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Abstract 

In this study, the ability of the MTBA cation to effectively direct the formation of the 

nanosized MFI framework was present for the first time. Two nanosized materials from 

different SDAs were synthesised and investigated with a variety of different analytical 

techniques to ascertain the mechanism of formation. X-ray diffraction and dynamic light 

scattering studies showed varying results between the TPA and MTBA SDAs used, with the 

TPA templated material suggesting rapid crystallisation and the MTBA template material 

suggesting an aggregation mechanism. 13C and 29Si SSNMR studies of both materials 

suggest a spontaneous crystallisation mechanism is taking place. Conclusive evidence of 

a mechanism of formation was not observed, however it was concluded that the most likely 

mechanism was that of spontaneous rapid crystallisation. Further work into the mechanism 

of crystallisation needs to be conducted with a focus on size control and the effect of the 

SDA used. 

The effect of crystallite size and framework topology on the catalysis of methane reforming 

was also studied using incorporated nickel as the active species. The catalytic activities for 

a nano sized and a micron sized nickel containing MFI zeolite were tested. The nano sized 

material was found to have a higher activity for the partial oxidation of methane, whereas 

the micron sized material was found to have a higher activity for the biogas reforming of 

methane. The catalytic activity for nickel containing MEL and MTW type materials was also 

tested. The MTW material showed a much higher activity for all methane reforming when 

compared to the MEL material. For the partial oxidation of methane, the MTW nickel 

containing material showed the highest activity, and for biogas reforming the micron sized 

MFI material showed the highest activity. It was concluded that the zeolite framework plays 

an important role in the catalysis of methane reforming and is not simply acting as a support 

for the active nickel species as the non- ‘doped’ materials show no catalytic activity. The 

effect of crystallite size is not shown to be equal for all reforming reactions. Further work 

into the location and activity of the nickel species with the framework needs to be conducted 

along with additional investigations into the wide variety of framework topologies available. 
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1.0 Background, theory and aims of the study 

1.1 Zeolite Background and Structure 

Zeolite is the name given to the group of microporous aluminosilicates that can be both 

synthetic and naturally occurring. The term zeolite originated in 1758 from Baron Axel 

Fredrik Cronstedt1, a Swedish mineralogist, whom had discovered nickel seven years prior. 

The word zeolite comes from the Greek word ‘zein’ which means ‘to boil’, due to Cronstedt’s 

observation of water loss on heating of the material, and ‘lithos’ meaning rock, as at the 

time zeolites were only known to be naturally occurring minerals1. 

These complex aluminosilicates are comprised of frameworks of linked tetrahedra, for which 

the central cation is Si4+ or Al3+ and the four corners are oxygen atoms2. This results in the 

neutral SiO4 unit and the negatively charged [AlO4]-. These tetrahedra are linked via the 

sharing of the corner oxygen atoms, and as there are four corner atoms, one tetrahedron 

can be linked to four others through this atom sharing2. This connectivity of tetrahedra gives 

rise to a complex, three dimensional, connected framework. As the tetrahedra have four 

points of linkage they are able to connect in a variety of different conformations, leading to 

the formation of pores and channels within the framework3. With such opportunity for 

variation to occur, it is no wonder that as of December 2018 there are 239 confirmed 

different types of zeolite by the International Zeolite Association (IZA)4, with each zeolite 

type is denoted by a three letter code given by the IZA structure commission. These three 

letter codes are only used to describe the framework type and not the chemical composition 

of the material.  

There are now more purely synthetic zeolite types than there are naturally occurring. Today 

the word zeolite encompasses much more than just frameworks comprised of aluminium 

and silicon, it now describes pure silica frameworks as well as aluminium and gallium 

phosphates, AlPOs5 and GaPOs6. Examples are shown in Figure 1.1. 
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Naturally occurring zeolites can be found within both igneous and sedimentary rocks. They 

are thought to have been formed under high pressure and temperature and to have 

crystallised very slowly over many thousands of years. These natural zeolites are rarely 

found in their pure form and are often present with other minerals and metals. 

The pores and channels within the zeolite framework, commonly between 3 and 15Å in 

diameter, connect to give a molecular-sized labyrinth, which is able to take in small 

molecules such as water and other ‘guest molecules’. This ability to take in small molecules 

is why many refer to zeolites as ‘molecular sieves’, due to the fact it can separate smaller 

molecules from larger ones. 

The general way of expressing a zeolite composition is Mx(Si1-x+Alx)O2.zH2O, where M is a 

cation with either a +1 or +2 charge. This ‘M’ cation, commonly Na+, Ca2+ or Mg2+, plays the 

part of charge-balancing the material, a result of the negatively charged [AlO4]- tetrahedra. 

The letter z in the general composition expression relates to the quantity of water occluded 

in the channels of the framework. This composition neglects the presence of so called 

structure directing agents (SDAs) within the pores and channels of the material (see 

Chapter 1.2). 

Zeolites frameworks can be thought of as being comprised of small repeating units, called 

secondary building units (SBUs)8. These SBUs join together to form an extended network 

to give the final zeolite framework.  

Figure 1.1. Framework structues of 1. Zeolite A7, 2. AlPO4-55, 3. GaPO- MEL-56. 

1. 3. 2. 
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As zeolites do not have a distinctive size or number of connected SBUs, this extended 

network in theory could be infinitely large and still considered one molecule. There are many 

known secondary building units, the most common are shown in Figure 1.2, and are 

themselves formed of smaller primary building units (PBUs). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The crystal morphology between different zeolite types can be dramatically different, as 

shown in Figure 1.3. 

 

 

 

 

 

 
 
 
 
 
 

Figure 1.2. Common secondary building units found in zeolites. (Adapted from Morris, 

20058.). 

Figure 1.3. Zeolite crystal morphology, a sample of ferrierite is pictured left and an MFI-type 

zeolite is on the right9. 
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This difference in morphology is a result of the gel composition, the kinetics of crystal 

growth, the nucleation process and the chemistry that is occurring on the crystal surface. 

 

1.2 Synthesis of Zeolites 

The synthesis of zeolites is a very well-studied area of materials chemistry. Due to their 

variety of different applications, discussed in Chapter 1.4, and their importance to many 

large industries, the knowledge of the synthesis of these porous materials is vital to 

efficiently utilising them. Early work into zeolite synthesis focussed on the production of 

analogues to naturally occurring zeolites. It was not until 1948 that the first fully synthetic 

zeolite was synthesised by Barrer10-12, later identified as the framework type KFI. 

 
1.2.1 Hydrothermal synthesis method 

The most commonly utilised method of synthesis is the hydrothermal method, first 

developed in the 1940s by the Milton group13. This method involves the reactant mixture, 

usually a solution or gel, being placed in a Teflon-lined stainless steel autoclave and at a 

temperature of approximately 100 °C with an autogenous pressure. Average reaction times 

are approximately three days. 

 

 

 

 

 

 

 

 

 

 

 

Stainless steel 

autoclave housing 

Reactant mixture 

Teflon liner 

Void space to allow 

an autogenous 

pressure to build 

Teflon lid 

Stainless steel lid 

Figure 1.4. Schematic of a Teflon-lined stainless steel autoclave. 
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Prior to the implementation of the hydrothermal method, zeolite scientists aimed to replicate 

the high temperatures (> 200 °C) and pressures (> 100 bar) under the which the zeolite 

naturally forms. The development of the hydrothermal method allowed zeolite synthesis to 

become a much easier and less energy intensive process. Another significant development 

in synthetic zeolite chemistry was the utilisation of tetramethylammonium cations, first 

reported by Barrer and Denny14,15. The incorporation of these cations into the synthesis 

mixture gave rise to another level of control over the synthesis. These quaternary 

ammonium cations are commonly referred to as structure directing agents (SDAs) or 

templates. The organic structure directing agents operate as their name suggests and direct 

the formation of the framework structure during synthesis. These SDAs are commonly 

quaternary ammonium salts, where the length and configuration of the alkyl chains vary 

considerably for different zeolite types. Many zeolite types have multiple SDAs that can 

direct their formation16,17. 

A common zeolite synthesis now consists of a silica and/or alumina source, a structure 

directing agent, water and a mineralising agent. The purpose of the mineralising agent is to 

ensure that the semi-soluble silica and alumina sources are in solution. Many early 

syntheses relied on hydroxide ions, OH-, to act as a mineraliser, however, this has the effect 

of elevating the pH of the reaction. It was not until 1976 that Flanigen and Patton18 used 

fluoride ions in place of the hydroxide as the mineralising agent. This allowed syntheses to 

be carried out at a reduced pH. When used in a pure silica synthesis, the fluoride ions were 

noted to have another favourable effect, larger crystals with fewer framework defects were 

observed18. These defects arise from the incorporation of the OH- ions into the framework 

to form SiOH which then leads to a charge imbalance. As these defects are observed less 

frequently when using a fluorinated synthesis mixture, the resulting zeolite crystals are often 

used as comparison materials for characterisation. 

 
1.2.2 Clear solution synthesis method 

Another method of synthesis is the clear-solution method, which is used to obtained 

nanosized zeolite crystals19-21. This method is commonly used to yield pure or high silica 



 

6 
 

nanozeolites. The hydrothermal method commonly yields crystals on the micron scale. This 

method has a standard reflux set up in which the temperature is around 100 °C and the 

pressure is limited to that of the room, i.e. 1 atmosphere. The zeolite product crystallises 

from a clear-colourless solution over a period of 1 to 2 weeks. As the reaction is placed 

under reflux, the reaction mixture differs to that used for the hydrothermal method, namely 

the silica source; it is not common for an alumina containing material to be synthesised in 

this manner. The silica source for a standard hydrothermal synthesis is fumed silica, as this 

is a dry powder that can also be used a thickening agent it is unsuitable for use in a reflux 

reaction. The alternative silica source is tetraethyl orthosilicate (TEOS) which upon addition 

to water forms a water soluble silicon dioxide and ethanol, see equation 1.1. 

 
Si(C2H5O)4 + 2 H2O  SiO2 + 4 C2H5OH  Equation 1.1 

 
For these clear solution reactions, the mineralising agent is often incorporated as part of the 

SDA, i.e. the quaternary ammonium cation will have a hydroxide anion. In the hydrothermal 

method this is not always the case, the anion is commonly a chloride ion, and the mineraliser 

is added as a separate species e.g. NaOH or NH4F. 

A benefit of the clear-solution method is that it is much easier to follow than the hydrothermal 

method, since the reaction occurs in standard glassware and at atmospheric pressure. 

Sampling of the reaction can be easily accomplished as the reaction does not have to be 

quenched by removing it from the heat source, a major drawback of the hydrothermal 

method.  

The implementation of the clear-solution method and the ease in which it can be sampled, 

has given rise to a significant debate over the mechanism of formation of the zeolite 

framework. This has been most extensively studied by the group of Martens et al.22-28 who 

have suggested that an aggregative mechanism occurs. They have proposed that the 

tetrahedra aggregate under the influence of the structure directing agent to form many 

silicate poly-anions such as the bicyclic pentamer, penta-cyclic octamer and the tetra-cyclic 

undecamer shown in Figure 1.5 along with others. 
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These poly-anions are then thought to go through a poly-condensation process to 

selectively form a 33-atom tetrahedral precursor building unit. Four of these precursor 

building units are then said to aggregate to form a ‘nanoslab’.  These nanoslabs then further 

aggregate forming so-called ‘nanoblocks’. 

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

Four nanoblocks are postulated to aggregate to form a tablet which then in turn keep 

aggregating to generate the extended framework of the zeolite. Previous successful 

syntheses have yielded crystals in a wide range of particle sizes from very small 10 nm 

Three-ring 

Penta-

cyclic 

octamer 

Tri-cyclic 

hexamer 

Double 

three ring 
Bi-cyclic 

pentamer 

Double five 

ring 

Capped 

double 

five ring 

Tetra-cyclic 

undecamer 

Figure 1.5. Structures of the various silicate poly-anions assigned by the Martens group 

from their obtained 29Si solution NMR spectra. (Adapted from Kirschhock et al. 199922). 

Precursor Building Unit 

Nanoslab 

Nanoblock 

Figure 1.6. Schematic representation of the 33-atom tetrahedral precursor building unit and 

the process of aggregation to yield the nanoblock. Adapted from Fyfe et al. 200820. 
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crystals to larger 1000 nm crystals. This variation in size is most likely due the variation in 

reaction conditions, such as temperature, and the overall length of time of the reaction. 

 

 

 

 

 

 

 

 

 

Despite the large amount of work presented by the group of Martens et al. on this topic, 

many other researchers studying this mechanism of formation are highly critical of the 

proposed aggregative mechanism20,29-37. These opposing groups cite low-angle X-ray and 

neutron diffraction as evidence that the most likely mechanism involves the formation of 

amorphous colloidal silica particles, which are thought to have some SDA anion trapped 

within them. The nano-sized zeolites are then thought to crystallise out from this solution. 

The high criticism of the proposed aggregative mechanism is evidenced in a comment from 

Knight and Kinrade29 to the Martens group in which it is argued that the 29Si spectral 

assignments of the resonances to the building unit and its polyanion precursors, shown in 

Figure 4, are in fact due to other, previously known structural units that are not mentioned 

in the paper. The criticism goes as far as to say that the “implications of the work in terms 

of understanding the molecular level mechanism of zeolite formation could not be more 

damaging”29. Fyfe et al20. conducted a study into the mechanism of formation of nanosized 

MFI type zeolite, using the tetrapropyl ammonium cation as a template. They utilised X-ray 

diffraction, particle size measurements and solid state NMR to characterise the material 

from various samples taken as the reaction proceeded. They also concluded that 

crystallisation was most likely from an amorphous gel. 

Nanoblock

s 

Intermediate 

Large Particle 

Tablet 

Figure 1.7. Schematic representation of the formation of the extended MFI framework from 

nanoblocks to the large framework particle. Adapted from Fyfe et al. 200820. 
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It is therefore vital to investigate the mechanism of formation of the nanozeolite framework, 

to allow further conclusions to be drawn and to help ascertain which of the conflicting 

theories is most accurate. 

  

1.3 Characterisation of Zeolites 

A variety of different techniques are used to characterise zeolites, the main technique and 

the one that has been used since the 1940s is X-ray diffraction (XRD). The most commonly 

utilised X-ray diffraction technique is that of powder samples. Powder XRD (PXRD) allows 

the user to quickly identify if the material is crystalline and if a specific zeolite type has been 

formed. It has also been used to solve the structures of materials, including the all-silica 

ITQ-438. More recently, single crystal XRD has been used to characterise materials39 and 

to see if any changes are observed with changes in temperature. The use of single crystal 

X-ray diffraction does however rely on the availability of a suitably sized crystal sample for 

mounting. 

To complement the use of X-ray diffraction, solid state NMR (SSNMR) can be utilised to 

help understand the local structure of the materials40-42. It should be noted however that 

SSNMR is not often used as the main characterisation technique for zeolites, this challenge 

is left to X-ray diffraction. 

Microscopy, in particular scanning electron microscopy (SEM), is used to study the 

morphology, surface structure and particle size of the zeolites crystals. With SEM and its 

combination with energy-dispersive X-ray spectroscopy (EDXS) the elemental composition 

of the surface can be studied and elemental location ‘maps’ can be obtained to see if any 

incorporated elements are localised to a specific region. 

The particle size of the materials can be measured through ‘viewing’ by SEM or if the 

material is too small, as could be the case with nanosized zeolites, dynamic light scattering 

(DLS) of zeolite suspensions can be used. DLS yields a particle size distribution of all 

material within the suspension so it is important to ensure that any amorphous starting 
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materials such as silica sources are completely removed before measurements are 

performed. 

Other characterisation techniques that can be utilised are computational methods for 

modelling of reactions and for structure solving, neutron diffraction, in the same way as 

XRD, and infrared spectroscopy (IR), as it is sensitive to the zeolite type and the Si4+ to Al3+ 

ratio. 

The most important aspect of characterisation of these porous materials is the 

complementary nature of these techniques in gaining a ‘full picture’. 

 

1.4 Applications of Zeolites 

Due to the variety in terms of their crystal size, morphology and frameworks these porous 

materials have a vast selection of applications, with more being discovered every year. To 

name all of these applications would be beyond the scope of this thesis, however, the three 

main areas of application will be discussed, these are separation, ion exchange and 

heterogeneous catalysis. 

As previously mentioned, zeolites are often referred to as ‘molecular sieves’, this term 

comes from one of their common applications of separation and are frequently used to 

separate gases from each other. As the porous system of the frameworks vary in size and 

shape, these materials can be selective with regards to the molecules that pass through 

them. This means they can be used to completely remove certain molecules from a mix or 

selectively increase the concentration of another. An example of a zeolite being used for 

separation is in the case of natural gas, for which they are utilised to remove water and 

other undesirable constituents from the stream of gas43. They can also be used to treated 

polluted water to remove contaminants such as arsenic44 and ammonium cations45. 

Another common application of zeolites is that of ion exchange. As the frameworks carry a 

negative charge, due to the aluminium tetrahedra, they are capable of taking in and 

retaining a variety of different cations. One of the most widespread applications of zeolites 

being used for ion exchange is within washing powders. They are present in these 

commercially available products as water softeners which facilitate the formation of a lather. 
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This water softening is achieved by ion-exchanging Na+ in the pore system with Ca2+ and 

Mg2+ from the water46. 

Heterogeneous catalysis is another area in which zeolites are commonly used. Again, this 

is mainly due to their diverse range of shapes and size of the pore system allowing them a 

selectivity towards certain products of reaction, but also because of their ability to hold a 

variety of different molecules. As the aluminium tetrahedra carry a negative charge, the 

framework is able to carry cations, such as H+ ions. The intake of these charge balancing 

protons leads to the framework becoming highly acidic, which can then be utilised for acid 

catalysis.  One of the most common and well-known examples of a zeolite being used for 

shape selective catalysis is that of ZSM-5 in the isomerisation of xylene47. ZSM-5 is an 

aluminosilicate zeolite of the MFI type framework. Zeolite Socony Mobil-5 (ZSM-5) was 

patented in 1972 by the Mobil Oil company48 and is widely utilised in the petrochemical 

industry for isomerisation of hydrocarbons. For the catalysis of xylene isomerisation, from 

the meta to the para substituted isomer, ZSM-5 shows a shape selectivity towards the para-

xylene product over its ortho and meta counterparts47. 

 
 
 
 
 
 
 
 
 
 
 
 
 

This is due to the shape of the para isomer, having a straighter and more streamlined 

structure, allowing it to diffuse through the pores of the zeolite more quickly than the other 

isomers. Another example of ZSM-5 being used in catalysis is that in acid-catalysed 

reactions. The charge balancing protons present within the framework lead to the formation 

of Brønsted acid sites which can then be utilised for cracking, isomerisation and alkylation 

of hydrocarbons in the petrochemical industry49. 

Figure 1.8. Structure of ortho-, meta- and para- xylene. 
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New applications, and improvements to existing ones will inevitably arise from the gaining 

of a deeper understanding of these materials, their structures and how they behave. This 

thesis aims to contribute knowledge to this aspect of zeolite science. 

 

1.5 Heterogeneous catalysis 

Heterogeneous catalysis, a common zeolite application, refers to the type of reaction in 

which the catalyst and reactants are in a different phase, commonly it is the catalyst in the 

solid state, and the reactants in the gaseous or liquid state. For these reactions, adsorption 

on the catalyst surface is usually the first step, this adsorption can be in the form of either 

physisorption, in which the adsorbate is attracted to the surface via van der Waals forces, 

or chemisorption, in which the adsorbate chemically bonds to the surface. There are three 

mechanisms of catalysis that are used to describe these surface reactions; the Langmuir-

Hinshelwood mechanism50, the Rideal-Eley mechanism51 and the precursor mechanism52. 

These three mechanisms are depicted in Figure 1.9. In the Langmuir-Hinshelwood 

mechanism the reactant molecules (A and B) both adsorb to the surface, react to form the 

product (AB) and then desorb from the surface as the ‘new’ molecule (AB). The Rideal-Eley 

mechanism describes how only one of the reactant adsorbs onto the surface (A), the second 

molecule (B) then reacts with the adsorbed molecule without adsorbing to the surface itself, 

the resulting product (AB) then desorbs from the surface. The precursor mechanism, as the 

name suggests, involves the formation of a mobile precursor (MP). The first reactant 

molecule (A) adsorbs onto the surface, the second reactant molecule (B) then collides with 

the surface and forms a mobile precursor (MP), it is important to note that this does not 

involve the second molecule adsorbing to the surface and therefore results in its mobility. 

This mobile precursor (MP) then collides with the first reactant (A) adsorbed on the surface 

and the resulting product (AMP) desorbs. All three can occur in the reverse of how they are 

described and can also occur in combination with each other. 
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Heterogeneous catalysts can lose their ability to catalyse a reaction through a variety of 

processes, collectively known as deactivation53. These deactivation processes cause a 

change to the surface of the catalyst rendering it unable to adsorb as much as or any of the 

reactant molecules. A common mode of deactivation is carbon deposition, also known as 

coking, in which carbon or carbon rich substances are laid on the catalyst surface, blocking 

adsorption. Sintering of the catalyst material, in which the material is heated to the point of 

compaction but not to its melting point, can also lead to its deactivation as it results in a 

dramatic change to the surface54. Another method of deactivation is the poisoning of the 

catalyst by a compound binding to its surface e.g. sulphur55. It does so by blocking the 

surface of the catalyst to the adsorbate and again halting or diminishing reactant adsorption. 

 
 

1.6 Reforming of methane 

Methane reforming is the heterogeneously catalysed process by which hydrogen is 

produced. The production of hydrogen is a valuable process as it is utilised in many ways, 

including the Haber process for the production of ammonia and for use in combination with 

fuel cells to generate electricity56. 

The most common method of hydrogen production is the reforming of methane with steam, 

known as steam reforming57. Other methods of reforming can also be used, such as dry 

Figure 1.9. Depictions of the catalysis mechanisms 1. Langmuir-Hinshelwood 2. Rideal-

Eley 3. the precursor mechanism. Where A and B are precursor molecules, AB is a 

product molecule, MP is a mobile precursor and AMP is a product molecule. 
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reforming of methane with carbon dioxide58 and partial oxidation (POx) of methane in the 

presence of oxygen59. These reactions result in the formation of synthesis gas (syn-gas), a 

variable mixture of hydrogen and carbon monoxide. 

In comparison to other hydrogen production methods mentioned, steam reforming yields 

the largest H2:CO ratio which is very clearly beneficial. The equations of reaction for steam 

reforming and steam reforming with an excess of steam are shown below in Equations 1.2 

and 1.3 respectively. 

 

   CH4 + H2O ⇌ CO + 3 H2  Equation 1.2 

   CH4 + 2 H2O ⇌ CO2 + 4 H2  Equation 1.3  

 
 

As an endothermic process, steam reforming occurs at a high temperature, which can lead 

to methane decomposition and therefore carbon deposition. An excess of steam is often 

used for these reactions to drive the formation of hydrogen, to limit coking and to push the 

equilibrium of the water-gas shift reaction to the hydrogen formation. This excess of steam 

does however lead to the evolution of carbon dioxide gas which has a negative impact on 

the environment. 

Dry reforming of methane involves the utilisation of carbon dioxide to reform methane into 

syn-gas, shown in Equation 1.4. This utilisation of carbon dioxide is extremely favourable 

as it consumes two greenhouse gases, CO2 and CH4, simultaneously. The mixture of 

methane and carbon dioxide is commonly referred to as biogas as it results from the 

degradation of organic matter in an oxygen deficient environment. As with steam reforming, 

dry reforming is an endothermic process and therefore has the same issue with high 

operating temperatures and carbon deposition. The reverse water-gas shift reaction, 

Equation 1.5, can occur if the concentration of carbon dioxide in the biogas is too high, 

which leads to a lesser yield of hydrogen. The Boudouard reaction, Equation 1.6, occurs 

when there is an excess of carbon monoxide present, which leads to the formation of carbon 

dioxide and elemental carbon. The carbon then leads to the deactivation of the catalyst. 
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CH4 + CO2 ⇌ 2 CO + 2 H2  Equation 1.4 

CO + H2O ⇌ H2 + CO2  Equation 1.5 

2 CO ⇌ CO2 + C   Equation 1.6 

 
The partial oxidation (POx) of methane, Equation 1.7, can also be utilised for hydrogen 

production, however it requires the correct ratios of reactants to be present, otherwise 

combustion will occur, also known as total oxidation (TOx), Equation 1.8. A hydrogen rich 

synthesis gas results from the successful partial oxidation of methane. 

 

CH4 + ½ O2 ⇌ 2 H2 + CO  Equation 1.7 

CH4 + 2 O2 ⇌ 2 H2O + CO2  Equation 1.8 

 

Unlike the other methane reforming reactions, POx is exothermic and occurs at lower 

temperatures, however at these lower temperatures TOx of methane becomes more 

favourable over the POx. 

 

 

1.7 Zeolite catalysed methane reforming 

Previous work with the use of zeolites as catalysts on the reforming of methane has mainly 

focussed around dry reforming. Commonly, only an equal ratio of methane to carbon dioxide 

is used and the reaction is studied at one stable temperature. Works by Frontera et al.60,61 

study Silicalite-1, the all silica form of the MFI framework. They determined that the silylation 

of the support surface leads to a higher percentage conversion of the methane and carbon 

dioxide which in turn leads to the limiting of coking and catalyst deactivation.  

Halliche et al.62 studied the dry reforming of the materials using ZSM-5 (described in 

Chapter 4), USY and mordenite at various temperatures between 400 °C and 700 °C. They 

determined that the catalytic performance improved on the increase of the CO2 to CH4 ratio 

above 1. 
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The study by Izquierdo et al.63 carried out methane reforming testing of Zeolite L, Ni 

monometallic catalysts and rhodium-nickel bimetallic catalysts. They studied dry reforming, 

steam reforming, partial oxidation, as well as tri-reforming, which combines all three 

techniques. They determined that dry reforming is best suited when the aim is to convert all 

the CO, and that the nanosized, 30-60 nm, Rh-Ni Zeolite-L material is “a promising catalyst”. 

From the literature it is clear that more investigations into zeolite catalysed reforming is 

needed64,65. Limited work into the partial oxidation and the effect of the zeolite size and type 

could be mean that a better performing and more efficient catalyst could remain 

undiscovered. 

 

 

1.8 Aims and Objectives of the study 

The aim of the work presented in this thesis is to further understanding into the 

synthesis mechanism of the nanosized zeolites and to utilise the knowledge gained 

to aid in the application of these nanosized zeolites in the reforming of methane. 

This aim can be broken down into several key objectives: 

1. To show that the nanosized MFI type zeolite material can be successfully 

synthesised using a different structure directing agent than in previous 

studies. 

2. To compare the use of two structure directing agents to gain a further 

understanding into the mechanism of formation of these nano sized zeolites. 

3. To apply these MFI type nano sized zeolites to the catalysis of methane 

reforming and compare them with their micron sized counterparts. 

4. To study the effect of the change in zeolite type on the catalysis of methane 

reforming, utilising the zeolite types MEL and MTW. 
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2.0 Synthesis of high-silica zeolites 

2.1 Synthesis of all-silica MFI 

2.1.1 Introduction 

The MFI framework is one of the most commonly studied zeolite framework types. It has 

been shown that a variety of different structure directing agents (SDAs) are able to direct 

its formation1,2 and is able to be formed via a number of different synthesis methods1,2,3. 

Previous work by Fyfe et al. 20083, has shown that the tetrapropylammonium (TPA) salt 

can be used to form the nano-sized MFI zeolite under clear solution reaction conditions. As 

previously mentioned in Chapter 1.2, the mechanism of formation of the MFI framework is 

under considerable debate. The use of a different SDA could provide new insight into this 

mechanism. Brace et al.2 showed that a methyl tributylammonium (MTBA) salt can 

successfully yield the MFI framework, this template was therefore chosen alongside the 

TPA salt to use as a comparison. 

 

 

 

 

 

 

 

 

In this work the aim was to utilise the clear solution method to synthesise the nano-sized 

MFI framework with using two different SDAs, during which samples were to be taken at 

specific times during the reaction to allow the characterisation of each reaction over time. 

 

2.1.2 Structure directing agents for MFI synthesis 

As tetraethylorthosilicate (TEOS) is used for clear solution syntheses it was necessary to 

have the SDAs in their hydroxide forms to allow the hydrolysis of the tetraethyl orthosilicate 

+ 

+ 

1. 2. 

Figure 2.1 The structures of MFI SDA cations 1. TPA 2. MTBA 
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(TEOS).  The two quaternary ammonium cations chosen are both commercially available 

so it was not necessary to synthesis either, however only TPA was available to purchase in 

its hydroxide form. MTBA Cl was ion-exchanged using Ambersep 900 OH resin to form 

MTBA OH, yielding a final concentration of 0.98 M. 

 

2.1.3 Hydrothermal synthesis of the F-MFI framework 

For comparative reasons, a high-resolution sample of the MFI framework was needed. As 

fluorinated zeolites give the most resolved peaks for X-ray diffraction it was decided an F-

MFI framework would be synthesised. 

MTBA Cl (3.18 M ,4.05 g), NH4F (0.63 g) and deionised H2O (2.10 g) was placed in a teflon-

liner. Fumed silica (1.0 g) was then added and mixed until homogenous. This liner was then 

sealed and placed in an autoclave at 180 °C for 6 days, after which the resulting solid was 

collected via centrifugation and dried in a 60 °C oven. 

The resulting X-ray diffraction pattern showed well resolved peaks indicative of the MFI 

framework. 

 

2.1.4 Clear solution synthesis of nano-sized MFI zeolites 

This method was adapted from Fyfe et al. 20083. The clear solution syntheses 

containing TPA and MTBA were carried out simultaneously, which allows for any external 

factors, such a laboratory temperature, to be nullified when the reactions are compared. 

Table 2.1 shows the quantities of reagents used in each. For each reaction, the SDA and 

the deionised water were weighed directly into a 50 mL round bottomed flask. The TEOS 

was then added dropwise, whilst stirring, to avoid the reaction mixture gelling. Once 

combined the solution was left to stir at room temperature for 24 hours before being 

equipped with a reflux condenser and heated to 95 °C for 2 weeks. Even though the reaction 

was not fully at reflux, a condenser was required to limit the loss of water from the reaction 

mixture. 
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Table 2.1. Quantities of each reagent for the clear-solution syntheses. 

Reagent 
Quantity used for the 

TPA reaction 

Quantity used for the 

MTBA reaction 

TPA OH (1.0 M in water) 13.98 g - 

MTBA OH (0.98 M in water) - 13.91 g 

Deionised H2O 10.52 g 10.47 g 

TEOS (reagent grade solution) 7.56 g 7.53 g 

 

For both syntheses, timepointed samples of the reaction mixture were taken to allow the 

reaction to be characterised over time. These samples, 1 mL each, were pipetted straight 

from the reaction vessel, placed in a microfuge tube and placed in freezer to stop the 

reaction progressing any further. In total, 24 samples were taken for the reactions. They are 

referred to in relation to their time, in hours, when they were sampled from the reaction 

mixture. The 0 hour samples indicate samples that were taken before heating but after the 

24 hour long room temperature stir. The timepointed samples are listed below: 

0, 24, 30, 45, 52, 67, 75, 91, 100, 115, 123, 139, 148, 163, 172, 187, 195, 215, 240, 260, 

284, 309, 315, 336 (hours). 

After all samples were collected, they were allowed to thaw and any solid that had formed 

was collected via centrifugation, 16000 rpm for 15 minutes. The resulting solid was then 

oven dried at 60 °C and then characterised using a variety of different techniques, described 

in Chapter 3. 

 

2.1.5 Synthesis of MFI-type zeolite catalysts 

To allow catalytic testing to be carried out on these materials, as with many catalysts, they 

were first required to be ‘doped’ with a catalytically active metal. In this case nickel was 



 

26 
 

chosen due to its well established activity for catalysis4 but also for its cost in relation to 

other active metals such as platinum and palladium. 

The aim of these syntheses was to form a Ni containing material in the micrometer and 

nanometer size range to allow for a comparison of catalytic activity versus particle size. As 

mentioned in Chapter 1, it was postulated that the smaller particle size would minimise 

diffusion limitations within the material and therefore increase the efficiency of catalysis. 

The nano-sized sodium containing material was synthesised using the clear-solution 

method using the same ratios of reagents as with the timepointed synthesis (Chapter 2.2.4), 

however also incorporating sodium chloride (0.21 g), which was dissolved in the deionised 

water before being added. The reaction was heated to 95 °C for 2 weeks. 

The micron-sized sodium containing material was synthesised using the hydrothermal 

method used for the F-MFI framework. As the silicon source was fumed silica, the SDA was 

not required to be in the hydroxide form. MTBA Cl (3.18 M, 0.785 mL), NaOH (9.13 mL, 1 

M) and deionised H2O (35.1 g) was mixed together in a teflon-lined stainless steel 

autoclave. Once mixed, fumed silica (5.0 g) was added slowly and stirred until a 

homogeneous reaction mixture was yielded. The autoclave was then sealed and heated at 

150 °C for 4 days. 

Once both reactions had gone to completion, the resulting white solids were collected via 

centrifugation and oven dried at 60 °C. The yielded sodium containing samples were then 

characterised via X-ray diffraction to ensure the MFI framework had been formed. 

As catalysis requires the channels of the zeolite framework to be empty, the structure 

directing agents occluded in the channels had to be removed. The samples were calcined 

under a flow of oxygen for 3 hours at 450 °C.  

Once cool approximately 1.0 g of the calcined material was placed in a Ni(NO3)2 solution 

(0.05 M, 100 mL) and stirred for 3 hours. This was repeated three times, each time with a 

‘fresh’ quantity of nickel nitrate to ensure the maximum amount of ion exchanged between 

the material and the solution. In this step, the sodium was exchanged for nickel in the 

solution. The replacement of the nickel solution allowed the equilibrium formed between the 

materials to be ‘reset’ and allowed more nickel to be ‘doped’ into the zeolite samples. The 
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samples were recovered via centrifugation, washed with deionised water to remove excess 

nickel on the zeolite surface and dried in a 60 °C oven.  

These nickel containing samples were then tested for their methane reforming capabilities 

as described in Chapter 3.4. 

 

2.1.6 Conclusions 

Two structure directing agents were utilised to yield 24 timepointed samples of a nano-sized 

MFI zeolite reaction. These samples were then characterised as described in Chapter 3, to 

allow further insight into the mechanism of formation of the zeolite framework. 

A fluorine containing MFI framework has been synthesised to give a standard sample for 

comparison. 

Two nickel containing all silica MFI-type zeolites have been synthesised, via an intermediate 

sodium containing zeolite. The sodium containing material will act as a control sample for 

the catalytic testing described in Chapter 3. The Ni containing materials were tested for their 

methane reforming capabilities as described in Chapter 3. 

 

2.2 Synthesis of high-silica MEL 

2.2.1 Introduction 

As the MFI and MEL frameworks commonly occur as intergrowths a logical comparison for 

MFI zeolite catalytic activity is the MEL type zeolite. The synthesis method used, adapted 

from the 1984 patent by Valyocsik5, incorporates a small amount of aluminium into the 

framework and utilises commercially available 1,8-diaminooctane as the SDA. The MEL 

nickel containing catalyst is formed via a potassium containing intermediate, as opposed to 

the sodium containing intermediate used in the MFI catalyst synthesis. 

 

 

 

 

Figure 2.2 The structure of the MEL template 1,8-diamino octane. 
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2.2.2 Synthesis of an MEL-type zeolite catalyst 

As with the micron-sized MFI zeolite mentioned previously, the hydrothermal method was 

used to in the synthesis of the MEL-type catalyst. 

Al(OH)3 (0.3 g) in deionised water (3 mL), KOH (0.675 g) in deionised water (3 mL), 1,8-

diaminooctane (1.74 g) in deionised water (4.5 mL) and a 40 % Silica solution (6 mL) in 

deionised water (4.5 mL) was mixed until homogenous in a teflon-lined stainless steel 

autoclave. Once stirred, the autoclave was sealed and placed in a 160 °C oven for 14 days. 

After which the resulting precipitate was collected via centrifugation and dried in a 60 °C 

oven. The resulting XRD pattern confirmed the successful formation of the MEL framework. 

As with the MFI catalysts, the SDA was removed from the channels of framework via 

calcination under a flow of oxygen at 450 °C for 4 hours. Once cooled, the potassium within 

the framework was ion-exchanged for nickel using Ni(NO3)2, as in section 2.1.5. 

 

2.2.3 Conclusion 

A nickel containing MEL zeolite catalyst was synthesised. Unlike the MFI catalyst 

synthesised in the previous section, the MEL catalyst was formed via a potassium 

containing intermediate. This Ni ‘doped’ material was tested for its methane reforming 

capabilities as described in Chapter 3. 

 

2.3 Synthesis of high-silica MTW 

2.3.1 Introduction 

The MTW framework type was chosen as it is also a ‘five-rings’ zeolite like the MFI and 

MEL types previously. The synthesis method chosen was adapted from the Larlus et al6 

paper, describing a synthesis for zeolite beta (type code BEA) which resulted in the reliable 

formation of MTW, utilising the hydrothermal method to yield an all-silica framework. In the 

same manner as the MFI catalysts, the MTW counterpart was synthesised via a sodium 

containing intermediate. Prior to the zeolite synthesis, the structure directing agent 4,4’-
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trimethylenebis (N-methyl, N-benzyl piperidinium) hydroxide, hereby referred to as 

TMP(OH)2, was synthesised.  

 

 

 

 

 

2.3.2 Synthesis of TMP(OH)2 

The preparation for TMP(OH)2 was taken from Larlus et al. 20115, and proceeds via first 

synthesising TMPBr2. 4,4’-trimethylenebis (1-methylpiperidine) (12.02 g) in acetone (50 mL) 

was placed in a round bottom flask and cooled in ice before being mixed with ice cooled 

benzyl bromide (17.10 g) in acetone (100 mL). The reaction, equipped with a reflux 

condenser, was heated overnight at 50 (°C). The resulting solid was recrystallised in 

acetone and ethanol with a small amount of diethyl ether to recover the product. This 

TMPBr2 was then dissolved in deionised water (100 mL) and treated with Ambersep 900 

OH resin to yield the final product TMP(OH)2 with a concentration of 0.59 M in respect to 

the hydroxide ions. 

 

2.3.3 Synthesis of an MTW-type zeolite catalyst 

The synthesis of the nickel containing MTW-type catalyst was taken from the Larlus et al.5 

paper, achieved through the use of the hydrothermal method, as with the MFI and MEL 

catalysts. 

TMP(OH)2 (1.816 g, 0.59 M) NaCl (0.016 g) and deionised water (7.5 g) were placed in a 

teflon-lined stainless steel autoclave. Fumed silica (1.0 g) was then stirred into the solution 

until homogenous, after which the autoclave was sealed and placed in a 150 °C oven for 

14 days. The resulting white precipitate was collected via centrifugation and dried in a 60 

°C oven. 

Figure 2.3 The structure of the MTW SDA TMP cation (Taken from Hould et al.7). 
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The sample was then calcined to remove the SDA from within the framework channels. This 

was again achieved by heating the sample under a flow of oxygen. Unlike the catalysts 

mentioned in the Chapter, the MTW catalyst required a higher temperature to fully removed 

the SDA. This was determined via a colour change of the sample from white to orange after 

the initial calcination at 450 °C, indicating that the SDA had burnt but not fully driven out of 

the sample. The remaining SDA removed after subsequent heating to 650 °C for 3 hours. 

Once cooled the sodium in the framework was ion-exchanged out for nickel, using Ni(NO3)2, 

was described in section 2.1.5. 

 

2.3.4 Conclusion 

A nickel containing MTW zeolite catalyst was synthesised via a sodium containing 

intermediate. This Ni ‘doped’ material was tested for its methane reforming capabilities as 

described in Chapter 3.4. 

 

2.4 Conclusions 

Four different structure directing agents have been utilised to yield three different zeolite 

types. 

Two timepointed nano-sized MFI reactions were carried out for comparative reasons and 

to give further insight into the mechanism of formation of the MFI framework. An F-MFI 

framework has also been synthesised to allow for a comparison for the timepointed 

samples. 

Four nickel containing zeolite catalysts have been synthesised to allow for testing of their 

methane reforming capabilities, described in Chapter 3.4. These catalysts were made via 

either a sodium or potassium containing intermediate. After calcination, this sodium or 

potassium was then ion-exchanged out to yield the final nickel containing materials. 
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3.0 Methodology 

3.1 X-Ray Diffraction (XRD) 

3.1.1 X-ray diffractometer 

X-ray diffraction patterns were obtained using a Bruker D8 Advance X-ray Diffractometer, 

containing a CuKα radiation source with a wavelength of 1.5418 Å at 40 KV and 40 mA tube 

voltage and current respectively. Diffraction patterns for the zeolite samples were collected 

using two different ‘stages’.  

The Bruker ‘flipstick’ flat plate sample changer stage allows the user to queue up to nine 

samples at a time. Ground samples were placed in a sample holder, with a 1 cm depth and 

2.5 cm diameter, and compacted using a glass slide to yield a smooth surface. The 2-theta 

scan range was 5-60°, with a step size of 0.07° and a dwell of 4 seconds. 

The capillary stage only allows only one sample at a time, which does not allow for queueing 

of samples. This stage was used to yield diffraction patterns at lower angle, for sample in 

lower quantity, and timepointed samples still in solution. The samples were placed in 1.0 

mm diameter capillaries which were then sealed with molten wax. The samples were 

analysed in the 2θ range of 0.5° to 25°, with 0.4 mm slits and a step size of 0.03°. 

 

3.1.2 X-ray diffraction theory 

X-ray diffraction utilises the unique crystal structure of individual materials to allow their 

structural characterisation. The crystal structure of a material is most easily described in 

relation to the simplest three-dimensional repeating unit, known as the unit cell. These unit 

cells are defined by their lattice parameters i.e. the length of the three edges a,b,c and the 

size of the three angles α, β, γ. Each unit cell can be grouped into one of seven crystal 

systems, shown in table 3.1. Within each unit cell are lattice points, where it is likely to find 

an atom. It is from the electron cloud of these atoms that X-rays are scattered. 
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Crystal System Edges Angles 

Cubic a = b = c α = β = γ = 90° 

Tetragonal a = b ≠ c α = β = γ = 90° 

Orthorhombic a ≠ b ≠ c α = β = γ = 90° 

Monoclinic a ≠ b ≠ c α =  γ = 90° β ≠ 90° 

Rhombohedral a = b = c α = β = γ ≠ 90° 

Hexagonal a = b ≠c α = β = 90° γ = 120° 

Triclinic a ≠ b ≠ c α ≠ β ≠ γ 

 

The X-ray beam used for diffraction is collimated and of a single wavelength, produced from 

the bombardment of a Cu target by high energy electrons and the use of a crystal 

monochromater. These X-rays are then directed to the sample, where some will pass 

straight through, whilst others will be scattered from electrons within the material. When a 

beam is reflected from a plane, the angle of incidence and reflectance are the same. If 

another beam is also reflected but this time from an adjacent plane, the resulting scattered 

X-ray will interact with its counterpart from the nearby plane. This interaction is either 

constructive or destructive interference, depending on the relative phase of each beam. 

This is known as Bragg’s theory1. 

 

 

 

 

 

 

 Figure 3.1. Bragg diffraction from a set of planes with a spacing of dhkl. 

 

θ θ 

dhkl 

dhkl sinθ dhkl sinθ 

Table 3.1. Crystal Systems and their associated lattice parameters. 
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In the case of constructive interference, the extra distance travelled by one of the scattered 

X-rays is a whole number of wavelengths. Bragg theory shows that this extra distance 

travelled, nλ, is related to the lattice spacing, dhkl, and the angle of incidence, θ, by the 

following equation: 

    nλ = 2dhklsinθ    Equation 3.1. 

The letters h, k and l refer to the Miller indices assigned to a specific plane cutting the unit 

cell. Each letter is given a number to quantify the intercept of the plane with the three edges 

of the unit cell. For each plane, there will be a diffraction maximum where the constructive 

interference will be at its maximum. The Bragg equation allows the spacing between the 

planes to be calculated. For simple cubic systems, when combined with Equation 3.2 the 

Miller indices, hkl, can be assigned for each diffraction maxima, known as indexing. The 

lengths of the edges in Equation 3.2 are denoted a0, as in a cubic system all edges are of 

equal length. 

    dhkl = a0 / (√h2 + k2 + l2)  Equation 3.2. 

Miller indices are the reciprocals of the fractional intercepts the plane makes within the unit 

cell according to each length abc, i.e. notation to indicate the direction a plane cuts the unit 

cells. 

 

3.2 Dynamic Light Scattering (DLS) 

3.2.1 Methodology 

The particle sizes of the timepointed nano- and micron- sized all-silica MFI samples were 

measured using a Malvern Instruments Zetasizer Nano ZS, capable of detecting particles 

in the size range 0.3 nm to 10 µm. A representative spread of the timepointed samples were 

chosen for particle sizing to limit analysis time, these were; 30, 52, 91, 123, 163, 195, 284 

and 336 hours. Prior to any measurements, all samples were filtered using a 0.5 µm syringe 

filter to remove any large contaminants, such as dust particles, aggregates or bacteria. 
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Once filtered the samples were placed into plastic cuvettes, with a path length of 1 cm, and 

topped up with deionised water to yield a translucent suspension of particles. 

The length of each measurement is automatically determined by the Zetasizer from the 

count rate detected, with each measurement divided into a series of 10 second sub-runs. A 

typical sample will have 11 to 15 sub-runs. 

 

3.2.2 Dynamic Light Scattering theory 

Dynamic light scattering (DLS) is commonly used to determine the particle size of samples 

down to the nano-scale. It is a non-invasive technique for samples in suspension and as 

such allowed samples to be analysed and then used for further work. 

The light used for scattering is a laser, in this instance a He-Ne laser with a wavelength of 

633 nm. The scattering occurs as a result of its interaction with the electron cloud of a 

particle. The incident photon, initiates an oscillating dipole in this electron cloud which then 

results in energy being radiated in all directions, this energy is known as scattered light2. 

 

 

 

 

 

 

 

Figure. 3.2 Schematic of the Zetasizer used for dynamic light scattering measurements. 

 

As shown in Figure 3.2, the monochromatic light emitted from the laser is directed towards 

the sample contained in a plastic cuvette, with a path length of 1 cm. The resulting scattered 

light is then detected via a photon counting device from which the digital signal is then 

processed to yield the logarithmically scaled size versus intensity distributions. 
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There are many different properties of a particle that a particle sizer can measure, shown 

in Figure 3.3. These are then reported as an equivalent spherical diameter; these different 

techniques commonly give different sizes for the same sample2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 3.3 A representation of the different particle properties that can be measured to yield different 

equivalent spheres, dmin, dmax, dvol and dH. 

 
DLS measures the rate of movement of particles undergoing Brownian motion, which 

describes the random movement of particles in solution due to collisions with other particles, 

whether, that be with an equivalent or the solvent3. The random movements are influenced 

by the size of the particle, the temperature and the viscosity of the sample. The larger the 

particle the slower the particle undergoes Brownian motion. The temperature must be 

accurately known as convection currents within the sample can cause non-random 

movements. 

The velocity of this Brownian motion can be utilised to yield the particle size via the use of 

the Stokes-Einstein equation, show below. The Stokes-Einstein equation yields the 

dmin- same 

minimum length 

dmax- same 

maximum length 

dH- Same average 

diffusion coefficient 

dvol- same volume 
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hydrodynamic diameter (dH), shown in Figure 3.3, which is the equivalent sphere diameter 

of a particle that has the same diffusion rate as the particle being measured. 

 

DH = kT / 3πηD   Equation 3.3. 

where dH is the hydrodynamic diameter, k is the Boltzmann constant, T is the temperature, 

η is the viscosity, and D is the diffusion coefficient. 

 

The diffusion coefficient (D) is determined from a correlation function. In DLS, correlation is 

used to determine the time dependence of a signal from within the noise, i.e. it tracks the 

intensity of a signal over time in relation to the noise. The intercept and baseline at infinity 

from the correlation function can then be used in conjunction with an exponential expression 

to give the diffusion coefficient (D) at various times. These can then be fitted with an 

algorithm to yield the average diffusion coefficient of the sample as a whole. 

The value for D can then be used in the Stokes-Einstein equation to yield the mean particle 

size, z-average diameter (ZD). As this value is dependent upon the intensity of the scattering 

it is sensitive to larger sized contaminants such as aggregates or dust. To reduce the 

likelihood of analyses being affected by the presence of these large contaminants, samples 

should be filtered prior to any analysis. The analysis is also divided up into a set of 10 

second sub-runs to allow the effects of any contaminants to be minimised during testing. 

 

3.3 Solid State Nuclear Magnetic Resonance (SSNMR) 

3.3.1 Methodology 

All solid state NMR spectra were obtained using a Bruker Avance III HD 400 MHz 

spectrometer operating at 100.59 MHz for 13C, 400.13 MHz for 1H and 79.47 MHz for 29Si 

using 2.5 mm rotors and a spinning rate of 6 kHz. The probe used was a 2.5 mm H/X/Y 

triple resonance CP-MAS probe capable of spinning samples at rate up to 35 kHz. 13C 

chemical shifts were referenced to tetramethylsilane (TMS) using adamantane as an 
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external secondary standard. 29Si chemical shifts were referenced TMS using Q8M8 as an 

external secondary standard. Samples were packed into 2.5 mm zirconia rotors with Teflon 

end caps. 

For the 13C {1H} experiments, the CP pulse program was used with a sweep width of 

171.393 ppm, an acquisition time of 0.1 seconds, a dwell time of 29 μs and a recycle delay 

of 3 seconds. The number of scans was 4096 with 0 dummy scans. 

For the 29Si {1H} experiments, the CP pulse program was used with a sweep width of 

164.995 ppm, an acquisition time of 0.1 seconds, a dwell time of 38 μs and a recycle delay 

of 3 seconds. The number of scans was 16384 with 0 dummy scans. 

 

3.3.2 NMR Theory 

Nuclear magnetic resonance (NMR) spectroscopy is one of the most used and powerful 

tools used to characterise materials. This is due to its ability to probe the local environment 

of each atom within a molecule. From a basic point of view NMR probes energy level 

transitions for atomic nuclei within a magnetic field. NMR analysis can be carried out on 

samples in both the solution and solid state, however the latter is more complex and time 

intensive. Solution state NMR is an easily accessible technique for users of varying 

knowledge due its ability to be performed via automation and the relatively short time in 

which spectra can be obtained. Solid state NMR on the other hand cannot be performed via 

automation and therefore requires the user to have a greater knowledge of the system to 

be able to obtain meaningful results. 

Many materials, such as minerals, cannot be studied through solution state NMR due to 

their insolubility. These materials are commonly studied via X-ray diffraction, however, that 

technique does not provide the same detail into the structure of the material as solid state 

NMR does, due to its study of the local environment of nuclei rather than just the material 

in general. 
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Nuclear magnetic resonance is able to probe each nuclei as each has an inherent angular 

momentum known as spin. Each nucleus is assigned a spin quantum number denoted by 

the letter I. The spin quantum number is determined from the number of unpaired protons 

and neutrons, where protons, neutrons and electrons all have spins of ½. If the spins all 

pair up then I will equal zero, if they do not all pair then I for that nuclei will be non-zero, as 

shown in table 3.2. 

 

Spin Quantum Number (I) Nuclide 

0 12C, 16O 

1/2 1H, 13C, 15N, 19F, 29Si, 31P 

1 2H, 14N 

3/2 11B, 23Na, 35Cl, 37Cl 

5/2 17O, 27Al 

3 10B 

 

It is important to note that isotopes of the same element can have a different spin quantum 

number and that some isotopes, such as 12C and 16O, have a spin equal to zero which 

means it does not have a magnetic moment and is therefore ‘NMR inactive’. 

When placed in a magnetic field, each nuclear spin system will interact with that field, this 

interaction is known as the Zeeman interaction4. This interaction is dependent on the 

orientation of the spin system to the magnetic field, B0. This orientation dependence leads 

to a great difference in how solution and solid state NMR are conducted, see below. The 

Zeeman interaction exists for all nuclei that have a spin, I, and a nuclear magnetic moment, 

μ. The interaction leads to the formation of 2I+1 energy levels, where I is the spin nuclear 

quantum number, therefore for a spin-½ nucleus the number of energy levels created by 

the splitting is 2 and for a spin-1 nucleus 3 energy levels are present. The difference in 

energy between two energy levels is described in Equation 3.4. 

 

Table 3.2. Nuclear spin quantum numbers (I) of commonly occurring nuclides. 
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ΔEz = hγB0 / 2π   Equation 3.4. 
 

where h is Planck’s constant, γ is the magnetogyric ratio and B0 is magnitude of magnetic 

field. 

The population of these two energy levels is described by a Boltzmann distribution4 shown 

in Equation 3.5. 

Nα / Nβ = exp(-ΔEz / kT)  Equation 3.5. 
 

Where Nα and Nβ are the lower and upper energy levels respectively, k is the Boltzmann 

constant and T is temperature. 

The spin systems also have other interactions dependent on the orientation of the spin, 

such as chemical (magnetic) shielding, dipolar coupling, quadrupolar coupling and spin-

spin coupling (also known as J-coupling), however it should be noted that these interactions 

are small in comparison to the Zeeman interaction. These smaller interactions do however 

allow insight into the arrangement of atoms within a molecule. 

The resonant frequency of a nucleus depends on the gyromagnetic ratio and the strength 

of the magnetic field it sits in. Due to this, different field strengths will give different resonant 

frequencies e.g. in a 9.4 T field protons resonate at 400 MHz but in a 23.5 T field they 

resonate at 1000 MHz. However, the local environment within the molecule also has an 

effect. The chemical shielding present within the molecule leads to the effective field 

strength, Beff, on the nucleus being different to that of the magnetic field, B0.  This difference 

in the effective field strength gives rise to the chemical shift which allows the user to gain 

insight into the local structure of the molecule. 

The strong and stable magnetic field is provided by a superconducting coil of wire with a 

persistent current running through to generate a magnetic field. This superconducting wire 

is cooled in liquid helium which removes resistance and allows the current to persist without 

any need for further electrical power. To ensure the magnetic field is homogenous for 
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experimentation a set of shim coils are present which each give a different smaller spatial 

magnetic field which can be adjusted until the field is as required. The probe is fitted at the 

bottom of the bore hole and the small coil within it is responsible for the excitation and 

detection of the magnetisation. It does so by pulsing high power monochromatic 

radiofrequency radiation at the sample and then immediately switching to detection, to avoid 

any of the high-power pulse energy being picked up by the receiver. The signal detected by 

the probe is very small therefore it is amplified, through the pre-amp and then into the 

console, to a high enough level before being digitised. 

Solid state NMR requires a different approach to yield meaningful spectra. As the Zeeman 

interaction depends on the angle between the nuclear spin and the spectrometer magnetic 

field, and in the solid state molecules are in a fixed position, a range of resonant frequencies 

are expected to be seen, thus yielding a broad line. Line broadening is also a result of 

chemical shielding, dipolar interaction between nuclear spins and quadrupolar interactions. 

In the solution state the rapid tumbling of species leads to the line broadening interactions 

being averaged to zero. In the solid state this averaging does not happen which causes 

lines to be up to thousands of hertz wide, however, this line broadening can be reduced 

and/or removed by a technique known as magic angle spinning (MAS). The ‘magic angle’ 

is 54.74°, in relation to the magnetic field (B0), as shown in Figure 3.4. 

 

 

 

 

 

 

Figure. 3.4. Magic angle spinning. 

 

B0 

θ 

θ = 54.74 ° 
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This number results from the fact that the line broadening interactions, such as chemical 

shift anisotropy and dipolar interactions, depend on the geometric factor 3cos2θ-1. For these 

interactions to be successfully removed the rate at which the sample is spun must be greater 

than the effect of the interaction. 

Heteronuclear dipolar couplings are removed in SSNMR through the use of high power 

decoupling, this technique is most commonly used to remove coupling between proton 

spins and the observed nucleus. High powers are required for decoupling in the solid state 

when compared with its solution counterpart, as the dipolar couplings observed in the solid 

state are much larger than the smaller scalar couplings in solution. These high powers 

required however can be utilised to aid the sensitivity of the experiment through the use of 

cross polarisation (CP). In these experiments polarisation from an abundant, high γ nucleus 

is transferred to a dilute spin using the dipolar couplings. 

Magic angle spinning and cross polarisation are frequently used together to yield a high 

intensity and well resolved spectrum, particularly for as-synthesised high-silica zeolites. 

 

3.4 Catalyst Testing 

3.4.1 Catalytic Testing Rig Setup 

A custom built catalytic testing rig was used to carry out all catalytic testing on the Ni ‘doped’ 

zeolites. The rig can be thought of as five distinct units connected together to form one 

complete system, shown schematically in Figure 3.5. 

 The individual gas inlet feeds of helium, hydrogen, methane, oxygen, carbon dioxide and 

synthesis gas, allow each gas to be independently turned on or off. These are connected, 

via stainless steel piping, to mass flow controllers, giving the ability to control the volumes 

of each gas passing through the system. The gases are then channelled through to a 

stainless steel manifold, where they can be combined to yield the required reaction 

composition. 
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The resulting gaseous mixture was fed into a quartz reactor tube; length 240 mm, inner 

diameter 5 mm, thickness 1 mm; sitting in a brick furnace, secured using Cajon Swagelok 

fittings. The furnace consists of two hollowed out insulating bricks with heating elements 

sitting within these hollowed out sections. The heating elements are comprised of Nichrome 

wire coiled around ceramic tubes; the temperature was monitored and regulated by a k-

type thermocouple connected to a Eurotherm 818 controller. The sample (40 mg ± 0.5 mg) 

sits within the quartz reactor tube between two quartz wool plugs, to stop any movement of 

the sample as the gaseous mixture passes over it. 

The catalytic testing rig contains two four-way values allowing control of gas flow through 

two different lines; the reactive line, going through the quartz tube in the furnace, and the 

bypass line, which runs parallel to the reactive line and out to a vent. The use of two gas 

flow lines allows the reactant gas mixture to settle down before being passed over the 

catalyst, and for an inert atmosphere, of helium, to be present around the catalyst pre-

reaction. 

Once settled, the reactant gas mixture was passed over the catalyst and the resulting 

gaseous products are channelled via a glass capillary into a quadrupole mass spectrometer 

Figure 3.5. Schematic of the catalytic testing rig, highlighting the five distinct units comprising 

the system; gas inlet feeds, manifold, furnace, QMS and PC. 
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(QMS), MKS minilab. The MKS minilab used was a quadrupole mass spectrometer able to 

follow up to twelve mass fragments simultaneously. The capillary line leading to the mass 

spectrometer was heated to approximately 150 °C to ensure continued gas flow, and to 

allow quantification of the products produced. 

 

3.4.2 Catalyst Reduction 

Prior to any reaction taking place, the material must first be reduced. The reduction was 

carried out using a 10% hydrogen in helium mix, where the total flow rate was 20 mL min-1. 

The reaction carried out was a temperature controlled reduction (TPR) where the 

temperature of was increased at 10 mL min-1 up to 900 °C. The hydrogen consumption and 

water production were monitored using the QMS, with measurements being taken every 20 

seconds. The area under each of the resulting traces is proportional to the amount of nickel 

present within the material. Once the temperature reached 900 °C, the material was cooled 

under the 10% hydrogen mixture to ensure the material remains in the reduced state. 

 

3.4.3 Reforming Reactions 

Reforming reactions were carried out using a variety of gaseous mixtures and two different 

thermal conditions. 

Catalytic activity was tested using four different reaction mixtures. The partial oxidation, dry 

reforming and biogas reforming of methane were studied, along with the oxidation of 

synthesis gas, a product of methane reforming. The partial oxidation of methane was carried 

out using a 2:1 mixture of methane to oxygen. The mixture comprised 10% or 20% methane 

and 5% or 10% oxygen diluted in helium, to yield a total flow rate of 20 mL min-1. The dry 

reforming of methane was carried out using a 1:1 mixture of methane to carbon dioxide. 

The mixture comprised 5% or 10% methane and 5% or 10% carbon dioxide, diluted in 

helium, to yield a total flow rate of 20 mL min-1. The biogas reforming was carried out using 
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a 2:1 mixture of methane to carbon dioxide. The mixture comprised 10 % methane and 5% 

carbon dioxide, diluted in helium to yield a total flow rate of 20 mL min-1. The oxidation of 

synthesis gas was carried out using a 2:1:1 mixture of hydrogen to carbon monoxide to 

oxygen. The mixture comprised 10% hydrogen, 5% carbon monoxide and 5% oxygen, 

diluted in helium to yield a total flow rate of 20 mL min-1. 

As mentioned above there were two different thermal conditions used to test the catalytic 

activity; a temperature programmed reaction and an isothermal reaction. For temperature 

programmed reactions, the reaction profile was monitored for both increasing and 

decreasing temperature. The temperature was increased at 10 °C min-1 up to 900 °C and 

then decreased at 5 °C min-1 to 200 °C or until the reaction has stopped. Measurements 

were taken every 12 seconds to yield an accurate reaction profile. The reaction was 

monitored for both the increasing (forward) and decreasing (reverse) temperature to 

elucidate any hysteresis effects. For isothermal reactions, the reaction profile was 

monitored at a constant temperature to elucidate the stability of the catalyst for a particular 

reaction over time. The temperature for the isothermal reactions was chosen from the 

reaction profile obtained in the temperature programmed reaction for the same material and 

the same reaction mixture. The reactant mixture was passed through the bypass line to 

allow the gases to settle and so the furnace could reach the desired temperature. The 

reactant mixture was then passed over the catalyst and left for the desired amount of time. 

Measurements were taken every minute to yield a reaction profile over time. 

 

3.4.4 Catalyst Oxidation 

Post reaction, an oxidation was performed to ascertain how much carbon had been 

deposited on the catalyst surface. The temperature programmed oxidation (TPO) was 

carried out using a 10% oxygen in helium mix, where the total flow rate was 20 mL min-1. 

The production of carbon dioxide and carbon monoxide was monitored using the QMS, with 

measurements being taken every 20 seconds, where the area under the traces is 



 

47 
 

proportional to the amount of carbon deposition. A standard carbon curve was setup, from 

known masses of carbon, to allow a mass of carbon to be obtained. It should be noted that 

the masses obtained are only that of the ‘observable’ carbon, which is dictated by the limits 

of the mass spectrometer, and therefore it is conceivable that there is a small amount of 

additional carbon not reported. 

 

3.4.5 Control Samples 

The intermediate samples of the Ni catalyst syntheses were tested for their methane 

reforming capabilities to ensure that the catalytic activity was due to the ‘doping’ of the 

zeolite framework with nickel. For the MFI and MTW materials, the sodium containing 

intermediates were tested and for the MEL material the potassium material was tested. In 

addition to the control zeolite samples, the catalysis of the quartz tube and quartz wool were 

tested. For all control samples mentioned, no catalytic activity was observed, therefore 

confirming that the catalysis observed in this study is due to the presence of the nickel in 

the zeolite framework.  

 

3.4.6 Mass Spectrometry 

Mass spectrometry is a very common characterisation technique and due to its high 

sensitivity, it can be utilised in many different ways. 

As part of the analysis, a mass spectrometer carries out three basic functions; to produce 

gaseous ions, to separate those ions and then to detect and record their abundance. 

Compounds entering the spectrometer for analysis are first converted into gas phase ions. 

The spectrometer used for the catalytic testing produces these gas phase ions through 

electron ionisation. These ions are formed via the electron bombardment of the sample, 

with electrons produced from a heated filament. This bombardment produces a molecular 

radical cation with an odd number of electrons. 
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The molecular radical cations resulting from the initial electron bombardment then 

undergoes fragmentation to form either an ion, with an even number of electrons, and a 

radical or a new molecule and a radical cation.  

 

 

 

 

 

 

These new species can then in turn undergo further fragmentation, to yield progressively 

smaller species. This fragmentation pattern is unique to each parent molecule and each 

fragment will have a distinct mass to charge ratio. Once detected, the resulting spectrum of 

the mass to charge ratios from each fragment is akin to a fingerprint for each parent 

molecule. 

The mass spectrometer used as part of the catalysis rig was a quadrupole mass 

spectrometer able to follow up to twelve gas fragments simultaneously. Quadrupole mass 

spectrometers are named due to the nature of the mass analysers within them. These 

quadrupole mass analysers, as the name would suggest, consist of four electrically 

conducting parallel rods, where the opposite pairs of electrodes are electronically 
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Figure 3.6. Electron bombardment of a molecule producing a molecular radical cation. 

Figure 3.7. Fragmentation of the molecular radical cation forming either an ion and a radical or 

a new molecule and a radical cation. 
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connected5. The pairs of rods are oppositely charged whereby the rods of the same charge 

are spatially opposite each other, as shown in Figure 3.8. Each pair of rods has a direct 

current (DC) and radio frequency (RF) field applied to it. As quadrupoles rely on the ion’s 

trajectory stability to separate them by their mass to charge ratios (m/z) the rods must be 

perfectly parallel5. 

 

 

 

 

 

 

 

 

The ions, resulting from the electron bombardment and subsequent fragmentation, are 

channelled through the quadrupole. These positively charged ions are drawn towards the 

negatively charged rods. As they approach the rod there are two possibilities, the first is 

that the ions continue this path, where they eventually collide with the rod and are 

subsequently discharged. The second possibility is again these ions are drawn towards the 

negatively charged rods, however, if the RF field switches before the ion is discharged, it 

will change direction, back towards the central space between the rods. Ions that are able 

to pass through the quadrupole without being discharged, will reach the detector. The 

applied DC and RF voltages can be used in two ways, either to focus on an ion with a 

particular m/z or to continually scan for a range of m/z values by varying the voltage. 

The ions that successfully travelled through the quadrupole will then reach the detector. In 

mass spectrometry ions are detected by; their charge, their mass or their velocity. The 

_ _ 
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Figure 3.8. A schematic of a quadrupole analyser, showing the four parallel rods with opposing 

charges in the different planes.  
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detector in the mass spectrometer used in this work has a dual system utilising both a 

Faraday cup and a secondary electron multiplier (channeltron). In a faraday system the ions 

from the quadrupole strike the surface of a dynode which then emits electrons and 

generates an electrical current, which is in turn amplified and detected. This type of dynode 

is a conversion dynode where the ion collision is directly converted to a current. With a 

secondary multiplier, in this case a channeltron, the ions collide with a continuous curved 

amplification dynode where there is an emission if secondary particles, including both 

positive and negative ions, electrons and neutrals5. These secondary particles are then 

either attracted to the conversion dynode to create a current or to the continuous dynode 

from which a cascade of electrons is produced. This cascade results in an amplification of 

the signal up to magnitudes of 107, which is then collected by a metal anode and the current 

measured. 
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4.0 Synthesis and Characterisation of Nanosized MFI types 

Zeolites 

4.1 Introduction 

The MFI framework type was first reported in 1972 by the Mobil Oil company1, in its 

aluminosilicate form, known as ZSM-5 or Zeolite Socony Mobil-5. In 1978 Flanigen et al2. 

reported its all silica analogue Silicalite-1. 

The MFI framework is formed via the linkage of the pentasil five membered ring unit, and 

due to such it is part of the family of zeolites with the same name, the pentasil family, where 

this linkage is characteristic. It also part of the group of zeolites known as ‘five-rings’ where 

each zeolite is comprised of five-member ring linkage, but not exclusively the pentasil unit. 

  

 

 

 

 

 

Figure 4.1. Framework structure of MFI, where red atoms are oxygen and yellow atoms are silicon, 

viewed down the (010) plane. 

 

At room temperature the MFI material has orthorhombic framework symmetry with a Pnma 

space group and cell parameters a = 20.07 Å, b = 19.92 Å, c = 13.42 Å and α=β=γ= 90 °. 

The pore system within this framework is composed of two perpendicular 10 membered 

ring channels; a straight channel parallel to the (010) plane and a sinusoidal (zig-zag) 
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channel parallel to (100) plane3. It is at this intersection of these two channels that the 

structure directing agent sits, as shown in Figure 4.2. 

  

 

 

 

 

Figure 4.2. Schematic of the SDA cation within the MFI channel intersection, viewed down the 

straight channel. The dashed red lines outline the zig-zag channel. Taken from Fyfe et al. 20084. 

  

As previously discussed in Chapter 1.0, structure direction and the understanding of such, 

plays an important role in efficiently utilising zeolites for a variety of applications. Zeolite 

catalysis is a particular focus for improvement in terms of efficiency of the catalysis and also 

the synthesis of the catalyst itself. 

It is thought that the reduction of the catalyst particle size leads to a reduction of the diffusion 

limitations within the material, giving rise to more efficient catalysis. It is therefore vital to 

understand the process by which this smaller sized material forms. Previous work has been 

carried out into the mechanism of formation of nanosized zeolites, leading to a significant 

debate amongst many groups, discussed in Chapter 1.2. As such there is a needed to 

contribute knowledge to allow a further understanding. 

Previous work with the nanosized MFI type zeolite has focused on using the 

tetrapropylammonium (TPA) cation for structure direction4, however it has been shown 

numerous times that multiple SDAs can be used to obtain the micron sized crystals with the 

MFI framework5,6. Therefore, using one of these alternate SDAs for nanosized synthesis 

may yield an improved material for catalysis or have a more efficient synthesis pathway.  

z 
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For the purpose of this study, the methyl tributylammonium (MTBA) cation was chosen as 

it is not dissimilar in size to the commonly used TPA cation and has been proven many 

times to be effective in yielding the MFI framework, albeit on a micron scale. 

 

4.2 Aims 

The aims of this study were to first show that the MTBA directed nanosized MFI framework 

could be synthesised using an alternate SDA, and then in turn utilise this synthesis in 

comparison with the TPA cation directed synthesis to allow insight into the mechanism of 

formation. 

The comparison would be carried out utilising the ‘timepointed’ synthesis method and 

analysis carried out using a variety of characterisation techniques to yield a large amount 

of data to contribute to the mechanism debate. 

 

4.3 Synthesis of nanosized MFI 

The nanosized MTBA templated MFI material was synthesised via the clear-solution 

method, discussed in Chapter 2. The presence of the MFI framework was confirmed via X-

ray diffraction analysis, shown in Figure 4.3. As the fluorinated (F-MFI) material is known to 

give the most resolved powder pattern, due to the limiting of the number of framework 

defects when using fluoride as a mineraliser, it was used as a comparison with the 

synthesised nanosized material to confirm the presence of the MFI framework. The 

simulated powder pattern from the International Zeolite Association (IZA) database3 was 

also used as a comparison to ensure that all peaks could be accounted for. 
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Figure 4.3. Powder pattern of the nano MTBA MFI zeolite with the F-MFI powder pattern and 

simulated IZA3 pattern for comparison. 

 

This clearly shows that a nanosized MFI zeolite can synthesised from clear solution using 

the MTBA cation as a structure directing agent. The resulting material gives a well resolved 

powder pattern, showing that the material is crystalline. 

The timepointed samples, synthesis described in Chapter 2, from the MTBA and TPA cation 

templated reactions were characterised by capillary X-ray diffraction, solid state NMR and 

dynamic light scattering. These analyses allowed the reactions to be followed over time and 

gave further insight into the mechanism of formation of these nanosized zeolites and the 

effectiveness of each template to form the MFI framework. 

 

4.4 Capillary XRD studies 

The capillary X-ray diffraction analysis, and the preparation of samples for such, was carried 

out as described in Chapter 3.1. The advantage of using the capillary stage for powder 

diffraction over the standard sample holder is that lower angles can be investigated and 
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also small amounts of samples can be investigated which would otherwise not be suitable 

for the standard powder sample holders. For the purposes of clarity, only the Bragg region, 

between 7.5° and 9.2° of the powder patterns will be shown. The two peaks found within 

this region are diagnostic of the formation of the MFI framework, focussing on this region 

therefore allows slight changes between each timepointed sample to be seen. 

 

4.4.1 TPA mediated reaction XRD results 

The stacked plot of the Bragg region for the TPA mediated MFI material is shown in Figure 

4.4. 

 

Figure 4.4. Stacked powder patterns of the Bragg region for the TPA mediated timepoint samples. 

 

The TPA mediated reaction shows the presence of low intensity Bragg peaks from the 24 

hour timepointed sample. The occurrence of such indicated that there a small amount of 

crystalline MFI material present from early on in the reaction. These Bragg peaks increase 

in intensity over time showing the presence of a larger amount of crystalline material in the 

samples. 
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The full width at half maximum (FWHM) values for both Bragg peaks as a function of time 

are shown in Figure 4.5. 

 

Figure 4.5. FWHM values of the Bragg peaks at 7.9° and 8.8° for the TPA mediated reaction vs time. 

The FWHM data shows that the TPA mediated reaction has a rapid increase in rate from 

the 0 hour timepoint until the 30 hour timepoint. After which the reaction rate remains 

relatively steady until the final timepoint is taken. 

 

4.4.2 MTBA mediated reaction XRD results 

The stacked plot of the Bragg region for the MTBA mediated MFI material is shown in Figure 

4.6. 
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Figure 4.6. Stacked powder patterns of the Bragg region for the MTBA mediated timepoint samples. 

  

The MTBA mediated reaction shows the presence of Bragg peaks from the 30 hour 

timepointed sample, later than the TPA mediated synthesis. This indicates that the MFI 

framework is not formed in the reaction mixture until around 30 hours. These Bragg peaks 

again increase in intensity over time, showing that the MFI framework is still being formed 

even at the later timepoints. 

The full width at half maximum (FWHM) values for both Bragg peaks as a function of time 

are shown in Figure 4.7. 
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Figure 4.7. FWHM values of the Bragg peaks at 7.9° and 8.8° for the MTBA mediated reaction vs 

time. 

The FWHM data shows that the MTBA mediated reaction has a rapid increase in rate of 

reaction from the 24 hour timepoint to the 30 hour timepoint. After which, much like the TPA 

mediated reaction, the rate is relatively stable until the final timepoint.  

 

4.4.3 Conclusions and comparisons of the XRD results 

These results indicate that as the MFI framework Bragg peaked are observed in the TPA 

mediated reaction before the MTBA mediated reaction, the TPA cation is able to form the 

MFI framework more quickly than the MTBA cation. 

The FWHM values for both SDA mediated reactions remained relatively stable over time, 

however on examination of the powder patterns it is clear that the peaks observed are 

becoming more resolved as the reactions progress. This stability in FWHM values could be 

attributed to the presence an amorphous material with small amounts of crystalline material 

progressing to a completely crystalline material, as shown in Figure 4.8. 
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Figure 4.8. A representation of the postulated composition of the timepointed samples taken in the 

nanozeolite syntheses. 

The suggested material compositions shown in Figure 4.8 would give rise to similar FWHM 

values for the observed Bragg peaks. The lower timepointed composition would result is a 

less intense and broad peak, whereas the high timepointed composition would result in a 

more intense and more resolved peak. This theory would be in favour of a spontaneous 

crystalline mechanism of formation as opposed to the proposed aggregative mechanism7-

12. If an aggregative synthetic route were taking place, the FWHM values would be expected 

to increase as the reaction progresses due to the domino-like effect of the crystalline 

nanoslabs and nanoblocks etc. aggregating together, with little amorphous material 

present. A spontaneous crystallisation mechanism allows for the simultaneous presence of 

amorphous and crystalline material leading to the stable FWHM values presented. 

 

4.5 Solid state NMR studies 

The local environment of the carbon-13, in the arms of the structure directing agents, and 

the silicon-29 in the framework was probed to gain further insight into the formation over 

time of the nanosized zeolite. The carbon-13 studies allowed the location of the SDA within 

the channels of the zeolite framework to be studied. The silicon-29 studies allowed the 

framework itself to be studied. 

Both NMR analyses were carried out on a select number of the timepointed samples rather 

than the full range taken. The analysis could not be carried out on all timepointed samples 
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due to the time constraints that apply to solid state NMR experiments when compared with 

its solution state counterparts. 

 

4.5.1 13C {1H} CP MAS NMR 

The proton decoupled cross polarisation carbon-13 experiments were carried out as 

described in Chapter 2. These experiments, as mentioned above, allow the local 

environment of the hydrocarbon chains of the structure directing agents to be probed as 

they sit at the interchange between the so called straight and zigzag channels within the 

MFI framework. The orientation of the SDA cation at the intersection of the two channels in 

the MFI framework is very useful when trying to follow the reaction. The orientation of the 

arms pointing into the different channels, leads to them being in a different chemical 

environment which then in turn leads to the splitting of the end chain methyl group signal. 

The presence of the split methyl peak is therefore diagnostic of the formation of the MFI 

framework as this peak splitting is only seen when the channels are fully formed 

The 13C {1H} CP MAS NMR spectra obtained for the TPA mediated timepointed samples 

are shown in Figure 4.9, their resonances have been assigned to the tetrapropyl ammonium 

salt structure in shown in Figure 4.10. 
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Figure 4.9. Stacked 13C {1H} spectra for the TPA mediated timepoint samples with the spectrum of 

TPA Br for comparison. Labels correspond to the TPA+ structure in Figure 4.10. 

 

 

 

 

Figure 4.10. TPA+ structure with labels corresponding to the peaks shown in Figure 4.9. 

The characteristic splitting of the end chain methyl peak, Figure 4.10 labelled atom 3, cannot 

be seen at the 30 hour timepoint indicating that the tetrapropyl ammonium cation is not 

sitting at the intersection between the two channels in the framework. Therefore, suggesting 

that the framework is not fully formed after 30 hours of reaction time. The 30 hour end chain 

methyl signal does however show a broadening of the signal, when compared to the 

spectrum obtained of TPABr and of the signal at a higher shift. Although solid state NMR 

does give broader signals that solution state NMR, this broadening of the end chain methyl 

signal could be caused by the TPA cation becoming contained with a semi formed zeolite 
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framework. This would give rise to a number of slight different chemical environments and 

therefore broadening the signal. The splitting of the end chain methyl peak can be seen 

from the 52 hour timepoint indicating that the structure directing agent is at the channel 

intersection and therefore the framework has been formed. 

The 13C {1H} CP MAS NMR spectra obtained for the MTBA mediated timepointed samples 

are shown in Figure 4.11, their resonances have been assigned to the methyltributyl 

ammonium salt structure shown in Figure 4.12. 

 

 

Figure 4.11. Stacked 13C {1H} spectra for the MTBA mediated timepoint samples with the spectrum 

of TPA Br for comparison. Labels correspond to the MTBA+ structure in Figure 4.12. 

 

 

 

Figure 4.12. MTBA+ structure with labels corresponding to the peaks shown in Figure 4.11. 
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The characteristic splitting of the end chain methyl signal, Figure 4.11 labelled atom 5 can 

clearly be seen for the 336 hour sample, two distinct resonances are present with a clear 

separation between them. This splitting confirms the formation of the extended MFI zeolite 

framework. The 30 hour sample does not show the splitting of the end chain methyl group, 

however, similar to the TPA mediated samples, the signal does show a broadening, 

suggesting that a semi formed zeolite framework may be present. The splitting of the end 

chain methyl signal is shown to start occurring by the 52 hour sample, with the formation of 

a shoulder to the signal, indicating the presence of the framework channels. This shoulder 

then increases in intensity as the reaction proceeds until the 336 hour timepoint where the 

signal completely splits. 

From these results it is clear that the MTBA cation was more effective at forming the MFI 

framework after 336 hours, due to the extent of the splitting of the end chain methyl signal. 

The 13C spectra from both reactions show that the extended zeolite framework was not 

formed after 30 hours but they do show indications that a semi formed framework could be 

present. Both nanozeolite reactions show clear evidence of the formation of the framework 

after 52 hours has elapsed. 

 

4.5.2 29Si {1H} CP MAS NMR 

The proton decoupled cross polarisation silicon-29 experiments were carried out as 

described in Chapter 2. These experiments, as mentioned, allow the local environment of 

the silicon atoms within the MFI zeolite framework to be probed. For solid state silicon 

spectra, the resulting peaks are usually broad and not well resolved. These shifts are 

denoted by a Q number, ranging from Q1 to Q4. Q1 resonances result from SiO(OH)3 

species, Q2 resonances result from SiO2(OH)2 species, Q3 resonances result from SiO3OH 

species and Q4 resonances result from SiO4 species. The most meaningful conclusions for 

zeolite samples can be drawn from the Q3 to Q4 ratio. The Q3:Q4 describes how crystalline 

the sample is, and for the purpose of this study, serves as an indication of the progress of 
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the nanozeolite reaction as the more crystalline the sample the further the reaction will have 

progressed from the amorphous starting material. 

Figure 4.13 shows the obtained 29Si {1H} CP MAS NMR spectra for the TPA mediated 

nanozeolite reaction. It can be seen that the Q3 resonances from the 30 hour to the 336 

hour sample decrease in intensity, indicating a reduction to the number of framework 

defects present. The Q4: Q3 ratio for the 30 hour sample was 1: 0.85 and for the 336 hour 

sample it was 1: 0.50, thereby confirming the increase in crystallinity and decreases in 

framework defects.  

 

Figure 4.13. Stacked 29Si {1H} spectra for the TPA mediated timepoint samples. 

 

Figure 4.14 shows the obtained 29Si {1H} CP MAS NMR spectra for the MTBA mediated 

nanozeolite reaction. The Q3 resonances between the 30 hour and the 336 hour samples 

are seen to significantly decrease in intensity as the reaction proceeds, along with an 

increase in the Q4 intensity. Again indicating the presence of the crystalline MFI framework 

with a decreasing number of framework defects as the reaction proceeds. The Q4: Q3 ratio 

Q4 Q3 
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for the 30 hour sample was 1: 0.48 and for the 336 hour sample it was 1: 0.30, again 

confirming the increase in crystallinity and reduction of defect sites. 

 

Figure 4.14. Stacked 29Si {1H} spectra for the MTBA mediated timepoint samples. 

 

From these results it is clear that the MTBA template yields a more crystalline MFI 

framework with fewer defects. This is shown in the Q4:Q3 ratio for the 36 hour samples, in 

which the MTBA mediated reaction showed a higher ratio of 1: 0.3 as opposed to the ratio 

of the TPA mediated reaction of 1: 0.5. 

 

4.5.3 Conclusions from the SSNMR investigations 

The splitting of the end chain methyl signal in the 13C studies at early timepoints for both the 

TPA and MTBA templates suggest that the MFI framework is beginning to form, with the 

SDAs sitting at the intersection between the straight and sinusoidal channels within the 

framework. The high Q4 to Q3 ratios, in the 29Si studies, indicate the presence of a well 

formed and crystalline material. This is unlikely to be caused from the aggregates proposed 

Q4 Q3 
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by Martens group7-12, as the presence of smaller aggregates would lead to the occurrence 

of more Q3 silicon sites. 

 

4.6 DLS Particle size studies 

Dynamic light scattering was used to determine the change in particle size over time. The 

particle size was an important attribute of the timepointed sample to follow as it gives an 

overall indication of the progress of the reaction. The samples were prepared and analysed 

via the method described in Chapter 2.2. 

 

4.6.1 TPA samples 

The DLS particle size distributions for the TPA mediated nanozeolite synthesis are shown 

in Figure 4.15. 

 

Figure 4.15. DLS distributions for the TPA mediated reaction. 

From this distribution of particle sizes, it is clear that many of the timepointed samples from 

the TPA synthesis are localised around 135 nm. A significant change in particle size as the 

reaction progresses, from the 30 hour sample to the 336 hour sample, is not seen. This 
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would indicate that the reaction has gone to completion after just 30 hours of reaction time. 

The particle size distributions do not broaden or narrow over time, suggesting that the TPA 

template has ceased its structure directing effect, if it were still having an effect both smaller 

and larger particles would be formed therefore broadening the size distribution. These 

results are in disagreement with the suggested aggregation mechanism, suggested by the 

Martens group7-12, as this would show more broad size distributions from the formation of 

the various nano-species such as nanoslabs and nanoblocks. 

 

Figure 4.16. Average particle diameter vs time for the TPA mediated reaction. 

 

The average particle sizes vs time for each TPA mediated timepoint samples are shown in 

Figure 4.16. It can clearly be seen that there is little difference in particle size from the 30 

hour to the 336 hour samples, with an increase of approximately 10 nm. The overall 

increase seen is not stable over the course of the reaction, with a small decrease in particle 

size for the 163 and 195 hour samples. This decrease in particle size could be attributed to 

a sudden increase in crystallisation from an amorphous material. These results support a 

synthesis mechanism of spontaneous crystallisation from an amorphous mixture as 

opposed to the aggregative mechanism7-12, where a decrease in particle size over time is 

not expected. 
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4.6.2 MTBA samples 

The DLS particle size distributions for the MTBA mediated nanozeolite synthesis are shown 

in Figure 4.17. 

 

Figure 4.17. DLS distributions for the MTBA mediated reaction. 

 

The particle size distributions for the MTBA templated reaction shows a steady increase in 

particle size as the reaction progresses. At the 30 hour timepoint the average particle size 

was found to be 98 nm. At the 336 hour timepoint the average particle size has increased 

to 215 nm. It is also interesting to note that as the reaction proceeds, the particle size 

distributions become much broader, indicating that there is a large number of varying 

particle sizes present in the later samples than the earlier samples. This broadening of the 

size distributions is in keeping with the aggregation mechanism suggested by the Martens 

group7-12, and indicates the presence of a variety of differently sized species which could be 

attributed to the various building blocks of the aggregation mechanism. 
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Figure 4.18. Average particle diameter vs time for the MTBA mediated reaction. 

 

The average particle sizes vs time for each MTBA mediated timepoint samples are shown 

in Figure 4.18. The difference in average particle size from the 30 hour to 336 hour sample 

is approximately 125 nm. The overall increase follows an exponential trend, with particle 

size growth becoming more prevalent at later timepoints. The lack of any decrease in 

particle size oppose a spontaneous crystallisation mechanism and is supportive of the 

aggregative mechanism7-12, where a continuous increase in particle size over time is 

expected. 

 

4.6.3 Comparison and conclusions of the TPA and MTBA DLS results 

When comparing the dynamic light scattering results of the TPA and MTBA mediated 

syntheses it is clear that they have proceeded via different routes. The particle size 

distributions of the two SDA templated reactions show opposing results, with the MTBA 

mediated reaction showing a larger size distribution than the TPA mediated reaction. These 

results indicate that the MTBA structure directing agent has a greater ability at forming the 

MFI zeolite framework over time, due to the presence of larger zeolite particles. 
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Figure 4.19. Average particle diameter vs time for the TPA and MTBA mediated reactions. 

 

The comparison of the average particle diameter for both the TPA and MTBA mediated 

nanozeolite syntheses are shown in Figure 4.19. It can be clearly seen that the MTBA 

directed reaction allowed the formation of larger zeolite particle than the TPA mediated 

reaction, with a final size difference of approximately 90 nm.  

The TPA directed reaction shows little evidence in agreement with the proposed 

aggregation mechanism, where are broader range of particle sizes would be expected. 

However, the MTBA directed reaction shows some indications in favour of the Martens 

group theory of mechanism7-12, with a wider distribution and no decrease of particle size 

over the course of the reaction. 

 

4.7 Conclusions 

Two different structure directing agents, TPA and MTBA, were shown to be successful at 

synthesising the nano sized MFI framework. X-ray diffraction studies suggest that the TPA 

cation is more effective at forming the framework over a shorter time period, evidenced by 

the presence of Bragg peaks at earlier timepoints. The presence of these peaks at early 
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timepoints could suggest the aggregation mechanism is occurring, they could also however 

by reflecting a very rapid crystallisation mechanism. On analysis of the full width at half 

maximum values of the Bragg peaks for both the TPA and MTBA mediated reactions it is 

postulated that an aggregative mechanism is not taking place due to the stability of the data, 

indicating the presence of amorphous material. 

Solid state NMR investigations showed that the MTBA cation is able to form a more 

crystalline material with fewer defects than the TPA cation, evidence by a higher Q4 to Q3 

ratio. A large Q4 peak implies a well formed and crystalline material is present, which is 

unlikely to be the result of the many different aggregate species such as nanoslabs and 

nanoblocks, where more framework defects are expected due to variety of silica species 

present. 

Dynamic light scattering results showed that the MTBA cation is more successful at forming 

the MFI framework over an extended period of time, as evidenced by the larger particles 

observed for the MTBA samples. The average particle size variation over time for the TPA 

mediated reaction suggests a spontaneous crystallisation mechanism is taking place. 

However, the average particle size variation over time for the MTBA mediated reaction 

suggests an aggregative mechanism is taking place.  

As the conditions for both the TPA and MTBA reactions were the same, it is likely that the 

differences observed in the analyses between the two are due to the variations in size of 

the two SDAs. Further work in this area using different sized symmetrical and asymmetrical 

SDAs would allow more conclusive comparisons to be made as to the effect of the SDA 

used. 

From these results it is difficult to make definitive conclusions on the synthesis mechanism 

taking place. However, the X-ray diffraction and solid state NMR results do strongly suggest 

that the aggregation mechanism is not occurring. The dynamic light scattering results for 

the TPA mediated reaction also disagree with the aggregative mechanism. It is therefore 
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concluded that the most likely mechanism of formation for the nanosized zeolites is that of 

spontaneous crystallisation from an amorphous mixture. 
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5.0 Nano vs Micron sized Ni-MFI Catalysis 

5.1 Introduction 

As previously discussed in Chapter 1, the catalysis of methane reforming plays an important 

role in the modern world. Methane dry reforming potentially not only removes harmful 

carbon dioxide from the atmosphere but is also a source of hydrogen, which is becoming 

more heavily used as an energy source. It is therefore vital that the efficiency of catalysis is 

continually improved to allow these sources of hydrogen to be fully utilised. 

Previous studies with the MFI framework being used a catalyst focussed on the micron 

sized crystals and also on the reforming of methane with carbon dioxide1,2, shown in 

Equation 1.4. There are potential improvements to be made to the catalysis by reducing the 

particle size down to the nanoscale. On reduction of the particle size the surface area of the 

material becomes much greater allowing for certain surface reactions to happen at a much 

faster rate. Reducing the particle size also has another affect in which the diffusion 

limitations within the material are reduced, merely because there is a shorter distance for 

the species diffusing to travel. This shorter diffusion pathway does not however alter the 

selectivity shown by the framework to certain shapes and sizes of compounds and therefore 

retains its functionality.   

It is therefore important to explore the effect of changing the particle size of the catalyst on 

the different methods of reforming methane. 

 

5.2 Synthesis of Ni containing MFI zeolites 

Prior to carrying out any catalytic testing, the MFI framework was first synthesised to contain 

nickel, which acts as the catalytically active metal for the reaction. To achieve the nickel 

containing material a sodium containing MFI intermediate was used, which was then ion-

exchanged with nickel to yield to final catalyst material. This preparation was discussed 

further in depth in Chapter 2. 
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The powder XRD patterns for the nano and micron sized catalyst materials are shown in 

Figure 5.1. It can clearly be seen that the MFI framework is formed and is still intact after 

the calcination and ion-exchange processes for both the nano and micron sized materials. 

The powder pattern from the fluorinated MFI material and the simulated powder pattern 

from the IZA database3 were both used as comparisons to ensure that the MFI framework 

remained intact after the heating and exchanging processes. 

 

Figure 5.1. Powder patterns obtained for the Nano and Micron sized Ni MFI I comparison with the 

F-MFI powder pattern and the IZA simulated pattern3. 

 

Once confirmed to be intact the materials were then tested for their catalytic capabilities via 

the methods described in Chapter 2.5.3. 

 

5.3 Reforming of biogas 

As the naturally occurring mixture of biogas has a higher percentage of methane than 

carbon dioxide, the dry reforming reaction tested for the nickel containing MFI materials was 

a 2:1 mixture of methane and carbon dioxide. 
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5.3.1 Temperature programmed biogas reforming 

The forward, heating, reaction profiles for the nickel containing micron and nano sized MFI 

materials are shown in Figures 5.2 and 5.3 respectively. 

 

Figure 5.2. Temperature programmed biogas reforming forward reaction over micro Ni MFI. 

 

The micron sized material shows the beginning of the reforming reaction from 430 °C, with 

the vast majority of the carbon dioxide being consumed. The activity present has a sharp 

start at 430 °C and then steadily increases to its maximum activity at approximately 670 °C. 

As the temperature increases up to the maximum of 900 °C the activity begins to fall. 
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Figure 5.3. Temperature programmed biogas reforming forward reaction for nano Ni MFI. 

 

For the nano sized material no reforming activity is observed until approximately 550 °C. 

After this point the reforming activity increases to its maximum activity at the maximum 

temperature of 900 °C. For both materials the reverse water gas shift reaction, Equation 

1.5, occurs as the reforming activity begins. 

The reverse, cooling, reaction profiles for both the micron and nano-sized materials are 

shown in Figure 5.4 and 5.5 respectively. 
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Figure 5.4. Temperature programmed biogas reforming reverse reaction for micro Ni MFI. 

 

The reverse reaction for the micron size nickel containing material shows a similar reaction 

profile to that of the forward reaction, showing that the hysteresis between them is small. 

The reforming activity is seen to continue until approximately 800 °C after which the activity 

steadily decreases as the temperature decreases, there is no reforming activity observed 

after 400 °C. A small amount of the reverse water gas shift is still present from 400 to 800 

°C.  
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Figure 5.5. Temperature programmed biogas reforming reverse reaction for nano Ni MFI. 

 

The nano sized material reverse reaction profile shows a steady decline in activity as the 

temperature decreases, with no reforming activity observed after 350 °C. 

The temperature controlled oxidation experiment, described in Chapter 2.5.4, was carried 

out for both the micron and nano sized materials to determine the level of carbon deposition 

on the catalyst surface. These experiments yielded 0.135 mg of observable carbon for the 

micron sized MFI material, which is equal to 3.375 mg of carbon deposited per gram of 

catalyst used, and 0.238 mg for the nano sized MFI material, which is equal to 5.95 mg of 

carbon deposited per gram of catalyst used. This coking is likely due to the thermal 

decomposition of methane at the high temperatures and also the Boudouard reaction, in 

which carbon monoxide is converted into carbon dioxide and elemental carbon. 
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5.3.2 Isothermal biogas reforming 

The isothermal biogas reforming reaction were carried out at 900 °C as a standard for all 

materials analysed. The reforming of biogas is an endothermic process; therefore, higher 

temperatures should yield a higher production of hydrogen. 

The isothermal biogas reforming using the micron sized nickel containing catalyst at 900 °C 

is shown in Figure 5.6. 

 

 

Figure 5.6. Isothermal biogas reforming over micro Ni MFI at 900 °C. 

 

A relatively high level of reforming activity can be seen, in which 47% of the methane has 

been consumed. As there is a 2:1 mixture of methane to carbon dioxide being used for 

these investigations, it is to be expected that a maximum of 50% if the methane will be 

consumed through its reforming with carbon dioxide. Therefore, as the micron sized 

material has consumed 47% of the methane supplied, its activity is very high. 

The isothermal biogas reforming reaction profile for the nanosized nickel containing MFI 

zeolite at 900 °C is shown in Figure 5.7. 



 

84 
 

 

Figure 5.7. Isothermal biogas reforming over nano Ni MFI at 900 °C. 

 

A significantly reduced activity for biogas reforming is seen for the nano sized material on 

comparison with its micron sized counterpart.  A much smaller amount of methane, 13%, 

has been consumed with the use of the nanosized catalyst. 

The temperature programmed oxidation experiment to yield the amount of carbon 

deposition was again carried out on both materials. These experiments yielded 0.0647 mg 

of observable carbon for the micron sized material, which is equal to 1.16175 mg of carbon 

deposited per gram of catalyst used, and 0.0454 mg of observable carbon for the nano 

sized material, which is equal to 1.135 mg of carbon deposited per gram of catalyst used. 

As approximately 40 mg of each catalyst material was used, and the amount of observable 

carbon measured on the nano catalyst was lower than that of the highly active micron sized 

material, it is unlikely that the lack of activity shown by the nano material is due to 

deactivation through carbon deposition. 
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5.3.3 Biogas reforming conclusions 

The Biogas reforming over the nickel doped nanosized and micron sized material was 

carried out. For the temperature programmed reactions, the materials showed a similar 

activity towards the reforming, with both evolving approximately 0.80 mol of product. 

However, for the isothermal reforming reactions at 900 °C the micron sized nickel containing 

MFI type zeolite show a significantly higher activity towards the reforming of biogas than the 

nanosized MFI material. This is in disagreement with the theory that the nanosized material 

would show a higher level of activity as a result from its smaller particle size. This difference 

could be due to the micron sized material having more nickel sites than the nano sized 

material. 

 

5.4 Partial Oxidation 

The partial oxidation of methane is another technique used in the formation of synthesis 

gas. One of the main disadvantages to this method is that the balance between the partial 

oxidation (POx) and the total oxidation (TOx) of methane is a difficult to find. 

 

5.4.1 Temperature programmed partial oxidation of methane 

The partial oxidation of methane reaction profiles for the micron and nano sized MFI 

materials are shown in Figure 5.8 and 5.9 respectively. 
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Figure 5.8. Temperature programmed POx forward reaction for micro Ni MFI. 

 

The micron sized material shows catalytic activity between approximately 400 °C and 700 

°C. This activity yields the species carbon dioxide, water and carbon monoxide. As the latter 

is formed via partial oxidation this could be an indication that POx activity is present, 

however, as no hydrogen is yielded alongside it, this is unlikely to be the case. The presence 

of carbon dioxide and water indicate that the activity is that of TOx. The formation of the CO 

is most likely due to the reaction between the methane and the oxygen, giving water and 

carbon monoxide.  
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Figure 5.9. Temperature programmed POx forward reaction for nano Ni MFI. 

  

The forward reaction for the partial oxidation of methane over the nanosized material shows 

vastly different reaction profile. From approximately 350 °C to 860 °C the catalytic activity 

present is that of total oxidation, with a small amount of reverse water gas shift. However, 

at 860 °C there is an abrupt change to from TOx to POx, with almost all the methane being 

consumed, with an 80% conversion to hydrogen. Some low level total oxidation remains 

producing water and carbon dioxide but it is minimal in comparison to the POx activity. 

The reverse reaction profiles for the partial oxidation of methane over the micron and 

nanosized MFI materials is shown in Figure 5.10 and 5.11 respectively. 
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Figure 5.10. Temperature programmed POx reverse reaction for micro Ni MFI. 

 

For the micron sized material, the total oxidation activity continues for the remainder of the 

experiment down to 600 °C, at no point is any POx activity present.  

 

Figure 5.11. Temperature programmed POx reverse reaction for nano Ni MFI. 
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The reaction profile for the nano sized material however, shows POx activity down to 690 

°C, albeit decreases in activity as the temperature decreases. During this cooling period 

between 900 °C and 690 °C all of the oxygen in the mixture is being consumed. The TOx 

activity present slowly increases as the temperature and POx activity decrease, at 690 °C 

all total oxidation activity decreases as the temperature decreases. As the methane 

undergoes total oxidation, there is a selectivity towards the formation of water over the 

formation of carbon dioxide. 

The temperature programmed oxidation experiments to determine the carbon deposition on 

the catalysts were carried out and yielded, 0.28 mg of observable carbon for the micron 

sized material, which is equal to 7 mg of carbon deposited per gram of catalyst, and 0 mg 

of observable carbon for the nanosized material. The deposition of the carbon on the micron 

MFI surface is likely due to the combination of the Boudouard reaction and the thermal 

decomposition of methane at elevated temperatures. The lack of observable carbon for the 

nano MFI material does not prove that there is no carbon deposition it simply means that 

the amount of carbon present is below the detection limit of the instrument. 

 

5.4.2 Isothermal partial oxidation of methane 

The isothermal reaction profile of the partial oxidation of methane at 900 °C over the nickel 

containing micron sized MFI zeolite catalyst is shown in Figure 5.12. 
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Figure 5.12. Isothermal POx reaction over micro Ni MFI at 900 °C. 

 

The micron sized material shows very little POx activity during the 20 hour isothermal 

experiment, with some hydrogen produced, however, this could be a result of the forward 

water gas shift reaction. Total oxidation activity is present throughout the experiment, 

however, this activity only consumed 16% of the methane present in the mixture after 20 

hours. 

The isothermal reaction profile for the partial oxidation of methane at 900 °C over the nickel 

containing nano sized MFI zeolite catalyst is shown in Figure 5.13. 
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Figure 5.13. Isothermal POx reaction over nano Ni MFI at 900 °C.  

In contrast to its activity during the temperature controlled reaction above, the nano sized 

material shows little POx activity, however there could be a low level activity as a small 

amount of hydrogen is formed. Total oxidation is occuring for throughout the 20-hour 

experiment, after 20 hours 23% the methane has been consumed by the TOx activity. Again 

the total oxidation activity shows a selectivity for the formation of water over carbon dioxide. 

As the hydrogen level is so low and the evolved water trace shows a mirror of the hydrogen 

trace it was thought that the hydrogen was also being oxidised along with the methane to 

produce water, this was further investigated in Chapter 5.5. 

The temperature controlled oxidation reactions were carried out for both materials to yield 

the carbon deposition. For the micron sized material, the amount of observable carbon was 

found to be 0.0515 mg, which is equal to 1.2875 mg of carbon deposited per gram of catalyst 

used, and for the nano sized material it was determined that 0.040 mg of observable carbon 

was present on the surface, which equal 1 mg of carbon deposited per gram of catalyst 

used. These are relatively low amounts of observable carbon indicating that the thermal 

decomposition of methane and the Boudouard reaction were not present to any great 

extent, 
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5.4.3 Partial oxidation conclusions 

The partial oxidation of methane over the nickel doped micron sized and nano sized MFI 

material was carried out. The temperature programmed reactions showed that the nano 

sized material is better suited to partial oxidation than its micron sized counterpart, with the 

micron sized material showing little hydrogen evolution. However, for the isothermal partial 

oxidation experiment at 900 °C, the activity of the nanosized material did not reflect that 

shown for the temperature programmed experiment, with the material showing an oxidative 

preference for the evolved hydrogen over the methane. The higher level of activity shown 

by the nano sized material is in agreement with the theory that the reduction in particle size 

results in more efficient catalysis. 

 

5.5 The oxidation of synthesis gas over the nanosized material 

Due to the selectivity shown by the nickel containing nanosized MFI zeolite towards the total 

oxidation of methane to water, it was theorised that it would show the same selectivity 

towards the hydrogen formed. The isothermal POx experiment conducted over the 

nanosized catalyst showed a mirroring of the hydrogen and water signal indicating that the 

hydrogen was also being oxidised to water. To test this theory an oxidation of synthesis gas 

experiment was setup to investigate whether the oxidation of hydrogen can be seen. These 

experiments were conducted as per the description in Chapter 2.5.3. 

 

5.5.1 Temperature programmed oxidation of syn-gas 

The reaction profile of the temperature controlled oxidation of syn-gas over the nano nickel 

containing material is shown in Figures 5.14 and 5.15. 
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Figure 5.14. Temperature programmed forward syn-gas oxidation over nano Ni MFI. 

 

 

Figure 5.15. Temperature programmed reverse syn-gas oxidation over nano Ni MFI. 

 

From very low temperatures the selectivity towards hydrogen oxidation over carbon 

monoxide oxidation can be seen. The small evolution of water seen at 100 °C can be 
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attributed to the removal of the occluded water from within the MFI channel system. A large 

amount of water then follows, at a low temperature of 150 °C, a product of the oxidation of 

hydrogen which continues up to 800 °C. The oxidation of the carbon monoxide follows 

shortly after the hydrogen oxidation. On cooling, the production of the carbon dioxide 

ceases before the water production, further indicating that the preference of the material to 

oxidise hydrogen. 

 

 

Figure 5.16. Temperature programmed forward (full-line) and reverse (dashed line) syn-gas 

oxidation over nano Ni MFI. 

 

The hysteresis between the forward and the reverse reactions can clearly be see in Figure 

5.16. The reverse reaction (dashed) is slightly shifted to a higher temperature, showing a 

smaller average shift at lower temperatures of approximately 50 °C, increasing to 

approximately 100 °C at higher temperature. The higher difference in temperature between 

the forward and reverse reaction is expected due to the constraints of the temperature 

regulation system. 
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The temperature programmed oxidation reaction to determine the carbon deposition on the 

surface of the nanosized material yielded 0.0535 mg of observable carbon, which is equal 

to 1.3375 mg of carbon deposited per 1 g of catalyst used. As there is no methane to 

undergo thermal decomposition the most likely source of carbon deposition is the 

Boudouard reaction. 

 

5.5.2 Isothermal oxidation of syn-gas 

As the temperature programmed reaction of the syn-gas oxidation above showed catalytic 

activity at a low temperature, an isothermal reaction was carried out to investigate if this low 

temperature activity is maintained over 20 hours. 

From the temperature programmed reaction above shows water evolution from 150 °C, it 

was decided to carried out an isothermal oxidation of syn-gas at that temperature, the 

reaction profile for which is shown in 5.17. 

 

Figure 5.17. Isothermal syn-gas oxidation over nano Ni MFI at 150 °C. 
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The isothermal oxidation of syn-gas over the nano nickel containing zeolite catalyst shows 

no activity towards either the oxidation of hydrogen or carbon dioxide. This lack of activity 

is sustained over the 20-hour experiment. 

It was then decided to increase the temperature to 200 °C. During the temperature 

programmed reaction in Chapter 5.5.1, at 200 °C the hydrogen evolution was increasing, it 

was therefore thought that the isothermal reaction at this temperature would show more 

activity than at 150 °C. The reaction profile for the isothermal oxidation of syn-gas at 200 

°C is shown in Figure 5.18. 

 

Figure 5.18. Isothermal syn-gas oxidation over nano Ni MFI at 200 °C. 

 

The profile for the isothermal reaction at 200 °C shows a relatively stable oxidation activity 

for the first 2.5 hours which slowly starts to diminish over time. After approximately 6 hours 

there is a spike in oxidation activity before it decreases again. This spike in activity could be 

due to the ‘cleaning’ of the catalyst surface, allowing the sudden switch to a reactive regime. 

At 6.5 hours, the oxidation activity falls significantly, however, t he selectivity towards the 

oxidation of hydrogen over carbon monoxide is still present. 
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As an increase in temperature of 50 °C from 150 °C to 200 °C, had a significant impact on 

the catalysis another increase of 50 °C was investigated. 

The isothermal oxidation of syn-gas reaction profile at 250 °C is shown in Figure 5.19. 

 

Figure 5.19. Isothermal syn-gas oxidation over nano Ni MFI at 250 °C. 

 

The reaction profile at 250 °C shows a high level of oxidation activity, where the vast majority 

of the hydrogen is oxidised to water. The selectivity towards the hydrogen oxidation is still 

present, with a low level of carbon monoxide oxidation taking place. The oxidation activity 

slowly diminishes over time but is still high in comparison to that shown at the lower 

temperatures.  

The isothermal oxidation of syn-gas reaction profile at 300 °C is shown in Figure 5.20. 

The reaction profile for the oxidation of syn-gas at 300 °C is very similar to that at 250 °C. 

The selectivity towards hydrogen oxidation is present with a much lower oxidation activity 

towards the carbon monoxide. As with the 250 °C isothermal reaction the activity diminishes 

over time, however there is still a relatively high level of hydrogen oxidation occurring after 

20 hours. 
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Figure 5.20. Isothermal syn-gas oxidation over nano Ni MFI at 300 °C. 

 

The temperature programmed oxidation reactions to determine the level of carbon 

deposition were carried out after all the discussed isothermal reactions. The amounts of 

observable carbon obtained are shown in Table 5.1. 

 

Table 5.1. Mass of carbon deposition for the isothermal oxidation of syn-gas reactions. 

Temperature of 

reaction / °C 

Mass of observable 

carbon / mg 

Mass of carbon per gram of 

catalyst / mg 

150 0.000508 0.0127 

200 0.00688 0.172 

250 0 0 

300 0 0 
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As expected the carbon deposition at the low temperature reactions is very low, due to the 

lack of thermal decomposition, with the 250 and 300 °C reactions yielding no observable 

carbon above the detection limit of the instrumentation. 

 

5.5.3 Syn-gas oxidation conclusions 

The oxidation of syn-gas was carried out over the nickel containing nanosized MFI type 

zeolite. The temperature programmed reaction showed the preferential oxidation of the 

hydrogen over the carbon monoxide beginning at low temperatures of approximately 150 

°C. The isothermal reaction was carried out a variety of temperatures to ascertain the effect 

of temperature on the selectivity and overall activity. The 150 °C isothermal syn-gas 

oxidation showed little oxidative activity, whereas the oxidation at 200 °C showed a 

hydrogen selective oxidative activity for approximately 6.5 hours, after which the activity 

severely diminished. This sudden change in activity could be due to the deactivation of the 

catalyst through carbon deposition, or the oxidation of the catalyst itself. The isothermal 

reactions at 250 °C and 300 °C both show a high activity for the preferential oxidation of 

hydrogen from the synthesis gas mixture.  

From these results it is clear that the nickel containing nanosized MFI zeolite is active for 

the low temperature oxidation of syn-gas, in which there is a selectivity towards the oxidation 

of the hydrogen over the carbon monoxide. 

 

5.6 Conclusions 

Two nickel doped zeolites with the MFI framework were synthesised, the clear solution 

method was used to yield a nano sized material and the hydrothermal method was used to 

yield a micron sized material. The catalytic testing for the nano- and micron- sized materials 

was carried out to allow the understanding of effect of the change in particle size on the 

catalytic activity. This study has shown that the nickel containing nano sized MFI zeolite has 
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a higher activity for the partial oxidation of methane over the its micron sized counterpart, 

in agreement with the theory that the reduction in particle size leads to the improve in 

catalytic efficiency. However, the biogas reforming investigations concluded that the micron 

sized material is a better catalyst, showing a much high activity for the reforming than the 

nanosized material. This is in disagreement with the proposed theory of the improvements 

to be gained from the reduction in particle size. The micron sized material showing a higher 

activity over the nano sized material could be due to the availability of the nickel sites, with 

there being more present in the micron sized zeolite. The difference in activity in comparison 

with proposed theory could also be due the fact the gases used for testing are small gases, 

therefore the diffusion limitations will be small regardless of the material size. 

During the partial oxidation studies the nano sized material showed an oxidation selectivity 

towards a product of that reaction, hydrogen. This oxidative selectivity was investigated via 

the oxidation of synthesis gas where the nano sized catalyst showed an overwhelming 

selectivity towards hydrogen oxidation over carbon monoxide oxidation. This oxidation is 

able to occur at low temperatures from 200 °C with the catalysis remaining at a high level 

for the hydrogen oxidation for at least up to 20 hours. 

From these results it can be concluded that the optimum zeolite particle size for the 

reforming of methane with either carbon dioxide or oxygen different methods lies 

somewhere between the nano and micron sized materials tested in this study. It would be 

difficult to obtain such a material in a controlled and reproducible manner, and as such is 

an area where the study could be expanded.  
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6.0 MEL and MTW Type Zeolite Catalysis of Reforming 

Reactions 

6.1 Introduction 

To gain a further insight into Ni-doped zeolite catalysis and to improve efficiency, it is 

important to explore every ‘avenue’. In the case of zeolites there are a wide range of 

framework types that have not been studied for their methane reforming capabilities, 

studies have focused on the MFI type zeolite1,2. It was therefore decided to investigate 

zeolite framework types not too dissimilar to the MFI-type studied in Chapter 5. MEL and 

MTW were chosen for a number of reasons. Firstly, they are five-ring zeolites like MFI and 

are therefore formed in a similar way. MFI, MEL and MTW are all common intergrowths of 

each other meaning that they are able to form under the same conditions. These zeolite 

types were also chosen as their syntheses are well documented and therefore should be 

relatively unproblematic to synthesise. 

 

6.1.1 MEL type zeolite 

The MEL framework type was first reported in 1973 by the Mobil Oil company3, the same 

company that reported the MFI framework ZSM-54. This MEL framework material was 

denoted Zeolite Socony Mobil-11 (ZSM-11). One year later, Bibby et al6. reported the all-

silica analogue of the material, Silicalite-2. 

As a commonly found intergrowth with the MFI material, it is no surprise that the MEL 

framework type is also a part of the pentasil family of zeolites, with the characteristic five 

membered ring linkage. 
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Figure 6.1. Framework structure of MEL6, where red atoms are oxygen and white atoms are 

silicon. 

  

At room temperature, the MEL material has a tetragonal framework symmetry with a 

space group I-4m2 and cell parameters a = 20.27 Å, b = 20.27 Å, c = 13.56 Å and α = β = 

γ = 90 °. The MEL framework has a dual channel system with each channel being 

perpendicular to the other. The pores within the framework have a 10 ring opening, where 

the straight channel is parallel to the (100) plane6. The occupiable volume of an idealized 

framework is 701.92 Å3, which is 12.69 % of the framework model6. 

 

6.1.2 MTW type zeolite 

The MTW framework was first reported in 1981 by Hickson7 and denoted CSH-5. Many 

other materials with the MTW framework have also been reported including NU-138, TPZ-

129, Theta-310 and ZSM-1211, the latter being another of the Mobil Oil company patented 

materials. The main difference between these listed materials is their silica to alumina 

ratio and the method in which they are synthesised. 
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Figure 6.2. Framework structure of MTW6, where red atoms are oxygen and white atoms are 

silicon. 

 

At room temperature, the MTW material has a monoclinic framework symmetry with a 

C2/m space group and cell parameters a = 25.55 Å, b = 5.26 Å, c = 12.12 Å and α = γ = 

90 ° and β = 109.312 °. The MTW framework has a single channel system.  The pores 

within the framework have a ten ring opening, where the straight channel is parallel to the 

(010) plane6. The occupiable volume of an idealized framework is 146.61 Å3, which is 9.55 

% of the framework model6. 

 

6.2 Synthesis of Ni-MEL catalyst 

The nickel containing MEL zeolite was synthesised via the hydrothermal method as 

described in Chapter 2.2. The presence of the MEL framework was confirmed by X-ray 
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diffraction analysis, shown in Figure 6.3. The simulated powder pattern for the MEL 

framework from the IZA database was used a comparison.  

 

Figure 6.3. Powder pattern of the Ni MEL zeolite with the simulated IZA pattern6. 

 

6.3 Synthesis of Ni-MTW catalyst 

The nickel containing MTW zeolite was synthesised via the hydrothermal method 

described in Chapter 2.3. The presence of the MTW framework was confirmed via X-ray 

diffraction analysis, shown in Figure 6.4. The simulated powder pattern for the MTW 

framework from the IZA database6 was used a comparison. 
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Figure 6.4. Powder pattern of the Ni MTW zeolite with the simulated IZA pattern6. 

 

In addition to the X-ray analysis, an interesting crystal morphology for the MTW type 

materials was observed via microscopy, shown in Figure 6.5. The crystal formed from 

these syntheses appear to have a star like shape to them, shown previously by Wang et 

al12, which is most likely occurring from a single nucleation point with multiple crystals 

stacking on top on one another. This shape could be reproduced via the same 

hydrothermal method for a reaction length of both 14 and 23 days.  

 

 

 

 

 

 

Figure 6.5. Microscopy images of the MTW crystal morphology. 
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6.4 Dry reforming 

The catalysis of the dry reforming of methane was investigated via the method described 

in Chapter 3.4.3. Both the temperature programmed and isothermal dry reforming 

reactions were carried out. 

 

6.4.1 Temperature programmed dry reforming 

The results from the forward temperature programmed dry reforming reactions for both 

the MEL and MTW type materials are shown in Figures 6.6. and 6.7 respectively. 

 

Figure 6.6. Temperature programmed dry reforming forward reaction over Ni MEL. 

It can clearly be seen that for both materials, the start of the reforming is very sudden, at 

approximately 600 °C for MEL and 500 °C for MTW. The MTW material shows a stable 

increase in catalytic activity as the temperature increases and utilises a larger percentage 

of the methane present. The MEL material on the other hand, shows a much poorer 

performance which is not sustained as the temperature increases. The reverse water gas 

shift reaction is occurring in conjunction with the methane reforming for both the MEL and 
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MTW materials. When looking at the molar signal intensity it is clear that the MTW 

material is a much more effective catalyst than MEL. 

 

Figure 6.7. Temperature programmed dry reforming forward reaction over Ni MTW. 

The reverse, cooling, dry reforming reaction for them MEL and MTW material are shown 

in Figure 6.8 and 6.9 respectively. 

 

Figure 6.8. Temperature programmed dry reforming reverse reaction over Ni MEL. 
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The little activity shown by the MEL catalyst drops off very quickly for the reverse reaction, 

with no activity observed below 600 °C. The reverse reaction for the MTW material shows 

a steady decrease in activity, with a slight occurrence of the reverse water gas shift 

reaction. There is no catalytic activity observed after 350 °C. 

 

 

Figure 6.9. Temperature programmed dry reforming reverse reaction over Ni MTW. 

 

For these reactions the amount of carbon deposition on the surface of the catalyst was 

measured using the oxidation reaction described in Chapter 3.4.4. For the MEL material 

the amount of observable carbon was 0.0677 mg, which is equal to 1.6925 mg of carbon 

deposited per gram of catalyst used, and for MTW it was 0.0574 mg, which is equal to 

1.435 mg of carbon deposited per gram of catalyst used. 
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6.4.2 Isothermal dry reforming 

The isothermal dry reforming reaction for MEL at 900 °C is shown in Figure 6.10. It is clear 

from the reaction trace that the nickel containing MEL material rapidly loses most of its 

activity within the first three hours. After which a low level activity is observed, along with 

the reverse water gas shift reaction. 

 

Figure 6.10. Isothermal dry reforming over Ni MEL at 900 °C. 

 

The temperature programmed oxidation reaction to determine the amount of carbon 

deposition was carried out and yielded 0.0652 mg of observable carbon for the MEL 

material, which is equal to 1.63 mg of carbon deposited per gram of catalyst used. 

The isothermal dry reforming of methane at 900 °C over the nickel containing MTW 

material is shown in Figure 6.11.  

In comparison with Figure 6.10, the activity for the MTW material is much higher than that 

for MEL. It can be seen that the activity is decreasing over time for the MTW material but 

a relatively high activity, when compared to the MEL material, is maintained up until the 

end of the study at 20 hours. Again a small amount of the water gas shift reaction is 
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occurring, which steadily increases as the activity of the catalyst decreases. The 

temperature programmed oxidation reaction to determine the amount of carbon deposition 

was carried out and yielded 0.056 mg of observable carbon for the MTW material, which 

is equal to 1.4 mg of carbon deposited per gram of catalyst used. 

 

Figure 6.11. Isothermal dry reforming over Ni MTW at 900 °C. 

It is clear that for dry reforming, the MTW type zeolite is a better catalyst than its MEL 

counterpart, in terms of both levels of activity and longevity of catalysis. 

 

6.4.3 Dry reforming conclusions 

The dry reforming of methane over the MEL and MTW nickel containing materials was 

carried out. Both materials showed a sudden ‘switch on’ of reforming activity, at 

approximately 600 °C for the MEL material and at approximately 500 °C for the MTW 

material. The sudden switch on could be caused by the conditioning or cleaning of the 

catalyst surface, allowing the active nickel sites to be become accessible. A large 

difference between the dry reforming capabilities of the materials was seen, with the MTW 

material consuming almost all of the methane present as the temperature reached 900 °C. 
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The MEL material on the other hand only consumed up to 40 % of the methane present 

as the temperature reached it maximum. For the isothermal reactions, the MTW material 

was shown to outperform the MEL material, with a difference in methane consumption of 

nearly 70 %. From these results it is clear that the MTW material is far more suited for the 

catalysis of the dry reforming of methane than the MEL material. This difference in activity 

could be due to the differences in the channel structures of the materials with the MTW 

materials possessing channels in only one direction, allowing for a much faster diffusion 

through the framework. 

 

6.5 Biogas reforming by carbon dioxide 

Biogas reforming was carried out as described in Chapter 3.4.3, where the methane to 

carbon dioxide ratio was 2:1. This more closely simulates the mixture of these gases 

within naturally occurring biogas, rather than the synthetic mixture in dry reforming. 

As with the dry reforming studies in Chapter 6.4, the biogas reforming was conducted 

under temperature programmed and isothermal conditions. 

 

6.5.1 Temperature programmed biogas reforming 

The forward temperature programmed biogas reforming reaction traces for the nickel 

containing MEL and MTW materials are shown in Figures 6.12 and 6.13. 
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Figure 6.12. Temperature programmed biogas reforming forward reaction for Ni MEL. 

 

 

Figure 6.13. Temperature programmed biogas reforming forward reaction for Ni MTW. 

Similar to the dry reforming results above, the MTW material shows a higher activity than 

its MEL counterpart.  The MEL reaction trace shows very little reaction occurring with a 

small amount of reforming and reverse water gas shift after approximately 580 °C. The 
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activity slowly increases as the temperature nears 900 °C but not to any great extent. The 

MTW mediated reaction however shows a much higher activity for biogas reforming. As 

50% of the methane and nearly all of the carbon dioxide is consumed as the temperature 

reaches 900 °C the reaction is nearing peak activity. All of the methane is not expected to 

be consumed during 2:1 simulated biogas reforming as there is not enough carbon 

dioxide present. A very small amount of the reverse water gas shift reaction is occurring 

from approximately 450 °C but reduces as the temperature increases. 

The reverse reaction profiles are shown in Figures 6.14 and 6.15. Again it can be clearly 

seen that the MEL material has very little activity for biogas reforming which stops after 

600 °C.  

 

Figure 6.14. Temperature programmed biogas reforming reverse reaction for Ni MEL. 

The MTW reverse reaction however, shows a very similar profile to that of the forward 

reaction, showing that the hysteresis in this case is relatively small. The activity of the 

reforming reaction slowly reduces until it ceases at approximately 400 °C. 
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Figure 6.15. Temperature programmed biogas reforming reverse reaction for Ni MTW. 

 

The temperature programmed oxidation to determine the carbon deposition on the 

catalyst surface was carried out and yielded 0.0733 mg of observable carbon for the MEL 

material, which is equal to 1.8325 mg of carbon deposited per gram of catalyst used, and 

0.0863 mg of observable carbon for the MTW material, which is equal to 2.1575 mg of 

carbon deposited per gram of catalyst used. 

 

6.5.2 Isothermal biogas reforming 

The isothermal biogas reforming at 900 °C reaction profile for the MEL catalyst is shown in 

Figure 6.16. It can be seen that there is a low level of biogas reforming activity that is 

decreasing over time. There does not appear to be any reverse water gas shift reaction 

occurring. 
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Figure 6.16. Isothermal biogas reforming over Ni MEL at 900 °C. 

 

 

Figure 6.17. Isothermal biogas reforming over Ni MTW at 900 °C. 

 

The isothermal biogas reforming at 900 °C reaction profile for the MTW material is shown 

in Figure 6.17. There are higher levels of activity for the MTW catalyst than the MEL 
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counterpart. The catalytic activity decreases over time but a reasonable methane 

conversion is still present after 20 hours. 

The temperature programmed oxidation to yield the carbon deposition was carried out for 

both catalyst materials. The MEL catalyst yielded 0.1 mg of observable carbon, which is 

equal to 2.5 mg of carbon deposited per gram of catalyst used, and the MTW catalyst 

yielded 0.0687 mg of observable carbon, which is equal to 1.7175 mg per gram of catalyst 

used. 

 

6.5.3 Biogas reforming conclusions 

The biogas reforming of methane over the MEL and MTW nickel containing materials was 

carried out. As with the dry reforming, the MTW material showed a higher reforming 

activity than the MEL material. For both the temperature programmed and isothermal 

reactions, both materials showed little difference with the MEL material consuming 

approximately 20 % of the methane and the MTW material consuming approximately 40 

% of the methane. This difference is reforming activity could again be due to the channel 

system in the MTW material compared to that of the MEL. The straight channel in the 

MTW material will mean that the diffusion limitations of the reforming will be minimised 

with the reactants and products being able to enter and exit the channel system more 

easily.  

 

6.6 Partial Oxidation 

Investigation into the reforming of methane via its partial oxidation was carried as per the 

method in Chapter 2.5.3. The partial oxidation of methane (POx) is one of the more 

difficult of the reforming reactions to investigate. The balance between partial oxidation 

and total oxidation (TOx) is an issue many catalysis scientists face. 
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6.6.1 Temperature programmed oxidative reforming 

The temperature programmed partial oxidation of methane reaction traces for the nickel 

containing MEL and MTW materials are shown in Figure 6.18 and 6.19 respectively. 

The MEL material favours the total oxidation reaction with very little hydrogen production 

even at high temperatures. It is clear that total oxidation is occurring due to the presence 

of the water signal. There may be a slight occurrence of the reverse Boudouard reaction 

at high temperatures leading to the formation of carbon monoxide. 

 

Figure 6.18. Temperature programmed POx forward reaction over Ni MEL. 

The MTW material on the other hand shows a preference towards total oxidation at lower 

temperatures with a sudden change to partial oxidation at approximately 800 °C. A 

significant percentage, of the methane is being converted to hydrogen and carbon 

monoxide as the temperature reaches 900 °C. 
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Figure 6.19. Temperature programmed POx forward reaction over Ni MTW. 

The reverse temperature controlled POx of methane reaction profiles for both materials 

are shown in Figure 6.20 and 6.21. 

 

Figure 6.20. Temperature programmed POx reverse reaction over Ni MEL. 
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It is clear that the MEL material is not active for the partial oxidation of methane even after 

being heated to 900 °C. The low level activity the material shows towards total oxidation 

has diminished after 600 °C.  

The MTW material on the other hand retains a relatively high activity towards partial 

oxidation down to 800 °C after which the POx activity decreases as the TOx activity 

increases. That is until approximately 675 °C where all activity ceases. 

 

 

Figure 6.21. Temperature programmed POx reverse reaction over Ni MTW. 

 

The temperature programmed oxidation reaction to determine the amount of carbon 

deposition on the catalyst surface were carried out and yielded 0.0468 mg of observable 

carbon for the MEL material and 0.307 mg for the MTW material. 
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6.6.2 Isothermal oxidative reforming 

The isothermal partial oxidation reforming of methane at 900 °C for the nickel containing 

MEL material is shown in Figure 6.22. It can clearly be seen that there is no activity 

towards the partial oxidation reaction and is instead towards total oxidation. This total 

oxidation activity however is very low level and only approximately 10% of the methane is 

being consumed. The reverse Boudouard can be seen to be taking place with the 

evolution of carbon monoxide without the presence of hydrogen.  

The isothermal partial oxidation of methane reaction profile for the MTW catalyst at 900 °C 

is shown in Figure 6.23. The initial activity shown towards the partial oxidation rapidly 

declines within the first two hours of study, after which the POx activity decreases as the 

TOx activity increases, this change in regime could be due to the deposition of carbon on 

the catalyst or it could be that the catalyst itself is being oxidised favouring the total 

oxidation of the methane. It is interesting to note however that this TOx activity is not as 

high as the POx activity as a large percentage of the methane is left unreacted. 

 

Figure 6.22. Isothermal POx reaction over Ni MEL at 900 °C. 
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Figure 6.23. Isothermal POx reaction over Ni MTW at 900 °C. 

The temperature programmed oxidation reactions to yield the carbon deposition was 

carried out for both materials, giving values of 0.0789 mg of observable carbon for the 

MEL material, which is equal to 1.9725 mg of carbon deposited per gram of catalyst used, 

and 0.0162 mg of observable carbon for the MTW material, which is equal to 0.0405 mg 

of carbon deposited per gram of catalyst used. 

 

6.6.3 Partial oxidation reforming conclusions 

The partial oxidation reforming of methane over the MEL and MTW nickel containing 

materials was carried out. As with the other reforming reactions, the MTW shows a far 

superior activity for the partial oxidation of methane than the MEL material. The MTW 

catalysed reaction showed a 90 % consumption of the methane present as the 

temperature reached it maximum, whereas the MEL material showed only a 10 % 

methane consumption. These results are reflected in the isothermal reactions at 900 °C 

with the MEL material still only consuming 10% of the methane and the MTW material 

consuming 90%. It is interesting to note that the little activity shown by the MEL material is 

sustained throughout the 20 hour experiment. In contrast, the MTW material shows a 
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significant drop off in the oxidative activity with on 40 % of the methane being consumed 

after 20 hours has elapsed. This drop off in activity could be due to the deactivation of the 

catalyst though carbon deposition or the oxidation of the catalyst itself. The MTW has 

been shown to be the far superior catalyst for the partial oxidation of methane, with the 

difference most likely stemming from the difference in framework channel structures as 

previous discussed. 

 

6.7 Oxidation of synthesis gas 

The oxidation of synthesis gas was again studied to ascertain whether the MEL and MTW 

nickel containing materials also show the selectivity towards the hydrogen over the carbon 

monoxide.  

 

6.7.1 Temperature programmed oxidation of syn-gas 

The forward temperature programmed oxidation of syn-gas reaction profiles for the nickel 

containing MEL and MTW catalysts are shown in Figure 6.24 and 6.25. 

 

Figure 6.24. Temperature programmed forward syn-gas oxidation over Ni MEL. 
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It can be seen that in the MEL reaction profile the hydrogen is selectively oxidised over 

carbon monoxide at lower temperatures. There is a period of reduced activity around 470 

°C after which the oxidation resumes and the activity increases as the temperature 

increases. At approximately 670 °C there is a sudden change in oxidation selectivity from 

the hydrogen and towards the carbon monoxide, the change in selectivity is brief and 

thereafter converts back to favouring the hydrogen oxidation. At temperatures above 670 

°C the reverse water gas shift reaction is occurring, as shown by the decrease in both 

hydrogen and the carbon dioxide levels are decreasing and the carbon monoxide level is 

increasing.  

 

 

Figure 6.25. Temperature programmed forward syn-gas oxidation over Ni MTW. 

 

The MTW material also shows a selectivity towards the oxidation of hydrogen over carbon 

monoxide. It does not however show the same dip in activity as the MEL catalyst. For the 

MTW mediated reaction all the oxygen is being consumed from approximately 300 °C as 

opposed to approximately 700 °C for its MEL counterpart. At approximately 450 °C there 
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is a change in the oxidation selectivity in which the carbon monoxide oxidation is favoured 

over the hydrogen oxidation. 

The reverse, cooling, reaction profiles for the MEL and MTW materials are shown in 

Figures 6.26 and 6.27.  

 

Figure 6.26. Temperature programmed reverse syn-gas oxidation over Ni MEL. 

The MEL profile shows a similar profile to the forward reaction if the drop in activity had 

not occurred. There is a general favour towards the hydrogen oxidation with a slight jump 

in activity for the oxidation of both hydrogen and carbon monoxide approximately 690 °C.  
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Figure 6.27. Temperature programmed reverse syn-gas oxidation over Ni MTW. 

 

On cooling of the MTW material, the oxidation selectivity shows number of changes. At 

higher temperatures the selectivity lies with the hydrogen oxidation, but at approximately 

700 °C it switches and the carbon monoxide oxidation is favoured. That is until 

approximately 510 °C, at which point the selectivity changes again to favour the hydrogen 

oxidation. There is also a moment of brief activity reduction at 510 °C at which all the 

oxygen is not consumed. As this change in selectivity and reduction in activity occur at the 

same time it is clear that this selectivity changing is not an immediate process and may 

involve a change to the surface chemistry, which was much slower at 510 °C than at 700 

°C than on the previous switching of selectivity. 

The temperature programmed oxidation of the materials to ascertain the amount of carbon 

on the catalyst surface was carried out for both materials. The MEL catalyst yielded 

0.0525 mg of observable carbon, which is equal to 1.3125 mg of carbon deposited per 

gram of catalyst used. The MTW material yielded 0.0174 mg of observable carbon, which 

is equal to 0.435 mg of carbon deposited per gram of catalyst used. 
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6.7.2 Isothermal oxidation of syn-gas 

The isothermal reaction for the oxidation of syn-gas was studied at 250 °C as opposed to 

the 900 °C used for the other reforming reactions. This is due to the fact that at 250 °C all 

three zeolite catalysts studied in this thesis showed a selectivity towards hydrogen 

oxidation at this temperature, and there was an intrigue to see if this selectivity and activity 

could be maintained over 20 hours. 

The reaction profile of the isothermal oxidation of syn-gas at 250 °C over the MEL catalyst 

is shown in Figure 6.28. 

 

Figure 6.28. Isothermal syn-gas oxidation over Ni MEL at 250 °C. 

 

The isothermal reaction profile for the MEL material shows a selectivity towards the 

hydrogen, seen from the larger percentage of hydrogen consumed as opposed to carbon 

monoxide. The signals for all gases within the reaction show a fluctuation rather than a flat 

line, which is a consequence of the instrumentation and not the reaction. It can be seen 

that all the oxygen is not consumed in this reaction, however the activity that is present is 

sustained throughout the 20 hour experiment. 
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The isothermal reaction profile for the oxidation of syn-gas over the nickel containing 

MTW catalyst at 250 °C is shown in Figure 6.29. 

 

Figure 6.29. Isothermal syn-gas oxidation over Ni MTW at 250 °C. 

 

The isothermal reaction profile for the MTW material again shows a selectivity towards the 

hydrogen oxidation with very little of the carbon monoxide being oxidised. Approximately 

50% of the oxygen is consumed. As time elapses the activity of the oxidation decreases 

substantially, however some hydrogen oxidation remains after 20 hours of reaction time. 

The temperature programmed oxidation was carried out on both materials to ascertain the 

amount of carbon deposition on the surface of the catalysts. This analysis yielded 0.0234 

mg for the MEL material, which is equal to 0.585 mg of carbon deposited per gram of 

catalyst used, and 0.0401 mg for the MTW material, which is equal to 1.0025 mg of 

carbon deposited per gram of catalyst. 

 

 

 



 

130 
 

6.7.3 Oxidation of syn-gas conclusions 

The oxidation of syn-gas over the MEL and MTW nickel containing materials was carried 

out. Both the MEL and MTW materials show a selectivity towards the oxidation of the 

hydrogen in the syn-gas mixture over the carbon monoxide, evidenced by the evolution of 

water without the evolution of carbon monoxide, i.e. not the reverse water gas shift 

reaction. The MEL material shows a consumption of 80 % of the hydrogen and the MTW 

material a 70 % consumption, as the temperature reaches the maximum. The isothermal 

reactions at 900 °C showed only a 20 % hydrogen consumption over the MEL material, 

which remained relatively stable over the 20 hour reaction time. The MTW material 

showed a 50 % hydrogen consumption which steadily decreased to 20 % after the 20 

hours had elapsed, indicating the catalyst is becoming deactivated, most likely by carbon 

deposition or slow oxidation of the catalyst itself. 

 

6.8 Conclusions 

Two nickel containing zeolites were synthesised using the hydrothermal method, an MEL 

type zeolite and an MTW type zeolite. The catalytic activity of both materials for a variety 

of methane reforming reactions and the oxidation if synthesis gas was tested. 

Overall the MTW material appears to be a superior catalyst showing a general higher 

activity than its MEL counterpart which shows little or no activity for the reforming of 

simulated biogas, dry reforming of methane and for the partial oxidation of methane. AS 

previously mentioned it is postulated that this difference in activity is due to the difference 

in the channel systems of the two materials, with the MEL having a multi-channel system 

and the MTW having a single directional channel system. In the MEL framework, reactant 

gaseous species are more likely to become trapped between the perpendicular channels, 

whereas in the MTW material the gaseous species can only diffuse through in one 

direction. 
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As with the nano MFI material studied in Chapter 5, both the MEL and MTW materials 

show a low temperature selectivity for the oxidation of hydrogen over carbon monoxide. 

This study confirms that the framework structure of the zeolite plays an important role in 

the catalysis and does not merely act as a support for the active nickel metal. 
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7.0 Conclusions and Further Work 

7.1 Conclusions 

Two nanosized materials were synthesised via the clear-solution method with two different 

structure directing agents, a tetrapropylammonium salt and a methyl tributylammonium salt. 

The mechanism of formation of these nanosized zeolites was investigated through the 

implementation of three characterisation techniques, X-ray diffraction, solid state NMR and 

dynamic light scattering. X-ray diffraction studies showed that the TPA template is able to 

form the MFI framework over a shorter time period than the MTBA template, however, solid 

state NMR studies revealed that the MTBA mediated reaction yielded more crystalline 

material with fewer framework defects. From these results it is difficult to make definitive 

conclusions as to the mechanism of formation of these nanozeolites, however it is likely that 

a mechanism of spontaneous rapid crystallisation is occurring. The XRD patterns showing 

peaks at early timepoints could be due to the presence of the aggregates or they could be 

due to a very rapid crystallisation, however, the stability of the FWHM data indicates a rapid 

crystallisation mechanism is occurring. The solid state NMR investigations disagree with 

the process of the aggregation mechanism, due to the presence of a large Q4 silicon peak 

which is inconsistent with the presence of aggregates in the reaction mixture. The DLS 

results for the MTBA mediated indicate a wide distribution of particle sizes which could be 

attributed to the aggregates, however on analysis of the average particle sizes for each 

timepoint the TPA mediated reaction suggests a mechanism of spontaneous crystallisation. 

On analysis of the data as a whole, it is concluded that the most likely mechanism of 

formation for the nanosized zeolite during a clear-solution synthesis is that of spontaneous 

crystallisation. However, definitive conclusions cannot be made, further work into the area 

needs to be carried out, outlined in Chapter 7.2. 

Four nickel containing zeolite catalysts were formed through the implementation of either a 

clear-solution or hydrothermal synthesis method. These materials were formed via sodium 
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or potassium intermediates which were then ion-exchanged and calcined to yield the final 

nickel containing materials.  

The effect of particle size on the reforming of methane was probed using nano and micron 

sized nickel ‘doped’ MFI zeolites. The nano sized material was shown to have a higher 

catalytic activity towards the partial oxidation of methane opposed to the micron sized 

material. However, this activity was reversed for biogas reforming, with the micron sized 

material showing a higher level of catalysis. From these results it is clear that the reduction 

in particle size of a zeolite catalysts does not always infer an improvement to the 

performance, it is dependent upon the reaction undergoing catalysis. The nano sized 

material showed an interesting property during the partial oxidation of methane studies in 

which it displayed a selectivity towards the oxidation of methane and hydrogen. This 

selectivity was investigated by the oxidation of synthesis gas. The results of this syn-gas 

study showed that at most temperatures the nanosized MFI zeolite shows a selectivity 

towards the oxidation of hydrogen over carbon monoxide, with the oxidation of such 

occurring at low temperatures of approximately 200 °C. The differences seen between the 

two materials is most likely due to the availability of nickel sites, stemming from the 

difference in particle size, and the diffusion limitations imposed by the different frameworks. 

From the results presented, it is concluded that the optimum particle size for the MFI type 

catalyst lies somewhere between the nano and micron sized materials investigated, 

however the control over the particle size may be difficult to achieve. 

The effect of changing the zeolite framework type was studied using nickel containing MEL 

and MTW nickel ‘doped’ zeolites, in addition to the previous MFI particle size zeolite 

catalysis study. The MTW material showed a much higher methane reforming activity than 

the MEL material, which showed little or no activity for the reforming reactions. The 

difference in catalytic activity shown by the two materials is most likely due to their different 

channel systems which will have a significant effect on the diffusion pathways for the 

reactant gaseous molecules. 
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On comparison of the MTW and MFI catalytic capabilities, it is clear that for biogas reforming 

the micronsized MFI zeolite is the superior catalyst. For the partial oxidation of methane, 

the MTW material shows the greatest reforming activity however, this activity cannot be 

sustained for a prolonged time period. The MTW, MEL and nano MFI materials show a 

selectivity towards the oxidation of hydrogen over carbon monoxide in the oxidation of syn-

gas. However, at 250 °C the nanosized MFI material shows a far better ability to catalyse 

the oxidation of hydrogen, which can be sustained over prolonged periods. The differences 

seen, again, will most likely be due to the availability of the nickel sites and the diffusion 

pathways within the materials. 

The results of this study show that the change in zeolite framework type does have a large 

impact on the level of catalysis activity exhibited by the material. These nickel containing 

zeolites show a great potential for the catalysis of methane reforming, however, one 

material may not be suited to all types of methane reforming. 

 

7.2 Further Work 

The studies into the mechanism of formation of the nanozeolites could be further 

investigated by solid state NMR to probe the local environments of 14N and 61Ni. The 14N 

spectra would allow the local environment of the central nitrogen atom within the template 

to be probed, gaining further insight into formation of the framework. The 31Ni spectra would 

allow insight into the location of the nickel within the framework. Rotational echo double 

resonance (REDOR) NMR could be used to further characterise the zeolite framework, the 

entrained SDA and the relationship between them. The implementation of X-ray absorption 

fine structure (XAFS) would allow the nickel in the framework to be further investigated to 

gain insight into the oxidation state and the local environment. 

The use of different symmetric and asymmetric structure directing agents could be used to 

understand the effect of the SDA conformation on the final product and the mechanism of 

formation. It may be that different SDAs have different formation mechanisms, with some 
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showing spontaneous crystallisation, some showing the aggregation mechanism and other 

potentially a mixture if the two. 

Further investigations into the control of the final particle size could be carried out. This 

would not only allow further understanding of the mechanism of formation but would also 

allow further investigations into the effect of particle size on the catalytic capabilities of the 

material. The control of the particle size to yield a product in the range between the micron 

and nano materials presented here may prove difficult. 

Zeolite catalysis could be further investigated by again changing the zeolite types, as there 

are now 239 confirmed zeolite types this leaves many possibilities for an improved catalyst 

to be discovered. A different active metal, such as platinum or palladium, could also be 

investigated, however the cost-benefit analysis would have to determined. For the materials 

studied in this thesis, the steam reforming capabilities could also be investigated. 
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