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  Abstract  

Osteochondral defects are serious clinical problems relating to damaged articular cartilage 

within joints, usually resulting from acute traumatic injury or an underlying bone disorder. A 

variety of therapeutic options have been investigated, with several commercial products 

addressing this problem, but with limitations in the technology used in terms of biomaterials 

and construct presentation. Many of the current devices used to ‘plug’ the osteochondral defect 

presents a laminated structure which will interact with bone and cartilage layers within the 

damaged site. These devices do not offer reconstruction of normal tissue architecture and may 

delaminate in worse cases resulting in pain and repeated surgical intervention.  

Advances in biomaterial design and tissue engineering offer promise for the development of 

new approaches to direct cell architecture and tissue formation. The current work focuses on 

testing the impact of biomaterial chemistry and presentation in 3D, using a poly 

(N-isopropylacrylamide) (pNIPAM), and slightly less wettable poly (N-tert-butylacrylamide) 

(pNTBAM) to support spatial control of osteogenic and chondrogenic growth. Both materials 

were demonstrated as single component hydrogel, and presented in gradient form, in order to 

steer attachment of these two cell types.  

Both materials were prepared using ion transfer radical polymerization. FTIR spectroscopy 

and water droplet angle measurements used to describe main chemical variations and the 

wettability profile.  Mechanical testing determines materials strength and stiffness, while 

scanning electron microscopy (SEM) defines architectural and pore differences. Bio-glass 

(BG) fibres were embedded within hydrogels to support mineral environment and aid in 

cellular transportation. Histological staining using H&E stain together with confocal imaging 

used to configure cell attachment upon each hydrogel. Cell survival was examined using 

live/dead staining of hydrogel samples for immortalized cell lines (MG63, OK3H) and 

primary cell lines including human osteoblasts (hOBs) and human chondrocytes (hCHs). 
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Osteogenic and chondrogenic potential of cells were investigated with alizarin red staining 

and calcium assay. Alcian blue and dimethyl methylene blue were used to assess 

glycosaminoglycan (GAG) production. Protein assessment was performed using 

immunostaining and ELISA assay for collagens I, and II as a marker for cell function in 

addition to collagen X and ELISA quantification of annexin A2 as a markers for 

mineralization.   

Results indicated more hydrophobic stiffer mass for pNTBAM compared to pNIPAM. 

Internal architecture revealed larger pore diameter measured for pNIPAM hydrogel. Viability 

of all cell types was found to be good on both gel types, although proliferation was higher on 

pNTBAM compared to pNIPAM, and the latter gave rise to greater number of cell aggregates. 

Both hydrogels supported mineralization and GAG production, with pNTBAM presenting 

higher amounts mostly for GAGs. Higher levels of mineralization were obtained with BG 

embedded samples. These results were confirmed by detecting collagens and annexin A2 

levels.  

In conclusion, the various characteristics for pNIPAM and pNTBAM impacted the biological 

observations in terms of survival and cell function. This was useful in establishing a combined 

multi-regional scaffold which revealed the development of mineral and cell functional 

gradient between the scaffold’s sides.  

 

Keywords: osteochondral, biomaterials, hydrogel, polymer, scaffold, tissue engineering, 

mineralization, osteoblasts, chondrocytes, gradient, bio-glass fibres, calcium, alizarin, GAGs, 

collagen, annexin A2. 

 

 



III 

 

Table of contents 

Abstract ..................................................................................................................................... I 

List of figures ...................................................................................................................... VII 

List of tables ........................................................................................................................... XI 

Abbreviations ....................................................................................................................... XII 

Presentations and conferences ............................................................................................ XIV 

Acknowledgement ............................................................................................................... XV 

Chapter 1 General introduction ............................................................................................... 1 

1.1. Introduction ....................................................................................................................... 2 

1.2. Natural bone structure ....................................................................................................... 4 

1.3. Natural structure of cartilage............................................................................................. 5 

1.4. Architecture of bone cartilage interface ............................................................................ 7 

1.5. Pathology of osteochondral defects .................................................................................. 8 

1.6. Current treatment strategies ............................................................................................ 12 

1.6.1. Stimulation of tissue regeneration ................................................................................ 12 

1.6.2. Replacement of injured tissues .................................................................................... 13 

1.6.3. Cell Transplantation ..................................................................................................... 14 

1.7. Limitations of the current treatment ................................................................................ 16 

1.8. Tissue engineering approaches ....................................................................................... 17 

1.9. Biomaterials .................................................................................................................... 18 

1.9.1. Types of biomaterials ................................................................................................... 18 

1.9.2. Characteristic of suitable biomaterial .......................................................................... 19 

1.10. 2D vs 3D scaffolds ........................................................................................................ 22 

1.11. The impact of 2D surface characteristics ...................................................................... 22 

1.11.1. Surface micro-topography.......................................................................................... 22 

1.11.2. Surface nano-topography ........................................................................................... 23 

1.11.3. Surface chemistry ....................................................................................................... 23 

1.11.4. Surface biochemistry ................................................................................................. 24 

1.12. Fabrication of tissue engineering scaffolds ................................................................... 24 

1.13. From 2D to 3D cultures ................................................................................................ 28 

1.14. Fabrication of tissue engineered osteochondral scaffold .............................................. 29 

1.15. Summary ....................................................................................................................... 31 

1.16. Aims .............................................................................................................................. 34 

Chapter 2 Materials and Methods .......................................................................................... 37 

2.1. Materials ......................................................................................................................... 38 



IV 

 

2.2. Hydrogels synthesis procedure ........................................................................................ 41 

2.2.1. Synthesis of pNIPAM hydrogel ................................................................................... 42 

2.2.2. Synthesis of pNTBAM hydrogel .................................................................................. 43 

2.2.3. Synthesis of pNIPAM/pNTBAM gradient hydrogel composite .................................. 43 

2.3. Biodegradable glass fibres embedded hydrogel scaffold composite ............................... 44 

2.3.1. Insertion of BG fibres across hydrogel......................................................................... 44 

2.3.2. Following degradation profile of BG fibres ................................................................. 45 

2.4. Characterisation of hydrogels .......................................................................................... 48 

2.4.1. Fourier transform infra-red (FTIR) spectral characterisation ....................................... 48 

2.4.2. Water contact angle measurments ................................................................................ 49 

2.4.3. Compressive force mechanical testing ......................................................................... 49 

2.4.4. Scanning electron microscope (SEM) imaging ............................................................ 50 

2.4.5. Mineral association ...................................................................................................... 52 

2.5. Cell culturing techniques ................................................................................................. 53 

2.5.1. Choice of cells .............................................................................................................. 53 

2.5.2. Choice of media and nourishing culture environment ................................................. 54 

2.5.3. MG63 and OK3H cell lines culture .............................................................................. 55 

2.5.4. Primary human cells culture ......................................................................................... 55 

2.5.5. Cell passaging and trypsinization ................................................................................. 56 

2.5.6. Haemocytometer Cell counting technique ................................................................... 56 

2.5.7. Cell culture on 3D hydrogels ....................................................................................... 57 

2.6. Cell adhesion and attachment .......................................................................................... 59 

2.6.1. Fixation of 3D hydrogel samples ................................................................................. 59 

2.6.2. Histology staining by Haematoxylin and Eosin ........................................................... 60 

2.6.3. Confocal microscopy.................................................................................................... 60 

2.7. Viability and cell survival ............................................................................................... 61 

2.8. Detecting osteogenic and chondrogenic activities of cells on hydrogels ........................ 62 

2.8.1. Osteogenic cell behaviour ............................................................................................ 62 

2.8.2. Chondrogenic cell behaviour ....................................................................................... 64 

2.8.3. Matrix proteins identification ....................................................................................... 66 

2.9. Data collection and statistics ........................................................................................... 69 

Chapter 3 Osteochondral tissue regeneration materials preparation and characterisation ..... 70 

3.1. Introduction ..................................................................................................................... 71 

3.2. Chapter aims .................................................................................................................... 73 

3.3. Methods ........................................................................................................................... 73 

3.3.1. Hydrogel preparation.................................................................................................... 73 



V 

 

3.3.2. FTIR spectra ................................................................................................................. 74 

3.3.3. Wettability and water contact angle ............................................................................. 74 

3.3.4. Investigating internal architecture and porosity ........................................................... 74 

3.3.5. Compressive mechanical strength ................................................................................ 74 

3.3.6. Mineral association ...................................................................................................... 74 

3.4. Statistics .......................................................................................................................... 75 

3.5. Results ............................................................................................................................. 75 

3.5.1. General hydrogels appearance: .................................................................................... 75 

3.5.2. FTIR spectral assessment ............................................................................................. 76 

3.5.3. Water contact angle measurements .............................................................................. 78 

3.5.4. SEM imaging and pore characterisation ...................................................................... 79 

3.5.5. Compressive force mechanical strength....................................................................... 81 

3.5.6. Calcium mineral association ........................................................................................ 82 

3.6. Discussion ....................................................................................................................... 87 

Chapter 4 Determining the biological suitability of the scaffold system .............................. 92 

4.1. Introduction ..................................................................................................................... 93 

4.2. Chapter aims ................................................................................................................... 94 

4.3. Materials and methods .................................................................................................... 94 

4.4. Statistics .......................................................................................................................... 95 

4.5. Results ............................................................................................................................. 96 

4.5.1. Attachment and cell shape ........................................................................................... 96 

4.5.2. Viability and cell proliferation ..................................................................................... 97 

4.5.3. Biochemical testing of specific cells behaviour ......................................................... 105 

4.5.4. Determining collagen expression in cell-seeded hydrogels ....................................... 113 

4.6. Discussion ..................................................................................................................... 122 

4.7. Conclusion .................................................................................................................... 126 

Chapter 5 Generating 3D (pNIPAM-pNTBAM) bio-glass enforced gradient scaffold to 

regenerate osteochondral region .......................................................................................... 127 

5.1. Introduction ................................................................................................................... 128 

5.2. Chapter aims ................................................................................................................. 129 

5.3. Materials and methods .................................................................................................. 129 

5.3.1. Generating gradient scaffold ...................................................................................... 130 

5.3.2. Characterisation of gradient scaffold regions ............................................................ 130 

5.3.3. The inclusion of bioactive glass (BG) fibres.............................................................. 130 

5.3.4. Biological assessment of gradient and BG enforced scaffolds .................................. 131 

5.4. Statistics ........................................................................................................................ 131 



VI 

 

5.5. Results ........................................................................................................................... 131 

5.5.1. Gradient hydrogel architectural properties ................................................................. 131 

5.5.2. Bio-glass (BG) mass evaluation ................................................................................. 133 

5.5.3. Biological assessment of gradient scaffold ................................................................ 136 

5.5.4. BG embedded scaffold assessment ............................................................................ 143 

5.6. Discussion ..................................................................................................................... 157 

5.7. Conclusion ..................................................................................................................... 164 

Chapter 6 Summative discussion, conclusion, and future work .......................................... 165 

6.1. Summative discussion ................................................................................................... 166 

6.2. Conclusions ................................................................................................................... 173 

6.3. Future work ................................................................................................................... 174 

Chapter 7 References ........................................................................................................... 176 

Appendix 1. Standard curves ............................................................................................... 194 

Appendix 2. Protocol for preparing simulated body fluid (SBF) ......................................... 198 

Appendix 3. Supplementary figures ..................................................................................... 200 

Appendic 4. Ethical standards for commercial primary human cells ................................... 201 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



VII 

 

List of figures 

Figure 1-1. Bone structure and microstructure. ........................................................................ 5 

Figure 1-2. Microstructure of articular cartilage. ...................................................................... 6 

Figure 1-3. Schematic representation of the Osteochondral interface. ..................................... 8 

Figure 1-4. Schematic figure of articular cartilage defects, ...................................................... 9 

Figure 1-5. Schematic drawing of cartilage defect classification according to Outbridge 

system ..................................................................................................................................... 11 

Figure 1-6. Schematic representation for the Micro-fracture technique. ................................ 13 

Figure 1-7. Schematic diagram for autologous chondrocyte implantation (ACI) technique. . 15 

Figure 1-8. Examples of scaffold architecture fabricated using conventional techniques. ..... 25 

Figure 1-9. Examples of Scaffolds fabricated by solid free form (SFF) techniques. .............. 28 

Figure 1-10. Example of a bi-phasic scaffold for osteochondral repair. ................................. 30 

Figure 1-11. Current scaffold design compared to osteochondral interface region. ............... 35 

Figure 2-1. Schematic representation of the general procedure of polymer preparation by 

atom transfer radical polymerization inducing phase separation. ........................................... 42 

Figure 2-2. Gradient hydrogel composite preparation ............................................................ 44 

Figure 2-3. Processing of BG fibres in mould, ....................................................................... 45 

Figure 2-4. Micro-CT scanner processing of samples. ........................................................... 47 

Figure 2-5. Monomeric structure of NIPAM and NTBAM. ................................................... 48 

Figure 2-6. Schematic representation of how the gradient sample was prepared for FTIR 

measurement. .......................................................................................................................... 49 

Figure 2-7. BOSE electroforce machine. ................................................................................ 50 

Figure 2-8. Pore characterisation with ImageJ software. ........................................................ 51 

Figure 2-9. Haemocytometer cell counting. ............................................................................ 57 

Figure 2-10 Schematic representation of 3D scaffolds cell culturing, .................................... 59 

Figure 2-11. Schematic representation of live/dead stained hydrogel sample seeded wih 

cells. ........................................................................................................................................ 62 

Figure 3-1. pNIPAM and pNTBAM have distinct visual and physical characteristics. ......... 75 

Figure 3-2. FTIR spectra for pNIPAM and pNTBAM polymers. .......................................... 77 



VIII 

 

Figure 3-3. Differences between pNIPAM and pNTBAM hydrophilic behaviour compared 

to plastic surface. ..................................................................................................................... 78 

Figure 3-4. Pore size differences between pNIPAM and pNTBAM hydrogels’ subgroups. .. 79 

Figure 3-5. SEM imaging of pNIPAM and pNTBAM revealing internal architectural 

differences between their subgroups. ...................................................................................... 80 

Figure 3-6. Response of pNIPAM and pNTBAM to compressive force was quite different. 81 

Figure 3-7. Mechanical testing of pNIPAM and pNTBAM hydrogels, .................................. 82 

Figure 3-8. Alizarin staining of pNIPAM and pNTBAM hydrogels incubated with SBF at 

day21. ...................................................................................................................................... 84 

Figure 3-9.  Monitoring calcium minerals associated with hydrogels and their monomeric 

sub-groups. .............................................................................................................................. 85 

Figure 3-10. Calcium ions and alizarin assessment of hydrogels at day 21. ........................... 86 

Figure 4-1. Haematoxylin and eosin staining of pNIPAM and pNTBAM hydrogel samples 

indicates cell attachment. ........................................................................................................ 96 

Figure 4-2. Cytoskeletal fibrin and nuclei staining of MG63 cells seeded on hydrogels at day 

21. ............................................................................................................................................ 97 

Figure 4-3. Confocal imaging of live /dead stained hydrogels at day 21 seeded with MG63 

and OK3H cells. ...................................................................................................................... 98 

Figure 4-4. Cell count of live/dead MG63 and OK3H cells seeded on hydrogels at day 21. . 99 

Figure 4-5. The assessment of MG63 cells migration within the hydrogel’s construct at day 

21. .......................................................................................................................................... 100 

Figure 4-6. Live/dead staining of hydrogels at day 21 indicates viability profile of hOBs and 

hCHs. ..................................................................................................................................... 102 

Figure 4-7. Live/dead cells counting for primary hOBs and hCHs upon hydrogel 

constructs............................................................................................................................... 103 

Figure 4-8. The impact of hydrogel’s internal porous structure on enabling primary hCHs 

and hOBs penetration within pNIPAM and pNTBAM. ........................................................ 104 

Figure 4-9. Monitoring ALP activity of hOBs and hCHs seeded upon hydrogels. ............... 106 

Figure 4-10. Levels of ALP activity for hCHs and hOBs seeded on pNIPAM and pNTBAM 

hydrogels compared at day 21. .............................................................................................. 107 

Figure 4-11. Mineral association illustrated by alizarin staining of hydrogels. .................... 108 

Figure 4-12. Assessment of calcium ions associated with hydrogel samples seeded with 

hOBs and hCHs. .................................................................................................................... 109 

Figure 4-13. Alcian blue staining of hydrogel samples seeded with hCHs and hOBs. ......... 111 



IX 

 

Figure 4-14. Assessment of GAGs content in hydrogels seeded with hCHs and hOBs. ...... 112 

Figure 4-15. Immune stained hydrogel samples for collagen I expression. .......................... 114 

Figure 4-16. Immune stained hydrogel samples for collagen II expression. ........................ 115 

Figure 4-17. Immune stained hydrogel samples for collagen X expression. ........................ 116 

Figure 4-18. Assessment of collagen I on hydrogels seeded with hCHs and hOBs ............. 118 

Figure 4-19. Assessment of collagen II on hydrogels seeded with hCHs and hOBs. ........... 119 

Figure 4-20. Assessment of annexin A2 on hydrogels seeded with hCHs and hOBs. .......... 120 

Figure 4-21. Comparing levels of collagens, I, II and annexin A2 between hydrogels at day 

21. ......................................................................................................................................... 121 

Figure 5-1. Characterisation and physical appearance of gradient hydrogel scaffold. ......... 132 

Figure 5-2. Raman mapping of BG mass embedded in hydrogel. ........................................ 134 

Figure 5-3. µCT scanning of hydrogel embedded BG mass for pNIPAM and pNTBAM. .. 135 

Figure 5-4. BG embedded hydrogels incubated with PBS at 37 °C and stained with alizarin 

red at day 21. ......................................................................................................................... 136 

Figure 5-5. Alizarin and alcian blue stained gradient hydrogel sections seeded with hOBs 

and hCHs. .............................................................................................................................. 137 

Figure 5-6. Quantifying calcium ions and GAGs contents upon gradient hydrogels. .......... 138 

Figure 5-7. Immune-stained gradients samples seeded with hOBs and hCHs for collagens I, 

II, and X. ............................................................................................................................... 140 

Figure 5-8.  Quantifying collagens I, II and annexin A2 on gradient hydrogels seeded with 

hOBs and hCHs..................................................................................................................... 142 

Figure 5-9. Assessment of MG63 travelling through degraded BG fibres channels of 

pNTBAM and pNIPAM hydrogels. ...................................................................................... 143 

Figure 5-10. Comparing calcium mineral association between plain and BG enforced 

hydrogels seeded with hOBs and hCHs. ............................................................................... 145 

Figure 5-11. The amounts of GAGs measured in BG versus non-BG hydrogel samples 

seeded with hOBs and hCHs. ................................................................................................ 146 

Figure 5-12. Assessment of calcium ions in BG and non-BG gradient scaffolds seeded with 

hOBs and hCHs..................................................................................................................... 147 

Figure 5-13. The amount of GAGs in BG vs non-BG gradient scaffolds. ............................ 148 

Figure 5-14. Comparing collagen I level measured in BG versus non-BG hydrogels seeded 

with hOBs and hCHs. ........................................................................................................... 151 



X 

 

Figure 5-15. Comparing collagen II levels measured in BG versus non-BG hydrogels seeded 

with hOBs and hCHs. ............................................................................................................ 152 

Figure 5-16. Comparing annexin A2 levels measured in BG versus non-BG hydrogels 

seeded with hOBs and hCHs. ................................................................................................ 153 

Figure 5-17. The assessment of collagens I, II and annexin A2 in BG vs non-BG at day 

21. .......................................................................................................................................... 154 

Figure 5-18. Quantifying collagens I, II and annexin A2 in BG vs non-BG gradient scaffolds 

seeded with hOBs and hCHs. ................................................................................................ 156 

Figure 5-19. Comparing mineralization activity presented by cells on hydrogels at day 21. 161 

 

 

 

 

 

 

 

 

 

 

 

 

 



XI 

 

  List of tables 

Table 1-1. Classification of articular cartilage damage. ........................................................ 10 

Table 1-2. Biomaterials classifications and applications. Nature and source of biomaterials 

with their further categorization and application. .................................................................. 21 

Table 1-3. Conventional scaffolds fabrication techniques. .................................................... 27 

Table 2-1. list of the materials used in experimental work with their catalogue numbers and 

suppliers’ names..................................................................................................................... 38 

Table 2-2. Cell culture medium additives to enhance osteogenic cell behaviour. ................. 54 

Table 2-3. Cell culture medium additives to enhance chondrogenic cell behaviour. ............ 55 

Table 3-1. Identifying pNIPAM and pNTBAM FTIR spectral bands components. .............. 76 

 

 

 

 

 

 

 

 

 

 



XII 

 

  Abbreviations  

µCT Micro computed tomography 

ACI Autologous chondrocyte transplantation 

ALP Alkaline phosphatase  

BG Bio-glass 

CAD Computer aided design 

CPC Cetylpyridenium chloride  

dH2O De-ionized water  

    DMMB     Dimethyl methylene Blue  

ECM Extra cellular matrix  

ELISA  Enzyme linked immunosorbent assay 

FDM Fused deposition modelling 

FTIR Fourier transform infra-red 

GAG Glycosaminoglycan  

HA Hydroxyapatite  

hCHs Human chondrocytes 

hOBs Human osteoblasts 

ICRS International cartilage repair society 

Kpa Kilo pascal  

Mg Magnesium  

MSCs Mesenchymal stem cells  

NICE National institute for health and care excellence  



XIII 

 

PBS Phosphate buffer saline  

PGA Poly (glycolic acid) 

PLA Poly (lactic acid) 

pNIPAM Poly (N-isopropylacrylamide) 

pNPP Poly-nitro phenyl phosphate  

pNTBAM Poly (N-tert-butylacrylamide) 

Pt Platinum  

SBF Simulated body fluid  

SEM Scanning electron microscope  

SFF Solid free form  

SLS Selective Laser Sintering 

 

 

 

 

 

 

 

 

 

 

 

 

 



XIV 

 

  Presentations and conferences  

Talk presentations 

- Zaid Younus, Paul Roach, Nicholas Forsyth Hydrogel scaffold engineering for 

osteochondral tissue regeneration. Keele University postgraduate symposium / keele 

University 2016. 

- Zaid Younus, Paul Roach. Hydrogel scaffold engineering for osteochondral tissue 

regeneration. Future investigators of regenerative medicine (FIRM) conference / 

Girona –Spain September 2016 

Poster presentations 

- Zaid Younus, Paul Roach, Nicholas Forsyth. 3D scaffolds for osteochondral tissue 

engineering. Royal society of biomaterials (RSC) Biomaterials conference / 

Birmingham January 2016 

- Zaid Younus, Paul Roach, Nicholas Forsyth. Hydrogel scaffold engineering for 

osteochondral tissue regeneration. United Kingdom society of biomaterials (UKSB) 

conference/ London June 2016. 

- Zaid Younus, Paul Roach, Nicholas Forsyth. Hydrogel scaffold engineering for 

osteochondral tissue regeneration. United Kingdom society of biomaterials (UKSB) 

conference/ Loughborough University, Loughborough June 2017. 

- Zaid Younus, Paul Roach, Nicholas Forsyth. Hydrogel scaffold engineering for 

osteochondral tissue regeneration. Tissue and cell engineering society (TCES) 

conference / Manchester metropolitan University, Manchester July 2017 

- Zaid Younus, Paul Roach, Nicholas Forsyth. Tuning of pNIPAM-based scaffolds to 

regenerate the osteochondral region. Royal society of biomaterials (RSC) 

Biomaterials conference/ Bradford January 2018 



XV 

 

Acknowledgement 

Firstly, I would like to express my sincere gratitude to my supervisor Prof. Nicholas Forsyth 

for the optimum support of my Ph.D study and research, for his patience, encouragement, and 

immense knowledge and for giving me the freedom to work in the lab but continuously 

inspiring me with his feedback throughout my study. His guidance helped me all the time of 

research and writing of this thesis.  

My sincere thanks also goes to my second supervisor Dr. Paul Roach for his support and care 

in establishing the bases of this project. His insightful thoughts enlighten me in every aspects 

of materials science during my PhD. His continued help and feedback supported me 

throughout my lab work and thesis writing. 

I would like to present my special thanks and appreciation to the Higher Committee for 

Education Development (HCED) in Iraq. This work would not have been possible without the 

continued financial support from the HCED Iraq. Thanks and gratitude also goes to the Iraqi 

Cultural Attache for the premium support to Iraqi students throughout their study in the UK.  

To Keele University, I would like to present my thanks and appreciation for providing all the 

resources and facilities from the beginning to the end of my study. 

Special thanks to Dr. Ahmed Ifty / University of Nottingham for kindly donating the bio glass 

fibres and Ann Canning for her contribution in the 3D printing design to support this project. 

I would like to thank Prof. Ying Yang and her group members for help and advice throughout 

my experimental work. 

I would like to present my deep gratefulness to Dr. Joshua Price, Dr. Michael Rotherham and 

Dr. Abigail Rutter for their help, advice and support in experimental lab training. 



XVI 

 

My sincere thanks and gratitude to my colleagues and friends in the ISTM specially to mention 

my dear friend Dr Mohammed Najim and his family for the help and care they provided and 

for their kind hospitality for me and my family the first time when we arrived at the UK. 

Special thanks and appreciations to my friends Dr Hamza Abu Owida and Dr Marwan 

Merkhan for their enormous support and advice during my experimental work. I would like 

also to thank my wonderful group members Dr Tina Dale, Dr Rakad Al-Jumaily, Jessica Bratt, 

Emily Borg D'Anastas, Ana Kyoseva, Michelle Chen, and Idowu Fadayomi. Their help and 

advice supported me a lot in the most difficult moments of my study.  

I would also present my deep gratitude to the people who supported me to join this scholarship 

Mr Gazanfer Kanna, Mr Nizar Al-Dabbagh, Dr Nabhan Al-Saadoon, and Dr Suheir Muayed. 

I would never reach this position without their kind attitude and help.  

Last but not least, nobody has been more important to me in the pursuit of this project than 

the members of my family. I would like to thank my parents, whose love and guidance are 

with me in whatever I pursue. They are the ultimate role models. Most importantly, I wish to 

thank my loving and supportive wife, Hala, for her stand to me throughout the difficult times 

of my study, she made countless sacrifices to help me get to this point. My two wonderful 

children, Yahya and Jannah, seeing you every day provide unending inspiration for me to keep 

going and not to give up. I consider myself the luckiest in the world to have such a lovely and 

caring family, standing beside me with their love and unconditional support. 

 

 

  



1 

 

 

 

 

 

Chapter 1            

   General introduction  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 

 

1.1. Introduction  

Articular cartilage is a hyaline cartilage that covers the ends of long bones where joints are 

formed and, together with the underlying bone, constitute one functional unit. In words, both 

tissues contribute so that any deterioration in cartilage tissues will be directly reflected on sub-

chondral bone and vice versa (Chiang & Jiang 2009; Qui et al. 2003). Osteochondral lesions 

comprise a group of defects that usually affects both the sub-chondral bone and the overlaying 

cartilage (Qui et al. 2003; Nukavarapu & Dorcemus 2013a). These disorders may be related 

to a pathological illness such as osteoarthritis or caused by traumatic injury to the joint (Johnna 

S. Temenoff & Mikos 2000). Serious pain and disability may arise from such conditions, with 

difficulties in the healing process due to the lack of blood or lymphatic vessels within cartilage, 

reducing the chance for tissue regeneration (Getgood et al. 2009; Da Cunha Cavalcanti Filho 

et al. 2012). Sub-chondral bone involvement, however, results in tissue response to fill the 

defect. This process is mostly insufficient for accurate repair of the tissue, as it leads to the 

production of fibrous cartilage which is inefficient in load-bearing tissues and will degenerate 

within months (Shahgaldi 1998; Getgood et al. 2009). 

Current therapeutic techniques range from surgical attempts to stimulate tissue repair and 

regeneration by abrasion chondroplasty, drilling and micro-fracture of sub-chondral bone 

(Chiang & Jiang 2009), to the use of osteochondral auto-grafts and allograft techniques as a 

substitute for damaged tissues (Kheir & Shaw 2009b; Zengerink et al. 2010). These current 

treatment strategies have proved to be successful to some extent in dealing with such defects. 

However, clinical outcomes still show the production of fibrous cartilage tissues which are 

unable to resist high compressive forces compared to normal cartilage. Consequently there is 

often a recurrence of symptoms with time and the situation deteriorates to osteoarthritis 

(Chiang & Jiang 2009; Falah et al. 2010). 

Tissue engineering and regenerative medicine has emerged, since the mid-1980s, as one of 

the future trends towards defining new therapeutic approaches for managing certain forms of 

tissue damage including osteochondral defects, which possibly provide a solution for a 
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healthier and natural tissue restoration of defective human organs (Panseri et al. 2012; Filardo 

et al. 2013). The basic principle for establishing tissue engineering techniques necessitate the 

use of biomaterials for designing and fabrication of scaffolds that mimic the three dimensional 

tissue environment and extracellular matrix (ECM), and then to seed these scaffolds with the 

specific cells intended to build-up these tissues (Castro et al. 2012). It is particularly important 

to investigate materials’ culturing in 3D rather than 2D environment. Cells on 3D cultures are 

more prone to sense their spatial orientation and to act in a manner that closely related the 

natural tissue construct. In contrast, culturing on 2D surfaces promote cells to spread on as a 

monolayer which could impacted some aspects of their functions as per cell signalling and 

gene expression compared to 3D based culture (Edmondson et al. 2014).  

Restoring complex tissue interfaces constitute one of the challenges facing tissue engineering 

approaches. This is basically attributed to the fact that these are hosting different types of 

tissues and in many times different types of cells forming an integrated tissue transformation 

(Leong et al. 2008; Karimi et al. 2015). Regenerating osteochondral interface was directed to 

restore the complex bone to cartilage transformation that involves gradients of minerals, 

tissues, and different architectural composites (Liu et al. 2011; Bian et al. 2016). In such a 

case, the choice of biomaterials is critical to ensure the proper functioning of bone and 

cartilage cells in addition to the proper design of an integrated multilayer scaffold that will 

guide the process of tissue regeneration (Swieszkowski et al. 2007).  

Tissue engineering has evolved over the past decade, giving promising results for an 

osteochondral tissue repair according to both in vitro and in vivo studies (Swieszkowski et al. 

2007; Ando et al. 2007; Camarero-Espinosa & Cooper-White 2017); scaffolds have been 

designed with multi-phasic compositions to present complex templates to address the bone–

cartilage interface (Kon et al. 2014; Sola et al. 2016). In addition, tuning materials 

characteristics’ such as surface chemical treatments have proved effective in dealing with 

issues such as cell attachment and migration, thus enabling improved tissue growth and 

development (Van der Kraan et al. 2002; Roach et al. 2010). In the current work, certain 
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materials characteristics were investigated, presented in 3D hydrogels, to address their 

suitability for bone and cartilage tissue regeneration. The plan was to target the osteochondral 

interface with focus on the sub-chondral bone plate and calcified cartilage zone. The materials 

should then be joined together to produce an integrated scaffold with the hope of mimicking 

the targeted regions. The normal osteochondral interface composed from the sub-chondral 

bone plate which is a compact layer with less porosity compared to the underlying cancellous 

bone but highly mineralized. This bone layer is followed by a calcified cartilage mass which 

involve hypertrophic chondrocytes embedded in calcified matrix. The thickness of these 

layers in the healthy joint was assessed according to certain studies at a mean of 1 mm for the 

sub-chondral bone plate and about 143 µm for the calcified cartilage zone which could be 

variable according to location (Müller-Gerbl et al. 1987; Koszyca et al. 1996; Patel & 

Buckland-Wright 1999). The sub-chondral bone plate is infiltrated by small channels (~ 40-

50 µm) that allow for vascular penetration up to the calcified cartilage zone (Burr 2004; Lyons 

et al. 2006). As such, the current design focuses on replicating this region by producing a 

multiregional scaffold vertically threaded with bio-glass (BG) fibres (~ 60-70 µm). The 

degradation of these fibres will leave channels that will reassemble the original osteochondral 

interface.  

1.2. Natural bone structure 

Bone provides mechanical support for the body; it also acts as a source of blood cells, and as 

a reservoir of minerals. Bone in general is formed from an outer dense cortical bone mainly 

containing osteocytes embedded in a solid matrix, and an inner trabecular; spongy bone 

network immersed in bone marrow (Figure 1-1). Bone matrix is composed of an inorganic 

component, of which calcium is the main constituent, usually existing in combination with 

phosphate to form hydroxyapatite (Ca5(PO4CO3)3(OH)). Other inorganic constituents include 

carbonates, citrates, and traces of minerals and ions such as Mg, Na, Cl, F, K+, Sr2
+, Pb2

+,Zn2
+, 

Cu2
+, Fe2

3+ The organic components include collagen type I in addition to small amounts of 

glycoproteins, proteoglycans, peptides, carbohydrates and lipids (Weiner & Wagner 1998; 
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Gaharwar et al. 2011). Within bone tissues collagen forms a network of fibres that is arranged 

in a 3D shape. Further mineralization and crystal formation, as part of bone mass growth, 

takes place within this 3D network of collagen (Weiner & Traub 1992; Lopes et al. 2018).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1. Bone structure and microstructure. (A) normal bone morphology and 

compartments, with the spongy bone and articular cartilage location, (B) enlarged section 

showing the compact bone microstructures with solid matrix shape, canaliculi, and osteocyte 

distribution (Wojnar 2010). 

 

1.3. Natural structure of cartilage 

Cartilage is a specialized connective tissue in the body with a single cell type, it is divided 

into three different types based on their location and specific function. The three major types 

of cartilage are the elastic, fibrous, and hyaline cartilage (Mow VC, Huiskes R, Stokes IA 

2005). These are mostly distinguished according to ECM composition. Elastic cartilage 

composed of large amounts of elastic fibres and mainly exists in epiglottis and ear (Mow VC, 

Huiskes R, Stokes IA 2005). Fibrocartilage and hyaline cartilage are mainly associated with 

the skeletal system (Benjamin & Ralphs 2004; Kheir & Shaw 2009a). The fibrocartilage is 

characterized by higher percentage of collagen I compared to other types of cartilage and is 

found in regions like the meniscus and the intervertebral discs (Benjamin & Ralphs 2004). 

The hyaline cartilage is the most abundant type in the body and is exist in skeletal sites such 
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as the articular cartilage, it also found in other sites such as the trachea and nose (Mow VC, 

Huiskes R, Stokes IA 2005; Kheir & Shaw 2009a; Carballo et al. 2017a). 

 Articular cartilage supports the low friction motion of joints. It differs from bone in that it 

composed from only a single type of cell, the chondrocyte, surrounded (Gaharwar et al. 2011). 

Cartilage also lacks vascular and nerve tissue supply, which explains the low healing ability 

of cartilage tissues (Kheir & Shaw 2009a). Although chondrocytes comprise about 1% of the 

total cartilage volume, they are necessary for the replacement of degraded ECM in order to 

preserve cartilage size and mechanical characteristics. During embryogenesis chondrocytes 

are actively proliferative cells, however, mature chondrocytes are unable to proliferate, 

appears as a rounded shape cells completely embedded in ECM. (Johnna S. Temenoff & 

Mikos 2000). The ECM within cartilage is a mixture of collagen fibres (mainly type II), 

proteoglycans, and water, being arranged to efficiently provide tensile sheer force resistance 

(Melero-Martin & Al-Rubeai 2007). The overall structure is divided into 3 differential zones; 

the superficial, middle, and deep zones, followed by a calcified layer that separates bone from 

cartilage (calcified zone). Each of these divisions has characteristic composition and 

orientation (Figure 1-2) (Melero-Martin & Al-Rubeai 2007; Sophia Fox et al. 2009; Carballo 

et al. 2017b).  

 

 

 

 

 

 

 

 

Figure 1-2. Microstructure of articular cartilage. (A) showing arrangement of 

chondrocytes within the matrix and across cartilage zones, (B) collagen fibres orientation 

along the cartilage zones.  
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The organization of collagen fibres along the three zones of cartilage is of major interest 

(Figure 2), being arranged parallel to the surface of cartilage in the superficial zone, variably 

distributed in the middle zone, and perpendicular to the surface of cartilage at the deep zone 

(Sophia Fox et al. 2009). Such arrangement provides an ability of cartilage to withstand certain 

kinds of force from the tensile and sheer forces to compression and overloaded pressure (Kheir 

& Shaw 2009a).  

The concentration of matrix components differs notably between cartilage zones with the 

superficial zone containing the lowest concentration of proteoglycans, compared with the 

highest concentration in the deep zone of the cartilage. The calcified zone represents a 

transitional layer between articular cartilage and the sub-chondral bone beneath (Cohen et al. 

1998; Sophia Fox et al. 2009). 

1.4. Architecture of bone cartilage interface  

The bone-cartilage interface describes the region where the different tissue compositions of 

bone and cartilage are connected together in a manner that ensures optimization of their 

mechanical properties and weight-bearing capability (Figure 1-3) (Zizak et al. 2003; Madry 

2010). The calcified zone of cartilage is the deeper layer of articular cartilage where 

underneath lies the sub-chondral bone (Nukavarapu & Dorcemus 2013a). The sub-chondral 

bone is composed of a sub-chondral plate and an underlying bony spongiosa, both vary in 

thickness depending upon the joint, and are separated from the calcified zone by “the cement 

line” (Madry et al. 2010; Nukavarapu & Dorcemus 2013a). The osteochondral interface is 

characterized by higher mineralization and calcium percentage compared to the adjacent bone 

(Bullough & Jagannath 1983; Carballo et al. 2017b). It has been shown that the calcification 

process in this layer is an active process involving the production of substances that promote 

mineralization and matrix calcification in this cartilage layer. At the osteochondral interface, 

there is a continuous process of mineral growth and vascular invasion originated from the 

underlying bone towards calcification and forming new bone tissues. This process is regulated 

through a complex and balanced tissue transformation between cartilage and bone forming a 
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stable reserve zone at the epiphyseal bone interface (Bullough & Jagannath 1983; 

Hoemann et al. 2012a). The ‘tidemark’, which separates the calcified zone from the rest of 

articular cartilage, represents a barrier that involves active enzymatic processes preventing 

further vascular invasion and continuous cartilage calcification (Bullough & Jagannath 1983; 

Huber et al. 2000). 

 

 

 

 

 

 

 

Figure 1-3. Schematic representation of the Osteochondral interface. The figure is showing 

the bone-cartilage interface with vascular infiltration (blue and red thick lines) towards the 

calcified cartilage layer and the tidemark (orange) which supresses further mineralization 

towards cartilage.  

 

 

1.5. Pathology of osteochondral defects 

Lesions to articular cartilage are usually categorised as either partial injury, where the defect 

occurs in the upper layers of articular cartilage without the involvement of the calcified layer 

or the sub-chondral bone, or full thickness injury, where the defect penetrates deeply along 

the whole cartilage reaching the sub-chondral bone (Figure 1-4) (Hunziker 1999; Hunziker 

2002; Redman et al. 2005). 
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Articular cartilage injuries can be classified into several grades according to certain 

specifications of the damaged area. This classification has been adapted by different systems 

(Table 1), the most popular is the Outerbridge system which relies mostly on the location, 

size, depth, shape and boundaries of the lesion, in order to confirm the type of injury (Figure 1-

5) (Kheir & Shaw 2009; Falah et al. 2010). Other classification systems have also been 

introduced including those by the international cartilage repair society (ICRS) and the Bauer-

Jackson Descriptive systems (Falah et al. 2010). As a common measure, osteochondral 

damage is attributed to traumatic or accidental injury, where a potential stress fracture is 

generated along the cartilage thickness to the sub-chondral bone leading to serious damage. 

As a result of the limited ability for chondrocytes to migrate and their poor capacity to 

regenerative the ECM, the lesion will usually progress to a more complicated defect (Getgood 

et al. 2009; Da Cunha Cavalcanti Filho et al. 2012; Katagiri et al. 2017).  

 

 

 

 

 

 

 

 

 

 

Figure 1-4. Schematic figure of articular cartilage defects, showing the difference between 

partial defects (affecting upper layers) and full thickness defects (reaching the calcified zone 

down to sub-chondral bone).  
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Table 1-1. Classification of articular cartilage damage. The main grades established to 

describe the level of articular cartilage defect (Kheir & Shaw 2009; Falah et al. 2010)  

Classification System Grades Specifications 

Outerbridge  0   

I 

II 

 

III 

 

IV 

Normal cartilage 

Softening and swelling of the cartilage 

Partial thickness defects not exceeding 1-1.5 cm 

of diameter 

Defects and fissures reaching the  sub-chondral 

bone (more than 1-1.5 cm) 

Exposed sub-chondral bone 

ICRS I 

II 

III 

 

IV 

Superficial defect or fissure (nearly normal) 

Fissures with less than 50% depth 

Severe damage with osteochondral region 

involvement (50% or more) 

Extending beyond osteochondral region through 

underlying bone 

Bauer-

Jackson 

Descriptie 

Traumatic  I 

II 

III

  

IV 

Linear defect 

Stellate  

Chondral flat 

Chondral crater   

Degenerative  V 

VI 

Fibrillation  

Exposed sub-chondral bone 

 

 

The normal mechanism of cartilage to resist ordinary compressive force arises from the 

entrapment of interstitial fluid within the cartilage matrix (Suh et al. 1997).Upon increasing 

stress there is a parallel increase in the hydrostatic pressure within the joint so preserving more 

fluid in the cartilage matrix creating a strong resistance against damage (Suh et al. 1997). It is 

evident that degenerative changes to articular cartilage, whether related to injury, pathologic 

loading, or aging, will progressively lead to loss of the structural integration of cartilage layers 

starting from reducing cartilage volume with impaired function tailed by defects which will 
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increase the contact pressure within the joint surfaces and eventually developing osteoarthritis  

(Freemont 1996; Mithoefer et al. 2009). 

 

 

Figure 1-5. Schematic drawing of cartilage defect classification according to Outbridge 

system. Grades of cartilage involvement are explained serially from (a) to (d) (Kheir & Shaw 

2009a).  

 

Such structural damage usually begins with the loss of the matrix proteoglycans accompanied 

by destruction of the collagen grid; this is followed by metaplasia and cell damage (Hunziker 

2002). Healing of these lesions are markedly poor, however when the sub-chondral bone is 
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involved in the progressive degenerative damage, bleeding will happened and blood clot 

formation triggers spontaneous healing to start over (Hunziker 2002). 

1.6. Current treatment strategies  

The applicable therapeutic preferences involve various options ranging from conservative and 

symptomatic treatment with specific anti-inflammatory medications and nutritional 

supplements (Fox et al. 2012; Detterline et al. 2005), to a number of therapeutic surgical 

procedures aimed at correcting osteochondral lesions and restoring normal function depending 

on certain techniques (Johnna S. Temenoff & Mikos 2000). 

1.6.1.  Stimulation of tissue regeneration 

Several procedures were intended to stimulate the natural healing of damaged osteochondral 

tissue including drilling and micro-fracture (Figure 1-6), both examples of a predominant 

technique of articular cartilage restoration that depends on stimulation of blood flow to a 

specific lesion of cartilage with the resultant clot formation and migration of marrow cells to 

start correcting the damage area (Chen et al. 2009a). The process involves the debridement of 

all the injured and affected cartilage tissues until reaching the sub-chondral bone (Smith 2005). 

Multiple 3-4 mm holes are then drilled into the bone to stimulate bleeding, allowing marrow 

elements including MSCs to cover and begin to regenerate the area. This will resemble a blood 

clot which fills the defect.  
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Figure 1-6. Schematic representation 

for the Micro-fracture technique. (A) 

explain how to perform micro-fractures 

on sub-chondral bone surface (B) the 

resultant bleeding and clot that fills the 

gap, (C) showing the microscopic image 

for the micro-fracture holes made in 

articular cartilage surface, Arrows 

highlight holes (Detterline et al. 2005; 

Mithoefer et al. 2009).  

 

 

1.6.2.  Replacement of injured tissues 

Grafting of autogenic or allogenic osteochondral tissues is another technique used most often 

for correcting medium size to large osteochondral lesions (Redman et al. 2005). 

Osteochondral auto-graft gives the advantage that the tissues are autologous normal living 

tissues, to ensure chondrocyte viability, and usually results in production of similar cartilage 

to the injured one. This technique involves the debridement of a cartilage lesion, including a 

small portion of the underlying bone, and then to be fitted with osteochondral autograft of the 

same size and thickness, it results in the formation of mosaic or patch work and so are called 

mosaicplasty; usually the grafts are cylinders of normal full length cartilage which is taken 

A B 

C 
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from a non-weight bearing regions of the joint (Detterline et al. 2005; Crist et al. 2016; Gelber 

et al. 2018). 

Osteochondral allografts are frequently used to correct cartilage defects of intermediate to 

large scale (Chu 2001). This technique has shown good osteochondral tissue survival within 

a reasonable period of follow up, however, it requires a fresh tissue transplant to ensure the 

viability of the osteochondral graft. A frozen osteochondral tissue grafts may be used to reduce 

the immune response usually encountered from the fresh ones, although this is often at the 

expense of reduced tissue viability (Hunziker 1999; Johnna S. Temenoff & Mikos 2000).  

1.6.3.  Cell Transplantation 

This technique Involve the transplantation of chondrocytes or soft tissues containing 

progenitor cells into the defective area with the hope of restoring the lost tissues (Aston, 

Bentley 1986). Periosteum and perichondrium (a delicate cellular layer located adjacent to 

bone and around the ribs respectively) were observed to have a chondrogenic potential due to 

the presence of chondrocyte precursor cells (Jobanputra et al. 2001; Redman et al. 2005). 

Grafts of these tissues were transplanted in full thickness cartilage defect (after debridement 

of the area exposing sub-chondral bone) and fixed in the area by fibrin glue. Results have 

indicated successful production of hyaline-like cartilage in most of the cases (Roberts et al. 

2003; Redman et al. 2005; Bhosale et al. 2007). A study conducted by Homminga for 

perichondral grafting of cartilage damage using autogenic tissue graft showed very good 

results concerning cartilage growth in most cases (Homminga et al. 1990). 

Autologous chondrocyte implantation (ACI) was introduced in the late 1990s as a new 

surgical approach for the treatment of full-thickness articular cartilage defects, it involves 

taking autografts or biopsies of cartilage from a non-weight bearing areas of the same joint, 

extracting chondrocytes from these grafts in the laboratory (Jobanputra et al. 2001), expanding 

their number by tissue culturing, and then returning them back to the damaged region 

(Figure 1-7). A periosteal tissue flap was placed by surgical suturing to seal around the defect, 
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then the cultured cells suspension was returned back into the region by injection through the 

flap. The technique revealed promising results in repairing osteochondral defects and restoring 

joint function as revealed by long-term monitoring studies (Brittberg et al. 1994; Johnna S. 

Temenoff & Mikos 2000; Roberts et al. 2003; Marlovits et al. 2005). The ACI method was 

modified by using a biomaterial like collagen (type I and III were implicated) to seal the 

damaged area instead of using periosteal flap (Jobanputra et al. 2001).the technique has 

recently approved by the National institute for health and care excellence (NICE 2017) and is 

now recommended as an option for treating symptomatic articular cartilage defects of the 

femoral condyle and patella of the knee . An updated research on ACI suggested the 

implication of collagenous matrix seeded by the previously expanded chondrocytes. The 

technique showed an improvement in the quality of results (mostly for the top cartilage layers) 

but does not address deep lesions of sub-chondral bone involvement (Buchmann et al. 2012; 

Erickson et al. 2018).  

 

Figure 1-7. Schematic diagram for autologous chondrocyte implantation (ACI) technique. 

Steps of chondrocyte harvesting, expanding in lab until final transplantation into defective 

area and periosteal flap cover. Arrows are indicative for stages of development. (Brittberg et 

al. 1994).  
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1.7. Limitations of the current treatment 

Current treatment modalities showed some good results regarding osteochondral repair and 

filling of defects (Steadman et al. 1997; Smith 2005; Hangody et al. 2008). According to a 

study by H. Chen et al (2009), the osteochondral repair was evaluated 24 hrs after 

microfracture and micro drilling techniques in a rabbit model. they pointed a less invasive 

aspects coming out from micro-drilling compared to micro-fracture techniques. They 

concluded that microfracture may causes bone compaction around the induced holes which 

prevent underlying bone marrow leakage and affect healing process. The clinical outcomes 

though have left some doubts concerning the type and functionality of the repaired tissue, 

especially when dealing with load bearing joints (Shahgaldi 1998). Shahgaldi et al, have 

demonstrated that new tissues formed were unable to withhold pressure loading of the joint. 

Further, these tissues do not present the same tissue properties or morphology.  Although less 

invasive with low cost advantages, micro-drilling and micro-fracture techniques offer limited 

ability to functionally repair cartilage with the resultant formation of fibrous cartilage  type 

that may have different morphological properties which affect cartilage structure integration 

(Clair et al. 2009; Chen et al. 2009b). Moreover, deterioration of the clinical condition occurs 

mostly within 18 months of the procedure and it is earlier in older patients (Steinwachs et al. 

2008).  

Donor site morbidity is also a common problem encountered with osteochondral autograft 

techniques, in addition to losing shape and curvature of articular surfaces, which probably 

have an impact on the joint contact pressure and load bearing strength (Swieszkowski et al. 

2007; Clair et al. 2009). Moreover, osteochondral allografts are challenged by the availability 

of the appropriate donor, in addition to the possibility of transmitting infections and 

originating an immune response against the implanted tissue graft (Chu 2001).  
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1.8. Tissue engineering approaches  

Tissue engineering represents an alternative solution to overcome the limited capabilities of 

current therapeutic options, utilizing biological, chemical, and engineering principles to create 

a modern technique for tissue restoration (Laurencin et al. 1999). It is considered as a better 

alternative for osteochondral tissue damage repair with the aim of establishing normal, 

mechanical and functional characteristics of articular cartilage and osteochondral regions 

(Panseri et al. 2012). The principle concept of tissue engineering depends upon the ability of 

cells to build-up new tissues when cultured in a 3-dimensional environment utilising a 

properly fabricated scaffold where other factors necessary for attachment and proliferation of 

cells are considered (Lavik & Langer 2004). In this regard, a balanced system of cells and 

suitable biomaterial is fabricated to engineer a scaffold that supports normal growth and 

integration of cells in a way that simulates the native tissue environment (Jagur-Grodzinski 

2006). Numerous studies have been conducted in this field to gain a better understanding of 

the biomaterials and scaffold properties, their compatibilities with the cells and biological 

environment, in addition to extracellular matrix characteristics (Hutmacher 2001; Castro et al. 

2012). Most of these studies were directed to examine the nature of biomaterials and their 

effects on steering cell behaviour and attachment (Lynch et al. 2005; Hirschfeld-Warneken et 

al. 2008). Some other aspects were investigated such as the chemistry (Thevenot et al. 2008), 

porosity (Bandyopadhyay et al. 2010; Hollister 2005), and stiffness (Xiao et al. 2013; J. Yang 

et al. 2017) of materials on affecting certain cell responses, viability and growth pattern. it has 

been concluded that specific materials features resulted in variable cell responses and tissue 

compatibilities. Eventually, these had affected the choice of material and tissue engineered 

fabrication technique for certain tissue regeneration (Lu et al. 2011; Chen et al. 2014). Chen 

et al. 2014 evaluated a gelatine-chitosan scaffold on variable cell responses including 

attachment and proliferation. They investigated their scaffold design and properties such as 

porosity and mechanical strength, fabricated using 3D printing to act as a tissue replacement. 

They concluded the suitability of the tissue engineered 3D scaffold as biocompatible tissue 

substitute to support the process of tissue regeneration.  
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1.9. Biomaterials 

The term ’biomaterial’ is applied to any material that coordinates with a biological system in 

such a manner that it forms a construct for supporting cells and tissue development. It could 

be either natural, where it is normally produced by the biological systems of a living organism, 

or synthetic, where it constitutes a wide range of products synthesised in order to replace an 

impaired or damaged tissue construct (Hench 1998; Currie et al. 2007). The classical 

application of these biomaterials in the field of medicine to replace a specific organ or tissue 

in the body was governed by the nature and type of material, their physical and biological 

features and behaviour. Accordingly, biomaterials used were either metallic, as in hip 

replacement, textiles, as in vascular grafts, or polymers, as in intraocular lenses (Williams 

2009).  

The concept of biomaterial utilization in medicine has significantly changed since the 

introduction of nanotechnology and tissue engineering techniques (Binyamin et al. 2006; 

Williams 2009). Recently, biomaterials are produced to provoke a biological system response 

for the intended tissues, i.e. to be bioactive (Roach et al. 2007). In such a case a complex 

interactions between neighbouring cells and between cells and a biomaterial, will stimulate 

the release of certain chemicals and growth factors leading to further tissue regeneration (Ziats 

et al. 1988; El-Sherbiny & Yacoub 2013).   

1.9.1. Types of biomaterials 

The use of natural biomaterials provides a reasonable environment for supporting cells and 

tissue development, as it is closely related to the natural tissue construct (Gaharwar et al. 

2011). Derivatives of ECM components are applicable as bio-composite implants such as 

proteins including collagen (type I or II), fibrin, and carbohydrate derivatives including 

agarose, GAGs, hyaloronan (Jagur-Grodzinski 2006; Currie et al. 2007). Metals such as 

magnesium, titanium, and platinum have been used as biomaterials in various fields of 

medicine depending on their purity and specific mechanical properties (Woo et al. 2005; 

Staiger et al. 2006). Other synthetic or semi-synthetic biomaterials which have been used for 
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tissue engineering include various forms of polymers and ceramics which are more 

controllable and can easily be processed to give a wide range of predictable properties (Liu et 

al. 2007). Synthetic polymers constitute a wide range of materials intended to be applied as 

tissue implants. Polymers are long chain organic materials formed by the combination of 

repeated monomeric units covalently bonded to produce their basic structure. They are of 

different types and categories, depending on their physical, chemical, mechanical and thermo-

sensitive behaviours. Poly (lactic acid) (PLA) and poly(glycolic acid) (PGA) acid have largely 

been used as effective biopolymers (Binyamin et al. 2006). Ceramic biomaterials such as 

bioactive glass, hydroxyapatite (HA) and calcium phosphate derivatives have largely been 

used owing to their good biomimetic and bioactive behaviour within the biological system. 

They also possess specific osteoconductive properties allowing for osteogenesis and bone 

growth with applicability for musculoskeletal tissue engineering. Combinations of calcium 

phosphate with HA have also been demonstrated as effective osteoconductive bio-ceramics. 

Moreover, it has been shown that bioactive glass scaffolds for bone tissue engineering perform 

better than other applied bio-ceramics (Cao & Hench 1996; Van der Kraan et al. 2002; Jagur-

Grodzinski 2006; Jones 2015).   

1.9.2. Characteristic of suitable biomaterial 

In order for a biomaterial to be applicable for use in tissue engineering repair techniques, it 

must fulfil certain characteristics (Table 1-2) to satisfy the requirement of biocompatibility 

with the host tissue environment (Cao & Hench 1996; Deb et al. 2018a).  

Whenever a biomaterial is implanted in a living organism, tissue attachment becomes an 

important feature of the implant and is considered to be a function of tissue response to the 

implant at the tissue interface (Binyamin et al. 2006). Interfacial tissue fixation can be 

achieved through the use of porous biomaterials which enable the ingrowth of tissues either 

into the pores or throughout the surface of the implant, referred to as biological fixation 

(Hench 1991). Another feature of the implanted biomaterial, in terms of tissue attachment, is 

to be bioactive, where it can create a series of reactions between the tissues and the implant 



20 

 

surface with the resultant interfacial tissue attachment, described as bioactive fixation (Hench 

1998; Cao & Hench 1996; Jones 2015). Bioactive glass materials have been presented in 

variable configurations and compositions to be incorporated with other biomaterials. These 

are basically act as an osteoconductive materials and are proven to be effective for bone tissue 

regeneration (Cao & Hench 1996; Hench 2006a; Jones et al. 2006).  

Biodegradability is an important, but not obligatory, criteria of the implanted biomaterial, 

where the implant is able to degrade after a certain period of time and be substituted by natural 

host tissues (Cao & Hench 1996). For these materials two important points should be 

considered, one of which is that the resultant degraded products are able to be metabolically 

eliminated, the second point is that the degradation rate of implant must be as close as possible 

to the build-up rate of the host new tissues (Williams 2008; Williams 2009). As a rule, there 

should be a constant bond created between the implant and the host tissue at their interface, 

thereby offering good stability of the implant against physical stimuli. The biocompatibility 

could then be ascertained in all aspects concerning the biochemical and biomechanical 

properties (Wilson et al. 1981; Hench 1991). 
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Table 1-2. Biomaterials classifications and applications. Nature and source of biomaterials 

with their further categorization and application.   

Nature of 

biomaterial 

Category  Applications References 

Natural 

polymers 

Proteins 

 

Collagen 

Elastin 

Fibrin 

Elastin 

Natural biodegradable 

polymers derived from 

human or animal 

sources, widely 

applied for most types 

of tissues including 

bone, cartilage, 

muscles, etc.  

(Drury & 

Mooney 

2003; Currie 

et al. 2007) 

Polyscacchar

ide 

derivative 

Agarose 

Chitosan 

Alginates 

GAGs 

Hyaloronan  

Can form hydrogels, 

many derivatives 

synthesized, mainly 

applied for dermal 

wound healing, and 

tissue generation of 

certain types including 

cartilage  

(Francis Suh 

& Matthew 

2000; Currie 

et al. 2007) 

Synthetic  Ceramics  Bioactive 

glass 

Bioactive 

ceramics  

HA and Ca 

salts  

Osteoconductive and 

bioactive (bio-glasss 

and HA), applied for 

tissue engineering and 

regeneration of 

musculoskeletal 

system ( bone, 

cartilage, teeth, and 

muscles) 

(Hench 

1991; Allo 

et al. 2012) 

Polymers 

and hydrogel 

Poly 

ethylene 

glycol PEG,  

PLA, PGA, 

and their co-

polymers  

Biodegradable, 

biomimetic, 

hydrophilic polyesters, 

applied in tissue 

engineering as  ECM 

substitutes 

(Patterson et 

al. 2010) 

Metals  Mg 

Ti 

Pt 

Proved application in 

load bearing tissues 

including bones, and 

for surface treatment 

of certain biomaterials 

(Staiger et 

al. 2006) 

.  
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1.10. 2D vs 3D scaffolds 

The use of tissue engineering techniques to regenerate or reconstruct damaged or lost tissues, 

necessitates the presence of guidance for cells to proliferate or differentiate to yield the 

intended shape and composition of the natural tissues (Peter X. Ma 2004). This guidance can 

originate from a scaffold fabricated from certain biomaterial or a mixture of biomaterials 

chosen according to their chemical, mechanical, and biological behaviour that simulate the 

intended tissue environment (Peter X. Ma 2004; Grosskinsky 2006). 

Scaffold materials should fulfil certain properties to be acceptable as a carrier for cells; such 

properties are closely related to the previously mentioned biomaterials characteristics with the 

most important criteria being biocompatibility enabling cells and tissue attachment, 

proliferation, and/or differentiation (Hutmacher 2001; Liu et al. 2007). 

1.11. The impact of 2D surface characteristics 

The biocompatibility of implanted scaffolds usually decided by the specific characteristics of 

implant surface, such as surface roughness (Elbert & Hubbell 1996a). Surface features play 

roles in cell adhesion, proliferation, and migration, characteristics of prime importance for 

successful tissue engineering (Roach et al. 2007). The existence of certain chemical functional 

groups on substrates surfaces and their effects on cell behaviours, suggests the feasibility of 

surface chemistry in directing cellular biological activity towards attachment (Boyan et al. 

1996).    

1.11.1. Surface micro-topography 

In addition to environmental factors encountered at the site of implant, each implanted 

biomaterial is capable of provoking a specific cellular biological response. Such a biological 

response may be attributed to the morphological properties of the material, for instance the 

three dimensional structure, or to the specific surface topographical features and textures (e.g. 

the presence of grooves on the surface and the depth of these grooves) (Boyan et al. 1996; 

Deb et al. 2018a). Micro-topographical features of substrate surfaces are effective in 
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controlling cell behaviours and responses. For instance specific cells will display best 

attachment on grooved surfaces when compared to cells on flat surfaces within a specific time 

limit (Dalby et al. 2003). 

1.11.2. Surface nano-topography 

Other than micro topographical features it is also clear that nano-scale topography of 

substrates positively affects cell responses (Flemming et al. 1999). The natural ECM of tissues 

are composed from well-defined nano-fibers. Such nano-structures form an important aspect 

of living tissue which positively affects cell behaviour in terms of active adhesion and 

stimulating further release of growth and biological factors (Shi et al. 2010). Accordingly, 

nano-technology has been utilized for the fabrication of scaffolds with nano surface or 

topographical features (Shi et al. 2010). Certain procedures have produced a nano-scale 

topography on substrates, one of these methods was the spontaneous de-mixing of polymers 

producing nano-scale islands ranging in height from 13 to 95 nm (Dalby et al. 2002; Dalby et 

al. 2003). Observations proved better attachment and proliferation of cells on 13nm height 

islands compared to the 95 nm heights.   

1.11.3. Surface chemistry 

Surface chemical and functional groups exert their own impact on cell attachment and 

proliferation (Shin et al. 2003). Surface treatment and chemical modification, for example the 

incorporation of specific ions and surface coating of the biomaterials, has been proven to be 

effective in enhancing cellular adhesion and subsequent proliferation (Elbert & Hubbell 

1996a; Roach et al. 2010).     

Enhancing wettability of scaffolds surfaces through the inclusion of specific materials with 

active functional groups such as CH3, OH, COOH, or NH2 was shown to positively affect cell 

adhesion behaviour for certain cell types (Arima & Iwata 2007). 
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1.11.4. Surface biochemistry  

Certain long chain ECM proteins such as fibronectin (FN), vitronectin (VN), and laminin 

(LN), have been applied as surface coatings of biomaterials to make them biomimetic 

(Underwood & Bennett 1989). However, after the discovery of the presence of signalling 

amino acid domains within the long chain ECM proteins, which are involved with cell 

membrane interactions, it is now more applicable to use these short peptide chains for surface 

treatment due to their increased stability and their relative ease of production at low cost (Shin 

et al. 2003). RDG peptide (Arg-Gly-Asp) is commonly used for surface management of 

certain implants along with certain other peptide sequences, for example a novel peptide 

sequence composed from Lys-Arg-Ser-Arg was proven to be efficient in improving osteoblast 

cell adhesion upon its use to modify specific biomaterials surfaces (Dee et al. 1998; Shin et 

al. 2003).  

1.12. Fabrication of tissue engineering scaffolds 

Engineering of scaffolds can be performed using specific fabrication techniques which may 

vary according to the type of materials included (either metal, polymer, ceramic, etc.) 

(Table 1-3), and to the final scaffold morphological characteristics (including micro or nano 

structure, pore size characteristics, etc. (Hutmacher 2001; Liu et al. 2007).   

Several fabrication techniques have been used to create 3D scaffolds including some 

conventional methods such as solvent casting, particulate leaching, gas foaming, freeze 

drying, phase inversion and textile fibre technologies which involve fibre bonding and fibre 

knitting (Table 2) (Liu et al. 2007; Subia et al. 2010). Although these techniques are usually 

simple to conduct, they are time consuming and may require several processing stages in order 

to obtain the final desired scaffold (Figure 1-8) (Subia et al. 2010). In general, these techniques 

depend on the application of heat, or pressure, to a polymeric solution, or the use of salt 

particles to create a 3D scaffold with up to 95% pore density and pore sizes range of 50-1000 

µm (Liu et al. 2007; Lu et al. 2013). However, the most important limitations of these 

techniques are related to lack of the uniform morphology and shape as there is variability in 
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moulds and containers used. Inconsistency and inflexibility of some techniques may have an 

impact on the final architecture and pore size of scaffolds. While toxic organic solvents used 

by most techniques for fabrication process may exert effects through the incomplete removal 

of the solvents which adversely affect the adherent cells and other bio-active materials (Leong 

et al. 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-8. Examples of scaffold architecture fabricated using conventional techniques. 

SEM imaging of scaffold’s architecture shape produced according to (A) Particulate 

leaching, (B) freeze casting method, (C) phase separation (Solid-liquid), and (D) 

electrospinning. Scale bar measures 100 µm for (A, B, C) and 20 µm for (D) (Leferink et al. 

2016; Darus et al. 2018)  

 

A further 3D scaffold fabrication technique is the solid freeform (SFF) or rapid prototyping 

(RP) technique (Figure 1-9), which utilises computer aided design (CAD) systems to control 

the process of scaffold fabrication through designing a computerized 3D scaffold shape 

(Yeong et al. 2004; Liu et al. 2007; Preethi Soundarya et al. 2018). The scaffold shape will 

then be synthesized via constructing layer by layer of the materials using a wide range of RP 

methods, the most applicable including 3D printing (3DP), fused deposition modelling 

(FDM), and selective laser sintering (SLS) (Leong et al. 2003; Sachlos & Czernuszka 2003). 

These CAD dependent techniques are advantageous in term of producing scaffolds with 
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reproducible architecture and control over pore size micro-structure and morphological 

characteristics (Hutmacher 2001; Hutmacher et al. 2004; Turnbull et al. 2018). It can also be 

applied to a wide range of materials including polymers (PLA, PGA, etc.), ceramics, and 

metals (Leong et al. 2003).  

Apart from 3D scaffold production, the above mentioned fabrication techniques are also 

utilised for the fabrication of micro-structure surface characteristics (Leong et al. 2003). Other 

techniques have been used to yield a 2D scaffold with nano-surface characteristics, such as 

electron beam-induced deposition (EBID) which depends on the application of high energy 

electrons causing dissociation of the molecules on the substrate surface (Norman & Desai 

2006). This technique is more applicable for use with metallic or metal-organic substrates, for 

instance copper, platinum, or titanium, to induce nanoscale surface features such as nanowires 

on the surface of these metallic constructs (Ueda & Yoshimura 2004). Electrospinning has 

been used as a popular technique utilised to produce 2D nano-fibrous scaffolds with promising 

results for tissue engineering (Vasita & Katti 2006). It utilises a high voltage electric power 

between two electrodes to yield a nanoscale fibres randomly arranged in a manor simulating 

the natural ECM construct. 
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Table 1-3. Conventional scaffolds fabrication techniques. Type of technique, its description 

and pore size produced accordingly with their main limitations  

 

 

 

 

 

Technique Description Porosity Limitations Reference 

Solvent 

casting 

/particulate 

leaching 

Very simple, based on the 

evaporation of solvent from 

polymer solution in mould to 

create the scaffold, particulate 

leaching involve the addition of 

salt particles to the polymeric 

solution after evaporation the 

resulted scaffold immersed in 

water with the salt particles 

dissolved and leached out leaving 

a porous scaffold.  

 

> 50 

µm; 

porosity: 

30 _ 

90% 

Problems with 

pore shape and 

internal pore 

openings with 

limited 

membrane 

thickness and 

low mechanical 

strength, in 

addition to 

residual solvent 

problems.  

(Sachlos & 

Czernuszk

a 2003; 

Leong et 

al. 2003; 

Liu et al. 

2007; 

Subia et al. 

2010) 

Gas foaming 

The process rely on saturation of 

polymer with CO2 gas at high 

pressure, and the dissolved gas 

will then be phase separated upon 

rapidly reducing pressure leading 

to a highly porous scaffold 

formation formed by the gas 

bubbles produced in the polymer, 

and there is no solvent 

involvement.  

> 50 µm 

Porosity 

up to 95 

% 

Limited 

interconnected 

pore network 

(Sachlos & 

Czernuszk

a 2003; Liu 

et al. 2007; 

Subia et al. 

2010) 

Freeze drying The dissolved polymer mixture is 

freeze and then freeze dried to 

remove the ice particles produced 

in the polymer after freezing, 

producing a porous scaffold.   

15-,200 

µm; 

Porosity:  

> 90% 

It is a time 

consuming 

process and 

usually results 

in small pore 

size scaffold  

(Hutmache

r 2001; 

Subia et al. 

2010) 

Phase 

separation 

(thermally  

controlled) 

The principle is that  a 

homogenous polymer solusion 

undergoes phase separation into 

polymer rich and polymer lean 

phases by lowering their 

temperature, then removing of 

solvent results in  producing 

porous scaffold,  

 < 200 

µm;Porosit

y: 

70 _ 

95% 

Low control 

over pore size 

and 

microstructure, 

and problems 

with solvent 

residues  

(Leong et 

al. 2003; 

Peter X Ma 

2004; Liu 

et al. 2007) 

Fibrebonding May involve the use of heat to 

attack two fibre materials 

together, then using solvent to 

dissolve one of them producing 

fibre network with interconnected 

pores and high surface area. 

Interconne

cted pore 

network 

20-100 µm 

Problems with 

residual solvent, 

and limited 

number of 

polymers. 

(Hutmache

r 2001; 

Leong et al. 

2003; Liu 

et al. 2007; 

Subia et al. 

2010) 
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Figure 1-9. Examples of Scaffolds fabricated by solid free form (SFF) techniques. (A) by 

SLS method, and (B) by FDM method. Scale bar measure 50 µm for (A) and 1mm for (B) 

(Leong et al. 2003; Yeong et al. 2004).  

 

 

1.13. From 2D to 3D cultures 

Cells in natural tissues are normally existed in 3D environment which enables them to 

communicate in a multidirectional manner. Accordingly, this will impacted their further 

responses and signalling pathways and will decide their outcome behaviour and physiological 

function. In contrast, most of the tissues and cellular biological behaviour studies are 

dependent on monitoring growth of cells in two dimensional (2D) cell cultures which are 

deficient in tissue micro environmental conditions and requirements (Dutta & Dutta 2009; 

Huh et al. 2011). Consequently, 3D cell culture models were created to mimic these tissue 

requirements. These culture systems rely mostly on utilizing a specific biomaterial or a 

mixture of biomaterials to build-up a 3D scaffold fabricated to simulate the original tissue 

spacing and ECM needed for optimum ingrowth of cells (Pampaloni et al. 2007; Justice et al. 

2009).  

Attention must be offered towards providing a balanced combination between cells and the 

intended scaffold to create a suitable 3D culture environment that will promote native cellular 
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activities. Balanced systems may require the fabrication of scaffolds with certain bioactive 

molecules, growth factors, or enzymes that are necessary to stimulate natural cells responses 

including cell signalling and intercommunication that will result in further adhesion, 

proliferation, differentiation, and growth of tissues (Jagur-Grodzinski 2006; Huh et al. 2011). 

Additionally, scaffold characteristics, including surface features, spatial orientation, and bulk 

properties, are critically important considerations. For instance bone tissue engineering 

involves the fabrication of a scaffold with a suitable biomaterial combination that will provide 

optimum mechanical strength, and with reasonable interconnected pore size architecture 

(approximately > 200 µm) to enables vascular ingrowth and cellular migration (Hutmacher 

2000). The success of building up tissues for any specific organ depends primarily on the 

scaffolds biomaterial type and properties besides their architectural design, as these factors 

determine the cells behaviour and final tissue morphology (Liu et al. 2007; El-Sherbiny & 

Yacoub 2013).   

1.14. Fabrication of tissue engineered osteochondral scaffold 

Tissue engineering aimed at regenerating osteochondral tissue is directed towards simulating 

the structural and histo-physiological criteria for the two types of tissues; bone and cartilage 

(Johnna S. Temenoff & Mikos 2000). Accordingly, a bi-phasic and tri-phasic scaffold has 

been developed and examined for these purposes (Figure 1-10), and specific biomaterials were 

chosen to best mimic each tissue type (Swieszkowski et al. 2007; Schaefer et al. 2002; Kon et 

al. 2014; Yousefi et al. 2015). The chosen biomaterials must be considered on the basis of 

their tissue biocompatibility and in this case to be able to support bone and cartilage cells 

performance (Di Luca et al. 2015a; Othman et al. 2018). 

In general, the nature of the surrounding tissues and matrix will decide the choice of 

biomaterial to be used, for example, in certain trials HA and collagen type I were chosen for 

scaffold fabrication to regenerate bone tissues (Aydin 2011; Boyd et al. 2015; Sartori et al. 

2017). Engineering of interfacial tissue grafts between bone and cartilage (osteochondral 

interface) constitute a challenge as the structural differences between tissues gradually change 
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from one tissue type towards the other one (Seidi et al. 2011; Camarero-Espinosa & Cooper-

White 2017).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-10. Example of a bi-phasic scaffold for osteochondral repair. Image is showing 

two regions of biomaterials combinations (A) corresponding to the cartilage region and 

composed from copolymer poly(ethylene glycol)- terephthalate/poly(butylene)-terephthalate, 

(B) corresponding to the bone region and composed from HA and tri-calcium phosphate TCP 

(Martin et al. 2007).  

 

Accordingly, scaffolds should be fabricated to obtain a multiregional structure across the 

scaffold itself while simultaneously supporting tissue growth in a gradient manor mimicking 

the interfacial tissue growth environment (Seidi et al. 2011; Gadjanski 2017). Studies 

concerning multi-scaffold design have shown some promising results, for instance a 

multi-layer scaffold manufactured of agarose hydrogel and PLGA-bioactive glass showed 

good control of chondrocyte and osteoblast in vitro growth in each region of the scaffold, 

resulting in the formation of three distinct regions of cartilage, bone and calcified cartilage 

(Panseri et al. 2012). Another example displayed effective osteochondral repair in a knee joint 

of a porcine model using a bi-phasic scaffold made by fabricating HA with tri-calcium 
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phosphate (TCP) for the bone phase combined with a fabricated hyaluronic acid and 

atelocallagen (ultra-pure collagen) for the chondral phase (Panseri et al. 2012).  

In reviewing osteochondral tissue structure (section 1.4), it seems applicable sometimes to use 

ECM components to fabricate an osteochondral scaffold. Lynn et al. (2010) fabricated a two-

layer scaffold consisted from mineralized collagen I/GAG to regenerate sub-chondral bone 

and mineralized collagen II/GAG to regenerate cartilage. They studied the final scaffold 

nano-composition and concluded its suitability to mimic the natural osteochondral structure 

as per chemical composition and material distribution. It might also be useful to replicate the 

osteochondral architecture features when designing a multilayer scaffold such as the porosity 

and mechanical strength. Apart from chemistry, material’s larger porous structure will 

facilitate osteoblastic cell growth and differentiation compared to a smaller porosity which 

proved more effectiveness for cartilage tissues (Di Luca et al. 2015b; Luca et al. 2016).     

1.15. Summary 

Articular cartilage is a unique avascular structure that surrounds bone ending at joints, aiding 

in lubrication and supporting low frictional joint mechanical functions (Kheir & Shaw 2009b; 

Gaharwar et al. 2011). It is a unicellular structure composed from chondrocytes which is 

responsible for ECM formation and lack vascularization. Unlike cartilage tissue, bone is a 

vascular multicellular structure composed from osteocytes, osteoblasts, and osteoclasts 

communicated together to preserve the internal bone microstructure and mineralization 

(Weiner & Wagner 1998). The base of cartilage is the sub-chondral bone layer from which 

cartilage is originated. The junction between bone and cartilage is an area that differs from 

bone and cartilage in terms of molecular density and mineralization potential, supporting the 

forward production of cartilage tissues and limiting further bone formation (Madry et al. 2010; 

Nukavarapu & Dorcemus 2013a). Cartilage layers constitute of three zones starting from the 

bottom with the calcified zone near the osteochondral bone region then the deep zone followed 

by the middle and then the superficial zones (Melero-Martin & Al-Rubeai 2007; Carballo et 

al. 2017a). Other than the calcified zone, the upper three zones of cartilage differ from each 
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other’s by the way of arrangement and orientation of chondrocytes and ECM, where it is found 

to be perpendicular to the cartilage surface at the deep zone, irregular orientation at the middle 

zone, and are parallel to the surface of cartilage at the superficial zone (Sophia Fox et al. 2009). 

The calcified zone forms a transitional layer between bone and cartilage which is highly 

mineralized and is separated from the other zones by the tidemark which supresses further 

tissue ossification (Cohen et al. 1998; Sophia Fox et al. 2009; Hoemann et al. 2012b). Such 

an architecture and tissue orientations from bone to cartilage, provides an extreme resistance 

of joints against compressive and shear forces (Kheir & Shaw 2009b).  

Damage or defective injury to cartilage may be difficult to heal due to lack of tissue 

vascularization and innervation, as this is the issue; treatment of cartilage injury had relied 

mainly on stimulating spontaneous tissue healing which must be performed by doing a small 

holes by drilling or micro-fracture on the sub-chondral bone surface after removing the 

damaged cartilage layers down to the sub-chondral bone (Hunziker 1999; Hunziker 2002; 

Douleh & Frank 2018), the result is bleeding with consequent leakage of accumulation of 

inflammatory mediators along with mesenchymal stem cells (MSCs) immigration from the 

bone marrow to the site of injury to start tissue repair and regeneration (Smith, Knutsen et al. 

2005). Although simple and induce tissue healing, the outcome results of this treatment is the 

formation of fibrous cartilage with different mechanical properties that may not be able to 

withstand normal compressive forces as do the native cartilage, and this will lead to further 

deterioration upon certain period of time with the resultant osteoarthritis (Steinwachs et al. 

2008; Clair et al. 2009; Erggelet & Vavken 2016). 

Tissue engineering has emerged as a new tissue regeneration technique with a promising 

future towards correcting several forms of tissue damage including chondral and 

osteochondral injuries (Laurencin et al. 1999; Steward et al. 2011; Martin et al. 2007). The 

basic concept of tissue engineering is the utilization of cells to regenerate the damaged tissues 

by culturing them at the site of injury. Recently, tissue engineering have come out with several 

advances in this field, it utilizes biomaterials or mixture of biomaterials to fabricate 3D 
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scaffolds that mimic the ECM architecture and to be seeded by the cells to build up tissues in 

a manner that simulate natural tissue construct (Lavik & Langer 2004; Armiento et al. 2018). 

The biomaterials constitute a wide range of materials which could be natural (proteins and 

polysaccharides derivatives), or synthetic which may include certain types of polymers (PCL, 

PGA, PLLA, or their combinations), or bioactive ceramics (bio-glass, HA, and other Ca salts) 

(Hench 1998; Currie et al. 2007; Jones 2015; Deb et al. 2018b).  

The choice of materials for scaffold fabrication is an important point to be considered as the 

bulk properties of these materials may be related directly or indirectly to the degree of 

biocompatibility along with the chemistry and surface characteristics of the fabricated scaffold 

(Cao & Hench 1996; Hench 1998; Binyamin et al. 2006; Steward et al. 2011). Accordingly, 

several fabrication techniques have been proposed to synthesize certain scaffolds with 

considerable biomimetic properties, these biomimetic features may involve controlling the 

pore size, changing the surface features by inclusion of functional groups or coating with 

bioactive materials that ensure best cellular responses and tissue regeneration (Hutmacher 

2000; Shin et al. 2003; Ma 2008; Cao et al. 2017). Conventional fabrication techniques were 

first proposed which rely mostly on manual procedures with the application of heat, pressure, 

and solvents to synthesize the intended scaffold (Liu et al. 2007; Subia et al. 2010; Lu et al. 

2013). However, these conventional procedures may carry certain limitations (Table 2) 

(Leong et al. 2003), which techniques such as SFF, which utilizes a CAD system to produce 

scaffolds with precisely controlled and reproducible architecture hope to eliminate 

(Hutmacher 2001; Yeong et al. 2004; Liu et al. 2007; Lu et al. 2013). 

Osteochondral tissue engineering requires the fabrication of scaffold that should meet the 

criteria of two different types of tissues which are the bone and cartilage, consequently, a 

reasonable choice and combination of biomaterials should be made, for instance collagen type 

I with HA have been chosen for bone tissue and for cartilage tissues collagen type II and 

chitosan or other polysaccharides derivatives may be considered as a good choice (J.S. 

Temenoff & Mikos 2000; Martin et al. 2007; Levingstone et al. 2014; You et al. 2018). 
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Another point to be considered when designing multiphase scaffolds, is that the scaffold 

should involve a gradual change between the two phases by creating a gradient of materials 

between the two to ensure extreme simulation of the natural tissue environment (Schaefer et 

al. 2002; Seidi et al. 2011; Sola et al. 2016). Furthermore, surface topographical features of 

the substrate should be considered for impact on cell behaviours. In a study conducted on 

osteoblast-like cells (OCT-1), a better cellular adhesion was observed when cells were seeded 

on poly (L-lactide) (PLLA) polymer with micro topographical surface features (e.g., lines, 

grooves, pits, etc.) (Wan et al. 2005). A laser-induced micro and nano surface topography on 

titanium implant surface also showed an enhanced bone tissue attachment and growth 

(Brånemark et al. 2011).  

1.16. Aims  

The current project aims to fabricate a 3D hydrogel scaffold to regenerate the osteochondral 

interface (involving sub-chondral bone and calcified cartilage zone). This region presents a 

complex bone to cartilage transformation that hosts a minerals and tissue gradients. As such, 

the final scaffold should address for a multifunctional region with a hope to be achievable by 

joining two materials together to produce an integrated gradient scaffold. The chosen materials 

should be eligible to support osteogenic and chondrogenic cell activities with variable 

tendencies for mineralization. In this case, the scaffold should permit a higher rate of 

mineralization with higher osteogenic activity at one end that will gradually interchanged into 

more chondrogenic less mineralizable attitude towards the other. The current scaffold design 

should mimic the osteochondral interface replicating the sub-chondral bone and the calcified 

cartilage zone. In this prospective, and to optimize this design, bio-active glass fibres will be 

embedded longitudinally across the scaffold mass. These fibres are biodegradable and thus 

will leave empty channels to allow for cellular transplantation and vascularization. Moreover, 

the biodegradable elements from these fibres (calcium phosphate minerals) will provide a 

mineral environment by forming hydroxyapatite (HA) layer which in turn stimulate 

osteogenic and mineral cell behaviour (Cao & Hench 1996; Jones 2015). 
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Figure 1-11. Current scaffold design compared to osteochondral interface region. 

Suggested design for the current osteochondral scaffold illustrating scaffolds final shape and 

its principle components of polymers and BG fibres to match the osteochondral interface 

region. Black circles with dark cores represent cells.  

 

The choice of materials is mainly rely on the fact that both materials are belonging to the same 

category with slight difference in structure. As such, poly N-isopropylacrylamide (pNIPAM) 

and poly N-tert-butylacrylamide (pNTBAM) synthetic polymers were chosen. Both polymers 

are acrylamide based revealing the same chemical functional groups with only additional 

methyl group presented by pNTBAM. Accordingly, both polymers should present different 

features depending on the basic difference in their chemical structure and that these features 

will be reflected per cellular activities. The gaol is to inspect materials’ characteristics such as 

surface chemistry, mechanical strength, porosity and architectural differences and then to 

investigate the relevant effects of these on cell survival, and proliferation. Variable monomeric 

concentrations of each polymer were inspected to investigate their effects on having larger 

pore size and eventually on cell migration. Based on the previous investigations, a specific 

monomeric concentration of each polymer will be chosen to proceed with testing osteogenic 

and chondrogenic cell functions. The final pNIPAM-pNTBAM composite will be inspected 
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to verify the development of multiregional scaffold architecture. The latter will then be tested 

to detect osteogenic and chondrogenic cell performances across scaffold regions. The 

individual hydrogels and the resultant composite scaffold will be compared between BG 

threaded and non-BG scaffolds to assess the impact of BG mass on cell functions and the rate 

of mineralization. The current project work can be summarized as follows: 

• Characterization of pNIPAM and pNTBAM individual hydrogels to verify the main 

differences in terms of chemistry using FTIR spectroscopy and wettability by measuring water 

contact angle. 

• Producing hydrogels in different monomeric concentrations (0.042 g/mL, 0.058 g/mL, and 

0.079 g/mL) and compare them by measuring compressive force strength to assess materials 

stiffness, and SEM imaging to examine internal architecture and porosity. In addition, both 

hydrogels will be incubated with simulated body fluid (SBF) to test their ability to bind 

calcium minerals. 

• Cell culturing of hydrogels with immortalized cell lines (MG63 osteoblast like cells and 

OK3H chondrocytes) to determine the impact of materials’ various characteristics on cell 

attachment and survival in addition to cellular migration. 

• Testing osteogenic and chondrogenic cell activities on hydrogels by seeding these hydrogels 

with primary human osteoblasts (hOBs) and primry human chondrocytes (hCHs). 

• Joining the two polymers to produce a composite multiregional scaffold and examining the 

osteogenic and chondrogenic performances of cells upon the resultant architecture. 

• Preparing hydrogels (individuals and composite) by vertically embedding BG fibres and 

assessing the degradation profile of these fibres within hydrogels at 37 °C incubated with PBS 

solution and followed using Raman microscopy and micro computed topography (micro CT).  

• Testing the effects of embedding BG fibres within hydrogels on further mineralization activity 

and cell penetration across scaffold thickness.  
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Chapter 2                 

Materials and Methods 
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2.1. Materials 

Table 2-1. list of the materials used in experimental work with their catalogue numbers and 

suppliers’ names. All chemicals were purchased as per table and used as received.  

 

Material Catalogue 

number 

Supplier 

1,9-Dimethyl-methylene Blue zinc chloride double salt 341088 Sigma-Aldrich  

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) A3219 Sigma Aldrich 

Acetic acid  A6283  Sigma-Aldrich 

Alcian blue  8GX A3157 Sigma Aldrich 

Alizarin Red S A5533 Sigma-Aldrich  

Ammonium persulfate, reagent grade 98% 215589 Sigma-Aldrich  

Anti-Collagen I antibody ab34710    Abcam 

Anti-Collagen II antibody ab34712 Abcam 

Anti-Collagen X antibody ab58632  Abcam 

Ascorbic acid A4544 Sigma Aldrich 

Bicinchoninic acid  B9643  Sigma Aldrich 

Bovine Serum Albumin solution 7.5 % A8412 Sigma Aldrich 

Calcium chloride C1015 Sigma Aldrich  

Calcium Colorimetric Assay Kit MAK022 Sigma-Aldrich  

Cetyl pyridinium chloride C0732 Sigma Aldrich  

copper sulphate  C2284  Sigma Aldrich 

CytoPainter Phalloidin-iFluor 555 Reagent ab176756 Abcam 

DAPI (4′,6-diamidino-2-phenylindole) D9542 Sigma Aldrich 

Dexamethasone D2915 Sigma Aldrich 

Dimethyl Sulfoxide BP231-100 Fisher Scientific 

DMEM (Dulbecco's Modified Eagle's Medium)-4.5g 

glucose 

15-013-CVR Corning 

EDTA (ethaline diamine tetra-acetic acid) E5134 Sigma-Aldrich 
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Eosin SLBJ6425V  Sigma Aldrich 

Ethanol 95%  E/0500DF/17 Fisher Scientific 

Formaldehyde 37%  533998 Sigma Aldrich  

Fetal bovine serum FB-1001/500 Biosera  

Goat Anti-Rabbit IgG H&L (FITC) ab6717 Abcam 

Goat Anti-Rabbit IgG H&L (TRITC) ab6718 Abcam 

Haematoxylin  GHS216 Sigma-Aldrich 

Human chondrocytes (HCH) cryopreserved C-12710 Promo Cell  

Human osteoblasts (HOB) cryopreserved C-12720 Promo Cell 

Human Pro-Collagen I alpha 1 DuoSet ELISA DY6220-05 R & D Systems 

Human Pro-Collagen II DuoSet ELISA DY7589-05 R & D Systems 

Human TGF-beta 3 (E.coli) 100-36E PeproTech 

Human Total Annexin A2 DuoSet IC ELISA DYC3928-5 R & D Systems 

Hydrochloric acid 10125 VWR 

International 

Insulin-Transferrin-Selenium-Ethanolamine (ITS -X) 

(100X) 

51500056 Thermo Fisher 

scientific 

L-Glutamine solution (200  mM) G7513 Sigma-Aldrich 

LIVE/DEAD® Viability/Cytotoxicity Kit, for 

mammalian cells  

L3224  Thermo Fisher 

scientific 

Magnesium chloride hexa-hydrate M-2670 Sigma Aldrich 

Methanol  320390 Sigma Aldrich 

N,N,N′,N′-Tetramethylethylenediamine, reagent plus 

99% 

T22500 Sigma-Aldrich  

N,N′-Methylenebisacrylamide M7279 Sigma-Aldrich 

N-Acetyl-L-cysteine A7250 Sigma-Aldrich  

N-Isopropylacrylamide  415324 Sigma-Aldrich  

N-tert-Butylacrylamide 97% 411779 Sigma-Aldrich  

Papain from papaya latex P4762 Sigma-Aldrich  
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PBS (phosphate-buffered saline), 1X 21-040-CVR Corning  

Penicillin-Streptomycin  P4333 Sigma Aldrich 

Phosphate buffered saline (Dulbecco A) tablets BR0014G Sigma Aldrich 

Potassium chloride p4333 Sigma Aldrich 

Potassium phosphate tri-hydrate p5504 Sigma Aldrich 

Sodium bicarbonate 5-5761 Sigma Aldrich 

Sodium chloride S-7653 Sigma Aldrich 

Sodium hydroxide S8045 Sigma Aldrich 

Sodium phosphate dibasic S3264 Sigma Aldrich 

Sodium phosphate monobasic S5011 Sigma Aldrich  

Sodium sulphate 238597 Sigma Aldrich 

Tris (hydroxymethyl) amino-methane 252859 Sigma Aldrich 

Trypan Blue 0.5% solution L0990-100 Biosera 

Trypsin EDTA solution 10X     59418C Sigma Aldrich 

Tween® 20 BP337 Fisher Scientific  

β-Glycerophosphate disodium salt hydrate G9422 Sigma Aldrich  
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2.2. Hydrogels synthesis procedure 

The polymerization of NIPAM and NTBAM monomers to form hydrogel network was 

mediated by the process of atom transfer radical polymerization (ATRP). The process is 

dependent on the availability of enough monomers in solution in addition to a cross linker and 

an initiator to evoke the polymerization reaction. It is principally based on the formation of 

polymer using free radicals. The free radical is simply an unpaired electron which in this case 

will be supplied in the system by the inclusion of initiator (Lanzalaco & Armelin 2017). 

Ammonium persulfate (APS) will be used as the initiator to this reaction. It is an unstable 

compound and decomposes in solution to produce a very reactive free radicals that will elicit 

the polymerization process. The result is a chain of free radical monomers that reacts with the 

adjacent unreactive monomers thus the free radical will be passed through a series of 

monomers (Figure 2-1 A). This will lead to propagation of polymer chain until the monomers 

is finished in solution (Matyjaszewski 2012). A cross linker N,N′-methylenebisacrylamide 

(MBA) was used to link the polymer network. The accelerator N,N,N′,N′-

tetramethylethylenediamine (TMED) will increase the reactivity of the APS initiator to elicit 

the polymerization process. As the APS is a highly reactive, it will react with oxygen present 

in solution and this will probably interrupt the polymerization process. Thus, purging the 

monomeric solution with nitrogen gas was performed before the addition of initiator to ensure 

optimum polymerization process. 

NIPAM and NTBAM monomers were dissolved in their corresponding solvents at 

0.079 g/mL, 0.058 g/mL, and 0.042 g/mL. MBA crosslinker was added to each solution at 

0.0013 g/mL, then each mixture was bubbled with nitrogen gas for 10-15 minutes where the 

gas was pumped through an 18-gauge needle at a rate of approximately 10-15 bubbles/second. 

A 5 µL of TMED accelerator was added followed by 15 µL of the initiator solution (10% 

APS). Phase separation was induced causing the polymer phase to surround water phase 

vesicles to shape the final hydrogel porous construct (Figure 2-1 B)(Durmaz & Okay 2000; 

Kwok et al. 2003). 
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Figure 2-1. Schematic representation of the general procedure of polymer preparation by 

atom transfer radical polymerization inducing phase separation. A) illustration of free 

radical generation and polymer formation. Adapted from (Mohan & Geckeler 2007) B) 

representation of lab procedure for polymer production. . 

 

 

 

2.2.1. Synthesis of pNIPAM hydrogel 

NIPAM was dissolved in d H2O and polymerised as per production method in 2.2. The 

hydrogel formed is a colourless soft gelatinous structure requiring 2-3 minutes to form after 

initiation.  

Adding 

initiators 

TMED + APS 

N2 gas bubbling 

10-15 minutes 

pNIPAM -    2-3 minutes 

pNTBAM -    10-15 minutes 
 

Polymer 

solution with 

cross linker 

MBA 

NIPAM -   water solvent 

NTBAM - water / methanol  

 

A 

B 
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2.2.2. Synthesis of pNTBAM hydrogel 

NTBAM is insoluble in water at room temperature. Heating the mixture enhanced the 

solubility to some extent but the solution was more prone for recrystallization soon at room 

temperature. NTBAM, though, showed an excellent solubility in organic solvents (ethanol and 

methanol) at room temperature. However, the latter system failed to elicit polymerization after 

the addition of initiator. The combination of water and methanol in a ratio of 1:1 with heating 

to 37 °C had enabled solubility of NTBAM without recurrence or recrystallization after 

cooling. The resultant solution was stable and proved success in polymerization process. The 

formation of pNTBAM was at slower rate compared to pNIPAM and it takes about 10-15 

minutes to completely produce.  

2.2.3. Synthesis of pNIPAM/pNTBAM gradient hydrogel composite 

The variable chemical and dissolution criteria for NIPAM and NTBAM polymers create a 

complex challenge in gradient hydrogel formation. In addition to the different solvents used 

for each polymer the timing required for hydrogel polymerisation must also be considered. 

pNIPAM hydrogels form within a few minutes (2-3 minutes) while the pNTBAM hydrogel 

can take up to 15 minutes to form and several hours to harden. We therefore proposed a 

dynamic method for gradient hydrogel preparation adjusted for the timing of polymerization 

required by each hydrogel. A stepwise pouring of previously prepared polymer solutions was 

performed starting with NIPAM (Figure 2-2). Each monomer solution was mixed with the 

APS initiator immediately before pouring into the intended container. The sequence of 

addition was determined by the speed of polymer formation where NIPAM was the first to be 

added. The second monomer solution was added only after the first layer had begun to 

polymerize, allowing polymer layers to infiltrate each other at their interfaces forming a stable 

bonding. The NIPAM-NTBAM monomeric mixture was added 40 seconds after the addition 

of NIPAM to create a combining region between the two variable layers. NTBAM within this 

layer extended the time for polymerization initiation to 1.5 minutes, thereafter the last 
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NTBAM layer was added. The gradient samples were covered and stored at room temperature 

overnight.    

 

 

 

 

 

Figure 2-2. Gradient hydrogel composite preparation. The steps of adding polymer solutions 

are revealed together with the specified timing for each one.  

 

 

2.3. Biodegradable glass fibres embedded hydrogel scaffold composite 

Bio-glass (BG) fibres, 50P2O5-24MgO-16CaO-16Na2O-4Fe2O3 (Jones 2013), were 

incorporated within hydrogel constructs in an attempt to provide a mineralized environment 

and to create channels. These fibres are biodegradable and leave channels across the scaffold 

construct allowing cells to travel down the scaffold thickness. These were kindly donated by 

Dr. I. Ahmed, University of Nottingham. 

2.3.1. Insertion of BG fibres across hydrogel 

A 3D printed mould model comprised of a cylindrical polymeric base with channel holes was 

used to hold BG fibres vertically while casting the polymeric material (Figure 2-3). The mould 

was designed on Autocad 2012 software and printed on a Makerbot 3D printer. Base plate 

temperature was 120 °C, and nozzle temp 220 °C at the low (fastest) resolution. The material 

used was non-biodegradable acrylonitrile butadiene styrene (ABS). Mould dimensions were 

15 mm diameter x 10 mm thickness. The holes were arranged in a 4x4 with diameter of 1 mm. 
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The fibres were aligned manually to the mould base with the aid of a dissection microscope. 

The whole set was enclosed by a plastic cylindrical cover, locked with a rubber ring, and the 

polymer solution (prepared as mentioned in section 2.2) was casted. The mould was then 

sealed and kept on the bench at room temperature to enable hydrogel formation. The time 

taken to remove the gel from the mould was polymer dependent (See Sections 2.2.1, 2.2.2, 

and 2.2.3). Hydrogels were removed and stored in dH2O at 4 °C until ready for use. 

 

 

  

 

 

 

 

 

Figure 2-3. Processing of BG fibres in mould, illustrating A) BG fibres and B) 3D mould 

shape and fibres loading onto the mould.  

 

 

2.3.2. Following degradation profile of BG fibres 

2.3.2.1. Raman microscopy 

Raman spectra were taken on a Thermo scientific DXR Raman microscope with a 532 nm 

laser, Olympus TH4 – 200 at magnification x10 lens. Hydrogel samples with embedded BG 

fibres were also observed under Raman microscope. Map spectra of the surface in proximity 

to fibre were taken as a day 0 measurement. Samples were then incubated with PBS at 37 °C 

and map spectra were taken on days 3, 7 and 15. Settings were optimized at 30 secs/ spectra, 
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2 spectra per point, no photo bleaching, 10x10 mapping and points spacing at 10x10 µm. 

Aperture was set at 25 µm slit. A map spectrum was also analysed using principle component 

analysis (PCA) function of Raman to differentiate and track specific peaks from BG and 

hydrogel. Analysing sample spectra using PCA is often used to distinguish between two or 

more components in sample by minimizing the sample spectra into specific easily recognized 

components. Accordingly, this will support pursuing a degradation profile of a material or 

monitoring the development of specific protein with time by eliminating other components 

spectra in sample while focusing on the targeted compound (Sato-Berrú et al. 2007; Hong Ong 

et al. 2012). 

2.3.2.2. Micro-CT scanning for fibre density 

Hydrogel perfused fibres were 3D scanned in an X ray Scano micro-CT40 with X ray settings 

at 55 kvp/ 71 µA. Hydrogel samples were placed in a cylindrical 2 cm diameter sample holder, 

wrapped with biofilm, and loaded over a machine robotic handle and scanned (Figure 2-4 A). 

Scanned samples were analysed to verify the variable densities between hydrogel and bio-

glass mass. The Scano micro-CT software enables two volume analysis of a sample by 

analysing the density for each component per material volume.  The hydrogel and BG fibres 

had been considered as two components with different densities per sample.  Sample scanning 

by µCT will recognize the variable densities between the hydrogel and BG mass.  

The scanned samples were analysed to verify the fibre mass density per hydrogel by showing 

the dense object mass (BG fibres) in transparent low-density hydrogel mass. Each component 

was analysed according to specific density threshold revealing the BG mass at the higher 

threshold (134-1000) versus the hydrogel mass at the lower threshold (0-134) (Figure 2-4 B). 

3D images were constructed revealing the BG fibres tracked for their degradation at 0, 7, 15, 

21, and 28 days after incubation with PBS at 37 °C.  
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Figure 2-4. Micro-CT scanner processing of samples. An illustration of A) sample holder 

and sample loading into machine robotic hand, B) a screen shot for 3D analysing setting of 

hydrogel sample using the micro-CT software to detect the dense BG fibres mass by analysing 

two volume threshold both of hydrogel and BG fibres.  

 

 

2.3.2.3. Revealing BG fibres channels after degradation 

To observe the location of BG channels after BG degradation, samples were stained with 

alizarin red stain. After incubating samples with PBS at 37 °C for 28 days, hydrogel samples 

were washed 3 times with d H2O at room temperature and then incubated with 1 mL 1% 

alizarin red stain for 30 minutes at room temperature. A washing step was followed with d 

H2O 3 times (full protocol for alizarin red stain is mentioned in detail in section 2.4.5.1). 

Samples were then viewed using EVOS bright field microscope for the x10 and Leica 

dissection microscope for the x2 magnification (for the x10 magnification images captured by 

NIKON D5000 mounted to the dissection microscope). 
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2.4. Characterisation of hydrogels 

Following synthesis of hydrogels, we next sought to determine chemical, physical, 

mechanical, and architectural characteristics.  

2.4.1. Fourier transform infra-red (FTIR) spectral characterisation  

2.4.1.1. individual hydrogels FTIR spectra 

Chemical compsition for each hydrogel (Figure 2-5) was verified using FTIR spectroscopy. 

A ThermoScientific IS50 FTIR fitted with a single bounce germanium ATR was used. 

Freeze-dried samples (using Edwards freeze dryer machine) were used to minimise water 

noise in spectra. Data were recoreded in Omnic at 4 cm⁻1 resolution, with 32 scans being 

averaged between 4000-400 cm-1.  

 

              

Figure 2-5. Monomeric structure of NIPAM and NTBAM. The main difference between 

the two materials in the basic chemical structure is illustrated by the red dotted circles.  

 

2.4.1.2. Composite gradient scaffold spectra 

A pNIPAM-pNTBAM composite (prepared as mentioned in section 2.2.3) was freeze dried 

(as per section 2.4.1.1) and was sectioned using scalpl into several pieces both vertically and 

horizontally (Figure 2-6). FTIR analysis was performed to map across the gradient composite 

regions. Three samples were processed with seven regions from each scanned across the 

length of each gradient sample (the same instrument settings were used as per 2.4.1.1). 
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Figure 2-6. Schematic representation of how the gradient sample was prepared for FTIR 

measurement. by A) spliting samples into two halfs and B) a grid figure of how the gradient  

wassliced into several regions where the spectra for each region collected out of multiple 

pieces. 

 

 

2.4.2. Water contact angle measurments 

To verify wettability of the scaffold materials, both of the gels were assessed using water 

droplet contact angle measurements. A Thetalite version 2.4 operated by OneAttension 

software system was used. Hydrogels were placed over a glass petri dish, pressed using a glass 

coverslip to get a flat surface. The latter step was conducted to condense the polymer network 

by compressing the porous material. The materials dried at 70o C in an oven for up to 2 hours. 

Contact angles were recorded automatically every 100 ms for the first 10 seconds following 

water placement on the surface via syringe. Each droplet was accurately measured at 1 µL, 

following sysetm-based calibration to measure droplet volume. A replicate of 4 samples were 

used and a 4 measurments were collected for each sample. All experiments were carried out 

on the bench at room temperature. 

2.4.3. Compressive force mechanical testing 

The compressive strength of hydrogels was measured using the BOSE Electroforce system 

equipped with a 20 N loading cell and cross head speed at 0.05 mm/s. The samples were 
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cylindrical in shape with dimensions of 4.5-5.0 mm hieght and 9.4- 11.5 mm diameter 

(Figure 2-7). The load was applied until strain reached 90%. The compressive strength was 

determined from the maximum load of the applied stress-strain curve. Four samples of each 

hydrogel were tested and an average obtained. 

 

 

 

 

 

 

 

 

Figure 2-7. BOSE electroforce machine. showing A) the device over all front appearance 

and B) sample loading to the machine holder.  

 

 

2.4.4. Scanning electron microscope (SEM) imaging 

Hydrogels were observed using a bench top Hitachi S4500 scanning electron microscope 

(SEM) to examine the internal architecture, pore shape, and size. The basic principle of SEM 

technique is the application of high energy beam of electrons to the surface of sample. These 

electrons will excite the sample generating multiple signals from sample surface. These 

signals will be translated to reveal information about sample morphological characteristics 

and crystalline structure (Weinbrandt & Fatt 1969).  

To preserve the internal architecture of hydrogels, samples were frozen at −20o C overnight 

(using traditional −20 lab freezer), and then freeze-dried using Edwards freeze dryer machine. 
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Freeze drying of samples is based upon removing water from hydrogel sample while frozen 

in a pressurized chamber, thus maintaining the pore shape and texture and preventing collapse 

of sample. Samples were sliced into small multiple sized pieces and mounted over a carbon 

plates covered metal holders. The small pieces of sample were glued at their edges to the 

carbon plate surface, making sure they are sufficiently fixed at position. Thereafter, gold 

coated samples were viewed by SEM at 5 kV. The gold coating step was conducted to cover 

samples with a thin electrically conductive layer. This process will prevent charging of 

samples (because of static electric field) and thus improve image quality. Multiple images 

collected for each sample at several magnifications.  

Pore size measurements were performed with ImageJ programme to measure the diameter of 

pores depending on the magnification scale for the selected image (Figure 2-8). Information 

was collected into Excel sheet; the mean and standard deviation were measured along with 

the minimum and maximum pore diameter. 

 

 

 

 

 

 

 

 

Figure 2-8. Pore characterisation with ImageJ software. Yellow lines represents multiple 

measurements of pore diameter.  
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2.4.5. Mineral association 

To establish the degree of calcium mineralisation associated with hydrogels, a simulated boby 

fluid solution (SBF) was used as a source for calcium minerals. The solution represents a 

mixture of certain minerals in specific percentages similar to body fluid composition at pH 7 

(Kokubo & Takadama 2006; Kepa et al. 2015).  

All hydrogels were cast in 48 well plates and then immersed in SBF solution, incubated at 37 

°C, and tested for calcium association at three time points (7, 15, and 21 days). Triplicate  

hydrogel samples were prepared for each time point. For control purposes a further triplicate 

set of hydrogels were incubated with phosphate buffered saline (PBS) and tested together with 

the other hydrogel samples at the specified times representing the control measurements for 

each sample set.  

To further explore hydrogel mineral association, an osteogenic differentiation set 

supplmemented SBF was used as a further control measure.  

2.4.5.1. Alizarin red staining test 

Alizarin red solution (1%) was prepared and adjusted to pH 4.2, sealed, and stored at room 

temperature. Samples were taken out of solution at 7, 15, and 21 days, washed 3 times with 

d H2O then incubated with 1 mL alizarin red solution (enough to cover the samples) for 30 

minutes at room temperature. Alizarin stain were then removed and samples washed with d 

H2O for 24 hours. Water was changed 6-7 times until no more dye was observed in washing 

solution. Microscopic images were taken using EVOS xl core brightfield microscope.  

2.4.5.2. Alizarin red quantification  

Alizarin stain was collected from each sample by incubation with 10% w/v cetylpyridenium 

chloride solution (CPC) in water. Each sample well was topped with 500 µL of CPC solution, 

sealed with biofilm, and incubated at room temperature overnight on a rotary shaker. The 

supernatant (200 µL) was collected from each sample and aliquoted into a 96 well culture 

plate at 200 µL each. A plate reader was used to measure absorption at 562 nm wavelength. 
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A serial dilution of the original dye stock concentration was prepared with the CPC solution. 

A standard curve was obtained, and the samples’ dye concentrations calculated against the 

standard values. 

2.4.5.3. Calcium assay 

A colorimetric calcium assay kit (Sigma) was used to assess the concentration of calcium ions 

associated with hydrogels. The assay principle is based upon determining the chromogenic 

complex in solution. This complex is formed by the combination of O-cresolphthalein reagent 

with calcium ions (Morin 1974). The resultant colour change was detected by measuring the 

absorbance with microplate reader at 575 nm.  

All hydrogel samples were removed from SBF solution (including controls), washed 3 times 

with d H2O, and then freeze-dried making them ready for calcium extraction. A 0.5 M diluted 

HCl solution was used to break the calcium ion bonding to polymer surfaces, releasing 

calcium into solution. A 24 well plate was used as a base container for the hydrogel samples. 

Then, samples were incubated for 24 hours in 0.5 mL of HCl extraction solution, sealed with 

para-film, and placed upon rotary shaker set at medium speed. Next day, the seal was removed, 

and the solution collected from each sample well. Using a 96 well plate, 50 µL of each 

collected sample and control solutions were added. Into each of these, 90 µL of chromogen 

reagent was added to prompt the complex formation. To clearly illustrate the colour 

differentiation in solution, 60 µL of calcium buffer solution was added with gentle mixing. 

The whole reaction plates were incubated at room temperature protected from light for 5-10 

minutes at room temperature. The absorbance then measured at 575 nm.    

2.5. Cell culturing techniques 

2.5.1. Choice of cells 

A range of cell lines in addition to primary cells were utilized to test the variable aspects of 

the 3D culture environment. 



54 

 

A bone osteosarcoma cell line (MG63), and immortalised human primary chondrocytes 

(OK3H) were both utilised to investigate the attachment and viability profile for the cell 

scaffold system. Primary human osteoblasts (hOBs) and primary human chondrocytes (hCHs) 

were included to detect the specific osteochondral features of the selected cell scaffold 

systems. 

2.5.2. Choice of media and nourishing culture environment 

Dulbecco’s Modified Eagle’s Medium (DMEM) with 4.5 g/L glucose, and sodium pyruvate, 

was used in all cell culture experiments. The media was fortified with 10 % foetal bovine 

serum (FBS), 2% glutamine, and 1% penicillin-streptomycin antibiotic supplements.  

Supplementations with osteogenic or chondrogenic promoting factors were considered as 

well. These were added in specific percentages to media enhancing further osteogenesis by 

osteoblasts or chondrogenesis markers by chondrocytes.  

For osteogenic media preparation, factors to support osteogenic cell activity were added to the 

previously prepared DMEM media (Table 2-2). The percentage of addition had followed the 

below recipe. The media mixture was then kept in 50 mL universal tubes and frozen at −20 °C. 

Agents to promote chondrogenesis were added in the same way to DMEM media following 

the below recipe (table 2-3). Again, transferred in 50 mL universal tubes and frozen at −20 °C. 

 

 

Table 2-2. Cell culture medium additives to enhance osteogenic cell behaviour. 

Materials  Stock 

concentration 

Final 

concentration 

Volume 

/100 mL of 

media 

Ascorbic acid 50 mM 0.05 mM 100 µL 

Beta glycerophosphate 1000 mM 10 mM 1000 µL 

Dexamethasone  0.5 mM 1×10-5 mM 20 µL 
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Table 2-3. Cell culture medium additives to enhance chondrogenic cell behaviour. 

Chondrogenic factors Stock 

concentration 

Final 

concentration 

Volume /100 

mL of media 

Insulin-Transferrin-Selenium-

Ethanolamine (ITS) 

 1% v/v 1000 µL 

Dexamethasone  0.5 mM 0.1 µM 20 µL 

Ascorbic acid 50 mM 50 µM 100 µL 

L-proline 40 mg/mL 40 µg/mL 100 µL 

TGF-Beta 3 10 ng/µL 10 ng/mL 20 µL 

2.5.3. MG63 and OK3H cell lines culture 

The cell lines were selected to perform initial explorations of the suitability of the hydrogel 

3D culture environment for cellular attachment and viability.  

Frozen cryotubes of cells, each with 106 cells /mL were taken out of liquid nitrogen storage. 

The cells were brought to 37 °C by immersing in a water bath at 37 °C and once thawed 

quickly mixed with 10 mL DMEM media. The mixture was then centrifuged at 1400 rpm for 

4-5 minutes. The supernatant was removed carefully, and a fresh 5 mL media added. The 

precipitated cell mass was then re-dispersed by gently pipetting up and down. Cell culture 

flask (T25) size were prepared and topped with 7 mL media. The cell suspension (500 µL) 

was added to each flask and then stored in 37 °C 5% CO2 incubator. Media was changed after 

24 hours and then every 3-4 days.  

2.5.4. Primary human cells culture 

Primary human osteoblasts and primary human chondrocytes were obtained commercially 

from Promo Cell®. The supplier protocol for culturing was followed for both types of cells 

(supplied by Promo Cell®).  

A T25 flask was topped with 10 mL of media and warmed by incubating at 37 °C for 30 

minutes. The cells were first removed from liquid nitrogen storage and defrosted in a 37 °C 

water bath for not more than 2 minutes. The tubes were immediately moved to the flow hood, 

sprayed extensively with 70% IMS, dried with tissues, before being added to the previously 

prepared T25 flask, then incubated at 37 °C, 5% CO2 (Promo Cell 2016). 
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Media was changed after 24 hours and then every 3-4 days. Once get confluent the cells were 

passage into a T75 flask.    

2.5.5. Cell passaging and trypsinization 

At 80-90% confluence cells were dissociated from flasks by trypsinization. The media was 

first removed, and the cells washed with PBS solution for 10 seconds. The PBS wash solution 

was aspirated, and the cells incubated with 10 % trypsin solution in PBS for 5 minutes at 37 

°C (primary cells were incubated at room temperature). The volume of trypsin solution was 

measured at 1 mL for T25 flasks and 3 mL for T75 flasks. 

After incubation, cells were detached from the surface and the action of trypsin was terminated 

by adding 5-7 mL medium. The whole mixture was transferred into a 50 mL universal tube 

and centrifuged for 5 minutes at 1200 rpm. The supernatant was carefully aspirated, the cell 

pellet then topped with 5 mL medium and cells re-dispersed by gently pipetting up and down 

until cell suspension is produced. The cells are now ready for further passage or sample 

seeding. 

2.5.6. Haemocytometer Cell counting technique 

After trypsinization of cells and obtaining cell suspension, cell counting was performed using 

normal haemocytometer technique (Figure 2-9). Equal volumes of cell suspension and trypan 

blue reagent were mixed in an eppendroff tube, then 10 µL of this mixture was used to fill the 

haemocytometer chambers already covered with coverslip. The haemocytometer slide was 

then observed under light microscope and the shiny blue stained cells were counted at the four 

sides of the rectangular indentations grid.  
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Figure 2-9. Haemocytometer cell counting. A) Haemocytometer slide with cell suspension-

trypan blue reagent mixture inserted underneath a coverslip, B) a magnified illustration of 

grid pattern where cells are counted in the red marked grid regions.  

 

2.5.7. Cell culture on 3D hydrogels 

2.5.7.1. Preparation of samples for cell culture 

Hydrogels samples were washed with PBS for 48 hours at 37 °C to remove any monomeric 

and chemical residues. The PBS solution was changed every 4-8 hours. A sterilisation process 

was followed by immersing the hydrogels in 99% ethanol solution for 20-30 minutes. Samples 

were then washed again with sterile PBS for 24 hours at 37 °C. A final washing step was 

performed by soaking the samples in media for 1-2 hours before seeding hydrogels with cells.  

2.5.7.2. Hydrogels cell culturing 

After trypsinizing cells from the flask into cell suspension and performing cell count, as 

mentioned in sections 2.5.5 and 2.5.6; cells were seeded on the top of the hydrogels at 10 µL 

volume of cell suspension counted at a concentration of 104 cells /sample (Figure 2-10). 

Samples were then incubated at 37 °C for 1-2 hours, to enable cell attachment and then topped 

with 500 µL medium per each well. Cell on tissue culture plastic surfaces were included as 

comparative samples. Cells were seeded at the same rate in a 24 well plate, incubated for 1 

hour at 37 °C, and topped with 500 µL medium. Samples were prepared in triplicate for both 

the basic medium and the osteogenic/chondrogenic medium samples. Storage conditions were 
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set at 37 °C 5% CO2, media was changed every 5 days. The same procedures were followed 

for both cell lines and the primary human cells. 

2.5.7.3. Composite pNIPAM/pNTBAM gradient scaffold culture 

The same procedure for trypsinization of cells and cell count was performed (sections 2.5.5 

and 2.5.6). Scaffolds were washed and sterilized as mentioned in section 2.5.7.1., the only 

difference with composite scaffold is that the scaffolds were sliced vertically into 2 halves 

before performing the wash and sterilization step. In this case, the cell culture was conducted 

by applying 10 µL of cell suspension to the middle of the scaffold cross section with cell 

density counted at 104 cells/sample (Figure 2-10). Thereafter, the cell cultured scaffold’s cross 

sections were incubated at 37 °C 5% CO2 for 1-2 hours in a 24 well culture plate to enable 

adhesion and cell attachment at position. Then, each sample well was topped with 500 µL of 

media. Samples were prepared in triplicate for both the basic medium and the 

osteogenic/chondrogenic medium samples. Storage conditions were set at 37 °C 5% CO2, 

media was changed every 5 days. 

2.5.7.4. BG embedded samples culturing  

Following BG samples preparation (section 2.3.1), samples were ejected from moulds then 

washed and sterilized as mentioned in section 2.5.7.1. cell seeding procedure was followed as 

per individual sample seeding i.e. to the top of hydrogels. Gradients scaffold composites with 

BG fibres were seeded according to the same protocol followed for the non-BG composites 

i.e. on the middle of cross sectioned samples. The volume of cell suspension and seeding 

density was set to be the same as per the previous samples (105 cells/sample). The same 

protocol was then followed to allow cell attachment and then topping plates with media as 

mentioned in the previous sections (2.5.7.2. and 2.5.7.3). 
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Figure 2-10 Schematic representation of 3D scaffolds cell culturing, showing the location 

of cell seeding to the top of individual hydrogel samples and to the middle of gradients 

composites cross sections.  

 

2.6. Cell adhesion and attachment 

2.6.1. Fixation of 3D hydrogel samples 

In the current work, 10% paraformaldehyde in PBS was used to obtain fixed cells on hydrogel 

samples. Paraformaldehyde has widely been used for tissue samples fixation as it is easily 

handled and produce accurate results. It preserves cells and tissues architecture by terminating 

enzymatic reactions normally occurred in biological systems thus preventing its lysis. It 

principally acts by cross-linking proteins and biological molecules thus fixing them in position 

and preserving their original shape figure (Thavarajah et al. 2012). This will help in preparing 

samples and tissue sections for microscopic observations or immunohistochemical 

assessment. 

Media was first removed from sample wells, then samples washed 3 times with PBS. Then, 

samples were incubated in 10% paraformaldehyde in PBS solution (enough amount to cover 

the hydrogel sample which is about 1 mL) for 30 minutes at room temperature. Thereafter, the 

fixing solution is removed, and samples washed again 3 times with PBS.      
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2.6.2.  Histology staining by Haematoxylin and Eosin 

Evidence for cells adhesion was investigated after 7 days. Media was removed from well and 

hydrogel samples washed 2-3 times with PBS. Samples were then fixed with 10% 

paraformaldehyde solution in PBS (mentioned in section 3.6.1.). For hydrogel samples each 

washing step was performed over 2-3 minutes to ensure adequate washing was performed.  

Hydrogel samples were first washed with haematoxylin stain for 2-3 minutes, the stain was 

then removed, and the hydrogels washed 3 times with PBS. Thereafter, samples were washed 

with eosin stain 2-3 minutes, followed by removal of dye and 3 times washing steps with PBS. 

Hydrogels were then observed under bright light microscope.  

2.6.3. Confocal microscopy  

2.6.3.1. Actin filaments and nuclear staining 

To review the attachment pattern of cells on hydrogels cytoskeletal actin filament and nuclear 

staining were performed using CytoPainter phalloidin-iFlour 555 and DAPI staining reagents.  

Samples were fixed as mentioned in section 2.6.1; samples were then incubated with 1:500 

phalloidin solution in PBS for 20 minutes at room temperature while protected from light. The 

stain was then removed, and samples washed 3 times with PBS. Incubation with 1:1000 DAPI 

stain in PBS was followed for 30 minutes at room temperature while protected from light. 

Washing with PBS was then performed 3 times before samples were viewed by Olympus 

U-TBI90 laser fluorescent confocal microscope. 

2.6.3.2. Cells migration within scaffold construct and BG fibres channels 

The impact of the hydrogel porous architecture on cell behaviours was investigated by locating 

the DAPI stained nuclei through scaffold thickness. Cell migration tracking was then 

performed after 21 days culture. Sample fixation and DAPI staining was followed as in steps 

2.6.1 and 2.6.2.1. Samples were then scanned by confocal microscope through their thickness 

by Z stack function. The 3D image scanning was acquired with a 2 µm step size reaching a 



61 

 

maximum of 150 slices of sample down from the top layer. The scanned distance for each 

sample was set to a maximum of 300 µm starting from the surface.  

Scanned files were processed via Image J software to detect DAPI. The location was 

determined by generating a graph curve illustrating intensity versus distance.  

BG imbedded hydrogel samples were investigated as well to detect any cell infiltration within 

the channels left by degraded BG fibres. The same protocol for sample fixation and DAPI 

staining was followed as for previous samples. This was followed by confocal microscope 

sectioning (options chosen as before) through hydrogel thickness with only focusing this time 

on the BG fibres location. A 3D images were created and observed for cells location and 

behaviour per BG fibre opening.  

2.7. Viability and cell survival 

Testing the ability of cells to survive on hydrogels and the impact of cell-scaffold system on 

the viability of cells was carried with the live/dead® cytotoxicity/viability kit (Thermo Fisher 

scientific). The major components of the assay kit are calcein AM and ethidium homodimer-

1 reagents. Calcein AM identifies the presence of live cells by detecting intracellular esterase 

activity and cell membrane integrity. This is carried out by enzymatic conversion of the 

calcein AM into the green fluorescent calcein. Ethidium homodimer-1 is a red fluorescent dye 

which binds to nucleic acids of the membrane damaged cells and produces an intense red 

fluorescence indicating the presence of dead cells. A live/dead staining solution was prepared 

by mixing both reagents with PBS at the following rates; 1:200 of calcein AM and 1:50 of 

ethidium homodimer-1 in PBS. 

The assay procedure involved staining for a non-fixed hydrogel sample. Medium was removed 

from sample wells, samples washed with PBS 2-3 times, and then incubated with the live/dead 

staining solution for 30 minutes at room temperature while protected from light. The stain 

solution was then aspirated, and samples washed 2-3 times with PBS. Hydrogels were 
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observed for green versus red fluorescence as indicators for live/dead cells by confocal 

microscopy.    

The percentage of viable cells was identified by calculating the number of live and dead cells 

per specific region of each sample (Figure 2-11). The number of live cells (green) and dead 

cells (red) were counted over a 1 mm2 area for a maximum of 5 regions of a captured x4 

microscopic images obtained for individual samples and the average was taken. The whole 

process was carried out using the cell counting tool of Image J software. 

 

 

 

 

 

 

 

 

    

   

Figure 2-11. Schematic representation of live/dead stained hydrogel sample seeded wih 

cells. A) cell counting live/dead methodology per captured x4 images (around 3 mm2) of 

confocal microscope, with an illustration of the chosen regions per sample, B) counting the 

number of cells on each captured image using Image J software.  

 

2.8. Detecting osteogenic and chondrogenic activities of cells on hydrogels 

2.8.1. Osteogenic cell behaviour 

Cells had been tracked for 7, 15, and 21 days to record their further osteogenic activities. An 

osteogenic and control media were utilised, and samples collected in triplicate from each 

condition. 
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2.8.1.1. Alizarin red staining 

Alizarin red pigment is used to identify calcium minerals in tissue or cell culture sample. A 

chelation process produces an alizarin red s-calcium complex indicating evidence of calcium 

minerals association via red colouration (Virtanen & Isotupa 1980). 

A 1% alizarin red solution was prepared in the lab at room temperature. This was performed 

by dissolving 1g of alizarin red S powder in 100 mL of dH2O and adjusting the pH to 4.2. The 

solution was then filtered through a 0.2 µm filter, sealed and stored at room temperature.  

Samples were removed from medium and fixed with 10% formaldehyde (mentioned in section 

2.6.1). In a 24 well culture plate, enough volume of alizarin red dye solution was poured per 

sample well, ensuring that each sample was adequately covered (1 mL per each). Samples 

were left on a rotary shaker for 30 minutes at room temperature. The dye was then removed 

and samples washed with dH2O for 24 hours with water being changed 5-6 times. Washing 

was repeated until no significant dye was apparent in water. A final PBS wash step was carried 

out for 15 minutes at room temperature to remove any nonsignificant staining. Samples were 

observed under bright-field microscope and images collected.   

2.8.1.2. Quantification of Calcium ions 

Calcium mineral quantification was performed through a colorimetric calcium assay kit 

procedure. It provides a quantitative measure for calcium locally associated with each 

hydrogel sample (details of the assay were mentioned in sections 2.4.5.3). 

Samples were taken out of media in a 24 well culture plate and fixed with 10% formaldehyde 

for 30 minutes at room temperature. This was followed by washing 3 times with d H2O, and 

the same procedure was applied as in section 2.4.5.3 for calcium assay. 

2.8.1.3. Alkaline phosphatase (ALP) activity 

To determine the cells potential for mineral deposition in their surrounding matrix, ALP 

activity was measured in each sample medium. This is a potential indicator that the cell, 
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weather osteoblast or chondrocyte, is being engaged or promoted for such an action by 

producing higher levels of this enzyme (Gillette & Nielsen-Preiss 2004; Kirsch et al. 2000). 

The test was performed using ALP colorimetric assay kit (Abcam). The assay principle 

depends on the reaction between the substrate materials, p-nitrophenyl phosphate (pNPP), 

with ALP enzyme in the sample. The reaction results in the production of the yellow coloured 

p-nitrophenyl (pNP) as the ALP hydrolyse the phosphate ester and releases an organic 

phosphate.  

The assay was performed according to the protocol instructions supplied with the product. 

Medium was collected from hydrogel samples (in triplicate) at days 1, 7, 14, and 21 in 

eppendorff tubes and frozen at −80 °C. The assay was performed at room temperature, 

although the reagents were all kept on ice during the test. A 96 well culture plate was used to 

host the assay reactions. An 80 µL volume of each sample was supplemented with 50 µL 

substrate reagent of pNPP. Another triplicate of samples was prepared by mixing with 20 µL 

stop solution before being supplemented with pNPP substrate reagent, these will represent the 

sample control set. A standard solution was prepared by diluting pNPP substrate solution into 

aliquots of serial dilutions which were added to the same 96 well culture plate in triplicate at 

120 µL /well. An ALP enzyme, supplied with the kit, was reconstituted with 1 mL assay buffer 

and 10 µL added to each standard well and mixed by pipetting up and down. The plate was 

then gently shaken and incubated at room temperature for 60 minutes in the dark. A 20 µL 

stop solution was added to the samples and standard wells after which the absorbance was 

immediately measured at 405 nm.  

2.8.2. Chondrogenic cell behaviour 

The primary hCHs were used to reflect the extent of chondrogenic cell activity upon hydrogel 

culture. The same tracking time points were followed as for osteoblasts which are 7, 15, and 

21 days. Basic medium as well as a chondrogenic medium were used for cell culturing, making 

two equal sets of samples.  
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2.8.2.1. Alcian blue staining 

This test was conducted to detect mucopolysaccharides and glycoproteins (sulphated and non-

sulphated). The presence of these is a possible indication of active chondrogenic matrix 

formation. 

A 1% stain solution was prepared by dissolving 0.5 g of alcian blue 8GX (sigma) powder in 

50 mL of 3% acetic acid solution at room temperature. The pH was adjusted at 1.5. In a 24 

well culture plate, samples were covered with 1 mL alcian blue stain. Samples were sealed, 

and incubated for 24 hours at room temperature upon a rotary shaker. Thereafter, the stain 

solution was aspirated from sample wells and samples washed with dH2O for 24 hours. The 

washing solution was changed 5-6 times to ensure adequate elimination of non-significant dye 

out of hydrogel mass. Microscopic observation and imaging of samples was carried out via 

dissection and bright field microscopes at different magnifications.  

2.8.2.2. Dimethylmethylene blue (DMMB) assay 

Dimethylmethylene blue is an active colorimetric reagent that reacts with sulphated 

glycosaminoglycans (GAGs) forming a major component of cartilage matrix. The reaction is 

sensitive and leads to a change in spectral absorption of the reagent at 525 nm wavelength 

(Farndale et al. 1986).  

Working solution was prepared by mixing 0.008 g DMMB reagent, 1.52 g glycine, and 

1.185 g sodium chloride with 500 mL d H2O. DMMB powder is not easily dissolved in water; 

as a result, it was solubilized first with 2 mL absolute ethanol before mixing. The whole 

mixture was covered with aluminium foil and stirred for 3-4 hours at room temperature. The 

pH of solution was adjusted to 3 with 1M HCl, and then stored in a glass bottle at room 

temperature protected from light. Chondroitin sulphate was used as a standard solution to 

identify sulphated GAGs associated with samples. It was prepared by dissolving 2.5 mg 

chondroitin sulphate in 50 mL d H2O at room temperature. A serial dilution was then prepared 

from the stock solution to reflect the standard readings. 
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The assay procedure involves the use of non-fixed samples by first removing them from 

culture media and washing 3 times with PBS. Samples were freeze dried and then, in a 24 well 

culture plate, smashed into small pieces with scalpels. Each sample was then digested with 

500 µL papain digestion buffer, sealed with biofilm and incubated at 60 °C overnight. The 

volume of the lysate buffer was decided depending on sample size. As the hydrogel samples 

composed from a 5 mm thickness and 1 cm width, even after being crushed, the minimum 

amount required to cover the sample was 500 µL. In a 96 well culture plate, sample lysates 

and standards (both in triplicate) were added at 50 µL each. Using a multichannel pipette, a 

250 µL of DMMB working solution was then added and the absorption immediately taken 

using Synergy II BioTek plate reader plate reader at 525 nm.  

2.8.3. Matrix proteins identification 

To identify specific proteins associated with bone and cartilage matrices, collagen types (I, II, 

and X), and annexin A2 had been chosen as reflective measure to indicate cells functionality. 

Hydrogel samples were checked for possible protein expressions after 21 days of culturing. 

2.8.3.1. Immunostaining 

Primary antibodies for collagens type I, II, and X were used to detect sample proteins 

association. These were visualised with secondary antibodies labelled with red (TRITC) or 

green (FITC) fluorescent dye. The whole kit was purchased from Abcam. 

Hydrogel samples were fixed with 10% formaldehyde at room temperature (mentioned in 

section 2.6.1). Samples were blocked with 5% bovine serum albumin (BSA) in PBS for 

2-3 hours at 4°C. This was followed by sample incubation with primary antibody solution 

overnight at 4 °C. The primary solution was prepared by mixing primary antibody (directed 

to type I, II, or X collagens) with 5% BSA in PBS at a 1:200 ratio.  

The primary solution was then aspirated and samples washed four times with a 1% BSA in 

PBS solution. Each wash was 5-10 minutes to ensure adequate removal of the primary solution 

residues. Next, samples were incubated with secondary antibody (FITC or TRITC) in 5% BSA 
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in PBS solution at 1:200 ratio. Samples were incubated at 4 °C for 4 hours in the dark. Then, 

samples were thoroughly washed with 1% BSA in PBS 5-6 times (5-10 minutes each), 

followed by 2 times washing with PBS. 

Nuclear staining was performed by incubating samples with DAPI stain for 30 minutes at 

room temperature, then washing 3 times with PBS. Hydrogels were observed under a confocal 

microscope to locate any fluorescent indication of protein expression.  

2.8.3.2. Sandwich enzyme-linked immunosorbent assay (ELISA) quantification  

Sandwich ELISA efficiently detects specific antigens between two layers of antibodies, 

capture antibodies and detection antibodies (Osmekhina et al. 2010). Experimental samples 

were tested for the collagens I and II, as well as for annexin A2. The assayed markers should 

indicate the way the cells are reacting to their 3D environment and weather they are in line 

with their function. Annexin A2, however, should reflect the cells response in laying out 

minerals to the surrounding matrix.  

Samples were washed 3 times with PBS before freeze drying and digesting with papain 

digestion buffer overnight. Samples lysates were then collected in eppendorf tubes and frozen 

at −80 °C for later detection.  

All samples lysates were assessed for total protein content using Bicinchoninic acid protein 

assay (sigma). The assay principle depends on the reduction process of cupric ions to cuprous 

which will be parallel to the amount of protein present in sample. A 7.5% bovine serum 

albumin solution was used as a standard to verify the total protein amounts of samples. 

According to results, samples were normalised to the lowest protein content by diluting with 

the original digestion buffer previously used for samples.   

The assay procedure was carried out at room temperature. Nunc® immunoassay 

96 microplates were used to hold ELISA assay reactions. All the assay kits were supplied by 

R&D systems. Assay procedure was followed according to the protocol provided with each 

kit.  
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Assay reagents were all brought to room temperature before starting the test, these included 

anti-human (capture and detective) antibodies for human collagen (I and II), or human total 

annexin A2. Other reagents included streptavidin conjugated to horseradish peroxidase and 

standard solution. All reagents were diluted to the working concentration using the intended 

diluent recommended by the assay protocol. A 1% BSA in PBS was used as a blocking buffer, 

whereas 0.05% Tween® 20 in PBS was used as a washing buffer to carry out washing after 

each assay step. A substrate material of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) 

(supplied by Sigma) was used to complete the reaction series for the final identification step. 

The general assay procedure involved coating microplate wells with 100 µL /well of capture 

antibody solution. The plates were sealed with biofilm and incubated at room temperature 

overnight. Then the capture antibody solution was removed, and the plates were washed 

3 times with 400 µL/well of wash buffer. This was followed by blocking plates with 

300 µL/well of blocking buffer for 2 hours at room temperature. The same washing steps were 

followed using the washing buffer, and then samples and standards were applied at 

100 µL/well in diluent buffer. The plates were sealed with biofilm and incubated at room 

temperature for 2 hours. Plates were then washed again as before, and detection antibodies 

added after being diluted to the intended concentration at 100 µL /well and again sealed and 

incubated at room temperature for 2 hours. Following on from washing samples were 

incubated with streptavidin reagent added at 100 µL /well for 20 minutes at room temperature. 

The plates were then washed as mentioned previously, and a final incubation was performed 

with the substrate reagent at 100 µL /well for 20 minutes at room temperature. Then, a stop 

solution was added at 50 µL /well and the absorbance was measured immediately with 

microplate reader to 450 nm wavelength.  

The above assay procedure was followed for each marker to be measured including reagents’ 

and samples’ dilution buffers in addition to washing buffers. The only difference was annexin 
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A2 reagents dilution buffers. Annexin A2 assay kit uses a particular dilution buffer for each 

reagent including samples and standard.  

2.9. Data collection and statistics  

Characterization of samples were conducted using a triplicate of 4. Other biological 

assessments including cell attachment, a triplicate of 3 samples were analysed in 3 time points 

(7, 15, and 21 days). All data were collected and analysed with Microsoft XL 2010 to calculate 

the mean, standard deviation and resulting graphs. Results obtained were compared using one 

and two-way ANOVA with Tukey’s multiple comparisons test. Statistics were analysed using 

Origin Pro 8, the level of significance was set at P ≤ 0.05.   
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3.1. Introduction 

Osteochondral defects are a serious problem leading to painful and disabling syndromes. They 

affect a wide range of populations around the world and occur across variable age groups from 

20 years and above (Nukavarapu & Dorcemus 2013b; Pape et al. 2010). A number of 

therapeutic options have been applied drawn from multidisciplinary field, but these mostly 

result in unsatisfactory outcomes (Swieszkowski et al. 2007; Steadman et al. 1997).   

Advances in regenerative medicine and tissue engineering have resulted in substantial 

progress in finding new approaches for the regeneration of the osteochondral region 

(Nukavarapu & Dorcemus 2013b). Several biomaterials have been the subject of 

investigations into cellular responses in regeneration of bone and cartilage (Bichara et al. 

2014; Solchaga et al. 2005; Emans et al. 2013). The impact of chemical and physical 

biomaterial characteristics defines the exact cellular responses helping to identify suitable cell-

biomaterial combinations.  

The design of osteochondral scaffolds has largely seen combinations of two or three 

biomaterials and fabrication techniques to create multi-layered scaffolds with variable 

characteristics including surface chemistry (Chang & Wang 2011), topographical features 

(Lord et al. 2010) , specific pore size and interconnectivity (Griffon et al. 2006), etc., to 

promote  successful osteochondral regeneration. These results show variable cellular response 

in terms of attachment, proliferation, and migration for the relevant scaffolds intended for 

osteochondral tissue regeneration (Tampieri et al. 2008). 

In designing an osteochondral scaffold, the choice of biomaterials is an important point for 

consideration. Biomimetic is an essential aspects depending primarily on the chemical, 

physical, and mechanical properties of the selected biomaterial and its ability to simulate the 

natural environment of the intended tissues. (Karageorgiou & Kaplan 2005; Ma 2008). The 

resultant biomimetic behaviour of these biomaterials ultimately supports the final 

morphological and physiological outcomes of the intended tissue regeneration including 
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osteochondral tissues (Williams 2008; Williams 2009). Natural products like collagen could 

be a perfect choice as it is already present in natural tissues, however there still some issues 

concerning contamination and evoking of immune response (Patterson et al. 2010). Synthetic 

products constitute a huge number of materials with encouraging properties and behaviour 

supportive of cellular proliferation and tissue replacement. Certain polymers, hydrogels, and 

bio-ceramics have proved effective as ECM substitutes for bone and cartilage tissues repair in 

which hydroxyapatite, poly(lactic acid) (PLA), and poly lactic-co-glycolic acid (PLGA) 

polymers have been widely used with good biocompatible and osteo-conductive behaviour 

(Nukavarapu & Dorcemus 2013b; Fan et al. 2013). The internal architecture and porosity of 

a specific biomaterial directly affects cellular behaviour in terms of migration and tissue 

development (Hollister 2005; Miao & Sun 2010). Surface chemistry and topography are 

widely used as surface characteristics with a major role in determining cellular attachment and 

further proliferation (Elbert & Hubbell 1996b; Hollister 2005). Together all these factors work 

in synergy to give a biomaterial its distinctive properties. The above understanding of 

materials’ properties can be utilized to design scaffolds with optimum characteristics for our 

intended purpose. The production of scaffolds is a complex process which involves certain 

steps for processing and fabrication of biomaterials to yield the intended scaffold construct 

(Liu et al. 2007). 

N-isopropylacrylamide (NIPAM) and N-tert-butylacrylamide (NTBAM) were selected for the 

current work in light of the previous reports that indicated their tuneable properties and 

biomimetic behaviour towards cellular system (Lynch et al. 2005; Barnes et al. 2016; Haq et 

al. 2017). This is possibly related to their surface charge density and their ability to simulate 

extracellular matrix environment of tissues (Lynch et al. 2005). Further to that, both polymers 

are of the acrylamide derivatives with only a slight difference in structure. These criteria might 

have an impact on certain characteristics of the resultant polymer’s construct such as the 

wettability.       
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The current chapter investigates materials’ differences in terms of chemistry, mechanical 

strength, and architecture and the outcome criteria relevant to their biological application in 

cell survival and proliferation. 

3.2. Chapter aims 

This chapter aims to prepare and characterise synthetic polymeric hydrogels that are close in 

terms of basic structure. Synthetic polymers including N-isopropylacrylamide (NIPAM) and 

N-tert-butylacrylamide (NTBAM) were prepared and investigated to address the following 

objectives. 

• Determine the variable chemistry and wettability profile between selected polymers. 

• Identify the internal architecture, porosity and the impact of different monomeric 

concentrations on the overall architecture. 

• Calculate compressive strength and hydrogel stiffness. 

• Quantify the potential for calcium mineral association. 

3.3. Methods 

Hydrogels preparation and characterisation procedures were described in detail in sections 

2.2 and 2.4 of Chapter 2. 

3.3.1. Hydrogel preparation 

Hydrogels were prepared via atom transfer radical polymerization utilizing chemical initiator 

to elicit the process of polymer formation. Hydrogels were cast in a 48 well culture plate 

giving a uniform cylindrical shape of hydrogels with dimensions of about 10 mm diameter 

and 5 mm thickness; the process was carried out on the bench at room temperature. Once set, 

hydrogels were immersed in dH2O, sealed and stored at 4°C (details in section 2.2, Chapter 2). 
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3.3.2. FTIR spectra 

A ThermoScientific IS50 FTIR fitted with a single bounce germanium ATR unit was used to 

collect hydrogel spectral pattern. A freeze dried-samples were tested to reduce the impact of 

water noise (details are mentioned in section 2.4.1, Chapter 2). 

3.3.3. Wettability and water contact angle 

Measurement of water contact angle was performed using a Thetalite OneAttension version 

2.4 system. Samples were placed on a glass petri dish and compressed with a coverslip to get 

a flat surface while being dried at 70 °C in an oven. Water droplets, measured at 1 µL, were 

slowly placed onto test surfaces. Four measures were collected from each sample out of four 

samples and the average was taken (details are mentioned in section 2.4.2, Chapter 2).  

3.3.4. Investigating internal architecture and porosity 

Hydrogel samples were frozen at −20 °C and freeze dried in readiness for SEM imaging. 

Multiple pieces of sample were mounted over a carbon plate holder and imaged with Hitachi 

S4500 electron microscope. Three monomeric concentrations for each hydrogel were prepared 

(0.042 g/mL, 0.058 g/mL, and 0.079 g/mL) to investigate the impact of using lower 

concentrations on pore size and shape. Captured images were analysed using ImageJ software 

to calculate the average pore diameter for each polymer structure (section 2.4.4, Chapter 2). 

3.3.5. Compressive mechanical strength 

To observe hydrogel behaviour under applied compression, samples were tested using BOSE 

electroforce system. Cylindrical shape hydrogel samples were used with thickness of 

4.5-5.0 mm and 9.5-11.5 mm diameter. Data were collected and analysed to obtain the 

stress/strain curve and Young’s modulus (section 2.4.3, Chapter 2).  

3.3.6. Mineral association 

The ability of polymers to support calcium mineral association to their surfaces was  tested by 

incubating polymers with SBF solution at 37 °C (a solution with mineral composition similar 

to that of body fluids). The amount of calcium mineral associated with each hydrogel sample 
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was detected using calcium assay kit (abcam) and alizarin staining test (section 2.4.5, 

Chapter 2). 

3.4. Statistics 

All data were collected and analysed with Microsoft XL 2010 to calculate the mean, standard 

deviation and resulting graphs. Results obtained were compared using one and two-way 

ANOVA with Tukey’s multiple comparisons test. Statistics were analysed using Origin Pro 

8, the level of significance was set at P ≤ 0.05.   

3.5. Results 

3.5.1. General hydrogels appearance:  

Though produced according to the same procedure, pNIPAM and pNTBAM revealed distinct 

external figures. These were distinguished readily by the different colour and overall texture 

between them (Figure 3-1 A and B). In general, the pNIPAM hydrogel formed a colourless 

viscous material which was flexible and soft when handled (Figure 3-1 C). On contrast, 

pNTBAM fomed a white, rigid, and easy to handle mass, this could be fragmented into pieces 

using lab tools (Figure 3-1 D).   

 

 

 

 

 

 

Figure 3-1. pNIPAM and pNTBAM have distinct visual and physical characteristics. 

Illustration of general hydrogels outcome figures and their main apparent differences, 

showing top and side view (A, and B). pNIPAM was more elastic in nature compared to 

pNTBAM which is stiffer in nature (C and D).   
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3.5.2. FTIR spectral assessment 

The major chemical variances between the two polymers were identified at the lower energy 

level of spectral chart. The fingerprint band region at 1200 cm⁻1 displayed distinctive spectral 

peaks for isopropyl and t-butyl compounds. The rest of the spectra demonstrated the main 

functional groups at the higher energy level for both polymers’ structures (Figure 3-2). A basic 

identification was for the CH3, NH, and C=O stretch spectral  bands, the same groups showed 

deformation spectral band below 1600 cm⁻1 for both compounds.  

 

Table 3-1. Identifying pNIPAM and pNTBAM FTIR spectral bands components. An 

illustrative description of pNIPAM and pNTBAM specific functional groups and their 

corresponding bands reflected at certain infra-red energy levels showing the relative 

resemblance between the two polymers.  

  

                         Polymers   

Peak maximum  

pNIPAM /cm-1 pNTBAM /cm-1 

CH stretch Asymmetric  CH3  2971  

CH2  2929  

CH3  2966  

CH2  2930 

Symmetric  CH3  2881  

CH2  2854  

CH3  2872  

CH2  2849  

CH 

deformation 

Asymmetric  1458  1454  

Symmetric Split band at 1367 and  

1387  

Split band at 1364  

cm⁻1 and 1362  

NH stretch 3286  3317 

NH deformation  1594  1539  

C=O stretch 1646  1651  

Specific band region Two bands 1131 and 

1171, for isopropyl 

compounds.  

One big band 

1224, for t-butyl 

compounds  
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Figure 3-2. FTIR spectra for pNIPAM and pNTBAM polymers. A) Spectral peaks for pNIPAM and pNTBAM indicating the main functional groups 

as referred by each polymer chemical structure, B) the major spectral difference band region between the two compounds owing to the aliphatic chain 

difference (measured using ThermoScientific IS50 FTIR)  
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3.5.3. Water contact angle measurements 

Data for contact angle were collected reflecting the time and the angle measured since water 

drop been positioned to surface. The results for both polymers were compared with that 

obtained from a plastic surface which was considered as baseline. A higher contact angle was 

recorded for pNTBAM compared to pNIPAM whereas the highest measure was for plastic 

surface. Results indicated a more hydrophilic behaviour presented by pNIPAM polymer 

where a significantly higher (p≤0.05) mean contact angle was measured for pNTBAM 

compared to pNIPAM contact (Figure 3-3).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3. Differences between pNIPAM and pNTBAM hydrophilic behaviour compared 

to plastic surface. The water contact angle records for pNIPAM and pNTBAM polymers 

compared to TCP surface demonstrating A) shape of water drop upon contact with tested 

surfaces with contact angle marked for each (image captured 3 seconds of setting water drop), 

B) comparison between the mean contact angles for the tested materials illustrated by box 

plot and means plot showing significant values between pNIPAM and pNTBAM. Asterisks 

indicate significance at P≤0.05 results correspond to mean± SD, n=4.  
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3.5.4. SEM imaging and pore characterisation 

According to SEM images, pore diameter measurements revealed pNIPAM as having 

significantly larger pore size when compared to pNTBAM. Larger pores were identified when 

using lower monomeric concentration of polymer with the 0.042 g/mL polymer concentration 

having the largest pore diameter (Figure 3-4). Results indicated significantly increased pore 

diameter with the lower monomeric polymer concentration for both hydrogels. Captured SEM 

images revealed internal hydrogel architectural differences. Both hydrogels showed a porous 

matrix with different pore size and shape according to hydrogel nature (Figure 3-5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4. Pore size differences between pNIPAM and pNTBAM hydrogels’ subgroups. 

The figure is illustrating pore diameter in µm showing (A) the impact of reducing monomeric 

concentration on pore diameter for each hydrogel, (B) comparing pore diameter 

measurements between the two hydrogels and their subgroups. Measurements were made 

using ImageJ software. Asterisks indicate significance at P ≤0.05 results corresponds to 

mean± SD, n=4. 
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Figure 3-5. SEM imaging of pNIPAM and pNTBAM revealing internal architectural differences between their subgroups. Images were captured 

at two magnifications (x100, and x 1000) arranged in columns. Images rows correspond to each hydrogel’s different monomeric concentration. Scale 

bar 300 µm for x100 and 30 µm for the x1000 images.                                                                                                             
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3.5.5. Compressive force mechanical strength 

Data from compression test, representing the applied force and the compressed distance of 

sample, was collected. The stress was calculated by dividing the applied force by the sample 

surface area (which was circular); the strain for a sample was calculated by dividing the 

compressed distance over the sample thickness. These were then used to obtain the 

stress/strain curve and Young’s modulus which indicated the rate of stiffness of samples.  

A more flexible behaviour was noticed for pNIPAM when the sample recovers its normal 

shape after releasing applied stress unlike pNTBAM which deformed into a flattened mass 

after compression (Figure 3-6). Results showed each hydrogels’ different monomeric 

subgroups were in the same region when responding to the applied force as shown in the stress 

vs strain curve with no significant differences observed. However, pNTBAM’s higher 

monomeric group (0.079 g/mL) was significantly stiffer than the others (Figure 3-7 A). 

Comparing both hydrogel’s stiffness indicated significantly higher stiffness for pNTBAM 

compared with pNIPAM (Figure 3-7 B). pNTBAM resisted force up to 25 N (which was the 

upper limit for the equipment) whereas a maximum of 12 N for pNIPAM was resisted at the 

same strain level (90%).  

 

 

 

 

 

 

 

 

Figure 3-6. Response of pNIPAM and pNTBAM to compressive force was quite different. 

Images of samples while doing compression test showing the way each hydrogel respond to 

compression and how pNIPAM is recovering after applying pressure compared to pNTBAM 

which turned into a flattened shape. Arrows indicating steps of applying compression (before, 

during maximum stress, after stress release).    
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Figure 3-7. Mechanical testing of pNIPAM and pNTBAM hydrogels, clarifying A) the 

stress/strain curve for pNIPAM and pNTBAM and their corresponding monomeric 

concentrations, where the stress is expressed in Pascal (Pa.). (B) Comparing Young’s 

modulus measured in Pa between the two hydrogels, bars are representing each monomeric 

subgroup. Asterisks indicate significance at P≤0.05 results correspond to mean± SD, n=4 .  

 

 

 

3.5.6. Calcium mineral association 

Results from alizarin staining and calcium assays for hydrogels immersed in SBF solution 

showed a positive association of calcium minerals with tested polymers. Images from alizarin 

stained samples revealed these results as observed from red stained minerals on hydrogel 

samples at day 21. These were compared with images from stained controls incubated with 

PBS solution at 37 °C for 21 days (Figure 3-8). Control hydrogel samples incubated with PBS 

had shown some background staining which include remnants of redness that still can be 

observed after complete sample washing. The amount of stain was quantified to differentiate 

between the positive and negative (control) staining of hydrogels by incubation with 10 % 
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cetylpyridenium chloride (Chapter 2 section 2.4.5.2). The alizarin stain assessed from each 

sample had significantly increased after 21 days of incubation with SBF solution at 37 °C 

including all tested monomeric concentrations. Monitoring levels of alizarin and calcium ions 

indicated significant increases with time for all monomeric subgroups. Alizarin amounts 

showed no significant (P >0.05) variations between each hydrogel’s sub-groups and all were 

in-line together. Calcium assay results had shown the same apart from some segregation 

between levels observed after day 15. These levels indicated no significant (P >0.05) 

differences between pNTBAM sub-groups. No significant (P >0.05) differences were 

observed between osteogenic and non-osteogenic stimuli containing set of samples and both 

were on the same line of development (Figure 3-9).  

Significantly, increased alizarin levels were detected when compared with control hydrogel 

samples incubated with PBS solution at day 21. Both hydrogel control samples showed no 

significant alizarin staining when incubated with PBS solution between hydrogels and even 

after 21 days. These results were parallel to those obtained from the calcium assay 

(Figure 3-10, A and B). Significantly higher levels of alizarin red staining and calcium 

mineralisation were noted for pNTBAM when compared to pNIPAM, this was applicable to 

all monomeric sub-groups of pNTBAM. Values compared between monomeric sub-groups 

for each hydrogel showed no significant variations with alizarin and calcium ions assessment. 

Significant differences, however, were observed in the amount of calcium minerals between 

pNIPAM sub-groups, with the higher value obtained for pNIPAM 0.079 g/mL.  

The comparison of osteogenic and non-osteogenic stimuli containing samples indicated no 

significant difference between them or between the two hydrogels, their corresponding 

concentrations, or between controls. This was noted for both alizarin and calcium ions 

assessments (Figure 3-10 A and B).  
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Figure 3-8. Alizarin staining of pNIPAM and pNTBAM hydrogels incubated with SBF at 

day21. Images are revealing in columns both hydrogels stained with alizarin red and each 

compared with its control. Images rows are correspond to each hydrogel monomeric sub-

group. Scale bar measure 300 µm.  
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Figure 3-9.  Monitoring calcium minerals associated with hydrogels and their monomeric sub-groups. Figures are illustrating (A) the amount of 

alizarin stain quantified from each sample in mM, (B) calcium ions assessed upon each sample in µg/µL of sample lysate. Figures columns represent 

hydrogel samples incubated with SBF solution at 37 °C in two sets with and without osteogenic stimuli. Each figure compares the development of 

minerals with time up to day 21 for each hydrogel’s monomeric sub-groups where the blue markers are for pNTBAM while the red markers for 

pNIPAM. Asterisks indicate significant level with time at P ≤0.05. Results corresponds to mean± SD, n=3.  
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Figure 3-10. Calcium ions and alizarin assessment of hydrogels at day 21., indicating (A) amount of alizarin stain quantified in mM 

concentration, (B)calcium ions levels in µg/µL of sample lysate. Each marker levels were compared between hydrogels monomeric sub-groups. 

Solid fill bars correspond to hydrogels’ controls, while patterned fill bars are for pNIPAM and pNTBAM samples incubated with SBF with and 

without osteogenic stimuli.. Asterisks indicate significant level with time at P ≤0.05. Results corresponds to mean ±SD, n=3. 
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3.6. Discussion  

Biomaterials science offers a profound range of materials with specific characteristics to serve 

the target of regenerating old or damaged tissues (Mano 2015; Hutmacher 2001; Jones 2013; 

Kurtz & Devine 2007). Quite a lot of features may decide the choice of materials which 

include, in addition to the intended tissue type, plenty of physicochemical and biological 

factors that directly impact cell-materials interaction (H G Craighead et al. 2001; Patterson et 

al. 2010; Grover et al. 2006; Jones 2015). For the current work, the choice of materials relied 

on previous studies that indicated pNIPAM and pNTBAM as non-toxic biocompatible 

materials (Akiyama & Okano 2015; Muramatsu K  Wada T, Hirai H, Miyawaki F 2012; Lynch 

et al. 2005). Proceeding forward, current results from FTIR and water contact angle confirms 

the main difference between these materials in chemistry and wettability. And as revealed by 

FTIR both polymers expressing the same functional groups mainly –NH, =O, and CH.  

The active functional groups presented by pNIPAM and pNTBAM hydrogels, as indicated by 

the FTIR spectral measurements, may reflect some of the materials behaviours when they 

come in contact with cells (Figure 3-2). The presence of C=O and NH- functional groups 

allow for a more hydrophilic behaviour of the polymer surface which may promote active 

osteoblast differentiation and activity (Chang & Wang 2011; Keselowsky et al. 2003). It has 

been shown that more hydrophilic behaviour is connected to increased cellular adhesion and 

proliferation (Thevenot et al. 2008). Some hydrophobic behaviour may be related to the 

presence of CH3- groups (Chang & Wang 2011), and as more CH3- groups are being presented 

by pNTBAM this may explain the slight hydrophobic behaviour of this polymer compared to 

pNIPAM. The water contact angle measurements may indicate such behaviour for both 

hydrogels where a larger water angle has been measured with pNTBAM (about 70o) compared 

to pNIPAM (about 50o), i.e. as expected from the chemical structure pNTBAM presents a 

more hydrophobic surface (Figure 3-3). These results were in accordance with other studies 

that stated the hydrophobic behaviour of pNTBAM versus hydrophilic for pNIPAM   
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Wettability of surfaces can be judged according to specific variables such as surface roughness 

and porosity in addition to the chemical nature of the material (Shirtcliffe et al. 2005; Lee 

2013). For the current study, the lower water contact angle obtained may be due to the porosity 

of the selected polymers. Such features will enable water entrapments from the surface into 

the pores, and because the pore diameter for pNIPAM was measured to be higher than that of 

pNTBAM (Figures 3-4), water will imbibe within these pores more rapidly in pNIPAM 

resulting in a lower contact angle measurement. This figure may explain the impact of porosity 

and surface roughness on determining the water contact angle and the wettability of such 

surfaces (Roach et al. 2010; Lu et al. 2011). Therefore, the wettability of the hydrogels in the 

current study was a function of their porous structure in addition to their hydrophilic-

hydrophobic active functional groups.   

Both hydrogels were produced according to thermally induced phase-separation technique 

which is widely used for the production of porous polymer scaffolds (Hutmacher 2001). The 

hydrgels are formed when the polymer solution thermodynamically separates into polymer-

rich and polymer-poor phases. The water droplets are entrapped within the crosslinked 

polymer network and are responsible for the micro-or macrostructure of the resultant 

hydrogels, specific variables may control the pore size limit according to this technique 

including the monomer concentration of the polymer and the solvent mixture used (Nam & 

Park 1999). According to the current results, reducing the monomeric concentration of 

polymers did indicate a significantly increased pore diameter for both hydrogels. It was 

manifested as well, from SEM images, that variable internal figures were generated by 

changing the intended polymer concentration. This technique has shown its eligibility for 

controlling internal hydrogel microstructure and interconnected porous architecture. Pore size 

modification may also be performed while keeping the same surface chemistry, the graded 

porosity of scaffolds have an enormous impact on supporting variable tissue generation and 

will be useful for osteochondral region encouraging bone and cartilage gradient growth (Lien 

et al. 2009; Miao & Sun 2010)    
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In view of the porosity and pore size effects of biomaterials, Vassilis Karageorgiou and David 

Kaplan (2005) showed the impact of high concentration of polymer solution on yielding a 

smaller pore size compared to a lower concentration, they reviewed the positive correlation as 

well between porosity and osteogenesis which have been mainly observed at 50-100 µm pore 

size ranges. Although being highly porous, pNIPAM and pNTBAM hydrogels have average 

smaller pores as regard to the larger pores of cancellous bone (average of 300 µm) (Lee et al. 

2012; Cooper et al. 2016). However, current hydrogel porosity is comparable to that of the 

sub-chondral bone plate, which is a more compact layer with a smaller pore openings range 

from 20-30 µm in diameter (Bian et al. 2016). 

Material stiffness is an essential property of tissue regeneration. Such properties may decide 

the potential for cells to proliferate, their final configuration, and growth pattern (Wells 2008). 

According to several studies, biomaterials showed a variable degree of mechanical strength 

and stiffness relative to their nature and method of production (Hollister et al. 2002; 

Vijayavenkataraman et al. 2017). For the current work, pNIPAM and pNTBAM revealed the 

variable degree of rigidity with a significantly higher value of 371 KPa for pNTBAM 

compared to 16 KPa pNIPAM (Figure 3-7). Perhaps the hydrophobic nature of pNTBAM and 

the small porous structure are the reasons behind having a more compact and stiffer 

composition compared to the highly porous hydrophilic pNIPAM (Cha et al. 2011). Several 

studies have reported cartilage compressive modulus range between 200-500 KPa depending 

on the region and cartilage layer (Swann & Seedhom 1993; Franz et al. 2001; Little et al. 

2011) . Current results were promising concerning pNTBAM as it is closely related to native 

cartilage records. On the other hand, both hydrogels were way less than the measured 

compressive modulus for bone tissues which could reach up to hundreds of megapascals (Pal 

2014; Keaveny et al. 2004). It has been suggested, according to some studies, that the 

material’s stiffness is not necessarily to be identical to the native’s tissue one, because it serves 

as a temporary matrix template that supports biological function of cells and native tissue so 

that retaining the regular strength (J. Yang et al. 2017). Moreover, tuning of these materials 
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could be an onward step in the direction of enhancing their mechanical properties, thereby 

improving the chance for obtaining more suitable material composite (Little et al. 2011; Cha 

et al. 2011; Vijayavenkataraman et al. 2017).   

As the basic plan was to target the osteochondral tissue regeneration, it is essential to test the 

materials’ ability for the calcium minerals association and to adapt the mineral environment 

of the osteochondral region. It is known that an active process of mineralisation is involved in 

generating the osteochondral region starting from the sub-chondral bone up to the calcified 

cartilage zone. This process will be opposed biochemically at the tidemark of the calcified 

cartilage layer (Bullough & Jagannath 1983; Hoemann et al. 2012a). Such an arrangement 

provides a gradient of minerals from the sub-chondral bone plate up to the first cartilage layers 

(Bian et al. 2016). It was indicated according to Kokubo & Takadama 2006 that the materials 

ability to combine to calcium and form apatite layer in vivo can be examined by incubation in 

SBF solution at 37 °C in vitro. Materials intended for bone and ostechondral tissue 

regeneration, are required to adequatly form a strong combination with these tissues which 

eventualy requires these materials to be able to meniralize when examinedin an in vitro 

assessment (Kepa et al. 2015). In a study cnducted by Vo et al. 2016, the mineralization 

capacity was evaluated for acellular pNIPAM based thermogellling macromer and another 

cocolymeized with dimethyl-γ-butyrolactone acrylate that advice for more hydrophobicity, 

both being injected in rat cranial defect. They concluded a positive ability of these polymers 

to mineralized based in an in vivo and in vitro experiments (SBF incubation) with increased 

levels obsrved for the more hydrophobic polymer (Vo et al. 2015). The present results revealed 

both materials are capable to bond with calcium ions and form mineralized layer upon their 

surface using in vitro SBF incubation. This was in accordance with certain studies that explain 

the usefullness of SBF solution composition to test materials mineralization tendencies and 

hydroxyapatite coating when targeting osteochondral tisuues regeneration (Kokubo & 

Takadama 2006; Jones et al. 2007; Wu & Xiao 2009; Kepa et al. 2015; Jones 2015; Camarero-

Espinosa & Cooper-White 2017). The current materials showed different tendencies to be 
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associated with calcium minerals evident by the significant (P ≤0.05) amount of calcium ions 

and alizarin red stain measured for pNTBAM compared to pNIPAM, which may be important 

when combined with cellular activity. Both tests were parallel in indicating the amount of 

calcium mineralization except that alizarin red staining may involve more of the HA 

components i.e. semi quantitative while calcium assay is more specific for calcium ions 

(Moriguchi et al. 2003). The significant mieral associatino with thes polymers may also be 

related to their surface charges and the resultant hydrophilic versus hydrophobic surface 

behaviour which could possibly enhanced their ability for mineralization (Castillo Diaz et al. 

2014; Mai et al. 2018). However, no significant variations were observed between hydrogel’s 

sub-groups of different monomeric concentrations as per alizarin staining and quantification 

and calcium assay of pNTBAM sub-groups. Calcium assay though indicated significant 

calcium ions associated with the pNIPAM 0.079 g/mL compared the other pNIPAM sub-

groups. This could serve the target of generating a mineral gradient when combining these 

two hydrogels in one scaffold making use of the variable calcium association tendencies 

observeed between these polymers and the relavent sub-groups. 

The present results had shown that pNIPAM and pNTBAM polymers produced as a 3D 

hydrogels with relatively different criterias. A more wettable surface with larger pores 

diameter were recorded for pNIPAM. Whereas, a stiffer mass together with more potential for 

mineral association were the main distinguishing factors for pNTBAM. The slight chemical 

difference between the two polymers had possibly acounted for the relavant variations 

monitored in the current results. All these distinguishing features between the tested hydrogels 

may suggest that these two materials could support various types of tissue regeneration with 

the possible impact on cells proliferation. It also holds promising trends towards joining these 

hydrogels to produce a gradient scaffold owing to their distinctively variable behaviours.  
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4.1. Introduction  

Cell-biomaterial interactions are a function of material characteristics that will ultimately 

guide cells and determine the outcomes of their behaviour. The physico-chemical properties 

and architectural construct specific to each material will determine the potential for cell 

attachment, proliferation (Wan et al. 2005; H. G. Craighead et al. 2001; Murphy et al. 2010). 

Furthermore, these materials characteristics will decide whether the chosen cells are 

performing their natural biological function (Currie et al. 2007; Chen et al. 2018). As such, 

matching the cells natural environment, with a biomaterial, is critical in bringing these cells 

activity as close as possible to their normal behaviour. For instance, surface charge and 

chemistry in addition to material stiffness impacts on cell number, adhesion profile, and 

morphology (Deligianni et al. 2000; Yang et al. 2009; Wang et al. 2016). The presence of 

additional surface cues such as peptides, growth factors, or bioactive materials has also proven 

to be effective in the promotion of appropriate cellular behaviour (Cao & Hench 1996; Arima 

& Iwata 2007; Chang & Wang 2011; Emans et al. 2013; Wang et al. 2016; Jones 2015). 

Several materials were investigated to address bone and cartilage tissue regeneration 

(Hutmacher 2000; Nukavarapu & Dorcemus 2013a; Correa & Lietman 2017; Camarero-

Espinosa & Cooper-White 2017). Many of these materials were capable of supporting 

osteogenic cell behaviour and mineralization owing to their porous architecture and surface 

features (Karageorgiou & Kaplan 2005; Durante 2012). Promoting chondrogenic behaviour 

has been reported using materials with nano surface features or nano-fibres scaffolds (Puppi 

et al. 2010a; Izadifar et al. 2012). A hydrophilic versus hydrophobic surface functional groups 

is another factor that impacted chondrogenic or osteogenic cell differentiation (Glennon-Alty 

et al. 2013; Li et al. 2018). Tailoring of these materials by altering surface chemistry or 

incorporating certain cues had impacted cellular functions for instance bio-active glass and 

carbon nono-tubes enhanced mineralization and osteogenic cell behaviour (Fu et al. 2011; 

Gajendiran et al. 2017)  
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Distilling the above introduction further we aim to fabricate materials for use in 3D culture 

systems enabling a sophistication of architecture greater than that achievable with standard 

2D culture alone. In doing so, we seek to enable cells to sense their surrounding 3D 

environment and to communicate more efficiently. The selected method of biomaterial 

production will also impact the manner in which cells interact with the final material shape. It 

has been hypothesized that manufacturing of materials into hydrogels would support 

appropriate biological function owing to their water content and having a porous structure that 

is closely related to that seen in a number of tissues (Hoffman 2012).   

In this chapter the basic characteristics of pNIPAM and pNTBAM on cell survival and 

behaviour are explored. We hypothesize that the differences between these hydrogels (as 

described in Chapter 3) will result in variable cellular responses. This will rely on the type of 

cells to be seeded upon tested hydrogels, which in this case will be bone and cartilage cells as 

we are aiming at regenerating osteochondral region. The outcome results should enable us to 

identify the biological responses of cells and to make judgment upon the best cartilage- and 

bone-matched environment based on the previously identified materials properties. 

4.2. Chapter aims  

The current chapter aims to examine the following 

• Cell attachment and distribution on each hydrogel surface. 

• Cell survival and proliferation rate for immortal and primary cell lines seeded at the same 

density and tracked for 21 days. 

• The capability of cells to migrate towards the core of hydrogel connecting this to the porous 

structure of each hydrogel. 

• Osteogenic and chondrogenic behaviour of primary human osteoblasts (hOBs) and primary 

human chondrocytes (hCHs) upon each hydrogel tracked for 21 days. 

4.3. Materials and methods 

All Materials and Methodology utilised in this Chapter are fully detailed in Chapter 2. 
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Hydrogels were prepared for cell culture by 3 X PBS washes at 37o C for 48 hours each 

followed by sterilization with 99% ethanol for 30 minutes at room temperature before being 

washed again with PBS for 24 hrs at 37o C with PBS changed every 6-8 hrs (mentioned in 

detail in section 2.5 of Chapter 2). 

Primary human chondrocytes (hCHs) and human osteoblasts (hOBs) were seeded on the top 

of hydrogels at 104 cells /15 µL of cell suspension and topped with either basic or specialized 

(osteogenic and chondrogenic) media. Samples were examined after 7, 15, and 21 days for 

specific cells responses (mentioned in detail in section 2.5 of Chapter 2). 

Confocal assessment of the cell-scaffold system was conducted to verify cell attachment, 

viability, and specific protein expression by primary cells. Histological H&E staining of 3D 

samples was an aid to confirm that cells had adhered to the hydrogel surface. Settings for 

confocal imaging, including laser intensity, brightness and contrast, were adjusted at the same 

levels for all hydrogel samples to minimize noise and auto-fluorescence obtained normally 

gained due to hydrogel mass (details of confocal imaging are given in Chapter 2 sections 2.6 

and 2.7).    

Biochemical assessment of calcium minerals and GAGs was carried out via alizarin red and 

alcian Blue staining. Images were captured on a EVOS light microscope. Quantitative 

measures applied to samples were Calcium and DMMB assays (detailed in chapter 2 section 

2.8.1)  

Detection of protein and specific markers was quantified with ELISA immune assays 

(procedures are mentioned in detail in chapter 2 section 2.8.2). 

4.4. Statistics 

All data were collected and analysed with Microsoft XL 2010 to calculate the mean, standard 

deviation and resulting graphs. Results obtained were compared using one and two-way 

ANOVA with Tukey’s multiple comparisons test. Statistics were analysed using Origin Pro 

8, the level of significance was set at p≤ 0.05.   
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4.5. Results  

4.5.1. Attachment and cell shape 

4.5.1.1. Haematoxylin and Eosin (H&E) staining  

The depth of the hydrogel samples created difficulties in viewing cells directly on their 

surfaces. However, H&E staining revealed apparent cells, which were not present in control 

samples, as dark spots on the hydrogel surface (Figure 4-1). 

 

  

 

 

 

 

Figure 4-1. Haematoxylin and eosin staining of pNIPAM and pNTBAM hydrogel samples 

indicates cell attachment. Images are showing pNIPAM (the top row) and pNTBAM (the 

dawn row) both compared between MG63 seeded and control (without cells). Images were 

captured at two magnifications (x10 and x60), scale bar measure 100 µm for the x10 images 

and 40 µm for the x60.   
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4.5.1.2.  Cytoskeletal actin filaments and nuclear stain  

Confocal imaging of hydrogels indicated cell attachment to hydrogel surfaces with variable 

morphologies as indicated from actin fibre staining. Images also revealed the difference 

between the cells are attachment upon each hydrogel.  

 

 

 

 

 

 

 

 

Figure 4-2. Cytoskeletal fibrin and nuclei staining of MG63 cells seeded on hydrogels at 

day 21. Confocal images illustrating pNIPAM (top row) and pNTBAM (down row) hydrogels 

in two magnifications (x10 and x60). Both hydrogels were stained with phalloidon ifluor (red) 

indicating actin filaments and DAPI (blue) indicating cell nuclei. Scale bar measure 200 µm 

for x10 and 50 µm for x60.   

 

Image interpretation suggested that seeding upon pNIPAM tended to result in cell aggregates 

or clusters. This was readily evident when images were captured at higher magnifications 

indicating groupings of two to ten nuclei per aggregate. In contrast, cells seeded onto 

pNTBAM displayed a tendency to distribute evenly across the hydrogel surface (Figure 4-2).   

4.5.2. Viability and cell proliferation  

Cell seeded hydrogel samples were live/dead stained to determine the prevalence of viable 

versus dead cells after 21 days of culture. Cells were seeded at 105 cells/sample, this number 

was replicated to all samples and was considered as the starting cell density to judge the rate 

of cell proliferation upon each hydrogel. Confirming our previous observations cells on 

pNIPAM samples formed aggregates or clusters unlike pNTBAM where cells spread out 
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across the hydrogel surface (Figure 4-3). This scenario was replicated across all monomeric 

subgroups indicating hydrogel-specific behaviour. However, there were a significantly high 

number of cells counted on pNTBAM vs. pNIPAM hydrogel which was consistent for both 

MG63 and OK3H seeded samples (Figure 4-4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3. Confocal imaging of live /dead stained hydrogels at day 21 seeded with MG63 

and OK3H cells. Images are showing green fluorescent colour indicating live cells and red 

fluorescent colour indicating dead cells (images columns) for pNIPAM and pNTBAM 

hydrogels. Subgroups of multiple monomeric concentrations are represented by images rows 

with the top 3 rows set (A) correspond to MG63 cells and the bottom 3 rows (B) are for OK3H 

cells. Scale bar measures 500 µm.     
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Figure 4-4. Cell count of live/dead MG63 and OK3H cells seeded on hydrogels at day 21. 

Figures are revealing the average number of cells counted per 3 mm2 of hydrogel’s surface. 

The light blue colour bars represent the live cells number while the dark red colour bars are 

the dead cells number. Each set of bars (live and dead) corresponds to the relevant monomeric 

concentration of hydrogel. Both asterisks indicate significance at P ≤0.05, the light asterisk 

(*) is for the live cell count and the dark one (*) is for dead cell count comparisons (results 

represent the mean ±SD, n=3).    

 

 

Tracking DAPI stained cells’ nuclei enabled us to determine whether the cells are traveling 

towards the core of hydrogel. 3D image sections from confocal microscope were analysed via 

ImageJ software to define DAPI fluorescent intensity across hydrogel thickness. A plot was 

created to measure the pixel colour intensity of DAPI (blue) through an identified distance 

(the depth) in micrometres (µm). The deepest distance at which a higher intensity obtained 

was averaged and compared between hydrogel’s sub-groups (Figure 4-5).  
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Figure 4-5. The assessment of MG63 cells migration within the hydrogel’s construct at day 

21.Figure is showing hydrogels’ monomeric sub-groups arranged in columns and compared 

between each other’s according to A, B, C, and D. (A, B) are confocal 3D image sections of 

DAPI stained hydrogels illustrating cells (blue) position from hydrogels’ surface, scale bar is 

100 µm, where (A) represent side view of sections, (B) 3D configuration of the scanned 

sections. (C) Graph presentation of DAPI colour intensity obtained across the depth (distance 

in µm) of each hydrogel’s monomeric group. (D) Is a bar figure representing the average 

distance travelled by cells from hydrogel surface compared between each hydrogel’s 

monomeric sub-groups. Graphs in (B) are created by ImageJ software. Asterisk (*) indicate 

significance at P ≤0.05, results representing mean± SD, n=3.   

 

 

Reviewing the whole set of samples, confocal images of 3D representation of sectioned 

sample (Figure 4-5 A) and side view of sample (Figure 4-5 B)  have shown how cells are 

acting on hydrogels. The cells were obviously slicked to the surface of pNTBAM hydrogels 

with all monomeric concentrations. In contrast, penetration was increased towards the lowest 

monomeric sub-group of pNIPAM as the cells start infiltrating through surface.  The colour 

intensity was captured at the highest level only a few micrometres from the surface (averaged 
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15-20 µm) of pNTBAM hydrogel samples. The same result was obtained for pNIPAM 0.079 

g/mL sample, however, evidence of higher colour intensity was witnessed at deeper distance 

for the 0.058 and 0.042 g/mL monomeric concentrations (Figure 4-5 C). The far distance 

measured was for pNIPAM 0.042 g/mL (averaged at 137±15 µm) which was significant (P 

≤0.05) compared to the other hydrogels. The pNIPAM 0.058 g/mL has gained as well some 

penetration of cells which was significant to the other measurements but less than the 0.042 

g/mL sub-type. The pNIPAM 0.079 g/mL and pNTBAM subgroups were all parallel to each 

other’s with no significant alteration (Figure 4-5 D). These results were compared with the 

pore size measurements for each hydrogel to reflect the impact of porosity on enabling cell 

penetration (Figure 4-5 E). 

Our previously described compression testing and porosity (Chapter 3) coupled with the 

viability and migration data provided crucial information to inform the final working hydrogel 

monomeric subtypes suitable for further experimentation. As pNTBAM did not show signs of 

cell migration using the lower monomeric concentrations we elected to utilise the higher 

concentration subtype (0.079 g/mL). In contrast pNIPAM displayed strong of cell penetration 

through the porous structure when using the lower monomeric subtype (0.042 g/mL) without 

displaying any loss of mechanical strength vs. other subtypes which supported its selection. 

We next confirmed the viability profile of hOBs and hCHs seeded on the chosen hydrogel 

subtypes. Confocal images indicated the same growth profile difference between hydrogels as 

observed with MG63 and OK3H (Figure 4-6). Similarly, live/dead cell counts were parallel 

to previous results noting that significantly greater levels of proliferation were noted for hCHs 

when compared to hOBs on pNTBAM. We again noted that pNIPAM displayed reduced cell 

numbers when compared to pNTBAM while maintaining cell viability (Figure 4-7). 
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Figure 4-6. Live/dead staining of hydrogels at day 21 indicates viability profile of hOBs and 

hCHs. Images showing live cells (green) and dead cells (red) in addition to a combination of 

both (merged) represented in columns along figure. Each hydrogel staining profile (live, dead, 

and merged) was indicated in rows with top two rows are for hCHs and the down two rows 

for hOBs. Scale bar measure 500 µm.  
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Figure 4-7. Live/dead cells counting for primary hOBs and hCHs upon hydrogel constructs. 

Figure is illustrating the number of cells counted per 3 mm2 of each hydrogel’s surface. Bars 

are corresponding to each hydrogel seeded with specific cell type. Pie charts represent the 

percentage of live/dead cells. The light colour corresponds to the number and percentage of 

live cells while the dark colour is for the number and percentage of dead cells (reflected in 

bars and pie chart figures). Both asterisks indicate significance at P ≤0.05, the light asterisk 

(*) is for the live cell count and the dark one (*) is for dead cell count comparisons (results 

represent the mean ±SD, n=3).    

 

 

 

We wanted to check the chosen polymer concentrations on enabling the primay hOBs and 

hCHs to penetrate through the hydrogel’s thickness. Tracking the blue fluorescent from DAPI 

staining of these cells has come out with almost the same results as for the tested cell lines 

(Figure 4-8). Confocal images are showing hOBs and hCHs cells infiltrating within pNIPAM 

hydrogel while accumulating at the surface of pNTBAM hydrogel (Figure 4.8 A and B). The 

blue colour intensity was higher at a deeper distance as measured with ImageJ for pNIPAM 

hydrogel and indicating that cells and cells clusters are traveling within hydrogel structure. In 

contrast, pNTBAM is still showing high colour intensity at the surface (Figure 4-8 C). Cells 
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upon pNIPAM indicated evidence of migration within hydrogel construct at an average 

distance of around 133 µm for both hOBs and hCHs which was significant to that obtained 

for pNTBAM (Figure 4-8 D). 

 

 

    

 

 

 

 

 

 

 

 

 

 

Figure 4-8. The impact of hydrogel’s internal porous structure on enabling primary hCHs 

and hOBs penetration within pNIPAM and pNTBAM. showing pNTBAM and pNIPAM 

hydrogels seeded with hCHs and hOBs arranged in columns while rows are (A, B) confocal 

3D image sections of DAPI stained hydrogels illustrating cells (blue) position from hydrogels’ 

surface, scale bar is 100 µm, where (A represent side view of sections, (B) 3D configuration 

of the scanned sections. (C) Graph presentation of DAPI colour intensity obtained across the 

depth (distance in µm) of each hydrogel for hCHs and hOBs, and (D) a bar figure comparison 

of the average distance travelled by cells measured in µm and showing results obtained for 

each hydrogel with the corresponding cell type seeded upon surface. Graphs in (B) are 

created by ImageJ software. Asterisk (*) indicate significance at P ≤0.05, results representing 

mean± SD, n=3.    

 

As per the above results, the number of cells count upon pNIPAM 0.042 g/ml sub-group may 

be a little higher as some of the cell were infiltrated beneath the hydrogel surface. The viability 

though still showing higher viable versus dead cell number. 
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4.5.3. Biochemical testing of specific cells behaviour 

4.5.3.1. Alkaline phosphatase (ALP) activity  

ALP activity assessment revealed wide variations between cell type and hydrogel (Figure 4-

9). Increased ALP activity was noted for hOBs, irrespective of hydrogel, relative to control 

levels, which became detectable after 15 days of culture. Levels for hOBs indicated significant 

increase with time and was significantly altered compared to control (P ≤0.05). The 

chondrogenic media did not promote ALP activity in the hCHs with a gradual reduction 

observed over time. The higher levels seen with basic media indicated that the chondrogenic 

media was having a refractory role on ALP activity levels. For hCHs on pNTBAM samples, 

the picture indicated a regression of ALP activity measured in media samples with significant 

decline with time seen for samples with chondrogenic media and was significantly lower at 

day 21 compared to control samples (Figure 4-9).  

Comparing the activity levels of ALP at day 21, including all samples and cell types, have 

shown a progress for pNTBAM with hOBs. Samples with hOBs were significantly higher 

compared to their control peers of basic media and to that seeded with hCHs. In contrast, 

samples with hCHs were significantly lower in ALP activity compared to their control peers 

(Figure 4-10). 
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Figure 4-9. Monitoring ALP activity of hOBs and hCHs seeded upon hydrogels. pNIPAM (1), and pNTBAM (2), each with the corresponding 

measurements of ALP activity for hCHs and hOBs. ALP activity was expressed in U/mL of media sample tracked for 7, 15, and 21 days. In each 

measurement was comparing between samples in osteogenic or chondrogenic media (dark square mark lines) and control sample cultured with basic 

media (light diamond mark lines). Asterisks indicate significance at P ≤0.05, the light asterisk (*) is the significance between sample and control at 

each time point and the dark one (*) is indicative for significance with time (results represent the mean ±SD, n=3).  
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Figure 4-10. Levels of ALP activity for hCHs and hOBs seeded on pNIPAM and pNTBAM 

hydrogels compared at day 21. The levels of ALP activity in U/mL of samples media. Bars are 

representing each sample with specific cell type presented with its control (basic media) and 

compared to other hydrogel samples. Asterisks indicate significance at P ≤0.05. (Results 

represent the mean ±SD, n=3).  

 

 

4.5.3.2. Alizarin Red and Calcium Ion evaluation 

Histological staining of Alizarin Red-stained cell-seeded hydrogels via microscopic image 

revealed positive staining on both pNIPAM and pNTBAM samples indicating active mineral 

production. This was strongest with hOBs seeded on either hydrogel after 21 days. Samples 

seeded with hCHs showed low levels of staining with pNIPAM but no clear staining observed 

with pNTBAM (Figure 4-11). Calcium assay results similarly showed higher levels of calcium 

ion association with pNTBAM compared to pNIPAM samples seeded with hOB (P ≤0.05). 

We also observed significant increases of calcium ion association after 21 days of culture. 

Hydrogel samples seeded with hCHs showed some elevation of calcium mineral levels over 

time for pNIPAM samples, but these were not significantly increased with pNTBAM 

(Figure 4-12). 
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Figure 4-11. Mineral association illustrated by alizarin staining of hydrogels. Images were 

captured at x2 and x10 magnifications and were arranged in columns for each hydrogel. 

Images rows correspond to the cell types (hOBs and hCHs) in addition to control hydrogel 

(no cells). Images scale bar measure 2 mm for x2 and 200 µm for x10.  

 

 

 

Results from calcium assay showed significant calcium ions association with hOBs samples, 

more often with pNTBAM samples and significantly higher level (P ≤0.05) with osteogenic 

media samples. In contrast, hCHs were at the minimum level of calcium minerals with 

pNTBAM hydrogels. However, more tendencies for calcium mineralization were observed 

for hCHs in pNIPAM samples with no significant differences between basic or chondrogenic 

media samples (Figure 4-12 A). 
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Figure 4-12. Assessment of calcium ions associated with hydrogel samples seeded with 

hOBs and hCHs. Figure is illustrating the amount of calcium ions in µg/µL of sample lysate. 

(A) is the comparison of levels at different time points (7, 15, 21 days), bars are indicating 

each sample set with specific media (osteogenic or chondrogenic) and basic media (control) 

and indicated by letters (A-G) defined in the top right list. (B) Is the comparison between 

calcium ions associated with hydrogels at day 21. The bars are representing each sample 

compared to its control (basic) samples compared at day 21. Asterisks indicate significant 

levels at P ≤0.05 (Results are representing mean ±SD, n=3).   

 

 

Results of calcium ions were then compared between hydrogels at day 21 to observe the main 

differences between cells behaviour upon each hydrogel type. A significant increase was noted 

for pNTBAM samples with hOBs vs their controls and compared to pNIPAM samples as well. 

Levels with pNIPAM were significant to their control and when compared to the hCHs 
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samples. Evidence of calcium minerals was noted for pNIPAM with hCHs which was 

significant when compared to pNTBAM-hCHs (Figure 4-12 B). 

4.5.3.3. Assessment of GAGs 

Histological staining with alcian blue and subsequent evaluation via microscopic images was 

utilised to evaluate cell response to hydrogel and chondrogenic differentiation. Positive 

staining was readily observed with pNTBAM samples seeded with hCHs while hOB-seeded 

and control samples showed little evidence (Figure 4-13).  

To evaluate GAG levels, we next performed the DMMB assay. This revealed high levels of 

GAGs in pNTBAM gels seeded with hCHs. As per the methodology, hydrogel samples where 

incubated with 500 µL papain lysate buffer, thus the amount of GAGs was assessed per 

500 µL of each sample. GAG levels gradually increased across the 21 days of culture. 

Reduced amounts of GAGs were noted for pNIPAM hCHs seeded gels (vs. pNTBAM) which 

gradually increased over the culture period (Figure 4-14 A). Notably, GAG levels in pNIPAM 

samples were unaltered using either basic or chondrogenic cell culture media. In contract, 

pNTBAM samples showed highly increased levels of GAGs when using chondrogenic 

medium. The hCHs on TCP samples revealed some increased levels especially with 

chondrogenic medium but still significantly lower than cells on hydrogel samples. Samples 

with hOBs, included for control purposes, had significantly lower levels of GAGs. This was 

to the greatest extent with pNIPAM samples while some increases were seen with pNTBAM.  

When comparing the GAGs content between hydrogels with hCHs and hOBs, at day 21, the 

results came out with significantly higher levels for hCHs upon pNTBAM hydrogels mostly 

when using chondrogenic media (figure 4-14 B).  
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Figure 4-13. Alcian blue staining of hydrogel samples seeded with hCHs and hOBs. Images 

were captured at x2 and x10 magnifications for each hydrogel and were arranged in columns 

for each hydrogel. Images rows correspond to the cell types (hOBs and hCHs) in addition to 

control hydrogel (no cells). Images scale bar measure 2 mm for x2 and 200 µm for x10.  
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Figure 4-14. Assessment of GAGs content in hydrogels seeded with hCHs and hOBs. 

Figures are revealing the amount GAGs measured in µg/500 µL where (A) is the comparison 

of levels at different time points (7, 15, 21 days), bars are indicating each sample set with 

specific media (osteogenic or chondrogenic) and basic media (control) and indicated by 

letters (A-G) defined in the top right list. (B) is a comparison between the levels of GAGs in 

hydrogels where the bars are representing the hydrogel samples with hCHs and hOBs 

compared at day 21. Asterisks indicate significant levels at P ≤0.05 (Results are representing 

mean ±SD, n=3)    
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4.5.4. Determining collagen expression in cell-seeded hydrogels 

4.5.4.1. Immunostaining for collagens I, II, and X 

Positive collagen immunostaining was evident across all samples to a variable extent 

depending on cell type, hydrogel combination, and differentiation cocktail applied. 

Collagen I expression was noted across both hOB and hCH-seeded hydrogel samples with a 

qualitatively noted more intense colour expression was noticed with pNIPAM-hOBs samples 

(Figure 4-15). Collagen II staining was more specifically-linked to hCH-seeded hydrogels 

with strong staining noted with pNTBAM and to a lesser extent pNIPAM. hOB-seeded 

hydrogels displayed low levels of collagen II expression in comparison (Figure 4-16). 

Collagen X expression was seen with both hOB and hCH seeded on both types of hydrogels. 

However, different rate of expression was observed between hydrogels rather than cell type, 

with higher extent involving pNIPAM including both cell types. Expression on pNTBAM has 

also been obvious with hCHs and hOBs with variable extents.  Generally, this had involved 

wide range of cells but sometimes looks more intense with pNTBAM (Figure 4-17).  
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Figure 4-15. Immune stained hydrogel samples for collagen I expression. Confocal images 

of hydrogel samples with hOBs and hCHs captured using x40 magnifications and revealed in 

columns separating channels for DAPI and collagen stain plus a merged channels image. 

Samples were stained with DAPI (blue) for cell nuclei and TRITC (red) fluorescent for 

collagen. Control samples involve hydrogels seeded with hOBs and incubated with secondary 

antibodies coupled with TRITC red fluorescent stain without primary antibodies and DAPI 

stained. scale bar measure 40 µm.   
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Figure 4-16. Immune stained hydrogel samples for collagen II expression. Confocal images 

of hydrogel samples with hOBs and hCHs captured using x40 magnifications and revealed in 

columns separating channels for DAPI and collagen stain plus a merged channels image. 

Samples were stained with DAPI (blue) for cell nuclei and TRITC (red) fluorescent for 

collagen. Control samples involve hydrogels seeded with hCHs and incubated with secondary 

antibodies coupled with TRITC red fluorescent stain without primary antibodies and DAPI 

stained. Scale bar measure 40 µm.   
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Figure 4-17. Immune stained hydrogel samples for collagen X expression. Confocal images 

for hydrogel samples with hOBs and hCHs captured x40 magnifications and revealed in 

columns separating channels for DAPI and collagen stain plus a merged channels image. 

Samples were stained with DAPI (blue) for cell nuclei and FITC (green) fluorescent for 

collagen. Control samples involve hydrogels seeded with hOBs and incubated with secondary 

antibodies coupled with FITC green fluorescent stain without primary antibodies and DAPI 

stained. Scale bar measure 40 µm.   
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4.5.4.2. ELISA-based collagen detection 

ELISA testing was applied to determine and confirm collagen presence on cell-seeded 

hydrogels. Collagen I production was elevated over time with osteogenic media compared to 

control. This was observed to the greatest extent with pNTBAM and less so with pNIPAM. 

Hydrogels seeded with hCHs displayed less robust collagen I production although some 

increases were detected, particularly for pNTBAM (Figure 4-18).  

Collagen II levels displayed significant increases over with time with hCHs upon pNTBAM 

in the presence of chondrogenic factors compared to basic media samples. However, little 

evidence of collagen II production by hCHs on pNIPAM was noted, irrespective of media 

system. Similarly, hOB-seeded hydrogels displayed little evidence of meaningful change 

irrespective of media/hydrogel pairing (Figure 4-19). 

In tracing the levels for Annexin A2, as a marker for cell engagement in mineral activity, 

hOBs indicated significant increase with time which was mostly evident with osteogenic 

samples and for both hydrogels, although higher for pNTBAM. Lower levels were noticed for 

hCHs samples especially with pNTBAM samples which showed less increase with time; 

however, a significant increase was seen for pNIPAM samples even with chondrogenic media 

samples (Figure 4-20). The measured quantities for all proteins were then compared at day 21 

to examine the difference possibly concluded between tested hydrogels. Eventually collagen 

I was significantly higher for hOBs seeded upon pNTBAM hydrogel. Levels were 

significantly (P ≤0.05) higher using osteogenic media compared to the basic media control 

set.   (Figure 4-21 A). Collagen II levels were significantly higher for hCHs upon pNTBAM 

samples using chondrogenic media and in comparison to other hydrogel samples. 

(Figure 4-21 B). Annexin A2 was evidently significant with hOB but with higher level for 

pNTBAM samples compared to other samples (Figure 4-21 C).
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Figure 4-18. Assessment of collagen I on hydrogels seeded with hCHs and hOBs. The amount of collagen I in ng/g of total protein measured in 

sample lysate, samples expressed in columns to indicate each cell type  and in rows corresponding to each hydrogel where (A) is pNIPAM hydrogel 

and (B) is pNTBAM both with hCH and hOB. The amounts were followed in three time points (7, 15, and 21) where the dark square marks line 

represents specific media set (osteogenic or chondrogenic) while the light colour diamond marks line is the basic media set (control). Asterisks indicate 

significance at P ≤0.05, the light asterisk (*) is the significance between sample and control at each time point and the dark one (*) is indicative for 

significance with time (results represent the mean ±SD, n=3).    
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Figure 4-19. Assessment of collagen II on hydrogels seeded with hCHs and hOBs. The amount of collagen I in ng/g of total protein measured in 

sample lysate, samples expressed in columns to indicate each cell type and in rows corresponding to each hydrogel where (A) is pNIPAM hydrogel 

and (B) is pNTBAM both with hCH and hOB. The amounts were followed in three time points (7, 15, and 21) where the dark square marks line 

represents specific media set (osteogenic or chondrogenic) while the light colour diamond marks line is the basic media set (control). Asterisks indicate 

significance at P ≤0.05, the light asterisk (*) is the significance between sample and control at each time point and the dark one (*) is indicative for 

significance with time (results represent the mean ±SD, n=3).  
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Figure 4-20. Assessment of annexin A2 on hydrogels seeded with hCHs and hOBs. The amount of Annx A2  in ng/g of total protein measured in 

sample lysate, samples expressed in columns to indicate each cell type  and in rows corresponding to each hydrogel where (A) is pNIPAM hydrogel 

and (B) is pNTBAM both with hCH and hOB. The amounts were followed in three time points (7, 15, and 21) where the dark square marks line 

represents specific media set (osteogenic or chondrogenic) while the light colour diamond marks line is the basic media set (control). Asterisks indicate 

significance at P ≤0.05, the light asterisk (*) is the significance between sample and control at each time point and the dark one (*) is indicative for 

significance with time (results represent the mean ±SD, n=3).      
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Figure 4-21. Comparing levels of collagens, I, II and annexin A2 between hydrogels at day 

21. Levels are expressed in ng/g of total protein measured in sample lysate for (A) collagen I, 

(B) collagen II, and annexin A2. Bars with different colours and patterns are indicating both 

hydrogels with either hCH or hOB. Asterisks indicate significant levels at P ≤0.05 (Results 

are representing mean ±SD, n=3).   
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4.6. Discussion 

An important aspect of material intended for the promotion of tissue regeneration is the ability 

to communicate with the biological system including the cells (Williams 2009). In our current 

study we have displayed a positive association between cells and materials. H&E and confocal 

imaging revealed cell attachment upon hydrogel surfaces which was distinct between 

pNIPAM and pNTBAM (Figures 4-1, 4-2). Chemical and architectural differences between 

the two materials, as outlined in Chapter 3, clearly impacted cell behaviour and potentially 

their capacity for tissue regeneration. For instance, the promotion of aggregate formation on 

pNIPAM vs. the cell spreading seen with pNTBAM could provide focus for when targeting 

each material towards intended tissue regeneration. Reviews of material properties and their 

effects on overall cellular behaviour indicate that materials with intermediate hydrophilic or 

hydrophobic characteristics are generally supportive of cell adhesion and attachment 

(Bačáková et al. 2004; Lynch et al. 2005). It is also proposed that materials with soft surfaces 

promote a round shape, reduced attachment, and reduced proliferation compared to hard 

surface materials (Bačáková et al. 2000; Bačáková et al. 2001; Bačáková et al. 2004). 

Viability of cells on prospective materials is an important tool in determining material 

eligibility and biomimetic, non-toxic characteristics for cells (Tsou et al. 2016; R. Yang et al. 

2017). The current study established a higher rate of viable vs. dead cells for all cells involved 

on both polymers (Figure 4-3). Cell number counts however indicated a dramatic difference 

between pNTBAM and pNIPAM with higher cell numbers evident on pNTBAM (Figure 4-

4). Cells seeded on pNIPAM, although remaining viable at day 21, stayed at or around the 

original seeding density. The soft surface features of pNIPAM may not be suitable for the 

support of cell proliferation. These results have confirmed the impact of hydrogel chemistry 

on different cell shape, growth pattern, and cell number. pNIPAM hydrophilic behaviour has 

likely increased the percentage of water content forming a more flexible, soft surface, 

promoting growth in clusters without an increase in cell number (Keselowsky et al. 2003; 

Bačáková et al. 2004; Tan et al. 2005). The current finding were in agreement with certain 
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studies that indicated the effects of material stiffness on impacting cell shape and proliferation 

in addition to cell attachment (Rehfeldt et al. 2007; V Thomas et al. 2017; Basu et al. 2018). 

Engler et. al. studied the performance of cells in response to their mechanical 

microenvironment. They revealed the importance of stiffness on having a flattened and higher 

proliferation rate and viability versus a spherical cell shape and more aggregates using softer 

surfaces. This is probably related to alter cell signalling when the cells are sensing their ground 

matrix (Engler et al. 2004; Engler et al. 2006) 

The ability of cells to migrate within the hydrogel construct is determined by the porosity and 

internal architecture of the tested material. Several previous studies have indicated the 

importance of interconnected porous structures on guiding cell behaviour. This enables 

penetration of cells towards the core of the scaffold optimising signalling communication 

throughout (Karageorgiou and Kaplan 2005; Murphy et al. 2010; Sobral et al. 2011; Turnbull 

et al. 2018). The current data indicated that pNIPAM (0.042 g/mL) supported cell migration 

below the surface region. This was observed with both primary human cells and immortal cell 

lines (Figures 4-5, 4-8).  In contrast pNTBAM did not support cell penetration, even with the 

lower monomeric concentration, which may be due to the smaller average pore size obtained 

for pNTBAM versus pNIPAM (Chapter 3). There may also be a correlation to the more 

hydrophobic behaviour of pNTBAM. As the production of these hydrogels involves phase 

separation, less monomeric concentration is associated with more water being incorporated 

between polymer phase when using a hydrophilic polymer like pNIPAM with water solvent. 

However, the more water repelling properties presented by pNTBAM in addition to the use 

of methanol solvent ultimately promoted more dense mass with less water being enclosed 

within polymer part and less interconnected porosity (Mane 2016; Remanan et al. 2018; 

Khoryani et al. 2018).  

Illustrating the above facts, it can be assumed that pNIPAM 0.042 g/mL may advice for a 

higher number of cells compared to the other subgroups. this is possibly attributed to the cells 

are being migrated within the hydrogel. The cell number may still lower than pNTBAM 
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relevant to the significantly increased cell population upon pNTBAM sub-groups. However, 

this could be an added bonus to the pNIPAM 0.042 g/mL sub-group indicating more eligibility 

for hosting vital number of cells in addition to allowing cells migration owing to its porous 

structure. 

In line with the main goal of creating an osteochondral scaffold, the current work proceeded 

to examine primary cells responses to culture upon pNIPAM and pNTBAM hydrogels. The 

findings from ALP and mineral association determined that the highest mineral association 

was observed from hOBs seeded on pNTBAM, although a progressive increase was obvious 

for pNIPAM. This is also noticeable from alizarin staining showing a clearly positive staining 

with pNIPAM samples which was more evident with hOBs. Signs of active mineralization 

were significantly lower with hCHs upon pNTBAM which again was evident from alizarin 

staining (Figures 4-11, 4-12). In contrast, GAG content was highest for hCHs on pNTBAM 

which progressively increased with time according to DMMB assay. These preliminary 

findings might be an indication of each hydrogel’s possible trend towards supporting specific 

cell behaviour (Figure 4-14). It is evident that both hydrogels were able to host mineralization 

production with higher tendency for hOBs upon pNTBAM, whereas pNTBAM has supported 

hCHs GAGs production to significantly higher degree compared to pNIPAM.  

In an attempt to create an osteochondral scaffold, the above results are of importance as we 

need to mimic the natural tissue. The region spanning the sub-chondral bone up to the articular 

cartilage layers normally hosts a mineral gradient that gradually shifts from bone cells to 

hypertrophic chondrocytes at the calcified cartilage layer. This gradient is restricted by the 

tidemark junction before the middle cartilage zone where no further mineralization is formed 

by cells (Burr 2004; Hoemann et al. 2012b; Pal 2014). The current results might suggest the 

validity of these hydrogels to create a scaffold that will host variable mineralization tendencies 

from variable cell types (bone and cartilage). 
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Immunostaining coupled with ELISA established that the level of collagen I showed 

significant elevation with both hydrogels more specifically with pNTBAM. This was shown 

as intense colour expression with immunostaining images (Figure 4-15). Collagen II indicated 

higher expression with hCHs on pNTBAM and less with pNIPAM; confirmed by ELISA 

which revealed significant levels of collagen II from hCHs on pNTBAM at day 21 

(Figures 4-16, 4-21). The normal physiology of bone and cartilage highlights that these tissues 

are associated with collagens I and II but to different extents. This is identified normally by 

higher collagen I levels in bone which contrasts with cartilage tissues where collagen II is the 

major matrix protein. Between these regions the level of matrix proteins will increase or 

decrease along the tissue gradient depending on the cell type and the level of mineralization. 

This is basically recognized at the calcified cartilage region where hypertrophic chondrocytes 

started some increase in collagen II in addition to elevation of collagen X as an indicator of 

mineral association activity by cells (Hoemann et al. 2012b; Pal 2014). In locating 

mineralization parameters, the expression of collagen X was notably higher with hOBs and 

hCHs on pNIPAM compared to pNTBAM (Figure 4-17). This was in line with annexin A2 

that showed significant increases with hOBs and hCHs upon pNIPAM compared to pNTBAM 

(Figures 4-20, 4-21). Annexins family are group of proteins of which annexin A2 is highly 

expressed by hypertrophic chondrocytes and bone cells and is one among 6 proteins of the 

same family whom are involved in promoting active matrix mineralization (Kirsch et al. 2000; 

Gillette & Nielsen-Preiss 2004; Genetos et al. 2014). In view of the current results, we could 

have a possible involvement of hCHs in a calcium mineralization process when seeded upon 

pNIPAM which was opposite to their behaviour on pNTBAM that went for a more 

chondrogenic activity.  

Hydrogel surface chemistry and stiffness therefore have the potential to impact the final cell 

behaviour. Studies have shown that increased hydrogel’s stiffness to beyond 33Kpa will 

enhance GAGs production by chondrocytes while materials presenting more NH- and OH- 

with less CH3- chemical groups are involved in promoting osteogenic cell activity (Wells 
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2008; Wang et al. 2016; Cao et al. 2017b). The present findings might predict our materials 

properties as a factor in deciding cell behaviour owing to their different stiffness and variable 

percentage of CH3- groups. All these facts might suggest the usefulness of the current 

hydrogels in creating a gradient scaffold mass that will support osteogenic and chondrogenic 

tissue regeneration at bone-cartilage interface. 

4.7. Conclusion 

The current results proven the ability of pNIPAM and pNTBAM polymers hydrogel construct 

to support cells adhesion to their surfaces. It also indicates good percentage of viable cells, 

including primary cell lines, upon their surfaces for up to 21 days. Calcium mineralization 

was hosted to a certain degree by both hydrogels, but a high tendency was noted with 

pNTBAM. Moreover, pNTBAM revealed higher tendency to promote chondrogenic 

behaviour unlike pNIPAM. This might refer to the variable tendencies for pNIPAM and 

pNTBAM to promote bone and cartilage cells respectively, and how the distinctive polymers 

properties impacted their relevant biological performances. Moreover, this could give a clue 

for a possible engagement of both hydrogel to create unique scaffold construct utilizing the 

variable behaviours obtained to reconstruct osteochondral region. 
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5.1. Introduction  

Osteochondral region has a unique structural variation that includes cells and tissues. It ranges 

from hard highly mineralised sub-chondral bone to a more flexible cartilage region. Within 

this region, a gradual transformation is developed allowing for a mineral and structural 

gradient that support the functional integrity of these tissues (Izadifar et al. 2012). Damage to 

the osteochondral region eliminates the consistency of this structure causing serious functional 

disabilities that demand medical intervention. Variable treatment strategies basically depend 

on the inflammatory response and cellular ability to regenerate damaged tissues, showed some 

positive results, however with certain limitations. 

Tissue engineering approaches principally use an ECM substitute that will act as a template 

to support cells’ growth and differentiation. A surplus range of materials with tissue-specific 

features may support this goal by promoting cells’ specific functions to regenerate damaged 

tissues. The complex multi-structure of the osteochondral region may require a combination 

of two or more biomaterials in order to mimic the natural tissue construct. Studies have shown 

some progress by joining materials together to create a multi (bi- or tri-phasic) scaffold to 

guide the regeneration of certain tissues including the osteochondral region. However, the 

main challenge is the combining of these materials together into one unit; many have used 

protein glue to attach scaffold’s layers producing an integral multi-layered construct. 

Problems from de-mixing or delamination were still existed and challenging such scaffold 

production.  

This Chapter focuses on testing the possibility of joining pNIPAM and pNTBAM hydrogels, 

to produce a 3D gradient scaffold with multi-architectural features. As both hydrogels are 

produced using the same technique, we will make use of this feature to generate the gradient 

scaffold in a single manufacturing operation. The process of polymer elongation and cross-

linking will be the bonding step to join these materials and at the same time generating gradient 

region while moving From one polymer to the other. The resultant scaffold construct will be 

tested furtherly regarding cells behaviour by focusing on the gradient interface region.  
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In an attempt to promote optimum cell performance across the proposed scaffold construct, 

bioactive glass (BG) fibres were introduced by vertically embedding them through the 

scaffolds mass. The BG material is a known osteoconductive mass that will support further 

mineralization and encourage osteogenic behaviour of cells (Hench 1996; Jones 2015). 

Several types of BG materials were existed and applied for biomedical researches. The current 

BG fibres are the phosphate based glass which their main constituents (calcium and 

phosphate) are extremely important for bone mineralization once they degrade to release these 

minerals (Hench 2006b; Hossain et al. 2018). The use of these fibres will aid the design of the 

current scaffold in two dimensions; they will leave empty channels after degradation allowing 

for cells migration; they will promote mineralization of this region enhancing bone cells 

function and promoting calcification of chondrocytes with the hope for matching the calcified 

cartilage region.  These will be tested accordingly to assess the impact of BG fibres on cells 

behaviour. 

5.2. Chapter aims  

The current Chapter aims for the followings 

• Testing the possibility of joining pNIPAM and pNTBAM to generate a gradient scaffold 

construct with further characterization. 

• Embedding biodegradable glass fibres (BG) within scaffolds construct with evaluation of their 

degradation profile.  

• Biological assessment of osteogenic and chondrogenic cell behaviour across gradient scaffold 

surface. 

• Determining the impact of BG fibres on the resultant osteogenic and chondrogenic 

performances of cells compared to the non-BG samples. 

5.3. Materials and methods 

A detailed methodology for the current Chapter experiments is mentioned in Chapter 2. 
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5.3.1.  Generating gradient scaffold 

The same synthesis procedure used for single hydrogel production was applied to obtain the 

gradient hydrogel scaffold. The two main characteristics that differentiate between these 

polymers in terms of synthesis are the type of solvent and the timing required for hydrogel 

formation. These differences were used as a base to prepare gradient scaffold. Both polymers 

solutions were prepared individually; pNIPAM polymer solution was added to the container 

at the beginning and initiated for polymerization using TMED. After 40 seconds (enough time 

for the polymerization to start) pNIPAM-pNTBAM mixture was added followed by adding 

pNTBAM solution exactly after 1 minute. The timing was critical for obtaining the final 

scaffold construct. Samples were sealed with a cover and left overnight at room temperature 

for complete hardening (Chapter 2 section 2.2.3).  

5.3.2. Characterisation of gradient scaffold regions 

To identify regional differences across the resultant scaffold mass, an FTIR spectrum was 

taken. Gradient scaffold was sliced into pieces and scanned for spectral gradual change from 

the top to the bottom of the entire mass (Chapter 2 section 2.4.1.2). SEM imaging was 

performed as well to architectural differences across gradient regions (Chapter 2 section 2.4.4)  

5.3.3. The inclusion of bioactive glass (BG) fibres 

A 3D printed model was proposed as a mould to hold the BG fibres in a vertical direction. The 

mould was designed to host 16 fibres per sample evenly spaced throughout the base. Mould 

dimensions were 15 mm diameter x 10 mm thickness and fitted with a cylindrical plastic 

container. The polymer solution was prepared normally and cast over the mould; the whole 

unit was then sealed with a cap and stored at room temperature. The degradation pattern for 

BG fibres mass was tracked using a Raman microscope and micro CT scan (Chapter 2 section 

2.3)  
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5.3.4. Biological assessment of gradient and BG enforced scaffolds 

All complex scaffold structures (including combined polymers and BG enforced) were 

inspected to monitor cells behaviour upon their surfaces. Samples generally were washed 

several times with PBS at 37 °C before cell culturing upon their surfaces. Gradients samples 

were sliced vertically into 2 halves and cells were seeded upon the surface of section basically 

to the middle zone where polymer gradient is located. Alizarin red and alcian blue staining 

were applied to observe mineral and GAGs distribution over gradient hydrogel surface. 

Samples were tested furtherly for evidence of cell functional protein association including 

immunostaining and ELISA testing. Samples with BG fibres followed the same washing steps 

before cell culture, cells were seeded to the top of hydrogels. These samples were compared 

with the previously tested BG free hydrogels including gradients to verify the impact of BG 

fibres on cell overall behaviour (Chapter 2 sections 2.5.7, 2.7).     

5.4. Statistics  

All data were collected and analysed with Microsoft XL 2010 to calculate the mean, standard 

deviation and resulting graphs. Results obtained were compared using one and two-way 

ANOVA with Tukey’s multiple comparisons test. Statistics were analysed using Origin Pro 

8, the level of significance was set at P ≤ 0.05.    

5.5. Results 

5.5.1. Gradient hydrogel architectural properties 

The resultant scaffold appearance revealed the gradual change from one end to another, 

basically showing predominant white colour mass from pNTBAM layer with gradual 

transformation into transparent shape towards pNIPAM end layer (Figure 5-1 A).  

The SEM imaging of three scaffold’s compartments showed relatively parallel architectural 

features to the original hydrogels (Figure 5-1 B). This was mostly notable at both ends of the 

scaffold that corresponds to pNIPAM and pNTBAM. The interface region though showed 

variable pore shape and size, but mostly more dense, flake-like polymer aggregates.  
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The FTIR scan though revealed progressive change from one side of scaffold to the other one 

detected by tracking the specific bands regions of spectra for each polymer at around 

1200 cm⁻1 of FTIR spectra (two bands at 1131 cm⁻1 and 1171 cm⁻1 for pNIPAM and one big 

band 1224 cm⁻1 for pNTBAM). The interface region spectra reveal the interference between 

the two polymers with gradual spectral peak reduction as moving from pNTBAM to pNIPAM 

area (Figure 5-1 C).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1. Characterisation and physical appearance of gradient hydrogel scaffold. (A) 

Showing scaffold general appearance, arrows indicating the range of each polymer regions. 

(B) SEM imaging showing architectural variations between scaffold compartments where 

pNTBAM at the top and pNIPAM at the bottom layer and in between a mixed layer of the two 

polymers. (C)  The FTIR spectra of several regions across the length of gradient scaffold 

starting from pNTBAM layer towards pNIPAM layer, the region marked with red rectangle 

corresponds to the finger print region specific for each polymer where the elevated peak from 
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pNTBAM gradually transformed into two small peaks at the pNIPAM region. yellow dotted 

marked region represents the mixed polymer regions and peaks transformation.  

 

 

5.5.2. Bio-glass (BG) mass evaluation  

5.5.2.1. Raman microscopy 

Raman mapping of hydrogel surface, where BG fibres included, enables us to identify the 

relevant regions of these components as a heat map. Raman spectra of pNIPAM-BG scaffold 

show the BG and hydrogel’s spectral region indicating high peak elevation for the BG mass 

at 700 cm⁻1 and 1150 cm⁻1 (Figure 5-2 A). The pNIPAM spectrum corresponds to the CH- 

and NH- stretching bands at the higher Raman shift area (2800-3000 cm⁻1). The BG spectral 

regions equivalent to to the P=O stretching bands at 1100-1170 cm⁻1 and P=O bending at 500-

700 cm⁻1. Mapping of sample surface, focusing on the BG region at 1150 cm⁻1, generates a 

heat map that illustrates the Raman intensity of the BG band at this region (P=O stretch bands). 

The heat map comprises coloured areas indicative to the components peaks where the red 

reflects the higher Raman intensity (in this case the BG) down to the lowest intensity 

represented by blue. Tracking the BG fibre with time showed expanding of the green zone 

region across days 7 to 15 while shrinking of the red zone which reflects blending of these 

elements with hydrogel. The principal component analysis (PCA) of Raman enables the direct 

comparison of peaks within a number of ranges, in this case between 2800 and 3000 cm⁻1 

(corresponding to the hydrogel) and 1100-1200 cm⁻1 (to illustrate the BG fibre band). 

The starting point clearly shows that where there is BG present there is not hydrogel and vice 

versa. From day 7 the distinction between BG and hydrogel becomes less apparent. Further 

noticeably at day 15, where the correlation between the two peaks is unclear, indicating the 

diffusion and thus interaction of the ions with pNIPAM as a function of time. The heat maps 

illustrate the shrinking of the area where there is fibre as it degrades (Figure 5-2 B). 
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Figure 5-2. Raman mapping of BG mass embedded in hydrogel. The figure is showing (A) 

spectral regions of pNIPAM and BG located in different regions, (B) heat map of sample 

surface focusing on single BG fibre at 1200 cm⁻1 revealing the BG mass (red core), the green 

zone spreading at days 7, and 15 is indicating BG mass disintegration with time, analysis 

using PCA indicated mass shrinking from day 7 to 15.  

 

 

5.5.2.2. Micro computed tomography (µCT)  

The use of µCT enables us to recognize the degradation of BG fibres within hydrogels by 

detecting the different densities between the hydrogel and BG fibres. As per the µCT, the 

hydrogel-BG composite was analysed to show the dense BG mass (brown colour) in 

transparent mass of hydrogel. The dense fibre mass was clearly fading with time reaching up 

to 28 days of incubation in PBS at 37 °C (Figure 5-3 A). The condition was almost the same 

for both hydrogels as both showed quite similar mass density. Density values assessed by the 

µCT, was plotted against time to reveal the BG mass reduction. the BG mass ratio was 
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evaluated in percentage of BG per the total volume of sample. results showed the reduction of 

BG fibres mass volume with time reaching the lowest level at day 28 (Figure 5-3 B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-3. µCT scanning of hydrogel embedded BG mass for pNIPAM and pNTBAM. A) 

Images are showing BG mass (brown colour) threaded within hydrogels (transparent) using 

µCT scanned with time (7, 15, 21, and 28 days). Images scale bar at 2 mm. B) BG fibres 

percentage of density reduction tracked with time up to day 28 compared to hydrogel density.   

 

 

5.5.2.3. Alizarin red stain as an evidence of BG degradation 

hydrogel samples with BG fibres were assessed to locate BG fibres openings and evidence of 

mineral traces by staining with alizarin red. samples were stained after being incubated with 

PBS at 37 °C for 28 days. images from alizarin red stained sample revealed signs of BG 
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channels appeared as a red stained mark on the top of hydrogels. pNIPAM-BG samples though 

were easier to illustrate the BG channels when viewed microscopically, as it is transparent. 

alizarin staining showed the linings of the BG channels and most of the core stained red 

reflecting a diffused zone of redness surrounding the BG channel (Figure 5-4). 

    

 

 

 

 

 

 

 

 

Figure 5-4. BG embedded hydrogels incubated with PBS at 37 °C and stained with alizarin 

red at day 21. pNIPAM and pNTBAM hydrogels imaged at two magnifications (x2, and x10) 

showing the magnitude of staining for BG fibres and their degradation elements for both 

hydrogels. Scale bar measure 2 mm for x2 and 300 µm for x10 images.  

 

5.5.3. Biological assessment of gradient scaffold 

5.5.3.1. Quantification of minerals and GAGs 

Staining of gradient scaffold sections showed the arrangements of minerals and GAGs across 

the gradient area corresponding to each cell type. Alizarin stained hOBs samples obviously 

pointed out the prevalence of red stained calcium minerals throughout the surface 

(Figure 5-5). An increased minerals level towards pNIPAM region was noticeable by the 

slightly enhanced redness. Gradient samples with hCHs obviously showed less alizarin red 
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staining for the whole sample surface, however, with evidence of calcium minerals association 

observed at the interface region.  

GAG contents, according to alcian blue stain, revealed fewer amounts associated with hOBs 

samples mostly close to control samples. An enormous staining was clear with hCHs samples 

towards pNTBAM region which seems to be opposed at the junction before pNIPAM side. 

Quantifying calcium ions over 21 days of cell culture has shown significantly increased levels 

with time when tracking hOBs samples mostly with osteogenic media which also was 

significant compared to basic media samples (Figure 5-6 A). These results were obviously 

significantly higher than samples with hCHs seeded at the same cells density. Gradient 

samples with hCHs were not significantly different between basic and chondrogenic media 

sample sets. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5. Alizarin and alcian blue stained gradient hydrogel sections seeded with hOBs 

and hCHs. Images are illustrating gradients samples captured at two magnifications (x2) for 

the whole sample and (x10) for the interface region (marked red square). Images rows are 

referring to each cell type in addition to control samples at the bottom. The far right up-down 

arrow key-figures are indicative for the scaffold’s regions between pNIPAM and pNTBAM for 

images row. Scale bar measure 2 mm for the x2 and 300 µm for the x10 images.     



138 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

Figure 5-6. Quantifying calcium ions and GAGs contents upon gradient hydrogels. (A) 

Calcium ions in µg/µL of sample lysate, (B) the amount of GAGs in µg/500µL of sample 

lysate. The top bar figures are comparing all samples with hOBs and hCHs for the levels of 

calcium ions and GAGs, the bottom figures are the relevant monitoring of these levels per 

each cell type compared to their control. Asterisks indicate significance at P ≤0.05, for the 

bottom figures the light asterisk (*) is the significance between sample and control at each 

time point and the dark one (*) is indicative for significance with time (results represent the 

mean ±SD, n=3).    
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DMMB assay clearly revealed higher GAGs associated with gradient sample seeded with 

hCHs (Figure 5-6 B). The levels were significantly higher with chondrogenic media compared 

to basic media control samples and compared to other samples seeded with hOBs. Monitoring 

GAGs amounts with time showed a progressive increase with time up to day 21 for all tested 

samples including hOBs samples.  

5.5.3.2. Immune staining for collagens I, II, and X 

Images from immune-stained samples showed the expression of collagen I and II relevant to 

each cell type in addition to collagen X (Figure 5-7). Red fluorescent level indicated intense 

colour for collagen I in hOBs samples. Some staining was seen for hCHs which might be 

higher when compared to the same cells upon original hydrogels (Chapter 4, Figure 4-15). 

Expression for collagen II revealed less strength for hOBs and medium to low stages for hCHs 

which is lower when compared to the previous imaging for individual hydrogels (Chapter 4, 

Figure 4-16). The green fluorescent (FITC), indicative for collagen X, revealed higher 

expression for both cell types observed at the middle zone of gradient samples. The fluorescent 

level seems to be evenly expressed for hOBs and hCHs with a bit more intensity for hOBs. 
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Figure 5-7. Immune-stained gradients samples seeded with hOBs and hCHs for collagens 

I, II, and X. Confocal images are explained in columns for the magnifications x40 showing 

collagens expressions and cells nuclei plus a merged x40. Images rows are corresponding to 

collagen types each with particular cell type. Controls are samples with hOBs and hCHs 

incubated with secondary antibodies marked with TRITC (red) and FITC (green) without 

primary antibodies. Images scale bar measure 40µm for the x40 and 200µm for the x10 

images (Images were captured using Olympus U-TBI90 laser fluorescent confocal 

microscope).   
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5.5.3.3.  ELISA immune assay  

Monitoring of collagen I level exposed a progressive significant increase with hOBs samples 

using osteogenic media. Levels were apparently shifted to a greater value after day 15. Results, 

however, were not significant using basic media with variable measures reaching day 21 

(Figure 5-8 A). Some elevations in collagen I was recorded for hCHs gradient samples which 

was not significantly altered, neither by day 21 nor between basic or chondrogenic media sets. 

When compared at day 21, hOBs using osteogenic media clearly indicated significantly higher 

levels compared to hCHs samples or other basic media samples. 

Collagen II levels were very low at day 7 that barely can be recognized with both cell types. 

However, gradient samples with hCHs evoked a significant increase from day 15 which was 

parallel in terms of basic or chondrogenic media at this point. Levels with chondrogenic media 

though were recorded to be significantly higher than basic control samples reaching day 21 of 

culturing (Figure 5-8 B). Gradient hydrogels with hOBs had also shown significant (P ≤0.05) 

elevation using osteogenic media which were plateaued after day 15 towards day 21, this was 

significant compared to basic media sample set. When reviewing the whole results set at day 

21, hCHs samples with chondrogenic media showed a significant amount comparing to the 

other basic or hOBs samples. 

Gradient samples with hOBs and hCHs revealed significantly increased annexin A2 levels 

with time which might refer to increased mineral layout activity. Amounts were significantly 

shifted to higher level with hOBs osteogenic media set compared to basic media 

(Figure 5-8 C). The situation with hCHs indicated parallel increase with time for both 

chondrogenic and basic media sample set with no significant difference. The final comparison 

revealed significant amounts for hOBs samples compared to hCHs and controls at day 21.   
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Figure 5-8.  Quantifying collagens I, II and annexin A2 on gradient hydrogels seeded with hOBs and hCHs. Figures rows represent each marker 

level (1) collagen I, (2) collagen II, and (3) annexin A2. Figure columns are revealing marker level monitored with time for (A) hCHs and (B) hOBs 

respectively with the final comparison of levels at day 21(C) illustrated in the right side column bar figure. Each marker quantified in ng/g of total 

protein measured in sample lysate. Asterisks indicate significance at P≤0.05, for the time monitoring figures the light asterisk (*) is the significance 

between sample and control at each time point and the dark one (*) is indicative for significance with time (results represent the mean ±SD, n=3).  
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5.5.4. BG embedded scaffold assessment 

5.5.4.1. Assessment of cells travelling through BG fibres channels 

3D images from confocal microscope showed cells (DAPI stained MG63 cells) gathering into 

BG fibre location with little evidence of infiltration through these channels for both pNIPAM 

and pNTBAM hydrogels. Cells may appear forming clusters or accumulates at the openings 

of these channels. pNIPAM samples also shows cells migration within porous structure 

(mentioned in Chapter 4) surrounding BG fibres region. This was in contrast to pNTBAM 

where cells set on the surface while some are clustering trying to migrate through BG openings 

(Figure 5-9). 

 

 

 

 

 

 

 

Figure 5-9. Assessment of MG63 travelling through degraded BG fibres channels of pNTBAM 

and pNIPAM hydrogels.  Confocal 3D image sections for pNIPAM and pNTBAM showing DAPI 

stained MG63 cells (blue) to the surface of hydrogels and accumulating around BG fibre 

channels. Yellow arrows indicate BG fibres locations.  
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5.5.4.2.  Calcium minerals and GAGs 

The comparison between hydrogel samples based on the existence or absence of BG fibres 

were all held using cell-specific functional media set (osteogenic or chondrogenic media). 

The assessment of calcium ions upon hydrogel samples with BG fibres has shown elevation 

when compared to hydrogels with no BG mostly with hOBs samples. Samples of hOBs with 

BG encountered significantly increased values with time with a shifted increase at day 21, 

these were noticeable for both pNTBAM (Figure 5-10 A) and pNIPAM samples (Figure 5-10 

B). The situation with hCHs has also witnessed significant elevation of calcium ions with 

time. However, these were mostly observed with pNIPAM samples and reported no 

significant difference as to the presence or absence of BG fibres. The pNTBAM samples with 

hCHs reveal no apparent increase in calcium ions with time. BG samples though indicated an 

increase whitch was obvious at day 21 only. 

The evaluation of GAGs for BG hydrogel samples indicated progressively increased amounts 

with time recognized only for pNTBAM (Figure 5-11 A) with hCHs and was significantly 

higher than hOBs samples. Surprisingly, the levels of GAGs were significantly higher with 

pNTBAM-BG samples. However, the impact of BG fibres on hOBs for pNTBAM samples 

showed no apparent difference. Additionally, the whole set didn’t expose relevant increase 

with time. The GAGs content for pNIPAM (Figure 5-11 B) samples was quite parallel 

compared to all samples weather according to cell types or BG enforced ones and has shown 

non-significant alteration with time.  

Comparing results of calcium ions and GAGs at day 21 clearly revealed significant elevation 

of calcium ions for hOBs-BG samples indicated for both pNIPAM and pNTBAM samples 

with higher levels seen for hOBs on pNTBAM-BG samples. The least amount was measured 

for hCHs on pNTBAM with no obvious difference between original and BG containing 

samples (Figure 5-10 C). The GAGs content notably was higher with pNTBAM-BG seeded 
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with hCHs, while no significant (P >0.05) variation has been recorded for hOBs between BG 

and non-BG samples (Figure 5-11 C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-10. Comparing calcium mineral association between plain and BG enforced 

hydrogels seeded with hOBs and hCHs. Figures are revealing the calcium ions measured in 

µg/µL of sample lysate for (A) pNTBAM and (B) pNIPAM compared between BG and non-

BG samples while (C) represents the comparison between BG and non-BG of all samples at 

day 21. Asterisks indicate significant levels at P≤0.05 (Results are representing mean ±SD, 

n=3)        

 

 

 

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

hCHs hCHs-BG hCHs hCHs-BG hOBs hOBs-BG hOBs hOBs-BG

C
al

ci
u

m
 µ

g/
µ

l s
am

p
le

 ly
sa

te

pNIPAM-hCHs pNTBAM-hCHs pNIPAM-hOBs pNTBAM-hOBs

*  = P≤0.05

*

*

*

0

0.5

1

1.5

2

2.5

3

3.5

hCHs hCHs-BG hOBs hOBs-BGC
al

ci
u

m
 µ

g/
µ

l s
am

p
le

 ly
sa

te

7 Days 15 Days

**

*

*

*
*

* =P≤0.05

0

0.5

1

1.5

2

2.5

3

3.5

hCHs hCHs-BG hOBs hOBs-BGC
al

ci
u

m
 µ

g/
µ

l s
am

p
le

 ly
sa

te

7 Days 15 Days 21 Days

*

*

*
*

*

* =P≤0.05
A 

C 

B 



146 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-11. The amounts of GAGs measured in BG versus non-BG hydrogel samples 

seeded with hOBs and hCHs. The amounts of GAGs measured in µg/500 µL of sample lysate 

for (A) pNTBAM and (B) pNIPAM compared between BG and non-BG samples while (C) 

represents the comparison between BG and non-BG of all samples at day 21. Asterisks 

indicate significant levels at P ≤0.05 (Results are representing mean ±SD, n=3).    

 

 

Evaluation of calcium minerals upon gradient scaffold showed manifested impact of BG fibres 

on cells overall mineral association. This was mostly observed with hOBs when calcium ions 

started gradual increase up to day 15 then obviously boosted to a maximum level at day 21 

(Figure 5-12 A). The hCHs samples revealed some increased levels of calcium minerals with 

the BG samples evident by day 15, further increase was then plateaued reaching day 21. 

Overall comparison at day 21 defines a significant alteration in BG samples versus the original 

gradient scaffold measured for hOBs samples (Figure 5-12 B). 

In determining the effects of BG fibres upon GAGs level, results indicated no significant 

difference observed for BG samples. The amount of GAGs was significantly higher for hCHs 
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and in line with that measured for non-BG samples when monitored with time (Figure 5-

13 A). The final comparison at day 21 showed no significantly altered results relevant to 

introducing BG fibres (Figure 5-13 B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-12. Assessment of calcium ions in BG and non-BG gradient scaffolds seeded with 

hOBs and hCHs. (A) Calcium ions level monitored with time for each cell type compared 

between BG and non-BG samples, (B) comparing all samples for the level of calcium ions at 

day 21. Asterisks indicate significant levels at P ≤0.05 (Results are representing mean ±SD, 

n=3).    
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Figure 5-13. The amount of GAGs in BG vs non-BG gradient scaffolds. (A) GAG contents 

monitored with time for each cell type compared between BG and non-BG samples, (B) the 

levels of GAG compared between all samples at day 21. Asterisks indicate significant levels 

at P ≤0.05 (Results are representing mean ±SD, n=3)    
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levels at day 7 reaching to day 15, but thereafter continue to rise to be in line with the non-BG 

samples reporting around the same level at day 21 (Figure 5-14 B). The pNIPAM-BG samples 

with hCHs have a little increase with time as previously monitored for non-BG samples, 

though some elevation was observed at day 7 and 15 which then returned to be in line with 

the non-BG samples at day 21. The pNTBAM-hCHs samples seem to present around equal 

levels of collagen I for both the BG and non-BG samples, even though, fewer amounts were 

noticed in general for BG samples.  

In monitoring collagen II levels, non-significantly altered measures between BG and non-BG 

samples were observed for pNIPAM samples seeded with hCHs (Figure 5-15 A). The situation 

with pNTBAM-hCHs carried significant variation between BG and non-BG samples 

manifested by extremely lowered collagen II levels compared to the non-BG. The levels 

actually have significant elevation with time, but the amounts of collagen II retreated to be 

less since day 7 and reaching day 21 (Figure 5-15 B). Hydrogel samples with hOBs had only 

little elevation of collagen II manifested for pNIPAM and pNTBAM. Levels for BG samples 

were in line with the non-BG samples with only some increase over the non-BG samples 

observed with pNIPAM. Such increase was significant at some points notably from day 15-

21. The pNTBAM-BG samples were not significantly altered from the non-BG ones and were 

fluctuated around the same levels. 

Results of measuring annexin A2 clearly showed significant elevation with BG samples 

relevant to non-BG. Altered levels were mostly obvious with hCHs weather pNIPAM 

(Figure 5-16 A) or pNTBAM (Figure 5-16 B), these were notably started progressive 

elevation away from non-BG samples since day 7. Samples with hOBs have shown overall 

significantly higher levels for pNTBAM-BG compared to non-BG at all time points. The 

pNIPAM-BG samples though had a significant increase at the early time points, it went to be 

close to the level of non-BG samples.   
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Comparing results between BG and non-BG hydrogel samples at day 21, revealed the 

variation between cells’ activities upon each specific hydrogel type and the impact of 

embedding BG fibres to their construct. BG fibres obviously impacted a significant increase 

in collagen I level for hOBs with pNIPAM-BG compared to non-BG but no significant 

difference between pNTBAM-BG and non-BG. Other hydrogel samples indicated non-

significant variation of collagen I for BG introduction with hOBs or hCHs, lower level was 

recorded to pNTBAM-hCHs (Figure 5-17 A). Collagen II has significantly lower value with 

pNTBAM-BG samples of hCHs. Significantly increased level, however, were reported with 

pNIPAM-BG samples weather hOBs or hCHs (Figure 5-17 B). Annexin A2 values had 

significantly (P ≤0.05) elevated with pNIPAM-BG and pNTBAM-BG samples seeded with 

hCHs. These value also witnessed significant elevation with hOBs upon pNTBAM-BG, but 

still with no significant (P >0.05) variation revealed with hOBs on pNIPAM-BG samples 

(Figure 5-17 C).  
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Figure 5-14. Comparing collagen I level measured in BG versus non-BG hydrogels seeded with hOBs and hCHs. The level of collagen I in ng/g of 

total protein measured in sample lysate. The figures are arranged in columns indicating each cell type (hCHs and hOBs) and in rows representing 

each hydrogel type where (A) is pNIPAM and (B) is pNTBAM. Each comparison was held between BG (red square marks line) and non-BG (blue 

diamond marks line) samples monitored with time. Asterisks indicate significance at P ≤0.05, the light asterisk (*) is the significance between sample 

and control at each time point and the dark one (*) is indicative for significance with time (results represent the mean ±SD, n=3).       
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Figure 5-15. Comparing collagen II levels measured in BG versus non-BG hydrogels seeded with hOBs and hCHs.  The level of collagen II in ng/g 

of total protein measured in sample lysate. The figures are arranged in columns indicating each cell type (hCHs and hOBs) and in rows representing 

each hydrogel type where (A) is pNIPAM and (B) is pNTBAM. Each comparison was held between BG (red square marks line) and non-BG (blue 

diamond marks line) samples monitored with time. Asterisks indicate significance at P ≤0.05, the light asterisk (*) is the significance between sample 

and control at each time point and the dark one (*) is indicative for significance with time (results represent the mean ±SD, n=3).  
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Figure 5-16. Comparing annexin A2 levels measured in BG versus non-BG hydrogels seeded with hOBs and hCHs. The level of annexin A2 in 

ng/g of total protein measured in sample lysate. The figures are arranged in columns indicating each cell type (hCHs and hOBs) and in rows 

representing each hydrogel type where (A) is pNIPAM and (B) is pNTBAM. Each comparison was held between BG (red square marks line) and non-

BG (blue diamond marks line) samples monitored with time. Asterisks indicate significance at P ≤0.05, the light asterisk (*) is the significance between 

sample and control at each time point and the dark one (*) is indicative for significance with time (results represent the mean ±SD, n=3). 
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Figure 5-17. The assessment of collagens I, II and annexin A2 in BG vs non-BG at day 21. 

Comparison between (A) collagen I levels (B) collagen II levels and (C) annexin A2 levels 

measured in ng/g of total protein of sample lysate. The bars in each figure are corresponding 

to each hydrogel sample with a specific cell type with BG or without BG. Asterisks indicate 

significant levels at P ≤0.05 (Results are representing mean ±SD, n=3).   
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In determining the final impact of embedding BG fibres within gradient scaffold, results 

indicated significant alterations in almost all samples with BG fibres. Collagen I have shown 

a significant increase with time for gradient-BG samples with hOBs and encountered for a 

huge variation at all time points compared to non-BG samples. Gradient samples with hCHs 

were not significantly altered (P >0.05) from the non-BG samples and both have only little 

increase with time (Figure 5-18 A). 

The levels of collagen II revealed a significant lower level for gradient-BG samples seeded 

with hCHs compared to a higher level observed for the non-BG samples. The values were in 

line together at the early time points, but the further elevation after day 15 witnessed some 

retreat up to day 21 for the BG samples. For hOBs samples, collagen II had some variations 

between BG and non-BG with higher levels for non-BG samples until day 15, however, levels 

were back to be in line together at day 21 (Figure 5-18 B). 

A significant elevation of annexin A2 was noticed for gradient-BG samples, this was inclusive 

to all time points and with both cell types which might indicate the engagement of cells with 

further mineral activities (Figure 5-18 C).  
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Figure 5-18. Quantifying collagens I, II and annexin A2 in BG vs non-BG gradient scaffolds seeded with hOBs and hCHs. Figures rows represent 

each marker level (1) collagen I, (2) collagen II, and (3) annexin A2. Figure columns are revealing marker level monitored with time for (A) hCHs 

and (B) hOBs respectively with the final comparison of levels at day 21(C) illustrated in the right side column bar figure. Each marker quantified in 

ng/g of total protein measured in sample lysate. Asterisks indicate significance at P ≤0.05, for the time monitoring figures the light asterisk (*) is the 

significance between sample and control at each time point and the dark one (*) is indicative for significance with time (results represent the mean 

±SD, n=3).     
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5.6. Discussion  

In the physiological perspective, the cartilage-bone interface is a well-integrated region 

offering a gradual transition between bone and cartilage tissues (Chan et al. 2012). In the 

present work, the previously tested pNIPAM and pNTBAM hydrogels were assembled 

together to produce a 3D multi-regional scaffold with the hope that this will advice for a 

gradient tissue development. 

Studies have been directed to explore the role of biomaterial scaffolds as a template to guide 

the process of tissue regeneration. Several studies had established the usefulness of a multi-

layer scaffold to regenerate complex tissue constructs such as the osteochondral region 

(Martin et al. 2007; Levingstone et al. 2014; Sartori et al. 2017). Materials of variable 

characteristics have proven success to guide multiple tissue regeneration (Liu et al. 2013). 

Recent trends are focusing on creating integrated materials scaffold making use of a functional 

gradient between layers to perform as a natural tissue match (Leong et al. 2008; Sola et al. 

2016; Kang et al. 2018).  

The current scaffold design looks intact with no apparent margins to differentiate the two 

polymers, apart from a thin transparent layer of pNIPAM at one ends of the scaffold 

(Figure 5-1 A). Several techniques have been used to fabricate materials into gradient 

constructs with variations as per materials different characteristics and the targeted tissue 

regeneration (Chatterjee et al. 2011; Seidi et al. 2011; Sola et al. 2016; Di Luca, Ostrowska, 

et al. 2016; Bracaglia et al. 2017). It was stated according to Matyjaszewski et al. 2000 that 

atom transfer radical polymerization (ATRP) has been approved for gradient polymers 

production making use of the polymerization process to blend variable materials properties. 

The proposed method of joining the current materials had allowed for the development of 

integrated regions between the two polymers. The timing of addition of each polymer layer 

was set to be just after the polymerisation process had started in the previous layer i.e. while 

polymer formation is in the midway. This had ensured that the process of polymerisation 

initiated in the first layer will continue to build up polymer chains up to the next layer. Now, 
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the process of polymerisation will include chains from the second layer and continue onward 

until forming the whole composite. Accordingly, the interface region between the layers was 

integrated properly by infiltrating polymer chains together forming intact bonding region. This 

has aided to create a single construct advised for three architectural regions avoiding the 

problem of delamination that would occur when combining different materials in traditional 

multilayer scaffolds (Izadifar et al. 2012).  Current results illustrated the development of 

multiregional scaffold as per SEM imaging and FTIR characterisation. SEM images revealed 

similar architectural build to pNIPAM and pNTBAM at both ends. The interface part though 

exposed some change in configuration presented by larger pores with flake-like shape polymer 

boundaries (Figure 5-1 B). Variations between the two polymers in terms of wettability had 

impacted the process of their production; this was clear as different solvent system is required 

for each. Such a different property was reflected when both monomers solutions come in 

contact with each other in preparing gradient scaffold. It was obvious according to Biswas et 

al. that the presence of alcoholic component such as ethanol in pNIPAM solvent mixture will 

affect the swelling properties of the polymer leading to formation of macro-porous hydrogel. 

This could be interpreted by the different configuration observed in the interface region of the 

combined polymers scaffold according to SEM image. The FTIR identifications showed the 

gradual transition from pNTBAM to pNIPAM with a proposed interface section as indicated 

from the spectral fingerprint region (Figure 5-1 C). Notably, prevalence from pNTBAM phase 

was observed which might be related to the slower polymer formation speed. This is possibly 

led to a wide area formed from pNTBAM region which has had gradually narrowed towards 

pNIPAM.  Accordingly, the current scaffold design indicated architectural integration 

between the two polymers to form an intact scaffold unit. Although the FTIR measurements 

reflect gradual transformation from one polymer region towards the other, the resultant 

scaffold construct apparently may not show a gradient architectural development from 

pNIPAM to pNTBAM region as indicated by the variable porosity at the interface. However, 

the scaffold internal architecture refers to a multiregional porous characteristic. According to 

the natural osteochondral interface architecture, the sub-chondroal bone region represents a 
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larger porous structure that is followed by the sub-chondral bone plate which is a more dense 

bony region before moving to the calcified cartilaginous region (Burr 2004; Hoemann et al. 

2012a; Madry et al. 2010). The current design could be useful as the interface region give rise 

to a larger porous structure which can host higher rate of mineralization when tested with 

cellular behaviour (Karageorgiou & Kaplan 2005).  

Preliminary findings from histological staining of gradient samples, showed the gradual 

alteration of cells response across the area between the two polymers (Figure 5-5). As a 

general outcome, calcium minerals association was enhanced across a wide area of scaffold 

regions including the interface, mostly with hOBs. The production of GAGs was distinctive 

for hCHs at the pNTBAM side which has been interrupted at the interface towards pNIPAM 

side. This might indicate the role of the background architecture of the current scaffold in 

guiding cells behaviour i.e. cells are changing their behaviour accordingly while moving 

across matrix layers. According to a study conducted by Di Luca et al. 2016 chondrogenic 

differentiation was guided by a smaller pore architecture. They tested the differentiation of 

human mesenchymal stem cells (hMSCs) on a scaffold with gradient porous structure; the 

cells were showing an increased chondrogenic behaviour and GAGs production towards the 

smaller pore gradient region. Both polymers were able to support mineral association either 

with SBF solution or when seeded by cells (Chapters 3 and 4). The mineral activity though 

was more pronounced with cells using osteogenic supported media. As such, the current 

scaffold architecture has shown the propagation of mineralization across scaffold regions. Di 

Luca et al. 2015 also stated that osteogenic differentiation coupled with increased 

mineralization was enhanced by larger porous architecture of a gradient scaffold. An evidence 

of mineral association with hCHs might be seen at the interface region, this was less observed 

towards pNTBAM region. This is a possible finding that the mixed polymer interface region 

provides a supportive background for a more mineral layout by hCHs. The latter may be 

explained by the effect of macro-porous architecture of the region in allowing more 

mineralisation activity by cells. It has been indicated that the larger porous architecture is an 
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excellent promoter for enhanced osteogenic and mineralization behaviour of cells 

(Karageorgiou & Kaplan 2005). These results revealed the impact of the current structure and 

porosity on influencing osteochondral cell behaviour. In this case, the mixed polymer region 

of the current scaffold may advice for a dense mineral region owing to the larger porous 

structure. The findings from immune staining and ELISA may support such a claim; this was 

obvious in monitoring confocal images for collagen X expression that revealed intense green 

fluorescent for both cells at the interface region. ELISA identification of annexin A2 in hCHs 

has had an enhanced value as well when monitored with gradient scaffold for both cells, which 

could be another evidence for these cells as being involved in the mineralization process. 

Markers like annexin A2 and collagen X have been proven as indicators for calcium 

mineralization of the extracellular matrix observed for hypertrophic chondrocytes and 

osteoblasts. Annexin A2 normally expressed in matrix vesicles produced by these cells 

(Bottini et al. 2018).  Reviewing other markers, collagen I, II are both showing reasonable 

amounts corresponding to hOBs and hCHs respectively on gradient scaffold (Figure 5-8). This 

probably referring that the cells are still functioning normally relevant to their type.  

In review of the above results, the produced multiregional scaffold presented a gradual mixture 

of both polymers towards scaffold ends. The mixed region develops some changes to the 

architectural structure. Accordingly, this had impacted cell’s behaviour differently when 

compared to the individual hydrogels. Relevant to functional proteins levels, cells seeded on 

the current combined polymers scaffold revealed intermediate levels of proteins as per the 

same cells upon single hydrogels. The level of annexin A2, as an indicative of mineralization, 

presented variable levels which was significantly lower with hOBs while no significant 

difference with hCHs when compared to individual hydrogels (Figure 5-19).  
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Figure 5-19. Comparing mineralization activity presented by cells on hydrogels at day 21. 

Mineral association as per alizarin red staining and annexin A2 protein level for hCHs and 

hOBs. Bars are corresponding to each hydrogel type revealing annexin A2 level for each. 

Scale bar 200 µm, asterisks represent significance at P ≤0.05, results indicate mean ±SD, 

n=3.   

 

This is probably referring to a more controllable aspect presented by the mixed polymer 

interface which apparently hold mineralization process by cells within a specific limit. These 

might explain the variable trends of cells as per the scaffold’s different characteristics which 

will eventually help in designing scaffold to regenerate complex tissue interface.     

Designing of osteochondral scaffold might necessitate a consideration regarding tissue 

vascularization and further cellular nourishment, which might be a function of the porous 
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architecture or may be improved by the inclusion of certain cues  (Seo et al. 2014; J. Yang et 

al. 2017; Camarero-Espinosa & Cooper-White 2017). Accordingly, the embedding of BG 

fibres was proposed for the current scaffold design in the hope of enabling cells traveling and 

further vascular infiltration from the sub-chondral layer. Furthermore, elements from these 

fibres degradation were considered as potent stimulators for osteogenic activity and bone 

matrix formation (Jones 2015; Turnbull et al. 2018). Diffusion of BG elements was described 

by Raman mapping. The heat maps illustrate the diffusion of the BG mass by day 15 of 

incubation at 37 °C (Figure 5-2 B). This was indicated by the expanded green zone band of 

the BG mass and shrinkage of the red zone referring to the reduced Raman intensity while the 

mass is disintegrating with time. This might indicate the formation of a hydroxyapatite layer 

by dissolution of these fibres and diffusion of the main elements (calcium and phosphate) to 

infiltrate the hydrogel phase (Turnbull et al. 2018). The potential of bioactivity of the BG 

material is determined by the rate of comprising HA layer which is basically depend on BG 

type and composition (Notingher et al. 2002; Kwiatkowska et al. 2012; Hossain et al. 2018). 

Relevant to µCT density scanning, reduction of fibre mass reached the maximum at day 28; 

however, remnants still can be sought within hydrogel’s construct revealed from last time 

point images (Figure 5-3 A). This might reflect the existence of degradation elements from 

BG fibres after complete dissolution which possibly confirms the findings from Raman 

spectroscopy. Additional prove was the BG fibres mass volume reduction with time reaching 

the lower level which was then appeared to be a little plateaued at day 28.  This was furtherly 

enforced by the alizarin stained BG channels after 28 days of PBS incubation at 37 °C 

(Figure 5-3 B).  

Testing cells traveling through BG fibres empty channels reveals no true evidence of cells 

being migrated through these openings. Although BG fibres should leave about 60-70 µm 

channels across hydrogel thickness, the cells were only accumulating around the beginning of 

these channels at the top of hydrogels. It is possible that cells may lack enough oxygenation 

or nutrition while traveling through toward the core of hydrogel whether through pores or 
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empty channels (Ahearne 2014). In this respect, it could be more reasonable to use fibres with 

larger diameter thus enabling nutrients to infiltrate more across hydrogel. Additionally, testing 

oxidative stress of cells on these hydrogels may be required in future prospective to assess this 

condition. 

The presence of BG fibres impacted for significant calcium minerals in samples with hOBs 

seeded on pNTBAM while no significant levels observed with pNIPAM samples seeded with 

the same cells (Figure 5-10). This has been reflected also in the level of annexin A2 which 

revealed a significant increase with hOBs but only with pNTBAM seeded with hOBs 

(Figure 5-17). Gradient scaffold seeded with hOBs though showed significantly higher 

annexin A2 level compared to non-BG. This might be proving that these BG mass has 

encouraged more cellular mineral activity thus expressing higher marker level. 

In assessing samples with hCHs, little has been observed relevant to calcium ions evaluation 

with no significant difference seen with BG samples for single or gradient hydrogels 

(Figures 5-10, 5-12). However, ELISA measurements identify a significant increase in 

annexin A2 level for BG samples with hCHs. It also showed that BG samples with hCHs had 

witnessed some reduction, which was significant with pNTBAM, in collagen II levels for both 

single hydrogels and gradients (Figures 5-16, 5-17). This is another clue which could possibly 

indicate that these hCHs were engaged within active mineralization behaviour in the presence 

of BG fibres. These findings agreed with the previous claims that BG material increase the 

potential for mineral activity by cells  (Jones et al. 2007; Jones 2015). This is important 

especially when chondrocytes revealed the intention to associate with minerals (as per 

increased annexin A2 levels) which is one of the characteristics of the hypertrophic 

chondrocytes that forms the calcified cartilage matrix (Hoemann et al. 2012a). It is not 

recognized whether these cells had been transformed into hypertrophic chondrocytes; 

however the current data might indicate some of these aspects as referred to the mineralization 

markers measured. Although the levels of calcium ions did not significantly increase with BG 
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samples seeded with hCHs, the expression of annexin A2 might reflect a future trend of these 

cells to produce matrix vesicles and mineralize the surrounding matrix.  

5.7. Conclusion  

Joining pNIPAM and pNTBAM presented a multiregional scaffold between the two polymers 

that showed different architectural regions including the polymers interface. Inspecting the 

mixed scaffold region illustrate the ability to host osteoblastic and chondrocytes activities in 

a way that reveal different cells attitude compared to individual hydrogels. The variations in 

cell responses across this region refer to a gradual transformation in cell functions while 

moving from one side to the other end of the scaffold. Introducing BG fibres into scaffolds’ 

construct encountered for an enhanced mineral activity mostly with hCHs. This might increase 

the chance for establishing a mineralized interface by engaging chondrocytes to produce a 

calcified matrix. This is a vital aspect when the main goal is to regenerate the osteochondral 

interface as the current scaffold advised for a different potential of cells across its multi-

architectural regions.  
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Chapter 6            

Summative discussion, conclusion, and 

future work 
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6.1. Summative discussion 

The prevalence of osteochondral defects, especially through the last decades, has brought it to 

be one of the serious worldwide problems that adversely impacted individuals lifestyle 

(Nukavarapu & Dorcemus 2013b; Pape et al. 2010). Treatment went through several options, 

one of which is to stimulate further tissue growth by drilling and micro-fracture techniques. 

These techniques are less invasive and have shown acceptable success rate, however some 

concerns have been reported about the nature of tissues produced.  These were manifested  

mainly by the formation of fibrous cartilage that cannot withstand the normally applied 

pressure on the joints resulting in further deterioration after specific period of treatment 

(Swieszkowski et al. 2007; Steadman et al. 1997). Another treatment option, which is tissue 

transplantation of osteochondral allo-grafts or auto-grafts, has shown  a greater success rate 

as being observed from a wide range of studies performed on animals and humans (Detterline 

et al. 2005). However, the availability of the intended grafts in addition to donor site morbidity 

have been regarded as a major limitations of these techniques (Detterline et al. 2005; J.S. 

Temenoff & Mikos 2000). Autologous chondrocyte implantation (ACI) has been accepted to 

be a superior solution for correcting osteochondral damage through utilizing a fresh 

chondrocytes, which have been harvested from nearby cartilage, expanded in the laboratory. 

The site of damage will be covered with a periosteal flap or membrane, then the cells injected 

through this membrane (Brittberg 2008; Hangody et al. 2008). ACI proved effectiveness in 

producing hyaline like articular cartilage, however, clinical studies have shown positive 

results only to specific cartilage sites like the femoral condyle (J.S. Temenoff & Mikos 2000).  

The limitations observed for the above mentioned treatment options, necessitate the existence 

of a new therapeutic clues. Tissue engineering, as part of regenerative medicine, represents a 

wide field of therapeutic strategies that utilizes a specific biomaterials to construct an artificial 

extracellular matrix (ECM) or scaffolds,  these scaffolds are designed and manufactured in a 

way that preferably support cellular proliferation and further tissue growth so that mimicking 

the natural tissue structure and  property (Martin et al. 2007; Steinwachs et al. 2008; Chen et 
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al. 2009b; Vahdati & Wagner 2013). Engineering of the osteochondral interface should 

consider the complex tissue transformation from the sub-chondral bone to the cartilage region 

(Cancedda et al. 2003; Martin et al. 2007; Chiang & Jiang 2009). As such, studies was 

performed utilizing multilayer scaffolds to simulate the variable bone-cartilage tissue 

environment and the different stages of mineralization across this region (Dado & Levenberg 

2009; Chen et al. 2014; Liu et al. 2013; Kon et al. 2014). The variable materials’ features were 

explored such as the porosity, mechanical and surface chemistry to determine their impact on 

relevant cell performances (Puppi et al. 2010a; Shapiro & Oyen 2013; Patterson et al. 2010; 

Deb et al. 2018b).  Indeed, challenge still existing as to establish an optimum scaffold design 

that address for a gradient tissue regeneration and avoid the problem of delamination of a 

multilayer construct (Sherwood et al. 2002; Liu et al. 2007; Steward et al. 2011; Chatterjee et 

al. 2011; Castro et al. 2012; Chen et al. 2014).  

The current thesis work aimed to search the suitability of certain biomaterials to fabricate a 

multi-architectural scaffold unit to guide the regeneration of the osteochondral interface. 

Investigating certain materials and materials combination revealed the effects of different 

characteristics on guiding cell functions towards a specific tissue regeneration (Ito 1999; 

Flemming et al. 1999; Arima & Iwata 2007; Patterson et al. 2010; O’Shea & Miao 2008; 

Chang & Wang 2011). Material’s preferences were based on the intended tissue to be 

regenerated with the synthetic materials gaining most interest because of their easily 

controlled features (Williams 2009; Puppi et al. 2010b; Jones 2015; Hossain et al. 2018). 

Accordingly, pNIPAM and pNTBAM were chosen for the current study relevant to their 

background reports for being biomimetic, non-toxic, and tuneable materials (You et al. 2008; 

Lynch et al. 2005; de Vries-van Melle et al. 2014; Haq et al. 2017; Ayat et al. 2016). Both are 

synthetic polymers bearing the acrylamide group in their structure with slight variations in 

chemical composition represented by additional methyl group in pNTBAM. These polymers 

were investigated to advise the basic chemical, mechanical and architectural characteristics 

that would possibly impacted the outcome biological results (Chapter 3). Findings elucidate 
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the main difference indicating more hydrophobic stiffer mass for pNTBAM compared to 

pNIPAM. A wettable versus less wettable surface of materials is a function of surface charge 

and chemical functional groups. Thus, pNTBAM revealed more hydrophobic surface 

compared to pNIPAM. This was recognized from the drop shape and larger water contact 

angle measured for pNTBAM (Figure 3-3). These findings were in agreement with certain 

studies stated the wettability profile difference for pNIPAM and pNTBAM and its correlation 

with their surface chemistry (Lynch et al. 2005; Muramatsu K  Wada T, Hirai H, Miyawaki F 

2012; Pelton 2010; Ayat et al. 2016). The C=O and NH- chemical functional groups presented 

by materials promote more hydrophilic behaviour of polymer, such an aspect may be linked 

to promoting osteoblastic cells activity and mineralization (Chang & Wang 2011; Keselowsky 

et al. 2003). A more hydrophobic behaviour presented by pNTBAM is possibly connected to 

the presence of higher percentage of CH3- groups (Chang & Wang 2011).  

Results from compressive strength revealed stiffer mass presented by pNTBAM compared to 

a more flexible soft pNIPAM. Mechanical strength is another criteria that impacted cells 

proliferation and attachment which could be the result of material’s natural properties and 

their method of production (Hollister et al. 2002; Wells 2008; Vijayavenkataraman et al. 

2017). Studying architectural difference and porosity showed pNIPAM as having significantly 

larger pore diameter compared to pNTBAM. The pore size variations measured for the current 

materials might contributed to the difference in stiffness obtained as agreed with certain 

studies stated the impact of increased porosity on decreasing material stiffness (Karageorgiou 

& Kaplan 2005; Bandyopadhyay et al. 2010; O’Brien 2011; Turnbull et al. 2018).The 

inspection of several monomeric sub-groups for each polymer declared the influence of 

reducing monomeric concentration on having a larger pore diameter as reflected according to 

SEM imaging. These were in accordance with studies that showed the influence of high 

monomeric concentration of polymer solution on yielding a smaller pore size compared to a 

lower concentration (Baugher et al. 1995; Karageorgiou & Kaplan 2005). Studies also 

concluded the correlation between larger pore size and osteogenic cell behaviour and the 
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impact of this on promoting mineralization (Lee et al. 2012; Cooper et al. 2016; Karageorgiou 

& Kaplan 2005). Both polymers showed a positive tendency to promote calcium minerals 

association in vitro (relevant to SBF incubation) with variations that indicated a higher 

tendency for pNTBAM (Figure 3-10). These relative differences in mineralization may be of 

value when planning for an osteochondral scaffold, as this region physiologically originate a 

mineral gradient between sub-chondral bone and cartilage (Bullough & Jagannath 1983; 

Hoemann et al. 2012a; Bian et al. 2016). The above variable characteristics captured for both 

hydrogels predisposed for the next observations in terms of cells attitude and biological 

assessment that we carried out in chapter four. 

The study proceeded forward to investigate the influence of hydrogels’ variable features 

(outlined in Chapter 3) on relevant cell survival and their biological function. The chemical 

and architectural differences between tested hydrogels revealed their impact on cells 

attachment and viability. An obvious observation was the growth pattern of cells on each 

hydrogel. It seems that cells grow in aggregates or clusters on pNIPAM while spread on 

pNTBAM. Studying the viability of cells indicates higher rate of viable vs. dead cells for both 

hydrogels. However, proliferation rate was quite different as the number of cells counted on 

pNIPAM was around seeding density at day 21 unlike pNTBAM which showed significantly 

increased number of cells. These results may be the outcomes from different materials’ 

characteristics including soft versus stiff surfaces and hydrophilic versus hydrophobic 

properties obtained for pNIPAM and pNTBAM respectively. Certain studies proved the 

impact of these variable features on cells behaviour, viability and growth pattern (Keselowsky 

et al. 2003; Bačáková et al. 2004; Tan et al. 2005). Cells attachment can be improved using 

materials with intermediate hydrophilic to hydrophobic surface characteristics. Results were 

in agreement with other findings that indicated the impact of soft surfaces on affecting cell 

attachment and proliferation rate compared to a stiffer surfaces (Bačáková et al. 2000; 

Bačáková et al. 2001; Bačáková et al. 2004). The examined monomeric sub-groups of 

hydrogels did not reflect any major differences in terms of viability and proliferation rate. 
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Though, an evidence of cells migration within hydrogel’s matrix of pNIPAM 0.042 g/mL sub-

type was spotted. This feature might reflect the development of interconnected porous 

structure as per the lower monomeric concentration used which eventually could serve a better 

3D environment and cells transportation. As such, the decision was made to move forward in 

the present study with this concentration of pNIPAM. In case of pNTBAM, the highest 

monomeric sub-type was chosen as no apparent variations in viability or migration had 

recognized among pNTBAM sub-groups. This monomeric sub-type was stiffer in terms of 

hardness compared to the others.  

The outcome results from tracking osteogenic and chondrogenic cells behaviour revealed 

some differences between these hydrogels. hOBs showed active mineralization when seeded 

on both hydrogels, though, pNTBAM showed higher results. Findings regarding hCHs, 

indicated little or no evidence of mineralization especially with pNTBAM. In evaluating 

chondrogenic activity and GAGs production, pNTBAM was superior in revealing highest 

GAGs content. These results were then confirmed with the findings from immunostaining of 

hydrogels and ELISA assay for collagens. The levels of collagen I showed significant 

elevation with hOBs sample of both hydrogels but mostly with pNTBAM. In contrast, 

collagen II showed significant elevation with hCHs on pNTBAM samples whereas only little 

evidence was noted with pNIPAM. Collagens I and II are normally associated with bone and 

cartilage tissues but with different extents. This is identified normally by higher collagen I 

levels in bone which is in contrast to cartilage tissues where collagen II is the major matrix 

protein. Between these regions the level of matrix proteins will increase or decrease along the 

tissue gradient depending on the cell type and the level of mineralization. This is basically 

recognized at the calcified cartilage region where hypertrophic chondrocytes started some 

increase in collagen II in addition to elevation of collagen X as an indicator of mineral 

association activity by cells (Hoemann et al. 2012b; Pal 2014). The current results explain 

how cells were reacted to the different configuration previously characterised for both 

hydrogels. Hydrogels’ chemistry, stiffness, and porosity apparently revealed their impact on 
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overall cell proliferation, viability, and relevant functions. These were in accordance with 

studies that described the increased stiffness of hydrogel to beyond 33 Kpa (evidenced with 

pNTBAM) will enhance GAGs production by chondrocytes while materials presenting more 

NH- and OH- with less CH3- chemical groups are involved in promoting osteogenic cell 

activity (Wells 2008; Wang et al. 2016; Cao et al. 2017b). Another study by Di Luca et al. 

2016 indicated the effect of smaller pore size of a material on guiding MSCs for more 

chondrogenic differentiation.   

The above results from Chapters 3 and 4 clearly revealed the variations between pNTBAM 

and pNIPAM hydrogels in terms of basic characteristics reaching to biological observations. 

Indeed, both hydrogels proved their tendency to host calcium mineralization in variable 

degrees showing greater values with pNTBAM. The chondrogenic cell activity was supported 

mainly by pNTBAM with little or no extent with pNIPAM.  

In an attempt to regenerate the osteochondral region, making use of various properties 

collected from the current materials as per mineralization and chondrogenic behaviour, these 

two hydrogels were combined together in an attempt to produce a gradient scaffold unit. 

Joining these polymers has had to follow the same synthesis procedures originally used for 

each polymer. However, a stepwise addition of each polymer solution in one container was 

regulated by a critical timing between the steps. The proposed method and timing of addition 

was dependent on the speed of polymerization and the nature of each polymer’s solvent. 

Accordingly, pNIPAM was added in the beginning followed by mixture of the two polymers 

and finally pNTBAM layer.  Initial characterization of the resultant scaffold showed the 

development of a multiregional scaffold construct between the polymers. Each polymer 

constitutes one end of the scaffold with mixed interface region that showed variable 

architecture. the interface different architecture was related to the polymers variable solubility 

properties and different solvent system. this had impacted polymer formation when the two 

polymers met at the interface resulting in a macro-porous structure. Consequently, combining 

the two polymers did not actually created a gradient architecture between them. This was 
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verified by SEM imaging, although the FTIR measurements across the scaffold’s regions 

showed gradual polymer to polymer transformation (Figure 5-1). 

Assessment of cells behaviour and biological activities on gradient scaffold showed increased 

calcium mineralization for hOBs in gradient interface region with evidence also being noted 

for hCHs. Chondrogenic cells activity was obviously increased towards pNTBAM side of the 

scaffold, which was evident from GAGs assessment. These were confirmed as well via ELISA 

measurements of collagens and annexin A2 as a mineralization marker. The activity of cells 

at the gradient scaffold interface showed variable trends presented by expressing intermediate 

levels of cell functional proteins when compared with the individual hydrogels. The level of 

mineralization as well was measured at a lower level compared to individual hydrogels with 

both cell types. This fact probably confirms that the gradient interface architecture resulted in 

moderate activities of cells while moving from each side of the scaffold towards the other 

side. Therefore, presenting three functional regions that will guide a gradual transformation 

of cells activities. 

BG fibres were included within hydrogels’ structure to aid the production of the final scaffold. 

The proposed role of these fibres was to facilitate cellular transportation across scaffold 

compartments or enabling vascularization and cells nourishment (Seo et al. 2014; J. Yang et 

al. 2017; Camarero-Espinosa & Cooper-White 2017). Although the current observations 

indicated evidence of cell migration for pNIPAM, limitations still existed with pNTBAM. 

That’s why the use of these fibres might add additional significance.  The other purpose of 

using these fibres originates principally from their ability to degrade with time leaving traces 

of minerals within the produced channels. These residues will support a mineral environment 

that will encourage osteogenesis and mineralization activity of the cells (Jones 2015; Turnbull 

et al. 2018). Degradation profile of BG fibres was described in Chapter 5 according to Raman 

and µCT analysis. Indeed, results indicated diminished BG mass up to day 28 with evidence 

of traces of these fibres still being measured after 28 days. Cells seeded on BG embedded 

scaffolds revealed an elevation of calcium minerals and annexin A2 levels compared to the 
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non-BG samples. Results also indicated the positive engagement of hCHs in mineralization 

activity with the presence of these fibres. This is probably evident by the increased annexin 

A2 and calcium ions with reduction of collagen II levels observed in BG samples. Annexin 

A2 has been proven as indicator for the involvement of cells in mineralization of the 

extracellular matrix. This marker is mainly expressed in matrix vesicles (MV) observed in 

hypertrophic chondrocytes and osteoblasts (Bottini et al. 2018). This could be a possible 

indication of the development of a multifunctional scaffold’s regions that refer to a variable 

mineral cell behaviour which involves both cell types. However, tracking penetration of cells 

across the empty fibres’ channels showed no obvious signs of cell migration. Accordingly, the 

current scaffold might serve the purpose of regenerating complex tissue construct, such as the 

osteochondral interface, making use of the BG mass to potentiate osteogenic cell activity and 

supporting the calcified matrix by chondrocytes. 

6.2. Conclusions 

Assessment of the current materials showed the development of hydrogels with different 

criteria’s as relevant to their background chemistry. Results concluded that pNTBAM labelled 

as more hydrophobic, stiffer hydrogel with smaller pore diameter. On the other hand, 

pNIPAM was more hydrophilic, soft hydrogel with larger pores. These variations impacted 

cells attachment and viability assessment. The two hydrogels supported higher percentage of 

viable versus dead cells. However, cells were forming aggregates on pNIPAM with low 

proliferation rate whereas on pNTBAM they spread on the surface showing significantly 

increased number. The lowest monomeric concentration of pNIPAM indicated more 

interconnected pore architecture. This was proven by the evidence of cell migration observed 

with this sub-type compared to the other concentrations including pNTBAM monomeric sub-

groups. Both hydrogels’ architecture supported mineral association to variable tendencies. 

The levels were high when tracked with hOBs while only little with hCHs mostly evident with 

pNIPAM. Chondrogenic activity was promoted by pNTBAM compared to little or no 

evidence with pNIPAM hydrogel. The final scaffold generated by joining the two hydrogels 
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showed the integration between the two polymers to form a joint interface region. The 

resultant scaffold though may not actually refer to a gradient architectural development 

between the two polymers regions. This was evident by the pore shape and architectural 

difference at the interface. However, the resultant joined scaffold features a variable 

mineralization and chondrogenic activity across the multi-architectural regions. The inclusion 

of BG fibres within scaffold’s construct indicated enhanced mineralization activity of cells 

whether with single or gradient hydrogels. Such a property would probably promote the 

establishment of mineral gradient across the osteochondral interface. However, we couldn’t 

establish evidence of cell transport through fibres openings. The current study proved that 

materials with slight variation in chemistry advised for different materials’ features which in 

turn impacted cell activities in the favour of multiple tissue regeneration. It also concluded the 

possibility of joining these materials to produce gradient scaffold promoted for 

multi-functional architectural regions. On the other hand, tuning of these materials by 

changing the monomeric concentration or by introducing bio active materials (BG fibres) had 

positively impacted some of their features including cell migration and enhanced mineral 

activity. These outcome measures might be of interest when trying to regenerate complex 

regions such as the osteochondral interface. The current scaffold design reveals variable cells 

activities per the different scaffold zones. Although the gradient architectural feature of the 

scaffold wasn’t completely achieved as required, the cells performances refer to an 

interchangeable mineral and chondrogenic tendencies across scaffold multiple regions. This 

was influenced further by the embedding of BG fibres which ultimately enhanced 

mineralization tendency involving chondrocytes. Thus, it could be assumed that this had led 

to an imitation to the calcified cartilage together with the sub-chondral bone.   

6.3. Future work  

Considering the current results, future trends would recommend the application of this model 

study on other materials featuring the variable wettability, architectural and mechanical 

properties. This could be helpful to present wide range of models that would serve the 
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regeneration of complex tissues such as the bone-cartilage interface. Further recommendations 

suggest investigating gradient scaffolds’ regional characteristics on guiding cell 

differentiation of mesenchymal stem cells (MSCs). This will clarify the osteogenic versus 

chondrogenic alignment of cell behaviour across scaffold regions and would benefit from 

addressing certain gene expression specific to cell functions.  

It is also recommended to investigate BG fibres with larger diameter (100-150 µm). The 

current work summarizes an enhanced mineral potential of cells with BG embedded samples. 

However, fibre thickness may be not enough in enabling adequate cell migration across these 

fibres’ openings. The proposed recommendation may probably provide an option that supports 

a better cellular transportation by enabling cells to infiltrate through larger openings.  

The application of bioreactor system while testing in vitro cell culturing of the current 

materials. These probably involve hydrostatic pressure or shear stress which intended to 

simulate the in vivo mechanical stimuli especially when targeting osteochondral tissues. 

A future recommendation may also involve the application of this scaffold model in an animal 

studies by subcutaneous implantation of the final gradient scaffold. This is a useful trend 

towards investigating in vivo versus in vitro environment and the quality of tissues produced 

under physiological conditions. 
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Appendix 1. Standard curves  

   Alizarin quantification and calcium assay  

 

 

 

 

 

 

 

 

 

Best standard curve drawn for alizarin quantification using cetyl pyridenium chloride (CPC) 

test.  

 

 

 

 

 

 

 

 

 

 

Best standard curve drawn for calcium assay (calcium ions standard solution is readily 

supplied with calcium assay kit). 
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DMMB assay for GAGs 

 

 

 

 

 

 

 

 

 

 

Best standard curve drawn for DMMB assay using serial dilutions of chondroitin sulphate 

measured at 525 nm wavelength 

ELISA immunoassay  

Collagen I  
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Best standard curve drawn for ELISA collagen I assay using serial delusion of collagen I 

standard solution (supplied with the assay kit). 

Collagen II  

 

 

 

 

 

 

 

 

 

 

 

Best standard curve drawn for ELISA collagen II assay using serial delusion of collagen II 

standard solution (supplied with the assay kit). 

 

Annexin A2  

 

 

 

 

 

 

 

 

 

Best standard curve drawn for ELISA annexin A2 assay using serial delusion of annexin A2 

standard solution (supplied with the assay kit). 
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Alkaline phosphatase  

 

 

 

 

 

 

 

 

 

 

Best standard curve drawn for Alkaline phosphatase adjusted using serial concentrations of  

pNPP in µg/mL 
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Appendix 2. Protocol for preparing 

simulated body fluid (SBF) 

The solution has ion concentrations nearly equal to those of human blood plasma and is 

buffered at pH 7.40 with 50 mM trishydroxymethylaminomethane and 45 mM hydrochloric 

acid at 36.5°C. 

 

Department of Material Chemistry, 

Graduate School of Engineering, Kyoto University 

1. Wash all the bottles and wares with 1N-HCl solution, neutral detergent, and ion -exchanged 

and distilled water, and then dry them.  

2. Put 500 ml of ion-exchanged and distilled water into one liter polyethylene bottle, and cover 

the bottle with a watch glass.  

3. Stir the water in the bottle with a magnetic stirrer, and dissolve the reagents one by one in 

the order as given in Table 1 (One after the former reagent was completely dissolved).  

4. Adjust the temperature of the solution in the bottle at 36.5℃ with a water bath, and adjust 

pH of the solution at pH 7.40 by stirring the solution and titrating 1N-HCl solution (When 

the pH electrode is removed from the solution, add the water used for washing the electrode 

to the solution).  

5. Transfer the solution from the polyethylene bottle to a volumetric glass flask. Add the water 

used for washing the polyethylene bottle to thew solution in the flask.  

6. Adjust the total volume of the solution to one liter by adding ion-exchanged and distilled 

water and shaking the flask at 20℃.  

7. Transfer the solution from the flask to a polyethylene or polystyrene bottle, and store the 

bottle in a refrigerator at 5-10℃ (If some substance is precipitated in the solution during the 

storage, do not use this solution as SBF and its container again).  

Table 1. Ion concentrations (mM) of SBF and juman blood plasma 

Ion Simulate Body Fluid Blood plasma  

Na+ 142.0  142.0  

K+ 5.0  5.0  

Mg2+ 1.5  1.5  

Ca2+ 2.5  2.5  

Cl- 148.8  103.0  

HCO3- 4.2  27.0  

HPO4
2- 1.0  1.0  

SO4
2- 0.5  0.5  

 

 

Table2. Regents for preparing SBF (pH7.40, 1L) 
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Order Reagent  Amount  

1 NaCl 7.996 g 

2 NaHCO3 0.350 g 

3 KCl 0.224 g 

4 K2HPO4･3H2O  0.228 g 

5 MgCl2･6H2O  0.305 g 

6 1M-HCl 40 mL 

(About 90 % of total amount of HCl to be added) 

7 CaCl2 0.278 g 

8 Na2SO4 0.071 g 

9 (CH2OH)3CNH2 6.057 g 

  

Figure 1. Preparation of SBF.  

T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi and T. Yamamuro, "Solutions able to 

reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W", J. Biomed. 

Mater. Res., 24, 721-734 (1990). 
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Appendix 3. Supplementary figures 

Positive control immunostaining for collagens I,II, and X 

 

 

 

 

 

 

Immunostained frozen sections of bovine articular cartilage featuring the deep cartilage 

zone. Collagen I and II represented by red colour (TRITC stain) while collagen X represented 

by green colour (FITC stain). Scale bar measure 40µm 
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Appendic 4. Ethical standards for 

commercial primary human cells   
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