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a b s t r a c t 

The transient analysis of gyro-elastic structured media, composed of periodically placed 

masses interconnected by elastic rods and attached to gyroscopic spinners, is presented. 

The analysis is based on an asymptotic transient model, developed in this paper, that de- 

scribes the interaction between a gyroscopic spinner and a mass embedded in a truss 

system. Several examples are given that illustrate the transient features of special dy- 

namic phenomena, including unidirectional interfacial waves and highly localised wave- 

forms. Two important applications of the model are also proposed, which demonstrate that 

gyro-elastic systems can be utilised to design an efficient structured topological insulator 

and a cloaking device for a discrete medium. 

© 2019 Published by Elsevier Ltd. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Gyro-elastic structured media exhibit unique dynamic properties, at both low and high frequencies, that can be used

to generate special dynamic phenomena unachievable with other mechanical systems. A gyro-elastic structured medium

consists of a lattice of masses, connected to each other by elastic links (such as rods or beams) and attached to gyroscopic

spinners. The latter confer chirality to the lattice and can be used to break time-reversal symmetry. 

The transient motion of a gyroscopic spinner is geometrically non-linear. However, if the nutation angle is small, the

motion can be described by a linearised model, presented for the first time in this paper. Even within this linearised setting,

masses in a gyro-elastic medium can undergo a range of atypical trajectories depending on the properties of the system.

As an example, in Fig. 1 we show the motion of a gyroscopic spinner with a hinged base and a mass at its tip, which is

constrained by a system of six extensional elastic springs. The results, based on a numerical scheme implemented in Matlab ,

show that the system traces a complicated trajectory. Nonetheless, the formulation presented in this paper can fully predict

the transient motion of this system. 

The first model of a gyro-elastic lattice was proposed in Brun, Jones, and Movchan (2012) , where the time-harmonic

analysis of a monatomic and bi-atomic triangular array of masses connected to gyroscopic spinners was carried out. In

Carta, Brun, Movchan, Movchan, and Jones (2014) , the dynamic response of this system subjected to different external ex-

citations was investigated, with special attention given to tunable dynamically induced anisotropy occurring at specific fre-

quencies. In particular, it was observed that in correspondence with the stationary points of the dispersion surfaces, waves
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Fig. 1. The motion of a single gyroscopic spinner. The gyroscopic spinner is hinged at its base and connected to a mass m at its tip. The mass is also 

constrained by a system of six extensional springs. The spinner is represented by the blue line and the mass m by the black dot. The six grey lines indicate 

the springs attached to the mass. (a) Representation of the system with the trajectory of the mass shown in red. (b) Planar view of the system showing a 

magnification of the path traced by the mass. The motion of this system is illustrated in the Video 1 of the Supplementary Material. (For interpretation of 

the references to colour in this figure, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

are forced to travel along some preferential directions, depending on the orientation of the external force. Wave propaga-

tion can even be localised in a single narrow line, if two types of spinners with ad hoc properties are introduced into the

structure, as discussed in Carta, Jones, Movchan, Movchan, and Nieves (2017a) . This localised wave pattern, which resembles

a Gaussian beam, can be deviated by changing the arrangement of the spinners inside the lattice. As a result, the localised

wave can be forced to follow a closed path through multiple deviations, causing the wave amplitude to increase signif-

icantly. This phenomenon has been named DASER (Dynamic Amplification by Spinners in Elastic Reticulated systems). In

Carta et al. (2017a) , the localised wave pattern was obtained in the time-harmonic regime, while here we demonstrate that

this dynamic effect can also be attained in the transient regime. 

Gyroscopic spinners have been utilised to break time-reversal symmetry and create topological insulators. In Wang, Lu,

and Bertoldi (2015) and Garau, Carta, Nieves, Jones, Movchan, and Movchan (2018) it was shown that hexagonal gyro-elastic

structures can support edge and interfacial waves at frequencies associated with dispersion degeneracies possessed by such

media. The gyroscopic spinners allow one to modify the topology of these degeneracies, also known as Dirac points. At fre-

quencies in the vicinity of such points, waves can propagate along the boundary of the structured medium or the boundary

of a sub-domain, leaving the bulk of the medium almost undisturbed. Unidirectionally propagating edge modes immune to

backscattering and localisation due to geometrical and material defects were firstly observed in photonic crystals ( Gao et al.,

2015; He et al., 2010; Khanikaev, Mousavi, Tse, Kargarian, MacDonald, & Shvets, 2013; Raghu & Haldane, 2008; Wang, Chong,

Joannopoulos, & Solja ̌ci ́c, 2008 ). In Raghu and Haldane (2008) , it was shown that these modes are analogs of the edge states

associated with the quantum Hall effect. The existence of unidirectional edge states in plasmons was demonstrated in Jin,

Christensen, Solja ̌ci ́c, Fang, Lu, and Zhang (2017) at infrared frequencies. Topological acoustic insulators supporting one-way

edge sound modes were proposed in Khanikaev, Fluery, Mousavi, and Alú (2015) , Ni, He, Sun, Liu, Lu, and Feng (2015) ,

Yang et al. (2015) , Chen and Wu (2016) , He et al. (2016) , Souslov, van Zuiden, Bartolo, and Vitelli (2017) and Zhou and

Zhao (2019) . An elastic analog of the quantum Hall effect for plates was discussed in Pal and Ruzzene (2017) . Helical edge

states were experimentally observed in a lattice of mechanical oscillators in Süsstrunk and Huber (2015) . Recently, one-

way interfacial rotational waves were generated in a granular crystal, where the interaction between the beads is based on

non-central contact forces ( Zheng, Teocharis, Tournat, & Gusev, 2018 ). A theoretical approach based on group theory and

topological concepts were used in Makwana & Craster (2018a,b) to design platonic crystals possessing topological valley

supernetworks and multi-directional energy splitters. 

In this paper, we demonstrate the existence of unidirectional interfacial and edge waves in a hexagonal gyro-elastic

lattice. While in Garau et al. (2018) the formulation was developed in the time-harmonic regime, here the analysis of topo-

logically protected edge modes is performed in the transient regime using the asymptotic model developed in this paper.

An illustrative example is shown in Fig. 2 , where we consider waves propagating in a rectangular slab of hexagonal lattice,

that is partitioned into two subdomains defined by the arrangement of spinners to which the lattice is connected. The sub-

domains have a zig-zag type interface and the lattice is excited at a specific frequency at the location shown in the figure. A

unidirectional interfacial wave propagates along the sharp bends of this internal boundary and travels along the interface to

the right side of the lattice. We remark that the direction is reversible by either interchanging the properties of the spinners

on either side of the interface or by adjusting the frequency of excitation. The model is detailed in Section 3 . 

Gyroscopic spinners have further applications in the design of elastic cloaking devices ( Brun, Colquitt, Jones, Movchan,

& Movchan, 2014; Brun, Guenneau, & Movchan, 2009; Colquitt, Brun, Gei, Movchan, Movchan, & Jones, 2014; Farhat, Guen-

neau, Enoch, & Movchan, 20 09; Milton, Briane, & Willis, 20 06; Norris, 20 08; Norris & Shuvalov, 2011; Parnell, 2012 ). In
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Fig. 2. Hexagonal lattice connected to an array of gyroscopic spinners. Interfacial waves are produced by a concentrated load applied at the point indicated 

with a black dot. Waves propagate in the transient regime following a zig-zag pattern. Technical details are reported in Section 3 and a video of the motion 

is included in the Supplementary Material (see Video 2). (For interpretation of the references to colour in this figure, the reader is referred to the web 

version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Brun et al. (2012) , the time-harmonic equations of the triangular gyro-elastic lattice were homogenised to show a possible

design for an inertial micro-polar elastic continuum. The elastic metamaterial is capable of strongly reducing the scattering

caused by the presence of a stiff defect in a homogeneous elastic material. In Brun et al. (2012) the effectiveness of this

cloaking device was shown numerically in the time-harmonic regime. In this article, we also show that the model consid-

ered allows one to create a structured cloaking device for a hexagonal lattice and the effectiveness of this cloak is analysed

in the transient regime. 

Recently, a renewed interest in structural mechanics has grown from the development of new concepts in different

technological fields, for example in locomotion ( Bigoni, Dal Corso, Misseroni, & Bosi, 2014; Dal Corso, Misseroni, Pugno,

Movchan, Movchan, & Bigoni, 2017; Rafsanjani, Zhang, Liu, Rubinstein, & Bertoldi, 2018 ), structural folding ( Bosi, Misseroni,

Dal Corso, & Bigoni, 2015 ), soft robotics ( Armanini, Dal Corso, Misseroni, & Bigoni, 2017; Cazzolli & Dal Corso, 2019 ), and

metamaterials ( Bordiga, Cabras, Bigoni, & Piccolroaz, 2018; Cabras, Movchan & Piccolroaz, 2017; Kochmann & Bertoldi, 2017;

Misseroni, Colquitt, Movchan, Movchan, & Jones, 2016; Piccolroaz, Movchan, & Cabras, 2017a; 2017b ). 

With respect to the analysis of gyroscopic effects in mechanics, we mention Kirillov (2013) , where perturbation methods

were developed to analyse the stability of multi-parameter gyroscopic systems in the presence of non-conservative forces.

In addition, the Krein-space approach for tackling non-conservative gyroscopic systems was proposed in Kirillov (2009) . 

The notion of a gyro-elastic system introduces a potentially vast array of new pathways, not only in the construction

of microstructured materials, but also in the design of larger scale structures commonly encountered in civil engineering.

Innovative tunable resonator systems that utilise gyroscopic spinners can be implemented in civil engineering structures

to help in inhibiting failure processes. Simplified models of dynamic failure processes in civil engineering structures have

been considered in Brun, Movchan, and Slepyan (2013) , Brun, Giaccu, Movchan, and Slepyan (2014) , Nieves, Mishuris, and

Slepyan (2016) and Nieves, Mishuris, and Slepyan (2017) . In Carta, Jones, Movchan, Movchan, and Nieves (2017b) a res-

onator system composed of gyro-elastic beams was designed to suppress the vibrations of a long structure, such as a bridge,

subjected to seismic waves. The theory of gyro-elastic beams was firstly developed in D’Eleuterio and Hughes (1984) and

Hughes and D’Eleuterio (1986) and gyroscopic problems in elasticity were studied in Padovan (1978, 1979) and Padovan and

Adams (1980) . In practice, gyro-elastic beams can be designed and constructed by attaching gyroscopic spinners to elas-

tic beams, as detailed in Carta, Nieves, Jones, Movchan, and Movchan (2018) , and Nieves, Carta, Jones, Movchan, and

Movchan (2018) , and this has led to the micro-structural characterisation of a gyro-elastic beam. Functionally graded

microbeams, possessing microstructure and having applications in the design of micro-electro-mechanical systems, have

been considered in Ghayesh, Farokhi, and Gholipour (2017) , Farokhi, Ghayesh, Gholipour, and Hussain (2017) and Ghayesh

(2018, 2019) . The dynamics of rotating microbeams can be found in Dehrouyeh-Semnani (2015) , Dehrouyeh-Semnani, Jouy-

bari, and Dehrouyeh (2016) and Shafiei, Kazemi, & Ghadiri (2016) . Other applications of gyro-elastic continua can be

found in aerospace engineering, where they allow for the control of the attitude and shape of spacecraft Hughes (1986) ,

D’Eleuterio and Hughes (1987) , Yamanaka, Heppler, & Huseyin (1996) and Hassanpour and Heppler (2016a,b) . Gyroscopic

coupling is also exploited to design smart structures that optimise the dissipation of vibration energy ( Del Vescovo & Gior-

gio, 2014 ). For a lattice, the coupling of in-plane motions may be achieved through the tuning of its micro-structural geom-

etry, supplying chirality to the system ( Bacigalupo & Gambarotta, 2016; Lepidi & Bacigalupo, 2018 ). 
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The time-harmonic models for gyro-elastic lattices studied in Brun et al. (2012) , Carta et al. (2014, 2017a) and Garau

et al. (2018) show how the presence of gyroscopic spinners at the lattice junctions affects the motion of the system, al-

lowing one to achieve a variety of special dynamic phenomena. In particular, the spinners enforce a coupling between

the angular momentum balance of the gyroscopic spinners and the linear momentum balance of the lattice particles. The

transient analysis developed here allows us to fully describe various wave propagation phenomena, such as unidirectional

waves. Within the scope of possible technological applications, the transient regime enables us to completely determine the

performance of the new generation of structured elastic metamaterials. 

The paper is organised as follows. In Section 2 , we develop the formulation for the transient motion of a gyroscopic

spinner connected to a mass embedded in a finite truss of elastic rods. There, we also provide illustrative examples that

demonstrate how the model can be used to characterise the transient behaviour of the system. Moreover, to check the va-

lidity of the formulation, we compare the analytical results with the numerical outcomes obtained from an independent

finite element model. In Section 3 , we consider periodic elastic systems connected to arrays of gyroscopic spinners. Specifi-

cally, we focus on a triangular elastic medium connected to two types of spinners and show how to realise highly localised

waveforms in this medium in the transient regime. The second problem considered involves a gyro-elastic hexagonal lattice

containing an interface defined by a heterogeneous system of spinners and we provide transient simulations demonstrating

how to produce unidirectional interfacial waves. In Section 4 , two important applications for a hexagonal gyro-elastic lattice

are presented. First, we discuss the problem of topological protection in a lattice with a hexagonal domain that contains a

cavity and is excited on the exterior boundary. There, unidirectional edge waves travel along the external boundary of the

lattice, leaving the interior almost undisturbed. Second, we design a discrete gyro-elastic invisibility cloak, which is capable

of hiding a defect in a periodic structured medium. In Section 5 we provide some concluding remarks. In the appendices,

we give additional details on the angular momentum balance of the gyroscopic spinner and on the dispersion relations of

the elastic lattices considered in this paper. 

2. Motion of the gyroscopic oscillator 

In this section, we study the transient motion of a single gyroscopic spinner that is hinged at its base and connected to a

mass at its tip. The mass m is elastically constrained by a system of six extensional springs having stiffness c (see Fig. 3 (a)).

The effect of gravity will be neglected throughout. 

2.1. Non-linear governing equations of the gyroscopic spinner 

The generalised coordinates or Euler angles ( Goldstein, Poole, & Safko, 2001 ) that describe the motion of the gyroscopic

spinner are denoted by φ, θ and ψ , and represent the precession, nutation and spin angle of the gyroscopic spinner, respec-

tively. They are shown in Fig. 3 (b). 
Fig. 3. The gyroscopic oscillator. (a) A gyroscopic spinner hinged at its base and having a spin rate ˙ ψ . At the top of the spinner a concentrated mass m is 

constrained by six non-inertial truss elements depicted in grey and having stiffness c . The mass displacement is u ( t ). The spinner has length l , moments of 

inertia I 0 and I 1 , and gyricity �. (b) The Euler angles: precession φ, nutation θ and spin ψ of the gyroscopic spinner. In addition, the fixed frame F with 

coordinate system Ox 1 x 2 x 3 and the moving frame F ′ with coordinate system Ox ′ 1 x ′ 2 x ′ 3 are shown. The frame F ′ precesses with angle φ and nutates with 

angle θ . (c) Planar view in the reference configuration. The extensional springs have initial length L , and the basis vectors for the in-plane elastic system 

are a (1) , a (2) and a (3) . 
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The angular momentum balance for the spinner takes the form 

M e = 

d 

d t 
(I g ω g ) , (1)

where M e represents the vector of external moments applied to the spinner, and I g and ω g denote the spinner’s moment of

inertia tensor and angular velocity vector, respectively (see Brun et al., 2012; Carta et al., 2018; Goldstein et al., 2001; Nieves

et al., 2018 ). Due to the axial symmetry of the spinner with respect to the moving frame F 

′ , the tensor I g is diagonal and

is assumed to have the form 

I g = I 0 ( e 
′ 
1 � e ′ 1 + e ′ 2 � e ′ 2 ) + I 1 e 

′ 
3 � e ′ 3 . (2)

The angular velocity of the gyroscopic spinner ω g is conveniently expressed in terms of Euler angles. The full derivation

is reported in Appendix A , where it is shown that the angular momentum balance (1) in fixed coordinates ( Ox 1 x 2 x 3 ) is given

by the following system of non-linear ordinary differential equations 

M 1 = I 0 
d 

d t 
[ − ˙ φ sin (φ) sin (θ ) cos (θ ) + 

˙ θ cos (φ)] + I 1 
d 

d t 
[ sin (θ ) sin (φ)( ˙ φ cos (θ ) + 

˙ ψ )] , 

M 2 = I 0 
d 

d t 
[ ˙ φ cos (φ) sin (θ ) cos (θ ) + 

˙ θ sin (φ)] − I 1 
d 

d t 
[ sin (θ ) cos (φ)( ˙ φ cos (θ ) + 

˙ ψ )] , 

M 3 = I 0 
d 

d t 
( ˙ φ sin 

2 (θ )) + I 1 
d 

d t 
[ cos (θ )( ˙ ψ + 

˙ φ cos (θ ))] . (3)

2.1.1. External actions on the gyroscopic spinner 

The position vector of the mass m is 

l (t) = l sin (θ (t )) sin (φ(t )) e 1 − l sin (θ (t )) cos (φ(t )) e 2 + l cos (θ (t )) e 3 , (4)

where l is the length of the spinner (see Fig. 3 (a)). The mass displacement is u (t) = l (t) − l (0) , and we assume that l (0) =
le 3 . 

At the tip of the gyroscopic spinner, there acts the force 

F = −c h [ u (t)] − m ̈u (t) , (5)

which embeds the inertia term brought by the mass m and the elastic reaction of the extensional springs of stiffness c ,

described by the non-linear vectorial function h . Using the basis vectors 

a (i ) = cos 

(
(i − 1) 

2 π

3 

)
e 1 + sin 

(
(i − 1) 

2 π

3 

)
e 2 , i = 1 , 2 , 3 , (6)

shown in Fig. 3 (c), the function h can be computed as 

h = 

3 ∑ 

i =1 

[
(| u (t) −L a (i ) | −L ) 

u (t) − L a (i ) 

| u (t) − L a (i ) | + (| u (t) + L a (i ) | −L ) 
u (t) + L a (i ) 

| u (t) + L a (i ) | 
]
, (7)

where L is the initial length of the extensional springs (see Fig. 3 (c)). 

The corresponding external moment acting on the gyroscopic spinner is 

M e = l × F . (8)

2.1.2. Normalisation 

Next, we introduce the normalisations 

˜ l = 

l 

l 
, ˜ t = 

√ 

c 

mγ
t, γ = 1 + 

I 0 
ml 2 

, δ = 

l 

L 
, ˜ u ( ̃ t ) = 

u (t) 

L 
, 

˜ h [ ̃  u ] = 

h [ u ] 

L 
, ˜ F = 

F 

cL 
, ˜ M e = 

M e 

cLl 
, ˜ I j = 

I j 

mlL 
( j = 0 , 1) , (9)

where the quantities with the symbol “ ˜ ” are dimensionless. 
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In the following we omit the symbol “ ˜ ” for ease of notation. We will also use the same notations for the Euler angles

but assume these are now functions of the dimensionless time. After employing the previous normalisations, we obtain

from (3) and (8) 

M 1 = − cos (θ ) F 2 − cos (φ) sin (θ ) F 3 

= 

I 0 
γ

d 

d t 
[ − ˙ φ sin (φ) sin (θ ) cos (θ ) + 

˙ θ cos (φ)] + 

I 1 
γ

d 

d t 
[ sin (θ ) sin (φ)( ˙ φ cos (θ ) + 

˙ ψ )] , 

M 2 = cos (θ ) F 1 − sin (φ) sin (θ ) F 3 

= 

I 0 
γ

d 

d t 
[ ˙ φ cos (φ) sin (θ ) cos (θ ) + 

˙ θ sin (φ)] − I 1 
γ

d 

d t 
[ sin (θ ) cos (φ)( ˙ φ cos (θ ) + 

˙ ψ )] (10) 

and 

M 3 = sin (θ )[ cos (φ) F 1 + sin (φ) F 2 ] 

= 

I 0 
γ

d 

d t 
[ ˙ φ sin 

2 (θ )] + 

I 1 
γ

d 

d t 
[ cos (θ )( ˙ ψ + 

˙ φ cos (θ ))] . (11) 

Furthermore, (5) is updated to 

F = −h [ u (t)] − γ −1 ü (t) . (12) 

2.2. The linearised problem 

We now assume that the nutation angle and its time derivatives satisfy ∣∣∣ d 

j θ (t) 

d t j 

∣∣∣ ≤ Const ε, j = 0 , 1 , 2 , 

where ε is a small dimensionless quantity such that 0 < ε � 1. 

Linearising (11) with respect to the nutation angle yields 

γ θ(F 2 sin (φ) + F 1 cos (φ)) + O (ε 3 γ (| F 1 | + | F 2 | )) 
= I 1 ( ψ̈ + φ̈) + O (I 1 ε 

2 (| ˙ ψ + 

˙ φ| + | ψ̈ + φ̈| )) + O ((I 1 + I 0 ) ε 
2 (| ˙ φ| + | ̈φ| )) . (13) 

It also follows from (4) that u 3 = O (ε 2 ) . In addition, the function h [ u ( t )] in (7) can be linearised so that (12) becomes 

F = −K u (t) − γ −1 ü (t) + O (ε 2 δ(δ + γ −1 )) , (14) 

where K is the stiffness matrix characterising the action of the springs. We note in (14) that F 3 = O (ε 2 δ(δ + γ −1 )) . As a

result, in going forward we neglect the e 3 component of the motion for the mass and set F = (F 1 , F 2 ) 
T and u = (u 1 , u 2 ) 

T .

Moreover, the stiffness matrix K in (14) takes the form 

K = 2 

3 ∑ 

j=1 

a ( j) 
� a ( j) = 3 I 2 , (15) 

where I 2 is the 2 × 2 identity matrix. 

We now derive the form of the in-plane forces acting on the mass. Due to the smallness of F 3 its contribution to M 1 and

M 2 in Eq. (10) can be neglected. Accordingly, after introducing the normalised forms of the displacements u 1 and u 2 , we

rewrite Eq. (10) as 

F 1 = 

1 

γ cos (θ ) 

[ 
I 0 

d 

d t 

(
˙ u 1 

δ
cos (θ ) + 

˙ θ sin 

2 (θ ) sin (φ) 
)

+ 

I 1 
δ

d 

d t 
(( ˙ φ cos (θ ) + 

˙ ψ ) u 2 ) 
] 

+ O 

(
ε 3 δ

(
δ + 

1 

γ

))
, 

F 2 = 

1 

γ cos (θ ) 

[ 
I 0 

d 

d t 

(
˙ u 2 

δ
cos (θ ) − ˙ θ sin 

2 (θ ) cos (φ) 
)

− I 1 
δ

d 

d t 
(( ˙ φ cos (θ ) + 

˙ ψ ) u 1 ) 
] 

+ O 

(
ε 3 δ

(
δ + 

1 

γ

))
. (16) 

Carrying out the linearisation with respect to the nutation angle once more shows that 

F 1 = 

I 0 
γ δ

ü 1 + 

I 1 
γ δ

[( ψ̈ + φ̈) u 2 + ( ˙ ψ + 

˙ φ) ̇ u 2 ] + O 

(
(I 0 + I 1 ) 

γ
ε 3 (| ˙ φ| + | ˙ φ| 2 + | ̈φ| ) 

)
+ O 

(
I 0 
γ

ε 3 
)

+ O 

(
I 1 
γ

ε 3 | ̈φ + ψ̈ | 
)

O 

(
I 1 
γ

ε 3 (1 + | ˙ φ| )(| ˙ φ + 

˙ ψ | ) 
)

+ O 

(
ε 3 δ

(
δ + 

1 

γ

))
, 

F 2 = 

I 0 
γ δ

ü 2 − I 1 
γ δ

[( ψ̈ + φ̈) u 1 + ( ˙ ψ + 

˙ φ) ̇ u 1 ] + O 

(
(I 0 + I 1 ) 

γ
ε 3 (| ˙ φ| + | ˙ φ| 2 + | ̈φ| ) 

)
+ O 

(
I 0 
γ

ε 3 
)

+ O 

(
I 1 
γ

ε 3 | ̈φ + ψ̈ | 
)

O 

(
I 1 
γ

ε 3 (1 + | ˙ φ| )(| ˙ φ + 

˙ ψ | ) 
)

+ O 

(
ε 3 δ

(
δ + 

1 

γ

))
. (17) 
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The last two equalities lead to 

γ F j = O (εI 0 [(1 + | ˙ φ| ) 2 + | ̈φ| ]) + O (εI 1 (| ˙ ψ + 

˙ φ| (1 + | ˙ φ| ) + | ψ̈ + φ̈| )) , (18)

for j = 1 , 2 . Returning to (13) , we have 

0 = I 1 ( ψ̈ + φ̈) + O (I 0 ε 
2 (1 + | ˙ φ| 2 )) + O ((I 1 + I 0 ) ε 

2 (| ˙ φ| + | ̈φ| )) + O (I 1 ε 
2 (| ˙ ψ + 

˙ φ| (1 + | ˙ φ| ) + | ψ̈ + φ̈| )) , (19)

which implies that, to leading order, the sum of the precession and spin rates is independent of time. Therefore, we define

� = 

˙ ψ (0) + 

˙ φ(0) = 

˙ ψ (t) + 

˙ φ(t) . (20)

From here on, � is referred to as the gyricity of the gyroscopic spinner. In this case, (19) is satisfied if the gyricity �, the

precession and its time derivatives do not compete with ε. Here the gyricity is given in normalised form; the normalisation

factor is 
√ 

mγ /c , and the dimension is radians per unit time. We note that although the gyricity is constant throughout

the motion of the spinner, the spin and precession rates can change with time and in general are not constant. This fact is

further illustrated in Section 2.3 . 

2.2.1. Linearised governing equations for the mass 

The linearised equations for the mass m are obtained by combining (17) with (14) and (15) . In doing so, to leading order

one can obtain the governing equation for the mass as 

ü (t) + α�R ̇

 u (t) + 3 u (t) = 0 , (21)

where now u = (u 1 , u 2 ) 
T . In addition, 

α = 

I 1 
(δ + I 0 ) 

and R = 

(
0 1 

−1 0 

)
. (22)

In (21) the matrix R provides the coupling of the in-plane components of the displacement of the mass, and the intensity

of this is determined by the parameters α and � characterising the gyroscope and its motion. The result (21) also illustrates

that the gyricity � is a fundamental quantity in characterising how a gyroscopic spinner interacts with an elastic system

and we refer to Carta et al. (2018) , Nieves et al. (2018) , where this quantity also appears in the modelling of other systems

composed of spinners connected to Euler-Bernoulli beams. 

2.3. Transient motion of the gyroscopic oscillator 

In the small nutation regime, the motion is governed by Eq. (21) , where the skew-symmetric matrix R describes the

chiral effect induced by the gyroscopic spinner. 

One can construct the solution of (21) through a modal analysis by studying the existence of solutions in the form 

u (t) = A e i ωt , (23)

where the constant amplitude vector A and the radian frequency ω should be determined. Insertion of (23) into (21) leads

to the homogeneous system (−ω 

2 + 3 i α�ω 

−i α�ω −ω 

2 + 3 

)
A = 0 . (24)

Non-trivial solutions A of this system are obtained by analysing when the determinant of the preceding Hermitian matrix

vanishes: 

(3 − ω 

2 ) 2 − (α�ω) 2 = 0 . (25)

The positive solutions of the equation above are 

ω ± = 

1 

2 

[
±α� + 

√ 

(α�) 2 + 12 

]
. (26)

We also write the non-trivial vector A in the form 

A (ω) = 

(
1 

i 3 −ω 2 

α�ω 

)
. (27)

Next, we consider some numerical illustrations of the solution obtained for a system with the parameter α = 0 . 25 . The

frequencies (26) are plotted as functions of the gyricity � in Fig. 4 , where it can be seen that one frequency is monotonically

increasing while the other is monotonically decreasing. When the gyricity is zero, we have a double eigenfrequency for the

system; in this case, the gyroscope does neither spin nor precess during its motion. In addition, in Fig. 4 we show the

vertical dashed line for the gyricity � = 6 , where the two eigenfrequencies are ω + = 2 . 6375 and ω − = 1 . 1375 . These values

will be used in the numerical results presented below. 
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Fig. 4. Eigenfrequencies of the gyroscopic oscillator in Fig. 3 as a function of the gyricity �. Computations are based on (26) , with the parameter α = 0 . 25 . 

The dashed line indicates the case � = 6 , considered in Figs. 5 and 6 . The values of ω ± in (26) when � = 6 are also shown. 

Fig. 5. Motion of the gyroscopic oscillator shown in Fig. 3 . The result corresponds to gyricity � = 6 , α = 0 . 25 and initial conditions (29) –(31) . (a) The 

linearised motion of the mass m in the time interval 0 ≤ t ≤ 2.42 is given in red. Note the different scales used for the plane ( x 1 , x 2 ) and the axis x 3 . (b) 

Planar view of the trajectory traced by the mass m , where the direction of the motion of the mass is indicated with the arrow. The behaviour of the system 

is further illustrated in Video 3 of the Supplementary Material. (For interpretation of the references to colour in this figure, the reader is referred to the 

web version of this article.) 

 

 

 

 

 

 

In general, the motion of the system can be written as a linear combination of modes of the form (23) , with (27) , so that

the solution u of (21) is 

u (t) = c 1 A (ω + ) e i ω + t + c 2 A (ω + ) e −i ω + t + c 3 A (ω −) e i ω −t + c 4 A (ω −) e −i ω −t , (28) 

where the constant coefficients c 1 , c 2 , c 3 and c 4 are determined from the initial conditions for the system. 

The mode corresponding to the eigenfrequency ω + = 2 . 6375 , obtained for � = 6 , assuming δ = 1 , is shown in Fig. 5 ,

where the mass moves anticlockwise along a circular trajectory with radius 0.01 and centre at the origin. This is further

illustrated in Video 3 in the Supplementary Material, where it can be seen that the normalised period is 2 π/ω + = 2 . 3823 .

The motion of the system coincides with the mode corresponding to the frequency ω + if one sets the initial conditions of

the system as 

u (0) = 

(
0 . 01 

0 

)
, ˙ u (0) = 

(
0 

0 . 0264 

)
. (29) 

This initial data is associated with the following initial conditions for the precession, nutation and spin of the spinner: 

φ(0) = π/ 2 , ˙ φ(0) = 2 . 6375 , θ (0) = 0 . 01 , ˙ θ (0) = 0 , (30)
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Fig. 6. Motion of the gyroscopic oscillator shown in Fig. 3 . The result corresponds to the same parameters of Fig. 5 , but initial conditions (32) –(34) . (a) The 

trajectory of the mass m in the time interval 0 ≤ t ≤ 47.5 is given in red. (b) Planar view of the trajectory traced by the mass m . The motion of the system 

is further illustrated in Video 4 of the Supplementary Material. (For interpretation of the references to colour in this figure, the reader is referred to the 

web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and 

ψ(0) = 0 , ˙ ψ (0) = � − ˙ φ(0) = 3 . 3625 . (31)

For the mode corresponding to ω − = 1 . 1375 , the mass m moves clockwise on a circular trajectory, with a normalised

period 2 π/ω − = 5 . 5239 . We note that in association with the eigenmodes the precession and spin rates of the spinner are

constant and these quantities sum to give the prescribed value of the gyricity, in this case � = 6 . 

As an illustration showing a more general motion of the system that combines the modes corresponding to both fre-

quencies ω ± , we set the initial conditions as 

u (0) = 

(
0 

−0 . 05 

)
, ˙ u (0) = 

(
0 . 05 

0 

)
. (32)

These can be linked to the following initial data for the generalised coordinates of the spinner: 

φ(0) = 0 , ˙ φ(0) = 1 , θ (0) = 0 . 05 , ˙ θ (0) = 0 , (33)

and 

ψ(0) = 0 , ˙ ψ (0) = � − ˙ φ(0) = 5 . (34)

As shown in Fig. 6 , the trajectory traced by the mass is non-circular and is contained inside an annulus with the origin

as its centre and its inner and outer radii approximately equal to 0.007 and 0.05, respectively. This motion results from the

combination of both modes of the system and can be further examined in Video 4 of the Supplementary Material. There, it

is clear that the precession rate of the spinner is not constant and hence its spin rate is also dependent on time. However,

as shown in Section 2.2 the sum of these quantities is constant. 

As mentioned above, the behaviour of the system can allow for a variety of trajectories for the mass. As an additional

example of this, we refer to Fig. 1 , which was computed for the parameters and initial conditions specified in the caption

of Fig. 6 , except that α = 1 . The motion is also reported in Video 1 of the Supplementary Material. 

2.4. Finite element simulation 

Here, we compare the analytical results based on (21) with the numerical outcomes obtained from a finite element

simulation developed in Comsol Multiphysics 5.3 . 

A non-linear transient analysis has been performed based on the model shown in Fig. 7 . The gyroscopic spinner is im-

plemented as a solid rigid body, the mass m as a cylindrical rigid element of small size and six truss elements represent the

extensional springs. The values of the material and geometrical parameters are given in the caption of Fig. 7 . The normalised

values are the following: I 0 = 0 . 637 , I 1 = 0 . 1 , γ = 1 . 637 and α = 0 . 061 . 

The following normalised initial conditions have been imposed: 

φ(0) = θ (0) = ψ(0) = 0 , ˙ θ (0) = 0 . 040 , ˙ φ(0) = 

˙ ψ (0) = 101 . 15 , (35)
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Fig. 7. The geometry of the model implemented in Comsol , consisting of a gyroscopic spinner (represented by a rigid solid) that is pinned at the base and 

whose tip is connected to a mass m (represented by a small cylinder), that is also connected to an array of six extensional springs (shown as lines). The 

gyroscopic spinner has moments of inertia 63.7 kg m 

2 about the x 1,2 -axes and 10.0 kg m 

2 about the x 3 -axis, respectively, and the length l = 1 m. The initial 

spin and precession rates are ˙ ψ = 

˙ φ = 250 rad/s. The mass at the tip of the spinner is m = 100 kg. Each rod has longitudinal stiffness c = 10 0 0 N m 

−1 and 

length L = 1 m. 

Fig. 8. (a) The trajectory traced by the mass in the system shown in Fig. 7 , resulting from a transient analysis in Comsol , and the comparison with the 

analytical results. Displacements (b) u 1 and (c) u 2 of the mass m as a function of time. 

 

 

which correspond to the gyricity � = 202 . 30 and 

u (0) = 

(
0 

0 

)
, ˙ u (0) = 

(
0 

−0 . 040 

)
. (36) 

The results of the transient simulation are shown in Fig. 8 together with the analytical ones. It is evident that the nu-

merical results obtained from a non-linear transient simulation in Comsol are in excellent agreement with the analytical

predictions. The results confirm the correctness of the analytical approach and the validity of the proposed linearisation. 
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Once again, the motion shown in Fig. 8 demonstrates the coupling effect induced by the spin and precession rates of the

spinner. Despite the fact that the initial conditions (36) excite the motion only in direction x 2 , both displacement compo-

nents u 1 and u 2 vary sinusoidally with similar amplitude. 

The model developed here extends the results previously reported in Brun et al. (2012) , in addition to providing the first

comparison between analytical and independent numerical models. 

3. Transient analysis of gyro-elastic lattices 

In this section, we extend the theoretical results of Section 2 to model the interaction of masses, placed at the junctions

of various lattice systems that are connected to inhomogeneous arrays of spinners. The inhomogeneity will be associated

with a non-constant distribution of the parameter α or the gyricity constant �. In addition, for some of the examples

considered below, the gyricity constant in the gyro-elastic lattice will be chosen as | �| = ω, where ω is the radian frequency

of vibration of the lattice particles (see Brun et al., 2012; Carta et al., 2014; Carta et al., 2017a; Garau et al., 2018 where such

cases are analysed). On the other hand, for some of the problems considered, we provide examples where the gyricity will

be taken as a parameter independent of the radian frequency of the lattice. In those cases, we will also find that the desired

dynamic effects can be retrieved. 

The steady-state analyses presented in Carta et al. (2017a) and Garau et al. (2018) have shown that the gyro-elastic

lattice may lead to special waveforms due to the dynamic chirality conferred by the spinners to the lattice. In this paper,

we investigate several possibilities that also allow these special waveforms to appear in the transient regime. In addition,

the transient analysis may bring new interesting dynamic features that cannot be revealed through a steady-state analysis.

Moreover, in some cases we will study the response of the gyro-elastic systems for different initial conditions or when

subjected to fully transient loads. 

3.1. Localised waveforms 

We consider a periodic triangular lattice as shown in Fig. 9 , composed of masses m periodically constrained by elastic

links having stiffness c and length L . Each mass is attached to a gyroscopic spinner that spins about its axis parallel to 0 x 3 .

The spinners have normalised parameters αA or αB , and alternating gyricities � = ±ω as shown in Fig. 9 . The unit cell of

the periodic system contains two nodal points, and the lattice basis vectors are t (1) = (2 , 0) T and t (2) = (1 / 2 , 
√ 

3 / 2) T . Each

unit cell is identified by the multi-index n = (n 1 , n 2 ) 
T and the displacements of the two nodes within each cell are indicated

with u 

(n ) 
A 

= u 

(n 1 ,n 2 ) 
A 

and u 

(n ) 
B 

= u 

(n 1 ,n 2 ) 
B 

. 

Following the theoretical model developed in Section 2 and assuming nearest neighbour interactions only, the linearised

governing equations of the lattice are 

ü 

(n 1 ,n 2 ) 
A 

= 

[
a (1) ·

(
u 

(n 1 ,n 2 ) 
B 

+ u 

(n 1 −1 ,n 2 ) 
B 

− 2 u 

(n 1 ,n 2 ) 
A 

)
a (1) + a (2) ·

(
u 

(n 1 −1 ,n 2 +1) 
B 

+ u 

(n 1 ,n 2 −1) 
B 

− 2 u 

(n 1 ,n 2 ) 
A 

)
a (2) 

+ a (3) ·
(
u 

(n 1 ,n 2 +1) 
A 

+ u 

(n 1 ,n 2 −1) 
A 

− 2 u 

(n 1 ,n 2 ) 
A 

)
a (3) 

]
− αA ωR ̇

 u 

(n 1 ,n 2 ) 
A 

, (37)

ü 

(n 1 ,n 2 ) 
B 

= 

[
a (1) ·

(
u 

(n 1 +1 ,n 2 ) 
A 

+ u 

(n 1 ,n 2 ) 
A 

− 2 u 

(n 1 ,n 2 ) 
B 

)
a (1) + a (2) ·

(
u 

(n 1 ,n 2 +1) 
A 

+ u 

(n 1 +1 ,n 2 −1) 
A 

− 2 u 

(n 1 ,n 2 ) 
B 

)
a (2) 

+ a (3) ·
(
u 

(n 1 ,n 2 +1) 
B 

+ u 

(n 1 ,n 2 −1) 
B 

− 2 u 

(n 1 ,n 2 ) 
B 

)
a (3) 

]
+ αB ωR ̇

 u 

(n 1 ,n 2 ) 
B 

, (38)

where the basis vectors a ( j) , j = 1 , 2 , 3 , shown in Fig. 3 (c), were given in (6) . The last terms appearing in the right-hand

sides of Eqs. (37) and (38) represent the influence of two different spinners in the unit cell having gyricities of equal mag-

nitude but opposite sign, i.e., � = −� = ω. 
A B 

Fig. 9. Infinite triangular elastic lattice attached to an array of gyroscopic spinners. Masses m at the nodal points are connected by extensional springs 

of stiffness c and length L . The unit cell of the periodic system is indicated in grey and it is defined by the vectors t (1) = (2 , 0) T and t (2) = (1 / 2 , 
√ 

3 / 2) T . 

Nodal points are identified by the multi-index n = (n 1 , n 2 ) 
T . The gyricity � has magnitude ω and alternates in sign switching from A to B . 
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3.1.1. Generation of localised waveforms in the transient regime 

In Carta et al. (2017a) it was demonstrated that waveforms localised in a single line can be created at specific frequencies

in a gyro-elastic lattice with two types of spinners, shown in Fig. 9 . This phenomenon is associated with the dispersion

properties of the structured medium. 

The derivation of the dispersion properties for such a system is reported in Appendix B . In Fig. 10 (a) we show the

dispersion surfaces obtained from (B.3) , where αA = 0 . 8 and αB = 0 . 9 . The slowness contours at ω = 1 . 717 π = 5 . 394 are

given in Fig. 10 (b). The first Brillouin zone is also indicated, defined by the reciprocal vectors 

b 

(1) = (π, −π/ 
√ 

3 ) , b 

(2) = (0 , 4 π/ 
√ 

3 ) . (39)

The slowness contours are associated with wave propagation in the direction normal to the contour lines, namely

(1 / 2 , 
√ 

3 / 2) . 

In Fig. 11 we show the results of a transient analysis, which is performed on a finite lattice with dimensions 100 × 50 
√ 

3 .

A Matlab code has been implemented in order to solve the equations of motion (37) and (38) on the 50 0 0 unit cells of
Fig. 10. Dispersion properties of the gyro-elastic lattice in Fig. 9 . The computations are given for αA = 0 . 8 and αB = 0 . 9 . (a) Dispersion surfaces. (b) Slow- 

ness contours at ω = 1 . 72 π = 5 . 39 . These contours are associated with the propagation of localised waves in the direction (1 / 2 , 
√ 

3 / 2) . The grey region 

represents the first Brillouin zone. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.) 

Fig. 11. Transient dynamic analysis in a finite gyro-elastic lattice composed of 50 0 0 unit cells with spinners possessing αA = 0 . 8 , αB = 0 . 9 and gyricities 

�A = −�B = ω = 1 . 72 π . The displacement magnitude | u | is given at the normalised time t = 233 . 58 . The full transient solution is illustrated in Video 5 of 

the Supplementary Material. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.) 
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Fig. 12. (a) Slowness contours at �G = 3 and ω = 1 . 15 π based on a modification of the results in Appendix B . The grey region represents the first Bril- 

louin zone. (b) Transient dynamic analysis in a finite gyro-elastic lattice composed of 50 0 0 unit cells with spinners possessing αA = 0 . 8 , αB = 0 . 9 and 

gyricity �G = 3 . The displacement magnitude | u | is given at the normalised time t = 169 . 64 . The full transient solution is illustrated in Video 6 of the 

Supplementary Material. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 . The system is initially at rest and the exterior lattice nodes are clamped. A wave is produced by a concentrated load,

acting at the central node indicated by a yellow dot in Fig. 11 ; the node is of the type A (see Fig. 9 ). The applied force is

P sin (ωt) , where the amplitude vector P = (0 , 0 . 96) T . 

In Fig. 11 the displacement magnitude | u | is given at time t = 233 . 58 , while in the Video 5 of the Supplementary Material

it is possible to see the propagation of the localised waveform during the entire numerical computation. It is evident that

the wave is highly localised along the direction predicted by the dispersion properties in Fig. 10 , namely perpendicular to

the straight slowness contours at ω = 1 . 72 π . 

A deeper inspection of the numerical results, evidenced by the inset on the left of Fig. 11 , reveals that, while the force

is applied to a node of type A (see Fig. 9 ), the wave is mainly localised in the lattice nodes of type B . Video 5 of the

Supplementary Material shows that there is an initial stage 0 ≤ t ≤ 13, in which the wave propagates from the node where

the force is applied to the neighboring nodes, without an evident preferential direction. There is also a second stage where

two highly localised waves are generated that depart from the two nodes of type B adjacent to the node where the force

is applied. An additional simulation, not reported here for brevity, shows that also in the case when the force is applied to

a node of type B the wave is highly localised along a line of nodes of this type. This is in agreement with the steady-state

results reported in Carta et al. (2017a) , which show that waves tend to propagate along the lines where the parameter α is

larger. However, the steady-state analysis neither gives any information about the initial range when the wave moves from

point A to point B , nor any indication about the wave speed, which can be estimated from the present transient simulation.

In particular, the latter shows that the localised waves can be achieved in the elastic system in a relatively short finite time

interval. 

Next, we investigate if localised waveforms can be generated in a gyro-elastic lattice possessing uniform gyricity, but in

the case | �| � = ω. In this scenario, in the last terms in the right-hand sides of (37) and (38) , ω is replaced by �G . Fig. 12 (a)

shows the slowness contours for ω = 1 . 15 π . Once again, it can be seen that the slowness contours in Fig. 12 (a) are straight

lines associated with waves that propagate in the direction (1 / 2 , 
√ 

3 / 2) . In Fig. 12 (b), the response of the system at t =
169 . 64 when subjected to the sinusoidal load P sin ( ωt ) is reported. There, a clear localised waveform can be observed that

propagates in the direction parallel to the inclined rows of the lattice. 

This response is realised in a similar way to that encountered in the previous example in Fig. 11 and Video 5. However,

as evidenced by the magnification of Fig. 12 (b) and Video 6, the load is able to excite more neighboring nodes, as seen in

the interval 0 ≤ t ≤ 17 of Video 6. As a consequence, this also leads to more than one localised wave propagating parallel to

each other. These additional localised waves appear along the first and the second neighboring inclined rows to the load

that contain the nodes of type B . 

The results of Fig. 12 and Video 6 demonstrate that highly localised waves can be achieved in a gyro-elastic medium

without the requirement | �| = ω on the gyricity. Finally, we conclude the analysis of these waves by asking a natural

question: “Can the localised waveforms be realised in a gyro-elastic lattice subjected to different initial conditions?”

To answer this question, we consider non-zero initial conditions in a neighborhood of the load. The initial conditions of

the system are now modified inside a 10 × 10 rectangle centered at the point where the load is applied in the lattice (see

Fig. 13 ). Each node in this region is given an initial displacement of 0.02 and an initial velocity 0.05 in the horizontal and

vertical directions. All other nodes are considered to be initially at rest. 
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Fig. 13. Transient dynamic analysis in a finite gyro-elastic lattice subjected to non-homogeneous initial conditions within the black rectangles, centred on 

the position of the applied force (the yellow dots). The lattice is composed of 50 0 0 unit cells with spinners possessing αA = 0 . 8 , αB = 0 . 9 and gyricities 

�A = −�B = ω = 1 . 72 π . The displacement magnitude | u | is given at the normalised time (a) t = 59 . 76 and (b) t = 233 . 58 . The full transient solution is 

illustrated in Video 7 of the Supplementary Material. (For interpretation of the references to colour in this figure, the reader is referred to the web version 

of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A snapshot of the lattice within the initial stage of its response is shown in Fig. 13 (a). Once more, a clearly visible highly

localised wave can be seen propagating along the nodes of the type B . Accompanying this is a vortex-type transient wave

propagating outward from the load. The displacements produced by this wave are small in comparison with the dominant

dynamic feature in Fig. 13 (a). Hence, in this figure the maximum displacement of the color bar has been truncated to

highlight this transient effect. In Fig. 13 (b), the behaviour of the lattice at a much later time is shown. It is seen that the

effects of the transient vortex wave are negligible and, in accordance with the slowness contours of Fig. 10 (b), the highly

localised waveform predicted by the dispersion analysis is achieved. 

Video 7 demonstrates the effect of the non-homogeneous distribution of the initial conditions on the evolution of the

system’s motion. There the motion can be described in three stages. For 0 ≤ t ≤ 4, the intensity of the deformations created

by the non-homogeneous initial conditions within the prescribed rectangle decreases. During this time interval there are

also visible deformations created by the load in its vicinity. The second stage of the lattice motion occurs for 4 ≤ t ≤ 25,

where the deformations created by the initial lattice configuration and the source interact. In this period, no preferential

direction of the deformation is observed. The third stage takes place for t ≥ 25, where the waveform possessing preferential

directions expected from the dispersion analysis (see Fig. 10 ) becomes clearly visible. In this stage, nodes of the type B to

the left and right of the load are excited and begin to generate the highly localised waveform similar to the scenario of the

lattice with homogeneous initial conditions. As this happens, the influence of the initial conditions can still be seen as the

vortex wave propagates outwardly from the load and interacts with the upper and lower lattice boundaries at approximately

t = 78 . 

The example presented in Fig. 13 and Video 7 demonstrates that changing the initial conditions of the system will pro-

duce different transient effects but the waveforms predicted by the theoretical model of Carta et al. (2017a) in the time-

harmonic regime are still realisable. We also tested the case of uniform non-homogeneous initial conditions in the whole

computational domain and we obtained qualitatively the same results with the generation of a highly localised waveform. 

3.2. Interfacial waves in a hexagonal elastic lattice attached to gyroscopic spinners 

Here, we consider a hexagonal lattice connected to an inhomogeneous array of spinners that divides the lattice into

subdomains. In particular, our aim is to analyse the transient behaviour of interfacial waveforms that can appear when the

boundaries between subdomains are excited at selected frequencies. 

The configuration of the lattice system is shown in Fig. 14 . We define the elementary cell of the lattice with the basis

vectors t (1) = (3 / 2 , −√ 

3 / 2) T and t (2) = (3 / 2 , 
√ 

3 / 2) T . The multi-index n is used again to identify the elementary cells in

the lattice. In this system, the gyricity is uniform and is set equal to the radian frequency of vibration in the lattice. The

displacements u 

( n ) 
j 

, j = A, B, of the nodes in the cell with index n satisfy the dynamic equations: 

ü 

( n ) 
A 

= 

3 ∑ 

j=1 

a ( j) · { u 

( n −p j ) 

B 
− u 

( n ) 
A 

} a ( j) − αω R ̇ u 

( n ) 
A , (40) 

ü 

( n ) 
B 

= 

3 ∑ 

j=1 

a ( j) · { u 

( n + p j ) 
A 

− u 

( n ) 
B 

} a ( j) − αω R ̇ u 

( n ) 
B , (41) 
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Fig. 14. An infinite lattice composed of elastic links connecting a periodic hexagonal array of masses. The junctions are also attached to a uniform array of 

gyroscopic spinners characterised by the material parameter α and having gyricity ω, which is the radian frequency of the entire system. The elementary 

cell is defined by the vectors t (1) = (3 / 2 , −√ 

3 / 2) T and t (2) = (3 / 2 , 
√ 

3 / 2) T . 

Fig. 15. Dispersion properties of the hexagonal gyro-elastic lattice of Fig. 14 . (a) Dispersion surfaces and curves are given for α = 0 . 9 . The narrow stop band 

in the high-frequency regime is highlighted in the inset in part (b), which also includes the frequencies of the external excitation used in the numerical 

simulations. The computations are based on the results of Appendix C . (For interpretation of the references to colour in this figure, the reader is referred 

to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

with p 1 = (0 , 0) T , p 2 = (1 , 0) T and p 3 = (0 , 1) T . The last terms in the preceding right-hand sides represent the dynamic

contribution of the uniform array of spinners to the lattice system. 

A detailed dispersion analysis of the system was carried out in Garau et al. (2018) and is briefly reported in Appendix

C . Based on this analysis, later we describe how this model is used to determine the frequencies at which interfacial waves

can propagate in hexagonal systems connected to spinners with an inhomogeneous arrangement of gyricities. 

3.2.1. Unidirectional interfacial waves in hexagonal chiral media with distributed gyricity 

Here, we show that by using an inhomogeneous distribution of gyricities one can generate interfacial waveforms. We

demonstrate how to obtain such an effect in the transient regime for the case α = 0 . 9 . The dispersion diagram for this value

of α is shown in Fig. 15 . We note that the curves admit a narrow stop band in the interval 3.685 < ω < 3.963. In addition, in

this figure we indicate the frequencies ω = 3 . 79 , 4 . 02 for the harmonic excitation of the lattice, where one will encounter

interfacial waves propagating in opposite directions (see Garau et al., 2018 ). 

We consider the system shown in Fig. 16 . A rectangular slab of lattice, with dimensions 100 × 50 
√ 

3 , is divided into two

subdomains, having a zig-zag interface. The parameter α = 0 . 9 and we distribute the gyricity of the spinners such that in

the lower portion of the lattice � = ω (nodes shown in blue in Fig. 16 ), while in the upper portion of the lattice � = −ω
(nodes shown in red in Fig. 16 ). 

A Matlab code has been implemented to solve equations analogous to (40) and (41) on the 4332 nodes of the lattice

in Fig. 16 . The system is assumed to be initially at rest and the lattice nodes along the exterior of the slab are clamped.

At the node indicated with a black dot in Fig. 17 , we apply the harmonic force P sin (ωt) . Here, P = 0 . 29 (1 / 2 , 
√ 

3 / 2) T , so
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Fig. 16. Computational domain for the example of Section 3.2.1 , involving a rectangular slab of a hexagonal lattice connected to gyroscopic spinners. The 

lattice is divided into two subdomains defined by the gyricities of the spinners, taken as � = −ω ( � = ω) for the red (blue) nodes. The parameter α = 0 . 9 

is uniform throughout the medium. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.) 

Fig. 17. Interfacial waves produced by a point force varying sinusoidally in time and applied at the interfacial node indicated with a black dot. The geometry 

and material details are given in Fig. 16 . The displacement magnitude | u | is given for (a) ω = 3 . 79 , t = 711 and (b) ω = 4 . 02 , t = 957 . The full transient 

solution is illustrated in Video 8 for the case (a) and Video 9 for the case (b) of the Supplementary Material. (For interpretation of the references to colour 

in this figure, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that the force is aligned with the interface. The forcing frequency ω is chosen to coincide with either ω = 3 . 79 or ω = 4 . 02 ,

indicated in the dispersion diagram of Fig. 15 (b). 

For ω = 3 . 79 the displacement magnitude is shown in Fig. 17 (a) at t = 711 . In the figure, one can clearly see that a

localised wave has appeared, that follows the internal interface to reach the right boundary of the domain. 

In Fig. 17 (b), the displacement magnitude is shown for ω = 4 . 02 at t = 957 . The wave propagates along the interface,

but in the direction opposite to that in Fig. 17 (a). The transient analysis shows a different speed of propagation of the two

interfacial waves at the frequencies ω = 3 . 79 and ω = 4 . 02 , where the speed of propagation is higher in the first case. 

As a further illustration, in Videos 8 and 9 of the Supplementary Material we show the results of the transient simula-

tions during the entire motion, for the two cases analysed in Fig. 17 (a) and (b), respectively. The videos show some common

features and differences. As in the previous example of Section 3.1.1 , initially the wave propagates from the forced node to

the neighboring ones without an evident preferential direction, before developing localised patterns in a finite and relatively

short time-interval. For ω = 3 . 79 , the interfacial wave propagates downwards from the beginning along the inclined part of

the lattice interface, while for ω = 4 . 02 initially the wave propagates in both directions and after this initial period only

upward. 

In both cases, the wave slows down when it reaches one of the corners in the zig-zag interface. As the wavefront tries

to pass through the corner, it produces some scattering into the bulk of the lattice, which is also evidenced by the lower

amplitude of the displacement in the horizontal part of the interface. 

It is worth mentioning that the effects shown here are independent of the position of the load. In Fig. 2 we show the

displacement amplitude when the load is applied on the upper horizontal edge of the interface. In particular, we considered

a harmonic force P sin (ωt) , with P = 0 . 29 (1 , 0) T and ω = 3 . 79 , applied at the node indicated with a black dot in the figure.
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Fig. 18. (a) Accelerations produced by the accelerogram NORTHR _ ORR090.AT2 as a function of time. (b) The Fast Fourier Transform of the data in (a); a 

magnification of the magnitude of frequency spectrum in the frequency interval [0,10] (highlighted by the red dashed box) is presented in the inset of 

the figure. There, the frequencies 3.82 and 4.02, corresponding to the interfacial wave frequencies of Fig. 16 , are shown by vertical dashed black lines. (For 

interpretation of the references to colour in this figure, the reader is referred to the web version of this article.) 
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As for the case in Fig. 17 (a), the interfacial wave propagates to the right of the load and, after passing the two corners,

towards the right boundary of the lattice slab. The generation and propagation of the interfacial waves for this case can be

observed in the Video 2 of the Supplementary Material. 

Finally, we investigate the response of the inhomogeneous gyro-elastic medium when subjected to a transient load along

the interface. In what follows, we consider a gyro-elastic lattice with cLm 

−1 = 1 m s −2 and L = γ −1 m . In this way, the

magnitude of the loading and the radian frequency of the structure in the physical and dimensionless settings coincide. 

The load is chosen to represent the acceleration history measured by an accelerogram (labelled NORTHR _ ORR090.AT2)

that recorded the famous seismic event in Northridge, 1994. The data for this event was captured within a 40 s period. The

real signal is shown in Fig. 18 (a). For the simulation below we have implemented a load that repeats the signal generated

by this earthquake after every 40 time units. 

In Fig. 18 (b) the frequency spectrum (in rad s 
−1 

) obtained using the Fast Fourier Transform of the signal data is given.

The last result shows that the load is the superposition of multiple frequency components, with the largest amplitudes in

the frequency interval [0,30], which includes some of the pass bands of the lattice structure, reported in Fig. 15 . Hence, we

may anticipate multiple harmonic wave components to be excited by such a load. 

As in the examples of Fig. 17 , we apply the load along the zig-zag interface at the node indicated at the black dot in

Fig. 19 , and this acts parallel to the inclined part of the internal boundary. Fig. 19 shows the behaviour of the inhomogeneous

gyro-elastic lattice at t = 757 . 49 . While less localised than in the examples shown in Fig. 17 , a propagating interfacial wave

is still clearly visible. In particular, the most prominent dynamic feature that can be observed is an interfacial wave that

propagates to the right-hand boundary of the lattice. There is also some evidence of an interfacial wave that attempts

to move along the interface in the opposite direction, but has not reached the left lattice boundary of the computational

domain at the end of the analysis. One possible explanation for this is based on the results of Fig. 17 , associated with the

harmonic excitation of the gyro-elastic lattice. There, it was revealed that the interfacial wave travels faster to the right

boundary. 

Video 10 of the Supplementary Material shows how the behaviour of the lattice evolves in time as a result of the load

with multiple frequency content. As expected, it can be seen that many waves are created by the load that propagate

in multiple directions within the time interval 0 ≤ t ≤ 250. Following this interval, these processes are accompanied by an

interfacial wave that begins to propagate downward along the interface in the lattice from the load. The propagation of the

interfacial wave is not as clear as in the example of Fig. 17 , due to the wave radiation produced by the source. There is a

region in the vicinity of the load where the deformations in each direction of the lattice are comparable. This occurs until

 = 350 and following this the interfacial wave can be clearly seen to propagate towards the right-hand boundary of the

lattice. 

The example presented in Fig. 19 and Video 10 indicates that multiple waves can be generated by a transient source,

including waveforms occurring at special frequencies. The frequency spectrum of the load chosen here contains information

about such frequencies, but they are not the dominant frequencies composing the signal (see inset of Fig. 18 (b)). Neverthe-

less, here we have shown that the interfacial waveforms obtained at selected frequencies are still realisable and represent a

significant dynamic effect in transient loading configurations. 



132 M. Garau, M.J. Nieves and G. Carta et al. / International Journal of Engineering Science 143 (2019) 115–141 

Fig. 19. Response of an inhomogeneous gyro-elastic lattice with a zig-zag interface subjected to transient loading. The geometry and material details are 

given in Fig. 16 . The displacement magnitude | u | is given for t = 757 . 49 . The full transient solution is illustrated in Video 10 of the Supplementary Material. 

(For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.) 

 

 

 

 

4. Advanced applications 

In this section, we give some further illustrations showing that the hexagonal gyro-elastic lattice model analysed in

Section 3.2 can be used to design structured devices with wave-guiding properties having applications in topological pro-

tection and cloaking. 

4.1. Topological protection 

Here, we investigate the capability of the gyro-elastic lattice in supporting edge waves. To this end, we perform the

transient analysis of a gyro-elastic hexagonal lattice arranged as in Fig. 20 , containing a hexagonal cavity. The unit cell of

the gyro-elastic lattice is as in Fig. 14 . 
Fig. 20. Geometry of the domain analysed in Section 4.1 . The parameters of the gyroscopic spinners are � = ω = 3 . 95 and α = 0 . 9 . (For interpretation of 

the references to colour in this figure, the reader is referred to the web version of this article.) 
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The gyricity and parameters characterising the motion and type of the spinners are uniform and taken as � = ω and

α = 0 . 9 , respectively. The lattice is assumed to be at rest initially and it is excited on the external boundary at the point

indicated by the dot in Fig. 20 with the sinusoidal force P sin (ωt) . In this case, P = A (1 / 2 , −√ 

3 / 2) T , with A = 7 . 7 × 10 −2

and ω = 3 . 95 . This frequency is within the narrow high-frequency stop band indicated in Fig. 15 . 

Video 11 shows that the external force generates a wave that propagates along the external boundary of the domain in

the clockwise direction. Some snapshots of this video are presented in Fig. 21 at various times of the computation. This

displacement is ten times larger than the maximum displacement inside the rest of the system and the displacement is

concentrated near the external boundary of the lattice. In order to better visualise the displacement field in the whole

domain, in Video 11 and Fig. 21 we have truncated the total displacement scale at | u | = 0 . 1 . In the bulk of the lattice, and

in particular on the internal hexagonal boundary, the displacements are negligibly small with respect to the values attained

on the external hexagonal boundary. Accordingly, an object placed in the cavity of the domain would be protected from any

dynamic disturbance produced outside the lattice for the considered loading. 

Video 12 shows a magnified view of the lattice near the point of application of the external force. The masses rotate

in the plane in the anti-clockwise direction, yet the edge wave propagates along the exterior boundary in the clockwise

direction. This counter-intuitive phenomenon is typical with wave motion in discrete gyro-elastic media. 

4.2. Cloaking 

In the final example considered in this paper, we show that one can design a structured gyro-elastic medium that can

act as an efficient cloaking device to hide a defect in a discrete lattice (see Fig. 22 (a)). The cloak possesses an inner and

outer hexagonal annulus, each of which is split into two domains, as shown in Fig. 22 (b). Throughout the cloak the quantity

α| �|, characterising the magnitude of the effective input of the gyroscopes to the cloak, is uniform. The value of α� in each

subdomain of the cloak is indicated in Fig. 22 (b). 

We remark that the design of the cloaking device is similar to that proposed in Brun et al. (2012) . However, here we are

considering a discrete medium, while in Brun et al. (2012) a homogenised continuum was implemented in the design and

simulations. 

We consider a rectangular slab of hexagonal lattice with dimensions 241 . 5 × 199 
√ 

3 / 2 . We study the dynamic response

of this lattice in three scenarios: (i) when there is no defect and hence the lattice is homogeneous; (ii) when the lattice

contains a defect, represented by the black hexagon in Fig. 22 (a) and (b); (iii) when the defect is coated by the gyro-

elastic cloak, marked in red and blue in Fig. 22 (a) and (b). As demonstrated below, without the cloak the defect would

create noticeable effects, such as scattering and shielding, when interacting with waves propagating in the ambient medium.

Conversely, when the cloak designed as in Fig. 22 (b) is inserted, these effects are reduced, especially in particular directions,

reconstructing the wave pattern as if the defect were not present. 

In all the computations presented here, the lattice is assumed to be initially at rest. Perfectly Matched Layers (PML) are

used to minimise the reflections produced at the edges of the lattice. Elastic waves are generated by an applied displace-

ment, indicated by a black arrow in Fig. 22 (a). The imposed displacement is positioned at (75 , 50 
√ 

3 ) (represented by the

black dot in Fig. 22 (a)) and is expressed by Q sin (ωt) , where Q = (0 . 5 , 0) T and ω = 0 . 3 . We note that the chosen value of

the frequency ω is relatively low. 

We start by considering the case (i), when the lattice is homogeneous. Video 13 of the Supplementary Material shows

the response of the medium to the external excitation. Waves with a circular front propagate outward from the applied

displacement and shadow regions can be observed in the vertical directions relative to the excitation. As expected, due

to the hexagonal lattice microstructure, the wave field is not radially symmetric. Additionally, we observe that the waves

propagating in the lattice are not affected by their interactions with the boundary due to the presence of the PML. The

displacement field in the lattice taken at a large time instant is illustrated in Fig. 23 (a). 

Next, we consider the case (ii) when a defect is situated in the lattice. The defect is represented by a region of nodes

that are connected to each other by links stiffer than those in the ambient medium. The region of the defect, indicated by

the black hexagon in Fig. 22 (b), has side length equal to 7. 

Fig. 23 (b) shows the response of the system for a large value of time. A clear shadow can be seen to the right of the

defect, in addition to other shadows created in the vertical direction. Furthermore, there are scattered waves produced by

the left-most vertex of the defect that propagate at ± 60 ◦ and ± 90 ◦ to the positive horizontal direction relative to this

vertex. 

Video 14 in the Supplementary Material shows how the displacement field in Fig. 23 (b) is achieved. The outgoing waves

from the applied displacement reach the defect at t = 36 . Until this time, the wave pattern is similar to the field produced

in the homogeneous lattice. After t = 36 , the left-most vertex of the defect also begins to act as a source, creating scattered

waves that interact with the waves generated by the imposed displacement. In addition, the shadow regions described in

Fig. 23 (b) take form after t = 36 . 

Fig. 23 (c) shows the response of the system for the case (iii) when the defect is coated by the gyro-elastic cloak shown

in Fig. 22 (b). In particular, we notice that the coating is capable of reconstructing the wave pattern to the right of the

defect. As can be seen from Fig. 23 (c), the cloak acts like a resonator, keeping the displacements in the defect region very

small. Accordingly, the gyroscopic spinners inside the cloak re-route the incoming waves around the defect, leaving the cloak

interior almost disturbed. The resulting wave pattern to the right of the cloaked defect is in good agreement with the pattern
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Fig. 21. A selection of snapshots from the numerical computation shown in Video 11 that illustrates the response of the gyro-elastic lattice excited on the 

external boundary. The displacement magnitude | u | is given at times t indicated on the bar on the right of each figure. (For interpretation of the references 

to colour in this figure, the reader is referred to the web version of this article.) 
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Fig. 22. (a) A hexagonal lattice containing a defect (black hexagonal region), coated by a gyro-elastic cloak (red and blue regions). Along the exterior 

boundary of the lattice Perfectly Matched Layers are used, whose interior boundary is represented by a white dashed line. The position of the external 

excitation is indicated by a black arrow. (b) A magnification of the cloaked defect. The region bounded by the red (blue) lines contains lattice nodes 

connected to gyroscopic spinners with α� = 0 . 51 ( α� = −0 . 51 ). The defect is represented by the black dots, connected by links of stiffness equal to 12, 

whereas in the ambient medium the link stiffness is equal to unity. (For interpretation of the references to colour in this figure, the reader is referred to 

the web version of this article.) 

Fig. 23. The displacement field produced by a point excitation when the hexagonal lattice (a) is homogeneous, (b) contains the defect and (c) contains the 

defect that is coated by the gyro-elastic cloak (see Fig. 22 ). The figures show the responses of the lattices at t = 1353 . (For interpretation of the references 

to colour in this figure, the reader is referred to the web version of this article.) 
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Fig. 24. Total displacement of the hexagonal lattice subjected to a harmonic excitation, computed along the grey dashed line shown in Fig. 22 , for the 

case when the structure (i) is homogeneous, (ii) contains the defect and (iii) contains the defect that is coated by the gyro-elastic cloak (see Fig. 22 ). The 

location of the defect along this line is indicated by the vertical dotted lines and the gyro-elastic cloak is contained in the region between the dashed and 

dotted lines. A magnification of the results obtained for 130 ≤ d ≤ 180 is also presented for the sake of comparison. (For interpretation of the references to 

colour in this figure, the reader is referred to the web version of this article.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in Fig. 23 (a) for the case without any inhomogeneity. We also note that there exist narrow regions in oblique directions

where the cloaking device is less efficient in reconstructing the wave field obtained in the case of the homogeneous lattice.

In Video 15 we show the results of the transient analysis for the lattice with the coated defect. Until t = 26 , the displace-

ment pattern of the system is similar to that of the homogeneous lattice. After this instant, waves begin to interact with

the gyro-elastic cloak. For 26 < t < 93, we see scattering due to the left-most vertex of the cloak in the vertical directions

and waves being re-routed through the coating around the defect. In this time interval, the displacements in the defect are

visibly small. After t = 93 , the right-most vertices of the cloak begin to act as sources, producing elastic waves with circular

fronts propagating away from the cloak in several directions. These waves lead to a visibly excellent reconstruction of the

wave pattern observed in the homogeneous medium to the right of the cloak. It is noted that as this reconstruction occurs,

the gyro-elastic medium undergoes displacements with larger amplitudes in comparison to the behaviour of the far-field

generated in the ambient lattice by the source. 

In order to illustrate the efficiency of the cloak quantitatively, we determine the total displacements of the lattice nodes

for a given time and along the horizontal dashed grey line shown in Fig. 22 (a). Along this line, the distance between two

lattice nodes is alternatively equal to one or two lattice units. The total displacements along this line are calculated for

all three computations presented in Fig. 23 and they are plotted in Fig. 24 . The results for the case of the lattice with

the defect show a significant reduction in the amplitude of the displacement field to the right of the defect, when com-

pared with the results of the homogeneous lattice. On the other hand, the introduction of the cloak allows for a good

reconstruction of the displacement field to the right of the cloak, to the extent that in some regions the results for

the coated defect and the homogeneous case are indistinguishable. In scenario (iii), we also note larger displacements in

the gyro-elastic cloak, which re-routes the external waves around the defect, and very small displacements in the defect

region. 

Video 16 shows how the displacement profiles in the three scenarios change with time. The video reveals that it takes

438 time units for the cloak to approximately reproduce the displacement field in the homogeneous lattice. After t = 438 ,

in the region to the right of the cloak, the total displacements for the cases of the cloaked defect and the homogeneous

lattice agree very well and move together in phase. 

Finally, we recall that in the illustrations of Fig. 23 and Video 15, the quantity α| �|, within the gyro-elastic cloak, is

uniform. We remark that the proposed design in Fig. 22 corresponds to a wide class of arrays of gyroscopes, with uni-

form distributions of the gyricity magnitude | �| and physical properties characterised by α, for which the cloaking effect

identified here is achievable. 

5. Conclusions 

We have developed a new asymptotic model that describes the transient motion of a mass connected to a gyroscopic

spinner and to a truss system of elastic rods. For this gyro-elastic structure, we have derived a linearised model using

the assumption that the nutation angle of the spinner is a small quantity. For simple configurations, we have obtained an

analytical solution, that is in excellent agreement with the numerical results based on the finite element method, despite

the fact that the dimensionality of the two models is different. 
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We have extended this study to the dynamic analysis of an elastic lattice attached to a system of gyroscopic spinners,

focussing on special dynamic regimes possessed by the medium and previously identified in Carta et al. (2017a) and Garau

et al. (2018) under time-harmonic conditions. Specifically, we have shown how highly localised waveforms and unidirec-

tional interfacial waves are generated and propagate through a gyro-elastic lattice in the transient regime. 

We have demonstrated that these dynamic effects can be obtained for different initial conditions and under an exciting

load with broadband frequency content such as the recorded accelerogram of a real seismic event. 

We have also developed two important applications of a gyro-elastic system. The first one shows that a gyro-elastic

medium can be used to construct a robust topological insulator that, when excited on the exterior boundary at a given

frequency, is capable of confining the waves to this boundary, leaving the interior of the structure almost undisturbed. The

second application concerns the design of a structured gyro-elastic cloak, that can be efficiently used to hide the presence

of a defect in the discrete medium, preventing the defect from having significant interactions with external excitations.

We envisage that the models proposed in this paper will be very useful in seismic protection and civil engineering, where

systems capable of controlling or suppressing the effects of unwanted vibrations are of great importance. 
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Appendix A. Angular momentum balance of the gyroscopic spinner 

The derivation of the equations of motion (3) of the gyroscopic spinner are presented here (see also Carta et al., 2018;

Goldstein et al., 2001; Nieves et al., 2018 ). The generalised coordinates or Euler angles are the precession φ, the nutation θ
and the spin ψ angles (see Fig. 3 (b)). 

We introduce both a fixed frame of reference F , with basis { e 1 , e 2 , e 3 } and coordinate system Ox 1 x 2 x 3 , and a moving

frame of reference F 

′ , which follows the gyroscopic spinner as it precesses and nutates (but not as it spins). The moving

frame F 

′ has basis { e ′ 
1 
, e ′ 

2 
, e ′ 

3 
} (which is time-dependent) and coordinate system Ox ′ 

1 
x ′ 

2 
x ′ 

3 
. The basis in the moving frame

can be written via the basis { e 1 , e 2 , e 3 } in the fixed frame as 

e ′ 1 = cos (φ(t)) e 1 + sin (φ(t)) e 2 , 

e ′ 2 = − cos (θ (t)) sin (φ(t)) e 1 + cos (θ (t)) cos (φ(t)) e 2 + sin (θ (t)) e 3 , 

e ′ 3 = sin (θ (t)) sin (φ(t)) e 1 − sin (θ (t)) cos (φ(t)) e 2 + cos (θ (t)) e 3 . (A.1)

Starting from the angular momentum balance (1) , we express the angular velocity of the gyroscopic spinner ω g as 

ω g = ω F ′ F + 

˙ ψ e ′ 3 , (A.2)

where the dot denotes differentiation with respect to time. Here, ω F ′ F is the angular velocity of the basis in F 

′ relative to

the basis in F and the last term in the right-hand side corresponds to the angular velocity of the spinner about the local

axis Ox ′ 3 in F 

′ . The angular velocity ω F ′ F can be written in terms of the Euler angles as 

ω F ′ F = 

˙ θe ′ 1 + 

˙ φ sin (θ ) e ′ 2 + 

˙ φ cos (θ ) e ′ 3 . (A.3)

Taking into account that 

˙ e ′ j = ω F ′ F × e ′ j , (A.4)

the angular momentum balance (1) takes the form 

M e = I g A g + ω F ′ F × I g ω g . (A.5)

In the above, 

A g = θ̈e ′ 1 + ( ̈φ sin (θ ) + 

˙ φ ˙ θ cos (θ )) e ′ 2 + ( ̈φ cos (θ ) − ˙ φ ˙ θ sin (θ ) + ψ̈ ) e ′ 3 (A.6)

is the angular acceleration in the rotating frame of reference. 

The explicit components of (A.5) are 

M 

′ 
1 = I 0 ̈θ + 

˙ φ sin (θ )[ −I 0 ˙ φ cos (θ ) + I 1 ( ˙ φ cos (θ ) + 

˙ ψ )] , 

M 

′ 
2 = I 0 [ ̈φ sin (θ ) + 2 

˙ θ ˙ φ cos (θ )] − I 1 ˙ θ ( ˙ φ cos (θ ) + 

˙ ψ ) , 

M 

′ 
3 = I 1 ( ψ̈ + φ̈ cos (θ ) − ˙ φ ˙ θ sin (θ )) , (A.7)

where M 

′ 
j 
, 1 ≤ j ≤ 3, are the components of the external moment vector M e when written in terms of the basis { e ′ 

1 
, e ′ 

2 
, e ′ 

3 
} . 

https://doi.org/10.13039/100010663
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We denote by M j , 1 ≤ j ≤ 3, the components of the external moment vector M e when interpreted in terms of the basis of

the fixed frame F . From (A.1) , we have ⎛ 

⎝ 

M 1 

M 2 

M 3 

⎞ 

⎠ = 

⎛ 

⎝ 

cos (φ) − cos (θ ) sin (φ) sin (θ ) sin (φ) 

sin (φ) cos (θ ) cos (φ) − sin (θ ) cos (φ) 

0 sin (θ ) cos (θ ) 

⎞ 

⎠ 

⎛ 

⎝ 

M 

′ 
1 

M 

′ 
2 

M 

′ 
3 

⎞ 

⎠ . (A.8) 

Finally, from (A.7) and (A.8) the components of the external moment (3) in the fixed coordinate system are derived. 

Appendix B. Dispersion relation for the triangular lattice 

Here the dispersion relation for the triangular lattice of Fig. 9 is derived, following the analytical treatment described in

Carta et al. (2017a) . To identify waves in the lattice, one can look for the solutions in the form 

u 

( n ) 
j 

= U 

( n ) 
j 

e i ωt , j = A, B . (B.1) 

The amplitudes U 

( n ) 
j 

, j = A, B, satisfy the Bloch-Floquet conditions 

U 

( n + a ) 
j 

= U 

( n ) 
j 

e i k ·T a , T = [ t (1) , t (2) ] = 

(
2 

1 
2 

0 

√ 

3 
2 

)
, (B.2) 

where k = (k 1 , k 2 ) 
T is the Bloch or wave vector. Combining this with (37) and (38) , we retrieve the dispersion relation 

det [ C − ω 

2 (I 4 − S )] = 0 , (B.3) 

where I 4 is the 4 × 4 identity matrix and the matrix characterising the effect of the spinners is 

S = i diag ( αA R , −αB R ) . 

In addition, in (B.3) the stiffness matrix C is given by 

C = 

(
C 

(1 ) C 

(2) 

C 

(2) C 

(1) 

)
, 

where 

C 

(1) = 

⎛ 

⎝ 

3 − 1 
2 

cos (ζ ) −
√ 

3 
2 

cos (ζ ) 

−
√ 

3 
2 

cos (ζ ) 3 

(
1 − 1 

2 
cos (ζ ) 

)
⎞ 

⎠ 

and 

C 

(2) = 

( 

−e −i(ζ+ ξ ) 
(
2 cos (ζ + ξ ) + 

1 
2 

cos (ξ ) 
) √ 

3 
2 

e −i(ζ+ ξ ) cos (ξ ) 

√ 

3 
2 

e −i(ζ+ ξ ) cos (ξ ) − 3 
2 

e −i(ζ+ ξ ) cos (ξ ) 

) 

, 

with ξ = 

k 1 
2 −

√ 

3 k 2 
2 and ζ = 

k 1 
2 + 

√ 

3 k 2 
2 . 

Appendix C. Dispersion relation for the hexagonal lattice 

Waves propagating in the hexagonal medium of Fig. 14 can be identified by substituting into (40) and (41) solutions of

the form (B.1) satisfying (B.2) , where the matrix T is now 

T = 

( 

3 
2 

3 
2 

−
√ 

3 
2 

√ 

3 
2 

) 

. (C.1) 

The eigenfrequencies of the hexagonal gyroscopic system can be obtained from Eq. (B.3) , with the following definitions of

the stiffness matrix 

C = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

3 

2 

0 −1 − e −i η + e −i σ

4 

√ 

3 (e −i η − e −i σ ) 

4 

0 

3 

2 

√ 

3 (e −i η − e −i σ ) 

4 

−3(e −i η + e −i σ ) 

4 

−1 − e i η + e i σ

4 

√ 

3 (e i η − e i σ ) 

4 

3 

2 

0 

√ 

3 (e i η − e i σ ) −3(e i η + e i σ ) 
0 

3 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(C.2) 
4 4 2 
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Fig. 25. Dispersion properties of the hexagonal gyro-elastic lattice of Fig. 14 . (a) α = 0 , (b) α = 0 . 9999 . The computations are based on the dispersion 

relation (B.3) , with (C.2) and (C.3) . (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

with η = (3 k 1 −
√ 

3 k 2 ) / 2 and σ = (3 k 1 + 

√ 

3 k 2 ) / 2 , and the gyroscopic matrix 

S = i α diag ( R , R ) . (C.3)

We note that the considered structure admits dispersive degeneracies such as Dirac cones when α = 0 , correspond-

ing to the case of an ordinary hexagonal lattice without spinners, as shown in Fig. 25 (a). The Dirac Point is at K =
(2 π/ 3 , 2 π/ (3 

√ 

3 )) and ω = 

√ 

3 / 2 in the reciprocal lattice. 

For α → 1 −, at the same point in the reciprocal space, another Dirac cone appears at a higher frequency. Such a case is

shown in Fig. 25 (b), for α = 0 . 999 . Actually, in this case the Dirac cone has not formed yet and an extremely narrow stop

band is opened at the reciprocal point K = (2 π/ 3 , 2 π/ (3 
√ 

3 )) , in the vicinity of the vertex of the Dirac cone appearing for

α → 1 −. 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at https://doi.org/10.1016/j.

ijengsci.2019.05.007 . 
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