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5 Abstract

Stroke is the third largest cause of death in the world, with a significant contribution
to disability. Motor function impairment, encompassing upper limb impairment, is
the most significant post-stroke impairment. Such an impairment contributes to
reducing a person’s ability to complete daily activities, thus affecting their quality of
life. Effective interventions, specifically targeted at upper limb recovery, are
important, just as much as predictions of patient’s post-stroke. Predictions have
become essential in making accurate clinical decisions in stroke management,
including selection of appropriate rehabilitation programs, referring into
appropriate services, setting realistic goals by therapists and clinicians and
predicting the level of dependence following discharge from the hospital. This
research focuses on the prediction of upper limb recovery and function. Despite the
current and widely used traditional statistical methods of prediction, the research
here presents a developed modern method which focuses on prediction models of
regression methods. This is because traditional methods have been shown to lack
clinical usefulness and do not have meaningful acceptance in clinical practice. The
modern method developed and adopted aims to give more beneficial and valid

results from the prediction model.
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1 Introduction

1.1 Introduction to the study and its context

This study examines important elements of how statistics and medicine come
together to form accurate and reliable predictions of patients with stroke. This
research examines a section of concern within post-stroke patients: upper limb
functional recovery. This is directly linked to carrying out activities of daily living
(ADL). It examines rehabilitation and recovery, considered within the International
Classification Functions Framework (ICFF) for measurement. It provides a review
of the different measures of upper limb motor function, including Action Research
Arm Test (ARAT), Fugl-Meyer, Wolf motor function test, Box and Blocks test (BBT).
It focuses mainly on ARAT as the outcome measure (dependent variable). This
research successfully sets a new cut off point for ARAT, and not only uses the
modern method of Least Absolute Shrinkage and Selection Operator (LASSO) in
developing a prediction model for upper limb recovery post, but it has also tested
its external validation. Additionally, the results of the new model were compared
with a traditional method (stepwise method). The adaptive LASSO (ALASSO) was
found to be the best method with respect to performance. Decision-analytic
measure was used to summarise the performance of the model in support of
decision making. It is worth mentioning that this is the first time a decision-analytic
measures method has been used in stroke related studies, and so this is a novelty of

this thesis, contributing to knowledge in biostatistics.

1.2 Use of terminology in this research
The abbreviations for some key terminologies within biostatistics are mentioned

previously and these will be referred to throughout my research. There are some
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key terms that I will be using in this research, that are used interchangeably such as
classical and traditional methods, binary or dichotomous etc. For simplicity, the
terms classical, traditional or subset selection methods will be interchangeably used
to describe the traditional methods of predictors selection; whereas, penalised,
modern or regularised selection methods will be interchangeably used to describe

the modern methods of predictors selection such as LASSO.

1.3 Rationale for the study

As a professional statistical programmer and analyst, the author has always been
fascinated by the ways in which mathematical and analytical software can be used
within the medical field to predict, prevent and improve the life of existing patients.
This has affected me on a personal level, after losing my son at a young age due to
brain damage. As a researcher, I am constantly looking at ways to improve
prediction and applied in biostatistics in clinical settings for the greater
development of medicine and this has inspired me to take on this research project.
Considering the insufficient validity of current predictive models of upper limb
functional recovery after stroke used in clinical decision-making setting and the
impracticality of using the current models in a clinical setting, I believe it is
necessary to establish additional predictive models that, when coupled with clinical
assessment, can improve prediction precision. As suggested from development and

validation studies(Kwah and Herbert, 2016), the only current model for arm

recovery (the proportional recovery model) that has been externally validated, does
not give a good prediction of recovery for all patients with stroke. This model is
limited and appears to predict outcomes in people with less severe strokes(Kwah

and Herbert, 2016).
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Therefore, providing an accurate and robust model which is well developed and
externally validated, prior to its use in clinical practice, would provide a more
efficient and sensitive method of prediction. This would help identify patients who
are more likely to recover and assist in directing available resources toward
achieving treatment goals, again contributing to the better development within

medicine.

1.4 Research aims and objectives

The main aim of this research is:

» To develop and improve a prediction model of recovery for upper limb

function post-stroke.

This aim will be achieved through four primary objectives:

1) Modify a cut-off point for the action research arm test, selected as the outcome/
dependent variable, using cluster analysis as an assistive tool in developing a
prediction model.

2) Test and identify predictor variables which have a strong relationship with the
dependent variable, using classical and modern methods of selection.

3) Test external validation of the models and present the benefit of each type of
model that is developed based on traditional and modern methods.

4) Develop a model to determine an essential effect predictor in intervention

model.

1.5 Research questions

My research aims at answering the following three research questions:

1. Should the cut-off point of the Action Research Arm Test (ARAT) outcome(s) be

modified?

2. What are the primary predictors of patients’ recovery post-stroke, and why?
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3. Can the current methods be improved and developed using a new method of

modelling?

1.6 Chapter summary

This chapter introduces the area of the research. It also sets the scene for the
research, on various levels, from the basis of my personal interest and stance as
researcher. It gives information on the aims and objectives of the research as well as

the research questions.

Chapter two provides a review of the literature with respect to stroke as a medical
condition, as well as statistical tools involved in the development of models and
cluster analysis. It provides some insights into and critical points of prediction
models of upper limb/arm post-stroke. This will allow the determination of the most
common predictors that are used in previous prediction studies. It will also help
determine the effectiveness of statistical models used in previous studies and

limitations of the previous prediction models and decisions.

Chapter three begins by reviewing and describing the two types of statistical tools:
regression analysis (with a review of the traditional and penalised methods of model
selection in logistic regression models and assessment methods) and cluster

analysis.

In chapter four, the means by which modification of the cut-off point of the

dependent variable (outcome) is discussed for a logistic regression model

Chapter five involves applying traditional and penalised model selection methods and
compares the performances of traditional and penalised methods based on multiple

logistic regression.
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The new application work in chapter six focuses on modifying the cut-off point
using statistical investigation to compare the achievements of traditional and
penalised methods in external validation stage and the decision analysis curve with

net benefit.

Chapter six also provides information on how the research achieved external
validation, while chapter seven provides details on developing a model, which is a
novelty of my research. The research will conclude in chapter eight with a general
discussion, limitations of the work, a summary and possible future work within this

field.
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30



2 Literature review

The literature review begins with information on stroke, followed by a detailed
description of upper limb and recovery terms, functional recovery and
rehabilitation of upper limb, which is explained based on the International
Classification Functions (ICF) framework. It then provides the definitions,
descriptions and measurements of arm recovery, followed by a search strategy that
includes an electronic search to identify studies that are linked to the inclusion
criteria of this study. A detailed description of the prediction model and predictors
is then provided to show how this process offers a benchmark against which
predictive modelling studies of arm recovery can be evaluated. I finally discuss some
critical points, concluding with a summary about prediction methods of modelling

studies.

2.1 Stroke as a medical condition

According to the World Health Organisation (WHO), a stroke is defined as "rapidly
developing clinical signs of focal (or global) disturbance of cerebral function, lasting
more than 24 hours or leading to death, with no apparent cause other than that of

vascular origin” (Sacco et al., 2013; Veerbeek et al., 2014). Stroke incidence in the

UK has been estimated to be 257.4 per 100,000 of the population for the year
(2013/2014). Stroke remains a leading cause of mortality and long-term disability,
killing an estimated 650,000 people annually. Mortality rate is higher in females

(23,060) than males (16,224) (Stroke Association, 2018). The total direct cost of

stroke in Europe was estimated to be 50 million in 2015 (Europe, 2017).

31



Stroke is a common cause of death worldwide. In those who survive, a stroke can

cause significant disability (Dacosta-Aguayo et al., 2014). Stroke is also the most

common cause of disability and the disability-adjusted life years (DALYs) lost due to

strokes is estimated to be 4.1% of global DALYs (Murray etal., 2012). In 1990, stroke

was fifth in the DALYs league table and by 2010, it had reached third position (Murray
et al., 2012). In the UK, approximately 33% of stroke survivors remain functionally
dependent at one-year post-stroke. Residual symptoms and increased dependence

following a stroke can remain throughout a stroke patient’s life (Aziz et al., 2008).

The direct cost of stroke to the National Health Service (NHS) is around £8,490,000
a year. This figure is very likely to grow due to the ageing population demographics

of the UK (Mortimer and Green, 2015). The impact of stroke in Europe is also

significant (Europe, 2017).

Stroke can be broadly classified as ischaemic or haemorrhagic in nature. Accounting
for approximately 85% of reported strokes, ischaemic strokes occur immediately
after a cerebral artery becomes partially or totally blocked, decreasing tissue
perfusion. Tissue perfusion is the amount of blood that a tissue is receiving from the

circulation (Hennerici, 2004). Decreased tissue perfusion can lead to tissue death.

Haemorrhagic stroke accounts for around 15% of all strokes. Here, a rupture of a
cerebral vessel leads to an intracranial haemorrhage and raised intracranial
pressure. This ultimately leads to the compression of surrounding neuronal tissue
and in many cases, cell death. Therefore, the impact of strokes, although varied, can
be devastating. As a consequence of stroke, residual neurological deficits can include

the loss and impairment of the motor or control functions of one side of the body,
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such as paresis; difficulty in speech (dysphasia); decreased mental functions

(cognitive) and the impairment of emotional functions.

A well-known classification method is the Oxfordshire Community Stroke Project
(OCSP). This is a simple clinical method, originally devised for patients with first
time strokes, to subdivide acute strokes. Based on severity of the symptoms, strokes

can be classified as (Mead et al., 2000):

e Lacunar syndromes (LACS): this includes pure motor stroke, pure sensory
stroke, sensorimotor stroke and ataxic hemiparesis.

e Posterior circulation syndrome (POCS): this include patients with brain stem
or cerebellar signs, and/or isolated homonymous hemianopia.

e Total anterior circulation syndromes, (TACS): this includes patients
presenting with the triad of hemiparesis (or hemisensory loss), dysphasia (or
other new higher cortical dysfunction) and homonymous hemianopia.

e Partial anterior circulation syndrome (PACS): this involves patients
presenting with only two of the features of TACS, or isolated dysphasia or

parietal lobe signs.

Patients are classified as “syndromes” (TACS, PACS, LACS, and POCS), unless brain
imaging has excluded intracerebral haemorrhage. In the latter case, patients are
reclassified as total or partial anterior circulation infarct (TACI or PACI), lacunar

infarct (LACI), and posterior circulation infarct (POCI)(Amarenco et al., 2009). All

these deficits have an impact on the subjects’ ability to perform activities important

for daily living, as simple as eating, dressing themselves and writing.
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One of the most common post-stroke deficits is motor impairment of the upper limb

(Pollock et al., 2015), which is the focus of this research. The most common subtype

of stroke is damage to the middle cerebral artery that supplies the upper limb. Hence,

disability of the upper limb is the most common (Balaban et al., 2011; Levin et al.,

2009). Most post-stroke patients (50% to 80 %) are likely to have an impairment
affecting one arm. These patients are likely to use compensation strategies to remain
independent. Of these patients with impairment, 66% will only partially recover and

thus require ongoing care to complete their daily activities (Feys et al., 2000a). Post-

stroke, the upper limb impairments are a considerable problem and have a
significant impact on stroke-related disability. Additionally, upper limb impairment

has been associated with a reduction in quality of life and unhappiness (Pollock et al.

2015). The recovery of upper limb movement and function is therefore a main
concern for patients, as well as professionals who deliver health services and
treatments for patients suffering from a stroke (Beebe and Lang, 2009). Therefore,
prediction of patient recovery would be fundamental in supporting recovery of post-

stroke patients.

The literature has provided an indication on how prediction of patients' recovery
post-stroke would be beneficial. Firstly, it could guide the patient’'s stroke
management, helping in appropriate selection of a rehabilitation program, which
would allow professionals such as therapists and clinicians to set realistic and

directed goals (Kwah and Herbert, 2016). Secondly, it can be used as an effective

device to correctly inform patients, as well as their relatives, on the patient's situation
and the actual cost-effectiveness of rehabilitation required, giving a tangible value

(Eghidemwivbie and Schneeweis, 2010; Kwakkel and Kollen, 2013; Woldag et al.,
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2006). However, despite the existence of numerous prediction models in the field of
strokes, the prediction of recovery in stroke patients is still lacking related clinical

usefulness and hence considered to be inaccurate(Kwah and Herbert, 2016).

In light of the insufficient validity of current predictive models of upper limb
functional recovery used in clinical decision-making setting and the impracticality of
using the current models in a clinical setting, it is necessary to establish additional
predictive models that, when coupled with clinical assessment, can improve

prediction precision. (Kwah and Herbert, 2016).

2.2 Upper limb focus

Most stroke patients suffer from impairment of motor and other functions of upper
limb. This includes sensory impairment, abnormal muscle activation patterns,
reduced muscle strength and reduced functional use of the upper limb. Upper limb
activities, including movement range and the gross motion of the proximal shoulder,
elbow and wrist joints to fine finger dexterity for manipulating of objects, are often
more affected by stroke than the lower limb functions. The patient’s ability to live
independently and carry out daily activities relies heavily upon the extent of motor
impairment, motor functional recovery and development of compensation strategy

post-stroke (Feys et al., 2000a; Feys et al., 2000b; Stinear, 2010).

2.2.1 Upper limb rehabilitation

Stroke rehabilitation is generally described as being an active, dynamic and
continuing process focussed on physical, social and psychological aspects of health.

Stroke rehabilitation aims to reduce the consequences of stroke, enhance patients’
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abilities to perform daily activities and improve quality of life (participation).
According to the NICE guideline on Long-Term Rehabilitation after stroke (2013),
there are different types of rehabilitation program. Examples include cognitive,
vision rehabilitation and motor control (approaches can be face, upper and lower
limb movements). Rehabilitation can take place at the level of the impairment; the
belief is that by improving the impairments one improves activity, and this can lead
to improvements in participation. Rehabilitation can teach compensatory strategies,
provide assistive devices and/or modify the environment to improve activity and

participation Figure 2-1.

(2) goal setting,

(1) evaluation, to define
to classify and realistic and
quantify the achievable goals
patient’s needs for
improvement
(4) (3) intervention,
reassessment, .
to help in the
to assess

progress against accocr:}plcl)sar:;nent
agreed goals b g

Figure 2-1 Stroke rehabilitation process includes a therapeutic activity cycle.
There seems to be a moderate non-linear relation between impairment and function.
More specifically, there is a scarcity in evidence to motor impairments recovery from

impairment-focused therapies, which is not necessarily reflected as neurological

compensation in the brain (Pinter and Brainin, 2012).
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There is clear evidence at present that shows that task-based training can help

functional recovery(Veerbeek et al., 2014). This corroborates with the idea that

functional recovery is a result of combination of compensation and true recovery.
Therefore, most rehabilitation interventions seem to work best at the level for which
they are targeted. These levels are: 1) exercise treatment interventions, 2) increased
amount of focused therapy or interventions compared with a reference group, 3)
sensorimotor training, 4) electrical stimulation alone, biofeedback alone, or electrical
stimulation in combination with biofeedback and 5) Constraint Induced Movement

Therapy (CIMT) (Enderby et al., 2017).

Allin all, the rehabilitation of the upper limb is a complex process which includes the
retraining of gross and fine movement control of shoulder, arm, and hand. The
rehabilitation program targeting hand and arm functions after stroke has lower
recovery rate than that of the lower limb. Because current protocols in hospitals
focus on impairments or activities that focus on mobility and transfers, the upper
limb gets very little attention. Patients are often discharged before they have been
fully rehabilitated (possibly due to scarcity in resources). Additionally, the complex
nature of upper limb function, that requires re-learning of very fine movements

patterns, is difficult to produce positive recovery results(Coupar et al., 2012). On the

contrary, lower limb rehabilitation, such as gait re-education, can be achieved by re-
learning gross motor skills. To improve post-stroke upper limb interventions and
services that support recovery, it is vital to try developing prediction model(s) for

recovery of upper limb impairments to assist in clinical testing.
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2.3 Recovery

The term 'recovery' has been used to describe the processes of relearning of skills
that are lost post-stroke as well as the improvement of function, regardless of how

these may have occurred (Levin et al., 2009). Recovery after a stroke relies on many

variables. These include:

a) the specific site of the brain damage,
b) the general health of the patient,

c) age,

d) related and unrelated diseases,

e) personality,

f) family support,

g) the care received.

Recovery after stroke has also been defined on three different levels, which are
discussed later within International Classification Functions (ICF) framework (Levin

et al, 2009). However, the exact mechanism and time course of upper limb post

stroke injuries are not yet well investigated. Unsurprisingly, immediately after the
injury, the central nervous system (CNS) falls into a period of shock (Pandyan et al.,
2018). Subsequently, the CNS is believed to begin compensating for the
contralesionally tilt of posture and increase loading of the ipsilesional side (Barra et

al., 2009). This is then followed by a period of neuroplasticity. However, the period

of neuroplasticity could not be estimated. For example, neuroplasticity may go for a
long time after stroke or it might be possible to increase the opportunity for plasticity

in the early stages of CNS reorganisation. This period depends on factors such as
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personal factors, environmental factors and therapy provided (Fleuren et al., 2018).
If recovery has not started, naturally or as a result of therapy, the person may start
in a rehabilitation programme that focuses on compensatory activities for actions of

daily living (ADL) (Pandyan et al., 2018). It is important to identify people who could

recover after injury, and those who are likely to have poor recovery. This will support
the focusing of either a rehabilitation programme to restore normal function or
engaging in a compensatory rehabilitation programme. The aim is to improve quality

of life and ability to cope with daily function (Pandyan et al., 2018). Therefore,

investigating a model that could predict functional independence recovery after a
stroke will help to direct physiotherapy/occupational therapy to the best outcome

programme in a cost-efficient way.

2.3.1 Recovery of independence

Functional recovery, also called recovery of independence, is defined as the
improvement in the ability of a patient to be independent in areas such as self-care
and mobility. Functional recovery could be affected by some factors, which would
assist and probably have a large influence on the process and extent of this recovery.
An example of this is the patient's motivation, ability to learn and family support, as
well as the quality and intensity of therapy. According to the International

Classification of Human Functioning of the World Health Organization (Giardini et al.

2010), physiotherapists and clinicians are often able to distinguish between the
recovery of neurological impairment and recovery of functional independency.
Specifically, the restoration of neurological deficits will result in functional recovery.
However, functional recovery is not limited to neurological recovery from

neurological impairments (Bruce H. Dobkin, 1989). Several studies(Kkel et al., 2004;
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Kong and Lee, 2013; Kwakkel, 2009; Simpson and Eng, 2012) indicated that the trend

of the functional recovery was non-linear with neurological recovery. It is also steep

in the first three months post-stroke. (Yagura et al., 2003).

(Kwakkel et al., 2006) reaches the conclusion that functional recovery does not

depend on only restoration of impairment, but also, incorporating compensation
strategies. Therefore, it is complex, with many differences, such as spontaneous
recovery (natural recovery) and response to treatment in patients. The goal of the
rehabilitation process post-stroke is to optimize and increment the changes in
recovery. Therefore, it is very important to provide instruments that have the

responsiveness to detect and measure changes(Simpson and Eng, 2012).

Functional recovery of the arm involves grasping, holding, and manipulating objects
which involves recruitment of various combinations of muscle activity from the
shoulder to fingers. In contrast, a minimal amount of recovery of the hemiplegic leg

may be sufficient to obtain functional ambulation(Feys et al., 1998).

2.3.2 Mechanism of recovery

Spontaneous neurological recovery is the main pattern of early recovery after stroke
and most likely involves partial unknown knowledge of biological processes. This
means that spontaneous neurological recovery is insufficiently understood.
Biological processes have been identified as playing a role in the neurological
recovery following a stroke. In rehabilitation programs, this pattern would be

neglected because of the lack of a method capable of measuring the effects of time

over the recovery course (Kkel et al., 2004; Kwakkel et al., 1996) .
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Several researchers have also suggested that spontaneous recovery of the brain in
the first week after stroke likely includes combinations of preservation of the
penumbra, physiological and neuroanatomical reorganization, alleviation of
diaschisis and reperfusion enhanced by post-stroke angiogenesis damage with
compensatory changes extending up to 6 months in more severe strokes (Green,
2003). It would be ideal to identify those individuals who are likely to recover so their
maximum recovery potential can be reached and if patients are identified as having
poor recovery potential, the focus would be on training the compensatory activities.

This would save time, effort and money.

24 The International Classification Functions Framework for

measurement

The ICF framework describes aspects of a person’s health at three levels:

i.  theindividual body parts and functions,
ii.  theindividual as a whole (activity) and,

iii.  theindividual in a social context (participation).

Within the ICF framework, each of these three domains contains different items. The
ICF provides specific descriptions that can be used to refer to a specific domain. These
descriptions, provided by the ICF framework, are used in this research to guide
categorization of the mobility-related deficits post-stroke according to their relevant
domains. Detailed discussion regarding the categorization of mobility-related

deficits in HD in line with the ICF model is provided below.
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i. Body function/Structure

In the context of the ICF framework, body structures can be described as the
anatomical parts of the body, whereas body functions are defined as the physiological
functions of body systems. For example, muscle strength is seen as a function of the
musculoskeletal system, whilst balance is an integrated function of the vestibular,
visual, somatosensory and musculoskeletal systems. Muscle strength and balance are
linked with the person’s ability to move independently. Therefore, balance and
muscle strength form the foundation for undertaking a wide range of mobility
activities that constitute normal daily life. This includes walking and therefore
impairments in muscle strength and balance are known to have negative effects on
social activity (participating). Evaluation of body function involves muscle tone
testing and movement kinematics characterizing the range of passive and active joint
movement. There are many reliable and valid clinical scales for measuring
impairments, for example, the modified Fugl-Meyer Assessment of Motor Recovery

after Stroke and the National Institutes of Health Stroke Scale (NIHSS).

ii. Activities

This forms the intermediate level of the ICF model. As per the ICF, activity is the
component of function which involves execution of a task. Among the most important
and common day-to-day activities are tasks that involve mobility components. WHO
defines mobility as the “individual’s ability to move about effectively in his/her
surroundings”. In a more general and comprehensive sense, mobility can be defined
as the process of moving oneself or changing the position or location of body, or body

parts.(Cieza et al., 2009). Scales have been used to measure function, but not a motor
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pattern, for example the Box and Block Test (BBT)(Mathiowetz et al., 1985). The

complexity starts with an explanation of experiments that use the functional tests to
evaluate a recovery because that might come from either compensation
improvement or results of motor improvements. For this reason it is not possible to
distinguish between compensation and motor patterns; in order to overcome this

limitation, the Wolf Motor test has been created (Wolfe, 2000).

iii. Participation

This forms the third and last level of the ICF. As per the ICF, participation can be
viewed as the involvement in a life situation. Participation restrictions are difficulties

that individuals may experience in involvement in life situations (WHO, 2001).

Participation may be best described by health-related quality of life measures (Power

et al.,, 1999). Quality of life can be defined as the integration of physical, social and

psychological functioning of an individual as being influenced by a disease or therapy

(Gotay and Wilson, 1998). It refers to the person’s evaluation of their current level of

health and functioning as well as satisfaction compared to what they used to have.

Buma et al. (2013) highlight the need to distinguish between the neurological

recovery at the structure level and the improvement at the activities level. Some

studies (Buma et al., 2013; Houwink et al,, 2013; Kkel et al., 2004) have reported that

maximum recovery can occur during the first three months of a stroke. Also, it may
be possible that several motor deficits recover rapidly while other continue to remain

as permanent deficits.

In contrast to the lower limb, impairment and disability of the upper limb are more

common, and many studies indicate that of the recovery of motor and other functions
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is also poor and more difficult in the upper limb. Recovery of the upper limb has
different patterns of outcomes than the lower limb. For example, upper limb recovery
is slower than that of the lower limb. Therefore, patients are more likely to have
different rehabilitation needs. Because of the variability that has been seen in each
individual’s disability after stroke and rehabilitation, outcome measures have been

developed to assess and detect change over time or over interventions (Simpson and

Eng, 2012).

2.5 Clinical measurement of post-stroke outcomes

The main aim of rehabilitation is to minimise the impact of impairment and maximise
the reintegration of the patient who suffered a stroke. However, measuring the
effectiveness of interventions is important, both to explain that rehabilitation has

occurred and potentially to construct exercises for future management (Barnes et al.

2005).

The assessments of stroke rehabilitation have encouraged the development of many
outcomes measures applicable to one or more of its many dimensions. It is broadly
agreed that there are three (categories) scales of the individual functioning body -
part body. The first scale is used to measure the body structure, the second is utilised
to evaluate the activities, and the third scale is used to assess participation. Based on

the ICF, there are 38 common assessment tools for stroke patients(Kwakkel et al.

2014). These can be divided as follows:

14 tools are used to measure body structure/ functions, the most common are:
1. Stroke Rehabilitation Assessment of Movement (STREAM).

2. Glasgow Coma Scale.
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3. Fugl -Meyer Assessment of motor recovery after stroke FMA.

4. National Institutes of Health Stroke Scale (NIHSS).

e 15 tools are used to measure activity, the most common are:
1. Action Research Arm Test (ARAT).
2. Box and Block Test (BBT).
3. Wolf Motor Function Test.
4. Frenchay Activities Index (FAI)
5. Barthel Index (BI)
e 9 tools are used to assess health-related quality of life outcomes and Participation,
the most common are:
1. Canadian Occupational Measure.
2. Nottingham Extended Activities of Daily Living (NE-ADL).

3. Stroke-Specific Quality of Life (SS-QOL).

In this research, the main focus is on the instruments, defined below, that are
measures of upper limb motor function. These are selected because they are

commonly used in previous studies, such as ARAT(Kwakkel and Kollen, 2007), and

have acceptable properties such as reliability and validity (Van Der Lee etal., 2010).
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2.6 Measures of upper limb motor function

Outcomes measurement is a result of assessment processes or impairments. It needs
to identify the effectiveness of rehabilitation interventions. To be applied in both
clinical practice or research, measures must have reliability, validity, and
responsiveness to clinically relevant change. Therefore, not only is there a need to be
provided with instruments to assess general outcomes, for example Barthel Index,
there is also a requirement for instruments to detect changes in rehabilitation
intervention in the upper limb. Even though the changes are small, they may be

considered essential to the patient or their care givers (Ashford et al., 2008). As a

result, several instruments of focal motor function tests have been modified, and

these are presented here.

2.6.1 Action research arm test (ARAT)

The Action Research Arm Test (ARAT) instrument has been used to measure the

activity of the upper limb (Hsieh et al., 1998). With the patients in a sitting position,
a modified table with shelves is brought in front of them and they are asked to
perform 19 separate tasks. The ARAT comprises of 19 items divided into four levels
(subgroup test): grasp (6 items), grip (4 item), finger pinch (6 items), and gross
movement (3 items) of involved upper limb, after Lyle adjusted it in 1981

(Yozbatiran et al., 2008). Each subgroup in the ARAT depends on hierarchical order,

the test starts with testing a difficult item followed by an easier item, and after that
the items with gradually incrementing difficulty. This means that items are ordered
in a sequence, for example, the first item is the most demanding with reference to the

level of strength and movement control required, and the second item is the least
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demanding of sub-group test. An ordinal 4 points scale is scored on to each item. With
0 scores for the patient who could not perform the item, 1 for partial completion, 2
for describing a function which is performed fully, but with abnormal synergies or
with difficulty, and 3 for the item which is normally performed. The greatest score of

ARAT is 57.

Scores are given according to the different movement and contributions to the

overall score of the patient, (Kwakkel et al., 2000). The reliability and validity of

ARAT in measuring post-stroke upper limb function has been proven (Yozbatiran et

al., 2008). Both intra-rater and inter-rater reliability are reported to be very high

with ICC values greater than (0.98), and the test was found to be responsive in

detecting the changes during recovery from stroke (Nordin et al., 2014).

ARAT is an instrument that is said to be a more responsive and objective measure of

motor activity (Baird et al., 2001). It consists of central properties, showing its

function and use. These properties are:

1. Itis time-efficient, taking a short amount of time to produce results.

2. Itis an easy measure of the upper limb function.

3. Itgives an assessment of different tasks over a range of complexity.

4. Most sorts of arm functions are covered by ARAT, involving proximal control
and dexterity.

5. ARAT is able to distinguish the abnormality of the movement based on the
time it takes to perform and allocate a score of two or three.

6. The ARAT does not need strict conditions of standardisation, such as source,

material, weight, and size of tools that are used for testing.
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2.6.2 Box and block test (BBT)

BBT is designed as a measure of unilateral gross manual dexterity of patients post
stroke. The BBT was developed by Jack (1981) for adults who have cerebral palsy.
The BBT was modified and copyrighted in its current form in 1957. The test is simple

and quick (Mathiowetz and Weber, 1985). It does not need highly specialised training

and requires only simple equipment. It consists of a wooden box that has two equal
size parts and fifty equal size blocks placed in the wooden box. It is measured by
accounting the number of blocks, one to one, which can be converted by the
participant from one part of a box to another part for during seconds. Scores are
recorded as blocks per minute for each hand. Higher values mean better gross

manual dexterity. Some studies (Hsieh et al., 2009; Platz et al., 2005) have reported

the BBT has a test-retest reliability of more than (0.9) and correlates highly with
another similar measurement of upper limb dexterity such ARAT. However, as a
measurement of upper limb function, the BBT could not afford an assessment of
different tasks or ranges. As such, the practice of BBT may be linked to significant

floor effects in some patient groups (Mathiowetz and Weber, 1985).

2.6.3 Fugl- Meyer assessment (FM)

The purpose of this measure is to clinically assess the severity of disease, motor
recovery and plan of treatment. The Fugl-Meyer Assessment consists of three
independent subclasses and that can be used separately or combined into a total
motor score. One of which is the upper limb-extremity subscale. It is used to assess
the motor impairment of the upper limb for patients in stroke. It consists of 33 items

that assess the movement and reflexes of the shoulder, wrist, hand and coordination,
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with a score out of 66, indicating optimal recovery (Fu et al., 2012; Fugl-Meyer et al.,

1975). Each item is scored on a 3- point ordinal scale (0- cannot perform, 1- performs
partially, 3- performs fully). It depends on hierarchical order with a ceiling effect

(Hsieh et al., 2009).

2.6.4 Wolf Motor function test (WMFT)

The Wolf Motor Test is a common clinical measurement tool used in assessing the
patients’ motor ability of upper limb post-stroke. It was originally adapted by Wolf et

al. (1989), and it was modified by Taub et al. (2011) to measure the influence of

power use of upper extremity function (Fritz et al., 2009). It has 17 tasks and begins

with placing the hand on a table top that is a simple item. The item’s progress is then
assessed in a more taxing motor task, such as stacking checkers or picking up a paper
clip. The time is limited to a maximum of two minutes, in which all tasks of the test
must be complete. A 6-point ordinal scale is used for functional ability, where zero
indicates no attempt with the involved arm and five indicates the arm does
participate and movement appears to be normal. The test-retest reliability, inter-
rater reliability, criterion validity, and construct validity of the WMFT has been

ascertained in stroke patients (Fritz et al., 2009; Lin et al., 2009). It is a suitable test

for detecting changes over time. This means it has high responsiveness (Hsieh et al.

2009). However, it could not be used to provide information on activity limitations
(for example walking and upper limb function) as it is only assesses the level of

impairment (Kwah and Diong, 2014).
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2.6.5 Motricity index

The Motricity Index is a measure used to assess the deficit of motor movement in a
stroke patient. It is used to evaluate the muscle weakness, primarily on the ipsilateral
and contralateral sides to the cerebral lesion. It is valid for the upper extremity and
is supported by a high degree of relation between its elements and the correlation
with both grip strength and a measure of upper limb dexterity function. The Motricity
index of each upper limb includes three tasks: pinch grip, elbow flexion and shoulder
abduction. For testing the legs, three tasks are also required: ankle dorsiflexion with
a foot in a plantarflexed position, knee extension with the foot unsupported and the
knee at 90°, and hip flexion with the hip bent at 90° moving the knee towards the
chin. These are each scored (0-33) according to the instructions of Collin and Wade

(Collin and Wade, 1990). The total upper extremity score involves adding one to the

sum of the three actions (maximum possible score=100).

2.7 Outcomes/ dependent variable

The present study is focused on ARAT which is used as an outcome measure for
upper limb extremity function after a stroke. This is because ARAT is reported to be
the most common measure in the literature. Additionally, it is underpinned by good

psychometric properties (Nijland et al., 2013; Stinear, 2010; Stinear etal., 2012) and

standardised manner (Yozbatiran et al., 2008). Studies have shown that the ARAT is
more responsive to improvement in upper extremity function than the Fugl-Meyer
Assessment (FMA) in chronic stroke patients undergoing forced use treatment (Van

Der Lee et al., 2001). Furthermore, another study showed that the ARAT was a more
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stable way of scoring than the Wolf motor test based on a Bland-Altman plot (Nijland

etal, 2010a).

2.8 Systemitic literature review methodology

Search strategy: references for this literature review focus on "prediction of upper limb
recovery after stroke", reviews published in the English language for humans only, from
1978 to 2015. The search was conducted in MEDLINE with the following keywords:
“predict”’, “forecast”, “prognosis”, “upper limb”, “recovery”, “stroke”, “Statistical

Models". A search retrieved 369 publications, some of which related to the prediction

of stroke; the electronic search method was as the following:

e (S1- S3) were (stroke) or (cerebrovascular disease) or (NH "Ischaemic
Attack, Transient") or "Ischaemic Attack, Transient") or "Cerebrovascular*".

e (S4-S11) were (arm) or (hand) or (shoulder) or (elbow) or (wrist) or
(finger) or (thumb) or (MH "upper Extremity") or (upper limb).

e (S12-515) were (predict) or (forecast) or (prognosis) or (MH "Models
statistics").

e (S16) was (MH" Recovery of function") or (recover).

e (S17)was (S4 ORS5OR S6 ORS7 OR S8 OR S9 ORS10 OR S11).

e (S18)was (S120RS13 OR S14 OR S15).

e (S19) was ((MH "Infarction, Middle Cerebral Artery") OR (MH
"Infarction, Anterior Cerebral Artery") OR (MH "Infarction, Posterior
Cerebral Artery") OR "Cerebral Artery").

e (S20) was (S1 ORS2 OR S3 OR S19).

e (S21) was (S16 AND S17 AND S18 AND S20).
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e (S22) was (S16 AND S17 AND S18 AND S20) and (Limiters - English

Language; Human). More information sees in Table 2-1.

Table 2-1 Process of systematic literature review.

Keywords Method Database No. of
Article
S1 Stroke Search modes - Interface- EBSCOhost Research 208,867
Boolean/Phrase | Databases, Database - MEDLINE
S2 (MH "Ischaemic Search modes - Interface - EBSCOhost Research 17,942
Attack, Boolean/Phrase | Databases Search Screen - Advanced
Transient") OR Search Database - MEDLINE
"Ischaemic Attack,
Transient”
S3 "Cerebrovascular”" | Search modes - Interface - EBSCOhost Research 115,374
Boolean/Phrase | Databases
Search Screen - Advanced Search
Database - MEDLINE
S4 Arm Search modes - Interface - EBSCOhost Research 285,966
Boolean/Phrase | Databases
Search Screen - Advanced Search
Database - MEDLINE
S5 Hand Search modes - Interface - EBSCOhost Research 562,183
Boolean/Phrase | Databases
Search Screen - Advanced Search
Database - MEDLINE
S6 Shoulder Search modes - Interface - EBSCOhost Research 59,746
Boolean/Phrase | Databases Search Screen - Advanced
Search Database - MEDLINE
S7 Elbow Search modes - Interface - EBSCOhost Research 29,332
Boolean/Phrase | Databases Search Screen - Advanced
Search Database - MEDLINE
S8 Wrist Search modes - Interface - EBSCOhost Research 34,976
Boolean/Phrase | Databases Search Screen - Advanced
Search Database - MEDLINE
S9 Finger Search modes - Interface - EBSCOhost Research 129,547
Boolean/Phrase | Databases Search Screen - Advanced
Search Database - MEDLINE
S10 | "Thumb" Search modes - Interface - EBSCOhost Research 16,600
Boolean/Phrase | Databases Search Screen - Advanced
Search Database - MEDLINE
S11 | (MH "Upper Search modes - Interface - EBSCOhost Research 19,924
Extremity") OR Boolean/Phrase | Databases Search Screen, Advanced
"upper limb" Search Database - MEDLINE
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S12 | Forecast Search modes - Interface - EBSCOhost Research 1,088,066
Boolean/Phrase | Databases Search Screen Advanced
Search Database - MEDLINE
S13 | Predict Search modes - Interface - EBSCOhost Research 79,606
Boolean/Phrase | Databases Search Screen - Advanced
Search Database - MEDLINE
S14 | "prognosis” Search modes - Interface - EBSCOhost Research 525,488
Boolean/Phrase | Databases Search Screen - Advanced
Search Database - MEDLINE
S15 | (MH "Models, Search modes - Interface - EBSCOhost Research 70,046
Statistical") Boolean/Phrase | Databases
Search Screen - Advanced Search
Database - MEDLINE
S16 | (MH "Recovery of | Search modes - Interface - EBSCOhost Research 510,640
Function") OR Boolean/Phrase | Databases
"recover" Search Screen - Advanced Search
Database - MEDLINE
S17 | S40RS50R S6 Search modes - Interface - EBSCOhost Research 1,017,483
ORS7 OR S8 OR Boolean/Phrase | Databases
S9 ORS10 ORS11 Search Screen - Advanced Search
Database - MEDLINE
S18 | S120RS13 OR Search modes - Interface - EBSCOhost Research 1,610,745
S14 OR S15 Boolean/Phrase | Databases
Search Screen - Advanced Search
Database - MEDLINE
S19 | (MH "Infarction, Search modes - Interface - EBSCOhost Research 29,383
Middle Cerebral Boolean/Phrase | Databases
Artery") OR (MH Search Screen - Advanced Search
"Infarction, Database - MEDLINE
Anterior Cerebral
Artery") OR (MH
"Infarction,
Posterior Cerebral
Artery") OR
"Cerebral Artery"
S20 | STIORS20RS3 Search modes - Interface - EBSCOhost Research 315,345
ORS19 Boolean/Phrase | Databases
Search Screen - Advanced Search
Database - MEDLINE
S21 | (SIORS20ORS3 Search modes - Interface - EBSCOhost Research 447
OR S19) AND (S16 | Boolean/Phrase | Databases
AND S17 AND S18 Search Screen - Advanced Search
AND S20) Database - MEDLINE
S22 | (S1ORS2ORS3 Limiters - Interface - EBSCOhost Research 369
OR S19) AND (S16 | English Databases
AND S17 AND S18 | Language; Search Screen - Advanced Search
AND S20 Human Database - MEDLINE
Search modes -
Boolean/Phrase
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In total, 369 articles were found. 30 of these studies were excluded, since they were
duplicates. 290, were excluded, after reviewing the title and abstract. The forty-eight
articles that fitted the search criteria were then included for review and there were
only 14 articles that were considered to study prediction modelling of recovery post-
stroke. Steps were undertaken by the researcher and the project supervisor to obtain

a more robust result. A flow chart shown below presents the search process.

Title identified (n=369)

|

Records after duplicates removed Records excluded

(n=339) [ (n =30)

Jl

Records screened to title and abstract Records excluded
(n=339) —_——— (n:290)

Full-text articles assessed for eligibility
(n=49)

|

Full-text articles assessed for eligibility
(prediction model) (n=14)

Figure 2-2 Flow diagram of literature review
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2.9 Prediction

Prediction is a term used to define what is expected to happen in the future, or as a
definition of problems estimation. The tools that are used to predict are called
prediction models. In the clinical field, the prediction model is called a clinical
prediction model/clinical prediction rule. The clinical prediction models are clinical
instruments that quantify the individual’s variables. These variables are analysed
and studied to understand their contribution to that individual’s diagnosis, prognosis
and expected response to treatment. These variables can take many forms, such as

an individual’s medical history, results from physical examination and other medical

investigations (McGinn et al.,, 2000). These models are used to predict the risk of
disease development in a person, or to predict health outcomes in individuals. In
stroke recovery, prediction models play a significant role in evidence-based clinical
decision-making by objectifying, simplifying and increasing the accuracy of the

expected patients’ future functioning level (Veerbeek et al., 2011). Thus, there have

been differences in studies on predictions made for motor recovery (Feys et al.,

2000a), activities (Kwakkel and Kollen, 2013), functional recovery (Wang and Fan,

2014) cognitive function (Suzuki et al., 2013), spontaneous neurological recovery

(Arboix et al., 2003), independence in activity daily living (ADL) (Schiemanck et al.,

2006; Woldag et al., 2006) and mobility (Konig et al.,, 2008). For upper limb recovery,

many studies have presented prediction models of upper limb recovery as described

in Table 2-2.
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It is important to highlight some points and discuss them relative to the
aforementioned studies. Firstly, most of these models have been developed based on
the data from restricted sources. This causes a problem because the data, used to
develop the models, does not present a typical sample of the broader stroke
population. Furthermore, the rehabilitation cohort may have prognoses that are not
representative of all stroke patients. Utilisation of such data will be negatively
reflected in the developed models. This would render the models to be predictively
biased, or at least would limit their predictions to populations characteristically like
their own. Consequently, the developed models will not be clinically applicable,

except on similar populations (Kwah and Herbert, 2016).

Secondly, even though most of the reviewed studies discussed the technique of their
model development (for example multiple linear or binary logistic regression
methods), very few studies have illustrated information regarding the probability
value used for variable acceptance and methods of related variable selection used in
model development. An example is the use of the stepwise methods or some criteria
(Bayesian Information Criterion). This reduces the methodological quality of the
developed prediction models for upper limb recovery and makes their predictive

value clinically less accurate.

Thirdly, most developed models to date cannot specify the expected value of a
patient’s outcome precisely. Moreover, most prediction methodologies failed to
present information about the performance of the developed model and failed to
confirm its internal and external validity. This is vital because prediction rules are

always less accurate when retested in new/independent patient groups (Kwah and

Herbert, 2016).
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Finally, the main aim of more accurate prediction is to gain knowledge about various
aspects of recovery post-stroke that could be implemented to plan more effective and
efficient treatment/therapeutic programs. For example, the selection of a suitable
physiotherapy program in order to gain the expected outcome depends on the

capacity to decide which stroke survivors are expected to recover the function of the

hemiplegic arm (Kwakkel et al., 1996). It is important to a stroke unit management
to be able to predict recovery of dexterity and independence in ADL’s early enough
(within the first 72 hours post-stroke). To achieve this level of clinical accuracy of
prediction models, it is important to use a representative population in developing a
model, demonstrate appropriate/modern methods of variable selection and test the
internal and external validity of the developed model to ensure that their predictive

power will be reflected positively into clinical practice.

2.10 Predictors

The upper limb extremity is mildly to severely affected in about 70% of stroke

patients (Coupar et al., 2012). Although patients are being treated to improve the

upper limb, most of these patients remain with a non-functional affected upper limb.
Furthermore, in many cases the improvement in the ability to move the upper limb
has been achieved, but the upper limb is not used for daily function (Rand and Eng,
2015). To achieve an efficient model of predicting recovery of upper limb, predictors
variables must be easy to collect, reliable and clinically meaningful. The efficient
model may be useful to both clinicians and researchers, to explain outcomes, to
improve the design and analysis of clinical trials, to determine suitable interventions,

and to precisely inform patients of likely outcomes.
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Previous studies have investigated numerous variables (Table 2-3) for their ability

to predict upper limb recovery. Cioncoloni et al. (2013) have demonstrated the effect

of some predictors on the long-term recovery in complex activities of daily living
before discharge from the stroke unit. This study reported that the group of
predictors such as strength of the paretic upper limb, age, gender, and the ability to

perform basic ADL’s had a significant effect at 10 days post-stroke and on

independence in complex ADL’s at six months. Loewen and Anderson (1990)
clarified that some rehabilitation variables, such as, Modified Motor Assessment
Scale (motor status) and the Barthel Index (ADL'’s), have the ability to predict the

motor and functional outcomes of stroke patients(Loewen and Anderson, 1990). The

study of Smania et al. (2007) found that not only was the active finger extension scale

a strong early predictor of recovery for independence in ADL'’s, but also could be

essential in order to plan a specific therapy after the onset.

A systematic review of voluntary arm recovery in hemi-paretic stroke was performed
to give evidence that the neurophysiological measures and initial sensorimotor
abilities are the best predictors of voluntary arm movement after stroke (Chen and

Winstein, 2009). It was focused on categorizing the predictive variables and

associated outcome measures in terms of International Classification of Functioning,
Disability and Health. Steiner's review gave evidence that the review of prediction of
motor recovery considered only the predictive value of motor impairment scores,

neuroimaging and neurophysiological assessment (Ackerley and Stinear, 2010).

Steiner concluded that these tools could be useful in enhancing the accuracy of the
final prediction. A systematic review and meta-analysis of predictors of the upper

limb post-stroke categorised predictors into five main groups of the predictors as
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follows, demographic factors, the severity of stroke as a global factor, severity of focal
factors, co-factors related to stroke impairment and neurophysiological factors.
Furthermore, this systematic review reported that the most powerful predictors of
upper limb recovery are the baseline levels of upper limb impairment and function

and intact motor- evoked somatosensory potentials (Coupar et al., 2012).

Although there are 85 predictors which have been tested in different ways in

previous studies (Gebruers et al, 2014), we need to check the impact of each

predictor in the group, as per Table 2-3 below, in order to determine which
predictors have a real effect on the prediction to avoid over-fitting and under-fitting
in terms of statistical conceptual and which could be developed as a useful model in

people who could not be meaningfully measured.

Table 2-3 Predictors of upper limb functional recovery post-stroke.

Clinical measures of Clinical measures of functional
Demographic and impediments
historical predictors Sensory Motor activities and measures
participants
- Age - Upper - NIHSS of - Motricity Index
- Gender limb arm and - Nottingham EDAL total
- Pre-stroke sensory leg Motor. - Barthel Index
independence. - NIHSS
- The stroke sides. sensory
- The lesion size of deficit
stroke.

One of the important independent variables is National Institutes of Health Stroke
Scale (NIHSS). NIHSS is a measure used to assess the severity of symptoms in patients
with cerebral infarcts. The NIHSS was derived from four other scales namely the

Toronto Stroke Scale, the Oxbury Initial Severity Scale, the Cincinnati Stroke Scale
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and the Edinburgh-2 Coma Scale(Brott et al., 1989). The NIHSS includes 15 items, and
the total score is between (0- 42). A higher score means a more severe stroke. It is a
very simple and quick quantitative measurement. The NIHSS is a reliable, valid and
responsive instrument for evaluating the severity of stroke. However, some items of
NIHSS have poor reliably for example (level of consciousness, facial palsy, limb ataxia,

and dysarthria) (Meyer et al., 2014).

The NIHSS was developed as a clinical stroke assessment instrument. It is widely
used to evaluate acute stroke and document the neurological status in stroke
patients. It is crucial for predicting the outcome after stroke as it helps physicians to

provide accurate information to patients and develop good targets.

2.11 Methods of prediction of recovery

Accurate prediction models have become critical issues when they are used for
predicting recovery outcomes of a survivor post-stroke. Many of the reasons for
lacking accuracy have been attributed to general factors affecting most potential
predicting, such as the selection of predictors, the selection of the statistical
estimating method of models’ parameters and the increasing lack of validation in
stroke’s prediction models. It is argued in many studies that these general factors

should not lead to prediction deficiency (Murray et al., 2012).

Different statistical models have been employed for predicting recovery (motor,

function) post-stroke in different studies (Feys et al., 2000a; Katrak et al., 1998;

Kwakkel and Kollen, 2013; Schiemanck et al., 2006; Suzuki et al., 2011). The multiple

linear regression has been shown to be the most popular method used in previous

studies. This type of modelling has been found to be suitable for predicting the
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outcome at a fixed time point, for instance, three months post- stroke(Tilling et al.,
2001b). However, the functional recovery has nonlinear features over time.
Therefore, the linear modelling is not an accurate method for predicting (Koyama et

al., 2005).

The study by Tilling et al. (2001a), presented multi-level modelling as a new

approach for predicting recovery depending on statistical theory. This study
reported that the standard statistical analysis is not suitable for longitudinal
outcomes since the number of patients in the study may drop during the time and

frequent assessment of the same patients are not independent (Tilling et al., 2001b).

Some studies (Arboix et al., 2003; Cioncoloni et al., 2013; Gebruers et al., 2014;

Weimar etal., 2002) depend on logistic regression models that are applied to identify

the recovery in patients post stroke. On the other hand, the studies by Suzuki et al.

(2006), Kovama et al. (2005) and Gert Kwakkela (2007) determined that

spontaneous recovery depends on the progress of time alone. The later concept
depends on logarithmic modelling for predicting ADLs in stroke patients by using
two measures: FMA and cognitive function soon after stroke. These are taken at two
time point assessments which allows plotting of the high fitting curve (Suzuki et al.,

2013).

What makes the problem of predicting recovery post-stroke more complicated is the
heterogeneity of the patients’ outcomes of stroke and the limitations of validating
statistical prediction methods. Due to the lack of the three sorts of validation levels

being used, the current prediction models have lack of accuracy. Although there are
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difference studies which have tried to handle and access a simple way of predicting,

the prediction models still suffer from the lack of the external validation.

2.12 Discussion

Accurate prediction modelling could have potential to achieve an important role in

serving rehabilitation centres or decision-makers in stroke management(Enderby et

al, 2017). These tools could help clinicians to deliver patients with more accurate
prognoses, clarify goal setting and make a convenient plan for therapies and shorten
hospital /centre stay. Ultimately, this accurate prediction could enable efficient
utilization of limited stroke care resources. However, there are some limitations that
have negatively affected the prediction accuracy of a model. Some of these points
have been discussed previously. Firstly, based on the literature, most prediction
studies have developed their models on patients who are only involved in
rehabilitation or clinical experiments. Consequently, the values produced by
prediction models have biases and do not represent the stroke population (i.e. they
are more motivated). Clinical experiments, for example, often select patients using
strict inclusion criteria and by the nature of rehabilitation studies, the majority of
studies are single blinded. In addition, rehabilitation recipients, may have special
characteristics depending on the rehabilitation they are receiving, as trials usually
have defined rehabilitation protocols. Both conditions will render the sample to be

not representative of the wider stroke population (Kwah and Herbert, 2016). Despite

that, the models could be useful in assisting clinicians to predict outcomes of patients

in rehabilitation.
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Secondly, in studies concerning prediction models, outcome measures used as
predictors in the models’ development vary. This variance could range from using
clinical measures to using neuroimaging and neurophysiological tests. Consequently,
each model selected different important related predictors. However, none of these
studies considered the clinical importance and applicability of the selected
predictors in rehabilitation centres/clinics. This means, that important predictors

selected by a model could be clinically inefficient to apply, as some are more

expensive and clinically very difficult to collect(Counsell et al., 2002; Kwah and

Herbert, 2016; Kwakkel and Kollen, 2013).

Finally, several guidelines have been reported that make recommendations about the

process of prediction model validation (Altman et al., 2009; Bustamante et al., 2014;

Kwakkel and Kollen, 2013; Kwakkel et al., 1996). However, most of the previous

prediction models have been developed without checking the model validation. As a
result, researchers cannot recommend these models to be implemented in clinical

practice and the models developing must be internally and externally validated.

2.13 Conclusion

The literature review introduced various types of studies and pieces of research
about prediction of recovery in a patient post- stroke. The outcome of recovery for
patients post stroke has heterogeneity and there is no specific technique to measure
recovery of function. The recovery of function does not have a linear pattern and the
maximum recovery happens in the first three months post- stroke. On average, stroke

recovery plateaus three- to six-months post-stroke.
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There are three kinds of measurement instruments (clinical measurement,
neurophysiological and neuroimaging) used to assess the factors which are related
to stroke. Many predictor variables are used to predict the recovery of patients in
stroke, for example gender, age, severity of the stroke, limb dysfunction and the
location and size of brain lesion. However, it is noted that only a few predictors are

able to explain a change in recovery over time or through an intervention.

The most popular statistical models for predicting recovery post-stroke are multiple
linear regression and logistic regression. However, based on the literature, these
methods do not take enough concern on predictor variables selection, developing
and testing the performance of the model, such as internal and external validity for

achieving a satisfying clinical prediction (Kwah and Herbert, 2016; Veerbeek et al.,

2011). This has resulted in the following limitations: Current models are still
misclassifying a certain number of clients or patients. In most of the studies,
prediction models of upper limb recovery post-stroke have not been fully tested
prospectively. The heterogeneity is so large that some of the models are not
representative of an individual. Therefore, the main purpose of this research was to
develop a model that can be used to predict an individual’s recovery potential using

baseline hospital admission data and other demographic variables.

2.14 Highlight points

It seems that developing models is a straightforward process that consists of
selecting a modelling approach, linking it with data and producing a prediction
model. The method will create a prediction model that might not be as reliable and

accurate when using it with a new data set. To produce an accurate model, I was first
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required to understand the data and identify the model’s objectives. Then, | would
pre-process and split the data. Only after implementing these steps, did [ proceed to

developing, evaluating and presenting the models.
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Chapter Three
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3 Predictors variable selection and models’ performance

methods

3.1 Regression analysis
Regression analysis is a method of predictive modelling which estimates the

relationship between a dependent (outcome) and one or more independent

variables (Steyerberg, 2009). Regression analysis is used for finding the causal effect
relationship between the variables. For example, the relationship between stroke

and age is best studied through regression (Alexopoulos, 2010). It is an important

tool for analysing clinical research data.

In its simplest form, regression analysis allows clinician researchers to analyse
relationships between one independent and one dependent variable. In medical
applications, the dependent variable is usually the outcome we are most concerned
with, in this case the recovery from stroke. On the other hand, the independent
variables include biographical variables (for example age), neuroimaging variable
(for example MRI) and clinical measures (for example, the severity of stroke). The

key advantages of using regression analysis are that it can:

1. Explain if predictors have a significant relationship with an outcome.

2. Show the relative strength of different predictors’ effects on a dependent

variable (outcome) and make predictions.

Since there are numerous metrics of independent and dependent variable and
regression line, there are different types of regression styles to make predictions and

in this research, I will be using logistic regression, as it is the most common data
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analysis method for modelling the relationship between a binary response

variable/outcome and a set of predictors.

A key part in the regression modelling of data is prediction’s variables selection.
Over the years, several selection techniques have been proposed in the setting of
logistic regression models, and these can be introduced as one case of general linear
models (GLMs) cases. Therefore, methods proposed for selecting linear regression
models are helpful to exploit approaches in logistic model selection. In fact, some
model selection methodologies in logistic regression models are initiated from linear

regression(Mille, 2002; Steyerberg, 2009).

Predictors selection is a statistical process which aims to select the best subgroup of
predictors and to reduce the redundant predictors in the model. This is an essential
step and arguably the hardest part of developing a model, especially with data sets
containing many candidate predictors (Ryan, 2008). The idea here is to shrink the
multiple/many predictors variables to a smaller subset containing only the
paramount variables. The logic behind reducing the number of variables in a model
is that the model obtained is more numerically stable and easier to use in practice.
When a model is developed without proper predictors variable selections, this could
lead to an increase in the estimated standard errors, and an increased dependency
of the model on the initial dataset, and therefore overfitting. Overfitting is typically
characterized by unrealistically large estimated coefficients and/or estimated
standard errors. This can be especially troublesome if the number of model

predictors is large relative to the number of sample size.

Predictor selection methods aim to select an optimal subset of predictors variables

that contain relevant information, and thereby improving prediction models. This
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should be achieved by improving the accuracy of prediction and/or simplifying
interpretability of the model’s results. Additionally, the variance of outcome
prediction and parameter estimation is affected by the number of predictors that are
chosen. Adding a new predictor would always have an impact on increasing the
magnitude of both variances: the model’s prediction variance and estimated

coefficients’ variance.

3.2 Types of methods of predictor selection.

3.2.1 Method 1: Traditional methods

Traditional methods are purely based on statistical significance of the relationship
between independent variables and dependent variable. These methods are and
continue to be utilised due to their high acceptance rate and popularity among
scholars (Ryan, 2008). Although there are many similarities between the model
selection in linear and logistic regressions, there are some differences. For example,
some criteria of linear regression cannot be applied in logistic regression in the same
manner, and vice versa. Traditional methods of predictor selection include: all sub-
selection based on the criteria methods and stepwise regression selection
(backwards elimination selection methods, forward elimination selection methods,

and combination of both).

3.2.1.1 Best subset selection

The best subsets approach aims to find out the best fit model from all possible sub-
set regression models. It begins with fitting all models that include one predictor,

all models that include two predictors, then three predictors, and so on until the

total number of predictors has been completed(Mille, 2002). Then, the subset
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approach compares all models and selects the best model based on one of the model
selections of stopping criteria, which will be discussed in more detail later. Although
the best sub-set procedure is straightforward to implement, it does require a
challenging computational capacity when the number of candidate predictors (p) is
large. If there are p predictors, the number of all possible sub-set is 2p. As p
increases, the number of possible models raises steeply. In general, best subset
selection becomes unachievable when the number of predictors is greater than 30.
Furthermore, it tends to over-fit a model with irrelevant predictors, and the final
model would be very unstable. To overcome this limitation, statisticians developed
a method that limits the required computational operations — hence stepwise

regression methods(Steyerberg, 2009).

3.2.1.2 Stepwise regression methods

Over the past decades, the most common methods for selecting variables in medical
studies are stepwise variants selection methods. These approaches work by
including the most significant predictors based on inclusion criteria based on two
types of inclusion criteria. The first type includes F-test and T test that are used to
test of significance for a set and individual regression coefficients in linear
regression. The second is the Wald x2-test that is used the test of importance for

individual regression coefficients in logistic regression(Kutner H.Micheal, 2005).

Three types of stepwise subset selection exist. These are: backward elimination,

forward selection and a combination of both previous types (Steyerberg, 2009).

3.2.1.3 Backward elimination

Backward elimination method can be used for predictor selection in both linear and

logistic regression. It starts with a model that involves all predictors. Predictors are
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then removed from the model one by one, then removing all predictors with non-
significance and then re-testing the model. This is repeated until only predictors
with a statistically significant effect on the dependent/response variable remain.
The number of models required to fit in backward elimination is equal to 1 + p(p +
1)/2 models; therefore, it delivers another efficient alternative to the best subset

selection method (Ryan, 2008).

3.2.1.4 Forward selection

As a reverse procedure of backward selection, the forward selection begins by
testing the significance of effects of all potential predictors, followed by choosing
the predictor that had the highest significance level of them. For example, in logistic
regression the best fit is a model that has the smallest deviance. Then, the next step
consists of sequentially entering the remaining predictors into the model, testing
the significance of the added predictor in the model, and finally keeping only
predictors that achieve a good model fitting. Finally, the most significant of these

candidate predictors are retained to the model (Ryan, 2008).

3.2.1.5 Stepwise regression

The stepwise selection is a combination approach of forward selection and
backward elimination. As in forward selection, predictors are included in the model
sequentially in a stepwise selection. However, after adding each new predictor, the
method may also delete any predictors that become no longer significant at each
time a new predictor is added. Such an approach intends to imitate best subset
selection while holding the computational advantages of forwarding selection and

backward elimination (David W. Hosmer 2013).
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3.2.1.5.1 Stopping criteria

The stopping rule for inclusion or exclusion of predictors is the main problem in
classical selection methods. It is far more important than the specific variant of the
stepwise selection method (for example forward, backward, combined, all possible
subsets). Several measures are proposed to help to use the best subset selection,

such as Mallows Criteria.

3.2.1.5.2 Mallows criteria

Mallows in 1973 proposed a C,, statistics. It depends on using criterion to compare

with a different subset of regression models(Mille, 2002). The criterion includes
finding the out-of-sample prediction residual for each model indexed by «; the

Mallow’s criteria has the formula as:

— ”y _Xafﬁa“ _

C =
a 0_2

n+ 2p, (3.1)

Where:

0'2 is the unbiased error of the full model. The best model is with a minimum value
of criteria. The selection predictors based on these criteria in each step is that the
predictor will be selected when it is corresponding the smallest value of criteria; or

deleted if it is corresponding the largest value of C,,.

The Mallow’s drawback is that it is selecting model with unknown data generating
process. For the other types which are Akaike Information Criterion (AIC) and

Bayesian Information Criterion (BIC).

The best subset selection and stepwise selection methods have the advantage in

their availability in commonly used software and their suitability to handle missing
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data. They are also relatively objective and usually reach their goal of making a
model smaller. For example, if another analyst is delivered with the same list of
candidate predictors in the same data set, the result of predictors selection would
possibly be very similar. This property of stepwise makes it possible to repeat this
selection procedure of validation in methods such as Bootstrap method (Steyerberg

and Vergouwe, 2014).

However, these methods have many drawbacks, such as instability of the selection.

In addition, Steyerberg (2009) reported that the stepwise methods have a lack of

stability of the sub-set selection predictors. This means a small change in the data
causes a large change in the results, especially their predictive errors; their bias in
coefficients’ estimation; misspecification of variability and exaggeration of p-
values. Ultimately, these drawbacks would worsen provision of predictions’ quality
than the full model. Additionally, these drawbacks would increase when predictors
are correlated among each other, or the model is dealing with a relatively large

number of predictors, or both (Frank E harrell 2001). Therefore, the penalized

methods play a vital role in selecting predictors and developing models. The next
section will review penalized selection methods which are proposed to address the

weaknesses of sub-set selection.

3.2.2 Method II: Modern methods

Despite having many drawbacks, the classical methods of best sub-sets selection in
predictive models are widely used in practice. In last two decades, a few methods
have been suggested to overcome the previously discussed obstacles of the classical

sub-set selection methods. These methods are Bootstrapping, Uniform Shrinkage
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and Penalised Maximum Likelihood that have been developed to improve sub-set

selection.

In 1996, Tibshirani presented a new method of selecting predictors that was called
least absolute square of shrinkage operators (LASSO). LASSO reduces the predictors
that have small coefficients depending on a new penalty for linear regression

(Tibshirani, 1996). .1 norm was used instead of L.2, and their formula is:

Estimated of (a, §) = argmin {Z(yi —a— Z B x)* + 1”/3”1}

3.2.2.1 Bootstrap of selection

Bootstrap selection method concept is a combination of a bootstrap resampling
method and the classical selection variable methods. The idea behind the use of the
bootstrap methods is to generate (K) random samples of the data taken with
replacement. After which, and for each bootstrap sample, selection predictors
methods can be applied. For example, stepwise selection variables methods are
used with entry and retention criterion («¢=0.05) or predictors are selected from the

full model with criterion less than (a), accounted from the Wald- x2 test and save

the result (Efron and Tibshirani, 1994).

In the next step, the selected predictors are ordered and ranked based on the
predictors’ frequency in all the created bootstrap samples. A threshold criterion is
then applied to eliminate predictors from the original model that fitted the original
sample; for example, select predictors that repeatedly showed for 50 time. The

principle of constructing models, using bootstrap selection (Ryan, 2008), is similar
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to stepwise selection in the original data, which is dependent on the same stopping
rule. For example, predictors with low p-values in the original sample tend to be
selected with high frequency in bootstrap samples. Some of these results could
improve the model, however, there is no clear evidence of the benefits of this

procedure.

3.2.2.2 Regularization methods

The most commonly employed prediction models of recovery post-stroke are
classical methods, which is based on typical multivariate linear and logistic

regressions (Kwah and Herbert, 2016). In these two regressions, two issues must

be addressed when developing a model. The first issue is choosing essential
predictors and the second is estimating the model coefficients. However, there are
many more modern approaches able to capture higher order interactions in the
data for example Penalisation/ Regularisation methods. The methods selected for
developing a prediction model in this work were Penalised Logistic Regressions
(PLRs). PLRS methods include LASSO, Adaptive LASSO (ALSSO) and Group of LASSO
(GLASSO). In this chapter a more detail overview of each of these models is

provided and the rationale for choosing these types will be presented.

3.2.2.3 LASSO logistic regression:

[ start with the typical logistic regression to describe the LASSO logistic regression
technique. Typical logistic regression has been a common approach in clinical
prediction studies and clinical research for the past four decades. Logistic
regression is a linear classifier that is used when the response/outcome is binary
and follows the binomial distribution. Statistically, logistic regression aims to

maximize the conditional probability of the outcome given the predictors’

79



information. Let us assume that I have a vector of observations with binary
outcomes y;. Each outcome is associated with p predicting variables that are
represented by the design matrix x;; ( = the number of patients and j= the number
of predictive variables), and the objective is to find the prediction ¥, , which is

calculated using:

9 =log(p(x)) = xp (3.3)

Where: § is the vector of the estimated regression coefficient(s)

The estimation of the unknown coefficients is needed to satisfy the prediction in
the (3.2). Then, I use the log likelihood method to estimate these coefficients. The
log likelihood is the popular approach for estimating the unknown coefficient(s)
and assessing the fitting of the logistic model. The log likelihood can be estimated

as follows:
p(ylx) = px)?i(1—p(x)) ™" (34)

plog(L(B) = ) yilogn() +1 - y;log(1 — p(x)) (35)
i=1

The idea behind using the maximum likelihood is to find the estimated coefficients
of models’ parameters that maximize the log(l(yly)). I can substitute the ¥, as

follows:

log(L()) = ) yilogp(x) +1 - yilog(1 = p()) (36)
i=1
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The process of using the method of typical logistic regression could be limited due
to two conditions: first, when the number of predictors is large, and second, the
existence of multicollinearity issue among predictors. The high number of
predictors and the multicollinearity cause two negative side effects on model
performance. Due to the increasing complexity of models dealing with many
predictors, the model performs well during the training stage, but the model’s
accuracy significantly decreases in the testing stage. The second negative effect is
the increasing difficulty in interpreting predictors effect with instable estimated

coefficients in the model, due to many variables and unstable estimated coefficients.

One method that can counteract this phenomenon is the least absolute square
shrinkage of operators. The LASSO word comes from the abbreviated “Least
Absolute Shrinkage and Selection Operator”. LASSO is the second constrained
version of ordinary least square (OLS) method. It was proposed by Tibshirani in
(1996) using L1-norm instead of the L2-norm in the first version of penalised
methods (Ridge regression). LASSO is in some sense like ridge regression; however,
LASSO can give more interpretable results because LASSO can shrink some
coefficients to zero. The model’s coefficients are bounded by some positive number,
hence the penalty. This penalty maximises the log-partial likelihood of the model

coefficients (Tibshirani, 1996).

In the context of logistic regression, LASSO refers to the addition of a term to the
likelihood function, which is based on the estimated coefficient values. Adding a
penalty term to the log-likelihood function due to the typical form of LASSO logistic

regression, which could be written as follows:
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log(Lxif) 1)) = ) yilog(xif) +1 = yilog(1 = ) + 2Bl (3.7)
i=1

Where: [ refers to a vector of coefficient values and A is a penalty which controls
how strongly penalised the model is. As ||#]|; is Lan 1-norm constraint that is
usually chosen to be a positive monotonic function of f3, increasing the value of
penalty (A) causes to force all model coefficients (8) to zero. In this situation, any
reduction in the negative log likelihood due to predictively useful predictors would
be outweighed by the increase due to 4||8]|;. Conversely, a value of zero for A implies
no constraint on the model and provides the solution to the ordinary least-squares

model.

In the methods of the LASSO family, the issue of identifying the accurate estimation
value(s) of the penalisation parameter (A) is essential and requires to be taken into
consideration. The estimated value of the parameters’ penalty can have a large
impact on the performance of the LASSO family methods. In other words, the
penalty plays a vital role in making the variable selection process consistent. In
addition, because of its value, it will identify the number of included predictors in
the model and the amount of bias term imposed on the estimated regression

coefficients (Androulakis et al., 2014; Fan and Tang, 2013). Several methods are

considered to estimate the value of this parameter penalty (A):

(1) The information criteria, which could be Akaike information criterion (AIC) or

Bayesian information criterion (BIC), and

(2) Cross-validation (CV), which could be either normal CV or generalised cross-

validation (GCV).
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Both information criteria and cross-validation will be discussed in more detail next.

3.2.2.3.1 Information criteria
Both of AIC and BIC are very commonly used to determine the selecting tuning
parameter value in LASSO family methods. These criteria are extracted from the

log-likelihood for the logistic regression model (Gao et al., 2012; Sun et al., 2013),

and are noted below:

1. Akaike Information Criterion (AIC) was proposed as the distance between
estimated and real outcome in logistic regression models; AIC has the

formula:

AIC = —2L(B) + 2df (1) (3.8)

Where: L(B) represents the log-likelihood of logistic regression, 4 is the tuning
parameter and df is the degree of freedom. One drawback of using AIC is that it

causes overfitting in the model’s variable selection.

2. In 1978, (Schwarz) proposed Bayesian Information Criterion (BIC), which
is considered a more consistent method because it uses strength penalty of

the degree of freedom, and has the following formula:

BIC = —2L(B) + log(n) df (1) (3.9)

Where:

L(B) is the maximum likelihood function of logistic regression, 1 is the tuning
parameter, df is the degree of freedom and n is a constant that presents the

sample size. It is essential to note that the best-estimated value of 1 is when it
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corresponds to the minimum value of these criteria over a grid of 4 as in formula

(3.8) or (3.9).

3.2.2.3.2 Cross-validation method

Before explaining the cross-validation, it is worthy to mention that the cross-
validation was used for two purposes. First, cross-validation is used to estimate the
minimum deviance of prediction in the LASSO family methods and for
finding/selecting the value of tuning parameter 1. Second, cross-validation is used
to test the validation of model performance, which will be discussed further in

section 3.5.1(Hastie et al., 2015).

Cross-validation is a technique that divides the studied dataset randomly into k-
fold/subsets of equal size. Then, I exclude only one subset randomly and calculate
tuning parameters and the mean square deviances of remaining subsets
individually. Further, I select the estimated value of a tuning parameter that
delivers the smallest deviance of prediction. Finally, I use the excluded subset to
test the model’s performance. In the penalised logistic regression, for example, the
cross-validation is used to find the appropriate penalisation value of parameter A
from the training k-1 folds and holds one-fold for testing the penalised likelihood
model. The number of subsamples (k) choice between (5) and (10) (James et al.,
2013). Typically, cross-validation can be classified into three types that rely on the

sample size, as follows:

If the sample size is large, we can use more than one-fold for testing of the models’
data prediction. In this case, the prediction performance would be evaluated at
each value of parameter A, and the model with the smallest prediction’s deviance

will be selected.
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When the sample size is medium, k-fold cross- validation will be a convenient
approach. Typically, to the K-fold is often be taken between three and ten.
With a small sample size k will be equal to the sample, the cross-validation is called

leave-one-out cross-validation (LOOCV).

Statistically, if I have u = (xi,yi) data-set, then the steps to perform a cross -
validation process to calculate the optimal value of tuning parameter can be

summarised as follow:

1. Splitup the given data set u = (xi, yi) randomly into k equally-sized (u;).

2. Take one subset out to test the model.

3. Find the estimated coefficient of model parameter (k) using LASSO family
method for each part on the remaining subsets u;, = (u;, Uy, ....., u;). I can

name ﬁA(k)(/lj) of the LASSO estimated coefficients that represent the fitted

function yAk(x, /11-) of a grid of J values of A; j = 1,2, ..., J

Calculate the estimation of the expected prediction error of each estimated model

on the folding test sample u; that is as follows:

k
k
Prediction error gy (A;) = ;Z(yi -y (x,4))? (3.10)
i=1

4. Recalculate both of step in (2) and (3) for all k-fold remaining,.

5. Calculate the estimated means square error of k-fold prediction using:

2

K
k—Ccv(y) = %z Prediction errory(4;) (3.11)
=

=1

However, when using the LOOCV technique to estimate the optimal value of the

penalty A, I can utilise one of the following criteria: either select the value A-min that
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delivers minimum mean error cross-validated predictors error or use the first A1se

value instead of Amin.

Based on the literature, I can conclude that the cross-validation method can reduce
the bias term of the regression sum of square due to splitting the data-set randomly
into two parts for training and testing. By contrast, the cross-validation gives a
significant and inaccurate result when the sample size is large with a big number of
predictors. To solve this problem, Tibshirani presented a new algorithm:

Generalized Cross-Validation (GCV) (Tibshirani, 1996).

3.2.2.3.3 General cross-validation (GCV)
General cross-validation is a modified version of cross-validation that is used to

estimate the tuning parameter of the LASSO family(Efron and Tibshirani, 1994).

This method does not need to iterate the refitting model to the different data
subsets. The formula of general cross-validation is the validation technique which
can resample data by changing the rules of training and testing the samples. It was
defined as follow:

Z?:l(yi - y_ii(l))z
w1~ Dy, (3.12)

GCV =

Where: df(A) is the estimated number of the selected predictor's variables in y*(A).

The best value of A can be found by minimizing the equation over a grid of A as:

Aoptimar = argmin GCV (4;) i=12,...,R (3.13)

3.2.2.4 Adaptive LASSO logistic regression

ALASSO is the new modified version of the LASSO. It was presented by (Zou, 2006)

to overcome the inconsistent issue of the LASSO. The LASSO asymptotic setup is
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somewhat biased, because it forces the coefficients to be equally penalized. To solve
this problem, the shrinkage coefficient penalty, which is adapted from the L1-norm
penalty, is replaced with a weighted L1-norm penalty. The weighted L1-norm
penalty can allow a relatively large amount of penalty for zero coefficients and a
small penalty for nonzero coefficients. This process could reduce the bias of the
estimated coefficients and improve the variable selection accuracy. ALASSO is an
effective process to handle some of the bias in LASSO which could be employed to
shrinkage of the estimated coefficients corresponding to essential predictors.

Additionally, the LASSO is much more insensitive to many noise covariates.

As previously mentioned, in this project I am focusing on some methods of Lasso
family logistic regression model. I assume y;€[0,1] is a vector of the binary
dependent/ outcome variable, x is a design matrix of p-predictors and f; is a vector

of regression’s coefficient parameters, then log-likelihood function is defined as:

£(8) = ) yilogp() +1 -y log(1 - p(x)) (3.14)

The ALASSO solution is obtained by minimizing the equation as followed:

n p
£(8) = ) yilogn() +1 - y;log(1 - p() +2 ) wilp| (3.15)
i=1 j=1
Where w; = (w1,w2, ....,wp)” is vector represent the adaptive weighted penalty

that is w; = (B,)”. Where f is an initial penalty that comes from solution of the
Ordinary Least Square (OLS) method, LASSO version method or Ridge Regression
method(Pan and Shang, 2017). However, using the estimated coefficient of LASSO
or Ridge regression, to drive the weighted penalty and applying ALASSO, needs two

stages of process:
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To find an estimated coefficient of regression using standard LASSO with L1-norm
penalty/ ridge regression for the data is calculated to represent as the initial

penalty, as follows:

wi=w=(8)" (3.16)

Secondly, I substitute the value of the initial penalty, the ALASSO solution is

transformed as in the equation bellow:

n p
B uasso = argmin= ) (iin(xf) + (L= y)n(L=xB) + 1) wilfsl 5179
i=1 =1

3.2.2.5 Group LASSO

As it was explained when discussing their properties, the LASSO and ALASSO of
logistic regression have the advantages of delivering simultaneous estimations of
model’s parameters and predictors selection. In some cases, the predictor's
variables have a natural group structure. Natural group structure means that the
variable has more than two categorical levels. For example, severity levels in
medical conditions can be divided into mild, moderate and severe, in which case
categorical levels of the variable must be converted into dummy variables. Thus,
the selection treats an individual variable, which has more than two levels, as a

group of variables rather than an individual variable (Yuan and Lin, 2006). From a

prediction perspective, one of the most popular tasks is to divide the predictor
variables into a different group based on the type of predictor variables. In order to
address this type of limitation a new procedure was developed which is called the
Group Lasso method for the linear regression model. This method of penalising

regression (Ming Yuan, 2006) also can handle the predictors when they are grouped
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in a linear regression model. The group structure of group lasso is completely
known in advance which is a very important property of group lasso compared with
another method. Then, in 2008, Meier et al developed the group lasso of logistic
regression to overcome the same problems by present a new efficient algorithm
that works on penalised regression directly. The group LASSO of logistic regression

is defined as:

Suppose that yi is dependent variable with a binary outcome (0,1) and X is a matrix
that contains p- dimensional and G predictors. Both types of continuous and
discrete (categorical) predictors are allowed. [ can code the categorical predictor to
be as a group that contains the number of levels of categorical variable mins one,
however, a cautious predictor variable contains the only one level. Then I can write

the conditional probability logistic regression pg(x;) = Pz(Y = 1]x;) by:

pp(x;) _
log <—1 — pﬁ(xi)> = B(x;) (3.18)
And
G
BGx) = B+ ) %71y By (3.19)
g=1

Where: g, is represented the intercept and pf, is the parameter vector
corresponding to the gth predictors variables. Estimated the vector of parameters is
needed. Using the minimizer of convex function to obtain the estimated coefficient
of parameters which is solution of group lasso logistic regression. The logistic group

Lasso is defined as:
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G
Bestimatea = _l(ﬁ) + AZ S(dfg)”ﬁguz (3.20)

g=1

Where: L(B) is the log-likelihood function, and A is the tuning parameter that

controls the number of shrinkages or regularisation.

3.3 Model validation

This section focuses on an essential stage after modelling that includes testing the
performance of the prediction model. The statistical tools used for testing
performance will be presented based on their aims that are classified into
generalisation performance, calibration and discrimination of the model. These
tools are used not only for testing model performance, but also to make the model’s
performance of classification simpler to interpret. The model’s validation is
achieved by testing and comparing the model’s performance among developing

models.

3.3.1 Model performance assessment

Based on the ARAT, functional recovery level is a discrete variable. However, in this
project the ARAT different levels transformed the recovery chance to either ‘will
probably recover’ or ‘will not recover’. Therefore, most of the statistical tests
introduced in this study are for binary outcomes. Almost all evaluations of
dichotomous outcome measures will fundamentally involve interpreting the
number of true positives, false positives, true negatives and false negatives

(Fawcett, 2006).

Table 3-1shows these measures.
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Table 3-1 Shows the general rules to assess the models’ performance with a binary outcome.

General Predicts patient’s Predicts Patients will not
Metric
Classification recovery recover
True Positive (TP)  Right prediction Yes Yes
False Positive (FP)  Wrong Yes No
True Negative (TN) prediction No No
False Negative Right prediction No Yes
(FN) Wrong
prediction

The models’ power of binary classifying data can be simply explained by

using two concepts: the calibrations and the discrimination of the model(Keidan et

al. 1994).

3.3.2 Calibrations

Calibrations refer to how close the predicted outcomes of the model are to the actual
outcomes, which means how close the prediction of model equivalent is to the true
positive patient’s probability of recovery across the range of recovery chances

between zero to one(Van Calster et al., 2015). Calibration delivers evidence about

the accuracy of the developed prediction model’s results when compared to actual

results, which only applies to the original datasets.

Calibration was utilised by plotting the graph between the original observations
and the estimated probabilities by the model. The model is well-fitting or calibrated

if the points distribution on the graph follows a 45 line (Steyerberg and Vergouwe,

2014).
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3.3.3 Receiver operator curve (ROC)

The ROC is a universal graphics tool that is used to display the two types of error of
all the possible cut-off points. The ROC curve is a plot of test sensitivity as the y-
coordinate versus x-coordinate which is represented by 1-specificity or false
positive rate, is an effective procedure for assessing the performance of the
predictive model. ROC is a conventional method that utilises the simple and easy
interpretable plot to assess the ‘ability’ of a model with binary outcomes(Steyerberg

et al, 2010a). The model’s ability refers to the model’s capacity to discriminate

between: (1) the patients who have a chance to recover the UL functioning and all
other patients, and (2) patients who are less likely to recover the functional UL
compared with all patients. This is achieved by counting the true positive rate, true
negatives rate, false positive and false negative rates for every possible point. Table
3-2 is essential to mention that recovery prediction is based on patients’ scores in

ARAT.
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Table 3-2 Contingency table to make decision of binary outcomes.

Test Results Recovery No recovery Total result s

patients patients
Recovery False Positive

True Positive (TP) (TP+FP)
Patients (FP)
No recovery False Negative True Negative

(FN+TN)

patents (FN) (TN)
Total results

***Sensitivity and Specificity are Defined as TP/(TP+FN) and TN/(FP+TN)
respectively. Positive predictive value and negative predictive value are defined as
TP/(TP+FP) and TN/(FN+TN) respectively.

From the contingency table, I would plot the points into XY-coordinates, which
enables us to calculate the sensitivity and specificity. Ideally, in prediction models,
when the area under the curve equals one, the ROC hugs the top left corner. This is
indicative that the model discriminates perfectly between patients who have a
chance to recover and patient that do not recover. Nevertheless, when the AUC of a
model equals 0.5, then the model performs no better than coincidental results.
Additionally, all models will include the point (0,0), which corresponds to
predicting a negative outcome for all patients, and the point (1,1), which
corresponds to predicting a positive outcome for all patients. When the models
improve the ROC, the curve will move away from the straight dashed line toward
the top left corner of the plot (which is equivalent to perfect discrimination). This
curve is useful for assessing the trade-off between sensitivity and specificity and

selecting an operating point for the model being evaluated.
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3.3.4 Areaunder the curve

As previously explained, the importance of both ROC and AUC are completely
dependent when testing a model’s discriminatory power. ROC curvature depends
on AUC score, and vice versa. [t is repetitive to discuss AUC after discussing its effect

on ROC curvature (more details in the previous section).

ROC Curve ROC Curve
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Figure 3-1 In the left plot shows the AUC of perfect model, in the right plot present AUC of deficient model.

3.3.5 Brier score

Brier Score (BS) is the accuracy measure that used to find how close the predicting
probabilities are to the actual outcomes using the quadratic score rule(Harrell Jr,
2015). This measure is similar to the coefficient of determination (R2) in linear

regression and has the following formula:

n
1
BS = EZ(Yi _p)? (3.21)
i=1

Where: Y, is the actual outcome and P represent the probabilities of each patient.

The range of score is between (0-1), a score of one means the model’s prediction
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results is inadequate or disagreeing while the score zero indicates that the
prediction is perfectly equal to the actual outcomes. However, the middle rate of BS
makes the interpretation very complicated to identify model performance that is
inaccurate or good. The BS is less complicated than other evaluation measure scores

such Nagelkerke’s R2.

3.3.6 Log-likelihood function

The log likelihood is a measure commonly used to evaluate the fit of the model. For
a binary outcome which has the binomial distribution, the log likelihood can be

evaluated as follows:

log(1(pi ) = ) (i1og(py) + (1 = ylog(1 —pp) (322)
i=1

Here it is essential to state that the likelihood improvement is an advance on the
log-likelihood function of the model when using a set of predictions, p, against a null
model which uses the mean of the outcome as the prediction for observation. The

likelihood improvement is calculated as:

log(l(outcome’s mean; y)) — log(L(p; ¥)) (3.23)
log(l(outcome's mean;y)) '

likelihood improvement =

Deviance

Deviance is used to evaluate the goodness of fit of a logistic regression model.
Deviance plays the same role of sum square error (SSE) in the linear regression

model (Harrell and Lee, 1984). It compares between observed values of the
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outcome (response variable) and predicted values comes from models. It was

derived based on the log-likelihood function as in the formula:

log(L(§)) = ) yilogp(x) + 1 - y;log(1 = p()) (324)

And then the comparison process of the likelihood is deduced by finding the
proportion between the likelihood of the fitted model over the likelihood of the

saturated model, as follows:

D=—1 { likelihood of the fitted model } 3.5
~ T "™ likelihood of the saturated model (3.25)
Using the equation (3.22) and (3.23) above becomes:
, o p(x) . 1—P@)]
Deviance = —ZZ im(—+ (1 — y)Iln(———= 3.26
[y (yl ( y>(1—p@f (3.26)

Where: p(xi) is the predicted values of the outcome. Saturated model refers to a

model that contains as many predictors’ parameters as there are data a point

3.3.7 Hosmer- Lemeshow test

The Hosmer-Lemeshow is a useful test of the predictive values/ probabilities of
binary outcome models by testing the model versus the assumption of correctly

calibrated (David W. Hosmer 2013). In this test, the predicted values of outcomes

are calculated based on the estimated parameters of the model for each observation

in the sample using the equation as follow:

_eM 3.27
p((r =10 =137 (3:27)

X is a matrix that represents the predictor's variables, [ is a vector representing the

estimated coefficients regression and y is a vector that represents the outcomes.
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The observation is then divided into ten groups (deciles) based on the predicted
probabilities. This mean, and each part’s predicted positive outcome proportion is
compared with the parts’ observed outcome proportion. The x2 test is used to check
the range of difference between the predicting outcome and the perfect fit by
approximating the sum of the range of deviations with a x2 distribution, the formula

for of 3.4.6 Hosmer- Lemeshow Test is as follows:

The test examines how well the percentage of patients who have recovered
functional upper limb matches the rate of predicted patient’s recovery rate deciles

of predicted rate.

3.4 External validation
External validation is a process to explore the substantial differences between the
characteristics of the two sources of dataset, for example, between the development

and validation datasets and to test how well the model performs (Collins et al.

2014). Because of the optimism problem (overfitting) of predictive models, this
leads to models having worse performance in new patients/subject than expected
from results based on the performance estimated from the development data-

set(Harrell et al., 1996; Kwah and Herbert, 2016). Therefore, a process of external

validation is considered an essential stage after developing a model to support the

general model’s applicability in clinical practice (Steyerberg, 2009).
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3.5 Evaluation of generalisation performance

There are several statistical methods for testing the generalisation performance of
any prediction model based on a new set of data from an underlying population. But
some of these techniques can check the model efficacy based on splitting and
resampling using the same data and delivers an optimistic estimate of model

performance (Efron and Tibshirani, 1994). These methods are suggested to

improve the model performance and to avoid the overfitting problem, especially in
complex models. The overfitting problem usually happens with complex models.
For example, the complex models can gain the ability to perform well based on the
training set and testing on a specific set. However, these models, which have a
perfect performance in developing based on a set of data, will have a low level of
performance and fail with a new data set (external dataset). This weakness is
caused by the inflation in the variance of the model performance with the new
dataset. At this part of this chapter, it will be mention on the splitting and

resampling methods.

3.5.1 Cross-validation

Cross-validation includes splitting the dataset under study randomly into a subset
of equal size, to assess the validity performance of model development. It works by
dividing the data set into k-fords, holding one out and developing a model for each
reaming part; this process is called a model training stage. The holding out is used
to testing the model performance. This is an advantage because more than 80% or
90% are used in this stage, however, in other method, for example half splitting that

used half of data for training and another half for testing(Trevor Hastie, 2015).
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For estimating the test error associated with of penalised methods, CV was used to
evaluate penalised methods performance or to select the appropriate value of
penalty. An advantage of these method is it is a simple process to estimate the mean

square errors.

3.5.2 Bootstrap method

The bootstrap method represents the technique of sampling that aims to find the
empirical distribution of the sample of the study. Bootstraps samples are drawn and
the model is tested by estimating the calibration and discrimination based on these

samples (Efron and Tibshirani, 1994). The coefficients of the model were used

without refitting the model, so it would not allow the coefficient change.
Statistically, each observation in the original sample has the same
chance/probability to select (pi= 1/n), n is the number of patients or rows in the
dataset. I then draw samples from the original sample, equal to sampling from the
original data with replacement. The model is developed on each bootstrap sample.
By contrast, an observation which is not selected in the bootstrap sample has a

probability e-1 that can be accounted as follows:

pr(not selected) = (1 — pi)™ (3.28)
A-p)r=(1-0)" (3:29)

n
- & L x et (3.30)

Predictions on this coincidentally held out set predictions have been observed to be
unbiased. The approximately equals sign is due to the possible non-uniqueness of
each observation, even though this is very unlikely when data has several multiple

continuous predictors(Breiman, 2001).

99



3.6 Decision curve analysis

The prediction models in this research aim to classify of expectations of patients’
recovery to recovery and no recovery, which could help to guide rehabilitation
programs of patients with upper limb impairments. Therefore, a cut-off point is
required to classify patients as either not likely to recover (no treatment) or likely
to recover (treatment is indicated). As mentioned in chapter two, the cut-off point
is a decision threshold based on the patient outcome, for example ARAT outcome.
At the threshold, the likelihood of improvement exactly balances the likelihood of
no recovery e.g. improves the clinical costs-effectiveness. In spite of the fact that
prediction model may achieve a good level of calibration and discrimination
(sensitivity, specificity and the area under the curve of ROC), these characteristics

do not enable the model to assess clinical usefulness (Steyerberg and Vergouwe,

2014; Zhang et al., 2018).

To overcome this weaknesses, Vickers and Elkin (2006) have proposed decision-

analytic measures to summarize the performance of the model in supporting
decision making. Additionally, they derived a new tool as a part of decision curve
analysis (DCA) based on subtracting the rate of all patients who are false positive
from the rate of true positive. Then, the subtraction result was weighted by using
the relation between the false-positive and false-negative results of a prediction
model. This tool is called a Net Benefit (NB) that refers to weight a relative between

the two false conditions have a formula as follows:

. TurePostiveCount FalsePositiveCount p;
Net Benefit = - (
n n 1—p;

) (331)

Where:
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e True- positive count and false- positive count represents the number of
patients with the true and false positive prediction models results.

e nisthe sample size (total number of patients).

e p,: is where the expected benefit of intervention is equal to the expected

benefit of avoiding intervention.

There are two important benefits behind using DCA. First, DCA can be used to
compare different types of models. For example, compare results from a predictive
model and results from the clinical decision. Secondly, it can be easy to quantify the
prediction models’ benefit in clinical practice in a simple way that does not require
information on the cost-effectiveness’ or how patients perceive their different

health states (Holmberg and Vickers, 2013; Van Calster et al., 2018).

3.7 Variance inflation factors (VIF)

Multicollinearity refers to the existence of correlation between the predictor’s
variable in the model which always causes the inflation of the variance of estimated
parameters in the multiple linear regression models. The VIF is a scale that used to

detect a multicollinearity level in the model(Steyerberg, 2009). To evaluate by

applying the formula as follow as,

VIF (3.32)

~1-R2(D)

Where:

R?(i) is the R? value that the result from the predicting xi on the other predictors in
the regression model. When VIF equals one this means that the correlation between

the predictor and the remaining predictor's variables equal zero. If VIF locates
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between four and less than ten, it means that there is a low level of multicollinearity,

while VIF exceeding ten is a sign of severe multicollinearity requiring correction.

3.8 C(luster analysis:

Due to the heterogeneity of stroke recovery outcome, some different approaches
might be better suited to overcome this issue. One of these approaches is cluster
analysis. Cluster analysis is a useful multivariate method that aims to classify a
sample of subjects (or objects) on the basis of a collection of measured variables into
a number of variety class such that similar cases are placed in the same group, that
is, homogenous, but are very dissimilar to objects in other clusters, that is,
heterogeneous (Aggarwal and Reddy, 2013). The two most widely employed

techniques for clustering are presenting, as follows:

3.8.1 Hierarchical clustering:

The technique of clustering depends on the idea that it finds a nested sequence of
clustering. Two different ways have been employed to achieve clustering, namely,
divisive (bottom-up) agglomerative or (top up) clustering. The divisive way includes
four steps which are: assign each point of data to single cluster, compute the
similarity between each of the clusters and then dividing the cluster to two least
similar clusters. Finally, repeat step two and three until there is no single cluster left.
While the agglomerative way is the opposite of the divisive way. Both ways utilise
the concept of dendrogram which is defined as the development of binary tree based

on data structures, see Figure 3-2

102



Hierarchical Clustering

Agglomerative | Divisive

Figure 3-2 Path of two algorithms of clustering (Divisive and Agglomerative)(Sayad, 2010-2019).

The hierarchical clustering requires accounting the proximity metric which
represents the distance between each cluster. Three methods have been used to
measure the proximity matrix which is a single linkage, complete linkage and
average linkage. Hierarchical clustering does not require the number of clustering

and is easy to implement (Clarke et al., 2009).

3.8.2 Non-hierarchical methods or partitioning method

Partitioning methods typically need the number of clusters and initial seeds (or
clusters) as an input to the methods. The clusters are then iteratively improved.
They try to determine all cluster optimally in one step. The K-means and K-median

are the most common partitional clustering.

3.8.2.1 K-means clustering:

K-mean method is the most widely employed partitional clustering (Tibshirani et
al, 2001). It requires the number of clusters (k) and the initial centres, one for each

cluster. It aims to minimise the square of the distance between each point within
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the cluster and the position ofy;. It aims to minimize the sum square error (SSR)

score for the given set of centroids(Aggarwal and Reddy, 2013).

K
sse(@) = > ) I mell’2 (3.33)

k=1 xi€Cy

Where x; represent the dataset and p,is the centroid of clusters ¢,.

3.8.2.2 K-medians clustering:

K-medians method aims to use the median of each cluster rather than mean of the
cluster. K-median clustering select K cluster centres by minimizing the sum of the
distance between each point and the closet cluster centre. The distance measure
used the L1 norm as opposed to the measure of the k-means and the absolute error
rather than a square error. K-median is more robust in handling outliers than k-

mans(Clarke et al., 2009). However, like all methods of centroid it works best if the

clusters are convex. The function of objective k-median is:

K
2
S = Z T (3.34)
k=1 xi€k
Where: x;; is the sample data and MED,,; is median of the data.

There are two factors affecting the performance of partitioning clustering

methods(Chen et al., 2002):

1. Selecting the initial centroid.
2. Estimating the number of clustering.
Several methods have been proposed to determine to each of these factors. I

describe the K-mean++ and Silhouette method as follows:
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3.8.2.3 K-means++:

K-means++ was identified by Arthur and Vassilvitskii (2007) that selecting the

centres c1 which is chosen uniformly at random from data set. After that, new

centres ci selected x € X with probability as follows:

(data)?

P Ser(datay? (5:55)

Finally, repeat these steps until it has been taken k centres altogether.

3.8.3 Silhouette method:

Silhouette has been used to assess clustering result by studying separation distances
among results. The measure is a range between [-1, 1]. One or closed on value
indicates thatiis well-matched to its own cluster, and poorly-matched to
neighbouring clusters. If most points have a high silhouette value, then the clustering
solution is appropriate. In contrast, if many points have a low or negative silhouette
value, then the clustering solution may have either too many or too few clusters. The
silhouette clustering evaluation criterion can be used with any distance metric(Chen

et al., 2002; Rousseeuw, 1987). Silhouette value for i the point, s;, is:

bi — ai
i—ai (3.36)

§§ = —————7x
' max(ai, bi)
Where: q; is the average distance from the ith point to the other points in the
same cluster as i, and b; is the minimum average distance from the ith point to points

in a differed cluster, minimized over clusters.
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3.9 Rsoftware packages

R software contains many packages that use variety forms of regression modelling.

One group of these packages is concerned with fits generalised regression, cluster

analysis and penalised logistic regression problem that imposing a constraint on

parameters, for estimating of the entire ridge, LASSO, adaptive LASSO and group of

LASSO. Additionally, several cross-validation routines allow optimisation of the

tuning parameters.

Here, I introduce brief information about the main R packages of penalised

methods, clustering analysis and model performance that have been used in this

research.
Package | Description Properties Tuning
Name parameters
glmnet It is an efficient process Ridge and LASSO model Lambda,
that used to fit the of linear, logistic, Alpha
penalised methods (LASSO | multinomial, Cox and
and ridge regression) of Poisson models. Cross-
logistic regression models | Validation with K fold to
(Friedman et al.). find the optimal tuning
parameter.
grplasso | Methods that used to fit the | Fitting of a group LASSO Lambda
penalisation with group of linear, logistic and
LASSO general linear Poisson methods
model based on the (Meier
etal., 2008)
parcor Includes Algorithms for Four penalised regression | -

accounting the partial
correlations matrix using
different types of
penalisation methods. It
delivers cross-validation
model selection for four
methods of LASSO family
as Well (Zou, 2006).

methods for the
estimation of partial
correlations: LASSO,
adaptive LASSO, ridge
regression, and Partial
Least Squares.
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penalised

An efficient technique for
fitting the LASSO or elastic-
net regularisation path for
some GLM (Goeman et al.
2012)

lambdal,
lambda?2

Elastic net methods paths
for linear, logistic, Poisson
and Cox models; k-fold
cross-validation for
optimal lambdal and

lambdaZ2; positivity
constraint on regression

coefficients
Packages | Description Propose
name
pROC Provides algorithm for accounting | To visualise and compare the

the receiver operating
characteristic (ROC), Area under
the curve (AUC) and the confidence
interval of AUC(Sun and Xu, 2014)

model performance.

ROCR Contains some flexible function for | ROC graph and creating cut-
plotting sensitivity/specificity off parameterised 2D
curves. In addition to, curves come | performance curves.
from cross-validation or
bootstrapping runs can be
averaged and standard deviation or
box-plot (Sing et al., 2004).

AUC Contains functions to account the To compute different types of
area under the curve of selection the area under the sensitivity
measure. curve, specificity curve, the

accuracy curve and the area
under the receiver operating
curve (AUROC)

rms Includes several functions that For the estimation, testing,

work with many types of
regression models, especially with
logistic regression models(Harrell

Ir. 2015).

prediction, and validation of
the regression models.

Packages name

Discerption

Propose

Cluster

Roussseeuw.

Methods of grouping data
that extended based on
the original form of Peter

Hierarchical clustering
and Partitioning
methods.
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Factoextra

Includes simple some
functions to extract and
present the output of
multivariate data analysis,
for example cluster
analysis(Kassambara
2017).

Simplifying a part of the
process of clustering
analysis and delivers
functions of plotting in
elegant data
visualisation.
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4 Modifying cut-off point

The aim from this chapter is to determine a cut-off point that used to dichotomised
Action Research Arm Test (ARAT) using cluster analysis method and bar-chart plot.
Additionally, to understand the trajectory/pattern of patient’s recovery over three
months.

4.1 Method of identifying ARAT cut-off point

Atfirst, | adopted data from a secondary anonymised dataset with 178 patients with

300 variables reported by Church et al. (2006). The dataset includes: 1) the Action

Research Arm Test (ARAT) outcomes to measure the upper limb function in three
different times (baseline: 0-1 weeks post-stroke, second: after 4- weeks intervention
and third: at three months post-stroke); and 2) other measures that are used to
assess the motor and function of upper limbs status of patients, too. These measures
are, for example, Frenchay Arm Test, Motricity Index, handedness, new neurological
impairment National Institutes of Health Stroke Scale.

Secondly, I extract a group of patients from the RCTs, more details in next section.
Then, [ aimed to identify, if possible, a new cut-off of Action Research Arm Test that
is clinically meaningful in practice. The cut-off refers to separating two differing
statuses, for example separating patients into two categories: recovered and not
recovered patients. This binary result (0,1) will enable us to utilise logistic
regression analysis. Logistic regression is influenced by the cut-off point that used
to classify the outcome of the ARAT score as zero or one. The zero represents a
patient that had no recovery of the upper limb, and one represents a patient who
recovered. In this project, I studied the patients who had ARAT scores of less than
ten for two reasons. First, the groups of patients who have ARAT scores of more than

ten have a big chance of recovery, but the patients having ARAT scores of less than
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ten do not have a clear upper limb recovery based on the ARAT score. The second
reason is to try to determine a better cut-off point than the cut-off point in literature
for categorising the ARAT scores as binary outcomes. The cut-off points based on

literature are one and ten (Kwakkel et al., 2003; Nijland et al., 2010c).

Hierarchical clustering was applied to statistically investigate the new cut-off point
value. Additionally, the hierarchy was deduced based on the ARAT subgroup at
baseline patients’ scores. This was performed to cluster patients to: 1) the patients
who performed only gross movements items, or 2) who performed any hand
function that is included as an item of the ARAT.

4.2 Identifying the cut-off point:

The ARAT scores of eighteen patients were included for determining a cut-off point.
All those patients have the total score of ARAT less than 10. Furthermore, the total
score of baselines NIHSS outcome and ARAT after three months of those patients are
included; see more detail in Table 4-1. The idea behind this table is to introduce
evidence that 55% of this group of patients have full functionality of the upper limb
recovered after three months based on the ARAT score. In spite of a group of patients
having the score of (ARAT<=9) and scores of severities (NIHSS >= 9), some patients

went on and recovered. This could support our aim to identify a new cut-off point of

ARAT score.
Table 4-1 Patients who have ARAT score less than ten at baseline and outcome of NIHSS.
NO. | Grasp | Grip | Pinch | Gross- Total of Total ARAT | NIHSS
movements ARAT (3 months)
1 0 0 0 3 3 57 2-8
2 0 0 0 3 3 57 >=9
3 0 0 0 3 3 57 >=9
4 0 0 0 3 3 26 >=9
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6 1 0 0 3 4 57 2-8
7 0 0 0 4 4 54 2-8
8 0 0 0 4 4 19 >=9
9 0 1 0 4 5 57 >9 |
10 0 0 0 5 5 57 2-8
11 2 0 0 4 6 57 59 |
12 0 0 0 6 6 57 5=9 |
13 1 0 0 5 6 45 >=9
14 0 0 0 6 6 57 2-8
15 3 0 0 3 6 43 2-8
16 3 2 0 3 8 36 >=9
17 0 0 0 9 9 39 >=9
18 4 0 1 4 9 57 5=9 |

The hierarchical clustering was used to group the 18 patients based on the sub-score

group of the ARAT as it is shown below in Figure 2-2.
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Number of clusters with the patients’ actual number

Figure 4-1 Hierarchical clustering result of ARAT scores less than 9; X- axis represents the cases is grouped.
For example, number 11 corresponding to patient 11 in the Table 4-1. The Y- axis represents the distance or
dissimilarity between clusters.
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Figure 4-2 The details of ARAT score for patients with a score less than ten. The total score of each
patient is plotted on the x-axis and the total score of ARAT is on the y-axis.

To validate the seven values as a cut-off, I took only patients who have ARAT score
of less than ten at baseline. The baseline score of ARAT includes the score of each
item in the test, the total of sub-group and the total of the ARAT scores. Then, bar-

chart plotted ARAT subgroup score (grasp, grip, pinch and gross movement) of
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patients who have the same total scores Figure 4-2. Eighteen patients were
classified to: four patients have total score three, Figure 4-3, four patients have

total score four, Figure 4-4, two patients have total scores five Figure 4-5, five

patients have scores six

Figure 4-6, one patient has the score eight Figure 4-7, and finally, two patients have

scored nine Figure 4-8.
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Figure 4-3 Patient with Action Research Arm Test (ARAT) of three. The score of each item based on sub-
group of ARAT is plotted on the x-axis and the total score of ARAT is on the y-axis.
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Figure 4-4 Patient with Action Research Arm Test (ARAT) of four. The score of each item based on sub-
group of ARAT is plotted on the x-axis and the total score of ARAT is on the y-axis.
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Figure 4-5 Patient with Action Research Arm Test of five. The score of each item based on sub-group of
ARAT is plotted on the x-axis and the total score of ARAT is on the y-axis.
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Figure 4-6 Patient with Action Research Arm Test (ARAT) of six. The score of each item based on sub-
group of ARAT is plotted on the x-axis and the total score of ARAT is on the y-axis.
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Figure 4-7 Patient with Action Research Arm Test (ARAT) of eight. The score of each item based on sub-
group of ARAT is plotted on the x-axis and the total score of ARAT is on the y-axis.
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Figure 4-8 Patient with Action Research Arm Test (ARAT) of nine. The score of each item based on sub-
group of ARAT is plotted on the x-axis and the total score of ARAT is on the y-axis.
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Figure 4-9 Showing individual scores for each task in the ARAT outcome measure. The score of each
patient in each sub-group of ARAT is plotted on the x-axis and the total score of ARAT is on the y-axis.

Within the subset, patients who scored between one and nine: Eight (44% with 95%
CI22% to 69%) were able to carry out simulated grasping tasks. Two (11% with 95%
CI 2% to36%) could carry out simulated grip tasks. One (1.5% with 95% CI 0.3% to

3%) patient achieved a score in the simulated pinch sub-category.

4.3 Clustering trajectory of ARAT scores:

This section explains the trajectory of the ARAT outcome over three months for the
recovery upper limbs. In this part, the K-means method was used to group the scores
of ARAT. This method, statistically, needs to determine the number of groups and
initial centres. For this reason, the Silhouette method was applied to identify the
number of clusters/groups of the ARAT scores. The idea behind using K-means is to
produce homogenous clusters/groups that contain similar subjects/ patients. This
could help to develop a more accurate prediction model to be used for each group

independently.
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Cluster analysis was deduced based on the steps as follows: firstly, I applied

Silhouette values evaluation method for determining the optimal number of
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Figure 4-10 Showing the curve elbow of Silhouette method.
clustering of the ARAT score(Chen et al., 2002; Rousseeuw, 1987). It appears from

the Figure 4-10 that the largest average of Silhouette is (0.8) which means that the
four clusters have the best number of clustering is four. Selecting four clusters is a
good number of clustering to give the accurate result of using partitioning clustering
methods. The finding is consistent with the findings of the earlier study by Stinear et
al. (2012) which has found the same optimal number of clustering baseline ARAT
score. Secondly, after the optimal number of clusters had been identified, K-means
was applied to cluster the differences in slops/ rates of change of the ARAT scores

respectively, as follows:

a. I found the differences between the baseline line measure of ARAT scores and the

four weeks measure, and the differences between four weeks and three months.
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Figure 4-11 Represents the result of K-Means clustering. The trajectory of each patients
overtime is plotted on the x-axis and the total score of ARAT is on the y-axis.

b. The next step I depended on the clustering results in step (b) to cluster the
three measures of ARAT scores by the same method (K-means), and the analysis of

the grouped results show the following:
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Figure 4-12 Shows the result of K-Means clustering methods on the ARAT outcomes. The
trajectory of each patient’s overtime is plotted on the x-axis and the total score of ARAT is on the

y-axis.
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4.4 Discussion

In this chapter, I have described how a cut-off point has been identified to be seven
for dichotomising the outcome of the Action Research Arm Test. Firstly, the score
seven was selected because some of the patients could partially perform some of the
easy tasks such as grasping and one or two tasks of gross movements like patient
P11, P15, P16 and P18, as a result in Table 4-1. Previous studies used cut-off point
(ARAT>=10) to dichotomize the outcome of ARAT as binary (0,1). One for those who
regained some hand and arm and zero for those who did not recover the hand and

arm function (Kwakkel et al., 2003; Nijland et al., 2010c). They used a score of 10 as

a cut-off point to find the probability of the recovering upper limb after 6 months in
people with a flaccid upper limb post-stroke. Additionally, they reported that lower
cut-off point of ARAT score might lead to false positives for the return of dexterous
precision gripping using the hand and fingers because a low cut-off score only

captured the presence of gross shoulder and elbow movements(Kwakkel et al.,

2003). Whereas, as results in figures (4-2, 4-3,4-4,4-5,4-6,4-7,4-8 and 4-9) the patient
of score nine or less on the ARAT can incompletely perform some of the easy tasks of
the grasping part. This reason is mainly reflected in the decision that the cut-off
points of the score seven might give a precise dichotomous classification of whether
the patients will recover and be independent in their life or not. Moreover, it might

help to balance the cost-effectiveness with interventions provided for patients.

The second part of this chapter explains how to show the trajectory of patients’ ARAT
outcomes from a measurement made three times. The clustering results show the
four subgroups of the ARAT. These scores were measured at three-time points over

a three-month period (baseline, four weeks and three months). When using K-Means
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clustering for analysis, patients’ scores in each subgroup demonstrated better

homogeneity compared with before clustering.

Our aim was to determine which predictor variables will be affected in each cluster
and to develop a prediction model of that cluster separately. Due to the limitations of
the reduced sample size it was not possible to develop a prediction model of each

cluster.

4.5 Conclusion

Patients with scores of less than five could only perform the easiest items within each
of ARAT’s subgroups other than the gross movements subgroup. For these patients,
I can perhaps classify them as having no useful arm function. Patients with a cut-off
score of nine can carry out simulated activities that reflect recovery of useful arm
function. If a cut-off of nine is used, then there is a risk that patients with recovery
potential are missed from receiving treatment. If the cut-off was reduced from nine
to seven, then the chances of inappropriately classifying a person as having no useful
arm function are reduced. [ would therefore conclude that the ARAT cut-off in acute

stroke patients should be seven and not nine.
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5 Predictors selection

5.1 Introduction

This chapter aims to illustrate the process undertaken to study predictors selection
method, using the traditional methods (Univariate variable selection, Stepwise
Regression) and penalised methods (LASSO, adaptive LASSO and group of LASSO).
However, there are several steps to be followed before discussing the possible
predictors selection methods. These steps aim to prepare the dataset before applying
methods, hence pre-processing. The pre-processing operations will produce
datasets, which requires us to descriptive analyse. The section of processed data will
describe and test for multicollinearity. This would be followed by producing a matrix
design of the processed datasets. Results of the different predictors selection
methods will be presented into the two main categories previously mentioned:
classical and penalised methods. Furthermore, I will evaluate the results of each
method and compare their performance to identify the best method to be used in this

study. Finally, I will discuss the findings of this chapter.

5.2 Pre-processing data

One of the essential aspects of building a model is data pre-processing, which has
two steps. The first step is to present one data-set of a retrospective study, with an
emphasis on its’ variables whether it was the dependent variable (outcome) or
independent variables (predictors). The second aim is to test for the level of
multicollinearity within the data-set. Pre-processing has several applications;

however, only the first, third and fifth applications were used in this study:

e toremove some unsuitable information
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e to handle the missing data

e torecode the categorical variable predictors using the dummy variable or
designs variables

e to extract some variables to represent the interaction among the

predictors

to test and handle multicollinearity among the predictors

Most prediction models used for prediction of recovery post-stroke are based on a
set of data that possibly has high levels of multicollinearity. Consequently,
multicollinearity will have a large negative impact on the performance of these
models. Based on the literature, a large proportion of clinical outcomes measure the
same ICF domains, namely Body structure and function, activity and participation.
This could be a contributing factor for multicollinearity between the predictors in
the data set. Additionally, the increase in the dataset’s dimensions corresponds to

the number of patients in the study sample.

5.2.1 Pre-processing of a retrospective data-set of an RCT

A secondary anonymised retrospective data-set was taken from a previous

randomised control trial (Church et al., 2006). The RCT’s inclusion criteria included

participants who had a sustained upper limb problem within the previous/last ten
days after acute stroke. Then, the RCT’s primary outcome measure, the ARAT, was
used on three occasions. In addition, ARAT was collected among other baseline

assessments, including other demographic information, hand dominance, the

severity of the stroke and stroke subtype (Church etal., 2006). The second and third
measures of ARAT were undertaken after 4-weeks and 12 weeks intervention

respectively. Additionally, a total of 178 patients and related 249 variable
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candidates (predictors) were present in the dataset. These 249 predictors
comprised of both categorical and continuous data. The RCT’s data-set had the issue

of missing data and low variability in some predictors.

To handle the predictors with low variability, I must check data on two levels: the
individual predictor or the values of a whole record (each patient). The first level
delivered information about each predictor in the data-set using some simple
statistical tools. For example, find the distribution table of each predictor for
checking the predictor's distribution. Then, the predictor was removed if it had less

than 90% variability, see Table 5-1.

Table 5-1 Variables removed for being less than 90% variability.

Predictors Name Labels Frequency Percent
Brainstem/cerebellar signs Yes Left 2 1.1
Yes Right 3 1.7
No 171 97.2
Total 176 100.0
Others deficit Yes Left 1 .6
No 175 99.4
Total 176 100.0
Pre-stroke pain in last month Yes 8 4.5
No 168 95.5
Total 176 100.0
Star cancellation test done Done Done 176
NIH Stroke Scale Pupillary response 0 175 99.4
1 1 6
Total 176 100.0
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5.2.2 Dealing with missing data

Dealing with missing data in most models is divided into case removal or imputation

of a numeric value for the missing value. Case removal is very wasteful of data as it

is very rare to find all the information that relates to a patient. This situation usually

happens when handling medical data, since it is either not necessary to collect or

not important to record a value. This might cause some values in data to be missed.

In addition, case removal could change the patient group who might be used for

model development and hence the model will be only applicable to the patients who

have complete information, see the example in Table 5-2. This means the model is

extremely impractical. Therefore, estimating of missing values could be necessary

prior to developing the prediction model.

Table 5-2 Predictors have more than 80% missing data.

Predictors Name Labels Frequency Percent

yes 13 7.4
No 19 10.8

Previous stroke same side affected
Total 32 18.2
Missing Data 144 81.8
Right 3 1.7
Left 2 1.1

Pre-stroke pain-Which arm

Both 3 1.7
Total 8 4.5
Missing System 168 95.5

There are two main statistical methods used to estimate the missing values. These

two methods are categorised relative to the value that would replace the missing

values. While handling data, if the same value were used to replace all missing data,
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arat1

then a single-imputation method was implemented. Single-imputation methods,
depending on the predictors’ data type, can be further divided into: 1) For
quantitative predictors, the univariate mean value of non-missing values would
replace all the missing values of that predictor; 2) For predictors with categorical
data, the univariate mode value of non-missing predictors to replace all the missing
values of that predictors. Despite the advantages of these processes (mean or mode
substitutions) which are simple to apply and quick, one obvious objection would be
deflation the variance (variability) that might be undesirable and the bias

incorporated into the model by this approach Sterne etal. (2009) .

To overcome this problem of deflation, scholars utilise another univariate
imputation method that includes an additional stage. A binary column is added with
each predictor containing missing values. The idea behind this is to assess the
impact that might occur because clinicians do not usually report the normal value,

the imputed values would be biased towards abnormal values. However,
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Figure 5-1 Result of imputation missing value using multi-imputation methods
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two limitations of this method are: it increases the dimensionality of data, and it

would duplicate the number of predictors.

The second category of statistical methods used to estimate the missing values is the
multi-imputation methods (MI). MI methods involve repeatedly imputing missing-

values and analysing each dataset after every single imputation (Steyerberg, 2009).

After each imputation, the average of the overall dataset is computed and used to
replace the next missing datum. This will be repeated until all missing data are
replaced. The advantage of MI methods over single-imputation methods is that they
allow for uncertainty on the missing values by generating numerous imputed
datasets and appropriately emerge results from each of them. In our research, the

predictive mean matching MI method was used to handle the missing issue (Harrell

[r, 2015).

5.2.3 Outcome’s cut-off point

As this pre-processing application has been already discussed in chapter two, this
section would contain only this study’s implementation of this application. In this
study, the outcome ARAT was adopted as response variable (dependent). Since the
total of ARAT scores ranged between zero and 57, it is required to transform these
scores to the binary values to be able to perform logistic regression models. The
dichotomisation was done as follows, a score of zero was given for those who had
ARAT scores of less than seven (ARAT <7), and a score of one for those who had
ARAT scores greater or equal to seven (ARAT=7). This means that seven is the cut-
off point because a score of < 6 points indicates that the patient can only partially

perform the easy task in each subgroup of hand or arm function. Finally, the dataset
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contains 176 rows (patient) and 76 columns (variables). The next section will

describe the produced datasets after pre-processing applications are completed.

5.3 Processed data

5.3.1 Description of processed datasets

The total of predictors includes: 12 demographic variables; nine predictors
measures of motor activity; three measures of participation and four predictors
representing pain measurements, see Table 5-3.The other group of predictors
includes: 25 predictors measures of motor impairments, five predictor measures of
cognitive impairments, three predictors measures of visual impairments, eight
predictors obtained from the resulted measures of sensory impairments and four

predictors measures of speech impairments, shown in Table 5-4.
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Table 5-4 Shows the Outcomes clinical measures of (Motors, Cognitive, Visual, Sensory and Speech) impairments.

Measures of Motor Impairments Measures of Cognitive Measures of visual Measures of Sensory Measures of Speech
Impairments Impairments Impairments Impairments

Total NIHSS 1.76+1.01 Sheffield-Receptive total

NIH Arm for affected side -Baseline 8(5.33%) NIHSS of consciousness Visuospatial deficit Upper limb Sensory- affected 9.83+2.45

NIH best motor leg-affected side-Baseline 19(12.7 %) 0.15+0.36 at Baseline side-Baseline Sheffield -Expressive total

NIH Limb ataxia-affected side- baseline 0.63+0.88 61(40.67%) 66(44%) 7.12+3.62

NIHSS Facial palsy 36(24%) NIHSS Neglect R NIHSS Best visual Sensory deficit affecting NIHSS Dysarthria

NIHSS Best Motor R-arm 46(30.67) 103(68.67%) 114(76%) arm/hand 63(42%)

NIHSS Best motor -L-arm 102(68%) NIHSS Neglect L NIHSS Best gaze 45(30%) NIHSS Best language

NIHSS Best motor -R-leg 57(38%) 127(84.67%) 143(95.33%) Sharp-dull discrimination 125(83.33%)

NIHSS Best motor -L-leg 61(40.67%) deficit

NIHSS Plantar reflex 61(40.67%) NIH Neglect- affected

NIHSS Limb Ataxia R 38(25.33%) side- Baseline 64(42.67%)

NIHSS Limb Ataxia L 143(95.3) 102(68%) Hot-cold discrimination deficit

NIHSS Limb Ataxia affected side 137(91.33) Abbreviated mental test score 54(36%)

NIHSS grouped 1.39+0.49 Total NIH Sensory- affected

NIHSS grouped 1.03+0.18 side-Baseline

NIHSS grouped 0.65+0.48 61+1.91 70(46.66%)

NIH Arm for affected side -Baseline 12(8%)

NIHSS Best Motor L leg 101(67.33%) Sensory symptoms

Left shoulder shrug 1.40+0.70 45(30%)

Right shoulder shrug 1.65+0.58 NIHSS Sensory R

Shoulder Shrug at Baseline 145(96.6%) 22(12%)

Passive range of pain-free movement 112(74.67) NIHSS Sensory L

The active range on pain-free movement 98(65.33) 48(32%)

Unilateral weakness affecting arm/hand 1.26+0.53

Shoulder shrug for affected side -Baseline 125(83.33%)
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5.3.2 Testing multicollinearity

The VIF was calculated to detect the multicollinearity level for assessing the ability
to use the traditional methods and LASSO (Dormann et al.,, 2013). To measure the
existence of the multicollinearity problem, the VIF was applied using randomly

selected linear combinations, which were among predictive variables within

themselves.

Table 5-5 Results of Variance Infraction Factors among the predictors.

PPredictors variable Variances Inflation
Factors
1 Days from stroke 1.615
2 Days from stroke to admission 1.582
3 |Leftor right handed 2.499
4 |Previous stroke 1.633
5 [Side affected by stroke 26.721*
6  Stroke Subtype TACS/PACS vs POCS/LACS 22.604*
7 |Stroke subtype 15.613*
8  |Abbreviated mental test score Total 4.041
9 Sheffield total 8.917
10 Motricity Total right arm 9.900
11 Total Motricity for affected side -Baseline 16.393*
12 Frenchay Arm test for affected side-Baseline 28.388*
13 Baseline Barthel (coded) 24.532*
14 Nottingham EADL Total 30.064*
15 PPre-Stroke Pain (10) for the affected side -Baseline 1.598
16 PPost-stroke Pain (5) for the affected side -Baseline 17.736*
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17 Post-stroke Pain (10) for the affected side -Baseline 17.798*
18 'Shoulder shrug for affected side -Baseline 23.140*
19 NIH Stroke Scale Best motor -R-arm 7.419
20 NIH Stroke Scale Best motor -L-leg 15.286*
21 |NIH Stroke Scale Plantar reflex 16.546*
22 NIH Stroke Scale Limb Ataxia R 3.587
23 NIH Stroke Scale Limb Ataxia L 2.130
24 Total NIH Stroke score 41.532*
25 NIH Arm for affected side -Baseline 8.290
26 NIH Best motor leg-affected side -Baseline 18.668*
27 passive range of pain-free movement 5.232
28 |Active range of pain-free movement 4.889
29 Left shoulder shrug 1.800
30  Unilateral weakness affecting arm/hand 3.869
31  NIH Best motor leg-affected side -Baseline 25.819*
32 INIH Arm for affected side -Baseline 11.969*
33 Right shoulder shrug 16.502*
34 NIH Stroke Scale Neglect R 6.490
35 |NIH Stroke Scale Neglect L 2.801
36 NIH Stroke Scale Level of consciousness 58.775*
37 |NIH Stroke Scale Best gaze 2.210
38  NIH Stroke Scale Best visual 4.285
39 NIH Stroke Scale Sensory L 20.697*
40 Visuospatial deficit at Baseline 8.129
41 Sensory deficit affecting arm/hand 254.278*
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42 Upper limb Sensory deficit at Baseline 4.573
43 |Hot-cold discrimination deficit 3.536
44 Sharp-dull discrimination deficit 19.409*
45 NIH Sensory-affected side -Baseline 190.769*
46 Sensory symptoms 75.868
47  Sheffield -Receptive total 5.482

* high level of Multicollinearity.

The results of the VIF test show that there was evidence that the data set had a high
level of multicollinearity. The decision was made based on the rule of VIF >10 that

means a high level of multicollinearity existing among predictors.

5.3.3 Matrix design

This section describes the method used to build two design matrices used for model
training and model testing. Both design matrices will have the same columns
(predictors), but the number of rows (patient observations) in each matrix is not
necessarily equal in both matrices. Data was split randomly into 70% and 30% for
the training and testing phases, respectively. Training phase results will represent
the selection predictors process; whereas, testing phase results will represent

evaluation of the performance of the models’ selections.

5.4 Process of Predictors Selection and Methods

In this section, the results of selection predictors process are presented based on the
method used to select them: stepwise logistic regression method, and penalised
methods. Before applying the stepwise logistic regression method, two steps were
performed: univariate and multivariate logistic regression methods. Univariate

logistic regression method was used for determining the relationship between each
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predictor at a baseline level and outcomes variable after three months. For
categorical predictors, the contingency table test of ARAT outcomes (0,1) versus the
(k) levels were used to find the likelihood ration Chi-square test with (k-1) degree
of freedom. In the case of continuous predictors, the univariate logistic regression
analysis was applied to fit the model and calculate the likelihood ratio test and the
Wald test. The predictor was eliminated where it had a non-significant association
at level (a=0.05). After all predictor candidates were identified for the inclusion of
univariate of logistic regression, multivariate logistic regression was fitted. Finally,
the stepwise logistic regression method was used to eliminate all predictors
variables of the model that have not had any contribution to explain the effect of the

outcome. All the previously mentioned steps represent the models’ training set.

The penalised methods of predictor selection include three methods: adaptive
LASSO, Group LASSO and LASSO. During applying penalised methods, the tuning
parameter need to be estimated. The cross-validation approach was used to account
for the tuning parameters of the penalty value in ALASSO, GLASSO and LASSO. A
Tuning parameter acts as a regulator between amplitudes of bias versus prediction
error (or variance) in the model. Cross-Validation was applied by dividing training
data into equal k-folds, which are randomly-selected sub-samples. k-1 folds of these
were allocated to the model’s training phases, and the remaining fold was used in
the model’s testing phase. ALSSO, GLASSO and LASSO were then applied to the
training data for a range of different values of estimated tuning parameter. Each
fitted model was then used to predict the outcome of the ARAT in the test fold,
recording the prediction’s deviance (mean square error) for each value of the tuning
parameter. This process is repeated iteratively, resulting in all ten parts of the data

being used for estimating the penalty value, which is used to shrink the candidate
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predictors’ variables and choose the essential subset of predictors. In order to
estimate the confidence intervals for the coefficients obtained from the modelling
process, Bootstrapping was used. In brief, the confidence intervals for each variable
were estimated from resampling the data to produce 500 data sets each comprising
of 176 patients (reflecting the size of the original sample size) using an empirical
distribution function. Penalised methods were then applied to these 500 data sets
and from this the 95% confidence intervals were estimated. The confidence
intervals of the estimated coefficient calculated using the exponential values of 2.5th
percentile, mean values and 97.5th percentile for each coefficient estimated using

penalised methods(Efron and Tibshirani, 1994).

Finally, testing phase aimed to compare the performance of four models of data set.
The calibration was performed by plotting the calibration curve of four of the
developed models. The discrimination was assessed by using the C statistic. The
confusion matrix was used to evaluate the fit of the four models to see what rate of
true positives is classified as being positive (the sensitivity) and what rate of true
negatives is classified as being negative (the specificity). The discriminative ability
of the four models for the upper limb recovery was calculated by measuring the area

under the ROC curve and plotted.

5.4.1 Classical methods

The classical methods’ results, which were introduced in section 3.2, presented in

this section are: Univariate and stepwise logistic regression selection methods.
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5.4.1.1 Univariate logistic regression selection results

All baseline predictors were assessed in a univariate analysis. Based on the
univariate analysis in Table 5-6 , 51 predictors at baseline were associated
significantly with Action Research Arm Test that measure after three months (all
P<0.05), for example, the older patients had a lower chance of upper limb recovery

than the younger (p< 0.05).

Table 5-6 Results of the univariate logistic regression models.

; Estimated 3 P-Value< | Null Residual
No. | Predictors coefficients Variance 0.0001 deviance | deviance Alc
Lo | Age -0.068 0.020 0.00005 | 197.94 | 19574 | 199.74
2. | Unilateral weakness 1.6094 0.5560 0.0001 | 197.94 |17582 |179.82
affecting arm/hand
3. | Sheffield total score 0.12234 0.03862 | 0.001 197.94 | 19278 | 196.78
% | Motricity Total leftleg | 0.07711 0.006438 | 0.0005 |197.94 |187.67 |191.6
5 | Motricity Total leftarm | 0.038177 | 0.005788 | 0.0005 | 197.94 |196.74 |200.7
6 | Motricity Total left side | 0.045149 | 0.007007 | 0.0001 | 197.94 |196.73 |200.7
7| Left shoulder shrug 1.6614 0.2971 00001 |197.94 |19733 | 201
8. | Activerangeonpain- | 12240 | 0008865 | 00001 |197.94 | 19746 | 201.46
free movement
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. Estimated . P-Value< | Null Residual
No. | Predictors coefficients Variance 0.0001 deviance | deviance Alc
9, Hot-cold discrimination
¢ -1.1299 03591 0.0001 | 197.94 | 14524 | 1492

deficit

10. | Sharp-dull » -0.9904 0.3605 0.006 197.94 | 18779 | 191.79
discrimination deficit

11| Total Barthel score 0.38986 0.06359 | 0.000 197.94 | 19794 |201.94
NIH Stroke Scale Level

12. of consciousness - -0.9129 0.3379 0.007 197.94 120.81 124.81
questions

13. | NIHStrokeScale Best | goq 0.2004 0.000 | 197.94 |19515 |199.15
visual

14. | NIH Stroke Scale Facial | /g7 0.1743 0.000 19794 | 17741 | 18141
palsy

15 | NIH Stroke Scale Best | | jo00 0.1937 0.00005 | 197.94 | 19643 | 200.43
motor -R-leg

16. | NIH Stroke Scale Best |, /0, 0.3309 0.001 19794 |159.10 | 163.1
motor -L-leg

17. | NIH Stroke Scale -1.0928 0.2782 0.0001 | 197.94 |193.93 | 197.93
Sensory R

18. | NIH Stroke Scale -1.0805 0.2990 0.0001 | 197.94 |167.44 | 171.44
Neglect L

19| Total NIH Stroke score | 1.6392 0.7561 0.03 197.94 | 12731 | 13131
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. Estimated . P-Value< | Null Residual
No. | Predictors coefficients Variance 0.0001 deviance | deviance Alc
20. Baseline Barthel
0.050395 0.007764 0.00005 197.94 193.82 197.82
(coded)
21. Arm Motr-ICIty for . 0.057417 0.008963 0.0000 197.94 133.08 137.08
affected side at Baseline
22. | Total Motricity for 0.8360 0.1945 0.0000 | 197.94 |13514 |139.14
affected side -Baseline
23. Sensory symptoms -1.1481 0.2226 0.0000 197.94 190.16 194.16
24. | NIH Limb ataxia- -0.6971 0.2616 0.007 |197.94 |19457 |19857
affected side -Baseline
25. | NIH Sensory-affected |, o) o) 0.2051 0.000 19794 | 19076 |194.76
side -Baseline
26. NIH Score grouped 2.3286 0.5065 0.000 197.94 196.78 200.78
27. NIH Score grouped -2.3906 0.5068 0.000 197.94 167.10 171.1
28. NIH Score grouped 2.26383 0.420 0.000 197.94 165.24 169.24
29. NIH Score grouped -2.2638 0.4203 0.000 197.94 162.14 166.14
30. NIH Score grouped -2.0794 0.3992 0.000 197.94 162.14 166.14
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. Estimated . P-Value< | Null Residual
No. | Predictors coefficients Variance 0.0001 deviance | deviance Alc
31. | Shoulder Shrug at
‘ -1.8412 0.5062 0.0003 | 197.94 |17542 | 179.42

Baseline

32. | Upper limb Sensory -1.8606 0.3951 0.000 19794 |19391 |197.91
deficit at Baseline

33. | Visuospatial deficitat | | o, 0.3997 0.0017 | 197.94 | 17242 | 17642
Baseline

34. | NIH Neglect-affected 1029.121
, , 14.4827 0.989 19794 | 17078 | 174.78
side -Baseline 5

35. | NIH Best motor leg- 1.5060 1.0338 0.145 19794 | 16592 | 169.92
affected side -Baseline
Pre -Stroke Pain (10)

36. | for affected side - 13.4751 882.7434 | 0.988 197.94 | 19752 | 20152
Baseline

37. | NIHArmforaffected | /01 011652 | 0.502 197.94 | 13890 | 1429
side -Baseline

38. | Baseline Barthel -0.1118 0.3839 0.771 19794 | 14376 |147.76
(coded)

39. | Baseline Barthel 17.7964 1072.315 1 987 19794 | 19786 |201.86
(coded) 2

40. | Baseline Barthel 155219 906.9427 | 0.986 19794 | 17354 | 177.54
(coded)

41. | NIH Stroke Scale -0.1601 02761 0.562 197.94 |183.48 | 187.48

Dysarthria
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; Estimated 3 P-Value< | Null Residual
No. | Predictors coefficients Variance 0.0001 deviance | deviance Alc
42. NIH Stroke Scale Best
0.2468 0.1967 0.21 19794 | 17296 | 17696
motor -R-arm
43| NIH Stroke Scale Best | -, 0.2311 0.237 197.94 | 14869 | 152.69
motor -L-arm
44. Isvi[g;”aty Total right -0.008856 | 0.007905 | 0.262 197.94 |139.04 | 143.04
S deficit affecti
45. | oensory delicitatlecting | ) 1.075 0343 19794 | 18147 | 18547
arm/hand
#6. | Side affected by stroke | -0.09531 0.61170 | 0.876 197.94 | 17245 | 17645
47. | Post-strokepain-10- | nog, ) 0.60027 | 0.883 19794 | 19350 | 1975
point scale
46. E‘;mlty Total right -0.007246 | 0.006845 | 0.289 197.94 | 13928 | 14328
#9. | Motricity Total rightleg | -0.008805 | 0.008379 | 0.293 197.94 | 154.65 | 158.65
50. Passive range of pain-
-0.004650 | 0.006894 | 0.500 197.94 | 16238 | 16638
free movement
51. | NIH Stroke Scale 1.0257 0.5972 0.08 19794 | 18173 | 185.73

Plantar reflex
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5.4.1.2 Stepwise regression method result

Once the predictors from the univariate logistic regression model was extracted,
stepwise of multivariate logistic regression was deduced. The stepwise selection
method identified 16 significant predictors at (p-value= 0.05), including the results

of selection and fitting as follow:

Table 5-7 Presents the results of the stepwise logistic regression selection predictors based on the AIC.

No. | Name of predictors Coefficient Error of Wald’s | p-value
estimated estimated Test

1 Age -0.36 0.13 -2.3 0.02*

2 Total of Sheffield -1.59 0.88 -1.92 0.55
Expressive

3 Total of Sheffield score 0.64 0.33 1.93 0.05
test

4 Motricity Total left arm 0.12 0.086 1.424 0.15

5 Right shoulder shrug 9.75 4.62 2.109 0.03*

6 NIH Stroke Scale Level of 10.301 4.78 2.153 0.03*
consciousness

7 NIHSS Facial palsy 4.23 1.846 2.293 0.02*

8 NIHSS of best motor- left 2.38 1.459 1.633 0.10
Arm

9 NIHSS of best motor- 8.36 .338 2.505 0.01*
right leg

10 | NIHSS sensory right 9.19 .8558 2.386 0.01*

11 | NIHSS neglected -16.27 6.928 -2.352 0.01*

12 | Total of NIHSS score -5.49 2.168 -2.536 0.011*

13 | Baseline Barthel 1.74 1.888 -0.923 0.35

14 | Arm Motricity of affected -0.083 0.0718 -1.161 0.24
side at baseline time

15 | NIHSS neglect of affected 20.93 8.588 2.438 0.0148
side at baseline *

16 | NIHSS score grouped -9.68 4.184 -2.314 0.02 *

144



The table above shows the results of predictors selection using the stepwise
selection of logistic regression.

5.4.2 Penalised selection results

In this section, estimating the value of tuning (penalty) parameter process and the
results of penalised methods selection will be presented individually according to

the method used:

5.4.2.1 Estimating tuning parameter

The estimated tuning parameters are eight folds cross-validation, which was applied
to estimate the optimal value of penalty (A) on the training data set. This process
aims to obtain held-out performance estimates for the model across a set of possible
tuning parameters. The best-achieved value is then selected as the optimal value of
the estimated tuning parameters set. This best-identified value will be utilized in the
final model that corresponds to the minimum value of deviance (mean square

errors).

The flowchart shows the cross-validation approach used to determine the
performance of a single value of the set. This process is repeated for all rows of the

vector A, i.e. all possible values of the vector in the grid search.
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Figure 5-2 Flowchart of estimating process penalty and developing for penalisation methods.

The idea behind the flowchart is to acquire the generalisation performance of all
possible model combinations which are: 1) data split to training and testing sets,
and 2) training set divided into eight parts/folds cross-validation for model
development. This procedure produces 16 values achieving estimates for two values
of penalty. These performances are averaged to obtain the overall performance for
the optimal estimation value, and the value with the minimum deviance (mean

square error) is used for the final predictor’s selection and model development.

Data for prediction recovery model were extracted based on the clustering k-means
of three times measurement of Action Research Arm Test results. This resulted in a
group of 114 patients that included the patients with moderate to severe

dysfunction of the upper limb. 70% of the data was taken as a training set to build
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the model. 30% of the data was used for achieving of the final model. Data were pre-
processed as described in the section (5.2) resulting in a design matrix X for training
and testing. Three of final models were built to select predictors and prediction

based on the RCT data.

5.4.2.2 Adaptive LASSO selection results

The predictors selection process of Adaptive LASSO contains two steps. The first
step is to estimate the weight of adaption using the ridge regression method. Then,
the value of tuning parameter was estimated based on ridge regression method. The
estimated value corresponds to the minimum value of binomial deviance and then
the final selection of predictors. The optimal selection is located between the first

and the second dash line as in

Figure 5-3 that is corresponding to the minimum value of deviance(Hastie et al.

2015). The optimal selection shrinks unrelated predictors from (74) to 8 predictors

by estimating optimal value of tuning parameters ( A =-1.2) of adaptive LASSO. The

dotted line on the left side corresponds to Amin. The second line is A1se.

74 72 73 68 B5 48 28 10 6

Binomial Ceviance
4

T T T T T
-10 -8 -6 -4 -2

log{Lambda)
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Figure 5-3 Plot of the deviance cross-validation as a function of the penalty parameter A to determine
the.

The results of selection of the adaptive LASSO method include six of related
predictors from 74 predictors in the matrix design. The estimated regression
coefficients and the confidence intervals of those related predictors are presented

in Table 5-8.

Table 5-8 Presents the important predictors selected using the adaptive LASSO variable selection model
and the corresponding estimation of regression coefficients; the odd ratio of intercept was 3.58.

No. Name of predictors 0dd ratio of Coefficient
estimated and (estimated 95%
Cls)
1 Motricity Total left the leg 0.0025 (0.0 to 0.005)
2 Motricity Total left the arm 0.0043 (0.0 to 0.005)
3 Total of NIHSS score -0.56 (-0.105 to 0.00)
4 Baseline Barthel 0.64 (0.00 to 0.749)
5 Arm Motricity of the affected side | 0.001 (0.00, 0.001)
at baseline time
6 Total Motricity for affected side- | 0.53 (0.0, 2.54)
Baseline

5.4.2.3 Group LASSO selection results

In the beginning, the optimal value of the tuning parameter was estimated (A=-2.8)
using the 10-fold cross-validation method. This method determines the optimal
solution for the number of groups that shrink unrelated groups of predictors from
(63) to 8 predictors/groups. The value is located at the dashed line as shown in
Figure 5-4. The results selection of the group LASSO method obtained corresponds
to the optimal estimated value of the penalty, with the selection method being eight

predictors as they are included in Table 5-9.
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Figure 5-4 Plot of the deviance cross-validation as function of the penalty parameter A to determine
the estimated optimal value of tuning parameters estimated of Group LASSO. The dotted line on the
left side corresponds to Amin.

Table 5-9 Shows the significant predictors selected using the Group Lasso variable selection model and
the corresponding estimation of regression coefficients.

No. Name of predictors Coefficient estimated
1 Age -0.03 (-0.22,0.0)
2 Motricity total left arm 0.0148 (0.0075,0.016)
3 Active range of pain-free movement 0.004 (0.00,0.013)
4 Total of Barthel Index 0.15 (0.0,0.12) *
5 NIHSS of the level of consciousness -0.526 (-0.003,0.00) *
6 NIHSS of neglected left -0.019(-0.0014,0.00) *
7 Total of NIHSS score -0.041 (-0.0012,0.00) *
8 Total Motricity for affected side- Baseline 0.0003 (0.0011 to 0.011) *
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5.4.2.4 LASSO selection results

In this method, the tuning parameter was estimated to determine the optimal value
of the penalty that achieves the best selection of predictors; which reflects the

lowest attitude of deviance.

M 52 31 46 3931 26 24 W ¥ 3 1

Binomial Deviance
3
|

log{Lambda)

Figure 5-5 Plot of the deviance cross-validation as a function of the penalty parameter A to
determine the estimated optimal value of tuning parameters estimated of LASSO. The dotted line
on the left side corresponds to Amin. The second line is A1se

The optimal tuning parameter A = 0.0017, corresponding to the minimal deviance of

0.2301, was chosen Figure 5-5. Eight significant variables were estimated from the
(74) coefficient paths for the fitted LASSO model based on the optimal ( 1 ). These are

listed in Table 5-10.
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Table 5-10 Shows the important predictors selected using the Lasso variable selection model and the
corresponding estimation of regression coefficients.

No. Name of predictors Coefficient estimated
1 Age -0.024 (-0.57,0.004)
2 Days from stroke to admission 0.021 (0.0, 1.52)

3 Previous stroke 0.244 (0.00, 2.5)

4 Active range of pain-free 0.007(-1.055,0.0) *
movement

5 Total of Barthel Index 0.58 (0.0,0.25) *

6 NIHSS of the level of -0.06 (-0.31,0.0)
consciousness

7 Barthel Index of (0-4) -0.345 (0.00,0.001) *

8 Total of NIHSS score -0.048 (-0.31,0.0)

5.5 Evaluation of predictors selection methods

Several numbers of performance measures exist for predicting models. I used

measures that are the most common in medical studies of prediction in a medical

journal(Steyerberg and Vergouwe, 2014). These measures include the C statistic

(The area under the curve of ROC) for discrimination and Brier Score, Hosmer

Lemeshow and good-of-fit test for calibration. The results of discrimination and

calibration of four models of selection are the next two subsections:
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5.5.1 ROC and area under the ROC:

A ROC curve was plotted to determine the discriminatory power of the four models
of selection to differentiate between recovered and not recovered, Figure 5-6. As
mentioned previously in section 3.3.3, a value of 0.5 means that the model is useless
for discrimination (equivalent to tossing a coin) and values near one means that

higher probabilities will be assigned to cases with the outcome of interest compared

to cases without the outcome.
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Figure 5-6 Receiver operating characteristic (ROC) curves for the predicted probabilities recovery of the
upper limb using four methods (stepwise, adaptive LASSO, group LASSO and LASSO).
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The value of the area under the ROC represents the ability of the model to
discriminate between those patients who experience a higher probability of upper
limb recovery based on the ARAT and those who do not experience the recovery. The
area under the ROC was calculated to assess the discrimination for each model of the
selection. This was deduced using the pROC and AUC packages in the software R

(Kundu et al., 2011; Robin et al., 2011).

Table 5-11 Area under the ROC of four internal validation of model selection.

Methods Stepwise model | Adaptive LASSO mo( Group LASSO
LASSO
Area under the ROC 0.74 0.88 0.86 0.80

The area under the ROC curve for a predicting model is typically between 0.6 and

0.85 (Royston etal., 2009). As I can see, the adaptive LASSO has a higher value of the

area under the curve (0.88) than the other methods selected as seen in Table 5-11.
This indicates that the ALASSO produces results with good balance between the true
positive rate (patient has a probability to recover function of upper limb and, patients
who have a chance to recover the function of the upper limb after three months),and
the false positive rate (patient, in reality, who has not had a chance to recover but the
model identified him/her as the opposite). Furthermore, and since the area under
the ROC of GLASSO is (0.86), this means that the GLASSO method can discriminate

patients better than the LASSO and stepwise logistic regression.

Additionally, the prediction models with fewer predictors that were identified by the
methods of adaptive and group LASSO had the minimum average of prediction errors

and the maximal areas under the curve of ROC. This demonstrates that these two
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methods out-performed the other methods with respect to the identification of the

most informative factors.

5.5.2 Calibration

Assessing calibration of four prediction of development models was deduced using
two methods; Hosmer Lemeshow test and calibration plot. The Hosmer Lemeshow
test was used to investigate how well the predicted probabilities agree with the
observed probabilities (calibration). In this test, the way of assessing the fit of a
logistic regression model is to compare the expected and observed numbers of
positives for different subgroups of the data. This test should not be statistically
significant, a p-value is greater than 0.05 showing that the model fits the data. Table

5-12 presents the results of four models.

Table 5-12 Results of Hosmer-Lemeshow test of four methods selections.

Methods Hosmer- Lemeshow test P-value
Stepwise 3.77 0.8
Adaptive LASSO 5.31 0.72
GLASSO 8.718 0.367
LASSO 10.43 0.21

If the result of Hosmer Lemeshow test is non-significant, this means the observed
and expected numbers are sufficiently close, then I can assume that [ have an

adequate model (Steyerberg et al., 2010b). Calibration curves were plotted for each

method of selection (Stepwise, adaptive LASSO, GLASSO and LASSO; see Figure 5-7).

These curves are performed to plot and show the predicted proportion versus the
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actual proportion of recovery of function of upper limb of stroke patients based on
the ARAT score. If the model was ideally calibrated at each patient, the predicted
(dash line) and observed (bold line) values would sit perfectly on each other. In the
case of each model for predicting recovery, the predicted and observed lines are not
perfectly matched although they are close, especially for ALASSO method. Therefore,
there is no reason to doubt that the internal validity of the ALASSO is better than the

internal validity of GLASSO, LASSO and Stepwise.
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Figure 5-7 Calibration of the predicted probabilities recovery of the upper limb using four methods
(stepwise, adaptive Lasso, group Lasso and Lasso).

5.6 Comparison of performance of predictors selection methods
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The comparison study presents the comparison of the methods’ performance to
select relative predictors for developing the model (Table 5-13). Sensitivity and
specificity analysis were reported. Sensitivity is the proportion of the true positive
outcomes (for example, truly recovered subjects) that are predicted to be positive.
Specificity is the proportion of the true negative outcomes (for example, truly not
recovered subjects) that are predicted to be negative. A higher sensitivity level
indicates better performance of identification of informative predictors from a pool

of selected variables.

Table 5-13 Predictive performance of predictors identified by the four methods of selection to
distinguish patients which have a chance to recover of upper limb function virus which is not based on
the action research arm test after three months.

Penalised methods Lasso ALASSO GLASSO Stepwise Regression
Sensitivity 1.00 0.91 0.92 0.74
Specificity 0.67 0.86 0.78 0.56
Accuracy 0.86 0.89 0.86 0.60

P-Value 0.006 0.00002 0.0054 0.001
(0.664, (0.817, (0.64,0.
95% Cl (0.1-1.12)
0.97) 0.9273) 97)

5.7 Discussion

In this chapter predictors selection are applied to RCTs dataset, to build a predictive
model and identify the predictors that have an important effect on explaining
recovery in the post-stroke upper limb function based on ARAT. Four methods of
predictors selection models are investigated when building a model involving
stepwise logistic regression and three of penalised methods (LASSO, GLASSO and

ALASSO). The best performing selection models, in term of general performance and
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calibration and the discrimination, was found when the predictors were carried out
using the cross-validation and bootstraps methods, choosing the final model by
maximising the accuracy of classification. The performance of the models selected
compares favourably with the predictive models of post-stroke recovery of upper

limb function reported in recent literature.

Theoretical studies and simulations reported that the traditional method of sub-set

selection performs poorly whether in the multivariate or multivariable regression

model, particularly when (Dormann et al., 2013; Guo etal., 2015; Kwah and

Herbert, 2016; Zhang et al., 2015; Zhang et al., 2010):

Most predicting variables have good explanatory power for the outcome of
interest

e Interpretation is complex

e Multicollinearity is present

e The number of predictors is large

The results of this study are supported by this position; thus, traditional methods
are not accurate enough methods for predictors selection. In contrast, the penalised

methods of selection are reported to have superior performance (Hastie etal., 2015).

There are three key findings:

(1) ALASSO method has a better performance when dealing with selecting
predictors of upper limbs functional recovery in stroke patients presenting with

upper limb motor impairment.

(2) This method has impressive achievement in selection predictors that are

clinically relevant to the function of upper limbs’ recovery. Selection predictors
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based on this method identified predictors which are clinically relevant (NIHSS,
Motricity Index, and Barthel Index), which are, according to previous literature, a

very good clinical predictor(Coupar et al., 2012; Kwakkel et al., 2003). In addition,

NIHSS was found to have broad predictive utility of mortality, disability and

independence of ADL. Furthermore, it has been routinely used in acute stroke units.

(3) ALASSO method selected a group by reducing the candidates set of predictors to
the suitable subset of the model for predicting the recovery of function of upper limb
after 12 weeks, Table 5-8. This will be discussed in the following paragraph. ALASSO
selected six predictors and the GLASSO method selected eight predictors. In both the
selection methods’ results, several predictors/variables are shared, such as the

motricity index. This indicates that the motricity index test is a good predictor of the

functional upper limb in recovery (Coupar et al., 2012). The MI has shown to high
reliability for muscle strength measurement post-stroke. Additionally, it is
considered as a simple and easily applied tool that does not need any equipment,
training or experience. Thus, it is widely used due to its simplicity and being time
and cost-effective. Relative to outcomes, some predictors seem to have a significant
explanatory effect; however, they have not been selected. The Barthel index (BI) is
a widely used measure for active daily living that contains items covering the most
common activities needed for independent living. Moreover, it has shown high
sensitivity and specificity in neuroglial conditions in general, and in stroke

specifically. (Ohura et al., 2017).

This limitation in the study could be related to the small sample size. This includes
the number of missing-data of each patient and the characteristics of each

predictor. However, where possible, | wanted to add as many relevant predictors
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as possible and estimate the missing data with the final data set. Besides this,
penalised estimation is a procedure that reduces the variance of estimators by
introducing substantial bias. For this reason, I cannot use the same approach in

LASSO as in classical logistic of interpreting the predictor’s effect estimation.

To ensure the ease of interpretation, a few techniques have been proposed, for
example the bootstrap method to estimate the mean square error of estimation and
confidence interval. When comparing the results of selected predictors between the
ALASSO method and the other methods of selection, Table 5-13, all estimated
coefficients of ALASSO are symmetric in the 95% confidence interval. However,
some of the estimated coefficients of the GLASSO were located outside of the 95%
confidence, indicated by Table 5-9, Table 5-10 and Table 5-8. This may be due to
several reasons, the most likely of which relates to the small sample size of the
original sample or some shortcomings of the methods of estimation, or the number

the size of each bootstrap sample.

Significant multicollinearity exists within this data set as indicated by the value of

VIF which is greater than 10 for many variables(Dormann etal., 2013). Multicollinearity

within this data set has arisen from multiple measures being used to assess similar
constructs (for example the Frenchay Arm Test and the Motricity Index) and the
interdependency between measures of impairment and activity. However, it is also
possible that multicollinearity could have been incidental to the inherent nature of
the sample (i.e. recovery from stroke follows a small range of predetermined,
although as yet undescribed, trajectories), and the small sample size when
compared to a large number of independent variables identified. The challenge of

using traditional methods in the presence of multicollinearity(Dormann et al., 2013;
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Steyerberg, 2009), particularly in small sample data sets, is the risk of selecting

inappropriate or confounded predictor variables (for example a latent variable).

This problem is resolved within ALSSO and GLASSO methods.

The present study could have a methodological advantage over prior studies, in
which I have applied two different types of penalised selection methods (modern
methods). As a result, shrinkage of the redundant and irrelevant predictors was
achieved in the modelling process for predicting recovery of upper limb function.
Use of these methods can also significantly increase the accuracy of the prediction
model and allow for easy interpretation of the model. The adaptive LASSO has a
better precision score when compared with the LASSO and GLASSO method as per
table 4. Both penalised methods were able to select subset predictors in order to
predict the outcome of patient’s functional upper limb recovery three months post-
stroke. Three penalised methods were able to achieve a prediction accuracy higher
than 86% sensitivity greater than 93% and specificity between 62% -72%.
However, the Stepwise method achieved prediction accuracy 60%, 74% sensitivity

and 56% specificity.

5.8 Conclusion

Penalised methods for selection of predictor subsets in prospective modelling of
upper limb function, three months post-stroke, have been identified as appropriate.
These methods can overcome previous limitations associated with traditional
methods, such an existence of a significant correlation between predictors. So far,
this research has focused mainly on prediction model’s development, regarding
both application and methodology matters such as selecting the most important

predictors in the model. The emphasis in the next of chapter is to the validation
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performance of a prediction model. All prediction models require external
validation to check that the model predicts reliably in new data from similar (or even
different) settings or populations. In the next chapter, these methods will be
externally testing the model that has been developed for prediction of functional

upper limb recovery post-stroke using a new data set.
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Chapter six
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6 External validation

If models are to be adopted for clinical decision making, it is vital that they can
accurately predict outcomes in the real world/clinical setting. Prior to
implementation in the real world-clinical setting, it is necessary to test the model
performance on a new, unseen data set. This process is known as external validation.
Within modelling, it is bad practice to advocate models for use when they have only
been internally validated, given that model performance is likely to be inflated due
to overfitting, given that the model is able to explain the seen or existing dataset.
Because of the optimism problem (overfitting) of predictive models, models have
worse performance in new patients/subject than expected based on the

performance estimated from the development data-set (Harrell et al., 1996; Kwah

and Herbert, 2016).

[ have previously completed the internal validation processes and identified the four
predictors selection models, as described earlier. Therefore, the next step in the
model development process is external validation. During the external validation
stage, it is also important to assess how good the model prediction is in estimating
the errors. This is known as model performance. Here, I compare the external
validation performance of the Stepwise logistic regression, LASSO, adaptive LASSO

and group of LASSO models on a new dataset.

6.1 External validation study
In this study, the external validation of the developed models was tested by utilising
data adopted from an independent randomized control trial of patients who have

significant impairment of function in the affected arm post-stroke; more detail in
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study presented by Lindsay et al. (2014). I extracted a set of predictors from the
control group of original data-set. These predictors are similar to the set that was
selected by stepwise logistic regression, adaptive LASSO, Group of LASSO and
LASSO. Logistic regression of each method was used to re-develop the prediction

model of the new data-set.

The following metrics were used to evaluate the externally validity of the model
performance. The Brier score was used to assess the overall performance of each of

the four models (Harrell et al., 1996). Hosmer and Lemeshow goodness of fit test

and calibration plot were used to assess the agreement between the predicted ARAT
outcome for each patient and the actual ARAT outcome at three and six months
respectively. Discrimination was assessed using: 1) A confusion matrix was used to
evaluate the fit of the four models and identify the rate of true positives it classifies
as being positive (the sensitivity) and the rate of true negatives it classifies as being
negative (the specificity). 2) The discriminative ability of the four models for the
upper limb recovery was calculated by measuring the area under the ROC curve and
plotted. Finally, in order to investigate the prediction model usefulness in clinical
assessment a decision curve analysis (DCA) was evaluated using the net benefit

measure(Steyerberg and Vergouwe, 2014; Vach, 2013).

6.2 Baseline characteristics

The Data-set included more than 500 columns of predictors which can be
categorised into demographical, historical and clinical measurement variables. The
data-set also included the ARAT outcome measures determined at different time
points i.e. baseline, 3 and 6 months. A range of (0 to 5 weeks) was at the baseline

measurement time point identified for stroke patients between (0-5) weeks of 120
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patients (Lindsay et al., 2014). The number of patients is 120 patients at baseline

that classified into 73 patients as a control group and 47 of patients as the
intervention group. The data set comprises a significant amount of missing -data,
and this amount is increasing over the follow-up study. Additionally, more than 80
per cent of values within some variables were constant and thus have been
excluded, the remaining predictors in the development and external validation sets

are presented in Table 6-1.

Table 6-1 Summary of the baseline characteristic of predictor variables of both set development** and
external validation.

Predictors 0dd ratio (OR)**, 0dd ratio (OR), model
model development | validation

Age 71.3+£11.3 65.46+16.93

Previous stroke 125(83.3%)

Barthel index Baseline 10.03+5.75 3.51+4.61

After Stroke Pain (10) for | 146(97.3%) 29.78+36.04

affected side -Baseline

NIHSS of arm Baseline 8(5.33%) 3.61+0.63

NIHSS of Leg 101(67.33%) 2.78+1.06

NIHSS of Sensory 48(32%) 1.15+0.73
22(12%)

Action Research Arm test 20+27.81 13.05+19.81

** the odd ratio of model development comes from the study in chapter four.
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6.2.1 Results for external validation of the models at three six months

These results included tests of the ability of the external validity of the four
predictions of development models. Four prediction models were assessed based on
the result of model’s development variable selection process and internally

validated, as follows:

1. The equation of Stepwise logistic regression model that used to predict the

probability of recovery patients’ upper limbs’ function after three months is:

£140-0.36(Age)—5.499(NIHSS)+1.7(BI)

(6.1)

T 1+e140-036(Age)-5.499(NIHSS)+1.7(BI)

Where:

P: is the predicted probabilities the ARATS’ outcome of patients after three months.
NIHSS is the severity of stroke measures.

BI: is the Barthel Index at baseline time.

2. The equation of ALASSO logistic regression model that used to predict the

probability of recovery patients’ upper limbs’ function after three months is

3-58-0.56(NIHSS)+0.64(BI)

= 1 4 ¢358-0.56(NIHSS)+0.64(BI)

(6.2)

Where:

P: is the predicted probabilities the ARATS’ outcome of patients after three months.

NIHSS: is the severity of stroke measures at baseline.

BI: is the Barthel Index at baseline time.
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3. The equation of GLASSO logistic regression model that is used to predict the
probability of recovery patients’ upper limbs’ function after three and six

months respectively is

£0-25-0.036(4ge)—0.05(NIHSS)+0.15(BI)

(6.3)

= 1 + 0.25-0.036(4ge)—0.05(NIHSS)+0.15(BI)
Where:
P: is the predicted probabilities the ARAT’s outcome of patients after three months.
Age: is age of patient at baseline post-stroke.
NIHSS: is the severity of stroke measures at baseline.
BI: is the Barthel Index at baseline time.

4. The equation of LASSO logistic regression model that used to predict the

probability of recovery patients’ upper limbs’ function after three months
is:

e 1.01-0.024(Age)—0.048(NIHSS)+0.058(BI)+0.24(previousstroke)+0.007+Pain

p = (6.4)

1 +e 1.01-0.024(Age)—0.048(NIHSS)+0.058(BI)+0.24(previousstroke)+0.007+Pain

Where:

P: is the predicted probabilities the ARATS’ outcome of patients after three and six

months respectively.

Age: is age of patient at baseline post-stroke.

Pain: represents patients’ pain at baseline post-stroke.

NIHSS: is the severity of stroke measures at baseline.
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BI: is the Barthel Index at baseline time.

The overall performance of models as in the equations (1,2,3,and ), the ability of
each model to discriminate the differentiation between a patient with the recovery
event from a patient without, calibration and ability of the model to improve the

decision making procedure (clinical usefulness) were tested (Vach, 2013), as

follow:

6.2.2 Performance of recovery functional upper limb prediction model

Due to the Brier score results of each model (Stepwise logistic regression, ALASSO,
Group LASSO and LASSO) the Adaptive LASSO has a lower distance between the
actual and predicted outcome than other models. ALASSO has better overall

performance prediction at three and six months, respectively (Table 6-2).

Table 6-2 Overall performance of recovery functional upper limb of each prediction model.

Prediction Brier Score of Externally Brier Score of Externally

Models validated prediction models validated prediction models
after three months. after six months.

Stepwise 0.19 0.16

logistic

Adaptive

LASSO 0.11 0.13

GLasso 0.15 0.31**

LASSO 0.16 0.135

**The Brier score can be accounted for logistic regression model and is the average
squared differences between actual outcome (0, 1) and predicted probabilities
(ranges from 0 to 1). Where the Brier score was equal to zero that means the model
has perfect achievements. If the score was less than 0.25 that indicates good model
performance. The model’s performance was acceptable according to Brier scores

that were (19%, 11%,15% and 16%) at three months and (16%, 13%, 31% and
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14%) at six months. A related test to the Brier score is Nagelkerke RZ which is
interpretable as the rate of ARATS’ outcome variation, which can be clarified by the

predictors of the model.

6.2.2.1 Calibration of externally validated prediction models after three and

six months

Calibrations of external validation models (Stepwise logistic regression, ALASSO,
GLASSO, and LASSO) were deduced using: The Person correlation of goodness fit

test and the Calibration plots method.

6.2.2.1.1 Correlation test:

Hosmer-Lemeshow is used to assess the goodness-of-fit x2 test. However, because
the sample size is small and the Hosmer-Lemeshow test is known to be
oversensitive to small sub-group deviations, even if it has good fitting in moderate
data-sets it is not suitable in this study. Therefore, to compare the predicted ARAT
versus actual ARAT outcomes, the Pearson correlation coefficient was used. (Zhang

etal, 2013)

Table 6-3 Results of correlation coefficient of Externally validated prediction models after three months.

Correlation coefficients between | Correlation coefficients

Prediction Models | predicted and actual outcomes between predicted and actual
after three months. outcomes after six months.

Stepwise

pw 0.35 0.40

logistic

Adaptive LASSO | 0.70* 0.62*

GLasso 0.44 0.45

LASSO 0.53 0.50

* highly correlated between the actual and predicted outcomes of ALASSO.
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6.2.2.1.2 Calibration plots:

Calibration plots of prediction model are an essential aspect for external validation.
These compare the averages of actual outcomes versus predicted outcomes
determined from the prediction model. The results of the calibration slope plots
were decomposed into results in Table 6-4 and calibration plots of prediction
models after three and six months, respectively, in order to display individual model

results in a simple way, Table 6-4 and Figure 6-3, Figure 6-2.

Table 6-4 Result of slopes and intercepts calibration of each external validation model.

Externally validated prediction Externally validated prediction

Prediction models after three months. models after six months.
Models

Stepwise | ALASSO | GLASSO | LASSO | Stepwise | ALASSO | GLASSO | LASSO
Calibration |, /, 016 029 |17 | -043 0.15 070 | -043
intercept
Calibration |, 0.63 133 | -072 |17 0.56 1.56 17
slope

Table 6-4 shows the slope and intercept of the calibration plot of the external
validation of four models. Calibration is not close to one and indicates that the model
is optimistic. Because the value of the intercept is related to the value of the slope,
the intercept automatically changes when the slope changes. In the external
validation data, the intercept of each model was (-0.72, -0.16, 0.29 and 1.7) and (-
0.43, 0.15, 0.70 and -0.43) for three and six months, respectively. As the results
showed, the calibration of stepwise logistic, GLASSO and LASSO models have a poor
performance compared to the ALASSO method. The main components of the output

of these figures are explained as follows:

The sold line represents the actual model performance that compares the
proportion of predicted and actual outcomes of recovery upper limb. A calibration

slope of less than one is a sign of the overestimation/overfitting of estimated
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coefficient, whereas points located above the diagonal line correspond to
underestimation prediction. When an intercept of each model is different from 0
that indicates the predicted probabilities are systematically too high (intercept < 0)
or too low (intercept > 0). In a sense, the calibration of the intercept represents the
term of bias in the prediction model, which is systematic under or over-prediction
of probabilities. If both the slope differs from 1 and the intercept differs from 0, the
interpretation of the mis-calibration is difficult, because the values of intercept and
slope are related. Consequently, the presence of mis-calibration in models has an

adverse effect on the model’s prediction performance.

173



Actual Probability

24 Calibration of Stepwise method =" . .
Calibration of ALASSO method
S a
o
=
& o
8 o
£ S
[in
©
=
2 3
= _|
= [=3
5% A Apparent -
—— Bias-corrected 3 Apparent
g ] ---- Ideal — Bias-corrected
--=- Ideal
e |
o
(o
=
T T T T T T
00 02 0.4 086 08 10 ‘ ‘ ' ‘ ‘
02 04 06 08 1.0
Predicted Pr{ARAT12=1} )
B= 40 repetitions, boot Mean absolute error=0.073 n=41 Predicted Pr{ARAT24=1}
B= 40 repetitions, boot Mean absolute error=0.046 n=41
o I -
= Calibration of Group LASSO method 2. Calibration of LASSO method
o
= e
=
< | =
< 5 @
8 o
€
o
= .| S
=2 g
< S
"""" Apparent -~ Apparent
o —— Bias-corrected — Bias-corrected
R vy o ---- Ideal
o
o L=
T T T T T T el . . ; : .
0.0 0.2 0.4 0.6 0.8 1.0 00 02 04 06 08 10
Predicted Pr{ARAT24=1} Predicted Pr{ARAT12=1}
e i B S B= 40 repetitions, boot Mean absolute error=0.072 n=41

Figure 6-1 Calibration of predicted probabilities recovery of functional upper after three months using four
models (stepwise, ALASSO, GLASSO and LASSO) based on the external validation dataset.
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6.3 Discrimination of externally validated prediction recovery models

By using the above four equations of logistic regression models as in section 6.2.1,

discrimination was evaluated by finding the predicted probabilities from each model

(Stepwise logistic regression, ALASSO, GLASSO and LASSO) for every patient.

Sensitivity, specificity and accuracy and the area under the curve of ROC were

evaluated for each model at three and six months, respectively,

Table 6-5,Table 6-6. All these steps were deduced using three packages of R (ROCR,

AUC and predictABEL).

Table 6-5 sensitivity, specificity, true/ false positive and negative given predicted recovery of functional
upper limb of cut-off (ARAT) >=7 after three-month post-stroke of external validation dataset.

Prediction Models Stepwise Adaptive LASSO GLASSO LASSO
logistic

No. of predictors 6 2 3 3
No. of True Positive 18 23 23 23
No. of True Negative 8 10 3 7
No. of False Positive 15 8 15 11
No. of False Negative 0 0 0 0
Sensitivity 0.34 0.56 0.16 0.38
Specificity 1 1 1 1
Accuracy 0.63 0.80 0.63 0.73
::ls;:;ve Prediction 1 1 1 1
‘lj:ﬁ:ive Prediction 0.54 0.74 0.60 0.67
Prevalence 0.44 0.44 0.44 0.44
Area under the curve 0.67 0.78 0.58 0.70
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Table 6-6 sensitivity, specificity, true/ false positive and negative given predicted recovery of functional
upper limb of cut-off (ARAT) >=7 after six-month post-stroke of external validation dataset.

Prediction Models Stepwise Adaptive LASSO GLASSO LASSO
logistic
No. of predictors 5 2 3 2
No. of True Positive 20 21 21 21
No. of True Negative 8 10 3 7
No. of False Negative 0 0 0 0
No. of False Positive 13 10 17 13
Sensitivity 0.38 0.50 0.15 0.35
Specificity 1 1 1 1
Accuracy 0.68 0.75 0.78 0.68
‘I;lellltelve Prediction 1 1 1 1
‘lj:lg:‘fve Prediction 0.60 0.67 0.55 0.61
Prevalence 0.48 0.48 0.48 0.48
Area under the curve 0.69 0.75 0.57 0.68

A true and false positive rate were evaluated by plotting the area under the receiver
operator. The Area under the ROC of (Stepwise logistic regression, ALASSO, Group
LASSO and LASSO) were (0.67, 0.78, 058 and 0.69) with confidence interval 95%
[(0.49, 078); (0.65, 0.91) ;(0.46, 0.78); and (0.57, 0.86)], respectively. The results of
four model’s external validations plots show that discriminatory ability of (the
Stepwise logistic regression, ALASSO, Group LASSO and LASSO) is not particularly
good, reliable with the predictors not explaining much of the difference in the datasets.
By contrast, the adaptive LASSO plot shows that the discriminatory ability of this model
is good and reliable with the predictors explaining well the variation in the external
validation datasets. The ALASSO model’s plot shows the effects of the level of severity

of stroke and the level of activities to daily living to the recovery of the upper limb of
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patients; this produced a better performance than the other models ( Stepwise logistic

regression, ALASSO, Group LASSO and LASSO) Figure 6-3, Figure 6-4.
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Figure 6-3 Receiver operator curves for the Stepwise logistic regression, ALASSO, GLASSO and LASSO model to

predict ARATs’ outcome after three months.
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Figure 6-4 Receiver operator curves for the Stepwise logistic regression, ALASSO, GLASSO and LASSO model to predict
ARATS’ outcome after six months.

6.4 Decision-curve analysis of externally validated prediction models
The aim of this research is to develop a prediction model which can classify patients’
likelihood of achieving upper limb recovery and those not likely to achieve recovery to

guide rehabilitation programs. Therefore, a cut-off point is required to classify patients
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as either not being able to recover or being able to achieve recovery so that treatment
may be allocated or withdrawn appropriately. At the threshold, the likelihood of
improvement, for example reduced impairment because of rehabilitation program
therapy, exactly balances the likelihood of no recovery, for example improves the
clinical costs-effectiveness. Irrespective of the fact that a prediction model may achieve
a good level of calibration and discrimination (sensitivity, specificity and the area

under the curve of ROC), these characteristics do not enable the model to assess clinical

usefulness (Steyerberg and Vergouwe, 2014; Zhang et al., 2018).

To overcome this limitation, Vickers and Elkin (2006) have proposed a series of

decision-analytic measures to summarize the performance of the model in supporting
decision making. Additionally, they derived a new tool as a part of decision curve
analysis (DCA). This is based on subtracting the rate of all patients identified as false
positives from the rate of true positives. The subtraction result is then weighted by
using the relation between the false-positive and false-negative results of a prediction
model. This tool is called a Net Benefit (NB) that refers to weighting a relative between

the two false conditions has a formula as follows:

) TurePostiveCount FalsePositiveCount p;
Net Benefit = - — - (1 - ) (D)
Pt

Where:

e True- positive count and false positive count represent the number of patients

with the true and false positive prediction models results.

e nis the sample size (total number of patients).

e p,:is where the expected benefit of intervention is equal to the expected benefit

of avoiding intervention.
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There are two important benefits behind using DCA. First, DCA can be used to compare
different types of models. For example, compare results from a predictive model and
results from the clinical decision. Secondly, prediction models’ benefit in clinical
practice can be quantified in a simple way that does not require information on the
cost-effectiveness’ or how patients perceive their different health states. (Holmberg

and Vickers, 2013; Van Calster et al., 2018).

The DCA was used in this section to test the clinical utility of each model and to make
comparisons between the Adaptive LASSO performance the other models (stepwise
logistic regression, GLASSO and LASSO). The DCA, with NB of each models, was plotted
for external valuation after three and six months, respectively, using the functions in

R (Zhang et al., 2018). Table 6-7 shows that the Net Benefit results of the four models’

external validation tests, which were obtained from a probability threshold of (0.5) for

each model.

Table 6-7 The net benefit (NB) results of four external validation prediction models

St i Treated
Methods epwise ALASSO | GLASSO | LASSO | o€
logistic ALL
Net benefit of
predicting after 0.24 0.43 0.10 0.29 <=0.21
three months
Net benefit of
predicting after six 0.02 0.39 0.30 0.0.09 <=0.201
months

The output of the Table 6-7 appears that the adaptive LASSO prediction, after three
months of the external data, is always superior to the other prediction performance
(Stepwise logistic regression, GLASSO, and LASSO). At that threshold, the Net Benefit

of all treated patients was (0.21) lower that the Net Benefit of ALASSO, which was (0.43
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and 0.39) representing predictions after three and six months, respectively.
Additionally, the ALASSO has Net Benefit greater than all the other methods. To
illustrate the ALASSO superiority over the other models, I need to calculate the
difference between Net Benefit of each model and Net Benefit of all-patients-treated.
At 0.05 threshold, according to the interpretation given above, this means that one can
demonstrate the difference by the following subtraction (0.43-0.21 =0.22). Further,
ALASSO has been shown to have 22% higher Net Benefit than when all patients
received treatment, which makes our clinical decision based on ALASSO more accurate,
hence higher beneficial treatments. In more clinical terms, adaptive LASSO has higher
accuracy to exclude patients who might not benefit from rehabilitation (net of false
positive), which produce a better more cost-effective clinical decision-making

(Holmberg and Vickers, 2013).

The output of the clinical usefulness comparison of ALASSO prediction model’s
performance with other models were plotted that are shown in Figure 6-6, Figure 6.7,
Figure, 6-8, Figure 6-9 and Figure 6-10. The net benefit is plotted against the threshold
probability. The “all” line shows the net benefit by treating all patients, and the “none”

line is the net benefit for treating none patients.
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Figure 6-5 Decision curve analysis for the Stepwise logistic regression and ALASSO model for prediction

recovery functional upper limb after three months. The two curves are compared to the curves of non-
treated and all patients treated.

0.6- i
T, Models
al
N e none
\ - pred.ALASSO
pred.Stepwise
0.4-
5
ey
€©
0
k]
z
0.2
0.0
0.00 0.25 0.50 075 1.00

Threshold probability

Figure 6-6 Decision curve analysis for the GLASSO and ALASSO model for prediction recovery functional

upper limb after three months. The two curves are compared to the curves of non-treated and all patients
treated.
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Figure 6-7 Decision curve analysis for the LASSO and ALASSO model for prediction recovery functional

upper limb after three months. The two curves are compared to the curves of non-treated and all
patients treated.
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Figure 6-8 Decision curve analysis for the Stepwise logistic regression and ALASSO model for prediction
treated and all patients treated.

recovery functional upper limb after six months. The two curves are compared to the curves of non-
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Figure 6-9 Decision curve analysis for the LASSO and ALASSO model for prediction recovery functional

upper limb after six months. The two curves are compared to the curves of non-treated and all patients
treated.
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Figure 6-10 Decision curve analysis for the GLASSO and ALASSO model for prediction recovery

functional upper limb after six months. The two curves are compared to the curves of non-treated and
all patients treated.
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6.5 Discussion

This chapter provided a framework to test and compare the external validity of four
prediction models developed using classical method (stepwise logistic regression) and
three penalised methods (ALASSO, GLASSO and LASSO). A testing process was included
to check the overall performance, calibration, discrimination and decision curve

analysis of the models.

For the overall performance results of each model, tested using a dataset of a new
group of patients, was obtained from the control group of retrospective randomised
control trial (40 patients). The model’s performance was accepted according to Brier
scores Table 6-2. A related test to the Brier score is Nagelkerke R? is interpretable as
the rate of ARATS’ outcome variation, which can be clarified by the predictors of the

model.

The RZ values can be approximated by the difference in the average predicted
probabilities of the two groups of patients with different outcomes of ARAT. The
ALASSO method was the best model for predicting recovery of upper limb at three and
six months, with the difference in average predicted probabilities being (0.66 and 0.56

respectively), Table 6-2.

Calibration involved comparing the actual ARATSs’ and predicted ARAT outcomes Table
6-3. Calibration plots for the predicted recovery of functional upper limb of each
model are shown in Figure 6-1 and Figure 6-2 . The odds ratios for the overall mis-
calibration were from (- 0.72, -0.16, 0.29 and 1.7) and (-0.43,0.15, 0.70 and -0.43) for
the four models. ALASSO was best calibrated overall, with intercept of (-0.16) than the
other three models. The predictions, after three and six months, explained the actual

recovery at bestin the ALASSO model (slope of 0.66 and 0.56) and it was at its the worst
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in the other three models (slopes of 1.79, 0.133 and -0.72) and (1.7, 1.56 and 1.7). The
ALASSO model with only NIHSS and Barthel index at baseline calibrated relatively good
predicted recovery of upper limb which was better than the other three methods.
However, underestimation and overestimation of recovery of upper limb functions at

lower and higher predictions were common to all models to some degree.

The discrimination of the external validity of the four models in this study were
assessed by area under the curve of ROC. The area under the ROC for each model is
classically between (0.6 and 0.85). ROC of ALASSO was 0.88 in the stage of internal

validity of the model

ALASSO yielded the best results in sensitivity of about 91%, in the internal validation
stage and 56% in the external validation stage. Additionally, the ALASSO’s ROC was
0.78 in the two external validity stages (after three and six months), meaning that the
model had reasonable capacity to correctly distinguish between patients who would

have a higher recovery chance and not. This could relate to stability of ALASSO model’s

estimated coefficient (Zou, 2006).

The good value of predictions reaching (0.56 of sensitivity) confirms that ALASSO
model distinguishes a relatively moderate amount of change in the sample. However,
the other three models performed poorly in in the external validity stage. The stepwise
logistic, GLASSO and LASSO model had AUC of (0.69, 0.57 and 0.68) and sensitivity of
(38%, 15%, and 35%) which are not of practical value. The narrow range of predictions
reaching only about (15% to 38% of sensitivity) confirms that these three models are
only catching a relatively small amount of change in the sample. Clearly, a big sample

size is required to include all the predictors, which are selected in the internal

187



validation stage to check the external validation. These could help to present a useful

model practically.

As aresult of using the decision curve analysis to evaluate the utility of four prediction
models in clinical decisions, the model positively influences our clinical decisions
regarding prioritising patients’ treatment based on their on-set condition(Vickers and

Elkin, 2006). The ALASSO has the net benefit value higher than the other models Table

6-7.

The net benefit, with visualisation in a decision curve, is a simple summary measure to
quantify clinical usefulness when decisions are to be supported by a prediction model.
If a threshold is clinically well accepted, such as the 50% (representing thresholds for
recovery of functional upper limb events), classification tables and its associated

measures may be particularly useful.

Finally, the external validity of ALASSO model, developed from the RCTs database,
discriminated and classified ‘recovery’ and ‘not recovery’ of functional upper limb
patients relatively better from all the other methods. This advantage of ALASSO could
be of clinical value as its external validity was tested using a different dataset than the
one used in its development. On the contrary, using the same dataset used in ALASSO
external validity testing, the performance of the other three methods yielded poorer

results, giving the superiority to ALASSO.
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7 Developing model

Previously, | have demonstrated how the predictors selection can be improved using
the ALASSO instead of stepwise logistic regression, GLASSO and LASSO. I have also
shown the performance of each model of selection was achieved in external validation
dataset. Additionally, the results showed that the Adaptive LASSO had superiority
over the other three methods in predictors selection to predict the recovery of upper
limb function in stroke patients, with better external validation than others.
Therefore, it is of interest to see if the model can be implemented to explore if it can
identify appropriate factors that predict recovery when an intervention is given.
Moreover, this study is the first time a modelling method has been used to explore
predictors that can emerge if an intervention is used and have demonstrated that this

may be possible as “proof of concept”.

7.1 Dataset

Data was adopted as the only interlineation group of retrospective study of stroke
patients surviving with a significant impairment of the arm function(Lindsay et al.,
2014). The intervention group includes 70 patients and different type of predictors
demographic and clinical measure at baseline, such as Barthel Index and Modified
Rankin Scale. Additionally, data-set includes the three times of outcomes measure for
Action Research Arm Test (ARAT) at baseline, three months and six months post-

stroke. These associated variables are shown in Table 7-1.
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Table 7-1 Predictive characteristics of a studied prediction model of treatment.

series Demographic Mean *
Predictors Standard deviation
1. Spasticity identified 14.85 +8.9
2. Stroke to inject 18.88 +9.65
3. Age 68.17+£14.87
4. Hemiplegic side
Yes (33) 68.8%
No 15(31.3%)
5. Infarct or Haem
0 (9)18.8%
1 (29) 60.8%
2 (10) 20.8%
6. Thrombolysed
Yes (39) (81.3%)
No (09) (18.8%)
7. Area of Damage
0 (5)10.4%
1 (11) 22.9%
2 (16) 33.3%
3 (16) 33.3%
8. Previous stroke
No (29) 60.4%
yes (19) 39.6%
9. Total of National Institute of 16.27+6.07
stroke scale
10. | National Institute of stroke
scale Arm
e Drift. 1) 21%
e Some effort against (1) 21%
gravity.
e No effort against (15)31.3
gravity.
e No movement. (31) 64.6
11. | National Institute of stroke
scale leg
e Drift. (5)10.4%
e Some effort against (11) 22.9%
gravity.
e No effort against (16) 33.3%
gravity.
e No movement. (16) 33.3%
12. | National Institute of stroke
scale sensory
e Normal (8)16.7%
e Mild-to-moderate (22) 45.8%
sensory loss
e Severe to total (18)37.5%
sensory loss
13. | National institute of stroke
scale inattention
e No abnormality (16) 33.3%
e Visual, tactile, (16) 33.3%
auditory, spatial, or
personal inattention
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e  Profound hemi- (16) 33.3%
attention or
extinction to more
than one modality
14. | Active move baseline
Yes (37)77.1%
No (11) 22.9%
15. | Barthel baseline 2.94+4.64
16. | Pain baseline 9.02£20.73
17. | Functional arm scale 3.52+1.90
18. | Modify ranking scale 3.79+£1.32
19. | Length of stay 60.44+28.59
20. | DC Destination 2.19£1.67
21. | Family care
Yes 20(41.7);
No 28(58.3)
22. | Tardieu at base line
Yes (36)75%
No (12)25%
23. | Range of movement lost
Yes (24) 50%
No (24) 50%
24. | Baseline Elbow Flexion 1.12+2.52
Maximum Strength Best base
25. | Baseline Elbow Extension 0.66+1.88
Maximum Strength Best base
26. | Baseline GRIP Maximum 0.75 +2.33
STRENGTH BEST
27. | Wrist  Flexion  Maximum 1.48+2.32
Strength BEST
28. | Wrist Extension Maximum 1.09+£1.91
Strength Best
29. | Elbow Flexion Maximum 3.56+5.10
Strength Best
3(0. | Elbow extension Maximum 2.64+3.72
Strength Best
31. | GRIP Maximum Strength Best 2.95+ 5.8M
32. | Movement Elbow Mean 30.93+20.07
Velocity Slow at baseline

7.2 Developed model

An overview of the developed model method has been presented previously to
include the pre-processing (handling missing data), describing the predictor's
characteristics and checking multicollinearity. Developing a process of prediction
included two models, one to predict the early use of botulinum toxin in post-stroke

spasticity after three months and a second model after six months. The terms model
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3m and model 6m were used to simplify the way of presenting in the next sections.

The process was followed that includes a few steps, as follows:

7.2.1 Predictors selection

Predictors selection using ALASSO was preceded by finding the optimum value of
penalty (A). The penalty was identified using two steps: inverse ridge regression
coefficients were used for each variable as their weight in adaptive LASSO. Then,
estimating the value of tuning parameters, which corresponds to the minimum value
of binomial deviance and then the final selection of predictors. Tuning parameter was
estimated using 10-fold cross-validation method. This method determines the
optimal values of penalty that represent the solution of predictors selection. The
optimal selection is located between the first and the second dash line as in Figure 7-1
that is corresponding to the minimum value of deviance. The optimal selection
shrinks unrelated predictors from (32) to four and eight predictors in model 3m and

model 6m respectively.
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Figure 7-1 Plot of the deviance cross-validation as a function of the penalty parameter A to determine the
estimated optimal value of tuning parameters estimated of ALASSO. The dotted line on the left side
corresponds to the Amin specification. The second line is a A1se specification. A represents the results of
model 3m and B represents the results of model 6m.
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7.2.2 Results

7.2.2.1 Test multi-collinearity

The VIF was taken to check the multi-collinearity level between predictors.

Table 7-2 Results of multicollinearity test.

Series | Predictors variable Variances Inflation Factors

1. | Age 3.7

2. | NIHSS of Arm 2.88

3. | Pain Baseline 2.26

4. | Tradieu Baseline 2.39

5. | Active Movement 5.7

6. | Barthel Index 6.54

Wrist Flexion Maximum STRENGTH
7. BEST 20.03*
Elbow Extension Maximum STRENGTH
8. BEST 45.79*
9 Movement Elbow baseline mean 24
" | velocity slow

10. | GRIP Maximum STRENGTH BEST 20.22*
11. | Functional Arm Scale 7.36
12. | Modified Ranken scale 7.38
13. | Stroke to Inject 2.06
14. | Hemiplegic Side 4.06
15. | NIHSS of Inattention 512
16. | Infarct or Haem 3.48
17. | NIHSS of Sensory 3.13
18. | Total NIHSS 10.08*
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19. | Range of Movement Lost 2.3

Baseline Elbow Flexion Maximum

10.88*
20. Strength BEST
21. | Thrombolysed 427
22. | Area of Damage 3.7
23. | Previous Stroke 1.88
Elbow Flexion Maximum Strength N
24. BEST 30.96

Table 7-2 shows that there is a high level of multi-collinearity test among predictors

that have values of (VIF>=10).

7.2.2.2 Predictors selection

The two models developed for predicting early use of botulinum toxin in post-stroke
spasticity based on ARAT outcome are given in section 7.2). Thirty-two predictors are
included in both models and the results of selection of the ALASSO method were four
and eight of related predictors for model 3m and 6m respectively. ‘Active move base
line’ and ‘Elbow Maximum Strength Best’ were significant predictors in both models.
Interestingly, the variables ‘Thrombolysed, National Institute of Stroke Scale Arm,
Family Care and Tardieu at base line were not included in model 3m but were retained
in model 6m. Range of movement lost was retained in the both models, but it has
approximately twice the negative effect in the model 3m than the model 6m. This

means, an increase in the ‘range of movement lost’ of a patient will have 50% less

benefit from treatment after three months than the treatment after six months.
Additionally, the result ALASSO selection predictors found the set of predictors of
model 3m appeared within the model 6m set predictors. This would suggest that, this
set of predictors are significantly important for the development of a prediction

model of intervention of spasticity.
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Table 7-3 Odd ratio of estimated regression coefficient using ALASSO for predicting the

benefit of intervention based on the outcome of ARAT after three and six months.

Odd ratio of the Odd ratio of the
Series | Predictors coefficient (3 coefficient (6 months)
months)
1. | Intercepts -1.3095 0.1533
2. | Active move base line 14771 1.127
3. | Modify ranking scale -0.3165 -1.1277
4. | Range of movement lost -0.7223 -0.4357
5. | Wrist Extension Maximum
1.008 1.5816
Strength best
6. | Thrombosed 0 1.0420
7. | National Institute of Stroke
0 -0.0728
Scale Arm
8. | Family care 0 -0.9752
Tardieu at base line 0 -0.629

7.2.2.3 Calibration model

In section 7.2 two prediction models (model 3m and model 6m) were developed
based on the ARAT outcome. The calibration of each model was internally validated
by plotting the mean observed ARAT outcome and the mean predicted from the

model.

To do this, the predicted ARAT score was calculated for each patient in the treatment
group. Calibration plots for the configuration of two ALASSO models evaluated are
shown in Figure 7-2. The ALASSO over predicted the recovery of early used botulinum
toxin in post-stroke spasticity patients in the lower ranges of intervention but under

predicted the recovery in the higher ranges of intervention.
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There are differences between plots from the actual and predicted ARAT outcome
Figure 7-2. The predicted ARAT outcome did not lie close to the actual outcome of

ARAT. Overall, both models have poorly calibrated.
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7.2.2.4 Discrimination model

There appears to be good discrimination between the patients after intervention
when the models are fitted using ALASSO. Similar discrimination was noticed of both
models Table 7-4 . The internal validation showed that the models discriminated
reasonably well with average C-statistics across imputed datasets of 0.833 and 0.828
for the models 3m and model 6m respectively. These values suggest slightly better
discrimination of the model 3m using four predictors in the other treatment group,
whereas the model 6m performed slightly less in the other treatment group using
eight predictors. Sensitivity and specificity were calculated using the area under the
ROC curve. The area under ROC curves for the ALASSO tested was estimated using

(ROC package). These are shown in Table 7-5 and Figure 7-3 below.
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Table 7-6 Sensitivity, specificity, true/ false positive and negative given predicted recovery of the
functional upper limb of cut-off (ARAT) >=7 after six-month post-stroke of external validation dataset.

Prediction Models

Model 3m is to predict the early
use of botulinum toxin in post-

stroke spasticity after three

Model 6m is the early use of
botulinum toxin in post-

stroke spasticity after six

months. months.
No. of predictors 4 8
No. of True Positive 34 29
No. of True Negative | 9 12
No. of False

1 4
Negative
No. of False Positive | 4 3
Sensitivity 0.97 0.90
Specificity 0.69 0.75
Accuracy 0.89 (0.77,0.96) 0.85 (0.72,0.94)
Positive Prediction

0.89 0.87
Value
Negative Prediction

0.90 0.80
Value
Prevalence 0.72 0.66
Area under the

0.83 0.828

Curve
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Figure 7-3 ROC Curve of international validation of prediction early use of botulinum toxin in post-stroke
spasticity after three months.

7.3 Discussion

Two prediction models developed for patients with spasticity could be used to aid
treatment decisions, by potentially identifying patients that could receive a botulinum
toxin A (BoNT-A), identifying patients suitable for future clinical trials or off-study

treatments.

This chapter used ALASSO modelling to develop a prediction model for spasticity

intervention that allows individualised predictions and identified methodological
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issues when using clinical trials data for this purpose. The important findings and

limitations are now discussed.

7.3.1 Summary and comparison to previously published model

A main aim of this chapter was to identify the effective predictors on the early use of
botulinum toxin A in post-stroke spasticity and to develop prediction models of the

treatment group of RTCs of (Lindsay et al., 2014). In doing so, the models have been

built using a different process versus the previous studies that used the backward,

forward and stepwise methods of variable selection (Leathley et al.,, 2004; Moura et

al., 2009; Opheim et al., 2015). These methods suffer from lack of stability and are

influenced by small sample size relative to large numbers of predictors (Tibshirani

1996).

Another reason for the difference in model’s selection is that previous studies suffer
from methodological shortcomings in developing models process. For example, there
is no previous study which undertook the internal validation test during the
development model such as either using sub-sampling methods (cross-validation) or

resampling method (bootstraps) (Steyerberg and Vergouwe, 2014). The authors

tested predictors in univariate analysis and selected the significant predictors and
applied multivariate logistic methods. Additionally, authors did not deduce the
multicollinearity test among the predictor’s combinations. As mentioned previously,
the existence of multi-collinearity would be a challenge for using traditional methods,
particularly in small sample data sets; which could risk the selection of inappropriate

or confounded predictor variables (for example a latent variable).

In contrast to this, the two models developed used ALASSO, which is not affected by

the multicollinearity level and small sample size relative to large numbers of
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predictors. Furthermore, the internal validation was undertaken using the calibration
and discrimination methods. Previous studies were concerned with identifying the
important predictors for predicting the presence of spasticity in the upper and lower

limb post-stroke (Moura et al., 2009; Sunnerhagen, 2016). However, in this study,

prediction models were developed to predict the recovery from spasticity using of

botulinum toxin type A in post-stroke spasticity.

ALASSO in model 3m confirmed the importance of range of movement lost and modify
ranking scale as predictors that have negative effect on recovery of spasticity. The
active move baseline also was identified and max strength best that have the positive
effect on the recovery of spasticity. NIHSS was not a significantly associated predictor
to the intervention of spasticity in the model; there was evidence to support these

results of NIHSS from the previous study (Opheim et al., 2015). However, it appeared

as a significant predictor in the model 6m.

The calibration and discrimination represented the internal validation of both
developed models. For calibration, both models were poorly calibrated.
Discrimination of both models showed good performance as shown by the AUC of

0.833 and 0.823, the sensitivity of 97% and 90%; and specificity 69% and 75%.

7.3.2 Limitations

Pre-processing data was used to verify the consistency of the predictors and the
outcome before trying to build prediction models. However, the dataset was not
considered and designed specifically for this study’s aims. Important predictors were
not defined prospectively (for example Sensorimotor function using the Fugle Meyer

test(Opheim etal., 2015). Models performance are usually somewhat optimistic when

estimated internally based on sub-sampling and resampling processes, and therefore
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model discrimination is possible to be even lower when assessed in external data.

This means that internal validation is not enough to evaluate.

7.4 Conclusion

This chapter demonstrated how ALASSO could be used to identify the useful
predictors and develop a prediction model for recovery by intervention spasticity.
New predictions models were developed and internally validated, but due to its
excellent discrimination, a new dataset is likely required for external validation
before they can be used for practice. Finally, beyond an easy prediction method, the
result of this study advises that focusing treatment on the more important predictors

is possible to improve recovery.
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8 Discussion and conclusion

8.1 General discussion

Predicting outcome(s) of upper limb function recovery post-stroke is complex but
essential and vital as it informs patients and their families, as well as stroke case-
manager/clinical decision-maker, about the patients’ prognoses and rehabilitation
program plan. This project has used modern and traditional methods to examine
prediction factors (predictors) and develop different models for patients with upper
limb impairment post- stroke. The focus was to study the cut-off point of the response
variable (ARAT). The next step was to apply classical and penalised methods to
identify candidate predictors, which are collected routinely, and to use these to build
and validate a recovery-prediction model. These steps were performed using datasets
from secondary anonymised datasets of two previous RCT studies; one dataset was
used to build the model, and the other used to validate it. It is worth mentioning that

both studied were double blinded studies which indicate a more robust approach.

In chapter one, the literature review was undertaken to identify and investigate
published studies on recovery-prediction models. Furthermore, this review included
studies of all potential predictors of upper limb recovery post-stroke. Searching
studies databases were conducted using the EBSCO interface, which was limited to
studies conducted within the past thirty years of databases search date. From the

literature, six prediction models were found (Feys etal., 2000a; Hendricks etal., 1997;

Kumar et al., 2016; Kwah et al,, 2013; Nijland et al., 2010b; Stinear, 2010). It has been

shown that very few prediction models exist for upper limb recovery in severe cases
post-stroke. Additionally, these models are still mis-categorising some patients. This

could be due to the fact that five of the six models did not undergo external validation.
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The sixth model was for arm recovery (the proportional recovery model) which has
been externally validated. However, it does not give a good prediction in all patients
with stroke, as has been suggested from development and validation studies. This
model is limited and appears to predict outcomes well with less severe stroke
patients. In this current study, external validation has been done in all stroke patients
in the control group of RCT. The validation study was conducted on a completely

independent sample to the development sample.

The cut-off related to the ARAT’s score (dependent variable) in the prediction model
was downgraded to seven instead of ten, which was used in the previous studies
(chapter three). In this study, 18 patients with ARAT score (<10) were displayed
based on their total score of each sub-group within the ARAT score to modifying using
bar charts. It has been noticed that 11 of 18 patients recovered after three months,
even though these patients, according to the existing models, could be overlooked
because they would be categorised as non-recovery patients. Additionally, the
patients with total ARAT score of nine or less can incompletely perform some of the
easy tasks in the grasp/grip subgroups tests. To ensure that such patients are not
overlooked, our decision to reduce the cut-off point to seven was made. Moreover, it
might help to make a balance between the cost-effectiveness and interventions of

patients, as a lower cut-off point would mean a higher workload on clinicians.

Predictors selection methods of the prediction model for patients with upper limb
impairments were studied. The study involved penalised and traditional methods.
Uniquely, this study was the first in using penalised methods in model development
process of prediction recovery of upper limb function post stroke. The idea behind

using the penalised methods is to avoid the impact of the issues of multicollinearity,
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number of predictors and sample size. It was found that the adaptive LASSO has the
superiority in the selection predictors, developing and internal validation model
compared with the other penalised method (LASSO and Group of LASSO) and

traditional methods (stepwise logistic regression).

Validation is an essential part of the modelling process and therefore external
validation methods have been applied to the selected models in this thesis (chapter
five). The search of the literature revealed that very few prediction models of the
recovery of upper limb post-stroke patients is externally validated, possibly due to
the lack of guidance, i.e. from expert statisticians, on suitable validation methods, or

possibly due to the lack of appropriate datasets to test external validity.

An external validation study was therefore undertaken to assess methods of
externally validating a prediction model and to assess four methods for selection
predictors from the external validation dataset. The decision analysis curve method
was also applied to present the usefulness of each model in practice. It was found that
the ALASSO has the superiority in the external validation via calibration plots and
discrimination at three and six months. Additionally, ALASSO has the net benefit
compared with the other penalised method (LASSO and Group of LASSO) and
traditional methods (stepwise logistic regression). Interestingly, ALASSO success
could be attributed to having the advantages of oracle properties of regressions’
coefficients, which have proved to be a consistent method of predictors selection(Zou,

2006).

The ALASSO modelling method was used to develop a prediction model that can be
used to identify appropriate factors that predict recovery when an intervention is

given (chapter six). This study is the first time a modelling method has been used to
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explore predictors that can emerge if an intervention is used, hence - proof of concept.
ALASSO modelling method was thought to be appropriate for this scenario; it was
therefore employed to attempt to develop a prediction model which included only
treatment groups from RCTs. It is essential to mention, this study requires steps to
be taken to test its external validation, which was not performed in this project due

to lack of appropriate dataset.

8.2 Research limitation

The main limitation in this thesis was the properties of the data used to develop this
study prediction model. For example, some of predictor variables chosen by the
model during the development/internal validation stage were not available within
the dataset used for the model during the external validation testing stage. Due to the
time constraints, the author has not been able to get the same predictors in the data
set. Specifically, one of step in this study was to test the external validity using a
proper and large enough data-set, with specific properties. Therefore, we requested
the data from the Virtual International Stroke Trials Archive (VISTA®); however, we
receive a dataset that was not suitable to be used in this study. Obtaining more
homogenous data may give a better chance to check the external validation of models.
Furthermore, the researchers could not develop a model using sub-group of cluster
analysis results. This study used secondary collected data that is not specifically

collected for the purpose of model development.
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8.3 Conclusion

Prediction stroke research, particularly in the prediction of recovery of upper limb
function post-stroke modelling, is still a challenging area that requires more
methodology research to improve the models being developed and validated. The aim
is to provide useful models that will be implemented in clinical practice, and

ultimately, improve patient outcomes and the efficiency of health care delivery.

Though many issues remain, this thesis has contributed toward improvements in the
prediction modelling field through application and methodological development. The
use of the penalised method (adaptive LASSO) will hopefully improve the
development, evaluation, presentation and approval of robust prediction models in

the coming years, adjusted for predictors.

8.4 Future works

Further studies could be deployed that researchers can use in the framework of
developing a prediction model of recovery of upper limb function post-stroke. First,
modelling of sub-group of the cluster analysis results could help in reducing the
heterogeneity of the predictive value of the model. Therefore, researchers could focus
more on merging the LASSO family methods with cluster analysis models. Second,
regarding the tuning parameters, researchers could use another method instead of
cross-validation to estimate the tuning parameters, such as BIC. Third, models that
were developed in this research in chapter six require more investigation in term of

external validation based on the prospective data set.

On the other hand, the methodology of this research could be followed to develop a
prediction model in the lower limb research, i.e. to make predictions about gait

function of a lower limb of patient’s post-stroke.
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10 Appendices

10.1 Appendix A

Publications

Three Abstract have published in the international journal of stroke, which is owned
by the SAGE journals. The work within this publication has been actively discussed

at the UK forum conferences 2016 and 2017.

“Prediction of upper limb function recovery post-stroke”

Al-Shallawi A1, Blana D1 and Pandyan A1,2

Introduction: Stroke can lead to a loss of arm function and this can severely affect a
person’s life. Predicting recovery post-stroke can be very beneficial to stroke
patients and medical professionals. Specificity and sensitivity of current models are
not good enough predicting accurately and they are not adequate for
implementation into routine clinical practice. The aim of this study is to explore if
methods of clustering can help improve sensitivity and specificity of prediction
models.

Method: Retrospective modelling on a secondary anonymised data set was
undertaken. The dependent variable was arm function measured using Action
Research Arm Test (ARAT). The independent variables were NIHSS score, Frenchay
Arm Test (FAT), Motricity Index (MI) and age. A logistic regression model was
developed for the entire sample set and specificity and sensitivity were quantified.
This process was repeated after using k-means clustering method procedure.
Results: The logistic regression model demonstrated that the NIHSS, FAT and MI
before clustering analysis were able to classify probability of recovery with a

sensitivity of 0.90 and specificity of 0.93 (p < 0.0001). The k-means clustering

224



produced 4 homogenous clusters of patients. In 3 of the 4 groups the sensitivity and

specificity were 1 (p < 0.0001). In the fourth cluster it was 0.97 (p < 0.0001)

Conclusion: Using methods of clustering may provide a better approach to
modelling recovery after stroke. However more work is needed to confirm the

reliability and clinical usefulness of the methods of clustering.

“Improving variable selection for modelling recovery of upper limb function

post-stroke”
Al-Shallawi A1, Blana D! and Pandyan A2

Introduction: Loss of arm function post-stroke can severely affect a person’s life.
Predicting recovery prospectively is difficult, particularly in patients with severe
levels of initial impairments. The inherent variance associated with variable
selection within the traditional methods of modelling could be a reason for this.
Newer methods of modelling that use unbiased methods of selecting variables and
modelling are now available (Lasso, Adaptive Lasso and group Lasso). The aim is to
compare these new methods against the traditional methods.

Methods: A database of 150 stroke patients was analysed. Each patient had baseline
measurements taken within a week of a stroke (giving 78 independent variables),
and arm function measurements (Action Research Arm Test — ARAT) taken at 12
weeks after stroke (the dependent variable). Stepwise logistic regression, Lasso and
Adaptive Lasso were used for variable selection and modelling. Results: Lasso,
Adaptive lasso and group Lasso shrunk 78 predictors to 8, 6 and 11 predictors
respectively with accuracy (87%, 88% and 87%), sensitivity (95%, 95% and 93%),
specificity (0.67, 0.74 and 0.62) and F-measure (0.73, 0.76 and 0.73). The traditional

method selected the 3 variables which were not significantly related to the clinical
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treatment with 85% sensitivity; 56% specificity; 0.53 F-measure.
Conclusion: It is evident from the results that the newer methods could conceivably
be employed in selecting predictors to develop a prediction model of recovery upper

limb post-stroke. These could improve the clinical usefulness.

“What cut-off is indicative of no upper limb function in the Action Research
Arm Test?”

Al-Shallawi A1, Blana D1 and Pandyan A2

Introduction: The Action Research Arm Test (ARAT) is a clinical scale that is used
for assessing the upper limb (UL) function of stroke survivors. Previous studies have
reported that patients who have a total score of less than 9 can be classified as
having severely limited UL function. The aim of this study was to investigate if this

current “cut-off” is valid.

Methods: Retrospective analysis of the ARAT scores from secondary anonymised
data set with 150 participants. The baseline measures, taken within 1 week of a

stroke, informed the analysis.

Results: 66 (44% with 95% Confidence interval (CI) 36% to 52%) patients had an
ARAT score of 0 and were removed. 18 had a score between 1 and 9 (12%; 95% CI
7.5% to 18.6%). 66 had a score > 10 (95% CI 35% to 52%). Within the subset who
scored between 1 and 9; 8 (44% with 95% CI 22% to 69%) were able to carry out
simulated grasping tasks, 2 (11% with 95% CI 2% to 36%) could carry out
simulated grip tasks, and 1 (1.5% with 95% CI 0.3% to 3%) patients achieved a
score in the simulated pinch sub-category. If the cut-off was reduced from 9 to 7,

then no person could do any of the grasp, grip and pinch subtest of the ARAT.
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Conclusion: The previously used cut-off point of 9 may inappropriately classify

people as non-functional. The lower cut-off of 7 should be investigated further.
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10.2 Appendix B

Measures formula

ACTION Patient Name:
RESEARCH Rater Name:
ARM TEST Date:

Instructions
There are four subtests: Grasp, Grip, Pinch, Gross Movement. Items in each are ordered so that:

e if the subject passes the first, no more need to be administered and he scores top marks for that subtest;

e if the subject fails the first and fails the second, he scores zero, and again no more tests need to be
performed in that subtest;

*  otherwise he needs to complete all tasks within the subtest

Activity Score

Grasp
1. Block, wood, 10 cm cube (If score = 3, total = 18 and to Grip)
Pick up a 10 cm block

2. Block, wood, 2.5 cm cube (If score = 0, total = 0 and go to Grip)
Pick up 2.5 cm block

. Block, wood, 5 cm cube

3
4. Block, wood, 7.5 cm cube
5. Ball (Cricket), 7.5 cm diameter

6. Stone 10x2.5x 1 cm

Coefficient of reproducibility = 0.98

Coefficient of scalability =0.94

Grip

1. Pour water from glass to glass (If score = 3, total = 12, and go to Pinch)
2. Tube 2.25 cm (If score = 0, total = 0 and go to Pinch)

3. Tube 1 x 16 cm

4. Washer (3.5 cm diameter) over bolt

Coefficient of reproducibility = 0.99

Coefficient of scalability =098

Pinch

1. Ball bearing, 6 mm, 3 finger and thumb (If score = 3, total = 18 and go to Grossmt)
. Marble, 1.5 c¢m, index finger and thumb (If score = 0, total = 0 and go to Grossmt)

. Ball bearing 2™ finger and thumb

. Ball bearing 1* finger and thumb

. Marble 3" finger and thumb

. Marble 2™ finger and thumb

A L B W N

Coefficient of reproducibility = 0.99
Coefficient of scalability =0.98

Provided by the Internet Stroke Center — www.strokecenter.org
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Grossmt (Gross Movement)

1. Place hand behind head (If score = 3, total = 9 and finish)
2. (If score = 0, total = 0 and finish

3. Place hand on top of head

4. Hand to mouth

Coefficient of reproducibility = 0.98

Coefficient of scalability =097
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N | H
STROKE
SCALE

Patient Identification. - -

Hospital (

Date of Exam / /

Interval: []Baseline  [] 2 hours post treatment []24 hours post onset of symptoms +20 minutes [ ] 7-10 days
[13 months [] Other

Time:_____ i [lam []pm

Person Administering Scale

Administer stroke scale items in the order listed. Record performance in each category after each subscale exam. Do not
back and change scores. Foiiow directions provided for each exam technique. Scores shouid refiect what the patient does, |
what the clinician thinks the patient can do. The clinician should record answers while administering the exam and work quicl
Except where indicated, the patient should not be coached (i.e., repeated requests to patient to make a special effort).

Instructions Scale Definition Score

1a. Level of Consciousness: The investigator must choose a 0= Alert; keenly responsive.

endotracheal tube, language barrier, orotracheal trauma/bandages. A
3 is scored only if the patient makes no movement (other than reflexive
posturing) in response to noxious stimulation.

response if a full evaluation is prevented by such obstacles as an 1= Not alert; but arousable by minor stimulation to obey,

answer, or respond.

2= Not alert; requires repeated stimulation to attend, or is

obtunded and requires strong or painful stimulation to
make movements (not stereotyped).

3 = Responds only with reflex motor or autonomic effects or

totally unresponsive, flaccid, and areflexic.

1b. LOC Questions: The patient is asked the month and hisfher age.
The answer must be correct - there is no partial credit for being close.
Aphasic and stuporous patients who do not comprehend the questions
will score 2. Patients unable to speak because of endotracheal
intubation, orotracheal frauma, severe dysarthria from any cause,
language barrier, or any other problem not secondary to aphasia are
given a 1. Itis important that only the initial answer be graded and that
the examiner not "help” the patient with verbal or non-verbal cues.

0= Answers both questions correctly.
1= Answers one question correctly.

2= Answers neither question correctly.

1c. LOC Commands: The patient is asked to open and close the
eyes and then to grip and release the non-paretic hand. Substitute
another one step command if the hands cannot be used. Credit is
given if an unequivocal attempt is made but not completed due to
weakness. If the patient does not respond to command, the task
should be demonstrated to him or her (pantomime), and the result
scored (i.e., follows none, one or two commands). Patients with
trauma, amputation, or other physical impediments should be given
suitable one-step commands. Only the first attempt is scored.

0 = Performs both tasks correctly.
1 = Performs one task correctly.

2 = Performs neither task correctly.

2. Best Gaze: Only horizontal eye movements will be tested.
Voluntary or reflexive (oculocephalic) eye movements will be scored,
but caloric testing is not done. |If the patient has a conjugate
deviation of the eyes that can be overcome by voluntary or reflexive
activity, the score will be 1. If a patient has an isolated peripheral
nerve paresis (CN IIl, IV or VI), score a 1. Gaze is testable in all
aphasic patients. Patients with ocular trauma, bandages, pre-existing
blindness, or other disorder of visual acuity or fields should be tested
with reflexive movements, and a choice made by the investigator.
Establishing eye contact and then moving about the patient from side
to side will occasionally clarify the presence of a partial gaze palsy.

0= Normal.

1= Partial gaze palsy; gaze is abnormal in one or both eyes,

but forced deviation or total gaze paresis is not present.

2 = Forced deviation, or total gaze paresis not overcome by the

oculocephalic maneuver.
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N 1T H
STROKE
SCALE

Inlerval: [ | Baselne
[13 months [ ] Other

Patert Iderafication.

Pi. Date of Brin

Huggilal

Do o Exam

[1 2 hours post treatment | ] 24 hours posl onsel of symptons 220 minutes | ] 7-10 days

(

3. Visual: Wisual fickds (upper and lower quadranis) ars tesied by
confraniation, wsing fnger counting or wisual threat, as appropriabe
Patenls may be ercouraged, bul f they ook al the sde of the
maving lingers apoeaprialy, this can be scored as nomal. I there is
unialeral Mindness of erueckation, visual liedds in e remaining oy
are scomed.  Scorm 1 only f @ clearcul asymmetry, induding
quadrantancgia, is found. IF patent is bing from 2y cause, scone 3
Double dmulanesss stimudation & perdormed at s poink Hthem is
rxIncion, pationl recoiens a 1, and tha msuts anz used 1o espond o
e 11

1= Mo visual inss.
1 = Parlial hemianopda.
2= Compliabe hamiarapla.

3 = Bilateral hemianopia thnd inciuding carical Blndnsss),

A, Facinl Patsy: Ak - 07 Ui Qeenoneme 0 encounsds — Iha palien
iz bz Bt of faiss anabicras and coae syee, Scom ayerstry of
GrMAGE i rapenee 1 neeoiE sl in the poorly PeEpCRENE oF
nen-compreharding patieed, 17 laginl aumabandages, snirachaal
b, lape of olhar plysical Barans ofacure the Teea, thase shoukd
Lo rerwnd b th anlanl possibl

0= Mormal sEnmalical mossmanis

1= Minor paralysis (Ratersd naselatial fokd, asymmedy on
sevibng)

2= Partial parafysis {lotd o rear-iotsd parmksis of ear
faes),

3= Comgletn paralysis of ome or boih sides [absancs of
Tacial mossmant in i uppar and feser o),

5. Motor Ay The limh & placed in the approprasbs poaiion: exiend
the arme |palms down] S0 degress (T aifng) or 45 degees (il
suprel. Orft iz scored if the arm falls belaore 10 seconds.  The
aphasc palisnt s encouraged using uigency in the vome and
pantomime, bt nol nosious sdmulation. Each imb is beeled in e,
beginmng with the non-parstc amm. Only in the case of ampulation o
jort fusion al the shouldar, the sxaminer shoukd recond the soons as
untestanie (UN), and clearky wrile the expfanation for this choice,

= Mo drife; lioks Dol S0 (or 45) degreas for il 10 sscords

1= Diridt; bmbs fokds: S0 [or 45) dogres, Dl difls down Delons
Tl 10 magonds: does nol KL bed or ather suppon

2= Some effcrt agairet gravity; fmb cannol get 1o o
regtingain F cued) S0 [or 45 ) degrees drifts doen 10 bed,
bt hars gorre el agairal gravity,

A= Mo effort againet gravity; kb fals

4= No movement.

UM = Amputation or jainl fusion, saplsn:

Sa. Left arm

Sh. Right drm

B Modor Leg: The limd is placsd in the spprapiste poaiten Padd
e by al 30 degreas (alvays tested supineh Dl B eaisd # s lag
falls bufore § =meconds.  The aphasic patien]l & escouragsd using
wegsncy in lhe suice and panfomiens. bul nol farious gSmulasen
Each limo is bestsd in tuen, beginning wilh e noc-paalic kg Only
in the cass of ampuisfon or jont fuson &l the hip, the asanines
should record e wcors as unlestable (UN], and checrdy weite e
sxplaraion for $s cholce.

= No di#f; kg halifs Scagma position tor kil 5 sacnnds.

1 = Drift; leg talls by tha end o the S-second peeiod but doas
¥ il B,

2 = Sorre efar) sgainsl grawily; leg fals o bed by &
Aniara, Bul has sora efion agained graviy

3 = N eflort against gravity; beg Sl fo bad immediaoely,

i = Mo movement,

LM = Ampaation o janl Eacn, aglan

fa. Loft Leg

fh. Right Leg
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N 1T H
STROKE
SCALE

Patient Identification. -

Pt. Date of Birth /

Hospital (

Date of Exam /

Interval: []Baseline  []2 hours post treatment []24 hours post onset of symptoms +20 minutes [ ] 7-10 days
[13 months [] Other ( _ )
7. Limb Ataxia: This item is aimed at finding evidence of a unilateral | 0= Absent.

cerebellar lesion. Test with eyes open. In case of visual defect,
ensure testing is done in intact visual field. The finger-nose-finger
and heel-shin tests are performed on both sides, and ataxia is scored
only if present out of proportion to weakness. Ataxia is absent in the
patient who cannot understand or is paralyzed. Only in the case of
amputation or joint fusion, the examiner should record the score as
untestable (UN), and clearly write the explanation for this choice. In
case of blindness, test by having the patient touch nose from
extended arm position.

1= Present in one limb.
2 = Present in two limbs.

UN = Amputation or joint fusion, explain:

8. Sensory: Sensation or grimace to pinprick when tested, or
withdrawal from noxious stimulus in the obtunded or aphasic patient.
Only sensory loss attributed to stroke is scored as abnormal and the
examiner should test as many body areas (arms [not hands], legs,
trunk, face) as needed to accurately check for hemisensory loss. A
score of 2, “severe or total sensory loss,” should only be given when
a severe or total loss of sensation can be clearly demonstrated.
Stuporous and aphasic patients will, therefore, probably score 1 or 0.
The patient with brainstem stroke who has bilateral loss of sensation
is scored 2. If the patient does not respond and is quadriplegic, score
2. Patients in a coma (item 1a=3) are automatically given a 2 on this
item.

0= Normal; no sensory loss.

1= Mild-to-moderate sensory loss; patient feels pinprick is
less sharp or is dull on the affected side; or there is a
loss of superficial pain with pinprick, but patient is aware
of being touched. :

2 = Severe to total sensory loss; patient is not aware of
being touched in the face, arm, and leg.

9. Best Language: A great deal of information about comprehension
will be obtained during the preceding sections of the examination.
For this scale item, the patient is asked to describe what is happening
in the attached picture, to name the items on the attached naming
sheet and to read from the attached list of sentences.
Comprehension is judged from responses here, as well as to all of
the commands in the preceding general neurological exam. If visual
loss interferes with the tests, ask the patient to identify objects placed
in the hand, repeat, and produce speech. The intubated patient
should be asked to write. The patient in a coma (item 1a=3) will
automatically score 3 on this item. The examiner must choose a
score for the patient with stupor or limited cooperation, but a score of
3 should be used only if the patient is mute and follows no one-step
commands.

0 = No aphasia; normal.

1= Mild-to-moderate aphasia; some obvious loss of fluency
or facility of comprehension, without significant
limitation on ideas expressed or form of expression.
Reduction of speech and/or comprehe

however,

makes conversation about provided materials difficult
or impossible. For example, in conversation about
provided materials, examiner can identify picture or
naming card content from patient's response.

2 = Severe aphasia; all communication is through fragmentary
expression; great need for inference, questioning, and guessing
by the listener. Range of information that can be exchanged is
limited; listener carries burden of communication. Examiner
cannot identify materials provided from patient response.

3 = Mute, global aphasia; no usable speech or auditory
comprehension.

10. Dysarthria: If patient is thought to be normal, an adequate
sample of speech must be obtained by asking patient to read or
repeat words from the attached list. If the patient has severe
aphasia, the clarity of articulation of spontaneous speech can be
rated. Only if the patient is intubated or has other physical barriers to
producing speech, the examiner should record the score as
untestable (UN), and clearly write an explanation for this choice. Do
not tell the patient why he or she is being tested.

0= Normal.

1= Mild-to-moderate dysarthria; patient slurs at least some
words and, at worst, can be understood with some
difficulty.

2 = Severe dysarthria; patient's speech is so slurred as to be
unintelligible in the absence of or out of proportion to
any dysphasia, or is mute/anarthric.

UN = Intubated or other physical barrier,
explain:
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SCALE

Interval: []Baseline []2 hours post treatment
[13 months [] Other

—_—

Patient Identification. -

Pt. Date of Birth /
Hospital (
Date of Exam /
[ 124 hours post onset of symptoms 420 minutes  [] 7-10 days

e o}

11. Extinction and Inattention (formerly Neglect): Sufficient
information to identify neglect may be obtained during the prior
testing. If the patient has a severe visual loss preventing visual
double simultaneous stimulation, and the cutaneous stimuli are
normal, the score is normal. If the patient has aphasia but does
appear to attend fo both sides, the score is normal. The presence of
visual spatial neglect or anosagnosia may also be taken as evidence
of abnormality. Since the abnormality is scored only if present, the
item is never untestable.

0= No abnormality.

1= Visual, tactile, auditory, spatial, or personal inattention
or extinction to bilateral simultaneous stimulation in one
of the sensory modalities.

2 = Profound hemi-inattention or extinction to more than
one modality; does not recognize own hand or orients
to only one side of space.
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10.3.2 Flow chart of external validation algorithm

External Validation process

Pre-processing
data

A 4

* Handling missing data
* Remove some predictors
* Testingthe multi-collinearity

$

* Stepwise Logistic Regression Model
P Al ACCH cmm ~ A1
e ALADDU ITIouEl

¢  GLASSO model
e LASSO model

A 4

To evaluate the performance and compare ( Calibration,
Discrimination, and Design Curve Analysis/ Net -Benefit)

4

End of External
Validation process
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