

This work is protected by copyright and other intellectual property rights and
duplication or sale of all or part is not permitted, except that material may be
duplicated by you for research, private study, criticism/review or educational

purposes. Electronic or print copies are for your own personal, non-
commercial use and shall not be passed to any other individual. No quotation
may be published without proper acknowledgement. For any other use, or to

quote extensively from the work, permission must be obtained from the
copyright holder/s.

RUN-TIME DIAGNOSTICS IN

PROGRAMMING LANGUAGES WITH

DATA-STRUCTURING FACILITIES

by

N. H. WHITE

A thesis presented in support of an
application for the Degreee of
Doctor of Philosophy in the

University of Keele.

March 1980

Preface

The author graduated with Upper Second Class Honours in Physics at Oxford

University in 1975. During the years 1975-1978 he has been engaged full-time in
the research described in this thesis. Since 1978 he has been engaged as the
Computing Assistant of the Computer Science Department at Keele University.

Acknowledgements

The author wishes to thank Dr K H Bennett for his supervision and guidance

throughout this project.

He is also indebted to many colleagues in the Department of Computer Science
for discussion and criticism. In particular, thanks are due to Professor C M Reeves

The author is grateful for the computing services provided by the Computer Centre
at Keele and thanks are also due to the Science Research Council for financial

support.

Abstract
Modern high level programming languages have been designed with the intention of
providing the means of expressing the solution to a problem in the most natural

way possible. This thesis is concerned with the correctness of such solutions.

The reliability of programs is discussed and techniques for increasing the
likelihood of producing a correct program are examined. In particular, the use of
certain high level languages affording program control structures and data types

that allow an easy and natural expression of a real problem is seen to be of
paramount importance. It is argued that using such programming languages is

severely hampered if, in the event of a program error, diagnostic information is not
available in terms of the program structure and data.

This thesis is concerned with the provision of run-time diagnostic facilities. In
particular,, the provision of such diagnostics for the user of data structures is
seen as a currently neglected area.

The implementation of the programming language Pascal is described. Within

this implementation, a unique interactive diagnostics system is built to allow the
programmer complete diagnostic capabilities expressed in terms of the Pascal
language. The main innovation provided is the ability to display the data

structures built within a program in a manner in which the programmer views

them. The reactions to this system are described and the extent to which it has

achieved its aims discussed.

CONTENTS

Preface

Acknowledgements

Abstract

Chapter 1 Introduction Page
1.0 Introduction 1
1.1 Erroneous programs 1
1.2 Overview 3

Chapter 2 Problems of program reliability
2.0 Introduction 4
2.1 Program proving and testing 6

2.11 Program proving 7
2.12 Example of a proof 13
2.13 Conclusions 16

2.2 Structured programming 18
2.21 Modular programming 21
2.22 Stepwise refinement 23
2.23 Summary 24

2.3 Syntactic constraints 26
2.31 General 31
2.32 Classes and Modules 31
2.33 Summary 33

2.4 Diagnostics 33
2.41 Compile time diagnostics 36

2.42 Run-time diagnostics 38
2.43 Conclusions 39

Chapter 3 Run-time diagnostics

3.0 Introduction 41

3.1 Problem orientation 41

3.11 The degree of Problem Orientation 42

3.12 Conclusions 45
3.2 Existing diagnostic systems 45

3.21 PL/C execution supervisor 46

3.22 Ditran Diagnostic Fortran 47

3.23 ALGDDT Dec 10 Algol dynamic
debugging system 48

3.24 Glasgow Pascal diagnostic system 49
3.25 Algol 68R 50
3.26 Atlas Autocode and Manchester

m -core compilers 51

3.27 ICL Cobol 52

3.28 GEC 4080 Fortran and Algol 60 52

3.29 Conclusions 53

3.3 The design strategy of a diagnostics package 54
3.31 Interactive and batch programming 54

3.32 Facilities offered by diagnostics packages 55
3.321 Program dump 55

3.322 Program trace 56
3.323 Profile 57

3.324 Interrogation of data 57

3.325 Control and monitoring of program

flow 58

3.33 Conclusions and objectives 59
3.331 Alteration of the program 59
3.332 Currently lacking diagnostics 60
3.333 Summary 66

Chapter 4 Implementation of Pascal

4.0 Introduction 68

4.1 The P4 Compiler 69
4.11 General 69
4.12 General implementation 71
4.13 Operation of the P4 compiler 74

4.131 General 74
4.132 Lexical analysis 74
4.133 The name table 75
4.134 Expression valuation and

code generation 78
4.2 The :Pc ode machine 81

4.21 General 81
4.22 The use of MP and Base as stored

on the stack frame 87
4.23 An existing Pc ode machine 90

4.3 Transfer of Pascal from the cross

machine to the host 91
4.4 Implementation of Pascal on the Digico Micro 16E 97

4.41 The Digico micro 16E at Keele 97
4.42 Assembler 99
4.43 Interpreter 101

4.431 General 101
4.432 Addressing methods 102
4.433 Arithmetic operations 103
4.434 Conclusions 104

4.5 Implementations on the GEC 4080 105

4. 51 General 105
4.52 The Pcode interpreter 108

4. 521 General - store access 108
4. 522 Pcode instruction format 110
4. 523 Operation of the 4080 Pcode

interpreter 111

4. 53

Chapter 5

The Pcode assembler for the GEC 4080

Pascal implementation 112

4.6 Enhancements/improvements made to the

GEC 4080 implementation 114

4. 61 General 114

4. 62 Removal of deficiencies 114

4. 63 Enhancements 116

4. 64 New features 117

4. 65 Compiler options 120

4. 66 Removal of errors 121

4. 67 Deficiencies remaining 121

4.7 Experience of use of the Pascal system on

the GEC 4080 122

Portability

5.0 Introduction 123
5.1 Objectives 123

5.2 General portability problems 123

5.21 Language difficulties 124
5.22 Character code differences 126

5.23 Machine architecture differences 127
5.231 Word size/accuracy 127
5.232 Store size 128
5.233 Registers 128

5.234 Machine instructions 129

5.24 Media available for the transfer of

software 130

5.3 Some other portable compilers 131

5.31 UCSD Pascal 131

- 5.311 UCSD Pascal compiler/
language 131

5.312 UCSD Pascal environment 132

5.313 Portability of UCSD Pascal 132

5.32 The Belfast Pascal compiler 132

5.33 MUSS portable compiling system 133

Comparison of the two implementations of
Pascal 134

5.41 The user interface 134

5.42 Storage allocation 135

5.43 Operating system interface 137

5.431 DigicoVDU
5.432 Digico discs 137
5.433 Digico printer 138
5.434 GEC operating system

interface 138
5.435 Summary 139

5.44 Interpretation of Pc ode instructions 140
Particular portability problems encountered 142

5. 51 Character code differences 143

5. 52 Language differences 145

5. 53 Standard types - size and alignment 146
5. 531 Alignment with records 146
5. 532 Stack manipulation 147

5.54 Input/output 148

5.55 Storage constraints for compiler
bootstrap 149

5.56 Word size limitations 150

Conclusions on portability 151

5.61 Non standard Pascal features 151

5.62 Portability and efficiency 152

5. 63 Portability of Pcode 153

5. 64 Portable environments 155

5. 65 Increased portability 156

Chapter 6 Implementation of the Diagnostics System

6.0 Introduction 160
6.1 Method of operation 160
6.2 Changes to the compiler 162

6.21 Compiler table production 163
6.211 Variant records 165

6.22 Production of line code 165
6.23 Control of compiler operations 166
6.24 Additional predeclared procedures 166

6.3 Changes to the interpreter 167
6.31 Two state operation 168
6.32 Monitoring actions of the interpreter 171
6.33 Privilege of the diagnostics program 172
6.34 Generation of names for heap objects 173

6.4 Implementation details of the diagnostics program 173
6.41 Reconstruction of the name table 175
6.42 Setting a break point 177
6.43 Interrogating the source program 178

6.44 Producing a program profile 179
6.45 Interrogation of data items 179

6.451 Direct interrogation of name

table 179
6.452 Interrogation of variables ’

values 180

6.46 Displaying structures 184
6.461 Representation of the display

array 186
6.462 Detection of cycles 189
6.463 Undefined pointer values 189
6. 464 Display of the array 190

6.465 Hash integer implementation 191
6.466 Variant records 192

6. 47 Summary 194
6.5 The user interface 194

6. 51 The command language 194

6. 52 Control 195
6. 53 Data interrogation 195
6. 54 Environment enquiry 196
6. 55 Program profile 196
6.56 Source program listing 196
6.57 Structure display 197
6. 58 Help to use the commands 198
6. 59 Summary 198

6.6 Examples of using the diagnostics system 199

6.7 Summary 216

Chapter 7 Conclusions

7.0 Introduction 217

7.1 Review 217

7.2 User reaction to the diagnostics system 219

7.3 Areas for further work 221

7.31 Graphics display 221

7.32 Concurrent and distributed computing 223

7.33 Options on structure display 224

7.4 Conclusions 225

7.41 Portability of diagnostic systems 225

7.42 Structures using pointers 226

7.43 Implications for program language design 230

7.44 Summary 235

Appendix 1 Page 237

Appendix 2 238

Appendix 3 243

Appendix 4 244

Appendix 5 245

References 246

CHAPTER one

in t r o d u c tio n

1.0 Introduction

The first instance of a stored program being executed is claimed to be one for

calculating highest common factors and ran on the Manchester Mark 1 computer

in 1948 £ l AV175^ The storage system used was William’s tubes which retain
information on continually refreshed cathode ray tubes. The computer had a
monitor William’s tube which gave a direct visual display of the bit pattern of

selected areas of memory. More by accident than design an extremely useful

facility arose from this tube. The operation of fetching an instruction word
resulted in a short lived brightening of the display of that word allowing the user
to see the program flow. It is interesting to note that these two facilities of
memory interrogation and program flow trace form the basis of modem day
diagnostic facilities in both high and low level language programming.

Some form of examining memory locations and instruction flow is often provided

by the hardware of modem day computers. The greatly increased speed of

present computers and the fact that they will often schedule several programs
by interleaving their execution makes this facility much less useful. Such

diagnostic facilities are commonly provided by software which can be tailor
made to suit the requirements of the user.

1.1 Erroneous programs

Martin £ MART70^ relates several instances where a programming error or
oversight has led to quite spectacular consequences. One program used by a

magazine distributer to print address labels printed the same address on each

label. The result was several loriyloads of that magazine being delivered to
one subscriber. As Martin points out, ’The unsupervised computer system lacks
the ’sense of the absurd' possessed by even the humblest clerk'. A common
area of such program error is not catering for all possible eventualities. A
particular computer system used by an American city authority only catered

for peoples' ages being two digits. A woman aged 107 was discovered by the

system as not attending school and as her age appeared as the digits 07 a truant

notice was issued. Much more serious consequences can arise than this. The
Apollo 13 moon landing mission failed and the astronauts' lives were seriously
endangered. The fault was placed on a component failure. At the colloquium of

the Inter University Computing Committee (IUCC) in 1978, Texas Instruments

declared that the fault was actually in the software. In such space projects, where
errors can endanger life and where large monetary investments are involved,

great care ought to be taken. Another such project, a Venus space probe, is
reputed to have failed due to a particularly error prone construct in FORTRAN.
The kind of fault occurred as the result of a typographical error in a Fortran
DO loop. An example of such a loop is:

DO 10 I = 1,15

10: CONTINUE

The statements between the DO statement and the labelled continue statement
are obeyed 15 times with the integral variable I taking on the values one through
fifteen. The comma was mispunched as a full stop resulting in:

DO 10 I = 1.15

10 : CONTINUE

This is taken to be an assignment to the real variable DOIOI of the value 1.15.
Fortran does not require declaration of scalar variables and so the incorrect
statement went undetected with I not having the expected value and no repetition.

3

There exist many more examples where software errors have cost a great deal of

money or provided some embarrasment to individuals. It is clearly important to
create correctly working programs particularly if their failure could have more

than a trivial consequence. Flight controls for aircraft, data base management

systems and industrial chemical plant control are three examples of many such

areas of concern. Examples of software errors show both the catastrophic
consequences that are possible and the continuing need for work to be done to
minimise their occurrences.

1.2 Overview
The principal development reported in this thesis is the design and production of

sophisticated run-time diagnostic facilities for programmers. In particular, the
provision of convenient displays of the dynamic data structures that are a

feature of modern high level languages is included. The high level language used
for this work was Pascal. This choice was largely influenced by the needs of a

substantial group of local users within the Computer Science Department, which
teaches Pascal as the principal language.

Two Pascal implementations were made; the first on a Digico Micro 16E

minicomputer was transferred to a GEC 4080 system. The reasons for making

two implementations are historical; at the start of this project, the recent

acquisition of the GEC 4080 had not been envisaged. The experience gained allows
comments to be made on the portability of such compiler systems.

The need for powerful diagnostic facilities is argued. Techniques for proving the
correctness of programs have shown the importance of certain programming
styles, but they have not removed the programmer’s need to test programs. The
aim has been to allow the programmer to test programs in the most convenient
manner possible. A brief account of the reaction to this system is included.

CHAPTER TWO

PROBLEMS OF PROGRAM

RELIABILITY

4

2.0 Introduction
Programming can be described as a process of translation of an abstract problem

into an algorithm which a (possibly abstract) machine can execute. The program is

then an equivalent expression of the abstract problem in a form which is ’machine
readable'. A machine readable form is one which is expressed in a programming

language which is available on the (abstract) machine being used.

A programmer may often have to produce the abstract problem from a given set

of specifications and variants. In large software companies this process may be
performed by an analyst.

As an example, the set of specifications may be:

'Find all positive integral powers of 2 less than a given number'.

This specification could lead to the following abstract solution:

'Starting at 1, continually multiply by 2 until the result is that
given number or more, printing out each value'.

The final machine readable solution could then be expressed (in Pascal) as:

read (m); £ The given number^

n: = 1;
while n < m do

begin

writeln (n); print the result

n: = n*2 calculate the next power
end;

This program text provides the results demanded by the specifications calculated in
the manner prescribed by the abstract solution. It should be pointed out at this stage

5

that although the above program appears to be correct in that it will produce

successive powers of two less than a given value,it can fail.

If the machine being used allowed a range of integers from -32768 to +32767
(16 bit integer representation) and the value read was 20,000 then after printing

the final result of 16384 the multiplication of this result by two would be performed.

The outcome of this multiplication would depend on the machine and the implementation
of the particular programming language. Either an error would be flagged indicating
that arithmetic overflow had occurred in which case the program would fail, or the
error would be disregarded and the result -32768 assigned to n (being the twos
complement interpretation of the integer +32768). This would cause the program to
continue but printing out unwanted ' r e s u l t s (I n fact if arithmetic overflow were not

detected, this program would not terminate).

Clearly the programmer's aim should be that the program acts as the original

specifications demand. If the program behaves exactly as the specifications require
then that program is said to be correct. Another way of expressing this is to say
that a program is correct if it gives the right results for all possible sets of valid

data in a finite time and rejects invalid data £_COLE 783.

About half the time and cost of current large programming projects is spent
testing the program £l OND 75 ̂ .Despite this, much software in existence is not
reliable. Many examples of commercial software errors are reported in the press.

Such incidents as incorrect bills being sent to customers by- a firmS computer

system are common.

Given then, that after writing a program it may not be correct, and in practice often
is not, there is a third stage involved in programming - attempting to convert a
possibly incorrect program into a correct one. This stage is that of testing the
behaviour of the program. Testing involves executing the program with selected

sets of input and inductively reasoning that the program is then behaving correctly.
Proving a program correct is the formulation of a mathematical proof that the

program will behave correctly and does not necessarily require the program to run.

6

During the process of testing or proving, the program could be found to be

incorrect. If a program is incorrect then the error(s) (commonly referred to as

bug(s)) are to be located and removed. This process of removing bugs is referred
to as debugging. Brady {jBRAD773 argues that there is no demarcation between
testing and proving but that they are ’just opposite ends of a continuum of

supporting evidence for reliability’. He also states that it is difficult to be sure

that a given proof is • correct. Leavenworth £ l e AV7C>3 found an error in a
program which Naur had proved correct 0NAUR693 . Dijkstra has said of testing
that it only shows the presence of bugs and not their absence. This statement can
be levelled against proving if there is uncertainty about the proof. Per Brinch

Hansen £hAN3773 argues that it is worthwhile to show the presence of bugs and
remove them one at a time. The time and effort involved in correcting a program

once written can be kept minimal if preventative steps are taken when writing the

program.

The kind of preventative steps possible and the means by which they are readily
available are discussed later in this chapter. The discussion now centres on

details of the tools available to the programmer to assist the production of

reliable programs: testing and proving which will give increased confidence
that a program is correct; programming style and self discipline which will increase

the chance of a program being either correct or more easily corrected; and finally
the role of debugging which is a term covering the process of turning a possibly
incorrect or unreliable program into a correct, reliable one.

2,1 Program proving and Testing
A program proof is taken to be a formal mathematical argument about a program's
behaviour. Assuming that the proof is itself correct then the program will behave
correctly for all input that conforms to the initial conditions specified in the proof.
If it is both possible and practical to prove a program correct readily then such
an approach would clearly be desirable.

7

Testing a program involves presenting sample input to the program and checking

that the resulting behaviour is correct for that, input. Having been satisfied that

the program behaves correctly for several representative samples, a degree of
confidence is gained that the program is correct. The only way to be certain that

a program is correct is to test it for all possible sets of input. This exhaustive
testing would not normally occur for one of three reasons.

Firstly, it is likely that the length of time required to test a program exhaustively

is prohibitively high. For example, a simple program using three input variables
9 ooeach of which may take one of 4 x 10 values would require 6.4 x 10 tests. If

the program executed for a relatively short time of say ten milliseconds this
exhaustive test would take slightly longer than 2iq19 years to perform. Dijkstra

£dAHL72 ̂ points out that an exhaustive test of a particular computer's
multiplier would take 10,000 years.

Secondly, if it is fairly straightforward and quick to test a program in this manner

then that program is likely to be so trivial that it would never have been written.

Lastly, assuming the program is not so trivial and that it was exhaustively tested,

then its existence is no longer necessary as it can be replaced by the table of

results so'produced.

2.11 Program proving
Taking an operational viewpoint, programs are written in languages executable by,

possibly abstract, machines. If a section of a program adheres to the rules of a
particular language then some form of action as defined by the semantics of that
language will occur. It is assumed that a computer will perform exactly the
functions required by a particular language, that is to say it is to be expected
that for all defined constructs of a given language, the computer will perform
those operations which the language definition demands and no more or less.

8

In making this assumption it is noted that the discussion of correct programs can

equally be applied to the language implementation and indeed the underlying

machine structure. Even with this assurance it is still the case that programmers
require some alternative language to express the function of a program. This is

so for two reasons.

Firstly, as Brady £b r AD773 points out, all languages allow some form of
comment facility and comments are used by most programmers to describe
sections of the program to readers other than the computer. Some languages

positively encourage documentation aimed at humans being embedded in the program.
Much of the mandatory proforma of Cobol programs are one such instance. Algol 60

encourages labelling the end of a block or procedure by allowing a 'free comment'
after each end. (It is , however, ironical that this facility is one of the greatest

sources of error when a semicolon is inadvertably forgotten after an end and the
following statement ignored by the compiler as a comment). The common belief,

expressed for instance by Yourdon ^YOURD753 » that program quality is
increased by a large number of (meaningfull) comments is further evidence that

programmers need an alternative means of expressing the intended functions of
sections of a program to that of the programming language itself.

Secondly, it is common for a programmer to believe that the language constructs
used will perform the intended tasks only to find later that this faith was misguided.
When a comment occurs in a program, it is usually intended to describe that
section of the program, the functions of particular variables used, the method
used and the state of the program at that stage. It is this last function of a comment

that is most relevant to this discussion. At points within the program text the state
of the program can be specified or 'asserted'. In 1946 J Neumann and H Goldstone
introduced flow charts and the original flow charts they used included 'assertion
boxes' {_NEUM633 . In the mid 1960's it was suggested that programs can be
provably correct by expressing matters of fact concerning the program in a
formalised mathematical notation. Quite independently, P Naur in 1966 and R Floyd

9

in 1967 used this method for proving correctness. Naur £ nAUR66^ called

these specifications of the state of the program ’snapshots' and Floyd £f l OY67

called them 'tags' or 'assert ionsMcCarthy did similar work in
proving the properties of certain evaluations of recursive functions.

Floyd used a flowchart language and expressed the assertions in first order

predicate logic. The flowcharts were constructed from five basic units:

At each edge (connecting arrow) of the flow chart, an associated assertion is made.
For each edge e the assertion is 1(e). For example, in (i) the assignment command
is executed and immediately prior to the execution, I(aj) is true. After execution
of the assignment I(bi) will be true where:

I(al) A x = f h I(bi)

where P I- Q means 'from P one can deduce Q '. In (ii) the assertions will be
obtained from:

Fig 2.1

I(ai)A & M (b l) I(al) A & I" 1(^2)

and in (iii)

I(al) v I(a2) h I(t>i)-

10

To prove a program expressed in this flowchart notation, it is shown that whenever

a command is reached by a particular edge and that the associated assertion for

the edge is true and that the command will be left (if at all) by any exit edge with
its associated assertion true. Then by induction over the number of commands

executed it is shown that if a program is entered (by a unit of type (iv)) with the
associated assertion true, it will be left (if at all) with the associated assertion for

the exit edge true (exit is through a unit of type (v)).

The proviso ’if at all* is included because this method of proof does not prove that
the program will terminate or that any substructure of the flowchart will ever be

left. Separately, a proof that a program or substructure will terminate is given.
This termination proof is based on showing that particular variables have their

values bounded and as such cannot continually increase or decrease. The proof of
termination is required because of the definition of a correct program given
earlier including the phrase 'in a finite time'.

This approach, involving a flowchart language, is that of stating in rigorous
mathematical terms the state of the program in terms of its variables. These

statements of fact are in addition to the program itself. Hoare £ hOAR7i3
argues that programs should be built and proven at the same time. Hoare's
argument includes the opinion that the proof and program can be partially merged
by including assertions in the program text. The basis for this is twofold.
Firstly, the programmer is encouraged to state explicitly the assertions that
are otherwise assumed and so perhaps is more likely to question their truth;

and secondly, any deviation from the assertions at any point can be detected and
reported, at run-time, at the instance of its occurence. Igarishi, London and
Luckman £lGAR73^ have introduced an assert command into Pascal.

More recent work in program proving, especially by Hoare and Dijkstra £pAHL72j
HOAR7l3 , has been in the area of analysing what styles of program

structure are more readily amenable to proof. Their approach includes isolating

11

constructs which when used make a proof more difficult to formulate and those

which when used make a proof more straightforward. An example of one such

construct which makes proof more straightforward is the while statement:

B is a condition yielding true or false and S is one or more sequential statement(s).
The notation used in proving such constructs is that of:

where P and Q are assertions and S is a statement or several sequential

statements, and means that if P is true prior to execution of S then Q will be true

after the execution of S. The theorem stated for the whole construct is as
follows. If it can be shown that some assertion P is true after one iteration of

S providing that it is true prior to that iteration, then it will be true after any

number of iterations, including none. P is then invariant. When the while construct
terminates, B will be false (unnatural exits from the loop not being permitted).
Immediately prior to the execution of S, B will be true. The resulting notation
for the while construct is then:

while B do S

P L s } Q

P (_S ^ P

leading to:

P P A B

where:

P A B P

12

Dijkstra ^DAHL72^ argues that the structure of a program text should reflect
the structure of the computation. He suggests 6 basic units for building

programs:

case i of (Sj_, S2 . . . Sn)

(6)

Fig 2.2

13

These all represent a decomposition of the program into basic units. The first is

called concatenation, (2) (3) and (4) selection and the last two repetition. The

important property of each unit is that it has only one entry and one exit. This
tends to simplify the proof of a program when written using only these units. An

example of a proof using constructs of type(l) (2)and(5)n°w follows.

2,12 Example of a proof

The following algorithm expressed in Pascal is designed to find the largest value
contained in a set of numbers. The following declarations are assumed:

const n = . . . ; £_a positive value ^

var a: array £ l . . n) of integer;

i, max: integer

The algorithm is expressed as:

1) max: = a [1] ; i : = 2 ;

2) while i <= n do begin

3) if a [i] > max then max: = a £ i "}

4) i: = i + 1 end;

5)

Before commencement of the algorithm we assert that n >o. After execution of

(1) we can assert that ’max' is equal to a [l] i. e 'max = a,'. We can also assert
that 'i = 2 '. The first assertion can be alternatively expressed as:

i - 1
V xx max ^ ax A n > o A i = 2

14

meaning for all values of x between 1 and i - 1, max is greater than or equal to

a [x] as well as n being greater than zero. This is clearly so as i - 1 has the

value 1 and so there is only one value of x in this range, the value l,and a [l]
is equal to max.

On reaching (2), if i (which has the value 2) is greater than n, then the algorithm
terminates at (5) with the truth of:

i-1V X. max ^ a* A i > n A i = 2 A n > o (P)

The truth of i > n A i = 2 yields n < 2. This coupled with n > o yields the
truth that n=l = i - 1 and so (P) simplifies to:

x | max > a* a n > o <Pf)

If, however, on first reaching (2) i is not greater than n, the loop is entered
at (3)

At (3), on this first execution, the assertion

max ^ . a x A i ^ n A n > o (Q)

is true.

After obeying (3), max will either retain its value (if this is greater than or equal

to a U]) or will equal a [¡J (if this value was larger than max). This then asserts

the truth of:

max ^ a [i]

i-1 I
The formula V jX J max) a x A max > aj is then true and simplified to:

15

^ 1* x J max ^ ax A n > o

At (4), i has not changed value and so the assertion i ^ n will still hold and

so we can assert

V x | max) a x A i ^ n A n > o

After obeying (4) i is increased by 1. This is reflected in the assertion as:

V ̂ x I max) a x / \ i - l 4 n A n > o (R)

This can be compared to (Q) above and it is certain that if (Q) is true then so is
(R). In other words, the truth of (R) is not affected by the execution of statements
(3) and (4). (R) is then the ’invariant’ of the loop. Dijkstra ^DAHL72^ states the
theory on page 14 that if a relation holds on entry of a reptition and one execution
of the repeated statement does not destroy the truth of that relation then the

relation will hold on the loop’s termination. The relation (R) will then hold if and
when the loop terminates. For the loop to terminate, the controlling relation

must be false, that is to say

-i i ^ n
or i > n (S)

Then at (5) we have both (R) and (S):

1 - i I
V jx) max) ax A i - 1 ¿ n A i ^ > n A n > o

Introducing k as an identity equal to i - 1 we have k=i - 1. As i > n, this can be
expressed as k +1 > n, or k > n. The final assertion is then:

V i x | max ^ ax A k > n A k ^ n A n > o

The relation k ^ n A k ^ n yields the truth of k = n and the final assertion becomes:

V x | max) a x A n) o (T)

16

This is identical to (P*) and is the condition that must hold if the algorithm is

correct. It should be noted that this proof has not included any reference to the

finite range of values of integers representable by a program’s variables and also
does not prove that this program will terminate.

2,13 C onclus ions

The above example shows how lengthy a proof can be for even, a small program.
Generally, the effort involved in proving a program correct will be far greater

than that involved in writing the program. Some effort has been made to automate
the process of proving a program correct. Igarishi,London and Luckham £ IGAR73J
devised a system which,given assertions corresponding to each line of control in

a program will simplify all path conditions where possible. This then leaves only
a few path conditions for the user to prove. An interactive system for formulating
proofs and defining theorems is described by Gordon ^GORD77aj , £GORD77bJ.

The system LCF (Logic for Computable Functions) helps generating proofs in an
interactive environment.

Proving programs correct may seem to be the ideal solution to the problems of

program reliability. It is the large effort involved in proving a program correct

and the expertise required to formulate the proof that inhibits more widespread
use of this technique.

Consider a large program such as a commercial applications package or an
operating system. It will almost certainly be impractical to exhaustively test

such programs, but equally it could be considered impractical to prove their
correctness if this process was lengthy. Preventative techniques would be
employed in the production of such programs. The program would be tested and
errors arising investigated. At some stage in time the program would be
expected to fail rarely. Proving such a system correct may well take considerably
more effort than the original production and testing. It is the consideration of

17

expense of effort which has a large role to play in the decision as to whether or

not a large project will be justified or not.

A similar decision will often be made when a programmer is considering a small

program which may not be run very often or which has a short life. In this

situation a combination of error preventative techniques, diagnostic facilities
and some proportion of 'informal proving' is often used whereby the programmer

is convinced beyond 'reasonable doubt'.

A particular environment where program proving is at present inappropriate is
that of students learning a programming language for the first time. Firstly it is

extremely difficult both to learn a language and learn how to formulate proofs
simultaneously. Secondly it is unlikely that a correctly formulated proof will be
given by a beginner. An incorrect program proven correct by an incorrect proof
is a potentially dangerous situation. There are currently no known examples of

students being taught to prove programs correct while they are learning a

programming language for the first time.

In conclusion, program proving is clearly a desirable ideal but cannot be

regarded as the programmer's sole tool for writing reliable programs. The
concept of a neat, formalised mathematical proof is appealing but is itself

dependant on the assumption that mathematics is absolutely correct - or indeed
suitable for that particular environment of the program. As mentioned above,
Leavenworth £ LEAV70^ , by testing one of Naur's programs which Naur

£ nAUR69^ had 'proven' correct, showed that program proving and program
testing are similar. Proving is a method of testing a program but without
running it on a machine. The programmer interprets the program by hand making
assertions about its behaviour in a predicate logic. In testing, the programmer
runs the program on a machine making assumptions about its reactions to
certain inputs. As has been shown, neither method can be considered ideal at the
present time. Testing is not ideal because it does not cater for all eventualities

18

and proving is not ideal because it relies on a correct programmer. However,

program proving must play a major role in attempts to write reliable software.

Advances made have much reduced the effort needed to prove correctness and by

automating proof checking, have lessened the reliance placed on the programmers

expertise in logic.

It is expected that doubt should be cast on a program declared to be correct by a
programmer who has tested it thoroughly. Similarly doubt must be cast on a

program which has been proven correct. It is perhaps even more critical to
doubt a program proof. Because of the great reliance placed on mathematical

proofs it can be easy to accept a program proof as testimony to a program’s
correctness. If the proof is wrong then this misplaced reliance is dangerous. Even
considering such disadvantages of program proving, its role in programming is

clearly justified if only because its existence as a limit will tend to pull the
average programming practice towards the correctness that it demands.

2.2 Structured Programming

The previous discussion on program proving suggested that the style of writing a

program has a large influence on the effort required to prove its correctness.

Dijkstra £*DAHL72 ̂ argues that programs are more readily proven correct if
there is a close relation between the progress through the computations of a

program and the progress through the program text. In discussing structured
programming Dijkstra states that one of the aims is to make well structured

programs so that 'the intellectual effort (measured in some loose sense) needed
to understand them is proportional to the program length (measured in some

equally loose sense)'.

The term structured programming has been used to describe many programming
practices such as modular programming, stepwise refinement and goto-less
programming. In many ways structured programming covers all these areas.

19

The common belief that structured programming must mean goto-less programming

is incorrect but not without foundation. An unrestricted use of goto can easily

lead to unstructured programs. In a large program, the presence of a label can
mean that elsewhere in the program any number of got os could transfer control to

that label. In considering whether or not a section of program that contains a label

is correct assumptions are made. To make a valid assumption means that
consideration of all the sections of the program that contain a jump to that label
must be made. This is clearly more error prone than it would be if no label

existed. It is this uncertainty of transfers of control that make the goto statement
error prone. It has been said by Barron that if a goto statement is justified then
so is a comefrom statement listing all labels which (otherwise) would be goto

statements.

A program that is well structured implies that the whole program can be
understood by looking at small sections at a time and in considering each section

little or no cross-reference searching through textually distant sections of the

program is necessary. This has several consequences. Firstly if a section is

textually too large to consider as a whole then it should be split into distinct
sub-sections which are individually small enough to consider. Secondly any use

of a goto statement should be very restricted so that it is both immediately clear

where the control is passing to and that this jump distance is small and in the same
section. Thirdly this restriction on localisation of the use of goto necessitates (in
a larger than one or two section program) the use of procedure calls. Finally as
each procedure call would need to be self evident in its action in order that the
first consequence is not violated this implies that procedures should perform well

defined basic tasks that are fundamentally required in defining the program's

function.

In a large program many procedures would be needed and they would essentially be
used as basic statements thus creating a new language on top of the programming

language being used.

20

The resulting program structure can be represented as a tree structure:

program .

program sections.

p roced u res
defining language
fo r s e c t io n s .

p ro ce d u re s
defining language

fo r procedures
above.

programming
language.

Fig 2.3

This diagram depicts several levels. At the bottom are the programming

language statements which define the bottom-most procedures. These basic
procedures are used in defining more advanced procedures which in turn are

used in eventually defining the program’s function. How deep the tree is will depend

upon the size of the program.

The notion of stepwise refinement £wiRT71aJ is apparent in this tree structure.
In stepwise refinement one starts by defining the program's function as a short
statement. This corresponds to the root of the tree. This statement is then
refined into two or three statements which themselves represent subgoals of the

initial statement. This refinement continues down the tree until the statements are

simple enough to be expressed in an existing programming language.

The structured approach to programming has been shown earlier to result in

programs which are easier to prove correct and this reason is Dijikstra's
recommendation of structured programming £dA.HL72 ̂ . If a program is tube

structured in a way that minimises the task of proving it correct, by definition,

this increases the ease of asserting conditions oh the program's behaviour. It
follows from this statement that each section of the program, being expressed in
a way facilitating a correctness proof, is in the best form for the programmer to
understand exactly the resultant behaviour and to be convinced in an informal

manner that this section of the program is correct. By restricting program flow

to the small set of basic building blocks described in the previous section the
programmer, being well aquainted with such control structures, can call upon
the well established experience of their behaviour. This knowledge enables ready

understanding of the program by others and increases the likelihood of the

programmer being satisfied of its correctness.

2.21 Modular programming

The term modular programming is used to describe the division of a program

task into several sub-tasks. Each sub-task should be an isolated function of the
program that is self contained to the extent that it can be written outside the
context of the complete program. This technique has two advantages. Firstly it

is easier to comprehend several self contained programs individually than one
large program performing each task with no demarcation. Each identifiable sub­
task can be understood as a complete unit without reference to other units.
Secondly, modular programming is advantageous should a program be written by
more than one person. Each member of such a team could be assigned one or
more complete units which could be programmed independently of the other units.
The programmer would work to a specified interface between units but need only
know what other units do and not the details of how they do it.

I

22

At the start of this section, the statement made by Dijksta was quoted. The

statement suggests that the effort required to understand a program is

proportional to its length. If the complete function of a program is expressed as
a whole with no attempt to divide it wherever individual tasks can be isolated then

it seems reasonable that the effort required to understand such a program would
not be proportional to its length. The effort required is likely to increase in an
exponential manner for such large programs. There is a limit to the amount of

program text that can be retained in the human mind at a given time. Understanding

a large program is then a process of understanding individual functions of that
program separately. If these functions are not logically and textually isolated this
process is clearly hampered. It would seem reasonable that the effort required to
understand one small program is not affected by how many similar sized programs

are to be understood next or have just been understood. If the process of
understanding a large program is that of understanding each small section

individually, separately and sequentially then Dijkstra's statement is satisfied.

The effort required to understand large programs written in a modular fashion is

then completely dependant on the programming style used within each unit.

The units described can be regarded as the nodes of the tree on figure 2.3 down to
a certain depth. The depth of the lowest node which would be considered a complete

unit depends on the size of the program. The size of a unit cannot be fixed but is

bounded by two considerations. The first consideration is that as described above;
each unit should be small enough to be understood readily as a whole. If a unit is
considered too large then functions within it are isolated and treated separately.

This process adds an extra level into the tree. The second consideration is that as

more levels are introduced into the tree there comes a point where the tree is too
deep for easy understanding of the higher level units. In understanding a unit it is
necessary already to understand the functions of the units below on the tree. As
the depth of the tree grows the rapidly increasing number of units comprising
the program may become too large. Understanding a unit is easier if the need for
that unit is realised. To understand sequentially many units with little realisation

23

of their intended purpose could be more difficult than understanding fewer larger

units. This is particularly true where it is difficult to isolate sub-tasks performed

within a large unit.

An aspect of modular programming equally important as splitting the program

statements into manageable sizes is that of the data used by these units. It would
be possible to declare every data item used by the program globally. That is, all
data items would be the property of the top tree node. Apart from the obvious

problems that could arise from recursively called procedures this approach is not
desirable. For the same reasoning that has been used to keep program units to a
manageable size, the amount of data declared within a unit should be kept to a
small size. Data declared within a unit should be only that required either

directly by that unit or by more than one unit at the next level down the tree. The
data declarations are then spread down the tree of figure 2.3 to where they are
required. This refinement is especially necessary if several people are writing

units of a program. Each unit can operate on its own declared data without regard

to possible corruption of that data by other units. Even when one person is
writing the program, it is helpful if when writing a unit, regard does not have to

be paid to other units'access to common data. This aspect of localising data to the
units that act upon it is discussed in the next section in relation to classes and

modules.

2.22 Stepwise refinement

The notion of stepwise refinement was introduced by Wirth £wiRT71aj The

essence of stepwise refinement can be described using figure 2 .3 . The tree is
created from the top downwards. First of all, the function of the program is
described. This is then refined by splitting this function description into several

more detailed descriptions, thus creating the nodes one level down. This process
is repeated on each node until the detailed description is directly represented in
a programming language. In parallel with this decomposition of the initial

24

specification Wirth includes the refinement of the data used. As tasks are

decomposed, the data structures may need refining to suit the more detailed

descriptions.

This process does not imply that initial refinements are binding on the final

program. Earlier descriptions may be revoked at any refinement stage and

restated. This backing up the tree can continue to the top if necessary. The
notation used for each refined description depends on the problem being solved.
While the target computer language is the final result, Wirth argues that the
notation should be one that is 'natural to the problem' for as much of the

refinement process as possible. The direction that this notation proceeds is
determined by the target language and therefore stepwise refinement is more
suitable if this target language allows a natural expression of the problem and its

data.

Stepwise refinement inevitably leads to a modular program as each refinement

produces well defined units. The program's data is refined and declared around
the relevant units as the process proceeds. Wirth does, however, point out that
decisions about data representation may have to be delayed as the target code

that will result may not be readily forseeable. The detailed instructions to

manipulate the data will dictate a natural representation of the data structures

required.

2,23 Summary

The principal aim of structured programming is to produce programs with a

high probability of being correct. The main rule of this technique is that programs
should be written in units which are both short enough to understand easily and
written in a style that reflects the problem being solved in a natural form. The

data representation chosen should ideally reflect the abstract objects the algorithm
is intended to manipulate. For complex problems the ability to structure the data

25

types used is a clear advantage. For this reason it is easier and more natural to

use structured programming techniques in languages such as Algol or Pascal than
Fortran or Basic, the latter languages offering little scope for the programmer

to design a data representation. At the beginning of this section, the consequences
of programming in units of manageable size was discussed. The program

inevitably takes on a tree structure as illustrated in figure 2.3. The advantages of
such modular programming and a technique for ensuring its use were related.

Stepwise refinement is a top-down programming technique. In building the tree in
figure 2.3 no node is created before the node it is connected to above. Strict
bottom-up programming whereby the lowest levels are built first implies building
basic functions on a language then using these functions as a new higher level
language to create the functions one level higher and so on until the program is
complete. To decide what basic functions are required would require a knowledge

of the functions above and in practice a judicious mixture of these two methods is
often used. It would be rare to build a program by strictly adhering to a policy of
completing one level of the tree at a time and neither bottom-up nor top-down

techniques demand this. They do demand that the tree is built strictly by following
the connections between the nodes without skipping over a level. In summarising

structured programming four points are detailed. Firstly programming takes
place in small steps. Concentration on a small isolated function of a program

should ease the task of building the program and give the opportunity of proving
each function correct formally or informally convincing oneself of correctness at
each stage. Secondly when a change to the program is required, it should be

isolated to one or more basic units which can be altered with minimal alteration
of the program as a whole. This can be most important in commercial programming
where program specification can easily alter. Thirdly the program should be more

easy to understand as each basic function can be self documenting and concentration
on small areas of the program at a time is possible. Finally the opportunity of
reflecting the structure of the data to the structure of the program is provided.

The various manipulations required on the data structures of the program

26

are reflected in the design of those structures and a natural correlation can

exist between the data and the statements £ WIRT76^.

2.3 Syntactic constraints

A syntactic constraint is a method whereby a language demands the explicit
declaration of an object or operation which could otherwise be deduced. The

constraints imposed by the syntax definition of a programming language can play

a large part in creating correct programs. Some common sources of error can
be recognised and programming languages defined such that syntactic constraints
eliminate such potential sources of error when possible. A common method of
imposing such constraints in programming languages is often termed redundancy.

That is, a programmer is required explicitly to declare some attributes of a
piece of coding or of a variable which could otherwise be inferred by the compiler.

Languages such as Algol and Pascal require that all variables be introduced by
a declaration. Fortran does not require a declaration; instead a variable is

introduced by its use in the program. The type of the variable is dictated by the
first letter of the variable name: if the first letter is one of I, J, K, L, M, N

than that variable is an integer otherwise it is a real. In using Fortran, a

misspelling of a variable name will result in two different variables being
allocated by the compiler - and a potentially difficult error to find.

2.31 General
Another instance of redundancy is that of associating a variable name with a type.
In Pascal, for example, a declaration might be:

var i : integer;

b : Boolean;
x : real;

smalli : 0 .. 99;

27

In this case, i, b, x, smalli are variables each having a particular type which

defines the set of values these variables may have. An assignment such as:

i : = b

would not be allowed by Pascal syntax rules, b is a Boolean variable and i an

integer. It is not immediately obvious what the programmer would mean by this
assignment. The variable smalli is a subrange of the integer type and may only
have the values ranging from 0 to 99. Whereas any integer or subrange of an
integer may be assigned to smalli without causing a syntactic error, at run time

a value out of the range 0 to 99 would cause an error. In PL/1 the assignment
i : = b would be acceptable and the values true and false yield the integers 1 and 0
respectively. In Pascal the same effect is achieved by:

i : = ord (b)

where ord is a function which maps other types onto the integer range of values

(if possible).

The need for a programmer explicitly to state that a type conversion is required
can be argued on the grounds that by forcing the programmer to do so and not

allowing the compiler to assume conversion is less likely to result in an error.
An example £bARR77̂ of this is the statement

a < b < c

where a, b, c are integers. As a mathematical expression, this would mean that
b is within the range of values a to c. In PL/1 this would be parsed as follows:

a < b would produce a result true or false.
This would then form

28

true<»-C or false< c
true and false would be automatically converted

to 1 or 0 and compared with c to yield a Boolean
result.

This may be the intention of the programmer, but by forbidding implicit type
conversion a possible error is averted.

As another example, consider the following assignment where i, j are integers

and x is real:

i: = j + x

This will usually be interpreted as follows:

1) j ' is formed as the real equivalent of the integer j.

2) the sum j ' + x is calculated yielding a real result r.

3) the integer equivalent of r, r ' is formed (if possible)

4) r ' is assigned to i.

In addition the variable names are (usually) dereferenced automatically to yield

their values.

In Algol 60, step 3 will result in the rounding up of the real value so that for

instance:

j: =1;
I: = 3/2;

29

will result in 1 = j being true. This implicit type conversion can clearly lead to

unexpected results because the rules for conversion vary between languages and

are not explicit in the program text.

In Pascal, an assignment of the form

i: = < expr >

where < expr > results in a real value and i is an integer is not allowed. Instead
the forms:

i: = trunc (< expr >)
or i: = round (< expr >)

must be used where the conversion is explicitly stated as being by truncation or

rounding respectively.

A particular instance where this syntactic constraint can detect a possible error

is the case of:

i: = j/k

where i, j , k are integers. The result of j /k will generally not be integral and

in Algol 60 results in a rounded result. Because Pascal does not implicitly

convert real to integer this assignment would be rejected as / is defined to

produce a real result.

Perhaps the most error prone numerical operation is that of exponentiation:

In Algol 60, the type of the result yielded by

a t b

30

depends not only on the types of a and b but also their values. The complex rules

for the value and type of the result are given in the Algol 60 report £ NAUR62}

as follows:

1) a of type integer or real

b of type integer

b > o the type is the same type as a.

b = o the type is the same type as a and the value is 1 (1.0)
unless a is zero in which case the value is not defined,

b < o The type is real and the value undefined if a = o

2) a of type integer or real

b of type real

a > o the type is real

a = o the type is real and the value is 0,0 unless b ^ o when the
value is not defined.

a < o the type and value are not defined.

For example 2 T i would yield an integer with value 4 if i was +2 and a real with

value 0.25 if i was -2.

These complex rules are not so much a comment on Algol 60 as a comment on the

exponentiation operator. Because of this dependance on the values, the value (if

defined at all) and type of a t b can lead to unexpected results. It is mainly
because of this uncertainty (and difficulty of implementation) that Pascal imposes
the ultimate syntactic constraint of not including an exponentiation operator. In
this way, programmers must implement exponentiation themselves and include
explicit actions to be taken depending on the result of the operation (if any).

31

2.32 Classes and Modules
A veiy important syntactic structure is that of then ’class' of Simula £ b iRT733

and the 'module' of Modula £wiRT77} . Both constructs represent a very

localised section of self contained program which contains a set of data items
and all procedures necessary to manipulate this data. In this way, specific

functions required by the main program can be built and tested in isolation from
each other. An attempt to manipulate a class's data other than by using one of

its procedures will result in a compilation error. The idea behind this design is to

localise an error caused by incorrect manipulation of data items. As an example,
consider the operation of a stack. Four procedures can be given:

1) Pop an item off the stack
2) Push an item onto the stack
3) Return the value of the item on top of the stack

4) Test for empty stack

This may be programmed in Simula as follows:

class stack (size); integer size;

begin

integer SP; integer array s tk (l:s iz e) ;

procedure pop;
if SP > 0 then SP: = SP-1 else

error ('stack underflow');
procedure push (i); integer i;
begin

SP: =SP +1;
if SP > size then error ('stack overflow1)

else stk (SP): = i;
end ;

32

integer procedure TOS;

if SP = 0 then error ('empty stack accessed')

else TOS: = stk (SP);
Boolean procedure empty; empty: sS P = 0;

SP: = 0 {initialisation - obeyed once when a variable

of this class is declared ̂
end * * * stack * * *

A declaration of the form:

ref (stack) si (4);

would create an object of class stack. This object would contain the stack itself,
its size (4) and a stack pointer (SP). The statement(s) following the procedure

definitions in the class would be automatically obeyed, initialising the stack as

being empty (SR = 0). The operations then available would be:

si. pop
si. push (n);

si. TOS;
si. empty;

remove the top element

push the value of n onto the stack

the value of the top element of the stack

indicate whether the stack is empty.

There is no syntactically correct means of accessing the stack's elements other
than by these four procedures. Should an error occur, then by examining the nature

of the error the section of program responsible is readily isolated. For example,
a programmer manipulating a stack directly in several sections of a program may
attempt to remove several items from the stack without correctly altering the
value of the stack printer. Similarly confusion may arise as to whether the stack

pointer is pointing to the next free location on the stack or the top location of it.
This localisation of data manipulation has three intended purposes. Firstly,
should an error occur it can be localised more easily; secondly all elementary

33

operations on the data items can be tested in isolation and finally new class's

can be introduced without the fear that they will interfere with existing ones and

result in indirect errors.

2.33 Summary

If a language design incorporates certain syntactic constraints, the chance of a
program containing errors can be decreased. Clearly there exists a balance
between constraining the syntax to eliminate errors and providing a language that

is usable. The particular case where syntactic constraints designed to minimise
the chance of a program error are of greatest importance is in the area of

concurrent programming. Per Brinch Hansen £hANS773 makes it quite clear
that ideally all errors should be trapped at compile time because when two or
more processes are corunning it may be impossible to repeat a particular event
or error. Brinch Hansen designed Concurrent Pascal to have a syntax containing

such constraints designed to eliminate program errors as discussed above. At
the time of writing, Niklaus Wirth is working on a new language for programming
operating systems. The language is a combination of Pascal and Modula

f WIRT7l3 , £wiRT77^ and is being designed with these points in mind.

2.4 Diagnostics
Techniques have been described that increase the chance of a program being
correct. It can be argued that if structured programming and program proving
techniques are used then the program is guaranteed to be correct. Even so, it is

still true that incorrect programs exist. This is so for three reasons:

1) Such techniques as proving were not used.
2) The techniques were not used correctly.
3) Beginners may not be sufficiently capable of using

such techniques.

34

Some justification for the first reason has already been given and the second

reason is a particular case of 'Murphy's law' that is if something can go wrong it

will. For whatever reason, a programmer will often find that the program

written is not correct. When this happens, the programmer will embark on what
is commonly called the debugging phase, that is, finding out where the errors

(bugs) exist and eliminating them. To locate the errors, the programmer will

make use of any evidence of error available. Most usefully, the computer system

will provide diagnostics at the instance of an error. A diagnostic can be said to be
a computer given clue to the incorrectness of a program. The use of such
diagnostics has varied from system to system and from error to error. If a
program runs and stops with the message:

Failed

then this is diagnostic. It informs the programmer that the program has not run

correctly (unless, of course, failure was intended). If the program stops running

and a message states:

Failed - division by zero.

then this is a better diagnostic because it gives the reason for failure and so

indicates that the section of program including division enclose the error.
Following on, a better diagnostic would be:

Failed - attempted division by zero in line 36.

because this informs the programmer the line in which the error was detected.

This may not necessarily be the line which contains the bug and perhaps the best
diagnostic would be of the form:

35

Failed - attempted division by zero at line 36. Variable

b was assigned the value zero at line 25.

The usefulness of a diagnostic can be determined by the effort involved to locate
the error and subsequently correct it.

Diagnostics are especially useful in the case of a very error prone programmer.
The most common case of such a programmer is the beginner learning how to
program or learning a new programming language. Such beginners cannot
generally be assumed capable of proving programs when they do not know the

language itself properly. They will need good diagnostic information as errors
are very likely to occur and the cause of these errors will probably not be
understood. Not only is it a help to the beginner to learn the language if good

diagnostics exist, but also, if such diagnostics are absent then this will be an
impediment in such a learning process.

High quality diagnostics are not just necessary for the beginner. The experienced

user can often save time if at the instance of an error, good quality diagnostics

are available. Many systems provide a facility for a post mortem dump to be

provided as a last resort diagnostic'. The programmer is expected to interpret

this vast array of digits and (usually with the aid of a manual) locate the section
of program that is incorrect. One or two manufacturers are currently marketing
calculators which will perform arithmetic in either decimal, octal or hexadecimal
notation and convert numbers between these radices. Presumably these are aimed
at people who have to interpret such post mortem dumps. Surely the computer

system which converted the programmer's source program and data items into
the post mortem dump form is much more suited to interpreting it than the
programmer. This point is expanded in the following chapter but serves the
purpose of justifying the need for good quality diagnostics to be provided for all
users of a system including the experienced ones.

36

Diagnostics can be placed in two main categories: compile-time diagnostics and

run-time diagnostics. Compile-time diagnostics are given when a program does

not conform to the syntactic rules of the language, that is it is either grammatically
incorrect (context free) or is not consistent with some other section of the program

(context sensitive). The first type of error could be,for example,a typographical
error in formulating a particular language construct and the second type could be

the attempted use of a variable that has not been declared.

2.41 Compile-time diagnostics

In general compile-time diagnostics of a high quality are capable of being

implemented. The compiler, on detecting an error,can hold sufficient information
to diagnose the fault extremely well. The compiler after all should be well
aquainted with the language it compiles. Sometimes the presence of an error may
sufficiently upset the compiler that further errors may be wrongly diagnosed or

not diagnosed at all and some correct statements may be faulted. The degree to
which this occurs depends upon how well the compiler is able to recover. Two
examples of compilers which provide means for recovery on detecting an error

are the Pascal P compiler £wiRT71c^ and the PL/1 checkout compiler

fcoNvm] .

The Pascal compiler takes advantage of the fact that Pascal’s syntax can be
presented as a finite set of pseudo-finite-state recognisers and the syntax
analysis can follow the method described by Conway ^CONW63 ̂ , that is a

separable transition diagram technique. Pascal was then designed so that parsing
is possible with the constraint that only one symbol look ahead is necessary. In
this way, the syntax diagram can be represented in the compiler as a corresponding
set of procedures, each parsing a subgoal and using top-down parsing techniques.
Each procedure is provided with two sets of symbols of the language. These
symbols are the reserved words of the language which introduce particular
syntactic constructs. The first set is comprised of the symbols which may

37

permissably follow the construct being parsed. In this way, having parsed a

construct, if the next symbol is not contained in this set then an error occurs.

In the event of an error, the text is skipped over until a symbol in this set is
encountered. In order not to skip over important sections of the program a second

set of symbols is provided. This set consists of those symbols which may
introduce a construct which in the current context should not be skipped over. As
an example, in parsing an assignment statement such as:

x: = a + b

the possible follow symbols would be

; end

and those symbols which must not be skipped over are those which may legally
start a statement such as case with if <identifier> begin while repeat and

for .

The parsers proceed using the following type of statement:

if symbol = next legal symbol then get next symbol

else error

In this way, omission of certain key symbols will be detected but the compiler

effectively inserts them. This error recovery is fully described by Wirth

£wiRT71c} ,£wiRT76 ̂ .

The PL/1 checkout compiler uses a different approach for error recovery. It

has four basic actions which it may take in the event of an error:

38

1) Delete the next symbol
2) Insert a synthetic symbol

3) Replace the next symbol with a synthetic symbol

4) Delete the previous symbol

For example, confronted with two consecutive operands, it could either delete

one of the two operands or insert a binary operator between them. The tactic

applied is heavily dependent on the context. As a last resort the current statement
is replaced by a nil statement, which will identify itself at run time, and the
source is skipped over to the next reserved word.

These two different approaches are employed with different aims. The Pascal
compiler attempts to detect each error, report it and recover without giving

spurious extra errors. The PL/1 compiler aims to produce a compiled form of
the program that will run no matter how many errors are present. This approach
is justified for the environment where very few attempts may be made on any one

day to run a program and so time may be saved if the compiler corrects compile­
time errors and does so correctly.

In general, both compilers can recover from errors remarkably well; in

particular the Pascal compiler would be expected to because one of the design aims
of the language was to permit easy error recovery by a compiler.

2.42 Run-time diagnostics

Run-time errors are not as straightforward to diagnose. The compiler detects and

diagnoses compile-time errors well because the cause of compilation error comes
from a finite set of possible causes and the compiler by definition contains all the
language rules. A run-time system can detect an error symptom but not necessarily
its cause. It cannot automatically recover from an error, as is sometimes possible
during compilation, unless it has a knowledge of the program’s intended function.

39

This in itself would mean that a correctly working program already existed and

therefore is somewhat paradoxical. To provide good run-time diagnostics then,

the system would need to detect errors and provide whatever extra information
was required by the programmer to find the cause of the error. Recovery from

a run-time error, while not normally expected, could be possible.

2.43 C onclus ions
Run-time diagnostics have a distinct place in any process of producing correct
programs. They provide diagnostic information during the testing phase or
debugging phase. Earlier discussion pointed out the parallel between testing and
proving. A run-time system providing good diagnostics has as its parallel an

interactive proof checker such as that of Igarishi ^IGAR73^ or the Edinburgh

LCF fGORD77a} .There is a danger, however, in drawing this parallel too
closely because proving programs can easily be considered much more of a
preventative technique (which, ideally, it is). Concepts of structured programming

and syntactic constraint are preventative techniques used in writing correct
programs. Debugging is a cure. A loose analogy with these techniques can be

made with medicine. Human diseases can usually be diagnosed and often cured.
Similarly preventative medicine serves to lessen the chances of such diseases.

People will often arrange their lifestyle so as not deliberately to contract known
diseases. In finding cures and new diseases, as a result of diagnostic information,

medicine will add to its preventative procedures as a result of this new knowledge.
This analogy can now be drawn back to programming. Experience of the difficulties
of debugging unstructured programs reinforces the techniques of structured

programming. Experience of common causes of error gained in debugging leads

to preventative techniques being employed in languages to help eliminate these
sources of error. Classes and Modules are two similar examples.

This feedback is of great importance to programming and by itself justifies
sufficient attention being paid to debugging and diagnostics. This thesis is

40

concerned with high quality diagnostics at run-time and in particular, the

emphasis is placed on diagnostics concerned with data structures, an area that

is emphasised in the following chapters.

CHAPTER THREE

RUN-TIME DIAGNOSTICS

41

3.0 Introduction

This chapter describes the provision of run-time diagnostics. The need for run­

time diagnostics systems is argued for in terms of their usefulness, and a case
is presented suggesting that they fulfill as necessary a function as a compiler.
A set of currently existing diagnostic systems is described. Among this set are

examples of good diagnostic systems and some extremely bad systems. The

facilities that ought to be provided in a good diagnostics package are then
identified. Of particular interest is the provision of diagnostics concerned with
data structures and pointers which is seen to be an area where little progress
has been made so far. The filling of this gap is the prime objective of the work
here described and a diagnostics package is described which meets such a need.

3.1 Problem orientation

Introduction

The purpose of this section is to show that run-time diagnostics are required by

a programmer as a direct consequence of the availability of high level languages.
The term ’problem orientation' is introduced as a means of illustrating this need
for diagnostics. The process of programming involves formulating and

expressing the application of certain activities on specified data. A machine can

be programmed in terms of a given repetoire of tasks - the elements of an

available programming language. More powerful tasks can be defined in terms of
those functions that exist on the machine thus adding to the available set of
functions. As an example, the task of moving the contents of a given number of

storage locations from one address to another may not be an available hardware

function. This task can be performed using a number of available instructions in
a subroutine which can be made available as a general utility. In such a way, many
functions that are more powerful than the machine’s instruction set are
available. In effect, a language is created on top of the machine's language - the

Instruction set. This process is repeatable such that another layer of functions

can be created using this new set of instructions. As such a language develops, the

functions used to express algorithms become increasingly distant from the

42

machine's instruction set. The expression of an algorithm is, usually, more

laborious if it takes place using the lower level functions. The set of functions

available - the language - can be given a value relating to the relative ease in
which a particular algorithm can be expressed. In addition, the higher level data

manipulation functions that can be available may aid the task of expressing a

program's data structures. It is this loosely defined value of the relative ease
w ith which a particular program may be expressed that is called the problem

orientation.

3.11 The degree of Problem Orientation
The term problem orientation can be applied to available programming languages.
In doing so we can say that for a given task, language A has a higher problem
orientation than language B if (assuming the programmer is equally conversant

with both languages) the task is more readily expressed in language A. This does
not necessarily imply that language A is a better language. A different task may

be more readily expressed in language B. It is therefore the case that any
ordering of languages by their problem orientation can only apply for a particular

t ask or set of tasks.

The phrase 'high level language' is often used to describe a programming language
that has to be translated into a 'low level language', before it is executed on a
machine. The translation is performed by a compiler which embodies the definition
of the high level language in terms of the low level language of the machine's

instruction set. For most high level languages and most tasks,the high level

language has a higher problem orientation than the machine language and the
translation can be represented graphically on a line of decreasing problem

orientation.

43

compilation
---------------------------->

High level machine

language_________________________

Problem orientation

The higher problem orientation of a high level language is the main reason for

its existence. Other reasons include standardisation and portability. Before
writing a program in a high level language there is a translation from the
description of a task to another description of it in terms of the programming
language. This translation is what we mean by the term programming. It too can
be represented in a similar manner to compilation.

programming

Human High level
description language

Problem orientation

The complete process from human specification to machine language specification
is then:

Human language machine

programming ? compilation-----1
Problem orientation

The effort required by the programmer is to accomplish the transition along the

path A to B. With no high level language available the effort is increased to the
path A to C. It is clear that the programmer's task is eased if the 'distance* A to

44

B is small. This is accomplished by increasing the distance B to C - by producing
programming languages which have facilities for representing as closely as

possible the actions and objects of the tasks to be solved. The disadvantage of such
a system, as so far explained, occurs in the event of a program error. The high

level language constructs are in general unlikely to occur at the machine level

and once compiled, the specification of the program in the high level language is
no longer used. Should an error occur during the execution of the program or
should the programmer wish to locate errors by tracing the program's flow then

such diagnostic facilities are available in the first instance in terms of the
machine language only. The programmer uses the high level language in order to
avoid the mechanics of translating a program into a machine code. Providing
diagnostic information in machine level terms is not particularly helpful to a high

level language user. If the programmer had used the basic machine's code
then diagnostic information at that level would be useful. If this is the only
diagnostic information available then the high level language programmer is

actually at a disadvantage. The compiler hides the details of representing,

language constructs in a machine code. Given that such details of representation

are hidden from the programmer they should remain hidden. For example, an
error reportthat an illegal operation was attempted at a certain machine store

location should not be reported as that. A process working in the opposite

direction to compilation should map the machine language constructs back onto

the high level language constructs. An error should be reported in terms of those
same constructs used to write the program. The complete system can be

represented as below:

Human language machine
A programming B

*

compilation

diagnostic
information

C
4

Problem Orientation

45

The process of providing diagnostic information along the path C to B is

performed by a diagnostic program which should be as essential as the compiler

itself if the illusion that the distance B to C does not exist is to be fairly presented
to the programmer. It could be argued that a diagnostics program could report

information at a level between A and B. The programmer may have developed a
set of procedures which perform certain basic tasks and in effect constitute a

language of higher problem orientation than the point B. For example, an Algol 60
programmer may develop a set of routines to perform elements of list processing

representing list atoms as two consecutive elements of an array. It is argued
that the diagnostics package should not be expected to have the facilities to be
informed of such user defined procedures. The only way of informing the
diagnostics package of their function would be by a process similar to the

programmer writing these procedures in a recognised language. As that process
may have been in error, the diagnostics package may similarly be given erroneous

information.

3.12 Conclusions

In this discussion the concept of problem orientation and its use as a graphical

representation of compiling and programming has been introduced to show the

necessity for diagnostics packages of a high quality. Ideally, such a package should

perform a task in the opposite direction to the compiler and to the same extent.
The remainder of this chapter describes a sample of currently available diagnostic
systems. Features that are absent are discussed with a view to include them in
a diagnostics system.

3.2 Existing diagnostic systems

Introduction
Run-time diagnostic facilities are provided to help the programmer to test a
program and locate errors. The variation in the facilities provided and the way

46

they are presented is large. This section describes several existing diagnostic

systems. Whereas the sample described is by no means a complete list of all
such systems it gives an indication of the variations that exist.

3.21 PL/C execution supervisor

The PL/C system comprises a ’checkout com piler' and an 'execution supervisor'

£c ONW73^ . The language processed is PL/1. The system is orientated to a
batch environment and its main philosophy is to continue at all cost. The

checkout compiler is able to take educated guesses at the cause of a compilation
error and, on the basis of this guess, effect a repair. The execution supervisor

detects run-time errors, reports them in source language terms, makes a repair
and continues the execution of the program. There are some error conditions
which are considered fatal to the program run but these are few. The principal
reason given for this continuation after error conditions is that in a batch

environment runs of a program are infrequent and if a program's life can be

extended then more useful diagnostic information may be made available and the
repair may have been successful. The argument levelled at this approach is that

it tolerates bad practices. If a repair is successful then the programmer may not

correct the error or if the programmer is experienced in the repairs that will be

provided,erroneous short cuts could be taken. It is tempting to draw an analogy
with optimising compilers of which one opinion is that the programmer, knowing
the compiler will optimise the program, will take no steps to produce efficient
constructs. The analogy is, however, deceptive. It is true that the argument
levelled at optimising compilers is much the same as that argued in the case of

PL/C but optimising compilers can make many optimisations that the language
does not permit the programmer to do - this is not true of the PL/C execution
supervisor. Programming is a discipline and short cuts are generally to be

avoided on the grounds that they may be error prone or they may adversely affect
portability. It is difficult to believe that a program such as the PL/C execution
supervisor will make an intelligent repair in the case of a run-time error.

47

For it to continue sensibly after, for example, an array subscript being out of

legal range would require the execution supervisor tobe intimately aware of the

program’s purpose. If the supervisor were capable of this then either the program,
the programmer or both are made redundant.

The diagnostics provided by the PL/C execution supervisor are good. When a

program fails, either because a repair of a run-time error is not possible or the

user has specified that no further repairs are required, a detailed dump is given.
This dump lists all scalar and array variables giving their source program names

and current values. A program trace of the last eighteen changes in flow control
is provided and a count given of the number of times each procedure or label was
encountered. By request prior to the program run, a trace of the program’s

control flow is provided.

3.22 DITRAN Diagnostic Fortran

DITRAN provides run-time diagnostics for Fortran programs. It was implemented

on a CDC 1604 in 1965 £MOUL67^ . At run-time, all Fortran variables are
accessed indirectly through individual control blocks. Each control block

contains eight components. These components include the variable’s source name and

run-time address. By manipulating these eight components, DITRAN is able to
detect many error conditions. A variable can be flagged as undefined or not yet
initialised. One component detects whether the variable is an active parameter of
a DO loop so that assignments to such variables can be arrested.

When an error is detected, the message produced gives the identifier name and
the position in the program where the error occurred. The location is given

relative to the most recent statement label. The error messages are produced by
a separate utility program which handles three hundred possible messages. Each
message contains special characters which indicate positions for substitution of
components such as the identifier name or the statement number.

48

DIT RAN attempts to detect errors at compilation time whenever this is possible.

Some abuses of a variable controlling a DO loop are detected at compilation time

as are the uses of FORMAT statements - these are frequently not checked until
run-time by most Fortran systems.

DITRAN was designed to meet the needs of student users learning to program. It

appears to have succeeded in identifying areas where errors are frequent in that

environment and produces good error messages. Information is collected
concerning the kinds of error detected. This information is then available for
further enhancement of the diagnostics.

3.23 ALGDDT Dec 10 Algol dynamic debugging system

ALGDDT is an interactive run-time package for Algol 60 implemented on the
Dec system 10 £ DECa^ . The system allows inspection of and alteration to

the values of scalar variables including array elements. Break points may be
set at any statement in the program. On encountering a break point or an error,

the diagnostics package is invoked. Additionally the user may interrupt the

program causing entry to the package. Associated with a break point is an
optional command list which can contain any commands acceptable to the

diagnostics system. A common use of this facility is to type out the values of

certain variables and then continue from the breakpoint automatically each time
the break point is reached. A dump of all extant variables can be printed.

ALGDDT provides two facilities for inspecting program flow. A trace facility will
print out the most recent histoiy of program flow in terms of procedures called

and labels passed through. A profile of the program is available which lists
the number of times each procedure and each label was encountered.

All variables are referred to by their source program identifier name and the

syntax of commands to the diagnostics package has been designed to resemble
Algol 60. The resemblance to the syntax of Algol 60 is tenuous and rather cosmetic
in appearance. The facilities provided are good. The system is available to the

49

interactive user only and presents a powerful program development and testing

tool.

3,24 Glasgow Pascal diagnostic system
The Glasgow diagnostic system is a post-mortem program designed for use with

Pascal programs on the ICL 1900 series £\VATT77j .When a program
terminates, normally or due to failure, preselected information is provided by

this post-mortem program. The facilities available are a post-mortem dump,
a profile, a retrospective trace and a forward trace.

The post-mortem dump is provided if the program faded. It contains a list of all
extant variables and their values. The format of the variables' values is that of
Pascal; for example a Pascal set is listed in the same way it would appear in a

Pascal program. Arrays are partially printed, the first six and last one element

of each dimension appearing. Records are expanded such that each field is
displayed. Pointers are displayed as either 'nil' or the machine location they

refer to. This allows the user to determine equality of two pointers but no
display of the objects such pointers refer to is available.

The profile is a listing of the source program with the addition of a frequency
of execution of each statement.

The retrospective trace is a list of source statements obeyed immediately
prior to termination and in the order of their execution. The number of statements

reported is by default fifty.

The forward trace is a history of program flow from the start of execution. For

long running programs this list would be too large and two ways of controlling the
trace are available. The programmer can select which sections of the program
are to be traced, and the diagnostics package suspends tracing individual

50

statements after they have been traced a given number of times - two by default.

This system is designed for batch operation. The facilities required are

specified before the program run and the user, because of the batch environment,
cannot request incremental diagnostics during the program run as the behaviour

of the program advances. As a batch system its facilities are very good. Display

of extant variables in source language terms and detailed history of the program
flow gives great help to the programmer. The major failing is that only variables
that are declared in the program can be listed. No structures on the heap,
created dynamically, are displayed.

3.25 Algol 68R
The Algol 68R compiler is available on ICL 1900 series and was written by the
Royal Radar Establishment {\VOOD72j . This system is one of the worst with

respect to run-time diagnostics. The only diagnostic information provided by the
Algol 68R system is the current line of program input and output with an

indication of how much of that line has been processed. All other messages are
produced by the operating system George.

Several programs containing errors were submitted to this system. The errors
given were accessing undefined scalars, running out of store and accessing a
data structure via a pointer 'dangling' after that structure had been deleted.

In accessing scalar variables which have been given no value, an integer was

printed, with no error being detected, as -6815692 and when accessing a real

value the program halted with the message 'overflow set'.

Two methods of exceeding store limits were tried, infinite recursion and infinite
data creation. Both result in the same message being printed:

51

Illegal at instruction 313: 10 3 0(2)

with slight variations in the final numbers.

The dangling pointer access was not faulted and the 'object' being pointed at

printed out. It is clear from these examples that locating an error in this system

can be very difficult. The user has to simulate diagnostics by hand and include
statements at strategic positions in the program to print out various aspects of
the program's state. In reference to the diagrams of problem orientation given

in the previous section this system makes no attempt to relate errors detected
at the machine level back to the high level language.

3.26 Atlas Autocode and Manchester in-core compilers

Atlas Autocode £j3R0066^ is an Algol-like language which existed on the

Manchester Atlas computer. This system contained the first known instance of

a diagnostic package which refers to source program identifier names £CLAR67],

In the event of a run-time error, the program was halted and a message giving the
line number where the error was detected and the fault discovered. Following

this was a list of all extant variable names and values at each level of procedure

resting. The only scalar types in Atlas Autocode were real and integer Arrays
were not displayed by this package.

A similar system operates for the Manchester in-core compilers. The term
in-core relates to the fact that they compile programs directly into core rather

than creating an object code file for subsequent execution. In both the Algol 60
{ m ANC76^ and Fortran £mANC75 ̂ systems all extant scalars are

printed when an error is detected. Arrays are not printed. The local variables of
all nested procedures active at the time of error are displayed along with the
global variables of the main program. In the case of Algol 60, recursive calls
of a procedure will be unstacked giving the variable values at each level of

52

recursion. This display is terminated if it spans over two hundred lines. Both

compilers give a message explaining the error and stating the source line number

where it was detected.

3.27 ICL Cobol

The ICL Cobol compiler £lCL76^ is the most used compiler on ICL commercial

installations. Despite the large use of this system the run-time diagnostic
facilities are almost non existant. For example, should arithmetic overflow arise
a cautionary message is printed and the program continues. The manual states
that, in this case, ’the result will be indeterminate'. The programmer does,
however, have the opportunity to include routines in a program which will be

obeyed when such an error occurs. Cobol array subscripts are not checked. The
manual states that when a subscript is out of range ’the program can behave

unpredictably. The programmer is advised to test the value of subscripts before
using them*. In order to monitor the flow of a program, the manual recommends

insertion of write statements at certain places. The manual continues by

describing how such tracing of the program flow can be made more sophisticated
by the programmer inserting conditional write statements. It is strange that a

system so heavily used as the ICL Cobol compiler offers so little support in

debugging or developing a program. The Cobol programmer invariably still relies

on machine store dumps and a manual describing how to interpret such listings.
The purely mechanical processes the Cobol programmer has to perform in order
to cater for each program error eventuality could be readily provided by the

machine - in most cases at veiy little cost.

3.28 GEC 4080 Fortran and Algol 60
The GEC 4000 series computers contain Fortran and Algol 60 compilers with
very similar run-time diagnostic systems. In the event of an error at run-time,
a message describing the kind of error is given. The location of the error

53

is provided as a machine store location. The user has to go through a two stage

process in order to map this storage location onto a source program statement.

The compiled program is linked with the system’s standard routines prior to
execution. Examination of the link program’s listing is necessary to find the

procedure or program containing the given store location. The value of the store

location must then be altered by subtracting the store location of the beginning of

the program. This then gives the location where the error was detected relative
to the start of the program. The programmer must then refer to a compilation
listing of the program which contains a list of the first store location each line

has been compiled to. Matching the value found from the link list then identifies
the offending program source line. Neither the compilation list giving machine store
locations nor the link list giving the start of the program are provided unless
specifically requested. If they are not present, the program must be recompiled
in order to locate an error. These systems require the programmer to delve into
the details of how a program is mapped onto the machine. It should not be

necessary for a programmer to do this. The purely mechanical and tedious task of
mapping a given store location onto a program statement is well within the

capability of the machine. The machine's prime use is to perform the mechanical

and tedious tasks.

3.29 Conclusions

The above descriptions of some available diagnostic systems illustrates the wide
variation of facilities provided to the programmer at run-time. Some systems
providing very good diagnostics exist but it is unlikely that the average computer

user is lucky enough to be using them. Like compilers, diagnostic packages are
generally written for a particular language on a particular machine. For

diagnostics to be universally available, a separate package is necessary for each
different compiler. It is not yet generally accepted that a compiling system

should include a good diagnostics package. Manufacturers proclaim that their

machines can provide certain languages but it is rare to see diagnostics packages

54

feature in such advertisements. At the present moment there appears to be little

market demand to encourage manufacturers to provide diagnostics packages as
a matter of course. It has already been argued that a diagnostics package of
similar power to a compiler is an essential part of any compiling system. It is

rare to find such capable diagnostic systems and unfortunately too common to

see their total absence from some installations. This section has examined some

of the facilities that can be provided by run-time diagnostics packages. The
final section of this chapter analyses these facilities in order to design a

diagnostic package which meets the requirements argued for.

3.3 The design strategy of a diagnostics package

3.31 Interactive and batch programming

Among the diagnostic systems described are packages designed primarily for

use in a batch environment, such as the Glasgow Pascal system, and others

designed for interactive use such as the Dec system 10 Algol package. These two

environments provide quite different facilities. The interactive environment
permits a dialogue between the user and the machine. With a batch system the
man machine communication is usually an initial monologue. A batch system

is useful where programs run for a long time with no need for interaction; the

tasks to be performed are well defined in advance. The interactive system
is more useful where the data given to the program can be decided upon after

analysis of earlier results, the progress of the program can be continually
adapted in the knowledge of its behaviour so far. The purpose of a diagnostics

system is to obtain information about the behaviour of a program and locate
sections of that program that need alteration. This process is enhanced if a
continual monitoring of a program’s execution is possible. During this
monitoring, the state of the program can be inspected selectively and errors

located by a process of elimination. For the purpose of diagnosing errors and
testing programs, an interactive environment is then more suitable than a batch

55

system . This view is supported by Bate £b ATE74^ who describes an

interactive test bed for the Culham laboratory system development language,

arguing that the most useful diagnostic facilities cannot be attained in a batch
system. A batch system would provide information in the form of a trace analysis

and full dump at several selected points in a program but generally the volume of
such information ensuing would be prohibitively large and much time would be

required to interpret it.

3.32 Facilities offered by diagnostic packages

Many facilities currently existing in diagnostics packages have been described.
The main facilities provided are now discussed with the aim of identifying their

usefulness in particular situations.

3.321 Program dump
The dump facility is usually associated with a batch system. A program running in
a batch environment fails and a partial or complete list of that program's extant

data is produced. This list may contain all such data or limited data types. The

UMRCC in-core compilers as previously described, do not produce listings of

arrays but just scalar variables. The reason for this is that listing all arrays in
some programs would produce a prohibitively large amount of data. Other systems,
for example the PL/C execution supervisor, will list all data including large

arrays. A measure of the usefulness of a diagnostic facility is how readily the

programmer can locate errors when using it. If the dump is very large it will take

time to assimilate this information and locate that data which is relevant. Systems
such as ICL Cobol also produce dumps. However these dumps are of the machine's
storage locations and do not directly refer to the program's source identifiers.
These dumps (often given in octal or hexadecimal format) have to be processed by
the programmer who must map the program's data structures onto the dump
before proceeding with diagnosing the fault. Clearly a dump is of limited use.

56

It may be the best diagnostic available for small batch programs but its

usefulness is reduced when the dump is swamped by irrelevant information
as is likely with a large program.

3.322 Program trace

Arguably the best examples of trace diagnostics are those given by the Glasgow
Pascal system. This provides a trace of the specified number of statements

obeyed immediately before program termination and a trace of the program flow
of control from the start. This latter trace is considerably edited by avoiding
repetition. The trace is used so that the programmer can check that program

flow was as expected. If not, then an indication is given of where deviation
occurred. The full trace of a given number of statements executed prior to
failure is provided on the assumption that the event causing the error detected is
likely to have been recent. This assumption is not generally valid. The error
detected may be distant from the program statement that is in error. For example

parameters such as array indices may be calculated in some initialisation phase
for later (incorrect) use. As is the case with a program dump, a trace as

described may be the only effective diagnostic available in a batch system which
gives information concerning program flow events. In an interactive environment,

such post-mortem diagnostics can be improved upon by a selectable monitoring of

the program being produced as the program proceeds. It should be noted that the
overheads involved in providing a trace can be large as a record must be kept,

often on disc files, each time a statement is executed. As with a program dump,
most of the information given is probably not required. When the run-time

diagnostic aids were added to Atlas Autocode £CLAR673 it was found that
the trace facility was not used much by programmers when the values of extant
variables are given. If a program is well structured, much can be deduced
about program flow if the values of variables involved in the control of program

constructs are known.

57

3.323 Profile

A profile of a program is a program listing with a count attached to each source

line or statement giving the number of times that line or statement has been

obeyed. The provision of such a facility has two purposes. Firstly, it indicates
those sections of a program which have been executed a large number of times

and those executed a small number of times. This may indicate that, for example,

a loop construct has not been executed the expected number of times, or that the
incorrect evaluation of a particular expression has resulted in a section of the
program being skipped. The second use of a profile is to examine the program
in order to locate frequently obeyed sections. These critical regions can then
be looked at with a view to increasing their efficiency. In this way a profile is an
invaluable tool for tuning a correct program by locating potential sources of
inefficiency. Inefficiency in itself does not necessarily affect program correctness
but can be considered an error in that curing inefficient sections of a program

produces a more desirable product. Producing a profile involves an overhead of
time and space. This overhead is not as large as that for producing a trace, for

example, but requires maintaining a vector of counts, one for each program

statement.

3.324 Interrogation of data
The facility for selective interrogation of data is commonly provided by interactive
diagnostic packages. The user specifies the name of a data item and the system
prints its value. This compares with the batch facility of a dump in which all
values are printed because no selection by the user is possible at the time of

failure. The types of variable that can be printed are often restricted. Some
interactive diagnostic systems may only permit the printing of scalar variables

even thought other structural types are available. For example, the Dec 10 Cobol
system is very similar to the Dec 10 Algol 60 system already described.
However, Cobol records cannot be printed by the diagnostics package. The Dec
Algol 60 diagnostics, however, does provide the mechanism for printing all types
of Algol 60 variables. Clearly restrictions are undesirable and such systems

58

do not meet the criteria, outlined in the previous section, of mapping the

compiled form of the program back onto the full source language. The Dec 10

Algol 60 diagnostics system, as well as permitting the inspection of data values,
allows the user to alter these values. In this way, at a particular point in the

program, a value that is not as expected can be altered using the diagnostics
system and the program continued.

3.325 Control and monitoring of program flow

With an interactive diagnostics system, a means of interrupting the program flow
is desirable. The user can then specify a condition for interruption of the program
execution in order to call upon the diagnostics package. A common method of
implementing this facility is for the programmer to specify a particular program
statement. When this statement is reached, the diagnostics package is entered
and the user can then interrogate the state of the program. The program may

then be resumed at the point it was suspended. This facility, often called a break

point, permits the user to freeze the program execution at several points in its

progress and thereby monitor the actions performed. Some diagnostics packages
permit the resumption of program control at a different location to that of the

break point - in effect simulating a goto statement at any position in the program.

This facility can be used if it is found that program control has deviated from that
expected. The ability to interrupt program flow is necessary in order to test
the program. The diagnostics package will be called upon in the event of an error

but inspection of the state of the program on earlier occasions aids testing the
correctness of a program. This facility can be regarded as similar to the assert

command described in the previous chapter where at certain points in the program
the various data items can be checked to verify they contain the correct values.

59

3.33 Conclusions and objectives

Having discussed the need for run-time diagnostic facilities and described

currently available systems, the objective is to design a diagnostics package to

meet the criteria specified. The objective is formulated ly discussing facilities

that are not generally available and those currently in existence that are considered
useful.

3.331 Alteration of the program

Most diagnostic facilities described are passive - the user monitors the program
at a distance. Two facilities described are active, the alteration of data values
and program control. Both of these are equivalent to a temporary alteration of

the program - the first by emulating an assignment statement and the second

emulating a goto statement. These techniques should not be regarded as diagnostics
but program repair. It can, of course, be argued that they are of a diagnostic

nature because they can be used as a 'try it and see ' technique. It is argued that

not only do they not properly fit into the role of diagnostics but also they create
an environment which is itself error prone. The temporary alteration of a program,

by patching in extra statements which are invisible, can lead to confusion if used

frequently. The purpose of a diagnostics system is to map the compiled program

back onto the source language. Altering the meaning of a program is outside this

objective. A program can be more properly altered at its source level and recompiled.
It would be better if this process of editing the program and recompiling can be

made as easy as possible but diagnostic packages permitting alteration of data and
program flow do not do this - they allow the temporary insertion of an assignment
or goto statement. It is likely that such a simple insertion is not the best repair
of an error and allowing it would tend to persuade the programmer to think in terms

of those simple repairs when finally correcting the program. The ready

availability of these repairs could be used to fix many errors. Having done this, the
programmer is likely to insert such repairs in the program with the probable
result of destroying any structure or clarity that previously existed. For these

60

reasons such facilities are not considered to belong in a diagnostics package.

1

3.332 Currently lacking diagnostics

Diagnostic facilities afforded by systems such as the Dec 10 Algol 60 system and

the Glasgow Pascal package are probably complete for languages like Algol 60.

The values of all variables can be inspected and flow monitored. The area that
has not been catered for is the suitable inspection of dynamically created
variables. Where languages contain data objects that are pointers to other objects

there are no suitable diagnostics available. The two problems that occur are:how
is the value of a pointer described and how are the interconnecting structures that
can be created, linked by pointers, displayed?

The value of a pointer.
In practice, a pointer is implemented as having as its value the machine store
location where the object being pointed at is stored. If the user is to be free of

such implementation details then this value is not very useful. The main problem

that exists is that objects referred to by pointers have typically been created by
invoking some dynamic store allocation mechanism. Such dynamically created

objects do not appear in the declaration section of the program and therefore have

no name the user can refer to them by. It is suggested that as such objects are

created they are given unique names. These names are then available to the user

of the diagnostic package. Additionally these names are the values of the program's
pointer variables. The names chosen must be unique to avoid confusion. The

actual store location address could be used but apart from being unnatural it
could lead to abuse by the programmer referring to a location that is not a valid

address if stringent checks were not made. It is suggested that the names
generated are simply ascending integers. Most languages forbid the use of integers
as identifiers and therefore no confusion with already declared identifiers would
arise. The generation of alphabetic names could result in such confusion and
additionally would inevitably produce names which are unpronounceable and hence

61

difficult to remember. The assignment of consecutive integers as names to

objects as they are created has the bonus that they indicate the chronological
ordering of such objects which may be useful information.

Display of interconnected structures.

Programming languages that provide pointers permit an infinite variety of data

structures to be created. Typically such a structure is composed of objects which
contain primitive data fields and one or more pointers to other such objects. The
content of these objects is of interest as is the manner in which they are linked.
Consider a binary tree structure. The contents of the individual nodes is only part
of that tree; the shape of the tree as envisaged by the programmer diagramatically
is also of interest. Consider the binary tree shown:

G

This may be represented in store as

It is more meaningful to the programmer to be provided with a display, as in the
first diagram, constructed from the store layout of the second. Displaying such a

structure, particularly more complex structures, presents certain difficulties. A
graphics tube would be the most appropriate medium but should not be considered
as a generally available device yet. To display a structure on a line oriented

62

device, such as a visual display unit or teletype, requires formulating a display

without drawing interconnecting lines but not losing definition of these connections.

Consider a data structure composed of objects each containing n pointers. Each

object is represented by m characters on the same line. If the maximum depth of

this structure is known to be d levels then at the bottom level the maximum width of
display to contain this structure is given by:

d-1w = mn

By using this width, the structure can be arranged with its root occupying a position
midway, at position w/2. This width w is then split into n equal parts. Each of the

n pointers of the root are allocated a width w /n and displayed midway within this
width. This algorithm is repeated at each level down the tree. Consider the tree

structure above. For this object we have:

n = 2
m= 1 say
d = 4

d-1 ow = mn = 8

The width of eight is then allocated as shown:

1 2 3 4 5 6 7 8

A

B C

D E F

G

63

Nooonfusion arises as to the intended connections between the nodes as each position

is unique. It is noticed however that the symmetry of the tree has been distorted.

This arises because when n, the number of pointers, is even, they cannot be
symmetrically positioned underneath the root. To overcome this problem, the
algorithm is modified so that:

n: = number of pointers;
if n is even then n: = n + 1

For the above tree, the parameters become:

n = 3

m = 1

d = 4
d-1w = mn = 27

and the resulting diagram is:

The extra pointer introduced to ensure that n is an odd number is positioned
midway between the actual pointers of the object composing the structure and is
taken always to have a nil value - pointing to nothing.

64

This algorithm for displaying a structure can be generalised to include objects of

different types linked together. Thus the display can consist of different objects

each containing differing numbers of pointers.

Mapping the display
The above algorithm can produce a matrix display of any data structure no matter

how large. The question of accommodating a cycle in a structure where at one level
a pointer points back up to a higher level is dealt with later. The problem then is
to map this display onto a physical unit such as VDU. The matrix produced is of

dimensions d x w. If the VDU screen has dimensions h x b then the display is

easily printed if:

h > = d and b > = w

If b is sufficiently larger than w then the number of characters used to describe

each object m can be increased in order to provide more information about each

object. The main problem arises when the above relationship is false. In this case,
two tasks are initially undertaken. Firstly the display is examined to find the

maximum width. This will usually be less than w - the actual width will only be

w in the case where all leftmost and rightmost pointers are pointing at an existing
object. This actual width w ' is then used. The second task that can be performed
is to reduce m - the number of characters used to describe each object. Having
performed both these tasks, the display may still be too large. In this case, two
techniques exist to print the structure. These are referred to as 'squashing' and

'windowing'.

Squashing
As the name implies, this process consists of printing a form of the display in a
smaller area than that of the display. If the display matrix is regarded as being
somehow elastic, it is pushed in until it fits the matrix of a VDU screen. For the

65

display of dimensions d x w and the VDU screen of dimensions h x b this

squashing is achieved as follows:

Consider each cell of the matrix h x b with coordinates x, y.

Into this cell must be placed s cells from the matrix d x w.
In order to ensure that s is integral, the scaling used to
squash the display is integral. In general, to map a vector of
length p onto one of the smaller length q , the ratio
employed is:

(P + q - 1) 7 q

Then an integral number of cells from p is placed in each
cell of q. This process will only result in utilising all of

q if q is a multiple of p but guarantees that at least half

of q is used. Using the above formula separately for the depth

and width of the display produces two scaling factors. The
number of display cells mapped onto each cell of the VDU is

then the product of these two scaling factors.

Clearly this technique of squashing the display loses information. In order to
minimise this information loss, the character printed on the VDU screen for each
screen cell should indicate the number of cells that were present in the block of
display cells squashed into it. This technique does allow the user to see an
overall shape of a structure.

Windowing
Windowing consists of the user selecting a sub-matrix of the display that can be
mapped directly onto the VDU screen. Having viewed the entire data structure as
squashed onto the screen, the user can then move such a window about this

66

display in order to examine the details in each part of the structure.

Cycles in data structures
The possibility of a cycle appearing in a structure creates the problem of
representing this eventuality on a two dimensional display. Ideally where an object

points to another object at a higher level this is displayed in three dimensions by
folding back the two dimensional display onto itself. This would not be possible to

display on a device such as a VDU screen without ambiguities arising from the
lack of definition. A VDU screen is typically a matrix of 22 x 80 characters and
leaves little scope for such three dimensional projections. Instead it is suggested
that where a cycle is found, the object pointed at is displayed, but printed such

that it is clear a cycle is present and where this cycle leads back to. This involves
the repetition of display of one object for each cycle.

3.333 Summary
The discussion of various diagnostic facilities has led to a description of a
diagnostics package. While many facilities to be included in such a package already

exist in other such systems, the inclusion of structure display is not found

elsewhere. The ability to interrogate the values of objects created dynamically

during the execution of a programme is included and facilitated by assigning unique
names (integers) which serve to identify such objects and indicate their age. In
order to build such a diagnostics package, a language and compiler must be chosen.
While it is hoped that the ideas inherent in such a package are not restricted to
one compiler or one language some implementation details clearly will be. It was
decided to use the language Pascal £wiRT75j . This language was chosen for
several reasons. Pascal allows the formulation of programs in a natural and
structured manner. It has already been argued that programming in a well

structured form is likely to produce more readable programs that can be verified
more readily. It would be wrong to abandon this ideal for no reason. Pascal

permits dynamic creation of objects and allows data structure linking by pointers.

67

This is essential to test the routines for display of such structures. Finally, Pascal

is chosen as the language to be used locally for teaching and research and so a

large number of users are then available to test the success or failure of this

diagnostics package.

The diagnostics package is to be an interactive system providing the following
facilities as discussed above.

1) Display of the shape of linked data structures.
2) Interrogation of the values of dynamically created objects.
3) Interrogation of all Pascal data types in terms of the source language.
4) A facility to set a break point in a program to enter the diagnostics

package at that point.

5) A program profile obtainable at any selected point during the program

run.

It is believed that these basic facilities, probably enhanced as experience of their
use is gained, will provide the Pascal programmer with a powerful tool for

testing and debugging programs. At any selected point in the program flow all

extant data items may be examined and a profile of the program at each point will

aid verification of the program’s state. It is thought that the expensive overhead
of program tracing can be avoided by judicious use of break point facilities.

In the next chapter, Implementation of Pascal is described. While implementing

Pascal is seen as building the apparatus to test a diagnostics package, it in

itself provides opportunity to discuss compiler implementation and portability.
Finally the implementation of this diagnostics system is described and the extent

to which it has achieved its aims is discussed.

c h a p t e r f o u r

IMPLE ME NTATION
OF PASCAL

68

4.0 Introduction
This chapter describes the implementation of the Pascal P4 Pcode compiler.

Problems of implementation of this compiler in general are discussed and some
difficulties relating to the individual machines used highlighted.

The implementation of Pascal was required to have available an interactive high

level system containing run-time diagnostics. Pascal was also required locally
for undergraduate computer science teaching and so the system had to be efficient
to cope with this large load.

It should be explained why two implementations were necessary. When the first
compiler was started, the only interactively available machines accessible to
Keele's Computer Science Department were the Department's own Digico Micro

16E £DIGtt>3 and the central service department's Elliott 4130. The 4130 was due
for replacement and so its future was short. It was not known either when it would

be replaced or what its replacement would be. The Digico was chosen as the only

viable prospect and Pascal was implemented. This implementation is used for
undergraduate teaching but can only support one user at a time. By the time the

central service 4130 was replaced by a GEC 4080 ^GECa^ it was clear that
full implementation of Pascal with run-time diagnostics would not only be less

tedious on the 4080, due to the technical limitations of the Digico, but also more
widely used and useable. The technical limitations on the Digico are lack of
system software support and restrictions (imposed by the hardware) on

addressable memory.

Pascal was then implemented on the GEC 4080, This exercise was quite short
compared to the first implementation in that it was only a matter of a few weeks

before a Pascal program was running on the 4080 albeit with an extremely crude
system. The system was then refined to eliminate some of the defects of the P4
Pascal and provide a usable system. This process was by far the most time

consuming but essential if the system is to be used by many undergraduate

69

students. Some enhancements were made either because they were required by the

run-time diagnostics system (which is a Pascal program) or because they increased
the uses that could be made of the language in a University environment.

Considering the system is interpretive it has proved acceptable to use in a

teaching class of 16 students. The system has been in service for several months

and shown itself to be extremely reliable.

The two implementations described here have provided an insight into the problems
encountered in implementing a language on less than ideal architecture and the
general problems of portability. The question of portability is dealt with separately

in the next chapter.

4.1 The P4 compiler
The Pascal P4 compiler is the fourth version of a com piler known as the Pcode
com piler'. This compiler is written in Pascal. The original authors are Urs

Ammann, Kesav Nori and Christian Jacobi from the Institut Fuer Informatik

Zurich. £wiRT71c} , £jAC076} .

The P4 compiler was completed in 1976 and is used in many currently existing
Pascal systems. The fact that this compiler is so widely used is born out by
correspondence in Pascal News {MICK} , where the vast majority of new
implementations announced are based on the P4 compiler and the 'implementation
section' concentrates on discussion about methods of implementing this compiler

and improvements to it.

4.11 General
The attraction of the P4 compiler to a potential implementer of Pascal is twofold.

Firstly it is recognised as being the most expedient way of implementing Pascal

70

on a machine; and secondly its huge popularity means that there exists much

experience of implementation. A large group of people are constantly producing

corrections to it as improvements are made and errors within it detected.

The compiler is a one pass system producing an object file in assembler-like

mnenomics. The object code is called Pcode which is a stack oriented language of
relatively high level and complexity when compared to commonly existing machine

codes. Until quite recently no machine existed which executed Pcode directly and
as a result, the resulting Pcode is usually interpreted by a program written for

the host machine.

In order to implement the P4 compiler, two basic paths exist. The first and most

commonly used is to write a Pcode interpreter for the host machine to simulate
a Pcode machine. The second is to alter the compiler to produce object code of the

potential host machine.

The second method is by far the lengthier and more difficult. It is recommended in

the implementation notes £jAC0763 where the expected Pascal programs to
compile are relatively large (greater than 500 lines). For large programs,
interpreting the compiler leads to high compilation times which may be unacceptable.

The effort required to alter the code generation of the P4 compiler to suit a
particular machine is much greater than that required to build a Pcode interpreter.
Two major problems exist in this approach. Firstly the compiler produces code
in a reverse Polish manner suited to a machine with good stack operations and so
a substantial alteration would have to be made to the compiler to produce infix

code. Alternatively, a second pass could be made on the code to convert it to
infix using techniques described by Rohl £rOHL753 . This second pass would
however increase the effective compilation time and ambiguities concerned with
whether objects are loaded onto the stack as part of an arithmetic expression
evaluation or to create the parameter section of a stack frame, as described
later, would need to be resolved. The second problem in converting the compiler

71

is that it is based in a quite sophisticated object code. Pcode contains several

complex instructions - all set functions such as set intersection are one Pcode
instruction - leaving much less work for the compiler.

The first implementation method was then chosen as the easier and most expedient

course. The result is quite acceptable for student programs which are the main
users the system is intended for.

As mentioned above, the P4 compiler is written in Pascal itself and as such cannot
be executed without a working Pascal compiler being in existence. If we assume
such a working compiler does not exist on the intended host then the compiler must
be executed, initially, on some other machine which does have a working Pascal

compiler. These are referred to as the ’cross compiler' and the 'cross machine'.
In the case of the first implementation (on the Digico Micro 16E) the P4 compiler
was first executed on the CDC 7600 at the University of Manchester Regional

Computer Centre (UMRCC) which is connected to the North West Universities'

network.

4.12 General Implementation

The implementation proceeds as follows. Firstly, a second form of the P4

compiler is created to be compiled by the cross compiler. The reasons for this
are twofold. Firstly the P4 compiler accepts a slightly different form of Pascal

to that described in the Pascal report £wiRT75^ . These differences are
detailed in appendix 1. In particular, the P4 compiler recognises different

standard procedures for heap disposal and these will not be accepted by the cross
compiler. The second reason for needing a modified P4 compiler is the different

character sets on the cross compiler machine and the host machine. These
differences are explained in more detail in the next chapter concerning the

portability of this compiler.

72

This modified P4 compiler is then compiled by the cross compiler. The resulting
running program then acts on the original P4 compiler to produce the Pcode

instructions corresponding to this compiler.

The final stage is the transfer of the Pcode instructions to the host computer and
their subsequent interpretation. This process can be described diagrammatic ally.

1)

2)

3)

4)

I
xl/

I
I*

cross
machine

host

machine

fig 4.1 correspondence ----- ------>

73

Stage 1 is that of the modified P4 compiler being compiled by the cross compiler to

produce an object code form of the P4 compiler which can be executed on the cross

machine.

Stage 2 is the execution of the modified P4 compiler compiling the original P4
compiler and producing the Pcode instructions corresponding to it.

Stage 3 is the use of this compiler on the host machine. When the Pcode instructions

generated by stage 2 are transferred to the host machine, the Pcode interpreter
interprets them forming a running Pascal compiler. Pascal programs are compiled

into Pcode.

Stage 4 shows the subsequent execution of the Pcode instructions, produced in
stage 3, by the same Pcode interpreter.

As stated above, in the first implementation the cross machine was a CDC 7600

at UMRCC,being the only machine readily accessible to Keele University at that
time (December 1977) with a Pascal compiler. The host machine was a Digico

Micro 16E minicomputer. The fact that the two machines are not immediately

physically linked meant that the above description of this process is a simplification
of the actual task but serves to show the general mechanics of it.

The P4 compiler is well suited to different machines’ addressing structures and

each of the standard types in Pascal is described by the definition of two constants.

The first is the size (in whatever basic address units the interpreter is written to
deal with) that a variable of that type will occupy. The second is the alignment (in .
the same basic address units) that the compiler will use to allocate storage addresses.
In general, the compiler handles such alignments sensibly; packing variables
together is allowed but several bugs in the compiler were discovered when
implemented on the GEC 4080 due to oversights by the compiler's authors when
dealing with certain combinations of declaration of standard types which occupy a

smaller amount of space.

74

4.13 Operation of the P4 compiler

4.131 General

Pascal is parsed as an LL(1) grammar. That is, the compiler has a top down
parser and requires one symbol look ahead. The compiler requires just one pass of

the source program and produces Pcode with mnemonic instructions and labels. The
compiler is approximately 4,500 lines of Pascal which compiles into almost

17,000 Pcode instructions.

4.132 Lexical analysis

The compiler contains a procedure named insymbol which reads and interprets one
or more characters from the source program to produce the next Pascal symbol.
Insymbol, when activated, will update the values of eight global variables. These

variables are the only interface between the lexical and syntactic analysis. They

are:

1

2

3
4

5

6

7

SY This variable describes the symbol. Its possible values
dictate whether the symbol is an identifier, a constant,

an operator, or a Pascal reserved word. If the symbol is

an operator or reserved word, SY will determine which word,
or the group of operators the symbol belongs to.

OP If the symbol is an operator, OP will determine which
operator.

VAL If the symbol is a constant, VAL is the value of the constant.
LGTH If the symbol is a str ing constant, this variable gives the

length of the string.

ID If the symbol is an identifier this string variable is that

identifier’s name.
KK This is the number of characters (in ID) which constitute

the identifier.

CH This is the last character processed.

8 EOL A Boolean variable, true if the scanner has processed
the last character of a line.

As can be seen, for a particular symbol, not all eight variables will be meaningful.

Internal to insymbol are two procedures nextch and options. Nextch's function is

to read the next character and assign it to CH, set EOL if this character is the

last on a line, print the character on the listing device and call a procedure to
report compilation errors if EOL was true when nextch was called. Options is
called to handle compile options which are embedded in comments.

Whereas character and integer constants are represented as chars or integers,
insymbol represents real constants as a string of characters. In this way the
compiler does not use any variable of type real. This feature is presumably to
cater for efficient implementation of the Pascal compiler on machines with no

floating point hardware as well as allowing a Pascal system on such a machine to
operate initially without catering for floating point instructions.

4.133 The name table
The compiler represents identifiers and types using two record types as shown:

type CTP = T identifier; STP = T structure;

identifier = record
name: array [1 . 8] of char

llink, rlink, next: CTP;
idtype: STP;

case klass:idclass of
konst: (values: Valu);
vars : (viand: (actual, formal);

vlev, yaddr: integer);

field: (fldaddr; integer);

end;

proc, func : (case pfdeckind:declkind of

standard : (key : integer);

declared : (pflev, pfname : integer:
case pfkind : (actual, formal) of

actual : (forwdecl, extern:
Boolean)))

structure = record
size : integer

case form : structform of
scalar : (case scalkind : (standard, declared) of

declared : (fconst : CTP);

subrange : (rangetype : STP; min, max : valu);
pointer : (eitype : STP);

power : (elset : STP);

arrays : (aeltype, inxtype : STP);
records : (fstfld : CTP; recvar : STP);
files : (filtype : STP);
tagfld : (tagfieldp : CTP; fstvar : STP)
variant : (nxtvar; subvar : STP; varval : valu)
end;

The type ’valu* is a record giving the value and type of a constant.

For example, consider the following Pascal declaration:

var a : array f l . . lO] of char;

This would produce the following internal representation:

77

identifier structure structure

fig 4.2

The two’structures'on the extreme right are the predeclared objects defining the
types char and integer.

In the definition of the type ’identifier’ , the field ’next’ is used in three instances.

Firstly if the ’identifier’ is a procedure or function, the ’next’ field points to the
’identifier’ of the first parameter; the parameters are linked by their ’next’ fields
in order. Secondly within a record declaration, the ’identifiers ’ for each field are
linked in order of declaration (for parsing a call of the standard procedure new
which contains definitions of the variants required). Thirdly, the ’next’ field is
used when parsing a multiple declaration such as:

var a, b, c : integer;

Because the compiler has only one symbol look ahead, the objects of type ’
’identifier’ for a b and c will all have been created before their type is known

78

to be integer. These three ’identifier* records will be linked by the *next* field.

This chain is then followed filling in the 'idtype' field as integer.

The name table is built on an array of pointers to identifier’s. This display has
one entry for each level of declaration and the entry points to the ’identifier'

corresponding to the first declared at that level. This ’identifier' is the root of a

binary tree which contains all the ’identifier’s declared at that level. The tree is
linked by the two fields llink and rlink. When searching for an identifier, the
display is scanned from the current level down to the zero'th level to obtain the
most recently declared ’identifier’ of that name. At each level, the tree, ordered
alphabetically, is searched until the required identifier is found. The zeroth level
of the display contains the 'identifier's for all predeclared Pascal variables.
constants, types, procedures and functions.

Identifiers which are fields of a record are only accessible within the context of
that record and therefore cannot be placed in the display at the same level. When
parsing a record declaration, the level of the display is incremented and so all the
fields form, their own ordered binary tree in isolation. The root of this tree is

then assigned to the field fstfld ' of the 'identifier' corresponding to the record.
This approach eases the parsing of a Pascal with statement. For the duration of

the with statement, the level of the display is incremented and the fields ’ tree
hooked onto it from the 'fstfld* of the named record. Thus the fields of the record
will automatically be found in the display before any other identifier which may

have the same name.

4.134 Expression evaluation and code generation
While compiling an expression, the compiler uses a global variable named ’gattr’

to hold the attributes of the expression as it is parsed and code generated. This

variable is of type attr defined as:

79

type attrkind = (cst, varbl, expr);

vaccess = (drct, indrct, inxd);

attr = record

typtr ; STP

dase kind : attrkind of
cst: (cval : valu);

varbl: (case access : vaccess of
drct : (vlevel, dplmt : integer);
indrct : (idplmt : integer))

end;

Where valu and STP are as defined above.

Attrkind gives the kind of expression as parsed so far. The three possibilities are
a constant, a variable or an expression. In the latter case code has been

generated so that the value of the expression is on top of the Pcode stack. Vaccess

gives the method of access if the expression as parsed so far is a variable. The
access is either direct in which case the level and address within that level of the

variable are held as vlevel and dplmt, or indirect in which case the address of the
object is on top of the stack and is to be offset by idplmt. The access inxd is not
used. Its existence is historical and an earlier version (either P I, P2 or P3) of
the compiler used it for array indexing.

Consider the statement:

b : = a [3] .p ;

The compiler will parse this as follows:

80

Current symbol state of gattr code generated

b kind : = varbl
access : = drct
vlevel, dplmt set to

level and address of b.
idtype set from b.

: = save gattr in load address

variable lattr given by vlevel, dplmt

a kind : = varbl
access : = drct
vlevel, dplmt set to

level and address of a.
idtype set from a.

[access : = indrct load address

idplmt : = 0 given by vlevel, dplmt

3 kind : = cst
cval : = 3
kind : = expr

load constant
integer 3

] kind : varbl multiply top of stack by size
of element of a, add result to
address below top of stack.

idplmt : = idplmt +

field address of p

kind : = expr

81

t load value whose address is

that on top of stack + idplmt,

store in address given beneath
the top of stack.

The field typtris altered accordingly at each stage and used to check the legality
of the statement.

4.2 The Pcode machine

4.21 General

The P4 compiler produces object code known as Pcode. There are 61 instructions
and 23 standard procedure calls. This instruction set was modified to

accommodate 128 possible instructions when the second implementation was
written for the GEC 4080. Both instruction sets are listed in appendix 2. Many of

the original 61 instructions contained a field indicating the type and therefore size
of the object to be manipulated. This field was eliminated and each instruction
that required it expanded into a separate instruction for each object size The
reason fo r this decision was purely that of speed. Rather than introduce a test on

the type field, which would have occurred frequently as these instructions are the
most common, it is much faster to branch immediately to a tailor made routine

in the interpreter for each type. The Pcode machine implemented has the

following storage layout:

Pcode

0

Stack and

Instructions
s

variables

n T
Heap

m Constants

Data

P

82

p number of Pcode instructions accommodated
s current size of the stack

m data store size
n marks the heap size

Fig 4.3

The heap is the data area used for dynamically created variables - created by the
Pascal procedure ’new*. The heap and stack grow to meet each other. The Pcode
machine has five registers:

PC Pcode location counter

SP Stack pointer

NP New (heap) pointer

MP Mark pointer

EP Extreme pointer

The two store areas of code and data respectively are regarded as two distinct

vectors with indices ranging from zero to the implementation fixed maximum size.
PC is an index into the code vector and the other four registers are indices into
the data vector. The functions of these five registers are as follows:

PC

The program counter is a pointer into the code vector indexing the Pcode instruction
that the interpreter will execute next.

SP
The stack pointer is a pointer into the data vector marking the topmost object on
the stack.

83

NP

The new pointer indicates the next free location on the data vector for use when

the Pascal procedure 'new' is called. The pointer is decremented by the size of
the object created.

MP
The mark pointer is an index to the base of the 'stack fram e' in the data vector
corresponding to the level of the procedure being executed. It is used as the base
address for accessing local variables.

EP
The extreme pointer is the largest value that the stack pointer can possibly have
during the current procedure. It is altered on entry to and exit from a Pascal

procedure or function. The reason for the existence of this register is for testing
for store overflow. Without such a register, on every instruction that required a
growth of the stack, the stack pointer would have to be compared with the new
pointer (NP) in order to detect the stack and heap meeting. By setting up the
extreme pointer on entry to a procedure it need only be compared with the new

pointer once for each procedure entry. Similarly, whenever a call on the heap is

made and the new pointer decremented it is compared with the extreme pointer to
check for the possibility of store overflow.

Stack frames
Whenever a procedure or function call is executed, a stack frame is added to the
top of the stack and the stack pointer updated accordingly. The compiler

implements the initial program entry as a procedure call. The form of the stack

frame is as follows:

84

SP-

EP-

Returned result

Base

MP

EP

PC

Parameters

Local variables

Workspace

-MP

Space required for evaluation of
arithmetic expressions and variable
addresses.

Fig 4.4

The first entry is relevant to function calls only but is always present to avoid

treating function and procedure calls differently. The size of this section is that of
the largest type of value a function can return; this is usually the size of a Pascal

set (in the GEC implementation this is 16 bytes long). When the function is
assigned a value it is placed in this section. On exit from the procedure or function,

the stack pointer is adjusted so that the required object is left on top of the stack.
In the case of return from a procedure, the required size is zero. Thus the net
effect of a function call is to load a variable of that function type onto the stack.

The next section of the stack frame is the 'base'. This forms the »static link* of
procedure/function calls. The value of base is always that of the start of the

stack frame of the procedure/function one nested level down as declared in the
Pascal program.

Following the base the three registers MP, EP and PC are saved for restoration
on exit from the procedure or function. The mark pointer always points to the

85

base of the current stack frame and so the saved values of the mark pointer form
the ’dynamic link’ linking all stack frames currently on the stack.

The next section is for storing any parameters in the procedure/function call and
its size is dependant on the number of parameters. Following this is the space
required for all variables declared local to the procedure/function.

The final workspace is only present when the procedure or function contains one
or more with statements and the record(s) used on the statement(s) were passed
as parameters by reference. When this reference to a record is passed, its
base address is stored in a part of this workspace for later use within the with
statement.

Example of procedure/function call

To illustrate the use of the stack frame, the following example shows the
mechanism of procedure call and return on the Pcode machine.

Pcode machine actions State of stack Comments

SP» before the call

Mark stack
Calculate the base of the stack
frame of the procedure/function

one nested level down from the Base

procedure being called. MP

Reserve space fcr possible EP

function result. Save the

calculated base and the registers
MP, EP on the stack. Adjust the
stack pointer to leave one location

free for subsequent storage of the

return program counter PC

86

Pcode machine actions State of stack Comments

Load parameters

Load on top of stack all
parameters required by the call

Call procedure
Save the program counter

in the location reserved.
This location position is
calculated by subtracting the

size occupied by the parameters
from the SP. Adjust MP to point
to the base of the frame and alter
PC to the start of the procedure

Entry 1
Reserve space on the stack for
local variables and any work

space

Parameters
local variables
workspace

This is always the first
action on procedure
entry

SP-*

87

Entry 2

Add on to SP the amount
of stack required by this
procedure as calculated
by the compiler. Store this

value in EP and check it
against NP for store

overflow.

This is always the
second action on
procedure entry.

Procedure / function exit

Assign the value of MP
adjusted by the size of the
function result to SP.

Restore EP, MP and PC
from the stack frame

Function result
(if any)

ksp

For a procedure
return, SP will
point to below the
stack frame

fig 4. 5

4.22 The use of MP and Base as stored on the stack frame

The Pascal language allows the nesting of procedures and functions in a program.
At each depth of nesting, the level of declaration of variables increases by one
Variables declared in the main program (global variables) are said to be at level 1.
Predeclared variables are at level O. Variables declared in some procedure P

are said to have been declared at level 2 and variables declared in some procedure
Q which is itself declared within procedure P are said to have been declared at
level 3 and so on. At any point in a program, the current level can be determined.
The scope rules of Pascal, as in most other block oriented languages such as

Algol 60, permit reference to any identifiers declared at that level and at the
lower levels surrounding the current level. For example, consider the following
program layout:

88

Program M (1)

Procedure P(2)

Procedure R (3)

Procedure Q(2)

Procedure S (3)

___ _________________ I

fig 4. 6

The numbers are the lexical
level of declaration of any
identifiers within that
procedure.

Within procedure R, all identifiers declared within R, P and M are in scope.
Identifiers within Q are not because although declared at a lower level of 2,

procedure Q does not surround procedure R. The purpose of the base entiy in the
stack frame is to link the stack frames of all procedures whose variables are

currently in scope (or accessible). The state of the Pcode stack while procedure
R is running would be:

static

link

SP

stack frame
M

stack frame
P

stack frame
R

Dynamic link

rMP

fig 4. 7

89

This link is the static link, ie. static in the sense that occurrences of stack frames

are linked by virtue of the level as declared in the program text. The dynamic link
is given by the saved values of the mark pointer in the stack frame. This link is

used for procedural exit and points to the stack frame of the procedural occurrence

which called the current procedure.

For example, suppose that within procedure R a call of procedure Q was made
which in turn called procedure S. The stack frames would then appear as follows:

Dynamic link

If procedure S then called itself recursively to a depth of three, the stack frames

would then be:

fig 4. 9

90

The base entry always points back to the surrounding procedure one level below.

To access a variable, the address is specified by two components: the level of

declaration and the address within the stack frame of its procedure. The Pcode
machine then follows back the base entries as many times as the difference

between the current level and the level of declaration of the required object. The
resulting address is then the base of the stack frame containing the required

variable. Added to the address of the variable within the stack frame locates the
required object.

This method of access is frequently used by the Pcode machine and for deeply
nested procedures accessing variables declared several levels below can be
inefficient. It is for this reason that the base vector is stored in fast registers if

such registers are available.

4.23 An existing Pcode machine
Most implementations of the P4 Pascal compiler consist of a Pcode interpreter.
More ambitious implementations modify the compiler to produce object code for the
target machine.This approach can be very time consuming as mentioned earlier.

One of the most successful and widely known implementations of P4 Pascal is that of
UCSD Pascal £ BOWL78^ .The success is largely due to the fact that the same
system has been implemented on machines ranging from mainframes to
microprocessors. Perhaps the most interesting implementation of UCSD Pascal is

that on the Pascal Microengine £ m ICR78^ . The Pascal microengine has as its
instruction set the Pcode instruction set used to implement UCSD Pascal. The

microengine comes in its most basic form as five chips. These are a control processor,
an arithmetic unit and three micro coded processors which implement the Pcode. In
that respect, the microengine does actually interpret Pcode but the micro

instructions required for this interpretation are executed at great speed. The speed
of the microengine is claimed to be five times faster than: the UCSD Pascal

91

implementation on the PDP11.

It is encouraging that rather than altering the object code produced to fit a machine,
a machine should be designed to fit the object code. If this trend continues then it

shows that new ideas in programming languages can have an effect on subsequent
ideas of machine architecture.

4.3 Transfer of Pascal system from the cross machine to the host

The process of implementing the Pcode compiler on a machine has been described
above. Where the host machine does not already contain a Pascal system, a second
machine, referred to as the cross machine, is required. The first implementation
as described required the compilation of the P4 compiler on a CDC 7600 at UMRCC
and the transfer of the resulting Pcode form of the compiler to the Digico Micro

16E. The compiler was created and compiled on this machine and then transferred
to the GEC 4080. This section deals with these two transfers and highlights some
of the obstacles encountered in what at first sight may appear a simple task.

At the time of the implementation of Pascal on the Digico minicomputer, Keele

University computer centre had access to the Northwest Universities' network.
This network had the following facilities: a remote job entry station at Keele to run

batch jobs on either the ICL 1906A/CDC 7600 complex at Manchester or the
ICL 1906S at Liverpool. As described previously, the cross compilation had to be

performed at Manchester as this was the only accessible machine that supported

Pascal. The only other connection that Keele had with this North West network was
four terminals which could be connected independently to either Liverpool,

Lancaster or Salford. Keele's own mainframe machine was not connected to the

network in any fashion.

The Digico Micro 16E minicomputer has the following peripherals:

A single fixed /exchangeable 11 M Byte cartridge disc.

Two floppy disc drives.
A 'pullman' hand operated tape reader.
A printer.

A console VDU.
Two general communications interfaces.

There existed two options to transfer information from Manchester to the Digico.

The first was to punch out the files required on paper tape and process them using
the Digico's pullman reader. The second was to utilise one of the Digico's
communications lines to link into the North West Network (somehow).

The first option would have resulted in approximately a mile of paper tape. This
would then have to be pulled through the Digico's pullman tape reader by hand in
sections and a suitable program written to transfer this information to the discs.

The pullman reader cannot be used at the same time as the disc drives because
being completely manually driven, it interrupts the processor in a manner that
fatally interferes with any interrupts occurring from the normal sequence of
events, including the disc drive. The tape reader was designed to load simple
programs prior to any other peripheral activity. This method of transfer was

discarded as being extremely slow and error prone.

The second option of utilising one of the Digico's communications lines was then

investigated. The communications line as present on Keele's Digico is designed
for connection via a modem ^DIGIa^ . The only convenient link into the North
West Universities Network is a network terminal which can access the 1906S at

Liverpool. Connection of the communications line to the network control computer

at Keele was not allowed but this difficulty was circumvented by making use of the
printer output socket on the visual display units connected to the network

£_NEWB^ . The printer output socket can be utilised under software control.
Upon the VDU's receipt of a certain control character (ASCII 15) the device

connected to the printer socket is connected through to the computer attached to

the VDU. This connection is broken on subsequent receipt of another control

character (ASCII 16). By connecting the Digico's communications line to this
printer socket, the Digico minicomputer can, in principle, communicate with any
computer linked to the North West Network.

The problem of file transfer was then twofold. Firstly, the Digico communications
line had to be connected to a simple printer socket in such a way that electrically,
the printer socket appeared as a modem connection. Secondly, having achieved
connection to a computer in the network a file had to be sent along the
communications line to the Digico's disc drive.

The first problem was simply solved by a soldering iron and the second by a file
transfer program written for the Digico. The connections necessary for this link
are described in appendix 4. The transfer program, named LINK79, communicates
with the North West Network via the control computer at Keele - an ICL 7905. The
program's operation is as follows £ WHIT 7 9a ̂ .

The communications line is continually scanned for information being sent. Any
characters received are buffered for display on the Digico's console VDU.

Whenever this buffer is empty, the Digico's VDU is scanned and any character

typed sent down the communications line to the connected computer in the network.
In this manner, the console VDU on the Digico appears as a normal VDU

connected into the network. The algorithm as described gives priority to received
characters; there are two reasons for this. Firstly priority is given to receipt in
order to ensure no loss of data and secondly the Digico VDU is set up to be

capable of receiving characters at four times the speed the network computer can
send them.

The communications program LINK79 was then written to recognise a protocol for
flagging the start and finish of a file transfer. The protocol used is that of a

special character at the start of a new line. For starting a transfer the character

94

is \ (backslash) and for terminating ? (question mark). On receipt of the start

line the communications program copies all following lines of information received

to a disc file, as well as displaying them on the VDU, until the finish line is

received.

To transfer a file, the file is edited on the remote machine such that there is a line

consisting of a backslash at thç beginning and a line consisting of a question mark at

the end. Via the communications program, the particular command to type this file

out on the VDU is issued and the transfer is thereby initiated. This method of

transferring files was subsequently used by the Computer Centre at Keele when the

new machine was installed and, surprisingly, remains the most direct connection

into the North West Network for this purpose. No corruption of data has occurred on

transmitting in this way.

The program described can only connect to machines accessible to a local network

terminal. These machines did not include Manchester's which held the required files.

A facility did, however, exist whereby files can be transmitted from Manchester to

Liverpool via Keele's remote job entry computer which could access both these

sites. The eventual journey taken of the Pascal files is shown diagrammatically:

J

fig 4.10

95

For the implementation of Pascal on the GEC 4080, the cross compilation was
performed on the Digico micro 16E. The file transfer from the Digico to the

GEC 4080 was performed using much the same technique as described above. The
communication line on the Digico was connected to the printer socket of a VDU
attached to the 4080.

The communications program LINK79 was substantially modified for the GEC 4080.

The modifications required were designed to permit transfers from the Digico and
had to account for the different protocol the GEC machine uses. To transfer a

nominated file from the Digico to the GEC 4080, the process is as follows. The
modified communications program (named LINK48 £wHIT79b^) enables the
Digico's console VDU to act exactly as though directly connected to the GEC 4080.
On pressing the escape key, the program sends the file a line at a time. In this way,
a command is given to the GEC 4080 to accept a file as though it were to be typed
in. Two important considerations had to be made. The first was that in order to

ensure that the GEC 4080 was 'keeping up' with the rate of information transfer, the
program has to await a prompt sent by the 4080 before sending each line. The
second consideration was that there is a delay of a few milliseconds between the

4080 sending the prompt and being ready to accept the first character of the line
being sent. The delay is usually about ten milliseconds but can be as much as

fifty milliseconds. It was considered that the solution consisting of waiting for the
worst possible case was extremely inefficient when transferring almost fifty
thousand lines of information. The solution adopted was to await the prompt and

then repeatedly send a character until the 4080 echoed this character back. The

rubout character (ASCII 127) is used as this character. Although echoed back, it is

ignored on inputting a file on the 4080. As a check that the information transferred
was correct, the communications program checks that every character sent is
echoed back by the GEC 4080 correctly. The algorithm is then as follows:

96

while not end of file do
begin

await prompt;

.repeat

send rubout character

until rubout character received;

repeat
send next character

await receipt of character other than rubout;
check character received = character sent;

until end of line character sent

end

The loop which sends the characters and checks the echoed character ignores
echoed rubout characters. This is because several rubouts may have been sent in
the previous repeat loop which are still being echoed back. In defining, 'next

character' in the line ’send next character' any rubout characters in the file are
ignored.

In total the amount of information transferred was as follows:

Transfer route Number of characters Time for transfer
Liverpool •*Digico 840,000 7# g hours

D igico-♦ GEC 4080 882,000 8.2 hours

The information transferred was two files in each case, these files being the

Pascal source and Pcode form of the P4 compiler. The compiler transferred to the
GEC 4080 was slightly larger than that originally stored on the Digico Micro 16E

due to several modifications made to it during the time between the two transfers
(about 8 months).

97

The two communications programs described LINK79 and LINK48 have been used
several times subsequently and exist as the most expedient method of transfer of

large files from the North West Network to Keele's main service machine, which
at the time of writing is not due to be connected to the network for at least a year.

The programs were written in Digico machine code as this is the only language
available on the Micro 16E that permits adequate control of the communication

link. They each contain approximately 1500 instructions and the task of implementing
then spread over a period of about six months.

4.4 Implementation of Pascal on the Digico micro 16E

The Digico 16E is a minicomputer with a small instruction set. The machine at
Keele has no floating point hardware and no integer divide or multiply hardware

instructions.

4.41 The Digico micro 16E at Keele
The facilities afforded by Keele's Digico machine are:

Micro 16E CPU
128 K Bytes RAM store
2 communications channels(GCIC)

1 console VDU
1 Diablo printer

1 disc drive
2 floppy disc drives
1 Pullman hand operated paper tape reader

The Pcode form of the compiler occupies approximately 64 K Bytes of store and
requires about 20 K Bytes of data area to compile small programs that students
may typically write (100/200 lines). The operating system for the Digico occupies

just over 42 K Bytes. It was clear that little space is left available in the 128
K Byte memory if all the system was to be resident. The final layout is as follows

KB
0

16

32

48

64

80

96

112

128
fig 4.11

The size of the store area reserved for Pcode was chosen to accommodate the

compiler. The controlling program written in Digico’s assembly language
{blGIc^ occupies 7400 two byte words including space for local data and I /O

buffers. The controlling program has three functions:

1 User interface, with simple job control language
2 Assembly of Pcode instructions

3 Interpretation of Pcode instructions

User interface

The Digico operating system has a very basic job control language limited to

loading and running machine code programs. This is not suitable for specifying

Operating system

Pcode assem bler/ interpreter / control

Pcode - program code

Data - program data

99

compilations and executions and so a small command language was created for

this purpose. The commands provided are:

c program name Compile Pascal program

G optional file name Assemble (Get) Pcode file.

H Help message typed out
L machine code program . Load assembled Pcode program or machine

file code program.

R file parameters Run Pascal Pcode program or machine
code program.

S file name Save assembled Pcode program

X Exit from Pascal system.

In addition there are some extra commands, for example combining the function
of compilation and assembly. The system does not require the user to distinguish
between Pascal programs assembled and saved in a binary image and machine
code programs which have been assembled by the Digico assembler. The main
reason for including this facility is so that the Pascal system does not need to be

left in order to input or edit files - the file editor which exists as a machine code
program can be called upon just as though it were a saved Pascal program. The
system has proved itself extremely easy to use by first-time users.

All allocations of disc files to Pascal programs including the compiler are

performed by this user interface.

4.42 Assembler

The second function of the Digico Pascal system is that of assembling the Pcode
produced by the compiler into the storage areas in a form suitable for the

interpreter. The Pcode generated by the modified compiler exists as a readable

100

text file. The main functions of the assembler in operating on this text file are:

1 Encoding and packing the relevant fields of a Pcode instruction.
2 Filling in forward jump references.
3 Allocating space and packing constants into the data area.

The constant table contains 4 kinds of entiy. These are objects too large to fit in
the Q field (see below) of an assembled Pcode instruction. The instruction is

altered to load them into the stack indirectly when the constant is allocated space
on the table. The constant table entries are:

Sets occupying 16 bytes
Reals occupying 6 bytes
Boundary pairs occupying 4 bytes
Literal strings occupying 2 bytes per character.

Boundary pairs are the values of the upper and lower limits of subranges used for
compiler inserted range checking. All types are allocated at least two bytes of

storage as Digico words are two bytes long and word addressing is much less
restrictive than byte addressing for this implementation even for the string

handling operations.

The form of a Pcode instruction as stored by this assembler is as follows. Two

consecutive words are used:

0 6 7 10 11 15 bit no.

word 1

word 2

fig 4.12

I 101

The fields are as described previously in the description of the Pcode machine.

The C field is used to distinguish the type and therefore size of the object the
operation is performed on. The possible values being:

c Type Size in words
o Integer 1

1 Char 1

2 Boolean 1

3 Pointer 1

4 Real 3

5 Set 8

6 Array Variable - given by Q field

7 Imaginary null object 0

8 Nil pointer 1

9 Constant set 8

ue 7 of an imaginary object of zero size is used for procedure/function

return where the size of the result of a function is required to set the stack pointer.
For procedures the size of the result is zero.

4.43 Interpreter

4.431 General
The complete assembler/interpreter/control program for the Digico Pascal system

is 8 Kb in size. The interpreter section occupies approximately half this area of

store. The interpreter caters for 63 Pcode Instructions; each is interpreted by its
own subroutine. The subroutines vary in size from six instructions to about sixty.
The average time taken for execution of one Digico M16E instruction is 2. 5^$,

The resultant execution speed then varies between 1 5 ^ and lSO^y for each Pcode
instruction.

Added to this is the speed of execution of the interpreter's main loop. The main

loop decodes each instruction and branches to the subroutine corresponding to the
Pcode operator found. This loop takes 49^s to complete. This speed is acceptable
in that a compilation of a program proceeds at a rate of approximately six lines a
second including delays for I/O transfers.

4.432 Addressing methods

The Diglco Micro 16E has a poor set of addressing instructions. There are no
index registers. The ordinary store accessing instructions between a given store
location and the accumulator allow twelve bits for the address. This allows an
addressing region of 4096 words. Similarly the simple jump instruction and all

conditional jump instructions allow only twelve bits for the address. With these
instructions, the high order four bits are taken to be the same as those of the
address of the instruction being obeyed. The result of this is that the 64K words of

store are effectively split into sixteen 4K 'stacks'. Without cumbersome
portioning of a program and restricting addressing of data to the vise of the three

indirect data access instructions a program's code and data must wholly reside

within one of these 4K stacks.

The interpreter requires much more storage space than this restriction permits
and as a result, all access to the Pcode and data areas has to be made using the
three indirect addressing instructions. These are:

GTI n load accumulator with word whose address is In n

STI n store accumulator in word whose address is in n
ADI n add to accumulator the word whose address is in n

The sequence for the Pcode instruction STO (store the top of stack in the address
given beneath the top of stack) is interpreted as:

103

i

GTI SP load top of stack

DEC SP decrement stack pointer

STO TEMPI save value

GTI SP load top of stack (address)

DEC SP decrement stack pointer

STO TEMP2 save address

GET TEMPI load value

STI TEMP2 store at address

If an index register existed that could be used to hold the stack pointer the above
code, which is typical of many of the interpretive routines, would be greatly

improved.

The interpreter's main loop which decodes Pcode instructions requires three
combinations of logical shifting of a word and masking selected portions using a
logical 'and' instruction to recover the four fields. The implementation on the
GEC 4080 Is capable of recovering the required fields without any masking or
shifting. The addressing allowed gives access to any byte or halfword within a
4080 word and makes the process of recovering the fields of an instruction trivial

and fast.

4.433 Arithmetic operations
The most notable restriction imposed on the evaluation of arithmetic expressions is
that the only hardware arithmetic instructions on the DIgico are integer addition

and subtraction. Division and multiplication are bandied by two software routines.
This makes Pascal array accesses particularly slow as the product of two values

is required in calculating the address, and the size of each element of an array is
not necessarily a multiple of two which would allow simple multiplication by

shifts.

104

No floating point hardware is available on the Digico at Keele. A set of routines to

interpret three word floating point values was used. This package also includes the

routines for the standard procedures and functions in Pascal which operate on real
values. This floating point package is approximately 2,300 words long. The

package plus the interpreter are too large to coreside in one 4K stack. Instead, the
floating point package resides in the first 4K stack allocated to Pcode code when a
user's program is being executed. When the compiler is being interpreted, the
floating point package is written over by the first part of the compiler Pcode. The

compiler does not use any floating point instructions. The package used is an
adaption and enhancement of a floating point package written at Keele SING78^
This package required additional routines to optimise transput of floating point
values and the code to implement the standard routines sin, cos, sqrt, atn, log and

exp was added.

The most difficult Pcode instructions to implement were the operations on sets. To
restrict the set size to one word would result in sets containing at most 16 elements.

Eight words are used to hold a set value. Implementation of operations such as set
inclusion when the only logical operations available are 'and' and 'not' is

extremely tedious.

4,434 Conclusions
In the above section, the difficulty of implementing a language such as Pascal on a
small machine with a very limited instruction set has been pointed out. The

interpreter for the Digico Micro 16E was developed over a period of twelve months
although a crude system was working without implementing sets or reals after
tw o months. The fact that Pascal can be implemented on such a basic machine in
such a relatively short time by one person is itself remarkable. The Pascal system,
although useable by one person only at a time, has proved itself reliable and easy
t o use since its completion in 1978.

4 . 5 Implementation on the GEC 4080

4 .51 General

The GEC 4080 machine at Keele has the following technical description:

1 4082 processor

512 K bytes core store
4 M bytes drum storage
2 disc drives - 70 Mb each
3 magnetic tape drives
1 paper tape station

Graphical station - graphics tube, plotter and digitiser

The instruction execution time varies from 1,3 micro seconds for a half word
(2 bytes) integer addition to 60. 8 microseconds for a double word floating point
division.

The GEC 4080 contains eight registers. These are as follows:

A The main accumulator - 32 bits

B The main floating point accumulator - 32 bits
X Index register - 16 bits
5 Sequence register - 16 bits
L Local workspace pointer - 16 bits

Y ,Z Base registers - 16 bits
C Conditions register - 8 bits

t̂n addition, as all instructions address via a register, an imaginary zero register

Exists containing zero. A 4080 program (or 'process') typically contains several
^:ode chapters. Each chapter can be regarded as a self contained piece of code.
*The main need for several code chapters is that direct access of local data is

106

restricted to 128 objects for each chapter. Each chapter will contain a local

workspace area of which only the first 128 objects may be directly addressed. The

L register always points to the base of the local workspace for the current chapter.
In addition, a global workspace area accessible to all code chapters exists starting

at storage location zero. This may contain 256 objects of directly addressable data.

The usual method of accessing the rest of the data storage is either to consider it
as a set of vectors indexed by the X register or to access it relative to bases which
are loaded into the Y or Z register.

In referring to the local workspace, the word ’object' was used to mean any of the
standard types available to 4080 instructions. These are:

bytes 8 bits aligned at 1 byte intervals

halfwords 16 bits aligned at 2 byte intervals

fullwords 32 bits aligned at 4 byte intervals

Teals 32 bits aligned at 4 byte intervals

doubles 64 bits aligned at 8 byte intervals

Doubles are double precision reals (floating point numbers).

The displacement/address quoted for accessing an object is in units of that object.

For example:

Load byte 10 will load byte number 10 into the accumulator

Load halfword 10 will load bytes 20 and 21 into the accumulator

Load fullword 10 will load bytes 40, 41, 42 and 43 into the accumulator

The base address used (usually the contents of the L register) is always a byte
address. A program on the 4080 at Keele may have, in theory, access to four

megabytes of store. At any one time, only sixty four kilobytes of store is accessible.

107

The 4080 contains a hard wired nucleus as the core of its operating system. This

nucleus performs all address checking anduser initiated store requests. The store

accessible at any time is defined by the nucleus and appears as follows:

address inKBytes

The program can access four segments at any one time. A segment is a contiguous

piece of store of maximum size 16 kilobytes. A program can be composed of up to
approximately fifty segments, any of which can be nominated to be one of the four
currently accessible. This storage manipulation is governed by two tables, the

PAST and the CST tables. These are altered and set up by the nucleus and accessed
automatically by the hardware. The PAST (Program Accessible Segment Table) has
an entry for each segment owned by the program. The CST (Current Segment Table)
contains the PAST numbers of the four segments currently accessible. Segments
are also the units of transfer to the drum when overlaying.

Two of the four CST segments have special uses. CSTO always contains the global
and local workspaces for the program and so must always be present. CST3

contains, usually, the code for the program. If the code is greater than 16KB or

108

has deliberately been placed In more than one segment then the operating system

will automatically overlay into CST3.

CST1 and CST2 are overlayed to contain any owned segment under program control.
It should be noted that overlaying does not involve the copying of a segment but just
nominating a segment to be the one currently known as CST1 or CST2. The nucleus

then alters the relevant entry in the CST table.

4. 52 The Pcode Interpreter

4. 521 General - store access
The Pcode interpreter uses the four current segments in the following manner:

CSTO Workspace for the interpreter

CST1 Pcode area of program
CST2 Store area of program
CST3 Code of the interpreter

Should a Pascal program,when compiled, require more than 16 Kbytes of store to
contain the Pcode or more than 16Kbytes of a data store, or both, then extra
segments are allocated and overlayed into CST1 and CST2 respectively.

When such overlaying is necessary, an explicit check is required for each Pcode
machine store address in order to ascertain whether the segment containing the

required item is the one currently accessible. Unfortunately no use can be made of
hardware interrupts to detect access to a non resident segment. The reasons for
-this are that accessing an address outside the segment in CST1 would be taken as
an access to CSTO or CST2. Additionally, should a store access be regarded as
illegal by the hardware, then the GEC 4080 operating system does not allow
continuation Of the program under any circumstances.

109

Checking every store access is a large overhead and has been found to almost double

the execution time of a program. For this reason, the Pcode interpreter can operate

in two store access modes. In the first, the maximum store allocation is 16 Kbytes;
this requires no checking of store accesses for the required segment as it is

permanently resident as CST2. The second allows 64 Kbytes of store and overlays
four segments into CST2.

The P4 compiler allocates all addresses as byte addresses which are interpreted
as follows:

Bit 15 14 13 0

Byte address within
segment

tsegment number

fig 4.14

The required segment is found by adding the segment number to the PAST table

number of the first store segment. This is then overlayed into CST2(if not already
there) and the least significant 14 bits are used to index CST2.

Pcode instructions always occupy four bytes (one full word) each. CST1 is then
accessed as a vector of 4096 Pcode instructions. Should a Pascal program be

sufficiently large to require more than 4096 Pcode instructions then up to four
segments are overlayed onto CST1. The way this is accomplished is as follows:

Program counter
15 14 13 12 11

segment number

always zero
fig 4.15

110

Whereas accesses to the program's data store are in general random and checks

have to be made on every store access, if the program requires more than one

store segment, access to the code follows a much more well behaved pattern. Unless
die current Pcode instruction is a branch instruction, the next access is always for

the next word in CST1. A check is made on the program counter, to establish
whether the required segment is resident in CST1, whenever a jump instruction has
been operative. There is one further possibility of the program counter leaving the
current segment, when the current instruction is the last one in a segment and the

program is about to 'march over' a segment boundary. Rather than check whether
the current instruction is the last of a segment, which would be as costly as
checking the required segment number of the program counter at each instruction,
a dummy instruction is inserted as the last one in each code segment. This

instruction is simply an unconditional branch to the following Pcode location. As
this is a branch instruction the program counter will then automatically be
checked against the current Pcode segment by the interpreter.

When a program does not require more than one Pcode segment, these checks on the
program counter are inhibited.

4, 522 Pcode Instruction format
A Pcode instruction is coded on the GEC 4080 implementation as shown:

Bit 31 24 23 16 15 0

1 full
word

1 byte1 byte

fig 4.16

2 bytes

I l l

Unlike the Digico implementation, there is no C field determining the size of the

object the instruction is to operate upon. Instead, the C field, when present, is

merged into the OP field. Of the 61 original Pcode instructions, 18 require a C
field. The number of different sizes of object operated upon by the interpreter is
three - 1 byte, 4 bytes and 16 bytes. The number of extra instructions ncessary
to eliminate the C field is then 36. The alteration of the OP field is performed,
after compilation, by the Pcode assembler described below. In addition, certain

operations, such as comparison of two real values have to be handled by a different
instruction than comparison of two integral values - even though both these types
occupy four bytes.

4. 523 Operation of the 4080 Pcode interpreter

As mentioned above, a GEC 4080 program (called a process by GEC) is usually
composed of 'chapters'. A chapter is either a data chapter or a program (code)
chapter. Several code chapters are required for large programs.

The Pcode interpreter consists of five chapters (four code and one data) and

fourteen system chapters (thirteen code and one data). The system chapters handle
the basic input/output and the standard mathematical routines - sin, cos, atan, log
and exp. The code chapter being obeyed is always resident in the current segment
CST3 referred to above, and all data chapters are resident in CSTO.

The five Pcode interpreter chapters are:

1 INTPRTGD. The Global data chapter.

This contains all directly accessible data required by the four code chapters.

2 INTERPRETER. The main code chapter.

This chapter contains the code to read in the program, interpret Pcode
instructions and handle all storage allocation and error detection.

112

3 CSPCHAP. Standard routines chapter.

This chapter contains the code to implement the Pcode standard routines. In
most cases, either a systems routine is called when the standard routine is

one of the standard mathematical routines, or the relevant routine in the

chapter PASCALIO when the standard routine is dealing with input or output.

An example of the sort of task handled by this chapter is transput of the -
textual form of printed integers or reals. More primitive routines for
reading and writing characters in PASCALIO would be called in that process.

4 PASCAL 10 . Pascal input and output routines.
This chapter handles all the basic transput interfaces with the standard
system routines. All basic I/O initiated by the Pascal program such as
reading and writing one file component is handled by this chapter.

5 MERR. Mathematical error.
This chapter is required by the system mathematical routines sqrt, cos, sin,
atan, log and exp. It is called in the event of an error such as asking for the
logarithm of a negative number. In this event, this chapter calls the error
handling routine in the main chapter INTERPRETER.

The interpreter consists of just over three thousand lines of Babbage assembly

code which assembles into four and a half thousand GEC 4080 machine instructions.

4. 53 The Pcode assembler for the GEC 4080 Pascal implementation

The three functions of control, assembly and interpretation required to

implement this Pcode Pascal system are dealt with separately, unlike the Digico
implementation which handles all three functions in one program. The facilities
exist in the 4080 operating system to call programs under the control of a useable
job Control Language. These facilities to call programs and associate them with
particular I/O devices do not exist on the Digico. The assembly stage can be

considered a second pass of the compilation in that it is required once after each

113

compilation before a program can be executed.

The functions cf the assembler for the 4080 implementation are:

1 Encoding the textual form of Pcode into four byte instructions.

2 Allocating space in the constant table and filling in such references
to the table.

3 Filling in of all mnemonic addressing such as control transfer.

4 Generation of the extra instructions, where necessary, to eliminate
the C field.

5 Generation of the extra jump instruction at the end of each
segment as described above.

6 Generating information for the interpreter as to the size of store
required for execution.

The assembler produces a file containing the assembled Pcode. The file is a 'core
image' so that the interpreter need only read the file directly into the Pcode code
and the data areas prior to execution.

The assembler, written in Babbage assembly language ^GECb^ , is just over

600 lines long and occupies 14K bytes of store. As an indication of the speed of the

assembler, it requires 10 CPU seconds to assemble the textual Pcode form of the
compiler. The assembler produces 16733 Pcode instructions and 2176 bytes of
constants. This is a speed of 1673 Pcode instructions a second.

114

4.6 Enhancements/Improvements made to GEC 4080 Implementation

4.61 General
Several Improvements were made to both the P4 compiler and the Pcode
interpreter. These changes were made for two reasons. Firstly, P4 Pascal differs,

in several respects, from standard Pascal as described by the Pascal report

£ WIRT75 ̂ and the British draft standard £a d d Y78^ . Secondly some
alterations were necessary in order that the compiler was more suited to an
interactive system used for teaching and research. Where new features are added,
the compiler is able to warn the user, if requested, whenever a non standard
feature is used. Alterations made to enable the run-time diagnostics to be added are
described in a later chapter.

4. 62 Removal of deficiencies
It was decided that, as far as possible, the Pascal compiler should adhere to the
specification of the draft standard mentioned above. The main exception to this
approach concerns procedural and functional parameters as described on page 20

of the report. These parameters are one of the main points of contention hindering
an agreement of an international standard and so have not been included pending any

outcome. The following differences were removed. Appendix I contains a list of
the differences between P4 Pascal and the draft standard.

a) Files
P4 pascal does not cater for the declaration of any files, and will only recognise

four predefined 'text'files ’input', ’output', ’p rr ’ and 'prd'. The compiler and
interpreter were changed so that only input and output are predefined as type ’text’ ,

and that declarations of files of any type is permissible. On entering the main
program an automatic call of rest (input) and/or rewrite (output) is made if either

file is declared in the program heading. The standard type ’text’ is included in the
compiler.

115

b) Program heading
P4 Pascal does not require the presence of a program heading. This was

changed according to the report. Any file variable that appears in the program
heading must be declared as a file type globally in the program. Files in the

program heading are capable of being connected to actual devices by the job
control statement initiating the execution of the resultant program. The program

name in the heading is retained and printed at the start of execution for
identification purposes. Unless otherwise connected to specific devices as
described later, files declared that do not appear in the programme heading are
connected to temporary disc files. The file names in the program heading are
used by the compiler to produce a ’proforma' which is used by the GEC 4080
operating system to identify the file names used with physical devices.

c) Standard procedures
The standard procedure 'page' and function 'round' was added to the P4 compiler.
The second optional field width parameter for writing real values was allowed.

d) Sets
P4 pascal does not allow the form:

< expr> . .<expr>

as a set constructor. The only valid set constructors are expressions separated
by commas. The compiler was altered so that the above subrange notation is

allowed. The Pcode instruction SGS which generates a singleton set was then

altered to require two parameters on the stack - the upper andlower bound of a
subrange. Its original function is then the special case of the upper and lower
bound being the same. Where both the expressions in the subrange set
constructor are constants, the compiler will generate the required set itself.

116

e) General
The predeclared constant 'maxint* is included as the maximum integer capable of

being represented by the GEC 4080 (214748 3647). P4 Pascal imposes a maximum
length of literal strings of sixteen characters. This has been changed to eighty

characters. As a literal string may not extend over more than one program line,
eighty characters seemed a more reasonable upper limit. The draft report allows

upper and lower case alphabetic characters to be used on identifiers. The draft
also specifies that for the purposes of denoting two identifiers as the same, upper
and lower case counterparts are considered equal. This was implemented on the

4.63 Enhancements
Several enhancements were considered desirable in order that the Pascal system

is suited to a teaching environment. P4 Pascal produces a listing of the program
which gives line numbers and the Pascal address/storage address allocated to
the first statement/declared variable on that line. When an error occurs at run­
time, the interpreter can then inform the user of the Pcode location where the

error can be found. This location is then matched with the Pcode locations on the
listing to find the source statement in question. The compiler was altered so that
(unless specifically requested) no Pcode locations are listed, just line numbers.
The compiler then inserts a new Pcode instruction at the beginning of each
statement which starts on a new line identifying the line number. The interpreter
then quotes the line number of the erroneous line.

The P4 compiler indicates compilation errors when detected and prints a number
corresponding to the error as given in the table in the Pascal manual {wiRT75^
The two objections to this are that the error number has to be looked up in a list
manually in order to find out what the error is, and that in a large program it may
be difficult to look through each page of the listing to spot any errors. This was

altered so that no error number is printed; instead the compiler prints the full

compiler along with the use of curly brackets delimit contents.

117

error message. The table of error messages is held on a disc file which the

compiler accesses randomly. At the end of the listing, the compiler will print

a summary. This summary consists of the line number and error message for
each error detected. This summary is optional as it is only really useful for large

programs. When a small program is being compiled, and the listing is being
printed on a VDU screen, a summary would not usually be wanted, as it would

cause program text to be scrolled off the top of the screen.

For efficiency reasons, the compiler was made to stop producing code when it
found a compilation error. The user will receive as the 'compiled' program a

program, which, if execution is attempted, prints a suitable message and stops.

4. 64 New features
Some non-standard features were added to Pascal either to make use of facilities
available on the GEC 4080 or because they were considered a necessary facility
in a language to be used for teaching certain Computer Science courses at Keele.
In each case, the compiler is able to warn the user that non-standard features
have been used in the program. These features are:

a) Random access files
The reserved word 'random' was introduced. This word may precede the word
file in a file declaration. In this case, the file is opened as a random access file.
The operations available on a rancbmfile in addition to reset/rewrite are:

getrandom (< file name > , < integer express ion >)
putrandom (< file name> , <integer expression>)

The integer expression denotes a key which must be
larger than zero. This key is found before the get/put
is obeyed. The standard function eof will be true

118

following an attempted getrandom for a non-existing key.

update (< file name>)

This procedure is similar to reset/rewrite but allows
both getrandom and putrandom to be applied to the file.
'rewrite' applied to a 'random' file will create a random
access file ready for initialising.

The main reason for including this facility was so that the compiler can access
a random access file of the compile-time error messages. The file used by
the compiler is declared as:

var errfil j random file of array [l . . 8(0 of char;

b) Dynamic connection of files to physical devices

The procedures reset, rewrite and update (as described above) were redefined to
cater for an optional second parameter. This parameter, if present, must be a

literal string or an array of characters. In performing the reset/rewrite/update,
the file variable will be connected to the physical device specified in the string.
The device is specified in the same maimer as expected in the job control
language of the GEC 4080 operating system.

c) Pseudo random numbers

The predeclared procedure 'randomise' and predeclared function 'm d ' was added.

Rnd is a real function that returns a pseudo random number on the range:

o ^ x •<£ 1

The same series of numbers produced will always occur unless the procedure

119

randomise is called. This procedure sets the seed of the pseudo random sequence to a

value dependant on the reverse order of the bit sequence constituting the time of day in

milliseconds.

d) Halt
The predeclared procedure 'halt1 causes termination of the program. A remaining
deficiency of this Pascal system is that a goto statement may not lead out of a
procedure. A common use of such an abnormal exit from a procedure is to jump to the
end of the program. The procedure halt overcomes the difficulty and is arguably a
neater method of providing the facility.

e) Environmental enquiries

The predeclared integer function'environ* was introduced. This function requires one
integer parameter and the value returned depends on the value of the parameter as

follows:

Parameter value Value returned

* 0 0
* 1 1

2 Time of day in seconds

+ 3 Time of day as the integer HHMMSS
+ 4 Date as the integer DDMMYY

5 Amount of storage space left
6 Maximum amount of storage space used
7 Number of milliseconds since the program

started
* 8 8
* 9 0
* 10 0

♦These calls of environ are only meaningful to the compiler

120

or the run-time diagnostic system as described later. They
perform special communication with the interpreter or

operating system. For example, environ (0) is called by the
compiler to inform the operating system that compilation
errors were detected.

+ For example for ten minutes and twenty seconds past ten

o ’clock am. on the twenty eighth of September nineteen seventy
nine, environ (3) and environ (4) would return the decimal
integers 101020 and 280979 respectively.

4. 65 Compiler options

Compile time options are specified, as in many Pascal implementations, within a
comment. If the first character of a comment Is a hash sign # , then following should
be a series of a letter followed by a plus or minus sign separated by commas. For
example:

Would cause option A to be set and options D and H to be unset. Any deviation from the
defined sequence results in the rest of the comment being ignored as usual.

The options already provided by the P4 compiler are:

(* # A+, D-, H-*)

Option Action Default value
T Print compiler tables for each procedure off

C

D
L produce compilation listing

produce run-time range checks for
sub ranges/array bounds
produce Pc ode on

on

on

121

Additional options were incorporated as follows:

Option Action Default value
A Produce listing of Pcode addresses as

original P4 compiler
off

H Produce heading incorporating program

name when program is executed
on

S Produce error summary at end of

listing

off

W Produce warnings whenever non
standard features are used and at the
end of the listing if any such features

were used.

off

E Terminate compilation on first error off

4. 66 Removal of errors
Several errors exist in the P4 compiler. A list of known errors is published in Pascal

News ^MICK^ and these have been corrected. These errors are mainly concerning
the new features that were added to the P3 Pascal compiler to produce the P4 compiler.

The new features concern alignment of data types occupying different storage sizes.

4. 67 Deficiencies remaining
Not all the differences between the F4 Pascal implemented and the draft standard have
been removed. Those remaining are:

1 Objects on the program heading parameter list may only
be files.

2 procedure and function formal parameters are not allowed.

3 nil is a predeclared constant, not a reserved word.

4 goto s may not lead out of a procedure or function block.

5 The standard procedure 'dispose' is replaced by 'mark'

and 'release'.

6 Read/write may only be applied to actual text files .

4. 7 Experience of use of the Pascal system on the GEC 4080
This Pascal system has been used for teaching purposes for the Computer Science
Department's principal and subsidiary courses at Keele University for the teaching

session 1979/80. The system has performed reliably and no errors within it have
made themselves apparent. The interpreter, assembler and the Pcode form of the
compiler are all reentrant and one copy is thus shared between all simultaneous

users.

The system can degrade considerably under extremely heavy use when sixteen or
more people are attempting a Pascal compilation. This problem is thought to be
avoidable when the compiler is truly compiled rather than interpreted, at some
later date, or if the 4080 is upgraded to its maximum store size.

CHAPTER FIVE

PORTABILITY

123

5.0 Introduction
The experience of implementing Pascal on two very different machines raises many
topics associated in a more global sense with the field of software portability. In
general, two machines which contain an implementation of a particular programming

language will use different methods for obeying certain language constructs. Quite
often, an implementation will not cater for all language features defined and will
allow some additional language features which are not defined as any form of

standard. The result of this is that the transfer of a piece of software from one
machine to another will involve two stages. Firstly the program itself has to be

moved from the storage medium of the donor computer to the storage medium of the
host. Secondly the program will be modified in order to be acceptable to the host and
run in this new environment. The combined ease of these two tasks comprises the

portability of a piece of software.

5.1 Objectives
This chapter considers portability from three viewpoints. Firstly, the more common

problems that may arise when transferring any piece of software are discussed.
Secondly the problems encountered in implementing the P4 portable compiler are
discussed. Reference is made to particular problems which arose and a comparison
of the two implementations made. Finally the strategy employed to attempt to

minimise portability problems is explored. Such a strategy, inevitably,will be

comprised of optimum routes to be taken, and suggestions for changes and improvements
to both software and hardware to ease the problems involved, are made.

5.2 General Portability Problems

There exist many potential obstacles to the transfer of a piece of software from one

machine to another. Perhaps the most common are those of language differences,

character code differences, the differences in machine architecture and the media

available for the physical transfer. Other considerations include the interface with the
host machines operating system and the environment within which the software will

124

be used. Aspects of some of these problems are now discussed; examples of their
effects on the implementations of Pascal described are dealt with later in this
chapter.

5.21 Language differences
Given any high level language, it is likely that implementations on different machines
will not treat particular programs in the same manner. Wichman WICH76
and Knuth KNUT67 list incompatibilities of different implementations of
Algol 60. Several different representations of the Algol 60 symbols exist, for

example:

'BEGIN’ , "BEGIN", BEGIN

Less obvious differences include Wichmann's example of side effects in the

expression:

s + f (s)

where s is an integer and f an integer function, can result in different values
depending on whether s is evaluated before f (which has the side effect of

altering the value of s). The KDF9 Algol system, for instance, will evaluate the

expression strictly from left to right while the ICL 1900 system evaluates functions
first. Most implementations of languages will allow non-standard features of that
language such as long reals' in the DEC system 10 DECa

pascal was designed with great emphasis on its subsequent portability. A detailed

definition of the representation of symbols is given in the Pascal report. Although

pascal does not define the order of evaluation of an expression (such as the

example above) the report explicitly states that the programmer should not assume

125

which term is evaluated first but cater for both possibilities. Pascal also gives
some consideration to another common problem existing between different

implementations, that of the number of significant characters of an identifier. Pascal

allows identifiers of any length but the report stipulates that only the first eight will
be considered significant. In Algol 60, for example, no limit is defined on the
number of significant characters of an identifier but most implementations will
impose one. The unfortunate outcome is that some Algol 60 compilers will consider
the first eight characters (for instance) while others consider only the first six
characters. In this case, a program containing the declaration:

integer number 1, number 2;

will not compile if only the first six characters are significant. A more dangerous

structure is of the form:

begin integer number 1

begin integer number 2;
number 2 : = 2 * number 1

end

end

This program would compile on all such Algol 60 compilers but give different

results. There is in fact an instance in the Pascal P4 compiler where the same
identifier is spelt quite differently (after the eighth character) in two different
parts of the compiler.

126

5.22 Character code differences

There exist several different sets of character codes. The character coding varies
from one manufacturer of a computer to another. The DEC system 10 ^DECb ^
has two character sets on the same machine; these are ASCII and SIXBIT. ASCII
(American Standard Code for Information Interchange) is a seven bit coding

including 128 characters, while SIXBIT is a six bit coding comprising the ASCII
character codes 32 to 96. The CDC range of machines has three character sets
each containing 63 or 64 characters. These are the 'ASCII character set with CDC's
ordering'. The scientific character exists in two form s, the 64 character form and
the 63 character form which is the same as the 64 character set except that the
code for ': ' is different and the character •%' does not exist.

In order to transfer a program from one machine to another which has a different
character set, a processer will be necessary to convert from one character set to

the other. This operation is a simple table lookup if the two character sets contain

the same characters or more correctly if the donor's set is contained in the host's

set. If this is not the case, then alternative representations for characters that are
not representable must be used. Unfortunately, machines with a limited character
set will often contain compilers which, because of 'missing characters',

implement a non-standard version of the language concerned, hence making transfers

of programs doubly difficult.

Another common difference between many machines is the standard representation
of the end of a line. Some will use the character pair 'carriage return and line

feed ' others one 'newline' character which is typically 'carriage return' or 'escape'.
The GEC 4080 does not represent the end of a line by a character but prefixes

each line with Its length. These differences lead to Pascal not defining an end of
line character but including a Boolean test for the end of a line.

127

5.23 Machine architecture differences

Arguably the greatest obstacle to the portability of a program is the wide
variation in machine architecture. If the program is a ’Portable Compiler’ then a
new code generator or interpreter will be required. The host machine may have
insufficient storage for an efficient implementation or may lack certain machine

orders which result in a veiy slow operation of certain high level functions such
as Pascal set manipulations or recursive function calls. In this case, if transfer of
a program necessitates transfer of an efficiently executable program certain

optimisations may be necessary to overcome local peculiarities. Some of the most
common machine architecture differences are now discussed.

5.231 Word size/accuracy

The term word size is used here to mean the size in bits of the basic storage unit Í
of a machine - this storage unit being treated as an indivisible data item by some ;

of the machine's instructions. Some machines are capable of handling more than

one size of storage unit. The GEC 4080, for example, can process storage units
of four different sizes {GECaj . In this case the word size is that unit of storage
which is normally used to hold integral values and upon which the arithmetic
operations of the machine can apply. This word size is as small as eight bits

for many microprocessors and as large as sixty bits, for instance, on the CDC

7600. The word size determines the range of values that variables may take. With
a word size of eight bits, the integers -256 to +255 may be represented whereas

with sixty bits,a range of approximately + 1018 is allowed. This large difference
can have great implications if a piece of software relies on being able to

represent a particular range of integral values. If a machine’s word size is too

small for this purpose then two or more successive words will have to be

considered as one unit and all operations on this larger V ord ' will have to be
implemented by software. This will result in the program executing at a speed

which is reduced greatly and thus may be unacceptable if the program requires
a certain speed such as in a 'real time* application. The word size of a machine

128

will also dictate the range of floating point representations. Because floating point
representations are a finite set of values they are only an approximation to the
infinite number of values within any range. The number of different values
representable within a particular range is also related to the machine's word size.
The word size then not only limits the range of floating point values but also their

precision. Ford ^FORD76 ̂ discusses the portability of NAG library routines
and quotes a particular instance of a mathematical technique of evaluating the

incomplete gamma function. This method has a precision of 10“ 8 which is absolute.
The algorithm cannot be used to aquire a greater precision which may be required
on a machine with a large representation of floating point values and as such is

not portable. Lack of a particular precision can also result in some mathematical
techniques being inefficient or not applicable.

5.232 Store size
The amount of memory a program may be allocated is a function of the physical
amount of memory the machine possesses, the size of any operating system that

is present and the number of simultaneous users of the machine. This available
memory space is again very different on different machines. A program may

require more memory than is available in which case some form of virtual memory
implemented on backing storage would be necessary. Depending upon the nature

of access to this virtual memory a system of either paging or overlaying would
need to be used. Assuming sufficient backing storage is available, any size

program can be implemented on a small machine but may have the effect of a large
reduction in operating speed - access to backing store being typically several orders
of magnitude slower than access to main memory.

5.233 Registers

The number of registers on different machines varies. Every machine possesses

a sequence register which contains the address of the machine instruction to be

129

obeyed and most contain at least one register called the accumulator. In addition,

some machines possess additional registers commonly used to index the store.
The Dec 10, for instance, contains fourteen index registers which may alternatively be
used for accumulating arithmetic results or as stack pointers. The Digico Micro

16E, and many other machines, have no index register and an indexed address then
must be calculated, stored and an indirect instruction obeyed. Lack of several

/
index registers does not usually preclude the Implementation of a program but
inevitably necessitates a more long winded approach. This feature of machine

architecture is , again, one affecting the subsequent efficiency of a program rather
than one that seriously hampers the transfer of software.

5.234 Machine instructions

A machine will have amongst its repertoire of machine instructions functions for

testing and altering storage locations, performing some arithmetic manipulations
arid performing input and output. In addition, each machine will usually be capable

of many more complex functions. The number of machine code instructions

available is typically of the order of a hundred. The variation can be large, for

example the Digico Micro 16E has approximately sixty machine orders whilst the

Dec 10 has a possible repertoire of 512 machine orders. The Dec 10 has a large
repertoire, but many instructions exist for completeness rather than being useful.
The main areas of common concern when considering useful machine instructions
are the availability of floating point instructions, stack manipulation and the ease
of manipulating small data items such as characters and bits. Lack of such

facilities will inevitably result in small routines to interpret absent instructions
with the corresponding decrease in speed. Confining the machine code to a small

number of basic instructions, in addition to resulting in a decrease in speed will

also cause an increase in the program size. This fact, combined with the case that
machines with very basic machine instruction repertoires tend to also have a

small store size will entail a large effort in implementing a program on a small

machine.

130

5.24 Media available for the transfer of software

Currently available media for data transfer from one computer to another are:

Direct link
Portable discs
Magnetic tape
Punched cards
paper tape

The problems realised by different character code conventions between the two

machines have been dealt with earlier. Unless the two machines are of the same
manufacture or have been linked together, the last two options will often be the only

method of transfer. Whilst in principle paper media are fairly straightforward, they
can become impractical for large data transfer. The P4 compiler and its Pcode form

for example would occupy almost one and a half miles of paper tape or a stack of

cards nearly fourteen feet high. This approach can be cumbersome and wasteful

particularly as several transfers may be needed if modifications are necessary
which can only be made on the donor machine.

The first method, the direct link, is the simplest and often fastest method of transfer.

Very few computers of a different origin are connected together. The difficulty in
inter-machine communication is often that of formulating a common protocol. For
transfer of files, the protocol needs to be able to communicate when a file is to be
transferred and what is to be done with it. A common approach to this is for a
machine to emulate a known device such as a card reader or paper tape reader.

The second two methods, magnetic tape and disc, involve conventions of blocks or
groups of information. These media are always formatted in units referred to as

blocks or sectors. The size of these blocks is rarely the same on two machines of
a different make or series. There has been some work on producing industry

standards for magnetic tape but these standards are far from generally recognised

131

The problems involved in physically moving data from one machine to another can
be seen as non-trivial. Griswold £GR1S76 ̂ points out that this process can

often take longer and involve more work than installing the program that has been
transferred. There is clearly some scope for development in this area; a

commonly agreed and extremely simple protocol to send a specified number of

characters along a direct computer link would be extremely useful and in theory be
fairly easy to implement. There exist several networks of computers but each has
its own complex protocol. It would be reassuring if a simple transfer program

were seen to be as common and expected as a systems program such as a Fortran
compiler.

5.3 Some other portable compilers

5. 31 UCSD Pascal
The UCSD (University of California at San Diego) Pascal project £b OWL78 ̂

had as its aim to 'provide minimal-cost computing facilities for introductory
computer science classes'. The project is discussed under a heading of portability

because it has been implemented on many m icroprocessors, in each case
providing identical systems to the user.

5.311 UCSD Pascal compiler/language
UCSD Pascal is based on the Pcode compiler P2. This has been modified to

eliminate some deficiencies and enhanced in many respects. In all implementations
but one Pcode is produced and then interpreted. The Pascal microengine

£ MICR78^ has Pcode as its instruction set and thus has a compiled UCSD Pascal
system. The differences remaining between UCSD Pascal and standard Pascal are
listed in appendix 3.

132

5.312 UCSD Pascal environment.

UCSD Pascal is a complete programming environment containing its own file
handling package and editor. The filer has the ability to perform functions of

copying information between peripherals, listing directories and performing
several housekeeping tasks. The editor is a screen oriented utility with the ability

to move a cursor to any position of a file and perform editing functions at the
cursor position. By including such an environment, use of UCSD Pascal on

different microprocessors is easily learned. The filer, editor and compiler are
all Pascal programs and all that is required to accommodate UCSD Pascal is a
Pcode interpreter.

i!I
I

5.313 Portability of UCSD Pascal

UCSD pascal is available on many microprocessors. The project has taken great i
lengths to ensure that compatability between the different implementations exists
and by charging $20,000 for any request for source code of the system has lessened
the chance of incompatable versions being created. This approach, while being
somewhat dictatorial, has ensured a level of portability of Pascal programs across

many machines not often seen elsewhere. The existence of a m icroprocessor
designed purely for the UCSD Pascal system i MICR78^ is an indication of its
widespread popularity and success.

5.32 The Belfast Pascal compiler

The Belfast Pascal compiler is a modified version of the original Zurich compiler

^ WIRT71c \ . This original compiler which produces code for the CDC 6000

series was altered to produce ICL 1900 code £ WELS72] . The main differences
between these two machines are that the 1900 has a much smaller word size and
fewer arithmetic registers. The modifications required were not insubstantial and
required six man-months effort. The compiler had to be compiled at Zurich and

133

economic constraints restricted the Belfast team to one short trip to Zurich. In

order to test the code produced at Zurich, a 1900 code interpreter was written in
Pascal. This interpreter had to cater for the subset of thirty 1900 instructions

which the compiler generates, and fourteen operating system routines. The compiler

was tested at Zurich and a compiler version in 1900 code produced in only eight days.
One intermittent error remained in the compiler which was eliminated after their

return to Belfast.

Transport of a compiler from one machine to another is a large task. The P4
compiler is usually transferred by writing a Pcode interpreter for the host machine.

In the case of the Belfast compiler, the code production sections of the compiler were !
altered. The 1900 machine architecture is similar to the CDC 6000 to the extent that j
a complete overhaul was not required. The Belfast team point out that the transport '
of the compiler 'proceeded with an ease and speed uncharacteristic of such

operations' and attribute this to four factors. Firstly the Pascal language permits j

the compiler to be written in a clear and structured manner reducing the likelihood
of errors when altering it. Secondly the system at Zurich provided fast interactive

I

job turn around. Thirdly a carefully selected set of Pascal test programs were used
to test the compiler while at Zurich. Finally the use of a host machine emulator on

the donor machine allowed testing of the compiler without the need to transfer the
code to the host machine until the compiler is complete.

5.33 MUSS portable compiling systems

MUSS Is a system of compilers and an operating system portable over a range of
machines. The heart of the compilers is the language CTL (compiler target

language) £cA P 071 ^ . CTL is a high level language and once a compiler for it
is written for a machine, the different language compilers are created by adding

prewritten front ends to this CTL compiler. In this manner, once the CTL compiler

is Implemented, new languages should be available by a minimal effort to write the

134

compiler's front end. This process enables new languages on an existing machine
to be more easily provided but transporting the CTL compiler requires the effort of

writing a compiler for a language such as Algol 60. A lower level interface is

provided in the form of TML (target machine language) £ bARR79^ . Unlike Pcode
TML is designed to be receptive to a variety of languages. TML distinguishes

between arithmetic on integers, for example, and address calculations such as array
indexing. In this way, any existing hardware functions which are designed for array
indexing or record field accessing may be exploited. TML is the MU5 target machine
model £ BARR79 ^ and portability of the MUSS compilers is good over the range
of MU5 type machines such as the ICL 2900. As is noted by Barrington, TML can

be implemented on other machines such as the CDC 7600 but because of the
architectural machine differences, the resulting efficiency would not be ideal.

5.4 Comparison of the two implementations of Pascal
This section compares the implementations of Pascal on the Digico Micro 16E and

the GEC 4080. Problems met in both Implementations are detailed in the following
section, whilst this section concentrates on the differences as seen by the user and

on the different approaches adapted for the two systems. Both systems involve the
P4 compiler adapted to the local requirements but despite this large area of common

software the implementation methods required and the resulting system so viewed

by a user are significantly different.

5.41 The user interface

The user interface to a language implementation will largely be dictated by the

operating system running on the computer. A custom built environment will often
be possible for use within an existing operating system - many computers implement

BASIC with its own defined environment. Pascal has no environment defined and it
is assumed that Pascal should be used in a similar manner to that of other compilers'
present on a computer such as Fortran and Algol 60. To call a compiler and

135

subsequently cause execution of the compiled program will necessitate using
certain commands particular to the operating system existing on the machine. The
GEC 4080 has an operating system and a standard method for users to compile and
execute programs and it then seemed natural to present Pascal in this conventional
manner. The Digico Micro 16E does not have the capability of allowing multi-access

to Pascal both because of storage restrictions and because scheduling of Pascal can
not be achieved by the operating system. There is no standard method of operating

compilers on the Digico because there is only one compiler (BASIC) provided and
this has its own environment. The Digico operating system does not provide an

easy method of running programs in certain sequences and it was therefore decided,
because of these considerations, to provide a Pascal environment. The user

interface for the Digico is then that of a Pascal machine whereas the GEC 4080
implementation provides a GEC 4080 machine with Pascal capabilities. These two
approaches raise the question of what a computer user requires - a particular

language or a particular computer. Someone who is a devoted Pascal user on

several machines would probably prefer each machine providing Pascal in a similar
environment. The provision of a language with its own environment as standard as

the language itself is the approach that tends to be adopted with microprocessors.
Many'personal computer' systems provide BASIC with its environment and Pascal

with the UCSD environment as discussed in the previous section. Microprocessors,

unlike mainframes, do not currently offer a host of compilers. Should they do so
then the language environment approach may disappear. At the present time,

popularity of microprocessors tends to place more emphasis on the software than
the hardware and provision of a Pascal or Basic machine becomes the natural

solution.

5.42 Storage allocation

The storage manipulation and requirement of the Pcode machine has been described

in the preceding chapter. The manner of implementing this requirement on the two

machines is quite different. The Pcode machine requires two memory areas, these

136

being for holding the Pcode instructions and the program's data/workspace. The
Digico allows absolute addressing of machine locations only and a rather static
storage allocation approach is taken. The GEC 4080 is a virtual address machine.
The two Pcode machine store areas are mapped into two of the 4080 current
segment areas, as described in the preceding chapter, and by nominating segments

to these areas gives the effect of a two dimensional store. The size of the two areas
is independent of each other and so allows much greater flexibility than the Digico.
The Digico has no provision for dynamic allocation of store to a program. This is
not a problem, however, since in a single user system it is quite acceptable to

allocate all the remaining store to the Pcode machine's requirements permanently.
The GEC 4080 is a multi user system and it is therefore wise to only allocate as
much storage area as is required at any one moment. As the stack or heap grows,
more store can be allocated in certain sized amounts. The unit of store expansion

ideally should be the amount of store typically used by small programs. In this way
small programs would not be allocated a wasteful excess of store. The unit of
store expansion should also not be so small that programs requiring steadily

growing amounts of store have the overhead of frequent store requests for expansion.
Experience has shown that a unit of expansion of 2K bytes would be acceptable. This

however, poses a problem when considering the expansion of the heap. The heap,
as discussed in the preceding chapter, grows from the top of allocated store

downwards. When allocating a segment of store of 2K bytes, the required layout

Is as shown:

address o

2K
T <-SP

62K

64K
*J-N P

fig 5.1

137

However, a partial segment - that is, one allocated to be less than 16K bytes - is
recognised to be at the low address end of a segment. No partial segment may be
allocated starting part way along the address region it occupies. The result is that
the heap must grow in units of 16K bytes. It is also unfortunate that in a modern

machine such as the GEC 4080, access to a medium or large store area requires
the user to explicitly overlay segments as described in the previous chapter.

5.43 Operating system interface
This section is concerned with the implementation of a suitable interface between

pascal and the operating system for the purposes of performing input and output.
This particular aspect of implementation is greatly hindered if the operating
system does not provide general purpose routines for dealing with different

peripheral devices. The Digico provides separate 'executive calls' for each
peripheral device. Each device requires a different amount of information at each
call. The main details of these requirements are as follows.

5. 431 Digico VDU
This device operates on a one character buffer. There is a facility in the operating
system to buffer a line of information but the editing facilities provided by it are
very basic. The Pascal system builds up input from the VDU until a carriage return
is received. The building up of the line includes facilities for deletion of
characters typed in, deletion of the whole line, verification of the line typed so far,
tabulation and detection of an 'end of file ' character.

5.432 Digico discs
To access a disc file, the Digico operating system has a file handling package

called DOS ^D IG Ib} . This routine requires the provision of a twenty five word

138

accounting and description buffer and a four hundred and forty eight word data

buffer. The Pascal interpreter packs and unpacks characters from the data buffer
checking for the end of file in the case of reading a character. The file handling
package includes a routine for performing disc I/O on a character basis but copies
over the twenty five word description on each such call. This results in a simple
file copy program taking five times longer using the supplied routine than
manipulating the disc file buffer within the interpreter.

5.433 Digico printer

The Digico installation at Keele operates a Diablo 'intelligent terminal'

two protocol systems in this link - that of the channel and that of the Diablo

terminal. Both protocols have to be adhered to by the program using the Diablo.
The operating system requires detailed information each time the channel is

accessed but leaves such tasks as checking the state of the channel to the user

program.

5.434 GEC operating system interface

The GEC operating system provides a set of data management routines as an
interface between the user program and the peripheral devices connected to the
GEC 4080. The use of these routines is independent of the actual device being
used. The basic routines are as follows:

a) Connect

primarily as a printing device. The terminal is connected to the

Digico Micro 16E via a general communications channel ^DIGIa^ .There exists

Associate a channel number (in the range 1 to 12) with a

specified device. The specification of a device is a.
character string in the same format as used in the job
control language.

139

b) Open
Open the connected device - or reopen this device - for
reading or writing

c) Close
Close the connected device - used when all data has been
read or written.

d) Get
Read one record/line of data into the specified buffer. The

number of characters read in to the buffer is provided on

return from this routine. !i
i

e) Put i
Write one record/line of a given length from the given |

Ibuffer. !
i
iii

5,435 Summary
It is clear from the above descriptions that the two operating systems of the Digico

Micro 16E and the GEC 4080 provide a very different interface between a program
and peripheral devices. The Digico does little other than simple data transmission.
The program must be aware of what actual device is being used and provide

memory areas whose use and size is completely device dependent. The GEC 4080
provides a much more flexible approach. The user does not need to be aware of

what actual device is being used. The memory space provided and the routines

called being the same whether the program is writing a disc file, printing the file
on a line printer or punching a file on paper tape. The flexibility afforded by this

approach has two effects. Firstly the programmer is not impelled individually to

cater for a range of peripheral devices. Secondly, every systems program using

these routines can automatically handle the full range of devices available thus

140

ensuring I/O compatability between existing and future programs. The Digico
approach requires each site to produce its own set of routines to drive peripheral
devices. This results in a great deal of unnecessary duplication of effort and a
likelihood of data being incompatible between different Digico machines.

5.44 Interpretation of Pcode instructions
The P4 Pascal compiler is intended to be a portable compiler. With this aim, the
code generated cannot make sweeping assumptions concerning the actual machine

instructions available. A good example of this concerns the Pcode instructions to
manipulate sets. Some of these are:

INN Test if a given value is present in the set.

SGS Generate a singleton set

UNI Generate the union of two sets.

INT Generate the intersection of two sets.

In both Implementations a set is represented as a group of consecutive words,

each bit representing the presence of a set member. One word will not suffice as in
both implementations this would require a restriction on the size of sets that would
not permit ■: execution of the compiler. A member of a set is then represented by
two parameters: the relative word within the set and the relative bit within that
word. The above four instructions are then interpreted as follows:

m is the relative word of the set for this value,
n is the relative bit In word m for this value,
s is the number of words comprising a set.

141

INN Test bit n of word m.
SGS Set all s words to zero. Set bit n of word m
UNI Perform a logical 'or ' on each s pairs of words

INT Perform a logical 'and* on each s pairs of words.

The Digico Micro 16E can only reference a particular bit by logical shifts to a
testable position - the sign bit. The Digico does not have a logical 'o r ' construction.

The GEC 4080 has instructions for testing or setting any bit within a word and has
both ’and' and 'or ' instructions. Hence the Digico is fairly slow in interpreting set

instructions while the GEC 4080 is relatively fast to perform such instructions. As
an example the following operations were tested on each implementation:

(a) ch in [' O ' . . '9 ']
(b) (ch < = '9') and (ch > = '0')

These two Boolean constructs are common methods of testing whether a character
is one of the numeric characters. The tests were placed in a Pascal for statement
and the program execution time noted. The time taken for the same program

without the Boolean expression was then subtracted and the following times
represent the number of seconds to evaluate the two expressions 20,000 times

machine expr time (secs) relative time

Digico (a) 11 1

Digico (b) 7 0. 64

GEC 4080 (a) 1 1

GEC 4080 (b) 2 2

It is clear then, that the quicker way to test whether a character is a numeric
character depends on the machine being used.

142

A second test was performed to give an indication of the time taken to perform
floating point instructions. The Digico implementation requires a software floating
point package while the GEC 4080 contains floating point hardware. The two
expressions evaluated were:

(c) I + I - I * I DIV I I is integer
(d) X + X - X* X / X X is real

The repetition was again 20,000 and the results obtained were:

machine expr time relative time
Digico (c) 16 1

Digico (d) 154 9. 63

GEC 4080 (c) 9 1

GEC 4080 (d) 9 1

The point is again made that the speed of certain constructs can vary widely on

different implementations. A particular program written in Pascal may be portable
between two implementations but its relative efficiency to a similar program will
not necessarily be the same.

5. 5 Particular portability problems encountered

Some of the problems which may arise when transferring a program have been

discussed. The Pascal P4 compiler has been transferred twice as described:

firstly from a CDC 7600 at UMRCC to the Digico Micro 16E at Keele; and secondly
from the Digico to the central service machine at Keele, the GEC 4080.

Accompanying both implementations were several events which hindered the transfer.

The more notable problems encountered are now described as an illustration of the

143

more general obstacles to portability already discussed. These illustrations range

from incompatabilities between the machines to problems stemming from the

language itself.

5. 51 Character code differences
The Pascal P4 compiler is claimed to be independent of character set differences
^ JAC076 ^ . This claim is supported by the fact that the Pcode produced

contains character constants represented as readable characters rather than integer
codes. In the process of transporting the compiler, these characters are produced

within the Pcode form of the compiler on the donor machine. The P4 compiler does,
however , use the internal code of characters when producing a jump table fo r a

pascal case statement. This problem was encountered with regard to the scanner
section of the compiler. This section contains a case statement for actions to take
depending upon the character read. The code produced for a case statement is as
follows. Consider the statement:

case ch of̂ (* ch is of type char *)
’A» : S i;
'B ' : S2i

'Z ' : S3
end;

The compiler will first calculate the range of the case variants. In this case it is

’A ' to 'Z '. The compiler then produces a jump table of this size. In this case it

might appear as:

1) JUMP

2) JUMP

3) ERROR

4)
•

ERROR

•

•

2Ô) JUMP

L 9 TA»

L10 'B'

'C
’D’

L ll H'

144

The code produced to operate this table consists of loading the ordinal value of the
character, subtracting the ordinal value of the character, specified in the case
statement, of lowest ordinal value and then using this value to perform an indexed
jump into the jump table. For the CDC 7600 the code for the character 'A ' is 1 and

the code produced for the above statement is then:

load ordinal value of character

subtract 1
Index jump in jump table

When this code is then obeyed on the Digico it will fail. The Digico represents the
character 'A' by the code 65 and as a result the wrong entry in the jump table will

be selected (if it exists). This has the effect that any Pascal program (including
the compiler) cannot be compiled on the donor machine and executed correctly on
the host machine if it contains a case statement, the case variable is of type char
and the two machines have different character sets. The P4 compiler contains

such a case statement and three options are available to overcome this problem:

1 Amend the Pcode produced to subtract the correct number

2 Amend the compiler so that it does not use a case variable
of the type char.

3 Amend the compiler on the donor machine to be aware of
the character set when dealing with case statements.

None of these solutions is entirely satisfactory. The first solution is rather untidy.
The Pcode has to be examined to locate the necessary instruction and this then

amended. This is something which has to be done each time the compiler is
compiled on the donor machine and this process may have to be repeated several

times before a satisfactory version of the compiler can run on the host machine.

The second solution makes the compiler completely independent of character set
differences but not other programs. When building the interpreter it is wise to

145

test it with several sample portions of particular Pcode instructions. This is
achieved by compiling small test programs, each utilising a particular language

feature, on the donor machine and attempting to interpret the resultant Pcode on
the host machine. The second option rules out the ability to test such a case
statement. The third solution is the option chosen in this particular case. It is not
wholly satisfactory in that it has to be repeated to transport the compiler to
another machine with yet another different character set. The P4 compiler running

on the donor machine is then altered to amend the code produced for case statements.
This compiler is referred to as the cross compiler in the previous chapter. The
compiler which will run on the host machine does not require amending.

5. 52 Language differences
The language compiled by the P4 compiler is slightly different to standard Pascal as
detailed in appendix 1. The particular difference noted here is that P4 Pascal does

not recognise the standard procedure dispose. Instead it uses two procedures mark
and release which remove items from the heap ia a stack-like fashion. The P4
compiler uses the procedures mark and release to release the name tables
associated with the local variables of a procedure when it has finished compiling that
procedure. When the P4 compiler is compiled on the donor machine under a

standard Pascal compiler, it will fail because it has used the unknown procedures
mark and release. This can cause the implementer some effort in rewriting this
section to ’dispose' of each name table entry individually. Fortunately in this

particular instance the CDC 7600 Pascal compiler does recognise release as a

standard procedure. It does not recognise the procedure mark but as mark is
equivalent to a call of 'new' with the parameter being a pointer to a pointer this is

not a large problem. The cross compiler is then altered to call ’new’ instead of

’mark'.

146

5. 53 Standard types - size and alignment
Several problems arose during the course of implementing Pascal on the two
machines due to different Pascal object types occupying different amounts of store.
These problems are mainly concerned with the alignment in store of different sized

objects and the manipulation of the stack which grows on fixed units.

5. 531 Alignment with records

Consider the record type:

record

b : Boolean
i : integer

end

In the GEC 4080 implementation, Booleans and chars occupy successive bytes while
integers occupy four bytes aligned on a four byte multiple. The above record would

then occupy the following layout in store:

byte
o

4

The shaded area is unused and inaccessible to the Pascal program. Without

initialisation of all store when this object is created, either on the stack as a local

variable or on the heap by a call of new, the shaded area will contain undefined
information. This can result in two records which contain identical Pascal fields

being compared and not found equal. The Pcode instruction for comparing two

records is given the addresses of two records and their size and so the undefined

b m,m.Wt
i i i i

fig 5.2

147

sections will also be compared. The most practical solution to this problem is to
initialise store when allocated - in the GEC 4080 implementation, store is

initialised to zero.

5. 532 Stack manipulation
The stack, as implemented on the GEC 4080, grows in units of four bytes. Problems
can arisewhen an object is loaded on the stack which is not four bytes in size. In the
case of characters and Boolean variables their size is one byte. The most natural
way of accommodating one byte objects on the stack would be to place them in the
least significant byte of a stack word. This is certainly the easiest way for the
interpreter. The stack is , however, also used for the passing of parameters to

procedures and functions and for the return of function values. In this manner, objects
loaded onto the stack may be subsequently accessed as a normal variable within the
local data of a procedure and vice versa. The compiler demands the alignment of
one byte objects to occupy the most significant part of a word where possible and this

is then the position in which characters and Booleans must be loaded onto the stack.

The second problem which arises with manipulation of the stack concerns sets. Sets

in both implementations occupy more than one stack element and therefore require
multiple stack operations. This in itself is a matter of occasional inconvenience

within the interpreter but does in fact have a serious consequence with regard to the
c alculation of stack space required which is performed by the compiler. On

generating each instruction that alters the size of the stack, the compiler calculates

the maximum size the stack could possibly grow to within each procedure. This

value is later used to update the EP Pcode register as described in the preceding

chapter. This EP register is used to determine whether the stack could grow beyond
the maximum storage space available. The compiler assumes that the stack grows
in fixed sized elements. An instruction to load a set onto the stack would however

increase the stack size by a greater amount than an instruction to load an integer.

148

The compiler could be altered to take account of the known size of the object(s)

being added or removed from the stack by each instruction. This would, however,
add a relatively costly piece of coding into an already critical section of the compiler
reducing compilation speed by a noticeable amount. Alternatively the compiler

could assume the worst case that all objects loaded onto the stack are sets. This
could clearly be wasteful and cause a program to 'run out of store' prematurely.
The size that the stack is assumed to grow by could be taken as some calculated

average but this approach is error prone If a lot of set manipulations are performed
in a program. The final alternative is to only place the address of a set on the
stack. This suffers from the disadvantage that temporary storage may need to be
allocated in interpreting a set expression - an unfortunate step to take for a stack

oriented machine. The solution adapted in both implementations is to assume the

worst case - that the sets are always being loaded onto the stack when evaluating an
expression. This does not, in practice, lead to a greatly exaggerated prediction of
the stack growth as the amount of store used for the purpose of evaluating
expressions is usually small compared to that used for local variables and the

exaggerated increase on possible stack size requirement for a procedure is
relatively small.

5.54 Input/output

The problem that caused most concern with regard to input and output is that of an
interactive device such as a VDU being used as a Pascal file. Pascal defines that

after a call of the standard procedure reset, the first file component is available to

the program. For instance, if the standard file input is connected to the VDU, then
at the start of a program, the file component inputt is the first character typed

as input to the program. This requires the user to type the first character, or

more usually the first line, of Input before the program commences. This is neither
natural ncr desirable. Two solutions to this problem have arisen in known

implementations. UCSD Pascal has redefined the standard file input to be of a new

149

standard type 'interactive'. This type is the same as the type 'text' except no

character look ahead' facility is provided. With a text file, the operation of the
call read (ch) where ch is of type char is equivalent to the sequence:

ch:= inputt ; get (input)

The UCSD type interactive defines the sequence to be:

get (input): ch : = inputt

This suffers from two disadvantages. Firstly no look-ahead facility is provided
which can hinder certain programming techniques. Secondly this approach severely
hampers portability of programs between standard Pascal and UCSD Pascal
installations.

The second solution is the one adopted in the two implementations. The procedure
reset, when applied to files of type text does not cause any input to be taken from
that file. Instead, the file buffer contains a space and the function eoln delivers

the value true. This is the same as saying that on calling reset, the file pointer
is at the end of an imaginary line immediately preceding the first line of the file.

This approach does not seriously hamper portability as a call of either 'readln'
or 'get' applied to the file immediately after a call of reset will position the file
buffer at the first character of the file as defined by the Pascal report. This

approach has been supported by Dijikstra ^DUK79^ as the best method of
overcoming the problem of interactive Pascal files.

5. 55 Storage constraints for compiler bootstrap

Having implemented Pascal on a computer, the problem of maintenance of the
compiler arises. The original Pcode form of the compiler is produced on a

different machine. If aqy change is to be made to the compiler, for example to

150

tune it to its environment, it is desirable if the process of recompiling the compiler
can be performed on the host machine thus removing problems of transporting the
Pcode. The compiler is a large Pascal program and in order to compile it a large
amount of store is required. This store consists of approximately 65K bytes to
hold the Pcode of the running compiler and 48K bytes of data storage to compile

the compiler. Storage space on the machine is also required for the interpreter
and operating system. This large store requirement is not available on the Digico
Micro 16E which has 128K bytes of memory. In order to bootstrap compile the
Pascal compiler it is therefore necessary to use other storage media. The compiler
can be overlayed or paged in and out of backing store. The Digico interpreter was

adapted to page the Pcode form of the compiler between main memory and disc such
that only half of the Pcode form of the compiler is present in main memory at any
time. This has the effect of reducing the compilation speed considerably. The

compiler takes approximately two hours to be compiled using this method.

5. 56 Word size limitations
One particular problem arising during the transfer of the Pascal compiler from the

Digico Micro 16E to the GEC 4080 is due to the smaller word size of the Digico.
Integers are held in 16 bit words on the Digico and in 32 bit words on the GEC 4080.

The Pascal predeclared constant maxint, being the maximum legal integral value,

is then 32767 and 2147483647 respectively. The compiler destined for the GEC 4080
must then be capable of allowing integral constants of absolute value less than or
equal to 2147483647. This value is conveyed to the compiler in the constant

declarations specifying the machine dependant parameters of the host computer.

The P4 compiler destined for the 4080 then has to be compiled on the Digico which

will reject this specification of maxint as too large for it to accommodate. This is
a portability problem hindering any move of the P4 compiler from a ’sm all’ to a
la rg e ' machine. The problem is solved by specifying the constant maxint as being

any number small enough for the Digico compiler to accept. The resulting Pcode
is then edited to alter the single occurrence of this value to the correct value.

151

5.6 Conclusions on portability
Several points have been made relating to the portability of software in general and
in particular, the portability of the P4 compiler. The meaning of the term
portability and its application to the P4 Pascal has been discussed. This section
attempts to expand that discussion within the framework of the two implementations
of this compiler described.

5. 61 Non standard Pascal features
The British standard draft report on Pascal £a.DDY78^ recognises that
implementations of Pascal will often contain non-standard features of and extensions
to the language. The language Pascal is designed to be capable of efficient
implementation on as many machines as possible. This design feature restricts the
features of Pascal to those readily available on most machines. Some features
which are commonly added to Pascal are:

l) A facility to pass a simple message to the operating system,
usually to indicate the success of the program.

2̂ Environmental enquiries of, for example, the time and date.
3) Pseudo random number generation.

Pascal does not expressly forbid such extensions. The proliferation of particularly
these three extensions is large as is the number of different ways in which they are
presented. In recognition of such common extensions it could have been helpful
for implementers of Pascal to have been given guidelines to their implementation.
Such guidelines could be presented by defining Pascal under two headings. The
first heading could be the standard language which should be complete in each
implementation; the second would be a set of extensions to the language which are
strictly to be considered non standard and their inclusion in an implementation
optional. For example, under this heading there could be a standard function called

152

’time' which is defined to give as a result the time of day in seconds. Some
implementations may find the presentation of such a function in a different manner

more convenient. In this case the implementer is free to do so but should not use the
name ’time ’. These guidelines for extensions would greatly ease the portability of
Pascal. It Is a fact of life that programs will use extensions to languages. If
portability problems due to such use can be lessened by certain conventions then

this must be a worthwhile exercise.

5. 62. Portability and efficiency.
The usual method of implementing P4 Pascal is to construct a Pcode assembler and
interpreter. The efficiency of such a system will depend upon the effort in

constructing the interpreter. A Pascal system can be made available quite quickly by

constructing an interpreter which contains routines to execute each Pcode instruction
written with the main motivation being speed of constructing the interpreter rather than

the interpreter’s subsequent running speed. In other words, it is not just the question
of how portable P4 Pascal is but also how portable an efficient P4 Pascal system is.
In the instance of the GEC 4080 implementation, it could have been declared that P4
pascal was available after little more than a month of work. The system in that

embryonic stage, whilst able to compile and run Pascal programs, was very difficult
to use and veiy slow. The system then had a very primitive user interface, it was
tediously difficult to access disc files, using more than a certain amount of store
resulted in halving the program’s execution speed and the compiler was not, at that
stage, shareable between several simultaneous users. Experience with both
implementations suggests that the core of the system - a primitive interpreter - is a

relatively small part of the effort required to produce a useable system. The majority
o f the time is spent on tuning this core , and creating the periphery connections to fit

the system neatly into its environment. This stage involves the order of six times the
e ffo rt required to build the basic interpreter. When writing a compiler from scratch

this second stage would normally require less effort than writing the core of the

com piler. This reversal in these two relative efforts is evidence of the success of the
;p4 pascal compiler.

153

Another aspect of efficiency when considering portable software is that of catering

for several possible eventualities. The P4 compiler is parameterised to cater for

different store allocations and alignments to variables when assigning addresses. In
this case, a procedure is obeyed when a variable is to be allocated an address which

aligns the address of the next free location according to the alignment required by
that variable. In some implementations each type of variable will have the same
alignment requirement and this section of the compiler is an unnecessary overhead.
In this case it may be worth altering the compiler to suit one particular machine.

To do this wherever possible would take a large degree of effort and this effect
could be achieved automatically by some form o f conditional compilation

mechanism.

5. 63 Portability of Pcode
The Pcode Pascal P4 compiler produces Pcode machine instructions which are
usually interpreted by a host machine. The portability of this compiler then largely

depends upon the portability of Pcode. The success of a machine code designed for
a particular language and its implementation depends on three factors.

Firstly the machine code must be designed to minimise the mapping of Pascal

constructs onto it. This factor is responsible for Pcode being based on a stack

machine. A stack machine enables a natural implementation of recursive procedure
calls and expression evaluation where the syntactic definition of a Pascal expression
is recursive. Pcode contains instructions whose method of addressing variables has
two components, a base and an offset. This feature enables ready access to

variables declared in outer procedures that are neither local to the currently
existing procedure nor global to the program.

Secondly Pcode moot be capable of efficient interpretation in order that interpretive
implementations afford an acceptable execution speed. For this to be true, Poode

instructions should be capable at ready interpretation without regard to tte Pcode

154

instructions either about to be interpreted or which have been interpreted. In other
words, a Pcode instruction should contain all the information required for its
interpretation without considering the context of its use. Thirdly Pcode should be
designed so that few assumptions are made about the architecture of potential host

machines.

The second and third factors are in a sense contradictory. The more high level the
target machine code is, the easier the task of the compiler as more effort is moved
from the compiler to the interpreter. At the same time, the more low level the
target machine code, the more likely the interpreted execution of a program is
slower. For example consider the set operations as discussed in section 5.44 of
this chapter. The operation of testing for set memberships has as operands a set
and an integral value. This is a high level instruction requiring a greater than
average effort of implementation whilst being more difficult to implement than most
other Pcode instructions it was a wise decision to include this instruction at this
level. The interpretation of this instruction is usually that of testing whether a

particular bit is present in the bit pattern comprising the set. If the design of Pcode
were to break this task down into several lower level tasks it would have to assume

a generally available method of testingthe presence of a particular bit. As described
previously, the Digico Micro 16E implementation tests the presence of a bit by

performing a logical shift on the relevant word of the set such that the selected bit

occupies the sign position of a word. This is then tested by examining the sign of
the result. This is the only method of performing this test on many computers. The

GEC 4080 implementation makes use of this machines ability to test the presence of
any selected bit of a word and this is faster than shifting the bit into the sign

position. In this respect the set membership instruction is high level compared to
the Digico instruction set but equal to the power of a particular GEC 4080

instruction allowing the most efficient method of interpretation in both implementations.

The balance between these two factors of allowing ready interpretation of Pcode
instructions without enforcing a potentially inefficient result is quite critical. The

155

two implementations described here have been based on a simple machine (the
Digico) and a relatively more powerful machine in the form of the GEC 4080.

Implementing the same compiler on two very different machines has shown that this
balance has been chosen well. Pcode interpretation is fairly complex on the Digico
whilst on the GEC 4080 the opportunity to utilise many of this machines more
powerful instructions was welcome. The discussion shows that portability
considerations do not just include the question of how fast can P4 Pascal be

implemented on a machine but also that of how efficient the resulting code will
execute.

5. 64 Portable environments

In section 5.41 the environment surrounding pascal implementations was mentioned.
The lack of an adequate user interface on the Digico Micro 16E provoked the

creation of a user environment in which Pascal is used. Generally, all compilers on
a particular machine are invoked in a similar manner. Programs are stored and

edited using the same system for each language. Some languages such as Basic, have
an environment defined as part of the language and in most instances the user sees
little difference in the way Basic is used on different machines. Such an

environment is usually created for languages which are primarily intended for

interactive use such as Basic, POP2, and UCSD Pascal as previously described.
The interactive use of a language involves more than presenting a compiler with a
program as in a batch system. The user develops and edits a program on-line and

the commands used for these purposes can become as much a part of the language

as the program statements themselves. In this case, any facilities offered by the
operating system which are not included in the defined environment for a language

such as Basic can be considered as extensions to the language. The portability of
such an environment is subject to the same limitations as the portability of program
constructs. The filing and editing commands must be such that they can be

implemented on most machines if the language i3 to be widely used. Defining an

environment for a language has some advantages for the user. If a computer user

156

generally uses one language interactively, then portability of that language, as seen
by the user, is greatly enhanced if the environment remains the same. The problems
of learning a new job control language are eliminated. The main disadvantage to
this definition of an environment is that production programs created under it are
usually only capable of execution ly entering the particular environment. This may

inhibit the use of such programs under some operating systems which assume
production programs run under the operating system's environment. The environment
also inhibits portability between languages. The user of several languages will have

to be aware of several environments and this is undesirable. The inevitable
conclusion to this discussion is to enjoy the benefits of both systems by defining one
environment for all languages. Whilst some work is in progress to define portable

operating systems £ f RA.N77^ , this has shown few signs of achieving general

acceptance by computer manufacturers.

5. 65 Increased portability
In this chapter the meaning of the term portability has been discussed and attempts
made to identify the factors which contribute or otherwise to it. Some particular
recommendations have emerged which can have the effect of increasing portability.

In concluding this chapter these recommendations are highlighted and a definition of

the term portability given.

Throughout this discussion, portability has been used to give some measure of the
effort involved in moving a piece of software from one machine to another (or one

language to another) and the degree to which the host and donor implementations
behave in the same way. It is not sufficient to move a compiler from one machine to
another in the easiest possible manner if the result is severely different from the
original or considerably less efficient than it could be. Portability of Pascal does

not just mean making the language available but making an efficient and useable
implementation of the language available. For this reason, a potential implementer

157

must be prepared to put in some effort to produce such a useable and efficient

system on the recipient machine.

Certain language features as described in section 5.21 can arise in programs which

are written in the same language as defined but which behave differently on different
implementations of that same language. The order of evaluation of expressions is one
quoted example. Programs will be less portable where these ambiguities arise and
any definition of a programming language must resolve such eventualities. Language
definitions ought to pre-empt the inevitable enhancements that will arise and whilst
not necessarily including those enhancements which are not generally available give
conventions for their supplementation. This would result in a small increase in

portability where implementations adhere to these conventions.

The portability of a language can be threatened by the inclusion in that language of
characters not generally available. There are a limited number of characters
which all computers recognise (those represented by ASCII code 32 to 96) and a
language that requires distinction between upper and lower case letters for instance
will give rise to programs that are extremely difficult to move to a machine with
a limited character set. APL is a language that requires a very large character set
and any implementation often requires new hardware to cope with it. This is an

extreme example of a language that severely injures its own portability by this

requirement.

The problems involved in the physical transfer of a piece of software were detailed

in section 5.24. The acceptance by computer manufacturers of the difficulties

involved in this process is paramount. It would be a very positive step for computers
to be produced with a very simple communications channel for this purpose. The
channel could appear as simple as a paper tape station where characters are sent

and received individually, it is suggested that no sophisticated protocol should be
implied for such a device, leaving the actual transfer of information at a very low
level - a level that is easily recognised by other computers.

158

In section 5.62 the possibility of some form of conditional compilation was suggested
in order that the P4 compiler can be tailor made for particular installation parameters.

This has been studied by the group that wrote this compiler £\VIRT743 but no
progress in this direction is apparent. The conditional compilation can be performed
by a special program which produces a particular version of the compiler given

certain parameters. An alternative is suggested by Bhaskar in Pascal News number
15 whereby all parameters specified as constants can be detected by an optimising

compiler. For example:

const versionl = false;

if versionl. then Si;

The above statement could be ignored by an optimising compiler. This solution is

fine if such a compiler is available - the P4 compiler does not optimise code in this
manner. A solution suggested above of having a program to custom build a compiler

from a general compiler appears much easier to construct and would achieve the
same result. This would not be conditional compilation as the compiler would be

presented with a complete program.

Finally, this discussion concludes with the term portability. This term cannot be
applied as an absolute but is a measure of effort required. There is no program
that is 'portable' to the extent that at a flick of a switch a program appears on

another machine working in exactly the same way and as fast as it does on the donor
machine. In the same way there is no program that in principle cannot be moved to
another machine - unless it makes essential use of particular hardware devices.

The term that is of interest is how portable a program is, how difficult it is to
transfer to another environment. Any new feature of computing, whether hardware

or software should consider portability as a parameter to be maximised particularly

159

if the effort involved in maximising portability is less than the decreased effort
required by all subsequent implementations as a result. Jacobi £jAC076^ in
reference to the portability of P 4 Pascal states ’The work required to move an
especially machine and system dependent piece of software - like a compiler - is not

negligible. However, if the work required is approximately an order of magnitude

less than that for writing the whole software from ’scratch', we would consider the
method as viable for the purposes of portability'

CHAPTER SK

IMPLEMENTATION

OF THE DIAGNOSTICS
SYSTEM

160

6.0 Introduction
This chapter describes the design and implementation of a novel run-time diagnostic
system. The system is designed for the Pascal implementation on the GEC 4080

computer. The system comprises three parts; these are alterations to the P4 Pascal
compiler and the Pcode interpreter and a diagnostics program. The latter is a Pascal

program which may be invoked by the Pcode interpreter under user control. The
features provided by this diagnostic system were outlined in chapter three. The

system was written with the aim of keeping inherent overheads incurred by its use to
a minimum. As little as possible time overhead is involved when the user's program
is running. The user is provided with a two state environment. Either that user's
program is running or the diagnostics program has been invoked. The diagnostics
program provides the user with an interactive environment in which the program

being diagnosed can be fully inspected in source language terms. The two facilities
that are of major interest as a contribution to the area are those of displaying the
shape of linked structures diagrammatically and providing names for dynamically
created objects on the heap. These two facilities are considered to bridge the

current gap between available diagnostic systems and modern high level programming
languages. This chapter describes the implementation details of this diagnostic
system and includes several illustrations of its use.

6.1 Method of operation

When using the diagnostics system, there exists two states apparent to the user.
Either the user's program is running or the diagnostics program is being used.

When the user program is running, the interpreter performs basic monitoring tasks
which determine whether to invoke the diagnostics program. The system can be
viewed diagrammatically as shown:

161

main store I disc storage;

fig 6.1

The direction of the arrows shows the access each unit has - for example the
interpreter controls the user and diagnostics programs and two disc files. The
interpreter has two modes of operating. It is either interpreting the user program

or the diagnostics program. The temporaiy control file communicates to the
diagnostics program the state of the user program. The information placed in this
file by the interpreter consists of the reason for halting the user program, the size
of the user program's stack and heap and the location at which it was halted. The
temporary state dump file is a core image of the volatile workspace of the

interpreter. This workspace comprises those interpreter variables which are

overwritten by invoking a second Pcode program - the diagnostics program. This

workspace is 100 bytes long. The workspace can be dumped or restored by one
simple I/O operation. The volatile data pertaining to the diagnostics program is not

dumped when the user program is re-entered. The diagnostics program is always

invoked from its initial state; knowledge of its previous state is irrelevant to the

162

working of this system. When the diagnostics program is invoked, it first reads in
the control file created by the interpreter. Depending upon where the user program

was suspended, the diagnostics program selects the compiler tables relating to the
user variables extant and assimilates them. The diagnostics functions performed by
the interpreter are kept minimal so that when the user program is running, few

overheads exist due to the use of the diagnostics system. As will be described in
more detail below, the extra functions performed by the interpreter are cbteetionof
the break point, a user interrupt and program error and the updating of the
statement counts fo r production of a profile by the diagnostics program. Unless
otherwise requested, the compiler produces a special Pcode instruction at the start
of each Pascal statement which starts on a different line from the previous
statement. On encountering this instruction, the interpreter checks for user

interruption or the existence of a break point and then increments the line count for
later production of the program profile. This special Pcode instruction also
contains the source line number of the program line corresponding to the Pcode

instructions following. Detailed explanation of the mechanics of these diagnostic

functions are given below.

6.2 Changes to the compiler

There were two main alterations to the compiler in order to provide the information

required by the diagnostics system. These were the production and output of the
compiler's name tables so that source identifiers can be interpreted by the diagnostics
program, and the insertion of code at the beginning of each source line that contains
Pascal statements. This code is used to implement the break point facility and

profile. In addition to these two changes, several minor alterations to the compiler

were necessary. The diagnostics program is written in Pascal and extra predeclared
routines are necessary in the compiler to perform actions such as interrogation of
the contents of the user program store area by the diagnostics program. The

diagnostics program must also have a mechanism for signalling to the interpreter

that the user program can be resumed. The alterations made are detailed below.

6.21 Compiler table production

The compiler tables are discussed in chapter four. The space occupied by that part

of the name table which describes objects local to each procedure or function is
reclaimed upon completion of the compilation of that procedure. Immediately prior
to this reclamation, the section of the name table no longer required by the compiler

is written to a disc file. By selective reading of this file, the tables can be
reconstructed to correspond to any required lexical position of the user's program.

The compiler's name table is composed of records of type 'identifier' describing each
identifier and objects of type 'structure' containing type descriptions. These two

structures were described in chapter 4. In addition, a new object named blockrec is
defined. This record is placed in the file to identify the procedure to which the

following objects belong. The record contains the level of the procedure and the first
prid last Pcode locations occupied by that procedure's code. The file produced is

declared as:

tablefile : file of record
ptrval : integer j

case rectype : filrectype of

XCTP : (XCTPA : identifier);

XSTP : (XSTPA : structure);
XBLK : (XBLKAj blockrec)

end

The records of the file can then describe identifiers, types or blocks. The integer
ptrval is the ordinal value of the pointer that pointed at either the identifier or

structure type record while in store during compilation. This value is used by the
diagnostics program to regenerate the tables as described later. To write all

164

identifier types to the file, the name display binary tree for the required level is
scanned in preorder fashion listing all identifier types. For each, at least one

structure type is associated. Several identifiers will refer to the same structure type;
for example all identifiers of type integer will point to one structure describing an
integer. In order to avoid duplication, an extra field is introduced into structure

types. This is a Boolean field which indicates whether this structure type has already
been written. In order to indicate the resulting order of the table file, consider the
following program structure:

Procedure R

Procedure Q

Procedure P

main program

fig. 6.2

The file will be created as:

Block record R - level 3
identifiers/structures of R

Block record Q - level 2
identifiers/struetures of Q

Block record P - level 2
identifiers/structures of P

Block record main program - level 1

identifiers/structures global to program

165

Block record predeclared - level 0
identifiers/structures of predeclared items

fig 6.3

6.211 Variant records
One alteration to the definition of the objects of type structure was necessary. This

concerns the way the compiler treats variant records. Consider a record

declaration:

record
a, b : integer;

case d ; integer of
0 : (x, y : real);
1 : (w, v : char)

end

The compiler does not associate the existence of the fields x and y with the value o of
d. This correspondence is required in order that the diagnostics program can
reconstruct the type definition. The type structure was altered to include a field

connecting variant values with the associated fields.

6.22 production of line code

The compiler produces two Pcode instructions marking the start of each source

program line containing compiled statements. The first instruction contains the
source line number and the second is zero to accommodate the construction of the
program profile. The interpreter recognises the existence of the profile count and

increments it on encountering the line instruction; it then skips over it. At the start
of each statement the compiler produces these instructions unless the previous

166

statement was on the same line. In this way, a line instruction does not occur within
a basic Pascal statement. These line instructions mark possible break points set by
the diagnostics package which clearly should not occur within a statement to avoid

confusion in use.

6.23 Control of compiler operations

These extra functions of the compiler are performed by default. Should the
programmer not wish to use the diagnostics system these functions can be inhibited.

They are controlled by two compile-time options. Compile-time options were described in
chapter 4. Two existing options were adapted. The D option existed to control the
production of code to test the violation of subrange limits and the T option existed to
control the original production of readable compiler tables. The P4 compiler contained

routines to include a textual dump of the compiler tables in order to test the compilers

operation. These routines were adapted to produce the name table file as described.
The D option was used to additionally control the production of line codes. The T

option controls the creation of a name table file. To inhibit the production of this file
slightly decreases compilation time and reduces the size of the final object code file

which after assembly of the Pcode contains the name table file. The absence of the
name table file results in the interpreter not invoking the diagnostics package. If the

line code is present, the interpreter will specify the line number where an error is

detected. By default, both the T and D options are set upon initialisation of the

compiler.

6,24 Additional predeclared procedures

The diagnostics package is written in Pascal. This means that all its functions must
be expressed in Pascal; there is no facility to include, for example, machine code
routines. The package has to perform four functions which are particular to its
operation:

167

1 Examine the contents of the user program store

2 Examine the user program code to produce a profile
3 Alter line instructions in the user code to implement breakpoints
4 Instruct the interpreter to resume execution of the user program.

To permit this communication use was made of the function environ (described in
chapter 4) and two procedures and two functions were predeclared. This use of
environ is described in the next section accomplishing the fourth function listed above.
The additional predeclared items are:

procedure pokec (a, v : integer);
This places the integer v in Pcode code location a
function peekc (a : integer) : integer;

Returns the Pcode instruction at location a

procedure pokes (a, v : integer);

As pokec but a refers to a Pcode store location.
function peeks (a : integer) : integer;

Returns the value of the Pcode store location a as an integer

For the reasons given in chapter 3, pokes is not used to alter variables' values and

is included for completeness only. The compiler generates previously unused Pcode
instructions on encountering these procedures/functions.

6. 3 Changes to the interpreter

Several alterations were necessary for the interpreter to provide the environment
required by the diagnostics program. These included being able to accommodate two
pcode programs - the user's program and the diagnostics - and switch between them.
This change was the largest. The interpreter also had to implement the new

168

instructions generated by the compiler for marking source lines and interrogating
the user program storage area. These alterations are now described.

6.31 Two state operation
At any instant, the interpreter is obeying either Pcode instructions belonging to the
user program or those making up the diagnostic program. The Pcode store area is
also partitioned into two sections one for each program. At the basic level, this is

achieved by setting three data variables:

mode
code base
data base

The mode variable is a flag set if the diagnostics program is being obeyed. The

code and data base variables signify the start of those respective areas. In practice

these variables name the GEC 4080 segments which are overlayed into the current
segments one and two as described in chapter 4. Several other tasks are performed
in order to accomplish the switch between these two programs. The twelve I/O

streams available to a GEC 4080 program are divided between the two programs.

169

The diagnostics program requires three channels for interactive input and output
and for reading disc files such as the name table file. This allocation of physical
channels is also performed by altering two variables specifying the first and last
stream available. In this way, the I/O sections of the interpreter function with little
alteration. As described in section 6.1, two temporary disc files are used to enable

a switch between the two programs - one for communication of the state of the user
program to the diagnostic program and the second to hold the state of the interpreter
workspace prior to the suspension of the user program. The operation of the swap

between the two programs is as follows:

Switching from the user program to the diagnostics program.

1) Create the control file containing information on

where and why the user program has been suspended.

2) Write the volatile workspace to a disc file.

3) Set the store/data base variables to the diagnostics

areas. Set the mode flag. Set the I/O channels
available.

4) Set the Pcode registers to their initial state and
allocate data storage for the diagnostics program.

5) Continue interpretation of Pcode instructions.

Switching from the diagnostic program to the user program.

l) Release the diagnostics program data area.

170

2) Restore the volatile workspace from disc file.

This includes the restoration of the Pcode registers.

3) Restore code/data bases. Unset the mode flag.
Reset the available I/O channels.

4) Continue interpretation of Pcode.

There are four ways of involving a swap to the diagnostics package:

1) By specifying entry to the diagnostics prior to the
program starting.

2) Upon encountering a user set break point.

3) When manually interrupted by the user.

4) In the event of detecting a run-time error.

The diagnostics program causes a swap back to the user program by calling the

environ function, described in chapter 4, with a parameter of 8. Such a call with
this parameter is ignored by the interpreter if the mode flag is unset.

The user suffers from no overheads arising from the presence of the diagnostics
code and data areas when the user's program is running. This is because the GEC

4080 is a virtual segment machine and no penalty arises from segments' existence
except when accessed. The diagnostics data area is only present when needed and
the code area, being unaltered by execution, is shared by all users just as the
compiler Pcode is.

171

The diagnostics program is always invoked from its start. All information
concerning the state of the user program is deduced from the control file created by

the interpreter.

6.32 Monitoring actions of the interpreter
The second major change to the interpreter is the inclusion of some basic
monitoring facilities. These facilities fall into two categories. The first is the
maintenance of a count of executions of each source line in order that the diagnostics

program can produce a profile. The second is to detect conditions for calling the
diagnostics program. Both these functions are performed when the interpreter meets
the line instruction described earlier. The word following each line instruction is
reserved for holding the profile count. This is incremented each time the line

instruction is obeyed. The line instruction is alterable by the diagnostics program to
provide a break point. Additionally, there exists a facility whereby the user may

manually interupt the program. This is provided by the GEC 4080 operating system,
in the form of sending a message. The user types:

? A SEND USER

Optionally, a line of text may be appended. The interpreter can check whether a

message has been sent. The above command is started by the sequence ’question-mark
A* which is regarded as an attention symbol. The line code has the following format:

OP P Q

line instruction

profile count

62 n line number

O

The three fields OP, P and Q are as described in chapter 4. The value of the P field

172

n is used to flag a break point. The Q field contains the source line number. The
interpreter action for the line instruction is as follows:

if n £ 0 then
begin

set P field = n - 1;
if P field = o then call diagnostics

end;
if message received then call diagnostics;

The diagnostics package then can set the P field of an instruction to one and a break

point is enabled. By setting the P field to a value greater than one the option is
provided to break after a specified number of passes through a break point. It would
be possible for a user interrupt to be neglected. Consider the following source

line:

The line code is only produced prior to the assignment to x. The while loop will
not contain a line instruction and then indefinite repetition would not be interrupted.
To avoid this, a check for receipt of a message is made upon meeting any of the

three Pcode jump Instructions. These instructions do not occurwithin a basic
statement but at the end of a statement and so immediate entry to the diagnostics
program can be made.

6 .33 Privilege of the diagnostics program

In certain circumstances the interpreter will recognise the execution of the diagnostics

increment the profile count;
increment the program counter;

x : = x + 1; while a < x do a : = a + b ;

173:

program as a special case. For example, on detection of a run-time error this

would be considered serious if the diagnostics program was running, hi particular,
one error condition is ignored if the diagnostic program is running. This is the
condition of attempted reading of a non-existant file. The diagnostics program asks
the user to type in the name of the source program file as described in the next
section. If this is incorrectly typed then the error of trying to read a non-existant
file is suppressed. A flag is set to indicate this event. This flag may be sampled by
the diagnostics package by calling the environ function with a parameter of 9. The
other operation considered privileged is the invocation of the proceduies and functions
peeks, peekc, pokes and pokec described earlier.

6.34 Generation of names for heap objects

The interpreter generates an integer for each object on the heap - created by the

standard procedure new. The integer is used to identify an otherwise unnamed object

within the diagnostics program. When space is allocated on the heap, one extra word
is provided preceeding the object created. This word is given a value that is unique
to the object. The interpreter allocates consecutive integers to these objects

starting at one. The use of this value is described in more detail in the following
section.

6.4 Implementation details of the diagnostics program

The faculties to be provided by the diagnostics system were defined in chapter 3. This
section describes the implementation details of the diagnostics program providing
these functions. The diagnostics program is initially provided with three sources of

data. Firstly the interpreter creates a control fUe containing information concerning

the state of the user program and why it was suspended. Secondly the compiler table
fUe contains a representation of the name table for each procedure in the program

Finally the user program’s code and data areas can be examined. Diagrammatically

174

the system initially appears as shown:

fig 6. 5

Upon entry to the diagnostics program, the control file is first read. Using the
information in the control file, the relevant sections of the name table file are read
and the compiler name table reconstructed to the state it was in when compiling the
statement just executed by the user program. After this process, these two files

are no longer needed in this invocation of the diagnostics program. The other file
that can be required is the source program. Then, when initialised and ready to
accept commands from the user, the diagnostics system appears as follows:

fig 6. 6

175

The details concerning implementation of the particular features described in

chapter 3 now follow.

6.41 Reconstruction of the name table

The structure of the name table file was described earlier in this chapter by figures
6.2 and 6.3. The diagnostics program must select the sections of this file that are

relevant to the position within the program when its execution was suspended. This
allows access to all variables that are in scope at that location. The name table file
is constructed from objects of type identifier and structure. The task of recreating
the name table Is that of linking the pointers within each object. Each object contains

pointers whose ordinal values are the Pcode store locations of the position of the
pointed at object when the compiler was running. In addition, each object in the file

is marked with a field specifying the location in Pcode store it occupied. This value

can be used to cross reference the location each object will occupy within the diagnostics
store area with that position it occupied within the compiler's store area. For example,
if an object of type Identifier resided in store at location 1000 when the compiler was

running, this value 1000 is included in the name table file. Pointers in other such

objects which pointed at this object will exist within the file with ordinal value 1000.
When the object is recreated in the diagnostics program store area, all pointers with
ordinal value 1000 are then allowed to point at it.

Demanding that these two positions within the compiler and the diagnostics program

should be the same is not only difficult to implement but,as the compiler contains
many other objects on its heap and due to it possessing a larger constants area thus
starting its heap in a lower position of store, would waste considerable heap space
in the diagnostics program. The algorithm for reconstruction of a linked structure
such as this name table is now given.

176

The name table file consists of several blocks, each headed by a block record as
shown in figure 6.3. There is one block for each procedure including the main

program and the predeclared items considered to be in an outer block surrounding
the main program at lexical level zero. The file is scanned until the procedure most
local to the current program location is found. This block is processed. Following
this each block in turn is examined. If its lexical level is less than that of the block
just processed then it is itself processed otherwise it is skipped over. This process
is continued until the block of lexical level zero had been assimilated. As can be
seen from figure 6.3 and 6.2 this algorithm ensures that all name table objects that
existed in the compiler when compiling the statement where execution was suspended

are now processed by the diagnostics program. The manner in which these objects
are processed is described now. As each object is read, the field tagged to it
identifies the location it occupied in the compiler's store area. This index is used
in a cross reference array defined as shown:

var table : array [o . . tablemax] of record

used : Boolean;

case what : tabletype of

isSTP : (STPP : STP);
isCTP : (CTPP : CTP)

end;

The location occupied is processed before being used to index this array to
maximise use of the array;

index := (firstlocation - location) DIV minsize

Location Is the location occupied, firstlocation is the start of the heap in the

com piler and minsize is the minimum of the sizes of the objects under consideration,
in this case 'identifier s ' and 'structures'. This reduction of the index used

maximises the use of the cross reference table. When an identifier or structure is

read, the index is calculated and the appropriate element of table selected. With

177

this element, the flag'used*is set, the field Vhat' assigned the appropriate value
depending upon whether the object is an identifier type or a structure type and the

relevant field STPP or CTPP assigned to point at that identifier or structure now in
the diagnostics program store. When all such objects have been created, the table
array is scanned sequentially. For each element of the table that is flagged as used,
the identifier type or structure type pointed at by either CTPP or STPP respectively
is examined. The fields within the identifier/structure which are pointers to other
identifiers/structures are then filled in by applying their existing ordinal values, their
locations in the compiler's store, in the above index calculation formula and
selecting that element from the table array.

This method then reconstructs the linked name table structure to its shape when
extant in the compiler. It is a way in which any linked structure may be recreated
from a backing store dump albeit rather long winded. The table array used is 2000

elements long. As its existence is temporary it is allowed to occupy all available
store maximising the number of objects that can be catered for.

It could be argued that by not requiring invocation of the diagnostics afresh but

retaining such tables between invocations time would be saved. It should be pointed
out, however, that only lexical levels zero and one can be guaranteed to exist at all

locations and replacing higher level name tables between invocations would require
a large overhead of reconstructing the retained portion of the table array or
retaining the large space occupied by it. In practice, this process of constructing the

name table is quick and presents little inconvenience to the user.

6.42 Setting a break point

A break point is set by the diagnostics program by altering the relevant line code
Instruction. As described earlier, if the Pfield of this instruction is non-zero it

constitutes a break point. In this case, control will pass to the diagnostics program
on the Pth occasion this instruction is encountered.

178

When the diagnostics package is entered, the user program’s Pcode is scanned to
find the first and last line instruction and the corresponding first and last line
numbers. When the user specifies a line number where a break is to be made, these
limits are used to check the validity of the line number and to calculate an initial
estimate of the position of the corresponding line code. The user may specify how

many passes should be made before a break is made, this number plus one is then
placed in the line code P field. If no line code exists for a given line, because that
line does not contain a complete statement, then the first line code following is used
- this is usually the user's intention. If the line specified is out of range of the
program then either the first or last valid line is used depending upon whether the

line specified was too small or too large.

Only one break point may be in existence at a time. This restriction allows simpler
management of the system and has remained only because in use there has been no
demand for more than one break point in an interactive system.

6.43 Interrogating the source program

The user requires the facility to list selected portions of the source program to
relate the position of an error, decide upon location of break points and to be

reminded of the data declarations used. This is provided by listing a specified group

of lines of the program which is available to the diagnostics program. There is no
completely secure way of the diagnostics program knowing the name of a source
program file. This could be embedded in the Pcode but the user may rename the

source file after compilation. When the source program is required by the diagnostics
program for the first time, the user is asked its name. Future requests for listing
portions of the file will refer to this name. The user may respecify the source file

should it have been entered incorrectly. This facility allows the selective listing of
any file which may be useful if the program in question operates upon data files. As

mentioned in section 6.33, the diagnostics program can check for files ’ existence and
act accordingly.

179

6.44 Producing a program profile
The profile of a program run is maintained by the interpreter. For each source

program line that contains a Pascal statement, a count is available of the number of
times that statement has been executed. The profile is presented as a table of source
line numbers and number of times executed. The user may specify a group of
consecutive lines for which a profile is required. In order to display the profile on
a VDU screen, the diagnostics program restricts the total number of lines displayed
to twenty. This ensures that all information given appears on the VDU screen. When
the number of lines requested is greater than twenty, the counts for each line are
grouped into equal divisions. For example, if m source lines are to be profiled, the

d iagnostics program will display n lines where:

scalefactor = (m - 1) DIV 20+1
n = m DIV scalefactor

Each line displayed will include the count for scalefactor consecutive source program
lines. In addition to this number, the option of displaying a histogram representation
of the counts or of displaying the source line next to the count is provided.

6 .45 Interrogation of data items

The interrogation of data items is provided in two ways. The name table that has been
constructed may be interrogated to verify the type definition belonging to an identifier

and variables'values can be displayed in a format dictated by the variables1 type.

fi.45l Direct interrogation of name table

Directly interrogating the name table, without reference to the user program's store,
provides information on the meaning or type of program identifiers. For any
Identifier that exists in the name table, the diagnostics program can list all
attributes attached to it. If the identifier is a variable, then its type description is

180

listed as it would appear in the program text. This feature allows the user to verify
such details as array subscript ranges and the format of record descriptions. All
such descriptions are given in Pascal language syntax.

6.452 Interrogation of variables' values
F or each variable identifier, the name table contains the associated store address.

Knowledge of the store address and the variable's type permits its value to be
presented. The value is always given in a format consistent with Pascal syntax.
Where an identifier's type is defined as an enumerated list of constants 1 then these
constant names are used. Where an identifier is an array or record, then the
complete array or record can be listed. Alternatively, the user may specify an index
of an array or a record's field. This specification is permitted with the adherence
to the Pascal syntax. The diagnostics program will accept the Pascal syntax
definition of a variable ^WIRT75 ^ with the single restriction that array subscripts

may be constants only. Then, assuming appropriate definition of the identifiers

used, the following would be acceptable variables that can be listed:

x
a [3]

p f . fieldl
b ['A ', true, 10] . C t [9]

Listing arrays
To list a vector, the value of each element is printed out. For arrays of more than
one dimension, each dimension is printed in turn. The Pascal definition of a two
dimensional array, for example, is an array of arrays. Thus each element of such

an array is a vector and is listed as such. There exists an option to the user to
print out an array completely. Normally, arrays are not listed as large arrays

would result in producing much, probably unwanted, information. For instance, if
a record is listed and one of the fields is a large array, the listing of all the other

fields would be swamped by the array listing. The user is provided with two commands

181

for listing variable values. One does not list arrays, the other does.

Listing records
Where a record variable is specified, each field of the record is listed. As with the
listing of array elements, this process is accomplished by calling the procedure
producing the listing recursively for each field. If fields are themselves records, then
these records are expanded. Where a record contains a variant part, the tagfield is
examined and the appropriate variant selected. The user does however have the option
of explicitly requesting the listing of fields belonging to another variant which is
useful if the tagfield had been set correctly.

Listing of pointers
Pascal pointers point at objects in the heap - created by the standard procedure new.
When this occurs, the interpreter reserves one extra word for each object created
by new and inserts an integer in this word. The integer is incremented between calls

of new such that each object on the heap has a unique value associated. The value of
a pointer is given as the integer associated with the object preceded by a hash
symbol ' # ’. The two alternative values that can be given are nil and undefined. The
latter is given if the pointer has either never been assigned a value or the space

occupied by the object it pointed at has been reclaimed. The values given to pointers
in the format # < integer > may be used as legal identifiers of the objects pointed
at. In this way all data variables including those created dynamically on the heap may
be identified by name and listed. This facility is unique to this diagnostic program.
The association of these hash identifiers with the objects referred to is described
in the next section. Examples of using this facility are given later.

The listing of variables is performed by a procedure within the diagnostics program.
The format of this procedure is:

182

procedure writevar (address : integer; idtype : STP);

begin
case typekindof
scalar, subrange : begin

write value at address in appropriate format.
If subrange, print warning message if this

value is out of range
end;

pointer : if nil then write ('nil') else if undefined then

write ('undefined') else write (' # ') followed
by associated integer.

power : begin
write (’ [’); write each set element present;

write (’] *)
end;

arrays : begin
writeln (’('); call writevar for each element;
write (')')

end;
variant, records s begin increment indentation on each write;

if variant then write ('(’) else write ('Record');
for each field up to but not including any tagfield
write the field name then call writevar for this
field.

if tagfield present then
begin
write tagfield and value. Select appropriate
variant and call writevar if this variant is legal.
end;

if variant then write (')') else write ('end')

end

end; £ w ritevarj

end

183

Interpretation of variables
The diagnostics program permits the selection of record fields and array elements
when specifying a variable. The object pointed at by a pointer is signified by
appending an up-arrow t to the pointer specification. This allows specification of
any data item belonging to the user program. The routines to interpret this

specification are adapted from the routines used in the compiler for analysis of a
variable. At those positions in this analysis where the compiler produces Pcode

Instructions to index the appropriate field or array element, the diagnostics program
performs this action directly - simulating the Pcode machine by a small expression
stack. During this analysis, syntax errors may be detected. The message printed
informs the user of such an error and gives the location at which the error was
found. Three semantic errors can occur which are detected and reported. Firstly a
subrange variable may be out of range. The out of range value is printed and a
warning message issued. If this subrange violation occurs when specifying an array
index, an error message is given. Secondly, there may be no record variant
catering for a particular value of a tagfield. This may have been intentional and a

warning message is printed. Finally, the user may attempt to access the non-
existant object pointed at by a pointer with an undefined value or with the value nil.
Again, the appropriate error message is given.

Representation of fypes
The diagnostics program has access to the user program's store in the form of a
vector of integers. Having located a variable, the integral representation of it will

in general have to be manipulated if that variable is not an integer. The diagnostics
program has to cater for the representation details of scalar values and sets. This

section of the program is clearly machine dependent. Characters are stored four
to a word and sets occupy four words. Use is made of the record variant facility
in order to perform this transfer of representation. Consider the following record:

184

record
case type required of

int : (il, i2, i3, i4: integer);

rl : (r : real);
ch : (ch i, ch2, ch3, ch4 : char);

B l : (B l, B2, B3, B4 : Boolean);

st : (h : set of 0. .127)

end;

By placing an integer in il, the required character, Boolean or real variable can be

selected as they are known to occupy the same store space within the record. By
placing four integers in il to 14 the representation of a set as S is provided. It should

be noted that this is an abuse of the record variant facility and some implementations
may reject it at run-time. By performing this conversion, standard Pascal facilities

can be used to print the values of such variables.

6.46 Displaying structures
In chapter three, the facility to display the linking of data structures graphically was
described. This facility is considered an essential tool to programmers using data -

structuring algorithms and yet does not exist in any other diagnostic systems. The
process of displaying a structure is as follows. The user selects a record which is
considered the root of the structure. Using this record, all pointers are followed

building a two dimensional image of the relative positions each record occupies.
The relative location of each record is defined by the ordering of declaration of each
pointer in the declaration of that record type. Thus a position is reserved for each

pointer of each record. These positions are taken symmetrically beneath each
record with the earliest declared pointer taking the leftmost location and the last

pointer declared In the record declaration holding the rightmost location. As

185

mentioned in chapter three, the structure is first scanned to find the width of array
necessary to hold it. Consider the following structure:

Objects A, C and D have three pointers, objects B and E have two pointers and
objects M N F G H I J K and L have their pointers set with value nil. The number of
these nil pointers is not relevant to the display. The width of the display required
is calculated as follows. Each object requires at least one unit of width. But if any

of its pointers are not nil, it requires for each pointer the maximum width required
of each object pointed at multiplied by the total number of pointers. Forthe purpose

of displaying a symmetric structure, where the number of pointers contained in an
object is even, it is taken to be one greater. This extra pointer is taken to be nil
and displayed in the centre of the existing pointers. Then the width required by the

structure is that required by A. Objects M N F G H I J K and L only require one unit
each as all have no non-nil pointers. Object C requires the maximum of the widths
required by objects G H and I multiplied by the number of pointers C contains. This

fa then three units. Similarly D requires three units. Object E contains two pointers.
F or the purpose of display, this is taken to be three and the width required by E is
then three. E ’s width is the maximum width of the objects B points to. B contains

two pointers and the width required is then (2+1) x 3 = 9. B requires the maximum
width of the three objects pointed atby A's pointers. A contains three pointers and

A

fig 6.7

186

therefore requires a width of 27. A is then placed in the middle of this width at unit
position fourteen. B C and D are allocated 9 units each. Each of these 9 units is
split equally between the objects below producing the following layout:

fig 6. 8

This display is symmetric about A and as such is different to figure 6.7. but does
not require the drawing of lines to show connections as these are deduceable from
objects* relative positions. The implementation details of manipulating this matrix

are now described.

6.461 Representation of the display array
If a display contains objects with n pointers and is d levels deep, the potential size
of array required is:

As d increases, this array will become extremely large and it may be difficult to
represent it using simple techniques without running into difficulties of storage space
availability. The array required is not rectangular, at each depth only nd-1 units

width are required. The actual array that would suffice for n=3 and d=4 is:

187

fig 6. 9

That is, a size of 2 1 nr instead of d x n in this case, the size required is
r=l

only 40 units rather than 108. In addition, not all these units hold an object;

figure 6. 8 holds only 14 objects. The array is then very sparse. The representation
used requires storage space only for objects present. It consists of a vector

representing the rows of the matrix. Each row is a linked list of the objects present
in that row. The column within which the object lies is defined within the list
elements. The array is then represented by the following data types:

type

parec = t arec

arec = record
ind, value : integer
next : parec

end;

airec = record
lowind, highind : integer;

first, last : parec
end;

var aindex : array [1 . . maxdepth] of airec;

188

The vector aindex contains a record for each row. The first object in that row is
pointed at by 'first'. The record also holds a pointer to the last object in the row to
assist insertion at the end of the list. The highest and lowest bounds of the row are

also held to ease calculation of the array's width and to aid the decision of where to

insert a new object. The objects are represented by type arec which holds the
column number in 'ind', a pointer to the next object in 'next' and the integer value

name given to the structure objects in 'value'. The display array holding the
structure shown in fig 6. 8, for example, appears as follows:

aindex elements

1) lowind = 14
highind = 14

first

last

2) lowind = 5
highind = 23

first

last

3) lowind = 2
highind = 26

' first

last

4) lowind = 1
highind = 3

first

last

fig 6.10

189

This array is manipulated by two procedures which emulate a rectangular array. The
space occupied by the objects of type arec is reclaimed when a new structure is
selected for display. The maximum depth that can be catered for is currently set at

a hundred. Assuming a maximum core size availability of 50K words, a structure of
objects containing three pointers could consume this amount of store at a depth of

eight levels. Unless the user's structure consists of objects of size less than the
type arec and uses all store available the diagnostics program will be able to hold a
representation of its display. The prime reason for allowing such a large depth is
in the special case of list processing where often the number of pointers is one and
the array size necessary can then be one column.

6.462 Detection of cycles
A cycle may appear in a structure where an object points at another object that has
already been placed in the array. This is detected, and the object included in the
array for the second time but with two differences. Firstly it is marked as being a
repetition so that the user is informed of it when displayed; and secondly all its
pointers are treated as though they were nil so that the cycle is stopped. The
detection is enabled by noting the integer name of each object. A Pascal set of

integers is used to detect whether that integer is already present. In practice, an

array of sets is used as in this implementation the maximum size of a set is 128

members.

6.463 Undefined pointer values
Where a pointer has an undefined value, this is treated as pointing to a special

object which has no pointers within it. In this way an object (displayed as a question
mark) is displayed to inform the user of this error.

190

6.464 Display of the array

Having produced the representation of a user's structure, this matrix is displayed.
It is assumed that the medium for display is a VDU screen. This is regarded as a
matrix of characters 20 x 80 in dimension. In chapter three, the techniques for
mapping the display array onto the VDU screen were described. There exist three

possible cases. Firstly the array size is the same size or smaller than the VDU
screen. In this case the correspondence is one to one and a character is printed to
represent each object. Where a cycle exists, the character printed is an up-arrow;
if an undefined pointer is present, a question mark is printed otherwise the digit 1
is printed, meaning one object. The second case is when the display array is

larger than the VDU screen in either dimension. The array is then squashed to fit
the screen. To squash the array, each character on the screen is taken to represent
a group of objects in the array. The character printed represents the number of

objects that are present in that group. The characters used are 1 to 9 and A to Z.
Thus if an A is displayed, this would mean that 10 objects are present in that group.
Should any of those objects represent an undefined pointer, then a question mark is
printed instead unless any other object in that group represents a cycle in the
structure when an up-arrow is displayed. Finally the third case exists where the

display array is significantly smaller than the VDU screen. When this is true, more

than one character is printed for each display array element. The characters printed
are the o b jec ts ' associated names in the form of ip < integer > . The display
array has to be smaller in width by a factor of

trunc (logion) + 2

where n is the maximum integer in order to qualify for display in this manner.

Where an object represents a cycle then an up-arrow ia printed instead of the hash

sign. By finding the corresponding hash integer in the display, the cycle is then found.
Undefined pointer objects are displayed as question marks.

190

Windowing
Where the display array is large, the user will be given a representation of the

overall shape of the structure. Having seen this, an area may be selected for more
detailed examination. The user can specify a window of the display by four integers
denoting the co-ordinates of the window’s edges. This section of the display is then

treated by the same process that printed the complete structure and more detail is
then provided concerning the selected area. For example, a structure might be

displayed as follows:

83 #91

85 #102 #103

9 6 #110

fig 6.11

The first display has been squashed and the shown window is selected. This window

is then expanded and the names of the objects listed. The window can be moved over

191

any part of the structure and can be defined as any size as it is moved. The effect
produced is similar to that of blowing up part of a photograph in order to examine
the finer detail except that resolution is not impaired by doing so. Examples of the
use of this facility are given later in this chapter.

6.465 Hash integer implementation

The allocation of names as consecutive integers to objects created on the heap is
performed by the interpreter. These names can be used within the diagnostics program
in the same way as declared identifiers. In figure 6.11 the hash numbers may be
referred to and the diagnostics program will then print out the values of the

associated object's fields. As the integers are consecutive, they additionally inform
the user of the objects ' ages. The integer associated with each object on the heap

is stored in the preceding word. The value of the pointer referring to this object is

used to locate this identification. This access is purely in one direction. Referring
to the identifying integer requires the construction of a cross reference table. Such
a table could be maintained by the interpreter but this approach is rejected for two
reasons. Maintaining a table is costly in space and time. A large table may have to

be kept on backing store which would increase the time overhead considerably. The
second reason is the complications that would arise when heap space is reclaimed.

The table would have to be altered to account for this. The approach used is for the
diagnostics program to maintain a cross reference table by inserting the locations
of hash numbered objects into the table whenever a hash number is displayed to the

user. Then whenever hash numbers are displayed in the production of a structure
diagram such as in figure 6.11 or by the listing of a pointer, they are placed in this

table. This approach seems reasonable on the grounds that the user cannot know of

hash numbers existing until they are listed by the diagnostics program. The table
kept holds the fifty most recently displayed unique hash numbers.

192

6.466 Variant records
Pascal records may contain variant sections where, depending on the value of a
tagfield, alternative record fields can exist. For example:

record
i : integer,

case tag : Boolean of

true : (a, b : integer);
false : (x, y : real)

end

The record above consists of either the fields named i, tag, a, b, or the fields

i, tag, x, y. These two variants ’ existence depends on the value of the field tag. The
tagfield is alterable at run-time and so such records can be considered to have a
dynamic type. When such a record is printed out by the diagnostics program, the

tagfield value is used to select the appropriate variant fields to be printed. The
variant fields o f a record can pose a problem when displaying a structure if they
can contain a pointer. The number of pointers associated with each record may then

vary. In this situation it is difficult to decide how these variant pointers should be
incorporated into a display. There are two possible approaches. The first is to

include variant pointers where they exist. This is the same as regarding each variant

as a completely separate type definition. The second approach is to ignore the
existence of variant records. This is essentially implying that variant fields do not

alter the type of the object. Both approaches can be justified and depend on the
particular application for which the record is used. In the area of list processing, a

list is commonly represented by a sequence of records each containing a head and a

tail. The tail is always a pointer to another list while the head is either a pointer

to another list or an item of data. In this application the two variants are regarded as
different types. Another application where a variant may contain a pointer could be

personnel records which under one variant a class of people have extra information
about them recorded. If this information is both large and common to several people

it can be considered better to keep one copy of it and include a pointer to it in the

193

relevant personnel records. In this application, the pointer is used much as a key
and a value such as an array index could have been used with similar effect. In this
case the user probably does not consider such a pointer as contributing meaningful

information about the overall shape of the data structure of personnel records. The
structure emanating from these variant pointers is a substructure and including it

in a display would be confusing; the programmer would view such a structure as
part of a record rather than loosely connected to it.

The diagnostics program does not consider pointers which exist in variant fields for

the purpose of displaying a structure. There are two reasons behind this decision.
The first reason is simply the effort involved in detecting ; .any;- abuse of the Pascal
record variant. The variant tagfield may have been incorrectly set by the
programmer and a value which can be regarded as a pointer used in the guise of an

integer for example. Such an error, unless detected, would lead to dramatic
consequences when manifested in the display. The compiler would have to be

altered considerably in order to produce such run-time checks as would be necessary.
Such an alteration is, of course, possible and this suggestion is made in the next
chapter. In implementing a system such as this diagnostics package, several

decisions have to be made in order to allow its construction in a finite time. The
second reason behind this decision is that the user may select any such variant

pointers explicitly thus obtaining their individual displays. This leaves the onus on

the programmer to decide which substructures should be displayed but does give
the option to display them albeit indirectly. Given that the programmer may select

these structures for individual display it was considered acceptable to take this
approach. Should such a variant be selected erroneously then the resulting erroneous

display is localised to that selection and does not interfere with any display

containing this erroneous record. This approach is not regarded as completely

satisfactory. The further enhancement of the diagnostics package is discussed in the
next chapter after describing users reaction to it.

194

6.47 Summary
This section has described the main implementation details of a Pascal program

which provides run-time diagnostic facilities. The aim has been to allow the user
full diagnostic information at the level of Pascal syntax without needing to know any

details of implementation. The major contribution this program makes concerns the
area of data structuring where the user may interrogate the values and shapes of

dynamically created structures. This display of structures is performed by creating
a two dimensional graphical representation of the selected structure. This
representation can then be displayed on a VDU screen and the option is provided to
examine the finer details of selected parts. The next section presents the interface

existing between these diagnostics and the user, following this are several examples
of the use of this diagnostics system.

6. 5 The user interface
The main facilities provided by the diagnostics system have been described. This
section relates the interface provided to the user - the environment in which the
diagnostics program is used. The user communicates with the diagnostics program

by a simple command language consisting of seventeen commands. These commands

are now described.

6. 51 The command language
The seventeen commands provided fall into seven categories. These categories and

the associated commands are listed below and the diagnostics described in more detail.

Category
1 Control
2 Interrogation of data
3 Environment enquiry

4 Program profile

Commands
BREAKAT GO END

EXPLAIN WRITE WRITEALL FORMAT
BREAKS STATUS

PROFILE PROFILES

195

5 Source program listing TYPE SOURCE

6 Structure display CURRENT DISPLAY RESTORE
7 Help to use commands HELP

6.52 Control

The three commands within this category describe the passage of control between the

user's program and the diagnostics program. The command Breakat is followed by a
source line number and optionally a pass through count. The break point is not
implemented until control is passed back to the program by the command Go. Then,

the relevant line code is altered. Only one break point is implemented. If a second
call of Breakat is used, this overides the first and when the command Go is invoked,
the most recent break point request is implemented. The commands Breakat and Go
always print a message stating where the break point is set. Setting a break point at

line zero is equivalent to there being no break point. The command End causes

termination of the diagnostics and user programs and a return to the operating system
command process. The command Go will not be allowed if the reason for entry to
the diagnostics was a run-time error.

6. 53 Data interrogation

The two means of interrogating data variables were described in the previous section.
The command Explain requires one program identifier as a parameter. This

identifier is sought in the name table and its attributes listed. The command Write is
followed by the specification of a program variable in Pascal syntax format. The

value, or values in the case of a structured variable, is then printed in a format
consistent with its type. If Writeall is used, then additionally any arrays encountered

are fully expanded printing the value of each element. The command format expects
one or two integer parameters. These values are used as field width specifiers for

subsequent listing of variables of type real. These commands will accept the hash
number names given to objects on the heap.

196

6. 54 Environment enquiry
The two commands in this category produce information on the state of the user
program. The Breaks command informs the user of the location of the break point
currently set and the pass through count if this is non zero. The Status command
also produces this information on the break point. In addition, this command lists

the line number of the source program where entry to the diagnostics program was
made, the reason for entry to the diagnostics and in the case of entry due to a run­

time error the error that was detected. The Status command also lists the amount
of storage currently used by the user program and the amount it has remaining.

6. 55 Program profile
The two commands Profile and Profiles produce a list of program line numbers and
their execution counts.Following the execution count is a histogram display of the

count if the command used was Profile or the source line if the command used was
profiles. Both commands may be optionally followed by a range of line numbers in
the form n-m. This limits the profile to this range. If a range is not specified
then it is to be taken as the range of source program lines that contain Pascal

statements. If the number of lines in the profile is too large to display all of them
on the VDU screen then they are grouped into equal sections so that no more than
a VDU screen size is produced. When this occurs, the user can then specify the
line range of interest in order to obtain detail of each individual line.

6. 56 Source program listing
The command Type causes a listing of the user source program. The filename

containing the source program is communicated to the diagnostics program by the
command Source. If the command Source has not been used prior to the command
Type (or profiles) then the user is prompted to provide this name. This name

provided remains in force until the command Source is used specifying a different
file name. By allowing this generality the user may list any file such as program

197

data files. The command Type may be optionally followed by a line number range in
the same format used for the profile commands allowing listing of a section of the
program.

6. 57 Structure display

The command Current is followed by the specification of an object that is a Pascal

record. This object is then considered the root of the structure display and
additionally may be referred to by the name #C - the current object. The display
matrix is built and displayed. The command Display causes display of the matrix
within the current window setting. This command may be followed by up to four

signed integers which move the window to the position given by these integers
relative to the current window. The four integers specify the first and last column of

the display and the first and last row of the display. They are in units of a tenth of
the dimensions of the current window. Thus, to move the window to the right
immediately adjacent to its current position, the command used would be:

DISPLAY 10 19

The first and last row positions are unchanged as they are not specified. To move

the window to the left, adjacent to its current position but covering half as many

columns, the command would be:

DISPLAY - 5 - 1

T o display the area in the middle of the current window of half the width and height
of the current window the command would be:

DISPLAY 3 7 3 7

198

Then the four integers are expressed in a co-ordinate frame that has the top left
hand corner of the current window as its origin and the current window width and
height are always 10 units in length. The window can be expanded, moved or

contracted by suitable choice of parameters to the Display command. The diagnostics
program does not allow moving the window outside the display matrix. Should this be

attempted then the window is automatically truncated at the display matrix edge.
Moving the window completely out of the display results in the window being restored

to encompass the complete display. The command Restore will also cause restoration
o f display of the whole matrix.

6. 58 Help to use the commands
Whenever the diagnostics program is entered, the user is reminded of the existence

of the command Help. This command produces a list of all available commands with
a brief explanation of their use. More detailed information about each command is

given if the command Help is followed by that command name. The user has all the
information necessary to use the diagnostics program on-line. This is considered
much more desirable than expecting the user to have the relevant paper documentation

at hand and provides a very user friendly environment in which to work.

6.59 Summary
The diagnostics program environment has been described. The user may enter this

environment, find out what commands are available and what they do using the help

facility, then list program source, variables, types and data structure shapes. The
user may specify initial entry to the diagnostics program prior to the start of the

user program's execution by including the parameter DIAGS in the operating system
command invoking the program run. In this way the break point may be set at any

given location. The commands provided are thought to provide a natural way for the

user to test programs and diagnose errors. Examples of using this diagnostics

system now follow.

199

6. 6 Examples of using the diagnostics system

This section includes fifteen examples of the use of the diagnostics system. Each

example is an extract of a dialogue. These examples are designed to show how the
facilities described are presented to the user. Within the examples, lines which
start with the symbol > were typed by the user. All other lines were produced by

the diagnostics system. These examples were printed directly from sessions using
the diagnostics system on the GEC 4080.

The first example shows the user, having specified initial entry to the diagnostics,
setting a break point at the program end and then causing the program to start. The

program returns control to the diagnostics system after writing the line 'DONE'.
The program used in this example is listed in example nine.

Example two shows the program used to produce examples three, four and five.

It has been listed using the diagnostics system Type command. This program was
written containing a variety of Pascal data types. Example three contains several
instances of the Explain command which lists the attributes of program identifiers.

The fourth example illustrates the Write command. The program was suspended by

a break point set at the program end. Example five is a continuation of example
four. This shows the Writeall command used to list arrays and a display of the

simple structure created within the program. The structure contains one undefined

pointer and a cycle. The cycle is seen at the bottom right of the display which points

back to the structure's root. The undefined pointer is shown as two question marks.

Example six shows a listing of a program performing a sort of eleven integers.

The program constructs an ordered binary tree which is traversed in an inorder

fashion. Examples seven and eight were produced while this program was
suspended by a break point set at its end. Example seven shows the selection of the
ordered binary tree for display using the Current command. The display has been

squashed and at one point two nodes of the tree are represented as one cell of the

200

display. The display is then windowed by using the Display command. The window
first selected specifies columns three to four of the original display. This window

is then further reduced to its own columns four and five and rows three onwards.
The resulting display is no longer squashed but is still too large for details of the
nodes to be revealed. Example eight shows further reduction in the window
resulting in the identification of four nodes of the tree. One of these nodes is then

examined using the Write command.

Example nine shows a program that creates a structure containing nodes of two
different types. One contains two pointers, the other contains three pointers.

Example ten shows the display of this structure which is small enough to be shown

in detail. The types of the component nodes are given by the diagnostics system in

response to the Explain command.

The facility provided by the Help command is shown in examples eleven, twelve

and thirteen. The Help command can be used to obtain information concerning all

the commands and facilities of the diagnostics system.

The final two examples show the program profile created. The program used is
shown as example fourteen. This program prints the moves required to solve the
tower of Hanoi problem where a tower of disks is moved, one disk at a time, from

one peg to another using an intermediate peg. The profiles are shown in example
fifteen after completion of the program. The program, in this example, provided

the solution for a tower of five disks.

T E S T D IF P /O F R I 11 A P R 1980 1 5 : 4 6 : 5 8

Calling Pascal Run-Time Diagnostic System (PRTDS)
PRTDS called at line 0. Initial entry
Type HELP for help

»PRTDS ready
>BREAKAT 999
Had to set break at line 40
Break set at line 40
«PRTDS ready

>G0
Reentering program
Break set at line 40
DONE
Calling Pascal Run-Time Diagnostic System (PRTDS)
PRTDS called at line 40. Break point reached
Type HELP for help
«PRTDS ready

E xam ple 1

> T Y P E
1 : PROGRAM TESTPRTDS(OUTPUT);
2 : TYPE *
3 : PREC ="REC;
4: REC = RECORD DATA:INTEGER; L,
5 : VREC = RECORD
6 : A,B:INTEGER;
7: CASE X : BOOLEAN OF
8: TRUE:(Y,Z:REAL);
9: FALSE :(C: CHAR ;
10: CASE BB: BOOLEAN
11 : TRUE:(D:REAL);
12:
13:
14 :

R : PREC END:

OF

END;
FALSE :(CASE I : INTEGER OF 1:(J : INTEGER)))

15: DAYS = (MON,TUE,WED,THU,FRI,SAT,SUN) ;
16 :
17: VAR VR:VREC;
1 8 : P,Q,R,TrPREC;
19: RA:ARRAY[5..20] OF REAL;
20: IA:ARRAY[1..5,1..5] OF INTEGER;
21: I, J: INTEGER ;
22: SD: SET OF DAYS;
23: SC : SET OF CHAR;
24:
25: PROCEDURE DORECiVAR P:PREC; LP,RP:PREC; D : INTEGER)*
26: BEGIN *
27: NEW I P) ;
28: WITH P~ DO
29: BEGIN
30: DATA :=D; L:=LP; R:=rp
31: END
32: END (»DOREC*);
33 :
34: BEGIN
35: FOR I :=5 TO 20 DO RA[I];s1/I;
36: FOR I:=1 TO 5 DO FOR J: = 1 TO 5 DO IA[I,J]:=ROUND(I/J*1Q);
38: DOREC(P,NIL,NIL,4);
39: D0REC(R,NIL,NIL,5);
40: D0REC(T,P,R,3);
41: D0REC(P,NIL,T,1) ;
42: NEW(Q);
43: WITH DO BEGIN DATA : = 2 ; R:=NIL END;
44: R*.R:=P; P*.LîsQ;
45:
46: WITH VR DO BEGIN
ul'" A:~ B:=2’ X:=FALSE* C:=,A'; BB:=FALSE; I;sl; J:=99 END
49: SD:=CTUE..THU,SUN];
50: SC^C'A^.'H','!',» ' ,'x* . . • 2 » , •(' •)»].
51: END.

E xam ple 2

>EXPLAIN VREC
VREC Type. Type definition is:-
RECORD
A : INTEGER
B : INTEGER
CASE X : BOOLEAN OF
FALSE:(

C : CHAR
CASE BB : BOOLEAN OF
FALSE :(

CASE I : INTEGER OF
1 : (

J : INTEGER
)

)
TRUE: (

D : REAL
)

)
TRUE : (

Y : REAL
Z : REAL
)

END
•PRTDS ready

>EXPLAIN REC
REC Type. Type definition is:-
RECORD
DATA : INTEGER
L : PREC
R : PREC
END

•PRTDS ready
>EXPLAIN DAYS
DAYS Type. Type definition is:-

(MON,TUE.WED,THU,FR I,SAT,SUN)
«PRTDS ready

>EXPLAIN RA
RA Variable Type is:- ARRAY [5..20] OF REAL
•PRTDS ready

>EXPLAIN IA
XA Variable Type is:-

ARRAY 11 . .5] OF ARRAY [1..5] OF INTEGER

Exam ple 3

>WRITE VR
Value =
RECORD

A
B
X
(

FALSE (CASE TAG FIELD)
2

C
BB

'A'
FALSE (CASE TAG FIELD)

I (CASE TAG FIELD)
J 99

END
»PRTDS ready

>WRITE SC
Value =
»PRTDS ready

>WRITE SD
Value = [TUE,WED,THU,SUN]
»PRTDS ready

>WRITE P
Value = pointer = ¡Ml
»PRTDS ready

>WRITE #4
Value =
RECORD

DATA = 1
L = pointer = #5
R = pointer = #3

END
»PRTDS ready

>WRITE #4.La
V alue =
RECORD

DATA = 2
L s pointer = UNDEFINED
R = pointer = NIL

END

E xam ple 4

205

>WRITEALL IA
Value =
(
(1 0 . 5 . 3 , 3 , 2) ,
(2 0 , 1 0 , 7 , 5 , 4) ,
(3 0 , 1 5 , 1 0 , 8 , 6) ,
(4 0 , 2 0 , 1 3 , 1 0 , 8) ,
(5 0 , 2 5 , 1 7 , 1 3 . 1 0))
•PRTDS ready

>WRITEALL RA
Value =
(0.200,0.167,0.143,0.125,0.111,0.100,0.091,0.083,0.077
0.067,0.063,0.059,0.056,0.053,0.050)

*PRTDS ready

>CURRENT P"
0 1 2 3 4 5

0 #4
3 #5
6 ??
9

Full display of structure

6 7 8 9

#3
#1 #2

-4

.071 ,

0

E xam ple 5

CO vO O
n

>TYPE
1 :
2 :
3:
4 :
5: 6:
7:
8 :
9:

10 :
11 :
12 :
13:
14 :
15 :
16 :
17:
18:
19:
20 :
21 :
22 :
23:
24 :
25 :
26 :
27:
28 :
29 :
30 :
31 :
32 :
33:
34 :
35:
3 6 :
37 :
38 :
39:
40 :
41 :
42:
43 :
44 :
45:
46 :
47 :
48 :
49 :
5 0 :

PROGRAM TREESORT(OUTPUT);
TYPE NODE = RECORD DATA:INTEGER;

LEFT,RIGHT:“NODE
END;

NODEPTR = “NODE;
VAR
1 : 0 . . 10 ;
TREE:NODEPTR;
NUMBER:INTEGER;
DATA:ARRAY[0..10] OF INTEGER;
PROCEDURE GROW(NUMBER:INTEGER; VAR TREE : NODEPTR)
BEGIN
IF TREE=NIL
THEN BEGIN
NEW(TREE);
WITH TREE“ DO
BEGIN

DATA:=NUMBER;
LEFT:= NIL;
RIGHT:=NIL;

END END
ELSE IF NUMBER < TREE“.DATA
THEN GROW(NUMBER.TREE“.LEFT)
ELSE GROW(NUMBER.TREE“.RIGHT)
END; (* GROW «)
PROCEDURE STRIP(VAR TREE : NODEPTR);
BEGIN
IF TREEONIL THEN BEGIN
STRIP(TREE“.LEFT);
WRITELN(TREE“.DATA);
STRIPiTREE“.RIGHT);
END
END; (« STRIP
BEGIN
TREE :=NIL;
DATA[0] :=-1;
DATA 13] :=999;
DATA[6]:=27 ;
DATA[9] := 3 3 ;

«)

DATACI]:=2;
DATA[4]:=4 ;

DATA[7] : =-1 ;
DATA[10] :=-4

DATA[2]:
DATA[5]
DATA[8]

3;
o;
92;

FOR I :=0 TO 10 DO
BEGIN
WRITELN(DATACI]);
GROW(DATACI).TREE)
END;
WRITELN;
STRIP(TREE)
END.

Example 6

>CURRENT TREE"
00000001111 U 122222223333333U4444445555555666666677777777888888899999999

0 1
1
2 1
3 1 1
4 1 1
5 1 1 1
6 2 1
7 1
Structure squashed by a factor of 15 by width, and 1 by height, (expan 0)
Full display of structure
«PRTDS ready

M
B
B 'o »—* 0>
-Q

>DISPLAY 3
000000001 1 1 1 1 1 1 1222222223.33333 334 44 nun 4 45 5555555 66666665777777778888888

0
1
2 1
3
4
5
6
7

1
1 1
1

Structure squashed by a factor of 3 by width, and 1 by height, (expan 0)
Window of full structure (on a scale of 1..100) is
By column 31..51 By row 1..100
»PRTDS ready

>DISPLAY 4 5 3
00000111112222233333444445555566666777778888

0 0
1 1 1
2 1 2
3 1 1 3
4 1 4
Structure squashed by a factor of 1 by width, and 1
Window of full structure (on a scale of 1..100) is
By column 39..43 By row 43..100

by height. (expan 1)
too-*a

(V) ̂
 in vo ̂

o

(\J on ̂
 in vo C"—

Exam
ple 8

>DISPLAY 5
0001112223334445556667778

0 0
1 1 1
2 1 2
3 1 1 3
4 1 4
Structure squashed by a factor of 1 by width, and 1 by height, (expan 2)
Window of full structure (on a scale of 1..100) is
By column 42..44 By row 43..100
»PRTDS ready

>DISPLAY 2 4
0 1 2 3 4 5 6

0
2
4 #10
6 #11
9 #16

Window of full structure (on a scale of 1..100) is :
By column 42..43 By row 43..100
*PRTDS ready

>WRITE #10
Value =
RECORD

DATA = 'A '
LEFT = pointer = #11
RIGHT = pointer = #13

7 8

#13

9

END

o ou =r vo cv

>SOURCE DT.DIFPTR
•PRTDS ready

>TYPE
1: PROGRAM TESTDIFPTR(OUTPUT);
2: TYPE PTRAs"RECA ;
3: PTRB="RECB;
4: RECA = RECORD
5: A , B: INTEGER ;
6: PA :PTRA; PB:PTRB
7: END;
8: RECB = RECORD
9: C,D: REAL ;

10: PB:PTRB; PA :PTRA; PAArPTRA;
11: END;
12 :
13; VAR N.-INTEGER; X : REAL ; P,Q,R:PTRA; S,T,U:PTRB
14 :
15: PROCEDURE DOA(VAR P:PTRA; AA,BB: INTEGER ;
16: PPA:PTRA; PPB:PTRB);
17: BEGIN
18: NEW(P);
19: WITH P“ DO BEGIN
20: A :=AA; B:=BB; PA:=PPA; PB:=PPB
21: END
22: END;
23 :
24: PROCEDURE DOB(VAR P:PTRB; CC,DD: REAL ;
25: PPB:PTRB; PPA,PPAA:PTRA);
26: BEGIN
27: NEW(P);
28: WITH P~ DO BEGIN
29: C:=CC; D :=DD; PB:=PPB; PA:=PPA; PAA:=PPAA
30: END
31: END;
32:
33: BEGIN
34: DOB(S ,1,2,NIL,NIL,NIL);
35: DOA(P, 10,20,NIL,NIL);
36: DOA(Q,30,40,NIL,NIL);
37: DOB(T, 100,200 ,S,P,Q);
38: DOB(S,33,44,NIL,NIL,NIL);
39: DOA(P,33,44,NIL,S);
40: DOA(Q,-9,~9,P,T)5
41: WRITELN('DONE')
42: END.

»PRTDS ready

Example 9

Exam
ple 10

>CURRENT Q*
0 1 2

0
4 96
9 #5

Full display of structure
»PRTDS ready

>EXPLAIN PTRA
PTRA Type. Type definition is:- "*RECA
»PRTDS ready
>EXPLAIN RECA
RECA Type. Type definition is:-
RECORD
A : INTEGER
B : INTEGER
PA : PTRA
PB : PTRB
END

*PRTDS ready
>EXPLAIN PTRB
PTRB Type. Type definition is:- /'RECB
»PRTDS ready

>EXPLAIN RECB
RECB Type. Type definition is:-
RECORD
C : REAL
D : REAL
PB : PTRB
PA : PTRA
PAA : PTRA
END

14 4
#1 92 93 9

6 7 8 9
0

210

211

>HELP

The HELP command gives information concerning the facilities
provided by the Pascal Run Time Diagnostics System (PRTDS) .
To obtain a list of available commands, type:-

HELP COMMANDS
To find more detailed information concerning each command,
type HELP followed by that command. For example:-

HELP WRITE
will tell you about the WRITE command.
»PRTDS ready

>HELP COMMANDS

Available commands for Pascal Run Time Diagnostic System

BREAKAT n
BREAKAT n p
STATUS
GO
EXPLAIN id
HELP
WRITE id
TYPE line nos
CURRENT rec
DISPLAY
RESTORE
PROFILE line nos

Set break point at line n
Set break at line n. Breaks on pth pass.
Print status of program
Reenter program
Type out attributes of id
Type this message
Write out value of id
Type line(s) of source program
Nominate root record for structure display
Display data structure nominated
Restore display to complete structure
Print profile of execution of line(s)

PROFILES line nos As PROFILE but print source text alongside
BREAKS Type out break point set
SOURCE file name Set filename as file for TYPE instruction
FORMAT n m Use n:m as field width when writing REALs
END Terminate execution of program
In the above, id is any identifier in scope, 'line nos' are
valid line(s) expressed as one or a group - eg 10 or 23-^7
To unset the break point, reset it at line 0.

Example 11

212

> H E L P W R I T E

The command WRITE expects a program variable following it
The program variable may be expressed in any legal Pascal*
syntax but if array subscripts are provided they must be
constants. If the variable is of type array, then no listing
of it is given in case the array is very large. Instead the
command WRITEALL should be used. WRITEALL is identical to
WRITE except if the variable is an array or a record
containing an array all elements of that array will be listed
A variable created by the Pascal procedure NEW can be listed
by giving its 'hash number'. (Type HELP HASH for details about
hash numbers)
For example:-
WRITE A [4,6]
WRITE G
WRITE FRED".LEFT".FIRSTFIELD[10J
WRITE #45
Are legal commands assuming the given variables are of the
appropriate type.
«PRTDS ready

>HELP HASH

Variables created by the Pascal procedure NEW do not have
identifying names in the text of the Pascal program. In order
for you to refer to them each such variable is assigned a
'hash number» upon creation. This number is unique to each
variable and is specified as a hash sign # followed by the
assigned integer. When you request the value of a pointer
with the WRITE command the hash number of the object pointed
at will be given (if it exists). The display of a data
structure given by the commands CURRENT and DISPLAY can also
contain hash numbers.
The hash number may be used as any other identifier with the
commands WRITE WRITEALL EXPLAIN and CURRENT.
The record selectecd by the CURRENT command'can additionally
be refered to as #C.
The hash numbers are assigned in order starting at 1. Thus
the relative age of such variables is known by comparing
their hash numbers.

Example 12

213

> H E L P C U R R E N T

The command CURRENT selects a record as the root of a linked
data structure and produces a graphical representation of its
shape. For example, if your program has produced a tree
structure and the root is pointed at by the pointer P then

CURRENT P*
Will form a display of that tree on the VDU screen. This
display consists of single characters 1..9 and A..Z
representing the numbers 1 to 35. Each character signifies
the number of records at that location in the display. Should
the display be of a relatively small structure then all
characters will be 1s. If the display is of a very small
structure or substructure then each record will be identified
by its 'hash n u m b e r '. (Type HELP HASH for details of hash
numbers) Cycles in a structure are marked by an up-arrow ~
and undefined pointers are signified by a question mark ?.
The command DISPLAY is used to select small portions of the
display thus zooming in on it to gain more detailed
information.
•PRTDS ready

>HELP DISPLAY

The DISPLAY command causes the data structure selected bv
the CURRENT command to be displayed on the VDU screen The
display is surrounded by the numbers 0 to 9 which can'be used
to specify a window of the display. DISPLAY may be followed
by H signed integers. These integers are the first column
last column first row and last row respectively. These
integers specify a window of the current display which will
be displayed (usually, if small enough, to obtain detailed
information on one section of the display).
The numbers are interpreted on the basis that the current
display is 10 units by 10 units. Thus specifying a column
range 10 19 effectively moves the window to the right A
column range -10 -1 moves it to the left. 6

DISPLAY 3 7 3 7
Would select as the current display as a window in the middle
of the old display. To return to the previous dispiay:-

DISPLAY -6 13 -6 13
Would work.
The RESTORE command restores the display to that it was
the CURRENT command. U WaS after

Example 13

>TYPE
1: PROGRAM HANOI(INPUT,OUTPUT);
2:
3: VAR N: INTEGER; (» NUMBER OF PEGS *)
4: CrINTEGER; (»NUMBER OF MOVES »)
5:
6: PROCEDURE MOVE(I,J:INTEGER);
7: BEGIN
8: W R I T E L N (I : 2 , :3,J:2);
9: C:=C+1

10: END;
11:
12: PROCEDURE HANOI(N,I,J:INTEGER);
13: BEGIN
14: IF N>0 THEN BEGIN
15: HANOKN-1,1,6-I-J);
16: MOVE(I.J);
17: HANOKN-1 , 6-I-J, J)
18: END
19: END; (* HANOI »)
20 :
21: BEGIN
22 j Cj-O#
23: WRITELN; WRITELN('TOWER OF HANOI');
24: WRITELNC»»*»»»»»«»»»»»') ; WRITELN;
25: WRITE('NUMBER OF PEGS= '); READ(N);
26: WRITELN; HANOI(N,1,3);
27: WRITELN;
28: WRITELN('Number of moves = ',C:1)
29: END.

»PRTDS ready

Example 14

>PROFILE
Line. Passes

g. g2 »»»s«»»«»»*»»»*»»»*»»*»»»»»»»»»»»
10: 31 «»»»•»»»»«»**,l**
12 : 0
1 4 « 94 ####»»**»«»»«»»»»*»»»»»«»»»»»»»»«*»*»»»#»»**##***»
16* 62 M»***i>**,,f*l,l><>**i,l>*f>>*l>>******
■ j3! 94 #*»#»»»»»*»»*»»»»»»»«»»*»****»**«*»»«»•»»»**»*****
20: 0
22 : 2 »
24 : 2 »
26: 2 »
28: 2 «
»PRTDS ready

>PROFILES 8-18
Line. Passes

WRITELN(I:2,:3,J:2);
C:=C+1
END;
PROCEDURE HANOI(N,I,J:INTEGER);
BEGIN
IF N>0 THEN BEGIN
HANOI(N-1 ,1,6-I-J) ;
MOVE(I,J);
HANOKN-1 ,6-I-J, J)
END

«PRTDS ready

8: 31
9: 31
10: 31
11 : 0
12: 0
13: 0
14 : 63
15: 31
16 : 31
17: 31
18: 31

>PROFILE 8-18
Line. Passes

8 :
9 :

10 :
11 :
12 :
13:
14 :
15 :
1 6 :
17:
18:

«PRTDS

O J # # # # # * » » » » » » » « » » « » » • » » » » »
* * » * * * * » # * * « • » » » » » » » * » » » «

^ # * « * # * « » # » * * » » » * * * * * » » * » »

63
31
31
31
31ready

« » « » i n

» » * « * » »
« i m i *

Example 15

216

6.7 Summary

This chapter has described the implementation of a diagnostics system which was

introduced in outline in chapter three. The system consists of three parts. First
of all the compiler has been adapted so that it generates a representation of its

name tables and includes certain codes in the Pcode object file for each source line
containing Pascal statements. Secondly the interpreter performs monitoring tasks
which comprise error detection, checking for break points and user interrupts all

of which cause transfer of control to the diagnostics program and, whenever an

object is allocated space on the heap the interpreter gives that object a unique name.
The third part of the diagnostics system performs the majority of the work

involved. This is the diagnostics program which when invoked acts as an interactive
post-mortem program. This program may be invoked at the beginning of the first

pascal statement of any source line in the users program. The diagnostics program
can then cause continuation of the user’s program. The diagnostics program is

written in Pascal. It is almost 2,500 lines long and compiles into just over 7,500
pcode instructions. This diagnostics system has been used by computer science

students at Keele University in both basic first year programming courses and
final year projects. The final chapter contains a discussion of the user comment on
this system, an appraisal of the diagnostics system, and an assessment of the work
described in this thesis leading up to the implementation.

CHAPTER SEVEN

CONCLUSIONS

217

7.0 Introduction

This final chapter haa three objectives. Firstly a review and snmmaiy of the thesis

is provided. Secondly an appraisal of the diagnostics system is given in light of

user reaction to it. Thirdly suggestions are made for Improvement of the diagnostics

and some implications that such Improvements may have on programming language
design and hardware features are discussed.

7.1 Review
The initial chapters of this thesis have been concerned with the problems involved
with producing reliable software. It is still true that the majority of effort in

commercial programming is due to maintenance of software. The United States

defence department attributes 80% of its software costs to maintenance resulting in an
annual maintenance cost of three billion dollars. The importance of producing reliable

software has been stressed and the commonly used programming techniques and tools
have been described. Such techniques include the structured use of high level

languages which allow a more natural expression of a program than machine code.
The ease of expressing programs' algorithms and data in high level languages has

been discussed using the idea of a problem orientation attributed to such languages.

During this discussion, the problems that can arise when a program is not behaving

correctly were stressed. In certain existing systems, the programmer is forced to
be aquainted with the details of implementation of the high level language in order to

trace an error diagnosed in terms of primitive machine functions. The argument

develops to the conclusion that such implementation details are the concern of the

system and not the programmer. Such a principle requires the system to communicate
information concerning erroneous program behaviour in terms of the high level

language. The mechanism provided to perform this task is seen as a diagnostics

system which is able to map the compiled program back onto the source language.

It is argued that this diagnostics system is of equal importance to the compiler. The

diagnostics system is not necessarily invoked just to report errors but can be a vehicle

allowing the programmer to monitor the program's behaviour.

218

Currently existing diagnostic systems were reviewed and useful facilities they provide
described. This review enables those facilities which have been considered important
to be isolated, of particular concern was the fact that existing diagnostics systems
do not cater for all the facilities available in modern high level languages. Most
notably, diagnostics systems are lacking in the area of data structures. The outline

of a diagnostics system is described. The prime motivation is that the diagnostics
system should cater for all the features of the high level language. There are two
innovations in this system. The first is the provision of a mechanism enabling the
programmer to interrogate the values of dynamically created data objects. The
second is a mechanism for displaying the linking of such objects to form a data

structure. A programmer views such data structures graphically as objects connected
together in a certain manner. This structure is usually considered to be two

dimensional but is implemented in a one dimensional fashion on the machine. The

diagnostics system is capable of creating a two dimensional graphic display from
its representation in store.

The language chosen for this diagnostics system was Pascal. Pascal was not
available locally for interactive use and an implementation of the language was then

necessary. For historic reasons two implementations of Pascal were undertaken. The

first, on a Digico Micro 16E was later transferred to the GEC 4080 which is Keele

University's main service machine. The P4 Pcode based Pascal compiler was used

in both cases. The implementation details show the different approaches necessary
for a relatively primitive machine such as the Digico and the more powerful GEC 4080.

The portability problems encountered are described within the general framework of

software portability. It is pointed out that portability is a term used to describe the

effort involved in moving a piece of software but such a transfer should consider the end
product’s efficiency. In this way, portability covers both the physical implementation and

its subsequent adjustment to operate efficiently in a new environment. The discussion
on portability concludes with some specific recommendations for both software and

hardware developments. Following this discussion is the design and implementation

of the diagnostics system. The performance of the system and the reactions to it are
now described.

7# 2 User reaction to the diagnostics system

The diagnostics system on the GEC 4080 at Keele University has been used by staff
and students for five months. The majority of these users belong to the Computer

Science department as few other University departments currently use Pascal. The
users ’ abilities vary from the absolute beginner to experienced prog rammers

constructing large programs. Throughout this range of experience, the general

comment is that the system is extremely useful and learning how to use its facilities

takes very little time. The students learning how to program have not had much need
to use the facilities for displaying structures and their comments are concerned with

the more basic functions of the diagnostics system. Comments on the ability to
display data structures have appeared from staff users and some final year students

who have been concerned with their own particular projects. There has been little

opportunity for comment from second year students as, due to syllabus revisions, they
do not yet use Pascal for their programming exercises.

Comments on non-display facilities

All comments received concerning these facilities provided by the diagnostics system

were good. Users were particularly pleased with the help facility which allows use of
the diagnostic facilities without reference to written documentation. One person,

whilst complimenting the facilities provided, did object to the length of the commands.
The most commonly used command is WRITE.For listing many variables it may

become tedious typing in the word WRITE each time and it could be more useful if

the command WRITE is made to accept several objects which would then be listed in

turn. Another possibility is to allow abbreviation of commands. This would be

particularly useful for commands such as WRITEALL which is eight characters long.

Generally, users were impressed by the facility to type out the value of variables

220

expressed in Pascal terms and the ability to list arrays, sets and records was much
appreciated.

Comments on the display and pointers

As mentioned previously, some large programs, written principally by staff and final

year students, were tested using the display facilities. The comments received were
favourable and the ability to see the overall shape of a data structure was helpful in

many cases. Two general criticisms emerged concerning the display. The first was
that due to the format of display presented it can take the user some time to

appreciate the implied interconnections between objects. The display is in a format

such that when not squashed, the position of each object uniquely defines which other

objects are connected. To do this requires a symmetric display of what may not
necessarily be a symmetric structure. Once the format is appreciated, users can
readily interpret the display provided but there exists a small learning process.

For some data structures, the display provided can appear alien to the user’s
preconception of the structure. For instance, a list of lists would be displayed in the

usual way a binary tree is conceived, that is each object having two objects displayed
symmetrically below it. The user would probably conceive of a list of lists as a

horizontal list representing the top level with vertical lists hanging from it. In this

particular case the required effect can be achieved by tilting either the VDU or the

user through 45° but other examples could be found where a different format of
display would be advantageous.

It is not immediately clear how the diagnostics system would be informed of the
required format. The best description would probably be communicated by an

interactive question and answer system. Ideally the directional information would

be conveyed by some suitable device such as a light pen on a graphics tube. The
possibilities of using other media are discussed in the next section. With some

structure displays, it may be more expedient for the user to draw the display on

221

paper using the diagnostics system to write out the contents of each object field as
it is traversed but it is hoped that this should not be necessary.

The ability to refer to heap objects and list them was well received. The value of a
pointer is displayed as the name of the heap object it points to. This facility was
described by one user as the best feature of the system.

Overall, the user reaction is extremely favourable. While being impressed by the

display facility, useful comment on improving it was received and such improvement

is described later. In conclusion, one particular comment was received which is
representative of several users' views. This was as follows:

•Having obtained a fairly reasonable grasp of how the system operated,
I found that whatever the fault the limiting factor on finding it was the
time it took to type in the commands'.

This user was developing a program that produces bridge bidding sequences using
generalised decision rules linked in lists.

7,3 Areas for further work

The work described here concerns a diagnostics system built with certain objectives
in mind. As is the case with many projects, this one is open ended and further

developments may be made in the area of diagnostics and particularly in displaying

data structures. Suggestions for further work are described and the implications of

such work discussed.

7.31 Graphics display

The display of data structures has been provided for output on a line oriented device

such as a VDU. This provides such a display to common users of the system but
limits the format of this display and the amount of information that can be provided.

The ideal device for the display would be a graphics tube but expense inhibits
general availability of such devices. There now exists several small computers
based on microprocessor technology which are relatively inexpensive and have

graphics capabilities displayed on domestic television sets. The Apple II
microcomputer is such a device and supports UCSD Pascal £ b OWL78 ^ . The

Apple II has a high resolution graphics facility consisting of a dot matrix 280 dots
wide and 192 dots high. Each dot can be one of six different basic colours. Included
is a light pen which can be pointed at any position on the screen. This position is
available to the running program in terms of its two co-ordinates.

Such a display screen can be used to produce pictures of objects connected by lines.
The different colours can be used to indicate the density of objects, if the display is
squashed, or types of objects if they are fully displayed. The light pen could be

used to select a window on the display. These capabilities would produce a visually
better display which contains more information and is easier to use. This sort of
display is defined by a dedicated memory location. A picture of the whole display

could then be created in memory using an imaginary large screen and the window of
the screen passed over this area of memory by relatively fast bulk memory moving.

This would result in the user being able to move a window over the display quite

quickly as the form of the display does not have to be continually recalculated. Such
Apple computers have recently been aquired locally and a project is under

consideration to implement the diagnostics system on them. For users of the

existing mainframe computer, the Apple could be used principally as a terminal but

could run the diagnostics program as required. The linking of Apples to the GEC
4080 is still at an early stage. The diagnostics package may additionally be

implemented within the UCSD Pascal available on the Apples. This is currently
prevented by difficulty in obtaining the source code of that Pascal system.

223

7,32 Concurrent and distributed computing.

The diagnostics system described is designed for individual sequential processes
running on one machine only. The areas of concurrent programming and distributed
computing pose new problems where diagnostics are concerned. Concurrent

programming involves more than one program ruining autonomously but communicating
with each other. Each program may be running on a separate processor or it may be
scheduled with each program running for a small period at a time.mere separate

processors are used, some form of physical intercommunication is provided such as
a distributed computer network. Brinch Hansen £ hANS77 } discusses errors
which are particularly associated with concurrent processes. He points out that

certain events may be impossible to repeat as the exact state of all other processes
is not known and these states collectively form the environment of each program,

precautions are made in concurrent programming languages such as Concurrent

Pascal [HANS77] which restrict data accesses to well defined regions by syntactic
constraint. In this way many potential errors are avoided. The programmer is still
faced with the possibility of errors and the desire to monitor the programs • states.

It is not immediately clear how a diagnostics system would be used in such an

environment. If a program is deliberately frozen at a certain event so that the

programmer may examine its state then questions such as whether all other programs
should be frozen at that point are raised. It may not be desirable to halt all other

programs and it may even be impossible to do so. In a distributed system, the
continued execution of a program may depend on the execution of another, if more

than one program is to be stopped then this must happen at a meaningful point in
their execution which need not be at the same instant for eveiy program. A

diagnostics system can be envisaged which could be used to interrogate each program
in turn but suffers from two serious drawbacks. The first is that described of

deciding which processes to suspend. The second is a problem of communications

where several distributed processors are involved. The diagnostics system could
exist on each processor but each such system would probably need to communicate

224

with each other and the user may wish for a form of central control. The system

could exist on one, possibly dedicated, processor but questions concerning
communication with other processors arise and a break of machine communication
would alienate the diagnostics system from that machine.

The problems that arise in the area of diagnostics and concurrent programming are
many and most are not obviously solved. Despite these obstacles a good case for
providing diagnostic facilities to concurrent processes can be made especially as

run-time errors are difficult to reproduce o r locate. An error in one process can
indirectly affect other processes and rapidly spread through the system. It would

be extremely helpful if it were possible to devise a diagnostics system that could
aid the concurrent programmer.

7.33 Options on structure display

The display of a data structure as described in this diagnostic system, consists of
following all pointers with a defined value from a root record down to the bottom

of the structure. As described in the previous chapter, pointers in variant parts of
records are not followed. There were two reasons given for not following these
variant pointers. The first concerns whether or not the user would consider these

pointers as linking a substructure rather than making a meaningful contribution to
the overall display. This point is further elaborated below. The second reason was

due to the error prone nature of abusing record variants. A particular tagfield
value may indicate the existence of a pointer but the associated variant may not have

been the most recently accessed field and an erroneous pointer value would be used

to provide the display. This problem is discussed in the next section where it is

argued that it is a problem for the programming language rather than a diagnostics
system.

Whether or not the pointers that may exist in a record variant constitute

substructures depends on the application. Similarly, any pointer within a record

225

could be considered by the programmer as introducing a substructure. A
structure may be created comprising several objects listed in an ordered manner
and, for reasons of economy of space, certain attributes of each object may be
implemented by pointers to common data objects. In this respect, such pointers
are regarded as data values rather than structural building blocks. This

distinction can only be made by the programmer. If the hazardous possibilities
incurred by variant pointers can be avoided, the display of data structures can be
made more useful if the programmer can indicate which pointers within a record
are to be used in creating the display. This can be implemented by naming certain
pointers or selecting a set of record types which are to comprise the display.

7.4 Conclusions
This final section is concerned with summarizing the main features of the work
described in this thesis. The portability of the diagnostics system is discussed
and some implications on programming language design described.

7.41 Portability of diagnostic systems
The fundamental aim of a diagnostics system is seen in terms of the problem

orientation lines introduced in chapter three. The main task is to map the

machine implementation of a program back on to the source program. In this
respect, the diagnostics system is performing functions of a similar order of

complexity to the tasks undertaken by the compiler but working in the opposite

direction. The diagnostics program is then seen to be as portable as a compiler.

Clearly sections of a compiler and a diagnostics program are machine
dependent. These sections can at best be kept sm all, isolated textually in the

program and, ideally, parameterised. The machine dependent sections of the
diagnostics program are isolated and the complete system of the P4 Pascal

compiler and diagnostics may be transferred to another machine with much the

226

same ease as moving the compiler alone. If the diagnostics system is to be

moved to another Pascal system which is not based on Pcode then its portability

is less. The diagnostics program would need to be adapted in order to cater for
a different compiler interface. This interface comprises the identifiers' name

table and the storage layout of data variables. In addition, the alterations made
to the P4 compiler as described in the previous chapter would have to be

included in this new compiler. Of greater interest is the possibility of transferring
the facilities provided by the diagnostics system to another language. Diagnostic
systems have been described for other languages. There are sections of this
diagnostics system that could be applicable to other languages. The techniques
employed for naming heap objects and creating a display of linked records are not

confined to Pascal. The facilities provided and their implementation are seen as
diagnostic techniques in general in the same way that many compiling techniques

exist without being contained in one language. This diagnostics system is aimed

at high level languages which provide data-structuring facilities and dynamic

creation of data items. The diagnostic facilities provided are applicable to such
languages; the interface to different languages concerns the details of implementing
dynamic data objects and pointer representation. The diagnostics system has

shown that it is possible and desirable to provide such information to the high
level language user. In isolating an area that is ignored by previous diagnostic

systems and filling the gap found it is hoped that future systems will do the same.

7.42 Structures using pointers

The display of data structures as described assumes a linking of objects by

pointers. Pointers are used in the creation and manipulation of such structures

in languages such as Pascal and Algol 68. The linked representation of structures
is not, however, the only method. In list processing languages such as LISP,

although the list elements are linked by pointers, this fact does not need to be

of concern to the user. Two possible representations of the same list structure
are:

227

1) list

g) list = (A, (C, D, E), B (F, (H, I), G))

fig 7.1

Both the above representations refer to the same list. The first indicates a linking of

twelve elements. The second shows one structure with several substructures denoted
by nested paranthesis. A third representation of this list which shows the hierarchy of
the substructures could be:

list

A
C

B
F

D H I

E G

fig 7.2

Which representation is most meaningful to the programmer will depend on the
particular application.

228

A second area where pointers are not directly required in representation is a
related data base. Consider the following data base and its relational table:

Employee relation
Key Name Age Dept

Thomas

Smith

Jones

Morgan

Brown

Lloyd

Works fo r ' relation

Thomas Smith

Thomas Jones

Jones Morgan

Jones Brown

Jones Lloyd

fig 7.3

The employee relation contains entries consisting of a key (in this case a name)

and some data relating to that key. The *works for* relation shows the

interconnections between the data objects. The first entry in this table shows a

connection between Thomas and Smith. Later in the table, Jones is shown to be

connected to Morgan, Brown and Lloyd. An alternative representation of this
database is:

229

fig 7.4

Within the r el ations, the keys used are effectively pointers or more precisely
each element of the works for relation indicates the presence of a pointer. The
main reason for this method of representing the above structure is that an

alteration of the data base is simple. Pointers can be added or removed without
altering the employee relation but by amending the works for relation. Using

names as keys instead of absolute addresses allows alteration of the ordering of
the data base without altering its structure. This representation is used for

efficiency and access path independent representation in manipulating a large data

base.

The list representation that does not refer to pointers is not easily applied to

structures which are implicitly recursive or involve cycles. The relational data

base can easily accommodate cycles as each relation represents a pointer, in his
book on algorithms and data structures, Wirth £wiRT76^ points out that the

use of pointers can be hazardous and shows that assignment to a pointer is

parallel in data structures to a goto statement in algorithms. Hoare also points

out the error prone nature of pointers £ hOAR75^ . Wirth justifies the use of

pointers in two ways. To otherwise create a recursively defined data structure
requires knowledge of the complete structure beforehand. By using pointers, a

structure can be developed incrementally. Secondly using pointers allows sharing

of common storage. Although in accessing common data, it does not matter to
the programmer whether that common data is duplicated within the structure,

230

this difference is important when such data is updated. Wirth gives a good
example of a family tree, which is usually considered a regular structure, that

is extremely irregular and representation without pointers would be difficult. It
involves the actual case of a man in Zurich in 1922 who through several incidences
of marriage becomes his own grandfather and whose brother is also his grandson.
The full story is given in Appendix 5.

The decision on representation of a structure by a display involves a knowledge of
the application. The display provided by the diagnostics system described uses
pointers and is general purpose. The reason for this is that Pascal uses pointers
enabling general purpose data structuring facilities. Where the application is

specific such as list processing a different representation may be applicable. This
special case applied to lists is supported by languages designed specifically for

list processing. As indicated earlier, the display provided could be made more

useful if the user can specify the format to be used and media such as a graphics
tube are available. Where an application is considered unique enough to warrant
special languages such as list processing, this uniqueness should be included in
any diagnostic display of the resulting lists. This uniqueness is arguably
confined to such languages.

7.43 Implications for program language design

Two main problems in the language processed by the P4 Pascal compiler arose

during the implementation of the diagnostics system. The first is the insecurity

of the record variant and the second is the detection of undefined pointer values.

The problem with record variants lies in altering a tagfield value and accessing
the variant fields selected. Consider the following example:

231

yar rec : record
case which : Boolean of

true : (i : integer) ,

false : (p : t integer)
end:

rec. i : = 10;
rec. which : = false;

Following the alteration of the tagfield ’which’ the assumed extant variant is the

pointer p which in this implementation would point to an ’integer' at store location

10 The pascal report states that in this case, the programmer must realise that the

value of the pointer p is to be considered illegal. This leaves the onus on the
programmer to expect undefined values in such circumstances. The unfortunate
consequence is that the diagnostics system, when tracing the above record for

construction of a display, would assume the pointer p exists and follow it through.

If the value found in p is coincidently within the current heap range it will not be

considered illegal and a seriously misleading display would ensue.

This problem does not occur in either Algol 68 or ADA which have a similar

facility. In Algol 68 £wUN76^ the associated tagfield is hidden from the
programmer. Whenever such a variant is used, the action to be taken for each

possible variant must be specified. In ADA £lCHB79^ the syntax of a record

variant is very similar to that in Pascal. The tagfield variable, however, cannot be

assigned to as an individual object. The tagfield value can only be changed when the

record is defined or if the entire record is assigned to. To remove this insecurity

in Pascal would require a large overhead at run-time. Whenever a tagfield is
altered,the variant fields exposed would have to be marked as undefined.

232

The existence of variables with an undefined or illegal value poses the

second problem referred to above, the detection of such values. The Pascal
report and the draft British standard for Pascal both refer to undefined
values for data objects in certain circumstances. These circumstances
include objects’ initial value, variant record fields exposed by a change in the
tagfield value and scalar items used as the control variable of a for

statement after completion of that loop. The reports do not state that the use
of an undefined value, if coincidentally valid, is to be regarded as an error.
The reason for this is that detection of such an error requires significant

run-time checks.

When a variable becomes undefined it would have to be given a unique value
which if used would be detected as an error. If this were done, two

difficulties arise. Firstly, it may be impossible to find one value which can

be used for each standard data type representation. Secondly the position and
size of exposed variant fields would have to be known at each instance of a tag-

field changing value. Whilst ‘neither of these problems is insurmountable the
overheads involved to set each variable to the unique undefined value that is
assigned to each scalar type would be large.

There still exists the need for the diagnostics system to detect pointers
which are officially undefined. The initial value of all data items in this

implementation is always set to zero (for the reasons given in chapter four

concerning comparisons of records which contain inaccessible fields due to

alignment conditions). The value zero is never a legal value for a pointer

in this system as the stack is formed from store location zero. The diagnostics

system can then detect pointers that have not been assigned a value. This
leaves two possible occasions where a pointer could have a value that

strictly is undefined but in practice could point to a valid area in the heap.

The first occasion is when a tagfield value is changed. The second
occasion is commonly referred to as the dangling pointer. Consider a pointer

p as shown:

If space is reclaimed on the heap, by use of the P4 Pascal procedure release,

the situation could be as follows:

P

Heap pointer

This pointer would be detected as having an illegal value as it does not point into
the current heap area. Should new objects be created on the heap, the pointer

p could then point into the heap area but not refer to any meaningful object. This

pointer would then cause an erroneous display to be created by the diagnostics

system. This error can only be avoided in the P4 Pascal system by inspecting

234

every extant pointer prior to allocating space on the heap. The location of every

pointer would be very costly unless each Pcode store location is flagged with its

type.

Both these problems concerning undefined pointers require prohibitively expensive

detection mechanisms. Neither mechanism has been implemented on this system

on the grounds that where such large overheads are involved it is better to

consider the language design that causes them. To eliminate the problem
associated with variant record fields, the approach described for ADA seems
appropriate. By forbidding the alteration of a tagfield except where the whole record

is assigned to removes the problem with little inconvenience to the programmer.
The dangling pointer problem stems from the method used for reclaiming heap

. storage. The standard Pascal procedure for this reclamation is dispose. This has

the effect of releasing the store object pointed at by a named pointer. The pointer
so named can then easily be given a suitable value but other pointers may refer to

the released data object. Algol 68 does not contain a procedure whereby the
programmer can specify store reclamation. The run-time environment reclaims

store by garbage collection; when store is exhausted, all pointers are examined

in order to locate areas of store no longer referred to. While this process is
extremely costly, it is only invoked when all store has been used. There appears

no cheap solution to this problem. The process of automatic garbage collection

would seem to be the only error free solution.

The overhead involved in each of these techniques is that of identifying which data

objects are pointers. This overhead can be overcome by suitable hardware. The
overhead of checking array subscripts, for example, has been considerably

lessened on many modern machines (eg MU5) by hardware implemented checks.

Some machines now include tag bits on each machine word identifying its type.

The Burroughs B5700 and B6700 £jORGA73^ were amongst the first to adopt

this idea. The pointers can then be readily identified and an extension to this

23«

would be for the hardware to alter all pointers which become undefined as storage
allocation changes to a particular value.

7.44 Summary

The work described has been concerned with reliable software and in particular
those tools available to a programmer aiding the testing of programs and helping

locate errors. The area where such tools are needed was found to be that of data
structures and the associated facilities of dynamically creating data objects during
a program run. The provision of a diagnostics system is argued to be as essential
as the compiler itself if the user is to be shielded from details of language
implementation. Two implementation details are seen as particularly interesting.
These are the mechanism for creating data objects and the representation of

linked structures in a manner in which the programmer may recognise. The

(dynamically created data objects are allocated unique names for subsequent

identification. The diagnostics system is most useful as an interactive aid because
the user may then selectively examine data objects as experience of the program
behaviour develops. There existing no suitable interactively available language

locally; Pascal was implemented first of all on a Digico Micro 16E computer and

then on the GEC 4080 central service computer. The latter is used for teaching and

research by a large population in excess of a hundred. The diagnostics system was

then incorporated into this implementation and received much use. The user
reaction is favourable and the facilities to display structures and give the values

of all extant data items in source language items is well appreciated. The provision

of these facilities is seen as incorporating those functions which are of most use to
the programmer whether a beginner cr an experienced user. There is scope for

improvement of the diagnostics system and, particularly since the arrival of cheap

personal computers with graphics facilities, suggestions fo r enhancements are
made. Such enhancements should be limited so that useful features are not lost

amongst a host of little used extras. Simplicity of a tool such as the diagnostics

238

system described is a good measure of its usefulness. It is believed that a
balance between this simplicity and the provision of facilities complementing the
full power of a language such as Pascal has been achieved.

Appendix 1

Differences between Pascal P4 and Standard Pascal

The differences between the language processed by the Pascal P4 compiler

£jA C074] and the standard Pascal as defined in the user manual and report
^WlRT7öJ are as follows:

1 Procedure and function formal parameters are not allowed

2 Files are not implement except for four predeclared files, input,
output, prd, prr, of type file of char.

3 goto s may not lead out of a procedure or function body.

4 The subrange form of set constants is not allowed.

5 nil is not a reserved word but predeclared.

6 ’text' and 'maxint' are not predeclared.

7 The standard function 'dispose' is replaced with 'mark' and 'release'.

8 Standard procedures 'round' 'page' 'pack 'and'unpack'are not
implemented.

9 Output of Boolean quantities is not supported.

10 Only one field width specifier may be used on a formatted write of
real quantities.

11 The reserved word packed is ignored.

Appendix 2
Pcode instruction sets

A. Original P4 Pcode instruction set

Operation codes

0 a b i integer abs 27 TRC function trunc

1 ABR real abs 28 UNI set union

2 ADI integer add 29 STP stop execution

3 ADR real add 30 CSP call standard procedure/function

4 AND logical and 31 DEC decrement

5 DIF set difference 32 ENT reserve local variable space

6 DVI integer divide 33 FJP jump if top of stack false

7 DUR real divide 34 INC increment

8 EOF test end of file 35 IND index array

9 FLO float integer below top of stack 36 DCA calculate indexed address

10 FLT float integer top of stack 37 LAO load address

11 INN test set membership 38 LCA load constant address

12 INT set intersection 39 LDO load

13 IOR logical or 40 MOV move region of store

14 MOD integer modulus 41 MST • mark stack

15 MPI integer multiply 42 RET return from procedure

16 MPR real multiply 43 SRO store

17 NGI integer negate 44 XJP indexed jump

18 NGR real negate 45 CHK check subrange bounds

19 NOT logical not 46 CUP call user procedure

20 ODD test whether integer is odd 47 EQU test equality

21 SBI integer subtract 48 GEQ test greater or equal

22 SBR real subtract 49 GRT test greater

23 SGS generate singleton set 50 LDA load address at given lexical

24 SQI integer square level

25 SQR real square 51 LDC load constant

26 STO store indirect 52 LEQ test less or equal

Appendix 2 (cont)
53 LES test less

54 LOD load at given lexical level
55 NEQ test inequality

56 STR store at given lexical level

57 UJP jump
58 ORD function ord
59 CHR function chr
60 UJC error in case statement

B Pcode Instruction set for GEC 4080 implementation

Operation codes

0 ABI integer abs 18 NGR negate real
1 ABR real abs 19 NOT logical not
2 ADI integer add 20 ODD test whether integer is odd
3 ADR real add 21 SBI integer subtract
4 AND logical and 22 SBR real subtract
5 DIF set difference 23 SGS generate set with given
6 DVI integer divide membership range
7 DVR real divide 24 SQI integer square
8 EOF test end of file 25 SQR real square
9 FLO float integer below top of stack 26 STO store indirect

10 FLT float integer on top of stack 27 TRC function trunc
11 INN test set membership 28 UNI set union
12 INT set intersection 29 STP stop execution
13 IOR logical or 30 CSP call standard procedure/
14 MOD integer modulus function
15 MPI integer multiply 31 DEC 1 decrement scalar
16 MPR real multiply 32 ENT 1 reserve variable space
17 NGT negate integer (procedure entry)

240

Appendix 2 (cont)

33 FJP jump if top of stack false

34 INC 1 increment scalar

35 IND 1 index scalar array

36 IXA calculate index address
37 LAO load address
38 LCA load constant address
39 LDO 1 load scalar

40 MOV move region of store

41 MST mark stack

42 RET return from procedure

43 SRO 1 store scalar

44 XJP indexed jump

45 CHK check subrange bounds

46 CUP call user procedure

47 EQU 1 test scalar equality

48 GEQ 1 test scalar greater or equal

49 GRT 1 test scalar greater

50 LDA load address at given lexical

level

51 LDC 1 load constant scalar

52 LEQ 1 test scalar less or equal

53 LES 1 test scalar le ss . .

54 LOD 1 load scalar at given lexical

level

55 NEQ 1 test scalar inequality

56 STR 1 store scalar at given lexical

level

57 UJP jump

58 ORD function ord

CHR function chr

UJC error in case statement
LOI 1 load scalar indirect

LIN line instruction

ENT 2 reserve stack space

(procedure entry)

CHKA check address

EQU M test array/record equality
GEQ M test array greater or equal
GRT M test array greater

LEQ M test array less or equal
LES M test array less

59
60

61

62

63

64

65

66

67
68

69
70
71
72
73

74
75
76
77
78

79
80

81

82

83

84

85
86

Appendix 2 (cont)

87 NEQ M test array/record inequality 116 LEQ S test set included

88 117

89 118 LOD S load set at given lexical

90 STO S store set indirect level

91 GEQ R test real greater or equal 119 NEQ S test set inequality

92 GRT R test real greater 120 STR S store set at given lexical

93 level

94 121

95 LEQ R test real less or equal 122 LDC C load constant byte

96 LES R test real less 123

97 STO C store byte direct 124 LDC N load nil address

98 125 LOD C load byte at given lexical

99 IND S index set array level

100 126 NOP no operation

101 127 STR c Store byte at given lexical

102 DEC C decrement byte level

103 LDO s load set ,

104 Standard procedures/functions

105 INC c increment byte IP GET input

106 IND c index byte array 2P PUT output

107 SRO s store set 3P RDI read integer

108 4P RDR read real

109 5P RDC read character

110 LDO c load byte 6P WRI write integer

111 EQU s test set equality 7P WRB write Boolean

112 GEQ s test set inclusion 8P WRR write real - l format

113 parameter

114 SRO c store byte 9P WRC write character

115 LDC s load constant set 10P WRS write string

242

Appendix 2 (cont)

IIP PAK pack (not implemented)

12P NEW claim heap space

13P RST restore heap space

14P ELN test for end of line

15P SIN)
16P COS)
17P EXP) standard

18P SQT) mathematical

19P LOG)procedures

20P ATN)
21P RLN read line

22P WLN write line

23P SAV save value of heap
pointer

24P RES reset file

25P REW rewrite file

26P HLT halt

27P ENV function environ

28P RND generate random number

29P RAN randomise random

number seed

30P PAG write page

31P OPN open file

32P CLS close file

33P ROU function round

34P GRM random access file input

35P PRM random access file output

36P WRF write real - 2 format

parameters

37P RSP restart program

38P UPD update random access

file

Appendix 3 Differences between UCSD Pascal and standard Pascal.

i:_ The standard function arctan is called atan

2 If no match is found in a case statement, the case statement is ignored in
UCSD Pascal.

3 The standard procedure dispose is replaced by mark and release.

4 The standard files input and output are predeclared as type 'interactive'.
Files of this type have no character look ahead facility, but are otherwise
similar to text files.

5 Random access files are allowed.

6 Read/write may only apply to files of type text or interactive.

7 Goto may not lead out of a procedure or function, but a procedure called
exit is provided which can cause control to leave any named procedure.

8 Any parameter list specified in the program heading is ignored by UCSD

Pascal.

9 The procedures reset/rewrite may contain a string parameter to specify an

actual I/O device.

10 Many string handling facilities are provided, and long ' integers can be
processed.

11 procedures/functions may not be formal parameters.

244

The printer socket of the Newbury VDU is a standard V24 interface. This requires

three connections - transmit, receive and a common earth. A modem connection
requires, in addition, four more connections (some modems have five extra
connections, the fifth being used to select the transmission speed). These four are

used to detect whether the machine the modem is connected to is ready to transmit

or receive data as follows:

Appendix 4 V24 Newbury VDU modem connections.

l) RQTS Request to send a signal to the modem.
This signal should be present to ensure the modem
becomes enabled to receive data.

2) RFS Ready for sending.
This signal is present if the modem is ready to transmit

data.

3) DSR Data set ready.
This signal is present when the modem is ready to
receive data.

4) DCP Data carrier present.

This signal signifies that the modem has a carrier signal.

The modem connection is completely disabled if this is

not present.

The first signal Is always present from the Digico line which expects the other

three to be present before it is operative. To enable the Digico line, in addition
to the three data connections to the printer socket, the above four connections

are soldered together.

Appendix 5 Family Tree

This story appeared in a Zurich newspaper in July 1922 and is quoted by Wirth

in his book 'Algorithms & Data Structures = Programs

’I married a widow who had a grown-up daughter. My father, who

visited us quite often, fell in love with my step-daughter and married

her. Hence, my father became my son-in-law, and my step-daughter
became my mother. Some months later my wife gave birth to a son,
who became the brother-in-law of my father as well as my uncle. The
wife of my father, that is my step-daughter, also had a son. Thereby,
I got a brother and at the same time a grandson. My wife is my
grandmother, since she is my mother's mother. Hence I am my wife's

husband and at the same time her step-grandson; in other words I am
my own grandfather'.

246

ACM77

ADDY78

APPL79
BARR77

BARR79

BATE 74

BIRT73

BOWL78

BRAD77

BROO66

CAP071

CLAR67

COLE78

CONW63

CONW73

DAHL72

DECA

DECB

ACM 1977. Proceedings of the 6th Symposium on Operating System
Principles.
Operating Systems Review. Vol II No. 5 Nov. 1977
Adctyman AM et al 1978. Working Draft/3 on Pascal'
British Standards Institute.
Apple Computer Inc. 1979. 'Apple n Reference Manual'.
Barron D 1977. 'An Introduction to the Study of Programming
Languages'. Cambridge University Press.

Barringer H, Capon P C and Phillips R 1979. 'The Portable
Compiling Systems of MUSS'. Software - Practice and Experience
Voi. 9 No. 8 (645-656).

Bate DG 1974. 'Design and Implementation of an Interactive Test
Bed'. Software - Practice and Experience V oi.4 N o.l (91-109).
Birtwhistle GM, Dahl Mhyrbaug and Nygaard 1973.
'S imula Begin ' Auerbach.

Bowles K 1978. 'The UCSD Pascal Project'. Educom Bulletin
Voi 13.
Brady JM 1977, The Theory of Computer Science. ' Chapman and
Hall.
Brooker RA, Rohl JS and Clark SR 1966. The Main Features of
Atlas Autocode. ' Computer Journal Voi 8 No. 4 (303-311).

Capon PC, Morris D, Rohl JS and Wilson R 1971. The MU5
Compiler Target language and Autocode' Computer Journal Voi 15
No 2 (109-124).
Clark SR 1967 'Compiling Techniques' PhD Thesis
Manchester University.

Coleman D 1978 'A Structured Programming Approach to Data*.
MacMillan.
Conway M 1963 'Design of a separable transition diagram compiler'
Communications of the ACM Voi 6 No. 7 (396-408).

Conway RW and Wilcox TR 1973. 'Design and Implementation of a
Diagnostic Compiler for PL/1. ’ Communications of the ACM
Voi 16 No. 3 (169-179).
Dahl O, Dijkstra EW and Hoare CAR 1972. 'Structured Programming
Academic Press.
'DEC System 10 Algol Manual' DEC Computers Ltd

'DEC System 10 User Manual' DEC Computers Ltd.

digia

d ig ib

digic

DUK68

DUK79

FLOY67

FORD76

FRAN77

GECA

GECB
GORD77A

GORD77B

GRIS76

HANS77

H0AR71

HOAR75

ICHB79

ICL76

DIAB76 Diablo 1976. 'Hyterm Communication Terminal User Manual
Diablo Systems Incorporated.
'Digico. Generalised Communication Interface card - GCIC'
Digico Ltd
TDigico. Micro 16E User Manual. * Digico Ltd.

'Digico. Assembler users Handbook. ' Digico Ltd.
Dijkstra EW 1968. 'The Goto Considered Harmful'
Communications of the ACM Vol. 11 (147-148).

Dijkstra EW 1979. 'A Discipline for the Programming of
Interactive I/O in Pascal'. ACM Sigplan Notices Vol 14
No. 12 (59-61).
Floyd R. 1967. 'Assigning Meanings to Programs'.
Proceedings of a Symposium in Applied Mathematics Vol. 19
(ed. Schwarz) American Mathematical Society (19-32).
Ford B 1976. 'The Evolving Nag Approach to Software
Portability. ' P. Brown. Cambridge University Press
frank GH 1977. 'A Portable Operating System. ' Software
Portability. P Brown. Cambridge University Press

'GEC 4000 Series. ' GEC Computers Ltd.
'GEC Babbage User Manual. ' GEC Computers Ltd.
Gordon M, Milner and Wadsworth 1977. 'Edinburgh LCF'.
Department of Computer Science. Edinburgh University.

Gordon M, Milner, Wadsworth, Morris and Newey. 1977.
'A Metalanguage for Interactive Proof in LCF'
Department of Computer Science. Edinburgh University.

Griswold RE 1976. ’Engineering for Portability. » Software
Portability. P.Brown. Cambridge University Press

Hansen PB 1977. The Architecture of Concurrent Programs
Prentice Hall.
Hoare CAR 1971 'Proof of a Program Find. '
Communications of the ACM Vol 14, No. 1 (39-45)

Hoare CAR 1975. 'Data Reliability' ACM Sigplan Notices
Vol. 10 (528-533)
Ichbiah JD et al 1979. Rationale for the Design of the Ada
Programming Language.' ACM Sigplan Notices. Vol. 14
No. 6 Part B.

ICL 1976 'Cobol 1900 Series. ' ICL Computers Ltd

248

IGAR73

JACK75

JAC076

JENS75

KNUT67

LAVI75

LEAV70

LOND75

MANC75

MANC76

MART70

MCCA63

MICK
MICR78

MOUL67

NAUR 62

NAUR 66

NAUR 69
NEUM63

NEWB

Igarishi London and Luckman 1973 'Automatic Verification of
Programs. ' Stanford Report CS365.
Jackson MA 1975 'Principles of Program Design. ' Academic Press.

Jacobi C, Nori, Amman, Jansen and Nageli. 1976
'Pascal (P) Compiler Implementation Notes. ' ETH Zurich.
Jensen K and Wirth N. 1975. 'Pascal User Manual and Report. *
Prentice Hall.
Knuth DE 1967. 'The Remaining Trouble Spots in Algol 60. '
Communications of the ACM Voi. 10 No. 10 (611-618).
Lavington SH 1975. 'A History of Manchester Computers. '
National Computing Centre.

Leavenworth B 1970 'Review of a Paper by P Naur. '
Computer Reviews Voi. 11 No. 7 (19,420 pp 396-397).
London RL 1975. A View of Program Verification. ' Proceedings
of the International Conference on Reliable Software. Los
Angeles (534-545).

Manchester University Regional Computer Centre 1975. 'Using the
UMRCC Fortran In-core Compiler. '

Manchester University Regional Computer Centre 1976. 'Using the
UMRCC Algol 60 In-core Compiler. '

Martin J 1970 'The Computerised Society. ' Prentice Hall.
McCarthy J 1963. 'A Basis for a Mathematical Theory of
Computation'. Computer Programing and Formal Methods
(ed. Braffort and Hirschberg), North Holland (33-69).

Mickel A (Editor) 'Pascal News' Pascal Users' Group Newsletter.

Microengine Company 1978. 'The WD900 Pascal Microengine'.

Moulton PG and Muller ME 1967. Ditran - A Compiler
Emphasising Diagnostics. ' Communications of the ACM Voi. 10
No. 1 (45-52).
Naur P 1962 (Editor) Televised Report on Algol 60*. International
Federation for Information Processing.

Naur P 1966. 'Proof of Algorithms by General Snapshots'.
Bit 6 (310).
Naur P 1969 'Programming by Action Clusters'. Bit 9 (250-258).

Neuman JV 1963 'Collected Works 5' MacMillan.

Newbury Laboratories Ltd. 'Operator Instruction Manual -
Newbury Visual Display Terminal. '

249

OR GA 73 Organick ET 1973. 'Computer System Organisation: the
B5700/B6700 Series. ' Academic Press.

RAND78 Randell B, Lee P, Treleaven P 1978. Tleliability Issues in
Compiling System Design.' Computer Surveys.

ROHL75 Rohl JS 1975 'An Introduction to Compiler Writing.' MacDonald.

SING78 Singleton P 1978. 'A Floating Point Package for the Digico
Micro 16E.' Computer Science Department, Keele University.

WATT77 Watt DA and Findley W 1977. 'A Pascal Diagnostic System'
Proceedings of the Third Computer Studies Symposium.
Southampton.

WE LS 72 Welsh J and Quinn C 1972. 'A Pascal Compiler for ICL 1900
Series.' Software - Practice and Experience. Voi 2 No. 1
(73-77)

WHIT79A White N 1979. 'Digico to 7905 Link.' Computer Science
Department, Keele University.

WHIT79B White N 1979. 'Digico to 4082 Link.' Computer Science
Department, Keele University.

WICH76 Wichmann B 1976. 'Use of Algol 60.' Software Portability.
P. Brown, Cambridge University Press.

WUN76 Wijngaarden A et al 1976. Tlevised Report on the Algorithmic
Language Algol 68.' Springer Verlag.

WIRT71A Wirth N 1971. 'Program Development by Stepwise Refinement.'
Communications of the ACM Voi 14 No. 4 (221-227).

WIRT71B Wirth N 1971. 'The Programming Language Pascal.'
Acta Informatica Vol 1 (35-63).

WIRT71C Wirth N 1971. 'Design of a Pascal Compiler.' Software - Practice
and Experience Vol 1 (309-333).

WIRT74 Wirth N 1974. 'Pascal and New Pascal.' Pascal Newsletter No 2

WIRT75 Wirth N and Jensen K 1975. 'Pascal User Manual and Report.'
Prentice Hall.

WIRT76 Wirth N 1976. 'Algorithms + Data Structures = Programs.'
Prentice Hall.

WIRT77 Wirth N 1977. 'Modula'.Software - Practice and Experience
Voi 7 No. 1 (3-35).

WOOD 72 Woodward PM and Bond SG 1972. 'Algol 68R Users' Guide.'
Ministry of Defence

YOUR75 Yourdon E 1975. 'Techniques of Program Structure and
Design.' Prentice Hall.

	etheses coversheet.pdf
	787267.pdf

