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ABSTRACT 

Spasticity is a common sensory-motor dysfunction observed following a stroke, and it is one of 

the signs indicating damage to the upper motor neurone system at the spinal or cerebral level.  

Stroke survivors often experience Some resistance to passive movement of their limbs. Increased 

resistance to passive movement could be attributed to neural and non-neural mechanisms. 

Neural resistance to passive movement is often referred to as spasticity. Current methods used 

clinically to measure spasticity proven to be limited or invalid. 

 

The main objective of the current study was to explore the possible usefulness of GFAP, S100B, 

NSE, Glutamate, GABA, Purines, CK, LD and Albumin as biomarkers of post-stroke spasticity. By 

comparing the serum concentrations between spastic and non-spastic groups and identify 

possible correlations of the biomarkers with the development of spasticity. In addition, it was 

intended to identify possible correlations of muscle biomarkers with post-stroke muscle 

weakness.   

 

Although not statistically significant, higher levels of three central nerve system specific 

biomarkers (GFAP, NSE, S100B) and purines indicate a promising candidate targets for further 

exploration of associated biomarkers for spasticity following stroke. 
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CHAPTER 1: INTRODUCTION 

  
  

1.1 Stroke 

Stroke is the second common cause of death, after ischaemic heart disease, and the third leading 

cause of disability worldwide (Johnson et al., 2016). Over 100 000 people in the United Kingdom 

suffer from a stroke every year, and this has been a financial strain on the National Health Service 

costing over £3.6 billion.  This figure is likely to increase with an increase in the ageing population 

of today (Xu et al., 2018).  Approximately, a third of stroke survivors remain functionally 

dependent at one year after a stroke, with the feeling of the disabling impact of a stroke 

continuing for as long as the stroke survivor lives (Newton et al., 2015). 

 

WHO (1988) defines a stroke as "rapidly developing clinical signs of focal (or global) disturbance 

of cerebral function lasting more than 24 hours with no apparent cause other than of vascular 

origin”. This is a clinical definition, and it does not depend on brain imaging. The WHO definition 

includes cerebral infarction, subarachnoid haemorrhage and intracerebral haemorrhage. 

However, subdural haematoma and other traumatic bleedings are excluded since they are usually 

caused by trauma. 

 

1.1.1 Classification of stroke 

There are two types of strokes, ischemic and haemorrhagic. Ischemic strokes, estimated to be 

87% of the entire number of reported strokes, result from a cerebral artery becoming, partially 
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or entirely blocked thereby decreasing tissue perfusion (Donnan et al., 2008). The extent of the 

infarction will depend on the size and location of the blockage. Ischemic stroke is created either 

by a thrombosis, as a consequence of an atherosclerotic plaque separation, or by an embolus 

originating outside the brain.   Atherosclerosis, magnified by arterial hypertension, diabetes 

mellitus, smoking and raised lipid levels form one of the key processes implicated in the 

pathogenesis of Ischemic stroke (Wardlaw et al., 2009).  

 

The transient ischemic attack, on the other hand, and according to the new definition is 

considered to be a brief episode of neurologic dysfunction resulted from the focal brain or retinal 

ischemia, with clinical manifestations typically lasting less than one hour with no neuroimaging 

evidence of acute infarction. This new definition is based on evidence from neuroimaging studies 

showed that even when focal transient neurological symptoms last less than an hour, the risk of 

permanent tissue injury (infarction) still exists. Even brief ischemia is thought to cause permanent 

brain injury. (Simmons, Cirignano and Gadegbeku, 2012).  

 

Hemorrhagic stroke accounts for around 13% of all strokes. It is the result of a ruptured cerebral 

artery with the development of intracranial haemorrhage and sometimes raised intracranial 

pressure that ultimately leads to the compression of surrounding neuronal tissue, as well as the 

blocking of the blood flow of surrounding vessels with following ischemia and necrosis (Salman, 

Labovitz and Stapf, 2009). Hemorrhagic stroke can be categorised as intracerebral haemorrhage 

if the blood accumulation happens within the cerebral parenchyma or as subarachnoid 

haemorrhage if the haemorrhage takes place outside the brain (between arachnoid mater and 
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pia mater) (Laborde et al., 2012). Based on the underlying aetiology of intracerebral 

haemorrhage, it can be categorised as primary if the rupture of small vessels is spontaneous, or 

secondary when it is associated with conditions such as coagulopathies, vascular irregularities 

and tumours (Wilson et al., 2015). 

 

At an individual level, the consequences of a stroke can be destructive. Depending on the affected 

brain area and the degree of damage, the effects may be extensive (Varona, 2011). The remaining 

neurological deficits may include loss or weakness of the use of one side of the body (paresis), 

abnormal muscle activation (spasticity), speech difficulty (aphasia/dysarthria), decrease in mental 

functioning (cognitive/ perceptual Impairments) and impaired emotional functions (UK 

Department of Health, 2007). These impairments can affect the ability of the individual to move, 

(e.g. walking), affect the activities of daily living (ADL), (e.g. feeding, dressing) and reduces the 

quality of life. It has been found that motor and functional outcomes after stroke correlate with 

a combination of delimiting sizes and primary locations of lesion more than with lesion sizes only 

(Alexander et al., 2010). 

 

In addition, a series of secondary medical problems particularly falls, and infections are common 

post-stroke (Langhorne et al., 2000). The type of the pathology, subtype of clinical stroke, 

continence and level of consciousness have been documented as prognostic factors for death and 

impairment (Vohra, Ahmed and Ali, 2000). The exact causes of death in stroke varies. It may be 

the result of basic pathology, such as an increase in intracranial pressure, which will lead to 

herniation or disruption of vital cerebral function, or, may be further complications of a stroke, 
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such as Aspiration Pneumonia. It has been reported that complications of the immobility of 

ischemic stroke patients, rather than to neurological consequence, accounts for more than a 

double of the death (Creutzfeldt and Hough, 2015).  

 

1.2 Spasticity 

Spasticity is a common sensory-motor dysfunction observed following a stroke, and it is one of 

the signs indicating damage to the upper motor neurone system at the spinal or cerebral level. 

The European Working Group, EUSPASM, has defined spasticity as “disordered sensorimotor 

control, resulting from an upper motor neurone lesion, presenting as intermittent or sustained 

involuntary activation of muscles” (Pandyan et al., 2005).  Based on this EUSPASM definition, the 

term ‘spasticity’ can be used to describe most of the ‘positive features’ associated with the upper 

motor neuron syndrome. Positive features such as increased reflexes, spasm, clonus, abnormal 

movement patterns, co-contraction, altered tone and ‘abnormal’ muscle activity response to an 

externally imposed passive movement.  The response of a relaxed muscle to an externally 

imposed stretch can present as, velocity-dependent response; position-dependent response; a 

combination of velocity-dependent and position-dependent response and a clasp-knife-type 

response. In some patients, increased muscle activity can present as increased resistance to 

passive movement (Pandyan et al., 2018). 

 

Spasticity is thought to be a result of lost inhibitory control of the spinal reflexes. Spinal reflex 

activity is tightly regulated, and if inhibitory control is lost, the result is the hyperexcitability of 

the spinal reflexes. The subsequent adaptations in the spinal networks, because of the primary 
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lesion, may vary considerably since individual patients have lesions affecting different pathways 

to a different extent. Changes in spinal cord inhibitory circuits; reciprocal inhibition, plateau 

potentials and presynaptic inhibition may, in different patients, have different roles (Mukherjee 

and Chakravarty, 2010). 

 

It is believed that there must be some sort of rearrangement, a kind of neuronal plasticity, that 

occurs within the spinal cord, as well as at the cerebral level following a stroke. The process of 

neuroplasticity is believed to happen immediately after a stroke and possibly continue at a 

heightened level during the first few days or weeks post-stroke.  Part of neuroplasticity is 

sprouting of afferent axons. (Bareyre et al., 2004). Afferent fibres might sprout, attach to 

previously inhibitory synapses, and convert them to excitatory synapses. The development of 

denervation hypersensitivity due to upregulation of receptors could be an alternative mechanism 

(Calabresi et al., 1992).  

 

It is unlikely that spasticity is caused by a single mechanism, but rather by a complicated chain of 

changes in different interdependent networks. More than one pathophysiologic abnormality 

contributes to the development of spasticity, and these have been well documented in literature 

(Sheean, 2002; Nielsen, Crone and Hultborn, 2007). 

 

1.2.1 Complications of spasticity 

Patients with spasticity sometimes complain only from stiffness, although other features of 

spasticity could be present and evident. The elastic and plastic properties of muscle tissues also 



6 
 

change as a result of reduced mobilisation, and this is due to the absence of voluntary movement, 

making muscle contraction and joint movement more difficult (Ghai et al., 2013). Spasticity may 

also facilitate fixed positioning and lead to the sensations of heaviness or pain in the affected 

limb. 

 

Contracture, the permanent loss of range of movement of a joint, is more likely to happen in the 

presence of spasticity. It is believed that, in patients who have not recovered active movement, 

any form of position-dependent spasticity, the clasp-knife response and spastic dystonia can all 

facilitate fixed positioning of the limbs and lead to the development of contracture. Contractures 

seem to develop more rapidly in patients with spasticity who have no function than patients with 

spasticity but their function still intact. Patients who recover active movement, do not necessarily 

have spasticity interfering with active movement and do not develop contractures (Pandyan et 

al., 2003; Malhotra et al., 2011). 

 

Some disuse atrophy occurs within a few weeks of the injury because of certain changes in the 

mechanical and physiological properties and the muscular tissue being in a contracted position, 

and this result in a less efficient muscle function. Spasticity might also lead to a decrease in the 

functional ability of the affected limb. These limitations directly affect the lives of the stroke 

sufferers at the primary level, but the effect of spasticity is often noticed as an increased burden 

on caregivers. It is estimated that in the group of chronic spastic patients, 20–30% will have 

disabling spasticity and in need of some medical intervention., (Lundstrom, Terent and Borg., 

2008). 
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Skin breakdown can be common in persons with spasticity. Poor positioning may lead to skin 

breakdown over pressure points. Pressure sore occurs in the hand because of contracture and 

spasticity. Spasticity in the adductor muscles of the legs makes perineal hygiene difficult and can 

cause pressure problems, at the location of where the knees rub together (Hughes and Howard, 

2013). This would certainly increase the burden on the caregiver, because of the noticeable 

difficulties in moving, handling, and positioning in routine daily care. 

 

The severity of pain and overall quality of life burden associated with the development of post-

stroke spasticity may be reduced or avoided through the initiation of preventive approaches in 

patients with Upper Motor Neuron Syndrome (UMNS). Early interventions may prevent, slow or 

limit the progression and the complications of post-stroke spasticity. Studies have suggested that 

early implementation of rehabilitation program prevents pain development and may also prevent 

deterioration in contracture which is believed to be linked to spasticity (Malhotra et al., 2013). 

 

1.2.2 Measurement of spasticity  

The measures currently available for identifying or classifying spasticity can be categorised into 

three groups: clinical scales, biomechanical methods, and neurophysiological methods 

(Johnson, 2005). The biomechanical and neurophysiological measurement methods are mostly 

used in laboratory settings. 
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1.2.2.1 Clinical methods  

Clinical methods include several tools with different measurement characteristics and assessing 

different constructs. The Ashworth Scale and its modified version (Ashworth, 1964; Bohannon 

and Smith, 1987) are still common practice in the clinical setting and are widely used in scientific 

research. The scales used to measure spasticity by quantification of resistance to passive 

movement (Dunne, Heye and Dunne, 1995; Sampaio et al., 1997). 

The Ashworth scale is as follows: 

                               0-  No increase in muscle tone 

1- Slight increase in tone giving a catch when the limb is moved 

2- More marked increase in tone but limb easily moved 

                               3-   Considerable increase in tone - passive movement difficult 

4- Limb is rigid in flexion or extension 

 

There is a modified Ashworth scale, that is similar to the Ashworth scale except that it adds a 1+ 

scoring category to indicate resistance through less than the half of the movement (Appendix I). 

Due to their inability to distinguish between the neural and non-neural components of the 

increase in resistance to passive movement, both scales have been proven to be invalid 

measures of spasticity (Pandyan et al., 2003). 

 

Another scale that claims to quantify muscle spasticity is the Tardieu Scale (Tardieu, Shentoub 

and Delarue, 1954). This scale evaluates the response of the muscle to stretch applied at certain 

velocities (AppendixII). Grading in Tardieu method is always performed in a constant position 
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of the body for a given limb and reaction to stretch is rated at a specified stretch velocity. 

Because of its ability to assess and compare the muscle response to passive movement at both 

slow and fast speeds, it has been suggested as a more suitable alternative to the Ashworth Scale 

for measuring spasticity (Vattanasilp, Ada and Crosbie, 2000). 

Here is the quality of muscle reaction in Tardieu Scale: 

                     0 -     No resistance throughout passive movement    

1-  Slight resistance throughout, with no clear catch at a precise angle.                                                       

2-  Clear catch at a precise angle followed by release 

3-  Fatigable clonus (<10 secs) occurring at a precise angle  

4-  Unfatigable clonus (>10 secs) occurring at a precise angle 

5-  Joint Immobile 

 

The Tardieu Scale is also, confounded by the limitations of its ability to distinguish between the 

neural (spasticity) and non-neural (mechanical and physiological) components of the increase in 

resistance to passive movement, making its use as a measure of spasticity per se, questionable at 

best (Haugh, Pandyan and Johnson, 2006).  It would make more sense if the clinical scales were 

to be used as a measure of the resistance to passive movement, as perceived by the clinician, 

rather than a measure of spasticity (Fleuren, Bourke and Geurts, 2018). 

 

1.2.2.2 Biomechanical methods 

Biomechanical methods to measure spasticity assess muscle activation indirectly, by measuring 

the resistance to an externally imposed movement. The biomechanical measure can be 
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performed manually, by instrumented displacement, or by gravity (Vodovnik, Bowman and Bajd, 

1984; Biering-Sorensen, Nielsen and Klinge, 2006). However, all biomechanical methods have 

limited clinical applicability and can only be used to measure resistance to passive movement.  

Biomechanical methods are unable to distinguish between the neural and non-neural 

components to the resistance to passive movement (Pandyan et al., 2018). 

 

1.2.2.3 Neurophysiological methods 

With neurophysiological measurement methods, electrical activity of involved muscles is 

measured. The use of surface electromyography (sEMG) for the recording of muscle activity 

during passive movement can be a valuable addition when applied in a standardised way.  

Neurophysiological methods include, Hoffmann reflex (H-reflex), H:M ratio and F-wave which 

measure the efferent response to an electrical stimulus, and tendon tap (T-reflex), manual 

perturbation, or controlled displacement perturbation which measure the efferent response to 

a mechanical perturbation.  

 

Most of the neurophysiological methods of measurement are relatively easy to perform. 

However, due to large inter- and intra-subject variability, parameters related to the magnitude 

of muscle activity cannot be used reliably. Neurophysiological measurement methods provide 

more useful information to inform the management of spasticity than any of the clinical scales 

or the biomechanical measures used in isolation (Pandyan et al., 2018). A combination of 

biomechanical and neurophysiological measurements is recommended, and it is undoubtedly, 

more accurate in quantifying spasticity than the clinical scales (Malhotra et al., 2008). However, 
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biomechanical and neurophysiological measurements usually require specialised equipment 

and training which might make them impractical and not cost effective.  Another limitation is 

that although they tell us of the presence or absence of spasticity, they do not give sufficient 

enough information of the causes of spasticity. At a fundamental level spasticity results from 

changes in signaling within the central nervous system (CNS); changes in signaling may give rise 

to other markers we can measure using biomarkers analysis. 

 

1.3 Rationale 

None of the current clinical measures is sensitive enough to detect early spasticity, and they are 

unable to identify it before any complications have developed, and by that time patients would 

have possibly lost their ability to recover. If spasticity has not been detected and treated early, 

complications will develop which can in turn exacerbate the condition further (e.g., contracture 

will lead to pressure sores). Finding a way of identifying spasticity earlier is the key to better 

patient’s management, with the prospects of developing future treatments. Considering the 

insufficient sensitivity of current methods used routinely in the clinical setting and the 

impracticality of using biomechanical and neurophysiological measures in a clinical setting, it is 

necessary to establish additional methods that, when coupled with clinical assessment, can 

improve diagnostic precision. The study of biological markers could represent an additional 

method for the diagnosis of spasticity. The advantage of using biomarkers include quick testing 

and, coupled having identified biomarkers for spasticity, possibility of identifying suitable early 

treatment. 
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In stroke patients, the time course of development of Spasticity can be within 48 hours or even 

earlier (Pandyan et al., 2018). It has been reported that more than 90% of patients without arm 

function will develop spasticity within six weeks post stroke (Malhotra et al., 2011). 

If spasticity biomarkers can be identified in the early stages of a stroke, ideally before even 

muscle overactivity is seen, then we will be able to manage spasticity and stop the limb 

deformities and pain from emerging. The prevention of secondary complications with early 

identification and treatment, in addition to helping the patient, may cut down the costs 

associated with giving such service to the NHS.  Biomarkers might provide a more efficient and 

sensitive method of measurement, helping to elucidate mechanism better, lead to newer 

treatments and assess the effectiveness of any therapeutic interventions for spasticity. 

 

1.4 Biomarkers 

A biomarker has been defined by The Biomarkers Definition Working Group of the National Health 

Institute as a, “characteristic that is objectively measured and evaluated as a marker or indicator 

of normal biological processes, pathogenic processes or pharmacological responses to therapeutic 

intervention” (Atkinson et al., 2001).  

 

A variety of methods have been used to develop biomarkers. This has progressed from limited 

targeted pathological or physiological studies to the identification of total alterations linked to 

disease processes with the use of methods such as proteomics (Rifai and Gerszten 2006). 

Biomarkers have been applied in several areas of clinical practice. These include diagnosis, 

prognosis and monitoring of disease development. Other applications include development and 



13 
 

delivery of personalised treatments and monitoring of clinical responses to treatment (Ilyin, 

Belkowski and Plata-Salaman. 2004).  

 

A biomarker is considered relevant in clinical practice if it can be measured quickly and precisely 

at a reasonable cost. Ideally, a biomarker should be of value to patient diagnosis or prognosis and 

helpful in directing patient management (Lemos, McGuire and Drazner. 2003). C-Reactive Protein 

(CRP) and Troponins are two of the widely used clinical biomarkers. CRP, which is considered an 

acute phase protein is non-specific, whereas troponin is a cardiac-specific biomarker although its 

use is limited in some clinical conditions. It is difficult to identify an ideal biomarker that 

completely meets the strict parameters needed for the evaluation. It is unlikely for an individual  

biomarker to work flawlessly well for all phases from disease risk identification before onset to 

post-disease development. It is important for researchers to develop and place the targeted 

biomarker to fill a gap or meaningfully complement what is already available clinical information. 

A biomarker that may be unuseful in assisting with the diagnosis may be quite helpful as a tool to 

follow the development of a specific pathological process in diseases. 

 

The overall aim of this project was to investigate the potential for serum biomarkers to be able 

to assess and predict the development of post-stroke spasticity. Therefore, the first objective 

was to Identify the likely serum biomarkers present in the literature used for the evaluation of 

neurological dysfunction.
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CHAPTER 2:  LITERATURE REVIEW 
 

 
The objective of this literature search is to identify potential biomarkers that can be used for early 

detection and diagnosis of post-stroke spasticity. In the eventual clinical setting, such biomarkers 

may also be used to augment the precision of clinical diagnosis, follow disease progression and 

help with drug development. 

 

2.1 Literature search 1 

Electronic databases MEDLINE and CINAHL were searched on 17 June 2018 for all studies detailing 

the use of biomarkers for post- Stroke spasticity. The search was not restricted by date or 

language. 

 

2.1.1 Electronic search strategy  

The full search strategy has been described in Appendix III. 

 

2.1.2 Results  

The literature search retrieved 20 publications none of which related to biomarkers of post-

stroke spasticity. 

 

2.2 Literature search 2 

The first literature search did not find any publications related to biomarkers of post-stroke 

spasticity; therefore, a second literature search was performed. The second literature search was 

looking for biomarkers of stroke. Since spasticity is one of the consequences of stroke, we 
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believed that such search would provide a collection of stroke biomarkers which could be 

investigated further and their link to post-stroke spasticity explored. 

 

Electronic databases MEDLINE and CINAHL were searched on 17 June 2018 for all studies detailing 

the use of biomarkers in Stroke. The search was not restricted by date or language.  

 

2.2.1 Inclusion and exclusion criteria 

Studies were eligible for inclusion if they were published in the English language; only assayed 

blood biomarkers (not Cerebrospinal fluid) and included only stroke (not transient ischemic 

attack). 

 

2.2.2 Electronic search strategy 

The full search strategy has been described in Appendix IV 

 

2.2.3 Results  

The search yielded eight thousand, one hundred and ninety-five publications. Studies were 

included if they were published in the English language; only assayed blood biomarkers (not 

cerebrospinal fluid, urine or other fluids) and included only stroke (not transient ischemic attack). 

A number of seven thousand one hundred and thirteen publications did not satisfy the inclusion 

criteria. Out of the one thousand and eighty-two articles that satisfied the inclusion criteria, only 

human studies were included, this reduced the number further to seven hundred and sixty-one 

studies (Appendix V). In this study, not all of the papers we are using to inform this review are 
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limited to the articles identified in the search. A full review of the reported biomarkers and their 

possible link to post-stroke spasticity will be discussed next. 

 

2.3 Potential biomarkers 

There have not been any studies looking at biomarkers of spasticity, and since UMN lesions are 

believed to be a consequence of stroke, it might be useful to look at stroke biomarkers and study 

their link to spasticity. There is the possibility that some of these biomarkers might play a role in 

the development of spasticity. 

 

An ideal central nervous system (CNS) biochemical marker should have all of the following 

properties (Ingebrigtsen and Romner, 2002): 

 

1-   Central nervous system specificity. 

2-    Rapid and significant release into blood or CSF after injury. 

3-    Readily obtainable assay results. 

4-    Predictability of serious injury from an early sample. 

5-    Relationship of marker concentration with the degree of injury. 

6-    Inexpensive. 

7-    Minimally influenced by confounding factors. 

8-    Reproducible. 

  



18 
 

2.3.1 Classification of biomarkers 

The literature search yielded 761 articles reporting a range of biomarkers linked to stroke. Stroke 

biomarkers could be divided roughly into two categories, CNS specific and non-CNS-specific 

biomarkers. The following are mainly brain-derived proteins or amino acids that had been 

studied as biomarkers of stroke (Table 1). These are markers of damage to glial and neuronal 

brain tissue and thus could have the potential to be linked to spasticity. These CNS specific 

biological markers will be discussed in more detail next. 

 

2.4 Central nervous system (CNS) biochemical markers 

 
Table 1 Central nervous system (CNS) biochemical markers 

Biomarker Role Origin 

Neurone-specific enolase (NSE) Neuronal damage Neurone 

Protein S100B Glial damage Glia 

Glial fibrillary acidic protein (GFAP) Glial protein Glia 

Gamma-Aminobutyric acid (GABA) Neurotransmitter Neurones 

Glutamate Neurotransmitter Neurones 

Glycine Neurotransmitter Neurones 

Spermidine Modulate NMDA Neurones 

Tau Neuronal protein Neurones 

Myelin basic protein Glial damage Glia 

Neurofilaments protein Structural support Neurones 

Visinin-like protein 1 (VLP-1) Neuronal damage Neurones 
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2.4.1 Neurone-specific enolase (NSE) 

Neuron-specific enolase is a cytoplasmic glycolytic enzyme expressed mainly in neurons and 

neuron-derived cells (Isgro, Bottoni and Scatena, 2015).  Four studies have demonstrated 

significantly lower Neuron-specific enolase concentrations in controls than in patients with 

acute ischemic stroke (Cunningham et al., 1991; Fassbender et al., 1997; Missler et al., 1997; 

Oh et al., 2003). However, links between Neuron-specific enolase values and infarction volume, 

different stroke scale scores and result parameters have been found inconsistent (Cunningham 

et al., 1991; Butterworth et al., 1996; Fassbender et al., 1997; Missler et al., 1997; Wunderlich 

et al., 1999). 

 

In a study conducted by Jager (1999), ten thromboembolic stroke patients showed significantly 

elevated Neuron-specific enolase levels as early as 4 hours after stroke onset.  Others could not 

detect differences at 4 hours but reported a Neuron-specific enolase increase from 8 hours to 

72 hours (Fassbender et al., 1997). Three studies showed a significant Neuron-specific enolase 

increase when blood was drawn within the first 24 hours after ischemic stroke onset (Missler et 

al., 1997; Hill et al., 2000; Oh et al., 2003). Differences between serum levels in ischemic and 

hemorrhagic stroke were found in one study at 48 and 72 hours after symptom onset, but not 

at hospital admission (Cunningham et al., 1996).    

 

One reason might be that measurements of NSE serum concentrations were based on 

techniques with different detection thresholds, sensitivity and specificity (Table 2). None of the 

previous investigations had used a fully automated high-end technique. Besides, a variety of 
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different scales have been applied to the assessment of clinical deficits and functional outcome 

(Anand and Stead, 2005). 

 

Table 2 Characteristics of NSE studies (Different assays, outcomes and normal ranges reported) 

Reference Assay Outcomes Normal NSE range 

Cunningham et al. 

(1991) 

Cunningham CT stroke volume; Glasgow 

Outcome Scale 

5.69-10.99 µg/L 

Fassbender et al 

(1997) 

Sangtec Scandinavian Stroke Scale; 

CT infarct volume 

8.38-9.84 ng/mL 

Oh et al (2003) Roche MRI infarct volume; NIHSS 4.7- 7.9 ng/dL 

Missler et al (1997) Roche CT infarct volume; ADLs at 

dismissal 

6.4-15.8 μg/L  

 

2.4.2 Protein S100B 

The S-100 is an acidic calcium-binding protein consist of two subunits (α and β). S-100 ββ is 

present in high concentration in glial and Schwann cells, S-100 αβ in glial cells, and S-100 αα is 

found in slow-twitch muscle, heart, and kidney (Foster, 2017). 

 

As a result of its broad localisation in various cell types, S100B is believed to be a biomarker of 

generalised blood-brain barrier dysfunction rather than specific glial damage (Kapural et al., 

2002). S100B is released into the cerebrospinal fluid (CSF) on damage to the structure of 

neuronal cells, but the fundamental mechanism of passage through the blood-brain barrier 

(BBB) has not been clearly explained. The concentration of S100B is 40 times higher in the 

cerebrospinal fluid than in serum or plasma. The biomarker is not affected by hemolysis and 
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has outstanding stability (Kanner et al., 2003). It is frequently reported as a promising 

biomarker that can be measured in peripheral blood samples (Fassbender et al., 1996; Buttner 

et al., 1997; Missler et al., 1997; Elting et al., 2000; Herrmann et al., 2000, Wunderlich et al., 

2004; Thelin, Nelson and Bellander, 2017). 

 

Studies have demonstrated that following stroke, serum S100B concentrations are increased 

significantly (Persson et al., 1987; Abraha et al., 1997; Buttner et al., 1997; Elting et al., 2000; 

Foerch et al., 2003; Wunderlich et al., 2004; Foerch et al., 2005; Jauch et al., 2006; Schulte et 

al., 2014), with the secretion of S100B increasing up to 48 hours after stroke onset and the 

highest concentration occurring during the first 24 hours after the onset of cerebral infarction. 

Elting et al. (2000) reported that patients who had significant neurological deficits and 

abnormal brain imaging showing large artery cortical infarcts had significantly higher S100B 

concentrations with maximum variation over time, in comparison with patients who had a 

transient ischaemic attack (TIA) or normal brain CT at presentation. 

 

Significant correlations between the size of infarction area and S100B concentrations in blood 

were demonstrated in a variety of clinical or experimental research on focal ischemia. In cases 

with focal ischemia as a secondary complication, it has been shown that lesion size strongly 

correlated with S100B concentrations 48 hours after stroke following cardiac surgery (Jonsson 

et al., 2001). Jauch et al. (2006) have reported a direct correlation of stroke severity to S100B 

concentrations. 

 



22 
 

Increased S100B in blood is not specific for cerebral infarction as increases occur in other 

neurological pathologies including traumatic brain injury and extracranial tumours, thus giving 

the potential to confound interpretation of results (Raabe et al., 1998; Donato et al., 2001; 

Saenger and Christenson, 2010). The apparent difficulty for widespread use of S100B in acute 

conditions includes it's apparent prolonged and delayed release into the blood. It has been 

shown that S100B increase immediately after stroke onset and peak at 4 days post-stroke 

(Herrmann et al., 2000). This might be an issue when it comes to the diagnosis of stroke, 

because of the urgency of tPA treatment, but it is not the case in spasticity diagnosis. 

 

2.4.3 Glial fibrillary acidic protein (GFAP) 

Glial fibrillary acidic protein (GFAP) is a monomeric intermediate filament protein thought to be 

produced almost exclusively in brain astrocytes (Hol and Pekny, 2015).  GFAP is found in the white 

and grey matter of the central nervous system and is considered a highly specific brain damage 

marker (Missler et al., 1999; Pelinka et al., 2004). Glial fibrillary acidic protein is released rapidly 

out of the damaged brain and is upregulated through astrocytosis (Herrmann et al., 2000; Yasuda 

et al., 2004; Yang and Wang, 2015). 

 

Although the exact role of glial fibrillary acidic protein is unknown, it is involved with various 

neuronal cellular processes and is partially responsible for neurological functions within the 

blood-brain barrier. Initial clinical studies with glial fibrillary acidic protein reported increased 

serum concentrations in ischemic stroke patient’s vs controls, with peak values around 3 days 

after symptom onset (Niebro et al., 1994; Herrmann et al., 2000; Foerch et al., 2003; Foerch et 
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al., 2012).  The prolonged release and specificity of glial fibrillary acidic protein led to the 

hypothesis for its use in stroke differentiation as the onset of intracerebral haemorrhage is 

typically rapid, and any brain injury should result in leakage of GFAP from astroglial cells. 

 

In a study involved patients admitted to a hospital within 6 hours of onset of stroke symptoms, 

Blood samples were collected immediately after admission, and patients were diagnosed with 

hemorrhagic or ischemic stroke based on computerised tomography (CT) scan, or magnetic 

resonance imaging (MRI) results (Foerch et al., 2006). In this study and using an automated 

enzyme immunoassay, serum glial fibrillary acidic protein was detectable in 81% of patients with 

intracerebral haemorrhage, compared with only 5% of patients with ischemic stroke. In addition, 

serum glial fibrillary acidic protein concentrations were much higher in patients with intracerebral 

haemorrhage. For the first 24 hours after stroke, GFAP levels in ischemic stroke patients remained 

within the normal range while it increased between 2-6 hours of stroke onset in hemorrhagic 

stroke patients. To distinguish between ICH and ischaemic stroke, a time frame was determined 

to be between 2-6 hours after the onset of stroke (Dvorak et al., 2009).  

 

2.4.4 Gamma aminobutyric acid (GABA) 

Gamma-aminobutyric acid (GABA) is the chief inhibitory neurotransmitter in the human central 

nervous system. Inhibitory neurotransmitters reduce the probability that glutamate stimulation 

leads to action potential by lowering the resting membrane potential of the neurone (Nuss, 2015). 

GABA neurotransmission causes hyperpolarisation as a result of increased chloride flux across the 

postsynaptic membrane (Herbison and Moenter, 2011). These actions are believed to 
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counterbalance the toxic effects that glutamate cause during cerebral ischemia as it is supported 

by the neuroprotection of the GABAα receptor agonists in animal stroke models (Lyden, 1997).    

Using microdialysis technique after permanent middle cerebral artery occlusion in rats and after 

temporal lobe resection in humans, a sustained increase in Gamma-Aminobutyric acid outflow in 

the ischemic brain has been detected (Melani et al., 1999). Reduction in Cerebrospinal fluid and 

plasma levels of Gamma-Aminobutyric acid have been detected in patients with acute ischemic 

stroke (Blicher et al., 2015). 

 

The dynamics of GABA are unknown but, an increase in neuronal or glial GABA uptake, a decrease 

in GABA-ergic neuronal activity or an enhanced binding of GABA to its receptors in the ischemic 

brain have been suggested. The enhanced binding of GABA to its receptors, in particular, may 

lead to a reversal inflow of GABA from blood across the disturbed blood-brain barrier to the brain 

tissue and hence the reduction in GABA in the blood (Serena et al., 2001). 

 

2.4.5 Glutamate 

Brain tissue releases glutamate in very high concentrations in the core of the cerebral infarction 

and the penumbral cortex; this leads to a massive influx of calcium that activates many of 

catabolic processes "which in turn" produce cell death (Lai, Zhang and Wang, 2014).  Hypoxia due 

to the spread of peri-infarct depolarisations, triggered in the core of the ischemic infarct has been 

suggested as another explanation for glutamate-mediated injury (Busl and Greer, 2010). 

Glutamate is released in high concentrations in the penumbral cortex a region of reduced 

perfusion in which neurons are viable for some time after the onset of ischemia (Breton and 
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Rodriguez, 2012) especially if blood flow is reduced for a long time (Xing et al., 2012). Plasma 

glutamate level may reflect the extent of glutamate accumulation in an ischemic brain (Davalos 

et al., 2000). This hypothesis is supported by the finding of a high correlation between plasma, 

and cerebrospinal fluid concentrations of glutamate in stroke patients (Leibowitz et al., 2012) and 

the clearly defined increase in plasma glutamate found after 4 hours from the onset of permanent 

middle cerebral artery occlusion in a rat stroke model (Puig et al., 2000). Early increase of 

glutamate plasma levels has been reported. Glutamate remains elevated up to 15 days post-

stroke and decreases gradually to be within the normal range at 90 days post-stroke (Aliprandi et 

al., 2005). It has been shown that the amount of glutamate released during experimental ischemia 

correlates positively with the infarct size. (Carmichael, 2005). Thus, glutamate toxicity may have 

a role in the progression of penumbra to infarction. 

 

2.4.6 Glycine 

Glycine is a well-known inhibitory neurotransmitter in the central nervous system, mainly in the 

spinal cord, brainstem, and retina. Glycine works by activating the glycine receptors which cause 

chloride to enter the neuron through the ligand-gated ion channels. This process causes an 

inhibitory postsynaptic potential (Bowery and Smart, 2006). 

 

In a study  performed by Castillo et al., (1997), cerebrospinal fluid and plasma concentrations of 

glycine were shown to be significantly higher in patients with progressing ischaemic stroke 

compared to patients with stable ischaemic stroke. Increased levels of glycine in plasma have 

been detected 4 hours after permanent middle cerebral artery occlusion in a rat stroke model 
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(Puig et al., 2000). This led to the assumption that glycine levels in the brain are likely to be 

detected in peripheral blood in large ischemic infarctions. Plasma glycine concentrations in 

lacunar strokes were found to be within the normal range, and no difference has been detected 

between patients with progressing and patients with non-progressing lacunar strokes. The 

difference in glycine level between large infarction and lacunar stroke is thought to be due to a 

smaller release of glycine in small infarctions (Phillips et al., 2007).  

 

2.4.7 Spermidine 

Spermidine is a low molecular weight amine that is found in a very high concentration in the 

human brain (Park and Igarashi, 2013). Spermidine is mainly found intracellularly with only small 

quantity detected in the extracellular space or the peripheral circulation. Spermidine is present 

in nearly all cells of the human brain. (Hougaard, 1992). It has been shown that there is a 

continuous release of spermidine from cells into the extracellular space (Duan et al., 2011) for 

the purpose of regulation of cellular concentration (Miller-Fleming et al., 2015). Extracellular 

spermidine concentration has been shown to be increased after focal cerebral ischemia. 

However, spermidine showed a significant decrease in concentration after reperfusion of focal 

cerebral ischemia in rats (Paschen et al., 1991). It has been found that spermidine release plays 

a significant role in the changes of the blood-brain barrier in focal cerebral ischemia and the 

development of ischemic oedema (Kindy et al., 1994; Igarashi and Kashiwagi, 2011,). Spermidine 

is mainly transported in the blood by red blood cells after release from brain tissue (Minois, 

Carmona-Gutierrez and Madeo, 2011). The transportation mechanism of spermidine across the 

cell wall in the initial phase of cerebral ischemia is still not fully understood (Yang et al., 2017).  
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2.4.8 Tau protein 

Tau protein is expressed mainly in neurons and axons. It is considered to be a structural 

microtubule-associated protein. Increased levels of tau protein in cerebrospinal fluid (CSF), have 

been described in acute ischemic stroke (Hesse et al., 2000), traumatic brain injury (Franz et al., 

2003), in cerebral complications after aortic surgery (Shiiya et al., 2004) and neurodegenerative 

diseases, e.g. Alzheimer’s disease (Otto and Wiltfang, 2003). 

 

Bitsch et al. (2002) carried out the first serum analyses of tau protein in acute ischemic stroke. 

An elevated tau protein levels have been described in 35% of the recruited study patients with 

peak concentrations within 3–5 days. A correlation of peak tau protein values with infarction 

volume and functional disability after 3 months was found; nevertheless, Bitsch et al. (2002) 

failed to show a significant association of peak tau protein values with the severity of clinical 

deficits. 

 

2.4.9 Myelin basic protein 

Myelin basic protein (MBP) is considered to be the second most abundant protein in the human 

central nervous system (Greene et al., 2012). Its responsible for maintaining the correct structure 

of the myelin sheath and, it plays a vital role in the process of myelination of nerves in the 

nervous system (Taveggia, Feltri and Wrabetz, 2010). Myelin sheath protects and improves signal 

conductance by working as an insulator to increase the velocity of nerve impulses (Husted, 2006). 
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Serum Myelin basic protein was shown to be elevated up to two weeks in an experimental model 

of TBI (Rostami et al., 2012). However, its sensitivity as a predictive of injury severity in TBI has 

been challenged. Berger et al. (2005) reported that myelin basic protein levels are specific for 

ICH and do not increase immediately after an injury. Recently, spectrometry technology has been 

used as an alternative method for the characterisation of Myelin basic protein proteolysis 

following central nervous system injury (Ottens et al., 2008). The level of MBP has been shown 

to be increased significantly in patients with acute cerebral infarction (Berger et al., 2006). 

 

2.4.10 Neurofilaments protein 

Neurofilament (NF) proteins are the dominant structural proteins of axons. NF proteins are 

composed of three polypeptides, light chain (NFL), medium chain (NFM) and heavy chain (NFH). 

The release of neurofilament proteins into the extracellular space result from pathological 

mechanisms that cause axonal damage. Neurofilament proteins then diffused into the 

cerebrospinal fluid and finally transported into the peripheral blood (Giovannoni, 2010). The 

levels of neurofilament protein are believed to be a potential and a good surrogate for 

quantifying central nerve system axonal damage. The utility of neurofilament levels as a 

biomarker has been reported in several studies looking at neurological diseases characterised by 

axonal damage such as stroke (Petzold, 2005). 

 

Levels of both, neurofilament light chain and neurofilament heavy chain are acutely increased in 

relation to acute stroke attacks. Neurofilament proteins reach the highest level in two weeks 



29 
 

after the stroke onset and remain at a high level for at least 15 weeks after stroke onset (Lycke 

et al., 1998).  

 

2.4.11 Visinin-like protein 1 (VLP-1) 

Visinin-like protein 1 (VLP-1) is a calcium sensor protein found in human central nervous system 

neurons. It has been found to have a widespread distribution in the brain and be abundant in all 

brain areas except the caudate–putamen (Bernstein and Braunewell., 2009). It has been 

demonstrated that Visinin-like protein 1 was present in the blood of stroke patients, as well as 

in the cerebrospinal fluid of an animal model of stroke (Laterza et al., 2006). It is believed that 

Visinin-like protein 1 takes longer than 24 Hours post-injury to spread from the cerebrospinal 

fluid into the bloodstream (Hesse et al., 2000). 

 

One study (Laterza et al., 2006) considered Visinin-like protein 1 to be a promising post stroke 

biomarker even though the samples were obtained retrospectively from routine clinical care and 

were not systematically collected at a particular time frame after stroke onset. 

 

2.5 Miscellaneous biomarkers reported in stroke studies (non- central nervous system   

       specific) 

The following are biological markers reported in stroke studies but are not brain-derived proteins 

or amino acids. These biomarkers can be detected or their level changes in other pathological 

processes of the human body and not only limited to central nervous system diseases or injuries. 

Therefore, it should not be considered ideal (CNS) biomarkers, and hence, their use for studying 

spasticity cannot be attributed to CNS only (Table 3). 
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Table 3 Miscellaneous biomarkers reported in stroke studies (non-central nervous system 

specific) 

Biomarker Study 

Inflammatory Biomarkers 

C-reactive protein (CRP) 

 

 

Interleukin 6 (IL-6) 

 

Tumor necrosis factor alpha (TNF-a) 

Vascular cell adhesion molecule 1 (VCAM-1) 

Intercellular Adhesion Molecule 1 (ICAM 1) 

Matrix metalloproteinase-2 (MMP-2),  

matrix metalloproteinase-9 (MMP-9) 

Lipoprotein-associated phospholipase A2 

(Lp- PLA2) 

 

 

Apolipoproteins C-I and Apolipoproteins C-III 

Monocyte chemoattractant protein-1 (MCP-1) 

Ferritin 

 

Resistin 

Serum amyloid A 

P Selectin 

 

Rost et al., 2001; Arenillas et al., 2003; Curb et 

al., 2003; Ballantyne et al., 2005; Di Napoli et 

al., 2003 

Vila et al., 2000; Montaner et al., 2003; Smith 

et al., 2004; Sotgiu et al., 2006 

Castellanos et al., 2002; Sotgiu et al., 2006  

Lynch et al., 2004; Sotgiu et al., 2006  

Castellanos et al., 2002; Sotgiu et al., 2006 

 

Reynolds et al., 2003; Lynch et al., 2004 

Ballantyne et al., 2005; Oei et al., 2005; 

Gorelick, 2008; Wassertheil-Smoller et al., 

2008; Elkind et al., 2009; Thompson et al., 

2010 

Allard et al., 2004 

Reynolds et al., 2003 

Davalos et al., 2000; Erdemoglu and Ozbakir, 

2002 

Efstathiou et al., 2007  

Rallidis et al., 2006  

Cha et al., 2002 



31 
 

 

Haemostasis 

Fibrinogen 

 

D-Dimer 

Von Willebrand factor (vWF) 

Cellular fibronectin 

Soluble glycoprotein V  

Anticardiolipin Antibodies  

Thrombin-antithrombin complex  

Fibrinopeptide A 

Factor VIIIC 

 

Ernst and Resch, 1993; Mauriello et al., 2000; 

Di Napoli et al., 2001 

Fon et al., 1994; Montaner et al., 2008  

Reynolds et al., 2003; Lynch et al., 2004 

 Powers et al., 2003 

Wolff et al. 2005 

Tanne et al., 2002 

 Tanne et al., 2006 

Landi et al., 1987; Feinberg et al., 1996 

Landi et al., 1987 

Cardiac 

Atrial natriuretic peptide (ANP) 

B-type natriuretic peptide (BNP) 

 

Troponin I 

 Troponin T 

 

Makikallio et al., 2005 

Makikallio et al., 2005; Sharma et al., 2006; 

Montaner et al., 2008 

Christensen et al., 2004; Barber et al., 2007 

James et al., 2000; Fure et al., 2006; Jensen et 

al., 2007 

 Anti-inflammatory  

Adiponectin  

Interleukin-10 (IL-10)  

Cortisol 

 

Efstathiou et al., 2005 

Vila et al., 2003 

Davalos et al., 1994 

Anticlotting 

Thrombomodulin (TM) 

 

Olivot et al., 2004; Tanne et al., 2006 
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Dyslipidemia/endothelial damage 

 Fatty acid binding protein (FABP) 

 

 Pelsers et al., 2004; Wunderlich et al., 2005 

 

 

 

(Pelsers et al., 2004; Wunderlich et al., 2005) 

Other Biomarkers 
   
 Parkinson disease 7 (PARK7) 

 
Nucleoside diphosphate kinase A (NDKA)  

B-type neurotrophic growth factor 

L-Arginine 

 
Beta-thromboglobulin 

 
Insulin-like growth factor (IGF) 

Tissue plasminogen activator (tPA) 

Homocysteine 

Hormetanephrine 

 
Uric Acid 

 
Plasminogen activator inhibitor 

 
  Purines 

 

Allard et al., 2005 

Allard et al., 2005 

Reynolds et al.,2003 

Blanco et al., 2006 

Feinberg et al., 1996 

Denti et al., 2004 

Tanne et al., 2006 

Pniewski et al., 2003 

Chamorro etal.,2007 

 Chamorro et al.,2002; Weir et al.,2003  
 
 Lip et al., 2002 
 
Berne et al., 1974; Weigand et al., 1999; 
Pasini et al., 2000; Suzuki et al., 2000  
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2.6 Muscle atrophy biomarkers 

In stroke patients, lesions that interrupt the descending tracts typically cause weakness of 

voluntary movements, loss of dexterity and fatigability (negative signs) as acute manifestations. 

Although the primary lesion leading to spasticity is within the central nervous system, there is no 

doubt that the peripheral musculature has become abnormal. As a result of the skeletal muscle 

been affected by spasticity, serum levels of muscle enzymes are sometimes changed. Skeletal 

muscle sodium-potassium ATPase concentration, for example, is reduced in spastic muscle (Ditor 

et al., 2004). 

 

Several sources could cause muscle weakness and atrophy, such as denervated conditions, 

immobilisation and neuromuscular diseases. Muscle atrophy may also take place, secondary to 

common health problems (Jackman and Kandarian, 2004) or some injuries, such as spinal cord 

injury (SCI).  Ageing (Castro et al.,1999) and various systemic diseases. (Hunter et al., 2004, Sandri 

et al., 2004) could also cause muscle atrophy. 

 

Furthermore, the condition may be worsened by detraining (Joyner, 2004), starvation (Mitch and 

Goldberg, 1996), lowered levels of hormones (Franch and Price, 2005), decrease in 

neuromuscular activity (Fitts et al., 2000), decreases in protein synthesis (Hudson and Franklin, 

2002), increases in protein degradation (Kimball et al., 2002), declines in protein content 

(Jackman and Kandarian, 2004), and several forms of reduced use (Reardon et al., 2001). Muscle 

atrophy which results from limited movement post stroke could eventually cause muscle 
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contracture, and as such, the study of muscle atrophy biomarkers could help in understanding 

the broad aspects of spasticity. 

 

The onset of muscle atrophy is rapid and severe among acute and critically ill patients, starting 

within 4 hours of hospitalisation. (Kasper et al., 2002). The antigravity or the extensor group 

muscles are believed to show larger atrophy than non-antigravity or flexor group muscles in the 

first few weeks during hospitalisation (Fitts et al., 2000). A limb not used for prolonged duration 

in time leads not only to an impairment of the muscle function (Berg and Tesch, 1996) but also to 

changes in the muscle morphology During prolonged periods of hospitalisation (Bloomfield, 

1997), demonstrated in symptoms such as a decrease of the muscle fibre diameter (Widrick et 

al., 1997), a reduction in muscle mass (Vandenborne et al., 1998) and a decline in the overall 

number of muscles fibres (Kasper et al., 2002).  

 

Three catabolic pathways are identified to be associated with the atrophy process during  

decreased muscular movement /decreased gravitational field: 

 

•    ATP-ubiquitin-dependent proteolytic pathways. 

Ubiquitination process needs the activation of three ubiquitin-proteasome system enzymes: 

ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2), and ubiquitin protein 

ligase (E3). At first ubiquitin binds to E1 (Adenosine triphosphate (ATP) - dependent process) and 

then transferred to E2. E3 ligases communicate with E2 after covalently bind protein substrate, 

which carries activated ubiquitin. Ubiquitin in its turn transferred from E2 to the target protein. 
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The process replicates till target protein binds a chain of 4-5 ubiquitin particles.  Then, the 

ubiquitinated protein degrades into peptides inside proteasome. The binding can also be reversed 

by deubiquitinating enzymes (DUBs) (Lecker, Goldberg and Mitch, 2006). 

 

•    Lysosomal proteolytic pathways. 

Lysosomes are the cell organelles accountable for the elimination of other organelles and 

aggregated tissues proteins. The large number of autophagosomes in humans with muscle 

diseases proves that autophagy is an essential feature of muscle cells. Lysosomal enzymes are 

differently activated during atrophy caused by denervation and unloading. According to 

biochemical and electron microscope data, lysosomal degradation of proteins is responsible 

mainly for denervation-induced atrophy (Eskelinen and Saftig, 2009). 

 

•    Ca2+ dependent proteolytic pathways. 

The calcium-dependent proteolytic pathways are comprised by the caspase and calpain families. 

The calpain family is a large family of non-lysosomal calcium-activated cysteine proteases, and 

calpastatin is their endogenous inhibitor.   Three types of calpains are expressed in human muscle, 

calpain 1, 2 and 3. It is known, at least partially, that calpain 3 is muscle specific. Deficits in this 

precise calpain manifest primarily in muscle, showing a muscle distinct function. Calpain 3 is not 

inhibited by, and thus, it is different from calpains 1 and 2. Calpain 3 is believed to have a 

regulatory function rather than one of bulk proteolysis of structural proteins. Many members of 

the caspase family also function as regular proteases degrading structural protein; this has been 

shown with the role of caspase-3 in breaking of actin during cachexia (Kramerova et al., 2005). 
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These systems engage differently in the development of muscle atrophy induced by disuse and 

denervation. It has been noticed that activity of lysosomal proteases does not increase 

significantly under disuse condition (Kachaeva and Shenkman, 2012).  

 

Human head-down bed-rest lead to a rise in the ubiquitin-binding enzyme, proteasome subunits 

(Taillandier et al., 1996) and to an accretion of ubiquitinated proteins (Ikemoto et al., 2001), which 

demonstrates the significant participation of ubiquitin-proteasome system in muscle atrophy 

under unloading conditions. Ca2+ dependent proteases (calpains and caspases) also play a crucial 

role in skeletal muscle atrophy under disuse (Enns et al., 2007), since Ca2+ dependent proteases 

(calpains and Caspases) do not break down proteins into amino acids or small peptides, they are 

regarded as being a system of primary protein degradation (Goll et al., 2003). All the three major 

proteasome catalytic pathways were reported to be involved in the breakdown of muscle tissue 

after stroke (Springer et al., 2014). 

 

A number of results collected showed that atrophic changes during a space flight or under head-

down bed-rest are supplemented by myofibril proteins degradation (Parry and Puthucheary, 

2015) and reduction of total muscle protein (Stein, 1999). The loss of muscle structural proteins 

and reduction of muscle functional characteristics result from the complex effect of activation of 

different proteolytic systems. 
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The analysis of plasma levels of muscle enzymes is regarded as an essential part of the evaluation 

of patients presenting with weakness or atrophy and is essential in controlling the course and 

response to therapy of specific muscular disorders. Serum enzymes and amino acids that have 

been used to measure muscle atrophy include: 

1-   Creatine kinase 

2-   Aspartate aminotransferase 

3-   Alanine aminotransferase 

4-   Lactate dehydrogenase 

5-   Aldolase 

6-   Myostatin 

7-   3-methylhistidine 

8-   Albumin 

 

2.6.1 Creatine kinase 

Creatine kinase is present in the highest concentrations in serum in response to muscle damage. 

It is the most broadly used enzyme to diagnose and follow muscle disease. It is the best sensitive 

indicator and measure of the course of muscle damage (Bohlmeyer et al., 1994). Creatine kinase 

is found on myofibrils, the muscle cytoplasm and the inner mitochondrial membrane. It is 

involved in cellular energy transfer and storage (Teixeira and Borges, 2012).
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Creatine kinase is a dimer molecule and occurs in three different isoenzyme arrangements 

(termed MM, MB, and BB). Skeletal muscle has the highest concentration of creatine kinase 

of any tissue. Normal skeletal muscle creatine kinase is more than 99 percent MM with minute 

amounts of MB. In comparison, cardiac tissue has the largest concentration of creatine kinase 

- MB, which estimates around 20 percent of cardiac creatine kinase (Takagi, Yasuhara and 

Gomi, 2001). 

 

2.6.2 Aspartate aminotransferase, alanine aminotransferase 

The aminotransferases catalyse the transformation of the amino acids alanine and aspartate 

to alpha-ketoglutarate, presenting a source of nitrogen for the urea cycle (Hirotsu et al., 2005). 

Aspartate aminotransferase, alanine aminotransferase enzymes are generally found in various 

tissues, and raised serum levels are a nonspecific indicator of disease. Increased serum 

concentrations values are seen in skeletal muscle, hemolysis and myocardial disease.  

 

2.6.3 Lactate dehydrogenase 

Lactate dehydrogenase catalyses the last step of glycolysis, transforming pyruvate to lactate 

(Phypers and Pierce, 2006). It is located in almost every tissue of the body; as a consequence, 

raised serum levels are observed in a high variety of disease situations. There are five LD 

isoenzymes, each consisting of tetrameric orders of M and H chains. The LD1 isoenzyme is 

more prevalent in cardiac tissue, LD5 predominates in skeletal muscle (Bohlmeyer et al., 

1994). 
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2.6.4 Aldolase 

Aldolase is a glycolytic pathway enzyme that is found in all tissues but predominantly in 

skeletal muscle, brain and liver. Aldolase concentrations are infrequently raised in patients 

with myositis who have normal creatine kinase levels even though, raised aldolase levels are 

not as specific or sensitive for muscle disease as creatine kinase levels. (Bohlmeyer et al., 

1994). 

 

2.6.5 Myostatin 

Myostatin is recognised as a part of the Transforming growth factor alpha (TGF -α) family that 

may also develop atrophy. Decreased myostatin concentration level lead to skeletal muscle 

hypertrophy in various species including humans (Lee and McPherron, 2001) while an infusion 

of cells expressing myostatin into adult mice leads to muscle wasting (Zimmers et al., 2002).  

 

2.6.6 3-Methylhistidine 

Serum 3-methylhistidine has also been used as a biological marker of muscle protein 

breakdown. Actin and myosin are 3-methylated in a human muscle which results in 

3-methylhistidine amino acid. The resulting amino acid 3-methylhistidine is not reused for 

intermediary metabolism or protein synthesis, which makes it a perfect biological marker, as 

it should signify total protein breakdown based on its biology (Holm and Kjaer, 2010). 

 

2.6.7 Albumin 

Albumin is used to assess nutritional status. Reduced albumin is associated with starvation, 

malnutrition (presumably from lack of essential amino acids), anorexia, malabsorption, 

prolonged bed rest, intravenous fluids, fast hydration and overhydration. 
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Albumin is produced by the liver at a rate of 9–12 g/day and catabolized at about the same 

rate; there is no storage or reserve, and it is not catabolized during starvation (Bharadwaj et 

al., 2016). It commonly decreases rather quickly in many severe acute diseases or injuries, 

beginning at about 12-36 hours, with the average maximal albumin decrease being reached in 

about five days.  

 

The decrease of albumin concentrations is common in ill individuals, and a survey of 

hospitalised patients shows that a significant proportion of albumin measurements are below 

healthy reference ranges (Sullivan, 2001). Although some of these reductions are likely 

dilutional, resulting from the administration of intravenous fluids, others are caused by loss of 

albumin into urine or by reduced synthesis in the liver caused by hepatic disease (Lee, 2012).  

 

Elevation of the serum albumin level is very unusual other than in dehydration. Most changes 

involve reduction, although the normal range is somewhat large, and small reductions are thus 

hidden unless the individual patient's normal levels are known. Serum protein levels are 

relatively stable except for a gradual decrease after age 70 (Visser et al., 2005). Serum albumin 

concentration, which reflects the amount of muscle mass (Sanaka et al., 1997), can be 

employed as a sensitive variable to identify abnormal loss of muscle mass in some Diseases 

responsible for physical inactivities such as cerebrovascular accidents, renal failure and 

chronic heart failure. 

 

Use of the albumin test is indicated in patients with moderate to severe cerebrovascular 

accidents and patients who have severe physical fatigue due to advanced chronic conditions 

such as malignancy. Those patients usually have disuse and/or neurogenic muscle atrophy 
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that may hinder them from walking by themselves (Kwon et al., 2007). The lack of using the 

lower extremities means disuse and/or neurogenic muscle atrophy of the lower limbs which 

suggests a significant loss of muscle mass. 

 

2.6.8 Purines 

Purines are one of two families called nitrogenous bases. The other family of These nitrogen-

containing molecules is Pyrimidines. Nitrogenous bases are required to construct the genetic 

material in every living organism. Current investigation in blood biomarkers has shown 

promising results for the use of purines as early and sensitive markers of ischemic strokes. 

Berne et al. (1974) demonstrated the first description of purines release from the in vivo 

ischemic brain. Berne reported that Purines could be released from the ischemic brains into 

the cerebrospinal fluid. Another study showed that the level of blood purine rises rapidly 

during the hypoxia state and, when the oxygen supply is restored, returns to the pre-hypoxic 

level within half an hour (Suzuki et al., 2000). A subsequent study used endarterectomy 

procedure concluded that, carotid artery clamping induces significant increases in jugular 

venous purines and that cerebral ischemia can be reflected by changes in purines 

concentration (Weigand et al. 1999). A study in acute stroke settings showed that stroke is 

associated with a rapid increase in circulating plasma purines concentration detectable in 

peripheral veins. The purines increase likely mirrors an increased production from the 

ischemic brain, and it lasts weeks after the acute event (Pasini et al., 2000). This led to the 

establishment of purines as biomarkers of ischemic stroke.  
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2.7 Biomarkers of interest 

This review discussed the current state of stroke biomarkers and investigated several potential 

biomarkers that might be utilised for the diagnosis of post-stroke spasticity and muscle 

atrophy. The scientific literature reporting studies of biological markers for stroke is immense; 

however, nothing was looking at spasticity from this perspective. Even though stroke 

biomarkers investigated are anticipated to be biologically informative about the mechanisms 

of vascular pathology, their clinical usefulness as sensitive diagnostic and prognostic tests 

remain unknown. At this point, none of the papers gave us an exact explanation as to why 

there is disparity regarding biomarkers levels and there are no theoretical bases on which we 

can explain these differences. 

 

To date, no single biomarker has demonstrated to have sufficient sensitivity and specificity for 

a clinical diagnostic test. A number of studies have tried a multi-marker panel approach in 

order to enhance sensitivity and specificity (Laskowitz et al., 2005); however, so far none has 

been suitably successful in a clinical setting. For a multi-marker panel to be successful, it must 

present additional information to the clinical diagnosis, yield fast results, and the 

instrumentation needs to be simple to use and cost-effective. 

 

Even though the reported CNS biomarkers represent a valid candidate to be studied and 

possibly linked to spasticity, the addition of muscle atrophy biomarkers to the study will 

undoubtedly improve our understanding of the phenomenon. Spasticity causes atrophy which 

leads to muscle contracture and as such, it is wise to study the three aspects together to get 

the full picture.  Identification of biomarkers for spasticity will assist our understanding of its 
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aetiology, present diagnostic and prognostic indicators and play an essential role in developing 

personalised medicine. 

 

2.7.1 Candidate biomarkers 

The following biomarkers have been chosen specifically for the reasons described below: 

A. They are sensitive to damage in the neurone (Glutamate, GABA and NSE), glia (S100B and   

     GFAP) or the cell body (CK and LD). 

B. Their response has been documented in the literature with respect to stroke. 

C. There are viable methods of detecting changes in the serum and there is evidence that this  

     can be done. All assays used were in the linear range of detection i.e., they were sensitive  

     enough to detect at the levels we were looking at. 

D. They are upregulated early and have the potential to contribute to early spasticity.  

 

Biomarkers: 

1-    Glutamate  

2-    Gamma-aminobutyric acid (GABA)  

3-    Neurone-specific enolase (NSE)  

4-    Protein S100B  

5-    Glial fibrillary acidic protein (GFAP)  

6-    Creatine kinase 

7-    Lactate dehydrogenase 

8-    Albumin 

9-    Purines 
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2.7.2 Time course of the selected biomarkers 

Most of the candidate biomarkers in the current study are likely to be upregulated in a way 

consistent with our current understanding of the development of spasticity. Development of 

spasticity in stroke patients is believed to take place as early as 48 hours post-stroke (Pandyan 

et al., 2018) and most stroke patients without arm function develop spasticity within six weeks 

post stroke (Malhotra et al., 2011). 

 

Elevated neuron-specific enolase levels were reported as early as 4 hours after stroke onset, 

and the increase can still be detected at 72 hours post stroke (Fassbender et al., 1997). NSE is 

likely to be increased in patients where the damage is extensive. It is believed that, patients 

who have a more extensive brain damage, are more likely to develop spasticity (Cheung et al., 

2016). Serum S100B concentrations were reported to be increased immediately after stroke 

onset (Persson et al., 1987) and last up to 48 hours post-stroke with the highest concentration 

occurring during the first 24 hours (Elting et al., 2000). 

 

On the other hand, GABA is the only central nervous system-specific biomarker that has been 

reported to decrease post-stroke onset immediately. Clinical studies with glial fibrillary acidic 

protein reported increased serum concentrations as early as 2 hours after stroke onset with 

peak values around three days after symptom onset (Niebro et al., 1994). Elevated plasma 

glutamate levels have been found after just 4 hours post-stroke. Glutamate remains elevated 

up to 15 days post-stroke but after that, decreased to reach a normal level in 3 months period 

(Aliprandi et al., 2005). 
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Most of the CNS biomarkers have been studied in the context of acute stroke, and as such, 

not many were followed for a more extended period. A study in acute stroke settings showed 

rapid increase in plasma purines concentration and the increase lasted weeks after the acute 

event (Pasini et al., 2000). Studies looking at CK levels post-stroke have reported mixed results. 

With one study reporting a gradual increase in the enzyme level within the first three days and 

a decline afterwards (Ay, Arsava and Saribaş, 2002), and another study reported no significant 

change in both serum LDH and CK levels (Parakh, Gupta and Jain, 2002). These differences in 

the reported results of CK, LDH and Albumin, are predicted as these three biomarkers are not 

central nervous system-specific and as such, the changes reported could be attributed to 

different causes apart from the stroke. CK, LDH and Albumin serum concentration might 

provide valuable information concerning muscle weakness, atrophy and the development of 

contracture. 

 

2.7.3 Biomarkers analysis approaches 

Traditionally, antibody-based assays, such as enzyme-linked immunosorbent assay (ELISA) are 

the primary tool for the targeted quantification of specific protein biomarkers. Mass 

spectrometry (MS) based assay provides an alternative and complementary method to 

existing antibody-based assays (Anderson and Hunter, 2006). 

 

2.7.3.1 Immunoassays  

The purpose of an immunoassay, such as ELISA, is to identify and quantify specific antigens in 

a sample, where the presence of this antigen could indicate the existence of the disease. 

Quantitative data on the concentration can be obtained when compared to a reference 

standard curve. 
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2.7.3.1.1 Advantages of immunoassays 

      1-    Equipments required are relatively inexpensive. 

       2-      Training requirements are relatively low.   

       3-     The technique is well understood, trusted and relatively straightforward. 

       4-     Offers good selectivity and sensitivity. 

 

2.7.3.1.2 Disadvantages of immunoassay 

        1-    The availability of a specific antibody is crucial. 

        2-     Limited range of analytes and antigens that can be detected.  

 3-    The daily running costs can be quite high due to the antibody cost and the   

               reagent usage. 

4-   The immunoassay process is quite long (1-3 hours). 

5-    Sample volumes, especially in ELISA, can be quite high. 

 

2.7.3.2 Mass spectrometry 

Mass spectrometry is an analysis technique used to identify unknown compounds and 

quantify known materials within a sample. The process involves the conversion of the sample 

into gaseous ions, which are then categorised by their mass to charge ratios and relative 

abundances. 

 

2.7.3.2.1 Advantages of mass spectrometry 

       1-    Samples can be analysed in a few minutes. 

       2-    Required sample volumes are very small 
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       3-    Low day-to-day reagent costs. 

       4-    The procedure is almost fully automated. 

       5-    Offers the highest precision and sensitivity for the detection and identification. 

 

2.7.3.2.2 Disadvantages of mass spectrometry 

     1-    The technology is perceived as being complex to run with a substantial training   

             requirement. 

     2-    High cost of the preliminary investment in instrumentation. 

     3-    A large number of recruits with large number of samples are needed. 

 

2.7.4 The methods used in the current study 

While mass spectrometry is an excellent tool for identifying unknown components in a sample 

or confirming their presence, ELISA reagents have been deemed to have the upper hand in 

terms of sensitivity of detection of low abundance proteins (Qian et al., 2008). Specificity on 

the other hand, is inherent to all immunoassays and is evaluated by determination of the 

cross-reactivity.  Analytes that react with the antibody would decrease in percentage of 

absorbance; conversely, analytes that do not react with the antibody would produce 

absorbance near 100% (Jinqing et al., 2011).  

 

Since enzyme-linked immunosorbent assays (ELISA) for the candidate biomarkers already 

exist, the process of validating biomarker candidates would be a relatively straightforward 

process. The immunoassays approach was adopted as an analysis method for this study. 
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CHAPTER 3: METHODOLOGY 

 

3.1 Research question: 

Having identified the target biomarkers in order to achieve the aim of this project, i.e.  

investigate the potential for serum biomarkers to be able to assess and predict the 

development of post-stroke spasticity, the following objectives were identified. 

1)  Clinical assessment of chosen biomarkers in patients (spastic and non-spastic) 

2) Clinical assessment of spasticity post-stroke in both groups.  

 

3.2 Study type: 

Longitudinal Observational Cohort study with repeated measures. Ethical approval was 

granted from the West Midlands - Coventry & Warwickshire Research Ethics Committee 

(SMARTCap and SMARTChip studies, REC reference, 14/WM/1034, 16/WM/0164 respectively, 

Appendix VI, VII). 

 

3.3 Outcome measures 

This was a longitudinal observational cohort study with repeated measures. The study used 

measures with identified time point of measurement. In addition to the serum biomarker’s 

levels and in order to document the associated secondary complications, the following 

measurements were recorded: 

- At the point of admission, the National Institutes of Health Stroke Scale (NIHSS) score   

and the modified Rankin scale (mRS) score were documented (Appendix VIII, IX). 
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-  In parallel with the time points of drawing blood, non -invasive measurements of 

spasticity (at the wrist), isometric strength (at the wrist and grip strength) were 

recorded. 

 

3.4 Study population: 

The study aimed to recruit 100 adults aged 18 years and over admitted to the Acute Stroke 

Unit at University Hospital of North Staffordshire (UHNS) and diagnosed with a stroke. Patients 

recruitment started as early as 24 hours post-stroke. 

 

3.5 Inclusion criteria: 

1-    Aged 18 years or over. 

2-    Patients admitted to hospital with a diagnosis of stroke due to a primary cerebral    

        haemorrhage or infarction. 

3-    Patient had ongoing symptoms of stroke at the time of enrolment into the study. 

4-     Capable of providing informed consent directly or, consent obtained from next of   

        kin or legal representative. 

 

3.6 Exclusion criteria: 

1-    Patients with subarachnoid haemorrhage (SAH).  

2-    Patient’s stroke symptoms that had resolved completely prior to enrolment in 

the study. 
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3.7 Study setting: 

The recruitment of patients, non-invasive measurement of the secondary sensory motor 

complications, and collection of samples took place at the acute stroke unit at the University 

Hospital of North Staffordshire (UHNS). Analysis of the blood samples was either conducted 

at UHNS labs or Keele University. These centres have Human Tissue Authority (HTA)-approved    

-80 °C freezers for storing the samples. Venous blood samples collected were stored at the 

University Hospitals of North Midlands pathology laboratory for a maximum of 4 days for 

analysis in batches. Thereafter serum samples from the blood were analysed at Guy Hilton 

Research Centre (Keele University, UK). There was not any quantity of the serum left after the 

analysis of all sample for all biomarkers was completed. Arrangements for long-term storage 

for future research and analysis were not needed.  

 

3.8 Identification of potential research participants: 

All patients admitted to the UHNS with a diagnosis of stroke were eligible to participate. 

Potentially eligible patients were identified by a member of their direct healthcare team upon 

the patient’s admission to hospital. After the patients’ or consultees’ agreement, a stroke 

research team member visited the patient as soon as possible after admission to assess their 

eligibility to take part in the study. Patients that satisfied the eligibility criteria and who 

subsequently consented were enrolled in the study.  

 

3.9 Informed consent: 

Informed consent was obtained in compliance with Good Clinical Practice (GCP) and the 

ethical principles orginated in the Declaration of Helsinki. Wherever possible, valid informed 

consent was sought directly from the stroke patients after the study (and the risks associated 
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with the study) were fully explained to the patient and, if appropriate, their next of kin. If the 

patient was competent but unable to sign because of their impairments, verbal consent, 

witnessed and signed by an independent observer was documented.  Where the patient was 

competent but only able to make a mark on the paper rather than sign as required, the same 

procedure was followed. 

 

 In patient’s lacked capacity to give fully informed consent, an appropriate person was 

identified to act as a personal consultee. We approached a person with a close personal 

relationship with the potential subject, for example, their next of kin, spouse or partner 

(including same-sex partners), adult child or parent, who could give information about the 

patient’s views and wishes. Other relatives or a close friend or past carer were considered 

(Department of Health Guidance on nominating a consultee for research involving adults who 

lack the capacity to consent 2008). Confirmation of consent was sought in patients who were 

recruited with consent from a legal representative but regained competence prior to the end 

of the trial. 

 

Consent was taken by a member of the research team who knew the protocol and was trained 

in the procedures of GCP. Due to the nature of this study, patients or their legal 

representatives had to decide within a few hours of admission to hospital. They were given 

the opportunity to discuss the study with a relative or friend. Participants or their legal 

representatives were free to withdraw from the trial at any time without giving reasons and 

without prejudicing further treatment. 
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The original signed consent forms were filed in the Case Record Form (CRF). One copy was 

given to the patient or legal representative, and one was filed in the notes. The participant 

information sheets and content forms were not available in other languages. If needed, the 

usual hospital interpreter and translator services were available to assist with a discussion of 

the trial. 

 

3.10 Subject/patient participation: 

Venous blood was taken from all participating patients at 1, 3, 7 and 45 days after admission 

to hospital. Blood samples were collected by trained clinical staff in accordance with NHS 

procedures. All participants received routine care throughout the study; treatment was not 

withheld at any point. Results of the CT head scan done as part of routine clinical practice on 

the first day and results of further head scans during the study period were recorded. 

The following serum biomarkers of acute stroke and muscle atrophy were measured, and their 

link to spasticity was explored: 

1-    Glutamate  

2-    Gamma-aminobutyric acid (GABA)  

3-    Neurone-specific enolase (NSE)  

4-    Protein S100B  

5-    Glial fibrillary acidic protein (GFAP)  

6-    Creatine kinase 

7-    Lactate dehydrogenase 

8-    Albumin 

9-    Purines 
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3.11 Spasticity and grip strength measurement protocol:  

The study utilised two measurement techniques to quantify both spasticity and muscle 

weakness and explore their links to the biomarkers panel measured. Spasticity was measured 

using EMG to quantify muscle hyperactivity while a dynamometer was used to measure grip 

strength and detect muscle weakness.   

 

Spasticity was measured at the wrist flexors. Participants were seated on a chair or bed with 

the forearm resting on their side. Participant’s forearm was positioned in a parallel direction 

to the ground and fully supported.  The forearm was in mid-pronation-supination, the 

shoulder slightly abducted and the elbow flexed to approximately 90 degrees. Forearm 

extensor and flexor muscles location were identified and cleaned with an alcohol wipe. For 

forearm extensors, the electrode was placed one-third of the distance between the lateral 

epicondyle of the humerus and the radial styloid with the arm in full pronation. For Forearm 

flexor muscles, the electrode was attached one-third of the length of the forearm toward the 

midpoint of a line between the medial epicondyle of the humerus and medial border of the 

biceps tendon (Hermens et al., 1999). 

  

 Surface bipolar electromyography electrodes (SX230, Biometrics Ltd, UK) were placed over 

the identified flexor and extensor muscles, and the ground reference electrode was placed 

over the acromion. A flexible electrogoniometer (SG75, Biometrics Ltd, UK) was placed across 

the medial aspect of the wrist joint for measuring the range of motion. The transducers were 

all then connected to the DataLOG (MWX8, Biometrics Ltd, UK) for data collection purposes 

and display of the readings.  The patient was instructed to be completely relaxed and recording 
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of the baseline muscle activity was taken. To measure spasticity, the wrist was first flexed as 

far as comfortable for the patient. Applying a force transducer, Myometer (M550, Biometrics 

Ltd, UK) to measure the force applied for passive stretching the forearm manually, on the 

palmar surface of the hand, the wrist was passively and slowly extended using a slow stretch 

from full flexion into full extension while manually counting for 3 seconds. The wrist was then 

held in full extension for 3 seconds before returned again into flexion while manually counting 

for 3 seconds. After holding the wrist in full flexion for 3 seconds, the movement was then 

repeated using a fast stretch (duration of stretch being 1 second). The wrist was then held in 

full extension for 3 seconds before returned in a fast stretch (duration of stretch being 1 

second) into flexion. The procedure was repeated once.  Muscle activity (measured in 

millivolts), range of movement (measured in degrees) and Force (measured in Newtons) were 

taken simultaneously during the externally imposed passive stretch. The data from all 

transducers were sampled at 1000 Hz and stored in a laptop for analysis.  Stiffness and velocity 

were quantified based on the force, range of movement and duration of displacement 

measurements. Surface electromyography recordings quantified the quantity of muscle 

activity. Data were processed and analysed using customised software (Mathcad 15, PTC Inc, 

USA).  

 

For each patient and to classify muscle action, muscle activity and wrist angles data were 

graphed as an XY scatter plot.  Muscle activity quantified by calculating the area under the 

muscle activity plot.  To determine the resistance to passive stretch (stiffness) of muscle, the 

angle versus force data was also presented as an XY scatter plot. A grip dynamometer was also 

used to measure grip strength (measured in Newtons) to quantify any weakness that might 

develop as a result of a stroke. These measures were taken at 1, 3, 7 and 45 days post-stroke. 
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This measurement protocol has been used in previous trials (Malhotra et al., 2008). The total 

measurement time was not greater than 30-minutes. Spasticity measurements mirror time 

points of blood collection for the biochemistry part of the study. Biomarker’s specific protocols 

will be presented in the next chapters. 

 

3.12 Biomarker-specific protocols 

3.12.1 Glutamate assay 

3.12.1.1 Introduction   

Glutamic acid is one of the twenty proteinogenic amino acids. Salts of glutamic acid and the 

carboxylate anions are known as glutamates. Glutamate is a vital neurotransmitter which 

plays a crucial role in long-term potentiation and is essential for memory and learning. 

Glutamic acid is the precursor of gama aminobutyric acid (GABA)  but has the opposite role; 

it might play a role in the function of the prostate and heart. Glutamic acid is one of the few 

nutrients that crosses the blood-brain barrier. 

 

3.12.1.2 Intended use 

Serum from blood samples was independently analysed in duplicates for glutamate using 

Glutamate Assay Kit (Fluorometric, ab83389) from Abcam, UK. The glutamate assay kit 

provides a quick and sensitive method for the measurement of glutamic acid in various 

biological samples. In the assay, the coupled enzyme system catalyses the reaction between 

L-Glutamic acid and NADP to produce NADPH, which is specifically recognised by NADPH 

sensor and recycled back to NADP. During the reaction,  a red fluorescence product is 

produced . A fluorescence microplate reader can read the signals at Ex/Em = 530-570 
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nm/590-600 nm.  With this Glutamate Assay Kit (Fluorometric), as little as 1 µM glutamic 

acid in a 100 µL reaction volume has been detected.  

The kit’s package included: 

• Component A: Enzyme mix  

• Component B: Assay buffer  

• Component C: NADP (Nicotinamide adenine dinucleotide phosphate) 

• Component D: Glutamic acid  

• Component E: Dilution buffer 

Additional materials used: 

• 96-well microplates: Solid black microplates 

• Fluorescence microplate reader 

 

3.12.1.3 Reagent preparation 

1. 100 µL of dilution buffer (Component E) was added to the vial of NADP (Component C) to 

Prepare NADP stock solution (200X). 

2. 200 µL of dilution buffer (Component E) was added to the vial of glutamic acid 

(Component D) to Prepare glutamic acid stock solution (100mM) 

3. 10 mL of assay buffer (Component B) was added to the bottle of enzyme mixture 

(Component A). 

4.  50 µL 200X NADP stock solution was added to the enzyme mixture bottle and mixed well. 

5.  10 µL of the glutamic acid stock solution was added to 990 µL dilution buffer (Component 

E) to generate 1 mM glutamic acid standard solution.  
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6. 200 µL of 1 mM glutamic acid standard solution was taken to perform 1:3 serial dilutions 

to get 300, 100, 30, 10, 3, 1 and 0 µM serially diluted glutamic acid standards. 

7. Serially diluted glutamic acid standards and glutamic acid containing test samples were 

added into a solid black 96-well microplate. 

 

3.12.1.4 Assay procedure 

1. For each well, a quantity of 50 µL of glutamic acid assay mixture was added into glutamic 

acid standard, test samples and blank control to make the total glutamic acid assay volume 

of 100 µL/well. 

2. Incubation at room temperature for two hours was performed with the plate protected 

from light. 

3. A fluorescence plate reader was used to monitor the fluorescence increase at Ex/Em = 

550/590 nm. 

 

3.12.1.5 Calculation of results 

The fluorescence in blank wells (which contain the dilution buffer only) was used as a control 

and was subtracted from the values for those wells with the glutamic acid reaction. 

 

3.12.1.6 Expected values  

The expected values for this method were 62.3 – 180.7 µM. 
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3.12.2 Glial fibrillary acidic protein (GFAP) assay 

3.12.2.1 Introduction 

Glial fibrillary acidic protein is the main component of astrocyte intermediate filaments in the 

central nervous system. It has also been found in the glial cells of the enteric nervous system 

and some Schwann cells in the peripheral nervous systems. GFAP antibodies are the most 

popular marker for astrocytes in neurological studies, and along with its breakdown products 

(BDPs), GFAP has been proposed as a useful candidate for biofluid-based markers for 

numerous neurological conditions especially during traumatic brain/spinal cord injury and 

stroke. 

 

3.12.2.2 Intended use 

Serum samples were independently analysed in duplicates for GFAP using Human GFAP 

DuoSet ELISA from R&D Systems. For the development of sandwich enzyme-linked 

immunosorbent assays to measure natural and recombinant human glial fibrillary acidic 

protein. The reagent diluent recommended may be suitable for most cell culture supernate, 

serum, and plasma samples. The reagent diluent selected for use can alter the performance 

of an immunoassay. Reagent diluent optimisation for samples with complex matrices such as 

serum and plasma may improve their performance in this assay. 

The kit’s package included: 

• Human GFAP capture antibody 

• Human GFAP detection antibody 

• Human GFAP standard 

• Streptavidin-HRP 
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Additional materials used: 

• 96 well microplates 

• Plate sealers 

• PBS (Phosphate-buffered saline) 

• Wash buffer 

• Reagent diluent 

• Substrate solution 

• Stop solution 

 

3.12.2.3 Reagent preparation 
 
 Before use, all reagents were brought to room temperature. All components were allowed to 

sit for a minimum of 15 minutes with gentle agitation after initial reconstitution. Working 

dilutions were prepared and used immediately.  

 

Streptavidin-HRP: 2.0 mL of streptavidin combined with horseradish peroxidase. Dilution was 

performed to the working concentration specified on the vial label via reagent diluent. 

Mouse anti-human GFAP capture antibody: Reference was made to the lot-specific certificates 

of analysis (C of A) for amount supplied. Reconstitution was done with 0.5 mL of PBS. Dilution 

in PBS without carrier protein to the working concentration indicated on the C of A. 

Biotinylated sheep anti-human GFAP detection antibody: Reference was made to the lot-

specific C of A for amount supplied. Reconstitution was done with 1.0 mL of reagent diluent. 

Dilution in reagent diluent to the working concentration was done as indicated on the C of A. 
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Recombinant human GFAP standard: Reference was done to the lot-specific C of A for amount 

supplied. Reconstitution of each vial was done with 0.5 mL of reagent diluent. A seven-point 

standard curve using 2-fold serial dilutions in reagent diluent was made. 1000 µL prepared of 

high standard per plate were assayed at the concentration indicated on the C of A. 

 

3.12.2.4 Assay procedure 

1. The capture antibody was diluted to the working concentration in PBS without carrier 

protein. Immediately a 96-well microplate was coated with 100 µL per well of the diluted 

capture antibody. The plate was sealed and incubated overnight at room temperature.  

2. Aspiration and washing of each well were done with wash buffer; the process was repeated 

two times for a total of three washes. Using a do squirt bottle, washing was done by filling 

each well with wash buffer (400 µL).  A complete removal of liquid at each step was performed 

for good performance.  Any remaining wash buffer was removed by inverting the plate and 

blotting it against clean paper towels after the last wash. 

3. 300 µL of reagent diluent was added to each well to block the plates. Incubation at room 

temperature was done for a minimum of 1 hour. 

4. The aspiration and washing process in step 2 was repeated. The plates were ready for 

sample addition. 

5. A quantity of 100 µL of sample or standards were added in reagent diluent per well. 

Incubation at room temperature for two hours was done after being covered with an adhesive 

strip. 

6. The aspiration and washing process in step 2 was repeated. 
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7. A volume of 100 µL of the detection antibody was added to each well after dilution in 

reagent diluent. Incubation at room temperature for 2 hours was done after being covered 

with an adhesive strip. 

8. The aspiration and washing process in step 2 was repeated. 

9. For each well, a quantity of 100 µL of the working dilution of Streptavidin-HRP was added.  

Incubation for 20 minutes at room temperature was done after being covered with an 

adhesive strip and avoiding direct light.  

10. The aspiration and washing process in step 2 was repeated. 

11. For each well, a volume of 100 µL of substrate solution was added. Incubation for 

20 minutes at room temperature was done after being covered with an adhesive strip and 

avoiding direct light.  

12. 50 µL of stop solution was added to each well. The plate was tabbed gently to ensure 

thorough mixing. 

13. For each well, the optical density was determined immediately, a microplate reader set to 

450 nm was used. Readings were subtracted at 540 nm from the readings at 450 nm. This 

subtraction was to correct for optical imperfections in the plate.  

 

3.12.2.5 Calculation of results 

The duplicate readings were averaged for each sample and standard, and the average zero 

standard optical density (O.D) was subtracted. By plotting the average absorbance for each 

standard on the y-axis against the concentration on the x-axis, a standard curve was created 

and drawing of a best-fit curve through the points on the graph. The data was linearised by 

plotting the log of the human GFAP concentrations versus the log of the O.D., and the best fit 

line was determined (Appendix X). 
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3.12.2.6 Expected values  

The expected values for this method were 0 – 0 ng/mL. 

 

3.12.3 Human enolase 2/Neuron-specific enolase assay 

3.12.3.1 Introduction 

Enolase 2 is also known as neuronal enolase or gamma enolase. Enolase (2-phospho-D-

glycerate hydrolase) is a cytoplasmic enzyme which converts 2-phosphoglycerate to 

phosphoenolpyruvate. It has three members:  enolase 1, enolase 2, and enolase 3, which are 

also termed α, γ, and β enolase, respectively. The αγ and γγ isoenzymes are abundant in 

neurons and neuroendocrine cells, and therefore, they are also termed neuron-specific 

enolase. Serum enolase 2 values are low in normal individuals. However, when neuronal 

damage occurs, it is released from the injured cells into the cerebrospinal fluid and systemic 

circulation. Elevated serum levels of enolase 2, as study shown, are commonly found between 

a variety of conditions associated with central nervous system injuries such as stroke, 

traumatic brain injury, multiple sclerosis, and alzheimer’s disease.  

 

The quantikine human enolase 2 immunoassay is a 4.5-hour solid-phase enzyme-linked 

immunosorbent assay designed to measure human enolase 2 in cell culture supernates, 

serum, and plasma. It contains E. coli-expressed recombinant human enolase 2 and has been 

shown to precisely quantitate the recombinant factor. Results obtained using natural human 

enolase 2 displayed linear curves that were similar to the standard curves obtained using the 

Quantikine kit standards. These results show that this kit can be used to determine relative 

mass values for naturally occurring human enolase 2. 
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3.12.3.2 Principle of the assay  

Serum samples were independently analysed in duplicates for NSE using NSE Quantikine ELISA 

kit from R&D Systems. The assay employs the quantifiable sandwich enzyme-linked 

immunosorbent assay technique. A microplate has been pre-coated with a monoclonal 

antibody specific for enolase 2. Standards and samples are pipetted into the wells, and any 

enolase 2 exist is bound by the immobilised antibody. 

 

An enzyme-linked polyclonal antibody specific for enolase 2 is added to the wells After 

washing away any unbound substances. A substrate solution is added to the wells following a 

wash to remove any unbound antibody-enzyme reagent and colour develops in proportion to 

the amount of enolase 2 bound in the initial step. After the colour development is stopped, 

The intensity of the colour is measured. 

The kit’s package included: 

     •     Enolase 2 microplate 

     •     Enolase 2 standard 

     •     Enolase 2 conjugate 

     •     Assay diluent RD1-9 

• Calibrator diluent RD5C concentrate 

• Wash buffer concentrate 

• Color reagent A 

• Color reagent B 

• Stop solution 

• Plate sealers 
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Additional materials used: 

• Microplate reader  

• Pipettes and pipette tips 

• Distilled water 

• Squirt bottle 

• 100 mL and 500 mL graduated cylinders 

• Horizontal orbital microplate shaker 

• Test tubes for dilution of standards 

 

3.12.3.3 Reagent preparation 

1- All reagents were brought to room temperature before use. 

2- Wash buffer - 20 mL of wash buffer concentrate was diluted into distilled water to 

prepare 500 mL of wash buffer. 

3- Substrate solution - Color reagents A and B were mixed in equal volumes within 

15 minutes of use.  200 mL of the resultant mixture was required per well. 

4- Calibrator diluent RD5C (1X) - 10 mL of calibrator diluent RD5C concentrate were 

diluted into 40 mL of distilled water to prepare 50 mL of calibrator diluent RD5C (1X). 

5- Enolase 2 standard - The enolase 2 standard was reconstituted with 1.0 mL of distilled 

water.  A stock solution of 200 ng/mL were produced. The standard was mixed to 

ensure complete reconstitution and allowed to sit for a minimum of 15 minutes.  

6- 900 mL of calibrator diluent RD5C (1X) were pipetted into the 20 ng/mL tube.  500 mL 

of calibrator diluent RD5C (1X) were pipetted into the remaining tubes. The stock 

solution was used to produce a dilution series. Each tube was mixed thoroughly before 
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the next transfer. The 20 ng/mL standard served as the high standard. Calibrator 

diluent RD5C (1X) served as the zero standards (0 ng/mL). 

 

3.12.3.4 Assay procedure 
 
All reagents and samples were brought to room temperature before use. All samples, controls, 

and standards were assayed in duplicate. 

1. Excess microplate strips were removed from the plate frame, returned to the foil pouch 

containing the desiccant pack, and resealed. 

2. 100 mL of assay diluent RD1-9 were added to each well.  

3. 50 mL of standard, control, or sample were added per well. Covered with the adhesive strip 

provided. Incubated at room temperature for two hours on a horizontal orbital microplate 

shaker set at 500 ± 50 rpm.  

4. Each well was aspirated and washed; the process was repeated three times for a total of 

four washes. Each well was washed by filling with wash buffer (400 mL) using a squirt bottle. 

It is crucial to ensure the complete removal of any liquid at each step. Any remaining wash 

buffer was removed by aspiration after the last wash. The plate was inverted and blotted 

against clean paper towels. 

5. 200 mL of enolase 2 conjugate were added to each well and covered with a new adhesive 

strip. Incubated at room temperature for two hours on the shaker. 

6. The aspiration/wash process was repeated as in step 4. 

7. 200 mL of substrate solution was added to each well. Protected from light. Incubation was 

done for 30 minutes at room temperature on the benchtop. 

8. 50 mL of stop solution was added to each well. The plate was tapped gently to ensure 

thorough mixing. The colour in the wells was changed from blue to yellow 
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9. The optical density of each well was determined within 30 minutes, using a microplate 

reader set to 450 nm. Readings were subtracted at 550 nm or 570 nm from the readings at 

450 nm. This subtraction was to correct for optical imperfections in the plate.  

 

3.12.3.5 Calculation of results 

The duplicate readings for each standard, control, and sample were averaged, and the average 

zero standard optical density (O.D.) was subtracted. A standard curve was constructed by 

plotting the mean absorbance for each standard on the y-axis against the concentration on 

the x-axis and draw a best fit curve through the points on the graph. The data was linearised 

by plotting the log of the Enolase 2 concentrations versus the log of the O.D., and the best fit 

line was determined by regression analysis.  

 

3.12.3.6 Expected values  

The expected values for this method were 1.85 – 4.14 ng/mL. 

 

3.12.4 S100 Calcium-binding protein B (S100B)  

3.12.4.1 Introduction 

S100B belongs to the S100 subcategory of the EF-hand family of calcium-binding proteins. It 

is a homodimer that is expressed mainly in the brain by astrocytes, oligodendrocytes and 

schwann cells. S100B has several intracellular functions, but can also be secreted by cells to 

exert extracellular functions. Some of the extracellular roles of S100B may be mediated by 

receptor for advanced glycation end products. Blood levels of S100B can be used to monitor 

the extent of brain injury 
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3.12.4.2 Intended use 

Serum from blood samples was independently analysed in duplicates for S100B using Human 

S100B DuoSet ELISA kit from R&D Systems, UK. For the development of sandwich enzyme-

linked immunosorbent assays to measure natural and recombinant human S100B calcium 

binding protein B (S100B). The reagent diluent recommended may be suitable for most cell 

culture supernate, serum, and plasma samples. The reagent diluent selected for use can alter 

the performance of an immunoassay. Reagent diluent optimisation for samples with complex 

matrices such as serum and plasma may improve their performance in this assay. 

The kit’s package included: 

• Human S100B capture antibody 

• Human S100B detection antibody 

• Human S100B standard 

• Streptavidin-HRP 

 

Additional materials used: 

• 96 well microplates 

• Plate sealers 

• PBS (Phosphate-buffered saline) 

• Wash buffer 

• Block buffer 

• Reagent diluent 

• Substrate solution 

• Stop solution 
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3.12.4.3 Reagent preparation 

1- All reagents were brought to room temperature before use. All components were 

allowed to sit for a minimum of 15 minutes with gentle agitation after initial 

reconstitution.  

2- Streptavidin-HRP: 2.0 mL of streptavidin were conjugated to horseradish peroxidase. 

Diluted to the working concentration using reagent diluent. 

3- Mouse Anti-Human S100B Capture Antibody: Reconstituted with 0.5 mL of PBS. 

Diluted in PBS without carrier protein to the working concentration.  

4- Biotinylated Mouse Anti-Human S100B Detection Antibody: Reconstituted with 1.0 mL 

of reagent diluent. Diluted in reagent diluent to the working concentration. 

5- Human S100B Standard: Each vial was reconstituted with 0.5 mL of distilled water. A 

seven-point standard curve using 2-fold serial dilutions in reagent diluent was 

performed. 1000 µL of high standard was prepared per plate assayed.  

 

3.12.4.4 Assay procedure 

1. The capture antibody was diluted to the working concentration in PBS without carrier 

protein. A 96-well microplate was immediately coated with 100 µL per well of the diluted 

capture antibody. The plate was sealed and incubated overnight at room temperature. 

2. Each well was aspirated and washed with wash buffer; the process was repeated two times 

for a total of three washes. Each well was washed by filling with wash buffer (400 µL) using a 

squirt bottle.  Any remaining were removed after the last wash by wash buffer by inverting 

the plate and blotting it against clean paper towels. 

3. Plates were blocked by adding of  300 µL of block buffer to each well. Incubation was done 

at room temperature for a minimum of 1 hour. 
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4. The aspiration/wash process was repeated.  

5. 100 µL of sample or standards were added in reagent diluent, per well. Covered with an 

adhesive strip and incubated for two hours at room temperature. 

6. The aspiration/wash process was repeated. 

7. 100 µL of the detection antibody, diluted in reagent diluent, were added to each well. 

Covered with a new adhesive strip and incubated for two hours at room temperature. 

8. The aspiration/wash process was repeated.  

9. 100 µL of the working dilution of streptavidin-HRP was added to each well. The plate was 

then covered and incubated for 20 minutes at room temperature.  

10. The aspiration/wash process was repeated. 

11. 100 µL of substrate solution were added to each well. Incubated for 20 minutes at room 

temperature.  

12. 50 µL of stop solution were added to each well. The plate was gently tapped to ensure 

thorough mixing. 

13. The optical density of each well was calculated immediately, using a microplate reader set 

to 450 nm. Readings at 550 nm or 570 nm were subtracted from the readings at 450 nm. This 

was done to correct for optical imperfections in the plate.  

 

3.12.4.5 Calculation of results 

The duplicate readings were averaged for each standard, control, and sample and the average 

zero standard optical density (O.D.) was subtracted. A standard curve was made by plotting 

the average absorbance for each standard on the y-axis compared to the concentration on the 

x-axis and draw a best fit curve over the points on the graph. The data was linearised by 
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plotting the log of the human S100B concentrations versus the log of the O.D., and the best fit 

line was determined by regression analysis.  

 

3.12.4.6 Expected values  

The expected values for this method were 20 – 150 pg/mL. 

 

3.12.5 Gama aminobutyric acid (GABA) assay 

3.12.5.1 Intended use 

Serum from blood samples was independently analysed in duplicates for GABA using the 

GABA ELISA Kit from IBL international, Germany.  The kit is for the quantitative detection of 

GABA in human EDTA plasma, serum and urine. The test is based on the method of 

competitive enzyme-linked immunoassays. The sample preparation includes the addition of 

a derivatisation reagent for GABA derivatisation. Afterwards, the treated samples are 

incubated in wells of a microtiter plate coated with a polyclonal antibody against GABA-

derivative, together with assay reagent containing GABA-derivative, In the sample, The 

target GABA  competes with the GABA-derivative during the incubation period for the 

binding of the polyclonal antibodies on the wall of the microtiter wells. GABA in the sample 

displaces the tracer out of the binding to the antibodies. Therefore, the concentration of the 

antibody-bound tracer is inverse proportional to the GABA concentration in the sample.  To 

detect the tracer, a peroxidase conjugate is added to each microtiter well during the second 

incubation step. The unbound components tetramethylbenzidine (TMB) is added as a 

peroxidase substrate after washing away.  
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The enzymatic reaction is ended by an acidic stop solution in the final step. The colour 

changes to yellow and the absorbance is measured in a photometer at 450 nm. The intensity 

of the yellow colour is contrary proportional to the GABA concentration in the sample, high 

GABA concentration in the sample lowers the photometric signal and reduces the 

concentration of antibody-bound tracer. A dose-response curve of absorbance unit (optical 

density at 450 nm) vs concentration is generated using the values obtained from the 

standards. GABA present in the patient samples is determined directly from this curve.  

The kit’s package included: 

• One holder with precoated strips 

• Standards diluted in reaction buffer 

• Controls diluted in reaction buffer 

• Wash buffer concentrate 

• Assay reagent 

• Peroxidase conjungate 

• Conjungate stabilizing buffer 

• Reaction buffer 

• Derivatisation reagent 

• Dimethylsulfoxide 

• Dilution buffer 

• Tetramethylbenzidine substrate 

• Stop solution 
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Additional materials used: 

• Double distilled water 

• Precision pipettors and disposable tips 

• Foil to cover the microtiter plate 

• Horizontal microtiter shaker 

• A multi-channel dispenser 

• Centrifuge 

• Vortex-mixer 

• Microtiter plate reader 

 

3.12.5.2 Reagent preparation 

The wash buffer concentrate (WASHBUF) was diluted with aqua bidest (100 mL WASHBUF + 

900 mL aqua bidest.) and mixed well.  

Standards (STD) and controls (CTRL1, CTRL2) were already diluted in reaction buffer 

(REABUF).   The content of a vial of derivatisation reagent (DER) was dissolved in 550 µL 

DMSO. The vial was then placed on a horizontal shaker for 5 min.  The content of a vial of 

assay reagent (ASYREAG) was melted in 4 mL of diluted wash buffer.  The POD conjugate 

(CONJ) 1:200 was diluted with conjugate stabilising buffer (CONJBUF).  

 

3.12.5.3 Assay procedure 

Derivatization of standards, controls and diluted samples were carried out in a single 

analysis.  EDTA serum samples were diluted with reaction buffer by factor 1:4. These vials, 

containing 400 µL diluted sample, were used for derivatisation.  
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1. All reagents and all samples were brought to room temperature.  

2. 400 µL of ready to use standards, 400 µL of ready to use controls and 400 µL of diluted 

samples were added to the corresponding vial.  

3. 25 µL of freshly prepared derivatisation reagent (DER) was added to each vial mixed well 

and incubated for 60 minutes on a shaker at room temperature.  

4. 500 µL of dilution buffer (CODIL) were added afterwards into each vial, mixed well and 

incubated for 30 minutes on a shaker at room temperature.  2 x 100 µL of each treated 

sample (STD, CTRL, SAMPLE) were used in the ELISA as duplicates. 

5. Each well was washed five times by dispensing 250 µL of diluted wash buffer into each 

well. The inverted microtiter plate was tapped on absorbent paper to remove excess 

solution after the final wash.  

6. 2 x 100 µL of standards, controls and samples were taken out of the vial and added into 

the respective wells of the microtiter plate.  

7. 100 µL of dissolved assay reagent (ASYREAG) were added to each well.  

8. Incubated overnight at 2-8°C.  

9. The contents of each well were aspirated. Each well was washed five times by dispensing 

250 µL of diluted wash buffer into each well. After the final washing step, the inverted 

microtiter plate was tapped on absorbent paper to remove excess solution.  

10. 200 µL diluted POD conjugate were added to each well.  

11. The plate was covered tightly and incubated for 1 hour at room temperature on a 

horizontal shaker.  
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12. Each well contents were aspirated. Each well washed five times by dispensing 250 µL of 

diluted wash buffer into each well. After the final washing step, the inverted microtiter plate 

was tapped on absorbent paper to remove excess solution.  

13. 200 µL of TMB substrate (SUB) were added to each well. 

14. Incubated for 6-12 min at room temperature in the dark.  

15. 100 µL of stop solution were added to each well, mixed thoroughly.   

16. Absorption was immediately determined with an ELISA reader at 450 nm.  

 

3.12.5.4 Evaluation of results 

The test was performed in strict compliance with the instruction’s standards, controls, and 

blood samples were equally diluted in the buffer reagents as per the kit protocol from the 

supplier. 

 

3.12.5.5 Expected values  

The expected values for this method were 0.076 – 0.288 µmol/L. 

 

3.12.6 Purines 

3.12.6.1 Intended use 

Blood samples were independently analysed in duplicates for Purines using the Sarissa 

Biomedical SMARTChip biosensor (Sarissa Biomedical Ltd, UK). The sarissa biomedical 

SMARTChip purine biological sensor is an array of 4 biological sensors that can measure purine 

levels in the freshly drawn whole blood, enabling the rapid measurement of blood purines at 

the bedside. It is comprised of electrochemical biosensors fabricated in a planar array that 
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covers a small circular footprint about 3 mm in diameter. The arrangement allows the 

biosensor array to be covered by a small droplet of blood 10-15 µL in volume. Two biosensors 

will be coated with the purine-sensing biological layer. 

 

The other two biosensors in the array will be coated with the enzymes-free biological layer. 

The latter will establish the zero-level reading in the blood sample and act as a control. 

Measurements of purines are derived from the mean of the difference in current recorded at 

the purine biological sensors and the enzyme-free sensors.  

 

3.12.6.2 Measurement of blood purine levels 

1- The Sarissa potentiostat was connected to the laptop, and the power turned on; the 

measurement software loaded and ran correctly. The software guided the researcher 

through the procedure, and the required data entry.  

2-  The SMARTChip sensor was removed from its packaging and placed into the docking 

station. A drop of solution was placed to cover the electrodes on the SMARTChip using 

the dropper bottle marked “Calibration”. The researcher pressed “OK” once this was 

done. The calibration step took two minutes, and the machine beeped when this was 

finished. After calibration was completed, the integral blotter was used to remove the 

calibration solution and, the electrodes were covered with buffer solution using the 

dropper marked “Buffer”. The researcher pressed “Continue” - the SMARTChip was 

stable and ready for use. 

3- Blood for purine measurements was sampled via the finger prick method using the lancet 

provided. This was done to prevent red blood cell lysis that might be caused by blood 
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samples drawn through needles which in turn might compromise the accuracy of the 

measurement.  

4- Once the finger-tip was pricked, and a droplet of blood was present, it was drawn into 

the provided capillary tube. The buffer was quickly blotted off the SMARTChip, and the 

capillary tubes were used to transfer the patient’s blood sample onto the SMARTChip 

and made sure it completely covers the electrodes.  

5- Once the blood was placed on the SMARTChip electrode, the research nurse hit the “Go” 

button. After two minutes (the measurement period) the SMARTChip device was 

removed from the machine and disposed of via the standard clinical waste procedures. 

6- The researcher got an indication of the measurement was complete, but no results were 

displayed. The data from the measurement were stored in the laptop and analysed later 

by the technical team.  

 

3.12.6.3 Expected values  

The expected values for this method were 2 – 3.2 µM. 

 

3.12.7 Creatine kinase assay  

3.12.7.1 Intended use 

For in vitro diagnostic use in the quantifiable detection of creatine kinase activity in human 

serum and plasma on the ADVIA Chemistry systems. Such measurements are used mainly in 

the treatment and diagnosis of myocardial infarction and muscle diseases such as Duchenne 

progressive muscular dystrophy. Serum from blood samples was independently analysed in 

duplicates for creatine kinase using Creatine Kinase Assay Kit (CKNAC) from Siemens, USA.  
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The kit’s package included: 

• Reagent 1 (Sodium azide) 

• Reagent 1 Mix  

Additional materials used: 

• Sample containers 

•  System solutions 

•  Control materials 

Serum analysis was run on Siemens ADVIA 2400 analysers. 

 

3.12.7.2 Principles of the procedure 

Creatine kinase reacts with creatine phosphate and ADP to form ATP which is coupled to the 

hexokinase-G6PD (Glucose-6-phosphate dehydrogenase) reaction, generating NADPH 

(Nicotinamide adenine dinucleotide phosphate). The concentration of NADPH is measured by 

the increase in absorbance at 340/410 nm. 

 

3.12.7.3 Reagent preparation and use 

The reagent was prepared: 

1. The contents of the R1 mix vial includes ADP, AMP (adenosine monophosphate), 

diadenosine pentaphosphate, NADP, HK (Histidine Kinase), G6PD, N-acetyl-L-cysteine and 

Creatine phosphate) were reconstituted with a portion of R1(Sodium azide). 

2. The R1 mix vial was rinsed several times with R1. 

3. The entire contents of the R1 mix were transferred to the R1 wedge. 
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3.12.7.4 Expected values 

The following table lists the reference ranges for the method used: 

Table 4 CK reference range 

Sex Reference Range (iu/L) 

Male 15/185 iu/L 

Female 15/165 iu/L 

 

3.12.8 Lactate dehydrogenase assay  

3.12.8.1 Intended use 

For in vitro diagnostic use in the quantifiable detection of lactate dehydrogenase activity in 

human serum and plasma on ADVIA Chemistry systems. Such measurements are used mainly 

in the treatment and diagnosis of myocardial and pulmonary infarction. They may also be used 

to monitor cancer chemotherapy. Serum was independently analysed in duplicates for lactate 

dehydrogenase using lactate dehydrogenase assay Kit L-P (LDLP) from Siemens, USA. 

 

The kit’s package included: 

• Reagent 1 (L-lactic acid, Sodium azide) 

• Reagent 2 (Nicotinamide adenine dinucleotide) 

Additional Materials used: 

• Sample containers 

•  System solutions 

•  Control materials 

Serum analysis was run on Siemens ADVIA 2400 analysers. 
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3.12.8.2 Principles of the procedure 

Lactate dehydrogenase catalyses the conversion of L-lactate to pyruvate in the presence of 

nicotinamide adenine dinucleotide (NAD). The enzymatic activity of LD is proportional to the 

rate of production of NADH (hydrogen reduced). The amount of NADH produced is determined 

by measuring the increase in absorbance at 340/410 nm. 

 

3.12.8.3 Reagent preparation and use 

Reagents were ready to use. Before use, the reagent was gently swirled to dislodge bubbles 

and assure homogeneity. 

 

3.12.8.4 Expected values  

The expected values for this method were 115 – 235 iu/L. 

 

3.12.9 Albumin assay  

3.12.9.1 Intended use 

For in vitro diagnostic use in the quantifiable detection of albumin in human serum or plasma 

on ADVIA® chemistry systems. Serum from blood samples was independently analysed in 

duplicates for albumin using albumin assay kit (ALBP) from Siemens, USA.  Albumin 

measurements are used in the treatment and diagnosis of numerous diseases primarily 

involving the liver or kidneys. 

The kit’s package included: 

• Albumin BCP reagent 1 (bromocresol purple, acetate buffer, surfactant and 

microbial inhibitor) 
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Additional Materials used: 

• ADVIA chemistry albumin BCP calibrator 

• Control materials 

Serum analysis was run on Siemens ADVIA 2400 analysers. 

 

3.12.9.2 Principles of the procedure 

In the ADVIA chemistry ALBP assay, serum or plasma albumin quantitatively binds to BCP 

(Bromocresol purple) to form an albumin-BCP complex that is measured as an endpoint 

reaction at 596/694 nm. 

 

3.12.9.3 Preparing reagents 

Reagents were ready to use. Before use, the reagent was gently swirled to disrupt bubbles 

and assure homogeneity. A clean transfer pipette is used to aspirate bubbles or foam if 

present from the reagent container before use. 

 

3.12.9.4 Calculation of results 

The system automatically calculates, and reports results based on the absorbance 

measurements of the test sample during the test and of the calibrator(s) from calibration. 

The instrument calculates the concentration of albumin in g/L. 

 

3.12.9.5 Expected values 

The reference range for albumin is 34–50 g/L for adults. 
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3.13 Follow-up 

Follow-up (see above for procedures) was done at 3, 7 and 45 days after admission to hospital. 

Studies have shown that over 80 per cent of stroke patient would develop spasticity within 6 

weeks of stroke based on a neurophysiological measure of muscle activity (Malhotra et al., 

2008). 

 

3.14 Outcome measures: 

This was an exploratory lab-based study. The principal outcome was serum analysis at 1, 3, 7 

and 45 days after stroke onset. In addition, spasticity, strength, stroke severity (NIHSS score) 

and independence (Modified Rankin Scale) were measured. Measurements mirrored time 

points of blood collection. 

 

3.15 Size of the study: 

As there was no previous data in the published literature, we proposed to recruit a maximum 

of 100 participants for this observational study. This would have allowed for 10 participants 

for each independent variable. However, this study only managed to recruit a total of 

13 patients. 

 

3.16 Proposed methods of analysis: 

Analysis of results was done by simple descriptive statistics (numbers, percentages, means, 

medians, ranges and standard deviations) and time series graphs.  For the time series graphs, 

we plotted the either the mean absolute deviation (mean absolute deviation is the average 

distance between each data value and the mean (Kader, 1999)) or the mean of the outcome 

measure over the time period. In addition, the normalised value of the outcome measure 
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(calculated using patient value divided by maximum normal value) over the time points of 

measurement, was also plotted. 

The independent sample t-test was used for single comparisons of each biomarker between 

spastic and non-spastic groups. Statistical analyses were performed using the SPSS for 

Windows program (version 24). A p- value < 0.05 is considered statistically significant and, as 

the Bonferroni correction was not applied, 95% confidence intervals were also reported. For 

sample data, the mean and standard error (SE) were used for reporting purposes. For between 

group differences, the mean difference and the 95% confidence interval (95% CI) of the 

differences were reported. 

 

3.17 Data analysis location: 

The analysis was performed at Keele University and/or UHNS by the applicants and other 

members of Keele University research staff. 

 

3.18 Data collection tools and source document identification 

Recruitment logs of all patients enrolled in the study were held at UHNS. Patients that agree 

to participate in the study were assigned a unique identifier, which was used to identify all 

documents associated with that participant for the duration of the study. Participant consent 

was recorded, in triplicate, on an informed consent form and stored securely at the same 

location. Access to study data was restricted to members of the study team, and patient 

identifiable data was limited to those members of staff that require it for the performance of 

their role. 
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3.19 Ethical approval 

The study took place as a sub-study of two larger studies, SMARTCap and SMARTChip, which 

were looking at Purines as a biomarker for stroke (REC reference, 14/WM/1034, 16/WM/0164 

respectively). Ethical approvals for this study was sought from the West Midlands - Coventry 

& Warwickshire Research Ethics Committee. No study activities were commenced until 

favourable ethical opinion had been obtained. Local NHS R&D approvals were obtained before 

commencement of the study at the UHNS site. 

 

3.20 Data protection and patient confidentiality  

The study complies with the Data Protection Act 1998 and Participants were assigned a unique 

identifier upon enrolment into the study to allow link-anonymisation of patient-identifiable 

data. Access to patient identifiable data was restricted to members of the study team who 

required it for the performance of their role. Electronic data was stored on an encrypted and 

password protected drives, and hard copies of study documents were stored in locked filing 

cabinets in secure entry-card protected sites. 
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CHAPTER 4: RESULTS  

 

4.1 Spasticity 

Thirteen participants (2 men and 11 women; 9 with right side affected and 4 with left side 

affected) were recruited for the study. The median age was 77 years (range 45–96). The stroke 

in 4 patients was classified as haemorrhagic, 3 as PACI, 2 as LACI, one as TACI, one as POCS 

and 2 as an undetermined type of stroke.  

 

The testing protocol was performed as planned. The velocity during the slow movement was 

3 seconds from maximum flexion into maximum extension (manual count) while the velocity 

during the fast movement was 1 second as per guidance for the modified Ashworth Scale. 

Seven patients ended up showing no abnormal activity during an externally imposed stretch 

at 45-days’ time point, but six did (Table 5).  
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Depending on muscle activity detected, pattern responses were classified into four groups: 

1)  No/negligible muscle activity: Negligible muscle activity during both the slow and the fast   

      stretch was seen in 7 out of 13 patients (Figure 1) 

 

 

 

 

 

(a) Negligible muscle activity (slow) (b) Negligible muscle activity (slow) 

Figure 1 Muscle activity response (annotated as EMG on graphs) to an externally imposed 

passive extension movement about the wrist joint. The wrist joint was fully flexed and 

then extended and held. The hold was <5 seconds in duration. Two velocities were used 

to stretch the joint.  The angle is plotted on the x-axis and flexor muscle activity on the y-

axis. The muscle patterns demonstrated: (a) negligible activity as the muscle is stretched 

at a slow speed; (b) negligible activity as the muscle is stretched at a fast speed. 
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2)  Velocity-dependent muscle activity: During the slow stretch, there is negligible muscle     

      activation, but there was a subsequent increase in muscle activity during the fast stretch.   

      This was seen in 1 out of 13 patients (Figure 2). 

 

 

 

 

 

(a) Negligible muscle activity (slow) (b) Velocity-dependent muscle activity 
(fast) 

Figure 2 Muscle activity response (annotated as EMG on graphs) to an externally 

imposed passive extension movement about the wrist joint.  The wrist joint was fully 

flexed and then extended and held. The hold was <5 seconds in duration. Two velocities 

were used to stretch the joint. The angle is plotted on the x-axis and flexor muscle 

activity on the y-axis. The muscle patterns demonstrated: (a) negligible activity as the 

muscle is stretched at a slow speed; (b) increased activity as the muscle is stretched at 

a fast speed. 

 

3)  Position-dependent muscle activity: The muscle activity increased as the muscles are 

      stretched and the activity continued even when the movement was stopped (at end    

range of a stretch), This was seen in 3 out of 13 patients (Figure 3). 
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(a) Position-dependent muscle activity 

(slow) 
 

  (b) Position-dependent muscle activity 
(fast) 

 

Figure 3 Muscle activity response (annotated as EMG on graphs) to an externally imposed 

passive extension movement about the wrist joint. The wrist joint was fully flexed and then 

extended and held. The hold was <5 seconds in duration. Two velocities were used to 

stretch the joint. The angle is plotted on the x-axis and flexor muscle activity on the y-axis. 

The muscle patterns demonstrated: (a) increased activity as the muscle is stretched at a 

slow speed and the activity continued even when the movement was stopped (at end range 

of a stretch); (b) increased activity as the muscle is stretched at a fast speed and the activity 

continued even when the movement was stopped (at end range of a stretch). 

 

 

4)  Position and velocity dependent muscle activity: Increased abnormal muscle activity during    

     both slow and fast stretch. This increase is independent of velocity. In addition, during the   

     fast stretch, the muscle activity was trigged in the early part of the movement. This was  

    seen in 2 out of 13 patients. Movement-related increase in flexor muscle activity is evident  

     during the range of movement (Figure 4).  
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(a) Position and velocity dependent 
muscle activity (slow)   

   (b) Position and velocity dependent 
muscle activity (fast) 

Figure 4 Muscle activity response (annotated as EMG on graphs) to an externally imposed 

passive extension movement about the wrist joint. The wrist joint was fully flexed and 

then extended and held. The hold was <5 seconds in duration. Two velocities were used 

to stretch the joint. The angle is plotted on the x-axis and flexor muscle activity on the y-

axis. The muscle patterns demonstrated: (a) increased activity as the muscle is stretched 

at a slow speed; (b) increased activity as the muscle is stretched at a fast speed. 

 

 

4.2 Grip strength 

Four patients had zero scores on grip strength measured using a dynamometer while at the 

same time being spastic (Spastic paralysis). Two out of the four were classified as having sever 

stroke while the other two were classified as having moderate stroke based on the NIHSS. Two 

out of the six spastic patients had a minor stroke, and that means they still have some function 

intact.  Improvements in grip strength were evident in four out of seven Non-spastic patients 

during the follow-up period while spastic group grip strength ended up with a lower score 

than the baseline measurement or maintained the zero Newton score. The non-spastic group 

stroke severity ranged from minor to moderate stroke while the spastic group stroke severity 

ranged from minor to sever stroke based on NIHSS score (Table 6). 
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Table 6 Grip strength (in Newton) in Spastic (Y) and non-spastic (N) patients 

Pt./no Spasticity Grip Str 1d Grip Str 3d Grip Str 7d Grip Str 45d NIHSS 

Admission 

NIHSS 

Discharge 

1 N 58.8 127.5 215.7 225.5 3 2 

2 N 58.8 88.2 
 

294.2 6 2 

3 Y 0 0 0 0 24 16 

4 Y 0 0 0 
 

11 9 

5 Y 107.9 39.2 78.5 
 

2 1 

6 N 157 
   

2 1 

7 Y 0 
  

0 26 18 

8 Y 
  

34.3 7.8 4 16 

9 N 68.6 47.1 49.0 
 

15 15 

10 N 142.2 
  

176.5 5 6 

11 N 73.5 
  

245.2 6 6 

12 Y 0 0 0 0 12 12 

13 N 63.7 
   

11 11 

    

4.3 Passive range of motion. 

Patients with spasticity showed a decline in the passive range of motion started at the 3-days’ 

time point. The decrease in PROM continued reaching the lowest at the 45-days’ time point. 

Patients with no spasticity did not show any decline in PROM apart from the limited decrease 

at the 3-days’ time point. The PROM returned to about the baseline value at the 7-days’ time 

point and continued about the same level toward 45-days’ time point (Figure 5). 
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Figure 5 Mean of passive range of motion with mean absolute deviation in both spastic (blue) 

and non-spastic (red) groups over time (Mean absolute deviation is the average distance 

between each data value and the mean). The time after stroke onset is plotted on the x-axis 

and range of motion on the y-axis. Number of patients in each group is also plotted. 

 

4.4 Stiffness and contracture 

Patients with spasticity showed an increase in stiffness (calculated using applied force (N) vs 

passive range of movement (Degree)) at the 7-days’ time point. The increase continued to the 

45-days’ time point. Patients with no spasticity had a peak increase in stiffness at the 3-days’ 

time point and decrease at the subsequent 7-days’ time point where it started to increase 

again toward the 45-days’ time point (Figure 6). Both spastic and non-spastic groups increase 

in stiffness were considered negligible as they were less than the 0.07N/degree cut-off point 

reported in the literature (Pandyan et al., 2001).  

 



93 
 

 
Figure 6 Mean of resistance to passive movement (N/Degree), spastic (blue) and non-spastic 

(red), with mean absolute deviation over time, (Mean absolute deviation is the average 

distance between each data value and the mean). The time after stroke onset is plotted on 

the x-axis and stiffness on the y-axis. Number of patients in each group is also plotted. 

 

There were variable degrees of contracture development within the spastic patients at the 

45-days’ time point, with subjects no 8 and no 12 losing 44 and 36% of PROM respectively 

(Figure 7). 

 
Figure 7 Passive range of motion in two spastic patients, subject no 8 (blue) and subject no 12 

(red). The time after stroke onset is plotted on the x-axis and range of motion on the y-axis.  
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4.5 Spasticity biomarkers 

4.5.1 Glutamate assay  

Both spastic and non-spastic patients showed within the normal level serum glutamate 

concentration at all time points. Spastic group glutamate concentration was higher than the 

non-spastic group at all time points but, within the normal level of serum glutamate. The 

largest serum glutamate level difference between the two groups was seen at 1-day time 

point with a mean difference of 24.1 (95% CI: -2.3 to 50.3; p= 0.07) again, within the normal 

level of serum glutamate. 

 

Mean serum glutamate for each time-point for spastic patients was compared with non-

spastic patients and normal level glutamate concentrations. Mean absolute deviation was 

used to show the average distance between each data point and the mean (Figure 8). Both 

groups showed within the normal level serum glutamate levels. 

 
Figure 8 Mean of glutamate with mean absolute deviation in both groups, spastic (blue) and 

non-spastic (red), at different time points (Mean absolute deviation is the average distance 

between each data value and the mean). The time after stroke onset is plotted on the x-axis 

and concentration of glutamate on the y-axis. Number of patients in each group is also plotted. 
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4.5.1.1 Statistical analysis 

4.5.1.1.1 Day 1 

Independent t-test 

Even though both spastic and non-spastic patients showed within the normal level serum 

glutamate concentration on day 1, spastic patients had a higher glutamate serum level (mean 

(M) = 96.7, standard error (SE) = 9.3) than non-spastic patients (M= 72.6, SE= 7). This 

difference, 24.1, 95% CI (-2.3, 50.3) was not significant t (8) =2.1, p = 0.07. The mean difference 

between the two groups was highest at this time point. 

 

4.5.1.1.2 Day 3 

Independent t-test 

Again, both spastic and non-spastic patients showed within the normal level serum glutamate 

concentration on day 3, spastic patients had a higher glutamate serum level (M= 96.2, SE= 3.8) 

than non-spastic patients (M= 92.4, SE= 11.3). This difference, 3.8, 95% CI (-95.1, 102.6) was 

not significant t (3) =0.39, p = 0.8.  

 

4.5.1.1.3 Day 7 

Independent t-test 

Spastic patients had a higher glutamate serum concentration (M= 103.7, SE= 18.2) than non-

spastic patients (M= 81.1, SE= 5.7) Even though both spastic and non-spastic patients showed 

within the normal level serum glutamate concentration. This difference, 22.7, 95% CI (-53.2, 

98.6) was not significant t (3) =0.95, p = 0.41.  
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4.5.1.1.4 Day 45 

Independent t-test 

Even though both spastic and non-spastic patients showed within the normal level serum 

glutamate concentration at this time point, spastic patients had a higher glutamate serum 

level (M= 90.5, SE= 21.2) than non-spastic patients (M= 81.1, SE= 6.1). This difference, 9.4, 

95% CI (-39.9, 58.7) was not significant t (5) =0.49, p = 0.6.  

 

4.5.2 Glial fibrillary acidic protein (GFAP) 

Both spastic and non-spastic patients showed above the normal level serum GFAP 

concentration at all time points. Non-spastic group GFAP concentration was higher than 

spastic group at 1 and 3-days’ time points (Mean difference 0.03; 95% CI: -0.22 to 0.15; p = 

0.63 and -0.07; 95% CI: -0.19 to 0.06; p = 0.21 respectively). Spastic group serum 

concentrations then sharply peaked from this point reaching its highest levels at 7-days’ and 

then subsequently declining towards normal level concentrations at 45-days. 

 

 At 7-days, the difference in measured mean serum GFAP in spastic subjects was at its highest 

compared to non-spastic patients. (mean difference 0.26; 95% CI: -0.66 to 1.20; p = 0.43). 

Mean GFAP for each time point for spastic patients was compared with non-spastic patients 

and normal level GFAP concentrations. Mean absolute deviation was used to show the 

average distance between each data point and the mean (Figure 9). 
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Figure 9 Mean of GFAP with mean absolute deviation in both groups, spastic (blue) and non-

spastic (red), at different time points (Mean absolute deviation is the average distance 

between each data value and the mean). The time after stroke onset is plotted on the x-axis 

and concentration of GFAP on the y-axis. Number of patients in each group is also plotted. 

 

4.5.2.1 Statistical analysis 

4.5.2.1.1 Day 1 

Independent t-test 

On average, non-spastic patients had a higher GFAP serum level (M= 0.32, SE= 0.02) than 

spastic patients (M= 0.29, SE= 0.06). This difference, -0.03. 95% CI (-0.22, 0.15) was not 

significant t (8) = -0.60, p = 0.63. Both groups were above the normal serum GFAP 

concentration. 
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4.5.2.1.2 Day 3 

Independent t-test 

Again, on average, non-spastic patients had a higher GFAP serum level (M= 0.33, SE= 0.05) 

than spastic patients (M= 0.26, SE= 0.02). This difference, -0.07, 95% CI (-0.19, 0.06) was not 

significant t (3) = -1.6, p = 0.21. Both groups were above the normal serum GFAP 

concentration. 

 

4.5.2.1.3 Day 7 

Independent t-test 

On average, spastic patients had a higher GFAP serum level (M= 0.66, SE= 0.22) than non-

spastic patients (M= 0.41, SE= 0.03). This difference, 0.26, 95% CI (-0.66, 1.17) was not 

significant t (3) =0.9, p = 0.43. Both groups were above the normal serum GFAP concentration. 

The mean difference between the two groups was highest at this time point. 

 

4.5.2.1.4 Day 45 

Independent t-test 

On average, non-spastic patients had a bit higher GFAP serum level (M= 0.28, SE= 0.03) than 

spastic patients (M= 0.27, SE= 0.06). This difference, -0.007, 95% CI (-0.17, 0.15) was not 

significant t (5) = -0.11, p = 0.92. Both groups were above the normal serum GFAP 

concentration. 

 

4.5.3 Human enolase 2/Neuron-specific enolase immunoassay 

The inter- and intra-assay coefficients of variation using the R&D Systems NSE Quantikine® 

ELISA kit for the measurement of NSE were 4.97 and 4.3 % respectively. All mean NSE 
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measurements in spastic patients were higher than non-spastic concentrations. Both spastic 

and non-spastic patients showed above the normal level NSE concentration. Mean NSE 

concentrations for both groups showed an increasing trend from 24-hours post-stroke 

peaking at 3-days’ and subsequently declining towards normal level concentrations at 45-

days’ (Figure 10). At 45-days, the difference in measured mean NSE in spastic subjects was at 

its highest compared to non-spastic patients. (mean difference 4.5; 95% CI: -9.05, 17.95; 

p = 0.33). 

 

Mean NSE for each time point for spastic patients was compared with non-spastic patients 

and normal level NSE concentrations. Mean absolute deviation was used to show the average 

distance between each data point and the mean (Figure 10). 

 
Figure 10 Mean of NSE with mean absolute deviation in both Spastic (blue) and non-spastic 

(red) patients at different time points (Mean absolute deviation is the average distance 

between each data value and the mean). The time after stroke onset is plotted on the x-axis 

and concentration of NSE on the y-axis. Number of patients in each group is also plotted. 
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4.5.3.1 Statistical analysis 

4.5.3.1.1 Day 1 

Independent t-test 

On average, spastic patients had a bit higher NSE serum level (M= 10.91, SE= 2.51) than non-

spastic patients (M= 10.64, SE= 3.47). This difference, 0.28, 95% CI (-10.73, 11.28) was not 

significant t (8) =0.058, p = 0.96. Both spastic and non-spastic patients showed above the 

normal level NSE concentration. 

 

4.5.3.1.2 Day 3 

Independent t-test 

On average, spastic patients had a higher NSE serum level (M= 14.94, SE= 4.73) than non-

spastic patients (M= 12.67, SE= 6.10). This difference, 2.27, 95% CI (-21.97, 26.5) was not 

significant t (3) = 0.30, p = 0.79.  Both spastic and non-spastic patients showed above the 

normal NSE serum levels. 

 

4.5.3.1.3 Day 7 

Independent t-test 

On average, spastic patients had a higher NSE serum level (M= 10.87, SE= 2.96) than non-

spastic patients (M= 6.39, SE= 2.35). This difference, 4.48, 95% CI (-8.88, 17.8) was not 

significant t (3) = 1.07, p = 0.36. Both spastic and non-spastic patients showed above the 

normal level NSE concentration. 
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4.5.3.1.4 Day 45 

Independent t-test 

On average, spastic patients had a higher NSE serum level (M= 10.23, SE= 3.51) than non-

spastic patients (M= 5.8, SE= 1.13). This difference, 4.5, 95% CI (-9.05, 17.95) was not 

significant t (2) = 1.2, p = 0.33. Both spastic and non-spastic patients showed above the normal 

level NSE concentration. The mean difference between the two groups was highest at this 

time point. 

 

 4.5.4 S100 calcium-binding protein B (S100B) 

All mean S100B measurements in spastic patients were higher than non-spastic 

concentrations apart from the third-day time point measurements when the non-spastic 

S100B level was higher than the spastic group (mean difference -203.50; 95% CI: -4741 to 

4334; p = 0.90). Both spastic and non-spastic patients showed above the normal level S100B 

serum concentration at all time points. Mean S100B concentrations for spastic group showed 

an increasing trend from the third-day post stroke peaking at 7-days’ and subsequently 

declining towards normal level concentrations at 45-days’ (Figure 11). Mean S100B 

concentrations for non-spastic group showed an increasing trend from the first-day post 

stroke peaking at 3-days’ and subsequently declining towards normal level concentrations at 

45-days.  At 7-days, the difference in measured mean S100B in spastic subjects was at its 

highest compared to non-spastic patients. (mean difference 879.8; 95% CI: -10581 to 12341; 

p = 0.6). 

 

Blood samples were collected from acute stroke patients (n = 13) at four-time points (1, 3, 7 

and 45-days). Mean S100B for each time-point for spastic patients was compared with non-
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spastic patients and normal level S100B concentrations. Mean absolute deviation was used to 

show the average distance between each data point and the mean. 

 

 
Figure 11 Mean of S100B with mean absolute deviation in both spastic (blue) and non-spastic 

(red) patients at different time points (Mean absolute deviation is the average distance 

between each data value and the mean). The time after stroke onset is plotted on the x-axis 

and concentration of S100B on the y-axis. Number of patients in each group is also plotted. 

 

4.5.4.1 Statistical analysis 

4.5.4.1.1 Day 1 

Independent t-test 

On average, spastic patients had a higher S100B serum level (M= 2064.5, SE= 652.1) than non-

spastic patients (M= 1565.3, SE= 345.02). This difference, 499.2, 95% CI (-1050.78, 2049.11) 

was not significant t (8) =0.743, p = 0.48. Both spastic and non-spastic patients showed above 

the normal level S100B serum concentration. 
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4.5.4.1.2 Day 3 

Independent t-test 

On average, spastic patients had a lower S100B serum level (M= 1460, SE= 790.1) than non-

spastic patients (M= 1663.5, SE= 1336.5). This difference, -203.5, 95% CI (-4741, 4334) was not 

significant t (3) = -0.143, p = 0.90. Both spastic and non-spastic patients showed above the 

normal serum S100B level. 

 

4.5.4.1.3 Day 7 

Independent t-test 

On average, spastic patients had a higher S100B serum level (M= 2484, SE= 515.7) than non-

spastic patients (M= 1604.5, SE= 1395.5). This difference, 879.8, 95% CI (-10581, 12340.7) was 

not significant t (1) =0.59, p = 0.64. Both spastic and non-spastic patients showed above the 

normal level S100B serum concentration. The mean difference between the two groups was 

highest at this time point. 

 

4.5.4.1.4 Day 45 

Independent t-test 

On average, spastic patients had a higher S100B serum level (M= 1571, SE= 547.3) than non-

spastic patients (M= 1413.8, SE= 605.67). This difference, 157.3, 95% CI (-2028.8, 2343.3) was 

not significant t (5) =0.185, p = 0.86. Both spastic and non-spastic patients showed above the 

normal serum S100B level. 
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4.5.5 Purines 

Both spastic and non-spastic patients showed above the normal level blood Purine 

concentration at baseline and 24-hours’ time points. The spastic group showed a higher purine 

level at both time points than the non-spastic group. The spastic group also showed the 

highest purine level at 24-hours compared to the baseline value. On the other hand, the non- 

spastic group showed near normal level Purine concentration at 24-hours. The largest blood 

purine level difference between the two groups was seen at 24-hours’ time point with a mean 

difference of 5.5 (95% CI: -3.7, 14.7; p = 0.2).  

 

 
Figure 12 Mean of Purines with mean absolute deviation in both spastic (blue) and non-spastic 

(red) patients at baseline and 24-hours’ time points (Mean absolute deviation is the average 

distance between each data value and the mean). The time after stroke onset is plotted on 

the x-axis and concentration of Purines on the y-axis. Number of patients in each group is also 

plotted. 
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Mean blood Purines for each time-point for spastic patients was compared with non-spastic 

patients and normal blood level purine concentration. Mean absolute deviation was used to 

show the average distance between each data point and the mean (Figure 12). The graph 

showed that spastic patients have a higher score than the non-spastic on both time points. 

The spastic group mean absolute deviation showed wide spread and overlapping with the 

non-spastic group because of one spastic patient with very high reading at each time point.  

 

4.5.5.1 Statistical analysis 

4.5.5.1.1 Baseline 

Independent t-test 

On average, spastic patients had a higher purine blood level (M= 8.7, SE= 1.9) than non-spastic 

patients (M= 6.9, SE= 1.3). This difference, 1.8, 95% CI (-3.9, 7.5) was not significant t (7) =0.8, 

p = 0.5. Both spastic and non-spastic patients showed above the normal level blood purines 

concentration at this time point. 

 

4.5.5.1.2 24 Hours 

Independent t-test 

On average, spastic patients had a higher purines blood level (M= 8.9, SE= 3.4) than non-

spastic patients (M= 3.4, SE= 1.7). This difference, 5.5, 95% CI (-3.7, 14.7) was not significant t 

(6) =1.5, p = 0.2. Both spastic and non-spastic patients showed above the normal level blood 

purine concentration at this time point with the non-spastic group being barely above the 

normal level. The mean difference between the two groups was highest at this time point. 
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4.5.6 Creatine kinase assay 

Both spastic and non-spastic patients showed within the normal level serum creatine kinase 

concentration at all time points apart from the first-day measurement. On first day 

measurement, spastic group CK concentration was way over the normal CK level (mean 636.5, 

95% CI: -319.6 to 1592.6; p = 0.94) normal CK level is between (15-185 iu/L). The largest serum 

CK level difference between the spastic and non-spastic groups was seen at 1-day time point 

with a mean difference of 563.64 (95% CI: -392.09 to 1519.37; p = 0.92). The rest of the time 

points measurements were all within the normal serum CK concentration. 

 
Figure 13 Mean of Creatine Kinase with mean absolute deviation in both Spastic (blue) and 

non-spastic (red) patients at 1, 7 and 45-days’ time points (Mean absolute deviation is the 

average distance between each data value and the mean). The time after stroke onset is 

plotted on the x-axis and concentration of CK on the y-axis. Number of patients in each group 

is also plotted. 

 
 
 

Mean serum CK for each time-point for spastic patients was compared with non-spastic 

patients and normal level CK concentrations. Mean absolute deviation was used to show the 
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average distance between each data point and the mean (Figure 13). The graph showed that 

spastic patients have a higher score than the non-spastic on 1-day time points. The spastic 

group mean absolute deviation showed wide spread on 1-day time point because of one 

spastic patient with very high reading at that time point.  It was not possible to include 3-days’ 

time point values because of a limited number of participants (Only one patient in the non-

spastic group). 

 

4.5.6 1 Statistical analysis 

4.5.6.1.1 Day 1 

Independent t-test 

Spastic patients had a higher creatine kinase serum level (M= 636.5, SE= 300.4) than non-

spastic patients (M= 72.9, SE= 7.2). Only non-spastic group showed within the normal level 

serum creatine kinase concentration. This difference, 563.6, 95% CI (-392.1, 1519.4) was not 

significant t (3) = 1.9, p = 0.2. The mean difference between the two groups was highest at this 

time point. 

 

4.5.6.1.2 Day 3 

It was not possible to run any statistical tests at the 3-days’ time point because of the very low 

sample size (only four patients in total with the non-spastic group limited to only one patient). 

Both spastic and non-spastic patients showed within the normal level serum creatine kinase 

concentration. The spastic group had higher creatine kinase serum level though. 
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4.5.6.1.3 Day 7 

Independent t-test 

Non-spastic patients had a tad higher creatine kinase serum level (M= 54, SE= 10) than spastic 

patients (M= 49, SE= 5.3) even though both spastic and non-spastic patients showed within 

the normal level serum creatine kinase concentration. This difference, -5, 95% CI (-37.2, 27.2) 

was not significant t (3) =-0.5, p = 0.66.  

  

4.5.6.1.4 Day 45 

Independent t-test 

Even though both spastic and non-spastic patients showed within the normal level serum 

creatine kinase concentration at this time point, non-spastic patients had a higher creatine 

kinase serum level (M= 103, SE= 20.2) than spastic patients (M= 54.2, SE= 20.3). This 

difference, -48.7, 95% CI (-124.2, 26.9) was not significant t (5) =-1.7, p = 0.16.   

 

4.5.7 Lactate dehydrogenase assay 

Both spastic and non-spastic patients showed above the normal level serum lactate 

dehydrogenase concentration at 3-days’ time points. The spastic group lactate dehydrogenase 

concentration was higher than the non-spastic group at 3-days’ time point. Spastic group 

serum concentrations were also above the normal level at 24-hours post-stroke while the non-

spastic group LD level was within the normal level at this time point. Both groups serum LD 

level was within the normal range at 7 and 45-days’ time points. The largest serum lactate 

dehydrogenase level difference between the two groups was seen at 1-day time point with a 

mean difference of 76.5 (95% CI: 32.95 to 119.95; p = 0.004) non-spastic LD level was within 

the normal range though. 
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Mean serum LD for each time-point for spastic patients was compared with non-spastic 

patients and normal level LD concentrations. Mean absolute deviation was used to show the 

average distance between each data point and the mean (Figure 14).  It was not possible to 

include 3 and 7-days’ time points values because of a limited number of participants (four 

patients total with only one non-spastic and three patients total with only one spastic patient 

respectively). 

 
Figure 14 Mean of Lactate dehydrogenase with mean absolute deviation in both Spastic (blue) 

and non-spastic (red) patients at 1 and 45-days’ time points (Mean absolute deviation is the 

average distance between each data value and the mean). The time after stroke onset is 

plotted on the x-axis and concentration of LD on the y-axis. Number of patients in each group 

is also plotted. 

 

4.5.7.1 Statistical analysis 

4.5.7.1.1 Day 1 

Independent t-test 

On average, spastic patients had a higher lactate dehydrogenase serum level (M= 253.3, SE= 

17.7) than non-spastic patients (M= 176.8, SE= 8.7). This difference, 76.5, 95% CI (32.95, 
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119.95) was significant t (7) = 4.2, p = 0.004. Spastic group serum LD was above the normal 

range. Non-spastic group serum LD level was within the normal range though. The mean 

difference between the two groups was highest at this time point. 

 

4.5.7.1.2 Day 3 

It was not possible to run Independent t-test for the 3-days’ time point because of a limited 

number of participants (four patients total with only one non-spastic patient). Both groups 

serum LD level was over the normal range with the spastic group LD level being higher. 

 

4.5.7.1.3 Day 7 

It was not possible to run Independent t-test for the 7-days’ time point because of a limited 

number of participants (three patients total with only one spastic patient). Both groups serum 

LD level was within the normal range with the non-spastic group being a bit higher than the 

spastic patient serum LD level. 

 

4.5.7.1.4 Day 45 

Independent t-test 

On average, non-spastic patients had a higher lactate dehydrogenase serum level (M= 204.2, 

SE= 22.3) than spastic patients (M= 190.3, SE= 26.8). This difference, -13.9, 95% CI (-102.9, 

75.1) was not significant t (5) = -0.4, p = 0.7. Both groups serum LD level was within the normal 

range. 
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4.5.8 Albumin assay 

Both spastic and non-spastic patients showed within the normal level serum albumin 

concentration at all time points apart from the 3-days’ measurement when non-spastic group 

albumin concentration was below the normal albumin level at 30g/L (normal serum albumin 

level: 35-50 g/L). The largest serum albumin level mean difference between the spastic and 

non-spastic groups was seen at 45-days’ time point with the non-spastic group showing a 

higher serum level than the spastic group with a mean difference of -6.25 (95% CI: -14.6 to 

2.1; p = 0.1). The spastic group mean serum albumin concentration stayed barely at the same 

level at all time points of measurements. 

 

Mean serum albumin for each time-point for spastic patients was compared with non-spastic 

patients and normal level albumin concentrations. Mean absolute deviation was used to show 

the average distance between each data point and the mean (Figure 15). It was not possible 

to include 3-days’ time point values because of a limited number of participants (Only one 

patient in the non-spastic group). 
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Figure 15 Mean of Albumin with mean absolute deviation in both spastic (blue) and non-

spastic (red) patients at 1, 7 and 45-days’ time points (Mean absolute deviation is the average 

distance between each data value and the mean). The time after stroke onset is plotted on 

the x-axis and concentration of Albumin on the y-axis. Number of patients in each group is 

also plotted. 

 

4.5.8.1 Statistical analysis 

4.5.8.1.1 Day 1 

Independent t-test 

On average, spastic patients had a lower serum albumin level (M= 34, SE= 0.9) than non-

spastic patients (M= 37.7, SE= 1.5). This difference, -3.7, 95% CI (-8.5, 1.05) was not significant 

t (9) =-1.8, p = 0.1. Only spastic patient’s serum albumin level was a bit below the normal 

range. Non-spastic patient’s serum albumin concentration, on the other hand, was within the 

normal range. 
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4.5.8.1.2 Day 3 

It was not possible to run any statistical tests at the 3-days’ time point because of the very low 

sample size (only four patients in total with the non-spastic group limited to only one patient). 

The spastic group had within normal mean serum albumin level while the non-spastic patient 

had below the normal range serum albumin level. 

 

4.5.8.1.3 Day 7 

Independent t-test 

Even though it was within the normal serum albumin level, non-spastic patients had a higher 

mean serum albumin level (M= 38, SE= 5) than spastic patients (M= 34, SE= 1.2). This 

difference, -3.7, 95% CI (-54.9, 47.5) was not significant t (3) =-0.91, p = 0.6. The spastic group, 

on the other hand, had a bit below the normal range serum albumin concentration. 

 

4.5.8.1.4 Day 45 

Independent t-test 

Non-spastic patients had a higher mean serum albumin level (M= 42.3, SE= 2.1) than spastic 

patients (M= 36, SE= 2.5) Even though it was within the normal serum albumin level for both 

groups. This difference, -6.3, 95% CI (-14.6, 2.1) was not significant t (5) =-1.9, p = 0.1. The 

mean difference between the two groups was highest at this time point. 

 

4.5.9 Gama aminobutyric acid (GABA) 

The experiment was conducted to quantify GABA from the thirteen samples collected and 

compare the results between the spastic and non-spastic groups. Unfortunately, due to assay 

complication and limited volumes of samples, no reproducible results were obtained. Based 
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on previous work done by kanthan et al., (1995), below the normal range serum levels of 

Gamma-aminobutyric acid was expected in stroke patients. For future studies, more robust 

methodologies should be investigated as this particular assay, GABA ELISA kit from IBL 

International, Germany, was not stable. 

 

4.6 Biomarkers kinetics 

The characteristics of biomarkers in both the spastic and non-spastic stroke patients varied. 

In the spastic group, the mean NSE, albumin and lactate dehydrogenase showed an increase 

with both NSE and LD reaching peak concentration at the 3-days’ time point (Figure 16).  

 

The non-spastic group NSE, glutamate, S100B and lactate dehydrogenase serum 

concentration peaked at the same time point. Both albumin and glutamate were within the 

normal level. On the 7-days’ time point, GFAP, S100B and glutamate reached peak 

concentration in the spastic group though the glutamate was within the normal serum level. 

Serum GFAP reached peak concentration in the non- spastic group at the 7-days’ time point 

while both CK and albumin showed an increase but within the normal range (Figure 17).  
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Figure 16 Normalised biomarkers curves in spastic patients calculated using mean patient 

value divided by maximum normal value. The time after stroke onset is plotted on the x-axis 

and concentration of biomarkers on the y-axis. S100B is on the second y-axis.  

 

On the 45-days’ time point, albumin showed peak concentration in both groups while the CK 

peak concentration was evident in the non-spastic group. Based on the biomarkers behaviour 

in the current study, the increase in biomarkers level is more likely to be seen at both, 3 and 

7-days’ time points than the 1 and 45-days’ time point. 

 
 

 
Figure 17 Normalised biomarkers curves in non-spastic patients calculated using mean patient 

value divided by maximum normal value. The time after stroke onset is plotted on the x-axis 

and concentration of biomarkers on the y-axis. S100B is on the second y-axis. 
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4.7 Association between muscle atrophy biomarkers and post-stroke muscle weakness   

The evaluation of any muscle weakness that might develop post-stroke was part of the current 

study. Three muscle weakness related biomarkers were explored; creatine kinase, lactate 

dehydrogenase and albumin. To quantify and detect any muscle weakness, a grip 

dynamometer was used to measure grip strength (measured in Newtons). Grip strength 

measures were taken at 1, 3, 7 and 45-days’ post-stroke in parallel with the time points of 

drawing blood and spasticity measurements. 

 

The characteristics of biomarkers in both the spastic and non-spastic stroke patients varied. 

In the spastic group, the mean CK was at its highest level at 24-hours post-stroke time point 

while LD and albumin peaked at 3 and 45-days’ time point respectively. Grip strength was at 

its highest at 24-hours’ time point. Grip strength continued to decline with both CK and LD 

biomarkers while albumin continues to elevate (Figure 18). The increase in serum level of CK 

or LD and the decrease in serum albumin are all believed to be linked to muscle damage. The 

decline in grip strength in the spastic group cannot be attributed to muscle damage as the 

biomarkers behaved completely the opposite. It is important to point out that most of the 

changes in serum concentration for all the three biomarkers are proportional and take place 

within the normal ranges. In the non-spastic group, the mean LD was at its highest level at 

3-days post-stroke time point while CK and albumin peaked at 45-days’ time point. Grip 

strength was at its highest at 45-days’ time point. Grip strength continued to improve in 

parallel with the increase of both CK and albumin biomarkers and peaked at 45-days’ time 

point (Figure 19). 
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Figure 18 Normalised atrophy biomarkers curves in spastic patients calculated using mean 

patient value divided by maximum normal value. The time after stroke onset is plotted on the 

x-axis and concentration of biomarkers on the y-axis. Grip strength is on the second y-axis. 

 

 
Figure 19 Normalised atrophy biomarkers curves in non-spastic patients calculated using 

mean patient value divided by maximum normal value. The time after stroke onset is plotted 

on the x-axis and concentration of biomarkers on the y-axis. Grip strength is on the second 

y-axis. 

 

4.8 Atrophy biomarkers kinetics based on grip/no grip strength 

The characteristics of biomarkers in patients with no grip strength and patients with grip 

strength varied. In the no grip strength group, the mean CK was at its highest level at 24-hours 

post-stroke while LD and albumin peaked at 3 and 45-days’ time points respectively (Figure 
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20). It is important to point out that most of the changes in serum concentration for all the 

three biomarkers took place within the normal ranges. 

 

In patient with grip strength, the mean LD was at its highest level at 3-days post-stroke time 

point while CK and albumin peaked at 45-days’ time point (Figure 21). Both groups had similar 

biomarker pattern, mostly within normal ranges. 

 

 

 
 Figure 20 Normalised atrophy biomarkers curves in patients with no grip strength calculated 

using mean patient value divided by maximum normal value. The time after stroke onset is 

plotted on the x-axis and concentration of biomarkers on the y-axis.  
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Figure 21 Normalised atrophy biomarkers curves in patients with grip strength calculated 

using mean patient value divided by maximum normal value. The time after stroke onset is 

plotted on the x-axis and concentration of biomarkers on the y-axis.  

 

4.9 Association between biomarkers and spasticity or grip strength levels  

 

4.9.1 Spasticity levels 

Out of the 6 spastic patients, kinetic of biomarkers with spasticity levels were only available in 

4 patients because of the missing data. Patient No 3 showed a decrease in NSE, S100B and CK 

levels in parallel with decreased spasticity at 3-days’ time point. On 7-days’ time point and in 

parallel with increased spasticity, both NSE and S100B were increased.  With increased 

spasticity on 45- days’ time point and apart from the increase of NSE, all the remaining 

biomarkers were decreased (Figure 22). 
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Figure 22 Patient No.3, normalised spasticity and biomarkers levels calculated using patient 

value divided by maximum normal value. The time after stroke onset is plotted on the x-axis 

and concentration of biomarkers on the y-axis. EMG activity is on the second y-axis. 

 

Patient No 4 (Spastic) showed a decrease in spasticity on 3-days’ time point and at the same 

time, increased the level of NSE, GFAP, S100B and LD (Figure 23). 

 
Figure 23 Patient No. 4, normalised spasticity and biomarkers levels calculated using patient 

value divided by maximum normal value. The time after stroke onset is plotted on the x-axis 

and concentration of biomarkers on the y-axis. EMG activity is on the second y-axis. 
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Spastic Patient No 7 and while showing a decrease in spasticity at the 45-days’ time point, a 

parallel decrease in all biomarkers was evident (Figure 24). 

Figure 24 Patient No. 7, normalised spasticity and biomarkers levels calculated using patient 

value divided by maximum normal value. The time after stroke onset is plotted on the x-axis 

and concentration of biomarkers on the y-axis. EMG activity is on the second y-axis. 

 

Patient No 12 and in parallel with the increased spasticity at 7-days’ time point, an increase of 

NSE, GFAP and S100B levels were detected. On 45-days’ time point, an apparent decrease in 

all biomarkers was evident even though the spasticity level was increased (Figure 25). 

 

While the increase in some biomarkers was varied, an associated increase in CNS biomarkers 

with increased spasticity were more likely to be detected at the 7-days’ time point. 
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Figure 25 Patient No. 12, normalised spasticity and biomarkers level calculated using patient 

value divided by maximum normal value. The time after stroke onset is plotted on the x-axis 

and concentration of biomarkers on the y-axis. EMG activity is on the second y-axis. 

 

4.9.2 Grip strength levels 

Only non-spastic patients had changes in grip strength while spastic patients had either zero 

Newton grip strength or missing data.  Out of the 7 non-spastic patients, kinetic of biomarkers 

with grip strength were only available in 5 patients because of the missing data. 

 

Patient No 1 had an increased NSE, GFAP, S100B and LD levels in parallel with increased grip 

strength at the 7-days’ time point. Only CK and LD were increased at 45-days’ time point with 

increased grip strength (Figure 26). The higher level of S100B in this patient compared with 

the rest of the group could be attributed to the infarction size as this patient had a left middle 

cerebral artery occlusion. 
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Figure 26 Patient No. 1, normalised grip strength and biomarkers levels calculated using 

patient value divided by maximum normal value. The time after stroke onset is plotted on the 

x-axis and concentration of biomarkers on the y-axis. Grip strength is on the second y-axis. 

 

NSE, GFAP and s100B were all decreased in patient No 2 at 45-days’ time point while grip 

strength, CK and LD were increased (Figure 27). 

Figure 27 Patient No. 2, normalised grip strength and biomarkers levels calculated using 

patient value divided by maximum normal value. The time after stroke onset is plotted on the 

x-axis and concentration of biomarkers on the y-axis. Grip strength is on the second y-axis. 
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Grip strength was only decreased at 3-days’ time point when patient No 9 showed a decrease 

in NSE, GFAP and CK. While NSE continues to decrease at 7-days’ time point, GFAP and CK 

were both increased in parallel with increased grip strength (Figure 28). 

Figure 28 Patient No. 9, normalised grip strength and biomarkers levels calculated using 

patient value divided by maximum normal value. The time after stroke onset is plotted on the 

x-axis and concentration of biomarkers on the y-axis. Grip strength is on the second y-axis. 

 

While both GFAP and CK were both increased in patient No 10 at the 45-days’ time point, 

NSE and LD were decreased in contrast with the increased grip strength (Figure 29). 

Figure 29 Patient No. 10, normalised grip strength and biomarkers levels calculated using 

patient value divided by maximum normal value. The time after stroke onset is plotted on the 

x-axis and concentration of biomarkers on the y-axis. Grip strength is on the second y-axis. 
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Grip strength increased in patient No 11 at 45-days’ time point in parallel with the increase 

in S100, CK and LD levels. Both NSE and GFAP showed a decrease at the same time point 

(Figure 30). 

Figure 30 Patient No. 11, normalised grip strength and biomarkers levels calculated using 

patient value divided by maximum normal value. The time after stroke onset is plotted on the 

x-axis and concentration of biomarkers on the y-axis. Grip strength is on the second y-axis. 

 

The current data showed that grip strength was improving from 7-days’ time point and after. 

While biomarkers level varied at the 7-days’ time point, an evident decrease in most of the 

CNS biomarkers with contrasting increase of most of the muscle atrophy biomarkers was 

observed at the 45-days’ time point.  
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CHAPTER 5: DISCUSSION AND CONCLUSIONS  

 

5.1 Discussion 

The main objective of the current research is to explore the possible usefulness of GFAP, 

S100B, NSE, glutamate, GABA, purines, CK, LD and albumin as biomarkers of post-stroke 

spasticity.  Furthermore, it was intended to identify possible correlations of muscle 

biomarkers with post-stroke muscle weakness and contractures. Within literature and to date, 

there is no publication that examines the variation of serum biomarkers concentration in post-

stroke spasticity, and this is the novelty of the research, contributing to knowledge. A 

discussion of the results from this study will be outlined here. 

 

With respect to spasticity, some fluctuations in abnormal muscle activity was seen towards 

the 45-days’ time point. Some patients showed abnormal muscle activity as early as 24-hours 

post-stroke mainly during the fast movement, and this went on to show normal muscle activity 

at a later stage. This fluctuation in muscle activity could be attributed to the period of shock 

and recovery that immediately follow lesions of the CNS. During this period, the system will 

start to present with varying responses and time delays (Pandyan et al., 2018). With respect 

to grip strength, we saw no pattern between changes in grip strength and biomarkers 

concentrations. Further studies are needed to explore these relationships as our sample size 

was small and heterogenous.   

 

This current research showed that, following acute stroke, there was increase in the serum 

concentration of NSE, GFAP, s100B and purines, and this is consistent with the observation in 

previous studies (Pasini et al., 2000, Oh et al., 2003, Foerch et al., 2012, Schulte et al., 2014). 
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NSE, GFAP, purines and S100B protein concentrations demonstrated a differentiation 

potential between spastic and non-spastic patients. The serum concentration in all four 

biomarkers was lower in the non-spastic group compared with the spastic group. Serum 

concentration in all four biomarkers was above the normal range at all time points. These 

results were statistically not significant due to the limited sample size. 

 

In this study, an elevation of serum NSE concentration was noted as early as 24-hours after 

stroke onset, again consistent with the earlier reported studies (Missler et al., 1997; Hill et al., 

2000; Oh et al., 2003). Peak concentrations occurred in both groups at 3-days’ time point, 

again, similar to the results reported in previous studies (Missler et al. 1997, Cunningham et 

al. 1996). NSE is suggestive of neuronal damage. Large neuronal damage represents diffused 

injury which is more likely to lead to spasticity (Ivanhoe and Reistetter, 2004). 

 

The mean peak S100B concentration occurred at 72-hours post-stroke in the non-spastic 

group which is consistent with reports by Missler et al. (1997) and Wunderlich et al. (1999). 

On the other hand, mean peak S100B concentration occurred at 7-days’ time point in the 

spastic group and subsequently declined to reach admission levels at 45-days as reported by 

Missler et al. (1997). The delayed release of the S100B might be due to the penumbra not 

being salvaged, which in turn affect surrounding cells, leading to disruption of blood-brain 

barrier and leaks to the peripheral circulation.  

 

In this study, the peak of serum GFAP concentration was noted at 7-days after stroke onset 

which is different to earlier studies that reported peak serum GFAP concentrations to occur 
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around 2-days after the onset of stroke (Missler, et al. 1997, Wunderlich, Wallesch and 

Goertleret, 2006).  

 

The mean peak purine concentration occurred at 24-hours post-stroke in the spastic group, 

consistent with the report by Suzuki et al. (2000). On the other hand, mean peak purines 

concentration in the non-spastic group occurred at the baseline time point and subsequently 

declined to reach a normal level at 24-hours post-stroke. Stroke patients with above the 

normal level blood purines concentration at 24-hours, after stroke onset, ended up developing 

spasticity while patients with normal range purines at 24-hours did not.  Because of the limited 

sample size, this result should be taken with caution as it is not statistically significant. It is 

worth mentioning that purines are not CNS specific biomarker and as such, other factors or 

comorbidity might affect the results; factors such as time since the last meal and history of 

gout disease. 

 

The characteristics of the glutamate in both spastic and non-spastic patients varied from those 

of NSE, GFAP and S100B protein. The mean NSE, GFAP and S100B serum concentrations in 

both groups were above the normal range at all time points compared to glutamate which 

stayed within the normal range at all time points in both spastic and non-spastic groups. Our 

results contrast previous studies reported an increase in serum glutamate concentrations 

post-stroke (Puig et al., 2000; Aliprandi et al., 2005). 

 

An elevation of serum CK concentration in the spastic group was noted as early as 24-hours 

after stroke onset and subsequently declined to reach a normal range at 3-days post-stroke. 

Serum CK level in the non-spastic group stayed within the normal range at all time points. The 
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results suggest that CK is unlikely to have any links with the development of spasticity as both 

groups serum concentration remained within the normal range at all time point, apart from 

the initial increase at a 24-hours’ time point in the spastic group. Serum CK concentration also 

cannot explain the deterioration or improvement in grip strength seen in spastic and non-

spastic groups respectively. 

 

Spastic group serum LD concentration elevation was noted as early as 24-hours after stroke 

onset. The elevation continued at 3-days’ time point in both groups and subsequently declined 

to reach normal range at 7-days post-stroke. Serum LD level in both groups stayed within the 

normal range at 7 and 45-days’ time points. The results suggest that LD is unlikely to have a 

link with the development of spasticity or muscle weakness since it was within the normal 

range at most of the time point. Although the non-spastic group showed improvement in grip 

strength compared to the spastic group, normal serum LD concentration was seen in both 

groups. Again, due to the limited sample size, this result should be looked at carefully as it is 

not statistically significant. In addition to that, LD is not a CNS specific biomarker, and as such, 

other physiological or pathological factors might affect the results.  

 

A decline of serum albumin concentration in the non-spastic group was noted only at 3- days’ 

time point post-stroke and subsequently elevated to reach normal range at 7-days’ time point 

post-stroke. Serum albumin level in both spastic and non-spastic groups stayed within the 

normal range at all other time points. The absence of meaningful changes in the albumin 

serum kinetics, making it unlikely to be considered as a potential biomarker in terms of 

spasticity or muscle weakness development. Normal serum albumin concentration was seen 
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in both groups even though the non-spastic group showed improvement in grip strength 

compared to the spastic one. 

 

The current study showed an increase in most CNS tissue injury biomarkers; NSE, GFAP and 

S100B. It is believed that the loss of cerebral blood flow in the ischemic core during stroke 

leads to a complete reduction of oxygen and glucose supply to cerebral neurons and other 

supporting cells. This causes a series of biochemical and metabolic changes that finally lead to 

massive cell death. The CNS damage will lead to a release of neurons or glia-specific 

biomarkers such as neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP), acidic 

calcium-binding protein (S100B).  NSE expression and activity are markedly upregulated in glial 

and neuronal cells after stroke indicating the enzyme’s role in inflammation following these 

events. GFAP is a structural protein that is released when astrocytes are disintegrated, and 

the cytoskeletons are degraded (Pelinka et al., 2004). Structural damage to the neuronal cells 

also leads to the release of S100B into the blood. During a stroke, the blood-brain barrier (BBB) 

is compromised by endothelial cell death. CNS tissue injury biomarkers have the potential to 

cross the BBB and thus, their blood level increase. 

 

5.2 Implications for stroke rehabilitation 

The findings of this study suggest that there is a link between certain biological markers 

namely, S100B, GFAP, NSE and purines and the development of post-stroke spasticity. Further 

research is required before definitive conclusions can be made. However, this research may 

want to start with a focus on S100B as this particular marker seems the most promising in 

terms of mechanism of spasticity.  Although the EMG showed fluctuations, the biomarker 
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changes in S100B may have lower levels of variability. It is possible therefore that biomarkers 

are likely to be more specific. 

 

The biomarker activity in patients with spasticity corresponded to the neurophysiological 

recordings and occurred before the changes in the passive range of motion and stiffness. 

Therefore, one could use the biomarker profiles to inform treatment plans for patients who 

are likely to get musculoskeletal complications after a stroke. There was evidence that the 

changes in the passive range of movement occurred before stiffness and this is consistent with 

the literature (Malhotra et al., 2011). The stiffness increases in this study were within normal 

values (Pandyan et al., 2001) and may reflect the fact that most measurements were taken 

within 6-weeks of the stroke. Future research with larger samples is needed to confirm these 

observations. 

 

This study included ischemic and hemorrhagic patients combined, and while studying each 

type of stroke separately might provide more insight into the related changes and the 

underlying mechanisms, the small sample size made it impractical. The same implications are 

for ischemic patients who received thrombolysis treatment. A larger sample study would likely 

have a more promising chance of answering these questions. The current clinical measures 

cannot detect early spasticity (e.g., The Modified Ashworth Scale; The Tardieu Scale) used 

routinely in practice and clinicians face the reality of having to deal with spasticity 

complications after it already has developed. In situations like this, it is crucial to develop 

different approaches that could help with the early detection of spasticity and lead to timely 

interventions and prevention of complications. 
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The study of biomarkers could provide insight into the physiological and pathological process 

that accompanies the development of neurological disorder such as spasticity.  Not only it is 

important for identifying the mechanisms behind the development of spasticity at a cellular 

level and in aiding practitioners to examine its natural progression, it also might be of great 

importance at identifying and developing targeted drug treatments. 

 

 5.3 Limitations of the study 

Several potential limitations of the present study must be considered. The results of this study 

are limited by the small sample size and therefore generalising the results beyond this study 

population is problematic. One reason for the limited number of recruits is the fact that people 

are reluctant to consent to invasive studies that involve repeated drawing of blood. This 

explains why the second sub-study, the Pharmacokinetic sub-study, planned to collect blood 

samples every hour for six hours ended up recruiting none. This issue can be dealt with by 

keeping blood collection time points to the minimum and integrating blood collection within 

the routine blood investigation.  

 

A major problem with the small sample size was that the external validity was limited. There 

was a significant risk that our findings were affected by readings that were not typical. Further, 

the small sample size and the presence of 31% of zero values in grip strength has restricted 

the study of the association between biomarkers and physiological responses of motor 

recovery. The Bonferroni correction was not applied for the multiple comparisons; however, 

the 95% Confidence Intervals were reported to reduce the risk of type I error reporting. 
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The recruitment depended on research nurses who did not have ownership of the study and 

so poses barriers in recruiting for this project. The ability to use CSF fluid would have 

significantly improved our ability to identify relevant biomarkers. However, given the 

challenges we had with recruiting patients for the study of blood this could be more difficult. 

 This study was limited to a panel of biomarkers studied in the context of stroke and as such, 

it should not be considered as spasticity specific biomarkers.  

 

5.4 Indications for future research 

The main challenge in our study was patient recruitment and in future studies, there may be 

a need to engage with patient groups to help solve this problem. Further studies are needed 

to assess and confirm the relationship between certain serum biomarkers and the 

development of post-stroke spasticity. It is worth mentioning that the biomarkers included in 

this study, are not specific to spasticity and as such, a different approach might worth 

adopting. An approach that could widen the scope of the investigation by analysing the blood 

samples from scratch without preconception of any biochemical markers. Mass spectrometry 

techniques and its application in the field of clinical proteomics might provide the means to 

identify a specific biomarker that could be linked to the development of post-stroke spasticity.  

 

5.5 Conclusions 

The main objectives of this study were to explore the possible usefulness of a panel of 

specifically chosen biomarkers as an indicator of post-stroke spasticity and related 

complications. Serum concentrations in both spastic and non-spastic groups were compared, 

and the possible correlations of the biomarkers with the development of post-stroke spasticity 

were identified. 
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Out of the five-central nerve system specific biomarkers, three showed promising results; 

GFAP, NSE and S100B. The difference in serum concentration between the spastic and the 

non-spastic group in all three was at its highest on day seven-time point with the spastic group 

been higher. Glutamate did not show any promising result with the serum concentration 

showed within the normal range at all time points. It was not possible to get a meaningful 

result out of the GABA test as it failed even at calibration. 

 

Purines showed a promising result, and the serum concentration was always higher in the 

spastic group than the non-spastic group. The largest difference was at 24-hours’ time point 

post-stroke. Creatine kinase was higher in the spastic group at the 1-day time point and was 

way above the normal range and went to be within the normal range on the subsequent time-

points. Non-spastic group CK serum concentration, on the other hand, stayed within the 

normal range at all time points. Lactate dehydrogenase serum concentration, in the spastic 

group, was a bit higher than the normal range at one-day time point but went to be within the 

normal range on the subsequent time points. Non-spastic group LD serum concentration, on 

the other hand, stayed within normal range at all time points. Albumin serum concentration 

was higher in the non-spastic group than the spastic at all time points. Both groups were 

within the normal range though. 

 

In conclusion, although not statistically significant, my research enabled the identification of 

four promising biomarkers, three central nerve system specific biomarkers (GFAP, NSE, S100B) 

and purines, that have links to the development of spasticity. Further studies are needed to 

assess and confirm the relationship between these biomarkers and the development of post-

stroke spasticity. 
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APPENDIX V- Type of stroke with the number of articles retrieved (Unclassified means it is 
not clear which type of stroke) 
 

Type of stroke Number of articles retrieved 

Human 
Hemorrhagic 
Ischemic 
Unclassified 

 
(146) 
(482) 
(133) 

Animal 
Hemorrhagic 
Ischemic 
Unclassified 

 
(94) 
(165) 
(62) 
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APPENDIX X - Biomarkers standard curves 

 

 

S100B standard curve 
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Glutamate standard curve 

 

 

NSE standard curve 
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APPENDIX XI: Biomarker Assays Instruction Manuals 
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