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Abstract

Performance of curvature discrimination was measured for a wide range 

of stimulus curvatures and sizes, using an adaptive version of the 

Method of Constant Stimuli* Performance is expressed both in terms of 

curvature difference thresholds, and efficiency, where efficiency is 

defined as the ratio ideal minimum response variance, based on the 

spatial statistics of the retina, to the observed response variance*

The results lead to three major conclusions*

Curved lines may be processed for curvature discrimination decisions 

with the same efficiency as straight lines, under appropriate 

conditions*

The results are not consistent with a high degree of common processing 

for straight and curved lines, but suggest the operation of two parallel 

processes, one for straight lines and one for curved lines. Each 

process has striot input limitations* Those for the process concerned 

with straight lines have already been determined by Andrews, Butcher and 

Buckley (1973)»

The stimulus input limitations for the curved line process are 

determined in the present study, and suggest that this process is 

primarily concerned with local slope analysis, and is limited to a 

range of slopes of 40 degrees. Experiments using broken stimuli 

throw further light on the working of this process, as does a detailed 

study of the relationship between efficiency for curvature discrimination 

and stimulus orientation range (defined as the product of stimuLus 

curvature and length)*



i i i

The orientation range limit is reduced to 30 degrees when oblique 

stimuli are used, or a single central gap is added to horizontal stimuli.

The implications of these results are discussed, and suggestions for 

further research made.
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CHAPTER 1. : THE PERCEPTION OF CONTOURS AND CONTOUR SHAPE.

1.1 Introduction.

We live in a world furnished with many spatial continuities. There 

are continuous surfaces, and continuous edges; there are continuities 

of texture, colour and brightness; space itself is apparently 

continuous. With our vision, we may perceive these continuities 

consistently, and yet our visual system is only equipped to collect 

light at a discontinuous array of points, since the organ responsible 

for this collection, the receptor surface of the retina, consists of 

a mosaic of discrete light sensitive elements of finite size, number 

and spacing. Even although there is a vast number of these receptor 

elements, it is perhaps surprising that our visual perception of 

space is continuous, since this implies that the visual system has to 

guess or infer the presence of these continuities.

The retina is capable of recording a great deal of information in 

its response to the pattern of incident light. The number of potential 

patterns of excitation across the retina is uncountable, far in 

excess of the number of nerve cells within the cranium. Likewise, 

the number of possible neural connections between different sets of 

receptors, making logical combinations of this input, is infinite.

It follows that a certain selection of incident light patterns are 

detected and analysed more directly than others, as individual 

entities. Particular patterns of input (presumably those that 

natural selection has found to be the most useful or frequent) are 

condensed into simpler statements. These simpler statements must reduce



2

the redundancy of the input information, since the visual pathway, 

which conveys all visual information to the higher centres of the "brain, 

has a strictly limited capacity (input information is redundant in 

the sense that the visual system is able to use a symbolic code to 

represent the large amounts of information, contained in continuities 

of edge, colour, and luminance, for example, by concise descriptions).

It might be supposed that a transmission system which yses a symbolic 

code, and that infers the presence of continuities from the response 

of a discontinuous transducer, would be rather inaccurate in judging 

fine details in its input# In the case of the visual system, this is 

not so# The simpler statements, used to reduce the redundancy of the 

input information, must also maintain aspects of this data with a very 

high degree of accuracy : for example, stereoscopic vision requires 

precision in the recording and analysis of the position of an object, 

or a feature of an object. These simpler statements are much more 

than mere summaries of the input#

A striking example of the parallel operation of these two processes 

of redundancy reduction and precise analysis of the same object, is 

provided in the results reported by Ludvigh (1953), who measured the 

smallest displacement of the central dot in a row of three dots, 

which his subjects could reliably discriminate* The dots each only 

subtended 3 sec. arc at the retina, and therefore, even allowing for 

light spread by the optics of the eye, probably only stimulated a very- 

few receptors at any one instant# The first point' to note in his 

results, is the extremely high accuracy with which the relative positions



3

of these dots can he judged : the smallest displacement threshold

(orthogonal to the row of dots) is less than 3 sec. arc, an order of 

magnitude smaller than the distance separating two adjacent receptors. 

Secondly, this threshold for relative position was found to vary 

systematically with the separation of the dots, being smallest when 

the stimulus array suntended between 10 and 20 min. arc, and increasing 

rapidly, as the separation between the dots became larger. This 

finding implies that the three dots are being summarized in some manner, 

when les3 than 20 min. arc apart, but not when they are more widely 

spaced. If this were not the case, increasing separation should have 

a steadily increasing effect on judgements of relative position, due to 

the cumulative effects of random distortions in the visual metric, and 

also arising from the increasing grain size of the retinal mosaic, 

with the increasing eccentricity of the stimulus.

It is very tempting to conclude that it is by means of the simplification 

or summarization of the input, which accomplishes a reduction in the 

redundancy of the input, that this high level of accuracy is achieved. 

This is paradoxical : when the stimulus array in Ludvigh* s experiment 

can be summarized, information must have been discarded, but judgemental 

error is low; when the stimulus array cannot be summarized in the 

same manner, judgemental error is relatively high. The explanation 

for this paradox is that no information is lost by the process of 

making a summary, provided that the summary is appropriate, and that the 

receiving processes are informed of the nature of the summary process : 

absolute information is replaced by experential information (both 

inherited and personal experience, but probably mostly that inherited), 

and ninety nine times out of one hundred, the two are identical.



Patterns of light, collected at discrete points on the retina and 

corresponding to discrete points in space, are mapped onto the 

percepts of whole objects and continuous space. The immediate 

processes of summary must begin this task of perceptual inference, and 

must therefore, contain all the information necessary for the visual 

system to identify an object, and to discriminate its size and shape, 

position and attitude, brightness and colour, and the temporal sequence 

of events involving that object, A summary which contains some of 

this information at relatively high levels of accuracy, is of course 

constrained in a system with a limited transmission capacity, to 

categorize and generalize much of the information recorded at the retinal 

surface, by extracting pre-defined features of the pattern of 

stimulation, which can be interpreted at a later stage.

1,1,1 Features, Especially Contours,

Feature extraction is a fundamental and important step in the overall 

process of form recognition and analysis, and yet there is little 

understanding and knowledge of the matter. The problem should not lie 

in establishing the hypothesis that the visual system does extract 

features, which it obviously has to, but rather in establishing which 

features are the ones employed, in what form they are represented, and 

what additional information is available, within the visual system, 

concerning that particular feature.
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Barlow, Narasimhan and Rosenfeld (1972) argue that common ground 

between the disciplines of neurophysiology, perceptual psychology, 

and artificial intelligence, shows that these independent approaches 

are all highlighting the same difficulties, and then suggest that a 

joint approach could be profitable. One aspect of common ground 

that they draw particular attention to, is the importance that all 

types of pictorial analysis give to edges, lines and the ends of edges 

and lines.

The potential usefulness of such features cannot be denied. Contours, 

which are defined as discontinuities of contrast, texture and colour, 

provide cues which may be used to specify the shape of an object, its 

attitude and position, and:its size. The relative position of two 

or more objects may, in some cases, be specified by the overlap of 

their images, which may in turn be specified by the intersection of 

contours. Attneave (195k) describes a number of principles of 

redundancy reduction that could be employed to advantage by the visual 

system, and points out that the consequences of these principles are very 

similar to the consequences of the principles of Gestalt Psychology 

(eg. Koffka, 1955). Four of the ten principles concern the use of 

contours as elements of an economical description of an object or 

space. He states that areas of texture or colour, either with a 

regular variation or with none, may be specified by the function of 

variation, and the boundary of the area. Likewise, the parts of a 

boundary which show regular variations in direction, can also be defined 

by a specification of the function of variation, and the loci of the 

limits of this variation. The important point is that such principles 

of symbolic encoding require less transmission capaoity, than 

point-for-point descriptions would.
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Contours of one sort or another seem to have a physiological importance 

to the visual system. Ever since the work of Hubei and Wiesel (1959» 

1962), it has been clear that the nerve cells of the striate cortex 

of an anaethetized cat or monkey respond preferentially to patterned 

stimuli of light, in contrast to the receptors of the retina, which 

apparently only respond to the photon energy in the light stimulus.

It has been repeatedly shown that cells in the various centres in the 

visual pathway prefer bar-shaped stimuli to unpatterned stimuli 

(Kuffler, 1953; Hubei and Wiesel, 19&2, 19^5; Barlow, Blakemore and 

Pettigrew, 19^7» Pettigrew, Nikara and Bishop, 1968). Whilst the 

precise form of the spatial convolution applied to the input to such 

cells is still a matter of some controversy, the organization of the 

striate cortex does lead to the supposition that it may be involved 

in the extraction of :oontour-like features, and their subsequent 

analysis.

Contours have also been shown to play a major role in the development 

of human visual behaviour. A newborn opens its eyes in light of 

moderate intensity, and engages in active, vigilant scanning of the 

environment (Haith,1968). This scanning is halted when an edge or 

contour is discovered, and the eye-movemnets then appear to be aimed 

at crossing and re-crossing it (Kessen, Salapatek, and Haith, 1972). 

Vertical contours are preferred at first, and then as the infant 

develops, horizontal and lastly oblique contours are also able to 

elicit this behaviour. ^he work of Fantz on the visual preferences 

of infants also supports the notion that contours are of particular 

salience in the visual environment to the developing visual system. 

Fantz has found that the shape of a contour is important : children 

under about two months of age prefer checker-boards to a bull's eye 
pattern (that is, they spend more time gazing at checker-boards);
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the preference is reversed in older children (Fantz, 1958,1967; Fantz 

and Nevis, 1967)« As the visual system becomes experienced, it 

apparently becomes more able to analyse complex contour pattern.

The important point is that the visual system appears to devote much 

of the time during a period when it is thought to be plastic and 

modifiahle, to studying contours in the visual environment.

These various considerations, taken together, stress the importance of 

physical contours in the environment to those processes carried out 

by the visual system in perceiving this environment.

Much effort has been expended in an attempt to discover how such contours 

are represented within the visual system, and terms such as spatial 

frequency channels, edge detectors, line detectors, and so on, have 

been coined and used by numerous authors, to express opinions 

concerning which description of the critical features of contours 

or structure in the visual world are the most appropriate to use in 

discussing the representation of such structure.

However, this is not the problem of interest here. Contours are 

clearly important in vision, but the question to be asked is as follows. 

How well does rthe visual equipment, which infers the presence of 

contours in the environment, operate, and what information is it able to 

extract concerning these contours from the discrete array of point 

samples of the incident light pattern on the retina ?

In the terms used above, how much information does that summary, or 

group of summaries, which indicate contours, convey through the visual 

system ?
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When this question has been fully answered, than the nature of the 

summary, or the process of simplification, and inference of continuity, 

will have been defined.

What form should such an answer take ? Why is the data of Ludvigh (1953) 

which is cited above as evidence concerning such a process of summary 

and simplification, useful in this respect, when for example, the 

data of French (1919) is much less useful. Both showed that a spatial 

judgement task, dot alignment or vernier discrimination, respectively, 

suffers errors that are a function of the stimulus array size.

The data of French suggest that it is not just information at the 

discontinuity that is being used by the visual system to perform the 

task, but that the relative position of the two lines is judged by 

accumulating information along the whole stimulus. This is certainly 

interesting, but the data of Ludvigh indicates that something much more 

interesting than mere counting is happening in the visual system.

The crucial difference is that in the experiment of French, one might 

expect vernier acuity to improve with increasing stimulus size, if one 

considered the task to involve relative position, because the visual 

system is given a more powerful stimulus, but in the experiment of 

Ludvigh, the stimulus has very nearly the same power to perform the 

task, at the different sizes, and the results are more surprising.

It is restrictions in the ability of subjects to perform tasks, 

particularly where none would be indicated by the nature of the stimulus 

employed, that throw most light on the early processes in the visual 

system concerned with the reduction of redundancy , and selective 

feature extraction.

The next section will consider what is known of the processes of contour 

information extraction by the visual system, and discuss what the
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implications of this knowledge are for an understanding of the 

underlying processes.
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1.2 Contour Information Processing.

It has been argued above, that the visual system has to infer continuous 

qualities of space from the discontinuous response of the retina to 

incident light patterns. At the same time, it has to reduce the 

redundancy in the neural description of the light pattern, which it 

can do by using a pre-defined alphabet of features. It seems 

surprising that while the system logically is making guesses and 

categorizations, (neither process naturally conducive to high fidelity 

of information recording and transmission), it can still sustain high 

accuracy in certain spatial judgements. This high eccuracy is not 

uniform, and it is through the non-uniformities that clues to the 

nature of these visual processes should be found.

The literature abounds with examples of high spatial accuracy for visual 

judgements, but little of this data can provide any direct insight, 

because the non-uniformities in performance are not easily deduced 

from the sort of functions measured : it is of little use or interest 

to know that vernier acuity can be as little as 5 sec. arc. There are, 

however, some studies which show sytematic variations in spatial 

thresholds which do lead to some insight into the visual processes 

underlying the perception of visual spaoe.

Contours can provide information concerning the shape of an object; 

its size; its position; and its attitude. Different judgement tasks 

cam test the ability of the visual system to extract these different 

types of information from the visual world. Examples of tasks 

assessing the use of shape information are vernier acuity (discontinuous 

shape) auid curvature acuity; size and position information usage
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might be assessed by length and separation judgements; attitude 

processing might be tested by slope comparison tasks.

These interpretations of what processes the various tasks are testing 

are subjective, since in a sense they are all tests of relative position* 

However, if the visual system is to achieve anything in the direction 

of form analysis and recognition, then it must proceed with analysis 

beyond the point of relative position, and it therefore seems 

reasonable to make the above interpretations of the experiments. The 

question of interpretation is not serious at this stage, and the 

experiments themselves will be shown to justify these interpretations.

There is a little data in the literature for all of these tasks, rather 

more for vernier acuity than for the others. This data will now 

be described, in an attempt to elucidate some of the limitations of the 

visual system. It is almost impossible to compare directly different 

sets of results, since the conditions vary widely from experiment to 

experiment, and as a result, very little quantitative information 

can be gleaned.

It is important to note that the experiments reported are all concerned 

with the visual analysis of lines. Whether these results may be 

generalised to all types of contour or not remains to be seen, although 

it does seem likely that similar processes must operate.
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1.2.1 Vernier Acuity.

Vernier resolution was first measured "by Wulfing (1892), and consists 

of the judgement of the misalignment of two lines, one directly above 

(or beside) the other,(see Fig. 1.2.1a). He found that the threshold 

was very small. Hering (1899) attempted to account for the small 

value, when compared with the diameter of a single retinal receptor, 

by arguing that, if each receptor had a local sign, or fixed spatial 

positional value, which could be used by the higher centres, then any 

process that combined the local signs of a number of receptors 

responding to aline or contour, would lead to a more precise local 

sign for that line, than that for any one receptor.

It is clear that using several adjacent receptors, rather than just 

one, could improve perceived spatial positional specificity for an 

object, provided that the combinations were efficient. That this is 

the case is suggested by the low value of the measured threshold.

That combinations are made along the line, and that the results of 

these combinations are improvements in acuity, is shown by the data 

of French (1919-1920), who found that vernier acuity improved with 

increasing line length. This explanation was elaborated by Weymouth, 

Anderson and Averill (1923)» It does seem likely from these results, 

that spatial information from a number of different receptors can 

combined with sufficient efficiency to improve on the positional 

specificity of a single receptor. However, it is not clear from 

these results, what the limits of such combinations might be.
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Many years later, Baker complained that 'little attention has "been paid 

to the stimulus factors which affect vernier acuity' (Baker, 1949).

To a degree, this has subsequently been corrected, but to little avail 

(until this last decade), since the underlying philosophy motivating 

this research has been in error. Subsequent workers have generally 

addressed themselves to the problem of a mechanism for vernier acuity.

It might, however, be presumptious to seek a fixed mexhanism for 

vernier acuity : the visual system could learn a strategy for using 

processes with rather different purposes and therefore untouched 

properties, for making vernier judgements. It may be of some interest 

to discover which cues govern the performance of the task, but the 

primary interest should lie in discovering what the combination 

possibilities for this high accuracy are. It is the basic result of 

vernier acuity, not the task of vernier acuity that is of interest.

For the record, it is worth making a list of those stimulus parameters, 

which have been found to affect, or have been found not to affect 

the precision of vernier judgements.

Baker (194-9) found that vernier acuity varies with the level of 

illumination, the colour, and exposure duration of the stimulus.

Berry, Riggs and Richards (1950) found that line width i3 not a factor 

influencing the precision of vernier decisions, which they interpreted 

as evidence suggesting that it is the edges of the target that are 

important, and provide the cues for the task.

Leibowitz (1934-) showed that vernier acuity is the same for light-on-dark 

and dark-on-light stimuli.



14

Leibowitz (1953) showed that vernier acuity is a function of stimulus 

orientation, in the same way that grating resolution is*

Keesey (i960) showed that stabilization of the retinal image does not 

reduce the precision of vernier judgements, thereby dispelling the 

notion that the sweep of the critical discontinuity past a receptor 

provided the cue for the task •

Findlay (1973) showed that the superposition of an oblique sinusoidal 

grating (contrast modulation 0.6) on a vertical target of low 

luminance (just visible when combined with a vertical grating) reduced 

acuity by a greater amount than superposition of similar vertical or 

horizontal gratings. This result suggests that the task may be 

affected by the relative contrast (and therefore visibilty) of the 

contour break and the line elements. This may suggest which cues 

are important.

The work of the last decade on vernier acuity, especially that of Andrews, 

and that by Westheimer, has been much more sophisticated, and provides 

clear insight into the processes behind the high vernier resolution 

achieved under appropriate conditions. In 1919, French had shown 

that vernier acuity varied with stimulus size, but it was not until 

the work of Andrews, Butcher and Buckley (1973), that the significance 

of this variation in acuity with stimulus length was explored and 

understood.

Andrews et al. (1973) asked the question : what improvement in the 

precision of vernier judgements (amongst other judgements - see 

section 1.2.4) would be expected in an ideal system which lost no 

^ f ormation, beyond the sampling of space at the retina, as the size of
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the stimulus increased ? The problem is a statistical one : what is 

the minimum variance of vernier judgements in response to a focused, 

thin, instantaneous stimulus image ? This quantity can be calculated, 

using the known statistics of the distribution of the receptor cells 

on the retina surface, and if then compared with the human 

psychophysical response error variance, it can be used to calculate 

visual relative efficiencies (see Chapter 2, Section 2,5 for details). 

They found that vernier resolution is highly efficient for stimuli 

up to 30 min, arc in length, but that efficiency drops for longer 

stimuli. This is very interesting : it suggests that the output from 

foveal retinal receptors is primarily organized or collected into 

samples that are about 30 min, arc in length. This is a limitation 

of the system, of the type sought. The figure of 30 min. arc will 

assume some importance below.

They also found that adding a gap to a very long stimulus had no effect 

on performance until the gap was 5 min. arc in length, when increasing 

gap size leads yo a fall in efficiency.

Westheimer and co-workers have been concerned with both the temporal 

and the spatial characteristics of vernier acuity. Only the spatial 

characteristics are of interest here, except to note that they find 

little effect of stimulus motion on thresholds for vernier resolution 

(Westheimer and McKee, 1975)* This is in agreement with the findings 

and conclusions of Keesey (19^0),

Westheimer and Hauske (1975) have found that the presence of abutting 

or flanking contours (Fig. 1.2.1b), orthogonal to or parallel with the 

target respectively, can have a detrimental effect on the precision of 

vernier judgements. This effect is maximum when the contours are
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"between 2.5 and. 5*0 min. arc either side of the target. These distances 

for lateral interactions are much larger than the distances over which 

the light from the contours involved would spread "because of optical 

imperfections in the eye, and so it seems that the interactions are 

neural in origin.

Westheimer and McKee (1977a) have found evidence for lateral interactions 

that are facilitoiy in effect, but are restricted to a region rather 

closer to the stimulus.target. ^hey have made two pairs of comparisons, 

and find an interesting coincidence between the two comparisons.

They compared vernier acuity at a variety of stimulus luminance levels 

for two conditions : a stationary target, displayed for 90 msec., and 

a target moving with a speed of 0.9 degrees/second, displayed for 

an arbitrary long exposure of 190 msec. ^he two conditions produce 

the same relationship between vernier acuity and stimulus luminance.

They also compared the two conditions : a stationary target, exposed 

for 45 msec., and a moving target with a speed of 1.8 degrees/second, 

exposed for 190 mseo. Once again, the two conditions produce the same 

relationship between vernier acuity and stimulus luminance. In each 

case, it seems that information from the moving target can be collected 

over a fixed extent of space : threshold could be due to summation over 

a constant spatial extent of just under 5 min. arc.

Westheimer and McKee (1977b) have also measured the effect of stimuLu3 

line length on the threshold for vernier offset. Their results are 

very similar to the results of Andrews et al. (1973), but they draw 

attention to the finding that vernier acuity improves as line length 

increases up to about 5 min. arc, and then remains moderately stable 

for lengths up to 50 min. arc. Because they do not consider the 

implications of stimulus length on the task information, they do not 

realize the significance of the longer lines.
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They also measured the effects of a gap between the two line elements 

of the stimulus. Thresholds were measured as a function of gap size, 

and component line size (see Pig. 1.2.1c). They find, once again 

in good agreement with Andrews et al. (1973), that for gaps of up to 

about 5 min. arc, there is no effect of gap size on vernier acuity. 

Interestingly, thqr also find that the same minimum threshold is 

obtained, regardless of the size of the line elements, even for dot 

elements. It should be noted, however, that it could be argued that 

they were not recording vernier judgements. Andrews et al. (1973) 

have pointed out that vernier discriminations can be made for a stimulus 

of known orientation, by judging the overall slope of the stimulus 

array.

Westheimer and McKee (1977b) also found that the line size does not 

influence vernier acuity for gap sizes greater than the optimum.

They conclude that a separation of 5 min. arc between the two features 

is optimum for vernier resolution»

Westheimer and McKee (1977b) further showed that threshold for vernier 

resolution is not a function of the relative slopes of the two line 

elements (see Fig. 1.2.1d), except for a slight increase in threshold for 

the largest orientation differences, which they interpret as being due 

to the lateral interference described in Westheimer and Hauske (1975), 

and above.

Before considering the detailed implications of these definitive 

experiments by Andrews and co-workers, and Westheimer and co-workers, 

the results of experiments on other tasks, loosely involving shape 

discriminations, will be described.
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Fig. 1.2.1 Stimulus Configurations used by various investigators

of vernier acuity
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1,2.2 Dot Alignment Discrimination Tasks.

In the lowest extreme of line element size, the vernier resolution task 

becomes a dot alignment discrimination task. A number of studies 

have measured performance for this task, and related tasks.

The study by Ludvigh (1953) has been described above (in section 1.1).

His subjects were desired to judge the position of a dot with reference 

to two dots, one either side of the test dot (see Fig. 1.2.2a).

He found that threshold for dot alignment was as low as 2 to 3 sec. arc, 

for a stimulus size of between 10 and 30 min. arc. At 30 min. arc, 

threshold is higher, and remains higher for longer separations of the 

reference dots. The figure of 30 min. arc suggests that there is a 

similar limitation operating in both this task, and the vernier resolution 

task, since this length is also limiting for high efficiency in the 

study by Andrews et al. (1973). Andrews et al. (1973) measured 

thresholds for the alignment of three short dashes, each subtending 

AO sec. arc, and find a similar function.

Westheimer and McKee (1977b) have also made measurements for dot 

alignment types of tasks, and they present data for the discrimination 

of the vertical alignment of two points in space as a function of 

the separation between the two points (see Fig. 1.2.2b). Whether the 

points are two dots, or two small breaks, one in each of two parallel 

horizontal lines, thresholds are very small, being of the order of 

5 sec. arc in the smallest cases. Thresholds are smallest for 

separations of A- to 5 min. arc, and increase slightly for larger 

separations of up to 10 min. arc. This data is very similar to the data 

for vernier acuity under comparable conditions, in the same study.
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There is also a study "by Beck and Schwartz (1979), which adds nothing 

to the understanding of the processes of visual analysis, and which 

reaches the erroneous conclusion that vernier judgements (dot alignment 

judgements ?) are made from orientation information* they reach 

this conclusion via a confusing argument. The reasons for the conclusion 

being erroneous are contained in two studies : Andrews et al, (1973), 

and Westheimer and McKee (1977b), and will be discussed in the next 

section, which considers those tasks that involve slope estimation.
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Pig. 1.2.2 Stimulus configurations used in investigations of dot 

alignment discrimination.
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1.2,3 Slope Estimation Tasks.

The discrimination of the relative position of two dot3, as in 

Westheimer and McKee (1977b), described above (in section 1.2.2), 

could be considered as an absolute judgement of the slope of the 

(imaginary) line joining the two dots. Beck and Schwartz (1979) 

conclude that this is the mechanism, not only for the dot task (which 

they did measure), but also for the vernier resolution task (which they 

did not measure). Even admitting the former (which would be wrong, 

except perhaps for very short stimuli), it is hard to understand how 

this can be generalized to the latter. The reason why the former may 

not in general be admitted, is contained in the data for the performance 

of slope estimation tasks.

There have been a number of studies of performance for the estimation 

or comparison of line slopes. The first was by Jastrow (1893), who 

found that acuity for line slope judgement is relatively high, being 

of the same general order as vernier acuity. It seems that the highly 

accurate processes involved in the relative localization of two 

contours (and the detection of a discontinuity at the point of their 

conjunction) are not the only high accuracy processes.

The next study was by Salomon (1947), who measured the precision with 

which a dot could be placed in the direction implied by a line 

(see Fig. 1.2.3a). She varied both the length of the reference line, 

and the distance of the dot from the end of the line, and found that 

the further the dot from the line, the less accurate the performance, 

but the longer the line, the more accurate the estimates of perceived
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direction were.

This result is conformed in a study using a similar task, by Buoma 

and Andriessen (1968), whose major interests lay elswhere, and are 

not of interest to the present argument,

A study by Sulzer and Zener (1953) showed that acuity for judgements 

of the departure from parallelism of two contours also shows that 

acuity increases with increasing lin length; this result is confirmed 

in a study by Rochlin (1955)« See Fig, 1,2,3b.

Once again, all these early studies have failed to take into account 

the implications of stimuLus length for the information available for 

the task, and therefore provide little real, insight into the processes 

of visual analysis. As for vernier acuity, the situation is explored 

and assessed in a study by Andrews (1967b). Work by Westheimer and 

his co-workers also adds to an understanding of the processes in 

operation when slope estimations sure made.

Andrews (1967b) found that relative efficiency for parallelism 

judgements (comparison of the slope of one line with that of another 

reference line) is constant and high for line ingths up to about 

10 min. arc, and then falls with further increases in line length.

He found that the distance between the two lines to be compared did 

not affect this efficiency (up to a separation of about 30 min. arc), 

except for the case of overlapping stimuli, which produced a vezy 

large depression in efficiency. This is interesting, in the light of 

the lateral interactions between parallel contours, as expressed in the 

performance of a vernier resolution task, and described by Westheimer 

and Hauske (1975) (see section 1.2.1 above).



Westheimer, Shimaraura and McKee (1976) measured the effects of flanking 

lines on judgements of departure from verticality of a single contour. 

The flanking stimuli could he parallel, vertical lines of various 

lengths, and aligned with various parts of the target line (see 

Fig. 1.2.3c); they could he a vertical column of short horizontal 

lines (Fig. 1.2.3d), one above the other; they could he a vertical 

row of dots (see Fig. 1.2.3e); or they could he a random scatter of dots 

about a given lateral distance from the target line (see Fig. 1.2.3f).

It was found necessary to have flanking stimuli on both sides of the 

target, to obtain a sizable reduction in acuity*(thereby explaining the 

lack of lateral interaction in the study by Andrews, 1967b).

The results show that the form or orientation of the flanking stimulus 

is not important, but that its distance from the target must be between 

2 and 3 min. arc. This figure compares well with the similar flanking 

zones of optimum interference for vernier acuity, reported by 

Westheimer and Hauske (1975), and described in section 1.2.1 above.

Whilst there is this similarity between the processes used for slope 

estimation and vernier resolution, there is a-major difference in the 

length tolerance of the two tasks, as is shown by the results of 

Andrews. This difference is large enough to suggest that the neural 

substrate underlying the two tasks is quite different. This point is 

illustrated by some data presented by Westheimer and McKee (1977b), 

who compared threshold for judging the vertical alignment of two dots, 

and threshold for judging the slope of the line formed by joining two 

such dots. Threshold in the second case is almost double that in the 

first case, despite the fact that the full line should allow a far more
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accurate discrimination of verticality» This also suggests that the 

slope estimation task is quite different to the task of dot alignment. 

The process involved in dot alignment judgements, is probably closely 

related to the process involved in vernier judgements, at least for 

small stimuli, as is shown by the data of experiment 2 of that paper.

The next section will consider another group of tasks which appear to 

use the same, or a closely related process, to that used for vernier 

acuity.
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Fig. 1.2.3 Stimulus configurations used in slope estimation tasks.
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1.2.2). Curvature Discrimination Tasks.

There has been rather less work on the ability to discriminate curved 

lines from straight lines.

Della Valle, Andrews, and fioss (1956) measured thresholds for arc 

curvature (see Fig. 1.2.2*a), and chevron curvature (see Fig. 1.2.2^b) 

discrimination as a function of line length. They draw two conclusions 

sensitivity to ’off-straightness' is superior for larger length stimuli; 

and superior for arcs than for chevrons. The latter conclusion is 

critically dependent upon the geometrical parameter chosen to indicate 

threshold, and is essentially meaningless. The smallest threshold for 

•off-straightness' that they found was 16.1 sec arc (not the 1.61 sec. 

arc as reported l) and so it is clear that curvature discrimination is 

another highly accurate spatial task. They do not consider the 

importance of line lengths, and the smallest length that they used was 

32 min. arc, far too long tb examine the relationship between the 

tasks curvature discrimination, and those of vernier resolution and 

slope estimation.

Ogilvie and Daicar (1967) made a study of curvature discrimination, but 

used only six different stimuli : two line lengths of 17.5 and 2^.5 

min. arc; and only horizontal, oblique and vertical orientations. 

'Off-straightness' thresholds of the order of 2 to 5 sec* arc were 

obtained. On the basis of scant data, they reach the rather strange 

conclusion that 'an appropriate measure of acuity for tasks like this 

is the angular area* (area between arc and imaginary chord). Their 

reasons for this conclusion are obscure.
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There is only one other study of curvature discrimination, that by 

Andrews, Butcher and Buckley (1973). This study considers relative 

efficiency for the task, as a function of stimuLus length, thereby 

avoiding the traps of endless argument about geometric parameters, 

and their relative appropriateness, or whatever.

Andrews et al. (1973) measured performance of curvature discrimination 

for both arc and chevron curvatures, and found that the two tasks are 

performed at essentially the same efficiencies for the range of line 

lengths tested. Efficiency is high for lines of length up to 30 min. 

arc, and then falls with increasing line length, much in the same 

fashion that efficiency for vernier resolution varied with stimuLus 

size (in the same study, and with the same subjects). The similarity 

of these results is very suggestive. The suggestion of a relationship 

between vernier resolution and curvature discrimination is enhanced by 

their finding that the effects of a central gap on the vernier resolution 

task, and two gaps on the curvature discrimination task (see Fig. 1.2.i+c) 

are very similar for long lines. For shorter lines, the vernier 

resolution could be due to the use of stimuLus orientation cues, and so 

the comparison may not be valid.

Efficiency for curvature discrimination in short broken stimuli, of 

length less than 30 min. arc, is higher than for the corresponding 

unbroken lines.

These results strongly suggest that curvature discrimination shares 

processing pathways with vernier resolution and dot alignment tasks, 

but not with slope estimation tasks. It should be noted from the data 

of Andrews et al. C1973) that efficiency for curvature discrimination is 

higher than efficiency for slope comparison for lines of length between 

10 and 30 min. arc.
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Fig. 1.2.4 Stimulus configurations for investigations of curvature

discrimination
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1.2.5 Stereoscopic Depth Discrimination.

Depth distances of the order of 5 sec. arc can be reliably discriminated 

under appropriate conditions and for line stimuli. Anderson and 

Weymouth (1923) have shown that the threshold varies with stimulus 

length : threshold gradually decreases as line length increases from 

3 to 30 min. arc.

Berry, Riggs and Richards (194-8) have shown that depth discrimination 

is not a function of stimulus width, the same result as they found 

for vernier acuity.

Berry (1948) has shown that stereoscopic depth discrimination is more 

tolerant of target separation than is vernier acuity.

Mitchell and O'Hagan (1972) made measurements of depth discrimination 

thresholds. Their primary interest was in discovering which 

inter-ocular stimulus differences led to a decrement in performance, and 

which differences did not, but as a part of this investigation, they 

reported data for the effect of stimulus size on stereoscopic acuity 

for two identical straight lines. They found that a depth of about 

18 sec. arc could be reliably discriminated for line lengths up to 

30 min. axe.

Butler and Westheimer (1978) have demonstrated the existence of flanking 

zones, within which lines interfere with the task of depth estimation, 

or comparison. These zones are 2.5 min. arc away from the target, 

but the stimuli in them must be at the same depth from the observer as 

the test stimulus.

Whilst the lateral separation is similar for this effect and the flanking 

interference with vernier and orientation tasks, this effect on depth
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discrimination has a depth restriction which the interference with 

the vernier resolution does not.

The two tasks of vernier resolution and depth discrimination are quite 

clearly different. The effect of target separation is different; the 

effects of stimulus length may be different; and the effects of flanking 

stimuli are different in detail.
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In 1863 Volkmann showed that two distances can be recognized as 

different, when they differ by only 12.4 sec. arc. Whilst this is an 

order of magnitude larger than the thresholds for vernier acuity, it 

is still an accurate judgement.

Subsequent authors have published the results of similar measurements 

(Shipley, Nann and Penfield, 1949; Pollock and Chapanis, 1952), and 

obtained rather larger thresholds for line length comparison (between 

4 and 7 min. arc).

Wolfe (1923) has measured performance of a related task, that of 

mid-point estimation, and found similar results to these.

Such studies have generally been concerned with the constant errors 

of judgement (illusions of line size), rather than the reliability of 

such judgements, the precision with which distance can be estimated.

It is the latter that is of interest to the present discussion, and so 

the results of these studies are of no direct relevance. Once again, 

the work of the last decade, by Andrewsi and co-workers, and Westheimer 

and co-workers, is of direct relevance.

Andrews, Webb and Miller (1974) measured the relative efficiency for 

distance discrimination as a function of stimulus size in four 

different conditions : the distance to be compared could be defined 

by two dots or one line, and the distances to be compared could be parallel 

and above each other (see Fig. 1.2.6a), or parallel and beside each 

other (end on) (see Fig. 1.2.6U). Efficiencies are much lower than 

for the tasks described above, but this may, in part, be due to the

1.2.6 Distance Comparison Tasks.
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large stimulus sizes used, which ranged from 3 to 6 degrees of arc.

The two different configurations did not appear to have any effect on the 

thresholds for comparison, other than the expected effect of the 

eccentricities of the stimuli. Although there is no more absolute 

distance information in a line than in two dots (the distance is defined 

by two points in space in each case), efficiency for lines is found to 

be higher, perhaps indicating that there is a preference in the visual 

system for continuity of form in large figures.

Andrews and Miller (1978) have measured acuitites for the spatial 

separation between two lines (see Fig. 1.2.6c), as a function of 

line length and separation distance. Once again, they found very low 

efficiencies, even for line lengths of only 10 min. arc (but at a large 

stimulus separation reference of 82 min. arc). Threshold separations 

between 1 and 3 min. arc were obtained. Threshold is constant for 

line lengths up to about 30 min. arc, then gradually falls. Efficiency, 

therefore, drops quite steeply to this length, and then drops less 

steeply. The implication of this result, that the position of a 30 min. 

arc line has the same threshold as that of a 10 min. arc line, is that 

the position of a line is recorded by processes with a functional 

grain size of about 30 min. arc. Improvement in position estimation 

only occurs when the lines are longer than 30 min. arc, and more than 

one "position estimate" is available.

Threshold for separation increases with increasing reference separation, 

a fact which is paralleled by the increasing receptor size with 

increasing eccentricity of the stimuli, which means that the spatial 

position is recorded by the retina with less fidelity.



The major conclusion of these two studies is that distance and 

absolute position are not encoded efficiently by the visual system, 

except perhaps in the case of small stimuli, close together,

Westheimer and McKee (1977b) have considered the latter types of 

stimuli, and find small thresholds for distance comparison tasks in 

general. Thresholds of the order of about 6 sec, arc were obtained for 

judgements of the distance between two lines (even without a physically 

present reference distance), where the separation was between 1 and 

2*. min, arc (see Fig, 1.2,6d). Beyond this separation, threshold rises 

sharply. The length of the stimulus is not important for lengths up to 

at least 20 min, arc.

Before proceeding to summarize all the data presented in these last few 

sections, it as worth noting that the two figures of 30 min. are length 

and 4 to 5 min, arc width (lateral spread) have once again assumed an 

importance in the results, although the 30 min. are length in the 

experiments of Andrews and co-workers has the significance here, of 

defining the smallest length for any useful integration, not the 

largest for any efficient performance, as previously.
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Fig. 1.2.6 Stimulus configurations used in investigations of

distance comparison tasks.
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1.3 Spatial Tasks and Visual Processing Summarized.

The preceeding sections have listed a number of generic types of 

spatial comparison or estimation, and described the data for performance 

of these tasks, under a number of different experimental conditions.

The purpose of this present section is to summarize and interpret these 

results. This interpretation will lead to the questions prompting 

the experiments to be reported in subsequent chapters.

1.3.1 The Classification of Tasks.

The classification of the tasks employed, is in a sense arbitrary, 

and is only justified by the results. For example : vernier 

resolution and stereoscopic depth discrimination are both tasks 

requiring the judgement of relative position of lines., as is a distance 

comparison task ; chevron curvature discrimination is a task that 

involves the comparison of the slopes of two lines, as is the parallelism 

task; dot alignment tasks can be allied in this manner with almost ary 

of the other tasks.

However, the results obtained for performance of these tasks, especially 

the data for the effect of stimulus extent, provide a strong basis for 

a classification of the tasks into groups that appear to share common 

processing.

Are there any gross differences between performance levels for these 

tasks described ?

The largest difference is between the tasks of distance estimation,
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especially with large stimuli and large distances, and all the other 

tasks. The distance tasks are performed at much lower efficiencies 

and accuracies.

Another difference is "between the tasks of slope estimation and the 

remainder. Slope estimation tasks are performed efficiently, but only 

for very short lines; efficiency falls for longer lines (longer than 

about 10 min. arc). The remaining tasks are performed efficiently for 

lines up to 30 min. arc in length, and perhaps longer for the tasks of 

depth discrimination.

The similarity between the tasks of vernier resolution, arc and chevron 

curvature discrimination and 3 dash alignment is illustrated in the 

results of Andrews et al. (1973), who showed that all three tasks are 

performed at high efficiency for stimulus extents up to about 30 min. 

arc; efficiency drops for larger stimuli in all cases. The same 

result was obtained by Ludvigh (1953) for the task of three dot 

alignment.

Stereoscopic depth discrimination appears to be rather different from 

these other tasks. There is little data for the task, but it appears 

to be more tolerant of target separation than the others, and the details 

of the interfering flanking stimuli are also rather different.

For the sake of argument, each of these three broad categories will be 

given a name : the category of low efficiency distance tasks will be 

described as absolute position tasks; the slope and stereoscopic 

depth discrimination tasks will be named attitude tasks; and the 

remainder will be named shape tasks.

Each of these three broad categories will be considered separately.
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The shape tasks comprise vernier resolution, dot and dash alignment, 

curvature discrimination, and some tasks involving length and relative 

position comparisons in very small figures. Andrews et al. (1973) 

suggest » concept that economically describes the first three tasks : 

they are all examples of collinearity-failure detection and discrimination. 

They all involve positional differentiation along the contour. The 

length and relative positional tasks involve differentiation in the 

orthogonal direction. These are all grouped together, because there 

are grounds to suspect that they might share some degree of visual 

processing.

Whilst the forms of departure from collinearity are quite different 

and discriminable in those first three tasks, the tasks have a number 

of features in common. From the work of Andrews et al. (1973) and 

inferences from the data of Ludvigh (1953), it is clear that figures 

under 30 min. arc in length are processed at high relative efficiency; 

those larger, at lower efficiency.

From the work of Westheimer and co-workers, it is seen that there is 

some lateral interaction over a region of space extending about 

4 to 5 min. arc on either side of the stimulus. There are two aspects 

to this.

Firstly, there are interfering flanks, apparent at a distance of about 

3 to 4 min. arc from the target stimulus. The presence of irrelevant 

contours in these zones increases spatial thresholds.

Secondly, there are summation zones, closer to the stimulus : 

information from a moving stimulus can be collected over a region of 

just \inder 5 min. arc. Likewise gaps of up to 5 min. arc between the

1.3.1.1 Shape Tasks.
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two line elements of a vernier target do not affect performance.

The distance between short lines is also very efficiently judged when 

the separation is less than about 1+ to 5 min. arc, and further, the 

vertical alignment of one feature (eg. a break in a line, or a dot) 

with another similar feature, i3 estimated with a high accuracy for 

feature separations up to about 5 min. arc. It is by this coincidence 

of the importance of the distance of 5 min. arc lateral spread, for 

both vernier tasks, and the tasks of local relative position and 

separation, that both are included in the same group.

In summary, it seems that the (so-called) shape tasks are performed 

most efficiently when the stimulus is within a rectangle of space, 

measuring 30 min, arc in length, and 5 min. arc in width. This high 

efficiency is reduced when there are irrelevant flanking contours at, 

or just beyond and parallel to the long edges of this rectangle.

It is interesting to note, in passing, that Thomas (1978) has found 

that the visibility of a bright bar is a function of the length of the 

bar up to a limit of 2*0 min. arc, beyond which, length is not important, 

and is also a function of the width of the bar, up to a similar width 

limit of 5 min. arc. This is critical rectangle with dimensions that 

are very similar to those for the region of space covered by the shape 

process. Visibility and spatial discrimination of clearly visible 

targets are not easily compared tasks, and so the possible relationship

is not dear,
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This is a group of low efficiency tasks, generally involving large 

stimuli, at large separations. The relative position and distance 

features of small figures, that provide cues for the other types of 

spatial tasks, are clearly encoded in a different manner, and with much 

greater precision. There are some clues to what the relationship between 

absolute position tasks and shape tasks might be, which will now be 

discussed.

Threshold for separation discrimination is constant at about 1.75 min. 

arc, for lines up to 30 min. arc in length, and then decreases with 

increasing line length (Andrews and Miller, 1978). This suggests that 

absolute position is encoded via a small population of local signs, 

spaced at 30 min. arc intervals', which may be combined for larger 

figures (giving a smaller threshold as a result).

This result suggests that the same rectangle of space, which represents 

the area for the most efficienct shape judgements, represents the area 

for the least accurate absolute position judgements.

This further suggests an economical explanation for the low efficiency 

obtained for absolute position tasks. If lines of length up to 

30 min. arc had their position specified solely by which rectangle of 

space they fell within, then the variance of position judgements 

would be no less than d /12, where d is the width of the rectangle.

This means that the standard deviation of the response error distribution 

(threshold) in an absolute position task should be constant at between 

1.15 and 1*4-5 min. arc (for d = 4 and 5 min. arc), for lines of length 

less than 30 min. aro, and should then fall at an unspecified rate with

1.3.1.2 Absolute Position Tasks.



increasing line length, beyond 30 min. arc.

This is quite close to the values and pattern of threshold obtained by 

Andrews and Miller (1978), and suggests that the absolute position 

specificity of the rectangle of space is the basis for the responses in 

this task, and that this specificity is used efficiently.

This hypothesis is speculative : there is no direct evidence that the

local signs of coding units, that are primarily concerned with local 

shape differentiation, play this role; but the hypothesis is 

economical and consistent with the data to date. If the shape 

discrimination processes have a positional specificity, that can be 

compared from individual process to process, then there would be no 

requirement for a separate set of processes for the encoding of position 

information.



1.3.1.3 Attitude Tasks

The tasks of slope comparison and estimation, and stereoscopic depth 

discrimination are grouped together on no good grounds, except that 

they are both tasks that can be performed efficiently, but that do 

not share the characteristics of the shape tasks.

Stereoscopic depth discrimination appears to be an efficiently performed 

task, but there is insufficient data to be able to draw any conclusions 

about relationships between it and the other tasks»

Berry (194.8) has shown that a gap in the stimulus disturbs vernier 

acuity more than it does stereoscopic: acuity.

Butler and Westheimer (1978) have shown that the flanking zones for 

stereoscopic depth discrimination are depth specific, whereas those 

for vernier resolution are not.

Stereoscopic acuity is not tolerant of motion in depth, but vernier 

acuity is (Westheimer and McKee (1978)»- Vernier acuity is also 

tolerant of motion in the direction of discrimination»

The optimum size of stimulus for stereoscopic depth discrimination 

has not been established.

Slope comparisons are very efficient for lines up to about 10 min. 

arc, but efficiency falls steeply for longer lines. This is rather 

surprising in view of the relative numbers of orientation and curvature 

selective cells in the visual cortex of cat (eg. Hammond 

and Andrews, 1978)

There is no ready explanation for the differences between slope and 

shape tasks. The limit of line length is not imposed by the shape 

process, with its rectangular region of space, in the way that the



performance of absolute position judgements is limited. If absolute 

orientation, for the purposes of slope estimation or comparison, were 

derived from the orientation specificity of this process, then neither 

the line length limit, nor the level of threshold would be explained. 

The judgements of slope, based on the orientation specificity of 

the process with the rectangular collecting region, would have a

L = length of the rectangle). For d = 5 min. arc and L = 30 min. arc, 

0  is found to be 19 degrees, and the slope threshold is found to be 

5.5 degrees (corresponding to a threshold displacement of 57 sec. arc 

for a stimulus of length 10 min. arc).

This is much larger than the threshold obtained by Andrews (1967b)» and 

Andrews et al. (1973), and it is clear that these thresholds are not 

limited by the rectangle of space served by the shape process, in any 

simple manner.

It is not clear what does limit performance for slope comparison 

tasks, and it remains surprising that slope comparisons of lines of 

lengths greater than 10 min. arc are processed at a much lower 

efficiency than curvature discrimination tasks.

minimum where 0  is the spread of potential

angles ( = 2.tan 1 (d/L) where d = width of the rectangle, and



1.3.2 Levels of Processing

The results quoted in the preceeding sections are consistent with only 

two types of process (perhaps three if the results of stereoscopic depth 

discrimination are included), subserving three generic types of task. 

There is a process which is capable of highly efficient differential 

shape tasks (relative position), which can operate over a region of 

space 30 min. arc long and 5 min. arc wide. The position of whole 

lines with respect to remote objects (absolute position) is lost 

within this region of space.

Secondly, there is a process concerned with line slope estimation, 

which is also highly efficient, but only for lines that are 10 min. arc 

or less in length.

The data of Andrews for the two types of task (Andrews, Butcher and 

Buckley, 1973; Andrews and Miller, 1978) also point to second order 

processes or combinations of information for stimuli that are larger 

than about 30 min. arc. In the case of absolute position tasks, 

threshold would be independent of line length, for all line lengths 

unless combination of position estimates were possible from different 

points on the line, falling within the rectangles of space corresponding 

to separate processing devices* Andrews and Miller (1978) have shown 

that threshold does fall for lines greater than 30 min. arc in length, 

providing clear evidence for some sort of second order processing.

The fall in threshold is not very great however.

In the case of shape tasks, Andrews et al. (1973) have shown that, 

although efficiency falls for line longer than 30 min. sure, it does not
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fall as steeply as it would be expected to, were there no further 

processing. They argue in favour of second order combination of the 

outputs from the primary processes, rather than the use of parallel but 

less efficient larger sized processes.

Experiment V  of Andrews et al. (1973)» which was concerned with 

measuring performance of curvature discrimination for stimuli consisting 

of three short dashes, throws some more light on the process of second 

order combination of estimates of curvature; The dashes were only 

5 min. arc long (in the longest case), and therefore individually 

provide very little curvature information. Performance is little 

affected by the presence of gaps for lines up to about 30 min. arc 

total stimulus extent (threshold is unchanged; efficiency rises as 

a result). This is for stimuli that may be encompassed by the 

rectangular collection region for one individual shape process. When 

the gaps are 25 min. arc each in length, and the total stimulus extent 

is more than 50 min. arc, efficiency is alnost independent of stimulus 

extent. This suggests that the efficiency for second order combination 

is the same whether the processes in use are near neighbours, or 

quite remote.

Thresholds are all less than 40 sec arc, much less than the thresholds 

for absolute position judgements, and so there must be a second order 

or level of curvature processor, which is distinct from the second 

level of absolute position processing.

Andrews (1967b), and Andrews et al. (1973) present data that clearly 

shows that orientation information is also available for second order 

combination. Once again, the efficiencies for stimulus sizes, that 

are greater than the optimum, do not fall as steeply as they would, 

were there no second order combination.
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Thus it is seen that second order combinations are available and 

useful* It is not possible to pass much comment ón these combinations, 

and on their relative efficiencies, because there sire two unknown 

parameters s the efficiency of combination; and the density of 

estimates (ie, what the functional overlap of the collection regions 

for adjacent processing devices is)* Andrews et al* (1973) and 

Andrews and Miller (1978) suggest that the second order combinations 

are probably quite efficient.
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1.3.3 In Conclusion.

In section 1.1 above, it was demonstrated that there are a number of 

operations that the visual system has to perform on the response pattern 

of the retina to incident li^it. The visual system has to 

extrapolate from the information in the discontinuous array of 

receptor cells, to infer the presence of continuities in the visual 

stimulus. It has to utilize the redundancy of the pattern of stimulated 

receptor cells, in order to overcome the transmission limits of the 

visual pathway. This it presumably achieves through the use of some 

form of predefined alphabet of symbolic features, redundant information 

thereby being discarded.

These two processes of extrapolation, and redundancy reduction, could 

be combined, and this would be an economical method of visual analysis. 

The question is : which features sure extrapolated and extracted, which 

features are discarded, and which features are recorded with high 

accuracy ?

It has been known for well over a hundred years that the visual system 

is capable of some very accurate judgements. Recent research on 

these observations has led to a considerable tinderstanding of the 

answers to some of the questions.

In summary, the results require that there be two parallel analyses of 

space underlying these high accuracy judgements (there may well be more, 

but the data to date only require two).

For shape tasks, and absolute position tasks, there is a process, serving 

a region of space that measures about 30 min. arc by 5 min. arc.

Certain tasks, loosely involved with the shape of straight or nearly
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strai^it lines, and economically described as collinearity-failure 

detection tasks (Andrews, Butcher and Buckley, 1973)» can use the 

spatial information within such a region in a differential manner, 

and with high efficiency.

Absolute position of a line is probably represented only by the gross 

positional specificity of such a process, and is therefore not 

recorded with great fidelity.

For slope tasks, some other arrangement or process must be used, 

although very little can be said about such a process.

These two processes are considered to be parallel, since both operate 

at the same high efficiencies. They are however, clearly different.

One can speculate as to why the two might be separate. A clue comes 

from the vast literature on so-called 'channels* in vision (see 

Braddick, Campbell and Atkinson, 1978 for a review). It is proposed 

that there are certain channels for information transmission, that are 

specific to certain features of the stimulus, such as orientation or 

spatial frequency. Orientation specificities are found to have the 

following psychophysical properties :

i) Gratings of similar orientation mask each other (ie. raise 

contrast threshold) eg. Cambell and Kulikowski.(1966).

ii) Pre-adaptation to a high contrast grating produces an 

orientation specific threshold elevation eg. Gilinsky (1968)

iii) Subthreshold summation of similarly oriented gratings is 

found eg. Kulikowski, Abadi and King-Smith (1973).

iv) Superimposed gratings of different orientations lead to 

'monocular rivalry' eg. Campbell, Gilinsky, Howell, Riggs 

and Atkinson (1973)»
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▼) Orientations exhibit simultaneous contrast. eg. Wallace (1969)»

vi) Andrews (1965) has proposed inhibition between orientation 

selective filters, on the basis of the time course of 

perceived orientation.

vii) The tilt after-effect shows a successive effect on perceived 

orientation eg. Vernon (1934), Gibson and RadLner (1937).

viii) Orientation-specific chromatic aftereffects have been 

obtained eg. McCullough (1965).

No-one ha3 proposed 'vernier-offset' selective channels, and after-effects 

of perceived vernier off-set. Similarly 'absolute-position' channels 

have not been proposed (size-specific channels have been proposed, but 

only for smaller sizes). Whilst the following curvature-specific 

effects have been reported, it is claimed that all are readily 

explained in terms of local orientation-specific effects (see 

Blakemore and Over, 1974; MacKay and MacKay, 1974; and Crassini and 

Over, 1975a; for details of the arguments).

i) Curvature after effects are reported by Gibson (1933), Bales 

and Folansbee (1935), Carlson (1963), Wilson (1965),

Coltheart (1971), Blakemore and Over (1974)# Crassini and 

Over (1975a), Vernoy (1976), and Timney and MacDonald (1978).

ii) Curvature-specific masking is found by Crassini and Over (1975a) 

and Timney and MacDonald (1978).

iii) Simultaneous curvature contrast was studied by Crassini and 

Over (1975a). There is a myriad of curvature illusion 

(see Tolansky, 1964; Robinson, 1972).
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iv) Curvature-specific chromatic after-effects were reported by-

Riggs (1973). But it is thought that they can be explained 

by orientation-specific chromatic after effects (see MacKay 

and MacKay, 1974; Stromeyer, 1974; Riggs, 1974; Sigel and 

Nachmias, 1975; and Crassini and Over, 1975b).

The concensus of opinion is that all these effects of curvature can be 

explained in terms of local orientation effects. This is certainly 

true for the curvature-specific masking, and the curvature-specific 

chromatic after effect. It is also true for at least most of the 

simultaneous curvature contrast effects.

The explanation could account for the adaptation and after effect for 

curvature reported by Gibson (1933), in the case of curved lines, whose 

chord is vertical. This has been demonstrated by Blakemore and 

Over (1974). Such an explanation would fail to explain adaptation 

and after-effect for oblique curves.

However, the evidence does not in general support the notion of curvature 

selective channels in human vision.

It may be that the visual system uses orientation for internal rescaling 

and adaptation, in order to keep the metric of visual space normalized 

(as proposed by Andrews, 19^4, 19&5, 1967*0« Biis could mean that, 

whereas shape and absolute position information is consciously 

available to the observer, slope information is primarily intended for 

other purposes, and is only indirectly available to the subject's 

consciousness, for the purpose of psychophysical slope estimation.
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It may be behaviourally adaptive and useful to know precisely what and 

where an object is, but less useful to know what its attitude is. 

Conversely, it may be useful to be able to compensate for global 

changes in the range of orientations experienced (such as could 

arise from a change in the observer’s attitude, and therefore would be 

relatively frequent), but much less useful to be able to compensate 

for global changes in shape (which are hard to imagine).
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1.2*. The Questions Arising, and Research Proposed.

There are a number of potentially interesting gaps in our knowledge 

of the visual processes underlying the encoding and analysis of 

form.

The relationship (if any) between the process involved in shape tasks 

and that involved in slope comparison and estimation tasks, is not 

understood.

What effect does the shape of the stimulus have : do curved lines

stimulate the same processes as straight lines ? Or, are there 

different processes for curved lines ?

There is as yet, very little understanding of the organization of 

spatial information within the primary processes proposed. Are there 

further tasks, like slope comparison, which might be expected to fall 

within the competence of the processes of high efficiency differentiation, 

but are found not to do so ?

This would throw some light on the nature of the information collected 

by these processes actually is.

It is plausible that measurements of visual spatial discrimination, 

using curved lines rather than straight lines, as has always been the 

case to date, might illuminate some of these areas of doubt.

One might expect straightness to be an anchor point in the perceptual 

dimension of curvature, such as vertical and horizontal are in the 

perceptual dimension of orientation. Then one might wonder, is 

.straightness associated with higher discriminatory powers than are 

found for the rest of the dimension, as is the case for vertical and 

horizontal orientations.
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The experiments to "be described below, set out to begin to answer these 

questions. They are primarily concerned with the shape task of 

curvature discrimination; both broken and unbroken stimuli are used, 

since the comparison has been found to be very powerful in the case 

of straight lines. Short stimuli are used exclusively (less than 

^ degrees arc. in all cases), since it seems very likely that the 

regions of space that are suscetible to high efficiency performance 

are small.

The experiments are essentially exploratory in nature. They start with 

a nearly clean slate, rather than a well formulated hypothesis with 

predictions to test. For this reason, they sometimes appear to be 

rather arbitrary in conception : this is usually the case !

However, the results do enter suggestive outlines on the slate, and 

do not appear arbitrary. They indicate the presence of one, and perhaps 

two novel processes with high efficiency differential capabilities, 

but with quite distinct properties. The most important evidence for 

these is to be found in Chapters 5»6 and 7» The evidence is reviewed 

and integrated in the final chapter, which concludes with a new list 

of questions arising.



CHAPTER 2. : EXPERIMENTAL METHOD,

Ail the experiments to be described have a common method, which will 

be described in some detail prior to the experiments themselves.

Typically, the subject is presented with two stimuLi, test and 

comparison, and is required to make some binary decision based on his 

sensation and perception of those stimuli. His individual judgements 

are not particularly informative : it is the distribution of 

judgements at different stimulus values that is of interest.

The subject is not exactly veridical in his judgements, he makes 

systematic errors. The subject is also not consistent in his responses 

to a given stimuLus, he makes variable errors. It is possible to 

define a response error distribution, which statistically ̂describes 

the probability of a given response to a given stimulus. The mode 

of this distribution corresponds to the point of subjective equality 

(PSE), the stimulus level where either response is equally likely.

For an unimodal, symmetrical distribution, this coincides with the 

median and mean.

Assuming the response error distribution to be normal, the two statistics 

of interest are the mean and standard deviation. Probit analysis of

the response counts provides estimates of these. In fact, Probit

analysis estimates the median of the response distribution, and the 

rate of change of error probability at the median (Finney, 1952).

These lead to estimates of the mean and standard deviation, for a 

normal distribution. The mean may be used as the PSE or constant 

error of a discrimination task, the standard deviation may be used as 

the threshold difference for that task.
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Andrews (personal communication) has calculated that these parameters 

are estimated with optimum efficiency, when responses are obtained to 

a stimulus range that is 2,6 to 2,7 times the standard deviation, and 

centred on the mean of the response error distribution. This is 

psychologically rather convenient. Senders and Soward (1952) have 

shown that it is good practice to include some easy judgements in a 

discrimination task. The range suggested covers probabilities of 

0,1 and 0,9 for a given response, and therefore contains some easy 

judgements.

The appropriate psychophysical procedure to obtain such response 

counts, is the Method of Constant Stimuli, The traditional technique 

is very inefficient, but with the advent of fast computers, adaptive 

versions of the traditional methods have been developed. An 

adaptive version of the Method of Constant Stimuli has been developed 

and used by Andrews, Webb and Miller (197*0 and by Andrews and 

Miller (1978), A modified version of this was used in tie present 

experiments, and will now be described in detail.
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2.1 An Adaptive Method of Constant Stimuli.

The basic modification to the traditional method is that the stimuLus 

series used, is made to be a function of the subject's response 

distribution. Should the subject's criterion for response change, 

or should an inappropriate series of test stimuli be chosen at the 

outset of the experimental run, then the stimuLus ranged is changed to 

meet the new requirements, and the run is not wasted.

At any one time, four stimulus levels are in use, and are presented to 

the subject in a psuedo-random sequence. The sequence has two 

constraints, which are aimed at making the sequence of stimuli and 

responses appear random to the subject. The same test stimulus is 

not presented to the subject more than twice in immediate succession.

No more than five stimuli on the same side of the centre of the stimulus 

range are presented in immediate succession. These constraints 

avoid shifts in the subject's criterion due to the stimulus diet, and 

avoid the subject's typical preference for distributing his responses 

equally between the available response options from causing distortions 

of the response error distribution. No other constraints are applied 

to the sequence.

Each run is split into a number of response blocks (usually eight), 

and each block consists of a fixed number of responses (usually 

fifteen). At the end of the second and every subsequent block, a rapid 

and slightly approximate Probit analysis is made of the last two blocks 

of responses. The stimulus series can be corrected, if it is found 

to be off-centre or or the wrong width. The whole process takes less 

than 100 msec., and is performed in the idle time between the subject’s 

response, and the presentation of the next stimulus. The subject is
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therefore unaware that the stimulus series has changed.

A full correction is rarely made, since some lag in the adaptations 

is present, avoiding making the system too sensitive to transient 

changes in the subject's criterion, and to inaccuracies in the analysis. 

It is preferable to follow the responses faithfully for the first few 

corrections, allowing any gross errors in the estimates that were used 

to start the procedure to be corrected. Subsequently, it is better 

to follow with considerable lag, and only to act on relatively large 

changes. The stimulus range is carried over from run to run in a 

session based on the same task, along with the current lag, providing 

the new start estimates for the next run.

The stimulus series is determined from two parameters, the centre and 

width of the range. These are derived from the mean and standard 

deviation of the subject's response error distribution, by the 

following rule :

r+1 = k.(E + C .(E .r r r+1 - Er ))

where

and

p „ is the new stimulus range parameter r+1
E is the releveant statisticr
C is the correction factorr
k is a constant relating the statistic to the stimulus range.

For the centre of the stimulus range, the statistic is the mean of the 

response error distribution, and 'k' is unity; for the width of the 

stimulus range, the statistic is the standard deviation, and 'k' is 

2 .7 . The correction factor or constant, determining the lag,
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C is itself a function of recent response errors, and is calculated thus r

_ E - E .
Cr+1 * J ^

Er * Er-1

As a result of the operation of these rules, if a parameter has remained 

stable, the correction constant approaches zero; if a parameter 

changes suddenly, the correction constant increases, but there is not 

an immediate effect on the stimulus series. In the latter situation 

a change in that direction is made m o w  likely at the next correction, 

if the change is a result of a trend; otherwise, the change is 

ignored.

For the case of the parameter of stimulus width, an asymmetry is 

introduced into the calculation of the new correction constant. The 

above expression is used for an increase in the estimated width, but 

for a decrease, the following is used :

Cr+1

E -r Er-1
E

The reasons for this asymmetry are as follows.

It is arranged that an experiment begins with an overestimate of the 

standard deviation of the response error distribution, and therefore 

with a stimulus series that is slightly too wide. This means that 

the experiment begins with some easy discriminations, to lead the 

subject into the near threshold judgements. Therefore a decrease in 

the width of the stimulus series is more likely than an increase.

The effects of the width of the stimulus series being too large or 

too small are not the same, either. If the task is too easy for the
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subject, he will relax and performance will not be qmite optimum. If 

the task is too difficult, the subject becomes baffled, and may forget 

the task. In such a situation, it is rather more difficult to 

recover.

In all cases, the correction constants are restricted to values between 

0.00 and 1.00. Zero results in no change in the stimulus series; unilgr 

leads to full correction. Values of 0.75 are appropriate to start an 

experiment; after the first run, the correction constants will 

normally have values less than 0,1.

2.1.1 The Prerun.

The adaptive Method of Constant Stimuli, as described, is aimed at 

achieving the maximum statistical efficiency for the minimum subject 

labour. The only requirement is an initial estimate of the 

appropriate statistics» to be used for determining the starting 

stimulus series. These can be very approximate, and that of the 

standard deviation should be an overestimate preferably.

The initial estimates of mean and standard deviation of the error 

distribution are derived froma brief prerun sequence of trials, 

based on the staircase Method of Limits. The prerun ends after four 

reversals of response. A fairly accurate estimate of the mean may be 

obtained from the mean reversal level. The standard deviation is 

estimated by the difference between the two extreme reversal levels.

This procedure also has the advantage that it familiarizes the 

subjeot with the stimuli, and with the task to be performed.
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2.1.2 Problems with the Method of Constant Stimuli.

No psychophysical procedure is without its drawbacks. The Method of 

Constant Stimuli is the best method for measuring both the mean and 

standard deviation of the response error distribution. Unlike 

many methods, it bases the estimates of these statistics on several 

points on the psychometric function and works on a plausible, and 

precise hypothesis, relating probabilities of responses to the 

underlying decision processes. However, it is not without its faults* 

These are discussed at Length in Guilford (1953) and Laming (1973), 

but will be summarized here.

The Method of Constant Stimuli may introduce biases into the subject's 

responses, if used unwisely. These biases are thought to arise 

from two distinot sources s the process of making judgements, and 

the generally restricted stimulus diet. How far these two sources 

are the same is a matter for debate. The process of making a decision 

is thought to lead to the so-called response effect: the available 

responses tend to be used equally frequently by the subject, especially 

when the judgements are difficult.

The stimulus effect is very similar. Any asymmetry of the stimulus series 

generates a perceptual constant error, which is registered in the 

subject's responses. The PSE tends towards the weighted mean of the 

stimulus diet. A related effect is described by Stevens (1957).

There is reputed to be an asymmetric discrimination process on 

prothetic variables (that is variables in which the sensation is 

quantitative rather than qualitative: intensity rather than colour), 

whereby one stimulus is- identified as the standard by virtue of its 

position in space or time. This, it is claimed, distorts the continuum, 

and biases the subject's perception.
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Whether these two effects, the response effect and the stimulus effect, 

are truly separate, or whether they are cause and effect is not clear, 

however, they are "both very small in an appropriately controlled 

experiment. The adaptive nature of the technique described above, 

ensures this. For a perceptual dimension that is very labile, such 

as contour curvature, these drawbacks can mean that the measured PSE 

is not a very reliable or accurate estimate of the true sensory effect.
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2.2 Apparatus.

The experiment was controlled by a CAI Alpha minicomputer, using 

purpose written software in FORTRAN and BETA assembly-code. FORTRAN 

was used for the floating point arithmetic subprograms, and assembly- 

oode for everything else (thereby saving memory, and improving 

efficiency).

Stimuli were generated on a Hewlett Packard CRT screen with a P31 phosphor 

by a QVEC graphics devioe, which produces vectors from digital data 

stored in the computer memory, and accessed by IMA. Very high refresh 

rates were used. Line widths were less than 1.0 mm. (subtending 

35 sec, arc at the retina from a viewing distance of 6m.). Curved lines 

were drawn from a large number of connected straight line segments, 

each the same length and less than the width of the line. The QVEC 

allowed a programmable resolution of 1.75 sec. aro on the screen when 

viewed froma distance of 6m. The stimuli were timed by a quartz 

crystal oscillator.

Responses were signalled to the computer on a button box, which 

activated a digital input interface with the computer. An indicator 

on the box was subsequently set, to show which response had been 

recorded.

The subject sat at a distance of 6m. from the screen, which was 

surrounded by a large grey board of the same colour and brightness as 

the screen, providing a field of 4 deg. by 6 deg., essentially without 

high contrast contours. The CRT display subtended 40 min. aro square 

at the retina. The subject's head was not restrained (comfort is
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considered to be of paramount importance in a lengthy psychophysical 

experiment), but marks were provided in the field of view, to enable 

the subject to check his head elevation periodically# Any change in 

the position of the eyes relative to the screen would lead to small 

distortions of the stimuli on the slightly curved screen#

The experiments were carried out in a lecture hall, that was normally 

lighted providing a comfortable background luminance for the subject# 

The display screen and background field were placed to avoid any 

contrast shadows or reflections in the central A. by 6 deg# arc field 

of vision# The subjeot sat in a comfortable high-backed ohair#

The subject viewed all stimuli binocularly, using a fixation spot on 

the display screen to aid fixation : the importance of fixation was 

stressed to each subject. In general, stimulus intensity was not 

closely controlled, and in practice the brightness of the stimuli was 

set to the most comfortable level for the particular subject, who was 

told to set the stimuli bright enough to allow clear vision, but not 

so bright that any glare was experienced. For experiments involving 

very small stimuli, brightness was thou^it to be more important, 

and in these conditions, a filter was used to set the brightness of 

the stimuli a fixed quantity above luminance threshold#

Andrews, Butcher and Buckley (1973) found that for the type of spatial 

discrimination task under consideration, the optimum intensity level 

could be halved or doubled without affecting performance measurably.
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2.2.1 Stimuli.

All the stimuli used in the following experiments are small bright 

lines, drawn under computer control on a CRT with P31 phosphor.

The stimuli are defined "by five parameters describing stimulus curvature, 

stimulus length, position relative to the centre of the screen 

(2 parameters), and overall orientation of the stimuLus with respect 

to the horizontal. A number of different options could be employed to 

construct these definitions :

1) Curvature. The curvature of the line could be specified directly, 

or the radius of curvature could be specified, or the height of the 

apex of the curve above its imaginary chord could be specified.

2) Line Length. The length of the curve could be specified by the 

length of the aro directly, or by the chord length, or by the angle 

subtended by the curve at the centre of the circle.

3) Position. The position of the line was specified by the 

rectangular co-ordinates of the centre of the line, or the centre of 

the imaginary chord, or the centre of the circle, with respect to an 

origin at the screen centre (and point of fixation).

if) Stimulus Orientation. The orientation of the chord of the curve 

could be specified with respeot to the horizontal*

With these parameters, it is possible to specify completely any curved 

(or straight) line anywhere on the CRT screen.

The typical arrangement of stimulus elements, employed in all

experiments, exoept Experiment 2 and 7» is shown in Fig. 2.1. This will
be refered to as the standard configuration.
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The complete set of stimuli for an experiment constist of an optional 

comparison stimuLus for the subject to base his responses on, and a' 

series of test stimuli, varying linearly in one of the defining 

parameters* The step size for the linear variation could also be 

declared, providing the potential to create an easy or a difficult 

series of stimuli to be judged* In most cases, the spacing of the 

stimulus series was set so that between four and eight stimuli would 

be used over the course of a run* This is found to lead to consistent 

responses^

In the later experiments, a gap or a number of gaps were introduced 

into the stimuli (test stimuli, and if required, comparison stimuLus 

also)* Further parameters were necessary to define the number of 

gaps, and their sizes and positions.
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Pig. 2.1 The standard configuration of stimulus elements. The 

upper curve has avariable curvature; the lower curve is fixed.



67

2.3 Experimental Procedure.

The following experimental procedure was always carried out.

The subject would set the brightness of the stimuli first. Then the 

task was described in detail to the subject, including explicit 

instructions concerning fixation.

The prerun was then carried out, to establish a suitable series of 

stimuli for the start of the experiment. The subject would next be 

given the option of resetting the stimulus luminance, and asked 

whether he understood the task required.

The run proper would follow, lasting about fifteen minutes. At the 

end of this period, when the last response had been collected, the 

subject would be informed by a message on the screen, and the computer 

would store the data on a floppy diso. Whilst the computer performed 

a full analysis of the run, the subjeot would be given a five minute 

break, to relax and recover from the effects of over^enthusiastio 

fixation. After this break, the next run would be started, with the 

stimulus series determined at the end of the previous run, and the 

final correction constants of? the previous run. In general, three 

or four runs would make up a session, lasting for between one hour to 

one and a half hours.

The various experimental conditions in any experiment were tested in a 

psuedo-random sequence, with one condition per session. The conditions 

were all tested twice, with the sequence being reversed for the second 

set of measurements.
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The non consisted of a given number (usually 120) of responses» After 

each stimulus had been presented, the screen was left blank until a 

response was recorded. The subject was required to make a two-alternative 

forced choice decision, but could signal to the computer that his 

fixation had failed during the stimulus presentation (eg. due to 

sneezing), in which case the response would be skipped.

After the response, there was a three seoond delay, during which the 

subject was required to fixate a spot on the screen, in readiness for 

the next stimulus. During this period, the subject could change the 

response just recorded (but not after the next stimulus had appeared on 

the screen), and the delay would then begin again: after three seconds 

the last response recorded would be stored. During this delay, the 

subject could also halt the run for a short break, if required. When 

he was ready to continue, the computer would start the three seconds 

delay again, and then proceed with the next stimulus.

The sequence of events, and options, in a single stimulus/response 

cycle is shown in Tig. 2.2.
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Fig, 2.2
SEQUENCE OF EVENTS DURING A SIN&LB STIMULUS/RESPONSE CYCLE.
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2.2*. Data Analysis.

At the end of each run, when the criterion number of responses had 

been collected, a full analysis was performed. Prohit analysis was 

used, first on the individual blocks of responses, then on the first 

and second halves of the run separately, and lastly on the complete 

run. A chi-square goodness of fit for the Probit regression line 

was also calculated.

This multiplicity of analyses enabled the experimenter to detect any 

instabilities in the subject's responses. Such instabilities as a 

continual drift in the PSE would lead to inhomogeneous data, and the 

analysis would not be strictly valid. If this led to a large 

chi-square for the overall fit, for example, the run would have to be 

discarded. The precise criteria for rejecting a run are set out below. 

The number of such runs was small.

For each experimental condition, a number of runs would be carried 

out, in two sessions. Each session would start with a prerun, and then 

three or four runs would follow. Each run was analysed separately, 

giving a set of estimates of the mean and standard deviation of the 

response error distribution. These estimates were then combined to 

give an overall estimate of the response error statistics. Means are 

combined by taking the arithmetic average; standard deviations are 

combined by taking the root-mean-square. These overall estimates are 

quoted in the results, and used to calculate efficiencies.
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An experienced subject, making a simple deoision, has a response 

criterion that is stable, at least in the short term. This is not 

always the case, and sometimes the subject has a response criterion 

that is clearly unstable. This leads to inhomogeneous data, and poses 

intractable statistical problems. Such runs, therefore, have to be 

discarded.

There have to be objective criteria for judging whether or not to 

reject a run. The criteria used will now be described : in general 

they are a matter of common sense, supported by reasonable statistical 

arguments.

The problem arises primarily since the perception of curvature is a 

very labile phenomenon, as is witnessed by all the illusions and 

after-effects.

1) . The first mile is based on the chi-square for the goodness-of-fit 

of the Probit regression line. If the chi-square value showed the 

data to be significantly non-normal at the probability level, then 

the run had to be rejected.

2) . The second criterion concerns the two half run estimates of the 

standard deviation of the response error distribution, and the whole 

run estimate of the same. If the whole run estimate is larger than 

both half run estimates, -then the process of combining the two halves 

has added extra variance to the data, and this would indicate that the 

run had to be rejected.

2.2*.. 1 Criteria for Rejecting a Run.
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3) . The third rule concerns the two half run estimates of the PSE.

If there is a difference of one standard deviation between the two 

estimates, then this is interpreted as indicating that the subject’s 

response criterion changed in the course of the run. Such a run 

would have to be rejected,

4) , The last criterion for run rejection concerns the individual 

estimates of the standard deviation in each of the 8 blocks of 15 responses. 

If the variance of these estimates was greater than the response error 

variance of the whole run, then this was taken as evidence that

there had been some fleeting, but large criterion changes, leading to 

a large inhomogeneity in the subject's responses. Such runs had to 

be rejected. This amounts to rejecting those runs where, on average, 

the estimate of the response error standard deviation in each individual 

blook of responses is different from the whole run estimate of the 

standard deviation of the response error distribution, by one standard 

deviation.

The prooess of ’ data-oleaning' did not appear to distort any of the 

major trends in the data.
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2.4»2 Standard Errors and the Reliability of the Results.

The standard errors of the estimates of the PSE and standard deviation 

of the response error distribution, obtained by Probit analysis for 

a run of 120 responses, are approximately 15 and 25 per cent of the 

sample estimate standard deviation, respectively. These standard 

errors will not be quoted in the tables of results.

The standard deviation of the distribution of obtained estimates from 

individual runs will be quoted. This statistic can be used to 

gauge the reproducability of reliability of the results, from day to 

day.



Comparison of the performance of different visual spatial tasks is an 

essential step in the progress towards an understanding of the processes 

by which our visual sense operates. The comparison of results from 

different experiments, and from different tasks, is not a trivial matter 

however.

Howr can performance in a vernier resolution task, and performance in 

a curvature discrimination task, he compared ?

What measure of performance would make a valid comparison ?

Threshold measurements, expressed by geometric parameters of the stimulus 

are unsuitable, since these geometrical descriptions are generally 

arbitrary.

Efficiency of information processing is the most suitable measure of 

performance: in principle, performance of vernier resolution, curvature 

discrimination or any other task may be compared, when performance is 

expressed in the same terms of efficiency. In practice, certain 

assumptions have to be made in calculating efficienoies, which restrict 

the range of tasks that m«y be compared by reference to this construct.

The concept of an ideal device as a yard-stiok, with which to measure 

human visual efficiency is due originally to Rose (1942), who was 

considering the sensitivity of the visual system to light energy.

Barlow (1962a,b) refined the concept of quantum efficiency of visual 

discrimination of light intensities.

Andrews (1967b) devised a rather different type of ideal device, limited 

by the known spatial statistics of the retinal mosaio, unlike the ideal 

device of Rose, which is limited by the statistical fluctuations in 

the number of photons in a given stimulus.

2.5 Relative Efficienoies and Spatial Discrimination Tasks.
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A device with spatial sampling variance can "be used to assess the human 

performance of spatial tasks, and is therefore very useful in studying 

the nature of the visual processes behind spatial differentiation*

The device of Andrews should be clearly distinguished from the spatial 

device of Barlow (1978), which works on the spatial variance in the 

stimulus itself, rather than the spatial variance imposed on the stimulus 

by the retinal mosaic*

The device of Andrews can be applied to regularly patterned stimuli, such 

as the targets of vernier resolution, whereas the device of Barlow 

requires ’random* patterned stimuli.

The concept of an ideal processor of line stimuli overcomes the problem 

of the interpretation of results of spatial threshold measurements.

The concept, as devised by Andrews (1967b), is used in extension below.

The ideal processor starts with the information available to the visual 

system at the highest level that can be explicitly defined. In 

practice at present, this is the receptor surface of the retina. This 

information is then used without further loss, to perform the same 

task as the subject in the experiment, resulting in an ideal response. 

Since the retina introduces some spatial variance, this response is also 

variable, and an ideal response distribution can be defindd. . .

The standard deviation of this ideal response distribution can then be 

determined, and used to represent an ideal threshold for the task and

stimulus
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The ideal threshold can then he compared directly with the experimental 

threshold, to give an efficiency for that task and stimulus.

Information is inversely proportional to variance, according to 

Fisher (1951), and since efficiency can he defined as the ratio of 

information output to input, the subject’s efficiency for a given task 

is defined as the square of the ratio of ideal threshold to observed 

threshold, expressed as a percentage :

Ideal response variance
Efficiency * n, .Observed response variance

This measure may be used to compare directly many different stimuli 

and tasks without recourse to shaky assumptions of mechanistic or 

geometric nature, and has three main advantages.

Firstly, it avoids the arbitrary decision of which geometric parameter 

to use to represent the results. This is of particular importance for 

the more complex stimuli, suoh as curved lines, where aiy number of 

such parameters may be devised, each one causing the results to appear 

quite different. This is a difficulty that many studies have run into; 

for example, Ogilvie and Daicar (1%?) end their report of a study on 

curvature discrimination with an argument in favour of a psychometrically 

pleasing, rather than a geometrically pleasing parameter to measure 

threshold curvature. Such arguments tend to pre-judge the meaning 

of the psychometric functions obtained.



77

Secondly, the ideal processor, by working in terms of information and 

efficiency, allows the study of the micro-structure of a stimulus.

The contribution of one part of the stimulus to a given task may be 

directly assessed by measuring efficiency for that task, with and 

without the part of interest.

Thirdly, the ideal processor takes into account the varying receptor 

density on the surface of the retina. Different shaped figures, 

of necessity, cover different parts of the retina. Different shaped 

figures, therefore, are subject to different degrees of degradation, 

before neuJNtX. analysis begins.....

2.5.1 Relative Efficiencies.

The concept of efficiency requires some elaboration. Absolute 

efficiency is theoretically calculable for a spatial differentiation 

task, but at present this is impractical, since there is not sufficient 

knowledge of certain properties of the visual system to enable all the 

necessary factors to be taken into account.

Relative efficiencies are adequate for comparison purposes, and are 

used exclusively in the present study. The input to the ideal 

processor is modelled on the known structure of the retinal surface, 

and the relative efficiencies must be taken as representing the sum 

total of neural processing. If detailed knowledge were extended to 

higher levels of the visual system, then these levels could be used 

as the basis of the structure of the ideal processor ; efficiencies 

in such a case would represent the remainder of the neural processing.
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The retina looses spatial information by virtue of its discrete structure. 

Each receptor may be regarded as a point sample of the light distribution 

across the retina, and Barlow (1979) has discussed how such point 

samples might be combined, pointing out that sampling theory shows 

that were the position of each sample known, the retina would not in 

practice loose spatial information. However, it seems unreasonable 

to presume neural knowledge of this degree, and therefore the problem 

is now inverted : what information would be lost if the arrangement 

of receptors were known only in qualitative terms (ie. the order of 

samples along a given line) and the absolute position of these receptors 

remained unknown. That is, each point sample is taken to lie within 

a region of positional uncertainty corresponding to the inter-receptor 

spacing in any given direction. This sampling uncertainty clearly 

must loose information, and in essence, it is this loss that is 

loss that is assessed by the use of the ideal processor.

The concept of the ideal processor and relative efficiencies works 

as follows :

The processes involved in the visual discrimination of the shape of a 

line are divided into three types :

a) There are the processes that can be quantitatively defined, such 

as the finite spacing of the receptors on the retina.

b) There are the processes which cannot be quantitatively defined, but 

which may be assumed to degrade the information from all stimuli 

equally, and therefore do not exert a differentail effect on different
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tasks or stimuli. An example is the time constant for the transduction 

process.

o)- Lastly there are the remaining processes which are the object of 

the study.

Differences in relative efficiency for different stimuli and tasks, would 

indicate different processing in the visual system. By systematic 

exploration of variations in efficiency, the mechanisms involved can 

become apparent. The effects of removal of certain parts of the stimulus 

on the efficiency of processing, would indicate which are the most 

important features of the stimulus, throwing light on those cues used, and 

on the exact form of the information combined in such mechanisms.

The input to the ideal processor will now be defined, and then its mode 

of operation will be described.

2.5.1.1 Information Loss in the Ideal Processor.

It is desirable to make the stages in the ideal processor which lose 

information as close to the actual optical and physiological properties 

of the human visual system, as possible. The relative efficiencies so 

determined, can then be said to be governed only by those processes 

undefined.

Information loss has to be categorized into two types. Firstly, 

there is the loss that can explicitly be defined as exerting a 

differential effect on the various stimuli and tasks of interest.

Secondly, there is the loss which, as yet, cannot be defined

in a quantitative manner, but whioh is assumed not to exert a differential

effect. Other than these, the ideal processor makes no further

information loss.
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These losses will now he stated, starting with the known or estimable 

losses of information.

2.5.1.1.1 Differential Information Loss.

a). Each light receptor has a finite size. This means that any 

location in space has a region of confusion, within which all possible 

points are indiscriminable. This limits the absolute spatial 

information. The effective receptor diameter Is defined as the distance 

between the centres of two adjacent receptors.

This effective reoeptor diameter is a function of eccentricity.

Andrews, Butcher and Buckley (1973) found a good fit to the anatomy 

data of Polyak (194-1), and the grating aouity data of Wertheim (1894) 

and Weymouth, Hines, Raaf, and Wheeler (1928), up to eccentricities 

of about 4.5 degrees, by the simple rule that each receptor is 0.22 sec. 

arc greater in effective diameter than its immediately more central 

neighbour; the central receptor has a diamter of 20 min. arc.

The positional uncertainty within a given receptor is distributed 

approximately rectangularly, with a range ' d', the diameter of ths 

receptor. This gives a standard deviation for the position uncertainty 

os d//12.

For convenience, the exact distribution is assumed to belong to the 

family which allows equation of least squares methods with maximum 

likelihood methods (eg. normal distribution), and to have the 3aye 

standard deviation.

b). The packing structure of the receptors on the retinal surface is 

treated as random. Andrews et al. (1973) quote serial correlations 

for cone centres. Correlations are negligible beyond a few cones.



81

c). The light spread function of the optics of the eye also has an 

effect on the information available in a pattern. This is of some 

importance for some tasks, involving the estimation of the position of 

the end of a line, for example. A line of actual (and perceptual) 

width of 20 seo. arc will he spread out on the retina to cover no 

less than three receptors, thereby providing father better position 

information than if the spread did not occur. When discriminating 

the curvature of a line, on the other hand, the line still has only 

two contrast edges, and the light spread is of no importance.

2.5.1.1.2 Information Loss that is Assumed not to act Differentially.

a) . The temporal characteristics of the transduction process cannot 

be stated with sufficient precision to allow for them in calculating 

relative efficiencies. In particular, there are always slight 

eye-movements and tremors, which provide a finite number of independent 

samples of the stimulus information. The ideal processor, and 

perhaps the human subject, oould make use of these samples and reduce 

response variance. The actual number of samples would be a function 

of stimulus duration, and so for comparing results at equal stimulus 

durations, temporal characteristics probably do not exert a differential 

effect, and may therefore, be treated as an unknown constant.

b) . The intensity characteristics of the transduction process, such 

as the range of response levels available at different intensities of 

stimulation, might be used to signal how much of a stimulus falls 

within a given receptive field. Once again, this is assumed not to 

exert a differential effect on the stimuli and tasks employed, and
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is treated as an unknown constant.

c). For all but very short lines and dots, blur of the retinal image 

due to optical imperfections of the eye may be disregarded. An 

ideal device which knew the form of the light spread function for its own 

optical system would lose very little information in this way. Note 

that the system can gain precision for certain spatial judgments (see 

•C' p 81).

When all these unknown constants are set to unity, it is possible 

to calculate the variance of estimates of whatever parameter is 

required, for an instantaneous, focussed image of the stimulus.

2.5.1.2 The Nature of the Operations of the Ideal Processor.

The input limitations of the ideal processor are now defined. The 
».
nature of the operations that it performs will be discussed next.

The ideal processor loses no further information, in making the required 

estimates for a particular decision. The response distribution can then 

be inferred, by considering the error probabilities for the estimates.

The ideal processor is provided with the same general information as 

the subject concerning the nature of the stimuli, and the task to 

be performed. ^he stimulus to be observed is then input to the device 

as a geometrical definition. The explicit information transformations 

whioh lose information, as defined in the previous section, are then 

onerated on the stimulus. The output of these transformations is a 

set of receptors which 1 responded1 to the stimulus, each one providing



83

a mean and a variance of position information for a small segment of the 

stimulus*

Now the ideal processor performs the task on the resultant data, using 

statistical decision processes. The Method of Majcimum Likelihood is 

used where available. This ensures that no further information is lost. 

In general, the Method of Least Squares suffices for line figures 

and appropriate tasks.

Where the nature of the shape of the stimulus, and the shape distortion, 

to he judged is known, the task becomes a statistical test for the 

value of the distortion. The actual test is, of course, dependent upon 

the task. If the task concerns line slope, then a linear regression 

test will serve. If the task concerns curvature, then a second order 

polynomial regression is required.

The variance of the relevant estimate in such tests leads to a measure 

of the error variance of the ideal processor, and corresponds to the 

variance of the response distribution of the ideal processor.

This may be directly compared with the variance of the response error 

distribution for the subject, to provide the relative efficiency for the 

task and stimulus.

The expression used to calculate the response variance of the ideal 

processor for the task of curvature estimation is derived in the 

concluding section of this chapter.
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2.5.2 Variance of the Estimates of the Curvature of a Circular Arc.

The co-ordinate function for a circular arc is as follows :

(x + cx )2 + (y + cy )2 = r2

This may he approximated by a polynomial in x. The coefficient of the 
2

x term, kg, is related to the curvature of the arc as follows !

*2 = °v er * 1
“2 r

Therefore the curvature of a line may be estimated by a polynomial 

regression analysis of the quartic effect, which is then doubled to 

give the actual curvature of the line.

In curvilinear analysis by regression, it is convenient to be able 

to carry the analysis out term by term successively, until a satisfactory 

fit to the data has been obtained. An expression of the type :

Yi s a + bx + cx + ....

will not meet this requirement, because the partial derivatives with 

respect to the coefficients, of the sum of squares (Y^ - y  )* contain 

cross terms, producing for each additional term, a new series of 

simultaneous equations in all coefficients.

Therefore, functions of x^ are defined, fQ f1 f2 fj .... such that

— AYq + Bfj + Cfg + . . . .

If these functions are orthogonal polynomials, then there are no non-zero 

cross terms in the partial derivatives, and each coefficient may be 

estimated independently of the others.

The process of minimising the sum of squares, with respeot to each 

coefficient is then carried out, to provide an expression for the best 

estimator of that coefficient, and the variance of this estimator.
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Starting with the expression

E(y^) = ^0^*0 + k1 ^ 1 + ^2 ^ 2 + •••* 
Define w * | (y* “ kofO “ k1f1 " k2f2

k f n n
k f  )‘ n n'

Take partial derivatives

I f . = 2 ^ ((y± ~ k0f0 - k2f 2 ~ knfn

But the f are orthogonal, therefore

Z f  ,f = 0  r s

and 2 f -f / 0 
i r r

Lherefore

dw
dfj

2 1 ^ * 3  -

Minimise by equation to zero,

dw
df, = 0 Therefore k, = ligi

i 3

Therefore, 

is derived 

var(kj)

given the estimator for k^ 

as follows.

= f^.var(y^)

4 -**?>

, the variance of this estimator 

var (y^)

E(f^)

If enough is known about the distribution of x, one can derive the
2

expected value of f^ . This will be done for a rectangular distribution 

of mean 0, and standard deviation d//12.
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Define the orthogonal polynomial fr(x) :

fr(x) = X - rr  vio f (x) ill i* fY ^ i )

where ill **<x)

i, may be rewritten as

f (x) r v '
rx

r-1
Z

v=0
fv(x).

E(xr#fy(x))

E(fJ(x))

Squaring, expanding, and ignoring cross terms

2/ ' = 2.Z xr.fr(x) - Zx2r + Z n. E2(xr.fjx))Z r(x) 
i r v=0

Therefore,

E(f^(x)) = 2. E(Xr.f (x)) - E(x2r) + Z E*(xr.f (x))
r-1 r,2/_r
V=0

Therefore

E(f^(x)) = E(x2r) - E2(xr),

This expression is quite generalfor all 'r', and may be used in the 

expression for the variance of the estimator far k, :
V

var(kj) ▼ar(yi) Tar(yt)

(E(x2j) - E2(xj))

Note : ▼ar(yi) is the RMS (weighted mean) of the individual sample 

position variances#
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Now,

E(g(x)) = Jg(x).h(x).dx

where h(x) is the density f unction* of the sample points.

For a rectangular distribution of sample points,

h(x) = 1/d and the limits are d/2 and -d/2

d/2
therefore, E(g(x)) = 1/d. / g(x). dx

-d/2

It can be shown that

E(xr) = ar » (-a)’

2r*1. (r+1)

and E(x2r) ,2r

22r.(2r+l)

Therefore the variance of the estimate of curvature is given by

varif,) yar(y^)

E(f?)

where E(fg) l2*- where 1 is the stimulus length,
T80~

This analysis contains two slight approximations.

Firstly, it is wrong but convenient to analyse the data as if the 

distribution of sampling were fixed, rather than uncertain. However 

the density function would be little chan^d, and the approximation 
has little effect.
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Secondly, the distribution of positional uncertainty, at the sample points 

is not uniform. Strictly, a weighted regression should be used, but, 

since the difference in positional uncertainty (effective receptor 

diameter) is small, the approximation is also ŝ riall. The effects are 

alievated by using a mean positional uncertainty, vaHy^).

These two approximations could be avoided, by use of a two dimensional 

weighted regression analysis. But this would require the calculation 

of a new set of orthogonal polynomials for each new stimulus.

The expression for var(f^) is used to calculate efficiencies. The 

variance of the estimate of stimulus curvature is twice the variance;- 

of the estimate of the second degree polynomial coefficient.

A listing of the subprogram used to calculate efficiencies is included 

in the appendix.

2.5.2,1 Notes on the usage of relative efficiencies below.

In the description of the experiments and results below, the term 

'relative efficiency' is abbreviated to 'efficiency'.

Since most experiments involve the use of a comparison stimulus, some 

assumptions concerning its influence upon performance of the task have 

to be made. If the ideal processor were informed that the same reference 

comparison were used throughout a run, it could steadily improve its 

estimate of the criterion curvature, or it could use an efficient-but 

improper strategy by assessing the reference curvature once only, and 

then using this estimate as criterion without further variance. It 

seems probable that such a strategy was used by subjects, and therefore 

the reference stimulus is considered, in the calculation of efficiencies 

below, to add no uncertainty, and therefore no response variance to the

task.
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2.5.3 Appendix.

C MAIN PROGRAM FOR CURVATURE ESTIMATE VARIANCE CALCULATION

DIMENSION RVAR(1500)

C TRACE THE CURVE

CALL CURVD(CURV,ALEN,SLOPE,XS,YS,IGAPS,PGAPS,RVAR,NCELL) 

c CURV = CURVATURE (Rad/Min. arc)

C ALEN * LINE LENGTH (Min. arc)

C SLOPE = CHORD SLOPE (Radians)

C XS,YS * LINE STARTING POINT (Min. arc from centre)

c IGAPS = NO. GAPS

C PGAPS - RELATIVE SIZE OF GAPS

CALL TASK(RVAR,NCELL,ALEN,VERR,BERR,SERR,CERR)

c OUTPUT ••
C VERR = ERROR OF LENGTH ESTIMATE

C BERR » ERROR OF POSITION ESTIMATE

C SERR = ERROR OF SLOPE ESTIMATE

C CERR - •J ERROR OF CURVATURE ESTIMATE

STOP

END
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SUBROUTINE CURVD(CURV,ALEN,SLOPE,XS,YS,IGAPS,PGAPS,RVAR,NCELL)

c OUTPUT : RVAR(NCELL) OUTPUT SAMPLE VARIANCES

C NCELL NO OF SAMPLES

DIMENSION RVAR(1500)

NCELL * 0

THETA = 3.1 if 159 + SLOPE - ALEN/2.0*CURV 

XW * XS 
YW = YS
ISECT * IGAPS + 1

SIZED = ALEN/(FLOAT(ISECT) + FLOAT(IGAPS)*PGAPS 

SIZEG = PGAPS * SIZED 

JSECT ** 0

C LOOP AROUND, TRACING OUT THE CURVE.

30 CONTINUE

JSECT = JSECT + 1 

WALEN * 0.0

1 NCELL * NCELL + 1

c GET CURRENT RECEPTOR SIZE + POSITIONAL UNCERTAINTY

CALL RECP(XW,YV,DIAM,RVAR(NCELL))

WALEN = WALEN + DIAM

MOVE TO NEXT RECEPTOR, AND CHECK IF END OF LINE SEGMENT 

IF(WALEN - SIZED) 2 , 10 , 3 

CALL NEXTXY(XW,YW,THETA,CURV,DIAM)

GO TO 1
2
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C FINISH OFF CURRENT LINE SEGMENT (SIZE = ASTEP)

3 ASTEP = SIZED - (WALEN - DIAM)

CALL NEXTXY(XW, YW, THETA,CURV,ASTEP)

10 NCELL = NCELL + 1

CALL RECP(XW,YW,DIAM,RVAR(NCELL))

c END OF STIMULUS ?

IF(JSECT - ISECT) 20 , 35 , 35 

20 CALL NEXTXY(XW,YW,THETA,CURV.SIZEG)

GO TO 30

35 CONTINUE

RETURN 

END

SUBROUTINE NEXTXY(X,Y,SLOPE,CURV,STEP) 

c FOLLOW A CURVED LINE THROUGH A DISTANCE 'STEP'a AND

C CALCULATE THE NEW CO-ORDINATES

STEPP * STEP 

IF(CURV) 1, 2, 1

1 STEPP * 2.0/CURV * SIN(STEPP/2,0 * CURV)

2 SLOPEP » SLOPE + ASIN(STEPP/2.0 * CURV)

X » X + STEPP • COS(SLOPEP)

Y = Y + STEPP • SIN(SLOPEP)

SLOPE * SLOPE + STEP*CURV

RETURN
END
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SUBROUTINE TASK(RVAR, J , ALEN , VERR , BERR , SERR , CERR ) 

DIMENSION RVAR(1500)

SUMV =0.0

DO 11 K = 1,J

SUMV = SUMV + RVAR(K)

11 CONTINUE

XVAR = ALEN**2 / 12.0 
XQUART = ALEN**i+ / 180.0 
YVAR = SUMV/FLOAT(J)

W A R  = (RVAR(1) + RVAR(J))/3.0 

BVAR = YVAVFLOAT(J)

SVAR = YVAV(XVAR*FLOAT(J))

CVAR = YVAV(XQUART*FLOAT(J))

VERR = SQRT(WAR)

BERR = SQRT(BVAR)

SERR = SQRT(SVAR)

CERR = SQRT(CVAR)

RETURN

END
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SUBROUTINE RECP( X,Y,RDIAM,RVAR)

ECC = SQRT(X**2 + Y**2) * 60.0

DIAM » 20.0 

RINC = 0.22 

RLIMIT = DItM/ 2.0 

RDIAM = DIAM

IF(ECC- - RLIMIT) 3*1*1 

1 CONTINUE

A = RINC / 2.0 

B » A + DIAM 

C = - (ECC - RLIMIT)

RANK = ( - B + SQRT(B**2 - lf.O*A*C) )/(2.0*A)

RDIAM - DIAM + RANK*RINC

3 RDIAM » RDIAM / 60.0

RVAR » RDIAM**2 / 12.0

RETUEN

END



CHAPTER 3, TWO DIFFERENT SPATIAL TASKS COMPARED FOR TWO DIFFERENT

STIMULI.

What neural processes are performed on the representation of the retinal 

image ? In what order are they performed ?

The pattern of connections in the visual system linking the outputs 

of the reoeptor cells determines Loth which neural processes are 

carried out, and which stimuli are analyzed most faithfully. Therefore, 

it follows that empirical determination of the power of the visual 

system for a range of tasks, and a range of stimuli, should throw 

light on these functional connections. This chapter will consider 

the two different processes of visual analysis of shape and position, 

and the two different stimuli, straight contours and curved contours.

It will be argued on mathematical grounds, that the analysis of shape 

and position are two distinct processes. Results from psychophysical 

studies Ly Andrews will he reported to demonstrate that these processes 

are also neurally distinct, when they are being performed on straight 

contours. It will then he suggested that the use of a different class 

of stimulus, namely curved oontours, might he expected to lead to 

further understanding of the neural processes involved.

The results of such a study will, then he presented*
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A single contour in two dimensional space can be represented 

mathematically by a function relating all points on that contour to the 

two oo-ordinate axes* A oontour can be mapped onto a function in 

oo-ordlnate space, and such a function provides all the necessary 

information to reconstruct that contour; it is an exhaustive 

description.

Mathematical operatins can be performed on the function to analyze any 

specific property of the contour. Two formally distinct classes of 

operation are differentiation and integration: differentiation 

characterises the shape of the oontour; integration characterizes the 

position and sise of the contour.

The visual system is also capable of representing a contour in two 

dimensional space. However, the representation is only approximate: 

the retina samples space selectively, and not all points on the contour 

are represented. Neural operations are performed on this representation 

to analyze certain specifio properties of the contour.

Both position and size, on the one hand, and shape on the other, can 

be appreciated ty the visual system, and so the neural processes must 

achieve, amongst others, analogues of the mathematical operations of 

integration and differentiation.

Neural processes, unlike mathematical operations are imperfect: they 

lose information, and therefore the results of neural analysis contain 

further approximations.

Careful assessment and consideration of the information losses incurred 

in the course of neural processing should provide insight into the 

nature of these neural processes.



The question of interest is whether the visual system can he shown 

to attach priority in it3 neural processing of contours to achieving 

the analogue of one or other of these operations. Does the visual 

system extract information for shape judgement and for position 

judgement, with the same fidelity, or are the losses different ?

Information lost in the course of visual analysis of shape and position 

can he inferred from estimates of the efficiency with which subjects 

are able to perform specific visual tasks, involving position or shape 

judgements of specifio stimuli.

Andrews has compared performance of two psychophysical tasks involving 

these types of judgement with straight line stimuli. The tasks 

were : discrimination of the direction of curvature (a shape judgement), 

Andrews, Butcher and Buckley (1973); and discrimination of the 

distance separating two contours (position judgement), ¿ndrevs and 

Miller (1978). The results of these studies showed that subjects are 

able to judge relative shape much more efficiently than relative 

position. Indeed, the difference was so great that it was suggested 

that the residual positional information, after the analysis of shape 

could be the sole basis for the position judgements. This constrains 

the types of candidate neural process considerably.

There is reason to suppose that these results might be specific for 

straight line stimuli. The majority of cortical units show a 

preference for collinear stimuli, although there have been a few reports 

of units that preferred curved stimuli (eg. Heggelund and Hohmann, 1975. 

Hammond and Andrews, 1978).
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Psychophysical studies have also failed to find the same types of 

response to curved line stimuli as are found to straight line stimuli. 

There is no good evidence for curvature-specific after-effects 

(eg. Blakemore and Over, 197k), and for curvature-specific chromatic 

after-effects (eg. Riggs, 1973; MacKay and JiacKay, 1974; Crassini and 

Over, 1975). This suggests that the study of the efficiency with 

which the visual system can process curved line stimuli may show further 

constraints on the types of candidate neural process#

The use of curved contours does present some problems. A psychophysical 

discrimination task involving curved contours is likely to involve a 

composite of shape and position judgements. Consider the case where a 

subject is asked to judge the distance between two contours, both of 

which are curved. As a result of the shapes of the individual contours, 

the total stimulus array has different global shapes at different 

separations. Therefore the subject has the option of using either or 

both shape and position cues. However, this situation can be turned to 

advantage. The results of Andrews can be extended by examining whether 

there are stimulus configurations where shape judgements can facilitate 

the low efficiency performance of position judgements.

Efficiency for shape judgement will be measured psychophysical^ by 

a curvature discrimination task. Perfomance will be measured a3 a 

function of stimulus duration. This will provide useful data, on 

which to base subsequent stimulus exposure durations.

Efficiency for position judgements will be measured in a separation 

distance discrimination task, as a function of stimulus separation.
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EXPERIMENT 1, : TEE EFFECT OF STIMULUS EXPOSURE DURATION ON THE

DISCRIMINATION OF CURVATJRE IN STRAIGHT AND CURVED 

CONTOURS.

This preliminary experiment has three basic aims.

Firstly, it will serve to compare performance of curvature discrimination 

far a curved line, and a straight line. Andrews, Butcher and 

Buckley (1973) have found a high relative efficiency for the perfarmnce 

of a number of shape discrimination tasks, for straight lines of 

length less than 30 min. arc. The tasks were vernier resolution, 

chevron curvature discrimination, and arc curvature discrimination.

They suggest that the moat economical description of these tasks, 

which apparently share some degree of visual processing, refers to them 

as cases of collinearity-failure detection and discrimination.

It would be useful to know whether such a summary is adequate in 

describing all high efficiency shape judgements.

Secondly, this experiment will serve to indicate what the most suitable 

stimulus exposure duration to use for a full scale study of the effects 

of curvature on various visual discriminations, ndgit be. This is 

important since the temporal response of the visual system is not 

simple, apparently involving considerable integration. it i3 

important to ensure that the stimulus duration chosen allows nearly 

maximum integration, otherwise the comparison of performances for 

different stimuli might not be valid.
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Thirdly, it would be valuable to know what the efficiency of /the 

visual system is for the curvature discrimination of a brief flash 

stimulus. Such a stimulus rules out involuntary eye-movements, and 

therefore allows only passive information acquisition strategies.

This should provide a base-line efficiency for the case where only 

one sample of the stimulus data is available. A further benefit from 

using brief stimuli would be that their appearance is stable, and not 

subject to the subjective changes in shape that longer duration 

stimuli are.

In addition, the experiment will serve two useful functions with respect 

to the subjects.

The data for curvature discrimination in a straight line may be compared 

directly with the same data in Andrews et al. (1973), thereby providing 

a link with their results.

The experiment can also be used to train the subjects not to use an 

eye-movement strategy, by preventing it through the use of veiy short 

duration stimuLi.
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METHODS

The computer controlled Method of Constant Stimuli, as described in 

Chapter 2, was used*

Two conditions of stimulus curvature were used*

In the zero curvature case, the stimulus array consisted of a fixation 

spot and a test stimulus* The test stimuLus was drawn from a series 

varying in curvature, centred at a curvature of zero* The length of 

the stimulus was 20 min. arc. It was situated 2,5 min. arc above the 

fixation spot.

In this case, the subject was asked to decide whether the stimulus was 

curved upwards or downwards.

In the ourved case, the stimulus array consisted of a fixation spot, 

a comparison stimulus of curvature 0.05 rad/min. arc and length 20 min, 

arc, and a test stimulus also of length 20 min. arc, and drawn from a 

series varying in curvature, centred at a curvature of 0.05 rad/min. arc. 

All lines were curved upwards. The comparison stimulus was situated

2.5 min. arc below the fixation spot, and the test stimulus was 

situated 2.5 min. arc above the spot, in the standard configuration.

In this case, the subject was required to deoide which line was more 

curved, top or bottom.

A number of stimulus exposure durations were used, ranging from 10 msec, 

to 2 sec. The stimulus was presented after a 3 second delay, during 

which the fixation spot alone was displayed.
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Two subjects were tested. One (RJW) made a large number of practice 

runs, using the curved stimuli, and a stimulus exposure duration of 

10 msec. A steady improvement was found over the course of several 

months in the performance of the curvature discrimination task, finally 

reaching a plateau. The straight line case did not show a learning 

effect. T^is is important.

The second subject (RSS) was tested essentially without practice, 

although the subject had previous psychophysical experience.

RJW had normal visit®, RSS had oorrected-to-normal vision.
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RESULTS

The thresholds for curvature discrimination are shown in Fig. 3.1,

There is a decrease in threshold for increasing exposure duration.

This follows a similar,' "but not identical time course for the two 

curvatures used, hut there is a difference in the absolute levels of 

threshold in the two cases. Threshold for straight lines is smaller 

than for the curved lines. There is also a difference between the 

two subjects, which is independent of the testing condition, as is 

presumably related to the different amounts of experience of the two 

subjects.

Ideal thresholds are 1 .667E-5 rad/seo. aro for the straight line case, 

and 2.498E-5 rad/sec.aro for the curved line case. These are different 

because of the nature of the two tasks. In the case of the straight 

lines the task is an absolute one : »Is the contour curved up or down ?* 

In the case of the curved lines, the task is a relative one : »Which 

stimulus is more curved, top or bottom ?» This latter case requires

analysis of two lines, and therefore has approximately twice the error 
variance.

Efficiencies are shown in Fig. 3.2. Efficiencies are more nearly the 

same for the two tasks, and it can be seen that the difference in the 

obtained thresholds oould be accounted for ty the nature of the task.

This possibility will be discussed below (p.106),, Note that this is a 

special use Pf the term efficiency, since the temporal requirements 

(Section 2.5.1.1.2 p8l.) are violated in this experiment. The

efficiencies quoted only have meaning within the context of this one 

experiment, as a result.
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DISCUSSION

This experiment had three basic aims, which will now be discussed in 

the light of the data obtained.

One aim was to measure a base-line efficiency for the discrimination of 

curvature in a stimulus displayed for only 10 msec. Such a duration 

rules out eye-movements, and is presumed to allow the visual system only 

enough time to make one sample of the stimulus data. In practice, 

such a measurement is precluded, because a brief stimulus appears quite 

distorted. Similar distortions for brief stimuli are reported in 

Andrews (19^7*)*

Another aim was to establish the optimum stimulus duration for future 

experiments. The data show no minimum stimulus exposure duration, 

which would allow complete or maximum integration, but the rapid initial 

summation of information would be avoided by choosing a stimulus 
duration of 2 seconds.

xhe major aim of this experiment was to make a comparison of curvature 

discrimination in straight contours and in curved contours. Whilst 

thresholds for the two stimuli are rather different, efficiency for 

the comparison of curvatures of two curved lines, is almost as high as 

efficiency for the discrimination of curvature direction in a nearly 

straight line. This is interesting, and suggests that the concept of 

collinearity-failure detection is inadequate to describe all high 

efficiency shape discrimination tasks.
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There are two problems however, which arise from the use of the comparison 

stimulus. Both problems may invalidate a comparison of the efficiencies 

for the two tasks. These problems are: firstly, does the subject 

have a time invariant strategy in his use of the comparison stimulus, 

over the course of an experimental runj and secondly, does the presence 

of a comparison stimulus in the vicinity of the test stimlus alter in 

ary way, the perception of that test stimulus.?

The first problem concerns the weight to be attached to the reference 

comparison stimulus, when calculating efficiencies. The subject in 

the comparison task could, in principle, cheat in the following manner. 

Rather than making a fresh comparison for each stimulus presentation, 

the subject could estimate the curvature of the test stimulus and 

compare this with a criterion curvature value. ^his criterion value 

would be obtained both from the comparison stimulus, » M  from a 

running mean of the test stimili already seen. It would be subject 

to an error, but could be used in principle without variance. This 

would lead to a constant error in the judgements, but a smaller 

variable error or threshold, since the response variance would be due 

to the perception of the test stimulus alone. In practice, it is more 

likely that the subject could use the criterion value with steadily 

decreasing variance, through the course of a run : the effect of the 

comparison stimulus would not be time invariant.

The problem has been solved a3 follows, for this particular case.

If the use of the comparison stimulus is time invariant, and a proper 

comparison between the two lines is made for each judgement, then 

threshold diould not be increased by making the subject uncertain on



107

aay one presentation, which stimulus is the test, and which the comparison. 

The subject in this case would not know which stimulus to judge, were 

he cheating, and this procedure should raise the threshold, Thresholds

were obtained and compared for subject RJW using the two conditions

fixed relative positions of the test and comparison stimuli, and

random relative positions.

The results were as follows :

Condition Threshold PSE Efficiency

Fixed pos. 4.372E-5 4.555E-2 16.801
Random pos. 4.8VI E-5 /f.998E-2 13.701

(rad/sec.) (rad/min. ) (fo)

There is no significant difference between the two thresholds at a 3$ 

probability level (F-test with 12/26 degrees of freedom). The test 

is not powerful, but clearly, the difference obtained suggests that 

the use of the comparison stimulus is largely time invariant. It seems

reasonable to assert that a fresh comparison between the two stimuli is 
made for each decision.

The second problem concerns the possibility that closely neighbouring 

contours (such as the test and comparison stimuli for the curved line 

case of the present experiment) could generate interactions in the 

visual system, which might reduce discrimination efficiency,

Westheimer and Hauske (1575) have suggested that lateral effects of 

this kind can disturb vernier resolution judgements. Such an effect 

might give the straight line case (where only one contour is presented 

to the subject) an advantage over the curved line case (where two 

contours, 5 min. arc apart are presented to the subject) in the present
experiment.
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Even if this were so, efficiency for curvature discrimination of the 

curved line would he depressed hy the presence of the contour.

This problem does not upset the principle finding of the experiment, 

and will not he discussed further here. -̂he problem is returned to 

in Chapter 5 (Experiment 6), and discussed fully in Chapter 8 (p.234 ),

The major result of this experiment is therefore that efficiency for 

curvature discrimination is not reduced very much hy a 0.05 rad/min. 

aro curvature of the stimulus.
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EXPERIMENT 2. : THE EFFECT OP STIMULUS CURVATURE ON DISCRIMINATION

OP THE DISTANCE SEPARATING TffO CONTOURS.

It has teen established that j&ape judgements are performed at almost 

equal efficiency for straight lines of length 20 min. arc, and lines of 

the same length and curvature 0.05 rad/min. aro. In view of the 

finding of Andrews and Miller (1978), that position judgements are 

performed at a much lower efficiency, it would be useful to ascertain 

whether this performance is also independent of the curvature of the 

stimulus. Whereas it was expected that curvature might reduce the 

efficiency for shape judgements, it might be expected that curvature couia 

increase efficiency for position judgements. The reason for this, is 

that any stimulus configuration for such an experiment would allow the 

subject the option of supplementing position judgements with shape 

judgements. It would be useful to test whelher such an option can 

be used by subjects to improve performance.

Consider the following task. A stimulus array is presented to the 

subject consisting of a fixation spot, a comparison stimuLus beneath 

the spot, and curved downwards, and a test stimulus curved upwards, 

and varying in vertical position (see Pig. 3.5).

The subject is asked to judge whether the stimulus array is flatter than 

a circle or not. This task strictly requires two independent judgements 

to be compared. Firstly an explicit curvature judgement is made, to 

provide the reference separation. Then a position judgement is made, 

and compared with the reference separation. These judgenents could be 

replaced by an overall shape judgement, since the shape of the total 

array varies with the separation of the two contours.
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Does the option of replacing the shape plus position judgements, by an 

overall shape Judgement improve efficiency ? Is performance limited by 

the nature of the task, or by the form of the stimuli ? Is the 

priority processing of shape limited to small, compact, or connected 

contours ?



METHODS

The computer controlled Method of Constant Stimuli, as described in 

Chapter 2, was used.

The arrangement of stimuLus elements is shown in Fig. 3.3.

The. stimulus array consisted of a fixation spot, a comparison stimuLus 

(whioh does not actually provide a comparison feature, but does serve 

to define the judgement), and a test stimulus.

Since the spot could arguably interact with the task, providing a cue 

for response (see p.11*. for the way it could do this), a second condition 

was used, without the fixation spot. In both conditions, the spot was 

displayed for 3 seconds before stimulus presentation, and the subject 

was required to fixate at all times.

The comparison stimulus was below the spot, and curved downwards. '̂ he 

position of the comparison stimulus was such that the centre of the 

imaginary circle, of which the comparison stimulus was a part, coincided 

with the fixation spot.

The test stimuLus was placed above the fixation spot, at a variable 

distance away (variable in the vertical direction only). The test 

stimulus was curved upwards, and of the same curvature and length as 

the comparison stimulus.

The following curvatures were used : 0.C4, 0.05, O.O67, 0.08, 0.10, 

0.133, 0.20 rad/min. arc.

The two stimuli were always one third of the overall circumference of 

the circle. This size was chosen so that the distance between the 

extreme ends (which is the smallest distance between the curves) is 

the same as the radius of the circle.
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Two subjects were used for this experiment. One was tested in both 

fixation spot conditions (RJW), the other was only tested in the 

fixation spot present condition. Both had normal vision.

In each condition of fixation spot, the subject was requested to 

maintain steady fixation at all times. The subject was asked to decide 

whether the stimulus array he saw was taller or flatter than a true

circle
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test

comparison

Pig. 3 .3 Stimulus configuration for Experiment 2. The upper curve 

varied in vertical position, the lower curve was fixed.



114

RESULTS

Thresholds for separation are shown in Fig. 3*4. Ideal thresholds are 

also shown. The ideal thresholds are based on two judgements : the 

reference curvature has to be calculated first, using the two arcs 

independently; then the distance between the arcs has to be calculated.

The error variances associated with these two judgements are then 

combined, to give the overall error variance, leading to the ideal 

threshold. Note that the subject was not informed of the relationship 

between the position of the spot and the lower comparison stimulus.

The spot therefore provides no further information for the task, and the 

ideal thresholds for the two conditions are the same.

Thresholds rise with increasing separation (due to the increasing 

reference curvature), in line with the data of Andrews and Miller (1978).

Efficiencies for the task are shown in Fig. 3.5. Efficiencies are quite 

high for the smallest stimulus, but not as high as those recorded for 

the shape task in Experiment 1« Efficiency for separation drops very 

rapidly with increasing separation, up to separations of about 25 min. 

arc, beyond which, the drop is much less.

There is a difference in the performance obtained for the two conditions, 

witty and without the fixation spot. Clearly, the spot is contributing 

to the task in some non-veridical manner, for the separations greater 

than about 25 min. arc. This could be as follows.

The spot is a fixed reference point in space, nearer to the test stimulus 

than is "the comparison stimulus. It could be used to advantage by any
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system that lost efficiency as the separation distance increased, 

provided that some guess about the spatial relationship between the spot 

and the comparison stimulus was made. Sueh judgements, of the distance 

between the test stimulus and the spot, would of course, be strictly 

non-veridical, but the resultant variance would be lower. It seems 

likely that the spot was used in this way by the subjects, improving 

performance for the longer separations.
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Fig. 3.it Separation threshold as a function of reference separation
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Fig. 3.5 Efficiency for distance judgement, as a function of 

reference separation. Two subjects.
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DISCUSSION

Performance has been measured for a complex task, involving both a shape 

judgement and a position judgement. The task consists of three 

operations, which are presumably performed at different efficiencies by 

the subject. The three operations are as follows : firstly, the 

curvature must be determined for reference purposes; then the diamèter 

must be calculated; and lastly, the distance between the stimuli 

must be compared with this reference diameter.

The two distances to be conpared are therefore subject to different types 

of processing error. In the ideal processor, judgement of the 

reference diametèr is subject to a much larger error variance, than the 

second direct distance judgement.

Consideration of the results suggests that this is not true for the 

subject. The thresholds obtained for both subjects are very close to 

those for comparable stimulus sizes and separations reported by 

Andrews and Miller (1978). Since the task that they employed did 

not include the curvature judgement, the ideal processor makes only a 

small error variance, and the efficiencies are therefore correspondingly 
lower.

The efficiencies measured in the present experiment ere an order of 

magnitude higher than those from the simpler task, but are still m o h 

lower than those for the hasio shape discrimination task of the previous 

experiment. Therefor, it follows that the limiting factor is still the 

position Judgement for the subject, the efficiencies are too low to 

suggest that the subject ia able to perform a giolial shape Juagenent> 

to by-pass the low effioienpy position judgement.
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The present data suggest that the low efficiency of performance is due 

to the nature of the stimulus array (ie. the fact that it consists of 

two contours, to he judged together, hut widely separate in space).

^he same may apply to the results of Andrews and Miller (1978).

Conclusions about the processing of shape may he unwise from this present 

data : it is possible that the subjects were using a highly efficient, 

but technically invalid, strategy to assess the reference diameter.

The subjects may not have been making a true comparison between diameter 

(implied) and distance (observed), but may have been making a comparison 

between diameter (guessed, and therefore presumably invariant, although 

subject to a constant error) and distance (observed). T^q constant 

errors obtained were large, supporting this possibility.
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CONCLUSIONS : TWO DIFFERENT SPATIAL TASKS COMPARED FOR TWO DIFFERENT 

STIMULI.

What neural processes are performed on the representation of the 

retinal image ? In what order are they performed ?

It was suggested, in the introduction to this chapter, that the 

answers to questions such as these could be sought psychophysically 

by measuring the efficiencies with which the visual system can be used 

to perform different discriminations on a variety of different stimuli. 

This chapter has set out to extend the results of Andrews (Andrews, 

Butcher and Buckley, 1973; Andrews and Miller, 1978) for two differing 

psyohophysical tasks, to a second class of stimulus. It was hoped that 

the use of curved oontours, in replacement of the straight contours 

used by Andrews, would add further understanding of the neural processes 

involved.

The two tasks, shape judgement and position judgement, are useful, since 

they require that the two distinct mathematical operations of 

differentiation and integration be achieved by analogous processes in 

the visual system. The results of Andrews suggest that the two tasks 

use distinct neural processes, when the subject stimuLus is a straight 

line.

Measurement of the performance of the two tasks using curved line stimuli 

was motivated by the expectations that shape discriminations might be 

adversely affected by the curvature of the stimulus, but that position 

discriminations migit be improved by curvature of the stimulus 

(which could imply a shape judgement).
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If these expectations had been upheld, the constraints on the hounds of 

•shape* and 'position' judgements would hare been made more explicit.

In practice, neither expectation was upheld. The shape judgement is 

equally efficient for strai^it and curved lines. It is also clear 

that distance discrimination is not facilitated when the subject has 

the option of interpreting the task as shape judgement.

As an exploratory exeroise, this study has been successful in identifying 

the most interesting problems. These concern the concept of shape, 

and its judgement.

When the visual system is able to perform an analysis of shape, it 

apparently processes ourved lines no less directly than straight lines. 

However, it seems that there are situations where an analysis of shape 

would be mathematically appropriate, but the visual system is unable 

to -perform one.

The concept of collinearity-failure detection and discrimination is now 

seen to be inadequate as a summary or collective description of all high 

efficiency shape judgements, although how far it must be modified or 

extended is not clear. This question will be considered more fully 

in the following chapters, after a more thorough assessment of the effects 

of stimulus curvature and sise on performance of curvature discrimination 

has been made.
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CHAPTER A. : PRELIMINARY INVESTIGATIONS OF THE EFFECTS OF STIMULUS 

CURVATURE AND SIZE ON CURVATURE DISCRIMINATION.

The experiments of Chapter 3 compared the efficiency of judgements 

of shape and position for straight lines and curved lines. It was 

discovered that the shape of the stimulus made little difference to 

performance of these two distinct tasks. In the case of the shape 

task, there was no evidence that the curved stimuLus is processed hy 

the visual system in a way that is less direct than that employed for 

a straight line stimulus. In the case of the position task, there 

was no evidence that a layout of the stimuli, which could allow the 

task to be interpreted as a shape discrimination, improved performance.

These results are interpreted as indicating that the concept of 

collinearity-failure detection, as proposed by Andrews, Butcher and 

Buckley (1973)» is not sufficient to describe the group of high efficiency 

shape discrimination tasks.

The concept was introduced to describe collectively the tasks of 

vernier resolution, chevron discrimination, and curvature discrimination. 

In each case, the decision reference was an imaginary straight line.

Whilst the concept of collinearity-failure detection is too specific, 

a general concept of shape discrimination is too broad.

In order to determine what modifications have to be made to the 

concept of collinearity-failure detection, it would be useful to 

discover the limits of stimulus curvature and size, within which the 

task of curvature discrimination may be performed at a high level of

efficiency,
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OF CURVATURE.

It has been shown that curvature discrimination is performed at almost 

the same high level of efficiency for straight lines and lines of 

0,05 rad/min. are curvature and length 20 min. arc. This finding 

suggests that an extension to the concept of collinearity-failure 

detection is required. If this concept is to be revised, it is 

important to know the range of stimulus curvatures over which high 

efficiency curvature discrimination can be performed.

With -this aim, the following experiment was carried out to measure 

the efficiency of curvature discrimination as a function of stimulus 

curvature.

It is important to avoid confounding the effects of stimulus size, 

and those of stimulus curvature, and so the stlmuLus size must be 

kept constant. This creates a methodological problem, since it is 

not clear what the appropriate measure of stimulus size might be.

As the curvature of a line is changed, so are a number of potential 

size measures: thus there is no one obvious candidate. Two such 

measures of stimulus size will be considered: one experimental 

condition will be concerned with measuring discrimination of curvature 

in stimuli with a fixed line length of 20 min. arc, as a function of 

stimulus curvature; the other condition will measure the same 

function using stimuli with a fixed chord length of 20 min. arc.

The differences between the stimuli in these two cases are veiy small: 

at the extreme curvature of 0.08 rad/min. arc, the difference in 

lengths is only 3.18 min. arc.

EXPERIMENT 3. : THE EFFECT OF STIMULUS CURVATURE ON THE DISCRIMINATION
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METHODS

The computer controlled Method of Constant Stimuli, as described in 

Chapter 2, was used.

The stimulus array consisted of a fixation spot, a comparison stimulus 

of the curvature to be tested, and a test stimuLus of variable 

curvature, arranged m  the standard configuration«

The comparison stimuLus was placed below the fixation spot, so that 

the top of the curve was 2.5 min. arc beneath the spot. The test 

stimuLus was placed above the fixation spot, so that the mid-point of 

its imaginary chord was 2.5 min. arc above the spot. Both stimuli 

were curved upwards.

The following values of curvature were tested :

0.0286, 0.0333, 0.04, 0.05, 0.0667, 0.08 rad/min. arc.

The test stimulus was chosen from a series varying in curvature, centred 

in curvature at the same curvature as the comparison stimuLus.

Two conditions of stimulus size were used. One condition used a 

fixed line length of 20 min. arc, the other used a fixed chord length 

of 20 min. arc. These lengths were chosen since they were thought 

to be well within the limits of length for high efficiency curvature 

discrimination, but beyond the limiting length for high efficiency 

slope discrimination, as suggested by the data of Andrews et al.(l973). 

The stimulus array was displayed after a pre-stimulus delay of three 

seconds, during which the fixation spot alone was displayed. The 

stimulus display lasted for two seconds.
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Two subjects were tested in each condition, one (RJW) was common to 

both. The subjects had normal or corrected-to-normal vision. 

Subjects were instructed to fixate the central spot at all times, 

and after presentation of the stimulus, to decide which stimulus was 

more curved, top or bottom.
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RESULTS

The two conditions will be considered separately, 

i). Fixed Line Length,

The thresholds for curvature discrimination as a function of stimulus 

curvature at a fixed line length are shown in Fig, 4.1. The ideal 

thresholds are also shown. Ideal thresholds rise slightly, since 

net eccentricity of the stimulus increases with increasing curvature.

Measured thresholds also rise, but rather more steeply. This is 

particularly tree of subject JIK.

Efficiencies for the task are shown in Fig, 4.2, The basic trend is 

a small drop in efficiency as curvature increases. The drop is 

rather larger for subject JIK, Subject RJW shows a peak in efficiency 

at a stimulus curvature of 0,0333 rad/min. arc. Peak efficiency 

for subject JIK is probably at a slightly larger curvature.
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ii). Fixed Chord Length.

Thresholds for curvature discrimination as a function of stimulus 

curvature at a fixed chord length are shown in Fig. 4.3. Ideal 

thresholds are also shown. The ideal threshold falls with increasing 

stimulus curvature, since the lines are longer, and the extra length 

corresponds to extra information.

The subjects do not seem able to use this extra information 

efficiently. This is particularly true of subject IEB.

Efficiencies for the same task are shown in Fig. 4.4. Efficiency 

for curvature discrimination remains high and constant for curvatures up 

to 0.04 rad/min. arc, but beyond this curvature, falls with increasing 

curvature. The fall in efficiency is more steep for subject IEB

than for RJW
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Fig, i+,3 Threshold for curvature diecrimination as a function of

stimulus curvature, for a fixed chord length of 20 min. arc.
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Fig. 4 , Efficiency for curvature discrimination, as a function of
stimulus curvature, for a fixed chord length of 20 min. arc.
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DISCUSSION

This study aimed to discover the range of curvatures over which 

curvature discrimination can he performed at high efficiency* Two 

conditions of stimulus size were used, since it was not possible to 

decide a priori which parameter would he appropriate. Testing both 

the conditions of constant line length and constant chord length 

proves to have been useful.

The general result obtained is that the efficiency for curvature 

discrimination is high for stimulus curvatures up to a value between 

0.0333 and 0.04 rad/min. arc. Efficiency falls slightly with 

increased stimulus curvature beyond this peak curvature. Efficiency 

falls more steeply in the constant chord condition, than in the 

constant line length condition. This suggests that the length of 

the lines is very important, at least in the neighbourhood of stimulus 

lengths of 20 min. arc.

The less practised subjects, J3K and IEB, showed lower efficiencies 

in general, and the effects of increasing stimulus curvature were 

more pronounced.
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EXPERIMENT A. : THE EFFECT OF STIMULUS LENGTH ON THE DISCRIMINATION 
OF CURVATURE AT A FIXED STIMULUS CURVATURE.

The previous experiment has demonstrated that there is a strong effeot 

of stimulus line length on the discrimination, at least for lengths 

close to 20 min. arc.

Andrews, Butcher and Buckley (1973) measured efficiency for curvature 

discrimination as a function of line length for straight lines. Their 

data show that the curvature of nearly straight lines may "be 

discriminated with a high efficiency for lines that are less than 30 min. 

arc in length. Longer lines are subject to a lower efficiency for 

curvature discrimination.

The previous study, on the other hand, found that for curvatures 

greater than 0.04 rad/min. arc, the difference in efficiency for a 

stimulus of line length 20 min. arc, and a stimulus of chord length 

20 min. arc is relatively large (even in the extreme curvature of 

0.08 rad/min. arc, the physical difference between the two stimuli is 

only 3,18 min. arc).

It is clear that the findings of Andrews et al. (1973) for the effect 

of stimulus length on curvature discrimination in straight lines, are 

not general far all curvatures.

The present study will attempt to measure the effect of stimulus 

length on efficiency for curvature discrimination at a fixed curvature 

of 0.05 rad/min. arc. This stimulus curvature is just beyond the 

high efficiency region, defined by the previous results, and should 

show the effect of stimuLus length clearly.
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It should he noted that two other previous studies have been made 

of the effects of stimulus size on the discrimination of curvature 

for nearly straight lines.

Della Valle, Andrews, and Ross (1956) present data for the effect of 

stimili us size on curvature detection, and conclude 'From the 

available estimates of sensitivity it is clear that the perception of 

curvilinearity ... is superior for greater chord lengths.' So what ? 

Ogilvie and Daicar (1967) extend the argument; after presenting some 

data of their own, they conclude that one geometric measure of acuity 

for curvature is better than another. Their argument is nor clear. 

Neither of these two studies provide any insight into potential 

mechanisms of information processing in the visual system.
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METHODS

The computer controlled Method of Constant Stimuli, as described in 

Chapter 2, was used.

The stimulus array consisted of a fixation spot, a comparison stimulus, 

and a test stimuLus, in the standard configuration.

The comparison stimulus was placed below the fixation spot, so that the 

apex of the arc was 2.5 min. arc beneath the fixation spot. The test 

stimulus was placed 2.5 min. arc above the fixation spot (measured 

to the centre of the imaginary chord).

The comparison stimulus had a curvature of 0.05 rad/min. arc. The 

test stimulus was drawn from a series vaying in curvature, and centred 

at 0.05 rad/min. arc. All stimuli were curved upwards.

The following chord lengths were tested :

7.5, 10, 12.5, 15, 20, 25, 30, 35 min. arc.

The stimulus array was displayed for 2 seconds, after a pre-stimulus 

delay of 3 seconds, during which the fixation spot alone was displayed.

Two subjects were used. Both had normal vision. Both had taken 

part previously in the experiment measuring performance of curvature 

discrimination as a function of stimulus curvature at a fixed line 

length, and so direct comparison of the results is possible.

The subjects were instructed to fixate the spot at all times, and 

after presentation of the stimuLus array, to decide which line, top 

or bottom, was more curved.
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RESULTS

Thresholds for curvature discrimination as a function of stimulus 

chord length are shown in Fig. 4.5. Ideal thresholds are also shown. 

The ideal threshold drops rapidly as stimulus size increases, since 

the curvature information in a line is proportional to its length 

raised to the fourth power.

Thresholds for curvature discrimination drop for both subjects. The 

fall is more steep for subject RJW than for JIK. In each case, the 

fall is not as steep as that for the ideal thresholds. The fall in 

threshold for the subjects is quite steep up to a chord length of 

20 min. arc, then it becomes less steep.

Efficiencies for the same task are shown in Fig. 4.6. Efficiency is 

high for chord lengths of les3 than between 10 and 15 min. arc. For 

subsequent increases in chord length beyond this length, efficiency 

falls. The rate of fall is steeper for JIK than for RJW. The rate 

of fall of efficiency with increasing chord length slows at chord 

lengths of 20 to 25 min. arc and greater.
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Fig. ^.5 Threshold for curvature discrimination, as a function of 
stimulus chord length, at a stimulus curvature of 0.05 rad/min
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Fig. Efficiency for curvature discrimination as a function of
stimulus chord length, at a curvature of 0.05 rad/min. arc
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DISCUSSION

This study completes a preliminary investigation of efficiency for 

curvature discrimination as a function of stimulus curvature and line 

length.

The present experiment shows that there is a strong dependence of 

efficiency for curvature discrimination on stimulus length.

Comparison with the data of Andrews et al. (1973) is particularly 

instructive. They found the length of 30 min. arc to he critical 

for the high efficiency curvature discrimination of straight lines.

The present results show that the length of 15.min. aro is critical for 

lines with a curvature of 0.05 rad/min. arc.

This difference between the two sets of results leads to several 

questions. Is the critical length for high efficiency curvature 

discrimination, a function of stimulus curvature ? Alternatively, 

are curved lines and straight lines handled by two different types 

of process, each with it3 own critical length ?

The latter possibility is interesting, since Andrews et al, (1S73) 

present data which suggests that there is a second type of process 

for orientation discrimination, which has a critical length of 

10 min. arc.

There are no direct conclusions from this experiment, and an exhaustive 

study of the Joint effects of stimulus curvature »rd length on the 
efficiency for curvature discrimination is required.



CONCLUSIONS : PRELIMINARY INVESTIGATIONS OF CURVATURE DISCRIMINATION,

Two preliminary experiments have been completed, measuring the 

effects of stimulus curvature and stimulus length separately on 

efficiency for curvature discrimination. The results of this 

exploration of these effects on the task of curvature discrimination 

suggest that there are some interactions between stimulus curvature 

and stimulus line length.

It now seems necessary to undertake a large scale investigation of 

the two domains of stimulus curvature and stimulus length, in order 

to gain an tinderstanding of the processes underlying these interactions.
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CHAPTER 5. : A  DETAILED INVESTIGATION OP THE JOINT EFFECTS OP STIMULUS

CURVATURE AND LINE LENGTH ON CURVATURE DISCRIMINATION.

The results of Chapter 3 hare shown that curved lines can he processed 

as efficiently as straight lines for two broadly different tasks, by 

the visual system. It was pointed out that this appears to necessitate 

a modification to the concept of collinearity-fallure detection, as 

proposed by Andrews, Butoher and Buckley (1973) to describe a group of 

shape tasks, all of which were performed at a similar high efficiency 

for lines up to 30 min. arc in length.

The experiments described in Chapter 4  sought limits to the range 

of stimulus curvature and size within which a similar high efficiency 

process for ourvature discrimination is available.

Two basic results were obtained. For lines of length 20 min. arc, 

stimulus curvatures up to about 0.04 rad/min. a m  can be processed 

efficiently. Efficiency falls slightly for larger curvatures.

Line length was found to be critical in this experiment.

Por stimuli of ourvature 0.05 rad/min. arc, lengths of up to about 

15 min. arc are processed at high efficiency. Efficiency is much 

lower for longer lines. This critical line length of 15 M n .  arc, is 

very different from the length of 30 min. arc, found by Andrews et al. 

(1973) as a limit to the high efficiency process for straight lines.

There is an interaction between stimulus ourvature and line length 

on the efficiency for curvature discrimination. Very  little else can 

he said, and a more detailed study is required.
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This chapter will present and discuss the results of a major exploratory- 

study in the two dimensions of stimulus ourwature and length.

The results will suggest a modification to the concept of collinearity- 

failure detection. Subsequent chapters will examine the implications 

of 1iie suggested modification.
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EXPERIMENT 5. S THE JOINT EFFECTS OF STIMULUS CURVATURE AND LENGTH 

ON THE DISCRIMINATION OF CURVATURE.

The major finding of the experiments reported in the previous chapter 

is that there is a curvature-dependent effect of line length on efficiency 

for the discrimination of curvature. This observation arises from data 

that merely suggest the presence of such an effect, without providing 

any insight into its nature. The present experiment is designed to 

explore this effect thorou^ily, in an attempt to define its nature 

and bounding parameters.

There are several questions which might be asked about this interaction.

Is there a parametric effect of stimulus ourvature on the maTiminn 

length for high efficiency curvature discrimination ? If so, what 

is the important parameter ?

Alternatively, is it simply -the case that a different process is 

in operation for curved lines, and that prooess has a different length 

toleranoe ?

It is presumed from the data of Andrews, Butcher and Buokley (1973), 

for example, that a different prooess is responsible for slope 

comparison, with a length toleranoe of 10 min. arc. There might be a 

process responsible for ourvature comparison, using ourved lines, with 

a length tolerance of 15 min. arc. If this is found to be correot, 

it might be asked : what is the critical ourvature that determines 

when a line is processed by the straight line prooess, and when by the 

curved line process ?



These questions will only he answered by a full investigation of the 

joint effects of stimulus curvature and length over a wide range of 

stimuli* Once the basio data is obtained, rattier more precise 

questions can be asked and answered*

This experiment will undertake a full and wide-ranging exploration 

of these joint effects of stimuLus curvature and length*

The experimenter faces a problem, when exploring simultaneously two 

new dimensions* Stimuli have to be chosen to efficiently map out 

the characteristics of the response surface under study* ^he 

experimenter oan never know if his choice was sufficient, unless an 

insufficiency is discovered*

The stimuli chosen for this experiment appear to have only one 

in sufficiency, which will be corrected in Chapter 7«
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METHODS

The computer controlled Method of Constant Stimuli, as described 

in Chapter 2, was used.

The stimulus array consisted of a fixation spot, a comparison stimulus

2,5 min. arc beneath the spot, and a test stimulus 2,5 min. arc 

above the spot, in the standard configuration.

The stimuli were varied in two dimensions, curvature and line length.

Line length was chosen as the parameter of stimulus size, since this 

is the most direot measure of information content.

The ourvatures tested were 0.00, 0,04, 0,05, 0,0667 rad/min. aro.

The line lengths tested were 10, 15, 20, 25, 30, 35 min. arc.

All combinations of 1hese parameters were tested.

Two subjects were used. One subject (RJW) was tested in all conditions. 

The other subject (NL) was tested in most conditions. Both subjects 

had normal vision.

Subjects were instructed to fixate the spot at all times, and after 

presentation of the stimulus, to decide which stimulus, top or bottom, 

was curved upwards by the greatest amount.



RESULTS

The thresholds for curvature discrimination as a function of stimulus 

curvature and length are shown in Fig. 5.1 • Ideal thresholds for 

the same task and stimuli are shown in Fig. 5.2.

A number of trends may he discerned in the results.

At short stimulus lengths, the threshold falls with increasing curvature 

of the stimulus. At long stimulus lengths, the opposite trend is 

found. Threshold falls more slowly as a function of increasing 

stimulus length at larger stimulus curvatures, than at smaller stimulus 

curvatures.

The threshold data for the sero curvature conditions are slightly 

different from the equivalent data in the results of Andrews et al. (1973). 

This will he discussed helow.

Efficiencies for curvature discrimination as a function of stimulus 

curvature and length are shown in Fig. 5.3.

The following trends are seen.

At short stimulus lengths, efficiency rises with increasing stimulus 

curvature.

At long lengths, the opposite is found: efficiency falls with increasing 

stimulus curvature.

The rate of fall of efficiency as a function of increasing stimulus 

length, increases as stimulus curvature increases.

Results from the two subjects are in good agreement, except that NL 

performed at a consistently higher efficiency, especially for the 

straight lines.
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It was noted in the introduction to this experiment, that the range 

of stimuli chosen for testing was apparently sufficient in all "but 

one respect. The results show that a region of stimulus curvature and 

length space has been defined and bounded in all but the extreme 

curvature permissible for the shortest stimulus lengths. This is 

unfortunate, but will be amended in the data from experiment 9,

below,
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G D

Fig. 5.1 Threshold for cunrature discrimination as a function of 

stimulus currature and line length.
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Fig. 5.2 Ideal threshold for curvature discrimination, as a function 

of stimulus curvature and line length.
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7. Efficiency 100

Fig. 5.3 Efficiency for curvature discrimination, 

stimulus curvature and line length.
33 a function of
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DISCUSSIOW

There are a number of interesting points to note in the results of 

this experiment*

The results for the straight line stimuli are not as would he expeoted. 

The data of Andrews et al. (1973) show a high efficiency for curvature 

discrimination up to about 30 min. aro length of lines. In this study, 

efficiency is high for lines up to about 20 min. aro, and then falls 

slightly with increasing stimuLus length. There is however, one 

major difference between the two experiments: the present study has 

a stimulus array consisting of a test stimulus and a comparison 

stimulus, whereas the study of Andrews et al. (1973) had no comparison 

stimulus. If the difference between the two sets of results is 

explained by this, then the possibility that there is some strong 

interaction between the two stimuli, test and comparison, cannot be 

ignored. This point will be examined below (p. 159 )•

The results for the curved lines will now be considered. There are 

interactions between stimulus curvature and length on the efficiency 

for curvature discrimination. These interactions can be summarized 

in three main observed effects, which will be described. These 

effects will be discussed with reference to the conoept of a limiting 

line length for high efficiency curvature discrimination. This is 

defined as the greatest line length for a given stimulus curvature 

for which the subject can discriminate curvature at a high level of 

efficiency. Limiting curvature is defined similarly for a given 

stimulus length.
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In the«© terms, a high efficiency region of stimulus curvature and 

length space may be defined* This would contain the set of stimulus 

curvature and length combinations that are known to be suitable for the 

high efficiency curvature discrimination task*

The three observed effects are as follows*

Firstly, it is clear that there is a parametric effect of stimulus 

curvature on the limiting line length for high efficiency discrimination 

of curvature* With increasing curvature, the limiting line length 

decreases: there is a length tolerance cost in processing curved 

stimuli, which increases as stimulus curvature increases*

Secondly, there is a parametric effect of stimulus curvature on the 

rate of fall in efficiency as stimulus length increases beyond the 

limit. The rate of fall in efficiency increases beyond the limit, with 

the ourvature of the stimulus*

Thirdly, there is a rise in efficiency with either stimulus curvature 

or line length within the region of high efficiency curvature 

discrimination. This is opposite to the effect of these parameters 

on stimuli outside the high efficiency region.

Thus, there is a region of the stimulus curvature and length space, 

within which high effiolenoy curvature discrimination can be performed. 

The three observations above concern respectively : the boundary 

conditions of stimulus curvature and length} ihe joint effects of 

stimulus curvature and length beyond the boundary; and the same Joint 

effects within the boundary.
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What is the most economical description of these results ? Is there 

a single stimulus parameter, which can unify the effeots of stimulus 

curvature and length on the efficiency for curvature discrimination ?

Within the boundary of this high efficiency region, efficiency rises 

as either stimulus curvature or line length increases. Beyond it, 

efficiency falls as either stimulus curvature or line length increases. 

The boundary itself is a function of both stimulus ourvature and 

line length.

A suitable parameter would be the product of stimulus curvature and 

line length. Geometrically, this represents the orientation traverse 

of that particular ourvature within the specified line length. It can 

be described as the orientation range of the stimulus, and corresponds 

to the difference between the two extreme orientations of the stimulus. 

A line of ourvature 0.05 rad/min. arc and length 20 min, aro has an 

orientation range of 1 radian, or 57.296 degrees. A straight line 

has an orientation range of sero, whatever its length.

Fig. 5.4 shows efficiencies for curvature discrimination, plotted 

as a function of the orientation range of the stimulus. Whilst not 

perfect, the concept is good is unifying the effects of stimulus 

ourvature and line length on efficiency for curvature discrimination.

The case of straight line stimuli presents a problem, since all such 

stimuli have the same orientation range of sero. Therefore, either 
further constraints, on all stimuli, must be introduced to explain the 
observed performance for straight lines, or such stimuli must be 
exoluded from the scope of the orientation range description on 
independent grounds.
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An example of an additional constraint could involve length limits; 

an example of independent grounds for excluding straight lines from 

the orientation range description could he the different effects of 

practice on performance of curvature discrimination* The discrimination 

of curvature of straight lines is a task that does not require practice 

and subjects rsurely show any gradual improvement in performance. This 

is not the case when curved lines are used: there is an initial 

rapid improvement in performance* T^ere is also a slow, small 

improvement over the course of several months* The two subjects, RJW 

and NL had different amounts of experience of curvature discrimination 

experiments, and this slow learning would account for the apparently 

superior performance for straight lines in NL, but not in BJW,

It is not dear from the data so far, which course of action is to be 

prefered, although subsequent experiments will solve this problem.



1 5 5

X  Elficiency

Fig. 5.** Efficiency for curvature discrimination as a fucntion of 

stimulus oriehtation range. The line drawn through the data points 

has no theoretical significance.
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CONCLUSIONS

There are a number of oonolusions to be drawn from the results of 

this experiment, hut there are rather more questions to he answered, 

before realistic models can he suggested to account for the data*

It can he concluded that there are parametrio effects of stimulus 

curvature on the critical line length for high efficiency curvature 

discrimination, and on the rise and fall in efficiency with increasing 

line length on either side of the critical length. Whilst it is not 

possible to state exactly which parameter of the stimulus would he 

the most suitable to describe these effects, several properties of the 

parameter are dear*

Firstly, it must be a parameter which increases with increasing 

stimulus curvature at a given line length. This rules out the chord 

length or horizontal extent of the stimulus as a candidate.

Seoondly, it must increase with line length, at a given stimulus 

ourvature.

The simplest parameter, fitting these specifications, is the product 

of stimulus curvature and line length, described above as the orientation 

range of the stimulus. This is a oonoept that would require some 

elaboration and clarification, if it were to be taken as having any 

real value in this context.

There are two other parameters that could be considered : the vertical 

extent of the stimulusj and the area of the segment enclosed by the 

curve and its (implied) chord.
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The former might he suggested by the finding of Westheimer and 

McKee (1977b) that information for shape judgements (specifically 

vernier resolution judgements) can be collected from a region that 

extends for about 2.5 min. arc either side of the stimulus.

The latter parameter, the area of the segment, is the preferred 

measure of aouity in a study by Ogilvie and Daioar (1967). Their 

reasons for this preference are obscure, and are based on a coincidence 

of their measurements of the thresholds for curvature discrimination 

and slope comparison, when expressed as differences in this parameter. 

Suoh a direct comparison of these two sets of results takes no account 

of the different nature of the information content of the same stimuli 

with respeot to these different tasks, and is therefore invalid. The 

coincidence is presumably quite fortuitous.

These three candidate parameters each have a corresponding suggested 

limiting value for high efficiency curvature discrimination* The 

values are :

orientation range i*0.0 degrees

vertical extent 1.5 min. arc
2segment area 13*0 min. arc.

There is a simple test which can distinguish empirically between the 

simplest parameter (orientation range) and the other two. This test 

was carried out, and will now be described.

It was noted above, that the points chosen to sample the space of 

stimulus curvature and line length were sufficient in all but one respect. 

The missing point is the limiting curvature for a line length of 10 min. 

arc, within which the efficiency for ourvature discrimination is high. 

This can now be turned to advantage.
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If the line length is kept constant at 10 min. arc, and stimulus 

curvature is increased, efficiency should rise to some peak value 

at a critical curvature, and then fall rapidly. The three mooted 

parameters prediot different values for this critical curvature : 

orientation range 0.06 to 0.071 rad/min. arc

vertical extent 0.085 to 0.10 rad/min. arc

segment area 0.145 to 0.185 rad/min. arc.

The efficiency for curvature discrimination at a curvature of 

0.09 rad/min. arc should distinguish whether the most useful parameter 

is orientation range or one of the other two. This efficiency was 

measured for "both subjects, and the results were as follows :

Sub-1 eot Threshold PSE Efficiency

rjw 1.564E-4 0.086 54.412

NL 1.478E-4 0.098 58.528

(rad/aec.) (rad/min.) (fa)

These results rule out the parameters of vertical extent of the stimulus 

and segment area, since the efficiencies obtained are far too low.

Whilst such a test does not prove that the concept of orientation range 

is the best single parameter to describe the joint effects of stimulus 

ourvature and line length on the efficiency for curvature discrimination, 

any alternative would have to he very similar.

It seems reasonable to hypothesise that there is a speoifio limit 

on the range of orientations that may be efficiently combined to provide 

curvature information. The limit appears to be about 40 degrees of 

line slope.
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The hypothesis makes a speoifio prediction, as noted above, concerning 

the critical curvature for high efficiency performance of a curvature 

discrimination task involving lines of length 10 min. arc. This 

prediction will be tested, and the results presented in Chapter 7 .

Before proceeding to test this prediction, and to make further 

investigations of the implications of the concept of stimuLus 

orientation range as a determinant of efficiency for curvature 

discrimination, there remain two outstanding problems, which will now 

be solved.

The first problem ooncerns the possibility of lateral interaction 

between the two oontours in the stimulus array. It has repeatedly 

been shown that there is some type of lateral interaction between 

closely spaced contours (eg. Flom, Weymouth and Kahneman, 1963; 

Sullivan, Oatley and Sutherland, 1972; Westheimer and Hauske, 1975).

It was suggested above on p.151 that the difference between the present 

data for the discrimination of curvature in sfraight lines, and 

equivalent data in Andrews et al. (1973) might be due to lateral 

interaction between the two lines in the stimulus array of the present 

experiment. The differential effects of such interactions on stimuli 

of different lengths and curvatures in the present experiment must be 

considered, since the positions of the two stimuli were fixed 

relative to each other in a manner dependent on both the stimulus 

curvature and length.

Could the interactions between stimulus curvature and line length on 

efficiency for ourvature discrimination be due, at least in part, to 

lateral interactions of this type 7

This possibility will be tested and discounted below in Experiment 6.



The second problem arises from the concept of a limit in the range of 

orientations that may be used. It is possible that efficiency for 

curvature discrimination oould be determined by a preference for, or a 

limitation to, the use of certain values of orientation, rather than 

a certain range of orientations (irrespective of the values of those 

orientations present within this range).

Strictly, the present data only show that those orientations between 

+20 and -20 degrees of the horizontal may be efficiently combined for 

the purposes of curvature discrimination. Other orientations, up to 

+ 67.5 degrees of the horizontal are not used efficiently. This is 

equivalent to stating that the oblique orientations are of less 

information value to the visual system, than those orientations that 

are dose to the horizontal.

This finding could have a similar basis to the well-known oblique 

effect, which has been shown to exert an effect on vernier judgements 

(Leibowitz,l955), the three dot alignment task (Ludvigh and McKinnon, 

1967), and on curvature discrimination judgements for straight lines 

(Ogilvie and Daioar, 1967).

An experiment which rules out this possibility, by demonstrating that 

the relationship between efficiency for curvature discrimination and 

stimulus orientation range obtains for oblique stimuli, much as it 

does for horizontal stimuli, will be described below (Experiment 7 ).

These two experiments will now be described. The general conclusions 

concerning the effects of stimulus curvature and line length on 

efficiency for ourvature discrimination will then be considered.
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EXPERIMENT 6, : THE EFFECT OF SEPARATION DISTANCE ON THE DISCRIMINATION

OF CURVATURE IN LINES VARYING- IN BOTH CURVATURE AND 

LINE LENGTH.

The distance separating two curved lines can only he specified in an 

arbitrary manner, unless the two curves are parallel. Since test and 

comparison stimuli in the previous experiment were not parallel, the 

separation had to he specified in a manner which varied with both 

stimulus curvature and length. The distance quoted, was measured from 

tha apex of the comparison stimulus to the base of the test stimulus, 

ani therefore rperesents a minimum separation. The actual separation 

between any two corresponding parts of these stimuli is a funotion 

of stimulus curvature and length. This variable distance between 

the two contours could lead to differential neural interactions (the 

separations are too large for effective optical interaction) between 

the test and comparison.

The variable distance between test and comparison is too small to act 
as a cue for the task, since the results require that the separation 

threshold be of the order of 10 seo. arc, a distance that is almost 
certainly subliminal (see the results of Experiment 2). However, it 

has been established that certain shape discrimination tasks are influenced 
by nearby contours. For example, Westheimer and Hauske (1975) have 

shown that the presence of flanking contours interferes with performance 
of a vernier task. This interference is a function of the distance 
between target and flanks, reaching a maximum at a separation of 3 to 
A. min. arc. Vestheimer, Shimamura and McKee (1976) have found a

similar result for interference with line orientation judgement tasks.
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Such interactions could account, at least in part, for the results of 

the previous experiment, and so in order to examine this possibility, 

that previous experiment was repeated, using two larger stimulus 

separations. Fewer points were measured, since the detailed data is not 

required. If the trends of the previous experimental results are 

diminished in the larger separations, then there would be a case for 

suggesting that lateral interactions, related geometrically to the 

curvature of the stimulus, were influencing those previous experimental 

results.

The results from this experiment i*ule out suoh a possibility, and in 

addition, suggest that the processes involved in curvature discrimination 

for straight lines and curved lines might be rattier different.



METHODS

The computer controlled Method of Constant Stimuli, as described in 

Chapter 2, was used.

The stimulus array consisted of a fixation spot, with a comparison 

stimulus beneath, and a test stimulus above, arranged in the standard 

configuration.

Two general conditions were used: the test and comparison stimuli 

could be 10 min. arc or 15 min. arc apart (distances measured from 

the apex of the comparison stimulus to the base of the test stimulus 

- see Pig. 5.5)* The fixation spot was placed mid-way between the 

test and comparison stimulus.

The stimulus curvatures tested were : 0.00, 0.05, O.O667 rad/min. arc.

The line lengths tested were 10, 20, 50 min. arc.

All combinations were tested.

The stimulus array was displayed for 2 seconds, after a 3 seconds delay, 

during which, the fixation spot alone was displayed.

One subject was used for this experiment (HJW). The subject was 

instructed to fixate the spot at all times, and after the stimulus 

presentation, to decide which stimulus, top or bottom, was curved 

upwards by the greater amount.
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test

Separation
Oistance

comparison

Pig. 5*5 The measure of stimulus separation employed in describing 

Experiment 6.
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RESULTS

Re sill ts from the two different separations will he considered separately 

first, then a comparison between the two sets of results will be 

made*

Thresholds for curvature discrimination at a separation distance of 

10 min* arc are shown if Fig* 5*6• The equivalent efficiencies are 

shown in Pig* 5*7«

In all cases, threshold falls with increasing line length at a given 

stimulus curvature*

Thresholds for the straight lines are smaller than the thresholds 

for curved lines of the same length*

Thresholds for the curved lines follow the same trends as the data of 

the previous experiment*

Efficiencies for straight lines are correspondingly high. Efficiencies 

for the curved lines follow the established trend of the previous 

experiment*

Thresholds for curvature discrimination at a separation distance of 

15 min. arc are shown in Pig. 5.8. The corresponding efficiencies are 

shown in Pig* 5*9*

The data show the same effects as those obtained for the separation 

distance of 10 min. arc, with one difference. The superiority for 

discrimination in straight lines is reduced.



lOmin. Separation

Fig. 5.6 Threshold for curvature discrimination, as a function of 

stimulus curvature and line length, at a separation of 10 min. arc 

between test and comparison stimuli.



167

lOmin. Separation

Fig» 5.7 Efficiency for curvature discrimination, as a function of 

stimulus curvature and line length, at a stimulus separation of 10 min, arc.
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[ rjwJ

15 min. Separation

Fig. 5»8 Threshold for curvature discrimination, as a function of 

stimulus curvature and line length, at a separation of 15 min. arc 

between test and comparison stimuli.
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Trjw[

Fig. 5.9 Efficiency for curvature discrimination, as a function of 

stimulus curvature and line lengthy at a stimulus separation of 

15 min. arc.
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Comparing these two sets or results with each other, and with the 

corresponding data from the previous experiment, shows the following 

points«

Firstly, efficiencies for straight lines are a non-monotonio function 

of separation distance (see Fig. 5*10)« The intermediate distance of 

10 min. arc produces the most efficient performance.

Secondly, the efficiencies for curvature discrimination in curved lines 

show two basic effeots (see Fig. 5.11). ResuLts for lines with an 

orientation range less than the hypothesised limit of 40 degrees, 

show a marked increase in efficiency with increased separation between 

the two oontour. It seems that the effects of orientation range are 

exaggerated at the larger separations. Results for stimuli with 

an orientation range greater than the hypothesised limit, show no change 

in efficiency with increasing separation.
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% Efficiency

Lin* Length (min.)

Fig. 5.10 Efficiency for curvature discrimination of straight line 

stimuli, as a function of stimulus line length and 

separation.



1 7 2

• RJW i* t

Fig. 5.11 Efficiency for curvature discrimination of curved lines,

as a function of stimulus orientation range and separation.
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DISCUSSION

This experiment was designed to examine the possibility that some 

distance related interaction between the test and comparison stimuli 

could aocount, at least in part, for the trends in efficiency obtained 

in the previous experiment* Since such interactions would be expected 

to diminish in their effect on efficiency for curvature discrimination, 

if they existed, as stimulus separation increased beyond about 5 min. 

arc, the trends in efficiency, under examination, should also diminish 

at the larger separations. The results clearly show that the possibility 

can be discounted: the opposite effeot on the trends in efficiency 

was obtained at the larger separations*

The results show two basic effects of stimulus separation on efficiency 

for curvature discrimination. One concerns the straight lines, -the 

other conoerns curved lines*

Firstly, there is a non-monotonio effect on the efficiencies for straight 

lines. This suggests that there might be flanking co-operative bands 

in space, 10 min. arc either side of the target stimulus. More likely 

is the possibility that this non-monotonic effect represents the actions 

of two opposing trends. If efficiency for the discrimination of 

curvature decreases as the stimuli to be compared are increasingly 

apart, and there is some depression of performance by very close contours 

(less than 10 min. aro), then the non-monotonic effeot would be expected. 

This latter possibility agrees quite well with the data of Westheimer 

and Hauske (1975) for the task of vernier resolution.

It should be noted that the data also suggest that the length toleranoe 

of the process is also changed. It would appear that the length 

limit for high efficiency curvature discrimination lies between 20 and
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30 min. arc for the larger separations. This figure agrees rather more 

closely with the data of Andrews, Butcher and Buckley (1973), who did 

not use a comparison stimulus (ie, separation is infinite).

Andrews (personal communication) has suggested that a similar process 

might lead to the low length tolerance of the slope comparison 

prooess, which requires a reference stimulus. This idea will be 

discussed fully in Chapter 8.

Secondly, as separation increases, the basic trends relating efficiency 

for curvature discrimination and stimulus orientation range are exaggerated 

in size. Those lines within the hypothesized limit of orientation 

range are discriminated more efficiently when separation is increased 

(at least from 5 to 15 min. arc). Por those lines beyond the limit 

of orientation range, efficiency is unchanged by stimulus separation.

The relationship between efficiency for curvature discrimination and 

orientation range of the stimulus, within the limit, is also 

exaggerated by increasing separation.

These results show that the trends obtained in the previous experiment 

are not due, even in part, to the slight variations in separation 

between test and comparison atimtiLua, arising from the curvatures 

and line lengths used.

The results also show that there is a difference between the processes 

involved in discriminating curvature in straigit lines and in curved1 

lines. The effeots of increasing separation in the two cases are 

apparently quite different. It is probable that, if further and larger 

separations were tested, a non-monotonic function would eventually be 

obtained for the curved lines, but even so, the two sets of results 
wou^d be quantitatively distinct.
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EXPERIMENT 7. : THE JOINT EFFECTS OF STIMULUS CURVATURE AND LENGTH ON

EFFICIENCY FOR CURVATURE DISCRIMINATION IN OBLIQUE LINES.

Whilst the concept of orientation range limit seems useful in explaining 

many aspects of the relationship between efficiency for curvature 

discrimination and stimulus curvature and length, it may be too 

general. In particular, the data supporting this concept was obtained 

by tte exclusive use of horizontal stimuli, curved upwards. Therefore 

the most parsimonious conclusion that should be drawn is that the 

orientations useful for curvature discrimination are limited to the 

range + 20 degrees from the horizontal. Such a finding might be 

expected on the basis of the classical oblique effect (eg. Appelle,1972).

Thus there are two candidate conclusions, which make different 

predictions concerning the relationship between orientation range of the 

stimulus, and efficiency for curvature discrimination in oblique 

stimuli.

If there is a limit on the overall range of orientations which may be 

efficiently combined for curvature discrimination, irrespective of the 

values comprising such a range, then a similar pattern of rising 

and subsequently falling efficiency as the stimulus orientation range 

increases, should also be obtained for oblique stimuli. The aotual 

levels of efficiency may well be lower, but the overall pattern of the 

relationship should be little changed.

If,however, there is a limit on those values of orientation which may 

be used efficiently for ourvature discrimination, a very different
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pattern of efficiencies should he obtained for oblique stimuli.

Pig. 5.12 shows efficiency for curvature discrimination in oblique 

stimuli, as a function of stimuLus orientation range, for a hypothetical 

situation where only those orientations within £  25 degree» of 

horizontal or vertical are available for the task. If performance by 

subjects is limited by the oblique effect, a similar effect should be 

obtained.

The efficiency for curvature discrimination as a function of stimulus 

orientation range will now be measured, in an attempt to decide which 

potential conolusion is the more correct.

Does efficiency for curvature discrimination fall or rise with 

increasing stimulus orientation range in oblique stimuli.
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% Efficiency

Fig. 5.12 Hypothetical relationship between efficiency for curvature 

discrimination and stimulus orientation range, for a situation where 

only those orientations between -25 degrees and +25 degrees of the 

horizontal and vertical may be used for the task. These orientations 

are used without information loss.
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METHODS

The computer controlled Method of Constant Stimuli, as described in 

Chapter 2, was used.

The stimulus array consisted of a fixation spot, a comparison stimulus

2.5 min. arc obliquely below and right of the spot, and a test stimulus
»

2.5 min. arc obliquely above and left of the spot. The array was 

identical to the standard configuration, but rotated through 45 degrees 

anti-clockwise (see Pig. 5.13)*

Three curvatures were tested : 0.04, 0.05, O.O667 rad/min. arc*

Pour line lengths were tested : 10, 15» 20, 30 min. arc.

All combinations were tested.

The stimulus array was displayed for 2 seconds, after a 3 seconds del«y, 

during which the fixation spot alone was displayed.

One subject was used for this experiment (BJW). The subject was 

instructed to fixate the spot at all times, and after stimulus 

presentation, to deoide which stimulus was the more curved.
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test

Fig. 5.13 Stimulus configuration for Experiment 7. The test 

stimulus varied in curvature.
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RESULTS

Efficiencies for curvature discrimination in oblique stimuli, as 

a function of stimulus orientation range, are shown in Fig. 5.14.

There is a very steep fall in efficiency between orientation ranges 

of 20 degrees and i*0 degrees. For increasing orientation range, the 

subsequent fall is much slower.

Peak efficiency is very highj higher, actually than the peak efficiency 

obtained for horizontal stimuli. The difference may not be reliable, 

since several months separated the two experiments. However, the 

difference in the effioienoies for the stimulus with a curvature of 

0.04 rad/min. aro and line length of 10 min. arc, when oriented 

obliquely or horizontally, is much larger, and is probably much more 

reliable. The two respective efficiencies are 88.12^ for the oblique 

stimulus, and 60.18^ for the horizontal stimulus.

The lowest level of efficiency is very close to that obtained for 

horizontal stimuli.
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Fig. 5.1^ Efficiency for curvature discrimination in oblique stimuli, 

as a function of stimulus orientation range, at a variety 

of line lengths and stimulus curvatures.
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DISCUSSION

The results of this experiment are clear. ^he conclusion to "be drawn 

is that there is a speoifio limit on the range of orientations which 

may be used for high efficiency curvature discrimination. This 

limit cannot be explained by reference to the classical oblique effect.

However, it is interesting to note that the orientation range limit 

is reduced in oblique stimuli. In the introduction to liiis experiment 

it was suggested that a generally lower level of efficiency might be 

expeoted, as a result of the oblique effect, if it did not have the 

overall effect on the form of the relationship between efficiency and 

orientation range. This is also seen not to be the cage. '̂he 

peak efficiency for subject RJW in the main experiment (Experiment 5) 

is slightly lower than the peak efficiency in this present experiment. 

The implications of this observation will be considered at length in 

Chapter 8, when the present data will be oompared with other data, 

which shows another stimulus modification that has an effect of reducing 

the orientation range limit.
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CONCLUSIONS : A DETAILED INVESTIGATION OP THE EFFECTS OP STIMULUS 

CURVATURE AND LENGTH ON CURVATURE DISCRIMINATION.

This detailed study of the joint effects of stimulus curvature and 

length on the efficiency for curvature discrimination leads to one 

major conclusion, and a number of points for further consideration.

It is concluded that there is a region of stimulus curvature and length 

space, within idiich all stimuli are processed for curvature discrimination 

at a high efficiency, and outside which all stimuli are processed at 

a much lower efficiency.

The most useful parameter to describe the boundary of this region, 

the associated effects, has been shown to be that of stimulus 

orientation range: the product of stimulus curvature and length.

Pig. 5.15 shows some sample orientation ranges.

It has been shown that this parameter is not confounded with specific 

near horizontal orientation values, which are already widely known to be 

of particular salience for the visual system.

An orientation range of 40 degrees bounds the high efficiency region 

for all horizontal, curved stimuli. It seems likely that a smaller 

value, between 25 and 30 degrees would be the bbundazy for oblique 

stimuli, although this point cannot be considered fully proven.

Within this high efficiency regie», efficiency rises with increasing 

orientation range. Beyond the boundaiy, efficiency falls steeply 

with increasing orientation range,
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Orientation 
Range (deg.)

20
30

Pig. 5.15 Sample orientation ranges. The lines all hare the same 

curvature. Note that orientation range is a distance-invariant quantity.
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Separation of the stimuli does not influence the limit of orientation 

range for high efficiency curvature discrimination, hut it does have 

an effect on the value of the peak efficiency* Efficiency, within 

the orientation range limit, is increased with increasing separation of 

test and comparison stimuli*

The value of peak efficiency is higher also for oblique stimuli, than 

for horizontal stimuli*

The concept of orientation range and orientation range limits has one 

drawback, in that certain stimuli cannot easily he accomodated into 

its framework* All straight lines have the same orientation range 

of zero, hut are not all processed at the same efficiency for curvature 

discrimination* It is important to consider whether it is possible 

to find acceptable grounds for excluding straight lines from the scope 

of the hypothesis of limiting orientation range. This is 

equivalent to enquiring whether there are any properties of the 

response of the visual system to straight lines, that are different 

from its response to curved lines*

One such property is the requirement of a comparison stimulus, for the 

discrimination of the curvature of curved lines* Straight lines are 

a powerful anchor point on the dimension of contour curvature.

Another is the different amount of practice required by subjeots to 

reach a performance plateau when discriminating curved and straight 

lines, reported in Chapter 3 (p» 101).

Another such property could be the time oonstant for the discrimination
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process, which was shown in Experiment 1 to "be rather different for 

straight and curved lines.

Another such property is the effect of stimulus separation on the 

discrimination of curvature, which was shown in Experiment 6 to "be very 

different in the tso cases.

It is possible that the effects of making a break in the stimulus, 

may also serve to distinguish between curved and straight lines.

Andrews, Butoher and Buckley (1973) present data showing the effect on 

the efficiency for curvature discrimination in straight lines, of 

adding two gaps to the stimulus.

In that study, the critical length for high efficiency curvature 

discrimination was 30 min. arc. The length of 30 min. a m  was also 

oritioal for the effect of the gaps. In lines less than 30 min. aro 

in length, the gaps led to a rise in efficiency; for lines longer than 

30 min. aro, the gaps led to a decrease in efficiency. The apparent 

relationship between these two findings, both critically dependent on the 

length of the stimulus, and both having a critical length of 30 min. aro, 

suggests that, if there is a difference in the way in which curved and 

straight lines are processed by the visual system, then breaking the 

stimulus might show it.

The effects of breaking the stimulus will be considered in the next 

two chapters.

The use of broken stimuli should also throw some light on the 

implications of the relationship between stimulus orientation range 

and measured efficiency for curvature discrimination.



187

CHAPTER 6. DISCRIMINATION OP THE CURVATURE OF BROKEN STIMULI.

Most of the data presented in the preceding chapters may he described 

economically by relating efficiency for curvature discrimination 

to the concept of stimulus orientation rar^e, where the orientation 

range of a given stimulus is defined as the product of its curvature 

and length. The concept has been extended to define an orientation 

range limit, which may be used to partition the space of stimulus 

curvature and length into two hypothetical sub-spaces or regions: a 

region of high efficiency curvature discrimination; and a region of 

low efficiency curvature discrimination. The limit on orientation 

range for horizontal stimuli is found to be about 40 degrees, and that 

for oblique stimuli, somewhat less.

The effects of increasing stimulus orientation range within these two 

hypothetical regions are different. Efficiency increases with 

increasing orientation range, for stimuli within the high efficiency 

region; efficiency decreases with increasing orientation range for 

stimuli within the low efficiency region of stimuLus curvature and 

length space.

Orientation range is a mathematical parameter of the stimulus, which 

has been found to be powerful in describing certain measurements of 

efficiency for curvature discrimination. It can be interpreted in 

a number of ways, each of whloh suggests a different set of constraints 

on the type* mechanism which could underlie the process of 

curvature discrimination.
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For example, orientation range may be interpreted as being the difference 

between the two extreme orientations of the stimulus, or it may be 

interpreted as a function of the total amount of continuous orientation 

change.

The former suggests that the intermediate orientations are unimportant, 

whereas the latter places great stress on the value of these orientations.

This ambiguity of interpretation arises from the sinplistio nature of 

the definition of orientation range. The different interpretations 

can be distinguished by the addition of further clauses to the 

mathematical definition of the ooncept, and empirical evidence is 

required to suggest which additions to make.

The ooncept of orientation range, defined as the product of stimuLus 

curvature and length, is unambiguous mathematically, when applied 

to unbroken stimuli: the two terms, curvature and line length can 

each only be taken as refering to one quantity.

There are at least two ways in which the concept can be defined for 

application to broken stimuli, and it is therefore vague. The length 

term could be defined as the total expanse of the stimulus, including 

gaps, or it could be defined as the quantity of contour physically 

present (excluding gaps). There is an effective length for broken 

stimuli that can be used to derive the stimulus orientation range, and 

thereby predict or describe the efficiency for curvature discrimination 

for a given stimulus curvature.

Take a line of length 20 min. arc; make a 5 min. arc long gap: is the 

resultant effective length 15 or 20 min. arc ? (Or something 

completely different ?) To which length does efficiency for curvature 

discrimination more olosely result ?
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The following experiment will attempt to measure the effect of 

breaks in the stimulus, on curvature discrimination,

Andrews, Butcher and Buckley (1973) have studied the effect of two 

breaks in the stimulus on curvature discrimination in straigit lines.

For broken lines up to 30 min. arc in length, efficiency for curvature 

discrimination was higier than for unbroken lines; for longer lines, 

efficiency was lower. Since the region of high efficiency ourvature 

discrimination in their data is also bounded by a line length of 

30 min. arc, there seems to be an intimate relationship between the effect 

of the gaps and the efficiency of the process.

This suggests that the present experiment, whioh includes both 

straight and curved lines, may also provide further evidence to 

support the hypothetical distinction between the response of the visual 

system to these two types of stimuli.
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EXPERIMENT 8. : THE EFFECTS OF BREAKS IN THE STIMULUS ON DISCRIMINATION

OF CURVATURE IN LINES VARYING IN BOTH STIMULUS ■;

CURVATURE AND LINE LENGTH.

A previous study has suggested that the joint effects of stimulus 

curvature and length on the efficiency of curvature discrimination 

may be economically described by reference to the concept of orientation 

range. The present study is concerned with a close examination of 

the character'of this concept, and will seek the most appropriate 

interpretation of it.

This will be achieved by measuring performance of curvature discrimination 

using stimuli with breaks of specific sizes and at specific points 

in the stimulus. Gaps in the stimolus do not alter the difference 

between the two extreme orientations, but do change the distribution of 

orientations within the stimulus. The results should show something 

of the relative importance of the different parts of the stimulus to 

the visual system.

The present experiment will consider two conditions.

The first condition has two breaks in the stimulus, one either side 

of the centre, effectively leaving three lines of equal size, eaoh one 

fifth of the overall length of the stimulus, separated by two equal 

gaps, also one fifth of the overall stimulus length.

The second condition has one central gap, one third of the overall 

stimulus length.

In both conditions the gaps are a fixed proportion of the stimulus, ani 

therefore the information content of the stimulus series, with respect 

to the task of curvature discrimination, is reduced by a fixed 

proportion of two fifths and one third respectively for the first an^ 

second condition.
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This makes comparisons between the two conditions, and between the 

data for unbroken stimuli of Chapter 5* and the present data for 

broken stimuli, particularly easy.
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METHODS

The computer controlled Method of Constant Stimuli, as described in 

Chapter 2, was used.

The stimulus array consisted of a fixation spot, an unbroken comparison 

stimulus 2.5 min. arc beneath the spot, and a broken test stimulus

2.5 min. arc above the spot. This is the standard configuration.

The curvatures tested were : 0.00, 0.05, 0.0667 rad/min. arc.

The lengths tested were : 10 , 20, 30 min. arc.

All combinations were tested.

Two general conditions were used : a set of stimuli with two gaps, 

and a set with one gap, were tested at a selection of stimulus curvatures 

and line lengths specified above.

In the two gap condition, the gaps separated three segments of equal 

length, one fifth of the total stimulus length, as were the gaps.

(See Fig. 6.1).

In the one gap condition, the gap separated two segments, each one third 

of the total stimulus length, the gap also being one third of the 

total stimulus length. (See Fig. 6.2).

The stimulus array was displayed for 2 seconds, after a delay of 3 seconds 

during which the spot alone was displayed.

Two subjects were used; both had normal vision. One subject was 

tested in both gap conditions (RJW), the other was tested in only 

the single gap condition (NL). The subjects were instructed to fixate 

the spot at all times, and after presentation of the stimulus, to deoide 

which stimulus was curved upwards more, top or bottom.
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Fig. 6.1 Stimulus configuration for the 

two gap condition of Experiment 8.

comparison

vo

Fig. 6.2 Stimulus configuration for the 

one gap condition of Experiment 8.



RESULTS

The results from the two conditions will be considered separately first, 

and then the two sets of results will be compared. In eaoh case a 

comparison with the corresponding data for unbroken stimuli, from 

Experiment 5 will be made. The two experiments were performed in 

immediate succession for BJW, and so the comparison is valid (although 

weaker than if the data from Experiment 5 had been repeated during the 

same preiod of time). The two experiments were interleaved for 

subject NL, and so the comparison is valid and strong.

Thresholds for curvature discrimination are shown in Pig. 6.3 for 

the case of lines with two gaps. There are several points to note.

The thresholds for curvature discrimination in straight broken lines 

are all lower than the equivalent thresholds for unbroken lines 

(see Experiment 3).

Thresholds for curvature discrimination for all ouxved lines are 

higher than the equivalent results for unbroken lines.

Efficiencies for curvature discrimination of lines with two gaps are 

shown in Pig. 6.4.

Efficiencies for the straight lines are improved when two gaps are 

added.

Efficiencies for short curved lines are reduced by adding two gaps, 

but those for longer lines are slightly improved. The advantage of 

short lines over long lines is reduced. In general however, the data 

for the curved lines follow the established trends.
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2 C a p s

Fig. 6.3 Threshold for curvature discrimination of lines broken in 

two places, as a function of stimulus curvature and line length.
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r r jw f

Fig. 6.J*. Efficiency for curvature discrimination of lines "broken 

in two places, as a function of stimulus curvature and line length.
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Thresholds for curvature discrimination for lines broken by one 

central gap are shown in Fig, 6,5« There are several points to note.

As for two gaps, one gap reduces the threshold (this is especially 

true for subject NL), for straight lines only.

For curved lines, the results are not so simple. Thresholds are 

generally higher for curved lines broken by a single central gap than 

for unbroken lines-(in all cases for subject NL, and in all cases except 

(0.05,20) and (0.05,30) for RJ¥).

Efficiencies for curvature discrimination in lines with a single central 

gap are shown in Fig, 6.6,
There is a marked increase in efficiency for the strai^it lines, 

compared with the efficiencies for unbroken lines (especially for 

subject NL),

The longest curved lines show a slight increase in efficiency, also, 

but the short lines show a marked drop in efficiency.

Unlike the two gap condition, the overall form of the trends in 

efficiency appear to be radically altered by the addition of a single 

central gap. For the shortest lines, efficiency falls with increasing 

curvature, Instead of rising.

Data from the two subjects is in good agreement, although subject NL 

shows much higher levels of efficiency in the straight line cases, as 

before (in Experiment 5)« This is onoe again, presumably due to the 

relative experience of the two subjects.

Comparing the two sets of data for two gaps and one gap, some interesting 
points emerge.

In the case of the straight lines, two gaps results in less of an 

improvement in efficiency for curvature discrimination than does one gap.
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Both the two gaps condition and the single gap condition seem to increase 

the range of lengths for high efficiency curvature discrimination of 

straight lines«

There is a marked difference between the effect of two gaps and one 

gap on efficiency for curvature discrimination on the stimulus with 

a curvature of O.O667 rad/min. aro, and length 10 min« arc.
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Fig. 6.5 Threshold for curvature discrimination of lines broken by a
single gap, as a function of stimulus curvature and line length.
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Fig. 6.6 Efficiency for curvature discrimination of lines broken by
a single gap, as a function of stimulus curvature and line length.
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discussion

This experiment set out to examine the concept of orientation range 

and the relationship between it and the efficiency for curvature 

discrimination. A number of findings emerge.

The data for the effect of adding two gaps to the stimulus show two 

main points.

Firstly, there is seen to be a difference between the effect of adding 

two gaps to a straight line and adding two gaps to a curved line. 

Straight lines are processed much more efficiently with two gaps 

present, whereas curved lines are not. Further the present results for 

the effect of line length on efficiency for curvature discrimination, 

are much more consistent with the data of Andrews et al. (1973)* The 

maximum length for high efficiency curvature discrimination, in the 

data from unbroken lines from Experiment 5, is between 15 and 20 min. 

arc. The same maximum length in this present experiment, for lines 

with two gaps, is between 20 and 30 min. arc, a figure much closer to 

the figure of 30 min. arc obtained by Andrews et al. (1973) for broken 

and unbroken lines. There are a number of differences in the stimuli 

employed that could acoount for this difference. The present stimuli 

have larger dashes, which could account for the higher levels of 

efficiency, than those of the broken stimuli in the studies of Andrews 

et al. (1973)* There is also a comparison stimulus present, whioh 

may or may not have an effect on performance. That the form of the 

relationship between efficiency and line length is altered suggests 

that this may be the case; the problem will be discussed at length in 

Chapter 8 (p.234- )• See Fig. 6.7.
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Efficiency for curvature discrimination of straight lines,

as a function of line length and gap condition.
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Seoondly, there is a difference between the effeot of adding two gaps 

to those curved lines which are normally processed at a high efficiency, 

and the effect of adding two gaps to those curved lines which are not. 

Curved lines which sure processed at a high efficiency for curvature 

discrimination, are processed at a lower efficiency when two gaps are 

added; in contrast, those curved lines that are usually processed at a 

low efficiency, are processed at much the same efficiency when two 

gaps are present.

The orientation range limit appears unchanged.

The data for the effects of adding a single gap to the stimulus are 

interesting. There are two main points.

Firstly, adding one central gap to a straight line improves performance 

of curvature discrimination: the improvement is much greater than 

that caused by the presence of two gaps. This may be due to either 

the relative quantities of line missing, or to the relative position 

of the missing information.

Seoondly, unlike the effect of adding two gaps to a curved line, adding 

one oentral gap appears to filter the trends in efficiency for 

curvature discrimination.

In particular, there is a strong interference with curvature discrimination 

when a gap is added to the short, highly curved lines. The trends in 

efficiency are disturbed by the addition of a single gap, primarily at 

this one point, at a stimulus curvature of 0.0667 rad/min. arc and 

a length of 10 min. arc.



How far the concept of orientation range, and limit of orientation 

range require modification is not dear. Fig. 6.8 shows the efficiencies 

for curvature discrimination of curved lines, as a function of 

stimulus orientation range, for the three cases: no gap, one central 

gap, and two gaps either side of the centre. It seems possible that 

the single gap has reduced the orientation range limit (orientation 

range is calculated using the overall dimensions of the stimulus in
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Fig. 6.8 Efficiency for curvature discrimination of curved lines, as 

a function of stimulus orientation range an$ gap condition.
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CONCLUSIONS : DISCRIMINATION OF CURVATURE WITH BROKEN STIMULI.

A number of conclusions may be drawn from the results of this experiment.

Firstly, it is clear that straight lines and curved lines are processed 

differently by the visual system. The effect of adding one central 

gap and the effect of adding two gaps, one either side of the centre, 

are quite different in straight lines and in curved lines. In all 

straight lines, threshold is smaller for broken lines than for unbroken 

lines. The only decrease in threshold for the curved lines obtained 

are small, and in general, threshold rises when a gap is added to the 

stimulus. Taking this in conjunction with the data of the previous 

chapter, which showed a similar distinction between the effects of 

separation distance on straight lines and on curved lines, it seems 

reasonable to suppose that curved lines and straight lines are to be 

considered as separate and different stimuli, rather than points on the 

same dimension, so far as the visual system is concerned, at least for 

the purpose of curvature discrimination.

Secondly, the addition of two gaps to curved lines does not seem to 

change the manner in which the stimulus is processed. The relationship 

between stimulus orientation range and efficiency for curvature 

discrimination is diminished in magnitude, but the overall trends seem 

unchanged. The limiting orientation range is still about 40 degrees; 

within this limit, efficiency still rises with increasing orientation 

range; and beyond this limit, efficiency still falls with increasing 

orientation range.
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Lastly, the effect of adding a single gap to a curved line is found to 

have an unexpected effect. The hasio trend of the effects of stimulus 

curvature and length on the efficiency for curvature discrimination 

seems to 1)6 changed. In particular, the most curved and shortest 

line, which normally leads to the highest efficiency obtained, is 

processed at a much lower efficiency when it is broken by a single 

central gap.

Whilst the explanation for this is not clear, it seems possible that 

the orientation range limit is reduced by the presence of a single gap 

(but not by two gaps).

It is obvious that a simple description of the stimulus in terms of 

its orientation range, where orientation range is interpreted as the 

difference between the two extreme orientations, is inadequate to 

determine the efficiency with which the curvature of both unbroken 

and broken stimuli may be discriminated.

The interaction between the effect of the single central gap, and the 

effects of stimulus curvature and length, on the efficiency for curvature 

discrimination shows that some account must be made of the orientations 

within the two extremes. In particular, the failure of two gaps, one 

either side of the centre of the stimulus, to elicit the same strong 

effect may be taken as evidence that the central orientations or 

positions on the line, are of considerable importance in the processing 

of curvature.

How this mi^it be best described is unclear, and further exploration 

of the effects of a single gap is required. The next experiment 

will measure the effects of gap size and stimulus curvature on 

curvature discrimination in short lines, in an attenpt to determine

the region of stimulus curvature and length space within which the central 

gap has its singular effect On efficiency.
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CHAPTER 7, CURVATURE DISCRIMINATION IN SHORT UNBROKEN AND BROKEN LINES.

The results of the previous experiment show that there must "be some 

strong interactions between the different parts of a curved line, 

within the limiting orientation range of AX) degrees. These interactions 

are manifest when short stimuli (10 min. arc long) of high curvature 

(O.O667 rad/min. arc) are broken by a centrally placed gap of 

substantial size (3*33 min. arc). It is interesting that the stimuLus 

which, when unbroken, is processed at the highest efficiency, should, 

when broken be processed at a much lower efficiency. It was 

suggested in the previous chapter that this m^r be due to a reduction in 

in the limiting orientation range. Closer examination is required 

to establish whether this is ths case, and will be provided by the 

following experiment.

The results of this examination are quite clear, and the effect of 

a single central gap on performance of curvature discrimination can 

be accurately and economically described. The detailed implication of 

the results will be discussed in conjunction with all the previous 

results in the final chapter. For the present, only the immediate 

conclusions will be mentioned.

The present study also offers the opportunity to test a prediction of 

the hypothesis of limited orientation range. In Chapter 5 (p.158 )

it was noted that for lines of length 10 min. arc, the limiting curvature 

for high efficiency curvature discrimination should be between about 

0.06 and 0.07 rad/min. arc. This prediction is upheld, and the 

hypothesis is therefore considered to be sufficient and useful.
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EXPERIMENT 9. J THE JOINT EFFECTS OF STIMULUS CURVATURE AND GAP SIZE 

ON DISCRIMINATION OF THE CURVATURE OF SHORT UNBROKEN 

AND BROKEN LINES.

The results of the previous experiment show that there is a strong 

interaction between curvature and the presence of a 3.33 min* arc gap 

on the efficiency for curvature discrimination on lines of length 

10 min* arc. With the gap present, efficiency falls with increasing 

stimulus ourvature; with the gap absent, efficiency rises with 

increasing stimulus curvature* It is clear from this result that 

the concept oforientation range, defined as the product of stimulus 

curvature and length, may not be interpreted as the difference 

between the two extreme orientations of the stimulus : meddling 

with the distribution of orientations within this range has a strong 

effect, at least in this case. The data of the previous experiment 

are not detailed enough to support any particular hypothesis or 

description of the process involved, but do suggest that the 

interactions are worthy of further study.

Such a study can be combined with a test of the speoific prediction 

made by the hypothesis of orientation range limits, noted in Chapter 5 

(p. 158). If the limit or boundary for high efficiency curvature 

discrimination is set by an orientation range limit of AO degrees, 

then were efficiency for curvature discrimination maasured for a series 

of stimuli of fixed length of 10 min. arc, and with a linear variation 

in curvature, efficiency should rise to a peak at a curvature between 

0.06 and 0.07 rad/min. arc, and should then fall.
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Since such a series of stimuli hare an almost constant information 

content with respect to the task of curvature discrimination, the test 

is suitable for examining the usefulnes of the concept of orientation 

range.

These two aims are served by one large study, where the independent 

variables are stimuLus curvature, and gap size.

The results fulfil both these aims, and as a bonus, reveal further 

unexpected effects that are very interesting.

As a result of the data obtained, the effect of a single central gap 

in short curved lines, on the efficiency for curvature discrimination 

is now clear, and the hypothesis concerning orientation range limit 

is found to be useful and sufficient.

A detailed analysis of the results will be deferred until the next 

chapter.
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METHODS

The computer controlled Method of Constant Stimuli, as described in 

Chapter 2, was used.

The stimulus array consisted of a fixation spot, a comparison stimulus,

2.5 min. arc beneath the spot, and a test stimulus 2.5 min. aro above 

the spot, in the standard configuration. All stimuli were 10 min. arc 

in length, and curved upwards.

The stimuli were varied in two domains, stimulus curvature and the 

size of the single central gap.

The values of curvature tested were : 0.00, 0.02, 0.04» 0.06, 0.08,

0.09, 0.10, 0.11, 0.12, 0.13, 0.14 rad/min. aro.

The values of gap size tested were : 0.00, 1.67, 3.33, 5»00 min. arc.

The test stimulus was drawn from a aeries varying in curvature,centred 

at the curvature of the comparison, and increasing in steps of 

0.004 rad/min. arc.

The stimulus array was displayed for 2 seconds, after a pre-stimulus 

delay of 3 seconds, during whioh the fixation spot alone was displayed.

The brightness of the stimulus array was very carefully controlled, and 

set to a predetermined level before each run. The actual level is not 

important, but variations in the level from stimulus condition to condition 

might well be.

Two subjects were used; both had normal vision. One subject (RJW) was 

exhaustively tested in all combinations of stimulus curvature nnfl gap 

size; the other subject (NL) was tested in rather fewer conditions.

The data for subject BJW represents a total of 31240 responses: it 

proved impractical to record this number of responses from the other

subject.
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The subjects were instructed to fixate the spot at all times, and after 

stimulus presentation, to decide which stimulus, top or bottom, was
r 9

curved upwards by the greater amount»
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RESULTS

Thresholds for curvature discrimination as a function of stimulus 

curvature and gap size are shown in Fig. 7*1 •

It seems reasonable to consider the data as belonging to three sets of 

no gap, moderate gap, and gap too large, rather than the four sets 

reoorded: the coincidence of the thresholds for the two gap sizes of 

1.67 min. arc and 3«33 min» arc is high. The only exception to this is 

the data at a stimulus curvature of 0.12 rad/min. arc. This 

coincidence suggests that threshold is only affected by the size of the 

gap at the extremes of unresolved gap, and poorly resolved line 

segments. In the intermediate range, it seems likely that gap size 

has no effeot on threshold.

Efficiencies for curvature discrimination are shown in Fig. 7.2.

The data is clearer if presented as efficiencies, and the rest of the 

results will be discussed in terms of efficiency for curvature 

discrimination. For convenience, the results will be presented in three 

groups. Firstly, the data from unbroken lines will be described; then 

the data from the broken lines will be described; and lastly, these 

two sets of data will be compared.

Note that, in general, the data from subject HL conforms to the same 

pattern as that of subject RJW. Where there is a discrepancy, this 

will be pointed out.

Further note that no acoount of differential light spread effects 

has been taken in calculating efficiencies. This means that the
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efficiencies for curvature discrimination at the largest gap size are 

almost certainly underestimates. Efficiencies for the 3.33 min. aro 

gap size are also probably underestimates. However, this omission

will not affect the argument.

1). Unbroken Lines.

a) . There is a steady rise in efficiency with increasing stimulus

curvature up to a curvature of 0.06 rad/min. arc. The efficiency 

for the zero curvature line is slightly higher than the next 

point on the curvature dimension.

b) . This rise in efficiency is followed by a rather more steep

fall in efficiency with increasing stimulus curvature, to a 

minimum at a curvature of 0.09 rad/min. arc. (The minimum is 

at a curvature of 0.10 rad/min. arc for NL).

c) . This is followed in turn by a rapid rise in efficiency as

stimulus curvature increases further. There is a second peak 

efficiency at a curvature of 0.12 rad/min. arc.

The second peak appears to be broader than the first, but this 

could be due to sampling interval:the true peak could be sharp 

and at a curvature of 0.125 rad/min. arc.

d) . The second peak is followed by a rapid fall in. efficiency as

stimulus ourvature increases further.

e) . The efficiency for curvature discrimination at the two peaks

identified, is approximately the same (less so for NL). This 

is important. For RJW, the difference is only four percent, 

and could be due to sampling ( eg. if the true peak is at 

a curvature of 0.125 rad/min. arc).
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2). Broken Lines«

a) « Cap size has a non-monotonic effect on the efficiency for

curvature discrimination.

b) « There is no difference between the trends of efficiency as a

function of stimulus curvature in the different gap conditions, 

and the trends are at the same locations in the curvature dimension. 

There is no interaction between gap size and stimulus curvature 

on efficiency for curvature discrimination,

o). There is a relatively steep rise in efficiency with increasing 

stimulus curvature to a peak at a curvature of 0.05 rad/min. arc. 

The data for subject NL, although incomplete, pfcobably support 

this.

d) . There is a very steep fall in efficiency as curvature increases

further, to a minimum at a curvature of 0.09 rad/min. arc 

(0.10 rad/min. arc in subject NL).

e) . There is a subsequent rapid rise in efficiency to a maximum at a

curvature of 0.10 rad/min. arc (the exact position of this peak 

is obviously unclear, sinoe the sampling is too coarse). The 

seoond peak for subject NL is at a stimulus curvature of 0.11 rad/

;* min. arc.

f) . This is followed in turn by a rapid fall in efficiency, to a

second minimum at a curvature of 0.12 rad/min. arc (0.13 rad/min. 

aro in subject NL).

g) . for subject BJW, there is a last small peak in efficiency at a

stimulus curvature of 0.13 rad/min. arc.

h) . The data for the 1.67 min. aro gap size depart sligitly from

this pattern at a stimulus curvature of 0.12 rad/min. arc. There 

is an extra peak in efficiency for curvature discrimination at 

this gap size and stimulus curvature.
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i). Note that the above trends and effects are only weakly seen for 

the large gap size. This gap size clearly has a considerable 

detrimental effect on discrimination performance. This is not 

surprising: indeed it is surprising that the subject can make 

Any discrimination of curvature from two small dashes, each only

2.5 min. arc long.

3 ). Broken Lines and Unbroken Lines Compared.

a). The two main peaks in efficiency appear at different stimulus 

curvature for unbroken and broken lines.

1>). The slopes of rising and falling efficiency either side of these 

two peaks are different in the two categories of stimulus, 

unbroken and unbroken.

c) . The peaks attain sligitly different levels of efficiency in the

two cases. No real significance can be attached to this, 

sinoe peak efficiency is a function of gap size, and that obtained 

for gap size 3.33 min. aro may not be optimal. Further, the 

efficiencies for the larger gap sizes are almost certainly 

underestimates, since the light-spread due to the optics of the 

eye will have a considerable degrading effect on the information 

in the stimulus, when the dashes are short. The important point 

is that efficiency for lines with a gap is not much less than 

that for unbroken lines.

d) . There is a conmon minimum efficiency for curvature discrimination

at a stimulus curvature of 0.09 rad/min. aro (0.10 rad/min. arc 

for subject NL), despite the fact that the peaks do not have 

similarly common positions on the ourvature dimension.
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Pig. 7.1 Threshold for curvature discrimination as a function of 

stimulus curvature, and gap size, in lines of length 10 min. arc.
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Fig. 7*2 Efficiency for curvature discrimination as a function of 

stimulus curvature and gap size, in lines of length 10 min.
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DISCUSSION

The introduction to this experiment described two main aims*
These were, to test a specific prediction concerning the hypothesis 

of an orientation range limit on high efficiency curvature discrimination, 

and to clarify the effects of a single central gap on the efficiency 

for curvature discrimination in short lines* The results will be 

discussed in the light of these two aims, and then the further 

implications will be considered*

In Chapter 5 (p.158 ) it was hypothesized that there is a limit on 

the range of orientations which can be combined with high efficiency for 

curvature discrimination* The limit was thougit to be between 

orientation ranges of 35 and 40 degrees* This hypothesis was 

formulated on the basis of data from studies where there is some 

potential for confusion between the orientation range description of 

a stimulus, and other similar measures of stimulus size: an 

undesirable situation.

The present data, taken alone, could support two possible hypotheses : 

either there is a single process, with a critical curvature of 0.12 or 

0.13 rad/min. arc, which suffers some interference for stimuli of 

curvature between 0*07 and 0.11 rad/min. arc; or, there could be two 

processes with oritical curvatures of 0.065 and 0.125 rad/min* arc, 

respectively. Up to a curvature of 0.09 rad/min. aro, the present data 

agree very well with the data from Experiment 5, if presented in terms 

of orientation range of the stimulus and efficiency for curvature 

di soriminati on.
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Beyond this, there is considerable divergence, and the second peak in 

efficiercy has no correlate in the data from Experiment 5. There is 

a difference in the length of the lines at these high orientation ranges, 

in the two experiments, and the seoond peak may "be due to a novel 

system, that only operates for small stimuli.

No suoh easy agreement between the present data and that of Experiment 

5 is found if some other parameter is used, in order that the first 

of the above two hypotheses may be generalized to all the results.

Given suoh smew parameter, there would still have to be explanations 
for the interference at curvatures between 0.07 and 0.11 rad/min. arc 

and its restriction to short lines, and for the high efficiency for 

curvature discrimination at a stimulus curvature of 0.06 rad/min. arc, 

for short lines.

It is d e a r  that the orientation range hypothesis is the simplest 

option, with the qualification that there is a seoond system for high 

efficiency curvature discrimination of short, highly ourved lines.

The present data, therefore, provide strong support for this hypothesis. 

The prediction made in Chapter 5, end described above, has been upheld 

(at least in part), and as a result, the ooncept of limiting orientation 

range is found to be useful for describing all conditions of stimuLus 

curvature and length boundary on the high efficiency process, with 

certain qualifications.

In addition to the limit on orientation range, there also appears 

to be a strict relationship between orientation range of the stimulus 

and effioienoy for curvature discrimination. Previous data has shown
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an increase in efficiency as orientation range increases to the limit, 

and a subsequent fall in efficiency for further increases in orientation 

range. The present data also oonfirm this strict relationship: 

once again, the pattern of rising efficiency with increasing orientation 

range within the limit, and falling efficiency beyond the limit, has 

been obtained.

This pattern of efficiency for performance is therefore, an established 

feature of the curvature discrimination of curved line», and provides 

some useful insight into the nature of the processes involved in 

curvature discrimination. This will be considered at length, in the 

next chapter.

The seoond aim of this study was an examination of the effects of a 

single oentral gap on efficiency for curvature discrimination, in 

greater detail than in the previous experiment. This previous 

experiment had shown that a single central gap in the test stimulus 

oaused a very strong depression in efficiency for curvature discrimination 

in short, highly curved lines, but much less effect in the other lines 

that were used. By making a finely detailed study of the parameters 

of this effect, it was hoped that some understanding of the mechanisms 

involved might be gained.

The results obtained show that the effect of a single central gap is to 

reduce the limit on orientation range from about 40 degrees to around 30 

to 35 degrees. The previous study had not sampled enough points to show 

this effect, although as was noted, the data obtained did suggest 

this conclusion.
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There appear to "be three possible gap conditions: unresolved gap 

(ie# no gap); resolved gap; and an extreme which may be a gap that is 

too large, or it may be the size of the remaining line segmmts that is 

too small. Within the extremes, the reduction in orientation range limit 

does not appear to be a function of gap size: if a gap is present 

and not too large, then the function relating efficiency to orientation 

range follows the same course as the equivalent function for unbroken 

lines, but behaves as if the orientation range of the stimilus were 

increased by the gap. The amount of the apparent effective increase 

in orientation range is not a function of gap size.

The present study has also brought to light some other interesting 

findings. In partiouLar, there is a second high efficiency system, 

at the much higher curvature of between 0.10 and 0.1A- rad/min. arc.

This system is entirely novel, and there is no previous evidence of 

such a system in the data resulting from longer lines. The system does 

not appear for longer lines of 'the same orientation range, (see the 

data of Experiment 5), and informal measurements of efficiency for 

ourvature discrimination in longer lines with the same curvature of 

0.12 rad/min. arc suggest that these are also beyond the scope of 

this second system.

There are several interesting points to note about this system.

Firstly, the peak efficiency obtained for one of the subjects is very 

close to that for the first system at a curvature of 0.06 rad/min. arc 

(BJW).

Secondly, the rise and fiall in efficiency as curvature increases is 

steeper than for the first system.
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These observations suggest that this system is truly independent of 

the first system, but the data may reflect a combination of two estimates 

from the first, lower orientation range system. This point will be 

considered and compared with other known and potential examples of 

seoondazy integration of curvature information, in the next chapter.

This seoond system does appear to have some similar characteristics 

to those of the first system.

The optimum curvatures for this system are approximately twice those 

for the first system (with and without gaps). The gap has a similar 

effeot in the two systems, although the effect is quantitatively twice 

that of the first system, in the seoofad system.

It is Intersting to note that the smallest gap size appears to have an 

ambivalent effect on efficiency for curvature discrimination in the 

region of this second system. It causes the established effect of a 

single gap, in displacing the peak efficiency to lower curvatures, but 

it also seems to be treated as an unresolved gap by the system. If 

this were to be the case, then this gap size might be very close to 

some critical value for this second system.



CONCLUSIONS : CURVATURE DISCRIMINATION IN SHORT UNBROKEN AND

BROKEN LINES.

The following conclusions may he drawn from the results of this 

experiment.

Firstly, the hypothesis that the range of orientations that may he 

combined with high efficiency to provide curvature information-ii ¿Limited 

to between 35 and 2*j0 degrees, is supported by the present results.

This remains the moat economical and sufficient description of the 

results for unbroken lines (and for lines broken by two gaps, one either 

aide of the centre). However, this description requires two 

qualifications, which form the second and third conclusions to this 

study.

Secondly, the effect of a single central gap in a line of length 

10 min. arc has been carefully determined. Provided that the gap 

is not too large or too small (the exact limits are not known, but 

gaps between 1.67 and 3.33 min. arc are suitable), the relationship 

between efficiency for curvature discrimination and orientation range 

of the stimulus is altered. Such a gap physically reduces the sum 

range of continuous orientation change in the stimulus (one potential 

interpretation of the concept of orientation range), but has an effect 

that is equivalent to AUDIKJ- a fixed amount of orientation range to 

the stimulus. The amount is apparently independent of gap size, 

within the limits.
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Thirdly, a wholly unexpected second high efficiency system for 

curvature discrimination has been discovered# This system appears 

to be useful for very short, highly curved lines. It has some of 

the characteristics of the first system (the orientation range limited 

system). The effect of a 3.33 min. arc gap in the stimulus is the same. 

The rise in efficiency and subsequent fall as stimulus curvature 

increases are very similar to those found for the lower curvature 

system. However, the higher curvature system seems to be limited in 

its application to short lines only. It is certainly not limited by 

any simple manner, in orientation range: a stimulus of length 20 min. 

aro and curvature 0.067 rad/min. arc has an orientation range of 76.5 

degrees, much the same as a stimulus of length 10 min. arc and 

ourvature 0.13 rad/min. arc, but it does not share the same high 

efficiency for curvature discrimination. The limits for this system 

remain unclear.

The possibility exists that ihis system could arise from parallel 

analysis of the two halves of the stimulus by the orientation range 

limited system, with a highly efficient secondary integration of the 

results. This will be discussed in the next chapter.

The next chapter will consider the implications of these results, in 

conjunction with the results of thB previous experiments.



226

CHAPTER 8. : THE VISUAL ANALYSIS OP STRAIGHT AND CURVED LINES.

8.1 Introduction.

The visual system has been known to be very sensitive to small features 

and differences in line figures, for the last hundred years. It is 

however, only recently that the significance of these sensitivities to 

contour shape, size, position and attitude has begun to be appreciated.

Chapter 1 contains a detailed description of the results of the recent 

experiments, which have led to some understanding of how visual 

space is differentiated. It was suggested that the results of these 

recent investigations are in sum consistent with the action of only 

two parallel types of process : one concerned with line shape 

differentiation over a region of space measuring approximately 30 min. 

arc by 5 min. arc; the other concerned with slope estimation, 

and involving a smaller region, probably 10 min. arc long. Further, it 

was pointed out that the obtained variable error for tasks of absolute 

position judgement was consistent with the use of the former process 

for this purpose, despite a total loss of absolute position information 

within the region of space served by it.

All the stimuli used in these experiments were straight lines. It was 

suggested that it would be useful to know whether curved lines 

excite, and are analysed by the same types, of process, or whether 

the visual system has alternative processes for curved line stimuli.
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8*2 The Results of the Present Experiments Summarized,

The major results and findings of this study will now he colleoted and 

summarized into two hroad categories, Firstly, responses to straight 

and curved lines will he compared and contrasted. Then the findings 

on curvature discrimination in curved lines will he described.

8,2,1 Straight vs. Curved Lines.

The present data show that there is one hasio similarity and five 

differences between the responses of the visual system to straight lines 

and to curved lines.

Curved lines and straight lines are similar, in that each oan support 

a high efficiency discrimination of curvature, under appropriate 

conditions. The determinants of these conditions are rather 

different however, and add up to a considerable difference in the 

manner in which curved lines and straight lines are analysed by the 

visual system,

i) . Curvature discrimination for curved lines requires considerable 

practice to reach plateau performance. This is not found to be the 

case for straight lines. (See p.101 ).

ii) . The discrimination of curvature in curved lines requires a 

reference to be physically present. This is not so for straight lines.

iii) . There are differences, albeit small, in the effects of stinniLus 

duration on curvature discrimination in curved and straight lines.

(See Experiment 1),
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It ). When a reference stimulus is present, the effects of the 

distance separating it from the test stimulus sure quite different 

for the discrimination of curvature in straight and curved lines.

(See Experiment 6).

v ) .  The effects of gaps in the test stimulus on the performance of 

curvature discrimination in curved and straight lines are also quite 

distinct. (See Experiment 8).

On the basis of these results, it is proposed that the visual analysis 

of curved lines and straight lines must use processes that are, at 

least in part, different and distinct.

8.2.2 Curvature Discrimination in Curved Lines.

The discrimination of curvature in curved lines, under optimum conditions, 

is as efficient as (if not more efficient than) the optimum curvature 

discrimination for straight lines. This is a surprising result.

8.2.2.1 Orientation Range.

There are found to he two basio parameters which affect the efficiency 

with which curvature discrimination judgements of curved lines are made, 

namely, stimulus curvature and stimulus length. It is further found 

that their joint effects are most economically described by reference to 

their algebraio product. This quantity can be interpreted, conceptually, 

as a function of the distribution of orientations within the stimulus.

The orientation range, or spread of this distribution, is found to 

be a useful ooncept to describe the important parameters determining
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efficiency for ourvature discrimination in unbroken stimuli.

8.2.2.2 Orientation Range Limit.

There appears to be a limit to the orientation range which may be used 

for high efficiency curvature discrimination. The limit in the two 

subjects extensively tested (RJW and NL, see Experiment 5) is at 

40 degrees of slope.

Efficiency rises with increasing orientation range of the stimulus, up 

to the limiting value, and then falls more steeply with further increases 

in orientation range. This relationship is illustrated in Pig. 8.1, 

which shows the combined results of Experiment 5 and the aero gap size 

results of Experiment 9» The continuous lines drawn on the data have 

a theoretical basis, and will be described below.

8.2.2.3 Modifications to the Relationship Between Orientation ®ange 

and Performance Measured.

The relationship between efficiency for curvature discrimination, and 

stimulus orientation range has two factors which may be modified by 

appropriate conditions : the orientation range limit, and the peak 

level of efficiency.

Orientation range limit is reduced to about 25 to 30.degrees by using 

oblique stimuli, and reduced to about 35 degrees by adding one central 

gap to the test stimulus.

Peak efficiency is not altered by these two procedures.

The size of the gap is not important : smaller gaps do not lead to 

intermediate orientation range limits. It is not known whether 

intermediate orientation range limits might result from using intermediate 

stimulus slants.

Peak efficiency is reduced by adding two gaps to the test stimulus, one
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either aide of the centre, and peak efficiency is raised "by increasing 

the separation between the test and comparison stimuli from 5 min* arc 

to 15 min. arc. Neither of these two procedures changes the orientation 

range limit.

None of these procedures which affect orientation range limit or peak 

efficiency appear to change the obtained efficiencies beyond the limit.

8.2.2.4 Secondary Integration of Curvature Information.

Fig. 8.1 shows the obtained relationship between orientation range 

and efficiency. The continuous lines also show a hypothetical 

relationship that would be obtained if only the central 2*0 degrees of 

orientations and none others were used for curvature discrimination ; 

that is, the relationship between orientation range of the stimulus and 

efficiency for curvature discrimination, were the information for 

the task governed by an absolute limit on the orientation range.

Clearly there is some further integration of curvature information 

in the visual system, beyond the limit.

The data in Fig. 8.1 suggests that the hi$ier curvatures in Experiment 

5 have a more efficient secondary integration of curvature information 

than the lower curvatures. This is surprising : smaller stimuli at 

a given orientation range are subject to a more efficient secondary 

integration.

8.2.2.5 A Second Process for Curvature Analysis.

Finally, there appears to be another system for curvature analysis, that 
is restricted to small stimuli of high curvature. Very little else
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is known about this system. Peak efficiency in RJW is comparable to 

that for the first curvature system (that limited by orientation range); 

but is slightly lower in NL. The effect of adding a gap to the stimulus 

is to reduce the optimum curvature (or whatever turns out to be the 

appropriate parameter) for the discrimination of curvature.
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Fig. 8.1 Efficiency for curvature discrimination as a function of
stimulus orientation range: the results of Expt. 5 and the 
unbroken stimulus condition of Expt. 9. The significance 
of the functions 'a' and 'b' is described in section 8.2.2.1*.
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8,3 General Conclusions.

The basic findings of this study are :

i) Curved lines may be processed by the visual system, for curvature 

discrimination, as efficiently as straight lines.

ii) There are, however, considerable differences between the detailed 

performance of curvature discrimination for curved lines and for 

straight lines.

iii) The efficiency for curvature discrimination of curved lines 

is economically described by one parameter, the stimulus orientation 

range.

iv) The relationship between efficiency and orientation range may be 

modified by certain alterations to the stimulus array.

v) There appears to be a further process for analysing highly curved 

short lines.

These lead to a number a general conclusions.

It now seems likely that curved lines and straight lines excite 

different, but parallel processes. At present there is no simple way 

to unify the two sets of results : such a way may be found on the 

basis of further experiments, but at present it seems more useful and 

preferable to consider them as distinct.

The conclusions may, therefore, be divided into three groups : those 

concerning straight lines; those concerning curved lines; and those 

concerning highly curved short lines that seem to exoite a different 

curvature process.
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8.3.1 The Visual Analysis of Straight Lines.

In Chapter 1, a process was described, that is concerned with spatial 

differentiation, over a region of space measuring approximately 

30 min. arc by 5 min. arc. Andrews, Butcher and Buckley (1973) found 

that several different spatial shape tasks shared common properties of 

high efficiency performance and length tolerance. They described these 

tasks collectively by the embracing term of *collinearity-failure 

detection*•

The present results suggest that this concept is still valid and useful, 

but not so general. Such a concept oannot describe all highly 

accurate shape tasks, but instead, it may be used to describe all the 

tasks that may be performed at high efficiency by use of that shape 

process described in Chapter 1. Curved lines seem to be beyond the 

competence of this process.

The present data add a little to the understanding of this process.

There is a difference between the results for the discrimination of 

curvature using straight lines, obtained in Experiment 5 of the present 

study, and those of Andrews, Butcher and Buckley (1973).

In the present Experiment 5, high efficiency for curvature discrimination 

was only obtained for lines of length less than about 15 or 20 min. 

arc. Andrews et al. (1973) found that efficiency for curvature 

discrimination is high for stimuli up to about 30 min. arc in length.

There is one major difference between the two experiments : the teat 

stimulus was alone in the experiment of Andrewa et al. (1973), whereas 

in the present study, it was accompanied by a reference stimulus of
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the same length, and 5 ndn. aro apart. If this is the cause of the 

difference in the two sets of results, then it has some interesting 

implications. It may he that the effect of flanking stimuli (on 

vernier resolution), reported hy Westheimer and Hauske (1975) interacts 

with the length tolerance of the process. The results of Westheimer 

and Hauske (l975) were obtained by using a 20 min. arc long target, and 

show a rise in threshold when a flanking stimulus is present 5 min. arc 

to the side of the target stimulus. Such result could be accounted 

for by a drop in the length tolerance of the process from 30 min. arc 

to about 15 min. arc, as is suggested would occur, by the results of the 

present Experiment 5» Further evidence to support this idea is 

provided by the results of Experiment 6. For separations between test 

and comparison stimulus that are greater than 5 min. arc, the length 

tolerance is increased to between 25 and 30 min. arc, and the resultant 

data is consistent with that of Andrews et al. (1975)* Westheimer 

and Hauske (1975) also find that the interaction between target and 

flanking stimulus drops for separations that are greater than 5 min. arc. 

Some insight into the operation of the flanks might be suggested by 

the finding in Experiment 8 of the present study, that adding one or 

two gaps to the test stimulus appears to prevent this lateral interaction. 

This may be important, at present the implications are obscure.

This argument suggests that the differences between the length tolerances 

of the shape tasks, on -the one hand, and the slope estimation and 

comparison tasks on the other, might also be attributable to the operation 

of interference between the test and reference in the latter.
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Andrews (1967b) has found that the separation between test and comparison 

stimuli does not affect performance, for separations up to at least 

30 min, arc, Andrews (personal communication) has suggested that a 

more likely candidate explanation could be the fact that the slope 

comparison task uses the comparison stimulus as a reference for 

judgements, unlike the present experiments involving straight lines, 

where the so-called comparison stimulus is probably passive. This 

suggestion requires careful testing.
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8.3.2 The Visual Analysis of Curved Lines.

The relationship between the orientation range of a stimulus, and 

the efficiency measured for the discrimination of the curvature of that 

stimulus, has been described in detail above in section 8.2 ; it now 

remains to draw some tentative conclusions concerning the process 

behind this relationship.

8.3.2.1 A Limit on the Range of Orientations that may be Combined 

Efficiently.

There apparently exists a strict limit on the range of orientations 

that may be combined with high efficiency for curvature discrimination. 

The effects of this limit on efficiency are quite abrupt, and stimulus 

curvature and length space is partitioned into two distinct regions, 

one subject to high efficiency curvature discrimination, the other 

subject to very much lower efficiency.

This partition of stimulus curvature and length space into regions 

of high efficiency or low efficiency processing, is taken as indicating 

the existence of a separate visual analysis process, concerned with 

the spatial differentiation of curved lines of orientation range not 

greater than 2*0 degrees.

It is difficult to imagine any natural way that a process that is not 

concerned with some form of slope analysis, can be limited by stimuLus 

orientation range. That such a process is involved in curvature 

discrimination shows that the slope analysis results are combined to 

determine the more complex types of contour shape, such as curvature.
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It is suggested that there is a high efficiency process that is concerned 

with the determination and analytical combination of local contour 

orientations* The process has two stages : a contour is represented 

hy its first derivative (or some similar function), which is then in 

turn used to extract curvature information.

The orientation range limit can he altered hy two modifications to the 

stimulus : the use of oblique stimuli reduces the orientation range 

limit to about 25 to 30 degreesj the addition of a single central 

gap reduces it to about 30 to 35 degrees. In the case of the gap 

there are two further interesting features.

Firstly, the orientation range limit is independent of gap size, 

within limits of resolution, as is the threshold for curvature 

discrimination in a broken stimulus*

Secondly, the position of the gap is clearly important, since adding 

two gaps, one either side of the centre, does not reduce the orientation 

range limit*

There are two conclusions that are suggested by these results*

Firstly, it seems reasonable to conclude that, within the orientation 

range limit, the single central gap does not split the stimulus into 

two halves for the purposes of processing. If the orientation range 

limit were increased by the addition of ® gap, it would be feasible that 

the two halves were being processed separately by two obliquely 

oriented processes (such as happens in the case of very short lines 

that are broken or unbroken : see the results of Experiment 9, anl the 

disoussion on p.248 ). This possibility is ruled out by the finding 

that orientation range is, in general, decreased by a single central

gap«
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Secondly, the two findings concerning the effects of the size and the 

position of the gap, and the effects of using oblique stimuli, taken 

together, suggest that the near horizontal orientations might be the 

most important in determining the orientation range limit* If the 

near horizontal orientations are present, the limit is 40 degrees; 

if they are absent, orientation range limit is 30 degrees* This 

can be expressed alternatively as follows. It could be those 

orientations nearest to the point of fixation that determine the limit: 

if they are horizontal, 40 degrees is the limit; if not, 30 degrees 

is the limit*

This argument presip poses that the two different findings may be taken 

together. This may not be valid, in which case quite different 

conclusions could be reached. Further experiments are suggested to 

decide the point*

A result of this conclusion is that the more extreme orientations 

cannot be regarded as being recorded more accurately than the central 

orientations : efficiency far curvature discrimination reaches the 

same levels when the most extreme orientations are no longer acceptable 

to the process.
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8.3.2.2 Changes in Efficiency Within the Orientation Range Limit.

Within the limit of orientation range, efficiency rises with increasing 

orientation range of the stimuLus. The relationship is approximately 

linear (see Fig. 8.1). This is a very important clue to lead to an 

understanding of the organization of information within this process.

Consider two ways in which orientation range of the stimulus might be 

increased s by increasing curvature at a given line length; or by 

increasing line length at a given stimuLus curvature. In both cases 

efficiency for curvature discrimination rises.

That efficiency should increase with increasing stimulus curvature at a 

given line length, implies that more information is being extracted and 

analysed, despite the fact that no more information is physically 

present.

That efficiency should rise with increasing line length at a given 

stimulus curvature, implies that not only is more information being 

analysed (which of itself would lead to no more than an unchanged 

efficiency), but that the overall accuracy of analysis is improved.

The effect of increasing stimulus curvature, at a constant line length 

seems to indicate that the process is able to make more samples at the 

higher curvatures. This is plausible, if the process is sampling 

local slope information. At the same time, it is important to note 

that the accuracy of the samples does not decrease. An increase in 

the accuracy of the samples alone could explain the rising efficiency, 

but this seems implausible.

That efficiency also rises with increasing line length at a fixed



stimulus curvature indicates that the overall accuracy of the samples 

must increase, or that there is a preferential weighting for the more 

extreme orientations* It has already been concluded that the extreme 

orientations cannot he regarded as being recorded more accurately than 

the central orientations (p.239 )» and therefore, the first of these 

alternatives is preferred* It seems plausible that under these 

conditions, the accuracy of the samples would increase*

The level of efficiency for curvature discrimination for stimuli of 

orientation range less than the limit can be modified by two alterations 

to the stimulus array* Efficiency is raised by increasing the distance 

separating test and comparison stimuli, or it can be lowered by 

adding two gaps to the test stimulus, one either side of the centre* 

Increasing the separation between test and comparison stimuLi from 

3 min* arc to 13 min* sure doubles peak efficiency* Adding two gaps 

reduces efficiency by a smaller amount*

The effect of stimulus separation is curious* It does not suggest 

flanking sones capable of interference, such as are found for the 

straight line process, and reported by Westheimer and Hauske (1975).

It is clear that efficiency cannot rise indefinitely, with increasing 

stimulus separation, but the range of lateral interaction appears to 

be different from that for straight lines. There is another difference. 

It has been suggested, on the basis of the data for straight lines in 

the present study, that the effect of contours in the flanking zones 

is to reduce the length tolerance of the process* The lateral 

interactions on curved lines do not appear to modify the orientation 

range tolerance of this process. This is a strong contrast.
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The effect of adding two gaps to a curved stimulus is also quite 

different from the equivalent effect on efficiency for curvature 

discrimination in straight lines* For curved lines, peak efficiency 

drops, hut the orientation range limit is unchanged* For straight 

lines, peak efficiency rises, and the length limit is increased*

This is another strong contrast*

That peak efficiency for the curved line process should drop indicates 

that the addition of the gaps does more than just remove useful or 

even redundant information (in which case, efficiency should he 

unchanged or even rise)* Either the overall accuracy of the samples 

of slope information is reduced, or the number of such samples 

covering those parts of the lines remaining is reduced*
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8.3.2.3 The Limited Orientation Range Curvature System.

In summary, the findings relating to stimuli that fall within the 

orientation range limit lead to the following tentative conclusions and 

speculations.

i) There is a primary sampling of some slope function of the 

contour over a limited range of orientations of 40 degrees of slope.

This function is likely to he of local slope differences and changes.

ii) These samples are combined to provide estimates of line 

curvature.

There are two ways in which efficiency for curvature discrimination 

(not precision) could, in theory, be altered. Either the number of 

samples for a given portion of the stimulus could change, or the 

accuracy of the samples could change. It should be noted that the latter 

does not draw a distinction between the accuracy of sampling, and 

the accuracy of using, or combining these sanqples (these two possibilities 

cannot be directly distinguished by psychophysical data).

iii) The evidence suggests that the number of samples is a direct 

function of the stimulus orientation range. Increasing orientation 

range, at a constant line length leads to an improvement in the 

efficiency for curvature discrimination (ie. greater information 

uptake). Samples are taken, therefore, at fixed points on the slope 

distribution, and not in space.
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iv) Accuracy of sampling improves with increased orientation range. 

Increasing line length at a fixed stimulus curvature leads to an improved 

efficiency (as well as precision) : the addition of extra stimulus 

information to a curved line results in more efficient use of the 

information already present in that given line, as well as more efficient 

use of the information in the portion added,

r ) The presence or absence of near horizontal slopes within the 

stimulus (or alternatively, the orientation of those slopes nearest 

to the fixation point, or the centre of the curve, horizontal or not), 

determines the orientation range limit. Both oblique unbroken stimuli 

and horizontal stimuli with a central gap are subject to curvature 

discrimination with an orientation range limit of about 30 degrees,

vi) Peak efficiency for such stimuli, with the optimum ozientation 

range of 30 degrees, is higher than the efficiency for unbroken 

horizontal stimuli with an orientation range of 30 degrees. It is 

unlikley that these two modifications result in an increased density 

of sampling, and therefore, it seems more likely that the accuracy of 

sampling is changed»

Accuracy of sampling appears to be a function of the proximity of 

the actual stimulus ozientation range to the limiting orientation 

range in operation.

It is as if the process has a set range of slopes which it invariably 

uses to estimate curvature, whether they are physically present or not, 

in the stimulus. When the more extreme orientations are not present, 

this part of the working range adds noise to the process, and reduces 

its efficiency.



This would also explain why two gaps (non-central) reduce efficiency.

The 'active' orientation range of the stimulus (that portion of the 

overall orientation range which has contour present) is 3/5 of the 

overall stimulus orientation range : efficiency obtained corresponds

to this 'active' orientation range, not the overall range.

For example, efficiency for a stimulus of curvature O.O67 rad/min. arc 

and length of 10 min. arc is 6 0 . $  when the line has two gaps present. 

This stimulus has an overall orientation range of 38.4 degrees, and 

an active orientation range of 23 degrees. Compare this efficiency 

with the following data for unbroken stimuli : a stimulus of 

curvature 0.04 rad/min. arc and length 10 min. arc has an orientation 

range (overall and active) of 23 degrees, and is processed for curvature 

discrimination with an efficiency of 60.2g£; a stimulus of curvature 

0.067 rad/min. &rc and length of 10 min. arc has an orientation range 

of 38.4 degrees and is processed with an efficiency of 71*5^.

Clearly it is the active orientation range that determines efficiency for 

curvature discrimination.

That efficiency is not affected by one oentral gap in the same manner, 

is awkward. It seems that the operation of changing the orientation 

range limit must cause less weight to be placed on the horizontal 

orientations. Perhaps there exists a process which specialises in 

the analysis of non-horizontal orientations, with slightly different

characteristics.
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8.3*2.4 Secondary Integration of Curvature Information from Stimuli 

that Exceed the Orientation Range Limit*

The data of Experiment 3 clearly shows that there is some secondary 

integration of curvature information from stimuli that exceed the 

orientation range limit : the fall in efficiency is not as steep as 

would be'«rpected were there none. The difference is small, but 

significant* That it is smaLl and regular suggests that the difference 

is not due to the operation of further processes, parallel to the 

orientation range limited process, and with larger stimulus tolerances* 

Therefore, it seems much more likely that the difference is due to 

some sort of secondary combination of curvature estimates from a number 

of primary orientation range limited processes.

The data appears to suggest that the integration of curvature estimates 

from different primary processes is more efficient for lines of 

higher curvature and shorter length. In such a case, the processes 

providing estimates for combination, would be closer together, than 

when the stimulus had lower curvature and longer length. This 

suggests that the actions of secondary integration of curvature 

information are restricted in spatial extent*

As an aside, it is worth noting that all subjects reported that the 

larger stimuli appeared distorted, since this may also throw some light 

on the processes of secondary integration. The distortions were all 

identical : subjects reported that the ends of the larger curves

appeared ’droopy*, or were 'bent downwards*. These distortions were 

intermittent, and not necessarily apparent in both test and comparison 

at the same time. They appeared to take about one second to build up



to maximum strength*

A similar effect has "been observed by Andrews (personal communication)* 

If a heavy outline of a circle is fixated, then after a short time 

the circle appears to be distorted, and takes on the shape of a 

smoothed polygon with about ten edges*

In each case, it could be that there is no overlap between adjacent 

curvature analysers, and the ’joints' become apparent perceptually.

It would be very surprising, if it turned out that there was no 

overlap between these orientation range limited curvature analysers*

The effects require detailed study, but may provide useful information 

about the processes of curvature analysis in large curves.
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8,3.3 High Curvature System,

The data of Experiment 9 show that there is another system for 

curvature discrimination, operating at much higher curvature*. Informal 

experiments have suggested that its operation is limited to short lines, 

or short ranges of high curvature.

This high curvature system shares several properties with the lower 

curvature orientation range limited system, described in section 8,3,2, 

Efficiency for curvature discrimination rises, and then falls with 

increasing stimuLus curvature. The effect of adding a single central 

gap to the stimulus is also similar.

Very little can he said about -this high curvature system. It reaches 

a similar peak efficiency to that of the first system, in one of the 

two subjects. The intervening curvatures are processed at much 

lower efficiencies. This suggests that it might be an independent 

process.

It is, however, also possible that this high curvature system represents 

highly efficient integration of the ouput estimates given by the 

lower curvature system. These estimates would be from very close parts 

of space, and it has already been suggested that this situation leads to 

a higher efficiency for secondary integration.

The question remains unanswered.

It is worth noting that such a system could have great value for the 

general operation of pictorial analysis. Attneave (1954) drew 

attention to the information value of the points of high curvature in 

contours. He presents a schematic picture of a sleeping cat, that is 

quite recognisable, formed from only the 38 points of maximum curvature,
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and the straight lines joining them. All that is needed for a 

con^lete description of this figure is a specification of the positions 

of the points, and the orientation change at these points (see Fig. 8.2). 

Might not this high curvature system he useful in providing such an 

analysis ?
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Fig» 8.2 Drawing made by abstracting 38 points of* maximum curvature 

from the contours of a sleeping cat, and connecting these points 

appropriately. (After Attneave, 195Z*. fig. 3 ).
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8*4 Questions Arising, and Research Suggested.

The least surprising result of this study is that there now exist more 

rather than fewer interesting questions, than did before the study 

was begun. The questions are more specific, but given perhaps three or 

four processes for the analysis of line information, the general 

question of 'What else ?' still remains.

There are a number of points concerning the straight line process, that 

require clearing up. The effect of flanking stimuli has been suggested, 

and could be easily verified. The possibility of a direct relationship 

between this shape process and that for slope comparisons has also been 

hinted at, and would suggest further research.

There are also a number of points concerning the primary, orientation 

range limited process for curved lines, that would suggest useful 

experiments. The first point to establish is whether this process 

can also support tasks such as vernier resolution (of curved stimuli), 

in addition to that of curvature discrimination. The suggestion as to 

the mechanism for the combination of slope information requires close 

investigation, as does the mechanism for the changes in orientation 

range limit. This latter problem should be examined to establish 

whether there are only two (or some other small number) of orientation 

range limits, or whether there is a continuum. The position of a single 

gap in the test stimulus would be a useful experimental parameter. 

Likewise, the orientation of the stimuLus array should be varied in 

small steps, to establish the role of near horizontal orientations.

The properties of secondary integration of curvature information are 

also suggestive of many experiments.
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The high curvature system is almost completely a mystery. There is 

a great deal of information to be gathered before the system can be 

understood.

It is with great pleasure, that I finish this thesis on a note of mystery.
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APPENDIX : TABLES OF EXPERIMENTAL RESULTS.

For each experiment the following data is quoted :

i) Grand mean PSE.

ii) Overall RMS standard deviation.

iii) Overall efficiency.

iv) & v) & vi) Standard deviations of the distribution of the estimates

of these statistics.

Table numbers and experiment numbers correspond.«
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TABLE 1. : CURVATURE DISCRIMINATION AS A FUNCTION OP STIMULUS DURATION.

1). Stimulus curvature = 0.00 rad/min. arc.

length s 20.0 min. arc

Durâtion(ms.) Threshold(r/s) PSE(r/m) Efficiencv(/o)

10 3.205E-5 5.I3OE-3 13.690

50 3.043E-5 5.636E-3 15.186

100 2.785E-5 5.721E-3 18.132

500 1.551E-5 4.236E-3 58.489

1000 1.375E-5 3.241E-3 74.404

2000 1.343E-5 3.747E-3 77.968

50 6.568E-5 -1.601 E-3 3.461

100 5.621E-5 -3.247E-3 4.736

500 4.047E-5 -I.346E-3 9.128

1000 I.529E-5 -I.69OE-3 31.973
2000 2.694E-5 -0.805E-3 20.595
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2). Stimulus curvature 0.05 rad/min. arc.

length = 20.0 min. arc.!

Durâtion(ms.) Threshold(r/s) PSE(r/m) Efficienc

10 5.150E-5 5.019E-2 12.33

50 4.273E-5 4.826E-2 17.31

100 3.362E-5 4.9342-2 28.89

500 3.170E-5 4.896E-2 32.33

1000 2.863E-5 4.8332-2 53.30

2000 2.275E-5 4.727E-2 61.07

50 1.086E-4 4.989E-2 2.725

100 8.014E-5 5.298E-2 5.000

500 7.096E-5 5.483E-2 6.454

1000 5.725E-5 5.5772-2 9.798

2000 6.636E-5 5.6492-2 7.488

RJW

RSS
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TABLE 1a. : SD. OP DISTRIBUTION OF INDIVIDUAL ESTIMATES.

1 ). Stimulus curvature = 0.00 rad/min. arc.

length = 20.0 min. arc.

Duration(ms.) ThresholdCr/s) PSEfr/m) Efficiency f'

10 0.306E-5 0.118E-3 1.069

50 0.476E-5 0.190E-3 1.941

100 0.835E-5 0.203E-3 4.437
500 0.251E-5 0.314E-3 9.842

1000 0.2A-6E-5 0.211E-3 10.885

2000 0.243E-5 0.265E-3 11.535

50 0.55ÓE-5 0.435E-3 0.286

100 1.068E-5 0.859E-3 0.389

500 I.148E-5 0.644E-3 0.160

1000 0.583E-5 0.1Ô5E-3 0.043

2000 0.148E-5 0.102E-3 0.015

RJW

RSS
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2). Stimulus curvature = 0*05 rad/min. arc.

length = 20.0 min. arc.

Duration(ms.) Threshold/r/s) PSE(r/m) Ef f ic ie nc
10 0.890E-5 O.I3OE-2 0.916
50 1.082E-5 0.155E-2 2.2 64

100 0.588E-5 0.079E-2 2.530
500 0.799E-5 0.1 Oi+E-2 4 .0 9 1

1000 0.354E-5 O.II6E- 2 3.756
2000 0.396E-5 O.O5OE- 2 10.644

50 0.286E-5 O.I7 5E-2 O.1 3 2

100 O.289E- 5 O.I89E- 2 0.535
500 2.183E-5 O.O7 8E- 2 1.716
1000 1.345E-5 0.110E-2 1.879
2000 1.7 6 5E- 5 O.I7 7E- 2 1.848

RJW

RSS
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TABLE 2. : THE EFFECT OF STIMULUS CURVATURE ON EES CRIMINATION OF

THE DISTANCE SEPARATING TWO CONTOURS.

Target separation distance = circle diameter.

Stimulus size = 120 degrees of the circle circumference,

i). With central fixation spot.

Diameterfr/m) Thresholdfs,)______ PSEfm.)_____Efficiency^ )

10.0 18.095 1.054 18.230

15.0 25.688 1.104 7.375

20.0 29.688 1.843 4.926

25.0 4-3.962 0.072 2.052

30.0 34.108 1.599 3.224

40.0 35.349 1.470 2.883

50.0 55.324 2.652 1.153

20.0 28.138 -0.291 5.463

25.0 41.203 -9.950 2.336

30.0 32.715 -1.463 3.504

40.0 48.563 -2.168 1.527

50.0 71.733 -2.219 0.686
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2). Without central fixation spot.

Diameterfr/ffl) Thresholdfs.)

10.0 15.888

15.0 23.104

20.0 29.266

25.0 30.935

30.0 36.612

40.0 43.890

50.0 58.037

PSE(m, ) Efficiency^ )

0.874 23.646

0.303 9.117
-0.431 5.050

0.408 4.153
-1.263 2.798

-0.915 1.870

-0.610 1.048

RJW
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TABLE la. : SD. OF DISTRIBUTION OF INDIVIDUAL ESTIMATES.

Target separation distance = circle diameter.

Stimulus size = 120 degrees of the circle circumference.

1). With central fixation spot.

Piameterfr/m) Thresholdfs.)
10.0 5.14-1

15.0 6.774

20.0 2.045

25.0 0.883

30.0 7.500

40.0 ^ 4.128

50.0 8.369

20.0 3.258

25.0

30.0 5.867

40.0 14.829

50.0 17.312

PSEfm.) Hfficiencv(%)

0.224 5.179
0.292 2.245
0.076 0.482

0.242 0.058

0.388 0.819

0.410 0.389

0.751 0.156

0.006 0.895

0.216 O .836

0.060 0.726

0.153 0.539

0.363 0.191

RJW
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2). Without central fixation spot.

Diameterfr/m) Thresholdf s.) PSEfm.) EfficiencvC/o)

10.0 2.725 0.369 3.628

15.0 2.069 0.506 0.94-3

20.0 6.695 1.382 1.334-

25.0 3.251 1.390 0.378

30.0 7.452 0.034- 0.658

40.0 12.916 0.400 0.635

50.0 12.44-1 0.74-3 0.201
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TABLE 3, : THE EFFECT OF STIMULUS CURVATURE ON THE DISCRIMINATION

OF CURVATURE.

1). Fixed Line Length = 20.0 min. arc.

Curyaturefr/m) Thresholdfr/s) PSEfr/m) EffirA<*™y(<Z)

0.0286 2.857E-5 3.003E-2 39.090

0.0333 2.675E-5 3.537E-2 44.821

0.04 3.283E-5 4.016E-2 33.203

0.05 3.139E-5 4.810 36.704

0.0667 3 . 067E-5 6.593E-2 35.857

0.08 3.389E-5 7.867E-2 29.682

0.0333 4.183E-5 3.552E-2 18.334

0.05 4.058E-5 5.097E-2 21.960

0.0667 5.332E-5 6.865E-2 11.863

0.08 6.175E-5 8.526E-2 8.938
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2). Fixed Chord Length s 2D.0 min. arc.

Curvaturefr/m) Threshold(r/s} PSEfr/m^ EfFiciencyfiS^
0.0333 3.010E-5 3.273E-2 31.818
0.05 2.862E-5 4.912E-2 31.813
0,0667 2.771E-5 6.606E-2 28.711
0.08 2.683E-5 8.207E-2 24.223

0.0286 3.118E-5 2.611E-2 33.823

0.0333 3.266E-5 2.861E-2 30.358
0.04 2.967E-5 3.579E-2 32.358

0.05 3.479E-5 4.203E-2 21.533
0.0667 5.043E-5 6.038E-2 8.668
0.08 4.740E-5 7.115E-2 7.762
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TABLE 3_â  : SD. OP DISTRIBUTION OP INDIVIDUAL ESTIMATES.

1). Fixed Line Length = 20.0 min. arc.

Curvaturefr/m) Thresholdfr/s) to a

0.0286 0.514E-5 0.099E-2 5.317
0.0333 0.512E-5 0.086E-2 7.675
0.04 0.217E-5 0.020E-2 2.197
0.05 0.869E-5 0.051E-2 10.161

0.0667 O.466E-5 0.173E-2 4.114
0.08 0.881E-5 0.024E-2 8.908

0.0333 0.917E-5 0.158E-2 4.608

0.05 0.820E-5 0.047E-2 3.623
0.0667 0.735E-5 0.106E-2 1.236
0.08 1.300E-5 0.235E-2 2.172

RJW

JIK
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2). Fixed Chord Length = 20.0 min. arc

Curyaturefr/m) Threshold(r̂ a)
0.0333 0.378E-5

0.05 0.955E-5

O .0667 O.790E-5

0.08 0.737E-5

0.0286 0.241 E-5

0.0333 1.025E-5

0.04 0.171E-5

0.05 O.258E-5

O .0667 2.077E-5

0.08 1.075E-5

PSB(r/m) Efficiency^  

0.036E-2 2.308

0.120E-2 8.666

0.078E-2 5.178

0.114E-2 5.962

0.019E-2 3.017

0.050E-2 11.003

0.057E-2 2.638

0.056E-2 2.258

0.038E-2 4.124

0.179E-2 2.034

)

RJW

IEB
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TABLE 4. : THE EFFEKT OF STIMULUS LENOTH ON THE DISCRIMINATION

OF CURVATURE AT A FIXED STIMULUS CURVATURE.

Stimulus curvature = 0.05 raâ/min. arc.

C.ho.rd -KÍSJ----gjg-ghol.a(r/s) PSEfr/m)

7 .5 2.722E-4 6.443E-2 50.088
10.0 I.I88E-4 5.5892-2 64.972
15.0 5.041E-5 4.932E-2 42.942
20.0 2.862E-5 4.912E-2 31.813
25.0 2.711E-5 4.882E-2 11.410
30.0 2.O55E-5 4.9OIE-2 8.916
35.0 1.621 E-5 4.9942-2 4.531

7.5

10.0

15.0

20.0

25.0

2.6572-4 

1.364E-4 

7.530E-5 

6.903E-5 

5.1152-5 

4.048E-5

9.612E-2 52.600 

7.450E-2 49.256 

6.8472-2 19.250 

6.024E-2 5.467 

5.649E-2 3.160 

5.34OE-2

JIK

30.0 2.300
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SD. OP DISTRIBUTION OF INDIVIDUAL ESTIMATES.

Stimulus curvature = 0.05 rad/min. arc,

Chord L.(m.)

7.5

10.0

15.0

20 .0

25 .0

50.0

55.0

7 .5

10.0

15.0

20.0

25.0

Thresholdfr/s)

9.52QE-5

4.120E-5

1.237E-5

0.955E-5

0.683E-5

0.353E-5

0.515E-5

4.860E-5

2.990E-5

0.809E-5

1.358E-5

0.777E-5

0.067E-5

PSECr/m) 

0.023E-2 

0.325E-2 

0.082+E-2 

0.120E-2 

0.060E-2 

0.055E-2 

0.039E-2

0.500E-2

0.270E-2

0.104E-2

0.123E-2

0.156E-2

0.069E-2

E ffic ien cy^ )

24.770

13.015

8.607

8.666

2.054

1.021

1.28?

11.079

5.618

2.387

0.948

0.562

0.044

RJW

JIK

30 .0
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TABLE 5. THE JOINT EFFECT OF STOFJLU3 CURVATURE AND LENGTH ON 

THE DISCRIMINATION OF CURVATJRE.

1 ) .  Thresholds (rad/sec . a r c ) .

Li^>J<en£th_(im2ti Curvature. (rad/min. a w )

0.00 0.04 _ 0 .05 0.067

10 1.409E-4 1.225E-4 1.155E-4 1.067E-4

15 5.105E-5 4#06/kE-5 6 ,6 14E-5 8.219E-5

20 4.386E-5 3.669E-5 5.023E-5 4.5432-5

25 2.635E-5 3.221E-5 4.366E-5 3.365E-5

30 1.523E-5 2.351E-5 4.344E-5 3.081E-5

35 9.075E-6 2.01OE-5 2.381E-5 2.732E-5

10 1.059E-4 1.055E-4 8. 648E-5

15 3.087E-5 5.365E-5 6. 217E-5
20 1.858E-5 4.047E-5 5.050E-5

30 9.865E-6 2.593E-5 4. 663E-5

RJW

NL
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2). PSE's (rad/min. arc).

Line Length (m. ) Curvature (rad/min. arc)

0 .0 0 0 .0 4 0 .0 5 0 .067

10 4.478E-3 4.477E-2 if. 590E—2 6.358E-2

15 1 .702E-3 3.969E-2 4.4S3E-2 6.740E-2

20 1.911E-3 3.844E-2 4 .820E -2 6.568E-2

25 5 .313E-4. 3.938E-2 4.785E-2 6.614E-2

30 -6 .131E-5 4.229E-2: 5.048E-2 6 .538E-2

35 -2 .692E -4 4.245E-2 5.063E-2 6.588E-2

10 -6 .122E-3 3.670E-2 4 .370E -2

15 3 . 786E-3 4 .265E -2 5.667E-2

20 -1 .562E -3 4 . 376E-2 6.258E-2

30 -8 .6 76E-4 4.657E-2 6.442E-2
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3). Efficiencies ('%).

Line Length (m. ) Curvature (rad/min, arc)

0.00 0.04 0.05 0.067

10 43.825 60.177 67.472 71.513

15 48.037 68.019 28.567 25.506

20 16.560 27.332 18.322 13.488

25 20.112 13.601 11.701 9.880

30 20.812 9.357 2.824 5.740

35 29.036 6.545 4.759 3.743

10 70.555 74.740 110.91

15 131.367 42.685 32.112

20 90.544 19.609 12.959

30 47.181 7.790 2.499

RJW
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TABLE 5a. : SD. OF DISTRIBUTION OF INDIVIDUAL ESTIMATES.

1). Thresholds (rad/sec. arc).

Line Length (m.) Curvature (rad/min. arc)

0.00 0.04- 0.05 0.067

10 2.456E-5 2.5352-5 1.824E-5 1.8792-5

15 1.233E-5 0.601E-5 1.5592-5 4.702E-5

20 2.125E-5 1.060E-5 1.638E-5 1.3392-5

25 0.9992-5 0.7742-5 1.781E-5 1.QV5E-5

30 0.6692-5 0.2742-5 1.297E-5 O.85OE-5

35 0.263E-5 0.2592-5 0.1542-5 0.593E-5

10 1.6692-5 0.5152-5 2.388E-5

15 0.701E-5 1.070E-5 O.426E-5

20 0.258E-5 0.6542-5 0.84-1 E-5

30 1.0142-5 0.4.992-5 1.O86E-5
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2 ) .  PSE*8 (rad/m in . a r c ) .

L ine Length (m. ) Curvatu re (rad/m in . a r c i

0.00 ______ P A _ .  . ■ 0 .0 5 0.067

10 0.066E-2 0 . 281E-2 0.708E-2 0.630E-2

15 0.197E-2 0.098E-2 0.176E-2 0 .U 6 E -2

20 0 . 176E-2 0.203E-2 0 . 311E-2 O .476E-2

25 0.09W :-2 0.088E-2 0.10i»E-2 0 .229E-2

30 0.098E-2 0.075E-2 0.123E-2 0 .037E -2

35 0.057E-2 0.024E-2 0.01f2E-2 0.035E-2

10 0.108E-2 0.217E -2 0 .011E-2

15 0.081E-2 0 .029E -2 0.117E -2

20 0.052E-2 0.348E-2 0 .122E-2

30 0.005E-2 0.070E-2 0 .0 82 ^ -2

RJW

NL
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3). Efficiencies (%),

Line Length (m.) Curvature (rad/min. arc)

0 .0 0 0.04 ... 0.05 0.067

10 5.776 10.310 11.547 1 2 .9 2 7

15 1 1 .6 0 0 9 .282 5.924 8 .5 8 5

20 .8 .0 2 2 5.244 5.582 3.349

25 6.940 2.181 2.558 3.002

50 6.915 0.824 0.744 1 .5 8 2

55 6 .3 6 0 0.555 0.434 1.148

10 12.841 4.564 35.367

15 50.956 9.830 2.544

20 9.804 •2.658 2.491
50 7.579 1.742 O .6 7 2
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OF CURVATURE IN LINES VARYING IN BOTH CURVATURE AND 

LINE LENGTH.

TABLE 6. : THE EFFECT OF SEPARATION DISTANCE ON THE DISCRIMINATION

1). Separation = 10 min. arts RJW

U n s  Length (min, arc) Curvature (rad/min, arc)

0 .0 0 0.05 0.067

Thresholds (rad/sec. are).

10 8.917E-5 1.109E-4 1.031E-4

20 1.883E-5 3.996E-5 5.164E-5

30 1.440E-5 3.083E-5 3 .609E- 5

PSE's (rad/min. arc )

10 3.625E-3 4.524E-2 5.994E-2

20 1.361E-3 4.882E-2 6.832E-2

30 4 .194E - 4 5.044E-2 6.848E-2

iii) Efficiercies (%)
10

20

118.133

94.558

24.206

77.770

22.642

6.172

90.348

14.037

5.70730
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2 ) .  Separation  = 15 min. a rc .

L ine Length (m in. a rc ) Curvature (rad/min. arc)

0 .0 0 0.05 0.067

i )  Thresholds (rad/sec . a r c ) .

10 1.178E-4 9.994S-5 8 .14.5E - 5

20 2.366E-5 4-.4-32E-5 5.493E-5

30 1 .489E-5 1.911E-5 4-. 365E-5

i i )  PSE* s (rad/min. a r c ) .

10 -5.727E-3 4..74.5E- 2 6.24-1E-2

20 1.126E-3 5.0Q4E-2 6.929E-2

30 4..177E-4- 5.077E-2 6.884E - 2

i i i )  E f f ic ie n c ie s  ( % ) .

10 77.997 1 1 0 .1 3 2 166.634-

20 67.74-1 20 .8 26 14-.050

30 25.233 17.736 4-74.7

RJW



2), Separation = 15 min« arc.

L ine Length (min* arc_l Curvature (rad/m in. a r c )

0 .0 0 0.05 0.067

i )  Thresholds (rad / sec . a r c ) .

10 1.290E-5 1.128E-5 1.466E-5

20 0.170E-5 0.209E-5 1.363E-5

30 0.143E-5 0.41 2E-5 1.357E-5

i i )  PSE* s (rad/min. arc ).

10 0.111E-2 0.11 5E-2 O .291E-2

20 0.017E-2 0.034E-2 0.117E-2

30 0.145E-2 0.056E-2 0.017E-2

i i i )  E f f ic ie n c ie s  ( f o ) .

10 1 2 .0 6 8 12.565 1 8 .0 6 8

20 5 .6 2 2 1 .3 8 6 2.466

30 2.427 5.400 1.205
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TABLE 6a. : SD. OP DISTRIBUTION OF INDIVIDUAL ESTIMATES.

1). Separation = 10 min. arc, RJW

Line Length (min, arc) Curvature (rad/min. a r c )

0 .0 0 0.05 0.067

i )  Thresholds (rad/sec . a rc )

10 0.677E-5 3.791E-5 3.790E-5

20 0.616E-5 0.815E-5 1.134E-5

30 0.455E-5 0.661E-5 0 .561E- 5

i i )  PSE* s (rad/min. arc]).

10 0.109E-2 0.283E-2 0.100E-2

20 0.020E-2 0.068E-2 0.106E-2

30 0.008E-2 0.045E-2 0.046E-2

i i i )  E f f ic ie n c ie s  ( % ) .

10 1 0 .3 6 2 37.609 2 0 .0 2 0

20 33.517 5.335 2 .18 1

30 7.643 1 .5 2 8 0.724
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CURVATURE DISCRIMINATION IN OBLIQUE LINES.

TABLE 7. : THE JOINT EFFECTS OF STIMULUS CURVATURE AND LENGTH ON

Chord Orientation = 45 deg. RJW

Line-Length (min, arc) Curvature frad/min, arc)

0.04 0.05 0.067

Thresholds (rad/sec. arc).

10 9.695E-5 1.3732-4 1.753E-4

15 8.073E-5 9.473E-5 1 .090E-4

20 5.898E-5 5.228E-5 5.727E-5

30 3.020E-5 3.738E-5 3.56AR-5

Ü )  PSE*s (rad/min. aro).

10 3.S7AE-2 5.285E-2 5.977E-2

15 3.605E-2 4.270E-2 6.652E-2

20 3.387E-2 4 .656E- 2 6.256E-2

30 3.585E-2 4.561E-2 6.076E-2

iii) Efficiencies $),
88.118 44.086 27.192

18.319 13.768 10.448

9.104 11.764 10.108

5.669 4.016 4.28930
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TABLE 7a. : SD. OF DISTRIBUTION OF INDIVIDUAL ESTIMATES.

Chord Orientation = 45 deg RJW

Line Length (min, arc) Curvature (rad/ain. arc)

i)

ü )

0,04-__________0.05__________0.067

Thresholds (rad/sec. arc).

10 1.416E-5 0.969E-5 0.892E-5

15 1.738E-5 1.667E-5 2.684E-5

20 O.636E- 5 0.958E-5 0*625E-5

30 O.876E- 5 1.101 E-5 0.991E-5

PSE* s (rad/min. arc).

10 0.106E-2 0.125E-2 0.577E-2

15 0 .171E-2 0.130E-2 0.066E-2

20 0.102E-2 0.088E-2 0.02QE-2

30 0.040E-2 0.078E-2 0.097E-2

iii) Efficienaies ($) 
10 

15 

20

12.869 3.594 2.628

2 .0 4 2 2.410 2.573

10.985 1.687 1.104

1.644 0.683 1.19230
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OF CURVATURE IN LINES VARYING- IN BOTH STIMULUS CURVATURE 

AND LINE LENGTH.

1 ). Two Gaps. RJW

TABLE 8. : THE EFFECTS OF BREAKS IN THE STIMULUS ON DISCRIMINATION

Line Length (min, arcj Curvature (rad/min. arc)

0.00 0.05 0.067

i) Thresholds (rad/sec. arc).

10 1.289E-4 1.A3AE-4 1. 364E-A-

20 3.069E-5 5.890E-5 5.130E-5

30 1.A89E-5 2.926E- 5 3.586E-5

ii) PSE's (rad/min. arc).

10 -1.275E-3 3.507E-2 4.975E-2

20 r 1 .A84E - 3 4.101E-2 6.424E-2

30 -9.873&-4 4.537E-2 6.120E-2

iii) Efficiencies (%).
70.683 54.442 60.474

7 1 .8 6 1 14.401 19.185

36.301 9.814 6.61630
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2) One Gap.

T.lne Length (min, arc)

0.00

i )  Thresholds (rad/sec . a rc )

10 1.233E-4

20 2.247E-5

30 8.196E-6

10 1.0VIE-4

20 1.835E-5

30 6.582E-6

Curvature (rad/min, axe)

0.05 0.067

1.526E-if 2.138E-J*. RJW

4.392E-5 4»801E-5

3 .676E- 5 3.878E-5

1.335E-4 1.573E-4 NL

5»M>4E-5 6.062^-5

5.040E-5 6.222^-5



L ine Length (min, arcl Curvature (rad/min, arc)

0.00 0.05 0.067

PSE*s (rad/min. arc)

10 3.345E-3 4.481E-2 6.508E-2

20 -5.967E-4 4.191 E-2 6.179E-2

30 -^4.004E-4 4.592E-2 6.185E-2

10 6.036E—4 3.193E-2 3.631E-2

20 -7.206E-4 4.142E-2 5.885E-2

30 -5«464E-4 4.446E-2 6.2 71E- 2
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Line Length (min, arc).

E ff ic ie n c ie s .  {%)„

0.00

10 81.657

20 99.133

30 115.202

10 107.736

20 138.895

30 174.846

Curvature (rad/min. axe)

0.05 0.067

50.878 25.996 RJW

24.848 20.932

6.051 5.465

66.448 47.686 NL

16.048 13.079

3.209 2.120
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TABLE 8a. : SD. OF DISTRIBUTION OP INDIVIDUAL ESTIMATES.

1 ) # Two Gaps RJW

Line Length (min, arc) Curvature (rad/min. arc)

0 .0 0 0.05 0.067

i) Thresholds (rad/sec. arc ).

10 3.073E-5 2.964E-5 2.530E-5

20 0.930E-5 2.039E-5 0.425E-5

30 0.605E-5 0.599E-5 0.509E-5

ii) PSE's (rad/min. an/).

10 0.166E-2 0 .225E- 2 0.203E-2

20 0.080E-2 0.376E-2 0.270E-2

30 0.023E-2 0.069E-2 0 .069E- 2

iii) Efficiencies (%)•
10 15.014 10.054 10.812

20 13.105 4.070 1.424

30 10.215 2.007 0.767



294

2). One Gap.

T.-ine Length (min, arc) Curvature (rad/min, arc)

0.00 0.05 0.067

Thresholds (rad/sec. arc).

10 1.672E-5 5.444E-5 5.101E-5 BJff

20 0.3Ö0E-5 0.655E-5 0.911E-5

30 0.111E-5 1.018E-5 1.138E-5

10 3.188E-5 0.715E-5 2.114E-5 NL

20 0.493E-5 2.370E-5 1.609E-5

30 0.287E-5 0.582E-5 2.555E-5
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Line Length (min, arc)

0.00

PSE*s (rad/min. aro).

10 0.151E-2

20 0.060E-2

30 0.043E-2

10 0.429E-2

20 0.038E-2

30 0.014E-2

Curvature (rad/min. arc)

0.05 0.067

0.220E-2 0.122E-2 RJW

0.265E-2 0.333E-2

0.026E-2 0.03Ì+E-2

1 .0 31E- 2 0.337E-2 NL

0.570E-2 0.204E-2

0.204E-2 0.137E-2
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Line Len*sth (min. are)

0.00

iii) Efficiencie3 (%),
10 10.182

20 13.191

30 11.077

10 18.814

20 45.090

30 87.998

Curvature (rad/min» are)

0.05 0.067

14.814 5.063 RJW
3.313 3.234

1.499 0.899

2.862 8.406 NL
5.663 5.612

0.429 1.862
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TABLE 9. : THE JOINT EFFECTS OF STIMULUS CURVATURE AND GAP SIZE

ON DISCRIMINATION OF THE CURVATURE OF SHORT UNBROKEN AND 

BROKEN LINES.

Line Length = 10 min. arc.

Curvature

0 .0 0

Gap Size (min. arc)
(rad/min. arc)

1.67 3.33 5.00

i) Thresholds (rad/sec. arc).
0 .0 0 1 .3 0 6 1 .6 3 8 1.713 2.947 *E-4

0 .0 2 1.457 1 .8 6 8 1.773 2.539 *E-4

0.04- 1.225 1.573 1.497 2 .6 2 7 *E-4

0.05 1.227 1.174 1 .2 1 8 2 .2 4 8 *E-4

0 .0 6 1.034 1.450 1.441 2 .2 0 0 ♦E-4

0.07 1.192 1.417 1.603 2.037 *E-4

0 .0 8 1 .2 6 8 1.554 1.653 2.125 *E^4

0.09 1.579 1.887 1.671 2.501 *E-4

0 .1 0 1.338 1.229 1.345 2.105 *E-4

0 .1 1 1 .2 0 2 1.467 1 .6 9 8 2.148 *E-4

0 . 1 2 1 .0 7 8 1.186 1.729 2 .2 3 2 *E-4

0.13 1.107 1 .5 2 6 1.642 2.084 *E-4

0.14 1.395 1.798 1 .8 3 2 2.355 *E-4
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Curvature Cap Size (min. arc)

(rad/min. a rc )

0 .0 0 1,67 3.33 5.00

i )  Thresholds (rad/sec. a r c )

0.00 1.059 1.042 *E-4

0.05 1.055 1.335 *E-4

0.067 8.648E- 5 1.573 *E-4

0 .0 8 1.164 1.542 *E-4

0.09 1.489 1 .7 6 2 *1-4

0 .1 0 1.675 2.035 *E-4

0 .1 1 1.511 1.452 *E-4

0 .1 2 1.095 1.519 *E-4

0.13 1.621 2.141 *E-4
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Curvature &ap S ize  (min, a re )

(rad/min, are)

0.00 1.67 3.33 5.00

i i )  PSE* s (rad/min.. a r e ).

0.00 -9.664E-3 -6.874E-3 -8.967E-3 -6.889E-3

0.02 9.017E-3 2.082E-2 1.455E-2 1.186E-2

0.04 4.477 3.690 3.310 3.211 *E-2

0.05 4.345 4.609 4,137 4.889 *E-2

0.06 5.585 5.634 5.304 6.634 *E-2

0.07 6.222 6.403 6.630 6.477 *E-2

0.08 7.614 7.499 7.771 7.705 *E-2

0.09 8.604 8.162 8.270 8.590 *E-2

0.10 9.086 8.995 9.008 10.100 *E-2

0.11 0.100 0.103 0.104 0.114

0.12 0.108 0.11 0.113 0.126

0.13 0.115 0.119 0.126 0.133

0.14 0.127 0.130 0.136 0.147
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Curvata re Gap Size (min. are)

(rad/mìru arc )

0.00 3.33 S.OO
i i )  PSE’ s (rad/min • a ro ).

0.00 -6.122E-3 6.036E^.

0.05 3.670 3.193 *E-2
0.067 4.370 3.631 *E-2
0.08 6.577 6.259 *E-2

0.09 7.777 7.657 ♦E-2
0.10 8.797 7.268 *E-2
0.11 8.849 7.984 *E-2
0.12 0.100 8.518E-2
0.13 0.109 0.104



501

Curvata re Gap S ize (m in, are )

(rad/min. are )

0.00 1.67 5.33 5.00

iii) Efficiencies 05).

0.00 46.367 33.113 39.912 15.124

0.02 38.726 25.621 37.447 20.448

0.04 49.251 36.338 52.750 19.167

0.05 55.222 65.447 79.778 26.217

0.06 77.789 42.982 57.122 27.428

0.07 58.907 45.131 46.296 32.036

0.08 52.229 37.642 43.624 29.511

0.09 33.764 25.596 42.767 21.323

0.10 47.163 60.484 66.110 32.875

0.11 58.625 38.329 41.537 28.969

0.12 72.999 65.179 40.148 26.859

0.13 69.487 41.085 44.568 30.857

0.14 43.834 29.675 35.864 24.184

RJW
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I

Curvature Gap S ize (min, are )

(rad/min. are)

0.00

iii) Efficiencies ([%).

0.00 70.555

0.05 74.740

0.067 110.910

0.08 61.902

0.09 37.977

0.10 30.034

0.11 37.066

0.12 70.863

0.13 32.2+01

l è i _____h l l _____5*oo

107.736

66.2+4-8

2+7.686

50.087

38. 2+62+

28.82+3

56.793

51.947

26.202+

NL
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TABLE 9a. : SD. OP DISTRIBUTION OF INDIVIDUAL ESTIMATES.

Line Length = 10 min. arc.

Curvature Sap Size (min, arc)

(rad/min. arc)
0.00 1.67

i) Thresholds (rad/sec. arc)
0.00  

0.02  

0.04 

0.05 

0.06 

0.07 

0.08 

0.09 

0.10 

0.11 

0.12  

0.13

3.745 3.124

2.269 3.723

2.535 2.378

1.52 5 3.161

2.439 4.023

1.829 3.272

2.079 3.327

3.868 4.185

4.144 3.263

3.359 2.341

1.693 1.726

2.881 3.015

2.321 5.830

3.33 __ 5.00

2.328 15.104

4.597 5.824

.1.58 5.827

2.2»49 0.807

3.853 2.603

3.900 2.484

2.954 3.271

3.962 4.719

0.911 2.152

3.108 1.045

2.674 7.828

4.282 6.478

2.667 8.912

RJW

*E-5

*E-5

*E-5

*E-5

*E-5

*E-5

*E-5

*E-5

*E-5

*E-5

*E-5

*E-5

*E-50.14
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C urtature Gap Size (min« arc)

(rad/min. arc)

___9Æ ______1*67 __ 3.33 5.00
i) Thresholds (rad/sec. ¡

0.00 1.669

0.05 2.439

0.067 2.388

0.08 2.568

0.09 2.224

0.10 3.454

0.11 2.225

0.12 3.102

0.13 2.970

3.188 *E-5
3.752 *E-5

2.114 *E-5

3.183 *E-5

1.559 *E-5
2.696 *E-5
2.321 *E-5

0.135 *E-5

3.433- *E-5
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C u rvatu re  &ap Size (min, aro)

(ra d/min. are)
0 .00 1 .6 7 3 .33 5.00

L) PSE 's (rad/m in . a r o )

0 .00 0.387 0 .854 0.331 1.085 *E -2

0 .02 0.884- 0 .122 0.548 1.203 *E -2

0 .0 4 0.281 0.233 0 .169 0.617 *E-2

0 .05 0 .089 0.389 0 .253 0.599 *E -2

0.06 0.14-0 0.631 0.339 0.343 *E -2

0 .07 0.24-2 1.721 0 .422 0.270 *E-2

0 .08 0.383 0.489 0 .383 0 .855 *E -2

0 .09 0.133 0.203 0.241 0.326 *E -2

0 .10 0.206 0 .155 0.343 0.125 *E-2

0.11 0.210 0.423 0.732 0 .900 *E-2

0 .1 2 0 .150 0.406 0.860 0 .450 *E-2

0 .13 0 .21 4 0.252 0.933 0 .44 2 *E -2

0.14- 0.1 95 0.137 0.566 0.250 *E -2

BJW
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Curvature

(rad/min. are)

0.00

Gap Size (min. arci

1-67______3*33_____5.00

ii) PSE's (rad/min. are)

0.00 0.108 0.429 *E-2

0.05 0.207 1.460 *E-2

0.067 0.011 0.337 *E-2

0.08 0.147 0.387 *E-2

0.09 0.075 0.164 *E-2

0.10 0.271 0.380 *E-2

0.11 0.161 0.132 *E-2

0.12 0.223 0.276 *E-2

0.13 0.205 0.082 *E-2
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Curvato re Sap Size fain, arc)

(rad/min. arc)

0.00 1.67 3.33 5.00

iii) Efficiencies (/»)•

0.00 9.399 5.157 4.849 6.327

0.02 5.392 4.568 6.467 3.543

0.04 10.614 3.885 4.713 4.906

0.05 7.925 15.765 16.029 1.086

0.06 15.038 9.757 10.172 4.217

0.07 8.088 7.369 9.189 3.494

0.08 6.473 6.092 6.981 3.214

0.09 6.753 4.636 7.674 4.649

0.10 9.738 14*363 2.984 4.050

0.11 12.385 4.289 6.794 1.993

0.12 11.461 8.478 4.389 9.424

0.13 16.178 7.257 10.394 9.588

0.14 5.952 7.858 6.032 8.188

RJW
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Curvature

(rad/min. are)

0.00

i l i )  Efficiencies OS).

0.00 12.82*1

0.05 8.902*

0.067 35.367

0,08 15.777

0.09 8.707

0.10 7.162

0.11 6.299

0.12

0.13

13.318

6.063

Gap Size (min, are)

1.67 3.33 5.00

18.814- 

7 . 22*2 

8 .2*06 

11.965 

3.935 

3.303 

1 0 . 2^86 

0.92*2 

2*,852

NL
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