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AN ABSTRACT

The study primarily considers the 

nondlmensionallsed Buffing's equation

x" kx' - X ♦ x^ » F Cos wt, (k, F, u) > 0,

and investigates the various phenomena associated with 

small damping and forcing amplitude.

Through the use of Liapunov functions global 

stability of solutions Is established for the forced and 

the unforced cases.

A basic averaging process establishes a frequency/ 

amplitude relationship for 2«/u periodic solutions which 

is subsequently tested for stability of solutions: 

Computer plots not only reveal stable 2ir/u solutions but 

solutions that period double over a small wränge when k 

and F are fixed bringing with them structural instability 

car bifurcation. Period doubling is known to be rite in 

one dimensional nonlinear mappings and a section is 

devoted to one such mapping where investigations reveal 

behaviour analogous to the Buffing's equation.

The underlying structure of Buffing's equation is 

revealed through the use of the Poincar^ map. The 

complex windings of the manifolds of the saddle points 

result in homoclinic intersections another type of 

structural instability known as homoclinic bifurcation. 

Before homoclinic intersection comes homoclinic tangency 

and this is predicted through a result obtained by 

riel'nikov's method. The horseshoe map explains the 

complicated windings of the manifold that produce the



strange attractor associated with chaotic notion.

The analysis is made easier when a piecewise 

linear system is investigated which behaves in the same 

way as Duffing's equation. Coordinates of homoclinic 

points are found, equations of manifolds obtained and 

saddle connections drawn.

Using a perturbed equation saddle connections of 

Ouffing's equation are sought. The analysis unfurls 

simple saddle connections, double-loop, transverse and 

multiple loop connections. Odd periodic solutions are 

also investigated in a similar way.

Finally, the perturbed equation is solved exactly 

and used to find equations of saddle connections and 

coordinates of homoclinic points of buffing's equation.







PREFACE

is ' ‘

The aim of this thesis is to gain a better 

understanding of Duffing type oscillators particularly in 

the areas of homoclinic bifurcation and saddle 

connections. Although a great deal has already been 

written on Duffing*s equation itself there are still many 

questions left unanswered, and many areas not dealt with 

to any real depth (I'm thinking here particularly of 

saddle connections where virtually nothing has been 

written at all). Through the use of standard numerical 

techniques and computer plots the novel phenomenon 

Introduced by the presence of the nonlinear terms are 

depicted, and where possible analysed and explained.

Chapter 0 brings to the attention of the reader 

four physical systems whose behaviour can be modelled by 

Duffing*s equation with negative linear restoring force, 

three of which are known through experimentation to 

exhibit extraordinary behaviour such as period doubling 

and chaotic motion. The fourth example is given in the 

form of an exercise in Jordan & Smith (1987).

Chapter 1 is a review of the global attraction 

property of the Duffing's equation as presented by Holmes 

(1979). It makes use of a number of Liapunov functions 

to determine the global stability of both the unforced 

and forced equations. The chapter also concentrates on 

the behaviour of solution curves that both enter and 

leave the saddle point of the unforced system. These 

Invariant solutions or manifolds are first explained in
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terns of elgenilnes of linear systems after which a 

definition is introduced to include nonlinear nanifolds 

expressed using the notation and

stable and unstable nanifolds respectively.

Chapter 2 is likewise a review of the general 

behaviour of buffing's equation for small damping and 

forcing. Using the harmonic balance nethod frequency/ 

amplitude curves can be drawn revealing 2«/w periodic 

solutions for fixed damping and forcing amplitude but 

varying forcing frequency. Stability conditions of these 

solutions are obtained using the Routh*-Hurwitz criterion. 

This approach, unfortunately, has the disadvantage of 

obscuring the existence of 2’̂ v/u periodic solutions 

(n > 0, 1, 2 ...), known as period doubling, but these 

are picked up from computer plots.

Mhen a solution changes from one stable period to 

another we say that it is structurally unstable and is 

associated with a bifurcation of the system. The term 

'bifurcation* is first explained in the context of sisiple 

linear systems using the ideas of perturbation and 

topological equivalence.

To understand the phenomenon of period doubling use 

is made of a one dimensional nonlinear mapping and its 

composites. It turns out that the iteration scheme not 

only exhibits period doubling but passes through similar 

stages to buffing's equation. Further results of the 

mapping therefore carry over to buffing and similar 

systems.



lil

Chapter 3 explains and makes use of the Polncar^ 

map as a necessary tool in understanding the underlying 

structure of nonlinear systems. Mapping out the stable 

and unstable manifolds of the saddle point(s) reveals the 

complex structure of such system). In the Duffing case a 

series of Poincar6 diagrans are drawn showing how the 

structure increases in ccxaplexity as the forcing 

frequency is decreased. The ultimate case reveals a 

strange attractor corresponding to motion that is said to 

be chaotic: attracting motions are neither periodic nor 

even quasiperiodic.

Polncar^ plots reveal homoclinic points where the 

stable and unstable suinifolds intersect. This is a 

homoclinic bifurcation situation since the system can 

behave in one of two ways depending upon the choice of 

initial conditions. Before intersection, tangency 

occurs and the parameter link predicting homoclinic 

tangency is obtained using Mel'nikov's method.

The final section deals with the Smale horseshoe 

map and uses it to explain the complex structure of a 

strange attractor.

Systems such as Buffing's equation are usually 

difficult to analyse. If a simpler system could be found 

that behaves in the same way it may be possible to gain 

further insight into the original. Chapter 4 deals wfth 

a piecewise linear system that behaves precisely the same 

way as Buffing's equation but is easier to analyse. He 

are able to locate exactly the position of certain
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homoclinlc points, draw saddle connections and part draw 

from exact solutions the stable and unstable manifolds.

The very existence of a homocllnic point confirms 

the existence of a saddle connection. This Is a solution 

that emanates from an unstable saddle solution only to 

return to It in some future time and remain there.

Because of the very nature of a saddle solution, saddle 

connections are usually very difficult to locate and 

plot. Chapter 5 Is devoted to the Investigation of such 

solutions of Buffing's equation using a perturbation 

method. The result Is a new equation which Is 

considerably easier to analyse thus enabling a number of 

different saddle connections to be found. The various 

types investigated are simple saddle connections, double 

loop, transverse and multiple*-loop connections. Finally, 

using the approach of the chapter odd periodic solutions 

are Investigated and obtained.

It turns out that the transformed equation dealt 

with in chapter 5 can be solved completely. The general 

solution Is obtained In Chapter 6 and when the necessary 

boundary conditions are satisfied we have the equation of 

a simple saddle connection. The coordinates of the 

homoclinlc points of the original Buffing's equation are 

then determined and displayed for varying parameter 

values.



0.1 PHYSICAL SYSTEMS THAT LEAD TO DUFFING TYPE 

OSCILLATORS

The nonlinear differential equation of the second

X" ♦ f{x, x'lx' ♦ g(x) - e(t)

with e(t) of period L , is of considerable interest in 

applied mathematics and various fields of engineering. 

It describes the oscillatory phant^ena of nonlinear 

systems driven by a periodic external force, e(t). One 

such equation that fits this type is Duffing's equation

X* * fix' Cx t Dx'̂  « E Cos WT, B, C, D, s and W 

constant (0.1.1)

being one of the simplest yet most important nonlinear 

differential equations. Aside fr<xn the harmonic, higher 

nansonic and subharmonic motions (Hayashl (1964),

Levenson (1949)) which are known well to exist, it also 

exhibits period doubling oscillations and chaotic motions. 

{Ueda (1980) has produced a picture book of regular and 

chaotic motions exhibited by buffing's equation and so 

too have Abraham 4 Shaw. ] Many researchers have found 

that the nonlinear partial differential equations 

obtained as mathematical models of various electrical 

and structural experiments can be reduced further, taking 

a suitable approximation, often a Galerkin approximation
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(See Ouckenhelmer ft Holmes, 1983), to a Duffing type 

equation aii above. Our interest lies with a particular 

form of Du.ifing's equation obtained on putting x « aX, 

t • 6T where ■ -C/D, (D > 0) and • -VC, (C < 0) 

and writing )( ■ 8B, F « -B/aC, w « 6W. The resulting 

transformation gives the equation, in terms of the 

original variables,

kx' - X + X « P Cos ut. ( 0 . 1 . 2 )

This form will be used throughout this thesis. The 

behaviour of solutions is effectively controlled by three 

parameters - the damping coefficient k, and the amplitude 

F and frequency w of the harmonic forcing term. Clearly, 

it is those investigations whose mathematical model 

reduces to this form that are of interest here. Four 

such examples follow.

Tseng ft Dugandji (1971) considered the dynamic 

behaviour of a buckled beam with fixed ends, excited by 

the harmonic motion of its supporting base. The 

governing equation turned out to be a fourth order 

partial differential equation which upon application of 

Galerkin's method and assuming harmonic excitation of the 

base reduced to the Duffing's equation above with 

negative linear stiffness. This enabled the authors to 

investigate the snap-through problem of the system.
Perhaps the most well-known investigation was 

undertaken by Noon ft Holmes (1979) who Investigated the 

behaviour of the forced vibration of a cantilevered beam



which is buckled by magnetic forces. Consider a slender 

elastic road, clamped at one end in a rigid framework and 

constrained to move in a plane with one degree of 

freedom. (Figt0.11.) Two magnets attached to the freune 

as indicated cause the beam to buckle either to the left 

or to the right, the central position being unstable.

The whole framework is now moved sinusoidally, so that

vii

PIG[0.1] Hagnetoelastlc beam
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the beam vibrates under 'inertial' excitation. For small 

excitation amplitudes, periodic motions are ok>served 

about either stable equilibrium, but as the an.plitude is 

increased an apparently sudden transition to a 'chaotic 

snap-through' motion is observed. In this state, the 

beam oscillates Irregularly about first one and then the 

other equilibrium. An example of such a motion, measured 

from a strain gauge at the beam's roots, displays 

irregular tip displacement. The nonlinear partial 

differential equation of an inextensible elastic rod in a 

nonuniform magnetic field can be truncated using a 

Galerkin approximation to yield the unforced, undamped 

buffing's equation.

X" - X 0, (0.1.3)

where x « x(t) is the (nondimensional) displacement of the 

vibration and dissipation is ignored. Introduce a weak 

dissipation (aerodynamic damping) and periodic forcing 

and one obtains

x" - X ♦ X ■ c(f Cos ut - 6x). (0.1.4)

(Moon, (1980) investigated the behaviour of a buckled 

beam with two degrees of freedom, which also exhibited 

chaotic behaviour.}

In an electrical context Odyniec i Chua (1983) used 

a second-order circuit to model the complex dynamical 

behaviour of a typical Josephson-junction circuit. 

Josephson-junction devices are used in many applications





where  ̂denotes the flux linkage, e denotes the electron 

charge, and h denotes Planck's constant and a suitable 

amplitude. The equation governing the second-order 

circuit in Fig(0.2l is given by

+ 1 Sin vt. (0.1.5)

Equation (0.1.5) can be transformed into the dimensionless 

form

6x" ♦ x' + Sin X » o ♦ e Sin ut ( 0 . 1 . 6 )

where differentiation is now with respect to T.

A further problem that can be modelled by Duffing's 

equation of this type is given in the form of an exercise 

in Jordan a Smith (1987) where the dynamic behaviour of a 

very simple system is considered. Two rings can slide on 

two fixed horizontal wires which lie in the same vertical 

plane with separation a. The two rings are connected by 

a spring of unstretched length £ and stiffness u. The 

upper ring is forced to move with displacement ^(t) from 

a fixed point 0 as shown in Flg[0.3]. The resistance on 

the lower ring which has mass ro is assumed to be 

mk X (speed). Let x be the relative displacement between 

the rings where x * x(t), T the tension (or compression) 

in the spring and R the total resistence due to velocity. 

Applying Newton's 2nd Law (that of force « mass x 

acceleration), the equation governing the behaviour of 

the lower ring is given by

m (x" ♦ ♦ ") -R - T Cos I (0 .1 .7 )



where 8 Is the angle the spring makes with the lower 

wire, and

T * - 1)

R « mk(x ♦

Cos e » x//a^ ♦ x^, hence



* Mx - litx - k*'. ( 0 . 1 . 8 )

Assuming that the cIsplacement, x is small compared 

to a, the nonlinear term of (0.1.8) can be approximated

to x'’ to give the new equation

i ( .  - t)x . - k»'. (0.1.9)

If we ensure beforehand that the unstretched length 1 of 

the spring is greater than the perpendicular distance, a, 

between the wires and reproduce the cosine forcing simply 

by putting - k^’ • F Cos ut then after a simple 

redimensionalising we obtain Duffing's eguaticn in the 

form given by (0.1.2). Hence, for the appropriate choice 

of parameter values the behaviour of the lower ring 

should be in accordance with the known behaviour of this 

form of Puffing's equation; unfortunately, there are no 

results of any practical experiments carried out in this 

particular case. The question naturally arises, what 

type of behaviour might we expect from such systems? It 

is hoped that in the remainder of this thesis this, and 

similar questions, will be answered.



GLOBAL ATTRACTKWS OF SOLUTIONS 

TO DUFFING'S EQUATION

GLOBAL ATTRACTION - THE UNFORCED CASE 

Consider the differential equation 

«3kx' - X F COS ut, x(0) »0» X' (0) • yjj

n.1.1)

which is Duffing*s equation with negative linear stiffness 

and cubic restoring force. Holmes (1979) used this 

equation as the simplest model of a buckled beam 

undergoing lateral vibrations. From numerical evidence 

£qn(1.1.1) has stable closed-loop solutions in the (x, x') 

plane disposed about x « ±1 and x > 0. Fig[1.1] displays

the form of the restoring function R(x) ■ x - x^, the 

arrows indicating the direction of the restoring force 

about X ■ t1 and 0. When |x| > 1 a strong restoring force 

attempts to pull the response back towards |xj *1. In 

the regions 0 < x < 1 and -1 < x < 0, the restoring force 

acts in the opposite direction forcing the response back 

towards |x| > 1. In fact, in both of these two regions 

two separate forces are at work, one pulling back to 

|x| ■ 1, the othei.' pushing away from x > 0. Fig(1.2]



shows typical results in the (x, x') phase plane of the 

unforced« Duffing equation in which F » 0. In this case, 

the net result of the restoring force just described, 

along with the presence of damping (kx') in the system 

creates the spiralling into either of the two equilibrium 

states at X ■ 1 or x » -1. When, however, the forcing 

term is present, for suitable parameter values, one can 

expect two distinct stable solutions positioned about





(1.1.3)
y* • X - ky - x^ » Y(x, y)

we can obtain the co-ordinates of the equilibrium points 

in the (x, x') plane by setting x* > y' « 0. From (1.1.3) 

we have the three fixed points at (0, 0) and (t1, 0). 

Through the process of linearization a)x}ut each of the 

equilibrium points we find the latter ttro points are sinks 

with eigenvalues -^(-k ± - 8), and the origin is a

saddle with eigenvalues -^(-k ± . 4) . Examples of both

a sink and a saddle are shown in Fig(1.2) and Fig[1.3] 

respectively. All three equilibrium points have 

eigenvalues with non-zero real parts and are called 

hyperbolic or non-degenerate equilibrium points. (See 

Abraham and Shaw, Part Two.) However, although 

linearization or calculation of eigenvalues provide local 

stability conditions it cannot detect global phenomena 

such as limit cycles.

For global stability we follow the account given by 

Holmes (1979) based on the Liapunov Stability Theorem. 

First the theorem is explained as outlined in Hayashi 

(1964).

Consider an autonomous system of differential 

equations

x '  » y  ■ X ( x ,  y)

dxg- ■ X(x) or

■JT ■ *2..... ’■n' ‘ ■ '■ ’..... "



and assume that the origin is a singular equilibrium point 

of this system. Introduce a positive definite function 

V(x) with the following properties:

K  V is continuous together with its first partial 

derivatives in a certain domain D containing the origin.

2. Outside the origin V is positive; it vanishes only 

at the origin. The time derivative of V along a 

trajectory of the system (1.1.4) is given by



• I  grad V.g- • { grad V.X
«  i«1 1-1

Let the function dV/dt ■ W(x) < 0 in the dc«ain of 

0. such a function la called a Liapunov function.

With the aid of these definitions Liapunov's 

Stability Theorem nay be stated as follows:

If there exists In a certain domain D about the 

origin a Liapunov function V(x) then the origin Is stable. 

Furthermore, If dV/dt « H(x) < 0 Is negative definite In 

the domain 0, then the stability Is asymptotic.

Applying the method to buffing's equation we first 

translate Eqn(1.1.2) from the two stable sinks by putting

» X t 1

that Is, translate the system so that the fixed points are 

at the origin. (The x^ translation In Holmes' paper 

(1979) result (2.2) Is Incorrect.) This results In the 

new system

(1.1.7)
. 2 3Zj ■ -2z^ - kzj t 3z^ - ẑ  .

Holmes (1979) then takes as the Liapunov function



V(2,, Zj) • * *1^ * i * /  * * *1 *2 ’

.  i z j ^ t  -  a / K )  ♦  2 , 2  .  i z /  * S k ( , ^  ,  Z j / k ) ^ .

(1.1.9)

(There is an error in the corresponding Liapunov function 

used by Holmes (1979) where |a should read 

V(i^, Z 2 ) > 0 outside the origin provided that 0 < o < X. 

Hence, V(z^, Xj) is globally positive definite. 

Differentiating V(i^, Zj*» respect to time, along

solution curves of Eqn(1.1.2) we have

at (a - k)z,^ - 2az,^ t 3az? 1 3z,^z, - az,^.

We demand that 

dV
a t < 0 .

( 1 . 1 . 10 )

( 1 . 1 . 11 )

(i) If Z.J is fixed then, for z^ Urge, (a - XjZj 

dominates C 0.
(ii) If Zj la fixed then, for ẑ  large, -az,^ dcwiinates 

^ V  < 0.
(Hi) If ■ mz2 then, for z^ large, -am*Z2 dominates

♦ V <0.
Thus if ẑ  and Zj are sufficiently large, we have 

dV/dt i  0. Therefore, all solutions of (1.1.7) and hence 

(1.1.2) remain bounded for all time and approach and enter 

a bounded set A c R^.



In differentiating V(z^, 2 2 ) along solution curves 

we atteapt to verify tluit all solutions cross the level 

curve V "inwards". If :his proves to be the case then, 

as previously stated, all solutions enter a bounded region 

and remain there for all tine.

By way of a simple example which Illustrates 

Liapunov's Stability Theorem, consider the linear 

differential equation

(1.1.12)

Expressed as a first-order system (1.1.12) becomes

with the single equilibrium point (a sinic) at (0, 0). 

Consider the level curve

(1.1.14)



procedure as used for finding the directional derivative. 

We require the sign of the projection



y j  < 0

l i«  • < » (1.1.17)

dt < 0 (1.1.18)

where V(x, y) is differentiated along solution curves of 

(1.1.13). Hence, V'(x, y) must be negative definite.

In the example

V  - (6 - 2)t)y‘ - 6x' < 0 (1.1.19)

when (x, y) » (0, 0), hence the trajectory in Fig[i.4l 

crosses the level curve "inwards”. The level curve in 

Fi9[1.4) is In the form V(x, y) ■ c, c > 0. Simply 

reducing the value of c produces a set of (decreasing) 

concentric ellipses with solution curves that continue to 

cross inwards. All solutions of Eqn(1.1.13) therefore, 

must tend towards the origin, hence the origin is an 

asymptotic sted>le equilibrium point.

Holmes continues to show that almost all solutions 

of Eqn(1.1.2) approach one or other of the sinlcs at 

(t1, 0) by using a second Liapunov function (actually a 

pair of functions, one for (1, 0), one for (-1, 0)):



W  * * *1^  ̂ ® 1*1^ * *1*2,
( 1 . 1 . 2 0 )

1

r *  ) 2  _ 2 1

| z ^ ^ z ,  t  2 ) 2  + a | | z^  *  -j^J + - § - ( l -  e )  > » ■
1

Z j )  •  ( 0 ,  0 ) , ( 1 . 1 . 2 1 )
1

that Is, V^ Is positive definite except at the origin. 

(An error exists in the corresponding Liapunov function 

used by Holmes (1979) where l3(aB)*y^^ should read

The functions, (1.1.20), are defined within the two 

areas enclosed by the loop, in Flg(I.S), whose equation 

is given by

H(x, y) • |y^ - . ix^ . 0 (1.1.221

and which after the translation given by (1.1.6) bec^aes

(1.1.23)H(X,, Xj) - • 2,^ * 2,’ • J2,* -

Differentiating V,(z^, Z2 >, with respect to time, 

along solution curves of Eqn(1.1.2), we have

where f^i ♦ §1 - | > 0 inside the 'new' loops given by



(1.1.23). Therefore, all solutions starting within the 

loop, H(x, y), approach one or other of the sinks as 

t ■* ». It finally remains to check that there are no 

attractors outside H(x, y). As there are no other 

equilibrium points and the system is planar, the only 

possibility is a limit cycle. Taking the Hamiltonian 

energy, H(x, y), of Eqn(1.1.22| and differentiating along
2

solution curves of (1.1.3), we obtain dH/dt • -ky . The



energy is therefore decreasing on any closed curve and 

thus no limit cycles exist.

Returning to the unstable equilibrium (saddle) 

point of Eqn(1.1.2) at the origin we concentrate on the 

behaviour of the curves that both enter and leave this 

point for forward time. To understand this better 

consider the first-order linear system

13

X' * y

y' * X - )cy.

Expressed in matrix form Eqns(1.1.26) become

(1.1.26)

0 1

1 ly
M

In this set certain solutions play a special role; those 

which lie in the linear subspaces spanned by the 

eigenvectors. The subspaces are invariant under the 

solution matrix, M, in particular if is a (real) 

eigenvector of N then a solution based at a point 

e remains on spaniv^^} for all time.

Eigenvectors of the matrix M in Egn(1.1.27) are

where ^1 2 * general solution

of Eqn(1.1.27) is given by



I '

Hence, taking Initial conditions or g

p, q e K, the response will remain on the linear 

subspace spanned by the respective eigenvectors. This 

means all solutions starting with initial conditions on 

the span of the eigenvector e^ tend to infinity along the 

line X* - X^x ■ 0. This is referred to as the unstable 

eigenspace, Those with initial conditions on the

span of the eigenvector e^ tend to the origin along the 

line X* - X^x ■ 0, referred to as the stable eigenspace,

E®. In recent terminology (See Guckenheimer and Holmes, 1983) 

these special eigenspaces are referred to as the stable 

and unstable manifolds respectively. A generalised 

definition of an n-dimensional manifold M c  is a set 

for which each x e H has a neighbourhood U for which 

there is a smooth invertible mapping (diffeomorphism)

♦ : r '' -► U (n < N) .

We can now define (in a general sense to include 

nonlinear systems) the local stable and unstable manifolds 

of a hyperbolic equilibrium point, x, W®^(x), 

follows,

W^Q^(x) » {x e Ui^^(t) -► X as t ♦ and i^(x) c U for

all t > 0}



**LOC*** “ tx € U|*^{x) X as t + •, and ♦^(x) e U for 

all t < 0} (1.1.3U

where U c s" Is a neighbourhood of the equilibrium point 

X, and ^^(x) ■ #(x, t) Is a smooth function defined for 

all X in U and t in some interval I £  S. The invariant 

manifolds and provide nonlinear analogues of

the stable and unstable eigenspaces and E^ of the 

linear problem. The Stable Manifold Theorem (see G. andH. 1983) 

for a fixed point tells us that ^lOC fact

tangent to E* and e '̂ at x, see Pig(1.6]. The Hartman- 

Grobman Theorem also states that if x is a hyperbolic 

equilibrium point then there is a homecxnorphisR* h 

defined on s^e neighbourhood U of x in n'' locally 

talcing orbits of the nonlinear flows of the nonlinear 

differential equation x ■ f(x); x t x(0) ■ x^ to

those of the linear flow under local linearization. (See 

Guckenheimer and Holmes, 1983.) See Fig(1.7],

The local invariant manifolds have

global analogues W^, obtained by letting points in 

flow backwards in time and those in flow

forwards in time:

* A homeomorphism or topological transformation is a' 

one-to-one correspondence between the points of two 

geometric figures A and B which is continuous in both 

directions.



W®(x) = U * M w f „ l x | )  
tiO

w“{x| . U t M W ^ I x ) !  
t>0 "

Existence and uniqueness of solutions of such 

equations ensure that two stable (or unstable) manifolds



E‘

of distinct equilibrium points x^, cannot intersect, 

nor can W®(x) (or W^(x)) intersect itself. However, 

intersections of stable and unstable manifolds of distinct 

fixed points or the same fixed point can occur and, in 

fact, are a source of much of the complex behaviour found 

in dynamical systems.

In Eqn(1.1.3) all solutions starting at a point on 

an unstable manifold (in the (x, x') plane) move away



from the saddle point at the origin. Previous results 

have shown that globally there is a 'Liapunov* bound and 

since no limit-cycles exist the unstable manifolds get 

themselves trapped inside the local 'Liapunov' bounds and 

spiral in towards the stable equilibrium points at (t1, 0) 

as t All solutions starting on the stable manifolds,

however, spiral globally into the origin as t 

avoiding the unstable manifolds. The existence and 

uniqueness of solutions of Bqn(1.1.3) ensure that 

intersections of stable and unstable manifolds do not 

occur. (See Pig[l.6].) The stable manifolds divide the 

(x, x') plane into two separate regions called DOMAINS OF 

ATTRACTION.* All initial conditions within one d^nain of 

attraction lead solutions ultimately to one of the two 

equilibrium points corresponding to constant solutions. 

Pigd.S] shows (dotted) the typical behaviour of a 

response with initial conditions (Xq , x )̂ wending its way 

to the equilibrium point (1, 0). When x is plotted 

against tine the result is x(t) • 1 as t The motion

up to (11, 0) is referred to as the TRANSIENT. The

* A closed invariant set A e  S  is called an attracting 

set if there is some neighbourhood U of A such that 

♦^(x) e U for t > 0 and i^ix) A as t for all x“c U.

The set ^(U) Is the domain of attraction of A - it

is, of course, the stable manifold of A. An attracting 

set ultimately captures all orbits starting in its domain 

of attraction.



transient disappears in time leaving the stable solution 

either x(tl ■ 1 or x(t> ■ -1. The stable manifold is 

often referred to as the SEPERATRIX, in the unforced case.

1.2 GLOBAL ATTRACTION - THE FORCED CASE

We start by considering the sta^)ility of the non- 

auton^ous system n.1«1)r that is« with P * 0. Written 

as a first order autonomous ordinary differential



6 e S' denotes points on the unit circle:

r Cos 6 - ky ♦ X - X ( 1 . 2 . 1 )

S' ■ R/(Mod 2i) and this copes with the 2ir periodicity of 

the vector field.

Since u * 0, 8* ■ u> shows that (1.2.1) has no 

equilibriuB points. When F • 0 the behaviour in the 

(x, y) plane is the same for all 6 e [0/ 2x] and the 

equilibrium points (0, 0) and (i1, 0) generate hyperbolic 

circular closed orbits in S', (hyperbolic because of

the nature of the eigenvalues associated with the 

linearization at the equilibrium points). The Invariant 

manifold* theorem (see Holmes, 1979) 

tells us that for (small) P » 0 orbits still exist, no 

longer circular but the qualitative features are retained. 

Therefore, we expect two stable attracting orbits 'close' 

to (11, 0) and a single saddle type orbit close to (0, 0). 

Also since (1.1.3) is a (globally) structurally stable 

system for small F we expect the global structures of the

* An invariant manifold (or set) for a flow on H is 

a subset S c  k " such that

^^(x) e S for X e H for all t e B.







From section (1.1) It Is known that the function 

inside the square brackets in (1.2.13) is positive 

definite inside the loops given by (1.1.23). We write
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-  11

and consider from (1.2.13)

|o z .F| < 0. (1.2.15)

By the saune argument as applied to condition 

(1.2.6), condition (1.2.15) Is also satisfied. Hence, if 

and z^ are (slightly) greater than 0(e) then we have

neighbourhood of (z^, 2 2 ) * (0, 0) for small F. This 

means that in terms of the response in the (x, y) plane, 

for small F solutions tend to remain in either of the two 

regions and R2 as shown in Fig (1.10).

General stability of (1.2.2), for large F, is 

confirmed by again using the first Liapunov function

(1.1.8) , that is.

iz 22*2 ‘1 4"1 ■ 2‘1 ‘1‘2

and as before differentiate along solution curves of the 

forced system.

We have.



. (n - klZj^ - t ‘

+ (22 + Z^)F Cos u)t

< (a - k)Zj^ - 2az^^ + 3;z^^Z2l + 3alz^^| + |z2p|

iaz^Fl (1.2.17)

and again we want dV/dt < 0. This is shown to be true by 

an argument similar to that used in section (1.1).



(i) If is fixed then for large Z2 * (a - ^^^2  ̂
dominates.

4
(ii) If Z2 is fixed then for large ẑ , -az^ (< 0) 

dominates.
4 4(iii) Writing * mz2 » then for large Z2 * -am Z2 (< 0) 

dominates.

Hence, for large F solutions remain within the large 

region L as shown in Fig(1. S ].
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PERIOD DOUBLING BIFURCATIONS 

AND NON-LINEAR MAPPINGS

BEHAVIOUR IN THE (x, x') PLANE

In thli section we intend to shed scsoe light on t.ae 

general behaviour of Duffing's equation given by (1.1.1) 

with fixed danping, k, and fixed forcing amplitude P, 

while the forcing frequency, w, is varied. We shall 

first investigate s«oe stable periodic solutions which 

appear as closed loops in the (x, x') plane. These are 

obtained using standard numerical techniques. He ta)ce 

k^ • 0.1 and F ■ 0.25 throughout.

When the forcing frequency w is large (cd » 2 in 

this case) the closed-loop solutions (obtained after the 

transient behaviour has died away) are disposed very 

tightly about x ■ 1 and x - -1, with each response 

dependent upon its own region of initial conditions or 

domain of attraction. As u is increased beyond u » 2 it 

appears that the solution of (1.1.1) can be approximated 

by the linear equation

x" ♦ kx' ±2

where the original restoring function, x - x"̂ , has been



replaced by the tangent approximation -2x ± 2 at x * t1 

respectively. The assumption that large forcing 

frequencies produce small amplitude response follows from 

averaging and is evident in the frequency-amplitude curve 

in Fig(2.21. Equally as important is the fact that the 

period of the original response is 2ti/u and is unchanged 

by this approximation.
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Ignoring the transient part (2.1.1) has particular 

solution

X (t) « t1 ♦ £, Cos wt ♦ f. Sin ut 
P  ̂ *

r . P(2 - to*)
' (2 -

FlUD
: X 5 ̂ (2 - ♦ k u

»2.1.3)

with response in the (x, x') plane being the ellipses

'■I (2.1.4)

As u decreases over a short range of values (below 

u « 2) two noticeable changes occur to the elliptic 

closed loop. Firstly, the site increases rapidly with a 

corresponding increase in the amplitude response and 

secondly, the elliptic nature starts to disappear as the 

effect of the restoring force In the region |x| < 1//3, 

which is fairly relaxed in comparison with its behaviour, 

elsewhere, comes into play. See Flg(2.1). Furthermore, 

for a short while, each pair of stable solutions retains 

the same period 2ir/<>) as that of the forcing term. We can 

account for the presence of the two solutions as follows.

If x(t) is a steady state solution of Egn(l.l.l)

then

x(t) » -x(t + v/tii) (2.1.5)

is also a steady state solution. This can be sho%m by



nultiplylng (1.1.1) by -1, by replacing t by t ir/u and 

by using (2.1.5).

Qualitatively, t)ie behaviour of these closed-loop 

solutions are similar to the forced, damped linear 

ordinary differential equation given by

30

k x ‘ * X • F Cos u)t, 0 < )i < 4 ( 2 . 1 . 6 )

since for large u, small oscillations occur and there is 

a region where the amplitude increases, as u-decreases, 

attaining a maximum amplitude at ■ 1. As u is reduced 

further so the amplitude decreases; this describes the 

standard frequency-amplitude curve for a forced linear 

ordinary differential equation. With Duffing's equation, 

however, this run to 'maximum-amplitude' is far from 

straight forward, the oscillations passing through a 

phase of what is termed period doubling where the period 

of the stable solutions increases as a power of 2 over a 

small range of u-values. This leads eventually to large 

(possibly infinite) periodic or chaotic oscillations.

This phenomenon of period doubling will be described 

further in section 2.2.

For the moment we turn our attention to modelling 

these 2ir/a)-oscillations by following the method given by 

Jordan & Smith (1987) and write

x(t) > c(t) + a(t) Cos u>t * b(t) Sin wt (2.1.7)

where the amplitudes a(t), b(t) and c(t) are slowly 

varying compared with Cos ut and Sin oit so that their





Our Interest lies with the pair of solutions given 

by (2.1.10) where we see that the constant term is 

dependent upon the amplitude, r. Also a real solution in 

this case can only occur if
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r^ i  2/3. ( 2 . 1 . 11)

Squaring and adding Eqns(2.1.9a) and (2.1.9b) we

have

2 . y . 3 c f ] ( 2 . 1 . 12 )

which is the frequency-amplitude equation for Duffing's 

equation (1.1.1) for this approximation. Eliminating c 

in Eqns(2.1.10) and (2.1.12) we obtain the frequency- 

eunplitude equation independent of c given by

2r.2 2  ̂ f 2 ,  ̂>5 2l^)c u + (0 - 2 ♦ *^r (2.1.13)

Fig(2.2J shows the frequency-amplitude curve when 

y } » 0.1 and P ■ 0.25. The horizontal line at the top is 

the amplitude-constraint imposed by (2.1.11). 

Corresponding to certain small w-values as many as three 

responses are possible; however, this is not the case in 

practice. The periodic states of equilibrium determined 

by Eqns(2.1.9) are not always realized, but are actually 

able to exist in practice only so long as they are stable. 

We now investigate the stability of the equilibrium 

states and find the periodic solutions which are 

sustained in the stable state.



In order to investigate the stability of a system 

near a chosen equilibrium point, we apply a sufficiently 

small disturbance to the system by changing the a's, b's 

and c*s in Eqn(2.1.8) from their equilibrium values. If, 

as the time t increases Indefinitely all the a's, b's and 

c's return to their original equilibrium values, the 

system is said to be asymptotically stable at this 

equilibrium point. On the other hand, if all or some of











which will be referred to as Condition II and is a slight 

extension of the conventional condition given by 

d(r^)/dr^ > 0 (See Hayashi, 1964)*. The boundary curve 

between the stable and the unstable regions given by 

Condition II, shows the vertical tangency of the 

^vequtncy-response curve at the stability limit.

Fig(2.3l shows computer plots of Conditions I and 

II drawn on the frequency-amplitude curve of Fig[2.2].

Only oscillations that are outside the shaded unstable 

regions occur in practice. Immediately, large amplitude

solutions predicted for small forcing frequencies are 
removed, leaving a single solution for each frequency u. 

Removing the regions of instability we are left with the 

discontinuous curve of Fig[2.41, which models the averaged 

amplitude response for each w. Period 2x/u response 

persist for u down to about • 1.130 after which period 

doubling occurs. At w ■ u^, the closed-loop (stable) 

solutions in the (x, x') plane start to split producing 

multiple closed-loop (stable) 4ir/u periodic oscillations 

still disposed about x ■ ±1. Such a response is shown in 

Fig(2.51. At I
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p  - -  ^ • ^ ' 0̂1 >»

which now agrees with Hayashi's result.



solution type persists until a second critical frequency 

is reached at which point the loops split again giving 

off 8 ti/ u) periodic stable solutions - a second bifurcation 
has occurred. An example of such a response is shown in 

Fig[2.6). This extraordinary behaviour continues over a 

small range of w-values giving stable oscillations of 

period 167r/u), 32n/u) .... This phenomenon is known as 

period doubling. A response of period T (in this case



2n/u) is said to have period 1. Period doubling« 

therefore, creates the sequence of periods 1, 2, 4, 8,

16, 2 ", ... <n e 2 q ). As period doubling occurs

over such a small range of upvalues it soon becomes 

difficult numerically to find when further splitting • 

takes place and to show high period oscillations with any 

degree of precision since the additional loops thrown off 

are very close to the previous ones. As u is decreased





bounded and what was previously two separate solutions 

has come together to produce a response that orbits 

erratically from one half plane to the other. Chapter 3 

shows us that below this unpredictable behaviour lies a 

fascinating yet definite structure which accounts largely 

for the behaviour of such a system.

We can summarise the behaviour of the system as u 

is varied with the help of Fig[2.7j. The number line



lo, *■) for u can be split up into four regions A, B. C 
and D with boundary points given by where period 

doubling commences, w^, where period doubling ends, and 

the end of the chaotic region. In region A all 

solutions have period 2«/u. In region B the progression 

of period doubling solutions occur which ends at 

after which in region C, most solutions are chaotic. The 

latter persist until at solutions of period 2v/w 

emerge and continue through to 0. Holmes (1979) uses an 

analogue computer to solve Puffing's equation and records 

the pea)c amplitude for F varying with the other 

parameters fixed. The results shown in Figure 5 of his 

paper display similar behaviour to that just described 

for varying u. In both cases the general behaviour agrees 

with that of certain non-linear Iteration schemes - see 

section (2.3).

2.2 BIFURCATIONS

What do we mean by a bifurcation? According to 

Holmes t Guckenheimer (1983) the term bifurcation was



originally used by Poincar^ to describe the 'splitting' 

of equilibrium solutions in a feuDily of differential 

equations. If
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F  (x); X c K", )i e K ( 2 . 2 . 1)

is a system of differentiable equations depending on the 

single pareuneter y, then the equilibrium solutions of

(2.2.1) are given by the solution of the equation

(x, y) space is then a branch of the equilibria. The 

stability of an equilibrium point is determined by first 

linearizing locally (2.2.1) at the equilibrium point and 

then solving the n^^ order polynomial characteristic 

equation to determine the corresponding eigenvalues.

(See section (2.1).] If a solution of the characteristic 

equation has zero real part then we have what is termed a 

bifurcation point where a sudden change in behaviour 

occurs as the parameter, y, passes through the critical 

value. In fact, the stability of the equilibrium point 

changes either from stable or unstable or vice-versa at a 

bifurcation point.

Consider the simple system

yx (2. 2 .2)

containing the parameter y e (-«*, •). It has a single 

equilibrium point at x > 0, y ■ 0 in the phase plane. He 

want to )inow how the phase paths change as the parameter 

y varies. The corresponding characteristic equation



- y - 0 (2.2.3)

has a zero real*part solution (actually X ■ 0) when u ■ 0. 

The phase diagram has a centre at (0, 0) for y < 0 and a 

saddle at (0, 0) for y > 0. The system has a bifurcation 

point at y >0, since the system is structurally unstable 

for this value.

It is important to add that a change in the nature 

of an equilibrium point and consequently the phase paths 

does not correspond necessarily to a bifurcation point.

A transition from a stable spiral to a stable node, for 

example, does not signify a bifurcation point as both 

points are asymptotically stable. This is illustrated in 

the following example.

The behaviour of the system

X • X - y
(2.2.4)

y » X ♦ yy

depends on the roots of the characteristic equation

- (1 • lilX • 1 - 0 (2.2.5)

which has roots

^ , 2  ■ 5 “ '  * * / ( l l  * 3 ) (n  -  )■)■].

For M < -3, the eigenvalues X^ and Xj both take negative 

real values so the equilibrium point at (0, 0) is a 

stable node.



For -3 < M < the eigenvalues are complex with 

negative real parts so the equilibrium point is a stable 

spiral. For -1 < u < 1, the eigenvalues are complex with 

positive real part so the equilibrium point is an 

unstable spiral. For p > 1, the eigenvalues are both 

positive reals and the equilibrium point is an unstable 

node.
The only bifurcation point in this example occurs 

at y « *-1 because at this value the change has been 

accompanied by a change of stability. The system is 

structurally unstable.

The criteria for structural stability rely upon two 

notions: perturbation and topological equivalence. [See 

Palis s de Halo (1982), Abraham s Shaw 3(1984)]. A 

perturbation of a vector field V(x), x e R  , means the 

addition to it of a relatively small vector field v(x). 

Topological equivalence of two phase portraits means 

there is a homeomorphism (See section (1.1)] of the phase 

plane or continuous 'rubber sheet' deformation, which 

maps one of the portraits to the other, preserving the 

arrows of time on each trajectory.

The two point attractors of Fig(2.8a,b] are 

topologically equivalent. A home^orphlsm can deform one 

stable spiral into the other preserving the integral 

curves. LDiewise, a homeomorphism can deform a stable 

spiral into a stable node. However, the point attractor 

of Fig[2.8c] is not topologically equivalent to the 

centre. A homeomorphism cannot map a spiral onto a centre.





point« involves slnllar considerations. 

Consider the system

%rtiose equillbriun point (0, 0) is a centre. If we 

perturb the system slightly by writing

-y * cx, |e| < 1 (2. 2. 8)

then the equilibrium point, still at (0, Ü) becomes an 

unstable spiral if e > 0, and a stable spiral if c < 0.

The slight perturbation has shown that the system (2.2.7) 

is structurally unstable.

This brief section has allowed us to loo)c into the 

reasons for bifurcations in the context of 

differentiable equations. [For an account of multiple 

bifurcation problems the reader is referred to the paper 

by Guc)cenheimer, 1984.] However, for a )^tter 

understanding of period-doubling bifurcations (or flip- 

bifurcations*) we have to turn away from nonlinear flows 

to nonlinear maps and in particular the part the Poincaré 

map plays in bringing some sort of order to an otherwise 

chaotic response.

2.3 ONE DIMENSIONAL NONLINEAR MAPPING

Consider a real interval I and a nonlinear function 

f which transforms any point x c I into some point x' e i.

* See Guc)cenhelmer and Holmes (1983)



This is called a map of the interval 

f : I -► I.

i')

(2.3.1)

In general, the function f may depend on a parameter p 

and we can write the one dimensional mapping in the form

n*1 f(M, XJ, 0 , 1 , 2 , (2.3.2)

where f is considered sufficiently smooth. We can choose 

an arbitrary initial point (or 'seed') Xq e I and 

generate a sequence of values by iteration. Some mappings 

are simple enough to be accessible to certain analytical 

tools and are not very time consuming in numerical study. 

At the same time they are rich enough to show many of the 

universal properties of chaotic transitions observed in 

higher dimensional systems particularly Duffing's 

equation.

In general, the property of the sequence 

{Xĵ , n ■ 0, 1, 2, depends on the function f and on

the choice of Xq and p. Here we consider only those 

functions f which have only one maximum on the interval I 

and are referred to as unimodal mappings.

A basic equation in the analysis is to describe the 

behaviour of the sequence {x̂ ,̂ n * 0, 1, 2, ...} 

generated by iteration from the given initial value Xq .

The sequences most commonly encountered are periodic and 

asymptotically periodic: x is periodic if f” (x) ■ x for 

all n, where f” (x) denotes the n^^-iterate of f, that is, 

the system reproduces itself every period or single



Iteration; it is asymptotically periodic if its iterates 

converge to the iterates of a periodic point. Such 

points are called fixed points.

In addition to these fixed points characterized by

X » f(x) (2.3.3)

we can also observe periodic orbits of period k, defined 

by k points such that

(2.3.4)

The fixed point(s) of the iterations behave in the 

sane way as equilibrium points of autonomous differential 

equations - some turn out to be stable and scmie do not. 

Suppose that x ■ x is a fixed point of the map

80 that
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stability of an equilibrium point in a continuous 

dynamical system.

An exaj^)le that fits nicely into this category of 

Btapplngs is given by

(x_, M) t (0, t) (2.3.13)

where x_ is in radians. The function f = p Sin(x ) is n n
unlmodal, is zero at the interval end points and smooth 

everywhere.

It can easily be shorn using a simple computer 

program that (2.3.13) is able to reproduce itself every 

single iteration and describe the behaviour of the single 

fixed point as having period 1, and write

*n+1 X  > y Sin(x) (2.3.14)

where x is the fixed point.

As y is varied x ■ 0 is always a fixed point but 

beyond a minimum value of y a second solution is possible 

and we will refer to this other fixed point as x^.

For 0 < y ( 1, only x ■ 0 is possible whereas for 

1 ( y ( « both fixed points can occur. If we set y • x/2 

and start at Xg » s/2, then x^ * ^ 2  * ’** “ 
similarly if Xg * 0, x^ ■ Xj ■ ..• ■ 0. This shows that 

if we start at a fixed point then computing the n^^ 

iterate is a trivial matter but if we start with an Xg 

not a fixed point what happens then?

The easiest way to see what happens is to perform a 

graphical analysis. We graph y « f(y, x̂ )̂ together with



y > X . Where the lines intersect we have •* n

■ y • ‘ P Sin{Xj^) (2.3.15)

so that the intersections are the fixed points. To 

iterate an initial Xq successively,

1. move vertically to the graph of f(Xjj)

2. move horizontally to the graph of y ■ x̂ ,̂ and

3. repeat steps 1 and 2 etc.

Pig[2.9] depicts this process for u ■ 1.S along 

with the two fixed points x » 0 and x^ • 1.496. Starting 

from any Xq c (0, ir) upon continued iteration x^ will 

converge to x^ ■ 1.496 no matter how close Xg is to the 

fixed point x • 0. All iterates diverge iT<m the latter 

fixed point. The fixed point x - 0 is unstable while the 

second fixed point x^ ■ 1.496 is stable or is referred to 

as an attractor of period 1. In this case, after the 

transients (terms of the sequence leading to the fixed 

value) have died away the existence of the attractor 

determines the solution independently of the initial 

condition Xg provided that Xg is within what we call the 

basin of attraction.

He can chec)c on the stability of x • 0 and 

x^ « 1.496 by finding C as given by (2.3.12). It turns 

out that

S3

C(x) « u Cos(x ), (2.3.16)



C(1.496) = 0.1118

hence, the latter point only is stable. Fig[2.10l 

displays the behaviour of iterations around two fixed 

points. The figure shows all subsequent iterations 

tending towards the stable fixed point in (a), whereas in



(b) all iterations move away from the fixed point which 

is unstable.

Increasing y we find that this behaviour persists 

until p * 2.2618 = when the system undergoes period 

doubling. That is, instead of having a stable cycle of 

period 1 corresponding to one fixed point, the system has 

a stable cycle of period 2. It turns out that these two 

fixed points are fixed points of the function f^ (fo f)





unstable and corresponding to the unstable fixed point of 

f, the other two, ŝ  and 82 are stable. Since s, and S2

are not the fixed points of f, f sends one into the other:

s, * f(S2>
(2.3.18)

8, « f(8.).

pair of points is called a stable 2-cycle or





f‘‘(8 ), r • 1, 2, n.

M « J f ( 8  J .

(2.3.26)

(2.3.27)

As we increase u further, the nininuin of f drops 

still lower so that both ŝ  and » 2  negative slopes.

At u « Aj ■ 2.616501 the slope at ŝ  and 8 2  becomes equal 

to -1. The same thing occurs at this stage that occurred 

for f at A^. Each fixed point of f^ at A 2 splits 

creating a 4>cycle or period 4 response. This is the 

second period doubling phase.

To resolve the period 4 behaviour into fixed points 

we consider the f^ iteration which is computed fr«n f^ 

using

f % f ‘. (2.3.28)

The graph of appears in Fig(2.12) along with the four 

fixed points for y « 2.69. As y increases the local 

maximum of f* at x̂  ̂« n / 2  moves up developing a fixed 

point with negative slope. Finally at y ■ Aj ■ 2.696373 

when the slope of the fixed points is again -1, each 

fixed point will split into a pair giving rise to an 

8-cycle or period 8 response - see Fig[2.13). Again,- 

using » f* 0 f^ we follow the behaviour of the 

gradients of the fixed points of f®. Then at 

y > A^ " the slope is again -1 and another period





are brought together in the following table:

According to Lauwerier (1986) it can be shown that 

the sequence of approximates to the geometric

progression whose term is given by



A. i - c(P»n •

where F, the Feigenbaum constant, is the rate of onset 

of complex behaviour. If we define

A -  A

(n • 1, 2, 3, ...)
*n.2 ■ ''ntt'

Fĵ  quickly approaches the constant value F. The three 

values of F_ » (n • 2, 3) are

with the limit value 

F - 4.6692016 ...

c turns out to be approximately 2.417.

Feigenbaum (1983) says that this number, P, must 

appear as a natural rate in oscillatory-type systems and 

all systems exhibiting a period-doubling route to chaos. 

It also makes a prediction possible of A^ as soon as the 

first few period-doubling values are known. Thin holds 

for any map with a single parameter. We have using

A. 1



Fig[2.14] shows a bifurcation diagran of fixed 

points x^ against the paraneter where 2 4 p 4 v and p 

Is taken In Intervals of 0.025. The start of each period 

doubling regime« marked A2 « ••• can be clearly seen 

to be converging to A^.

Beyond A^ the behaviour for each p Is mostly 

chaotic. Once the period of transition has ended the 
Iteration produces values that jump about In a randc» 

fashion within a bounded set. Such a set of fixed points 

Is said to be countable Infinite. This chaotic behaviour 

continues ad Infinitum with no noticeable repetitions, 

vrhen each random set of fixed points Is plotted against 

Its p-value It appears as a straight line as In Flg[2.14].

The Interval (A., s) appears to contain largely 

infinite sets of unstable cycles or chaotic behaviour. 

These appear as straight line segments terminating In the 

line segment at p • » »rtiich runs fr«s JO, w[. However, 

P-values do exist in this range for which stable m-cycles 

occur. Two such 'windows' run fr«a p • 2.7493 to 2.7505 

and from P « 2.946 to 2.974 with the latter window 

particularly evident in Flgl2.14]. 'Blown-up' versions 

of both windows appear in Flg[2.15l and Fig(2.16) 

respectively, the former showing a stable 10-cycle 

response emerging f r ^  an otherwise chaotic response and 

period-doubling back to chaos; the latter starts as a' 

stable 3-cycle and behaves In a similar manner. Although 

not detected many such windows may exist. For similar 

diagrams see May (1976), (1982); Lauwerier (1986).



A theorem due to Li 4 Yorke (1975) states quite 

simply that if there is a periodic point with period 3, 

then for each integer n ■ 1, 2, 3, ...» there is a 

periodic point with period n (the converse is not 

necessarily true). Furthermore, there is an uncountable 

subset of points x t I which are not even "asymptotically 

periodic". Hence, the title of their paper - 'Period 

three implies chaos*.









MANIFOLDS, HOMOCLINIC POINTS AND HORSESHOES

3.1 THE P0INCAR£ m ap

For nonautonomouB systens of ordinary differential 

equations of order 2 the diagram of solution curves when 

projected on to the (x, x*) plane often appear as a 

tangle of intersecting and self-intersecting curves, 

since, in general, each initial state or point in the 

plane generates an infinite number of curves corresponding 

to the various initial times t^. At first sight such a 

diagram appears extremely complicated with Important 

features totally obscured. However with the aid of the 

so-called Poincard map we can detect and graph underlying 

structure by deleting the phase paths but retaining what 

are commonly referred to as 'first-return* points only.

To understand this transformation we follow the 

explanation given by Holmes a Guckenhelmer, (1983) who 

consider the behaviour of a flow in n-space. But first, 

however, it is necessary to define a system of differential 

equations and the flow it generates.

Regard a differential equation as a system

f (X) (3.1.1)



where x « x(t) c k " Is a vector valued function of time 

t and f : U s" is a smooth function defined on some 

subset U £  k " > see for example (1.2.1). We say that the 

vector field f generates a flow : U ♦ K*', where 

^¿(x) • t) Is a smooth function defined for all x In

U and t In sc»e Interval I ■ (a, b) S  R, and ^ satisfies

(3.1.1)In the sense that

¿ U ( x ,  t))^.^ - f(*(x, T)1 (3.1.2)

for all X e U and t e l .  [For flow read general 

solution.]

Let y be a periodic orbit of some flow In 

arising from a nonlinear vector field f(x). Let [ be a 

curve or cross-section such that ^ c  r " of dimension 

(n - 1), with the property that \ cuts each phase space 

path transversely; that Is, it Is nowhere tangential to 

them. Denote the point where Intersects \ by p, and 

let U be some neighbourhood of p. Then the first return 

or Poincare map P : U  ̂for a point q e U

P(<J[ “ (3.1.3)

where t > t(g) Is the time taken for the orbit 

(particular solution) based at q to first return to 

Generally, t depends upon q and need not be equal to ~ 

T > T(p) the period of i|i. However as q tends to p so t 

tends to T.

The procedure Is particularly easy to understand



for the second order autonomous system of the form

k = x(x, y), y - yl (3.1-0

and Its phase diagram In the (x, yl plane. Consider a 
point pj : (Xj, y(|( In the cross-section I shown In 
Fig[3.11 If we follow the phase path through Pj In Its 
direction of flow then It next cuts J at p, s (x,, y,l.



is the first return or Poincar^ map of Pq . If we 

continue on the phase path, then the first return of p̂  

is P2 : (x2 > ^ 2  ̂ ’ general terms we can say th<it the 

operator P is such that for the particular \ chosen and 

for every (x, y) on

P(x, y) ■ (x', y') e I (3.1.5)

where (x', y') is a point of first return of the path 

from (x, y). For successive returns starting from 

(Xq , y^) we can use the notation

(X 2 . y2> -  y ^ ))  -  P ^ X q, y j,) ; (3.1.6)

or in general

(3.1.7)

where n stands for the number of first-returns or 

Poincar^ maps.

Since the system is autonomous the starting time 

for a sequence of first-returns is immaterial; we can for 

example always translate solutions to initial time tp * 0.

Fig[3.1] also shows a limit cycle and in this case 

successive first-returns approach the limit cycle both 

from outside or from the inside; a sequence of first- 

returns will not cross over a limit cycle. Prom point 

p : (Xq , yp) on the limit cycle the first-returns map 

onto themselves, that is,



p • y o ’ "  ^0*
(3 .1 .8 )

( X q » STo * “  ^  ^ 0 ^' n « 1, 2, 3,

In other words, the point p is a fixed point of P 

and the sequence Pq , p^, P2 » ••• approaches the fixed 

point p. The same is true for a sequence of first-returns 

on the inside of the limit cycle. In addition, the 

sequence of time-lapses between returns tends towards the 

natural period of the limit cycle response. We would 

also expect the behaviour of these first returns to imply 

stability for the limit cycle.

As an example consider the first-returns of the 

autonoiDOUs system

(3.1.10)
. 2 2 y « - x + y ( 1 - x  - y )

for the section \ given by x > 0, y = 0 starting at

Using polar co-ordinates 

- x^ + y^. Tan 6 » i (3.1.11)

and differentiating with respect to time

• XX ♦ yv------

we find that the system reduces to

. xy -̂ y_x (3.1.12)
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Unfortunately, many differential equations do not 

lend themselves to accessible solutions in terms of 

elementary functions, but require the use of numerical 

methods to allow investigations to take place. Although 

certain features of a given differential equation suggest 

certain types of solutions one cannot be certain that 

they will occur in practice particularly when nonlinear 

terms are present. The modern computer is an invaluable



tool, playing a significant part nowadays to aid such 

investigations. A search for hidden periodicities, such 

as subhamonlcs periods, is best carried out by starting 

with a period (usually a resonant period) in mind and 

then looking for solutions with this period. The method 

of analysis is based on the transformation theory of 

differential equations. This method, when CMobined with 

the use of computers, provides an effective means of 

finding various types of solutions, and is the method 

employed throughout this thesis. We apply this theory of 

transformation to Duffing's equation as stated in the 

paper by Hayashi (1969).

3.2 MANIFOLDS FOR DUFPING'S EQUATION

Equation (1.1.1) can be transformed into the system 

of first-order equations

g  . y i X{x, y, t) (3.2.1a)
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F Cos ult = y(x, y, t) (3.2.1b)

where the forcing term, F Cos u)t, has period L * 2ir/u.

Let (x (Xq, Yq , t), y(xQ, y^, t)] be a solution of 

(3.1. 2.) which when t « 0 is at the point Pq (Xq , yg) of 

the (x, y) plane. We focus our attention on the location 

of the point whose co-ordinates are

*n " ’‘ ‘* 0 ' ^ 0 ' ' 'n  ■ ''* * 0 ' ^ 0 ' ‘
Call the transformation Pq * P.̂ the mapping T and write



•'I ' TP.. Similarly, for successive mappings we write

T‘P„, P, T P. etc. For the inverse 

mapping we write Pq » T” 'P̂  « T'^Pj « .... The mapping 

thus defined is known as a one-to-one continuous 

transformation of the plane Into itself.

A point in the (x, y) plane which is invariant under 

the mapping T is called a fixed point. If Pq is a fixed 

point, then TPq * * Pq > Let m be the smallest positive

integer for which T®Pq • Pĵ  ̂» Pq . Then Pq will iterate 

periodically through a set of m distinct points and is 

therefore called an m-periodlc point. The set of these 

m-periodlc points is called a periodic group. A solution 

of Eqs(3.2.1) which lies on a fixed point at t « 0 is 

periodic with period L. Similarly, a solution with an 

m-periodic point is a subharmonic solution of period mL.

At first sight it might appear that this 

transformation is simply a repeat of the Poincar£ map.

The Poincar4 map, however, does not entail any mention of 

time intervals but picks out intersections of a particular 

phase path with another curve (the so-called 'section').

The two procedures can, however, be brought 

together. Rewrite (3.2.1) as a system of autonomous first 

order equations (of one dimension higher) by putting 

6 » t, where 9(0) = 0. The new system is



The system now has the property that if 6 Is 

replaced by 6 2nn/(o« n being any integer, then the

system is unchanged. We can now relate a plot of 

calculated values of x and y at each time step 2n/u to a 

Poincard map associated with (3.2.2) not in the (x, y, 6) 

space but on a torus. The space is constructed by 

picking out the space block
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< X < ■ —  < y < . 0 < 6 < 2ir/ii)

from the (x, y, 6) space and bending the plane 9 2t/u  

round to coincide with the 6 ■ 0 plane. The torus thus 

formed is in 4-space. On this space, and for all time, 

the equations hold good and the solutions are represented 

by curves which wrap round the torus and, in the case of 

periodic solutions, wrap round it, perhaps more than once, 

and join up smoothly. Other solutions wrap round the 

torus tending towards the periodic limit cycle.

By marking the isolated values of x(t) and y(t) at 

times t > 0, 2n/u, 4ir/u, ... these are the intersections 

of the solution curves in the new 4-space with the plane 

(the 'section') 6 > 0, and this then constitutes a 

Poincard map.

Application then of the Poincard map to a 

periodically forced system is relatively straight forward 

both to compute and display graphically. A step-by-s'tep 

numerical solution of the system (autonomous or not) is 

organised to print out a result at the end of every 

period with the points normally displayed on continuous



linking curves with the direction oC movement indicated. 

The procedure can be thought of in terms of a stroboscope 

which illuminates the representative point once in every 

cycle. {See Abraham a Shaw Book 1.) Clearly a fixed 

point for the Poincar^ map has the seune stability as its 

corresponding oscillation and we look to the Poincari map 

to behave as a phase (map) diagram as opposed to a phase 

(flow) diagram.

Consider the Poincari aiap P : | ^ as defined in

the previous section, where P depends on the parameters 

P, k and u of the Duffing equation (1.1.1). Here we 

shall fix F and k and vary w. He concentrate our 

attentions on W*(s) and H^(s), the stable and unstable 

manifolds which enter and leave the hyperbolic saddle 

point S, see section (1.1). When F * 0, the manifolds 

become the separatices of the unforced system with 

unstable equilibrium point at (0, 0), (see Chapter 1, 

Flgll.81).
Generally, one would not use a Poincar6 mapping to 

plot a Duffing separatrlx but it helps here to explain 

the general procedure. On applying the Poincar^ map to 

the unforced equation it is first necessary to linearise 

locally about the equilibrium point (0, 0). This gives 

the linear differential equation

x" ♦ kx' - X  * 0. (3.2.3)
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It was shown in Chapter 1, section (1.1), that this 

equation has two eigenvectors x' - X^x » 0, x' - X2 * * ®



Vi

which are the unstable and stable manifolds respectively 

and that locally these can be used to approximate W^(s) 

and W^(s). Armed with this knowledge one can choose 

initial values on either of the unstable or stable 

manifolds« close to the equilibrium point and plot their 

first returns (in the case of the unforced equation any 

time period is acceptable). All forward time first- 

returns started on x ’ - > 0 will map out the unstable

manifold w“(s), while reversed time first-returns on 

x' - ^2 ^ * ^ stable manifold W^(s).

Other solutions not starting on either manifold have 

first-returns that tend ultimately (as W^(s)) to one of 

the two stable equilibrium points at (-1, 0) or (1« 0). 

Locally, the sianifolds are at right-angles to each other 

at (0, 0).

When the forcing term is present (F « 0) the 

manifolds are computed in exactly the same way by first 

linearising locally about the equilibrium point of the 

unstable response, marked S in Fig[3.3). This time we 

consider the equation

kx' X ■ F Cos wt (3.2.4)

whose solution allows us to determine the local manifolds 

at the equilibrium point given by S » (f.j, ufj) where

-F(1 ♦ w*) (3.2.5a)



(3.2.5b)

The unstable manifold is approximated by 

x' « m^x + cof, - (3.2.6)'•2 “‘r r

and the stable manifold by

1,X * ojf, - m,f,,
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and correspond to the eigenvectors of (3.2.4). Fig(3.3] 

shows how the lanifolds behave at tne unstaoXe 

eguilibriuB point S.
Returning to the full Duffing's equation Poincard 

points on each manifold are then obtained as before by 

plotting 2«/w first-returns from initial points on these 

straight-line segnencs close to the equilibrium point S.

The manifolds have oeen computed for the cases 

w ■ 1.3, 1.2, 1.0967 (the significance of this value will 

be stated later) and w ■ 1 (with F « 0.25 and )ĉ  ■ 0.1 

throughout), and their graphs displayed in Fig(3.4]. In 

Fig(3.4a], the unstable manifolds SA and SB approach 

fixed points on the stable periodic solution; the fixed 

points u and v correspond to the oscillations in Fig[2.1].

Unli)ce the manifolds of the unforced case )>oth sets 

of manifolds ate drawn in sharply alongside manifolds 

from the saddle point as u is reduced, see Fig[3.4a,b]. 

Eventually, the 'splices' of the manifolds touch 

tangentially the manifolds of S; simultaneously, the main 

branches of the stable and unstable manifolds also touch 

tangentially away from S at points Btar)ced and H 2 in 

Fig[3.4c,d). It is explained in the next section why the 

occurrence of such tangential point or homoclinic points 

mar)(s the set of an infinite number of such points and in 

consequence the unstable manifolds no longer approach* any 

other fixed point, and a bifurcation must therefore take 

place for some value of u. It occurs when homoclinic 

tangency first appears between the manifold at about
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w * 1.0967. This phenomena is known as homoclinic 

bifurcation. Even though the unstable manifolds break 

away from the fixed point at the onset of tangency the 

fixed points remain. As u is decreased further so the 

stable manifold intersect the unstable manifolds and the 

'spiked' parts continue to push forward following the 

general curvature of the unstable manifolds. In 

Fig[3.4e] we see how the 'lower* stable manifold turns 

back on itself and pushes through the tangle of unstable 

curves before turning round and back again. The 

manifold behaviour at this point is becoming complex.

(See Jordan k Smith (1987), Holmes (1979), Guckenheimer k 

Holmes (1983), Greenspan A  Holmes (1982) for further 

manifold diagrams.)
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3.3 MEL'NIKOV'S METHOD

In Fig[3.4] we saw that the unstable and stable 

manifolds Intersect tangentially at a (Infinite) number 

of homoclinic points. Mel'nikov (1963) produced a 

perturbation method for establishing a relationship 

between the parameter values of the differential equation 

to show when homoclinic tangency occurs.

To apply the method of Mel'nikov we first write 

Uuffing's equation as a perturbation of a Hamiltonian 

system which possesses a 'saddle connection* in this case 

the four seperatrices leaving and entering the saddle 

point, which form the two loops of the unforced case,

F * 0. See Flg[1.5]. We then have

X » y (3.3.1a)

y * X - X + £(f Cos ut - kjjy)

The structure of the Poincard map, P, (Holmes 

(1979)), is easily found for the trivial case e - 0. P 

possesses three fixed points at (0, 0) and (t1, 0) and 

the saddle seperatrix become the stable and unstable 

manifolds and W^, The structure of these manifolds 

play an important part in determining the nature of 

solutions. In the trivial case, the manifolds are



structurally unstable and split in one of three ways as 

the parameter values change. The thr>3e possibilities are: 

(a) each loop splits so that the unstible manifold 

passes 'outside' the stable manifold W^; (b) passes 

'inside' W® or (c) and W® meet transversely (at 

homoclinic points). The last case can only occur in the 

case of nonautonomous systems, see Fig[3.5]« Since W®
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and are invariant under the PoincarS map the existence 

of one intersection implies the existence of infinitely 

many.

Pigp.6] shows that if q is an homoclinic point 

then by definition it is on both manifolds. Let the 

first return of q on w'* be p'̂ (q) . Let the first return 

of q on be P^lq) . By the uniqueness of solution of

infinitely Mny.



the differential equation it inplies that 

p'̂ (q) ■ P^(q) ■ P(q)f since if this were not the case 

there would exist two distinct solutions from q at time 

t • 0. Hence, the first return of an homoclinic point is 

another hmsoclinic point, and this behaviour occurs 

indefinitely. In the figure the hMioclinic points start 

as a dense, yet countable set leaving the saddle point S 

along terminating with yet another dense, countable 

set entering S along W*. Such sets are accompanied by 

violent windings of the unstable manifolds: Holmes (1979) 

tells us that as the Poincard siap is orientation 

preserving so we can expect an homoclinic point ^ to 

occur between the intersections q and P(q) and so on.

The presence of homoclinic points does not signify 

a structure change alone but also signifies the existence of 

saddle connections. A saddle connection is a solution 

curve in the (x, x') plane that leaves the saddle point 

at t ■ and returns to the saddle point as t ^ In 

practice such solutions are not easily found due to the 

unstable nature of the saddle point. However, Chapter 5 

is devoted to finding such curves using a new equation 

ODtained from a co-ordinate transfoiraation of Duffing's 

equation.

Returning to Mel'nikov's method he showed how a 

function could be derived for systems of the fbrm
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^ • Ppi»'* yi * ep^(x, y, ut, e) 

y • ŷ  * eq^(x, y, ut, e)



8 0 that the value of determines the structure of

and see Fig[3.S). In particular, if < 0 we

have case (a); if > 0, we have case (b) . If

¿^(to) oscillates and takes both positive and negative 

values then case (c) occurs. (If ■ 0, we have the

trivial case associated with F ■ 0.)

According to Mel'nikov we can write

‘ e ' ^ o ’  ■ ■ ' J o ' * o '  " o ’  '  ’‘ ¡ ' " o '  " o ”

‘  P o ' ^ o '  y o " ’ ' ¡ ‘ " o '  " o ’  -  ' ' ¡ ' " o '  “ '  " o ” -

(3.3.31

The point (x^, Yq) is chosen to lie on the 

separatrix of the unforced system with (x^, y^) * (0, 0) 

and x^(t, u, t^), y^(t, w, t^) denote the solution curves 

of the perturbed (c » 0) system at the points 

(x*(tQ, Hi, tQ>, ^0 tending to

(0, 0) as t ■» t*> respectively, (x^it^, w, t^), 

y^(tQ, u, tg)) lie on the normal of the unforced 

seperatrlx passing through (0, 0).

Mel'nikov defines ■ r * P+P. where P^P_ is

the distance between the two branches of the seperatrix 

of the unperturbed system. and P_ lie on the normal 

to the seperatrlx at P ■ (Xq , yjj). r is the tangent 

vector at P. Fig[3.7] shows the coordinates of points P^ 

and P_.

Start by finding P^P_. From ¿RP*P











3.4 THE HORSESHOE NAP

In practice It 1« impossible to show the multitude 

of complex windings that result from homoclinic points of 

intersection. The windings become so compressed against 

each other to be practically indistinguishable. In 

Pig[3.6] there is no suggestion in this simplified view 

that it is possible for the unstable manifold to
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backtrack on itself and Intersect the stable manifold 

between the two previous intersections; nor that this can 

happen an infinite number of times, see also results by 

Jordan a Smith (1987), Holmes a Gruckenheimer (1983), 

Greenspan a Holmes (1963), Ueda (1980).

To understand this behaviour choose a segment of 

the first loop of the unstable manifold between two 

points L and M on AB as shown in Fig(3.9). L and M must 

be chosen to be on the same side of AD. Let Hq consist 

of a set of initial points lying close to the segment Lri 

In the form of a horseshoe crossed twice by the stable 

Bianifold AD.

Now consider mappings of the horseshoe generated by 

ipped by P, P^, ...» P^ into 

H2 * Hj, ..., or backwards by P \  P , P ^

.., The latter sets would appear as

rectangles that are compressed and stretched as they map 

back towards the saddle point at A in Fig(3.9].

Eventually, for s<»ie r, the set P ^(H^), or will

fall into a narrow strip which overlaps the horseshoe as 

shorn in Fig[3.9] where LM maps into L'H*. The 

intersections are shown shaded. Choose a point q c Hq 

such that p”^(q) • Q c n  Hq , then

P*̂ (Q) ■ P*^(P”^(q)) ■ q c H*̂ . But q e Hq , hence Hq and Hj. 

have the point q in common and so Hq and H^ also intelrsect 

implying that the loop of the unstable manifold which is 

contained in is carried along with it into the 

neighl^ourhood of LM. The picture that emerges is

P. Let
“ 0

«3-
into H_.r  '



illustrated in Fig[3.9] for the case r • 1. if we next 

choose a point q e Hq n  such that 

■ Q € Hq n then as before 

p'̂ (Q) - q c n Hq n  and P^^(Q) - P*^(q). Now 

q ■ P'̂ îq) where q e Hq , hence P *̂̂ <Q) ■ j c Hq with the 

result that another loop has to interlace between the 

existing paths. There also exists the possibility of 

P^(Q) ■ 0 giving rise to period r solutions. (See 

Abraham S Shaw 3, 1984.)

As w decreases the fixed points of the period 

doubling solutions are limit points for initial values 

which are not on either the stable or unstable manifolds. 

The increasing complexity of both branches of the 

unstable sianifolds means that the first-returns of 

solutions of the differential equation rapidly become 

trapped inside the unstable manifolds and thereafter 

approach a limit set which lies on the unstable manifold. 

The limit set in the chaotic region, see Figp.10] is 

called a strange attractor where it would appear that 

under Poincar^ first returns points wander aimlessly 

within a bounded region. For examples of strange 

attractors see Seydel (1985), Jordan • Smith (1987),

Holmes (1979), Guc)cenheimer s Holmes (1983). For further 

wor)( on strange attractors see Ruelle (1980), Shaw (1980).

The mechanism which creates the attracting set 7>f 

the strange attractor can be explained in a general way 

by analysing the repeated effect of the horseshoe map 

described earlier by following the method outlined in
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Jordan * Smith (1967). The procedure models the general 

behaviour of iterated points that fall into the region of 

overlap shown shaded in Flg[3.9].

Assume that the 'rectangular strip' through L'M'

(in Fig[3.9]) is replaced by a square ABCD and that a 

homoclinic bifurcation causes the square to be mapped 

into a horseshoe A'B'C'D' by the operator P of first- 

returns. The mapping behaves this way: the square is 

stretched in the direction AO and compressed in the 

direction AB, bent over in the form of a horseshoe, and 

placed back over the original square and the process is 

repeated; see Flg(3.11]. We are interested, at each 

stage, in the parts of the codnaain which are shared by 

the regions from which they are mapped. Fig(3.12] shows 

the results after two mappings. The two vertical strips 

u' and V* are those points of the original square that 

remain within the square after the first mapping being 

mapped originally from the horizontal strips labelled u 

and V. The four smaller squares contain those points 

belonging to u and v which are shared with u' and v'.

The second iteration results in the two vertical strips 

u' and v' being mapped onto the pair of thinner horseshoes 

with the shared region this time being the intersection 

of the two thinner horseshoes and two pairs of horizontal 

strips contained in u and v. Hence, a second mapping“ 

produce^ 16 squares, a third mapping 64 squares and so on. 

The limit set, as the number of mappings tends to 

Infinity, is very much like a Cantor set since a Cantor



FIGI3.11] Horsetho« map.

set can be formed in a similar way. The Cantor process 

goes as follows: First take a line segment« at 1; see 

Fig[3.13l. Then remove a smaller segment fo3*o within, 

making a gap, as in 2. Repeat the surgery on each of the 

two remaining segments, obtaining 3, and continue 

forever. If at each step you take away the middle third 

of a segment, this is the middle third process. The 

limit set of this process is a Cantor set, and the set is



V 7///////

V//////Z/.
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uncountable. The Unit set of the horseshoe map has a 

similar structure but of course it is a two dimensional 

structure. There exists, therefore, an uncountable 

number of points in the initial square, which, when 

treated as initial states at t « 0 for iterated first 

returns, lead ultimately to endless repeated plots of a 

certain set of points - the limit set - which constitutes 

the strange attractor. The associated oscillations will





A PIECEWISE LINEAR SYSTEM

4.t THE MODEL PROBLEM

Mel'nikov'! aiethod for perturbed Haniltonian 

systems provides us with a perturbation method for 

determining parasteter values for %rtilch hoaocllnlc 

tangency and consequently homocllnlc bifurcation occur, 

ihe method also allows us to estimate to zero order the 

co-ordinates In the phase plane of the points of homo- 

clinic tangency. If these co-ordinates were kno%m then 

It would be a simple matter to obtain (numerically) the 

so-called saddle-connections; those solutions which leave 

the unstable saddle point only to enter it again at some 

later time and remain there for all time. In practice It 

would amount to starting the solutions with Initial values 

given by the homocllnlc point at time t « 0 (or any 

Integer multiple of the period of the forcing term) and 

plotting the solutions both forward and backward in time. 

Such solutions of Buffing's equation are taken up In 

further detail in Chapter 5.

The construction of a model problem that exhibits 

such behaviour without the need to resort to perturbation 

methods or heavy analysis clearly provides us with the





The system has a periodic solution given by x > 0, 

y » F*b Cos wt ♦ P*w Sin wt if Xq ■ 0» Fq ■ provided 

♦ b^l< 1. It's fixed point is S » (0, F*b) which 

is a saddle point. The stable manifold is given by 

Xq » 0 and the unstable manifold by yg ■ bF*, provided 

that |x - y| < 1 at all points on a solution starting at 

(0, yQ) for t > 0, and at all points on a solution 

starting at (Xq , bF*) for t > 0. These conditions 

require that

y . (/q • F*k)e”^^ ♦ F*b Co* ut * F*w Sin wt. (4.1.3b)

Ky« - P*b)e F*b Cos wt * F*w Sin wtj < 1

for all t ) 0, and

[xqS^ - F*b Cos wt - F*w Sin wt| < 1

for all t < 0.

The behaviour of the stable and unstable manifolds 

in RIl are displayed in Flg(4.11 where the point A has 

co-ordinates (1 ♦ F*b, F*b).

In Bill, where x < y ♦ 1, the equations can be 

written

x' ■ -cx ♦ (1 ♦ c)y + (1 ♦ c)
(4.1.6)

y* ■ -bx ♦ b ♦ F Cos wt



from which

y  - t x '  ♦ cx - 1 - C)/11  ♦ c ) .  ( 4 .1 .7 1

Elimination of y gives

X" * ex' ♦ b(1 * c)x ■ b(1 ♦ c) ♦ F(1 ♦ c)Cos wt.
(4.1.8)

Consider next the point A on the unstable manifold 

in RIl (see Flgl4.11). All solutions through A at time



t > 2nir/w, n ■ 0, t1, t 2 , must fora the outset* of

the saddle point S since In reverse tine such 

solutions tend towards the periodic saddle response at 0. 

We can make A into a homoclinic point by finding a 

solution that starts at A at say time t ■ 0 and enters 

RII again at B ■ (Dr'll on the stable manifold at time 

t > t^, see Flg(4.1]. A first return fr<» A will then be 

on the stable manifold BS at r and vlce*versa provided 

that a response starting from r at t ■ 2nw/u, 

n * 0, t1, 12, arrives at B at time t ■ m(2t/u - t^l,

m ■ 0, 11, 1 2 , .... thus satisfying the definition of a 

hOBioclinic point, see section (3.3), as A would then be 

on both the stable and unstable manifolds. To this end.

It turns out that we can take a particular solution of

(4.1.8) which conveniently does away with the problems of 

working with the transient part of the general solution.

Consider the particular solution of (4.1.6)
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1 C Cos ut + D Sin wt (4.1.9)

* Fig[1.3] shows the phase portrait near a saddle fixed 

point in the (x, x') plane. Two are asymptotic as t 

and we call these asymptotic curves the Inset of the saddle. 

The other two are asymptotic to the saddle as t and

form the outset of the saddle. (See Thompson 4 Stewart, 

1966.)







Taking b « 1, the forcing frequency, oi, satisfies

2 . 2 *_3c (4.1.28)
2 ♦ C

and the forcing amplitude, F, satisfies

F - (4.1.29)

Hence, the point A Is a homoclinic point when, on 

choosing c, the forcing frequency u and amplitude F of 

the given system are given by (4.1.23) and (4.1.29) 

respectively.

4.2 SADDLE CONNECTIONS

On achieving one of our aims, that of locating the 

co-ordinates of a h<XK>clinic point, we are now In a 

position to draw saddle connections. Saddle connections 

displayed in Fig[4.2] were drawn by starting at the 

homoclinlc point A ■ (1 ♦ F*, F*), at time t ■ 0, and in 

forward time solving the corresponding equations in RII 

and RIII using a standard numerical technique. To 

complete the connection plotting was again started at A 

at time t  ̂ o but with reverse time. Alternatively, the 

saddle connections could have been drawn using the exact 

equations of the three sections, namely.
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X « (1 ♦ F*)e'̂

y » F* Cos ut + F*u) Sin ut
I-W, (4.2.1a)











t • -«* and again when it returns as t ♦ As the 

response runs through RIII y attains an overall ninimua 

value of i-1 - ♦ c) at time t » 6 where

nii/u < £ < 3nir/2u, n « 0, t1, i2, ... and £ satisfies the 

equation

Tan u)£ • uc/ (2 * c). (4.2.3)

Starting at the h^oclinic point A the progression 

of first-returns on the stable manifold BS, each one a 

hanoclinlc point, have co-ordinates given by (0, H) where

id + c)

f 2nff
(2 ♦ 30, 
|1 ♦ c) *

0, 11, ±2, ... (4.2.4)

and t^ is given by (4.2.2). It Is evident from (4.2.4) 

that as n ♦ • so the sequence of homoclinic points tends 

towards the saddle point S.

A Poincar^ nap of the unstable and stable manifolds 

of (4.1.1) is shown in Pig(4.5) where c ■ 0.3.

Qualitatively, the result compares well with the Poincare 

map of buffing's equation shown in Fig(3.4cl. It should 

be pointed out that the point A is not however an hoisoclinic 

tangency point but an hc»DOclinic point of intersection - 

see Appendix C.

4.3 THE POINT OF HOMOCLINIC TANGiSNCY IN RI

All solutions starting on SC in RII at time
2nn 0, 11, 12, ..., see Flg(4.6), will at some
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later time meet the boundary line y ■ x * 1 matching with 

a new solution set in RI. In amongst this latter set is 

a unique solution which eventually meets the point D.

This unique solution turns out to be the particular 

solution of (4.1.1) in RI. Such a solution must connect 

an outgoing point of the unstable manifold ¿C to the 

point D on the incoming set, DS, of S. Hence, the fixed 

point of the particular solution must be common to both



the outset and inset of S and is, therefore, a homsclinic 

point with the particular solution constituting a 

hoBocllnic connection. It is, therefore, a straightforward 

matter to determine the co-ordinates of this homoclinic 

point.

For X < y - 1 in RI

-cx ♦ ( 1 ♦ c)(y - 1) 

-bx - b « F Cos wt





Squaring and adding (4.3.$a) and (4.3.7) 

(X * 1)̂  ♦ ♦ c)(y - 1) - cx]2 - C (4.3.8)

As (4.3.8) passes through D at (0, 1)» ao

(4.3.9)

hence

(X . 1)^ * -^in • C)(y - )) - 0X1^ (4.3.101

1. th« equxtlon in RII of the particuUr eolutlon.

The particular aolutlon (4.3.10) alao meet, the 

boundary line y ■ x ♦ 1 at

(4.3.11)

(see Fig[4.6l)-

(This response never meets C unless c » 0.)

The fixed point of the particular solution (4.3.101 i. 

found by putting t • 0 (say) into (4.3.5) giving the 

co-ordinates of the hosmclinic point Q,

(-1  ♦ c ,  («D ♦ cC ♦ 1 ) / ( 1  ♦ c ) 1. (4.3.12)

He also have at our disposal the means of finding 

the time t • tj at which the particular solution (4.3^5) 

in RI starts from the boundary line y • x * 1. We must 

look for a solution which takes us from an initial point 

(t - 0) on SC (in RII) to the point C  at time t ■ tj





easily be seen to be true If cne considers the equation 

for y given by (4.1.3b) along with the results of 

(4.3.14).
Applying a negative time Poincare' map from a 

particular point on the stable manifold DS we also expect 

to arrive at Q. The Initial point on DS is found as 

follows. First, find the time, t'. It takes to travel 

along the particular solution from Q to D in Fig(4.6). 

Prom (4.3.5), t* satisfies

(4.3.18a)

(4.3.18b)





tb* boundiry point I.

where C and D are given by (4.1.10) and (4.1.11) with 

b » 1, and q * i/4 ♦ 4c - c^.
Starting at P ■ (Xq , Yq ) at time t = 0, we have

(4.4n2a)

= | n  * c I V o - T  ♦ 1 (4.4.2b)

Let the solution reach B on the stable manifold at





Equations (4.4.6) enable part of the stable 

manifold to be plotted In RIII. Given the time t ■ t^ et 

which the response reaches B, we can determine the 

corresponding point on the stable manifold.

Equations which determine the stable manifold in RI 

are obtained in a similar manner. Points {Xq , Vq ) on the 

stable manifold are given by

Xfl • -1 * C * [(j Sin q f *  * q Co» qt'*]u - V Sin qt'*J

(4.4.7n)

yjj ■ - C « 1) * (1 * Do • C O  . (q Sin qt'*)U

- j Co» qt'* 0 * V Co» qt'«^/(c * 1) (4.4.7b)

U " [1 - C Co» o f *  - D Sin i»t'*)e

(4.4.8b)

and t'* is the time at which the response starting on 

the stable manifold at • (x^, y^) at time t * 0, 

reaches the point D on the stable manifold in Rll. 

Computer plots of sections of the stable manifolds in RI 

and RIII are displayed in Pig[4.9].

4.5 EQUATIONS OF THE UNSTABLE MANIFOLDS IN RIII and RI

Let the point F at (x^, y^) be on the unstable 

manifold, 5A, in KIl; see Fig[4.8]. Any solution leaving



F at tiise t « 0 will meet the boundary line, y > x - 1, 

at time t » T(say) at E ■ (x^, y^). Such a solution in 

RII is given by (4.1.3) where yQ « F* and b * 1 from 

which T and Xq satisfy

(4.5.1)

Now reverse the procedure. Ta)ce any time t .





and V. reduces to

- Cos ti)T ♦ P*u(1 ♦ c) ♦ Co) - Dc Sin w t ].

(4.5.6)

The Poincar6 (2s/w) flrst-return map of points 

along the unstable manifold SA are obtained using (4.3.1) 

and (4.4.3) with t » 2k /u . That Is,

* (2i/u) • e CO. ^  . B Sin . C . ) . X

( 4 .5 ,7 i

l i a lw J

x..(2i/u)

y,,(2»/u)

Ft
2(1 * cl L*: CO. ^  . B ! w

^-cv/u) r-qX Sin ^  •* (c . Ill

c
2(1 ♦ c)

procedure, point on the

by

-cii/orxe Â, Co. ^  • B, 1

-cs/« r 
2(c ♦ L CO. ^  . B

-cn/w f-qX, Sin ^  ■* (c * i t1

(c ♦ 4)

(4.5.7b)

qB. Cos

2(c ♦ 1)
where A^, are given by (4.5.3) with unchanged but



- Cos UT ♦ P*u{1 ♦ c) ♦ (CiD - Dc)Sin wt).

(4.5.9)

Computer plots of the unstable oianifolds that 

appear In part in R1 and RIII are displayed in Fig[4.9].

The piece>wise linear system (4.1.1) itself 

produces some interesting steady-state solutions. 

Fig(4.10a-f] shows a selection of those solutions in the 

(x, x') plane, where x* ■ y. The results model those of 

Duffing's equation when the forcing amplitude is fixed 

and the frequency is varied since we observe here that 

the solutions also pass through the same four stages as w 

is decreased - see section (2.1). The period S and 

period 7 solutions fall within the chaotic band of 

(i)-values and this has also been observed by Holmes, (1979) 

in Duffing's equation. When u is given by (4.1.28), that 

is w « 1.291 in this case, we have a homoclinic 

bifurcation situation whereby solutions whose initial 

values (t » 0) are not on the manifolds will settle to 

one of two period-2 solutions as shown in Fig(4.10b); 

otherwise solutions are dictated by the complex windings 

of the manifolds themselves and periodic solutions are no 

longer possible.
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In this chapter we have been able to obtain 

analytically Information about the stable and unstable 

manifolds of a piecewise linear differential equation.

The co-ordinates of points of homocllnlc tangency were 

found thus enabling the saddle connections In the (x, x') 

plane to be plotted and the corresponding solutions In the 

(x, t| plane, where It was shown that the maximum 

displacement was fixed regardless of the parameter value 

c. In addition, equations were obtained to allow, In 

part, computer plots of the stable and unstable manifolds. 

All this was possible because the differential equation 

was linear within each region and hence could be solved. 

Fortunately, we were Investigating parts of the system 

that were readily accessible to analysis as boundary 

matching elsewhere, for example, would have led to the 

problem of solving transcendental equations. An 

Important side to all this is that piecewise linear 

systems exhibit all the phenomena associated with 

non-linear differential equations, particularly Duffing's 

equation. Another piecewise linear system has been 

investigated by Thompson, Bokalan S Ghaffarl (1983) which 

concerns Itself with subharmonic resonances and chaotic 

motions of a bilinear oscillator through the behaviour of 

a simple forced linear oscillator with different 

stiffnesses for positive and negative deflections. See 

also Shaw t Holmes (1983).



SADDLE CONNECTIONS

INTRODUCTION

The fora of the invariant aanifolds of a dynanical 

systen plays an important role in the behaviour of the 

system as a whole particularly if« as a result of a 

change in a control parameter, a qualitative change of 

the invariant manifold topology occurs resulting in a 

corresponding qualitative change in response. Structural 

instability is clearly inherent in such systems and we 

say the behaviour is an example of global bifurcation as 

such dynamical changes to the systMs cannot be deduced 

from local information.

This phenomenon can be clearly seen in the very 

simple system

x' » y

y' * X - X

whose closed invariant manifolds (see Fig[1.5] ~ 

séparatrices in this case) split the solution set into 

three regions composed of periodic solutions disposed 

alsout X > i1 and x ■ 0. If we introduce damping then a
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qualitative change to the dynanlcal system is seen to 

occur as the manifolds break at the slightest amount of 

friction - (see Fig[1.8]) and periodic solutions are no 

longer sustained.

One particular type of global bifurcation that can 

affect the behaviour of a dynamical system is homocllnlc 

bifurcation resulting from the intersection of unstable 

and stable manifolds of the corresponding Poincard map. 

Poincard maps of Duffing*s equation in Chapter 3 revealed 

that prior to the initial point of contact of the 

manifolds (hosioclinic tangency) all first-returns on the 

stable Btanifolds approached one of two fixed points 

corresponding to stable periodic solutions. At contact 

the unstable manifolds break away from their respective 

fixed points (which, incidentally, remain for a short 

interval of w-values before they too bifurcate) producing 

cmplex windings of the type plotted in Chapter 3.

Associated with each homocllnlc point is a 

hc»ioclinlc saddle connection the appearance of which is 

particularly significant in the global behaviour of 

solutions of Duffing*s equations. Whilst they are 

usually highly unstable solutions, nevertheless any 

analytic properties of their behaviour is important in 

underst2mding the full affects of homoclinic bifurcation. 

Few authors refer to the actual saddle solutions of 

Duffing*s equation so it is intended in this chapter to 

search for these saddle connections which link correctly 

phased ingoing and outgoing limiting solutions of the



unstable periodic solution using a modified form of the 

latter equation. Pig(5.1a) depicts the simplest type of 

saddle connection sought.

5.1 A COORDINATE PERTURBATION APPROACH

In this and the next section a method is developed 

which enables us to investigate the appearance of
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hoBOcllnic saddle connections and approach h<»ocllnlc 

bifurcation by this nethod. As with Mel'nikov's method 

[see section (3.2)] use is made of a singular 

perturbation procedure based on the saddle connection or 

SftpemVrix of the unforced, undamped Duffing equation as 

illustrated in FigM.S]. An important spin-off from this 

approach is that we can investigate solutions which pass 

'close' to the unstable periodic solution. The result is 

that conditions can be found for the existence of 

multiple loop and transverse saddle connections and 

certain large amplitude oscillations with odd periods and 

these are dealt with in subsequent sections.*

We begin by expressing Duffing's equation (1.1.1) 

as a perturbed Hamiltonian system by assuming that 

k  • c)Cq , F > ef where e is small and Oĉ ,̂ f) • 0(1) as 

c *»- 0, so that equation (1.1.1) becomes
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♦ ekftX' - X ef Cos ut. (5.1.1)

For small k and F the unstable periodic solution 

disposed about x ■ 0 in its averaged form is given by

-f/(1 ♦ w“*)

based on the linear equation approximated at (x, x') ■ (0, 0). 

* See Smith and Davenport, (1968).



Representing the unstable periodic solution (5.1.2) 

by X • p(t) then the change of variable

X « X(t, c) ♦ p(t)

rénovés the periodic cwaponent fro« (5.1.1) leaving

X- . ekjX' - X * X^ * 3p(t)X^ . 3p^(t)X - 0. (5.1.3)

If p(t) is replaced by its averaged fora and 

coefficients to order c only are retained, then X 

satisfies the approximate equation

Ek„X' - X « X^ * 3tf„x^ Co. »t ■ 0. (5.1.4)

The change of variable transfonae the un.table periodic 

solution to an equilibrium saddle point at the origin in 

the (X, X’) plane, giving simple saddle connections of 

the type sho%m in Pig(5.1b].
If c ■ 0, Eqn(5.1.4) reduces to the Hamiltonian 

system with saddle connection for X > 0 given by

X « /I Sechit - tg) (5,1.5)

where

and

lia X(t) • 0. 
t*±^



Consider now those solutions «rhlch pass close to 

X ■ /I, and in consequence pass close to the origin. In 

particular consider the solution X ■ X(t, cl both forward 

and backward in time, which satisfies

136

(5.1.6)
XMt., e) • 0

Unfortunately, we cannot apply a simple 

perturbation method to Eqn(5.1.3) since the solution will 

not have the correct be.«vlour as t ♦ i». The reason for 

this is that when X and c are small (5.1.3) approximates 

to the linear equation

X" ♦ ckpX' - X • 0 (5.1.7)

which has solution

X(t, e) * Ae + Be (5.1.8)

where m^ » 1 - cXq/2, fflj » -1 - ek^/a and A, B are 

constants of integration. The saddle behaviour at (0, 0) 

is such that as t

1X • Ae 

and as t -»

(5.1.-9a)

X « Be . (5.1.9b)



The corresponding saddle behaviour based on the 

perturbation method is such that as t (see (5.1.3))

X • B*e“' (5.1.10b)

where A« and are again constants of integration. 

Clearly, the behaviour in this case is different from the 

required behaviour for large time (both positive and 

negative). In fact we have here a singular perturbation 

problem with the singular behaviour occurring at t

This difficulty can be avoided by introducing a 

coordinate perturbation in which a simultaneous expansion 

in powers of £ of both the dependent and independent 

variable are taken generating an implicit relation 

between X and t through a new parameter. (For details 

see Jordan and Smith (1987) and Noyfeh (1973)).

Expanding X(t, e) and t in terms of the new 

parameter t .

X(t, c) ■ X q (t ) X,(T) (5.1.11)

where T.,(t ), ... are a set of unknotm functions T^, ... 

of T. Eqns(5.1.11) and (5.1.12) are substituted into the











Eqn(5.1.30) has solution

(T-t.)
X-(T) » a^e a

which produces exponential growth as t In a similar 

way when t + -» we find the corresponding linear equation 

yielding a solution

which also produces unwanted exponential growth. Such 

solutions can be avoided by choosing correctly. We do 

this by eliminating those terms in (5.1.28) that give 

rise to these unbounded exponential solutions by putting

Sech^ix - tn) * 0.

Thus

T" - 2 Coth(T - t«)T' * k







at large 'tine', t • p(e) provided that cp(e) > 0 as 

c « 0. However, as i the aaplitude tern,

Sech^(T - tjj) can be approximated by ke“^^ ke“ *̂**̂ *

which is exponentially snail as p(e) c 0. Even

though the cosine function may get out of phase for |t | 

large the anplitude tern disposes of it anyway. The same 

argument applies when T is large and negative.

Substituting in (5.1.27) the function T^(t} given 

oy (5.1.34) and replacing Cos ut by Cos ui gives the new 

equation for X^,

(6 Sech‘‘(T - tfl) - 1)X. • g(T, t.) (5.1.38)

3g(T, t^) • -2/Jkg Sech-*(T - t^) (e ” - 1]

sgn(T - tjj) - 6fp Sech (t - t^) Cos ut

(5.1.39)

subject to initial conditions (5.1.23) and (5.1.25).

5.2 SIMPLE SADDLE CONNECTIONS

Although it is possible to obtain explicitly the 

perturbation X.|(t ) given by (5.1.38) it is unnecessary at 

this juncture since the conditions for saddle connectfons 

to occur can be obtained using the solutions of the 

homogeneous linear differential equation











K t ^ )  ■ -jkQ/? -  fTTw Se c h( Jn u) Sin  utg ■ 0 ( 5 . 2 . U )

Real solution«of (5.2.14) exist provided that

 ̂Cosh(
3firu

but as the expression is always greater than zero then 

tQ e [0, s/w( nod t/u. Single saddle connections nust 

occur at the critical tine t^ ■ s/2u, hence the 

corresponding critical forcing anplitude and frequency, 

F and U-, are related by

2/?)c Cosh(|iiUg)
JiuT

which agrees with the previous result of Chapter 3 

obtained using rfel'nDcov's method. See also Holmes 

(1979) and Barenblatt (1983). This technique gives the 

saddle connections which lie in the X > 0 half plane for 

which t^ > s/2ii) (mod 2Tr/u) . The saddle connections for 

X < 0 are considered in section (5.4) although ccsaputer 

plots are shown prior to this.

Pig(5.2a,c] display saddle connections for 

parametersP ■ 0.26843, w ■ 1.2 and F ■ 0.2, u ■ 1.0837 

with k > 0.316 throughout. These values should be 

compared to the critical values F > 0.266, w • 1.2 and 

F • 0.25, u • 1.0967 predicted by (5.2.16). The saddle



connections in the X > 0 half-plane were obtained by 

solving numerically the differential equation (5.1.4), 

using a standard Runge-Kutta method, with the correct 

Initial conditions (X, X') located In the first quadrant 

close to the saddle point S at time t ■ 0. As
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“1 1 - k/2, one need only search for the correct X(0) 

such that the solution runs back Into S again. The same 

procedure is employed to find saddle connections In the 

X < 0 half-plane but with Initial condition this time 

located In the third quadrant. In either case, If the 

Initial conditions are not chosen carefully^ the 

solution will not return to the saddle point. An 

alternative approach Is to fix X and X' close to S and 

search for the correct starting times.

Flg[5.2b,d] show the Duffing saddle connections 

corresponding to the right-hand sides of Fig[5.2a,c] 

respectively. The displacement x(t) Is obtained by 

adding the unstable 2 ir/u-perlodlc displacement, given by

(5.1.2), to the displacement X(t). The periodic 

solution, p(t). Is affected at all times by the value of 

X(t) thus destroying its periodicity although for t large 

(positive and negative) the periodicity of the solution 

Is practically restored since the contribution from X(t) 

for these times is negleglble. The peaks, in both cases

maximum displacements /5 + c8 • 1 .445 throughout.

When the control parameter F is increased or u









XUn-,* e) (5.2.22)

’■02 ■ “ 3“ *

The double saddle connections shorn in Plg(5.3a,c) 

were cooputed in the same way as the single connections 

in Fig[5.2]> For a known forcing amplitude F or forcing 

frequency u the corresponding parameter (w or F) can be 

found from result (5.2.16) enabling a search to be 

undertaken in the vicinity of the predicted value.

Initial conditions chosen very close to S at times t « 0 

give intersection times t^^, tQ2 such that 

tjji + tQ2 ■ ♦ 1)»/u» n » (0, 1, 2, ...) for solutions

in the X > 0 half plane and t^^ * t^ 2  ” (4n * 3)«/u for 

solutions in the X < 0 half plane. This difference in 

time totals is explained in section (5.4). Also, the two 

formulae assume that t^^ and tQ 2  sre solutions of 

(5.2.15) within the same half cycle. If this is not the 

cas^'it depending upon the initial conditions, we can state

♦ t. will be an oddsimply that the tine total t̂  

integer multiple of ir/u in either half plane.

Listed in Table [5.1] are all the initial 

conditions (at t * 0), the X-intersectlons and 

Intersection times for all the saddle connections in 

Flg[5.3a] and Plg[5.3cj.

Finally, Flg[5.3b] and Fig|S.3d] show pairs of









5.3 DOUBLE LOOP CONNECTIONS

The question arises: are 'single loop' saddle 

connections the only type possible? Or can we have 

saddle connections which loop X » 1 more than once before 

entering X • 0 (and similarly X « -1)7 In Pig[5.4j the 

loop which has tangential contact at B with the unstable



manifold of Oufflng's equation (5.1.1) Is a segment of 

the stable manifold at prior times. The first return of 

a occurs at A where the stable manifold has contact with 

an interior loop of the unstable manifold. The saddle 

connection which passes through both B and t. reveals at 

least two loops which surround X > 1. For F > or 

w < there must exist many saddle connections which 

loop X > 1 (IDcewlse X > -1) many times before returning 

to the saddle point or the unstable periodic solution of 

Duffing's equation.

Consider an unstable solution from S In the (X, X') 

plane which first cuts the positive X-axls at P at time 

t > tQ in Plg[5.5ai|. Call this solution X^(t, c). At 

point P, X̂ jitg, e) « /2 + c6 and X^'itg, e) ■ 0. As the 

solution continues It cuts the positive X axis again at Q 

at time t̂  at which point X^'(t^, c) * 0, or, from 

(5.1.17)

X.,n'lT,) . IT,■(,,)) * ...O(C^) - 0
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where t, * t, +eT,(T,) + ...0 (e ).

The solution X (t, e) takes the form

(5.3.2a)



uj^l. ■ 0 3 S
•spotkdln9 d i» p la cM «n t/t lM  qraph. Sm  t



' ‘ 0
T “ l (T, tg) + U2(T, t(j)

fT
- “ 1

(T, tfl) U2(s, t(j)

where 6 has been replaced in (5.2.9) by its integral form

(5.2.10). An important requirement here is that the time 

difference between points P and 0 should be large, in 

fact we would expect that t^ - t̂ j ♦ as e ♦ 0 since, in 

this limit, the solution must approach the separatrix of 

the unperturbed system. This requirement is clearly met 

by those solutions that pass slowly close to the saddle 

point S and we can find t̂  by considering the dominant 

terms only of the boundary condition (5.3.1). Noting 

that the dominant terms of u ^(t ,̂ t^) and ^2 (1 ,̂ t^) are 

Sinh(T^ - tg) Sech^(T - tjj) and iSech(T^ - t̂ )

-2/2e"'''

difference allows us to replace the upper limit of the 

integral in (5.3.3) by • since the integral remainder is 

asymptotically neglegible. Therefore, using the result 

of (5.2.13), (5.3.3) becomes













0 < F_/(Fk) < 1

and

0 6  ̂ < 1. (5.3.24b)

Therefore real solutions for and t2 can exist only if







of the unstable manifold of the Polncar^ map as depicted 

In Fig[5.8]. This is strongly suggested by FigP.4e| and 

Fi9[5.4]. Clearly, there is a discrete unbounded set of 

such homoclinic tangency points of the type shown that 

approach the Initial P ■ F^ tangency point. As 

t2 - t^ • double loop connections pass slowly very 

close to the saddle point at X « 0. In this limit these
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The first pair of aolutiona (F^, Fj) satiafying 

(5.3.27), marked in FigC5.7l, yield critical amplitudes 

of F^ > 0.291 and 0.2S5 when w • 1.039. Numerical 

investigations found double loop connections at F • 0.29 

and F ■ 0.25 showing good acrreement with the predicted 

values. The antisymmetric solution pairs are displayed 

in Fig(5.5a) and Fig(5.9al respectively.

Fig[5.Sb) and Fig{5.9b] show the corresponding 

saddle connections of Duffing's equation drawn in the 

(X, t) plane for these parameter values as described in 

section (5.2). Here the double loop connections 

translate into the two maximum displacements that run 

both from and into the almost periodic cosinusoidal 

response of the unstable periodic solution of Duffing's 

equation. The second peak must occur at time t2 

satisfying x(t2 > - Xitj). This is certainly the case for 

F « 0.25, u ■ 1.039 but for the slightly larger amplitude 

of F > 0.29 agreement is not so good.





S.4 CONNECTIONS FOR X < 0

So far the analysis has been confined to saddle 

connections contained completely in the X > 0 half-plane. 

Fl9s[5.2lr [5.3lr [5.51 and [5.9] reveal that saddle 

connections also exist in the negative X < 0 half-plane. 

In order to analyse these connections we introduce two 

simple transformations of the displacement X and the time 

t of equation (5.1.4) by writing X ■ -X and t • t * s/u.

X now satisfies the equation

♦ e)CftX' - X̂ ♦ X^ ♦ Cos ut • 0 (5.4.1)

where X' means differentiation with respect to t. It has 

turned out to be the same equation as (5.1.4) which means 

we are able to analyse (5.4.1) as before but for X > 0. 

Thus the conditions for a saddle connection [see (5.2.14)) 

become

I(to) ■ 4*^0^ " Sech(litw) Sin ott̂ (5.4.2)

■jXq /I ♦ firw Sech(Jiru) Sin utp • 0. (5.4.3)

rience, the intersection times with the negative X-axis 

occur (in the critical case) when Sin ut^ ■ -1 yielding 

the same result relating F^ and given by (5.2.16).

The conditions for double loop connections obtained 

from (5.3.22) and (5.3.23) are





178

corresponding single saddle connection bifurcates into 

two totally separate simple saddle connections. Between 

these two solutions a third type of solution exists that 

leaves the saddle point and crosses into the opposite 

half-plane before returning to the saddle point again. 

Such a solution will be called a transverse connection of 

which two types exist. Firstly, there are those that 

leave the saddle point in the first quadrant of the 

(X, X') plane and return to the saddle point again 

through the second quadrant; and secondly, there are 

those that leave the saddle point in the third quadrant 

and return through the fourth quadrant. The parameter 

values are the same for both types, the initial 

conditions dictating which one of the two solutions will 

occur. Sxamples of the two types of non-symmetric 

transverse connections appear in Fig[5 .1 0 a»b] for 

F « 0.26, w ■ 1.2. We concentrate our investigations on 

the first type.

First consider a solution SPQ in Fig[5.10a] that 

passes through P at time tg arriving at Q at time t^, 

where t.| satisfies X^(t^, c) «0. Assume that the 

solution after leaving the saddle point S comes close to 

the saddle point again for large t . In this case we can 

find the time t.| at Q as before by only considering 

dominant terms of (5.3.2). Putting (5.3.6) equal to 

zero,

2 /2 e (5.5.1)





gives

t, - - T, - t,.

Real solutions for t., only occur when I(tQ) < 0 and this 

only happens when < tg < where t^, tĵ  are 

solutions of Sin oit « F > ^c* ^
(S.S.2) has no real solutions implying that solutions in 

the (X, X') plane do not cross into the next half plane 

so transverse connections are not possible.

At Q, X^j'(t^, e) is given by (5.3.4) with time t̂  

given by (5.5.2). That is.

E) • -2/Ie * T®

U/2e ' » . i* ' “

- 4/2e

(using (5.5.1))

(5.5.3)

Liltewise, no first derivative exists for X' unless

I(t()) < 0.

Next consider the solution QRS that passes through 

R at time t2 in the other half-plane, X < 0. Solutions 

in this half-plane are given by X^(t, e) where 

X (t, e) ■ -X (t, e) and t » t ♦ w/u - see section (5.4).





)/(Fk). (5.5.9)

As In section (5.2), bifurcation occurs when 

Sin wto ■ 1, or when

(5.5.10)

and we can write as before,

Cos w(t, - t.) ■ Sin <i»t.
(5.5.11)

- 1 - 2F^/F

and we can detenslne the tine t2 * Hence, the critical 

values of F satisfy.

^ * 1 - Cos witj - t^T F^ik ♦ 1 2 e
-(tj-tjj)

)/k

(5.5.12)

given by the intersections of the two curves in Figts.n).

Solution this time appear in pairs about the time 

values u(t2 ~ t^) ■ (2n - 1)t, (n • 1, 2, 3, ...) there 

being a phase difference of n/u between results for the 

transverse case and the double loop case. These tines 

correspond to honoclinlc tangency situations which allow 

for transverse connections to run from one half-plane to 

the other.
Such solutions prompt one into thinking about the 

behaviour of the manifolds of the Poincari map which enable 

such connections to occur, previous results of Poincar^ maps, 

both here and in relevant literature, do not show such





FIGI5.12J Interiections of the unstable manifold by both 
stable manifolds.

first returns on the stable manifold running Into S from 

the left. (The small a's denote subsequent connection.)

A further sketch of the manifolds based on computer 

plots Is shown In Flg(5.13) where the complex windings of 

the left-hand stable manifold are revealed. Starting at 

the point A we can follow the behaviour of this manifold 

as it runs backwards and forward between the half-planeS 

cutting the unstable manifold as previously depicted in



Fig[5.12) at x.j and y^. We expect the right-hand stable 

manifold to behave in a similar way producing hcwnoclinic 

points corresponding to the second type of transverse 

connection. Three first-returns of a typical transverse 

connection are marked x^, Xj and x^.

Finally, Fig(5.i4) show two examples of transverse 

saddle connections of Puffing's equation. These were 

obtained by solving numerically Eqn{5.1.4), with initial





conditions used to obtain Fig(5.10a,b] , and then adding 

the periodic tern given by (S.1.2). Here the intersection

of saddle connections.

5.6 MULTIPLE LOOP CONNECTIONS

The method outlined in section (5.3» to investigate 

double-loop connections can be extended to investigate 

the existence of multiple loop connections. Consider a 

multiple loop type solution as drawn in Fig(5.1S] where 

the solution curve loops round many times before 

returning to the saddle point S and denote the time of















is true. Finally, the set of equations (5.6.27) - 

(5.6.29) nave to be solved numerically, due to the 

presence i f  transcendental functions, in the order t^,

5.7 PERIODIC SOLUTICMfS

Having investigated transverse connections of the 

type shown in Fig|5..10a,b] it seems natural to ask whether 

large amplitude periodic solutions can be investigated in 

a similar way. Such solutions would be disposed about 

the origin in the (X, X') plane and run in ’close’ to the 

origin thus satisfying a necessary pre-requisite of the 

method used. Greenspan and Holmes (1963) have shown that 

there exist subharmonic solutions that appear to fit this 

description.

Consider a closed solution SPQRS as shown in 

Flg(5.16l in which we make the usual assumptions that QP 

and QR are approximately /5 and Q and S are 'close' to 

the origin. Let the solution start at S at time tg and 

pass through P, Q, R at times t^, t ^ , t^ respectively, 

returning to S at time t^. Let

X(t,, e) = /I p,, X(tj, El

Consider separately solutions 5PQ and QRS that meet 

at the point Q at the same time. Solution SPQ, passing 

through P at time t^, is given by (5.6.2) and (5.6.3) 

with n « 1. As Q is considered 'close* to the origin



then we expect the tine difference t2 ~ to be large 

positive. Considering significant terms only of (5.6.2) 

and (5 .6 .3 ) for t2 - large and letting the upper limit 

of the integral of (5.6.3) tend to the solution passes 

through at time t2 that satisfies

2/2  < * V (5.7.1)









Periodicity occur» if ^ 4 ■ * 2m w /«, hence

t ( j •  H t ^  ♦ t j )  - m ir/u.

Al»o, for result» (5.7.11) and (5.7.2) to hold 

l(t^) - 0 

sinllarly,

I(tj - t/u) • 0 .

Prooi (5.7.18) and (5.7.19)

»ee (5.2.14)
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(5.7.17)

(5.7.18)

(5.7.19)

(5.7.20)

A»»u»ing that the ti*e taJcen to travel fro* P to R i» 

approxiaately the sa»e a» the time ta)cen to travel from R 

to P then the »olutlon» t̂  and tj must differ by a 

multiple of t. In fact.

ut, ■ wt, ♦ (2 n - I)» (n > 1, 2, 3, ...)

and the time difference 1» an odd multiple of ». Hence, 

a complete closed-loop stable solution will have period 

(2 n - 1).
Stable solutions of period 3 and 5 have both been 

found by employing the method of this chapter. We know 

that solutions which cross into the opposite half-plane 

cut the positive X-axis at time t̂ , • (4n - 3)«/2w,

(n - 1, 2, 3, ...), where Xlt^) - /5 ♦ c8,. The period 3 

solution was found by considering the behaviour of the



two transverse solutions« see Plg[S.10a«b]« obtainable 

froB the same parameter values, F « 0.28, w « 1.2, 

k > 0.312. Together their forms suggest that a periodic 

solution might exist for the same parameters. Choosing 

X U q) close to /7 together with X'lt^) ■ 0 one searches 

numerically for a possible periodic (closed'loop) 

solution. The resulting period 3 solution is shown in 

Pig(5.16).

Using the transformation given in section (5.1) 

along with the actual (x, X') values used to obtain 

Fig[5.16] we can plot the approximate solution of 

Duffing's equation, in the (x, x') plane by putting

x(t) » x(t) - • r^OS wt.

X ' (t) • X'(t) -Sin wt the result of %fhich is
(1

shown in Pig(5.17a]. This should be compared with the 

actual solution in Pig(5.17b] obtained from Duffing's 

equation (5.1.1). Similarly, Fig(5.18] displays both the 

approximate period 5 solution and the actual period 5 

solution for the values F ■ .3, u ■ 2.8, k » 0.06. 

Agreement here is extremely good.

Finally, as the period of these solutions increases 

so the domain of attraction grows smaller thus making it 

harder to find higher odd period solutions. However, it 

is known that such solutions in the (X, X') plane will 

run closer ®nd closer into the origin as the period 

increases.



I Exact aelutlen.
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This chapter has illustrated the application of a 

combined averaging and singular perturbation method to 

some typical saddle connections associated with the 

saddle point of the Poincaré section of the Duffing 

oscillator. These include the single, double, transverse 

and multiple loop connections and period (2n - 1) 

solutions. All these solutions have the common feature 

that they may be viewed as perturbations of the 

separatrix of the undamped and unforced Duffing equation. 

All perturbations have the property that they cut the 

X-axis at i/2 * 0(e), pass close to the origin and that 

the time difference between these two points is large. 

Further, we have obtained specific values of F 

corresponding to bifurcation associated with the types of 

saddle connections referred to previously in particular 

Holmes' result obtained using riel'nikov's method.





the separatrlx of the undamped, unforced equation, e • 0. 

Substituting the result for Xq into (6,1.3) and replacing 

and its derivatives produced the new equation for X^, 

namely,

♦ (6 Sech (t - tg) - 1)X, ■ g(T) (6.1,4)

- 1 ) sgn(T - t^)

- 6fn Sech (t - t.) Cos u t .

Fortunately, we found in Chapter 5 that the 

conditions for various saddle connections could be 

obtained without the need to solve Bqn(6.1.4) completely 

thus removing consideration of certain integrals.

However, all such integrals must be evaluated here in 

order to obtain those solutions that leave the origin at 

time t > Of course, we are only interested in those

solutions that cross the X-axis, in the (X, X') plane, at 

time t • (4n ♦ 1)*/2« (n « 0, 1, 2, ...), at a point 

close to /I. The remainder of this chapter is taken up 

with solving (6.1.4) to produce an overall solution of 

(6.1.1) and finally we make use of particular solutions 

to determine the positions of hcxnoclinic points of 

Duffing*8 equation.
We will solve (6.1.4) in two parts. To begin with









Sech(T “ tg) ■ 2 J
- „ -(2n*1MT-to>

» T > t.
n*0

(6.1.13)

we have, after Interchanging the operations of sununation 

and integration

js e c h (T  -  t(j)e*'“ ^dT «

.2
n»0

-(2n*1)(T-tn)
' e^“^(2n ♦ 1 ♦ iw)  ̂,

(6.1.19)

jSech(T - tplT - t n ) Cos «T dT »

(-1)"e
-(2n+l)(T-tft)

^5 .  Dn»0
-I-(2n ♦ 1) Cos uT + 0) Sin u t )

(6 . 1 . 20 )

jsech(T - tjj) Sin uT di *

^ ^ -(2n+1) (T-tg)
2  y ------------- t-(2n ♦ 1) Sin uT - u  Cos u»t ]
n*0
* d . (6.1.21)

For T < t„ use

Sech(T - t(j) ■ 2 J (-1) e
^ (2n+1)(T-tg)

(6.1.22)















but 1» still a general solution since t^ is arbitrary and 

it has not been shown fully that X(t ) satisfies all the 

conditions of a slaple saddle connection. It remains to 

detemine those values of tp such that X(t ) 0«

X'(t ) 0 as t ■» !■*. Clearly these conditions are met by

Xp(T) but X.|(t ) contains exponential growth terms which 

must be eliminated. To this end and to establish 

simultaneously the particular values of tp consider the 

growth terms of X^(t ) as t which are given by

^■^[bq + |/5kp - ^ ( 1  ♦ SechiJituJ Sin utpj.

(6.1.46)

Equating to zero the expression in the brackets removes 

the growth term and gives the time tp when simple saddle 

connections occur, that is, vdien
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r Sin utrt ■ • 3xw

which agrees with result (5.1.53) as expected.

To determine the co-ordinates of the homoclinic 

points of tangency we must return to Eqn(6.1.1) where the 

parametric form of the solution is given by

X(t) (6.1.47a)

t ■ T ♦ eT, (t ) 1- ... ♦ 0(c ).

Homoclinic points occur when tp ■ ir/2(i) and t ■ 0.







Table [6.t]

The following tables display the coordinates ( k , y) 

of one of the homocllnlc points corresponding to each of 

the pareuneter sets F, u and k listed.

F « k • (I) ■ X = y “
0.296 0.400 0.600 0.069 0.286

0.286 0.400 0.700 0.200 0.385

0.285 0.400 0.800 0.325 0.479

0.290 0.400 0.900 0.444 0.562

0.301 0.400 1.000 0.556 0.631

0.317 0.400 1.100 0.660 0.685

0.337 0.400 1.200 0.756 0.723

0.362 0.400 1.300 0.843 0.745

0.391 0.400 1.400 0.924 0.752

0.426 0.400 1.500 0.997 0.747

0.466 0.400 1.600 1.064 0.730

0.512 0.400 1.700 1.125 0.703

0.566 0.400 1.800 0.161 0.668

0.626 0.400 1.900 0.234 0.624









6.2 CONCLUDING REMARKS

Despite being one of the simplest non-linear 

ordinary differential equations under current study, 

Duffing's equation Is Imbued with rich 'dynamical* 

phenomena. Through its ability to model the behaviour of 

certain physical systems it became necessary to analyse 

and explain why certain types of behaviour occurred. 

Throughout this thesis, not only has the reader's 

attention been drawn to the various phenomena on offer, 

but, I would like to think, I have shed some light on why 

some of these strange events occur. Some of the 

phenexaena at present are unfortunately inaccessible to 

analysis; however, nowadays researchers can turn to that 

invaluable mathematical aid - the computer, to help solve, 

make general observations and to draw conclusions when 

analysing O.D.E.'s of this type. This has certainly been 

the case here. However, many important questions still 

remain unanswered.

We still do not know, for example, what causes 

period doubling in systems such as these. No-one as yet 

has been able to produce any sort of parameter link that 

acts as a trigger for this change in behaviour. The 

nearest we came to understanding period doubling was 

through the use of a simple unimodal (non-linear) 

iteration scheme, guided by Feigenbaum (1963). It turned 

out that the scheme exhibited behaviour similar to that 

observed in Duffing's equation.

Although only briefly mentioned early on in the
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thesis we again do not know what c:.uses the hysterisis 

affect CMBBonly referred to as the 'juBp'-phenMsena.

What interaction of the various forces acting within the 

systen causes it to 'jump* to a higher or lower asplitude 

response? Surely this and the previous question are 

necessary areas of further study.

Chapter 4 showed us that It was possible to find 

smooth piece-wise linear systems that also behaved in the 

same way as Duffing's equation exhibiting all the 

different phenomena thought solely to belong to the 

domain of non-linear systems. Undoubtedly« such systems 

are earier to analyse and through further research into 

such equations it may be possible to answer some of the 

many outstanding questions of non-linear systems.

The program of %fork presented in chapters S and 6 

is certainly capable of further development. The 

perturbed solution given by Equation (5.1.3) 

deserves further investigation particularly in the area 

of stability of high ¿unplitude odd-periodic solutions.

The period 3 and 5 solutions obtained in chapter 5 

appeared strongly stable but were not investigated. 

Perturbing the initial conditions slightly on such 

solutions one could follow the subsequent behaviour of 

the system and possibly establish stability criteria 

using similar methods employed in chapter 5. From 

numerical evidence it appears that an increase in the 

period of such solutions is accompanied by a significant 

decrease in the parameter regions of stability.



The method employed in chapter 5 revealed disjoint 

sets of amplitude values for which critical honocllnlc 

tangencles were observed corresponding to part..cular 

types of multiple loop saddle connections. It is 

conjectured that there is an Interlacing of critical 

tangencias within the Poincaré map and hence between 

amplitude values since all sets have sequences of 

amplitude values that tend to F^.

The averaging and perturbation method employed in 

this thesis is not intended exclusively for Du'fing's 

equation but could easily be applied to other systems 

with singular perturbation structures. The transformed 

equation helped to c<XDputer plot saddle connections which 

otherwise would have been difficult to draw. The exact 

solution of the simple saddle connections in the new 

system was obtained thus enabling the coordinates of the 

homoclinic tangency points to be found. It is possible 

that this approach could reveal and stake accessible 

similar facts hidden in other dynamical systems.

The number of unanswered questions surrounding 

buffing's equation alone will keep researchers occupied 

for many years to come. In the short period in which I 

have studied it, it has proved fascinating and extremely 

worthwhile. It has certainly opened my eyes to the 

unpredictable behaviour inherent in nonlinear systems 

which until recently thought was not possible. I wonder, 

finally, if Duffing, himself, was fully aware of the 

amount of interest that would one day be aroused by his





THE FUNCTION &' U q )

The f o m  of the integrand in (3.3.6) auggeats that 

integration here to obtain an expreaaion for AMt^) »ight 

well prove difficult. However, due to the diaappearance 

of »any awkward teraa, aince • 0 and p^, ar*

each of aingle variable type, the integral actually 

reducea to

iMtj) ■ -[ Po<«o“  ■ ‘o’’ ■ ‘o”

- - ‘o' - ■ ‘o"*“

where ■ y(t - t^),

■ f Coe «t - k^yit - t̂ )

and y(j(t - tp) ■ -/Î Séchait - t^) Sinhit - t^). 

where x,
the unperturbed, c « 0, equation on which Mel'nikov’a 

nethod ie baaed.1
Upon aubatitution A1 becoeea







iu * -u*/2Urn (2 - .i/2ig|jĵ  ■ sIHKTHTiy i.'Hopit.rs
z * n i / Z

-̂u)ii/2
■ i Sin(ii/2)

Then by the residue theorem

^  - 2.1 . 2,.-'

This can be written

[R îutx fX ^iu(-R*iy)
1 _ j ,  CMh x ''“  *  J j  Co«h(R ♦ ty )'* ’'

t-R lu ( x » . l l  (0 lu (-R * ly l

j  co .h lx  ."".Tr** * J ,  Cosh(-R ♦ ly l '* '' ■ ’ *
-u»/2













to which we apply integration by parts twice. Hence, it 

can be shown that

Sech^v dv -

Taking the real parts only then

I Cos uv Sech^v dv ■ ---y “  ' J C<

(t *̂ 0)*)■ V Sech(isu)

see Appendix A. 

Therefore,

Since I(tg) - * I2

I(t(j) » |/3kp ♦ f(j(1 + S ech d u u l S in  wt̂
^/2Rq - fxw SechiJnu) Sin wtQ

since fft ■ --







239

respectively.
Therefore, the slope at the h<»ocllnlc point A on 

the stable manifold is given by

dy.
iiT ■ T -

which is zero if

CIO

It is difficult to tell from the Poincarl map in 

Fi9(4.51 that the slope of the stable manifold at A is 

not zero. But in this case, where c ■ 0.3, a solution 

from A at time t - 0 arrives at B at time t^* - 4.0937. 

With q • 1.1303 and w • 1.229 it turns out that

dyn3-S ■ 0.0755

at A. Hence A is a transverse hcmiocllnic point and we 

expect there to be a second such point (in this case) 

very close to A.



INTEGRAL EVALUATIWI OF THE CONSTANT 0

In Chapter 5 we inveitlgated saddle solutions of 

the transformed Duffing equation, (5.1.4). To this end 

we considered these solutions which passed close to 

X - /3 by writing X(tg) - /5 ♦ €0, where t^ and 0 were 

constants. However, it was not necessary there to 

evaluate explicitly either integral (5.2.10) or (5.2.11) 

to determine 0. In Chapter 6, however, 0 is required 

explicitly in order to obtain the arbitrary constants of 

integration Aq , Bq of the exact solution of equation

(5.1.4).
Consider the integral (5.2.10) which can be written 

0 » -[^u^(s)g(s)ds.

A similar integral was evaluated in Appendix B but there 

the upper limit of integration was set to s « Despite 

this difference we can malce use of some of the results 

obtained there. Firstly, we know from Appendix B that 

the integral D1 can be split into two separate integrals 

which we will call I^itg) and I^ito) respectively.

Writing
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