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ABSTRACT 25 

Magma-carbonate interaction is an increasingly recognised process occurring at active volcanoes 26 

worldwide, with implications for the magmatic evolution of the host volcanic systems, their eruptive 27 

behaviour, volcanic CO2 budgets, and economic mineralisation. Abundant calc-silicate skarn xenoliths are 28 

found at Merapi volcano, Indonesia. We identify two distinct xenolith types: magmatic skarn xenoliths, 29 

which contain evidence of formation within the magma, and exoskarn xenoliths, which more likely 30 

represent fragments of crystalline metamorphosed wall-rocks. The magmatic skarn xenoliths comprise 31 

distinct compositional and mineralogical zones with abundant Ca-enriched glass (up to 10 wt% relative to 32 

lava groundmass), mineralogically dominated by clinopyroxene (En15-43Fs14-36Wo41-51) + plagioclase 33 

(An37-100) ± magnetite in the outer zones towards the lava contact and by wollastonite ± clinopyroxene 34 

(En17-38Fs8-34Wo49-59) ± plagioclase (An46-100) ± garnet (Grs0-65Adr24-75Sch0-76) ± quartz in the xenolith 35 

cores. These zones are controlled by Ca transfer from the limestone protolith to the magma and by 36 

transfer of magma-derived elements in the opposite direction. In contrast, the exoskarn xenoliths are 37 

unzoned and essentially glass-free, representing equilibration at sub-solidus conditions. The major 38 

mineral assemblage in the exoskarn xenoliths is wollastonite + garnet (Grs73-97Adr3-24) + Ca-Al-rich 39 

clinopyroxene (CaTs0-38) + anorthite ± quartz, with variable amounts of either quartz or melilite (Geh42-91) 40 

+ spinel. Thermobarometric calculations, fluid inclusion microthermometry and newly calibrated 41 

oxybarometry based on Fe3+/ΣFe in clinopyroxene indicate magmatic skarn xenolith formation conditions 42 

of ~850 ± 45°C, < 100 MPa and at an oxygen fugacity between the NNO and HM buffer. The exoskarn 43 

xenoliths, in turn, formed at 510-910°C under oxygen fugacity conditions between NNO and air. These 44 

high oxygen fugacities are likely imposed by the large volumes of CO2 liberated from the carbonate. 45 

Halogen and sulphur-rich mineral phases in the xenoliths testify to the infiltration by a magmatic brine. In 46 

some xenoliths this is associated with the precipitation of copper-bearing mineral phases by sulphur 47 

dissociation into sulphide and sulphate, indicating potential mineralisation in the skarn system below 48 

Merapi. Compositions of many xenolith clinopyroxene and plagioclase crystals overlap with that of 49 

magmatic minerals, suggesting that the crystal cargo in Merapi magmas may contain a larger proportion 50 

of skarn-derived xenocrysts than previously recognised. Assessment of xenolith formation timescales 51 

demonstrates that magma-carbonate interaction and associated CO2 release could affect eruption intensity, 52 

as recently suggested for Merapi and similar carbonate-hosted volcanoes elsewhere. 53 
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 56 

INTRODUCTION 57 

Calc-silicate (skarn) xenoliths are found within the deposits of many hazardous arc volcanoes worldwide, 58 

including Popocatépetl (e.g. Goff et al., 2001), Vesuvius (e.g. Fulignati et al., 2001), Merapi 59 

(e.g. Chadwick et al., 2007), Colli Albani (e.g. Di Rocco et al., 2012) and Nisyros (Spandler et al., 2012). 60 

Formed as a result of interaction between crustal carbonate and the host magmatic system, these xenoliths 61 

preserve evidence of complex reaction processes that can have profound impact on the host magmatic 62 

system, including altering magmatic differentiation paths (e.g. Iacono-Marziano et al., 2008), influencing 63 

eruptive dynamics (e.g. Freda et al., 2011; Troll et al., 2012; Carr et al., 2018), and liberating large 64 

volumes of crustal CO2 into the atmosphere (e.g. Mason et al., 2017). 65 

Much of the knowledge about crustal magma-carbonate interaction processes has been derived from 66 

diverse approaches. Isotope mass balance calculations (e.g. Troll et al., 2012, 2013; Jolis et al., 2015) 67 

have shown that large volumes of crustal carbonate, up to 30%, are incorporated into some volcanic 68 

systems, and in situ stable isotopes have demonstrated decarbonation is highly efficient in magmatic 69 

systems (Whitley et al., 2019). Experimental magma-carbonate studies (e.g. Iacono-Marziano et al., 70 

2008; Deegan et al., 2010; Jolis et al., 2013; Blythe et al., 2015; Carter and Dasgupta, 2016) have further 71 

demonstrated how magmatic melt differentiation paths are modified towards silica undersaturation in 72 

mafic melts, and that magma-carbonate interaction may be extremely rapid (syn-magmatic), operating on 73 

the order of minutes to hours. Moreover, detailed petrographical and geochemical studies of the 74 

individual xenoliths have provided insights into the architecture of subvolcanic skarn contact aureoles 75 

(Matthews et al., 1996; Fulignati et al., 2004), the depth of magma-carbonate interaction from fluid 76 

inclusions (Clocchiatti et al., 1982), xenocryst incorporation into the magma and skarn recycling 77 

(Chadwick et al., 2007; Jolis et al., 2015), changes in magmatic redox conditions and phase equilibria 78 

(Wenzel et al., 2002), and the economic metallogenic potential of magmatic fluids that interact with the 79 

country rock (Fulignati et al., 2013). 80 

In this study, we present a detailed analysis of the petrography, mineralogy and geochemistry of calc-81 

silicate xenoliths from the 1994-2010 eruptions of Merapi volcano, Indonesia. We demonstrate that these 82 

xenoliths represent fragments of either complete replacement of carbonate wall rock to calc-silicate 83 

mineral assemblages around the magma reservoir margins, or are transient fragments of entrained 84 

carbonate which are caught in the process of being metamorphosed within the magma itself. The 85 

xenoliths record evidence of interaction with a magmatic-derived halogen-bearing fluid that produced 86 

exotic halogen-bearing mineral phases, whilst enriching the xenoliths in economically important metals 87 

such as copper and iron, and by analogy the more extensive skarn system below Merapi. We also show 88 



that traditional mineral-melt thermobarometry and fluid inclusion analysis can be applied to some of the 89 

xenoliths, and we present a new calibration of a single clinopyroxene crystal oxybarometer to determine 90 

intensive variables (T, P, fO2) during xenolith formation. 91 

GEOLOGICAL BACKGROUND 92 

Merapi is the most active of Indonesia’s volcanoes, and is considered one of the Sunda arc’s most 93 

dangerous (e.g. Voight et al., 2000; Gertisser et al., 2011, 2012; Surono et al., 2012). Activity is near 94 

continuous, with periods of dome growth frequently interrupted by gravitational dome collapse and 95 

associated pyroclastic density currents (e.g. Andreastuti et al., 2000; Camus et al., 2000; Newhall et al., 96 

2000; Voight et al., 2000; Gertisser et al., 2012). Larger explosive Vulcanian and sub-Plinian eruptions 97 

occur at longer ~100 year time-scales, such as the 2010 VEI 4 eruption which killed close to 400 people 98 

(Surono et al., 2012; Komorowski et al., 2013). Compositionally, the erupted material is medium to high-99 

K basalt to basaltic andesite with a restricted range of ~49 to 58 wt% SiO2 (Gertisser and Keller, 2003a, 100 

2003b). Early work at Merapi suggested a subducted sediment contamination component to the Merapi 101 

magmas (Gertisser and Keller, 2003b), while subsequent work also highlighted a significant  influence 102 

from crustal carbonate on magma genesis (e.g. Chadwick et al., 2007; Troll et al., 2013; Aiuppa et al., 103 

2017). Merapi overlies an upper crust of 8 to 11 km thick sediments of the Kendeng basin, where 104 

Cretaceous to Cenozoic volcaniclastic sediments are overlain by shallow marine limestones and marls, all 105 

of which overlie inferred Cretaceous arc and ophiolite basement rocks (van Bemmelen, 1949; Smyth et 106 

al., 2005). Fragments of the sedimentary basement are frequently found as thermally metamorphosed 107 

xenoliths within the eruptive deposits (Brouwer, 1928; Clocchiatti et al., 1982; Camus et al., 2000; 108 

Gertisser and Keller, 2003b; Chadwick et al., 2007; Troll et al., 2012, 2013). These xenoliths testify to 109 

prevalent magma-carbonate interaction (Chadwick et al., 2007; Troll et al., 2013; Whitley et al., 2019), a 110 

process that is ongoing and occurs at rapid timescales (Deegan et al., 2010, 2011; Troll et al., 2012; 111 

Reagan et al., 2017). Radiogenic (87Sr/86Sr) and stable (δ13C, δ18O) isotope analysis of bulk xenoliths and 112 

mineral separates of calc-silicate mineral phases (wollastonite, diopside, calcite), have been used to 113 

demonstrate up to 30% crustal carbonate assimilation during the genesis of Merapi magmas (Chadwick et 114 

al., 2007; Troll et al., 2013; Whitley et al., 2019). Liberation of large volumes of crustal CO2 during syn-115 

magmatic activity has additionally been linked to enhancing eruptive explosivity at Merapi (e.g. Troll et 116 

al., 2012, 2013; Borisova et al., 2013; Carr et al., 2018). The available evidence thus indicates that 117 

magma-carbonate interaction at Merapi may have wide-ranging implications for the magmatic evolution 118 

and volcanic hazard potential at Merapi. 119 



METHODS 120 

Scanning electron microscopy was undertaken at Keele University, UK using a Hitachi TM3000 scanning 121 

electron microscope. A rare unknown mineral found in sample MX1, compositionally similar to wadalite, 122 

was analysed with Raman spectroscopy at Keele University using a confocal Thermo Scientific DXR 123 

Raman spectrometer with a 532 nm laser, a 50x objective, and a standard 30 µm uncovered polished thin 124 

section. 125 

Microthermometry was carried out at Keele University using a Linkam THMS600 freezing-heating stage. 126 

Thermocouples were calibrated at –56.6°C, 0.0°C and +374.1°C using synthetic fluid inclusions provided 127 

by Linkam. The precision of temperature measurements at -56.6°C is ±0.1°C, and ±2°C at 374.1°C. 128 

Measurements were made on ~100 µm thick double polished wafer fragments. 129 

Major element concentrations in minerals, and major element, chlorine and sulphur concentrations in 130 

groundmass glasses and melt inclusions were determined with a JXA 8900R Electron Probe 131 

Microanalyser at the University of Kiel, Germany. Silicate and oxide minerals were analysed with a 15 132 

kV accelerating voltage, a 15 nA beam current and a 2 µm beam diameter. Calcite was measured with a 7 133 

µm beam diameter at 15 kV accelerating voltage and a 10 nA beam current. Glasses were measured with 134 

a 5 µm beam at 15 kV accelerating voltage and a 12 nA beam current. Measurement times were 15 s at 135 

the peak and 7 s on the background, excluding S, Cl, P which were measured for 30 s at the peak and 10s 136 

on the background. Extended counting times of 30 s peak and 10 s background for Fe, Mg and Mn, and 137 

60 s peak and 30 s background for Ba and Sr were applied during calcite analyses. Na was measured first 138 

to minimise alkali migration. Natural mineral standards were used for calibration and Smithsonian 139 

basaltic glass A-99, forsterite 83 USNM2566, plagioclase USNM115900, garnet RV2 USNM 87375, and 140 

obsidian ASTIMEX Block SPGLASS7 were used as secondary within run standards to assess accuracy 141 

and precision, presented in the supplementary material. 142 

All Mg# values were calculated assuming all Fe as Fe2+ using 𝑀𝑔# = 100 !"
!"#$%!"!#$

. Ternary 143 

clinopyroxene components are calculated assuming all Fe as Fe2+ e.g. 𝐹𝑠 = 100 $%!"!#$
!"#$%!"!#$#&'

. Fe3+ was 144 

estimated for clinopyroxene from stoichiometry using Droop (1987). AlIV was calculated as 2-Si, and any 145 

remaining Al was allocated as AlVI. Components for clinopyroxene thermobarometry were calculated 146 

using Putirka et al. (1996). Garnet end member mole fractions and Fe3+ were estimated using the Arai 147 

(2010) R script implementation of the Muhling and Griffin (1991) calculation scheme, which provides a 148 

more accurate Fe3+ estimate for garnet than Droop (1987). Melilite mole fractions were calculated 149 

considering 4 end members by firstly allocating Na to the Na-melilite end member, and then the 150 

remaining cations, minus the Al required for Na-melilite, were allocated between gehlenite, åkermanite 151 

and Fe-åkermanite. These mole fractions were calculated as follows (abbreviations as in Table 1): 152 



Na-Mel =
𝑁𝑎
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 153 
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+
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 154 

Ak = (1 − Na-Mel) ⋅
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+
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 155 

Fe-Ak = (1 − Na-Mel) ⋅
𝐹𝑒

()*+,'
+

+ 𝐹𝑒 +𝑀𝑔
 156 

Due to the small size of most xenoliths (typically < 5 cm) combined with the textural and mineralogical 157 

uniqueness of each sample, whole-rock compositions for six representative xenoliths were determined by 158 

point counting (1000-2000 points) combined with averaged mineral and glass chemistry. Each zone was 159 

counted individually, then the respective areas of the zones were combined to calculate a whole-rock 160 

composition. The zone and whole-rock compositions were corrected for varying mineral densities using 161 

mineral densities from Deer et al. (1997) and the bulk compositions were obtained using the Rock-Maker 162 

spreadsheet (Büttner, 2012), which generates bulk compositions from mineral volumes. All calculated 163 

compositions are presented in the supplementary material. 164 

All data produced in this study are found as supplementary material, including the collated published 165 

datasets used to produce the figures. 166 

Thermodynamic modelling of the exoskarn samples MX99-5s and MX99-3s was undertaken using the 167 

Theriak-Domino software (built date 3-1-2012, de Capitani and Petrakakis, 2010), using calculated 168 

whole-rock compositions (see above) in the system Si-Al-Fe-Mg-Ca-C. The database used (Holland and 169 

Powell, 1998, version 5.5) lacks solid solution models that include the CaTs component in clinopyroxene, 170 

and mixing between gehlenite and åkermanite. Therefore, ideal mixing was assumed for these two solid 171 

solutions (Charlu et al., 1981; Povoden et al., 2002). Implementing a CaTs-Di-Hd ideal mixing model for 172 

clinopyroxene over the default database model however has little effect on the calculated phase 173 

boundaries of the system. For example, this clinopyroxene model produces only a ~20°C variation in 174 

melilite-garnet phase boundaries, which is relevant to the xenoliths. 175 

 176 

PETROGRAPHY 177 

Calc-silicate xenoliths (n=33) collected from the 1994 to 2010 eruption deposits at Merapi can be 178 

subdivided into three distinct groups (magmatic skarn n=25, exoskarn n=5 and buchite n=3) on the basis 179 



of their dominant mineralogy, modal zonation, and the presence of glass. Twelve xenoliths that best 180 

represent the three groups, and which highlight the mineralogical and textural variety of the xenoliths 181 

were chosen for detailed study. The xenoliths are generally centimetre to tens of centimetre in size, and 182 

texturally complex variations in mineralogy and zonation can be seen at hand specimen scale. 183 

Volcaniclastic and metasedimentary xenoliths are additionally present at Merapi but not discussed in this 184 

paper (see Chadwick et al., 2007). A summary of the mineral phases identified in this study and their 185 

formulas are presented in Table 1.  186 

Magmatic Skarn xenoliths 187 

The most abundant calc-silicate xenolith type (n=25) is the one we term ‘magmatic skarn’ (c.f. Fulignati 188 

et al., 2004) based on the abundance of Ca-enriched magmatic glass, melt inclusions in the newly formed 189 

calc-silicate skarn minerals, and pronounced reaction zones at contacts with the host lava. Attempting to 190 

explain the variety of xenoliths in this group, the magmatic skarn xenoliths are subdivided into a series of 191 

idealised mineralogical/textural zones, such as a series of reaction zones and a core zone (Figs. 1, 2). The 192 

lava contact (R1) is represented by a zone of coarse (100-300 μm), pale green clinopyroxene and a 193 

concentration of magnetite (Fig. 2A). This is followed by a finer grained (up to 100 µm) zone (R2) of 194 

plagioclase + clinopyroxene ± glass (Fig. 2A), with rare amphibole also present in sample MX1. This 195 

zone grades into a zone of coarse dark green/yellow pleochroic clinopyroxene (R3) separating R2 from a 196 

zone of vesicular glass (R4) (Fig. 2A-B). The glass zone typically contains strongly irregularly Fe-Mg 197 

zoned (see mineral chemistry), colourless to deep green/yellow pleochroic diopsidic clinopyroxene 198 

crystals (Fig. 2B). These clinopyroxene crystals are similar to those of zone R3, and often appear to be 199 

incorporated from zone R3. Plagioclase and wollastonite microlites are additionally present within the 200 

glass. Sample MX5 has comparatively large quartz and plagioclase crystals (~100 µm) within the glass 201 

zone, and sample MX3 shows this zone to be almost fully crystallised to quartz and plagioclase, with 202 

scarce melt inclusions within the quartz crystals. The xenolith core (Fig. 2C) has a sharp contact to 203 

decussate wollastonite, but occasionally the core is a mixture of wollastonite, clinopyroxene, and 204 

accessory garnet. Additionally, glass is often present within the core of these xenoliths. At glass-205 

wollastonite contacts, a thin rim of semi-dendritic ferrobustamite often forms. The samples have a 206 

vesicular texture across all zones. 207 

The described zonation is idealised, and variations naturally occur. Samples MX1 and M13-10, for 208 

instance, show no glass zone (R4) separating the wollastonite-dominant core from R3 and R2. In this 209 

case, a pale yellow clinopyroxene and garnet zone formed instead of the coarse clinopyroxene of zone R3, 210 

which we call R3b (Figs. 1, 2D). This clinopyroxene is optically and chemically distinct (CaTs: 211 

CaAlAlSiO6 rich, see section Mineral Chemistry) from any others in the Merapi magmatic skarn 212 

xenoliths. In sample MX1, one half of the xenolith shows the common zonation (with glass zone R4 213 



present), whilst the other half has no glass and instead has the zone R3b CaTs clinopyroxene and garnet 214 

zone (Fig. 1). Rare patches of garnet are found interstitial to wollastonite in the MX1 core, and also 215 

together with wollastonite and CaTs clinopyroxene in sample CS16. 216 

Accessory phases are generally restricted to the xenolith cores, and include calcite, titanite, chromite, 217 

gehlenite, a wadalite-like Si-Al-Fe-Ca-O-Cl mineral, perovskite, a Ca-Zr-Ti-O mineral, cotunnite, 218 

sulphates (anhydrite and baryte) and sulphides (pyrrhotite and cubanite) (Table 1). Titanite is also present 219 

within the glass in zone R4 and ilmenite is exclusively found in sample MX3 in zone R2. Calcite is 220 

present as four distinct textural types: 1) globular crystals within the glass R4 zone, 2) interstitial to 221 

wollastonite in the cores, 3) inclusions in wollastonite and garnet, and 4) a melt-like infiltrative texture 222 

containing rare Cl-F rich phases such as fluorite, cuspidine and the wadalite-like mineral within regions 223 

where the calcite pools (Fig. 3A-B). These calcites are discussed in detail in Whitley et al. (2019). 224 

Many crystals contain significant quantities of melt inclusions (Fig. 3C-G), exceeding 80 in a single 600 225 

µm long wollastonite crystal. Melt inclusions are also present in clinopyroxene of zones R3-4, plagioclase 226 

in zone R4 and titanite within the xenolith cores. The inclusions are most commonly glassy and have a 227 

single shrinkage bubble but, in rare cases, they can contain daughter crystals and multiple bubbles. The 228 

daughter crystals are found either in the glass or in the bubble, and are most commonly Fe-bearing phases 229 

(pyrrhotite, cubanite, magnetite) and occasionally apatite. Vapour-rich CO2 fluid inclusions are also 230 

common in wollastonite. 231 

Exoskarn Xenoliths 232 

Exoskarn xenoliths are distinct from the magmatic skarn xenoliths by having a different mineralogy, 233 

lacking mineralogical zonation, and by almost entirely lacking glass. On the basis of their mineral 234 

assemblages resembling typical high temperature skarns worldwide (e.g. Meinert, 1992), and the lack of 235 

glass, which indicates formation by subsolidus reactions, we classify these xenoliths as exoskarns (c.f. 236 

Fulignati et al., 2004, see also discussion). These xenoliths comprise two distinct skarn mineral 237 

assemblages (A and B), often with a rim of clinopyroxene and plagioclase at the host lava contact. The 238 

most common assemblage (A) is wollastonite + garnet + plagioclase ± CaTs clinopyroxene ± quartz ± 239 

calcite with a granoblastic texture (Fig. 4A). Some clinopyroxenes and garnets exhibit weak patchy 240 

zonation. Accessory S, Cl, and F-bearing phases such as cuspidine, ellestadite, anhydrite and pyrrhotite 241 

are additionally present, and also unidentified Ca-Al-Si-Cl-F minerals that are distinct from the wadalite-242 

like mineral in the magmatic skarn xenoliths. No hydrous phases that can often occur in skarns, such as 243 

epidote and vesuvianite (c.f. Meinert, 1992), have been identified in this study, although epidote and 244 

prehnite have been identified in earlier descriptions of Merapi xenoliths (Kerinec, 1982; Camus et al., 245 

2000). Garnet often contains inclusions of plagioclase and wollastonite. Calcite is present as either rare 246 

inclusions within garnet crystals or as large mm-sized crystals, surrounded by complex reaction rims that 247 



contain larnite, spurrite, and Ca-Si-rich S-Cl-F-bearing phases including fluorite, cuspidine, ellestadite, 248 

anhydrite, and many additional unidentified phases (Ca-Si-O, Ca-Al-Si-O, Ca-Al-Si-P-O Table 8, Fig. 249 

4B). Xenotime and monazite form accessory inclusions within these calcites. 250 

The second assemblage (B), only found in one sample (MX99-3s), comprises gehlenite + grossular garnet 251 

+ CaTs clinopyroxene + spinel + wollastonite + plagioclase, with trace amounts of ellestadite (Fig. 4C). 252 

This sample shows evidence for disequilibrium, such as patchy compositional zoning of garnets, and 253 

spinel with rims of gehlenite followed by an outer rim of CaTs clinopyroxene. Patches of localised 254 

equilibrium are shown by granular ~120° triple junctions in the gehlenite-dominant areas of the sample. 255 

Buchite 256 

These rare xenoliths (samples M13-04C, CS14, CS10) contain abundant (> 70 vol%) quartz (or SiO2 257 

polymorphs) with interstitial glass around the crystal borders, and minor small interstitial clinopyroxene, 258 

plagioclase and wollastonite (Supplementary Fig. S1). Patches of clinopyroxene-rich glass are present, 259 

similar to zone R4 of the magmatic skarn xenoliths. We have classified these samples as buchites 260 

(pyrometamorphic glass-rich rocks), following the classification by Matthews et al. (1996) of texturally 261 

similar xenoliths at Lascar volcano, Chile. Similar quartz-rich, partially melted xenoliths have also been 262 

described from the Aeolian islands (e.g. Frezzotti et al., 2004; Zanon and Nikogosian, 2004; Del Moro et 263 

al., 2011), Etna (Mollo et al., 2017) and the Central Apennines (Melluso et al., 2003). Although the 264 

quartz-rich assemblage could be derived from a volcaniclastic protolith, the presence of wollastonite 265 

suggests a carbonate or marl component. The rounded shape of the quartz crystals, separated by 266 

interstitial glass, indicates that partial melting has occurred. The dissolution of quartz xenocrysts in arc 267 

magmas was observed in products of the 1991 Pinatubo eruption, where highly silicic glass (~80-85 wt.% 268 

SiO2) formed in reaction zones around the xenocrysts, pointing to possible compositional modifications of 269 

the melt, at least on a micrometre scale (Borisova et al., 2014). However, although the Merapi buchite 270 

xenoliths are briefly mentioned here for completeness, details of their occurrence and potential 271 

ramifications for melt chemistry at Merapi are beyond the scope of the current study and will not be 272 

discussed further. 273 

RESULTS 274 

Whole-Rock Major Element Chemistry 275 

Calculated major element compositions of individual zones in magmatic xenoliths are compared for two 276 

selected samples to evaluate chemical changes (Fig. 5). There are distinct differences between the zones 277 

and some systematic variations from the lava contact towards the xenolith cores point to a progressive 278 

change from magmatic to calcic compositions (Fig. 5A; Supplementary Figs. S2, S3) (c.f. Troll et al., 279 



2012). CaO contents are lowest in the lavas and highest in the xenolith cores, whereas Al2O3 contents 280 

show exactly the opposite behaviour. One xenolith (sample MX1) shows a systematic increase in CaO 281 

from the contact towards the core, except for glass zone R4 that creates a distinct anomaly in the element 282 

profiles, having higher SiO2 and lower CaO than the adjacent zones. FeO is relatively enriched in zone 283 

R1, decreasing towards the core, whereas SiO2 is lowest in this zone. MgO shows only limited variation 284 

and has the lowest contents in the innermost zone (R4) and in the core. 285 

In terms of whole rock major element composition (Fig. 5B), magmatic skarn xenoliths fall within the 286 

range of xenoliths analysed by Chadwick et al. (2007), which we believe classify as magmatic skarn 287 

xenoliths in our grouping), forming diverging trends from basaltic-andesite compositions. Magmatic 288 

skarn xenoliths have lower Al2O3 contents than lavas (< 16 wt%), while exoskarn xenoliths display Al2O3 289 

contents comparable to lava values (18 to 25 wt%), although at a much lower SiO2 content (33 to 45 290 

wt%). All xenoliths have much higher CaO than the lavas, up to 36 wt%, but lower TiO2 and K2O 291 

contents. FeO and MgO span the range of lava values, with FeO up to 10.0 wt%, and MgO up to 6.6 wt%. 292 

Exoskarn xenoliths generally plot distinct from magmatic skarn xenoliths when considered with the 293 

Chadwick et al. (2007) data (Fig. 5B). For instance, the exoskarn xenoliths have low SiO2, TiO2 and FeO, 294 

relative to the magmatic skarn xenoliths, but form a linear trend of decreasing TiO2 and FeO with 295 

increasing SiO2. 296 

Mineral Chemistry 297 

Feldspar 298 

Feldspar compositions in the Merapi calc-silicate xenoliths are entirely plagioclase, but spanning a wide 299 

compositional range (An46-100) (Table 2). In magmatic skarn xenoliths, anorthite content progressively 300 

increases towards the xenolith cores (Fig. 6A). Zoning is relatively insignificant compared to the 301 

differences between zones. Magmatic skarn xenolith plagioclase comprises both microlites (An46-59) 302 

within the interstitial glass in zone R4, and interstitial plagioclase in the high-An cores (An73-100). Where 303 

analyses of the host lava attached to the xenolith were possible (An29-81), plagioclase in zones R2 and R4 304 

overlap magmatic plagioclase compositions, including the previously published data (Gertisser, 2001; 305 

Preece, 2014; Erdmann et al., 2016). In An-FeO space, xenolith core plagioclase compositions generally 306 

fall within and extend the high FeO-An compositional ellipse of Merapi xenolith plagioclase from 307 

Chadwick et al. (2007) (Fig. 6B). Plagioclase microlites within the zone R4 glass have strong FeO 308 

enrichment (up to 1.7 wt% FeO), as is observed with the strong FeO enrichment of both clinopyroxene 309 

and ferrobustamite overgrowths on wollastonite within this glass zone (see below). Exoskarn plagioclase 310 

is essentially pure anorthite, with lower anorthite contents restricted to the lava contact (Table 2). FeO 311 

concentrations in exoskarn anorthite are characteristically lower than those of magmatic plagioclase and 312 

the majority of the magmatic skarn plagioclase data. 313 



Clinopyroxene 314 

Clinopyroxene compositions range from quadrilateral diopside-hedenbergite (Di-Hd) (Morimoto, 1988) 315 

to high-Al diopside (Table 3). These high Al clinopyroxenes are enriched both in esseneite 316 

(CaFe3+AlSiO6) and Calcium-Tschermak’s (CaTs: CaAlAlSiO6) components, demonstrated by the strong 317 

correlation between Fe3+ and AlIV (R2=0.88, Fig. 7A), and AlIV with AlVI (R2=0.81, not shown) across all 318 

analysed crystals. Incorporation of AlIV is accommodated by a strong reduction of Si in the tetrahedral 319 

site. These clinopyroxenes are commonly generalised as fassaite [Ca(Mg,Fe3+,Al)(Si,Al)2O6] where AlIV 320 

> 0.25; Deer et al. (1997)]. As this is not a formal name (Morimoto, 1988) and the clinopyroxenes show 321 

an enrichment in the CaTs component, we refer to these clinopyroxenes as CaTs-clinopyroxene in this 322 

manuscript. 323 

In magmatic skarn xenoliths, the clinopyroxene compositions are generally comparable to Merapi 324 

magmatic clinopyroxenes in zone R1 (Fig. 7A-C), and progressively become more Ca/wollastonite-rich 325 

until sitting along the diopside-hedenbergite (Di-Hd) join (Wo50) in zones R3, R4 and in the core (Fig. 326 

7C). There is a sharp compositional change at zone R4 and within the core, where the clinopyroxenes 327 

closely follow the Di-Hd join and progressively become more Hd-rich (Fig. 7C). Xenolith core 328 

clinopyroxenes can also be enriched in Al2O3 (up to 11.57 wt%, corresponding to 18 mol% CaTs), 329 

bringing compositions above the DiHd join in the traditional clinopyroxene composition ternary 330 

diagrams, although this is uncommon and only observed in sample CS16. These Al-rich clinopyroxenes 331 

are strongly zoned, from this Al-rich core to weakly oscillatory Di-Hd zoned mantle and rim zones (Fig. 332 

7E). Commonly however, magmatic skarn xenolith clinopyroxene zonation is restricted to the Di-Hd join 333 

(Fig. 7C), with patchy, highly irregular resorption surfaces (Fig. 7F). Titanium is correlated well with AlIV 334 

across the magmatic skarn xenolith zones, excluding zone 3b, where CaTs-rich clinopyroxenes form with 335 

low Ti, comparable to the compositionally distinct exoskarn xenolith clinopyroxene (Fig. 7B). 336 

Exoskarn clinopyroxenes are highly Al enriched (Fig. 7A, B, D; Table 3), containing up to 22.3 wt% 337 

Al2O3, approaching the highest natural terrestrial values known to the authors (24.0 wt% in gehlenite-rich 338 

skarns from the Carpathians, Romania; Pascal et al., 2005). Fe3+/∑Fe (calculated following Droop, 1987) 339 

approaches unity (Fig. 7A). Clinopyroxene compositions at the exoskarn xenolith rim overlap magmatic 340 

compositions, but then immediately jump to highly Al-rich compositions, usually lacking the gradual 341 

progression observed in the magmatic skarn xenoliths (Fig. 7A-C). 342 

Pyroxenoids 343 

Wollastonite, present in all xenoliths, ranges from essentially pure CaSiO3 to 5 mol% FeSiO3 with < 1.5 344 

mol% MnSiO3 (Fig. 8A; Table 3). Wollastonite compositions from 17 to 21 mol% FeSiO3 are attributed 345 

to the ferrobustamite member of the wollastonite group rather than iron-rich wollastonite, as bustamite is 346 

the stable crystal structure above ~12 mol% FeSiO3 (Rutstein, 1971; Rutstein and White, 1971). The 347 



ferrobustamite crystals are found as overgrowth crystals on wollastonite in the glass-bearing magmatic 348 

skarn xenoliths, in rare inclusions in wollastonite in magmatic skarn xenoliths, and in accessory phases in 349 

the calcite reaction rims in large calcite-bearing exoskarn xenoliths. 350 

Garnet 351 

Garnet is found predominantly in the exoskarn xenoliths as a main rock forming mineral, with magmatic 352 

skarn xenolith garnet restricted to small interstitial patches in the cores or in zone R3b (Figs. 1, 2B). 353 

Garnet compositions across all xenolith types closely follow the grossular (Ca3Al2Si3O12)–andradite 354 

(Ca3Fe3+2Si3O12) join, with only schorlomite (Ca3Ti2SiFe3+2O12) being a notable additional component 355 

(Fig. 8B; Table 4), increasing with andradite content (Sch0-76). Pyrope (Mg₃Al₂Si₃O₁₂) and almandine 356 

(Fe₃Al₂Si₃O₁₂) end members combined are < 6 mol%. 357 

Magmatic skarn xenolith garnets exhibit a wide compositional range (Grs0-66Adr24-75Sch0-76). In zone R3b, 358 

these garnets are compositionally distinct (Grs60-66Adr31-37Sch1-2) from interstitial garnets within the 359 

wollastonite core (Grs0-66Adr24-75Sch1-76). The interstitial garnets, in close spatial association with calcite, 360 

cuspidine, gehlenite and a wadalite-like phase (see below), have inclusions of this wadalite-like phase, 361 

possibly a result of similarities between the crystal structure between hydrogarnet and wadalite-mayenite 362 

(e.g. Glasser, 1995; Grew et al., 2013). Garnets with 76 mol% schorlomite 363 

[Ca3.0(Ti1.5Fe2+0.1Fe3+0.2Mg0.1)(Si1.8Al0.6Fe3+0.6)O12] are found as rims around titanite, in close association 364 

with perovskite. Ti gradients are found across rare wadalite-like phase-bearing garnet crystals (Sch3-21). 365 

Exoskarn xenolith garnets have a more restricted compositional range (Table 4), limited to higher 366 

grossular contents (Grs73-97Adr3-24Sch0-2). The highest grossular contents, up to Grs97 are found 367 

exclusively within exoskarn A type xenoliths, around residual calcite crystals and their spurrite ± larnite-368 

rich reaction rims.   369 

Melilite 370 

Melilite is only found in non-trace quantities in exoskarn assemblage B xenoliths. Melilite compositions 371 

are gehlenite-rich, closely following the gehlenite-åkermanite join, with < 8 mol% Na-melilite and < 10 372 

mol% Fe-åkermanite (Gh43-91Ak2-45Na-Mel0-8) (Fig. 8C; Table 5). In exoskarn type B xenoliths, melilite 373 

has three textural forms: surrounding spinel, intergrown with CaTs-clinopyroxene, and locally texturally 374 

equilibrated with 120° grain boundaries (Fig. 4C). Melilite in association with spinel is richer in gehlenite 375 

(Gh68-83) than the clinopyroxene intergrowths (Gh57-58) and well equilibrated types (Gh47-50). 376 

Sulphur and Halogen-bearing Phases 377 

Pyrrhotite is found in both magmatic and exoskarn xenoliths, often touching or rimmed by anhydrite. In 378 

magmatic skarn xenoliths, pyrrhotite is found in zone R2, as accessory inclusions in wollastonite and 379 



CaTs-clinopyroxene, and as rare inclusions in melt inclusions in the core. Fe/S ranges from 83 to 85%, 380 

and Cu concentrations range from 0.06 to 0.59 wt%. Pyrrhotite is sometimes found with near 381 

stoichiometric cubanite (Table 6). The associated anhydrite is pure, with < 0.04 wt% BaO and < 0.1 wt% 382 

SrO.  383 

Cuspidine is found as crystals within calcite (magmatic skarn xenoliths) or forming within the reaction 384 

rim around calcite (exoskarn xenoliths) associated with stoichiometric spurrite ± larnite and an 385 

unidentified Ca-Si-Al-O phase. Fluorine a.p.f.u. approach the ideal 2 (1.937-2.035) indicating negligible 386 

OH. Fluorite is a fine grained (< 20 μm) accessory phase replacing calcite in both xenolith types, and 387 

evidently nucleated at crystal borders or forming fine halos around vesicles in calcite. 388 

Apatite is found in magmatic skarn xenolith zone R4, and contains 0.7 to 0.8 wt% Cl and no detectable 389 

SO3. Ellestadite is found as an accessory phase in exoskarn xenoliths with 7.2 to 10.0 wt% SO3 and 0.7 to 390 

1.2 wt% Cl. F was not analysed with EMPA, however ~2 wt% F was identified using SEM-EDS, 391 

indicating that OH is minimal. Stoichiometric ellestadite (undetectable P2O5) with ~1.9 wt% Cl was 392 

determined with SEM-EDS coexisting with anhydrite in sample M13-02, within the reaction rim around 393 

large remnant calcite crystals. 394 

Qualitative EDS analyses have identified trace quantities of small (< 5 µm) baryte crystals in both 395 

magmatic and exoskarn xenoliths, and additionally a crystal of cotunnite (PbCl2) is present in the 396 

magmatic skarn xenoliths. 397 

There are unidentified Cl-bearing minerals, which may possibly be new minerals. Skarn xenoliths, such 398 

as those from the Upper Chegem caldera, Russia, can be host to numerous new minerals (e.g. Galuskin et 399 

al., 2013), and this may additionally be the case at Merapi. A wadalite-like Ca-Al-Fe-Si-Cl mineral 400 

compositionally similar to the wadalite-eltyubyuite mayenite solid solution (when normalised to 26 401 

cations) is found in association with calcite, cuspidine, garnet and gehlenite in magmatic skarn xenolith 402 

MX1 (Table 7). These crystals however have compositions with Si a.p.f.u. 4.6-5.5, higher than the ideal 403 

Si 4, and lack sufficient Mg to balance this increase in Si in wadalite (c.f. Galuskin et al., 2015). Raman 404 

spectra of this phase are included as supplementary Fig. S4.   405 

A Ca-Al-Si-Cl-F mineral is found in exoskarn xenoliths CS11 and M-XCS in the rim around areas where 406 

larnite and spurrite have replaced calcite. Concentrations of Cl and F in this mineral have only been 407 

determined by SEM-EDS, and as it contains 10 wt% more CaO than the wadalite-like mineral, and lower 408 

volatile contents (~7 wt%) we believe it to be a different mineral. 409 

Oxides, Other Silicates, and Accessory Minerals 410 

The dominant Fe-Ti oxide in the magmatic skarn xenoliths is magnetite, with 0.3 to 11.5 wt% TiO2. 411 

Magnetite within the xenolith cores is distinct (< 0.3 wt% TiO2) from magnetite in the other zones (8.9-412 



11.5 wt% TiO2). Ilmenite is present in zone R2 of one xenolith. Qualitative EDS analysis has identified 413 

micrometre sized chromite in the xenolith cores. Hematite is the dominant oxide found in the exoskarn 414 

xenoliths, with rare magnetite present as well. Perovskite is found as a 50 µm vermicular cluster 415 

intergrown with wollastonite and plagioclase in one magmatic skarn xenolith (sample MX1) and is 416 

essentially stoichiometric CaTiO3. A Ca-Zr-Ti-O mineral (calzirtite?) is found in the same magmatic 417 

skarn xenolith. Titanite across all xenolith types contains 1.04 to 2.51 wt% Al2O3 and 0.73 to 2.86 wt% 418 

FeO. An unidentified Ca-Al-Si-P mineral is found in exoskarn A samples CS11 and MXCS, 419 

approximating the formula Si3.1Ti0.1Al2.9Ca3.0P0.9O16 when assuming 16 oxygens. Xenotime and monazite 420 

are very rare calcite inclusions in exoskarn A xenoliths. Spinel (Sp83-89Her11-17) is found exclusively in the 421 

gehlenite-garnet-CaTs clinopyroxene-spinel exoskarn B xenolith (MX99-3s). These mineral analyses are 422 

given in Table 8. 423 

Glass Chemistry 424 

Melt inclusions and interstitial glass are almost entirely restricted to magmatic skarn xenoliths, with melt 425 

inclusions and glass only found in the exoskarn xenoliths within the clinopyroxene-rich reaction rim at 426 

the host lava contact. Xenolith interstitial (zones R1, R2, R4 and core) and melt inclusion (zones R1, R3, 427 

R4 and core) glass compositions show strong deviation from lava groundmass glass and melt inclusion 428 

compositions, and also show compositional differences between zones (Fig. 9; Table 9). Melt inclusions 429 

are compositionally more diverse than the interstitial glass. CaO concentrations in interstitial glass and 430 

melt inclusions from zone R1 and some R2 analyses overlap lava glass CaO values (0.2 to 3.8 wt%). CaO 431 

concentrations in the interstitial glass (0.9-6.5 wt%) and in melt inclusions (0.5-11.3 wt%) within the 432 

xenolith zones R3, R4 and the core are elevated by up to ~4 wt% in the interstitial glasses in relation to 433 

magmatic values and by up to 10 wt% in the melt inclusions. These glasses, especially the melt 434 

inclusions, are also characterised by low Al2O3 and K2O relative to lava glasses (Fig. 9), and smaller 435 

variations from the lavas are observed in all other major and minor elements. Al2O3 concentrations are up 436 

to 5 wt% lower than in the lavas, and up to 2 wt% lower in K2O. Xenolith glass volatile concentrations 437 

are broadly comparable to the lava glasses, with only a few analyses exceeding that of the lavas. Sulphur 438 

exceeds lava groundmass concentrations in some zone R1 and zone R4 analyses, containing up to 510 439 

ppm sulphur. Chlorine is typically within lava groundmass glass concentrations, and only exceeds lava 440 

glass values in plagioclase-hosted melt inclusions in sample CS16 and interstitial glasses in MX99-4s. 441 

The few analyses for F (< 1110 ppm) show that concentrations are within the wider range of lava values 442 

(< 2637 ppm). Although the melt inclusion analyses for MX1 show negligible F, localised patches of 443 

cuspidine and fluorite have been observed. 444 



Fluid Inclusions 445 

Fluid inclusions in the magmatic skarn xenoliths (n=28) are two phase vapour-rich inclusions in 446 

wollastonite. The dominant fluid composition is CO2, confirmed by instantaneous melting at -57.3 to -447 

56.1°C. The slight deviation from ideal melting at -56.6°C indicates the presence of a small percentage 448 

other dissolved gases such as SO2, N2, which are not thought to have a significant effect on pressure 449 

estimates (Frezzotti et al., 2002). No H2O is observed either as ice or clathrate. Homogenisation is to the 450 

vapour phase at 12.9 to 29.9°C. These temperatures correspond to densities of 0.15 to 0.35 g/cm3, 451 

indicating trapping pressures of 33 to 92 MPa, when assuming a formation temperature of 850°C (see 452 

discussion), utilising the Hansteen and Klügel (2008) spreadsheet implementation of Sterner and Pitzer 453 

(1994) and Span and Wagner (1996) density and equation of state models. An extreme temperature 454 

estimate increase to 1200°C only increases pressure estimates by ~30 MPa. No inclusions for barometry 455 

with resolvable homogenisation were found in the exoskarn xenoliths, but CO2 melting was observed in 456 

some inclusions. 457 

DISCUSSION 458 

In this section we discuss the processes during formation of the xenoliths, and the pressure, temperature 459 

and fO2 conditions that can be determined from the recorded mineral assemblages. We also discuss the 460 

implications for the magmatic system at Merapi, such as magmatic contamination by xenolith phases, 461 

metal transport and the CO2 output by decarbonation reactions. Accurate determination of temperature in 462 

the magmatic skarn xenoliths requires accurate estimates of the melt composition during xenolith 463 

formation; therefore we first discuss the implications for any modification of melt inclusion compositions. 464 

Post-entrapment Modification of Melt Inclusions 465 

The abundance of melt inclusions in the magmatic skarn xenoliths allows for constraining the original 466 

composition of the melt present during xenolith formation, and, potentially, application of 467 

thermobarometric models (discussed below). Post-entrapment modification of melt inclusion 468 

compositions however is a well-documented phenomenon, occurring via diffusive exchange of elements, 469 

crystallisation of a host mineral boundary layer, or from crystallisation of daughter crystals 470 

(e.g. Nakamura and Shimakita, 1998; Danyushevsky et al., 2000; Nielsen, 2011). Therefore, assessment 471 

of these effects is required before interpreting the inclusion compositions. Melt inclusions are found 472 

within clinopyroxene, plagioclase and wollastonite hosts in the magmatic skarn xenoliths, all of which 473 

have no universally accepted way to back-calculate the original composition. The interstitial glass within 474 

the xenoliths provides a first order constraint on the original melt composition, showing that it is strongly 475 

elevated in CaO compared to lava glass compositions (Fig. 9). We have not attempted correction of our 476 



melt inclusions, and consider the wollastonite-hosted melt inclusions to be the best estimates of melt CaO 477 

concentrations for the following reasons. 478 

Examples of correcting for inclusion modification in clinopyroxene hosts include adding the host 479 

clinopyroxene to the inclusion (e.g. Hartley et al., 2018) until Fe-Mg partitioning between the inclusion 480 

and clinopyroxene (𝐾𝐷$%*!"
-./*!0) approaches the widely accepted equilibrium value of 0.28 ± 0.08 (Putirka, 481 

2008), and adding calculated equilibrium clinopyroxene back to the melt inclusion until the calculated 482 

clinopyroxene has the same Mg# as the host (e.g. Preece et al., 2014). A compilation of magma-carbonate 483 

(both limestone and dolomite) interaction experimental data shows that 𝐾𝐷$%*!"
-./*1%)2 in carbonate-484 

contaminated systems may strongly diverge from the magmatic-derived 0.28 ± 0.08 (Putirka, 2008) (Fig. 485 

10A), suggesting that 𝐾𝐷$%*!"
-./*1%)2 is redox-sensitive (see oxybarometry discussion below) and an Fe-Mg 486 

partitioning equilibrium-based correction is not appropriate. 487 

The difference between observed and predicted clinopyroxene diopside-hedenbergite (DiHd) components 488 

(ΔDiHd: Putirka, 1999, 2008; Mollo et al., 2013; Neave and Putirka, 2017) is more accurate at predicting 489 

equilibrium (Fig. 10B), with 68% of magma-carbonate experimental equilibrium clinopyroxene-melt 490 

pairs predicted to fall within model error (± 0.07; Mollo et al., 2013). Applied to the Merapi xenoliths, 491 

clinopyroxene-hosted melt inclusions within zones R3 and R4 have irregular embayed forms, suggesting 492 

some sidewall crystal growth, and ΔDiHd values > 0.07, indicating some potential modification of 493 

trapped melt compositions. Melt inclusion-clinopyroxene pairs from zones R1 and R2 have ΔDiHd values 494 

from 0 to 0.14, with an average of 0.05, indicating some may represent unmodified melt values. These 495 

compositions overlap lava glass compositions, consistent with their proximity to the lava contact, 496 

indicating a magmatic character. 497 

An example of plagioclase-hosted melt inclusion correction is regressing the magmatic liquid line of 498 

descent in TiO2-Al2O3 space, and adding plagioclase back until the inclusions lie on the liquid line of 499 

descent (Hartley et al., 2018). This cannot be applied here as our measured xenolith melt inclusion 500 

compositions, evidenced by elevated CaO in xenolith interstitial glass compositions, are contaminated and 501 

are not closed system magmatic values (see below), and therefore cannot be assumed to lie on a 502 

regression line through the magmatic liquid line of descent. Moreover, a micron thick rim of Ab-rich 503 

plagioclase is observed around the inclusion walls (Fig. 3E, G) and suggests some modification of 504 

plagioclase inclusion compositions occurred as well. 505 

Wollastonite-hosted melt inclusions are generally well formed and equant with a single shrinkage bubble, 506 

and lack textural evidence of sidewall crystallisation and modification (Fig. 3D). Although Fe and Mn are 507 

weakly compatible in wollastonite, traverses from inclusion contact to 20 µm into the crystal do not show 508 



any resolvable chemical gradients that would indicate diffusion and melt inclusion alteration. Therefore, 509 

wollastonite-hosted inclusions are likely the best inclusions to represent original compositions. 510 

The effect of post-entrapment crystallisation of a melt inclusion can be tested graphically. Fractionation 511 

vectors in Fig. 9 show the effect of 10% subtraction (crystallisation) of clinopyroxene, plagioclase and 512 

wollastonite on glass compositions. Taking the fractionation vectors for the CaO vs SiO2 plot, Fig. 9 513 

shows that that any post-entrapment crystallisation of the respective host phase would lower the CaO 514 

concentration of the trapped melt, therefore our analyses must reflect minimum original CaO estimates, 515 

regardless of inclusion sidewall crystallisation. Melt inclusion compositions instead follow the vector for 516 

addition of calcite to the published melt compositions. As the current methods of correcting for post 517 

entrapment crystallisation are not suitable for these compositions, no attempt has been made to account 518 

for the effects of melt inclusion modification. Additionally, these compositions overlap the compositions 519 

of Ca-contaminated interstitial glasses, and high CaO is present regardless of the host mineral phase. This 520 

shows that although post-entrapment modification may have occurred, the very high CaO values may 521 

reasonably represent minimum estimates of original melt compositions. 522 

Intensive Variables 523 

Magmatic Skarn Xenolith Thermobarometry 524 

The abundance of glass and common mineral phases (clinopyroxene, plagioclase) allows for the 525 

application of thermobarometric models to the xenoliths (Fig. 11). On the basis of the uncertainty in 526 

mineral-melt equilibrium testing, and the results of testing thermobarometric models with experimental 527 

carbonate assimilation data (see supplementary material), application of the glass-only equation 34 of 528 

Putirka (2008) to the clinopyroxene-saturated interstitial glasses of the magmatic skarn xenoliths with 529 

water contents estimated by difference from 100 wt% (Anderson, 1973, 1974; Devine et al., 1995), 530 

provides a temperature of 829 ± 45°C (n=89). Melt inclusions, in turn, reflect a slightly higher 531 

temperature of 876 ± 49°C (n=88). These temperatures are consistent with the presence of ferrobustamite 532 

overgrowths on the coexisting wollastonite, which is thought to be stable between ~800-880°C (Rutstein, 533 

1971). A pressure of 50 MPa was assumed for thermometry, consistent with the results of fluid inclusion 534 

barometry (our results: 34-92 MPa, and those of Clocchiatti et al. (1982): 67-109 MPa). Temperature 535 

estimates are lowered by a negligible 5°C per 100 MPa. Temperatures estimated for glasses within any 536 

lava attached to the xenolith, and lava interstitial glasses from the literature (with an assumed pressure of 537 

200 MPa; c.f. Preece et al., 2014; Erdmann et al., 2016) are higher than that of the xenolith glasses, at 937 538 

± 43°C. Phase equilibria estimates of pre-eruptive temperatures for Merapi are 925-950°C (Erdmann et 539 

al., 2016), which supports the higher lava glass temperature from our glass thermometry. 540 

Additional constraints can be gained from comparison with experimental phase equilibria. The small 541 

interstitial patches of garnet, plagioclase and wollastonite in sample MX1 are stable between ~510-890°C, 542 



with an XCO2 < 0.6 at 100 to 200 MPa (Gordon and Greenwood, 1971; Tracy and Frost, 1991), consistent 543 

with temperatures from the glass thermometry. The R3b zone in sample MX1, comprising coexisting 544 

grossular-andradite garnet (Adr0.3) and CaTs-clinopyroxene (CaTs0.23) indicates temperatures of 900-545 

950°C based on experimental phase equilibria (Huckenholz et al., 1974; Gustafson, 1974). 546 

Exoskarn T-XCO2 547 

Although the exoskarn xenoliths lack glass, many phases and assemblages in the exoskarn xenoliths can 548 

help constrain temperatures by comparison with experimental data and thermodynamic modelling. 549 

Spurrite + cuspidine ± larnite-bearing reaction rims between calcite and wollastonite + grossular + 550 

anorthite in samples CS11 and MXCS-0 allow temperature constraints, while additionally demonstrating 551 

the progressive interaction along a CaO-SiO2-CO2 system (e.g. Zharikov, 1969). The presence of spurrite 552 

and absence of evidence for lower temperature tilleyite-forming reactions indicate spurrite formation by 553 

either interaction between wollastonite and calcite 554 
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The former reaction indicates temperatures of ~700-1000°C (Tuttle and Harker, 1957). Spurrite is stable 558 

as low as 430°C at low CO2 partial pressure (Henmi and Henmi, 1978), but the proximity of tens of 559 

microns to a decarbonating calcite crystal and a significant proportion of voids suggests a high CO2 560 

partial pressure. The latter reaction occurs at 910°C at 1 atm when in the presence of chlorine or fluorine 561 

(Bolio-Arceo and Glasser, 1990). Cuspidine and fluorite are found within tens of microns of the spurrite, 562 

confirming a reaction occurred with a fluorine-bearing fluid. 563 

Larnite forms further from the calcite near the wollastonite contact (Deegan et al., 2010 Fig. 10b) in 564 

sample MXCS-0, indicating temperatures of > 850°C (Wyllie and Haas Jr, 1965; Joesten, 1974; Treiman 565 

and Essene, 1983), following the potential reactions: 566 
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The dominant mineral assemblage in these large calcite-bearing xenoliths can be described in the SiO2-570 

Al2O3-CaO system, comprising grossular garnet (Grs78-96), wollastonite and anorthite. This assemblage is 571 

stable between ~510-890°C at 50-200 MPa, with an increasingly restricted XCO2 with pressure, varying 572 

from > ~0.2 to 1 at 50 MPa, and from ~0.2 to 0.4 at 200 MPa (Gordon and Greenwood, 1971; Tracy and 573 

Frost, 1991). Grossular with inclusions of calcite, wollastonite and anorthite is additionally found in the 574 

CaTs-clinopyroxene bearing xenoliths, suggesting the following reaction has occurred: 575 
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The equilibration temperature of CaTs-clinopyroxene and grossular-andradite-bearing exoskarn xenoliths 577 

is estimated as 900-950°C based on experimental data (Huckenholz et al., 1974). Reactions involving 578 

these phases were further investigated using Theriak-Domino software (build date 3-1-2012, de Capitani 579 

and Petrakakis, 2010) using calculated whole-rock compositions in the system Si-Al-Fe-Mg-Ca-C. An 580 

upper limit of temperature for the exoskarn xenoliths is ~910°C at 100 MPa, which represents the limit of 581 

garnet stability (Fig. 12). Garnet reacts out just after melilite becomes stable at ~900°C. Exoskarn type A 582 

xenoliths contain abundant garnet and trace amounts of gehlenite, constraining the temperature to this 583 

narrow field between 900 and 910°C. The calculated high (30 mol%) CaTs contents at the melilite-in 584 

boundary are in agreement with the high (up to 38 mol%) CaTs contents observed in these xenoliths, as 585 

are modelled gehlenite contents (> 70 mol%) compared to the observed ones (74-94 mol%). The mineral 586 

assemblage of the exoskarn type B xenolith is constrained by a slightly lower maximum temperature as 587 

garnet becomes unstable at 860°C (Fig. (12). A minimum temperature estimate is given as ~780°C from 588 

high clinopyroxene CaTs component (22-39 mol%). Conditions are further constrained to aCO2 < 0.5 for 589 

both xenolith types by the absence of meionite and calcite. The results closely match the temperatures 590 

from previously cited experimental studies. These temperature estimates are similar to those estimated for 591 

the magmatic skarn xenoliths by thermobarometry. 592 

In summary, the comparison with experimental studies and results from modelling indicate exoskarn 593 

formation temperatures up to ~910°C, with a lower limit at around 780°C for xenoliths with CaTs 594 

clinopyroxene and 510°C for xenoliths without CaTs clinopyroxene. There is no evidence for low 595 

temperature retrograde overprint, and these temperatures overlap the temperatures estimates for the 596 

magmatic skarn xenoliths (~850°C). These temperature estimates extending to as low as 510°C, 597 

combined with the petrological differences described above, indicate a metasomatic origin for the 598 

exoskarn xenoliths instead of petrogenesis via magmatic crystallisation for the magmatic skarn/endoskarn 599 

xenoliths. 600 



Oxygen Fugacity 601 

Estimates of oxygen fugacity (fO2) are difficult due to the lack of mineral assemblages commonly used to 602 

determine this variable. A first order estimate is obtained from the presence of magnetite in magmatic 603 

skarn xenoliths compared to hematite in the exoskarn xenoliths, indicating more oxidising conditions in 604 

the latter. Two single crystal clinopyroxene oxybarometers exist that use Fe3+ concentrations in 605 

clinopyroxene to estimate oxygen fugacity (Cortés et al., 2006; Simakin et al., 2012). Although Fe3+ 606 

concentrations in clinopyroxenes calculated by stoichiometry (e.g. Lindsley, 1983; Droop, 1987) have 607 

been shown in some studies to have a weak correlation to measured clinopyroxene Fe3+ concentrations 608 

(e.g. Sobolev et al., 1999), a positive correlation between clinopyroxene Fe3+/Fetotal and fO2 has been 609 

demonstrated from experimental data by Cortés et al. (2006) and Simakin et al. (2012). When taking a 610 

much larger dataset (the Library of Experimental Phase Relations, Hirschmann et al., 2008), with high 611 

fO2 experiments such as those from Mollo and Vona (2014) and Sugawara (2001) and normalise the data 612 

to the NNO (nickel-nickel oxide) buffer (c.f. Cortés et al. 2006) using buffer equations from Frost (1991), 613 

then a broad positive correlation is still observed, although with a large scatter (R2=0.44). Fe3+/Fetotal falls 614 

short of unity at an fO2 of air, and all Fe is Fe2+ at ~ΔNNO-2. When applied to this large experimental 615 

dataset, the oxybarometer of Cortés et al. (2006) strongly overestimates fO2 conditions, whilst Simakin et 616 

al. (2012) fails to recover experiments performed in air (Fig. 13). 617 

We use a selection of data from experiments that span a wide fO2 range to calibrate a new oxybarometer 618 

that recovers high fO2 conditions more accurately. We use the datasets of Whitaker et al. (2007), Freise et 619 

al. (2009), Feig et al. (2006), Feig et al. (2010), and Mollo and Vona (2014) (excluding Mollo and 620 

Vona’s relatively high Fe3+/Fetotal NNO experiments). This calibration dataset spans a fO2 between 621 

ΔNNO-5 to air, temperatures between 900 to 1280°C, 0 to 5 wt% H2O, and 50-68 wt% SiO2 and has a 622 

high coefficient of determination (R2 = 0.80). Although the dataset of Sugawara (2001) spans the widest 623 

fO2 range known to the authors (~13 log units), calculated Fe3/Fetotal values have larger scatter than those 624 

from other datasets, therefore we exclude these from the regression. Additionally, although AlIV increases 625 

in clinopyroxene with increasing fO2 (e.g. Mollo and Vona, 2014), adding AlIV to the models shows no 626 

significant improvement on the model, therefore we only use Fe3/Fetotal for prediction. There is also no 627 

significant improvement in R2 or the standard error when using a polynomial fit over a linear model, 628 

however we use a polynomial fit to marginally improve the estimates at low fO2, as was shown by 629 

Simakin et al. (2012).  We additionally considered constructing a similar oxybarometer based on Fe3+ in 630 

garnet as Fe3+ can be estimated accurately for garnet (Arai, 2010), however there is an insufficient range 631 

of oxygen fugacity controlled experiments in the Library of Experimental Phase Relations (LEPR; 632 

Hirschmann et al., 2008) database to attempt building a similar single crystal oxybarometer for garnet. 633 

For testing, we filtered the entire experimental database to clinopyroxenes equilibrated < 1 GPa, with Si 634 

a.p.f.u. < 2, Ca > 0.5 a.p.f.u., cation totals between 3.98 and 4.1, and Na2O < 1 wt%. Our models recover 635 



the calibration dataset with a residual standard error of 1.5 log units, the global database and additional 636 

experimental data to 1.8 log units, compared to 2.1 for Cortés et al. (2006) and Simakin et al. (2012). The 637 

improvements in the error are small, in part due to a lack of high fO2 experiments and potential variable 638 

data quality of the individual experiments in the LEPR database. However, the accuracy at high fO2 is 639 

improved, which is most relevant to our Merapi xenoliths. We obtain the following equation: 640 

𝛥𝑁𝑁𝑂 = 22.705(
𝐹𝑒3#

∑𝐹𝑒
)3 − 32.400(

𝐹𝑒3#

∑𝐹𝑒
)+ + 21.799(

𝐹𝑒3#

∑𝐹𝑒
) − 3.066 641 

where 𝐹𝑒3# and ∑𝐹𝑒 are Fe a.p.f.u. estimated from stoichiometry (e.g. Lindsley, 1983; Droop, 1987), 642 

and ΔNNO is the deviation from the nickel - nickel oxide oxygen fugacity buffer in log units. 643 

Application of our oxybarometric model shows a wide spread of fO2 values for the xenoliths (Fig. 14A). 644 

Magmatic skarn xenolith clinopyroxenes at the lava contact zone R1 and in zones R2, R3 and R4, have 645 

values similar to the magmatic values both predicted by our model and published estimates (𝛥NNO-0.2 to 646 

+1.6 Gertisser, 2001; Erdmann et al., 2014). Touching pyrrhotite and anhydrite crystals in zone R2 in a 647 

small subset of magmatic skarn xenolith samples additionally indicate a near-magmatic fO2 range 648 

between 𝛥NNO+0.5 to +2.5 (Luhr, 2008; Parat et al., 2011), consistent with other estimates. The R3b 649 

zone in sample MX1 records higher oxygen fugacity conditions than the CaTs clinopyroxene + garnet 650 

absent samples, at 𝛥NNO > +5. Xenolith core clinopyroxenes are formed through a large range of oxygen 651 

fugacity conditions. The higher values come from the CaTs-rich clinopyroxene cores of sample CS16 652 

(Fig. 14B). Anhydrite crystals within these clinopyroxene cores (stable at > 𝛥NNO+1 Carroll and 653 

Rutherford, 1987) provide further evidence for a relatively high fO2 during early clinopyroxene 654 

formation. Exoskarn xenolith clinopyroxene indicates formation under higher fO2 than magmatic skarn 655 

xenoliths, approaching that of air (~𝛥NNO + 8). While exoskarn type A xenoliths record a large range 656 

from NNO -1 to +8, the exoskarn type B xenolith uniquely records conditions of exclusively > 𝛥NNO + 657 

5. The high fO2 conditions recorded in the exoskarns are similar to that recorded in zone R3b of magmatic 658 

skarn xenolith MX1.   659 

High fO2 in skarn systems is a result of CO2 release from carbonate, and this CO2 can impose a fO2 equal 660 

to or greater than the HM buffer (e.g. Nicholls, 1971; Wenzel et al., 2002). The magnitude of fO2 increase 661 

is proportional to the freedom CO2 has to leave the system. An open system continuous flux of CO2 662 

increases fO2 higher than that of a closed system (Ganino et al., 2008). The generally higher fO2 observed 663 

in the exoskarn xenoliths may thus be a result of prolonged open system flux of CO2, whereas the syn-664 

magmatic magmatic skarn xenoliths were rapidly processed within the magma. Magmatic skarn xenolith 665 

zone R3b however records a high fO2, comparable to the exoskarns, and additionally mineral phases in 666 

there, such as clinopyroxene, compositionally overlap exoskarn mineral compositions (Fig. 7). These 667 

compositions may be in part due to a lack of melt in this region of the magmatic skarn xenolith, restricting 668 



SiO2 availability, and producing as a result silica-undersaturated mineral compositions such as CaTs 669 

clinopyroxene. 670 

Xenolith Petrogenesis 671 

Protolith 672 

An absence of Mg-rich skarn minerals within the xenoliths (olivine, periclase, merwenite, åkermanite) 673 

and the abundance of wollastonite instead suggests a calcite-limestone protolith for the xenoliths. The 674 

Merapi xenoliths do not match any mineral assemblages produced during magma-dolomite interaction 675 

experiments, instead they closely resemble the results of magma-limestone experiments (e.g. Zarayskiy et 676 

al., 1987: wollastonite, clinopyroxene, garnet). Electron microprobe analyses of calcites (Whitley et al., 677 

2019) are pure calcites with < 0.2 wt% MgO + FeO + SrO, which additionally indicates a pure limestone 678 

protolith in the absence of Mg-rich skarn minerals. Furthermore, local carbonate sampled from 679 

Parangtritis (50 km south of Merapi) is limestone. The progressive chemical zonation within the xenoliths 680 

from “magmatic” to calcic compositions (Fig. 5) shows that the Mg-Fe-Al-bearing phases source these 681 

elements from the host magma, not from a dolomite or marl. 682 

Magmatic Skarn Xenoliths 683 

The abundance of Ca-rich melt inclusions and Ca-rich groundmass glass (Fig. 3) indicate crystallisation 684 

of the main skarn mineralogy of clinopyroxene, plagioclase and wollastonite from a Ca-contaminated 685 

magmatic melt, produced from dissolution of the carbonate protolith (Fig. 9) (c.f. Deegan et al., 2010). 686 

Calcic melt inclusions and matrix glasses were also described from volcanic products of the 2010 687 

eruption of Merapi (Borisova et al., 2013). Thermodynamic modelling suggests formation of Ca-rich 688 

melts via a peritectic reaction of grossular-bearing calc-silicate material with the magma (Borisova et al., 689 

2016). The Ca-rich melt inclusions are spread randomly throughout their host crystals, or less commonly, 690 

along crystal growth zones, showing a primary origin (Roedder, 1984; Goldstein, 2003). Clinopyroxene 691 

compositions in these xenoliths are compositionally distinct from those in the exoskarn xenoliths, most 692 

notably those from the glass zone R4 (Fig. 7), supporting formation from the Ca-rich melt instead of an 693 

origin as incorporated xenocrysts from partially melted exoskarns. Fe-rich ferro-bustamite growths on 694 

some wollastonite crystals is also consistent with crystallisation from this melt, as the glass and core 695 

zones are characterised by FeO-enrichment (Figs. 6, 7). Melt inclusions in wollastonite are not 696 

exclusively comprising CaO and SiO2, but also contain other major element oxides such as K2O, which 697 

can only be derived from the magmatic melt as there no K-bearing phases found in any of the xenoliths 698 

studied. The composition of these melt inclusions cannot be explained by dissolution of wollastonite but 699 

supports the idea that wollastonite crystallized from a Ca-enriched melt. Experimental work at Merapi has 700 

shown the contaminated melt takes up Sr and B from the carbonate protolith (Deegan et al., 2010; 2016a), 701 

which supports the idea of dynamic element exchange between carbonate and the surrounding melt. The 702 



arrows in Fig. 9 show the addition of 10% CaO to the melt, indicating that the melt inclusions record 703 

crystallisation from a melt with up to 20% CaO added. The groundmass glasses retain evidence for up to 704 

10% added CaO, after crystallisation of wollastonite and other minerals. Although whole-rock 705 

compositions at Merapi are basaltic to basaltic-andesite, the lava groundmass glasses, the melt 706 

compositions in contact with the carbonate, and xenolith glasses, are distinctly more felsic (60-76 wt% 707 

SiO2). The melt inclusion CaO concentrations observed in our study (Fig. 9) far exceed (up to 11.3 wt% 708 

CaO) those observed in glasses from calcite-saturated dacite-carbonate experiments of Carter and 709 

Dasgupta (2016) (< 4.3 wt%), confirming their hypothesis that natural systems may be able to assimilate 710 

more carbonate than their closed system experiments indicated. 711 

Skarn minerals that contain melt inclusions and show evidence for crystallisation from a carbonate 712 

contaminated magmatic melt, instead of through metasomatic transfer, are a rare but increasingly 713 

recognised phenomenon (e.g. Fulignati et al., 2001; Bin and Jin-song, 2016). Homogenisation 714 

temperatures of these melt inclusions in the literature (Fulignati et al., 2001; Bin and Jin-song, 2016) 715 

indicate temperatures of 860-1200°C, which are in excess of those typically experienced during 716 

metasomatic skarn formation in contact metamorphic aureoles (< c. 800°C; Meinert, 1992), indicating 717 

direct interaction between a magmatic melt and carbonate. Trapping of melt inclusions in skarn minerals 718 

precipitated from a calcite contaminated quartz diorite melt has been experimentally confirmed (Bin and 719 

Jin-song, 2016), and dacite-carbonate interaction experiments (Carter and Dasgupta, 2016) have been 720 

shown to crystallise wollastonite, in contrast to producing dominantly Ca-rich melt in experiments with 721 

mafic melt compositions (Deegan et al., 2010; Carter and Dasgupta, 2015). 722 

As well as this rare and unique evidence for skarn mineral formation from carbonate contaminated melts, 723 

and therefore exoskarn formation by this process, the magmatic skarn xenoliths also provide insights into 724 

the morphology and cumulate-forming processes at the wall-rock contact at Merapi. Carbonate 725 

assimilation has been shown to form and/or influence the mineralogy of cumulate assemblages; for 726 

example, changes to the mineral chemistry of dunites at the Ioko-Dovyren Intrusion, Russia (Wenzel et 727 

al., 2002), formation of clinopyroxenite xenoliths at Nisyros, Greece (Spandler et al., 2012), and 728 

olivine+clinopyroxene+spinel cumulate xenoliths at Colli Albani (Gaeta et al., 2009; Di Rocco et al., 729 

2012). Reaction between carbonate and magmatic melt increases the stability of clinopyroxene and in 730 

more evolved melts, plagioclase also (e.g. Mollo et al., 2010). This results in a wallrock grading from a 731 

cumulate zone adjacent to the magma body (endoskarn), to skarn assemblages at the limestone contact 732 

(exoskarn). Skarn-derived Ca-rich melts are inferred (Wenzel et al., 2002; Gaeta et al., 2009) to be the 733 

main source of carbonate components contaminating the magmatic melt. Our magmatic skarn xenoliths 734 

are perfect examples of these processes. Zones R1 to R3 comprise the cumulate zone formed under the 735 

influence of carbonate assimilation. Similar to cumulates at Ioko-Dovyren (Wenzel et al., 2002) and Colli 736 

Albani (Gaeta et al., 2009), clinopyroxenes and plagioclase in these zones only show relatively subtle 737 



variations in mineral chemistry from magmatic-derived mineral compositions that reveal their carbonate 738 

contamination origin. The CaO-enriched glass-rich zone R4 captures the carbonate process of the 739 

magmatic melt contamination, and the xenolith cores in some samples preserve very rare instances of the 740 

actual calcite carbonate melt (see Whitley et al., 2019). This carbonate melt has since only been inferred 741 

to occur during other instances of carbonate assimilation (Wenzel et al., 2002; Barnes et al., 2005; Gaeta 742 

et al., 2009), whilst the magmatic skarns at Merapi preserve and demonstrate direct evidence for its 743 

existence. 744 

A syn-magmatic origin for these xenoliths, i.e. formation by direct magma-carbonate contact during 745 

magmatic events such as eruptive periods, is consistent with the presence of glass and additionally the 746 

low pressures of 37-93 MPa (corresponding to < 3.5 km) estimated from fluid inclusion barometry. These 747 

pressures are similar to some pressure estimates derived from re-equilibrated melt inclusions in magmatic 748 

clinopyroxenes at Merapi (Nadeau et al., 2013b; Preece et al., 2014), and they are lower than pressures 749 

estimated for the main pre-eruptive magma chamber or reservoir at Merapi (100-400 MPa, corresponding 750 

to depths of ~4-15 km; Commer et al., 2006; Chadwick et al., 2013; Costa et al., 2013; Preece et al., 751 

2014; Erdmann et al., 2016; Deegan et al., 2016b). This indicates that the fluid inclusions have re-752 

equilibrated during ascent, or have been formed at very shallow crustal pressures. The lack of a ‘re-753 

equilibration tail’ (Hansteen and Klügel 2008) and no evidence for pressures > 100 MPa in our fluid 754 

inclusion dataset suggest re-equilibration is unlikely, and instead is indicative of fluid inclusion formation 755 

in small ephemeral pre-eruptive reservoirs or during magmatic ascent during eruptive periods. 756 

Patchy zoned clinopyroxenes with prominent irregular resorption surfaces (Fig. 7) show that this syn-757 

magmatic carbonate interaction is a dynamic process, under temporarily variable imposed oxygen 758 

fugacity conditions caused by rapid CO2 release (Fig. 14) (c.f. Mollo et al., 2010). Variations in the ability 759 

of this CO2 to migrate from the reaction site (Ganino et al., 2008; Blythe et al., 2015) may cause the 760 

variation in oxygen fugacity across texturally similar samples, and even within xenolith zones. Al, Fe3+-761 

rich clinopyroxene cores and andraditic-rich garnet indicate high initial oxygen fugacity conditions (Figs. 762 

7, 14; Meinert, 2005; Mollo and Vona, 2014), whilst diopside-rich cores indicate high initial carbonate-763 

derived Ca activity in the melt (Zarayskiy et al., 1987). Increasing CO2 release causes clinopyroxene Fe-764 

enrichment in the mantle and rims (Zarayskiy et al., 1987) to higher than observed in magmatic 765 

clinopyroxenes in later stages of xenolith formation (Fig. 7). Fe is additionally concentrated in plagioclase 766 

as An concentrations decrease (Fig. 6). 767 

Although we propose that the magmatic skarn xenoliths reflect crystallisation from a Ca-contaminated 768 

melt, it is interesting to note that their mineralogical zonation still bears strong resemblance to contact 769 

metamorphic zoned bimetasomatic skarns and experimental reconstructions of these, such as produced 770 

during granodiorite-calcite interaction experiments (Zarayskiy et al., 1987). Magmatic skarn xenolith 771 



samples with a garnet + CaTs clinopyroxene zone (zone R3b in Fig. 1) represent the exo/endoskarn 772 

transition in natural skarns, where carbonate-derived elements are transferred to the magmatic system 773 

(clinopyroxene + plagioclase endoskarns, zones R1-R3). In turn, certain magma-derived elements are 774 

transferred to the carbonate protolith forming garnet + wollastonite + Di-Hd/CaTs clinopyroxene 775 

exoskarns (zone R3b and the xenolith cores), reflected also in the chemistry of the individual zones (Fig. 776 

5). 777 

Dissolution of carbonate in high temperature mafic magmatic melts has been experimentally confirmed to 778 

operate on the order of hours (Deegan et al., 2010; Jolis et al., 2013), but mineral equilibration is slower 779 

(c.f. Carter and Dasgupta, 2016). First order constraints on the timescales of carbonate interaction at 780 

Merapi can be tentatively placed using the growth rate of xenolith mineral phases such as clinopyroxenes. 781 

Experimental and measured growth rates for euhedral clinopyroxenes in basaltic to andesitic magmatic 782 

systems are on the order of 109 to 107 cm/s (e.g. Kouchi et al., 1983; Simakin et al., 2003; Orlando et al., 783 

2008; Kilgour et al., 2014). Assuming similar growth rates for the clinopyroxenes in the xenoliths, a 784 

typical 300 µm clinopyroxene in zone R4, which has an entirely different composition to the Merapi 785 

magmatic clinopyroxenes (Fig. 7) and therefore formed uniquely during magma-carbonate interaction, 786 

could have formed in 3.5 to 347 days. Measurements of the growth rate of skarn formation between 787 

granodiorite and calcite, and quartz and brucite marble, in experiments of Zarayskiy et al. (1987) indicate 788 

similar timescales. Although clinopyroxene growth rates are poorly constrained, especially in magma-789 

carbonate systems, it is conceivable that the xenoliths could have formed on shorter timescales, e.g. in the 790 

lead up to and during eruptive periods. The associated CO2 release may then be able to influence eruption 791 

dynamics (c.f. Troll et al., 2012). Future work utilising diffusive timescales would potentially increase the 792 

accuracy of these timescale estimates and aid hazard assessment at Merapi. 793 

In summary, we propose that the magmatic skarn xenoliths are syn-magmatic in origin, forming as a 794 

result of limestone dissolution into a magmatic melt, from which skarn minerals precipitate (Fig. 15). 795 

Localised changes in oxygen fugacity caused by the CO2 released to the fluid phase influenced the 796 

composition of the minerals formed. Variable transfer of Ca from limestone, and magma-derived 797 

elements, form zonations similar to those observed in metasomatic skarns, but at above solidus 798 

temperatures. The composition of the zones is controlled by element transfer between magma and 799 

limestone and the stability and abundance of the major minerals that form in the respective zones. Our 800 

evidence of syn-magmatic magma-carbonate interaction is in agreement with previous studies on Merapi 801 

magma-carbonate interaction (Deegan et al., 2010, 2016a; Troll et al., 2012), at Vesuvius (Blythe et al., 802 

2015; Jolis et al., 2015) and at Colli Albani (Iacono-Marziano et al., 2007; Freda et al., 2011), which all 803 

note the likely very rapid, syn-eruptive timescales of carbonate dissolution and CO2 liberation. If correct, 804 

this process has the potential to enhance eruption explosivity due to external CO2 additions.  805 



Exoskarn Xenoliths 806 

Exoskarn xenoliths contain dominantly Al+Si+Ca-bearing phases, and < 10 wt% FeO+MgO based on 807 

calculated whole rock compositions. Although the high Al could be indicative of a marl protolith, we 808 

believe these samples come from a calcite-bearing protolith with input from magmatically derived 809 

elements, on the basis of calcite oxygen isotopes showing evidence of interaction with magmatic fluids 810 

(Whitley et al., 2019), and the presence of F-Cl-S-rich phases most likely derived from magmatic 811 

volatiles.  812 

The exoskarn xenoliths lack the interstitial glass, melt inclusions and mineralogical zonation of the 813 

magmatic skarn xenoliths, with only a clinopyroxene ± plagioclase reaction rim at the lava contact. Melt 814 

inclusion compositions within these rim clinopyroxenes are indistinguishable from the lava groundmass 815 

glasses (Fig. 9). The core assemblage (garnet + CaTs clinopyroxene + wollastonite + anorthite ± 816 

gehlenite) is distinct from the magmatic skarn xenoliths (wollastonite ± glass ± DiHd clinopyroxene ± 817 

garnet ± anorthite). The much higher fO2 conditions recorded in the clinopyroxenes (Fig. 14) indicate that 818 

these xenoliths experienced a longer period of CO2 flushing than the magmatic skarn xenoliths (c.f. 819 

Ganino et al., 2008). This, coupled with the distinct mineralogy, a lack of glass and a lack of 820 

mineralogical zonation, suggests that the exoskarn xenoliths originate from a contact metamorphic 821 

aureole (exoskarn) around the upper crustal Merapi magma reservoir system (Fig. 15). The dominance of 822 

high temperature anhydrous mineral assemblages indicates that they are sourced proximal to the magma 823 

reservoir. Contact metamorphic aureoles can be extensive in size (Aarnes et al., 2010), therefore we 824 

expect low-temperature distal skarn assemblages to be present at Merapi, but these may not have been 825 

frequently sampled during this study, possibly because of the high temperature ‘skarn shell’ (c.f. Fulignati 826 

et al., 2001; Jolis et al., 2015) being overrepresented in our dataset. 827 

The presence of spinel, as observed in one of our samples (MX99-3s), has been noted in several case 828 

studies on magma-carbonate interaction (e.g. Wenzel et al., 2002; Gaeta et al., 2009; Spandler et al., 829 

2012). For instance, hercynitic spinel is widespread in skarns from the Italian volcanic provinces. Skarns 830 

from the Colli Albani Volcanic District (Italy) contain Al-rich spinel in textural equilibrium with glass, 831 

which was interpreted to reflect melting of calcite and mixing of this melt with the host magma (Gaeta et 832 

al., 2009). Metasomatic development through leaching was invoked to explain the occurrence of banded 833 

forsterite-spinel skarns in ejecta from the 1631 Vesuvius eruption (Pascal et al., 2009). Experimental 834 

work on magma-carbonate interaction with andesitic (Carter and Dasgupta, 2016) and basanitic (Conte et 835 

al., 2009) magmas also produced aluminous spinel. Clearly, the presence of aluminous spinel is a 836 

common characteristic of carbonate assimilation. None of these studies, however, shows the unique 837 

texture and association with gehlenite as in sample MX99-3s, and we classify this sample as exoskarn 838 

(type B) based on the lack of glass and the mineralogical differences to the more common magmatic 839 

skarns at Merapi. 840 



 841 

Volatiles and Metal Transport 842 

The numerous F-Cl-S phases identified in the xenoliths record evidence of interaction with a magmatic-843 

derived volatile phase (MVP; c.f. Nadeau et al., 2010; Preece et al., 2014) during formation of the 844 

xenoliths. Although F-Cl-S-bearing phases indicate the presence of an aqueous fluid, there is no clear 845 

evidence of the role of H2O during xenolith formation. Silicate magma has a limited capacity to dissolve 846 

the excess liberated crustal-derived CO2 and any increase in melt CO2 would strongly reduce the 847 

solubility of H2O (e.g. Tamic et al., 2001), increasing the free H2O available during magma-carbonate 848 

interaction. The xenoliths however contain anhydrous mineral assemblages, and fluid inclusions are two 849 

phase liquid CO2 + vapour CO2 with only very rare small fluid inclusions containing unidentified 850 

daughter crystals. Excess CO2 in the magma causes the typical wollastonite-forming reaction SiO2 + 851 

CaCO3 à CaSiO3 + CO2 to favour the reactants and promote skarn mineral formation. 852 

F-Cl-S-bearing phases are found within both magmatic and exoskarn xenoliths, however they are not 853 

found in every magmatic skarn xenolith sample. In the magmatic skarn xenoliths, they are found in zone 854 

R2 (anhydrite surrounding pyrrhotite ± cubanite), zone R3b (ellestadite) and as interstitial patches the 855 

wollastonite-dominant cores. These patches contain cuspidine, fluorite and the wadalite-like mineral, 856 

whilst anhydrite, apatite, and cotunnite (PbCl2) are found as accessory phases elsewhere in the cores. 857 

Pyrrhotite, cubanite, Fe-oxides and apatite are sometimes found as daughter crystals in melt inclusions. 858 

The presence of fluorine-bearing phases in sample MX1 is closely related to calcite with a melt-like 859 

texture, consistent with fluorine lowering the melting temperature of calcite (Jago and Gittins, 1991; 860 

Gorzkowska et al., 1988a, 1988b; see Whitley et al., 2019 for more detail). Chlorine and limited data for 861 

F in the Ca-rich xenolith core interstitial glass and melt inclusions do not show elevated concentrations 862 

compared to the lavas. This suggests that the volatile-rich minerals are unlikely to have precipitated 863 

directly from the melt, like the wollastonite, clinopyroxene and plagioclase, but are instead the result of 864 

interaction with this magmatic-derived volatile phase. In sample MX1, the melt-like calcite is in places 865 

replaced by the wadalite-like mineral, which retains the calcite texture (Fig. 3). Instances where garnet is 866 

replaced by this wadalite-like phase may be from reaction with magmatic HCl (e.g. Fujita et al., 2001). 867 

Calcite additionally reacts with fluorine to form fluorite as distinct crystal phases, and as radial growths 868 

around a vesicle touching calcite (Fig. 3A-B), suggesting fluorine is an important component of the 869 

volatile phase. 870 

The exoskarn xenoliths additionally contain phases enriched in magmatic-derived volatiles. For instance, 871 

ellestadite is found throughout the xenoliths, and rare pyrrhotite and anhydrite are present in some 872 

samples, but the majority of volatile-rich phases (cuspidine, anhydrite, ellestadite, fluorite, spurrite) are 873 

concentrated in the reaction rims around residual large calcite crystals. A magmatic fluid source for these 874 



mineral phases is evidenced by calcite oxygen isotopic shifts towards magmatic values (Whitley et al., 875 

2019) and elevated trace element LREE/HREE in these calcites compared to marine limestone 876 

(Supplementary Fig. S5; Supplementary Table S1). 877 

The presence of the magmatic-derived volatile phase within the xenoliths indicates potential for economic 878 

metal mineralisation beneath Merapi and similar carbonate-hosted arc volcanoes in the region. Oxidised 879 

silicic calc-alkaline arc intrusions are frequently associated with porphyry Cu, Zn, Pb and Fe deposits 880 

(Meinert, 2005). Ubiquitous calc-silicate xenoliths at Merapi provide evidence for skarn formation, and 881 

garnet and clinopyroxene compositions in these xenoliths overlap those characteristic of Cu, Zn and Fe 882 

skarns (Meinert, 1992). Although these economic metals are rare in our studied xenoliths, our data 883 

suggest that ongoing mineralisation may occur at depth beneath Merapi within the upper part of the 884 

plumbing system, during the later stages of magmatic evolution at Merapi.    885 

Sulphur-bearing arc magmas are important sources of Cu, and Cu transport has been noted across the 886 

Sunda arc (Nadeau et al., 2010; Agangi and Reddy, 2016). Globules of Cu-rich sulphide melt are found in 887 

the Merapi lavas recording evidence of Cu-rich sulphide melts exsolving from primitive magma, which 888 

are later dissolved in the magmatic-derived volatile phase and distributed through more evolved magmas, 889 

and potentially into the host-rock system (Nadeau et al., 2010, 2013a). As previously discussed, the 890 

xenoliths are evidence of interaction between this Cu-S-enriched fluid phase and carbonate. In the 891 

magmatic skarn xenoliths, Cu is found as cubanite and as a minor constituent in pyrrhotite in zone R2, 892 

which are generally surrounded by anhydrite. Disproportionation of SO2 into sulphide and sulphate is a 893 

potential mineralisation process in carbonate and calcium-bearing rocks, and can occur in the timescale of 894 

hours (Mavrogenes and Blundy, 2017), and may have formed the coexisting pyrrhotite + cubanite + 895 

anhydrite in the xenoliths. Within the magmatic skarn xenolith cores, Cu is rare, only found as a cubanite 896 

inclusion in a plagioclase hosted melt inclusion, and as a minor constituent in pyrrhotite inclusions within 897 

CaTs-rich clinopyroxene cores. The relative abundance of Cu in zone R2 compared to the core (and 898 

exoskarn xenoliths) shows limited transfer of the magmatic-derived volatile phase into the xenolith cores, 899 

and/or conditions unfavourable for Cu deposition. Oxygen fugacity is estimated to be similar to typical 900 

oxidised arc magma conditions in zone R2 (~ΔNNO + 1), producing favourable conditions for sulphur 901 

transport and deposition (e.g. Hattori, 2018). The higher oxygen fugacity estimated in some xenolith cores 902 

by the presence of anhydrite and CaTs clinopyroxene cores (≤ ΔNNO + 4) is potentially too high for Cu 903 

transfer, as an upper limit to mineralisation at the hematite-magnetite (~ΔNNO + 4) buffer may exist for 904 

porphyry copper deposition (Sun et al., 2013). The large volumes of CO2 released during decarbonation 905 

of the original carbonate which causes this fO2 increase, combined with magmatic CO2, strongly reduces 906 

Cu solubility in the fluid phase (van Hinsberg et al., 2016; Kokh et al., 2017). Vesicles are found within 907 

zones proximal to the host lava and the core, suggesting that a high XCO2 in zone R2 may promote the 908 

deposition of Cu before it can be transferred fully into the xenolith core. Xenolith formation temperatures 909 



are additionally higher than those estimated for the bulk of Cu and Au deposition in copper porphyry 910 

systems (starting < 700°C and dominantly < 400°C) where fluid immiscibility produces coexisting 911 

vapour-rich and saline fluid inclusions (Sillitoe, 2010), which are not observed in the xenoliths studied 912 

here. 913 

Our model, where carbonate is assimilated into a melt from which skarn minerals precipitate (magmatic 914 

skarns), has been discussed as a process occurring in many Chinese Cu-Fe-Au-deposits (e.g. Bin and Jin-915 

song, 2016). The xenoliths of this study demonstrate that Cu-Fe sulphides can be formed during this 916 

process, and may be capable, at least in part, of producing metal sulphide deposits. Magnetite, hematite 917 

and Fe-enrichment in some silicate phases may additionally indicate iron oxide ore potential. Whilst we 918 

only have xenoliths that show Cu deposition proximal to the Merapi magma reservoir (no low 919 

temperature hydrous skarn phases observed), Cu deposition may occur at greater distances into the 920 

contact aureole. Percolation of a Cu-bearing magmatic volatile phase through the carbonate over a longer 921 

period of time, on cooling when large amounts of magmatic fluids are released, has potential to promote 922 

sulphide and Fe-oxide deposition, enhancing ore forming potential such as observed in copper porphyry 923 

systems (e.g. Landtwing et al., 2005; Sillitoe, 2010). 924 

Implications of Carbonate Interaction for the Merapi Magmatic 925 

System 926 

Xenocryst Cargo 927 

Calc-silicate xenoliths are ubiquitous in Merapi eruptive deposits, showing that magma-carbonate 928 

interaction is an on-going process at Merapi. The amount of interaction is debated in the literature, with 929 

estimates of mixing up to 40% recorded in some samples on the basis of isotopic modelling (Troll et al., 930 

2013, Borisova et al., 2013, 2016). Although our study cannot elaborate on estimating the volume of 931 

carbonate that interacts with Merapi magmas, our data suggests that calc-silicate derived crystals 932 

(xenocrysts) may be more difficult to recognise in erupted magmatic deposits than previously appreciated, 933 

as we discuss below. 934 

Incorporation of skarn-derived minerals into the Merapi magmatic system has been shown previously 935 

(Chadwick et al. 2007; Deegan et al., 2010; Borisova et al., 2016; Deegan et al., 2016b). Chadwick et al. 936 

(2007) suggested that 6 to 12 % of crystalline material at Merapi may be crustal derived based on elevated 937 
87Sr/86Sr plagioclase compositions and distinct major element plagioclase chemistry. Similarly, 938 

thermodynamic-geochemical models for the 2010 Merapi eruption are consistent with the incorporation 939 

of 18% of crustal calc-silicate material (Borisova et al., 2016). Based on a detailed oxygen isotope study, 940 

Borisova et al. (2016) were even able to distinguish two stages of magma-crust interaction, resulting in 941 

distinct xenocryst plagioclase δ18O values related to either high-T altered crustal rocks depleted in 18O or 942 
18O-enriched assimilated carbonate material. . Our data show that both plagioclase and clinopyroxene 943 



compositions are produced during magma carbonate interaction in zones R1 and R2 that completely 944 

overlap magmatic compositions in respect to major elements (Figs. 6, 7). These minerals are formed as a 945 

result of Ca transfer from carbonate to the melt, such as occurs within endoskarns. Increased stability of 946 

clinopyroxene and plagioclase in carbonate contaminated melts has been experimentally confirmed across 947 

a range of magmatic compositions (e.g. Iacono-Marziano et al., 2007; Mollo et al., 2010; Carter and 948 

Dasgupta, 2016), and with rhyoliteMELTS (version 1.2; Gualda et al., 2012; Ghiorso, 2016) which 949 

successfully reproduced Ca-contaminated xenolith glass and basaltic andesite compositions. Mineral 950 

compositions that are distinct from those found in the magma occur from zone R3 to the xenolith core, 951 

but to our knowledge, no highly CaTs-enriched, skarn derived clinopyroxenes have yet been detected in 952 

the magmatic products. Although Al-rich clinopyroxenes (up to 8 wt%) are discussed in Costa et al. 953 

(2013), and were attributed to higher pressure magmatic crystallisation, we have found none in our 954 

literature data synthesis that compositionally match our specific skarn clinopyroxenes. Clinopyroxene 955 

compositions matching zones R3 and R4, which lie on the DiHd join and are volumetrically more 956 

abundant, are also exceedingly rare in the lavas, with only 3 out of 431 analyses reported in Preece (2014) 957 

overlapping these compositions. A lack of these compositions may be due to a combination of a 958 

volumetrically smaller amount of ‘exotic’ compositions in the xenolith cores compared to magmatic-type 959 

compositions in the xenolith endoskarn rims. Alternatively, dissolution into the magma, and/or re-960 

equilibration with the magma might also be an option. Indeed, Carter and Dasgupta (2016) showed that in 961 

carbonate assimilation experiments, within 48 hours, initially compositionally variable clinopyroxenes 962 

had equilibrated to a diopsidic composition. Some crystals that are a result of magma-carbonate 963 

interaction may therefore be ‘cryptic’ and distinguishable from magmatic crystals only on the basis of 964 

their isotope or trace element chemistry (e.g. Chadwick et al., 2007; Borisova et al., 2016). Another 965 

consequence of this finding is that clinopyroxene thermobarometry may include carbonate-interaction 966 

pressures and temperatures in their output. Although in situ oxygen isotope evidence for magma-967 

carbonate interaction in Merapi clinopyroxene shows limited crustal additions to the bulk of the crystals 968 

(Deegan et al., 2016b), a small number of the clinopyroxenes analysed by Deegan et al. (2016b) have 969 

anomalously high oxygen isotope ratios (δ18O values of up to c. 7 ‰), which may be a result of magma-970 

carbonate interaction. Furthermore, studies utilising in situ isotope analysis of other mineral phases such 971 

as plagioclase for Sr (Chadwick et al., 2007) and oxygen (Borisova et al., 2016) have demonstrated the 972 

presence of xenocrysts and contaminated mineral zones, consistent with the usually shallow 973 

crystallisation of intermediate plagioclase (e.g. Chadwick et al., 2013). Whilst our plagioclase data for the 974 

glass-rich zone R4 have high-FeO that overlaps some literature values for plagioclase in lavas, and 975 

therefore may suggest that high-FeO plagioclase in lavas might be xenocrystic, this is more likely to be a 976 

result of disequilibria due to quenching of the xenolith glass. For example, FeO in plagioclase increases 977 

with cooling rate, producing plagioclase with up to 2.33 wt% FeO in 15°C/min experiments (Mollo et al., 978 

2011). The zone R4 plagioclase crystals contain up to 1.7 wt% FeO, and similarly wollastonite crystals in 979 



zone R4 have thin Fe-rich ferro-bustamite overgrowths, indicating that cooling rate may have the more 980 

pronounced impact on Fe-rich mineral rims in the xenoliths. 981 

Magma Composition 982 

Much of the experimental work on magma-carbonate interaction focuses on reproducing the highly 983 

potassic, silica-undersaturated compositions erupted at volcanoes such as Vesuvius and Colli Albani 984 

(e.g. Iacono-Marziano et al., 2007; Mollo et al., 2010; Jolis et al., 2013). Strong silica-undersaturation 985 

from carbonate assimilation in Italian volcanoes is a result of the increased stability of clinopyroxene 986 

taking up SiO2, coupled with the redissolution of olivine, which drives melts towards silica 987 

undersaturation (e.g. Mollo et al., 2010). Recent Merapi lava whole rock compositions range from ~50 to 988 

68 wt% SiO2, and the interstitial glasses within these record pre-eruptive melts with 60-75 wt% SiO2 (Fig. 989 

9). These would not be driven to silica-undersaturation by an increase in clinopyroxene or plagioclase 990 

precipitation due to these minerals containing lower SiO2 concentrations. Whole-rock compositions 991 

instead traverse a differentiation vector defined by that of the typical arc magma plagioclase and 992 

clinopyroxene differentiation assemblage (Fig. 9; c.f. Handley et al., 2014), although at a slightly elevated 993 

CaO. It is interesting to note however, that while the overall major element chemistry at Merapi is not 994 

dominated by a carbonate assimilation signature, very rare, highly localised phonolitic leucite-bearing 995 

silica-undersaturated melts have been identified in some Merapi calc-silicate xenoliths by Brouwer (1928, 996 

1945). These demonstrate that these exotic compositions can be formed at Merapi during very localised 997 

periods of extremely high levels of carbonate interaction, but the quantities of melt generated are 998 

volumetrically negligible. 999 

In addition to the effects of crystal fractionation on the major element chemistry, lower temperature, high-1000 

SiO2 melts such as those represented by the groundmass lava glass compositions at Merapi have a lower 1001 

capacity to assimilate material than hotter mafic melts (e.g. Wenzel et al., 2002; Barnes et al., 2005; 1002 

Gaeta et al., 2009; Jolis et al., 2015), and instead favour formation of skarn minerals (e.g. wollastonite) 1003 

that cause only small apparent changes to melt compositions (Spandler et al., 2012; Carter and Dasgupta, 1004 

2016). These minerals may become trapped as a cumulate or exoskarn layer (see above, e.g. Gaeta et al., 1005 

2009; Di Rocco et al., 2012) at the wall rock contact, and only have a small impact on the melt 1006 

composition during skarn recycling and xenocryst incorporation (e.g. Di Rocco et al., 2012; Jolis et al., 1007 

2015). A discrepancy between limited whole-rock major element evidence for magma-carbonate 1008 

interaction (c.f. Costa et al., 2013; Handley et al., 2014) and high levels of interaction recorded in 1009 

multiple isotope systems (Chadwick et al., 2007; Troll et al., 2013; Borisova et al., 2013, 2016), may thus 1010 

be due a combination of the lower capacity of the magmatic melt to incorporate carbonate material, and a 1011 

relatively limited mobility of Ca in these relatively low temperature, high SiO2 Merapi pre-eruptive melts 1012 

compared to the higher mobilities usually displayed by isotopes of trace elements (e.g. Sr, B). This 1013 

decoupling has been observed in high temperature (1200°C) carbonate interaction experiments (Deegan et 1014 



al., 2010, 2016a; Blythe et al., 2015). Moreover, quantitative modelling of magma-carbonate interaction 1015 

demonstrated that low-to-moderate amounts of carbonate assimilation cause only limited changes to the 1016 

major element chemistry of the magma (Spandler et al., 2012). Whereas there is no doubt that magma-1017 

carbonate interaction is an important petrogenetic process at Merapi, the degree of major element 1018 

compositional change may not be prominent enough to distinguish the modified magma from the overall 1019 

spectrum of Merapi magmas (c.f. Spandler et al., 2012). 1020 

Merapi Volatile Budget 1021 

Carbonate assimilation at Merapi has been shown to have a strong impact on the composition of the gases 1022 

released to the atmosphere. Release of crustal derived CO2 has been proposed by identification of 1023 

elevated δ13C and He isotopes in fumarole gases (Troll et al., 2012, 2013 and references therein). An 1024 

increase in these isotopic tracers has additionally been observed during eruptive periods, attributed to a 1025 

positive feedback loop of wall rock fracturing during eruption, and increased CO2 liberation from magma-1026 

carbonate interaction on this increased surface area (Deegan et al., 2011; Troll et al., 2012; Carr et al., 1027 

2018). Our work shows that the magmatic skarn xenoliths may represent snapshots of this syn-magmatic 1028 

carbonate interaction, and therefore eruptive flare-ups could potentially be influenced by temporal 1029 

increases in carbonate interaction (c.f. Troll et al., 2012; Carr et al., 2018). The 2010 eruption was 1030 

preceded by an influx of hotter volatile-rich magma that exceeded the capacity of the shallow storage 1031 

system (Costa et al., 2013; Preece et al., 2016; Carr et al., 2020). This increased heat and volume would 1032 

have caused both increased thermal decarbonation and fracturing, which could penetrate deeper into the 1033 

bedrock. A positive feedback would then occur, where increased decarbonation promotes a decrease in 1034 

water solubility, producing bubbles and more explosive behaviour, promoting more fracturing, resulting 1035 

in temporal increases in carbonate interaction (Deegan et al., 2011; Troll et al., 2012; Carr et al., 2018; 1036 

2020). Dome instability from weakened fractured/altered wall-rock could also contribute to magmatic 1037 

overpressure through increasing fracturing, and a resulting larger surface area of the carbonate available 1038 

to react (Mollo et al., 2012). In the magmatic skarn xenoliths, residual calcite is only present in trace 1039 

quantities, and the δ13C composition of these calcites are exceptionally negative (down to -29 ‰), 1040 

demonstrating extremely efficient decarbonation in the magmatic skarn xenoliths (Whitley et al., 2019). It 1041 

is unlikely that this is exclusive to Merapi, and indeed, temporal increases in carbonate assimilation 1042 

increasing explosivity has been proposed elsewhere e.g. at Colli Albani (Freda et al., 2011) and Vesuvius 1043 

(Jolis et al., 2015). CO2 release is not restricted to just syn-magmatic carbonate interaction, and 1044 

decarbonation reactions in the exoskarn additionally add to the CO2 budget. The current CO2 output at 1045 

Merapi compared to estimated contact metamorphic aureole volumes around a Merapi reservoir 1046 

demonstrate that this CO2 release is rapid, on the timescales of just thousands of years (Whitley et al., 1047 

2019). When considering volcanoes that interacted with crustal carbonate, at present and in the geological 1048 



past (c.f. Mason et al., 2017; Carter and Dasgupta, 2018), CO2 release such as evidenced at Merapi may 1049 

have the potential to modify long term climatic trends.  1050 

CONCLUSIONS 1051 

A detailed mineralogical, petrological and geochemical study of a range of calc-silicate (skarn-type) 1052 

xenoliths from Merapi volcano shows that two distinct types of xenoliths are present; magmatic skarn 1053 

xenoliths that record syn-magmatic magma-carbonate interaction that preserves abundant CaO-rich glass, 1054 

and fragments of the metasomatic exoskarn aureole around the Merapi magma reservoir, respectively. 1055 

Thermobarometry indicates that the CaO-rich glass-bearing magmatic skarn xenoliths formed at ~850°C. 1056 

Fluid inclusions record shallow pressures of < 100 MPa, corresponding to depths < 3.7 km. These 1057 

xenoliths are the physical representation of carbonate entrained during eruptive events, which we interpret 1058 

to increase eruption intensity during rapid decarbonation. The disaggregated nature of some of these 1059 

xenoliths, and the similarity in the geochemistry of lava and some xenolith minerals, indicate that skarn-1060 

derived xenocrysts may be difficult to recognise at Merapi. Experimental comparisons and 1061 

thermodynamic modelling indicate formation temperatures of 510 to 910°C for the range of mineralogies 1062 

shown in the metasomatic exoskarn xenoliths. A newly developed oxybarometric model indicates a wide 1063 

range of fO2 conditions during xenolith formation. Magmatic skarn xenoliths are predominantly formed 1064 

around the NNO buffer, similar to magmatic values, whilst the cores of these xenoliths can reach values 1065 

above the HM buffer in the presence of an increased amount of newly released CO2. Protracted periods of 1066 

CO2 flushing caused conditions predominantly above the NNO buffer during exoskarn formation, 1067 

covering the full range between NNO and air. High fO2 in both xenolith types promoted formation of 1068 

andradite garnet and highly aluminous clinopyroxene compositions. A magmatic volatile phase present at 1069 

Merapi reacts with the xenoliths to form rare Ca-Al-Si-F-Cl phases such as cuspidine, ellestadite and 1070 

wadalite-like phases. Evidence of xenolith formation during eruptive timescales demonstrates that 1071 

magma-carbonate interaction and subsequent CO2 release could affect eruption intensity, as recently 1072 

suggested for Merapi and similar carbonate-hosted volcanoes elsewhere. In addition, copper and 1073 

occasionally Fe (and likely other associated elements of economic value such as Zn) are carried within 1074 

this fluid and are found concentrated in the outer shells of some of the xenoliths, indicating potential for 1075 

ongoing skarn-type mineralisation at depth beneath Merapi and similar volcanoes within carbonate 1076 

basement worldwide. 1077 

ACKNOWLEDGEMENTS 1078 

We thank Barbara Mader and Peter Appel (Kiel University) for assistance with microprobe analyses, 1079 

Petra Herms (Kiel University) for advice about fluid inclusion analysis, Vladimir Zholobenko (Keele 1080 



University) for assistance with Raman analysis and Luke Hepworth for additional calcite EMPA analyses. 1081 

Peter Greatbatch’s and David Wilde’s (Keele University) thin section preparation skills are greatly 1082 

appreciated. We also thank Dorota Środek (University of Silesia) for discussion about the unusual skarn 1083 

minerals. Massimio d’Antonio and Anastassia Borisova are thanked for providing constructive reviews 1084 

that helped to improve the manuscript, and we also thank Gerhard Wörner for editorial handling. 1085 

Financial support from NERC (grant IMF620/0517), Keele University, the Keele Postgraduate 1086 

Association, and the Swedish Research Council is gratefully acknowledged. 1087 

REFERENCES 1088 
Aarnes, I., Svensen, H., Connolly, J .A. D. & Podladchikov, Y. Y. (2010). How contact metamorphism 1089 
can trigger global climate changes: Modelling gas generation around igneous sills in sedimentary basins. 1090 
Geochimica et Cosmochimica Acta 74, 7179–7195. 1091 

Agangi, A. & Reddy, S. M. (2016). Open-system behaviour of magmatic fluid phase and transport of 1092 
copper in arc magmas at Krakatau and Batur volcanoes, Indonesia. Journal of Volcanology and 1093 
Geothermal Research 327, 669–686. 1094 

Aiuppa, A., Fischer, T. P., Plank, T., Robidoux, P. & Di Napoli, R. (2017). Along-arc, inter-arc and arc-1095 
to-arc variations in volcanic gas CO+/S? ratios reveal dual source of carbon in arc volcanism. Earth-1096 
Science Reviews 168, 24–47. 1097 

Anderson, A. (1973). The before-eruption water content of some high-alumina magmas. Bulletin 1098 
Volcanologique 37, 530–552. 1099 

Anderson, A. T. (1974). Evidence for a picritic, volatile-rich magma beneath Mt. Shasta, California. 1100 
Journal of Petrology 15, 243–267. 1101 

Andreastuti, S., Alloway, B. & Smith, I. (2000). A detailed tephrostratigraphic framework at Merapi 1102 
Volcano, Central Java, Indonesia: implications for eruption predictions and hazard assessment. Journal of 1103 
Volcanology and Geothermal Research 100, 51–67. 1104 

Arai, H. (2010). A function for the R programming language to recast garnet analyses into end-members: 1105 
Revision and porting of Muhling and Griffin’s method. Computers & Geosciences 36, 406–409. 1106 

Barnes, C. G., Prestvik, T., Sundvoll, B. & Surratt, D. (2005). Pervasive assimilation of carbonate and 1107 
silicate rocks in the Hortavær igneous complex, north-central Norway. Lithos 80, 179–199. 1108 

Berndt, J., Koepke, J. & Holtz, F. (2005). An experimental investigation of the influence of water and 1109 
oxygen fugacity on differentiation of MORB at 200 MPa. Journal of Petrology 46, 135–167. 1110 

Bin, Z. & Jin-song, Z. (2016). The main features of magmatic skarns and their formation mechanism. 1111 
AshEse Journal of Engineering 2, 22–65. 1112 

Blythe, L. S., Deegan, F. M., Freda, C., Jolis, E. M., Masotta, M., Misiti, V., Taddeucci, J. & Troll, V. R. 1113 
(2015). CO+ bubble generation and migration during magma–carbonate interaction. Contributions to 1114 
Mineralogy and Petrology 169, 1–16. 1115 



Bolio-Arceo, H. & Glasser, F. P. (1990). Formation of spurrite, Ca5(SiO4)2CO3. Cement and Concrete 1116 
Research 20, 301–307. 1117 

Borisova, A. Y., Gurenko, A. A., Martel, C., Kouzmanov, K., Cathala, A., Bohrson, W. A., Pratomo, I. & 1118 
Sumarti, S. (2016). Oxygen isotope heterogeneity of arc magma recorded in plagioclase from the 2010 1119 
Merapi eruption (Central Java, Indonesia). Geochimica et Cosmochimica Acta 190, 13–34. 1120 

Borisova, A. Y., Martel, C., Gouy, S., Pratomo, I., Sumarti, S., Toutain, J.-P., Bindeman, I. N., de 1121 
Parseval, P. & Métaxian, J.-P. (2013). Highly explosive 2010 Merapi eruption: evidence for shallow-level 1122 
crustal assimilation and hybrid fluid. Journal of Volcanology and Geothermal Research 261, 193–208. 1123 

Borisova, A. Y., Toutain, J.-P., Dubessy, J., Pallister, J., Zwick, A. & Salvi, S. (2014). H2O-CO2-S fluid 1124 
triggering the 1991 Mount Pinatubo climactic eruption (Philippines). Bulletin of Volcanology 76, 800. 1125 

Brouwer, H. (1928). Production of Trachyte and Phonolite from Pyroxene Andesitic Magma Associated 1126 
with Limestone. The Journal of Geology 36, 545–548. 1127 

Brouwer, H.A. (1945). The association of alkali rocks and metamorphic limestone in a block ejected by 1128 
the volcano Merapi (Java). Koninklijke Nederlandse Akademie van Wetenschappen. 1129 

Büttner, S.H. (2012). Rock Maker: an MS Excel™ spreadsheet for the calculation of rock compositions 1130 
from proportional whole rock analyses, mineral compositions, and modal abundance. Mineralogy and 1131 
Petrology 104, 129–135. 1132 

Camus, G., Gourgaud, A., Mossand-Berthommier, P.-C. & Vincent, P.-M. (2000). Merapi (Central Java, 1133 
Indonesia): an outline of the structural and magmatological evolution, with a special emphasis to the 1134 
major pyroclastic events. Journal of Volcanology and Geothermal Research 100, 139–163. 1135 

Carr, B.B., Clarke, A.B. & de’ Michieli Vitturi, M. (2018). Earthquake induced variations in extrusion 1136 
rate: A numerical modeling approach to the 2006 eruption of Merapi Volcano (Indonesia). Earth and 1137 
Planetary Science Letters 482, 377–387. 1138 

Carr, B. B., Clarke, A. B. & de’ Michieli Vitturi, M. (2020). Volcanic conduit controls on effusive-1139 
explosive transitions and the 2010 eruption of Merapi Volcano (Indonesia). Journal of Volcanology and 1140 
Geothermal Research 392, 106767. 1141 

Carroll, M. R. & Rutherford, M. J. (1987). The stability of igneous anhydrite: experimental results and 1142 
implications for sulfur behavior in the 1982 El Chichon trachyandesite and other evolved magmas. 1143 
Journal of Petrology 28, 781–801. 1144 

Carter, L. B. & Dasgupta, R. (2018). Decarbonation in the Ca-Mg-Fe carbonate system at mid-crustal 1145 
pressure as a function of temperature and assimilation with arc magmas–Implications for long-term 1146 
climate. Chemical Geology 492, 30–48. 1147 

Carter, L. B. & Dasgupta, R. (2015). Hydrous basalt–limestone interaction at crustal conditions: 1148 
Implications for generation of ultracalcic melts and outflux of CO+ at volcanic arcs. Earth and Planetary 1149 
Science Letters 427, 202–214. 1150 

Carter, L. B. & Dasgupta, R. (2016). Effect of melt composition on crustal carbonate assimilation: 1151 
Implications for the transition from calcite consumption to skarnification and associated CO+ degassing. 1152 
Geochemistry, Geophysics, Geosystems 17, 3893–3916. 1153 



Chadwick, J. P., Troll, V. R., Ginibre, C., Morgan, D., Gertisser, R., Waight, T. E. & Davidson, J. P. 1154 
(2007). Carbonate assimilation at Merapi Volcano, Java, Indonesia: insights from crystal isotope 1155 
stratigraphy. Journal of Petrology 48, 1793–1812. 1156 

Chadwick, J. P., Troll, V. R., Waight, T. E., van der Zwan, F. M. & Schwarzkopf, L. M. (2013). 1157 
Petrology and geochemistry of igneous inclusions in recent Merapi deposits: a window into the sub-1158 
volcanic plumbing system. Contributions to Mineralogy and Petrology 165, 259–282. 1159 

Charlu, T. V., Newton, R. C. & Kleppa, O. J. (1981). Thermochemistry of synthetic Ca+Al+SiO@ 1160 
(gehlenite)-Ca+MgSi+O@ (åkermanite) melilites. Geochimica et Cosmochimica Acta 45, 1609–1617. 1161 

Clocchiatti, R., Joron, J. L., Kerinec, F. & Treuil, M. (1982). Quelques données préliminaires sur la lave 1162 
du dôme actuel du volcan Mérapi (Java, Indonésie) et sur ses enclaves. Comptes rendus de l’Académie 1163 
des Sciences Paris 295, 817–822. 1164 

Commer, M., Helwig, S. L., Hördt, A., Scholl, C. & Tezkan, B. (2006). New results on the resistivity 1165 
structure of Merapi Volcano (Indonesia), derived from three-dimensional restricted inversion of long-1166 
offset transient electromagnetic data. Geophysical Journal International 167, 1172–1187. 1167 

Conte, A. M., Dolfi, D., Gaeta, M., Misiti, V., Mollo, S. & Perinelli, C. (2009). Experimental constraints 1168 
on evolution of leucite-basanite magma at 1 and 10-4 GPa: implications for parental compositions of 1169 
Roman high-potassium magmas. European Journal of Mineralogy 21, 763-782. 1170 

Cortés, J.A., Wilson, M., Condliffe, E. & Francalanci, L. (2006). The occurrence of forsterite and highly 1171 
oxidizing conditions in basaltic lavas from Stromboli volcano, Italy. Journal of Petrology 47, 1345–1373. 1172 

Costa, F., Andreastuti, S., Bouvet de Maisonneuve, C. & Pallister, J. S. (2013). Petrological insights into 1173 
the storage conditions, and magmatic processes that yielded the centennial 2010 Merapi explosive 1174 
eruption. Journal of Volcanology and Geothermal Research 261, 209–235. 1175 

Danyushevsky, L., Della-Pasqua, F. & Sokolov, S. (2000). Re-equilibration of melt inclusions trapped by 1176 
magnesian olivine phenocrysts from subduction-related magmas: petrological implications. Contributions 1177 
to Mineralogy and Petrology 138, 68–83. 1178 

de Capitani, C. & Petrakakis, K. (2010). The computation of equilibrium assemblage diagrams with 1179 
Theriak/Domino software. American Mineralogist 95, 1006–1016. 1180 

Deegan, F. M., Troll, V. R., Freda, C., Misiti, V. & Chadwick, J. P. (2011). Fast and furious: crustal CO+ 1181 
release at Merapi volcano, Indonesia. Geology Today 27, 63–64. 1182 

Deegan, F. M., Troll, V. R., Freda, C., Misiti, V., Chadwick, J. P., McLeod, C. L. & Davidson, J. P. 1183 
(2010). Magma–carbonate interaction processes and associated CO+ release at Merapi Volcano, 1184 
Indonesia: insights from experimental petrology. Journal of Petrology 51, 1027–1051. 1185 

Deegan, F. M., Troll, V. R., Whitehouse, M. J., Jolis, E. M. & Freda, C. (2016a). Boron isotope 1186 
fractionation in magma via crustal carbonate dissolution. Scientific Reports 6, 30774. 1187 

Deegan, F. M., Whitehouse, M. J., Troll, V. R., Budd, D. A., Harris, C., Geiger, H. & Hålenius, U. 1188 
(2016b). Pyroxene standards for SIMS oxygen isotope analysis and their application to Merapi volcano, 1189 
Sunda arc, Indonesia. Chemical Geology 447, 1–10. 1190 



Deer, W. A., Howie, R. A. & Zussman, J. (1997). Rock-Forming Minerals. Single-Chain silicates, 1191 
volume 2A, 2nd edition. The Geological Society, London, 680 pp. 1192 

Del Moro, S., Renzulli, A. & Tribaudino, M. (2011). Pyrometamorphic processes at the magma–1193 
hydrothermal system interface of active volcanoes: Evidence from buchite ejecta of Stromboli (Aeolian 1194 
Islands, Italy). Journal of Petrology 52, 541–564. 1195 

Devine, J. D., Gardner, J. E., Brack, H. P., Laynet, G. D. & Rutherford, M. J. (1995). Comparison of 1196 
microanalytical methods for estimating H+O contents of silicic volcanic glasses. American Mineralogist 1197 
80, 319–328. 1198 

Di Rocco, T., Freda, C., Gaeta, M., Mollo, S. & Dallai, L. (2012). Magma chambers emplaced in 1199 
carbonate substrate: petrogenesis of skarn and cumulate rocks and implications for CO+ degassing in 1200 
volcanic areas. Journal of Petrology 53, 2307–2332. 1201 

Droop, G. (1987). A general equation for estimating Fe3# concentrations in ferromagnesian silicates and 1202 
oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine 51, 431–435. 1203 

Erdmann, S., Martel, C., Pichavant, M., Bourdier, J.-L., Champallier, R., Komorowski, J.-C. & Cholik, N. 1204 
(2016). Constraints from phase equilibrium experiments on pre-eruptive storage conditions in mixed 1205 
magma systems: a case study on crystal-rich basaltic andesites from Mount Merapi, Indonesia. Journal of 1206 
Petrology 57, 535–560. 1207 

Erdmann, S., Martel, C., Pichavant, M. & Kushnir, A. (2014). Amphibole as an archivist of magmatic 1208 
crystallization conditions: problems, potential, and implications for inferring magma storage prior to the 1209 
paroxysmal 2010 eruption of Mount Merapi, Indonesia. Contributions to Mineralogy and Petrology 167, 1210 
1016. 1211 

Feig, S. T., Koepke, J. & Snow, J. E. (2006). Effect of water on tholeiitic basalt phase equilibria: an 1212 
experimental study under oxidizing conditions. Contributions to Mineralogy and Petrology 152, 611–1213 
638. 1214 

Feig, S. T., Koepke, J. & Snow, J. E. (2010). Effect of oxygen fugacity and water on phase equilibria of a 1215 
hydrous tholeiitic basalt. Contributions to Mineralogy and Petrology 160, 551–568. 1216 

Freda, C., Gaeta, M., Giaccio, B., Marra, F., Palladino, D. M., Scarlato, P. & Sottili, G. (2011). CO+-1217 
driven large mafic explosive eruptions: the Pozzolane Rosse case study from the Colli Albani Volcanic 1218 
District (Italy). Bulletin of Volcanology 73, 241–256. 1219 

Freise, M., Holtz, F., Nowak, M., Scoates, J. S. & Strauss, H. (2009). Differentiation and crystallization 1220 
conditions of basalts from the Kerguelen large igneous province: an experimental study. Contributions to 1221 
Mineralogy and Petrology 158, 505. 1222 

Frezzotti, M.-L., Andersen, T., Neumann, E.-R. & Simonsen, S. L. (2002). Carbonatite melt–CO+ fluid 1223 
inclusions in mantle xenoliths from Tenerife, Canary Islands: a story of trapping, immiscibility and fluid–1224 
rock interaction in the upper mantle. Lithos 64, 77–96. 1225 

Frezzotti, M.-L., Peccerillo, A., Zanon, V. & Nikogosian, I. (2004). Silica-rich melts in quartz xenoliths 1226 
from Vulcano Island and their bearing on processes of crustal anatexis and crust–magma interaction 1227 
beneath the Aeolian Arc, Southern Italy. Journal of Petrology 45, 3–26. 1228 



Frost, B.R. (1991). Introduction to oxygen fugacity and its petrologic importance. Reviews in Mineralogy 1229 
and Geochemistry 25, 1–9. 1230 

Fujita, S., Suzuki, K., Ohkawa, M., Shibasaki, Y. & Mori, T. (2001). Reaction of hydrogrossular with 1231 
hydrogen chloride gas at high temperature. Chemistry of Materials 13, 2523–2527. 1232 

Fulignati, P., Kamenetsky, V. S., Marianelli, P. & Sbrana, A. (2013). PIXE mapping on multiphase fluid 1233 
inclusions in endoskarn xenoliths of AD 472 eruption of Vesuvius (Italy). Periodico di Mineralogia 82, 1234 
291–297. 1235 

Fulignati, P., Kamenetsky, V. S., Marianelli, P., Sbrana, A. & Mernagh, T. P. (2001). Melt inclusion 1236 
record of immiscibility between silicate, hydrosaline, and carbonate melts: Applications to skarn genesis 1237 
at Mount Vesuvius. Geology 29, 1043–1046. 1238 

Fulignati, P., Marianelli, P., Santacroce, R. & Sbrana, A. (2004). Probing the Vesuvius magma chamber–1239 
host rock interface through xenoliths. Geological Magazine 141, 417–428. 1240 

Gaeta, M., Rocco, T.D. & Freda, C. (2009). Carbonate assimilation in open magmatic systems: the role of 1241 
melt-bearing skarns and cumulate-forming processes. Journal of Petrology 50, 361–385. 1242 

Galuskin, E. V., Galuskina, I. O., Bailau, R., Prusik, K., Gazeev, V. M., Zadov, A. E., Pertsev, N. N., 1243 
Jeżak, L., Gurbanov, A. G. & Dubrovinsky, L. (2013). Eltyubyuite, Ca>+Fe3#>ASi:O3+ClB–the Fe3# 1244 
analogue of wadalite: a new mineral from the Northern Caucasus, Kabardino-Balkaria, Russia. European 1245 
Journal of Mineralogy 25, 221–229. 1246 

Galuskin, E. V., Gfeller, F., Galuskina, I. O., Armbruster, T., Bailau, R. & Sharygin, V. V. (2015). 1247 
Mayenite supergroup, part I: Recommended nomenclature. European Journal of Mineralogy 27, 99–111. 1248 

Ganino, C., Arndt, N. T., Zhou, M.-F., Gaillard, F. & Chauvel, C. (2008). Interaction of magma with 1249 
sedimentary wall rock and magnetite ore genesis in the Panzhihua mafic intrusion, SW China. 1250 
Mineralium Deposita 43, 677. 1251 

Gertisser, R. (2001). Gunung Merapi (Java, Indonesien): Eruptionsgeschichte und magmatische Evolution 1252 
eines Hochrisiko-Vulkans (PhD thesis). University of Freiburg, Freiburg, Germany. 1253 

Gertisser, R., Charbonnier, S. J., Keller, J. & Quidelleur, X. (2012). The geological evolution of Merapi 1254 
volcano, Central Java, Indonesia. Bulletin of Volcanology 74, 1213–1233. 1255 

Gertisser, R., Charbonnier, S. J., Troll, V. R., Keller, J., Preece, K., Chadwick, J., Barclay, J. & Herd, R. 1256 
(2011). Merapi (Java, Indonesia): anatomy of a killer volcano. Geology Today 27, 57–62. 1257 

Gertisser, R. & Keller, J. (2003a). Temporal variations in magma composition at Merapi Volcano 1258 
(Central Java, Indonesia): magmatic cycles during the past 2000 years of explosive activity. Journal of 1259 
Volcanology and Geothermal Research 123, 1–23. 1260 

Gertisser, R. & Keller, J. (2003b). Trace element and Sr, Nd, Pb and O isotope variations in medium-K 1261 
and high-K volcanic rocks from Merapi Volcano, Central Java, Indonesia: evidence for the involvement 1262 
of subducted sediments in Sunda arc magma genesis. Journal of Petrology 44, 457–489. 1263 

Ghiorso, M.S. (2016). Modeling carbonate assimilation into crustal magmas: Quantifying overpressure 1264 
and eruption triggers. Goldschmidt Conference Abstracts 934, Yokohama, Japan. 1265 



Glasser, F. (1995). Comments on wadalite, CaBAl9Si+O>BCl3, and the structures of garnet, mayenite and 1266 
calcium chlorosilicate. Addendum. Acta Crystallographica Section C: Crystal Structure Communications 1267 
51, 340–340. 1268 

Goff, F., Love, S. P., Warren, R. G., Counce, D., Obenholzner, J., Siebe, C. & Schmidt, S. C. (2001). 1269 
Passive infrared remote sensing evidence for large, intermittent CO+ emissions at Popocatépetl volcano, 1270 
Mexico. Chemical Geology 177, 133–156. 1271 

Goldstein, R. H. (2003). Petrographic analysis of fluid inclusions, in: Samson, I., Anderson, A., Marshall, 1272 
D. (Eds.), Fluid Inclusions: Analysis and Interpretation, Mineral Association of Canada Short Course. 1273 
Mineralogical Association of Canada Vancouver, pp. 9–53. 1274 

Gordon, T. M. & Greenwood, H. J. (1971). The Stability of Grossularite in H+O-CO+ Mixtures. 1275 
American Mineralogist 56, 1674–1688. 1276 

Gorzkowska, I., Maciejewski, M. & Rudnicki, R. (1988a). Thermal decomposition of CaCO3 in the 1277 
presence of calcium fluoride. Journal of Thermal Analysis and Calorimetry 33, 983–990. 1278 

Gorzkowska, I., Maciejewski, M. & Rudnicki, R. (1988b). Application of DTA and TG to studies of the 1279 
CaCO3-CaF+ phase diagram. Journal of Thermal Analysis and Calorimetry 33, 991–995. 1280 

Grew, E. S., Locock, A. J., Mills, S. J., Galuskina, I. O., Galuskin, E. V. & Hålenius, U. (2013). 1281 
Nomenclature of the garnet supergroup. American Mineralogist 98, 785–811. 1282 

Gualda, G. A., Ghiorso, M. S., Lemons, R. V. & Carley, T. L. (2012). Rhyolite-MELTS: a modified 1283 
calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. Journal of Petrology 53, 1284 
875–890. 1285 

Gustafson, W.I. (1974). The stability of andradite, hedenbergite, and related minerals in the system Ca-1286 
Fe-Si-O-H. Journal of Petrology 15, 455–496. 1287 

Handley, H. K., Blichert-Toft, J., Gertisser, R., Macpherson, C. G., Turner, S. P., Zaennudin, A. & 1288 
Abdurrachman, M. (2014). Insights from Pb and O isotopes into along-arc variations in subduction inputs 1289 
and crustal assimilation for volcanic rocks in Java, Sunda arc, Indonesia. Geochimica et Cosmochimica 1290 
Acta 139, 205–226. 1291 

Hansteen, T.H. & Klügel, A. (2008). Fluid inclusion thermobarometry as a tracer for magmatic processes. 1292 
Reviews in Mineralogy and Geochemistry 69, 143–177. 1293 

Hartley, M. E., Bali, E., Maclennan, J., Neave, D. A. & Halldórsson, S. A. (2018). Melt inclusion 1294 
constraints on petrogenesis of the 2014–2015 Holuhraun eruption, Iceland. Contributions to Mineralogy 1295 
and Petrology 173, 1. 1296 

Hattori, K. (2018). Porphyry copper potential in Japan based on magmatic oxidation state. Resource 1297 
Geology 68, 126–137. 1298 

Henmi, C. & Henmi, K. (1978). Synthesis of spurrite and tilleyite at low CO+ partial pressure. 1299 
Mineralogical Journal 9, 106–110. 1300 

Hirschmann, M., Ghiorso, M., Davis, F., Gordon, S., Mukherjee, S., Grove, T., Krawczynski, M., 1301 
Medard, E. & Till, C. (2008). Library of Experimental Phase Relations (LEPR): A database and Web 1302 



portal for experimental magmatic phase equilibria data. Geochemistry, Geophysics, Geosystems 9, 1303 
Q03011. 1304 

Holland, T. J. B. & Powell, R. (1998). An internally consistent thermodynamic data set for phases of 1305 
petrological interest. Journal of Metamorphic Geology 16, 309–343. 1306 

Huckenholz, H., Lindhuber, W. & Springer, J. (1974). The join CaSiO3-Al+O3-Fe+O3 of the CaO-1307 
Al+O3-Fe+O3-SiO+ quaternary system and its bearing on the formation of granditic garnets and fassaitic 1308 
pyroxenes. Neues Jahrbuch fur Mineralogie, Abhandlungen 121, 160–207. 1309 

Iacono-Marziano, G., Gaillard, F. & Pichavant, M. (2007). Limestone assimilation and the origin of CO+ 1310 
emissions at the Alban Hills (Central Italy): constraints from experimental petrology. Journal of 1311 
Volcanology and Geothermal Research 166, 91–105. 1312 

Iacono-Marziano, G., Gaillard, F. & Pichavant, M. (2008). Limestone assimilation by basaltic magmas: 1313 
an experimental re-assessment and application to Italian volcanoes. Contributions to Mineralogy and 1314 
Petrology 155, 719–738. 1315 

Innocenti, S., del Marmol, M.-A., Voight, B., Andreastuti, S. & Furman, T. (2013). Textural and mineral 1316 
chemistry constraints on evolution of Merapi Volcano, Indonesia. Journal of Volcanology and 1317 
Geothermal Research 261, 20–37. 1318 

Jago, B. C. & Gittins, J. (1991). The role of fluorine in carbonatite magma evolution. Nature 349, 56-58. 1319 

Joesten, R. (1974). Local equilibrium and metasomatic growth of zoned calc-silicate nodules from a 1320 
contact aureole, Christmas Mountains, Big Bend region, Texas. American Journal of Science 274, 876–1321 
901. 1322 

Jolis, E. M., Freda, C., Troll, V. R., Deegan, F. M., Blythe, L. S., McLeod, C. L. & Davidson, J. P. 1323 
(2013). Experimental simulation of magma–carbonate interaction beneath Mt. Vesuvius, Italy. 1324 
Contributions to Mineralogy and Petrology 166, 1335–1353. 1325 

Jolis, E., Troll, V., Harris, C., Freda, C., Gaeta, M., Orsi, G. & Siebe, C. (2015). Skarn xenolith record 1326 
crustal CO+ liberation during Pompeii and Pollena eruptions, Vesuvius volcanic system, central Italy. 1327 
Chemical Geology 415, 17–36. 1328 

Kerinec, F. (1982). Le Mérapi, volcan actif d’arc insulaire (Java): Pétrographie et géochimie des 1329 
matériaux solides; implications géotectoniques (PhD thesis). Université Paris-Sud, Orsay, France. 1330 

Kilgour, G. N., Saunders, K. E., Blundy, J. D., Cashman, K. V., Scott, B. J. & Miller, C. A. (2014). 1331 
Timescales of magmatic processes at Ruapehu volcano from diffusion chronometry and their comparison 1332 
to monitoring data. Journal of Volcanology and Geothermal Research 288, 62–75. 1333 

Kokh, M. A., Akinfiev, N. N., Pokrovski, G. S., Salvi, S. & Guillaume, D. (2017). The role of carbon 1334 
dioxide in the transport and fractionation of metals by geological fluids. Geochimica et Cosmochimica 1335 
Acta 197, 433–466. 1336 

Komorowski, J.-C., Jenkins, S., Baxter, P. J., Picquout, A., Lavigne, F., Charbonnier, S., Gertisser, R., 1337 
Preece, K., Cholik, N. & Budi-Santoso, A. (2013). Paroxysmal dome explosion during the Merapi 2010 1338 
eruption: processes and facies relationships of associated high-energy pyroclastic density currents. 1339 
Journal of Volcanology and Geothermal Research 261, 260–294. 1340 



Kouchi, A., Sugawara, Y., Kashima, K. & Sunagawa, I. (1983). Laboratory growth of sector zoned 1341 
clinopyroxenes in the system CaMgSi+OB-CaTiAl+OB. Contributions to Mineralogy and Petrology 83, 1342 
177–184. 1343 

Landtwing, M. R., Pettke, T., Halter, W. E., Heinrich, C. A., Redmond, P. B., Einaudi, M. T. & Kunze, K. 1344 
(2005). Copper deposition during quartz dissolution by cooling magmatic–hydrothermal fluids: the 1345 
Bingham porphyry. Earth and Planetary Science Letters 235, 229–243. 1346 

Lindsley, D. H. (1983). Pyroxene thermometry. American Mineralogist 68, 477–493. 1347 

Luhr, J. F. (2008). Primary igneous anhydrite: Progress since its recognition in the 1982 El Chichón 1348 
trachyandesite. Journal of Volcanology and Geothermal Research 175, 394–407. 1349 

Mason, E., Edmonds, M. & Turchyn, A. V. (2017). Remobilization of crustal carbon may dominate 1350 
volcanic arc emissions. Science 357, 290–294. 1351 

Matthews, S., Marquillas, R., Kemp, A., Grange, F. & Gardeweg, M. (1996). Active skarn formation 1352 
beneath Lascar Volcano, northern Chile: a petrographic and geochemical study of xenoliths in eruption 1353 
products. Journal of Metamorphic Geology 14, 509–530. 1354 

Mavrogenes, J. & Blundy, J. (2017). Crustal sequestration of magmatic sulfur dioxide. Geology 45, 211–1355 
214. 1356 

Meinert, L. D. (1992). Skarns and skarn deposits. Geoscience Canada 19, 145–162. 1357 

Meinert, L. D., Dipple, G. M. & Nicolescu, S. (2005). World skarn deposits. In: Hedenquist, J. W., 1358 
Thompson, J. F. H., Goldfarb, R. J. & Richards, J. P. (eds.) Economic Geology One Hundredth 1359 
Anniversary Volume. Littleton, Colorado, pp. 299–336. 1360 

Melluso, L., Conticelli, S., D’Antonio, M., Mirco, N. P. & Saccani, E. (2003). Petrology and mineralogy 1361 
of wollastonite-and melilite-bearing paralavas from the Central Apennines, Italy. American Mineralogist 1362 
88, 1287-1299. 1363 

Mollo, S., Blundy, J. D., Giacomoni, P., Nazzari, M., Scarlato, P., Coltorti, M., Langone, A. & 1364 
Andronico, D. (2017). Clinopyroxene-melt element partitioning during interaction between trachybasaltic 1365 
magma and siliceous crust: Clues from quartzite enclaves at Mt. Etna volcano. Lithos 284, 447–461. 1366 

Mollo, S., Gaeta, M., Freda, C., Di Rocco, T., Misiti, V. & Scarlato, P. (2010). Carbonate assimilation in 1367 
magmas: a reappraisal based on experimental petrology. Lithos 114, 503–514. 1368 

Mollo, S., Putirka, K., Iezzi, G., Del Gaudio, P. & Scarlato, P. (2011). Plagioclase–melt (dis) equilibrium 1369 
due to cooling dynamics: implications for thermometry, barometry and hygrometry. Lithos 125, 221–235. 1370 

Mollo, S., Heap, M. J., Iezzi, G., Hess, K. U., Scarlato, P. & Dingwell, D. B. (2012). Volcanic edifice 1371 
weakening via decarbonation: A self-limiting process? Geophysical Research Letters, 39, L15307. 1372 

Mollo, S., Putirka, K., Misiti, V., Soligo, M. & Scarlato, P. (2013). A new test for equilibrium based on 1373 
clinopyroxene–melt pairs: clues on the solidification temperatures of Etnean alkaline melts at post-1374 
eruptive conditions. Chemical Geology 352, 92–100. 1375 



Mollo, S. & Vona, A. (2014). The geochemical evolution of clinopyroxene in the Roman Province: A 1376 
window on decarbonation from wall-rocks to magma. Lithos 192, 1–7. 1377 

Morimoto, N. (1988). Nomenclature of pyroxenes. Mineralogy and Petrology 39, 55–76. 1378 

Muhling, J.R. & Griffin, B.J. (1991). On recasting garnet analyses into end-member molecules—revisited 1379 
short note. Computers & Geosciences 17, 161–170. 1380 

Nadeau, O., Stix, J. & Williams-Jones, A. E. (2013a). The behavior of Cu, Zn and Pb during magmatic–1381 
hydrothermal activity at Merapi volcano, Indonesia. Chemical Geology 342, 167–179. 1382 

Nadeau, O., Williams-Jones, A. E. & Stix, J. (2013b). Magmatic-hydrothermal evolution and 1383 
devolatilization beneath Merapi volcano, Indonesia. Journal of Volcanology and Geothermal Research 1384 
261, 50–68. 1385 

Nadeau, O., Williams-Jones, A.E. & Stix, J. (2010). Sulphide magma as a source of metals in arc-related 1386 
magmatic hydrothermal ore fluids. Nature Geoscience 3, 501-505. 1387 

Nakamura, M. & Shimakita, S. (1998). Dissolution origin and syn-entrapment compositional change of 1388 
melt inclusion in plagioclase. Earth and Planetary Science Letters 161, 119–133. 1389 

Neave, D. A. & Putirka, K. (2017). A new clinopyroxene-liquid barometer, and implications for magma 1390 
storage pressures under Icelandic rift zones. American Mineralogist 102, 777–794. 1391 

Newhall, C., Bronto, S., Alloway, B., Banks, N., Bahar, I., Marmol, M. D., Hadisantono, R., Holcomb, 1392 
R., McGeehin, J. & Miksic, J. (2000). 10,000 Years of explosive eruptions of Merapi Volcano, Central 1393 
Java: archaeological and modern implications. Journal of Volcanology and Geothermal Research 100, 9–1394 
50. 1395 

Nicholls, I. (1971). Calcareous inclusions in lavas and agglomerates of Santorini volcano. Contributions 1396 
to Mineralogy and Petrology 30, 261–276. 1397 

Nielsen, R. L. (2011). The effects of re-homogenization on plagioclase hosted melt inclusions. 1398 
Geochemistry, Geophysics, Geosystems 12, Q0AC17. 1399 

Orlando, A., D’Orazio, M., Armienti, P. & Borrini, D. (2008). Experimental determination of plagioclase 1400 
and clinopyroxene crystal growth rates in an anhydrous trachybasalt from Mt Etna (Italy). European 1401 
Journal of Mineralogy 20, 653-664. 1402 

Parat, F., Holtz, F. & Streck, M. J. (2011). Sulfur-bearing magmatic accessory minerals. Reviews in 1403 
Mineralogy and Geochemistry 73, 285–314. 1404 

Pascal, M.-L., Di Muro, A., Fonteilles, M. & Principe, C. (2009). Zirconolite and calzirtite in banded 1405 
forsterite-spinel-calcite skarn ejecta from the 1631 eruption of Vesuvius: inferences for magma-wallrock 1406 
interactions. Mineralogical Magazine 73, 333-356. 1407 

Pascal, M.-L., Katona, I., Fonteilles, M. & Verkaeren, J. (2005). Relics of high-temperature 1408 
clinopyroxene on the join di–cats with up to 72 mol.% Ca(Al,Fe3)AlSiOB in the skarns of Ciclova and 1409 
Magureaua Vatei, Carpathians, Romania. The Canadian Mineralogist 43, 857–881. 1410 



Povoden, E., Horacek, M. & Abart, R. (2002). Contact metamorphism of siliceous dolomite and impure 1411 
limestones from the Werfen formation in the eastern Monzoni contact aureole. Mineralogy and Petrology 1412 
76, 99–120. 1413 

Preece, K. (2014). Transitions between effusive and explosive activity at Merapi volcano, Indonesia: a 1414 
volcanological and petrological study of the 2006 and 2010 eruptions. (PhD thesis). University of East 1415 
Anglia, Norwich, UK. 1416 

Preece, K., Gertisser, R., Barclay, J., Berlo, K. & Herd, R. A. (2014). Pre-and syn-eruptive degassing and 1417 
crystallisation processes of the 2010 and 2006 eruptions of Merapi volcano, Indonesia. Contributions to 1418 
Mineralogy and Petrology 168, 1–25. 1419 

Preece, K., Gertisser, R., Barclay, J., Charbonnier, S. J., Komorowski, J.-C. & Herd, R. A. (2016). 1420 
Transitions between explosive and effusive phases during the cataclysmic 2010 eruption of Merapi 1421 
volcano, Java, Indonesia. Bulletin of Volcanology 78, 54. 1422 

Putirka, K. (2008). Thermometers and barometers for volcanic systems. Reviews in Mineralogy and 1423 
Geochemistry 69, 61–120. 1424 

Putirka, K. (1999). Clinopyroxene+liquid equilibria to 100 kbar and 2450 K. Contributions to Mineralogy 1425 
and Petrology 135, 151–163. 1426 

Putirka, K., Johnson, M., Kinzler, R., Longhi, J. & Walker, D. (1996). Thermobarometry of mafic 1427 
igneous rocks based on clinopyroxene-liquid equilibria, 0-30 kbar. Contributions to Mineralogy and 1428 
Petrology 123, 92–108. 1429 

Reagan, M., Handley, H., Gertisser, R., Turner, M., Berlo, K. & Preece, K. (2017). U-series evidence for 1430 
ongoing skarnification beneath Merapi Volcano, Indonesia, in: IAVCEI 2017 Conference Abstracts. 1431 
Portland, Oregon, USA, p. 883. 1432 

Roedder, E., 1984. Fluid Inclusions. Reviews in Mineralogy volume 12. Mineralogical Society of 1433 
America, Washington. 1434 

Rutstein, M. S. (1971). Re-examination of the wollastonite-hedenbergite (CaSiO3-CaFeSi+OB) equilibria. 1435 
American Mineralogist 56, 2040–2052. 1436 

Rutstein, M. S. & White, W. B. (1971). Vibrational spectra of high-calcium pyroxenes and pyroxenoids. 1437 
American Mineralogist 56, 877-887. 1438 

Schwarzkopf, L., Schmincke, H.-U. & Troll, V. (2001). Pseudotachylite on impact marks of block 1439 
surfaces in block-and-ash flows at Merapi volcano, Central Java, Indonesia. International Journal of 1440 
Earth Sciences 90, 769–775. 1441 

Sillitoe, R. H. (2010). Porphyry copper systems. Economic Geology 105, 3–41. 1442 

Simakin, A. G., Salova, T. P. & Armienti, P. (2003). Kinetics of clinopyroxene growth from a hydrous 1443 
hawaiite melt. Geochemistry International 41, 1165–1175. 1444 

Simakin, A., Salova, T. & Bondarenko, G. (2012). Experimental study of magmatic melt oxidation by 1445 
CO+. Petrology 20, 593–606. 1446 



Smyth, H., Hall, R., Hamilton, J. & Kinny, P. (2005). East Java: Cenozoic basins, volcanoes and ancient 1447 
basement. 1448 

Sobolev, V. N., McCammon, C. A., Taylor, L. A., Snyder, G. A. & Sobolev, N. V. (1999). Precise 1449 
Moessbauer milliprobe determination of ferric iron in rock-forming minerals and limitations of electron 1450 
microprobe analysis. American Mineralogist 84, 78-85. 1451 

Span, R. & Wagner, W. (1996). A new equation of state for carbon dioxide covering the fluid region from 1452 
the triple-point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical and Chemical 1453 
Reference Data 25, 1509–1596. 1454 

Spandler, C., Martin, L.H. & Pettke, T. (2012). Carbonate assimilation during magma evolution at 1455 
Nisyros (Greece), South Aegean Arc: Evidence from clinopyroxenite xenoliths. Lithos 146, 18–33. 1456 

Sterner, S. M. & Pitzer, K. S. (1994). An equation of state for carbon dioxide valid from zero to extreme 1457 
pressures. Contributions to Mineralogy and Petrology 117, 362–374. 1458 

Sugawara, T. (2001). Ferric iron partitioning between plagioclase and silicate liquid: thermodynamics and 1459 
petrological applications. Contributions to Mineralogy and Petrology 141, 659–686. 1460 

Sun, W., Liang, H., Ling, M., Zhan, M., Ding, X., Zhang, H., Yang, X., Li, Y., Ireland, T. R., Wei, Q. & 1461 
Fan, W. (2013). The link between reduced porphyry copper deposits and oxidized magmas. Geochimica 1462 
et Cosmochimica Acta 103, 263–275. 1463 

Surono, M., Jousset, P., Pallister, J., Boichu, M., Fabrizia, M., Buongiorno, A. B., Rodriguez, F. C., 1464 
Andreastuti, S., Prata, F. & Schneider, D. (2012). The 2010 explosive eruption of Java’s Merapi volcano-1465 
a ’100-year’event. Journal of Volcanology and Geothermal Research 241–242, 121–135. 1466 

Tamic, N., Behrens, H. & Holtz, F. (2001). The solubility of H2O and CO2 in rhyolitic melts in 1467 
equilibrium with a mixed CO2–H2O fluid phase. Chemical Geology, 174, 333-347.Tracy, R. J. & Frost, B. 1468 
R. (1991). Phase equilibria and thermobarometry of calcareous, ultramafic and mafic rocks, and iron 1469 
formations. Reviews in Mineralogy and Geochemistry 26, 207–289. 1470 

Treiman, A. H. & Essene, E. J. (1983). Phase equilibria in the system CaO-SiO+-CO+. American Journal 1471 
of Science 283, 97–120. 1472 

Troll, V. R., Deegan, F. M., Jolis, E. M., Harris, C., Chadwick, J. P., Gertisser, R., Schwarzkopf, L. M., 1473 
Borisova, A. Y., Bindeman, I. N. & Sumarti, S. (2013). Magmatic differentiation processes at Merapi 1474 
Volcano: inclusion petrology and oxygen isotopes. Journal of Volcanology and Geothermal Research 1475 
261, 38–49. 1476 

Troll, V. R., Hilton, D. R., Jolis, E. M., Chadwick, J. P., Blythe, L. S., Deegan, F. M., Schwarzkopf, L. M. 1477 
& Zimmer, M. (2012). Crustal CO+ liberation during the 2006 eruption and earthquake events at Merapi 1478 
volcano, Indonesia. Geophysical Research Letters 39, L11302. 1479 

Tuttle, O. F. & Harker, R. I. (1957). Synthesis of spurrite and the reaction wollastonite+calcite ⇌ 1480 
spurrite+carbon dioxide. American Journal of Science 255, 226–234. 1481 

van Bemmelen, R. W. (1949). The Geology of Indonesia. Government Printing Office, The Hague. 1482 



van Hinsberg, V. J., Berlo, K., Migdisov, A. A. & Williams-Jones, A. E. (2016). CO+-fluxing collapses 1483 
metal mobility in magmatic vapour. Geochemical Perspectives Letters 2, 169-177. 1484 

Voight, B., Constantine, E. K., Siswowidjoyo, S. & Torley, R. (2000). Historical eruptions of Merapi 1485 
volcano, central Java, Indonesia, 1768–1998. Journal of Volcanology and Geothermal Research 100, 69–1486 
138. 1487 

Wenzel, T., Baumgartner, L. P., Brügmann, G. E., Konnikov, E. G. & Kislov, E. V.(2002). Partial 1488 
melting and assimilation of dolomitic xenoliths by mafic magma: the Ioko-Dovyren intrusion (North 1489 
Baikal Region, Russia). Journal of Petrology 43, 2049–2074. 1490 

Whitaker, M. L., Nekvasil, H., Lindsley, D. H. & Di Francesco, N. J. (2007). The Role of Pressure in 1491 
Producing Compositional Diversity in Intraplate Basaltic Magmas. Journal of Petrology 48, 365–393. 1492 

Whitley, S., Gertisser, R., Halama, R., Preece, K., Troll, V. R. & Deegan, F. M. (2019). Crustal CO+ 1493 
contribution to subduction zone degassing recorded through calc-silicate xenoliths in arc lavas. Scientific 1494 
Reports 9, 8803. 1495 

Wölbern, I. & Rümpker, G. (2016). Crustal thickness beneath Central and East Java (Indonesia) inferred 1496 
from P receiver functions. Journal of Asian Earth Sciences 115, 69–79. 1497 

Wyllie, P. J. & Haas Jr, J. L. (1965). The system CaO-SiO+-CO+-H+O: 1. Melting relationships with 1498 
excess vapor at 1 kilobar pressure. Geochimica et Cosmochimica Acta 29, 871–892. 1499 

Zanon, V. & Nikogosian, I. (2004). Evidence of crustal melting events below the island of Salina 1500 
(Aeolian arc, southern Italy). Geological Magazine 141, 525–540. 1501 

Zarayskiy, G. P., Zharikov, V. A., Stoyanovskaya, F. M. & Balashov, V. N. (1987). The experimental 1502 
study of bimetasomatic skarn formation. International Geology Review 29, 629–758. 1503 

Zharikov, V. A. (1969). High temperature mineral equilibria in the system CaO-SiO+-CO+. Geochemistry 1504 
International 6, 853–869.  1505 



 1506 

FIGURES 1507 
 1508 

Fig. 1: Zoning in sample MX1 (thin section) and idealised diagram for zoning patterns in the magmatic 1509 

skarn xenoliths. Highlighted zones (a) and (d) correspond to the respective panels in Fig. 2. See Table 1 1510 

for all mineral abbreviations used. Gls: interstitial Ca-rich glass. 1511 

 1512 

Fig. 2: Examples of the respective zones in magmatic skarn xenoliths. A) Host lava contact and zones R1 1513 

to R4. Note the progressive darkening of the clinopyroxene colour due to changing composition to iron 1514 

enrichment. Sample MX1. B) Normally zoned diopside-hedenbergite clinopyroxene within glass dominant 1515 

zone R4. Also present are plagioclase microlites and wollastonite. Sample CS2. C) Wollastonite-dominant 1516 

xenolith core with vesicles and accessory calcite. Sample MX5. D) Zone R3b, showing garnet + CaTs 1517 

clinopyroxene formation where there is no glass zone R4 between the core and zone R2. Sample MX1. See 1518 

Table 1 for mineral abbreviations. Gls: interstitial Ca-rich glass. 1519 

 1520 

Fig. 3: Magmatic skarn accessory minerals and melt inclusions. All images are from sample MX1, apart 1521 

from panels E and G, which are from sample CS16. A-B) Accessory gehlenite, fluorite, calcite and the 1522 

wadalite-like mineral in the xenolith core. C-G) Examples of wollastonite, clinopyroxene and 1523 

plagioclase-hosted melt inclusions, showing variable abundance and textural forms. Mineral 1524 

abbreviations as in Table 1. Gls: interstitial Ca-rich glass. 1525 

 1526 

Fig. 4: Typical textures in exoskarn xenoliths. A) CaTs-cpx + Wo + An + Grs in exoskarn type A xenolith 1527 

MX99-5s. B) Large residual calcite crystals in exoskarn type A xenolith CS11. Expanded image shows the 1528 

complex decarbonation textures and reactions occurring influenced by a F-rich fluid. A Ca-Si-O phase is 1529 

present with low analytical totals (~65 wt%). C) Exoskarn B xenolith MX99-3s shows a unique 1530 

assemblage of spinel, gehlenite, CaTs-cpx, grossular, with accessory wollastonite and anorthite. Spinel is 1531 

rimmed by gehlenite followed by CaTs-cpx. For mineral abbreviations, see Table 1. 1532 

 1533 



Fig. 5: Xenolith whole-rock geochemistry (calculated from mineral modes and mineral chemistry, 1534 

corrected for mineral densities using data from Deer et al. (1997) and the Rock-Maker spreadsheet 1535 

(Büttner, 2012)). A) Profiles through the distinct zones of two magmatic xenoliths. B) Calculated whole-1536 

rock compositions of bulk xenoliths compared to published lava and xenolith data. Published volcanic 1537 

whole-rock data are from Nadeau et al. (2013b), Borisova et al. (2013), Costa et al. (2013), Innocenti et 1538 

al. (2013) and the GEOROC database (http://georoc.mpch-mainz.gwdg.de/georoc/, accessed 03/2019). 1539 

Published Merapi calc-silicate xenoliths from Chadwick et al. (2007). 1540 

 1541 

Fig. 6: Merapi xenolith and magmatic feldspar compositions. A) Anorthite content histograms showing 1542 

(left) published data from Merapi lavas (grey), enclaves (dark blue) and plutonic xenoliths (green) for 1543 

comparison with xenolith and host lava feldspar data (right, key below). B) An vs FeO plot showing the 1544 

different xenolith plagioclase compositions compared to Merapi lava plagioclase. Ellipse of xenolith and 1545 

xenocryst plagioclase compositions from Chadwick et al. (2007). Notably, plagioclase from zones R1 and 1546 

R2 overlaps with the lava compositions, although they are formed from magma-carbonate interaction. 1547 

Published lava feldspar data from Gertisser (2001), Preece (2014) and Erdmann et al. (2016). Enclave 1548 

and plutonic xenolith data from Chadwick et al. (2013). 1549 

 1550 

Fig. 7: Clinopyroxene compositions. A) Fe3+/Fetotal versus AlIV plot showing a good correlation 1551 

(R2=0.88). The fassaitic boundary (AlIV ≥ 0.25) is from Deer et al. (1997). B) Ti versus AlIV plot. Exoskarn 1552 

clinopyroxene plot distinct from magmatic skarn clinopyroxenes. Zone 3b plots with the exoskarn data, 1553 

showing a metamorphic character to this zone. C) Ternary Wo-En-Fs components for magmatic skarn 1554 

clinopyroxene. Two partial ternary diagrams shown for clarity, with ternary location shown on inset 1555 

figure. Clinopyroxenes in zones 1 to 3 progressively become more Wo-rich, diverging from magmatic 1556 

compositions. The remaining zones follow the Di-Hd join or plot above due to the large amount of Al. D) 1557 

Partial ternary Wo-En-Fs components for exoskarn clinopyroxenes. E) Al and Mg# traverse along a 1558 

magmatic skarn clinopyroxene (sample CS16). Al and Mg-rich cores progressively grade to low Al-high 1559 

Fe compositions. F) Al and Mg# traverse in magmatic skarn clinopyroxene from sample CS2. These 1560 

crystals do not have an Al-rich core, and compositions instead follow the Di-Hd join. Published data 1561 

sources as in Fig. 6 and additionally Deegan et al. (2016b). 1562 
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 1564 

 1565 

Fig. 8: Additional rock-forming mineral compositions. A) Wollastonite and ferrobustamite. B) Garnet. C) 1566 

Melilite. Note the different ternary scales for each plot. Arrows indicate truncated scales. Mineral 1567 

abbreviations as in Table 1. 1568 

 1569 

Fig. 9: Interstitial and melt inclusion glass compositions. All values are normalised to 100 wt% volatile 1570 

free. Published data for whole rock, glass and melt inclusions at Merapi are shown for comparison. 1571 

Published data from Nadeau et al. (2013b), Borisova et al. (2013), Costa et al. (2013), Innocenti et al. 1572 

(2013) and the GEOROC database (accessed 03/2019). Arrows show the effect of adding 10% calcite, 1573 

and subtracting 10% clinopyroxene, wollastonite or plagioclase. Mineral abbreviations as in Table 1. 1574 

 1575 

Fig. 10: A) Box plots of 𝐾𝐷$%*!"
-./*1%)2 values from carbonate assimilation experiments. Black circles 1576 

represent outliers calculated as 1.5 x interquartile range from the third quartile. Experiments with 1577 

carbonate added have a general increase in 𝐾𝐷$%*!"
-./*1%)2 values. Experiments by Carter and Dasgupta 1578 

(2016) and Carter and Dasgupta (2018) use more evolved andesite and dacite compositions, compared to 1579 

the remaining basaltic experiments, which were less affected by carbonate interaction. The extremely 1580 

high values from Mollo and Vona (2014) are likely the result of very high experimental fO2 conditions (up 1581 

to air), which would strongly affect Fe2+/Fe3+ partitioning between clinopyroxene and melt. B) 1582 

Comparison between measured clinopyroxene Diopside-Hedenbergite (DiHd) components and predicted 1583 

ones, using the iterative approach of Neave and Putirka (2017). Light grey data are calculated from 1584 

clinopyroxenes in the Library of Experimental Phase Relations (LEPR, Hirschmann et al., 2008) 1585 

database. 1586 

 1587 

Fig. 11: Stacked histogram results of thermometry estimates for the magmatic skarn xenoliths and host 1588 

lava glasses using equation 34 of Putirka (2008). Xenolith glasses produce temperatures of 829 ± 45°C 1589 

(n=89). Melt inclusions have a slightly higher temperature of 876 ± 49°C (n=89). These temperatures 1590 

are slightly below the thermometry estimates for published lava glass analyses, at 937 ± 43°C. Published 1591 

glass data are from Preece et al. (2014) and Erdmann et al. (2016). 1592 
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 1594 

 1595 

Fig. 12: Theriak-Domino (de Capitani and Petrakakis, 2010) T-XCO2 modelling of exoskarn xenoliths. 1596 

Isobaric sections at 100 MPa. Green contours show the gehlenite mole fraction. Red contours show the 1597 

CaTs mole fractions. The exoskarn A xenolith (MX99-5s) formed in a narrow temperature range between 1598 

~900 to 910°C, and XCO2 < 0.5. The exoskarn B xenolith (MX99-3s) mineral assemblage records 1599 

temperatures between 680 and 860°C at a XCO2 < ~0.5. Abbreviations as in Table 1. Additional 1600 

abbreviations: Grt - garnet (andradite-grossular), Me - meionite, Ol – olivine. 1601 

 1602 

Fig. 13: Clinopyroxene-only single crystal oxybarometer model testing. Experiments used for the 1603 

calibration of the new oxybarometer are highlighted (Feig et al., 2006, 2010; Berndt et al., 2005; 1604 

Whitaker et al., 2007; Mollo and Vona, 2014). Sugawara (2001)’s experiments which cover 13 log units, 1605 

and the results of applying the oxybarometers to the filtered Library of Experimental Phase Relations 1606 

(LEPR Hirschmann et al., 2008) are also shown. A) Results of the Cortés et al. (2006) oxybarometer 1607 

applied to the experimental clinopyroxenes. B) Results of the Simakin et al. (2012) oxybarometer applied 1608 

to the experimental clinopyroxenes. C) Results of the model calibrated in this study applied to the 1609 

experimental clinopyroxenes. The model error is shown in the top left. 1610 

 1611 

Fig. 14: fO2 estimates from clinopyroxenes across all zones and traverses. A) Violin density plots of 1612 

oxygen fugacity estimates for xenolith clinopyroxenes. The model error has been applied as the 1613 

smoothing bandwidth. The light grey field shows published estimates of Merapi magma fO2 from other 1614 

independent methods (𝛥NNO -0.2 to 1.6. Gertisser, 2001; Erdmann et al., 2014). Application of our 1615 

model to the literature clinopyroxene dataset detailed in Fig. 7 is shown for comparison to past literature 1616 

estimates. The solid dashed line is the magnetite-hematite oxygen fugacity buffer. The results show 1617 

xenolith rims (zones R1-3) formed in fO2 similar to magmatic conditions, whilst the cores and exoskarn 1618 

xenoliths formed at much higher fO2, up to that of air. B) Results of application of the oxybarometer to 1619 

the core to rim traverse of the same clinopyroxene from sample CS16 as shown in Fig. 7E. The results 1620 

show an initial period of high fO2 during initial clinopyroxene formation and vigorous carbonate-magma 1621 

interaction, then a progressive decline as the carbonate-contaminated melt precipitates mineral phases 1622 

and CO2 migrates from the reaction zone. 1623 

 1624 



Fig. 15: Summary of the processes occurring during magma carbonate interaction at Merapi. Carbonate 1625 

is rapidly digested forming a Ca-rich contaminated melt, from which wollastonite and other phases 1626 

precipitate, forming the magmatic skarn xenoliths. Proximal to the magmatic melt, clinopyroxene and 1627 

plagioclase form from Ca transfer to the melt from the carbonate. The abundance of melt in the xenoliths 1628 

allows disaggregation and disperses xenolith crystals into the magma (e.g. Deegan et al., 2010). The 1629 

magmatic volatile phase (MVP c.f. Nadeau et al., 2010; Preece et al., 2014) infiltrates the xenoliths 1630 

forming rare halogen and sulphur-bearing minerals. At the wall-rock contact, abundant clinopyroxene 1631 

forms, partially insulating the carbonate and skarn. Magma-derived elements are transferred to the wall-1632 

rock, influenced by the increasing oxygen fugacity caused by CO2 flushing, forming the exoskarn 1633 

mineralogy. Regions of main magma crystallisation from Chadwick et al. (2013), Preece et al. (2014) and 1634 

Erdmann et al. (2016). Moho depth from Wölbern and Rümpker (2016). Description of the lower crust 1635 

from van Bemmelen (1949). 1636 

 1637 
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Fig. 1: Zoning in sample MX1 (thin section) and idealised diagram for zoning patterns in the magmatic skarn 
xenoliths. Highlighted zones A and D correspond to the respective panels in Fig. 2. See Table 1 for all 

mineral abbreviations used. 
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Fig. 2: Examples of the respective zones in magmatic skarn xenoliths. A) Host lava contact and zones R1 to 
R4. Note the progressive darkening of the clinopyroxene colour due to changing composition to iron 

enrichment. Sample MX1. B) Normally zoned diopside-hedenbergite clinopyroxene within glass dominant 
zone R4. Also present are plagioclase microlites and wollastonite. Sample CS2. C) Wollastonite-dominant 

xenolith core with vesicles and accessory calcite. Sample MX5. D) Zone R3b, showing garnet + CaTs 
clinopyroxene formation where there is no glass zone R4 between the core and zone R2. Sample MX1. See 

Table 1 for mineral abbreviations. 
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Fig. 3: Magmatic skarn accessory minerals and melt inclusions. All images are from sample MX1, apart from 
panels E and G, which are from sample CS16. A-B) Accessory gehlenite, fluorite, calcite and the wadalite-
like mineral in the xenolith core. C-G) Examples of wollastonite, clinopyroxene and plagioclase-hosted melt 

inclusions, showing variable abundance and textural forms. Abbreviations as in Table 1 
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Fig. 4: Typical textures in exoskarn xenoliths. A) CaTs-cpx + Wo + An + Grs in exoskarn type A xenolith 
MX99-5s. B) Large residual calcite crystals in exoskarn type A xenolith CS11. Expanded image shows the 
complex decarbonation textures and reactions occurring influenced by a F-rich fluid. A Ca-Si-O phase is 

present with low analytical totals (~65 wt%). C) Exoskarn B xenolith MX99-3s shows a unique assemblage 
of spinel, gehlenite, CaTs-cpx, grossular, with accessory wollastonite and anorthite. Spinel is rimmed by 

gehlenite followed by CaTs-cpx. For mineral abbreviations, see Table 1. 
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Fig. 5: Xenolith whole-rock geochemistry (calculated from mineral modes and mineral chemistry, corrected 
for mineral densities using data from Deer et al. (1997) and the Rock-Maker spreadsheet (Büttner, 2012)). 
A) Profiles through the distinct zones of two magmatic xenoliths. B) Calculated whole-rock compositions of 
bulk xenoliths compared to published lava and xenolith data. Published volcanic whole-rock data are from 

Nadeau et al. (2013b), Borisova et al. (2013), Costa et al. (2013), Innocenti et al. (2013) and the GEOROC 
database (http://georoc.mpch-mainz.gwdg.de/georoc/, accessed 03/2019). Published Merapi calc-silicate 

xenoliths from Chadwick et al. (2007). 
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Fig. 6: Merapi xenolith and magmatic feldspar compositions. A) Anorthite content histograms showing (left) 
published data from Merapi lavas (grey), enclaves (dark blue) and plutonic xenoliths (green) for comparison 
with xenolith and host lava feldspar data (right, key below). B) An vs FeO plot showing the different xenolith 
plagioclase compositions compared to Merapi lava plagioclase. Ellipse of xenolith and xenocryst plagioclase 

compositions from Chadwick et al. (2007). Notably, plagioclase from zones R1 and R2 overlaps with the lava 
compositions, although they are formed from magma-carbonate interaction. Published lava feldspar data 
from Gertisser (2001), Preece (2014) and Erdmann et al. (2016). Enclave and plutonic xenolith data from 

Chadwick et al. (2013). 
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Fig. 7: Clinopyroxene compositions. A) Fe3+/Fetotal versus AlIV plot showing a good correlation (R2=0.88). 
The fassaitic boundary (AlIV ≥ 0.25) is from Deer et al. (1997). B) Ti versus AlIV plot. Exoskarn 

clinopyroxene plot distinct from magmatic skarn clinopyroxenes. Zone 3b plots with the exoskarn data, 
showing a metamorphic character to this zone. C) Ternary Wo-En-Fs components for magmatic skarn 

clinopyroxene. Two partial ternary diagrams shown for clarity, with ternary location shown on inset figure. 
Clinopyroxenes in zones 1 to 3 progressively become more Wo-rich, diverging from magmatic compositions. 

The remaining zones follow the Di-Hd join or plot above due to the large amount of Al. D) Partial ternary 
Wo-En-Fs components for exoskarn clinopyroxenes. E) Al and Mg# traverse along a magmatic skarn 

clinopyroxene (sample CS16). Al and Mg-rich cores progressively grade to low Al-high Fe compositions. F) Al 
and Mg# traverse in magmatic skarn clinopyroxene from sample CS2. These crystals do not have an Al-rich 

core, and compositions instead follow the Di-Hd join. Published data sources as in Fig. 6 and additionally 
Deegan et al. (2016b). 
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Fig. 8: Additional rock-forming mineral compositions. A) Wollastonite and ferrobustamite. B) Garnet. C) 
Melilite. Note the different ternary scales for each plot. Arrows indicated truncated scales. Abbreviations as 

in Table 1. 
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Fig. 9: Interstitial and melt inclusion glass compositions. All values are normalised to 100 wt% volatile free. 
Published data for whole rock, glass and melt inclusions at Merapi are shown for comparison. Published data 

from Nadeau et al. (2013b), Borisova et al. (2013), Costa et al. (2013), Innocenti et al. (2013) and the 
GEOROC database (accessed 03/2019). Arrows show the effect of adding 10% calcite, and subtracting 10% 

clinopyroxene, wollastonite or plagioclase. Mineral abbreviations as in Table 1. 
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Fig. 10: A) Box plots of KD_(Fe-Mg)^(cpx-melt) values from carbonate assimilation experiments. Black 
circles represent outliers calculated as 1.5 x interquartile range from the third quartile. Experiments with 
carbonate added have a general increase in KD_(Fe-Mg)^(cpx-melt) values. Experiments by Carter and 
Dasgupta (2016) and Carter and Dasgupta (2018) use more evolved andesite and dacite compositions, 
compared to the remaining basaltic experiments, which were less affected by carbonate interaction. The 

extremely high values from Mollo and Vona (2014) are likely the result of very high experimental fO2 
conditions (up to air), which would strongly affect Fe2+/Fe3+ partitioning between clinopyroxene and melt. 
B) Comparison between measured clinopyroxene Diopside-Hedenbergite (DiHd) components and predicted 

ones, using the iterative approach of Neave and Putirka (2017). Light grey data are calculated from 
clinopyroxenes in the Library of Experimental Phase Relations (LEPR, Hirschmann et al., 2008) database. 
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Fig. 11: Stacked histogram results of thermometry estimates for the magmatic skarn xenoliths and host lava 
glasses using equation 34 of Putirka (2008). Xenolith glasses produce temperatures of 829 ± 45°C (n=89). 
Melt inclusions have a slightly higher temperature of 876 ± 49°C (n=89). These temperatures are slightly 

below the thermometry estimates for published lava glass analyses, at 937 ± 43°C. Published glass data are 
from Preece et al. (2014) and Erdmann et al. (2016). 
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Fig. 12: Theriak-Domino (de Capitani and Petrakakis, 2010) T-XCO2 modelling of exoskarn xenoliths. 
Isobaric sections at 100 MPa. Green contours show the gehlenite mole fraction. Red contours show the CaTs 
mole fractions. The exoskarn A xenolith (MX99-5s) formed in a narrow temperature range between ~900 to 

910°C, and XCO2 < 0.5. The exoskarn B xenolith (MX99-3s) mineral assemblage records temperatures 
between 680 and 860°C at a XCO2 <~ 0.5. Abbreviations as in Table 1. Additional abbreviations: Grt - 

garnet (andradite-grossular), Me - meionite, Ol - olivine 
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Fig. 13: Clinopyroxene-only single crystal oxybarometer model testing. Experiments used for the calibration 
of the new oxybarometer are highlighted (Feig et al., 2006, 2010; Berndt et al., 2005; Whitaker et al., 

2007; Mollo and Vona, 2014). Sugawara (2001)’s experiments which cover 13 log units, and the results of 
applying the oxybarometers to the filtered Library of Experimental Phase Relations (LEPR Hirschmann et al., 

2008) are also shown. A) Results of the Cortés et al. (2006) oxybarometer applied to the experimental 
clinopyroxenes. B) Results of the Simakin et al. (2012) oxybarometer applied to the experimental 

clinopyroxenes. C) Results of the model calibrated in this study applied to the experimental clinopyroxenes. 
The model error is shown in the top left. 
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Fig. 14: fO2 estimates from clinopyroxenes across all zones and traverses. A) Violin density plots of oxygen 
fugacity estimates for xenolith clinopyroxenes. The model error has been applied as the smoothing 

bandwidth. The light grey field shows published estimates of Merapi magma fO2 from other independent 
methods (ΔNNO -0.2 to 1.6. Gertisser, 2001; Erdmann et al., 2014). Application of our model to the 

literature clinopyroxene dataset detailed in Fig. 7 is shown for comparison to past literature estimates. The 
solid dashed line is the magnetite-hematite oxygen fugacity buffer. The results show xenolith rims formed in 
fO2 similar to magmatic conditions, whilst the cores and exoskarn xenoliths formed at much higher fO2, up 
to that of air. B) Core to rim calculated fO2 traverse of the same clinopyroxene from sample CS16 as shown 

in Fig. 7E, showing high fO2 during initial clinopyroxene formation 
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Fig. 15: Summary of the processes occurring during magma carbonate interaction at Merapi. Carbonate is 
rapidly digested forming a Ca-rich contaminated melt, from which wollastonite and other phases precipitate, 
forming the magmatic skarn xenoliths. Proximal to the magmatic melt, clinopyroxene and plagioclase form 

from Ca transfer to the melt from the carbonate. The abundance of melt in the xenoliths allows 
disaggregation and disperses xenolith crystals into the magma (e.g. Deegan et al., 2010). The magmatic 

volatile phase (MVP c.f. Nadeau et al., 2010; Preece et al., 2014) infiltrates the xenoliths forming rare 
halogen and sulphur-bearing minerals. At the wall-rock contact, abundant clinopyroxene forms, partially 

insulating the carbonate and skarn. Magma-derived elements are transferred to the wall-rock, influenced by 
the increasing oxygen fugacity caused by CO2 flushing, forming the exoskarn mineralogy. Regions of main 
magma crystallisation from Chadwick et al. (2013), Preece et al. (2014) and Erdmann et al. (2016). Moho 

from Wölbern and Rümpker (2016). Description of the lower crust from van Bemmelen (1949). 
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1 Table 1: Mineral phases identified within the Merapi calc-silicate xenoliths in this study, and 
2 abbreviations used throughout the text. The minerals are grouped alphabetically within three general 
3 groupings.

Mineral Abbreviation Formula Mag Exo A Exo B

Rock-forming and their endmembers
Clinopyroxene Cpx Ca(Fe,Mg)Si2O6 M
–Calcium Tschermak’s Pyroxene CaTs CaAlAlSiO6 m M M
–Esseneite (Clinopyroxene) Ess CaFe3+AlSiO6 m M M
Garnet Grt Ca3(Fe3+,Al,Ti)2Si3O12 m M M
–Andradite Adr Ca3Fe3+

2Si3O12 m M m
–Grossular Grs Ca3Al2Si3O12 m M M
–Schorlomite Sch Ca3Ti2Si3O12 m
Melilite
–Åkermanite Åk Ca2MgSi2O7 m m M
–Fe-Åkermanite Fe-Åk Ca2FeSi2O7 m m M
–Gehlenite Gh Ca2Al2SiO7 m m M
–Na-Melilite Na-Mel CaNaAl2SiO7

Plagioclase Pl (Ca,Na)(Al,Si)4O8 M M m
–Anorthite An CaAl2Si2O8 M M m
Wollastonite Wo CaSiO3 M M m
–Ferrobustamite Bst Ca(Fe2+,Ca,Mn2+)Si2O6 m m
Sulphur and Halogen-bearing
Anhydrite Anh CaSO4 m m
Apatite Ap Ca5(PO4)3(OH,F,Cl) m
Baryte Ba BaSO4 m
Cotunnite* Cot PbCl2 m
Cubanite Cu CuFe2S3 m
Cuspidine Cusp Ca4Si2O7(F,OH)2 m m
Ellestadite El Ca5(SiO4,PO4,SO4)3(F,OH,Cl) m m
Fluorite Fl CaF2 m
Larnite Lrn Ca2SiO4 m
Pyrrhotite Po Fe1-xS (x=0-0.2) m m
Spurrite Spu Ca5Si2O8CO3 m
Wadalite† Wad Ca12Al10Si4O32Cl6 m
Oxides, Other Silicates, and Accessory Minerals
Calcite Cal CaCO3 m M
Ca-Zr-Ti oxide* CaZrTi Ca-Zr-Ti m
Cebollite† Ce Ca5Al2(SiO4)3(OH)4 m
Chromite* Chr FeCr2O4 m
Hematite Hm Fe2O3 m
Ilmenite Ilm FeTiO3 m
Magnetite Mgt Fe2+Fe3+

2O4 M m
Quartz Qtz SiO2 M m
Monazite* Mo (Ce,La)PO4 m
Perovskite Psk CaTiO3 m
Titanite Ttn CaTiSiO4 m m
Spinel Sp (Fe,Mg)Al2O4 M
Xenotime* Xe YPO4 m
* Identified with SEM only    † Uncertain identification
Mag Magmatic skarn xenoliths, Exo A: Exoskarn type A xenoliths, Exo B: Exoskarn type B xenoliths
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M: Major rock forming mineral, m: Minor to accessory (<1 vol%) mineral

4
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1 Table 2: Average plagioclase compositions for the zones in the magmatic skarn xenoliths, and in the 
2 exoskarn xenoliths. All analyses normalised to 8 oxygens. Lava analyses are where the xenolith section 
3 had a small rind of lava still attached. Analyses are reported as the mean with one standard deviation in 
4 brackets. Plagioclase components: An = anorthite, Ab = albite, Or = orthoclase.

Type Magmatic Skarn Exoskarn

Zone Host Lava R2 R4 Core Exoskarn A Exoskarn B

n 8  49  27  76  63  7  

SiO2 53.61 (4.03) 48.91 (4.42) 52.91 (4.28) 45.21 (2.80) 44.43 (3.50) 42.51 (0.51)

Al2O3 28.10 (2.94) 31.73 (3.31) 28.68 (3.00) 33.98 (2.03) 34.90 (2.48) 36.55 (0.37)

FeO 0.72 (0.34) 0.58 (0.16) 0.94 (0.33) 0.65 (0.22) 0.33 (0.33) 0.24 (0.02)

MgO 0.06 (0.07) 0.02 (0.02) 0.02 (0.03) 0.01 (0.02) 0.02 (0.02)

CaO 11.12 (3.28) 15.05 (3.72) 12.25 (2.99) 17.82 (2.18) 19.09 (2.63) 20.17 (0.26)

Na2O 5.06 (1.70) 3.01 (2.12) 4.25 (1.65) 1.34 (1.23) 0.78 (1.45) 0.08 (0.03)

K2O 0.68 (0.52) 0.23 (0.20) 0.53 (0.44) 0.10 (0.14) 0.07 (0.17) 0.02 (0.01)

Total 99.47 (0.64) 99.56 (0.87) 99.76 (1.20) 99.12 (1.09) 99.75 (1.01) 99.56 (1.06)

Cations based on 8 oxygens

Si 2.449 (0.166) 2.252 (0.188) 2.416 (0.168) 2.108 (0.113) 2.063 (0.138) 1.983 (0.009)

Al 1.515 (0.168) 1.724 (0.191) 1.546 (0.178) 1.869 (0.118) 1.912 (0.146) 2.009 (0.009)

Fe 0.028 (0.013) 0.022 (0.006) 0.036 (0.013) 0.025 (0.009) 0.013 (0.013) 0.009 (0.001)

Mg 0.004 (0.005) 0.001 (0.001) 0.001 (0.002) 0.000 (0.001) 0.001 (0.001) 0.000 (0.000)

Ca 0.546 (0.165) 0.744 (0.189) 0.601 (0.154) 0.891 (0.114) 0.951 (0.135) 1.008 (0.006)

Na 0.448 (0.147) 0.267 (0.188) 0.375 (0.143) 0.120 (0.109) 0.069 (0.126) 0.007 (0.003)

K 0.039 (0.030) 0.013 (0.012) 0.030 (0.025) 0.006 (0.008) 0.004 (0.010) 0.001 (0.000)

∑Cations 5.032 (0.009) 5.025 (0.011) 5.011 (0.020) 5.020 (0.007) 5.017 (0.018) 5.017 (0.006)

An 52.9 (16.2) 72.8 (19.1) 59.8 (15.5) 87.6 (11.1) 92.9 (13.1) 99.2 (0.3)

Ab 43.3 (14.0) 25.9 (18.1) 37.2 (14.1) 11.8 (10.7) 6.7 (12.2) 0.7 (0.3)

Or 3.8 (2.9) 1.3 (1.1) 3.1 (2.7) 0.6 (0.8) 0.4 (0.9) 0.1 (0.0)
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1 Table 3: Average clinopyroxene (cpx), wollastonite (wo), and ferrobustamite (bst) compositions for each zone in the magmatic skarn xenoliths, exoskarns, 
2 and across all samples for wollastonite and ferrobustamite as there is very little compositional variability for the pyroxenoids. Fe3+ calculated using 
3 Droop (1987). Analyses are reported as the mean with one standard deviation in brackets. Clinopyroxene components: Wo = wollastonite, En = enstatite, 
4 Fs = ferrosilite. All Fe assumed as Fe2+ for ternary component calculation.

Type Magmatic Skarn Exoskarn All All

Zone Host Lava R1 R2 R3 R3b R4 Core Exoskarn A Exoskarn B

Mineral Cpx  Cpx  Cpx  Cpx  Cpx  Cpx  Cpx  Cpx  Cpx  Wo  Bst  

n 7 19 43 44 18 71 112 40 18 94 16

SiO2 51.13 (0.72) 50.11 (1.54) 50.37 (0.94) 49.89 (1.41) 40.89 (0.46) 49.83 (1.70) 46.26 (1.94) 43.24 (2.67) 40.52 (1.87) 50.70 (0.69) 49.81 (0.52)

TiO2 0.5 (0.11) 0.49 (0.10) 0.45 (0.16) 0.42 (0.10) 0.57 (0.10) 0.37 (0.23) 0.67 (0.27) 0.53 (0.36) 0.36 (0.27) 0.04 (0.05) 0.06 (0.04)

Al2O3 2.63 (0.43) 2.71 (1.56) 2.09 (0.64) 2.37 (0.59) 14.64 (0.40) 2.08 (0.96) 5.76 (2.89) 13.93 (5.95) 18.19 (1.97) 0.07 (0.08) 0.02 (0.02)

Cr2O3
0 (0.01) 0.02 (0.02) 0.02 (0.02) 0.02 (0.02) 0.01 (0.01) 0.01 (0.02) 0.02 (0.02) 0.01 (0.01) 0.02 (0.02) 0.01 (0.01) 0.01 (0.01)

FeO 8.85 (0.12) 12.38 (5.99) 10.62 (1.85) 12.58 (2.84) 8.58 (0.47) 13.46 (4.14) 11.26 (3.03) 7.96 (6.72) 5.65 (1.15) 1.31 (0.80) 10.81 (0.97)

MnO 0.56 (0.11) 0.57 (0.19) 0.55 (0.11) 0.48 (0.10) 0.32 (0.02) 0.5 (0.16) 0.21 (0.10) 0.24 (0.32) 0.08 (0.03) 0.37 (0.16) 1.13 (0.19)

MgO 14.43 (0.43) 11.38 (4.68) 11.74 (1.77) 10.82 (2.83) 9.07 (0.52) 9.45 (2.73) 9.66 (1.41) 8.59 (2.25) 9.57 (1.12) 0.22 (0.08) 0.70 (0.22)

CaO 21.2 (0.66) 22.06 (1.27) 22.62 (0.68) 22.72 (1.12) 25.18 (0.17) 23.9 (0.77) 23.76 (0.70) 25.04 (0.84) 25.88 (0.47) 47.09 (0.92) 38.08 (1.48)

Na2O 0.43 (0.04) 0.34 (0.12) 0.41 (0.08) 0.38 (0.07) 0.02 (0.02) 0.29 (0.14) 0.33 (0.15) 0.07 (0.07) 0.04 (0.02) 0.02 (0.02) 0.04 (0.03)

Total 99.75 (0.50) 100.08 (0.81) 98.87 (0.71) 99.67 (0.82) 99.28 (0.64) 99.93 (0.60) 97.92 (0.70) 99.62 (1.24) 100.31 (0.81) 99.93 (0.88) 100.8 (1.40)

Cations based on 6 oxygens, 4 cations

Si 1.901 (0.021) 1.895 (0.059) 1.918 (0.028) 1.898 (0.024) 1.535 (0.013) 1.906 (0.040) 1.786 (0.086) 1.624 (0.136) 1.485 (0.065) 1.967 (0.025) 1.956 (0.038)

Ti 0.014 (0.003) 0.014 (0.003) 0.013 (0.005) 0.012 (0.003) 0.016 (0.003) 0.011 (0.006) 0.019 (0.008) 0.015 (0.011) 0.010 (0.008) 0.001 (0.001) 0.002 (0.001)

AlIV 0.099 (0.021) 0.105 (0.059) 0.082 (0.028) 0.102 (0.024) 0.465 (0.013) 0.094 (0.040) 0.214 (0.086) 0.376 (0.136) 0.515 (0.065) 0.033 (0.025) 0.044 (0.038)

AlVI 0.018 (0.013) 0.018 (0.021) 0.013 (0.009) 0.006 (0.008) 0.183 (0.013) 0.007 (0.018) 0.047 (0.047) 0.238 (0.117) 0.271 (0.036) 0.000 (0.000) 0.000 (0.000)

Cr 0.000 (0.000) 0.000 (0.001) 0.001 (0.001) 0.000 (0.001) 0.000 (0.000) 0.000 (0.001) 0.000 (0.001) 0.000 (0.000) 0.000 (0.001) 0.000 (0.000) 0.000 (0.000)

Fe2+ 0.190 (0.032) 0.309 (0.241) 0.264 (0.071) 0.300 (0.087) 0.019 (0.022) 0.339 (0.122) 0.212 (0.106) 0.138 (0.230) 0.000 (0.002) 0.010 (0.018) 0.269 (0.076)

Fe3+ 0.086 (0.033) 0.088 (0.060) 0.075 (0.031) 0.102 (0.024) 0.251 (0.014) 0.094 (0.041) 0.153 (0.038) 0.117 (0.051) 0.173 (0.037) 0.033 (0.023) 0.086 (0.075)

Mn 0.017 (0.004) 0.018 (0.007) 0.018 (0.004) 0.015 (0.003) 0.010 (0.001) 0.016 (0.005) 0.007 (0.003) 0.008 (0.011) 0.002 (0.001) 0.012 (0.005) 0.038 (0.006)

Mg 0.800 (0.021) 0.635 (0.255) 0.665 (0.092) 0.611 (0.148) 0.507 (0.027) 0.536 (0.143) 0.555 (0.072) 0.478 (0.118) 0.523 (0.058) 0.013 (0.005) 0.041 (0.013)

Ca 0.844 (0.028) 0.895 (0.064) 0.923 (0.037) 0.927 (0.060) 1.013 (0.006) 0.980 (0.022) 0.982 (0.014) 1.006 (0.016) 1.017 (0.008) 1.957 (0.033) 1.601 (0.043)

Na 0.031 (0.003) 0.024 (0.009) 0.030 (0.006) 0.028 (0.005) 0.002 (0.001) 0.022 (0.010) 0.025 (0.012) 0.005 (0.005) 0.003 (0.001) 0.002 (0.001) 0.003 (0.002)

#Mg 74.4 (0.6) 60.6 (22.7) 66.1 (7.3) 59.8 (11.3) 65.3 (2.5) 55.3 (14.2) 60.7 (9.9) 68.3 (21.5) 75 (5.8) 27.5 (14.1) 10.4 (3.0)

Wo 43.6 (1.2) 46 (3.3) 47.5 (1.9) 47.4 (3.0) 56.3 (0.6) 49.8 (0.8) 51.5 (1.7) 57.9 (3.9) 59.3 (1.3) 96.7 (1.5) 78.7 (1.5)

En 41.3 (1.1) 32.7 (13.1) 34.2 (4.7) 31.3 (7.6) 28.2 (1.4) 27.3 (7.1) 29.1 (4.1) 27.8 (7.8) 30.4 (2.9) 0.6 (0.2) 2.0 (0.6)

Fs 15.1 (0.3) 21.3 (10.8) 18.3 (3.2) 21.3 (4.8) 15.5 (0.9) 22.9 (7.1) 19.4 (5.3) 14.3 (11.4) 10.3 (2.3) 2.7 (1.4) 19.3 (1.5)
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1 Table 4: Average garnet compositions for the zones in the magmatic skarn xenoliths, and in the exoskarn 
2 xenoliths. Abbreviations as in Table 1. Additional garnet abbreviations: Prp - pyrope, Alm - almandine, 
3 Sp - spessartite, Uv - uvarovite. See Methods section for end-member calculation details. Fe3+ calculated 
4 using Arai (2010). Analyses are reported as the mean with one standard deviation in brackets.

Xenolith 
Type Magmatic Skarn Exoskarn
Zone R3b Core Exoskarn A Exoskarn B
n 10  65  47  10  

SiO2 38.27 (0.23) 35.01 (2.93) 39.27 (0.55) 38.94 (0.30)

TiO2 0.76 (0.24) 3.45 (3.73) 0.23 (0.20) 0.29 (0.19)

Al2O3 14.24 (0.50) 9.64 (3.16) 20.37 (1.68) 18.88 (1.02)
Cr2O3 0.02 (0.03) 0.01 (0.02) 0.01 (0.02)
FeO 10.14 (0.49) 15.25 (3.60) 3.26 (1.88) 4.66 (1.11)

MnO 0.47 (0.05) 0.26 (0.09) 0.72 (0.68) 0.15 (0.03)

MgO 0.57 (0.04) 0.49 (0.19) 0.42 (0.17) 0.74 (0.10)
CaO 35.13 (0.26) 33.75 (0.78) 35.86 (0.78) 36.68 (0.54)
Total 99.59 (0.29) 97.86 (0.98) 100.23 (0.92) 100.35 (0.65)

Cations based on 12 oxygens, 8 cations
Si 2.972 (0.013) 2.831 (0.196) 2.966 (0.026) 2.944 (0.032)
Ti 0.044 (0.014) 0.214 (0.243) 0.013 (0.012) 0.016 (0.011)
Al 1.304 (0.043) 0.913 (0.281) 1.813 (0.139) 1.681 (0.077)
Cr 0.000 (0.000) 0.001 (0.002) 0.000 (0.001) 0.001 (0.001)

Fe2+ 0.007 (0.017) 0.042 (0.042) 0.013 (0.024) 0.000 (0.000)

Fe3+ 0.652 (0.038) 0.995 (0.247) 0.194 (0.120) 0.295 (0.073)
Mn 0.031 (0.003) 0.018 (0.007) 0.046 (0.043) 0.010 (0.002)
Mg 0.066 (0.004) 0.059 (0.023) 0.047 (0.019) 0.083 (0.011)
Ca 2.923 (0.023) 2.926 (0.039) 2.902 (0.064) 2.970 (0.024)

Grs 64.3 (1.6) 37.5 (17.2) 87.7 (6.6) 83.9 (4.0)
Adr 33.5 (1.9) 52.0 (14.4) 9.6 (6.4) 15.1 (3.7)
Sch 1.4 (0.6) 9.3 (12.7) 0.4 (0.4) 0.7 (0.4)
Alm 0.0 (0.2) 0.2 (0.5) 0.4 (0.7) 0.0 (0.0)
Prp 0.7 (0.8) 0.8 (0.9) 0.7 (0.8) 0.3 (0.6)
Sp 0.1 (0.4) 0.1 (0.3) 1.2 (1.7) 0.0 (0.0)
Uv 0.0 (0.0) 0.0 (0.1) 0.0 (0.0) 0.0 (0.0)
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1 Table 5: Average melilite compositions for the magmatic skarn xenolith core, and in the exoskarn 
2 xenoliths. All analyses are normalised to 7 oxygens. Abbreviations as in Table 1. See Methods section for 
3 details about the calculation of mole fractions of end-member compositions. Analyses are reported as the 
4 mean with one standard deviation in brackets.

Xenolith Type Magmatic Skarn Exoskarn
Zone Core Exoskarn A Exoskarn B
n 4  7  26  

SiO2 24.72 (0.43) 25.29 (1.80) 29.06 (3.01)

TiO2 0.01 (0.02) 0.01 (0.02) 0.01 (0.02)

Al2O3 29.87 (0.47) 28.92 (2.03) 25.09 (4.37)

Cr2O3 0.02 (0.01) 0.02 (0.01) 0.01 (0.01)

FeO 2.66 (0.07) 1.87 (0.97) 0.93 (0.18)

MnO 0.10 (0.02) 0.35 (0.24) 0.05 (0.03)
MgO 0.69 (0.03) 1.22 (1.05) 3.74 (1.43)
CaO 39.56 (0.16) 40.60 (0.43) 40.56 (0.95)

Na2O 0.54 (0.10) 0.13 (0.12) 0.52 (0.21)
Total 98.17 (0.88) 98.55 (0.93) 99.99 (1.09)

Cations based on 7 oxygens

Si 1.165 (0.013) 1.186 (0.074) 1.331 (0.136)

Ti 0.000 (0.001) 0.000 (0.001) 0.000 (0.001)
Al 1.659 (0.012) 1.600 (0.120) 1.354 (0.237)
Cr 0.001 (0.000) 0.001 (0.001) 0.000 (0.000)
Fe 0.105 (0.002) 0.074 (0.038) 0.036 (0.007)

Mn 0.004 (0.001) 0.014 (0.010) 0.002 (0.001)
Mg 0.048 (0.002) 0.085 (0.072) 0.255 (0.097)
Ca 1.998 (0.021) 2.042 (0.032) 1.990 (0.036)
Na 0.049 (0.009) 0.012 (0.011) 0.046 (0.018)
∑Cations 5.029 (0.013) 5.018 (0.012) 5.015 (0.017)

Gh 79.7 0.7 82.3 7.1 65.2 12.5
Ak 4.9 0.2 8.9 7.6 26.6 10.5
Fe-Ak 10.7 0.2 7.7 3.9 3.7 0.7
Na-Mel 4.7 0.8 1.1 1.1 4.5 1.8
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1 Table 6: Cu-bearing mineral compositions. Cubanite has only been found in magmatic skarn xenoliths, 
2 whilst pyrrhotite is found across all xenolith types, with little chemical variation between xenolith types. 
3 Analyses are reported as the mean with one standard deviation in brackets

 Po  Cub  
n 10 5
Fe 58.44 (0.49) 38.7 (1.12)
S 39.83 (0.24) 35.08 (0.67)
Co 0.20 (0.02) 0.12 (0.03)
Ni 0.48 (0.11) 0.06 (0.05)
Cu 0.30 (0.17) 24.26 (1.51)
Zn 0.03 (0.02) 0.09 (0.05)
Total 99.28  (0.60) 98.3 (0.57)

Sulphurs 1 3

Fe 0.842 (0.007) 1.899 (0.036)
Co 0.003 (0.003) 0.005 (0.001)
Ni 0.007 (0.002) 0.003 (0.002)
Cu 0.004 (0.002) 1.048 (0.082)
Zn 0.005 (0.003) 0.004 (0.002)
Total 0.856 (0.007) 2.959 (0.072)

Fe/S 0.84  (0.01)   
4
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1 Table 7: Selected analyses of halogen and sulphur-bearing minerals. Wad-1, Wad-2 are the wadalite-like 
2 phase, found in sample MX1. Unk1 and Unk2 are unknown volatile-bearing minerals in samples CS11 
3 and MXCS-b respectively. SEM-EDS analysis shows the presence of Cl and F in these latter two 
4 minerals. Normalisation cations for the unknown volatile-bearing minerals are chosen to produce 
5 plausible formula units, and are not to represent any currently known minerals. Analyses are reported as 
6 the mean with one standard deviation in brackets

Sample Multiple Multiple MX1 MX1 CS11 M-XCS-1

Mineral Cusp El Wad-1 Wad-2 Unk1 Unk2

Type Magmatic Skarn Magmatic Skarn Magmatic Skarn Magmatic Skarn Exoskarn A Exoskarn B

n 5  4  11  2  2  2  

SiO2 32.70 (0.42) 8.37 (1.27) 17.63 (0.41) 24.98 (1.99) 26.70 (0.05) 23.33 (0.44)

TiO2 0.19 (0.15) 0.02 (0.03) 0.38 (0.17) 0.56 (0.29) 0.00 (0.00) 0.01 (0.02)

Al2O3 0.02 (0.01) 0.03 (0.02) 23.85 (1.05) 19.59 (0.98) 14.47 (0.42) 12.98 (0.02)

Cr2O3 0.02 (0.02) 0.00 (0.00) 0.01 (0.02) 0.00 (0.01) 0.00 (0.00) 0.00 (0.00)

FeO 0.14 (0.08) 0.08 (0.03) 5.63 (1.21) 6.26 (2.60) 1.52 (0.37) 0.71 (0.15)

MnO 0.08 (0.02) 0.03 (0.01) 0.18 (0.05) 0.24 (0.15) 0.26 (0.10) 0.07 (0.06)

MgO 0.07 (0.07) 0.05 (0.02) 0.60 (0.08) 0.43 (0.09) 0.24 (0.01) 0.01 (0.01)

CaO 60.20 (0.24) 54.16 (1.19) 40.18 (0.43) 39.67 (3.09) 52.48 (0.13) 56.23 (0.26)

Na2O 0.02 (0.02) 0.01 (0.02) 0.17 (0.16) 0.09 (0.04) 0.00 (0.00) 0.01 (0.02)

K2O 0.01 (0.01) 0.00 (0.00) 0.00 (0.01) 0.02 (0.00) 0.00 (0.00) 0.01 (0.01)

P2O5 0.00 (0.00) 24.03 (3.25) 0.13 (0.13) 0.13 (0.18) 0.04 (0.02)

SO3 0.00 (0.00) 8.12 (1.42) 0.01 (0.01) 0.00 (0.00) 0.02 (0.01)

Cl 0.01 (0.00) 1.04 (0.22) 12.91 (0.17) 8.87 (2.74) 2.12 (0.00)

F 10.26 (0.14) 0.02 (0.02) 0.00 4.90 (0.00)

Total 103.70 (0.40) 95.94 (0.81) 101.69 (0.56) 100.85 (2.08) 95.67 (0.12) 100.61 (0.10)

O=(F2,Cl2) -4.32 (0.06) -0.23 (0.05) -2.92 (0.04) -2.00 (0.62) 0.00 (0.00) -2.54 (0.00)

Total.1 99.38 (0.44) 95.71 (0.78) 98.77 (0.53) 98.85 (1.46) 95.67 (0.12) 98.07 (0.10)

Cations based on x cations 6 8 26 26 9 16

Si 2.002 (0.009) 0.701 (0.106) 4.753 (0.092) 6.168 (0.277) 2.337 (0.006) 4.042 (0.058)

Ti 0.009 (0.007) 0.002 (0.002) 0.078 (0.034) 0.103 (0.051) 0.000 (0.000) 0.001 (0.002)

Al 0.001 (0.001) 0.003 (0.002) 7.578 (0.297) 5.713 (0.484) 1.493 (0.037) 2.649 (0.009)

Cr 0.001 (0.001) 0.000 (0.000) 0.003 (0.003) 0.001 (0.001) 0.000 (0.000) 0.000 (0.000)

Fe 0.007 (0.004) 0.006 (0.002) 1.270 (0.277) 1.285 (0.493) 0.112 (0.028) 0.103 (0.022)

Mn 0.004 (0.001) 0.002 (0.001) 0.042 (0.012) 0.050 (0.030) 0.019 (0.008) 0.011 (0.008)

Mg 0.007 (0.006) 0.007 (0.003) 0.240 (0.032) 0.159 (0.039) 0.031 (0.001) 0.002 (0.002)

Ca 3.949 (0.026) 4.858 (0.102) 11.610 (0.160) 10.524 (1.187) 4.923 (0.008) 10.436 (0.096)

Na 0.002 (0.002) 0.001 (0.003) 0.087 (0.083) 0.045 (0.022) 0.000 (0.000) 0.004 (0.005)

K 0.001 (0.001) 0.000 (0.000) 0.002 (0.003) 0.007 (0.000) 0.000 (0.000) 0.002 (0.002)

P 0.000 (0.000) 1.704 (0.230) 0.031 (0.029) 0.027 (0.038) 0.000 (0.000) 0.006 (0.003)

S 0.000 (0.000) 0.510 (0.089) 0.001 (0.003) 0.000 (0.000) 0.000 (0.000) 0.002 (0.001)

Cl 0.001 (0.000) 0.147 (0.031) 5.903 (0.087) 3.735 (1.277) 0.000 (0.000) 0.622 (0.003)

F 1.986 (0.044) 0.000 (0.000) 0.006 (0.011) 0.000 (0.000) 0.000 (0.000) 2.684 (0.012)
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1 Table 8: Average analyses of oxides and other silicate minerals found in the Merapi xenoliths. Analyses 
2 are reported as the mean with one standard deviation in brackets

Xenolith Type Magmatic skarn Exoskarn A Exoskarn B

Mineral Mgt  Ilm Hem  Psk  Ttn  CaSiAlP Sp  

n 27 1 4 3 8 1 8

SiO2 0.14 (0.10) 5.92 0.31 (0.15) 1.13 (0.83) 30.91 (1.13) 33.30 0.01 (0.01)

TiO2 9.91 (5.16) 43.22 0.15 (0.20) 54.75 (0.63) 36.28 (2.33) 1.19 0.01 (0.01)

Al2O3 2.66 (1.15) 1.10 0.59 (1.14) 0.43 (0.16) 1.70 (0.51) 26.28 66.59 (0.58)

Cr2O3
0.18 (0.20) 0.19 0.02 (0.02) 0.01 (0.01) 0.03 (0.03) 0.00 0.10 (0.07)

FeO 78.73 (4.81) 42.16 86.61 (2.79) 0.80 (0.15) 1.31 (0.70) 0.28 8.48 (1.41)

MnO 0.89 (0.30) 0.87 0.13 (0.14) 0.04 (0.03) 0.08 (0.07) 0.00 0.38 (0.08)

MgO 1.78 (0.55) 1.54 0.35 (0.58) 0.01 (0.01) 0.12 (0.29) 0.00 22.69 (0.77)

CaO 0.17 (0.21) 1.74 0.47 (0.19) 40.71 (0.47) 28.13 (1.04) 29.53 0.01 (0.00)

Na2O 0.05 (0.05) 0.40 0.06 (0.04) 0.02 (0.02) 0.02 (0.01) 0.46 0.00 (0.00)

Total 94.51 (1.37) 97.37 88.70 (1.67) 97.92 (0.45) 98.66 (2.18) 102.40 98.27 (0.68)

Cations based on oxygens 4 3 3 3 5 16 4

Si 0.005 (0.004) 0.146 0.006 (0.005) 0.026 (0.019) 1.010 (0.034) 3.098 0.000 (0.000)

Ti 0.280 (0.153) 0.802 0.001 (0.001) 0.944 (0.008) 0.892 (0.053) 0.084 0.000 (0.000)

Al 0.117 (0.048) 0.032 0.001 (0.001) 0.012 (0.004) 0.065 (0.019) 2.880 1.965 (0.012)

Cr 0.005 (0.006) 0.004 0.000 (0.000) 0.000 (0.000) 0.001 (0.001) 0.000 0.002 (0.001)

Fe2+ 1.145 (0.181) 0.774 0.000 (0.000) 0.000 (0.000) 0.002 (0.007) 0.000 0.145 (0.023)

Fe3+ 1.311 (0.288) 0.095 1.478 (0.985) 0.015 (0.003) 0.033 (0.022) 0.022 0.033 (0.013)

Mn 0.028 (0.009) 0.018 0.001 (0.001) 0.001 (0.000) 0.002 (0.002) 0.000 0.008 (0.002)

Mg 0.098 (0.029) 0.057 0.002 (0.002) 0.000 (0.000) 0.006 (0.014) 0.000 0.847 (0.024)

Ca 0.006 (0.008) 0.046 0.009 (0.007) 1.000 (0.014) 0.985 (0.033) 2.942 0.000 (0.000)

Na 0.003 (0.004) 0.019 0.003 (0.002) 0.001 (0.001) 0.001 (0.001) 0.082 0.000 (0.000)
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1 Table 9: Average interstitial glass and melt inclusion compositions for the zones in the magmatic skarn xenoliths. Analyses are reported as the mean with 
2 one standard deviation in brackets

Glass Type Interstitial Glasses Melt Inclusions
Zone Host Lava R1 R2 R4 Core R1 R4 and Core
n 15  11  15  48  12  12  70  

SiO2 70.45 (3.36) 69.02 (2.54) 71.07 (2.76) 73.23 (2.21) 73.32 (1.78) 63.99 (3.03) 67.38 (3.72)

TiO2 0.42 (0.11) 0.37 (0.10) 0.31 (0.14) 0.35 (0.13) 0.32 (0.09) 0.44 (0.05) 0.40 (0.19)

Al2O3 13.75 (1.83) 13.29 (0.95) 13.47 (1.17) 12.00 (0.88) 12.6 (0.38) 17.55 (0.82) 13.33 (1.97)

Cr2O3 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0 (0.01) 0.02 (0.02) 0.01 (0.01)
FeO 2.59 (0.79) 3.03 (0.15) 2.52 (0.28) 2.22 (0.46) 2.22 (0.56) 2.55 (0.56) 2.84 (1.31)
MnO 0.12 (0.08) 0.13 (0.05) 0.10 (0.04) 0.07 (0.03) 0.05 (0.03) 0.13 (0.04) 0.09 (0.06)
MgO 0.40 (0.57) 0.12 (0.09) 0.12 (0.12) 0.06 (0.06) 0.07 (0.04) 0.33 (0.22) 0.35 (0.90)
CaO 1.05 (1.04) 4.71 (1.79) 2.49 (1.29) 3.04 (1.15) 2.26 (0.97) 2.44 (0.52) 5.87 (3.47)

Na2O 3.89 (1.15) 3.41 (0.46) 3.59 (0.46) 3.22 (0.37) 3.32 (0.53) 4.01 (0.90) 3.43 (0.74)

K2O 5.28 (0.72) 4.20 (0.52) 4.71 (0.80) 4.51 (0.56) 4.92 (0.50) 3.82 (1.03) 4.00 (0.99)

P2O5 0.12 (0.12) 0.08 (0.05) 0.07 (0.08) 0.09 (0.36) 0.04 (0.02) 0.23 (0.08) 0.08 (0.04)

SO3 0.01 (0.01) 0.06 (0.03) 0.01 (0.01) 0.02 (0.02) 0.00 (0.01) 0.11 (0.05) 0.03 (0.03)
Cl 0.21 (0.16) 0.27 (0.03) 0.26 (0.03) 0.29 (0.07) 0.28 (0.04) 0.29 (0.02) 0.34 (0.11)
F (ppm) 0;00 (0.00)  184 (326)
Total 98.26 (1.38) 98.63 (0.83) 98.73 (1.56) 99.09 (0.92) 99.39 (1.12) 95.53 (3.48) 98.14 (1.97)
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