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Abstract 

Articular cartilage is prone to degradation as a result of aging, disease and injury, which can 

lead to the onset of osteoarthritis (OA). The avascular nature of the tissue renders its 

endogenous repair capacity notoriously poor and its aneural nature means that disease 

progression is often quite advanced before symptoms present. OA places a huge burden on 

the NHS and UK economy and there is an urgent need for alternative therapies, which offer 

patients a one-off durable treatment and mitigate or significantly delay the need for joint 

replacement. Tissue engineering offers a possible solution, wherein replacement cartilage 

is developed in vitro from undifferentiated cells. 

Human embryonic stem cells (hESC) are readily available, pluripotent and demonstrate 

huge expansion capacity in vitro; all of which makes them an appealing cell source for tissue 

engineered constructs. This work sought to enhance the maturity of hESC-derived 

chondroprogenitors with the application of a range of 2D and 3D culture techniques and 

regimes of mechanical stimulation. 

hESC were subjected to a directed differentiation protocol (DDP), described previously 

(Oldershaw et al. 2010), with the addition of an immobilised Wnt base and an acellular fibrin 

hydrogel to enable migration into a 3D environment. Addition of the hydrogel to 

differentiating monolayer hESC, always resulted in improved chondrogenic gene expression 

and the application of a Wnt platform significantly increased the migration of cells into the 

gel. 

Hydrostatic pressure was applied to fibrin-encapsulated progenitors and was found to 

increase chondrogenic matrix deposition and gene expression. In addition, the application 
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of low level compressive forces to monolayer progenitors resulted in increased 

chondrogenic gene expression at low cell seeding densities. 

Taken together, results suggest that both a 3D environment and the application of 

mechanical stimuli can significantly enhance the chondrogenic potential of hESC-derived 

chondroprogenitors. We believe that the work described here holds great potential for the 

development of a cell-based therapy for cartilage damage and degeneration. 
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Chapter 1 

Introduction 
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1.1 Clinical demand for tissue engineered articular cartilage 

Articular cartilage is a smooth, tough tissue which reduces friction and acts as a shock 

absorber at articulating joints such as the knee, shoulder and hip. Unfortunately, the 

integrity of the tissue diminishes with age, and accelerated degradation as a result of 

disease and injury can lead to the development of osteoarthritis (OA). The avascular nature 

of cartilage renders its endogenous repair capacity notoriously poor and its aneural nature 

means that disease progression is often quite advanced before symptoms present. 

Due to the complex nature of OA and its manifold indirect effects, estimating the cost of 

the disease to the UK poses a challenge. The musculoskeletal health budget for 2012-13 

was £5.34 billion (Arthritis Research UK 2014). However, by 2017 the combined treatment 

costs of OA and rheumatoid arthritis (RA) were estimated at £10.2 billion. In addition to the 

direct costs of OA to the UK (figure 1-1), indirect costs arising as a result of lost revenue 

from missed work days (over 25 million per year) were estimated at £2.58 billion in 2017 

(Arthritis Research UK 2017). This is predicted to rise to £3.44 billion by 2030. Additional 

costs associated with disability living allowance are estimated to exceed £5 billion per 

annum (Arthritis Research UK 2014) (Chen et al. 2012). Thus, OA places a huge burden on 

the NHS and UK economy and there is an urgent need for alternative approaches to current 

therapies, which offer patients a one-off durable treatment and mitigate or significantly 

delay the need for joint replacement. Tissue engineering offers a possible solution, wherein 

replacement cartilage is developed in vitro from undifferentiated cells, which can be 

obtained with little or no discomfort to the patient.  
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Figure 1-1. Estimated costs of OA treatments to the NHS in 2012. NSAIDs = non-steroidal 

anti-inflammatory drugs (e.g. ibuprofen, naproxen). PPIs = proton pump inhibitors often 

needed in conjunction with NSAIDs. NSAIDs iatrogenic = costs arising from gastrointestinal 

complications associated with use of NSAIDs. Arthroscopy = less invasive surgical procedure 

to remove damaged tissue/fluid. (A. Chen et al. 2012) 

1.2 The musculoskeletal system 

1.2.1 The skeleton 

The skeletal system has roles in support, organ protection, movement, mineral 

homeostasis, blood cell production and triglyceride storage. It can be divided into the axial 

skeleton (skull, hyoid, auditory ossicles, vertebral column and thorax) and the appendicular 

skeleton (shoulders, limbs and hips). Where movement is required, articulating bones of 

the appendicular skeleton must interact with skeletal muscle in a carefully orchestrated 

manner. Many articulating bones are long bones (figure 1-2), such as the humerus and 
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ulna/radius of the arm. Long bones are composed of a diaphysis (shaft), proximal and distal 

epiphyses and metaphyses in between. The metaphyses have a layer of hyaline cartilage, 

termed the epiphyseal plate, which allows the bones to elongate. Once bones stop growing 

in length (during early adulthood), this layer mineralises to form bone and becomes the 

epiphyseal line. A thin layer of hyaline cartilage lines each epiphysis and the rest of the bone 

is covered in periosteum – a tough sheath of connective tissue which nourishes and protects 

the bone and contains osteoblasts to allow for appositional bone growth (increasing width). 

The medullary cavity in the centre of long bones contains fatty bone marrow and is lined by 

the endosteum, which contains a single layer of osteoblasts and a small amount of 

connective tissue. The diaphysis is primarily formed of dense cancellous bone, whereas the 

epiphyses consist mainly of trabecular tissue. Skeletal muscles attach to articulating bones 

at the point where they meet (joints). Attached via tendons, their contraction brings about 

movement of bones (Tortora and Grabowski 2003).
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Figure 1-2. Structure of a long bone (A) and a synovial joint (B). Adapted from Tortora and Grabowski, Principles of Anatomy and Physiology, 

10th edition, © John Wiley & Sons, Inc. (Tortora and Grabowski 2003).
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1.2.2 Synovial joints 

Joints can be fibrous, cartilaginous or synovial. Synovial joints, with their characteristic fluid-

filled cavity, are the most common in the human body and there are six types. Examples 

include hinge joints such as at the knee or elbow which allow movement in one plane; 

condyloid joints at the knuckles or wrist which allow movement in two planes; and ball and 

socket joints at hip which enable movement around three axes (Tortora and Grabowski 

2003). They are highly specialised to allow for load bearing and ultra-low friction movement 

between articulating bones. Synovial fluid, rich in hyaluronic acid (HA) and proteoglycan 4 

(PRG4) (otherwise known as lubricin), serves to lubricate joints, but also has metabolic and 

regulatory functions in joint homeostasis by allowing the transfer of nutrients, waste 

products, growth factors, enzymes and range of other soluble molecules into and out of the 

non-vascularised synovial tissues.  (Hui et al. 2012). Joint formation (figure 1-3) in humans 

first begins when the limb buds appear at around 4 weeks of gestation. Y-shaped 

mesenchymal condensations form, followed by an interzone at each future joint location. 

Cavitation occurs next and a liquid-filled synovial space appears. Proximal and distal ends 

of the developing limb acquire their characteristic interlocking shapes and finally, the 

formation of articular cartilage and other joint tissues, such as ligaments, complete the 

process by around week 14 (Pacifici, Koyama, and Iwamoto 2005; Mérida‐Velasco et al. 

1997). 
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Figure 1-3. Synovial joint formation. A) Schematic of basic process of joint formation in 

humans B) Diagrammatical representation of joint formation. Adapted from Pacifici et al., 

2005. 

1.3 Articular cartilage 

Found throughout the body – in structures such as the ear and nose, between vertebrae 

and also between articulating joints – cartilage is a key component of the musculoskeletal 

system. It is a tough, smooth, biphasic material – the solid phase composed of proteoglycans 

(PG), collagen and chondrocytes and the liquid phase mostly water and dissolved ions 
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(Guilak and Mow 2000; Mansour 2004; Foster et al. 2015). Hyaline cartilage (termed 

articular cartilage when located between articular joints) has a smooth “glassy” appearance 

and a highly specialised structure which differs from fibrocartilage and elastic cartilage 

(found in structures such as the intervertebral discs and epiglottis respectively). 

1.3.1 The emerging model of hyaline cartilage ECM 

The description of articular cartilage as a tissue with lubricating properties found on the 

ends of bones emerged as early as the 4th century and the first account of osteoarthritic 

cartilage was recorded in 1741. Up until the late 19th century, however, knowledge of the 

structure of articular cartilage remained very limited – fibrillar collagen and chondroitin 

sulphate were recognised as major components and zonal differences in chondrocyte 

distribution had been established (rounded cells in the deep tissue and flatter ones near the 

surface). Though it was also known to be an avascular tissue, its mode of mass transport 

was in dispute – one faction deemed the synovial fluid to be responsible, while the other 

favoured the subchondral blood vessels. With the development of the electron microscope 

and radio isotope technology in the mid-19th century, and improved chemical methods 

shortly thereafter, more detailed information about the structure of articular cartilage 

rapidly began to emerge (Benedek 2006). Around 1960 it was determined that chondroitin 

sulphate, along with smaller quantities of other polysaccharides such as keratan sulphate, 

were bound to a core protein and that these chondroitin sulphate-protein complexes 

probably formed aggregates (Partridge, Davis, and Adair 1961). 

From this point a great deal of work, spanning the next five decades (figure 1-4) and 

pioneered by the likes of Helen Muir, Vincent Hascall, Stanley Sajdera, Dick Heinegård and 

Tim Hardingham, resulted in the model of articular cartilage that we have today (figure 1-
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5). In 1969 Sajdera and Hascall published their “dissociative method” for extracting protein-

polysaccharide complexes from bovine nasal cartilage (Sajdera and Hascall 1969). Unlike 

the earlier “disruptive” method which involved high speed homogenisation of the tissue 

and resulted in denaturisation and depolymerisation of its macromolecules, this new 

technique involved gentle agitation of samples in high ionic strength solutions to yield 

intact, disaggregated protein-polysaccharide complexes.  This allowed for much closer 

interrogation of the tissue and from then on, a detailed picture of its structure began to 

emerge. In 1971 collagen type II (COL2) (described by Miller and Matukas in 1969) was 

identified as the tissue’s predominant collagen (Strawich and Nimni 1971). Bovine articular 

cartilage was incubated with papain at 4°C and washed with 0.15 M NaCl. Extraction with 

0.45 M NaCl resulted in a 20% collagen in solution. After further purification to remove 

associated GAGs, a triple stranded molecule of COL2 was the only component observed. 
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Figure 1-4. Timeline of developing model of articular cartilage. COL2 = collagen type II. GAG = glycosaminoglycan. PG = proteoglycan. HA = 

hyaluronic acid. PRELP = protein/arginine-rich end leucine-rich repeat protein. CHAD = chondroadherin. COMP = cartilage oligomeric matrix 

protein. CILP = cartilage intermediate protein. 1(Partridge, Davis, and Adair 1961) 2(Sajdera and Hascall 1969) 3(Strawich and Nimni 1971) 

4(Rodén et al. 1972) 5(T. E. Hardingham and Muir 1972) 6(Timothy E. Hardingham and Muir 1974) 7(Paulsson and Heinegård 1979) 8(Heinegård 

et al. 1986) 9(Larsson et al. 1991) 10(Hedbom et al. 1992) 11(P. Lorenzo, Bayliss, and Heinegård 1998) 12(P. Lorenzo et al. 2001) 13(Wiberg et al. 

2003) 14(Haglund et al. 2011).
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Figure 1-5. Dick Heinegård’s final model of cartilage structure. CHAD = chondroadherin, 

COMP = cartilage oligomeric matrix protein, HA = hyaluronic acid, KS = keratan sulphate, CS 

= chondroitin sulphate, PRELP = protein/arginine-rich end leucine-rich repeat protein. 

Adapted from Hascall, 2014. 

Isolation and characterisation of proteoglycans from cartilage tissue (usually 

bovine/porcine nasal or tracheal when much of the early work was conducted) via the 

dissociative method involves incubation with a dissociative solution of 3-4 M guanidine 

hydrochloride (GuHCl) to extract PGs, which are then re-aggregated with 0.5 M GuHCl. 

Aggregates are separated from unrelated proteins via caesium chloride (CsCl) density 

gradient centrifugation to produce an “A1 fraction” of PG aggregates. Further CsCl density 

centrifugation and incubation with dissociative 4M GuHCl results in a high density PG 

subunit and a lower density glycoprotein link (necessary for subsequent re-aggregation), 

which can be further separated into Link 1 and Link 2 with dissociative density gradients (V. 
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C. Hascall and Heinegård 1974). This method was utilised for much of the work that 

followed. 

In 1971 Hardingham and Muir showed that small amounts of HA interacted with 

disaggregated PGs to give a stable increase in hydrodynamic size. Furthermore, this increase 

peaked at a HA concentration of 1%, suggesting that above this, HA molecules were 

competing for available PG. This interaction was specific for HA and it was estimated that 

10-30 PG molecules were associated with each HA chain (T. E. Hardingham and Muir 1972). 

The following year the pair determined that each PG must have only one HA binding site, as 

they were unable to crosslink multiple HA chains. They also observed that each PG binds to 

a region around the size of a decasaccharide unit (4-5 nm) and, given that each PG occupies 

around 45 nm on a HA chain, deduced that they must be relatively spread out (Timothy E. 

Hardingham and Muir 1973). In 1974 they showed that the fraction isolated from cartilage, 

between the PG subunit and the glycoprotein link was in fact HA and that most PGs 

associated with it to form aggregates. Smaller, non-aggregating PGs with lower protein and 

keratan sulphate content were also identified (Timothy E. Hardingham and Muir 1974). 

Around the same time Hascall and Heinegård also observed large amounts of HA associated 

with PG aggregates (around 0.8%). These HA molecules were susceptible to degradation by 

chondroitinase, hyaluronidase and papain, but this was thwarted in the presence of 

chondroitin sulphate, which has a higher enzyme affinity; all of which suggests that HA is 

surrounded by PGs (V. C. Hascall and Heinegård 1974). Further work that year confirmed 

that most of the PGs in cartilage are aggregating, resistant to trypsin and papain digestion, 

and that link proteins are also present and necessary for their stabilisation (Vincent C. 

Hascall and Heinegård 1974; Heinegård and Hascall 1974). Further characterisation of 
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aggregating PGs followed in subsequent years, but the basic model is much the same as that 

shown in figure 1-8. 

In 1979 Paulsson et al. reverted to the disruptive/associative method of proteoglycan 

extraction in order to preserve the secondary structure of polypeptides, which can be 

damaged by chaotropic salts such as GuHCl (Paulsson and Heinegård 1979). A series of 

chemical analyses revealed a novel molecule, termed “cartilage matrix protein” (later 

renamed matrilin 1), which formed stable complexes with link proteins and PG monomers 

and aggregates. This protein, thought to have a role in PG/collagen interactions, had a high 

molecular mass and was formed of two subunits joined by disulphide bridges. It was later 

found to interact with biglycan/decorin and COL2 (Wiberg et al. 2003). The discovery of two 

more novel matrix proteins (protein/arginine-rich end leucine-rich repeat protein (PRELP) 

and fibromodulin), each formed of a single polypeptide chain, followed a few years later 

(Heinegård et al. 1986; Vincent C. Hascall 2014). In 1991, Larsson et al. identified yet another 

matrix protein (later termed chondroadherin (CHAD)), which was subsequently  found to 

interact with integrin α2ß1 (Haglund et al. 2011). Cartilage oligomeric matrix protein 

(COMP) and its interactions with collagens were described in 1992 (Hedbom et al. 1992) 

and the discovery of cartilage intermediate protein (CILP) followed in 1998 (P. Lorenzo, 

Bayliss, and Heinegård 1998).  Finally in 2001, the identification of asporin, a protein unable 

to bind GAGs and thought to have a role in the stabilisation of collagen networks, completed 

Dick Heinegård’s final model (figure 1-5) (P. Lorenzo et al. 2001). 
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1.3.2 Development of articular cartilage in vivo 

Chondrogenesis and the resulting production of articular cartilage is a complex process 

which varies depending on physiological location. During early embryonic development, 

human embryonic stem cells (hESC) in the limb buds give rise to a bi-potent mesendoderm 

population which develop into a mesenchymal core surrounded by an ectoderm (A. Cheng, 

Hardingham, and Kimber 2014). Condensed populations of mesenchymal stem cells form 

chondrification centres and subsequently differentiate into chondroprogenitors. 

Chondroblasts are then formed and they start to produce extracellular matrix (ECM) with 

an abundance of type II collagen and proteoglycans such as aggrecan (A. Cheng, 

Hardingham, and Kimber 2014). Eventually these cells lose contact with each other, become 

chondrocytes and organise into zones that form the growth plates of bones. Much of this 

initial cartilage model is replaced by bone via a process of endochondral ossification during 

foetal and postnatal development, but cartilaginous regions persist in the growth plates 

until early adulthood and remain at the ends of long bones as articular cartilage throughout 

life. (Oseni et al. 2011; A. Cheng, Hardingham, and Kimber 2014; Foster et al. 2015). 

Sex determining region Y-Box 9 (SOX9) is a master transcription factor for all cartilage 

elements; its expression is switched on in both chondrogenic and osteogenic bone marrow-

derived stromal cells (BMSC) prior to condensation and remains high in pre-chondrocytes 

and chondroblasts (Véronique Lefebvre and Smits 2005). Experiments with murine ESC have 

shown that there can be no expression of the key ECM proteins COL2 and ACAN when SOX9 

expression is blocked (Bi et al. 1999). Furthermore, in its absence, mesenchymal cells are 

unable to differentiate into chondroblasts at all (Mori-Akiyama et al. 2003). The SOX9 

protein has an Sry-related high-mobility group (HMG) box domain via which it binds to DNA 
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in order to initiate transcription of other genes such as L-SOX5 (SOX5), SOX6 and later, in 

cooperation with these two, COL2A1 (Véronique Lefebvre and Smits 2005). No other 

transcription factors, upstream of SOX9, have been identified that may determine 

chondrocyte cell fate in all regions of cartilage. However, various homoebox transcription 

factors (Hox genes) coordinate the expression of genes involved in limb patterning during 

embryogenesis and may also be transducers of signalling pathways in chondrogenesis. For 

example, the COL2A1 gene has multiple transcription factor recognition motifs in addition 

to those for SOX proteins. BMP2 signalling has been shown to activate the Hox gene DLX-2, 

which in turns leads to upregulation of COL2A1 (Xu et al. 2001). The formation of a 

mesenchymal condensation in the developing limb bud requires successful cell contact, 

aggregation and fusion; all of which is reliant upon the expression of cell adhesion molecules 

(CAMs) such as N-cadherin (N-CAM), tenascin-C (Tnc), versican and thrombospondin-4 

(Meech et al. 2005).  BARX2 is another Hox gene which helps to orchestrate chondrogenesis; 

it does so by regulating the expression of CAMs and its necessity for the formation of 

mesenchymal condensations and cartilage differentiation in the developing limbs of mice 

has been demonstrated (Meech et al. 2005). Furthermore, its expression is regulated by 

growth factors BMP4 and GDF5, and it was shown to act in conjunction with other targets 

of BMP signalling such as SOX9. BARX2 and COL2 proteins were shown to be co-expressed 

at the joint interzone and in the articular cartilage and, in vitro, BARX2 caused enhanced 

aggregation of bone marrow-derived cells (Meech et al. 2005). Additional proteins have 

been identified as transcriptional co-activators of SOX9 and their ablation shown to result 

in reduced expression of COL2. These include ZNF219 which brings about increased SOX9 

activity on the COL2A1 gene promoter (Takigawa et al. 2010); PGC-1 alpha which directly 
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interacts with SOX9 (Kawakami et al. 2005); and p300 which binds to the COL2A1 promoter 

region (Tsuda et al. 2003).  

SOX5 and SOX6 expression are activated in pre-chondrocytes and are very high in fully 

committed chondroblasts. Although they are not required for the determination of lineage 

commitment (normal precartilaginous condensations can form in their absence), low 

SOX5/SOX6 expression results in poor chondrogenic differentiation even when SOX9 

expression is high (Smits et al. 2001). The three proteins bind to enhancer regions on the 

COL2A1 gene and, together, can stimulate non-chondrogenic cells to express COL2A1, ACAN 

and other cartilage markers and are able to suppress hypertrophy; addition of transforming 

growth factor-ß (TGF-ß) and BMP4 can enhance this effect (Ikeda et al. 2004). Other 

cartilage matrix and regulatory genes have been shown to possess SOX binding regions, 

including collagen type XI alpha 2 (COL11A2) and ACAN (Véronique Lefebvre and Smits 

2005). Thus, the SOX trio are master transcription factors for chondrogenesis and high 

expression of SOX5/SOX6 is indicative of a more mature phenotype than expression of SOX9 

alone. 

Prior to endochondral ossification, chondrocytes must first undergo a process of 

hypertrophy, which is characterised by an increase in cell volume, down-regulation of 

chondrogenic markers such as SOX9 and COL2, and upregulation of osteogenic markers 

such as collagen type X , RUNX2 and collagenases such as matrix metallopeptidase 13 

(MMP13) (Mackie et al. 2008). Eventually, all chondrocytes in the growth plates of long 

bones become hypertrophic but, under normal (non-pathogenic) circumstances, articular 

chondrocytes do not. Quite how they escape growth plate maturation is unclear, but there 

are some well documented differences which make them distinct from those destined for 
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endochondral ossification. Pre-chondrocytes differentiate into chondroblasts which, unlike 

mature chondrocytes, are highly proliferative and responsible for laying down large 

amounts of ECM. Articular chondroblasts express high levels of lubricin (PRG4) and by the 

time they become mature chondrocytes (at the end of postnatal development) they also 

express high levels of ACAN, whereas both proliferation and COL2 expression are reduced 

(Rhee et al. 2005; Véronique Lefebvre and Smits 2005). Differential expression of the 

chicken Erg (chErg) transcription activator has also been observed between articular 

chondrocytes and growth plate chondrocytes (Iwamoto et al. 2000). Pre-hypertrophic 

chondrocytes express chErg, but a short-spliced variant was found to be expressed in cells 

taken from the articular cartilage of developing chicks. Furthermore, virally driven 

expression of the variant in the growth plate resulted in a failure of the tissue to undergo 

endochondral ossification, which indicates that chErg has a role in chondrocyte maturation. 

These differences suggest that the lineage commitment of chondrocytes in the growth 

plates and those in the epiphyses diverges early on in the process of joint formation. 

1.3.3 Structure of articular cartilage 

Articular cartilage is a highly specialised and organised form of hyaline cartilage which lines 

the surfaces of bones at diarthrodial joints. The liquid phase, consisting of water with 

dissolved ions such as sodium, accounts for around 80% of the tissue, whereas the 

remaining 20% is a solid phase consisting mainly of collagen fibrils cross-linked to 

proteoglycans. Chondrocytes are almost the only cell type in the tissue and constitute just 

1-2% of the matrix volume, although this is higher in foetal and post-natal cartilage where 

growth rates are still high. In adult tissue these cells rarely divide and new cell production 

is a consequence of mitotic division rather than differentiation; they are, however, 
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metabolically active. Articular cartilage is avascular, aneural and, as a consequence of its 

isolation from the blood supply, relatively hypoxic (0.5-5% depending on depth of tissue) 

(Lafont 2010). Oxygen and nutrition are provided via diffusion from the subchondral bone 

and synovial fluid, therefore, cyclic movement and mechanical loading are key to 

maintaining normal structure and function by enabling water movement throughout the 

tissue. Chondrocytes are responsible for the production of ECM molecules as well as matrix 

metalloproteinases (MMPs), hyaluronidases and aggrecanases, which break down the 

matrix when necessary. The balance between anabolism and catabolism is carefully 

orchestrated by cellular responses to mechanical forces and soluble factors such as 

cytokines, growth factors and oxygen levels. Matrix synthesis, however, diminishes overall 

with increasing age. (Demoor et al. 2014; Poole et al. 2001; Sophia Fox, Bedi, and Rodeo 

2009). 

Unique zonal and regional organisation distinguish articular cartilage from that found in 

other regions (figure 1-6).  The organisation and nature of ECM molecules varies with 

increasing depth, as does the morphology and arrangement of chondrocytes. The 

uppermost layer of tissue is termed the superficial zone and here cells are flattened and 

aligned parallel to the surface. Chondrocytes in this zone, along with synovial cells, produce 

lubricin which lubricates the surface and helps to achieve ultra-low friction movement of 

the joint. They also produce the lowest amounts of proteoglycan compared to other zones 

and the highest levels of COL2, the fibres of which are also aligned parallel to the surface. 

The greatest tensile strength and resistance to shear forces are found here at the articular 

surface and are achieved through a combination of densely packed COL2 fibrils (which 

provide strength) and parallel organisation of tissue, resulting in a tough, smooth outer 
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surface. This structure also acts as a filter for large macromolecules, thus protecting the 

cartilage from immune cells in the synovium. Below the superficial zone lies the transitional 

zone where cells, which are rounded and fewer in number, produce an extensive ECM rich 

in proteoglycans. Collagen fibres here have a larger diameter and a random arrangement. 

In the deep zone cell density and collagen content are lowest, whereas proteoglycan 

content and collagen fibril diameter are greatest; highest resistance to compressive forces 

is observed here. The calcified cartilage layer, visibly separated from the zone above by the 

tidemark, is mineralised and distinguished by the presence of hypertrophic chondrocytes 

which secrete collagen type X. This layer acts as a shock absorber for the subchondral bone 

beneath. (Bhosale and Richardson 2008; Poole et al. 2001). 

 

Figure 1-6. Structure of articular cartilage. Cells in the superficial zone are flattened and 

collagen fibres are aligned parallel to the articular surface. The transitional zone has fewer 

cells and collagen fibres are randomly arranged. In the deep zone cell density and collagen 

content are lowest, whereas proteoglycan content and collagen fibril diameter are greatest. 
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The calcified cartilage layer, visibly separated from the zone above by the tidemark, is 

mineralised and contains hypertrophic chondrocytes which secrete collagen type X. 

In addition to zonal organisation, articular cartilage is organised into regions (figure 1-6), 

including the pericellular matrix (PCM), the territorial matrix and the interterritorial matrix. 

The PCM is similar to the rest of the ECM in many respects, but has fewer collagen fibrils 

and is rich in collagen type VI, which coats the cell surface (Keene, Engvall, and Glanville 

1988) and co-localises with fibronectin (Hagiwara, Schröter-Kermani, and Merker 1993). 

The chondrocyte is anchored to the PCM via transmembrane proteins such as anchorin CII, 

which interact with COL2-expressing cells, and also via integrins, which interact with 

collagens and fibronectin in the pericellular space (Dürr et al. 1993). High levels of syndecan 

and glypicans also help to attach the chondrocyte to its immediate matrix and perlecan is 

an important cell surface molecule which helps to bind growth factors to the cell surfaces 

via its GAG chains (Gomes et al. 2002; Demoor et al. 2014). Levels of decorin, which has a 

role in limiting the diameter of collagen fibrils, are also high in this region (Poole et al. 2001). 

Together, the chondrocyte and PCM make up a structure called a chondron, rich in collagen 

types II, XI and IX, chondroitin-6 sulphate and keratan sulphate. Chondrocytes isolated 

separately from the PCM exhibit impaired phenotype and matrix production in subsequent 

culture, compared to intact chondrons. Fluorophore-assisted carbohydrate electrophoresis 

(FACE) analysis has also revealed significantly higher levels of chondroitin-6 sulphate and 

keratan sulphate in whole chondrons, all of which demonstrates the importance of the 

highly specialised PCM in maintaining articular cartilage phenotype (Q. G. Wang, El Haj, and 

Kuiper 2008). 
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Beyond the PCM lies the territorial matrix; collagen fibrils are more numerous here and they 

have a criss-cross arrangement, which forms a mesh around the chondrocytes in order to 

mediate mechanical impacts (Bhosale and Richardson 2008). These collagen fibrils extend 

out into the interterritorial matrix, which accounts for the majority of the ECM volume and 

is most remote from the chondrocytes. This region has the highest concentration of large 

aggregating proteoglycans (aggrecan) in addition to the collagens, proteoglycans and other 

non-collagenous proteins found throughout the tissue (table 1-1).
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Table 1-1. Adult articular cartilage matrix components 

Matrix component Location Function 

Aggrecan Throughout tissue. Main proteoglycan. 
Most concentrated in deep zone. 

Provides compressive stiffness 

Asporin Surface of collagen fibrils Possible role in stabilisation of collagen networks 

Biglycan Cell surface and pericellular matrix Possible role in modulating growth factor and cytokine functions 

Cartilage intermediate 
layer protein (CILP) 

Transitional zone/interterritorial matrix Unclear 

Cartilage oligomeric 
matrix protein (COMP) 

Between collagen fibrils Helps to cross bridge collagen fibrils 

CD44 Cell surface Interacts with α2ß1 integrin, maintains cell morphology 

Chondroadherin (CHAD) Cell surface Interacts with α2ß1 integrin, maintains cell morphology 

Collagen type II Main component of collagen fibrils (90%) Provides tensile strength 

Collagen type IX Cross-linked to surface of macrofibrils Enhances tensile properties and inter-fibrillar cross-linking 

Collagen type VI Pericellular matrix – cell surface Aids chondrocyte attachment to matrix 

Collagen type X Hypertrophic cells in calcified layer Aids cartilage mineralisation, provides functional strength and acts 
as shock absorber at bone interface 

Collagen type XI Within or on macrofibrils Nucleates fibril formation 

Decorin On macrofibrils at articular surface Regulates macrofibril formation 

Fibromodulin Surface of collagen fibrils Stabilisation and organisation of the collagen network 

Fibronectin Enriched in PCM Organisation of matrix 

Hyaluronic acid Throughout the ECM Forms backbone of aggregating proteoglycans 

Link protein Aggregating proteoglycans Assists binding of proteoglycans to hyaluronic acid 

Lubricin Articular surface and synovium Lubricates joints 

Lumican Macrofibrils Regulates macrofibril formation 

Perlecan Cell surface Heparan sulphate binding proteoglycan. Cell-matrix adhesion 

PRELP Predominantly in the territorial matrix Binds perlecan and collagens. Possible basement membrane anchor 

Syndecan Transmembrane Heparan sulphate binding proteoglycan. Cell signalling. 
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1.3.4 Collagens in the extracellular matrix 

 

Figure 1-7. Interaction of the macrofibrillar collagen network with aggregating 

proteoglycans. Adapted from Poole et al. 2001. 

Collagen is the most abundant protein found in animals and, of the 28 types identified in 

vertebrates, just five are found in articular cartilage where they comprise 60% of the tissue’s 

dry weight. Collagens are all characterised as extracellular glycoproteins with a triple helical 

structure composed of three α polypeptide chains which intertwine to form a superhelix. 

(Exposito et al. 2010). Single procollagen chains are produced in the endoplasmic reticulum 

of collagen-producing cells. A number of post-translational modifications, orchestrated by 

enzymes, bring about the trimerisation of individual chains to form procollagen trimers, 
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followed by folding and disulphide bond formation. Procollagen trimers are processed 

further to produce collagen molecules with two short non-collagenous regions flanking the 

major triple helix. This robust structure is highly resistant to tensile forces and less 

susceptible to protease degradation than non-collagenous proteins, making it the ideal 

material for connective and load bearing tissues. (Canty and Kadler 2005; Exposito et al. 

2010). 

Fibrillar collagen molecules can associate via covalent crosslinks to form highly ordered 

structures called fibrils, which are usually composed of more than one type of collagen.  In 

articular cartilage collagens type II, IX and XI associate to form large striated fibrils (figure 1-

7), which crosslink and interact with proteoglycans to form a macrofibrillar collagen 

network through the territorial and interterritorial matrices. The diameter of these fibrils 

ranges from 20 nm in the superficial zone to as much as 120 nm in the deep zone (Poole et 

al. 2001). Collagen type II, which accounts for 80% of the collagenous component of 

articular cartilage, is a homotrimer formed from three α1(II) polypeptide chains. Small 

amounts of type XI collagen (a heterotrimer with an α1(XI), α2(XI) and α3(XI) chain) are 

present within and on the surface of fibrils and limit their lateral growth (Blaschke et al. 

2000). Collagen type IX is a non-fibrillar heterotrimer (composed of an α1(IX), α2(IX) and 

α3(IX) chain), but the presence of a covalently bound GAG chain makes it technically a 

proteoglycan (Mendler et al. 1989). Bound to the surface of the fibrils, it interacts with 

COMP, heparin, matrilin 3, fibronectin and fibromodulin and is thought to have a role in 

stabilisation and organisation of the collagen network. Co-localisation of type IX collagen 

with fibronectin in the pericellular matrix suggests that it forms a molecular bridge between 

chondrocytes and collagen fibrils (Pihlajamaa et al. 2004; Parsons et al. 2011).  



25 
 

Collagen type VI is a non-fibrillar heterotrimer composed of α1, α2 and α3/α4/α5/α6 chains 

in a 1:1:1 ratio (Cescon et al. 2015). Found near to the cell surface in the PCM, it associates 

with decorin and HA to form a highly branched filamentous network which helps to anchor 

cells to the ECM (Keene, Engvall, and Glanville 1988; Poole et al. 2001). Collagen type X is a 

marker of hypertrophic cells and is generally found only in the calcified layer where it aids 

cartilage mineralisation and provides structural support. It is a short chain collagen 

molecule composed of three α1(X) polypeptides which are reinforced by a cluster of calcium 

ions (Ricard-Blum 2011). 

1.3.5 Aggregating proteoglycans and GAGs 

Proteoglycans are a structurally diverse group of molecules, which consist of a core protein 

covalently bound to one or more polysaccharide chains known as glycosaminoglycans 

(GAGs). The attached GAG chains can be chondroitin sulphate (CS), dermatan sulphate, 

keratan sulfate (KS), heparan sulfate or heparin. Many proteoglycans, including aggrecan 

and syndecan, carry two types of GAG chains, the size and ratio of which vary depending on 

age and health of the individual concerned. GAGs are large structures with numerous 

negatively charged sulphate and carboxylate groups, which attract cations into the ECM, 

thus generating an osmotic pressure which draws in water and keeps the space hydrated. 

Repulsive forces between the like charges of the GAG chains give proteoglycans their 

characteristic “bottlebrush” structure (figure 1-8). Aggrecan is by far the most abundant 

proteoglycan in articular cartilage and is able to form huge multi-molecular aggregates 

(figure 1-8). Each aggrecan monomer is around 90% carbohydrate – predominantly CS with 

smaller amounts of KS. Many of these monomers bind to the long chain GAG hyaluronan 

via a non-covalent interaction, which is stabilised by a link protein, resulting in the formation 
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of a large aggregating proteoglycan (figure 1-8). These complexes interact with other ECM 

components to give a hydrated gel capable of resisting strong compressive forces (T. E. 

Hardingham and Fosang 1992; Mansour 2004). 

Versican is another aggregating proteoglycan composed of a core protein with CS chains, 

which also binds to HA with the aid of a link protein. Versican aggregates are thought to 

have anti-adhesive properties and create a loose, highly hydrated environment immediately 

around the cells of the interzone during joint morphogenesis, which promotes proliferation 

and migration. Expression of this proteoglycan diminishes in mature cartilage (Snow et al. 

2005; Shepard et al. 2007). 

HA, CS and KS are the three main types of GAG observed in articular cartilage and their 

distribution varies with depth in the tissue. HA accounts for 1-10% of the GAG content, KS 

5-20% and CS around 80%. HA is unsulphated and composed of repeating disaccharide units 

of glucuronic acid (GlcA) and N-acetylglucosamine (GlcNAc) linked by a ß1,3-glycosidic 

bond. CS chains are composed of repeating disaccharide units of GlcA and N-

acetylgalactosamine (GalNAc) and each unit can be sulphated at the GlcA C2 position, the 

GalNAc C4, GalNAc C6 or both GalNAc C4 and C6; sulphation at C4 or C6 is the most 

common. Increased sulphation at C6 sites relative to C4 sites as been reported as a function 

of age (Bayliss et al. 1999; A. Sharma et al. 2007). Again, the disaccharides are joined by a 

ß1,3-glycosidic bond. KS chains are composed of galactose (Gal) and GlcNAc repeating 

disaccharide units linked by a ß1,4 glycosidic bond. Sulphation can occur at position C6 of 

Gal and/or GlcNAc. Chain length and degree of sulphation have been shown to increase 

with age. (Kuiper and Sharma 2015; Bayliss et al. 1983; 1999). 
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Figure 1-8. Basic structure of an aggregating proteoglycan complex. GAGs = 

glycosaminoglycans. 

1.3.6 Other ECM molecules 

Small leucine-rich repeat proteins (SLRPs) are a family of proteoglycans and proteins 

commonly found in articular cartilage and include decorin, biglycan, fibromodulin, lumican, 

PRELP, asporin and CHAD. By mass they account for a small proportion of total 

proteoglycans but are present in molar quantities similar to that of aggrecan. Decorin 

carries one chondroitin/dermatan sulphate chain and binds to collagen during fibril 

formation to reduce the final diameter; it is most concentrated in the superficial zone and 

PCM where fibril diameters are the smallest. Biglycan carries two chondroitin/dermatan 

sulphate chains and is otherwise highly homologous to decorin, but has a different pattern 

of expression and localisation. It does not bind to collagen and is found only near the cell 

surface and PCM, unlike decorin, which is also distributed in the wider ECM. The role of 

biglycan is not clear, but its ubiquitous expression and ability to bind molecules such as 
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transforming growth factor TGF-ß, BMP2 and BMP4, suggest that it may have a role in 

modulating growth factor and cytokine functions. Fibromodulin and lumican both carry KS 

chains and, like decorin, are thought to have a role in fibril synthesis. (T. E. Hardingham and 

Fosang 1992; Poole et al. 2001; Nastase, Young, and Schaefer 2012). PRELP has been shown 

to bind to perlecan and collagens. It binds to perlecan, a basement membrane heparan 

sulphate proteoglycan (HSPG), via a heparan-binding domain and, therefore, may have a 

role in anchoring the basement membrane of articular cartilage to the underlying 

connective tissue (Bengtsson et al. 2002). CHAD contains a binding motif for chondrocytes, 

a synthetic version of which maintains the rounded morphology of the cells in vitro. Binding 

of cells to both CHAD and the peptides also initiates signalling pathways such as ERK 

phosphorylation (Haglund et al. 2011; Paracuellos et al. 2017). This SLRP can also bind to 

collagen II and may, therefore, have a role in crosslinking in addition to maintenance of a 

mature phenotype and cartilage homeostasis (Paracuellos et al. 2017). Finally, there is 

evidence to suggest that asporin, which is thought to help stabilise collagen networks, 

contributes to OA pathogenesis, as it is abundantly expressed in OA cartilage and has also 

been shown to inhibit TGF-ß-induced chondrogenesis (Nakajima et al. 2007). 

Additional ECM molecules such as COMP, CD44 and fibronectin have important roles in 

articular cartilage function and homeostasis. COMP is a matrix protein with a high affinity 

for collagen types II and IX and appears to have a role in fibril formation by helping to cross-

bridge collagen fibrils (Holden et al. 2001; Geng et al. 2008). Cellular interactions with HA 

and other matrix molecules in the PCM are regulated by the cell surface receptor CD44. 

Adhesion of cells to HA via this glycoprotein has been shown to induce proliferation and 

expression of TGF-ß in a human chondrocyte-like cell line (Ishida et al. 1997).  CD44 also 
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mediates the endocytosis of HA during tissue catabolism and is implicated in OA 

pathogenesis, where shedding of the cell surface receptor has been observed, along with a 

concurrent release of membrane-bound hyaluronidase into the surrounding matrix (Hida et 

al. 2015). Fibronectin is an ECM glycoprotein with multiple binding sites for both matrix 

components and cells. It interacts with collagen and proteoglycans and aids organisation of 

the collagen network, in addition to promoting cell adhesion via an arginylglycylaspartic acid 

(RGD) sequence. (Heinegård and Oldberg 1989; Chevalier 1993). The matrilins are a family 

of ECM proteins (matrilin-1, -3 and -4) which are abundant in embryonic/developing 

cartilage but are usually absent in healthy adult tissue. They have been shown to bind to 

aggrecan, collagen II fibrils and numerous other ECM components and may aid fibril 

formation (Nicolae et al. 2007; Heinegård and Oldberg 1989; Demoor et al. 2014). 

1.3.7 Overall structure in relation to function 

The unique structure of articular cartilage and distribution of the components described 

above serve to fulfil its role as a load-bearing connective tissue able to withstand high 

compressive and tensile forces and to provide smooth, frictionless movement at the joint. 

Repulsive forces between the negatively charged GAG chains create space in the ECM and 

this fixed charge also attracts cations such as sodium; the resulting osmotic pressure draws 

water into the space. One function of collagen fibrils is to provide tensile strength to resist 

the subsequent swelling. Application of a pressure gradient across the tissue or 

compression of the solid phase brings about water movement, which serves achieve mass 

transfer in an avascular environment. However, frictional resistance against this movement 

is very high which results in low permeability, slow water movement and generation of large 

shear forces. This viscoelastic behaviour means that sudden application of force, as a result 
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of exterior stimuli, results in slow deformation of the tissue, which acts as a shock absorber 

by distributing the pressure evenly across the articular surface. (Demoor et al. 2014; 

Blaschke et al. 2000; Sophia Fox, Bedi, and Rodeo 2009). 

1.4 Cartilage ageing, damage and degradation 

Reductions in chondrocyte population, matrix synthesis and hydration are observed in 

ageing cartilage; fewer cells result in lower levels of aggrecan and GAGs and, therefore, a 

reduced capacity to retain water. This inevitably compromises mass transfer, which leads 

to ineffective transport of nutrients and signalling molecules, and accumulation of cytotoxic 

waste products. Increased cartilage stiffness, resulting from excessive cross-linking of 

collagen, is also indicative of ageing tissue. As the integrity of the tissue is compromised, it 

is unable to resist the compressive and tensile forces exerted upon it and a gradual 

degeneration ensues. (Grogan and D’Lima 2010). Though ageing undoubtedly predisposes 

a joint to developing arthritis, there are multiple factors that contribute to the onset of the 

condition. Trauma to the joint surface as a result of sudden heavy impact or repetitive 

loading, for example, can cause chondrocyte death, reduced proteoglycan synthesis, 

disruption to the collagen matrix and swelling as a result of increased hydration. Production 

of inflammatory or catabolic molecules and reactive oxygen species have also been 

reported. (Grogan and D’Lima 2010) 

Pathological changes observed in osteoarthritic joints (figure 1-9) include degradation of 

the articular cartilage, which progresses to a full thickness loss; thickening of the 

subchondral bone; accumulation of mineralised matrix; osteophyte (bone spur) formation 

at the joint surface; synovial inflammation; ligament degeneration with eventual rupture; 
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and hypertrophy of the joint capsule, which causes the characteristic enlargement of the 

area. Regions of the articular surface subject to the greatest mechanical forces are the first 

to display changes, and loss of the intact smooth, lubricated surfaces results in impaired 

movement of the joint. Innervated tissues, such as the subchondral bone, also undergo 

degeneration and are responsible for the pain associated with the later stages of OA. 

(Loeser 2010). 

 

Figure 1-9. Pathology of OA in the human knee. The osteoarthritic joint displays 

degradation of articular cartilage, thickening of subchondral bone, osteophyte formation, 

synovial inflammation and hypertrophy of the joint capsule with characteristic enlargement 

of the area. Adapted from Loeser, 2010. 
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Owing to the work of Helen Muir in the 1970s, cartilage degeneration, previously thought a 

result of simple wear and tear, is now known to be a result of molecular and cellular 

processes. Her group showed that a canine model of OA expressed proteoglycans with 

higher levels of CS relative to KS, which mirrored the pattern of immature cartilage 

(McDevitt and Muir 1976). Due to the aneural nature of the tissue, OA remains 

asymptomatic until its late stages and insight into the changes that take place during the 

early stages is garnered primarily from animal models. Acute injuries to joints such as the 

knee are common, however, and can lead to the onset of OA, thus providing some 

opportunity for studying the earlier stages in humans. These early changes include 

increased water content and swelling, increased cell division and fibrillation of the articular 

surface. Prior to any visible changes to the tissue, an increase in proteoglycan synthesis is 

observed in animal models; however, in later stage human osteoarthritic cartilage, reports 

of proteoglycan synthesis vary widely. Collagen II has a low turnover in cartilage and its 

content in the tissue is not thought to change drastically, although modification of the 

network has been observed, as have higher levels of denatured collagen (thought to be a 

result of proteolytic enzyme activity) (Pilar Lorenzo, Bayliss, and Heinegård 2004; Bank et 

al. 2000; Hollander et al. 1994). 

Although aggrecan and collagen type II are the main matrix components of articular 

cartilage, many of the other constituents described above, which have roles in matrix 

assembly and homeostasis have been implicated OA pathogenesis. Synthesis of COMP, 

fibronectin and CILP have been shown to increase in human early and late stage OA 

compared healthy tissue, whereas collagen synthesis is only upregulated in the late stages 

(Pilar Lorenzo, Bayliss, and Heinegård 2004). Cartilage from COMP-deficient mice appears 
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phenotypically normal, yet the animals develop severe early-onset arthritis, which may be 

due to instability of the tissue and exposure of more epitopes to invading immune cells 

(Geng et al. 2008). Insufficient COMP production, therefore, may be one factor which 

predisposes people to OA. Syndecan proteoglycans are also upregulated in osteoarthritic 

tissue. One member of the family, SYND4, hardly expressed at all in healthy adult tissue, is 

highly upregulated in both human OA and animal models. Its production is thought to be 

induced by proinflammatory cytokines associated with the condition and it actively 

contributes to pathogenesis by promoting aggrecanase activity and subsequent tissue 

degradation (Pap and Bertrand 2013). High levels of catabolic, proinflammatory cytokines 

such as interleukin (IL)-1 and tumour necrosis factor (TNF)-α, have been observed in 

osteoarthritic joints and contribute the destruction of articular cartilage (Goldring 2000). 

Pathways analysis of OA cartilage from human donors has also revealed dysregulated 

wingless-related integration site (Wnt) signalling in comparison with healthy tissue. 

Canonical and planar pathways were found to be downregulated, whereas the Ca2+/Wnt 

pathway was activated (Thorfve et al. 2012). These are just a few examples of the large 

array of molecular changes that have been observed in degenerating articular cartilage. 

Whether these changes are the result of pathogenesis or a contribution to its onset remains 

to be seen in many cases, but such insights offer potential targets for the pharmaceutical 

management of the disease. 

1.5 Current gold standard treatments 

Current treatments for OA range from exercise, weight loss and the use of devices to reduce 

joint loading (e.g. walking frames) for milder cases, through to total joint replacement or 

fusion for the most severe cases (figure 1-10). Of these treatments, joint replacement is by 
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far the most expensive, costing the NHS an estimated total of £852 million in 2012 (A. Chen 

et al. 2012) (figure 1-1). Over 200 000 joint replacements were carried out by the NHS in 

2015 (Arthritis Research UK 2017) and an increasing population means that this figure is set 

to rise.  

Despite the relative success of the surgery, prosthetic joints are far from ideal. Implants 

remain functional for around 20 years (sometimes longer, but often less) before more 

traumatic revision surgery is required; after failure of the second implant, patients are often 

wheelchair-bound. Thus, arthroplasty is usually reserved for those aged over 50 and 

clinicians will opt for interventions such as arthroscopic lavage and debridement in order to 

delay its necessity for as long as possible. OA is also very common in smaller articulating 

joints, such as the interphalangeal joints of the fingers, and can be seriously debilitating and 

detrimental to quality of life. Here, however, arthroplasty is not an option. 

 

Figure 1-10. Current treatment available via the NHS for patients with OA. 
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1.6 Regenerative medicine approaches 

1.6.1 Early procedures 

Articular cartilage is a good candidate for regenerative medicine therapies, due to the 

limited treatment options, high incidence of disease/injury in all adult age groups and the 

relative accessibility of affected sites with minimally invasive techniques. Such techniques 

aim to either replace tissue with in vitro engineered alternatives, or to encourage 

endogenous repair with the application of a cellular therapy. A key measure of success is 

the regeneration of tissue functionally and structurally akin to that which has been 

damaged, as opposed to the formation of fibrous, scar tissue (a more common outcome). 

Debridement, subchondral bone drilling and micro-fracture (introduced in the 1940s, 1959 

and 1997 respectively) are examples of attempts to promote endogenous repair 

mechanisms. Debridement is simply intended to remove damaged tissue, whereas micro-

fracture and subchondral drilling induce bleeding, fibrous clot formation, subsequent 

recruitment of stem cells from the underlying bone marrow and the gradual formation 

fibrocartilage, which fills the defect (Insall 1967). Though still carried out today, these 

procedures have limited success and, in the case of debridement, it is unclear if there is any 

benefit at all (Thorlund et al. 2015). Significant improvements in pain and functionality have 

been reported following micro-fracture of the knee (Weber et al. 2018), but subchondral 

drilling has met with little success and, in some cases, resulted in worse post-operative 

function (Shah et al. 2007). Another technique is osteochondral autograft transfer (OATS), 

which involves transferring cartilage tissue from non-weight-bearing regions of the knee to 

the articular surface; although outcomes are encouraging, this option is limited by the 
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availability of donor tissue and is suitable only for lesions between 1 cm2 and 4 cm2 with a 

maximum depth of 10 mm (Shah et al. 2007). 

1.6.2 Autologous chondrocyte implantation 

Although the techniques described above give little hope of long-term repair, they are 

approved procedures which offer the opportunity for the application of cell/tissue 

engineered therapies. Autologous chondrocyte implantation (ACI), first performed on 

human patients in 1987, is one such therapy. Chondrocytes are isolated from a biopsy of 

healthy, autologous cartilage, expanded in vitro for 11-21 days, then injected into the defect 

and covered with a periosteal flap taken from the medial tibia (Brittberg et al. 1994). Second 

generation ACI involves the use of a collagen membrane instead of a periosteal patch, the 

hypertrophy of which can lead to complications in some patients. In 2017 first and second 

generation ACI were approved by the National Institute for Health and Care Excellence 

(NICE) for the treatment of cartilage defects of the knee.  The extensive suturing and cell 

leakage associated with second generation ACI, however, has led to the development of 

matrix-assisted autologous chondrocyte transplantation, whereby chondrocytes are seeded 

onto a scaffold and then fixed in place with fibrin glue. Though this treatment is approved 

for use in the United States by the Food and Drug Administration (FDA), it has yet to be 

approved by NICE (Schuette, Kraeutler, and McCarty 2017). Other adaptations of ACI are in 

development and at various stages of the clinical trials process. The limited expansion 

capacity of chondrocytes may be overcome by substituting some or all of them with 

autologous BMSC. The ASCOT trial (Autologous Stem Cells, Chondrocytes or the Two?), 

which seeks to answer this question, is currently recruiting patients (Richardson et al. 2017). 



37 
 

Though there has been some success with cell therapies, tissue engineered cartilage grafts 

lack the mechanical strength to function as realistic alternatives to current gold standard 

treatments, particularly in areas subjected to high mechanical loading such as the hip, 

intervertebral disc or knee. Much work is now focused on selecting the optimum cells from 

which to derive chondrocytes; creating 3-dimensional (3D) scaffolds to provide adequate 

structural support and appropriate biochemical cues; and applying regimes of mechanical 

stimulation which stimulate the developing tissue in a fashion similar to that of the native 

environment. 

1.6.3 Potential barriers to the success of regenerative therapies 

Although tissue engineered constructs and cellular therapies often perform well in vitro, 

they are cultured in optimal growth conditions, which are not representative of the 

diseased state of the joint. Cytokines, which activate catabolic enzyme activity, are known 

to be elevated in OA joints. For example, IL-1α (a potent proinflammatory cytokine) was 

shown to be present in articular cartilage taken from patients with early stage OA and its 

co-localisation to chondrocytes throughput the tissue suggested that it was cell-derived 

rather than transported from the synovium (Towle et al. 1997). Other work has shown that 

chondrocytes taken from superficial zone cartilage of OA patients produce elevated levels 

of pro-inflammatory cytokines IL-1ß and TNF-α, in addition to numerous MMPs, which are 

known to be responsible for cartilage degradation (Tetlow, Adlam, and Woolley 2001). If 

native cartilage is unable to withstand these conditions, the chances of success for any 

transplanted material must be called into question. Challenging constructs/cells in vitro 

with addition of inflammatory mediators to the culture medium can give some indication 

of their likely response in vivo.  
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1.7 hESC as a potential cell source for therapies 

In vitro production of cartilage for tissue engineering applications presents an array of 

challenges. Autologous chondrocytes are the most appealing cell source in terms of 

suitability for the patient, but their extraction and subsequent expansion is an invasive and 

lengthy process, which may ultimately yield cells with an endogenous predisposition 

towards pathogenesis. In addition, their expansion potential is limited to 2-3 passages; 

beyond this point they begin to de-differentiate towards a fibroblastic phenotype, which is 

of little use for the production of quality replacement tissue (Marlovits et al. 2004; Barlic et 

al. 2008). BMSC offer an alternative cell source and have been utilised with some success, 

but again their expansion capacity is limited and autologously-sourced cells may be 

predisposed towards a diseased phenotype (H. J. Kim and Park 2017). Human embryonic 

stem cells (hESC), however, are readily available, pluripotent and demonstrate huge 

expansion capacity in vitro –  all of which makes them an appealing cell source for tissue 

engineered constructs (Metallo et al. 2008). 

1.7.1 Chondrogenic differentiation of hESC 

Protocols for differentiating hESC into a chondrogenic lineage have traditionally involved 

the initial formation of embryoid bodies, which are then dissociated and cultured in 

chondrogenic medium on a feeder layer of fibroblasts (usually murine) (A. Cheng, 

Hardingham, and Kimber 2014; Jukes et al. 2008; Hwang, Varghese, and Elisseeff 2008). 

However, these methods are far from ideal; the use of embryoid bodies results in a 

heterogeneous cell population, which may account for the high incidence of teratoma 

formation, and use of a xenogeneic feeder layer renders any resulting tissue unsuitable for 

clinical applications. More recent studies adopt protocols which avoid the need for 
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embryoid body formation by first differentiating hESC into BMSC and subsequently into 

chondrocytes (Boyd et al. 2009; G. Gong et al. 2010). Others report the use of a feeder-free 

layer in which cells are cultured on Matrigel or laminin in mouse embryonic fibroblast 

(MEF)-conditioned medium (Ludwig et al. 2006; Hwang et al. 2008). McKay et al. developed 

a human feeder cell line from placental stromal fibroblasts that were able to sustain hESC 

over long-term culture, resulting in a completely xeno-free product suitable for potential 

clinical applications (McKay et al. 2011). However, these feeder cells are obtained from first 

or early second trimester placentas, which limits their availability. 

In vivo a broad range of genes and biomolecular signals regulate the differentiation of hESC 

into chondrocytes and the ultimate formation of cartilaginous tissue. For example, master 

transcription factor SOX9 (produced by chondro-progenitors) drives the early stages of 

chondrogenesis and is inhibited by runt-related transcription factor 2 (RUNX2) (the key 

transcription factor for osteogenesis) (A. Cheng, Hardingham, and Kimber 2014; Foster et 

al. 2015). Five families of growth factors also play major roles in this process: the TGF-ß 

super-family, the fibroblast growth factor family (FGF), the insulin-like family (IGF), the 

wingless family (Wnt) and the hedgehog family (HH) (Oseni et al. 2011). In vitro 

differentiation of embryonic stems cells (ESC) towards a chondrogenic lineage is usually 

achieved via culture in chondrogenic medium and the addition of one or a combination of 

growth factors such as TGFβ1, TGFβ3, bone morphogenic proteins 2/4/7 (BMP2, BMP4, 

BMP7) and IGF-1 (Koay, Hoben, and Athanasiou 2007; Toh et al. 2010; Nakagawa, Lee, and 

Reddi 2009). 

In 2010 Oldershaw et al. developed a protocol to generate immature chondrocytes from 

hESC, based on the sequence of pathways that are active in vivo during early embryonic 
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development as the mesendoderm and mesoderm are forming. This three-stage, feeder-

free process is carried out over 14 days and utilises a range of exogenous factors including 

WNT3A and activin-A to initiate a shift towards a mesendoderm population; FGF2 to 

enhance proliferation; BMP4 and GDF5, which are pro-chondrogenic cytokines; follistatin 

to block endoderm-specifying genes; and NT4 to promote cell survival. They demonstrated 

that, at the end of the process, up to 97% of cells from multiple embryonic cell lines 

expressed the SOX9 gene. In addition, aggregates expressed high levels of chondrocyte-

specific markers and very few markers that were indicative of a non-chondrocyte 

phenotype (Oldershaw et al. 2010). A modified version of the differentiation protocol was 

used to generate chondroprogenitors for the current study (figure 1-11). 

 

Figure 1-11. A 3-stage, 14-day differentiation protocol to generate hESC-derived 

chondroprogenitors. hESC are directed though a 14-day differentiation process in which exogenous 

growth factors are used to mimic the developmental environment experienced in vivo. Adapted 

from Oldershaw et al. 2010. 

1.7.2 The role of Wnt in the stem cell niche 

The stem cell niche is a microenvironment which provides the biochemical and biophysical 

cues necessary for the maintenance of properties such as self-renewal and pluripotency (S. 

J. Morrison and Spradling 2008).  As cells migrate away from the niche and its signals, they 
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begin to differentiate in response to new environmental cues. Wnt proteins, highly 

conserved across species, are one such group of signalling molecules, with key roles in the 

self-renewal of numerous mammalian tissues. This family of proteins, with 19 members 

described to date, are around 350 amino acids long and all share the following key 

characteristics: multiple cysteine residues, a conserved serine residue for acetylation and 

lipidation, and a peptide sequence for secretion. Though able to stimulate cells via three 

different signalling pathways, Wnt influences pluripotency and stem cell renewal through 

activation of the non-canonical Wnt/ß-catenin pathway upon association with the 

membrane-bound receptors LRP6 and Frizzled (FZD) (figure 1-12). This triggers an 

intracellular signalling cascade which results in inhibition of the ß-catenin destruction 

complex, stabilisation of ß-catenin and its subsequent translocation to the nucleus where it 

binds to T-cell factor (TCF)/lymphoid enhancer factor (LEF) proteins, which in turn 

upregulate the transcription of target genes. (Jones and Wagers 2008; Clevers, Loh, and 

Nusse 2014; Mills, Szczerkowski, and Habib 2017; Zhan, Rindtorff, and Boutros 2017). 
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Figure 1-12. Overview of canonical Wnt signalling. A) In the absence of Wnt, ß-catenin is 

phosphorylated by the ß-catenin destruction complex, which includes adenomatosis 

polyposis coli (APC), Axin, casein kinase 1 (CK1) and glycogen synthase kinase 3 (GSK3). 

Phosphorylation targets ß-catenin for proteosomal degradation. B) In active signalling, Wnt 

ligands bind to Frizzled receptors and low-density lipoprotein receptor-related protein 6 

(LRP6) co-receptors. Dsh proteins are recruited to the plasma membrane, where they 

inactivate the destruction complex. ß-catenin is stabilised and accumulates before 

translocating to the nucleus where it forms an active complex with TCF/LEF proteins and 

upregulates the transcription of target genes. (Zhan, Rindtorff, and Boutros 2017). 
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Wnt signalling has roles in a diverse range of cellular processes, including ESC 

differentiation, stem cell renewal and cancer progression. Canonical Wnt signalling has 

been shown to promote pluripotency in a range of stem cell types (Clevers, Loh, and Nusse 

2014; Mills, Szczerkowski, and Habib 2017) including murine ESC (mESC) when WNT3A was 

added daily to the culture medium (ten Berge et al. 2011). However, there is much debate 

over the apparent dichotomous role of Wnt signalling in maintenance of 

plasticity/proliferation versus induction of differentiation, and the outcome seems very 

much dependent on both cell type and host species (Teo and Kahn 2010). In hESC, for 

example, Wnt activation of the ß-catenin pathway has been shown to lead to the disruption 

of self-renewal and the subsequent production of posterior primitive streak/mesoderm 

progenitors (Sumi et al. 2008; Gadue et al. 2006). Similarly, in the directed differentiation 

protocol (DDP) described by Oldershaw et al. in 2010, global Wnt signalling, via addition of 

WNT3A to the culture medium on days 1-3, was reported to initiate a shift towards a 

mesendoderm population and was critical for the subsequent successful production of 

chondroprogenitors. hESC differ from mESC in both their required culture conditions and 

their expression of pluripotency markers, with mESC expressing higher levels of Klf4 and 

Rex1 (Sokol 2011). Ethical restrictions mean that hESC are derived at a later developmental 

stage and it is often argued that they are more akin to mouse epiblast-derived stem cells 

than true ES cells and, therefore, have a narrower differentiation potential (Nichols and 

Smith 2011). These differences may account for the differential response of human and 

murine ESC to global Wnt signalling. 

Post-translational fatty acid modification of secreted Wnt proteins by the Porcupine 

enzyme in vivo renders them hydrophobic and limits their movement through tissue fluid –  
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their effects are consequently short-ranged and can be as little as one- to two-cell 

diameters. This lipidation is essential in order to maintain the normal signalling activity of 

WNT3A and is thought to function by increasing local concentrations of the protein on 

plasma membranes (Willert et al. 2003). Unfortunately, for in vitro studies, where WNT3A 

is added globally to the culture medium (particularly in serum-free conditions), this 

hydrophobicity presents a barrier to its uniform delivery to cells and may result in the 

production of a heterogeneous population by the end of the culture period. CHIR99021 is a 

potent Wnt pathway activator which functions by inhibiting GSK3 in the ß-catenin 

destruction complex (figure 1-12), resulting in the accumulation of ß-catenin and its 

translocation to the nucleus in the same way as Wnt-initiated signalling. Soluble in low 

concentrations of dimethyl sulfoxide (DMSO), this small molecule has been successfully 

utilised to induce Wnt/ß-catenin signalling in a range of protocols for the differentiation and 

maintenance of ESC (Lian et al. 2013; W. Li et al. 2011; H. Kim et al. 2013). Replacement of 

WNT3A with CHIR99021 in Oldershaw et al.’s DDP is a recent modification which has 

reduced variability in the final cell population (personal communication). 

In the stem cell niche Wnt molecules are presented to target cells via carrier proteins for 

long distance signalling, or on the surface of paracrine cells for close range effects. There is 

also evidence to suggest that the orientation of the protein is key to its function; association 

of mESC with immobilised WNT3A was shown to result in accumulation of LRP6 and ß-

catenin destruction-complex-associated proteins at the point of contact (Habib et al. 2013). 

These Wnt-associated cells then underwent asymmetrical division with the axis of mitotic 

division in line with the bead upon which the Wnt was immobilised. Following cell division, 

proximal daughter cells retained pluripotency, whereas distal ones showed reduced 
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expression of pluripotent markers (Habib et al. 2013). In a later study Wnt was immobilised 

onto aldehyde-coated surfaces, such as glass and poly(caprolactone) (PCL), and cells (both 

ESC and BMSC) seeded onto these modified materials demonstrated higher levels of Wnt 

signalling and a concomitant increase in pluripotency/multipotency markers. In addition, 

BMSC migrating away from the Wnt-modified surface into collagen gels under osteogenic 

culture conditions, expressed higher levels of bone markers with increasing distance from 

the base, while those near to the polymer retained multipotency (Lowndes et al. 2016). A 

published protocol based on this work was utilised for chapter 3 of this study, where a “Wnt 

Platform” was used to drive the migration of differentiating hESC into fibrin hydrogels 

(Lowndes, Junyent, and Habib 2017). 

1.8 3D models 

3D models can support cell differentiation and proliferation to produce superior 

cartilaginous tissue with enhanced mechanical properties. A range of materials have been 

utilised as scaffolds for cartilage tissue engineering, including natural and synthetic 

polymers and polymer blends. These materials are generally used to produce hydrogels, 

sponges or fibrous meshes, which cells can either be seeded onto or encapsulated within. 

Scaffold structures which mimic that of the ECM and are robust enough to withstand the 

application of physical forces are optimal, although compromises are often necessary in 

order to support cell survival, especially in 3D models with encapsulated cells. Suitable 

biomaterials should promote cell viability; allow diffusion of nutrients and waste; integrate 

with the surrounding tissue; provide mechanical integrity; and have controllable 

degradation rates – rapid degradation can result in impaired mechanical strength, whereas 

the opposite can impede new cartilage production. (Chung and Burdick 2008). Though a 
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vast number of studies have produced scaffolds for cartilage tissue engineering from a wide 

range of materials, with varying structures and formulations (table 1-2 gives some examples 

from the last 15 years), few have managed to fulfil all of these criteria. 

1.8.1 Hydrogels 

Hydrogels, formed from natural and synthetic polymers such as alginate or poly(ethylene 

glycol) (PEG), are insoluble in water and can retain large volumes of liquid, creating a 

microenvironment for proliferating cells which mimics native tissue by allowing exchange 

of waste and nutrient molecules. They can also encapsulate cells more homogeneously than 

other scaffold materials and their viscoelastic mechanical properties more closely resemble 

those of the native cartilage (Hwang, Varghese, and Elisseeff 2007). In addition, this 

environment can be designed to release growth factors in a carefully controlled and time-

dependent manner. Unfortunately, the hydrophilic nature of hydrogels renders them poor 

substrates for cell and protein adhesion, thus some groups have incorporated molecules 

such as RGD-containing peptides, which facilitate integrin binding (Hwang et al. 2006). 

Despite the well-documented advantages of hydrogel scaffolds, they lack the characteristic 

mechanical strength of native cartilage. Chemically crosslinking hydrogels via photo-

polymerisation or redox polymerisation (as opposed to physically crosslinking them) can 

produce constructs with greater mechanical integrity. When mESC were cultured on 

dextran-poly(ethylene glycol) hydrogels, cells remained viable after three weeks and 

produced cartilaginous tissue. Degradation rates of the hydrogels could be extended from 

3 to 7 weeks by changing the level of thiol substitution on the dextran biopolymer (Jukes et 

al. 2010). A three-layered hydrogel, seeded with murine BMSC, which allows cells to 

differentiate into “zone-specific chondrocytes”, has also been reported. Designed to mimic 
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the superficial, transitional and deep zones of articular cartilage, the PEG-based gel was 

supplemented with CS and metalloproteinase-sensitive peptides on the top layer, CS in the 

middle and HA on the bottom (Nguyen et al. 2011). An increased gradient of compressive 

modulus from the top layer to the bottom layer was observed and attributed to increasing 

levels of collagen X/proteoglycans and decreasing levels of collagen II. However, it is worth 

noting that the highest measurement recorded for compression modulus (1712 kPa in the 

“deep zone” of the construct) is still much lower than that of murine and human native 

articular cartilage (Cao et al. 2006; Shepherd and Seedhom 1999). 

1.8.2 Meshes 

Meshes are networks of fibres (woven or non-woven) often produced via electrospinning 

from blends of materials such as poly(lactic acid) (PLA), poly(glycolic acid) (PGA) and 

poly(lactic-co-glycolic acid) (PLGA). The void volumes (higher for non-woven meshes) and 

fibre diameter of the meshes can direct cell behaviour and they can be readily made with a 

range of porosities, degradation rates and mechanical properties. In addition, they offer the 

distinct advantage of superior mechanical strength compared to hydrogels and sponges. 

PCL scaffolds have lengthy resorption periods and high tensile/mechanical strengths, which 

make them good candidates for cartilage tissue engineering; however, their surface 

properties do not generally support cell attachment and proliferation. One study overcame 

this by electrospinning PCL concurrently with poly(vinyl alcohol) (PVA) in order to confer 

hydrophilicity and improved attachment onto the surface. When seeded with BMSC, 

improved cell proliferation and chondrogenic differentiation was observed in vitro, and 

improved healing of cartilage defects in a rabbit model was reported in addition (Shafiee et 

al. 2011). In a more recent study, electrospun PCL mats were loaded with TGF-ß1-laden 
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PLGA microspheres and the entire scaffold was then modified with cold atmospheric plasma 

in order to overcome the inherent hydrophobicity of the PCL. Improved vitronectin 

adsorption and subsequent cell attachment was observed, in addition to enhanced cell 

growth and chondrogenic differentiation of human BMSC (hBMSC) (Zhu et al. 2015). Despite 

their mechanical superiority and the ease with which their properties can be optimised, 

meshes are pre-fabricated into structures that are unlikely to be a perfect fit for the lesions 

they are covering in vivo, where reduced contact with the surrounding tissue may limit 

successful integration of the construct. In contrast, hydrogels can be injected into a defect 

and will occupy the space completely. 

1.8.3 Sponges 

Sponge structures can be achieved via salt-leaching, freeze-drying or gas foaming to give a 

wide range of properties which are determined by the combination of pore size, porosity, 

inter-connectivity and choice of biomaterial. Salt-leached sponge scaffolds made from a 

blend of PLGA and PLA and coated with fibronectin have been shown to enhance 

proliferation and chondrogenic differentiation of hESC compared to monolayer controls 

(Levenberg et al. 2003). Sponge scaffolds are often made from water-soluble polymers 

which are freeze-dried prior to the addition of a chemical cross-linker – this can lead to non-

homogenous pore sizes and chemical distribution. “Cryogels”, however, are frozen after 

addition of a cross-linking agent and can yield structures with greater mechanical strength 

and more uniform pore sizes.  A glucosamine-enriched gelatin/hyaluronic acid cryogel was 

recently developed and showed increased chondrogenic gene expression when seeded with 

primary chondrocytes and cultured for 21 days. Furthermore, when implanted into a rabbit 

cartilage defect model, the scaffolds generated neocartilage with increased collagen II and 
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GAG production compared to acellular controls. Incorporation of glucosamine, however, 

did lead to a reduction in mechanical strength and faster degradation of the constructs (C.-

H. Chen et al. 2016). In another study, human osteoarthritic chondrocytes were seeded onto 

porous, cross-linked, freeze-dried hyaluronic acid scaffolds for 2 weeks. A significant 

reduction in cell number was observed, but chondrogenic markers and sulphated GAG 

(sGAG) increased (Bauer et al. 2016). 

HA-based scaffolds are an attractive choice as they mimic the biochemistry of the native 

ECM more closely than other commonly-used biomaterials. They can be fabricated (often 

modified, cross-linked and in conjunction with other materials) as hydrogels, woven 

meshes, non-woven fibres and porous sponges. Rapid degradation rates and poor 

mechanical stability have limited the use of HA hydrogels so far, but when combined with 

other biomaterials (see C.-H.Chen et al. 2016 and Bauer et al. 2016 above), outcomes are 

more promising.  hESC-derived chondrocytes were encapsulated in hydrogels composed of 

thiol-modified HA, thiol-modified gelatin and poly(ethylene glycol) diacrylate (PEGDA) in a 

2:2:1 ratio and cultured for up to 4 weeks prior to implantation into a rat osteochondral 

defect model. Compared to controls, where only fibrous tissue was observed, cartilaginous 

repair tissue formed in the defect and was well integrated with native ECM, showing 

significantly higher levels of sGAG and collagen II (Toh et al. 2010).  Silk fibroin is a natural 

polymer which has recently generated interest in the cartilage tissue engineering 

community. These scaffolds can be fabricated with a diverse range of structures (hydrogels, 

meshes and sponges), are biocompatible, have low immunogenicity and can be 

manipulated to give desired mechanical properties and proteolytic degradation. In addition, 

molecules such as HA, glucosamine and collagen can be incorporated into the structures 
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with relative ease (G. Cheng et al. 2018). When silk fibroin sponge scaffolds were embedded 

with mechano growth factor and TGF-ß3 and seeded with hBMSC, increased collagen 

II/aggrecan production and decreased collagen I production were observed in vitro and 

scaffolds had a compressive modulus similar to that of native cartilage (4.9 MPa compared 

to 5.5 MPa in rabbit tissue) (Luo et al. 2015). Furthermore, implantation into a rabbit 

osteochondral defect model resulted in repair tissue with better integration than non-

functionalised controls and a more cartilaginous structure. 
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Table 1-2. Scaffolds used on cartilage tissue engineering. 

Biomaterial Cell type Scaffold Reference 

Poly(lactic-co-glycolic acid) and poly(lactic acid) (50/50 blend) Human ESC Sponge (Levenberg et al. 2003) 

RGD-modified poly(ethylene glycol) Murine ESC Hydrogel (Hwang et al. 2006) 

Hyaluronic acid, thiol-modified gelatin and poly(ethylene glycol diacrylate) Human ESC Hydrogel (Toh et al. 2010) 

Dextran-poly(ethylene glycol) Murine ESC Hydrogel (Jukes et al. 2010) 

Poly(caprolactone) and poly(vinyl alcohol) Lapine BMSC Mesh (Shafiee et al. 2011) 

Poly(ethylene glycol) with chondroitin sulphate (CS) and matrix metalloproteinase-
sensitive peptides incorporated into the top layer, CS incorporated into the middle 
layer and hyaluronic acid incorporated in the bottom layer 

Murine bone 
marrow progenitors 

Hydrogel (Nguyen et al. 2011) 

Poly(caprolactone) loaded with TGF-ß1-laden PLGA microspheres and then cold 
atmospheric plasma treated 

Human BMSC Mesh (Zhu et al. 2015) 

Thiol-modified, freeze dried, hyaluronic acid Human articular 
chondrocytes 

Sponge (Bauer et al. 2016) 

Gelatin/hyaluronic acid with glucosamine incorporated Lapine articular 
chondrocytes 

Sponge (C.-H. Chen et al. 2016) 

Silk fibroin functionalised with mechano growth factor and transforming growth factor 
ß3 

Human BMSC Sponge (Luo et al. 2015) 
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1.9 Selection of biomaterials 

hESC have been cultured in a range of hydrogels in a bid to produce cartilaginous tissue, 

including agarose (where viability was not always optimal) (Jukes et al. 2008; Diekman et al. 

2012) and HA-based gels (S. Zhang et al. 2013; Toh et al. 2010). hESC-derived 

chondroprogenitors encapsulated in fibrin hydrogels have also been shown to produce 

repair tissue resembling native cartilage in a rat osteochondral defect model (A. Cheng et 

al. 2014). As a key component of the coagulation cascade, fibrin has unquestionable 

biocompatibility and has long been used as a “glue” in a number of surgical procedures. 

Given its physiological role in natural tissue repair processes, it is unsurprising that fibrin 

contains a host of cell/growth factor binding motifs and has an architecture which promotes 

cell infiltration and wound repair (Sproul, Nandi, and Brown 2018). Despite these 

advantages, fibrin in itself is not chondro-inductive and, in addition, it possesses weak 

mechanical properties and is prone to shrinkage and rapid degradation in vitro (Y. Li et al. 

2015). Thus, as a vehicle for cell delivery to an osteochondral defect model, as described 

above (A. Cheng et al. 2014), the wound healing properties and pro-inflammatory nature of 

its cleavage products probably contributed to the success of fibrin as the choice of 

biomaterial. However, for the generation of replacement tissue to treat chronic, 

degenerative cartilage conditions, which require longer periods in culture, a biomaterial 

with chondro-inductive properties, superior mechanical strength and a slower rate of 

degradation would be preferable – though there are few options which meet all of these 

criteria. 

Choice of biomaterial has also been reported to play a role in the cellular response to 

inflammatory conditions. Given that arthritic joints express high levels of pro-inflammatory 
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cytokines, such as IL-1ß and TNFα, this is an important consideration which may determine 

the success of any tissue engineered implant (Tetlow, Adlam, and Woolley 2001). Bovine 

articular chondrocytes cultured in the presence of IL-1ß and TNFα on either collagen, silk or 

PLA porous scaffolds demonstrated differential morphology and gene expression, 

depending on which material they were seeded onto (Kwon et al. 2013). Cells cultured on 

silk and collagen had a more rounded morphology and higher levels of GAG staining, while 

only silk scaffolds favoured higher expression of chondrogenic genes and lower expression 

of degradation-related genes. Thus, although PLA is commonly used in tissue engineering 

applications, it may not possess the biophysical properties necessary to perform well under 

inflammatory conditions in vivo. 

HA-based scaffolds are an attractive choice as they mimic the biochemistry of the native 

ECM polysaccharides more closely than other commonly-used biomaterials. Unfortunately, 

they are also subject to rapid degradation rates and poor mechanical stability. For the 

production of a cartilage-like graft with requisite mechanical strength, it is necessary to 

combine HA with other biomaterials such as gelatin and PEGDA, as described in chapter 1.8 

(Toh et al. 2010), or to form stiffer scaffolds such as freeze-dried sponges (Bauer et al. 2016). 

For potential injectable cell therapies, however, HA-based gels offer a promising strategy. 

Numerous studies have demonstrated that this material (generally modified or combined 

with a crosslinker to enhance its mechanical properties) promotes the viability and 

metabolic activity of chondrocytes and chondrocyte-like cell lines (H. Park et al. 2013; Yu et 

al. 2013; G. Wang et al. 2018). HyStemTM is a commercially available hydrogel kit containing 

thiol-modified HA and a thiol-reactive crosslinker (PEGDA), the concentration of which can 

be adjusted to control the stiffness of the gel. An alternative version of this kit, containing 
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an additional component of thiol-modified denatured collagen fibrils (gelatin), was used by 

Toh et al. (2010) to encapsulate hESC-derived chondrogenic cells. These constructs were 

implanted into a rat osteochondral defect model and were reported to support long term 

cell viability and to result in regenerated tissue resembling native cartilage. 

Gellan gum, an FDA approved food additive, has recently gained interest as a potential 

biomaterial for tissue engineering applications. Formed of tetrasaccharide repeating units 

(D-glucose, D-glucuronic acid, D-glucose and L-rhamnose), this polysaccharide is produced 

by the aerobic fermentation of Sphingomonas paucimobilis (Jansson, Lindberg, and 

Sandford 1983). It exhibits very low toxicity and only mild processing conditions are 

required to form a hydrogel, making it an attractive choice as a cell delivery material. The 

presence of glucuronic acid residues render this material structurally similar to native 

cartilage GAGs and its carboxylic groups confer a degree of functionality, which may be 

useful for the incorporation of other bioactive molecules (Oliveira et al. 2010). At elevated 

temperatures gellan gum forms a solution of disorganised coils, which associate into a 

strong double helix structure upon cooling to around 42°C. The addition of divalent cations 

(such as Ca2+) during the gelling process crosslinks the helices by forming direct bridges, thus 

producing a construct with greater mechanical strength. Monovalent cations such as K+ can 

also crosslink the gel to a lesser extent by binding to the helices and balancing the repulsive 

negative forces of the carboxyl groups (Jansson, Lindberg, and Sandford 1983; Smith et al. 

2007). Different temperature- and pH-dependent methods have been employed to produce 

a range of structures from gellan gum, including discs, membranes, fibres, particles and 

scaffolds (Oliveira et al. 2010). Numerous studies report good viability of cells encapsulated 

in hydrogels including human nasal chondrocytes (Oliveira et al. 2010), rat BMSC (Smith et 
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al. 2007) and porcine articular chondrocytes (Y. Gong et al. 2009). Compared to fibrin and 

agarose controls, gellan gum hydrogels seeded with porcine infrapatellar fad pad 

progenitors showed enhanced cell proliferation, elevated levels of sGAG and increased 

COL2 staining (although there was a concomitant increase in collagen type I protein (COL1), 

which may be indicative of a fibrocartilage phenotype) (Ahearne and Kelly 2013). 

Incorporation of chondro-inductive biomaterials, either as a substrate for coating tissue 

culture plastic/cells or dissolved into the culture medium, is another potential means of 

enhancing the maturation of stem cell-derived chondroprogenitors. Biomimetic molecules, 

which mimic the structure of ECM components, have been used by a number of groups. 

Hydroxyl groups of alginates were replaced with sulphates by incubation with sulphur 

trioxide pyridine (SO3/pyridine) in order to produce biomolecules which mimic the 

proteoglycans of native cartilage tissue (Mhanna et al. 2014). These sulphated alginates 

were cross-linked with calcium chloride to form a gel wherein bovine chondrocytes were 

encapsulated. Compared with non-sulphated controls, cell proliferation was significantly 

increased, although no change in expression of chondrogenic markers was observed. 

Another group reported that the same hydrogel enhanced proliferation of bovine 

chondrocytes by mediating fibroblast growth factor 2 (FGF2) signalling, much like heparan 

sulphate does in vivo; they also reported better retention of FGF2 in the constructs and 

increased cell spreading in response to increase levels of sulphation, which is indicative of 

improved adhesion to the biomaterial (Öztürk et al. 2016). These sulphated alginates have 

also been used in conjunction with collagen to create a layered substrate for the 2D culture 

of human adipose-derived stromal cells (hADSC), which was reported to result in improved 

binding of FGF2 and maintenance of multipotency (Mhanna et al. 2017). 
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Significant increases in COL2A1 and ACAN gene expressions in human articular 

chondrocytes have been reported as a result of pre-coating tissue culture plastic (TCP) with 

ECM molecules such as decorin, HA, osteopontin and biglycan. Pre-culture on COL2-coated 

surfaces followed by high density pellet culture for 14 days results in tissue with superior 

matrix deposition as evidenced by safranin-O and COL2 staining (Grogan et al. 2014). A 

number of groups have reported the fabrication of biomimetic proteoglycans with 

increased resistance to proteolytic cleavage, which could be utilised in a similar way, 

although these have yet to be tested on cells (Prudnikova et al. 2017; S. Sharma et al. 2013). 

Finally, another option is to coat the cells themselves in a layer of ECM/biomimetic 

molecules in order to create a chondro-inductive microenvironment. Such methods have 

been adopted for other target tissues, the pancreas for example, where islet cells were 

micro-encapsulated in alginate in order to create a barrier which sequestered them from 

the immune system but still allowed for the transport of small molecules such as insulin, 

thus reducing the potential for an adverse immune response brought on by allogeneic 

material (Roshanbinfar and Salahshour Kordestani 2013). Micro-encapsulation in alginate 

has also been demonstrated for adipose- and bone marrow-derived stromal cells in a bid to 

create a protected micro-environment, which enhances viability for potential injectable cell 

therapies (Leslie et al. 2017). The substitution with or addition of chondro-inductive 

molecules to this micro-environment could yield higher quality chondroprogenitors 

compared to the basic directed differentiation protocol described by Oldershaw et al.  

1.10 Mechanical stimulation 

Articular cartilage is subject to cyclic compressive forces. Chondrocytes, like other cells 

types, possess integrins which enable the transduction of mechanical stimuli. In addition, it 
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has been shown that cartilage deformation leads to cell deformation, which may be another 

means of signal transduction. Matrix deformation, hydrostatic pressure gradients, fluid 

flow, streaming potentials and currents, and physicochemical changes all occur as a result 

of compression – given that cartilage is an avascular tissue, fluid flow is especially important 

for nutrient and waste transport (Guilak, Ratcliffe, and Mow 1995; Guilak et al. 1999; 

Grodzinsky et al. 2000). 

1.10.1 Effects of biomechanical forces on natural cartilage development 

It is widely accepted that biomechanical stresses and strains play a major role in the natural 

development, maintenance and degradation of cartilage. As early as the 1930s it was 

demonstrated that extrinsic mechanical forces affected the progression of skeletogenesis 

(Murray and Selby 1930; Nowlan, Sharpe, et al. 2010; Foster et al. 2015). Since then much 

work has been done to investigate the effects of immobilisation on joint development in 

chick embryos and other animal models such as mice and rats. The effects of mechanical 

stimuli on adult cartilage have been widely investigated and found to be important in 

maintenance of the tissue; however, given that tissue engineering approaches aim to 

develop functional constructs from stem or progenitor cell populations, it follows that 

elucidation of the effects of loading during embryogenesis may provide more useful 

insights. 

Immobilisation has been shown to have detrimental effects on joint development, 

particularly in that it prevents formation of the cavity (figure 1-13) (Nowlan, Sharpe, et al. 

2010). Further studies have demonstrated that lack of muscle contractions during chick 

embryogenesis prevent cavitation of articular joints such as the hip, knee and ankle and 

result in reduced cartilage volume (Ruano-Gil, Nardi-Vilardaga, and Tejedo-Mateu 1978; 
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Osborne et al. 2002). Supporting these findings, immobilisation after cavity formation was 

shown to resulted in a cavity that was not fully maintained (Mitrovic 1982) and increased 

movement was correlated to development of a wider cavity (Ruano-Gil, Nardi-Vilardaga, 

and Teixidor-Johé 1985). Mikic et al. immobilised chick embryos from 6 days so that limb 

development proceeded without mechanical loading. Compared to controls, samples taken 

from the upper and lower regions of the cartilage cones of immobilised chicks had a 50% 

reduced instantaneous modulus and significantly lower levels of proteoglycans and collagen 

(Mikic, Isenstein, and Chhabra 2004). Nowlan et al. measured the levels of stress, strain, 

hydrostatic pressure and fluid velocity at the mid-diaphyses of the long bones of developing 

chick embryos and used optical projection tomography to obtain 3D images of the 

developing limbs. They found that the highest mechanical forces were experienced shortly 

before formation of the bone collar, suggesting that high cycles of stimulus in the cartilage 

promote ossification (Nowlan, Murphy, and Prendergast 2008). 

 

 

Figure 1-13. Effects of absent musculature on murine forelimb development. Mouse 

without muscle has reduced bone mass in the scapular blade (a), abnormal humeral 
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ossification centre (b) and non-cavitation of the elbow joint (c). Image adapted from Nowlan 

et al. 2010. 

In mouse models immobilisation adversely affects the development of some joints but not 

others. For example, Nowlan et al. reported that mice with a reduced muscle phenotype 

demonstrated a substantial reduction in the joint line of the elbow, whereas no 

abnormalities were observed in the knee (Nowlan, Bourdon, et al. 2010). Kahn et al. looked 

at joint formation in muscleless and paralysed mouse embryos and noted the emergence 

of an interzone in the elbow joint with distinct cartilaginous regions, despite the lack of 

muscle contraction (Kahn et al. 2009). After this point, however, the joint failed to form and 

cells taken from the region did not express chondrogenic markers, suggesting that absence 

of mechanical stimuli results in the failure of progenitor cells to differentiate into 

chondrocytes. Thus, immobilisation appears to have a more pervasive effect on chick 

skeletogenesis than on that of mice. This may be accounted for by the contrasting 

mechanical environment that the two types of embryo are exposed to; the developing 

mouse (much like the human) experiences larger external forces which result from the 

natural movement of the mother and its littermates. Nowlan et al. later reported that these 

external stimuli induce larger forces in the hindlimb than the forelimb, which may explain 

why elbow joints are more adversely affected by lack of muscle contraction (Nowlan et al. 

2012). The mouse model, therefore, is probably a more reliable one to adopt when 

attempting to gain insight into the effects of mechanical stimuli on human joint 

development. 
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1.10.2 Culturing cartilage constructs in a dynamic environment 

Hydrostatic pressure (HP), direct compression and high- and low-shear fluid environments 

are the main types of force adopted in cartilage tissue engineering in an attempt to mimic 

the native environment of the tissue (Pörtner et al. 2005). A range of bioreactors have been 

designed to impart these forces including spinner flasks, rotating wall vessel bioreactors, 

perfusion bioreactors and concentric cylinder bioreactors. Turbulence during seeding and 

culture of bovine chondrocytes on PGA mesh discs was shown to result in cartilage-like 

constructs with significant increases in GAG, total collagen and equilibrium modulus, though 

these parameters were still much lower than those typical of the native tissue (Vunjak‐

Novakovic et al. 1996; Vunjak-Novakovic et al. 1999). Dynamic unconfined compression of 

chondrocytes on agarose discs resulted in a 6-fold increase in equilibrium modulus, which 

was approaching that of human articular cartilage, and a significant increase in GAG 

production (Mauck et al. 2000). Culture of hESC-derived mesenchymal stroma cells in 

perfusion bioreactors with a flow rate of 1 mL/minute has been shown to result in 

constructs with improved ECM production and enhanced mechanical properties (Tiğli et al. 

2011). A range of studies have demonstrated that application of HP, the most-commonly 

adopted force, offers similar benefits (Takahashi et al. 1998; Carver and Heath 1999; Hu and 

Athanasiou 2006; Correia et al. 2012). Thus, it can be seen that a dynamic environment 

favours the in vitro production of de novo cartilage. 

1.10.3 The role of hydrostatic pressure in cartilage development 

As well as helping to maintain the adult tissue, mechanical stimuli contribute to 

embryogenesis and early cartilage formation. In pre-cartilaginous stages, the absence of 

gravity has been shown to reduce mesenchymal condensation in the limb buds of mouse 
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models (Duke and Montufar-Solis 1999). The exact mechanism of pre-cartilaginous 

condensation has yet to be elucidated, but the differential adhesion hypothesis predicts 

that cell-cell adhesion of mesenchymal progenitors is an important early step in the process 

(Responte et al. 2012). The strength of cell-cell adhesion has been shown to correlate to cell 

surface tensions in murine models (Foty and Steinberg 2005) and was inhibited by 

disruption of surface tension in zebra fish cells (Krieg et al. 2008). Thus, condensation may 

be initiated by cells possessing specific surface tensions; a parameter which can be 

influenced by mechanical forces such as HP. 

Once cartilage has developed, these mechanical forces are converted into HP in the 

interstitial fluid, followed by shear stress as a result of fluid flow. It is difficult to accurately 

measure the effects of HP on cartilage development in vivo, but a number of studies have 

looked at the effects of mechanical loading on cartilage explants and found it to be 

important in balancing ECM turnover by stimulating cells and transporting large soluble 

molecules into and out of the tissue (Chan, Ferguson, and Gantenbein-Ritter 2011). Studies 

on human and animal intervertebral disc tissue have shown that physiological levels of HP 

(0.3 - 3 MPa) increase PG synthesis and metabolism and generally have an anabolic effect, 

whereas higher levels (3-10 MPa) inhibit PG production and have a catabolic effect (Handa 

et al. 1997; Ishihara et al. 1996). Continuous pressure, however, has been shown to produce 

no stimulatory effects at physiological levels; at low levels, comparable to atmospheric 

pressure, it may actually have a catabolic effect similar to that produced by excessive 

loading (Handa et al. 1997). 
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1.10.4 Hydrostatic pressure in cartilage tissue engineering 

In vivo cartilage is subject to rapid cyclic loading of 3-10 MPa (up to 18 MPa in the hip) and 

human walking cadence is around 1 Hz (B. D. Elder and Athanasiou 2009). Thus, tissue 

engineering approaches tend to apply forces in this range – above this, detrimental effects 

(similar to the onset of osteoarthritis) have been observed (Kunitomo et al. 2009; Natoli and 

Athanasiou 2008). Cartilage tissue has been shown to respond to HP, but the nature of this 

response varies depending on the culture conditions and whether or not a scaffold is 

employed. For example, in 1993 Parkkinen et al. demonstrated that cyclic HP stimulated 

sulphate incorporation into bovine cartilage explants, but an identical regime inhibited it in 

primary chondrocytes cultured in monolayer (Parkkinen et al. 1993). Since then a number 

of other studies have reported similar variation. Elder et al. found that porcine chondrocytes 

cultured as pellets responded positively to 4 MPa of cyclic HP, whereas those cultured in 

alginate hydrogels did not (S. H. Elder et al. 2006). Although culture in hydrogels has been 

shown to promote chondrocyte differentiation, it does not favour direct cell-cell signalling, 

which may account for these results. Hydrogels, however, do offer the advantages of better 

hydration and nutrient exchange compared to pellets, and their softer structure allows their 

shape to be manipulated in order to fill cartilage defects. For these reasons, pellet culture 

was not considered for use in the current study. 

There is a wealth of evidence to suggest that HP in the physiological range improves 

chondrogenesis in 3D cartilage constructs (table 1-3). Generally, cyclic HP with a force of 4-

10 MPa, applied intermittently to 3D models at a frequency of around 1 Hz, has been shown 

to increase levels of total collagen (Hu and Athanasiou 2006; Meyer et al. 2011; Carroll, 

Buckley, and Kelly 2014), COL2 (Reza and Nicoll 2008; Correia et al. 2012) and GAG (Hu and 
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Athanasiou 2006; Sakao et al. 2008; Meyer et al. 2011; Correia et al. 2012; Carroll, Buckley, 

and Kelly 2014) deposition in the new tissue. Expressions of SOX9, COL2A1 and ACAN 

mRNAs and GAG were also enhanced, providing further evidence that cells cultured in these 

conditions were differentiating towards a chondrogenic lineage (Sakao et al. 2008; Ogawa 

et al. 2009; Correia et al. 2012). A number of recent studies have found HP to have a positive 

effect on progenitors and chondrocytes cultured as pellets (Miyanishi et al. 2006; Safshekan 

et al. 2012; Vinardell et al. 2012). Miyanishi et al. found that 10 MPa of cyclic HP applied 

intermittently for 14 days enhanced expression chondrogenic markers even without the 

addition of growth factors such as TGF-β3; the combination of mechanical and chemical 

stimulation had an even greater impact. Safshekan et al. reported that human adipose-

derived stem cells cultured as pellets with 5 MPa of cyclic HP expressed levels of SOX9, 

COL2A1 and ACAN comparable to those expressed by native human cartilage tissue (though 

they did not attempt to quantify protein production). Though the results of these studies 

are promising, pellet culture does not offer the flexibility to create constructs with the 

desired morphologies and mechanical properties permitted by scaffolds such as hydrogels 

or meshes.



64 
 

Table 1-3. Effects of hydrostatic pressure (HP) on 3D chondrogenic models 

Cells and scaffold HP parameters Results Reference 
Self-assembled cartilage 
constructs 

10 MPa IHP, 1 Hz, 4 hrs/day, 5 
days/week for up to 8 weeks 

Increased collagen and maintained GAG levels. (Hu and Athanasiou 
2006) 

Porcine BMSC-derived 
chondrocytes suspended in 
agarose gel (2 donors) 

10 MPa cyclic HP, 1 Hz, 
1hr/day, 5 days/week for 42 
or 21 days 

Increased collagen and GAG content and dynamic 
modulus for one donor only. 

(Meyer et al. 2011) 

Porcine BMSC and infrapatellar 
fat pad derived multipotent 
stromal cells in agarose 
hydrogels 

10 MPa cyclic HP at 1 Hz. 4 
hr/day, 5 days/week for 5 
weeks 

Decreased metabolic activity, indicating decreased 
viability in both loaded and control samples. 

(Carroll, Buckley, and 
Kelly 2014) 

hASC on 2% agarose hydrogels 7.5 MPa cyclic HP, 4 h/day, 1 
Hz for up to 21 days (no GFs) 

hASC-chondrocytes: 5 MPa gave more GAG and COL2, 
lowest COL1 and highest ACAN gene expression. 0.4 
MPa gave no significant changes. 

(Puetzer et al. 2013) 

Bovine IVD cells on PGA-PLLA 
fibrous scaffolds 

5 MPa, 0.5 Hz, 4hrs/day from 
days 3-14. 

Increased COL2 levels with more uniform distribution at 
day 14. 

(Reza and Nicoll 
2008) 

Porcine chondrocytes in alginate 
beads or pellets 

4 MPa cyclic HP, 1 Hz, 5400 
cycles/ day for 7 days 

Pellets exhibited classical anabolic response to dynamic 
HP, but alginate did not. Pellets had greater GAG 
content, higher rate of proline incorporation and more 
fibrous ECM. 

(S. H. Elder et al. 
2006) 

Rabbit synovium-derived 
progenitor cells in alginate beads 

1.0 to 5.0 MPa IHP, 0.5 Hz 5.0 MPa of IHP gave increased mRNA expression of PG, 
collagen II and SOX9 and increased production of SOX9 
protein and GAG. 

(Sakao et al. 2008) 

Human nasal chondrocytes in 
gellan gum hydrogels 

0.4 MPa pulsatile HP 0.1 Hz, 3 
hrs/day, 5 days/week for up 
to three weeks 

Greater GAG and COL2 deposition and greater 
expression of COL2 and SOX9 genes. 

(Correia et al. 2012) 

hASC on porous collagen sponges 0-0.5 MPa  cyclic HP, 0.5 Hz 
for one week 

Increased expression of COL2A1, ACAN and SOX9. 
Higher rate of ECM accumulation and maintained cell 
number. 

(Ogawa et al. 2009) 
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A major obstacle for cartilage tissue engineering is creating constructs with mechanical 

properties sufficient to withstand both the transplantation procedure and the relentlessly 

high forces experienced in vivo. Surprisingly few studies report on the mechanical 

properties of their constructs, but for those that do it is clear that culture without 

mechanical stimulation is unlikely to produce a construct that has the structure and strength 

to function as a suitable replacement for damaged cartilage. Bovine articular chondrocytes 

cultured for 6 weeks on PGA mesh discs in mixed conditions produced tissue with an 

equilibrium modulus, hydraulic permeability and dynamic stiffness significantly lower than 

native tissue (Vunjak-Novakovic et al. 1999). Snyder et al. recently cultured bone marrow-

derived hBMSC on reinforced fibrin hydrogels in static conditions and, though the 

compressive modulus of the constructs was significantly higher than controls at 6.76 kPa, 

this is still around an order of magnitude below that of native human articular cartilage 

(Snyder et al. 2014). Other studies have achieved enhanced dynamic stiffness (up to 85 kPa) 

(Kopesky et al. 2010) and compressive modulus (up to 72 kPa) (Tiğli et al. 2011) on 3D 

scaffolds without mechanical stimulation, but the addition of HP has been shown to 

produce tissue with properties closer to those of native adult tissue. Carrol et al. reported 

that infrapatellar fat pat-derived stromal progenitors cultured on agarose hydrogels with 

10 MPa cyclic HP for 5 weeks had a dynamic modulus of around 525 kPa (Carroll, Buckley, 

and Kelly 2014), which is again much higher than that reported by some of the earlier 

studies mentioned above. DuRaine et al. reported that leporine chondrocytes cultured to 

form scaffold-free self-assembled neocartilage with 10 MPa static HP for 1 hour per day 

produced tissue with a suture pull-out strength 33% that of native tissue (1.45 MPa) and an 

aggregate modulus of 90.4 kPa, which is around 35% that of human articular cartilage 

(DuRaine et al. 2015). These constructs were successfully transplanted into osteochondral 
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patellar defects of rabbits and left for three weeks. The animals were able to walk normally 

and when observed after sacrifice, though there were no signs of engraftment, the implants 

retained their cartilaginous properties. For just 42 days of culture this is impressive, though 

it would be interesting to see if the implants remained functional for a longer period and 

whether cyclic HP, which more closely mimics the natural environment, would have 

improved the mechanical properties even further. 

1.10.5 Four-point bending bioreactor 

As mentioned above, cartilage is subject to cyclic compressive forces which generate fluid 

flow and bring about matrix deformation, both of which impart mechanical signals to 

chondrocytes. For this reason, dynamic compressive forces are frequently applied as a 

means of enhancing the quality of tissue engineered cartilage constructs. These loads are 

detected by cell-surface mechano-sensitive ion channels, integrins and primary cilia, which 

initiate intracellular signalling cascades and orchestrate the cell’s response to external cues 

(Musumeci 2016). Transient receptor potential vanilloid 4 (TRPV4) is a Ca2+-permeable ion 

channel which was identified as a regulator of chondrogenic differentiation over 10 years 

ago, with similar expression patterns to other common markers such as COL2A1 and ACAN 

(Muramatsu et al. 2007). Its activation in response to cyclic mechanical loading has been 

shown to result in enhanced matrix deposition (O’Conor et al. 2014). More recently, Piezo1 

and Piezo2 were identified as fast-acting mechanosensitive ion channels, which are 

abundant in chondrocytes and allow rapid influx of Ca2+ in response to high levels of strain 

(Lee et al. 2014). Stimulation of trans-membrane integrins directly affects cytoskeletal actin 

organisation, again initiating signalling cascades. α1ß1, α10ß1, αvß5 and α5ß1 integrins 

have all been implicated in the response of chondrocytes to mechanical stimuli (Gilbert and 
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Blain 2018). Matrilin 1, abundant in developing tissue, has a key role in mediating 

mechanical stimuli and its presence was shown to be necessary in order for chondrocytes 

to elicit an anabolic response to loading regimes in vitro (Chen et al. 2016). Growth factors 

such as FGF2 are also released by chondrocytes in response to cyclic compression; perlecan-

bound FGF2 is released as a result of turbulence and goes on to initiate mitogen-activated 

protein kinase (MAPK) signalling (Vincent et al. 2007). 

Peake et al. used a four-point bending model to investigate the response of human 

osteoblast-like cells and the MG63 bone cell line to mechanical load in monolayer culture 

(M. A. Peake et al. 2000). They reported an up-regulation of Fos proto-oncogene, AP-1 

transcription factor subunit (FOS), which could be blocked by the addition of ß1-integrin 

antibodies or inhibitors of stretch-activated ion channels, suggesting that the response was 

both mediated by surface integrins and a direct result of mechanical loading. The four-point 

bending bioreactor used in this work (chapter 2, figure 2-1) was designed to transmit tensile 

forces to cells cultured on glass slides, in a bid to recapitulate the microenvironment of 

osteoblasts in vivo. When this 4PBB system was developed, the maximum theoretical strain 

that could be applied to the glass coverslip was calculated using the standard beam 

deflection equation for four-point bending (below), where E = strain, t = coverslip thickness, 

L = distance between two outer loading parts, d = deflection and a = distance between two 

inner loading parts (M. Peake 2001). 

E = td/a(L – 1.33a) 

From this, it was determined that the uniaxial strain imparted to cells seeded onto the 

central 30 mm region of coverslips with a thickness of 0.22 mm was around 1000 

microstrains (µE). This exceeded the minimum strain previously reported to induce new 
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bone formation in vitro (Thomas and el Haj 1996) and was comparable to the strains 

experienced by bone in vivo (Burr et al. 1996). In the current study, however, the model was 

adapted to impart compressive forces to chondroprogenitors by simply inverting the glass 

slide when cells were loaded into the chamber. When tension is applied to a surface, an 

equal compressive force is imparted to the opposite side; thus a compressive strain of 

around 1000 µE will be experienced by cells seeded onto this surface. Strains experienced 

in vivo by cartilage are reported to be around 2000 µE, even in low load-bearing regions 

such as the temporomandibular joints of rabbits (Kruse-Lösler et al. 2001). Therefore, it is 

likely that articular cartilage, in areas such as the knee, is exposed to much higher strains. 

Nevertheless, the loads applied by the 4PBB are at least approaching the physiological range 

and it was hoped that this model would provide insight into the short-term responses of 

hESC-derived chondroprogenitors to low levels of mechanical loading. 

A number of studies have investigated the effects of mechanical stimulation on 

chondrocytes cultured in monolayer. Das et al. reported that application of cyclic strain lead 

to a modest increase in ACAN and lubricin expression in primary human chondrocytes, but 

a drastic reduction of chondrogenic markers in expanded chondrocytes (Das et al. 2008). A 

more recent study demonstrated that primary human chondrocytes responded to a similar 

(though more prolonged) regime of cyclic tensile strain with altered morphology, reduced 

elastic modulus and impaired chondrogenic matrix deposition (Liu et al. 2016). These 

findings indicate that monolayer chondrocytes do not respond well to mechanical 

stimulation. However, both of these studies utilised the commercially-available Flexcell® 

system which, although comparable to the 4PBB when used in tension, does not allow for 
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the application of compressive forces. Indeed, all other systems designed to impart 

compressive forces, require cells to be encapsulated in biomaterials. 

1.11 Summary and hypotheses 

The high incidence of OA, combined with the poor healing capacity of the tissue and the 

limited efficacy of current gold standard treatments render articular cartilage an obvious 

target for tissue engineered strategies and cell-based therapies. Human embryonic stem 

cells offer a potentially limitless source of cells and their successful differentiation into 

chondroprogenitors in vitro has been demonstrated; all of which makes them a much more 

appealing choice in comparison to the other cell types commonly utilised for this 

application. However, in order for them to be deemed safe for clinical use, the presence of 

pluripotent cells must be completely ablated and a more mature chondrogenic phenotype 

is desirable. In addition, it is preferable for cells to be housed in suitable biomaterials for 

their safe and effective application to defect sites, either as a tissue engineered scaffold or 

an injectable cell therapy. 

The aim of this study is to develop several strategies which improve the maturation of hESC-

derived chondroprogenitors in 2D and 3D culture environments. Three key hypotheses 

were tested: 

 Application of an immobilised Wnt platform encourages the proliferation of 

differentiating cells and their subsequent migration into hydrogels in order to create 

a 3D construct with a more homogeneous population of chondroprogenitors 

 Incubation of chondroprogenitors with biochemically relevant ECM molecules 

produces a more mature phenotype 
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 Application of mechanical forces, which mimic those experienced by chondrocytes 

in vivo, results in a more mature phenotype and enhance matrix deposition in vitro  



71 
 

Chapter 2 

Materials and Methods   
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2.1 Materials 

Unless stated otherwise, materials were obtained from their manufacturers or from a 

distributor within the United Kingdom. 

Table 2-1. List of reagents, catalogue numbers and suppliers. 

 
Catalogue 

number 

Supplier 

1-Bromo-3-chloropropane (BCP) B9673-200ML Sigma-Aldrich, Inc. 

2-Mercaptoethanol M3148 Sigma-Aldrich, Inc. 

2-Mercaptoethanol (50 mM) (Gibco™)  31350010 Fisher Scientific UK Ltd 

2-Propanol I9516 Sigma-Aldrich, Inc. 

Acetone, for HPLC 10131560 Fisher Scientific UK Ltd 

Activin A (human) Qk001_ActA Qkine Ltd. 

Activin A (human) 120-14 PeproTech, Inc. 

Agarose BP1356-500 Fisher Scientific UK Ltd 

AlamarBlue™ (Molecular Probes™) 10161053 Fisher Scientific UK Ltd 

Ammonium acetate A2706 Sigma-Aldrich, Inc. 

Anti-Fibronectin antibody [F1] ab32419 Abcam plc. 

Anti-laminin antibody ab11575 Abcam plc. 

Anti-Nanog antibody 4903 New England Biolabs Ltd 

Anti-SOX5 antibody - ChIP Grade ab94396 Abcam plc. 

Anti-SOX9 antibody [3C10] ab76997 Abcam plc. 

Anti-Vitronectin antibody [EP873Y] ab45139 Abcam plc. 

Aprotinin from bovine lung A3428-10MG Sigma-Aldrich, Inc. 

B-27® Supplement 17504044 Fisher Scientific UK Ltd 

BMP-2 (human) 120-02 PeproTech, Inc. 

Bovine serum albumin (BSA) BP9703-100 Fisher Scientific UK Ltd 

Calcium chloride 793639 Sigma-Aldrich, Inc. 
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CHAPS hydrate C3023-1G Sigma-Aldrich, Inc. 

CHIR99021 WNT pathway activator 72052 STEMCELL Technologies Inc. 

Chloroform C2432 Sigma-Aldrich, Inc. 

Chondroitin sulphate C9819 Sigma-Aldrich, Inc. 

Collagen Type II monoclonal antibody CIIC1 Developmental Studies 

Hybridoma Bank 

Collagen type VI Ab7538 Abcam plc. 

Dekalb White eggs N/A Henry Stewart and Co. 

Limited 

Dimethyl methylene blue (DMMB) 341088 Sigma-Aldrich, Inc. 

Dimethyl sulfoxide (DMSO) D5879 Sigma-Aldrich, Inc. 

DL-Dithiothreitol (DTT) D0632 Sigma-Aldrich, Inc. 

DMEM/F-12, HEPES (Gibco™)  31330038 Fisher Scientific UK Ltd 

DNA AWAYTM 10223471 Fisher Scientific UK Ltd 

DPX mounting medium 44581 Sigma-Aldrich, Inc. 

Dulbecco’s phosphate buffered saline 

without calcium and magnesium 

(Gibco™) (DPBS) 

14190144 Fisher Scientific UK Ltd 

EDTA (0.5 M), pH 8.0 (Invitrogen™)  AM9260G Fisher Scientific UK Ltd 

Eosin Y solution, alcoholic HT110116 Sigma-Aldrich, Inc. 

Essential 8 Medium (GibcoTM) (E8) 15190617 Fisher Scientific UK Ltd 

Ethanol (absolute) E0650/17 Fisher Scientific UK Ltd 

Ethidium bromide E1510 Sigma-Aldrich, Inc. 

FGF2 (Gibco™) 10202733 Fisher Scientific UK Ltd 

FGF2 (Qkine) Qk025_hFGF2 Qkine Ltd. 

Fibrinogen F3879-

250MG 

Sigma-Aldrich, Inc. 

Fibronectin (human plasma) FC010 EMD Millipore Corporation 

Foetal Bovine Serum (FBS) FB-1001 Biosera Europe 

GDF-5 (human) 120-01 PeproTech, Inc. 

Gel loading buffer G2526 Sigma-Aldrich, Inc. 
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GeneRuler 50 bp DNA Ladder SM0373 Fisher Scientific UK Ltd 

Gluteraldehyde solution G7776 Sigma-Aldrich, Inc. 

Glycine 50046 Sigma-Aldrich, Inc. 

Goat Anti-Mouse IgG H&L (Alexa Fluor® 

488) 

ab150113 Abcam plc. 

Goat Anti-Rabbit IgG FITC 10006588 Bertin Bioreagent 

Haematoxylin (Gill’s Number 2) GHS216 Sigma-Aldrich, Inc. 

HEPES buffer solution 83264 Sigma-Aldrich, Inc. 

Hexamethylenediamine H11696 Sigma-Aldrich, Inc. 

High Capacity cDNA Reverse 

Transcription Kit 

4368814 Fisher Scientific UK Ltd 

Histo-Clear (National Diagnostics) NAT1330 Scientific Laboratory 

Supplies Limited 

Histo-Clear HS200 H005 Scientific Laboratory 

Supplies Limited 

Hydrochloric Acid (5M) 10605882 Fisher Scientific UK Ltd 

HyStemTM Cell Culture Scaffold Kit HYS010-1KT Sigma-Aldrich, Inc. 

IMS I99050 Genta Environmental Ltd. 

Insulin-Transferrin-Selenium-Sodium 

Pyruvate (ITS) (100X) 

51300044 Fisher Scientific UK Ltd 

Laminin L2020-1MG Sigma-Aldrich, Inc. 

L-Glutamine (200 mM) (Gibco™)   25030024 Fisher Scientific UK Ltd 

Live/Dead viability kit (Quant-iT™) L3224 Fisher Scientific UK Ltd 

Magnesium sulphate M5921 Sigma-Aldrich, Inc. 

Neutral buffered formalin F5304 Sigma-Aldrich, Inc. 

Non-Essential Amino Acids (100X) 

(Gibco™) (NEAA)  

11140035 Fisher Scientific UK Ltd 

Paraffin GWAX010 Genta Environmental Ltd. 

Penicillin-Streptomycin 15140122 Fisher Scientific UK Ltd 

PhytagelTM P8169-100G Sigma-Aldrich, Inc. 
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PicoGreen™ dsDNA Assay Kit (Quant-

iT™) 

P11496 Fisher Scientific UK Ltd 

Poly(ethylene glycol) diacrylate (Alfa 

Aesar) 

46497.MD Fisher Scientific UK Ltd 

Polycaprolactone 440744 Sigma-Aldrich, Inc. 

Primocin ant-pm-1 InvivoGen 

ProFreeze (Lonza) LZ12-769E Scientific Laboratory 

Supplies Limited 

Proteinase K (Invitrogen™)  25530015 Fisher Scientific UK Ltd 

PureLink RNA Micro Scale Kit 12183016 Fisher Scientific UK Ltd 

Purified Mouse Anti-Oct-3/4 611202 BD Biosciences 

QuantiTect Primer Assays: ACAN 

                                                COL2A1 

                                                COL1A1 

                                                COL10A1 

                                                GAPDH1 

                                                OCT4 

                                                NANOG 

                                                RUNX2 

                                                SOX9 

                                                TRPV4 

QT00001365 

QT00049518 

QT00037793 

QT00096348 

QT00079247 

QT00210840 

QT01025850 

QT00020517 

QT00001498 

QT00077217 

 

 

 

 

Qiagen 

RNase-Free DNase Set 79254 Qiagen 

RNeasy Mini Kit 74106 Qiagen 

ROCK Inhibitor (ATCC® ACS-3030™)  Y27632 LGC Standards 

Safranin-O S2255-25G Sigma-Aldrich, Inc. 

Sodium bicarbonate S5761 Sigma-Aldrich, Inc. 

Sodium chloride S7653 Sigma-Aldrich, Inc. 

SYBR® Green PCR Master Mix 4309155 Fisher Scientific UK Ltd 

TeSR™-E8™ Kit (E8) 5940 STEMCELL Technologies Inc. 

Thrombin from human plasma T4393-100UN Sigma-Aldrich, Inc. 

TRI Reagent 93289-100ML Sigma-Aldrich, Inc. 
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TritonTM X-100 T8787 Sigma-Aldrich, Inc. 

Tween® 20 P1379 Sigma-Aldrich, Inc. 

Vitronectin (human) A14700 Fisher Scientific UK Ltd 

WNT3A protein (murine) (WNT3A) 1324-WN-10 R&D Systems, Inc. 

α-modified Eagle's medium (α-MEM) 

(Lonza) 

LZBE12-169F Scientific Laboratory 

Supplies Limited 

 

Table 2-2. List of equipment and suppliers/manufacturers. 

AriaMx Tube Strips 8 401493 Agilent Technologies, Inc. 

Mx3000P Optical Strip Caps 8 401425 Agilent Technologies, Inc. 

Polypropylene pestle Z359947-100EA Sigma-Aldrich, Inc. 

Biopsy punch (8 mm) (Kai) BP-80F Amazon.co.uk 

Pestle 13236679 Fisher Scientific UK Ltd 

Circular coverslips (10 mm 

diameter) 

MIC3300 Scientific Laboratory 

Supplies Limited 

Hanging cell culture insert (0.4 

µm) (Millipore) 

PIHT30R48 Fisher Scientific UK Ltd 

Thin-walled 0.5 mL PCR tube 

(Ambion) 

AM12275 Fisher Scientific UK Ltd 

Superfrost glass microscope 

slides 

10150061 Fisher Scientific UK Ltd 

 

  



77 
 

Table 2-3. List of media and solutions used in hESC culture and differentiation 

Media/solution Components 

EDTA (0.5 mM) 500 µL 0.5 M EDTA, 500 mL DPBS, 0.9 g NaCl 

Freezing media (hESC) 50% E8, 35% ProFreeze, 15% DMSO 

Directed differentiation 

basal media (DDBM) 

500 mL DMEM/F12, 5 mL NEAA, 10 mL B27 supplement, 5 mL 

ITS, 5 mL L-glutamine, 917 µL β-Mercaptoethanol 

  



78 
 

2.2 General cell culture techniques 

In the interests of sterility, all cell culture procedures were conducted in a class II 

microbiological safety cabinet and disposable sterile plastic consumables were used. Cells 

and constructs were cultured in humidified, tri-gas controlled incubators with 21% oxygen, 

5% carbon dioxide and 93% nitrogen. Unless stated otherwise, cells were cultured in 6-well 

plates. 

2.2.1 Coating tissue culture plastic with vitronectin 

It was necessary to coat TCP in vitronectin prior to cell seeding. To avoid freeze-thaw cycles, 

vitronectin (500 µg/mL) was thawed and divided into 60 µL aliquots, which were stored at 

-80°C for up to 6 months. Aliquots were thawed and diluted in Dulbecco’s phosphate 

buffered saline (DPBS) to a concentration of 5 µg/mL (one 60 µL aliquot diluted in 6 mL DPBS 

is sufficient to coat six wells of a 6-well plate). The TCP was incubated with the diluted 

vitronectin at 37°C for 30 minutes or at room temperature (RT) for 60 minutes. The solution 

was removed and discarded prior to cell seeding. 

2.2.2 Resuscitation of frozen cells 

Frozen cryovials of hESC (MAN7 and MAN13) were provided by the Kimber Lab at the 

University of Manchester. Upon removal from liquid nitrogen storage dewars, cryovials 

were placed into an empty incubator at 37°C until around 90% of the contents had 

defrosted. The cryovial was then sprayed liberally with 70% industrial methylated spirits 

(IMS) and transferred to the class II microbiological safety cabinet. The cell suspension 

(approximately 1 cm3) was then slowly transferred to a 50 cm3 centrifuge tube containing 9 

mL of medium at RT. The cells were centrifuged at 700 g for 3 minutes. The supernatant 
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was discarded, the cell pellet was loosened by gentle trituration and cells were resuspended 

in an appropriate volume of medium. If large clumps were still visible, cells were passed 

twice through a P1000 pipette tip until a homogeneous suspension was obtained.  

2.2.3 Seeding cells 

Each thawed vial of hESC was resuspended in 2 mL RT Essential 8 (E8) medium. Rho kinase 

(ROCK) inhibitor was added at a concentration of 10 µM in order to aid attachment and 

survival. The cell suspension was transferred to one vitronectin-coated well of a 6-well plate 

and incubated for 24 hours, at which point the ROCK inhibitor was removed. Medium was 

changed daily until cells reached 80% confluency. 

2.2.4 Passaging cells 

Cells were split at confluence using 0.5 mM EDTA, diluted in DPBS with 30 mM sodium 

chloride (NaCl) (table 2-3). Media was aspirated, cells were washed once with 1 mL EDTA 

per well and then incubated with a further 1 mL EDTA at 37°C for 3-5 minutes (depending 

on size of colonies desired for seeding). Incubation beyond 5 minutes may result in a single-

cell suspension and, ultimately, loss of viability. EDTA was aspirated and 1 mL fresh RT E8 

medium was added directly to the well using a 5 mL serological pipette. The medium was 

washed up and down and the tip of the pipette was used to physically dislodge the cells. 

The cells were then resuspended in the desired volume of E8 medium with 10 µM ROCK 

inhibitor and transferred to fresh wells of a 6-well plate. For culture cells were generally 

split at a ratio of 1:6. Cells were then incubated for 24 hours, at which point the ROCK 

inhibitor was removed. 



80 
 

2.2.5 Cryopreservation of cells 

For long term storage, cells were detached from TCP as described in 2.2.3., resuspended in 

10 mL appropriate medium (supplemented with 50% Profreeze with 15% DMSO) and 

transferred to a 50 mL centrifuge tube. They were then centrifuged at 700 g for 3 minutes 

and resuspended in cold freezing media (1 mL per well of cells). 1 mL cell suspension 

(approximately 2x106 cells) was transferred to a cryovial and placed in a 2-propanol-filled 

Mr Frosty freezing container for controlled cooling to -80°C before being transferred to 

liquid nitrogen storage dewars. 

2.2.6 Performing a cell count 

To perform a cell count, cells were detached from one well as described in 2.2.3., but were 

incubated with EDTA for 6 minutes in order to obtain a single cell suspension. A Neubauer 

haemocytometer was prepared by exhaling onto the haemocytometer and adhering the 

coverslip to the resulting condensate. 10 µL of suspension was introduced by capillary 

action underneath the coverslip. Cells were then counted under a microscope. A mean was 

calculated from the four 1 mm2 corner regions in order to give the number of cells per 0.1 

µL. The mean was then multiplied by 1x104 and again by the total number of mL of cell 

suspension in order to determine the number of cells. In order to avoid prolonged 

incubation with EDTA and compromised viability, this cell count was used as an estimate for 

the number of cells in the other wells. 
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2.3 Directed Differentiation Protocol (DDP) 

A modified version of the protocol described by Oldershaw et al in 2010 was used to 

generate chondroprogenitors from hESC (Oldershaw et al. 2010). Since its publication the 

Kimber lab have worked to enhance this protocol, resulting in changes which yield 

chondroprogenitors with a more mature phenotype.  The omission of follistatin and the 

substitution of BMP4 for BMP2 were changes that were adopted at the beginning of this 

work. The substitution of WNT3A for the small molecule CHIR99021 (CHIR) occurred during 

the course of the work, as recommended by the Kimber lab. In addition, Activin A 

(Peprotech) and FGF2 (GibcoTM) were substituted with alternatives produced by Qkine 

towards the end of this study. The effect of each alteration was assessed via gene expression 

analysis (see supplementary figures 1-2). Finally, in this study, vitronectin was used as the 

cell substrate during the DDP, rather than commercially-available fibronectin or the 

fibronectin peptide donated by the University of Manchester. This decision was influenced 

by a number of factors: poor performance of commercially-available fibronectin in 

maintaining cell attachment; limited availability of the peptide produced by the University 

of Manchester; vitronectin performed equally as well as the peptide according to gene 

expression analysis (supplementary figure 3).  

2.3.1 Preparation of directed differentiation basal medium (DDBM) 

In order to prepare a bottle of DDBM (table 2-3), 20 mL DMEM/F12 was transferred from a 

fresh bottle into a 50 mL centrifuge tube. 10 mL B27 supplement, 5 mL non-essential amino 

acids (NEAA), 5 mL Insulin-Transferrin-Selenium-Sodium Pyruvate (ITS), 5 mL L-glutamine 

and 917 µL 2-mercaptoethanol were added. The mixture was then filter sterilised and 

transferred back into remaining DMEM/F12. For long-term storage, 40 mL aliquots were 
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transferred to 50 mL centrifuge tubes and stored at -20°C for up to six months. As required, 

aliquots were defrosted overnight at 4°C and stored at 4°C for up to one month. DDBM was 

allowed to reach RT before use in cell culture. 

2.3.2 Preparation of growth factors (GF) 

Lyophilised GF were stored as per manufacturers’ instructions until required.  Stock 

solutions were prepared as detailed in table 2-4 by reconstituting in 0.1% bovine serum 

albumin (BSA). Aliquots of stock solutions were stored at -80°C for up to six months. 

Working concentrations were prepared with 0.1% BSA as outlined in table 2-4 and stored 

for up to two weeks at 4°C. In later DDP runs, WNT3A was replaced with CHIR (a potent 

WNT pathway activator). A 10 mM stock solution was prepared by dissolving 1 mg in 215 

µL sterile DMSO. 20 µL aliquots were stored at -80° and diluted, when needed, with DMSO 

to obtain a working concentration of 2 mM (table 2-4). The final concentration used in the 

medium was 2 µM. Aliquots of CHIR were protected from prolonged exposure to light as 

per manufacturer’s instructions. 

Table 2-4. Concentrations of growth factors used during DDP 

Growth factor Stock concentration 
(µg/mL) 

Working concentration 
(µg/mL) 

Final concentration 
(ng/mL) 

WNT3A 10 10 25 

Activin A 100 20 50/25/10* 

FGF2 100 20 20 

BMP-2 200 40 40/20* 

GDF-5 100 20 20/40* 

*final concentrations vary depending on day of DDP (table 2-5) 
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2.3.3 Initiating a DDP with hESC 

On day 0 (D0) cells were seeded into two wells of a 6-well plate at a density of approximately 

7x105 cells per well (1:3 split of a confluent well), as described in 2.2.3. Two wells of a 

separate 6-well plate were also seeded with cells at the same density. The following day 

(D1), medium was aspirated from the both wells of the separate plate. Cells from one well 

were lysed with 350 µL buffer RLT (supplied in the RNeasy Mini Kit). The lysate was then 

transferred to a 1.5 mL centrifuge tube and stored at -80°C. Cells from the remaining well 

were fixed for 30 minutes with 10% neutral buffered formalin (NBF) and 

immunocytochemistry (ICC) was performed (chapter 2.22) in order to confirm pluripotency 

via octamer-binding transcription factor 4 (OCT4) expression (supplementary figure 4). 

Medium from the two remaining wells was aspirated, cells were washed once with DPBS 

and 2 mL per well of DDBM was added, supplemented with growth factors as outlined in 

table 2-5 and 2-6. Medium was changed daily and supplemented with growth factors 

detailed in table 2-5 and 2-6. Cells were split at a ratio of 1:4 on days 4 (D4) and 8 (D8) and 

at these points samples were also lysed with buffer RLT and stored at -80°C. 

Table 2-5. GF supplementation for DDP using WNT3A 

                                            GF (µL) per 2 mL DDBM for 1 well of a 6 well plate 

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 

WNT3A (10 µg/mL) 5 5 5           

Activin A (20 µg/mL) 5 2.5 1           

FGF2 20 (µg/mL)  2 2 2 2 2 2 2 2 2 2 2 2 

BMP2 40 (µg/mL)   2 2 2 2 2 2 1 1    

GDF5 (20 µg/mL)         2 2 4 4 4 
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Table 2-6. GF supplementation for DDP using CHIR99021 

                                            GF (µL) per 2 mL DDBM for 1 well of a 6 well plate 

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 

CHIR99021 (2mM) 2 2 2           

Activin A (20 µg/mL) 5 2.5 1           

FGF2 20 (µg/mL)  2 2 2 2 2 2 2 2 2 2 2 2 

BMP2 40 (µg/mL)   2 2 2 2 2 2 1 1    

GDF5 (20 µg/mL)         2 2 4 4 4 

 

2.3.4 Termination of DDP 

At day 14 the DDP was terminated and cells were either cryopreserved or kept in culture 

for use in further experiments. The DDP was extended up to day 17 as necessary, dependent 

upon when chondroprogenitors were required for experimental purposes. This was 

preferable to using thawed cells, as recovery from cryopreserved cells was generally around 

35%. At the point of termination one final sample was lysed with buffer RLT and stored at -

80°C for subsequent gene expression analysis, along with samples from days 1, 4 and 8. 

Periodically, one well was fixed for 30 minutes with 10% NBF and ICC was performed 

(chapter 2.22) in order to assess chondrogenic potential via expression of either COL2, SOX5 

or SOX9 (supplementary figure 6). 

2.4 Preparation of fibrin hydrogels 

2.4.1 Preparation of stock solutions 

Sterile conditions were maintained for all of the following procedures. Fibrinogen was 

reconstituted in 30 mM NaCl to give a stock concentration of 50 mg/mL. 500 µL aliquots 

were transferred to 1.5 mL centrifuge tubes and stored at -20°C for up to six months. 

Thrombin was reconstituted in 30 mM NaCl to give a stock concentration of 100 UN/mL. 
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Aliquots of 100 µL were transferred to 0.5 mL centrifuge tubes and stored at -20°C for up to 

six months. Aprotinin was reconstituted in 30 mM NaCl to give a stock concentration of 1 

mg/mL. Aliquots of 1 mL were transferred to 1.5 mL centrifuge tubes and stored at -20°C 

for up to six months. To obtain working concentrations these reagents were thawed at RT 

and diluted further with 30 mM NaCl.  

2.4.2 Preparation of gels 

To prepare a 200 µL gel, 60 µL cell suspension (cell density dependent on desired seeding 

density) was mixed with 80 µL fibrinogen (working concentration dependent on desired 

final concentration) in one 0.5 mL centrifuge tube. In a separate 0.5 mL centrifuge tube, 8 

µL aprotinin (1 mg/mL) was combined with 20 µL thrombin (20 UN/mL) and 40 µL calcium 

chloride (CaCl2) (100 mM). These volumes could be scaled up to make “master mixes” of 

each of the mixtures in larger containers. 60 µL aprotinin/thrombin/CaCl2 mixture was 

transferred to a fresh 0.5 mL centrifuge tube. Next, 140 µL cell suspension/fibrinogen 

mixture was taken up into a P200 pipette tip, the pipette volume was increased to 200 µL, 

the mixture was added to the aprotinin/thrombin/CaCl2. The entire mixture was then 

pipetted up and down twice, taken back into the same P200 pipette tip and transferred 

immediately to one well of a 48-well plate. The fibrin gel began to set immediately and 

became too viscous to pipette after around 20 seconds, therefore, it was important that 

this procedure was completed promptly. The gels were then incubated at 37°C for 30 

minutes, at which point 500 µL of appropriate medium was added, with the addition of 

aprotinin at a concentration of 20 µg/mL. For acellular gels, the cell suspension was 

substituted with 60 µL of appropriate medium. To make 50 µL gels, the same process was 

used but with the following volumes: 15 µL cell suspension, 20 µL fibrinogen, 2 µL aprotinin, 
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5 µL thrombin and 10 µL CaCl2. 50 µL gels were pipetted into a 96-well plate and 200 µL 

DDBM was added after 30 minutes of incubation. 

2.5 Preparation of HyStemTM hydrogels 

HyStemTM gels were made according to the manufacturer’s instructions, with the exception 

that the Extralink component was replaced with PEGDA from a different source in order to 

increase the concentration of crosslinker in the gels. All procedures were carried out under 

aseptic conditions. 

2.5.1 Preparation of reagents 

A stock solution of PEGDA was made by dissolving 250 mg in 1 mL degassed water (supplied 

in HyStemTM kit) to give a concentration of 250 mg/mL. Aliquots were stored at -20°C for up 

to one month. The components of the HyStemTM kit were allowed to come to RT and then 

1 mL degassed water was added to each bottle of lyophilised HyStemTM using a syringe and 

needle. The bottles were then placed horizontally on a rocker and left for 30 minutes at RT 

until the contents were completely dissolved. 

2.5.2 Preparation of gels 

In order to make ten 200 µL gels, 400 µL PEGDA was added to 1600 µL HyStemTM to give a 

final concentration of 50 mg/mL PEGDA. D14 chondroprogenitors were detached and a cell 

count was performed (as described in 2.2.4 and 2.2.6). 2x106 cells were then resuspended 

in 2 mL of the HyStemTM/PEGDA mixture. The resulting cell suspension was transferred to a 

48-well plate, with 200 µL in each well. The gels were then incubated at 37°C for 30 minutes, 

at which point 500 µL medium was added with aprotinin at a concentration of 20 µg/mL.  
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2.6 Preparation of PhytagelTM (gellan gum) hydrogels 

2.6.1 Preparation of reagents 

A 1% solution was made by adding 100 µg of PhytagelTM to 10 mL dH2O in a transparent, 20 

mL glass container with a screw cap. The cap was loosened and the mixture was placed 

upright in a microwave (800 W) and heated for 5 seconds. A paper towel was wrapped 

around the neck of the container and the contents were swirled by hand for 2-3 seconds. 

The container was then heated for a further 5 seconds and this process was repeated until 

all of the PhytagelTM had dissolved. Complete dissolution via this method generally took 

around 3 minutes. Once dissolved, the lid was closed and the container was placed 

horizontally into a Bio-Rad GS Gene Linker UV Chamber oven and sterilised for 90 seconds 

at 257.3 nm. The container was then incubated at 37°C for at least 30 minutes, in order to 

allow the contents to cool. Allowing the mixture to cool to RT would have caused the gels 

to set; therefore, the container was maintained at 37°C until needed. 

2.6.2 Preparation of gels 

D14 chondroprogenitors were detached and a cell count was performed (as described in 

2.2.4 and 2.2.6). 2x106
 cells were resuspended in 20 mL DDBM and divided equally between 

ten 50 mL centrifuge tubes. The tubes were centrifuged at 700 g for 3 minutes and the 

medium was carefully aspirated in order to leave as little liquid remaining as possible. In 

order to avoid premature gelation, the PhytagelTM solution was transferred from the 

incubator to the class II microbiological safety cabinet and kept in a beaker of warm water.  

200 µL of PhytagelTM solution was then rapidly added to one cell pellet using a P1000 pipette 

tip. The mixture was drawn back into the pipette tip and transferred immediately to one 

cell of a 48-well plate. This process was repeated with the remaining cell pellets. The gels 
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were incubated for 10 minutes at 37°C, at which point 500 µL medium was added with 

aprotinin at a concentration of 20 µg/mL. 

2.7 Creation of a PCL Wnt platform 

2.7.1 Preparation of reagents 

In a fume hood, a 2% solution of PCL was made by adding 300 mg PCL pellets to 15 mL 100% 

chloroform in a 20 mL glass tube with a screw cap. The solution was mixed with a magnetic 

stirrer and stir bar for one hour until completely dissolved. A solution of 1% 3-[(3-

cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) detergent (wt/vol) and 

0.1% (wt/vol) BSA was prepared in DPBS and then filter sterilised. Aliquots were stored at 

4°C for up to one month or at -20°C for up to six months. A 20 mM solution of 1,4-

dithiothreitol (DTT) was prepared by adding 154.24 mg DTT to 50 mL DPBS. The solution 

was then filter sterilised and stored at 4°C for up to six months. A stock solution of WNT3A 

at 10 µg/mL was prepared in 1% CHAPS detergent and aliquots were stored at -80°C for up 

to six months. A working concentration (w/c) of 400 ng/mL in 1% CHAPS detergent was 

made immediately prior to use. 

2.7.2 Preparation of polymers 

15 mL 2% chloroform was transferred to three glass petri dishes (55 mm diameter), with 5 

mL of solution per dish, and left for approximately 24 hours until a solid film had formed. 

Forceps were then used to transfer each film to a separate 50 mL centrifuge tube. 

2.7.3  Modifying polymers with aldehydes 

The following procedures were conducted in a fume hood. The lid was loosened on a bottle 

of hexamethylenediamine and it was heated gently on a hot plate for around 30 minutes 
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until a liquid was formed. 1250 µL of the liquid was added to 50 mL 90% 2-propanol. 15 mL 

of the mixture was added to each of the polymer sheets and the centrifuge tubes were 

placed on a roller for 90 minutes. The polymer sheets were removed from the centrifuge 

tubes, washed once in 100% 2-propanol and left to dry. 50 µL of 70% glutaraldehyde 

solution was added to 50 mL 70% ethanol. Each of the polymer sheets was incubated with 

15 mL of the mixture for 5 minutes. The glutaraldehyde solution was then aspirated and the 

polymers were washed twice with 100% ethanol and left to dry. 

2.7.4  Modifying polymers with WNT3A 

An 8 mm biopsy punch was used to punch out discs of PCL from the polymer sheet. The 

discs were transferred to a 50 mL centrifuge tube containing 100% ethanol. Each disc was 

then transferred to a separate well of a 48-well plate, 500 µL ethanol was added to each 

well and they were left for 30 minutes. The discs were then transferred to a non-adherent 

48-well plate and left to dry, then washed once in DPBS. 50 µL WNT3A solution (w/c) was 

pipetted carefully onto the top of each disc and they were incubated at RT for 1 hour, then 

washed once with DPBS. For inactivated WNT3A control polymers, the solution was 

removed after 1 hour, the discs were washed once in DPBS and then incubated with 200 µL 

of 20 mM DTT for 30 minutes at 37°C. They were then washed once in DPBS. For BSA control 

polymers, the WNT3A solution was substituted with 50 µL of 5% (wt/vol) BSA. Once the 

polymers were modified they seeded with cells immediately or stored at 4°C for up to 24 

hours.
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2.8 Stimulating cells with the four-point bending bioreactor (4PBB) 

 

Figure 2-1. Schematic diagram of 4PBB. Diagrammatical representation of four-point bending loading apparatus for the application of uniaxial 

compression to hESC-derived chondroprogenitor coverslip cultures. Adapted from the thesis of Matthew Peake (M. Peake 2001).
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2.8.1 Preparation of the bioreactor 

In order to maintain sterility, the lids were removed from the two 4PBB chambers prior to 

use and submerged in 100% IMS for 2 hours, along with the pneumatic pistons. The IMS 

was removed and the lids and pistons were allowed to dry in the class II microbiological 

safety cabinet. The chambers were autoclaved and removed from their autoclave bags in 

the class II microbiological safety cabinet immediately prior to use. All components were 

handled with sterile forceps. The lid of the container was modified to allow for gas exchange 

by creating 5 holes which were plugged with the caps of T-175 culture flasks and sealed 

around the edges with Loctite All Plastics Superglue (figure 2-2 D-E). 

2.8.2 Coating coverslips with vitronectin 

No. 2 coverslips (table 2-2) were autoclaved, then transferred to 139 mm petri dishes (2 

coverslips per dish). With the lids on, the petri dishes were transferred to a Bio-Rad GS Gene 

Linker UV Chamber oven and sterilised for 90 seconds at 257.3 nm. 1 mL vitronectin (5 

µg/mL in DPBS) was carefully pipetted onto the surface of each coverslip (figure 2-2 A) and 

incubated at 37°C for 30 minutes or at RT for 60 minutes. Immediately prior to cell seeding, 

the vitronectin was carefully aspirated, ensuring that no liquid ran off the side of the 

coverslip. This was important in order to maintain surface tension when the cell suspension 

was added, so that cells remained only within the vitronectin-coated area. 
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Figure 2-2. Loading of the 4PBB. Middle region of upper surface of coverslips are coated in 

vitronectin and cells are subsequently seeded onto this area (A). Cell-seeded coverslips are 

placed cell-side down into each well, medium is added and lid is placed on top (B). 

Pneumatic piston is secured into place (C). Inlet tube is attached to pneumatic piston (D). 

Inlet tube is attached to solenoid-mediated pneumatic switching system via a 0.2 µm 

syringe filter (E). 

 

A B 

C D 

E 
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2.8.3 Seeding coverslips with cells 

D14-16 chondroprogenitors were thawed as described in 2.2.2 and resuspended in an 

appropriate volume of D13 media (table 2-5) supplemented with ROCK inhibitor (10 µM). 1 

mL cell suspension was carefully pipetted onto the surface of each vitronectin-coated 

coverslip and incubated for 24 hours at 37°C.  

2.8.4 Application of compressive force 

Using sterile forceps, each cell-seeded coverslip was transferred to one well of the 4PBB 

chamber and placed cell-side down. 5 mL of D13 media was added to each well and the lid 

was placed onto each chamber. The pneumatic piston was placed on top and screwed 

securely into place (figure 2-2 C). The two chambers were then transferred to a 10 L plastic 

container, which had previously been sprayed with 70% IMS and allowed to dry. The 

experimental chamber was placed on the side nearest to the inlet tube and the tube was 

attached to the pneumatic piston (figure 2-2 D). The lid was placed over the two chambers 

and closed securely. A solenoid-mediated pneumatic switching system was then attached 

to a syringe filter, which was in turn attached to the inlet tube, ensuring that air coming into 

the system was not contaminated (figure 2-2 E). The switching system was set to a 

frequency of 0.8 Hz and the alternating compressive force was applied for a period of 30 

minutes. The control chamber was set up in exactly the same way, except that the piston 

was not connected to the pneumatic switching system, meaning that no compressive force 

was applied. After the stimulation period, the switching system was detached from the 

syringe filter and the plastic container and its contents were incubated at 37°C until the 

experiment was terminated, at which point the coverslips were carefully removed from the 

chambers and excess media was aspirated. The cells were then lysed by applying 570 µL 
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buffer RLT supplemented with 1% ß-mercaptoethanol directly to the coverslip. The lysate 

was transferred to a 1.5 mL centrifuge tube and stored at -80°C. 

2.9 Stimulation with the Hydrostatic Bioreactor 

This study utilised a custom-made hydrostatic bioreactor which was designed and built by 

Professor El Haj (ISTM, Keele University) and Tissue Growth Technologies (TGT) 

(Minnetonka, MN, USA). Figure 2-3 A details the components of the bioreactor. The sealed 

chamber (figure 2-3 B) is comprised of anodised aluminium and can house a standard cell 

culture plate with the lid removed. Ancillary equipment (figure 2-3 C) transfers pressure 

changes to the gas phase above the culture medium in the well plate. The chamber fits into 

a standard incubator, the air of which is compressed, recycled and fed through a 

continuously running scroll compressor via a heater, in order to maintain a temperature of 

37°C. This air enters the chamber via a system of valves through a sterile filter, which can 

be autoclaved along with the chamber as required. A vacuum mechanism then removes the 

air from the chamber and directs it back into the incubator to be recycled. Operation of the 

system is controlled by TGT’s GrowthWorks software. This allows for fine control of the 

sinusoidal waveform, with cyclical pressures between 0 kPa and 270 kPa, at frequencies 

ranging from 0.0001 Hz to 2 Hz. (Henstock et al. 2013). Owing to a catastrophic failure of 

this system, it was later re-fashioned and a commercially available microfluidic control 

system (OB1 MK3) was used to regulate the pressure in the chamber. 
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Figure 2-3. Hydrostatic bioreactor. Schematic cross-section of bioreactor chamber (A) 

shows how compressed incubator air is used to apply pressure to samples on a well plate. 

The bioreactor chamber with the lid removed (B) and the chamber connected to ancillary 

equipment (C) are also shown. 

 2.9.1 Preparation of samples for the bioreactor 

50 µL fibrin hydrogels were prepared as described in 2.4.2. using chondroprogenitors which 

were derived as outlined in 2.3. The samples were left for 24 hours and then a live/dead 

assay (see chapter 2.19) was performed on one gel from each condition. Only gels with at 

least 50% viability were used. Acellular control hydrogels were also prepared for each 

condition. 
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2.9.2 Application of hydrostatic pressure 

For all experiments the hydrostatic bioreactor chamber was opened only inside the class II 

microbiological safety cabinet and, during stimulation, the lid of the 96-well plate was 

removed and kept in aseptic conditions. On day 2, the 96-well plate containing the fibrin 

hydrogels was transferred to the bioreactor chamber. Cyclical hydrostatic pressure was 

applied to the samples for 1 hour at either 270 kPa or 170 kPa with a frequency of 1 Hz. A 

group of control gels were cultured in the same way, but did not receive any stimulation 

(static). After stimulation the gels were returned to the incubator. This process was 

repeated on days 3, 4 and 5. On day 7 the experiment was terminated and the samples were 

either snap-frozen and stored at -80°C for subsequent gene expression analysis, or fixed for 

2 hours with 10% NBF for histological analysis. 

2.10 Incorporation of sulphated alginates into the DDP 

Sulphated alginates (sAlg) were a kind gift from Dr Rami Mhanna at the American University 

of Beirut, Lebanon. Details of the preparation of the alginates has been described previously 

(Mhanna et al. 2014). Alginates with two varying degrees of sulphation (DS) were used 

including 0.8 (sAlg 0.8), 2.0 (sAlg 2.0) and non-sulphated (sAlg 0.0). They were dissolved in 

DPBS at a concentration of 1 mg/mL.  

2.10.1   Addition of sAlg to the culture medium 

A DDP was initiated on either MAN7 or MAN13 hESC as described in 2.3.3. On D8 the cells 

were split as usual, but were seeded into a 24-well plate with 500 µL medium per well. For 

a 1:4 split 1 well of a 6-well plate (9 cm2) was seeded into 18 wells (2 cm2/well) of a 24-well 

plate. The cells were incubated for 24 hours, at which point the medium was changed to D9 

medium supplemented with sAlg at varying concentrations (table 2-7). The DDP was 
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continued as usual, but on D12 the medium was again supplemented with sAlg. For control 

wells, the cells were cultured in appropriate medium (D9 or D12) without sAlg 

supplementation. The experiment was terminated on day 14 and cells were either lysed 

with 350 µL buffer RLT and stored at -80°C for gene expression analysis or fixed for 30 

minutes with 10% NBF for analysis via immunocytochemistry. 

Table 2-7. Volumes of sAlg solutions required on days 9 and 12 of DDP 

 Volume of 1mg/mL 
sAlg solution (µL) 

Volume of medium 
(µL) 

Final volume  
(µL) 

sAlg 0.0 (10 µg/mL) 5 495 500 

sAlg 0.8 (10 µg/mL) 5 495 500 

sAlg 2.0 (10 µg/mL) 5 495 500 

sAlg 0.0 (10 µg/mL) 50 450 500 

sAlg 0.8 (100 µg/mL) 50 450 500 

sAlg 2.0 (100 µg/mL) 50 450 500 

 

2.11 Pre-incubation of cells with ECM molecules 

Either hESC or hESC-derived chondroprogenitors were detached as described in 2.2.4. 1x106 

cells were transferred to a 50 µL centrifuge tube along with 10 mL of appropriate medium 

and centrifuged for 3 minutes at 700 g. The cells were then resuspended in 1 mL appropriate 

culture medium supplemented with ECM molecules at the desired concentration and 

incubated for 10 minutes. ECM molecules used were vitronectin (VTN), fibronectin (FN), 

laminin (LN), HyStemTM or collagen type VI (COL VI). VTN is a ubiquitous cell adhesion 

molecule, which is commonly used to coat TCP for ESC culture and was, therefore, deemed 

a good starting point as proof of concept. FN is also a cell adhesion molecule, but with a 

more defined role in cartilage tissue (chapter 1.3.6) and thus more physiologically relevant 

in this model. Similarly, HA (HystemTM and COL VI) are key structural molecules found in 
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articular cartilage (chapter 1.3.3 and 1.3.4). The cell suspension was then centrifuged and 

resuspended in appropriate medium at a density of 2.5x105 cells/mL. 2 mL cell suspension 

was seeded into either vitronectin-coated 6-well plates or onto sterile, vitronectin coated 

circular coverslips (10 mm diameter), each housed within one well of a 6-well plate. The 

cells were then cultured for 4 days with daily medium changes, after which time they were 

either lysed with buffer RLT and stored at -80°C or fixed for 30 minutes with 10% NBF. 

2.12 RNA isolation 

Prior to RNA isolation all pipettes and surfaces were treated with DNA AWAYTM. If frozen, 

samples were allowed to thaw and then placed on ice. Samples that were processed 

immediately after lysis were also kept on ice during processing. In order to isolate sufficient 

RNA from 3D constructs, it was necessary to homogenise the sample first. 2.12.2 – 2.12.4 

(below) outline three different methods which were employed for this purpose. 

2.12.1 Isolating RNA from cells in monolayer culture 

Total RNA extraction was carried out using the RNeasy Mini Kit as per manufacturer’s 

instructions. One volume of 70% ethanol was added to the lysate and mixed well by 

pipetting. Up to 700 µL of the solution was transferred to an RNeasy mini spin column and 

centrifuged at 10,000 g for 15 seconds. The flow-through was discarded and any remaining 

solution was passed through the spin column in the same way. The membrane was then 

washed with the following steps: 1) 700 µL buffer RW1 added, centrifuged at 10,000 g for 

15 seconds, flow-through discarded 2) 500 µL buffer RPE added, centrifuged at 10,000 g for 

15 seconds, flow-through discarded 3) 500 µL buffer RPE added, centrifuged at 10,000 g for 

2 minutes, flow-through discarded. The spin column was then inserted into a fresh 

collection tube and centrifuged at 18,000 g in order to dry the membrane. The collection 
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tube was then replaced with a 1.5 mL centrifuge tube and 30 µL RNase-free water was 

pipetted directly onto the membrane and allowed to soak for 1 minute. The column was 

then centrifuged for 1 minute at 10,000 g, the elute was re-pipetted back onto the 

membrane and the column was centrifuged at 10,000 g for a further minute. Extracted RNA 

was quantified with a NanoDrop 2000 spectrophotometer and either kept on ice for 

immediate reverse transcription or stored at -80°C. 

2.12.2   Isolating RNA from hydrogels using RNeasy Mini Kits 

Samples were snap frozen either on dry ice or with a brief immersion into liquid nitrogen. 

10 µL buffer RLT was then pipetted directly onto the sample and a disposable polypropylene 

pestle was used to crush it by hand. A further 350 µL buffer RLT was added, the sample was 

vortexed and centrifuged at 18,000 g for 3 minutes. The supernatant was carefully pipetted 

and mixed with an equal volume of 70% ethanol in a fresh 1.5 mL centrifuge tube. RNA was 

then extracted as described above in 2.12.1. 

2.12.3   Isolating RNA from hydrogels with a low RNA yield 

Smaller fibrin hydrogels yielded a particularly low concentration of RNA, therefore, it was 

necessary to use a combination of TRI Reagent and PureLink RNA Micro Scale Kits. Samples 

were snap frozen either on dry ice or with a brief immersion into liquid nitrogen and crushed 

by hand with a disposable polypropylene pestle. 1 mL TRI Reagent was added to the sample, 

along with 5 µL RNA carrier (provided in Micro Scale Kit). It was then shaken vigorously by 

hand and centrifuged at 18,000 g for 10 minutes. The supernatant was transferred to clean 

1.5 mL centrifuge tube and incubated for 5 minutes at RT to allow complete dissociation of 

nucleoprotein complexes. 200 µL of chloroform was added and the sample was shaken 

vigorously by hand for 15 seconds, incubated at RT for 10 minutes and centrifuged at 12,000 
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g for 15 minutes at 4°C.  Approximately 80% of the colourless upper aqueous phase was 

carefully pipetted and transferred to a fresh 1.5 mL centrifuge tube. An equal volume of 

70% ethanol was added and mixed by pipetting up and down. The tube was then incubated 

at 4°C for 30 minutes. The resulting ethanol precipitation was transferred to a PureLink spin 

column, centrifuged at 12,000 g for 1 minute and the flow-through discarded. 350 µL of 

wash buffer I was added to the spin column, which was then centrifuged at 12,000 g for 1 

minute and the flow-through discarded. 20 µL of DNase solution (10 µL DNase + 10 µL 2x 

DNase buffer) was pipetted directly onto the membrane and the sample was incubated at 

RT for 15 minutes. The membrane was then washed by the following steps: 1) 350 µL wash 

buffer I added, centrifuged for 15 seconds, flow-through discarded 2) 500 µL wash buffer II 

added, centrifuged for 15 seconds, flow-through discarded (this step was repeated once). 

In order to dry the membrane, the collection tube was replaced with a fresh one and the 

spin column was centrifuged at 12,000 g for 2 minutes. The collection tube was then 

replaced with a 1.5 mL centrifuge tube and 20 µL RNase-free water was pipetted directly 

onto the membrane and allowed to soak for 1 minute. The column was then centrifuged for 

2 minutes at 12,000 g. Extracted RNA was quantified with a NanoDrop 2000 

spectrophotometer and either kept on ice for immediate reverse transcription or stored at 

-80°C. 

2.13 Reverse transcription 

RNA was converted into cDNA using High Capacity cDNA Reverse Transcription Kits (Applied 

Biosystems) as per the manufacturer’s instructions. A reverse transcription master mix was 

prepared using the following volumes of kit components (per sample of RNA): 2 µL 10x RT 

Buffer, 0.8 µL 25x dNTP Mix, 2 µL 10x RT random primers, 1 µL MultiScribeTM Reverse 
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Transcriptase, 0.2 µL RNase free water. The master mix was then briefly centrifuged and 6 

µL was transferred to a thin-walled 0.5 mL PCR tube along with 14 µL of RNA. Samples were 

then centrifuged briefly and loaded into a thermal cycler which was programmed with the 

following steps: 1) 25°C for 10 minutes 2) 37°C for 120 minutes 3) 85°C for 5 minutes 4) held 

at 4°C until removed. cDNA was stored at -20°C. 

2.14 Quantitative real-time polymerase chain reaction 

Gene expression analysis was performed using SYBR® Green-based quantitative real-time 

polymerase chain reaction (qRT-PCR) with pre-optimised QuantiTect primer assays 

(Qiagen).  SYBR® Green is a cyanine dye which preferentially binds to double-stranded DNA 

and, in doing so, exhibits a >1000-fold increase in fluorescence (Zipper et al. 2004; Dragan 

et al. 2012). The abundance of product, specified by the primer pair, can be determined 

during the course of amplification via the intensity of the fluorescent signal generated, 

which is measured at the end of each PCR cycle. The cycle number at which each sample 

has accumulated sufficient fluorescence to cross an arbitrary threshold (set by the thermal 

cycler to be above background levels and within the exponential phase of amplification) is 

recorded by the software as a cycle threshold (CT) value. For each sample the CT value for 

the housekeeping gene glyceraldehyde 3-phaosphate dehydrogenase (GAPDH) was used to 

normalise the CT values for all other genes. Relative expression was calculated by using 2-

ΔCT or 2-ΔΔCT as appropriate. 

2.14.1   Preparation of samples 

cDNA samples were diluted to 3 ng/µL in RNase free water. A “master mix” was prepared 

for each gene with the following volumes per sample: 7.5 µL SYBRTM Green PCR Master Mix, 

2 µL QuantiTect 10x primer mix, 0.5 µL RNase free water. 10 µL of master mix was 
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transferred to each PCR tube (AriaMx Tube Strips 8) and 5 µL of cDNA from each sample 

was added either in triplicate or duplicate depending on the quantity of cDNA. The tubes 

were capped and centrifuged for 2 minutes in a microcentrifuge then transferred to an 

AriaMx Real-Time PCR System (Agilent Technologies). 

2.14.2   Amplification of product 

The thermal cycler was programmed as follows and as shown in figure 2-4: 

 One cycle of 95°C for 10 minutes (hot start to denature activate DNA polymerase) 

 40 cycles of: 

o 95°C for 15 seconds (DNA melting) 

o 60°C for 1 minute (DNA extension) 

 Fluorescence measured 

 1 cycle of pre-programmed melt curve: 

o 95°C for 1 minute 

o 55°C for 30 seconds 

o 95°C for 30 seconds 

 Fluorescence measured as temperature is gradually increased from 

55°C to 95°C 
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Figure 2-4. qRT-PCR thermal cycle programme. 1 hot start cycle to activate DNA 

polymerase, 40 cycles of product amplification and 1 cycle of melt curve formation. 

2.14.3    qRT-PCR data analysis 

Relative gene expressions in the form 2-ΔCT were calculated using Microsoft Excel.  

2.15 Agarose gel electrophoresis 

Although pre-optimised, commercially-available primers were used, some samples were 

fractionated by agarose gel electrophoresis following qRT-PCR amplification in order to 

confirm the presence of just one product per primer. A 2% (w/v) agarose solution was made 
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by adding 2 g agarose to 100 mL 1x tris-acetate-EDTA (TAE) buffer in a 250 mL glass bottle 

with a screw cap. The cap was loosened and the mixture was placed upright in a microwave 

(800 W) and heated for 10 seconds. A paper towel was wrapped around the neck of the 

container and the contents were swirled by hand for 2-3 seconds. The container was then 

heated for a further 10 seconds and this process was repeated until all of the agarose had 

dissolved. Complete dissolution via this method generally took around 1 minute. 5 µL 

ethidium bromide (10 mg/mL) was added to the solution, which was then swirled and 

poured into a gel setting chamber with well comb inserts and allowed to set for 1 hour. 

Ethidium bromide is a dye that undergoes enhanced fluorescence following UV excitation 

when bound to double-stranded DNA. This allows for visualisation of DNA bands within the 

gel. Once set, the gel was transferred to a BIO rad electrophoresis clear chamber which was 

pre-filled with 1x TAE buffer (pH 8). 2.5 µL gel loading buffer was added to each amplified 

PCR sample and 8 µL of the mixture was transferred to one well of the gel. 5 µL DNA ladder 

was added to the two wells at each side to allow comparison with samples. Gels were run 

for 1 hour at 100 V and visualised by fluorescence at 254 nm in a UV Transilluminator 

(Syngene). Images of the gels were captured with Syngene Genesnap software 

(supplementary figure 5). 

2.16 Proteinase K digestion of cells and hydrogels 

Monolayer cells were washed with DPBS, detached, transferred to 1.5 mL centrifuge tubes 

and centrifuged at 4000 g for 2 minutes in order to create a cell pellet. Hydrogels were 

washed with DPBS and transferred to 1.5 mL centrifuge tubes. 250 µL of Proteinase K (1 

mg/mL dissolved in 100 mM ammonium acetate, pH 7.0) was added per 100 mg wet weight 

of tissue. Samples were vortexed, then incubated at 60°C with an additional vortex every 
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30 minutes until complete dissociation had occurred. This generally took around 2 hours. 

Proteinase K was inactivated by heating the samples to 100°C for 5 minutes in a heat block. 

They were then used immediately or stored at -20°C. 

2.17 PicoGreen double stranded DNA assay 

The Quant-ITTM double stranded DNA assay was performed as per the manufacturer’s 

instructions. 50 µL of Proteinase K digests (see 2.16 above) were used for this assay. DNA 

standards were prepared at concentrations of 20, 10, 5, 2.5, 1.25, 0.625 and 0.3125 µg/mL 

in 100 mM ammonium acetate. All samples and standards were then diluted 1:10 in 1x tris-

EDTA (TE) buffer, ensuring there was sufficient volume for at least three aliquots of each 

sample at 50 µL per aliquot and four aliquots of each standard at the same volume. Each 

aliquot was transferred to 1 well of a 96-well plate. PicoGreen stock solution was diluted 

1:200 in 1x TE buffer immediately prior to use. 50 µL of working solution was added to each 

sample/standard and incubated for 2 minutes then read using a Synergy 2 plate reader 

(excitation 480 nm, emission 520 nm). DNA concentrations were determined using a 

calibration curve of standards with linear regression. 10 mM ammonium acetate in 1x TE 

buffer was used as the 0 µg/mL standard. 

2.18 DMMB sulphated GAG assay 

Dimethyl methylene blue (DMMB) undergoes a rapid colour change in the presence of 

sGAG, which can be detected with a spectrophotometer. The remaining 200 µL of the 

Proteinase K digest (see 2.16 above) was used in this assay. 
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2.18.1   Preparation of DMMB solution 

0.008 g DMMB was dissolved in 2 mL 100% ethanol in a glass beaker. 1.52 g glycine, 1.185 

g NaCl and 500 mL dH2O were added. The liquid was covered with foil and mixed for 2 hours 

with a magnetic stirrer. The pH was adjusted to 3.0 with hydrochloric acid (HCl) and stored 

in the dark at RT. 

2.18.2    Preparation of samples 

Chondroitin sulphate was used as the sGAG standard for this assay.  Concentrations of 50, 

25, 12.5. 6.25, 3.125, 1.5625 and 0.78125 µg/mL were prepared in 100 mM ammonium 

acetate. Aliquots of 50 µL were transferred to one well of a 96-well plate (4 aliquots per 

standard). 50 µL aliquots of digest were also transferred to one well of a 96-well plate (3 

aliquots per sample). Plates were transferred to a Synergy 2 plate reader and an automated 

dispense unit was used to dispense 200 µL DMMB solution per well. Absorption at 530 nm 

was determined immediately after the solution was dispensed into each well in order to 

maximise reproducibility and to avoid formation of precipitation prior to reading. DNA 

concentrations were determined using a calibration curve of standards with linear 

regression. 100 mM ammonium acetate was used as the 0 µg/mL standard. 

2.19 AlamarBlueTM metabolic activity assay 

AlamarBlueTM contains a REDOX (reduction-oxidation reaction) indicator which changes 

from a blue, non-fluorescent form to a red, fluorescent form when taken up from the 

growth medium and chemically reduced by cells during metabolic activity. Damaged or non-

viable cells have a lower metabolic activity and thus generate lower fluorescent signals. 

However, given that the same can be said of senescent cells or those not currently in the 

growth phase of the cell cycle, AlamarBlueTM may be considered a metabolic activity assay 
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rather than a true indicator of viability. (Rampersad 2012). Medium was aspirated from 

hydrogels or cells and replaced with medium containing 10% AlamarBlueTM solution. The 

samples were incubated in the dark at 37°C for an appropriate length of time until a visible 

colour change had occurred (generally 90 minutes for monolayer cells and around 4 hours 

for fibrin gels). In order to render any comparison valid, samples from the same experiment 

were incubated for an equal length of time. 4 x 50 µL of medium from each sample were 

then transferred to separate wells of a 96-well plate. Fluorescence was read on a Synergy 2 

plate reader (excitation 530 nm, emission 590 nm). Excess solution was then removed from 

the samples, which were washed once with DPBS and fresh medium was added. 

2.20 Cell viability assay 

To assess the viability of cells within 3D constructs the LIVE/DEAD viability kit was used as 

per the manufacturer’s instructions. Medium was aspirated from samples, which were then 

washed twice with DPBS and incubated with 2 µL/mL ethidium homodimer-1 and 0.5 µL/mL 

calcein-AM in DPBS in the dark for 20 minutes at 37°C. Samples were then washed once 

with PBS and imaged immediately with a Nikon Eclipse Ti-S Fluorescent microscope. 

Conversion of non-fluorescent calcein-AM to its fluorescent form by intracellular esterases 

is an indicator of live cells, whereas the compromised membrane integrity of dead cells 

leads to the uptake of red-fluorescent ethidium homodimer-1. 

2.21 Histology 

2.21.1   Preparation of samples 

Porcine cartilage samples were obtained for use as positive controls for histological staining. 

A bone marrow biopsy Jamshidi needle was used to extract full depth articular cartilage 
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cores from porcine knee joints (donated by Hartshill Butchers, Stoke-on-Trent). The tissue 

was fixed overnight in 10% NBF at RT, then washed in DBPS and stored at 4°C. All hydrogels 

were washed in DPBS and incubated at RT for 2 hours (histology) or 1 hour (ICC) in 10% NBF. 

They were then washed in DPBS and stored at 4°C. Monolayer cells were washed in DPBS, 

incubated for 30 minutes at RT in 10% NBF, then washed again and stored at 4°C. 

2.21.2   Paraffin embedding 

Hydrogels and porcine cartilage tissue were dehydrated by immersion in the following 

alcohol series: 70% IMS for 2 hours, 80 % IMS for 1 hour, 90% IMS for 1 hour, 90% 2-

propanol for 1 hour, 100% 2-propanol for 1 hour.  Samples were then transferred to melted 

paraffin wax at 60°C in a wax embedder (Tissue-Tek Thermal Console) overnight. The 

following day, samples were transferred to fresh paraffin wax in an embedding mould with 

a labelled cassette and allowed to solidify on a cooling plate (Tissue-Tek Cryo Console). 

2.21.3   3-Aminopropyltriethoxysilane coating of slides 

In order to improve sample adhesion, standard Superfrost glass microscope slides were 

treated with APTES. Clean slides were soaked in acetone for 2 minutes to remove any trace 

residues and allowed to air dry. They were then immersed in 2% (v/v) APTES solution in 

acetone for a further 2 minutes. Coated slides were then washed in 2 baths of dH2O for 2 

minutes each, dried in an oven at 60°C and stored in their original boxes until needed. 

2.21.4   Sectioning and de-paraffinisation of embedded samples 

Sample blocks were trimmed to remove excess paraffin, positioned in the rotary microtome 

(Shandon AS325) and sectioned at 5 µm. Serial sections were taken, with 3-4 discontinuous 

sections per slide across ≥6 slides to allow for scrutiny of the same region with multiple 
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stains. Sections were transferred to a water bath with dH2O at 40°C and collected onto 

APTES-coated slides. Slides were then placed in the oven overnight at 60°C and stored at 

RT. Prior to staining, it was necessary to deparaffinise samples. To this end, they were 

soaked in Histo-Clear for 10 minutes followed by a second soak with fresh Histo-Clear for a 

further 10 minutes. Slides were then rehydrated by immersion in 100%, 90%, 80%, 70% and 

50% IMS for 2 minutes each and transferred to dH2O. 

2.21.5   Haematoxylin and eosin staining 

Deparaffinised and rehydrated sections were immersed in Gill’s number 2 haematoxylin for 

4 minutes, then rinsed in running tap water, dipped twice in 0.3% acid alcohol (70% ethanol 

with 0.3% concentrated HCl), rinsed in running tap water, rinsed in Scott’s tap water 

substitute (0.2% (w/v) sodium bicarbonate/2% magnesium sulphate (w/v) in dH2O), rinsed 

in running tap water, dipped in eosin for 30 seconds, then rinsed for a final time in running 

tap water. They were then dehydrated by immersion in 50%, 70%, 80%, 90% and 100% IMS 

for 30 seconds each, cleared with two 5 minute soaks in Histo-Clear and mounted in DPX 

mounting medium. Stained samples were imaged with an EVOS Core XL microscope. 

2.21.6   Safranin-O staining 

Deparaffinised and rehydrated sections were immersed in 0.1% (w/v) Safranin O solution 

for 5 minutes then dehydrated by immersion in 50%, 70%, 80%, 90% and 100% IMS for 30 

seconds each. They were then cleared with 2 x 5 minute soaks in Histo-Clear and mounted 

in DPX mounting medium. Stained samples were imaged with an EVOS Core XL microscope. 
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2.22 Immunocytochemistry 

For intracellular epitopes (such as SOX9) samples were first permeabilised by incubation 

with 0.1% Triton-X at RT for 15 minutes. All samples were blocked for 2 hours with 2% BSA 

prior to staining. They were then incubated with primary antibody diluted in 0.1% BSA (at 

manufacturer recommended concentrations) overnight at 4°C with gentle rocking, followed 

by 3 x 5 minute washes in DPBS. Samples were then incubated with secondary antibody 

(diluted 1:500 in 0.1% BSA) for 2 hours (monolayer cells) or ≥4 hours (hydrogels) at RT with 

gentle rocking. 3 x 5 minute washes in DPBS were followed by incubation with 4′,6-

diamidino-2-phenylindole (DAPI) at a concentration of 0.5 µg/mL for 10 minutes (monolayer 

cells) or 30 minutes (hydrogels). Finally, 3 x 5 minute washes in DPBS were performed and 

samples were stored at 4°C in DPBS prior to imaging. Gels were imaged in situ with a laser 

confocal microscope (Olympus FLUOVIEW FV1200) and scans were taken at 9 µm intervals. 

2.23 Statistical analysis 

Analysis was performed using GraphPad Prism V6.01 and differences with a P-value of less 

than 0.05 (p<0.05) were considered significant. For individual experiments with >3 technical 

repeats values of gene expression, sGAG, DNA and sGAG/DNA were compared across 

groups using an ordinary one-way ANOVA with Tukey correction and comparison of column 

means. Where data from 3 independent experiments were available the mean of the 

technical repeats was used to calculate an overall mean for the 3 experiments; these values 

were then compared using an ordinary one-way ANOVA with Tukey correction and 

comparison of column means. 
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In some experiments, such as the Wnt platform in chapter 3, more than one variable was 

changed (in this case both substrate and incubation time). Where numbers of repeats were 

the same for each group, values of gene expression, sGAG, DNA, sGAG/DNA and metabolic 

activity were compared across groups using a regular two-way ANOVA with comparison of 

column means, with Tukey correction for multiple comparisons. In some cases, the number 

of repeats varied slightly for each group and in these cases an ordinary one-way ANOVA was 

performed instead, with Tukey correction and comparison of column means. 

For comparison of paired samples from Alamar Blue assays (e.g. where an assay was 

performed on the same sample on days 9 and 12), a two-tailed paired T-test was performed. 
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Chapter 3 

A 3D hESC chondrogenic 

model with an immobilised 

Wnt platform  
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3.1 Introduction 

The stem cell niche is a local microenvironment, which provides the biochemical and 

biophysical cues necessary for the maintenance of properties such as self-renewal and 

pluripotency (S. J. Morrison and Spradling 2008).  Signalling molecules, either secreted or 

membrane-bound on supporting cells, are presented in a highly controlled manner and 

influence factors such as proliferation, daughter cell fate, migration, morphology and cell 

death. As cells migrate away from the niche and its signals, they begin to differentiate in 

response to new environmental cues. Wnt ligands have been shown to play a key role in a 

number of stem cell niches – both embryonic and adult (Mills, Szczerkowski, and Habib 

2017; Lowndes et al. 2016; Jones and Wagers 2008). In 2011, Berge et al. reported that 

mESC colonies showed enhanced pluripotent morphology and self-renewal capacity in 

response to increased Wnt signalling. Furthermore, this effect was blocked by Wnt 

antagonists Fx8CRD (which sequesters Wnt ligands) and inhibitor of Wnt production 2 

(IWP2) (which blocks porcupine acetyltransferase and subsequent production of active 

endogenous Wnt), but could be rescued by addition of WNT3A to the culture medium (ten 

Berge et al. 2011). This blocking of Wnt activity led to differentiation towards an epiblastic 

stem cell fate and diminished expression of the pluripotency markers. Thus, in mESC Wnt 

signalling appears to play a major role in maintaining plasticity. 

Highly conserved across species, Wnt has a key role in the self-renewal of numerous 

mammalian tissues (Clevers, Loh, and Nusse 2014). Wnt proteins are around 350 amino 

acids long and form a family with 19 members described to date, which all share the 

following key characteristics: multiple cysteine residues, a conserved serine residue for 

acetylation and lipidation, and a peptide sequence for secretion (Mills, Szczerkowski, and 
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Habib 2017). Although able to stimulate cells via three different signalling pathways, Wnt 

influences pluripotency and stem cell renewal through activation of the non-canonical 

Wnt/ß-catenin pathway upon association with the membrane-bound receptors LRP6 and 

FZD. This triggers an intracellular signalling cascade which results in inhibition of the ß-

catenin destruction complex, stabilisation of ß-catenin and its subsequent translocation to 

the nucleus where it binds to TCF, which in turn upregulates transcription of target genes 

(figure 1-12) (Clevers, Loh, and Nusse 2014). 

In vivo, the lipidation of Wnt proteins and their resulting hydrophobicity limits their mobility 

through tissue fluid and renders their effects short-ranged – within as little as one- to two-

cell diameters (Clevers, Loh, and Nusse 2014). Therefore, in the stem cell niche Wnt 

molecules are presented to target cells via carrier proteins for long distance signalling, or 

on the surface of paracrine cells for more local effects. There is also evidence to suggest 

that the orientation of the ligand is key to its function. Association of mESC with immobilised 

WNT3A resulted in accumulation of LRP6 and ß-catenin destruction-complex-associated 

proteins at the point of contact. These Wnt-associated cells then underwent asymmetrical 

division with the cleavage plane in line with the bead upon which the Wnt was immobilised. 

Following cell division, proximal daughter cells retained pluripotency, whereas distal ones 

showed reduced expression of pluripotent markers (Habib et al. 2013). In a later study Wnt 

was immobilised onto aldehyde-coated surfaces, such as glass and PCL, and cells (both 

mESC and hBMSC) seeded onto these modified materials demonstrated higher levels of 

Wnt signalling and a concomitant increase in pluripotency markers. In addition, BMSC 

migrating away from the Wnt-modified surface into collagen gels under osteogenic culture 

conditions, expressed higher levels of bone markers with increasing distance from the Wnt 
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signal, while those near to the polymer retained multipotency, as evidenced by high STRO-

1 expression (Lowndes et al. 2016). This work resulted in a published a protocol which 

outlines how to construct what is termed a “Wnt platform” onto beads or glass surfaces in 

order to recreate a stem cell niche in vitro. It was demonstrated that this platform could 

maintain local stem cell populations, while generating more distant populations of 

differentiating cells (Lowndes, Junyent, and Habib 2017). Owing to the success of this 

system with an osteogenic model, the decision was taken apply to a chondrogenic model, 

using hESC and fibrin hydrogels. Fibrin was chosen as the biomaterial in this study, as it 

supports good viability of hESC, whereas collagen was previously found to result in high 

levels of cell death (data not shown). 

One barrier to the clinical application of hESC-derived chondroprogenitors is the possible 

presence of residual pluripotent stem cells with the potential to form teratomas in vivo. It 

was hoped that the application of a modified version of the Wnt platform described above 

would have the dual effects of enhancing proliferation and inducing asymmetrical cell 

division in any remaining pluripotent hESC in order to mitigate the possibility of teratoma 

formation for potential future clinical applications. 
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3.2 Aims 

The primary aims of this chapter were: 

 To define a directed differentiation protocol for hESC using Wnt signalling and 3D 

culture 

 To assess the effects of both the 3D model and the Wnt signalling on chondrogenic 

gene and protein expression 

 To assess how Wnt signalling affects the migration of cells into hydrogels 
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3.3 Methods 

 

Figure 3-1. Schematic summary of the experimental procedure for chapter 3. A DPP was 

initiated on D1 using MAN7 hESC. The DDP proceeded to D14, with addition of a 200 µL 

acellular fibrin hydrogel on top of the differentiating monolayer of cells on either D4, D5 or 

D6. Medium was changed daily and supplemented appropriate growth factors. Aprotinin 

(20 µg/mL) was added to medium once gels were in place. 

The experimental design for this chapter is summarised in figure 3-1. A directed DPP was 

initiated on MAN7 hESC as described in chapter 2.3. PCL discs were prepared and modified 

with WNT3A as described in chapter 2.7. On day 4 of the DPP, cells were detached and 

seeded onto Wnt-modified PCL discs in 48-well plates. For a 1:4 split, one confluent well of 

day 4 cells was seeded into 8 wells of a 48-well plate. For cell-only control samples (cell 

only), day 4 cells were split 1:4 into 6-well plates and then split 1:4 again on day 8 and 

cultured on TCP, as with a normal DDP. DTT-inactivated WNT3A polymers (DTT) and 

polymers incubated with 5% BSA instead of WNT3A (BSA) were also included as controls. 

The purpose of the pilot experiment was to determine the optimal day for the addition of 
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the acellular fibrin gel. Three initial experiments were conducted, in which gels were placed 

on top of the Wnt platform/cells on day 4, 5 or 6. For all subsequent experiments gels were 

added on day 5. The DPP was then continued until day 14 and, for all wells containing 

hydrogels, the medium was supplemented with aprotinin at a concentration of 20 µg/mL in 

order to limit protease degradation of the gels. In one experiment of the pilot study, a 

control group of cells was detached on day 11 and encapsulated in 200 µL cellular fibrin gels 

as described in chapter 2.4. These hydrogels were then cultured until day 14 in the same 

way as the other groups. This was done in order to rule out the possibility that the fibrin 

was responsible for the differences observed between experimental groups and cell only 

controls. 

On days 7/9 and 12 of the pilot experiments, an Alamar Blue assay was performed (see 

2.19). For all experiments, samples were taken on day 9 and again on day 14 when 

experiments were terminated. For Alamar Blue, PicoGreen and DMMB assays, there are no 

cell only controls as the monolayer DDP is performed in 6-well plates (as opposed to the 48-

well plates in which the Wnt platform was cultured) and samples were, therefore, not 

comparable. Attempts to perform a monolayer DDP in 48-well plates were not successful, 

as cells quickly became over-confluent and lower seeding densities resulted in poor viability. 

For gene expression analysis, however, cell only controls were possible as RNA levels are 

normalised prior to cDNA synthesis. Samples were either snap frozen or fixed with 10% NBF. 

Gene expression analysis, PicoGreen assay, DMMB assay and ICC were performed on day 9 

and day 14 samples. For gene expression analysis, RNA was isolated from the entire 

construct including the polymer base. This was followed by cDNA synthesis (2.13) and RT-

qPCR (2.14). For PicoGreen and DMMB assays, however, the polymer was removed and the 
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hydrogel washed with DPBS prior to digestion with Proteinase K. For ICC polymers were 

removed after staining and gels were imaged with a laser confocal microscope (Olympus 

FLUOVIEW FV1200) from the bottom up. Scans were taken at 9 µm intervals for a distance 

of ≤300 µm. Images were then constructed using Imaris Image Analysis software. ICC and 

gene expression analysis was also performed on samples from three independent 

experiments. Cell migration was measured with Image J software using the images created 

with Imaris and the scale bars provided (figure 3-2). 

Statistical analysis was performed as described in chapter 2.23. 
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3.4 Results 

3.4.1 Determination of optimal day for addition of hydrogels 

The purpose of the pilot study was to determine at which stage in the protocol to add the 

fibrin gels. The hydrogel was added either on day 4 (the same day that cells were seeded), 

day 5 or day 6.  

3.4.1.1 Gene expression analysis 

Gene expression analysis demonstrated elevated ACAN levels in D9 cultures compared to 

D14 in all three experiments. When gels were added on day 4, ACAN expression of the 

whole construct (including any cells remaining on the polymer base) peaked in the D9 Wnt 

and D9 DTT groups (figure 3-2 A). ACAN expression in D9 Wnt was significantly greater than 

in D14 Wnt (p<0.05), D9 BSA (p<0.01) and D14 cell only (p<0.001). In D9 DTT it was 

significantly greater than in D9 BSA (p<0.05) and D14 cell only (p<0.01). A similar pattern 

was observed for ACAN expression when gels were added on day 5 and 6, although 

expression was generally lower (figure 3-2 A-C). When gels were added on day 5, D9 BSA, 

D9 DTT and D14 BSA all had significantly greater expression than in D14 cell only (p<0.05, 

p<0.001 and p<0.01 respectively). D9 Wnt also demonstrated significantly higher expression 

than D14 Wnt (p<0.05). When gels were added on day 6 ACAN expression was significantly 

higher in D9 Wnt than in D9 DTT (p<0.0001), D9 BSA (p<0.001), D14 encapsulated cells 

(p<0.0001), D14 cell only (p<0.0001), D14 BSA (p<0.001), D14 DTT (p<0.001) and D14 Wnt 

(p<0.001).
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Figure 3-2. Aggrecan expression peaks on day 9 and is higher in all 3D constructs than in cell only controls. Gene expression is relative to 

GAPDH (2-ΔCt). Data are expressed as the mean ± standard error, n=3-5 (technical repeats), *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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In contrast, COL1A1 gene expression was elevated at D14 in 2 out of 3 of the experiments 

(figure 3-3 A and B). Expression was not measured in one experiment due to insufficient 

cDNA resulting from low RNA yield. When gels were added on day 4, all day 14 constructs 

had significantly higher expression than D14 cell only (D14 BSA (p<0.0001), D14 DTT 

(p<0.001) and D14 Wnt (p<0.0001)) and significantly higher expression than their D9 

counterparts ((D14 BSA (p<0.0001), D14 DTT (p<0.001) and D14 Wnt (p<0.0001). In 

addition, D14 DTT had significantly higher COL1A1 expression than D14 cell only (p<0.0001), 

D9 DTT (p<0.0001), D14 BSA (p<0.001) and D14 Wnt (p<.001). 

COL2A1 expression (figure 3-4) again peaked on day 14 in all experiments and was often 

significantly higher in day 14 3D samples than in day 14 cell only controls. When gels were 

added on day 4, all day 14 constructs had significantly higher expression than D14 cell only 

(D14 BSA (p<0.0001), D14 DTT (p<0.0001) and D14 Wnt (p<0.0001)) and significantly higher 

expression than their D9 counterparts ((D14 BSA (p<0.0001), D14 DTT (p<0.0001) and D14 

Wnt (p<0.0001). In addition, D14 Wnt had significantly higher expression than D14 DTT 

(p<0.05). When gels were added on day 5 D14 DTT had significantly higher COL2A1 

expression than D14 cell only (p<0.0001), but although expression in D14 was generally 

higher, there were no other significant differences. When gels were added on day 6, D14 

BSA showed significantly higher expression than D14 cell only (p<0.05), D14 encapsulated 

cells (p<0.01) and D9 BSA (p<0.001). D14 DTT also had significantly higher expression than 

D14 encapsulated cells (p<0.05). In the second two experiments, where gels were added on 

days 5 or 6, there were no significant differences between D14 polymer-based groups.
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Figure 3-3. Collagen type I expression peaks on day 14 and is higher in all 3D constructs than in cell only controls. Gene expression is relative 

to GAPDH (2-ΔCt). Data are expressed as the mean ± standard error, n=3-5 (technical repeats), *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001
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Figure 3-4. Collagen type II expression peaks on day 14 and is higher in all 3D constructs than in cell only controls. Gene expression is relative 

to GAPDH (2-ΔCt). Data are expressed as the mean ± standard error, n=3-5 (technical repeats), *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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SOX9 expression (figure 3-5) was always higher in polymer-based groups than in cell only 

controls and D14 encapsulated cells. When gels were added on day 4 expression in D9 Wnt 

was significantly higher than in D14 cell only (p<0.05) and D9 BSA (p<0.05). When gels were 

added on day 5, although expression was generally higher, there were no significant 

differences. When gels were added on day 6, SOX9 expression was significantly higher in D9 

BSA than in D14 cell only (p<0.01) and D14 encapsulated cells (p<0.05). It was also 

significantly higher in D9 DTT and D14 DTT than in D14 cell only (p<0.05 and 0.001 

respectively).



126 
 

 

 

Figure 3-5. SOX9 expression peaks on day 9 and is higher in all 3D constructs than in cell only controls. Gene expression is relative to GAPDH 

(2-ΔCt). Data are expressed as the mean ± standard error, n=3-5 (technical repeats), *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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3.4.1.2    Metabolic activity, DNA and sulphated GAG 

Results show that metabolic activity increases with time in culture throughout the 14-day 

protocol. Overall, metabolic activity was lower in constructs where the hydrogel was added 

on D4 in comparison to when it was added on day 5 or 6, as evidenced by the lower levels 

of fluorescence on day 12 (figure 3-6). A lower overall metabolic activity may be an 

indication of reduced cell viability resulting from the addition of a gel so soon after cell 

seeding. Increased metabolic activity in each well by day 12 suggests that cell numbers 

increased with prolonged time in culture, as expected. When gels were added on day 4 

(figure 3-6 A) D12 DTT had a significantly higher mean fluorescence than D7 DTT (p<0.01) 

and D12 Wnt was significantly higher than D7 Wnt (p<0.01). When gels were added on day 

5, D12 BSA had significantly higher fluorescence than D9 BSA (p<0.001) and D12 DTT 

(p<0.05). In addition, D12 Wnt and D12 DTT had significantly higher fluorescence than their 

D9 counterparts (p<0.05 for both). When gels were added on day 6 the pattern was very 

similar, although the difference between day 12 and day 9 samples was more pronounced, 

with all day 12 groups having significantly higher metabolic activity than corresponding day 

9 samples (D12 Wnt p<0.01, D12 DTT p<0.01 and D12 BSA p<0.001). In this experiment D12 

Wnt also had significantly higher activity than D12 DTT (p<0.05), suggesting that the Wnt-

modified polymer enhanced proliferation.  

DNA assays support the conclusions drawn from the metabolic activity assays: D14 samples 

generally had higher levels of DNA (figure 3-7), indicating enhanced proliferation 

throughout the protocol. Unexpectedly, when gels were added on day 4 (figure 3-7 A), D9 

DTT had significantly higher DNA content than D9 BSA (p<0.001) and D9 Wnt (p<0.001) and 

similar levels to day 14 samples. D14 DTT also had significantly more DNA than D14 BSA 
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(p<0.05). As expected though, D14 Wnt had significantly more DNA than D9 Wnt (p<0.01). 

As with metabolic activity, DNA content was generally much higher in constructs when gels 

were added on day 5 (figure 3-7 B). Here day 14 samples had more DNA than their day 9 

counterparts, but this difference was only significant in D12 DTT (p<0.05). When gels were 

added on day 6 (figure 3-7 C), all day 14 samples had significantly higher DNA content than 

corresponding day 9 samples (D14 BSA p<0.01, D 14 DTT p<0.01 and D14 Wnt p<0.0001), 

but the overall content was much lower than constructs in which gels were added on day 

5, which suggests that addition of an acellular hydrogel at this point is more conducive to 

prolonged cell viability. 

Patterns for sulphated GAG concentration in the pilot experiment (figure 3-8) very closely 

match the patterns observed for DNA content, suggesting that changes in levels of 

sulphated GAG were largely a result of variations in cell number.  When gels were added on 

day 4 (figure 3-8 A), D9 DTT had significantly higher concentrations of sulphated GAG than 

D9 BSA and D9 Wnt (both p<0.001). D14 BSA and D14 Wnt both had significantly higher 

concentrations than their day 9 counterparts (p<0.01 and p<0.0001 respectively). When 

gels were added on day 5 (figure 3-8 B), day 14 concentrations were generally higher, but 

only D14 DTT was significantly higher than D9 DTT (p<0.05) and the same was true when 

gels were added on day 6 (figure 3-8 C), where D14 DTT was again significantly higher than 

D9 DTT (p<0.01). Once normalised to DNA content, there were no significant differences in 

sulphated GAG concentrations between groups (figure 3-8 D-E), except when gels were 

added on day 6 – here D9 Wnt had significantly higher concentrations than D9 BSA (p<0.01), 

D9 DTT (p<0.001) and D14 Wnt (p<0.001). 
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Based on these results, the decision was made to add hydrogels to cell/polymer constructs 

on day 5. Although chondrogenic gene expression was higher when gels were added on day 

4, far greater cell numbers were observed when they were added on day 5. 
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Figure 3-6. Day 12 groups generally have higher metabolic activity than day 9 groups. Metabolic activity was quantified using Alamar Blue 

assay. Overall, metabolic activity was higher when gels were added the day after cell seeding. Data are expressed as the mean ± standard error 

of fluorescence in arbitrary units, n=5-8 (technical repeats), *p<0.05, **p<0.01, ***p<0.001. 
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Figure 3-7. Day 14 groups generally have higher DNA content than day 9 groups. DNA was quantified using the PicoGreen assay. Overall, DNA 

content is higher in when gels were added on day 5. Data are expressed as the mean ± standard error of fluorescence in arbitrary units, n=4-5 

(technical repeats), *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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Figure 3-8. Levels of sulphated GAG were elevated in day 14 samples prior to DNA 

normalisation. sGAG was quantified using the DMMB assay. Normalised data (D-F) are 

expressed as a ratio of sGAG/DNA. Data are expressed as the mean ± standard error, n=4-5 

(technical repeats), *p<0.05, **p<0.01, ***p<0.001.
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3.4.2 Effects of Wnt3a when hydrogels are added on day 5 

In pilot experiments chondrogenic gene expression was higher in constructs where the 

hydrogel was added on day 4. However, results of DNA and Alamar Blue assays indicate that 

adding the gel on day 5 was more conducive to cell survival. Therefore, in subsequent 

experiments the decision was taken to add the fibrin on day 5. 

3.4.2.1 Gene expression analysis 

For subsequent experiments, gels were added on day 5; this was repeated three more times 

and for two of these repeats, gene expression analysis was performed (figure 3-9). There 

were no significant differences in ACAN expression (figure 3-9 A) between any of the groups 

and mean relative expression was quite low (<0.002). For COL2 expression (figure 3-9 B) 

D14 BSA was significantly higher than D14 cell only (p<0.05), but there were no other 

significant differences between groups. SOX9 expression (figure 3-9 C) was generally higher 

in D14 groups and was significantly higher in D14 BSA than in D9 BSA (p<0.05) and D14 cells 

(p<0.01). In addition, expression was significantly higher in D14 Wnt than in D9 Wnt (p<0.05) 

and in D14 cell only (p<0.01).
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Figure 3-9. Immobilised WNT3A does not increase chondrogenic gene expression. Mean expression of ACAN (A), COL2A1 (B) and SOX9 (C) 

from three independent experiments, where hydrogels were added to cells on day 5. Data are expressed as the mean ± standard error, N=3, 

*p<0.05, **p<0.01.
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3.4.2.2 Immunocytochemistry 

SOX5 and SOX9 staining of constructs (figure 3-10 A) revealed that both proteins were more 

abundant in D9 Wnt groups compared to D9 BSA and D9 DTT. Image J software was used to 

quantify the fluorescent signal from these images (figure 3-10 B and C) and statistical 

analysis of the resulting values showed that the SOX5 signal in D9 Wnt was significantly 

higher than that of D9 DTT (p<0.05). In addition, the SOX9 signal of D9 Wnt was significantly 

greater than that of both D9 BSA (p<0.05) and D9 DTT (p<0.05). However, by day 14 there 

was little discernible difference between groups and no significant differences in mean 

fluorescence intensity values (figure 3-10).  Although a strong SOX5 or SOX9 signal was often 

accompanied by a strong DAPI signal, there were numerous instances in the BSA and DTT 

groups where DAPI intensity was high, but SOX5 and SOX9 signals were very low (figure 3-

10 A). This suggests that enhanced expression of the two chondrogenic proteins was not 

merely a result of an increase in cell numbers. DAPI staining (figure 3-10 D) was again 

significantly stronger overall in D9 Wnt groups compared to D9 DTT (p<0.05), indicating that 

these constructs had higher levels of DNA and, therefore, greater cells numbers. By day 14 

these differences were again no longer discernible. 

Merged images of SOX5 and SOX9 staining (figure 3-11) show that differentiated cells 

tended to migrate further than undifferentiated cells. This is evidenced by the band of 

SOX5- and SOX9-positive cells which can be seen in the top layer of the DAPI-stained cell 

population. This was particularly noticeable in D9 Wnt groups and was not observed in D9 

BSA and D9 DTT, where SOX5 and SOX9 staining was quite weak. By day 14, this effect could 

be seen to some extent in all groups, but was again more evident in D14 Wnt where a thicker 

band of differentiated cells was clearly visible. 
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Supplementary figure 6 shows COL2, SOX5 and SOX9 staining of positive and negative 

(secondary antibody only) controls, which were monolayer D14 hESC-derived 

chondroprogenitors. This staining confirms that primary antibodies were effective at the 

concentrations used. Compared to positive controls (supplementary figure 6 A), COL2 

staining of 3D constructs (figure 3-12) generally gave a very weak signal for all groups and 

was, therefore, not carried out beyond the first repeat.  OCT4 staining was also carried out 

for D14 constructs in the first repeat (figure 3-12 B), in order to confirm that pluripotent 

cells were no longer present.  A very small amount of OCT4 expression can be seen in all 

groups, although in D14 Wnt the level does not appear to be greater than that of the 

negative control (incubated with secondary antibody only). 
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Figure 3-10. Day 9 samples express elevated chondrogenic proteins in response to 

WNT3A. A) Representative fluorescent images of hydrogels without the polymer base, 

where gels were added on day 5. Scans were taken from the bottom up every 9 µm with a 

laser confocal microscope, for a distance of ≤300 µm. Images were constructed using Imaris 

Image Analysis software. Scale bars = 100 µm. DAPI (blue), SOX5 (red), SOX9 (green). B) 

Mean SOX5 signal of all images from two independent experiments. N=2. C) Mean SOX9 

signal of all images from three independent experiments. N=3. D) Mean DAPI signal of all 

images from three independent experiments. N=3. Data are expressed as the mean ± 

standard error (B-D). 
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Figure 3-11. SOX5 and SOX9 staining of D9 and D14 samples merged with DAPI. 

Representative fluorescent images of hydrogels without the polymer base, where gels were 

added on day 5. Scans were taken from the bottom up every 9 µm with a laser confocal 

microscope, for a distance of ≤300 µm. Images were constructed using Imaris Image 

Analysis software. Scale bars = 100 µm. DAPI (blue), SOX5 (red), SOX9 (green). 
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Figure 3-12. Constructs showed low expression of COL2 and OCT4. A) Representative 

fluorescent images of COL2 expression in D9 and D14 hydrogels from experiment 4. B) 

Fluorescent images of OCT4 expression in D14 hydrogels from experiment 2. Polymer bases 

were removed prior to imaging. Scans were taken from the bottom up every 9 µm with a 

laser confocal microscope, for a distance of ≤500 µm. Images were constructed using Imaris 

Image Analysis software. Scale bars = 100 µm. DAPI (blue), SOX9 (green). 
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3.4.2.3 Migration of cells into acellular fibrin hydrogels 

Wnt modification resulted in greater migration in day 9 groups compared to both BSA and 

inactive Wnt controls. Migration of cells into acellular hydrogels was measured using all 

suitable images of DAPI staining, where a band of migrating cells was clearly visible in one 

optic plane (figure 3-13 A). The greatest migration was observed in D9 Wnt groups (figure 

3-13 B), where cells moved significantly further than both D9 BSA (p<0.01) and D9 DTT 

(p<0.01). However, by day 14 this effect was lost and there were no significant differences 

between groups. In addition, cells from D14 groups migrated no further than their day 9 

counterparts despite an additional 5 days in culture.
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Figure 3-13. Quantification of cell migration. A) Representative image of a DAPI-stained 

hydrogel deemed appropriate for measuring migration of cells. Arrow indicates distance 

measured. In each image the maximum distance moved was measured and 2-3 gels were 

measured in each experiment. Distances were calculated using Image J software. B) Mean 

migration of cells from experiments 4, 5 and 6. N=3. Data are expressed as the mean ± 

standard error. 
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3.5 Discussion 

Wnt signalling has key roles in a diverse range of cellular processes, including ESC 

differentiation, stem cell renewal and cancer progression. Canonical Wnt signalling has 

been shown to promote pluripotency in a range of stem cell types, including mESC when 

WNT3A was added daily to the culture medium (Anton, Kestler, and Kühl 2007; ten Berge 

et al. 2011; Clevers, Loh, and Nusse 2014). There is much debate over the apparent 

dichotomous role of Wnt signalling in maintenance of plasticity/proliferation versus 

induction of differentiation, and the outcome seems very much dependent on both cell type 

and host species (Teo and Kahn 2010). However, Wnt activation of the ß-catenin pathway 

has been shown to lead to the disruption of self-renewal and the subsequent production of 

posterior primitive streak/mesoderm progenitors in hESC (Sumi et al. 2008; Gadue et al. 

2006). Therefore, in this study WNT3A (or a Wnt agonist) was added to the culture medium 

on days 1-3 in conjunction with Activin-A, in order initiate a shift towards a mesendoderm 

population. These cells were then seeded onto immobilised Wnt, which it was hoped would 

have the dual effects of enhancing proliferation and inducing asymmetrical cell division in 

any remaining pluripotent cells, as described previously in mESC (Habib et al. 2013). 

First it was necessary to determine the optimal day for the addition of the acellular fibrin 

hydrogel to the cells. As with a normal DPP, the decision was made to split cells on day 4 

and to seed them onto the Wnt-modified polymer at this point. Previous work with MAN7 

hESC has revealed that seemingly minor environmental changes, which have a positive 

effect on other cells types, can be particularly detrimental to viability. Thus, addition of the 

gel on the same day as cell seeding, though providing the most prolonged Wnt signalling, 

was unlikely to prove optimal, as cells would not have had sufficient time to recover before 
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being subjected to further stress. Although addition of the gel on day 4 resulted in the 

highest expression of chondrogenic genes such as ACAN and COL2A1, lower metabolic 

activity and DNA content suggested that viability was indeed compromised. It should also 

be noted that this expression was based on RNA taken from the whole construct, including 

any cells remaining on the polymer base and may, therefore, represent a very 

heterogeneous cell population. Attempts were made to isolate RNA solely from the 

hydrogel after removal of the polymer base, but yield was too low to be of use. The DNA 

assays, however, were performed after polymers were removed and gels washed and are 

more representative of the cell population within the 3D constructs. Addition of the gels on 

day 6, again resulted in low DNA content, which may be due to loss of cells during media 

changes. hESC do not adhere to tissue culture plastic without prior addition of a substrate 

and, although some adherence was observed onto the Wnt-modified polymer, it is likely 

that the medium change on day 5 washed away some cells. In addition, it was considered 

preferable to offer cells a material to migrate into as soon as possible after seeding onto 

the immobilised Wnt, in order to maximise the DNA content of the constructs. Therefore, 

upon completion of the pilot experiments, the decision was taken to add the hydrogels on 

day 5 in subsequent experiments. 

Expression of COL1A1 was measured in two of the pilot experiments and, in a similar pattern 

to COL2A1, was found to peak at day 14 in all groups. When gels were added on day 5 

COL1A1 expression was significantly higher in D14 DTT than both D14 Wnt and D14 BSA. 

This is promising, as it suggests that immobilised Wnt favours lower COL1A1 expression, 

which is more indicative of a hyaline cartilage phenotype. High levels of COL1A1 may be 

indicative of an osteogenic phenotype. Preliminary experiments, however, revealed no 
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expression of collagen type X or RUNX2, a master regulator of osteogenesis (data not 

shown). Therefore, it seems unlikely that cells in this 3D model were differentiating towards 

an osteogenic lineage. However, high RUNX2 expression has been reported in chondrocytes 

isolated from healthy, deep zone cartilage with lower levels of expression in those taken 

from the superficial zone (X. Wang et al. 2004). Thus the complete absence of expression in 

this study was unexpected, and future work should incorporate a positive control in order 

to confirm that the RUNX2 primer used in the gene expression assay was amplifying the 

correct target gene. 

Wnt signalling did not result in any significant changes in chondrogenic gene expression, 

except in the pilot experiment when gels were added on day 4. ACAN expression did not 

change significantly between day 9 and 14. In the pilot experiment, when gels were added 

on day 5, however, expression was significantly higher in D9 groups. Aggrecan is not an 

abundant protein and previous reports of increases in expression in response to the DDP, 

though significant, have been minor in comparison to other proteins (Oldershaw et al. 

2010). In addition, there is generally a high level of variation in cell response during each 

DDP, with some runs proving more successful than others despite every attempt being 

made to keep conditions uniform. This variation, which may be due to batch to batch 

variation in the growth factors upon which the protocol relies so heavily, could account for 

the lack of consistent increases in ACAN expression in this study. SOX9 expression again 

peaked on day 14. Although SOX9 protein expression was shown by Oldershaw et al. to peak 

on day 9, the variation in response described above may mean that cells matured more 

slowly in later experiments. This would also explain the relatively low expression of COL2A1, 
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which is a downstream gene target of SOX9 and would, therefore, require a longer culture 

period to increase expression and accumulate in the ECM (V. Lefebvre et al. 1997). 

Wnt signalling enhanced proliferation of cells and their subsequent migration into the 

hydrogels, but did not appear to enhance chondrogenic gene expression when gels were 

added on day 5. A significant increase in mean COL2A1 expression between days 9 and 14 

was only seen in the BSA control groups. It could be that the immobilised Wnt is inducing 

proliferation and migration rather than differentiation, whereas the lack of Wnt signalling 

in the BSA groups allows cells to differentiate in response to the growth factors in the 

culture medium, thus producing a more mature phenotype in these constructs. A similar 

effect was observed in human mesenchymal progenitors in response to immobilised 

fibronectin signalling – migration and proliferation were significantly upregulated at the 

expense of chondrogenic gene expression (Kalkreuth et al. 2014). In this example, however, 

cells were seeded onto hanging cell culture inserts and did not have the opportunity to 

migrate away from the proliferative signal and undergo subsequent differentiation. DAPI 

staining confirms that cells were indeed more abundant in D9 Wnt constructs and migration 

data indicates that these cells moved further from the polymer base (and its Wnt signal) 

compared to BSA and DTT groups. WNT3A has been shown to induce migration and 

proliferation in a wide range of cells types, including the human lens epithelial cell line HLE-

B3 (Bao et al. 2012), murine BMSC (Shang et al. 2007), murine vascular smooth muscle cells 

(migration only) (Wu et al. 2014) and human BMSC (Lowndes et al. 2016); thus it is not 

surprising that hESC responded in the same way. 

Migrating cells had enhanced chondrogenic markers, as evidenced by merged images of 

DAPI and SOX5/SOX9. In D9 Wnt hydrogels, a clear band of SOX5- and SOX9-positive cells 
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can be seen above the cell population at the base, whereas no such effect was observed for 

D9 BSA or D9 DTT. Canonical Wnt signalling may have enhanced proliferation in these cells, 

which resulted in greater migration into the hydrogel and, as cells moved further away from 

and lost contact with the immobilised Wnt, they were able to undergo differentiation. In 

order for differentiation to occur, however, cell proliferation must cease (Teo and Kahn 

2010), which would explain why DNA content (as indicated by DAPI staining) and migration 

did not continue to increase after day 9 in the Wnt constructs. The same band of cells was 

still evident by day 14 and, by this point, the effect was also observed in the BSA-based 

constructs. It may be that cells in these groups were responding to weaker endogenous Wnt 

signals from undifferentiated cells at the base and migrating at a slower rate before finally 

catching up. Whatever the reason, migration and subsequent differentiation appear to 

occur at a faster rate in cells seeded onto immobilised Wnt. Immobilised growth factors, 

such as TGF-ß3 and BMP7, have been shown to promote chondrogenic differentiation in 

both adipose and bone marrow-derived mesenchymal cells when applied to porous 

polymer scaffolds (McCall, Luoma, and Anseth 2012; Lim et al. 2010). However, these are 

generally chondrogenic growth factors and do not have the added advantage of producing 

a population of migratory cells which can be separated from undifferentiated progenitors. 

Lowndes et al. (2016) are the only group to have utilised Wnt signalling in a similar fashion 

to that described here (albeit for osteogenic differentiation), but their use of human BMSC 

limits the scalability of the model for potential clinical applications, whereas hESC offer 

much greater expansion capacity.  

Allowing differentiating cells to migrate into an acellular hydrogel resulted in a more mature 

phenotype than application of the DPP in monolayer. One limitation of the DPP is that it 
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produces chondroprogenitors rather than mature chondrocytes, as evidenced by low CD44 

expression, which is indicative of an under-developed ECM (Oldershaw et al. 2010). 

Although data for 3D constructs was from a heterogeneous cell population, expression of 

chondrogenic genes such as ACAN, COL2A1 and SOX9 was always higher than in D14 cell 

only controls and often significantly so. A barrier to the clinical application of hESC is the 

possible presence of residual pluripotent stem cells and their potential to form teratomas 

in vivo. Cheng et al (2014) sought to remove this obstacle with the application of the 

pluripotent cell-specific inhibitor PluriSIn1, which was earlier reported to be toxic to 

pluripotent cells at very low concentrations, while preserving progenitor and differentiated 

cells (Ben-David et al. 2013). However, when used at recommended concentrations, toxicity 

to hESC-derived chondroprogenitors was also observed. Although Oldershaw et al. reported 

no expression of pluripotent markers by day 14, this was rarely the case with DDPs 

conducted in this study (supplementary figures 1-3), where low levels of OCT4 and NANOG 

were frequently detected by the end of the culture period. This may be due to the poor 

solubility of WNT3A in the culture medium in stage 1 of the protocol, which is deemed to 

be the most crucial stage for successful differentiation (Oldershaw et al. 2010). Substitution 

of WNT3A for CHIR99021, a potent and soluble Wnt agonist, certainly improved the 

outcome of DPPs (supplementary figure 1), but low levels of OCT4 expression were still 

observed. It was hoped that the seeding of cells onto a Wnt-modified polymer with addition 

of an acellular hydrogel would result in a 3D model with a more homogeneous chondrogenic 

cell population; although further characterisation of cells is required to confirm this, results 

of ICC indicate that cells in the upper portion of the Wnt-based constructs are more 

chondrogenic. In addition, OCT4 staining of gels indicates that expression was almost 

entirely obliterated in all groups by D14 compared to positive controls (supplementary 
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figure 4), particularly in D14 Wnt gels. Due to limited numbers of constructs, OCT4 staining 

was only performed on one gel from each group in one experiment. In addition, low RNA 

yield meant that there was only sufficient cDNA to test for expression of the three 

chondrogenic genes. Future work should focus on testing for expression of pluripotency 

markers such as OCT4 and NANOG in the D14 constructs, in order to rule out the potential 

presence of cells which render the constructs unsafe for clinical applications. 

Although some migration into acellular hydrogels was observed, the maximum distance 

moved by the cells was under 300 µm, which represents less than one sixth of the whole 2 

mm gel thickness. There was little change between days 9 and 14, which suggests that a 

longer culture period would not increase migration distance. The relative stiffness of fibrin 

in comparison to other materials may be a factor which limits migration – indeed 

preliminary experiments revealed that reducing the final fibrinogen concentration from 10 

mg/mL to 8 mg/mL was necessary to see any meaningful migration at all. Therefore, 

substitution of fibrin for a material with a lower Young’s modulus may be a means of 

enhancing migration in future experiments. Hyaluronan-based hydrogels would be one such 

option, which also offer the advantage of being chondro-inductive and may, therefore, have 

the added benefit of improving the expression of chondrogenic markers. It may be 

necessary to utilise only the top portion of the construct for clinical applications, in order to 

ensure that a more homogenous cell population is taken forward. Considering that a full 

thickness cartilage defect may be around 6 mm in depth at the knee (Cohen et al. 1999), it 

is unlikely that this model would ever yield a construct sufficient to treat such areas. 

However, in areas such as the wrist, where articular cartilage depth is less than 1 mm 
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(Pollock et al. 2013), this model could provide a promising tissue engineered alternative to 

current gold standard treatments. 
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3.6 Conclusion 

hESC offer a promising cell source for tissue engineered alternatives for the treatment of 

cartilage defects. Their pluripotency and capacity for self-renewal are key factors in the 

success of the DDP, which can be used to produce large numbers of chondroprogenitors. 

However, it is these very factors which also render them a more hazardous option for 

clinical applications than other cell types. Any residual pluripotent cells have the potential 

to form teratomas in vivo, which is perhaps one reason why there are comparatively few 

clinical trials underway which utilise these cells. 

One drawback of the DPP is that, by the end of the 14-day culture period, only immature 

chondrocytes are produced. In this study, addition of a 3D acellular hydrogel to 

differentiating monolayer hESC, always resulted in improved chondrogenic gene expression 

compared to D14 cell only controls; furthermore, this was true of both day 9 and day 14 

constructs, suggesting that the differentiation process is accelerated in this model. In 

addition, the application of a Wnt platform significantly increased the migration of cells into 

the gel and ICC revealed that expression of chondrogenic proteins such as SOX5 and SOX9 

was augmented by increased distance from the Wnt signal. The top portion of these 

constructs, with a more homogenous, chondrogenic population of cells, may offer a 

promising treatment solution for small cartilage defects. However, further optimisation is 

required to increase the migration of cells into the hydrogel in order to produce a thicker 

construct. In addition, cells need to be characterised further to ensure that they are not 

expressing pluripotent markers. 
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Chapter 4 

Biomaterials to enhance the 

chondrogenic potential of 

hESC
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4.1 Introduction 

The directed differentiation protocol (DDP) described by Oldershaw et al. (2010) can 

produce large numbers chondroprogenitors, which offer great potential for use in cartilage 

cell therapies. However, for successful delivery to defect sites, as either tissue engineered 

grafts or injectable cell therapies, a carrier/scaffold material is usually necessary in order to 

protect cells from harmful shear forces and to aid manipulation. Hydrogels, formed from 

natural and synthetic polymers such as alginate or PEG, are insoluble in water and can retain 

large volumes of liquid, creating a microenvironment for proliferating cells which mimics 

native tissue by allowing exchange of waste and nutrient molecules. They can also 

encapsulate cells more homogeneously than other scaffold materials and their viscoelastic 

mechanical properties can be manipulated to more closely resemble those of the native 

cartilage (Hwang, Varghese, and Elisseeff 2007). 

As a key component of the coagulation cascade, fibrin has unquestionable biocompatibility 

and has long been used as a “glue” in a number of surgical procedures. Given its 

physiological role in natural tissue repair processes, it is unsurprising that fibrin contains a 

host of cell/growth factor binding motifs and has an architecture which promotes cell 

infiltration and wound repair (Sproul, Nandi, and Brown 2018). Despite these advantages, 

fibrin in itself is not chondro-inductive and, in addition, it possesses weak mechanical 

properties and is prone to shrinkage and rapid degradation in vitro (Y. Li et al. 2015). 

Therefore, for the generation of replacement tissue to treat chronic, degenerative cartilage 

conditions, which require longer periods in culture, a biomaterial with chondro-inductive 

properties, superior mechanical strength and a slower rate of degradation would be 

preferable – though there are few options which meet all of these criteria. 
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Hyaluronic acid-based scaffolds and gellan gum (see chapter 1.9) are appealing alternatives 

for the production of hydrogels. Both have been used, with some success, to produce 

cartilaginous tissue from both stem cells (Toh et al. 2010; Ahearne and Kelly 2013) and 

primary chondrocytes (G. Wang et al. 2018; Oliveira et al. 2010). Due to poor mechanical 

stability, hyaluronic acid must be combined with other materials in order to form a hydrogel 

with the requisite stiffness; the HyStemTM kit used in this study contains thiol-modified HA 

and a thiol reactive crosslinker (PEGDA). Gellan gum, on the other hand, requires only mild 

processing conditions and readily forms a stiff hydrogel when cooled. 

Incorporation of chondro-inductive biomaterials, either as a substrate for coating tissue 

culture plastic/cells or dissolved into the culture medium, is another potential means of 

enhancing the maturation of stem cell-derived chondroprogenitors (see chapter 1.9). 

Biomimetic materials, such as sulphated alginates, have been shown to enhance the 

proliferation of bovine chondrocytes (Mhanna et al. 2014) and the pre-coating of TCP with 

ECM molecules such as decorin or HA has reportedly lead to increases in COL2A1 and ACAN 

expression in human articular chondrocytes (Grogan et al. 2014). Another option is coat the 

cells in a layer of ECM/biomimetic molecules to create a chondro-inductive micro-

environment. Micro-encapsulation in alginate has been shown to enhance the viability of 

injected BMSC (Leslie et al. 2017); the addition of chondro-inductive materials such as HA 

to this micro-environment could yield higher quality chondroprogenitors compared to the 

basic DDP used in this study. 
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4.2 Aims 

The aims of this chapter were: 

 To explore the use of alternative biomaterials for the 3D culture of hESC-derived 

chondroprogenitors 

 To enhance the maturation of hESC-derived chondroprogenitors with the use of 

chondro-inductive ECM/biomimetic molecules 

4.3 Methods 

4.3.1 Comparison of 3D models 

A DDP was applied to MAN7 hESC as described in chapter 2.3. Cells were harvested at day 

14-16 and used to make 200 µL hydrogels with either fibrin (as described in chapter 2.4), 

HyStemTM (chapter 2.5) or PhytagelTM (gellan gum) (chapter 2.6). Cells were seeded at a final 

density of 0.5x106/mL. Constructs were cultured for 7 days with daily medium changes 

supplemented with aprotinin at a concentration of 20 µg/mL in order to limit protease 

degradation of the gels. On day 7, a cell viability assay was performed on one of each type 

of gel as described in chapter 2.20. Samples were imaged using a Nikon Eclipse Ti-S 

Fluorescent microscope. The remaining constructs were either snap frozen and stored at -

80°C or fixed with 10% NBF for 1 hour. ICC was conducted on fixed samples as described in 

chapter 2.22 and gels were stained with anti-SOX5 antibody (1 µg/mL) and anti-SOX9 

antibody (1 µg/mL) and counterstained with DAPI. DNA and sulphated GAG assays were 

performed as described in chapters 2.17 and 2.18 respectively. RNA isolation, reverse 

transcription and gene expression analysis were performed as outlined in chapters 2.12.3, 
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2.13 and 2.14 respectively. This experiment was repeated three times, with 

chondroprogenitors derived from three separate DDP runs (see 4.4.1). 

4.3.2 Addition of sulphated alginates to the DDP 

A DDP was initiated on MAN7 or MAN13 hESC as described in chapter 2.3. On day 8 cells 

were split as usual (chapter 2.2), but seeded into 24-well plates. For a 1:4 split, 1 well of a 

6-well plate was seeded into 20 wells of a 24-well plate. On day 9, the culture medium was 

changed as usual (table 2-6), but with addition of alginates or sulphated alginates diluted in 

DPBS as outlined in table 4-1. Alginates were added to the medium at a concentration of 

either 10 µg/mL or 100 µg/mL. Alginates with two different degrees of sulphation were used 

(0.8 and 2.0) in addition to non-sulphated alginate controls. Degree of sulphation (DS) is 

defined as the average number of sulfate groups per disaccharide repeating unit of alginate 

(Mhanna et al. 2014). 4 wells were cultured per condition and an additional 4 wells (VTN) 

were cultured in normal DDP medium without the addition of alginates. The medium was 

changed daily and alginates/sulphated alginates were added again on day 12. The 

experiment was performed three times with MAN7 cells and twice with MAN13 cells. 

Samples were imaged in situ on days 10 and 14 using a Nikon Eclipse Ti-S Fluorescent 

microscope (in bright field mode). On day 14, cells were either fixed with 10% NBF for 30 

minutes and washed in PBS or lysed with 350 µL buffer RLT and stored at -80°C for 

subsequent gene expression analysis. Owing to limited sample numbers, ICC was performed 

on VTN, AlgS 0.8 10 and AlgS 2.0 10 groups only, and carried out as described in chapter 

2.22 using collagen type II monoclonal antibody (3 µg/mL). RNA isolation, reverse 

transcription and gene expression analysis were performed as outlined in chapters 2.12.1, 

2.13 and 2.14 respectively. 
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Table 4-1. Degrees of sulphation/concentrations of alginates added to medium on days 9 

and 12. 

Group Degree of sulphation Concentration (µg/mL) 

VTN N/A N/A 

Alg 10 0 10 

AlgS 0.8 10 0.8 10 

AlgS 2.0 10 2.0 10 

Alg 100 0 100 

AlgS 0.8 100 0.8 100 

AlgS 2.0 100 2.0 100 
 

4.3.3 Pre-incubating chondroprogenitors with ECM molecules 

hESC-derived chondroprogenitors were pre-incubated with ECM molecules as described in 

chapter 2.11. As proof of concept, hESC were first pre-incubated with vitronectin at a 

concentration of 5 µg/mL in DDBM and seeded onto glass cover slides, which were coated 

with fibronectin (50 µg/mL) rather than vitronectin. Cover slides were transferred to 6-well 

plates and cells were cultured for two days, and then fixed with 10% NBF for 20 minutes.  In 

order to determine if pre-incubation of cells had resulted in a coating with ECM molecules, 

ICC was carried out on fixed cells as described in chapter 2.22 using anti-Vitronectin 

antibody at a concentration of 1 µg/mL. In subsequent experiments, hESC-derived 

chondroprogenitors were pre-incubated with either fibronectin (50 µg/mL or as indicated 

in figures), HyStemTM (500 µg/mL or as labelled) or collagen type VI (as indicated in figures). 

They were then seeded onto vitronectin-coated glass cover slides or 6-well plates and 

cultured for three days, at which point those on cover slides were fixed for 20 minutes with 

10% NBF and those on TCP were lysed with buffer RLT for subsequent gene expression 

analysis. ICC was carried out on fibronectin-coated slides as described in chapter 2.22 using 

anti-fibronectin antibody at a concentration of 3 µg/mL. Owing to the structure of 
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HyStemTM, which differs from naturally occurring hyaluronic acid, a suitable primary 

antibody could not be found; thus ICC was not performed. Instead, cells were stained for 5 

minutes with 0.1% Safranin-O solution, as described in chapter 2.21.6, (without the 

necessity of deparaffinisation steps).  

4.3.4 Statistical analysis 

Statistical analysis was performed as described in chapter 2.23. 
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4.4 Results 

4.4.1 Directed differentiation of MAN7 hESC 

Chondrogenic gene expression increased between day 1 and day 15 in all three DDP runs 

performed on MAN7 hESC (figure 4-1). Mean ACAN and SOX9 expressions were significantly 

greater by day 15 (both p<0.05). Expression of pluripotency marker OCT4 decreased 

significantly (p<0.01), as expected, but was not completely ablated by day 15; indicating the 

likely presence of residual pluripotent stem cells in each population of chondroprogenitors. 

 

Figure 4-1. Chondrogenic gene expression increases and pluripotency gene expression 

decreases with progression of DDP. Mean expression (2-ΔCt) of ACAN, COL2A1, OCT4 and 

SOX9 in MAN7 hESC subjected to directed differentiation for 15 days. Data are expressed 

as the mean ± the standard error, N=3 (biological repeats). *p<0.05, **p<0.01. 
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4.4.2 Comparison of 3D models indicates that fibrin and PhytagelTM are superior to 

HyStemTM 

Fibrin proved to be the best 3D model for supporting cell viability by day 7, whereas 

PhytagelTM constructs demonstrated around 40% viability and HyStemTM as low as around 

10% (figure 4-2). Results demonstrate that fibrin constructs had significantly more DNA than 

both HyStemTM (p<0.0001) and PhytagelTM (p<0.0001) (figure 4-3 A). Fibrin constructs also 

had significantly higher levels of sGAG (figure 4-3 B) than HyStemTM (p<0.0001) and 

PhytagelTM (p<0.01) and PhytagelTM had significantly more than HyStemTM (p<0.0001). 

When normalised to DNA content, however, PhytagelTM constructs had a significantly higher 

sGAG/DNA ratio than both HyStemTM (p<0.0001) and fibrin (p<0.0001) (figure 4-3 C). 
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Figure 4-2. Fibrin-encapsulated chondroprogenitors demonstrate superior viability. 

Representative fluorescent images of hESC-derived chondroprogenitors encapsulated in 

either fibrin, HyStemTM or PhytagelTM  and stained with LIVE/DEAD kit after 7 days of culture, 

n=2 (technical repeats). Green = calcein-AM (live). Red = ethidium homodimer-1 (dead). 

Scale bars = 200 µm.  
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Figure 4-3. Fibrin-encapsulated chondroprogenitors contain more DNA and sGAG. 

PicoGreen double stranded DNA assay (A) and DMMB assay (B) performed on hESC-derived 

chondroprogenitors encapsulated in either fibrin, HyStemTM or PhytagelTM after 7 days of 

culture. sGAG was normalised to DNA content (C). Data are expressed as the mean ± the 

standard error, n=4 (technical repeats). **p<0.01, ****p<0.0001. 

Similarly, gene expression analysis indicates that fibrin and PhytagelTM are more conducive 

to chondrogenic gene expression than HyStemTM. ACAN expression of day 7 constructs was 

significantly higher in PhytagelTM than in fibrin (p<0.05) and higher than in HyStemTM, 

though not significantly so (figure 4-4 A). COL2A1 expression, however, was significantly 

higher in fibrin constructs than in both HyStemTM (p<0.01) and PhytagelTM (p<0.001) (figure 
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4-4 B). In the case of COL2A1, expression was actually lowest in PhytagelTM constructs. SOX9 

expression was similar in all constructs (figure 4-4 C). 

 

 

Figure 4-4. Fibrin and PhytagelTM constructs favour chondrogenic gene expression. qRT-

PCR performed on hESC-derived chondroprogenitors encapsulated in either fibrin, 

HyStemTM or PhytagelTM after 7 days of culture. Gene expression is relative to GAPDH (2-ΔCt). 

Data are expressed as the mean ± the standard error, n=4 (technical repeats). *p<0.05, 

**p<0.01, ***p<0.001. 

A B 

C 
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ICC shows that expression of SOX5 and SOX9 proteins was higher in fibrin- and PhytagelTM-

encapsulated chondroprogenitors than in HyStemTM constructs, where there was no 

discernible expression of SOX5 and very little SOX9 visible (figure 4-5). 

 

Figure 4-5. Fibrin and PhytagelTM constructs have greater expression of chondrogenic 

proteins. Representative fluorescent images of day 7 hydrogels. N=3 (biological repeats). 

Scans were taken from the bottom up every 9 µm with a laser confocal microscope, for a 

distance of ≤500 µm. Images were constructed using Imaris Image Analysis software. Scale 

bars = 100 µm. DAPI (blue), SOX5 (red), SOX9 (green). 
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4.4.3 Influence of sulphated alginates 

In initial experiments AlgS 0.8 groups showed an improved response in terms of gene 

expression (figure 4-6) and, for this reason, these samples were selected for ICC in order to 

examine expression of COL2 protein (figure 4-9). In one experiment, where alginates were 

added to the medium of differentiating MAN13 hESC, AlgS 0.8 10 expressed significantly 

higher levels of COL2A1 (figure 4-6 B) compared to VTN (p<0.001), Alg 10 (p<0.05) and AlgS 

0.8 100 (p<0.001). The same group also expressed significantly higher levels of SOX9 (figure 

4-6 C) compared to VTN (p<0.05) and AlgS 0.8 100. ACAN expression (figure 4-6 A) was also 

higher in this group than in AlgS 0.8 100 (p<0.01), but for this gene, addition of the non-

sulphated alginate at 10 µg/mL (Alg 10) resulted in the highest expression and was 

significantly greater than both VTN (p<0.05) and Alg 100 (p<0.001). A similar pattern was 

observed when alginates were added to differentiating MAN7 hESC; AlgS 0.8 10 again 

seemed to favour chondrogenic gene expression (data not shown). Overall, lower alginate 

concentrations (10 µg/mL) resulted in higher chondrogenic gene expression. 

When this experiment was repeated, however, (twice for MAN7 and once for MAN13) the 

same patterns were not observed and statistical analysis of mean gene expressions from 

three independent experiments (figure 4-7) revealed no significant differences. Figure 4-8 

demonstrates how the two cell lines compare in their responses to the sulphated alginates. 

Generally, they follow a very similar pattern; Alg 10, AlgS 0.8 10 and Alg 100 groups having 

a high level of variation, rather than consistent increases. Interestingly, addition of 

sulphated alginates with 2.0 DS at the higher concentration of 100 µg/mL always resulted 

in no expression of the chondrogenic genes examined, despite good RNA yield. For this 

reason, data for that group are absent. In both experiments performed with MAN13 the 
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same alginates, added at the lower concentration of 10 µg/mL, brought about the same 

ablation of expression, although this effect was not observed with MAN7 (figure 4-8). 

 

 

Figure 4-6. Initial results indicate that AlgS 0.8 10 enhances chondrogenic differentiation 

of MAN13 hESC. qRT-PCR performed on MAN13 D14 hESC-derived chondroprogenitors 

where alginates were added to the medium on days 9 and 12. VTN = vitronectin only 

control, Alg = alginates, AlgS = sulphated alginates, 10 = 10 µg/mL, 100 = 100 µg/mL, 0.8/2.0 

= degrees of sulphation.  Gene expression is relative to GAPDH (2-ΔCt). Data are expressed 

as the mean ± the standard error, n=3 (technical repeats). *p<0.05, **p<0.01, ***p<0.001. 

A B 

C 
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Figure 4-7. MAN7 mean gene expression reveals no significant differences between 

groups. qRT-PCR performed on D14 hESC-derived chondroprogenitors where alginates 

were added to the medium on days 9 and 12. VTN = vitronectin only control, Alg = alginates, 

AlgS = sulphated alginates, 10 = 10 µg/mL, 100 = 100 µg/mL, 0.8/2.0 = degrees of sulphation.  

Gene expression is relative to GAPDH (2-ΔCt). Data are expressed as the mean ± the standard 

error and are from 3 independent experiments (N=3). 

A B 

C 
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Figure 4-8. Responses of both hESC cell lines to sulphated alginates . qRT-PCR performed 

on D14 hESC-derived chondroprogenitors from two cell lines, where alginates were added 

to the medium on days 9 and 12. VTN = vitronectin only control, Alg = alginates, AlgS = 

sulphated alginates, 10 = 10 µg/mL, 100 = 100 µg/mL, 0.8/2.0 = degrees of sulphation.  Gene 

expression is relative to GAPDH (2-ΔCt). Results from each experiment are plotted as 

individual points. Black bars represent the mean of 5 independent experiments. 

ICC (figure 4-9) indicates that COL2 protein expression is higher in cells supplemented with 

AlgS 0.8 10 compared to AlgS 2.0 10 and to VTN controls. However, COL2 staining was only 

performed for one experiment and further work is required to confirm this observation. 
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Figure 4-9. Expression of collagen type II protein may be higher in chondroprogenitors 

incubated with AlgS 0.8 10. Representative of fluorescent images of COL2 expression in D14 

hESC-derived chondroprogenitors. Cells incubated with 10 µg/mL sulphated alginates with 

0.8 degrees of sulphation for 7 days show higher COL2 staining intensity. Scale bars = 200 

µm. DAPI (blue), COL2 (green). 

4.4.4 Effects of pre-incubating cells with ECM molecules 

hESC were initially pre-incubated with vitronectin in order to observe whether a coating of 

ECM molecules could be applied to cells with the method adopted. ICC reveals a clear layer 

of this protein around these cells (figure 4-10 middle and right), whereas there was no 

vitronectin present around control cells (figure 4-10 left). For subsequent experiments, 

molecules with important roles in cartilage ECM were selected to pre-incubate hESC-

derived chondroprogenitors with. Fibronectin (figure 4-11) was detected in large amounts 

in both pre-incubated and control cells. However, the structure of protein network was 

different; fibres around the pre-incubated cells were shorter, more compact and appeared 
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to be extracellular, whereas fibres in the control samples were often observed closer to the 

nuclei. Gene expression analysis of cells pre-incubated with 50 µg/mL fibronectin (figure 4-

12) revealed a trend of increase in expressions (not significant) of ACAN, COL2A1 and SOX9. 

The subsequent dose response experiment (figure 4-13) entailed incubation of hESC-

derived chondroprogenitors with fibronectin at a range of concentrations, from 5-500 

µg/mL. In this experiment, no increases in ACAN and COL2A1 expression were detected in 

comparison to controls (0 µg/mL), with the exception of 5 µg/mL, where a small increase in 

COL2A1 expression was observed. However, this increase was not significant. 

 

Figure 4-10. Chondroprogenitors appear to be coated in vitronectin. Representative of 

fluorescent images of hESC pre-incubated with vitronectin for one hour and cultured for 

three days (middle and right) or control (left). Scale bars = 20 µm. DAPI (blue), vitronectin 

(red). 
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Figure 4-11. Fibronectin is present in both pre-incubated and control cells. Representative 

of fluorescent images of hESC-derived chondroprogenitors pre-incubated with fibronectin 

for one hour and cultured for three days (right) or control (left). Scale bars = 20 µm. DAPI 

(blue), fibronectin (red). 
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Figure 4-12. Initial experiments indicate that pre-incubation with fibronectin may increase 

chondrogenic gene expression. hESC-derived chondroprogenitors incubated with 

fibronectin at a concentration of 50 µg/mL for one hour and cultured for three days. Data 

are from one experiment with two technical repeats (n=2) and expressed as the mean ± 

standard error. Significance not determined due to lack of repeats. Expressions of all three 

chondrogenic genes are elevated compared to controls, though not significantly so. Gene 

expression is relative to GAPDH (2-ΔCt). 

In three independent experiments, chondroprogenitors incubated with 500 µg/mL HA 

(HyStemTM) (the concentration recommended by the supplier for preparing hydrogels), 

demonstrated no increase in expression of ACAN or COL2A1 (figure 4-14). Safranin-O 

staining, however, was unquestionably more intense in HA-treated cells compared to 
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controls (figure 4-15), which is indicative of enhanced sulphated GAG deposition. The 

subsequent dose response experiment (figure 4-16) entailed incubation of hESC-derived 

chondroprogenitors with HA at a range of concentrations, from 50-500 µg/mL. No 

significant differences in ACAN expression were observed between any of the groups. A pre-

incubation concentration of 100 µg/mL resulted in significantly higher COL2A1 expression 

than in cells pre-incubated with 300 µg/mL (p<0.01) or 500 µg/mL (p<0.05), but although 

there was a trend of increased COL2A1 expression compared to control cells, this increase 

was not significant. 

 

 

Figure 4-13. Effects of fibronectin dose response on chondrogenic gene expression. hESC-

derived chondroprogenitors incubated with fibronectin at a range of concentrations for one 

hour and cultured for three days. Data are from one experiment with three technical 

repeats (n=3) and are expressed as the mean ± standard error. Gene expression is relative 

to GAPDH (2-ΔCt). 
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Figure 4-14. Pre-incubation of cells with hyaluronic acid does not affect chondrogenic 

gene expression. Cells incubated with HyStemTM (HA) at a concentration of 500 µg/mL for 

one hour and cultured for three days. Data are from three independent experiments (N=3) 

and are expressed as the mean ± standard error. Gene expression is relative to GAPDH (2-

ΔCt). 
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Figure 4-15. Cells pre-incubated with HA produce more chondrogenic ECM. Representative 

images of hESC-derived chondroprogenitors incubated with HyStemTM (HA) at a 

concentration of 500 µg/mL and cultured for three days, then stained with Safranin-O. Scale 

bars = 200 µm. 

Finally, cells incubated with COLVI at a range of concentrations from 0.05 – 50 µg/mL 

showed no significant differences in expression of ACAN or COL2A1 compared to controls 

(figure 4-17). 
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Figure 4-16. Effects of HA dose response on chondrogenic gene expression. Cells were 

incubated with HA at a range of concentrations and cultured for three days. Data are from 

one experiment with five technical repeats (n=5) and are expressed as the mean ± standard 

error. Gene expression is relative to GAPDH (2-ΔCt). 

 

Figure 4-17. Effects of COLVI dose response on chondrogenic gene expression. Cells were 

incubated with collagen type VI at a range of concentrations and cultured for three days. 

Data are from one experiment with three technical repeats (n=3) and are expressed as the 

mean ± standard error. Gene expression is relative to GAPDH (2-ΔCt). 
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4.5 Discussion 

4.5.1 3D culture is optimum in fibrin hydrogels 

Fibrin proved the most suitable 3D model for supporting the viability of hESC-derived 

chondroprogenitors. The inevitable generation of shear stresses and the resulting 

formation of single cells during the formulation of the gels probably contributed to the 

relatively high level of anoikis-induced cell death in all three models (Olson 2008). Addition 

of a ROCK inhibitor, routinely applied when passaging cells for monolayer culture (chapter 

2.2.3), may be a means of enhancing cell survival in future work. Given its physiological role 

in the clotting cascade, its numerous cell/growth factor binding motifs and an architecture 

which promotes cell invasion, it is not surprising that fibrin proved the most biocompatible 

of the hydrogels (Sproul, Nandi, and Brown 2018). 

Gellan gum demonstrated superior viability to HyStemTM and often proved at least as 

effective as fibrin in promoting a chondrogenic phenotype. Numerous other studies have 

reported that gellan gum enhances viability, proliferation and expression of chondrogenic 

markers (Ahearne and Kelly 2013; Oliveira et al. 2010; Vilela et al. 2018). In this study, 

viability of cells encapsulated in gellan gum was lower than those encapsulated in fibrin, but 

this may well be due to the method by which the constructs were prepared. Prior to 

gelation, it was necessary to keep the gellan gum at 37°C and, in order to form a gel, cell 

pellets were rapidly resuspended in 200 µL of this liquid, generating unavoidably high levels 

of shear force. The rapid setting also resulted in a non-homogenous cell distribution within 

the gel. In addition, it was not possible to prepare the gels in culture medium (as with fibrin), 

because the cations present caused immediate gelation. This meant that cells were 

deprived of nutrition for around 20 minutes whilst the gels were allowed to fully set and for 
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a period of time afterwards until the medium had diffused inside; indeed, this was also the 

case with HyStemTM constructs.  To overcome this, attempts were made to form a more 

concentrated solution into which cells already resuspended in culture medium could be 

added; unfortunately, however, the formation of a solution above 1% proved impossible 

due to the poor solubility of the PhytagelTM. Despite this, the improved chondrogenic gene 

expression and sGAG deposition suggest that gellan gum remains a promising biomaterial 

for the 3D culture of hESC-derived chondroprogenitors, and that it may be worth exploring 

alternative methods of gel formation in order to promote cell viability.  Modifications, such 

as methacrylation (Vilela et al. 2018) or reduction of molecular weight (by means of 

oxidative cleavage) (Gong et al. 2009), have been employed in order to render gellan gum 

suitable for injectable therapies. Vilela et al. showed that hADSC encapsulated in 

methacrylated gellan gum produced significantly more de novo cartilage than untreated 

controls when injected into a rat model with induced chondral lesions. Furthermore, the 

constructs performed at least as well as microfracture-treated controls and produced a 

higher COL2A1:COL1A1 ratio in vitro. Gong et al. showed that chondrocyte-seeded gels with 

a reduced molecular weight and a subsequent slower rate of gelation, exhibited greater cell 

proliferation and viability, superior matrix formation and better phenotype maintenance 

than agarose controls. 

Surprisingly, HyStemTM constructs (consisting primarily of HA) demonstrated very poor 

viability and did not prove to be chondro-inductive, even in regions with high numbers of 

viable cells, as evidenced by ICC. One previous study reported good long-term viability and 

production of cartilaginous tissue in hESC-seeded HA hydrogels (Toh et al. 2010). However, 

they did not state the concentration of PEGDA used to crosslink the HA; in the current study 
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it was necessary to increase the concentration to 50 mg/mL in order to obtain a hydrogel 

with any structural integrity. The manufacturer recommends using concentrations of 

PEGDA up to 40 mg/mL and previous work has reported the use of 50 mg/mL without loss 

of viability in fibroblasts (Y. D. Park, Tirelli, and Hubbell 2002). However, it may be that these 

higher concentrations are detrimental to less robust cells and that different effects will be 

induced in different cell types, such as chondrocytes and hESC-derived chondroprogenitors. 

HA-based 3D models have been shown to support chondrogenesis in multiple studies (Toh 

et al. 2010; Jooybar et al. 2019; G. Wang et al. 2018; Chung and Burdick 2009), so the 

presence of viable cells with no SOX5 protein expression and very low SOX9 expression 

compared to the other models was unexpected. Given the key role of HA in the ECM of 

articular cartilage, a tissue engineered environment which mimics this biochemistry should 

prove optimal. However, the viable cells observed in these constructs may have been more 

fibroblastic in nature; high levels of COL1A1 (a marker of fibrocartilage) were frequently 

expressed in cells at the end of the directed differentiation protocol. Alternatively, it may 

be that the increased stiffness of the other two models proved more beneficial than the 

chondro-inductive biochemistry of the HA-based gels. Numerous studies have shown that 

softer hydrogels favour chondrogenic differentiation; one group found that a stiffness of 

0.5 MPa resulted in the greatest proteoglycan production and expressions of ACAN, COL2 

and SOX9 in murine chondrocytes cultured on polyacrylamide surfaces (Allen, Cooke, and 

Alliston 2012), whereas a host of other studies have shown that stiffnesses in the range of 

30-90 kPa are optimal (Y. Zhang, Chen, and Pei 2016).  Although the mechanical properties 

of the hydrogels were not measured in the current investigation, it was obvious from the 

difficulty experienced in manipulating the HyStemTM constructs, which flowed under their 

own weight, that they were more akin to a liquid than a viscoelastic solid. The fibrin and 



179 
 

PhytagelTM constructs, however, were soft but had viscoelastic properties – slow 

deformation under the application of force and the ability to revert to their original shape 

upon its removal. 

4.5.2 Biomaterials for potential cell delivery applications 

Injectable cells therapies are an appealing option for the treatment of damaged/diseased 

joints, as they are minimally invasive, less costly and aim to promote endogenous repair of 

the tissue rather than replacing it. However, injection of cells generates larger shear forces 

which can compromise viability and reduce the efficacy of treatments. Microencapsulation 

of single cells or small aggregates can provide a protective microenvironment, which 

reduces the shear stress experienced by the cells upon injection and promotes survival. To 

this end, attempts were made to encapsulate hESC-derived chondroprogenitors in relevant 

ECM molecules via pre-incubation with solutions of fibronectin, HA and COLVI. 

Initial results indicated that fibronectin-treated cells displayed enhanced chondrogenic 

gene expression. An adhesive glycoprotein which forms part of the ECM of articular 

cartilage, fibronectin facilitates the binding of other ECM proteins, GAGs and collagen via 

cell membrane-bound integrins such as α5ß1, α4ß1 and αvß3 (Singh and Schwarzbauer 

2012). Therefore, it is reasonable to expect that it might augment chondrogenic matrix 

deposition. Fibronectin has been shown to be vital for embryogenesis and early 

differentiation events; mice lacking FN expression demonstrated deficient mesodermal 

migration, proliferation, differentiation and adhesion (George et al. 1993). In addition, it has 

been identified as a major bioactive molecule produced by MEFs (upon which hESC were 

traditionally cultured) (Braam et al. 2008) and it aids hESC attachment and self-renewal in 

vitro (Baxter et al. 2009; Soteriou et al. 2013). However, due to endogenous production of 
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the protein, it was not possible to confirm that the cells had indeed been coated with 

fibronectin during the incubation period prior to culture. One way of confirming this in 

future work would be to use commercially available, fluorescently-labelled fibronectin in 

this initial pre-incubation process and to perform confocal imaging of the cells, which are 

stained with a fluorescent membrane dye, over a time course in order to determine the 

precise location of the protein and its persistence. 

Chondroprogenitors pre-incubated with HA showed greater sGAG deposition compared to 

controls, although enhanced expression of ACAN and COL2 was not observed. A previous 

study has shown that BMSC suspended in pure HA demonstrated improved homing to and 

repair of articular cartilage in a guinea pig OA model, with increased COL2 deposition and 

enhanced safranin-O staining throughout the tissue (Sato et al. 2012), which suggests that 

addition of HA to the culture environment can be chondro-inductive. Again, it was not 

possible to confirm the successful coating of chondroprogenitors with HA, but given that it 

has been shown to associate strongly with the cell surface receptor CD44 in the presence 

of other matrix molecules (Lesley et al. 1992; Y. Kim and Kumar 2014), and that CD44 is 

expressed by these hESC-derived chondroprogenitors (Oldershaw et al. 2010), it is likely 

that the HA was bound to the cells. Commercially-available fluorescein HA could be utilised 

in future work in order to confirm attachment to the cells during pre-incubation. In order 

to confirm the increase in production of cartilaginous matrix, the presence of specific 

proteins such as COL2 would need to be determined with the application of techniques such 

as immunofluorescence or enzyme-linked immunosorbent assays (ELISA). 

Individually, the ECM molecules explored in these experiments did not produce consistent 

significant increases in cartilage-specific makers when added to the culture medium of 
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hESC-derived chondroprogenitors. Collagen type VI which, in normal articular cartilage,  

binds to the cell surface and co-localises with fibronectin (Keene, Engvall, and Glanville 

1988; Hagiwara, Schröter-Kermani, and Merker 1993) conferred no detectable benefit on 

gene expression and, for this reason, the decision was taken not to pursue this line of 

investigation. However, when combined with other materials and used to microencapsulate 

cells, these molecules have proved beneficial in other studies. A range of cells types, 

including ADSC and BMSC, demonstrated improved viability post-injection when 

encapsulated in cross-linked, shear-thinned alginate (Aguado et al. 2012). BMSC 

encapsulated in fibronectin-functionalised alginate showed improved viability and 

proliferation compared to alginate only controls (Sayyar et al. 2015) and the addition of HA 

to alginate microcapsules resulted in increased sGAG production and improved viability 

(Cañibano-Hernández et al. 2017). Therefore, it may be necessary to anchor these ECM 

molecules to other biomaterials which can be used to more effectively encapsulate cells, in 

order to observe significant responses. Another option would be to functionalise fibrin or 

gellan gum hydrogels (explored earlier in this chapter and shown to promote viability) with 

molecules such as fibronectin, HA or COLVI (or their cell binding fragments) in order to 

improve cell viability and response. Gellan gum is particularly appealing, as it can be used 

to form a sheared fluid gel, rendering it suitable for injectable therapies (García, Alfaro, and 

Muñoz 2016). 

4.5.3 Effects of biomimetic sulphated molecules 

Addition of sulphated alginates to the culture medium, particularly at lower concentrations 

with low degrees of sulphation, enhanced expression of chondrogenic genes and proteins 

in a number of experiments. Mhanna et al. (2017) claim that these molecules mimic the 
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action of sGAG which, in addition to providing structural support, have key roles in the 

binding of cytokines, chemokines and growth factors and in cell-ECM attachment (Sarrazin, 

Lamanna, and Esko 2011). CS typically has 1-2 sulphated groups per disaccharide repeating 

unit (chapter 1.3.5) and the alginates used in this study had either 0.8 or 2 per unit; thus, 

there is indeed a degree of structural similarity. Although Mhanna et al. reported increased 

levels of proliferation in chondrocytes encapsulated in sulphated alginate hydrogels, 

however, they did not observe any increase in chondrogenic markers (Mhanna et al. 2014). 

Similarly, in the current study, results from three independent experiments showed no 

significant difference in response to sulphated alginates in terms of chondrogenic gene 

expression. This may be due to the large variation in response of the hESC to the DDP, which 

resulted in large standard deviations between experiments. Though not significant, addition 

of Alg 0.8 10 to the culture medium tended to result in higher chondrogenic gene expression 

and ICC suggests that COL2 deposition was also enhanced. 

Sulphated polysaccharides are an appealing biomaterial for cartilage tissue engineering. 

Carrageenans are naturally-occurring sulphated polysaccharides which have recently 

generated interest for tissue engineering applications. Like the sulphated alginates used in 

this study, they have structural similarity to the sGAG which are native to articular cartilage, 

but no processing is required to bring about their sulphation. Derived from seaweeds, there 

are 6 different carrageenans (CRG), of which Kappa (k), lota (l) and Lambda (λ) have the best 

viscoelastic and gelling properties (Yegappan et al. 2018). hADSC encapsulated in hydrogels 

formed from k-carrageenan were reported to show good viability, proliferation and 

expression of chondrogenic markers over a 21-day period (Popa et al. 2015). Other studies 

have shown that functionalising carrageenans with molecules such as TGF-ß1 (Rocha et al. 
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2011) or combining them with materials such as fibrin/HA (Pereira et al. 2009) results in the 

production of cartilage-specific ECM in hADSC and human articular chondrocytes 

respectively. In other work, hASC encapsulated in k-Carrageenan hydrogels containing 

magnetic nanoparticles showed enhanced chondrogenic gene expression in response to 

magnetic stimulation (Popa et al. 2016). Therefore, sulphated polysaccharides offer 

promising opportunities for cartilage tissue engineering, though whether they are able to 

support the viability of hESC-derived chondroprogenitors remains to be seen. 

4.6 Conclusion 

A broad range of biomaterials have been utilised for cartilage tissue engineering. Compared 

to other cell types such as BMSC, hESC-derived chondroprogenitors provide a limitless 

source of cells for this application; yet their sensitivity to environmental changes means that 

a narrower range of suitable biomaterials are available in which to culture them. Fibrin and 

gellan gum proved optimal in the promotion of cell viability and, if functionalised with 

chondro-inductive/biomimetic molecules, may offer promising materials for the production 

of both cartilaginous constructs and injectable cell therapies. 
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Chapter 5 

Effects of mechanical 

stimulation on hESC-derived 

chondroprogenitors 
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5.1 Introduction 

Articular cartilage is subject to cyclic compressive forces and it is widely accepted that 

biomechanical stresses and strains play a major role in the natural development, 

maintenance and degradation of the tissue. Chondrocytes possess integrins and ion 

channels which enable the transduction of these mechanical stimuli. In addition, it has been 

shown that cartilage deformation leads to cell deformation, which may be another means 

of signal transduction via disruption of cell surface receptors and the associated 

cytoskeleton. Matrix deformation, hydrostatic pressure gradients, fluid flow, streaming 

potentials and currents, and physicochemical changes all occur as a result of compression. 

Given that cartilage is an avascular tissue, fluid flow is especially important for nutrient and 

waste transport (Guilak, Ratcliffe, and Mow 1995; Guilak et al. 1999; Grodzinsky et al. 2000). 

Once cartilage is fully developed, these mechanical forces are converted into HP in the 

interstitial fluid, followed by shear stress as a result of fluid flow. Studies on human and 

animal intervertebral disc tissue have shown that physiological levels of HP (0.3 - 3 MPa) 

increase proteoglycan synthesis and metabolism and generally have an anabolic effect, 

whereas higher levels (3-10 MPa) inhibit proteoglycan production and have a catabolic 

effect (Handa et al. 1997; Ishihara et al. 1996). In vivo cartilage is subject to rapid cyclic 

loading of 3-10 MPa (up to 18 MPa in the hip) and human walking cadence is around 1 Hz 

(B. D. Elder and Athanasiou 2009). Thus, tissue engineering approaches tend to apply forces 

in this range – above this, detrimental effects (similar to the onset of osteoarthritis) have 

been observed (Kunitomo et al. 2009; Natoli and Athanasiou 2008). 

There is a wealth of evidence to suggest that HP in the physiological range improves 

chondrogenesis in 3D cartilage constructs. Generally, cyclic HP with a force of 4-10 MPa, 
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applied intermittently to 3D models at a frequency of around 1 Hz, has been shown to 

increase levels of total collagen (Hu and Athanasiou 2006; Meyer et al. 2011; Carroll, 

Buckley, and Kelly 2014), COL2A1 (Reza and Nicoll 2008; Correia et al. 2012) and GAG (Hu 

and Athanasiou 2006; Sakao et al. 2008; Meyer et al. 2011; Correia et al. 2012; Carroll, 

Buckley, and Kelly 2014) deposition in the new tissue. Expressions of GAGs and SOX9, COL2 

and ACAN mRNAs were also enhanced, providing further evidence that cells cultured in 

these conditions were differentiating towards a chondrogenic lineage (Sakao et al. 2008; 

Ogawa et al. 2009; Correia et al. 2012). A number of recent studies have found HP to have 

a positive effect on progenitors and chondrocytes cultured as pellets (Miyanishi et al. 2006; 

Safshekan et al. 2012; Vinardell et al. 2012). Miyanishi et al. found that 10 MPa of cyclic HP 

applied intermittently for 14 days enhanced expression chondrogenic markers even without 

the addition of growth factors such as TGF-β3; the combination of mechanical and chemical 

stimulation had an even greater impact. Safshekan et al. reported that human adipose-

derived stem cells cultured as pellets with 5 MPa of cyclic HP expressed levels of SOX9, 

COL2A1 and ACAN transcripts comparable to those expressed by native human cartilage 

tissue (though they did not attempt to quantify protein production). Though the results of 

these studies are promising, pellet culture does not offer the flexibility to create constructs 

with the desired morphologies and mechanical properties that scaffolds such as hydrogels 

or meshes permit, as extensive processing is required to release the cells from the rigid ECM 

which forms around the pellet. 

Dynamic compressive forces are frequently applied as a means of enhancing the quality of 

tissue engineered cartilage constructs. Adult cartilage tissue is exposed to cyclic 

compressive loads, which are important for both nutrient exchange and for the 
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transduction of external stimuli via cell-surface mechano-sensitive ion channels and 

integrins, which initiate intracellular signalling cascades and orchestrate the cell’s response 

to external cues (Musumeci 2016). Compressive forces are also necessary for the normal 

development of cartilage tissue during embryogenesis (Ruano-Gil, Nardi-Vilardaga, and 

Tejedo-Mateu 1978; Mitrovic 1982; Nowlan, Sharpe, et al. 2010). Here, however, 

mechanical cues are imparted by the mother and buffered by the amnion and are, 

therefore, lower than those experienced by mature tissue. Furthermore, during the very 

early stages of development, there is no extensive ECM to transmit these mechanical cues, 

but there is a pericellular matrix rich in matrilins, ACAN, COMP and collagen types VI, II and 

IX, which interact with specific integrins in response compressive forces (Gilbert and Blain 

2018). Matrilin 1, abundant in developing tissue, has a key role in mediating mechanical 

stimuli and its presence was shown to be necessary in order for chondrocytes to elicit an 

anabolic response to loading regimes in vitro (Y. Chen et al. 2016). Growth factors such as 

FGF2 are also released by chondrocytes in response to cyclic compression; perlecan-bound 

FGF2 is released as a result of turbulence and goes on to initiate mitogen-activated protein 

kinase (MAPK) signalling (Vincent et al. 2007). 

Stimulation of mechanoreceptors such as membrane-bound ion channels, integrin 

receptors and primary cilia stimulate intracellular signalling pathways in response to forces 

such as compression, deformation, hydrostatic pressure and release of soluble factors. 

Transient receptor potential vanilloid 4 (TRPV4) is Ca2+-permeable ion channel which was 

identified as a regulator of chondrogenic differentiation over 10 years ago, with similar 

expression patterns to other common markers such as COL2 and ACAN (Muramatsu et al. 

2007). Its activation in response to cyclic mechanical loading has been shown to result in 
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enhanced matrix deposition (O’Conor et al. 2014). More recently, Piezo1 and Piezo2 were 

identified as fast-acting mechanosensitive ion channels, which are abundant in 

chondrocytes and allow rapid influx of Ca2+ in response to high levels of strain (Lee et al. 

2014). Stimulation of trans-membrane integrins directly affects cytoskeletal actin 

organisation, again initiating signalling cascades. α1ß1, α10ß1, αvß5 and α5ß1 integrins 

have all been implicated in the response of chondrocytes to mechanical stimuli (Gilbert and 

Blain 2018). 

Peake et al. used a four-point bending model to investigate the response of human 

osteoblast-like cells and the MG63 bone cell line to mechanical load in monolayer culture 

(M. A. Peake et al. 2000). They reported an up-regulation of C-FOS, which could be blocked 

by the addition of ß1-integrin antibodies or inhibitors of stretch-activated ion channels, 

suggesting that the response was both mediated by surface integrins and a direct result of 

mechanical loading. The four-point bending bioreactor used in this work (chapter 2, figure 

2-1) was designed to transmit tensile forces to cells cultured on glass slides, in a bid to 

recapitulate the microenvironment of osteoblasts in vivo. In the current study, however, 

the model was adapted to impart compressive forces to chondroprogenitors by simply 

inverting the glass slide when cells were loaded into the chamber. It was hoped that this 

model would provide insight into the short-term responses of hESC-derived 

chondroprogenitors to low levels of mechanical loading. 

 

  



189 
 

5.2 Aims 

The primary aims of this chapter were to: 

 Explore the effects of low level cyclic hydrostatic pressure on a 3D hESC 

chondrogenic model 

 Explore the effects of low level compressive forces on hESC-derived 

chondroprogenitors in monolayer culture 
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5.3 Methods 

5.3.1 Investigating the effects of hydrostatic pressure 

 

Figure 5-1. Schematic summary of the experimental procedure for investigating the 

effects of hydrostatic pressure on a 3D hESC-chondrogenic model. 

Chondroprogenitors were derived from hESC using a 14-day DDP as described in chapter 

2.3. The cells were then encapsulated in 50 µL fibrin hydrogels as described in chapter 2.4 

at a final seeding density 0.5 x 106 cells/mL and a final fibrinogen concentration of 10 

mg/mL. Acellular constructs were prepared for each condition. The following day constructs 

were transferred to the hydrostatic bioreactor chamber. In this first experiment the TGT 

system described in chapter 2.9 was used to apply either 170 kPa or 270 kPa cyclic 

hydrostatic pressure was applied for 1 hour at a frequency of 1 Hz and fresh day 15 

chondroprogenitors were used. In the second experiment the pressure was regulated using 

the OB1 MK3 microfluidic control system and constructs were subjected to 270 kPa 

hydrostatic pressure for 1 hour at a frequency of 1 Hz. Day 15 chondroprogenitors were 
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thawed, seeded and cultured for a further two days prior to encapsulation in fibrin 

hydrogels. As the OB1 MK3 control system uses compressed air (rather than drawing air 

from the incubator, as with the TGT system) the culture medium was supplemented with 4-

(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer (25mM) prior to 

stimulation and changed again to DDBM without HEPES buffer afterwards. 

Following stimulation, the plate was removed from the chamber and constructs were 

returned to the incubator. This regime was repeated on the subsequent three days. 

Unstimulated controls were prepared and incubated alongside stimulated samples. On day 

7 constructs were either fixed for 2 hours with 10% NBF and stored in PBS at 4°C for 

subsequent histological analysis/ICC, or snap frozen and stored at -80°C for subsequent 

gene expression analysis. Histology was carried out as described in chapter 2.21; 5 µm 

sections were prepared and stained haematoxylin and safranin-O. Samples were imaged 

with an EVOS Core XL microscope. Porcine articular cartilage was sectioned and stained in 

the same way and used a positive control to assess levels of safranin-O staining. In order 

measure staining intensity, Image J software was used; images were converted to 8-bit black 

and white, thresholds were adjusted to exclude white regions and a mean pixel intensity 

was calculated from three areas of equal size per image. Data was collected in this way from 

three images per group. ICC was performed on whole gels stimulated with the OB1 MK3 

system (one from each condition) and scans were taken from the bottom up every 9 µm 

with a laser confocal microscope, for a distance of 500 µm. Images were constructed using 

Imaris Image Analysis software. RNA was isolated as described in chapter 2.12.3, reverse 

transcription was performed as described in chapter 2.13 and qRT-PCR was performed on 

the resulting cDNA as described in chapter 2.14. 



192 
 

5.3.2 Exploring the effects of compressive forces using the 4PBB 

 

 

Figure 5-2. Schematic summary of the experimental design for application of the four-

point bending model to hESC-derived chondroprogenitors. After one application of 

mechanical force for 30 minutes are 0.8 Hz, cells are incubated for a further 24 hours and 

lysed for subsequent gene expression analysis.  

Chondroprogenitors were derived from hESC using a 14-day DDP, as described in chapter 

2.3 and cryopreserved as described in chapter 2.2.5. Cells were thawed as required (chapter 

2.2.2), seeded onto glass coverslips at a density of either 2.5 x 105 cells/mL (low) or 3.75 x 

105 cells/mL (high) and stimulated with the 4PBB as described in chapter 2.8. After a further 

24 hours of incubation cells were lysed with 570 µL buffer RLT supplemented with 1% ß-

mercaptoethanol. The lysate was transferred to a 1.5 mL centrifuge tube and stored at -

80°C. RNA isolation was performed as described in chapter 2.12.1, reverse transcription was 

carried out as described in chapter 2.13 and qRT-PCR was performed on the resulting cDNA 

as described in chapter 2.14. 

5.3.3 Statistical analysis 

Statistical analysis was performed as described in chapter 2.23. 
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5.4 Results 

5.4.1 Directed differentiation of hESC 

 

Figure 5-3. Chondrogenic gene expression increases and pluripotency gene expression 

decreases with progression of DDP. Representative expression pattern of ACAN, COL1A1, 

COL2A1, OCT4, NANOG and SOX9 in MAN7 hESC subjected to directed differentiation for 15 

days. Expression is relative to GAPDH (2-ΔCt). Data are expressed as the mean ± standard 

error, N=5-7 (biological repeats), *p<0.05, **p<0.01. 

Chondrogenic gene expression increased between day 1 and day 15 in all DDP runs 

performed on MAN7 hESC (figure 5-3). Mean SOX9 expression was significantly greater in 

D15 cells than in D1 (p<0.01), D4 (p<0.01) and D8 cells (p<0.05). Expression of pluripotency 

markers OCT4 and NANOG decreased overall, but there was a small initial expected increase 

on day 4 and expression was not completely ablated by day 15; this is indicative of the 
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presence of residual pluripotent stem cells in each population of chondroprogenitors. 

However, OCT4 expression was significantly reduced between D4 and D15 (p<0.01). COL1A1 

expression showed a large increase by day 15, which may be indicative of a fibrocartilage 

phenotype. Large standard error bars are reflective of the variation typically observed 

between DDP runs. 

5.4.2 Application of hydrostatic pressure enhances cartilaginous matrix deposition 

Results from one experiment with 3 technical repeats (n=3) show that, compared to cell 

only controls, expression of ACAN (figure 5-4 A) was significantly higher when hydrogels 

were subjected to 270 kPa cyclic hydrostatic pressure using the TGT system (p<0.05). There 

were no other significant differences in ACAN expression. COL1A1 expression (figure 5-4 B) 

demonstrated no significant differences between any of the groups, but it was generally 

higher in 3D constructs than in cell only controls. COL2A1 expression (figure 5-4 C) was 

significantly higher in cells stimulated with both 170 kPa (p<0.05) and 270 kPa (p<0.01), 

compared to cell only controls, but not significantly higher than static controls. SOX9 

expression (figure 5-4 D) was significantly higher in gels stimulated with 270 kPa than in 

both static (p<0.01) and cell only (p<0.001) controls and significantly higher in those 

stimulated with 170 kPa than in cell only controls (p<0.01). 
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Figure 5-4. Chondrogenic gene expression is enhanced by the application of hydrostatic 

pressure. Gene expression is relative to GAPDH (2-ΔCt). Data are expressed as the mean ± 

standard error, n=3 (technical repeats), *p<0.05, **p<0.01, ***p<0.001. 

Safranin-O staining (figure 5-5) shows that application 170 kPa and 270 kPa cyclic 

hydrostatic pressure using the TGT system resulted in visibly enhanced matrix deposition 

compared to static and acellular controls. Two samples from each group were analysed and 

representative images are shown in figure 5-5. Image analysis shows that constructs 

stimulated at 170 kPa had significantly greater levels of safranin-O staining compared to 

static cellular controls and stimulated acellular controls (p<0.05 for both). In addition, 

constructs simulated at 270 kPa had significantly higher levels of staining than acellular 
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controls (p<0.05), but there was no significant difference between the two stimulated 

cellular groups. As expected, porcine articular cartilage had a significantly higher degree of 

staining than static cellular (p<0.001), 270 kPa acellular (p<0.001) and 270 kPa cellular 

(p<0.05) groups, but not significantly more so than 170 kPa cellular. 

 

 



197 
 

Figure 5-5. Chondrogenic matrix deposition is enhanced by the application of cyclic 

hydrostatic pressure. A) hESC-derived chondroprogenitors were encapsulated in fibrin gels 

at 0.5 x 106 cells/mL and cultured for 7 days. Gels stimulated in the hydrostatic bioreactor 

(TGT control system) for 1 hour/per day, 4 days at 1 Hz at either 270 kPa or 170 kPa. Static 

controls received no stimulation. B) Representative image of porcine articular cartilage. 5 

µm paraffin sections stained with haematoxylin and Safranin-O (A and B). Scale = 500 µm. 

C) Safranin-O staining intensity assessed via pixel density of images. Data obtained from 3 

images per group. Data are expressed as the mean ± standard error, n=3 (technical repeats), 

*p<0.05, ***p<0.001. 

ICC was performed on whole constructs stimulated with the OB1 MK3 system. Analysis of 

one gel from each condition suggests that 270 kPa cyclic hydrostatic pressure results in 

more COL2 deposition than in static controls (figure 5-5). By immunofluorescence on whole 

gels, COL2 fluorescence intensity is visibly (figure 5-5 A) and measurably (figure 5-5 B) higher 

in the stimulated sample than in the static control. However, DAPI intensity (figure 5-5 A) is 

also higher in the stimulated sample which suggests that this construct contained more 

cells. When normalised to DAPI, COL2 expression is very similar in both gels (figure 5-5 C). 
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Figure 5-6. Hydrostatic pressure may increase the number of collagen type II-expressing cells. hESC-derived chondroprogenitors 

encapsulated in fibrin hydrogels at 0.5 x 106 cells/mL and cultured for 7 days. Gels stimulated in the hydrostatic bioreactor (OB1 MK3 control 

system) for 1 hour/per day, 4 days at a frequency of 1 Hz and a pressure of 270 kPa. Static controls received no stimulation. Scans were taken 

from the bottom up every 9 µm with a laser confocal microscope, for a distance of ≤500 µm. Images were constructed using Imaris Image 

Analysis software. Scale bars = 200 µm. N=1. 
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5.4.3 Effects of the 4PBB are dependent on cell seeding density 

Chondrogenic gene expression of cells seeded at the lower density of 2.5 x 105/mL always 

showed a trend of upregulation in response to stimulation from the 4PBB. In three 

independent experiments, each with three technical repeats (figure 5-7), ACAN expression 

(figure 5-7 A) was significantly higher in stimulated samples in one repeat (p<0.01) (figure 

5-7 A3). COL2A1 (figure 5-7 B) and SOX9 (figure 5-7 C) expressions were also significantly 

higher in one repeat (figure 5-7 B2 and C2) (p<0.05 in both cases). TRPV4 expression (figure 

5-7 D) was significantly enhanced in two repeats (figure 5-7 D2 and D3) (both p<0.01). Mean 

gene expression from three independent experiments showed a similar trend but 

differences were not significant (data not shown). 

When cells were seeded at the higher density of 3.75 x 105/mL (figure 5-8), the reverse 

pattern was often observed; chondrogenic gene expression was down-regulated in 

response to stimulation with the 4PBB. Expressions of ACAN (figure 5-8 A) were significantly 

increased in unstimulated cells compared to stimulated samples in two out of three repeats 

(figure 5-8 A2 and A3) (p<0.001 and p<0.05 respectively).  The same was true for SOX9 

expression (figure 5-8 C2 and C3) (p<0.01 and p<0.05 respectively) and TRPV4 expression, 

which was significantly lower in stimulated samples in one repeat (figure 5-8 D2) (p<0.05). 

COL2A1 showed a similar trend of reduced expression in one repeat (figure 5-8 B1), but 

differences were not significant. With the exception of SOX9 (figure 5-9), where mean 

expression from was significantly reduced (p<0.05), mean gene expressions from three 

independent experiments were not significantly different between stimulated and 

unstimulated samples, though the same trend of down-regulation was observed.
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Figure 5-7. Stimulation with the 4PBB enhances chondrogenic gene expression at lower 

cell seeding density. hESC-derived chondroprogenitors seeded at a density of 2.5 x 105 

cells/mL in 3 independent experiments (1-3). qRT-PCR was performed 24 hours post 

stimulation. Gene expression is relative to GAPDH (2-ΔCt). Data are expressed as the mean ± 

the standard error. 3 technical repeats performed per experiment (n=3). *p<0.05, **p<0.01 
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Figure 5-8. Stimulation with the 4PBB reduces chondrogenic gene expression at higher cell 

seeding density. hESC-derived chondroprogenitors seeded at a density of 3.75 x 105 

cells/mL in 3 independent experiments (1-3). qRT-PCR was performed 24 hours post 

stimulation. Gene expression is relative to GAPDH (2-ΔCt). Data are expressed as the mean ± 

the standard error. 3 technical repeats performed per experiment (n=3). *p<0.05, **p<0.01, 

***p<0.001. 
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Figure 5-9. Mean gene expression confirms that stimulation with the 4PBB is detrimental 

to SOX9 gene expression at higher cell seeding densities. hESC-derived 

chondroprogenitors seeded at a density of 3.75 x 105 cells/mL. qRT-PCR was performed 24 

hours post stimulation. Gene expression is relative to GAPDH (2-ΔCt). Data are from three 

independent experiments (N=3) and are expressed as the mean ± the standard error. 

*p<0.05. 

 



204 
 

5.5 Discussion 

Our results show a clear relationship between the dynamic environment and the expression 

of chondrogenic genes. Both a 3D model and a dynamic environment are necessary to 

promote a more mature phenotype in hESC-derived chondroprogenitor/fibrin constructs. 

In most cases, chondrogenic gene expression was significantly higher in hydrogels subjected 

to cyclic hydrostatic pressure when compared cell only controls (monolayer), though not 

when compared to static controls (except in the case of SOX9). For pre-differentiated cells, 

the use of a 3D model alone was not sufficient to bring about a significant enhancement of 

ACAN and COL2A1 expression – genes which code for the two major ECM molecules in 

articular cartilage. 

Proteoglycan deposition and matrix density were undoubtedly improved by the application 

of hydrostatic pressure – here the presence of cells is the only factor which distinguishes 

static controls from acellular. The staining intensity of the two stimulated, cellular groups, 

however, is approaching the level of the porcine articular cartilage. Again, deposition of 

COL2 appears elevated in stimulated samples, though further work is required to confirm 

this. Higher COL2 staining intensity could be a result of increased cell numbers in constructs 

subjected to hydrostatic pressure, as indicated by a concomitant increase in DAPI intensity. 

Previous studies have reported an increase in proliferation in response to hydrostatic 

pressure. Murine BMSC exposed to 90 kPa sustained HP for a 1 hour period showed an 

increased S-phase fraction and proliferative index (M. Zhang et al. 2012; Zhao et al. 2015). 

In an earlier study, human vascular endothelial cells (HUVEC) exposed to sustained HP also 

demonstrated increased proliferative activity; although here, no attempts were made to 

quantify the level of pressure exerted by the system (Schwartz et al. 1999). Proliferation 
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markers and DNA assays should be incorporated into future experiments in order to 

determine if hydrostatic pressure improves the proliferative capacity of hESC-derived 

chondroprogenitors; if this were the case then it would be of great benefit, as expansion of 

these cells is very limited, especially after cryopreservation. 

In the case of SOX9, expression was significantly greater in gels subjected to 270 kPa 

hydrostatic pressure than in static controls, but this was not true of those subjected to 170 

kPa, which suggests that there may be some benefit in using higher pressure regimes. Adult 

articular cartilage is exposed to compressive forces as high as 18 MPa (B. D. Elder and 

Athanasiou 2009) and numerous studies have reported that pressures in the region of 4-10 

MPa are beneficial for tissue engineered  cartilaginous constructs (see table 1-3, chapter 1). 

However, the use of pressures similar to those observed in adult tissue in vivo may not be 

appropriate for immature tissue engineered cartilage, which is more akin to that observed 

during earlier developmental stages. Therefore, it is unsurprising that relatively low levels 

of hydrostatic pressure led to the striking changes in proteoglycan deposition which were 

observed in this study. Given that SOX9 codes for the master regulator of chondrogenesis, 

of which COL2 is a downstream target, it may be that these day 7 constructs represent an 

early stage in the process and that a longer time in culture would have brought about 

increases in matrix protein-coding genes that were also significantly higher than in static 

controls. Other studies have reported significant increases in ACAN and COL2, along with 

increased cartilaginous matrix production in response to hydrostatic pressure after 2 weeks 

(Reza and Nicoll 2008), 4 weeks (Zhao et al. 2015), 3 weeks (Correia et al. 2012) and even 8 

weeks (Hu and Athanasiou 2006) of culture in hBMSC, hADSC and primary chondrocytes 

(both human and bovine). Few report significant differences after just 7 days, however. 
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Application of compressive strains with the 4PBB at low seeding densities appears to 

enhance chondrogenic gene expression. Though not significant, the trend across three 

independent experiments shows increasing expression in response to stimulation and 

individual experiments often showed significant increases. As with previous experiments 

(chapter 3 and 4), this lack of consistency across multiple experiments may be a result of 

the initial variation in response of hESC to the DDP. Another explanation may lie in issues 

experienced with cell seeding. When developing this system, the authors determined that 

cells should be confined to the middle 3 cm portion of the coverslip in order to receive the 

full 1000 µE strain. In practice this was difficult to achieve and a proportion of the 

population would adhere outside of this region. 

Increases in ACAN, COL2A1 and SOX9 were generally accompanied by an increase in TRPV4, 

which suggests that the mechanical stimuli were transduced by this ion channel. Previous 

studies have shown a similar pattern of gene expression and an increase in SOX9-dependent 

reporter activity upon pharmacological activation of TRPV4, all of which were blocked by 

addition of the TRPV4 antagonist ruthenium red to the culture medium or by the use of a 

small interfering RNA for TRPV4 (Muramatsu et al. 2007). More recently, addition of the 

TRPV4 agonist 4alpha-phorbol-12,13-didecanoate (4α-PDD) resulted in improved collagen 

deposition and tensile strength in self-assembled articular cartilage constructs derived from 

bovine chondrocytes (Eleswarapu and Athanasiou 2013).  In other work, both dynamic 

loading of porcine chondrocyte-laden agarose gels and addition of the TRPV4 agonist 

GSK101 were shown to increase expression of COL2A1, TGFß3 and pro-anabolic/anti-

catabolic genes (O’Conor et al. 2014). These effects were abrogated by the presence of the 

TRPV4 antagonist GSK205. Interestingly, unlike the work described by Muramatsu et al. 
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(above) and that of the current study, no increase in SOX9 expression was observed in 

response to GSK101; the authors suggest that TRPV4 signal transduction may be via an 

alternative pathway in mature chondrocytes (O’Conor et al. 2014). TRPV4 activation has 

been reported previously in hESC-derived cells in response to mechanical stimulation, 

though there is little to be found relating to hESC and chondrogenesis. hESC-derived 

cardiomyocytes subjected to uniaxial stretch responded with directional realignment and 

this effect was blocked with the TRPV4 antagonists RN1734 and HC060747 (Y. Qi et al. 

2015). Therefore, it seems plausible that TRPV4 channel activation and subsequent 

increased SOX9 activity are responsible for the response of hESC-derived 

chondroprogenitors to stimulation via the 4PBB. However, the use of TRPV4 agonists and 

antagonists along with SOX9 reporter systems would be required to confirm this. 

Limitations of the system rendered such work impossible in the time available; the 

susceptibility of the rudimentary apparatus to infection, loss of cells due to detachment 

during stimulation and poor RNA yield meant that a large number of experiments were 

unsuccessful.  

At higher seeding densities, unstimulated controls often show higher chondrogenic gene 

expression and, in the case of SOX9, mean expression across three independent 

experiments was significantly higher in this group. In order for cells to experience the 

uniaxial strain imparted by the system, they must be in contact with the coverslip. hESC-

derived chondroprogenitors tend to form aggregates rather than a homogenous 

monolayer, thus larger aggregates form when they are seeded in large numbers and 

confined to the same area as those seeded at a lower density. Consequently, a larger 

number of cells are not in direct contact with the coverslip and, therefore, are subject to a 
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much lower level of strain. This explains why there was frequently no significant change in 

chondrogenic gene expression of stimulated cells compared to unstimulated controls, but 

quite why this would result in significantly lower SOX9 expression overall is unclear. 

5.6 Conclusion 

Articular cartilage is subject to cyclic compressive loads during normal development and 

function. These forces, converted into hydrostatic pressure and shear flow by the interstitial 

fluid, are detected and transduced by chondrocytes, initiating signalling cascades and 

bringing about transcriptional changes which are essential for both development and 

maintenance of the tissue. Therefore, it is only logical that tissue engineering strategies 

should seek to recapitulate this dynamic environment in vitro. Fibrin-encapsulated, hESC-

derived chondroprogenitors can respond to cyclic hydrostatic pressure with increased 

chondrogenic gene expression and matrix deposition. At low seeding densities, cyclic 

compressive forces imparted by the 4PBB may also result in enhanced chondrogenic gene 

expression in hESC-derived chondroprogenitors. Results indicate that both types of dynamic 

environment favour higher levels of proliferation, although more work is needed to confirm 

this. 
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Chapter 6 

Discussion, future work and 

concluding remarks 
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6.1 Summative discussion 

Articular joint disease and degeneration pose a huge financial burden to the NHS and 

severely impair the quality of life for those affected. As yet, there is no effective and 

enduring alternative to the current gold standard treatment of joint replacement, which is 

both costly and invasive. Therefore, there is a great need for the development of treatments 

such as tissue engineered cartilage grafts and cell therapies, which can replace damaged 

tissue and promote endogenous repair mechanisms. Much research is underway in the 

fields of rheumatology, stem cell biology and regenerative medicine (to name but a few), in 

a bid to find alternative, effective treatments for conditions such as OA and RA. As with 

many other target tissues, the appropriate source of material for cell-based therapies 

remains in hot dispute. Autologous chondrocytes, which offer the distinct advantages of 

immune-compatibility and of producing unquestionably superior ECM, have already been 

utilised with some success (Schuette, Kraeutler, and McCarty 2017). However, the necessity 

of their isolation from the patient and subsequent expansion in vitro prior to application 

renders significant scalability impossible and may discourage major investment from 

pharmaceutical companies wishing to produce an “off the shelf” product. In addition, one 

has to question whether cells isolated from OA/RA patients will retain an endogenous 

predisposition towards pathogenesis and whether the diseased environment into which 

they are implanted would be detrimental to the successful function of these healthy cells. 

For these reasons, allogeneic multipotent/pluripotent stem cells are a more attractive 

prospect for many researchers. BMSC have successfully been used to generate 

chondrocytes for a number of years, but their expansion capacity is very limited and their 

isolation from healthy donors is a painful and invasive procedure. hESC and, more recently, 
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induced pluripotent stem cells (iPSC) can also be used to generate chondrocytes, but offer 

the added advantage of potentially limitless expansion capacity. In addition, the protocol 

described by Oldershaw et al. for producing chondroprogenitors from hESC forgoes the 

problematic step of embryoid body formation, resulting in a population of cells which 

require minimal processing and are more heterogeneous (Oldershaw et al. 2010). Barriers 

to the clinical translation of these cells are their immature phenotype and the potential for 

the residual pluripotent cells to form teratomas in vivo. Cheng et al (2014) sought to remove 

the latter obstacle with the application of the pluripotent cell-specific inhibitor PluriSIn1, 

which was earlier reported to be toxic to pluripotent cells at very low concentrations, whilst 

preserving progenitor/differentiated cells (Ben-David et al. 2013). However, when used at 

recommended concentrations, toxicity to hESC-derived chondroprogenitors was also 

observed. 

The purpose of this study was to investigate a range of culture techniques, dynamic regimes 

and biomaterials with the intention of producing a protocol for enhancing the chondrogenic 

potential of hESC-derived chondroprogenitors and obtaining a more mature phenotype. 

This thesis is the first to report the use of hESC-derived chondroprogenitors differentiated 

in monolayer on an immobilised Wnt platform to create a 3D chondrogenic model. In 

addition, it is the first to report the effects of hydrostatic pressure on an hESC-derived 3D 

chondrogenic model and the first to report the application of a four-point bending model 

to monolayer hESC-derived chondroprogenitors. Chapter 3 demonstrates that providing 

differentiating cells with a 3D environment to migrate into enhances expression of 

chondrogenic markers compared to 2D culture and that inclusion of an immobilised Wnt 

platform accelerates this process. Given that all other methods of chondrogenic 
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differentiation utilise 3D culture and that natural cartilage development occurs in a complex 

3D environment, this is unsurprising. However, unlike the pellet culture or embryoid body 

formation favoured by more traditional protocols, this model allows cells to migrate in 

response to environmental cues and results in a layered structure, which is more analogous 

to the native tissue. Although fibrin has proven to be a useful 3D model for the Kimber lab’s 

hESC (explored in chapter 4), there are a range other biomaterials whose chondro-inductive 

properties ought to render them a more suitable choice for producing tissue engineered 

cartilage. It was hoped that the substitution of fibrin for one of these materials would build 

on the work described in chapter 3 and produce a superior 3D chondrogenic model. 

However, none of the biomaterials tested were able to support cell viability to the same 

degree as fibrin, despite reports of success in other hESC lines (Toh et al. 2010). The ultimate 

aim of this work was to subject the optimised 3D chondrogenic model to mechanical 

stimulation in a bid to recapitulate the dynamic native environment and to produce a more 

mature construct. Initial work with our custom-made hydrostatic bioreactor indicated that 

fibrin-encapsulated cells did indeed respond positively to regimes of mechanical 

stimulation, as evidenced by increased chondrogenic gene expression and matrix 

deposition. Unfortunately, the system failed in the first year of this study and 

repair/replacement proved impossible, despite a great deal of effort. The group did recently 

manage to acquire a comparable system, but there was insufficient time to remaining to 

repeat the work described in chapter 5 using freshly-differentiated cells. 

Another means of imparting mechanical stimulation, the 4PBB, was also adopted in this 

study. This device is more limited than the hydrostatic bioreactor, in that it can only be used 

to stimulate cells in monolayer and is an open system, which leaves them prone to infection 
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and can, therefore, only be used for brief incubation periods. The intention with this system 

was to interrogate the cellular response to mechanical cues more closely by identifying 

receptors and pathways activated as a result of stimulation and by examining the effects of 

their inhibition. Unfortunately, the high incidence of infection and the tendency of the cells 

to detach during stimulation, meant that the many experiments yielded no results. Despite 

this, there is evidence that cells responded to the 4PBB with up-regulated chondrogenic 

gene expression when seeded at a low density and that their response is mediated via MAPK 

signalling. 

Pluripotent stem cells are much more susceptible to seemingly minor environmental 

changes than multipotent and terminally differentiated cells, such as BMSC or articular 

chondrocytes. Although this broadens the scope for potential applications, it also presents 

an array of challenges for culturing the cells. A major obstacle in this study was the variation 

in response of MAN7 and MAN13 hESC to the DDP. Although an increase in chondrogenic 

gene expression and a decrease in pluripotency markers were generally observed with time, 

there was a great deal of variation in levels of expression between runs. This produced large 

standard errors when means were calculated from multiple experiments, which meant that 

observed differences were rarely significant. In addition, hESC are less robust than other 

cell types and do not adhere well to tissue culture plastic; again this presented obstacles 

when trying to culture and differentiate the cells and progress was, therefore, particularly 

slow. Despite the many advantages of using pluripotent stem cells for tissue engineering 

applications, the fact that these issues remained a huge hindrance to progress throughout 

the three years of this study suggests that more work is required to render hESC cell 

therapies translatable. It may be, however, that commercially available hESC lines are less 
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susceptible to these issues, in which case the application of cyclic hydrostatic pressure to 

the 3D hESC model of chondrogenesis described in chapter 3 could result in a superior tissue 

engineered cartilaginous construct. 

6.2 Future work 

Chapter 3 outlines the production of a 3D hESC chondrogenic model with an immobilised 

Wnt platform. In order to confirm that the WNT3A is accelerating the migration and 

subsequent differentiation of hESC in the fibrin hydrogel, a number of factors would need 

to be established. Firstly, it would be useful to confirm that MAN7 and MAN13 hESC are 

actually Wnt responsive with the use of  a TCF/LEF reporter system as described previously 

(Fuerer and Nusse 2010). In addition, it was never confirmed in this study that the WNT3A 

was efficiently bound to the PCL surface. This method was adapted from a protocol which 

describes the adsorption of WNT3A to glass surfaces, which have different chemical 

properties to PCL (Lowndes, Junyent, and Habib 2017). In order to ascertain whether the 

protein is indeed bound, a number of techniques could be employed, including simple ICC 

using anti-WNT3A antibodies; techniques such as X-ray photoelectron spectroscopy (XPS) 

to characterise the surface of the polymer; or Wnt activity assays involving cells that express 

luciferase or green fluorescent protein upon induction of Wnt/ß-catenin signalling. In 

addition, it would be useful rule out the presence of residual pluripotent stem cells on this 

model (particularly the upper portion of the gel) by repeating the work and including gene 

expression analysis and ICC for the presence of makers such as OCT4. 

Future work involving the Wnt platform model should be tested with additional ESC cell 

lines in order to show that the observed effects are reproducible. There was also no attempt 
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made in this study to determine the mode of action in this model.  Even without Wnt in its 

active form, the addition of a hydrogel to a differentiating monolayer of cells resulted in 

increased expression of chondrogenic markers. It is possible that the change in cell-liquid 

interface brought about environmental changes, such as hypoxia, which drove the resulting 

physiological changes. Inclusion of primers for hypoxia markers such as hypoxia inducible 

factor 1 alpha (HIF-1α) or glucose transporter 1 (Glut-1) into gene expression analysis would 

be a simple way of testing this hypothesis (Le and Courter 2008). In addition, sensors could 

be used to measure oxygen levels in this model, even without the addition of cells, which 

would mitigate the necessity of repeating the entire experiment.  

Acquisition of positive controls for use in gene expression analysis and ICC is also important 

for future work. Primary human chondrocytes would be the ideal control for gene 

expression analysis, in order to determine whether the increases in expressions of COL2A1, 

ACAN, and SOX9 observed in this study are meaningful and approaching the levels observed 

in the native tissue. Given the limited availability of primary human joint tissue, another 

option is to obtain commercially available, pre-transcribed cDNA. It is also necessary to 

confirm that the protein expression shown with ICC is comparable to native tissue. In this 

case, however, the cross-reactivity of many antibodies means that articular cartilage from 

xenogeneic sources would suffice (as in chapter 5 where porcine tissue was used as a 

control for the presence of sulphated GAG). 

Despite difficulties encountered when testing alternative biomaterials (chapter 4), gellan 

gum emerged as a potential alternative to fibrin. As mentioned earlier, alterations to the 

gel preparation and the inclusion of ROCK inhibitor may enhance the survival of hESC-

derived chondroprogenitors encapsulated in gellan gum. If this is the case, it would be 
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interesting to see if this material proved more chondro-inductive when used in place of 

fibrin in both 3D models. Although gellan gum and fibrin appeared to possess enhanced 

mechanical properties, there is currently no data to show this. Therefore, it would be useful 

to determine the mechanical properties of these biomaterials with compression testing 

using a Bose machine. This may confirm the hypothesis that stiffer materials result in 

increased expression of chondrogenic markers.  

Now that the OB1 MK3 bioreactor is available, the work involving hydrostatic pressure bears 

repeating. This would involve culture and chondrogenic differentiation of MAN7 and 

MAN13 hESC, as the recovery of pre-differentiated frozen stocks proved insufficient when 

attempts were made to repeat the work. It would also be interesting to incorporate cyclic 

hydrostatic pressure into the culture of the 3D model described in chapter 3. Finally, there 

were indications that both the hydrostatic bioreactor and the 4PBB brought about an 

increase in proliferation. To confirm this, PicoGreen assays could be carried out on samples 

after stimulation and BrdU or EdU proliferation assays could be incorporated into samples 

during culture. 

6.3 Concluding remarks 

The data presented in this thesis explores methods of enhancing the maturation of hESC-

derived chondroprogenitors with a range of 2D and 3D culture techniques. Application of 

an immobilised Wnt platform and a 3D environment to hESC undergoing differentiation 

resulted in a more rapid increase chondrogenic markers and the production of a construct 

with potential for use in tissue engineering applications. Furthermore, application of cyclic 

hydrostatic pressure resulted in enhanced chondrogenic gene expression and matrix 
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deposition in an existing 3D hESC chondrogenic model. Although further work is required, 

we believe that the work described here holds great potential for the development of a cell-

based therapy for cartilage damage and degeneration. 
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Supplementary figures 

 

Supplementary figure 1. Downstream chondrogenic gene expressed is significantly 

increased with addition of GFs from Qkine. Mean expression (2-ΔCt) of ACAN, COL1A1, 

COL2A1, OCT4 and SOX9 in MAN13 hESC subjected to directed differentiation for 15 days. 

Data are expressed as the mean ± the standard error, N=1 (days 1-8) and N=3 (day 15). 

Normal = Activin A (Peprotech) and FGF2 (GibcoTM) as detailed in chapter 2.3. 
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Supplementary figure 2. Chondrogenic gene expression is significantly increased and 

pluripotency gene expression significantly decreased by substituting WNT3A for 

CHIR99021. Mean expression (2-ΔCt) of ACAN, COL1A1, COL2A1, OCT4 and SOX9 in MAN7 

hESC subjected to directed differentiation for 14 days. Data are expressed as the mean ± 

the standard error, N=1 (days 1-8) and N=3 (day 15). Either WNT3A or CHIR99021 used 

during DDP as detailed in chapter 2.3. 
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Supplementary figure 3. Chondrogenic and pluripotency gene expressions are not 

significantly changed by substituting vitronectin for FNIII. Mean expression (2-ΔCt) of ACAN, 

COL1A1, COL2A1, OCT4, NANOG and SOX9 in MAN7 hESC subjected to directed 

differentiation for 15 days. Data are expressed as the mean ± the standard error, N=1 (days 

1-8) and N=3 (day 15). Cells were transferred to TCP coated in fibronectin peptide (FNIII) on 

day 8 of the DDP, as detailed in chapter 2.3. 
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Supplementary figure 4. OCT4 expression diminishes in hESC after application of DDP. 

MAN7 hESC subjected to directed differentiation for 15 days. Top row = negative control 

(secondary antibody only), bottom row = positive control (primary and secondary 

antibodies). Scale bars = 100 µm. DAPI (blue), OCT4 (green). 
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Supplementary figure 5. Gel electrophoresis of qRT-PCR products shows that one product 

is amplified for each gene. MAN7 hESC subjected to DDP for 16 days. qRT-PCR performed 

as described in chapter 2.14 and agarose gel electrophoresis performed on products as 

described in chapter 2.15. GeneRuler 50 bp DNA Ladder (Fisher Scientific UK Ltd) used as 

reference. 

 

 

Supplementary figure 6. COL2, SOX5 and SOX9 staining of D14 monolayer hESC-derived 

chondroprogenitors. Top row = negative control (secondary antibody only), bottom row = 

positive control (primary and secondary antibodies). Scale bars = 100 µm. DAPI (blue), SOX5 

(red), COL2 and SOX9 (green). 
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