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Abstract 

Using a novel library of natural products isolated from temperate zone plants, the 

antiparasitic activity of 643 Phytopure library compounds were determined against 

intraerytrocytic P. falciparum, the blood-stream form of T. b brucei and axenic amastigotes 

of L. mexicana. Twelve compounds with a 50% inhibitory effect (EC50) values of less than 

6 μM were detected against P. falciparum, 25 compounds with an EC50 values of less than 

2.8 μM against T. b brucei, and 23 compounds with an EC50 values of less than 2.8 μM 

against L. mexicana. The cytotoxicity effects, and thus their selectivity of action against each 

parasite, of these selected compounds were determined against a human liver cell line 

(HepG2) to establish priorities for further work. Here, four structurally-related triterpene 

compounds (700022, 700107, 700136 and 700240) were shown to have activity against 

axenic and intramacrophage amastigote stages with reasonable selectivity when compared 

to the THP-1 and HepG2 human cells.  

By exposing promastigote L. mexicana to increasing concentrations over 28 weeks, a 700022 

resistant line was generated in vitro. Promastigotes of this resistant cell line were 7.5-fold 

more resistant to 700022 than compared to the parental wild type line, with axenic 

promastigotes having a 40-fold increase in resistance. Interestingly, the 700022 resistant 

promastigotes had a 25% smaller cell surface area and a 85% reduction in flagellum length. 

The 700022-resistant line was cross resistant to the related triterpenes 700107, 700136 and 

700240 and miltefosine (11.8-fold compared to wild type strain). The potential for mutations 

within genes (LmMT/LmRos3) that encode subunits of the miltefosine transporter complex 

were investigated. No mutations were associated with LmMT, with three nonsynonymous 

mutations found in LmRos3.  
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This thesis also reports the evaluation of transgenic L. mexicana expressing a novel NanoLuc 

luciferase, and a PEST-tagged variant, as a tractable, rapid and sensitive system for 

antileishmanial compound screening. The validity of this approach is demonstrated by a 

screen of the MMV Pathogen Box. The opportunity afforded by the transgenic L. mexicana 

expressing NanoLuc-PEST in an in vitro infected macrophage model is also demonstrated. 

These transgenic L. mexicana offer an opportunity for high-throughput screening 

programmes that assess the more clinically-relevant activity against intracellular amastigote 

parasite without the time, specialist and post-assay processing burdens associated with 

current high-content imaging techniques. 
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MT/Ros3 MIL transporter. The hydrophobic MIL is typically bound to 

serum albumin (represented here is a tissue culture system using bovine 

serum albumin, BSA) which acts as a reservoir. The translocation of MIL 

from the outer to the inner leaflet of the plasma membrane is facilitated by 

the Leishmania miltefosine transporter (MT), a P4-ATPase subfamily flipase 

shown here as the α-unit, with its β-subunit termed Ros3 (Perez-Victoria et 

al., 2003).  
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Figure 4.2: Selection of a 700022-resistant line in L. mexicana. (A) Promastigote 

cultures are exposed sequentially to the indicated concentration of 700022 

(increasing tone of gray to show increase in concentration). These 

concentrations of 700022 are based on the EC50 in promastigotes determined 

at start of week 0, 10, 15 and 25. At the indicated points (circles) the EC50 

of 700022 was determined in promastigotes (red, note y-axis is split with 

different concentration ranges indicated) or axenic amastigotes (black) 

prepared from the promastigote culture under selection. Log concentration 

normalized response graphs to determine the EC50 in promastigotes (B) or 

axenic amastigotes (C). The key indicates the weeks of selection as well as 

the EC50 (in μM). The mean±StDev (n=9) are reported.  
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Figure 4.3: Observation of resistance stability for L. mexicana axenic amastigotes 

and promastigotes under compound pressure in stepwise concentrations after 

28 weeks (black), and 60 days after removal from compound pressure (red). 
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Figure 4.4: 700022-resistant L. mexicana axenic amastigotes showed decreased 

sensitivity to related triterpenes. Log concentration-normalised response 

curves for the related triterpenes 700022, 700107, 700136 and 700240. 

Response curves for axenic parasites before exposure to 700022 (black lines) 

and after 8 weeks of selection (red lines). The mean±StDev (n=9) are 

reported. 
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Figure 4.5: Comparative immunofluorescence microscopy analysis wild-type and 

700022 resistant L. mexicana. Representative images of promastigotes from 

wild-type (A) and 700022-resistant (B) stained for α-tubulin (green) and 

DNA (blue). Note the absence of flagellum in the 700022-resistant 

promastigotes. The same staining was applied to wild-type (C) and 700022-

resistant (D) axenic amastigotes. N, nucleus; F, flagellum; K, kinetoplast. 

Bars = 10µm  
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Figure 4.6: ImageJ analysis of L. mexicana promastigotes stained for α-tubulin 

content. Using the area tool (white) the area of the promastigote cell is 

outlined in wild-type (A) and 700022-resistant cells. Using the length tool 

(red), the length of the flagellum is indicated in the same images 
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Figure 4.7: ImageJ analysis of L. mexicana axenic amastigotes stained for α-

tubulin content. Using the area tool (white) the area of the amastigote cell is 

outlined in wild-type (A) and 700022-resistant cells. 

178 

Figure 4.8: Scatterplots of the distribution of cell body size and flagellum length in 

wild type and 700022-resistant L. mexicana. Box and whisker plotes (boxes 

illustrate 25 to 75% distribution and median, with whiskers showing range 

of data. (A) Compares the distribution of flagellar length (µm) in wild-type 

(WT) and 700022-resistant (r700022) promastigotes. (B) and (C) compare 

the surface area (µm2), a surrogate determination of cell size, in 

promasigotes and axenic amastigotes, respectively. The significance of the 

difference in means is shown (two-way t-test).    
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Figure 4.9: Scanning electron microscopy of L. mexicana promastigotes. Wild-type 

promastigotes that are (A) untreated or (B) exposed to 1x EC50 (11. 4µM) of 

700022. 700022-resistant promastigotes that are (C) untreated or (D) 

exposed to 1x EC50 (85.6µM) of 700022C. 
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Figure 4.10: Transmission electron microscopy of wild type L. mexicana 

promastigotes. Wild-type promastigotes that are (A) untreated or (B) 

exposed to 1x EC50 (11. 4µM) of 700022 for 24 hours.  N, nucleus; K, 

kinetoplast; M, mitochrondria; FP, flagellar pocket; F, flagellar; 

acidocalcisomes (black arrows).  
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Figure 4.11: Transmission electron microscopy of 700022-resistant L. mexicana 

promastigotes. 700022-resistant promastigotes that are (A) untreated or (B) 

exposed to 1x EC50 (85.6. 4µM) of 700022 for 24 hours.  N, nucleus; K, 

kinetoplast; acidocalcisomes appear as vacuoles or with an electron-dense 

inclusion (black arrows) following exposure to 700022. 
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Figure 4.12: Exploring cross-resistance in 700022-resistant L. mexicana. (A) Log 

concentration -response curves used to estimate EC50 of the indicated 

compound/drug in wild type (green curve) and 700022-resistant 

promastigotes (black curve). (B) Log concentration -response curves used to 
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estimate EC50 of the indicated compound/drug in wild type (green curve) and 

700022-resistant axenic amastigotes (black curve). The data shown is a mean 

± StDev from at least two biological replicates. See also Table 4.3.  

Figure 4.13: Schematic illustrating the mapping of mutations in Leishmania MT 

gene associated with miltefosine resistance, as previously discibed (see 

Table 4.4). Fragments 1 to 3 were chosen to amplify from L. mexicana 

genomic DNA.  

189 

Figure 4.14: Verification of PCR amplification from (A) LmMT and (B) LmROS3 

genes. Size fractionation of EcoRI restricted plasmid clone containing the 

following PCR product; 1&2 are fragment 1, 3&4 are fragment 2 and 5&6 

are fragment 3 of LmMT gene; 7 and 10 are 100bp markers (Bioline); 8 and 

9 are of LmROS3. R; 700022-resistant line; WT, wild type. Note that 

fragment sizes are larger than in Figure 4.13 as include flanking regions with 

restriction sites.  

189 

Figure 4.15: Schematic representing sequence analysis of LmMT gene. (A) A 

summary of all SNP identified in various clones after sequencing. The 

nucleotide position of each SNP is indicated by a bar, with the effect on 

amino acid sequence shown adjacent. For ease, NS SNP are shown in red 

throughout, with synonymous SNP in green. (B)  A summary of the 12 

clones for each fragment of LmMT sequenced compared LmxM.13.1530. 

The WT-prefix is for the pre-selection wild type and the R-prefix for 

700022-selected parasites. The HH code uniquely identifies the PCR clone 

sequenced. Note that the synonymous G2541A SNP in all fragment 3 clones 

sequenced is marked only once in the schematic.   

191 

Figure 4.16: Schematic representing sequence analysis of LmROS3 gene. (A) A 

summary of all SNP identified in various clones after sequencing. The 

nucleotide position of each SNP is indicated by a bar, with the effect on 

amino acid sequence shown adjacent. For ease, NS SNP are shown in red 

throughout, with synonymous SNP in green. (B)  A summary of the 9 clones 

for LmROS3 sequenced compared to LmxM.31.0510. The WT-prefix is for 

the pre-selection wild type and the R-prefix for 700022-selected parasites. 

The HH code uniquely identifies the PCR clone sequenced.  
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Figure 4.17: Comparison of the effect of parasite growth between L. mexican WT 

and 700022 resistant line. The number of parasites were counted over a 72 

hours for L. mexicana promastigotes, and over a 48 hours for L. mexicana 

amastigotes. The growth of resistant cells was two times more than to the L. 

mexicana wild type of both forms promastigotes and amastigotes over a 72 

hours and 48 hours period respectively. The resistant cells are smaller but 

they growth and divided faster than WT cells after remove the drug pressure. 

197 

Figure 5.1: Optimizing assay volumes for bioluminescence assays with NanoLuc 

and NanoLuc-PEST transgenic L. mexicana. Correlating bioluminescene 

signal with parasite volume for (A) NanoLuc and (B) NanoLuc-PEST 

transgenic L. mexicana. Black lines represent untreated control parasites, 

and Red lines represent parasites exposed to 0.2 µM AmB. Data represent 

mean ± StDev of n=3 technical replicates. Charts C and D report the 

bioluminescent signal from 20 µL of NanoLuc and NanoLuc-PEST 

transgenic L. mexicana (respectively) with increasing volumes of Nano-Glo 

reagent. Bars show mean ± StDev of n=3 technical replicates.  
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Figure 5.2: Amphotericin B concentration-normalized response profiles. Graphs 

depicting the concentration-response to amphotericin B in the (A) parental, 

(B) NanoLuc and (C) NanoLuc-PEST L. mexicana lines. The black line on 

each graph represents the response as determined using the fluorescent-

based AlamarBlue assay. The green and blue lines represent the 

bioluminescent activity in the respective (B) NanoLuc and (C) NanoLuc-

PEST L. mexicana lines. Mean values ± StDev (n=6) are shown. Data are 

reported in Table 5.3. 
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Figure 5.3: Miltefosine concentration-normalized response profiles. (A) 

Concentration-response curve of the parental L. mexicana cell line, 

measured using the fluorescence-based AlamarBlue assay. (B) 

Concentration-response curve of the transgenic NanoLuc-PEST expressing 

L. mexicana clone measured using both the fluorescence-based AlamarBlue 

assay (black) and the bioluminescence-based assay (blue). Mean values are 

shown (n=6) ± StDev. EC50 values for the parental and NanoLuc-PEST cell 

lines are reported in Table 5.4.  
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Figure 5.4: MMV Pathogen Box screening using the NanoLuc-PEST assay.  The 

library is provided as five plates labelled A to E (and as shown here), each 

with 80 compounds – shown here on the x-axis (see also Table S2). The 

relative bioluminescence of the NanoLuc-PEST expressing L. mexicana 

when screened against 2 µM (filled circle) or 10 µM (open circle) is shown 

with the lines marking the StDev. The dashed line shows the point at which 

a 95% reduction in relative bioluminescence, ie a 95% kill, was achieved.  

213 

Figure 5.5: Screening the MWV Pathogen Box using the NanoLuc-PEST-based 

bioluminescence assay. Scatterplot correlating the mean bioluminescence 

following exposure to the indicated concentration of compounds. The mean 

(n=4) bioluminescence signal is shown, with the key illustrating the disease 

screen that identified the compound for inclusion in the library 

(www.pathogenbox.org) (A) Illustrates the full library dataset with (B) 

providing an inset of the most potent compounds from the MMV Pathogen 

Box screen.  
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Figure 5.6: Log-concentration response curves for MMV Pathogen Box hits. 

Concentration-normalised bioluminescence response curves for 22 hits 

against axenic L. mexicana amastigotes. The data shown is a mean ± StDev 

from at least three biological replicates. EC50 estimates are reported in Table 

5.5. 
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Figure 5.7: Bioluminescence assays of intracellular activity of MMV Pathogen Box 

compounds. The concentration response curves (mean±StDev of n=9) for 

the indicated MMV Pathogen Box compound, amphotericin B (AmB) or 

miltefosine (MIL) against intracellular amastigotes in THP-1 (dotted lines) 

or axenic amastigotes (full line).  
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Figure 5.8: EC50 responses to Amphotericin B (AmB), Miltefosine (MIL), 

Pentamidine and Hygromycin B in axenic L. mexicana amastigotes 

expressing NanoLuc-PEST. Mean values are shown (n=4) ± StDev.  
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Figure 5.9: Time and concentration-dependent loss of bioluminescence 

representing a timecourse of cytocidal activity for antileishmanial drugs. The 

mean noprmalized bioluminescent signal from L. mexicana NanoLuc-Pest 

transgenic lines exposed to increasing fold-EC50 concentrations of 

amphotericin B (AmB), miltefosine (MIL), pentamidine and hygromycin B. 
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The key indicates the time for each concentration-reponse reported on each 

graph. Data represent mean±StDev (n=9).  

Figure 5.10: The bioluminescent reaction catalyzed by NanoLuc luciferase. 229 

Figure 5.11: Comparison of bioluminescence- and microscopy-based intra-

macrophage infection assays following treatment with Amphotericin B. (a) 

Infection of PMA-differentiated THP-1 was assessed by the NanoLuc-

PEST-expressing transgenic L. mexicana, using the novel bioluminescence-

based assay. Infected cells were exposed to 0.8 µM amphotericin B, or left 

untreated, for 72 hours. Relative bioluminescence is shown after each 

treatment, calculated against the average value for the untreated cells. Mean 

values are shown (n=4) ± SD. Results were analysed by Paired T Test on 

raw data (p<0.001). (b) Infection of PMA-differentiated THP-1 

macrophages was assessed by the NanoLuc-PEST-expressing transgenic L. 

mexicana, using the standard microscopy-based counting assay. Infected 

cells were exposed to 0.8 µM amphotericin B, or left untreated, for 72 hours.  
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Figure 6.1: Comparing 700022 activity between axenic amastigotes (red) and 

intramacrophage amastigotes (blue). Concentration–response curves for 

compound 700022 against: intracellular L. mexicana NanoLuc-PEST-

transgenic line (blue), axenic amastigotes of NanoLuc-PEST-transgenic line 

(red) as well as the human cell lines HepG2 (green) and THP-1 (black). Most 

data from chapter 5. The data for the intracellular L. mexicana NanoLuc-

PEST-transgenic line represent one biological repeat of three technical 

repeats. 
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Figure 6.2. Structure of MMV690102. 241 
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Chapter 1: General introduction    

 

1.1 The global impact of parasitic diseases  

Malaria and the Neglected Tropical Diseases (NTDs) are major causes of global morbidity 

and mortality. The NTDs were originally a group of seventeen bacterial, parasitic, viral, and 

fungal infections defined by the World Health Organization (WHO) as communicable 

diseases with a diverse geographical impact affecting about 1 billion people (including an 

estimated 500 million children) across some of the poorest countries (Figure 1.1) (WHO, 

2013). The group of diseases described as NTD increased in 2017 to include conditions such 

as snake bite and deep infecting mycoses – with a current list available at 

www.who.int/neglected_diseases/diseases. NTDs are responsible for more than 500,000 

deaths every year and include conditions that cause cognitive impairment, stunted growth 

during childhood, anemia, blindness, and severe pain (Hotez et al., 2007; Conteh et al., 2010; 

Barry et al., 2013). In 2010, according to the Global Burden of Disease Study, NTDs 

accounted for some 26 million disability-adjusted life years (DALYs) (Hotez et al., 2014). 

The reasons for this neglect are poverty with sub-standard sanitation, geographical isolation, 

rarity of data regarding to the local and global burden, and insufficient financial and funding 

resources for their control (Hotez et al., 2009; Allotey et al., 2010).  

 
 

Figure 1.1: The original Neglected Tropical Diseases (from Mackey et al., 2014). 
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In recent years, there has been considerable increase in efforts to reduce the burden of several 

NTDs, but they still contribute to suffering in many countries and recognise the potential 

impact of future global warming (Booth, 2018). Diagnostics are needed to detect and monitor 

the levels of infection and to eventually certify the elimination or eradication of NTDs in 

regions following intervention (Dowdle and Cochi, 2011). In NTD endemic areas, 

preventive chemotherapy is typically considered to be likely performed through mass drug 

administration (MDA) to reduce the reservoir of infection and eventually reduce mortality 

(Cromwell and Fullman, 2018; Keenan et al., 2018) and in 2015 approximately 1 billion 

people were receiving preventive chemotherapy for one or more NTDs (WHO, 2017). There 

is however, an argument to be made for a more focussed delivery of MDA recognising that 

infection diseases are often twice higher in people from socioeconomically disadvantaged 

groups compared with their better-off compatriots (Houweling et al., 2016).  

 In this thesis I focused to study the impact of P. falciparum (human malaria), L. mexicana 

(leishmania cutaneous), and T. b. brucei. These eukaryotic parasites are responsible for a 

range of diseases in humans. Human African trypanosomiasis (HAT), also called sleeping 

sickness is caused by two subspecies of T. brucei - T. brucei gambiense and T. brucei 

rhodesiense (Büscher et al., 2017). The symptoms of late stage HAT include sleep disorder 

and psychiatric disorders, changes of behaviour, confusion and poor coordination. HAT can 

be fatal if not properly diagnosed and treated, although cases of asymptomatic chronic 

infections have been described in West Africa (Chappuis et al., 2005). Leishmaniasis is 

caused by an intracellular protozoa parasite with over 20 Leishmania species known to be 

transmitted and infective to humans. These parasites have been implicated in a range of 

disease conditions according to the observed clinical symptom presentations; cutaneous 

leishmaniasis, muco-cutaneous leishmaniasis and visceral leishmaniasis (Burza et al., 2018). 

Parasites that cause Malaria are associated with the highest mortality and morbidity among 
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human parasitic infections (Bern et al., 2008; Ashley et al., 2018). About 40% of the world’s 

population are at risk of infection by malarial parasites, with some 465,000 mortalities 

recorded annually (WHO, 2017a). This burden is heightened due to the development and 

spread of resistance to antimalarial drugs (Guantai and Chibale, 2011; Ginsburg and Deharo, 

2011). Drug-resistant parasites typically usually result from indiscriminate use of 

antimalarial drugs (changes in drug accumulation), or reduced affinity of the drug target due 

to mutations in enzymes related to drug targets allowing parasites to escape from therapies 

(White, 1999; Kheir, 2011). The history of antimalarial drug treatment over the last 100 

years is marked by the discovery of new drugs often followed by the detection and then 

spread of parasites resistant to this drug. Therefore, the need for new classes of antimalarial 

drugs that will attack novel molecular targets is a continuous issue in antimalarial drug 

treatment (Sinha et al., 2014).  

 

1.2 Malaria  

1.2.1 Background of the Disease  

Malaria is one of the most common and debilitating infectious diseases in tropical and 

subtropical zones. The impact of malaria can be represented both in terms of its impact on 

health and its socioeconomic impact in endemic countries (Orem et al., 2012). An estimated 

3.2 billion people live in 97 countries with malaria and 3.3 billion people at risk which 

amounts about 50% of the world population (Dinko et al., 2016; WHO, 2016) (Figure 1.2). 

There is an approximately 212 million infections with malarial parasite all over the world; 

most of these cases (82%) were in the WHO African Regions, followed by the WHO 

Southeast Asia Regions (12%) and the WHO Eastern Mediterranean Regions (5%). 

Globally, malaria deaths were 429,000, and 90% of these deaths were in the WHO African 
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Regions, followed by the WHO Southeast Asia Regions (7%) and the WHO Eastern 

Mediterranean Regions (Belachew, 2018). 

The greatest burden of this was among children aged <5 years, who have yet to acquire 

immunity to the disease and subsequently account for 78% of total malaria-associated deaths 

worldwide (WHO, 2014).  

 

Figure 1.2: Map shows the global distribution of malaria endemicity (source- modified from WHO, 

2014).  

 

Malaria is caused by infection with parasitic protozoans belonging to the genus Plasmodium 

found in tropical and subtropical regions. The infection is transmitted through the bite of an 

Anopheles mosquito in the human host, when Plasmodium sporozoites infect the liver cells 

and then they infect red blood cells. The five species of protozoan responsible for disease 

malarial infections in human are; P. vivax, P. falciparum, P. malariae, P. ovale and P. 

knowlesi (circulates mainly among long-tailed and pig-tailed macaques that inhabit forested 

areas of South-East Asia) (Hellemond et al., 2009; Cowman et al., 2012). The most common 

are P. vivax and P. falciparum, the effects of which may be particularly severe in pregnancy 

which causes indirect death from abortion and intrauterine growth retardation. However, P. 
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ovale and P. malariae cause comparatively less severe clinical disease compared to other 

species (White et al., 2014; Tuteja, 2007). The signs and symptoms are varied according to 

age, and local patterns of transmission (Guintran et al., 2006). The economic burdens of 

malaria in stable transmission areas can be considerable, due to huge losses of income, high 

costs of treatment, low rates of education and agricultural production (Kiszewski and 

Teklehaimanot, 2004). Malaria accounts for up to 40% of public health expenditures, 30–

50% of in-patient hospital admissions, and about 60% of out-patient health clinic visits in 

endemic countries. The impact of this on endemic countries is a decrease in gross domestic 

product (GDP) of 1.3% (GDP is defined here as the sum of the monetary value of all the 

goods and services produced by a country) (Mwamtobe et al., 2014).  

Over time, the risk of malaria infection in a particular region varies due to malaria epidemics, 

changes in travel habits and patterns of migration, and the development of drug resistance. 

Thus, health system strengthening, infrastructure development and poverty reduction may 

all aid malaria control and elimination (MacPherson et al., 2009). Between the 1940s and 

the 1950s relentless regional and international efforts to treat malaria began, and further 

strategies have been developed with varied approaches over time. Between the beginning of 

this period and 1978, malaria was eliminated in parts of the Americas, Europe, and Asia. 

However, these efforts failed in many epidemic areas, particularly sub-Saharan Africa 

(Henry, 211). Recently there has been more attention to these areas by donor governments 

and multilateral institutions who have helped to decrease cases and deaths (WHO, March 

2013). Between 2005 and 2013, annual funding for malaria management was increased at a 

rate of 22% by the Global Fund.  The United Kingdom Department for International 

Development (DFID), The United States President’s Malaria Initiative (PMI), the World 

Bank and other donors accounted for 49% of total disbursed funding in the year 2010, 

resulting in a rapid scaling up of malaria control in Africa (WHO, march 2013; WHO, 2014). 
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The most important strategic areas of malaria parasite control actions have been identified 

and include; intermittent preventive treatment (IPT) with two doses of sulfadoxine–

pyrimethamine for pregnant women; and control of parasite transmission, focusing on the 

use of insecticide treated nets (ITNs) and indoor residual spraying (IRS) (Van Eijk et al., 

2013).  

 

1.2.2 Life Cycle of Plasmodium falciparum  

The Plasmodium parasites responsible for malarial disease have complex life cycles and 

spread between human hosts by the female mosquito vector (Figure 1.3) (Angrisano et al., 

2012). The parasite has a sexual and an asexual life cycle. The sexual life cycle begins in the 

gut and abdominal wall of the female Anopheles mosquito, while the asexual cycle begins 

in the liver of the infected human host and later when it enters the bloodstream where it 

invades and replicates within red blood cells. It is this intraerythrocytic part of the cycle that 

is responsible for the symptoms of the disease (Leera et al., 2014).  

The infection becomes symptomatic 10–15 days after being infected with malaria parasites. 

Such symptoms may include fever, chills, headaches, muscle pains, sweating and vomiting. 

In some cases the disease may progress to severe malaria where patients may present with 

additional complications such as; cerebral malaria, acute respiratory syndrome, severe 

anemia, kidney failure, hypoglycemia, pulmonary edema, seizures, coma and death may 

ensue (Betterton-Lewis, 2007; Shahinas et al., 2013).  

The erythrocytic stages have been studied in vitro culture, made possible in research by the 

growth of a continuous culture system that allows asexual parasite replication in erythrocyte 

stage. Most antimalarial chemotherapeutic agents are infections targeted at the asexual 

blood-stages of the parasite life cycle. By contrast, in liver stage there is a lack of in vitro 

culture (Vaughan et al., 2012; Paaijmans, 2014).  
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Figure 1.3: Asexual and sexual life cycles of Plasmodium falciparum in the human host and 

mosquito vector (Source: MMV).  

 

1.2.3.1 Asexual life cycle of Plasmodium falciparum  

a. Liver Stage/Pre-erythrocytic phase  

The infection begins when the sporozoites from the salivary gland of a female mosquito are 

injected under the skin when the mosquito feeds on a human. The sporozoites enter the 

circulatory system and then travel through the blood stream to the liver where they invade 

hepatocytes (Prudêncio et al., 2006).  

The sporozoite begins asexual replication, within the pre-erythrocytic stage, taking about 

10-14 days (depending on the Plasmodium species). The sporozoites mature and reproduce 
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asexually, becoming multinucleated schizonts (Figure 1.3). Over this period, the human host 

is asymptomatic. When the schizont matures and subsequently ruptures, it releases thousands 

of merozoite stage parasite into the circulatory system from the parenchymal cells of the 

liver (NIH, 2007; Betterton-lewis 2007). These merozoites may repeat the hepatic stages, or 

may enter the erytrocytic cycle (Leera et al. 2014). Some Plasmodium species, such as P. 

vivax and P. ovale can exist in a dormant state in the liver as hypnozoites. This stage is 

responsible for relapses of malaria (Prudêncio et al., 2006).  

 

b. Erythrocyte stage  

The merozoites released from hepatocytes into the bloodstream invade the erythrocyte, 

initiating a second phase of asexual reproduction (Cox, 2010). The malarial parasite grows 

and divides inside the erythrocyte, completing asexual cycle approximately every 24 hoursin 

P. knowlesi, 48 hours in P. falciparum, vivax and ovale and 72 hoursin P. malariae to 

produce between 8 and 32 parasites (PHE, 2013). The parasite displays morphological 

changes within red blood cells during its asexual cycle. The different stages of the intra-

erythrocytic cycle are shown in Figure 1.4. The merozoite develops into the ring form, is 

characterized by an extended central nucleus forming a ring, in which it spends between 20 

and 24 hours (Shahinas et al., 2013; Bannister and Mitchell, 2003). Parasites in this stage 

feed on hemoglobin and plasma nutrients from host erythrocytes through an endocytic 

process, in order to provide nutrients for growth and to synthesis molecules. This stage also 

extensively modifies the host RBC membrane (Van Dooren et al., 2005). The ring eventually 

enlarges to become a mature trophozoite which appears from 24 h to 36 h (Baumeister et al., 

2010). During this period the parasite is at its most active in terms of metabolism, 

development and RBC modification. The malaria parasite undergoes digestion of 

hemoglobin within its food vacuole, producing toxic haem products which are polymerized 
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into non-toxic hemozoin (dark pigment) (Shahinas et al., 2013; Van Dooren et al., 2005). 

Asexual reproduction takes place when the parasite undergoes several cycles of cell division, 

resulting in the schizont stage. Schizonts undergo cell division to form about 6 to 36 new 

merozoites which are released and subsequently invade several uninfected red blood cells. 

These then progress through the asexual cycle within the red blood cell, releasing a new set 

of merozoites after 48 hours, thus repeating the cycle (Leera et al., 2014; Cox, 2010).  

Plasmodium falciparum is the most virulent species causing human malaria, during the 

cyclical asexual phase of its development. At this point in its life cycle, it induces 

modifications of its host cell by establishing new permeation pathways in order to absorb 

nutrients (Oberli et al., 2014). This modification involves the parasite exporting more than 

10% of all its proteins into the cytosol of the infected red blood cell (Mundwiler-Pachlatko 

and Beck, 2013). The Plasmodium surface anion channel (PSAC), consisting of members of 

the cytoadherence linked antigen (CLAG) protein family, mediates this transport 

(Mundwiler-Pachlatko and Beck, 2013; Nguitragool et al., 2011). As a consequence, the 

infected erythrocyte increases its rigidity and adhesiveness resulting in alterations in 

microcirculatory blood flow. These alterations are responsible for many of the clinical 

manifestations of the pathogenesis of malaria (Oberli et al., 2014; Maier et al., 2008). The 

PfEMP1 protein (Plasmodium falciparum erythrocyte membrane protein 1) plays a key role 

in the pathology of falciparum malaria and displaying a variety of different binding 

phenotypes (Mundwiler-Pachlatko and Beck, 2013). Electron-dense protrusions appear on 

the surface of the host cell forming the anchor for the erythrocyte surface protein PfEMP1 

(Oberli et al., 2014). These unique alterations induced by P. falciparum, mediates 

cytoadherence to vascular endothelium resulting in iRBC cytoadherence and are therefore 

linked to disease severity.  
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Figure 1.4: Diagram showing asexual blood cycle of Plasmodium falciparum in humans, which 

usually takes 48 h to complete (Bozdech et al., 2003). 

 

c. Sexual Stage  

Within the erythrocyte, some of the merozoites undergo differentiation into male and female 

sexual forms known as gametocytes. The gametocytes do not cause illness but remain in the 

peripheral blood and exit from the host via the bite of a female Anopheles mosquito. The 

gametocytes are produced when the parasite is placed under stress factors such as 

antimalarial drugs or the immune system (Leera et al., 2014; Cox 2010).  

When a mosquito ingests infected blood, it becomes infected with male and female 

gametocytes which enter the gut of the mosquito. This begins a process known as sporogony, 

in which the gametocytes differentiate into male and female gametes and fertilization occurs 

generating zygotes. The zygote changes shape, converts to a retort form, finally producinga 

motile ookinete after 24 h in the gut lumen of the mosquito gut (Figure 1.5) (Angrisano et 

al., 2012; Anil and Marcelo, 2009). Approximately 48 h later, the ookinetes that first 

penetrated the peritrophic matrix then cross the midgut epithelium. Once an ookinete has 

reached the basal lamina it differentiates and begins maturation, losing its elongated shape, 

forming a young oocyst (Angrisano et al., 2012). After 10-12 days, the oocyst matures and 



11 
 

undergoes several rounds of nuclear division (sporogony of the parasite takes place), it 

releases several thousand sporozoites into the body cavity or haemocoel. Finally, these 

sporozoites then migrate to the mosquito’s salivary glands and are injected into the human 

host when the mosquito feeds, beginning the asexual cycle again (Cox 2010; Anil and 

Marcelo, 2009). 

 

Figure 1.5: Sexual cycle of the Plasmodium parasite in gut of mosquito (Angrisano et al., 2012).  

 

1.2.3 Clinical manifestation and classification of malaria  

The clinical manifestation of malaria infections in humans are caused by parasites in the 

erythrocytic stage of the life cycle. The symptoms are caused by the infection of red blood 

cells with the parasites and may result in a wide range of outcomes and pathologies. The 

severity of infection ranges from asymptomatic presentation to severe complications and 

ultimately death. Many factors influence the disease manifestations of the infection, 
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including host age, previously acquired host immunity and the species genotype of the 

infecting parasite.  Children under five have little immunity and as a result are those most at 

risk of clinical malaria (Weatherall et al., 2002). Malaria may be classified as either 

uncomplicated or severe based on clinical presentation.  

Severe malaria is defined on clinical symptoms in children and adults. In younger children, 

the presenting symptoms associated with severe malaria include three main categories: 

severe anaemia, cerebral malaria and metabolic acidosis (John and Sons, 2014). Severe 

anaemia and hypoglycaemia are more common in children (White et al, 2014). While adults 

may also present with cerebral malaria and acidosis, they more frequently present with acute 

pulmonary oedema, jaundice and renal failure. These complications are associated with 

increased mortality in adults (Figure 1.6) (Njuguna and Newton, 2004; Mwamtobe et al., 

2014). In sub-Saharan Africa, the clinical symptoms associated with increased mortality 

rates are cerebral malaria, hypoglycemia, lactic acidosis and jaundice. Repeated convulsions 

are an additional complication that may occur usually in association with one or more of the 

symptoms above. The complications of severe malaria can develop rapidly and progress to 

death within hours or days (Trampuz et al., 2003; Jallow et al., 2012).  
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Figure 1.6: Manifestations of severe falciparum malaria, in 6189 children in studies conducted in 

Africa and 2605 adults in studies conducted in South-East Asia. The left side shows the relative 

importance of the clinical syndrome of severe falciparum malaria by age, and Venn diagrams on the 

right show the mortality in children and adults associated with manifestations of cerebral, malaria 

renal impairment and metabolic acidosis alone or in combination (John and Sons, 2014).  

 

1.2.3.1 Uncomplicated malaria  

All symptoms of uncomplicated malaria can occur early or late in the course of the disease. 

This is characterized by fever in the presence of peripheral parasitaemia. Other frequently 

occurring features may include chills, profuse sweating (associated with a paroxysm of 

fever), muscle pains, joint pains, abdominal pain, diarrhoea, nausea, vomiting, irritability 

and refusal to feed and splenomegaly. Thrombocytopenia and anaemia are associated with 

malaria, particularly in children. These features may occur singly or in combination (MPHS, 

2010). Symptomatic uncomplicated malaria may appear in children under 5 years, pregnant 
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women, people who are HIV positive and travellers from non-malaria endemic regions 

(WHO, 2010).  

 

1.2.3.2 Severe falciparum malaria  

Plasmodium falciparum is the most common cause of severe malaria causing organ 

dysfunction and even mortality, while other species of malaria rarely cause death (Trampuz 

et al., 2003; Newton and Krishna, 1998). Severe malaria is mainly occurs in children (under 

6 years old) and is less common in older children and adults, due to the acquisition of partial 

immunity, giving increasing protection against the parasite. It is estimated that greater than 

80% of the world’s severe and fatal malaria affects children in sub-Sahara Africa (John and 

Sons, 2014). While malaria may affect any age group, the symptoms and manifestations of 

severe falciparum malaria vary widely, depending on age and malaria transmission intensity, 

which varies across different sites in Africa (Jallow et al., 2012; Dondorp et al., 2008). In 

areas of a high transmission, severe malaria is predominantly a disease of infants and very 

young children, where severe anaemia is the characteristic presentation. Severe malaria does 

not occur in adults because of the early acquisition of protective immunity (Trampuz et al., 

2003; Dondorp et al., 2008). In areas of lower transmission, severe malaria occurs in both 

adults and children, but is more common in adults who often present with cerebral malaria, 

renal failure, severe jaundice, and pulmonary edema. Life-threatening complications occur 

most commonly in travellers and migrant workers who have not developed any protective 

immunity (John and Sons, 2014). The major complications of severe malaria include 

cerebral malaria, severe anemia, Acidosis and hypoglycaemia, and acute renal failure.  

Cerebral malaria is one of the most common features of severe malaria, and it represents a 

neurological complication of acute Plasmodium falciparum, characterized by unrousable 

coma (Idro et al., 2010). In Africa, an estimated 17 to 50% of hospital admissions for severe 
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malaria are a result of cerebral malaria. The case fatality rate ranging from 30% in adults to 

20% in children, with 1 in 4 survivors developing neurological complications and cognitive 

disability and thus this represents a very serious complication of malaria infection (Solomon 

et al., 2014; WHO, 2000). Cerebral malaria can be attributed to an isolate of infected red 

blood cells in the deep blood vessels of the brain, hence blocking the cerebral 

microcirculation, thus causing tissue damage and death (WHO, 2000).  

Anaemia is an important and commonly life threatening complication of falciparum malaria 

in children. The majority of infants and young children who suffer from severe malarial 

anaemia reside in holoendemic regions (Figure 1.6) (John and Sons, 2014; WHO, 2000). 

The World Health Organization (WHO) defines severe anaemia as haemoglobin <5 g/dL or 

haematocrit <15% (Perkins et al., 2011). Anaemia may develop rapidly in endemic areas 

especially when association with cerebral malaria or any other complication of P. falciparum 

infection (White et al., 2014; WHO, 2000). Severe anaemia occurs as a result of lysis of 

infected and uninfected RBCs dyserythropoiesis and bone marrow suppression (Perkins et 

al., 2011).  

Acidosis is an important risk factor for mortality in severe falciparum malaria in both adults 

and children (Figure 1.6). It results from the accumulation of organic acids such as lactic 

acid, usually as a result of ketoacidosis in children and renal dysfunction in adults. Thus, 

elevated lactate (hyperlactataemia) is indicative of an obstruction of micro circulatory flow 

causing hypoperfusion, a common feature in infected children (John and Sons, 2014; White 

et al., 2014). The normal range for plasma lactate, defined by the World Health Organization 

is up to 2 mmol/L. A plasma lactate level >5 mmol/L is an indication of severe malaria 

(WHO, 2000; Dhabangi et al., 2013).  

Hypoglycaemia and associated lactic acidosis are the most common metabolic complications 

of malarial infection (Trampuz et al., 2003). Which results from decreased glucose 
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production by gluconeogenesis in liver hepatocytes and an increase in consumption of tissue 

glucose. Hypoglycaemia can develop rapidly and progress to coma and death especially in 

children and pregnant women (White et al., 2014). In falciparum malaria, the majority of 

episodes of hypoglycaemia are due to an important adverse effect of plasma quinine, which 

induces insulin secretion through its capacity to induce hyperinsulinaemia. Plasma quinine 

is detectable during hypoglycaemia and it is particularly associated with pregnancy and 

severe diseases (WHO, 2000). Hypoglycemia was identified as predictive (blood glucose 

below 2.2 mmol/L, less than 40 mg/dL) and is an indicator of mortality risk coma, shock, 

and hyperparasitemia in children (Elased and Playfair, 1994; Osonuga et al., 2011). Women 

in late pregnancy are more likely than other adults to develop hypoglycaemia. In Africa, 

153,000-267,000 malaria related mortalities are attributed due to hypoglycemia, estimate 

8% of adults, 30% of children and 50% of pregnant women (Osonuga et al., 2011).  

Acute kidney injury occurs as a complication of P. falciparum malaria leading to high 

mortality, especially in adults with severe malaria and when the disease is not diagnosed 

early (Figure 1.6) (Mishra et al., 2002; Abdul et al., 2006). The diagnosis of acute renal 

failure in malaria is usually based on symptoms alongside high values of serum muscular 

enzymes, for instance: creatine kinase and myoglobin; plasma creatinine concentration 

above than 3 mg/dL (265 mol/L), oliguric renal failure (about < 400 ml in day). Acute tubular 

necrosis is the principal pathological factor in malaria induced acute renal failure. In acute 

tubular necrosis, haemoglobin granules may be observed in the tubular cells and may be 

associated with convulsions, anaemia, jaundice, hypoglycaemia, and coma (Mishra et al., 

2002; Yong et al., 2012). Other nonspecific mechanisms may also contribute to acute renal 

failure seen in malaria, including: catecholamine release, cytoadherence of parasitized 

erythrocytes, dehydration, intravascular haemolysis and intravascular coagulation (Abdul et 

al., 2006).  
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1.2.4 Strategies for malaria control  

a. Vector control  

The role of vector control efforts is very important in the prevention and treatment of malaria 

(White et al., 2014). Deployment of indoor residual spraying and vector control interventions 

contribute to a decreased density of mosquito vectors and thus decline in malaria morbidity 

and mortality and that represents about 60% of global investment in malaria control (WHO, 

2013). The increased deployment of insecticide treated nets (ITNs) has decreased malaria 

mortality rates in children (< 5 years) by 55%, in Plasmodium falciparum endemic settings 

(Eisele et al., 2010), such as deployment of pyrethroid-insecticide-treated mosquito nets in 

agriculture, ITNs protect people by killing anopheline mosquitoes and should be deployed 

in endemic areas (White et al., 2014).   

Based on data from national malaria control programmes (NMCPs), in 2013, about 49% of 

people in communities at risk had access to an ITNs in their household while in 2004 this 

was just 3% (Figure 1.7). In 2013 about 44% were sleeping under an ITN while in 2004 

there were only 2% (WHO, 2014). 
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Figure 1.7: Rate of population with access to an ITN and proportion sleeping under an ITN,sub-

Saharan Africa, 2000–2013. Source: ITN coverage model from the Malaria Atlas Project.  

 

b. Chemoprophylaxis and chemoprevention  

Chemoprophylaxis is advised to effectively protect the millions of tourists at risk of exposure 

to the malarial parasite (Chen et al., 2006). Drugs such as atovaquone–proguanil, 

doxycycline, primaquine and mefloquine that are all highly effective against P. falciparum 

are used (White et al., 2014). Intermittent preventive treatment in pregnancy (IPTp) with 

two course of sulfadoxine–pyrimethamine during the second and third trimester of 

pregnancy to prevent severe anaemia, has been shown to reduce the proportion of both low 

birth weight and infant mortality (Kalanda et al., 2006).  

Seasonal malaria chemoprevention (SMC) consists of a therapeutic course of an antimalarial 

within the malaria season. This action is important to prevent millions of cases and thousands 

of deaths in children aged 3–59 months. In order for this to be effective it is important to 

maintain therapeutic concentrations of drugs in the blood throughout the period of the 
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epidemic. In countries where epidemics of malaria exist The World Health Organization 

(WHO) recommends SMC with sulfadoxine-pyrimethamine and amodiaquine (SP+AQ) 

(Zongo, 2014).  

Mass drug administration (MDA) is described as the administration of antimalarial drugs to 

whole populations. MDA is used in many different areas using several different approaches 

and therefore it is difficult to estimate its effect on the reduction of the burden of clinical 

malaria (Seidlein and Greenwood, 2003).  

MDA had marked effect on vector control that reduced parasite spread and clinical malaria. 

However this was only shown to be the case transiently and rarely interrupts transmission, 

for MDA or to control the disease and maybe encourage the spread of drug-resistant parasites 

(Seidlein and Greenwood, 2003). Nevertheless, the resurrection of MDA in the management 

of epidemics and malaria elimination in areas with a very short transmission season has 

reawakened attention in this field (Greenwood, 2010). Several studies of MDA, occasionally 

in combination with vector control, were carried out in the 1950s, 1960s and 1970s and 

showed that MDA, especially if given repeatedly, could reduce parasite prevalence and the 

incidence of clinical malaria substantially, but that this effect was only transitory and MDA 

rarely interrupts transmission (Seidlein and Greenwood, 2003).  

 

c. Vaccination  

 

The RTS,S-subunit vaccine is the most effective vaccine still in late development for infants 

and young children living in endemic areas as part of the expanded programme on 

immunisation (EPI). It targets the circumsporozoite protein of P. falciparum and therefore 

prevents the parasite from maturing and infecting hepatocytes (Shahinas et al., 2013; White 

et al., 2014). Previous studies have shown promising results of RTS,S (approximately 30% 

rate of protection) in infants and young children. The studies by Bejon et al., (2008) and 
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Abdulla et al., (2008) were confirmed that RTS,S can promise as a candidate protect against 

clinical malaria infection.  

 

1.2.5 Overview of Antimalarial Drugs  

Over the last 60 to 70 years the antimalarials used have primarily fallen into the following 

seven classes: 4-Aminoquinolines, Aryl amino alcohols, 8-Aminoquinolines, Artemisinins, 

Antifolates, Inhibitors of the respiratory chain and antibiotics (Schlitzer, 2008; Grimberg 

and Mehlotra, 2011). The evolution and spread of resistance to one or, in the case of 

multidrug resistance, more than one of these classes poses a significant health risk to 

populations living in malaria endemic regions. Table (1.1) shows the first reported resistance 

to some antimalarial drugs.  

Table 1.1: First reported resistance to some antimalarial drugs (Sinha et al.,  2014).  

 

 

Antimalarial drug Introduction date First reported resistance Difference (years)

Quinine 1632 1910 278

Chloroquine 1945 1957 12

Proguanil 1948 1949 1

Sulfadoxine 

+Pyrimethamine
1967 1967 0

Mefloquine 1977 1982 5

Halofantrine 1988 1993 5

Atovaquone 1996 1996 0

Artemisinin 1971 1980 9

Artesunate 1975 2008 33

Artesunate 

+Mefloquine
2000 2009 9
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1.2.5.1 Chloroquine (CQ)  

CQ (4-aminoquinoline) has been one of the most effective antimalarial drug since its 

introduction in the 1940s (Figure 1.8). However, CQ-resistant strains began to emerge in the 

1950’s and its usefulness has been dramatically reduced in different regions of the world 

where malaria is endemic (Grimberg and Mehlotra, 2011). CQ resistant P. falciparum 

malaria was reported for the first time in Southeast Asia (Thai-Cambodian border) and South 

America (Colombia) in the late 1950s (Farooq and Mahajan, 2004). Today, about 80% of 

field isolates are resistant against CQ (Schlitzer, 2008).  

The chloroquine-sensitive strains of P. falciparum tend to concentrate the drug to higher 

concentrations in the parasite’s digestive vacuole than do CQ resistant parasites (Krogstad 

et al., 1987). Here, CQ inhibits haem polymerization by forming complexes with haem. 

Haem polymerization detoxifies this moiety, creating haemozoin (also known as malaria 

pigment as it can be directly observed in infected erythrocytes), otherwise the toxic haem is 

available to cause damage to cellular membranes that ultimately kill the parasite (Combrinck 

et al., 2013).  

CQ resistance in P. falciparum principally arises from mutations in the genes encoding 

transport proteins such as PfCRT (the chloroquine resistance transporter) and PfMDR1 (the 

multidrug resistance transporter) (Juge et al., 2015). Moreover, mutations in PfMDR1 cause 

cross resistance to other antimalarials such as mefloquine, quinine and artemisinin 

derivatives (Eyasu, 2015). The PfCRT K76T mutation, located in the parasite’s digestive 

vacuole membrane, showing a resistance to CQ (Ecker et al., 2012). 
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1.2.5.2 Quinine 

Quinine (6-methoxycinchonan-9-ol) is a cinchona alkaloid that belongs to the aryl amino 

alcohol group of drugs (Figure 1.8) and is one of the oldest antimalarial drugs and has been 

used for the treatment of uncomplicated malaria. It is often the last resort for the treatment 

of severe malaria because preparations for intravenous applications are only available 

(Grimberg and Mehlotra, 2011; Petersen et al.,  2011). Quinine has a short serum half-life 

of 8–10 h (Petersen et al.,  2011). Clinical resistance to quinine was first reported in South 

America nearly a century ago and around the Thai-Cambodian border in the mid-1960s. A 

combination of quinine with tetracycline or doxycycline is recommended to enhance its 

effectiveness. Quinine use is limited due to side effects, for example its arrhythmogenic 

potential and the release of insulin lead to hypoglycemia and this occur in about 32% of 

patients receiving QN as a drug (Dondorp et al.,  2005; Schlitzer, 2008). In a recent study, 

hypoglycemia has been reported approximately 3% of adults and 2.8% of African children 

of receiving quinine (Dondorp et al.,  2010; Dondorp et al.,  2005). Moreover, more serious 

effects side of quinine includes skin eruptions, asthma, thrombocytopenia, hepatic injury and 

psychosis these effects are less frequent (Achan et al.,  2011).  

QN acts as Similar to CQ by binding to haem. QN accumulation in the parasite’s food 

vacuole inhibits haem detoxification (Mharakurwaa et al., 2011). However, polymorphisms 

in several proteins have been associated with resistance to QN, including PfCRT, PfMDR1 

and PfNHE1 (sodium/hydrogen exchanger 1) (Cheruiyot et al., 2014). 

1.2.5.3. Mefloquine (MQ)  

MQ is a 4-methanolquinoline with a long serum half-life of 14–18 days (Figure 1.8) 

(Petersen et al.,  2011), MQ was introduced in the 1970s. It was used against most CQ 

resistant Plasmodium strains (Schlitzer, 2008). MQ resistance was first reported at the 
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beginning of 1980s near the Thai-Cambodian border where MQ was used intensively, and 

then in some parts of Southeast Asia as well as in the in the Amazon region of South America 

and intermittently in Africa (Farooq and Mahajan, 2004; Dassonville-Klimpt et al.,  2011; 

Meshnick et al.,  1996). The effects side due to use of MQ include insomnia, depression and 

panic attacks (Schlitzer, 2008). Also the increase of resistance to MQ has limited its use. The 

primary determinant conferring resistance to MQ is associated with amplification of the 

pfmdr1 gene (Saifi et al., 2013; Preechapornkul et al., 2009). MQ has been used with 

artesunate as a drug combination or MQ/artemether in an effort to overcome the 

development of resistance to MQ (Price et al., 1995; Dassonville-Klimpt et al., 2011).  

Mode of action for MQ has been shown to inhibit the accumulation of hemozoin a similar 

or less efficiency than CQ in infected cells. Also, MQ is given the lower basicity which leads 

it to accumulate less than CQ (Mharakurwaa et al., 2011).  

 

 

 
 

Figure 1.8: Chemical structure of mefloquine, quinine and chloroquine 
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1.2.5.4. Artemisinin   

Artemisinin is a sesquiterpene lactone endoperoxide. The most common semi-synthetic 

derivatives of artemisinin are used clinically (dihydroartemisinin (DHA), artesunate and 

artemether) (Grimberg and Mehlotra, 2011). Artesunate and artemether are transformed to 

dihydroartemisinine which has a short serum half-life (<1 hour) (Schlitzer, 2008). 

Artemisinin derivatives have endoperoxide bridge (C-O-O-C) (Figure 1.9) which is a 

specific feature and essential for antimalarial activity (Cui and Su, 2009).  

In 2001, the WHO recommended the sole use of artemisinin-based combination therapies 

(ACTs) for treating P. falciparum malaria in all endemic areas where resistance to 

monotherapies is prevalent (Grimberg and Mehlotra, 2011). Artemisinins are usually 

combined with a long-acting partner antimalarial drug (e.g., artemether-lumefantrine, 

artesunate-amodiaquine and artesunate-mefloquine) in order to increase ACT efficacy 

overall and achieve effective treatment over a 3 days period (Beeson et al., 2015; Bloland, 

2001). ACTs are used as the first line in antimalarial chemotherapy worldwide, due to act 

rapidly upon erythrocyte stages and reduce the parasite biomass rapidly (Grimberg and 

Mehlotra, 2011).  

The mechanism of antimalarial endoperoxides depends on two-steps (Figure 1.10): 

activation of artemisinin, this step involves the peroxide bridge cleaves by haem iron form a 

highly reactive free radical such as oxygen radicals, or of a C-centred radical of artemisinin 

itself, followed by specific alkylation. Covalent adducts are formed between the drug and 

parasite proteins, thus interfering with their detoxification leading to produce lethal damage 

to the parasite (Meshnick et al.,  1996). Number of mutations seems to be responsible for 

alterations of Plasmodium sensitivity to artemisinins. These include PfCRT, pfmdr1 and 

PfATP6 (P. falciparum calcium-dependent ATPase) (Ding et al., 2011; Zakeri et al., 2012) 
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It has been proposed that artemisinins might targeted inhibition of PfATP6 which considered 

a membrane transporter in the parasite’s endoplasmic reticulum, and plays an important role 

in calcium homeostasis for parasite survival (David-Bosne et al., 2013). Also, there has been 

a number of genes suspected in change of artemisinin sensitivity (Zakeri et al., 2012). The 

study by (Jambou et al., 2005) suggested that Single Nucleotide Polymorphism (SNP), in 

particular, pfatpase6 S769N gene has been associated with artemether resistance in P. 

falciparum. In addition to this, it has been found that the S769N mutation is contributed with 

increased IC50 value of artemether isolates from French Guiana. 

 

 

 

Figure 1.9: Chemical structures of (A) artemisinins (B) dihydroartemisinin, (C) artemether and (D) 

artesunate (Ericsson, 2014).  



26 
 

 
 

 
Figure 1.10: Proposed mechanism of action for artemisinin (Bray et al., 2005). 

 

1.3 Human African Trypanosomiasis (HAT)  

1.3.1 Background of the Disease  

HAT is a neglected tropical diseases that caused by Trypanosoma brucei, a protozoan 

parasite. This disease transmitted to humans through the bite of a tsetse fly of the genus of 

Glossina. Three species of the parasite are responsible for different types of disease. T. b. 

gambiense, is found in western and central Africa, is responsible for a chronic disease, of 

which humans are the main reservoir host. In contrast, T. b. rhodesiense, has zoonotic 

transmission and associated with a more acute clinical presentation in Eastern and Southern 

Africa (Simarro et al., 2010). Also, animal African trypanosomiasis (AAT) disease of 

mammalian livestock, also known as Nagana, is caused by infection with T. b. brucei, which 

is not pathogenic to humans (Kagira et al., 2007). In recent years, T. brucei gambiense has 

caused >95% of reported HAT cases for more than 20 countries (WHO, 2010x; WHO, 

2017a).  

The symptoms of the disease occurs in two sequential stages: the first stage is hemato-

lymphatic, while the second stage is meningo-encephalitic. The symptoms of the first stage 
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are fever, pruritus, arthralgia, enlarged lymph nodes, fatigue and headaches, whereas the 

second stage is related to various and progressive neuropsychiatric symptoms and signs that 

ultimately lead to coma and death (Blum et al., 2006; WHO, 2013a). The burden of this 

disease differs from one to another country with variations in different localities within the 

same country. In 2015, there were 2804 cases recorded to WHO, of these 2733 were 

gambiense HAT and 71 were rhodesiense HAT. These cases were diagnosed in both 

endemic and non-endemic countries (Büscher et al., 2017). Three countries were reported to 

have more than 50 cases of the gambiense HAT per year, and these are the Democratic 

Republic of the Congo (86% of cases) followed by the Central African Republic and Chad 

(52% and 2% of cases respectively) (Figure 1.11).  

 

 

Figure 1.11: Geographic distribution of Human African trypanosomiasis (A) T. b gambiense 

and (B) T. b. rhodesiense. Source- modified from WHO, available at: 

http://www.who.int/trypanosomiasis_african/country/en/  

http://www.who.int/trypanosomiasis_african/country/en/
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1.3.2 The life cycle of Trypanosoma brucei  

The infection of mammalian hosts begins when the metacyclic T. brucei together with tsetse 

saliva, are injected into the skin during blood meal (Figure 1.12). After several days of 

multiply by binary fission, the metacyclic trypomastigote transforms into a long slender form 

and establishes a bloodstream infection. The long slender forms spread via the lymph or 

blood vessels to a different body fluids (such as blood, lymphatic or spinal fluid) and variety 

of peripheral organs and tissues. Later of this stage, the parasites invade the brain 

parenchyma and cause local inflammation and neurological damage, producing the typical 

symptoms associated with Trypanosomiasis (Kristensson et al., 2013). At this stage, the 

parasites regulate an important immunological reactions, some of which are pathogenic, 

induced by parasite and the tsetse fly saliva (Stijlemans et al., 2016).  

On the other hand, the disease can be spread by another tsetse fly when taking a blood meal 

on an infected mammalian host. Inside the fly, the parasites transform into procyclic 

trypomastigotes in the fly's midgut and multiply by binary fission. The procyclic 

trypomastigotes leave the midgut, and transform into epimastigotes. Finally, the 

epimastigotes migrate to the salivary glands and continue multiplication by binary fission, 

and finally transform into metacyclic trypomastigotes in preparation for their transmission 

to mammalian host (Matthews, 2005; Matthews et al., 1995). The cycle in the fly takes about 

three weeks.  
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Figure 1.12: Lifecycle of the human African trypanosomiasis. Source- modified from CDC, 

available at: https://www.cdc.gov/parasites/sleepingsickness/biology.html  

 

In the recent studies by Capewell et al. (2016), they found that the skin is a reservoir for T. 

brucei in animals and people, even when none were detected in the bloodstream. Their study 

revealed that the mice developed bloodstream infections within a several days after injection 

of T. brucei into the abdominal cavity. And after less than 2 weeks, the T. brucei detected in 

patches of the skin of mice, and persisted throughout the infection. That suggests that the T. 

brucei spread from the blood into the skin. Also, they confirmed that these parasites were 

viable (slender forms) in the skin. The trypanosomes can be spread by another tsetse bites 

also persist in the skin (Caljon et al., 2016).  

 

https://www.cdc.gov/parasites/sleepingsickness/biology.html
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1.3.3 The clinical features of HAT  

The clinical manifestations of HAT have been attributed to the parasite subspecies, host 

response and disease stage (MacLean et al., 2010). Both forms (gambiense HAT and 

rhodesiense HAT) lead to death if they are left untreated (Jamonneau et al., 2012). 

Rhodesiense HAT is an acute disease, within a few weeks changing to the second stage and 

leading to death within 6 months (Checchi et al., 2008). The infection of gambiense HAT 

follows a chronic progressive course, with a mean period of time about 3 years, with high 

variability between patients (Checchi et al., 2008a). The HAT disease progresses through 

two stages, a first, hemo-lymphatic stage, and then followed by a second, meningo-

encephalitic stage when trypanosomes invade the central nervous system (CNS). A spectrum 

of neurological disturbances is observed, including sleep disorder and psychiatric disorders, 

while the most signs and symptoms are common to the two stages (Kennedy, 2004). First 

stage gambiense HAT includs intermittent fever, headache, pruritus, and lymphadenopathy. 

The second stage presents neuropsychiatric disorders in addition to the first-stage features. 

Other neurological signs include hyper- or hypo-tonicity, tremor of hands, motor weakness, 

and speech disorders (Blum et al., 2006).  

 

1.3.4 Pharmacological treatment of HAT   

Five drugs are currently used in HAT treatment: suramin and pentamidine to treat early first-

stage, and melarsoprol, eflornithine and nifurtimox for late stage of disease. The choice of 

drug therapy depends on the causative agent and the stage of disease (Table 1.2; Figure 1.13). 

The first-line treatment for the early-stage T. b gambiense HAT is pentamidine, which was 

first used in 1940 and which is usually managed by the intramuscular (also can be used 

intravenously) (Atouguia and Kennedy, 2000; Brun et al., 2010). This drug is usually 
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effective but has adverse events such as hyperglycaemia or hypoglycaemia, hypotension, 

and abdominal pain and gastrointestinal problems (Brun et al., 2010; Pohlig et al., 2016). 

Moreover, suramin has been used for the early-stage T. b rhodesiense HAT since 1920 and 

is usually administered by an intravenous. The potential side effects for this drug include 

renal failure, skin lesions, anaphylactic shock, bone marrow toxicity, and neurological 

complications such as peripheral neuropathy (Kennedy, 2004; Brun et al., 2010). The early 

stage drugs will generally not be effective for late stage disease, and late stage drugs are not 

justified in first stage because the drugs used are more toxic. Effective treatment of late stage 

disease requires drugs that cross the blood-brain barrier and these drugs present to be toxic 

and complicated to administer.  

The first-line treatment for late-stage T. b rhodesiense infection is melarsoprol, which was 

first used in 1949 and is usually administrated by multiple intramuscular injections 

(Babokhov et al., 2013). Injection with Melarsoprol is painful and the drug is toxic, producing 

a post-treatment reactive encephalopathy in 5–18% of treated patients, and is fatal in 10–

70% of affected patients (Seixas, 2004). A post-injection syndrome characterized by fever, 

rapid onset of neurological disorders, and abnormal behaviour (Pépin et al., 1994).  

Eflornithine has been given in monotherapy for late-stage T. b. gambiense HAT since 1981, 

and has proved effective with a cure rate about 90-95% (Priotto et al., 2009; Franco et al., 

2014; Jamonneau et al., 2015). Potential adverse events include fever, pruritus, hypertension, 

nausea, vomiting, diarrhoea, abdominal pain, headaches, and anemia.  

An important advance was the development of the first line treatment for second stage 

gambiense HAT is nifurtimox–eflornithine combination therapy (NECT). In 2009, WHO 

was incorporated the NECT into the essential medicines list. NECT has higher rates of cure 

(accounting for 59% of all cases treated in 2010), lower rates of fatality, less severe side 
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effects and easier administration, compared to melarsoprol or eflornithine monotherapy 

(Simarro et al., 2012; Alirol et al., 2012). WHO supplies NECT in endemic countries, free 

of charge (Yun et al., 2010). NECT includes of oral nifurtimox and intravenous eflornithine. 

The treatment regimen of NECT involves 15 mg/kg/day three daily oral doses x 10 days of 

nifurtimox and 400 mg/kg/day intravenously of eflornithine for a total of 7 days (Table 1.2). 

The main drawback of treatment with NECT is complicated to administer due to the dosing 

regimen requires a minimum of four nurses to give the eflornithine infusions to the patient, 

the patient requires to monitor for any adverse reactions after prescribe the therapy by  a 

doctor, which is not optimal, given that patients often live in remote areas with few health 

resources  (Tong et al., 2011; Schmid et al., 2012). As such, Fexinidazole, which involves a 

simplified, short-course regimen that could be offered a potential new safe oral treatment, 

was rediscovered to-use T. brucei gambiense treatment (Torreele et al., 2010; Mogk et al., 

2014). Preclinical studies revealed oral effectiveness in curing bothchronic and late stages 

of the disease in mice (Tarral et al., 2014). The first studies in the human showed with oral 

combination therapies of fexinidazole, a 2-substituted 5-nitroimidazole was safe and 

effective to prevent trypanocidal activity. Fexinidazole causes damaging of DNA, protein 

and lipid by doing as a prodrug releasing cytotoxic metabolites by enzyme-mediated 

reduction by nitro-reductases (Sundar and Singh, 2016). The treatment exposure could be 

obtained with a well tolerated 10-day treatment regimen that included a loading dose of 1800 

mg per day for 4 days followed by a 1200 mg per day regimen for 6 days given with a simple, 

locally adapted meal (Kaiser et al., 2011; Tarral et al., 2014). Fexinidazole is metabolized 

rapidly by some of cytochrome P450 enzymes, such as CYPs 1A2, 2B6, 2C19, 3A4 and 

3A5, and flavin-containingmono-oxygenase into two active metabolites: fexinidazole 

sulfox-ide and fexinidazole sulfone (Burrell-Saward et al., 2017).  
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Table 1.2: Drugs used in treatment of human African trypanosomiasis. i.m., intramuscularly; i.v., 

intravenously. (Büscher et al., 2017).  

 

 

 

Figure 1.13: Antitrypanosomal drugs in clinical use. 

HAT B12:E18age First-line treatment Dosage   Alternative treatment

First-stage  Pentamidine

 4 mg/kg/day i.m. or i.v. 

(diluted in normal saline, 

in 2-h infusions) x 7 days

Second-stage

 Nifurtimox  

eflornithine 

combination therapy 

(NECT)

Nifurtimox 15 mg/kg/day 

orally in three doses x 10 

days Eflornithine 400 

mg/kg/day i.v. in two 2- h 

infusions (each dose 

diluted in 250 ml water for 

injection)a x 7 days

Eflornithine 400 

mg/kg/day i.v. in four 2-h 

infusions (each dose 

diluted in 100 ml water for 

injection)a x 14 days Third-

line (e.g. treatment for 

relapse): Melarsoprol 2.2 

mg/kg/day i.v. x 10 days

First-stage Suramin  

Test dose of 4–5 mg/kg i.v. 

(day 1), then 20 mg/kg i.v. 

weekly x 5 weeks 

(maximum 1 g /injection) 

(e.g. days 3, 10, 17, 24, 31)

Pentamidine 4 mg/kg/day 

i.m. or i.v. (diluted in 

normal saline, in 2-h 

infusions) x 7 days

Second-stage Melarsoprol 2.2 mg/kg/day i.v. x 10 days

T. b gambiense

T. b rhodesiense
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1.4 Leishmaniasis  

1.4.1 Background of the Disease  

Leishmaniasis is a group of diseases with a wide epidemiological and clinical diversity, 

caused by intracellular protozoa parasite from over 20 leishmania species that are known to 

be transmitted to humans. leishmania is classified under the Kinetoplastidae kingdom, family 

Trypanosomatidae from the genus Leishmania. The parasite is transmitted to humans by the 

bite of approximately 30 species of phlebotomine sandflies, and infects the macrophages of 

the mammalian host, such as dogs or rodents, or human beings (Ouellette et al., 2004; Bates, 

2007). It is considered as the second most prevalent parasitic disease next to malaria 

according to the World Health Organization (WHO). Thus, it has become a major focus of 

concern in global health and economic mainly in the poorer sections of the world (WHO, 

2013; Singh et al., 2014). The disease has recently demonstrated geographical expansion of 

the tropics, subtropics and the Mediterranean basin patterns (Rose et al., 2004; Faiman et 

al., 2013). leishmania has been reported in 98 countries, covering 3 territories and 5 

continents, with estimation around 15 million people around the world are infected, and 

nearly 350 million people are at risk of contracting the diseases (Alvar et al., 2012; Roberts 

et al., 2015).  An estimated 1.5 to 2 million new cases annually, and there are an estimated 

~70,000 deaths every year due to the disease (Reithinger et al., 2007).   

Currently, the burden of Leishmaniasis is increasing due to different factors including; HIV, 

climate change, disruption of health systems in endemic areas and massive population 

displacement. For instance in Syria, the numbers of CL cases began to increase even further 

especially afterv the onset of the Syrian Civil War in 2011, with new cases appearing into 

non-endemic regions (Du et al., 2016). Under these favorable conditions to the parasite 
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transmission, this disease has the ability to spread in non-endemic countries of the world 

(Dujardin et al., 2006; Ready, 2008; Okwor and Uzonna, 2016).  

 

1.4.2 Clinical forms of Leishmaniasis  

Leishmaniasis consists of three main clinical manifestations of the disease according to the 

observed clinical symptom presentations; cutaneous leishmaniasis; muco-cutaneous 

leishmaniasis and visceral leishmaniasis (Table 1.3) (Handman, 2001).  

 

Table 1.3: Leishmania species and their clinical manifestation (Bates, 2007; McCall et al., 2013). 

Syndrome   
 

Species 

Cutaneous Leishmaniasis  

 

Common  

 

 

 

 

 

 

Rare  
 

L. major  

L. tropica  

L. amazonensis  

L. mexicana  

L. braziliensis  

L. aethiopica  

 

L. infantum  

L. donovani  

L. peruviana  

Mucocutaneous 

Leishmaniasis  

 

Common  

 

Rare  

 

L. braziliensis  

 

L. panamensis  

L. guyanensis  

L. amazonensis  

Visceral Leishmaniasis  

 

Common  

 

 

 

Rare  

 

L. donovani  

L. infantum  

L. infantum chagasi  

 

L. tropica  

L. amazonensis  
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1.4.2.1 Visceral Leishmaniasis  

Visceral leishmaniasis (VL) also known as kala-azar, Burdwan fever, dum-dum fever, black 

sickness, black fever, is considered the most severe of the forms of leishmaniasis. L. 

donovani and L. infantum are the main causative species of VL. The symptoms of VL are 

characterized by irregular fever, weight loss (cachexia), swelling of the liver and spleen, 

anaemia, and hypergammaglobulinaemia (mainly IgG from polyclonal B cell activation) 

with hypoalbuminaemia, and is usually fatal if left untreated (Herwaldt, 1999; McCall et al., 

2013). Mostly, VL encompasses a broad range of manifestations of infection that shows no 

symptoms or, might be acute, subacute, or chronic course. Starvation, immune suppression, 

and HIV infection enhance the risk of leishmania infection. VL occurs in Central and South 

America, the Mediterranean basin, Central Asia, Indian subcontinent, Middle East and 

Africa (Figure 1.14).  
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Figure 1.14: Distribution and endemicity of visceral leishmaniasis (VL) worldwide according to 2015 annual country reports. The majority of VL cases occur 

in just six countries — Bangladesh, Brazil, Ethiopia, India, Nepal and Sudan (source: WHO Global Health Observatory Link and access date).
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1.4.2.2 Cutaneous Leishmaniasis  

Cutaneous leishmaniasis (CL) is the most common form of leishmaniasis, known as 

‘Oriental sore’. It has been estimated that CL represents about 75% of leishmania cases 

globally (Alvar et al., 2012). CL is visually characterized by the cutaneous lesions which 

appear as a persistent insect bite on the exposed parts of the body. The lesions of 

uncomplicated localized cutaneous leishmaniasis, which self heal without treatment after a 

few months but leaves scars (Pearson and Sousa, 1996; Scorza et al., 2017). The Global 

Burden of Disease Study 2013 determined that disability-adjusted life-years (DALYs) for 

CL was 0.58 per 100,000 people (Karimkhani et al., 2016). CL is caused mainly by different 

of leishmania species (e.g. L. major, L. tropica, and L. aethiopica in old world and L. 

amazonensis, L. mexicana, and L. braziliensis in the new world) (Alvar et al., 2012). CL 

represents an important public health concern in various geographical regions mainly in 

Central and South America (Colombia, Brazil and Peru), Africa, Indian Subcontinent, and 

countries of the Middle East including Iran (WHO, 2010) (Figure 1.15). There are many 

factors play an important role in increasing transmission of CL which include inadequate 

vector and reservoir control, urbanization, ecological changes, natural disasters, population 

movement, poor sanitation and garbage disposal system, human behavioral risk factors and 

resistance to standard drugs (Daszak et al., 2001, Macpherson, 2005, Croft et al., 2006). 
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Figure 1.15: Distribution and endemicity of cutaneous leishmaniasis, (CL) worldwide according to 2015 country reports. (Source: WHO Global Health 

Observatory). 
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1.4.2.3 Mucocutaneous Leishmaniasis (MCL)  

Mucocutaneous Leishmaniasis (MCL) is also known as ‘‘espundia’’. In the majority of 

mucosal pathology develops following skin lesions, and affect the mucous membranes of 

the nose, mouth and throat with severely disfiguring lesions, which may lead to destruction 

of the infected tissues of the body (Lessa et al., 2007; Diniz et al., 2011). MCL is caused by 

L. braziliensis, L. panamensis and, less frequently, L. amazonensis. ML is mainly present in 

South American countries i.e. Bolivia, Brazil and Peru (Chandra and Mahesh, 2017).  

 

1.4.3 The life cycle of leishmania  

The survival of the leishmanial parasite is sustained by the interactions between two hosts, 

the sand flies of genera Phlebotomus and the vertebrate host (Banuls et al., 2007; Pace, 

2014). Leishmanial parasites exist in two forms according to the host: the amastigotes in 

vertebrate hosts and promastigotes in sandfly vector (Figure 1.16) (Dawit et al., 2013).  

 

Figure 1.16: Developmental forms of promastigote and amastigote. Each form has a nucleus (n) and 

kinetoplast (k) in the single mitochondrion (mt). The flagellum (f) arises from the flagellar pocket 

(fp). Source: (Bates, 2015).  
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The host infection begins when the metacyclic promastigotes from proboscis of a female 

sand fly are injected into a host during a blood meal. The metacyclic promastigotes are 

characterized by the small slender bodies with 15-20µm in long and possess long free 

flagella (Bates, 2008). Which aid the motility of the parasite inside the bloodstream of the 

host. The promastigotes invade the macrophages through phagocytosis and they transform 

into amastigotes (Figure 1.17).  

In addition, in the vertebrate host, the non-motile amastigotes are ovoid (aflagellar), with 3-

5μm in long and reside in the parasitophorous vacuole of macrophages, at this stage the 

parasite become infectious. The amastigotes develop and multiply by binary fission until 

they are released by cell lysis in order to invade other macrophages (Banuls et al., 2007). 

The amastigotes are then transported to the draining lymph nodes from the site of bite by the 

dendritic cells (Moll et al., 1993). The life cycle is complete after digestion of a blood meal 

from macrophages infected with amastigotes. On the other hand, in the sandfly, amastigotes 

released from the macrophages and differentiate into procyclic promastigotes in the gut, and 

then migrate towards the proboscis and are ready to inoculate during the next blood meal 

(Schlein et al., 1992). The life cycle continues when the sandfly releases the promastigotes 

into the skin of the host, and then access into macrophages cells during blood meal (Dawit 

et al., 2013; CDC, 2013). The process takes from six to nine days depending on the species 

of leishmania. Transmission of leishmanial parasites can be zoonotic (i.e., fromanimals such 

as dogs and rodents to humans) or anthroponotic (i.e.,from infected humans to non-infected 

humans) (CDC, 2013). This complex life cycle could be exploited for drug design 

optimization and development (Hammarton et al., 2003). 
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Figure 1.17: Life Cycle of leishmanial parasite. (CDC, 2013) 

https://www.cdc.gov/parasites/leishmaniasis/biology.html 

 

1.4.4 Control strategies for Visceral Leishmaniasis  

Early diagnosis and treatment of leishmaniasis is vital in order to reduce parasite 

transmission, morbidity and mortality for the community (Matlashewski et al., 2011).  

Furthermore, antileishmania vaccines in both human and veterinary medicine are still being 

developed, and no vaccines licensed for human use against leishmaniasis (Cecílio et al., 

2017). In the past few decades, several vaccine candidates have been identified against VL. 

Some were presented to be immunogenic in rodent models, while most of them have not 

shown any positive potential in large animals (Kumar et al., 2014). There are three veterinary 

https://www.cdc.gov/parasites/leishmaniasis/biology.html
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vaccines in clinical use include a recombinant single-protein antigen (Leish-Tec1), a 

secreted/excreted antigen (Canileish1), and a recombinant polypeptide antigen (Letifend1) 

(Miró et al., 2017). The manufacturer’s recommendations for these vaccines are to vaccinate 

only animals to elicit an adequate immune response that will prevent progression of disease 

upon infection. Epidemiologic studies have been shown that successful canine vaccination 

would greatly decrease of leishmania transmission and mortality in both dogs and people 

(Alvar et al., 2013; Dye, 1996).  

Commonly, targeting the vector is the most effective strategy to control vector-borne 

diseases, by reducing or eliminating the human-vector contact. There are 500 known 

Phlebotomine species, of these 30 have been identified as vectors of the disease. Vector 

control measures are primarily based on insecticide-treated nets (ITNs) and indoor residual 

spraying (IRS) (Killick-Kendrick, 1999). This will greatly reduce the incidence of 

leishmaniasis (Bern et al., 2008). In the 1950s, after using an effective antimalarial 

insecticide (dichloro-diphenyl-trichloroethane (DDT)), VL was almost completely 

eliminated in northeastern Bihar . Unfortunately, as soon as these spraying campaigns were 

stopped, a resurgence of the disease predominantly in the 1970s, with an explosive epidemic 

in the early 1990s (Barnett et al., 2005). 

In Sudan and other endemic countries in East Africa, transmission occurs mainly, but not 

exclusively, outside villages, during shepherding for example. Indoor residual spraying for 

disease control is therefore unlikely to be as efficient in this region. Resistance of P. 

argentipes still limited to DDT, but has been reported in Bihar (Picado et al., 2010). 

However, previous report showed that ITNs have a limited effect on sandfly exposure in VL 

endemic areas such as India and Nepal (Gidwani et al., 2011). 
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1.4.5 Treatment of Leishmaniasis  

Chemotherapy is still the most effective way to treatment leishmania infection. 

Unfortunately, the available drugs are costly, have high toxicity, there is a long duration of 

treatment, and the resistance has emerged as a serious problem, which has compelled the 

search for new antileishmanial agents (Rajasekaran and Chen, 2015, Freitas-Junior et al., 

2012). There are a limited number of drugs are available and currently recommended to treat 

leishmaniasis include the Pentavalent Antimonials, Amphotericin B, Miltefosine and 

recently, Paromomycin. The main features of these treatments are summarised in Table 1.4 

and Figure 1.18. 

 

 

Figure 1.18: Chemical structure of current antileishmania drugs 
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Table 1.4: Antileishmania drugs properties. i.v. = intravenous. i.m. = intramuscular. CID = PubChem Compound Identifier 

 Sodium 

Stibogluconate 

(VL) 

Liposomal 

Amphotericin B 

(VL, ML) 

Miltefosine 

(VL, CL) 

Paromomycin 

(VL, CL) 

Administration 

 

i.v. infusion i.v. infusion Oral  

 

i.m. 

Regimen 20 mg/kg/day for 28 

days 

2 mg/kg/day for 5 days or 1 

single injection of 7.5 mg/kg 

 

100 (bodyweight >25kg) mg/day 

for 

28 days 

15mg/kg/day for 21 days 

 

Toxicity 

 

High toxicity, possible 

cardiac arrhythmia, 

Nephrotoxicity and 

hepatotoxicity 

Limited nephrotoxicity and 

mild 

procedure side effects 

 

Teratogenicity, mild gastro-

intestinal toxicity, nephrotoxicity 

and hepatotoxicity 

 

Nephrotoxicity, hepatotoxicity 

both extremely rare 

Treatment 

failure 

 

>60% in the ISC 10% 6% <5% 

 

Cost of the 

drug 

(USD)* 

21 675 (2-4d) or 900 (1d) 

 

150 15 

 

Advantages Cheap Highest therapeutic index of 

all the VL drugs, short 

 

Oral route is a plus on the field, no 

need of hospitalisation 

 

Cheapest drug available, no need 

for prolonged hospitalisation 

since the injection can be given 

as ambulatory care 

 

Disadvantages Prolonged cure with 

painful injection, 

requires high quality 

control, highly toxic 

and high parasite 

resistance in the ISC 

Expensive, requires excellent 

preservation (<25°C) and 

Requires i.v. infusion 

 

Low compliance, relatively 

expensive, possible teratogenicity 

makes it forbidden for pregnant 

women, resistance (?) 

 

Low efficency in monotherapy in 

East Africa, potential for 

resistance (?) and prolonged 

treatment favours non 

termination 
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1.4.5.1 Pentavalent antimonials [Sb(V)] 

For more than 70 years, pentavalent antimony (sodium stibogluconate and meglumine 

antimoniate) have been the first-line of treatment for all forms of leishmaniasis in South 

America, North Africa, Turkey, Bangladesh, and Nepal (Franco et al., 2016).  

There are lots of problems of antimonials, and the main problem is their requirement for 

treatment intramuscular or intravenous injection every day for about one month, also the 

major side-effects of antimonials are toxicity such as: cardiotoxicity, pancreatitis, nausea, 

abdominal pain and cardiac arrhythmia (de Moura et al., 2016). However, they are still in 

use in other regions of the world, including Latin America and East Africa (Mitropoulos et 

al., 2010). 

Moreover, Pentavalent antimonial compounds was no longer recommended to use in North 

Eastern India due to high levels of arsenic in groundwater which made parasites cross-

resistant to antimony in this region (Perry et al., 2011). This has been assessed in a 

retrospective epidemiological survey performed in Bihar, India, the results of which suggest 

that arsenic-contaminated groundwater may well be associated with antimony treatment 

failure (Perry et al., 2015).  

The mode of action of antimony is still unclear. Pentavalent antimony (Sbv) enters the 

macrophage cells and reduction to trivalent antimonials SbIII form in the cytosol, or can 

enter as such in the amastigotes. The entry of Sb (III) occurs through the aquaglyceroporin 

AQP1 transporter but the route of entry of Sb (V) is not known (Marquis et al., 2005) (Figure 

1.19). Within the parasite, the conversion Sbv to the active form Sb(III) will increase by 

either thiols, or by the action of the reductases, ACR2 (an homolog of the yeast arsenate 

reductase) and TDR1 (Thiol Dependent Reductase). SbIII is combined with thiol-containing 
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molecules including cysteine, glutathione (GSH) and trypanothione (T(SH)2) to produce the 

SbIII-thiol complex before being exported outside of the cell. Moreover, antimony induces 

efflux of the intracellular trypanothione, and also Inhibition of trypanothione reductase (TR) 

leading to an accumulation of the reduced form of trypanothione (Wyllie et al., 2011). Based 

on these two mechanisms, Sb(III) enhances oxidative stress and leads to the accumulation 

of reactive oxygen species (ROS) that ends by apoptosis. There are few mechanisms have 

been leaded to explain Leishmania resistance to antimonials: reduced conversion of Sb(V) 

to the Sb(III) active form, reduced uptake of Sb(III) by reducing the expression of 

transporters which mediate the uptake of Sb(III), and increased efflux the level of 

conjugation Sb(III) with thiols by the ABC transporter MRPA (Frézard et al., 2009; Rai et 

al., 2013; Ghorbani and Farhoudi, 2018). 

 
 

Figure 1.19: Mode of action and resistance for pentavalent antimony in leishmania amastigotes. 
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1.4.5.2 Amphotericin B (AmB)  

AmB was first used as an antifungal macrolide antibiotic produced by Streptomyces nodosus 

in 1956. It is often used as a second line drug for leishmaniasis since the early 1960s 

(Almeida et al., 2017). Its ability to bind to ergosterol-related sterols in cell membranes 

explains its specificity (Lemke et al., 2005). AmB was the first combained with 

deoxycholate to increase the solubility and allowed intravenous administration (Thakur et 

al., 1996). This combination therapy showed side effects particularly renal toxicity (Botero 

et al., 2014). To reduce the side effects and increase the half life time of the compound, 

liposomal-amphotericin B (LAmB) was developed to allow a higher concentration of the 

drug, thereby greatly reducing the time for hospitalization. Studies have assessed the activity 

and the feasibility of a single-dose LAmB injection of 20 mg/kg. In in India, the results from 

an implementation trial which was underway, carried out by DNDi and partners, led the 

government to change the treatment guidelines in 2014, abandoning miltefosine as a 

monotherapy in favour of single-dose AmBisome as first-line and a combination of 

paromomycin/miltefosine as second-line treatment (DNDi, 2017a). The main drawback of 

LAmB remains the costs, therefore some developing countries such as Brazil, use the first 

and the second lines of therapy versus LAmB (Mistro et al., 2016).   

The AmB mechanism of action on parasite membrane sterols and inserts in ergosterol of the 

cell wall resulting in an increase in permeability for protons and monovalent cations as K+, 

Ca2+, and Mg2+, resulting in cell death (Figure 1.20) (Romero et al., 2009). Ergosterol is 

important for endocytosis, vacuole fusion and stabilization of proteins at the cell membrane, 

therefore the binding of AmB with ergosterol could account for kill the parasite by 

mechanism of ergosterol sequestration (Heese-Peck et al., 2002; Zhang et al., 2010). 

Another mode of action by which AmB could affect the cells by formation of reactive 
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oxygen species (ROS) (Moreira et al., 2011). The accumulation of free radicals lead to 

deleterious effects on the cell (membrane, proteins, DNA and mitochondria) resulting in cell 

death. The absence of ergosterol in the resistant parasite’s membranes and the upregulated 

AmB efflux and ROS scavenging machinery are having a cumulative effect in conferring 

resistance against AmB to the Leishmania parasite. These cumulative effects of an altered 

membrane profile, evolved MDR1, and the tryparedoxin cascade may be responsible for 

making the L. donovani parasite resistant to AmB (Kumar et al., 2011). 

 
 

Figure 1.20: The mode of action of amphotericin B against leishmanial parasites 
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1.4.5.3 Miltefosine   

Miltefosine, an alkylphosphocholine, was initially developed as an antineoplastic agent of 

breast cancer, is the first oral treatment against leishmaniasis (Smorenburg et al., 2000; 

Dorlo et al., 2012). Antileishmanial activity was first reported in 1987 against L. donovani 

in vitro and in vivo experimental models (Achterberg and Gercken, 1987) (Croft et al., 1987). 

Efficacy of miltefosine has been registered in India since 2002 for oral treatment against VL, 

followed by Germany in 2004 (Davies, CR et al., 2003; Berman, 2008). In 2005 in 

Colombia, the use of miltefosine to treat cutaneous leishmaniosis has recorded over % 91 

cure rates (Soto and Soto 2006). 

The main side effect of miltefosine is its teratogenicity properties, so miltefosine should not 

be administered to pregnant women (Rakotomanga et al., 2005; Dorlo et al., 2008). 

Additionally, gastrointestinal symptoms such as anorexia, nausea, vomiting and diarrhea 

(Sundar et al., 2002). Another drawback, miltefosine has long half-life ∼7 days, which could 

promote development of drug resistance as a result of the drug being present in the 

bloodstream after the end of treatment (Chappuis et al., 2007; Bryceson 2001). 

The mode of action of miltefosine described in chapter 4. 

 

1.4.5.4 Paromomycin  

Paromomycin, an aminoglycoside antibiotic, was first isolated from filtrates of Streptomyces 

krestomuceticus in the 1950s. Interestingly it was introduced in 1960s and shown to have 

antileishmania activities. In 1980, renewed interest of paromomycin led to development of 

topical formulations effective against CL, and a parenteral formulation was also developed 

against VL (Croft, SL and Yardley, V 2002). In 2006, paromomycin injection was licenced 



51 
 
 
 

based on the results of a clinical trial for treatment of VL performed in India (Sundar et al., 

2007; Davidson et al., 2009). Paromomycin has shown a cure rate of 93% against VL in a 

daily injection at 15 mg.kg-1 for 21 days (Musa et al., 2010).  

The mode of action of paromomycin has not been fully determined, it has been suggested 

that PMM binds to the ribosomal subunit of cytoplasmic forms, thus inhibiting protein 

synthesis (Croft and Yardley, 2002). Paromomycin also would dysfunction of mitochondrial 

activity acting, leading to decrease ATP production, and appears to have other effects such 

as decreases membrane fluidity and permeability (Berg et al., 2013).  

 

1.4.5.6 Combination therapy  

The current antileishmania drugs target different biological pathways inside the parasites but 

also present different side effects. Combination regimens in visceral Leishmaniasis was 

implemented over the last few years for several reasons. 

First, combining therapies from different chemical structures could reduce the dose of total 

drug treatment duration, limit the toxicity,  higher compliance, reducing the cost of 

treatment, and also provide less burden on long term for the health system (Alvar et al., 

2006; Van Griensven et al., 2010). Moreover, combination therapy may limit the emergence 

of drug resistance. Previous studies have been shown that selection of parasite resistance in 

vitro against two combination drugs is too difficult for the parasite especially if the two drugs 

target different biological pathways (Berg et al., 2013; Hendrickx et al., 2017). Ideally the 

design of combination chemotherapy regimens should be made of a rapid acting drug and a 

slow-acting drug to reduce the parasites burden on the short term and to elimination of the 
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parasites on the long term (Mondal et al., 2010). For example, combined therapies were 

tested such as liposomal AmB and miltefosine, miltefosine and paromomycin and liposomal 

AmB and paromomycin and with more than a 94% success rate for all of them in Indian and 

Bangladesh (Table 1.5) (Sundar et al., 2011; Rahman et al., 2017). There were very few side 

effects reported and no relapse or Post Kala azar dermal (PKDL) was confirmed at 6 months 

post-treatment (Rahman et al., 2017).  

 

Table 1.5: Combination therapy of antileishmania drugs 

 

 

 

 

 

 

India (Bihar) Bangladesh

L-AmB + 

Miltefosine 

Single injection of 5 mg.kg-1 LAmB + 7 

days 50-100 mg miltefosine
97.50% 94.40%

Miltefosine + 

paromomycin 

50-100 mg.day-1 miltefosine + 11 mg.kg-

1 per day paromomycin for 10 days
98.70% 97.90%

L-AmB + 

paromomycin

Single injection of 5 mg.kg-1 LAmB + 

10 days 11 mg.kg-1 intramuscular 

paromomycin

97.50% 99.40%

Cure rate
DosageCombination
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1.4.5.7 New hope for novel drugs for leishmaniasis 

Drug development efforts spearheaded by the Drugs for Neglected Diseases initiative 

(DNDi) have now shown encouraging progress in several novel classes. Two entirely new 

chemical entities (NCEs) were nominated as pre-clinical candidates in animal models against 

both visceral (VL) and cutaneous leishmaniasis (CL), DNDI-6148 from the oxaborole class 

and DNDI-0690 from the nitroimidazole class have entered in pre-clinical development. 

Phase I studies for both NCEs will be conducted throughout 2018 to 2019.  Results will serve 

for both VL and CL as oral drugs (Figure 1.21) (DNDi, 2017 and 2018). Other compounds, 

such as DNDi 5561, will be expected to be nominated as preclinical candidates in late 2018 

or early 2019 (DNDi, 2018).  

In addition, final results of the preclinical in vivo efficacy study showed an improved 

outcome for CpG-D35, an immunomodulator to stimulate the innate immune system against 

CL. This system was used either alone or as an adjunct to drug therapy with pentavalent 

antimony, for progression to Phase 1 clinical studies (DNDi, 2017 and 2018). Furthermore, 

the efficacy of combination therapy using thermotherapy (TT) (one application, 50°C for 

30") and miltefosine (2.5 mg/kg/day for 21 days) was tested to treatment of uncomplicated 

CL in Peru and Colombia. In 2017, 72 subjects (47 from Peru and 25 from Colombia) were 

enrolled into the study. after an interim analysis conducted by the Data Safety Monitoring 

Board (DSMB) in 2018 allowed to continue with this study and start planning a phase III in 

both New and Old World (DNDi, 2015 and 2018). 
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Figure 1.21: DNDi planning activities in CL 
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1.6 The search for new drugs includes natural products  

Natural products (secondary metabolites) have historically been used to control and treat 

diseases, and serve as a successful source for many pharmaceuticals used today since they 

contain a quantity of metabolites with a great variety of chemical structures and 

pharmacological activities (Ginsburg and Deharo, 2011). Between 1981 and 2006, a study 

of natural products (or semi-synthetics) as sources of new drugs was estimated at 62% of 

new small molecule drugs (Newman and Cragg, 2007). As only approximately 10% of the 

biodiversity in the world has been evaluated for biological activity, there is an immense 

potential for natural compounds that are, as yet, undiscovered (Dias et al., 2012; Meshnick 

et al., 1996). Quinine, an aminoquinoline alkaloid isolated from the cinchona tree bark of 

the 17th century, was first purified as the active component in 1820. Quinine remained an 

important anti-malarial drug until 1920s (Wells, 2011; Achan et al., 2011) when its 

widespread use was replaced by synthetic quinoline derivatives. Artesunate was isolated 

from the sweet wormwood plant Artemisia annua in 1971 (Wells, 2011) and its derivatives 

are the current front-line antimalarial in the form of artemisinin combination therapies. 

Others have been synthetic antimalarial drugs produced using natural products belonging to 

the classes of 4- and 8-aminoquinolines, such as chloroquine, amodiaquine and primaquine, 

which have all been extensively used over the last century (Carvalho and Krettli, 1991; 

Batista et al., 2009). Moreover, theophylline, penicillin G, morphine, paclitaxel and vitamin 

A among many other examples that are derived from natural products (Clark, 1996). 

Analysis of functionality and physiochemical properties of recently developed small 

molecule natural-product-derived drugs has revealed that 50% of them met Lipinski’s rules-

of-five for orally available drugs (Ganesan, 2008).  
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Over the last decades, natural products (secondary metabolites) have been studied due to the 

great variety and amount of bioactive compounds they synthesize. Active natural products 

include several groups of alkaloids, terpenoids, sterol, flavanoid, and quinones stand out 

because of their biological activities and potential health benefits (Table 1.6) (Wink, 2012). 

Alkaloids are an organic compounds characterized by basic nitrogen atoms as a part of 

heterocyclic system (Bribi, 2018). 

Terpenoids are a large and diverse class of natural products derived from C5 unit like as 

isoprene. They are classified as hemiterpenes (C5), monoterpenes (C10), sesquiterpenes 

(C15), diterpenes (C20), sesterpenes (C25), triterpenes (C30), tetraterpenes (C40), and 

polyterpenes (>C40). Terpenoids can be found in numerous sources of living organisms, 

especially plants, fungi, and marine animals (Sülsen et al., 2017). Many terpenoids possess 

the pharmaceutical properties reported such as cancer preventive effects and analgesic, anti-

inflammatory, antimicrobial, antifungal, antiviral, and antiparasitic activities (Singh and 

Sharma, 2014). 

Flavonoids are hydroxylated phenolic compounds (which consists of two phenyl rings and 

heterocyclic ring) that are present in plants. They are classified into different classes into 

flavonoids, isoflavonoids and neoflavonoids. Flavonoids present a wide range of biological 

activities such as antioxidant and anti-inflammatory activities (Mamadalieva et al., 2011; 

Kumar and Pandey, 2014). 

Quinones are a class of organic compounds, characterized by two carbonyl groups linked to 

a carbocyclic backbone. Quinones have been extensively studied as potential antimicrobial 

and anticancer agents, functioning either as inhibitors of essential redox pathways or as 

prodrugs (Hall et al., 2012a).  
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The number of recent studies regarding the effectiveness of natural products against different 

pathogens have been summarized in Table 1.6.  

 

 

 

 
Table 1.6: Antiparasitic activity of natural product sources 

 

Sources Identifications Structure Author 

Alkaloids 

 

 

Chimanine B isolated from Galipea longiflora 

(Rutaceae) have demonstrated strong 

therapeutic efficacy against experimental CL 

and VL. When administered to L. 

amazonensis infected BALB/c mice (50 

mg/kg body weight x 5 injections at intervals 

of 4 days). Chimanine B reduced the parasite 

load by 90% while the lesion weight was 

reduced by 74%. 

 
Chimanine B 

 

 

 

 

 

Fournet et 

al., 1996 

Scoulerine isolated from Corydalis dubia 

showed activity against two different strains 

of P. falciparum (TM4/8.2 and K1CB1, with 

IC50 values of 5.4 µM and 3.1 µM, 

respectively) 

 

 

 

Wangchuk 

et al., 2012 

 

 

Terpenoids   

 

 

 

 

 

Triterpenoid compound from the fruits of 

Neem, Azadirachta indica showed activity 

against D10 (CQ-S) and W2 (CQ-R) Strains 

of P. falciparum with EC50 values between 

0.03 µM and 9.4µM  

 

Chianese et 

al., 2010 

 

Monoterpene (inalool) isolated from a plant 

Croton cajucara (Euphorbiaceae showed 

strong antileishmanial activity against L. 

amazonensis promastigotes and intracellular 

amastigotes—LD50 = 0.028 and 0.14 µM 

respectively. 

 

Rosa et al., 

2003 

Sesquiterpene lactone—parthenolide isolated 

from a crude extract of plant Saussurea costus 

(Asteraceae) showed activity against T. brucei 

rhodesiense with EC50 = 0.8 2 µM and SI = 

6.5 against rat skeletal myoblast L6 cells 
 

Julianti et 

al., 2011 

Deacetylbaccatin III isolated from Taxus 

baccata (European yew tree) exhibited strong 

antileishmanial activity against (intracellular 

amastigotes) L. donovani with an EC50 value 

of 70 nM  

 

 

 

 
 

 

 

Georgopoul

ou etal., 

2007 
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compound LLD-3,  obtained from 

Lophanthera lactescens exhibited activity 

against L. amazonensis with an EC50 of 0.41 

µM  

  

Danell et 

al., 2009 

 

6,7-dihydroneridienone (sterol) isolated from 

Pentalinon andrieuxii displayed 

antileishmania potential against L. mexicana 

with EC50 = 0.03 µM,) and negligible 

cytotoxicity on health bone marrow 

macrophages from C57BL/6 mice. 

 

Pan et al., 

2012 

Flavonoids 

 

 

 

 

sakuranetin from the dichloromethane 

fraction of Baccharis retusa exhibited 

antileishmania potential against L. 

amazonensis, L. braziliensis, L. major, and L. 

chagasi with EC50 values ranging between 43-

52 µg/mL 

 

Grecco et 

al., 2012 

 

 

Quercetin isolated from  the leaves of 

Morinda morindoides (Rubiaceae) exhibited 

high anti-plasmodium activity against the P. 

falciparum (Congolese chloroquine-sensitive 

strain) with an EC50 value of 19.20 µM 

 

 

Cimanga et 

al., 2009 

2 phenolic compounds isolated from different 

subclasses of flavonoids demonstrated 

submicromolar potency against T. brucei 

rhodesiense with EC50 (= 0.16 and 0.8 µM) 

and SI (= 1019 and 571 (adenocarcinoma cells 

(HT-29)), respectively. 

 

(Räz, 1998) 

dihydrochalcones (chalcone) obtained from 

Piper elongatum exhibited antileishmania 

potential (in vitro) against the promastigotes 

of L. braziliensis, L. tropica and L. infantum 

with EC50 value of 28.47, 3.82 and 6.35 

µg/mL respectively 

 

Hermoso et 

al., 2003 

Quinones Prenyloxy naphthoquinone obtained from the 

roots of P. zeylanica showed leishmanicidal 

activity against L. donovani amastigote and 

promastigote with EC50 = 1.9 and 3.46 µM, 

respectively. 

 

Mishra et 

al., 2013 

furanonaphthoquinone isolated from the stem 

bark and root bark extracts exhibit activity 

against T. brucei rhodesiense with EC50 = 

0.045 µM,  

 

 

 
 

 

 

 

 

 

Moideen et 

al., 1999) 
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Primin isolated from the leaves of Miconia 

lepidota exhibit activity against T. brucei 

rhodesiense with EC50 = 0.14 µM, and 

moderate cytotoxicity (CC50 = 15.4 µM) 

against mammalian L6 cell lines. 

 

Gunatilaka 

et al., 2001 

 

 

1.7 The objective of this study 

Through a Materials Transfer Agreement with PhytoQuest Ltd, I was provided with the 

Phytopure natural product library – a novel collection of 643 natural products isolated from 

plants distributed within temperate zones. As such, natural products from these plants will 

not have any tradition of being used as medicines for the treatment of trypanosomiasis, 

malaria or leishmaniasis. In this thesis, I describe the screening of this library against three 

parasites; the intraerythrocytic stages of Plasmodium falciparum, axenic amastigotes of 

Leishmania mexicana and the bloodstream form of Trypanasoma brucei brucei. Data on 

their activity and selectivity when compared to human cell line(s) is presented.  

Where a Phytopure compound is evaluated as a potential hit, the objective will then be to 

attempt to generate a resistant line in order to facilitate a comparative study of morphology 

before and after compound action in order to explore its action. Further, the molecular basis 

of drug action and resistance will be explored. 

A final objective is the evaluation and validation of a novel L. mexicana transgenic cell line 

that expresses the NanoLuc luciferase reporter. This validation exploits the Medicine for 

Malaria Venture (MMV) Pathogen Box as a resource as well as an evaluation of the utility 

of luciferase expressing transgenic parasites in the more relevant intramacrophage assay.  
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Chapter 2: Materials and methods   

 

2.1 Materials (source of stocks and reagents)  

Unless specified, all plastic were sourced commercially from either Greiner Bio One or 

Starlab. Unless specified, all chemicals were provided by Sigma and ThermoFisher 

scientific. Compound libraries were provided by either Phyto-Quest Ltd or the Medicines 

for Malaria Venture (MMV) Pathogen Box. Lastly, the human blood was provided to 

professor Paul Horrocks as an approved user by The National Blood and Transplant Service 

(NBTS) account H064, and maintained under the Human Tissue Authority (HTA) License 

12349 for the Institute for Science and Technology in Medicine (ISTM) at Keele University. 

 

2.2 Cell culture methods  

2.2.1 Plasmodium falciparum  

2.2.1.1 Preparation of growth medium for P. falciparum culture  

The complete growth medium consists of 500 mL RPMI (Roswell Park Memorial Institute) 

-1640 medium supplemented with 37.5 mM HEPES buffer solution, 5 mM sodium 

hydroxide solution, filter sterilised (0.5 μM) 10 mM D-glucose, 2 mM L-Glutamine, , 100 

μM hypoxanthine solution, 25 mg/mL gentamicin sulfate, 5% for both human serum and 

albumax-II.  

Incomplete growth medium was prepared the same way as the complete medium, but 

without 5% of albumax-II or human serum. 
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2.2.1.2 Preparation of normal human erythrocytes  

NBTS UK supplied fresh human red blood cells type-O-Rhesus positive (ORh+). Human 

blood was aliquoted in to a 50 mL tube and stored at 4˚C for 2-3 weeks. To prepare 50% 

haematocrit blood cell (RBC) solution for cell culture, a 50 mL aliquot was centrifuged at 

1160 g at room temperature (RT) for 10 minutes. The upper serum phase was removed and 

an equal volume of incomplete growth medium was added to the pelleted RBCs. The RBCs 

were re-suspended and then pelleted by centrifugation at 850 g RT for 5 minutes. The process 

of washing the RBC pellet was repeated twice more as describe above to ensure the complete 

removal of serum, preservatives and white blood cells (WBCs). To complete the process, an 

equal volume of incomplete growth medium was added to ensure there was an equal volume 

of blood and supernatant in the tube. The RBCs at 50% haematocrit (HCT) were stored for 

up to 10 at 4C°.  

 

2.2.1.3 In vitro intraerythrocytic culture of P. falciparum 

Two clones of P. falciparum were used in this study; Pf 3D7 is derived from P. falciparum 

NF54 isolated from a Dutch malaria patient, which is chloroquine sensitive (Delemarre and 

Van der Kaay, 1979; Walliker et al., 1987), and Pf Dd2Luc transgenic parasite line is a clone 

derived from genetic modification of AHE1 (Hasenkamp et al., 2013). Which has a 

pfpcna/luciferase expression cassette introduced (Wong et al., 2011), and is chloroquine 

resistant.  

The P. falciparum strain 3D7 and Dd2Luc were continuously cultured at a 2% HCT and 2% 

parasitemia as previously described (Trager and Jensen, 1976; Freese et al., 1988). Cultures 

are maintained at 37°C in an atmosphere of 1% O2, 3% carbon dioxide and 96% nitrogen. 

Light microscopy was used to assess the growth and stages of the parasite.  Parasite density 

was controlled by diluting cultures with complete medium, RBC and infected red blood cells 
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(iRBCs) as necessary to between 2-4% HCT and 0.5-5 % parasitaemia (PCT) depending on 

the requirements of the assays. 

 

2.2.1.4 Assessment of Parasitaemia with Giemsa Staining 

Parasite density was assessed daily. Thin blood smears were prepared on glass slides and 

fixed with 100% absolute methanol for 1 minute. The slide was air dried, then covered with 

10% giemsa stain (filtered through a 0.45 μM pore filter) and left for 10 minutes. The dye 

was washed with water and allowed to dry. Parasitemia and life cycle staging were assessed 

by light microscopy (oil immersion objective lens) at x1000 magnification (Olympus).  

 

2.2.1.5 P. falciparum culture synchronisation using sorbitol-lysis method  

P. falciparum culture synchronisation with sorbitol was originally described by Lambros 

and Vanderberg (1979). Cells were grown until the culture displays predominantly ring stage 

parasites in 0-18 hours post RBC infection. The iRBC cell pellet was collected from the 

parasite culture by centrifugation at 300 g, RT, RT for 5 minutes. The supernatant was 

discarded and 5 volumes of pre-warmed 5% w/v sorbitol solution was added to the cell pellet 

and 5 minutes incubation at 37°C. Synchronied iRBC were collected by centrifugation of 

the culture at 850 g RT for 5 minutes the supernatant was removed and the cell pellet (iRBC 

represents early ring stage parasites). The culture was put in a flask with the appropriate 

volume of complete medium, gassed and returned to the incubator at 37 ˚C. 
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2.2.2 Trypanosoma brucei  

2.2.2.1 In vitro culture of T. brucei  

The procyclic forms of T. brucei 427 SMWT strain cells were maintained in HMI-9 medium 

(a stock of HMI-9 was prepared by dissolving 16 g of HMI-9, 1.51 g of sodium bicarbonate 

(NaHCO3) and 7 µL of 2M β-mercaptoethanol in 400 mL dH2O), supplemented with 10% 

(v/v) foetal calf serum, 2 mM L-glutamine (Gibco) and 100 U/mL penicillin (Gibco) and 

100 μg/mL streptomycin (Gibco) at 37°C with 5% CO2 (Hirumi and Hirumi, 1989; Sullivan 

et al., 2015). Cell cultures were diluted 1:20 into fresh medium every 3 days to maintain the 

cell densities between 105 and 106 cells/mL. 

 

2.2.3 Leishmania mexicana  

2.2.3.1 In vitro culture of L. mexicana  

Procyclic L. mexicana promastigotes (strain MNYC/BZ/62/M379) were maintained in 

Schneider’s medium (Gibco) pH 7.0 with 10% FBS (Fetal Bovine Serum) (Gibco), 100 

U/mL penicillin (Lonza) and 100 μg/mL streptomycin (Lonza) at 26°C. Differentiation to 

axenic amastigotes were performed by a 1 in 10 dilution of stationary phase promastigotes 

into Schneider’s medium pH 5.5 supplemented with 10% FBS, 100 U/mL penicillin and 100 

μg/mL streptomycin (complete Schneider’s media pH 5.5) at 32°C (Heather et al., 1997).  

The density of parasite growth was determined by the addition an equal volume of culture 

and 2% formaldehyde (v/v) in phosphate buffered saline (PBS), and counted in a Neubauer 

haemocytometer under Light microscopy. 

 

 



64 
 
 
 

2.2.3.2 Generation of plasmid constructs and L. mexicana transfection 

Transgenic L. mexicana NanoLuc and NanoLuc-PEST provided by Dr. Berry and described 

in (Berry et al., 2018). Briefly, NanoLuc and NanoLuc-PEST open reading frames were 

amplified by PCR from plasmid DNA templates: pNL1.1, pNL1.2 (Promega). All 

oligonucleotide sequences are provided in Table 2.1. Amplified genes were digested with 

BamHI and KpnI and ligated into pSSU-No (Oyola et al., 2012) to produce the constructs 

pSSU-NanoLuc and pSSU-NanoLuc-PEST, foer constitutive expression in Leishmania 

mexicana. The pSSU expression vector contains flanking regions for integration into the 

rDNA locus of the parasite genome. The constructs (PacI/MssI digested) were transfected 

into mid-log L. mexicana procyclic cells by nucleofection using a 4b Nucleofector system 

(Lonza), as described previously (Burkard et al., 2007). Transformants were selected after 

24 hours by the addition of 40 µg/ml Geneticin (Life Technologies). Integration of the 

construct into the genome was assessed by PCR amplification of 160-200 ng genomic DNA, 

using the oligonucleotide primers pSSU-F (region of the 18S gene) and pSSU-R (splice 

acceptor site in the pSSU vector). Genomic DNA was purified from mid-log promastigote 

cells using the DNeasy Blood and Tissue Kit (Qiagen).  

 

Table 2.1: Oligonucleotide sequences for cloning and integration. 

Name Purpose Sequence 

NanoLuc-F 

Amplification of NLuc 

and NLucP for pSSU-

Neo cloning 

5ʹ -GTTGGTGGATCCACCATGGTCTTCACAC-3ʹ 

NanoLuc-R 5ʹ -GCCCCGGTACCAGAGTCGCGGCCTTACG-3ʹ 

NanoLuc-

PEST-R 

5’- GCCCCGGTACCAGAGTCGCGGCCTTAG-3’ 
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2.2.3.3 Long term storage of promastigote cells culture  

500 µl promastigote cells culture was mixed with 500 µl Schneiders medium pH 7 and 10% 

DMSO in sterile freezing vials. The vials were stored -80°C overnight before storage for 

long term in liquid nitrogen. 

To defrost cells: A vial of frozen promastigote cells were thawed at 37˚C in water bath.The 

cells were then transfared to 1.5 mL eppendorf tube and centrifuged for 5 minutes at 300 g 

to remove the DMSO. The cell pellet was resuspended in 10 mL Schneiders medium pH 7 

and incubated at 26°C. 

 

2.3 Drug assays  

2.3.1 Drug stocks preparation  

a. Phytopure compounds library:  

PhytoQuest Ltd has provided a Diversity library of 643 non polar compounds (1mg/mL in 

DMSO). This library represent a novel source of purified natural products isolated from 

temperate zone plants across a diversity of chemotypes, which are tested here for their anti-

parasitic activity. This library was stored at -20˚C. 

b. Pathogen Box compounds:  

The MMV Pathogen Box resource, comprising 400 diverse drug-like molecules were 

obtained from the Medicines for Malaria Venture (MMV; Geneva, Switzerland). The 

Pathogen Box compounds were supplied at a concentration 10 mM (in 10 µl DMSO) in 96-

well plates. All compounds were stored at -20˚C. 
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2.3.2 Malaria SYBR-green (MSF) assay 

This protocol was adapted from Smilkstein et al. (2004). A stock MSF lysis buffer was 

prepared by mixing  20mM Tris pH7.5, 5mM EDTA, 0.008% Saponin and 0.08% Triton X-

100  with 5000X SYBR-green 1 (to produce a 1x final concentration) and placed in the dark 

at RT until needed. To perform the assay, 100 μl of the re-suspended iRBC culture (from 

drug dilution experiment) was transferred to a black 96-well plates  (Greiner, UK) and 

combined with 100 μl of MSF lysis buffer with 1x SYBR-green. The black plate was 

incubated for an hour in the dark at RT. After 1 hour, the fluorescence signal of the samples 

were detected by using the GloMax Microplate Luminometer (Promega, UK), using the blue 

fluorescence module filter (excitation, and emission).  

 

2.3.3 Standard protocol for AlamarBlue (AlamarBlue) assay  

This protocol was developed by Raz et al. (1997). AlamarBlue (ThermoFisher) was diluted 

1:10 per well of 96-well plate containing cells culture. The fluorescence signal was measured 

at 570 nm using a Glomax multi-detection System after 6 h incubation in the dark at 32°C, 

with 5% CO2.  

 

2.3.4 Luciferase assay  

All bioluminescence reagents are from Promega unless otherwise stated. This protocol was 

adapted from that originally described by Hasenkamp et al., 2012. 40 µl of P. falciparum 

culture were transferred to wells on a white 96-well plates in triplicate, and 10 μl passive 

lysis buffer (Promega, UK) was added into each well and homogenized by shaking. Then 50 

μl of Luciferase Substrate was added and mixed by shaking the plate. After 2 minutes, the 

bioluminescent signal was measured using the Glomax Multi Detection System.  
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2.3.5 Nano-Glo Luciferase Assay  

20 µl of treated axenic amastigote culture was transferred in duplicate to a white 96-well 

plates and 20 µl of luciferase reagent (Nano-Glo Luciferase Assay buffer and Nano-Glo 

Luciferase Assay substrate, 200:1) was added to each well. After 3 minutes, the 

bioluminescent signal was measured using a Glomax Multi Detection System. Results were 

analysed using GraphPad Prism 5.0.  

 

2.3.6 Drug screening experiments against P. falciparum 

 

2.3.6.1 Initial screening of intraerythrocytic P. falciparum 

These experiments were employed using the Pf Dd2luc strain in trophozoite stage. Initial 

screening of all 633 compounds were screened at 10-fold dilution between 20 μM and 2 μM 

concentrations in duplicate with two technical replicates to provide n=4. An equal volume 

(100 μL) of Mastermix (4% haematocrit, 1% trophozoite parasitemia and complete medium) 

was added into all wells and mixed by shaking. Both positive (2 μM Chloroquine CQ) and 

negative (equivalent volume of DMSO) controls were made in 100 μl of complete medium 

and 100 μl of Mastermix of each plate. 200 μl incomplete growth medium was added to the 

perimeter wells of the plate 96-well to minimize edge effects from evaporation. The 96-well 

plates were incubated at 37°C for 48 hours in a humidified airtight box with an atmosphere 

of 1% O2, 3% CO2 and 96% N2. The Malaria SYBR-green Fluorescence Assay (2.3.2) was 

used to assess the inhibitory effect of each compound. 
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2.3.6.2 Determination of the 50% effect concentration (EC50)  

Drug sensitivity was determined by measuring the 50% effective concentration (EC50), 50% 

lethal dose (LD50) and rate of kill on the Dd2 parasite strain. All these assays were performed 

in 96-well plates in triplicate at least three independent biological replicates, unless 

otherwise indicated. 

For EC50 assay, the specific concentration for each compound was serially diluted (1:2), nine 

times in 100 μl complete growth medium (Figure 2.1). Subsequently, 100 µL of Mastermix 

(4% haematocrit, 1% trophozoite parasitemia and complete medium) was seeded into all 

wells. Untreated controls were provided by cultures exposed to a 1% DMSO (100% growth) 

with a drug-treated control provided by exposure to 2μM CQ (0% growth). 200 μl 

incomplete growth medium was transferred to the perimeter wells of the plate 96-well. The 

plates were incubated at 37 ˚C for 48 hours in a 1% O2, 3% CO2 and 96% N2 atmosphere. 

After that a malaria SYBR-green fluorescence assay (2.3.2) was used to assess the inhibitory 

effect of each compound. The 50% effect concentration (EC50) was determined by analysis 

of a log10 transformed drug concentration versus the percentage of parasites growth using 

GraphPad Prism software (v5.0). 

 

2.3.6.3 Determination of the 50% lethal dose (LD50) 

The 50% Lethal Dose (LD50) was determined according to the bioluminescent assay as 

previously described by Ullah et al. (2017).  

To measure LD50 was used the same protocol for EC50 as described in (2.3.7) although with 

a higher staring concentration, with the following modification:  

The plates were incubated at 37 ˚C for 6 hours (rather than 48 hours) in a 1% O2, 3% CO2 

and 96% N2 atmosphere (Figure 2.1 B). After that, the LD50 was measured using the standard 
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protocols for Luciferase (rather than SYBR-green fluorescence assay) as described in 

(2.3.4).   

 

2.3.6.4 Bioluminescent Relative Rate of Kill (BRRoK) assay 

The BRRoK was determined according to the bioluminescent assay as previously described 

by Ullah et al. (2017).  

The specific concentration for each compound was serially diluted (1:3), four times in 100 

μl complete growth medium (Figure 2.1 C). Subsequently, 100 µL of Mastermix (4% 

haematocrit, 1% parasitemia of early trophozoite-stage and complete medium) was seeded 

into all wells. A positive control was made of 100 μl Mastermix with 100 μl complete 

medium. To minimize edge effects from evaporation, 200 μl of incomplete medium was 

added to the outermost wells on each plate. The plate was placed in a humidified airtight 

box, gassed (to maintain an atmosphere of 1% O2, 3% CO2 and 96% N2) and incubated for 

48 hours at 37 ˚C (Figure 2.1 C). The RoK was measured after 3, 6 and 48 hours of 

incubations respectively using the standard protocols for Luciferase 2.3.4.   
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Figure 2.1: Schematic representation of a bioluminescence assay (to measure LD50 and RoK) and 

fluorescence assay (to measure EC50).  
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2.3.6.5 Cytotoxicity assay 

The toxic effect of PhytoQuest compounds on hepatoblastoma cell line (HepG2) was 

assessed using AlamarBlue.  

HepG2 cells were cultured in DMEM medium supplemented with 10% (v/v) foetal bovine 

serum and 0.2% (v/v) of a penicillin (10 U/mL)/streptomycin (10 μg/mL) solution at 37 °C 

with 5% CO2. The cultures were diluted in in DMEM medium every 4 days to maintain the 

cell density between 4 x 105 cells/mL and 4 x 106 cells/mL (Aldulaimi et al., 2017). 

Assays were performed in 96-well plates. The required concentration for each compound 

was diluted serially 1:2, eight times in 100 μl DMEM medium, in triplicate. 

After that, 100 µL of HepG2 cells at a density of 1×105 cells/mL were seeded to the wells. 

Untreated controls were provided by cultures exposed to a 1% DMSO (100% growth) with 

a drug-treated control provided by exposure to 1 µM actinomycin D (0% growth).  

The treated cells were incubated for 48 hours at 37°C in an atmosphere of 5% CO2. After 

that, HepG2 viability of each compound was assessed by using AlamarBlue fluorescence 

method as described in (2.3.3). The 50% cytotoxicity concentration (CC50) was determined 

by analysis of a log transformed concentration versus normalized fluorescence signal curve 

using GraphPad Prism software (v5.0). 

 

2.3.7 Drug screening experiments against Trypanosoma brucei 

2.3.7.1 In vitro drug screening experiments  

In vitro antitrypanosomal activity were assessed using an AlamarBlue assay. The screening 

of PhytoQuest compounds was performed at 2 μM in each well of 96-well plates. Plates were 

incubated with 100 µL of T. brucei at a density of 1 x 105 cells/mL in HMI-9 medium from 

a 3 days old culture at 37°C with 5% CO2 for 48 hours. Assays were screened in triplicate 

with two biological replicates to perform (n=6). Both positive (2 µL of 2 µM Amphotericin 
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B (Gibco)) and negative (equivalent volume of DMSO) controls were included on each plate. 

Following incubation, fluorescence method was used to assess the inhibitory effect of each 

compound depending on AlamarBlue assay 2.3.3.  

 

2.3.7.2 In vitro determination of antitrypanosomal activity 

In vitro antitrypanosomal activities of the PhytoQuest compounds were assessed against T. 

brucei using fluorescence method AlamarBlue as described in 2.3.3. The effective 

concentration 50% (EC50) was measured for candidate compounds according to inhibit of 

parasite growth as described in 2.4.4. 

Assays were performed in 96-well plates. The specific concentration for each compound was 

diluted serially 1:2, eight times in 100 μl HMI-9 medium, in triplicate. Plates were incubated 

with 100 µL of T. brucei at a density of 2 x 105 cells/mL in HMI-9 medium for 48 hours at 

37°C with 5% CO2.  Following incubation, EC50s was measured using AlamarBlue assay, 

described in 2.3.3. Both positive (2 µl of 2 µM Amphotericin B) and negative (equivalent 

volume of DMSO) controls were included for each plate. All experiments were performed 

on a minimum of three independent biological replicates, unless otherwise indicated. 

The EC50 was determined by analysis of a log transformed concentration versus normalized 

fluorescence signal curve using GraphPad Prism software (v5.0). 

 

2.3.8 Drug screening experiments against Leishmania mexicana  

2.3.8.1 In vitro drug screening experiments  

Initial screening of PhytoQuest compounds was performed at 2 μM in each well of 96-well 

plates. Assays were screened in triplicate, with two biological replicates (n=6). 200 µL of 

axenic amastigotes at a density of 1 x 106 cells/mL were seeded to each well. Both positive 
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(2 µl of 2 µM Amphotericin B) and negative (equivalent volume of DMSO) controls were 

included on each plate. Cells were incubated for 72 hours at 32°C. The fluorescence method 

AlamarBlue (2.3.3) was used to assess the inhibitory effect of each compound. 

 

2.3.8.2 In vitro determination of antileishmanial activity 

In vitro antileishmanial activities of the PhytoQuest compounds were assessed against L. 

mexican (axenic amastigotes) using fluorescence method AlamarBlue as described in 2.3.3. 

The EC50 was measured for the candidate compounds according to inhibit of parasite growth, 

as described in 2.5.4. 

Assays were performed in 96-well plates. The specified concentration of each compound 

was diluted serially in eight different concentrations in 100 μl Schneider’s medium pH 5.5 

for each well of 96-well plates, in triplicate at a 2 fold dilution. Plates were incubated with 

100 µL of axenic amastigotes at a density of 2 x 106 cells/mL in Schneider’s medium pH 5.5 

for 72 hours at 32°C.  Following incubation, EC50s was measured using AlamarBlue assay, 

described in 2.3.3. Both positive (2 µl of 2 µM Amphotericin B) and negative (equivalent 

volume of DMSO) controls were made up on each plate. All experiments were prepared 

from at least three independent biological replicates, unless otherwise indicated. 

The 50% effect concentration (EC50) was determined by analysis of a log transformed 

concentration versus normalized fluorescence signal curve using GraphPad Prism software 

(v5.0). 

 

2.3.8.3 Macrophages (THP-1) cell line cytotoxicity assay  

The cytotoxicity of the PhytoQuest compounds hits were tested against human acute 

monocytic leukemia cell line (Tsuchiya et al., 1980, Auwerx, 1991). The human monocyte 

cell line THP-1 was cultured at density 1x105 cell/mL in RPMI-1640 medium (Gibco) 
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supplemented with 10% (v/v) FBS and 2 mM L-glutamine (Gibco) (complete RPMI media) 

at 37°C in an atmosphere of 5% CO2. The cells were diluted 1:10 into RPMI-1640 medium 

every 3 days to maintain cell density between 3 × 105 and 8 × 105 cells/mL (Barilli et al., 

2011). 

Assays were performed in 96-well plates. The required concentration for each compound 

was serially diluted 1:2, eight times in 100 μl RPMI-1640 medium, in triplicate. After that, 

100 µL of THP1 cells at a density of 5 x 104 cells/mL were seeded in each well. Negative 

controls were provided by cultures exposed to a 1% DMSO (100% growth), and positive 

controls provided by exposure to 1 µM actinomycin D (0% growth) were included in each 

experiment. The treated plates were incubated for 48 hours at 37°C with 5% CO2. 

Cytotoxicity was determined using fluorescence assay AlamarBlue (2.3.3). Cytotoxic 

concentration 50% (CC50) was estimated with Graph Pad Prism (5.0). The selectivity index 

(SI) was calculated through the expression: SI = CC50/EC50. 

 

 

2.3.8.4 Infected macrophages and treatments 

The activity of PhytoQuest compounds were tested against intracellular infected 

macrophages. Differentiation of THP-1 cells was performed by seeding 2.5 x105 cells/mL 

in complete RPMI media, supplemented with 20 ng/mL phorbol 12-myristate 13-acetate 

(PMA) (Invitrogen) (Jain et al., 2012). THP-1 cells were plated onto chamber slides (200 

µL/well) (Thermo Scientific), and allowed to adhere for 24 hours incubation at 37°C with 

5% CO2. Following incubation, adherent macrophages were carefully washed once with PBS 

to remove non-adherent cells. Macrophages were infected with axenic amastigotes at a ratio 

of 10:1 (parasites:macrophages cells) in complete RPMI medium, and incubated at 32°C 
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with 5% CO2 for 16 hours. The macrophages were washed 4 times with PBS to remove 

extracellular parasites.  

Infected cultures were re-incubated for 72 hours at 37°C, 5% CO2, with compounds (700022, 

700107, 700136 and 700240 at 1x, 3x and 9x EC50) or amphotericin b (AmB) (at 1x, 3x 

EC50), in duplicate. The treated cells were then washed 3 times with PBS, and the plastic 

chambers was removed from the slides. Infected and uninfected macrophages controls were 

included in each chamber slide. The cells were then fixed by immersing the slides in 100% 

absolute methanol for 30 seconds. The slides were dried and then incubated with 5x SYBR-

green stain in the dark for 15 minutes. The dye was washed off with PBS and allowed to dry. 

THP-1 cells were examined under EVOS FL cell imaging system (ThermoFisher Scientific) 

fluorescence microscope with a 100x lens. The percentage of infected THP-1 was 

determined by counting the average number of amastigotes per macrophages for each well 

based on SYBR-green stain. Two biological replicates were performed for each assay. 

 

2.3.8.5 In vitro drug screening of MMV Pathogen Box against L. mexicana NanoLuc-

PEST-transgenic line  

Initial screening of the MMV Pathogen Box library was performed at two concentrations 

(10 M and 2 M) μM in each well of 96-well plates. Assays were screened in duplicate, 

with two biological replicates (n=4). Axenic amastigotes of L. mexicana NanoLuc-PEST-

transgenic line were seeded at a density of 2 x 106/mL in duplicate (100 l/well). Both 

positive (2 µl of 2 µM Amphotericin B) and negative (equivalent volume of DMSO) controls 

were included on each plate. Cells were incubated for 72 hours at 32°C and a 

bioluminescence based assay was used to assess the relative cell growth as described in 2.3.5. 
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2.4 Generating drug-resistance 

In vitro, L. mexicana (strain MNYC/BZ/62/M379) resistant to 700022 was obtained by 

growing promastigotes in complete Schneider’s medium pH 7.0 at 26°C, under drug pressure 

in stepwise selection process (Seifert et al., 2003). Promastigotes at a density of 1 x 106 

cells/mL were initially treated at 11.5 µM (the EC50 concentration of 700022) in triplicate. 

The compound concentration was gradually increased every 48 hours for 28 weeks until they 

were resistant to 85 µM. Promastigote growth was monitored every 48 hours using a 

haemocytometer. The resistance levels of promastigotes were monitored during their 

establishment by measuring EC50 value as described in 2.5.5 with the following 

modification: Promastigotes at a density of 1 x 105 cells/mL in complete Schneider’s medium 

pH 7.0 at 26°C were used in assay rather than amastigotes. 

L. mexicana amastigotes resistant to 700022 were obtained by culturing resistats stationary 

phase promastigotes into complete Schneider’s media pH 5.5 at 32°C. Once transformed, 

the resistance levels of axenic amastigotes were detected by measuring the EC50 value. 

The stability of the promastigotes resistance line to 700022 was studied by maintaining the 

resistant culture in Schneider’s complete medium pH 7.0, in the absence of drug pressure. 

The EC50 was re-tested, and these lines remained resistant to 700022 for at least two months.  

 

2.5 Morphological and ultrastructural analysis of the Leishmanial parasite 

 

2.5.1 Immunofluorescence assay  

The stationary phase metacyclic promastigotes (5x107cells/mL) were treated with 85 µM 

and 170 µM of compound 700022 and incubated for 24 hours. The untreated control was 

made up with Schneiders medium. After treatment, the cells were washed twice in 100 µl of 
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1x PBS (phosphate buffered saline), and settled onto a polysine slide (thermo scientific) for 

10 minutes at RT. The excess liquid was removed, and the cells permeabilized with 0.1% 

triton™ X-100 (100 µl/slide) (Sigma) for 15 minutes, then blocked with one drop of Image 

iT FX Signal Enhancer (Life Technologies) for 30 minutes in a humid chamber. Cells were 

then incubated with 100 µl primary antibodies mouse-anti-α-Tubulin (ThermoFisher 

Scientific) (diluted 1:250 in PBS) for 1 hour. After washing three times with 1x PBS, the 

cells were incubated with 100 µl goat-anti-mouse secondary antibodies conjugated to Alexa 

Fluor 488 (diluted 1:200 in PBS) (Invitrogen) for 1 hour in a humid chamber in the dark. 

Slides were washed twice in PBS, and the cellular DNA was then stained with 100 µl of 0.01 

mg/mL 4,6-diamino-2-phenylindole (DAPI) (Invitrogen) for 5 minutes at RT, and then 

washed twice in PBS before covering with a coverslip. The cells were then analysed using 

the EVOS FL cell imaging system (ThermoFisher Scientific). 

The parameters of length flagellum and body surface area of 200 randomly cells were 

measured using the ImageJ software (version 1.48).  

 

2.5.2 Scanning electron microscopy (SEM) of metacyclic promastigotes 

Before seeding the cells, the coverslips (12 mm, circular) were washed in ethanol. 75 µl of 

0.1 mg/mL poly-L-lysine (in PBS) was added onto each coverslip and allowed to stand for 

25 minutes at RT. The coverslips were then washed with 100 µl PBS, and kept hydrated in 

100 µL PBS overnight.  

The stationary phase metacyclic promastigotes (5x107cells/mL) were treated with 85 µM 

and 170 µM of 700-22 and incubated for 24 hours. The control group was cultivated with 

Schneiders medium, pH 7 only. 

After treatment, promastigotes were rinsed three times in serum free Schneiders and once 

with PBS. The cell pellets were washed and re-suspended in 100 µL PBS. The cells were 
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transferred onto a coverslip and incubated at RT for 30 minutes within 12-well plate. Cells 

were then washed twice with 1 mL PBS, then fixed with 1 mL of 2.5% glutaraldehyde in 0.1 

M sodium cacodylate trihydrate ((CH3)2AsO2Na·3H2O) (pH 7.4) for 2 hours in a fume hood. 

L. mexicana promastigotes were then presented for either scanning electron microscopy 

(SEM) or transmission electron microscopy (TEM). EM and SEM were performed by Karen 

Walker, Central Electron Microscope Unit/Keele University. This assay was performed in 

promastigotes wild-type and resistance line. 

 

2.5.3 Transmission Electron Microscopy (TEM) 

For TEM was used the same protocols for SEM as described in 2.7.3 with the following 

modification: Aclar films were used rather than coverslips. Aclar film was cut into squares 

that fit easily into a well in a 12-well plate. 

 

2.6 Molecular Biology Techniques 

 

2.6.1 Isolation of Genomic DNA 

Genomic DNA was isolated from a pellet of stationary-phase promastigotes of L. mexicana 

(strain MNYC/BZ/62/M379) and resistant line for the same strain using DNeasy blood and 

tissue kits (Qiagen). 1 x 109 cells/mL were harvested and centrifuged at 300 g   for 5 minutes. 

The pellets were resuspended in 200 µl PBS. 20 µl of 20 mg/mL proteinase K and 200 µl 

buffer AL were added. The mixture was vortexed, and incubated at 56°C for 10 minutes. 

The samples were extracted with 200 µl ethanol (96-100%) and mixed thoroughly by pulse-

vortexing for 20 seconds. The DNA extracted was placed into mini spin column (in a 2 mL 

collection tube provided in the kit) and centrifuged at 6000 g for 1 minute. The flow-through 
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and collection tube were then discarded. 500 µl buffer AW1 was added and subjected to a 

centrifuge at 20,000 g for 1 minute, and then mini spin column was placed in a new 2 mL 

collection tube and discard the tube containing the filtrate (this step was repeated using 500 

µl buffer AW2 rather than AW1 to dry the DNeasy membrane). The column was re-

centrifuged for 1 minute at 20,000 g to ensure that no residual ethanol was carried over 

during the elution. The final step is to transfer the spin column to a new 1.5 mL 

microcentrifuge tube. 100 µl buffer AE (10mM Tris-Cl, 0.5 mM EDTA, pH 8.5) was added 

to the center of the spin column membrane to elute the DNA, incubated at RT for 2 minutes, 

and centrifuged for 1 minute at 10,000 g. Take 10 µl to the PCR amplification. The DNA 

concentration was measured using a NanoDrop 1000 spectrophotometer (Thermo 

Scientific). 

 

2.6.2 Amplification reactions 

The miltefosine transporter LmRos3 gene (LmxM.31.0510) and LmMT gene 

(LmxM.13.1530) were amplified from genomic DNA of both L. mexicana promastigotes 

wild type and L. mexicana promastigotes resistance to compound 700022, using the 

oligonucleotide shown in Table 2.2.  

Reactions were performed in a final volume of 100 µl using 50 ng genomic DNA, 10 µl of 

10X buffer, 6 µl of 10 mM deoxynucleotide dNTPs, 10 µL of (25mM) MgSO4 Solution, 3 

µl of 1 µM of each oligonucleotide, 56 µl dH20 and 5 U/µL Taq DNA Polymerase. Negative 

controls (without genomic DNA) were prepared in each reaction. The PCR amplification 

reaction was performed using a thermocycler PTC-200 (MJ Research). The PCR reaction 

was carried out under the following conditions: initial denaturation at 95°C for 2 minutes 

and 34 cycles at 95°C for 30 seconds, 55°C to 65°C for 30 seconds and 72°C for 2 minutes, 

and a final elongation step at 70°C for 10 minutes.  
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Table 2.2: List of genes and oligonucleotide sequences used for gene sequences. All the 

oligonucleotides were bought from Eurofins Genomics. 

Gene / Clone Oligonucleotide sequence Band size (bp) 

 

LmxM.31.0510 F 5’-CGTGGGCCAAATCATGGCGT-3’ 

R 5’-TGCATTTTGGCTTCACGAGAAAGGCG-3’ 
1153 

 

 

 

LmxM.13.1530 

F1 5’-CCTGCTCCGTTCATATACCCCC-3’ 

R1 5’-CCGTACGGTCCAGCGCCACACG-3’ 
3430 

F1 5’-GCCGCTGTCCTTCGTGCTCCTGG-3’ 

R1 5’-GGCTATGATAAAGTAGTTCAGC-3’ 
589 

F2 5’-CCAGAACATAACGCTGTGGGGG-3’ 

R2 5’-GCATCCAAATGATCACACCGGCG-3’ 
1013 

F3 5’-GAGCGGCGCTGCACCTTGGTCATCG-3’ 

R3 5’-CGCTGAACACGAGCGTGCCGGTCTC-3’ 
741 

 

2.6.3 PCR product analysis  

PCR products were verified using a 2% agarose gel. Agarose was dissolved in to TAE buffer 

(0.04 mol/L Tris acetate, 0.001 mol/L EDTA), and stained with 0.5 mg/mL ethidium 

bromide. Following electrophoresis, the gel was and photographed under an ultraviolet light. 

2-Log DNA Ladder (0.1-10.0 kb) was used as a molecular marker to determine the band size 

of samples. 

 

2.6.4 Ligation: 

The PCR product was subcloned into the PCR™2.1 TOPO® vector (Invitrogen). The 

ligation reaction was set up as follows: 4 µL PCR product was added into 1 µL TOPO® 

vector and mixed with 1 µL salt solution (1.2 M NaCl; 0.06 M MgCl2 provided in the kit) 

and the ligation reaction was incubated at RT for 2 hours. 

2.6.5 Transformation of bacteria 

The ligation product was transformed into E. coli cells (Invitrogen™ Competent E. Coli) to 

amplify the confute get large quantities of the gene insert. 3 μL of the ligation product was 
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added to 50 l competent E. coli cells, mixed gently and incubated on ice for 10 minutes. 

The cells were heat shocked at 42C for 45 seconds, then put on ice for 1-2 minutes. 200 l 

of S.O.C medium (2% tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM 

MgCl2, 10 mM MgSO4, and 20 mM glucose) was added to the cells and incubated at 37°C 

for 1 hour. 150 μL of this solution was plated out on LB agar plates containing 100 µg/mL 

ampicillin and incubated at 37°C overnight. 

 

2.6.6 Selecting transformed colonies  

Positive colonies were grown in 5 mL Lysogeny broth (LB) (Sigma) containing 100 µg/mL 

ampicillin. Cultures were incubated at 37°C overnight with shaking at 300 g to obtain large 

quantities of the plasmid. Plasmid DNA was isolated using the plasmid miniprep kit. Then 

cloning was verified by restriction enzyme digestion to check the insert cloned into the 

vector. 

 

2.6.7 Purification of plasmid DNA  

Plasmid DNA was purified from the harvested cells using a QIAprep Spin Miniprep kit 

(Qiagen), according to the manufacturer’s protocol. 2 mL of overnight E. coli culture was 

centrifuged at 300 g for 5 minutes into microcentrifuge tube. The pellet was resuspended in 

250 µl buffer P1 (50 mM Tris-Cl, pH8.0; 10 mM EDTA and 100 µg/mL RNase A) and then 

250 µl of buffer P2 (200mM NaOH and 1 %ww/v NaOH) was added and mixed thoroughly. 

350 µl of buffer N3 (25-50% guanidinium hydrochloride and 10-25% acetic acid) and mix 

immediately by pulse-vortexing, followed by centrifugation at 10,000 g for 10 minutes. The 

supernatant was placed in a QIAspin column and centrifuged at 6000 g for 1 minute. The 

column was washed with 750 µL buffer PE and centrifuged for 30–60 seconds. 50 µl buffer 

EB was added to the centre of the spin column membrane to elute the plasmid DNA, and 
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centrifuged for 1 minute at 10,000 g. Plasmid DNA was quantified using a NanoDrop 2000c 

spectrophotometer (Thermo Scientific).  

 

2.6.8 Digestion of plasmid with restriction enzyme 

Purified plasmid was digested using EcoRI restriction enzyme (Thermo Scientific) to 

confirm of the insert. The digestion reactions were set up as described in table 2.3. 

 

Table 2.3: EcoRI digestion reaction 

Reagent Final concentration Final volume in 20 

µl 

Plasmid DNA   

10X FastDigest Green Buffer 1x 2 µl 

EcoRI (10 U/µl) 5 U 1 µl 

ddH2O To give a final volume of 20 µl 

 

The reaction mixture was incubated at 37˚C for 30 minutes-1 hr. 

The restriction digests were analyzed by gel electrophoresis.  

 

2.6.9 Genomic DNA sequencing of LmMT and LmRos3 

The LmMT and LmRos3 genes for both L. mexicana wild-type and r-L. mexicana resistnt to 

700022 were implemented using commercial DNA sequences (Eurofins Genomics). 

 

2.6.10 Sequence analysis  

Multiple alignment of nucleotide sequences were performed by using the Clusta omega 

(https://www.ebi.ac.uk/Tools/msa/clustalo/). ID of L. mexicana orthologs is available at 

TriTrypDB (http://tritrypdb.org/tritrypdb/). Swiss institute of bioinformatics (SIB) tool was 

http://tritrypdb.org/tritrypdb/
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used to translate nucleotide (DNA/RNA) sequence to a protein sequence 

(https://web.expasy.org/translate/).  

Genome sequencing analysis was done to determine if there any differences between 

the reference sequence and the gene that has already been sequenced. 

 

2.7 Data analysis  

The data was converted to Excel spreadsheets using Instinct software (Promega). Data was 

analysed and bar charts plotted on GraphPad Prism v5.0. 

 

2.8 Chemical laboratories  

Chemical structures of the tested compounds were drawn using ChemDraw software and 

SMILES code reported. Chemoffice and Molinspiration softwares were used to find out 

compound’s names with physicochemical properties such as Molecular weight (MW), Logp 

(octanol-water partition coefficient), Logs (water solubility), hydrogen bond acceptors 

(HBA), hydrogen bond donors (HBD), total polar surface area (TPSA), number of rotatable 

bonds (NROTB) and molecular volume. 

 

 

 

 

 

 

 

 

https://web.expasy.org/translate/
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Chapter 3: Screening of Phytopure library compounds against P. 

falciparum, T. brucei and L. mexicana  

 

3.1 Introduction  

Diseases such as malaria, leishmaniasis and trypanosomiasis continue are the cause of 

suffering for many millions of people living in tropical and subtropical areas of the world. 

There is an urgent need to identify and evaluate novel chemical scaffolds to seed the drug 

discovery pipeline for these parasitic diseases to meet the challenges of emerging resistance 

to available drugs, risks of toxicity and the cost of these treatments. There has been a 

significant investment in international efforts in the screening of massive small-chemical 

libraries with several million compounds have been screened in phenotypic assays against 

malarial parasite, which has resulted in a solid pipeline of novel candidates in clinical and 

preclinical development (Kaiser et al., 2015; Preston et al., 2016; Burrows et al., 2013). In 

addition, the Drugs for Neglected Diseases initiative (DNDi) is a patient-needs driven, non-

profit drug research and development (R&D) to provide new treatments for neglected 

diseases, notably leishmaniasis, sleeping sickness (human African trypanosomiasis, HAT) 

and Chagas’ disease (Don and Ioset, 2013). 

In addition to massive libraries of synthetic compounds, activity screening also includes 

natural products, recognizing that they offer a potential source of new antiparasitic therapies. 

Natural products are derived from a wide array of organisms such as animals, fungi and the 

higher plants have been shown to contain secondary metabolites with a variety of 

underexplored chemical entities and pharmacological activities (Yamthe et al., 2017; 

Zulfiqar et al., 2017). Generally, natural products are more complex, when compared to 
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synthetic molecules with the structures of natural products having greater numbers of carbon, 

oxygen and hydrogen atoms, as well as a generally high polarity and molecular weight. 

Recent efforts to elucidate the chemical structure and biological function of the active 

chemical structure within anti-parasitic natural product extracts have detected molecules 

with the potential to treat some Neglected Tropical Diseases (Cheuka et al., 2016). For 

instance, recently, the antiparasitic activity of alkamide (deca-2E,4E-dienoic acid 2-

phenylethylamide isolated from Anacyclus pyrethrum roots) has been tested against L. 

donovani, T. b. rhodesiense, T. cruzi and P. falciparum with EC50 of between 3 to 5µg/ml 

across these diverse species (Althaus et al., 2017). Moreover, the anti-kinetoplastid activity of 

472 natural products based library has been screened against L. donovani DD8, T. b. brucei 

and T. cruzi, and identified several compounds with novel activities (Zulfiqar et al., 2017). 

The utility of natural products as drugs is well established, and it has been estimated that 

approximately 50% of current registered drugs are derived from natural products or 

developed on the basis of natural compounds; such as camptothecin, lovastatin, maytansine, 

paclitaxel, reserpine and silibinin (Harvey et al., 2015; Pérez-Moreno et al. 2016; Ruiz-

Torres et al., 2017). This is also perhaps best exemplified in malaria treatment, with 

artemisinin and quinine both good examples of drugs developed from a natural product 

(Ginsburg and Deharo, 2011). There are large numbers of studies that report phenotypic 

screens of antiparasitic activity from plant extracts chosen on the basis of 

ethnopharmacology reviews of the use of traditional medicines (Simoben et al., 2018; 

Zulfiqar et al., 2017; Pérez-Moreno et al., 2016; Harvey et al., 2015; Ibrahim et al., 2014). 

Although from this starting point, unless there is ethnopharmacological evidence of the use 

of a traditional medicine for the treatment of a parasitic disease (or the symptoms of that 

disease, e.g. fever), many other natural products produced by plants, marine invertebrates 

and fungi etc will not have been evaluated for their antiparasitic activity (Yang et al., 2011; 
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Davis et al., 2011; Choomuenwai et al., 2015). Going some way to address this issue has 

been the creation of natural product libraries – a means to exploit the success of high 

throughput screening of synthetic compound libraries. A library of 96 compounds and 120 

extracts from traditional Chinese medicines have been screened against P. falciparum 

(Nonaka et al., 2018), with the identification of new antiplasmodial activity in two medicinal 

plants. In Spain, a natural product extract collection (MEDINA) comprising 130000 extracts 

from soil bacteria and fungi has been prepared and a subset of 20000 extracts screened 

against P. falciparum resulting in the discovery of three new antiplasmodial compounds, 

albeit with moderate µM activities (Pérez-Moreno et al., 2016). Using the same MEDINA 

library, a second study screened a second subset of 5976 against the kinetoplastids T.cruzi, 

L. donovani and T. brucei brucei, with 48 fractions selected for follow up studies (Annang 

et al., 2014). The Davis open access natural product-based library contains 472 compounds, 

the majority of which are natural products that have been obtained from a diverse range of 

Australian natural sources. A similar kinetoplast screen to that described above for the 

MEDINA library, identified a single compound, lissoclinotoxin E, with low µM activity 

against all three parasites, although this compound showed low selectivity against T. brucei 

brucei. Whilst these natural product screens have yet to provide a lead for development, they 

do illustrate well how natural product libraries can facilitate a more efficient throughput in 

screening multiple parasites – a process that may lead to a scaffold that could be amenable 

to medicinal chemistry. 

In this chapter, I report a similar multiple parasite screen of a proprietary library of purified 

natural products, the Phytopure library. PhytoQuest, a UK small to medium enterprise SME, 

has produced a library of approximately 1000 Molecules, isolated predominantly from 

temperate zone plants, this resource developed from work of the founder Professor Nash at 

the Royal Botanical Gardens and Institute of Grasslands and Environment 
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(http://www.phytoquest.co.uk/). As such, the source plants are unlikely to be known in any 

literature of traditional medicines for parasitic tropical diseases given they are from 

temperate zone plants. The library encompasses a wide range of chemical classes, two thirds 

of which are novel, and the remaining third not commercially available. Critically, the library 

consists of isolated compounds, overcoming common issues with screening fractions of 

complex mixes where the active moiety is unknown and may be acting in 

synergy/antagonism with other unknown compounds. This library therefore represents a 

unique resource for lead discovery of high value chemicals from temperate zone plants 

against antimicrobial pathogens.  

In this regard, 643 compounds within Phytopure library have been selected and provided to 

Keele University as part of a BBSRC High Value Chemicals from Plants initiative for 

screening against human parasitic diseases. These compounds have also been selected on the 

basis of their development potential: they have a high degree of functionality and 

physiochemical properties that meet Lipinski’s rules-of-five. The activity of these 

compounds were screened against intraerytrocytic Plasmodium falciparum, the blood-

stream form of Trypanosoma brucei brucei and axenic Leishmania mexicana. The key aims 

of this work were to;  

1. Screen and compare the growth inhibitory activity of the Phytopure library compounds 

against P. falciparum, T. brucei and L. mexicana.  

2. Identify priorities for determination of their EC50  

3. Provide initial toxicity data by determination of the compounds selectivity when 

compared to HepG2 cell lines, and the THP-1 cell line where appropriate.  

 

 

 

 

 

 

http://www.phytoquest.co.uk/
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3.2 Results 

3.2.1 Antiplasmodial activity 

3.2.1.1 Initial screening of intraerythrocytic P. falciparum 

The Phytopure library of 633 compounds was provided under a Materials Transfer 

Agreement with Phytopure, Ltd. Antiplasmodial activity for these compounds was 

determined against the intraerythrocytic trophozoite stages of P. falciparum (Dd2 clone) 

over 48 hours. Compounds were screened at two concentrations, 20 μΜ and 2 μΜ, in 

duplicates with 2 biological replicates (n=4 were performed). The inhibitory effect of each 

compound was assessed using Malaria SYBR-green fluorescence assay (MSF) with 

untreated wells serving as a 100% growth control and wells treated with 10µM chloroquine 

as the 0% growth control. Table appendix 1 report the mean relative growth data for each 

compound in the library. A series of dot plot graphs reporting the mean of the normalized 

growth for each compound at both 20 µM and 2 µM is shown in Figure 3.1. 
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Figure 3.1: Screening the Phytopure library against P. falciparum. Dot plot graphs reporting the 

mean % normalized growth (n=4) obtained from intraerythrocytic trophozoite stages of P. falciparum 

exposed to 20 µM (open circle) and 2 µM (filled circle) of compounds over 48 hours. The range of 

compound ID reported on each dot plot is above of each chart (note that no detail on actual compound 

ID shown on x-axis, this is provided in table appendix 1).  
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A total of 70 compounds were identified with mean normalized growth of < 50% at a 

concentration of 20 µM, giving a hit rate of 11%. The mean normalized growth at 20 µM 

and 2 µM for these 70 compounds were plotted against each other (Figure 3.2). This graph 

allows us to identify compounds in the lower left quadrant as priorities for EC50 

determination, with a total of 14 compounds (shown in red, all with 50% or less normalized 

growth at 2µM) selected to determine their EC50 value using Dd2 P. falciparum trophozoite 

stages. 
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Figure 3.2:  Prioritizing compounds for EC50 determination in P. falciparum. The scatter plot 

compares the % normalized growth following exposure to 20 μM or 2 μM for 70 Phytopure library 

compounds (see ID starting 70xxxx). Fourteen compounds (shown in red) were selected for EC50 

determination.  
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The EC50 values for these 14 compounds were less than 6 μM after the first biological repeat 

(Figure 3.3). Of these, 12 were available to take forward for two additional biological 

replicates to determine their EC50. Compounds 700047 and 700756 were excluded at this 

point due to lack of material for further analysis. Table 3.1 reports the EC50 values (and 

their 95% confidence intervals where three biological repeats are available) determined from 

these log concentration normalized response curves.   
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Figure 3.3: Log concentration normalized response curves for 30 Phytopure compounds used 

to estimate EC50 values in intraerythrocytic P. falciparum. (A) Reports compounds with EC50 

determined < 6µM. The data show a mean ± StDev of n=9 measurements. 
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Table 3.1:  EC50 data of 14 Phytopure compounds obtained from intraerythrocytic P. falciparum 

with an EC50 of <6µM determined from three independent biological repeats (highlighted in green). 

The 95% confidence intervals (95% CI) are reported for the the EC50 of these 12 compounds. 

 

 

 

3.2.1.2 Confirmation of EC50 determination in a second P. falciparum strain (3D7)  

The EC50 of the 12 compounds were determined using a 48 hours MSF assay format against 

a second, genetically distinct, 3D7 strain of P. falciparum. This was done to explore the 

general activity of these compounds against a chloroquine sensitive clone (3D7), compared 

to the Dd2 clone which is chloroquine resistant. The compounds were exposed using a 2-

fold dilution in triplicate with three biological repeats performed. The EC50 values were 

70042 0.29 0.26-0.32

70046 0.055 0.054-0.056

70047 2.69 nd

70048 0.14 0.135-0.157

70104 0.74 0.74-0.79

70278 5.51 5.11-7.32

70535 2.28 1.81-2.58

70631 2.94 2.81-3.4

71082 1.2 1.11-1.42

7100756 2.88 nd

71155 1.56 1.49-1.73

71157 1.83 1.71-2.03

71158 1.59 1.43-1.91

71159 4.56 4.15-4.72

Compounds ID
 Mean   (95% CI)

EC50 (µM)



95 
 
 
 

determined using a log concentration normalized response curves for each of 12 compounds 

and are shown in green on Figure 3.4. For comparison, the same data derived against Dd2 is 

shown on each graph in black. The mean EC50 with 95% CI determined against the P. 

falciparum 3D7 strain are reported in Table 3.2. 

The log concentration normalized response curves for 3D7 and Dd2 were very similar for 

all 12 compounds, suggesting that there is no apparent difference in activity for these 12 

compounds in these two strains. A linear regression analysis (Figure 3.5) of the mean EC50 

values in Dd2 and 3D7 strains revealed a strong and statistically significant correlation 

between these values (slope = 0.96, r2 = 0.92 and p value <0.0001). The source species, class 

of compound and structure of each of these 12 Phytopure compounds is shown in Table 3.3. 
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Figure 3.4: Log concentration normalized response curves for 12 Phytopure compounds in two 

strains of P. falciparum. The data show a mean ± StDev from three biological replicates. Non-linear 

regression curves in green are for the 3D7 strain and in black for the Dd2 strain. The EC50 with 95% CI 

values are shown in Table 3.2. 
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Table 3.2: EC50 in Dd2 and 3D7 strains of P. falciparum for 12 Phytopure compounds. 

 

 

Compound 

ID 

EC50 (µM) 

Dd2 3D7 

Mean (95% CI) Mean (95% CI) 

700042 0.29 (0.26-0.32) 0.19 (0.18-0.19) 

700046 0.055 (0.054-0.056) 0.034 (0.032-0.038) 

700048 0.14 (0.135-0.157) 0.35 (0.31-0.4) 

700104 0.74 (0.74-0.79) 0.35 (0.33-0.44) 

700278 5.53 (5.11-7.32) 5.52 (5.1-6.57) 

700535 2.28 (1.81-2.58) 3.27 (3.1-3.4) 

700631 2.91 (2.81-3.4) 3.6 (3.26-3.94) 

701082 1.2 (1.11-1.42) 1.62 (1.58-1.6) 

701155 1.55 (1.49-1.73) 2.9 (2.88-3.12) 

701157 1.83 (1.71-2.03) 2.08 (1.89-2.1) 

701158 1.59 (1.43-1.91) 1.45 (1.37-1.6) 

701159 4.53 (4.15-4.72) 4.56 (3.74-4.8) 
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Figure 3.5: Correlation between EC50 values determined in two strains of P. falciparum. The 

mean EC50 value of 12 Phytopure compounds from 3D7 and Dd2 strains are plotted with the results 

of a linear regression analysis.  

 

Table 3.3: A, information generated from PhytoQuest for high interest compounds against P. 

falciparum. B, the structure of each compound. 

(A) 

PQ 

number 

 

Class 

plant 

common 

name 

 

Genus 

 

Species 

 

Formula 

 

Mwt 

700042 Phyllanthocin  Phyllanthus accuminatus C36H48O16 736.77 

700046 Phyllanthocin  Phyllanthus accuminatus C38H50O17 778.81 

700048 Phyllanthocin  Phyllanthus accuminatus C40H52O18 820.85 

700104 Phyllanthocin  Phyllanthus accuminatus C42H54O18 846.88 

700278 Sesquiterpene Dwarf 

sunflower 

Helianthus annuus C20H22O7 374.39 
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700535 Taxane Yew Taxus baccata C33H42O7 550.69 

700631 Flavonoid Bog 

myrtle 

Myrica gale C34H30O14 662.61 

701082 Flavonoid Holm oak Quercus llex C43H36O17 824.75 

701155 Sesquiterpene Arnica Arnica montana C17H20O5 304.34 

701157 Sesquiterpene Arnica Arnica montana C19H24O5 332.4 

701158 Sesquiterpene Arnica Arnica montana C20H26O5 346.42 

701159 Sesquiterpene Arnica Arnica montana C21H30O6 378.46 

 

(B) 

Structures of compounds 
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3.2.1.3 Determination of estimated 50% lethal dose (LD50) in Dd2luc using 

bioluminescence assay 

The EC50 of a drug represents its inhibitory effect on growth, a process that combines both 

the cytocidal and cytostatic effect of the drug. Measurement of the cytocidal effect of the 

drug alone requires the determination of the 50% lethal dose, LD50, which is estimated here 

using a bioluminescence-based assay of concentration-response adapted from the protocol 

originally described by Paguio et al. (2011). The Paguio assay utilizes a 6 hours drug bolus, 

washing off the drug and regrowth of the surviving parasites in the absence of drug for 48 

hours to determine the LD50 using a MSF assay. However, a bioluminescence assay to 

estimate LD50 was refined by Imran Ullah from the Horrocks laboratory (Ullah et al., 2017). 

This assay provides the ability to determine the LD50 immediately after the 6 hours of drug 

exposure as the intrinsic instability of the luciferase reporter protein, compared to the 

stability of DNA measured in a MSF assay, allows both concentration and time dependent 

effects on the luciferase signal to be monitored robustly (Ullah et al., 2017).  

The 12 selected compounds were exposed to a serial 2-fold dilution of compounds and the 

bioluminescent signal as a proportion of the untreated control (100%) determined. 

Experiments were carried out as technical triplicates with three biological repeats carried 

out. The mean (n=9) and StDev for each concentration are used to plot a log concentration 

normalized response curve with a non-linear regression providing the LD50 value (and 95% 

CI).  Figure 3.6 reports the data used to determine the LD50 value (open circles and dotted 

lines) with the EC50 determined using the 48 hoursMSF assay plotted for comparison (filled 

circles and full line). The mean LD50 with 95% CI for P. falciparum Dd2 strain for these 12 

compounds are reported in Table 3.4 along with the same data previously reported for 

benchmark antimalarials (Ullah et al., 2017).   
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The majority of the 12 Phytopure compounds show a right shift of the LD50 curves when 

compared against the EC50 curves – this is expected as it represents the higher concentration 

of compound required to kill over the 6 hours window of the shorter LD50 assay. In Ullah et 

al. (2017) it was shown that antimalarial compounds with a rapid initial rate of kill, such as 

artemisinin, have a LD50/EC50 ratio of close to 1 (see Table 3.4). As we move through 

compounds in terms of their initial rate of kill, chloroquine is faster than quinine which is 

faster than atovaquone, the LD50/EC50 ratio increases. The LD50/EC50 ratios reported for all 

12 Phytopure compounds indicate that they all exert an initial cytocidal effect (0.75 to 3.12), 

and likely they have an initial rate of kill that falls between those of chloroquine and 

artemisinins (1.12 to 5.24). Interestingly, three Phytopure compounds, 701082, 700631 and 

700104, share a LD50/EC50 ratio similar to that of dihydroartemisinin, suggesting they exert 

an extremely rapid cytocidal action. Given this apparent rapid cytocidal action, these 

compounds were selected for an evaluation of their initial rate of kill.  
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Figure 3.6: Log concentration normalized response curves comparing LD50 and EC50 values 

determined for 12 Phytopure compounds. The normalised 6 hour bioluminescence response is 

used to determine the LD50 (open circles and dotted lines) with the normalized 48 hoursfluorescence 

curves being used to determine the EC50 (filled circles and full line). The data shown is a mean ± 

StDev from three independant biological replicates (n=9). 
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Table 3.4: Estimates of EC50 and LD50 of 12 Phytopure compounds in the Dd2 strain of P. 

falciparum. The data shown for benchmark antimalarial drugs chloroquine (CQ), quinine (QN), 

atovaquone (ATQ) and dihydroartemisinin (DHA) were obtained from Ullah et al. (2017). 
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3.2.1.4 In vitro determination of Bioluminescence Relative Rate of Kill 

(BRRoK)  

An estimate of the Rate of Kill (RoK) for a potential antimalarial compound provides 

important information for its priority for development. There is an urgent demand to identify 

novel compounds that kill the intraerythrocytic parasite at least as fast as chloroquine (Ullah 

et al., 2016), noting the LD50/EC50 ratios for the compounds above are within the range for 

these drugs (Table 3.4). As previously shown, the killing rates for different antimalarial 

drugs was measured in vitro by Sanz et al., (2012) based on the re-growth of drug-treated 

parasites using a fluorescence-based assay. Here, parasite growth is monitored after 3-4 

weeks and poses a significant limitation on its feasibility to routinely assess the rate of kill 

for a large number of different compounds. Our laboratory developed a Bioluminescence 

Relative Rate of Kill (BRRoK) assay that can be used from as soon as three hours of 

compound exposure up to 48 hours (Ullah et al., 2017). The principle of RoK assay depends 

on the dynamic response of the luciferase enzyme (t1/2 of 1-2 hours). Following drug 

treatment, a time and concentration-dependent loss of bioluminescence is measured – 

importantly, this data then compared to the same data developed for a number of benchmark 

antimalarial drugs where the in vivo and in vitro rate of kill is known. In this way, the initial 

rate of kill for a compound can be compared to these benchmarks and a relative assessment 

of their rate of kill established ie as fast as artemisinin, slower than chloroquine etc.  

The BRRoK activity of compounds were determined against Dd2luc parasites using a three-

fold serial dilution of compounds  added at 0.33, 1, 3 and 9 xEC50 (Ullah et al., 2017). The 

normalized bioluminescent signal, compared to an untreated control, was measured after 3, 

6 and 48 hours to ensure the completion of one full intraerythrocytic cycle (Figure 3.7). The 

BRRoK assay was performed as three technical repeats in three independent biological 

javascript:;
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repeats (n=9). At each concentration, the mean and StDev of the n=9 bioluminescent signal 

data are determined and plotted. 

The time-and concentration-dependent on loss of bioluminescence signal for the 12 

Phytopure compounds were compared against the same data from a range of benchmark 

antimalarial drugs (Ullah et al., 2017). These were; dihydroartemisinin (DHA, very rapid 

initial rate of kill), chloroquine (CQ, rapid initial rate of kill), quinine (QN, moderate initial 

rate of kill) and atovaquone (ATQ, slow initial rate of kill) (Figure 3.7 B). The majority of 

the 12 Phytopure compounds reveal to have a rapid initial cytocidal affect, with the curves 

for the three different timepoints appearing to be more similar to DHA and CQ than for QN 

and ATQ. At this point, these data appear to agree with the initial cytocidal activity estimated 

from the LD50/EC50 ratios previously determined. 
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Figure 3.7: BRRoK assays for 12 Phytopure compounds. Each curves represent the concentration-

dependant killing effects for (A) the indicated Phytopure compounds or (B) a benchmark 

antimalarials. The BRRoK was measured after 3 hours (red line), 6 hours (black line) and 48 hours 

(green line) with the mean and StDev (n=9) of normalised bioluminescence signal reported. The 
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Phytopure compound data are plotted (top to bottom, predicted fastest to slowest) according to the 

ratio of LD50/EC50 from Table 3.4. 

 

In the Ullah et al. (2017) study, the relative ordering of compounds from the MMV Malaria 

Box was possible following a principle component analysis of the available data for 400 

compounds. This study only has data for 12 compounds, and these data are relatively similar 

to each other. To see if some ranking order could be determined, the mean bioluminescent 

signal obtained following exposure at each concentration of compound at 6 hours were 

plotted against each other (Figure 3.8). In this way, the data for each compound can be 

compared against the four benchmark drugs (shown in red) when comparing all 

combinations of compound concentrations used, and also being able to draw on the 6 hour 

analysis presented in Ullah et al. (2017). Linear regression of the 16 data points (12 

compounds and four benchmark antimalarials) reveal that, as expected, the strongest and 

most significant correlations (r2>0.7 and p<0.001) exist when concentrations immediately 

adjacent to each other are compared; i.e. 9X v 3X EC50, 3X v 1X EC50 and 1X v 0.33X EC50. 

Taking these three panels with strong and significant correlations, the six compounds that 

would be ranked the fastest acting based on their LD50/EC50 ratio; 701082, 700631, 700104, 

700631, 700048 and 701155 (shown in green) all consistently group together with the DHA 

and CQ benchmarks in these analyses. Further support is provided by the data for compound 

7001082, this compound has the lowest LD50/EC50 ratio of 0.75 and is located immediately 

adjacent to DHA on all comparisons, irrespective of the strength of the regression analysis 

reported (Figure 3.8). 
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Figure 3.8: Correlation of BRRoK assay data to determine the relative rates of kill for the 12 

Phytopure compounds. Each chart relates the indicated correlation between 9x, 3x, 1x and 0.3x 

EC50 data at 6hours (e.g. top left compares 9X v. 3X EC50 data). The filled red circles represent 

benchmark antimalarial drugs, green circles represent the six Phytopure compounds with LD50/EC50 
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ratio < 2, black circles represent the six Phytopure compounds with LD50/EC50 ratio > 2. Note all p 

values and r2 for a linear regression of the 16 data points are reported on each graph. 

 

3.2.1.5 In vitro determination of cytotoxic effects against the human HepG2 cell line 

Understanding at an early stage the potential toxic liabilities of a candidate is important. The 

antiproliferative effect of the 12 Phytopure compounds on a human hepatoma cell line 

(HepG2) was assessed using the Alamar Blue viability assay. The mechanism of the assay 

depends on viable HepG2 cells producing NADPH, NADH and FADH which can reduce 

resazurin (a non-fluorescent indicator blue dye) to resorufin (a pink fluorescent molecule) in 

live cells via mitochondrial enzymes (Rampersad, 2012). HepG2 cells were exposed for 48 

hours to a serial 2-fold dilution of the Phytopure compounds in technical triplicate, with 

three independent biological repeats (n=9) for 48 hours. The fluorescence signal was 

normalized against an untreated control (100% growth) and the mean ± StDev of relative 

growth plotted (Fig. 3.9) as a green line. For comparison on the same graphs, the EC50 

antiplasmodial data against Dd2 is also plotted. The 50% cytotoxic concentration (CC50) was 

estimated using a log concentration normalized response curves for each compound and are 

reported with their 95% CI in Table 3.5. The selective index (SI) of the 12 Phytopure 

compounds when comparing activity against the P. falciparum Dd2 and 3D7 strains 

compared to HepG2 was calculated based on CC50/EC50 ratios as described by Be´zivin et 

al. (2003) (Table 3.5).    

Of the 12 compounds tested, almost all appear to have low µM CC50 activity in HepG2, with 

compound 700535 apparently the least toxic with a CC50 of 52.1 µM. In general, there 

appears to be minimal selectivity for these compounds when comparing their 

antiproliferative activity against P. falciparum  and HepG2, a feature apparent from the 

relative closeness of the curves in Figure 3.9. The highest selectivity (SI between 36 to 59) 
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is shown by compound 700046, although the compound is actually reasonably toxic against 

HepG2 at relatively low concentrations (CC50 of 2µM). The next most selective compound 

is 700535 (SI between 16 to 23), a limitation here is that this compound is only moderately 

active against P. falciparum (EC50 of 2 to 3 µM).  For comparison, the same data for the 

benchmark antimalarial drugs tested here are included using data developed in other studies 

(Lelièvre et al., 2012) are reported on the same table 3.5. 
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Figure 3.9: Initial determination of cytotoxicity of the 12 Phytopure compounds against HepG2 

cells. Log concentration normalized growth curves were fitted for HepG2 (green lines) and P. 

falciparum (black line) Dd2 strain. The data shown is a mean (n=9) ± StDev from at three 

independent biological replicates.  

 

 

 

 



113 
 
 
 

Table 3.5: In vitro antiplasmodial activity (EC50) and cytotoxicity (CC50) against HepG2 cells for 

the 12 Phytopure compounds. SIA, is calculated as CC50/EC50 using Dd2 strain, whilst SIB is 

calculated using the 3D7 strain. (Ullah, 2017)1, (Lelie`vre et al., 2012)2. 

 

 

 

 

 

 

CC50 (µM)

Compound ID Dd2LUC 3D7 HepG2 SIA SIB

700042 0.29 0.19 2.51 (2.21-2.60) 9 13.2

700046 0.055 0.034 2.01 (1.89-2.32) 36.5 59.1

700048 0.14 0.35 2.16 (1.73-2.26) 15.4 6.2

700104 0.74 0.35 8.00 (7.30-7.90) 10.8 22.9

700278 5.53 5.52 1.47 (1.38-1.39) 0.3 0.3

700535 2.28 3.27 52.1 (68.13-70.37) 22.8 16

700631 2.91 3.6 12.6 (12.51-12.60) 4.3 3.5

701082 1.21 1.62 4.55 (5.61-6.56) 3.8 2.8

701155 1.55 2.9 1.11 (1.07-1.09) 0.7 0.4

701157 1.83 2.08 1.33 (1.26-1.34) 0.7 0.6

701158 1.59 1.45 0.80 (0.70-0.95) 0.5 0.5

701159 4.53 4.56 3.42 (3.36-4.43) 0.8 0.8

CQ 0.2081 - 51.842 249 -

QN 0.2451 - >502 >204 -

ATOVA 0.00261 - >402 >15384 -

DHA 0.00411 - >502 >12195 -

EC50 (µM)

Mean Mean Mean (95% CI)

1
 

 

1 

 

1 

 

1 
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3.2.2 Antitrypanosomal activity 

3.2.2.1 Optimization of the proliferation assay 

An initial determination of the initial blood stream form T. b. brucei (hereafter T. brucei) 

seeding density in the proposed 96-multiwell screening plate format was made, ensuring that 

the density initially seeded did not reach a confluence that would affect the rate of cell 

division within the 48 hours assay period.  Blood stream form T. brucei were diluted serially 

from 4.5 x 105 to 0.035 x 105 cells/mL before leaving 48 hours at 37°C in normal growth 

conditions (n=3 replicates). Following this incubation, the resulting cell numbers were 

estimated using an Alamar Blue fluorescence assay to determine the activity of viable (still 

generate reduced cofactors) parasites (Figure 3.10). This analysis indicates that an initial 

seeding of 1 x 105 cells/mL of T. brucei blood stream form provides for the maximum growth 

of T. brucei within 48 hours without growth being affected by saturation effects (Figure 

3.10). All subsequent growth inhibition assays assumed this initial seeding density. 
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 Figure 3.10: Determination of initial blood stream form T. brucei seeding density. The graph 

plots a logarithmic growth regression analysis of a 48 hours Alamar Blue assay (fluorescence at 

615nM) versus the initial seeding density to optimize the selection of conditions for a 96-well 

multiplate growth assay. Data represents the mean ± StDev of n=3.   
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3.2.2.2 Screening of Phytopure library against T. brucei 

The screening of the 643 Phytopure library compounds was assessed against the strain 427 

SMWT T. brucei blood stream forms over 48 hours at 37 °C with 5% CO2. Compounds were 

tested at a single concentration of 2μM in duplicates with 2 independent biological replicates 

done (n=4). The inhibitory effect of each compound was assessed using Alamar Blue 

fluorescence assay and growth normalized against an untreated control. Figure 3.11 presents 

a series of panels that plots the mean ± StDev of the normalized growth for the compounds 

indicated above the chart. These data are also provided in Table appendix 1. 

Note that ten additional compounds compared to the P. falciparum screen were done here. 

These ten synthetic compounds were provided by PhytoQuest as they are synthetic 

derivatives of the T. brucei hits 701241 and 701249, two closely related compounds isolated 

from Chrysanthemum segetum.  

 

 

 

 

 

 

 

3.2.2.3 Determination of EC50 values of 25 hits from Phytopure library screen by using 

Alamar Blue viability assay 

Analysis of the initial screen identifies 25 compounds, a hit rate of 3.8%, with a > 50% 

growth inhibition recorded at 2 µM. All these 25 compounds were taken forward to 

determine their EC50 in 2-fold dilution series Alamar Blue growth inhibition assays. These 

assays were carried out for each compound using technical triplicates in three independent 

biological repeats (n=9). These data were plotted in log concentration normalized response 

curves (black lines on Figure 3.12) and the EC50 and 95% CI determined from a non-linear 

regression curve and reported in Table 3.6. These data report good to moderate 

antiproliferative activities ranging between 0.16 to 2.71 µM. 
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Figure 3.11: Screening the Phytopure library compounds against T. brucei. Each panel reports 

the mean ± StDev (n=4) of normalized parasite growth when exposed to 2µM of the indicated 

compound. The Compound ID is 700-xxx with the suffix listed for each compound on the x-axis.  

 

3.2.2.4 In vitro determination of cytotoxic effects against the human HepG2 cell line 

The potentially toxic effects of these 25 Phytopure compounds against a human hepatoma 

cell line HepG2 was assessed using the Alamar Blue viability assay. The Phytopure 

compounds were exposed to a serial 2-fold dilution in triplicate, with three independent 

biological repeats (n=9) done. Following 48 hours of incubation the fluorescence signal was 

determined and normalized against an untreated control (100% growth) and the mean ± SD 

of relative growth plotted (green lines on Fig. 3.12) on log concentration normalized 
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response graphs. Using this data, the 50% cytotoxic concentration (CC50) was determined 

and is reported in Table 3.6.  

The selectivity of these 25 compounds against T. brucei compared to HepG2 was calculated 

based on the ratio of the HepG2 CC50 and T. brucei EC50 data (the selective index SI) and 

reported in Table 3.6. For comparison, the same data for pentamidine is also reported. Whilst 

in general, many of the Phytopure compounds were poorly selective, three compounds have 

a SI that is the same or better than that of pentamidine (26.7). Two of these compounds have 

a nanomolar activity against T. brucei; 700035 (EC50 of 350nM and SI of 43.3) and 701145 

(EC50 of 520nM and SI of 53.5).  The sources for these 25 Phytopure compounds as well as 

their structures are shown in Table 3.7. 
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Figure 3.12: EC50 activity of 25 Phytopure compounds against T. brucei and initial 

determination of cytotoxicity. Log concentration normalised response curves to determine EC50 

activity against T. brucei (clack curves) and CC50 against HepG2 cells (green curves) for the indicated 

Phytopure compounds. The data shown is a mean ± StDev of n=9. There was no CC50 assay done for 

compound 701156. 
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Table 3.6: In vitro antitrypanosomal activity (EC50) and cytotoxicity (CC50) against HepG2 cells of 

25 Phytopure compounds. SI*, is calculated as CC50/EC50. (Thao et al., 2014)1. 

 

EC50 (µM) CC50 (µM)

Compounds ID 95% CI SI*

T. brucei HepG2 cell line

700014 1.11 (1.05-1.22) 39.79 (39.86-47.95) 35.8

700035 0.35 (0.29-0.45) 15.15 (15.23-15.27) 43.3

700042 0.40 (0.39-0.43) 2.51 (2.20-12.60) 6.3

700046 0.18 (0.18-0.21) 2.01 (1.89-2.32) 11

700048 0.16 (0.13-0.18) 2.16 (1.73-2.26) 13.5

700585 0.42 (0.35-0.47) 5.33 (5.41-7.01) 12.6

700586 0.63 (0.58-0.77) 3.59 (3.61-4.10) 5.7

700867 2.58 (2.65-3.27) 26.75 (25.78-26.76) 10.4

701082 1.06 (0.94-1.11) 4.55 (4.41-5.12) 4.2

701145 0.52 (0.51-0.88) 27.83 (23.3-27.42) 53.5

701152 2.3 (1.96-2.71) 11.29 (11.14-11.39) 4.9

701154 1.58 (1.65-1.87) 4.18 (2.30-5.23) 2.6

701155 0.15 (0.15-0.17) 1.11 (1.07-1.09) 7.4

701156 0.99 (0.89-1.11) ND ND

701157 0.29 (0.22-0.30) 1.33 (1.26-1.30) 4.5

701158 0.30 (0.31-0.32) 0.80 (0.70-0.95) 2.6

701159 0.38 (0.35-0.37) 3.42 (3.36-4.43) 9

701241 2.21 (2.06-2.94) 0.67 (0.6-0.98) 0.3

701249 2.28 (2.10-2.43) 0.44 (0.28-0.39) 0.2

701250 1.57 (1.38-2.65) 0.94 (0.79-1.13) 0.6

701252 1.38 (1.35-1.40) 1.16 (1.07- 1.178) 0.8

701256 2.13 (2.10-2.20) 2.1 (2.06-2.60) 1

701259 1.45 (1.34-1.56) 1.41 (1.34-1.60) 1

701262 2.01 (1.3-2.00) 0.98 (0.88-0.92) 0.5

701273 1.58 (1.56-1.98) 2.06 (2.03-2.32) 1.3

Pentamidine1 0.015 < 0.40 <26.7
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Table 3.7: (A) Source information and (B) structure of 25 hit compounds from Phytopure library 

against T. brucei.  

(A) 

PQ 

number 

Class 

plant 

name 

genus  species Mwt 

mol 

formuula 

700014 

abietic 

diterpene 

Noble fir Abies procera 284.443 C20H28O 

700035 phyllanthocin   Phyllanthus acuminatus 822.854 C40H54O18 

700042 phyllanthocin   Phyllanthus acuminatus 736.764 C36H48O16 

700046 phyllanthocin   Phyllanthus acuminatus 778.801 C38H50O17 

700048 phyllanthocin   Phyllanthus acuminatus 820.838 C40H52O18 

700585 flavonoid 

Common 

horsetail 

Equistum arvense 344.319 C18H16O7 

700586 flavonoid 

Common 

horsetail 

Equistum arvense 286.239 C15H10O6 

700867 Coumarin     C26H33O6 

701082 flavonoid   Phyllanthus acuminatus 824.744 C43H36O17 

701145 sesquiterpene Bogbean Menyanthese trifoliata 374.389 C20H22O7 

701152 Sesquiterpene Arnica  Arnica  montana 302.34 C17H18O5 

701154 sesquiterpene Arnica  Arnica  montana 304.342 C17H20O5 

701155 sesquiterpene Arnica  Arnica  montana 304.34 C17H20O5 

701156 sesquiterpene Arnica  Arnica  montana 334.4 C17H22O5 

701157 sesquiterpene Arnica  Arnica  montana 332.4 C17H20O5 

701158 sesquiterpene Arnica Arnica  montana 346.42 C20H26O5 

701159 sesquiterpene Arnica Arnica  montana 378.465 C21H30O6 
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701241 aromatic 

Corn 

marigold 

Chrysanthemum segetum 170.211 C12H10O 

701249 aromatic 

Corn 

marigold 

Chrysanthemum segetum 168.195 C12H8O 

701250 aromatic Synthetic     202.275 C12H10OS 

701252 aromatic Synthetic     186.21 C12H10O2 

701256 aromatic Synthetic     216.302 C13H12OS 

701259 aromatic Synthetic     230.329 C14H14OS 

701262 aromatic Synthetic     230.329 C14H14OS 

701273 aromatic Synthetic     230.329 C14H14OS 

 

 

(B) 

Structure of compound 
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3.2.3 Antleishmanial activity 

3.2.3.1 Optimization of the proliferation assay 

An initial determination of the initial L. mexicana axenic amastigotes MNYC/BZ/62/M379 

strain seeding density in the proposed 96-multiwell screening plate format was made, 

ensuring that the density initially seeded did not reach a confluence that would affect the rate 

of cell division within the 72 hours assay period.  Axenic L. mexicana amastigotes were 

diluted serially from 1.5 x 107 to 0.012 x 107 cells/mL before leaving for 72 hours at 37°C 

in normal growth conditions (n=3 replicates). Following this incubation, the resulting cell 

numbers were estimated using an Alamar Blue fluorescence assay to determine the activity 

of viable (still generate reduced cofactors) parasites (Figure 3.13). This analysis indicates 

that an initial seeding of 1 x 106 cells/mL of L. mexicana axenic amastigotes provides for 

the maximum growth within 72 hours without growth being affected by saturation effects 

(Figure 3.13). All subsequent growth inhibition assays assumed this initial seeding density. 
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Figure 3.13: Determination of initial L. mexicana axenic amastigote seeding density. The graph 

plots a logrithmic growth regression analysis of a 72 hours Alamar Blue assay (fluorescence at 

615nM) versus the initial seeding density to optimize the selection of conditions for a 96-well 

multiplate growth assay. Data represents the mean ± StDev of n=3.   
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3.2.3.2 Screening of Phytopure library against L. mexicana  

The screening of 643 Phytopure library compounds was assessed against L. mexicana axenic 

amastigotes strain MNYC/BZ/62/M379 over 72 hours at 37 °C with 5% CO2. Compounds 

were tested at a single concentration of 2 μM in duplicates with 2 independent biological 

replicates (n=4). The inhibitory effect of each compound was assessed using Alamar Blue 

fluorescence assay and growth normalized against an untreated control. Figure 3.14 presents 

a series of panels that plots the mean ± StDev of the normalized growth for the compounds 

indicated above the chart. These data are also provided in Table appendix 1. 
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Figure 3.14: Screening the Phytopure library compounds against L. mexicana. Each panel 

reports the mean ± StDev (n=4) of normalized parasite growth when exposed to 2µM of the indicated 

compound. The Compound ID is 700-xxx with the suffix listed for each compound on the x-axis.  
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3.2.3.3 Determination of EC50 values of 23 hits from Phytopure screens by using 

Alamar Blue viability assay 

A total of 38 compounds reduce parasite growth by 50% or more at 2 µM, giving a hit rate 

of 5.9%. However, of these 38, 23 of them reduced parasite growth by 80% or more at 2 µM 

(a revised hit rate of 3.5%. In order to manage the subsequent assays required, these 23 

compounds were selected to study their activity in more detail against L. mexicana. 

The EC50 of the 23 compounds were determined using a 72 hours Alamar Blue assay format 

L. mexicana axenic amastigotes strain MNYC/BZ/62/M379. The compounds were exposed 

in technical triplicate to a 2-fold dilution of each compound, with three independent 

biological repeats carried out (n=9). These data were plotted in log concentration normalized 

response curves (black lines on Figure 3.15) and the EC50 and 95% CI determined from a 

non-linear regression curve and reported in Table 3.8. As controls, amphotericin B and 

miltefosine were included (Figure 3.15). These compounds provided the expected EC50 

against axenic L. mexicana of approximately 0.25 µM and 1 µM, respectively. These data 

report very good antiproliferative activities for the Phytopure compounds ranging between 

0.15 to 1 µM, perhaps expected as a higher threshold for their selection was applied. 
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Figure 3.15: EC50 activity of 23 Phytopure compounds against L. mexicana and initial 

determination of cytotoxicity. Log concentration normalised response curves to determine EC50 

activity against L. mexicana (clack curves) and CC50 against THP-1 cells (red curves) or HepG2 

(dotted curves) for the indicated Phytopure compounds. The data shown is a mean ± StDev of n=9. 

HepG2 assays were not carried out for all compounds. 
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Table 3.8: In vitro antileishmanial activity (EC50), and cytotoxicity (CC50) against THP-1 cell line 

and HepG2 cell line for 23 Phytopure compounds. SI, is calculated as CC50/EC50. (Mehta et al., 

2010)1; (Escudero-Martínez et al., 2017)2 

Compounds 

ID 

EC50 (µM) CC50 (µM) 

SI 

CC50 (µM) 

SI 
(95% CI) (95% CI) (95% CI) 

L. mexicana 

amastigotes 
THP-1 cell line HepG2 cell line 

700022 0.24 (0.21-0.25) 16.97 (15.1-7.38) 70.7 
28.37 (27.7-

30.8) 
118 

700107 0.26 (0.24-0.28) 27.00 (20.78-7.9) 103.6 44.8 (46.3-46.8) 169 

700136 0.21 (0.22-0.27) 16.96 (13.4-20.13) 80.7 27.6 (29.1-31.1) 131 

700240 0.5 (0.46-0.52) 13.54 (10.6-15.00) 27 46.5 (52.7-57.1) 93 

700756 1 (0.98-1.01) 2.83 (2.5-3.73) 2.8 - - 

701044 0.33 (0.27-0.3) 2.24 (1.5-2.25) 6.78 - - 

701154 0.95 (0.93-0.98) 1.52 (1.46-1.73) 1.5 4.18 (2.30-5.23) 4.4 

701155 0.22 (0.19-0.23) 0.38 (0.407-0.43) 1.7 1.11 (1.07-1.09) 5 

701157 0.2 (0.16-0.19) 0.73 (0.65-0.91) 3.6 1.33 (1.26-1.3) 6.65 

701158 0.24 (0.28-0.31) 0.29 (0.29-0.33) 1.2 0.80 (0.70-0.95) 3.3 

701159 0.88 (0.64-1.26) 1.42 (1.2-1.63) 1.5 3.42 (3.36-4.43) 3.8 

701210 1.38 (1.39-1.51) 0.8 (0.66-0.96) 0.57 - - 

701212 0.33 (0.30-0.34) 0.52 (0.46-0.67) 1.5 - - 

701241 0.34 (0.28-0.34) 0.26 (0.26-0.29) 0.7 - - 

701249 0.18 (0.18-0.21) 0.06 (0.04-0.067) 0.3 - - 
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701250 0.15 (0.12-0.15) 0.16 (0.14-0.16) 1 0.94 (0.79-1.13) 6.2 

701252 0.25 (0.19-0.26) 0.16 (0.15-0.16) 0.64 
1.16 (1.07- 

1.178) 
4.6 

701253 0.29 (0.26-0.30) 0.51 (0.5-0.87) 1.75 - - 

701256 0.21 (0.19-0.21) 0.17 (0.168-0.18) 0.8 - - 

701259 0.22 (0.12-0.21) 0.23 (0.18-0.24) 1 1.41 (1.34-1.6) 6.4 

701262 0.15 (0.15-0.36) 0.19 (0.18-0.185) 1.2 0.98 (0.88-0.92) 6.5 

701273 0.5 (0.51-0.64) 0.24 (0.25-0.31) 0.48 2.06 (2.03-2.32) 4.1 

701286 0.29 (0.27-0.28) 1.83 (1.3-1.8) 6.3 - - 

AmB 0.23 (0.23-0.29) >100 >434 >100 >434 

Miltefosine 1.11 (0.99-1.16) 40.5±12.01 36 50.4 ± 4.32 45.4 

 

 

3.2.3.4 In vitro determination of cytotoxic effects against the human THP-

1 and HepG2 cell lines 

The potentially toxic effects of these 23 Phytopure compounds was initially determined 

against a human leukemia monocytic cell line THP-1. These were selected as in subsequent 

experiments this monocyte cell line is differentiated into macrophages using phorbol 12-

myristate 13-acetate (PMA) for intramacrophage assays. The Phytopure compounds were 

exposed to THP-1 as a serial 2-fold dilution in triplicate, with three independent biological 

repeats (n=9) done. Following 48 hours of incubation the fluorescence signal was determined 

and normalized against an untreated control (100% growth) and the mean ± SD of relative 
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growth plotted (red lines on Fig. 3.15) on log concentration normalized response graphs. 

Using this data, the 50% cytotoxic concentration (CC50) was determined and is reported in 

Table 3.8. Note that published data for amphotericin B and miltefosine are included for 

comparison. 

In general, these Phytopure compounds show low µM to nM antiproliferative activities and 

thus very poor selectivity against the parasite compared to the THP-1 cells. Four compounds, 

closely related triterpenes from Abies procera, had CC50 between 13 to 27µM and thus SI of 

between 27-104. Using the same HepG2 assay as described earlier for the T. brucei hits, the 

CC50 of these four compounds were measured. These data are plotted as green curves on 

Figure 3.15 and the CC50 data and estimated SI reported in Table 3.8. These data were 

promising with CC50 between 28 to 47µM and SI of between 93-169, suggesting these four 

related compounds may provide selectivity against axenic stages of L. mexicana over these 

two human cell lines. Note, where HepG2 data is available for a L. mexicana from the 

previous T. brucei HepG2 screen, these data were added to Figure 3.15 and Table 3.8. In all 

cases, the observed poor selectivity against the THP-1 cell line was similarly observed for 

the HepG2 cell line. The sources and structures of these 23 Phytopure compounds are shown 

in Table 3.9. 
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Table 3.9: A, information generated from PhytoQuest for high interest compounds against L. 

mexicana. B, the structure of each compound. 

(A) 

PQ 

number 

Class 

plant 

name 

genus  species Mwt 

mol 

formuula 

700022 triterpene Noble fir Abies procera 468.678 C30H44O4 

700107 triterpene Noble fir Abies procera 468.678 C30H44O4 

700136 triterpene Noble fir Abies procera 466.662 C30H42O4 

700240 triterpene Grand fir Abies grandis 468.678 C30H44O4 

700756 sesquiterpene 

Hemp 

agrimony 

Eupatorium cannabinum 346.423 C20H26O5 

701044 aromatic Marguerite Argyranthemum frutescens 256.257 C15H12O4 

701154 sesquiterpene Arnica Arnica  montana 304.342 C17H20O5 

701155 sesquiterpene Arnica Arnica  montana 304.34 C17H20O5 

701157 sesquiterpene Arnica Arnica  montana 332.4 C19H24O5 

701158 sesquiterpene Arnica Arnica  montana 346.42 C20H26O5 

701159 sesquiterpene Arnica Arnica  montana 378.465 C21H30O6 

701210 sesquiterpene Artichoke Cynara cardunculus 346.379 C19H22O6 

701212 sesquiterpene Artichoke Cynara cardunculus 330.38 C19H22O5 

701241 aromatic 

Corn 

marigold 

Chrysanthemum segetum 170.211 C12H10O 

701249 aromatic 

Corn 

marigold 

Chrysanthemum segetum 168.195 C12H8O 

701250 aromatic Synthetic     202.275 C12H10OS 

701252 aromatic Synthetic     186.21 C12H10O2 

701253 aromatic Synthetic     202.275 C12H10OS 
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701256 aromatic Synthetic     216.302 C13H12OS 

701259 aromatic Synthetic     230.329 C14H14OS 

701262 aromatic Synthetic     230.329 C14H14OS 

701273 aromatic Synthetic     230.329 C14H14OS 

701286 aromatic Synthetic     234.298 C17H14O 

 

(B) 

Structure of compound 

700022 

O

O
O

O

 

700107 

O

O

O
O

 

700136 

O

O

O
O

 

700240 

O

O

O

O  

700756 701044 



141 
 
 
 

O
O

O

O
O

 

O O

O

O

 

 

701154 

O

O

O

O

O

 

701155 

O

O

O

O

O

 

701157 

 

701158 

O

O

O O

O

 

701159 

 

701210 

O
O

O

O

O
O

 

701212 701241 



142 
 
 
 

O

O

O

O

O

 

O

 

701249 

O  

701250 

O

S

 

701252 

O

O

 

701253 

SO

 

701256 

S

O

 

701259 

S

O

 

701262 

S

O

 

701273 

S

O

 



143 
 
 
 

701286 

O

 

3.2.3.5 Validation of the four L. mexicana hits against L. donovani  

The EC50 of the four apparently selective compounds (700022, 700107, 700136 and 700240) 

against axenic L. mexicana ranged between 210-500 nM. To validate the potency of these 

compounds, the EC50 was determined against the axemic amastigotes of L. donovani strain 

LdBoB – a species responsive for the visceral form of leishmaniasis. The same Alamar Blue 

protocol was used over 72 hours, each compound tested as a technical triplicate and three 

independent biological repeats done (n=9). These data were plotted in log concentration 

normalized response curves (dotted black lines on Figure 3.16) and the EC50 and 95% CI 

determined from a non-linear regression curve and reported in Table 3.10. To help with the 

comparison with previous data, the L. mexicana EC50 data (black curve) and CC50 data from 

THP-1 (red curve) and HepG2 (green curve) are also plotted, the CC50 values used to 

determine the SI for L. donovani compared to both human cell line (Table 3.10)  The 

antiproliferative activity of 700022, 700107, 700136 and 700240 is also present in a second 

Leishmania species at comparable EC50 activities (140-330nM), which provide the same, if 

not slightly improved, SI values against both human cell lines tested. 
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Figure 3.16: EC50 activity of 700022, 700107, 700136 and 700240 Phytopure compounds against 

L. donovani. Log concentration normalised response curves to determine EC50 activity against L 

.donovani (black dotted curves). To aid comparison, the EC50 activity against L. mexicana (black full 

line curve) and CC50 against THP-1 cells (red curves) or HepG2 (green curves) are also shown for 

the indicated Phytopure compounds. The data shown is a mean ± StDev of n=9. Note the EC50 curves 

for 700107 are overlapping. 
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Table 3.10: In vitro antileishmanial activity, and cytotoxicity of compounds (700022, 700107, 

700136 and 700240) against L. donovani amastigotes, THP-1 cells and HepG2 cells. SI, is calculated 

as CC50 /EC50 .  

ID 

EC50 (µM) CC50 (µM) 

SI 

CC50 (µM) 

SI 
axenic amastigotes 

of        L. donovani 
THP1 HepG2 

Mean (95% CI) Mean (95% CI) Mean (95% CI) 

700022 0.14 (0.13-0.19) 16.97 (15.1-17.38) 121.2 
28.37 (27.7-

30.8) 
189 

700107 0.25 (0.18-0.29) 27.00 (20.78-27.9) 108 44.8 (46.3-46.8) 186 

700136 0.15 (0.12-0.15) 16.96 (13.4-20.13) 113 27.6 (29.1-31.1) 276 

700240 0.33 (0.3-0.35) 13.54 (10.6-15.00) 41 46.5 (52.7-57.1) 172 

 
 

3.2.3.6 Validation of the four L. mexicana hits against an intracellular macrophage 

model 

The activity of Phytopure compounds 700022, 700107, 700136 and 700240 were tested 

against the more clinically relevant intracellular macrophage assay to explore the potential 

effect on antiproliferative activity when the target parasite resides within a lipid bound 

vesicle, with an acidic environment, within another cell. THP-1 monocyte cell lines were 

differentiated into macrophages using PMA. These differentiated macrophages were 

infected with amastigote stage parasites and then exposed to 72 hours of 1x, 3x and 9xEC50 

concentrations derived using axenic stage amastigotes, of each compound. The higher 

concentrations recognizing that the antiproliferative effects of these compounds may be less 

potent against the intramacrophage amastigote. As a control, untreated cultures were also 

maintained as well as two cultures exposed to either 1x or 3xEC50 concentrations of 
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amphotericin B (0.25 and 0.75µM, respectively). The experiments were carried out as 

duplicates with two independent biological replicates.  

Following incubation, cultures are stained with the nuclear staining SYBR Green 1 (Figure 

3.17) and fluorescent imaging of cultures done. In the first case, the proportion of 

differentiated THP-1 cells containing intracellular macrophages was determined. Based on 

the counting of 200 THP-1 cells, the proportion that shows punctate staining peripheral to 

the THP-1 nucleus, these being the nuclei of intracellular L. mexicana amastigotes, were 

counted. From the untreated controls, the two biological repeats show quite different 

efficiencies in amastigote infection into the differentiated THP-1. The first experiment 

(Figure 3.18A) shows some 80% of differentiated THP-1 infected, with approximately half 

that rate achieved in the second experiment (Figure 3.18B). Thus, the proportions of 

differentiated THP-1 infected following treatment with the different concentrations of 

amphotericin B or 700022, 700107, 700136 or 700240 are shown separately before a % 

infected normalized to the control for each experiment is shown in Figure 3.18B. 
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Figure 3.17: Scoring L. mexicana infected THP-1. The panels represent fluorescent imaging of 

Sybr Green I staining of nuclear material imaged using an EVOS fluorescence imaging system. (A) 

Images from the uninfected differentiated THP-1 control. Images from the 0.75µM amphotericin B 

treatment of infected differentiated THP-1 where (B) intracellular L. mexicana amastigotes are not 

evident or (C) are evident (white arrows). Bar = 100µm. 

 

The potency of amphotericin B against intramacrophage parasites is evident from an 

apparent 60% reduction in infected THP-1 when exposed to a 1xEC50 concentration of this 

drug and greater than 90% reduction at a 3xEC50 concentration (Figure 3.18C). All four of 

the selected Phytopure compounds show some evidence of a concentration-dependent 

reduction in the proportion of infected THP-1 cells, particularly when the effects between 

9x and 1x the EC50 concentration are compared and at a 9xEC50 concentration all these 

compounds reduce the proportion of infected THP-1 by greater than 70%. Clearly, however, 

these compounds do not appear to cause the same extent of effect in the two biological 

 

A 

B 

C 
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replicates presented here (Figure 3.18 A and B) and illustrates a challenge in biological 

repeats of this assay method. 
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Figure 3.18: Compounds 700022, 700107, 700136 and 700240 are effective against L. mexicana 

intramacrophage amastigotes. (A and B) illustrate the proportion of differentiated THP-1 that show 

evidence of intramacrophage amastigotes following exposure to the fold EC50 concentration of 

amphotericin B (AmB) or the four Phytoquest compounds from two independent biological repeats. 
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Each graph represents the mean ± range from two technical repeats. (C) Illustrates these two data 

sets, normalized in each case against their respective mean untreated control, combined together to 

show the mean ± StDev (n=4). 

 

To explore whether in addition to a reduction in the proportion of THP-1 infected with L. 

mexicana, I explored whether there was also a reduction in parasite burden per infected THP-

1 cell. To do this, the number of the punctate signals representing the nuclei of L. mexicana 

intramacrophage amastigotes peripheral to the infected THP-1 nucleus were counted. For 

the cultures exposed to no treatment or 1xEC50 concentrations of amphotericin B or the four 

Phytopure compounds, the total of punctate signals from 95 infected THP-1 were counted. 

As the proportion of infected THP-1 decreased with increasing concentration of test 

compounds, the total number of cells counted decreased (the lowest was 15 infected THP-1 

following exposure to 3xEC50 concentration of amphotericin B). The distribution of these 

parasite counts per infected THP-1 is shown in Figure 3.19. Using a one-way ANOVA test 

of variance, a Dunnett’s post-test revealed that significantly (p<0.05) lower parasite counts, 

compared to the untreated control, were found only following exposure to 3xEC50 

concentrations of (i) amphotericin B, (ii) 700022 or (iii) 700136. As the 9xEC50 

concentration of all four Phytoquest compounds did not cause a significant reduction in 

parasite number per infected THP-1, some caution must be applied to these observations. 

Whilst a significant reduction in parasite numbers per infected THP-1 would be expected 

following exposure to a 3xEC50 concentration of amphotericin B, there was no 9xEC50 data 

measured to show if this trend was real.  
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Figure 3.19: Distribution of L. mexicana parasite count in infected macrophages. Box and 

whisker plots of counts of intramacrophage amastigotes in infected differentiated THP-1 following 

exposure to the treatment shown on the x-axis. The box represents the 25-75% mean distribution 

with the central line as the mean. Whiskers show the total distribution of the counts of 

intramacrophage amastigotes. AmB; amphotericin B. 

 

3.2.4 An investigation of the biophysical properties the of Phytopure compound hits 

33 compounds with EC50 <2µM were identified against L. mexicana, T. brucei and P. 

falciparum. Key aspects of their physicochemical properties were determined using 

ChemDraw and Molinspiration software and are shown in Table 3.11. The reported 

biophysical properties for these compounds are important with regards to their potential as 

drug development targets that will be orally bioavailable (Oprea, 2002). A rule of five (Ro5) 

to determine if a chemical compound has biophysical properties that would predict for oral 

availability of drugs in humans was derived by Lipinski et al. (2001). The Ro5 is used to 

predict an orally active drug depends on the following physicochemical criteria: 
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- a molecular weight of less than 500 Daltons 

- Less than 10 hydrogen bond acceptors (HBA) 

- No more than 5 hydrogen bond donors (HBD)  

- An octanol-water partition coefficient (LogP) of less than 5 

Thus, if any compound follows these conditions: MW > 500, LogP > 5, HBD > 5, and HBA 

> 10, this would predict that this compound would have poorer membrane permeability or 

absorption properties in the human gut. Additional rules for predicting bioavailability were 

later suggested by Veber et al. (2002), they assessed three additional parameters for 

assessing structural properties that were linked to increased oral bioavailability in rats in an 

analysis of over 1100 drug candidates, specifically: the number of rotatable bonds (nrotb 

<5), total polar surface area (PSA) ≤140 Å2 and a total hydrogen bond count (sum of H-bond 

acceptors and donors) of ≤12.  Of the 33 compounds listed here, 22 compounds follow all of 

the Ro5 and Veber’s rules (Table 3.11), 5 compounds violated one rule, 4 compounds 

violated two and 2 compounds exhibited three violations.  
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Table 3.11: Exploring 33 compounds properties depending on Lipinski’s Rule of Five 

and Veber’s rules. 

 

 

 

ID LogP TPSA (Å2) MW HBA HBD nrotb
Volume 

(Å3)
violations

700014 6.25 17.07 284.44 1 0 2 298.26 1
700022 6.61 66.76 468.68 4 2 3 468.05 1

700035 2.28 252.53 822.85 18 5 14 723.17 2

700042 1.41 232.68 736.76 16 6 10 640.52 3

700046 1.79 238.75 778.8 17 5 13 677.03 2

700048 2.5 244.83 820.84 18 4 15 713.54 2

700104 3.23 244.83 846.88 18 4 14 740.45 2

700107 6.61 66.76 468.68 4 2 3 468.05 1

700136 6.43 63.6 466.66 4 1 3 462.19 1

700240 5.89 71.44 468.68 4 1 5 472.74 1
700585 2.56 107.7 357.34 7 0 3 305.27 0
700586 0.73 107.97 286.24 6 3 1 232.12 0
700756 4.89 72.84 346.42 5 1 4 332.24 0
701044 2.82 52.61 256.26 4 0 4 233.9 0
701082 5.83 255.04 824.74 17 5 16 690.8 3

701145 2.82 102.3 374.39 7 2 6 332.21 0

701154 2.82 102.3 374.39 7 2 6 332.21 0

701155 1.05 69.68 304.34 5 0 2 277.3 0

701157 1.96 69.68 332.4 5 0 3 310.69 0

701158 2.46 69.68 346.42 5 0 4 327.5 0

701159 0.96 93.07 378.46 6 2 6 358.42 0

701210 0.9 93.07 346.38 6 2 4 314.38 0
701212 2.14 72.84 330.38 5 1 3 306.12 0
701241 3.38 17.06 169.2 1 0 1 166.97 0
701249 3.03 17.07 168.19 1 0 1 163.88 0
701250 2.76 17.07 202.28 1 0 2 187.28 0

701252 2.22 26.3 186.21 2 0 2 178.13 0

701253 2.39 17.07 202.28 1 0 3 187.39 0
701256 3.13 17.07 216.31 1 0 3 204.08 0
701259 3.64 17.07 230.33 1 0 4 220.88 0

701262 3.5 17.07 230.33 1 0 3 220.67 0

701273 3.54 17.07 230.33 1 0 3 220.64 0

701286 4.13 17.07 234.3 1 0 1 229.7 0
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3.3 Discussion 

I report here the screen of 643 Phytopure library compounds against intraerythrocytic 

Plasmodium falciparum, the blood-stream form of Trypanosoma brucei brucei and axenic 

amastigotes of Leishmania mexicana to determine their inhibitory effects. These initial 

screens are followed up with assays against human cell lines to establish whether there is 

selectivity for the compound against the parasite in question. In the discussion I will address 

the results of each parasite screen and then do a comparison of data across the three parasite 

species tested. 

 

3.3.1 Intraerythrocytic P. falciparum:  

Twelve compounds were shown to have activity against intraerythrocytic asexual stages of 

P. falciparum with EC50 values <6 μM. Of these 12 compounds, compounds 700035, 

700042, 700046 and 700048 from Phyllanthus accuminatus were identified (Table 3.4). 

Previous studies have reported the activity of extracts from Phyllanthus spp. against a range 

of pathogens (Mao et al., 2016). The extracts of Phyllanthus emblica exhibit activities against 

P. falciparum with EC50 values ranging between 0.25 to 15.4 µg/ml, and with selectivity 

indices (SI) ranging from between from 11 to 17 against the monkey kidney epithelial Vero 

cell line (Pinmai et al., 2010). Likewise, extracts of Phyllanthus simplex show activity 

against Trypanosoma evansi with an EC50 value of 96 μgm/ml, although these appear toxic 

as there is an SI of 1 when compared to the human MRC-5 cell line (Bawn, 2010). Aqueous 

extracts from Phyllanthus amarus and Phyllanthus muellerianus have antileishmanial 

activities (Onocha et al., 2010) with an aqueous extract from Phyllanthus orbicularis 

showing antiviral activity against bovine and human infective viruses (del Barrio and Parra, 

2000). Of note is the antiviral activities of a range of sequiterpenoid glycosides (for example 

https://www.hindawi.com/20591495/
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phyllaembicillin C) that are structurally related to the four phyllanthocins identified in this 

study (Lv et al., 2014; Zhang et al., 2000). 

In general, the 12 selected compounds either showed low levels of selectivity against P. 

falciparum over the human HepG2 line – or where selectivity was demonstrated (eg. for 

700046 or 700104), the absolute CC50 value of <10µM suggested the compounds were 

broadly toxic to humans. The only compound of relative interest left was the taxane 700535 

from the English Yew (Taxus baccata) tree, which showed selective activity against P. 

falciparum with SI (16-22), but with a CC50 against HepG2 of 52µM (Table 3.5). Whilst 

extracts of T. baccata have been shown to have antimicrobial properties (Erdemoglu and 

Sener, 2001), the best known medicinal use of this tree is from the microtubule-targeting 

drug paclitaxel, with a structure similar to 7000535, which is widely used as an anticancer drug.  

Using the BRRoK assays to determine the immediate cytocidal effect of these twelve 

compounds showed that they, in general, showed an immediate cytocidal effect in vitro. 

Given that there were two flavonoids, five sequiterpenes and four sequiterpenoid glycosides 

(phyllanthocins), the initial cytocidal activities of each were compared to others with related 

structures (Figure 3.20). Whilst the initial rate of kill for the two related flavonoids (both 

flavanol subclass), there are some distinct structural differences of 700631 and 701082 

outside of the flavanol core structure that may mean that they are not acting on the same 

target. Interestingly, of the five sequiterpenes, the four most closely related; 701155, 701157, 

701158 and 701159, which are all guaianolides isolated from Arnica montana are 

structurally similar to 11,13-Dehydromatricarin (Kraft et al., 2003) of Artemisia afra with 

an antiplasmodial EC50 of 12.5µg/ml in Dd2 parasites. These four guaianolides are 

structurally distinct to the less potent 700278 sequiterpene from the Dwarf sunflower 

(Helianthus annus), and show a distinct initial rate of cytocidal activity which suggests that 

these two groups of compounds have distinct targets in the parasite. The similar initial rates 
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of kill for three of the four sequiterpenoid glycosides; 700046, 700048 and 700104 isolated 

from P. accuminatus appears distinct to 700042 – which is also isolated from P. accuminatus 

and is closely structurally related. This would suggest that 700046, 700048 and 700104, at 

least, share a similar target in the parasite. 

Ten synthetic compounds (701249, 701250, 701251, 701252, 701253, 701256, 701259, 

701262, 701273 and 701286) were provided by PhytoQuest Ltd after the P. falciparum 

screen; hence only 631 compounds were tested. However, as these compounds showed high 

toxicity against HepG2 cells (Table 3.6) in later work, I did not determine their 

antiplasmodial effect. 

Target Candidate Profiles (TCP) for potential compounds to be included in future 

antimalarial drugs have been developed by the Medicine for Malaria Venture (Burrows et 

al., 2017; Burrows et al., 2013). For all the compounds identified as hits against P. 

falciparum, these hits are neither potent enough nor selective enough to warrant further 

investigation here. Compound 700046 was by far the most potent hit, with EC50 potency in 

the 30-50nM range. Unfortunately it was quite toxic to the human cell line HepG2 (CC50 of 

2µM) and with a molecular mass of >500 and 17 hydrogen bond acceptors, it fails two of 

the Ro5 criteria to predict a compound that would be orally bioavailable. 
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Figure 3.20: Comparison of 6 hours BRRoK data for structurally related Phytopure compounds. 

Comparison of mean normalized bioluminescence signals (from Figure 3.7) clustered by compound 

structure. Structures for the indicated compounds are shown to the right. 
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3.3.2 T. brucei bloodstream stages:  

The criteria used to define a hit in this screen was a >50% inhibition of growth at 2 µM, this 

criteria providing 25 hits. The EC50 of these compounds ranged from 0.16 to 2.71 µM, 

indicating a good range of potency against the bloodstream form of T. brucei, although the 

majority of these compounds (21 of 25) did not show appreciable selectivity for the parasite 

over the HepG2 cell line (SI values between 0.2 and 13.5). Only three compounds showed a 

selectivity for the parasite over HepG2 that was at least as good as that for pentamidine 

(benchmark antitrypanosomal SI 26.7 see Table 3.6). These were; (i) 700014 an abietic 

diterpene from Abies procera (SI of 35.8), (ii) 700035 a sequiterpenoid glycoside from P. 

acuminatus (SI of 43.3) that is structurally closely related to the four sequiterpene glycosides 

that are hits for P. falciparum and although 700035 has a similar HepG2 CC50 to these other 

four compounds, there appears to be some exclusivity between the sequiterpene glycosides 

targeting P. falciparum or T. brucei, but not both (iii) and 701145 a sesquiterpenoid  from 

Menyanthese trifoliate with an SI 53.5. Previous studies revealed that the extracts of Noble 

fir (Abies procera) from North America showed potent activity against T. brucei, >99% kill, 

at 20 μg/mL (Jain et al., 2016). The related dehydroabietic acid also shows activity against 

kinetoplastid parasites; for example, derivatives of dehydroabietic acid were screened 

against L. donovani and T. cruzi, with EC50 values ranging between 2.3 and 9 μM against L. 

donovani, while 1.4 and 5.8 μM against T. cruzi, as well as a demonstrating good selectivity 

against the THP-1 cell line (Vahermo et al., 2016). The abietane quinone P-1 showed activity 

against extracellular and intracellular of L. braziliensis, L. infantum and T. cruzi with EC50 

values ranging between 14.2 and 24.5 μM (Ramírez-Macías et al., 2012).  

There is an urgent demand for new antitrypanosomal drugs to treat both human African 

trypanosomiasis (HAT) as well as American trypanosomiasis, Chagas disease (Field et al., 

2017 and Scarim et al., 2018; Cullen and Mocerino, 2017). Challenges include resistance to 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Cullen%20DR%5BAuthor%5D&cauthor=true&cauthor_uid=28117003
https://www.ncbi.nlm.nih.gov/pubmed/?term=Mocerino%20M%5BAuthor%5D&cauthor=true&cauthor_uid=28117003
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current drugs, toxicity as well as new classes of drugs that can effectively cross the blood 

brain barrier to target the advanced disease stage where the central nervous system is 

affected. As shown above, the classes of compounds described as hits here have been 

reported in the literature. These data were also developed at the same time as the L. mexicana 

screen, and given the progress in that area (see next section), work on T. brucei was halted 

for lack of time. 

 

3.3.3 L. mexicana parasites:  

Due to the potency of the Phytopure compounds against L. mexicana axenic amastigotes, an 

increased threshold of greater than 80% inhibition in parasite growth at 2µ was used here to 

prioritize 23 hits. The EC50 values determined ranged between 0.15 and 1.38 μM, with the 

improved potency a reflection of the higher criteria being applied. The inhibitory effect of 

these 23 compounds was first established against the human cell line (THP-1) used to 

produce macrophages for intramacrophage assays. This data showed that 19 of these 

compounds displayed cytotoxicity with low SI values <6.7. The four compounds 700022, 

700107, 700136 and 700240 remaining displayed both the best potency and selectivity of 

the hits (SI > 27) (Table 3.8). These compounds also showed good selectivity when 

compared to a second, HepG2, human cell line. All four compounds are structurally related 

triterpenes isolated from the Noble Fir (Abies procera) or Grand fir (Abies grandis) see table 

3.9) with EC50 between 0.24 to 0.5 μM, activities similar to that of amphotericin B (Table 

3.8 and 3.10). These four triterpenes are steroid like in structure, with 700022, 700107 and 

700136 structurally related to cardenolides such as digitoxigenin and ouabain. These 

cadenolides, through targeting of sodium-potassium pumps can be toxic to humans through 

their effect on cardiac cells (cells not tested here), although ouabain is not toxic to L. 

amazonensis (De Almeida-Amaral et al., 2008). Disappointingly, these compounds did not 
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show the same activity against P. falciparum as the new generation of PfATP4 targeting 

drugs (Spillman et al., 2013) which disrupt sodium ion transport. An evaluation of these 

cardenolides synergy with spiro indolines may have been interesting.  

Triterpene compounds have previously reported to have antileishmanial activity, such as 

ursolic acid was used to eliminate L. amazonensis promastigotes with an EC50 of 6.4 μg/mL 

(Yamamoto et al., 2015). Also, these correlate with previously published of quinonemethide 

triterpenes (maytenin and pristimerin) presented antileishmanial activity with an EC50 values 

<0.88 nM and antitrypanosomal activity with an EC50 <0.3 nM, these compounds showed 

low totoxicity against BALB/c macrophages for L. amazonensis and L. chagasi according 

to SI values 243.65 and 46.61 for maytenin and 193.63 and 23.85 for pristimerin (Dos Santos 

et al., 2013). The activity of triterpenes compounds (700022, 700107, 700136 and 700240) 

were also evaluated on HepG2 cell line and exhibited less toxicity against these mammalian 

cells (Table 3.10). The lack of toxicity of these compounds at the doses used in human cell 

line and that is consistent with the previously study of triterpenes such as ursolic acid and 

oleanolic acid (isolated from leaves of Petiveria alliaceae) were showed low toxicity against 

different experimental models (Yamamoto et al., 2015).  

The antileishmanial activity of these four triterpene compounds was further confirmed 

against intracellular L. mexicana amastigotes in a cellular image-based intramacrophage 

assay. To be active against intracellular parasite, compounds must be able to cross membrane 

barriers (cellular membrane of the macrophage and phagolysosome vacuole membrane) and 

maintain stability in the presence of reactive oxygen species in the phagolysosome 

environment and under low pH- all these factors increase the attrition rate of axenic 

amastigote hits when compared to the amastigote intracellular assay (Siqueira-Neto et al., 

2012). The microscopic counting assay used here determined the proportion of parasite-

infected THP-1 cells, an assay that required the counting of parasite nuclei adjacent to the 



160 
 
 
 

macrophage nuclei. Some caution must be applied to our interpretation of the assay data here 

as this assay has limitations based on the expertise of the user. That said, the experiments 

showed that the triterpene compounds exhibited some efficacy against intracellular L. 

mexicana infection at a 9xEC50 concentration. For instance, compounds 700022 and 700136 

showed activity against intracellular infection at 9x EC50, with an activity comparable to 

amphotericin B when used at 3x EC50. Some reports have described that nitric oxide (NO) 

produced by macrophage cells inhibits intracellular amastigotes of L. amazonensis (Laurenti 

et al., 2014; Campos et al., 2015; Carneiro et al., 2015) and that nitric oxide production can 

be triggered by natural products (Lin et al., 2014). Previously, Yamamoto et al., 2015 and 

You et al., 2001 reported that the treatment of L. amazonensis infected macrophages with 

the steroidal triterpene (ursolic acid purified from Petiveria alliaceae) eliminated 

intracellular amastigotes as a result of nitric oxide in a dose-dependent manner. Moreover, 

ursolic acid and oleanolic acid isolated from Pourouma guianensis showed high activity 

against intracellular amastigotes of L. amazonensis with EC50 values of 27 µg/ml and 11 

µg/ml, respectively (Passero et al., 2011). These studies show that triterpenes are able to 

eliminate parasites, suggesting that ursolic acid and oleanolic acid have multispectral action 

against Leishmania spp. In our study, the antileishmanial activity of these steroidal triterpene 

compounds isolated from the Noble Fir (Abies procera) represent a novel and interesting 

point to develop in the next chapter.  

 

3.3.4 Comparison of activity across parasites tested – a cautionary note 

To enable a comparison of potential cross-species activity, activity in any species was 

defined as an EC50 < 2 μM. A list of these compounds is produced in Table 3.12 below. 

Comparison of activity in these parasites shows seven compounds (701154, 701159, 701250, 

701252, 701259, 701262 and 701273) as demonstrating activity against both of the 
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kinetoplastids T. brucei and L. mexicana (Figure 3.21 green), four compounds (700042, 

700046, 700048 and 701082) which were active in both T. brucei and P. falciparum (Figure 

3.21 blue) and 3 compounds (701155, 701157 and 701158), all sequiterpenoid glycosides 

isolated from P. accuminatus sesquiterpenes, exhibited significant activity against all three 

parasites tested (Figure 3.21 red).  

One factor considered was that compounds that showed a broad activity across multiple 

parasites may in fact represent a general antiproliferative capacity that would reflect a 

toxicity challenge. Of note, the sequiterpenoid glycosides 701155, 701157 and 701158 were 

toxic against HepG2 cell lines in this study, with related sequiterpenoid lactones described 

as having broad antiparasitic activity but with limited selectivity (François et al. 1996; 

Pedersen et al., 2009; Berger et al., 2001; Villaescusa et al. 2000; Fuchino et al. 2001; Perez-

Victoria et al. 1999; Koshimizu et al. 1994 and Mahiou et al. 1995). Compounds with 

selectivity indices of >20 for the parasite indicated when compared to human cell lines are 

indicated with boxes in Figure 3.21. These compounds are shown in boxes in Figure 3.21 

and, except the dotted box for 700046 which was only selective in P. falciparum but also 

active against T. brucei, they all identify single species hits.  
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Figure 3.21: Phytopure compound activity across multiple species (A) A Venn diagram of the 

compounds identified to have an EC50 < 2 µM activity in one or more of the indicated species (B) 

Bar chart reporting the distribution of HepG2 CC50 values of compounds that target a single species 

or multiple (two or three species) in this study. Boxes, compounds with selectivity indices of >20. 

Dotted box, 700046 has a selectivity against P. falciparum and T. brucei. Significance is determined 

from an unpaired t-test of distribution. 

A 

B 
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Table 3.12: Table reporting most active compounds. 

PQ 

number 

Common 

name 
Genus (species) Plant part Mwt Formula Class 

700022 Noble fir Abies (procera) aerial parts 468.67 C30H44O4 triterpene 

700107 Noble fir Abies (procera) aerial parts 468.67 C30H44O4 triterpene 

700136 Noble fir Abies (procera) aerial parts 466.66 C30H42O4 triterpene 

700014 Noble fir Abies (procera) aerial parts 284.44 C20H28O 
abietic 

diterpene 

700240 Grand fir Abies (grandis) branch 468.67 C30H44O4 triterpene 

700035   Phyllanthus (acuminatus) aerial parts 822.85 C40H54O18 phyllanthocin 

700104   Phyllanthus (acuminatus) aerial parts 846.87 C42H54O18 phyllanthocin 

700046   Phyllanthus (acuminatus) aerial parts 778.80 C38H50O17 phyllanthocin 

700042   Phyllanthus (acuminatus) aerial parts 736.76 C36H48O16 phyllanthocin 

700048   Phyllanthus (acuminatus) aerial parts 820.83 C40H52O18 phyllanthocin 

701082   Phyllanthus (acuminatus) aerial parts 824.74 C43H36O17 flavonoid 

700585 
Common 

horsetail 
Equistum (arvense) aerial parts 344.31 C18H16O7 flavonoid 

700586 
Common 

horsetail 
Equistum (arvense) aerial parts 286.23 C15H10O6 flavonoid 

700756 
Hemp 

agrimony 

Eupatorium 

(cannabinum) 
aerial parts 346.42 C20H26O5 sesquiterpene 

701145 Bogbean Menyanthes (trifoliate) 
Fruit & 

seed 
374.38 C20H22O7 sesquiterpene 

701154 Arnica Arnica  (montana) flowers 304.34 C17H20O5 sesquiterpene 

701155 Arnica Arnica (montana) flowers 
304.3 

C17H20O5 sesquiterpene 

701157 Arnica Arnica (montana) flowers 
332.4 

C19H24O5 sesquiterpene 

701158 Arnica Arnica (montana) flowers 
346.42 

C20H26O5 sesquiterpene 

701159 Arnica Arnica (montana) flowers 378.46 C21H30O6 sesquiterpene 

701210 Artichoke Cynara (cardunculus) leaves 346.37 C19H22O6 sesquiterpene 

701212 Artichoke Cynara (cardunculus) leaves 330.38 C19H22O5 sesquiterpene 
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701044 Marguerite 
Argyranthemum 

(frutescens) 
roots 256.257 C15H12O4 aromatic 

701241 
Corn 

marigold 

Segetum 

(Chrysanthemum) 
whole plant 170.211 C12H10O aromatic 

701249 
Corn 

marigold 

Segetum 

(Chrysanthemum) 
whole plant 168.195 C12H8O aromatic 

701250 Synthetic 202.275 C12H10OS aromatic 

701252 Synthetic  186.21 C12H10O2 aromatic 

701253 Synthetic 202.275 C12H10OS aromatic 

701256 Synthetic 216.302 C13H12OS aromatic 

701259 Synthetic 230.329 C14H14OS aromatic 

701262 Synthetic 230.329 C14H14OS aromatic 

701273 Synthetic 230.329 C14H14OS aromatic 

701286 Synthetic 234.298 C17H14O aromatic 
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Chapter 4: Initial studies exploring the action of, and resistance 

to, compound 700022 in Leishmania mexicana. 

 

4.1 Introduction 
 

For more than 70 years, the antimonials glucantime and Pentostam (SbV) were used as a 

first-line therapy across South America, North Africa, Turkey, Bangladesh, and Nepal for 

the treatment of all forms of leishmaniasis (Franco et al., 2016). The second-line therapy 

against visceral leishmaniasis is based on the use of amphotericin B or pentamidine (Kumar 

et al., 2011; Sundar et al., 2015). Local variations in the use of antileishmanial drugs are due 

to regional increases in the number cases of primary resistance, or several in relapses after 

several courses of treatment (Burza et al., 2014; Sundar and Chakravarty, 2015). In 2002, 

the efficacy of miltefosine was recognised with a registration in India as the first oral 

treatment for visceral leishmaniasis (Dorlo et al., 2012). Although miltefosine displays good 

efficacy, its use can lead to serious adverse effects on the liver and kidney (de Menezes et 

al., 2015). More recently, the liposomal preparation of amphotericin B, has been used as a 

first-line treatment in Asia, Africa and Europe (WHO, 2010).   

Despite their widespread use, the mechanism of action for these drugs against different 

leishmania spp. Is relatively poorly understood (Gazanion et al., 2016). The amphotericin B 

mode of action appears to be primarily mediated through the generation of channel-like pores 

spanning the lipid bilayer after binding to ergosterol (the main sterol in the membrane), 

resulting in an increase in permeability for protons and monovalent cations as K+, Ca2+, and 

Mg2+, hence leading to cells death (Pourshafie et al., 2004; Romero et al., 2009). Similarly, 

several studies suggest that miltefosine is able to target glycosylphosphatidylinositol (GPI) 

biosynthesis, and the interference with other phospholipid metabolisms through the 
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inhibition of alkyl lysophosphatidylcholine specific acyltransferase (Luque-Ortega and 

Rivas, 2007; Rakotomanga et al., 2007). The effects of miltefosine treatment on lipid 

modifications in promastigotes of L. donovani have also been observed to diminishing 

phosphatidylcholine (PC), while sphingolipids and sterols increased (Rakotomanga et al., 

2007; Armitage et al., 2018). To study the viability of L. major promastigotes without 

sphingolipid biosynthesis through loss of the serine palmitoyl transferase gene (ΔLCB2) 

were matched by substantial alterations in sterol content. These data indicate that 

sphingolipids and ergosterol are important for miltefosine sensitivity and presented 3-fold 

less sensitive to miltefosine than wild-type parasites (Denny et al., 2004; Zhang et al., 2007). 

It was suggested that the ergosterol of the Leishmania plasma membrane replaces cholesterol 

as the primary membrane sterol, could enable this (Fridberg et al., 2008). 

Given that both amphotericin B and miltefosine affect lipids in cellular membranes, research 

on their mode of resistance typically explores changes in lipid profiles in resistant parasites 

(Mbongo et al., 1998; Barratt et al., 2009). 

Generating drug resistant parasites has been used to study the mechanism of action of 

antileishmanial drugs, and has contributed to identification of drug resistance gene loci in 

parasitic protozoa following whole genome sequencing (Muller and Hemphill, 2011; 

Hefnawy et al., 2017). Drug resistance associated with a decrease in the effectiveness of 

antileishmanial drugs may be the result of either natural or adaptive changes to the genetic 

structure of the parasite, enabling the selection of appropriate protective mechanisms against 

these drugs. These genetic changes include alterations in the gene encoding the primary drug 

target, such as mutations, rearrangements, or amplifications that lead to variation in the level 

of gene expression or the development/recruitment of existing processes to reduce exposure 

to the drug, such as efflux pathways (Vanaerschot et al., 2014; Garcia-Hernandez et al., 

2015). To explore drug action and resistance pathways in vitro, drug resistant lines can be 
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obtained by chemical mutagenesis followed by selection by the drug of interest, or by 

culturing wild-type parasites under a stepwise increase in the drug concentration, selecting 

resistant parasites that arise as a result of the plasticity of the genome (Laffitte et al., 2016). 

New techniques for expediting the identification of drug targets and resistance mechanisms 

in leishmania would aid the reassessment of current antileishmanial drugs and the 

development of new effective drugs (Hefnawy et al., 2017). Recently, functional cloning has 

been successfully applied for identification of drug target and resistance in leishmania (Clos 

and Choudhury, 2006; Gazanion et al., 2016). Cosmid-based functional cloning have been 

applied to study mutants defective in the biosynthesis of lipophosphoglycan (LPG) in L. 

donovani (Ryan et al., 1993) and later successfully implemented for isolating nucleoside 

transporters (Vasudevan et al., 1998; Carter et al., 2000) and a miltefosine translocator 

(Pérez-Victoria et al., 2003). Similarly, genes involved within phospholipid  translocation 

and ergosterol biosynthesis contribute to miltefosine resistance in L. infantum (Gazanion et 

al., 2016). This approach has also been used to study mechanisms of drug resistance. 

Examples include, the isolation of a novel protein (which belongs to the superfamily of 

leucine-rich repeat (LRR) proteins) that is linked to antimonial resistance in L. infantum 

amastigotes (Genest et al., 2008), modulation of the aquaglyceroporin AQP1 transcript 

levels as a key determinant in the accumulation of antimonials in leishmania resistant lines 

(Marquis et al., 2005), and isolation of genes involved directly in resistance to antifolates in 

L. tarentolae (Kündig et al., 1999). Next-generation sequencing (NGS) technologies are also 

being used to identify drug targets and elucidate drug resistance mechanisms (Horn and 

Duraisingh 2014). In Leishmania spp., copy number variation and single-nucleotide 

polymorphism were detected in miltefosine drug-resistant parasites using NGS (Downing et 

al., 2011; Coelho et al., 2012).  
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As an example of this, miltefosine resistance results from a reduction in the intracellular 

drug concentration as a result of an impairment to a miltefosine transporter complex (Perez 

Victoria et al., 2006a). The acquisition of point mutations in the miltefosine transporter (MT) 

and/or an associated subunit Ros3 has been shown to drastically increase miltefosine 

resistance in in vitro and in vivo experiments (Figure 4.1) (Perez-Victoria et al., 2006; Seifert 

et al., 2007; Shaw et al., 2016). In vitro studies in a L. donovani promastigote line resistant 

to miltefosine was generated by increasing drug pressure in stepwise selection process. The 

EC50 value for the resulting miltefosine-resistant cells was 15 times higher than that for the 

original wild-type line (Perez-Victoria et al., 2003b). In clinical isolates, a reduced 

expression of the MT-Ros3 complex has also been shown to represent a miltefosine-resistant 

marker in L. braziliensis strains (Sanchez-Canete et al., 2009). Clinical resistance to 

miltefosine in L. donovani demonstrated a 10-fold-increase in EC50 over clinically sensitive 

strains (Srivastava et al., 2017).  

 

Here I describe my initial studies that explore the action of compound 700022 against L. 

mexicana. This work includes the selection of a 700022 resistant line using a process of step-

wise increases in exposure to 700022. The phenotype of wild-type and drug resistant 

parasites are also investigated using immunofluorescent (IF) assays and electron 

microscopy. 
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Figure 4.1: Binding and uptake of miltefosine (MIL) in Leishmania spp. A schematic 

representing the uptake of MIL across a membrane by the MT/Ros3 MIL transporter. The 

hydrophobic MIL is typically bound to serum albumin (represented here is a tissue culture system 

using bovine serum albumin, BSA) which acts as a reservoir. The translocation of MIL from the 

outer to the inner leaflet of the plasma membrane is facilitated by the Leishmania miltefosine 

transporter (MT), a P4-ATPase subfamily flipase shown here as the α-unit termed L. donovani 

miltefosine transporter (LdMT), with its β-subunit termed Ros3 (Perez-Victoria et al., 2003).  
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4.2 Results  

4.2.1 Generation of 700022-resistant L. mexicana 

A L. mexicana (strain MNYC/BZ/62/M379) resistant to compound 700022 was obtained by 

propagating promastigotes in vitro under increasing selective pressure through a stepwise 

increase in exposure to 700022.  At the start, L. mexicana promastigotes (termed here now 

as wild-type) at 1 x 106 cells/ml were exposed to 11.5 µM of 700022 (the EC50 value). In 

vitro promastigotes were passaged for a period of time, until the rate of growth increased to 

that typical of the wild-type strain not under drug selection. Thus, as the 700022-exposed 

parasites adapted to exposure to 700022, the period of time between each dilution back to 

an initial 1 x 106 cells/ml decreased. At this time, the EC50 for 700022 promastigotes would 

be determined in an AlamarBlue assay. This data being used to start the next phase of 

selection. In subsequent rounds of selection, one culture of L. mexicana promastigotes would 

be maintained at the previous concentration (as well as an aliquot stored in liquid nitrogen) 

and two cultures exposed to a new increased concentration (based on the EC50 for 700022 

determined after the previous round of selection). Parasite lines at intermediate stages during 

each step of the selection were also stored in liquid nitrogen.   

In this way, over a period of 28 weeks, L. mexicana promastigotes were serially exposed to   

11.5µM, 20.5μM, 41μM, 77μM and finally 85.6µM of compound 700022 (Figure 4.2). This 

figure illustrates the windows of 700022-selection pressure over the timecourse of the 

resistance-selection experiment (Figure 4.2A). At each of the indicated points on Figure 4.2, 

the EC50 of 700022 against the selected promastigotes was determined using Log 

concentration normalized response graphs. Examples of these are shown from weeks 0, 10, 

15, 25 and 28 of the selection process – these data being used to determine the next phase of 

the incremental 700022-selection process (Figure 4.2B). At each of these timepoints, the 
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promastigotres were also transformed to provide axenic amastigotes, and the EC50 of 700022 

against this stage of the life cycle also determined (Figure 4.2C). Over the 28 weeks of 

increasing concentration selection process, a wild type L. mexicana (EC50 promatigotes 

11.5µM, amastigotes 0.24µM) was used to derive a 700022-resistant strain (EC50 

promatigotes 85.6µM, amastigotes 10.1µM) that provided a 7.5-fold and 42-fold increase in 

EC50 potency in promastigotes and axenic amastigotes, respectively. This appears to be a 

stable resistance phenotype as promastigotes of the 700022-resistant line were cultured for 

60 days in the absence of 700022 and the EC50 measured at 10.23 µM and 86.54 µM for 

axenic amastigote and promastigote respectively (Figure 4.3).  

Early during the selection process, at week 8, axenic promastigotes were derived from the 

promastigotes under selection and the EC50 of the triterpene compounds 700107, 700136 

and 70240 closely structurally related to 700022 were measured. Due to the limiting material 

(all remaining samples of these three compounds were used), this experiment had to be done 

with the more sensitive axenic amastigotes and could not be repeated later following 

additional selection with 700022. Assays were carried out using the AlamarBlue assay, each 

experiment carried out as technical triplicates and three independent biological repeats done. 

The mean±Stdev of the normalized fluorescent response was plotted against log 

concentration (Figure 4.4) to allow EC50 and their 95% confidence intervals to be determined 

and are reported in Table 4.1. Following 8 weeks of selection to 700022, the axenic 

amastigotes showed a 4.2-fold increase (RI, resistance index) in the EC50 to 700022. At the 

same time, these 700022-selected parasites showed between a 4.1-5.3 RI for the three related 

triterpenes. This similar RI for all compounds, and their structural similarity, suggests that 

they likely share a similar mechanisms of resistance and mode of action.  
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Figure 4.2: Selection of a 700022-resistant line in L. mexicana. (A) Promastigote cultures are 

exposed sequentially to the indicated concentration of 700022 (increasing tone of gray to show 

increase in concentration). These concentrations of 700022 are based on the EC50 in promastigotes 

determined at start of week 0, 10, 15 and 25. At the indicated points (circles) the EC50 of 700022 was 

determined in promastigotes (red, note y-axis is split with different concentration ranges indicated) 

or axenic amastigotes (black) prepared from the promastigote culture under selection. Log 

concentration normalized response graphs to determine the EC50 in promastigotes (B) or axenic 
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amastigotes (C). The key indicates the weeks of selection as well as the EC50 (in μM). The 

mean±StDev (n=9) are reported. 
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Figure 4.3: Observation of resistance stability for L. mexicana axenic amastigotes and promastigotes 

under compound pressure in stepwise concentrations after 28 weeks (black), and 60 days after 

removal from compound pressure (red). 
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Figure 4.4: 700022-resistant L. mexicana axenic amastigotes showed decreased sensitivity to 

related triterpenes. Log concentration-normalised response curves for the related triterpenes 

700022, 700107, 700136 and 700240. Response curves for axenic parasites before exposure to 

700022 (black lines) and after 8 weeks of selection (red lines). The mean±StDev (n=9) are reported. 
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Table 4.1: Cross-resistance to related triterpenes in 700022-resistant L. mexicana. Resistance index, 

RI is a ratio of the mean EC50 after 8 weeks selection compared to that in WT (unselected) parasites  

 

 

Compounds 

EC50 (µM)  

RI WT axenic 

amastigotes 

700022-resistant 

axenic amastigotes 

Mean (95% CI) Mean (95% CI) 

700022 0.24 (0.21-0.25) 1.00 (0.95-1.23) 4.2 

700107 0.26 (0.24-0.28) 1.07 (0.92-1.31) 4.1 

700136 0.21 (0.22-0.27) 1.13 (1.11-1.29) 5.3 

700240 0.50 (0.46-0.52)  2.67 (2.21-2.96) 5.3 

 

 

4.2.2 Comparative morphological examination of 700022-resistant and wild-type L. 

mexicana  

An initial comparison of morphology between wild-type (unselected) L. mexicana and the 

same culture following 28 weeks of selection to increasing concentrations of 700022 

(700022-resistant) was made using an indirect immunofluorescence assay. α-tubulin within 

microtubules are an abundant protein within Leishmania spp, labelling the cell body and 

flagellum. Wild-type and 700022-resistant promastigotes and axenic amastigotes were fixed 

and labelled using a mouse α-tubulin antibody and then subsequently labelled with an Alexa-

Fluor (488nM, green) labelled anti-mouse antibody (Figure 4.5). The cultures were also 

counter-stained with DAPI to label the DNA within the nucleus and kinetoplast. 

The imaging of α-tubulin in some 200 parasites for each culture, divided over four 

independent staining experiments, reveals a typical morphology for metacyclic 

promastigotes in the wild-type parasites, with nuclear staining identifying a single nuclear 

and kinetoplast compartment. The same staining of the 700022-resistant promatigotes 

reveals the same nuclear compartments, but also that there is a much shorter flagellum. No 

clear differences in the morphology of the axenic amastigotes is apparent. Images of these 
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200 parasites for each stage and 700022-resistance phenotype were digitally captured and 

analysed using tools within the freeware Image J analysis package (www.imageJ.nih). Here 

the area tool was used to measure the surface area of both promastigotes and axenic 

amastigotes. The length tool was used to measure the length of the flagellum from the base 

of the main body of the parasite to the end of the flagellum. Example ImageJ images used to 

capture these parameters are shown in Figures 4.6 and 4.7.  

Taking the 200 sets of data for the wild-type and 700022-resistant parasites, distribution 

plots (box and whisker) ware used to compare cell size (based on cell surface) and for 

promastigotes, the length of the flagellum (Figure 4.8). The significance of the differences 

in the distributions are analysed using a two-sample t-test (GraphPad PRISM). Table 4.2 

reports the mean and standard deviation of these measurements. 
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Figure 4.5: Comparative immunofluorescence microscopy analysis wild-type and 700022 

resistant L. mexicana. Representative images of promastigotes from wild-type (A) and 700022-

resistant (B) stained for α-tubulin (green) and DNA (blue). Note the absence of flagellum in the 

700022-resistant promastigotes. The same staining was applied to wild-type (C) and 700022-resistant 

(D) axenic amastigotes. N, nucleus; F, flagellum; K, kinetoplast. Bars = 10µm  
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Figure 4.6: ImageJ analysis of L. mexicana promastigotes stained for α-tubulin content. Using 

the area tool (white) the area of the promastigote cell is outlined in wild-type (A) and 700022-

resistant cells. Using the length tool (red), the length of the flagellum is indicated in the same images.  

 

Figure 4.7: ImageJ analysis of L. mexicana axenic amastigotes stained for α-tubulin content. 

Using the area tool (white) the area of the amastigote cell is outlined in wild-type (A) and 700022-

resistant cells.  

 

There is a significant reduction in the mean length of the flagellum in 700022-resistant 

promastigotes, now approximately 2.3µM in length compared to 13.7µM – a reduction in 

length by some 85%. Interestingly, this analysis revealed a slight, but significant reduction 

in the size of both the 700022-resistant promastigote and axenic amastigote. Whilst not 

obvious from the initial inspection of the immunofluorescent images, there appears to be a 

one third reduction in size of both life cycle stages.   
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Figure 4.8: Scatterplots of the distribution of cell body size and flagellum length in wild type 

and 700022-resistant L. mexicana. Box and whisker plotes (boxes illustrate 25 to 75% distribution 

and median, with whiskers showing range of data. (A) Compares the distribution of flagellar length 

(µm) in wild-type (WT) and 700022-resistant (r700022) promastigotes. (B) and (C) compare the 

surface area (µm2), a surrogate determination of cell size, in promasigotes and axenic amastigotes, 

respectively. The significance of the difference in means is shown (two-way t-test).    

 

Table 4.2: Measurements of morphological forms; cells surface area and flagellum length for L. 

mexicana WT and resistant line 

 Mean surface 

area (µm2) ± 

stdev 

Mean flagellum 

length (µm) ± stdev 

L. mexicana  promastigote WT 17.03±5.30 13.73±3.98 

L. mexicana  amastigote WT 10.76±3.22 - 

L. mexicana  promastigote resistant line 12.62±3.94 2.27±1.15 

L. mexicana  amastigote resistant line 8.04±2.28 - 
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To further explore the comparative morphology, scanning and transmission electron 

micrographs of wild-type and 700022-resistant promastigotes were prepared. In addition to 

preparing images from untreated promastigotes, images were also prepared after the wild-

type and 700022-resistant promastigotes were exposed to a 1xEC50 concentration of 700022 

for 24 hours. 

Scanning electron micrographs of untreated wild-type promastigotes and those exposed to 

11.4µM 700022 show how exposure to the compound causes the cell body to round up and 

start to show an irregular shape (Figure 4.9 A and B). A similar effect on the cell body is 

observed on the 700022-resistant parasites exposed to 85.6µM of 700022 (Figure 4.9 C and 

D). Also apparent in Figure 4.9 C is that the untreated 700022-resistant promatigotes have a 

very short flagellum compared to the WT promastigotes of Figure 4.9A. 

Using the same approach, untreated and 700022 treated promastigotes were prepared for 

transmission electron microscopy. Osmium-stained fixed-sections of untreated wild type 

promastigotes reveals a characteristic ultrastructural morphology. Organelles readily 

identified include the nucleus, mitochondria, kinetoplast, flagellar pocket, flagellum, and 

vesicles termed acidocalcisomes (Figure 4.10 A). As expected, the kinetoplast body is 

positioned immediately adjacent to the flagellar pocket. Exposure to 700022 for 24 hours 

resulted in the loss of much of the defined ultrastructure morphology, with the only defined 

feature in all the micrographs of a nucleus that appears to be smaller in size and with a dense 

content, likely condensed chromatin, a characteristic feature of dying cells (Figure 4.10 B). 

The micrographs of the 700022-resistant untreated promastigotes, whilst not as clear as those 

of the wild type parasites, do show the kinetoplast, nucleus and vesicles described as 

acidocalcisomes (Figure 4.11A).
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Figure 4.9: Scanning electron microscopy of L. mexicana promastigotes. Wild-type promastigotes that are (A) untreated or (B) exposed to 1x EC50 (11. 

4µM) of 700022. 700022-resistant promastigotes that are (C) untreated or (D) exposed to 1x EC50 (85.6µM) of 700022C. 

A B 

C D 
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Figure 4.10: Transmission electron microscopy of wild type L. mexicana promastigotes. Wild-type promastigotes that are (A) untreated or (B) exposed to 

1x EC50 (11. 4µM) of 700022 for 24 hours.  N, nucleus; K, kinetoplast; M, mitochrondria; FP, flagellar pocket; F, flagellar; acidocalcisomes (black arrows).  

 

M 
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Figure 4.11: Transmission electron microscopy of 700022-resistant L. mexicana promastigotes. 700022-resistant promastigotes that are (A) untreated or 

(B) exposed to 1x EC50 (85.6. 4µM) of 700022 for 24 hours.  N, nucleus; K, kinetoplast; acidocalcisomes appear as vacuoles or with an electron-dense inclusion 

(black arrows) following exposure to 700022. 

A 

B 
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The quality of the images meant that a clear identification of organelles such as the flagellar 

pocket or the mitochondria could not be made though. As with the wild-type parasites, 

treatement with an EC50 concentration of 700022 for 24 hours led to a disruption of the 

internal ultrastructure and the potential condensation of the nucleus (Figure 4.11 B). One 

interesting feature is a consistent pattern of thickening of the electron dense material around 

acidocalcisome vesicles – with several examples present in all images shown (Figure 4.11 

B). These structures are not observed in the untreated promastigotes – although there may 

be examples of these in the 700022-treated wild type parasites in the central panel of Figure 

4.10 B.    

  

4.2.3 Investigating the molecular basis of the 700022 resistant phenotype  

The limited amount of 700022 materials available made a comprehensive molecular analysis 

of the 700022 resistant phenotype unachievable. Ideally, multiple independent clones would 

be exposed to 700022, or left untreated, with whole genome analysis of all these clones 

supporting an investigation of mutations (SNPs, indels, duplication) associated with the 

resistant clones. Our approach would facilitate the whole genome sequencing of parasite 

clones isolated during the drug selection process, and this was considered at the outset as the 

most likely route forward. With time becoming a limiting factor, and subsequent data 

suggesting that the concentration required for 700022 to kill intramacrophage stages was 

quite high (see final chapter), the time to complete this approach was not considered as the 

best use of my time. 

However, it was decided to explore whether the 700022-resistant L. mexicana parasite line 

was cross-resistant to any other antileishmanial drug for which specific gene targets that 

could be easily followed up were known. Both promastigotes and axenic amastigotes of the 

wild type and 700022-resistant lines had the EC50 of amphotericin B, miltefosine and 
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pentamidine determined using log concentration normalised response from AlamarBlue 

assays. Experiments were done as technical triplicates, at least two biological repeats done. 

The mean ± StDev of these data were plotted (Figure 4.12) and the EC50 reported in Table 

4.3.  
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Figure 4.12: Exploring cross-resistance in 700022-resistant L. mexicana. (A) Log concentration 

-response curves used to estimate EC50 of the indicated compound/drug in wild type (green curve) 

and 700022-resistant promastigotes (black curve). (B) Log concentration -response curves used to 

estimate EC50 of the indicated compound/drug in wild type (green curve) and 700022-resistant axenic 

amastigotes (black curve). The data shown is a mean ± StDev from at least two biological replicates. 

See also Table 4.3.  

 

A ratio of the EC50 in the 700022-resistant line compared to the wild type line provides a 

resistance index (RI, Table 4.3). This was shown earlier in this chapter to provide a RI for 

700022 of 7.5 and 42 for promastigotes and axenic amastigotes, respectively. Looking at 

these data for pentamidine and amphotericin B showed that for both promastigotes and 
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axenic amastigotes that the EC50 determined in either the wild type or 700022 resistant lines 

was essentially the same (RI between 0.74 and 1.2). The data for miltefosine, however, was 

of particular interest. Both the promastigotes (RI of 11.8) and axenic amastigotes (RI of 17.8) 

of the 700022-resistant line now appears to be resistant to miltefosine.  

 

Table 4.3: Cross resistance of 700022-resistant L. mexicana promastigotes and amastigotes towards 

other antileishmanial drugs. Resistance Index (RI) is the ratio between the EC50 of resistant line/the 

EC50 for the wild-type strain. 700022-r, L. mexicana resistant to 700022.  

 

 

Given this apparent cross-resistance of the 700022-resistant line to miltefosine, it was 

decided to explore whether mutations within the genes encoding the two major subunits of 

the miltefosine transporter could be linked to the 700022-resistant phenotype. Mutations 

(stop codons and non-synonymous mutations) in both the α unit of the miltefosine transpoter 

(MT) and the β unit ROS3 have been associated with in vitro resistance to miltefosine (Perez-

Victoria et al., 2006; Seifert et al., 2007; Mondelaers et al., 2017).  

Genomic DNA was isolated from promastigotes of both WT and 700022-resistant L. 

mexicana. PCR was carried out to amplify the whole of the miltefosine transporter LmRos3 

gene (LmxM.31.0510) located on chromosome 31 (Figure 4.13). This provided a fragment 

WT 700022-r WT 700022-r
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of the correct size that was subsequently cloned into the PCR™2.1 TOPO vector and nine 

independent clones recovered and sent for commercial sequencing (Eurofins GmBH). The 

same amplification over the whole 3315bp of LmMT (LmxM.13.1530) from chromosome 

13 was not successful even after different attempts to adjust temperature, 

magnesium/template concentration and changing the polymerase used in the PCR. Review 

of the literature regarding mutations in the MT gene across five Leishmania spp. (Table 4.4), 

was used to determine where these mutations had been previously mapped. Using this data 

mapped onto the 3315bp gene, three regions called fragments 1 to 3 were identified as 

containing all these previously mapped mutations. PCR oligonucleotides were designed to 

amplify each of these regions (Figure 4.13 and 4.14) and the products cloned into the 

PCR™2.1 TOPO vector and six independent clones from each recovered and sent for 

commercial sequencing (Eurofins GmBH). 

 

Table 4.4: Mutations identified in MT miltefosine transporter genes in Leishmania spp 

 
 

L. major LmjF13.1530 (Turner et al.,  2015)

L. braziliensis LbrM.13.1380 T420N, L856P (Obonaga et al.,  2014)

(G852D, M547del) 

L. infantum LinJ.13.1590 (Laffitte et al.,  2016)

L. amazonensis MF150.3 G852E, L856P, G852D and L832F (Adriano et al.,  2014)

E216Q, R853C & L768P.

Stop codon (L140, K229 & Y964)

AA change References 

L. donovani LdBPK_131590.1 T420N & L856P
(Pérez-Victoria et al.,  2003; 

Turner et al.,  2015) 

Gene

Accession number
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Figure 4.13: Schematic illustrating the mapping of mutations in Leishmania MT gene associated 

with miltefosine resistance, as previously discibed (see Table 4.4). Fragments 1 to 3 were chosen to 

amplify from L. mexicana genomic DNA.  

 

Figure 4.14: Verification of PCR amplification from (A) LmMT and (B) LmROS3 genes. Size 

fractionation of EcoRI restricted plasmid clone containing the following PCR product; 1&2 are 

fragment 1, 3&4 are fragment 2 and 5&6 are fragment 3 of LmMT gene; 7 and 10 are 100bp markers 

(Bioline); 8 and 9 are of LmROS3. R; 700022-resistant line; WT, wild type. Note that fragment sizes 

are larger than in Figure 4.13 as include flanking regions with restriction sites.  
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4.2.3.1 Sequence analysis of LmMT 

Six independent clones for each fragment of LmxM.13.1530 were sequenced using forward 

and reverse primers to the TOPO vector. Nucleotide sequences were aligned against 

LmxM.13.1530, using complementary reverse where required, using freeware online tools 

from Bioinformatics.org. Where there were differences to LmxM.13.1530, the sequence files 

provided by Eurofins were visually inspected to confirm the difference on both forward and 

reverse reads of that position. No insertions or deletions were identified, a number of single 

nucleotide polymorphisms (SNP) were confirmed (see Appendix 2 and Table 4.5). DNA 

sequences were translated and compiled using freeware from the ExPASY site (see 

Appendix 3).  

Prior to 700022-selection, the wild type clones revealed two allele types of fragment 1 (see 

schematic in Figure 4.15). This may be expected as the L. mexicana line used was not clonal. 

One allele type was the same as the LmxM.13.1530 sequence and was found in 4/6 

sequenced clones. One clone each had a single nonsynonymous (NS) SNP; that for H158R 

was novel, with the second K229R being novel although in L. infantus a stop codon in this 

position has been reported in a miltefosine resistant line (Laffitte et al., 2016). These SNP 

are not sequencing errors, but could be artefacts introduced during the PCR. Following 

700022 selection, these NS SNP are lost, with 5/6 clones having the same sequence as 

LmxM.13.1530 and a single clone with a R135R synonymous SNP. This loss of the NS SNP 

from the pre-selection population may reflect a purifying selection pressure on an allele 

variant that lacks them, or that they were PCR artifacts. There are no mutations in fragment 

1 after selection that are linked with to the resistant phenotype. Sequence analysis of 

fragment 2 revealed no variation in the sequenced clones from LmxM.13.1530. 
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Figure 4.15: Schematic representing sequence analysis of LmMT gene. (A) A summary of all 

SNP identified in various clones after sequencing. The nucleotide position of each SNP is indicated 

by a bar, with the effect on amino acid sequence shown adjacent. For ease, NS SNP are shown in red 

throughout, with synonymous SNP in green. (B)  A summary of the 12 clones for each fragment of 

LmMT sequenced compared LmxM.13.1530. The WT-prefix is for the pre-selection wild type and 

the R-prefix for 700022-selected parasites. The HH code uniquely identifies the PCR clone 

sequenced. Note that the synonymous G2541A SNP in all fragment 3 clones sequenced is marked 

only once in the schematic.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
       LmxM.13.1530 

WT-HH41  WT-HH19             WT-HH77             

WT-HH42  WT-HH21             WT-HH79             

WT-HH43  WT-HH22             WT-HH80             

WT-HH44  WT-HH23             WT-HH81             

WT-HH48  WT-HH24             WT-HH82             

WT-HH49  WT-HH25             WT-HH83             

            R-HH5  R-HH28              R-HH60              

      R-HH6  R-HH29              R-HH61              

      R-HH8  R-HH31              R-HH63              

     R-HH9  R-HH32              R-HH64              

       R-HH10  R-HH33              R-HH65              
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All PCR clones sequenced from fragment 3 contain a NS SNP (nucleotide G2541A) – which 

suggests this SNP is present in the WT clone used here and is distinct to the L. mexicana 

clone sequenced for the genome project. The pre-selection clones again indicate the presence 

of three allele variants (Figure 4.15). Two clones contained NS SNP; R927Q in one and both 

K785R and F880L in a second. Again, there is the potential for PCR artefacts, but also that 

this is a region of the MT gene that is susceptible to mutations in miltefosine resistant lines 

(Table 4.4). Again, on 700022-selection, these NS SNP were not seen in the resulting clones 

and suggests that purifying selection of alleles that lack them may have occurred. There were 

no mutations in Fragment 3 associated with the 700022-resistant phenotype. 

 

 4.2.3.2 Sequence analysis of LmRos 

Nine independent clones for each fragment of LmxM.31.0510 were sequenced using forward 

and reverse primers to the TOPO vector. As above, nucleotide sequences were aligned and 

checked against LmxM.31.0510 using freeware online tools from Bioinformatics.org. In all 

nine clones, no insertions or deletions were identified, a number of single nucleotide 

polymorphisms (SNP) were confirmed (see Appendix 4 and Table 4.5) with a protein 

sequence alignment provided in Appendix 5.  

Before 700022 selection there appear to be four alleles; one that is identical to the reference 

sequence in LmxM.31.0510, with three single PCR clones that each contain one synonymous 

SNPs (Figure 4.16). Note than none of these NS SNP variant alleles are found after 700022-

selection. Instead, there are two different allele variants, both of which contain at least one 

NS SNP (Table 4.5). In this case, NS SNP only found in the LmROS3 gene in 700022-

resistant have been described here.  
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Figure 4.16: Schematic representing sequence analysis of LmROS3 gene. (A) A summary of all 

SNP identified in various clones after sequencing. The nucleotide position of each SNP is indicated 

by a bar, with the effect on amino acid sequence shown adjacent. For ease, NS SNP are shown in red 

throughout, with synonymous SNP in green. (B)  A summary of the 9 clones for LmROS3 sequenced 

compared to LmxM.31.0510. The WT-prefix is for the pre-selection wild type and the R-prefix for 

700022-selected parasites. The HH code uniquely identifies the PCR clone sequenced.  
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Table 4.5 Mutations identified in miltefosine transporter genes LmROS3 and LmMT in this 

study. WT, wild type pre-selection; R, 700022-resistant; Syn, synonymous; Non-syn, non-

synonymous; AA, amino acid. 

 

 

4.3 Discussion  

In this chapter, L. mexicana promastigotes resistant to 700022 were generated using a 

stepwise drug selection pressure to support a series of studies to explore the activity of 

700022 against L. mexicana. This approach has similarly been successfully used with 

antileishmanial drugs in studies to determine drug targets following genome sequencing of 

amphotericin B-resistant lines of L. mexicana (Al-Mohammed et al., 2005), antimony-

resistant lines of L. donovani (Singh et al., 2010) and miltefosine-resistant lines of L. 

donovani (Seifert et al., 2003). 

The 700022 resistant parasite line was 7.5 times more resistant to the effect of the compound 

than the wild type. Eventually, after 28 weeks of selection, L. mexicana promastigotes of the 

700022 resistant line were capable of growth in concentrations of 85.6 µM. The key 

challenge to this study was that I did not have sufficient compound 700022 - with material 

31 HH22 WT C585T Syn F195F

31 HH24 WT C408T Syn S136S

31 HH32 WT T714C Syn G238G

31 HH64 R A902G Non-syn E301G

13 HH5 R T405C Syn R135R

13 HH42 WT A686G Non-syn K229R

13 HH48 WT A473G Non-syn H158R

13 HH77 WT G2780A Non-syn R927Q

A2354G Non-syn K785R

T2638C Non-syn F880L
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LmROS3

LmxM.31.0510

LmMT

LmxM.13.1530

T274C 

T425C

Non-syn  

Non-syn

S92P  

I142T
31 HH69 R

13 HH79 WT

Chromo

some no
Sample WT/R

Nucleotide 

change
SNP type

AA 

change



195 
 

that was eventually only enough for one attempt at drug selection. I recognise this as a major 

limitation in the studies undertaken, but pursued the morphological and molecular analysis 

of the single resistant line that I did develop, but have introduced the necessary caution in 

the interpretation of my data.   

After doing this study once, I have identified a research plan that should be put in place to 

ensure the preparation of resistant parasite clones that would be suitable for a molecular 

analysis of the 700022/miltefosine resistant phenotype; 

(i) To reduce the heterogeneity of the WT L. mexicana line before drug selection, 

several independent clones should be prepared using an approach such as limited 

dilution or the use of a semi-solid agar (Iovannisci and Ullman, 1984). This will 

help overcome the variation in allele types that may arise when parasites are left 

uncloned over a long period of continuous culture. 

(ii) Several of these WT clones need to be independently placed under 700022 

selection pressure. Ideally, a second group of clones should be placed under 

selection pressure with a structurally related triterpenes (eg 700104) to establish 

whether 700104 resistant lines are also resistant to 700022 (this being likely as 

the reverse is true) and miltefosine, and whether mutations in the same gene(s) 

are associated with these resistant phenotypes. 

(iii) Whole genome sequencing of multiple WT and resistant clones should be used 

to explore any association of the resistant phenotypes with insertions, deletion or 

non-synonymous SNPs. Further, gene duplications and/or rearrangements would 

need to be assessed. Ideally, a further round of high throughput RNA sequencing 

(RNASeq) could be used to establish whether there are any variations in the 

levels of gene expression associated with a drug resistant phenotype. 
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The process to select a 700022 resistant line was relatively simple. We did not need to induce 

DNA changes using a mitogenic agent, and within 8 weeks the EC50 values to 700022 (and 

related compounds) increased 4-5 fold. This relatively simple induction and selection of the 

resistant phenotype in vitro would be of concern for any future development of 700022 as a 

lead irrespective of the fact that there was a coselection of resistance to a leading current 

frontline antileishmanial drug miltefosine.   

The initial comparative morphological studies between the wild-type and 700022 resistant 

line were done with an understanding of their limitations. The first features of the 700022 

resistant line identified was the lack of a flagellum in the promastigote, with subsequent 

image analysis also revealing a significant decrease in the cell body area for both 

promastigotes and axenic amastigotes. The lack of a flagellum in a drug-selected line has 

been previously reported by Al-Mohammed et al. (2005) with their report of an aflagellate 

amphotericin B-resistant L. mexicana promastigote isolated from BALB/c mice. This 

suggests that loss of the flagellum may provide some fitness benefit that is exploted under 

drug selection pressure. Interestingly, amastigotes of the amphotericin B-resistant lines were 

were noninfective to mice, lesions did not develop, and amastigotes could not be recovered 

from the injection site (Al-Mohammed et al. 2005). Injection of promastigotes from the same 

resistant line did lead to the development of cutaneous lesions with parasites reisolated from 

these lesions, and their AMB sensitivities were assessed and the results were highly resistant 

to AMB. Whether there is a similar fitness cost in terms of the infectivity of 700022 resistant 

promastigotes was not investigated here. Whilst mouse models would not be appropriate 

here as there are no plans to develop 700022 as a lead compound, the in vitro infectivity of 

700022 resistant promastigotes into PMA-treated THP-1 could be compared against that of 

the wild-type parasites. The reduction in cell body size by approximately 25% in both 

700022 resistant axenic amastigotes and promastigotes could be a reflection of a more rapid 
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cell proliferation rate – with cells dividing earlier and thus when smaller in size. This idea 

was tested, although only as a single biological repeat, where the cell density of axenic 

amastigotes and promastigotes were compared between the wild type (WT) and 700022 

resistant lines when grown in medium without drug pressure (Figure 4.17). In both life 

stages, there appears to be a faster proliferation rate for the 700022 resistant line that could 

start to account for the smaller sized cell phenotype. 

The lack of flagellum was confirmed using SEM. A more focussed analysis of ultrastructure 

morphology between the resistant and wild type parasites gave mixed results as the image 

quality was poor for some parasite preparations and time was not available to do more. The 

transmission electron microscopy of wild type parasites clearly showed a kinetoplast located 

at the posterior end of the cell near the basal body of the flagellum (Matthews, 2005). The 

TEM of the 700022 resistant cells appeared to indicate that the kinetoplast was more centally 

located, and there was no apparent flagellar pocket adjacent to this. Unfortunately, the 

quality 
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Figure 4.17: Comparison of the effect of parasite growth between L. mexicana WT and 700022 

resistant line. The number of parasites were counted over a 72 hours for L. mexicana promastigotes, 

and over a 48 hours for L. mexicana amastigotes. The growth of resistant cells was two times more 
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than to the L. mexicana wild type of both forms promastigotes and amastigotes over a 72 hours and 

48 hours period respectively.  

 

and number of images means that nothing conclusice can be said. However, it would be 

interesting to produce addition EM imaging of the 700022 resistant parasite to see whether 

the lack of a flagellum does affect the positioning of the kinetoplast. 

On addition of 700022, SEM analysis revealed that the early stage of cell death, ie 24 hours, 

was characterized by a rounding up of the promastigote cell body. A previous study by Da 

Silva et al. (2015) similarly shows that promastigotes of L. amazonensis treated with 100 

μg/mL AEPa (isolated from Physalis angulata) for 72 hours was accompanied by a rounding 

up of the parasite body. These alternatives presented as well with L. amazonensis 

promastigotes when treated with 1x EC50 of 4-nitrobenzaldehyde thiosemicarbazone (BZTS) 

(Britta et al., 2014). TEM analysis after 700022 treatment showed loss of clearly defined 

organelle structure, and perhaps evidence of nuclear condensation on cell death. 

Interestingly, the 700022 resistant line showed a vacuolar structure with an electron dense 

lining after 700022 treatment. These vacuoles potentially represent calciosomes and are 

similarly lined acidocalciosomes have been reported in studies of L. mexicana and L. 

amazonensis promastigotes when moved between different culture media (Miranda et al., 

2004).  Acidocalcisomes are intracellular stores of Ca2+ and as well as miltefosine activating 

Ca2+ channels in the plasma membrane it is also predicted to affects Ca2+ storage within the 

acidocalcisomes by inducing the rapid alkalinization of these important organelles (Pinto-

Martinez et al., 2017). 700022 action may therefore be centred around these organelles. To 

explore this in more detail, additional and improved EM imaging of parasites are required to 

define what ultrastructural changes do occur. In addition to the use of 700022 on the WT 

and resistant strains, it would also be useful to include an additional triterpenes as well as 

miltefosine in this comparative study. In addition, it would be useful to determine whether 
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the action of miltefosine and 700022 is antagonistic or synergistic, this information 

potentially providing some link to suggest that their modes of action are the same (or related) 

and how this may therefore link to their co-resistance. As such, exploring and comparing the 

movement of Ca2+ ions within untreated and 700022/miltefosine treated parasites using the 

Fluo-4 AM indicator with fluorescence microscopy (Schneidereit et al., 2016) could be 

potentially interesting. Likewise, given that there may be a repositioning of the kinetoplast 

in the 700022 resistant parasite as well as changes to the control of cell cycle during division, 

based on their smaller size, an analysis of kinetoplast and DNA content (Schneidereit et al., 

2016) could also be interesting.   

Molecular analysis of the LmMT and LmROS3 genes identified three non-synonymous 

SNPs found only in PCR clones from LmROS3 gene in 700022-resistant parasites. 

Unfortunately, these were each only seen once, and these non-synonymous mutations may 

have been generated as a result of artifacts during PCR amplification. As the SNPs were 

confirmed by sequencing of both strands of DNA, they were not the result of sequencing 

errors. As we were cloning directly into the TOPO TA vector, a non-proofreading Taq was 

used, and this could have accounted for any errors – although not why they were all non-

synonymous SNPs after 700022 selection (McInerney et al., 2014). The way forward would 

be to confirm by sequencing more clones whether these non-synonymous SNPs can be found 

more than once each. Should this then be the case, and they become candidate mutations that 

could account for the 700022 and/or miltefosine resistance then we would consider to use of 

gene replacement or gene editing (Zhang et al., 2017) to replace a mutated version of 

LmRos3 units into wild type parasites and then explore their effect on the resistance 

phenotypes.  

A recent paper from the Mottram group suggests that a specific section of the L. infantum 

genome (termed the Miltefosine Sensitivity Locus MSL) is different in some Brazilian 
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strains of the parasite making them less susceptible to the drug miltefosine (Carnielli et al., 

2018). The MSL was found in the Old World parasites L. infantum and L. donovani, where 

miltefosine can have a cure rate > 93%. Of relevance here is that the MSL contains four 

genes on chromosome 31 that could be studied in our 700022 resistant line. The failure of 

miltefosine treatment in the Brazilian samples, despite the fact that miltefosine has not been 

used for VL treatment in Brazil suggests that a natural resistance to miltefosine exists within 

the circulating population of L. infantum in Brazil. Given that we used a natural product here 

to generate a miltefosine resistant line, it would be interesting to understand and explore 

whether the use of natural products as antileishmanial traditional medicines in Brazil has 

potentially created this natural resistance. These data have been shared with Jeremy Mottram 

and small amount of compound 700022 provided to him by PhytoQuest to start addressing 

this. 
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Chapter 5: Validation of bioluminescence screening and 

intramacrophage assays using L. mexicana expressing a 

NanoLuc-PEST reporter 

  

 

Declaration: Research describing the validation of NanoLuc and NanoLuc-PEST L. 

mexicana transgenic parasites and their use in the screening of the MMV Pathogen Box 

Open Access library in this chapter has been published (Berry SL, Hameed H, Thomason A, 

Maciej-Hulme ML, Saif Abou-Akkada S, Horrocks P, Price HP. 2018. Development of 

NanoLuc-PEST expressing Leishmania mexicana as a new drug discovery tool for 

axenic- and intramacrophage-based assays. PLoS Negl Trop Dis, vol. 12(7), e0006639). 

These parasite lines were provided to me by Dr Sarah Berry, the research described in this 

chapter, and published in this paper, were carried out by me with support from Dr Berry in 

maintainence of the cell lines. 

 

 

5.1 Introduction 
 

Over the last years, efforts have greatly increased to identify novel compounds with 

antileishmanial properties, or to resource existing drugs to expand the therapeutic options 

against this disease (Allarakhia, 2013). Efficient compound screening is dependent on the 

availability of highly robust, sensitive and reproducible assays that are suitable for high 

throughput application. The use of fluorescent-based assays, including AlamarBlue, are 

useful for studying the parasite alone, but cannot distinguish between the parasite and 

macrophage cells in an in vitro cell infection model. Compound screening in the intracellular 

macrophage model is more clinically relevant and is likely to provide a better validation of 

potential hits as this assay takes into account the multiple membranes a compound must 
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transit and the acidic environment within the parasitophorous vacuole in which the parasite 

resides.  

One technology that can overcome this hurdle is the use of bioluminescence, where 

transgenic parasites (and not the host cell) expresses a luciferase reporter; a diverse group of 

enzymes that generate photons in the visible spectrum in the presence of a specific substrate. 

Such luciferase-based assay have been used extensively in Plasmodium falciparum and 

proven a robust and sensitive reporter in drug screens (Ullah  et al., 2017; Che  et al., 2012; 

Lucumi et al., 2010; Cui et al., 2008; Ekland et al., 2011). My host laboratory has utilised 

bioluminescence in P. falciparum over a number of years to explore gene expression, 

transfection efficiency, drug assay screening and more recently assays of the dynamics of 

drug action (Horrocks and Lanzer, 1999; Ullah  et al., 2017). Bioluminescent reporter genes 

have also been used in kinetoplastid systems. A study by Lang and co-workers (2005) 

demonstrated that a luciferase expressing L. amazonensis strain was useful for rapid and high 

throughput screening of drugs against amastigote infected macrophages. This same approach 

has also been used with L. major (Buckner and Wilson, 2005) and L. infantum (Sereno et 

al., 2001).  

As well as the more common luciferases from the North American firefly (Photinus pyralis) 

and the sea pansy (Renilla reniformis) being used for drug screening (Claes et al., 2009; 

Myburgh et al., 2013; Reimao et al., 2015; Sadeghi et al., 2015), other luciferases with 

differing properties are now being explored. A luciferase isolated from the deep sea shrimp 

(Oplophorus gracilirostris), known as NanoLuc, is a relatively small (19.1 kDa) and stable 

enzyme which produces a high intensity, glow-type bioluminescence (Hall et al., 2012). A 

modified form of the enzyme, NanoLuc-PEST, retains the high enzymatic activity but has a 

reduced intracellular half-life due to fusion of a PEST sequence which marks the molecule 

for rapid proteosomal degradation (Hall et al., 2012). The term PEST coming from the 
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enrichment of proline (P), glutamic acid (E), serine (S), and threonine (T) residues in the 

proteasome targeting sequence (Rogers et al., 1986; Rechsteiner and Rogers, 1996). 

NanoLuc has been successfully expressed in Plasmodium spp (Azevedo et al., 2014; De Niz 

et al., 2016) with the first report of expression of NanoLuc in kinetoplastids done by the 

Price research group at Keele University (Berry et al., 2018). In the Berry et al. (2018) study, 

L. mexicana were genetically modified to express either NanoLuc or NanoLuc-PEST. Both 

these parasite lines were made available to me as part of this study.  

Here I evaluate and describe the use of NanoLuc and NanoLuc-PEST L. mexicana transgenic 

lines in for use as a drug discovery screening tool for both axenic amastigotes and infected 

macrophages systems. For the evaluation of the NanoLuc and NanoLuc-PEST L. mexicana 

transgenic, I report a screen of the MMV Pathogen Box. This open access drug discovery 

resource was developed following the success of the MMV (Medicine for Malaria Venture) 

Malaria Box, particularly when this box of compounds that initially developed for 

antimalarial drug discovery were now screened against other pathogens (van Voorhis et al., 

2016) (Table 5.1). That a compound library developed for malaria research could be readily 

repurposed for screening a number of diseases, lead to the MMV developing and releasing 

a second open access library resource to the community – the MMV Pathogen Box. Pathogen 

Box compounds were selected from screens against a wide range of pathogenic organisms, 

from mycobacteria, through single cell eukaryotes to worms and these were pooled for 

screening in these and other organisms (Duffy et al., 2017; Preston et al., 2016) (Table 5.1). 

These compounds are provided in a library of 400 compounds, which include a number of 

reference compounds (drugs used currently to treat a wide range of diseases) along with data 

on their structure and toxicity. Full information about these compounds is available online 

via (https://www.pathogenbox.org/).  

 

https://www.pathogenbox.org/
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Table 5.1: Studies reporting the screening of the MMV Pathogen Box and Malaria Box libraries  

Author Library Pathogen Identifications 

Spalenka et al. 

(2018) 

Pathogen Box Toxoplasma 

gondii 

8 compounds with an EC50 < 2 µM and 

CC50 on Vero cells ranged from 1.69 to 

15.92 µM. The best SI value of 275 was 

detected for MMV675968.   

Mayer and 

Kronstad 

(2017) 

Pathogen Box Human fungal MMV688271 showed activity against 

both C. neoformans and C. albicans with 

EC50 of 250 nM, and nontoxic to human 

cells such as (lung tissue cell line, 

peritoneal murine macrophages (PMM), 

and HepG2 cell line.  

Vila and 

Lopez-Ribot 

(2016) 

Pathogen Box Candida albicans 

biofilm formation 

Compound MMV688768 was displayed 

the most potent to increase anti-biofilm 

activity, with high selectivity index in 

liver hepatocellular cells.  

Preston et al. 

(2016) 

Pathogen Box Haemonchus 

contortus  

MMV688934 revealed to inhibit xL3 

motility and L4 motility, growth and 

development, with EC50 values between 

0.02 and 3 mM.  

Partridge et al. 

(2018) 

 

Pathogen Box Caenorhabditis 

elegans 

Tolfenpyrad, Auranofin,  

Mebendazole and Isradipine showed 

activity against Caenorhabditis elegans 

with an EC50 values between 0.2 and 1.6 

µM. 

Hennessey et 

al. (2018) 

 

Pathogen Box Giardia lamblia MMV687807, MMV688262, 

MMV688978 and MMV688978 

displayed activity against G. lamblia with 

EC50 values (0.51 µM, 0.55 µM, 2.30 

µM and 3.74 µM respectively), and SI= 

(<10, >73, > 17 and 0.13 respectively) in 

liver hepatocellular cells. 

Stadelmann et 

al. (2016) 

Malaria Box Alveolar 

echinococcosis 

(AE) 

MMV665807 displayed activity against 

EA with EC50 value <2 μM, and showed 

less toxic for human foreskin fibroblasts 

and Reuber rat hepatoma cells.  

Hostettler et 

al. (2016) 

Malaria Box Theileria 

annulata  

5 compounds identified as anti-theilerial 

activities.  

 

Kaiser et al. 

(2015) 

Malaria Box Trypanosomatids Novel Active Scaffolds were identified 

against T. brucei, T. cruzi, and L. 

donovani and L. infantum. 

Bessoff et al. 

(2014). 

Malaria Box Cryptosporidium 

parvum 

3 novel compounds derived from the 

quinolin-8-ol, allopurinol-based, and 2,4-

diaminoquinazoline chemical scaffolds 

that exhibited submicromolar potency 

against C. parvum.  

Khraiwesh et 

al. (2016) 

Malaria Box L. major 14 compounds identified to have 

antileishmanial activity.  
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5.2 Results 

5.2.1 Evaluation of NanoLuc assay parameters  

In Berry et al. (2018) the use of the NanoLuc assay to monitor expression of the different 

reporters as well as growth of the transgenic parasites was reported. These assays, however, 

used 100µL of NanoLuc reagent and my initial experiments attempted to reduce the volume 

of reagent to reduce the cost of library screening. Axenic amastigotes expressing either 

NanoLuc or NanoLuc-PEST were seeded at a density of 1 x 105/mL in 96-microwell plates. 

The cells were treated with 0.2 µM Amphotericin B (AmB at approximately 1xEC50 

concentration) and incubated for 72 hours at 32°C. Control wells with an equivalent volume 

of DMSO solvent (100% growth) were included on all plates. Following incubation, samples 

of control and AmB-treated cultures were titrated into a fixed volume of 50 µL using 

Schneider’s medium and transferred into a white 96-multiwell plate and 50 µL of the Nano-

Glo reagent (lysis buffer and substrate, diluted 200:1) was added to each well (Table 5.2). 

After 3 minutes, the bioluminescence signal from three technical replicates was measured 

using the Glomax Multi Detection System. Correlation of the resulting bioluminescence 

against the volume of parasite culture included in each well shows a strong linear correlation 

with r2= 0.98 and p values< 0.0001 between these two parameters (Figure 5.1) for both 

AmB-treated and control experiemnets with both NanoLuc reporter lines. As expected, the 

bioluminescent signal from the more stable NanoLuc reporter was evident (Figure 5.1). 

From this data, it was decided that experiments using 20µL of parasite culture would be 

selected, being within the linear range and a readily manageable volume for consistent 

pipetting.   

 

 

 



206 
 

Table 5.2: Table reporting volumes used to evaluate NanoLuc assay 

Total volume (50µL) Nano-Glo assay substrate volume 

Axenic amastigotes  Schneider’s medium  

- 50 µL 50 µL 

5 µL 45 µL 50 µL 

10 µL 40 µL 50 µL 

20 µL 30 µL 50 µL 

30 µL 20 µL 50 µL 

40 µL 10 µL 50 µL 

50 µL - 50 µL 

 

The Nano-Glo reagent contains both a lysis buffer and bioluminescent substrate and at least 

one volume is required for lysis according to the manufacturer. To determine if 20µL of this 

reagent would be sufficient, or whether more would be required, volumes of between 20 to 

50µL were added to 20µL of AmB-treated axenic amastigotes, in triplicates, and the 

bioluminescent signal measured (Figure 5.1). There was no significant difference in 

bioluminescent signal as the volume of Nano-Glo reagent was increased, indicating 

sufficient lysis and substrate concentration was available when a 20µL 1:1 parasite:Nano-

Glo assay is used.  

 

 

 

 

 

 



207 
 

         

    

 

   
 

Figure 5.1: Optimizing assay volumes for bioluminescence assays with NanoLuc and NanoLuc-

PEST transgenic L. mexicana. Correlating bioluminescene signal with parasite volume for (A) 

NanoLuc and (B) NanoLuc-PEST transgenic L. mexicana. Black lines represent untreated control 

parasites, and Red lines represent parasites exposed to 0.2 µM AmB. Data represent mean ± StDev 

of n=3 technical replicates. Charts C and D report the bioluminescent signal from 20 µL of NanoLuc 

and NanoLuc-PEST transgenic L. mexicana (respectively) with increasing volumes of Nano-Glo 

reagent. Bars show mean ± StDev of n=3 technical replicates.  

 

To assess the two NanoLuc enzymes as a reporter of antileishmanial drug activity in axenic 

amastigote stage, the two bioluminescent enzymes were compared against a standard 

resazurin-based fluorescent viability assay using Amphotericin B. Here a concentration-

normalized response assay was used to determine the EC50 of Amphotericin B using both a 

fluorescence assay and a bioluminescence assay of the respective NanoLuc variant (Figure 

C 

A 

D 

B 



208 
 

5.2). In addition, the use of supralethal Amphotericin B (2µM for 0% growth) and untreated 

parasites (100% growth) allowed for assay parameters such as the Z’, a statistical evaluation 

of the robustness of a high throughput assay (Zhang et al., 1999), and signal:background 

(S:B) ratio to be determined and compared (Table 5.3). Each experiment was carried out as 

a technical triplicate with at least two biological repeats. 
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Figure 5.2: Amphotericin B concentration-normalized response profiles. Graphs depicting the 

concentration-response to amphotericin B in the (A) parental, (B) NanoLuc and (C) NanoLuc-PEST 

L. mexicana lines. The black line on each graph represents the response as determined using the 

fluorescent-based AlamarBlue assay. The green and blue lines represent the bioluminescent activity 

in the respective (B) NanoLuc and (C) NanoLuc-PEST L. mexicana lines. Mean values ± StDev 

(n=6) are shown. Data are reported in Table 5.3. 

 

 

The EC50 values for amphotericin-B in the parental and transgenic lines were essentially 

indistinguishable (overlapping 95% CI) irrespective of the assay format used (Table 5.3), 

with the range of 0.20-0.27 µM reported comparable to the value of 0.30 ± 0.02 µM 

previously described for L. mexicana axenic amastigotes (Callahan et al., 1997) using the 

AlamarBlue assay. As expected, all assays report a robust assay performance with a Zʹ factor 
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value of ≥ 0.64, with neither the fluorescence nor bioluminescence assays showing a marked 

improvement in their performance. The S:B ratios, however, do show some differences in 

assay performance. The bioluminescence-based assays performed on the transgenic 

NanoLuc and NanoLuc-PEST lines displayed S:B ratios approximately 4-fold and 100-fold 

higher, respectively, than those for the standard fluorescence-based assay on the same lines. 

Also, the S:B ratios for the NanoLuc-PEST transgenic was approximately 25-time greater 

than that for NanoLuc transgenic line. This difference reflects the short half-life of this 

protein that is targeted using a PEST sequence to the proteosome, providing an indication of 

the greater dynamic range achieved using this reporter. Based on these data, the same 

experiments were repeated using a second antileishmanial drug, milefosine (Figure 5.3). The 

same observations in terms of the same (or close to the same) EC50 values determined using 

the fluorescence and bioluminescence assays, robust assay performance (all Z’>0.68) and 

vastly increased S:B ratio for the NanoLuc-PEST bioluminescence compared to 

fluorescence assay were all observed (Table 5.4). Based on these findings, it was decided to 

take the NanoLuc-PEST transgenic line forward to screen the MMV Pathogen Box library.  

 

Table 5.3: Comparison of the EC50, Z’ and Signal:Background (S:B) values of amphotericin B 

(AmB) activity against wild-type and NanoLuc-expressing L. mexicana in fluoresecent and 

bioluminescence assays.  

 

Strain Assay AmB EC50 (µM) Zʹ S:B 

Mean 95% CI 

Parental Fluorescence 0.23 0.23-0.29 0.64-0.88 3.2-3.6 

NanoLuc Fluorescence 0.20 0.20-0.28 0.88-0.91 3.6-4.6 

Bioluminescence 0.20 0.18-0.19 0.84-0.85 13.2-14.4 

NanoLuc-

PEST 

Fluorescence 0.27 20.7-0.28 0.72-0.88 2.4-5.1 

Bioluminescence 0.20 0.18-0.20 0.79-0.90 322.5-369.8 
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Figure 5.3: Miltefosine concentration-normalized response profiles. (A) Concentration-response 

curve of the parental L. mexicana cell line, measured using the fluorescence-based AlamarBlue 

assay. (B) Concentration-response curve of the transgenic NanoLuc-PEST expressing L. mexicana 

clone measured using both the fluorescence-based AlamarBlue assay (black) and the 

bioluminescence-based assay (blue). Mean values are shown (n=6) ± StDev. EC50 values for the 

parental and NanoLuc-PEST cell lines are reported in Table 5.4.  

 

Table 5.4: Comparison of the EC50, Z’ and Signal:Background (S:B) values of miltefosine (MIL) 

(AmB) activity against wild-type and NanoLuc-PEST expressing L. mexicana in fluoresecence and 

bioluminescence assays. 

Strain Assay MIL EC50 (µM) Zʹ S:B 

Mean 95% CI 

Parental Fluorescence 1.1 0.99-1.16 0.68-0.72 2.2-3.3 

NanoLuc-

PEST 

Fluorescence 1.99 1.8-2.06 0.70-0.83 4.2-4.5 

Bioluminescence 2.19 2.07-2.35 0.84-0.86 192.7-211.5 
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5.2.3 Screening of MMV Pathogen Box against L. mexicana NanoLuc-

PEST-transgenic line  

The MMV Pathogen Box library was screened at two concentrations (10 M and 2 M) for 

activity against L. mexicana NanoLuc-PEST axenic amastigotes. Assays were performed in 

duplicate with two biological replicates (n=4). Axenic amastigotes were seeded at a density 

of 2 x 106/mL in duplicate (100 l/well). Both no growth controls (2 µM Amphotericin B) 

and solvent control (equivalent volume of DMSO) controls were made up on each plate. 

Cells were incubated for 72 hours at 32°C and a bioluminescence based assay was used to 

assess the relative cell growth as described in 2.3.5. These data are presented in Figure 5.4 

as a dot plot of the mean of the normalized growth plotted for each compound at 20 µM and 

2 µM. Table appendix 6 reports the data for each compound. 
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Figure 5.4: MMV Pathogen Box screening using the NanoLuc-PEST assay.  The library is 

provided as five plates labelled A to E (and as shown here), each with 80 compounds – shown here 

on the x-axis (see also Table S2). The relative bioluminescence of the NanoLuc-PEST expressing L. 

mexicana when screened against 2 µM (filled circle) or 10 µM (open circle) is shown with the lines 

marking the StDev. The dashed line shows the point at which a 95% reduction in relative 

bioluminescence, ie a 95% kill, was achieved.  

 

Using a scatterplot, the mean relative bioluminescence signals from each concentration were 

plotted to correlate the data.  Using a colour code for the indicated disease the compounds 

were originally selected (Figure 5.5A), the distribution for the highly active compounds 

(>95% reduction at both concentrations, Figure 5.5B) in the MMV Pathogen Box reveals 

that of these 23 compounds, twelve were selected from antituberculosis screens and four 

from anti-kinetoplastid parasite screens.  These 23 hits represent a hit rate of 5.75%, with all 

of these 23 hits selected to determine their EC50.  
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Figure 5.5: Screening the MWV Pathogen Box using the NanoLuc-PEST-based 

bioluminescence assay. Scatterplot correlating the mean bioluminescence following exposure to the 

indicated concentration of compounds. The mean (n=4) bioluminescence signal is shown, with the 

 



215 
 

key illustrating the disease screen that identified the compound for inclusion in the library 

(www.pathogenbox.org) (A) Illustrates the full library dataset with (B) providing an inset of the most 

potent compounds from the MMV Pathogen Box screen.  

 

 

5.2.4 Determination of EC50 values of selected compounds   

The EC50 of the 23 hit compounds were determined against axenic amastigote of L. mexicana 

NanoLuc-PEST-expressing transgenic line. Two-fold dilution series were prepared in 

triplicate and 100 µL of axenic amastigotes at a density of 2 x 106 cells/mL incubated for 72 

hours at 32°C. In addition, the use of a supralethal Amphotericin B (2µM for 0% growth) 

and untreated parasites (100% growth) were included on each plate and a bioluminescence 

based assay was used to assess the viability of cells (as described in 2.3.5). The 50% effective 

concentration (EC50) was determined by analysis of a log transformed concentration versus 

normalized bioluminescence signal curves (Figure 5.6, except mebendazole as initial data 

suggested EC50 >5µM) and are reported in Table 5.5.  

Out of these 23 compounds, eight displayed an EC50 value less that that observed for 

Miltefosine (2.19 µM). Of these eight compounds, two of them were the reference 

compounds (current drugs included in the MMV Pathogen Box) Buparaquone and 

Auranofin). I next took the most potent reference compound (Buparaquone) and the 

remaining six hit compounds forward to screen in a novel bioluminescence based 

intramacrophage assay. 
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Figure 5.6: Log-concentration response curves for MMV Pathogen Box hits. Concentration-

normalised bioluminescence response curves for 22 hits against axenic L. mexicana amastigotes. The 

data shown is a mean ± StDev from at least three biological replicates. EC50 estimates are reported 

in Table 5.5. 

 

Table 5.5: EC50 values for MMV Pathogen box hits against axenic L. mexicana amastigotes. 

COMPOUND 

ID 

MMV DISEASE 

SET 
COMMON NAME 

AXENIC AMASTIGOTES 

EC50  

(µM) 
95% CI  

MMV689480 
REFERENCE 

COMPOUNDS 
BUPARVAQUONE 0.0022 0.0017-0.002 

MMV688262 TUBERCULOSIS DELAMANID 0.03 0.031-0.031 

MMV690102 KINETOPLASTIDS  0.06 0.038-0.054 

MMV676477 TUBERCULOSIS  0.07 0-06-0.072 

MMV652003 KINETOPLASTIDS  0.07 0.048-0.095 

MMV595321 KINETOPLASTIDS  0.15 0.13-0.25 

MMV688978 
REFERENCE 

COMPOUNDS 
AURANOFIN 0.17 0.16-0.18 

MMV011903 MALARIA  0.18 0.12-0.15 

MMV002817 ONCHOCERCIASIS IODOQUINOL 0.22 0.21-0.23 
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MMV687807 TUBERCULOSIS  0.25 0.18-0.24 

MMV676412 TUBERCULOSIS  0.26 0.19-0.28 

MMV676501 TUBERCULOSIS  0.3 0.26-0.34 

MMV019189 MALARIA  0.32 0.29-0.40 

MMV688763 SCHISTOSOMIASIS  0.38 0.39 -0.48 

MMV676558 TUBERCULOSIS  0.47 0.37-0.49 

MMV687251 TUBERCULOSIS  0.48 0.48-0.49 

MMV153413 TUBERCULOSIS  0.52 0.45-0.57 

MMV676476 TUBERCULOSIS  0.58 0.53-0.73 

MMV272144 TUBERCULOSIS  0.64 0.59-0.87 

MMV676388 TUBERCULOSIS  0.73 0.54-0.69 

MMV102872 TUBERCULOSIS  0.81 0.80-1.44 

MMV688776 KINETOPLASTIDS  0.9 0.86-0.95 

MMV003152 REFERENCE 

COMPOUNDS 
Mebendazole 5> - 

AmB NA  0.201 0.18-0.20 

MIL NA  2.19 2.07-2.35 

 

 

5.2.5 Intracellular macrophage assay  

The activity of the seven MMV Pathogen Box compounds, as well as amphotericin B and 

miltefosine, against intracellular L. mexicana NanoLuc-PEST-transgenic amastigotes in a 

macrophage cell line were assessed using a bioluminescence assay. Differentiation of THP-

1 cells was performed by seeding 2.5 x105 cells/mL in complete RPMI media supplemented 

with 20 ng/mL phorbol 12-myristate 13-acetate (PMA) to induce differentiation into a 

macrophage lineage (Jain et al., 2012). These PMA-treated THP-1 cells were plated onto 

96-well plates (200 µL/well) and incubated for 24 hours at 37°C with 5% CO2. Following 

incubation, adherent macrophages were carefully washed once with PBS to remove non-

adherent cells. The adherent macrophages were then infected with axenic amastigotes at a 

ratio of 10:1 (parasites:macrophages) in complete RPMI medium, and incubated at 32°C 
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with 5% CO2 for 16 hours. At this time, the infected cells were washed 4 times with PBS to 

remove extracellular parasites.  

The specified concentration of each compound was diluted in a serial two-fold series and 

applied to the infected THP-1 cells as a technical triplicate. A non-drug treated control was 

included to represent 100% and uninfected THP-1 as a 0% control. These were incubated 

for 72 hours at 37°C and 5% CO2 before a bioluminescence based assay was used to assess 

the signal relative to these controls (as described in 2.3.5). The 50% effective concentration 

(EC50) was determined by analysis of a log transformed concentration versus normalized 

bioluminescence signal curve (Figure 5.7) with all experiments were prepared from at least 

three independent biological replicates (dotted lines). For comparison, on each curve, the 

data for the same compound on axenic amastigotes are shown using full lines. These 

intramacrophage EC50 data are reported in Table 5.6.  

The EC50 values of selected compounds were less potent in intramacrophage L. mexicana 

amastigotes compared to the EC50 values against free parasites, and the ratios of these values 

are ranged between 1.78 and 69.27 (Table 5.6). Compound MMV690102 presented the best 

value to reduction the infected macrophages, and has ratio of EC50 (intramacrophage) to 

EC50 (axinec amastigotes) of 1.78 and this in between 0.52 and 4.96 for AmB and MIL 

respectively (Table 5.6). 
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Figure 5.7: Bioluminescence assays of intracellular activity of MMV Pathogen Box compounds. 

The concentration response curves (mean±StDev of n=9) for the indicated MMV Pathogen Box 

compound, amphotericin B (AmB) or miltefosine (MIL) against intracellular amastigotes in THP-1 

(dotted lines) or axenic amastigotes (full line).  
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Table 5.6: A, activity of the most potent MMV compounds against axenic and intra-macrophage 

amastigotes using a bioluminescence assay. B, structure of compounds 

 

A 

Compound 

EC50
1 (µM) EC50

2 (µM)  

The ratio of 

EC50
2/ EC50

1 Axinec 

amastigotes 

Intra-

macrophage 

Amastigotes  

Mean (95% CL) 

AMPHOTERICIN B 0.201  0.105 (0.86-1.03) 0.52 

MILTEFOSINE 2.19 10.87 (9.89-11.12) 4.96 

MMV676477 0.069 4.78 (4.85-5.53) 69.27 

MMV652003 0.077 3.63 (2.98-4.24) 47.14 

MMV011903 0.189 2.015 (0.96-1.42) 10.66 

MMV689480 0.002 0.39 (0.40-0.46) 195 

MMV595321 0.153  5.29 (4.50-6.01) 35.26 

MMV690102 0.060  0.107 (0.87-0.20) 1.78 

MMV688262 0.03 1.75 (1.50-2.12) 58.33 

MMV019189 0.32 11.26 35.18 

MMV687807 0.25 14.55 58.2 

MMV688763 0.38 9.73 25.6 
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5.2.6 In vitro cell cytotoxicity assay  

There was only sufficient material available from the MMV Pathogen Box for three 

compounds (MMV011903, MMV676477 and MMV595321) to explore their cytotoxicity 

against the THP-1 cell line. However, for all three compounds, no effect against THP-1 was 

measured using a resazurin viability assay at concentrations up to 50µM, therefore 

suggesting that their CC50 is > 50µM (data not shown). The MMV Pathogen Box library has 

been tested for cytotoxicity against a number of other human cell lines, and this information 

is available online at www.pathogenbox.org/about-pathogen-box/supporting-information. 

For example, HepG2 cytotoxicity data is available for compounds MMV011903, 

MMV676477 with MRC5 (lung fibroblast cell line) cytotoxicity data is available for 

compound MMV652003. These varied human cell line cytotoxicity data are reported in 

Table 5.7 and then compared against the same activity against the axenic and intracellular 

amastigotes. From the THP-1 data generated here, there appears to be a moderate selectivity 

against the intracellular amastigotes (SI between 9-30), although for at least one of these 

compounds (MMV676477) there appears to be cytotoxicity against HepG2. Using the data 

available from the MMV, compounds MMV688262 and MMV690102 show some 

selectivity against intracellular amastigotes compared to HepG2 or MRC5, respectively, 

although for both no other human cell line data is available to corroborate this potential 

selectivity.  
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Table 5.7: Human cytotoxicity data for selected MMV Pathogen Box compounds. 

MMV ID EC50 (µM)
b 

HepG2 CC50 

(μM)
a
 

SI MRC5 

CC50 

(μM)
a
 

SI THP1   

EC50 

(µM)
b

 

SI 

Axenic 

amastigotes 

Intracellular 

amastigotes 

CC50/EC50 

axenic 

CC50/EC50 

intracellular 

CC50/EC50 

axenic 

CC50/EC50 

intracellular 

CC50/EC50 

amastigotes 
CC50/EC50 

intracellular 

MMV011903 0.189 2.015 >10 >53 >5 - - - >50 >264 >24.8 

MMV676477 0.069 4.783 1.3 18.8 0.27 - - - >50 >724 >10.45 

MMV595321 0.153 5.295 - - - - - - >50 >326 >9.44 

MMV689480 0.002 0.394        12.03
 c

 6015 30.53 

MMV688262 0.03 1.75 72.5 2416 41.42 - - - - - - 

MMV652003 0.077 3.637 - - - >32 >415 >8.8 - - - 

MMV690102 0.060 0.107 - - - 5.4 90 50.46 - - - 

 
a Data provided with the MMV Pathogen Box. b Data obtained as part of this study. -, no data available. C (Jamal et al., 2015) 
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5.2.7 Evaluation the initial cytocidal effect of antileishmanial reference 

compounds  

The Horrocks laboratory have used the unstable luciferase reporter to measure the immediate 

cyctocidal effect of compounds against intraerythrocytic P. falciparum (Ullah et al., 2017), 

and led to the BRRoK assay as used here in Chapter 3. Here, the short half-life of the reporter 

allows the effect of compounds in reducing viability (ie they stop making new luciferase to 

replace that degraded) to be measured as a timecourse of the initial cytocidal effect. This is 

important in antimalarial drugs, where a rapid reduction in parasite load is important for 

malaria treatment. As yet, there is no rapid rate of kill requirement for antileishmanial drugs, 

but here I explore whether the initial cytocidal timecourse can be measured due to the short 

half-life (c 16 mins, Berry et al., 2018) of the NaoLuc-PEST in L. mexicana. The effect of 

antileishmanial reference drugs (AmB, MIL and pentamidine) and the antibiotic hygromycin 

B (an inhibitor of protein translation in eukaryotes) on L. mexicana NanoLuc-Pest transgenic 

line were measured at a series of fold-EC50 values of each drug (1, 3 and 9 x EC50). These 

EC50 data were measured on the L. mexicana NanoLuc-Pest transgenic line using a 

bioluminescence concentration-normalized response assay (Figure 5.8) and are reported in 

Table 5.8. The concentration and time-dependent loss of viability (bioluminescence signal 

normaliszed to an untreated control) was assessed at these three concentrations over a period 

of 6, 24, 48 and 72 hours. The assay was done as three biological repeats with the mean 

normalized bioluminescent signal ±StDev (n=9) plotted against fold-EC50 for each timepoint 

(Figure 5.9).  

Whilst all compounds show both a time and concentration dependent loss in 

bioluminescence (Figure 5.9), although less pronounced between 3x and 9x EC50 as the 

timecourse extends to 48 and 72 hours, there is some differentiation between the loss of 

viability profiles for the different drugs. Pentamidine apparently has the most pronounced 
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loss of viability followed by miltefosine, then amphotericin B, with the rate of loss of signal 

least for hygromycin B. At 6hours, the rate of bioluminescent signal loss for hygromycin B 

follows a pattern that suggests that the drug is weakly cytocidal at best and quite likely to be 

cytostatic.   
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Figure 5.8: EC50 responses to Amphotericin B (AmB), Miltefosine (MIL), Pentamidine and 

Hygromycin B in axenic L. mexicana amastigotes expressing NanoLuc-PEST. Mean values are 

shown (n=4) ± StDev.  

 

Table 5.8: Comparison the EC50 values between antileishmanial drugs 

 

 EC50 (µM) 

Mean 95% CI 

Amphotericin B 0.2 0.18-0.20 

Miltefosine 2.19 2.07-2.35 

Pentamidine 9.94 10.08-1.39 

Hygromycin B 32.65 21.12-24.23 
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Figure 5.9: Time and concentration-dependent loss of bioluminescence representing a 

timecourse of cytocidal activity for antileishmanial drugs. The mean noprmalized bioluminescent 

signal from L. mexicana NanoLuc-Pest transgenic lines exposed to increasing fold-EC50 

concentrations of amphotericin B (AmB), miltefosine (MIL), pentamidine and hygromycin B. The 

key indicates the time for each concentration-reponse reported on each graph. Data represent 

mean±StDev (n=9).  
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5.3 Discussion  

Over the last years the ability to use transgenic leishmanial parasites that express one or more 

luciferases has offered new methods for screening compounds and is an approach that has 

been applied to a number of other infectious disease models (Lang et al., 2005, Mandal et 

al., 2009; Plock et al., 2001). For example, a bioluminescent L. amazonensis parasites 

expressing firefly luciferase has been used for drug screening against infected macrophages 

(Lang et al., 2005). In this thesis, I report the evaluation of the NanoLuc luciferase. This new 

luciferase is a small enzyme (19.1kDa) which produces a high intensity bioluminescence 

using a furimazine substrate and does not require ATP to catalyse the oxidation process that 

results in light emission (Figure 5.10). The NanoLuc enzyme is very stable in L. mexicana, 

with a long half-life of greater than 8 hours (Berry et al., 2018). A modified form of the 

enzyme, NanoLucPEST, retains the high enzymatic activity of NanoLuc but has a much 

shorter half-life of 16 mins – this instability, coupled to the high signal intensity producing 

an assay of antiproliferative action with a high S:B ratio that was exploited here in the screen 

of the MMV Pathogen Box (Berry et al., 2018).  

 

 

Figure 5.10: The bioluminescent reaction catalyzed by NanoLuc luciferase. (Source: 

Promega) 
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I tested the MMV Pathogen Box against a L. mexicana NanoLucPest transgenic line 

(generated by Dr Berry of the Price Laboratory) using a bioluminescent assay as a drug 

discovery screening tool. A total of 23 hits were identified, giving a hit rate of 5.75%. These 

hits included three reference compounds (Buparvaquone, Mebendazole and Auranofin), four 

compounds previously identified as targeting kinetoplastids, twelve compounds identified 

in a tuberculosis screen (52% of total selected compounds), two compounds active against 

Plasmodium spp., and one compound each identified in onchocerciasis and schistosomiasis 

screens (Figure 5.5). The activity of compounds identified against Mycobacterium 

tuberculosis have been proposed to be likely of benefit in screening against Leishmanial 

parasites as they are required to be able to transit multiple membrane barriers as well as 

target a pathogen within an acidic compartment (Russell et al., 2010). The higher hit rate 

here against Mycobacterium tuberculosis screen compounds in the MMV Pathogen Box is 

not likely as a result of this, as axenic amastigotes were initially screened, but is perhaps a 

bias introduced by chance because 29% of the Pathogen Box compounds are from TB 

screening programmes.  

Importantly in this study, a number of the most potent hits were taken forward to evaluate a 

NanoLuc bsaed assay of intramacrophage activity. As perhaps expected, the EC50 values in 

intramacrophage for all seven compounds were higher than those obtained from the screen 

of the axenic amastigotes alone (Table 5.6; Figure 5.7). This a result of the compound 

traversing an additional two membranes before it reaches the Leishmania amastigote. 

However, all seven compounds displayed an EC50 < 5 µM, which is below the 10 µM limit 

suggested as an initial threshold for hits against L. donovanni intramacrophage stages 

(Katsuno et al., 2015). As well as these compounds being active against L. infantum 

intramacrophage amastigotes (the screen used for their inclusion in the MMV Pathogen 

Box), their cytotoxicity against MRC5 cells (Table 5.9) was provided with the resource 
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(https://www.pathogenbox.org/about-pathogen-box/supporting-information). Of note is that 

the relative order of activity of their EC50 activity, and thus selectivity when compared to 

this human cell line, is the same in the two species for three of the compounds for which 

data is available.  

 

Table 5.9: Activity of selected kinetoplastid hits against L. infantum intracellular macrophage and 

cytotoxicity 

 

a Data obtained as part of this study. b Data provided with the MMV Pathogen Box 

 

Of the seven compounds taken to intramacrophage assays, three compounds (MMV652003, 

MMV689480 and MMV688262) were previously known to be active against kinetoplastids. 

The results for MMV688262 correlate well with the existing data, despite this previous data 

being gathered against intracellular L. donovani with EC50 values 0.087 µM (Patterson et 

al., 2016). However, the EC50 results for MMV689480 (Buparvaquone) of 0.394 µM in the 

intracellular assay is at least three times lower than the previously reported values (1.25 µM) 

against L. mexicana infected macrophages (Mäntylä et al., 2004). This may indicate a 

difference resulting from the types of intracellular assay used – and I discuss below more 

about this aspect of the bioluminescence based assays. The remaining MMV652003 

compound is active against T. brucei with EC50 values as low as 0.02 μg/mL (Ding et al., 

2010; Jacobs et al., 2011).  

L. mexicana  in    

intra-macrophages 

L. infantum  in     

intra-macrophages 

EC50 (μM)
a

EC50 (μM)
b

MMV690102 5.4 0.107 50.4 0.03 180

MMV652003 >32 3.63 8.8 1.4 23

MMV595321 6.6 5.29 1.2 6.9 1

MMV688776 >64 - - 44 1.5

Kinetoplastid compounds
MRC5      

CC50 (μM)

SI 

CC50/EC50

SI 

CC50/EC50

https://www.pathogenbox.org/about-pathogen-box/supporting-information
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The main advantage of the bioluminescent technique in an infected macrophage model, a 

method which has already been shown to be advantageous for studying intracellular stages 

of Plasmodium falciparum and Mycobacterium tuberculosis (Ullah et al., 2017; Andreu et 

al., 2012) is the simplicity of the assay format.This allows screening programmes to assess 

compound activity against the intracellular parasite to be developed that reduce the time 

burden, a requirement for specialist equipment and post-assay processing associated with 

the current microscopy based high content imaging techniques.  

As an example of this, in chapter 3 the intramacrophage L. mexicana activity of amphotericin 

B was determined using a Sybr-Green I fluorescent microscopy assay, with a NanoLuc-

PEST evaluation of the same activity in Chapter 5. There was a good correlation between 

the bioluminescence- and microscopy-based assays (Figure 5.11). However, the luminescent 

signal decreased by >99%, whilst the fluorescent counting assay still reported ~20% infected 

macrophages (Figure 5.11). One interpretation is that the bioluminescence-based assay is 

more sensitive than the microscopy-based technique, as only viable parasites produce 

bioluminescence and are therefore detected. In comparison, the standard microscopy based 

counting assay relies on either nuclear staining using DAPI or Sybr Green I, or parasite-

specific antibodies (for example HASPB) (De Muylder et al., 2011; Jain et al., 2012). Not 

only can parasite nuclear staining can be obscured by the macrophage nucleus, but these 

protocols only detect the presence of the parasite, not its viability. The NanoLuc-PEST 

expressing cell line therefore may provide a unique opportunity to assess compound efficacy 

against intracellular parasites without the need for laborious, less sensitive, microscopy-

based counting assays.  
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Figure 5.11: Comparison of bioluminescence- and microscopy-based intra-macrophage infection 

assays following treatment with Amphotericin B. (a) Infection of PMA-differentiated THP-1 was 

assessed by the NanoLuc-PEST-expressing transgenic L. mexicana, using the novel 

bioluminescence-based assay. Infected cells were exposed to 0.8 µM amphotericin B, or left 

untreated, for 72 hours. Relative bioluminescence is shown after each treatment, calculated against 

the average value for the untreated cells. Mean values are shown (n=4) ± SD. Results were analysed 

by Paired T Test on raw data (p<0.001). (b) Infection of PMA-differentiated THP-1 macrophages 

was assessed by the NanoLuc-PEST-expressing transgenic L. mexicana, using the standard 

microscopy-based counting assay. Infected cells were exposed to 0.8 µM amphotericin B, or left 

untreated, for 72 hours.  

 

Moreover, using the dynamic response of NanoLuc-PEST expressing parasites, I evaluated 

the initial cytocidal activity of a range of antileishmanial reference drugs against amastigote 

NanoLuc-Pest transgenic line using concentration and time based assays similar to those 

developed previously in our laboratory to explore the initial action of antimalarial drugs 

(Ullah et al., 2017). The key to the P. falciparum study was that in vivo data for a small 

number of drugs are available to compare against the in vitro data. Thus, this study 

represented a start in defining the relative order of the rate of in vitro cytocidal action. The 

reference compounds selected were pentamidine, miltefosine, hygromycin B and 
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amphotericin B – as either antileishmanisl drugs or a slection marker with known mode of 

action . Pentamidine, miltefosine and amphotericin B were all shown as having a cytocidal 

effect on L. mexicana NanoLuc-Pest transgenic line when tested at 3x and 9x EC50 as the 

timecourse extended to 48 and 72 hours, whilst hygromycin B was slow-acting/cytostatic in 

its killing effect. The data further suggested that pentamidine has the most pronounced loss 

of viability followed by miltefosine, then amphotericin B, with the rate of loss of signal least 

for hygromycin B. These observations are in line with a recent study by Kerkhof et al, 

(2018), a short time-to-kill(defined as completely eliminating amastigotes) for intracellular 

amastigotes was observed for miltefosine of at least 72 hour for L. infantum and 96 hour for 

L. donovani at 5× EC50 (20 µM). While amphotericin B took at least 192 hours in both L. 

infantum and L. donovani (Table 5.10). A short rate of kill was also observed in another 

study for miltefosine, of at least 168 hours at 2× EC50 (10 µM) for L. infantum and >240 

hours for amphotericin B at 2× EC50 (2 µM). While the initial cytocidal activity for 

miltefosine and amphotericin B took more than 240 hours at 2× EC50 against L. donovani 

for both of them (Table 5.10) (Maes et al., 2017).   

Table 5.10: In vitro time-to-kill for current antileishmanial reference compounds. (Van den Kerkhof 

et al., 2018)1 (Maes et al., 2017)2 

 

 

Drug Concentration 

5 x EC50 µM 

Concentration 

2 x EC50 µM  

L. infantum L. donovani 

TTK (h) TTK (h) 

MIL1 20 - 72 96 

AmB1 5 - 192 192 

MIL2 - 10 168 >240 

AmB2 - 2 >240 >240 

 

The initial cytocidal activity of antilieshmanial drugs are still a relatively under reported 

pharmacodynamic property. The determination of initial cytocidal activities may, however, 

help in the design of drug combination therapies that would reduce the development and 

spread of drug resistance and/or reduce treatment schedules -  something that could increase 
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compliance and reduce drug costs (Sundar et al., 2015; Jha et al., 2013). The dynamic 

response of the NanoLucPEST system reported here may, with more in vivo data, help 

develop a validated in vitro system to screen this pharmacodynamics property. In vitro rate 

of kill assays are increasingly being developed and tested in a range of pathogens, including 

antibacterials (Nielsen et al., 2007), antifungals (Gil-Alonso et al., 2016) and antimalarials 

(Ullah, 2017) but its novelty in leishmaniasis is reported here for the first time. 
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Chapter 6 General discussion 

Here I report a screen of the antiproliferative activities of 643 Phytopure library compounds 

against three different parasites. These parasites represent aetiological agents, or models, of 

malaria, trypanosomiasis and leishmaniasis. The library represented a unique resource for 

lead discovery of high value chemicals from temperate zone plants, recognising that these 

plants are highly unlikely to have been as a traditional medicine for these diseases endemic 

in tropical and subtropical zones. Whilst the evaluation of potential hit compounds against 

each pathogen did not definitively identify a potent and selective activity within this library, 

these 643 compounds represent an incredibly small fraction of phytochemicals likely 

available from temperate zone plants. The potential for plant-derived natural products, and 

particularly those that have been used in traditional medicines, is recognised as an important 

part of public health in developing countries (Carlos, 2002) and there is a WHO strategy for 

their use (WHO, 2013). However, plant-based natural products, representing the majority of 

traditional medicines, are only one source of natural products that don’t recognise 

opportunities available from microorganisms, marine sources or even animal sources.  

 

The phytopure library was screened here against intraerytrocytic P. falciparum, blood-

stream forms of T. b brucei and axenic amastigotes of L. mexicana. Other work in the 

laboratory has used the same library against bloodstream forms of Trypanosoma evansi, the 

aetiological agent of Sura in camels (H. Price, personal communication) and the same library 

has been screened in Aberystwyth against schistosomules of Schistosoma mansoni 

(Hoffmann, personal communications). Recognising that the biological activities of these 

natural products need not only be as antiparasitics, a new project to screen the library at 

Keele University against aphids to look for natural insecticide agents will shortly start. These 

projects together illustrate the utility of natural product libraries, and this library in particular 
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given that the natural products are purified and are not fractions prepared using a range of 

aqueous and organic solvents and often contain a complex mix of phytochemicals. 

 

Given the size of the library, it was perhaps not surprising to not have an active and selective 

hit against any of the parasites screened. Screening of massive compound libraries to 

generate the Tres Cantos antimalaria compound set, some 30000 hits from 5 million 

compounds, represents one hit per 166 compounds screened (Gamo et al., 2010; Guiguemde 

et al., 210). This would suggest three potent hits against P. falciparum – and whilst there 

were several, they did not show the level of selectivity (and/or lack of toxicity against 

HepG2) that would be required to take them forward. The chemical diversity in the 5 million 

compounds screened is also greater than that within the Phytopure library. The four related 

triterpenes 700022, 700107, 700136 and 700240 did show both activity and selectivity 

against the L. mecicana axemic amastigotes. These compounds also showed activity against 

axenic amastigotes of L. donovani, an aetiological agent of visceral leishmaniasis in the Old 

World and would perhaps suggest that they may have a broad antileishmanial activity – 

although not anti-kinetoplastid activity as are not all hits against T. brucei nor T. evansi. Data 

presented in chapter 3 indicates that several of these triterpenes were active against 

intramacrophage amastigotes – although high concentrations (9xEC50) had to be used. 

Following the work described here in Chapter 5, specifically the development of a NanoLuc-

PEST assay for intramacrophage amastigotes, the same assay was used to determine the EC50 

of 700022 (Figure 6.1). The log concentration-response curve of intramacrophage 

amastigotes is shifted towards the right of the axenic amastigotes – as would be expected for 

a majority of compounds when their axenic v intramacrophage activity is compared (see 

several examples from the MMV Pathogen Box in Chapter 5). Plotting the antiproliferative 

activity curves of 700022 against THP1 and HepG2 human cell lines on the same graph 
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illustrates how the more relevant assessment of 700022 activity against L. mexicana now 

illustrates potential issues with cytotoxicity as the selective indices shrink from 30-50 to 1.6-

2.6 (Table 6.1).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.1: Comparing 700022 activity between axenic amastigotes (red) and intramacrophage 

amastigotes (blue). Concentration–response curves for compound 700022 against: intracellular L. 

mexicana NanoLuc-PEST-transgenic line (blue), axenic amastigotes of NanoLuc-PEST-transgenic 

line (red) as well as the human cell lines HepG2 (green) and THP-1 (black). Most data from chapter 

5. The data for the intracellular L. mexicana NanoLuc-PEST-transgenic line represent one biological 

repeat of three technical repeats. 
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Table 6.1: Activity of Phytopure compound 700022 against intracellular and extracellular L. 

mexicana amastigotes using luminescence assay. SI1, is calculated as CC50/EC50 using axenic 

amastigotes whilst SI2 is calculated using intra-macrophage amastigote data.  

 
 

The limitations of the materials provided did not allow for a more complete analysis of 

700022 drug action. In chapter 4, I outline how, with more material, additional studies could 

be used to explore the action of 700022 as well as the molecular basis of resistance in the 

700022 resistant L .mexicana line. Molecular studies reported here may provide a start with 

a confirmation of the association of the mutations in LmROS3 with 700022 resistance – the 

data reported here needing additional validation. In addition, potential resistance markers 

associated with the miltefosine sensitivity locus identified in L. infantum (Carnielli et al., 

2018), specifically the 3’-nucleotidase, 3’ nuclease, helicase-like protein and 3,2-trans-

enoyl-CoA enolase. However, perhaps the most interesting line of research that could evolve 

from this work is whether the miltefosine resistant parasites, such as the L. infantum from 

Brazil lacking the miltefosine sensitivity locus, are cross resistant to 700022 (or other related 

triterpenes). As discussed in chapter 5, that exposure to natural products, perhaps through a 

commonly used traditional medicine used in the Amazon, may have led to the insensitivity 

of miltefosine is not only an interesting scientific question, but also may act as a note of 

warning for future drug releases where natural products have previously been widely used. 

 

In this thesis I also report an evaluation of a transgenic L. mexicana expressing a NanoLuc-

PEST luciferase as a simple, rapid and sensitive assay system. The utility of a bioluminescent 

assay screen has been demonstrated for a variety of parasite systems, including; 

Axenic 

amastigotes
1

Intra-macrophage 

amastigotes
2 THP1 HepG2

700022 0.51 10.69 16.97 33.27 1.58 28.37 55.62 2.65

CC50 (µM)

SI
1

SI
2

EC50 (µM) CC50 (µM)

SI
1

SI
2
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Cryptosporidium parvum (Hennessey et al., 2018), Toxoplasma gondii (Radke et al., 2018) 

as well as P. falciparum early stage gametocytes (Lucantoni et al., 2013). 

The validation of this assay system against the MMV Pathogen Box was used in recognition 

of the importance of this compound library in repurposing compounds in the search for drugs 

against diseases for which large chemical screens are not being done (Mi-Ichi et al., 2018; 

Spalenka et al., 2018; Partridge et al., 2018; Hennessey et al., 2018; Mayer and Kronstad, 

2017; Preston et al. 2016). Full information about these compounds is available online via 

(https://www.pathogenbox.org/). The MMV Pathogen Box is an important tool in open-

access drug discovery model, and includes compounds identified from screens against a 

range of different pathogens, such as P. falciparum, Mycobacterium, kinetoplastid parasites 

(Leishmania spp., and Trypanosoma cruzi), Schistosoma, Toxoplasma, Cryptosporidium and 

helminths. These compounds are provided in a library of 400 compounds, which include a 

set of 26 reference compounds with activity associated with one or more of these pathogens 

with data on their structure and toxicity. 

  

Screening the MMV Pathogen Box against the axenic amastigotes identified 23 compounds 

that reduced bioluminescence to ≤ 5% of the untreated controls at 2 µM. The seven most 

potent compounds were then screened in the intracellular infection model in parallel with 

amphotericin B and miltefosine as controls. This subsequent screen in the infected 

macrophage screen showed that all seven compounds displayed an EC50 < 5 µM. Of these 

seven compounds, three compounds (MMV652003, MMV689480 and MMV688262) were 

known to be active against kinetoplastids. However, for the majority of these compounds, 

they were some 10 to 70-fold less active in the intramacrophage assay. One compound, 

however, MMV690102 (Figure 6.2), had an EC50 of 100nM against the intramacrophage 

amastigote compared to 60nM activity against the axenic amastigote. Picked to be included 

https://www.pathogenbox.org/
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in the MMV Pathogen Box based on a screen against L. infantum, this compound has also 

been shown to be active against L. donovani and T. cruzi (Duffy et al., 2017). MMV690102 

is a pyrimido[4,5-d]pyrimidine-2,4,7-triamine, with a prediction that this compound targets 

the dihydrofolate reductase enzyme (Duffy et al., 2017). Two closely structurally related 

compounds, MMV690103 and MMV689437, that have been shown to have activity against 

L. infantum, L. donovani and T. cruzi (Duffy et al., 2017), are not, however, identified as 

one of the 23 hits in this screen of L. mexicana. 

 

 

 

 

 

 

 

Figure 6.2. Structure of MMV690102. 

 

Bringing together the large natural compound library and the validation of the 

bioluminescence-based screening approach in L. mexicana highlights opportunities for 

moving forward from the research presented in this thesis. The genetic construct used to 

generate the NanoLuc-PEST is based on the integration into a rRNA locus (Berry et al., 

2018) and is capable to being readily modified for other leishmanial and trypanosomal 

parasite systems. This then offers a simple, sensitive and robust screen of antiparasitic 

activity that could be capable of being scaled up for high-throughput screens. For example, 

assessment of whether the 72 hours assay time needed for L. mexicana could be robustly 

reduced to say 48 or 24 hours would help in throughput. More importantly would be scaling 
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the assay to enable 384-well or even 1536-well plates to be used, an opportunity that is 

supported by the high signal intensity from NanoLuc accompanied by the rapid loss of signal 

on death (providing excellent signal:background ratio). In this way, rapid screens of the 

axenic amastigote L. mexicana, or other parasites, could be performed against tens of 

thousands (or more) of compounds.  

 

To scale this as an opportunity for discovery of natural products, it would be useful to 

generate compilations of existing libraries from natural resources including plants, bacteria, 

marine and terrestrial microorganisms. For example, these materials are available in different 

libraries (ex: Albany Molecular Research Inc., AnalytiCon Discovery, BioAustralis, 

Biosortia Pharmaceuticals, Caithness Biotechnologies Ltd—Phytotitre Natural Product 

Extract Library, ChromaDex® Natural Compound Library, Cyano Biotech, Greenpharma, 

InterLink Biotechnologies and Quality Phytochemicals) and are highlighted as a resource 

through the USA National Center for Complementary and  Integrative Health 

(nccih.nih.gov/grants/naturalproducts/libraries). Ideally, these should be libraries of purified 

compounds – or at least subfractions that are predominantly a single compound – to reduce 

the complexity of the hit selection process. That said, it is clear that the support for 

maintaining a library that requires a living source to produce the library components is a 

significant challenge (Butler et al., 2014), and likely expensive to generate, store and 

distribute the materials. 

Using such a resource, a high throughput screen against axenic amastigotes of L. mexicana 

using bioluminescence as an output would be performed. Choice of the screening 

concentration is important here. These needs to be high enough to capture a diversity of hits 

(recognising that the most potent hits may not be the best leads for development), but not 

too low so that large numbers of low affinity compounds are included in the hit list. In 
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Chapter 3, experience with P. falciparum showed that the 2µM screen was sufficient to 

identify the hits tken forward and that the 20µM screen added little to the selection process. 

Comparison of the thresholds used is also important – the L. mexicana screens in Chapters 

3 and 5 used increasingly higher thresholds, and as a result the hits characterised were more 

potent. Obviously, with larger libraries, the screening concentration and threshold can be 

adjusted to produce a manageable list of potent hits for subsequent assays. In the case of the 

transgenic NanoLuc L. mexicana screens, the next step would be an assay of the 

intramacrophage amastigotes. This is a more complex assay process, requiring THP-

1differentiation and then invasion, with wash steps, before exposure to the compound of 

interest. That said, this is key data to demonstrate activity against a clinically-relevant 

parasite life-stage. One possible additional innovation here would be to include a constitutive 

expression of a second luciferase reporter in the THP-1 cell line. Reports using luciferase as 

a reporter system in THP-1 reveal that this is likely possible (Ilg, 2017; Hong et al., 2011; 

Sau et al., 2003) Using a luciferase reporter that uses a substrate different to that of NanoLuc 

would allow both the effect of the compound on the parasite and the host THP-1 cell line, 

an indication of potential toxicity, in a simple stop-start assay that would only require the 

use of a microinjection device to the bioluminometer.  
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Appendix 1 (Chapter 3) 

Normalized growth (%) following the 643 Phytopure compounds screen at 10 µM and 2 µM 

against intraerytrocytic P. falciparum, and at 2 µM against the blood-stream form of T. b 

brucei and axenic amastigotes of L. mexicana. 

 

Compound ID 

P. falciparum L. mexicana T. b. brucei 

% Normalized growth 

20 µM 2 µM 2 µM 2 µM 

700002 103.01 103.61 66.57 97.78 

700004 40.86 100.76 48.07 13.95 

700008 69.98 96.88 129.39 54.7 

700013 112 105.41 66.51 104.39 

700014 79.94 107.12 56.9 25.2 

700016 108.83 104.46 47.07 75.71 

700018 108.28 100.92 55.62 70.76 

700019 65.37 100.02 33.89 71.97 

700020 105.57 107.54 33.26 79.1 

700021 105.88 108.44 50.99 100.85 

700022 102.6 104.89 0.54 53.52 

700026 112.33 97.93 62.46 83.31 

700029 105.19 102.96 60.99 89.57 

700035 28.85 73.36 128.81 31.83 

700037 104.72 101.83 108.44 88.33 

700039 97.58 101.4 93.34 61.31 

700040 110.66 97.66 91.24 91.89 

700042 29.86 28.92 79.08 1.55 

700044 107.13 101.6 64.7 94.03 

700046 10.33 9.79 83.38 5.63 

700047 24.15 41.79 60 61.01 

700048 13.47 20.33 88.98 5.75 

700054 104.08 106.9 77.22 72.72 

700055 104.82 108.16 67.21 58.38 

700059 106.83 103.17 82.15 83.95 

700060 24.62 86.86 79.04 103.01 

700061 56.5 98.14 62.59 73.42 

700062 85.18 101.17 72.86 114.17 

700063 106.91 104.78 70.49 95.59 

700069 106.14 102.44 93.26 101.98 

700070 103.28 99.32 51.83 110.81 

700072 57.66 98.24 60.94 71.92 
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700074 100.92 101.58 55.97 87.12 

700075 104.44 102.68 65.36 110.37 

700077 45.78 98.02 80.98 96.34 

700078 109.86 96.1 88.28 114.74 

700084 103.42 98.47 68.47 95.27 

700086 82.3 99.47 63.03 80.25 

700087 28.23 98.67 61.93 96.86 

700089 102.4 98.89 131.9 143.91 

700090 102.26 100.56 62.4 73.01 

700094 103.56 94.12 73.86 81.27 

700097 91.3 97.48 58.33 65.34 

700103 47.76 98.7 37.13 94.68 

700104 16.6 31.61 145.51 69.66 

700107 92.3 96.84 8.07 85.19 

700110 105.48 104.98 52.4 87.17 

700111 92.13 99.15 59.02 53.98 

700114 103.23 99.67 83.9 95.62 

700118 82.06 97.12 97.45 70.92 

700119 79.98 99.78 107.4 83.72 

700120 102.78 98.98 117.48 76.33 

700124 96.53 100.39 86.38 53.6 

700125 18.66 102.72 95.16 66.71 

700126 113.94 100.24 85.44 110.96 

700127 92.34 96.85 62.45 84.33 

700129 86.1 98.2 63.62 57.27 

700132 73.96 94.47 66.16 69.44 

700134 98.61 99.13 91.56 69.65 

700136 61.22 99.87 -0.41 103.96 

700137 101.54 98.17 78.35 75.12 

700138 75.64 99.96 73.73 108.59 

700139 84.11 84.64 86.83 95.41 

700140 79.05 85.43 85.86 102.81 

700141 30.07 87.62 80.43 82.44 

700144 35.89 82.61 83.58 69.44 

700148 88.72 88.59 98.29 103.08 

700149 88.21 88.26 91.83 103.15 

700153 95.8 98.71 62.74 65.41 

700155 78.54 95.36 78.2 74.48 

700158 72.21 86.88 82.33 88.65 

700159 22.25 85.25 77.89 95.15 

700160 85.93 89.08 70.5 79.51 

700165 86.21 88.21 105.59 63.21 
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700170 80.43 89.07 94.01 60.25 

700171 87.68 104.12 67.12 64.24 

700178 81.1 85.06 106.59 75.55 

700180 86.54 83.99 101.85 92.61 

700181 81.75 89.71 48.74 103.56 

700182 79.69 84.79 72.05 76.37 

700185 85.14 83.5 95.46 84.89 

700186 83.21 92.03 96.06 87.34 

700188 34.21 89.01 98.39 115.94 

700190 35.9 89.35 101.59 115.91 

700192 47.97 92.13 98.78 100.91 

700194 74.71 95.16 102.99 93.61 

700196 94.82 96.71 57.6 98.96 

700198 89.31 85.9 100.87 101.77 

700409 94.49 103.62 83.35 94.34 

700411 104.53 96.66 82.82 119.81 

700414 24.89 100.7 77.86 103.76 

700416 86.15 87.75 46.17 98.42 

77417 121.44 117.67 78.81 101.27 

700419 17.56 92.05 79.84 96.52 

700421 118.98 118.68 69.16 92.39 

700423 50.68 115.75 73.28 74.74 

700424 110.66 120.58 71.15 82.54 

700425 113.27 108.24 77.79 89.53 

700426 95.39 89.01 53.42 81.81 

700427 95.69 100.82 73.31 94.2 

700429 106.13 105.94 79.08 87.18 

700431 105.78 103.72 89.54 75.88 

700432 121.25 103.53 124 55.16 

700433 90.05 93.26 43.2 95.45 

700434 107.57 105.22 125.96 64.91 

700435 19.22 84.3 109.38 54.98 

700436 36.61 98.96 107.02 58.16 

700437 109.71 101.64 80.56 70.33 

700438 -10.61 75.49 87.69 74.74 

700440 100.86 97 39.11 89.37 

700441 108.1 112.48 48.46 85.87 

700442 15.51 96.66 54.61 89.25 

700443 103.1 94.16 63.51 132.83 

700445 102.33 89.5 77.31 128.57 

700447 122.24 122.65 73.3 124.77 

700448 71.35 123.72 48.86 127.36 
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700449 121.5 117.3 70.51 116.65 

700450 128.75 117.29 89.65 129.46 

700452 101.03 120.31 40.1 98.81 

700453 87.37 113.7 47.27 100.86 

700454 48.14 95.36 47.88 77.28 

700455 88.54 113.13 64.32 61.26 

700456 110.62 113.73 64.38 81.51 

700458 122.19 118.9 48.46 78.15 

700459 96.15 118.75 52.38 129.74 

700460 126.04 118.14 99.51 116.32 

700462 69.64 95.12 75.28 53.87 

700464 123.77 112.43 60.89 128.02 

700465 100.94 110.63 67.13 102.41 

700468 98.93 115.01 67.46 28.03 

700469 95.07 99.42 75.07 77.77 

700470 100.01 89.24 57.31 96.61 

700473 107.99 88.73 62.32 85.19 

700475 92.51 97.16 75.14 100.8 

700476 102.19 101.18 70.03 83.34 

700478 98.45 99.23 74.81 127.88 

700480 102.57 93.34 79.8 78.79 

700481 98.57 96.99 75.27 79.19 

700482 104.04 97.85 125.05 81.7 

700483 96.73 93.42 69.09 88.05 

700486 98.87 101.7 114.24 81.31 

700488 105.6 101.26 92.33 75.99 

700489 92.79 99.58 58.94 94.48 

700490 118.67 100.56 72.52 82.32 

700492 93.94 90.94 43.19 113.22 

700494 92.9 88.28 76.32 143.85 

700497 95.43 94.94 80.8 100.63 

700498 124.78 118.36 55.89 74.5 

700499 123.82 120.58 68.96 102.43 

700500 108.17 110.15 77.7 96.77 

700501 116.25 102.32 115.88 88.17 

700504 103.76 93.56 92.98 138.81 

700509 90.95 98.75 63.98 59.66 

700510 116.85 99.72 63.12 67.6 

700512 125.72 97.98 108.67 76.32 

700513 90.08 96.98 56.48 103.67 

700514 88.54 87.93 58.53 139.05 

700515 84.31 85.88 65.66 135.98 
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700516 78.86 91.07 59.03 100.41 

700517 96.54 99.08 80.36 67.22 

700519 96.37 97.94 74.92 94.05 

700520 112.18 101.53 72.95 64.34 

700521 88.35 94.72 77.04 55.84 

700524 92.07 94.71 70.63 113.88 

700526 106.45 92.84 70.74 76.69 

700528 87.67 110.06 58.38 99.89 

700529 81.14 107.19 37.03 99.33 

700532 101.4 110.61 57.87 76.48 

700535 -35.14 31 68.2 99.44 

700536 29.26 89.26 98.96 76.85 

700538 97.36 108.83 44.13 119.99 

700539 43.74 89.93 115.29 95.04 

700541 108.98 116.34 51.29 136.72 

700542 100.33 100.36 95.38 65.12 

700543 93.47 106.61 63.38 105.62 

700544 95.73 107.77 59.48 83.13 

700545 81.26 94.17 93.14 94.19 

700548 86.36 93.28 67.27 95.62 

700549 69.15 93.31 52.27 79.62 

700550 86.76 88.07 59.24 92.5 

700551 86.84 88.11 63.2 94.86 

700556 83.48 96.29 97.27 65.19 

700557 75.21 99.52 84.6 85.4 

700558 93.86 93.91 100.7 101.07 

700559 114.62 90.33 98.2 82.82 

700561 108.96 97.15 91.24 89.55 

700563 102.47 101.88 61.81 68.58 

700568 100.8 92.05 73.85 68.09 

700571 97.34 98.71 63.03 93.24 

700579 107.03 97.73 91.09 70.63 

700580 98.48 95.95 62.92 50.1 

700581 76.46 94.3 76.82 68.55 

700582 39.21 89.97 88.81 108.47 

700586 3.67 76.97 56.47 3.14 

700592 58.03 90.8 85.14 91.74 

700593 68.84 81.01 68.77 52.06 

700596 51.26 75.87 104.54 58.61 

700597 62.89 76.44 65.14 77.39 

700598 75.47 77.52 78.62 92.84 

700599 63.4 76.9 72.99 92.39 
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700600 75.83 83.31 77.22 74.74 

700601 41.84 78.68 74.96 96.65 

700603 75.38 79.38 73.5 106.42 

700606 76.93 84.06 75.17 93.76 

700607 82.62 84.02 90.1 94.1 

700610 81.76 78.91 95.12 91.88 

700612 51.82 75.62 76.07 74.63 

700613 78.57 81.64 81.31 73.6 

700614 90.45 85.89 88.07 79.6 

700617 114.75 91.08 68.93 89.66 

700618 82.33 89.77 70.7 74.28 

700620 72.53 81.7 76.01 60.64 

700621 84.28 84.39 54.16 77.66 

700622 66.24 82.96 56.08 52.37 

700626 112.54 96.84 80.88 63.56 

700627 81.88 89.88 56.49 65.48 

700629 87.32 91.02 70.15 57.15 

700630 56.3 82.6 57.83 76.96 

700631 37.62 66.8 57.38 58.88 

700635     90.87 54.42 

700637 67.91 84.44 87.45 92.24 

700638 51.41 89.73 89.59 97 

700640 49.93 88.7 97.58 80.49 

700642 70.19 87.62 113.83 94.88 

700645 79.88 92.26 110.65 75.52 

700646 84.73 94.02 97.9 85.88 

700649 100.07 90.41 91.02 87.26 

700650 110.6 93.49 63.1 80.06 

700652 9.25 83.22 103.14 90.65 

700655 82.18 89.53 62.37 88.28 

700656 77.98 86.94 97.82 90.43 

700657 37.06 86.5 74.85 59.28 

700658 94.08 90.74 96.02 62.76 

700659 111.66 89.93 93.89 76.32 

700662 127.74 89.75 101.1 81.51 

700663 111.84 93.77 97.68 107.6 

700665 83.84 95.08 91.26 61.87 

700668 91.14 93.06 86.61 104.31 

700669 104.58 94.87 97.75 90.07 

700672 81.56 93.29 88.39 106.68 

700673 93.28 91.73 98.23 99.98 

700674 94.85 90.64 83.4 77.47 
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700677 96.48 88.49 88.07 108.71 

700679 78.91 85.95 66.91 96.12 

700681 95.48 91 77.92 104.24 

700682 85.74 85.06 88.6 94.65 

700684 97.34 103.02 71.53 74.5 

700686 82.99 94.91 66.22 102.43 

700687 86.67 94.32 68.1 86.26 

700688 38.67 88.24 65.45 74.81 

700690 76.59 97.46 69.16 102.02 

700692 89.33 101.93 92.78 94.91 

700697 79.99 94.05 78.71 82.06 

700698 45.66 90.96 68.34 64.89 

700703 73.11 93.36 82.52 84.04 

700705 77.04 94.61 80.69 95.04 

700711 80.53 96.49 84.51 109.49 

700712 93.82 102.43 100.67 107.42 

700713 81.33 99.08 98.82 96.91 

700714 85.55 92.38 82.88 94.82 

700715 82.7 94.54 84.38 105.25 

700716 68.67 90.51 77.88 105.31 

700717 79.66 92.2 82.96 83.43 

700718     86.61 81.17 

700200 50.47 79.78 93.92 105.2 

700202 67.47 90.09 79.28 92.84 

700205 66.03 88.39 54.5 63.15 

700206 66.91 80.92 50.27 82.82 

700207 76.92 82.47 55.9 92.38 

700208 55.6 73.46 63.58 82.54 

700209 126.87 99.13 79.67 89.53 

700211 61.35 75.14 50.53 76.86 

700212 64.75 84.05 57.63 76.8 

700213 70.65 81.49 55.89 60.44 

700214 104.19 83.73 90.53 107.59 

700216 81.93 75.05 64.23 76.76 

700219 109.95 93.99 69.6 104.22 

700222 67.93 74.14 74.69 73.26 

700223 28.22 75.37 49.96 90.13 

700226 65.43 74.57 84.4 64.55 

700228 37.87 78.1 57.85 63.51 

700232 71.74 76.21 62.68 72.94 

700233 75.6 87.34 52.12 93.16 

700234 60.33 75.9 53.87 90.85 
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700235 54.5 70.85 68.2 87.89 

700237 76.97 82.74 49.04 92.24 

700238 59.77 75.99 44.07 95.38 

700240 55.3 77.85 -10.09 72.93 

700244 64.71 82.31 59.65 87.58 

700248 114.23 97.38 91.39 77.39 

700250 69.39 75.37 72.21 84.35 

700251 70.07 74.82 70.83 90.22 

700252 91.43 87.8 99.63 119.37 

700253 81.52 85.92 64.26 88.81 

700256 75.74 87.69 73.47 96.32 

700257 94.96 88.28 59.5 91.84 

700259 95.63 88.57 56.7 101.97 

700267 101.05 84.78 56.9 86.27 

700272 68.56 84.25 57.74 88.09 

700278 8.46 74.42 63.63 91.27 

700280 31.75 76.02 67.92 114.02 

700292 114.68 96.36 105.07 91.88 

700293 112 96.2 87.1 74.63 

700297 89.51 85.72 97.03 103.66 

700298 92.73 82.6 103.6 115.63 

700301 85.14 84.14 102.06 113.43 

700302 73.13 76.89 97.99 127.8 

700303 95.38 82.13 116.84 106.49 

700305 50.61 80.26 91.83 116.07 

700306 56.42 81.2 90.47 87.17 

700307 80.83 80.86 103.18 106.77 

700309 75.23 89.42 94.06 93.1 

700311 84.99 88.56 100.04 106.04 

700312 10.78 89.7 100.82 95.73 

700313 99.4 92.99 121.62 101.17 

700314 71.11 77.02 150.58 105.4 

700316 82.39 92.55 50.19 116.84 

700317 67.03 93.41 45.19 120.16 

700321 79.5 81.55 59.2 111.32 

700324 98.07 98.88 47.11 122.05 

700325 73.45 76.93 71.17 93.91 

700326 37.46 63.08 26.99 -8.93 

700327 75.17 89.27 45.65 96.64 

700329 102.77 93.63 56.47 88.9 

700331 66.46 91.85 91.16 77.02 

700333 94.94 95.41 104.75 72.63 
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700334 118.78 106.18 60.68 85.02 

700337 93.66 99.71 52.26 96.77 

700340 97.93 99.71 61.51 88.17 

700342 112.38 101.1 55.43 106.96 

700344 85.46 102.23 53.34 136.15 

700017 90.16 103.26 52.75 118.29 

700352 85.88 93.78 46.76 119.37 

700353 115.93 98.47 50.9 129.84 

700354 146.43 102.77 57.17 124.48 

700355 117.23 105.72 57.43 107.84 

700356 127.12 106.45 83.49 105.1 

700358 107.73 106.44 93.42 96.96 

700359 117.55 100.1 114.77 115.83 

700360 141.3 99.85 68.68 93.07 

700367 22.5 91.37 52.91 110.64 

700369 85.78 93.17 45.54 132.41 

700370 85.91 90.67 91.54 131.48 

700372 95.82 91.79 68.91 108.53 

700376 88 88.83 91.74 99.98 

700377 84.73 102.43 89.68 77.47 

700381 100.21 91.47 80.62 92.84 

700383 85.92 88.47 66.5 74.63 

700384 73.17 90.84 75.99 108.1 

700385 40.46 90.14 86.69 75.55 

700387 36.5 81.96 97.96 73.42 

700388 53.44 86.91 92.37 76.78 

700389 112.55 103.02 92.02 82.04 

700392 121.93 100.94 112.23 73.19 

700394 127.73 105.3 97.95 82.86 

700396 99.32 98.92 112 71.18 

700398 96.06 98.96 99.26 65.9 

700403 118.65 102.3 108.63 56.24 

700407 118.59 100.98 110.06 55.39 

700719 109.36 106.2 84.98 52.45 

700720 110.8 98.84 71.17 61.73 

700725 82.97 98.53 80.79 85.29 

700726 102.7 102.46 83.4 71.12 

700727 127 107.39 81.45 82.77 

700728 111.23 107.27 69.79 107.29 

700729 114.14 101.54 70.33 86.69 

700730 113.98 105.32 77.57 74.01 

700734 120.04 108.04 83.64 103.93 
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700735 112.23 101.85 88.63 84.71 

700736 43.77 93.53 48.91 124.92 

700738 88.18 101.83 105.92 124.25 

700739 101.82 93.22 90.75 97.9 

700743 101.13 102.52 78.18 57.54 

700746 63.21 97.33 102.2 65.04 

700752 26.29 94.68 57.86 69.37 

700753 65.68 97.41 79.38 67.22 

700754 45.58 82.44 76.49 59.41 

700756 15.57 44.03 2.93 53.74 

700761 57.42 97.03 77.99 67.35 

700763 101.31 102.82 105.44 91.47 

700765 84.05 99.2 111.47 117.42 

700767 79.92 100.94 96.42 113.26 

700770 102 99.38 109.9 99.57 

700772 116.13 107.51 83.73 93.09 

700774 98.84 99.95 76.73 75.16 

700775 103.31 104.68 76.65 75.52 

700776 62.69 96.38 81.6 69.82 

700784 79.52 98.87 86.08 75.34 

700790 62.78 96.58 89 63.31 

700793 103.34 98.24 91.72 67.04 

700794 57.18 90.59 81.04 59.26 

700800 85.36 86.45 77.8 62.75 

700801 93.39 86.36 78.36 69.46 

700804 96.45 92.1 124.3 69.86 

700806 62.97 89.67 87.04 91.4 

700814 71.5 90.08 100.69 120.77 

700815 65.48 86.24 104.13 142.27 

700819 48.91 83.66 57.1 74.42 

700820 64.21 86.12 98.56 75.5 

700822 48.34 104.29 92.8 60.67 

700824 66.05 85.86 93 80.51 

700825 61.84 82.97 101.37 72.75 

700828 68.55 86.19 54.8 73.16 

700835 87.68 87.73 80.54 68.09 

700842 68 90.87 84.87 79.39 

700845 91.89 101.49 123.67 116.07 

700847 68.74 101.74 85.41 93.84 

700850 77.5 103.98 83.8 72 

700852 97.8 105.34 90.85 86.72 

700854 99.54 100.98 85.6 88.31 
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700855 122.29 101.78 84.71 92.84 

700857 105.67 104.02 71.09 74.63 

700858 100.05 99.29 75.4 81.77 

700859 95.04 104.18 58.62 77.89 

700862 110.61 110.47 71.54 91.85 

700864 65.43 106.62 72.51 73.24 

700867 60.92 103.47 60.68 19.33 

700868 66.39 101.24 53.99 67.07 

700870 88.68 102.01 88.72 113.97 

700872 95.32 100.8 91.02 89.21 

700874 112.63 106.06 79.09 99.16 

700876 106.19 100.67 76.97 125.96 

700877 95.89 94.53 69.66 75.56 

700878 100.71 105.23 107.15 121.51 

700879 115.9 106.19 94.01 86.69 

700881 89.51 103.26 82.92 111.71 

700885 113.35 102.76 85.46 77.62 

700886 87.83 98.86 59.41 96.26 

700889 102.57 97.41 72.82 96.65 

700891 120.83 100.59 98.09 64.67 

700896 86.81 100.5 129.01 89.63 

700901 118.28 103.39 90.1 64.17 

700902 119.35 98.69 91.56 74.79 

700904 92.84 103.44 62.83 79.1 

700905 77.29 100.88 98.19 91.22 

700908 86.83 94.18 88.4 55.99 

700910 101.94 99.13 92.23 79.45 

700572 38.14 92.47 95.81 67.05 

700585 32.82 95.17 77.98 40.81 

700615 126.32 102.97 84.11 86.04 

700914 55.72 100.15 56.3 135.39 

700919 85.81 91.38 51.53 106.86 

700920 109.05 103.31 82.29 58.82 

700921 104.35 94.48 64.02 110.08 

700924 84.82 94.22 83.51 102.2 

700927 83.96 100.85 55.83 76.19 

700930 82.8 94.14 55.49 82.26 

700932 97.23 98.22 79.81 118.63 

700935 84.37 94.34 83.07 90.18 

700937 75.91 94.06 57.39 107.64 

700939 81.07 89.06 75.53 96.27 

700942 78.91 91.4 62.94 72.04 
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700943 81.67 90.44 77.84 73.81 

700944 58.99 81.81 166.14 73.74 

700945 79.34 86.71 118.08 61.49 

700947 88.42 93.44 56.35 127.93 

700949 98.39 103.99 81.16 76.43 

700950 106.34 103.3 108.09 76.41 

700952 87.66 97.07 95.1 97.96 

700954 56.86 102.45 80.16 61.72 

700960 30.35 87.32 62.48 68.7 

700961 78.46 89.09 68.17 87.47 

700965 109.68 99.72 114.79 75.67 

700966 83.29 76.54 77.5 85.15 

700967 82.93 87.71 65.4 130.92 

700968 109.32 116.05 86.43 96.03 

700969 102.84 114.8 66.14 83 

700971 108.5 101.12 102.16 80.8 

700983 99.31 92.76 53.95 110.71 

700984 82.43 96.46 61.1 122.06 

700987 86.3 90.39 56.97 102.34 

700989 81.88 95.6 50.1 101.39 

700990 92.33 95.21 53.54 74.9 

700992 54.08 102.23 161.84 73.66 

700993 73.85 94.89 90.43 75.03 

700997 73.16 88.51 75.08 72.09 

701000 35.34 95.33 118.55 74.54 

701001 54.99 94.82 63.11 71.98 

701002 42.78 90.3 70.97 123.28 

701003 45.16 99.75 73.58 113.37 

701004 52.46 100.86 71.1 136.11 

701006 51.39 97.09 70.81 78.63 

701008 72.45 89.03 67.44 73.77 

701009 49.26 76.61 79.98 81.06 

701011 76.75 95 86 77.55 

701013 73.11 86.56 79.6 60.9 

701015 88.63 106.85 96.23 103.32 

701016 60.87 87.02 182.84 68.45 

701018 58.65 93.83 153.48 97.1 

701020 52.07 87.09 83.91 67.04 

700122 77.21 87.54 64.77 88.51 

701024 113.58 100.91 104.95 142.11 

701025 58.4 87 90.47 108.46 

701026 73.54 87.81 80.36 141.89 
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701027 75.99 88.12 84.7 131.44 

701028 71.85 86.75 73.29 100.58 

701029 73.63 87.34 42.59 77.13 

701030 79.71 91.25 67.19 85.82 

701032 66.32 91.04 70.37 74.65 

701034 73.04 88.41 78.69 83.16 

701035 53.26 89.07 114.51 74.45 

701038 69.44 89.6 69.45 78.45 

701039 50.69 77.23 67.12 75.18 

701040 91.89 108.22 66.92 138.54 

701042 62.13 83.77 102.97 108.1 

701043 59.69 108 56.39 75.55 

701044 49.6 92.56 -4.46 79.26 

701045 61.74 88.83 42.43 77.12 

701046 90.4 113.3 47.68 84.12 

701047 53.02 88.16 71.32 72.94 

701048 10.49 86.57 70.34 83.73 

701050 66.89 98.01 59.67 71.13 

701051 121.26 116.17 104.1 71.86 

701052 105.58 107.14 92.24 95.35 

701055 103.45 107.83 104.25 105.48 

701057 47.71 80.34 108.19 86.32 

701058 116.48 116.09 101.57 75.3 

701060 96.13 109.69 74.82 101.06 

701062 70.8 91.09 80.9 127.78 

701064 81.01 96.54 65.39 81.24 

701065 77.61 97.04 83.87 64.38 

701066 77.71 90.8 76.19 67.63 

701069 84.4 90.23 97.79 63.45 

701071 54.29 106.23 64.94 95.89 

701072 49.22 108.47 34.69 100.2 

701074 70.15 103.74 40.5 97.11 

701076 92.04 107.1 45.46 99.41 

701079 53.41 108.53 69.16 87.84 

701080 41.74 102.96 58.86 57.2 

701082 -24.64 76.98 67.78 4.98 

701083 102.83 103.4 89.1 58.19 

701085 87.06 103.33 49.68 67.35 

701086 106.19 115.63 96.29 61.77 

701088 -6.02 99.91 81.13 63.04 

701089 78.55 105.35 77.97 86.72 

701092 90.65 100.42 49.46 71.64 
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701093 92.04 99 48.83 62.73 

701095 102.13 106.49 42.67 71.26 

701098 110.64 103.51 36.1 90.67 

701099 106.2 106.04 38.81 69.37 

701100 105.5 106.27 47.85 94.89 

701101 94.22 104.06 74.86 67.32 

701103 106.18 104.13 56.27 98.79 

701104 100.23 103.34 51.72 96.25 

701107 101.34 105.47 76.01 98.85 

701109 103.56 101.9 79.19 127.66 

701111 84.82 103.85 59.21 67.35 

701112 83.59 102.27 78.33 121.54 

701113 56.75 99.42 80.47 108.41 

701115 36.74 105.6 78.35 97.57 

701116 49.75 97.67 48.03 64.58 

701117 83.99 101.91 70.26 72.31 

701119 113.85 99.36 96.93 74.03 

701121 48.05 100.95 85.32 69.52 

701124 104.2 98.56 52.46 98.84 

701126 115.37 96.34 101.82 85.58 

701127 86.94 98.97 104.14 76.71 

701132 52.38 101.34 40.74 115.63 

701133 103.28 91.52 44.35 117.49 

701134 77.32 102.08 64.91 134.46 

701135 79.75 93.62 55.63 96.02 

701136 90.29 96.79 104.08 83 

701137 113.38 99.02 109.8 73.37 

701139 103.56 97.58 103.97 64.22 

701142 99.96 95.07 96.1 78.53 

701143 24.76 93.2 91.37 81.1 

701145 84.94 95.97 48.85 3.43 

701147 92.66 95.12 63.98 97.77 

701148 82.53 95.56 57.46 102.45 

701150 89.88 95.2 64.95 76.63 

701152 18.54 88.89 43.76 51.46 

701153 95.51 99.98 57.2 66.56 

701154 6.69 66.49 -0.64 14.74 

701155 5.74 55.07 -0.28 -0.81 

701156 8.04 93.72 52.74 24.25 

701157 8.97 51.93 0.07 -1.82 

701158 4.19 48.96 -1.72 -1.34 

701159 3.41 83.73 1.54 13.68 
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701160 97.85 95.01 84.73 74.2 

701161 70.9 90.14 52.68 63.22 

701162 72.63 89.02 62.64 82.22 

701163 84.63 93.96 74.14 67.33 

701164 87.27 99.11 81.2 72.94 

701170 85.5 96.18 51.27 63.92 

701171 89.95 95.53 52.33 102.22 

701173 93.97 98.87 77.65 85.9 

701174 74.68 95.2 73.97 130.55 

701176 94.4 92.85 83.64 86.48 

700522 102.33 94.52 79.27 52.52 

701178 84.34 102.83 81.75 89.34 

701182 68.6 95.45 73.1 72.49 

701183 94.37 99.11 88.48 83.18 

701185 88.88 94.36 69.42 99.04 

701187 93.81 95.81 89.23 66.42 

701189 90.43 94.53 80.22 91.56 

701190 92.23 98.26 90.23 105.56 

701191 86.68 98.51 101.38 97.9 

701193 77.12 88.72 50.39 85.58 

701195 44.84 90.92 59.87 73.57 

701197 77.49 95.73 59.74 76.46 

701199 54.22 89.91 96.75 78.66 

701200 86.58 95.11 94.62 95.79 

701201 98.05 95.92 97.01 72.77 

701202 91.65 94.7 102.34 74.69 

701207 80.06 86.65 96.86 78.86 

701209 87.9 83.75 99.23 75.3 

701210 4.35 77.69 23.3 69.45 

701211 65.68 87.27 45.7 78.36 

701212 2.63 84.71 1.47 77.12 

701213 80.06 86.46 72.76 74.3 

701214 86.16 85.88 55.58 73.77 

701215 82.57 85.97 56.87 88.48 

701219 64.46 79.8 63.31 78.39 

701220 63.01 87.79 60.3 117.7 

701221 48.42 84.27 139.5 103.55 

701223 47.97 105.74 77.98 106.29 

701224 93.38 105.96 81.67 81.32 

700982 89.96 108.53 86.44 117.57 

701228 71.56 105.07 78.48 56.52 

701229 100.78 107.32 89.19 57.11 
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701231 103.33 108.32 108.15 90.58 

701232 105.14 105.44 88.74 64.93 

701233 78.45 101.52 76.64 62.84 

701234 101.48 101 93.12 51.2 

700608 102.95 102.89 92.08 68.11 

701237 87.62 99.42 111.77 82.09 

701238 52.49 95.79 54.37 114.58 

701239 77.52 103.74 35.86 60.84 

701240 80.07 100.65 44.16 81.38 

701241 81.12 96.52 15.02 -1.91 

701242 74.56 100.97 54.5 76.88 

701244 26.72 96.71 24.43 79.9 

701248 95.12 100.24 19.15 60.9 

701249     -1.71 -7.6 

701250     2.77 -3.13 

701251     67.32 22.36 

701252     -0.18 -2.16 

701253     1.9 90.28 

701256     -3.07 -2.12 

701259     0.49 -0.72 

701262     -1.02 2.2 

701273     -0.14 -0.09 

701286     -1.54 79.71 
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Appendix 2 (Chapter 4) 

Multiple sequence alignment for each fragment of LmMT gene. 

A summary of the 12 clones for each fragment of LmMT sequenced compared LmxM.13.1530. The 

WT-prefix is for the pre-selection wildtype and the R-prefix for 700022-selected parasites. The HH 

code uniquely identifies the PCR clone sequenced. 

 

Fragment 1 (589bp) 
 
LmxM.13.1530      CCGCTGAATCCGGCGACAGC ATTGCGCCGCTGTCCTTCGTGCTCCTGGTGGCAATCATC 360 

WT- HH41           CCGCTGAATCCGGCGACAGCATTGCGCCGCTGTCCTTCGTGCTCCTGGTGGCAATCATC 360 

WT- HH42           CCGCTGAATCCGGCGACAGCGATGCGCCGCTGTCCTTCGTGCTCCTGGTGGCAATCATC 360 

WT- HH43           CCGCTGAATCCGGCGACAGCGATGCGCCGCTGTCCTTCGTGCTCCTGGTGGCAATCATC 360 

WT- HH44           CCGCTGAATCCGGCGACAGCGATGCGCCGCTGTCCTTCGTGCTCCTGGTGGCAATCATC 360 

WT- HH48           CCGCTGAATCCGGCGACAGCGTTGCGCCGCTGTCCTTCGTGCTCCTGGTGGCAATCATC 360 

WT- HH49           CCGCTGAATCCGGCGACAGCATTGCGCCGCTGTCCTTCGTGCTCCTGGTGGCAATCATC 360 

R-HH5             CCGCTGAATCCGGCGACAGCGATTGCGCCGCTGTCCTTCGTGCTCCTGGTGGCAATCATC 360 

R-HH6             CCGCTGAATCCGGCGACAGCGATTGCGCCGCTGTCCTTCGTGCTCCTGGTGGCAATCATC 360 

R-HH8             CCGCTGAATCCGGCGACAGCGATTGCGCCGCTGTCCTTCGTGCTCCTGGTGGCAATCATC 360 

R-HH9             CCGCTGAATCCGGCGACAGCGATTGCGCCGCTGTCCTTCGTGCTCCTGGTGGCAATCATC 360 

R-HH10            CCGCTGAATCCGGCGACAGCGATTGCGCCGCTGTCCTTCGTGCTCCTGGTGGCAATCATC 360 

R-HH12            CCGCTGAATCCGGCGACAGCGATTGCGCCGCTGTCCTTCGTGCTCCTGGTGGCAATCATC 360 

                  ************************************************************ 

 

LmxM.13.1530      AAGGAGGCTGTGGAGGACATCAAGCGACATCGGGCCGATAACCGTGCCAACTCGGTTTTA 420 

WT- HH41          AAGGAGGCTGTGGAGGACATCAAGCGACATCGGGCCGATAACCGTGCCAACTCGGTTTTA 420 

WT- HH42          AAGGAGGCTGTGGAGGACATCAAGCGACATCGGGCCGATAACCGTGCCAACTCGGTTTTA 420 

WT- HH43          AAGGAGGCTGTGGAGGACATCAAGCGACATCGGGCCGATAACCGTGCCAACTCGGTTTTA 420 

WT- HH44          AAGGAGGCTGTGGAGGACATCAAGCGACATCGGGCCGATAACCGTGCCAACTCGGTTTTA 420 

WT- HH48          AAGGAGGCTGTGGAGGACATCAAGCGACATCGGGCCGATAACCGTGCCAACTCGGTTTTA 420 

WT- HH49          AAGGAGGCTGTGGAGGACATCAAGCGACATCGGGCCGATAACCGTGCCAACTCGGTTTTA 420 

R-HH5             AAGGAGGCTGTGGAGGACATCAAGCGACATCGGGCCGATAACCGCGCCAACTCGGTTTTA 420 

R-HH6             AAGGAGGCTGTGGAGGACATCAAGCGACATCGGGCCGATAACCGTGCCAACTCGGTTTTA 420 

R-HH8             AAGGAGGCTGTGGAGGACATCAAGCGACATCGGGCCGATAACCGTGCCAACTCGGTTTTA 420 

R-HH9             AAGGAGGCTGTGGAGGACATCAAGCGACATCGGGCCGATAACCGTGCCAACTCGGTTTTA 420 

R-HH10            AAGGAGGCTGTGGAGGACATCAAGCGACATCGGGCCGATAACCGTGCCAACTCGGTTTTA 420 

R-HH12            AAGGAGGCTGTGGAGGACATCAAGCGACATCGGGCCGATAACCGTGCCAACTCGGTTTTA 420 

                  ******************************************** *************** 

 

LmxM.13.1530      ACGCAGGTAATGCGAAAAGGCAAGCTCGTCTCGGTGCACAGCAAGGACATCCACCCTGGT 480 

WT- HH41          ACGCAGGTAATGCGAAAAGGCAAGCTCGTCTCGGTGCACAGCAAGGACATCCACCCTGGT 480 

WT- HH42          ACGCAGGTAATGCGAAAAGGCAAGCTCGTCTCGGTGCACAGCAAGGACATCCACCCTGGT 480 

WT- HH43          ACGCAGGTAATGCGAAAAGGCAAGCTCGTCTCGGTGCACAGCAAGGACATCCACCCTGGT 480 

WT- HH44          ACGCAGGTAATGCGAAAAGGCAAGCTCGTCTCGGTGCACAGCAAGGACATCCACCCTGGT 480 

WT- HH48          ACGCAGGTAATGCGAAAAGGCAAGCTCGTCTCGGTGCACAGCAAGGACATCCGCCCTGGT 480 

WT- HH49          ACGCAGGTAATGCGAAAAGGCAAGCTCGTCTCGGTGCACAGCAAGGACATCCACCCTGGT 480 

R-HH5             ACGCAGGTAATGCGAAAAGGCAAGCTCGTCTCGGTGCACAGCAAGGACATCCACCCTGGT 480 

R-HH6             ACGCAGGTAATGCGAAAAGGCAAGCTCGTCTCGGTGCACAGCAAGGACATCCACCCTGGT 480 

R-HH8             ACGCAGGTAATGCGAAAAGGCAAGCTCGTCTCGGTGCACAGCAAGGACATCCACCCTGGT 480 

R-HH9             ACGCAGGTAATGCGAAAAGGCAAGCTCGTCTCGGTGCACAGCAAGGACATCCACCCTGGT 480 

R-HH10            ACGCAGGTAATGCGAAAAGGCAAGCTCGTCTCGGTGCACAGCAAGGACATCCACCCTGGT 480 

R-HH12            ACGCAGGTAATGCGAAAAGGCAAGCTCGTCTCGGTGCACAGCAAGGACATCCACCCTGGT 480 

                  **************************************************** ******* 

 

LmxM.13.1530      GACGTCGTACGTATCAAGAACAGTGAGGAGGTGCACGCCGATGTCGTCATGCTCTCCTCG 540 

WT- HH41          GACGTCGTACGTATCAAGAACAGTGAGGAGGTGCACGCCGATGTCGTCATGCTCTCCTCG 540 

WT- HH42          GACGTCGTACGTATCAAGAACAGTGAGGAGGTGCACGCCGATGTCGTCATGCTCTCCTCG 540 

WT- HH43          GACGTCGTACGTATCAAGAACAGTGAGGAGGTGCACGCCGATGTCGTCATGCTCTCCTCG 540 

WT- HH44          GACGTCGTACGTATCAAGAACAGTGAGGAGGTGCACGCCGATGTCGTCATGCTCTCCTCG 540 

WT- HH48          GACGTCGTACGTATCAAGAACAGTGAGGAGGTGCACGCCGATGTCGTCATGCTCTCCTCG 540 

WT- HH49          GACGTCGTACGTATCAAGAACAGTGAGGAGGTGCACGCCGATGTCGTCATGCTCTCCTCG 540 

R-HH5             GACGTCGTACGTATCAAGAACAGTGAGGAGGTGCACGCCGATGTCGTCATGCTCTCCTCG 540 

R-HH6             GACGTCGTACGTATCAAGAACAGTGAGGAGGTGCACGCCGATGTCGTCATGCTCTCCTCG 540 

R-HH8             GACGTCGTACGTATCAAGAACAGTGAGGAGGTGCACGCCGATGTCGTCATGCTCTCCTCG 540 

R-HH9             GACGTCGTACGTATCAAGAACAGTGAGGAGGTGCACGCCGATGTCGTCATGCTCTCCTCG 540 
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R-HH10            GACGTCGTACGTATCAAGAACAGTGAGGAGGTGCACGCCGATGTCGTCATGCTCTCCTCG 540 

R-HH12            GACGTCGTACGTATCAAGAACAGTGAGGAGGTGCACGCCGATGTCGTCATGCTCTCCTCG 540 

                  ************************************************************ 

 

LmxM.13.1530      TCCCTCGAGGAGGGACAGGCCTTTATAGACACGTGCAACCTGGACGGCGAGTCGAACCTG 600 

WT- HH41          TCCCTCGAGGAGGGACAGGCCTTTATAGACACGTGCAACCTGGACGGCGAGTCGAACCTG 600 

WT- HH42          TCCCTCGAGGAGGGACAGGCCTTTATAGACACGTGCAACCTGGACGGCGAGTCGAACCTG 600 

WT- HH43          TCCCTCGAGGAGGGACAGGCCTTTATAGACACGTGCAACCTGGACGGCGAGTCGAACCTG 600 

WT- HH44          TCCCTCGAGGAGGGACAGGCCTTTATAGACACGTGCAACCTGGACGGCGAGTCGAACCTG 600 

WT- HH48          TCCCTCGAGGAGGGACAGGCCTTTATAGACACGTGCAACCTGGACGGCGAGTCGAACCTG 600 

WT- HH49          TCCCTCGAGGAGGGACAGGCCTTTATAGACACGTGCAACCTGGACGGCGAGTCGAACCTG 600 

R-HH5             TCCCTCGAGGAGGGACAGGCCTTTATAGACACGTGCAACCTGGACGGCGAGTCGAACCTG 600 

R-HH6             TCCCTCGAGGAGGGACAGGCCTTTATAGACACGTGCAACCTGGACGGCGAGTCGAACCTG 600 

R-HH8             TCCCTCGAGGAGGGACAGGCCTTTATAGACACGTGCAACCTGGACGGCGAGTCGAACCTG 600 

R-HH9             TCCCTCGAGGAGGGACAGGCCTTTATAGACACGTGCAACCTGGACGGCGAGTCGAACCTG 600 

R-HH10            TCCCTCGAGGAGGGACAGGCCTTTATAGACACGTGCAACCTGGACGGCGAGTCGAACCTG 600 

R-HH12            TCCCTCGAGGAGGGACAGGCCTTTATAGACACGTGCAACCTGGACGGCGAGTCGAACCTG 600 

                  ************************************************************ 

 

LmxM.13.1530      AAGCCACGCAAGGCTTTGGAGGTGACCTGGGGCCTCTGCGAAATTGAGACAATCATGAAT 660 

WT- HH41          AAGCCACGCAAGGCTTTGGAGGTGACCTGGGGCCTCTGCGAAATTGAGACAATCATGAAT 660 

WT- HH42          AAGCCACGCAAGGCTTTGGAGGTGACCTGGGGCCTCTGCGAAATTGAGACAATCATGAAT 660 

WT- HH43          AAGCCACGCAAGGCTTTGGAGGTGACCTGGGGCCTCTGCGAAATTGAGACAATCATGAAT 660 

WT- HH44          AAGCCACGCAAGGCTTTGGAGGTGACCTGGGGCCTCTGCGAAATTGAGACAATCATGAAT 660 

WT- HH48          AAGCCACGCAAGGCTTTGGAGGTGACCTGGGGCCTCTGCGAAATTGAGACAATCATGAAT 660 

WT- HH49          AAGCCACGCAAGGCTTTGGAGGTGACCTGGGGCCTCTGCGAAATTGAGACAATCATGAAT 660 

R-HH5             AAGCCACGCAAGGCTTTGGAGGTGACCTGGGGCCTCTGCGAAATTGAGACAATCATGAAT 660 

R-HH6             AAGCCACGCAAGGCTTTGGAGGTGACCTGGGGCCTCTGCGAAATTGAGACAATCATGAAT 660 

R-HH8             AAGCCACGCAAGGCTTTGGAGGTGACCTGGGGCCTCTGCGAAATTGAGACAATCATGAAT 660 

R-HH9             AAGCCACGCAAGGCTTTGGAGGTGACCTGGGGCCTCTGCGAAATTGAGACAATCATGAAT 660 

R-HH10            AAGCCACGCAAGGCTTTGGAGGTGACCTGGGGCCTCTGCGAAATTGAGACAATCATGAAT 660 

R-HH12            AAGCCACGCAAGGCTTTGGAGGTGACCTGGGGCCTCTGCGAAATTGAGACAATCATGAAT 660 

                  ************************************************************ 

 

LmxM.13.1530      ACCACAGCTGTGTTGCACACGAGCAAGCCAGACCCAGGGTTGCTGTCGTGGACGGGGCTG 720 

WT- HH41          ACCACAGCTGTGTTGCACACGAGCAAGCCAGACCCAGGGTTGCTGTCGTGGACGGGGCTG 720 

WT- HH42          ACCACAGCTGTGTTGCACACGAGCAGGCCAGACCCAGGGTTGCTGTCGTGGACGGGGCTG 720 

WT- HH43          ACCACAGCTGTGTTGCACACGAGCAAGCCAGACCCAGGGTTGCTGTCGTGGACGGGGCTG 720 

WT- HH44          ACCACAGCTGTGTTGCACACGAGCAAGCCAGACCCAGGGTTGCTGTCGTGGACGGGGCTG 720 

WT- HH48          ACCACAGCTGTGTTGCACACGAGCAAGCCAGACCCAGGGTTGCTGTCGTGGACGGGGCTG 720 

WT- HH49          ACCACAGCTGTGTTGCACACGAGCAAGCCAGACCCAGGGTTGCTGTCGTGGACGGGGCTG 720 

R-HH5             ACCACAGCTGTGTTGCACACGAGCAAGCCAGACCCAGGGTTGCTGTCGTGGACGGGGCTG 720 

R-HH6             ACCACAGCTGTGTTGCACACGAGCAAGCCAGACCCAGGGTTGCTGTCGTGGACGGGGCTG 720 

R-HH8             ACCACAGCTGTGTTGCACACGAGCAAGCCAGACCCAGGGTTGCTGTCGTGGACGGGGCTG 720 

R-HH9             ACCACAGCTGTGTTGCACACGAGCAAGCCAGACCCAGGGTTGCTGTCGTGGACGGGGCTG 720 

R-HH10            ACCACAGCTGTGTTGCACACGAGCAAGCCAGACCCAGGGTTGCTGTCGTGGACGGGGCTG 720 

R-HH12            ACCACAGCTGTGTTGCACACGAGCAAGCCAGACCCAGGGTTGCTGTCGTGGACGGGGCTG 720 

                  ************************* ********************************** 

 

LmxM.13.1530      TTGGAGATCAATGGCGAGGAGCACGCACTCTCGCTGGACCAGTTCCTGTATCGCGGCTGC 780 

WT- HH41          TTGGAGATCAATGGCGAGGAGCACGCACTCTCGCTGGACCAGTTCCTGTATCGCGGCTGC 780 

WT- HH42          TTGGAGATCAATGGCGAGGAGCACGCACTCTCGCTGGACCAGTTCCTGTATCGCGGCTGC 780 

WT- HH43          TTGGAGATCAATGGCGAGGAGCACGCACTCTCGCTGGACCAGTTCCTGTATCGCGGCTGC 780 

WT- HH44          TTGGAGATCAATGGCGAGGAGCACGCACTCTCGCTGGACCAGTTCCTGTATCGCGGCTGC 780 

WT- HH48          TTGGAGATCAATGGCGAGGAGCACGCACTCTCGCTGGACCAGTTCCTGTATCGCGGCTGC 780 

WT- HH49          TTGGAGATCAATGGCGAGGAGCACGCACTCTCGCTGGACCAGTTCCTGTATCGCGGCTGC 780 

R-HH5             TTGGAGATCAATGGCGAGGAGCACGCACTCTCGCTGGACCAGTTCCTGTATCGCGGCTGC 780 

R-HH6             TTGGAGATCAATGGCGAGGAGCACGCACTCTCGCTGGACCAGTTCCTGTATCGCGGCTGC 780 

R-HH8             TTGGAGATCAATGGCGAGGAGCACGCACTCTCGCTGGACCAGTTCCTGTATCGCGGCTGC 780 

R-HH9             TTGGAGATCAATGGCGAGGAGCACGCACTCTCGCTGGACCAGTTCCTGTATCGCGGCTGC 780 

R-HH10            TTGGAGATCAATGGCGAGGAGCACGCACTCTCGCTGGACCAGTTCCTGTATCGCGGCTGC 780 

R-HH12            TTGGAGATCAATGGCGAGGAGCACGCACTCTCGCTGGACCAGTTCCTGTATCGCGGCTGC 780 

                  ************************************************************ 

 

LmxM.13.1530      GTGTTACGCAACACGGACTGGGCGTGGGGCATGGTTGCCTACGCAGGTGTCGACACGAAG 840 

WT- HH41          GTGTTACGCAACACGGACTGGGCGTGGGGCATGGTTGCCTACGCAGGTGTCGACACGAAG 840 

WT- HH42          GTGTTACGCAACACGGACTGGGCGTGGGGCATGGTTGCCTACGCAGGTGTCGACACGAAG 840 

WT- HH43          GTGTTACGCAACACGGACTGGGCGTGGGGCATGGTTGCCTACGCAGGTGTCGACACGAAG 840 

WT- HH44          GTGTTACGCAACACGGACTGGGCGTGGGGCATGGTTGCCTACGCAGGTGTCGACACGAAG 840 

WT- HH48          GTGTTACGCAACACGGACTGGGCGTGGGGCATGGTTGCCTACGCAGGTGTCGACACGAAG 840 

WT- HH49          GTGTTACGCAACACGGACTGGGCGTGGGGCATGGTTGCCTACGCAGGTGTCGACACGAAG 840 

R-HH5             GTGTTACGCAACACGGACTGGGCGTGGGGCATGGTTGCCTACGCAGGTGTCGACACGAAG 840 

R-HH6             GTGTTACGCAACACGGACTGGGCGTGGGGCATGGTTGCCTACGCAGGTGTCGACACGAAG 840 

R-HH8             GTGTTACGCAACACGGACTGGGCGTGGGGCATGGTTGCCTACGCAGGTGTCGACACGAAG 840 

R-HH9             GTGTTACGCAACACGGACTGGGCGTGGGGCATGGTTGCCTACGCAGGTGTCGACACGAAG 840 

R-HH10            GTGTTACGCAACACGGACTGGGCGTGGGGCATGGTTGCCTACGCAGGTGTCGACACGAAG 840 



 304 
 

R-HH12            GTGTTACGCAACACGGACTGGGCGTGGGGCATGGTTGCCTACGCAGGTGTCGACACGAAG 840 

                  ************************************************************ 

 

LmxM.13.1530      CTGTTCCGAAACTTGAAGCCAAAACCGCCAAAGTCGTCGAACCTCGACCGCAAGCTGAAC 900 

WT- HH41          CTGTTCCGAAACTTGAAGCCAAAACCGCCAAAGTCGTCGAACCTCGACCGCAAGCTGAAC 900 

WT- HH42          CTGTTCCGAAACTTGAAGCCAAAACCGCCAAAGTCGTCGAACCTCGACCGCAAGCTGAAC 900 

WT- HH43          CTGTTCCGAAACTTGAAGCCAAAACCGCCAAAGTCGTCGAACCTCGACCGCAAGCTGAAC 900 

WT- HH44          CTGTTCCGAAACTTGAAGCCAAAACCGCCAAAGTCGTCGAACCTCGACCGCAAGCTGAAC 900 

WT- HH48          CTGTTCCGAAACTTGAAGCCAAAACCGCCAAAGTCGTCGAACCTCGACCGCAAGCTGAAC 900 

WT- HH49          CTGTTCCGAAACTTGAAGCCAAAACCGCCAAAGTCGTCGAACCTCGACCGCAAGCTGAAC 900 

R-HH5             CTGTTCCGAAACTTGAAGCCAAAACCGCCAAAGTCGTCGAACCTCGACCGCAAGCTGAAC 900 

R-HH6             CTGTTCCGAAACTTGAAGCCAAAACCGCCAAAGTCGTCGAACCTCGACCGCAAGCTGAAC 900 

R-HH8             CTGTTCCGAAACTTGAAGCCAAAACCGCCAAAGTCGTCGAACCTCGACCGCAAGCTGAAC 900 

R-HH9             CTGTTCCGAAACTTGAAGCCAAAACCGCCAAAGTCGTCGAACCTCGACCGCAAGCTGAAC 900 

R-HH10            CTGTTCCGAAACTTGAAGCCAAAACCGCCAAAGTCGTCGAACCTCGACCGCAAGCTGAAC 900 

R-HH12            CTGTTCCGAAACTTGAAGCCAAAACCGCCAAAGTCGTCGAACCTCGACCGCAAGCTGAAC 900 

                  ************************************************************ 

 

LmxM.13.1530      TACTTTATCATAGCC  915 

WT- HH41          TACTTTATCATAGCC  915 

WT- HH42          TACTTTATCATAGCC  915 

WT- HH43          TACTTTATCATAGCC  915 

WT- HH44          TACTTTATCATAGCC  915 

WT- HH48          TACTTTATCATAGCC  915 

WT- HH49          TACTTTATCATAGCC  915 

R-HH5             TACTTTATCATAGCC  915 

R-HH6             TACTTTATCATAGCC  915 

R-HH8             TACTTTATCATAGCC  915 

R-HH9             TACTTTATCATAGCC  915 

R-HH10            TACTTTATCATAGCC  915 

R-HH12            TACTTTATCATAGCC  915 

                                   *************** 
 

 
Fragment 2 (1013bp) 
 
 

LmxM.13.1530      C CCAGAACATAACGCTGTGGGGGTACCGTTACTTGAGCTATTTCATTTTGCTGAGCTAC 1080 

WT-HH19             CCAGAACATAACGCTGTGGGGGTACCGTTACTTGAGCTATTTCATTTTGCTGAGCTAC 1080 

WT-HH21             CCAGAACATAACGCTGTGGGGGTACCGTTACTTGAGCTATTTCATTTTGCTGAGCTAC 1080 

WT-HH22             CCAGAACATAACGCTGTGGGGGTACCGTTACTTGAGCTATTTCATTTTGCTGAGCTAC 1080 

WT-HH23             CCAGAACATAACGCTGTGGGGGTACCGTTACTTGAGCTATTTCATTTTGCTGAGCTAC 1080 

WT-HH24             CCAGAACATAACGCTGTGGGGGTACCGTTACTTGAGCTATTTCATTTTGCTGAGCTAC 1080 

WT-HH25             CCAGAACATAACGCTGTGGGGGTACCGTTACTTGAGCTATTTCATTTTGCTGAGCTAC 1080 

R-HH28              CCAGAACATAACGCTGTGGGGGTACCGTTACTTGAGCTATTTCATTTTGCTGAGCTAC 1080 

R-HH29              CCAGAACATAACGCTGTGGGGGTACCGTTACTTGAGCTATTTCATTTTGCTGAGCTAC 1080 

R-HH31              CCAGAACATAACGCTGTGGGGGTACCGTTACTTGAGCTATTTCATTTTGCTGAGCTAC 1080 

R-HH32              CCAGAACATAACGCTGTGGGGGTACCGTTACTTGAGCTATTTCATTTTGCTGAGCTAC 1080 

R-HH33              CCAGAACATAACGCTGTGGGGGTACCGTTACTTGAGCTATTTCATTTTGCTGAGCTAC 1080 

R-HH34              CCAGAACATAACGCTGTGGGGGTACCGTTACTTGAGCTATTTCATTTTGCTGAGCTAC 1080 

                    ********************************************************** 

 

LmxM.13.1530      TGCGTGCCCATCTCGCTGTTCGTCACGATTGAGTTGTGCAAGGTGATCCAGGCGCAGTGG 1140 

WT-HH19           TGCGTGCCCATCTCGCTGTTCGTCACGATTGAGTTGTGCAAGGTGATCCAGGCGCAGTGG 1140 

WT-HH21           TGCGTGCCCATCTCGCTGTTCGTCACGATTGAGTTGTGCAAGGTGATCCAGGCGCAGTGG 1140 

WT-HH22           TGCGTGCCCATCTCGCTGTTCGTCACGATTGAGTTGTGCAAGGTGATCCAGGCGCAGTGG 1140 

WT-HH23           TGCGTGCCCATCTCGCTGTTCGTCACGATTGAGTTGTGCAAGGTGATCCAGGCGCAGTGG 1140 

WT-HH24           TGCGTGCCCATCTCGCTGTTCGTCACGATTGAGTTGTGCAAGGTGATCCAGGCGCAGTGG 1140 

WT-HH25           TGCGTGCCCATCTCGCTGTTCGTCACGATTGAGTTGTGCAAGGTGATCCAGGCGCAGTGG 1140 

R-HH28            TGCGTGCCCATCTCGCTGTTCGTCACGATTGAGTTGTGCAAGGTGATCCAGGCGCAGTGG 1140 

R-HH29            TGCGTGCCCATCTCGCTGTTCGTCACGATTGAGTTGTGCAAGGTGATCCAGGCGCAGTGG 1140 

R-HH31            TGCGTGCCCATCTCGCTGTTCGTCACGATTGAGTTGTGCAAGGTGATCCAGGCGCAGTGG 1140 

R-HH32            TGCGTGCCCATCTCGCTGTTCGTCACGATTGAGTTGTGCAAGGTGATCCAGGCGCAGTGG 1140 

R-HH33            TGCGTGCCCATCTCGCTGTTCGTCACGATTGAGTTGTGCAAGGTGATCCAGGCGCAGTGG 1140 

R-HH34            TGCGTGCCCATCTCGCTGTTCGTCACGATTGAGTTGTGCAAGGTGATCCAGGCGCAGTGG 1140 

                  ************************************************************ 

 

LmxM.13.1530      ATGCGGATGGACTGCCTCATGATGGAGTACATGAACAACCGCTGGCGGCACTGCCAGCCG 1200 

WT-HH19           ATGCGGATGGACTGCCTCATGATGGAGTACATGAACAACCGCTGGCGGCACTGCCAGCCG 1200 

WT-HH21           ATGCGGATGGACTGCCTCATGATGGAGTACATGAACAACCGCTGGCGGCACTGCCAGCCG 1200 

WT-HH22           ATGCGGATGGACTGCCTCATGATGGAGTACATGAACAACCGCTGGCGGCACTGCCAGCCG 1200 

WT-HH23           ATGCGGATGGACTGCCTCATGATGGAGTACATGAACAACCGCTGGCGGCACTGCCAGCCG 1200 

WT-HH24           ATGCGGATGGACTGCCTCATGATGGAGTACATGAACAACCGCTGGCGGCACTGCCAGCCG 1200 

WT-HH25           ATGCGGATGGACTGCCTCATGATGGAGTACATGAACAACCGCTGGCGGCACTGCCAGCCG 1200 
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R-HH28            ATGCGGATGGACTGCCTCATGATGGAGTACATGAACAACCGCTGGCGGCACTGCCAGCCG 1200 

R-HH29            ATGCGGATGGACTGCCTCATGATGGAGTACATGAACAACCGCTGGCGGCACTGCCAGCCG 1200 

R-HH31            ATGCGGATGGACTGCCTCATGATGGAGTACATGAACAACCGCTGGCGGCACTGCCAGCCG 1200 

R-HH32            ATGCGGATGGACTGCCTCATGATGGAGTACATGAACAACCGCTGGCGGCACTGCCAGCCG 1200 

R-HH33            ATGCGGATGGACTGCCTCATGATGGAGTACATGAACAACCGCTGGCGGCACTGCCAGCCG 1200 

R-HH34            ATGCGGATGGACTGCCTCATGATGGAGTACATGAACAACCGCTGGCGGCACTGCCAGCCG 1200 

                  ************************************************************ 

 

LmxM.13.1530      AACACGTCGAACCTCAACGAGCAGCTGGCAATGGTGCGCTTCATCTTCAGCGACAAAACT 1260 

WT-HH19           AACACGTCGAACCTCAACGAGCAGCTGGCAATGGTGCGCTTCATCTTCAGCGACAAAACT 1260 

WT-HH21           AACACGTCGAACCTCAACGAGCAGCTGGCAATGGTGCGCTTCATCTTCAGCGACAAAACT 1260 

WT-HH22           AACACGTCGAACCTCAACGAGCAGCTGGCAATGGTGCGCTTCATCTTCAGCGACAAAACT 1260 

WT-HH23           AACACGTCGAACCTCAACGAGCAGCTGGCAATGGTGCGCTTCATCTTCAGCGACAAAACT 1260 

WT-HH24           AACACGTCGAACCTCAACGAGCAGCTGGCAATGGTGCGCTTCATCTTCAGCGACAAAACT 1260 

WT-HH25           AACACGTCGAACCTCAACGAGCAGCTGGCAATGGTGCGCTTCATCTTCAGCGACAAAACT 1260 

R-HH28            AACACGTCGAACCTCAACGAGCAGCTGGCAATGGTGCGCTTCATCTTCAGCGACAAAACT 1260 

R-HH29            AACACGTCGAACCTCAACGAGCAGCTGGCAATGGTGCGCTTCATCTTCAGCGACAAAACT 1260 

R-HH31            AACACGTCGAACCTCAACGAGCAGCTGGCAATGGTGCGCTTCATCTTCAGCGACAAAACT 1260 

R-HH32            AACACGTCGAACCTCAACGAGCAGCTGGCAATGGTGCGCTTCATCTTCAGCGACAAAACT 1260 

R-HH33            AACACGTCGAACCTCAACGAGCAGCTGGCAATGGTGCGCTTCATCTTCAGCGACAAAACT 1260 

R-HH34            AACACGTCGAACCTCAACGAGCAGCTGGCAATGGTGCGCTTCATCTTCAGCGACAAAACT 1260 

                  ************************************************************ 

 

LmxM.13.1530      GGGACGTTGACAGAGAACGTCATGAAGTTCAAGCAAGGCGACGCTCTCGGTATTCCGATC 1320 

WT-HH19           GGGACGTTGACAGAGAACGTCATGAAGTTCAAGCAAGGCGACGCTCTCGGTATTCCGATC 1320 

WT-HH21           GGGACGTTGACAGAGAACGTCATGAAGTTCAAGCAAGGCGACGCTCTCGGTATTCCGATC 1320 

WT-HH22           GGGACGTTGACAGAGAACGTCATGAAGTTCAAGCAAGGCGACGCTCTCGGTATTCCGATC 1320 

WT-HH23           GGGACGTTGACAGAGAACGTCATGAAGTTCAAGCAAGGCGACGCTCTCGGTATTCCGATC 1320 

WT-HH24           GGGACGTTGACAGAGAACGTCATGAAGTTCAAGCAAGGCGACGCTCTCGGTATTCCGATC 1320 

WT-HH25           GGGACGTTGACAGAGAACGTCATGAAGTTCAAGCAAGGCGACGCTCTCGGTATTCCGATC 1320 

R-HH28            GGGACGTTGACAGAGAACGTCATGAAGTTCAAGCAAGGCGACGCTCTCGGTATTCCGATC 1320 

R-HH29            GGGACGTTGACAGAGAACGTCATGAAGTTCAAGCAAGGCGACGCTCTCGGTATTCCGATC 1320 

R-HH31            GGGACGTTGACAGAGAACGTCATGAAGTTCAAGCAAGGCGACGCTCTCGGTATTCCGATC 1320 

R-HH32            GGGACGTTGACAGAGAACGTCATGAAGTTCAAGCAAGGCGACGCTCTCGGTATTCCGATC 1320 

R-HH33            GGGACGTTGACAGAGAACGTCATGAAGTTCAAGCAAGGCGACGCTCTCGGTATTCCGATC 1320 

R-HH34            GGGACGTTGACAGAGAACGTCATGAAGTTCAAGCAAGGCGACGCTCTCGGTATTCCGATC 1320 

                  ************************************************************ 

 

LmxM.13.1530      GAGGCCGACAGCCTGGACAAATGCATCGTGCAGCTGCGCAAGGAGGCCGAGTCGAAGAGG 1380 

WT-HH19           GAGGCCGACAGCCTGGACAAATGCATCGTGCAGCTGCGCAAGGAGGCCGAGTCGAAGAGG 1380 

WT-HH21           GAGGCCGACAGCCTGGACAAATGCATCGTGCAGCTGCGCAAGGAGGCCGAGTCGAAGAGG 1380 

WT-HH22           GAGGCCGACAGCCTGGACAAATGCATCGTGCAGCTGCGCAAGGAGGCCGAGTCGAAGAGG 1380 

WT-HH23           GAGGCCGACAGCCTGGACAAATGCATCGTGCAGCTGCGCAAGGAGGCCGAGTCGAAGAGG 1380 

WT-HH24           GAGGCCGACAGCCTGGACAAATGCATCGTGCAGCTGCGCAAGGAGGCCGAGTCGAAGAGG 1380 

WT-HH25           GAGGCCGACAGCCTGGACAAATGCATCGTGCAGCTGCGCAAGGAGGCCGAGTCGAAGAGG 1380 

R-HH28            GAGGCCGACAGCCTGGACAAATGCATCGTGCAGCTGCGCAAGGAGGCCGAGTCGAAGAGG 1380 

R-HH29            GAGGCCGACAGCCTGGACAAATGCATCGTGCAGCTGCGCAAGGAGGCCGAGTCGAAGAGG 1380 

R-HH31            GAGGCCGACAGCCTGGACAAATGCATCGTGCAGCTGCGCAAGGAGGCCGAGTCGAAGAGG 1380 

R-HH32            GAGGCCGACAGCCTGGACAAATGCATCGTGCAGCTGCGCAAGGAGGCCGAGTCGAAGAGG 1380 

R-HH33            GAGGCCGACAGCCTGGACAAATGCATCGTGCAGCTGCGCAAGGAGGCCGAGTCGAAGAGG 1380 

R-HH34            GAGGCCGACAGCCTGGACAAATGCATCGTGCAGCTGCGCAAGGAGGCCGAGTCGAAGAGG 1380 

                  ************************************************************ 

 

LmxM.13.1530      CTAGGCCCGCTGCAGGAGTACTTTCTCGCGTTGGCCTTGTGCAACACGGTTCAGCCCTTC 1440 

WT-HH19           CTAGGCCCGCTGCAGGAGTACTTTCTCGCGTTGGCCTTGTGCAACACGGTTCAGCCCTTC 1440 

WT-HH21           CTAGGCCCGCTGCAGGAGTACTTTCTCGCGTTGGCCTTGTGCAACACGGTTCAGCCCTTC 1440 

WT-HH22           CTAGGCCCGCTGCAGGAGTACTTTCTCGCGTTGGCCTTGTGCAACACGGTTCAGCCCTTC 1440 

WT-HH23           CTAGGCCCGCTGCAGGAGTACTTTCTCGCGTTGGCCTTGTGCAACACGGTTCAGCCCTTC 1440 

WT-HH24           CTAGGCCCGCTGCAGGAGTACTTTCTCGCGTTGGCCTTGTGCAACACGGTTCAGCCCTTC 1440 

WT-HH25           CTAGGCCCGCTGCAGGAGTACTTTCTCGCGTTGGCCTTGTGCAACACGGTTCAGCCCTTC 1440 

R-HH28            CTAGGCCCGCTGCAGGAGTACTTTCTCGCGTTGGCCTTGTGCAACACGGTTCAGCCCTTC 1440 

R-HH29            CTAGGCCCGCTGCAGGAGTACTTTCTCGCGTTGGCCTTGTGCAACACGGTTCAGCCCTTC 1440 

R-HH31            CTAGGCCCGCTGCAGGAGTACTTTCTCGCGTTGGCCTTGTGCAACACGGTTCAGCCCTTC 1440 

R-HH32            CTAGGCCCGCTGCAGGAGTACTTTCTCGCGTTGGCCTTGTGCAACACGGTTCAGCCCTTC 1440 

R-HH33            CTAGGCCCGCTGCAGGAGTACTTTCTCGCGTTGGCCTTGTGCAACACGGTTCAGCCCTTC 1440 

R-HH34            CTAGGCCCGCTGCAGGAGTACTTTCTCGCGTTGGCCTTGTGCAACACGGTTCAGCCCTTC 1440 

                  ************************************************************ 

 

LmxM.13.1530      AAGGACGACACGGATGGCCTCAGTGTCATCTACGAAGGCAGCTCCCCAGACGAGGTGGCG 1500 

WT-HH19           AAGGACGACACGGATGGCCTCAGTGTCATCTACGAAGGCAGCTCCCCAGACGAGGTGGCG 1500 

WT-HH21           AAGGACGACACGGATGGCCTCAGTGTCATCTACGAAGGCAGCTCCCCAGACGAGGTGGCG 1500 

WT-HH22           AAGGACGACACGGATGGCCTCAGTGTCATCTACGAAGGCAGCTCCCCAGACGAGGTGGCG 1500 

WT-HH23           AAGGACGACACGGATGGCCTCAGTGTCATCTACGAAGGCAGCTCCCCAGACGAGGTGGCG 1500 

WT-HH24           AAGGACGACACGGATGGCCTCAGTGTCATCTACGAAGGCAGCTCCCCAGACGAGGTGGCG 1500 

WT-HH25           AAGGACGACACGGATGGCCTCAGTGTCATCTACGAAGGCAGCTCCCCAGACGAGGTGGCG 1500 

R-HH28            AAGGACGACACGGATGGCCTCAGTGTCATCTACGAAGGCAGCTCCCCAGACGAGGTGGCG 1500 

R-HH29            AAGGACGACACGGATGGCCTCAGTGTCATCTACGAAGGCAGCTCCCCAGACGAGGTGGCG 1500 
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R-HH31            AAGGACGACACGGATGGCCTCAGTGTCATCTACGAAGGCAGCTCCCCAGACGAGGTGGCG 1500 

R-HH32            AAGGACGACACGGATGGCCTCAGTGTCATCTACGAAGGCAGCTCCCCAGACGAGGTGGCG 1500 

R-HH33            AAGGACGACACGGATGGCCTCAGTGTCATCTACGAAGGCAGCTCCCCAGACGAGGTGGCG 1500 

R-HH34            AAGGACGACACGGATGGCCTCAGTGTCATCTACGAAGGCAGCTCCCCAGACGAGGTGGCG 1500 

                  ************************************************************ 

 

LmxM.13.1530      CTGGTCGAGACCGCTGCTGCTGTCGGCTATCGCCTCATCAACCGTACGACAAAGTCCATC 1560 

WT-HH19           CTGGTCGAGACCGCTGCTGCTGTCGGCTATCGCCTCATCAACCGTACGACAAAGTCCATC 1560 

WT-HH21           CTGGTCGAGACCGCTGCTGCTGTCGGCTATCGCCTCATCAACCGTACGACAAAGTCCATC 1560 

WT-HH22           CTGGTCGAGACCGCTGCTGCTGTCGGCTATCGCCTCATCAACCGTACGACAAAGTCCATC 1560 

WT-HH23           CTGGTCGAGACCGCTGCTGCTGTCGGCTATCGCCTCATCAACCGTACGACAAAGTCCATC 1560 

WT-HH24           CTGGTCGAGACCGCTGCTGCTGTCGGCTATCGCCTCATCAACCGTACGACAAAGTCCATC 1560 

WT-HH25           CTGGTCGAGACCGCTGCTGCTGTCGGCTATCGCCTCATCAACCGTACGACAAAGTCCATC 1560 

R-HH28            CTGGTCGAGACCGCTGCTGCTGTCGGCTATCGCCTCATCAACCGTACGACAAAGTCCATC 1560 

R-HH29            CTGGTCGAGACCGCTGCTGCTGTCGGCTATCGCCTCATCAACCGTACGACAAAGTCCATC 1560 

R-HH31            CTGGTCGAGACCGCTGCTGCTGTCGGCTATCGCCTCATCAACCGTACGACAAAGTCCATC 1560 

R-HH32            CTGGTCGAGACCGCTGCTGCTGTCGGCTATCGCCTCATCAACCGTACGACAAAGTCCATC 1560 

R-HH33            CTGGTCGAGACCGCTGCTGCTGTCGGCTATCGCCTCATCAACCGTACGACAAAGTCCATC 1560 

R-HH34            CTGGTCGAGACCGCTGCTGCTGTCGGCTATCGCCTCATCAACCGTACGACAAAGTCCATC 1560 

                  ************************************************************ 

 

LmxM.13.1530      ACGCTCCTCCTGCAGAATGATACGCGTAAGGTGTACAACATCCTCGCCACACTGGAGTTC 1620 

WT-HH19           ACGCTCCTCCTGCAGAATGATACGCGTAAGGTGTACAACATCCTCGCCACACTGGAGTTC 1620 

WT-HH21           ACGCTCCTCCTGCAGAATGATACGCGTAAGGTGTACAACATCCTCGCCACACTGGAGTTC 1620 

WT-HH22           ACGCTCCTCCTGCAGAATGATACGCGTAAGGTGTACAACATCCTCGCCACACTGGAGTTC 1620 

WT-HH23           ACGCTCCTCCTGCAGAATGATACGCGTAAGGTGTACAACATCCTCGCCACACTGGAGTTC 1620 

WT-HH24           ACGCTCCTCCTGCAGAATGATACGCGTAAGGTGTACAACATCCTCGCCACACTGGAGTTC 1620 

WT-HH25           ACGCTCCTCCTGCAGAATGATACGCGTAAGGTGTACAACATCCTCGCCACACTGGAGTTC 1620 

R-HH28            ACGCTCCTCCTGCAGAATGATACGCGTAAGGTGTACAACATCCTCGCCACACTGGAGTTC 1620 

R-HH29            ACGCTCCTCCTGCAGAATGATACGCGTAAGGTGTACAACATCCTCGCCACACTGGAGTTC 1620 

R-HH31            ACGCTCCTCCTGCAGAATGATACGCGTAAGGTGTACAACATCCTCGCCACACTGGAGTTC 1620 

R-HH32            ACGCTCCTCCTGCAGAATGATACGCGTAAGGTGTACAACATCCTCGCCACACTGGAGTTC 1620 

R-HH33            ACGCTCCTCCTGCAGAATGATACGCGTAAGGTGTACAACATCCTCGCCACACTGGAGTTC 1620 

R-HH34            ACGCTCCTCCTGCAGAATGATACGCGTAAGGTGTACAACATCCTCGCCACACTGGAGTTC 1620 

                  ************************************************************ 

 

LmxM.13.1530      ACGCCGGACCGCAAGATGATGAGCATCATCGTCGAGGACAGCGACACCAAACAAATTATG 1680 

WT-HH19           ACGCCGGACCGCAAGATGATGAGCATCATCGTCGAGGACAGCGACACCAAACAAATTATG 1680 

WT-HH21           ACGCCGGACCGCAAGATGATGAGCATCATCGTCGAGGACAGCGACACCAAACAAATTATG 1680 

WT-HH22           ACGCCGGACCGCAAGATGATGAGCATCATCGTCGAGGACAGCGACACCAAACAAATTATG 1680 

WT-HH23           ACGCCGGACCGCAAGATGATGAGCATCATCGTCGAGGACAGCGACACCAAACAAATTATG 1680 

WT-HH24           ACGCCGGACCGCAAGATGATGAGCATCATCGTCGAGGACAGCGACACCAAACAAATTATG 1680 

WT-HH25           ACGCCGGACCGCAAGATGATGAGCATCATCGTCGAGGACAGCGACACCAAACAAATTATG 1680 

R-HH28            ACGCCGGACCGCAAGATGATGAGCATCATCGTCGAGGACAGCGACACCAAACAAATTATG 1680 

R-HH29            ACGCCGGACCGCAAGATGATGAGCATCATCGTCGAGGACAGCGACACCAAACAAATTATG 1680 

R-HH31            ACGCCGGACCGCAAGATGATGAGCATCATCGTCGAGGACAGCGACACCAAACAAATTATG 1680 

R-HH32            ACGCCGGACCGCAAGATGATGAGCATCATCGTCGAGGACAGCGACACCAAACAAATTATG 1680 

R-HH33            ACGCCGGACCGCAAGATGATGAGCATCATCGTCGAGGACAGCGACACCAAACAAATTATG 1680 

R-HH34            ACGCCGGACCGCAAGATGATGAGCATCATCGTCGAGGACAGCGACACCAAACAAATTATG 1680 

                  ************************************************************ 

 

LmxM.13.1530      CTATACAATAAGGGGGCCGACAGCTTCATCAGGCCGCAGCTGAGCCGCGCCCCGGATGTG 1740 

WT-HH19           CTATACAATAAGGGGGCCGACAGCTTCATCAGGCCGCAGCTGAGCCGCGCCCCGGATGTG 1740 

WT-HH21           CTATACAATAAGGGGGCCGACAGCTTCATCAGGCCGCAGCTGAGCCGCGCCCCGGATGTG 1740 

WT-HH22           CTATACAATAAGGGGGCCGACAGCTTCATCAGGCCGCAGCTGAGCCGCGCCCCGGATGTG 1740 

WT-HH23           CTATACAATAAGGGGGCCGACAGCTTCATCAGGCCGCAGCTGAGCCGCGCCCCGGATGTG 1740 

WT-HH24           CTATACAATAAGGGGGCCGACAGCTTCATCAGGCCGCAGCTGAGCCGCGCCCCGGATGTG 1740 

WT-HH25           CTATACAATAAGGGGGCCGACAGCTTCATCAGGCCGCAGCTGAGCCGCGCCCCGGATGTG 1740 

R-HH28            CTATACAATAAGGGGGCCGACAGCTTCATCAGGCCGCAGCTGAGCCGCGCCCCGGATGTG 1740 

R-HH29            CTATACAATAAGGGGGCCGACAGCTTCATCAGGCCGCAGCTGAGCCGCGCCCCGGATGTG 1740 

R-HH31            CTATACAATAAGGGGGCCGACAGCTTCATCAGGCCGCAGCTGAGCCGCGCCCCGGATGTG 1740 

R-HH32            CTATACAATAAGGGGGCCGACAGCTTCATCAGGCCGCAGCTGAGCCGCGCCCCGGATGTG 1740 

R-HH33            CTATACAATAAGGGGGCCGACAGCTTCATCAGGCCGCAGCTGAGCCGCGCCCCGGATGTG 1740 

R-HH34            CTATACAATAAGGGGGCCGACAGCTTCATCAGGCCGCAGCTGAGCCGCGCCCCGGATGTG 1740 

                  ************************************************************ 

 

LmxM.13.1530      CAGGAACACATAGAAAGTGTTGACATCCCTCTGACAGAGATGTCCTCGTCGGGGCTCCGC 1800 

WT-HH19           CAGGAACACATAGAAAGTGTTGACATCCCTCTGACAGAGATGTCCTCGTCGGGGCTCCGC 1800 

WT-HH21           CAGGAACACATAGAAAGTGTTGACATCCCTCTGACAGAGATGTCCTCGTCGGGGCTCCGC 1800 

WT-HH22           CAGGAACACATAGAAAGTGTTGACATCCCTCTGACAGAGATGTCCTCGTCGGGGCTCCGC 1800 

WT-HH23           CAGGAACACATAGAAAGTGTTGACATCCCTCTGACAGAGATGTCCTCGTCGGGGCTCCGC 1800 

WT-HH24           CAGGAACACATAGAAAGTGTTGACATCCCTCTGACAGAGATGTCCTCGTCGGGGCTCCGC 1800 

WT-HH25           CAGGAACACATAGAAAGTGTTGACATCCCTCTGACAGAGATGTCCTCGTCGGGGCTCCGC 1800 

R-HH28            CAGGAACACATAGAAAGTGTTGACATCCCTCTGACAGAGATGTCCTCGTCGGGGCTCCGC 1800 

R-HH29            CAGGAACACATAGAAAGTGTTGACATCCCTCTGACAGAGATGTCCTCGTCGGGGCTCCGC 1800 

R-HH31            CAGGAACACATAGAAAGTGTTGACATCCCTCTGACAGAGATGTCCTCGTCGGGGCTCCGC 1800 

R-HH32            CAGGAACACATAGAAAGTGTTGACATCCCTCTGACAGAGATGTCCTCGTCGGGGCTCCGC 1800 
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R-HH33            CAGGAACACATAGAAAGTGTTGACATCCCTCTGACAGAGATGTCCTCGTCGGGGCTCCGC 1800 

R-HH34            CAGGAACACATAGAAAGTGTTGACATCCCTCTGACAGAGATGTCCTCGTCGGGGCTCCGC 1800 

                  ************************************************************ 

 

LmxM.13.1530      ACACTGCTGGTGTGCGCCAAGGACATCACACGCCGCCAGTTCGACCTGTGGTACGAGAAG 1860 

WT-HH19           ACACTGCTGGTGTGCGCCAAGGACATCACACGCCGCCAGTTCGACCTGTGGTACGAGAAG 1860 

WT-HH21           ACACTGCTGGTGTGCGCCAAGGACATCACACGCCGCCAGTTCGACCTGTGGTACGAGAAG 1860 

WT-HH22           ACACTGCTGGTGTGCGCCAAGGACATCACACGCCGCCAGTTCGACCTGTGGTACGAGAAG 1860 

WT-HH23           ACACTGCTGGTGTGCGCCAAGGACATCACACGCCGCCAGTTCGACCTGTGGTACGAGAAG 1860 

WT-HH24           ACACTGCTGGTGTGCGCCAAGGACATCACACGCCGCCAGTTCGACCTGTGGTACGAGAAG 1860 

WT-HH25           ACACTGCTGGTGTGCGCCAAGGACATCACACGCCGCCAGTTCGACCTGTGGTACGAGAAG 1860 

R-HH28            ACACTGCTGGTGTGCGCCAAGGACATCACACGCCGCCAGTTCGACCTGTGGTACGAGAAG 1860 

R-HH29            ACACTGCTGGTGTGCGCCAAGGACATCACACGCCGCCAGTTCGACCTGTGGTACGAGAAG 1860 

R-HH31            ACACTGCTGGTGTGCGCCAAGGACATCACACGCCGCCAGTTCGACCTGTGGTACGAGAAG 1860 

R-HH32            ACACTGCTGGTGTGCGCCAAGGACATCACACGCCGCCAGTTCGACCTGTGGTACGAGAAG 1860 

R-HH33            ACACTGCTGGTGTGCGCCAAGGACATCACACGCCGCCAGTTCGACCTGTGGTACGAGAAG 1860 

R-HH34            ACACTGCTGGTGTGCGCCAAGGACATCACACGCCGCCAGTTCGACCTGTGGTACGAGAAG 1860 

                  ************************************************************ 

 

LmxM.13.1530      TTCGTCGAGGTCGGCAAGTCTCTGCAGAACCGCAGCTCCAAGATTGATAAAGTCTGCTTA 1920 

WT-HH19           TTCGTCGAGGTCGGCAAGTCTCTGCAGAACCGCAGCTCCAAGATTGATAAAGTCTGCTTA 1920 

WT-HH21           TTCGTCGAGGTCGGCAAGTCTCTGCAGAACCGCAGCTCCAAGATTGATAAAGTCTGCTTA 1920 

WT-HH22           TTCGTCGAGGTCGGCAAGTCTCTGCAGAACCGCAGCTCCAAGATTGATAAAGTCTGCTTA 1920 

WT-HH23           TTCGTCGAGGTCGGCAAGTCTCTGCAGAACCGCAGCTCCAAGATTGATAAAGTCTGCTTA 1920 

WT-HH24           TTCGTCGAGGTCGGCAAGTCTCTGCAGAACCGCAGCTCCAAGATTGATAAAGTCTGCTTA 1920 

WT-HH25           TTCGTCGAGGTCGGCAAGTCTCTGCAGAACCGCAGCTCCAAGATTGATAAAGTCTGCTTA 1920 

R-HH28            TTCGTCGAGGTCGGCAAGTCTCTGCAGAACCGCAGCTCCAAGATTGATAAAGTCTGCTTA 1920 

R-HH29            TTCGTCGAGGTCGGCAAGTCTCTGCAGAACCGCAGCTCCAAGATTGATAAAGTCTGCTTA 1920 

R-HH31            TTCGTCGAGGTCGGCAAGTCTCTGCAGAACCGCAGCTCCAAGATTGATAAAGTCTGCTTA 1920 

R-HH32            TTCGTCGAGGTCGGCAAGTCTCTGCAGAACCGCAGCTCCAAGATTGATAAAGTCTGCTTA 1920 

R-HH33            TTCGTCGAGGTCGGCAAGTCTCTGCAGAACCGCAGCTCCAAGATTGATAAAGTCTGCTTA 1920 

R-HH34            TTCGTCGAGGTCGGCAAGTCTCTGCAGAACCGCAGCTCCAAGATTGATAAAGTCTGCTTA 1920 

                  ************************************************************ 

 

LmxM.13.1530      GAGATGGAGCAAGACATGCGACTCGTCGGCGCCACCGCCATCGAGGACAAGCTGCAAGAC 1980 

WT-HH19           GAGATGGAGCAAGACATGCGACTCGTCGGCGCCACCGCCATCGAGGACAAGCTGCAAGAC 1980 

WT-HH21           GAGATGGAGCAAGACATGCGACTCGTCGGCGCCACCGCCATCGAGGACAAGCTGCAAGAC 1980 

WT-HH22           GAGATGGAGCAAGACATGCGACTCGTCGGCGCCACCGCCATCGAGGACAAGCTGCAAGAC 1980 

WT-HH23           GAGATGGAGCAAGACATGCGACTCGTCGGCGCCACCGCCATCGAGGACAAGCTGCAAGAC 1980 

WT-HH24           GAGATGGAGCAAGACATGCGACTCGTCGGCGCCACCGCCATCGAGGACAAGCTGCAAGAC 1980 

WT-HH25           GAGATGGAGCAAGACATGCGACTCGTCGGCGCCACCGCCATCGAGGACAAGCTGCAAGAC 1980 

R-HH28            GAGATGGAGCAAGACATGCGACTCGTCGGCGCCACCGCCATCGAGGACAAGCTGCAAGAC 1980 

R-HH29            GAGATGGAGCAAGACATGCGACTCGTCGGCGCCACCGCCATCGAGGACAAGCTGCAAGAC 1980 

R-HH31            GAGATGGAGCAAGACATGCGACTCGTCGGCGCCACCGCCATCGAGGACAAGCTGCAAGAC 1980 

R-HH32            GAGATGGAGCAAGACATGCGACTCGTCGGCGCCACCGCCATCGAGGACAAGCTGCAAGAC 1980 

R-HH33            GAGATGGAGCAAGACATGCGACTCGTCGGCGCCACCGCCATCGAGGACAAGCTGCAAGAC 1980 

R-HH34            GAGATGGAGCAAGACATGCGACTCGTCGGCGCCACCGCCATCGAGGACAAGCTGCAAGAC 1980 

                  ************************************************************ 

 

LmxM.13.1530      GAGGTGCCTGAGACACTGTCGTTTTTCTTGAACGCCGGTGTGATCATTTGGATGC      2035 

WT-HH19           GAGGTGCCTGAGACACTGTCGTTTTTCTTGAACGCCGGTGTGATCATTTGGATGC      2035 

WT-HH21           GAGGTGCCTGAGACACTGTCGTTTTTCTTGAACGCCGGTGTGATCATTTGGATGC      2035 

WT-HH22           GAGGTGCCTGAGACACTGTCGTTTTTCTTGAACGCCGGTGTGATCATTTGGATGC      2035 

WT-HH23           GAGGTGCCTGAGACACTGTCGTTTTTCTTGAACGCCGGTGTGATCATTTGGATGC      2035 

WT-HH24           GAGGTGCCTGAGACACTGTCGTTTTTCTTGAACGCCGGTGTGATCATTTGGATGC      2035 

WT-HH25           GAGGTGCCTGAGACACTGTCGTTTTTCTTGAACGCCGGTGTGATCATTTGGATGC      2035 

R-HH28            GAGGTGCCTGAGACACTGTCGTTTTTCTTGAACGCCGGTGTGATCATTTGGATGC      2035 

R-HH29            GAGGTGCCTGAGACACTGTCGTTTTTCTTGAACGCCGGTGTGATCATTTGGATGC      2035 

R-HH31            GAGGTGCCTGAGACACTGTCGTTTTTCTTGAACGCCGGTGTGATCATTTGGATGC      2035 

R-HH32            GAGGTGCCTGAGACACTGTCGTTTTTCTTGAACGCCGGTGTGATCATTTGGATGC      2035 

R-HH33            GAGGTGCCTGAGACACTGTCGTTTTTCTTGAACGCCGGTGTGATCATTTGGATGC      2035 

R-HH34            GAGGTGCCTGAGACACTGTCGTTTTTCTTGAACGCCGGTGTGATCATTTGGATGC      2035 

                  ******************************************************* 

 
 
Fragment 3 (741bp) 
 
 
LmxM.13.1530      AAGGAGCGGCGCTGCACCTTGGTCATCGACGGCCCGGGGCTGAACATCTCGATGGAGCAT 2280 

WT-HH77           AAGGAGCGGCGCTGCACCTTGGTCATCGACGGCCCGGGGCTGAACATCTCGATGGAGCAT 2280 

WT-HH79           AAGGAGCGGCGCTGCACCTTGGTCATCGACGGCCCGGGGCTGAACATCTCGATGGAGCAT 2280 

WT-HH80           AAGGAGCGGCGCTGCACCTTGGTCATCGACGGCCCGGGGCTGAACATCTCGATGGAGCAT 2280 

WT-HH81           AAGGAGCGGCGCTGCACCTTGGTCATCGACGGCCCGGGGCTGAACATCTCGATGGAGCAT 2280 

WT-HH82           AAGGAGCGGCGCTGCACCTTGGTCATCGACGGCCCGGGGCTGAACATCTCGATGGAGCAT 2280 

WT-HH83           AAGGAGCGGCGCTGCACCTTGGTCATCGACGGCCCGGGGCTGAACATCTCGATGGAGCAT 2280 
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R-HH60            AAGGAGCGGCGCTGCACCTTGGTCATCGACGGCCCGGGGCTGAACATCTCGATGGAGCAT 2280 

R-HH61            AAGGAGCGGCGCTGCACCTTGGTCATCGACGGCCCGGGGCTGAACATCTCGATGGAGCAT 2280 

R-HH63            AAGGAGCGGCGCTGCACCTTGGTCATCGACGGCCCGGGGCTGAACATCTCGATGGAGCAT 2280 

R-HH64            AAGGAGCGGCGCTGCACCTTGGTCATCGACGGCCCGGGGCTGAACATCTCGATGGAGCAT 2280 

R-HH65            AAGGAGCGGCGCTGCACCTTGGTCATCGACGGCCCGGGGCTGAACATCTCGATGGAGCAT 2280 

R-HH67            AAGGAGCGGCGCTGCACCTTGGTCATCGACGGCCCGGGGCTGAACATCTCGATGGAGCAT 2280 

                      ******************************************************** 

 

LmxM.13.1530      TACTTTAACCAGTTCCTGCGCATCTCCCATCAGTTAAACTCCGCCGTCTGCTGTCGTCTC 2340 

WT-HH77           TACTTTAACCAGTTCCTGCGCATCTCCCATCAGTTAAACTCCGCCGTCTGCTGTCGTCTC 2340 

WT-HH79           TACTTTAACCAGTTCCTGCGCATCTCCCATCAGTTAAACTCCGCCGTCTGCTGTCGTCTC 2340 

WT-HH80           TACTTTAACCAGTTCCTGCGCATCTCCCATCAGTTAAACTCCGCCGTCTGCTGTCGTCTC 2340 

WT-HH81           TACTTTAACCAGTTCCTGCGCATCTCCCATCAGTTAAACTCCGCCGTCTGCTGTCGTCTC 2340 

WT-HH82           TACTTTAACCAGTTCCTGCGCATCTCCCATCAGTTAAACTCCGCCGTCTGCTGTCGTCTC 2340 

WT-HH83           TACTTTAACCAGTTCCTGCGCATCTCCCATCAGTTAAACTCCGCCGTCTGCTGTCGTCTC 2340 

R-HH60            TACTTTAACCAGTTCCTGCGCATCTCCCATCAGTTAAACTCCGCCGTCTGCTGTCGTCTC 2340 

R-HH61            TACTTTAACCAGTTCCTGCGCATCTCCCATCAGTTAAACTCCGCCGTCTGCTGTCGTCTC 2340 

R-HH63            TACTTTAACCAGTTCCTGCGCATCTCCCATCAGTTAAACTCCGCCGTCTGCTGTCGTCTC 2340 

R-HH64            TACTTTAACCAGTTCCTGCGCATCTCCCATCAGTTAAACTCCGCCGTCTGCTGTCGTCTC 2340 

R-HH65            TACTTTAACCAGTTCCTGCGCATCTCCCATCAGTTAAACTCCGCCGTCTGCTGTCGTCTC 2340 

R-HH67            TACTTTAACCAGTTCCTGCGCATCTCCCATCAGTTAAACTCCGCCGTCTGCTGTCGTCTC 2340 

                  ************************************************************ 

 

LmxM.13.1530      ACGCCGATCCAGAAGGCAAGCGTCGTTCGCATGTTCCAGAAGTCAACCGGTAAGACAGCG 2400 

WT-HH77           ACGCCGATCCAGAAGGCAAGCGTCGTTCGCATGTTCCAGAAGTCAACCGGTAAGACAGCG 2400 

WT-HH79           ACGCCGATCCAGAGGGCAAGCGTCGTTCGCATGTTCCAGAAGTCAACCGGTAAGACAGCG 2400 

WT-HH80           ACGCCGATCCAGAAGGCAAGCGTCGTTCGCATGTTCCAGAAGTCAACCGGTAAGACAGCG 2400 

WT-HH81           ACGCCGATCCAGAAGGCAAGCGTCGTTCGCATGTTCCAGAAGTCAACCGGTAAGACAGCG 2400 

WT-HH82           ACGCCGATCCAGAAGGCAAGCGTCGTTCGCATGTTCCAGAAGTCAACCGGTAAGACAGCG 2400 

WT-HH83           ACGCCGATCCAGAAGGCAAGCGTCGTTCGCATGTTCCAGAAGTCAACCGGTAAGACAGCG 2400 

R-HH60            ACGCCGATCCAGAAGGCAAGCGTCGTTCGCATGTTCCAGAAGTCAACCGGTAAGACAGCG 2400 

R-HH61            ACGCCGATCCAGAAGGCAAGCGTCGTTCGCATGTTCCAGAAGTCAACCGGTAAGACAGCG 2400 

R-HH63            ACGCCGATCCAGAAGGCAAGCGTCGTTCGCATGTTCCAGAAGTCAACCGGTAAGACAGCG 2400 

R-HH64            ACGCCGATCCAGAAGGCAAGCGTCGTTCGCATGTTCCAGAAGTCAACCGGTAAGACAGCG 2400 

R-HH65            ACGCCGATCCAGAAGGCAAGCGTCGTTCGCATGTTCCAGAAGTCAACCGGTAAGACAGCG 2400 

R-HH67            ACGCCGATCCAGAAGGCAAGCGTCGTTCGCATGTTCCAGAAGTCAACCGGTAAGACAGCG 2400 

                  ************* ********************************************** 

 

LmxM.13.1530      CTGGCCATCGGTGACGGCGCCAACGACGTGTCCATGATCCGGGAGGGACGTGTGGGCGTG 2460 

WT-HH77           CTGGCCATCGGTGACGGCGCCAACGACGTGTCCATGATCCGGGAGGGACGTGTGGGCGTG 2460 

WT-HH79           CTGGCCATCGGTGACGGCGCCAACGACGTGTCCATGATCCGGGAGGGACGTGTGGGCGTG 2460 

WT-HH80           CTGGCCATCGGTGACGGCGCCAACGACGTGTCCATGATCCGGGAGGGACGTGTGGGCGTG 2460 

WT-HH81           CTGGCCATCGGTGACGGCGCCAACGACGTGTCCATGATCCGGGAGGGACGTGTGGGCGTG 2460 

WT-HH82           CTGGCCATCGGTGACGGCGCCAACGACGTGTCCATGATCCGGGAGGGACGTGTGGGCGTG 2460 

WT-HH83           CTGGCCATCGGTGACGGCGCCAACGACGTGTCCATGATCCGGGAGGGACGTGTGGGCGTG 2460 

R-HH60            CTGGCCATCGGTGACGGCGCCAACGACGTGTCCATGATCCGGGAGGGACGTGTGGGCGTG 2460 

R-HH61            CTGGCCATCGGTGACGGCGCCAACGACGTGTCCATGATCCGGGAGGGACGTGTGGGCGTG 2460 

R-HH63            CTGGCCATCGGTGACGGCGCCAACGACGTGTCCATGATCCGGGAGGGACGTGTGGGCGTG 2460 

R-HH64            CTGGCCATCGGTGACGGCGCCAACGACGTGTCCATGATCCGGGAGGGACGTGTGGGCGTG 2460 

R-HH65            CTGGCCATCGGTGACGGCGCCAACGACGTGTCCATGATCCGGGAGGGACGTGTGGGCGTG 2460 

R-HH67            CTGGCCATCGGTGACGGCGCCAACGACGTGTCCATGATCCGGGAGGGACGTGTGGGCGTG 2460 

                  ************************************************************ 

 

LmxM.13.1530      GGCATTATTGGGCTGGAAGGTGCACATGCCGCCCTCGCCGCCGACTACGCGATTCCGCGG 2520 

WT-HH77           GGCATTATTGGGCTGGAAGGTGCACATGCCGCCCTCGCCGCCGACTACGCGATTCCGCGG 2520 

WT-HH79           GGCATTATTGGGCTGGAAGGTGCACATGCCGCCCTCGCCGCCGACTACGCGATTCCGCGG 2520 

WT-HH80           GGCATTATTGGGCTGGAAGGTGCACATGCCGCCCTCGCCGCCGACTACGCGATTCCGCGG 2520 

WT-HH81           GGCATTATTGGGCTGGAAGGTGCACATGCCGCCCTCGCCGCCGACTACGCGATTCCGCGG 2520 

WT-HH82           GGCATTATTGGGCTGGAAGGTGCACATGCCGCCCTCGCCGCCGACTACGCGATTCCGCGG 2520 

WT-HH83           GGCATTATTGGGCTGGAAGGTGCACATGCCGCCCTCGCCGCCGACTACGCGATTCCGCGG 2520 

R-HH60            GGCATTATTGGGCTGGAAGGTGCACATGCCGCCCTCGCCGCCGACTACGCGATTCCGCGG 2520 

R-HH61            GGCATTATTGGGCTGGAAGGTGCACATGCCGCCCTCGCCGCCGACTACGCGATTCCGCGG 2520 

R-HH63            GGCATTATTGGGCTGGAAGGTGCACATGCCGCCCTCGCCGCCGACTACGCGATTCCGCGG 2520 

R-HH64            GGCATTATTGGGCTGGAAGGTGCACATGCCGCCCTCGCCGCCGACTACGCGATTCCGCGG 2520 

R-HH65            GGCATTATTGGGCTGGAAGGTGCACATGCCGCCCTCGCCGCCGACTACGCGATTCCGCGG 2520 

R-HH67            GGCATTATTGGGCTGGAAGGTGCACATGCCGCCCTCGCCGCCGACTACGCGATTCCGCGG 2520 

                  ************************************************************ 

 

LmxM.13.1530      TTCAAACACCTGCGCCGCCTGTGCGCGGTGCATGGGCGCTACTCGCTCTTCCGAAACGCC 2580 

WT-HH77           TTCAAACACCTGCGCCGCCTGTGCGCGGTGCATGGGCGCTACTCGCTCTTCCGAAACGCC 2580 

WT-HH79           TTCAAACACCTGCGCCGCCTGTGCGCGGTGCATGGGCGCTACTCGCTCTTCCGAAACGCC 2580 

WT-HH80           TTCAAACACCTGCGCCGCCTGTGCGCGGTGCATGGGCGCTACTCGCTCTTCCGAAACGCC 2580 

WT-HH81           TTCAAACACCTGCGCCGCCTGTGCGCGGTGCATGGGCGCTACTCGCTCTTCCGAAACGCC 2580 

WT-HH82           TTCAAACACCTGCGCCGCCTGTGCGCGGTGCATGGGCGCTACTCGCTCTTCCGAAACGCC 2580 

WT-HH83           TTCAAACACCTGCGCCGCCTGTGCGCGGTGCATGGGCGCTACTCGCTCTTCCGAAACGCC 2580 

R-HH60            TTCAAACACCTGCGCCGCCTGTGCGCGGTGCATGGGCGCTACTCGCTCTTCCGAAACGCC 2580 
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R-HH61            TTCAAACACCTGCGCCGCCTGTGCGCGGTGCATGGGCGCTACTCGCTCTTCCGAAACGCC 2580 

R-HH63            TTCAAACACCTGCGCCGCCTGTGCGCGGTGCATGGGCGCTACTCGCTCTTCCGAAACGCC 2580 

R-HH64            TTCAAACACCTGCGCCGCCTGTGCGCGGTGCATGGGCGCTACTCGCTCTTCCGAAACGCC 2580 

R-HH65            TTCAAACACCTGCGCCGCCTGTGCGCGGTGCATGGGCGCTACTCGCTCTTCCGAAACGCC 2580 

R-HH67            TTCAAACACCTGCGCCGCCTGTGCGCGGTGCATGGGCGCTACTCGCTCTTCCGAAACGCC 2580 

                  ************************************************************ 

 

LmxM.13.1530      AGCTGCATTCTGGTTAGCTTCCACAAGAACATCACCGTGTCGGTGGTGCAGTTCATCTTT 2640 

WT-HH77           AGCTGCATTCTGGTTAGCTTCCACAAGAACATCACCGTGTCGGTGGTGCAGTTCATCTTT 2640 

WT-HH79           AGCTGCATTCTGGTTAGCTTCCACAAGAACATCACCGTGTCGGTGGTGCAGTTCATCCTT 2640 

WT-HH80           AGCTGCATTCTGGTTAGCTTCCACAAGAACATCACCGTGTCGGTGGTGCAGTTCATCTTT 2640 

WT-HH81           AGCTGCATTCTGGTTAGCTTCCACAAGAACATCACCGTGTCGGTGGTGCAGTTCATCTTT 2640 

WT-HH82           AGCTGCATTCTGGTTAGCTTCCACAAGAACATCACCGTGTCGGTGGTGCAGTTCATCTTT 2640 

WT-HH83           AGCTGCATTCTGGTTAGCTTCCACAAGAACATCACCGTGTCGGTGGTGCAGTTCATCTTT 2640 

R-HH60            AGCTGCATTCTGGTTAGCTTCCACAAGAACATCACCGTGTCGGTGGTGCAGTTCATCTTT 2640 

R-HH61            AGCTGCATTCTGGTTAGCTTCCACAAGAACATCACCGTGTCGGTGGTGCAGTTCATCTTT 2640 

R-HH63            AGCTGCATTCTGGTTAGCTTCCACAAGAACATCACCGTGTCGGTGGTGCAGTTCATCTTT 2640 

R-HH64            AGCTGCATTCTGGTTAGCTTCCACAAGAACATCACCGTGTCGGTGGTGCAGTTCATCTTT 2640 

R-HH65            AGCTGCATTCTGGTTAGCTTCCACAAGAACATCACCGTGTCGGTGGTGCAGTTCATCTTT 2640 

R-HH67            AGCTGCATTCTGGTTAGCTTCCACAAGAACATCACCGTGTCGGTGGTGCAGTTCATCTTT 2640 

                  ********************************************************* ** 

 

LmxM.13.1530      GCCTTCTACGTCGGCTTCTCGGGGCTAACACTCTTTGATGGGTGGATGCTGACCTTCTAC 2700 

WT-HH77           GCCTTCTACGTCGGCTTCTCGGGGCTAACACTCTTTGATGGGTGGATGCTGACCTTCTAC 2700 

WT-HH79           GCCTTCTACGTCGGCTTCTCGGGGCTAACACTCTTTGATGGGTGGATGCTGACCTTCTAC 2700 

WT-HH80           GCCTTCTACGTCGGCTTCTCGGGGCTAACACTCTTTGATGGGTGGATGCTGACCTTCTAC 2700 

WT-HH81           GCCTTCTACGTCGGCTTCTCGGGGCTAACACTCTTTGATGGGTGGATGCTGACCTTCTAC 2700 

WT-HH82           GCCTTCTACGTCGGCTTCTCGGGGCTAACACTCTTTGATGGGTGGATGCTGACCTTCTAC 2700 

WT-HH83           GCCTTCTACGTCGGCTTCTCGGGGCTAACACTCTTTGATGGGTGGATGCTGACCTTCTAC 2700 

R-HH60            GCCTTCTACGTCGGCTTCTCGGGGCTAACACTCTTTGATGGGTGGATGCTGACCTTCTAC 2700 

R-HH61            GCCTTCTACGTCGGCTTCTCGGGGCTAACACTCTTTGATGGGTGGATGCTGACCTTCTAC 2700 

R-HH63            GCCTTCTACGTCGGCTTCTCGGGGCTAACACTCTTTGATGGGTGGATGCTGACCTTCTAC 2700 

R-HH64            GCCTTCTACGTCGGCTTCTCGGGGCTAACACTCTTTGATGGGTGGATGCTGACCTTCTAC 2700 

R-HH65            GCCTTCTACGTCGGCTTCTCGGGGCTAACACTCTTTGATGGGTGGATGCTGACCTTCTAC 2700 

R-HH67            GCCTTCTACGTCGGCTTCTCGGGGCTAACACTCTTTGATGGGTGGATGCTGACCTTCTAC 2700 

                  ************************************************************ 

 

LmxM.13.1530      AACGTCCTGATGACAAGTGTCCCGCCCTTCTTCATAGGCATATTCGATAAGGACCTCCCC 2760 

WT-HH77           AACGTCCTGATGACAAGTGTCCCGCCCTTCTTCATAGGCATATTCGATAAGGACCTCCCC 2760 

WT-HH79           AACGTCCTGATGACAAGTGTCCCGCCCTTCTTCATAGGCATATTCGATAAGGACCTCCCC 2760 

WT-HH80           AACGTCCTGATGACAAGTGTCCCGCCCTTCTTCATAGGCATATTCGATAAGGACCTCCCC 2760 

WT-HH81           AACGTCCTGATGACAAGTGTCCCGCCCTTCTTCATAGGCATATTCGATAAGGACCTCCCC 2760 

WT-HH82           AACGTCCTGATGACAAGTGTCCCGCCCTTCTTCATAGGCATATTCGATAAGGACCTCCCC 2760 

WT-HH83           AACGTCCTGATGACAAGTGTCCCGCCCTTCTTCATAGGCATATTCGATAAGGACCTCCCC 2760 

R-HH60            AACGTCCTGATGACAAGTGTCCCGCCCTTCTTCATAGGCATATTCGATAAGGACCTCCCC 2760 

R-HH61            AACGTCCTGATGACAAGTGTCCCGCCCTTCTTCATAGGCATATTCGATAAGGACCTCCCC 2760 

R-HH63            AACGTCCTGATGACAAGTGTCCCGCCCTTCTTCATAGGCATATTCGATAAGGACCTCCCC 2760 

R-HH64            AACGTCCTGATGACAAGTGTCCCGCCCTTCTTCATAGGCATATTCGATAAGGACCTCCCC 2760 

R-HH65            AACGTCCTGATGACAAGTGTCCCGCCCTTCTTCATAGGCATATTCGATAAGGACCTCCCC 2760 

R-HH67            AACGTCCTGATGACAAGTGTCCCGCCCTTCTTCATAGGCATATTCGATAAGGACCTCCCC 2760 

                  ************************************************************ 

 

LmxM.13.1530      GAAGAGGCCCTGCTGGAGCGGCCGAAGCTGTACACACCGTTGTCGCATGGCGAGTACTTT 2820 

WT-HH77           GAAGAGGCCCTGCTGGAGCAGCCGAAGCTGTACACACCGTTGTCGCATGGCGAGTACTTT 2820 

WT-HH79           GAAGAGGCCCTGCTGGAGCGGCCGAAGCTGTACACACCGTTGTCGCATGGCGAGTACTTT 2820 

WT-HH80           GAAGAGGCCCTGCTGGAGCGGCCGAAGCTGTACACACCGTTGTCGCATGGCGAGTACTTT 2820 

WT-HH81           GAAGAGGCCCTGCTGGAGCGGCCGAAGCTGTACACACCGTTGTCGCATGGCGAGTACTTT 2820 

WT-HH82           GAAGAGGCCCTGCTGGAGCGGCCGAAGCTGTACACACCGTTGTCGCATGGCGAGTACTTT 2820 

WT-HH83           GAAGAGGCCCTGCTGGAGCGGCCGAAGCTGTACACACCGTTGTCGCATGGCGAGTACTTT 2820 

R-HH60            GAAGAGGCCCTGCTGGAGCGGCCGAAGCTGTACACACCGTTGTCGCATGGCGAGTACTTT 2820 

R-HH61            GAAGAGGCCCTGCTGGAGCGGCCGAAGCTGTACACACCGTTGTCGCATGGCGAGTACTTT 2820 

R-HH63            GAAGAGGCCCTGCTGGAGCGGCCGAAGCTGTACACACCGTTGTCGCATGGCGAGTACTTT 2820 

R-HH64            GAAGAGGCCCTGCTGGAGCGGCCGAAGCTGTACACACCGTTGTCGCATGGCGAGTACTTT 2820 

R-HH65            GAAGAGGCCCTGCTGGAGCGGCCGAAGCTGTACACACCGTTGTCGCATGGCGAGTACTTT 2820 

R-HH67            GAAGAGGCCCTGCTGGAGCGGCCGAAGCTGTACACACCGTTGTCGCATGGCGAGTACTTT 2820 

                  ******************* **************************************** 

 

LmxM.13.1530      AACGTGACGACGCTTCTGCGGTGGTTCGCCGAATCACTAATAACAGCATTGATTCTCTTC 2880 

WT-HH77           AACGTGACGACGCTTCTGCGGTGGTTCGCCGAATCACTAATAACAGCATTGATTCTCTTC 2880 

WT-HH79           AACGTGACGACGCTTCTGCGGTGGTTCGCCGAATCACTAATAACAGCATTGATTCTCTTC 2880 

WT-HH80           AACGTGACGACGCTTCTGCGGTGGTTCGCCGAATCACTAATAACAGCATTGATTCTCTTC 2880 

WT-HH81           AACGTGACGACGCTTCTGCGGTGGTTCGCCGAATCACTAATAACAGCATTGATTCTCTTC 2880 

WT-HH82           AACGTGACGACGCTTCTGCGGTGGTTCGCCGAATCACTAATAACAGCATTGATTCTCTTC 2880 

WT-HH83           AACGTGACGACGCTTCTGCGGTGGTTCGCCGAATCACTAATAACAGCATTGATTCTCTTC 2880 

R-HH60            AACGTGACGACGCTTCTGCGGTGGTTCGCCGAATCACTAATAACAGCATTGATTCTCTTC 2880 

R-HH61            AACGTGACGACGCTTCTGCGGTGGTTCGCCGAATCACTAATAACAGCATTGATTCTCTTC 2880 
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R-HH63            AACGTGACGACGCTTCTGCGGTGGTTCGCCGAATCACTAATAACAGCATTGATTCTCTTC 2880 

R-HH64            AACGTGACGACGCTTCTGCGGTGGTTCGCCGAATCACTAATAACAGCATTGATTCTCTTC 2880 

R-HH65            AACGTGACGACGCTTCTGCGGTGGTTCGCCGAATCACTAATAACAGCATTGATTCTCTTC 2880 

R-HH67            AACGTGACGACGCTTCTGCGGTGGTTCGCCGAATCACTAATAACAGCATTGATTCTCTTC 2880 

                  ************************************************************ 

 

LmxM.13.1530      TACGCTGCTTATCCGACATTGGTCCATCAAGACGGTTCCCATCAACGCTACACTGGCGCT 2940 

WT-HH77           TACGCTGCTTATCCGACATTGGTCCATCAAGACGGTTCCCATCAACGCTACACTGGCGCT 2940 

WT-HH79           TACGCTGCTTATCCGACATTGGTCCATCAAGACGGTTCCCATCAACGCTACACTGGCGCT 2940 

WT-HH80           TACGCTGCTTATCCGACATTGGTCCATCAAGACGGTTCCCATCAACGCTACACTGGCGCT 2940 

WT-HH81           TACGCTGCTTATCCGACATTGGTCCATCAAGACGGTTCCCATCAACGCTACACTGGCGCT 2940 

WT-HH82           TACGCTGCTTATCCGACATTGGTCCATCAAGACGGTTCCCATCAACGCTACACTGGCGCT 2940 

WT-HH83           TACGCTGCTTATCCGACATTGGTCCATCAAGACGGTTCCCATCAACGCTACACTGGCGCT 2940 

R-HH60            TACGCTGCTTATCCGACATTGGTCCATCAAGACGGTTCCCATCAACGCTACACTGGCGCT 2940 

R-HH61            TACGCTGCTTATCCGACATTGGTCCATCAAGACGGTTCCCATCAACGCTACACTGGCGCT 2940 

R-HH63            TACGCTGCTTATCCGACATTGGTCCATCAAGACGGTTCCCATCAACGCTACACTGGCGCT 2940 

R-HH64            TACGCTGCTTATCCGACATTGGTCCATCAAGACGGTTCCCATCAACGCTACACTGGCGCT 2940 

R-HH65            TACGCTGCTTATCCGACATTGGTCCATCAAGACGGTTCCCATCAACGCTACACTGGCGCT 2940 

R-HH67            TACGCTGCTTATCCGACATTGGTCCATCAAGACGGTTCCCATCAACGCTACACTGGCGCT 2940 

                  ************************************************************ 

 

LmxM.13.1530      GAGACCGGCACGCTCGTGTTCAGCG 3964 

WT-HH77           GAGACCGGCACGCTCGTGTTCAGCG 3964 

WT-HH79           GAGACCGGCACGCTCGTGTTCAGCG 3964 

WT-HH80           GAGACCGGCACGCTCGTGTTCAGCG 3964 

WT-HH81           GAGACCGGCACGCTCGTGTTCAGCG 3964 

WT-HH82           GAGACCGGCACGCTCGTGTTCAGCG 3964 

WT-HH83           GAGACCGGCACGCTCGTGTTCAGCG 3964 

R-HH60            GAGACCGGCACGCTCGTGTTCAGCG 3964 

R-HH61            GAGACCGGCACGCTCGTGTTCAGCG 3964 

R-HH63            GAGACCGGCACGCTCGTGTTCAGCG 3964 

R-HH64            GAGACCGGCACGCTCGTGTTCAGCG 3964 

R-HH65            GAGACCGGCACGCTCGTGTTCAGCG 3964 

R-HH67            GAGACCGGCACGCTCGTGTTCAGCG 3964 

                  ************************* 

 

 

 

Appendix 3 (Chapter 4)  

Multiple amino acid sequences sequence alignment for each fragment of LmMT gene. 12 clones 

for each fragment of LmMT sequenced compared LmxM.13.1530. The WT-prefix is for the pre-

selection wildtype and the R-prefix for 700022-selected parasites. The HH code uniquely identifies 

the PCR clone sequenced. 

 

Fragment 1 

 

LmxM.13.1530      PLSFVLLVAII 120 

WT-HH41           PLSFVLLVAII 120 

WT-HH42           PLSFVLLVAII 120 

WT-HH43           PLSFVLLVAII 120 

WT-HH44           PLSFVLLVAII 120 

WT-HH48           PLSFVLLVAII 120 

WT-HH49           PLSFVLLVAII 120 

WT-HH5            PLSFVLLVAII 120 

WT-HH6            PLSFVLLVAII 120 

WT-HH8            PLSFVLLVAII 120 
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WT-HH9            PLSFVLLVAII 120 

WT-HH10           PLSFVLLVAII 120 

WT-HH12           PLSFVLLVAII 120 

                  *********** 

 

LmxM.13.1530      KEAVEDIKRHRADNRANSVLTQVMRKGKLVSVHSKDIHPGDVVRIKNSEEVHADVVMLSS 180 

WT-HH41           KEAVEDIKRHRADNRANSVLTQVMRKGKLVSVHSKDIHPGDVVRIKNSEEVHADVVMLSS 180 

WT-HH42           KEAVEDIKRHRADNRANSVLTQVMRKGKLVSVHSKDIHPGDVVRIKNSEEVHADVVMLSS 180 

WT-HH43           KEAVEDIKRHRADNRANSVLTQVMRKGKLVSVHSKDIHPGDVVRIKNSEEVHADVVMLSS 180 

WT-HH44           KEAVEDIKRHRADNRANSVLTQVMRKGKLVSVHSKDIHPGDVVRIKNSEEVHADVVMLSS 180 

WT-HH48           KEAVEDIKRHRADNRANSVLTQVMRKGKLVSVHSKDIRPGDVVRIKNSEEVHADVVMLSS 180 

WT-HH49           KEAVEDIKRHRADNRANSVLTQVMRKGKLVSVHSKDIHPGDVVRIKNSEEVHADVVMLSS 180 

WT-HH5            KEAVEDIKRHRADNRANSVLTQVMRKGKLVSVHSKDIHPGDVVRIKNSEEVHADVVMLSS 180 

WT-HH6            KEAVEDIKRHRADNRANSVLTQVMRKGKLVSVHSKDIHPGDVVRIKNSEEVHADVVMLSS 180 

WT-HH8            KEAVEDIKRHRADNRANSVLTQVMRKGKLVSVHSKDIHPGDVVRIKNSEEVHADVVMLSS 180 

WT-HH9            KEAVEDIKRHRADNRANSVLTQVMRKGKLVSVHSKDIHPGDVVRIKNSEEVHADVVMLSS 180 

WT-HH10           KEAVEDIKRHRADNRANSVLTQVMRKGKLVSVHSKDIHPGDVVRIKNSEEVHADVVMLSS 180 

WT-HH12           KEAVEDIKRHRADNRANSVLTQVMRKGKLVSVHSKDIHPGDVVRIKNSEEVHADVVMLSS 180 

                  ************************************* ********************** 

 

LmxM.13.1530      SLEEGQAFIDTCNLDGESNLKPRKALEVTWGLCEIETIMNTTAVLHTSKPDPGLLSWTGL 240 

WT-HH41           SLEEGQAFIDTCNLDGESNLKPRKALEVTWGLCEIETIMNTTAVLHTSKPDPGLLSWTGL 240 

WT-HH42           SLEEGQAFIDTCNLDGESNLKPRKALEVTWGLCEIETIMNTTAVLHTSRPDPGLLSWTGL 240 

WT-HH43           SLEEGQAFIDTCNLDGESNLKPRKALEVTWGLCEIETIMNTTAVLHTSKPDPGLLSWTGL 240 

WT-HH44           SLEEGQAFIDTCNLDGESNLKPRKALEVTWGLCEIETIMNTTAVLHTSKPDPGLLSWTGL 240 

WT-HH48           SLEEGQAFIDTCNLDGESNLKPRKALEVTWGLCEIETIMNTTAVLHTSKPDPGLLSWTGL 240 

WT-HH49           SLEEGQAFIDTCNLDGESNLKPRKALEVTWGLCEIETIMNTTAVLHTSKPDPGLLSWTGL 240 

WT-HH5            SLEEGQAFIDTCNLDGESNLKPRKALEVTWGLCEIETIMNTTAVLHTSKPDPGLLSWTGL 240 

WT-HH6            SLEEGQAFIDTCNLDGESNLKPRKALEVTWGLCEIETIMNTTAVLHTSKPDPGLLSWTGL 240 

WT-HH8            SLEEGQAFIDTCNLDGESNLKPRKALEVTWGLCEIETIMNTTAVLHTSKPDPGLLSWTGL 240 

WT-HH9            SLEEGQAFIDTCNLDGESNLKPRKALEVTWGLCEIETIMNTTAVLHTSKPDPGLLSWTGL 240 

WT-HH10           SLEEGQAFIDTCNLDGESNLKPRKALEVTWGLCEIETIMNTTAVLHTSKPDPGLLSWTGL 240 

WT-HH12           SLEEGQAFIDTCNLDGESNLKPRKALEVTWGLCEIETIMNTTAVLHTSKPDPGLLSWTGL 240 

                  ************************************************ *********** 

 

LmxM.13.1530      LEINGEEHALSLDQFLYRGCVLRNTDWAWGMVAYAGVDTKLFRNLKPKPPKSSNLDRKLN 300 

WT-HH41           LEINGEEHALSLDQFLYRGCVLRNTDWAWGMVAYAGVDTKLFRNLKPKPPKSSNLDRKLN 300 

WT-HH42           LEINGEEHALSLDQFLYRGCVLRNTDWAWGMVAYAGVDTKLFRNLKPKPPKSSNLDRKLN 300 

WT-HH43           LEINGEEHALSLDQFLYRGCVLRNTDWAWGMVAYAGVDTKLFRNLKPKPPKSSNLDRKLN 300 

WT-HH44           LEINGEEHALSLDQFLYRGCVLRNTDWAWGMVAYAGVDTKLFRNLKPKPPKSSNLDRKLN 300 

WT-HH48           LEINGEEHALSLDQFLYRGCVLRNTDWAWGMVAYAGVDTKLFRNLKPKPPKSSNLDRKLN 300 

WT-HH49           LEINGEEHALSLDQFLYRGCVLRNTDWAWGMVAYAGVDTKLFRNLKPKPPKSSNLDRKLN 300 

WT-HH5            LEINGEEHALSLDQFLYRGCVLRNTDWAWGMVAYAGVDTKLFRNLKPKPPKSSNLDRKLN 300 

WT-HH6            LEINGEEHALSLDQFLYRGCVLRNTDWAWGMVAYAGVDTKLFRNLKPKPPKSSNLDRKLN 300 

WT-HH8            LEINGEEHALSLDQFLYRGCVLRNTDWAWGMVAYAGVDTKLFRNLKPKPPKSSNLDRKLN 300 

WT-HH9            LEINGEEHALSLDQFLYRGCVLRNTDWAWGMVAYAGVDTKLFRNLKPKPPKSSNLDRKLN 300 
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WT-HH10           LEINGEEHALSLDQFLYRGCVLRNTDWAWGMVAYAGVDTKLFRNLKPKPPKSSNLDRKLN 300 

WT-HH12           LEINGEEHALSLDQFLYRGCVLRNTDWAWGMVAYAGVDTKLFRNLKPKPPKSSNLDRKLN 300 

                  ************************************************************ 

 

LmxM.13.1530      YFIIAIL 307 

WT-HH41           YFIIAIL 307 

WT-HH42           YFIIAIL 307 

WT-HH43           YFIIAIL 307 

WT-HH44           YFIIAIL 307 

WT-HH48           YFIIAIL 307 

WT-HH49           YFIIAIL 307 

WT-HH5            YFIIAIL 307 

WT-HH6            YFIIAIL 307 

WT-HH8            YFIIAIL 307 

WT-HH9            YFIIAIL 307 

WT-HH10           YFIIAIL 307 

WT-HH12           YFIIAIL 307 

                  ******* 

 
Fragment 2 

 
LmxM.13.1530      RQNITLWGYRYLSYFILLSY           360 

WT-HH19           RQNITLWGYRYLSYFILLSY           360 

WT-HH21           RQNITLWGYRYLSYFILLSY           360 

WT-HH22           RQNITLWGYRYLSYFILLSY           360 

WT-HH23           RQNITLWGYRYLSYFILLSY           360 

WT-HH24           RQNITLWGYRYLSYFILLSY           360 

WT-HH25           RQNITLWGYRYLSYFILLSY           360 

R-HH28            RQNITLWGYRYLSYFILLSY           360 

R-HH29            RQNITLWGYRYLSYFILLSY           360 

R-HH31            RQNITLWGYRYLSYFILLSY           360 

R-HH32            RQNITLWGYRYLSYFILLSY           360 

R-HH33            RQNITLWGYRYLSYFILLSY           360 

R-HH34            RQNITLWGYRYLSYFILLSY           360 

                  ********************  

 

LmxM.13.1530      CVPISLFVTIELCKVIQAQWMRMDCLMMEYMNNRWRHCQPNTSNLNEQLAMVRFIFSDKT 420 

WT-HH19           CVPISLFVTIELCKVIQAQWMRMDCLMMEYMNNRWRHCQPNTSNLNEQLAMVRFIFSDKT 420 

WT-HH21           CVPISLFVTIELCKVIQAQWMRMDCLMMEYMNNRWRHCQPNTSNLNEQLAMVRFIFSDKT 420 

WT-HH22           CVPISLFVTIELCKVIQAQWMRMDCLMMEYMNNRWRHCQPNTSNLNEQLAMVRFIFSDKT 420 

WT-HH23           CVPISLFVTIELCKVIQAQWMRMDCLMMEYMNNRWRHCQPNTSNLNEQLAMVRFIFSDKT 420 

WT-HH24           CVPISLFVTIELCKVIQAQWMRMDCLMMEYMNNRWRHCQPNTSNLNEQLAMVRFIFSDKT 420 

WT-HH25           CVPISLFVTIELCKVIQAQWMRMDCLMMEYMNNRWRHCQPNTSNLNEQLAMVRFIFSDKT 420 

R-HH28            CVPISLFVTIELCKVIQAQWMRMDCLMMEYMNNRWRHCQPNTSNLNEQLAMVRFIFSDKT 420 

R-HH29            CVPISLFVTIELCKVIQAQWMRMDCLMMEYMNNRWRHCQPNTSNLNEQLAMVRFIFSDKT 420 

R-HH31            CVPISLFVTIELCKVIQAQWMRMDCLMMEYMNNRWRHCQPNTSNLNEQLAMVRFIFSDKT 420 

R-HH32            CVPISLFVTIELCKVIQAQWMRMDCLMMEYMNNRWRHCQPNTSNLNEQLAMVRFIFSDKT 420 
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R-HH33            CVPISLFVTIELCKVIQAQWMRMDCLMMEYMNNRWRHCQPNTSNLNEQLAMVRFIFSDKT 420 

R-HH34            CVPISLFVTIELCKVIQAQWMRMDCLMMEYMNNRWRHCQPNTSNLNEQLAMVRFIFSDKT 420 

                  ************************************************************ 

 

LmxM.13.1530      GTLTENVMKFKQGDALGIPIEADSLDKCIVQLRKEAESKRLGPLQEYFLALALCNTVQPF 480 

WT-HH19           GTLTENVMKFKQGDALGIPIEADSLDKCIVQLRKEAESKRLGPLQEYFLALALCNTVQPF 480 

WT-HH21           GTLTENVMKFKQGDALGIPIEADSLDKCIVQLRKEAESKRLGPLQEYFLALALCNTVQPF 480 

WT-HH22           GTLTENVMKFKQGDALGIPIEADSLDKCIVQLRKEAESKRLGPLQEYFLALALCNTVQPF 480 

WT-HH23           GTLTENVMKFKQGDALGIPIEADSLDKCIVQLRKEAESKRLGPLQEYFLALALCNTVQPF 480 

WT-HH24           GTLTENVMKFKQGDALGIPIEADSLDKCIVQLRKEAESKRLGPLQEYFLALALCNTVQPF 480 

WT-HH25           GTLTENVMKFKQGDALGIPIEADSLDKCIVQLRKEAESKRLGPLQEYFLALALCNTVQPF 480 

R-HH28            GTLTENVMKFKQGDALGIPIEADSLDKCIVQLRKEAESKRLGPLQEYFLALALCNTVQPF 480 

R-HH29            GTLTENVMKFKQGDALGIPIEADSLDKCIVQLRKEAESKRLGPLQEYFLALALCNTVQPF 480 

R-HH31            GTLTENVMKFKQGDALGIPIEADSLDKCIVQLRKEAESKRLGPLQEYFLALALCNTVQPF 480 

R-HH32            GTLTENVMKFKQGDALGIPIEADSLDKCIVQLRKEAESKRLGPLQEYFLALALCNTVQPF 480 

R-HH33            GTLTENVMKFKQGDALGIPIEADSLDKCIVQLRKEAESKRLGPLQEYFLALALCNTVQPF 480 

R-HH34            GTLTENVMKFKQGDALGIPIEADSLDKCIVQLRKEAESKRLGPLQEYFLALALCNTVQPF 480 

                  ************************************************************ 

 

LmxM.13.1530      KDDTDGLSVIYEGSSPDEVALVETAAAVGYRLINRTTKSITLLLQNDTRKVYNILATLEF 540 

WT-HH19           KDDTDGLSVIYEGSSPDEVALVETAAAVGYRLINRTTKSITLLLQNDTRKVYNILATLEF 540 

WT-HH21           KDDTDGLSVIYEGSSPDEVALVETAAAVGYRLINRTTKSITLLLQNDTRKVYNILATLEF 540 

WT-HH22           KDDTDGLSVIYEGSSPDEVALVETAAAVGYRLINRTTKSITLLLQNDTRKVYNILATLEF 540 

WT-HH23           KDDTDGLSVIYEGSSPDEVALVETAAAVGYRLINRTTKSITLLLQNDTRKVYNILATLEF 540 

WT-HH24           KDDTDGLSVIYEGSSPDEVALVETAAAVGYRLINRTTKSITLLLQNDTRKVYNILATLEF 540 

WT-HH25           KDDTDGLSVIYEGSSPDEVALVETAAAVGYRLINRTTKSITLLLQNDTRKVYNILATLEF 540 

R-HH28            KDDTDGLSVIYEGSSPDEVALVETAAAVGYRLINRTTKSITLLLQNDTRKVYNILATLEF 540 

R-HH29            KDDTDGLSVIYEGSSPDEVALVETAAAVGYRLINRTTKSITLLLQNDTRKVYNILATLEF 540 

R-HH31            KDDTDGLSVIYEGSSPDEVALVETAAAVGYRLINRTTKSITLLLQNDTRKVYNILATLEF 540 

R-HH32            KDDTDGLSVIYEGSSPDEVALVETAAAVGYRLINRTTKSITLLLQNDTRKVYNILATLEF 540 

R-HH33            KDDTDGLSVIYEGSSPDEVALVETAAAVGYRLINRTTKSITLLLQNDTRKVYNILATLEF 540 

R-HH34            KDDTDGLSVIYEGSSPDEVALVETAAAVGYRLINRTTKSITLLLQNDTRKVYNILATLEF 540 

                  ************************************************************ 

 

LmxM.13.1530      TPDRKMMSIIVEDSDTKQIMLYNKGADSFIRPQLSRAPDVQEHIESVDIPLTEMSSSGLR 600 

WT-HH19           TPDRKMMSIIVEDSDTKQIMLYNKGADSFIRPQLSRAPDVQEHIESVDIPLTEMSSSGLR 600 

WT-HH21           TPDRKMMSIIVEDSDTKQIMLYNKGADSFIRPQLSRAPDVQEHIESVDIPLTEMSSSGLR 600 

WT-HH22           TPDRKMMSIIVEDSDTKQIMLYNKGADSFIRPQLSRAPDVQEHIESVDIPLTEMSSSGLR 600 

WT-HH23           TPDRKMMSIIVEDSDTKQIMLYNKGADSFIRPQLSRAPDVQEHIESVDIPLTEMSSSGLR 600 

WT-HH24           TPDRKMMSIIVEDSDTKQIMLYNKGADSFIRPQLSRAPDVQEHIESVDIPLTEMSSSGLR 600 

WT-HH25           TPDRKMMSIIVEDSDTKQIMLYNKGADSFIRPQLSRAPDVQEHIESVDIPLTEMSSSGLR 600 

R-HH28            TPDRKMMSIIVEDSDTKQIMLYNKGADSFIRPQLSRAPDVQEHIESVDIPLTEMSSSGLR 600 

R-HH29            TPDRKMMSIIVEDSDTKQIMLYNKGADSFIRPQLSRAPDVQEHIESVDIPLTEMSSSGLR 600 

R-HH31            TPDRKMMSIIVEDSDTKQIMLYNKGADSFIRPQLSRAPDVQEHIESVDIPLTEMSSSGLR 600 

R-HH32            TPDRKMMSIIVEDSDTKQIMLYNKGADSFIRPQLSRAPDVQEHIESVDIPLTEMSSSGLR 600 

R-HH33            TPDRKMMSIIVEDSDTKQIMLYNKGADSFIRPQLSRAPDVQEHIESVDIPLTEMSSSGLR 600 
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R-HH34            TPDRKMMSIIVEDSDTKQIMLYNKGADSFIRPQLSRAPDVQEHIESVDIPLTEMSSSGLR 600 

                  ************************************************************ 

 

LmxM.13.1530      TLLVCAKDITRRQFDLWYEKFVEVGKSLQNRSSKIDKVCLEMEQDMRLVGATAIEDKLQD 660 

WT-HH19           TLLVCAKDITRRQFDLWYEKFVEVGKSLQNRSSKIDKVCLEMEQDMRLVGATAIEDKLQD 660 

WT-HH21           TLLVCAKDITRRQFDLWYEKFVEVGKSLQNRSSKIDKVCLEMEQDMRLVGATAIEDKLQD 660 

WT-HH22           TLLVCAKDITRRQFDLWYEKFVEVGKSLQNRSSKIDKVCLEMEQDMRLVGATAIEDKLQD 660 

WT-HH23           TLLVCAKDITRRQFDLWYEKFVEVGKSLQNRSSKIDKVCLEMEQDMRLVGATAIEDKLQD 660 

WT-HH24           TLLVCAKDITRRQFDLWYEKFVEVGKSLQNRSSKIDKVCLEMEQDMRLVGATAIEDKLQD 660 

WT-HH25           TLLVCAKDITRRQFDLWYEKFVEVGKSLQNRSSKIDKVCLEMEQDMRLVGATAIEDKLQD 660 

R-HH28            TLLVCAKDITRRQFDLWYEKFVEVGKSLQNRSSKIDKVCLEMEQDMRLVGATAIEDKLQD 660 

R-HH29            TLLVCAKDITRRQFDLWYEKFVEVGKSLQNRSSKIDKVCLEMEQDMRLVGATAIEDKLQD 660 

R-HH31            TLLVCAKDITRRQFDLWYEKFVEVGKSLQNRSSKIDKVCLEMEQDMRLVGATAIEDKLQD 660 

R-HH32            TLLVCAKDITRRQFDLWYEKFVEVGKSLQNRSSKIDKVCLEMEQDMRLVGATAIEDKLQD 660 

R-HH33            TLLVCAKDITRRQFDLWYEKFVEVGKSLQNRSSKIDKVCLEMEQDMRLVGATAIEDKLQD 660 

R-HH34            TLLVCAKDITRRQFDLWYEKFVEVGKSLQNRSSKIDKVCLEMEQDMRLVGATAIEDKLQD 660 

                  ************************************************************ 

 

LmxM.13.1530      EVPETLSFFLNAGVIIWMLT       680 

WT-HH19           EVPETLSFFLNAGVIIWMLT       680 

WT-HH21           EVPETLSFFLNAGVIIWMLT       680 

WT-HH22           EVPETLSFFLNAGVIIWMLT       680 

WT-HH23           EVPETLSFFLNAGVIIWMLT       680 

WT-HH24           EVPETLSFFLNAGVIIWMLT       680 

WT-HH25           EVPETLSFFLNAGVIIWMLT       680 

R-HH28            EVPETLSFFLNAGVIIWMLT       680 

R-HH29            EVPETLSFFLNAGVIIWMLT       680 

R-HH31            EVPETLSFFLNAGVIIWMLT       680 

R-HH32            EVPETLSFFLNAGVIIWMLT       680 

R-HH33            EVPETLSFFLNAGVIIWMLT       680 

R-HH34            EVPETLSFFLNAGVIIWMLT       680 

                                               ************************  
 

Fragment 3 

 
LmxM.13.1530      KERRCTLVIDGPGLNISMEHYFNQFLRISHQLNSAVCCRL 780 

WT-HH77           KERRCTLVIDGPGLNISMEHYFNQFLRISHQLNSAVCCRL 780 

WT-HH79           KERRCTLVIDGPGLNISMEHYFNQFLRISHQLNSAVCCRL 780 

WT-HH80           KERRCTLVIDGPGLNISMEHYFNQFLRISHQLNSAVCCRL 780 

WT-HH81           KERRCTLVIDGPGLNISMEHYFNQFLRISHQLNSAVCCRL 780 

WT-HH82           KERRCTLVIDGPGLNISMEHYFNQFLRISHQLNSAVCCRL 780 

WT-HH83           KERRCTLVIDGPGLNISMEHYFNQFLRISHQLNSAVCCRL 780 

R-HH60            KERRCTLVIDGPGLNISMEHYFNQFLRISHQLNSAVCCRL 780 

R-HH61            KERRCTLVIDGPGLNISMEHYFNQFLRISHQLNSAVCCRL 780 

R-HH63            KERRCTLVIDGPGLNISMEHYFNQFLRISHQLNSAVCCRL 780 

R-HH64            KERRCTLVIDGPGLNISMEHYFNQFLRISHQLNSAVCCRL 780 

R-HH65            KERRCTLVIDGPGLNISMEHYFNQFLRISHQLNSAVCCRL 780 
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R-HH67            KERRCTLVIDGPGLNISMEHYFNQFLRISHQLNSAVCCRL 780 

                  **************************************** 

 

LmxM.13.1530      TPIQKASVVRMFQKSTGKTALAIGDGANDVSMIREGRVGVGIIGLEGAHAALAADYAIPR 840 

WT-HH77           TPIQKASVVRMFQKSTGKTALAIGDGANDVSMIREGRVGVGIIGLEGAHAALAADYAIPR 840 

WT-HH79           TPIQRASVVRMFQKSTGKTALAIGDGANDVSMIREGRVGVGIIGLEGAHAALAADYAIPR 840 

WT-HH80           TPIQKASVVRMFQKSTGKTALAIGDGANDVSMIREGRVGVGIIGLEGAHAALAADYAIPR 840 

WT-HH81           TPIQKASVVRMFQKSTGKTALAIGDGANDVSMIREGRVGVGIIGLEGAHAALAADYAIPR 840 

WT-HH82           TPIQKASVVRMFQKSTGKTALAIGDGANDVSMIREGRVGVGIIGLEGAHAALAADYAIPR 840 

WT-HH83           TPIQKASVVRMFQKSTGKTALAIGDGANDVSMIREGRVGVGIIGLEGAHAALAADYAIPR 840 

R-HH60            TPIQKASVVRMFQKSTGKTALAIGDGANDVSMIREGRVGVGIIGLEGAHAALAADYAIPR 840 

R-HH61            TPIQKASVVRMFQKSTGKTALAIGDGANDVSMIREGRVGVGIIGLEGAHAALAADYAIPR 840 

R-HH63            TPIQKASVVRMFQKSTGKTALAIGDGANDVSMIREGRVGVGIIGLEGAHAALAADYAIPR 840 

R-HH64            TPIQKASVVRMFQKSTGKTALAIGDGANDVSMIREGRVGVGIIGLEGAHAALAADYAIPR 840 

R-HH65            TPIQKASVVRMFQKSTGKTALAIGDGANDVSMIREGRVGVGIIGLEGAHAALAADYAIPR 840 

R-HH67            TPIQKASVVRMFQKSTGKTALAIGDGANDVSMIREGRVGVGIIGLEGAHAALAADYAIPR 840 

                  **** ******************************************************* 

 

LmxM.13.1530      FKHLRRLCAVHGRYSLFRNASCILVSFHKNITVSVVQFIFAFYVGFSGLTLFDGWMLTFY 900 

WT-HH77           FKHLRRLCAVHGRYSLFRNASCILVSFHKNITVSVVQFIFAFYVGFSGLTLFDGWMLTFY 900 

WT-HH79           FKHLRRLCAVHGRYSLFRNASCILVSFHKNITVSVVQFILAFYVGFSGLTLFDGWMLTFY 900 

WT-HH80           FKHLRRLCAVHGRYSLFRNASCILVSFHKNITVSVVQFIFAFYVGFSGLTLFDGWMLTFY 900 

WT-HH81           FKHLRRLCAVHGRYSLFRNASCILVSFHKNITVSVVQFIFAFYVGFSGLTLFDGWMLTFY 900 

WT-HH82           FKHLRRLCAVHGRYSLFRNASCILVSFHKNITVSVVQFIFAFYVGFSGLTLFDGWMLTFY 900 

WT-HH83           FKHLRRLCAVHGRYSLFRNASCILVSFHKNITVSVVQFIFAFYVGFSGLTLFDGWMLTFY 900 

R-HH60            FKHLRRLCAVHGRYSLFRNASCILVSFHKNITVSVVQFIFAFYVGFSGLTLFDGWMLTFY 900 

R-HH61            FKHLRRLCAVHGRYSLFRNASCILVSFHKNITVSVVQFIFAFYVGFSGLTLFDGWMLTFY 900 

R-HH63            FKHLRRLCAVHGRYSLFRNASCILVSFHKNITVSVVQFIFAFYVGFSGLTLFDGWMLTFY 900 

R-HH64            FKHLRRLCAVHGRYSLFRNASCILVSFHKNITVSVVQFIFAFYVGFSGLTLFDGWMLTFY 900 

R-HH65            FKHLRRLCAVHGRYSLFRNASCILVSFHKNITVSVVQFIFAFYVGFSGLTLFDGWMLTFY 900 

R-HH67            FKHLRRLCAVHGRYSLFRNASCILVSFHKNITVSVVQFIFAFYVGFSGLTLFDGWMLTFY 900 

                  *************************************** ******************** 

 

LmxM.13.1530      NVLMTSVPPFFIGIFDKDLPEEALLERPKLYTPLSHGEYFNVTTLLRWFAESLITALILF 960 

WT-HH77           NVLMTSVPPFFIGIFDKDLPEEALLEQPKLYTPLSHGEYFNVTTLLRWFAESLITALILF 960 

WT-HH79           NVLMTSVPPFFIGIFDKDLPEEALLERPKLYTPLSHGEYFNVTTLLRWFAESLITALILF 960 

WT-HH80           NVLMTSVPPFFIGIFDKDLPEEALLERPKLYTPLSHGEYFNVTTLLRWFAESLITALILF 960 

WT-HH81           NVLMTSVPPFFIGIFDKDLPEEALLERPKLYTPLSHGEYFNVTTLLRWFAESLITALILF 960 

WT-HH82           NVLMTSVPPFFIGIFDKDLPEEALLERPKLYTPLSHGEYFNVTTLLRWFAESLITALILF 960 

WT-HH83           NVLMTSVPPFFIGIFDKDLPEEALLERPKLYTPLSHGEYFNVTTLLRWFAESLITALILF 960 

R-HH60            NVLMTSVPPFFIGIFDKDLPEEALLERPKLYTPLSHGEYFNVTTLLRWFAESLITALILF 960 

R-HH61            NVLMTSVPPFFIGIFDKDLPEEALLERPKLYTPLSHGEYFNVTTLLRWFAESLITALILF 960 

R-HH63            NVLMTSVPPFFIGIFDKDLPEEALLERPKLYTPLSHGEYFNVTTLLRWFAESLITALILF 960 

R-HH64            NVLMTSVPPFFIGIFDKDLPEEALLERPKLYTPLSHGEYFNVTTLLRWFAESLITALILF 960 

R-HH65            NVLMTSVPPFFIGIFDKDLPEEALLERPKLYTPLSHGEYFNVTTLLRWFAESLITALILF 960 

R-HH67            NVLMTSVPPFFIGIFDKDLPEEALLERPKLYTPLSHGEYFNVTTLLRWFAESLITALILF 960 
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                  ************************** ********************************* 

 

LmxM.13.1530      YAAYPTLVHQDGSHQRYTGAETGTLVFSG        989 

WT-HH77           YAAYPTLVHQDGSHQRYTGAETGTLVFSG        989 

WT-HH79           YAAYPTLVHQDGSHQRYTGAETGTLVFSG        989 

WT-HH80           YAAYPTLVHQDGSHQRYTGAETGTLVFSG        989 

WT-HH81           YAAYPTLVHQDGSHQRYTGAETGTLVFSG        989 

WT-HH82           YAAYPTLVHQDGSHQRYTGAETGTLVFSG        989 

WT-HH83           YAAYPTLVHQDGSHQRYTGAETGTLVFSG        989 

R-HH60            YAAYPTLVHQDGSHQRYTGAETGTLVFSG        989 

R-HH61            YAAYPTLVHQDGSHQRYTGAETGTLVFSG        989 

R-HH63            YAAYPTLVHQDGSHQRYTGAETGTLVFSG        989 

R-HH64            YAAYPTLVHQDGSHQRYTGAETGTLVFSG        989 

R-HH65            YAAYPTLVHQDGSHQRYTGAETGTLVFSG        989 

R-HH67            YAAYPTLVHQDGSHQRYTGAETGTLVFSG        989 

                  ***************************** 

 

 

Appendix 3 (Chapter 4)  

Multiple sequence alignment for each fragment of LmROS3 gene. 9 clones for each fragment of 

LmROS3 sequenced compared LmxM.31.0510. The WT-prefix is for the pre-selection wildtype and 

the R-prefix for 700022-selected parasites. The HH code uniquely identifies the PCR clone 

sequenced 

 
LmxM.31.0510      ATGGCGTCTCTACCCCCAAAGCCACATTTGAAAAACCGCGTTGAGCAGCAGCAGCTGCCG 60 

WT-HH21           ATGGCGTCTCTACCCCCAAAGCCACATTTGAAAAACCGCGTTGAGCAGCAGCAGCTGCCG 60 

WT-HH22           ATGGCGTCTCTACCCCCAAAGCCACATTTGAAAAACCGCGTTGAGCAGCAGCAGCTGCCG 60 

WT-HH24           ATGGCGTCTCTACCCCCAAAGCCACATTTGAAAAACCGCGTTGAGCAGCAGCAGCTGCCG 60 

WT-HH25           ATGGCGTCTCTACCCCCAAAGCCACATTTGAAAAACCGCGTTGAGCAGCAGCAGCTGCCG 60 

WT-HH27           ATGGCGTCTCTACCCCCAAAGCCACATTTGAAAAACCGCGTTGAGCAGCAGCAGCTGCCG 60 

WT-HH30           ATGGCGTCTCTACCCCCAAAGCCACATTTGAAAAACCGCGTTGAGCAGCAGCAGCTGCCG 60 

WT-HH31           ATGGCGTCTCTACCCCCAAAGCCACATTTGAAAAACCGCGTTGAGCAGCAGCAGCTGCCG 60 

WT-HH32           ATGGCGTCTCTACCCCCAAAGCCACATTTGAAAAACCGCGTTGAGCAGCAGCAGCTGCCG 60 

WT-HH34           ATGGCGTCTCTACCCCCAAAGCCACATTTGAAAAACCGCGTTGAGCAGCAGCAGCTGCCG 60 

R-HH18            ATGGCGTCTCTACCCCCAAAGCCACATTTGAAAAACCGCGTTGAGCAGCAGCAGCTGCCG 60 

R-HH63            ATGGCGTCTCTACCCCCAAAGCCACATTTGAAAAACCGCGTTGAGCAGCAGCAGCTGCCG 60 

R-HH64            ATGGCGTCTCTACCCCCAAAGCCACATTTGAAAAACCGCGTTGAGCAGCAGCAGCTGCCG 60 

R-HH65            ATGGCGTCTCTACCCCCAAAGCCACATTTGAAAAACCGCGTTGAGCAGCAGCAGCTGCCG 60 

R-HH67            ATGGCGTCTCTACCCCCAAAGCCACATTTGAAAAACCGCGTTGAGCAGCAGCAGCTGCCG 60 

R-HH68            ATGGCGTCTCTACCCCCAAAGCCACATTTGAAAAACCGCGTTGAGCAGCAGCAGCTGCCG 60 

R-HH69            ATGGCGTCTCTACCCCCAAAGCCACATTTGAAAAACCGCGTTGAGCAGCAGCAGCTGCCG 60 

R-HH70            ATGGCGTCTCTACCCCCAAAGCCACATTTGAAAAACCGCGTTGAGCAGCAGCAGCTGCCG 60 

R-HH71            ATGGCGTCTCTACCCCCAAAGCCACATTTGAAAAACCGCGTTGAGCAGCAGCAGCTGCCG 60 

                  ************************************************************ 

 

LmxM.31.0510      CACGTCTTTGTTCCTCATTCGCCGCTGTCTGTTTCTGTTGTCTTTTTTATTCTGGCAATT 120 

WT-HH21           CACGTCTTTGTTCCTCATTCGCCGCTGTCTGTTTCTGTTGTCTTTTTTATTCTGGCAATT 120 

WT-HH22           CACGTCTTTGTTCCTCATTCGCCGCTGTCTGTTTCTGTTGTCTTTTTTATTCTGGCAATT 120 

WT-HH24           CACGTCTTTGTTCCTCATTCGCCGCTGTCTGTTTCTGTTGTCTTTTTTATTCTGGCAATT 120 

WT-HH25           CACGTCTTTGTTCCTCATTCGCCGCTGTCTGTTTCTGTTGTCTTTTTTATTCTGGCAATT 120 

WT-HH27           CACGTCTTTGTTCCTCATTCGCCGCTGTCTGTTTCTGTTGTCTTTTTTATTCTGGCAATT 120 

WT-HH30           CACGTCTTTGTTCCTCATTCGCCGCTGTCTGTTTCTGTTGTCTTTTTTATTCTGGCAATT 120 
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WT-HH31           CACGTCTTTGTTCCTCATTCGCCGCTGTCTGTTTCTGTTGTCTTTTTTATTCTGGCAATT 120 

WT-HH32           CACGTCTTTGTTCCTCATTCGCCGCTGTCTGTTTCTGTTGTCTTTTTTATTCTGGCAATT 120 

WT-HH34           CACGTCTTTGTTCCTCATTCGCCGCTGTCTGTTTCTGTTGTCTTTTTTATTCTGGCAATT 120 

R-HH18            CACGTCTTTGTTCCTCATTCGCCGCTGTCTGTTTCTGTTGTCTTTTTTATTCTGGCAATT 120 

R-HH63            CACGTCTTTGTTCCTCATTCGCCGCTGTCTGTTTCTGTTGTCTTTTTTATTCTGGCAATT 120 

R-HH64            CACGTCTTTGTTCCTCATTCGCCGCTGTCTGTTTCTGTTGTCTTTTTTATTCTGGCAATT 120 

R-HH65            CACGTCTTTGTTCCTCATTCGCCGCTGTCTGTTTCTGTTGTCTTTTTTATTCTGGCAATT 120 

R-HH67            CACGTCTTTGTTCCTCATTCGCCGCTGTCTGTTTCTGTTGTCTTTTTTATTCTGGCAATT 120 

R-HH68            CACGTCTTTGTTCCTCATTCGCCGCTGTCTGTTTCTGTTGTCTTTTTTATTCTGGCAATT 120 

R-HH69            CACGTCTTTGTTCCTCATTCGCCGCTGTCTGTTTCTGTTGTCTTTTTTATTCTGGCAATT 120 

R-HH70            CACGTCTTTGTTCCTCATTCGCCGCTGTCTGTTTCTGTTGTCTTTTTTATTCTGGCAATT 120 

R-HH71            CACGTCTTTGTTCCTCATTCGCCGCTGTCTGTTTCTGTTGTCTTTTTTATTCTGGCAATT 120 

                  ************************************************************ 

 

LmxM.31.0510      CTTGCTATTCCGATCGGCGTCGTCGTAATCGTGACCGGGGATAGGACGACAAGGCTTGAT 180 

WT-HH21           CTTGCTATTCCGATCGGCGTCGTCGTAATCGTGACCGGGGATAGGACGACAAGGCTTGAT 180 

WT-HH22           CTTGCTATTCCGATCGGCGTCGTCGTAATCGTGACCGGGGATAGGACGACAAGGCTTGAT 180 

WT-HH24           CTTGCTATTCCGATCGGCGTCGTCGTAATCGTGACCGGGGATAGGACGACAAGGCTTGAT 180 

WT-HH25           CTTGCTATTCCGATCGGCGTCGTCGTAATCGTGACCGGGGATAGGACGACAAGGCTTGAT 180 

WT-HH27           CTTGCTATTCCGATCGGCGTCGTCGTAATCGTGACCGGGGATAGGACGACAAGGCTTGAT 180 

WT-HH30           CTTGCTATTCCGATCGGCGTCGTCGTAATCGTGACCGGGGATAGGACGACAAGGCTTGAT 180 

WT-HH31           CTTGCTATTCCGATCGGCGTCGTCGTAATCGTGACCGGGGATAGGACGACAAGGCTTGAT 180 

WT-HH32           CTTGCTATTCCGATCGGCGTCGTCGTAATCGTGACCGGGGATAGGACGACAAGGCTTGAT 180 

WT-HH34           CTTGCTATTCCGATCGGCGTCGTCGTAATCGTGACCGGGGATAGGACGACAAGGCTTGAT 180 

R-HH18            CTTGCTATTCCGATCGGCGTCGTCGTAATCGTGACCGGGGATAGGACGACAAGGCTTGAT 180 

R-HH63            CTTGCTATTCCGATCGGCGTCGTCGTAATCGTGACCGGGGATAGGACGACAAGGCTTGAT 180 

R-HH64            CTTGCTATTCCGATCGGCGTCGTCGTAATCGTGACCGGGGATAGGACGACAAGGCTTGAT 180 

R-HH65            CTTGCTATTCCGATCGGCGTCGTCGTAATCGTGACCGGGGATAGGACGACAAGGCTTGAT 180 

R-HH67            CTTGCTATTCCGATCGGCGTCGTCGTAATCGTGACCGGGGATAGGACGACAAGGCTTGAT 180 

R-HH68            CTTGCTATTCCGATCGGCGTCGTCGTAATCGTGACCGGGGATAGGACGACAAGGCTTGAT 180 

R-HH69            CTTGCTATTCCGATCGGCGTCGTCGTAATCGTGACCGGGGATAGGACGACAAGGCTTGAT 180 

R-HH70            CTTGCTATTCCGATCGGCGTCGTCGTAATCGTGACCGGGGATAGGACGACAAGGCTTGAT 180 

R-HH71            CTTGCTATTCCGATCGGCGTCGTCGTAATCGTGACCGGGGATAGGACGACAAGGCTTGAT 180 

                  ************************************************************ 

 

LmxM.31.0510      TTTCGCTACGATCATATCAACAACTACAAGTTTGCAATGGGGGCGGCTGGTGAGCATGCC 240 

WT-HH21           TTTCGCTACGATCATATCAACAACTACAAGTTTGCAATGGGGGCGGCTGGTGAGCATGCC 240 

WT-HH22           TTTCGCTACGATCATATCAACAACTACAAGTTTGCAATGGGGGCGGCTGGTGAGCATGCC 240 

WT-HH24           TTTCGCTACGATCATATCAACAACTACAAGTTTGCAATGGGGGCGGCTGGTGAGCATGCC 240 

WT-HH25           TTTCGCTACGATCATATCAACAACTACAAGTTTGCAATGGGGGCGGCTGGTGAGCATGCC 240 

WT-HH27           TTTCGCTACGATCATATCAACAACTACAAGTTTGCAATGGGGGCGGCTGGTGAGCATGCC 240 

WT-HH30           TTTCGCTACGATCATATCAACAACTACAAGTTTGCAATGGGGGCGGCTGGTGAGCATGCC 240 

WT-HH31           TTTCGCTACGATCATATCAACAACTACAAGTTTGCAATGGGGGCGGCTGGTGAGCATGCC 240 

WT-HH32           TTTCGCTACGATCATATCAACAACTACAAGTTTGCAATGGGGGCGGCTGGTGAGCATGCC 240 

WT-HH34           TTTCGCTACGATCATATCAACAACTACAAGTTTGCAATGGGGGCGGCTGGTGAGCATGCC 240 

R-HH18            TTTCGCTACGATCATATCAACAACTACAAGTTTGCAATGGGGGCGGCTGGTGAGCATGCC 240 

R-HH63            TTTCGCTACGATCATATCAACAACTACAAGTTTGCAATGGGGGCGGCTGGTGAGCATGCC 240 

R-HH64            TTTCGCTACGATCATATCAACAACTACAAGTTTGCAATGGGGGCGGCTGGTGAGCATGCC 240 

R-HH65            TTTCGCTACGATCATATCAACAACTACAAGTTTGCAATGGGGGCGGCTGGTGAGCATGCC 240 

R-HH67            TTTCGCTACGATCATATCAACAACTACAAGTTTGCAATGGGGGCGGCTGGTGAGCATGCC 240 

R-HH68            TTTCGCTACGATCATATCAACAACTACAAGTTTGCAATGGGGGCGGCTGGTGAGCATGCC 240 

R-HH69            TTTCGCTACGATCATATCAACAACTACAAGTTTGCAATGGGGGCGGCTGGTGAGCATGCC 240 

R-HH70            TTTCGCTACGATCATATCAACAACTACAAGTTTGCAATGGGGGCGGCTGGTGAGCATGCC 240 

R-HH71            TTTCGCTACGATCATATCAACAACTACAAGTTTGCAATGGGGGCGGCTGGTGAGCATGCC 240 

                  ************************************************************ 

 

LmxM.31.0510      GTTAATTTTCCATTCAATGACACCACCTACTCTTCTGGTGTCAAAACGTTGGTTATGTTC 300 

WT-HH21           GTTAATTTTCCATTCAATGACACCACCTACTCTTCTGGTGTCAAAACGTTGGTTATGTTC 300 

WT-HH22           GTTAATTTTCCATTCAATGACACCACCTACTCTTCTGGTGTCAAAACGTTGGTTATGTTC 300 

WT-HH24           GTTAATTTTCCATTCAATGACACCACCTACTCTTCTGGTGTCAAAACGTTGGTTATGTTC 300 

WT-HH25           GTTAATTTTCCATTCAATGACACCACCTACTCTTCTGGTGTCAAAACGTTGGTTATGTTC 300 

WT-HH27           GTTAATTTTCCATTCAATGACACCACCTACTCTTCTGGTGTCAAAACGTTGGTTATGTTC 300 

WT-HH30           GTTAATTTTCCATTCAATGACACCACCTACTCTTCTGGTGTCAAAACGTTGGTTATGTTC 300 

WT-HH31           GTTAATTTTCCATTCAATGACACCACCTACTCTTCTGGTGTCAAAACGTTGGTTATGTTC 300 

WT-HH32           GTTAATTTTCCATTCAATGACACCACCTACTCTTCTGGTGTCAAAACGTTGGTTATGTTC 300 

WT-HH34           GTTAATTTTCCATTCAATGACACCACCTACTCTTCTGGTGTCAAAACGTTGGTTATGTTC 300 

R-HH18            GTTAATTTTCCATTCAATGACACCACCTACTCTTCTGGTGTCAAAACGTTGGTTATGTTC 300 

R-HH63            GTTAATTTTCCATTCAATGACACCACCTACTCTTCTGGTGTCAAAACGTTGGTTATGTTC 300 

R-HH64            GTTAATTTTCCATTCAATGACACCACCTACTCTTCTGGTGTCAAAACGTTGGTTATGTTC 300 

R-HH65            GTTAATTTTCCATTCAATGACACCACCTACTCTTCTGGTGTCAAAACGTTGGTTATGTTC 300 

R-HH67            GTTAATTTTCCATTCAATGACACCACCTACTCTTCTGGTGTCAAAACGTTGGTTATGTTC 300 

R-HH68            GTTAATTTTCCATTCAATGACACCACCTACTCTTCTGGTGTCAAAACGTTGGTTATGTTC 300 

R-HH69            GTTAATTTTCCATTCAATGACACCACCTACTCTCCTGGTGTCAAAACGTTGGTTATGTTC 300 

R-HH70            GTTAATTTTCCATTCAATGACACCACCTACTCTTCTGGTGTCAAAACGTTGGTTATGTTC 300 

R-HH71            GTTAATTTTCCATTCAATGACACCACCTACTCTTCTGGTGTCAAAACGTTGGTTATGTTC 300 

                  ********************************* ************************** 
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LmxM.31.0510      TCGCTGTCTCAGAGTCTAACAGCTCCGGTGCACCTACAGTATCGCCTCAGGCCATTCTTT 360 

WT-HH21           TCGCTGTCTCAGAGTCTAACAGCTCCGGTGCACCTACAGTATCGCCTCAGGCCATTCTTT 360 

WT-HH22           TCGCTGTCTCAGAGTCTAACAGCTCCGGTGCACCTACAGTATCGCCTCAGGCCATTCTTT 360 

WT-HH24           TCGCTGTCTCAGAGTCTAACAGCTCCGGTGCACCTACAGTATCGCCTCAGGCCATTCTTT 360 

WT-HH25           TCGCTGTCTCAGAGTCTAACAGCTCCGGTGCACCTACAGTATCGCCTCAGGCCATTCTTT 360 

WT-HH27           TCGCTGTCTCAGAGTCTAACAGCTCCGGTGCACCTACAGTATCGCCTCAGGCCATTCTTT 360 

WT-HH30           TCGCTGTCTCAGAGTCTAACAGCTCCGGTGCACCTACAGTATCGCCTCAGGCCATTCTTT 360 

WT-HH31           TCGCTGTCTCAGAGTCTAACAGCTCCGGTGCACCTACAGTATCGCCTCAGGCCATTCTTT 360 

WT-HH32           TCGCTGTCTCAGAGTCTAACAGCTCCGGTGCACCTACAGTATCGCCTCAGGCCATTCTTT 360 

WT-HH34           TCGCTGTCTCAGAGTCTAACAGCTCCGGTGCACCTACAGTATCGCCTCAGGCCATTCTTT 360 

R-HH18            TCGCTGTCTCAGAGTCTAACAGCTCCGGTGCACCTACAGTATCGCCTCAGGCCATTCTTT 360 

R-HH63            TCGCTGTCTCAGAGTCTAACAGCTCCGGTGCACCTACAGTATCGCCTCAGGCCATTCTTT 360 

R-HH64            TCGCTGTCTCAGAGTCTAACAGCTCCGGTGCACCTACAGTATCGCCTCAGGCCATTCTTT 360 

R-HH65            TCGCTGTCTCAGAGTCTAACAGCTCCGGTGCACCTACAGTATCGCCTCAGGCCATTCTTT 360 

R-HH67            TCGCTGTCTCAGAGTCTAACAGCTCCGGTGCACCTACAGTATCGCCTCAGGCCATTCTTT 360 

R-HH68            TCGCTGTCTCAGAGTCTAACAGCTCCGGTGCACCTACAGTATCGCCTCAGGCCATTCTTT 360 

R-HH69            TCGCTGTCTCAGAGTCTAACAGCTCCGGTGCACCTACAGTATCGCCTCAGGCCATTCTTT 360 

R-HH70            TCGCTGTCTCAGAGTCTAACAGCTCCGGTGCACCTACAGTATCGCCTCAGGCCATTCTTT 360 

R-HH71            TCGCTGTCTCAGAGTCTAACAGCTCCGGTGCACCTACAGTATCGCCTCAGGCCATTCTTT 360 

                  ************************************************************ 

 

LmxM.31.0510      CAAAACTACCGCTACTTTACTGCCTCTGTGGACTACGCGCAACTTAGCGGTAGAGCGTCT 420 

WT-HH21           CAAAACTACCGCTACTTTACTGCCTCTGTGGACTACGCGCAACTTAGCGGTAGAGCGTCT 420 

WT-HH22           CAAAACTACCGCTACTTTACTGCCTCTGTGGACTACGCGCAACTTAGCGGTAGAGCGTCT 420 

WT-HH24           CAAAACTACCGCTACTTTACTGCCTCTGTGGACTACGCGCAACTTAGTGGTAGAGCGTCT 420 

WT-HH25           CAAAACTACCGCTACTTTACTGCCTCTGTGGACTACGCGCAACTTAGCGGTAGAGCGTCT 420 

WT-HH27           CAAAACTACCGCTACTTTACTGCCTCTGTGGACTACGCGCAACTTAGCGGTAGAGCGTCT 420 

WT-HH30           CAAAACTACCGCTACTTTACTGCCTCTGTGGACTACGCGCAACTTAGCGGTAGAGCGTCT 420 

WT-HH31           CAAAACTACCGCTACTTTACTGCCTCTGTGGACTACGCGCAACTTAGCGGTAGAGCGTCT 420 

WT-HH32           CAAAACTACCGCTACTTTACTGCCTCTGTGGACTACGCGCAACTTAGCGGTAGAGCGTCT 420 

WT-HH34           CAAAACTACCGCTACTTTACTGCCTCTGTGGACTACGCGCAACTTAGCGGTAGAGCGTCT 420 

R-HH18            CAAAACTACCGCTACTTTACTGCCTCTGTGGACTACGCGCAACTTAGCGGTAGAGCGTCT 420 

R-HH63            CAAAACTACCGCTACTTTACTGCCTCTGTGGACTACGCGCAACTTAGCGGTAGAGCGTCT 420 

R-HH64            CAAAACTACCGCTACTTTACTGCCTCTGTGGACTACGCGCAACTTAGCGGTAGAGCGTCT 420 

R-HH65            CAAAACTACCGCTACTTTACTGCCTCTGTGGACTACGCGCAACTTAGCGGTAGAGCGTCT 420 

R-HH67            CAAAACTACCGCTACTTTACTGCCTCTGTGGACTACGCGCAACTTAGCGGTAGAGCGTCT 420 

R-HH68            CAAAACTACCGCTACTTTACTGCCTCTGTGGACTACGCGCAACTTAGCGGTAGAGCGTCT 420 

R-HH69            CAAAACTACCGCTACTTTACTGCCTCTGTGGACTACGCGCAACTTAGCGGTAGAGCGTCT 420 

R-HH70            CAAAACTACCGCTACTTTACTGCCTCTGTGGACTACGCGCAACTTAGCGGTAGAGCGTCT 420 

R-HH71            CAAAACTACCGCTACTTTACTGCCTCTGTGGACTACGCGCAACTTAGCGGTAGAGCGTCT 420 

                  *********************************************** ************ 

 

LmxM.31.0510      GTAATTTCAAAGTCGTGTGCCCCATTCCGCTTTCCTGGAGAGGCAGCTGGCATTATTGTC 480 

WT-HH21           GTAATTTCAAAGTCGTGTGCCCCATTCCGCTTTCCTGGAGAGGCAGCTGGCATTATTGTC 480 

WT-HH22           GTAATTTCAAAGTCGTGTGCCCCATTCCGCTTTCCTGGAGAGGCAGCTGGCATTATTGTC 480 

WT-HH24           GTAATTTCAAAGTCGTGTGCCCCATTCCGCTTTCCTGGAGAGGCAGCTGGCATTATTGTC 480 

WT-HH25           GTAATTTCAAAGTCGTGTGCCCCATTCCGCTTTCCTGGAGAGGCAGCTGGCATTATTGTC 480 

WT-HH27           GTAATTTCAAAGTCGTGTGCCCCATTCCGCTTTCCTGGAGAGGCAGCTGGCATTATTGTC 480 

WT-HH30           GTAATTTCAAAGTCGTGTGCCCCATTCCGCTTTCCTGGAGAGGCAGCTGGCATTATTGTC 480 

WT-HH31           GTAATTTCAAAGTCGTGTGCCCCATTCCGCTTTCCTGGAGAGGCAGCTGGCATTATTGTC 480 

WT-HH32           GTAATTTCAAAGTCGTGTGCCCCATTCCGCTTTCCTGGAGAGGCAGCTGGCATTATTGTC 480 

WT-HH34           GTAATTTCAAAGTCGTGTGCCCCATTCCGCTTTCCTGGAGAGGCAGCTGGCATTATTGTC 480 

R-HH18            GTAATTTCAAAGTCGTGTGCCCCATTCCGCTTTCCTGGAGAGGCAGCTGGCATTATTGTC 480 

R-HH63            GTAATTTCAAAGTCGTGTGCCCCATTCCGCTTTCCTGGAGAGGCAGCTGGCATTATTGTC 480 

R-HH64            GTAATTTCAAAGTCGTGTGCCCCATTCCGCTTTCCTGGAGAGGCAGCTGGCATTATTGTC 480 

R-HH65            GTAATTTCAAAGTCGTGTGCCCCATTCCGCTTTCCTGGAGAGGCAGCTGGCATTATTGTC 480 

R-HH67            GTAATTTCAAAGTCGTGTGCCCCATTCCGCTTTCCTGGAGAGGCAGCTGGCATTATTGTC 480 

R-HH68            GTAATTTCAAAGTCGTGTGCCCCATTCCGCTTTCCTGGAGAGGCAGCTGGCATTATTGTC 480 

R-HH69            GTAACTTCAAAGTCGTGTGCCCCATTCCGCTTTCCTGGAGAGGCAGCTGGCATTATTGTC 480 

R-HH70            GTAATTTCAAAGTCGTGTGCCCCATTCCGCTTTCCTGGAGAGGCAGCTGGCATTATTGTC 480 

R-HH71            GTAATTTCAAAGTCGTGTGCCCCATTCCGCTTTCCTGGAGAGGCAGCTGGCATTATTGTC 480 

                  **** ******************************************************* 

 

LmxM.31.0510      CCCGGCTACTACAACCCGTGTGGTGCCTACCCGTGGGCTATATTCAACGACAGCATCAGT 540 

WT-HH21           CCCGGCTACTACAACCCGTGTGGTGCCTACCCGTGGGCTATATTCAACGACAGCATCAGT 540 

WT-HH22           CCCGGCTACTACAACCCGTGTGGTGCCTACCCGTGGGCTATATTCAACGACAGCATCAGT 540 

WT-HH24           CCCGGCTACTACAACCCGTGTGGTGCCTACCCGTGGGCTATATTCAACGACAGCATCAGT 540 

WT-HH25           CCCGGCTACTACAACCCGTGTGGTGCCTACCCGTGGGCTATATTCAACGACAGCATCAGT 540 

WT-HH27           CCCGGCTACTACAACCCGTGTGGTGCCTACCCGTGGGCTATATTCAACGACAGCATCAGT 540 

WT-HH30           CCCGGCTACTACAACCCGTGTGGTGCCTACCCGTGGGCTATATTCAACGACAGCATCAGT 540 

WT-HH31           CCCGGCTACTACAACCCGTGTGGTGCCTACCCGTGGGCTATATTCAACGACAGCATCAGT 540 

WT-HH32           CCCGGCTACTACAACCCGTGTGGTGCCTACCCGTGGGCTATATTCAACGACAGCATCAGT 540 

WT-HH34           CCCGGCTACTACAACCCGTGTGGTGCCTACCCGTGGGCTATATTCAACGACAGCATCAGT 540 

R-HH18            CCCGGCTACTACAACCCGTGTGGTGCCTACCCGTGGGCTATATTCAACGACAGCATCAGT 540 

R-HH63            CCCGGCTACTACAACCCGTGTGGTGCCTACCCGTGGGCTATATTCAACGACAGCATCAGT 540 
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R-HH64            CCCGGCTACTACAACCCGTGTGGTGCCTACCCGTGGGCTATATTCAACGACAGCATCAGT 540 

R-HH65            CCCGGCTACTACAACCCGTGTGGTGCCTACCCGTGGGCTATATTCAACGACAGCATCAGT 540 

R-HH67            CCCGGCTACTACAACCCGTGTGGTGCCTACCCGTGGGCTATATTCAACGACAGCATCAGT 540 

R-HH68            CCCGGCTACTACAACCCGTGTGGTGCCTACCCGTGGGCTATATTCAACGACAGCATCAGT 540 

R-HH69            CCCGGCTACTACAACCCGTGTGGTGCCTACCCGTGGGCTATATTCAACGACAGCATCAGT 540 

R-HH70            CCCGGCTACTACAACCCGTGTGGTGCCTACCCGTGGGCTATATTCAACGACAGCATCAGT 540 

R-HH71            CCCGGCTACTACAACCCGTGTGGTGCCTACCCGTGGGCTATATTCAACGACAGCATCAGT 540 

                  ************************************************************ 

 

LmxM.31.0510      CTGTATAGGATGGACGGCACCCTCATCTGCGACGGCGGCGCCTTCACGGTCGACGGAAGG 600 

WT-HH21           CTGTATAGGATGGACGGCACCCTCATCTGCGACGGCGGCGCCTTCACGGTCGACGGAAGG 600 

WT-HH22           CTGTATAGGATGGACGGCACCCTCATCTGCGACGGCGGCGCCTTTACGGTCGACGGAAGG 600 

WT-HH24           CTGTATAGGATGGACGGCACCCTCATCTGCGACGGCGGCGCCTTCACGGTCGACGGAAGG 600 

WT-HH25           CTGTATAGGATGGACGGCACCCTCATCTGCGACGGCGGCGCCTTCACGGTCGACGGAAGG 600 

WT-HH27           CTGTATAGGATGGACGGCACCCTCATCTGCGACGGCGGCGCCTTCACGGTCGACGGAAGG 600 

WT-HH30           CTGTATAGGATGGACGGCACCCTCATCTGCGACGGCGGCGCCTTCACGGTCGACGGAAGG 600 

WT-HH31           CTGTATAGGATGGACGGCACCCTCATCTGCGACGGCGGCGCCTTCACGGTCGACGGAAGG 600 

WT-HH32           CTGTATAGGATGGACGGCACCCTCATCTGCGACGGCGGCGCCTTCACGGTCGACGGAAGG 600 

WT-HH34           CTGTATAGGATGGACGGCACCCTCATCTGCGACGGCGGCGCCTTCACGGTCGACGGAAGG 600 

R-HH18            CTGTATAGGATGGACGGCACCCTCATCTGCGACGGCGGCGCCTTCACGGTCGACGGAAGG 600 

R-HH63            CTGTATAGGATGGACGGCACCCTCATCTGCGACGGCGGCGCCTTCACGGTCGACGGAAGG 600 

R-HH64            CTGTATAGGATGGACGGCACCCTCATCTGCGACGGCGGCGCCTTCACGGTCGACGGAAGG 600 

R-HH65            CTGTATAGGATGGACGGCACCCTCATCTGCGACGGCGGCGCCTTCACGGTCGACGGAAGG 600 

R-HH67            CTGTATAGGATGGACGGCACCCTCATCTGCGACGGCGGCGCCTTCACGGTCGACGGAAGG 600 

R-HH68            CTGTATAGGATGGACGGCACCCTCATCTGCGACGGCGGCGCCTTCACGGTCGACGGAAGG 600 

R-HH69            CTGTATAGGATGGACGGCACCCTCATCTGCGACGGCGGCGCCTTCACGGTCGACGGAAGG 600 

R-HH70            CTGTATAGGATGGACGGCACCCTCATCTGCGACGGCGGCGCCTTCACGGTCGACGGAAGG 600 

R-HH71            CTGTATAGGATGGACGGCACCCTCATCTGCGACGGCGGCGCCTTCACGGTCGACGGAAGG 600 

                  ******************************************** *************** 

 

LmxM.31.0510      AGTCTGCTGGCAGATAACAAATGTGTGAAGTCTGGCATCGCTCGTAAAAGTGACGTCAAA 660 

WT-HH21           AGTCTGCTGGCAGATAACAAATGTGTGAAGTCTGGCATCGCTCGTAAAAGTGACGTCAAA 660 

WT-HH22           AGTCTGCTGGCAGATAACAAATGTGTGAAGTCTGGCATCGCTCGTAAAAGTGACGTCAAA 660 

WT-HH24           AGTCTGCTGGCAGATAACAAATGTGTGAAGTCTGGCATCGCTCGTAAAAGTGACGTCAAA 660 

WT-HH25           AGTCTGCTGGCAGATAACAAATGTGTGAAGTCTGGCATCGCTCGTAAAAGTGACGTCAAA 660 

WT-HH27           AGTCTGCTGGCAGATAACAAATGTGTGAAGTCTGGCATCGCTCGTAAAAGTGACGTCAAA 660 

WT-HH30           AGTCTGCTGGCAGATAACAAATGTGTGAAGTCTGGCATCGCTCGTAAAAGTGACGTCAAA 660 

WT-HH31           AGTCTGCTGGCAGATAACAAATGTGTGAAGTCTGGCATCGCTCGTAAAAGTGACGTCAAA 660 

WT-HH32           AGTCTGCTGGCAGATAACAAATGTGTGAAGTCTGGCATCGCTCGTAAAAGTGACGTCAAA 660 

WT-HH34           AGTCTGCTGGCAGATAACAAATGTGTGAAGTCTGGCATCGCTCGTAAAAGTGACGTCAAA 660 

R-HH18            AGTCTGCTGGCAGATAACAAATGTGTGAAGTCTGGCATCGCTCGTAAAAGTGACGTCAAA 660 

R-HH63            AGTCTGCTGGCAGATAACAAATGTGTGAAGTCTGGCATCGCTCGTAAAAGTGACGTCAAA 660 

R-HH64            AGTCTGCTGGCAGATAACAAATGTGTGAAGTCTGGCATCGCTCGTAAAAGTGACGTCAAA 660 

R-HH65            AGTCTGCTGGCAGATAACAAATGTGTGAAGTCTGGCATCGCTCGTAAAAGTGACGTCAAA 660 

R-HH67            AGTCTGCTGGCAGATAACAAATGTGTGAAGTCTGGCATCGCTCGTAAAAGTGACGTCAAA 660 

R-HH68            AGTCTGCTGGCAGATAACAAATGTGTGAAGTCTGGCATCGCTCGTAAAAGTGACGTCAAA 660 

R-HH69            AGTCTGCTGGCAGATAACAAATGTGTGAAGTCTGGCATCGCTCGTAAAAGTGACGTCAAA 660 

R-HH70            AGTCTGCTGGCAGATAACAAATGTGTGAAGTCTGGCATCGCTCGTAAAAGTGACGTCAAA 660 

R-HH71            AGTCTGCTGGCAGATAACAAATGTGTGAAGTCTGGCATCGCTCGTAAAAGTGACGTCAAA 660 

                  ************************************************************ 

 

LmxM.31.0510      GAGAGATTCAAGCCTCCGAGGCTGATTCCCGGCAACGGTCCCATGTGGAGTGGTGGCGGT 720 

WT-HH21           GAGAGATTCAAGCCTCCGAGGCTGATTCCCGGCAACGGTCCCATGTGGAGTGGTGGCGGT 720 

WT-HH22           GAGAGATTCAAGCCTCCGAGGCTGATTCCCGGCAACGGTCCCATGTGGAGTGGTGGCGGT 720 

WT-HH24           GAGAGATTCAAGCCTCCGAGGCTGATTCCCGGCAACGGTCCCATGTGGAGTGGTGGCGGT 720 

WT-HH25           GAGAGATTCAAGCCTCCGAGGCTGATTCCCGGCAACGGTCCCATGTGGAGTGGTGGCGGT 720 

WT-HH27           GAGAGATTCAAGCCTCCGAGGCTGATTCCCGGCAACGGTCCCATGTGGAGTGGTGGCGGT 720 

WT-HH30           GAGAGATTCAAGCCTCCGAGGCTGATTCCCGGCAACGGTCCCATGTGGAGTGGTGGCGGT 720 

WT-HH31           GAGAGATTCAAGCCTCCGAGGCTGATTCCCGGCAACGGTCCCATGTGGAGTGGTGGCGGT 720 

WT-HH32           GAGAGATTCAAGCCTCCGAGGCTGATTCCCGGCAACGGTCCCATGTGGAGTGGCGGCGGT 720 

WT-HH34           GAGAGATTCAAGCCTCCGAGGCTGATTCCCGGCAACGGTCCCATGTGGAGTGGTGGCGGT 720 

R-HH18            GAGAGATTCAAGCCTCCGAGGCTGATTCCCGGCAACGGTCCCATGTGGAGTGGTGGCGGT 720 

R-HH63            GAGAGATTCAAGCCTCCGAGGCTGATTCCCGGCAACGGTCCCATGTGGAGTGGTGGCGGT 720 

R-HH64            GAGAGATTCAAGCCTCCGAGGCTGATTCCCGGCAACGGTCCCATGTGGAGTGGTGGCGGT 720 

R-HH65            GAGAGATTCAAGCCTCCGAGGCTGATTCCCGGCAACGGTCCCATGTGGAGTGGTGGCGGT 720 

R-HH67            GAGAGATTCAAGCCTCCGAGGCTGATTCCCGGCAACGGTCCCATGTGGAGTGGTGGCGGT 720 

R-HH68            GAGAGATTCAAGCCTCCGAGGCTGATTCCCGGCAACGGTCCCATGTGGAGTGGTGGCGGT 720 

R-HH69            GAGAGATTCAAGCCTCCGAGGCTGATTCCCGGCAACGGTCCCATGTGGAGTGGTGGCGGT 720 

R-HH70            GAGAGATTCAAGCCTCCGAGGCTGATTCCCGGCAACGGTCCCATGTGGAGTGGTGGCGGT 720 

R-HH71            GAGAGATTCAAGCCTCCGAGGCTGATTCCCGGCAACGGTCCCATGTGGAGTGGTGGCGGT 720 

                  ***************************************************** ****** 

 

LmxM.31.0510      GACAAGTCAGCCACTGATCCATATCTGAAAGAGGGCTACTACTACCAAGAGCCTGGGCAC 780 

WT-HH21           GACAAGTCAGCCACTGATCCATATCTGAAAGAGGGCTACTACTACCAAGAGCCTGGGCAC 780 

WT-HH22           GACAAGTCAGCCACTGATCCATATCTGAAAGAGGGCTACTACTACCAAGAGCCTGGGCAC 780 

WT-HH24           GACAAGTCAGCCACTGATCCATATCTGAAAGAGGGCTACTACTACCAAGAGCCTGGGCAC 780 



 320 
 

WT-HH25           GACAAGTCAGCCACTGATCCATATCTGAAAGAGGGCTACTACTACCAAGAGCCTGGGCAC 780 

WT-HH27           GACAAGTCAGCCACTGATCCATATCTGAAAGAGGGCTACTACTACCAAGAGCCTGGGCAC 780 

WT-HH30           GACAAGTCAGCCACTGATCCATATCTGAAAGAGGGCTACTACTACCAAGAGCCTGGGCAC 780 

WT-HH31           GACAAGTCAGCCACTGATCCATATCTGAAAGAGGGCTACTACTACCAAGAGCCTGGGCAC 780 

WT-HH32           GACAAGTCAGCCACTGATCCATATCTGAAAGAGGGCTACTACTACCAAGAGCCTGGGCAC 780 

WT-HH34           GACAAGTCAGCCACTGATCCATATCTGAAAGAGGGCTACTACTACCAAGAGCCTGGGCAC 780 

R-HH18            GACAAGTCAGCCACTGATCCATATCTGAAAGAGGGCTACTACTACCAAGAGCCTGGGCAC 780 

R-HH63            GACAAGTCAGCCACTGATCCATATCTGAAAGAGGGCTACTACTACCAAGAGCCTGGGCAC 780 

R-HH64            GACAAGTCAGCCACTGATCCATATCTGAAAGAGGGCTACTACTACCAAGAGCCTGGGCAC 780 

R-HH65            GACAAGTCAGCCACTGATCCATATCTGAAAGAGGGCTACTACTACCAAGAGCCTGGGCAC 780 

R-HH67            GACAAGTCAGCCACTGATCCATATCTGAAAGAGGGCTACTACTACCAAGAGCCTGGGCAC 780 

R-HH68            GACAAGTCAGCCACTGATCCATATCTGAAAGAGGGCTACTACTACCAAGAGCCTGGGCAC 780 

R-HH69            GACAAGTCAGCCACTGATCCATATCTGAAAGAGGGCTACTACTACCAAGAGCCTGGGCAC 780 

R-HH70            GACAAGTCAGCCACTGATCCATATCTGAAAGAGGGCTACTACTACCAAGAGCCTGGGCAC 780 

R-HH71            GACAAGTCAGCCACTGATCCATATCTGAAAGAGGGCTACTACTACCAAGAGCCTGGGCAC 780 

                  ************************************************************ 

 

LmxM.31.0510      AAGATCCCATTCAACGTTGATGAGGATTTGATAGTGTGGCTCGATCCATCCTTCACGTCT 840 

WT-HH21           AAGATCCCATTCAACGTTGATGAGGATTTGATAGTGTGGCTCGATCCATCCTTCACGTCT 840 

WT-HH22           AAGATCCCATTCAACGTTGATGAGGATTTGATAGTGTGGCTCGATCCATCCTTCACGTCT 840 

WT-HH24           AAGATCCCATTCAACGTTGATGAGGATTTGATAGTGTGGCTCGATCCATCCTTCACGTCT 840 

WT-HH25           AAGATCCCATTCAACGTTGATGAGGATTTGATAGTGTGGCTCGATCCATCCTTCACGTCT 840 

WT-HH27           AAGATCCCATTCAACGTTGATGAGGATTTGATAGTGTGGCTCGATCCATCCTTCACGTCT 840 

WT-HH30           AAGATCCCATTCAACGTTGATGAGGATTTGATAGTGTGGCTCGATCCATCCTTCACGTCT 840 

WT-HH31           AAGATCCCATTCAACGTTGATGAGGATTTGATAGTGTGGCTCGATCCATCCTTCACGTCT 840 

WT-HH32           AAGATCCCATTCAACGTTGATGAGGATTTGATAGTGTGGCTCGATCCATCCTTCACGTCT 840 

WT-HH34           AAGATCCCATTCAACGTTGATGAGGATTTGATAGTGTGGCTCGATCCATCCTTCACGTCT 840 

R-HH18            AAGATCCCATTCAACGTTGATGAGGATTTGATAGTGTGGCTCGATCCATCCTTCACGTCT 840 

R-HH63            AAGATCCCATTCAACGTTGATGAGGATTTGATAGTGTGGCTCGATCCATCCTTCACGTCT 840 

R-HH64            AAGATCCCATTCAACGTTGATGAGGATTTGATAGTGTGGCTCGATCCATCCTTCACGTCT 840 

R-HH65            AAGATCCCATTCAACGTTGATGAGGATTTGATAGTGTGGCTCGATCCATCCTTCACGTCT 840 

R-HH67            AAGATCCCATTCAACGTTGATGAGGATTTGATAGTGTGGCTCGATCCATCCTTCACGTCT 840 

R-HH68            AAGATCCCATTCAACGTTGATGAGGATTTGATAGTGTGGCTCGATCCATCCTTCACGTCT 840 

R-HH69            AAGATCCCATTCAACGTTGATGAGGATTTGATAGTGTGGCTCGATCCATCCTTCACGTCT 840 

R-HH70            AAGATCCCATTCAACGTTGATGAGGATTTGATAGTGTGGCTCGATCCATCCTTCACGTCT 840 

R-HH71            AAGATCCCATTCAACGTTGATGAGGATTTGATAGTGTGGCTCGATCCATCCTTCACGTCT 840 

                  ************************************************************ 

 

LmxM.31.0510      GATGTGACGAAAAATTACCGCATTCTCAATGTCGATTTGCCGGCCGGTGACTATTACTTT 900 

WT-HH21           GATGTGACGAAAAATTACCGCATTCTCAATGTCGATTTGCCGGCCGGTGACTATTACTTT 900 

WT-HH22           GATGTGACGAAAAATTACCGCATTCTCAATGTCGATTTGCCGGCCGGTGACTATTACTTT 900 

WT-HH24           GATGTGACGAAAAATTACCGCATTCTCAATGTCGATTTGCCGGCCGGTGACTATTACTTT 900 

WT-HH25           GATGTGACGAAAAATTACCGCATTCTCAATGTCGATTTGCCGGCCGGTGACTATTACTTT 900 

WT-HH27           GATGTGACGAAAAATTACCGCATTCTCAATGTCGATTTGCCGGCCGGTGACTATTACTTT 900 

WT-HH30           GATGTGACGAAAAATTACCGCATTCTCAATGTCGATTTGCCGGCCGGTGACTATTACTTT 900 

WT-HH31           GATGTGACGAAAAATTACCGCATTCTCAATGTCGATTTGCCGGCCGGTGACTATTACTTT 900 

WT-HH32           GATGTGACGAAAAATTACCGCATTCTCAATGTCGATTTGCCGGCCGGTGACTATTACTTT 900 

WT-HH34           GATGTGACGAAAAATTACCGCATTCTCAATGTCGATTTGCCGGCCGGTGACTATTACTTT 900 

R-HH18            GATGTGACGAAAAATTACCGCATTCTCAATGTCGATTTGCCGGCCGGTGACTATTACTTT 900 

R-HH63            GATGTGACGAAAAATTACCGCATTCTCAATGTCGATTTGCCGGCCGGTGACTATTACTTT 900 

R-HH64            GATGTGACGAAAAATTACCGCATTCTCAATGTCGATTTGCCGGCCGGTGACTATTACTTT 900 

R-HH65            GATGTGACGAAAAATTACCGCATTCTCAATGTCGATTTGCCGGCCGGTGACTATTACTTT 900 

R-HH67            GATGTGACGAAAAATTACCGCATTCTCAATGTCGATTTGCCGGCCGGTGACTATTACTTT 900 

R-HH68            GATGTGACGAAAAATTACCGCATTCTCAATGTCGATTTGCCGGCCGGTGACTATTACTTT 900 

R-HH69            GATGTGACGAAAAATTACCGCATTCTCAATGTCGATTTGCCGGCCGGTGACTATTACTTT 900 

R-HH70            GATGTGACGAAAAATTACCGCATTCTCAATGTCGATTTGCCGGCCGGTGACTATTACTTT 900 

R-HH71            GATGTGACGAAAAATTACCGCATTCTCAATGTCGATTTGCCGGCCGGTGACTATTACTTT 900 

                  ************************************************************ 

 

LmxM.31.0510      GAGATCACGGAGCAATACCCGACTGCGCCGTACGGATCGCAGAAGTTTGTGCAACTCGAG 960 

WT-HH21           GAGATCACGGAGCAATACCCGACTGCGCCGTACGGATCGCAGAAGTTTGTGCAACTCGAG 960 

WT-HH22           GAGATCACGGAGCAATACCCGACTGCGCCGTACGGATCGCAGAAGTTTGTGCAACTCGAG 960 

WT-HH24           GAGATCACGGAGCAATACCCGACTGCGCCGTACGGATCGCAGAAGTTTGTGCAACTCGAG 960 

WT-HH25           GAGATCACGGAGCAATACCCGACTGCGCCGTACGGATCGCAGAAGTTTGTGCAACTCGAG 960 

WT-HH27           GAGATCACGGAGCAATACCCGACTGCGCCGTACGGATCGCAGAAGTTTGTGCAACTCGAG 960 

WT-HH30           GAGATCACGGAGCAATACCCGACTGCGCCGTACGGATCGCAGAAGTTTGTGCAACTCGAG 960 

WT-HH31           GAGATCACGGAGCAATACCCGACTGCGCCGTACGGATCGCAGAAGTTTGTGCAACTCGAG 960 

WT-HH32           GAGATCACGGAGCAATACCCGACTGCGCCGTACGGATCGCAGAAGTTTGTGCAACTCGAG 960 

WT-HH34           GAGATCACGGAGCAATACCCGACTGCGCCGTACGGATCGCAGAAGTTTGTGCAACTCGAG 960 

R-HH18            GAGATCACGGAGCAATACCCGACTGCGCCGTACGGATCGCAGAAGTTTGTGCAACTCGAG 960 

R-HH63            GAGATCACGGAGCAATACCCGACTGCGCCGTACGGATCGCAGAAGTTTGTGCAACTCGAG 960 

R-HH64            GGGATCACGGAGCAATACCCGACTGCGCCGTACGGATCGCAGAAGTTTGTGCAACTCGAG 960 

R-HH65            GAGATCACGGAGCAATACCCGACTGCGCCGTACGGATCGCAGAAGTTTGTGCAACTCGAG 960 

R-HH67            GAGATCACGGAGCAATACCCGACTGCGCCGTACGGATCGCAGAAGTTTGTGCAACTCGAG 960 

R-HH68            GAGATCACGGAGCAATACCCGACTGCGCCGTACGGATCGCAGAAGTTTGTGCAACTCGAG 960 

R-HH69            GAGATCACGGAGCAATACCCGACTGCGCCGTACGGATCGCAGAAGTTTGTGCAACTCGAG 960 
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R-HH70            GAGATCACGGAGCAATACCCGACTGCGCCGTACGGATCGCAGAAGTTTGTGCAACTCGAG 960 

R-HH71            GAGATCACGGAGCAATACCCGACTGCGCCGTACGGATCGCAGAAGTTTGTGCAACTCGAG 960 

                  * ********************************************************** 

 

LmxM.31.0510      ACCCGATCATGGATCGGGGGTAGAAGCCATGTTCTCGGCTCCCTGCTGATAATCATGGGT 1020 

WT-HH21           ACCCGATCATGGATCGGGGGTAGAAGCCATGTTCTCGGCTCCCTGCTGATAATCATGGGT 1020 

WT-HH22           ACCCGATCATGGATCGGGGGTAGAAGCCATGTTCTCGGCTCCCTGCTGATAATCATGGGT 1020 

WT-HH24           ACCCGATCATGGATCGGGGGTAGAAGCCATGTTCTCGGCTCCCTGCTGATAATCATGGGT 1020 

WT-HH25           ACCCGATCATGGATCGGGGGTAGAAGCCATGTTCTCGGCTCCCTGCTGATAATCATGGGT 1020 

WT-HH27           ACCCGATCATGGATCGGGGGTAGAAGCCATGTTCTCGGCTCCCTGCTGATAATCATGGGT 1020 

WT-HH30           ACCCGATCATGGATCGGGGGTAGAAGCCATGTTCTCGGCTCCCTGCTGATAATCATGGGT 1020 

WT-HH31           ACCCGATCATGGATCGGGGGTAGAAGCCATGTTCTCGGCTCCCTGCTGATAATCATGGGT 1020 

WT-HH32           ACCCGATCATGGATCGGGGGTAGAAGCCATGTTCTCGGCTCCCTGCTGATAATCATGGGT 1020 

WT-HH34           ACCCGATCATGGATCGGGGGTAGAAGCCATGTTCTCGGCTCCCTGCTGATAATCATGGGT 1020 

R-HH18            ACCCGATCATGGATCGGGGGTAGAAGCCATGTTCTCGGCTCCCTGCTGATAATCATGGGT 1020 

R-HH63            ACCCGATCATGGATCGGGGGTAGAAGCCATGTTCTCGGCTCCCTGCTGATAATCATGGGT 1020 

R-HH64            ACCCGATCATGGATCGGGGGTAGAAGCCATGTTCTCGGCTCCCTGCTGATAATCATGGGT 1020 

R-HH65            ACCCGATCATGGATCGGGGGTAGAAGCCATGTTCTCGGCTCCCTGCTGATAATCATGGGT 1020 

R-HH67            ACCCGATCATGGATCGGGGGTAGAAGCCATGTTCTCGGCTCCCTGCTGATAATCATGGGT 1020 

R-HH68            ACCCGATCATGGATCGGGGGTAGAAGCCATGTTCTCGGCTCCCTGCTGATAATCATGGGT 1020 

R-HH69            ACCCGATCATGGATCGGGGGTAGAAGCCATGTTCTCGGCTCCCTGCTGATAATCATGGGT 1020 

R-HH70            ACCCGATCATGGATCGGGGGTAGAAGCCATGTTCTCGGCTCCCTGCTGATAATCATGGGT 1020 

R-HH71            ACCCGATCATGGATCGGGGGTAGAAGCCATGTTCTCGGCTCCCTGCTGATAATCATGGGT 1020 

                  ************************************************************ 

 

LmxM.31.0510      GGTACGGCCCTTATCATGGCAGTGACACTTCTTTCGGTGAAGTGCTTGATCAGGCCAGGG 1080 

WT-HH21           GGTACGGCCCTTATCATGGCAGTGACACTTCTTTCGGTGAAGTGCTTGATCAGGCCAGGG 1080 

WT-HH22           GGTACGGCCCTTATCATGGCAGTGACACTTCTTTCGGTGAAGTGCTTGATCAGGCCAGGG 1080 

WT-HH24           GGTACGGCCCTTATCATGGCAGTGACACTTCTTTCGGTGAAGTGCTTGATCAGGCCAGGG 1080 

WT-HH25           GGTACGGCCCTTATCATGGCAGTGACACTTCTTTCGGTGAAGTGCTTGATCAGGCCAGGG 1080 

WT-HH27           GGTACGGCCCTTATCATGGCAGTGACACTTCTTTCGGTGAAGTGCTTGATCAGGCCAGGG 1080 

WT-HH30           GGTACGGCCCTTATCATGGCAGTGACACTTCTTTCGGTGAAGTGCTTGATCAGGCCAGGG 1080 

WT-HH31           GGTACGGCCCTTATCATGGCAGTGACACTTCTTTCGGTGAAGTGCTTGATCAGGCCAGGG 1080 

WT-HH32           GGTACGGCCCTTATCATGGCAGTGACACTTCTTTCGGTGAAGTGCTTGATCAGGCCAGGG 1080 

WT-HH34           GGTACGGCCCTTATCATGGCAGTGACACTTCTTTCGGTGAAGTGCTTGATCAGGCCAGGG 1080 

R-HH18            GGTACGGCCCTTATCATGGCAGTGACACTTCTTTCGGTGAAGTGCTTGATCAGGCCAGGG 1080 

R-HH63            GGTACGGCCCTTATCATGGCAGTGACACTTCTTTCGGTGAAGTGCTTGATCAGGCCAGGG 1080 

R-HH64            GGTACGGCCCTTATCATGGCAGTGACACTTCTTTCGGTGAAGTGCTTGATCAGGCCAGGG 1080 

R-HH65            GGTACGGCCCTTATCATGGCAGTGACACTTCTTTCGGTGAAGTGCTTGATCAGGCCAGGG 1080 

R-HH67            GGTACGGCCCTTATCATGGCAGTGACACTTCTTTCGGTGAAGTGCTTGATCAGGCCAGGG 1080 

R-HH68            GGTACGGCCCTTATCATGGCAGTGACACTTCTTTCGGTGAAGTGCTTGATCAGGCCAGGG 1080 

R-HH69            GGTACGGCCCTTATCATGGCAGTGACACTTCTTTCGGTGAAGTGCTTGATCAGGCCAGGG 1080 

R-HH70            GGTACGGCCCTTATCATGGCAGTGACACTTCTTTCGGTGAAGTGCTTGATCAGGCCAGGG 1080 

R-HH71            GGTACGGCCCTTATCATGGCAGTGACACTTCTTTCGGTGAAGTGCTTGATCAGGCCAGGG 1080 

                  ************************************************************ 

 

LmxM.31.0510      TATACAGAGTAG 1092 

WT-HH21           TATACAGAGTAG 1092 

WT-HH22           TATACAGAGTAG 1092 

WT-HH24           TATACAGAGTAG 1092 

WT-HH25           TATACAGAGTAG 1092 

WT-HH27           TATACAGAGTAG 1092 

WT-HH30           TATACAGAGTAG 1092 

WT-HH31           TATACAGAGTAG 1092 

WT-HH32           TATACAGAGTAG 1092 

WT-HH34           TATACAGAGTAG 1092 

R-HH18            TATACAGAGTAG 1092 

R-HH63            TATACAGAGTAG 1092 

R-HH64            TATACAGAGTAG 1092 

R-HH65            TATACAGAGTAG 1092 

R-HH67            TATACAGAGTAG 1092 

R-HH68            TATACAGAGTAG 1092 

R-HH69            TATACAGAGTAG 1092 

R-HH70            TATACAGAGTAG 1092 

R-HH71            TATACAGAGTAG 1092 

                  ************ 
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Appendix 5 (Chapter 4)  

 
Multiple amino acid sequences sequence alignment for each fragment of LmROS3 gene. 9 

clones for each fragment of LmROS3 sequenced compared LmxM.31.0510. The WT-prefix is for 

the pre-selection wildtype and the R-prefix for 700022-selected parasites. The HH code uniquely 

identifies the PCR clone sequenced. 

 

 

LmxM.31.0510      MASLPPKPHLKNRVEQQQLPHVFVPHSPLSVSVVFFILAILAIPIGVVVIVTGDRTTRLD 60 

WT-HH21           MASLPPKPHLKNRVEQQQLPHVFVPHSPLSVSVVFFILAILAIPIGVVVIVTGDRTTRLD 60 

WT-HH22           MASLPPKPHLKNRVEQQQLPHVFVPHSPLSVSVVFFILAILAIPIGVVVIVTGDRTTRLD 60 

WT-HH24           MASLPPKPHLKNRVEQQQLPHVFVPHSPLSVSVVFFILAILAIPIGVVVIVTGDRTTRLD 60 

WT-HH25           MASLPPKPHLKNRVEQQQLPHVFVPHSPLSVSVVFFILAILAIPIGVVVIVTGDRTTRLD 60 

WT-HH27           MASLPPKPHLKNRVEQQQLPHVFVPHSPLSVSVVFFILAILAIPIGVVVIVTGDRTTRLD 60 

WT-HH30           MASLPPKPHLKNRVEQQQLPHVFVPHSPLSVSVVFFILAILAIPIGVVVIVTGDRTTRLD 60 

WT-HH31           MASLPPKPHLKNRVEQQQLPHVFVPHSPLSVSVVFFILAILAIPIGVVVIVTGDRTTRLD 60 

WT-HH32           MASLPPKPHLKNRVEQQQLPHVFVPHSPLSVSVVFFILAILAIPIGVVVIVTGDRTTRLD 60 

WT-HH34           MASLPPKPHLKNRVEQQQLPHVFVPHSPLSVSVVFFILAILAIPIGVVVIVTGDRTTRLD 60 

R-HH18            MASLPPKPHLKNRVEQQQLPHVFVPHSPLSVSVVFFILAILAIPIGVVVIVTGDRTTRLD 60 

R-HH63            MASLPPKPHLKNRVEQQQLPHVFVPHSPLSVSVVFFILAILAIPIGVVVIVTGDRTTRLD 60 

R-HH64            MASLPPKPHLKNRVEQQQLPHVFVPHSPLSVSVVFFILAILAIPIGVVVIVTGDRTTRLD 60 

R-HH65            MASLPPKPHLKNRVEQQQLPHVFVPHSPLSVSVVFFILAILAIPIGVVVIVTGDRTTRLD 60 

R-HH67            MASLPPKPHLKNRVEQQQLPHVFVPHSPLSVSVVFFILAILAIPIGVVVIVTGDRTTRLD 60 

R-HH68            MASLPPKPHLKNRVEQQQLPHVFVPHSPLSVSVVFFILAILAIPIGVVVIVTGDRTTRLD 60 

R-HH69            MASLPPKPHLKNRVEQQQLPHVFVPHSPLSVSVVFFILAILAIPIGVVVIVTGDRTTRLD 60 

R-HH70            MASLPPKPHLKNRVEQQQLPHVFVPHSPLSVSVVFFILAILAIPIGVVVIVTGDRTTRLD 60 

R-HH71            MASLPPKPHLKNRVEQQQLPHVFVPHSPLSVSVVFFILAILAIPIGVVVIVTGDRTTRLD 60 

                  ************************************************************ 

 

LmxM.31.0510      FRYDHINNYKFAMGAAGEHAVNFPFNDTTYSSGVKTLVMFSLSQSLTAPVHLQYRLRPFF 120 

WT-HH21           FRYDHINNYKFAMGAAGEHAVNFPFNDTTYSSGVKTLVMFSLSQSLTAPVHLQYRLRPFF 120 

WT-HH22           FRYDHINNYKFAMGAAGEHAVNFPFNDTTYSSGVKTLVMFSLSQSLTAPVHLQYRLRPFF 120 

WT-HH24           FRYDHINNYKFAMGAAGEHAVNFPFNDTTYSSGVKTLVMFSLSQSLTAPVHLQYRLRPFF 120 

WT-HH25           FRYDHINNYKFAMGAAGEHAVNFPFNDTTYSSGVKTLVMFSLSQSLTAPVHLQYRLRPFF 120 

WT-HH27           FRYDHINNYKFAMGAAGEHAVNFPFNDTTYSSGVKTLVMFSLSQSLTAPVHLQYRLRPFF 120 

WT-HH30           FRYDHINNYKFAMGAAGEHAVNFPFNDTTYSSGVKTLVMFSLSQSLTAPVHLQYRLRPFF 120 

WT-HH31           FRYDHINNYKFAMGAAGEHAVNFPFNDTTYSSGVKTLVMFSLSQSLTAPVHLQYRLRPFF 120 

WT-HH32           FRYDHINNYKFAMGAAGEHAVNFPFNDTTYSSGVKTLVMFSLSQSLTAPVHLQYRLRPFF 120 

WT-HH34           FRYDHINNYKFAMGAAGEHAVNFPFNDTTYSSGVKTLVMFSLSQSLTAPVHLQYRLRPFF 120 

R-HH18            FRYDHINNYKFAMGAAGEHAVNFPFNDTTYSSGVKTLVMFSLSQSLTAPVHLQYRLRPFF 120 

R-HH63            FRYDHINNYKFAMGAAGEHAVNFPFNDTTYSSGVKTLVMFSLSQSLTAPVHLQYRLRPFF 120 

R-HH64            FRYDHINNYKFAMGAAGEHAVNFPFNDTTYSSGVKTLVMFSLSQSLTAPVHLQYRLRPFF 120 

R-HH65            FRYDHINNYKFAMGAAGEHAVNFPFNDTTYSSGVKTLVMFSLSQSLTAPVHLQYRLRPFF 120 

R-HH67            FRYDHINNYKFAMGAAGEHAVNFPFNDTTYSSGVKTLVMFSLSQSLTAPVHLQYRLRPFF 120 

R-HH68            FRYDHINNYKFAMGAAGEHAVNFPFNDTTYSSGVKTLVMFSLSQSLTAPVHLQYRLRPFF 120 

R-HH69            FRYDHINNYKFAMGAAGEHAVNFPFNDTTYSPGVKTLVMFSLSQSLTAPVHLQYRLRPFF 120 

R-HH70            FRYDHINNYKFAMGAAGEHAVNFPFNDTTYSSGVKTLVMFSLSQSLTAPVHLQYRLRPFF 120 

R-HH71            FRYDHINNYKFAMGAAGEHAVNFPFNDTTYSSGVKTLVMFSLSQSLTAPVHLQYRLRPFF 120 

                  ******************************* **************************** 

 

LmxM.31.0510      QNYRYFTASVDYAQLSGRASVISKSCAPFRFPGEAAGIIVPGYYNPCGAYPWAIFNDSIS 180 

WT-HH21           QNYRYFTASVDYAQLSGRASVISKSCAPFRFPGEAAGIIVPGYYNPCGAYPWAIFNDSIS 180 

WT-HH22           QNYRYFTASVDYAQLSGRASVISKSCAPFRFPGEAAGIIVPGYYNPCGAYPWAIFNDSIS 180 

WT-HH24           QNYRYFTASVDYAQLSGRASVISKSCAPFRFPGEAAGIIVPGYYNPCGAYPWAIFNDSIS 180 

WT-HH25           QNYRYFTASVDYAQLSGRASVISKSCAPFRFPGEAAGIIVPGYYNPCGAYPWAIFNDSIS 180 

WT-HH27           QNYRYFTASVDYAQLSGRASVISKSCAPFRFPGEAAGIIVPGYYNPCGAYPWAIFNDSIS 180 

WT-HH30           QNYRYFTASVDYAQLSGRASVISKSCAPFRFPGEAAGIIVPGYYNPCGAYPWAIFNDSIS 180 

WT-HH31           QNYRYFTASVDYAQLSGRASVISKSCAPFRFPGEAAGIIVPGYYNPCGAYPWAIFNDSIS 180 

WT-HH32           QNYRYFTASVDYAQLSGRASVISKSCAPFRFPGEAAGIIVPGYYNPCGAYPWAIFNDSIS 180 

WT-HH34           QNYRYFTASVDYAQLSGRASVISKSCAPFRFPGEAAGIIVPGYYNPCGAYPWAIFNDSIS 180 

R-HH18            QNYRYFTASVDYAQLSGRASVISKSCAPFRFPGEAAGIIVPGYYNPCGAYPWAIFNDSIS 180 

R-HH63            QNYRYFTASVDYAQLSGRASVISKSCAPFRFPGEAAGIIVPGYYNPCGAYPWAIFNDSIS 180 

R-HH64            QNYRYFTASVDYAQLSGRASVISKSCAPFRFPGEAAGIIVPGYYNPCGAYPWAIFNDSIS 180 

R-HH65            QNYRYFTASVDYAQLSGRASVISKSCAPFRFPGEAAGIIVPGYYNPCGAYPWAIFNDSIS 180 

R-HH67            QNYRYFTASVDYAQLSGRASVISKSCAPFRFPGEAAGIIVPGYYNPCGAYPWAIFNDSIS 180 

R-HH68            QNYRYFTASVDYAQLSGRASVISKSCAPFRFPGEAAGIIVPGYYNPCGAYPWAIFNDSIS 180 

R-HH69            QNYRYFTASVDYAQLSGRASVTSKSCAPFRFPGEAAGIIVPGYYNPCGAYPWAIFNDSIS 180 
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R-HH70            QNYRYFTASVDYAQLSGRASVISKSCAPFRFPGEAAGIIVPGYYNPCGAYPWAIFNDSIS 180 

R-HH71            QNYRYFTASVDYAQLSGRASVISKSCAPFRFPGEAAGIIVPGYYNPCGAYPWAIFNDSIS 180 

                  ********************* ************************************** 

 

LmxM.31.0510      LYRMDGTLICDGGAFTVDGRSLLADNKCVKSGIARKSDVKERFKPPRLIPGNGPMWSGGG 240 

WT-HH21           LYRMDGTLICDGGAFTVDGRSLLADNKCVKSGIARKSDVKERFKPPRLIPGNGPMWSGGG 240 

WT-HH22           LYRMDGTLICDGGAFTVDGRSLLADNKCVKSGIARKSDVKERFKPPRLIPGNGPMWSGGG 240 

WT-HH24           LYRMDGTLICDGGAFTVDGRSLLADNKCVKSGIARKSDVKERFKPPRLIPGNGPMWSGGG 240 

WT-HH25           LYRMDGTLICDGGAFTVDGRSLLADNKCVKSGIARKSDVKERFKPPRLIPGNGPMWSGGG 240 

WT-HH27           LYRMDGTLICDGGAFTVDGRSLLADNKCVKSGIARKSDVKERFKPPRLIPGNGPMWSGGG 240 

WT-HH30           LYRMDGTLICDGGAFTVDGRSLLADNKCVKSGIARKSDVKERFKPPRLIPGNGPMWSGGG 240 

WT-HH31           LYRMDGTLICDGGAFTVDGRSLLADNKCVKSGIARKSDVKERFKPPRLIPGNGPMWSGGG 240 

WT-HH32           LYRMDGTLICDGGAFTVDGRSLLADNKCVKSGIARKSDVKERFKPPRLIPGNGPMWSGGG 240 

WT-HH34           LYRMDGTLICDGGAFTVDGRSLLADNKCVKSGIARKSDVKERFKPPRLIPGNGPMWSGGG 240 

R-HH18            LYRMDGTLICDGGAFTVDGRSLLADNKCVKSGIARKSDVKERFKPPRLIPGNGPMWSGGG 240 

R-HH63            LYRMDGTLICDGGAFTVDGRSLLADNKCVKSGIARKSDVKERFKPPRLIPGNGPMWSGGG 240 

R-HH64            LYRMDGTLICDGGAFTVDGRSLLADNKCVKSGIARKSDVKERFKPPRLIPGNGPMWSGGG 240 

R-HH65            LYRMDGTLICDGGAFTVDGRSLLADNKCVKSGIARKSDVKERFKPPRLIPGNGPMWSGGG 240 

R-HH67            LYRMDGTLICDGGAFTVDGRSLLADNKCVKSGIARKSDVKERFKPPRLIPGNGPMWSGGG 240 

R-HH68            LYRMDGTLICDGGAFTVDGRSLLADNKCVKSGIARKSDVKERFKPPRLIPGNGPMWSGGG 240 

R-HH69            LYRMDGTLICDGGAFTVDGRSLLADNKCVKSGIARKSDVKERFKPPRLIPGNGPMWSGGG 240 

R-HH70            LYRMDGTLICDGGAFTVDGRSLLADNKCVKSGIARKSDVKERFKPPRLIPGNGPMWSGGG 240 

R-HH71            LYRMDGTLICDGGAFTVDGRSLLADNKCVKSGIARKSDVKERFKPPRLIPGNGPMWSGGG 240 

                  ************************************************************ 

 

LmxM.31.0510      DKSATDPYLKEGYYYQEPGHKIPFNVDEDLIVWLDPSFTSDVTKNYRILNVDLPAGDYYF 300 

WT-HH21           DKSATDPYLKEGYYYQEPGHKIPFNVDEDLIVWLDPSFTSDVTKNYRILNVDLPAGDYYF 300 

WT-HH22           DKSATDPYLKEGYYYQEPGHKIPFNVDEDLIVWLDPSFTSDVTKNYRILNVDLPAGDYYF 300 

WT-HH24           DKSATDPYLKEGYYYQEPGHKIPFNVDEDLIVWLDPSFTSDVTKNYRILNVDLPAGDYYF 300 

WT-HH25           DKSATDPYLKEGYYYQEPGHKIPFNVDEDLIVWLDPSFTSDVTKNYRILNVDLPAGDYYF 300 

WT-HH27           DKSATDPYLKEGYYYQEPGHKIPFNVDEDLIVWLDPSFTSDVTKNYRILNVDLPAGDYYF 300 

WT-HH30           DKSATDPYLKEGYYYQEPGHKIPFNVDEDLIVWLDPSFTSDVTKNYRILNVDLPAGDYYF 300 

WT-HH31           DKSATDPYLKEGYYYQEPGHKIPFNVDEDLIVWLDPSFTSDVTKNYRILNVDLPAGDYYF 300 

WT-HH32           DKSATDPYLKEGYYYQEPGHKIPFNVDEDLIVWLDPSFTSDVTKNYRILNVDLPAGDYYF 300 

WT-HH34           DKSATDPYLKEGYYYQEPGHKIPFNVDEDLIVWLDPSFTSDVTKNYRILNVDLPAGDYYF 300 

R-HH18            DKSATDPYLKEGYYYQEPGHKIPFNVDEDLIVWLDPSFTSDVTKNYRILNVDLPAGDYYF 300 

R-HH63            DKSATDPYLKEGYYYQEPGHKIPFNVDEDLIVWLDPSFTSDVTKNYRILNVDLPAGDYYF 300 

R-HH64            DKSATDPYLKEGYYYQEPGHKIPFNVDEDLIVWLDPSFTSDVTKNYRILNVDLPAGDYYF 300 

R-HH65            DKSATDPYLKEGYYYQEPGHKIPFNVDEDLIVWLDPSFTSDVTKNYRILNVDLPAGDYYF 300 

R-HH67            DKSATDPYLKEGYYYQEPGHKIPFNVDEDLIVWLDPSFTSDVTKNYRILNVDLPAGDYYF 300 

R-HH68            DKSATDPYLKEGYYYQEPGHKIPFNVDEDLIVWLDPSFTSDVTKNYRILNVDLPAGDYYF 300 

R-HH69            DKSATDPYLKEGYYYQEPGHKIPFNVDEDLIVWLDPSFTSDVTKNYRILNVDLPAGDYYF 300 

R-HH70            DKSATDPYLKEGYYYQEPGHKIPFNVDEDLIVWLDPSFTSDVTKNYRILNVDLPAGDYYF 300 

R-HH71            DKSATDPYLKEGYYYQEPGHKIPFNVDEDLIVWLDPSFTSDVTKNYRILNVDLPAGDYYF 300 

                  ************************************************************ 

 

LmxM.31.0510      EITEQYPTAPYGSQKFVQLETRSWIGGRSHVLGSLLIIMGGTALIMAVTLLSVKCLIRPG 360 

WT-HH21           EITEQYPTAPYGSQKFVQLETRSWIGGRSHVLGSLLIIMGGTALIMAVTLLSVKCLIRPG 360 

WT-HH22           EITEQYPTAPYGSQKFVQLETRSWIGGRSHVLGSLLIIMGGTALIMAVTLLSVKCLIRPG 360 

WT-HH24           EITEQYPTAPYGSQKFVQLETRSWIGGRSHVLGSLLIIMGGTALIMAVTLLSVKCLIRPG 360 

WT-HH25           EITEQYPTAPYGSQKFVQLETRSWIGGRSHVLGSLLIIMGGTALIMAVTLLSVKCLIRPG 360 

WT-HH27           EITEQYPTAPYGSQKFVQLETRSWIGGRSHVLGSLLIIMGGTALIMAVTLLSVKCLIRPG 360 

WT-HH30           EITEQYPTAPYGSQKFVQLETRSWIGGRSHVLGSLLIIMGGTALIMAVTLLSVKCLIRPG 360 

WT-HH31           EITEQYPTAPYGSQKFVQLETRSWIGGRSHVLGSLLIIMGGTALIMAVTLLSVKCLIRPG 360 

WT-HH32           EITEQYPTAPYGSQKFVQLETRSWIGGRSHVLGSLLIIMGGTALIMAVTLLSVKCLIRPG 360 

WT-HH34           EITEQYPTAPYGSQKFVQLETRSWIGGRSHVLGSLLIIMGGTALIMAVTLLSVKCLIRPG 360 

R-HH18            EITEQYPTAPYGSQKFVQLETRSWIGGRSHVLGSLLIIMGGTALIMAVTLLSVKCLIRPG 360 

R-HH63            EITEQYPTAPYGSQKFVQLETRSWIGGRSHVLGSLLIIMGGTALIMAVTLLSVKCLIRPG 360 

R-HH64            GITEQYPTAPYGSQKFVQLETRSWIGGRSHVLGSLLIIMGGTALIMAVTLLSVKCLIRPG 360 

R-HH65            EITEQYPTAPYGSQKFVQLETRSWIGGRSHVLGSLLIIMGGTALIMAVTLLSVKCLIRPG 360 

R-HH67            EITEQYPTAPYGSQKFVQLETRSWIGGRSHVLGSLLIIMGGTALIMAVTLLSVKCLIRPG 360 

R-HH68            EITEQYPTAPYGSQKFVQLETRSWIGGRSHVLGSLLIIMGGTALIMAVTLLSVKCLIRPG 360 

R-HH69            EITEQYPTAPYGSQKFVQLETRSWIGGRSHVLGSLLIIMGGTALIMAVTLLSVKCLIRPG 360 

R-HH70            EITEQYPTAPYGSQKFVQLETRSWIGGRSHVLGSLLIIMGGTALIMAVTLLSVKCLIRPG 360 

R-HH71            EITEQYPTAPYGSQKFVQLETRSWIGGRSHVLGSLLIIMGGTALIMAVTLLSVKCLIRPG 360 

                   *********************************************************** 

 

LmxM.31.0510      YTE 363 

WT-HH21           YTE 363 

WT-HH22           YTE 363 

WT-HH24           YTE 363 

WT-HH25           YTE 363 

WT-HH27           YTE 363 

WT-HH30           YTE 363 

WT-HH31           YTE 363 

WT-HH32           YTE 363 
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WT-HH34           YTE 363 

R-HH18            YTE 363 

R-HH63            YTE 363 

R-HH64            YTE 363 

R-HH65            YTE 363 

R-HH67            YTE 363 

R-HH68            YTE 363 

R-HH69            YTE 363 

R-HH70            YTE 363 

R-HH71            YTE 363 

                  *** 

 

 

 

 

 

 

 

Appendix 6 (Chapter 5)   

Relative bioluminescence (%) following the MMV Pathogen Box screen at 10 µM and 2 

µM, against axenic amastigotes expressing NanoLuc-PEST.   

    
RELATIVE 

BIOLUMINESCENC

E (%) 

COMPOUN

D ID 

DISEASE SET COMMON NAME 10 µM 2 µM 

MMV690102 KINETOPLASTIDS 
 

-1.34 -5.29 

MMV595321 KINETOPLASTIDS 
 

-3.1 -4.54 

MMV687251 TUBERCULOSIS 
 

-0.24 -4.37 

MMV688262 TUBERCULOSIS DELAMANID -2.71 -4.37 

MMV688978 REFERENCE 

COMPOUNDS 

AURANOFIN -2.2 -2.6 

MMV019189 MALARIA 
 

-1.42 -1.73 

MMV688763 SCHISTOSOMIASIS 
 

-0.71 -1.63 

MMV652003 KINETOPLASTIDS 
 

-1.54 -1.53 

MMV002817 ONCHOCERCIASIS IODOQUINOL -1.46 -1.49 

MMV676477 TUBERCULOSIS 
 

-0.92 -0.98 

MMV676558 TUBERCULOSIS 
 

-0.77 -0.86 

MMV011903 MALARIA 
 

-1.14 -0.43 

MMV689480 REFERENCE 

COMPOUNDS 

BUPARVAQUONE 0.15 -0.24 

MMV676501 TUBERCULOSIS 
 

-0.69 -0.04 

MMV102872 TUBERCULOSIS 
 

-0.65 0.33 

MMV676412 TUBERCULOSIS 
 

-0.09 0.46 

MMV676388 TUBERCULOSIS 
 

0.16 0.56 

MMV687807 TUBERCULOSIS 
 

0.53 0.88 

MMV003152 REFERENCE 

COMPOUNDS 

MEBENDAZOLE -0.49 0.9 

MMV676476 TUBERCULOSIS 
 

-0.27 1.36 
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MMV688776 KINETOPLASTIDS 
 

1.7 1.9 

MMV272144 TUBERCULOSIS 
 

0.19 2.64 

MMV153413 TUBERCULOSIS 
 

0.97 4.5 

MMV688467 KINETOPLASTIDS 
 

2.46 6.98 

MMV099637 KINETOPLASTIDS 
 

1.6 7.25 

MMV676162 KINETOPLASTIDS 
 

-0.97 7.36 

MMV001499 REFERENCE 

COMPOUNDS 

NIFURTIMOX -2.17 7.65 

MMV090930 TUBERCULOSIS 
 

-0.77 11.16 

MMV021013 TUBERCULOSIS 
 

1.47 11.73 

MMV676512 TUBERCULOSIS 
 

-0.58 15.66 

MMV688372 KINETOPLASTIDS 
 

6.87 17.89 

MMV688942 KINETOPLASTIDS BITERTANOL 15.45 20.98 

MMV689244 KINETOPLASTIDS 
 

0.66 23.97 

MMV028694 MALARIA 
 

3.77 24.99 

MMV688943 KINETOPLASTIDS DIFENOCONAZOL 8.96 26.19 

MMV688755 TUBERCULOSIS 
 

0.45 26.38 

MMV393995 TUBERCULOSIS 
 

3 27.43 

MMV688774 REFERENCE 

COMPOUNDS 

POSACONAZOLE -1.25 31.32 

MMV658988 KINETOPLASTIDS 
 

-2.26 32.93 

MMV688853 CRYPTOSPORIDIOSIS 
 

42.96 34.19 

MMV689243 KINETOPLASTIDS 
 

8.5 34.53 

MMV689437 KINETOPLASTIDS 
 

1.17 37.21 

MMV676409 TUBERCULOSIS 
 

12.84 37.25 

MMV103079

9 

MALARIA 
 

-5.56 37.62 

MMV688761 SCHISTOSOMIASIS 
 

-1.44 39.52 

MMV671636 ONCHOCERCIASIS 
 

3.97 40.19 

MMV688514 KINETOPLASTIDS 
 

34.58 40.8 

MMV687800 REFERENCE 

COMPOUNDS 

CLOFAZIMINE 37.9 41.07 

MMV676270 MALARIA 
 

18 41.26 

MMV687762 KINETOPLASTIDS 
 

31.4 41.49 

MMV688990 REFERENCE 

COMPOUNDS 

MIL 11.5 43.04 

MMV010576 MALARIA 
 

21.84 44.69 

MMV016838 MALARIA 
 

13.69 44.83 

MMV020320 MALARIA 
 

0.21 47.21 

MMV637229 TRICHURIASIS CLEMASTINE 11.15 47.31 

MMV688775 REFERENCE 

COMPOUNDS 

RIFAMPICIN 2.74 47.59 

MMV461553 TUBERCULOSIS 
 

-0.44 48.03 

MMV687703 TUBERCULOSIS 
 

76.96 48.25 

MMV676411 TUBERCULOSIS 
 

-0.81 48.75 

MMV687180 TUBERCULOSIS 
 

1.44 49.23 

MMV676384 TUBERCULOSIS 
 

59.9 51.03 

MMV675995 ONCHOCERCIASIS 
 

31.11 51.88 
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MMV687813 TUBERCULOSIS 
 

58.34 52.93 

MMV003270 HOOKWORM ZOXAZOLAMINE 57.93 53.16 

MMV676589 TUBERCULOSIS 
 

15.64 54.08 

MMV689028 KINETOPLASTIDS 
 

72.62 54.14 

MMV676406 TUBERCULOSIS 
 

35.79 54.35 

MMV687775 LYMPHATIC 

FILARIASIS 

 
7.4 54.77 

MMV676539 TUBERCULOSIS 
 

62.48 54.78 

MMV000023 REFERENCE 

COMPOUNDS 

PRIMAQUINE 76.84 55.01 

MMV611037 TUBERCULOSIS 
 

44.6 55.3 

MMV690028 KINETOPLASTIDS 
 

1.5 55.46 

MMV667494 MALARIA 
 

61.89 55.75 

MMV688313 SCHISTOSOMIASIS 
 

18.47 55.91 

MMV020512 MALARIA 
 

56.11 56.59 

MMV687138 TUBERCULOSIS 
 

48.25 56.61 

MMV676520 TUBERCULOSIS 
 

68.82 56.86 

MMV026313 MALARIA 
 

66.48 56.9 

MMV687776 LYMPHATIC 

FILARIASIS 

 
-1.15 57.43 

MMV007638 MALARIA 
 

52.58 57.66 

MMV023985 MALARIA 
 

46.63 57.95 

MMV102880

6 

MALARIA 
 

-0.6 58.01 

MMV689000 REFERENCE 

COMPOUNDS 

AMPHOTERICIN B 48.35 58.31 

MMV688283 KINETOPLASTIDS 
 

101.72 58.4 

MMV688270 SCHISTOSOMIASIS 
 

51.88 58.63 

MMV688471 TOXOPLASMOSIS 
 

49.33 59.14 

MMV690103 KINETOPLASTIDS 
 

0.48 59.86 

MMV101998

9 

MALARIA 
 

45.92 59.9 

MMV676524 TUBERCULOSIS 
 

65.52 60 

MMV676492 LYMPHATIC 

FILARIASIS 

 
23.83 60.28 

MMV688122 TUBERCULOSIS 
 

16.72 61.39 

MMV023370 MALARIA 
 

54.43 62.35 

MMV021057 MALARIA AZOXYSTROBIN 55.66 62.63 

MMV688415 KINETOPLASTIDS 
 

31.88 63.04 

MMV675996 ONCHOCERCIASIS 
 

25.83 63.13 

MMV688555 TUBERCULOSIS 
 

83.23 63.56 

MMV020165 MALARIA 
 

61.89 63.67 

MMV687254 TUBERCULOSIS 
 

-0.07 63.72 

MMV006372 MALARIA 
 

81.31 63.77 

MMV688846 TUBERCULOSIS 
 

60.58 63.77 

MMV688938 TUBERCULOSIS 
 

76.8 63.8 

MMV688273 KINETOPLASTIDS 
 

0.09 63.86 

MMV676395 TUBERCULOSIS 
 

0.76 63.89 
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MMV004168 KINETOPLASTIDS 
 

52.89 64.14 

MMV062221 MALARIA 
 

7.64 64.16 

MMV560185 MALARIA 
 

94.77 64.27 

MMV688798 KINETOPLASTIDS 
 

62.11 64.37 

MMV688845 TUBERCULOSIS 
 

67.13 64.6 

MMV024443 MALARIA 
 

32.6 64.75 

MMV002529 REFERENCE 

COMPOUNDS 

PRAZIQUANTEL 93.76 64.85 

MMV200748 TUBERCULOSIS 
 

61.91 64.99 

MMV688543 DENGUE 
 

39.32 65.1 

MMV687243 TUBERCULOSIS 
 

78.5 65.34 

MMV019721 MALARIA 
 

69.43 65.53 

MMV085210 MALARIA 
 

73.33 65.83 

MMV687749 TUBERCULOSIS 
 

56.67 66.01 

MMV687812 TUBERCULOSIS 
 

77.79 66.08 

MMV688352 DENGUE 
 

8.52 66.17 

MMV675993 CRYPTOSPORIDIOSIS 
 

27.37 66.21 

MMV688550 KINETOPLASTIDS 
 

56.13 66.32 

MMV111049

8 

WOLBACHIA LF 
 

77.35 66.34 

MMV676389 TUBERCULOSIS 
 

71.87 67.21 

MMV689029 KINETOPLASTIDS 
 

57.59 67.41 

MMV687700 TUBERCULOSIS 
 

61.64 67.55 

MMV688754 KINETOPLASTIDS TRIFLOXYSTROBIN -1.92 67.57 

MMV020623 MALARIA 
 

86.96 68.14 

MMV668727 ONCHOCERCIASIS 
 

78.89 68.46 

MMV687273 TUBERCULOSIS 
 

81.32 68.48 

MMV688934 KINETOPLASTIDS TOLFENPYRAD 68.13 68.55 

MMV689255 CRYPTOSPORIDIOSIS D-ERITADENINE 73.04 68.65 

MMV024937 MALARIA 
 

69.28 68.74 

MMV021375 MALARIA 
 

58.94 68.9 

MMV019742 MALARIA 
 

102.67 69.14 

MMV676260 MALARIA 
 

85.22 69.43 

MMV687765 TUBERCULOSIS 
 

74.28 69.43 

MMV010764 MALARIA 
 

31.69 69.5 

MMV000063 REFERENCE 

COMPOUNDS 

SITAMAQUINE 73.62 69.63 

MMV001625 REFERENCE 

COMPOUNDS 

α-

DIFLUOROMETHYLORNITHIN

E 

81.23 69.72 

MMV019807 MALARIA 
 

111.93 69.92 

MMV688771 SCHISTOSOMIASIS 
 

37.89 70.08 

MMV084603 MALARIA 
 

61.1 70.21 

MMV688509 TOXOPLASMOSIS 
 

27.84 70.28 

MMV019551 MALARIA 
 

42.2 70.29 

MMV407834 MALARIA 
 

63.07 70.36 

MMV688279 KINETOPLASTIDS 
 

75.33 70.45 

MMV676588 TUBERCULOSIS 
 

69.13 70.58 
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MMV392832 MALARIA 
 

51.5 70.6 

MMV108852

0 

MALARIA 
 

-3.27 70.72 

MMV010545 MALARIA 
 

68.48 70.73 

MMV495543 TUBERCULOSIS 
 

27.02 70.9 

MMV688552 SCHISTOSOMIASIS 
 

47.85 71 

MMV688991 REFERENCE 

COMPOUNDS 

NITAZOXANIDE 0.38 71.09 

MMV688557 TUBERCULOSIS 
 

58.46 71.96 

MMV000062 REFERENCE 

COMPOUNDS 

PENTAMIDINE 96.76 72.21 

MMV688274 KINETOPLASTIDS 
 

7.31 72.23 

MMV553002 TUBERCULOSIS 
 

58.91 72.57 

MMV045105 KINETOPLASTIDS 
 

44.11 73.02 

MMV688889 TUBERCULOSIS 
 

59.03 73.23 

MMV687172 TUBERCULOSIS 
 

54.36 73.27 

MMV688852 TOXOPLASMOSIS 
 

34.77 73.28 

MMV688762 SCHISTOSOMIASIS 
 

84.34 73.33 

MMV659004 KINETOPLASTIDS 
 

-1.44 73.83 

MMV676382 SCHISTOSOMIASIS 
 

64.75 73.92 

MMV228911 TUBERCULOSIS 
 

11.53 73.96 

MMV676050 CRYPTOSPORIDIOSIS 
 

42.99 74.33 

MMV022236 MALARIA 
 

94.61 74.51 

MMV688793 KINETOPLASTIDS 
 

52.13 74.59 

MMV084864 MALARIA 
 

55.81 74.64 

MMV024829 MALARIA 
 

69.82 74.8 

MMV688703 TOXOPLASMOSIS 
 

81.84 74.84 

MMV675994 CRYPTOSPORIDIOSIS 
 

81.16 74.96 

MMV687188 TUBERCULOSIS 
 

98.1 75.17 

MMV688939 TUBERCULOSIS 
 

51.85 75.51 

MMV688891 TUBERCULOSIS 
 

64.36 75.74 

MMV161996 TUBERCULOSIS 
 

98.9 75.91 

MMV688768 SCHISTOSOMIASIS 
 

-1.33 75.96 

MMV661713 TUBERCULOSIS 
 

83.31 76.01 

MMV688417 TOXOPLASMOSIS 
 

-0.98 76.07 

MMV688416 DENGUE 
 

66.54 76.11 

MMV026356 MALARIA 
 

65.05 76.21 

MMV688980 MALARIA 
 

48.08 76.34 

MMV023969 TUBERCULOSIS 
 

74.16 76.39 

MMV687747 TUBERCULOSIS 
 

30.38 76.47 

MMV687729 TUBERCULOSIS 
 

62.67 76.47 

MMV676881 MALARIA 
 

54 76.51 

MMV687803 REFERENCE 

COMPOUNDS 

LINEZOLID 111.44 76.55 

MMV202553 KINETOPLASTIDS 
 

77.09 76.92 

MMV688797 KINETOPLASTIDS 
 

71.92 76.99 

MMV676528 MALARIA 
 

57.74 77.13 
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MMV123637

9 

KINETOPLASTIDS 
 

52.39 77.18 

MMV689709 KINETOPLASTIDS 
 

68.1 77.39 

MMV688844 TUBERCULOSIS 
 

91.56 77.54 

MMV689061 KINETOPLASTIDS 
 

95.91 77.6 

MMV688474 KINETOPLASTIDS 
 

76.43 77.71 

MMV676377 TUBERCULOSIS 
 

74.59 78.14 

MMV676182 CRYPTOSPORIDIOSIS 
 

53.64 78.18 

MMV688941 TUBERCULOSIS 
 

74.74 78.23 

MMV688888 TUBERCULOSIS 
 

89.99 78.28 

MMV011511 MALARIA 
 

88.55 78.49 

MMV688548 TOXOPLASMOSIS 
 

77.2 78.88 

MMV676008 KINETOPLASTIDS 
 

-1.15 79 

MMV688795 KINETOPLASTIDS 
 

86.7 79.12 

MMV676445 TUBERCULOSIS 
 

77.96 79.21 

MMV687796 REFERENCE 

COMPOUNDS 

AMIKACIN 58.25 79.34 

MMV032967 MALARIA 
 

75.35 79.58 

MMV023860 MALARIA 
 

74.37 79.77 

MMV676461 TUBERCULOSIS 
 

54.88 79.84 

MMV676599 CRYPTOSPORIDIOSIS 
 

31.83 80.19 

MMV030734 MALARIA 
 

87.08 80.21 

MMV023949 MALARIA 
 

52.45 80.37 

MMV688936 TUBERCULOSIS 
 

77.21 80.4 

MMV023227 MALARIA 
 

64.23 80.48 

MMV688364 TOXOPLASMOSIS 
 

58.45 80.73 

MMV676605 MALARIA 
 

84.63 81.06 

MMV676604 KINETOPLASTIDS 
 

33.57 81.35 

MMV676379 TUBERCULOSIS 
 

79.42 81.42 

MMV687699 TUBERCULOSIS 
 

62.05 81.42 

MMV188296 KINETOPLASTIDS 
 

106.72 81.46 

MMV687248 TUBERCULOSIS 
 

88.99 81.54 

MMV688766 SCHISTOSOMIASIS 
 

-2.36 82.4 

MMV1198433 SCHISTOSOMIASIS 
 

91.16 82.52 

MMV688958 KINETOPLASTIDS 
 

101.3 82.55 

MMV687798 REFERENCE 

COMPOUNDS 

LEVOFLOXACIN 

(OFLOXACIN) 
74.5 83.03 

MMV676603 TUBERCULOSIS 
 

75.26 83.14 

MMV008439 MALARIA 
 

126.81 83.2 

MMV688704 TOXOPLASMOSIS 
 

53.57 83.23 

MMV1037162 MALARIA 
 

85.96 83.26 

MMV676584 TUBERCULOSIS 
 

89.36 83.3 

MMV676439 TUBERCULOSIS 
 

95.86 83.45 

MMV688472 TOXOPLASMOSIS 
 

74.96 83.48 

MMV016136 MALARIA 
 

91.85 83.56 

MMV006741 MALARIA 
 

113.49 83.56 

MMV009135 MALARIA 
 

73.86 83.57 
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MMV202458 TUBERCULOSIS 
 

79.97 83.71 

MMV676186 KINETOPLASTIDS 
 

21.54 83.95 

MMV102920

3 

MALARIA 
 

52.7 83.99 

MMV023388 MALARIA 
 

76.22 84.1 

MMV676474 TUBERCULOSIS 
 

88.48 84.28 

MMV676380 MALARIA 
 

97.79 84.54 

MMV676350 MALARIA 
 

104.94 84.72 

MMV688921 DENGUE 
 

105.56 84.76 

MMV011765 MALARIA 
 

45.24 84.8 

MMV676536 SCHISTOSOMIASIS 
 

103.25 84.93 

MMV019790 MALARIA 
 

56.75 85.04 

MMV007625 MALARIA 
 

76.47 85.1 

MMV688124 TUBERCULOSIS 
 

56.21 85.13 

MMV688360 KINETOPLASTIDS 
 

58.5 85.35 

MMV023953 MALARIA 
 

83.96 85.42 

MMV676269 MALARIA 
 

76.17 85.78 

MMV687730 TUBERCULOSIS 
 

52.52 85.81 

MMV688547 KINETOPLASTIDS 
 

128.07 85.85 

MMV676597 TUBERCULOSIS 
 

73.07 85.91 

MMV024406 MALARIA 
 

93.72 85.94 

MMV687706 KINETOPLASTIDS 
 

75.35 85.99 

MMV063404 TUBERCULOSIS 
 

79.51 86.21 

MMV047015 TUBERCULOSIS 
 

82.9 86.47 

MMV688125 TUBERCULOSIS 
 

100.33 86.53 

MMV024035 MALARIA 
 

79.61 86.6 

MMV676470 TUBERCULOSIS 
 

79.72 87.35 

MMV020591 MALARIA 
 

94.51 87.56 

MMV007471 MALARIA 
 

69.68 87.8 

MMV688327 TUBERCULOSIS RADEZOLID 125.56 87.81 

MMV022478 MALARIA 
 

5.54 88.45 

MMV688796 KINETOPLASTIDS 
 

91.91 88.65 

MMV002816 REFERENCE 

COMPOUNDS 

DIETHYLCARBAMAZINE 62.54 88.75 

MMV688756 TUBERCULOSIS SUTEZOLID 64.54 88.9 

MMV021660 TUBERCULOSIS 
 

56.67 89.16 

MMV676444 TUBERCULOSIS 
 

81.76 89.21 

MMV019087 MALARIA 
 

89.32 89.61 

MMV024195 MALARIA 
 

76.61 89.61 

MMV020152 MALARIA 
 

108.81 89.71 

MMV020391 MALARIA 
 

17.09 89.71 

MMV001561 KINETOPLASTIDS FLUOXETINE 52.43 90.42 

MMV688553 TUBERCULOSIS 
 

98.31 90.94 

MMV676401 TUBERCULOSIS 
 

75.18 91.23 

MMV688178 SCHISTOSOMIASIS 
 

94.95 91.24 

MMV026550 MALARIA 
 

87.66 91.5 

MMV676602 KINETOPLASTIDS 
 

77.62 91.95 
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MMV676509 TUBERCULOSIS 
 

59.65 92.05 

MMV688854 CRYPTOSPORIDIOSIS 
 

66.13 92.07 

MMV024397 MALARIA 
 

86.39 92.24 

MMV393144 MALARIA 
 

81.97 92.24 

MMV676449 TUBERCULOSIS 
 

88.05 92.26 

MMV026490 MALARIA 
 

60.31 92.31 

MMV687189 TUBERCULOSIS 
 

81.16 92.36 

MMV675998 KINETOPLASTIDS 
 

65.21 92.81 

MMV020120 MALARIA 
 

99.97 92.92 

MMV676358 MALARIA 
 

64.12 93 

MMV085071 MALARIA 
 

82.11 93.07 

MMV000014 REFERENCE 

COMPOUNDS 

 
109.49 93.41 

MMV676478 TUBERCULOSIS 
 

56.18 93.56 

MMV658993 KINETOPLASTIDS 
 

64.93 93.82 

MMV688994 REFERENCE 

COMPOUNDS 

STREPTOMYCIN 84.34 94.02 

MMV026020 MALARIA 
 

94.82 94.58 

MMV689758 REFERENCE 

COMPOUNDS 

BEDAQUILINE 45.41 94.89 

MMV000011 REFERENCE 

COMPOUNDS 

DOXYCYCLINE 94.68 94.97 

MMV688362 KINETOPLASTIDS 
 

90.68 95.5 

MMV688371 KINETOPLASTIDS 
 

61.94 95.57 

MMV000907 MALARIA 
 

78.62 95.69 

MMV659010 KINETOPLASTIDS 
 

88.01 95.95 

MMV688955 TOXOPLASMOSIS 
 

96.76 95.96 

MMV688361 KINETOPLASTIDS 
 

78.94 96.04 

MMV020670 MALARIA 
 

97.66 96.09 

MMV663250 MALARIA 
 

69.77 96.52 

MMV688470 TOXOPLASMOSIS 
 

53.17 96.68 

MMV690027 KINETOPLASTIDS 
 

33.47 96.72 

MMV676480 ONCHOCERCIASIS 
 

61.83 96.73 

MMV006901 MALARIA 
 

107.15 96.82 

MMV019993 MALARIA 
 

70.73 96.83 

MMV687794 MALARIA 
 

72.05 97.3 

MMV032995 MALARIA 
 

90.22 97.31 

MMV020517 MALARIA 
 

63.1 97.7 

MMV146306 TUBERCULOSIS 
 

40.43 97.77 

MMV676554 TUBERCULOSIS 
 

103.74 97.83 

MMV688330 TOXOPLASMOSIS 
 

79.07 97.96 

MMV687146 TUBERCULOSIS 
 

84.77 98.04 

MMV085499 MALARIA 
 

54.27 98.08 

MMV688508 TUBERCULOSIS 
 

65.29 98.16 

MMV012074 TUBERCULOSIS 
 

123.86 98.27 

MMV688180 KINETOPLASTIDS 
 

81.67 98.32 

MMV687801 REFERENCE 

COMPOUNDS 

ETHAMBUTOL 126.55 98.57 
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MMV006833 MALARIA 
 

81.43 98.68 

MMV020081 MALARIA 
 

73.47 98.78 

MMV688271 KINETOPLASTIDS 
 

56.1 98.92 

MMV024101 MALARIA 
 

49.51 98.92 

MMV688407 KINETOPLASTIDS 
 

50.94 99.2 

MMV676063 ONCHOCERCIASIS 
 

66.65 99.42 

MMV689060 KINETOPLASTIDS 
 

112.63 99.56 

MMV022029 MALARIA 
 

101.7 99.81 

MMV085230 MALARIA 
 

105.91 100.02 

MMV675968 CRYPTOSPORIDIOSIS 
 

86.04 100.09 

MMV676877 MALARIA 
 

116.3 100.77 

MMV000858 MALARIA 
 

108.52 100.91 

MMV676159 KINETOPLASTIDS 
 

98.27 101.47 

MMV688350 DENGUE 
 

91.24 101.75 

MMV020710 MALARIA 
 

128.98 102.08 

MMV011229 MALARIA 
 

84.66 102.18 

MMV676571 TUBERCULOSIS 
 

85.94 102.29 

MMV007133 MALARIA 
 

71.2 102.77 

MMV023183 MALARIA 
 

84.53 103.26 

MMV020289 MALARIA 
 

71.21 103.5 

MMV024114 MALARIA 
 

69.99 103.63 

MMV676526 TUBERCULOSIS 
 

46.48 103.78 

MMV687246 MALARIA 
 

82.04 103.95 

MMV688469 TOXOPLASMOSIS 
 

53.28 103.98 

MMV676555 TUBERCULOSIS 
 

90.53 104.08 

MMV676048 KINETOPLASTIDS 
 

53.9 104.27 

MMV637953 REFERENCE 

COMPOUNDS 

SURAMIN 116.61 104.52 

MMV675969 ONCHOCERCIASIS 
 

77.56 104.76 

MMV407539 WOLBACHIA LF 
 

70.84 104.77 

MMV676431 TUBERCULOSIS 
 

65.31 104.86 

MMV688345 TOXOPLASMOSIS 
 

69.94 105.25 

MMV011691 MALARIA 
 

73.17 105.27 

MMV053220 TUBERCULOSIS 
 

82.56 105.3 

MMV676064 ONCHOCERCIASIS 
 

123.9 105.34 

MMV688411 TOXOPLASMOSIS 
 

65.85 105.51 

MMV688179 KINETOPLASTIDS 
 

54.5 105.96 

MMV687239 TUBERCULOSIS 
 

118.8 106.04 

MMV019234 MALARIA 
 

39.61 106.08 

MMV009054 MALARIA 
 

100.62 106.08 

MMV676053 CRYPTOSPORIDIOSIS 
 

78.76 106.26 

MMV676472 TUBERCULOSIS 
 

93.04 106.46 

MMV023233 MALARIA 
 

120.49 106.85 

MMV676468 TUBERCULOSIS 
 

84.33 106.85 

MMV687170 TUBERCULOSIS 
 

104.36 107.56 

MMV006239 MALARIA 
 

108.03 107.64 

MMV676191 CRYPTOSPORIDIOSIS 
 

94.76 107.96 
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MMV020136 MALARIA 
 

122.06 108.03 

MMV688466 TUBERCULOSIS 
 

117.26 108.11 

MMV676161 KINETOPLASTIDS 
 

116.07 108.65 

MMV020520 MALARIA 
 

127.42 108.71 

MMV020982 MALARIA 
 

93.07 109.38 

MMV024311 TUBERCULOSIS 
 

88.36 109.56 

MMV001059 MALARIA 
 

96.75 109.79 

MMV688773 REFERENCE 

COMPOUNDS 

BENZNIDAZOLE 132.2 110.17 

MMV031011 MALARIA 
 

84.55 110.57 

MMV676600 KINETOPLASTIDS 
 

114.36 110.66 

MMV634140 MALARIA 
 

73.96 112.61 

MMV007920 MALARIA 
 

88.96 112.76 

MMV687696 TUBERCULOSIS 
 

57.87 113.56 

MMV007803 MALARIA 
 

107.95 113.68 

MMV688410 KINETOPLASTIDS 
 

63.15 114.6 

MMV069458 TUBERCULOSIS 
 

112.41 115.05 

MMV676398 WOLBACHIA LF 
 

84.49 115.47 

MMV026468 MALARIA 
 

104.46 116.14 

MMV675997 KINETOPLASTIDS 
 

97.48 116.18 

MMV020537 MALARIA 
 

146.04 116.22 

MMV676204 ONCHOCERCIASIS 
 

99.37 116.49 

MMV020291 MALARIA 
 

111.14 117.25 

MMV688554 TUBERCULOSIS 
 

66.57 117.68 

MMV020321 MALARIA 
 

131.13 118.65 

MMV676442 MALARIA 
 

113.29 118.75 

MMV676057 KINETOPLASTIDS 
 

36.52 119.16 

MMV054312 TUBERCULOSIS 
 

116.16 120.77 

MMV020388 MALARIA 
 

143.84 121.02 

MMV019838 MALARIA 
 

86.78 125.18 

MMV676386 TUBERCULOSIS 
 

120.21 127.03 

MMV001493 ONCHOCERCIASIS ISRADIPINE 89.57 129.79 

MMV687145 TUBERCULOSIS 
 

130.77 132.61 

MMV676383 TUBERCULOSIS 
 

127.92 136.33 
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