tho 

first r~a.otion in tho seoond R-tube the solution turned rod and 
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polymeris:l.tion did not occur. Thoreforo thoron.ction to,s killed 

and the voss::l lias reconnoctod to tho va.cuum line, via. tho Toflon 

to.p so thC't the vol[l.tilos could be distillod onto sodium hydride 

to removo tho phonal which hD.d obviously como ovor in tho distillation. 

ThG volGl.tiles "lOrG thon distillod into D.nother reactor contain.ing a. 

He 10
4 

phial and n. sodi urn phonoxido phiD.l and the procoduro ,-1[' B 

ropoD,ted. The residue (l<.36B) from the second rocycling Wo.s analysed 

togothor with tho product (186O) from the finn.! l?roton~,tion. 

Polymoriso.tion did not occur to a. grOI),t oxtent in 1860 t but thero 

was still a phonyl Gther group presont in tho product. Tho mothyleno 

dichloride solution from experiment l86B hD.d a. r~·thor lo.rgo o.bsorption 

D.t 210 nm, but o.s tho peak was not rosol vod it could not be assigned 

to ROPh with certainty o,nd thorofore this rosult is not included 

in Tablo 9.2. 

Tho previous exporimonts showed th:~,t phenoxy end-groups wore 

still prosont in the polymors produced from tho reoyclod monomer 

but wo wero still not convincod thot the ond-groups woro formod by 

a rOD.ction of 1, 3-dioxolo.n and BOlO 4. Therofor0 in ordor to koep 

tho systom as clean as possible, tho monomor and solvont woro distil-

lad off two liv~ polymer solutions(188 and 189)and repolym0risod. 

Tho ropolymi5:risations tlore killod with sodium phon.oxide. In 18BD, 

ROPh WilS formed in tho somo concontration D.S one Nould hro.vo expootoc::. 

from tho first polymeriso.tion, wheroD.s in 189B 0. muoh lo.rgcr e.mount 

WltS formod. Tho only differonco between tho two oxperimonts w~,s 

that in oxporimont 189A tho lIno 4 phial was brokon e.t 20° Nld tho 

solution mixod ~t 35°, wheroas. experiment 188A was mixed at 20°. 
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Tho results suggest that ROPh is marc readily formod ~t tempor~turos 

higher thOon 20
0 and th:l.t it m;xy be volatile. 

Although those oxperimont s soomod to indicato tha.t an impurity 

wo.s not responsible for tho ROPh produced, tho ovidenco wt\.S not 

convincing, D.nd thus oxporimonts 191 and 192 \Iore ct'l;rriod out. In 

thase oxporiman.te tho prooedure for 186 WD.S used oxcept thOot the 

distillatJ from tho first reaction WOos oollooted in a. flD.S1c so tha.t 

it could be {tnalyeod by g.l. o. In oxperimont 191 tha first polymori­

s~.tion was killed with aodium t>henoxido and the volatilos wero 

distilled onto sodium hydride so th:t ~ phonol ca.:rriod over 

would bo romovod. Then, o.ftor d0go,ssing (by froose-tho.wing), tho 

volatiles woro distilled into a flask fitted with ~ Taflon tap. 

The flf:'.sk was thonse~J.ad off the liDO and ro-fused to the line fo~ 

gravity dosing. Tho s~o procedure was usod in run 192 oxoept 

that the roaction was killed with tho non-vola.tilo amino N,N'-di­

(2-naphthyl)-p-phenylonodiamine. 

The u.v. spectrum of tho diotillate from run 191 did not have 

~n absorption at 270 nm which provod thnt tho pho~l ether produced 

is not volatile. AnalysiS by g.l.c. of tho distillatos trom 191 and 

192 showed th·:--t tho small impurity poaks prosont in 1, )-dioxolan 

waro not rMlovad by pre-protonation a.bove theoei.li .. ~QIIlPGIrt\t\lZ'e. ~ 

solutions distillod from oxperimonts 191 and 192 ware polymorised 

N'i th HOIO 4 (see Ta.ble 9.2.) and than killed with sodium pheno%ido. 

Both the polymers obtained from these oxperimonts oontained tbe 

ROPh group. 

Sinoe 1,3-dio%Gpan (in oontrast to l,)-dio%olo.n) 1s known to 
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be completoly protonD,todl by H010
4

, tr-TO experimonts (195 o.nd 196) 

wi th this monomer were killed with sodi urn -pllonoxide and H wo·s found 

tho.t ROPh wO.s present in the prod.ucts in the some conoontro.tion as 

found for 1,3-dioxolan. This shows thDt tho dogreo of protonation 

doos not affoot the c~meentrD.tion of ROPh • 

.As ho.s beon mentioned, solid sodium phenozide (8) is ~.n inof-

ficiont killing agent booauso of its low solubility in tho roaction 

solution. The rod colour producod in the solutions during tho timo 

it took to kill tho reD.etion mD~ ho.vo been due to protena.tod phonol 

or osidation products formed from phenol and HC104, booause there 

was sone ma.terial which \'TO.S illsoluble in tho o.queous sodiwn hydroxide 

usod,and the methy10ne dioh1orido,for extraction. This is shown 

by a. discrepancy betwoen the initi~.l eoncontrn.ti·Jn of ovdium phen­

oxido' [NaOPh] 0 and tho final. coneontro.tion !!~phJf. On the othor 

hand D. red solution t.zas not formed whon sodium phonoxide WDS addod 

as a solution (L) nnd tho roeovered ~mount of sodium phonoxide 

agreod well with tho initia.l quantity. 

9. 2.3. ~he Conoontro.tion of Tertia;[ Oxonium Ions Thr0BBSout 

tho Polymorisa.tion 

As the oonoontration of HCI04 in the experimonts desoribod 

previously in this ohl'.ptor WI),S about 10-21-4, ono possible explana.tion 

for tho inoquali ty of @CIOJ, [ROPh] and [OB J was that the polymer 

had not been protonatod oompletely. Thereforo, experiment 201 was 

carried out with a. lower acid oonoontration (lO-~I) in a dilatomotor 

whioh allowed ooncurront sampling and oonductanoe measurements. Tho 

dGvioe (Fig. 2.5.) was deSigned 80 th~t tho vacuum in tho dilatometor 



Table 9.3. 

Tho P01ymerioation ot 1M 1,3-Dioxolan with 

1.06 x 10-3M HCI0
4 

at _22.20 

Sample No. Time ~OPhJ [PhO~ 
min. 10-3M 10-3M 

1 13 0.35 

2 13 0.77 

3 34 0.35 -
4 34 1.30 

5 44 0.28 -
6 44 - 1.0 

7 60 1.8 

8 92 0.27 -
9 92 .. 2.4 
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could be lot down to 0. dry ni trogon o.thlOsuhoro to fo.cili tl'l.to samplill8 

through tho gro:.' sed tap o.go.inst ~. flo~1 of dry ni troe'ln. 

Sa.mplos of tho roo.otion mixturo liaro tnkon ".t specific time 

intorve.ls (SGO Table 9.3. o.nd Fig. 9.2.) and killed t-lith D. known 

volumo of sodium phonoxido solution. Tho woight of tho st\mplo \"1"·S 

dotoruinod by differenco. .Al tornato so.mplos wore thon. trea.ted 

with D.n oxcoss of Et30+PF6 to kill off tho rom~.inin.g sodium phonoZido. 

The solutions woro o.na~ysed o.s before so that tho la.ttor solutiono 

gave a measure of tho qun~tity of phonol producod when tho ro~ction 

WO.s killed. 

Thus conductivity, tho ro.to of l;l::-lymorisn.tion by dil::-.tomotry, 

D.nd tho concontration of ;'tortiary oxonium" ione could bo iIloC'.surod 

simul to.neoualy. Ho also hoped to dotor:.nino tho (',mount of :9honol 

produced by proton abstraotion from socondary oxonium ions, but the 

rosul ts shown in Ta.blo 9.3. indicate cloo.rly th.).t tho method WOoS 

not satisfa~tory. 

Tho initia.l valuo for tho ooncentration of phonol produoed, 

whioh is a measure of the ooncentration of seoondary oxoni~ ions 

is roa.sona.ble, but the subsequont figures n.ro largor th,.n the 

oOAcentro.tion of HOlO 4' A possible oxplD.nation is tho.t phenol WOos 

produoed in the sodium phonox1do solution by rOD.ction with o.tmvs­

phorio moisture. Although this could have boen oheokodby ~ more 

refined teohniquo this hOos not beon done. 

Fig. 9.2. shows tho polymorisD.tion curve, tho oonductivity ourve 

and the conoontration of tertiary oxonium ions at oortain timos. 

Theso ions apponr to bo formod boioro polymoriaetion StD~tS ~nd 
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thoir oonoontro.tion rom(1.ins roo.e r.mo.b1y oonsttl.nt throt18hout th.:.: 

po lymer i sat ion, and it oorta.inly docs not inoroa.se ~.S Jaaoks' 

oxporimonts suggested. 

Attemutod IsolD.tion of ROPh 
.' _.---.... ............. ,;;0 

Sinoe the ROPh W[,·8 formod in Do re3.Ctim mixturo whioh "'I".s 

killed with sodium phonoxido o.bove the 00111%15 term:poro.turo of the 

solution I deoided to attompt to isolato it for on31ysis. Thoroforo 

tho rosidue from roo.ction 184 WCl.S dissolvod in oarbon totro.ohlorido 

o.nd OJ). N.M.R. spootrum W~.6 ttlkon. Thoro woro poo.ks D.t 5.4 C (polymer), 

6.3't (doublet; polymor), 8.7'C 3.lld 2.8t' (phenyl). The la,st WD.B 

sma.ll oompared to tho othors, and thor0foro tho residuo wns elutod 

with 50:50 ohloro.t~rm/m~thyleno dichlorido on 0. thin layer 

ohromo.togrD.phio plato of silioa. gel. Tho groa.ter part of tho samplo 

r'.lma.inod bohind, but the pberJ¥l oompound wo.s eluted. ThG phonyl 

oourpound wo.s r<,;Ji"llovod from tho ei]j,oo. gel by onro.otion wi th :;)ot~lon~ 

diohlorido o.nd subsoquently the solv~nt 'tID.S r.movod by distilla.tion. 

Tho N .!~.R. speotrum of the residue in oDJ:'bon tetraohloridc ehol'Tod 

a. peak at 8.7~' whioh wos about 12 times larger th~ th~ other 

peaks in tho speotrum. The a.coW'llult'l.tod speotrum ho.d. ?oDk~ a.t 2. 9 ~ 

I\nd 8.1e- in tho ro.tio\ of 2:1 o.part from the peak c.t 8.7~. Tho 

poak at 8.11;: meV'" be oxirtmoous bOOfl.USO a.coumull\tod spootra. of ton 

show this pODk. It is bolioved to bu duo to ~ rosiduo trom t~o 8ilie~ 

gvl. 

Theroforo no oonolusions about tho struoture of ROPh oould be 

4J'Bwn from thoso oxporimollts. Tho rosiduQ from 191A. WC.g olso tre~.tod 

in ~his w~; thero was no po~ ~t 8.7~ and nQ conolusions could 
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be dro.\-7n. 

9.3. DiscUBB~ 

Fig. 9.3. shows that thoro is a ro~son~uly linear depondenco 

of [ROPiJ' on[M] which is tho same for both 1,3-dioxolo.n o.nd 1,3-

dioxo:9o.n. ~\ plot of (11010.J o.go,inst [ROPh]/[M] (Fig. 9.1 .• ) shOl!S 

tha,t thoro is no dependonco af ano on tho othor. Fig. 9.5. shOl'T6 

tha.t thoro is no o.pparont relation bot\"loon temporaturo (whon it is 

less th<ln 25°) and [ROPh~J (tho 1!010~J wets not c,·nstD.nt in tho 

exporiments of thiiJ Fig.). 

Uosterma.M,l found that whon [!lOlO 4J WOoS groa.ter thll.n 5 x lO-~4 

the spooific oonduotivity of 0.65U 1,3-dioxol3.n in mothylone dichlo­

ride o.t 100 wa,s independent of tho FlO 4] whcro~.B bo1ow . 

5 x lO-4J,i tho spocifio oonductivity of tho solution wo,s dopondent 

on the a.cid concontro.tion. 'l'horofore he invokod the protono.ti ",'n of 

en imputi ty in tho monomer to explain thoso r.;8ul ta. Fig. 9.3. 

shows thn,t a.t 0.65M l',:>-dioxolan tho ~OP~ is the 8:lmO as tho 

ooncontr::l.tiol1 of "impurity" (UoBtermOJUl). Both l'lostIJrmo.nn' B o.nd m-Y 

rElsul ts suggest a.n impu,i ty in tho monomor a.t a. conoontri:'ti:>n of 

lO-2M• Howevor tho oXPorimonts (185, 186, 188, 1691 191 ~d 192) 

in whioh tho monomor was recyoled havo fo.ilod to provo this theory 

-2 a.nd, besides ,Q.n tm'Pl1:fi ty at the lovel of 10 J.i in monomar Wl'·S not 

found by g.l.c. of tho monomor. 

1-10 had hoped that the ooncantr~.tion of hydro~l groups H 

dot-orminod trom tho infr~od spootra. of poly-l, 3-dioxolM cnd 

poly-l,3-dioxe~aD would agroo with the oonoontration of phGno~ o~ 

groups in tho SDme polymers killod with sodium phono~do. Unf·Jrtuno,. 
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tely, thoso two cathode of end-group D~~lYBiB do not o~oo in that 

H is gruD.tor tho.n tho L~Wl)~ (Table 9.2.). An Qxplo.nation of tho 

diacrOpDJlCY might be thet phonol roacts uith the polymers during or 

after l(illing to produco hydroX3l groups, becD.use ~OPhJ e.nd H 

determined in sopD.ro.to experimonts do agroo (Ta.bla 9.1.). 

At this point I will briefly disouss tho posBiblo reaotions 

by Which end-groups a·re formod in tho polymorisa.tion of l,3-dioxolo.n 

by HCI0
4

• 

It might bo tha.t tho "impurity" origillD.tes from thG walls of 

tho glo.ss vessel, but this OM bo oxcludod bocouse tho r09iduD.l 

wator conoontro .. tion (lo-4z~) of the system ie loss than tho conoent-

ration of ond .. g:roups and tho conoentrD.tioD. of "implrity" doponds on 

tho monomor oonoontration. The ooncentration ryt residU3l wD.tor in 

1,3-dioxolal1. wa.s found5 to bo a.bout 2 x lO-'\f l1horoo.s tho oonoont­

rat ion of tho "iurpuri ty" in tho monomor is lO-2M, so tm t residuol 

W3.tor o .. mnot oxplo.in our rosults. 

tlhoroo.s undor our oonditions tho protona.tlon of 1,3-dioxola.n by 

HCIO 4 i8 jn:oomploto, that of 1,3-dioXOPo.nl is oomploto. Therofore 

tho formo:tion of phonoxy ond-groUtl8 in l,3-dioxo'Po.n is 0.11 tho moro 

puzzling. Although 1,3-dioxepan is knownl to oontain a ver,y small 

oonoentra.tion. of totrabydrofuran this OMnot ba tho OOOlS\J of tho ond­

groupsiathis polymer, booa.uso in experiment l85B, whore totra­

bydrofure,n. wo.s presont in tho polymorising solution, tho oonoent­

ration of ROPh WOoS DOt UDU8Wq poat. 

Tho rasults of tho oxperiments with 1,3-dioxopo.n might bo 

oxplainod on the suppesi tion th:'t tho roaction of tho proton[lted 
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cyclic formal with sodium phonoxidc d00S not go complotoly by 

doprotonD.tion, but th:"'t it producos somo ROPh by a. minor side-­

reaction. . .. \g~:dnst this is tho fn.ot th('t Jao.cks5 "',:-l.S t\blo to doproto­

nato protorJ.:\tod diothylformal completoly with sodium othoxido. HOl-I-

over it only noods D. very sme.ll porcontD.go of ring-fission to occur 

to account for our results. Furthormoro this hypothesis doos 

explain tho formn.tion. of' OR groups in tho polymerisEl.tiona killed 

with sodium phonoxido, but it docs not of oourse uxpl~in thu forlilD-

tion of' OH groups in the absenoo of sodium phonoxido. Sino(, tho 

conoontration of OH groups we.s of tho SNne order of mf\gnitudo ::'·9 

tho conoontration of ROPh from soparo.t 0 oxperiment s (To.blo ? .1. ) 

wo cnn probably rulo out tho possibility th3.t sodium plwnoxidc docs 

not oomplotely doprotono.to D. protonD.ted cyolio formnl. 

ROPh is formod ovon whon a 1,3-dioxol~ roaotion mixturo is 

killod with sodium ~hcnoxido ~bove To. Exporiment 201 shows th~t 

tho co~contration of phono~ ond-groups doos not e~tor signifioantly 

througbout tho polymorisD.tion and that it was loss thon tho oonoent­

re.tion of ~rol04. 

The ond-group ana.lysis prosontod horo shows th"t tho of)noont­

ration of and-groups doponds on tho dryn~ss of tho killina o~ont 

(Table 9.1.)_o.nd thD.t the oonoentra.tion of cnd-groups is alw336 

less thaA tho acid oonoentro.ti'Jn, providod th.'t tho monomer conovnt­

ration is not too high, beoause tho numb or of ond-groups doponds on 

tho monomar concentro.tion. Tho end-group concontration is in ~oo­

ment with tho concontrD.tion of en Ilimpurity" invoked by ~losterma.nnl 

to oxPla.in hi S conduct i vi ty results. 
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Thoroforo if wo ~ocopt thJt tho phvno~ end-groups como from 

tortiary oxonium ions, thon some torti..,.ry oxoniwn ions ~o formod 

in 'Gho polymorisD.ti,-;n of 1,3-dioxol:m wHh HCI0
4 

but not froID tho 

protonD.tion of D.l1 "impurity" boca.use this could n'Jt be pl'oVQ(l. Irho 

wholo quostion of tho mochCl.nism of th0 polYIllorisa.tion of l,3-dioxolDn 

by HOI0 4 is disoussed in ChD.:ptor 10. 
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SOOT ION C - OHAPTER 10 

Tho Uoohani!3l!l of tho Polymoriso.tion of Oyolio FormoJ.s 

By Porohlorio Aoid 

10.1. Introduotion 

In Chaptor 9 we have soon thnt a small oonoontration of ond-

groups is formod in the polymorisation of 1,3-dioxol~~ and 1,3-

dioxopa.n whioh is loss th:).t tho oonoontro.tion of HC10
4

• \io havo 

shown thll.t a,n impurity is not rosponsible for thoso ond-groups 

l'lhioh a.ro bolievod to be os.used by tortia.ry oxonium ions. Sinoe 

those tortiD.ry oxonium ions oro formed o.t tho bQ,ginning of thu 

reaction (Fig. 9.2.) o,nd their numbor docs not inoron.so during 

the polymorisation, we boliovod that they aro oonoornod in somo 

w~ with tho initiation. Thoroforo, in this Ohaptor soma suggostions 

a.ro put forwa.rd o.s to hOl-l thoso tortio.ry ions ~.ro form0d o.nd thon 

tho polymorisation meohanism is disoussed. 

10.2. Initia.tion 

10.2.1. Rinseoponing 

One possibility is that riDS-oponing ooours in tho initial 

stage of tho po1ymerisation. 

-....a~ HOOH20H2OOH;0 

A 

Further t~rtiary oxonium ions are not formed beoause A o~~ 

polymoriso by a ring-oxpansion mechanism in a w~ analogous to tho 

polymeri8ation of 1,3-dioxo1~~ by triethylo%onium snlts (Ohaptors 5 

and 8) and onoo tho dimor is formed it is protonatod (beoauso it is 

more ba.sio than tho monomer1 ) and propagation oan than oocur 
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through both seoond~ry and torti~~y oxonium ions. 

10.2.2. Equilibriwq. betwoen Ferma.ldefJ,.yde o.nd Ethylene Oxide Cl.nd 

l,3=Diexola.n 

We considorod thn.t thoso might bo in equilibrium but rojocted 

this id~a beoause lithium Il.luminium hydride would h,l.VO roduoed 

formaldehyde to methanol and thus in tim~ it would have oonverted 

all tho 1,3-dicxola.n to motho.nol and ot~lone glycol. This wO.s 

not observed. Furthermore. if o~ equilibrium of this t~e did 

exist a.nd tho formaldehyde were protonated, Uostormnnn would not 

have observed tha.t the conduotivity of O.65M 1,3-dioxolD.l'l, HCl0
4 

in 

methylene dichloride a.bove T wo.s independent of !'HOIO") above 
o --- 't-

5 x 10-'\1. Moreover tests2 for formo.ldehyde on the reo.ction mixtures 

before and after polymerisation gave no~tiv~ results. The a.bsence 

of formD.ldehydo after roo.ction could be explainod by its protono.tion 

o~d subsequent roo.ction to the product D in the rea.ction schemo 10.1. 

'Ylhoreo.s the oquilibrium in pure monomer is ruled out none tho 

less ·an equilibrium botween l~+-l,3-diOXOlo.ntothylGno oxido and 

protonD.ted formaldOhyde m03 oxis,: 

If on the othor ho.nd, ethylene oxide woro protona.tod, 

HOC~C~~ oould bo formed bT roaction with 1,3-dioxolon. 

10.1. -

As in scheme 10.1., both these a1ky1o.tod-ln+-1,3-dioxolons oould 

polymeriso 1.3-dioxo1an by tho ring-expansion mechanism. 

However an oquilibrium of tho type 10.1. doos not tully explain 
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tho fa.cts, bocn.uso thoro w~s no dopendenco of the concontrrotion of 

tertia.ry oxonium ions on tho concontro,tion of porchloric e.cid. 

Thoroforo tho following D.ltorno.tivo oxplanation is proposed for tho 

forme.tion of sm".ll quo.nti ties of tertiary oxonium ions in tho 

polymorisation of 1,3-dioxolD.nt whose concontrD.tion de~ends on the 

monomer ooncontrD.tion. 

Wo supposo thnt tho establishment of tho equilibrium betwoen 

1, 3-di oxolan, othylene oxide o.nd formOoldehydo i B cnto.lysod by a.cida 

If the oxido and form1:'ldehydo 
tha.t 

D.rG small, o.nd if wo D.ssumol\both those spocies cOon produco tortiary 

oxonium ions, t\Ild if tho oquilibrium bocomos "frozon" onco D.ll tho 

a.cid ha.s boon consumod by protone.tions, thon o.coording to ~ rosults 

() 1 -6 -1 ' Chaptor 9 and tho results of Wostermann , K is about 10 moles 1 • 

1 It is rolevant that Hosterma.nn obsorvod the ano.logous equilibrium 

for 2, 2-diphonyl-l, 3-dioxola.n whioh did not requiro D.n acid Ctl.talys1t. 

Both torma.ldohydo a.nd othylene oxide CQuld be protonotod and 

thon initio.to polymorisD.tion as desoribod previously. If tho rata 

of polymorisa.tion is greator than the r3te of ostn.blishmont of this 

oquilibrium then the indepondonco of tho concontration of ond-

groups of acid conoentra.tion oan be explainod. 

10.3. Propagation 

Tho co.rboxonium ion mochanism for tho polymerisation of 1,3-

dioxola.n hOos boon disoussod and rojeotod1 ,3,4. Thoroforo, we ~e 
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loft with tho two D.ltornn,tivo mochn.nisms for tho polymoriso.tion of 

1,3-dio~olnn which havo boen proposGd. Ono is thv ring-oxpansion of 

Flosch and l'fostormo.nnl , 5 and tho other is tho mooho.nism of Jo,aoks4,6 

in which propngo.tion is by tertiary oxonium ions a.net mo.crooyolio rings 

aro formod by back-biting. 

Both mooho.nisoa are illustra.od in tho introduotion to Sootion C 

a.nd thoroforo thoy will not bo givon ago.in. If one looks closoly 

a,t tho, moo11l1nisms, ono soos thl\.t both COOl be considorod E'.a insertion 

mocho~isms; whoroas tho rine-oxp~nsion is on insortion across tho 

ring (0), Jaacks' mocha.nism cO.n bo considurod as o.n insortion 

acrose tho linoD~ bro.nch of tho molocule (D). 

c D 

Wo considor tho.t D.n insortion mechanism across tho ring (D) 

is moro likely for tho following r.;o,sons. If tllO mD.orooyolio 

rings wore formod by ba.ok-bi ting4, 6, thon \'10 would oXl,)ect to find 

tho.t tho conoontro.tion of end-groups wr.t.s tho somo as tho oonoontro­

tion of HC104 and this has not boon observod. J~.oks4 oonsidors 

thD.t protonatod 1,3-dioxolan is slowly trD.nsformcd into tertiary 

oxonium ions which o~o the prop,~ating spooios, but this is not in 

o.groomant with tho rosults of Wostormo.nnl who found tht\.t ovor 0. 

ton-fold variation of oa.talyst conoontration thoro w,.s a linoo.r 

rolo.tion between tho first ordor r~to oonst~t ~d tho perohlorio 

o.oid conoontra.tion and th·,t tho final oonduotivi ty of tho polymer 
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solution w~.s dopendont on tho initit'l o.cid concentr~.ti'>n. Furthor­

more Hostormo.nn1 observod tho.t on dopolymerisn.tion tho conductivity 

foll book to eo low vD.luo which could only be expl[.l.ined by tho forma,-

tion of cov~.lont ::;>orchloric o.cid. Tho ropolymoriso.tion followed tho 

sD,mo courSu a.s tho first polymoriso.tion r-.nd the conductivity reo.chod 

tho S!lmo vn.luo D.S bofora. Moreovor in tho polymoriso.tion of 1,3-

dioxopan whioh is oomplotoly proton~tod by purchlorio o.cid the initial 

o.nd fin~ valuos of speoifio conduotivity dependod on the concontr~ 

tion of porchlorio n~id. Also, tho low DP's obsorvod for these 

polym~rs wera considered to bo due to exoossive tr~.nsfor in "'hioh th 

H+ WD.S mobile ovor all the oxygen a.toms in tho systom. 

Thoso exporiments show th~t nll tho porohlorio o.cid produoos 

active oontros. Thor~fore, sinco Chaptor 9 shows th~t somo torti~ 

oxonium ions oro formed, both tortiD~y D.nd sooondnr,y oxonium ions 

muat be involvod in the propagation. Therofore tho schome in 

Fig. 10.1. is proposod for tho polymorisD.tion of l.3-dioxolo.n by 

o.nhydrous porohloric o.cid. 

(1) This sto60 hD.S boen disoussed nbove (sootion 10.2.). 

(2) and (4) Theso reprosont protono.tion and th.J ring-expMsion 

meoh~ism of Plesch and Wostorm~nn5. 

~Ii th 1 t 3-dioxolo.n tho evidenoe suggests thl:'.t undor tho polymoriso.tion 

oondi tions (2) o.nd (4) do not OCOU1". Howover both 1Iestormo.nn1 o.nd 

Jo.o.oks1 ha.ve obsorvod protono.tion of l,3-dioxolo.n o:t higher acid 

concontra.tions than aro roquirod for polymor1so.tion. thureforo (4) 

is still a possible propaga.tion stop. Stogo (2) i8 inoludod horo 
by 

booa-uso undoubtodly l,3-dio:xopan must proPfl8Bto.~sto.go (4) in this w~ 
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beca.usa the monomar is complotely protonatod by porchloric o.cid. 

(6) This stop is included for complotanvss. although it is loss 

likely to oocur thnn stop (7) bcause of the proximity of tho two 

positivo chargos, it c~rtainly would ocour if tho ring wore l~go. 

(7) This stap is duo to tho mD.sB-action offoct boc[1.uso D.t tho 13tart 

of polymorisa.tion tho concontro.tion of 1,3-dioxolo.n is much groD.tor 

than. tho concontr~tion of tho dimor ~nd highor oligomors, o.nd tho 

grea.tor D.bundance of tho monomer componso.tos for its lowor b~sici ty. 

Theroforo, wo boliovol th:1t tho ring-oxpo.rlsion mecho.nism is 

more likely than the mochanism of Ja~ks4,6 for tho production of 

maorocyclic rings, but wo havo not rulod out oompletely that E m~ 

a.lso propagato by a. linoar insortion moohonism. 

Jo.a.cks4 bases his meohanism on the slo'" production of terti~ 

oxonium ions o.t the expense of secondary oxonium ions but when we 

compare his exporimontal conditions with ours wo find tha.t both sets 

of exporimonts oan be reconoilod. In his oxperimonts J~~ks usod a 

monomor concentration of 3-~~ and tho perchloric acid conoentra.tion 

was about lO-3M• From Fig. 9.3. wo sec that undor thoso conditions 

the conoentro.tion of tertiary oxonium ions will be fortUitously 

oqual to the acid concentro.tion. Sinco tho rooction tim~s of 

J~ks4 were-only about 2 mins., it appoars tho.t he m~ be observing 

tho rate of a.ttainment of the equilibrium botwoen ethylono oxide, 

for~ldehyde and 1.3-dioxol~n (seo scotian 10.2.). 

He have shown in Seotion B tho.t t01"t1ory oxonium ions are 

solvated by ether moleoulos. Kinetic measurements will not difforen-

tiate botween tho polymerisation of tho solvating moleoulo or of an 
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in.-ooming monomer molooulo bOOD.uso if tho solvating molooulo woro 

polymorised it would be immodi::l.toly repll'.ood by Mother monomar or 

polymer moleoulo. However, if ono oonsiders th~t tho solvnting 

moleoule is orionted Mcording to tho diroction of·:t.'ia dipole moment, 

tho ring-expnnsion moohanism booomes tho more plausible booause tho 

.olv~ting ~ __ " o 
moleculo is in tho correct position to form tho four-oantred tr~ 

sition etc.to proposed. Tho orionto.tion of solvo.ting moleoulos in 

the direction of their dipolos has beon disoussod by Szwaro8• This 
o.rjlL .... ~t 

is 0. furthor ~ •• ce of otiieaee in f~vour of tho ring-expc~sion 

mech~nism. 

Furthermore, Dreyfuss9 has shown th~t in the polymerisation of 

+ -tetrahydrofur~ by Et30 BF4 there is a termino.tion whioh ie a re~tion 

ano.logous to tho deoomposition of triot~loxonium s~ts: 

Therefore if the polymerisetion of l,3-dioxolan were a ring-opening 

process, o.s Jo.~ks4,6 h~.s suggestod, than by analogy a similar 

termination would be expeoted: 

This Wo.s not observed (Ohapter 5) :md II\Y explo.nation is that the 

meoho.nism of polymor~so.tion is not a.no.logous to tho.t of tetr~dro­

furan o.nd is not tho.t proposed bl Jo.a.oks4, 6. Therofore non-termina.-
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tion is consistont wi"th tho riDg'-expt:1.nsion mcchD.nism. On tho other 

hn.nd, JD.n.Cks,7 objoots to this o.rgumellt becD-use he considers tha.t 

tho -CH
2

OCH
2

F group is unstablo n.nd tho.t thereforo it would not 

bo formed. 

10.4. Other .C.~omistry which Supports tho ltitl8=lxpo.nsion 6looh£l.nism 

Rins-expansion sooms to be 0. good mochani~ for the polymori-

sation of cyclio formals but it would be bottor if evidonoo for 

this could bo found elsowhoro. Fortunately somo roaction mochanisms 

have beon proposed which ~o si~il~ to tho ring-oxpansion. 

10.4.1. !22..to.l ExchAA&~ 

The excho.ngo of Motal groups is well knownlO and tho rOD,otion 

of 1, 3-dioxolo.n cm.d dimothyl form~,l is a. t7Piool oxamplo, Groshamll 

showod that this roaction is co.talysod by sulphuric Mid ~.nd ho 

obta.ined D, low yiold of tho -9roduot (F). 

CH
2
--OCH

2
OCH

3 

ill:! -OOIl:!OCH 3 

(F) 

Tho oquilibria. involved in theso roa.otiolll bIIIre boon studiod in 

o 12 oo.rbon tetrachloride solution a.t 20 by Ivanov ot al. • Theso 

workors formod oligomers by fUrthor roaoti)D of (F) with l,3-dioxolan 

and found that tho thormodynamio paramoters of this equilibrium 

o.greod will with those for the polymorisation of 1, 3-dioxol0,n 

determined by Plesoh and Wostorm~5. Thoroforo, tho low yield of 

(F), obsorvod by Gresham i8 oxplainod by tho equilibrium nll.turo of 
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tho roaction bocO-uso co.lcul~.tion shot'1s tho.t his conditions wore 

close to tho coiling tompor~turo ~d floor concuntro.tion of this 

systom. 

If Ja.."l.Cks' m()cha.nism l'lOrO correct. the product observed could 

only be formed by two concerted reactions: (In the following mechanisms 

the anions are omitted for clnrity) 

J aD.cks mecho.ni sm: 

o !;'. 
---..-.. HOCH3 + CH3OCH2OV f ____ -..1' 

CH3-

1
0 

H2 ...... "'\---~ 

CH or, - --0 3 I 
H 

H 

~ CH3OCH20(CH2)2OCH2!chj 

If Jaaoks' mochanism w()re corroct, it would be difficult to im~ino 

the esto.blishment of a cle~ equilibrium between tho products and 

tho roooto.nts, whoreD.s the ring-expDnsion mochD.nism yields the 

correct product nnd tho simple equilibrium n.').turv of tho rOD.otion 

is re~ily explo.ined. 

10.4.2. Oopoly~oris~tion with StYTo~e 

A quito differont phonomenon, whioh holps to olucid~te tho 

propagating meohanism, is the copolymoris~tion of 1.3-dioxolo.n with 

styrenol3• Since the triphenylmethyl oation roacts with 1,3-dio%olan 
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by hydride ::l.bstra.otion giving triphonylmath!'.no o.nd the 1, 3-dioxolonium 

ion, it follows thn,t tho more reMtivo styryl ion would roo.ot· in a 

simila.r W[l~, so tha,t copolymoriso.ti')n would not occur. },ioroovor, 

styronC3 co.nnot bo polymorised ca.tionio~lly in the presenoe of othi3rs 

or other oxygen compounds, since those ~o much more basic th~ thC3 

olefin. Thorefore, for copolymorisation of styrene ~d l,}-dioxolan 

tho propaga.tion step must toke pln.ea without the form . ."tion of ~'), 

carbonium ion. An obvious alt0rna.tivo moeho.nism involves the 

insertion of tho double bond into ono br~.nch of tho oxonium ion. 

J(k~ks mechanism 

(0) 

CH2 ,CHPh 

~ -ilCH2CH2ClIPh • 0 (H) 

A further wli t of styrene Crul bo incorpor::-.ted into (C) by a. roo.ction 

rulD.logous to pD,th 2 whoreo.s 3. furthor unit of styreno em be ineor-

porD.ted into (H) by po.th 1. 

~ 
l~) 
'I~ / 

dH2SCHPh 

Sinoe the oopolymoris~tion exporimentsl3 were done with boron 

(J) 

trifluorido ethert'.to ('.s tho ca.taJ.yst, whoso mode of o.otion is still 

qui te obscuro, the o.otiv::l.ting group dorivod frcm tho oatalyst 1s 
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denoted by Y(whioh m~y be Et) ~bove. 

In the rill€-0xpo.nsion Q:X:.';'.f:lple further units of styron<3 cnn bo 

incorporated by this reaction if Y is mobile ovor ~ll the oxygen 

atoms. Cortn.inly, this is the O:".BO with perchlorio acid whore 

Y • H, ~d we soc no reason why an othyl group should not tronsfer 

by a similar prooess, This would produco an ::Il.tornD.ting polymer 

with not more than 5~~ of styreno. 

However, experiment ho.s shown tha.t if ~.n oxooss of styrono is 

used, sequenoes of up to four styrono units c".n. be formod, 0.1 though 

tho formation of styreno soquenoos is under nll c·)ndi tions loss 

probable than tho formD.tion of l,3-dioxolo.n soquenCGS, Therefore, 

both roa.ct1on mechnnisms requiro a rea.otion (K) by \-Ihich sequenoos 

of styrone units I CDn be formod: 'I.. r; 
-o(CH2) 3CHPh-( + CH2:CHPh --+ -o(CH2) 3CHPhOH2CHPu-{. 

The remarkn.bly high molooulo.r woights of oopolymers of l, 3-

dioxoll).n D.nd styrone, which woro n.chioved by Yama.shital ), are 

(K) 

easily intolligiblo in terms of the insortion moohDnisms shown abovo 

(a, Ht o.nd J). C3.tionio polymorise.tion of styrene yields low 

moleoular weight polystyrenes beoause of proton transfor to monomer, 

from tho on.rbon o.tom next to tho growing ond. Thoreforo if tho 

growing species arc oxonium ions tho prinoipal ohain breaking reaction 

is frustro.ted. 

Sinco tho insertion meohanisms proposed abovo (G, H, and J) 

aro examples of tho riftB-expa.nsion (oxoept tht\t • is formed by 

insertion across tho linG~ bronch of tho oxonium ion) we oonsider 

those rosult. of Yamashito to be furthor ovidence tor tho rins-
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expa.n.sion mochn.niarn for the polymeris!l.tion of 1,3-dioxolNl. How-

evart it rom~ins to be soen whothor theso copolymors oro cyclic and, 

if so, whether they o.ro wholly s·?, or whethor thoy also conto.in 

linear fragm~nts; thUD wo could distinguish botwoon tho theorios of , 
Flasch and Uostormo.nn a.nd of Ja.."t.cks. 

10.4.). Tho Prop~~tion of Cyolic Ethers 

Thero arc some roo.ction mochD.nisms in tho litor.,turo whioh 

involved 4--contred tra.nsition statos of tho typo involvod in tho 

ring-oxpo,nsi on meoh1:'l.ni sm. 

For oxaull;>lo, \1llJ:'tski ::md Haksolmo.n14 propo..rod oxo.cyol::mes by 

distilling ~,(~\ -dimathoxyalknnes in tho presonoo of HC1/SeCa
5 

with tho liberation of dimothyl ethor. These rQacti~ns, a.g. tho 

propo.ro.tion of tatrr.bydrofuro.n, CD.n be ropresented by a mochcmism 

whioh is c10sely rolo.tod to tho dopolymorisation of polyforcals, as 

intorpreted by tho ring-oxpnnsion moohnnism. 

HCl/SbC15 , [\ n 
H..!.'n' ~ ~/ + 

&H;' 6113 

S~16 

Anothor eXNDplo tram these authors14 is tho following roo.ction 

whioh involves no form~.l group: 

Similarly, the formation of oyolic totrnmors and dimors from 
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ethylene oxido15 can bo roa.dily oxpln.inod by [I. similo.r mooh~.nisrJ. 
+ -Tho co.talysts woro Et30 BF 4 a.nd BF3 ; the rnochD.nism oo.n bo ropro-

sented : ShOW::OIO .. , whero R • C

G
l' CH3_~~H2' 

'"ky r ·'V 
I \. ~ I 

K,./- ~ -t: ~ 
Sinoo the reaotions D.bovo involvo ethors r1:l.ther than forma.ls it 

o.ppoo.rs thnt tho 4-oontrod tra.nsi tion stato proposed f'or tJh.J polymori-

sation of 1,3-dioxolo,n mo,y bo important in tho rOD.ctions of oJCYgon 

compounds othor th~ formals. 

Howover, those oxamples pose 0. problom, in tho.t tho polymori-

sation of tetr~drofur~n is considorod to yiold linoar polymors by 

0. linear propo.g~tion. Howevor, much of tho work on tho polymori-

Bation of totranydrofuro~ has boon dono with initio.tor8 whioh arc 

expeoted to produce and-groups. For oxo.rnplo trietbyloxollium 8:;1.1 ts9 

ho.vo boon usod O.S ca.to.lysts n.nd \,li th thOBO tormin:'!.tion oocurs so 

th:'!.t it is not surprising that linoo.r polym~rs are producod. It 

romains to bv Boon \,lhothor tho polytotrD.hydrofuro.n propared undor 

CD.rofully oontrollod oondi tions is linoD.r or oyolio. 
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CHAPTER 11 

Suggestions for Furth3r Hark 

Uhereo.s triethyloxonium tetro.fluoroborD.to is D.n ineffioiont 

oo.to.lyst for the polymeris::,tion of 1,3-dioxolo.n.triethylexonium 

hoxD.fluorot'.ntimoDtl.te a.ppeoJ:'s to reo.ot with 1,3-dio%01t'n ~nd its 

polymer to give 0. lOO::~ yield of active oontres. Thorofore, 0 study 
and. 

of the polymorisa.tion of 1,3-dioxolan~lt3-diOXOPa.n by triothyloxonium 

hElltn.fluoroantimon<l.to should givo o.uthontio vo.lues of k. Couplod 
P 

with this study, the a.ssooio.tion oonstants for trietbyloxonium 

hoxa!1uoroa.ntimonD~e in methylene diohlorido and in solutions of 

methyleno diohloride Dnd l,}-dioxolo.n neod to be determined. By 

vo.ryirl8 tho oonoontro.tion of tha oo.talyst it should b~ pessiblo t,) 

demonstrate tho.t tho k of froe ions is simil~ to the k of ion-
p p 

pairs. 

Sinoo tho ring-expo.nsion meohnnism ho.s boon oritioisod by J~,:,oksl 

further and-group Dn~lysia mny be nooossnry to esto.blish tho moohanism 

of the polymoriso.tion. This o.no.lysis could bo carriod out on the 

1 2 
lin~s usod by J~D~ks '. The polymerisatioD of l,3-diox01Dn and 

1,3-dioxop~n by HC104 should be torminated by sodium othoxldo, th~ 

polymer hydrolysod o.nd tho oonocntrD.t ion of etho.nol determined by 

g.l.o. Th9 s~mo method oould also bo appliod to the reaction 

+ -ol'l.to.lysed by Et 30 SbF 6' exoept tho.t tormination should bo by o. 

basio moleoulo to whioh the ethyl group onn transfor. 

Tho oopolymorisation of oyolio for~~lB ond styrono is ~lso a 

possiblo mothod2 by whioh wo could distinguish botwo~n tho thoories 

of Jo.a.oks1 a.nd Plesoh and Uestermo.nn3• 
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'rho roo.otions of tho oyclio f'ormCl.ls Hi th HOIO 4 and with 

Et30+SbF'6 o.bovo tho CGiling tomporo.turo should bo studiod in more 

datD.il. In thQ ID.ttar oo.so i t m~ bo possiblo to isolo.to tho 

l-othyl-l!t -1, 3-dioxolnniwn ho:x:~.fluoroo.ntimona.te. By morulS vf tho 

roo.ction of l,3-dioxolnn with dimothyl form~l it should bo possiblo 

to show thnt no hydroxylic produots ~o formod. 

A furthor suggestion is tho uso of' triphonyloxonium hoxnfluoro-

~timona.to ~s tho co.talyst, in whioh Oo.so k should not bo signifi­p 

oantly difforent if Ja.o.oks· moohnnism e,pplios whorell.s in tho ri~ 

oxpansion moohanism k would bo oxpoctod to bo smallor due t.') th0 
P 

dolooa.lisation of tho positivo ohDrgo on to the bonzono ring. 

Thareforo, by theso exporimonts we may be ~blo to dotormino the 

truo meoho.nism of th3 polymorioation of oyolio formals and Dlso 

dotormino ovon botter vnluos of k th~n thoso avo.ilo.blo from this 
p 

work. 

Furthormoro tho polymorisa.tion of totrahydroturN'l shf')uld bo 

studiod undor oonditions in whioh hydrido o.bstr~tion and termination 

o.:ra a.bsont. By use of 0. suitable oa.talyst whioh might bo a.nhydrous 

porohloric acid we o~ asoertain whother tho polymer is linoar or 

oyolio. 

RQforenoq! 

1. V. Jaacks, K. Boohlke and E. Eborius, Mak;omgl. Cham •• 1968, 
ill, 354. 

2. P.B. Flesch, SYmp. on M~romolooulo8, Buda.post, 1969, Main Looture, 

and Chaptor 10, this Thosis. 

3. P.H. Plesoh and P.B. t'lest ormann , l.. Polymor Soi. C •• 1969, 

(16), 3837. 



-179 -

Appendix 

A Report on Jvly: ·Visi t to tho University of Mainz 
15th to 25th March, 1970 

In Section C of this Thesis the relative merits of the two 

mechanisms proposed for the polymerisa.tion of 1,3-dioxola.n by 

perchloric acid are discussed. Jae.cks maintains tha.t the polymeri-

sat ion proceeds by a linear propagation in which the active centre$ 

are tertiary oxonium ions, whereas we consider that the active 

centres are secondary oxonium ions and that propagation prooeods 

by a ring-expansion mechanism. 

It appeared, after lengthy discussion with Dr. JBaCks, that it 

would be useful for me to visit his group. The University of Keele 

provided funds to p~ for the journey, and the University of r;!a.inz 

paid my living expenses whilst I wa.s there. 

I visited the research group of Dr. V. Jaacks mainly to 

compare his experimental methods with ours. Wheroas we use high 

va.cuum techniques, their experiments are oarried out in a N2 atmoe­

~here in vessels which were pUmped for a short time under an oil-

pump vacuum (a.nd flamed poriodioally during the pumping). The dosing 

is done by ayringe-througb-rubber septum teohniquos. However wo 

showed that both tho Keele monomer and the }'Iainl'l monomer oontained 

about the same concentration of wat~r. 

Our disoussions showed that the views of Dr. Jaaoksare mainly 

based on an organic-ohemical point of View whereas our vio'fs are 

based more on an analysis of kinetio experiments and end-group 

analysis. Moreover we narrowed tho differonoes down to only a few 
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points DJ'ld now think that these can be roconcilod. ~lhen wo comp!l.rod 

the conditions of JM,cks' exp~riments with OUI's. we found thDt with 

his m'Jnomor and a.cid concontr~tions \-10 would l'I.lso find th~t tho 

concentrD,tion of end-groups would be fortuitously oqual to tho a.cid 

concontro.t ion. 

My visit to M~inz led diroctly to a. visit by throe of Dr. Jnooks' 

coworkors to Koelo (14th to 16th April) in ordor to soo our experi­

monto.l tGohniques. Thereforo wo o.re boginning to olaritY tho si tuar­

tion [J,nd wo hope ths.t tho mochanism of tho polymorisation of 1.3-

dioxolon will soon bo sottlod by our joint offorts. 

Hhilst in Gorm~ I wa.s a.ble to visit tho Institut fiir 

Mn.kromolokularG Chomie in D~msto.dt. Thoro I tD.lkod with Professor 

R.C. Schulz and his coworkors about their work on tho eloctrochemio~~ 

polymerisD.tion of 1.3-dioxolan. 

To concludo I wish to ~honk all the pooplo who made this very 

useful and intoresting trip possible. 
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