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ABSTRACT

We present the results of the light curve model fitting technique applied to optical and near-infrared
photometric data for a sample of 18 Classical Cepheids (11 fundamentals and 7 first overtones) in
the Large Magellanic Cloud (LMC). We use optical photometry from the OGLE III database and
near—infrared photometry obtained by the European Southern Observatory public survey “VISTA
near—infrared survey of the Magellanic Clouds system”. Iso—periodic nonlinear convective model
sequences have been computed for each selected Cepheid in order to reproduce the multi-filter light
curve amplitudes and shape details. The inferred individual distances provide an intrinsic weighted
mean value for the LMC distance modulus of pg = 18.56 mag with a standard deviation of 0.13 mag.
We derive also the Period-Radius, the Period-Luminosity and the Period—Wesenheit relations that
are consistent with similar relations in the literature. The intrinsic masses and luminosities of the
best—fitting models show that all the investigated pulsators are brighter than the predictions of the
canonical evolutionary mass—luminosity relation, suggesting a significant efficiency of non—canonical
phenomena, such as overshooting, mass loss and/or rotation.

Key words: stars: variables: Cepheids — stars: oscillations — galaxies: Magellanic
Clouds — galaxies: structure

1 INTRODUCTION (from 3Mg to 13Mg), in the central helium burning phase
(covering an age range from ~ 10 Myr to ~ 200 Myr, see
Anderson et al. 2017), that passes through the instability
strip as it evolves bluewards and then redwards (blue loop
excursion), at roughly constant luminosity for each given
mass. From a theoretical point of view, CCs, like all the other
classes of pulsating stars, obey to a relation between the
oscillation period and their mean density, as demonstrated
by Eddington (1926). By combining this relation with the
Stefan—Boltzmann law one obtains a Period—Luminosity—
Mass—Temperature relation. For CCs, this relation can be

Classical Cepheids (CCs) are a class of pulsating stars widely
used to calibrate the extragalactic distance scale, through
secondary distance indicators. Their role as tool to mea-
sure distance is based on the relation they show between
the period of pulsation and their intrinsic luminosity, known
as Period-Luminosity (PL) relation. From an evolutionary
point of view, a CC is a star with an intermediate mass
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reduced to a Period-Luminosity—Color (PLC) relation, be-
cause the theory of stellar evolution predicts the existence
of a mass—luminosity relation (MLR), whose coefficients de-
pend on the assumed metal and helium abundances. Cur-
rently adopted PL relation can be seen as a projection of
the PLC relation on the PL plane (Freedman et al. 1991;
Bono, Caputo, Castellani & Marconi 1999; Caputo et al.
2005, and references therein). In other words, the PL relation
shows an intrinsic dispersion related to the finite width of
the instability strip. Obviously, for each filter combination,
both the PLC and its projection on the PL plane critically
depend on the MLR. Since the efficiency of noncanonical
phenomena (such as core overshooting, mass loss, rotation)
significantly affects the MLR, in order to determine precise
distances using CCs, a detailed theoretical evaluation of the
impact of these processes needs to be assessed.

Several authors have discussed the effect of mass
loss and core overshooting (see Chiosi et al. 1993;
Bono, Caputo, Castellani & Marconi 1999; Caputo et al.
2005; Keller et al. 2006; Neilson et al. 2012; Marconi et al.
2013, and references therein), as well as of rotation
(Anderson et al. 2016) on CC properties. These studies are
often related to the so called mass discrepancy problem,
first outlined by Stobie et al. (1969) and Christy (1970)
and subsequently confirmed by additional investigations.
According to these studies, the CC evolutionary mass (in-
ferred from the comparison between theoretical isochrones
and observations in the color-magnitude diagram) was
found to be systematically higher than the “pulsational” one
based on the Period-Mass-Radius relation' (Fricke et al.
1972; Bono et al. 2001) or other methods based on the
theory of pulsation (Bono et al. 2002; Caputo et al. 2005).
Keller et al. (2006) and Marconi et al. (2013) adopted the
model fitting of multi-filter light, radial velocity and ra-
dius curves to address the mass discrepancy. This is done
through direct comparison of the observed and predicted
variations along a pulsation cycle, the latter based on non-
linear convective pulsational models (see Bono et al. 2000,
2002; Marconi et al. 2013, for a detailed discussion of the
method).

The “VISTA near—infrared Y, J, K, survey of the Mag-
ellanic Clouds system” (VMC - Cioni et al. 2011) cov-
ers the Magellanic system with deep Near—Infrared (NIR)
(Y, J, Ks filters) VIRCAM (VISTA InfraRed Camera;
Dalton et al. 2006) photometry using the ESO/VISTA tele-
scope (Emerson et al. 2006). The main science goals of the
VMC are the study of the spatially-resolved star—formation
history (SFH) and the determination of the 3D structure
of the whole Magellanic system. Particularly useful for the
latter aim are pulsating variables such as RR Lyrae stars
and CCs that have been the subject of several studies in the
context of the VMC survey, as distance indicators and stel-

1 From the combination of the Period-density relation and the
Stefan—Boltzman law it is also possible to obtain a Period—
Mass—Radius relation, which is useful to estimate the masses
of Cepheids if their radii are known, and vice versa. Ac-
cording to the linear adiabatic theory the pulsation period
of variables is related to mass and radius through the equa-
tion P = a(M/Mg)?(M/Mg)? (Fricke et al. 1972), which can
be linearized easily in logarithmic space (logP = loga +
Blog(M/Mgy) + vlog(R/Rw)) thus obtaining the PMR relation.

lar population tracers (see e.g. Ripepi et al. 2012a,b, 2014,
2015, 2016, 2017; Moretti et al. 2014, 2016; Muraveva et al
2015, 2018).

Marconi et al. (2017) presented the model fitting of
multi-wavelength light curves and, when available, radial
velocity curves of 12 Small Magellanic Cloud (SMC) CCs
whose NIR observations were secured as part of the VMC
data. The inferred stellar parameters and individual dis-
tances permitted to constrain not only the mean distance
modulus of the SMC but also the behaviour of the inves-
tigated stars in the MLR, PL, Period-Radius (PR) and
Period-Wesenheit (PW) relations.?

In this paper we extend this to a sample of 11 fun-
damental (F) and 7 first overtone (FO) CCs in the Large
Magellanic Cloud (LMC), that are within the field of view
of the VMC survey.

As regards the organization of the paper, in Section 2
we discuss the sample selection, in Section 3 we describe
the adopted model fitting technique. The application of this
technique to the selected LMC CCs and the implications
of our results for the MLR, the PR, the PL and PW rela-
tions are described in sections 4 and 5 respetively. The final
section includes a summary and perspectives.

2 SELECTION OF THE SAMPLE

The selected sample of CCs is composed of 11 and 7 F and
FO pulsators, respectively, that cover a range in oscillation
period from ~ 1 to ~ 30 days. The selected CCs have optical
photometry from the OGLE IIT database® (Soszynski et al.
2010) and NIR photometry from the VMC database (see
e.g. Cioni et al. 2011; Ripepi et al. 2016, 2017, for a de-
scription of VMC light curves). In particular we used aper-
ture photometry data from the Cambridge Astronomy Sur-
vey Unit (CASU) and the Vista Science Archive (VSA)(see
Cross et al. 2012; Gonzdalez-Ferniandez et al. 2018, for de-
tails). The sample is selected in order to span a wide range
in period, luminosity and shape of the light curves from the
OGLE III database. The period values spanned by our sam-
ple do not include the range of the so called ’bump’ Cepheids
(8-12 days). However, this period range has already been an-
alyzed, using the same pulsating code as in the current work,
in Bono et al. (2002), where the authors selected a couple of
LMC Cepheids, one with the bump on the rising branch and
the other on the decreasing branch.

Altough the number of the selected CCs does not rep-
resent the entire LMC, they let us test the prediction capa-
bilities of the model fitting technique in a stellar system. We

2 The Wesenheit magnitudes include a color term with a co-
efficient that corresponds to the ratio between total to selec-
tive extinction in the selected filter pair (Madore et al. 1982;
Caputo, Marconi & Musella 2000), thus making the Wesenheit
relations reddening free.

3 When this work began OGLE IV data were not available. We
checked for possible changes between the two data releases finding
that the number of points in the V and I bands does not increase
by more than a few percents for most sources in our sample. Only
for three stars the photometric observations increase significantly,
but this does not affect the results of our method, because a good
phase coverage of light curves was already available in OGLE III.
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Y (deg)

Figure 1. Distribution on the sky of the CCs investigated in
this paper (red filled circles). For comparison the whole sample
of known CCs in the LMC from the OGLE survey (black dots) is
shown. X and Y are defined as in van der Marel & Cioni (2001)
with ap = 81° and §g = —69°

note that obtaining a statistically significant extension of the
selected target number would be extremely time consuming
to reach convergence of our hydrodynamical pulsation code.

The distribution in right ascension and declination of
the selected CCs is shown in Fig.1, where all known CCs in
the LMC from the OGLE survey (Soszynski et al. 2015) are
shown for comparison. The identification, the period, and
the mean visual magnitude, of the selected CCs are listed in
the first three columns of Table 1; these values were taken
from Soszynski et al. (2015). As shown in Table 1 the se-
lected CC sample encompasses wide ranges of periods and
mean magnitude thus allowing us to check the predictive ca-
pabilities of the model fitting technique over a large interval
of CC observed properties.

3 THE MODEL FITTING TECHNIQUE

The fitting technique adopted to find the best model re-
producing the observations, is similar to that described in
Marconi et al. (2017):

e both observed and modeled photometric curves are
phased in order to have the maximum of light at the same
phase in a given reference band: e.g. in this work the maxi-
mum of light in the V band is at phase 0.

e for each modeled photometric band, we estimated the
shifts in magnitude (du) and phase (d¢) that provide the
best match between modeled and observed light curves.

Specifically, these two parameters have been obtained by
minimizing the following x? equation:

Npands Ngts j j j j NE
1 1 m; — Mzno f+5 7Y + o’
X2 _ Z [ ( a(e : ) ©)]

N J J
bands F; NDOF i a;

(1)

where the two indices j and 7 run respectively on the
number of bands, Npands, and on the number of epochs,
Npts, the observed phases, magnitudes and errors are in-
dicated with (15{ and mz , Jf respectively, while M7 is the
absolute magnitude of the pulsating model evaluated at the
same phase of observations plus the shift d¢. To evaluate
the model at a given phase the theoretical light curves have
been interpolated using a smooth spline. In the above for-
mula, the term Néop = Ngts — 2 is the number of degrees of
freedom for the j-th band. We note that, because the initial
phasing procedure, described above, is the same for observa-
tions and models, the fitted values of d¢ are typically small
(~ 0.02) and represent just fine tuning phase shift values.
On the other hand, the fitted parameter 8,7 represents the
apparent distance modulus in the " band.

Following the same approach as in Marconi et al.
(2017), for each selected target CC, we built isoperiodic
model sequences at fixed mass, varying the effective tem-
perature and in turn the luminosity level. This allowed
us to obtain a sample of light curve models with differ-
ent shapes, magnitudes and periods. Using this sample of
models, we selected the model best matching the observed
curves. The isoperiodic sequences are built using the typical
elemental composition of the LMC (Y=0.25; Z=0.008; see
Romaniello et al. 2008; Luck et al. 1998, for details). Once
we found the best fitting 7., we built another sample of
models varying the mass but fixing the obtained best fitting
temperature, again selecting the best fitting model match-
ing the observed curves. Thus we were able to evaluate the
mass, the luminosity, the effective temperature of the star
and in turn its individual apparent distance modulus in each
selected band.
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Figure 2. Comparison of the observed V, I and K light curves of the variable OGLE LMC CEP 2138 and the fitted theoretical light
curves. Data are plotted with grey symbols, while models are plotted with lines. In the top panels we show the models calculated assuming
a fixed mass, namely (M = 4.0Mg) and varying effective temperature. Once the model with best T, (namely T. = 6175K) is found,
(solid line), the effective temperature is maintained fixed at its best value and the x? in equation 1 is minimized by varying the mass.
Models with varying mass and fixed Te are showed in the bottom panels, where the final best fitting model is again indicated with a
solid line and is characterized by T = 6175K and M = 3.8Mg. The x? values of the fit are also labeled in each panel.
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Figure 3. Total reduced x2 values obtained from the fitting pro-
cedure applied to OGLE_LMC_CEP_2138 are shown as a func-
tion of the model effective temperature (top) and mass (bottom).
The values of the best effective temperature and mass are indi-
cated by the red dots.

In Fig. 2 we show an example of the model fitting de-
pendence on the assumed effective temperature (fixed mass
M = 4.0Mg) and stellar mass (fixed Teqr = 6175K). The x>
analysis for models with fixed mass identifies as best fit ef-
fective temperature Teg = 6175K, as shown in the top panel
of the quoted figure. Then varying the mass (Fig. 2 bot-
tom panels), one obtains the best fitting value M = 3.8Mg.
Since it is difficult to evaluate by—eye the quality of the fit
shown in Fig. 2, in Fig. 3 we show the total reduced x? as a
function of the model effective temperature (top) and mass
(bottom).

Looking at the best x? value in the figure and also at
those reported in the Tab. 1 it is evident that they are not
always close to the expected canonical value x? = 1. This is
due both to error underestimation of the observations and
to the difficulty to reproduce exactly light curves with more
complex shapes (see also Fig. 5). The presence of features
in the light curves of pulsating variables, which make them
more complex from the shape point of view, is due to the
coupling between pulsation and convection which becomes
more important moving towards the red boundary of the in-
stability strip (see Bono, Marconi & Stellingwerf 1999, and
references therein). On this basis, we expect a correlation
between the x? values and the best fitting effective temper-
ature in the sense that lower x? values correspond to higher
effective temperatures. This trend is evident in Fig. 4 where
the x? values of Table 1 are plotted against the best fitting
effective temperature T.*, with lager x? values populating
the zone of lower effective temperaures. Moreover a clear
separation can be seen between F and FO models, the lat-
ter having smaller x? values and as well as known higher
effective temperatures.

4 Note that the source OGLE_LMC_CEP_0546 does not appear
in Fig. 4 because of its x2 value is out of the y-axis range.
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Figure 4. The x? values obtained from the fitting procedure and
listed in Table 1 are plotted against the best values of effective
temperature for all sources of the selected sample: F pulsators
are shown using empty circles, while FOs are plotted with red
triangles.
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Table 1. Properties of the target CCs and of the associated best—fitting models. From left to right: OGLE identification, observed period,
mean V magnitude and pulsation mode (from the OGLE III database Soszyniski et al. 2010), best—fitting model mass, luminosity, effective
temperature, mixing length parameter, inferred distance modulus in the V, I, and Ks bands and associated errors, absolute distance
modulus with associated error, magnitude correction to refer distance modulus to LMC barycenter, reddening with associated error,
mean radius and x2 value. For all CCs the error in the inferred mass and temperature is AT = 25 K and AM = 0.2Mg@, respectively;
the assumed composition is Y = 0.25, Z = 0.008, except for OGLE_LMC_CEP_2019 for which Y = 0.30 (see text).

1D P (V) Mode M log(L/Le) Teff amr Wy wr WK 10 pse™m E(B-V) R x?
(days) (mag) Mp)  (dex)  (K) (mag) (mag) (mag) (mag)  (mag) (mag) (Ro)
1481 0.922 17.28 FO 3.00 2.62 6650 1.50 19.1440.10 18.89£0.07 18.494+0.08 18.42+0.09 0.002 0.24%+0.05 15.4 0.9
3131 1.095 17.01 FO 2.80 2.63 6450 1.80 18.89+0.05 18.72+0.03 18.52+0.02 18.47+0.02 0.02 0.14+0.01 16.6 1.0
3004 1.524 17.15 F 3.00 2.65 6425 1.60 19.0840.08 18.86£0.04 18.55+0.01 18.48 £0.01 -0.04 0.19+0.03 17.2 6.0
1523 1.572 16.88 F 2.80 2.64 6425 1.60 18.78+0.08 18.62+0.04 18.44+0.02 18.39+0.02 0.05 0.13+£0.02 17.0 3.4
3113 2.068 16.08 FO 5.20 3.15 6300 1.60 19.2740.05 19.06£0.03 18.77+0.01 18.71+£0.01 0.008 0.184+0.02 31.5 1.2
2138 3.011 16.21 F 3.80 3.03 6175 1.70 19.04+0.07 18.85+0.05 18.60+0.05 18.54+0.05 0.04 0.16+£0.02 28.7 10.0
3105 3.514 15.38 FO 4.80 3.33 6050 1.60 18.96+0.06 18.82+0.04 18.62+0.03 18.58+0.03 0.011 0.13+0.01 42.2 1.0
0961 3.711 1587 F 3.90 3.11 6100 1.70 18.90+0.07 18.76+0.06 18.54+0.07 18.49+0.07 0.018 0.13+0.02 32.5 7.4
1475 4.387 15.19 FO 5.60 3.48 5985 1.51 19.1440.09 19.01+0.08 18.774+0.06 18.73+0.06 0.03 0.13+0.01 51.2 3.2
1124 4.457 1581 F 5.00 3.29 6040 1.70 19.24+0.08 19.06+0.06 18.79+0.03 18.73+£0.03 0.014 0.16+£0.02 40.5 13.4
1310 5.126 17.28 FO 5.70 3.54 5950 1.49 18.78+0.04 18.71+0.05 18.6040.05 18.58+0.06 0.015 0.074+0.01 55.5 2.6
0813 5.914 14.54 FO 7.00 3.66 5850 1.53 18.934+0.07 18.874+0.05 18.754+0.03 18.73+0.03 0.02 0.07£0.01 66.2 4.2
2012 7.458 14.95 F 6.50 3.54 5775 1.90 18.98+0.03 18.88+0.02 18.714+0.01 18.68+0.01 0.008 0.104+0.01 59.4 7.0
1954 12.950 14.61 F 5.30 3.69 5575 1.90 19.004+0.07 18.81+0.05 18.61+0.02 18.55+0.02 0.04 0.144+0.02 75.8 13.4
0546 15.215 14.03 F 5.20 3.77 5575 1.70 18.5940.11 18.58+0.11 18.574+0.10 18.56+0.11 -0.003 0.014+0.02 83.9 44.2
1086 17.201 14.35 F 5.40 3.75 5350 1.90 18.86+0.09 18.76+0.08 18.64+0.08 18.61+0.08 -0.03 0.08+0.02 89.5 17.7
2944 20.320 14.30 F 6.90 3.95 5400 1.84 19.3040.06 19.15+0.06 18.8340.07 18.784+0.08 -0.010 0.1740.02 108.6 9.3
2019 28.103 13.64 F 7.70 4.11 5425 1.70 19.004+0.07 18.83+0.06 18.674+0.04 18.62+0.05 0.013 0.124+0.02 131.9 5.3
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Figure 5. Best fitting models for all selected CCs compared with the observed light curves. Black lines represent the theoretical models,
while the V, I and K5 observed light curves are labeled together with star identifications.
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4 APPLICATION TO THE SELECTED
VARIABLES

The procedure detailed in the previous section was applied
to all CCs in Table 1 and the corresponding models are
shown in Fig. 5.

We note that for the longest period CC in our sample
(namely OGLE_LMC_CEP_2019) we had to vary also the
elemental composition in order to reproduce the observed
light curves. For this star we adopted Y = 0.30, Z = 0.008.
The inferred intrinsic stellar parameters, namely the effec-
tive temperature, the luminosity and the mass of the best
fitting models are reported in Table 1 with their errors.

In particular, the errors on the parameters obtained
from the fitting procedure are estimated as the difference
between the best values and the parameters of the closest
models to the best fitting one on the Mass—Temperature
grid. As regard the error on the mass and temperature of
the best model, we have adopted the steps of the Mass—
Temperature model grid (0.2 Mp and 25 K respectively)
generated for our analysis.

The quoted table contains also the unreddened distance
moduli po and the E(B-V) values for all stars considered in
the present work. They have been calculated by fitting the
Cardelli law (Cardelli et al. 1989) to the inferred apparent
distance moduli in the V, I, K bands.

A simple statistical analysis of the values reported
in Tab. 1 gives a mean value of the reddening equal to
E(B-V) = 0.13 mag with a standard deviation of 0.05 mag,
while the inferred mean distance modulus for the LMC is
equal to o = 18.59 mag with a standard deviation equal to
0.12 mag. Weighting the fitted parameters with their errors
provides almost the same values, with mean distance mod-
ulus that is equal to ud* = 18.63 mag (¢™* = 0.10 mag)
and the mean reddening E(B-V)"* = 0.11 mag (¢"* = 0.04
mag).

In order to take into account the effect of the incli-
nation of the plane of the LMC with respect to the sky
on the barycentric distance estimation, we have also cal-
culated the magnitude corrections (see Table 1) for every
CC of our sample according to the geometric model by
van der Marel & Cioni (2001). A statistical analysis of the
distances obtained by including the quoted corrections does
not change the results reported above about the LMC dis-
tance.

As stated in the previous section, the x? values exhibit
a large scatter (see Table 1) indicating that the more com-
plex light curve shapes are modeled with lower accuracy and
larger residuals. Therefore, we decided also to weigh the
best parameters using the x? values to define the weights
(wts = 1/x?) in order to favour those models that bet-
ter describe the observed light curve shapes. The resulting
weighted distance modulus is equal to u:t"z = 18.56 mag
with a standard deviation o"*x*> = 0.13 mag. We assume
that this value is our best estimate of the LMC distance.
Using the same x*~weighted statistics for the excess, we ob-
tain a mean value equal to E(B-V)"'x*> = 0.15 mag with a
standard deviation equal to o™ = 0.05 mag.

The quoted errors represent only the statistical uncer-
tainities, while the systematic is difficult to estimate but
depends on the physical and numerical assumptions of the
current model sets as well as on residual uncertainties of the

5 ©° Fundamental

| A First Overtones

—— Canonical (Y=0.25, Z=0.008)

[~ --- Mild overshoot (Y=0.25, Z=0.008)

e Full overshoot (Y=0.25, Z=0.008)

| Canonical (Y=0.30, Z=0.008)

Mild overshoot (Y=0.30, Z=0.008) 3 (9]

4 I Full overshoot (Y=0.30, Z=0.008) O
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log(L/Lo)

! I
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log(M/Mo)

Figure 6. Predicted MLR based on the model fitting results for
both F (empty circles) and FO CCs (red filled triangles). The
best fitting model location in the MLR plane is compared with
an evolutionary MLR obtained by neglecting mass loss, core over-
shooting and rotation (labelled "Canonical”) and with the rela-
tions obtained by assuming mild or full overshooting (see text for
detail).

adopted atmosphere models. Moreover, the above results for
the distance modulus do not take into account projection
effects, related to the fact that CCs are not located at the
centre of the LMC.

5 RESULTS

In this section we use the results obtained for the intrin-
sic stellar parameters of the investigated CCs to determine
constraints both on the predicted MLR and PR relations as
well as on the PL and PW relations, at least for the assumed
elemental composition.
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Figure 7. Deviation of the best fitting stellar mass from the value
corresponding to the canonical mass for both F (empty circles)
and FO (red triangles) CCs.
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5.1 The Mass—Luminosity Relation

Figure 6 displays the MLR for the investigated CCs whose
intrinsic stellar parameters were derived from the best fitting
models listed in Table 1. These data are compared with the
predicted canonical (no overshooting, no mass loss) MLR
(Bono et al. 2000) (solid lines) and with the relations ob-
tained by increasing the zero point of the canonical MLR by
0.25 dex (dashed lines) and 0.5 dex (dotted lines) to repro-
duce the effect of mild and full overshooting®, respectively
(see Chiosi et al. 1993; Bono, Caputo, Castellani & Marconi
1999, for details). Inclusion of mass loss and/or rotation
would produce a similar increase in the Cepheid luminos-
ity level at fixed mass (see Neilson et al. 2012, for details).
As the light curves of OGLE_CEP_LMC_2019 are best re-
produced adopting a different value of the helium content
(see above), in Fig. 6 we also show the MLR for Y = 0.30,
Z = 0.008 (green lines). Note that this relation is slightly
more luminous than those calculated for the standard LMC
elemental composition (Y = 0.25, Z = 0.008). According to
the location of the variables in the ML plane, the canonical
MLR is not strictly satisfied, as the points are spread be-
tween the canonical and full overshooting predictions. Even
if at this stage we cannot disentangle the role of overshoot-
ing, mass loss and rotation in producing the quoted excess
luminosity, at fixed mass, the detected dispersion might indi-
cate a combination of these different noncanonical phenom-
ena. Indeed, if only overshooting were efficient, one would
in principle expect the same amount of excess luminosity
for all stellar masses (within small uncertainties). Rotation
produces similar effects as overshooting because it implies
a larger He burning core and a brighter luminosity at fixed
mass (see e.g. Anderson et al. 2016) On the other hand, if
the mass loss process were efficient, this could be inferred
from the predicted deviation of the best fitting stellar mass
from the value corresponding to the canonical MLR. Such a
deviation is represented in Fig. 7 as a function of the canon-
ical mass (top) and of the pulsation period (bottom) for the
CCs in our sample. We note that the expected mass differ-
ences range from 0% to almost ~ 50% and are not clearly
correlated with the pulsation period or the stellar mass.

5.2 The Period—Mass—Radius and the
Period—Radius relations

Once we obtain the mass and the radius from the output of
the non linear hydrodynamical code, we are able to correlate
them with the pulsational period for each CC to investigate
the PMR relation. Assuming the linearized equation intro-
duced above, we obtain:

log P = (—1.618 + 0.007) + (—0.68 = 0.02) log(M /Mg )+
(1.72 £ 0.01) log(R/Ro)  (2)

with a ¢ = 0.005 dex. The values of the fitted parameters
are in excellent agreement with those expected from linear
theory (see e.g. Fricke et al. 1972).

If we neglect the mass dependence in the PMR relation,

5 Corresponding to an extension of the extra—mixing region be-
yond the Schwarzschild border of about 0.2H), where H) is the
pressure scale height (Chiosi et al. 1993).

—— This work (rms=0.03)
_ —— Gieren et al 1999 (rms=0.045)
—— Molinaro et al 2012 (rms=0.03)
2= Marconi et al 2017 (rms=0.02)

log(R/Rop)

log(P)

Figure 8. The Cepheid PR relation obtained for the selected
sample of 18 sources. The CCs are plotted using empty circles
and filled triangles, respectively for Fs and FOs; the FO periods
have been fundamentalized (see text). The black line is the result
of a linear regression fit to the data (see text). For comparison the
PR relations of Gieren et al. (1999) (blue line), Molinaro et al.
(2012) (red ine) and Marconi et al. (2017) (green line) are also
plotted.

we can obtain the PR relation which is also well studied
in the literature (see e.g. Gieren et al. 1999; Molinaro et al.
2011, 2012, and references therein). The location of the 18
investigated CCs in the (PR) diagram is shown in Fig. 8
where F's are plotted using empty circles and FOs with filled
triangles; the periods of the FO pulsators have been funda-
mentalized using the equation given by Feast, & Catchpole
(1997). A linear regression fit to the data gives us the fol-
lowing PR relation:

log(R/Rp) = (0.70 £ 0.02) log(P) + (1.12 £ 0.01); (3)

that is displayed with a black line in Fig. 8 with a ¢ = 0.03
dex. The same figure shows, for comparison, the PR rela-
tions of Molinaro et al. (2012) (red line) and Gieren et al.
(1999), (blue line), based on two different realizations of the
Baade—Wesselink method, and the relation of Marconi et al.
(2017) (green line), which was obtained using the model fit-
ting technique for a sample of CCs in the SMC. The PR
relation of Molinaro et al. (2012) is based on a sample of
11 CCs belonging to the young LMC blue populous cluster
NGC 1866 and 26 Galactic CCs (see also Molinaro et al.
2011), while the PR relation of Gieren et al. (1999) has
been derived from a sample of both Galactic and Magel-
lanic CCs. nspection of Fig. 8 and a comparison of the coef-
ficients of the plotted relations reveal that the PR found
in this work is in agreement with those of Gieren et al.
(1999) and Molinaro et al. (2012). In particular, the result
of Gieren et al. (1999) predicts a shallower relation but it is
in excellent agreement (lo) with our PR, while the slope of
Molinaro et al. (2012) is steeper than that obtained in this
work, though it is consistent within ~ 2¢. Concerning the
intercepts of relations, they are in excellent agreement (1o)
with that found in the current work. The Baade—Wesselink
technique is known to be dependent on the adopted value
of the projection factor (p—factor), which allows to convert
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Table 2. Coefficients of the inferred Period—Radius, Period—
Luminosity and Period—Wesenheit relations (in the V, I, Ks
bands), respectively. Columns 4 to 8 represent the slope («) and
the intecept () with their associated errors (o, 0g), and the
rms of the residuals around the fitted relation.

11

Mode  band o Oa B og TmS

PR 0.70 0.02 1.12 0.01 0.03
PL F |4 —2.63 0.11 —1.54 0.11 0.16
FO —3.10 0.16 —1.95 0.09 0.13

F I —2.93 0.11 —1.95 0.10 0.15

FO —3.38 0.15 —2.38 0.08 0.12

F Ks —3.30 0.09 —2.43 0.09 0.13

FO —3.70 0.14 —2.90 0.07 0.11

PW F W(V,I) —3.39 0.10 —2.58 0.09 0.14
FO —3.83 0.13 —3.06 0.07 0.11

F W(V,Ks) —3.39 0.09 —2.55 0.09 0.13

FO —3.78 0.13 —3.02 0.07 0.11

spectroscopically measured radial velocity into pulsational
velocity (see Gieren et al. 1999; Molinaro et al. 2011, 2012;
Gallenne et al. 2017; Kervella et al. 2017; Nardetto et al.
2017, and their references for a discussion). Since the radii
obtained from pulsating models are not dependent on this
key parameter, comparing the results from the two tech-
niques allows us to put constraints on the p—factor. As
for the cases discussed in this work, Molinaro et al. (2012)
adopted a constant p—factor of 1.27, while Gieren et al.
(1999) used a period dependent value (p = 1.39 — 0.03 log P
) from Hindsley, & Bell (1986). Since both results are con-
sistent with the PR obtained from pulsational models, we
are not able to single out one of the two choices as better.

In order to compare the PR relations by Gieren et al.
and Molinaro et al., using the same projection factor, we
rescaled first the results from the former work to the con-
stant p—factor value adopted by Molinaro et al., and then
the results from the latter work to the variable p—factor used
by Gieren et al. From this procedure we can conclude that
the best agreement with the PR relation in eq.3 is obtained
by using the visual surface brightness technique from Gieren
et al., but adopting a constant p—factor as in Molinaro et.
al. In particular, in the quoted case we obtain the fitted PR
relation log(R/Rp) = (0.699 £ 0.017) log P + (1.11 + 0.02),
which is almost the same as that of eq.3

We also compare our PR relation with that of
Marconi et al. (2017), obtained for a sample of SMC CCs us-
ing the model fitting technique. Their fitted relation is given
by log(R/R) = (0.690 + 0.017) log P + (1.121 4 0.016) and
is fully consistent with our result, indicating that samples
with different elemental compositions obey the same PR re-
lation, in agreement with the theoretical results obtained by
Bono et al. (1998).

5.3 The PL Relation

The mean absolute magnitudes of the best fitting models
can be correlated with the corresponding periods to build
multi—filter PL relations. In Fig. 9 we show the location of
both F (empty circles) and FO (red filled triangles) best
fitting models in the V, I and K bands versus period. In

o Jacyszyn-Dobrzeniecka 2016
_5 —
> L
0 =1 | | ! !
_5 —
— L
0 | | | 1 !
- —
A FO
- Ripepi et al 2012
_5 —
A L
0 =1 | | | | ! !
0 1
log(P)

Figure 9. Predicted PL relation in the V (top), I (middle) and
K (bottom) bands based on the model fitting results for both F
(empty circles) and FO (red filled triangles) CCs. The three pan-
els show also PL relations from the literature obtained, namely,
by Ripepi et al. (2012b) in the K band (dashed line) and by
Jacyszyn-Dobrzeniecka et al. (2016) in the V and the I bands
(dotted lines).

each panel the solid line shows the linear regression fit to
the data points whose coefficients are listed in Table 2.
To compare our theoretical relations with those obtained by
other authors, we have also plotted in the three panels the
PL of Jacyszyn-Dobrzeniecka et al. (2016), in the V and I
bands, and of Ripepi et al. (2012b) for the K, band. Since
the relations given by Jacyszyn-Dobrzeniecka et al. (2016)
contain apparent magnitudes, we have first corrected them
for absorption using the mean E(B — V') value obtained in
this work, and then shifted them using our best estimate
of the LMC distance modulus. The comparison of the slope
values provided by these authors (ad; = —2.672 % 0.006,
ab® = —3.133 £ 0.006, af = —2.911 4 0.006 and of° =
—3.240£0.006) shows an excellent agreement in the V band.
For the I band the two slopes are different, but still con-
sistent thanks to our large error. The K band PL rela-
tions for Fs and FOs of Ripepi et al. (2012b) contain ab-
solute magnitudes and consequently can be directly com-
pared with our results in the corresponding band. From
this comparison we found that the coefficients of their re-
lation (ady = —3.295 £ 0.018, B = —2.41 £ 0.03) are in
excellent agreement with our results for F pulsators. As
for the FO mode their zero—point (8% = —2.94 & 0.07)
is in excellent agreement with our value while their slope
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Figure 10. Predicted PW relations in the V, I (top) and V, K,
(bottom) filters for both F and FO pulsators. Symbols are as in
the Fig. 9. For comparison with literature results, in the top panel
we show also the relation of Jacyszyn-Dobrzeniecka et al. (2016)
(dot-dashed lines), while in the bottom panel we plot the relations
of Ripepi et al. (2012b) (dashed lines).

(a¥ = —3.471 £ 0.035) is consistent with our result within
~ 1.50.

Inspection of the results in Table 2 also suggests
that the derived rms of residuals around the PL rela-
tions are of the same order of magnitude as that ob-
tained for the obseravtional relations (Ripepi et al. 2012b;
Jacyszyn-Dobrzeniecka et al. 2016).

5.4 The Wesenheit relation

Finally, it is interesting to compare the PW relations found
in the present work with those adopted in the literature (e.g
Ripepi et al. 2012b; Jacyszyn-Dobrzeniecka et al. 2016). To
estimate the Wesenheit magnitudes for the optical and NIR
data, we use the following definitions: W (V,I) = I — 1.55 x
(V—=I)and W(V, K;) = Ks—0.13x (V- Kj), according to re-
cent prescriptions in the literature (see e.g. Soszyiiski et al.
2015; Ripepi et al. 2016, and references therein). The PW re-
lations for the investigated CCs are shown in Fig. 10, where
the symbols have the same meaning as in Fig. 9. The bottom
panel shows the relation obtained by combining optical and
NIR bands, and the top panel shows the same relation ob-
tained by using only optical bands. The linear regression fits
to the data are also shown (solid lines) and the coefficients
are reported in Table 2.

The PW equations in the optical bands are provided by
Jacyszyn-Dobrzeniecka et al. (2016) and are based on ap-
parent magnitudes. In order to compare them with the re-
sults obtained in this work, we have shifted their F and FO
relations using our best estimate of the LMC distance mod-
ulus p = 18.56 mag. Looking at the top panel of Fig. 10,
we note that the relations for F Cepheids are in excel-
lent agreement, being almost coincident, while the theoret-
ical FO PW relation seems to be steeper than the relation

by Jacyszyn-Dobrzeniecka et al. (2016). Indeed, their slope
a{?vo(v,[) = —3.414 £0.007 differs from our estimate by more
than 3o.

The W (V,K,) relations provided by Ripepi et al.
(2012b) are expressed using absolute magnitudes and con-
sequently can be directly compared with our results.
Their equation for F pulsators (W (V,K,) = (—3.325 +
0.014) log P+ (—2.59+0.03)) is in excellent agreement with
our result (see Table 2), with both slope and intercept be-
ing consistent within less than 1o. The coefficients of their
FO equation (W (V, K) = (—3.530£0.025) log P+ (—3.10+
0.07)), are consistent with our estimates within ~ 1.50.

6 CONCLUSIONS

We considered a sample of 11 F and 7 FO CCs in the
LMC with optical photometry from the OGLE III database
and NIR photometry from the VMC survey. By assuming
first approximation elemental composition typical of LMC
CCs (Y = 0.25, Z = 0.008), for each selected pulsator, we
built isoperiodic model sequences varying the intrinsic stel-
lar properties (effective temperature, mass/luminosity) in
order to match the period, and the shape of the observed
light curves in the V, I and K bands. The resulting models
directly provide information on the mass, the effective tem-
perature, the luminosity and in turn the individual distance
of each selected target VMC CC. On this basis we obtained
the following results:

e From the inferred apparent distance moduli, adopt-
ing the extinction law by Cardelli et al. (1989) we ob-
tained an estimate of the intrinsic distance modulus for
every star in our sample. We decided to weigh these val-
ues using the best fitting x? to give and an estimate
of the LMC distance modulus. Our procedure provides a
value of po = 18.56 mag with a standard deviation of
0.13 mag, in agreement with the most recent literature
values (Marengo et al. 2010; Marconi & Clementini 2005;
Ripepi et al. 2012a; Pietrzynski et al. 2013; de Grijs et al.
2014; Jacyszyn-Dobrzeniecka et al. 2016). We note that our
best value for the LMC distance modulus is in perfect agree-
ment with the results of one of our previous applications
( 18.53 + 0.05 mag Bono et al. 2002) and the estimate by
Keller et al. (2006), 18.54 £ 0.018 mag, obtained using a
similar approach for a sample of bump Cepheids covering a
pulsation period range centred on 10 days, an almost com-
plementary range compared to the sample analyzed in this
work.

e Considering the geometric correction according to the
model by van der Marel & Cioni (2001) in the estimation of
the LMC distance has no effect on the quoted results.

e the MLR is clearly more luminous than the evolution-
ary MLR that neglects overshooting, mass loss and rotation,
thus suggesting a high efficiency of at least one of these non-
canonical phenomena.

e A PR relation in agreement with the literature results,
in particular with the relation of Gieren et al. (1999).

e Theoretical PL relations in the V, [ and Ks bands ad-
equately reproduce the observed intrinsic scatter of the PL
distribution.

e Theoretical PW relations are in agreement with the
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empirical LMC Wesenheit relations recently presented by
Ripepi et al. (2012b).

We note that for one long—period Cepheid we needed
to vary the elemental composition in order to obtain a sat-
isfactory fit. In particular for CC OGLE_CEP_LMC_2019
an enhanced helium abundance ¥ = 0.30 was required in
order to fit the observed curve. The possible presence of a
fraction of helium enriched CCs has been recently theoreti-
cally investigated by Carini et al. (2017), following previous
indications of the presence of multiple stellar populations in
young LMC star clusters (see e.g. Milone et al. 2016, and
references therein).

In the future we also plan to extend the application to
other samples of pulsators in order to better constrain their
PL and PW relations and to test the accuracy of the method
through application to the light curves of Galactic CCs with
Gaia parallaxes (Gaia Collaboration et al. 2018). The lat-
ter comparison, once we have fixed the distance to the Gaia
results, will also allow us to put strong constraints on the
predicted stellar masses, the MLR, and, once the metallic-
ity is precisely constrained by complementary spectroscopic
data, the helium to metal enrichment ratio.
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