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5 Abstract 

Stroke is the third largest cause of death in the world, with a significant contribution 

to disability. Motor function impairment, encompassing upper limb impairment, is 

the most significant post-stroke impairment. Such an impairment contributes to 

reducing a person’s ability to complete daily activities, thus affecting their quality of 

life. Effective interventions, specifically targeted at upper limb recovery, are 

important, just as much as predictions of patient’s post-stroke. Predictions have 

become essential in making accurate clinical decisions in stroke management, 

including selection of appropriate rehabilitation programs, referring into 

appropriate services, setting realistic goals by therapists and clinicians and 

predicting the level of dependence following discharge from the hospital. This 

research focuses on the prediction of upper limb recovery and function. Despite the 

current and widely used traditional statistical methods of prediction, the research 

here presents a developed modern method which focuses on prediction models of 

regression methods. This is because traditional methods have been shown to lack 

clinical usefulness and do not have meaningful acceptance in clinical practice. The 

modern method developed and adopted aims to give more beneficial and valid 

results from the prediction model.    
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1 Introduction  

1.1 Introduction to the study and its context 

This study examines important elements of how statistics and medicine come 

together to form accurate and reliable predictions of patients with stroke. This 

research examines a section of concern within post-stroke patients: upper limb 

functional recovery. This is directly linked to carrying out activities of daily living 

(ADL). It examines rehabilitation and recovery, considered within the International 

Classification Functions Framework (ICFF) for measurement. It provides a review 

of the different measures of upper limb motor function, including Action Research 

Arm Test (ARAT), Fugl-Meyer, Wolf motor function test, Box and Blocks test (BBT). 

It focuses mainly on ARAT as the outcome measure (dependent variable). This 

research successfully sets a new cut off point for ARAT, and not only uses the 

modern method of Least Absolute Shrinkage and Selection Operator (LASSO) in 

developing a prediction model for upper limb recovery post, but it has also tested 

its external validation. Additionally, the results of the new model were compared 

with a traditional method (stepwise method). The adaptive LASSO (ALASSO) was 

found to be the best method with respect to performance. Decision-analytic 

measure was used to summarise the performance of the model in support of 

decision making. It is worth mentioning that this is the first time a decision-analytic 

measures method has been used in stroke related studies, and so this is a novelty of 

this thesis, contributing to knowledge in biostatistics.  

1.2 Use of terminology in this research 

The abbreviations for some key terminologies within biostatistics are mentioned 

previously and these will be referred to throughout my research. There are some 
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key terms that I will be using in this research, that are used interchangeably such as 

classical and traditional methods, binary or dichotomous etc. For simplicity, the 

terms classical, traditional or subset selection methods will be interchangeably used 

to describe the traditional methods of predictors selection; whereas, penalised, 

modern or regularised selection methods will be interchangeably used to describe 

the modern methods of predictors selection such as LASSO. 

1.3 Rationale for the study 

As a professional statistical programmer and analyst, the author has always been 

fascinated by the ways in which mathematical and analytical software can be used 

within the medical field to predict, prevent and improve the life of existing patients. 

This has affected me on a personal level, after losing my son at a young age due to 

brain damage. As a researcher, I am constantly looking at ways to improve 

prediction and applied in biostatistics in clinical settings for the greater 

development of medicine and this has inspired me to take on this research project. 

Considering the insufficient validity of current predictive models of upper limb 

functional recovery after stroke used in clinical decision-making setting and the 

impracticality of using the current models in a clinical setting, I believe it is 

necessary to establish additional predictive models that, when coupled with clinical 

assessment, can improve prediction precision.  As suggested from development and 

validation studies(Kwah and Herbert, 2016), the only current model for arm 

recovery (the proportional recovery model) that has been externally validated, does 

not give a good prediction of recovery for all patients with stroke. This model is 

limited and appears to predict outcomes in people with less severe strokes(Kwah 

and Herbert, 2016). 
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Therefore, providing an accurate and robust model which is well developed and 

externally validated, prior to its use in clinical practice, would provide a more 

efficient and sensitive method of prediction. This would help identify patients who 

are more likely to recover and assist in directing available resources toward 

achieving treatment goals, again contributing to the better development within 

medicine. 

1.4 Research aims and objectives 

The main aim of this research is:  

 To develop and improve a prediction model of recovery for upper limb 

function post-stroke.   

This aim will be achieved through four primary objectives: 

1) Modify a cut-off point for the action research arm test, selected as the outcome/ 

dependent variable, using cluster analysis as an assistive tool in developing a 

prediction model.  

2) Test and identify predictor variables which have a strong relationship with the 

dependent variable, using classical and modern methods of selection. 

3) Test external validation of the models and present the benefit of each type of 

model that is developed based on traditional and modern methods. 

4) Develop a model to determine an essential effect predictor in intervention 

model. 

1.5 Research questions 

My research aims at answering the following three research questions: 

1. Should the cut-off point of the Action Research Arm Test (ARAT) outcome(s) be 

modified? 

2. What are the primary predictors of patients’ recovery post-stroke, and why? 
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3. Can the current methods be improved and developed using a new method of 

modelling? 

1.6 Chapter summary 

This chapter introduces the area of the research. It also sets the scene for the 

research, on various levels, from the basis of my personal interest and stance as 

researcher. It gives information on the aims and objectives of the research as well as 

the research questions. 

Chapter two provides a review of the literature with respect to stroke as a medical 

condition, as well as statistical tools involved in the development of models and 

cluster analysis. It provides some insights into and critical points of prediction 

models of upper limb/arm post-stroke. This will allow the determination of the most 

common predictors that are used in previous prediction studies. It will also help 

determine the effectiveness of statistical models used in previous studies and 

limitations of the previous prediction models and decisions. 

Chapter three begins by reviewing and describing the two types of statistical tools: 

regression analysis (with a review of the traditional and penalised methods of model 

selection in logistic regression models and assessment methods) and cluster 

analysis.  

In chapter four, the means by which modification of the cut-off point of the 

dependent variable (outcome) is discussed for a logistic regression model  

Chapter five involves applying traditional and penalised model selection methods and 

compares the performances of traditional and penalised methods based on multiple 

logistic regression. 
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The new application work in chapter six focuses on modifying the cut-off point 

using statistical investigation to compare the achievements of traditional and 

penalised methods in external validation stage and the decision analysis curve with 

net benefit.   

Chapter six also provides information on how the research achieved external 

validation, while chapter seven provides details on developing a model, which is a 

novelty of my research. The research will conclude in chapter eight with a general 

discussion, limitations of the work, a summary and possible future work within this 

field. 
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2 Literature review 

The literature review begins with information on stroke, followed by a detailed 

description of upper limb and recovery terms, functional recovery and 

rehabilitation of upper limb, which is explained based on the International 

Classification Functions (ICF) framework. It then provides the definitions, 

descriptions and measurements of arm recovery, followed by a search strategy that 

includes an electronic search to identify studies that are linked to the inclusion 

criteria of this study. A detailed description of the prediction model and predictors 

is then provided to show how this process offers a benchmark against which 

predictive modelling studies of arm recovery can be evaluated. I finally discuss some 

critical points, concluding with a summary about prediction methods of modelling 

studies. 

2.1 Stroke as a medical condition 

According to the World Health Organisation (WHO), a stroke is defined as "rapidly 

developing clinical signs of focal (or global) disturbance of cerebral function, lasting 

more than 24 hours or leading to death, with no apparent cause other than that of 

vascular origin”(Sacco et al., 2013; Veerbeek et al., 2014). Stroke incidence in the 

UK has been estimated to be 257.4 per 100,000 of the population for the year 

(2013/2014). Stroke remains a leading cause of mortality and long-term disability, 

killing an estimated 650,000 people annually. Mortality rate is higher in females 

(23,060) than males (16,224) (Stroke Association, 2018). The total direct cost of 

stroke in Europe was estimated to be 50 million in 2015 (Europe, 2017) .  
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Stroke is a common cause of death worldwide. In those who survive, a stroke can 

cause significant disability (Dacosta-Aguayo et al., 2014).  Stroke is also the most 

common cause of disability and the disability-adjusted life years (DALYs) lost due to 

strokes is estimated to be 4.1% of global DALYs (Murray et al., 2012). In 1990, stroke 

was fifth in the DALYs league table and by 2010, it had reached third position (Murray 

et al., 2012). In the UK, approximately 33% of stroke survivors remain functionally 

dependent at one-year post-stroke. Residual symptoms and increased dependence 

following a stroke can remain throughout a stroke patient’s life (Aziz et al., 2008). 

The direct cost of stroke to the National Health Service (NHS) is around £8,490,000 

a year. This figure is very likely to grow due to the ageing population demographics 

of the UK (Mortimer and Green, 2015). The impact of stroke in Europe is also 

significant (Europe, 2017). 

Stroke can be broadly classified as ischaemic or haemorrhagic in nature. Accounting 

for approximately 85% of reported strokes, ischaemic strokes occur immediately 

after a cerebral artery becomes partially or totally blocked, decreasing tissue 

perfusion. Tissue perfusion is the amount of blood that a tissue is receiving from the 

circulation (Hennerici, 2004). Decreased tissue perfusion can lead to tissue death. 

Haemorrhagic stroke accounts for around 15% of all strokes. Here, a rupture of a 

cerebral vessel leads to an intracranial haemorrhage and raised intracranial 

pressure. This ultimately leads to the compression of surrounding neuronal tissue 

and in many cases, cell death. Therefore, the impact of strokes, although varied, can 

be devastating. As a consequence of stroke, residual neurological deficits can include 

the loss and impairment of the motor or control functions of one side of the body, 
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such as paresis; difficulty in speech (dysphasia); decreased mental functions 

(cognitive) and the impairment of emotional functions.  

A well-known classification method is the Oxfordshire Community Stroke Project 

(OCSP). This is a simple clinical method, originally devised for patients with first 

time strokes, to subdivide acute strokes. Based on severity of the symptoms, strokes 

can be classified as (Mead et al., 2000): 

 Lacunar syndromes (LACS): this includes pure motor stroke, pure sensory 

stroke, sensorimotor stroke and ataxic hemiparesis.  

 Posterior circulation syndrome (POCS): this include patients with brain stem 

or cerebellar signs, and/or isolated homonymous hemianopia.  

 Total anterior circulation syndromes, (TACS): this includes patients 

presenting with the triad of hemiparesis (or hemisensory loss), dysphasia (or 

other new higher cortical dysfunction) and homonymous hemianopia.  

 Partial anterior circulation syndrome (PACS): this involves patients 

presenting with only two of the features of TACS, or isolated dysphasia or 

parietal lobe signs.  

Patients are classified as “syndromes” (TACS, PACS, LACS, and POCS), unless brain 

imaging has excluded intracerebral haemorrhage. In the latter case, patients are 

reclassified as total or partial anterior circulation infarct (TACI or PACI), lacunar 

infarct (LACI), and posterior circulation infarct (POCI)(Amarenco et al., 2009). All 

these deficits have an impact on the subjects’ ability to perform activities important 

for daily living, as simple as eating, dressing themselves and writing.  
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One of the most common post-stroke deficits is motor impairment of the upper limb 

(Pollock et al., 2015), which is the focus of this research. The most common subtype 

of stroke is damage to the middle cerebral artery that supplies the upper limb. Hence, 

disability of the upper limb is the most common (Balaban et al., 2011; Levin et al., 

2009). Most post-stroke patients (50% to 80 %) are likely to have an impairment 

affecting one arm. These patients are likely to use compensation strategies to remain 

independent. Of these patients with impairment, 66% will only partially recover and 

thus require ongoing care to complete their daily activities (Feys et al., 2000a). Post-

stroke, the upper limb impairments are a considerable problem and have a 

significant impact on stroke-related disability. Additionally, upper limb impairment 

has been associated with a reduction in quality of life and unhappiness (Pollock et al., 

2015). The recovery of upper limb movement and function is therefore a main 

concern for patients, as well as professionals who deliver health services and 

treatments for patients suffering from a stroke (Beebe and Lang, 2009). Therefore, 

prediction of patient recovery would be fundamental in supporting recovery of post-

stroke patients.  

The literature has provided an indication on how prediction of patients' recovery 

post-stroke would be beneficial. Firstly, it could guide the patient’s stroke 

management, helping in appropriate selection of a rehabilitation program, which 

would allow professionals such as therapists and clinicians to set realistic and 

directed goals (Kwah and Herbert, 2016). Secondly, it can be used as an effective 

device to correctly inform patients, as well as their relatives, on the patient's situation 

and the actual cost-effectiveness of rehabilitation required, giving a tangible value 

(Eghidemwivbie and Schneeweis, 2010; Kwakkel and Kollen, 2013; Woldag et al., 
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2006). However, despite the existence of numerous prediction models in the field of 

strokes, the prediction of recovery in stroke patients is still lacking related clinical 

usefulness and hence considered to be inaccurate(Kwah and Herbert, 2016).  

In light of the insufficient validity of current predictive models of upper limb 

functional recovery used in clinical decision-making setting and the impracticality of 

using the current models in a clinical setting, it is necessary to establish additional 

predictive models that, when coupled with clinical assessment, can improve 

prediction precision. (Kwah and Herbert, 2016).  

2.2 Upper limb focus 

Most stroke patients suffer from impairment of motor and other functions of upper 

limb. This includes sensory impairment, abnormal muscle activation patterns, 

reduced muscle strength and reduced functional use of the upper limb. Upper limb 

activities, including movement range and the gross motion of the proximal shoulder, 

elbow and wrist joints to fine finger dexterity for manipulating of objects, are often 

more affected by stroke than the lower limb functions. The patient’s ability to live 

independently and carry out daily activities relies heavily upon the extent of motor 

impairment, motor functional recovery and development of compensation strategy 

post-stroke (Feys et al., 2000a; Feys et al., 2000b; Stinear, 2010). 

2.2.1 Upper limb rehabilitation  

Stroke rehabilitation is generally described as being an active, dynamic and 

continuing process focussed on physical, social and psychological aspects of health. 

Stroke rehabilitation aims to reduce the consequences of stroke, enhance patients’ 
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abilities to perform daily activities and improve quality of life (participation). 

According to the NICE guideline on Long-Term Rehabilitation after stroke (2013), 

there are different types of rehabilitation program. Examples include cognitive, 

vision rehabilitation and motor control (approaches can be face, upper and lower 

limb movements). Rehabilitation can take place at the level of the impairment; the 

belief is that by improving the impairments one improves activity, and this can lead 

to improvements in participation. Rehabilitation can teach compensatory strategies, 

provide assistive devices and/or modify the environment to improve activity and 

participation Figure 2-1.  

 

Figure 2-1 Stroke rehabilitation process includes a therapeutic activity cycle. 

There seems to be a moderate non-linear relation between impairment and function. 

More specifically, there is a scarcity in evidence to motor impairments recovery from 

impairment-focused therapies, which is not necessarily reflected as neurological 

compensation in the brain (Pinter and Brainin, 2012).  
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There is clear evidence at present that shows that task-based training can help 

functional recovery(Veerbeek et al., 2014). This corroborates with the idea that 

functional recovery is a result of combination of compensation and true recovery. 

Therefore, most rehabilitation interventions seem to work best at the level for which 

they are targeted. These levels are: 1) exercise treatment interventions,  2) increased 

amount of focused therapy or interventions compared with a reference group, 3) 

sensorimotor training, 4) electrical stimulation alone, biofeedback alone, or electrical 

stimulation in combination with biofeedback and 5) Constraint Induced Movement 

Therapy (CIMT) (Enderby et al., 2017). 

All in all, the rehabilitation of the upper limb is a complex process which includes the 

retraining of gross and fine movement control of shoulder, arm, and hand. The 

rehabilitation program targeting hand and arm functions after stroke has lower 

recovery rate than that of the lower limb. Because current protocols in hospitals 

focus on impairments or activities that focus on mobility and transfers, the upper 

limb gets very little attention. Patients are often discharged before they have been 

fully rehabilitated (possibly due to scarcity in resources). Additionally, the complex 

nature of upper limb function, that requires re-learning of very fine movements 

patterns, is difficult to produce positive recovery results(Coupar et al., 2012). On the 

contrary, lower limb rehabilitation, such as gait re-education, can be achieved by re-

learning gross motor skills. To improve post-stroke upper limb interventions and 

services that support recovery, it is vital to try developing prediction model(s) for 

recovery of upper limb impairments to assist in clinical testing.  
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2.3 Recovery  

The term 'recovery' has been used to describe the processes of relearning of skills 

that are lost post-stroke as well as the improvement of function, regardless of how 

these may have occurred (Levin et al., 2009). Recovery after a stroke relies on many 

variables. These include: 

a) the specific site of the brain damage,  

b) the general health of the patient, 

c)  age,  

d) related and unrelated diseases,  

e) personality,  

f) family support,  

g) the care received.  

Recovery after stroke has also been defined on three different levels, which are 

discussed later within International Classification Functions (ICF) framework (Levin 

et al., 2009). However, the exact mechanism and time course of upper limb post 

stroke injuries are not yet well investigated. Unsurprisingly, immediately after the 

injury, the central nervous system (CNS) falls into a period of shock (Pandyan et al., 

2018). Subsequently, the CNS is believed to begin compensating for the 

contralesionally tilt of posture and increase loading of the ipsilesional side (Barra et 

al., 2009). This is then followed by a period of neuroplasticity. However, the period 

of neuroplasticity could not be estimated. For example, neuroplasticity may go for a 

long time after stroke or it might be possible to increase the opportunity for plasticity 

in the early stages of CNS reorganisation. This period depends on factors such as 
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personal factors, environmental factors and therapy provided (Fleuren et al., 2018). 

If recovery has not started, naturally or as a result of therapy, the person may start 

in a rehabilitation programme that focuses on compensatory activities for actions of 

daily living (ADL) (Pandyan et al., 2018). It is important to identify people who could 

recover after injury, and those who are likely to have poor recovery. This will support 

the focusing of either a rehabilitation programme to restore normal function or 

engaging in a compensatory rehabilitation programme. The aim is to improve quality 

of life and ability to cope with daily function (Pandyan et al., 2018). Therefore, 

investigating a model that could predict functional independence recovery after a 

stroke will help to direct physiotherapy/occupational therapy to the best outcome 

programme in a cost-efficient way.  

2.3.1 Recovery of independence 

Functional recovery, also called recovery of independence, is defined as the 

improvement in the ability of a patient to be independent in areas such as self-care 

and mobility. Functional recovery could be affected by some factors, which would 

assist and probably have a large influence on the process and extent of this recovery. 

An example of this is the patient's motivation, ability to learn and family support, as 

well as the quality and intensity of therapy. According to the International 

Classification of Human Functioning of the World Health Organization (Giardini et al., 

2010), physiotherapists and clinicians are often able to distinguish between the 

recovery of neurological impairment and recovery of functional independency. 

Specifically, the restoration of neurological deficits will result in functional recovery. 

However, functional recovery is not limited to neurological recovery from 

neurological impairments (Bruce H. Dobkin, 1989). Several studies(Kkel et al., 2004; 
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Kong and Lee, 2013; Kwakkel, 2009; Simpson and Eng, 2012) indicated that the trend 

of the functional recovery was non-linear with neurological recovery. It is also steep 

in the first three months post-stroke. (Yagura et al., 2003).  

(Kwakkel et al., 2006) reaches the conclusion that functional recovery does not 

depend on only restoration of impairment, but also, incorporating compensation 

strategies. Therefore, it is complex, with many differences, such as spontaneous 

recovery (natural recovery) and response to treatment in patients. The goal of the 

rehabilitation process post-stroke is to optimize and increment the changes in 

recovery. Therefore, it is very important to provide instruments that have the 

responsiveness to detect and measure changes(Simpson and Eng, 2012).  

Functional recovery of the arm involves grasping, holding, and manipulating objects 

which involves recruitment of various combinations of muscle activity from the 

shoulder to fingers. In contrast, a minimal amount of recovery of the hemiplegic leg 

may be sufficient to obtain functional ambulation(Feys et al., 1998). 

2.3.2 Mechanism of recovery 

Spontaneous neurological recovery is the main pattern of early recovery after stroke 

and most likely involves partial unknown knowledge of biological processes. This 

means that spontaneous neurological recovery is insufficiently understood. 

Biological processes have been identified as playing a role in the neurological 

recovery following a stroke. In rehabilitation programs, this pattern would be 

neglected because of the lack of a method capable of measuring the effects of time 

over the recovery course (Kkel et al., 2004; Kwakkel et al., 1996) . 
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Several researchers have also suggested that spontaneous recovery of the brain in 

the first week after stroke likely includes combinations of preservation of the 

penumbra, physiological and neuroanatomical reorganization, alleviation of 

diaschisis and reperfusion enhanced by post-stroke angiogenesis damage with 

compensatory changes extending up to 6 months in more severe strokes (Green, 

2003). It would be ideal to identify those individuals who are likely to recover so their 

maximum recovery potential can be reached and if patients are identified as having 

poor recovery potential, the focus would be on training the compensatory activities. 

This would save time, effort and money. 

2.4 The International Classification Functions Framework for 

measurement    

The ICF framework describes aspects of a person’s health at three levels: 

i. the individual body parts and functions,  

ii. the individual as a whole (activity) and,  

iii. the individual in a social context (participation).  

Within the ICF framework, each of these three domains contains different items. The 

ICF provides specific descriptions that can be used to refer to a specific domain. These 

descriptions, provided by the ICF framework, are used in this research to guide 

categorization of the mobility-related deficits post-stroke according to their relevant 

domains. Detailed discussion regarding the categorization of mobility-related 

deficits in HD in line with the ICF model is provided below. 
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i. Body function/Structure 

In the context of the ICF framework, body structures can be described as the 

anatomical parts of the body, whereas body functions are defined as the physiological 

functions of body systems. For example, muscle strength is seen as a function of the 

musculoskeletal system, whilst balance is an integrated function of the vestibular, 

visual, somatosensory and musculoskeletal systems. Muscle strength and balance are 

linked with the person’s ability to move independently. Therefore, balance and 

muscle strength form the foundation for undertaking a wide range of mobility 

activities that constitute normal daily life. This includes walking and therefore 

impairments in muscle strength and balance are known to have negative effects on 

social activity (participating). Evaluation of body function involves muscle tone 

testing and movement kinematics characterizing the range of passive and active joint 

movement. There are many reliable and valid clinical scales for measuring 

impairments, for example, the modified Fugl-Meyer Assessment of Motor Recovery 

after Stroke and the National Institutes of Health Stroke Scale (NIHSS). 

ii. Activities 

This forms the intermediate level of the ICF model. As per the ICF, activity is the 

component of function which involves execution of a task. Among the most important 

and common day-to-day activities are tasks that involve mobility components. WHO 

defines mobility as the “individual’s ability to move about effectively in his/her 

surroundings”. In a more general and comprehensive sense, mobility can be defined 

as the process of moving oneself or changing the position or location of body, or body 

parts.(Cieza et al., 2009). Scales have been used to measure function, but not a motor 
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pattern, for example the Box and Block Test (BBT)(Mathiowetz et al., 1985). The 

complexity starts with an explanation of experiments that use the functional tests to 

evaluate a recovery because that might come from either compensation 

improvement or results of motor improvements. For this reason it is not possible to 

distinguish between compensation and motor patterns; in order to overcome this 

limitation, the Wolf Motor test has been created (Wolfe, 2000). 

iii. Participation 

This forms the third and last level of the ICF. As per the ICF, participation can be 

viewed as the involvement in a life situation. Participation restrictions are difficulties 

that individuals may experience in involvement in life situations (WHO, 2001). 

Participation may be best described by health-related quality of life measures (Power 

et al., 1999). Quality of life can be defined as the integration of physical, social and 

psychological functioning of an individual as being influenced by a disease or therapy 

(Gotay and Wilson, 1998). It refers to the person’s evaluation of their current level of 

health and functioning as well as satisfaction compared to what they used to have. 

Buma et al. (2013) highlight the need to distinguish between the neurological 

recovery at the structure level and the improvement at the activities level. Some 

studies (Buma et al., 2013; Houwink et al., 2013; Kkel et al., 2004) have reported that 

maximum recovery can occur during the first three months of a stroke. Also, it may 

be possible that several motor deficits recover rapidly while other continue to remain 

as permanent deficits. 

In contrast to the lower limb, impairment and disability of the upper limb are more 

common, and many studies indicate that of the recovery of motor and other functions 
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is also poor and more difficult in the upper limb. Recovery of the upper limb has 

different patterns of outcomes than the lower limb. For example, upper limb recovery 

is slower than that of the lower limb. Therefore, patients are more likely to have 

different rehabilitation needs. Because of the variability that has been seen in each 

individual’s disability after stroke and rehabilitation, outcome measures have been 

developed to assess and detect change over time or over interventions (Simpson and 

Eng, 2012). 

2.5 Clinical measurement of post-stroke outcomes 

The main aim of rehabilitation is to minimise the impact of impairment and maximise 

the reintegration of the patient who suffered a stroke. However, measuring the 

effectiveness of interventions is important, both to explain that rehabilitation has 

occurred and potentially to construct exercises for future management (Barnes et al., 

2005). 

The assessments of stroke rehabilitation have encouraged the development of many 

outcomes measures applicable to one or more of its many dimensions. It is broadly 

agreed that there are three (categories) scales of the individual functioning body – 

part body. The first scale is used to measure the body structure, the second is utilised 

to evaluate the activities, and the third scale is used to assess participation. Based on 

the ICF, there are 38 common assessment tools for stroke patients(Kwakkel et al., 

2014). These can be divided as follows: 

 14 tools are used to measure body structure/ functions, the most common are:  

1. Stroke Rehabilitation Assessment of Movement (STREAM). 

2. Glasgow Coma Scale. 
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3. Fugl –Meyer Assessment of motor recovery after stroke FMA. 

4. National Institutes of Health Stroke Scale (NIHSS). 

  15 tools are used to measure activity, the most common are: 

1. Action Research Arm Test (ARAT). 

2. Box and Block Test (BBT). 

3. Wolf Motor Function Test. 

4.  Frenchay Activities Index (FAI) 

5. Barthel Index (BI) 

 9 tools are used to assess health-related quality of life outcomes and Participation, 

the most common are: 

1. Canadian Occupational Measure.  

2. Nottingham Extended Activities of Daily Living (NE-ADL). 

3. Stroke-Specific Quality of Life (SS-QOL). 

In this research, the main focus is on the instruments, defined below, that are 

measures of upper limb motor function. These are selected because they are 

commonly used in previous studies, such as ARAT(Kwakkel and Kollen, 2007), and 

have acceptable properties such as reliability and validity (Van Der Lee et al., 2010).  
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2.6 Measures of upper limb motor function 

Outcomes measurement is a result of assessment processes or impairments. It needs 

to identify the effectiveness of rehabilitation interventions. To be applied in both 

clinical practice or research, measures must have reliability, validity, and 

responsiveness to clinically relevant change. Therefore, not only is there a need to be 

provided with instruments to assess general outcomes, for example Barthel Index, 

there is also a requirement for instruments to detect changes in rehabilitation 

intervention in the upper limb. Even though the changes are small, they may be 

considered essential to the patient or their care givers (Ashford et al., 2008). As a 

result, several instruments of focal motor function tests have been modified, and 

these are presented here.  

2.6.1  Action research arm test (ARAT) 

The Action Research Arm Test (ARAT) instrument has been used to measure the 

activity of the upper limb (Hsieh et al., 1998). With the patients in a sitting position, 

a modified table with shelves is brought in front of them and they are asked to 

perform 19 separate tasks. The ARAT comprises of 19 items divided into four levels 

(subgroup test): grasp (6 items), grip (4 item), finger pinch (6 items), and gross 

movement (3 items) of involved upper limb, after Lyle adjusted it in 1981 

(Yozbatiran et al., 2008). Each subgroup in the ARAT depends on hierarchical order, 

the test starts with testing a difficult item followed by an easier item, and after that 

the items with gradually incrementing difficulty. This means that items are ordered 

in a sequence, for example, the first item is the most demanding with reference to the 

level of strength and movement control required, and the second item is the least 
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demanding of sub-group test. An ordinal 4 points scale is scored on to each item. With 

0 scores for the patient who could not perform the item, 1 for partial completion, 2 

for describing a function which is performed fully, but with abnormal synergies or 

with difficulty, and 3 for the item which is normally performed. The greatest score of 

ARAT is 57. 

Scores are given according to the different movement and contributions to the 

overall score of the patient, (Kwakkel et al., 2000). The reliability and validity of 

ARAT in measuring post-stroke upper limb function has been proven (Yozbatiran et 

al., 2008). Both intra-rater and inter-rater reliability are reported to be very high 

with ICC values greater than (0.98), and the test was found to be responsive in 

detecting the changes during recovery from stroke (Nordin et al., 2014).  

ARAT is an instrument that is said to be a more responsive and objective measure of 

motor activity (Baird et al., 2001). It consists of central properties, showing its 

function and use. These properties are: 

1. It is time-efficient, taking a short amount of time to produce results. 

2. It is an easy measure of the upper limb function.  

3. It gives an assessment of different tasks over a range of complexity.  

4. Most sorts of arm functions are covered by ARAT, involving proximal control 

and dexterity. 

5. ARAT is able to distinguish the abnormality of the movement based on the 

time it takes to perform and allocate a score of two or three. 

6. The ARAT does not need strict conditions of standardisation, such as source, 

material, weight, and size of tools that are used for testing.  



48 
 

2.6.2 Box and block test (BBT) 

BBT is designed as a measure of unilateral gross manual dexterity of patients post 

stroke. The BBT was developed by Jack (1981) for adults who have cerebral palsy. 

The BBT was modified and copyrighted in its current form in 1957. The test is simple 

and quick (Mathiowetz and Weber, 1985). It does not need highly specialised training 

and requires only simple equipment. It consists of a wooden box that has two equal 

size parts and fifty equal size blocks placed in the wooden box. It is measured by 

accounting the number of blocks, one to one, which can be converted by the 

participant from one part of a box to another part for during seconds. Scores are 

recorded as blocks per minute for each hand. Higher values mean better gross 

manual dexterity. Some studies (Hsieh et al., 2009; Platz et al., 2005) have reported 

the BBT has a test-retest reliability of more than (0.9) and correlates highly with 

another similar measurement of upper limb dexterity such ARAT. However, as a 

measurement of upper limb function, the BBT could not afford an assessment of 

different tasks or ranges. As such, the practice of BBT may be linked to significant 

floor effects in some patient groups (Mathiowetz and Weber, 1985). 

2.6.3   Fugl- Meyer assessment (FM) 

The purpose of this measure is to clinically assess the severity of disease, motor 

recovery and plan of treatment. The Fugl-Meyer Assessment consists of three 

independent subclasses and that can be used separately or combined into a total 

motor score. One of which is the upper limb-extremity subscale. It is used to assess 

the motor impairment of the upper limb for patients in stroke. It consists of 33 items 

that assess the movement and reflexes of the shoulder, wrist, hand and coordination, 



49 
 

with a score out of 66, indicating optimal recovery (Fu et al., 2012; Fugl-Meyer et al., 

1975). Each item is scored on a 3- point ordinal scale (0- cannot perform, 1- performs 

partially, 3- performs fully). It depends on hierarchical order with a ceiling effect 

(Hsieh et al., 2009). 

2.6.4 Wolf Motor function test (WMFT) 

The Wolf Motor Test is a common clinical measurement tool used in assessing the 

patients’ motor ability of upper limb post-stroke. It was originally adapted by Wolf et 

al. (1989), and it was modified by Taub et al. (2011) to measure the influence of 

power use of upper extremity function (Fritz et al., 2009). It has 17 tasks and begins 

with placing the hand on a table top that is a simple item. The item’s progress is then 

assessed in a more taxing motor task, such as stacking checkers or picking up a paper 

clip. The time is limited to a maximum of two minutes, in which all tasks of the test 

must be complete. A 6-point ordinal scale is used for functional ability, where zero 

indicates no attempt with the involved arm and five indicates the arm does 

participate and movement appears to be normal. The test-retest reliability, inter-

rater reliability, criterion validity, and construct validity of the WMFT has been 

ascertained in stroke patients (Fritz et al., 2009; Lin et al., 2009). It is a suitable test 

for detecting changes over time. This means it has high responsiveness (Hsieh et al., 

2009). However, it could not be used to provide information on activity limitations 

(for example walking and upper limb function) as it is only assesses the level of 

impairment (Kwah and Diong, 2014). 
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2.6.5 Motricity index 

The Motricity Index is a measure used to assess the deficit of motor movement in a 

stroke patient. It is used to evaluate the muscle weakness, primarily on the ipsilateral 

and contralateral sides to the cerebral lesion. It is valid for the upper extremity and 

is supported by a high degree of relation between its elements and the correlation 

with both grip strength and a measure of upper limb dexterity function. The Motricity 

index of each upper limb includes three tasks: pinch grip, elbow flexion and shoulder 

abduction. For testing the legs, three tasks are also required: ankle dorsiflexion with 

a foot in a plantarflexed position, knee extension with the foot unsupported and the 

knee at 90°, and hip flexion with the hip bent at 90° moving the knee towards the 

chin. These are each scored (0–33) according to the instructions of Collin and Wade 

(Collin and Wade, 1990). The total upper extremity score involves adding one to the 

sum of the three actions (maximum possible score=100). 

2.7 Outcomes/ dependent variable 

The present study is focused on ARAT which is used as an outcome measure for 

upper limb extremity function after a stroke. This is because ARAT is reported to be 

the most common measure in the literature. Additionally, it is underpinned by good 

psychometric properties (Nijland et al., 2013; Stinear, 2010; Stinear et al., 2012) and 

standardised manner (Yozbatiran et al., 2008). Studies have shown that the ARAT is 

more responsive to improvement in upper extremity function than the Fugl-Meyer 

Assessment (FMA) in chronic stroke patients undergoing forced use treatment (Van 

Der Lee et al., 2001). Furthermore, another study showed that the ARAT was a more 
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stable way of scoring than the Wolf motor test based on a Bland-Altman plot (Nijland 

et al., 2010a).  

2.8 Systemitic literature review methodology 

Search strategy: references for this literature review focus on "prediction of upper limb 

recovery after stroke", reviews published in the English language for humans only, from 

1978 to 2015. The search was conducted in MEDLINE with the following keywords: 

‘‘predict’’, ‘‘forecast’’, ‘‘prognosis’’, ‘‘upper limb’’, ‘‘recovery’’, ‘‘stroke’’, ‘‘Statistical 

Models". A search retrieved 369 publications, some of which related to the prediction 

of stroke; the electronic search method was as the following:  

 (S1- S3) were (stroke) or (cerebrovascular disease) or (NH "Ischaemic 

Attack, Transient") or "Ischaemic Attack, Transient") or "Cerebrovascular*". 

 (S4-S11) were (arm) or (hand) or (shoulder) or (elbow) or (wrist) or 

(finger) or (thumb) or (MH "upper Extremity") or (upper limb). 

 (S12-S15) were (predict) or (forecast) or (prognosis) or (MH "Models 

statistics").  

 (S16) was (MH" Recovery of function") or (recover). 

 (S17) was (S4 OR S5 OR S6 OR S7 OR S8 OR S9 OR S10 OR S11). 

 (S18) was (S12 OR S13 OR S14 OR S15). 

 (S19) was ((MH "Infarction, Middle Cerebral Artery") OR (MH 

"Infarction, Anterior Cerebral Artery") OR (MH "Infarction, Posterior 

Cerebral Artery") OR "Cerebral Artery"). 

 (S20) was (S1 OR S2 OR S3 OR S19). 

 (S21) was (S16 AND S17 AND S18 AND S20). 
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 (S22) was (S16 AND S17 AND S18 AND S20) and (Limiters – English 

Language; Human). More information sees in Table 2-1. 

 

Table 2-1 Process of systematic literature review. 
   Keywords Method Database No. of 

Article 
S1 Stroke Search modes - 

Boolean/Phrase 
Interface- EBSCOhost Research 
Databases, Database – MEDLINE 

208,867 

S2 (MH "Ischaemic 
Attack, 
Transient") OR 
"Ischaemic Attack, 
Transient" 

Search modes - 
Boolean/Phrase 

Interface - EBSCOhost Research 
Databases Search Screen - Advanced 
Search Database - MEDLINE 

17,942 

S3 "Cerebrovascular" Search modes - 
Boolean/Phrase 

Interface - EBSCOhost Research 
Databases  
Search Screen - Advanced Search 
Database – MEDLINE 

115,374 

S4 Arm Search modes - 
Boolean/Phrase 

Interface - EBSCOhost Research 
Databases  
Search Screen - Advanced Search  
Database – MEDLINE 

285,966 

S5 Hand Search modes - 
Boolean/Phrase 

Interface - EBSCOhost Research 
Databases  
Search Screen - Advanced Search  
Database – MEDLINE 

562,183 

S6 Shoulder Search modes - 
Boolean/Phrase 

Interface - EBSCOhost Research 
Databases Search Screen - Advanced 
Search Database - MEDLINE 

59,746 

S7 Elbow Search modes - 
Boolean/Phrase 

Interface - EBSCOhost Research 
Databases Search Screen - Advanced 
Search Database - MEDLINE 

29,332 

S8 Wrist Search modes - 
Boolean/Phrase 

Interface - EBSCOhost Research 
Databases Search Screen - Advanced 
Search Database - MEDLINE 

34,976 

S9 Finger Search modes - 
Boolean/Phrase 

Interface - EBSCOhost Research 
Databases Search Screen - Advanced 
Search Database - MEDLINE 

129,547 

S10 "Thumb" Search modes - 
Boolean/Phrase 

Interface - EBSCOhost Research 
Databases Search Screen - Advanced 
Search Database - MEDLINE 

16,600 

S11 (MH "Upper 
Extremity") OR 
"upper limb" 

Search modes - 
Boolean/Phrase 

Interface - EBSCOhost Research 
Databases Search Screen, Advanced 
Search Database - MEDLINE 

19,924 
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S12 Forecast Search modes - 
Boolean/Phrase 

Interface - EBSCOhost Research 
Databases Search Screen Advanced 
Search Database - MEDLINE 

1,088,066 

S13 Predict Search modes - 
Boolean/Phrase 

Interface - EBSCOhost Research 
Databases Search Screen - Advanced 
Search Database – MEDLINE 

79,606 

S14 "prognosis" Search modes - 
Boolean/Phrase 

Interface - EBSCOhost Research 
Databases Search Screen - Advanced 
Search Database – MEDLINE 

525,488 

S15 (MH "Models, 
Statistical") 

Search modes - 
Boolean/Phrase 

Interface - EBSCOhost Research 
Databases  
Search Screen - Advanced Search  
Database – MEDLINE 

70,046 

S16 (MH "Recovery of 
Function") OR 
"recover" 

Search modes - 
Boolean/Phrase 

Interface - EBSCOhost Research 
Databases  
Search Screen - Advanced Search  
Database – MEDLINE 

510,640 

S17 S4 OR S5 OR S6 
OR S7 OR S8 OR 
S9 OR S10 OR S11 

Search modes - 
Boolean/Phrase 

Interface - EBSCOhost Research 
Databases  
Search Screen - Advanced Search  
Database – MEDLINE 

1,017,483 

S18 S12 OR S13 OR 
S14 OR S15 

Search modes - 
Boolean/Phrase 

Interface - EBSCOhost Research 
Databases  
Search Screen - Advanced Search  
Database – MEDLINE 

1,610,745 

S19 (MH "Infarction, 
Middle Cerebral 
Artery") OR (MH 
"Infarction, 
Anterior Cerebral 
Artery") OR (MH 
"Infarction, 
Posterior Cerebral 
Artery") OR 
"Cerebral Artery" 

Search modes - 
Boolean/Phrase 

Interface - EBSCOhost Research 
Databases  
Search Screen - Advanced Search  
Database – MEDLINE 

29,383 

S20 S1 OR S2 OR S3 
OR S19 

Search modes - 
Boolean/Phrase 

Interface - EBSCOhost Research 
Databases  
Search Screen - Advanced Search  
Database – MEDLINE 

315,345 

S21 (S1 OR S2 OR S3 
OR S19) AND (S16 
AND S17 AND S18 
AND S20) 

Search modes - 
Boolean/Phrase 

Interface - EBSCOhost Research 
Databases  
Search Screen - Advanced Search  
Database – MEDLINE 

447 

S22 (S1 OR S2 OR S3 
OR S19) AND (S16 
AND S17 AND S18 
AND S20 

Limiters - 
English 
Language; 
Human  
Search modes - 
Boolean/Phrase 

Interface - EBSCOhost Research 
Databases  
Search Screen - Advanced Search  
Database – MEDLINE 

369 
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In total, 369 articles were found. 30 of these studies were excluded, since they were 

duplicates. 290, were excluded, after reviewing the title and abstract. The forty-eight 

articles that fitted the search criteria were then included for review and there were 

only 14 articles that were considered to study prediction modelling of recovery post-

stroke. Steps were undertaken by the researcher and the project supervisor to obtain 

a more robust result. A flow chart shown below presents the search process.  

 

Figure 2-2 Flow diagram of literature review 
 

Title identified (n=369) 

Records after duplicates removed  
(n=339) 

Records excluded  
(n =30) 

 

Records screened to title and abstract  
(n=339) 

 

Records excluded  
(n=290) 

 

Full-text articles assessed for eligibility 
(n=49) 

Full-text articles assessed for eligibility 
(prediction model) (n=14) 
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2.9 Prediction 

Prediction is a term used to define what is expected to happen in the future, or as a 

definition of problems estimation. The tools that are used to predict are called 

prediction models. In the clinical field, the prediction model is called a clinical 

prediction model/clinical prediction rule. The clinical prediction models are clinical 

instruments that quantify the individual’s variables. These variables are analysed 

and studied to understand their contribution to that individual’s diagnosis, prognosis 

and expected response to treatment. These variables can take many forms, such as 

an individual’s medical history, results from physical examination and other medical 

investigations (McGinn et al., 2000). These models are used to predict the risk of 

disease development in a person, or to predict health outcomes in individuals. In 

stroke recovery, prediction models play a significant role in evidence-based clinical 

decision-making by objectifying, simplifying and increasing the accuracy of the 

expected patients’ future functioning level (Veerbeek et al., 2011). Thus, there have 

been differences in studies on predictions made for motor recovery (Feys et al., 

2000a), activities (Kwakkel and Kollen, 2013), functional recovery (Wang and Fan, 

2014) cognitive function (Suzuki et al., 2013), spontaneous neurological recovery 

(Arboix et al., 2003), independence in activity daily living (ADL) (Schiemanck et al., 

2006; Woldag et al., 2006) and mobility (König et al., 2008). For upper limb recovery, 

many studies have presented prediction models of upper limb recovery as described 

in Table 2-2. 
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It is important to highlight some points and discuss them relative to the 

aforementioned studies. Firstly, most of these models have been developed based on 

the data from restricted sources. This causes a problem because the data, used to 

develop the models, does not present a typical sample of the broader stroke 

population. Furthermore, the rehabilitation cohort may have prognoses that are not 

representative of all stroke patients. Utilisation of such data will be negatively 

reflected in the developed models. This would render the models to be predictively 

biased, or at least would limit their predictions to populations characteristically like 

their own. Consequently, the developed models will not be clinically applicable, 

except on similar populations (Kwah and Herbert, 2016).  

Secondly, even though most of the reviewed studies discussed the technique of their 

model development (for example multiple linear or binary logistic regression 

methods), very few studies have illustrated information regarding the probability 

value used for variable acceptance and methods of related variable selection used in 

model development. An example is the use of the stepwise methods or some criteria 

(Bayesian Information Criterion). This reduces the methodological quality of the 

developed prediction models for upper limb recovery and makes their predictive 

value clinically less accurate. 

Thirdly, most developed models to date cannot specify the expected value of a 

patient’s outcome precisely. Moreover, most prediction methodologies failed to 

present information about the performance of the developed model and failed to 

confirm its internal and external validity. This is vital because prediction rules are 

always less accurate when retested in new/independent patient groups (Kwah and 

Herbert, 2016).   
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Finally, the main aim of more accurate prediction is to gain knowledge about various 

aspects of recovery post-stroke that could be implemented to plan more effective and 

efficient treatment/therapeutic programs. For example, the selection of a suitable 

physiotherapy program in order to gain the expected outcome depends on the 

capacity to decide which stroke survivors are expected to recover the function of the 

hemiplegic arm (Kwakkel et al., 1996). It is important to a stroke unit management 

to be able to predict recovery of dexterity and independence in ADL’s early enough 

(within the first 72 hours post-stroke). To achieve this level of clinical accuracy of 

prediction models, it is important to use a representative population in developing a 

model, demonstrate appropriate/modern methods of variable selection and test the 

internal and external validity of the developed model to ensure that their predictive 

power will be reflected positively into clinical practice. 

2.10 Predictors 

The upper limb extremity is mildly to severely affected in about 70% of stroke 

patients (Coupar et al., 2012). Although patients are being treated to improve the 

upper limb, most of these patients remain with a non-functional affected upper limb. 

Furthermore, in many cases the improvement in the ability to move the upper limb 

has been achieved, but the upper limb is not used for daily function (Rand and Eng, 

2015). To achieve an efficient model of predicting recovery of upper limb, predictors 

variables must be easy to collect, reliable and clinically meaningful. The efficient 

model may be useful to both clinicians and researchers, to explain outcomes, to 

improve the design and analysis of clinical trials, to determine suitable interventions, 

and to precisely inform patients of likely outcomes.  
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Previous studies have investigated numerous variables (Table 2-3) for their ability 

to predict upper limb recovery. Cioncoloni et al. (2013) have demonstrated the effect 

of some predictors on the long-term recovery in complex activities of daily living 

before discharge from the stroke unit. This study reported that the group of 

predictors such as strength of the paretic upper limb, age, gender, and the ability to 

perform basic ADL’s had a significant effect at 10 days post-stroke and on 

independence in complex ADL’s at six months. Loewen and Anderson (1990) 

clarified that some rehabilitation variables, such as, Modified Motor Assessment 

Scale (motor status) and the Barthel Index (ADL’s), have the ability to predict the 

motor and functional outcomes of stroke patients(Loewen and Anderson, 1990). The 

study of Smania et al. (2007) found that not only was the active finger extension scale 

a strong early predictor of recovery for  independence in ADL’s, but also  could be 

essential in order to plan a specific therapy after the onset.  

A systematic review of voluntary arm recovery in hemi-paretic stroke was performed 

to give evidence that the neurophysiological measures and initial sensorimotor 

abilities are the best predictors of voluntary arm movement after stroke (Chen and 

Winstein, 2009). It was focused on categorizing the predictive variables and 

associated outcome measures in terms of International Classification of Functioning, 

Disability and Health. Steiner's review gave evidence that the review of prediction of 

motor recovery considered only the predictive value of motor impairment scores, 

neuroimaging and neurophysiological assessment (Ackerley and Stinear, 2010). 

Steiner concluded that these tools could be useful in enhancing the accuracy of the 

final prediction. A systematic review and meta-analysis of predictors of the upper 

limb post-stroke categorised predictors into five main groups of the predictors as 
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follows, demographic factors, the severity of stroke as a global factor, severity of focal 

factors, co-factors related to stroke impairment and neurophysiological factors. 

Furthermore, this systematic review reported that the most powerful predictors of 

upper limb recovery are the baseline levels of upper limb impairment and function 

and intact motor- evoked somatosensory potentials (Coupar et al., 2012).   

Although there are 85 predictors which have been tested in different ways in 

previous studies (Gebruers et al., 2014), we need to check the impact of each 

predictor in the group, as per Table 2-3 below, in order to determine which 

predictors have a real effect on the prediction to avoid over-fitting and under-fitting 

in terms of statistical conceptual and which could be developed as a useful model in 

people who could not be meaningfully measured.   

Table 2-3 Predictors of upper limb functional recovery post-stroke. 

 
Demographic and 

historical predictors 

Clinical measures of 
impediments 

Clinical measures of functional 

activities and measures 

participants 

Sensory  Motor  

- Age  
- Gender 

- Pre-stroke 
independence. 

- The stroke sides. 
- The lesion size of 

stroke. 
 

- Upper 
limb 
sensory 

- NIHSS 
sensory 
deficit 

- NIHSS of 
arm and 
leg Motor.  

- Motricity Index 
- Nottingham EDAL total 
- Barthel Index 

One of the important independent variables is National Institutes of Health Stroke 

Scale (NIHSS). NIHSS is a measure used to assess the severity of symptoms in patients 

with cerebral infarcts. The NIHSS was derived from four other scales namely the 

Toronto Stroke Scale, the Oxbury Initial Severity Scale, the Cincinnati Stroke Scale 
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and the Edinburgh-2 Coma Scale(Brott et al., 1989). The NIHSS includes 15 items, and 

the total score is between (0- 42). A higher score means a more severe stroke. It is a 

very simple and quick quantitative measurement. The NIHSS is a reliable, valid and 

responsive instrument for evaluating the severity of stroke. However, some items of 

NIHSS have poor reliably for example (level of consciousness, facial palsy, limb ataxia, 

and dysarthria) (Meyer et al., 2014). 

The NIHSS was developed as a clinical stroke assessment instrument. It is widely 

used to evaluate acute stroke and document the neurological status in stroke 

patients. It is crucial for predicting the outcome after stroke as it helps physicians to 

provide accurate information to patients and develop good targets. 

2.11 Methods of prediction of recovery 

Accurate prediction models have become critical issues when they are used for 

predicting recovery outcomes of a survivor post-stroke. Many of the reasons for 

lacking accuracy have been attributed to general factors affecting most potential 

predicting, such as the selection of predictors, the selection of the statistical 

estimating method of models’ parameters and the increasing lack of validation in 

stroke’s prediction models. It is argued in many studies that these general factors 

should not lead to prediction deficiency (Murray et al., 2012). 

Different statistical models have been employed for predicting recovery (motor, 

function) post-stroke in different studies (Feys et al., 2000a; Katrak et al., 1998; 

Kwakkel and Kollen, 2013; Schiemanck et al., 2006; Suzuki et al., 2011). The multiple 

linear regression has been shown to be the most popular method used in previous 

studies. This type of modelling has been found to be suitable for predicting the 
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outcome at a fixed time point, for instance, three months post- stroke(Tilling et al., 

2001b). However, the functional recovery has nonlinear features over time. 

Therefore, the linear modelling is not an accurate method for predicting (Koyama et 

al., 2005).  

The study by Tilling et al. (2001a), presented multi-level modelling as a new 

approach for predicting recovery depending on statistical theory. This study 

reported that the standard statistical analysis is not suitable for longitudinal 

outcomes since the number of patients in the study may drop during the time and 

frequent assessment of the same patients are not independent (Tilling et al., 2001b). 

Some studies (Arboix et al., 2003; Cioncoloni et al., 2013; Gebruers et al., 2014; 

Weimar et al., 2002) depend on logistic regression models that are applied to identify 

the recovery in patients post stroke. On the other hand, the studies by Suzuki et al. 

(2006), Koyama et al. (2005) and Gert Kwakkela (2007) determined that 

spontaneous recovery depends on the progress of time alone. The later concept 

depends on logarithmic modelling for predicting ADLs in stroke patients by using 

two measures: FMA and cognitive function soon after stroke. These are taken at two 

time point assessments which allows plotting of the high fitting curve (Suzuki et al., 

2013). 

What makes the problem of predicting recovery post-stroke more complicated is the 

heterogeneity of the patients’ outcomes of stroke and the limitations of validating 

statistical prediction methods. Due to the lack of the three sorts of validation levels 

being used, the current prediction models have lack of accuracy. Although there are 
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difference studies which have tried to handle and access a simple way of predicting, 

the prediction models still suffer from the lack of the external validation. 

2.12 Discussion  

Accurate prediction modelling could have potential to achieve an important role in 

serving rehabilitation centres or decision-makers in stroke management(Enderby et 

al., 2017). These tools could help clinicians to deliver patients with more accurate 

prognoses, clarify goal setting and make a convenient plan for therapies and shorten 

hospital/centre stay. Ultimately, this accurate prediction could enable efficient 

utilization of limited stroke care resources. However, there are some limitations that 

have negatively affected the prediction accuracy of a model. Some of these points 

have been discussed previously. Firstly, based on the literature, most prediction 

studies have developed their models on patients who are only involved in 

rehabilitation or clinical experiments. Consequently, the values produced by 

prediction models have biases and do not represent the stroke population (i.e. they 

are more motivated). Clinical experiments, for example, often select patients using 

strict inclusion criteria and by the nature of rehabilitation studies, the majority of 

studies are single blinded. In addition, rehabilitation recipients, may have special 

characteristics depending on the rehabilitation they are receiving, as trials usually 

have defined rehabilitation protocols. Both conditions will render the sample to be 

not representative of the wider stroke population (Kwah and Herbert, 2016). Despite 

that, the models could be useful in assisting clinicians to predict outcomes of patients 

in rehabilitation.  
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Secondly, in studies concerning prediction models, outcome measures used as 

predictors in the models’ development vary. This variance could range from using 

clinical measures to using neuroimaging and neurophysiological tests. Consequently, 

each model selected different important related predictors. However, none of these 

studies considered the clinical importance and applicability of the selected 

predictors in rehabilitation centres/clinics. This means, that important predictors 

selected by a model could be clinically inefficient to apply, as some are more 

expensive and clinically very difficult to collect(Counsell et al., 2002; Kwah and 

Herbert, 2016; Kwakkel and Kollen, 2013).   

Finally, several guidelines have been reported that make recommendations about the 

process of prediction model validation (Altman et al., 2009; Bustamante et al., 2014; 

Kwakkel and Kollen, 2013; Kwakkel et al., 1996). However, most of the previous 

prediction models have been developed without checking the model validation. As a 

result, researchers cannot recommend these models to be implemented in clinical 

practice and the models developing must be internally and externally validated. 

2.13 Conclusion   

The literature review introduced various types of studies and pieces of research 

about prediction of recovery in a patient post- stroke. The outcome of recovery for 

patients post stroke has heterogeneity and there is no specific technique to measure 

recovery of function. The recovery of function does not have a linear pattern and the 

maximum recovery happens in the first three months post- stroke. On average, stroke 

recovery plateaus three- to six-months post-stroke.  
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There are three kinds of measurement instruments (clinical measurement, 

neurophysiological and neuroimaging) used to assess the factors which are related 

to stroke. Many predictor variables are used to predict the recovery of patients in 

stroke, for example gender, age, severity of the stroke, limb dysfunction and the 

location and size of brain lesion. However, it is noted that only a few predictors are 

able to explain a change in recovery over time or through an intervention.  

The most popular statistical models for predicting recovery post-stroke are multiple 

linear regression and logistic regression. However, based on the literature, these 

methods do not take enough concern on predictor variables selection, developing 

and testing the performance of the model, such as internal and external validity for 

achieving a satisfying clinical prediction (Kwah and Herbert, 2016; Veerbeek et al., 

2011). This has resulted in the following limitations: Current models are still 

misclassifying a certain number of clients or patients. In most of the studies, 

prediction models of upper limb recovery post-stroke have not been fully tested 

prospectively. The heterogeneity is so large that some of the models are not 

representative of an individual. Therefore, the main purpose of this research was to 

develop a model that can be used to predict an individual’s recovery potential using 

baseline hospital admission data and other demographic variables.  

2.14  Highlight points 

It seems that developing models is a straightforward process that consists of 

selecting a modelling approach, linking it with data and producing a prediction 

model. The method will create a prediction model that might not be as reliable and 

accurate when using it with a new data set. To produce an accurate model, I was first 
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required to understand the data and identify the model’s objectives. Then, I would 

pre-process and split the data. Only after implementing these steps, did I proceed to 

developing, evaluating and presenting the models. 
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3 Predictors variable selection and models’ performance 

methods 

3.1 Regression analysis 

Regression analysis is a method of predictive modelling which estimates the 

relationship between a dependent (outcome) and one or more independent 

variables (Steyerberg, 2009). Regression analysis is used for finding the causal effect 

relationship between the variables. For example, the relationship between stroke 

and age is best studied through regression (Alexopoulos, 2010). It is an important 

tool for analysing clinical research data.  

In its simplest form, regression analysis allows clinician researchers to analyse 

relationships between one independent and one dependent variable. In medical 

applications, the dependent variable is usually the outcome we are most concerned 

with, in this case the recovery from stroke. On the other hand, the independent 

variables include biographical variables (for example age), neuroimaging variable 

(for example MRI) and clinical measures (for example, the severity of stroke). The 

key advantages of using regression analysis are that it can: 

1. Explain if predictors have a significant relationship with an outcome. 

2. Show the relative strength of different predictors’ effects on a dependent 

variable (outcome) and make predictions. 

Since there are numerous metrics of independent and dependent variable and 

regression line, there are different types of regression styles to make predictions and 

in this research, I will be using logistic regression, as it is the most common data 
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analysis method for modelling the relationship between a binary response 

variable/outcome and a set of predictors. 

A key part in the regression modelling of data is prediction’s variables selection. 

Over the years, several selection techniques have been proposed in the setting of 

logistic regression models, and these can be introduced as one case of general linear 

models (GLMs) cases. Therefore, methods proposed for selecting linear regression 

models are helpful to exploit approaches in logistic model selection.  In fact, some 

model selection methodologies in logistic regression models are initiated from linear 

regression(Mille, 2002; Steyerberg, 2009). 

Predictors selection is a statistical process which aims to select the best subgroup of 

predictors and to reduce the redundant predictors in the model. This is an essential 

step and arguably the hardest part of developing a model, especially with data sets 

containing many candidate predictors (Ryan, 2008). The idea here is to shrink the 

multiple/many predictors variables to a smaller subset containing only the 

paramount variables. The logic behind reducing the number of variables in a model 

is that the model obtained is more numerically stable and easier to use in practice. 

When a model is developed without proper predictors variable selections, this could 

lead to an increase in the estimated standard errors, and an increased dependency 

of the model on the initial dataset, and therefore overfitting. Overfitting is typically 

characterized by unrealistically large estimated coefficients and/or estimated 

standard errors. This can be especially troublesome if the number of model 

predictors is large relative to the number of sample size. 

Predictor selection methods aim to select an optimal subset of predictors variables 

that contain relevant information, and thereby improving prediction models. This 
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should be achieved by improving the accuracy of prediction and/or simplifying 

interpretability of the model’s results. Additionally, the variance of outcome 

prediction and parameter estimation is affected by the number of predictors that are 

chosen. Adding a new predictor would always have an impact on increasing the 

magnitude of both variances: the model’s prediction variance and estimated 

coefficients’ variance.  

3.2 Types of methods of predictor selection. 

3.2.1 Method 1: Traditional methods 

Traditional methods are purely based on statistical significance of the relationship 

between independent variables and dependent variable. These methods are and 

continue to be utilised due to their high acceptance rate and popularity among 

scholars (Ryan, 2008). Although there are many similarities between the model 

selection in linear and logistic regressions, there are some differences. For example, 

some criteria of linear regression cannot be applied in logistic regression in the same 

manner, and vice versa. Traditional methods of predictor selection include: all sub-

selection based on the criteria methods and stepwise regression selection 

(backwards elimination selection methods, forward elimination selection methods, 

and combination of both). 

3.2.1.1 Best subset selection  

The best subsets approach aims to find out the best fit model from all possible sub-

set regression models. It begins with fitting all models that include one predictor, 

all models that include two predictors, then three predictors, and so on until the 

total number of predictors has been completed(Mille, 2002). Then, the subset 
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approach compares all models and selects the best model based on one of the model 

selections of stopping criteria, which will be discussed in more detail later. Although 

the best sub-set procedure is straightforward to implement, it does require a 

challenging computational capacity when the number of candidate predictors (p) is 

large. If there are p predictors, the number of all possible sub-set is 2p. As p 

increases, the number of possible models raises steeply. In general, best subset 

selection becomes unachievable when the number of predictors is greater than 30. 

Furthermore, it tends to over-fit a model with irrelevant predictors, and the final 

model would be very unstable. To overcome this limitation, statisticians developed 

a method that limits the required computational operations – hence stepwise 

regression methods(Steyerberg, 2009). 

3.2.1.2 Stepwise regression methods 

Over the past decades, the most common methods for selecting variables in medical 

studies are stepwise variants selection methods. These approaches work by 

including the most significant predictors based on inclusion criteria based on two 

types of inclusion criteria. The first type includes F-test and T test that are used to 

test of significance for a set and individual regression coefficients in linear 

regression. The second is the Wald χ2-test that is used the test of importance for 

individual regression coefficients in logistic regression(Kutner H.Micheal, 2005). 

Three types of stepwise subset selection exist. These are: backward elimination, 

forward selection and a combination of both previous types (Steyerberg, 2009). 

3.2.1.3 Backward elimination   

Backward elimination method can be used for predictor selection in both linear and 

logistic regression. It starts with a model that involves all predictors. Predictors are 
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then removed from the model one by one, then removing all predictors with non-

significance and then re-testing the model. This is repeated until only predictors 

with a statistically significant effect on the dependent/response variable remain. 

The number of models required to fit in backward elimination is equal to 1 + 𝑝(𝑝 +

1)/2 models; therefore, it delivers another efficient alternative to the best subset 

selection method (Ryan, 2008). 

3.2.1.4 Forward selection  

As a reverse procedure of backward selection, the forward selection begins by 

testing the significance of effects of all potential predictors, followed by choosing 

the predictor that had the highest significance level of them. For example, in logistic 

regression the best fit is a model that has the smallest deviance. Then, the next step 

consists of sequentially entering the remaining predictors into the model, testing 

the significance of the added predictor in the model, and finally keeping only 

predictors that achieve a good model fitting. Finally, the most significant of these 

candidate predictors are retained to the model (Ryan, 2008). 

3.2.1.5  Stepwise regression 

The stepwise selection is a combination approach of forward selection and 

backward elimination. As in forward selection, predictors are included in the model 

sequentially in a stepwise selection. However, after adding each new predictor, the 

method may also delete any predictors that become no longer significant at each 

time a new predictor is added. Such an approach intends to imitate best subset 

selection while holding the computational advantages of forwarding selection and 

backward elimination (David W. Hosmer 2013). 
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3.2.1.5.1 Stopping criteria  

The stopping rule for inclusion or exclusion of predictors is the main problem in 

classical selection methods. It is far more important than the specific variant of the 

stepwise selection method (for example forward, backward, combined, all possible 

subsets). Several measures are proposed to help to use the best subset selection, 

such as Mallows Criteria. 

3.2.1.5.2 Mallows criteria 

Mallows in 1973 proposed a 𝐶ఈ  statistics. It depends on using criterion to compare 

with a different subset of regression models(Mille, 2002). The criterion includes 

finding the out-of-sample prediction residual for each model indexed by α; the 

Mallow’s criteria has the formula as:  

𝐶ఈ =
‖𝑦 − 𝑋ఈ𝛽ఈ‖

𝜎ොଶ
− 𝑛 + 2𝑝ఈ (3.1) 

 Where:  

σ 2̂ is the unbiased error of the full model. The best model is with a minimum value 

of criteria. The selection predictors based on these criteria in each step is that the 

predictor will be selected when it is corresponding the smallest value of criteria; or 

deleted if it is corresponding the largest value of 𝐶ఈ. 

The Mallow’s drawback is that it is selecting model with unknown data generating 

process. For the other types which are Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC).  

The best subset selection and stepwise selection methods have the advantage in 

their availability in commonly used software and their suitability to handle missing 
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data. They are also relatively objective and usually reach their goal of making a 

model smaller. For example, if another analyst is delivered with the same list of 

candidate predictors in the same data set, the result of predictors selection would 

possibly be very similar. This property of stepwise makes it possible to repeat this 

selection procedure of validation in methods such as Bootstrap method (Steyerberg 

and Vergouwe, 2014).  

However, these methods have many drawbacks, such as instability of the selection. 

In addition, Steyerberg (2009) reported that the stepwise methods have a lack of 

stability of the sub-set selection predictors. This means a small change in the data 

causes a large change in the results, especially their predictive errors; their bias in 

coefficients’ estimation; misspecification of variability and exaggeration of p-

values. Ultimately, these drawbacks would worsen provision of predictions’ quality 

than the full model. Additionally, these drawbacks would increase when predictors 

are correlated among each other, or the model is dealing with a relatively large 

number of predictors, or both (Frank  E harrell 2001). Therefore, the penalized 

methods play a vital role in selecting predictors and developing models. The next 

section will review penalized selection methods which are proposed to address the 

weaknesses of sub-set selection. 

3.2.2 Method II: Modern methods  

Despite having many drawbacks, the classical methods of best sub-sets selection in 

predictive models are widely used in practice. In last two decades, a few methods 

have been suggested to overcome the previously discussed obstacles of the classical 

sub-set selection methods. These methods are Bootstrapping, Uniform Shrinkage 
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and Penalised Maximum Likelihood that have been developed to improve sub-set 

selection. 

In 1996, Tibshirani presented a new method of selecting predictors that was called 

least absolute square of shrinkage operators (LASSO). LASSO reduces the predictors 

that have small coefficients depending on a new penalty for linear regression 

(Tibshirani, 1996). L1 norm was used instead of L2, and their formula is:  

 
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑜𝑓(𝛼, 𝛽) = arg 𝑚𝑖𝑛 ൝෍(𝑦௜ − α − ෍ 𝛽 𝑥௜)ଶ + 𝜆‖𝛽‖ଵ

௡

௜ୀଵ

ൡ 

 

(3.2) 

 

3.2.2.1 Bootstrap of selection  

Bootstrap selection method concept is a combination of a bootstrap resampling 

method and the classical selection variable methods. The idea behind the use of the 

bootstrap methods is to generate (K) random samples of the data taken with 

replacement.  After which, and for each bootstrap sample, selection predictors 

methods can be applied. For example, stepwise selection variables methods are 

used with entry and retention criterion (α=0.05) or predictors are selected from the 

full model with criterion less than (α), accounted from the Wald- χ2 test and save 

the result (Efron and Tibshirani, 1994).  

In the next step, the selected predictors are ordered and ranked based on the 

predictors’ frequency in all the created bootstrap samples. A threshold criterion is 

then applied to eliminate predictors from the original model that fitted the original 

sample; for example, select predictors that repeatedly showed for 50 time. The 

principle of constructing models, using bootstrap selection (Ryan, 2008), is similar 
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to stepwise selection in the original data, which is dependent on the same stopping 

rule. For example, predictors with low p-values in the original sample tend to be 

selected with high frequency in bootstrap samples. Some of these results could 

improve the model, however, there is no clear evidence of the benefits of this 

procedure. 

3.2.2.2 Regularization methods 

The most commonly employed prediction models of recovery post-stroke are 

classical methods, which is based on typical multivariate linear and logistic 

regressions (Kwah and Herbert, 2016). In these two regressions, two issues must 

be addressed when developing a model. The first issue is choosing essential 

predictors and the second is estimating the model coefficients. However, there are 

many more modern approaches able to capture higher order interactions in the 

data for example Penalisation/ Regularisation methods. The methods selected for 

developing a prediction model in this work were Penalised Logistic Regressions 

(PLRs). PLRS methods include LASSO, Adaptive LASSO (ALSSO) and Group of LASSO 

(GLASSO). In this chapter a more detail overview of each of these models is 

provided and the rationale for choosing these types will be presented. 

3.2.2.3 LASSO logistic regression: 

I start with the typical logistic regression to describe the LASSO logistic regression 

technique. Typical logistic regression has been a common approach in clinical 

prediction studies and clinical research for the past four decades. Logistic 

regression is a linear classifier that is used when the response/outcome is binary 

and follows the binomial distribution. Statistically, logistic regression aims to 

maximize the conditional probability of the outcome given the predictors’ 
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information. Let us assume that I have a vector of observations with binary 

outcomes 𝑦௜ . Each outcome is associated with p predicting variables that are 

represented by the design matrix 𝑥௜௝ (  = the number of patients and 𝑗= the number 

of predictive variables), and the objective is to find the prediction 𝑦పෝ  , which is 

calculated using: 

 𝑦ො = log൫𝑝(𝑥)൯ = 𝑥𝛽መ  (3.3) 

Where: 𝛽መ  is the vector of the estimated regression coefficient(s) 

The estimation of the unknown coefficients is needed to satisfy the prediction in 

the (3.2). Then, I use the log likelihood method to estimate these coefficients. The 

log likelihood is the popular approach for estimating the unknown coefficient(s) 

and assessing the fitting of the logistic model. The log likelihood can be estimated 

as follows: 

 𝑝(𝑦|𝑥) = 𝑝(𝑥)௬೔ ൫1 − 𝑝(𝑥)൯
ଵି௬೔  (3.4) 

 𝑝 log൫𝐿(𝛽)൯ = ෍ 𝑦௜𝑙𝑜𝑔𝑝(𝑥) + 1 − 𝑦௜ log൫1 − 𝑝(𝑥)൯

௡

௜ୀଵ

 (3.5) 

The idea behind using the maximum likelihood is to find the estimated coefficients 

of models’ parameters that maximize the log൫𝑙(𝑦ො|𝑦)൯. I can substitute the 𝑦పෝ , as 

follows: 

 

 log൫𝐿(𝛽)൯ = ෍ 𝑦௜𝑙𝑜𝑔𝑝(𝑥) + 1 − 𝑦௜ log൫1 − 𝑝(𝑥)൯

௡

௜ୀଵ

 (3.6) 
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The process of using the method of typical logistic regression could be limited due 

to two conditions: first, when the number of predictors is large, and second, the 

existence of multicollinearity issue among predictors. The high number of 

predictors and the multicollinearity cause two negative side effects on model 

performance. Due to the increasing complexity of models dealing with many 

predictors, the model performs well during the training stage, but the model’s 

accuracy significantly decreases in the testing stage. The second negative effect is 

the increasing difficulty in interpreting predictors effect with instable estimated 

coefficients in the model, due to many variables and unstable estimated coefficients. 

One method that can counteract this phenomenon is the least absolute square 

shrinkage of operators. The LASSO word comes from the abbreviated “Least 

Absolute Shrinkage and Selection Operator”. LASSO is the second constrained 

version of ordinary least square (OLS) method. It was proposed by Tibshirani in 

(1996) using L1-norm instead of the L2-norm in the first version of penalised 

methods (Ridge regression). LASSO is in some sense like ridge regression; however, 

LASSO can give more interpretable results because LASSO can shrink some 

coefficients to zero. The model’s coefficients are bounded by some positive number, 

hence the penalty. This penalty maximises the log-partial likelihood of the model 

coefficients (Tibshirani, 1996).  

In the context of logistic regression, LASSO refers to the addition of a term to the 

likelihood function, which is based on the estimated coefficient values. Adding a 

penalty term to the log-likelihood function due to the typical form of LASSO logistic 

regression, which could be written as follows: 
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 log൫𝑙(𝑥௜𝛽)|𝑦)൯ = ෍ 𝑦௜log (𝑥௜𝛽) + 1 − 𝑦௜𝑙𝑜𝑔൫1 − (𝑥௜𝛽)൯ + 𝜆‖𝛽‖ଵ

௡

௜ୀଵ

 (3.7) 

 

Where: β refers to a vector of coefficient values and λ is a penalty which controls 

how strongly penalised the model is. As ‖𝛽‖ଵ is Lan 1-norm constraint that is 

usually chosen to be a positive monotonic function of β, increasing the value of 

penalty (λ) causes to force all model coefficients (β) to zero. In this situation, any 

reduction in the negative log likelihood due to predictively useful predictors would 

be outweighed by the increase due to 𝜆‖𝛽‖ଵ. Conversely, a value of zero for λ implies 

no constraint on the model and provides the solution to the ordinary least-squares 

model.  

In the methods of the LASSO family, the issue of identifying the accurate estimation 

value(s) of the penalisation parameter (λ) is essential and requires to be taken into 

consideration. The estimated value of the parameters’ penalty can have a large 

impact on the performance of the LASSO family methods. In other words, the 

penalty plays a vital role in making the variable selection process consistent. In 

addition, because of its value, it will identify the number of included predictors in 

the model and the amount of bias term imposed on the estimated regression 

coefficients (Androulakis et al., 2014; Fan and Tang, 2013). Several methods are 

considered to estimate the value of this parameter penalty (λ):  

(1) The information criteria, which could be Akaike information criterion (AIC) or 

Bayesian information criterion (BIC), and  

(2) Cross-validation (CV), which could be either normal CV or generalised cross-

validation (GCV).  
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Both information criteria and cross-validation will be discussed in more detail next. 

3.2.2.3.1 Information criteria 

Both of AIC and BIC are very commonly used to determine the selecting tuning 

parameter value in LASSO family methods. These criteria are extracted from the 

log-likelihood for the logistic regression model (Gao et al., 2012; Sun et al., 2013), 

and are noted below: 

1. Akaike Information Criterion (AIC) was proposed as the distance between 

estimated and real outcome in logistic regression models; AIC has the 

formula:  

 𝐴𝐼𝐶 = −2L(β) + 2𝑑𝑓(𝜆)   (3.8) 

 

Where: 𝐿(𝛽) represents the log-likelihood of logistic regression, 𝜆 is the tuning 

parameter and 𝑑𝑓 is the degree of freedom. One drawback of using AIC is that it 

causes overfitting in the model’s variable selection. 

2. In 1978, (Schwarz) proposed Bayesian Information Criterion (BIC), which 

is considered a more consistent method because it uses strength penalty of 

the degree of freedom, and has the following formula:   

 𝐵𝐼𝐶 = −2L(β) + log(𝑛) 𝑑𝑓(𝜆) (3.9) 

Where: 

L(β) is the maximum likelihood function of logistic regression, 𝜆  is the tuning 

parameter,  𝑑𝑓 is the degree of freedom and n is a constant that presents the 

sample size. It is essential to note that the best-estimated value of 𝜆 is when it 
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corresponds to the minimum value of these criteria over a grid of 𝜆 as in formula 

(3.8) or (3.9). 

3.2.2.3.2 Cross-validation method 

Before explaining the cross-validation, it is worthy to mention that the cross-

validation was used for two purposes. First, cross-validation is used to estimate the 

minimum deviance of prediction in the LASSO family methods and for 

finding/selecting the value of tuning parameter 𝜆. Second, cross-validation is used 

to test the validation of model performance, which will be discussed further in 

section 3.5.1(Hastie et al., 2015). 

Cross-validation is a technique that divides the studied dataset randomly into k-

fold/subsets of equal size. Then, I exclude only one subset randomly and calculate 

tuning parameters and the mean square deviances of remaining subsets 

individually. Further, I select the estimated value of a tuning parameter that 

delivers the smallest deviance of prediction. Finally, I use the excluded subset to 

test the model’s performance. In the penalised logistic regression, for example, the 

cross-validation is used to find the appropriate penalisation value of parameter 𝜆 

from the training k-1 folds and holds one-fold for testing the penalised likelihood 

model. The number of subsamples (k) choice between (5) and (10) (James et al., 

2013). Typically, cross-validation can be classified into three types that rely on the 

sample size, as follows: 

 If the sample size is large, we can use more than one-fold for testing of the models’ 

data prediction. In this case, the prediction performance would be evaluated at 

each value of parameter 𝜆, and the model with the smallest prediction’s deviance 

will be selected. 
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 When the sample size is medium, k-fold cross- validation will be a convenient 

approach. Typically, to the K-fold is often be taken between three and ten. 

 With a small sample size k will be equal to the sample, the cross-validation is called 

leave-one-out cross-validation (LOOCV).  

Statistically, if I have 𝑢 = (𝑥𝑖, 𝑦𝑖) data-set, then the steps to perform a cross -

validation process to calculate the optimal value of tuning parameter can be 

summarised as follow: 

1. Split up the given data set 𝑢 = (𝑥𝑖, 𝑦𝑖) randomly into k equally-sized (𝑢௞). 

2. Take one subset out to test the model. 

3. Find the estimated coefficient of model parameter β(k) using LASSO family 

method for each part on the remaining subsets 𝑢௞ = (𝑢ଵ, 𝑢ଶ, … . . , 𝑢௞). I can 

name 𝛽^(𝑘)൫𝜆௝൯ of the LASSO estimated coefficients that represent the fitted 

function 𝑦^
௞

(𝑥, 𝜆௝) of a grid of J values of λ; 𝑗 = 1,2, … , 𝐽 

Calculate the estimation of the expected prediction error of each estimated model 

on the folding test sample 𝑢௞ that is as follows: 

 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟(௞)൫𝜆௝൯ =
𝑘

𝑛
෍(𝑦௜ −

௞

௜ୀଵ

𝑦^
௞

(𝑥, 𝜆௝))ଶ (3.10) 

4. Recalculate both of step in (2) and (3) for all k-fold remaining.  

5. Calculate the estimated means square error of k-fold prediction using: 

 
𝑘 − 𝐶𝑉൫𝜆௝൯ =

1

𝑘
෍ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟(௞)൫𝜆௝൯

௞

௄ୀଵ

ଶ

 
(3.11) 

 

However, when using the LOOCV technique to estimate the optimal value of the 

penalty λ, I can utilise one of the following criteria: either select the value λ-min that 
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delivers minimum mean error cross-validated predictors error or use the first λ1se 

value instead of λmin. 

Based on the literature, I can conclude that the cross-validation method can reduce 

the bias term of the regression sum of square due to splitting the data-set randomly 

into two parts for training and testing. By contrast, the cross-validation gives a 

significant and inaccurate result when the sample size is large with a big number of 

predictors. To solve this problem, Tibshirani presented a new algorithm: 

Generalized Cross-Validation (GCV) (Tibshirani, 1996). 

3.2.2.3.3 General cross-validation (GCV) 

General cross-validation is a modified version of cross-validation that is used to 

estimate the tuning parameter of the LASSO family(Efron and Tibshirani, 1994). 

This method does not need to iterate the refitting model to the different data 

subsets. The formula of general cross-validation is the validation technique which 

can resample data by changing the rules of training and testing the samples. It was 

defined as follow: 

 GCV =
∑ (𝑦௡

௜ୀଵ ௜
− 𝑦ି௜

௜(ఒ))ଶ

𝑛(1 −
𝑑𝑓(𝜆)

𝑛
)ଶ

 (3.12) 

Where: df(λ) is the estimated number of the selected predictor's variables in yˆ(λ). 

The best value of λ can be found by minimizing the equation over a grid of λ as: 

 𝜆௢௣௧௜௠௔௟ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐺𝐶𝑉(𝜆௜)          𝑖 = 1,2, … . , 𝑅  (3.13) 

3.2.2.4 Adaptive LASSO logistic regression  

ALASSO is the new modified version of the LASSO. It was presented by (Zou, 2006) 

to overcome the inconsistent issue of the LASSO. The LASSO asymptotic setup is 
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somewhat biased, because it forces the coefficients to be equally penalized. To solve 

this problem, the shrinkage coefficient penalty, which is adapted from the L1-norm 

penalty, is replaced with a weighted L1-norm penalty. The weighted L1-norm 

penalty can allow a relatively large amount of penalty for zero coefficients and a 

small penalty for nonzero coefficients. This process could reduce the bias of the 

estimated coefficients and improve the variable selection accuracy. ALASSO is an 

effective process to handle some of the bias in LASSO which could be employed to 

shrinkage of the estimated coefficients corresponding to essential predictors. 

Additionally, the LASSO is much more insensitive to many noise covariates. 

As previously mentioned, in this project I am focusing on some methods of Lasso 

family logistic regression model. I assume 𝑦௜𝜖[0,1] is a vector of the binary 

dependent/ outcome variable, 𝑥 is a design matrix of p-predictors and 𝛽௝ is a vector 

of regression’s coefficient parameters, then log-likelihood function is defined as: 

 ℓ(𝛽) = ෍ 𝑦௜𝑙𝑜𝑔𝑝(𝑥) + 1 − 𝑦௜ log൫1 − 𝑝(𝑥)൯

௡

௜ୀଵ

 (3.14) 

The ALASSO solution is obtained by minimizing the equation as followed: 

 ℓ(𝛽) = ෍ 𝑦௜𝑙𝑜𝑔𝑝(𝑥) + 1 − 𝑦௜ log൫1 − 𝑝(𝑥)൯

௡

௜ୀଵ

+ λ ෍ wjหβ୨ห

୮

୨ୀଵ

 (3.15) 

Where 𝑤௝ = (𝑤1, 𝑤2, … . , 𝑤𝑝)் is vector represent the adaptive weighted penalty 

that is 𝑤௝ = ൫𝛽ఫ
෡ ൯

ିఊ
. Where 𝛽መ  is an initial penalty that  comes from solution of the 

Ordinary Least Square (OLS) method, LASSO version method or Ridge Regression 

method(Pan and Shang, 2017). However, using the estimated coefficient of LASSO 

or Ridge regression, to drive the weighted penalty and applying ALASSO, needs two 

stages of process: 
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To find an estimated coefficient of regression using standard LASSO with L1-norm 

penalty/ ridge regression for the data is calculated to represent as the initial 

penalty, as follows: 

 𝑤௝ = 𝑤௝ = ൫𝛽ఫ
෡ ൯

ିఊ
 (3.16) 

Secondly, I substitute the value of the initial penalty, the ALASSO solution is 

transformed as in the equation bellow:  

 𝛽^
஺௅஺ௌௌை = 𝑎𝑟𝑔𝑚𝑖𝑛[− ෍{𝑦௜𝑙𝑛(𝑥𝛽) + (1 − 𝑦௜)ln (1 − 𝑥𝛽

௡

௜ୀଵ

)} + 𝜆 ෍ 𝑤𝑗ห𝛽௝ห

௣

௝ୀଵ

 

 

(3.17) 

3.2.2.5 Group LASSO  

As it was explained when discussing their properties, the LASSO and ALASSO of 

logistic regression have the advantages of delivering simultaneous estimations of 

model’s parameters and predictors selection. In some cases, the predictor's 

variables have a natural group structure. Natural group structure means that the 

variable has more than two categorical levels. For example, severity levels in 

medical conditions can be divided into mild, moderate and severe, in which case 

categorical levels of the variable must be converted into dummy variables. Thus, 

the selection treats an individual variable, which has more than two levels, as a 

group of variables rather than an individual variable (Yuan and Lin, 2006). From a 

prediction perspective, one of the most popular tasks is to divide the predictor 

variables into a different group based on the type of predictor variables. In order to 

address this type of limitation a new procedure was developed which is called the 

Group Lasso method for the linear regression model. This method of penalising 

regression (Ming Yuan, 2006) also can handle the predictors when they are grouped 
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in a linear regression model. The group structure of group lasso is completely 

known in advance which is a very important property of group lasso compared with 

another method. Then, in 2008, Meier et al developed the group lasso of logistic 

regression to overcome the same problems by present a new efficient algorithm 

that works on penalised regression directly. The group LASSO of logistic regression 

is defined as: 

Suppose that  𝑦𝑖 is dependent variable with a binary outcome (0,1) and X is a matrix 

that contains p- dimensional and G predictors. Both types of continuous and 

discrete (categorical) predictors are allowed. I can code the categorical predictor to 

be as a group that contains the number of levels of categorical variable mins one, 

however, a cautious predictor variable contains the only one level. Then I can write 

the conditional probability logistic regression 𝑝ఉ(𝑥௜) = 𝑃ఉ(𝑌 = 1|𝑥௜) by: 

 log ቆ
𝑝ఉ(𝑥௜)

1 − 𝑝ఉ(𝑥௜)
ቇ = 𝛽(𝑥௜) (3.18) 

And  

 𝛽(𝑥௜) = 𝛽ఖ + ෍ 𝑥்
௜,௚

ீ

௚ୀଵ

𝛽௚ (3.19) 

Where:  𝛽
0
 is represented the intercept and  𝛽௚ is the parameter vector 

corresponding to the gth predictors variables. Estimated the vector of parameters is 

needed. Using the minimizer of convex function to obtain the estimated coefficient 

of parameters which is solution of group lasso logistic regression. The logistic group 

Lasso is defined as: 
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 𝛽௘௦௧௜௠௔௧௘ௗ = −𝑙(𝛽) + 𝜆 ෍ 𝑠(𝑑𝑓𝑔)ฮ𝛽௚ฮ
ଶ

ீ

௚ୀଵ

 (3.20) 

Where: L(β) is the log-likelihood function, and λ is the tuning parameter that 

controls the number of shrinkages or regularisation. 

3.3 Model validation 

This section focuses on an essential stage after modelling that includes testing the 

performance of the prediction model. The statistical tools used for testing 

performance will be presented based on their aims that are classified into 

generalisation performance, calibration and discrimination of the model. These 

tools are used not only for testing model performance, but also to make the model’s 

performance of classification simpler to interpret. The model’s validation is 

achieved by testing and comparing the model’s performance among developing 

models. 

3.3.1 Model performance assessment 

Based on the ARAT, functional recovery level is a discrete variable. However, in this 

project the ARAT different levels transformed the recovery chance to either ‘will 

probably recover’ or ‘will not recover’. Therefore, most of the statistical tests 

introduced in this study are for binary outcomes. Almost all evaluations of 

dichotomous outcome measures will fundamentally involve interpreting the 

number of true positives, false positives, true negatives and false negatives 

(Fawcett, 2006).  

Table 3-1shows these measures. 
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Table 3-1 Shows the general rules to assess the models’ performance with a binary outcome. 

Metric  
General 

Classification 

 Predicts patient’s 

recovery 

Predicts Patients will not 

recover 

True Positive (TP) 

False Positive (FP) 

True Negative (TN) 

False Negative 

(FN) 

Right prediction 

Wrong 

prediction 

Right   prediction  

Wrong 

prediction  

Yes 

Yes 

No 

No 

Yes 

No 

No 

Yes 

 

 The models’ power of binary classifying data can be simply explained by 

using two concepts: the calibrations and the discrimination of the model(Keidan et 

al., 1994). 

3.3.2 Calibrations  

Calibrations refer to how close the predicted outcomes of the model are to the actual 

outcomes, which means how close the prediction of model equivalent is to the true 

positive patient’s probability of recovery across the range of recovery chances 

between zero to one(Van Calster et al., 2015). Calibration delivers evidence about 

the accuracy of the developed prediction model’s results when compared to actual 

results, which only applies to the original datasets.  

Calibration was utilised by plotting the graph between the original observations 

and the estimated probabilities by the model. The model is well-fitting or calibrated 

if the points distribution on the graph follows a 45 line (Steyerberg and Vergouwe, 

2014).  
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3.3.3 Receiver operator curve (ROC)  

The ROC is a universal graphics tool that is used to display the two types of error of 

all the possible cut-off points. The ROC curve is a plot of test sensitivity as the y-

coordinate versus x-coordinate which is represented by 1-specificity or false 

positive rate, is an effective procedure for assessing the performance of the 

predictive model. ROC is a conventional method that utilises the simple and easy 

interpretable plot to assess the ‘ability’ of a model with binary outcomes(Steyerberg 

et al., 2010a). The model’s ability refers to the model’s capacity to discriminate 

between: (1) the patients who have a chance to recover the UL functioning and all 

other patients, and (2) patients who are less likely to recover the functional UL 

compared with all patients. This is achieved by counting the true positive rate, true 

negatives rate, false positive and false negative rates for every possible point. Table 

3-2 is essential to mention that recovery prediction is based on patients’ scores in 

ARAT.  
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Table 3-2 Contingency table to make decision of binary outcomes. 
Test Results  Recovery 

patients 

No recovery 

patients 

Total result s 

Recovery 

Patients 
True Positive (TP) 

False Positive 

(FP) 
(TP+FP) 

No recovery 

patents 

False Negative 

(FN) 

True Negative 

(TN) 
(FN+TN) 

Total results    

***Sensitivity and Specificity are Defined as TP/(TP+FN) and TN/(FP+TN) 
respectively. Positive predictive value and negative predictive value are defined as 
TP/(TP+FP) and TN/(FN+TN) respectively. 

 

From the contingency table, I would plot the points into XY-coordinates, which 

enables us to calculate the sensitivity and specificity. Ideally, in prediction models, 

when the area under the curve equals one, the ROC hugs the top left corner. This is 

indicative that the model discriminates perfectly between patients who have a 

chance to recover and patient that do not recover. Nevertheless, when the AUC of a 

model equals 0.5, then the model performs no better than coincidental results. 

Additionally, all models will include the point (0,0), which corresponds to 

predicting a negative outcome for all patients, and the point (1,1), which 

corresponds to predicting a positive outcome for all patients. When the models 

improve the ROC, the curve will move away from the straight dashed line toward 

the top left corner of the plot (which is equivalent to perfect discrimination). This 

curve is useful for assessing the trade-off between sensitivity and specificity and 

selecting an operating point for the model being evaluated.  
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3.3.4 Area under the curve 

As previously explained, the importance of both ROC and AUC are completely 

dependent when testing a model’s discriminatory power. ROC curvature depends 

on AUC score, and vice versa. It is repetitive to discuss AUC after discussing its effect 

on ROC curvature (more details in the previous section).  

 

3.3.5 Brier score  

Brier Score (BS) is the accuracy measure that used to find how close the predicting 

probabilities are to the actual outcomes using the quadratic score rule(Harrell Jr, 

2015). This measure is similar to the coefficient of determination (R2) in linear 

regression and has the following formula: 

                     𝐵𝑆 =
1

𝑛
෍(𝑌௜ − 𝑃௜)

ଶ

௡

௜ୀଵ

 (3.21) 

Where: 𝑌௜  is the actual outcome and P represent the probabilities of each patient. 

The range of score is between (0-1), a score of one means the model’s prediction 

Figure 3-1 In the left plot shows the AUC of perfect model, in the right plot present AUC of deficient model. 
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results is inadequate or disagreeing while the score zero indicates that the 

prediction is perfectly equal to the actual outcomes. However, the middle rate of BS 

makes the interpretation very complicated to identify model performance that is 

inaccurate or good. The BS is less complicated than other evaluation measure scores 

such Nagelkerke’s R2.  

3.3.6 Log-likelihood function 

The log likelihood is a measure commonly used to evaluate the fit of the model. For 

a binary outcome which has the binomial distribution, the log likelihood can be 

evaluated as follows: 

 log൫𝑙(𝑝; 𝑦)൯ =  ෍(𝑦௜

௡

௜ୀଵ

log(𝑝௜) + (1 − 𝑦௜)log (1 − 𝑝௜)) (3.22) 

Here it is essential to state that the likelihood improvement is an advance on the 

log-likelihood function of the model when using a set of predictions, p, against a null 

model which uses the mean of the outcome as the prediction for observation. The 

likelihood improvement is calculated as: 

 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =
𝑙𝑜𝑔൫𝑙(𝑜𝑢𝑡𝑐𝑜𝑚𝑒ᇱ𝑠 𝑚𝑒𝑎𝑛; 𝑦)൯ − 𝑙𝑜𝑔(𝑙(𝑝; 𝑦))

𝑙𝑜𝑔(𝑙(𝑜𝑢𝑡𝑐𝑜𝑚𝑒ᇱ𝑠 𝑚𝑒𝑎𝑛; 𝑦))
 (3.23) 

 

Deviance 

Deviance is used to evaluate the goodness of fit of a logistic regression model. 

Deviance plays the same role of sum square error (SSE) in the linear regression 

model (Harrell and Lee, 1984). It compares between observed values of the 
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outcome (response variable) and predicted values comes from models. It was 

derived based on the log-likelihood function as in the formula: 

 log൫𝐿(𝛽)൯ = ෍ 𝑦௜𝑙𝑜𝑔𝑝(𝑥) + 1 − 𝑦௜ log൫1 − 𝑝(𝑥)൯

௡

௜ୀଵ

 (3.24) 

And then the comparison process of the likelihood is deduced by finding the 

proportion between the likelihood of the fitted model over the likelihood of the 

saturated model, as follows: 

 𝐷 = −1𝑙𝑛 ൜
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑡𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙
ൠ (3.25) 

Using the equation (3.22) and (3.23) above becomes: 

 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = −2 ෍ ቈ𝑦𝑖𝑙𝑛(
𝑝(𝑥)

𝑦𝑖
+ (1 − 𝑦𝑖)ln (

1 − 𝑝(𝑥)

1 − 𝑝(𝑥)
)቉ (3.26) 

Where: 𝑝(𝑥𝑖) is the predicted values of the outcome. Saturated model refers to a 

model that contains as many predictors’ parameters as there are data a point 

3.3.7 Hosmer- Lemeshow test  

The Hosmer–Lemeshow is a useful test of the predictive values/ probabilities of 

binary outcome models by testing the model versus the assumption of correctly 

calibrated (David W. Hosmer 2013). In this test, the predicted values of outcomes 

are calculated based on the estimated parameters of the model for each observation 

in the sample using the equation as follow: 

 𝑝((𝑦 = 1|𝑥) =
𝑒௑ఉ

1 + 𝑒௑ఉ
 (3.27) 

X is a matrix that represents the predictor's variables, β is a vector representing the 

estimated coefficients regression and y is a vector that represents the outcomes. 
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The observation is then divided into ten groups (deciles) based on the predicted 

probabilities. This mean, and each part’s predicted positive outcome proportion is 

compared with the parts’ observed outcome proportion. The χ2 test is used to check 

the range of difference between the predicting outcome and the perfect fit by 

approximating the sum of the range of deviations with a χ2 distribution, the formula 

for of 3.4.6 Hosmer- Lemeshow Test is as follows: 

The test examines how well the percentage of patients who have recovered 

functional upper limb matches the rate of predicted patient’s recovery rate deciles 

of predicted rate. 

3.4 External validation  

External validation is a process to explore the substantial differences between the 

characteristics of the two sources of dataset, for example, between the development 

and validation datasets and to test how well the model performs (Collins et al., 

2014). Because of the optimism problem (overfitting) of predictive models, this 

leads to models having worse performance in new patients/subject than expected 

from results based on the performance estimated from the development data-

set(Harrell et al., 1996; Kwah and Herbert, 2016). Therefore, a process of external 

validation is considered an essential stage after developing a model to support the 

general model’s applicability in clinical practice (Steyerberg, 2009).  
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3.5 Evaluation of generalisation performance 

There are several statistical methods for testing the generalisation performance of 

any prediction model based on a new set of data from an underlying population. But 

some of these techniques can check the model efficacy based on splitting and 

resampling using the same data and delivers an optimistic estimate of model 

performance (Efron and Tibshirani, 1994). These methods are suggested to 

improve the model performance and to avoid the overfitting problem, especially in 

complex models. The overfitting problem usually happens with complex models. 

For example, the complex models can gain the ability to perform well based on the 

training set and testing on a specific set. However, these models, which have a 

perfect performance in developing based on a set of data, will have a low level of 

performance and fail with a new data set (external dataset). This weakness is 

caused by the inflation in the variance of the model performance with the new 

dataset. At this part of this chapter, it will be mention on the splitting and 

resampling methods. 

3.5.1 Cross-validation 

Cross-validation includes splitting the dataset under study randomly into a subset 

of equal size, to assess the validity performance of model development. It works by 

dividing the data set into k-fords, holding one out and developing a model for each 

reaming part; this process is called a model training stage. The holding out is used 

to testing the model performance. This is an advantage because more than 80% or 

90% are used in this stage, however, in other method, for example half splitting that 

used half of data for training and another half for testing(Trevor Hastie, 2015). 
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For estimating the test error associated with of penalised methods, CV was used to 

evaluate penalised methods performance or to select the appropriate value of 

penalty. An advantage of these method is it is a simple process to estimate the mean 

square errors.  

3.5.2  Bootstrap method  

The bootstrap method represents the technique of sampling that aims to find the 

empirical distribution of the sample of the study. Bootstraps samples are drawn and 

the model is tested by estimating the calibration and discrimination based on these 

samples (Efron and Tibshirani, 1994). The coefficients of the model were used 

without refitting the model, so it would not allow the coefficient change. 

Statistically, each observation in the original sample has the same 

chance/probability to select (pi= 1/n), n is the number of patients or rows in the 

dataset. I then draw samples from the original sample, equal to sampling from the 

original data with replacement. The model is developed on each bootstrap sample. 

By contrast, an observation which is not selected in the bootstrap sample has a 

probability e-1 that can be accounted as follows: 

 𝑝𝑟(𝑛𝑜𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = (1 − 𝑝𝑖)௡ (3.28) 

 (1 − 𝑝𝑖)௡ = (1 −
1

𝑛
) ௡ (3.29) 

 = (
𝑛 − 1

𝑛
)௡ ≈ 𝑒ିଵ (3.30) 

Predictions on this coincidentally held out set predictions have been observed to be 

unbiased. The approximately equals sign is due to the possible non-uniqueness of 

each observation, even though this is very unlikely when data has several multiple 

continuous predictors(Breiman, 2001).   
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3.6 Decision curve analysis 

The prediction models in this research aim to classify of expectations of patients’ 

recovery to recovery and no recovery, which could help to guide rehabilitation 

programs of patients with upper limb impairments. Therefore, a cut-off point is 

required to classify patients as either not likely to recover (no treatment) or likely 

to recover (treatment is indicated). As mentioned in chapter two, the cut-off point 

is a decision threshold based on the patient outcome, for example ARAT outcome. 

At the threshold, the likelihood of improvement exactly balances the likelihood of 

no recovery e.g. improves the clinical costs-effectiveness. In spite of the fact that 

prediction model may achieve a good level of calibration and discrimination 

(sensitivity, specificity and the area under the curve of ROC), these characteristics 

do not enable the model to assess clinical usefulness (Steyerberg and Vergouwe, 

2014; Zhang et al., 2018).  

To overcome this weaknesses, Vickers and Elkin (2006) have proposed decision-

analytic measures to summarize the performance of the model in supporting 

decision making. Additionally, they derived a new tool as a part of decision curve 

analysis (DCA) based on subtracting the rate of all patients who are false positive 

from the rate of true positive. Then, the subtraction result was weighted by using 

the relation between the false-positive and false-negative results of a prediction 

model. This tool is called a Net Benefit (NB) that refers to weight a relative between 

the two false conditions have a formula as follows: 

 𝑁𝑒𝑡 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 =
𝑇𝑢𝑟𝑒𝑃𝑜𝑠𝑡𝑖𝑣𝑒𝐶𝑜𝑢𝑛𝑡

𝑛
−

𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝐶𝑜𝑢𝑛𝑡

𝑛
(

𝑝௧

1 − 𝑝௧

) (3.31) 

Where: 



101 
 

 True- positive count and false- positive count represents the number of 

patients with the true and false positive prediction models results.  

 n is the sample size (total number of patients). 

 𝑝௧: is where the expected benefit of intervention is equal to the expected 

benefit of avoiding intervention. 

 

There are two important benefits behind using DCA. First, DCA can be used to 

compare different types of models. For example, compare results from a predictive 

model and results from the clinical decision. Secondly, it can be easy to quantify the 

prediction models’ benefit in clinical practice in a simple way that does not require 

information on the cost-effectiveness’ or how patients perceive their different 

health states (Holmberg and Vickers, 2013; Van Calster et al., 2018). 

3.7 Variance inflation factors (VIF) 

Multicollinearity refers to the existence of correlation between the predictor’s 

variable in the model which always causes the inflation of the variance of estimated 

parameters in the multiple linear regression models. The VIF is a scale that used to 

detect a multicollinearity level in the model(Steyerberg, 2009). To evaluate by 

applying the formula as follow as, 

 𝑉𝐼𝐹 =
1

1 − 𝑅ଶ(𝑖)
 (3.32) 

 

Where: 

𝑅ଶ(𝑖) is the 𝑅ଶ value that the result from the predicting xi on the other predictors in 

the regression model. When VIF equals one this means that the correlation between 

the predictor and the remaining predictor's variables equal zero. If VIF locates 
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between four and less than ten, it means that there is a low level of multicollinearity, 

while VIF exceeding ten is a sign of severe multicollinearity requiring correction. 

3.8 Cluster analysis: 

Due to the heterogeneity of stroke recovery outcome, some different approaches 

might be better suited to overcome this issue. One of these approaches is cluster 

analysis. Cluster analysis is a useful multivariate method that aims to classify a 

sample of subjects (or objects) on the basis of a collection of measured variables into 

a number of variety class such that similar cases are placed in the same group, that 

is, homogenous, but are very dissimilar to objects in other clusters, that is, 

heterogeneous (Aggarwal and Reddy, 2013). The two most widely employed 

techniques for clustering are presenting, as follows: 

3.8.1 Hierarchical clustering:  

The technique of clustering depends on the idea that it finds a nested sequence of 

clustering. Two different ways have been employed to achieve clustering, namely, 

divisive (bottom-up) agglomerative or (top up) clustering. The divisive way includes 

four steps which are: assign each point of data to single cluster, compute the 

similarity between each of the clusters and then dividing the cluster to two least 

similar clusters. Finally, repeat step two and three until there is no single cluster left. 

While the agglomerative way is the opposite of the divisive way. Both ways utilise 

the concept of dendrogram which is defined as the development of binary tree based 

on data structures, see Figure 3-2 
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Figure 3-2 Path of two algorithms of clustering (Divisive and Agglomerative)(Sayad, 2010-2019). 
 

The hierarchical clustering requires accounting the proximity metric which 

represents the distance between each cluster. Three methods have been used to 

measure the proximity matrix which is a single linkage, complete linkage and 

average linkage. Hierarchical clustering does not require the number of clustering 

and is easy to implement (Clarke et al., 2009).   

 

3.8.2 Non-hierarchical methods or partitioning method 

Partitioning methods typically need the number of clusters and initial seeds (or 

clusters) as an input to the methods. The clusters are then iteratively improved. 

They try to determine all cluster optimally in one step. The K-means and K-median 

are the most common partitional clustering. 

3.8.2.1 K-means clustering:  

K-mean method is the most widely employed partitional clustering (Tibshirani et 

al., 2001). It requires the number of clusters (k) and the initial centres, one for each 

cluster. It aims to minimise the square of the distance between each point within 
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the cluster and the position of𝜇௜ . It aims to minimize the sum square error (SSR) 

score for the given set of centroids(Aggarwal and Reddy, 2013). 

 𝑠𝑠𝑒(𝑐) = ෍ ෍ ‖𝑥௜ି𝜇௞‖ଶ2   

௫௜∈஼ೖ

௄

௞ୀଵ

 (3.33) 

Where 𝑥௜  represent the dataset and 𝜇௞ is the centroid of clusters 𝐶௞. 

3.8.2.2 K-medians clustering:  

K-medians method aims to use the median of each cluster rather than mean of the 

cluster. K-median clustering select K cluster centres by minimizing the sum of the 

distance between each point and the closet cluster centre. The distance measure 

used the L1 norm as opposed to the measure of the k-means and the absolute error 

rather than a square error. K-median is more robust in handling outliers than k-

mans(Clarke et al., 2009). However, like all methods of centroid it works best if the 

clusters are convex. The function of objective k-median is:  

 𝑆 = ෍ ෍ ቚ𝑥௜௝ିொ ೖೕ
ቚ

ଶ
   

௫௜∈௞

௄

௞ୀଵ

 (3.34) 

Where: 𝑥௜௝  is the sample data and  𝑀𝐸𝐷௞௝ is median of the data. 

There are two factors affecting the performance of partitioning clustering 

methods(Chen et al., 2002): 

1. Selecting the initial centroid. 

2. Estimating the number of clustering. 

Several methods have been proposed to determine to each of these factors. I 

describe the K-mean++ and Silhouette method as follows: 
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3.8.2.3  K-means++: 

K-means++ was identified by Arthur and Vassilvitskii (2007) that selecting the 

centres c1 which is chosen uniformly at random from data set. After that, new 

centres ci selected 𝑥 ∈ 𝑋 with probability as follows:  

𝑝𝑟 =
(𝑑𝑎𝑡𝑎)ଶ

∑ (𝑑𝑎𝑡𝑎)ଶ
௫∈௑

 (3.35) 

Finally, repeat these steps until it has been taken k centres altogether.   

  

3.8.3   Silhouette method: 

Silhouette has been used to assess clustering result by studying separation distances 

among results. The measure is a range between [-1, 1]. One or closed on value 

indicates that 𝑖 is well-matched to its own cluster, and poorly-matched to 

neighbouring clusters. If most points have a high silhouette value, then the clustering 

solution is appropriate. In contrast, if many points have a low or negative silhouette 

value, then the clustering solution may have either too many or too few clusters. The 

silhouette clustering evaluation criterion can be used with any distance metric(Chen 

et al., 2002; Rousseeuw, 1987). Silhouette value for 𝑖 the point, 𝑠௜ , is: 

 𝑠௜ =
𝑏𝑖 − 𝑎𝑖

max(𝑎𝑖, 𝑏𝑖)
 (3.36) 

Where: 𝑎௜ is the average distance from the ith point to the other points in the 

same cluster as 𝑖, and 𝑏௜ is the minimum average distance from the ith point to points 

in a differed cluster, minimized over clusters. 
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3.9 R software packages 

R software contains many packages that use variety forms of regression modelling. 

One group of these packages is concerned with fits generalised regression, cluster 

analysis and penalised logistic regression problem that imposing a constraint on 

parameters, for estimating of the entire ridge, LASSO, adaptive LASSO and group of 

LASSO. Additionally, several cross-validation routines allow optimisation of the 

tuning parameters. 

Here, I introduce brief information about the main R packages of penalised 

methods, clustering analysis and model performance that have been used in this 

research. 

Package 
Name 

Description Properties Tuning 
parameters 

glmnet It is an efficient process 
that used to fit the 
penalised methods (LASSO 
and ridge regression) of 
logistic regression models 
(Friedman et al.).  

Ridge and LASSO model 
of linear, logistic, 
multinomial, Cox and 
Poisson models. Cross-
Validation with K fold to 
find the optimal tuning 
parameter. 

Lambda, 
Alpha 

grplasso Methods that used to fit the 
penalisation with group 
LASSO general linear 
model based on the (Meier 
et al., 2008) 

Fitting of a group LASSO 
of linear, logistic and 
Poisson methods 

Lambda 

parcor 
 
 
 
 
 
 

Includes Algorithms for 
accounting the partial 
correlations matrix using 
different types of 
penalisation methods. It 
delivers cross-validation 
model selection for four 
methods of LASSO family 
as Well (Zou, 2006).   

Four penalised regression 
methods for the 
estimation of partial 
correlations: LASSO, 
adaptive LASSO, ridge 
regression, and Partial 
Least Squares.  

- 
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penalised An efficient technique for 
fitting the LASSO or elastic-
net regularisation path for 
some GLM (Goeman et al., 
2012)  

Elastic net methods paths 
for linear, logistic, Poisson 
and Cox models; k-fold 
cross-validation for 
optimal lambda1 and 
lambda2; positivity 
constraint on regression 
coefficients 

lambda1, 
lambda2 

 

Packages 
name 

Description  Propose 

pROC Provides algorithm for accounting 
the receiver operating 
characteristic (ROC), Area under 
the curve (AUC) and the confidence 
interval of AUC(Sun and Xu, 2014) 

To visualise and compare the 
model performance. 

ROCR Contains some flexible function for 
plotting sensitivity/specificity 
curves. In addition to, curves come 
from cross-validation or 
bootstrapping runs can be 
averaged and standard deviation or 
box-plot (Sing et al., 2004).    

ROC graph and creating cut-
off parameterised 2D 
performance curves. 

AUC Contains functions to account the 
area under the curve of selection 
measure. 

To compute different types of 
the area under the sensitivity 
curve, specificity curve, the 
accuracy curve and the area 
under the receiver operating 
curve (AUROC) 

rms Includes several functions that 
work with many types of 
regression models, especially with 
logistic regression models(Harrell 
Jr, 2015). 

For the estimation, testing, 
prediction, and validation of 
the regression models.  

 

Packages name Discerption  Propose 
 Cluster Methods of grouping data 

that extended based on 
the original form of Peter 
Roussseeuw. 

Hierarchical clustering 
and Partitioning 
methods.  
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Factoextra Includes simple some 
functions to extract and 
present the output of 
multivariate data analysis, 
for example cluster 
analysis(Kassambara, 
2017). 

Simplifying a part of the 
process of clustering 
analysis and delivers 
functions of plotting in 
elegant data 
visualisation.  
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4 Modifying cut-off point 

The aim from this chapter is to determine a cut-off point that used to dichotomised 

Action Research Arm Test (ARAT) using cluster analysis method and bar-chart plot. 

Additionally, to understand the trajectory/pattern of patient’s recovery over three 

months.   

4.1 Method of identifying ARAT cut-off point  

At first, I adopted data from a secondary anonymised dataset with 178 patients with 

300 variables reported by Church et al. (2006). The dataset includes: 1) the Action 

Research Arm Test (ARAT) outcomes to measure the upper limb function in three 

different times (baseline: 0-1 weeks post-stroke, second: after 4- weeks intervention 

and third: at three months post-stroke); and 2) other measures that are used to 

assess the motor and function of upper limbs status of patients, too. These measures 

are, for example, Frenchay Arm Test, Motricity Index, handedness, new neurological 

impairment National Institutes of Health Stroke Scale. 

Secondly, I extract a group of patients from the RCTs, more details in next section. 

Then, I aimed to identify, if possible, a new cut-off of Action Research Arm Test that 

is clinically meaningful in practice. The cut-off refers to separating two differing 

statuses, for example separating patients into two categories: recovered and not 

recovered patients. This binary result (0,1) will enable us to utilise logistic 

regression analysis. Logistic regression is influenced by the cut-off point that used 

to classify the outcome of the ARAT score as zero or one. The zero represents a 

patient that had no recovery of the upper limb, and one represents a patient who 

recovered. In this project, I studied the patients who had ARAT scores of less than 

ten for two reasons. First, the groups of patients who have ARAT scores of more than 

ten have a big chance of recovery, but the patients having ARAT scores of less than 
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ten do not have a clear upper limb recovery based on the ARAT score. The second 

reason is to try to determine a better cut-off point than the cut-off point in literature 

for categorising the ARAT scores as binary outcomes. The cut-off points based on 

literature are one and ten (Kwakkel et al., 2003; Nijland et al., 2010c). 

Hierarchical clustering was applied to statistically investigate the new cut-off point 

value. Additionally, the hierarchy was deduced based on the ARAT subgroup at 

baseline patients’ scores. This was performed to cluster patients to: 1) the patients 

who performed only gross movements items, or 2) who performed any hand 

function that is included as an item of the ARAT.  

4.2 Identifying the cut-off point:  

The ARAT scores of eighteen patients were included for determining a cut-off point. 

All those patients have the total score of ARAT less than 10. Furthermore, the total 

score of baselines NIHSS outcome and ARAT after three months of those patients are 

included; see more detail in Table 4-1. The idea behind this table is to introduce 

evidence that 55% of this group of patients have full functionality of the upper limb 

recovered after three months based on the ARAT score. In spite of a group of patients 

having the score of (ARAT<=9) and scores of severities (NIHSS >= 9), some patients 

went on and recovered. This could support our aim to identify a new cut-off point of 

ARAT score. 

Table 4-1 Patients who have ARAT score less than ten at baseline and outcome of NIHSS. 
NO.  Grasp  Grip   Pinch  Gross-

movements 
Total of 
ARAT  

Total ARAT 
(3 months) 

NIHSS 

1 0 0 0 3 3 57 2-8 

2 0 0 0 3 3 57 >=9 

3 0 0 0 3 3 57 >=9 

4 0 0 0 3 3 26 >=9 
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5 0 0 0 4 4 6 2-8 

6 1 0 0 3 4 57 2-8 

7 0 0 0 4 4 54 2-8 

8 0 0 0 4 4 19 >=9 

9 0 1 0 4 5 57 >=9 

10 0 0 0 5 5 57 2-8 

11 2 0 0 4 6 57 >=9 

12 0 0 0 6 6 57 >=9 

13 1 0 0 5 6 45 >=9 

14 0 0 0 6 6 57 2-8 

15 3 0 0 3 6 43 2-8 

16 3 2 0 3 8 36 >=9 

17 0 0 0 9 9 39 >=9 

18 4 0 1 4 9 57 >=9 

 

The hierarchical clustering was used to group the 18 patients based on the sub-score 

group of the ARAT as it is shown below in Figure 2-2. 
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Figure 4-2 The details of ARAT score for patients with a score less than ten. The total score of each 
patient is plotted on the x-axis and the total score of ARAT is on the y-axis.  
 

To validate the seven values as a cut-off, I took only patients who have ARAT score 

of less than ten at baseline. The baseline score of ARAT includes the score of each 

item in the test, the total of sub-group and the total of the ARAT scores. Then, bar-

chart plotted ARAT subgroup score (grasp, grip, pinch and gross movement) of 
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patients who have the same total scores Figure 4-2. Eighteen patients were 

classified to: four patients have total score three, Figure 4-3, four patients have 

total score four, Figure 4-4, two patients have total scores five Figure 4-5, five 

patients have scores six  

Figure 4-6, one patient has the score eight Figure 4-7, and finally, two patients have 

scored nine Figure 4-8. 

 

Figure 4-3 Patient with Action Research Arm Test (ARAT) of three. The score of each item based on sub-
group of ARAT is plotted on the x-axis and the total score of ARAT is on the y-axis.  

 

Figure 4-4 Patient with Action Research Arm Test (ARAT) of four. The score of each item based on sub-
group of ARAT is plotted on the x-axis and the total score of ARAT is on the y-axis.  
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Figure 4-5 Patient with Action Research Arm Test of five. The score of each item based on sub-group of 
ARAT is plotted on the x-axis and the total score of ARAT is on the y-axis.  
 

 
Figure 4-6 Patient with Action Research Arm Test (ARAT) of six. The score of each item based on sub-
group of ARAT is plotted on the x-axis and the total score of ARAT is on the y-axis.  
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Figure 4-7 Patient with Action Research Arm Test (ARAT) of eight. The score of each item based on sub-
group of ARAT is plotted on the x-axis and the total score of ARAT is on the y-axis.  
 

Figure 4-8 Patient with Action Research Arm Test (ARAT) of nine. The score of each item based on sub-
group of ARAT is plotted on the x-axis and the total score of ARAT is on the y-axis.  
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Figure 4-9 Showing individual scores for each task in the ARAT outcome measure. The score of each 
patient in each sub-group of ARAT is plotted on the x-axis and the total score of ARAT is on the y-axis. 
 

Within the subset, patients who scored between one and nine: Eight (44% with 95% 

CI 22% to 69%) were able to carry out simulated grasping tasks. Two (11% with 95% 

CI 2% to36%) could carry out simulated grip tasks. One (1.5% with 95% CI 0.3% to 

3%) patient achieved a score in the simulated pinch sub-category. 

4.3   Clustering trajectory of ARAT scores:  

 

This section explains the trajectory of the ARAT outcome over three months for the 

recovery upper limbs. In this part, the K-means method was used to group the scores 

of ARAT. This method, statistically, needs to determine the number of groups and 

initial centres. For this reason, the Silhouette method was applied to identify the 

number of clusters/groups of the ARAT scores. The idea behind using K-means is to 

produce homogenous clusters/groups that contain similar subjects/ patients. This 

could help to develop a more accurate prediction model to be used for each group 

independently.    

0

1

2

3

4

5

6

7

8

9

  Grasp total Grip total Pinch total Gross total ARAT for
affected side -

Baseline

AR
AT

 S
co

re

Total tasks in each sub-group in ARAT



119 
 

Cluster analysis was deduced based on the steps as follows: firstly, I applied 

Silhouette values evaluation method for determining the optimal number of 

clustering of the ARAT score(Chen et al., 2002; Rousseeuw, 1987). It appears from 

the Figure 4-10  that the largest average of Silhouette is (0.8) which means that the 

four clusters have the best number of clustering is four. Selecting four clusters is a 

good number of clustering to give the accurate result of using partitioning clustering 

methods. The finding is consistent with the findings of the earlier study by Stinear et 

al. (2012) which has found the same optimal number of clustering baseline ARAT 

score. Secondly, after the optimal number of clusters had been identified, K-means 

was applied to cluster the differences in slops/ rates of change of the ARAT scores 

respectively, as follows: 

a. I found the differences between the baseline line measure of ARAT scores and the 

four weeks measure, and the differences between four weeks and three months. 

Figure 4-10 Showing the curve elbow of Silhouette method. 
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 Figure 4-11 Represents the result of K-Means clustering. The trajectory of each patients 
overtime is plotted on the x-axis and the total score of ARAT is on the y-axis. 
 

b. The next step I depended on the clustering results in step (b) to cluster the 

three measures of ARAT scores by the same method (K-means), and the analysis of 

the grouped results show the following: 

  

Figure 4-12 Shows the result of K-Means clustering methods on the ARAT outcomes. The 
trajectory of each patient’s overtime is plotted on the x-axis and the total score of ARAT is on the 
y-axis. 
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4.4 Discussion  

In this chapter, I have described how a cut-off point has been identified to be seven 

for dichotomising the outcome of the Action Research Arm Test. Firstly, the score 

seven was selected because some of the patients could partially perform some of the 

easy tasks such as grasping and one or two tasks of gross movements like patient 

P11, P15, P16 and P18, as a result in Table 4-1. Previous studies used cut-off point 

(ARAT>=10) to dichotomize the outcome of ARAT as binary (0,1). One for those who 

regained some hand and arm and zero for those who did not recover the hand and 

arm function (Kwakkel et al., 2003; Nijland et al., 2010c). They used a score of 10 as 

a cut-off point to find the probability of the recovering upper limb after 6 months in 

people with a flaccid upper limb post-stroke. Additionally, they reported that lower 

cut-off point of ARAT score might lead to false positives for the return of dexterous 

precision gripping using the hand and fingers because a low cut-off score only 

captured the presence of gross shoulder and elbow movements(Kwakkel et al., 

2003). Whereas, as results in figures (4-2, 4-3,4-4,4-5,4-6,4-7,4-8 and 4-9) the patient 

of score nine or less on the ARAT can incompletely perform some of the easy tasks of 

the grasping part. This reason is mainly reflected in the decision that the cut-off 

points of the score seven might give a precise dichotomous classification of whether 

the patients will recover and be independent in their life or not. Moreover, it might 

help to balance the cost-effectiveness with interventions provided for patients. 

The second part of this chapter explains how to show the trajectory of patients’ ARAT 

outcomes from a measurement made three times. The clustering results show the 

four subgroups of the ARAT. These scores were measured at three-time points over 

a three-month period (baseline, four weeks and three months). When using K-Means 
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clustering for analysis, patients’ scores in each subgroup demonstrated better 

homogeneity compared with before clustering.  

Our aim was to determine which predictor variables will be affected in each cluster 

and to develop a prediction model of that cluster separately. Due to the limitations of 

the reduced sample size it was not possible to develop a prediction model of each 

cluster.  

4.5 Conclusion  

Patients with scores of less than five could only perform the easiest items within each 

of ARAT’s subgroups other than the gross movements subgroup. For these patients, 

I can perhaps classify them as having no useful arm function. Patients with a cut-off 

score of nine can carry out simulated activities that reflect recovery of useful arm 

function. If a cut-off of nine is used, then there is a risk that patients with recovery 

potential are missed from receiving treatment. If the cut-off was reduced from nine 

to seven, then the chances of inappropriately classifying a person as having no useful 

arm function are reduced. I would therefore conclude that the ARAT cut-off in acute 

stroke patients should be seven and not nine. 
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5 Predictors selection  

5.1 Introduction 

This chapter aims to illustrate the process undertaken to study predictors selection 

method, using the traditional methods (Univariate variable selection, Stepwise 

Regression) and penalised methods (LASSO, adaptive LASSO and group of LASSO). 

However, there are several steps to be followed before discussing the possible 

predictors selection methods. These steps aim to prepare the dataset before applying 

methods, hence pre-processing. The pre-processing operations will produce 

datasets, which requires us to descriptive analyse.  The section of processed data will 

describe and test for multicollinearity. This would be followed by producing a matrix 

design of the processed datasets. Results of the different predictors selection 

methods will be presented into the two main categories previously mentioned: 

classical and penalised methods. Furthermore, I will evaluate the results of each 

method and compare their performance to identify the best method to be used in this 

study. Finally, I will discuss the findings of this chapter. 

5.2 Pre-processing data 

 

One of the essential aspects of building a model is data pre-processing, which has 

two steps. The first step is to present one data-set of a retrospective study, with an 

emphasis on its’ variables whether it was the dependent variable (outcome) or 

independent variables (predictors). The second aim is to test for the level of 

multicollinearity within the data-set. Pre-processing has several applications; 

however, only the first, third and fifth applications were used in this study:  

 to remove some unsuitable information 
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 to handle the missing data 

 to recode the categorical variable predictors using the dummy variable or 

designs variables  

 to extract some variables to represent the interaction among the 

predictors  

 to test and handle multicollinearity among the predictors    

Most prediction models used for prediction of recovery post-stroke are based on a 

set of data that possibly has high levels of multicollinearity. Consequently, 

multicollinearity will have a large negative impact on the performance of these 

models. Based on the literature, a large proportion of clinical outcomes measure the 

same ICF domains, namely Body structure and function, activity and participation. 

This could be a contributing factor for multicollinearity between the predictors in 

the data set. Additionally, the increase in the dataset’s dimensions corresponds to 

the number of patients in the study sample.  

5.2.1  Pre-processing of a retrospective data-set of an RCT 

A secondary anonymised retrospective data-set was taken from a previous 

randomised control trial (Church et al., 2006). The RCT’s inclusion criteria included 

participants who had a sustained upper limb problem within the previous/last ten 

days after acute stroke. Then, the RCT’s primary outcome measure, the ARAT, was 

used on three occasions.  In addition, ARAT was collected among other baseline 

assessments, including other demographic information, hand dominance, the 

severity of the stroke and stroke subtype (Church et al., 2006). The second and third 

measures of ARAT were undertaken after 4-weeks and 12 weeks intervention 

respectively. Additionally, a total of 178 patients and related 249 variable 
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candidates (predictors) were present in the dataset. These 249 predictors 

comprised of both categorical and continuous data. The RCT’s data-set had the issue 

of missing data and low variability in some predictors.  

To handle the predictors with low variability, I must check data on two levels: the 

individual predictor or the values of a whole record (each patient). The first level 

delivered information about each predictor in the data-set using some simple 

statistical tools. For example, find the distribution table of each predictor for 

checking the predictor's distribution. Then, the predictor was removed if it had less 

than 90% variability, see Table 5-1.  

Table 5-1 Variables removed for being less than 90% variability. 
Predictors Name Labels Frequency Percent 

Brainstem/cerebellar signs Yes Left 2 1.1 

Yes Right 3 1.7 

No 171 97.2 

Total 176 100.0 

Others deficit Yes Left 1 .6 

No 175 99.4 

Total 176 100.0 

Pre-stroke pain in last month Yes 8 4.5 

No 168 95.5 

Total 176 100.0 

Star cancellation test done Done Done 176 

NIH Stroke Scale Pupillary response 0 175 99.4 

1 1 .6 

Total 176 100.0 
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5.2.2  Dealing with missing data  

Dealing with missing data in most models is divided into case removal or imputation 

of a numeric value for the missing value. Case removal is very wasteful of data as it 

is very rare to find all the information that relates to a patient. This situation usually 

happens when handling medical data, since it is either not necessary to collect or 

not important to record a value. This might cause some values in data to be missed. 

In addition, case removal could change the patient group who might be used for 

model development and hence the model will be only applicable to the patients who 

have complete information, see the example in Table 5-2. This means the model is 

extremely impractical. Therefore, estimating of missing values could be necessary 

prior to developing the prediction model.  

Table 5-2 Predictors have more than 80% missing data. 
Predictors Name Labels Frequency Percent 

Previous stroke same side affected 

yes 13 7.4 

No 19 10.8 

Total 32 18.2 

Missing Data 144 81.8 

Pre-stroke pain-Which arm 

 

Right 3 1.7 

Left 2 1.1 

Both 3 1.7 

Total 8 4.5 

Missing System 168 95.5 

  

There are two main statistical methods used to estimate the missing values. These 

two methods are categorised relative to the value that would replace the missing 

values. While handling data, if the same value were used to replace all missing data, 
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then a single-imputation method was implemented.  Single-imputation methods, 

depending on the predictors’ data type, can be further divided into: 1) For 

quantitative predictors, the univariate mean value of non-missing values would 

replace all the missing values of that predictor; 2) For predictors with categorical 

data, the univariate mode value of non-missing predictors to replace all the missing 

values of that predictors. Despite the advantages of these processes (mean or mode 

substitutions) which are simple to apply and quick,  one obvious objection would be 

deflation the variance (variability) that might be undesirable and the bias 

incorporated into the model by this approach  Sterne et al. (2009) .  

To overcome this problem of deflation, scholars utilise another univariate 

imputation method that includes an additional stage. A binary column is added with 

each predictor containing missing values. The idea behind this is to assess the 

impact that might occur because clinicians do not usually report the normal value, 

the imputed values would be biased towards abnormal values. However,  

 

Figure 5-1 Result of imputation missing value using multi-imputation methods 
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two limitations of this method are: it increases the dimensionality of data, and it 

would duplicate the number of predictors.  

The second category of statistical methods used to estimate the missing values is the 

multi-imputation methods (MI). MI methods involve repeatedly imputing missing-

values and analysing each dataset after every single imputation (Steyerberg, 2009). 

After each imputation, the average of the overall dataset is computed and used to 

replace the next missing datum. This will be repeated until all missing data are 

replaced. The advantage of MI methods over single-imputation methods is that they 

allow for uncertainty on the missing values by generating numerous imputed 

datasets and appropriately emerge results from each of them. In our research, the 

predictive mean matching MI method was used to handle the missing issue (Harrell 

Jr, 2015).  

5.2.3 Outcome’s cut-off point 

As this pre-processing application has been already discussed in chapter two, this 

section would contain only this study’s implementation of this application. In this 

study, the outcome ARAT was adopted as response variable (dependent). Since the 

total of ARAT scores ranged between zero and 57, it is required to transform these 

scores to the binary values to be able to perform logistic regression models. The 

dichotomisation was done as follows, a score of zero was given for those who had 

ARAT scores of less than seven (ARAT <7), and a score of one for those who had 

ARAT scores greater or equal to seven (ARAT≥7). This means that seven is the cut-

off point because a score of ≤ 6 points indicates that the patient can only partially 

perform the easy task in each subgroup of hand or arm function. Finally, the dataset 
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contains 176 rows (patient) and 76 columns (variables). The next section will 

describe the produced datasets after pre-processing applications are completed.   

5.3 Processed data 

5.3.1 Description of processed datasets  

The total of  predictors includes: 12 demographic variables; nine predictors 

measures of motor activity; three measures of participation and four predictors 

representing pain measurements, see Table 5-3.The other group of predictors 

includes: 25 predictors measures of motor impairments, five predictor measures of 

cognitive impairments, three predictors measures of visual impairments, eight 

predictors obtained from the resulted measures of sensory impairments and four 

predictors measures of speech impairments, shown in Table 5-4. 
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 Table 5-4 Show
s the O

utcom
es clinical m

easures of (M
otors, Cognitive, Visual, Sensory and Speech) im

pairm
ents. 

M
easures of M

otor Im
pairm

en
ts 

M
easures of Cognitive 

Im
pairm

ents 
M

easu
res of visual 

Im
pairm

ents 
 

M
easures of Sen

sory 
Im

pairm
ents 

M
easu

res of Speech 
Im

pairm
ents 

 
T

otal N
IH

SS                                                                1.76±1.01 
N

IH
 A

rm
 for affected side -B

aseline                      8(5.33%
) 

N
IH

 best m
otor leg-affected side-B

aseline           19(12.7 %
) 

N
IH

 Lim
b ataxia-affected side- baseline                0.63±0.88 

N
IH

SS Facial palsy                                                    36(24%
) 

N
IH

SS B
est M

otor R
-arm

                                       46(30.67) 
N

IH
SS B

est m
otor -L-arm

                                      102(68%
) 

N
IH

SS B
est m

otor -R
-leg                                      57(38%

) 
N

IH
SS B

est m
otor -L-leg                                     61(40.67%

) 
N

IH
SS Plantar reflex                                            61(40.67%

) 
N

IH
SS Lim

b A
taxia R

                                         38(25.33%
) 

N
IH

SS Lim
b A

taxia L                                           143(95.3) 
N

IH
SS Lim

b A
taxia affected side                         137(91.33) 

N
IH

SS grouped                                                     1.39±0.49 
N

IH
SS grouped                                                      1.03±0.18 

N
IH

SS grouped                                                     0.65±0.48 
N

IH
 A

rm
 for affected side -B

aseline                    12(8%
) 

N
IH

SS B
est M

otor L leg                                        101(67.33%
) 

Left shoulder shrug                                               1.40±0.70 
R

ight shoulder shrug                                              1.65±0.58 
Shoulder Shrug at B

aseline                               145(96.6%
) 

Passive range of pain-free m
ovem

ent                 112(74.67)  
T

he active range on pain-free m
ovem

ent                 98(65.33) 
U

nilateral w
eakness affecting arm

/hand            1.26±0.53                                       
Shoulder shrug for affected side -B

aseline        125(83.33%
) 

  N
IH

SS of consciousness    
0.15±0.36 
 N

IH
SS N

eglect R
               

103(68.67%
) 

N
IH

SS N
eglect L               

127(84.67%
) 

 N
IH

 N
eglect- affected 

 side- B
aseline                     

102(68%
) 

A
bbreviated m

ental test score 
T

otal                                                               
                                               
61±1.91 
       

  V
isuospatial deficit       

 at B
aseline                          

61(40.67%
) 

N
IH

SS B
est visual               

114(76%
) 

N
IH

SS B
est gaze                       

143(95.33%
) 

 

  U
pper lim

b Sensory- affected  
side-B

aseline                      
66(44%

)       
Sensory deficit affecting 
 arm

/hand                           
45(30%

) 
Sharp-dull discrim

ination 
deficit   
                                                                                             
64(42.67%

) 
H

ot-cold discrim
ination deficit 

                                        54(36%
)                                                        

N
IH

 Sensory- affected  
side-B

aseline                       
70(46.66%

) 
  Sensory sym

ptom
s         

45(30%
) 

N
IH

SS Sensory R
                

22(12%
) 

N
IH

SS Sensory L                
48(32%

) 
   

Sheffield-R
eceptive total     

9.83±2.45       
Sheffield -E

xpressive total   
7.12±3.62               
N

IH
SS D

ysarthria              
63(42%

) 
N

IH
SS B

est language        
125(83.33%

) 
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5.3.2 Testing multicollinearity  

The VIF was calculated to detect the multicollinearity level for assessing the ability 

to use the traditional methods and LASSO (Dormann et al., 2013). To measure the 

existence of the multicollinearity problem, the VIF was applied using randomly 

selected linear combinations, which were among predictive variables within 

themselves. 

        Table 5-5 Results of Variance Infraction Factors among the predictors. 

 Predictors variable 
Variances Inflation 
Factors 

1 Days from stroke 1.615 

2 Days from stroke to admission 1.582 

3 Left or right handed 2.499 

4 Previous stroke 1.633 

5 Side affected by stroke 26.721* 

6 Stroke Subtype TACS/PACS vs POCS/LACS 22.604* 

7 Stroke subtype 15.613* 

8 Abbreviated mental test score Total 4.041 

9 Sheffield total 8.917 

10 Motricity Total right arm 9.900 

11 Total Motricity for affected side -Baseline 16.393* 

12 Frenchay Arm test for affected side-Baseline 28.388* 

13 Baseline Barthel (coded) 24.532* 

14 Nottingham EADL Total 30.064* 

15 Pre-Stroke Pain (10) for the affected side -Baseline 1.598 

16 Post-stroke Pain (5) for the affected side -Baseline 17.736* 



135 
 

17 Post-stroke Pain (10) for the affected side -Baseline 17.798* 

18 Shoulder shrug for affected side -Baseline 23.140* 

19 NIH Stroke Scale Best motor -R-arm 7.419 

20 NIH Stroke Scale Best motor -L-leg 15.286* 

21 NIH Stroke Scale Plantar reflex 16.546* 

22 NIH Stroke Scale Limb Ataxia R 3.587 

23 NIH Stroke Scale Limb Ataxia L 2.130 

24 Total NIH Stroke score 41.532* 

25 NIH Arm for affected side -Baseline 8.290 

26 NIH Best motor leg-affected side -Baseline 18.668* 

27 Passive range of pain-free movement 5.232 

28 Active range of pain-free movement 4.889 

29 Left shoulder shrug 1.800 

30 Unilateral weakness affecting arm/hand 3.869 

31 NIH Best motor leg-affected side -Baseline 25.819* 

32 NIH Arm for affected side -Baseline 11.969* 

33 Right shoulder shrug 16.502* 

34 NIH Stroke Scale Neglect R 6.490 

35 NIH Stroke Scale Neglect L 2.801 

36 NIH Stroke Scale Level of consciousness 58.775* 

37 NIH Stroke Scale Best gaze 2.210 

38 NIH Stroke Scale Best visual 4.285 

39 NIH Stroke Scale Sensory L 20.697* 

40 Visuospatial deficit at Baseline 8.129 

41 Sensory deficit affecting arm/hand 254.278* 
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* high level of Multicollinearity. 

The results of the VIF test show that there was evidence that the data set had a high 

level of multicollinearity. The decision was made based on the rule of VIF >10 that 

means a high level of multicollinearity existing among predictors. 

5.3.3 Matrix design  

This section describes the method used to build two design matrices used for model 

training and model testing. Both design matrices will have the same columns 

(predictors), but the number of rows (patient observations) in each matrix is not 

necessarily equal in both matrices. Data was split randomly into 70% and 30% for 

the training and testing phases, respectively. Training phase results will represent 

the selection predictors process; whereas, testing phase results will represent 

evaluation of the performance of the models’ selections. 

5.4 Process of Predictors Selection and Methods 

In this section, the results of selection predictors process are presented based on the 

method used to select them: stepwise logistic regression method, and penalised 

methods. Before applying the stepwise logistic regression method, two steps were 

performed: univariate and multivariate logistic regression methods. Univariate 

logistic regression method was used for determining the relationship between each 

42 Upper limb Sensory deficit at Baseline 4.573 

43 Hot-cold discrimination deficit 3.536 

44 Sharp-dull discrimination deficit 19.409* 

45 NIH Sensory-affected side -Baseline 190.769* 

46 Sensory symptoms 75.868 

47 Sheffield -Receptive total 5.482 
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predictor at a baseline level and outcomes variable after three months. For 

categorical predictors, the contingency table test of ARAT outcomes (0,1) versus the 

(k) levels were used to find the likelihood ration Chi-square test with (k-1) degree 

of freedom. In the case of continuous predictors, the univariate logistic regression 

analysis was applied to fit the model and calculate the likelihood ratio test and the 

Wald test.  The predictor was eliminated where it had a non-significant association 

at level (α=0.05). After all predictor candidates were identified for the inclusion of 

univariate of logistic regression, multivariate logistic regression was fitted. Finally, 

the stepwise logistic regression method was used to eliminate all predictors 

variables of the model that have not had any contribution to explain the effect of the 

outcome. All the previously mentioned steps represent the models’ training set.  

The penalised methods of predictor selection include three methods: adaptive 

LASSO, Group LASSO and LASSO.  During applying penalised methods, the tuning 

parameter need to be estimated. The cross-validation approach was used to account 

for the tuning parameters of the penalty value in ALASSO, GLASSO and LASSO.  A 

Tuning parameter acts as a regulator between amplitudes of bias versus prediction 

error (or variance) in the model. Cross-Validation was applied by dividing training 

data into equal k-folds, which are randomly-selected sub-samples. k-1 folds of these 

were allocated to the model’s training phases, and the remaining fold was used in 

the model’s testing phase. ALSSO, GLASSO and LASSO were then applied to the 

training data for a range of different values of estimated tuning parameter. Each 

fitted model was then used to predict the outcome of the ARAT in the test fold, 

recording the prediction’s deviance (mean square error) for each value of the tuning 

parameter. This process is repeated iteratively, resulting in all ten parts of the data 

being used for estimating the penalty value, which is used to shrink the candidate 
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predictors’ variables and choose the essential subset of predictors. In order to 

estimate the confidence intervals for the coefficients obtained from the modelling 

process, Bootstrapping was used. In brief, the confidence intervals for each variable 

were estimated from resampling the data to produce 500 data sets each comprising 

of 176 patients (reflecting the size of the original sample size) using an empirical 

distribution function. Penalised methods were then applied to these 500 data sets 

and from this the 95% confidence intervals were estimated. The confidence 

intervals of the estimated coefficient calculated using the exponential values of 2.5th 

percentile, mean values and 97.5th percentile for each coefficient estimated using 

penalised methods(Efron and Tibshirani, 1994).  

Finally, testing phase aimed to compare the performance of four models of data set. 

The calibration was performed by plotting the calibration curve of four of the 

developed models. The discrimination was assessed by using the C statistic. The 

confusion matrix was used to evaluate the fit of the four models to see what rate of 

true positives is classified as being positive (the sensitivity) and what rate of true 

negatives is classified as being negative (the specificity). The discriminative ability 

of the four models for the upper limb recovery was calculated by measuring the area 

under the ROC curve and plotted. 

5.4.1 Classical methods 

The classical methods’ results, which were introduced in section 3.2, presented in 

this section are: Univariate and stepwise logistic regression selection methods. 
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5.4.1.1 Univariate logistic regression selection results 

All baseline predictors were assessed in a univariate analysis. Based on the 

univariate analysis in Table 5-6 , 51 predictors at baseline were associated 

significantly with Action Research Arm Test that measure after three months (all 

P<0.05), for example, the older patients had a lower chance of upper limb recovery 

than the younger (p< 0.05). 

Table 5-6  Results of the univariate logistic regression models. 

No. Predictors   
Estimated 
coefficients 

 Variance  
P-Value< 
0.0001 

Null 
deviance 

Residual 
deviance 

AIC 

1.  Age -0.068 0.020 0.00005 197.94 195.74 199.74 

2.  Unilateral weakness 
affecting arm/hand 

1.6094 0.5560 0.0001 197.94 175.82 179.82 

3.  Sheffield total score 0.12234 0.03862 0.001 197.94 192.78 196.78 

4.  Motricity Total left leg 0.07711 0.006438 0.0005 197.94 187.67 191.6 

5.  Motricity Total left arm 0.038177 0.005788 0.0005 197.94 196.74 200.7 

6.  Motricity Total left side 0.045149 0.007007 0.0001 197.94 196.73 200.7 

7.  Left shoulder shrug 1.6614 0.2971 0.0001 197.94 197.33 201  

8.  Active range on pain-
free movement 

0.043340 0.008865 0.0001 197.94 197.46 201.46 
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No. Predictors   
Estimated 
coefficients 

 Variance  
P-Value< 
0.0001 

Null 
deviance 

Residual 
deviance 

AIC 

9.  Hot-cold discrimination 
deficit 

-1.1299 0.3591 0.0001 197.94 145.24 149.2  

10.  Sharp-dull 
discrimination deficit 

-0.9904 0.3605 0.006 197.94 187.79 191.79 

11.  Total Barthel score 0.38986 0.06359 0.000 197.94 197.94 201.94 

12.  
NIH Stroke Scale Level 
of consciousness -
questions 

-0.9129 0.3379 0.007 197.94 120.81 124.81 

13.  NIH Stroke Scale Best 
visual 

-0.8983 0.2004 0.000 197.94 195.15 199.15 

14.  NIH Stroke Scale Facial 
palsy 

-0.7903 0.1743 0.000 197.94 177.41 181.41 

15.  NIH Stroke Scale Best 
motor -R-leg 

-1.0888 0.1937 0.00005 197.94 196.43 200.43 

16.  NIH Stroke Scale Best 
motor -L-leg 

-1.0780 0.3309 0.001 197.94 159.10 163.1 

17.  NIH Stroke Scale 
Sensory R 

-1.0928 0.2782 0.0001 197.94 193.93 197.93 

18.  NIH Stroke Scale 
Neglect L 

-1.0805 0.2990 0.0001 197.94 167.44 171.44 

19.  Total NIH Stroke score 1.6392 0.7561 0.03 197.94 127.31 131.31 
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No. Predictors   
Estimated 
coefficients 

 Variance  
P-Value< 
0.0001 

Null 
deviance 

Residual 
deviance 

AIC 

20.  Baseline Barthel 
(coded) 

0.050395 0.007764 0.00005 197.94 193.82 197.82 

21.  Arm Motricity for 
affected side at Baseline 

0.057417 0.008963 0.0000 197.94 133.08 137.08 

22.  Total Motricity for 
affected side -Baseline 

0.8360 0.1945 0.0000 197.94 135.14 139.14 

23.  Sensory symptoms -1.1481 0.2226 0.0000 197.94 190.16 194.16 

24.  NIH Limb ataxia-
affected side -Baseline 

-0.6971 0.2616 0.007 197.94 194.57 198.57 

25.  NIH Sensory-affected 
side -Baseline 

-1.0262 0.2051 0.000 197.94 190.76 194.76 

26.  NIH Score grouped 2.3286 0.5065 0.000 197.94 196.78 200.78 

27.  NIH Score grouped -2.3906 0.5068 0.000 197.94 167.10 171.1 

28.  NIH Score grouped 2.26383 0.420 0.000 197.94 165.24 169.24 

29.  NIH Score grouped -2.2638 0.4203 0.000 197.94 162.14 166.14 

30.  NIH Score grouped -2.0794 0.3992 0.000 197.94 162.14 166.14 
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No. Predictors   
Estimated 
coefficients 

 Variance  
P-Value< 
0.0001 

Null 
deviance 

Residual 
deviance 

AIC 

31.  Shoulder Shrug at 
Baseline 

-1.8412 0.5062 0.0003 197.94 175.42 179.42 

32.  Upper limb Sensory 
deficit at Baseline 

-1.8606 0.3951 0.000 197.94 193.91 197.91 

33.  Visuospatial deficit at 
Baseline 

-1.2541 0.3997 0.0017 197.94 172.42 176.42 

34.  NIH Neglect-affected 
side -Baseline 

14.4827 
1029.121
5 

0.989 197.94 170.78 174.78 

35.  NIH Best motor leg-
affected side -Baseline 

1.5060 1.0338 0.145 197.94 165.92 169.92 

36.  
Pre -Stroke Pain (10) 
for affected side -
Baseline 

13.4751 882.7434 0.988 197.94 197.52 201.52 

37.  NIH Arm for affected 
side -Baseline 

-0.07819 0.11652 0.502 197.94 138.90 142.9 

38.  Baseline Barthel 
(coded) 

-0.1118 0.3839 0.771 197.94 143.76 147.76 

39.  Baseline Barthel 
(coded) 

17.7964 
1072.315
2 

0.987 197.94 197.86 201.86 

40.  Baseline Barthel 
(coded) 

15.5219 906.9427 0.986 197.94 173.54 177.54 

41.  NIH Stroke Scale 
Dysarthria 

-0.1601 0.2761 0.562 197.94 183.48 187.48 



143 
 

No. Predictors   
Estimated 
coefficients 

 Variance  
P-Value< 
0.0001 

Null 
deviance 

Residual 
deviance 

AIC 

42.  NIH Stroke Scale Best 
motor -R-arm 

0.2468 0.1967 0.21 197.94 172.96 176.96 

43.  NIH Stroke Scale Best 
motor -L-arm 

0.2732 0.2311 0.237 197.94 148.69 152.69 

44.  Motricity Total right 
side 

-0.008856 0.007905 0.262  197.94 139.04 143.04 

45.  Sensory deficit affecting 
arm/hand 

1.020 1.075 0.343 197.94 181.47 185.47 

46.  Side affected by stroke -0.09531 0.61170 0.876 197.94 172.45 176.45 

47.  Post-stroke pain -10-
point scale 

0.08841 0.60027 0.883 197.94 193.50 197.5 

48.  Motricity Total right 
arm 

-0.007246 0.006845 0.289  197.94 139.28 143.28 

49.  Motricity Total right leg -0.008805 0.008379 0.293 197.94 154.65 158.65 

50.  Passive range of pain-
free movement 

-0.004650 0.006894 0.500  197.94 162.38 166.38 

51.  NIH Stroke Scale 
Plantar reflex 

1.0257 0.5972 0.08  197.94 181.73 185.73 
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5.4.1.2 Stepwise regression method result 

Once the predictors from the univariate logistic regression model was extracted, 

stepwise of multivariate logistic regression was deduced. The stepwise selection 

method identified 16 significant predictors at (p-value= 0.05), including the results 

of selection and fitting as follow: 

Table 5-7 Presents the results of the stepwise logistic regression selection predictors based on the AIC. 
 

 

No. Name of predictors Coefficient 
estimated 

Error of 
estimated 

Wald’s 
Test 

p-value 

1 Age -0.36 0.13 -2.3 0.02* 

2 Total of Sheffield 
Expressive  

-1.59 0.88 -1.92 0.55 

3 Total of Sheffield score 
test 

0.64 0.33 1.93 0.05 

4 Motricity Total left arm 0.12   0.086  1.424 0.15 

5 Right shoulder shrug 9.75 4.62 2.109 0.03* 

6 NIH Stroke Scale Level of 
consciousness 

10.301 4.78  2.153 0.03* 

7 NIHSS Facial palsy 4.23 1.846 2.293 0.02* 

8 NIHSS of best motor- left 
Arm 

2.38 1.459 1.633 0.10 

9 NIHSS of best motor- 
right leg 

8.36  .338 2.505 0.01* 

10 NIHSS sensory right  9.19  .8558 2.386 0.01 * 

11 NIHSS neglected  -16.27 6.928 -2.352 0.01 * 

12 Total of NIHSS score -5.49  2.168 -2.536 0.011 * 

13 Baseline Barthel   1.74 1.888  -0.923 0.35   

14 Arm Motricity of affected 
side at baseline time 

-0.083  0.0718 -1.161 0.24 

15 NIHSS neglect of affected 
side at baseline  

20.93  8.588 2.438 0.0148 
* 

16 NIHSS score grouped -9.68  4.184  -2.314 0.02 * 
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The table above shows the results of predictors selection using the stepwise 
selection of logistic regression.  
 

5.4.2 Penalised selection results  

In this section, estimating the value of tuning (penalty) parameter process and the 

results of penalised methods selection will be presented individually according to 

the method used: 

5.4.2.1 Estimating tuning parameter 

The estimated tuning parameters are eight folds cross-validation, which was applied 

to estimate the optimal value of penalty (λ) on the training data set. This process 

aims to obtain held-out performance estimates for the model across a set of possible 

tuning parameters. The best-achieved value is then selected as the optimal value of 

the estimated tuning parameters set. This best-identified value will be utilized in the 

final model that corresponds to the minimum value of deviance (mean square 

errors).  

The flowchart shows the cross-validation approach used to determine the 

performance of a single value of the set. This process is repeated for all rows of the 

vector λ, i.e. all possible values of the vector in the grid search. 
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Figure 5-2 Flowchart of estimating process penalty and developing for penalisation methods. 
 

The idea behind the flowchart is to acquire the generalisation performance of all 

possible model combinations which are: 1) data split to training and testing sets, 

and 2) training set divided into eight parts/folds cross-validation for model 

development. This procedure produces 16 values achieving estimates for two values 

of penalty. These performances are averaged to obtain the overall performance for 

the optimal estimation value, and the value with the minimum deviance (mean 

square error) is used for the final predictor’s selection and model development. 

Data for prediction recovery model were extracted based on the clustering k-means 

of three times measurement of Action Research Arm Test results. This resulted in a 

group of 114 patients that included the patients with moderate to severe 

dysfunction of the upper limb. 70% of the data was taken as a training set to build 

70% of training 
data set 

30% of testing 
data set 
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the model.  30% of the data was used for achieving of the final model. Data were pre-

processed as described in the section (5.2) resulting in a design matrix X for training 

and testing. Three of final models were built to select predictors and prediction 

based on the RCT data. 

5.4.2.2 Adaptive LASSO selection results 

The predictors selection process of Adaptive LASSO contains two steps. The first 

step is to estimate the weight of adaption using the ridge regression method. Then, 

the value of tuning parameter was estimated based on ridge regression method.  The 

estimated value corresponds to the minimum value of binomial deviance and then 

the final selection of predictors. The optimal selection is located between the first 

and the second dash line as in  

Figure 5-3 that is corresponding to the minimum value of deviance(Hastie et al., 

2015). The optimal selection shrinks unrelated predictors from (74) to 8 predictors 

by estimating optimal value of tuning parameters (λ =-1.2) of adaptive LASSO. The 

dotted line on the left side corresponds to λmin. The second line is λ1se. 
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Figure 5-3 Plot of the deviance cross-validation as a function of the penalty parameter λ to determine 
the.  
 

The results of selection of the adaptive LASSO method include six of related 

predictors from 74 predictors in the matrix design. The estimated regression 

coefficients and the confidence intervals of those related predictors are presented 

in Table 5-8. 

Table 5-8 Presents the important predictors selected using the adaptive LASSO variable selection model 
and the corresponding estimation of regression coefficients; the odd ratio of intercept was 3.58. 

No. Name of predictors Odd ratio of Coefficient 
estimated and (estimated 95% 
CIs) 

1 Motricity Total left the leg 0.0025 (0.0 to 0.005) 

2 Motricity Total left the arm 0.0043 (0.0 to 0.005) 

3 Total of NIHSS score -0.56 (-0.105 to 0.00) 

4 Baseline Barthel   0.64 (0.00 to 0.749)   

5 Arm Motricity of the affected side 
at baseline time 

0.001 (0.00, 0.001)  

6 Total Motricity for affected side- 
Baseline  

0.53 (0.0, 2.54) 

 

5.4.2.3 Group LASSO selection results  

In the beginning, the optimal value of the tuning parameter was estimated (λ=-2.8) 

using the 10-fold cross-validation method. This method determines the optimal 

solution for the number of groups that shrink unrelated groups of predictors from 

(63) to 8 predictors/groups. The value is located at the dashed line as shown in 

Figure 5-4. The results selection of the group LASSO method obtained corresponds 

to the optimal estimated value of the penalty, with the selection method being eight 

predictors as they are included in Table 5-9. 
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Table 5-9 Shows the significant predictors selected using the Group Lasso variable selection model and 
the corresponding estimation of regression coefficients. 

No. Name of predictors Coefficient estimated 

1 Age -0.03 (-0.22,0.0) 

2 Motricity total left arm 0.0148 (0.0075,0.016) 

3 Active range of pain-free movement 0.004 (0.00,0.013) 

4 Total of Barthel Index 0.15 (0.0,0.12) * 

5 NIHSS of the level of consciousness -0.526 (-0.003,0.00) * 

6 NIHSS of neglected left -0.019( -0.0014,0.00) * 

7 Total of NIHSS score -0.041 (-0.0012,0.00) * 

8 Total Motricity for affected side- Baseline  0.0003 (0.0011 to 0.011) * 

 

Figure 5-4 Plot of the deviance cross-validation as function of the penalty parameter λ to determine 
the estimated optimal value of tuning parameters estimated of Group LASSO. The dotted line on the 
left side corresponds to λmin. 
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5.4.2.4 LASSO selection results  

In this method, the tuning parameter was estimated to determine the optimal value 

of the penalty that achieves the best selection of predictors; which reflects the 

lowest attitude of deviance.   

 

The optimal tuning parameter λ = 0.0017, corresponding to the minimal deviance of 

0.2301, was chosen Figure 5-5. Eight significant variables were estimated from the 

(74) coefficient paths for the fitted LASSO model based on the optimal (λ). These are 

listed in Table 5-10.  

Figure 5-5 Plot of the deviance cross-validation as a function of the penalty parameter λ to 
determine the estimated optimal value of tuning parameters estimated of LASSO. The dotted line 
on the left side corresponds to λmin. The second line is λ1se 



151 
 

 
Table 5-10 Shows the important predictors selected using the Lasso variable selection model and the 
corresponding estimation of regression coefficients. 

 

5.5 Evaluation of predictors selection methods  

Several numbers of performance measures exist for predicting models. I used 

measures that are the most common in medical studies of prediction in a medical 

journal(Steyerberg and Vergouwe, 2014). These measures include the C statistic 

(The area under the curve of ROC) for discrimination and Brier Score, Hosmer 

Lemeshow and good-of-fit test for calibration. The results of discrimination and 

calibration of four models of selection are the next two subsections: 

No. Name of predictors Coefficient estimated 

1 Age -0.024 (-0.57, 0.004) 

2 Days from stroke to admission 0.021 (0.0, 1.52)  

3 Previous stroke 0.244 (0.00, 2.5) 

4 Active range of pain-free 

movement 

0.007(-1.055,0.0) * 

5 Total of Barthel Index 0.58 (0.0,0.25) * 

6 NIHSS of the level of 

consciousness 

-0.06 (-0.31,0.0) 

7 Barthel Index of (0-4) -0.345 (0.00,0.001) * 

8 Total of NIHSS score -0.048 (-0.31,0.0) 
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5.5.1 ROC and area under the ROC: 

A ROC curve was plotted to determine the discriminatory power of the four models 

of selection to differentiate between recovered and not recovered, Figure 5-6. As 

mentioned previously in section 3.3.3, a value of 0.5 means that the model is useless 

for discrimination (equivalent to tossing a coin) and values near one means that 

higher probabilities will be assigned to cases with the outcome of interest compared 

to cases without the outcome.  

 

Figure 5-6 Receiver operating characteristic (ROC) curves for the predicted probabilities recovery of the 
upper limb using four methods (stepwise, adaptive LASSO, group LASSO and LASSO). 
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The value of the area under the ROC represents the ability of the model to 

discriminate between those patients who experience a higher probability of upper 

limb recovery based on the ARAT and those who do not experience the recovery. The 

area under the ROC was calculated to assess the discrimination for each model of the 

selection. This was deduced using the pROC and AUC packages in the software R 

(Kundu et al., 2011; Robin et al., 2011). 

Table 5-11 Area under the ROC of four internal validation of model selection. 
Methods Stepwise model Adaptive LASSO modelGroup 

LASSO 

LASSO 

Area under the ROC 0.74 0.88 0.86 0.80 

The area under the ROC curve for a predicting model is typically between 0.6 and 

0.85  (Royston et al., 2009). As I can see, the adaptive LASSO has a higher value of the 

area under the curve (0.88) than the other methods selected as seen in Table 5-11. 

This indicates that the ALASSO produces results with good balance between the true 

positive rate (patient has a probability to recover function of upper limb and, patients 

who have a chance to recover the function of the upper limb after three months),and 

the false positive rate (patient, in reality, who has not had a chance to recover but the 

model identified him/her as the opposite). Furthermore, and since the area under 

the ROC of GLASSO is (0.86), this means that the GLASSO method can discriminate 

patients better than the LASSO and stepwise logistic regression. 

Additionally, the prediction models with fewer predictors that were identified by the 

methods of adaptive and group LASSO had the minimum average of prediction errors 

and the maximal areas under the curve of ROC. This demonstrates that these two 
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methods out-performed the other methods with respect to the identification of the 

most informative factors. 

5.5.2 Calibration 

Assessing calibration of four prediction of development models was deduced using 

two methods; Hosmer Lemeshow test and calibration plot. The Hosmer Lemeshow 

test was used to investigate how well the predicted probabilities agree with the 

observed probabilities (calibration). In this test, the way of assessing the fit of a 

logistic regression model is to compare the expected and observed numbers of 

positives for different subgroups of the data. This test should not be statistically 

significant, a p-value is greater than 0.05 showing that the model fits the data. Table 

5-12 presents the results of four models. 

Table 5-12 Results of Hosmer-Lemeshow test of four methods selections. 
Methods Hosmer- Lemeshow test P-value 

Stepwise 3.77 0.8 

Adaptive LASSO 5.31 0.72 

GLASSO 8.718 0.367 

LASSO 10.43 0.21 

 

If the result of Hosmer Lemeshow test is non-significant, this means the  observed 

and expected numbers are sufficiently close, then I can assume that I have an 

adequate model (Steyerberg et al., 2010b). Calibration curves were plotted for each 

method of selection (Stepwise, adaptive LASSO, GLASSO and LASSO; see Figure 5-7). 

These curves are performed to plot and show the predicted proportion versus the 
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actual proportion of recovery of function of upper limb of stroke patients based on 

the ARAT score.  If the model was ideally calibrated at each patient, the predicted 

(dash line) and observed (bold line) values would sit perfectly on each other. In the 

case of each model for predicting recovery, the predicted and observed lines are not 

perfectly matched although they are close, especially for ALASSO method. Therefore, 

there is no reason to doubt that the internal validity of the ALASSO is better than the 

internal validity of GLASSO, LASSO and Stepwise. 

 

Figure 5-7 Calibration of the predicted probabilities recovery of the upper limb using four methods 
(stepwise, adaptive Lasso, group Lasso and Lasso). 
 

5.6 Comparison of performance of predictors selection methods  
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The comparison study presents the comparison of the methods’ performance to 

select relative predictors for developing the model (Table 5-13).  Sensitivity and 

specificity analysis were reported. Sensitivity is the proportion of the true positive 

outcomes (for example, truly recovered subjects) that are predicted to be positive. 

Specificity is the proportion of the true negative outcomes (for example, truly not 

recovered subjects) that are predicted to be negative. A higher sensitivity level 

indicates better performance of identification of informative predictors from a pool 

of selected variables. 

Table 5-13 Predictive performance of predictors identified by the four methods of selection to 
distinguish patients which have a chance to recover of upper limb function virus which is not based on 
the action research arm test after three months.   
Penalised methods Lasso ALASSO GLASSO Stepwise Regression 

Sensitivity 1.00 0.91 0.92 0.74 

Specificity 0.67 0.86 0.78 0.56 

Accuracy 0.86 0.89 0.86 0.60 

P-Value 0.006 0.00002 0.0054 0.001 

95% CI 
(0.664,

0.97) 

(0.817, 

0.9273) 

(0.64,0.

97) 
(0.1-1.12) 

 

5.7 Discussion  

In this chapter predictors selection are applied to RCTs dataset, to build a predictive 

model and identify the predictors that have an important effect on explaining 

recovery in the post-stroke upper limb function based on ARAT. Four methods of 

predictors selection models are investigated when building a model involving 

stepwise logistic regression and three of penalised methods (LASSO, GLASSO and 

ALASSO). The best performing selection models, in term of general performance and 
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calibration and the discrimination, was found when the predictors were carried out 

using the cross-validation and bootstraps methods, choosing the final model by 

maximising the accuracy of classification. The performance of the models selected 

compares favourably with the predictive models of post-stroke recovery of upper 

limb function reported in recent literature. 

Theoretical studies and simulations reported that the traditional method of sub-set 

selection performs poorly whether in the multivariate or multivariable regression 

model, particularly when (Dormann et al., 2013; Guo et al., 2015; Kwah and 

Herbert, 2016; Zhang et al., 2015; Zhang et al., 2010): 

 Most predicting variables have good explanatory power for the outcome of 

interest 

 Interpretation is complex 

 Multicollinearity is present 

 The number of predictors is large 

The results of this study are supported by this position; thus, traditional methods 

are not accurate enough methods for predictors selection. In contrast, the penalised 

methods of selection are reported to have superior performance (Hastie et al., 2015). 

There are three key findings:  

(1) ALASSO method has a better performance when dealing with selecting 

predictors of upper limbs functional recovery in stroke patients presenting with 

upper limb motor impairment.  

(2) This method has impressive achievement in selection predictors that are 

clinically relevant to the function of upper limbs’ recovery. Selection predictors 
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based on this method identified predictors which are clinically relevant (NIHSS, 

Motricity Index, and Barthel Index), which are, according to previous literature, a 

very good clinical predictor(Coupar et al., 2012; Kwakkel et al., 2003). In addition, 

NIHSS was found to have broad predictive utility of mortality, disability and 

independence of ADL. Furthermore, it has been routinely used in acute stroke units.  

(3) ALASSO method selected a group by reducing the candidates set of predictors to 

the suitable subset of the model for predicting the recovery of function of upper limb 

after 12 weeks, Table 5-8. This will be discussed in the following paragraph. ALASSO 

selected six predictors and the GLASSO method selected eight predictors. In both the 

selection methods’ results, several predictors/variables are shared, such as the 

motricity index. This indicates that the motricity index test is a good predictor of the 

functional upper limb in recovery (Coupar et al., 2012). The MI has shown to high 

reliability for muscle strength measurement post-stroke. Additionally, it is 

considered as a simple and easily applied tool that does not need any equipment, 

training or experience. Thus, it is widely used due to its simplicity and being time 

and cost-effective. Relative to outcomes, some predictors seem to have a significant 

explanatory effect; however, they have not been selected. The Barthel index (BI) is 

a widely used measure for active daily living that contains items covering the most 

common activities needed for independent living. Moreover, it has shown high 

sensitivity and specificity in neuroglial conditions in general, and in stroke 

specifically. (Ohura et al., 2017).  

This limitation in the study could be related to the small sample size. This includes 

the number of missing-data of each patient and the characteristics of each 

predictor. However, where possible, I wanted to add as many relevant predictors 
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as possible and estimate the missing data with the final data set. Besides this, 

penalised estimation is a procedure that reduces the variance of estimators by 

introducing substantial bias. For this reason, I cannot use the same approach in 

LASSO as in classical logistic of interpreting the predictor’s effect estimation. 

To ensure the ease of interpretation, a few techniques have been proposed, for 

example the bootstrap method to estimate the mean square error of estimation and 

confidence interval. When comparing the results of selected predictors between the 

ALASSO method and the other methods of selection, Table 5-13, all estimated 

coefficients of ALASSO are symmetric in the 95% confidence interval. However, 

some of the estimated coefficients of the GLASSO were located outside of the 95% 

confidence, indicated by Table 5-9 , Table 5-10 and Table 5-8. This may be due to 

several reasons, the most likely of which relates to the small sample size of the 

original sample or some shortcomings of the methods of estimation, or the number 

the size of each bootstrap sample. 

Significant multicollinearity exists within this data set as indicated by the value of 

VIF which is greater than 10 for many variables(Dormann et al., 2013). Multicollinearity 

within this data set has arisen from multiple measures being used to assess similar 

constructs (for example the Frenchay Arm Test and the Motricity Index) and the 

interdependency between measures of impairment and activity. However, it is also 

possible that multicollinearity could have been incidental to the inherent nature of 

the sample (i.e. recovery from stroke follows a small range of predetermined, 

although as yet undescribed, trajectories), and the small sample size when 

compared to a large number of independent variables identified. The challenge of 

using traditional methods in the presence of multicollinearity(Dormann et al., 2013; 
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Steyerberg, 2009), particularly in small sample data sets, is the risk of selecting 

inappropriate or confounded predictor variables (for example a latent variable). 

This problem is resolved within ALSSO and GLASSO methods. 

The present study could have a methodological advantage over prior studies, in 

which I have applied two different types of penalised selection methods (modern 

methods). As a result, shrinkage of the redundant and irrelevant predictors was 

achieved in the modelling process for predicting recovery of upper limb function. 

Use of these methods can also significantly increase the accuracy of the prediction 

model and allow for easy interpretation of the model. The adaptive LASSO has a 

better precision score when compared with the LASSO and GLASSO method as per 

table 4. Both penalised methods were able to select subset predictors in order to 

predict the outcome of patient’s functional upper limb recovery three months post-

stroke. Three penalised methods were able to achieve a prediction accuracy higher 

than 86% sensitivity greater than 93% and specificity between 62% -72%. 

However, the Stepwise method achieved prediction accuracy 60%, 74% sensitivity 

and 56% specificity. 

5.8 Conclusion 

Penalised methods for selection of predictor subsets in prospective modelling of 

upper limb function, three months post-stroke, have been identified as appropriate. 

These methods can overcome previous limitations associated with traditional 

methods, such an existence of a significant correlation between predictors. So far, 

this research has focused mainly on prediction model’s development, regarding 

both application and methodology matters such as selecting the most important 

predictors in the model. The emphasis in the next of chapter is to the validation 
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performance of a prediction model. All prediction models require external 

validation to check that the model predicts reliably in new data from similar (or even 

different) settings or populations. In the next chapter, these methods will be 

externally testing the model that has been developed for prediction of functional 

upper limb recovery post-stroke using a new data set. 
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6 External validation 

If models are to be adopted for clinical decision making, it is vital that they can 

accurately predict outcomes in the real world/clinical setting. Prior to 

implementation in the real world-clinical setting, it is necessary to test the model 

performance on a new, unseen data set. This process is known as external validation. 

Within modelling, it is bad practice to advocate models for use when they have only 

been internally validated, given that model performance is likely to be inflated due 

to overfitting, given that the model is able to explain the seen or existing dataset.  

Because of the optimism problem (overfitting) of predictive models, models have 

worse performance in new patients/subject than expected based on the 

performance estimated from the development data-set (Harrell et al., 1996; Kwah 

and Herbert, 2016).   

I have previously completed the internal validation processes and identified the four 

predictors selection models, as described earlier. Therefore, the next step in the 

model development process is external validation. During the external validation 

stage, it is also important to assess how good the model prediction is in estimating 

the errors.  This is known as model performance. Here, I compare the external 

validation performance of the Stepwise logistic regression, LASSO, adaptive LASSO 

and group of LASSO models on a new dataset. 

6.1 External validation study 

In this study, the external validation of the developed models was tested by utilising 

data adopted from an independent randomized control trial of patients who have 

significant impairment of function in the affected arm post-stroke; more detail in 
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study presented by Lindsay et al. (2014). I extracted a set of predictors from the 

control group of original data-set. These predictors are similar to the set that was 

selected by stepwise logistic regression, adaptive LASSO, Group of LASSO and 

LASSO. Logistic regression of each method was used to re-develop the prediction 

model of the new data-set.  

The following metrics were used to evaluate the externally validity of the model 

performance. The Brier score was used to assess the overall performance of each of 

the four models (Harrell et al., 1996). Hosmer and Lemeshow goodness of fit test 

and calibration plot were used to assess the agreement between the predicted ARAT 

outcome for each patient and the actual ARAT outcome at three and six months 

respectively. Discrimination was assessed using: 1) A confusion matrix was used to 

evaluate the fit of the four models and identify the rate of true positives it classifies 

as being positive (the sensitivity) and the rate of true negatives it classifies as being 

negative (the specificity). 2) The discriminative ability of the four models for the 

upper limb recovery was calculated by measuring the area under the ROC curve and 

plotted. Finally, in order to investigate the prediction model usefulness in clinical 

assessment a decision curve analysis (DCA) was evaluated using the net benefit 

measure(Steyerberg and Vergouwe, 2014; Vach, 2013).  

6.2 Baseline characteristics 

The Data-set included more than 500 columns of predictors which can be 

categorised into demographical, historical and clinical measurement variables. The 

data-set also included the ARAT outcome measures determined at different time 

points i.e. baseline, 3 and 6 months. A range of (0 to 5 weeks) was at the baseline 

measurement time point identified for stroke patients between (0-5) weeks of 120 
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patients (Lindsay et al., 2014). The number of patients is 120 patients at baseline 

that classified into 73 patients as a control group and 47 of patients as the 

intervention group. The data set comprises a significant amount of missing -data, 

and this amount is increasing over the follow-up study. Additionally, more than 80 

per cent of values within some variables were constant and thus have been 

excluded, the remaining predictors in the development and external validation sets 

are presented in Table 6-1.  

Table 6-1 Summary of the baseline characteristic of predictor variables of both set development** and 
external validation. 

Predictors Odd ratio (OR)**, 

model development  

Odd ratio (OR), model 

validation  

Age 71.3± 11.3 65.46+16.93 

Previous stroke 125(83.3%)  

Barthel index Baseline 10.03±5.75 3.51+ 4.61 

After Stroke Pain (10) for 
affected side -Baseline                            

146(97.3%) 29.78+36.04 

 

NIHSS of arm Baseline 8(5.33%) 3.61+0.63  

 

NIHSS of Leg 

 

101(67.33%) 2.78+ 1.06 

 

NIHSS of Sensory  

 

48(32%) 

22(12%) 

 

1.15+0.73 

 

Action Research Arm test 20+27.81  

 

13.05+19.81  

 

** the odd ratio of model development comes from the study in chapter four. 
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6.2.1 Results for external validation of the models at three six months 

These results included tests of the ability of the external validity of the four 

predictions of development models. Four prediction models were assessed based on 

the result of model’s development variable selection process and internally 

validated, as follows: 

1. The equation of Stepwise logistic regression model that used to predict the 

probability of recovery patients’ upper limbs’ function after three months is: 

 P=
𝒆𝟏𝟒𝟎ష𝟎.𝟑𝟔(𝑨𝒈𝒆)ష𝟓.𝟒𝟗𝟗(𝑵𝑰𝑯𝑺𝑺)శ𝟏.𝟕(𝑩𝑰)

𝟏ା𝒆𝟏𝟒𝟎ష𝟎.𝟑𝟔(𝑨𝒈𝒆)ష𝟓.𝟒𝟗𝟗(𝑵𝑰𝑯𝑺𝑺)శ𝟏.𝟕(𝑩𝑰)
 (6.1) 

Where: 

P: is the predicted probabilities the ARATs’ outcome of patients after three months. 

NIHSS is the severity of stroke measures.  

BI: is the Barthel Index at baseline time. 

2.  The equation of ALASSO logistic regression model that used to predict the 

probability of recovery patients’ upper limbs’ function after three months is 

 𝑃 =
𝑒ଷ.ହ଼ି଴.ହ଺(ேூுௌௌ)ା଴.଺ସ(஻ூ)

1 + 𝑒ଷ.ହ଼ି଴.ହ଺(ேூுௌௌ)ା଴.଺ସ(஻ூ)
 (6.2) 

Where: 

P: is the predicted probabilities the ARATs’ outcome of patients after three months. 

NIHSS:  is the severity of stroke measures at baseline.  

BI: is the Barthel Index at baseline time. 
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3. The equation of GLASSO logistic regression model that is used to predict the 

probability of recovery patients’ upper limbs’ function after three and six 

months respectively is 

  𝑃 =
𝑒଴.ଶହି଴.଴ଷ଺(஺௚௘)ି଴.଴ହ(ேூுௌௌ)ା଴.ଵହ(஻ூ)

1 + 𝑒଴.ଶହି଴.଴ଷ଺(஺௚௘)ି଴.଴ହ(ேூுௌௌ)ା଴.ଵହ(஻ூ)
 (6.3) 

Where: 

P: is the predicted probabilities the ARAT’s outcome of patients after three months. 

Age: is age of patient at baseline post-stroke. 

NIHSS: is the severity of stroke measures at baseline.  

BI: is the Barthel Index at baseline time. 

4. The equation of LASSO logistic regression model that used to predict the 

probability of recovery patients’ upper limbs’ function after three months 

is: 

 𝑃 =
𝑒ଵ.଴ଵି଴.଴ଶସ(஺௚௘)ି଴.଴ସ଼(ேூுௌௌ)ା଴.଴ହ଼(஻ூ)ା଴.ଶସ(௣௥௘௩௜௢௨௦௦௧௥௢௞௘)ା଴.଴଴଻∗௉௔௜௡

1 + 𝑒௘భ.బభషబ.బమర(ಲ೒೐)షబ.బరఴ(ಿ಺ಹೄೄ)శబ.బఱఴ(ಳ಺)శబ.మర(೛ೝ೐ೡ೔೚ೠೞೞ೟ೝ೚ೖ೐)శబ.బబళ∗ುೌ೔೙
 (6.4) 

Where: 

P: is the predicted probabilities the ARATs’ outcome of patients after three and six 

months respectively. 

Age: is age of patient at baseline post-stroke. 

Pain: represents patients’ pain at baseline post-stroke. 

NIHSS:  is the severity of stroke measures at baseline.  



170 
 

 BI: is the Barthel Index at baseline time. 

The overall performance of models as in the equations (1,2,3,and ), the ability of 

each model to discriminate the differentiation between a patient  with the recovery 

event from a patient without, calibration and ability of the model to improve the 

decision making procedure (clinical usefulness) were tested (Vach, 2013), as 

follow:  

6.2.2 Performance of recovery functional upper limb prediction model 

Due to the Brier score results of each model (Stepwise logistic regression, ALASSO, 

Group LASSO and LASSO) the Adaptive LASSO has a lower distance between the 

actual and predicted outcome than other models.  ALASSO has better overall 

performance prediction at three and six months, respectively (Table 6-2).   

Table 6-2 Overall performance of recovery functional upper limb of each prediction model. 

Prediction 
Models 

Brier Score of Externally 
validated prediction models 
after three months. 

Brier Score of Externally 
validated prediction models 
after six months. 

Stepwise 
logistic 

0.19 0.16 

Adaptive 
LASSO 

0.11 0.13 

GLasso 0.15 0.31** 

LASSO 0.16 0.135 

**The Brier score can be accounted for logistic regression model and is the average 

squared differences between actual outcome (0, 1) and predicted probabilities 

(ranges from 0 to 1). Where the Brier score was equal to zero that means the model 

has perfect achievements. If the score was less than 0.25 that indicates good model 

performance. The model’s performance was acceptable according to Brier scores 

that were (19%, 11%,15% and 16%) at three months and (16%, 13%, 31% and 
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14%) at six months. A related test to the Brier score is Nagelkerke R2 which is 

interpretable as the rate of ARATs’ outcome variation, which can be clarified by the 

predictors of the model.  

6.2.2.1  Calibration of externally validated prediction models after three and 

six months   

Calibrations of external validation models (Stepwise logistic regression, ALASSO, 

GLASSO, and LASSO) were deduced using: The Person correlation of goodness fit 

test and the Calibration plots method. 

6.2.2.1.1 Correlation test: 

Hosmer–Lemeshow is used to assess the goodness-of-fit χ2 test. However, because 

the sample size is small and the Hosmer–Lemeshow test is known to be 

oversensitive to small sub-group deviations, even if it has good fitting in moderate 

data-sets it is not suitable in this study. Therefore, to compare the predicted ARAT 

versus actual ARAT outcomes, the Pearson correlation coefficient was used. (Zhang 

et al., 2013) 

Table 6-3 Results of correlation coefficient of Externally validated prediction models after three months. 

Prediction Models 
Correlation coefficients between 
predicted and actual outcomes 
after three months.  

Correlation coefficients 
between predicted and actual 
outcomes after six months. 

Stepwise 
logistic 

0.35 0.40 

Adaptive LASSO 0.70* 0.62* 

GLasso 0.44 0.45 

LASSO 0.53 0.50 

* highly correlated between the actual and predicted outcomes of ALASSO. 



172 
 

6.2.2.1.2 Calibration plots: 

Calibration plots of prediction model are an essential aspect for external validation. 

These compare the averages of actual outcomes versus predicted outcomes 

determined from the prediction model. The results of the calibration slope plots 

were decomposed into results in Table 6-4 and calibration plots of prediction 

models after three and six months, respectively, in order to display individual model 

results in a simple way, Table 6-4 and  Figure 6-3, Figure 6-2. 

Table 6-4 Result of slopes and intercepts calibration of each external validation model. 

Table 6-4 shows the slope and intercept of the calibration plot of the external 

validation of four models. Calibration is not close to one and indicates that the model 

is optimistic. Because the value of the intercept is related to the value of the slope, 

the intercept automatically changes when the slope changes. In the external 

validation data, the intercept of each model was (-0.72, -0.16, 0.29 and 1.7) and (-

0.43, 0.15, 0.70 and -0.43) for three and six months, respectively. As the results 

showed, the calibration of stepwise logistic, GLASSO and LASSO models have a poor 

performance compared to the ALASSO method. The main components of the output 

of these figures are explained as follows: 

The sold line represents the actual model performance that compares the 

proportion of predicted and actual outcomes of recovery upper limb. A calibration 

slope of less than one is a sign of the overestimation/overfitting of estimated 

Prediction 
Models 

  Externally validated prediction 
models after three months. 

  Externally validated prediction 
models after six months. 

Stepwise  ALASSO GLASSO LASSO Stepwise   ALASSO GLASSO LASSO 

Calibration 
intercept 

-0.72 -0.16 0.29 1.7 -0.43 0.15 0.70 -0.43 

Calibration 
slope 

1.79 0.63 1.33 -0.72 1.7 0.56 1.56 1.7 
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coefficient, whereas points located above the diagonal line correspond to 

underestimation prediction. When an intercept of each model is different from 0 

that indicates the predicted probabilities are systematically too high (intercept < 0) 

or too low (intercept > 0). In a sense, the calibration of the intercept represents the 

term of bias in the prediction model, which is systematic under or over-prediction 

of probabilities. If both the slope differs from 1 and the intercept differs from 0, the 

interpretation of the mis-calibration is difficult, because the values of intercept and 

slope are related. Consequently, the presence of mis-calibration in models has an 

adverse effect on the model’s prediction performance.  



174 
 

Calibration of Stepwise method Calibration of ALASSO method 

Calibration of Group LASSO method Calibration of LASSO method 

Figure 6-1 Calibration of predicted probabilities recovery of functional upper after three months using four 
models (stepwise, ALASSO, GLASSO and LASSO) based on the external validation dataset. 
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Figure 6-2 Calibration of predicted recovery of functional upper after six months using four models 
(stepwise, ALASSO, GLASSO and LASSO). 

Calibration of Stepwise method Calibration of ALASSO method 

Calibration of Group LASSO method Calibration of LASSO method 
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6.3 Discrimination of externally validated prediction recovery models     

By using the above four equations of logistic regression models as in section 6.2.1, 

discrimination was evaluated by finding the predicted probabilities from each model 

(Stepwise logistic regression, ALASSO, GLASSO and LASSO) for every patient. 

Sensitivity, specificity and accuracy and the area under the curve of ROC were 

evaluated for each model at three and six months, respectively, 

 Table 6-5,Table 6-6. All these steps were deduced using three packages of R (ROCR, 

AUC and predictABEL).  

 Table 6-5 sensitivity, specificity, true/ false positive and negative given predicted recovery of functional 
upper limb of cut-off (ARAT) >=7 after three-month post-stroke of external validation dataset. 

Prediction Models Stepwise 
logistic 

Adaptive LASSO GLASSO LASSO 

No. of predictors 6 2 3 3 

No. of True Positive 18 23 23 23 

No. of True Negative 8 10 3 7 

No. of False Positive 15 8 15 11 

No. of False Negative 0 0 0 0 

Sensitivity  0.34 0.56 0.16 0.38 

Specificity  1 1 1 1 

Accuracy 0.63 0.80 0.63 0.73 

Positive Prediction 
Value 

1 1 1 1 

Negative Prediction 
Value 

0.54 0.74 0.60 0.67 

Prevalence 0.44 0.44 0.44 0.44 

Area under the curve 0.67 0.78 0.58 0.70 
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Table 6-6 sensitivity, specificity, true/ false positive and negative given predicted recovery of functional 
upper limb of cut-off (ARAT) >=7 after six-month post-stroke of external validation dataset. 

Prediction Models Stepwise 
logistic 

 Adaptive LASSO GLASSO LASSO 

No. of predictors 5 2 3 2 

No. of True Positive 20 21 21 21 

No. of True Negative 8 10 3 7 

No. of False Negative 0 0 0 0 

No. of False Positive  13 10 17 13 

Sensitivity  0.38 0.50 0.15 0.35 

Specificity  1 1 1 1 

Accuracy 0.68 0.75 0.78 0.68 

Positive Prediction 
Value 

1 1 1 1 

Negative Prediction 
Value 

0.60 0.67 0.55 0.61 

Prevalence 0.48 0.48 0.48 0.48 

Area under the curve 0.69 0.75 0.57 0.68 

 

A true and false positive rate were evaluated by plotting the area under the receiver 

operator. The Area under the ROC of (Stepwise logistic regression, ALASSO, Group 

LASSO and LASSO) were (0.67, 0.78, 058 and 0.69) with confidence interval 95% 

[(0.49, 078); (0.65, 0.91) ;(0.46, 0.78); and (0.57, 0.86)], respectively. The results of 

four model’s external validations plots show that discriminatory ability of (the 

Stepwise logistic regression, ALASSO, Group LASSO and LASSO) is not particularly 

good, reliable with the predictors not explaining much of the difference in the datasets. 

By contrast, the adaptive LASSO plot shows that the discriminatory ability of this model 

is good and reliable with the predictors explaining well the variation in the external 

validation datasets. The ALASSO model’s plot shows the effects of the level of severity 

of stroke and the level of activities to daily living to the recovery of the upper limb of 
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patients; this produced a better performance than the other models ( Stepwise logistic 

regression, ALASSO, Group LASSO and LASSO) Figure 6-3, Figure 6-4. 

 

 

 

 

 

Figure 6-3 Receiver operator curves for the Stepwise logistic regression, ALASSO, GLASSO and LASSO model to 
predict ARATs’ outcome after three months. 
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6.4 Decision-curve analysis of externally validated prediction models 

The aim of this research is to develop a prediction model which can classify patients’ 

likelihood of achieving upper limb recovery and those not likely to achieve recovery to 

guide rehabilitation programs. Therefore, a cut-off point is required to classify patients 

Figure 6-4 Receiver operator curves for the Stepwise logistic regression, ALASSO, GLASSO and LASSO model to predict 
ARATs’ outcome after six months. 
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as either not being able to recover or being able to achieve recovery so that treatment 

may be allocated or withdrawn appropriately.  At the threshold, the likelihood of 

improvement, for example reduced impairment because of rehabilitation program 

therapy, exactly balances the likelihood of no recovery, for example improves the 

clinical costs-effectiveness. Irrespective of the fact that a prediction model may achieve 

a good level of calibration and discrimination (sensitivity, specificity and the area 

under the curve of ROC), these characteristics do not enable the model to assess clinical 

usefulness (Steyerberg and Vergouwe, 2014; Zhang et al., 2018).  

To overcome this limitation, Vickers and Elkin (2006) have proposed a series of 

decision-analytic measures to summarize the performance of the model in supporting 

decision making. Additionally, they derived a new tool as a part of decision curve 

analysis (DCA). This is based on subtracting the rate of all patients identified as false 

positives from the rate of true positives. The subtraction result is then weighted by 

using the relation between the false-positive and false-negative results of a prediction 

model. This tool is called a Net Benefit (NB) that refers to weighting a relative between 

the two false conditions has a formula as follows: 

 𝑁𝑒𝑡 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 =
𝑇𝑢𝑟𝑒𝑃𝑜𝑠𝑡𝑖𝑣𝑒𝐶𝑜𝑢𝑛𝑡

𝑛
−

𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝐶𝑜𝑢𝑛𝑡

𝑛
(

𝑝௧

1 − 𝑝௧

) (1) 

Where: 

 True- positive count and false positive count represent the number of patients 

with the true and false positive prediction models results.  

 n is the sample size (total number of patients). 

 𝑝௧: is where the expected benefit of intervention is equal to the expected benefit 

of avoiding intervention. 
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There are two important benefits behind using DCA. First, DCA can be used to compare 

different types of models. For example, compare results from a predictive model and 

results from the clinical decision. Secondly, prediction models’ benefit in clinical 

practice can be quantified in a simple way that does not require information on the 

cost-effectiveness’ or how patients perceive their different health states. (Holmberg 

and Vickers, 2013; Van Calster et al., 2018). 

The DCA was used in this section to test the clinical utility of each model and to make 

comparisons between the Adaptive LASSO performance the other models (stepwise 

logistic regression, GLASSO and LASSO).  The DCA, with NB of each models, was plotted 

for external valuation after three and six months, respectively,  using the functions in 

R (Zhang et al., 2018).  Table 6-7 shows that the Net Benefit results of the four models’ 

external validation tests, which were obtained from a probability threshold of (0.5) for 

each model. 

 Table 6-7 The net benefit (NB) results of four external validation prediction models 

Methods 
Stepwise 
logistic  

ALASSO GLASSO LASSO 
Treated 
ALL 

Net benefit of 
predicting after 
three months 

0.24 0.43 0.10 0.29 <=0.21 

Net benefit of 
predicting after six 
months 

0.02 0.39 0.30 0.0.09 <=0.201 

 

The output of the Table 6-7 appears that the adaptive LASSO prediction, after three 

months of the external data, is always superior to the other prediction performance 

(Stepwise logistic regression, GLASSO, and LASSO). At that threshold, the Net Benefit 

of all treated patients was (0.21) lower that the Net Benefit of ALASSO, which was (0.43 
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and 0.39) representing predictions after three and six months, respectively. 

Additionally, the ALASSO has Net Benefit greater than all the other methods.  To 

illustrate the ALASSO superiority over the other models, I need to calculate the 

difference between Net Benefit of each model and Net Benefit of all-patients-treated.  

At 0.05 threshold, according to the interpretation given above, this means that one can 

demonstrate the difference by the following subtraction (0.43−0.21 =0.22). Further, 

ALASSO has been shown to have 22% higher Net Benefit than when all patients 

received treatment, which makes our clinical decision based on ALASSO more accurate, 

hence higher beneficial treatments. In more clinical terms, adaptive LASSO has higher 

accuracy to exclude patients who might not benefit from rehabilitation (net of false 

positive), which produce a better more cost-effective clinical decision-making 

(Holmberg and Vickers, 2013). 

The output of the clinical usefulness comparison of ALASSO prediction model’s 

performance with other models were plotted that are shown in Figure 6-6, Figure 6.7, 

Figure, 6-8, Figure 6-9 and Figure 6-10. The net benefit is plotted against the threshold 

probability. The “all” line shows the net benefit by treating all patients, and the “none” 

line is the net benefit for treating none patients. 
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Figure 6-5 Decision curve analysis for the Stepwise logistic regression and ALASSO model for prediction 
recovery functional upper limb after three months. The two curves are compared to the curves of non-
treated and all patients treated. 
 

Figure 6-6 Decision curve analysis for the GLASSO and ALASSO model for prediction recovery functional 
upper limb after three months. The two curves are compared to the curves of non-treated and all patients 
treated. 
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Figure 6-7 Decision curve analysis for the LASSO and ALASSO model for prediction recovery functional 
upper limb after three months. The two curves are compared to the curves of non-treated and all 
patients treated. 

Figure 6-8 Decision curve analysis for the Stepwise logistic regression and ALASSO model for prediction 
recovery functional upper limb after six months. The two curves are compared to the curves of non-
treated and all patients treated. 
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Figure 6-9 Decision curve analysis for the LASSO and ALASSO model for prediction recovery functional 
upper limb after six months. The two curves are compared to the curves of non-treated and all patients 
treated. 

 

Figure 6-10 Decision curve analysis for the GLASSO and ALASSO model for prediction recovery 
functional upper limb after six months. The two curves are compared to the curves of non-treated and 
all patients treated. 
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6.5 Discussion  

This chapter provided a framework to test and compare the external validity of four 

prediction models developed using classical method (stepwise logistic regression) and 

three penalised methods (ALASSO, GLASSO and LASSO). A testing process was included 

to check the overall performance, calibration, discrimination and decision curve 

analysis of the models. 

For the overall performance results of each model, tested using a dataset of a new 

group of patients, was obtained from the control group of retrospective randomised 

control trial (40 patients). The model’s performance was accepted according to Brier 

scores Table 6-2.  A related test to the Brier score is Nagelkerke R2 is interpretable as 

the rate of ARATs’ outcome variation, which can be clarified by the predictors of the 

model.  

The R2 values can be approximated by the difference in the average predicted 

probabilities of the two groups of patients with different outcomes of ARAT. The 

ALASSO method was the best model for predicting recovery of upper limb at three and 

six months, with the difference in average predicted probabilities being (0.66 and 0.56 

respectively), Table 6-2 . 

Calibration involved comparing the actual ARATs’ and predicted ARAT outcomes Table 

6-3.   Calibration plots for the predicted recovery of functional upper limb of each 

model are shown in Figure 6-1 and Figure 6-2 . The odds ratios for the overall mis-

calibration were from (- 0.72, -0.16, 0.29 and 1.7) and (-0.43,0.15, 0.70 and -0.43) for 

the four models. ALASSO was best calibrated overall, with intercept of (-0.16) than the 

other three models. The predictions, after three and six months, explained the actual 

recovery at best in the ALASSO model (slope of 0.66 and 0.56) and it was at its the worst 
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in the other three models (slopes of 1.79, 0.133 and -0.72) and (1.7, 1.56 and 1.7). The 

ALASSO model with only NIHSS and Barthel index at baseline calibrated relatively good 

predicted recovery of upper limb which was better than the other three methods. 

However, underestimation and overestimation of recovery of upper limb functions at 

lower and higher predictions were common to all models to some degree.  

The discrimination of the external validity of the four models in this study were 

assessed by area under the curve of ROC. The area under the ROC for each model is 

classically between (0.6 and 0.85). ROC of ALASSO was 0.88 in the stage of internal 

validity of the model  

ALASSO yielded the best results in sensitivity of about 91%, in the internal validation 

stage and 56% in the external validation stage. Additionally, the ALASSO’s ROC was 

0.78 in the two external validity stages (after three and six months), meaning that the 

model had reasonable capacity to correctly distinguish between patients who would 

have a higher recovery chance and not. This could relate to stability of ALASSO model’s 

estimated coefficient (Zou, 2006). 

The good value of predictions reaching (0.56 of sensitivity) confirms that ALASSO 

model distinguishes a relatively moderate amount of change in the sample. However, 

the other three models performed poorly in in the external validity stage. The stepwise 

logistic, GLASSO and LASSO model had AUC of (0.69, 0.57 and 0.68) and sensitivity of 

(38%, 15%, and 35%) which are not of practical value. The narrow range of predictions 

reaching only about (15% to 38% of sensitivity) confirms that these three models are 

only catching a relatively small amount of change in the sample. Clearly, a big sample 

size is required to include all the predictors, which are selected in the internal 



188 
 

validation stage to check the external validation. These could help to present a useful 

model practically. 

As a result of using the decision curve analysis to evaluate the utility of four prediction 

models in clinical decisions, the model positively influences our clinical decisions 

regarding prioritising  patients’ treatment based on their on-set condition(Vickers and 

Elkin, 2006). The ALASSO has the net benefit value higher than the other models Table 

6-7. 

The net benefit, with visualisation in a decision curve, is a simple summary measure to 

quantify clinical usefulness when decisions are to be supported by a prediction model. 

If a threshold is clinically well accepted, such as the 50% (representing thresholds for 

recovery of functional upper limb events), classification tables and its associated 

measures may be particularly useful.  

Finally, the external validity of ALASSO model, developed from the RCTs database, 

discriminated and classified ‘recovery’ and ‘not recovery’ of functional upper limb 

patients relatively better from all the other methods. This advantage of ALASSO could 

be of clinical value as its external validity was tested using a different dataset than the 

one used in its development. On the contrary, using the same dataset used in ALASSO 

external validity testing, the performance of the other three methods yielded poorer 

results, giving the superiority to ALASSO.   
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7 Developing model  

Previously, I have demonstrated how the predictors selection can be improved using 

the ALASSO instead of stepwise logistic regression, GLASSO and LASSO. I have also 

shown the performance of each model of selection was achieved in external validation 

dataset. Additionally, the results showed that the Adaptive LASSO had superiority 

over the other three methods in predictors selection to predict the recovery of upper 

limb function in stroke patients, with better external validation than others. 

Therefore, it is of interest to see if the model can be implemented to explore if it can 

identify appropriate factors that predict recovery when an intervention is given. 

Moreover, this study is the first time a modelling method has been used to explore 

predictors that can emerge if an intervention is used and have demonstrated that this 

may be possible as “proof of concept”. 

7.1 Dataset  

Data was adopted as the only interlineation group of retrospective study of stroke 

patients surviving with a significant impairment of the arm function(Lindsay et al., 

2014). The intervention group includes 70 patients and different type of predictors 

demographic and clinical measure at baseline, such as Barthel Index and Modified 

Rankin Scale. Additionally, data-set includes the three times of outcomes measure for 

Action Research Arm Test (ARAT) at baseline, three months and six months post-

stroke. These associated variables are shown in Table 7-1.  
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Table 7-1 Predictive characteristics of a studied prediction model of treatment. 
series Demographic 

Predictors 
Mean ± 

Standard deviation 
1.  Spasticity identified  14.85 ±8.9 

 
2.  Stroke to inject  18.88 ±9.65 

3.  Age  68.17±14.87 

4.  Hemiplegic side  
Yes 
No 

 
(33) 68.8% 
15(31.3%) 

5.  Infarct or Haem  
0 
1 
2 

 
(9) 18.8% 

(29) 60.8% 
(10) 20.8% 

6.  Thrombolysed  
Yes 
No  

 
(39) (81.3%) 
(09) (18.8%) 

7.  Area of Damage 
0  
1 
2 
3 

 
(5) 10.4% 

(11) 22.9% 
(16) 33.3% 
(16) 33.3% 

8.  Previous stroke  
No 
yes 

 
(29) 60.4% 
(19) 39.6% 

9.  Total of National Institute of 
stroke scale  

16.27±6.07 

10.  National Institute of stroke 
scale Arm  

 Drift. 
 Some effort against 

gravity. 
 No effort against 

gravity. 
 No movement. 

 
 

(1) 2.1% 
(1) 2.1% 

 
(15) 31.3 

 
(31) 64.6 

11.  National Institute of stroke 
scale leg  

 Drift. 
 Some effort against 

gravity. 
 No effort against 

gravity. 
 No movement. 

 
 

(5) 10.4% 
(11) 22.9% 

 
(16) 33.3% 

 
(16) 33.3% 

12.  National Institute of stroke 
scale sensory 

 Normal  
 Mild-to-moderate 

sensory loss 
 Severe to total 

sensory loss 

 
 

(8) 16.7% 
(22) 45.8% 

 
(18) 37.5%  

13.  National institute of stroke 
scale inattention  

 No abnormality 
 Visual, tactile, 

auditory, spatial, or 
personal inattention 

 
 

(16) 33.3% 
(16) 33.3% 
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 Profound hemi-
attention or 
extinction to more 
than one modality 

 

(16) 33.3%  

14.  Active move baseline  
Yes 
No 

 
(37) 77.1% 
(11) 22.9% 

15.  Barthel baseline 2.94±4.64 

16.  Pain baseline  9.02±20.73 

17.  Functional arm scale  3.52±1.90 

18.  Modify ranking scale  3.79±1.32 

19.  Length of stay  60.44±28.59 

20.  DC Destination  2.19±1.67 

21.  Family care  
Yes 
No 

 
 20(41.7); 
28(58.3) 

22.  Tardieu at base line  
Yes 
No 

 
(36)75% 
(12)25% 

23.  Range of movement lost  
Yes 
No 

 
(24) 50% 
(24) 50% 

24.  Baseline Elbow Flexion 
Maximum Strength Best base   

1.12±2.52 

25.  Baseline Elbow Extension 
Maximum Strength Best base   

0.66±1.88 

26.  Baseline GRIP Maximum 
STRENGTH BEST 

0.75 ±2.33 

27.  Wrist Flexion Maximum 
Strength BEST 

1.48±2.32 

28.  Wrist Extension Maximum 
Strength Best 

1.09±1.91 

29.  Elbow Flexion Maximum 
Strength Best 

3.56±5.10 

30.  Elbow extension Maximum 
Strength Best 

2.64±3.72 

31.  GRIP Maximum Strength Best 2.95± 5.8M 

32.  Movement Elbow Mean 
Velocity Slow at baseline 

30.93± 20.07 

 

7.2 Developed model 

An overview of the developed model method has been presented previously to 

include the pre-processing (handling missing data), describing the predictor's 

characteristics and checking multicollinearity. Developing a process of prediction 

included two models, one to predict the early use of botulinum toxin in post-stroke 

spasticity after three months and a second model after six months.  The terms model 
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3m and model 6m were used to simplify the way of presenting in the next sections. 

The process was followed that includes a few steps, as follows: 

 

7.2.1 Predictors selection 

Predictors selection using ALASSO was preceded by finding the optimum value of 

penalty (λ). The penalty was identified using two steps: inverse ridge regression 

coefficients were used for each variable as their weight in adaptive LASSO. Then, 

estimating the value of tuning parameters, which corresponds to the minimum value 

of binomial deviance and then the final selection of predictors. Tuning parameter was 

estimated using 10-fold cross-validation method. This method determines the 

optimal values of penalty that represent the solution of predictors selection. The 

optimal selection is located between the first and the second dash line as in Figure 7-1 

that is corresponding to the minimum value of deviance. The optimal selection 

shrinks unrelated predictors from (32) to four and eight predictors in model 3m and 

model 6m respectively. 
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Figure 7-1 Plot of the deviance cross-validation as a function of the penalty parameter λ to determine the 
estimated optimal value of tuning parameters estimated of ALASSO. The dotted line on the left side 
corresponds to the λmin specification. The second line is a λ1se specification. A represents the results of 
model 3m and B represents the results of model 6m. 
 

  

A 

B 
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7.2.2 Results   

7.2.2.1 Test multi-collinearity 

The VIF was taken to check the multi-collinearity level between predictors. 

Table 7-2 Results of multicollinearity test. 

Series Predictors variable Variances Inflation Factors 

1.  Age 3.7 

2.  NIHSS of Arm 2.88 

3.  Pain Baseline 2.26 

4.  Tradieu Baseline 2.39 

5.  Active Movement 5.7 

6.  Barthel Index 6.54 

7.  
Wrist Flexion Maximum STRENGTH 
BEST 

20.03* 

8.  
Elbow Extension Maximum STRENGTH 
BEST 

45.79* 

9.  
Movement Elbow baseline mean 
velocity slow 

2.4 

10.  GRIP Maximum STRENGTH BEST 20.22* 

11.  Functional Arm Scale  7.36 

12.  Modified Ranken scale 7.38 

13.  Stroke to Inject 2.06 

14.  Hemiplegic Side 4.06 

15.  NIHSS of Inattention 5.12 

16.  Infarct or Haem 3.48 

17.  NIHSS of Sensory 3.13 

18.  Total NIHSS 10.08* 
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Table 7-2 shows that there is a high level of multi-collinearity test among predictors 

that have values of (VIF>=10). 

 

7.2.2.2 Predictors selection 

The two models developed for predicting early use of botulinum toxin in post-stroke 

spasticity based on ARAT outcome are given in section 7.2). Thirty-two predictors are 

included in both models and the results of selection of the ALASSO method were four 

and eight of related predictors for model 3m and 6m respectively. ‘Active move base 

line’ and ‘Elbow Maximum Strength Best’ were significant predictors in both models. 

Interestingly, the variables ‘Thrombolysed, National Institute of Stroke Scale Arm, 

Family Care and Tardieu at base line were not included in model 3m but were retained 

in model 6m. Range of movement lost was retained in the both models, but it has 

approximately twice the negative effect in the model 3m than the model 6m. This 

means, an increase in the ‘range of movement lost’ of a patient will have 50% less 

benefit from treatment after three months than the treatment after six months. 

Additionally, the result ALASSO selection predictors found the set of predictors of 

model 3m appeared within the model 6m set predictors. This would suggest that, this 

set of predictors are significantly important for the development of a prediction 

model of intervention of spasticity.  

19.  Range of Movement Lost 2.3 

20.  
Baseline Elbow Flexion Maximum 
Strength BEST 

10.88* 

21.  Thrombolysed 4.27 

22.  Area of Damage 3.7 

23.  Previous Stroke 1.88 

24.  
Elbow Flexion Maximum Strength 
BEST 

30.96* 
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Table 7-3 Odd ratio of estimated regression coefficient using ALASSO for predicting the 

benefit of intervention based on the outcome of ARAT after three and six months. 

Series Predictors 

Odd ratio of the 

coefficient (3 

months) 

Odd ratio of the 

coefficient (6 months) 

1. Intercepts  -1.3095  0.1533  

2. Active move base line  1.4771  1.127  

3. Modify ranking scale  -0.3165  -1.1277  

4. Range of movement lost  -0.7223  -0.4357  

5. Wrist Extension Maximum 

Strength best 
1.008  1.5816  

6. Thrombosed  0 1.0420  

7. National Institute of Stroke 

Scale Arm  
0 -0.0728  

8. Family care  0 -0.9752  

9. Tardieu at base line  0 -0.629  

 

7.2.2.3 Calibration model  

In section 7.2 two prediction models (model 3m and model 6m) were developed 

based on the ARAT outcome. The calibration of each model was internally validated 

by plotting the mean observed ARAT outcome and the mean predicted from the 

model.  

To do this, the predicted ARAT score was calculated for each patient in the treatment 

group. Calibration plots for the configuration of two ALASSO models evaluated are 

shown in Figure 7-2. The ALASSO over predicted the recovery of early used botulinum 

toxin in post-stroke spasticity patients in the lower ranges of intervention but under 

predicted the recovery in the higher ranges of intervention.   
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There are differences between plots from the actual and predicted ARAT outcome 

Figure 7-2. The predicted ARAT outcome did not lie close to the actual outcome of 

ARAT. Overall, both models have poorly calibrated.  
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Figure 7-2 Calibration plot of prediction early use of botulinum toxin in post-stroke 
spasticity after three and six months 
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7.2.2.4 Discrimination model 

There appears to be good discrimination between the patients after intervention 

when the models are fitted using ALASSO. Similar discrimination was noticed of both 

models Table 7-4 . The internal validation showed that the models discriminated 

reasonably well with average C-statistics across imputed datasets of 0.833 and 0.828 

for the models 3m and model 6m respectively. These values suggest slightly better 

discrimination of the model 3m using four predictors in the other treatment group, 

whereas the model 6m performed slightly less in the other treatment group using 

eight predictors. Sensitivity and specificity were calculated using the area under the 

ROC curve. The area under ROC curves for the ALASSO tested was estimated using 

(ROC package).  These are shown in Table 7-5 and Figure 7-3 below.  
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Table 7-6 Sensitivity, specificity, true/ false positive and negative given predicted recovery of the 
functional upper limb of cut-off (ARAT) >=7 after six-month post-stroke of external validation dataset. 

Prediction Models   Model 3m is to predict the early 

use of botulinum toxin in post-

stroke spasticity after three 

months.  

 Model 6m is the early use of 

botulinum toxin in post-

stroke spasticity after six 

months.  

No. of predictors 4 8 

No. of True Positive 34 29 

No. of True Negative 9 12 

No. of False 

Negative 
1 4 

No. of False Positive  4 3 

Sensitivity  0.97 0.90 

Specificity  0.69 0.75 

Accuracy 0.89 (0.77,0.96) 0.85 (0.72,0.94) 

Positive Prediction 

Value 
0.89 0.87 

Negative Prediction 

Value 
0.90 0.80 

Prevalence 0.72 0.66 

Area under the 

Curve 
0.83 0.828 
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Figure 7-3 ROC Curve of international validation of prediction early use of botulinum toxin in post-stroke 
spasticity after three months. 
 
7.3 Discussion 

Two prediction models developed for patients with spasticity could be used to aid 

treatment decisions, by potentially identifying patients that could receive a botulinum 

toxin A (BoNT-A), identifying patients suitable for future clinical trials or off-study 

treatments. 

This chapter used ALASSO modelling to develop a prediction model for spasticity 

intervention that allows individualised predictions and identified methodological 
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issues when using clinical trials data for this purpose. The important findings and 

limitations are now discussed. 

7.3.1 Summary and comparison to previously published model 

A main aim of this chapter was to identify the effective predictors on the early use of 

botulinum toxin A in post-stroke spasticity and to develop prediction models of the 

treatment group of RTCs of (Lindsay et al., 2014). In doing so, the models have been 

built using a different process versus the previous studies that used the backward, 

forward and stepwise methods of variable selection (Leathley et al., 2004; Moura et 

al., 2009; Opheim et al., 2015). These methods suffer from lack of stability and are 

influenced by small sample size relative to large numbers of predictors (Tibshirani, 

1996). 

Another reason for the difference in model’s selection is that previous studies suffer 

from methodological shortcomings in developing models process. For example, there 

is no previous study which undertook the internal validation test during the 

development model such as either using sub-sampling methods (cross-validation) or 

resampling method (bootstraps) (Steyerberg and Vergouwe, 2014). The authors 

tested predictors in univariate analysis and selected the significant predictors and 

applied multivariate logistic methods. Additionally, authors did not deduce the 

multicollinearity test among the predictor’s combinations. As mentioned previously, 

the existence of multi-collinearity would be a challenge for using traditional methods, 

particularly in small sample data sets; which could risk the selection of inappropriate 

or confounded predictor variables (for example a latent variable).  

In contrast to this, the two models developed used ALASSO, which is not affected by 

the multicollinearity level and small sample size relative to large numbers of 
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predictors. Furthermore, the internal validation was undertaken using the calibration 

and discrimination methods. Previous studies were concerned with identifying the 

important predictors for predicting the presence of spasticity in the upper and lower 

limb post-stroke (Moura et al., 2009; Sunnerhagen, 2016). However, in this study, 

prediction models were developed to predict the recovery from spasticity using of 

botulinum toxin type A in post-stroke spasticity.   

ALASSO in model 3m confirmed the importance of range of movement lost and modify 

ranking scale as predictors that have negative effect on recovery of spasticity.  The 

active move baseline also was identified and max strength best that have the positive 

effect on the recovery of spasticity. NIHSS was not a significantly associated predictor 

to the intervention of spasticity in the model; there was evidence to support these 

results of NIHSS from the previous study (Opheim et al., 2015). However, it appeared 

as a significant predictor in the model 6m.  

The calibration and discrimination represented the internal validation of both 

developed models. For calibration, both models were poorly calibrated. 

Discrimination of both models showed good performance as shown by the AUC of 

0.833 and 0.823, the sensitivity of 97% and 90%; and specificity 69% and 75%.  

7.3.2 Limitations  

Pre-processing data was used to verify the consistency of the predictors and the 

outcome before trying to build prediction models. However, the dataset was not 

considered and designed specifically for this study’s aims. Important predictors were 

not defined prospectively (for example Sensorimotor function using the Fugle Meyer 

test(Opheim et al., 2015). Models performance are usually somewhat optimistic when 

estimated internally based on sub-sampling and resampling processes, and therefore 
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model discrimination is possible to be even lower when assessed in external data. 

This means that internal validation is not enough to evaluate. 

7.4 Conclusion  

This chapter demonstrated how ALASSO could be used to identify the useful 

predictors and develop a prediction model for recovery by intervention spasticity. 

New predictions models were developed and internally validated, but due to its 

excellent discrimination, a new dataset is likely required for external validation 

before they can be used for practice. Finally, beyond an easy prediction method, the 

result of this study advises that focusing treatment on the more important predictors 

is possible to improve recovery. 
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8 Discussion and conclusion 

 

8.1 General discussion   

Predicting outcome(s) of upper limb function recovery post-stroke is complex but 

essential and vital as it informs patients and their families, as well as stroke case-

manager/clinical decision-maker, about the patients’ prognoses and rehabilitation 

program plan. This project has used modern and traditional methods to examine 

prediction factors (predictors) and develop different models for patients with upper 

limb impairment post- stroke. The focus was to study the cut-off point of the response 

variable (ARAT). The next step was to apply classical and penalised methods to 

identify candidate predictors, which are collected routinely, and to use these to build 

and validate a recovery-prediction model. These steps were performed using datasets 

from secondary anonymised datasets of two previous RCT studies; one dataset was 

used to build the model, and the other used to validate it. It is worth mentioning that 

both studied were double blinded studies which indicate a more robust approach. 

In chapter one, the literature review was undertaken to identify and investigate 

published studies on recovery-prediction models. Furthermore, this review included 

studies of all potential predictors of upper limb recovery post-stroke.  Searching 

studies databases were conducted using the EBSCO interface, which was limited to 

studies conducted within the past thirty years of databases search date. From the 

literature, six prediction models were found (Feys et al., 2000a; Hendricks et al., 1997; 

Kumar et al., 2016; Kwah et al., 2013; Nijland et al., 2010b; Stinear, 2010). It has been 

shown that very few prediction models exist for upper limb recovery in severe cases 

post-stroke. Additionally, these models are still mis-categorising some patients. This 

could be due to the fact that five of the six models did not undergo external validation. 
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The sixth model was for arm recovery (the proportional recovery model) which has 

been externally validated. However, it does not give a good prediction in all patients 

with stroke, as has been suggested from development and validation studies. This 

model is limited and appears to predict outcomes well with less severe stroke 

patients. In this current study, external validation has been done in all stroke patients 

in the control group of RCT. The validation study was conducted on a completely 

independent sample to the development sample. 

The cut-off related to the ARAT’s score (dependent variable) in the prediction model 

was downgraded to seven instead of ten, which was used in the previous studies 

(chapter three). In this study, 18 patients with ARAT score (<10) were displayed 

based on their total score of each sub-group within the ARAT score to modifying using 

bar charts. It has been noticed that 11 of 18 patients recovered after three months, 

even though these patients, according to the existing models, could be overlooked 

because they would be categorised as non-recovery patients. Additionally, the 

patients with total ARAT score of nine or less can incompletely perform some of the 

easy tasks in the grasp/grip subgroups tests. To ensure that such patients are not 

overlooked, our decision to reduce the cut-off point to seven was made. Moreover, it 

might help to make a balance between the cost-effectiveness and interventions of 

patients, as a lower cut-off point would mean a higher workload on clinicians. 

Predictors selection methods of the prediction model for patients with upper limb 

impairments were studied. The study involved penalised and traditional methods. 

Uniquely, this study was the first in using penalised methods in model development 

process of prediction recovery of upper limb function post stroke. The idea behind 

using the penalised methods is to avoid the impact of the issues of multicollinearity, 
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number of predictors and sample size. It was found that the adaptive LASSO has the 

superiority in the selection predictors, developing and internal validation model 

compared with the other penalised method (LASSO and Group of LASSO) and 

traditional methods (stepwise logistic regression).  

Validation is an essential part of the modelling process and therefore external 

validation methods have been applied to the selected models in this thesis (chapter 

five). The search of the literature revealed that very few prediction models of the 

recovery of upper limb post-stroke patients is externally validated, possibly due to 

the lack of guidance, i.e. from expert statisticians, on suitable validation methods, or 

possibly due to the lack of appropriate datasets to test external validity.  

An external validation study was therefore undertaken to assess methods of 

externally validating a prediction model and to assess four methods for selection 

predictors from the external validation dataset. The decision analysis curve method 

was also applied to present the usefulness of each model in practice. It was found that 

the ALASSO has the superiority in the external validation via calibration plots and 

discrimination at three and six months. Additionally, ALASSO has the net benefit 

compared with the other penalised method (LASSO and Group of LASSO) and 

traditional methods (stepwise logistic regression). Interestingly, ALASSO success 

could be attributed to having the advantages of oracle properties of regressions’ 

coefficients, which have proved to be a consistent method of predictors selection(Zou, 

2006).   

The ALASSO modelling method was used to develop a prediction model that can be 

used to identify appropriate factors that predict recovery when an intervention is 

given (chapter six). This study is the first time a modelling method has been used to 
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explore predictors that can emerge if an intervention is used, hence - proof of concept. 

ALASSO modelling method was thought to be appropriate for this scenario; it was 

therefore employed to attempt to develop a prediction model which included only 

treatment groups from RCTs.  It is essential to mention, this study requires steps to 

be taken to test its external validation, which was not performed in this project due 

to lack of appropriate dataset.  

8.2 Research limitation 

The main limitation in this thesis was the properties of the data used to develop this 

study prediction model. For example, some of predictor variables chosen by the 

model during the development/internal validation stage were not available within 

the dataset used for the model during the external validation testing stage. Due to the 

time constraints, the author has not been able to get the same predictors in the data 

set. Specifically, one of step in this study was to test the external validity using a 

proper and large enough data-set, with specific properties. Therefore, we requested 

the data from the Virtual International Stroke Trials Archive (VISTA®); however, we 

receive a dataset that was not suitable to be used in this study. Obtaining more 

homogenous data may give a better chance to check the external validation of models. 

Furthermore, the researchers could not develop a model using sub-group of cluster 

analysis results. This study used secondary collected data that is not specifically 

collected for the purpose of model development.  
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8.3  Conclusion  

Prediction stroke research, particularly in the prediction of recovery of upper limb 

function post-stroke modelling, is still a challenging area that requires more 

methodology research to improve the models being developed and validated. The aim 

is to provide useful models that will be implemented in clinical practice, and 

ultimately, improve patient outcomes and the efficiency of health care delivery.  

Though many issues remain, this thesis has contributed toward improvements in the 

prediction modelling field through application and methodological development. The 

use of the penalised method (adaptive LASSO) will hopefully improve the 

development, evaluation, presentation and approval of robust prediction models in 

the coming years, adjusted for predictors. 

8.4  Future works 

Further studies could be deployed that researchers can use in the framework of 

developing a prediction model of recovery of upper limb function post-stroke. First, 

modelling of sub-group of the cluster analysis results could help in reducing the 

heterogeneity of the predictive value of the model. Therefore, researchers could focus 

more on merging the LASSO family methods with cluster analysis models. Second, 

regarding the tuning parameters, researchers could use another method instead of 

cross-validation to estimate the tuning parameters, such as BIC. Third, models that 

were developed in this research in chapter six require more investigation in term of 

external validation based on the prospective data set. 

On the other hand, the methodology of this research could be followed to develop a 

prediction model in the lower limb research, i.e. to make predictions about gait 

function of a lower limb of patient’s post-stroke. 
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10 Appendices  

10.1 Appendix A 

Publications 

Three Abstract have published in the international journal of stroke, which is owned 

by the SAGE journals. The work within this publication has been actively discussed 

at the UK forum conferences 2016 and 2017. 

“Prediction of upper limb function recovery post-stroke” 

Al-Shallawi A1, Blana D1 and Pandyan A1,2 

  

Introduction: Stroke can lead to a loss of arm function and this can severely affect a 

person’s life. Predicting recovery post-stroke can be very beneficial to stroke 

patients and medical professionals. Specificity and sensitivity of current models are 

not good enough predicting accurately and they are not adequate for 

implementation into routine clinical practice. The aim of this study is to explore if 

methods of clustering can help improve sensitivity and specificity of prediction 

models. 

Method: Retrospective modelling on a secondary anonymised data set was 

undertaken. The dependent variable was arm function measured using Action 

Research Arm Test (ARAT). The independent variables were NIHSS score, Frenchay 

Arm Test (FAT), Motricity Index (MI) and age. A logistic regression model was 

developed for the entire sample set and specificity and sensitivity were quantified. 

This process was repeated after using k-means clustering method procedure. 

Results: The logistic regression model demonstrated that the NIHSS, FAT and MI 

before clustering analysis were able to classify probability of recovery with a 

sensitivity of 0.90 and specificity of 0.93 (p < 0.0001). The k-means clustering 



225 
 

produced 4 homogenous clusters of patients. In 3 of the 4 groups the sensitivity and 

specificity were 1 (p < 0.0001). In the fourth cluster it was 0.97 (p < 0.0001) 

Conclusion: Using methods of clustering may provide a better approach to 

modelling recovery after stroke. However more work is needed to confirm the 

reliability and clinical usefulness of the methods of clustering. 

“Improving variable selection for modelling recovery of upper limb function 

post-stroke” 

Al-Shallawi A1, Blana D1 and Pandyan A2 

Introduction: Loss of arm function post-stroke can severely affect a person’s life. 

Predicting recovery prospectively is difficult, particularly in patients with severe 

levels of initial impairments. The inherent variance associated with variable 

selection within the traditional methods of modelling could be a reason for this. 

Newer methods of modelling that use unbiased methods of selecting variables and 

modelling are now available (Lasso, Adaptive Lasso and group Lasso). The aim is to 

compare these new methods against the traditional methods. 

Methods: A database of 150 stroke patients was analysed. Each patient had baseline 

measurements taken within a week of a stroke (giving 78 independent variables), 

and arm function measurements (Action Research Arm Test – ARAT) taken at 12 

weeks after stroke (the dependent variable). Stepwise logistic regression, Lasso and 

Adaptive Lasso were used for variable selection and modelling. Results: Lasso, 

Adaptive lasso and group Lasso shrunk 78 predictors to 8, 6 and 11 predictors 

respectively with accuracy (87%, 88% and 87%), sensitivity (95%, 95% and 93%), 

specificity (0.67, 0.74 and 0.62) and F-measure (0.73, 0.76 and 0.73). The traditional 

method selected the 3 variables which were not significantly related to the clinical 
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treatment with 85% sensitivity; 56% specificity; 0.53 F-measure. 

Conclusion: It is evident from the results that the newer methods could conceivably 

be employed in selecting predictors to develop a prediction model of recovery upper 

limb post-stroke. These could improve the clinical usefulness. 

 

“What cut-off is indicative of no upper limb function in the Action Research 

Arm Test?” 

Al-Shallawi A1, Blana D1 and Pandyan A2 

Introduction: The Action Research Arm Test (ARAT) is a clinical scale that is used 

for assessing the upper limb (UL) function of stroke survivors. Previous studies have 

reported that patients who have a total score of less than 9 can be classified as 

having severely limited UL function. The aim of this study was to investigate if this 

current ‘‘cut-off’’ is valid. 

 Methods: Retrospective analysis of the ARAT scores from secondary anonymised 

data set with 150 participants. The baseline measures, taken within 1 week of a 

stroke, informed the analysis. 

Results: 66 (44% with 95% Confidence interval (CI) 36% to 52%) patients had an 

ARAT score of 0 and were removed. 18 had a score between 1 and 9 (12%; 95% CI 

7.5% to 18.6%). 66 had a score > 10 (95% CI 35% to 52%). Within the subset who 

scored between 1 and 9; 8 (44% with 95% CI 22% to 69%) were able to carry out 

simulated grasping tasks, 2 (11% with 95% CI 2% to 36%) could carry out 

simulated grip tasks, and 1 (1.5% with 95% CI 0.3% to 3%) patients achieved a 

score in the simulated pinch sub-category. If the cut-off was reduced from 9 to 7, 

then no person could do any of the grasp, grip and pinch subtest of the ARAT. 
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Conclusion: The previously used cut-off point of 9 may inappropriately classify 

people as non-functional. The lower cut-off of 7 should be investigated further. 
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10.2 Appendix B 

Measures formula 
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