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ABBREVIATIONS

Abbreviations in this thesis comply with the policy of the Biochemical

Journal (1978) but, in addition, the following are also used:

El . ,........  Endocytic Index

TAR . ,........  Tissue Accumulation Rate
125i-pvp . . 125........  I-labelled poly(vinylpyrrolidone)

y.s. ........  yolk sac
fd-BSA . ,........  Formaldehyde-denatured bovine serum

albumin

IgG . ■........  The term IgG is used throughout this thesis
to refer both to experimental work and to 
literature on immunoglobulin G. In the 
former context, the term is used more 
loosely, for sake of brevity, to refer 
to a commercially available fraction of 
gamma globins (Cohn Fraction II, Miles 
Laboratories Ltd). This fraction is 
reported to contain at least 80% IgG.



ABSTRACT

An in vitro method, previously described for incubating rat yolk 

sacs for short periods, was adapted for the incubation of rabbit yolk
sacs. It was shown that the endocytic properties of these two tissues

. . .  . 125are very similar as judged by their rates of uptake of I-labelled

PVP, albumin and homologous IgG. By using the in vitro methods for

incubating rat and rabbit yolk sacs, it was possible to measure the

rates of release of substrate (intact and degraded) from yolk sacs

previously "loaded" in vitro with a marker protein. The latter

variation of the method was used in an attempt to further investigate

the cellular mechanism of prenatal transfer of passive immunity in
the rat and rabbit. It was found that in vitro I-labelled IgG

internalized by the tissue can be released again into the incubation
125medium. When the fates of a number of I-labelled homologous and

heterologous IgGs were investigated, it was found that definite rank

orders existed for the extent of release of intact IgG from the tissues.

The rank orders were closely parallel to those reported for transplacental

transfer by the same tissues in vivo.

Some assumptions underlying the Brambell, Wild and Henmings’

theories of IgG transfer in the rabbit yolk sac were investigated.
Evidence for the presence of specific receptors or binding sites on
the yolk-sac membrane was obtained both for molecules destined for

transfer through the tissue and also for molecules destined for intracellular

degradation. No exocytosis from heterolysosomes could be demonstrated,
125nor was an enhanced rate of release of I-labelled homologous IgG 

from the rabbit or rat yolk sac in vitro observed when degradation of these 

substrates was inhibited by the addition of leupeptin to the incubation 

medium. These findings are more compatible with the operation of a

two-vesicle system with separate vesicles for transcellular transport and 

degradation, as suggested by Wild.
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GENERAL INTRODUCTION
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The observation that suckling animals can acquire immunity from 

their mothers was first made towards the end of the last century by 
Ehrlich (1892). The immune system of young animals is not very well 

developed at the time of birth. (Although Lewin & Altman (1976) report 
the ability of human foetuses to synthesize IgG, IgM, IgA and IgE 

themselves, the amounts are minute.) It is therefore vital that 

protection against infections should be gained from elsewhere for the 

first few weeks of life. Ehrlich's original observations were on 

suckling mice, but this process of transfer of passive immunity has 

turned out to be more universal, having now been investigated in a 

great number of mammals. Since this capacity is an obvious asset for 

survival, it has evolved in the various animal species in an analogous 
fashion (i.e. different organs or tissues have developed the same 
specialized functions). Thus, the timing and sites of antibody 

transmission are rather varied, as can be seen in the summary table (see 

page la). Attempts have been made to determine the basis of these 

species differences, but suggestions that the thickness and number of 
placental membranes determines whether transfer is pre- or postnatal 

are, on the whole, not very convincing.

A common feature in the transfer of passive immunity for all species 

investigated, is that some molecules are transferred preferentially.

This selectivity in protein transfer operates for most species in favour 

of IgG. Although for cows, pigs and horses apparently no selectivity 

is evident during the uptake of proteins via the colostrum and the gut 

into the neonatal circulation, it should be pointed out that for these 
species a form of selectivity seems to operate at an earlier stage in 

the overall process, namely in the mother during the secretion of 

molecules into the colostrum by the mammary gland. In cows and horses 

IgG is preferentially secreted into the colostrum (Dixon et al., 1961;



General features o f  transfer o f passive immunity in  d iffe r e n t mammalian species

Time of transfer
____________________A ______________________

Route of Duration 
of period 
of transfer

Representative literature
Prenatal Postnatal (where known)

Ox 0 +++ Gut 24 hours Balfour & Comiine (1962)
Pig 0 +++ Gut 24-36 hours ( Porter (1969)

! Payne & Marsh (1962)
Goat 0 +++ Gut 24 hours Clarke & Hardy (1971)
Sheep 0 +++ Gut 24 hours Halliday (1976)
Horse 0 +++ Gut 24-36 hours Jeffcott (1972)
Wallaby 

(Setonix) 0 +++ Gut 180 days

Dog + ++ Gut 1-2 days Schneider & Szathmary (1939)
Cat + ++ Gut 1-2 days f Harding et al. (1961)

1 Kulangara & Schechtman (1963)
Hedgehog + ++ Gut 70 days Morris (1961)
Mouse + ++ Gut

Yolk sac
16 days Koch et al. (1967); Gardner (1975)

Rat + ++ Gut
Yolk sac

20 days Clark (1959); Kraehenbuhl et al. (1969) 
Brambell & Halliday (1956)

Guinea Pig +++ 0 Yolk sac — T Leisring & Anderson (1961) 
1 Dancis & Shafran (1958)

Rabbit +++ 0 Yolk sac - Brambe11 (1970)
Grey squirrel +++ 0 Unknown - Wild (1971)
Mail +++ 0 Chorioallantoic

placenta
Gitlin et al. (1964)

Rhesus Monkey +++ 0 Chorioallantoic - Bangham (1960)
placenta
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Jeffcott, 1972). Moreover, Brandon (1976) showed that in cows further

selectivity can be demonstrated between IgG subclasses and favours IgG 1.
Porter (1969) showed that in pigs IgG 2 and IgA are preferentially
secreted into the colostrum. IgA is the major secretory product at a
later stage (the molecule being a very powerful anti E. coli agent).

The mechanism of selection operating in the neonatal gut (rats and mice)

or in the placenta or yolk sac (rabbits, guinea pigs, humans and rats)

poses some fascinating questions. Other proteins are also taken up

into some of these tissues only to be degraded subsequent to capture.

Homologous IgG and some heterologous IgG species, on the other hand,

traverse the tissues without being broken down. The different fates

of molecules are probably related to different physiological functions

of the tissues in question. The placenta and yolk sac in particular

are specialized to act as barriers between the foetus and mother. The

foetus is in effect an intra-uterine allograft, being genetically

dissimilar to the surrounding maternal uterine tissues. Thus, very

important antigens, paternally-inherited histocompatibility antigens,
have been demonstrated on the cell surface of the embryo at very early 

0stages (Hakanson et al., 1975) and anti-HLA antibody responses can be

demonstrated in some human females (Adinolfi & Billington, 1976).
The foreign (to the mother) paternally-derived antigens should suffice 

to trigger off an immune reaction in the mother sufficient to destroy 

the embryo. The reasons given to account for the protection of the 

foetus against rejection by the mother are varied, but they include the 

presence of serum factors (specific or non-specific) in pregnant women that 

may suppress immunological responses (Gusdon, 1976) by, for example, 

binding to the cell surface in a non-harmful way and at the same time 

blocking either lymphocyte receptors or antigenic determinants of the 

target cell (Price & Robins, 1978). Other reasons for the protection of
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embryos include the possible presence of T-lymphocyte suppressor cells 

in pregnant females (Chaonat et_ al., 1977) and, more important in the 
context of the present study, the presence of the trophoblast barrier. 

Even though there is some evidence pointing to the presence of HLA- 

antigens on even the mouse yolk sac (Jenkinson & Billington, 1974), the 

foetal membranes are, on the whole, regarded as effective barriers, 

acting in both directions. For an excellent review see Billington & 

Wild (1979). Thus, no foetally-derived material gets out and no 

maternally-derived material reaches the foetus intact. But, rather 

maternally-derived materials and also other potential harmful molecules 

are broken down to the level of small molecules (amino-acids, peptides) 
that can then be used for the embryonic nutrition (see Beck & Lloyd, 

1968). The molecular breakdown is ensured by the large battery of 
enzymes contained in the lysosomal system of the placental and yolk-sac 

tissues. The ability of homologous IgG and some other proteins to 

escape degradation therefore constitutes an exception to the general 

rule. Likewise, in the neonatal gut of various animal species, all 

kinds of protein are degraded, whereas IgG is transported across the 

tissue intact. In all the tissues mentioned)large molecules are taken 

up by endocytosis and the pinosomes and phagosomes thus formed fuse 
with lysosomes to bring about degradation. Immunoglobulins thus seem 

to be treated exceptionally in this system. As the possibility of 

intercellular immunoglobulin transport has been excluded on the grounds 

of existing tight junctions between cells (Larsen, 1963), the molecules 
have to be taken up by cells but somehow escape degradation during their 

way through the cells.

For IgG transport across the rat gut in the postnatal period, it 

has been suggested that the different segments of the gut are specialized 

in either the transport or the catabolism of proteins (Rodewald, 1973).
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Initially the distal part of the small intestine was suggested to be 

operative in antibody transfer (Clark, 1959; Kraehenbuhl et al., 1967; 

Kraehenbuhl & Campiche, 1969; Cornell & Padykula, 1969). However, 

considerably more evidence has been put forward for the involvement of 

the proximal half of the intestine (Rodewald, 1969, 1970, 1973, 1976a,b; 

Morris & Morris, 1974, 1976; MacKenzie, 1972; Jones, 1976a,b, 1979;

Hemmings & Williams, 1977). The observation of protein transport 
at the distal end of the small intestine may be due to the failure in 

isolating the sites effectively, as Rodewald (1970) suggested. 

Alternatively, no clear distinction has been made by some workers between 

uptake and true transport. Uptake with subsequent degradation has been 

reported frequently for the ileum. Thus, Cornell & Padykula (1969) 

found great amounts of acid-phosphatase activity and other hydrolytic 

enzymes in supranuclear vacuoles from the distal part of the intestine. 

Rodewald (1970) showed that the proteolytic capacity of the distal half 

of the intestine exceeded that of the proximal half by 30-fold. Henmings 
& Williams (1977), Noack et al. (1966) and Jones (1979) also showed that 

this region displays greater proteolytic capacity than the duodenum.

Uptake into the ileum, on the other hand, has been reported by Rodewald 

(1973) for a variety of molecules (ferritin-conjugated IgG, free ferritin, 
ferritin-conjugated BSA) that were all taken up non-selectively.

From these findings it appears that along the gut of the neonatal
rat, cells are specialized to perform different functions. Epithelial

cells in the proximal part of the small intestine take up proteins

destined for transmission to the circulation by receptor-mediated

endocytosis (Rodewald, 1970; MacKenzie, 1972). The latter workers also

showed that uptake is selective, e.g. sheep IgG2 is taken up preferentially

to sheep IgG 1. Hemmings & Jones (1974) and Jones (1976) showed that for 
125 131I- or I-labelled bovine IgG, the more basic fractions are
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transmitted more readily as judged by isoelectric focussing analysis.

Also Hammerberg et al. (1977) demonstrated the uptake of IgGl, IgG 2,

IgM and, later in the development of the animal, IgA. When IgG2a 

and b were given orally, selective transport of the electrophoretically 

slower-moving subclass from gut to the serum was apparent. Concerning 

homologous and heterologous IgG species, Halliday (1955) established 

the following rank order for the transfer of IgG from different species:

Rat > Mouse > Rabbit > Cow > Fowl. The distal part of the small 

intestine is also specialized, not for transfer, but for degradation of 

the internalized substrates. After a time span of 22 days following 

birth, the epithelial cells of the proximal intestine also lose their 
ability to transfer protein. But, during the period of transfer of 

passive immunity, it appears that the processes of substrate transfer 

and degradation are segregated and take place in entirely different regions 

of the gut. This is in stark contrast to the findings in the rabbit 

(and rat) yolk sac, where the selection takes place on the same cell 

surface and where both substrate transfer and breakdown happen in the 

same cell. This poses the fascinating question of how the cell can 

distinguish between molecules destined for transport and those destined 

for degradation by the lysosomal enzymes. In order to fully appreciate 

this problem it may be useful to have a short glance at the dynamics 
of the vacuolar system.

Uptake of exogenous substances into cells may be by a number of 

mechanisms. If the molecules are small enough (i.e. <220 Dalton), 
they can either diffuse across the plasma membrane or enter by active 

transport. For larger molecules, like IgG and particles, however, the 

cell membrane is not permeable in this way, but uptake may occur by 

endocytosis. Endocytosis describes a process of internalizing substrates 

into vesicles formed either by the plasma membrane invaginating or forming
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pseudopodia engulfing the substrate. Depending on the size of the 

substrate taken up, endocytosis is further subdivided into phagocytosis 

and pinocytosis. Phagocytosis was first observed by Metchnikoff (1883) 

using the light microscope; pinocytosis was first defined and described 

by Lewis (1931). It has been suggested that phagocytosis and 
pinocytosis differ from each other not only with regard to substrate size 

but also with regard to energy requirements and kinetics (North, 1970); 

also pinocytosis has been divided into macro- and micropinocytosis on 

the basis of both vesicle size and energy requirements. Claims have 

been made that micropinocytosis requires no energy (Allison & Davies, 

1974), but Duncan & Lloyd (1978) demonstrated that this distinction is 

not justified. Endocytosis has been demonstrated for a great number 
of cell types, both free cells and those within tissues, and a great 
variety of different substrates.

The process of endocytosis can be split up into a sequence of 

events. In phagocytosis, preceding membrane invagination or pseudo­

podium formation, contact of the substrate with the membrane and/or 

the presence of opsonins appears necessary to trigger membrane movement. 

Although pinocytosis may involve membrane/substrate interaction, 

vesicle formation has been shown to be a continuous and spontaneous 

process, not even demanding the presence of any substrate. The 
attachment phase in endocytosis is influenced by surface charge on 

particles (Stossel, 1973), the presence of hydrophobic groups on 

particles (Livesey, 1979), possibly the size of the ingested particle 

(Korn & Weisman, 1967) and the existence of specific receptors on the 
membrane (Steinman & Cohn, 1972). Internalisation may be by engulfment 

or invagination. With amoebae,pseudopodia can be seen to flow around 

the prey till it is totally enclosed (Christiansen & Marshall, 1965). 

Invagination may be mediated by the action of microfilaments (Goldman &
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Representative sample of cells involved in endocytosis

Peritoneal macrophages Davies et al. (1973); Ehrenreich & Cohn (1967)

Lung macrophages

Lewis (1931); Robinovitch (1968), Caseley-Smith
(1969)

Tsan & Berlin (1971); Stossel (1973, 1975)
Blastocysts Parr & Parr (1978)

Neutrophils Ward & Zwaiffler (1973)

Blood capillaries Clementi & Palade (1969)
L-cells Gordon & King (1960)
Renal proximal tubules Maunsbach (1963)
Liver cells (Kupffer) Mego e£ al. (1967); Munthe-Kaas (1976) 

Mori & Novikoff (1977)
Granulocytes Stossel (1973)
Kératinocytes Wolff & Konrad (1972)

Tumor cells Ryser et al. (1962); Bruns & Palade (1968)* 
Spivak (1973); Brunk et al. (1977)

Leucocytes Sbarra et_ al. (1962) ; Robinovitch (1968)
Thyroid cells Rodesch et al. (1970); Burke (1970); Zalin & 

Hoffenberg (1977)
Rat neurophysial axon Theodoris et al. (1976)
Amoeba Bowers & Olzewski (1972); Chapman-Andresen & 

Holter (1964); Christiansen & Marshall (1965); 
Bowers (1977)

Rat kidney cells Strauss (1962, 1967)

Fibroblasts Becker e£ al. (1973); Steinman et al. (1974); 
Warburton & Wynn (1976)

Glia cells Brunk et al. (1977)
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Representative sample of endocytosed materials

Paramecium aurelia Christiansen & Marshall (1965)
Yeast cells Nordenfelt (1970)
Pneumococci Armstrong SD'Arcy Hart (1975)
Erythrocytes Munthe-Kaas (1976); Spivak (1973)
Gold spherules Komiyama & Spicer (1975)
Quarz Mudd (1934)
Thorium dioxide Caseley-Smith (1969)
Asbestos Davies et al. (1974)
Silica, carbon Fenn (1921); Roberts & Quastei (1963)
Glass Gilfillan et al. (1970)
Polystyrene Sbarra £t al. (1962)
Latex beads Wolff & Konrad (1972); Bowers (1977)
Coated oil droplets Stossei (1973, 1975)

Starch Sbarra ejt al. (1962)
Haemoglobul in Contractor & Krakauer (1976)
Horseradish peroxidase Mori & Novikoff (1977); Moxon et al. (1976)«

Steinman et al. (1974)
Glucose Chapman-Andresen (1977)
Ferritin Ryser et al. (1962); Bruns & Palade (1968)
Polyvinylpyrrolidone Zalin & Hoffenberg (1977); Williams et al. (1975)j 

Roberts et al. (1977)

I-Albumin Ryser e£ al. (1962ji) ; Mego et al. (1967)

Thyroglobulin,
Fibrinogen
125I-Rat IgG

Zalin & Hoffenberg (1977) 

Williams & Ibbotson (1979)
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Falett, 1969) or alternatively may be the result of a group of receptors 

moving together forming the limiting membrane that forms a vesicle 

(Goldstein et al., 1979; also see Ockleford, 1976, for the proposed 

mechanism for the formation of coated vesicles). The fates of vesicles 

are potentially three-fold. 1) Vesicles can move to the perinuclear 

region and fuse with lysosomes. This will lead to the degradation of 

the contained molecules. 2) Vesicles can exocytose their contents at the 

apical membrane. 3) Vesicles can traverse the cell and exocytose at 

the basal membrane (diacytosis). The last process is somewhat speculative, 

but Bruns & Palade (1968) have described the diacytosis of ferritin 
across endothelial cells .

Endocytosis, being an energy-dependent process, can also be inhibited 

and stimulated by the addition of various effectors. The following are 

established as inhibitors in some systems: 2,4-dinitrophenol, iodoacetate 

(Chapman-Andresen, 1977; Casley-Smith; 1969); fluoride, sodium azide 

(Steinman e£ al., 1974) and certain weak bases including ammonium ions 

(Livesey et al., 1980). The following have been reported to act as 

stimulators: anionic compounds, dextran sulphate, albumin, fetuin 

(Cohn & Parks, 1967); strychnine (Teichberg et al., 1975).

A component of the vacuolar system that is vitally important to the 

discussion of the problem of transcellular IgG transfer is the lysosome. 
Lysosomes were discovered by de Duve (see de Duve, 1963; de Duve &

Wattiaux, 1966 for reviews), and their function is the degradation of 

endogenous and exogenous materials in the cell. Biochemically, lysosomes 
can be described as unit-membrane-»limited vesicles containing a 
battery of hydrolytic enzymes able to degrade biopolymers at acid pH. 

Primary lysosomes probably originate from the Golgi apparatus (GERL 

region). After fusing with either pinosomes, phagosomes or autophago­

somes (vesicles containing endogenous materials) they are termed
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secondary lysosomes. The lysosomal membrane is permeable to molecules 

<220 Daltons so that small degradation products are released from the 
lysosome by diffusion whereas non-degradable substrates remain within the 
lysosome (then called a residual body).

Returning to the problem the yolk-sac or placental cell is faced 

with in the transport of IgG, it is clear that a very special mechanism 

must exist to effect selective degradation of proteins. Therefore, 

ever since Brambell £t̂  al. (1950) discovered this selection, ideas have 

been put forward to provide a mechanism for the protection of IgG. The 

first one chronologically, comes from Brambell (1958) and is shown 

diagrammatically on page 8a. Selective protection against degradation 

is supposed to occur within heterolysosomes by the binding of IgG molecules 

to specific receptors on the inner face of the heterolysosome; unbound 

proteins are degraded by lysosomal enzymes. The bound IgG,protected 

against enzymic attack in this manner,is released intact by exocytosis 

of the vesicle at the lateral or basal plasma membrane. An alternative 

model was proposed by Wild (1975, 1976), that involves coated 

micropinocytic vesicles, a separate class of vesicle (see diagram on p 8a). 

These vesicles have been shown to be involved in the transport of proteins 

in different cell types (see Pearse, 1980 and Goldstein etal.,1979 for 

reviews). According to Wild’s theory, selection occurs on the outer 

face of the yolk sac by the binding of IgG to specific receptors prior to 

the formation of coated pinocytic vesicles. IgG, like other proteins, 

is also taken up into ordinary macropinocytic vesicles, but whereas 
the macropinocytic vesicles fuse with primary lysosomes leading to a 
degradation of their contents, coated micropinocytic vesicles do not fuse 

with lysosomes, but release their contents intact at the basal or 

lateral plasma membrane. This theory was raised in opposition to that 

of Brambell when a number of electron microscope findings failed to



BRAMBELL'S SCHEME
WILD'S SCHEME
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support the Brambell model. Thus macropinocytic vesicles were not 

found in the basal region of cells and no ultrastructural evidence for 

exocytosis from heterolysosomes could be obtained. In contrast, 
coated micropinocytic vesicles containing HRP-conjugated human or 

rabbit IgG have been seen near the basal or lateral membranes and even 

in confluence with these membranes (Moxon ejt al_., 1976).

Hemmings and Williams(1976) have forwarded yet another theory to 

account for the differential degradation of protein in the rabbit yolk 

sac. They proposed that all proteins are taken up indiscriminately by 

the yolk sac, but that subsequent to capture some vesicles burst for 
some undefined reason. (Broken vesicles have indeed been observed 

in a variety of cells fixed for electron-microscopy: Wild, 1970;
Padykula at al., 1966 .) All proteins that are released into the

cytoplasm in this manner escape lysosomal degradation, but all those proteins

remaining within vesicles are subject to degradation. The release

from the cell of those proteins that pass into the cytoplasm is

supposed to be by differential diffusion across the basal plasma membrane.

Even though it has been formulated for another tissue, the theory 

of Rodewald (1973) accounting for IgG transfer across the rat gut should 

also be mentioned. The basic idea is that along the rat gut different 
cells are specialized to fulfil different functions. Antibody transport 

only takes place in the proximal part of the small intestine whose cells 
are morphologically different from those in the ileum or distal part.

Only into the proximal cells are some antibodies selectively taken up 
(ferritin-conjugated bovine and rat IgG; Rodewald, 1973). Selection is 
supposed to happen during the uptake stage on the membrane at the base of 

tubular invaginations on the apical cell surface. Binding to receptors 

appears to be pH dependent. Both Rodewald (1976) and Wild & Richardson 

(1979) report that the initial pH optimum for the binding step is 6.0.



Comparison o f the m ain features o f the d iffe r e n t mechanisms proposed fo r  the s e le c tiv e  tra nsfer o f  IgG

r
Feature of the process considered

Predicted behaviour or feature in the model according to:
— -- - - -—A. .... . --- -

Brambell Wild Hemmings & Williams
1. Mechanism responsible for 

selection of transferred IgG
2. Location of the specific 

receptors involved in IgG 
transmission

3. Can the protective IgG route 
be saturated?

4. Location of IgG in the cell

5. Location of protected IgG in 
the cell

6. Location of protein destined 
for degradation

7. Minimum number of vesicle- 
types proposed

8. Presence of lysosomal enzymes 
in transport vesicles is 
suggested?

9. Uptake of protein not destined 
for transport is by the 
following mechanism

10. Release of IgG from the cell 
is by the following mechanism

Selective binding to 
membrane receptors
Inner face of pinosome 
or heterolysosome

Yes

Pinosome or heterolysosome 

Pinosome of heterolysosome 

Pinosome or heterolysosome

1

Yes

Fluid-phase pinocytosis

Exocytosis of pinosomes/ 
heterolysosomes at basal/ 
lateral membrane

Selective binding to 
membrane receptors
Outer surface of 
plasma-membrane

Yes

Pinosome, heterolysosome 
or coated vesicle
Coated vesicle

Pinosome or heterolysosome

2

No

Fluid-phase or adsorptive 
pinocytosis

Exocytosis of coated 
vesicles at basal/ 
lateral membrane

Selective diffusion at 
basal membrane
No receptors postulated 

No

Pinosome, heterolysosome 
or cytosol
Cytosol

Pinosome or heterolysosome 

1

Yes

Fluid-phase or adsorptive 
pinocytosis

Differential diffusion 
at basal/lateral membrane

11. Is release of lysosomal enzymes 
or a non-degradable marker 
possible from transplant vesicles?

Yes No No
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Dissociation of the IgG from the receptor at the basal membrane is 

supposed to be aided by the higher intracellular pH. During transport 

the tracer was observed in the tubular vesicles formed by invagination 
and later in coated vesicles pinching off from the surface of these 

tubular vesicles. Coated vesicles then transport the contained 

antibodies to the basal cell membrane, where they exocytose. Markers 

are subsequently also traced in the intercellular spaces. On closure 

(22 day after birth), the proximal cells undergo morphological changes 

and lose their ability to transfer proteins. Distal cells also 

endocytose all manner of proteins, but this uptake is followed by 

degradation. This theory is formulated specifically for the postnatal 
antibody transfer in the gut and will not be discussed further in the 

following work. For completeness' sake the final theory mentioned here, 

is that proposed by Kulangara & Schechtman (1962). They suggest that 

selection does not take place during transport across the yolk-sac 

splanchnopleur in the rabbit, but occurs in the foetal circulation by 

selective removal of transported proteins from the blood. As this 

theory assumes that transcellular transport without degradation can occur, 

but proposes no mechanism for the process, it will not be further discussed 

in this work.
Looking at the different theories it becomes apparent that,for each , 

different assumptions are made. The table on page Sh indicates the central 

assumptions of the theories of Brambell, Wild and Hemmings and their 

differences and in turn suggests how these theories can be examined 

critically. Three main categories of investigation have been used in 
the past: in vivo observations, iri vitro binding to fixed tissues and 

ultrastructural investigations. (See Chapter 3 for an appraisal of 

respective merits of these methods .) This present work is concerned 

with applying a new method to the problem of selectivity, namely by 

using an in vitro incubation method to examine the behaviour of intact
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tissues thought to be involved in selective transport of immunoglobulins 

(i.e. rat and rabbit yolk sacs). Encouraged by the findings of Williams 
& Ibbotson (1979) that rat yolk sacs incubated iri vitro treated

I-labelled rat IgG in a significantly different manner to I-labelled 

BSA, an attempt was made to modify the technique to permit investigation 

of rabbit yolk sacs in a similar manner. The use of rabbit yolk sacs was 

deemed extremely desirable, because the yolk sac has long been established 

as the site of transfer of passive immunity in the rabbit whereas in 
the rat the yolk sac is at best only a secondary site. Near term, 

when most transfer of passive immunity occurs, the arrangement of foetal 

membranes is very similar in rats and rabbits (see the diagrams on pages 11a 

and lib) . In both species the foetus is surrounded by the amnion and 

yolk sac, Reichert's membrane having disappeared . In the rabbit, the 

yolk sac is not joined to the placenta, but a strip of paraplacental 

chorion lies between those two tissues. Wild (1970) has demonstrated 

that this paraplacental chorion allows the non-selective diffusion of 

proteins into the exocoel and later into the foetal gut, where digestion 

occurs. In the rat this paraplacental chorion is not present, instead 

the endoderm of the yolk sac is highly villous near the placenta, and 

the placenta is permeated by the crypts of Duval. Selective protein 

transport to the foetal circulation, in both species,is thought to occur 

via the yolk sac, the ultrastructure of which is very similar in both 

tissues (for a diagrammatic scheme see page 11c). Immunoglobulins destined 

for transport must traverse a distance of approx. 24ym. Uptake is 
initially into the cells forming the low columnar epithelium. These 

cells are linked by desmosomes at the apical end. The IgG is then 

released into the mesenchyme of the epithelium where uptake has been 

observed into macrophages. To reach the foetus, IgG molecules have to

pass through the cells lining the vitelline vessels and into the vitelline
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circulation. Selection is thought to operate at the level of the 

epithelial cells, which in both species have a brush border of microvilli 
at the apical region facing the uterine lumen. In these cells 

invaginations can be seen between the bases of microvilli, often 

having a thickened filamentous lining which may present a special surface 

for protein attachment. The main functions of the rat yolk sac are 

probably to protect the foetus from harmful substances (Wilson et al.,

1959) and in embryotropic nutrition (Beck & Lloyd, 1968). Structurally 

the rat and rabbit yolk sacs are quite similar and there is probably some 

overlap in the pathways by which IgG is acquired in vivo in the prenatal 

period.

The use of the iji vitro incubation system for rat yolk sac has 
now been well documented both for studies of uptake (Williams et al., 
1975ji,l3; Roberts et al., 1977; Moore e_t a_l., 1977, and for studies of 

"exocytosis" (Roberts et al., 1977; Williams & Ibbotson, 1979;

Ibbotson & Williams, 1979). Therefore no detailed description will be 

given at this point. Briefly, in uptake studies yolk sacs are incubated 

for up to 7h in a suitable medium and radiolabelled proteins are allowed 

to be taken up by the tissue. The rates of uptake can then be determined, 

taking into account inter-experimental variables, e.g. radioactive decay, 
size of tissue, substrate concentration. The rate of uptake can be 

expressed as an Endocytic Index (i.e. the volume of culture medium, yl, 

whose contained substrate is ingested per mg yolk-sac protein per hour).

In a variation on the basic method of yolk-sac incubation, a measure

can be made of the amount of substrate released from the tissue intact.
125The tissue is first allowed to take up I-labelled IgG and then during 

a reincubation period substrate release is monitored, and the amount of 

IgG escaping from the tissue intact can be measured. (More detailed 

descriptions of this method and its advantages are given in Chapter 3 .)
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It is vitally important for the interpretation of any results obtained 

with this _in vitro method that the tissue-associated IgG is fully 

internalized by the tissue and is not simply adsorbed to the outer 

yolk-sac membrane. (This question is investigated in detail in 

Chapter 4.) The remaining chapters are concerned with a critical 

examination of the assumptions and predictions of the theories of 

Hemmings, Wild and Brambell outlined in the Table on page 9a.



CHAPTER ONE

MATERIALS AND METHODS
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1.1 Standard method for radioiodinating proteins

125Proteins were labelled with [ I]iodide by using the chloramine-

T method described by Williams et al. (1971) with slight modifications.

Proteins (10 mg) i.e. BSA (preparation 0142t; Koch-Light Laboratories
Ltd., Colnbrook, Bucks., U.K.), or rat gamma globulins (Fraction II;

Code No. 82-504, Miles Laboratories Ltd., Slough, U.K.) or rabbit

gamma globulins (Code No. 82-455) or bovine gamma globulins (Fraction

II; Code No. 82-041) or human gamma globulins (Fraction II; Code No.

83-310) were dissolved in 0.05M-Na2HP0^-KH2P0^ buffer (10ml) at pH 8,
in a sterile 50 ml beaker. After cooling the mixture in an ice-bath

125for 5 min, lmCi of sodium [ I]iodide (Preparation IMS.30, 5mCi in

0.5 ml, Radiochemical Centre, Amersham, Bucks., U.K.) was added using

either a 1 ml disposable syringe or a Hamilton syringe. After stirring

for 5 min, chloramine-T solution (2 ml, 200 pg/ml) was added. The

reaction was allowed to proceed for 8 min, then stopped by adding

sodium metabisulphite solution (2 ml, 200 pg/ml). To aid displacement 
125of unreacted [ I]iodide during the subsequent dialysis, solid Nal 

(50 mg) was added to the reaction mixture. The protein preparation 

was then dialysed for 48h at 4°C in Visking tubing (|") against 

2-3 changes (5 1) of aq. NaCl 1% (w/v), and finally dispensed into 

sterile 10 ml Bijou bottles and stored at -20°C until use.

1.2 Technique for incubating rat visceral yolk sacs in the presence 

of calf serum

The technique used was that of Williams et al. (1975a) with 

slight modifications. Virgin female Wistar rats from an inbred strain 

were put with a stud male animal over night in a grid-bottom cage. 

Mating was assumed to have occurred at midnight if a copulation plug 

was found below the grid next morning. At 17.5 days of gestation, 

rats were killed by cervical dislocation and the uterus was immediately
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removed. The rest of the dissection was carried out in medium 199 

(single strength, preparation TC 20 containing penicillin and strepto­
mycin, Wellcome Reagents Ltd., Beckenham, Kent) containing 10% (v/v) 

calf serum (heat-inactivated, preparation CS07; Wellcome Reagents Ltd., 

Beckenham, Kent) that had previously been gassed with an O 2 /CO2  mixture 

(19/1). Each yolk sac was dissected out by removing the placental cap, 

conceptus and all amniotic tissue. The individual yolk sacs were 

placed in 50 ml Erlenmeyer flasks (previously sterilized by heating 

at 120°C in an air oven for 8-10 h), to which had been added 9.0 ml 

of gassed medium 199 containing 10% (v/v) calf serum. Flasks were 

sealed with sterile silicone rubber bungs and placed in a reciprocating 

water-bath at a temperature of 37°C (± 0.2°C) with the shaking 
attachment set at 100 ± 5 strokes/min and a stroke-length of 3.8 cm.
The yolk sacs were allowed to pre-incubate for 5 min before adding

X23 1251.0 ml of a solution of either a I-labelled protein or I-labelled 

PVP (average molecular weight 30-40 000, preparation IM.33P, 

Radiochemical Centre, Amersham, Bucks., U.K.) dissolved in medium 199 

containing 10% (v/v) calf serum, using either a Finnpipette or a 1 ml 

safety pipette. The final concentration of the radiolabelled substrate 

was 1-3 yg/ml for ^^I-labelled PVP and 0.7-2.0 pg/ml for ^^I-labelled 

proteins. After addition of substrate, each flask was regassed with 

O 2 /CO2  (19/1) for 10 sec before being returned to the water bath.

Yolk sacs were removed at regular intervals up to 6.5 h and, unless 

stated otherwise, washed in 3 changes of 1% (w/v) ice-cold saline 

(approximately 30 ml) and stored in 5 ml volumetric flasks at -20°C 

until assayed.

1.3 Assay of yolk sacs for contained radioactivity

Yolk sacs were thawed and l.OM-NaOH was added to give a final 

volume of 5.0 ml. The volumetric flasks were placed in a shaking
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waterbath at 37°C for approximately lh. After vigorous mixing with a
Vortex mixer they were left in the waterbath for a further 30 min and

then mixed again to ensure complete solution. Two aliquots of each

yolk-sac solution were placed in 3 ml plastic tubes (LP3, Luckham Ltd.,
Burgess Hill, Sussex) and the associated radioactivity was assayed using

a gamma spectrometer (Packard Instrument Ltd., Caversham, Berkshire.)

Tubes were placed in the instrument in a standard geometrical relation

to the crystal detector. An appropriate counting time was chosen
3to ensure a total count in excess of 10 in order to minimize associated 

counting errors.

1.4 Determination of the protein content of yolk sacs

The method employed to determine the protein content of yolk sacs 
was that of Lowry £t al_. (1951) . BSA (Sigma (London) Chemical Co.

Ltd, London S.W.6, Product No. A-4378) was used as reference protein.

The protein content of each yolk sac or yolk-sac piece was determined 

by assaying 0.1 ml aliquots of the yolk-sac solution prepared above.

The protein content of each yolk sac or yolk-sac piece was expressed 

as an equivalent number of mg of BSA.

1.5 Assay of radioactivity in the incubation medium from experiments
125with I-labelled PVP as substrate

Duplicate samples (1.0 ml) of each incubation medium were pipetted 

into 3 ml disposable plastic tubes and their contained radioactivity 

was assayed, using a gamma spectrometer. The mean count, corrected for 

background, was termed the "total radioactivity" in the incubation 

medium.

1.6 Assay of radioactivity in the incubation medium from experiments
125with a I-labelled protein as substrate 

125When a I-labelled protein is used as substrate, hydrolysis 

within the yolk-sac tissue causes the release of radiolabelled degrada­
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tion products back into the incubation medium (Williams et al., 1975b; 

Ibbotson & Williams, 1979; Livesey & Williams, 1979). Hence, to obtain 

a value for the net protein uptake into the tissue, these radioactive 
digestion products of the protein have to be taken into account as 

well as the tissue-associated radioactivity. The quantity of 
radiolabelled protein degradation products released into the medium 

was determined in the following way. First, the "total radioactivity" 

in the medium was measured in the manner outlined in Section 1.5, 

then aq. trichloroacetic acid (0.5 ml; 20% w/v) was added to each 

tube to precipitate the contained protein. After centrifugation 

(2000 g, 20 min) the supernatant was decanted into a new 3 ml plastic 

tube and recounted, using a counting time of suitable duration to 

minimize the associated error. This value, corrected for background, 

was termed the "TCA-soluble activity". A correction had to be applied 

to this quantity to allow for the change in sample volume caused by 

adding aq. trichloroacetic acid. This correction is necessary because 

the amount of radioactivity registered by the crystal detector falls 

as the sample volume increases. Hence the observed count, for a 
sample of volume other than 1.0 ml, was multiplied by an empirical 

correction factor to give that count that would have been observed 

if the contained radioactivity had been assayed in a sample of volume 

1.0 ml. For "TCA-soluble activity" assayed in the above manner the 

appropriate factor was 1.3.

1.7 Technique for incubating rat visceral yolk sacs in serum-free 

medium 199

Yolk sacs were incubated by essentially the same procedure as 

described in Section 1.2, but incorporating minor variations described 

by Ibbotson & Williams (1979). The uterus was removed from rats at 

17.5 days of gestation and put into serum-free medium 199. Care was
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taken to dissect yolk sacs as quickly as possible since tissue survival 
seems to be rather poorer in the absence of calf serum (Ibbotson & 

Williams, 1979). Tissues incubated for 6.5h or longer frequently 
showed anomalous uptake data thus, in most experiments, the maximum 

incubation period was limited to only 5.5h. The methods for assaying 

medium "total radioactivity" and the radioactivity in yolk sacs and 

the protein content of yolk sacs were the same as described in Sections 

1.3 to 1.5, but to obtain values for "TCA-soluble activity", 0.1 ml 

of calf serum had to be added to each tube before addition of trichloro­

acetic acid to ensure a complete precipitation of radioactive proteins. 
After centrifugation each supernatant (approximately 1.3 ml) was 

decanted into a fresh 3 ml tube and counted in the usual manner. The 

appropriate empirical correction factor for the TCA-soluble radioactivity 

was 1.33. Multiplying counts by this factor normalizes the observed 

values of this quantity for altered counting geometry.

1.8 Techniques for incubating rabbit yolk sacs in vitro

Rabbits of a Californian White strain were mated and copulation was 

observed. Animals were killed on the 24th day of gestation by cervical 

dislocation. The uterus was removed quickly and opened. Each yolk 

sac was cut away from the chorioallantic placenta, the conceptus and the 
amnion; the paraplacental chorion was then removed. The dissection 

was performed in warmed medium 199, that had previously been gassed 

with an 0^/C0^ mixture (19/1) and containing either 10% (v/v) calf serum 

or no serum at all. Since rabbit yolk sacs are considerably larger than 

rat yolk sacs, each yolk sac was divided into 3-5 pieces of approximately 

equal size which were then incubated individually in 9.0 ml of either 

gassed medium 199 alone or medium 199 containing 10% (v/v) calf serum, 

depending on the experimental design. The remainder of the procedure was 

either the same as that described for rat yolk sacs (see Section 1.2 to
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1.6) when rabbit yolk sacs were incubated in serum-containing medium 

199, or as described in Section 1.7 for incubations in serum-free 

medium 199.

1.9 Calculation of the Endocytic Index and Tissue-Accumulation Rate 
for a non-digestible substrate

In order to obtain a meaningful plot of uptake against time, it is 

necessary to correct for the variable size of individual yolk sacs and 

the decay of the specific radioactivity of the substrate. This was 
achieved by using the following equation :

M x P

where A = quantity of radioactive substrate accumulated in the 
yolk sac at a given time (pi incubation medium/mg 
tissue protein)

Y = total radioactivity in the whole yolk sac (c.p.m., 
corrected for background)

M = radioactivity /yl of medium (c.p.m., corrected for 
background /y1)

P = protein content of individual yolk sac (mg)

Plotting A against time gives a straight line, the gradient of which has

been termed "Endocytic Index" by Williams et al.(1975a) and which has

the units: yl incubation medium per mg yolk-sac protein/h. It

effectively reports the rate of uptake as the number of microlitres of

medium whose contained substrate is captured by unit weight of tissue

in unit time. For substrates with a very low Endocytic Index M is

effectively constant so that any complications caused by medium depletion
125can be ignored (e.g. for I-labelled PVP, the medium is depleted by 

less than 0.1% per h. Thus, if the substrate concentration in the medium 

at the end of the experiment is used for M in equation 1.1, this will
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introduce only a negligible error.) The advantages of this form of 

expression are as follows :

a) The results for each experiment are normalized for variations in 

tissue size.

b) The results of experiments performed on different days are 

independent of radioactive decay in the substrate and of any drift 

in the efficiency of the gamma counter, provided media and yolk- 

sac counts are determined within a short period of each other.

For a non-degradable substrate the Endocytic Index and Tissue-

Accumulation Rate are identical providing there is a negligible rate

of release of the captured substrate by the tissue. This appears 
125to be true for I-labelled PVP captured by rat yolk sacs incubated 

in medium 199 containing 10% (v/v) calf serum (Williams et al., 1975a).

1.10 Calculation of the Endocytic Index and Tissue-Accumulation Rate 
125for a I-labelled protein 
125Using a I-labelled protein as substrate complicates the calculation 

of the Endocytic Index in two ways:

1) If the protein is digested by the yolk sac and its degradation 

products (i.e. small peptides and amino acids) are released back into 

the incubation medium, this will affect the numerator of equation 1.1.

2) If the protein is rapidly captured, largely by adsorptive 

pinocytosis, its concentration in the medium may become noticeably 

depleted in the course of the 6-7h incubation period. This will mean 
that M in equation 1.1 can no longer be regarded as being effectively 

constant. Hence, to obtain a measure of A', the amount of substrate 

that would have been accumulated in the tissue, had it not been 

degraded, equation 1.1 has to be modified to:



The numerator represents the total radioactivity processed by the yolk 
sac. In addition to Y, the total radioactivity present in the whole 
yolk sac (c.p.m., corr» for background), another term, 10(S-F), 

has to be included to account for the substrate digested by the tissue 

and released back into the 10 ml of incubation medium. S is the 

TCA-soluble radioactivity in the incubation medium at the end of an 
incubation period (c.p.m./ml, corr. for background), and F is the amount 

of TCA-soluble radioactivity generated other than by proteolysis 
associated with the tissue (c.p.m./ml, corr. for background). F 

includes both the TCA-soluble radioactivity initially present in the 

substrate preparation and any TCA-soluble radioactivity generated by 
proteolysis within the medium. In each experiment F is determined by 

incubating 10 ml of medium, containing substrate but no yolk sac, for 

the duration of the experiment. Then R, the fraction of the total 

TCA-soluble radioactivity in this incubation medium is determined.

F is then defined by the equation:

F = Q x R 1.3

where Q is the total radioactivity in each individual incubation medium 

(c.p.m./ml, corr. for background).
Because the rates of pinocytic capture are generally higher for 

125I-labelled proteins (see Chapter 2), M, the concentration of the 
macromolecular form of the substrate in the medium falls with time.

M must therefore be replaced by M the mean value of TCA-insoluble 

radioactivity in the medium during the individual incubation period for 

each yolk sac (c.p.m./ml, corr. for background) which is defined as:
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M' M + -(S-F) 1.4

The value of M' is obtained by adding to the observed value of M, the 
TCA-insoluble radioactivity at the end of an incubation period (c.p.m./ml, 

corr. for background), half the observed increase in the TCA-soluble 

activity/ml of medium at the end of the same incubation period (c.p.m./ml, 

corr. for background).

The gradient of the plot of A' (from equation 1.2) against time is 

the Endocytic Index, and the Tissue-Accumulation Rate is obtained 

from the gradient of the plot of A (from equation 1.1) against time.

1.11 Modification of the calculation of the Endocytic Index of a 

macromolecular substrate to allow for exocytosis
125 198For most substrates, like I-labelled PVP, colloidal[ Aulgold 

and a great number of proteins it has been shown that exocytosis of 

the macromolecular form subsequent to capture occurs at such a low 
rate that it can be neglected. However, the same is not true for 
some IgG species, hence the general uptake equations 1.1 and 1.2 must 

be modified to allow for exocytosis of the macromolecular form of the 

substrate. The gross rate of uptake for a non-digestible substrate 

U, is then defined as:

U Y
M x P + R 1.5

where R is the amount of non-digestible substrate released from the 

tissue during the incubation of the individual yolk sac (yl/mg protein).

For a digestible substrate the corresponding expression for the 

gross rate of uptake, U ’, is :

D , . T + 10 (S-F) + R , 1>6
M ’ x P

where R' is the TCA-insoluble radiotracer released" from the yolk sac
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during its incubation period (yl/mg protein).

In practice it is impossible to determine R and R' accurately and 

hence calculate the true rates of uptake. The values for the observed 
uptake by the tissue, obtained from equation 1.1 and 1.2, will 

necessarily be lower than those obtained by the above equations 1.5 
and 1.6, which gives the true rates of uptake. Nevertheless, for 

most substrates the values of R and R' will be negligible, hence the 

true and the observed values of the Endocytic Index will be indistinguish­

able. But, when a high rate of exocytosis is found, the values 
calculated from the two sets of equations will differ significantly, so 
that equations 1.1 and 1.2 will only give net rates of uptake.

1.12 Exocytosis of radiotracer by the rat and rabbit yolk sac

In studying the release of radiolabelled macromolecules by the 

yolk sac, the original method of calculating release (Williams et al., 

1975a) was modified as described by Ibbotson & Williams (1979) to 

include digestible substrates. The methods used for rat and rabbit 

yolk sacs were virtually identical, but any differences are mentioned 

below.
Three rat yolk sacs of 17.5 days gestational age or three pieces 

of rabbit yolk sac, removed at 24 days of gestation, were incubated

in a sterile 50 ml Erlenmeyer flask by the method described in Section
125 125 1251.7. Radiotracers (I-labelled PVP, I-labelled BSA or I-labelled

IgG) were added at a concentration of 10 yg/ml, each flask was gassed

for 10 sec. with an O 2 /CO2  mixture (19:1) and incubated with the tissue
125for 3h in the case of I-labelled PVP and 2h in the case of proteins.

At the end of the incubation period, the tissue was washed in 3 changes 

of warmed, gassed medium and then individually reincubated in a 50 ml 

Erlenmeyer flask containing 10 ml of fresh, gassed medium. Two aliquots 

(1.0 ml) were taken every 15 min up to 3h and placed in 3 ml disposable
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plastic tubes. The medium removed was replaced by an equal volume

of fresh medium. Flasks were re-gassed at each sampling interval.

At the end of the re-incubation period yolk sacs were removed, washed in
3 changes of ice-cold saline and placed in 5 ml volumetric flasks

and stored at -20°C until assayed by the procedures outlined in Sections
1.2 - 1.4. The medium samples were first assayed for their contained

125total radioactivity and then the amount of digested I-labelled protein 

(TCA-soluble activity) was also determined by adding 0.1 ml of calf 

serum to each tube (to act as carrier protein) and precipitating the 
protein with 0.5 ml of TCA. After centrifuging the tubes (2000g,

20 min) the supernatants were each decanted into fresh tubes and their 

contained radioactivity determined on the gamma spectrometer. The 
observed counts were corrected for counting geometry by multiplying 

by a factor of 1.33 (see Section 1.7). For non-digestible substrates,

the amounts of substrate released during the re-incubation period was 

calculated using the following equation:

Tn 10 C.l (i=n)
i=(n-l)+ 2 l q
i=0

1.7

where T is the amount of total radioactivity (c.p.m., corr. for n
background) released up to the time of the n ^  sampling, and the

content of total radioactivity (c.p.m./ml medium, corr. for background) 
tilin the l sample of medium. T^, the radioactivity released, was 

expressed in 3 ways :

1) as the percentage of the radioactivity initially associated with 

the tissue,

2) as the amount (ng) of substrate released back into the medium from 

unit quantity of yolk-sac tissue. This value, S, is defined by the 

equation:



25.

Tn

where T is the activity associated with 1 yg substrate when assayed 
under standard counting geometry (c.p.m,, corr. for background) and 
P is the protein content of the yolk sac;

3) as a percentage of the total radioactivity released at 180 min.

When a protein is used as substrate, at least two radioactive species are 

released: the digested and the undigested forms of the substrate. The 

amount released of these two species can be determined separately by 

applying the above calculations to each of the two sets of data.

1.13 General treatment of uptake data

Uptake data were calculated using programmes, initially written 

for an ICL 4120 computer and then modified to be run on an ICL 4082 

computer (see Appendix for listing of programme). Plots of uptake 

(yl substrate/mg yolk-sac protein) against time were always found to 

be linear. This enabled them to be analysed by Multiple Regression 
Analysis (using a subroutine provided by the Computer Centre, Keele).

This subroutine also permitted the calculation of correlation coefficients. 

These were used as a crude index of the degree of linearity of uptake 

plots before the plots were subjected to visual inspection to ensure 

that there was no under-lying curvature in the plots. For incubations 
in medium 199 containing 10% (v/v) calf serum, only those results were 

accepted that had a correlation coefficient higher than 0.95, for rat 

yolk sacs and 0.90 for rabbit yolk sacs. In the absence of calf serum 

these values were lowered to 0.90 and 0.85, respectively, since the 
degree of scatter appeared to be significantly greater in the absence of 

calf serum (as reported by Ibbotson & Williams, 1979).
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2.1 INTRODUCTION

The yolk sacs of the rabbit and the rat are probably very specialized 
organs, and an outline of their possible physiological functions was 
given earlier (see General Introduction). The studies in this chapter 

are specifically concerned with the roles of these tissues in the transfer 

of passive immunity from mother to young.

For some time now it has been proposed that homologous IgG is 

transported intact across the yolk-sac membrane of the rabbit (Brambell 

et al., 1949, 1951; Brambell, 1954), but the precise mechanism of this 

process has not yet been firmly established. Since, in the yolk sac 

of the rat, proteins other than immunoglobulins are known to be degraded 

by lysosomal enzymes to the level of low molecular weight peptides and 
amino acids (Williams et al., 1971; Williams et al., 1975b; Livesey,

Ph.D. Thesis, 1979; Moore et_ al., 1977), in any mechanism that is 

advanced it is necessary to explain why homologous IgG is in some way 

exceptional in being protected against the proteolytic action of 

lysosomal enzymes.
Published studies relating to the general fate of IgG in the rabbit 

yolk sac fall into 3 broad categories: in vivo studies, ultrastruetural 

(electron microscopy) studies and in vitro binding studies. In vivo 
studies have prominence chronologically. Brambell & Mills (1947) 

first found evidence that in the rabbit the yolk-sac splanchnopleur 

was involved in antibody transfer. Brambell (1954, 1966 and 1970) 

expanded these findings by in vivo experiments involving ligaturing 

parts of the circulation and injection of antibody into selected maternal 
or foetal compartments; subsequent titrations of antibody in the 

foetuses gave information about the route of transfer of the antibodies.

In other species too, in vivo investigations have established sites of 

transfer, thus cows transport passive immunity to newborn calves via
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the colostrum (Balfour & Comline, 1962; Stanley et al., 1972; Brandon, 
1976); the same route is used between sow and piglet (Payne & Marsh, 

1962; Porter, 1969; Clarke & Hardy, 1971; Burton & Smith, 1977). Other 
species in which transfer has been investigated in vivo are: the horse 

(Jeffcott, 1972), sheep (Halliday, 1976), man (Gitlin et al., 1964), 

rhesus monkey (Bangham, 1960), guinea pig (Hartley, 1951; Dancis & 

Shafran, 1958; Leisring & Anderson, 1961), grey squirrel (Wild, 1971) 

and rat (Brambell & Halliday, 1956). Such studies have been excellently 

reviewed by Brambell (1970). Apart from initially stimulating research, 
in vivo studies also provide the ultimate test system for any theory 

of transfer, because only in vivo is the tissue undisturbed and in its 

natural condition. However, limitations of in vivo studies are also 
obvious. After injecting antibodies into a whole living animal it is 

very difficult to define the actual site of transfer, also the immuno­

globulin molecules can be captured and modified by a variety of tissues 

other than the yolk sac. An attempt to overcome this problem has 

been made by ligaturing certain blood vessels (Brambell, 1954, 1966; 

Hemmings, 1973) but still the system is too complex to make any definite 

statement about the exact site of transfer of maternal antibodies. It 

is even more difficult for the same reason, to investigate the transfer 
mechanism at the cellular level. This has been tried slightly more 

successfully by combining in vivo methods with electron-microscopy. The 

fate of IgG can be followed by conjugating the immunoglobulin molecule 

to either a fluorescent or an electron-dense marker molecule (Wild, 1970; 

Slade, 1970; Hemmings, 1974; Wild et al., 1972; Slade & Wild, 1971).
The conjugate is then injected into animals and after a time interval 

animals are sacrificed and the relevant tissue prepared for electron 

microscopy or autoradiography. By the use of this type of technique 

the presence of IgG conjugates in heterolysosomes and also in coated
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micropinocytic vesicles has been demonstrated (Rodewald, 1973; Moxon

et £l., 1976). Some problems, however, arise from the use of conjugates.

Principally the behaviour of the antibody molecule may be changed
either by conjugating it to another molecule or by its exposure to the

reagents used in the conjugation procedure. This may well alter the

endocytic behaviour of the IgG molecule especially as a number of

commonly used conjugating species are taken up as readily on their own as they ar^

when conjugated to IgG molecules, for example, horseradish peroxidase

and ferritin in the guinea-pig chorioallantoic placenta (King & Enders,

1970, 1971) and in the guinea pig parietal yolk sac (King & Enders, 1972) 
and ferritin in the rabbit yolk-sac splanchnopleur (Slade, 1970)»

Also, it is possible that, in such studies, the fate of the conjugated 

species is followed after the IgG, to which it was originally conjugated, 

has either been degraded or severely modified so that a false impression 

of the fate of IgG is obtained by following such conjugated species.

Likewise, if the unconjugated species is itself transferred intact 
across membranes, as has been reported for ferritin and horseradish 

peroxidase in the suckling rat gut (Orlic & Lev, 1973; Hemmings & williams,

1977), the method will give false impressions of the fate of IgG. Such 

problems can, to a certain extent, be overcome by the use of appropriate 

controls. This still leaves as the main limitation of electron 

microscopy in the context of these studies, the fact that it is essentially 

a static method whereas the cellular processes associated with IgG 

transport are by nature highly dynamic, so that even the application of 

morphometric methods to electron micrographs can give no information 

about rates of transfer.

In order to investigate certain facets of the cellular mechanisms of 

IgG transfer, especially the initial stage of binding of the substrate 

to the yolk-sac endodermal membrane and the presence of specific
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receptors, in vitro binding studies offer certain advantages (Schlamowitz, 

1976; Okafor et al., 1974; Wild & Dawson, 1977; Linden & Roth, 1978). 

These studies include binding of IgG and its fragments to isolated and 
fixed membranes (Sonoda & Schlamowitz, 1972; Tsay & Schlamowitz, 1975; 
Schlamowitz, 1976), binding of substrate to vesicles consisting entirely 
of endodermal membranes (Schlamowitz et al., 1975; Hemnings, 1975a,b;

Schlamowitz, 1979), solubilization of receptors and investigating 

the extent of binding by precipitating a substrate-receptor complex 

(Schlamowitz, 1979) and binding of IgG to formalin-fixed yolk-sac discs 

(Hillman et al., 1977). A related method is the rosetting antibody 

technique, which has been used to determine the presence of specific 

receptors. For example Elson et al. (1975) used this method to find 

Fc receptors on mouse placental and yolk sac cells and Wild & Dawson (1977) 

modified it to investigate the same receptor on rabbit yolk-sac membranes. 

Although these techniques are good for demonstrating the presence of 

specific receptors, they suffer from the same major limitation as 

electron microscopy studies involving the use of conjugates, namely 

they still give only a static picture of a highly dynamic process so can 
provide no information about the fluxes of receptors, membrane and 

substrate in vivo. Information is only given about the presence, 

specificity and distribution of receptors, but even here some doubts 

may be cast on the validity of some studies. In the isolation of 

receptors or membrane fractions, rather severe conditions and chemical 

agents are sometimes used (e.g. Schlamowitz, 1979, used formaldehyde- 

treated tissues), therefore the questions whether the receptors on such 

tissue fragments are still intact and whether their behaviour in vitro 

is representative of that of the tissue in vivo become important issues.

All these considerations make desirable a model system which involves 

living tissue in a viable form, but which avoids the complexity of the 

in vivo situation. Such a system would make it possible to study the
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different fluxes associated with the transfer process. In addition, 

if the various fates of the molecules can be followed, it becomes 

possible to distinguish quantitatively between degradation and transport 

of antibodies (and other molecules). Even in the study of substrate : 
membrane binding, the use of living tissue affords the advantage of 
preserving the integrity of receptors.

An iri vitro tissue incubation system was developed for the rat yolk

sac by Williams et al. (1975a). Using this technique, Williams &
125Ibbotson (1979) found that the fate of homologous I-labelled IgG in

rat yolk sacs differed from that of all other proteins studied in the

system (Williams et al., 1975b; Moore e£ jil., 1977). They produced
125evidence that not all of the I-labelled rat IgG that is endocytosed 

is digested but that some is released again from the rat yolk sac in a 

macromolecular form. In contrast, all other proteins tested in this 

system so far : bovine serum albumin, ribonuclease, calcitonin, insulin, 

orosomucoid and lactate dehydrogenase; (Moore £t al., 1977; Ibbotson & 

Williams, 1979; Livesey & Williams, 1981; Kooistra & Williams, 1981; 

Livesey, Ph.D. Thesis) are not released again from the tissue after 

pinocytic capture but are retained within the tissue until they undergo 

complete degradation within the lysosomal system. These observed 

differences in the fates of proteins are compatible with the postulated 

in vivo role of the rat visceral yolk sac in transfer of passive immunity, 

and hence the in vitro incubation system developed for the rat visceral 

yolk sac lends itself to adaptation for the further study of the mechanism 

of transfer of passive immunity across cells. But, although the visceral 

yolk sac is probably one of the sites where IgG transfer occurs 
prenatally in the rat, immunoglobulin transfer in this species occurs 

mainly postnatally via the neonatal gut (Halliday, 1959, 1955; Rodewald, 

1970; Jones, 1972; Walker ej: al., 1976). In the rabbit, on the other

hand, all transfer of passive immunity occurs prenatally and the yolk-sac
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splanchnopleur is the major, if not the only, site of transfer. For 

this reason, the rabbit yolk sac should be a better model system to 

work with, if a suitable technique for its rn vitro incubation can be 

developed. Therefore, one of the main questions raised in the studies 
reported in this chapter was whether the same method as used for incubating 

rat yolk sacs can also be used for rabbit yolk sacs.

Whether or not an incubation method is successful can be judged by 

one or more of the following criteria:

1) Examining the ultrastructure of the tissue should determine whether 
integrity is retained rn vitro. This can be evaluated by comparing 

electron micrographs of freshly excised tissues with those from tissues 

that have been subjected to the incubation procedure for differing 
periods of time (Williams et al., 1975a). However, a limitation of 
such studies is that only structural and not functional changes can be 

observed.

2) Biochemical measurement can give information on the rate of leakage 

of a cytosol enzyme (e.g. lactate dehydrogenase) or of a lysosomal 

enzyme (e.g. acid phosphatase) from the tissue (Livesey et al., 1980).

In a healthy intact tissue, leakage should occur at only low rates and 

an increasing rate of leakage with increasing incubation time in vitro 

would suggest progressive deterioration of the tissue.

3) In addition, for an endocytic tissue like the yolk sac, information about

the functional integrity of the tissue can be gained by looking at the
. . 125pattern of uptake of a non-digestibie compound (e.g. I-labelled PVP or 

colloidal r^AuJgold). The finding that the uptake of such molecules is 

linear as well as reproducible would be compatible with the survival and 

continued function of an endocytic tissue in vitro. Conversely, a levelling 

off of uptake with tiine of a lack of reproducibility in thè uptake of a non 

digestible marker would suggest an impaired pinocytic behaviour of the tissue.
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Williams £t al. (1975a_) used reproducibility and linearity of the uptake 
125of I-labelled PVP as criteria to test the structural and functional

integrity of the rat yolk sac in vitroo In that system, linearity of

uptake of the radioactive marker was demonstrated for at least 18h

in rat yolk sac incubations in medium containing 10% (v/v) calf serum.

Should initial investigations also establish linearity and reproducibility 
125of uptake of I-labelled PVP by the rabbit yolk sac too, then such 

incubations could also serve as a useful routine criterion of success 

of incubations in subsequent experiments.

Similarly, as well as investigating the endocytic capacity, the 

proteolytic capacity of the tissue can be checked by measuring the

rates of uptake and of degradation of a representative non-transferred
. 125 125protein like I-labelled BSA or formaldehyde treated I-labelled

BSA.

4) Another measure for the integrity of the tissue is the rate of
125leakage of a non-digestible compound (e.g. I-PVP), accumulated in

the vacuolar system. In studies of this type yolk sacs are allowed to

take up a substrate and are then thoroughly washed to remove surface-

associated activity before re-incubation in fresh substrate-free medium. 
125I-labelled PVP with a molecular weight of 30 000 - 40 000 should 

remain within the lysosomal system if the yolk-sac tissue remains intact 

in vitro.

Using I-labelled albumin instead of I-PVP in such reincubation 

studies should add further information about the proteolytic capacity 

of the yolk sac. Homologous IgG, unlike albumin has been reported 
to be transported across the rabbit yolk sac intact (Brambell, 1954) 

and therefore an investigation of the release of this substrate from 

the rabbit yolk sac in vitro would be of greatest interest. The most 

important question is whether in in vitro uptake and release experiments
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with the rabbit yolk sac, homologous I-labelled IgG is treated
atypically compared with other proteins, as is found to be the case in
the rat system (Williams & Ibbotson, 1979).

Initially, in vitro incubation conditions always included 10%

(v/v) calf serum in the medium, as in the original method of Williams
et̂  cil. (1975a). However, if the presence of calf serum is not essential

to tissue survival, its presence is a hindrance rather than a help

when investigating in detail the pinocytic uptake of proteins (Ibbotson

& Williams, 1979). For example, when investigating the uptake of 
125I-labelled IgG in the in vitro system, the unlabelled immunoglobulins 

present in the calf serum are likely to compete with the labelled substrate 

for possible binding sites and thus complicate the interpretation of 

data. Since Ibbotson & Williams, (1979) showed that the absence of 

calf serum did not abolish endocytic behaviour in the rat yolk sac, it 

was likewise important to establish whether the same held for the rabbit 

yolk sac. Accordingly, all uptake studies were conducted both in the 
presence and in the absence of calf serum.

In summary, the experiments reported in this chapter aimed to 

answer the following questions:

1) Can a viable in vitro incubation system be established for rabbit

yolk sacs, comparable to that already established for rat yolk
125sacs? (This is tested by investigating the uptake of I-labelled 

PVP.)

2) What is the fate of a representative, non-transportable protein
125(formaldehyde-treated I-labelled BSA) after uptake by the rabbit

yolk sac?

1253) Is homologous I-labelled IgG treated in the rabbit yolk sac in

a manner different to that of other proteins, as is the case in the 

rat yolk sac?

125
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1254) Does the pattern of release of I-labelled BSA differ from that of 
125I-labelled rabbit IgG, in rabbit yolk sacs? (In particular, do 

the quantities of acid-insoluble radioactivity released during 
reincubation experiments differ markedly?)

5) Is it possible to successfully incubate rabbit yolk sacs in serum- 

free medium as well as in serum-containing media?



CHAPTER TWO

Endocytic Behaviour of Rat and Rabbit Yolk Sacs

Incubated In Vitro
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2.2 METHODS

2.2.1 General comments

All the methods used are described in the general section on Materials 
and Methods (Chapter 1). However, some slight differences in the 

methods of incubating rat and rabbit yolk sacs are mentioned here. As 

the rabbit yolk sac is much larger than that of the rat, considerably 

more medium is needed for the dissection if the yolk sacs are to be 

completely immersed in medium at all stages. It is also an advantage 
to wash the yolk sacs thoroughly in medium before incubation, as very 

often large amounts of brownish, amorphous material are associated with 

the outer face of the yolk-sac membrane. The paraplacental chorion 
has to be cut away carefully, and it helps to do this under good 

illumination against a dark surface, as this tissue is more translucent 

than the yolk sac. Rabbit yolk sacs were always divided into 4-5 

pieces of approximately equal size, each with a similar protein content 

to that of a typical whole rat yolk sac (i.e. approximately 5-7 mg 

equivalent of BSA).

1252.2.2 Uptake of I-labelled PVP in the presence and absence of 

calf serum in the rat and rabbit yolk sac

125I-Labelled PVP was used as substrate at a concentration of 

l-2yg/ml, and 17.5-day rat yolk sacs or 24-day rabbit yolk-sac pieces 

were incubated as described in Sections 1,2, 1.7 and 1.8. Tissue 

incubations were terminated at regular intervals up to 6.5h in the 

case of rat yolk sacs and up to 5.5h in the case of rabbit yolk sacs.
Assays of the amount of radioactivity contained in the medium and in 

the yolk sacs were performed as previously described (see Sections 1.3 

to 1.5 for details). Uptake of substrate was plotted against time 

for each set of data and the Endocytic Index derived (see Section 1.9
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for details of calculations).

125,2.2.3 Uptake of I-labelled BSA in the presence and absence of 
calf serum in the rat and rabbit yolk sac

17.5-Day rat yolk sacs or 24-day rabbit yolk-sac pieces were

incubated in medium 199 alone or medium 199 plus 10% (v/v) calf serum,
125with I-labelled BSA as substrate at a concentration of 2 pg/ml.

125Two different batches of I-labelled BSA were used, one of which was 

treated with 10% (w/v) formaldehyde for 24h, instead of the usual 

60-72h (Moore et al_., 1977). Maximum times of incubation were 6.5h 

and 5.5h for rat and rabbit yolk sacs, respectively. The amount of 

radioactivity contained in the incubation medium, the amount of radio­

activity associated with the yolk sac and the protein content of the 
yolk sac were each determined as previously described (see Sections 1.3,

1.4 and 1.6). Protein uptake was plotted against time and the Endocytic 

Index and Tissue-Accumulation Rate calculated (see Section 1.10 for 

details).
1252.2.4 Uptake of homologous I-labelled IgG in the presence and 

absence of calf serum in rat and rabbit yolk sacs

125Homologous I-labelled IgG was used as substrate following the 

same regime as above (2.2.3).
1252.2.5 Exocytosis of I-labelled BSA by rat and rabbit yolk sacs 

reincubated in serum free medium 199

The method is described in full in Section 1.12. Following a
1252h incubation period in medium 199 containing I-labelled BSA at 

a concentration of 10 pg/ml, 17.5-day rat yolk sacs or 24-day rabbit 

yolk-sac pieces were rinsed in warm, substrate-free medium 199 and 

then reincubated in fresh medium 199 (10.0 ml). Samples of medium 

were removed at 15 min intervals up to 3h and replaced by an equal
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volume of fresh substrate-free medium. The total amount of radio­

activity released and the TCA-soluble radioactivity released were 
determined. From these data, the amount of substrate released was 
calculated (see Section 1.12 for details of calculation).

1252.2.6 Exocytosis of homologous I-labelled IgG from rat and rabbit 

yolk sacs reincubated in serum-free medium 199.

125Homologous I-labelled IgG was used as substrate and the above 

method was followed (2.2.5). Some incubations were performed in 

the presence of calf serum.
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2.3 RESULTS

2.3.1 Endocytic Indices of I-labelled PVP for rat arid rabbit yolk 

sacs incubated in the presence and in the absence of calf serum

As can be seen from Tables 2.1 and 2.2 and Figures 2.1 and 2.2,
125uptake of I-labelled PVP is highly linear and reproducible in both 

the rat and the rabbit yolk sac. For rat yolk sacs incubated in 

medium 199 containing 10% (v/v) calf serum, the E.I. values are 

virtually the same as those previously reported (Williams et al.,

1975ji; Roberts et_ aul., 1977) and the values of the E.I. for rat yolk 

sacs incubated in medium 199 alone are the same as reported by Ibbotson 

& Williams (1979). Furthermore, in the presence of 10% (v/v) calf 
serum, E.I. values for rat and rabbit yolk sacs are of similar magnitude 
Incubating the yolk sacs in serum-free medium 199, however, makes the 

E.I. in the rat yolk sac increase 1.7-fold, as previously observed 

(Ibbotson & Williams, 1979), but in the rabbit yolk sac the increase 
is significantly greater (7-fold). It appears that in the first 3 

incubations reported in Table 2.2, which also come first chronologically 

the correlation coefficients as well as E.I. values are notice­

ably lower. This can be accounted for in terms of an initial failure 

either to dissect the yolk sacs out cleanly or quickly enough. 

Contamination of yolk sacs with paraplacental chorion and amnion will 

tend to lower the E.I., as can be seen from Table 2.2.c. The data in 

this table show that for incubations of amnion and paraplacental chorion 

uptake with time is very low and also not very linear. Similarly, 
prolonged dissection times will expose the tissue to stagnant medium 
and may cause the oxygen tension to fall to a level which leads to 

irreversible damage of the tissue. The adverse effects of prolonged 

dissection times have been observed in the dissection of rat yolk sacs 

(Williams, unpublished data).

125
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2.3.2 Endocytic Indices and Tissue-Accumulation Rates of I-
125labelled BSA and____I-labelled IgG ingested in medium 199

in the presence and in the absence of calf serum
125Since the two batches of I-labelled BSA used showed virtually

the same endocytic behaviour in the rabbit tissue (Tables 2.4.band

2.4.c) results gathered using these two batches of protein will be

discussed together. The E.I. values of these preparations in the rat

yolk-sac system are within the range of those previously quoted in the

literature (Moore £t a U , 1977; Ibbotson & Williams, 1979). The E.I.

values for I-labelled albumin in the rat and rabbit yolk sacs are,

however, very different, being much higher in the rat (Table 2.3) than

in the rabbit (Table 2.4). Looking at the equivalent data obtained
from rat and rabbit yolk sacs incubated in serum-free medium containing

125formaldehyde-treated I-labelled BSA (Tables 2.3 and 2.4), a large

(3-5 fold) rise in the E.I. can be observed for both tissues. Tissue

Accumulation Rates were higher in the rat yolk sac and slightly lower
in the rabbit yolk sac, compared with corresponding incubations in

serum-containing medium. In the summary table (Table 2.7) tissue-

accumulation is expressed as a ratio (T.A.R./E.I.) to give some information

about the rate of accumulation of substrate relative to the rate of
uptake. This table shows that in serum-free medium, tissue-accumulation

is relatively lower than in serum-containing medium.
125With homologous I-labelled IgG as substrate, (Tables 2.5 and

2.6) the absence of calf serum makes the value of the E.I. increase in

rat and rabbit tissues by 5-9 fold. The Tissue-Accumulation Rate
(T.A.R.) increases to a comparable extent. The main difference between

these two protein substrates lies in the values for the T.A.R. (which is

defined as pi substrate accumulated within each mg yolk-sac tissue/h).
125Whereas the rate of tissue accumulation is relatively low for I-

125
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labelled BSA in all incubations, it is high for homologous I-labelled
125IgG. However, for the homologous I-labelled IgG there is a definite

species difference, with tissue-accumulation accounting for a higher
percentage of the total uptake in the rabbit compared with the rat.

This is clearly seen on examining the data in the summary table (Table 2.7)

which shows this effect by way of the ratio of T.A.R. to E.I. This
125ratio is generally higher for homologous I-labelled IgG than for 

125I-labelled BSA. The exception is the rabbit yolk-sac incubation with 
125I-BSA in serum-containing medium 199; here the ratio T.A.R./E.I. is 

high, but this can be explained in terms of both T.A.R. and E.I. being 

very low in absolute terms.
1252.3.3 Release patterns of I-labelled PVP, formaldehyde-treated

125 125I-labelled BSA and homologous I-labelled IgG from rat

and rabbit yolk sacs that had previously been incubated in the

presence of these markers
125In the rat and the rabbit yolk sac, I-labelled PVP is hardly

released from the tissue following incubation with this marker molecule.

Expressed as a percentage, the extent of release (over the re-incubation
125period) of the total I-labelled PVP-derived radioactivity associated

with the yolk-sac tissue, was 7% for the rat yolk sac and 2.3% for the

rabbit yolk sac (see Figures 2.8 and 2.9 for details) •
125The difference in the behaviour of I-labelled albumin and 

125I-labelled homologous IgG, that was apparent from the different 

trends in the T.A.R.s in uptake experiments, becomes even more marked on 

examining the results of exocytosis experiments. In the rat tissue and 

with I-labelled BSA as substrate, the majority (approx. 85%) of the 

radioactivity that becomes associated with the tissue is released as 

TCA-solubles (a finding that is compatible with this protein undergoing 

complete degradation in the lysosomal system after pinocytic capture).

125
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In rabbit tissue and with I-labelled BSA as substrate, the amount 

of the total radioactivity associated with the yolk-sac tissue that 
is released as TCA-solubles is slightly lower (approx. 65%).
However, when looking at the total quantity of substrate-derived 
radioactivity that is released, release from the rabbit yolk sac 

(82.5 ng/mg tissue protein) amounts to only approximately 15% of 

that released from the rat yolk sac in equivalent experiments (522.5

ng/mg tissue protein) (Figures 2.3 and 2.4).
125With I-labelled homologous IgG as substrate, a far higher 

amount of the substrate is released from rat and rabbit yolk sacs in a 

TCA-insoluble from (Figures 2.5, 2.6 and 2.7). This value is higher 

for the rabbit yolk sac (58% released) than for the rat yolk sac (35% 

of the total released). A summary table, comparing the ratios of 

TCA-insoluble over total release is given for the two tissues and 

substrates used (see Table 2.8 ).



Table 2.1 Endocytic Indices of I-labelled PVP ingested by 17.5-day 
rat yolk sacs incubated in medium 199 in either the presence or the 
absence of calf serum

125Rat yolk sacs (17.5-day) were incubated for up to 6.5h with I- 
labelled PVP (2 yg/ml of medium) either in medium 199 alone or in 
medium 199 containing 10% (v/v) calf serum, by using the method 
described in Section 1.5.

125

a) Experiments in medium 199 containing calf serum (10%, v/v)

No. of Endocytic Index Correlation Intercept
Yolk sacs (yl/mg protein Coefficient (yl/mg protein)

per h)

12 1.55 0.966 1.36
12 1.96 0.998 -0.11
12 1.86 0.972 1.15
11 1.94 0.996 -0.27
8 1.38 0.970 1.85
10 1.86 0.982 -0.04
10 1.30 0.971 1.43

(± S.D.) : VALUES v 1.69 ± 0.28 0.84 ± 0.79

Experiments in serum-free medium 199

No. of Endocytic Index Correlation Intercept
Yolk sacs (yl/mg protein Coefficient (yl/mg protein)

per h)

5 2.80 0.903 5.95
7 2.36 0.992 0.90
8 2.91 0.899 0.57
10 2.96 0.954 -0.67

MEAN C+ S D )• VALUES U 2.76 ± 0.27 1.69 ± 2.92



. . 125Table 2.2 Endocytic Indices of I-labelled PVP ingested by 
24-day rabbit yolk-sac pieces incubated in medium 199 in either the 
presence or the absence of calf serum.

Rabbit yolk-sac pieces (24-day) were incubated for up to 5.5h in 
the presence of 125i_iaben ecj PVP (2 yg/ml of medium) either in medium 
199 alone or in medium 199 containing 10% (v/v) calf serum by using 
the method described in Section 1.8.

i Experiments in medium 199 containing calf serum (10%, v/v)
No. of Endocytic Index Correlation Intercept
Yolk-sac (yl/mg protein Coefficient (yl/mg protein)
pieces per h)

9 0.82 0.810 1.63
10 0.93 0.958 1.16
10 0.72 0.819 2.57
10 1.91 0.956 -0.07
9 1.43 0.921 1.62
10 1.73 0.919 1.28
8 1.83 0.981 0.48
10 1.47 0.916 3.12

mean . }.
VALUES ( - ' •''' 1.55 ± 0.36 1.27 ± 1.09

Experiments in serum-free medium 199

No. of Endocytic Index Correlation Intercept
Yolk-sac (yl/mg protein Coefficient (yl/mg protein)
pieces per h)

9 13.18 0.971 -0.57
9 9.80 0.934 2.75
10 6.93 0.764 5.07
8 6.60 0.940 -1.19
9 13.24 0.871 -0.46

mean (
VALUES (± 9.95 ± 3.22 1.12 ± 2.69

Experiments using amnion pieces :in medium 199 containing calf
serum (10%, v/v)

No. of Endocytic Index Correlation Intercept
amnion (yl/mg protein Coefficient (yl/mg protein)
pieces per h)

9 0.38 0.31 8.17



125Table 2.3 Endocytic Indices of formaldehyde-denatured I-labelled BSA ingested by 17.5-day rat yolk sacs 
incubated in medium 199 in either the presence or the absence of calf serum (10%, v/v)

a) Experiments in medium 199 containing calf serum (10%, v/v)
125Rat yolk sacs (17.5-day) were incubated with I-labelled BSA (2 yg/ml of medium; Batch 1) as substrate. 

Samples were removed at intervals up to 6.5h. The values of both the Endocytic Index and the Tissue- 
Accumulation Rate were calculated (see Section 1.10).

TCA-solubles 
the preparation

No. of 
yolk sacs

Endocytic Index 
(yl/mg protein per h)

Correlation
Coefficient

Tissue-Accumulation
Rate

(yl/mg protein per h)
Correlation
Coefficient

1.89 10 52.79 0.992 5.74 0.881
1.89 9 50.89 0.976 4.90 0.816
2.55 10 98.69 0.994 6.27 0.867
2.55 9 104.90 0.983 7.31 0.840

MEAN VALUES (± S.D.): 76.8 ± 29.0 6.1 ± 1.0

b) Experiments in serum-free medium 199

The data quoted are taken from Ibbotson & Williams (1979, Figure 2) and represent the mean values (± S.D.) from 
9 individual experiments with 4 batches of 125i-iabelled formaldehyde-denatured BSA. 17.5-Day rat yolk sacs were 
incubated in serum-free medium 199 with formaldehyde-denatured 125i-iabelled BSA (0.6 - 1.5 yg/ml medium) as substrate. 
Samples of medium were removed at intervals up to 5.5h.

Mean Endocytic Index Correlation Tissue-Accumulation
(yl/mg protein per h) Coefficient Rate (yl/mg protein per h)

251 + 84 0.940 - 0.987 approx. 12



In the following tables (Tables 2.4, 2.5 and 2.6) the full details

of individual experiments are reported, but to conserve space the 

column headings have been abbreviated according to the scheme below:-

1 2 3T C A -s o lu b le s  i n  the 1 2 5 i- la b e l le d  p r o t e in  p r e p a r a tio n  on the day o f  use
(%)

No. of yolk-sac 
pieces used in 
the individual 
experiment

Endocytic Index

(yl/mg of yolk-sac 
protein per h)

4
Correlation Coefficient 
of the plot uptake 
against time used 
to determine the 
Endocytic Index

5_
Tissue-Accumulation

Rate

(yl/mg of yolk-sac 
protein per h)

6
Correlation Coefficient 
of the plot of tissue 
levels against time 
used to determine the 
Tissue-Accumulation 
Rate

The main findings reported in the above tables are summarized in 
Table 2.7 to permit ready comparison of data.



Table 2.4 Endocytic Indices of untreated and formaldehyde-treated I- 
labelled albumin ingested by 24-day rabbit yolk-sac pieces incubated in 
the presence or absence of calf serum

a) Experiments in medium 199 containing calf serum (10%, v/v)
Rabbit yolk-sac pieces (24-day) were incubated with formaldehyde- 

treated 125i-labelled albumin (2 pg/ml of medium; Batch 2) in medium 
199 containing 10% (v/v) calf serum. Samples of medium were taken at 
intervals up to 5.5h and Endocytic Indices (column 3) and Tissue- 
Accumulation Rates (column 5) were calculated as outlined in Section 
1 . 10.

125

1 2 3 4 _5 6

1.37 7 3.62 0.711 1.51 0.888
1.37 8 2.51 0.894 1.29 0.909
MEAN
VALUES5 3.07 1.40

b) Experiments in serum-free medium
125i) Rabbit yolk-sac pieces (24-day) were incubated with I-labelled 

albumin (2 pg/ml of medium; Batch 3) as substrate in medium 199 alone, as 
described above (2.4.a)

1 2 3 4 5 6“ ■
1.26 8 9.32 0.778 0.44 0.437
1.26 8 5.95 0.784 0.06 0.054
3.61 9 7.31 0.875 1.05 0.807
3.61
MEAN
VALUES

9
(± S.D.):

7.77

7.59 ± 1.39

0.885 0.07

0.41 ± 0.46

0.058

ii) Rabbit yolk-sac pieces (24-day) were incubated with formaldehyde- 
treated 125i-iabelled albumin (2 pg/ml of medium; Batch 2) as substrate 
in medium 199 alone, as described above (2.4.a)

1 2 2

0.81 9 11.12
1.22 9 9.99
1.22 9 12.99
1.22 9 10.73
MEAN
VALUES (± S.D.): 11.21 ± 1.28

4 5 6—"
0.856 0.11 0.092
0.869 0.76 0.426
0.943 1.83 0.711
0.955 0.89

0.90 ± 0.71

0.712



Table 2.5 Endocytic Indices and Tissue-Accumulation Rates of I- 
labelled rat IgG ingested by 17.5-day rat yolk sacs incubated in medium 
199 in the presence and absence of calf serum

125

a) Experiments in medium containing 10% (v/v) calf serum
Rat yolk sacs (17,,5-day)were incubated with 125I-labelled rat IgG

(2 pg/ml of medium) in medium 199 containing 10% (v/v) calf serum.
Samples of medium were removed at intervals up to 6.5h and Endocytic
Indices (column 3) and Tissue-Accumulation Rates (column 5) were
calculated as described in Section 1.10.

1 2 2 4 2 2
2.30 9 12.69 0.977 2.21 0.730
2.71 10 13.99 0.994 2.95 0.933
2.77 10 16.35 0.959 3.33 0.923
2.76 10 9.09 0.971 1.82 0.963
1.68 10 12.78 0.937 0.95 0.578
1.61 7 11.98 0.987 2.24 0.995
2.11 9 11.80 0.973 1.96 0.925
1.54 10 10.09 0.972 2.45 0.898
1.54 9 10.27 0.972 2.21 0.896
MEAN
VALUES (± S.D) : 12.12 ± 2.21 2.29 ± 0.68

b) Experiments in serum-free medium

Rat yolk sacs (17.5-day) were incubated with 125I-labelled rat IgG
(2 yg/ml of medium) in serum-free medium 199. Samples were removed at
intervals up to 5.5h and the Endocytic Indices (column 3) and Tissue-
Accumulation Rates (column 5) were calculated as described in Section 1

1 2 2 2 5 6
2.32 10 76.15 0.910 3.35 0.322
2.11 7 76.00 0.910 11.49 0.776
2.11 8 80.76 0.939 14.68 0.954
4.76 8 66.63 0.956 11.51 0.761
3.68 9 84.74 0.953 12.79 0.875
3.07 10 52.01 0.938 8.04 0.874
4.41 8 53.91 0.901 11.24 0.784
3.67 9 98.77 0.950 14.05 0.909
3.15 9 45.21 0.893 6.84 0.676
2.30 10 43.45 0.933 6.81 0.708
MEAN
VALUES (± S.D.): 66.86 ± 17.03 10.08 ± 3.66



. . . 125Table 2.6 Endocytic Indices and Tissue-Accumulation Rates of I -
labelled rabbit IgG ingested by 24-day rabbit yolk-sac pieces incubated 
in medium 199 in the presence and absence of calf serum
a) Experiments in medium 199 containing calf serum (10%, v/v)

125Rabbit yolk-sac pieces (24-day) were incubated with I-labelled 
rabbit IgG (2 pg/ml of medium) in medium 199 containing 10% (v/v) calf 
serum. Samples of medium were removed at intervals up to 5.5h and 
Endocytic Indices (column 3) and Tissue-Accumulation Rates (column 5) 
were calculated as described in Section 1.10.

1 2 3 4 5 6

2.16 8 2.15 0.809 1.68 0.806
2.09 7 3.57 0.745 1.48 0.854
2.70 10 4.05 0.933 1.51 0.693
2.52 9 4.92 0.478 2.42 0.441
MEAN
VALUES (± S.D.): 3.67 ± 1.16 1.77 ± 0.44

b) Experiments in serum-free medium
Rabbit yolk-sac pieces (24-day) were incubated with 125I-labelled

rabbit IgG (2 yg/ml of medium) in medium 199 alone. Samples were
removed at intervals up to 5.5h and Endocytic Indices (column 3) and
Tissue-Accumulation Rates (column 5) were calculated as described in
Section 1.10.

1 2 3 4 5 6— ““
2.60 9 35.79 0.947 22.60 0.851
2.72 8 34.97 0.852 13.01 0.717
2.34 9 20.90 0.916 10.27 0.706
3.29 9 38.19 0.943 17.22 0.859
3.29 9 31.83 0.823 14.89 0.638
3.15 10 37.98 0.847 15.89 0.741
3.15 9 44.42 0.725 13.72 0.415
MEAN
VALUES (± S.D.): 34.87 ± 7.27 15.37 ± 4.25



Table 2.7 Summary of Endocytic Indices and Tissue-Accumulation Rates 
of 125l-labelled substrates ingested by rat and rabbit yolk-sac tissue
i) Rat yolk sacs:

Labelled Calf Mean Endocytic Mean Tissue- T.A.R. x 100
Substrate Serum Index ± S.D. Accumulation E.I.

(yl/mg protein per h) Rate ± S.D. 
(yl/mg protein)

(%)

PVP + 1.69 ± 0.28 - -
PVP - 2.76 ± 0.27 - -

fd-BSA 
(Batch 1) + 76.82 ± 28.96 6.05 ± 1.01 7.88

fd-BSA 
(Batch Ibb4) - 381.5 M.2 3

Rat IgG + 12.12 ± 2.21 2.29 ± 0.68 18.89

Rat IgG - 66.86 ± 17.03 10.08 ± 3.66 15.08

ii) Rabbit yolk-sac pieces:

Labelled
Substrate

Calf 
Se rimi

Mean Endocytic 
Index ± S.Do 

(yl/mg protein per h)

Mean Tissue- 
Accumulation 
Rate ± S.D. 
(yl/mg protein)

T.A.R. x 100 
E.I 

(%)

PVP + 1.55 ± 0.36 - -

PVP - 9.95 ± 3.22 - -

fd-BSA 
(Batch 2) + 3.07 1.40 45.60

fd-BSA 
(Batch 2) 11.21 ± 1.28 0.90 ± 0.71 8.03

BSA
(Batch 3) - 7.59 ± 1.39 0.41 ± 0.46 5.27

Rabbit IgG + 3.67 ± 1.16 1.77 ± 0.44 48.23
Rabbit IgG — 34.87 ± 7.27 15.37 ± 4.25 44.08

12*I-labelled BSA (Batches 1, 2 and Ibb4) were formaldehyde-denatured and

•^i-labelled BSA (Batch 3) was untreated.
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F i g u r e  2 . 1  R e p r e s e n t a t i v e  u p t a k e  p l o t s  o f  ^ I - l a b e l l e d  

P V P  i n  r a t  v o l k - s a c s  i n c u b a t e d  i n  t h e  p r e s e n c e  a n d  a h s s n n s  

o f  c a l f  s e r u m

U p t a k e  o f  d a t a  w a s  p l o t t e d  a g a i n s t  t i m e  f o r  1 7 . 5 - d a y  r a t  

y o l k  s a c s  i n c u b a t e d  i n  s e r u m - f r e e  m e d i u m  1 9 9  c o n t a i n i n g

1 2 5 I - l a b e l l e d  P V P  (------ o -------- )  o r  i n c u b a t e d  i n  m e d i u m  1 9 9

c o n t a i n i n g  c a l f  s e r u m  ( 1 0 % , v / v )  a n d  ^ ^ I - l a b e l l e d  P V P

(-----B ------ ) .



o

125
F i g u r e  2 . 2  R e p r e s e n t a t i v e  u p t a k e  p l o t s  o f  ^ I - l a b e l l e d  P V P  

i n  r a b b i t  y o l k  s a c s  i n c u b a t e d  i n  t h e  p r e s e n c e  a n d  a b s e n c e ,  

o f  c a l f  s e r u m

U p t a k e  o f  d a t a  w a s  p l o t t e d  a g a i n s t  t i m e  f o r  2 4 - d a y  r a b b i t

y o l k  s a c  t i s s u e  i n c u b a t e d  i n  s e r u m - f r e e  m e d i u m  1 9 9  c o n t a i -
u 'IPS
n i n g  ^ I - l a b e l l e d  P V P  (— O — )  o r  i n c u b a t e d  i n  m e d i u m  1 9 9  

c o n t a i n i n g  c a l f  s e r u m  ( 1 0 # , v / v )  a n d  ^ ^ I - l a b e l l e d  P V P  (— + — ) .



f i g u r e  2 . 3  T i m e  c o u r s e  o f  r e l e a s e  o f  r a d i o a c t i v e  s p e c i e s  

d e r i v e d  f r o m  f o r m a l d e h y d e - t r e a t e d  1 2 ^ I - l a b e l l e d  B S A  f o l l o w i n g  

i n c u b a t i o n  o f  r a t  y o l k - s a c s  w i t h  s u b s t r a t e  i n  s e r u m - f r e e  

m e d i u m  1 9 9

1 7 • 5 - d a y  r a t  y o l k - s a c s  w e r e  f i r s t  i n c u b a t e d  f o r  2 h  i n  s e r u m -  

f r e e  m e d i u m  1 9 9  i n  t h e  p r e s e n c e  o f  f o r m a l d e h y d e - t r e a t e d  

^ ^ I - l a b e l l e d  B S A  ( I 0 g g / m l ) .  F o l l o w i n g  w a s h i n g  t h e y  w e r e  

r e i n c u b a t e d  i n  f r e s h  m e d i u m  a n d  r e l e a s e  o f  r a d i o a c t i v i t y  

w a s  m o n i t o r e d  u p  t o  3 h  ( s e e  S e c t i o n  1 . 1 2  f o r  d e t a i l s ) .  T h e  

t o t a l  a m o u n t  o f  s u b s t r a t e  a s s o c i a t e d  w i t h  t h e  y o l k - s a c  a t  

t h e  b e g i n n i n g  o f  r e i n c u b a t i o n  w a s  5 8 0  n g / m g  y o l k - s a c  t i s s u e .  

T o t a l  r a d i o a c t i v i t y  r e l e a s e d  — A —  .

T C A - s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d — « — :

T C A - i n s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  — O —  •

T h e  v a l u e s  s h o w n  a r e  m e a n s  ( ± S . D . )  f r o m  5  s e p a r a t e  e x p e r i ­

m e n t s  p e r f o r m e d  w i t h  t h e  s a m e  b a t c h  o f  f o r m a l d e h y d e - t r e a t e d '  

^ ^ I - l a b e l l e d  a l b u m i n  u s e d  i n  t h e  e x p e r i m e n t s  r e p o r t e d  i n  

T a b l e  2 . 3 . Cl ,
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F i g u r e  2 . 4 -  T i m e  c o u r s e  o f  r e l e a s e  o f  r a d i o a c t i v e  s p e c i e s

1 2 5d e r i v e d  f r o m  f o r m a l d e h v d e - t r e a t e d ____^ I - l a b e l l e d  B S A .

f o l l o w i n g  i n c u b a t i o n  o f  r a b b i t  y o l k - s a c s  w i t h  s u b s t r a t e  

i n  s e r u m - f r e e  m e d i u m  1 9 9

2 4 - d a y  r a b b i t  y o l k - s a c  p i e c e s  w e r e  f i r s t  i n c u b a t e d  f o r  2 h

i n  s e r u m - f r e e  m e d i u m  199  i n  t h e  p r e s e n c e  o f  f o r m a l d e h y d e -

treated yI-labelled BSA (10jjg/ml). Following washing
t h e y  w e r e  r e i n c u b a t e d  i n  f r e s h  m e d i u m ,  a n d  r e l e a s e  o f

radioactivity was monitored up to 3h (see Section 1.12 for
d e t a i l s ) .  T h e  t o t a l  a m o u n t  o f  s u b s t r a t e  a s s o c i a t e d  w i t h

t h e  y o l k - s a c  a t  t h e  b e g i n n i n g  o f  r e i n c u b a t i o n  w a s  1 0 2  n g /

m g  y o l k - s a c  t i s s u e .

T o t a l  r a d i o a c t i v i t y  r e l e a s e d  — A—
T C A - s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  — • ------

T C A - i n s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  — O —

T h e  v a l u e s  s h o w n  a r e  m e a n s  (  S . D . )  f r o m  5  s e p a r a t e

e x p e r i m e n t s  p e r f o r m e d  w i t h  t h e  s a m e  b a t c h  o f  f o r m a l d e h y d e -  
1 2 5t r e a t e d  ^ I - l a b e l l e d  B S A  u s e d  i n  t h e  e x p e r i m e n t s  r e p o r t e d  

i n  T a b l e s  2 . 4 . a  a n d  2 . 4 . b . i i .



F i g u r e  2 . 5  T i m e  c o u r a a  n f  r e l e a s e  o f  r a d i o a c t i v e  s p e c i e s

1 2 5d e r i v e d  f r o m  ^ I - l a b e l l e d  r a t  l r G  f o l l o w i n g  i n c u b a t i o n  o f  

r e t  v o l k - s a o s  w i t h  s u b s t r a t e  i n  s e r u m - f r e e  m e d i u m  1 9 9

1 7 . 5 - d a y  r a t  y o l k - s a c s  w e r e  f i r s t  i n c u b a t e d  f o r  2 h  i n  s e r u m -  

f r e e  m e d i u m  1 9 9  i n  t h e  p r e s e n c e  o f  ^ ^ ^ I - l a b e l l e d  r a t  I g G  

( 1 0  ( j g / m l ) .  F o l l o w i n g  w a s h i n g  t h e y  w e r e  r e i n c u b a t e d  i n  

f r e s h  m e d i u m ,  a n d  r e l e a s e  o f  r a d i o a c t i v i t y  w a s  m o n i t o r e d  

u p  t o  3 h  ( s e e  S e c t i o n  1 . 1 2  f o r  d e t a i l s ) .  T h e  t o t a l  a m o u n t  

a s s o c i a t e d  w i t h  t h e  y o l k - s a c  a t  t h e  b e g i n n i n g  o f  r e i n c u b a ­

t i o n  w a s  5 2 8  n g / m g  y o l k - s a c  t i s s u e .

T o t a l  r a d i o a c t i v i t y  r e l e a s e d  — A —

T C A - s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  — • —

T G A - i n s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d — O —

T h e  v a l u e s  s h o w n  a r e  m e a n s  ( ±  S . I 3 . )  f r o m  6  s e p a r a t e  

e x p e r i m e n t s .
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F i g u r e  2 . 6  T i m e  c o u r s e  o f  r e l e a s e  o f  r a d i o a c t i v e  s p e c i e s  

d e r i v e d  f r o m  " u - l a b e l l e d  r a t  I g G  f o l l o w i n g  i n c u b a t i o n  o f  

r a t  v o l k - s a c s  w i t h  s u b s t r a t e  i n  s e r u m - c o n t a i n i n g  m e d i u m  1 9 9

1 7 . 5 - d a y  r a t  y o l k - s a c s  w e r e  f i r s t  i n c u b a t e d  f o r  2 h  i n  

m e d i u m  199  c o n t a i n i n g  1 0 #  ( v / v )  c a l f  s e r u m  i n  t h e  p r e s e n c e  

o f  ^ ^ I - l a b e l l e d  r a t  I g G  ( 1 0  p g / m l ) .  F o l l o w i n g  w a s h i n g  t h e y  

w e r e  r e i n c u b a t e d  i n  f r e s h  m e d i u m ,  a n d  r e l e a s e  o f  r a d i o a c t i ­

v i t y  w a s  m o n i t o r e d  u p  t o  3 h  ( s e e  S e c t i o n  1 . 1 2  f o r  d e t a i l s ) .  

T h e  t o t a l  a m o u n t  o f  s u b s t r a t e  a s s o c i a t e d  w i t h  t h e  y o l k - s a c  

a t  t h e  b e g i n n i n g  o f  r e i n c u b a t i o n  w a s  2 7 ^  n g / m g  y o l k - s a c  

t i s s u e .

T o t a l  r a d i o a c t i v i t y  r e l e a s e d  — A —
T C A - s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  — • —

T G A - i n s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  — O —

T h e  v a l u e s  s h o w n  a r e  m e a n s  (  S . D . )  f r o m  $  s e p a r a t e  e x p e r i ­

m e n t s



F i g u r e  2 . 7  T i m e  c o u r s e  o f  r e l e a s e  o f  r a d i o a c t i v e  s p e c i e s  

125d e r i v e d  f r o m  v I - l a b e l l e d  r a b b i t  I g G  f o l l o w i n g  i n c u b a t i o n  

o f  r a b b i t  y o l k - s a c s  w i t h  s u b s t r a t e  i n  s e r u m - f r e e  m e d i u m  

199.

2 4 - d a y  r a b b i t  . y o l k  s a c  p i e c e s  w e r e  f i r s t  i n c u b a t e d  f o r  2 h
1 2 5i n  s e r u m - f r e e  m e d i u m  1 9 9  i n  t h e  p r e s e n c e  o f  ^ I - l a b e l l e d  

r a b b i t  I g G  ( 1 0  ( j g / m l ) .  F o l l o w i n g  w a s h i n g  t h e y  w e r e  r e i n ­

c u b a t e d  i n  f r e s h  m e d i u m ,  a n d  r e l e a s e  o f  r a d i o a c t i v i t y  w a s  

m o n i t o r e d  u p  t o  3 h  ( s e e  S e c t i o n  1 . 1 2  f o r  d e t a i l s ) .  T h e  

t o t a l  a m o u n t  o f  s u b s t r a t e  a s s o c i a t e d  w i t h  t h e  y o l k - s a c  a t  

t h e  b e g i n n i n g  o f  r e i n c u b a t i o n  w a s  1 5 1 0  n g / m g  y o l k - s a c  

t i s s u e .

T o t a l  r a d i o a c t i v i t y  r e l e a s e d  — A—
T C A - s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d — # —

T G A - i n s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  —  O —

T h e  v a l u e s  s h o w n  a r e  m e a n s  ( i  S . D . )  f r o m  6  s e p a r a t e  

e x p e r i m e n t s .



Table 2.8 Summary of amounts of I-labelled substrates released 
from rat andL rabbit yolk-sac tissue during reincubation iri fresh 
medium 199

125

In this table the findings displayed more fully in Figures 
2.3 -2.7 are summarized. The values quoted are the amounts of 
radioactivity released from rat and rabbit yolk-sac tissues after 
a 3h reincubation period. The last column gives a measure of the 
percentage of the total release of radioactivity that is acid- 
insoluble .

Labelled Calf
Substrate Serum

Radioactivity released 
_________ A____________

TotalTCA- TCA-
soluble insoluble

(ng/mg yolk-sac protein)

TCA-insoluble x 100 
Total 

(%)
i) Rat yolk sacs:

BSA 472.8 48.2 522.5 9.23
Rat IgG 251.5 193.6 444.9 43.5
Rat IgG + 123.9 50.9 174.1 29.3

ii) Rabbit yolk sacs:

BSA 54.9 27.6 82.5 33.4
Rabbit IgG 504.1 712.4 1216.5 58.6



4 2 .

2.4 DISCUSSION
125Uptake of I-labelled PVP, which has been thoroughly investigated

and quantitated in the rat yolk sac in vitro (Williams e£ al., 1975a^

Roberts et al., 1977; Ibbotson & Williams 1979), was chosen to test
the viability of rabbit yolk-sac tissue in the iji vitro incubation 

. . 125system. When incubated with I-labelled PVP under the same conditions

as rat yolk sacs, rabbit yolk sac pieces continue to show endocytic

behaviour over a period of at least several hours; this suggests that

the rabbit yolk sacs remain viable in the in vitro system. In the
presence of 10% (v/v) calf serum, uptake of this polymer by the rabbit

yolk sac is highly linear and reproducible, and the rate of uptake is
similar to that in the rat yolk sac. However, values of substrate

uptake at 6.5h showed rather large standard deviations, therefore it was

decided to follow the practice of Ibbotson & Williams (1979) and to
incubate tissues for a maximum period of only 5.5h. I-Labelled

PVP has been shown to be captured exclusively via the fluid phase in the

rat yolk-sac system (Roberts et al., 1977), and the observation that the
125Endocytic Indices of I-labelled PVP ingested in the presence of calf 

serum are virtually identical in rat and rabbit yolk sacs lends support 

to the suggestion that fluid uptake proceeds at approximately the same 

rate in a variety of different tissues (see Pratten et ail., 1980 for 
further discussion). This is, however, challenged at once when the 

Endocytic Indices of I-labelled PVP in serum-free medium 199 are 

compared for tissues from the two species. Whereas the rat yolk sac 

shows only a small increase (as compared with the value for equivalent 

incubations in the presence of calf serum), in the rabbit yolk sac the 

increase is considerably larger. Two explanations can be offered to 

account for this increase. First, I-PVP may adsorb extensively to 

the rabbit yolk sac in the absence of any calf-serum proteins and thus
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enter this tissue mainly by adsorptive pinocytosis in serum-free medium 

199. Alternatively, the removal of serum proteins from the incubation 

medium may stimulate the rate of pinosome formation much more strongly in 
rabbit tissue than it does in rat tissues. Both these propositions can

be tested, the former by increasing the concentration of PVP (unlabelled
125 . . 125or I-labelled) in the incubation medium. If the capture of I-PVP

in the absence of serum is mainly by adsorptive pinocytosis, the Endocytic

Index would be expected to decrease on increasing the concentration of
unlabelled PVP in the medium as binding sites become saturated with

mainly non-radioactive forms of the polymer. The second possibility

can be tested by incubating rabbit yolk sacs in serum-free medium 199
in the presence of some other established fluid-phase marker (e.g.
0H-labelled inulin) which should show the same Endocytic Index as
1 25I-labelled PVP if neither adsorbs to the membrane and the rate of 
pinosome formation is markedly elevated by the absence of serum from the 

incubation medium.
125By following the fate of I-labelled BSA as a representative 

non-transportable protein, it was hoped that some insight could be 

gained into the proteolytic capacity of the rabbit yolk sac. Tissue- 

Accumulation Rates were found to be very low in both tissues (in either 

the presence or the absence of calf serum) suggesting that most of the
1 AC1 I-labelled BSA captured by pinocytosis was subsequently degraded.

As for the rat yolk sac, uptake in the rabbit yolk sac is linear with

time and the Endocytic Index of I-BSA is as reproducible in the

rabbit yolk sac as in the rat yolk sac, although it is considerably

smaller in magnitude compared to that for the rat. For rabbit yolk sacs

the Endocytic Index of I-labelled BSA when ingested either in the

presence or in the absence of serum, is, surprisingly, almost identical
125to that observed for I-PVP. Two possible ways of accounting for
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125these findings can be envisaged. First, both substrates (i.e. I-BSA 
125and I-PVP) are pinocytosed almost entirely by way of the fluid phase

in the rabbit yolk sac so that no membrane binding is involved. This

would stand in strong contrast to the equivalent results in the rat
125yolk sac in which I-PVP is thought to enter the cells only by fluid

125pinocytosis (Roberts £t al^, 1977), whereas I-BSA enters mainly by

adsorbing to the yolk-sac epithelial cell surface prior to internalisation

(Williams et al., 1975b; Ibbotson & Williams, 1979). Second, both

substrates adsorb to the membrane and do so to the same extent, either

by using the same binding sites or by using different classes of binding

site. (The existence of different classes of binding site for simple

proteins has recently been shown in the rat yolk sac; Livesey, 1979).
However, in spite of these differences with formaldehyde-treated

125albumin, rat and rabbit yolk sacs each seem to treat homologous I-

labelled IgG in a similar manner. In both tissues, and in either the

presence or absence of calf serum, a considerable amount of radioactivity

becomes associated with the tissue (see also Williams & Ibbotson, 1979).
125By contrast, tissue-accumulation is much lower when using I-labelled 

BSA as substrate. (This observation in the rat initially stimulated 

the in vitro work with IgG.) Homologous IgG is, according to in vivo 

observations, treated differently from other proteins, especially in the 

rabbit yolk sac. In vivo at least 12% of the total IgG present is 
transported across the yolk sac intact, following its administration 

into the uterus (Hemmings, 1956). Thus the observation of a lesser 

extent of degradation in vitro is in accordance with the in vivo 
observation.

Concerning the site at which substrate accumulates in the yolk sac 

during the incubation period, only speculations can be offered at this 

stage. Electron microscopy studies of rabbit yolk sacs, after in vivo 

exposure to homologous IgG coupled to horseradish peroxidase, have shown
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the presence of IgG in the endodermal cells, in intercellular spaces, in 

the cells surrounding vitelline vessels and in mesenchymal macrophages 
(Moxon et al., 1976). These sites are likely to be the same in vitro, 

with the possible addition of the stagnant vitelline circulation 
(Ibbotson, Ph.D. thesis).

125From reincubation studies, using I-PVP as substrate, it is

apparent that neither the rat nor the rabbit yolk sac releases this

marker to any great extent over the 3h period of reincubation. This

finding can be interpreted as evidence for an intact vacuolar system in

yolk sacs incubated in vitro. From the equivalent reincubation studies 
125 125using I-BSA and I-labelled homologous IgG as substrates, important 

additional information can be obtained, both on the extent of release
of the intact protein and on the extent of degradation of the protein after

. . . . 125internalization by the tissue. Differences between I-labelled BSA and1 ? 5 125I-labelled IgG are striking. For I-labelled BSA, virtually all of

the tissue-associated radioactivity is released in a TCA-soluble form,
125whereas for I-labelled IgG a greater part is released in a TCA-insoluble

form. In rabbit yolk sacs, the observation that not only Endocytic
125Indices are low for I-BSA, but also that the total amounts of substrate 

released from the yolk sac during reincubation are low, suggests that this 

tissue has a rather low capacity for processing BSA within the lysosomal 

system. However, any I-BSA that is actually taken up pinocytically 

by the tissue is mostly degraded.
The exact nature of the TCA-soluble radioactivity released into the

incubation medium has been investigated by Ibbotson & Williams (1979)

in the rat system using column chromatography tSephadex G-25), and the
125major acid-soluble species present was found to be I-labelled 

L-tyrosine. The released TCA-insoluble activity too has been investigated 

(Ibbotson et al., unpublished data) by both gel filtration studies
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(Sephadex G-200) and by Ouchterlony diffusion analysis, and its behaviour

is consistent with the material being intact, macromolecular IgG. In
125the rabbit yolk sac the percentage of the released I-labelled IgG 

that remains undegraded (i.e. TCA-insoluble) is greater than in the rat 

yolk sac (58.6% c.f. 34.9%). This is compatible with the suggestion 

that the yolk sac is the major site for transfer of passive immunity in 

the rabbit but not in the rat.

In conclusion, these initial experiments have demonstrated the 

following points:

1) In the ill vivo incubation system, the rabbit yolk sac is as viable 

and as likely to give physiologically relevant results as is the 

rat yolk sac.

1252) In the absence of serum the rate of ingestion of I-labelled PVP 

in the rabbit yolk sac differs markedly from that in the rat

yolk sac, the Endocytic Index rising much more markedly in the 

rabbit tissue.
1253) I-labelled BSA is taken up more readily by the rat yolk sac 

than by the rabbit yolk sac.

4) The rabbit yolk sac does not seem to have as great a capacity for the
125uptake of I-labelled BSA as it does for the uptake of homologous 

125I-labelled IgG.
125

5 ) Homologous I-labelled IgG is treated differently from other 

proteins in the rabbit as well as in the rat yolk sac, a greater 

part of the protein being released in a TCA-insoluble (undegraded) 
form, during reincubation.

1256) A greater proportion of homologous I-IgG seems to be released 

undegraded after pinocytic capture in rabbit yolk sacs than in rat 

yolk sacs.
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As a result of the above findings, in vitro studies using rabbit 

yolk-sac pieces were considered to be a valuable and worthwhile way of 
further investigating the cellular mechanism of IgG transport across 

living cells.
The results of experiments in which yolk sacs were incubated in 

either the presence or the absence of serum did not qualitatively 

differ from each other. General "patterns" did not change and tissue 

survival was good under both conditions. Therefore most of the 

experiments reported in the following chapters were performed in the 

absence of calf serum to simplify the system, by removing competing 

serum proteins.



CHAPTER THREE

The Effect of Chemical Treatments of IgG 

on the Behaviour of this Molecule in the

Rat Yolk Sac System
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3.1 INTRODUCTION
125An earlier investigation of the fate of I-labelled rat IgG in the

rat yolk sac was made (Williams & Ibbotson, 1979) using the in vitro
incubation technique of Williams et al̂ . (1975a) . In these experiments

125a number of different batches of I-labelled rat IgG were prepared 
and used, and variations in the endocytic behaviour of the different 

preparations of this protein were noted (Ibbotson, Ph.D. thesis). Not 

only were significant differences in the Endocytic Indices of these 

preparations observed, but also different Tissue-Accumulation Rates and 

varying percentages of TCA-insoluble release during reincubation 
experiments.

Since the inter-batch variability seemed to exceed the reproducibility 

of uptake and release within each batch, it appeared that there was 

some variable that was not controlled in the preparation procedure, but 

which affected the properties of the individual preparations. Two 

principal possibilities can be envisaged. First, the commercial IgG 
preparation used as starting material may differ from batch to batch, 

either in content of protein contaminants (e.g. immunoglobulins other 

than IgG) or in the relative amounts of the different IgG sub-classes. 

Second, small variations in the labelling procedure may strongly affect 

the molecule and alter its endocytic properties. The first possibility 

cannot be held responsible for the observed variability since different 

preparations based on the same shipment of rat IgG also showed the same 

effect. Hence, in the current study, an attempt was made to establish 

whether any of the conditions in the iodination procedure itself had 

a decisive effect on the properties of the preparations of I-labelled 

IgG in the ni vitro system. By deliberately altering one experimental 

variable excessively, it was hoped to induce greater degrees of variation 

relative to those found in preparations that were ostensibly identical.
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Identification of such a variable could have a profound effect on all
the other quantitative data gathered from the yolk-sac system in subsequent

experiments, hence this topic merited careful investigation at an early

stage in the programme of investigations. In the labelling procedure
a number of variables can be considered as potential candidates

responsible for the observed differences in endocytic behaviour of 
125I-labelled IgG batches.

1) Reaction temperature. Sonoda & Schlamowitz (1970) using a 

chloramine-T method of labelling, found that the optimum reaction tempera­

ture was 2°C. At higher temperatures they observed irreversible
125over-oxidation of the [ I]iodide, whereas at low temperatures this 

problem was avoided.
1252) Concentration of [ I]iodide. Several workers found that

125high concentrations of [ I]iodide, that lead to an incorporation 

of more than 1 atom into each protein molecule, caused progressive damage 

of proteins (Bocci, 1969; Schlamowitz, 1976). Also, Hemmings (1974) 

observed an increased rate of excretion of breakdown products when 

injecting over-iodinated IgG into suckling-rat or -mouse gut.

3) Protein concentration. This variable is related to the

previous one. Sonoda & Schlamowitz (1970) showed a linear relationship
125between the extent of [ I]iodide incorporation and the logarithm of 

protein concentration. To ensure maximal labelling efficiency, they 

used a concentration of 1 mg protein per ml of reaction medium, which 

is the same concentration used here.

4) pH of reaction. A neutral or slightly basic pH is quoted as
125the most favourable condition for activating [ I]iodide and for the 

incorporation of the activated iodide into the protein during the 

iodination procedure. A pH of 7 has been suggested as optimal (Sonoda
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& Schlamowitz, 1970), but Bocci (1969) preferred a pH of 8.

5) Ionic strength of buffer. Sonoda & Schlamowitz (1970) used 
0.05M-NaHS0^ as buffer in the radioiodination of IgG by a chloramine-T 

method. They found that increasing the buffer strength to 0.5M led 
to a decrease in labelling efficiency, accordingly in this study a 
buffer concentration of 0.05M was used during labelling.

If extremes of temperature, ionic strength and pH are avoided,

variations in any of the above conditions will normally be expected to

lead to only changes in labelling efficiency. Only changes in the 
125 . . .degree of [ I]iodide incorporation are expected to exert any significant

effect on the biological activity of the labelled protein. Therefore,
125when keeping the degree of [ I]iodide incorporation below the level

of 1 atom per protein molecule, even small experimental variations of the

other variables are not likely to lead to changes in general biological

and endocytic properties of the labelled protein.

However, two more variables are considered below that are both
125concerned with the extent of exposure of the [ I]iodide and the protein

to the oxidising agent, chloramine-T.
1256) . Reaction time, (i.e. time of exposure of [ I]iodide and protein 

to chloramine-T). Sonoda & Schlamowitz (1970) claim that activation of 
iodine takes a few seconds only, but the incorporation reaction is 

time-dependent. In their system, a plot of percentage iodide 

incorporation against reaction time shows that a plateau is reached at

30 minutes. From these results, by 8 min, the time normally used here 

(Section 1.1), the reaction should be almost completed.

7) Chloramine-T concentration. Sherman ez al_. (1974) found that
* 125the rate of clearance of I-labelled fibrinogen was dependent on the 

concentration of chloramine-T employed in the iodination procedure and *

* from the bloodstream
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was more rapid for protein preparations that were iodinated in the 

presence of higher concentrations of this reagent. Bocci (1969) 

noticed decreases in labelling efficiency with increasing chloramine-T
concentrations. More importantly, he noticed that, whereas a protein:

. . . 131chloramine-T ratio of 200 does not modify the half life of I-labelled

IgG in the circulation of the rat (as determined by clearance studies 

by the rat liver), the use of larger amounts of oxidising agent signifi­

cantly shortens the half-life of this protein. In this context it is 

helpful to consider the general role of chloramine-T during the labelling 

procedure and its effect on proteins. The radioiodination reaction is 

a biphasic process; first the generation of active iodide and second the 
incoporation of the iodide into the tyrosine residues of the protein 
molecule. Chloramine-T acts as an activator in the first stage (Sonoda 

& Schlamowitz, 1970). At the same time chloramine-T can have adverse 

effects on the protein at high concentrations; Sherman et al̂ . (1974) 

reported polymerisation of the fibrinogen that was being labelled and 
this in turn led to more rapid clearance of such preparations when 

injected into the circulation of the rat. Bocci, (1969) found the 

same when using albumin, but with IgG as radioiodinated protein, the 

amount of polymerisation was negligible. Apart from this effect, 
other modifications of the proteins have also been observed. Sutcliffe 

et AL. (1973) found that chloramine-T destroys essential methionyl 

residues in parathyroid hormone. For other proteins (e.g. calcitonin,

Marx e£ £l., 1973) no such effect has been reported. These considerations 

have led to controversies as to the usefulness of chloramine-T as a 
labelling agent for biologically active proteins.

In this chapter, the reaction conditions were altered in two ways:

1) by shortening the reaction time and hence the period of exposure to 

chloramine-T and 2) by deliberately increasing the chloramine-T
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concentration to see whether this would induce any changes in the

biological properties of the resultant preparations.

An earlier study (Moore et̂  al., 1977) showed that very profound
125modifications of the uptake, rate of I-labelled BSA in the rat yolk

sac ill vitro could be induced by exposing different aliquots of a
125preparation of the I-labelled protein to different chemicals.

125Increases in the Endocytic Indices of the I-labelled BSA in the in

vitro rat yolk-sac incubation system were observed on exposing the

protein to dilute acetic acid. However, the most marked increase (ten-
125fold) in the Endocytic Index of I-labelled BSA was induced by treating

the labelled protein with either a 10% (w/v) formaldehyde solution or

with urea. The increased uptake rate was attributed to a substantial

change in 3°structure leading to an unmasking of buried groups that bind

to the plasma membrane, so increasing the rate of pinocytosis. Adsorptive
125pinocytosis is also responsible for the uptake of homologous I-

labelled IgG in the rat yolk sac (Williams & Ibbotson, 1979). It was

therefore of interest to find out whether the endocytic behaviour of 
125I-labelled IgG in the rat yolk-sac incubation system can, likewise,

be drastically altered on exposure to formaldehyde using the method
125employed to modify I-labelled BSA. For this purpose a portion of 

125I-labelled IgG was treated with a 10% (w/v) formaldehyde solution 
subsequent to radioiodination and both uptake rates and release patterns 

were investigated. The effect of urea was similarly investigated.

In summary, the experiments reported in this chapter attempt to 

answer the following questions:

1251) Does differential exposure of [ I]iodide and homologous IgG

to the oxidising reagent chloramine-T during radioiodination cause
• • ■ 125variations in the rate of endocytic capture of the I-labelled IgG

by the rat yolk sac in vitro?
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2) Do differences in chloramine-T exposure during labelling of

rat IgG exert any effect on the rate of breakdown of this protein in 

the rat yolk sac in vitro?

3) Is a radiolabelling method involving chloramine-T acceptable as 
a method for labelling IgG for in vitro studies?

4) Can greater variations of the Endocytic Index and the Tissue-
125Accumulation Rate of homologous I-labelled IgG be induced by 

exposure to urea/formaldehyde?

5) Are release patterns, in rat yolk-sac reincubation experiments,
125modified after the I-labelled IgG is exposed to formaldehyde or urea?



54.

3.2 METHODS

3.2.1 Method of varying the exposure to chloramine-T during 
radioiodination

The radiolabelling method was essentially the same as outlined in
Section 1.1, but in one preparation the chloramine-T and sodium

metabisulphite concentrations during iodination were increased 10-fold,

from 200 yg/ml to 2 mg/ml. The resulting preparation was termed 
125"Strong" I-labelled IgG. In another preparation the total

125exposure time of the protein and the [ I]iodide to the chloramine-T

was shortened from 8 min to 4 min, while leaving the rest of the
125procedure unchanged. This preparation was termed "Mild" I-labelled

125IgG. Another batch of I-labelled IgG was prepared, following the

method outlined in Section 1.1 in all details. This preparation was 
125termed "Normal" I-labelled IgG.

1253.2.2 Preparation of formaldehyde-treated I-labelled rat IgG

125A portion of stock solution of I-labelled rat IgG (0.71 mg/ml) 

prepared as described in Section 1.1 was mixed with an equal volume of 

10% (w/v) formaldehyde solution in 0.5 M-NaHC0^ buffer, pH 10, and 

kept at room temperature for 72h. The solution was then dialysed 

exhaustively against a 1% NaCl solution. As a necessary control, a 

further aliquot of the protein stock solution was mixed with buffer only 

and then treated in the same way as the formaldehyde-containing 

solution.

1253.2.3 Preparation of urea-treated I-labelled rat IgG

125A portion of stock solution of I-labelled IgG (0.71 mg/ml), 

prepared as described in Section 1.1, was added to an equal volume of 

8 M-urea, pH 5, and left at room temperature for 24h before dialysing 

against 2 changes (5 1) of 1% aq. NaCl (w/v).
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1253.2.4 Uptake of I-labelled IgG preparations, that had received 

differing exposures to chloramine-T during labelling

Rat yolk sacs (17.5-day) were incubated in medium 199 containing
12510% (v/v) calf serum in the presence of I-labelled IgG (2 yg/ml), 

that had been subjected to either the "Mild", "Normal" or "Strong" 
chloramine-T treatments outlined above (3.2.3). For each of the 

different IgG preparations a total of three uptake experiments were 

performed in medium 199 containing 10% (v/v) calf serum, and a single 

similar experiment was performed in medium 199 alone.

1253.2.5 Uptake of formaldehyde- or urea-treated I-labelled rat IgG 

in yolk sacs

Rat yolk sacs (17.5-day) were incubated as in the preceding section
(3.2.4), but in the presence of formaldehyde-treated, urea-treated or 

125buffer-treated I-labelled IgG (2 yg/ml).

3.2.6 Exocytosis following incubation of rat yolk sacs in medium 199

in the presence of either "Mild", "Normal" or "Strong" chloramine-T 
125treated I-labelled IgG preparations

Rat yolk sacs (17.5-day) were incubated for 2h, in either medium

199 containing 10% (v/v) calf serum or in medium 199 alone and in the
125presence of either "Strong", "Normal" or "Mild" I-labelled IgG

(10 yg/ml). After washing, yolk sacs were reincubated in fresh medium

199 and 1 ml aliquots of medium were removed at 15 min intervals up to
1253h. (For details of method see Section 1.12). For each I-labelled 

IgG preparation 6 experiments were conducted.

3.2.7 Exocytosis following incubation of rat yolk sacs in serum-free 

medium 199 in the presence of formaldehyde-treated or urea-treated 

125I-labelled IgG

Rat yolk sacs (17.5-day) were incubated as in the preceding section
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(3.2.6), but in the presence of formaldehyde-treated or urea-treated 
125I-labelled IgG. As controls, similar incubations were set up with
125I-labelled IgG (10 pg/ml) that had either been 0.5M-NaHC0^ buffer-

125treated or was untreated. For each I-labelled IgG preparation 
6 incubations were performed.
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3.3 RESULTS

3.3.1 Uptake by the rat yolk sac in vitro of I-labelled IgG 

that had received different exposures to chloramine-T during 

radioiodination

Uptake experiments conducted in serum-free medium 199 and with
12Seither the "Strong", "Normal" or "Mild" I-labelled IgG preparation

as substrate, resulted in Endocytic Indices that showed a tendency to

decrease in the order "Strong" > "Normal" > "Mild" (Table 3.1). The

results of equivalent experiments performed in the presence of serum

(10%, v/v), gave lower Endocytic Indices but also showed the same trend

(Table 3.1a). In the absence of calf serum from the incubation medium,

the Endocytic Index of the "Mild" I-labelled IgG preparation is

only approx. 67% that of the other two preparations (Table 3.1b).
However, since only one uptake experiment was performed with each

preparation in the absence of serum, these findings are not conclusive

and only suggest a possible trend towards a slightly increased rate of

endocytosis with rising severity of chloramine-T exposure. Tissue-12SAccumulation Rates of "Strong", "Normal" and "Mild" I-labelled IgG 

in the presence and absence of serum closely follow the pattern shown 

by the corresponding values of the Endocytic Index.

3.3.2 Release of radioactive species derived from different 
125I-labelled IgG preparatiorethat had been exposed to different 

intensities of chloramine-T radioiodination

Following uptake of either "Strong", "Normal" or "Mild"
^'’i-labelled IgG into rat yolk sacs in vitro, release of radioactive

species derived from these substrates into fresh medium was monitored.
125The release patterns of "Strong", "Normal" and "Mild" I-labelled 

IgG in medium 199 alone are shown in Figures 3.1, 3.2 and 3.3

125
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respectively; they do not appear to be very different from each other.

In Table 3.2 the same results are presented in the form of the amount

of substrate (ng/mg yolk-sac protein) released into the fresh medium

after 3h reincubation time, and also in the form of a percentage of the
total radioactivity associated with the yolk-sac tissue at the beginning

of the reincubation period. From this table it appears that the extent
125of release of "Normal" I-labelled IgG in serum-free medium is 

rather lower than that of the other two preparations. This variation, 

however, can be said to be within the limits of experimental scatter 
since, on other days different amounts of substrate the same substrate 

preparation were released (e.g. 665 ng/mg yolk-sac protein, Chapter 2,

Table 2.10).

When expressing substrate release as a percentage of the radioactivity

initially associated with the yolk sac, it can be seen that greater
amounts of the radioactivity are released in a TCA-insoluble form

125when using "Mild" I-labelled IgG, than for the other two preparations
125(Table 3.2). On the whole, the release patterns of I-labelled IgG 

preparations for incubations in serum-containing medium are similar 

to those in serum-free medium. The only difference lies in the total 

amount of substrate released, which is much lower in incubations in 

the presence of serum (see also Chapter 2, Table 2.5).

1253.3.3 Uptake of formaldehyde- or urea-treated I-labelled rat IgG 

by 17.5-day rat yolk sacs

Endocytic Indices and Tissue-Accumulation Rates of formaldehyde-, urea-,
125phosphate buffer-treated and untreated I-labelled rat IgG in the rat 

yolk sac are quoted in Table 3.3 both for incubations performed in 

medium 199 alone and for those performed in medium 199 containing 10%

(v/v) calf serum. For each substrate and each experimental condition 

only one incubation was performed, and subsequently the results can only
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be used to indicate a general trend. In the presence of calf serum,
125both urea- and formaldehyde-treated I-labelled IgG preparations

appear to have enhanced E.I.s compared with the untreated controls.

The T.A.R.s remain virtually unchanged (Table 3.3a).
In medium 199 alone (Table 3.3b) the values of the E.I. and the

125T.A.R. of the formaldehyde-treated I-labelled IgG do not differ
125from those of either of the two controls. For urea-treated I-labelled

IgG in serum-free medium the T.A.R. is similar, but the E.I. is considerably

lower than those of the other substrates. It may also be noted that
there is a great difference between the tissue level of the urea-treated 
125I-labelled IgG and the other IgG preparations in the uptake in vitro

incubations. [In the presence of 10% (v/v) calf serum the tissue-level

of radioactivity is very much higher (Table 3.3a), whereas in the absence

of serum the tissue-level appears somewhat lower than that of the other

substrates (Table 3.3b).] The uptake of formaldehyde-treated IgG

in the presence and absence of serum (Table 3.3) does not seem to differ
125from that of untreated I-labelled IgG (see Table 2.5).

3,3.4 Release of radioactive species derived from different chemically-
125treated preparations of I-labelled IgG

. 125The results of the reincubation experiments using I-labelled
IgG, that had previously been treated with either urea or formaldehyde,

are presented with the appropriate controls in Figures 3.4, 3.5 and 3.6

and Table 3.4. From the figures alone, which show the substrate-

release patterns during reincubation of the "loaded" rat yolk sac in

serum free medium 199, it appears that the release of TCA-soluble and
125TCA-insoluble radioactivity derived from urea-treated I-labelled IgG

follows the same pattern as the untreated "Normal"

*^I-labelled IgG (Figure 3.4 and Table 3.4). For formaldehyde- 
125treated I-labelled IgG, on the other hand, the release pattern
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(Figure 3.5) is dramaiLcally changed and resembles the pattern obtained 
125 & “with I-labelled^BSA as substrate in the rat yolk sac (Chapter 2 >

Figure 2.3). Of the total amount of radioactivity released subsequent
125to incubation of the rat yolk sac with formaldehyde-treated I-

labelled IgG, 95% is released in TCA-soluble form, compared with a value
125 . .of 66% for the untreated I-labelled IgG control and a similarly low

125value (67%), for the bicarbonate buffer-treated I-labelled IgG

control preparation. Another interesting feature concerned with the
125use of formaldehyde-treated I-labelled IgG can be seen in the re­

incubation studies in medium 199 containing 10% (v/v) calf serum.
125Unlike the other I-labelled IgG preparations, the absolute values

125of the release from the yolk sac (in ng formaldehyde-treated I-IgG)
are not changed by the presence of serum in the incubation medium
(Table 3.4b). Again, the greater percentage of substrate released is

125TCA-soluble. Urea-treated I-labelled IgG does not differ from 

the "Normal" IgG control in its behaviour during release by the rat 

yolk sac.



Table 3.1 Endocytic Indices and Tissue-Accumulation Rates of three 
different batches of ^^I-labelled IgG each incubated with 17.5-day 
rat yolk sacs in medium 199 either in the presence or in the absence of 
calf serum

125Rat IgG was radioiodinated with I-iodide under conditions that 
were constant except that the exposure to chloramine-T during the 
labelling procedure was varied. The resulting 125i-labelled IgG 
batches were termed "Strong", "Normal" and "Mild" 125i-iabelled IgG 
(see Section 3.2.1). Rat yolk-sacs (17.5-day) were incubated for up to 
6.5h with either "Strong", "Normal" or "Mild" preparations of 125j_ 
labelled IgG (2 yg/ml of medium), either in medium 199 alone or in 
medium 199 containing 10% (v/v) calf serum. The methods are described 
in detail in Sections 1.7 and 1.8.

a) Experiments in medium 199 containing 10% (v/v) calf serum
Preparation 
of 125i-igG 1 2 3 4 5 6
S trong 1.25 9 21.32 0.967 4.46 0.926
Strong 1.22 10 15.25 0.991 3.77 0.928
Strong 1.38 10 17.21 0.997 4.31 0.961

MEAN VALUES (± S.D.): 19.93 ± 3.1 4.18 ± 0. 36
Normal 2.30 9 12.69 0.977 2.21 0.725
Normal 2.71 10 13.99 0.994 2.95 0.933
Normal 2.77 10 16.35 0.959 3.33 0.923

MEAN VALUES (± S.D.): 14.35 ± 1.88 2.83 ±0. 57

Mild 4.02 10 17.27 0.968 2.44 0.738
Mild 4.06 10 12.19 0.966 2.31 0.851
Mild 4.19 10 12.15 0.833 2.36 0.645

MEAN VALUES (± S.D.): 13.87 ± 2.94 2.37 ± 0.06

b) Experiments in medium 199 alone
Preparation 
of 1251-IgG 1 2 3 4 5 6

Strong 1.33 9 77.19 0.946 4.51 0.579
Normal 2.32 10 76.15 0.910 3.35 0.322
Mild 5.07 10 51.62 0.955 1.93 0.579



Table 3.2 Release of radioactive species derived from "Strong", "Normal" and "Mild" I-labelled rat IgG 
when 17.5-day rat yolk sacs were reincubated in medium 199 in either the presence or the absence of calf 
serum

125

Rat yolk-sacs (17.5-day) were first incubated for 2h in medium 199 containing 10% (v/v) calf serum 
or in medium 199 alone, in the presence of "Strong", "Normal" or "Mild" 125i_iabelled IgG (see Section 
3.2.1 for details of preparation). Following washing they were reincubated in fresh medium, and the release 
of radioactivity was followed up to 3h (see Section 1.12 for details). In this table, only the amounts of 
substrate released at 3h of reincubation are reported. They are expressed as ng substrate released per unit 
weight of yolk-sac tissue (± S.D.) and as a percentage of the total amount of substrate associated with the 
yolk sac at the start of the reincubation period. The data reported in the Section b) of this table are 
also displayed graphically in Figures 3.1, 3.2, and 3.3.

a) Experiments in medium 199 containing 10% (v/v) calf serum

Preparation Substrate released Substrate released
of i2i>I-IgG (ng/mg yolk-sac) ________ <g

TCA-
solubles

TCA-
insolubles

A
Totals

TCA-
solubles

TCA-
insolubles

s

Totals

Strong 49.2 ± 14.4 41.0 ± 3.1 90.2 ± 10.5 43.0 35.8 78.8
Normal 46.1 ± 4.7 52.3 ± 13.1 98.4 ± 8.5 45.5 34.2 79.7
Mild 33.4 ± 1.1 40.5 ± 1.9 73.9 ± 3.0 33.5 40.6 74.2

b) Experiments in medium 199 alone
Preparation Substrate released Substrate released
of i2i>I-IgG (ng/mg yolk-sac) (%)

TCA-
solubles

TCA-
insolubles

i

Totals
TCA-

solubles
TCA-

insolubles Totals

Strong 307.0 ± 64.4 156.8 ± 18.9 463.8 ± 64.6 56.3 29.2 86.4
Normal 228.7 ± 43.1 116.7 ± 22.6 345.4 ± 53.0 55.9 28.4 84.3
Mild 318.4 ±147.2 203.1 ±65.3 521.6 ±209.6 52.4 33.4 85.8



F i g u r e  3 . 1  T i m e  c o u r s e  o f  r e l e a s e  o f  r a d i o a c t i v e  s p e c i e s  

d e r i v e d  f r o m  " s t r o n g "  ^ I - l a b e l l e d  r a t  I g G  f o l l o w i n g  

i n c u b a t i o n  o f  r a t  v o l k - s a c s  w i t h  s u b s t r a t e  i n  s e r u m - f r e e  

m e d i u m  1 9 9

1 7 . 5 - d a y  r a t  y o l k  s a c s  w e r e  f i r s t  i n c u b a t e d  f o r  2 h  i n
1 2 5

s e r u m - f r e e  m e d i u m  1 9 9  i n  t d e  p r e s e n c e  o f  " s t r o n g "  ^ 1 -

l a b e l l e d  r a t  I g G  ( 1 0  y g / m l ) .  F o l l o w i n g  w a s h i n g  t h e y  w e r e

r e i n c u b a t e d  i n  f r e s h  m e d i u m ,  a n d  r e l e a s e  o f  r a d i o a c t i v i t y

w a s  m o n i t o r e d  u p  t o  3 h  ( s e e  S e c t i o n  1 . 1 2  f o r  d e t a i l s ) .  T h e

t o t a l  a m o u n t  o f  s u b s t r a t e  a s s o c i a t e d  w i t h  t h e  y o l k - s a c  a t

t h e  b e g i n n i n g  o f  r e i n c u b a t i o n  w a s  5 3 7  n g /  m g y o l k - s a c .

T o t a l  r a d i o a c t i v i t y  r e l e a s e d  — A—
T G A - s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  — • ------

T C A - i n s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  —  O -------

T h e  v a l u e s  s h o w n  a r e  m e a n s  f r o m  6  s e p a r a t e  e x p e r i m e n t s
1 2 5performed with the same batch o f  " s t r o n g "  I - l a b e l l e d

r a t  IgG, used in the experiments reported  in Table 3 . 1 .



A

F i g u r e  3 . 2  T i m e  c o u r s e  o f  r e l e a s e  o f  r a d i o a c t i v e  s p e c i e s

1 2 3d e r i v e d  f r o m  " n o r m a l "  ^ I - l a b e l l e d  r a t  I g G  f o l l o w i n g  

i n c u b a t i o n  o f  r a t  y o l k - s a c s  w i t h  s u b s t r a t e  i n  s e r u m - f r e e  

m e d i u m  1 9 9

1 7 . 5 - d a y  r a t  y o l k - s a c s  w e r e  f i r s t  i n c u b a t e d  f o r  2 h  i n  s e r u m -  

f r e e  m e d i u m  199  i n  t h e  p r e s e n c e  o f  " n o r m a l "  ^ I - l a b e l l e d  

r a t  I g G  ( 1 0 p g / m l ) .  F o l l o w i n g  w a s h i n g  t h e y  w e r e  r e i n c u b a t e d  

i n  f r e s h  m e d i u m ,  a n d  r e l e a s e  o f  r a d i o a c t i v i t y  w a s  m o n i t o r e d  

f o r  u p  t o  3 h  ( s e e  S e c t i o n  1 . 1 2  f o r  d e t a i l s ) .  T h e  t o r a l  

a m o u n t  o f  s u b s t r a t e  a s s o c i a t e d  w i t h  t h e  y o l k - s a c  a t  t h e  b e ­

g i n n i n g  o f  r e i n c u b a t i o n  w a s  4 0 9  n g / m g  y o l k - s a c  p r o t e i n .

T o t a l  r a d i o a c t i v i t y  r e l e a s e d  — A —
T C A - s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  — • —

T C A - i n s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d — O —

T h e  v a l u e s  s h o w n  a r e  m e a n s  f r o m  b  s e p a r a t e  e x p e r i m e n t s  p e r - .
1 2 3formed with the same baton o f  "norm al" I - l a b e l l e d  r a t  IgG

used in  the experiments reported  in Table 5 . 1 .
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Figure 3*3 Time course of release of radioactive species
123derived from "mild" I-labelled rat IgG following incuba­

tion to rat volk-sacs with substrate in serum-free medium
m

1 7 . 5 - d a , y  r a t  y o l k - s a c s  w e r e  f i r s t  i n c u b a t e d  f o r  2 h  i n  

s e r u m - f r e e  m e d i u m  1 9 9  i n  t h e  p r e s e n c e  o f  " m i l d "  - ^ - l a ­

b e l l e d  r a t  I g G  ( 1 0 p g / m l ) .  f o l l o w i n g  w a s h i n g ,  t h e y  w e r e  

r e i n c u b a t e d  i n  f r e s h  m e d i u m ,  a n d  r e l e a s e  o f  r a d i o a c t i v i t y  

w a s  m o n i t o r e d  u p  t o  3 h  ( s e e  o e c t i o n  1 . 1 2  f o r  d e t a i l s ) .

T h e  t o t a l  a m o u n t  o f  s u b s t r a t e  a s s o c i a t e d  w i t h  t h e  y o l k - s a c  

a t  t h e  b e g i n n i n g  o f  r e i n c u b a t i o n  w a s  6 0 8  n g / m g  y o l k - s a c .  

T o t a l  r a d i o a c t i v i t y  r e l e a s e d  — A —
TGA-soluble radioactivty released — •—
TGA-insoluble radioactivity released — O

T h e  v a l u e s  s h o w n  a r e  m e a n s  f r o m  6  s e p a r a t e  e x p e r i m e n t s
1 2 5performed with the same batch o f  "m i ld "  I - l a b e l l e d  ra t

IgG used in the experiments reported  in Table 3*1»



Table 3.3 Endocytic Indices and Tissue-Accumulation Rates of differeiit 
preparations~~of l-^I-labelled rat IgG that had been subjected to differing 
chemical treatments, by rat yolk-sacs incubated m  medium 199 m  the 
presence and absence of calf serum

. . .  . 125After radioiodination I-labelled rat IgG was treated with either 
8M-urea (see Section 3.2.3), a 10% (w/v) formaldehyde solution in a 

0 .5 M-NaHC0 3  buffer (see Section 3.2.2) or 0 .5 M-NaHC0 3  buffer alone (see 
Section 3.2.2). Rat yolk sacs (17.5-day) were incubated for up to 
6.5h in the presence of substrate (2 pg/ml), either in serum-free medium 
199 or in medium 199 containing 10% (v/v) calf serum. The method is 
described in detail in Section 3.2.5.

a) Experiments in medium 199 containing 10% (v/v) calf serum 
Chemical
treatment 
of 125I-IgG

1 2 3 4 5 6

Urea 2.7 10 18.85 0.907 2.49 0.563
Formaldehyde 1.8 10 14.98 0.989 1.96 0.905
Buffer 1.64 10 6.18 0.955 1.01 0.732
No treatment 2.76 10 9.09 0.971 1.82 0.963

b) Experiments in medium 199 alone

Chemical
treatment 1 
of 125I-IgG

2 3 4 5 6

Urea 3.08 10 36.71 0.939 2.58 0.768
Formaldehyde 3.16 10 74.99 0.965 3.41 0.703
Buffer 5.75 10 73.91 0.933 5.73 0.629
No treatment 2.32 10 76.15 0.910 3.35 0.322



Table 3.4 Release of radioactive species derived from urea- and formaldehyde-treated I-labelled rat 
IgG when 17.5-day rat yolk sacs were incubated in medium 199 in either the presence of the absence of calf 
serum.

Rat yolk sacs (17.5 day) were first incubated for 2h in medium 199 alone or in medium 199 containing 
10% (v/v) calf serum, in the presence of urea-treated (see Section 3.2.3), formaldehyde-treated (see Section 
3.2.2), buffer-treated (see Section 3.2.2) or untreated 125i-iabelled rat IgG. After washing, yolk sacs 
were reincubated in fresh medium and release of radioactivity was followed for up to 3h (see Section 3.2.7 
for details). In this table only the amounts of substrate released at 3h reincubation time are reported. 
They are expressed as ng substrate released per unit weight of yolk-sac tissue (± S.D.) and as a percentage 
release of the total amount of substrate associated with the yolk sac at the start of the reincubation 
period. The data reported in b) below are also displayed graphically in Figures 3.4, 3.5 and 3.6.
a) Experiments in medium 199 containing 10% (v/v) calf serum)
Chemical Substrate released Substrate released

125

treatment 
of l25I-IgG

(ng/mg yolk sac) (%)
TCA-

solubles
TCA-

insolubles Totals
TCA-

solubles
TCA-

insolubles Totals
Urea 72.2 ± 18.8 52.9 ± 34.8 124.1 + 20.0 47.1 35.5 82.6
Formaldehyde 219.9 ± 27.7 61.1 ± 9.4 281.1 ± 37.7 58.8 16.4 75.2
Buffer 60.2 ± 1.7 32.5 ± 4.6 92.8 ± 10.1 51.5 27.8 79.3
No treatment 46.1 ± 4.6 52.3 ± 13.1 98.4 ± 8.5 45.5 34.2 79.7
b) Experiments in medium 199 alone
Chemical 
treatment 
of 125i-igG

Substrate released 
(ng/mg^yolk sac)

Substrate released 
(%) .

 ̂ T CA­
SO lubles

TCA-
insolubles Totals

TCA-
solubles

TCA-
insolubles Totals

Urea 296.5 ± 53.7 176.8 ± 38.8 473.3 ± 57.3 53.0 31.6 84.6
Formaldehyde 217.6 ± 53.4 20.1 ± 18.5 238.0 ± 33.3 70.9 6.6 77.5
Buffer 266.1 ± 68.9 134.7 ± 25.9 399.7 ± 84.9 56.6 28.7 85.0
No treatment 228.7 ± 43.1 105.6 ± 22.6 334.3 ± 53.0 56.9 25.8 82.7
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. F i g u r e  3 T i me  c o u r s e  o f  r e l e a s e  o f  r a d i o a c t i v e  s p e c i e s

1 2 3d e r i v e d  f r o m  u r e a - t r e a t e d  ^ I - l a b e l l e d  r a t  I g G  f o l l o w i n g  

i n c u b a t i o n  o f  r a t  y o l k - s a c s  w i t h  s u b s t r a t e  i n  s e r u m - f r e e  

m e d i u m  1 9 9

1 7 . 5 - d a y  r a t  . y o l k - s a c s  w e r e  f i r s t  i n c u b a t e d  f o r  2 h  i n  s e r u m -  

f r e e  m e d i u m  1 9 9  i n  t h e  p r e s e n c e  o f  u r e a - t r e a t e d  ^ - l a b e l ­

l e d  r a t  I g G  ( 1 0 | j g / m l ) .  F o l l o w i n g  w a s h i n g ,  y o l k - s a c s  w e r e  

r e i n c u b a t e d  i n  f r e s h  m e d i u m ,  a n d  r e l e a s e  o f  r a d i o a c t i v i t y  

w a s  m o n i t o r e d  u p  t o  3 h  ( s e e  S e c t i o n  3 . 2 . 7  T o r  d e t a i l s  ) .

T h e  t o t a l  a m o u n t  o f  s u b s t r a t e  a s s o c i a t e d  w i t h  t h e  y o l k - s a c  

a t  t h e  b e g i n n i n g  o f  r e i n c u b a t i o n  w a s  5 6 0  n g / m g  y o l k - s a c .

T o t a l  r a d i o a c t i v i t y  r e l e a s e d  ------A ------

T C A - s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  ------ • --------

T C A - i n s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  ------O --------

T h e  v a l u e s  s h o w n  a r e  m e a n s  f r o m  6  s e p a r a t e  e x p e r i m e n t s
1 2 5performed with the same batch o f  u r e a -tr e a te d  I - l a b e l l e d

r a t  IgG used in the experiments reported  in Table 3 . 2 . 7  .
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oat/>
i

. F i g u r e  3 * 5  T i m e  c o u r s e  of r e l e a s e  of r a d i o a c t i v e  s p e c i e s

1 2 5d e r i v e d  f r o m  f o r m a l d e h y d e - t r e a t e d  ^ I - l a b e l l e d  r a t  I g G  

f o l l o w i n g  i n c u b a t i o n  o f  r a t  y o l k - s a c s  w i t h  s u b s t r a t e  i n  

s e r u m - f r e e  m e d i u m  1 9 9

1 7 .5- d a y  r a t  y o l k - s a c s  w e r e  f i r s t  i n c u b a t e d  f o r  2 h  in s e r u m -  
f r e e  m e d i u m  199 in t h e  p r e s e n c e  of f o r m a l d e h y d e - t r e a t e d
A  O C y

^ I - l a b e l l e d  rat I g G  ( 1 0 g g / m l )  . F o l l o w i n g  w a s h i n g  t h e y  
w e r e  r e i n c u b a t e d  in f r e s h  m e d i u m ,  a n d  r e l e a s e  of r a d i o a c t i ­
v i t y  w a s  m o n i t o r e d  u p  to $h (see S e c t i o n  3 . 2 . 7  f o r  d e t a i l s ) .  
Th e  t o t a l  a m o u n t  of s u b s t r a t e  a s s o c i a t e d  w i t h  the y o l k - s a c  
at t h e  b e g i n n i n g  of r e i n c u b a t i o n  w a s  30 6  n g / m g  y o l k - s a c .
T o t a l  r a d i o a c t i v i t y  r e l e a s e d  — A ------

T C A - s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d — • —

T C A - i n s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  —  O ------

T h e  v a l u e s  s h o w n  a r e  m e a n s  f r o m  6  s e p a r a t e d  e x p e r i m e n t s
1 2 5performed with the same batch o f  fo rm ald eh yd e-treated  ^ 1 -

la b e l l e d  r a t  IgG used in the experim ents rep orted  in

Table 3 .3  .



F i g u r e  5 * 6  T i m e  c o u r s e  o f  r e l e a s e  o f  r a d i o a c t i v e  s p e c i e s

125d e r i v e d  f r o m  b i c a r b o n a t e  b u f f e r - t r e a t e d  ^ I - l a b e l l e d  r a t  

I g G  f o l l o w i n g  i n c u b a t i o n  o f  r a t  y o l k - s a c s  w i t h  s u b s t r a t e  i n  

s e r u m - f r e e  m e d i u m  1 9 9

1 7 . 5 - d a y  r a t  y o l k - s a c s  w e r e  f i r s t  i n c u b a t e d  f o r  2 h  i n  s e r u m -  

f r e e  m e d i u m  1 9 9  i n  t h e  p r e s e n c e  o f  0 . 5 M  N a H C O ,  b u f f e r - t r e a -
✓1 p  C ^

t e d  ^ I - l a b e l l e d  r a t  I g G  ( 1 0  y g / m l ) .  F o l l o w i n g  w a s h i n g  

y o l k - s a c s  w e r e  r e i n c u b a t e d  i n  f r e s h  m e d i u m ,  a n d  r e l e a s e  o f  

r a d i o a c t i v i t y  w a s  m o n i t o r e d  u p  t o  3 h  ( s e e  S e c t i o n  5 . 2 . 7  

f o r  d e t a i l s ) .  T h e  t o t a l  a m o u n t  o f  s u b s t r a t e  a s s o c i a t e d  w i t h  

t h e  y o l k - s a c  a t  t h e  b e g i n n i n g  o f  r e i n c u b a t i o n  w a s  4 -7 0  n g / m g  

y o l k - s a c .

T o t a l  r a d i o a c t i v i t y  r e l e a s e d  --------A ---------

T C A - s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  ------ • -------

T C A - i n s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  ------O ---------

The values shown are means from 6 separate experiments
1 2 5performed with the same batch o f  b u f f e r - t r e a t e d  ^ - l a b e l ­

led  r a t  IgG used in the experiments reported  in Table 3 .3  •
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3.4 DISCUSSION

3.4.1 Effects of differential exposure to chloramine-T during labelling
125on the fate of I-labelled rat IgG in the rat yolk sac in vitro

In an attempt to elucidate the cause of the previously reported

inter-batch differences in the endocytic behaviour of different 
125preparations of I-labelled IgG by rat yolk sac (Ibbotson et al.,

unpublished data), the radiolabelling procedure of the immunoglobulin
125was varied by changing the intesity of exposure of the [ I]iodide

and the protein to the oxidizing agent, chloramine-T. Neither an

increased chloramine-T concentration nor halving the reaction time seemed

to exert a very noticeable effect on the pinocytic uptake of the substrate

by the rat yolk sac in vitro. Whereas Ibbotson et̂  al* reported that
125different batches of I-labelled IgG showed Endocytic Indices that

ranged from 6.3 - 13.3 yl/mg protein per h (for incubations in medium

199 containing 10%, v/v, calf serum) and corresponding values of

57-97 yl/mg protein per h (for incubations in serum-free medium 199), the

variations in the E.I.s quoted in this chapter are much slighter (see
125Table 3.1). The rate of uptake of I-labelled IgG by rat yolk sacs 

in vitro is only slightly higher when a greater amount of chloramine-T 

was used in the labelling procedure. Therefore, it seems rather 

unlikely that small accidental variations in either reaction time 

or chloramine-T concentration during radioiodination can be responsible
for the difference in E.I.s observed by Ibbotson et al* for a number of
125I-labelled IgG batches. Equally, the degree of enzymic degradation 

within the rat yolk sac does not appear to differ between the ''Strong", 

"Normal" and "Mild" I-IgG preparations, as expressed in terms of 

either the Tissue-Accumulation Rate (i.e. that amount of substrate that 

is not degraded and released by the rat yolk sac ija vitro subsequent 

to pinocytic capture, but remains in the tissue) or by the percentage of
*unpublished data
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TCA-soluble radioactive species released during reincubation studies.

Variations in TCA-soluble release and T.A.R. values are negligible,
125showing that the different I-labelled IgG preparations are degraded 

at the same rates. These findings suggest no great influence of 
different chloramine-T exposure on the treatment by the rat yolk sac 

in vitro, of IgG that had been labelled by a method involving 

this reagent.
Possible harmful effects on the biological activities of a protein 

are suggested in the literature, but seem to depend on the protein in 
question. Reward e£ stl. (1979a), iodinated alpha and beta melanotropin 

in the presence of chloramine-T according to the method of Greenwood 

et al. (1963) and reported a resulting inactivation of the molecules as 

measured by a frog-skin bioassay of a melanoma tyrosinase assay. In a 

later paper Heward £t al. (1979^^ correlated this inactivation of alpha 

and beta melanocyte-stimulating hormone to 4 changes in the molecule 

resulting from the labelling procedure: 1) oxidation of the methionine 

residue, 2) incorporation of iodine into the tyrosine residue,

3) modification of histidine and 4) modification of tryptophan. Other 

workers, using a variety of other proteins, claim no such effect of 

chloramine-T on the biological activity of their radiolabelled proteins; 

a few examples are quoted below. Hunter & Greenwood (1962) labelled 

human growth hormone with carrier-free [ I]iodide by use of chloramine-T 
and found the iodinated molecule to be immunologically identical to 

unlabelled human growth hormone. Also, Lee & Ry'an (1973) studied 

the interaction of human chlorionic gonadotropin with receptors in 

cellular fractions of rat ovaries and found full binding-activity, 

as determined by radio-receptor assay, when this gonadotropin had been 

labelled by a method based on that of Greenwood et al. (1963).

Vihko et al. (1978) radiolabelled serum (prostate-specific)
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acid phosphatase by a chloramine-T method and still observed a cross­

reaction of this molecule with the antibody (prepared in sheep) to the 

native acid phosphatase. Similarly, Egorin et al., (1979) labelled 

pure isolectin by a chloramine-T method and noted subsequent binding 
of the isolectin molecule to human erythrocytes which have specific 

receptor sites for this protein. Also, Marx et al. (1973) showed that 

iodination of salmon calcitonin by chloramine-T had no effect on the 

biological activity of the hormone.

Faced with this ongoing general controversey concerning the use 

of chloramine-T as oxidizing agent in the iodination of biologically 

active molecules, it is important to ascertain whether the radioiodination 

method employed in this study is adequate for the production of labelled 

IgG species for use in the in vitro rat yolk-sac system. In this 
context, the recent contribution of Opresko et̂  al. (1980) to the 

controversy merits special mention. These authors labelled proteins 

(vitellogenin, bovine serum albumin and X. laevis serum proteins lacking

albumin) by a chloramine-T method modified from that of Greenwood
125et al_. (1963). When incubating these I-labelled proteins with

Xenopus laevis oocytes they found that although the uptake rates of

the proteins were not altered, the rate of protein degradation was
3abnormally high as compared with that of H-labelled counterparts.

In studies like the present one, that are concerned with the metabolic

fate of labelled proteins, such an effect of chloramine-T on radio-

labelled proteins would make any experimental findings unreliable.

But, from the paper of Opresko et̂  a_l. (1980), it is interesting to

note that these workers used a very high chloramine-T concentration.

Their final concentration of chloramine-T in the labelled protein

solution was 390yg/ml, which compared with 285 yg/ml for the "Strong"
125and 28.5 yg/ml for the "Normal" and "Mild" I-labelled IgG preparations 

used here. It is possible that this very high level of chloramine-T
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present in the radioiodination medium causes the observed effects.

This suggestion is supported by the findings of McConahey & Dixon (1966). 

These authors state that the method of Greenwood e_t al_. (1963), which 

was also used by Ospresko et al. (1980), involves too great a chloramine-T 

concentration, resulting in greater breakdown of molecules as judged by 

the in vivo half-lives of the iodinated proteins (40% of the bovine serum 

albumin injected, i.v., into rabbits was immediately eliminated). When 

a lower chloramine-T concentration (comparable to that used in this 

study) was used together with a longer reaction time, they still achieved 

the same labelling efficiency but did not observe detrimental effects 

on radioiodinated proteins. In the present study, the degree of molecular 

breakdown in rat yolk-sac cells was estimated in reincubation experiments, 

and the observation that the higher chloramine-T concentration does not 

cause the percentage of IgG molecules that are degraded to increase 

as compared to the "Mild" and "Normal" preparations, suggests that even 

this higher chloramine-T concentration is still below a level critical 

for molecular damage.

The particular concern of the current study is to ensure that the 

part of the molecule that ensures protection of the molecule from 

lysosomal attack, on association with the yolk-sac tissue, remains

intact. Judging by the TCA-insoluble release during reincubation
. 125studies, a great percentage of even the "Strong" I-labelled IgG

is released in an undegraded form, having been protected from proteolytic

attack. Sonoda & Schlamowitz (1972) present evidence that in the 
125I-labelled IgG molecule the main bulk of radioiodine is on the Fab 

region and thus the Fc region, which is believed to be responsible for 

specific binding during transport through the foetal tissue (Brambell,

1966.Morgan, 1964), is more likely to remain in its native state.

For the remainder of the work reported in this thesis, however,



65.

the "Normal" labelling procedure was adopted, as it corresponds closely 
with the conditions regarded by other workers as "ideal". A worthwhile 

series of experiments to help resolve the controversy regarding 

chloramine-T methods of radiolabelling would have been an investigation 

of the effects of other different radioiodination methods on IgG behaviour 

in this in vitro rat yolk-sac system. An equivalent project has 

previously been carried out by Hemmings et al. (1974), using suckling- 

rat and mouse gut as the model system for physiological uptake. In 

the present work, however, such an investigation has been disregarded 
in favour of more physiologically relevant studies (Chapter 5).

3.4.2 Effects of formaldehyde- and urea-treatments subsequent to
125labelling, on the fate of I-labelled rat IgG in the rat 

yolk sac in vitro

The interpretation of the results of uptake studies using formalde-
125hyde- and urea-treated I-labelled IgG has to be somewhat tentative

because of the lack of full sets of experimental data. Nevertheless,

they clearly stand in strong contrast to experimental data in which 
125the E.I. of I-labelled BSA was determined after the protein had been

125subjected to different chemical treatments. Treatment of I-BSA 

with either dilute acid, urea or formaldehyde caused up to a 20-fold 
increase in the E.I. (Moore et al., 1977), which was explained in terms 

of loss of helical content and a subsequent unmasking of moieties in the 

molecule that bind to the yolk-sac endodermal cell membrane. On the 

other hand a decrease in the rate of endocytic uptake of a molecule 

after, especially, formaldehyde-treatment, is in keeping with another 
effect that formaldehyde is known to exert, namely polymerisation of 

proteins (Meyers & Hardman, 1971; Galembeck <it al., 1977). Such 

formation of protein aggregates has been associated with alteration of 

the endocytic properties of the protein recognition sites involved in
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adsorption of the protein to the plasma membrane; the recognition sites

possibly becoming sheltered within the interfacial region between
monomers (Livesey & Williams, unpublished data). However, using the

in vitro yolk-sac incubation system with simple proteins as substrates,

Livesey & Williams (1981) also made the observation that formaldehyde 
125treatment of I-labelled insulin, lysozyme and ribonuclease decreased

the E.I. of these proteins, though for a reason other than polymerisation.

These workers provided evidence of the presence of at least two classes

of receptors on the rat yolk sac that bind hydrophobic and basic groups
respectively (Livesey & Williams, 1981). In their native state

ribonuclease and lysozyme are basic molecules and insulin is hydrophobic,

and hence both classes of molecules have a great affinity for the respective

yolk-sac membrane binding sites. Regions of the protein that are

responsible for adsorption to these classes of binding site are likely
to be destroyed by formaldehyde treatment, thereby decreasing the E.I.

Serum albumin, on the other hand, carries a negative charge so has a low

rate of endocytosis in its native state, but formaldehyde-treatment

causes unmasking of recognition sites with a subsequent rise of the
125E.I. (Moore et̂  al_., 1977). I-labelled IgG seems to fall between

those two extremes of BSA and simple proteins so that neither urea nor 

formaldehyde have a significant net effect on the rate of uptake of 

the molecule .
125The extent of enzymatic breakdown of chemically-treated I-

labelled IgG in the rat yolk sac was investigated in the reincubation

studies. The results presented here can be discussed more conclusively

than the uptake studies, since each experiment was replicated at least
125six times. Compared with controls, treating I-IgG with urea seems 

to have no effect on the release patterns of this molecule from rat yolk 

sacs in vitro subsequent to capture. Formaldehyde-treatment, on the
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other hand, alters the release pattern of I-IgG considerably, both

in the presence and absence of calf serum. Unlike the untreated control
molecule, which shows at least 40% of the total radioactivity to be

released in a TCA-insoluble form, urea- and formaldehyde-treated 
125I-labelled IgG are released mainly in the TCA-soluble form. [The

bulk, 80%, of the released radioactivity from formaldehyde-treated
125 125I-IgG is acid-soluble, a finding that resembles the fate of I-

labelled BSA in rat yolk sacs (see Chapter 2, Figure 2.3)]. It would

appear that formaldehyde affects either the overall conformation of the
molecule or affects that part of the IgG molecule responsible for

ensuring its protection from degradation during transport through the

yolk-sac endodermal cells. The notion of such a mode of action of

formaldehyde in modifying important functional sites of a protein, can

be supported in the literature. Thus Bizzini & Raynaud (1974), in a study

of the mechanism of detoxification of protein toxins by formaldehyde,

suggested that formaldehyde acts on the e-amino groups of lysine

residues and on other functional parts of the tetanus toxin (i.e. amide,

guanidyl, imidazol, phenol and indol groups). Similarly, Feeney
(1975) suggested that formaldehyde reacts with amino groups of

amino acids. The reaction is considered to proceed to a dihydroxymethyl

derivative by the addition of another molecule of formaldehyde to the

hydroxymethyl already formed in the initial reaction step (Meens &

Feeney, 1971) . Although the action of formaldehyde on I-IgG may

be specific (e.g. affecting the CH1-CH2 domain of the IgG molecule) it

is the Fc part of the molecule that has been suggested as the region

that binds to specific yolk-sac membrane receptors and so prevents

degradation in either the Brambell or the Wild mechanism (Schlamowitz,

1979). A general unfolding of the IgG molecule, as was observed for

formaldehyde-treated albumin by Moore et al. (1977), could have the

125
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effect of indirectly modifying the Fc region of IgG, rendering it unable

to bind to specific membrane receptors. This suggestion, that the

action of formaldehyde is not very specific is supported by another
125observation in the present study. When using untreated I-IgG

as substrate, the total amount of substrate released from the rat yolk

sac subsequent to endocytic capture is much greater in medium 199 alone than

in serum-containing medium. In contrast to this, the total amounts of
125radioactivity released, following uptake of formaldehyde-treated I-IgG 

into rat yolk sacs are roughly equal in the presence and absence of serum 
(Table 3.4). This rather atypical behaviour, that has not been observed 
for any other protein (treated or untreated) suggests that the IgG molecule 

has been sufficiently denatured to not be "recognized" by any specific 
receptor at all. Accordingly, no competition should occur between the 

IgG contained in the serum and the radiolabelled formaldehyde-treated rat 

IgG.

3.4.3 Some aspects of future work

With formaldehyde and urea, a more general and non-specific denatura- 
tion of the IgG molecule has probably been achieved. It would be 

interesting to pursue the line of chemical treatment further, concentrating 

on agents that are known to have a more specific action on proteins and 

especially on different domains of the IgG molecule. Apart from Hemmings 

& Williams (1977) all workers concerned with the cellular aspect of IgG 

transport across cells, see the necessity of an initial step inhibiting 

selective binding to a specific membrane receptor for IgG to be protected 

against degradation (Brambell, 1966; Jones & Waldmann, 1972; Elson et al., 

1975; Rodewald, 1976). The part of the IgG molecule responsible for 

this binding has been shown to be the Fc region (Brambell, 1966; Morris, 

1964). In this context it would be interesting to find a chemical agent 

that had a specific action on a part of this Fc region and to observe
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its effect on endocytosis and release in the in vitro rat yolk-sac 

system. This could lead to a clearer definition of the moiety within 
the Fc region responsible for binding to yolk sac membrane receptors.

In other studies (Stanworth & Turner, 1973; Ellerson e£ al_., 1976; 
Stanworth & Stewart, 1976) the Fc fragment has been broken down to 

smaller fragments so that it appears that some biological functions are 

regulated by either the CH2 or the CH3 domain independently ( Yasmeen 

et al., 1976; Hunneyball & Stanworth, 1976), while other biological 

processes demand the integrity of the Fc fragment. For example,

Guyer £t̂  al. (1976) demonstrated that in the mouse intestine no sub­
fragment of the Fc region showed any binding. More importantly,

McNabb ejt al_. (1976) found that, whereas the Fc fragment of human IgG 
is transported across the human placenta, its CH2 and CH3 subfragments 

are not. Here the integrity of the Fc fragment seems to be needed for 

recognition of the molecule by membrane receptors. But in all cases 

the precise nature of thè receptor interaction is not known. Ghose 

(1972) presented evidence that the Fc region contains some carbohydrate 
(in the CH2 zone) and Deisendorfer e_t al. (1976) showed that this carbohy­

drate moiety is firmly attached to the CH2 portion, covering the C face of 

the molecule. Whether this carbohydrate moiety is involved in membrane 

binding could be tested in our system by treating the IgG molecule with 

some specific hydrolases prior to endocytosis. Also attached to some 
subclasses of IgG is an oligosaccharide moiety on the Fc part (Hinrichs 

& Smyth, 1970), the function of which could be tested by treatment of 

the molecule with periodate or another carbohydrate splitting agent.

The possibilities of chemical treatments are virtually unlimited 

as Argawal & Iloore (1979) have demonstrated with albumin as the native 

substrate, and such an investigation could form an entire and separate 

project. In this present study, however, a different but related line



70.

of investigation was pursued instead, which seemed to be of greater 

physiological significance: the comparison of homologous and heterologous 

IgG molecules with regard to their endocytic and catabolic properties 

(see Chapter 5). The structural differences between these molecules 

are probably much smaller and more specific than those that can be induced 

by chemical modifiers, but the differences in the degree of transport 

across cells or the degree of enzymic breakdown are startling according 

to in vivo studies (Koch et al., 1967; Brambell, 1966, 1970; Halliday, 
1957) .

In summary, the following conclusions have been reached in this 
chapter:

1) In the range of conditions studied, differential exposure of 
125I-iodide and homologous IgG to the oxidizing agent chloramine-T

during radioiodination causes little or no variation in a) the rate of

endocytic capture and b) the rate of breakdown subsequent to capture 
125of the I-labelled IgG in the rat yolk sac in vitro.

1252) Chemical treatment of homologous I-labelled IgG by either urea

or formaldehyde does not induce great variations in either the Endocytic 

Index or the Tissue-Accumulation Rate.

1253) Urea-treatment of homologous I-labelled IgG has no effect on

the degree of degradation of the substrate in the rat yolk sac in vitro.

1254) Formaldehyde treatment of homologous I-IgG causes the molecule 

to be almost entirely degraded by the rat yolk sac in the course of the 

in vitro incubation, rather than be released again intact from the 

yolk-sac endodermal cells.

5) Further studies investigating the use of other labelling regimes 

or other more specific chemical alterations of the IgG molecule were 

abandoned in favour of a more physiologically relevant line of pursuit.



CHAPTER FOUR

The Effects of Temperature and Metabolic 

Inhibitors on the Fate of Homologous IgG

in Rat and Rabbit Yolk Sacs
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4.1 INTRODUCTION

In the previous chapters it was shown that iri vitro the rat and
125rabbit yolk sacs treat I-labelled homologous IgG atypically as

. . 125compared with other proteins, in that not all of the I-labelled form

of this protein is degraded after the protein becomes associated with

the tissue. These observations are compatible with the in vivo findings

that homologous IgG is transported intact across the rabbit yolk-sac

splanchnopleur (Brambell et̂  al., 1951 ) and the rat visceral yolk

sac (Mayersbach, 1958). It is thus desirable to try to further

investigate the cellular mechanism(s) involved in IgG transport by using
the in vitro systems developed in our laboratory. Before describing

such studies, however, it is important to examine critically the

limitations of the findings from the yolk-sac incubation systems.

It is possible to attribute the high release from yolk-sac tissue
125of TCA-insoluble radioactivity derived from I-labelled IgG to the protein

stimulating a general fusion of secondary lysosomes and/or phagosomes

with the plasma membrane, resulting in the release of the molecules

contained in these classes of vesicle. This explanation is rendered

unlikely, however, by the observation of Williams & Ibbotson (1979) that

tracer quantities of unlabelled IgG had no effect on the rate of release 
125of I-labelled PVP from rat yolk sacs previously loaded with this

non-degradable macromolecular marker that accumulated in the lysosomal

compartment. But, a more serious criticism of such observations is that

neither uptake nor release studies give conclusive evidence that the

substrate has actually been internalized by the yolk-sac endodermal cells
125before release from the tissue. It is possible that the I-IgG 

simply adsorbs to the surface of the tissue and during reincubation slowly 

desorbs into the medium. A similar point, concerning the general 

mechanism of pinocytosis in mammalian cells was made earlier in a different
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context by Ryser (1968) when he drew attention to the necessity of
distinguishing between adsorption and internalisation. Thus, it is

highly desirable to obtain more direct evidence to distinguish clearly
between tissue adhesion and internalisation in the system used in this
study, and to establish that nearly all of the tissue-associated 
125I-labelled IgG is truly internalized by the rat and rabbit yolk sac 

in the course of an incubation period.

Ryser (1968) claimed that one method to distinguish between the 

two possible processes is to modify the temperature of the incubation 

medium. He claimed that adsorption is expected to be essentially 

temperature independent, whereas endocytic internalization is not. An 

inhibition of pinocytosis at lower temperatures has been reported for 

a variety of cell types and substrates: (Steinman et al., 1974: horse­

radish peroxidase in mouse L-cells; Bowers & Olszewski, 1972: radioactively- 

labelled albumin, insulin, leucine and glucose in Acanthamoeba; Walker 

et al., 1972: horseradish peroxidase in gut-sacs of neonatal and adult 

rat; Munthe-Kaas, 1977: colloidal gold in Kupffer cells; Chapman-Andresen

& Holter, 1964: glucose and albumin in Amoeba Chaos Chaos; Fridhandler 
14& Zipper, 1964: [ Cihaemoglobin in in vitro rat yolk sacs. Also,

Duncan & Lloyd (1978) found support for Ryser's suggestion by finding

that in the rat yolk sac the accumulation of I-labelled PVP is strongly

temperature dependent.) Low temperature probably decreases the supply
of metabolic energy necessary for membrane invagination during endocytosis

and also decreases the mobility of membrane constituents, especially as

the transition temperature of membrane lipids is approached. Neither
effect would be expected to strongly affect adsorption of the substrate

to the plasma membrane. Duncan & Lloyd (1978) found that 20°C was
125the temperature below which pinocytosis of I-PVP in the 17.5-day 

rat yolk-sac system was almost completely inhibited. This observation 

was used in the current work as the basis of investigating the effect of
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lowering the incubation temperature (to 10°C and 15°C) on the subsequent 
125release of I-labelled homologous IgG from rat and rabbit yolk sac. If 

125adsorption of I-labelled IgG to the yolk-sac surface rather than

endocytic internalisation is to account entirely for the observed high
release of substrate into the reincubation medium, the same extent of

release and the same pattern of release would also be expected under

conditions in which membrane invagination is inhibited. If, on the other
125hand, prior to release I-labelled IgG is taken up by endocytosis into

rat and rabbit yolk sacs in vitro, lowering the temperature of the

incubation medium to below 20°C during the "loading" phase should severely

inhibit release of radioactivity from yolk sacs during the reincubation

phase. Yet another possibility that must be considered is that only a
125fraction of the tissue-associated I-labelled IgG (i.e. that which is 

degraded by the yolk sac) is internalized, whereas the remainder of the 

molecules strongly adsorbs to the plasma membrane, but desorbs slowly 

during the reincubation. Such an effect would permit the majority of 

the observations of Williams & Ibbotson (1979) to be explained entirely 

in terms of the well-established catabolic capacity of rat yolk-sac 

tissue towards proteins and enable the transcellular transport inter­

pretation of their observations to be completely discarded.

If the metabolic inhibitor, 2,4-dinitrophenol, rather than low 

temperature is used to inhibit pinosome formation in the rat and the 
rabbit yolk sac in vitro, similar results would be predicted. Moreover, 

the effect of low temperature on cells and tissues is not fully understood, 

but that of 2,4-dinitrophenol is more specific. This compound is known 
to decouple oxidative phosphorylation thus affecting the energy supply 

for cytoskeletal action and it has been used to inhibit pinocytosis

and phagocytosis in a number of cell types. For example, Munthe-Kaas
198(1977) showed inhibition of uptake of colloidal [ Aulgold into
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Kupffer cells by 2,4-dinitrophenol, and Duncan & Lloyd (1978) demonstrated 
. . 125the inhibition of uptake of I-labelled PVP into 17.5-day rat yolk sacs 

incubated in vitro in a medium containing calf serum (10%, v/v) and

2.4- dinitrophenol at a concentration of 50 yg/ml. Since this present 

work involves the use of serum-free medium, the effective concentration 

of 2,4-dinitrophenol had to be re-established for such a medium (since 

it may bind to serum proteins) before determining release patterns of 

yolk sacs "loaded" with I-labelled IgG in the presence of this 

inhibitor. For this purpose, the general experimental practice of
Duncan & Lloyd (1978) was followed and 17.5-day rat yolk sacs were

. . 125incubated in serum-free medium in the presence of I-PVP and

2.4- dinitrophenol at one of three different concentrations. Uptake 
data were reported in the form of Endocytic Indices.

The effect of another metabolic inhibitor, ammonium ions, was also 

investigated. The effects of ammonium ions on yolk sacs have been

studied and are known to be two-fold; Livesey at al_. (1980) showed that
. . . . . . 125ammonium ions both strongly inhibit the endocytosis of I-labelled

PVP in rat yolk sacs irx vitro in addition to the more widely reported

effect of interference with the intralysosomal degradation of internalized

proteins. The latter effect has been observed in a variety of cell
types (Tolleshaug et al., 1977; Carpenter & Cohen, 1976; Hopgood et al.,

1977; Seglen & Reith, 1976). The first effect makes it possible to use
ammonium ions in much the same way as 2,4-dinitrophenol, that is to

inhibit substrate internalisation in rat yolk sacs at 37°C, without

affecting membrane binding, and studying subsequent substrate release.
In summary, this chapter poses one central question. Is all the 

125homologous I-labelled IgG that becomes associated with rat and rabbit 

yolk sacs in vitro endocytically ingested, or does it merely adhere to 

the external surface of the plasma membrane thereby giving the misleading 

impression that IgG is protected against degradation after endocytic capture
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by these tissues?
In an attempt to answer this important question, the effect ori 

inhibition of endocytic uptake, while leaving substrate: membrane­
binding unhindered, was investigated. Inhibition of uptake was 

induced by: a) low temperature, b) 2,4-dinitrophenol and c) ammonium 

ions.
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4.2 METHODS

4.2.1 Exocytosis of homologous I-labelled IgG by rat and rabbit 
yolk sacs that had previously been Incubated with the substrate 
at different incubation temperatures in serum-free medium 199

The general method outlined in Section 1.12 was followed. Either 

17.5-day rat yolk sacs or 24-day rabbit yolk-sac pieces were incubated for 

2h in medium 199 containing homologous I-labelled IgG (10 yg/ml). 

Incubation temperatures during the uptake phase were 15°C, 20°C, 25°C 

or 37°C for rat yolk sacs and 10°C, 20°C or 37°C for rabbit yolk sacs. 
Yolk-sac tissues were then rinsed in warm (37°C) substrate-free medium 

199 and reincubated in fresh medium 199 at 37°C. Aliquots of medium 
were removed at 15 min intervals during the 3h reincubation period (for full 
method see Section 1.12). The total amount of radioactivity released 

and the amount of the TCA-soluble radioactivity released were each 

determined (see Section 1.6) and from these data the amount of acid- 

insoluble radioactivity released was calculated (see Section

1 . 12) .

1254.2.2 Uptake of I-labelled PVP by rat yolk sacs, incubated in serum- 

free medium 199 or in medium 199 containing calf serum, in the 

presence of 2,4-dinitrophenol
125I-labelled PVP was used as substrate at a concentration of 2yg/ml, 

and 17.5-day rat yolk-sac incubations were set up as described in full 

in Sections 1.2 and 1.7. The metabolic inhibitor 2,4-dinitrophenol was 

added to incubation flasks lh before addition of the substrate at the 
concentration of 10, 20 or 40 yg/ml in serum-containing medium and at 

the concentrations of 5, 10, 20, 25, 40 or 50 yg/ml in serum-free 

medium 199. Tissue incubations were terminated at regular intervals up 

to 6.5h and assays of the amount of radioactivity contained in the medium

125
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and in the yolk sacs were performed as previously described (Sections 
1.4 and 1.5). Uptake of substrate was plotted against time for each set 

of data and the Endocytic Index derived (see Section 1.9 for details of 
calculation).

4.2.3 Exocytosis, from rat yolk sacs reincubated in serum-free medium
125199 containing 2,4-dinitrophenol, of I-labelled PVP accumulated 

by prior incubation in serum-free medium 199

The general method outlined in Section 1.12 was followed using 
125I-labelled PVP (10 yg/ml) as substrate. The initial incubation period 

of the 17.5-day rat yolk sacs in medium 199 in the presence of the substrate 
was 3h, and 2,4-dinitrophenol was added to the reincubation medium at a 

concentration of 10 yg/ml.

1254.2.4 Exocytosis from rat and rabbit yolk-sac tissue of I-labelled 

homologous IgG ingested from serum-free medium 199 containing

2,4-dinitrophenol

The general method outlined for rat and rabbit yolk sacs in Section

1.12 were followed. Using rat yolk sacs, 2,4-dinitrophenol (5, 10,

25, or 50 yg/ml) was added to the medium during the incubation stage lh 
. 125before the addition of the I-labelled rat IgG (10 yg/ml). The

total incubation period was 3h instead of 2h. Using rabbit yolk sacs,
2,4-dinitrophenol (10 or 25 yg/ml) was added at the same time as the 

125substrate, I-labelled rabbit IgG. The remainder of the procedure 

follows the general methods outlined earlier (see Section 1.12).

1254.2.5 Uptake of I-labelled rat IgG by rat yolk sacs incubated in 

serum-free medium 199 containing ammonium ions

Rat yolk sacs (17.5-day) were incubated in serum-free medium 199 as

described in Section 1.2. Ammonium chloride (30mM or 5mM) was added to
125the incubation medium together with the substrate, I-labelled rat IgG
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(2 yg/ml). Yolk-sac incubations were then terminated at regular intervals 

up to 6.5h and assays of the amount of radioactivity contained in the 

medium and in the yolk sacs were performed (as outlined in Sections 1.4 

and 1.6). Uptake of substrate was plotted against time for each set of 
data and the Endocytic Index derived (see Section 1.10 for details of 
calculation).

4.2.6 Exocytosis, from rat yolk sacs reincubated in serum-free medium
125199 containing amnonium ions, of I-labelled rat IgG accumulated 

by prior incubation in serum-free medium 199

The general method outlined in Section 1.12 was followed and 17.5-
day rat yolk sacs were incubated in serum-free medium 199. Three

different regimes were adopted for exposing the tissue to anmonium ions.

1) Ammonium chloride (30mM or 5mM) was added to the "loading"-phase
125medium at the same time as I-labelled rat IgG (10 yg/ml). After

washing, reincubation was in fresh medium 199 and samples were removed

at regular intervals up to 3h. 2) The initial 2h incubation period
125of the rat yolk sacs was in serum-free medium 199 containing I-labelled 

rat IgG (10 yg/ml). After washing, yolk sacs were reincubated in 

fresh medium 199 containing ammonium chloride (30mM or 5mM). Samples 

of medium were removed at regular intervals, taking care to replace 

the removed ammonium ions when replenishing the medium in order to 

maintain a constant concentration of anmonium ions. 3) Ammonium ions 

(30mM or 5mM) were present during both, the "loading" and the 

reincubation-phases.
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4.3 RESULTS

4.3.1 The effect of low temperature on the subsequent release of
125homologous I-labelled IgG from rat and rabbit yolk sacs

Duncan & Lloyd (1978) found that lowering the temperature of the

medium to 20°C or below caused a marked decrease in the Endocytic Index 
125of I-PVP m  17.5-day rat yolk sacs. Uptake was reported to be 

inhibited to more than 80% at 20°C. This temperature gave a guideline 

to the temperature range (10-37°C) used in the current study. As 
might have been expected, the greatest effect on the substrate release 

patterns was observed when using the lowest temperature, 10°C in the 

rabbit and 15°C in the rat yolk sacs (see Figures 4.1 and 4.2). At 
these "loading" temperatures all release on subsequent incubation at 

37°C is effectively abolished. The total amount of radioactivity 

released from yolk sacs does not appear to rise linearly with temperature. 

Figure 4.1, which represents the release of I-labelled IgG from rat 

yolk sacs, shows a sharp rise of radioactive release between 20°C and 

25°C. By the latter temperature, release resembles that of the control 

incubation at 37°C. For rabbit yolk sacs it is more difficult to come 

to any conclusion concerning linearity of inhibition with temperature 

because experiments were only performed at three different temperatures 

(Figure 4.2). The relative amounts of TCA-soluble and TCA-insoluble 

species derived from homologous I-IgG stay the same throughout the 

temperature range tested (see Figures 4.1 and 4.2). In particular, no 

increase was observed in the relative amount of TCA-insoluble activity 

released on reincubating those tissues that were "loaded" at lower 
temperatures.

4.3.2 The effect of 2,4-dinitrophenol on the uptake and release of
X 2 3I-labelled PVP in rat yolk sacs in vitro

In order to use 2,4-dinitrophenol as an inhibitor of substrate
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internalisation during the uptake phase of a reincubation experiment, a

concentration had first to be established at which this metabolic

inhibitor would be effective in inhibiting endocytosis without being

cytotoxic. Duncan & Lloyd (1978) found that in medium 199 containing
12510% (v/v) calf serum, uptake of I-PVP was completely inhibited at a

concentration of 50 yg/ml. In serum-free medium 199 the concentration

dependence had to be established. Figure 4.3 shows that in serum-
125containing medium the uptake of I-labelled PVP is inhibited almost

totally by a 2,4-dinitrophenol concentration of 20 yg/ml or more,

supporting the findings of Duncan & Lloyd (1978). In serum-free medium

199, a lower concentration of 2,4-dinitrophenol (10 yg/ml) achieved the
125same effect, while 5 yg/ml lowered the E.I. of I-PVP by 50%. In

reincubation studies it was therefore decided to use 2,4-dinitrophenol
concentrations of 10 yg/ml and higher. The possibility that 2,4-

dinitrophenol may be cytotoxic to rat yolk sacs, was tested by determining
125its effect on the release, over a period of time, of I-labelled PVP 

from tissues that had previously accumulated this compound. During this 

time 2,4-dinitrophenol was present at a constant concentration of 10 yg/ml. 

From Table 4.1 it appears that the presence of the metabolic inhibitor 

caused no difference in the release pattern between 15 and 180 min.

Cell death would be expected to lead to enhanced release of this marker 

(see Livesey £t al., 1980).

4.3.3. The effect of 2,4-dinitrophenol, present during the uptake phase,
125on the subsequent release of homologous I-labelled IgG 

from rat and rabbit yolk-sac tissue

Having established the concentration of 2,4-dinitrophenol effective 

for inhibition of pinocytic uptake in rat yolk sacs when incubated in 

serum-free medium, the compound was added at this and higher concentration 

to the medium in which rat and rabbit yolk sac were incubated during the



81.

uptake phase. From Figures 4.4 and 4.5 it appears that in both rat 
and rabbit tissues the subsequent release of homologous I-labelled 

IgG was reduced considerably when the incubation mdium contained 10 ug/ml 

or more of 2,4-dinitrophenol during the "loading" phase. For rat yolk 
sacs the decrease of substrate release is greater than for rabbit yolk 

sacs (at 10 ug/ml 2,4-dinitrophenol 89% and 72% of controls, respectively). 

This difference may arise from slight differences in the experimental regimes. 

In the rat yolk-sac incubations 2,4-dinitrophenol was added lh before the 

substrate, whereas in the rabbit yolk-sac incubations both were added 

simultaneously. This difference resulted from a desire to keep the 

total incubation time of rabbit yolk sacs to a minimum because of the 

relatively lower period of survival of this tissue in vitro (see also 
Chapter 2). The relative percentage of TCA-soluble and -insoluble 

release remained constant for all 2,4-dinitrophenol concentrations 

tested in both rat and rabbit incubations (see Figures 4.4 and 4.5).

1254:3.4 Effect of ammonium ions on the uptake of I-labelled rat 

IgG in rat yolk sacs

Table 4.2 shows the Endocytic Indices and Tissue-Accumulation Rates 
125of I-labelled rat IgG in rat yolk sacs incubated in serum-free 

medium 199 in the presence of ammonium chloride at a concentration of 

either 5mM or 30mM. While both the Endocytic Index and the Tissue- 

Accumulation Rate are markedly reduced by the lower ammonium ion 
concentration, as compared with the control values, total inhibition 

of endocytosis can only be achieved by increasing the ammonium ion 
concentration to 30mM. It may be noted that, relative to control 

tissue, the lower ammonium-ion concentration (5mM) decreases the E.I. 

more strongly than it decreases the T.A.R. (67% vs. 39%; see Table 4.2).
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4.3.5 The effect of ammonium ions, present during uptake of substrate,
125on the subsequent release of I-labelled rat IgG from rat yolk 

sacs

In the exocytosis studies, the findings are rather complex. When
ammonium chloride is present at a concentration of 30mM when yolk sacs are 

125loaded with I-labelled IgG uptake is inhibited and no appreciable 

amounts of radioactivity are released into the reincubation medium 

(Figure 4.6); these findings are expected from the data reported in 

Table 4.2. This effect is virtually the same as that observed when 

ammonium ions are present in the medium both during "loading" and during 

the reincubation period. However, when ammonium ions (30mM) are present 

in the reincubation medium only, and endocytosis is allowed to proceed 

unhindered during the "loading" phase, radioactivity is released in both 

TCA-soluble and TCA-insoluble forms, following a similar general pattern 

to the control, but with the amount of acid-solubles reduced by some 

30%-40%; the total amount of radioactivity released is decreased to a 

similar extent.

When ammonium chloride (5mM) is present during only the uptake phase,
125the pattern of subsequent release of I-labelled IgG does not differ 

noticeably from that of the control (Figure 4.7). Adding the inhibitor 

during the release phase as well, reduces total, TCA-soluble and TCA- 
insoluble release. Also, under these conditions only 59% of the total 

amount of radioactivity associated with the yolk sac at the beginning of 

the reincubation period is released, whereas for the control culture the 

value is 86%. The same effect, i.e. a lower total release of radio­
activity, is also observed when ammonium ions (5mM) are present during 

only the exocytosis phase. At the same time the release of acid-solubles 

is decreased, below even the level of acid-insolubles. These effects 

are compatible with a decrease in the production of acid-solubles in the 
presence of this lower concentration of the base.
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d u r i n g  t h e  " l o a d i n g "  o f  r a t  y o l k  s a c s  w i t h  ^ I - l a b e l l e d  

r a t  I g G  o n  t h e  s u b s e q u e n t  r e l e a s e  o f  t h i s  s u b s t r a t e  a t  3 7 ° C

1 7 . 5 - d a y  r a t  y o l k  s a c s  w e r e  f i r s t  i n c u b a t e d  f o r  2 h  i n  s e r u m -
1 2 5

f r e e  m e d i u m  1 9 9  i n  t h e  p r e s e n c e  o f  ^ I - l a b e l l e d  r a t  I g G  

( 1 0 y w . g / m l ) .  T h e  t e m p e r a t u r e  o f  t h e  m e d i u m  w a s  1 5 ° C ,  2 0  C ,  

2 5 ° C  o r  5 7 ° C .  F o l l o w i n g  w a s h i n g ,  y o l k  s a c s  w e r e  r e i n c u b a t e d  

i n  f r e s h  m e d i u m  1 9 9  a t  3 7 ° C ,  a n d  t h e  r e l e a s e  o f  r a d i o a c t i v i ­

t y  w a s  m o n i t o r e d  u p  t o  3 h  ( s e e  S e c t i o n  4 . 2 . 1  f o r  d e t a i l s ) .

T o t a l  r a d i o a c t i v i t y  ---------A -----------

T C A - s o l u b l e  r a d i o a c t i v i t y  -------- # -------------

T G A - i n s o i u b l e  r a d i o a c t i v i t y  -------- O ----------  r e l e a s e d  a t  3 h

o f  r e i n c u b a t i o n  t i m e  a r e  s h o w n .  A l s o  a  m e a s u r e  i s  g i v e n  o f  

t h a t  a m o u n t  o f  s u b s t r a t e  a s s o c i a t e d  w i t h  t h e  y o l k  s a c  a t

t h e  b e g i n n i n g  o f  t h e  r e i n c u b a t i o n  p e r i o d ------------- x ------------ .  T h e

v a l u e s  s h o w n  a r e  m e a n s  ( +  S . D . )  o f  6 ( 1 5 ° C ) ,  9  ( 2 0 ° C ) ,

1 2  ( 2 5 ° C )  a n d  '13 ( 3 7 ° C )  s e p a r a t e  e x p e r i m e n t s  p e r f o r m e d

f o r  e a c h  i n c u b a t i o n  t e m p e r a t u r e .
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d u r i n g  t h e  " l o a d i n g "  o f  r a b b i t  y o l k  s a c s  w i t h  ^ I - l a b e l l e d  

r a b b i t  I g G  o n  t h e  s u b s e q u e n t  r e l e a s e  o f  t h i s  s u b s t r a t e  a t  5 7 ° C

2 4 - d a y  r a b b i t  y o l k - s a c  p i e c e s  w e r e  f i r s t  i n c u b a t e d  f o r  2 h  i n
1 2 5s e r u m - f r e e  m e d i u m  1 9 9  i n  t h e  p r e s e n c e  o f  ^ I - l a b e l l e d  r a b b i t  

I g G  ( 1 0 ^ M . g / m l ) .  T h e  t e m p e r a t u r e  o f  t h e  m e d i u m  w a s  1 0 ° C ,  2 0 ° C  

o r  37 ° C *  F o l l o w i n g  w a s h i n g ,  y o l k - s a c  p i e c e s  w e r e  r e - i n c u b a t e d  

i n  f r e s h  m e d i u m  1 9 9  a t  3 ' 7 ° C ,  a n d  t h e  r e l e a s e  o f  r a d i o a c t i v i t y  

w a s  m o n i t o r e d  u p  t o  $ h  (  s e e  S e c t i o n  4 . 2 . 1  f o r  d e t a i l s ) .  'T h e

a m o u n t s  o f  t o t a l  r a d i o a c t i v i t y  ------- a -------- , T G A - s o l u b l e

r a d i o a c t i v i t y  --------• ------- a n d  T C A - i n s o l u b l e  r a d i o a c t i v i t y  —  O ------

a r e  s h o w n .  A l s o  a  m e a s u r e  i s  g i v e n  o f  t h a t  a m o u n t  o f  s u b s t r a t e  

a s s o c i a t e d  w i t h  t h e  y o l k  s a c  a t  t h e  b e g i n n i n g  o f  t h e  r e i n c u ­

b a t i o n  p e r i o d ---------x -------- . T h e  v a l u e s  s h o w n  a r e  m e a n s  ( +  s . u . )

o f  6  s e p a r a t e  e x p e r i m e n t s  p e r f o r m e d  f o r  e a c h  i n c u b a t i o n  

t e m p e r a t u r e .



Table 4.1 Release of____I-labelled PVP from rat yolk sacs
reincubated in the presence of 2,4-dinitrophenol

Rat yolk sacs (17.5-day) were first incubated for 2h in serum- 
free medium containing 125i-iabelled PVP (10 pg/ml). Following 
washing, they were reincubated in fresh medium 199 containing
2,4-dinitrophenol (10 yg/ml). The release of radioactivity from 
yolk sacs was monitored for 3h (see Section 1.12 for details). The 
equivalent control experiments, in which ^25j_iabeiie(j pvp release 
was in medium 199 alone for 3h, are reported Section b of this table.

a) Reincubation in the presence of 2,4-dinitrophenol
Values shown are means (± S.D.) of 5 separate experiments

125

Reincubation Substrate release
time (min) /--------------------- ;---*---ng/mg yolk-sac protein percentage

15 8.47 ± 1.73 10.18 ± 0.52
30 8.52 ± 1.66 11.53 ± 1.66
45 9.04 ± 1.93 12.25 ± 2.18
60 9.92 ± 2.02 13.46 ± 2.48
90 10.07 ± 1.16 13.66 ± 0.95

120 10.42 ± 0.80 14.14 ± 0.29
150 10.61 ± 1.23 14.38 ± 0.13
180 11.01 ± 1.64 14.89 ± 1.26

b) Reincubation in medium 199 alone

Values shown are means (± S.D.) of 5 separate experiments

Reincubation 
time (min)

Substrate release
ng/mg yolk-sac protein percentage

15 3.92 + 1.67 3.01 ± 0.88
30 4.27 + 1.62 3.42 + 0.98
45 5.04 + 1.67 3.91 + 0.86
60 5.42 + 2.14 3.84 + 1.05
75 5.42 + 2.09 4.16 + 1.04
90 6.90 + 1.60 5.55 ± 1.96

105 7.24 ± 1.38 5.82 + 1.88
120 7.78 + 1.48 6.23 + 1.88
135 8.03 + 1.31 6.44 + 1.93
150 8.07 + 1.43 6.46 + 1.89
165 8.36 + 1.26 6.73 + 2.02
180 8.77 + 1.08 7.00 ± 1.66
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f i g u r e  4 . 3  e f f e c t  o f  2 . 4 - d i n i t r o p h e n o l  o n  t h e  u p t a k e  o f
1 PS

v I - l a b e l l e d  P V P  i n  r a t  y o l k  s a c s  i n  v i t r o  i n  t h e  p r e s e n c e  

a n d  a b s e n c e  o f  c a l f  s e r u m

1 7 . 5 - d a y  r a t  y o l k  s a c s  w e r e  p r e i n c u b a t e d  f o r  1 h  i n  m e d i u m  199 

c o n t a i n i n g  1 0 # ( v / v )  c a l f  s e r u m  o r  i n  s e r u m - f r e e  m e d i u m  199 

i n  t h e  p r e s e n c e  o f  2 , 4 - d i n i t r o p h e n o l  a t  t h e  c o n c e n t r a t i o n s  

i n d i c a t e d .  ^ I - l a b e l l e d  P V P  w a s  t h e n  a d d e d  a n d  i n c u b a t i o n s  

w e r e  t e r m i n a t e d  a t  r e g u l a r  i n t e r v a l s  u p  t o  6 . 5 h  ( s e e  S e c t i o n

4 . 2 . 2  f o r  d e t a i l s ) .  T h e  g r a p h  r e p r e s e n t s  m e a n  P n d o c y t i c

I n d i c e s  ( +  S . D . )  f o r  s e r u m - c o n t a i n i n g  m e d i u m ------ O ---------a n d  f o r

s e r u m - f r e e  m e d i u m -------• -------- .  F o r  e a c h  c o n c e n t r a t i o n  a n d  m e d i u m

c o n d i t i o n  3 s e p a r a t e  e x p e r i m e n t s  w e r e  p e r f o r m e d .



F i g u r e  4 . 4  E f f e c t  o f  t h e  p r e s e n c e  o f  d i f f e r e n t  c o n c e n t r a ­

t i o n s  o f  2 , 4 - d i n i t r o p h e n o l  i n  s e r u m - f r e e  i n c u b a t i o n  m e d i u m .
"1 PS

d u r i n g  t h e " l o a d i n g "  o f  r a t  y o l k  s a c s  w i t h  ^ I - l a b e l l e d  r a t  

I g G ,  o n  t h e  s u b s e q u e n t  r e l e a s e  o f  t h i s  s u b s t r a t e

1 7 . 5 - d a y  r a t  y o l k  s a c s  w e r e  f i r s t  i n c u b a t e d  f o r  1 h  i n  s e r u m -  

f r e e  m e d i u m  1 9 9  i n  t h e  p r e s e n c e  o f  2 , 4 - d i n i t r o p h e n o l  ( 5 * i O ,

2 5  o r  5 0  g g / m l )  b e f o r e  a d d i t i o n  o f  t h e  s u b s t r a t e  ^ I - r a t  I g G .  

A f t e r  a  f u r t h e r  2 h  o f  i n c u b a t i o n  y o l k  s a c s  w e r e  w a s h e d  a n d  

r e i n c u b a t e d  i n  f r e s h  m e d i u m  199  a l o n e  a n d  t h e  r e l e a s e  o f  

r a d i o a c t i v i t y  w a s  m o n i t o r e d  u p  t o  3 h  ( s e e  S e c t i o n  4 . $ . 2  f o r  

d e t a i l s ) .  T h i s  g r a p h  r e p r e s e n t s  t h e  a m o u n t s  o f  t o t a l  r a d i o ­

a c t i v i t y  ------ A ------- ,  o f  T C A - s o l u b l e  r a d i o a c t i v i t y  ------ • —  a n d

o f  T C A - i n s o l u b l e  r a d i o a c t i v i t y ^ r e l e a s e d  a t  $ h  o f  r e i n c u b a t i o n  

t i m e  f o r  e a c h  2 , 4 - d i n i t r o p h e n o l  c o n c e n t r a t i o n .  A l s o  a  m e a s u r e  

i s  g i v e n  o f  t h a t  a m o u n t  o f  s u b s t r a t e  a s s o c i a t e d  w i t h  t h e  y o l k  

s a c  a t  t h e  b e g i n n i n g  o f  t h e  r e i n c u b a t i o n  t i m e — -*—  . T h e  

v a l u e s  s h o w n  a r e  m e a n s  ( +  S . D . )  f r o m  6  s e p a r a t e  e x p e r i m e n t s  

p e r f o r m e d  f o r  e a c h  2 , 4 - d i n i t r o p h e n o l  c o n c e n t r a t i o n .
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F i g u r e  4 . 5  F f f e c t  o f  t h e  p r e s e n c e  o f  d i f f e r e n t  c o n c e n t r a ­

t i o n s  o f  2 . 4 - d i n i t r o p h e n o l  i n  t h e  i n c u b a t i o n  m e d i u m  d u r i n g  

t h e  " l o a d i n g "  o f  r a b b i t  y o l k  s a c s  w i t h  ^ I - l a b e l l e d  r a b b i t  

I g G  o n  t h e  s u b s e q u e n t  r e l e a s e  o f  t h i s  s u b s t r a t e

2 4 - d a y  r a b b i t  y o l k - s a c  p i e c e s  w e r e  f i r s t  i n c u b a t e d  f o r  2 h  

i n  s e r u m - f r e e  m e d i u m  199  i n  t h e  p r e s e n c e  o f  ^ I - l a b e l l e d  

r a b b i t  I g G  ( 1 0  j j g / m l )  a n d  2 , 4 - d i n i t r o p h e n o l  ( 1 0  o r  2 5  | j g / m l ) .  

F o l l o w i n g  w a s h i n g  y o l k - s a c  p i e c e s  w e r e  r e i n c u b a t e d  i n  f r e s h  

m e d i u m  199  a n d  t h e  r e l e a s e  o f  r a d i o a c t i v i t y  w a s  m o n i t o r e d  

f o r  u p  t o  3 h  ( s e e  ¡ S e c t i o n  4 . 2 . 4  f o r  d e t a i l s ) .  T h e  g r a p h

r e p r e s e n t s  t h e  a m o u n t s  o f  t o t a l  r a d i o a c t i v i t y -------- A ---------  , o f

T C A - s o l u b l e  r a d i o a c t i c i t y ----------# ----------  a n d  o f  T C A - i n s o l u b l e

r a d i o a c t i v i t y  ----------< > ---------  r e l e a s e d  a t  3 h  o f  r e i n c u b a t i o n

t i m e . A  m e a s u r e  i s  a l s o  g i v e n  o f  t h a t  a m o u n t  o f  s u b s t r a t e  

a s s o c i a t e d  w i t h  t h e  y o l k  s a c  a t  t h e  b e g i n n i n g  o f  t h e  r e i n ­

c u b a t i o n  p e r i o d ---------- x --------- . T h e  v a l u e s  s h o w n  a r e  m e a n s

( +  r i . l ) . )  f r o m  6  s e p a r a t e  e x p e r i m e n t s  p e r f o r m e d  a t  e a c h  2 , 4 -  

d i n i t r o p h e n o l  c o n c e n t r a t i o n .



Table 4.2 Ertdocytic Indices and Tissue-Accumulation Rates of I-labelled rat IgG in 17.5-day rat yolk sacs 
incubated in serum-free medium 199 in the presence of ammonium ions

125Rat yolk sacs (17.5-day) were incubated for up to 6.5h with I-labelled rat IgG (2 yg/ml medium) in serum- 
free medium 199 in the presence of ammonium chloride (30mM or 5mM), by using the method described in Section 4.2.5.

Concentration 
of NH4C1 (mM)

TCA-solubles 
in preparation 

(%)

No. of 
yolk sacs

Endocytic Index 
(pl/rng protein 

per h)

Correlation
Coefficient

Tissue-Accumulation
Rate

(yl/mg protein per h)

Correlation
Coefficient

0 3.67 9 98.77 0.950 14.05 0.909
0 3.15 9 45.21 0.893 6.84 0.676

MEAN VALUES : 71.99 10.44

5 3.51 10 12.23 0.885 5.21 0.831
5 3.51 10 19.69 0.932 5.50 0.604
5 3.51 10 23.93 0.960 8.29 0.892

MEAN VALUES (± S.D.): 18.61 ± 5.92 6.33 ± 1.70

30 3.60 10 -1.57 -0.398 0.17 0.139
30 3.05 9 2.45 0.497 1.19 0.555
30 3.05 9 0.19 0.036 0.68 0.394

MEAN VALUES (± S.D.): 0.36 ± 2.01 0.68 ± 0.51
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F i g u r e  4 . 6  E f f e c t  o f  a  h i g h  c o n c e n t r a t i o n  o f  a m m o n iu m  i o n s  

o n  t h e  r e l e a s e  o f  1 2 ^ I - l a b e l l e d  r a t  I g G  f r o m  r a t  y o l k  s a c s  

i n c u b a t e d  i n  s e r u m - f r e e  m e d i u m  1 9 9

1 7 . 5 - d a y  r a t  y o l k  s a c s  w e r e  i n c u b a t e d  i n  s e r u m - f r e e  m e d i u m  

199  a n d  ^^I-labelled r a t  I g G  ( 1 0 [ j g / m l )  t h e n  r i n s e d  a n d  r e i n  

c u b a t e d  i n  f r e s h  m e d i u m .  A m m o n iu m  c h l o r i d e  ( 3 0 m M )  w a s  a d d e d  

i n  e i t h e r  t h e  e n d o c y t o s i s  p h a s e  ( e n d o  o n l y )  o r  t h e  e x o c y t o s i s  

p h a s e  ( e x o  o n l y )  o r  b o t h  ( e n d o  & e x o )  a s  o u t l i n e d  i n  g r e a t e r  

d e t a i l  i n  S e c t i o n  4 . 2 . 6  . S u b s t r a t e  r e l e a s e  w a s  m o n i t o r e d  

f o r  3 h .  T h e  g r a p h  e x p r e s s e s  t h e  t o t a l  r a d i o a c t i v i t y  r e l e a s e d  

^  , t h e  T C A - s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d

a t  3h  o ft h e  T G A - i n s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  

r e i n c u b a t i o n  f o r  e a c h  o f  t h e  e x p e r i m e n t a l  r e g i m e s  m e n t i o n e d .

A  m e a s u r e  i s  a l s o  g i v e n  o f  t h e  t o t a l  a m o u n t  o f  s u b s t r a t e  a s s o  

c i a t e d  w i t h  1 m< o f  y o l k - s a c  p r o t e i n  a t  t h e  b e g i n n i n g  o f  r e -

i n c u b a t i o n V a l u e s  s h o w n  a r e  m e a n s  ( +  S . D . )  f r o m  6

s e p a r a t e  e x p e r i m e n t s  f o r  e a c h  c o n d i t i o n .
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F i g u r e  4 . 7  E f f e c t  o f  a  l o w  c o n c e n t r a t i o n  o f  a m m o n iu m  i o n s  o n  

t h e  e x o c . v t o s i s  o f  1 2 ^ I - l a b e l l e d  r a t  I e G f r o m  r a t  y o l k - s a f i f l .  . I n r

n . n h a t e d  i n  s e r u m - f r e e  m e d i u m  1 9 9

1 7 . 5 - d a y  r a t  y o l k - s a c s  w e r e  i n c u b a t e d  i n  s e r u m - f r e e  m e d i u m  19 9  

a n d  ^ 2 ^ I - r a t  I g G  ( 1 0  g g / m l ) ,  t h e n  r i n s e d  a n d  r e i n c u b a t e d  i n  

f r e s h  m e d i u m .  A m m o n iu m  c h l o r i d e  ( 5 m M )  w a s  a d d e d  i n  e i t h e r  t h e  

e n d o c y t o s i s  p h a s e  ( e n d o  o n l y )  o r  t h e  e x o c y t o s i s  p h a s e  ( e x o  o n l y )  

ox* b o t h  ( e n d o  & e x o )  a s  o u t l i n e d  i n  S e c t i o n  4 . 2 . 6  . S u b s t r a t e  

r e l e a s e  w a s  m o n i t o r e d  f o r  3 h .  T h e  g r a p h  e x p r e s s e s  t h e  t o t a l  s u b ­

s t r a t e  a s s o c i a t e d  w i t h  t h e  y o l k - s a c  a t  t h e  b e g i n n i n g  o f  r e i n ­

c u b a t i o n  Q  , t h e  t o t a l  a m o u n t  o f  s u b s t r a t e  r e l e a s e d  ^  ,

t h e  T C A - s o l u b l e  a c t i v i t y  r e l e a s e d  ¡^¡) a n d  t h e  T C A - i n s o l u b l e
f««Mj

a c t i v i t y  r e l e a s e d  ^  a t  3h  o f  r e i n c u b a t i o n  f o r  ® c h  o f  t h e  e x ­

p e r i m e n t a l  r e g i m e s  m e n t i o n e d .  V a l u e s  s h o w n  a r e  m e a n s  ( +  S . i ) . )  

f r o m  6  i n d i v i d u a l  e x p e r i m e n t s  f o r  e a c h  c o n d i t i o n .
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4.4 DISCUSSION

When Williams & Ibbotson (1979) first found that a significant fraction 
125of the homologous I-labelled IgG associated with rat yolk sacs was

released again from the tissue in a macromolecular form, two explanations
125were put forward to account for this finding. First, I-labelled

rat IgG was transported across the rat yolk sac by a specific route with the

molecule being protected against degradation by the mechanism proposed

by Brambell following in vivo studies (Brambell, 1970). Second,
125I-labelled rat IgG adsorbed strongly to the outer membrane of the 

rat yolk sac, without any internalisation taking place, and desorbed from 

the membrane slowly. The only experimental evidence that these authors 

forwarded against the second of these possible explanations was the 

observation that unlabelled IgG present in the reincubation medium 

(a condition that would be expected to enhance the displacement of 

reversible bound I-labelled IgG from the tissue surface) was without 

effect. The experiments in this chapter were devised to test more 

rigorously the second of these proposals by inhibiting endocytic uptake 

of I-labelled IgG by yolk sacs in a variety of ways. It was hoped 

that the experiments would give conclusive evidence concerning the 

mechanism by which IgG molecules associate with the yolk-sac tissue.

When using low temperature as an inhibitor of endocytosis subsequent 

release of radioactivity was virtually totally abolished at 10°C for 

rabbit yolk sacs and at 15°C for rat yolk sacs (Figures 4.1 and 4.2). 

Certainly no release was observed that was comparable to that in the 

corresponding control incubations, a finding that would have been 

compatible with extensive tissue adsorption. Neither was any elevation 

of TCA.-insoluble release apparent after IgG exposure at the lower 

temperature. If it can be assumed that the yolk-sac membrane carries no 

extracellular proteases (an assumption which finds experimental support,
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see Livesey & Williams, 1979), then the percentage of total radioactivity

released that is in the form of TCA-insolubles would be expected to

rise if reincubation at lower temperatures slows intracellular degradation

down but does not inhibit desorption from the tissue surface. Thus the
data presented here seem to be more compatible with the suggestion that,

when membrane internalisation is inhibited, i-labelled IgG does not become

associated with the yolk-sac tissue to any extent and suggest that the

only way such association takes place is by pinocytic uptake. It was
125claimed earlier (Chapter 2; Williams & Ibbotson, 1979) that I-labelled

IgG uptake by the rabbit and rat yolk sac proceed to a large extent by

adsorptive pinocytosis rather than by fluid-phase pinocytosis only and it

appears that substrate: membrane binding must be short-lived if not

followed by internalisation, being fully reversible during the 6 min washing
period (see Williams & Ibbotson, 1979). A closer look at the temperature

profile from experiments with rat yolk sacs showed that in the plot of the

release of radioactivity against temperature, the decrease in the quantity

of radioactivity released is not linear with temperature; a sharp drop

was observed between 20°C and 25°C. Duncan & Lloyd (1978), in a similar
125study, noted that the uptake of I-labelled PVP by rat yolk sacs 

incubated in serum-containing medium dropped markedly between 30-37°C.

The temperature difference may be related to the presence or absence of 

calf serum in the medium.
Moving on to the second attempt to solve the basic question of

substrate internalisation by and adsorption to the rat and rabbit

yolk-sac, experiments with 2,4-dinitrophenol as metabolic inhibitor

yield results that are in keeping with the temperature studies. In

serum-free medium, a concentration of 10 yg/ml of 2,4-dinitrophenol was
125sufficient to cause 90% inhibition of the uptake of I-PVP, whereas 

for serum-containing medium the concentration of the inhibitor had to be 

higher, 20 yg/ml. This effect probably arises from binding of this
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agent to serum proteins, so decreasing the concentration of the free

inhibitor. Adding 10 yg/ml of 2,4-dinitrophenol to rat yolk sacs
125that had previously been "loaded" with I-labelled PVP caused no drastic 

release of this marker (Table 4.1) during the period 15-180 min.

[The variable rapid release in the first 15 min is probably the result 
of different degrees of removal of occluded medium during the washing 

stage; see Roberts et al. (1977) for fuller discussion.] An increased 

rate of release would have been expected if 2,4-dinitrophenol had been 

cytotoxic at this concentration, causing a disintegration of cells 

and a subsequent release of a marker that normally does not get released 

from cells. Such an effect was observed by (Livesey & Williams (1980) 

when yolk sacs were incubated in the presence of chloroquine.
2,4-dinitrophenol acts on tissues as a decoupler of oxidative phosphoryl­

ation, thereby inhibiting cytoskeletal action and would not be expected
125to affect the binding of molecules, in this case homologous I-

labelled IgG, to the cellular membranes. The finding that no significant

amount of radioactive material (TCA-soluble or TCA-insoluble) derived 
125from I-labelled IgG is released from rat and rabbit yolk sacs upon 

inhibition of uptake of substrate by 2,4-dinitrophenol, suggests that 

IgG is normally internalized by the rabbit and the rat yolk sac in vitro.

Using ammonium ions as a metabolic inhibitor leads to rather more 

complex findings. Ammonium ions are reported to have a number of effects 
on an endocytosing system. In vivo they are toxic, causing severe 

neurological effects (Hindfelt et al., 1977), but in the rat yolk sac 

in vitro they do not seem to be toxic (Livesey e_t al., 1980).

Ammonium ions are also claimed to be inhibitors of lysosome function 
(Seglen , 1975, 1977; Seglen & Reith, 1976; Hopgood et al., 1977).

For example, Tolleshaug et_ al. (1977) showed that digestion of asialofetuin, 

endocytosed by hepatocytes in culture is sensitive to ammonium ion 

inhibition, and Reijngoud et al. (1976) demonstrated the accumulation of
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methylammonium ions in isolated rat liver lysosomes in vitro. These

and other authors have suggested that proteolytic inhibition is due to

a rise in intralysosomal pH, since lysosomal enzymes are less active
at higher pH (Coff ey & De Duve, 1968). Another effect of ammonium

ions is the inhibition of endocytic uptake. Livesey & Williams (1980)
showed that at a concentration of 20mM the uptake of formaldehyde- 

125denatured I-labelled albumin is completely inhibited in rat yolk sacs

in vitro. In this present study both effects can, to a certain extent,

be demonstrated. When ammonium ions are present at a concentration of
12530mM during uptake of I-labelled rat IgG into rat yolk sacs, endocytosis 

is completely inhibited. Both, the E.I. and the T.A.R. are less than 
1 yl/mg tissue-protein per hour (Table 4.2). When using ammonium ions 

at a lower concentration (5mM), although the total uptake is reduced 

by 67%, the decrease of the T.A.R. is only by 39%, i.e. tissue-accumulation 

is relatively increased (Table 4.2). In effect, a greater percentage 

of internalized substrate accumulates in the tissue, probably undegraded. 

This finding is compatible with the suggestion that ammonium ions 
inhibit intralysosomal digestion (Livesey & Williams, 1980). The results 

obtained in the release studies involving the presence of 5mM ammonium 

ions in the medium during the uptake and/or release phases can be 

interpreted in a similar way. Under all conditions tested, the total 

amount of I-labelled rat IgG associated with the yolk-sac tissue at 
the beginning of the reincubation period is virtually the same (between 

390 and 470 ng/mg yolk-sac tissue; Figure 4.7). Therefore no inter­

ference of ammonium ions (5mM) with uptake can be claimed here. This 

is even more strongly suggested by the similarity of the release patterns 

in controls and incubation in which 5mM ammonium ions were present in the 

uptake phase only. When ammonium ions (5mM) were present in the 

release phase, however, two effects can be noted. First, the total
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release of substrate is markedly reduced and at the same time substrate 

accumulates in the tissue. Second, a relatively smaller release of 

TCA-soluble activity takes place. While the nature of the non-released 

material cannot be known for certain, a few tentative suggestions may be 
put forward. Assuming that release from yolk sacs is either by diffusion 

(Hemming & Williams, 1976), exocytosis from phagolysosomes (Brambell,

1970) or exocytosis of special micropinocytic vesicles (Moxon £t _al.,

1976; Rodewald, 1973), ammonium ions may interfere with the release 

mechanism (especially exocytosis). More probable is a retention 
within lysosomes of substrate that remains at least partially undegraded 

due to the interference of ammonium ions with enzyme action. This 

would also explain the second effect of a decreased release of TCA- 

soluble s.
Studies of the release of IgG in the presence of a higher concentration 

of ammonium ions (30mM) show a much greater effect on uptake (Figure 4.6), 

similar to the effect obtained with the metabolic inhibitor 2,4-dinitro- 

phenol. When 30mM ammonium ions are present during the release phase 

only, the release patterns are similar to those observed at the lower 
concentrations, with a greater retention of substrate within the yolk 

sac and a slightly decreased TCA-soluble release. The explanation of 

this finding is therefore the same as put forward above for the lower 

inhibitor concentration. While the mere fact that yolk sacs can be 

induced to retain a greater percentage of I-labelled rat IgG may 

serve as an indirect piece of evidence for the internalisation of substrate, 

what matters more to the aim of this chapter is the finding that, when 
substrate internalisation is inhibited, subsequent release of acid- 

insoluble radioactivity is likewise reduced.

In summary, the following conclusions can be drawn from the data 

presented in this chapter. When pinocytic uptake of homologous 

^^I-labelled IgG into rat or rabbit yolk sacs is inhibited by either
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low temperature or by the presence of 2,4-dinitrophenol or by ammonium 

ions, no appreciable release of acid-insoluble radioactivity can be 

observed on reincubation of substrate-loaded yolk sacs.

It could be argued, however, that the agents used to inhibit 

internalisation of substrate also decrease binding (e.g. low temperature 
may cause conformational changes of the membrane thereby decreasing the 

number of extracellular binding sites). Likewise, the chemical 

agents may form complexes with the substrate or the binding sites on the 

membrane thus lowering the degree of binding of the substrate to the 

yolk sac. This could possibly explain the failure to observe the 

release of acid-insoluble radioactivity on subsequent reincubation. 

However, since all three conditions (30mM ammonium chloride, 2,4-dinitro- 

phenol and decreased temperature) produce extremely similar inhibitions 

of release, it is highly unlikely that either a decrease in the number 
of extracellular adsorption sites or the binding capacity of IgG can 

be held responsible for the observed decrease in release. This decrease 

is more readily compatible with the suggestion that in vitro rat and 

rabbit yolk sacs internalize homologous I-labelled IgG, some of which 

is degraded subsequent to capture while the rest escapes degradation by 

a specific protection mechanism. Such considerations indicate that it 

is worthwhile to continue employing the in vitro yolk-sac incubation 

method to investigate the cellular mechanisms involved in IgG transport 
across membranes, since the original observation of release of acid- 

insoluble radioactivity from the yolk-sac tissue does not appear to be 

able to be explained in terms of release from extracellular adsorption

sites.



CHAPTER FIVE

The Differential Fates of Homologous and 
Heterologous Species of IgG in the Rat

and Rabbit Yolk Sacs
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5.1 INTRODUCTION

In a previous chapter it was shown that when I-labelled rat IgG
was treated with formaldehyde the molecule lost its ability to remain

undegraded in the in vitro rat yolk-sac system. In the work reported
in the current chapter more subtle intermolecular differences are considered,

125namely those between the I-labelled forms of homologous and heterolo­

gous species of IgG and the fates of these molecules in the rat and 

rabbit yolk sac in vitro.

Brambell .et al. (1950) and later other workers, found that in vivo both

transfer of proteins across the placental barrier in the rabbit, guinea

pig, human and rhesus monkey (via either the chorioallantoic placenta

or the yolk sac) and transfer across the neonatal rat and mouse gut

are highly selective (Brambell, 1970; Hartley, 1951; Halliday, 1955;
Brambell & Halliday, 1956; Bangham, 1960; Leisring & Anderson, 1961;

Gitlin at£l., 1964). Hemraings (1961) established that transfer of
131molecules across the rabbit yolk sac followed the order: I-labelled

131IgG > I-labelled BSA, whereas homologous alpha and beta globulins 
were hardly transported at all. Kulangara & Schechtman (1962) also 

reported a greater transfer of IgG than of human and bovine serum 

albumin across the same tissue. The latter findings were supported by 

Morgan (1964) who added transferrin to the list and found the order 

of transfer to be : IgG > albumin > transferrin. Slade & Wild (1971) 

reported a preference of uptake into rabbit yolk sacs of human IgG 

over that of ferritin or ferritin-conjugated IgG. Lambson (1966) 

observed the passage of ferritin through the same tissue. In other 

tissues too, similar selectivity could be demonstrated, for example 
Jollie (1968) investigated Reichert's membrane in the rat placenta and 

found that ferritin was taken up, whereas thorotrast was not. Also,

Morgan (1964) found that, near term, the rat yolk sac transported

125
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IgG in preference to either albumin or transferrin. Bangham & Terry 

(1957), while investigating the transfer of passive immunity in 

neonatal rats, noted that IgG was transported more readily across the gut 

than albumin. Bangham (1960) also investigated the process of 

selective transport in the rhesus monkey, a species in which the organ 
responsible is believed to be the placenta. In this species homologous 

IgG is transferred to the foetus twenty times more readily than albumin, 

while alpha and beta globulins are hardly transported at all.

These in vivo findings indicate a definite preference of transport 

of IgG over other proteins. In an early paper Halford (1930) suggested 

that molecular size was the basis of such selectivity, but Batty e£ al. 

(1954) disproved this by showing that some aggregated IgG molecules were 

transported across the rabbit placental membranes at a greater rate than 
other, non-aggregated molecules. After finding that bovine IgG was 

transmitted less readily than rabbit IgG to the rabbit foetus, at day-24 

post coitum Brambell (1954) suggested that selectivity of transport of 

immunoglobulins depended on the species of origin of the molecule.

In many subsequent studies, involving a variety of experimental animals 

and immunoglobulins obtained from different species, this concept of the 

preferential transfer of homologous IgG has been consolidated. Cohen 

(1950) noted a preferential transfer of rabbit IgG over bovine and human 

IgG to the foetal circulation in the rabbit. In a different species, 

the guinea pig, Hartley (1948) had previously found that guinea-pig 

diphtheria antitoxin was more readily transferred to the foetus than 

human diphtheria antitoxin. In the rat gut a selectivity of transmission 

in favour of the homologous IgG species was noted (Bamford, 1966). 

Moreover, for a group of heterologous IgG molecules an order of 

preference has been established, but this order differs from species 

to species and even from tissue to tissue within a given species. In
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some cases selectivity may favour a heterologous IgG species rather than 
the homologous one! Below are mentioned but a few examples of in vivo 
experiments covering a variety of species:

Test animal Order of transfer of IgG
derived from different species

References

Rabbit rabbit > human > guinea-pig > canine > Batty etal. (1954) 
equine > bovine

Rat guinea-pig> human > rat=mouse=bovine Koch et al. (1967)
(prenatal)

rat > rabbit=sheepRat
(postnatal) rat > mouse > rabbit > bovine > fowl

Bangham & Terry (1957) 
Halliday (1955)

Mouse guinea-pig > human > rat > bovine=mouse Koch et̂  al̂ . (1967)
(prenatal)

Guinea-pig guinea-pig > human > mouse 

Hedgehog hedgehog > rabbit=guineaT>ig > bovine

Koch et̂  al_. (1967)
Halliday & Kekwick (1960) 
Morris & Baldwin (1962)

From such studies it is apparent that very definite patterns of 

selection of molecular transfer through cells exist. Since the 

lysosomal system is known to be very effective in the degradation of 

endogenous and exogenous materials within cells, the transfer of intact 

bipolymer molecules across cells is in itself very unusual and needs to 

be accounted for. In addition, a theory is needed to give a basis for 

selection. In the course of the years a number of theories have been 

put forward to explain this selection and protection of some molecules 

from degradation by enzymes within cells. The two main theories are 

briefly mentioned below.

According to Brambell, all protein molecules are taken up 

indiscriminately by rabbit yolk-sac cells into endocytic vesicles 

that subsequently fuse with lysosomes. Those molecules destined for 

transport bind firmly to specific receptors on the inner face of the 

vesicular membrane and thus are protected from the action of lysosomal 

enzymes; all non-bound molecules are degraded. Heterolysosomes then



92

fuse with the basal membrane to release the intact IgG molecules

(Brambell, 1970). Wild, on the other hand, envisages that selection

occurs at the cell surface itself, with a portion of the IgG binding
to specific membrane receptors that are subsequently selectively taken

up into coated micropinocytic vesicles, a class of vesicles distinct from

general uptake vesicles and which does not fuse with lysosomes and can

thus release their contents intact on fusion with either the basal of

lateral plasmalemma (Wild, 1975, 1976, 1971). These two mechanisms

cannot easily be distinguished by in vivo methods, as it is difficult,

if not impossible, to observe transport on a cellular level in vivo
(for further discussion see Chapter 2). An in vitro system like the

one developed by Williams et al. (1975a) has the advantage that it deals,

in isolation, with the tissue of interest and therefore it should be
easier to investigate the question of molecular selection in some depth.

An important question to ask in the in vitro system is whether

the in vitro findings show a pattern that reflects the selectivity

observed in vivo in the rat and rabbit yolk sac, i.e. between homologous 
125and heterologous I-labelled IgG species. From previous chapters, a

125 125difference in the fate of I-labelled albumin and I-labelled 

homologous IgG has already been apparent (Chapter 2); likewise, the fate

of formaldehyde-treated rat IgG differs from that of untreated rat IgG
125(Chapter 3). Both the I-labelled albumin and formaldehyde-treated1 2S I-labelled IgG are fully degraded in the rat yolk sac with little, 

if any, release of macromolecular material during reincubation, a 

finding that is compatible with failure of transport of the intact 

molecules across the tissue. It is therefore of interest to establish 

whether such selectivity extends further to homologous and heterologous 

IgG. Complete concordance of the rank orders of release in vitro 

and of transport in vivo would give strong support to the assumption that
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the behaviour of the rat and rabbit yolk sacs iri vitro reflect their 

in vivo functions. A further inherent shortcoming of in vivo experiments 

is that they use immunological methods to determine molecular transfer 
and therefore little can be deduced concerning the fate of those 

molecules that may be taken up and digested within the tissues rather than 
transferred intact across cells. This is regrettable since, in the 

Brambell mechanism in particular, degradation plays an integral part 

in the selection process. In vitro studies can thus serve to help 

elucidate the fate of immunoglobulins within the rat and rabbit yolk sac. 

Furthermore, iji vivo studies are also largely qualitative and few 

workers (e.g. Brambell, 1966) have made attempts to quantitate transfer.

In vitro studies offer the possibility of determining the rate of uptake 

of homologous and heterologous IgG and possibly also the rate of 

transfer of those molecules across the rat and rabbit yolk sac.

A further question to be investigated in this chapter is that of 

the actual site responsible for selection in the rat and rabbit. In the 

rabbit, the yolk sac has been firmly established as the tissue in which 

the selection of the immunoglobulins destined for transfer to the foetus 

occurs (Brambell, 1970; Wild, 1970), with the paraplacental chorion 

possibly serving as a non-selective permeable barrier to a number of 

molecules (Wild, 1970). The role of the rabbit yolk sac as the primary 
site of IgG transfer into the foetal circulation has only been challenged 

by Hemmings (1973), who found some evidence for selection in the rabbit 

placenta. In the rat, however, the situation is not as clearly defined 

and has not been investigated in the same depth as in the rabbit.

Brambell & Halliday (1956), Anderson (1959) and Mayersbach (1958) 

proposed that the visceral yolk sac is the site where selection occurs, 

whereas Quinlivian (1964) gives evidence for the chorioallantoic placenta 

being the site of selection. An investigation of the differential 
treatment of homologous and heterologous IgG by the rat yolk sac in vitro
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should provide evidence for or against the involvement of this tissue 

in the prenatal transfer of passive immunity from mother to young in 

this species. Such studies should prove to be particularly interesting 
if performed in parallel with equivalent experiments using rabbit yolk 

sacs, since any different trends in the properties of the two tissues 

should become apparent. If findings are similar to those obtained in 

the rabbit yolk sac, this could count as circumstantial evidence for the 

involvement of the yolk sac in selective protein transport in the rat.
In summary, this chapter poses the following questions:

1) Do rat and rabbit yolk sacs in vitro take up homologous and
125heterologous I-labelled IgG at different rates, and can differential 

tissue-accumulation rates be observed?

1252) Do homologous and heterologous I-labelled IgG molecules differ in 
their degrees of degradation by rat and rabbit yolk sacs in vitro?

3) Can any correlation be found between the in vitro and the in vivo 

findings?

4) In vitro, do rat and rabbit yolk sacs show differences in their
125ability to ingest and degrade homologous and heterologous I-labelled 

IgG?

5) Can any additional evidence be found to indicate that in either the 

rabbit or, especially in the rat, the yolk sac is the site at which 
selection takes place during transfer of passive immunity?
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5.2 METHODS
1255.2.1 Uptake of homologous and heterologous I-labelled IgG 

in rat and rabbit yolk sacs in vitro

Rat yolk sacs (17.5-day) or 24-day rabbit yolk-sac pieces were

incubated in medium 199 containing 10% calf serum or in serum-free
125medium 199. Substrate ( I-labelled bovine-, human-, rabbit- or 

rat IgG) was present in the medium at a concentration of 2 yg/ml. The 

general methods outlined in Sections 1.2 (for rat yolk sacs incubated in 

serum-containing medium), 1.7 (for rat yolk sacs incubated in serum- 

free medium), 1.8 (for rabbit yolk sacs incubated in serum-containing and 

serum-free medium) were followed in all details. Endocytic Indices and 
Tissue-Accumulation Rates were calculated (see Sections 1.10 and 1.11 for 

details).

1255.2.2 Release of homologous and heterologous I-labelled IgG from 

rat and rabbit yolk sacs that had previously been loaded with 

these substrates in vitro

Rat yolk sacs (17.5-day) or 24-day rabbit yolk-sac pieces were
125incubated in serum-free medium 199, containing either I-labelled 

bovine-, human-, rabbit- or rat IgG (10 yg/ml). Yolk sacs were then 

washed and reincubated in fresh medium 199 and release of radioactivity 

was monitored for 3h; substrate release patterns were plotted (see 
Section 1.12 for details).
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5.3 RESULTS

5.3.1 Uptake of homologous and heterologous I-labelled IgG

by rat yolk sacs incubated in the presence or in the absence 
of calf serum

Tables 5.1 and 5.2 exemplify a point made earlier, namely that

variations do occur in the behaviour of different preparations of 
125I-labelled IgG in the rat yolk-sac system. In these tables the

125Endocytic Indices and the Tissue-Accumulation Rates of I-labelled

bovine-, human-, rat- and rabbit IgG are shown in rat yolk sacs

incubated in serum-containing medium. Endocytic Indices are all in
the same range, between 6 and 13 yl/mg yolk-sac protein per h with

the Endocytic Indices of the Batch 2 immunoglobulin preparation being

slightly lower than those of the Batch 1 preparation. Interspecies

differences are, however, maintained within both batches, with the
125Endocytic Indices of I-labelled bovine- and rat IgG being higher 

125than those of I-labelled human- and rabbit IgG. A greater difference

between the two batches can be observed in the Tissue-Accumulation Rates,

which are higher for the Batch 2 material. Comparing the four 
125I-labelled IgG species when incubated in medium containing serum,

the Tissue-Accumulation Rates tend to decrease in the order: rat >

rabbit > human=bovine (Tables 5.2a & 5.6a).

On incubation of rat yolk-sacs in serum-free medium 199, results

are very different from those obtained in serum-containing medium

(Tables 5.3 & 5.6b). As in earlier experiments (Chapter 2), Endocytic

Indices are increased by an order of magnitude. Endocytic Indices of 
125I-labelled bovine- and rat- IgG do not differ much from each other,

125but the Endocytic Index of I-labelled human IgG is noticeably higher 

than that of the other two species. The main difference between 

homologous and heterologous IgG species can be observed in the Tissue- 

Accumulated Rates, whose ranking resembles that of the equivalent

125
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incubations of rat yolk sacs in serum-containing medium, i.e.:

rat > human > bovine (Tables 5.2, 5.3 and 5.6b). The difference
125between the Tissue-Accumulation Rates of I-labelled rat and bovine 

IgG is much greater in the serum-free medium.
1255.3.2 Uptake of homologous and heterologous I-labelled IgG

by rabbit yolk-sac pieces incubated in the presence or in the 

absence of calf serum

In the experiments performed with rabbit yolk sacs (Tables

5.4 and 5.6) Endocytic Indices are of the same order of magnitude as

those found for equivalent rat yolk-sac incubations in the presence

of serum (see Tables 5.1, 5.2 and 5.6). Interspecies differences are,
however, more pronounced in the rabbit yolk-sac incubations. In

incubations in serum-containing medium, Endocytic Indices decrease in the

order: rat > human > rabbit (Table 5.6a) a pattern similar to that

found in serum-free medium: human > rat > bovine=rabbit (Table 5.6b).

In the absence of serum, Endocytic Indices rise by between 8- and 20-

fold, a degree of elevation comparable to that observed in rat yolk sacs.

Tissue-Accumulation Rates for homologous and heterologous 
125I-labelled IgG species in serum-containing medium are slightly

higher than the equivalent values in the rat yolk sac, but are of the

same order of magnitude; their ranking order is: rat > bovine > human >

rabbit. On removal of calf serum from the medium,Tissue-Accumulation

Rates of all I-labelled IgG species are increased, but to differing

extents as outlined in Table 5.6, which expresses in percentages the

rise of E.I's and T.A.R's on removing calf serum from the incubation

medium. In serum-free medium, the ranking orders of T.A.R's of the
125homologous and heterologous I-labelled IgG species are as follows: 

human > rabbit“ rat > bovine (Table 5.6b).
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5.3.3 Comparison of the ratios Tissue-Accumulation Rate to Endocytic
125Index for homologous and heterologous I-labelled IgG ingested 

by rat and rabbit yolk sacs

In the above section (5.3.2) tissue accumulation of substrate was

expressed in terms of Tissue-Accumulation Rates as defined in Section

1.10. However, in order to compare the relative extent of tissue
accumulation of the various substrates between the two different tissues

it is important to also keep in mind the net rate of uptake of these

substrates. Thus, a substrate may have a very low Tissue-Accumulation

Rate, but this may, nevertheless, be important if the net total uptake

(Endocytic Index) is also low. For this reason, tissue accumulation

was also expressed in terms of the ratio of the two rates, i.e. Tissue-
Accumulation Rate over the net uptake rate (TAR/EI) (see Table 5.6).

Expressed in this way, ranking orders of tissue accumulation for homologous 
125and heterologous I-labelled IgG species in rat and rabbit yolk sacs 

differ from the patterns quoted above (5.3.2). In the absence of serum, 

the ratio TAR/EI is the highest for the homologous IgG in both rat and 
rabbit yolk sacs (Table 5.6b); in the presence of serum the homologous 

IgGs fall second in the two rank orders (Table 5.6a).

5.3.4 Release, from rat and rabbit yolk sacs, of radioactivity derived
125from I-labelled homologous and heterologous IgG previously 

ingested by the tissue in vitro
125Release patterns of I-labelled IgG from yolk sacs are presented 

graphically in Figures 5.1 - 5.7; Table 5.7 summarizes the same data by 

quoting the total amounts of substrates released by 3h reincubation 
together with the amounts of TCA-soluble and -insoluble ractivity released. 

In addition, release is expressed as a percentage of the total amount 

of substrate associated with the tissue at the beginning of the 

reincubation period. Looking at the total release of radioactivity 

expressed in this second manner, the amounts released are very similar
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(79-91%)for all I-labelled IgG species used as substrates in rat and

rabbit yolk sacs. But, when release is expressed in absolute terms
(ng substrate released/mg yolk-sac protein), total release decreases in

the order human > rat > bovine for rat yolk sacs (Table 5.7a) and
rabbit > rat > human > bovine for rat yolk sacs (Table 5.7b). For 

125all I-labelled IgG species, however, a greater release is reported 

from rabbit yolk sacs. Looking at the amount of substrate that is 

released from the yolk sac into the medium in an undegraded form (TCA-

insoluble activity), a marked difference concerning the species of
125 125origin of the I-labelled IgG is apparent. Whereas I-labelled

bovine IgG is released from both rat and rabbit yolk sacs mainly in

a TCA-soluble form, i.e. degraded (Figures 5.1 and 5.4), human (Figures

5.2 and 5.5) and homologous (Figures 5.3 and 5.6) I-labelled IgG

remain undegraded to a larger extent in both yolk-sac systems. It may
125be of interest that, both in the rat and rabbit yolk sac I-labelled

125rat IgG is degraded more readily than I-labelled human IgG (Table 5.7).

One difference between rat and rabbit yolk-sac tissues that is
125apparent on examining these data is that homologous I-IgG is released 

in an undegraded form to a greater extent (58%) from rabbit yolk sacs 

than from rat yolk sacs (36%).

125



In the following tables (Tables 5.1 - 5.5, inclusive) the full 

details of individual experiments are reported, but to conserve 

space the column headings have been abbreviated according to the 

scheme below:

1 2 3
TCA-solubles in the 
l25i-iabelled protein 
preparation on the 
day of use

(%)

No. of yolk-sac 
pieces used in 
the individual 
experiment

Endocytic Index

(yl/mg of yolk-sac 
protein per h)

4
Correlation Coefficient 
of the plot uptake 
against time used 
to determine the 
Endocytic Index

5 6

Tissue-Accumulation
Rate

(yl/mg of yolk-sac 
protein per h)

Correlation Coefficient 
of the plot of tissue 
levels against time 
used to determine the 
Tissue-Accumulation 
Rate

The main findings reported in the above tables are summarized in 

Tables 5.6a & 5.6b to permit ready comparison of data.



Rat yolk sacs (17.5-day) were incubated in medium 199 containing 
10% (v/v) calf serum and 125i_iabelled bovine-, human- or rat IgG as 
substrate (2 ug/ml of medium). Yolk-sac incubations were terminated 
at intervals up to 6.5h. The values of both the Endocytic Indices and 
Tissue-Accumulation Rates were calculated (for details of methods see 
Section 1.10).

125Table 5.1 Endocytic Indices and Tissue-Accumulation Rates of I-
labelled bovine-, human- and rat IgG for rat yolk sacs incubated in
medium 199 containing calf serum

I-labelled 
IgG species 1 2 3 4 5 6

Bovine 
(Batch 1) 1.99 9 12.30 0.931 0.71 0.488
Bovine 
(Batch 1) 1.85 10 9.93 0.976 1.05 0.888
Bovine 
(Batch 1) 1.85 10 13.09 0.988 0.60 0.765

MEAN VALUES (± S.D.): 11.77 ± 1.64 0.79 ± 0.23

Human 
(Batch 1) 2.35 10 12.58 0.953 1.22 0.390
Human 
(Batch 1) 2.19 9 7.38 0.979 1.18 0.846
Human 
(Batch 1) 2.14 9 8.08 0.925 0.45 0.262

MEAN VALUES (± S.D.): 9.35 ± 2.82 0.95 ± 0.43

Rat
(Batch 1) 1.68 10 12.78 0.937 0.95 0.578
Rat
(Batch 1) 2.11 9 11.8 0.973 1.96 0.925
Rat
(Batch 1) 1.61 7 11.98 0.987 2.24 0.995

MEAN VALUES (± S.D.): 12.18 ± 0.52 1.72 + 0.68



125Table 5.2 Endocytic Indices and Tissue-Accumulation Rates of I-
labelled bovine-, human-, rabbit-, and rat IgG for rat yolk sacs
incubated in medium 199 containing calf serum

Rate yolk sacs (17.5-day) were incubated in medium 199 containing 
10% (v/v) calf serum and 125i-iabelled bovine-, human-, rabbit-, or 
rat IgG (2vig/ml of medium) as substrate. Yolk sac incubations were 
terminated at intervals up to 6.5h. The values of Endocytic Indices 
and Tissue-Accumulation Rates were calculated (for details of methods 
see Section 1.10).

IylgG
species 1 2 3 4 5 5

Bovine 
(Batch 2) 2.39 10 8.28 0.934 1.31 0.821
Bovine 
(Batch 2) 2.69 10 8.92 0.961 0.913 0.819
Bovine 
(Batch 2) 2.69 10 11.45 0.841 1.59 0.696
Bovine 
(Batch 2) 1.79 8 13.57 0.881 1.72 0.416

MEAN VALUES (± S.D.): 10.55 ± 2.43 1.3810.36

Human 
(Batch 2) 2.01 10 6.11 0.912 1.30 0.949
Human 
(Batch 2) 2.58 8 5.26 0.949 1.39 0.729
Human 
(Batch 2) 2.58 9 7.78 0.954 1.54 0.624

MEAN VALUES (± S.D.): 6.38± 1.28 1.4110.11

Rabbit 
(Batch 2) 2.76 10 6.02 0.937 2.19 0.949
Rabbit 
(Batch 2) 2.36 10 5.40 0.949 1.69 0.720
Rabbit 
(Batch 2) 2.67 9 8.01 0.954 2.85 0.624

MEAN VALUES (± S.D.): 6.48± 1.36 2.2410.58

Rat
(Batch 2) 1.54 10 10.09 0.972 2.45 0.898
Rat
(Batch 2) 1.54 9 10.27 0.972 2.21 0.896
Rat
(Batch 2) 1.98 8 8.46 0.743 3.32 0.898

MEAN VALUES (± S.D.): 9.6110.99 2.6610.58



• 125Table 5.3 Endocytic Indices and Tissue-Accumulation Rates of I-
labelled bovine-, human- and rat IgG for rat yolk sacs incubated
in serum-free medium 199

Rat yolk sacs (17.5-day) were incubated in serum-free medium 199 
containing 125i-labelled bovine-, human- or rat IgG (2 yg/ml of medium). 
Yolk-sac incubations were terminated at intervals up to 5.5h. The 
values of Endocytic Indices and Tissue-Accumulation Rates were calculated 
(for details of methods see Section 1.10).

125I-IgG
species 1 2 3 4 5 6

Bovine 
(Batch 1) 1.85 9 98.45 0.955 3.11 0.445
Bovine 
(Batch 1) 1.85 8 21.93 0.962 -0.49 -0.064
Bovine 
(Batch 1) 1.85 9 74.00 0.985 0.56 0.206

MEAN VALUES (± S.D.): 65.03 ± 39. 17 1.83 ±1.80

Human 
(Batch 1) 2.25 8 100.84 0.971 2.39 0.831
Human 
(Batch 1) 2.25 10 95.88 0.972 5.32 0.603
Human 
(Batch 1) 2.25 9 80.55 0.976 3.85 0.474

MEAN VALUES (± S.D.): 92.42 ± 10. 58 3.85 ±1.46

Rat
(Batch 1) 2.11 7 76.00 0.910 11.49 0.776
Rat
(Batch 1) 2.11 8 80.76 0.939 14.64 0.954
Rat
(Batch 1) 4.76 8 66.63 0.956 11.51 0.761

MEAN VALUES (± S.D.): 74.46  + 7.19 12.56  ±1 .84



Rabbit yolk-sac pieces (24-day) were incubated in medium 199 containg 
10% (v/v) calf serum and 125i-iabelled bovine-, human-, rabbit- or rat 
IgG (2 yg/ml of medium). The values of the Endocytic Indices and 
Tissue-Accumulation Rates were calculated (for details of methods see 
Section 1.10)

125Table 5.4 Endocytic Indices and Tissue-Accumulation Rates of I-
labelled bovine-, human-, rabbit- and rat IgG for rabbit yolk-sac
tissue incubated in medium 199 containing calf serum

I-IgGs p e c ie s 1 2 3 4 5 6
B ovine (B a tch  2) 2 .0 5 10 8 .1 9 0 .8 1 9 4 .3 6  0 .7 6 8B ovine (B a tch  2) 1 .9 0 10 3 .6 6 0 .8 4 5 3 .3 7  0 .9 1 3B ovine (B atch  2) 2 .0 1 8 5 .5 1 0 .8 7 1 2 .2 4  0 .7 7 0B ovin e (B a tch  2) 2 .5 7 8 5 .7 9 0 .8 2 2 3 .7 5  0 .7 4 7

M E M VALUES (± S.D.): 5 .7 9  ± 1.86 3 .4 3 ± 0 .8 9
Human (B atch  2) 2 .0 1 8 6 .8 9 0 .9 8 6 2 .7 0  0 .8 3 4Human (B atch  2) 1 .8 3 9 4 .7 3 0 .9 0 9 2 .8 9  0 .8 3 4Human (B a tch  2) 2 .0 3 9 8 .2 2 0 .6 6 6 1 .4 4  0 .7 6 1

M E M VALUES (± S.D.): 6 .6 1 ± 1 .7 6 2 .3 4  ± 0 .7 9
R a b b it  (B a tch  2) 2 .1 6 9 2 .1 5 0 .8 0 9 1 .6 8  0 .8 0 6R a b b it  (B a tch  2) 2 .0 9 7 3 .5 7 0 .7 4 5 1 .4 8  0 .8 4 5R a b b it  (B atch  2) 2 .7 0 10 4 .0 5 0 .9 3 3 1 .5 1  0 .6 9 3

M E M VALUES (± S.D.): 3 .2 5  ± 0 .9 9 1 .5 6  ± 0 .1 1
R a t(B a tch  2) 3 .2 2 10 15.82 0 .9 5 1 1 0 .2 1  0 .8 7 0R a t(B a tc h  2) 1 .7 6 9 11.05 0 .9 2 3 7 .5 3  0 .8 6 7
(B atch  2) 2 .8 8 10 9.01 0 .9 3 0 4 .2 8  0 .7 7 0R a t(B a tch  2) 1 .6 4 10 1 0.54 0 .9 2 0 5 .0 5  0 .8 7 1

M E M VALUES (± S.D.): 1 1 .6 0  ± 2 .9 4 6 .7 7 ±  2 .6 8



125Table 5.5 Endocytic Indices and Tissue-Accumulation Rates of I-
labelled bovine-, human-, rabbit- and rat IgG in rabbit yolk-sac tissue
incubated in serum-free medium 199

Rabbit yolk-sac pieces (24-day) were incubated in serum-free medium 
199 containing 125i-iabelled bovine-, human-, rabbit- or rat IgG (2 pg/ml 
of medium). Yolk-sac incubations were terminated at intervals up to 5.5h. 
The values of Endocytic Indices and Tissue-Accumulation Rates were 
calculated (for details of methods see Section 1.10).

I-IgGs p e c ie s 1 2 3 4 5 6
B ovine (B a tch  2) 3 .0 5 9 9 5 .0 8 0 .8 6 2 15.97 0 .6 2 1B ovine (B a tc h  2) 4.57 9 5 3 .6 3 0 .9 0 1 3 .6 3 0 .3 6 8B ovine (B a tch  2) 2 .9 5 9 6 9 .5 3 0 .9 5 8 7 .06 0 .6 3 9

MEAN VALUES ( ± S.D.): 7 2 .7  ± 2 0 .9 8 .9  ± 6 .4
Human (B a tch  2) 2 .2 8 9 146.78 0 .9 2 6 5 8 .5 8 0 .6 8 9Human (B atch  2) 2 .2 1 9 115.21 0 .8 9 6 2 8 .1 4 0 .6 9 9Human (B a tch  2) 2 .2 1 9 152.54 0 .8 8 2 35.06 0 .7 7 7

MEAN VALUES (± S.D.): 1 38 .2  ± 2 0 .1 4 0 .6  ± 16 .0
R a b b it  (B a tch  2) 3 .1 5 10 3 7 .9 8 0 .8 4 7 15.89 0 .7 4 1R a b b it  (B a tch  2) 3 .5 1 9 4 4.42 0 .7 2 5 13.72 0 .4 1 5R a b b it  (B a tch  2) 1 .4 7 9 8 8 .5 3 0 .8 7 8 41.06 0 .7 2 9R a b b it  (B a tch  2) 1 .4 7 8 9 4.97 0 .8 3 7 2 7 .6 0 0 .8 4 7

MEAN VALUES (± S.D.): 6 6 .5  ± 2 9 .4 2 4 .6  ± 15 .4
R a t(B atch  2) 5 .9 6 9 8 8 .7 0 0 .9 8 9 2 2 .8 0 0 .9 0 4R a t(B atch  2) 2 .8 2 9 8 2.59 0 .9 6 6 2 6 .8 0 0 .8 3 7R at(B atch  2) 3 .4 7 9 6 5 .1 4 0 .5 4 5 14.94 0 .3 4 5R at(B atch  2) 3 .4 4 9 140.11 0 .6 2 1 3 1 .0 5 0 .5 8 8

MEAN VALUES (± S.D.): 9 4 .1 ± 3 2.2 2 3 .9  ± 6 . 9



This table serves as a summary of Tables 5.2-5.5, quoting only the Endocytic Indices and Tissue- 
Accumulation Rates of the various substrates that were incubated with rat and rabbit yolk sacs either in 
serum-free or in serum-containing medium 199. For the sake of comparison values of the ratio T.A.R. to 
E.I., are also quoted as a percentage.

Table 5.6a Comparison of Endocytic Indices and Tissue-Accumulation Rates of____ I-labelled homologous and
heterologous IgG species in rat and rabbit yolk sacs

Incubations in medium 199 containing calf serum (10% v/v)

RABBIT RAT
125I-IgG
species

E.I. T.A.

(pl/mg protein per h)
R. T.A.R.

E.I.
(%)

E,.1 .

(pl/mg

,i ■ ■ ■ ■ ■ ■ ......................
T.A.R.

protein per h)

T.A.R.
E.I.
(%)

Bovine
(Batch 2) 5.79 ± 1.85 3.43 ± 0.89 59.2 10.6 ± 2.43 1.38 ± 0.36 13.1
Human
(Batch 2) 6.61 ± 1.76 2.34 ± 0.79 35.4 6.38 ±1.28 1.41 ± 0.11 21.8
Rabbit
(Batch 2) 3.25 ± 0.99 1.56 ± 0.11 47.9 6.48 ±1.36 2.24 ± 0.58 34.6
Rat
(Batch 2) 11.6 ± 2.94 6.77 ± 2.68 58.4 9.61 ± 0.99 2.66 ± 0.58 27.2



This table serves as a summary of Tables 5.2-5.5, quoting only the Endocytic Indices and Tissue- 
Accumulation Rates of the various substrates that were incubated with rat and rabbit yolk sacs either in 
serum-free or in serum-containing medium 199. For the sake of comparison values of the ratio T.A.R. to 
E.I., are also quoted as a percentage.
Incubations in medium 199 alone

Table 5.6b Comparison of Endocytic Indices and Tissue-Accumulation Rates of I-labelled homologous and
heterologous IgG species in rat and rabbit yolk sacs

RABBIT RAT

125I-IgG
r
E.I. t T,>A.R.

1
T.A.R. E.I. T.A.R. T.A.R,

species
(pi/mg protein per h)

E.I.
(%) (pl/mg protein per h)

E.I.
(%)

Bovine 
(Batch 2) 72.8 ± 20.9 8.89 ± 6.37 12.2 65.0 ± 39.2 1.83 ± 1.80 2.8
Human 
(Batch 2) 138.2 ± 20.1 40.6 ± 16.0 29.4 92.4 ± 10.6 3.85 ± 1.46 4.2
Rabbit
(Batch 2) 66.5 ± 29.4 24.6 ± 15.4 37.0 -  - -  - -
Rat
(Batch 2) 94.1 ± 32.2 23.9 ± 6.86 25.4 74.5 ± 7.19 12.6 ± 1.84 16.9

*Batch 1 results
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F i g u r e  T i m e  c o u r s e  o f  r e l e a s e  o f  r a d i o a c t i v e  s p e c i e s

125d e r i v e d  f r o m  ^ I - l a b e l l e d  b o v i n e  I g G  f o l l o w i n g  i n c u b a t i o n  o f  

r a t  . y o l k - s a c s  w i t h  s u b s t r a t e  i n  s e r u m - f r e e  m e d i u m  1 9 9

1 7 . 5 - d a y  r a t  y o l k - s a c s  w e r e  f i r s t  i n c u b a t e d  f o r  2 h  i n  s e r u m -  

f r e e  m e d i u m  1 9 9  i n  t h e  p r e s e n c e  o f  "'2 ^ I - l a b e l l e d  b o v i n e  I g G  

( 1 0  j j g / m l ) .  F o l l o w i n g  w a s h i n g ,  t h e y  w e r e  r e i n c u b a t e d  i n  f r e s h  

m e d i u m ,  a n d  r e l e a s e  o f  r a d i o a c t i v i t y  w a s  m o n i t o r e d  u p  t o  3h  

( s e e  S e c t i o n  5 * 2 . 2  f o r  d e t a i l s ) .  T h e  t o t a l  a m o u n t  o f  s u b s t r a t e  

a s s o c i a t e d  w i t h  t h e  y o l k - s a c  a t  t h e  b e g i n n i n g  o f  r e i n c u b a t i o n  

w a s  385  n g / m g  y o l k - s a c .

T o b a l  r a d i o a c t i v i t y  r e l e a s e d  -------A ---------

T C A - s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d — • - - - - -

T C A - i n s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d - - - - - O - - - - - - -

T h e  v a l u e s  s h o w n  a r e  m e a n s  f r o m  6  s e p a r a t e  e x p e r i m e n t s  p e r f o r ­

m e d  w i t h  t h e  s a m e  b a t c h  ( B a t c h  1 )  o f  ^ ^ I - l a b e l l e d  b o v i n e  I g G  

u s e d  i n  t h e  e x p e r i m e n t s  q u o t e d  i n  T a b l e  5 * 1 .



F i g u r e  5 * 2  T i m e  c o u r s e  o f  r e l e a s e  o f  r a d i o a c t i v e  s p e c i e s

1 2 5d e r i v e d  f r o m  ^ I - l a b e l l e d  h u m a n  I g G  f o l l o w i n g  i n c u b a t i o n  o f  

r a t  y o l k - s a c s  w i t h  s u b s t r a t e  i n  s e r u m - f r e e  m e d i u m  1 9 9

1 7 . 5 - d a y  r a t  y o l k - s a c s  w e r e  f i r s t  i n c u b a t e d  f o r  2 h  i n  s e r u m -  

f r e e  m e d i u m  1 9 9  i n  t h e  p r e s e n c e  o f  ^ ^ I - l a b e l l e d  h u m a n  I g G  

( 1 0  y g / m l ) .  F o l l o w i n g  w a s h i n g ,  t h e y  w e r e  r e i n c u b a t e d  i n  f r e s h  

m e d i u m ,  a n d  r e l e a s e  o f  r a d i o a c t i v i t y  w a s  m o n i t o r e d  u p  t o  3h  

( s e e  S e c t i o n  5 * 2 . 2  f o r  d e t a i l s ) .  T h e  t o t a l  a m o u n t  o f  s u b s t r a t e  

a s s o c i a t e d  w i t h  t h e  y o l k - s a c  a t  t h e  b e g i n n i n g  o f  r e i n c u b a t i o n  

w a s  6 1 5  n g / m g  y o l k - s a c .

T o t a l  r a d i o a c t i v i t y  r e l e a s e d  —  A —

T C A - s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  — • -------

T G A - i n s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  - - - -  O - - - - - -

T h e  v a l u e s  s h o w n  a r e  m e a n s  f r o m  6  s e p a r a t e  e x p e r i m e n t s  p e r ­

f o r m e d  w i t h  t h e  s a m e  b a t c h  ( B a t c h  1 )  o f  ^ - ^ I - l a b e l l e d  h u m a n  

I g G  u s e d  i n  t h e  e x p e r i m e n t s  q u o t e d  i n  T a b l e  5 * 1  •



F i g u r e  5.3 T i m e  c o u r s e  of r e l e a s e  of r a d i o a c t i v e  s p e c i e s
1 2 5derived, f r o m  ^ I - l a b e l l e d  rat Ig G  f o l l o w i n g  i n c u b a t i o n  of 

r a t  y o l k - s a c s  w i t h  s u b s t r a t e  in s e r u m - f r e e  m e d i u m  199

1 7 . 5 - d a y  r a t  y o l k - s a c s  w e r e  f i r s t  i n c u b a t e d  f o r  2h i n  s e r u m -  

f r e e  m e d i u m  1 9 9  i n  t h e  p r e s e n c e  o f  ^ ^ I - l a b e l l e d  r a t  I g G  

( 1 0  y g / m l ) .  F o l l o w i n g  w a s h i n g ,  t h e y  w e r e  r d n c u b a t e d  i n  f r e s h  

m e d i u m ,  a n d  r e l e a s e  o f  r a d i o a c t i v i t y  w a s  m o n i t o r e d  u p  t o  3h  

( s e e  S e c t i o n  5 . 2 . 2  f o r  d e t a i l s ) .  T h e  t o t a l  a m o u n t  o f  s u b s t r a t e  

a s s o c i a t e d  w i t h  t h e  y o l k - s a c  a t  t h e  b e g i n n i n g  o f  r e i n c u b a t i o n  

w a s  65 5  n g / m g  y o l k - s a c .

T o t a l  r a d i o a c t i v i t y  r e l e a s e d  ---------A --------

T C A - s o l u b l e  a c t i v i t y  r e l e a s e d  --------• ---------

f C A - i n s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d - - - - - O - - - - - -

T h e  v a l u e s  s h o w n  a r e  m e a n s  f r o m  6  s e p a r a t e  e x p e r i m e n t s  p e r -
A  p C L

formed with the same batch (Batch 1)  o f  ^ I - l a b e l l e d  r a t  IgG
used in the experiments quoted in Table 5 .1  .
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F i g u r e  5 * 4  T i m e  c o u r s e  o f  r e l e a s e  o f  r a d i o a c t i v e  s p e c i e s
i25

d e r i v e d  f r o m  ^ I - l a b e l l e d  b o v i n e  I g G  f o l l o w i n g  i n c u b a t i o n  

o f  r a b b i t  y o l k - s a c s  w i t h  s u b s t r a t e  i n  s e r u m - f r e e  m e d i u m  199

2 4 - d a y  r a b b i t  y o l k - s a c  p i e c e s  w e r e  f i r s t  i n c u b a t e d  f o r  2 h  i n  

s e r u m - f r e e  m e d i u m  199  i n  t h e  p r e s e n c e  o f  ^ I - l a b e l l e d  b o v i n e  

I g G  ( 1 0  | j g ; / m l ) .  F o l l o w i n g  w a s h i n g ,  t h e y  w e r e  r e i n c u b a t e d  i n  

f r e s h  m e d i u m ,  a n d  r e l e a s e  o f  r a d i o a c t i v i t y  w a s  m o n i t o r e d  u p  t o  

3 h  ( s e e  S e c t i o n  5 * 2 . 2  f o r  d e t a i l s ) .  T h e  t o t a l  a m o u n t  o f  s u b ­

s t r a t e  a s s o c i a t e d  w i t h  t h e  y o l k - s a c  a t  t h e  b e g i n n i n g  o f  r e i n ­

c u b a t i o n  w a s  5 9 4  n g / m g  y o l k - s a c .

T o t a l  r a d i o a c t i v i t y  r e l e a s e d  -------- A ---------

I G A - s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  -------- • ----------

T C A - i n s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  ---------O -----------

T h e  v a l u e s  s h o w n  a r e  m e a n s  f r o m  6 s e p a r a t e  e x p e r i m e n t s  p e r -
i25formed with the same batch (batch  2)  o f  ^ I - l a b e l l e d  bovine .

IgG used in the experiments quoted in Tables 5*2 and 5*4 and5*2 *



F i g u r e  5 . 5  P i m e  c o u r s e  o f  r e l e a s e  o f  r a d i o a c t i v e  s p e c i e s  

12S
d e r i v e d  f r o m  ^ I - l a b e l l e d  h u m a n  I g G  f o l l o w i n g  i n c u b a t i o n  o f  

r a b b i t  . y o l k - s a c s  w i t h  s u b s t r a t e  i n  s e r u m - f r e e  m e d i u m  1 9 9

2 4 - d a y  r a b b i t  y o l k - s a c  p i e c e s  w e r e  f i r s t  i n c u b a t e d  f o r  2 h  i n
125

s e r u m - f r e e  m e d i u m  199  i n  t h e  p r e s e n c e  o f  ^ I - l a b e l l e d  h u m a n  

I g G  ( 1 0  | j g / m l ) .  F o l l o w i n g  w a s h i n g ,  t h e y  w e r e  r e i n c u b a t e d  i n  

f r e s h  m e d i u m ,  a n d  r e l e a s e  o f  r a d i o a c t i v i t y  w a s  m o n i t o r e d  u p  t o  

J h  ( s e e  S e c t i o n  5 . 2 . 2  f o r  d e t a i l s ) .  'C h e  t o t a l  a m o u n t  o f  s u b ­

s t r a t e  a s s o c i a t e d  w i t h  t h e  y o l k - s a c  a t  t h e  b e g i n n i n g  o f  r e i n ­

c u b a t i o n  w a s  925  n g / m g  y o l k - s a c .

T o t a l  r a d i o a c t i v i t y  r e l e a s e d  — A —

T C A - s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  - - - - - • - - - - - - -

T C A - i n s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  - - - - - O - - - - - -

T h e  v a l u e s  s h o w n  a r e  m e a n s  f r o m  6  s e p a r a t e  e x p e r i m e n t s  p e r ­

f o r m e d  w i t h  t h e  s a m e  b a t c h  ( B a t c h  2 )  o f  ^ ^ I - l a b e l l e d  h u m a n  

I g G  u s e d  i n  t h e  e x p e r i m e n t s  q u o t e d  i n  T a b l e s  5 . 2 ,  5 . 4  a n d  5 * 5  .
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F i g u r e  5 * 6  T i m e  c o u r s e  of r e l e a s e  of r a d i o a c t i v e  s p e c i e s
1 2 5d e r i v e d  f r o m  ^ I - l a b e l l e d  r a b b i t  Ig G  f o l l o w i n g  i n c u b a t i o n  of 

r a b b i t  y o l k - s a c s  w i t h  s u b s t r a t e  in s e r u m - f r e e  m e d i u m  199

2 4 - d a y  r a b b i t  y o l k - s a c  p i e c e s  w e r e  f i r s t  i n c u b a t e d  f o r  2 h  i n
1 2 5s e r u m - f r e e  m e d i u m  199  i n  t h e  p r e s e n c e  o f  ^ I - l a b e l l e d  r a b b i t  

I g G  ( 1 0  j j g / m l ) .  F o l l o w i n g  w a s h i n g ,  t h e y  w e r e  r e i n c u b a t e d  i n  

f r e s h  m e d i u m ,  a n d  r e l e a s e  o f  r a d i o a c t i v i t y  w a s  m o n i t o r e d  u p  t o  

5 h  ( s e e  S e c t i o n  5 * 2 . 2  f o r  d e t a i l s ) .  T h e  t o t a l  a m o u n t  o f  s u b ­

s t r a t e  a s s o c i a t e d  w i t h  t h e  y o l k - s a c  a t  t h e  b e g i n n i n g  o f  r e i n ­

c u b a t i o n  w a s  1509  n g / m g  y o l k - s a c .

T o t a l  r a d i o a c t i v i t y  r e l e a s e d  — A ------

T C A - s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  — • -------

T C A - i n s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d —  O ------

T h e  v a l u e s  s h o w n  a r e  m e a n s  f r o m  6 s e p a r a t e  e x p e r i m e n t s  p e r ­

f o r m e d  w i t h  t h e  s a m e  b a t c h  ( B a t c h  2 )  o f  ^ ^ I - l a b e l l e d  r a b b i t  . 

I g G  u s e d  in t h e  e x p e r i m e n t s  q u o t e d  i n  T a b l e s  5 * 2 ,  5*4 a n d  5*5*



F i g u r e  5 * 7  T i m e  c o u r s e  o f  r e l e a s e  o f  r a d i o a c t i v e  s p e c i e s  

1 2 5d e r i v e d  f r o m  ^ I - l a b e l l e d  r a t  I g G  f o l l o w i n g ;  i n c u b a t i o n  o f  

r a b b i t  y o l k - s a c s  w i t h  s u b s t r a t e  i n  s e r u m - f r e e  m e d i u m  199

2 4 - d a y  r a b b i t  y o l k - s a c  p i e c e s  w e r e  f i r s t  i n c u b a t e d  f o r  2 h  i n
125s e r u m - f r e e  m e d i u m  199  i n  t h e  p r e s e n c e  o f  • ' I - l a b e l l e d  r a t  

I g G  ( 1 0  | j g / m l ) .  F o l l o w i n g  w a s h i n g ,  t h e y  w e r e  r e i n c u b a t e u  i n  

f r e s h  m e d i u m ,  a n d  r e l e a s e  o f  r a d i o a c t i v i t y  w a s  m o n i t o r e d  u p  t o  

3 h  ( s e e  S e c t i o n  5 . 2 . 2  f o r  d e t a i l s ) .  T h e  t o t a l  a m o u n t  o f  s u b ­

s t r a t e  a s s o c i a t e d  w i t h  t h e  y o l k - s a c  a t  t h e  b e g i n n i n g  o f  r e i n ­

c u b a t i o n  w a s  1 3 5 5  n g / m g  y o l k - s a c .

T o t a l  r a d i o a c t i v i t y  r e l e a s e d  ------ A -------

T C A - s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  — • -------•

T C A - i n s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  —  O -------

T h e  v a l u e s  s h o w n  a r e  m e a n s  f r o m  6 s e p a r a t e  e x p e r i m e n t s  p e r ­

f o r m e d  w i t h  t h e  s a m e  b a t c h  ( B a t c h  2 )  o f  " ^ ^ I - l a b e l l e d  r a t  I g G  

u s e d  i n  t h e  e x p e r i m e n t s  q u o t e d  i n  T a b l e s  5 * 2 ,  5 * 4  a n d  5 . 5  .



Table 5.7 Release from rat and rabbit yolk sacs of radioactivity derived from 
heterologous IgG species

I-labelled homologous and125

This table represents a summary of the data presented in Figures 5.3-5.7. The data report the 
release of substrate-derived radioactivity by 3h of reincubation in fresh medium. In addition to the 
values of substrate release in absolute terms (ng/mg yolk-sac protein), release data are also expressed 
as a percentage of the total amount of substrate associated with the tissue at the beginning of the 
reincubation period. The S.D. for 3h values are reported in this table (c.f. Figures).

a) Rat yolk-sac incubations
125T t „ Quantity released by 3h Percentage releaseI-lgG r i. , N « ■ ■■■■ ... A 1
species TCA-

solubles
TCA-

insolubles Totals
TCA-

solubles
TCA-

insolubles Totals
(ng substrate released/mg yolk-sac tissue)

Bovine 
(Batch 1) 142.1 ± 69.3 81.6 ± 22.1 325.2 ± 71.4 62.6 22.0 84.5
Human 
(Batch 1) 287.6 ± 29.4 265.5 ± 31.6 552.1 ± 30.7 46.7 43.2 89.7
Rat
(Batch 1) 346.2 ± 65.3 197.6 ± 22.2 543.8 ± 78.9 52.6 30.4 83.0

b) Rabbit yolk--sac incubations

125I-IgG Quantity released by 3h Percentage releaseX igu
species TCA-

solubles
TCA-

insolubles Totals
TCA-

solubles
TCA-

insolubles Totals
(ng substrate released/mg yolk-sac tissue)

Bovine 
(Batch 2) 413.5 ±130.5 128.0 ± 59.2 540.5 ±108.7 69.6 21.6 91.2
Human 
(Batch 2) 374.1 ± 83.3 370.2 ±104.5 744.3 ±173.0 40.4 40.0 80.4
Rabbit
(Batch 2) 504.1 ±137.3 712.4 ±175.5 1216.5 ±291 33.4 47.2 80.6

Rat
(Batch 2) 852.8 ±244.0 205.6 ± 96.3 1058 ±331 63.9 15.4 79.3
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5.4 DISCUSSION

The transmission of passive immunity from mother to young has been

shown by in vivo studies to be selective with regard to immunoglobulins
from various species and also other protein molecules. The primary
aim of this chapter was to see whether a similar kind of selectivity

could be demonstrated in the rat and rabbit yolk sac in vitro, and then

to attempt to elucidate possible interspecies differences between the

two tissues with respect to selectivity. A brief glance at the main

results (Tables 5.6 and 5.7) shows that the fates of homologous and 
125heterologous I-labelled IgG's do indeed differ from one another m  

both the rat and the rabbit yolk sac in the in vitro incubation system.

Looking first at the uptake data obtained from rat and rabbit yolk-
sac incubations, it is apparent that homologous and heterologous 
125I-labelled IgG species differ quite strongly from each other in their 
fates (Table 5.6). This is manifest by different Endocytic Indices, 

Tissue-Accumulation Rates and relative degrees of tissue accumulation.

At this point it is important to remember that Endocytic Indices measure 

only the net uptake of a substrate. The amount of substrate readily 

released back into the medium by the tissue after uptake is not taken 

into account in the expression of the Endocytic Index. As a result, 

Endocytic Indices cannot be taken as an index of transcellular transport. 

The Tissue-Accumulation Rate, on the other hand, should to some extent 

measure the quantity of material accumulated in a specific transport 

system. However, the Tissue-Accumulation Rate may also reflect the 

degree of intralysosomal accumulation of a poorly degraded protein, 

under conditions in which the rate of uptake exceeds the rate of 

degradation. Thus, T.A.R.s may either reflect differences in the 

amounts of the various IgG species being transported across the yolk 

sacs by a specific pathway, or differences in the structure of the IgG
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molecules that affect their susceptibility to uptake and degradation 

within the lysosomal system. This latter possibility will be dealt 
with in more detail in Chapter 8. The implications of these considerations 

are that uptake data (that is E.I. and T.A.R.s) may not agree with data 
obtained from reincubation studies; of the in vitro findings, the latter 

are expected to give a more direct and reliable measure of transcellular 

transport.

Despite these reservations, a closer examination of the uptake data

(Table 5.6) brings to light some rather interesting general findings.
125[For purposes of comparison, the uptake rates of the different I- 

. 125labelled IgG species and the rates of uptake of I-labelled PVP under

equivalent conditions (see Chapter 2) are all discussed here.] In
125the rat yolk-sac system, the rate of uptake of I-labelled PVP has 

been established as the rate of fluid-phase uptake (Roberts et al.,
1977). Even in the absence of definitive evidence, it should be 

fairly safe to assume that the same is the case in the rabbit yolk sac.
Thus, it is obvious that in both the rat and rabbit yolk sac all
125 . . .I-labelled IgG species have Endocytic Indices that are higher than

125 . 125that of I-labelled PVP, even though the Endocytic Index of I-
labelled PVP does increase very sharply when serum is removed from the

medium in which rabbit yolk sacs are incubated. In other words the

greater proportion of all the species of IgG is taken up by adsorptive

pinocytosis. In view of the theories put forward by Brambell and Wild for

matemofoetal transport of IgG in the rabbit, this is not surprising

since both workers postulate the presence of specific IgG receptors
on the yolk sac membrane to ensure the protection of the bound molecules.

Therefore by both theories it is expected that all IgG entering the

"protective" IgG pathway is taken up by adsorptive pinocytosis. If,

however, allowances are made for both fluid-phase uptake and tissue
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accumulation, i.e. adding together these two rates for each substrate,
the very surprising finding is that the actual Endocytic Indices exceed

these values in all cases; the difference is particularly marked in
serum-free medium. This means that more IgG binds to the cell-membrane

surface than is transported across the tissue intact so that at least
some of the adsorbed IgG must be degraded in the same manner as that

taken up via the fluid phase. Hence, not all adsorption of IgG to the

tissue leads to intralysosomal accumulation or transport. As this

assumption is one of the major pillars supporting Brambell's theory,

this hypothesis would have to be strongly modified to account for the

existence of a receptor-mediated degradative IgG route. The above
125findings are true for all I-labelled IgG species investigated in rat

125and rabbit yolk sacs. Interspecies differences between the I-labelled
IgG preparations will now be considered.

Looking first at the data obtained from rabbit yolk-sac incubations
125(Table 5.6), it is clear that the rabbit and bovine I-labelled IgG

differ strongly from each other in their fates. In the presence and
125absence of calf serum the homologous I-IgG has the lowest Endocytic

Index coupled with a relatively rather higher Tissue-Accumulation Rate

(see Tables 5.4 and 5.6). A high T.A.R., as mentioned above, is
125simply an indication that not all the I-labelled rabbit IgG taken up by

the tissue is immediately released back into the incubation medium in a
degraded form, but is accumulated in the tissue. These findings indicate

125that the greater part of the I-labelled rabbit IgG taken up by the

rabbit yolk sac is not readily degraded by the tissue. In contrast,
. 125in serum-free medium I-labelled bovine IgG has a high Endocytic

Index in the rabbit yolk sac and a very low Tissue-Accumulation Rate.

As reincubation studies give a more reliable indication of the respective

fates of IgG molecules in the yolk sac, it is interesting to note that up
125to 60% of the tissue-associated radioactivity derived from I-labelled
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rabbit IgG is released as TCA-insolubles, on reincubating rabbit yolk

sacs that previously had accumulated this radioactive marker molecule
(see Table 5.7 for details) whereas there is only a low release of

TCA-insoluble activity from rabbit yolk sacs "preloaded" with bovine 
125I-labelled IgG (Table 5.7). These data suggest that, unlike

125rabbit IgG, most of the I-labelled bovine IgG taken up by the rabbit

yolk sac in vitro is degraded. (The values of the ratio TAR/EI for 
125human and rat I-labelled IgG fall between those for rabbit and

125bovine IgG, with the fate of I-human IgG resembling more that of 
125 . 125the I-rabbit IgG, and I-rat IgG being treated by the rabbit

125yolk sac in vitro m  a manner more similar to I-labelled bovine

IgG.) Of the data quoted in the results section, the percentage

release of TCA-soluble radioactivity (Table 5.7) gives the clearest
indication of the degree of molecular degradation in the yolk sacs in vitro.

In the uptake studies discussed above, tissue accumulation, especially

expressed as a percentage of total uptake, may possibly be a measure of
protein accumulating undegraded in the yolk sac; the interpretation of

the release of acid-insoluble radioactivity in re-incubation studies is

less equivocal, hence more importance should be attached to these

latter data. Quoting both T.A.R./E.I. ratios and percentage TCA-
125insolubles in rank order for the various I-labelled IgG species 

gives the following patterns for rabbit yolk sacs:
TAR/EI
(no serum in medium)

P e r c e n t a g e  r e l e a s e  o f  
TCA-insolubles

rabbit > human > rat > bovine (see Table 5.6) 

rabbit > human > bovine > rat (see Table 5.7)

The correlation between these two rank orders relating to "escape 

from being degraded" and the order of transfer of homologous and 

heterologous IgG species to the rabbit foetus in vivo (Cohen, 1950;

Batty et al., 1954) is striking see also Table in Introduction, 5.1).
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The same selectivity between IgG species supports the contention that

the mechanism that is operating in vitro is the same that is
responsible for selective transfer iii vivo.

Similarly, in the rat a parallel can be drawn between in vitro

and in vivo findings. The ratio TAR/EI and the percentage release
125of TCA-insolubles for the homologous and heterologous I-labelled 

IgG species fall in the following rank orders:

TAR/EI
(no serum in medium)
Percentage release of 
TCA-insolubles

rat > human > bovine

human > rat > bovine

(see Table 5.6) 

(see Table 5.7)

Koch et̂  al_. (1967) found the order of prenatal transmission of 

homologous and heterologous IgG in the rat in vivo to be-.human > rat > 
bovine, which correlates with the rank order for in vitro release of 

TCA-insoluble radioactivity.

Having shown that, in vitro, the rabbit and the rat yolk sacs

exhibit broadly the same pattern of selectivity towards homologous and

heterologous species of IgG as exists in the respective tissues in vivo,

the quantitation of uptake will now be considered in more detail.

Experiments in which the rates of uptake of homologous and heterologous 
125I-labelled IgG were investigated were performed under two different
conditions: in the presence and in the absence of calf serum. As

noted before (Chapter 2), Endocytic Indices rose by an order of
magnitude when calf serum was not included in the incubation medium

in either the rat or the rabbit yolk-sac incubations. Such increases

can be accounted for in terms of absence from the medium of serum
125proteins that compete with the I-labelled IgG for membrane binding 

sites. Since the concentration of the serum proteins is much greater 

than that of the radioiodinated substrate, it is not surprising that

such effects are marked.
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Looking at the rates of uptake of homologous and heterologous 
125I-labelled IgG in detail (see Table 5.6), the rank order in the 
rabbit yolk sac is:

Endocytic Index , ,, . . \ rat > human > bovine > rabbit(serum-containing medium)

Endocytic Index 
(serum-free medium) human > rat > bovine > rabbit

Although those two patterns are similar, the uptake in serum-free

medium is simpler to analyse because of the absence of any complications

caused by the presence of serum proteins. The finding here is that the

IgG species that is protected against degradation to the greatest extent
125(i.e. the homologous I-labelled rabbit IgG) also has the lowest

uptake rate. This may reflect the low affinity of rabbit IgG for

nonspecific binding sites on rabbit yolk sac endodermal cells relative
125to other IgG molecules. The Endocytic Index of I-labelled human 

IgG, which is equally well transferred in vivo in the rabbit and is 

protected against degradation in vitro, on the other hand, is very 
high, the non-transferred IgG species, rat and bovine, have intermediate 

uptake rates. However, in the rat yolk sac in vitro the range of 

variability in the rate of uptake is less than that in rabbit yolk 

sacs in vitro, so that attempts to put the Endocytic Indices of 

homologous and heterologous IgG's in rank order are not very meaningful, 
but show the following trend:

Endocytic Indices bovine > rat > rabbit-human(serum-containing medium)

Endocytic Indices .  ̂ . .. 3 , ,. . human > rat > bovine(serum-free medium)
All the above findings are compatible with the functioning of 

two separate routes in the rabbit and also in the rat yolk sac in vitro; 

one of which is general and leads to the degradation of the ingested 

protein molecules, the other pathway is specific, transporting certain
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protein molecules intact across the yolk sac. As was stated earlier,

the "degradative" as well as the "protective" IgG route in yolk sacs

seems to be mediated by selective adsorption (Chapter 2). The very
different rates of uptake, especially in the rabbit yolk sac, could be

accounted for by differences in the structures of the IgG molecules
causing different degrees of adsorption to the binding sites on the

125plasma membrane. Looking in particular at the fates of I-labellcd 

human and rabbit IgG in the rabbit yolk sac, it is apparent that both 

of these molecules escape from being degraded in this tissue to a 

similar degree, as expressed by their high percentage of TCA-insolubles 

released from the yolk-sac tissue after previous "loading" with these 

substrates. That region in the IgG molecule responsible for "protective" 
binding may therefore be very similar in rabbit and human IgG. However, 

since these two substrates differ considerably in their Endocytic Indices 

it is very probable that the part of the IgG molecule responsible for 

binding to the "degradative" receptor differs in rabbit and human IgG.
From these observations it appears that "protective" and "degradative" 

binding to the yolk-sac surface involves different regions of the IgG 

molecule.

Although a number of similarities have been shown between rat and

rabbit yolk sacs in vitro, in a number of respects the two tissues
125differ in their treatment of homologous and heterologous I-labelled

IgG. The first of these differences is the rather low Endocytic

Index for the homologous I-labelled IgG in the rabbit coupled with the

relatively high Tissue-Accumulation Rate. In the rat yolk sac, on the
125other hand, homologous I-IgG has a higher E.I. and a lower T.A.R.

This pattern is particularly noticeable in serum-free incubations.

These findings suggest that more homologous IgG is degraded in a non­

specific pathway in the rat than in the rabbit yolk sac in vitro. This

is compatible with the yolk sac being the only site of transfer of passive
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immunity in the rabbit, whereas in the rat, the neonatal gut is the
major site, with the yolk sac providing only a secondary route

(Halliday, 1955; Mayersbach, 1958; Williams & Ibbotson, 1979). This
may also explain the second major difference between the rat and

125rabbit yolk sac in vitro. For all I-labelled IgG species, the
Tissue-Accumulation Rates in the rabbit are much higher than in the rat

yolk sacs, especially when expressed as a percentage of the Endocytic

Index (T.A.R./E.I.). This is compatible with the specific "protective"

route involved in IgG transport being more developed in the rabbit than

in the rat yolk sac. Finally, the rabbit yolk sac in vitro seems to

have almost double capacity for "holding" IgG, this being determined as

the total amount of substrate (ng per mg yolk-sac protein) released

after previous"loading". A similarity between both tissues is that 
125I-labelled bovine IgG shows the lowest release of both total and

acid-insoluble radioactivity (ng per mg yolk-sac protein), as

well as the lowest Tissue-Accumulation Rate in serum-free medium. In
125all respects, this IgG molecule is treated more like i-labelled BSA.

The fact, however, that both degradative and non-degradative pathways 

can be demonstrated in the rat as well as in the rabbit yolk sacs 

in vitro underlies the essential similarity in properties of the two 

tissues and in turn suggests that this tissue is involved in the transfer 
of passive immunity from mother to young in the rat as well as the rabbit. 
Further, and more conclusive, evidence is the finding that the in vitro 

selectivity follows the same pattern as in vivo selectivity in both 

species. Although such findings do not of course exclude the involve­

ment of other tissues in prenatal transfer of immunity in rats and rabbits, 
they strongly suggest that yolk sacs play a similar role in both species, 

but with the selective route being more developed in the rabbit than in 

the rat.

In summary, the following conclusions are put forward:
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1. The fates of homologous and heterologous I-labelled IgG 
differ significantly in both rabbit and rat yolk sacs iii vitro.

All are taken up by adsorptive pinocytosis, but whereas some are almost 

totally degraded in the yolk sacs, others are either readily accumulated 

within the tissue or are readily released in an undegraded form on 

reincubating the tissue.

2. The rank order for release of TCA-insoluble radioactivity derived from 

different species of IgG from yolk-sac tissue follows closely the order
of prenatal transfer from mother to foetus in rabbit and rat in vivo.

3. The similarity in the behaviour of both rat and rabbit yolk sacs in
125vitro towards homologous and heterologous I-labelled IgG is compatible 

with the suggestion that in rats as well as in rabbits, the yolk sac 

is a site for selective transmission of immunoglobulins.

4. The observation that, in vitro, relative to the rat and the rabbit 

yolk sac has the better developed carrying capacity for IgG and a lower 

catabolic activity, is compatible with the yolk sac playing a greater 

role in the selective transfer of IgG in vivo in the rabbit than in the

rat.



CHAPTER SIX

The Interference of Different Species of 
IgG with the Release of IgG from Rat and

Rabbit Yolk Sacs
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6.1 INTRODUCTION

In the previous chapter it was shown that the patterns of release 
125of different I-labelled IgG molecules, from rat and rabbit yolk 

sacs incubated in vitro, were entirely compatible with the published 
observations for the transfer of homologous and heterologous IgG from 

mother to foetus. But neither the published iji vivo studies nor the 

in vitro studies reported in the earlier chapters give any information 

concerning the precise mechanism responsible for the protection of 

homologous IgG during its prenatal transport across foetal membranes.

In this chapter an attempt was made to investigate one of the 

features by which two of the current theories can be distinguished 

from the other, namely the suggested presence, on the outer face of the 

plasma membrane, of receptors that are specific for certain proteins.

Both the models of Brambell and Wild require the presence, on the 

endodermal yolk-sac membrane of the rabbit, of receptors designed to 

bind to the Fc portion of the IgG molecule (Brambell, 1966, 1970;

Wild, 1975, 1976). Similarly, Rodewald (1973, 1976) in a theory 

accounting for the selective transport of IgG across the neonatal rat 

gut, stipulates that specific receptors occur only in the proximal half 

of the rat gut. By contrast, Hemmings & Williams (1976) have proposed 

a theory according to which the first step in selective transport across 

the rabbit yolk sac involves non-selective uptake into vesicles with no 

specific receptors. Some vesicles are then purported to burst 

releasing their contents into the cytoplasm. According to this 

theory only those proteins released into the cytosol are candidates for 

transport, while molecules retained within intact vesicles are destined 
to undergo degradation by lysosomal enzymes. Selectivity is suggested 

to operate at the level of release from the basal and lateral membranes of 

the cell, but no detailed mechanism has been suggested so that it is
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difficult to examine this theory experimentally.

Indirect information on the nature of the transport mechanism 

comes from in vivo studies of the kinetics of transfer, and rests on 

the assumption that models like those proposed by Brambell and Wild 
involve transport systems that are saturable and show zero or first 

order kinetics of transfer. In rabbit yolk sacs in vivo, Sonoda & 

Schlamowitz (1972) have indeed shown that matemofoetal transfer of 

rabbit IgG and of rabbit serum albumin proceeds according to a process 

that shows zero order kinetics.

Investigations, by a number of experimental techniques, have given 

more direct evidence for the presence of specific receptors on rabbit 

yolk sacs, rat gut, human chlorioallantoic placenta, etc. Thus,

Morris, I.G. (1956) found that when sera of different species (man, 

rabbit, ox) were mixed with immune serum and administered by mouth to 

suckling rats or mice, they reduced the rate of entry of antibodies 

relative to a similar admixture with homologous non-immune serum.
He termed this effect "interference” and Brambell et_ al_. (1958) subse­

quently identified the serum component responsible as IgG, by achieving 

the same interference effect when replacing whole serum by unlabelled 

IgG. Like selection, "interference" displays a great degree of 

specificity. For example, Brambell at al. (1958) showed that the uptake 

of homologous IgG by the neonatal mouse gut in vivo could be interfered 

with by the addition of IgG molecules derived from various species 

and showed that their effectiveness followed the rank order : rabbit > 

guinea-pig > human > bovine > rat=hams ter=sheep=mouse.
However, in vivo studies are not well suited to more detailed 

investigations of the nature of the IgG receptors because of: 1) the 

possible existence of multiple transmission sites in the animal;

2) uneven distribution of substrate at the transport sites and 3) the 

uncertainty of whether the molecule has been structurally or otherwise
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modified in the animal prior to reaching the site of transport.

Therefore attempts to characterize these proposed membrane receptors

have been made using in vitro systems based on a variety of tissues.
For example, Sonoda & Schlamowitz (1972); Tsay & Schlamowitz (1975);

Schlamowitz et_ al^ (1975) have demonstrated the presence of receptors on

the rabbit yolk-sac membrane by using both formaldehyde-fixed tissue

and also a special kind of vesicles ("Schlamowitz vesicles") claimed to

consist of plasma membrane only. Similarly, using membrane suspensions

isolated from human placenta, Balfour & Jones (1977) found a receptor

specific for the light chain and the Fc regions of IgG. Likewise,

by using antibody-coated red blood cells in a rosetting technique

Elson et al. (1975) demonstrated Fc receptors on mouse placenta and

yolk-sac cells and Wild & Dawson (1977), using the same technique, found

Fc receptors on rabbit yolk-sac cells. In addition, Hillman et al̂ .

(1977) have characterized Fc receptors on rabbit yolk sacs by a different

method, by binding IgG to brush-border membranes, tissue homogenate,
plasma-membrane fractions and formalin-fixed discs of tissue.

Experimental findings concerning selectivity of binding between

homologous and heterologous IgGs are conflicting. Hemmings & Williams

(1974) claim no selection in the extent of binding of rabbit and bovine 
125I-labelled IgG to membrane-containing cell-fractions of rabbit 

yolk sacs, whereas Tsay & Schlamowitz (1975) present evidence of such 

selectivity in the rabbit yolk sac.

Several aspects of the interpretation of data from such ill vitro 

binding studies, as described above, are open to serious criticism.
First, the behaviour of the living tissue in situ is very likely to 

differ from that of fragments of the same tissue isolated by various 

centrifugation techniques and in some cases even subjected to fixation 

in powerful reagents such as formalin, that are known to modify protein
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structures. Second, apparent selectivity might be the result of general 

structural differences (size, shape and charge) of the entire IgG 

molecule and not of structural differences in the Fc region, as required 
in the receptor theory. Third, specific binding sites on cell membranes 

may be generated only during the formation of coated micropinocytic 

vesicles or normal pinosomes and might therefore not be apparent in 
non-living preparations. [For example, in the formation of coated 

micropinocytic vesicles a capping effect of ligand-receptor complexes 

may be essential. This has been postulated for IgG transport 

(Ockleford, 1976) and demonstrated in the interaction of immunoglobulins 

with the lymphocyte-surface receptors during the immune reaction 

(Taylor et al., 1971).] Fourth, in vitro binding studies, like ultra- 

structural studies, could be very misleading, because in the molecular 
transfer across the membrane, a low capacity system could be operating 

but at very high speed. Using in vitro binding, this difference between 

the static and the dynamic carrying capacity of IgG by the tissue would 
be difficult, if not impossible to detect. However, an in vitro 

technique in which the intact, living tissue is maintained at all times 

under near physiological conditions is likely to differ less from the 

in situ tissue and hence should provide data that can be interpreted 

with few of the above reservations.

In the in vitro system one of the early findings (Moore £t al.,
1977; Williams & Ibbotson, 1979) that is relevant to the issues raised 

above was the observation that adsorption to a plasma membrane alone

does not ensure protection of IgG or other proteins from degradation.
125For example Moore e£ al. (1977) have shown that I-labelled albumin 

is endocytosed by the rat yolk sac in vitro by adsorptive pinocytosis, 

as defined by Jacques (1969), but is entirely degraded within rat yolk- 

sac endodermal cells (Livesey & Williams, 1979). From the results of
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Ibbotson & Williams (1979) and the reported findings (Chapter 5) it is
125apparent that in vitro I-labelled IgG is also taken up by rat and

rabbit yolk sacs mainly by adsorptive pinocytosis, the Endocytic Indices
being higher (by at least an order of magnitude in serum-free medium)

than the values accepted for fluid-phase pinocytosis (Pratten et al.,
1251980). Thus it appears that the majority of all I-labelled IgG, 

whether destined for transport or degradation, is taken up by the yolk 

sac by prior binding to the yolk-sac plasma membrane. This more general 

involvement of membrane binding in the rat yolk sac renders it important 

to distinguish at least two types of membrane binding, i.e. that 
associated with the "degradative" pathway and that associated with a 
"non-degradative" pathway.

It may be possible to block either the "protective" IgG receptor
125or the "degradative" IgG binding site to a given I-labelled IgG 

species by exposing the yolk sac to sufficient quantity of an unlabelled 

species of homologous or heterologous IgG. The extent of such interference 
can be more easily quantified using an isolated intact tissue than from 

in vivo studies. Also, by attempting to block one pathway and by 

forcing substrate into the other pathway, information should be gained 

concerning the nature and possible saturability of receptors/binding 

sites involved in the separate routes, if there are indeed two different 

routes of protein transport into and through both the rat and rabbit 
yolk sacs.

In summary, this chapter is concerned with the following questions:

1) Can receptors, specific for homologous IgG be demonstrated on the 
intact rabbit and rat yolk sacs when incubated in the in vitro system?

2) Is it possible, in the in vitro system, to interfere with either :

a) a specific (protective) IgG pathway, or b) a non-specific (degradative) 
125IgG pathway for I-labelled IgG molecules by using homologous and
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heterologous unlabelled IgG species to block sites on the rat and rabbit 

yolk-sac plasma membrane?

3) Can "degradative" binding sites similar to those previously observed 

on the rat yolk sac, be demonstrated on the rabbit yolk sac in vitro?

4) Do rat and rabbit yolk sacs differ from each other with regard to 

interference in the uptake mechanism?

5) Can IgG be forced into the "degradative" pathway by effectively

blocking the "specific" pathway by the addition of high concentrations of

unlabelled IgG? Conversely, can blocking the "degradative" binding

sites with unlabelled proteins leave only the "specific" pathway available

to homologous IgG and so effectively abolish the degradation of tracer 
125amounts of I-labelled homologous IgG?
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6.2 METHODS

6.2.1 Release of radioactive species, derived from I-labelled bovine 

or rat IgG, from rat yolk sacs previously incubated with one
of these substrates in the presence of either unlabelled homologous 
or heterologous IgG species

Rat yolk-sacs (17.5-day) were incubated for 2h in serum-free medium 
125199 containing both I-labelled bovine (or rat) IgG (10 yg/ml) and 

native bovine (or human or rat) IgG at a higher concentration (100 yg/ml). 

After washing, yolk sacs were reincubated in fresh medium for up to 3h 

and aliquots of medium were removed at regular intervals. (The method 
is described in detail in Section 1.12). The amounts of total, TCA- 
insoluble and TCA-soluble radioactivity released were determined as 

outlined in Section 1.12.

6.2.2 Release, from rabbit yolk sacs, of radioactive species derived
125from I-labelled bovine or rabbit IgG previously accumulated 

in the presence of unlabelled homologous or heterologous IgG 
species

Rabit yolk-sac pieces (24-day) were incubated for 2h in serum-free
125medium 199 containing radiolabelled substrate ( I-labelled bovine 

or rabbit IgG at a concentration of 10 yg/ml "). Also present in the 
incubation medium were unlabelled bovine, human,rabbit or rat IgG at 

a concentration of 100 yg/ml. The rest of the method followed closely 

the one outlined above (Section 6.2.1).

125
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6.3 RESULTS

6.3.1 Presentation of results

Studies of the interference of unlabelled IgG with the uptake of 
125I-labelled homologous IgG, as determined by the subsequent release of
radioactivity from yolk sacs took two forms. First, the effect of

unlabelled homologous and heterologous IgGs present at a high concentration
125(100 ug/ml) on the total amount released of homologous I-labelled

IgG released was investigated. Second, attempts were made to interfere

with the uptake and digestion of I-labelled bovine IgG (an IgG species

that is not transported from mother to foetus to any extent) by the
addition to the uptake medium of homologous or heterologous IgG molecules

at the same high concentration (100 yg/ml). Results are presented in

the form of the time-course of substrate release (for some incubations

only; Figure 6.5), histograms (Figures 6.1, 6.2, 6.3 and 6.4), and

summary tables (Table 6.1 and 6.2). The format of histograms is the

same as in Chapter 3. Histograms give an expression of interference

of the unlabelled IgG with a) total tissue-accumulation, b) total
release, c) TCA-soluble activity release (i.e. interference with the

degradative pathway) and d) TCA-insoluble release (i.e. interference
125with the protective pathway) of the I-labelled substrate. Summary 

tables (Tables 6.1 and 6.2) aid the establishment of trends in the data, 

so that relative effects can become obvious. In these tables the 

first of the four columns reports the fraction of the total radioactivity 

released that is acid-insoluble: i.e.

Y _ TCA-insoluble activity released 
Total activity released

The second column is an expression of the fractional release of 

acid-insolubles relative to controls, i.e.
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TCA-insoluble activity released by a yolk sac 
previously incubated in the presence of an 
unlabelled competing IgG species L

Total activity released by the same yolk sac
J

Z = --------------------------------------------
TCA - insoluble activity released from control 
yolk sac (i.e. No competing IgG present) 
____________________________________________
Total activity released from the control yolk 
sac

(The third and fourth columns report the equivalent values for TCA- 

soluble activity.) The quantity will be referred to in the text as 

the "relative interference" with a pathway (protective or degradative) 
because it shows, relative to the control, how much IgG substrate is 

"pushed" into either the "degradative" or the "protective" pathway by 
the presence of unlabelled IgG in the incubation medium during the phase 

of substrate uptake. Thus, if this fractional release of acid-solubles 

(or acid-insolubles) expressed relative to controls is 100% in an 

experimental incubation with competing IgG species present, it means there 

is no difference between experimental and control tissues in the relative 

release of acid-solubles (or acid-insolubles). A percentage lower than 

100%, however, indicates some degree of interference with the pathway 

investigated, whereas a percentage higjier than 100% shows that some 

substrate has been "pushed" into this pathway, possibly by blocking the 
other, normally available pathway.

6.3.2 Interference in total tissue-accumulation and release, by rat and
125rabbit yolk sacs incubated in vitro, of I-labelled homologous 

IgG by unlabelled bovine, human^rabbit or rat IgG

The possible effects of unlabelled immunoglobulins on the fate of 
125I-labelled homologous IgG within yolk-sac tissue are four-fold.

First, interference with total tissue-accumulation; second, interference 

with the "protective" IgG route and third, interference with the
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"degradative" IgG route. (These three possible effects are necessarily 
inter-related.) Finally, interference with the total amounts of 

protein released subsequent to uptake, without any attendant decrease 
in total tissue-accumulation.

Beginning with the rat yolk sac, these four possible effects will 

be investigated in turn for each species of "interfering" IgG (Figure

6.1) . Bovine IgG causes a reduction in both total tissue-accumulation
125and release of 1-labelled rat IgG by rat yolk sacs; also release of 

TCA-soluble and -insoluble radioactivity are lower, with a relatively 

greater decrease in the release of the macromolecular material (Table 6.1). 

The presence of unlabelled human IgG during "loading" of yolk sacs with 

the homologous substrate causes no decrease in total tissue-accumulation, 

but TCA-insoluble release is markedly decreased with a simultaneous 
increase in the quantity of TCA-soluble material released. The presence 

of rat IgG as an interfering molecule gives rise to an intermediate 

pattern of results; total tissue-accumulation and release of substrate 
are decreased and the effects are almost entirely accounted for by 

the decrease in quantity of TCA-insoluble activity released (see Table

6.1) . Thus, in the rat yolk sac, the "protective" IgG pathway is 

significantly interfered with only by human and rat IgG and the 

"degradative" route only by bovine IgG.

In the rabbit yolk sac (Figure 6.2) unlabelled bovine IgG does
125not noticeably affect the total tissue-accumulation of I-labelled 

rabbit IgG or the relative release of TCA-insolubles and -solubles 

(Table 6.2). Unlabelled human IgG causes a decrease in the total 

tissue-accumulation and release of rabbit IgG, mainly at the expense 

of TCA-insolubles; TCA-solubles are only slightly decreased

(Figure 6.2). A similar set of observations are made when unlabelled 

rabbit IgG is the competing species. Again, TCA-insoluble release is 
decreased, TCA-soluble release is little altered, but, whereas total
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release of radioactivity is decreased, total tissue-accumulation is not

(Figure 6.2). It is interesting to note that more than 50% of substrate

remains in the tissue, even after 3h reincubation. This high tissue-
retention of substrate can also be observed when rat IgG is the competing

species. The other effect of the presence of rat IgG in the rabbit

yolk-sac incubation medium during the "loading" phase is to decrease
125the total tissue-accumulation and release of I-labelled rabbit IgG

(Figure 6.2). The release of both TCA-soluble and TCA-insoluble

activity are affected to the same extent (see Table 6.2 for relative

values). Thus, in the rabbit yolk sac, the most noticeable interference

effects of high concentrations of unlabelled homologous and heterologous 
125IgG on I-labelled rabbit IgG appear to be that human and rabbit IgG 

both cause a decrease in the amount of protein handled by the "protective" 
IgG pathway, bovine IgG has no effect on either pathway and rat IgG 

reduces both.

6.3.3 Interference with total tissue-accumulation and release of 
125I-labelled bovine IgG, by rat and rabbit yolk sacs when 

incubated in vitro, in the presence of unlabelled bovine, 

human, rabbit or rat IgG

125In this series of experiments, the substrate was I-labelled 

bovine IgG, a molecule that is not transported across the yolk sac 

in vivo (Brambell, 1970) and which has been shown to be almost entirely 

degraded in the rat and rabbit yolk sacs in vitro (see Chapter 5). 

Interfering with the total tissue-accumulation of this substrate in rat 

and rabbit yolk sacs in vitro by the addition of homologous and 

heterologous unlabelled IgG constituted an attempt to reduce the flux 

through the degradative IgG route in these tissues. At the same time

the protective route would be expected to be blocked altogether, 

especially by the addition of rabbit IgG.
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The data obtained for the rat yolk sac will be considered first

(Figure 6.3). Here, none of the unlabelled IgG molecules caused a

decrease in total tissue-accumulation and release of substrate. Rather
there is possibly a slight increase in total tissue-accumulation and

release in the presence of the competing proteins. The main effects

observed are on the relative amounts of TCA-soluble and -insoluble

radioactivity released. The presence of unlabelled bovine IgG during

the "loading" phase causes little or no decrease in TCA-soluble release
but there is a concommitant increase in TCA-insoluble release. Human

IgG, on the other hand, has little effect on TCA-insoluble release,
but increases TCA-soluble release. Rat IgG is like human IgG in

effect. To summarize, there are no marked effects on either tissue-
levels or release patterns (Figure 6.3). However, when looking at
Table 6.1, it seems that bovine IgG interfers with the relative TCA-

soluble release and human IgG interferes with the relative TCA-insoluble 
125release of I-labelled bovine IgG, but neither effect is very marked.

In the rabbit yolk sac, a greater complexity of findings is

apparent (see Figure 6.4 and Table 6.2). Unlabelled bovine IgG has
no detectable effect on either total tissue-accumulation or release of 
125I-labelled bovine IgG (Figure 6.4). The presence of human IgG in

the uptake medium causes a marked decrease in total tissue-accumulation
and release, but equally affects the release of acid-soluble and -insoluble

breakdown products of bovine IgG (Table 6.2). Rabbit IgG as the
interfering IgG species causes a greater decrease of radioactivity release125than of total tissue-accumulation (as was also observed with I-rabbit 

IgG as substrate). Looking at the relative TCA-soluble and -insoluble 
release (Table 6.2), the release of the macromolecular IgG species is 

decreased, whereas the relative release of the TCA-soluble radioactivity 

is, if anything, slightly increased. The addition of unlabelled rat 

IgG to the uptake medium causes the greatest effect on the total tissue-
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accumulation and release of i-labelled bovine IgG and also decreases 

markedly both the TCA-soluble and TCA-insoluble release from the tissue. 
Relatively, the protective IgG pathway is decreased to a greater extent 

(Table 6.2). In the rabbit yolk sac, therefore, an interference with 

both, protective and degradative pathways can be observed with human, 

rabbit and rat IgG exerting a strong absolute effect on the latter 

(Figure 6.4). Expressed in terms of "relative interference" (Table 6.2) 

the "protective" IgG route (TCA-insolubles) is decreased most by rat 

and rabbit IgG.
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Table 6.1 Effect of the presence of different species of IgG on the pattern of release of I-labelled products 
from rat yolk-sacs previously incubated with ^^I-labelled rat or bovine IgG in the presence of large quantities 
of another species of IgG (unlabelled).

This table summarizes the results shown in Figures 6.1 and 6.3, expressing interference in a relative way: 
a) as the ratio of TCA-solubles(and -insolubles) over total release for each incubation condition and b) as a 
relative effect by taking the values obtained with an interfering IgG species present and dividing each by the 
control value (see Section 6.2.1 for details).

125

125I-labelled 
substrate 
(10 pg/ml)

Competing species of 
unlabelled protein 

(100 yg/ml)

Fraction of the 
total activity 

released that is 
acid-insoluble

Fractional release 
of acid-insolubles 
expressed relative 

to controls 
(%)

Fraction of the 
total activity 
released that is 
acid-soluble

Fractional release 
of acid-solubles 
expressed relative 

to controls 
(%)

Rat IgG None (Control) 0.435 100.0 0.565 100.0
tv Bovine IgG 0.398 91.47 0.602 106.57
IV Human IgG 0.179 41.14 0.821 145.35
If Rat IgG 0.295 67.87 0.705 124.75

Bovine IgG None (Control 0.241 100.0 0.759 100.0
If Bovine IgG 0.353 146.35 0.647 85.25
It Human IgG 0.207 85.83 0.793 104.51
• 1 Rat IgG 0.250 103.48 0.750 98.89



Table 6.2 Effect of the presence of different species of IgG on the pattern of release of I-labelled products 
from rabbit yolk sacs previously incubated with l^bi-iabelled rabbit or bovine IgG in the presence of large 
quantities of another species of IgG (unlabelled)

This table summarizes the results shown in Figures 6.2 and 6.3, expressing interference in a relative way 
a) as the ratio of TCA-solubles (and -insolubles) over total release for each reincubation condition and b) as 
a relative effect by taking the values obtained with an interfering IgG species present and dividing each by the 
control value (see Section 6.2.1 for details).

125

1251 JI-labelled 
substrate 
(10 yg/ml)

Competing species of 
unlabelled protein 

(100 yg/ml)

Fraction of the 
total activity 
released that is 
acid-insoluble

Fractional release 
of acid-insolubles 
expressed relative 

to controls 
(%)

Fraction of the 
total activity 
released that is 
acid-soluble

Fractional release 
of acid-solubles 
expressed relative 

to controls 
(%)

Rabbit IgG None (Control) 0.531 100.0 0.469 100.0
ft Bovine IgG 0.491 92.45 0.509 108.55
tl Human IgG 0.302 58.06 0.698 148.87
ft Rabbit IgG 0.358 67.47 0.642 136.83
It Rat IgG 0.603 113.52 0.397 84.69

Bovine IgG None (Control) 0.186 100.0 0.814 100.0
II Bovine IgG 0.194 104.69 0.806 98.93
II Human IgG 0.198 106.52 0.802 98.51
II Rabbit IgG 0.139 74.68 0.862 105.77
It Rat IgG 0.132 71.28 0.868 106.54
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6.4 DISCUSSION

It was suggested earlier (Chapter 5) that both transport of IgG 
across the rat and rabbit yolk sac, as well as the degradative route, 

involve specific binding sites or receptors. One aim of the studies 
reported in this chapter was to provide further evidence for this 

assertion and to investigate the specificity of these receptors and 

binding sites more fully by interference studies using isolated tissues 

incubated in vitro. Whereas, in the neonatal rat-gut, transcellular 

transport of IgG and uptake of IgG with subsequent degradation happen 
at two different locations (the proximal and the distal part of the small 

intestine) in the rabbit and rat yolk sac both processes appear to take 
place in the same cell. It is fascinating then to ask how two distinct 

functional classes of receptor or binding site, specific for different 

molecules, can coexist on the surface of the same cell.

Some evidence for a specific protective IgG receptor on rabbit

and rat (and mouse) yolk sacs has been obtained from iti vitro binding

studies (Tsay & Schlamowitz, 1975, 1978; Elson et al., 1975;

Schlamowitz, 1976, 1979; Hillman et al., 1977; Wild & Dawson, 1977;
Wild, 1979). For the degradative protein pathway, however, evidence of

the nature of the binding site is more scanty. The finding in the

previous chapter, that uptake of IgG into the degradative route cannot be

accounted for simply in terms of fluid-phase uptake, suggests a general
binding site/receptor-mediated uptake of IgG. Also, when re-examining

125Table 5.6 it appears that the rate of uptake (E.I.) of I-labelled 

homologous and bovine IgG can be decreased to differing degrees by the 
addition of bovine calf serum to the incubation medium, suggesting that 

the degradative protein route can be interfered with. Interference 

in this way is indicative of binding sites that can be competed for. 

Before looking at the interference effects in detail, however, some
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more general considerations need to be mentioned. The effects of

interference have been expressed in terms of changes in the level of

total tissue-accumulation of substrate, as well as in terms of changes
in the amounts of substrate released. The level of tissue-accumulation

provides, with reservations, a measure of total uptake. This is

important, because mechanistically interference is, or should be,

primarily taking place during the uptake of the substrate. A secondary

effect of interference may be to cause intralysosomal accumulation of

protein as a result of demand for degradative enzymes outstripping the

available supply. Both Ibbotson & Williams (1979) and Livesey &
Williams (m/s) have, however, shown that the level of radioactivity in

the rat yolk-sac tissue is proportional to the Endocytic Index for 
125 . 125I-labelled albumin and I-labelled ribonuclease. The big 

reservation, however, is the effect of possible differential rates of 

digestion of different protein substrates. Thus, a protein that is 

degraded by the tissue rapidly, while being taken up avidly (i.e. high 

Endocytic Index) will have a very low tissue-level of radioactivity.

These considerations are also relevant to the interpretation of inter­

ference effects in terms of "protective" and the "degradative" IgG 

routes.

Obviously, the interpretation of interference effects in terms of
the behaviour of the "degradative" IgG route are more subject to the

limitations mentioned above. Therefore the major investigation in this
chapter has been to block the "protective" transport route by observing

the effect of homologous and heterologous unlabelled IgG on the "protective" 
125route of I-labelled IgG in rat and rabbit yolk sacs. Thus, in the

rabbit yolk sac it is obvious (Figure 6.2) that the release of the
125macromolecular form of I-labelled rabbit IgG is decreased considerably 

by the addition of either unlabelled human or rabbit IgG, but is not 

affected by bovine IgG. Interference with the protective IgG route is
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also reflected in Table 6.2, which expresses the relative suppression of
. . . 125this specific route. To a certain extent I-labelled rabbit IgG is

also shown to be "pushed" into the degradative route by the action of 

the interfering molecules blocking the protective pathway. In the rat 
yolk sac similar observations were made (Figure 6.1). The addition of 

human or rat IgG decreased markedly the TCA-insoluble release as a 

result of interfering with the non-degradative route. As in the rabbit 

yolk sac, it can also be seen that a great amount of the radioactive 
homologous IgG has been "pushed" into a route leading to degradation 

(Table 6.1).

The interference of the uptake of a labelled molecule by a greater

concentration of the same unlabelled molecules is taken to imply the
presence of a finite number of specific receptors for this molecule on

the membranes of the tissue investigated (Brambell et al., 1958).

According to the findings here, in rat and rabbit yolk sacs such receptors

have affinity not only for homologous IgG but also, to a greater or lesser

extent, for IgG derived from other species. Expressing interference in

"total" (Figures 6.1 and 6.2) and in "relative" (Tables 6.1 and 6.2)

terms, the following rank orders can be drawn up for the extent of
125interference with the "protective"/transport receptor for I-labelled 

homologous IgG by other IgG species:

Yolk Sacs "Total" interference "Relative" interference

Rabbit human > rabbit > rat > bovine human > rabbit > bovine=rat
(Figure 6.2) (Table 6.2)

Rat rat > human > bovine human > rat > bovine
(Figure 6.1) (Table 6.1)

These rank orders of interference are similar to those found in iri vivo 

interference studies by Brambell et al. (19581), albeit in other tissues 

(the rat and mouse gut) in which uptake of homologous IgG could be 

interfered with by various IgG species in the following order:
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rabbit > guinea-pig > human > bovine > rat=mouse=hampster=sheep. Also

Gitlin & Gitlin (1974) found that unlabelled human IgG could interfere
125with the uptake of I-labelled human and bovine IgG in the human placenta. 

In the same way, some in vitro binding studies have displayed a similar 

kind of selectivity in binding to homologous and heterologous IgG.
Using an erythrocyte-antibody rosette technique Wild & Dawson (1977) 

found that whereas rabbit and human IgG bind to Fc receptors of the 

rabbit yolk-sac membrane, bovine IgG does not bind. Wild (1979) also 

stated that there is a good correlation between binding of human, rabbit 

and bovine IgG to rabbit yolk-sac membranes and the transfer of these 

molecules across the same tissue. Schlamowitz et_ aT. (1975) found that 

"Schlamowitz" vesicles consisting of rabbit yolk-sac brush-border membrane 
and receptors bound FITC (fluorescein isothiocyanate conjugated) rabbit 
IgG but not FITC bovine IgG.

The rank orders of interference obtained here in vitro are also

closely related to the order of matemo-foetal transfer of IgG in the

rat and rabbit in vivo (see Brambell, 1970) and in vitro (see Chapter 5).

A slight difference, however, between transport and interference in vitro
125can be seen. Whereas in the rabbit yolk sac I-labelled rabbit IgG 

escapes from being degraded best, human IgG is the best interfering IgG 

molecule. But differences between rabbit and human IgG in their extent of 

interference are not very great.

This demonstration of a receptor-mediated protective route of IgG 

transfer in the rabbit and rat yolk sacs renders Hemmings & Williams'

(1976) theory of IgG transfer highly unlikely. According to this theory 

vesicles (pinosome or heterolysosomes) rupture releasing their contents 
into the cytoplasm, and IgG molecules can then move to the lateral and 

basal plasmalemma where they escape from the cell by selective diffusion. 

This random motion seems a far too slow process to account for the highly 

efficient process of IgG transport to the foetus. Moreover, on rupture 
of heterolysosomes it is expected that not only will immunoglobulins be
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released into the cytoplasm but also lysosomal enzymes. The latter 
event would be expected to prove damaging to the yolk-sac cells. As 

the Hemmings' theory rests on the observation of free ferritin (and 
labelled homologous and heterologous IgG) in electron micrographs of 

rabbit yolk sacs, following uptake of these molecules, it is possible 

that this effect is due to bad fixation, as suggested by Slade (see 
Hammings &. Williams, 1976); or that the radioactive molecule's detected in the 

cytoplasm are breakdown products of the injected radiotracers. A second 

finding of Hemmings (1974), that rabbit and bovine IgG bind indiscriminately 

to the rabbit yolk-sac membrane iii vitro, is equally compatible with the 

occurrence of receptors for the specific (non-degradative) pathway 
being present alongside other binding sites involved in the degradative 
route of protein uptake.

As the protective IgG pathway has been shown to be receptor mediated,

the degradative route will be considered next, looking first at those
125interference studies in which the substrate was homologous I-labelled 

IgG. As mentioned above interpretations of results are more tentative.

In the rabbit yolk sac, absolute TCA-soluble release is strongly decreased 

by only rat IgG (Figure 6.2). In the rat yolk sac, a significant 

decrease in the total amount of TCA-soluble radioactivity released can 

be noted with bovine IgG and to a lesser degree with rat IgG as competing 

species (Figure 6.1). [The "relative" figures differ little from the 

controls (Table 6.1); this reflects the fact that both degradative and 

protective routes are equally strongly interfered with by rat and bovine 

IgG.]
125When I-labelled bovine IgG is the substrate, interference effects

125are not as straightforward as with i-labelled homologous IgG. In 

absolute terms, TCA-soluble release is decreased in the rabbit yolk sac 

by human, rabbit and rat IgG (Figure 6.4). Relatively, only human IgG 

suppresses the degradative pathway, though not greatly. In the rat
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yolk sac (Figure 6.3) there is little or no effect to report. The

conclusion drawn from these findings is that specific binding sites

do exist for the degradative route in the rat and rabbit yolk sac. It
is interesting to note that in the rat yolk sac the degradative IgG 

125routes of both I-labelled rat and bovine IgG are interfered with by
bovine and rat IgG. In the rabbit yolk sac, on the other hand, the

125interfering IgG classes for the degradative binding sites for I- 

labelled rabbit and bovine IgG differ. A short summary table may help 

to visualize these effects:

a) Rabbit yolk sacs
Substrate 125I-rabbit IgG *2^I-bovine IgG
Total
interference

rat IgG human, rabbit, rat IgG

Relative
interference rat IgG human, bovine IgG

b) Rat yolk sacs

Substrate 125I-rat IgG ^^I-bovine IgG
Total
interference

bovine, rat IgG bovine IgG

Relative
interference bovine (rat) IgG

These findings point to a great complexity of binding sites for the 

degradative pathway on the rat and rabbit yolk sacs. The suggestion 
of the existence in IgG transport in the mouse of two receptors, both 

with a degree of specificity has also been made by Gitlin & Morphis 
(1969). They postulated two different transport systems for human, 

guinea-pig and rabbit IgG on the one hand and mouse and bovine IgG 

on the other hand in the mouse placenta.

The IgG transport receptor is probably specific for the Fc part 

of the IgG molecule (Kaplan e_t al., 1965) . Concerning the nature 

of the degradative binding site no suggestions have been made to date. 

Two possibilities can be envisaged. First the "degradative pathway"
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binding sites also bind to the molecule via the Fc moiety of the IgG.
Second, the binding sites show specificity on the basis of differences in 

charge, size or hydrophobicity etc. of the binding molecules. In 

support of the first suggestion are the findings that the Fc part of the 
IgG molecule is specialized to perform a great variety of different 

functions in a number of different cell types. (For example, Matre & 

Johnson (1977) found that in the human placenta multiple Fc receptors 

perform different functions. On the trophoblast, Fc receptors mediate 

matemofoetal transfer of IgG while on the placental endothelial cells, 
on the other hand, Fc receptors are involved in the protection of the foetus 

from immune complexes formed within the placenta, following transfer of 

maternal antibodies to paternally derived alloantigens of the foetus).

Should the degradative as well as the protective receptor be Fc-specific, 

it may be difficult to account for selection of protein transport in a 
tissue like the rat yolk sac, where both receptors can be blocked by rat 

IgG.
The second possibility, that the binding site is specific for 

molecules of a particular charge, size or hydrophobicity, has some 

support from flie findings of Livesey & Williams and Kooistra and Williams 

(unpublished data). In the rat yolk sac Livesey and Williams found 
evidence for two classes of binding sites involved in protein uptake, 

one specific for hydrophobic molecules and the other specific for 
positively charged molecules. Such a pattern of different binding sites 

could explain the very complex findings in the rabbit yolk sac although 

the equivalent experiments have yet to be performed with this tissue.
This brings to an end the most notable findings in this chapter. 

Nevertheless, some of the more minor observations also merit a mention.

A very great tissue-accumulation is observed when unlabelled rabbit IgG 

is added to interfere with uptake of the substrate in the rabbit yolk sac
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(Figures 6.2 & 6.3). A possible explanation of this finding is developed
125below. The release patterns in rabbit yolk sacs of I-rabbit IgG, 

(Figure 6.5a-c) suggest that while TCA-insoluble release levels off after 
70 min., TCA-soluble release continues to rise linearly with time. This 

finding may be accounted for by the suggestion that rabbit IgG is only 

slowly degraded in the rabbit yolk sac. Therefore when more unlabelled 

rabbit IgG is added to rabbit yolk sac incubations, an accumulation of 

the relatively poorly degraded substrate would be expected. Bovine IgG, 

on the other hand, seems to be more susceptible to degradation, and 

the presence of even large amounts of this substrate in the rabbit yolk 

sac should not lead to intracellular accumulation. This possibility 
of differential susceptibility of homologous and heterologous IgG to 

degradation by rabbit yolk sacs will be considered again in more detail in 
Chapter 8.

In conclusion:

1) The use of interfering species of IgG indicates that both rabbit and 
the rat yolk-sac cells appear to carry specific receptors that lead to 

the protection of the bound substrate against degradation.

2) In both tissues, the "protective" and "degradative" IgG routes have 

each been shown to be susceptible to interference by unlabelled IgG, 

suggesting the involvement of specific binding sites in both routes.

3) The binding sites on rat and rabbit yolk sacs differ in their 

specificity for IgG species.

4) Interfering IgG molecules can be shown to push the radiolabelled 
substrate into either the "protective" or the "degradative" IgG route, 

by effectively blocking the other route in either tissue.



CHAPTER SEVEN

Effects of Formaldehyde-treated Albumin 

and Rat IgG on the Uptake and Release 

of Rat IgG by the Rat Yolk Sac
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7.1 INTRODUCTION

In the previous chapter some evidence was obtained for the existence, 
on the rat and rabbit yolk-sac membranes, of specific IgG receptors 

that are involved in the protection of homologous and some heterologous 
IgG species. Furthermore, evidence was advanced to suggest that 

uptake of those IgG molecules destined for degradation within either rat 

or rabbit yolk sac was also mediated by binding to the surface of the 

tissues.

Ideas were forwarded earlier (Chapter 6) concerning the nature of these 

degradative IgG receptors or binding sites. It has been suggested that 
the adsorption of IgG could involve either the Fc region of the molecule 

or could depend on some other more general feature of the molecule.
Both suggestions find some support in the literature. Fc receptors are 

involved with the immune reaction and are found in a variety of cells. 

Bourgoiset al. (1977) isolated Fc receptors from mouse B-cells, T-cells, 

macrophages, thymus cells and fibroblasts, and found that these 
receptors are so similar that there must either be only one Fc receptor 

molecule or a common precursor. Also Anderson & Grey (1977), to quote 

just one more group of workers from a large field, found Fc receptors on 

mouse macrophages, mastocytoma, lymphoma and Friend virus-induced 

leukaemias and remarked on the similarity of the receptor molecule.

Despite this similarity, Fc receptors differ from each other not only in 

their display of selectivity, but they also appear to fall into two or more 

distinct classes, sometimes even on the same cell. Thus, Unkeless &

Eisen (1975) found that Fc receptors on mouse macrophages show selectivity 
for IgG subclasses, with IgG2a binding avidly, IgG2b binding weakly and 

IgGl not significantly. Unkeless (1977) expanded these findings and 

suggested that there are two classes of Fc receptors, one specific for 

IgG 2a and the other for IgGl. Also Matre & Johnson (1977) supplied 

some evidence for the existence of different classes of Fc receptor on the
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human placenta. They found Fc receptors on the trophoblast that are 

thought to be involved in the transfer of IgG to the foetus and Fc 

receptors on the placental endothelium that may be involved in the protect­
ion of the foetus from immuno-complexes formed within the placenta 
following contact of maternal IgG antibodies with paternally derived 
alloantigens from the foetus.

When considering a variety of cell types, there is also some 

evidence for the binding sites responsible for uptake of that portion of 
IgG that is degraded being specific for some other molecular feature.

Kaplan et_ a K  (1975) found two types of binding sites on macrophages, 
one interacting with 1.1 pm latex beads and the other interacting with 

sensitized sheep red blood cells,' both these receptors are distributed 

over the entire cell surface. Donelly & Bamford (1976) showed that 
IgG and amino acid transport are mediated through different membrane 

receptors in the neonatal rat intestine. The most relevant findings 

supporting non-Fc specific IgG binding sites on the rat yolk sac, however, 

come from recent work by Livesey & Williams (unpublished data). In the 

rat yolk sac they found evidence for two classes of binding site, one 
specific for hydrophobic molecules and the other specific for positively 

charged molecules; this conclusion has been supported by the results of 

subsequent studies (Kooistra & Williams, 1981).

In order to investigate these two possibilities concerning the
nature of specificity of the binding sites involved in the degradative

pathway for IgG, interference studies similar to those reported in

Chapter 6 were carried out using rat yolk sacs. The substrate chosen 
125was I-labelled rat IgG, a molecule that enters the rat yolk sac by 

both the protective and the degradative route. The molecular species 

chosen in attempts to interfere with substrate uptake were; formaldehyde- 

treated rat IgG, buffer-treated rat IgG, formaldehyde-treated albumin 

and buffer-treated albumin. Bovine serum albumin is known to enter
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the rat yolk sac by adsorptive pinocytosis and it is not transported to 

the foetus iri vivo, neither does it evade being degraded in the rat yolk 

sac in vitro (Moore et al., 1977). The same is also true for formaldehyde- 
treated albumin, a protein characterized by its much higher Endocytic Index 

that arises from an enhanced degree of binding of the substrate to the 
yolk-sac membrane. Both formaldehyde-treated and buffer-treated albumin 

are expected to interfere with the degradative IgG route if the receptor 

is not specific for the Fc part of the IgG molecule. Equally, 

formaldehyde-treated rat IgG has been shown earlier (Chapter 3) to be 

taken up by the rat yolk sac by the degradative route only, having lost 

all characteristics ensuring protection from enzymic digestion. The 

buffer-treated IgG would be expected to closely resembly native IgG 
hence it would be expected to interfere with the protective IgG receptor and, 

according to the findings in Chapter 6, also with the binding sites 

responsible for uptake into the degradative route, especially if the 

latter are Fc-specific.

In addition to testing the effect of interference during the

"loading" stage on the subsequent release of substrate, the effect of
125interference on the Endocytic Index of I-labelled rat IgG was also 

determined. As remarked earlier, the Endocytic Index is a true measure 

of net uptake into the degradative pathway, and interference with this 
route should result in a decrease in Endocytic Index.

In summary, the aim of this chapter is to throw light on the

nature of the binding sites on the rat yolk-sac membrane that are involved

in the uptake of IgG into the degradative pathway. The possibility that

these binding sites show some specificity, not for the Fc part of the IgG
molecule but for another molecular characteristic, was tested by trying

125to interfere with the uptake of I-labelled rat IgG by the addition 

of a protein possessing either no Fc-determinant (BSA, foramldehyde-treated 

BSA) or a denatured Fc moiety (formaldehyde-treated IgG) or an intact Fc 
moiety (buffer-treated IgG).
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7.2 METHODS

7.2.2 Effect of the presence of BSA, formaldehyde-treated BSA, rat

IgG QjC formaldehyde-treated rat IgG in the incubation medium 
125on the uptake of I-labelled rat IgG by the rat yolk sac in 

vitro

Rat yolk sacs (17.5-day) were incubated for 5.5h in serum-free 
. . 125medium 199 containing I-labelled rat IgG (2 yg/ml). Also present in 

the incubation medium was either BSA (1 mg/ml), or formaldehyde-treated 

BSA, buffer-treated BSA, formaldehyde-treated rat IgG or buffer-treated 

rat IgG (100 yg/ml). Incubations were terminated at regular intervals 

and Endocytic Indices and Tissue-Accumulation Rates were determined as 
described in Section 1.10.

7.2.3 Effect of the addition of BSA, formaldehyde-treated BSA, rat

IgG or formaldehyde-treated rat IgG to the incubation medium
125during the loading phase of rat yolk sacs with I-labelled 

rat IgG on the subsequent release of this substrate

Rat yolk sacs (17.5-day) were incubated for 2h in serum-free medium
125199 in the presence of I-labelled rat IgG (10 yg/ml). At the 

same time as the substrate was added, one of the following molecules 

was also added at a concentration of 100 yg/ml : buffer-treated BSA, 

formaldehyde-treated BSA, formaldehyde-treated rat IgG or buffer-treated 
rat IgG. The remainder of the method was as described in Section 1.12.

7.2.1 Preparation of unlabelled formaldehyde-treated BSA and rat IgG

Protein (rat IgG or BSA) was dissolved in 0.05M-NaoHP0.-KHoP0.—  2 4 2 4
phosphate buffer, pH8, at a concentration of 1 mg/ml and then mixed 

with an equal volume of formaldehyde solution (10%, w/v, in an 

Na2C0^-bicarbonate buffer pH 10). The solution was left at room 

temperature for 72h and then dialyzed against 1% NaCl. As necessary 

controls, BSA and IgG were also treated with the buffer alone.
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7.3 RESULTS

7.3.1 Effect of the addition of BSA, formaldehyde-treated BSA, rat 

IgG or formaldehyde-treated rat IgG on the rate of uptake
of *^I-labelled rat IgG

Addition of native BSA, formaldehyde- or buffer-treated BSA or

formaldehyde- or buffer-treated IgG to the medium in which yolk sacs
125were incubated, caused the Endocytic Index of I-labelled rat IgG to

be decreased in some cases (Table 7.1 and Figure 7.1). The greatest

decrease was observed on addition of a very high concentration of

native BSA (1 mg/ml). This has the effect of decreasing the Endocytic

Index by more than 50%. The effect of adding formaldehyde-treated

and buffer-treated BSA at the lower concentration of 100 yg/ml was to
produce no detectable decrease. The addition of formaldehyde-treated

rat IgG to the incubation medium, on the other hand, caused a marked
125decrease of the E.I. of I-labelled rat IgG. By contrast,

and rather important to note, is the finding that the buffer-treated

IgG produced, if anything, a slight elevation rather than a decrease in 
125the E.I. of I-labelled rat IgG. For the purpose of this study 

the Tissue-Accumulation Rates are not important and they are therefore 

reported in both Table 7.1 and Figure 7.1, but are not discussed at 
greater length.

7.3.2 Effect of the addition of either BSA, formaldehyde-treated BSA,

rat IgG or formaldehyde-treated rat IgG to the incubation
125medium during the "loading" phase of rat yolk sacs with I- 

labelled rat IgG on the subsequent release of this substrate

In the loading phase of reincubation studies of rat yolk sacs,

a number of molecules were added to interfere with the uptake of 
125I-labelled rat IgG by the tissue. Formaldehyde-treated rat IgG 

and formaldehyde-treated and buffer-treated BSA were chosen because
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they are taken up only by the general degradative protein route and should 
accordingly interfere only with that route. Buffer-treated rat IgG 

was chosen for a contrast, the native rat IgG having been shown to 
interfere with the protective pathway in the rat yolk sac (see Figure 

6.1); it is also probably the only molecule of the four that has an 
intact Fc domain.

The effects of the four unlabelled protein preparations on the 
125uptake and release of I-labelled rat IgG from rat yolk sacs are

varied (Figures 7.2 and Table 7.1). The format of histograms and the

table are the same as in the previous chapter. It is apparent from

Figure 7.2 that only formaldehyde-treated IgG interferes with the
degradative pathway of IgG. Compared to the control, total tissue-

accumulation and release are decreased, which can be mainly attributed

to a decrease in TCA-insoluble release, accompanied by an increase in
TCA-soluble release. The two BSA preparations do not interfere with

125uptake and release of I-labelled rat IgG by the rat yolk sac. No 
evidence can be provided for a decrease of TCA-solubles, as would be 

indicative of interference of the BSA species with the "degradative"

route.



Table 7.1 Endocytic Indices and Tissue-Accumulation Rates of I- 
labelled rat IgG for rat yolk sacs incubated in serum-free medium 199 in 
the presence of both this substrate and various unlabelled proteins

125

Rat yolk sacs (17.5-day) were incubated in serum-free medium 199 
containing •̂ -’i-labelled rat IgG (2yg/ml) and one of the following unlabelled 
proteins: native albumin (lmg/ml) , formaldehyde-treated albumin, buffer- 
treated albumin, formaldehyde-treated rat IgG, buffer-treated rat IgG (all 
100 yg/ml). Incubations were terminated at regular intervals up to 5.5h and 
Endocytic Indices and Tissue-Accumulation Rates were determined (see Section
7.2.2 for details). The data are also summarized in Figure 7.1.
Competing
protein 1 2 3 4 5 6
(unlabelled)
Control 4.76 8 66.63 0.956 11.51 0.761
(no protein 3.68 9 84.74 0.953 12.79 0.875
added) 3.07 10 52.01 0.938 8.04 0.874

3.91 8 52.35 0.755 13.22 0.697
4.41 8 53.91 0.901 11.24 0.794

MEAN VALUES (± S.D. ): 61.93 ± 14.11 11.36 ± 2.03
Rat IgG-,p„- 4.47 8 47.48 0.906 3.15 0.404

4.47 8 35.64 0.898 0.53 0.055(100 yg/ml) 4.47 11 39.68 0.939 3.59 0.407
MEAN VALUES (± S.D. ): 40.93 ± 6.02 2.09 ± 1.38

Rat IgG 4.10 8 67.12 0.930 1.89 0.219Butter 4.10 8 63.89 0.919 1.78 0.360(100 yg/ml) 4.10 7 80.98 0.891 6.11 0.436
MEAN VALUES (± S.D. ): 70.66 ± 9.08 3.26 ± 2.47

bsahcho 4.65 10 83.73 0.933 10.50 0.748
4.65 8 58.54 0.991 7.01 0.797(100 yg/ml) 4.65 10 79.40 0.994 7.50 0.660
2.19 9 51.46 0.939 2.16 0.412
3.82 8 40.45 0.990 4.94 0.784

MEAN VALUES (± S.D. ): 57.59 ±20.77 5.73 ±3.25
BSA -- 5.01 9 65.95 0.928 5.51 0.736Butter 3.39 10 75.11 0.908 12.59 0.848(100 yg/ml) 3.39 8 41.99 0.960 4.15 0.573

3.39 10 37.03 0.932 4.95 0.610
MEAN VALUES (± S.D. ): 55.02 ± 18.41 6.80 ± 3.90

BSA 2.97 10 14.95 0.832 0.280 0.062
(1 mg/ml) 2.97 10 28.54 0.971 4.96 0.891

2.97 10 26.14 0.968 3.79 0.803
MEAN VALUES (± S.D. ): 23.22 ± 7.23 3.01± 2.43
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F i g u r e  7 - 1  f i n d o c . y t i c  I n d i c e s  a n d  T i s s u e  A c c u m u l a t i o n  R a t e s—
o f  ^ I - l a b e l l e d  r a t  I g G  i n  r a t  y o l k - s a c s  i n c u b a t e d  i n  s e r u m -  

f r e e  m e d i u m  1 9 9  i n  t h e  p r e s e n c e  o f  s u b s t r a t e  a n d  v a r i o u s  

u n l a b e l l e d  p r o t e i n s

1 7 . 5 - d a y  r a t  y o l k - s a c s  w e r e  i n c u b a t e d  i n  s e r u m - f r e e  m e d i u m  199  

c o n t a i n i n g  ^ ^ ^ I - l a b e l l e d  r a t  I g G  ( 2  y g / m l )  a n d  o n e  o f  t h e  

f o l l o w i n g  u n l a b e l l e d  p r o t e i n s :  n a t i v e  a l b u m i n  ( 1 m g / m l ) ,  f o r m ­

a l d e h y d e - t r e a t e d  a l b u m i n ,  b u f f e r - t r e a t e d  a l b u m i n ,  f o r m a l d e h y d e -  

t r e a t e d  r a t  I g G ,  b u f f e r - t r e a t e d  r a t  I g G  ( a l l  1 0 0  p g / m l ) .  I n c u ­

b a t i o n s  w e r e  t e r m i n a t e d  a t  r e g u l a r  i n t e r v a l s  u p  t o  5 » 5 h  a n d  

E n d o c y t i c  I n d i c e s  Q  a n d  T i s s u e - A c c u m u l a t i o n  R a t e s  | | j  w e r e  d e ­

t e r m i n e d  ( s e e  S e c t i o n  7 * 2 . 2  f o r  d e t a i l s ) .  T h e  a b o v e  d a t a  a r e  

a l s o  p r e s e n t e d  f u l l y  i n  T a b l e  7 . 1  a n d  r e p r e s e n t  t h e  m e a n  

¿ n d o c y t i c  I n d i c e s  a n d  T i s s u e  A c c u m u l a t i o n  R a t e s  f r o m  b e t w e e n  

5  a n d  5  s e p a r a t e  e x p e r i m e n t s  f o r  e a c h  i n c u b a t i o n  c o n d i t i o n .
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s a c s  o n  r e i n c u b a t i n g  t i s s u e s  p r e v i o u s l y  e x p o s e d  t o  I -  

l a b e l l e d  r a t  I g G  i n  t h e  p r e s e n c e  o f  v a r i o u s  u n l a b e l l e d  p r o ­

t e i n  s p e c i e s

1 7 . 5 - d a y  r a t  y o l k - s a c s  w e r e  f i r s t  i n c u b a t e d  i n  s e r u m - f r e e  

m e d i u m  1 9 9  c o n t a i n i n g  b o t h  ^^I-labelled r a -fc j g G  ( 1 0  | j g / m l )  

a n d  e i t h e r  f o r m a l d e h y d e - t r e a t e d  r a t  I g G ,  b u f f e r - t r e a t e d  r a t  I g G ,  

f o r m a l d e h y d e - t r e a t e d  a l b u m i n  o r  b u f f e r - t r e a t e d  a l b u m i n  ( a l l  

1 0 0  | j g / m l )  o r  n a t i v e  a l b u m i n  ( 1 m g / m l ) .  A f t e r  2 h  y o l k - s a c s  w e r e  

w a s h e d  a n d  r e i n c u b a t e d  i n  f r e s h  m e d i u m  1 9 9 , u p  t o  a  f u r t h e r

5 h . H i s t o g r a m s  s h o w  t h e  a m o u n t s  o f  t o t a l  s u b s t r a t e  a s s o c i a t e d  

w i t h  t h e  t i s s u e  a t  t h e  b e g i n n i n g  o f  t h e  r e i n c u b a t i o n  p e r i o d  Q  

t o t a l  r a d i o a c t i v i t y  r e l e a s e  ,

T G A - s o l u b l e  r a d i o a c t i v i t y  r e l e a s e  ^  ,

a n d  T C A - i n s o l u b i e  r a d i o a c t i v i t y  r e l e a s e

a f t e r  3 h  r e i n c u b a t i o n (  s e e  S e c t i o n  7 . 2 . 3  f o r  d e t a i l s ) .  V a l u e s  

s h o w n  r e p r e s e n t  m e a n s  ( +  S . D . )  f r o m  6  s e p a r a t e  e x p e r i m e n t s  

f o r  e a c h  i n c u b a t i o n  c o n d i t i o n .



Table 7.2 Effect of the presence of different species of protein on the pattern of release of I-labelled products 
from rat yolk sacs previously incubated with ^-^I-labelled rat IgG in the presence of large quantities of another 
species of protein

This table summarizes Figure 7.2, expressing interference in a relative way: a) as the ratio of TCA-solubles 
(or -insolubles) to total release, for each incubation condition, and b) as the ratio obtained by taking these 
values, when an interfering protein species is present, and dividing each value by the control value (see Section 
6.2.1 for details).

Radiolabelled 
substrate 
(10 pg/ml)

Competing species of 
protein 
(100 pg/ml)

Fraction of the 
total activity 
that is acid- 
insoluble

125I-Rat IgG None (Control) 0.423

IgGHCH0 0.452

IgGBuffer 0.294

bsahcho 0.381

BSABuffer 0.434

Fractional release 
of acid-insolubles 
expressed relative 

to controls 
(%)

Fraction of the 
total activity 
released that is 
acid-soluble

Fractional release 
of acid-solubles 
expressed relative 

to controls 
(%)

100.0 0.577 100.0
106.88 0.548 94.94

69.42 0.706 122.43

90.12 0.619 107.25

102.59 0.566 98.09
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7.4 DISCUSSION

The aim of this chapter was to expand the findings of Chapter 6
concerning the nature of the binding sites involved in the uptake

into the degradative route of the rat yolk sac. In this tissue, bovine
125and rat IgG were shown to interfere with the uptake of I-labelled

rat and bovine IgG into the degradative pathway, whereas human IgG

showed no such effect (see table in Discussion of Chapter 6). No

conclusive evidence could be produced to establish the basis of

selectivity between these IgG species, although two possibilities
were put forward. The binding site could either involve the Fc moiety

of the IgG molecule or could be dependent on some other physical or

chemical characteristic. The proteins tested for interference in
Chapter 6 were all IgG molecules, which left both possibilities open.

Therefore, in this chapter other molecules were investigated for their

effects in interfering with uptake into the degradative route of 
125I-labelled rat IgG by the rat yolk sac. Native, buffer-treated and

formaldehyde-treated BSA species were chosen because they have no Fc
region and because formaldehyde-treated BSA, in particular, is known

to be taken up by the rat yolk sac at a very high rate due to extensive

tissue adsorption (Moore et al., 1977). Formaldehyde-treated rat IgG

is a molecule in which the Fc region has probably been modified, so it

was interesting to compare the interference effect of this modified IgG

molecule with that of the native rat IgG molecule.

The effect of the BSA molecules on the Endocytic Indices and 
125release patterns of I-labelled IgG will be considered first. When

present in the incubation medium at a concentration of 100 yg/ml, buffer-

treated and formaldehyde-treated preparations of BSA caused a barely
125detectable decrease in the E.I. of I-labelled rat IgG. Likewise, 

buffer-treated albumin was without effect, but a strong effect was
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observed when native albumin at a concentration of 1 mg/ml was used

(see Figure 7.1). In reincubation studies the effects of only the

formaldehyde-treated and buffer-treated albumin preparations, at lower
125concentration, were tested; in both cases release patterns of I- 

labelled rat IgG were the same as in the control incubations. It 

therefore seems likely that although BSA does compete with rat IgG for 

degradative binding sites, it does so only at very high concentrations. 

This could be accounted for in at least three ways: either the number 

of such binding sites is so large that it takes a lot of molecules to 

saturate them, or the binding site is fairly specific and BSA fits the 

requirements for binding only imperfectly, or such high concentrations 

of albumin modify the rate of pinosome formation. The finding with
formaldehyde-treated albumin, however, is more positive. Since this

• 125compound has little or no effect on the uptake of I-labelled rat

IgG into the degradative pathway (see Table 7.1) and since Livesey

and Williams (unpublished data) suggest that this compound is captured

by adsorption to hydrophobic sites on the rat yolk sac, the lack of
competition suggests that entry of rat IgG into the degradative pathway

involves adsorption to sites other than those that bind hydrophobic

proteins.

Rather surprizingly, the presence of formaldehyde-treated rat IgG

(100 yg/ml) in the incubation medium decreases the Endocytic Index of 
125I-rat IgG considerably (by about 30%), whereas the buffer-treated

rat IgG at the same concentration has no effect on the Endocytic Index.

This difference in interference also shows up in the reincubation studies
(see Figure 7.2) which show that, of all the molecules tested for

interference, only formaldehyde-treated rat IgG affects the release of
125TCA-soluble activity derived from I-labelled rat IgG, decreasing it 

by 25%. In contrast, the buffer-treated IgG interferes with only the
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protective IgG route in a similar way to that observed in Chapter 6.
These findings give some evidence to support the suggestion that the 

binding sites responsible for the uptake of protein into the degradative 

pathway are extensive in number and are not specific for the Fc region 
but rely on some other characteristic of the molecule.

In future experiments it would be very interesting to extend these 

findings and make them more conclusive by testing the Fc, Fab and ether 

fragments of the IgG molecule for interference with the protective and 

the degradative routes in the rat and rabbit yolk sacs. Also, following 

on from the findings of Livesey & Williams, it would also be of interest 
to investigate further the characteristics of the binding site(s) 

involved in the uptake into the degradative pathway by interference 

studies using differentially charged and hydrophilic and hydrophobic 
molecules.

In summary, the data presented are not very conclusive yet, but 

the available evidence points to the involvement, in the degradative 

pathway for IgG in the rat yolk sac, of a binding site that is specific 
for neither the Fc part of the IgG molecule nor for a hydrophobic region 

of the molecule, but is dependent on some other as yet uncharacterized 

feature of the molecule.



CHAPTER EIGHT

The pH Profile for the Degradation of Various 

IgG Species and BSA by Yolk Sac Homogenates 

and Effect of "Loading" Concentrations on

Release from Yolk Sacs
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In previous chapters IgG transport into both the protective and 

the degradative pathway in the rat and rabbit yolk sacs was shown to 

be mediated by the interaction of IgG with the plasma membrane. Uptake 
into the protective pathway most likely involves a receptor specific 

for the Fc domain of the IgG molecule (Brambell, 1966), whereas uptake 

into the degradative route occurs by way of less specific sites on the 

plasma membrane that probably bind molecules with a common physical 

characteristic (e.g. hydrophobicity or positive charge). According 

to both the Brambell and Wild theories the protective receptors should 
be readily saturable, since only a limited amount of IgG is transferred 

to the foetus intact. The observation that the protective IgG route 
can be interfered with more effectively by the addition of substrate 

molecules than can the degradative route, is compatible with the 

suggestion that protective uptake involves a limited number of high 

affinity receptors. It was shown in Chapter 7, however, that the 

degradative route could also be interfered with by the addition of 

formaldehyde-treated IgG, suggesting that the more general binding sites 

may likewise become saturated. Determination of the saturation 

characteristics of both types of binding site was one of the aims of 

this short chapter.

A second aim was to investigate an alternative way of interpreting 

the interference effect in the degradative pathway. The interpretation 

of the data presented in Chapters 6 and 7 had been by regarding 

interference in terms of competition of two or more substrates for the 
same class of membrane receptor or binding site. An alternative 

possibility is that uptake of the radioactive marker is unhindered by the 

addition of non -radioactive molecules, at even high concentrations, and 

that the real interference effect takes place at the level of degradation.

8.1 INTRODUCTION
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In support of this suggestion Tolleshaug el: al_. (1977) found that 
125in the uptake of I-asialofetuin by isolated rat hepatocytes, the

rate of uptake exceeded the rate of degradation hence degradation was the

rate-limiting step in the process. If, for example, the added
non-radioactive protein is more susceptible to degradation or simply

has a greater affinity for the degradative enzymes than the marker, the

degradative enzymes may bind to the unlabelled protein rather than to

the labelled marker protein and thus effectively less of the degradative

enzymes will be available to degrade the marker. Against such an
interpretation of interference at the level of degradative enzymes is the
finding of Lloyd et̂  al. (1976) that in the process of endocytosis of 
125I-labelled albumin by the in vitro rat yolk sac, membrane adsorption
of the substrate, not subsequent degradation of the substrate, was the

rate-limiting step. This may not necessarily be the case for the
rabbit yolk sac, since there is only a low total percentage release of

125substrate after "loading" this tissue with I-labelled rabbit IgG.

The observed effect could possibly arise from slow intralysosomal

degradation of this substrate by the tissue. However, it may be 
125remembered that I-labelled human IgG, a molecule that is protected 

in a similar way to the homologous IgG by the rabbit yolk sac, does not 

give rise to such a high tissue retention. (Incidentally, the 

Endocytic Indices of both substrates are also very different, low for the 
^'’i-labelled rabbit IgG and high for ^^I-labelled human IgG.) Up 

to now, these findings have been explained in terms of a difference in 

the specificity of the binding sites involved in the degradative pathway. 
An alternative explanation could be differential rates of degradation of 

the two substrates by the rabbit yolk sac. This possibility will be 

considered here by determining the difference in ease of degradation of 

homologous and heterologous IgG by enzymes derived from the rat and
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rabbit yolk sacs.
In summary, the questions raised in this chapter are:

1. Can the degradative and non-degradative pathways of IgG transport 

in the rabbit yolk-sac be saturated?

2. Do differences exist between the proteolytic susceptibility of 
homologous and heterologous IgG species by the rat and rabbit 

yolk-sac enzymes?

3. In rat and rabbit yolk sacs, is there any relation between the 

proteolytic susceptibility of homologous and heterologous IgG 

species and their release from the tissue?
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1258.2.1 Release patterns of I-labelled rabbit IgG from rabbit yolk 
sacs following "loading" with this substrate at various different 
concentrations

125The method in Section 1.12 was followed; I-labelled rabbit IgG 

was present at one of the following concentrations: 1, 5, 10, 25, 50,

75, 100, 150, or 200 yg/ml.

8.2.2 Assay of the proteolytic activity (against homologous and
125 125heterologous I-labelled IgG species and I-labelled albumin)

of cell-free extracts of 17.5-day rat yolk sacs and 24-day rabbit

yolk sacs

The method used was essentially the same as described by Livesey
and Williams (1979) for rat yolk sacs. Rat yolk-sacs (10) or rabbit

yolk sacs (3) were washed in distilled water and homogenized in 10 ml

of distilled water by using a Potter-Elvehjem type Teflon-on-glass

homogenizer, with an 0.19 mm clearance, rotating at a speed of 2500 rpm.
After diluting the homogenate with 20 ml of distilled water it was

centrifuged for 10 minutes at 150 g to remove intact cells. 50 yl

aliquots of this cell-free extract were incubated with 130 yl of a buffer

solution (pH 3.0 - pH 6.0, O.lM-acetic acid / sodium acetate buffer;
125pH 6.5 - pH 9.0, O.lM-HCl/Tris) and 20 yg of substrate ( I-labelled

125bovine, human, rabbit, rat IgG or I-labelled albumin). The mixture 

was incubated for lh at 37°C then the reaction was stopped by first 

adding 0.5 ml ice-cold aq. calf serum, 20% (v/v), followed by 0.5 ml 
of 20% (w/v) trichloroacetic acid. Tubes were counted for contained 

total radioactivity and afterwards the precipitate was recovered by 

centrifuging the 3 ml Luckhams tubes, used for the reaction, for 20 min 

at 2000 g. Supernatants were decanted into fresh 3 ml Luckhams tubes 

and the contained TCA-soluble radioactivity counted. Blanks, containing

8.2 METHODS
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no cell-free extract but just appropriately buffered substrate, were 
also incubated under the same conditions as experimental tubes.



144.

8.3.1 Release patterns of____I-labelled rabbit IgG from rabbit yolk

sacs following "loading" with this substrate at different 

concentrations

Rabbit yolk sacs were first incubated with one of an increasing
125series of concentrations of I-labelled rabbit IgG, then the release

patterns were determined on reincubating the tissue. Figure 8 and

Table 8.1 show how the following quantities vary with substrate

concentration: total radioactivity associated with the yolk sac at

the beginning of the reincubation period and the 3h values for the

total substrate released, the TCA-solubles released and the TCA-insolubles

released. It can be seen (Figure 8.2) that with increasing loading
concentration the percentage total release decreases, i.e. the retention

of substrate in the tissue effectively increases and that,for all

concentrations up to 150 yg/ml,the quantity of TCA-insoluble radioactivity

released is higher than the amount of TCA-solubles released. This,
125however, is reversed at the concentration of 200 pg/ml of I-labelled

rabbit IgG. Figure 8.1 shows that whereas the plot of TCA-insolubles

against substrate concentration levels off (i.e. reaches saturation

point) the plot of TCA-solubles against substrate concentration continues

to rise progressively. This effect is also reflected in Figure 8.2 in

which the percentages of total, TCA-soluble and TCA-insoluble radioactivity
125released are plotted against the loading concentration of I-labelled

rabbit IgG. Although the percentage TCA-insoluble release is higher

than the percentage TCA-soluble release up to a substrate concentration
of 150 yg/ml, it falls progressively while the percentage TCA-soluble

release rises. For purposes of comparison, equivalent findings in the

rat yolk sac (Ibbotson, Ph.D. thesis) are quoted in Figure 8.3. For
125all concentrations of I-labelled rat IgG investigated, TCA-soluble

8.3 RESULTS

125
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release by the rat yolk sac is considerably higher than TCA-insoluble
release, although both rise with increasing substrate concentration.

The main difference between the rat and rabbit yolk sacs lies in the
amounts (both relative and absolute) of radioactivity released in

TCA-soluble and -insoluble forms. In the rabbit yolk sac, more

radioactivity is released in the TCA-insoluble form, except at the
highest substrate concentration. In Table 8.2, TCA-soluble and

125TCA-insoluble release of I-labelled rabbit IgG from rabbit yolk sacs
are expressed in the form of the gradient of the plot of release against
time over the last 80 min of the reincubation period. The value for

TCA-insoluble release gives information about the rate of release of

undegraded substrate from the yolk sac, and the value for TCA-soluble

release is a measure of the rate of degradation of the substrate. Such

rates are expected to reflect any saturability of a particular protein

route (degradative or protective). The gradients of release of
125TCA-solubles are lower than those for TCA-insolubles with I-labelled 

rabbit IgG at concentrations of 1 and 5 yg/ml, but are higher at all 

other concentrations.

8.3.2 Assay of the proteolytic activity (against homologous and
125heterologous I-labelled IgG species and albumin) of a 

cell-free extract of 17.5-day rat yolk sacs and 24-day rabbit 

yolk sacs

Figures 8.4 and 8.5 show the pH-profiles of the proteolytic activity

of the enzymes derived from the rabbit and rat yolk sacs, respectively, 
125for a number of I-labelled protein substrates. The percentage of 

substrate that has become degraded in l.Oh (measured as TCA-soluble 

radioactivity, corrected for the TCA-soluble activity contained in 

the substrate preparation itself or generated spontaneously during 

incubation without enzymes present) is plotted against the pH of the
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reaction medium. Both rat and rabbit yolk-sac enzymes show maximal
125proteolytic activity against the added substrates ( i-labelled 

albumin and bovine, human, rabbit and rat IgG) at pH 3.5 to 4.5. As 
the protein-content of the cell-free extracts derived from the two tissues 

are the same, it is possible to compare the relative proteolytic 

capacities of the two tissues (expressed as percentage degradation of 

substrate) and it is apparent that all substrates are degraded to a 

greater (x5) extent when the cell-free extract from rabbit yolk sacs is 

added rather than that from rat yolk sacs. (Ideally an incubation 
period of 5h would have been used in the determination of the degradation 

with the rat yolk-sac extract to reduce the degree of scatter in these 
data.) From the two figures it can be seen that individual substrates 

differ in their degree of susceptibility to degradation. With the 

rabbit yolk-sac extract the rank order is : bovine IgG > human IgG >

BSA > rat IgG > rabbit IgG; with the rat yolk-sac extract the ranking 

order is more tentative, but suggests the following order : bovine IgG > 

BSA > rabbit IgG > human IgG > rat IgG. An interesting finding is that 

both patterns are similar, in that the homologous IgG is the least 

susceptible to breakdown by the yolk-sac degradative enzymes and bovine 

IgG is the most susceptible. Albumin is highly susceptible to 

degradation by the cell-free extract of both tissues.



Table 8.1 The effect of different substrate concentrations on the release of I-labelled rabbit IgG from 
rabbit yolk sacs.

Rabbit yolk-sac pieces (24-day) were first incubated for 2h in serum-free medium 199, containing 
I-labelled rabbit IgG at one of the following concentrations (1, 5, 10, 25, 50, 75, 100, 150 or 200 yg/ml). 

Yolk sacs were then washed and reincubated for 3h in fresh, serum-free medium 199. At regular intervals 
up to 3h, samples were taken and the released TCA-soluble, TCA-insoluble and total radioactivity determined. 
The data, from 3h reincubations, presented here are also shown graphically in Figure 8.1 but without 
standard deviations.
~  T Z Z T Z ~ Z I Mean quantity of substrate released (tS.D.) Z 7 I !"• TINumber of Substrate ,-------- ----------------- i------------------- ---------« Total activity
individual concentrations TCA-soluble TCA-insoluble Total associated with
incubations (yg/ml) activity activity radioactivity the yolk sac

(ng/mg yolk-sac protein) (ng/mg protein)

125

6 1 27.69 ± 8.55 53.11 ± 17.68 80.98 ± 15.12 111
6 5 154.61 ± 43.23 350.70 ± 108.07 488.64 + 40.43 663
6 10 504.10 + 137.40 712.38 ± 175.52 1226.47 + 291.80 1510
6 25 434.13 ± 92.80 1248.06 ± 198.75 1679.19 + 286.40 2140
6 50 914.28 ± 294.61 3122.10 ± 925.91 4036.38 ± 948.29 5557
6 75 1296.38 ± 213.95 2506.93 ±1028.78 3770.04 ± 852.83 4957
3 75 1488.73 ± 586.43 3194.64 ± 464.50 4650.01 ± 282.45 8221
6 100 1180.49 ± 799.08 3346.13 ±2173.79 4518.77 ±2969.25 6959
3 100 2196.10 ± 789.32 1972.38 ± 25.26 4168.38 ± 809.53 7186
3 150 1840.90 ± 368.17 2455.77 ± 461.29 4296.66 + 436.51 8441
3 200 3981.07 ± 126.86 3013.71 ± 274.85 6994.81 + 178.54 14283



125From plots of the individual time courses of release of I-labelled 
rabbit IgG from rabbit yolk sacs, the gradient was determined over the 
last 80 mins of release. This should indicate whether, during this 
period, substrate release was almost complete or still ongoing.

125Table 8.2 The effect of different substrate concentrations ( I-
labelled rabbit IgG) during the loading phase on the rate of release of
substrate from reincubated rabbit yolk sacs

Gradient (ng per h) of the plot of 
release against "loading" 
concentration last 80 min.

Substrate
concentration
(pg/ml)

TCA-soluble 
activity 
released

TCA-insoluble
activity
released

Total
release
(%)

1 0.29 0.36 72
5 1.51 2.91 73
10 4.98 1.95 80
25 4.05 2.89 78
50 10.30 9.00 72
75 10.55 8.74 76
75 14.20 15.41 56

100 9.60 6.99 64
100 19.28 8.73 58
150 15.43 11.32 50
200 36.60 19.16 48



rabbit IgG on the subsequent release of radioactivity from rabbit
volk sacs
The data shown are those reported in Table 8.1. Total amount of 
substrate associated with the yolk sac at the beginning of 
reincubation total radioactivity released (a
TCA-solubles released (•------- TCA-insolubles released at 3h
of reincubation (O—— — — o) .
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F i g u r e  8.2 The e f f e c t  o f  d i f f e r e n t  s u b s t r a t e  c o n c e n t r a t i o n

12 5on the percentage release of____I-labelled rabbit IgG fromr a b b i t  yolk sacs during the incubation period
In these plots the data from Table 8.1 are presented in a
different way. Total radioactivity (a ------ a ), TCA-soluble
radioactivity (•-------• ) and TCA-insoluble radioactivity
(O------- O) released at 3h of reincubation are shown as a
percentage of the total radioactivity associated with the 
yolk-sac at the beginning of reincubation.



Figure 8 .3  The e f f e c t  o f  d i f f e r e n t  concentrations o f
125___I-labelled rat IgG on the subsequent release of radioactiy.
from rat yolk sacs
The data presented here are taken from Ibbotson (Ph D Thesis1
and represent the results from experiments in which 17.5-day
rat yolk sacs were first incubated for 2h in serum-free

12 5medium 199 containing I-labelled rat IgG at a different 
concentration (1 , 25 , 75 , or 100 yg/ml) . Following washingij 
yolk sacs were reincubated and samples were taken at regular 
intervals for up to 3h.
Total radioactivity released: a - ■■ A -------A------—^ ,
TCA-soluble radioactivity released: #------- •------,
TCA-insoluble radioactivity released at 3h of reincubation
O----------- O o •o  •





I - l a b e l l e d

albumin, bovine,human, rabbit and rat IgG by enzymes derived
from cell-free extracts of rabbit yolk sacs
A cell-free extract of rabbit yolk sacs was prepared and

12 5incubated together with substrate ( I-labelled albumin, 
bovine,human, rabbit,rat IgG) in either a O.lM-sodium 
acetate/acetic acid buffer (pH 3.0-6.0) or a 0.1-Tris/HCl 
buffer (pH 6.5-9.0). Incubation was for lh and the degree 
of substrate degradation was determined. (For detailed 
method see Section 8.2.2) This graph is a plot of the 
percentage of the total substrate that is degraded against 
the pH of the reaction mixture. Data are means from 4 
experiments for each pH and substrate.
Bovine serum albumin, + ; Bovine IgG,Q—  p ;
Human IgG,+----- + ; Rabbit IgG, q .,, q  ; Rat IgG, —

Figure 8 .4  pH p r o f i l e  for the degradation o f
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I - l a b e l l e d

a l b u m i n ,  b o v i n e , h u m a n ,  r a b b i t  a n d  r a t  I g G  b y  e n z y m e s  d e r i v e d

f r o m  c e l l - f r e e  e x t r a c t s  o f  r a t  y o l k  s a c s

A  c e l l - f r e e  e x t r a c t  o f  r a t  y o l k  s a c s  w a s  p r e p a r e d  a n d
12  5

i n c u b a t e d  t o g e t h e r  w i t h  s u b s t r a t e  (  I - l a b e l l e d  a l b u m i n ,  

b o v i n e , h u m a n , r a b b i t , r a t  I g G )  i n  e i t h e r  a  O . l M - s o d i u m  

a c e t a t e / a c e t i c  a c i d  b u f f e r  ( p H  3 . 0 - 6 . 0 )  o r  a  0 . 1 - T r i s / H C l  

b u f f e r  ( p H  6 . 5 - 9 . 0 ) .  I n c u b a t i o n  w a s  f o r  l h  a n d  t h e  d e g r e e  

o f  s u b s t r a t e  d e g r a d a t i o n  w a s  d e t e r m i n e d .  ( F o r  d e t a i l e d  

m e t h o d  s e e  S e c t i o n  8 . 2 . 2 ) .  T h i s  g r a p h  i s  a  p l o t  o f  t h e  

p e r c e n t a g e  o f  t h e  t o t a l  s u b s t r a t e  t h a t  i s  d e g r a d e d  a g a i n s t  

t h e  p H  o f  t h e  r e a c t i o n  m i x t u r e .  D a t a  a r e  m e a n s  f r o m  4 

e x p e r i m e n t s  f o r  e a c h  p H  a n d  s u b s t r a t e .

B o v i n e  s e r u m  a l b u m i n ,  # — — — •  ; B o v i n e  I g G ,  O — ..........- O  i

H u m a n  I g G , + -------------- +  ; R a b b i t  I g G ,  p  p  ; R a t  I p G T -

Figure 8 .5  pH p r o f i l e  for  the degradation of
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8.4 DISCUSSION

After demonstrating specific binding sites on the rat and rabbit
yolk-sac membranes for the protective and degradative pathways, more

information was sought about the properties of these two routes,
especially the carrying capacity and ease of saturation. Williams &

Ibbotson (1979) showed, in an earlier study on the rat yolk sac (data

quoted in Figure 8.3 for comparison), that increasing the "loading"
125concentration of I-labelled rat IgG led to an increased release

of radioactivity in the form of TCA-solubles. Thus, when the loading 
. 125concentration of I-labelled homologous IgG was 5.0 yg/ml, 55.6% of the

radioactivity released was acid-soluble, but with a loading concentration

of 100 yg/ml 81.8% was acid-soluble. Likewise, the data reported in

this chapter show that in the rabbit yolk sac an increase in the release
of acid-solubles is observed with increasing loading concentration of 
125I-labelled rabbit IgG. In contrast, the TCA-insoluble release is 

considerably higher than the acid-soluble release up to a loading 

concentration of 150 yg/ml. Loading with 200 yg/ml of substrate, 

however, leads to a rise in TCA-soluble release, with the TCA-insolubles 

remaining constant. From Figure 8.1, a plot of substrate release 

(in ng ) against loading concentration, it is evident that the release

of radioactivity in the TCA-insoluble form does not exceed approx.
3000 ng/mg yolk-sac tissue. This figure is almost reached by a 
loading concentration of 50 yg/ml. The TCA-soluble release, on the 

other hand, seems to rise progressively with the loading concentration. 

This pattern suggests a protective route of IgG transport that is both 
saturable and chosen preferentially by the I-labelled rabbit IgG.

At low concentrations of substrate during the endocytosis phase, most

of the substrate appears to be taken up into the transport pathway and

so is subsequently released intact. A smaller amount of substrate
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enters the degradative pathway. This could reflect differences in

either the relative number or the affinity of "protective" and
"degradative" binding sites present on the rabbit yolk-sac membrane.

With higher concentrations of substrate,the protective pathway becomes
saturated and more rabbit IgG is taken up into the degradative route

where it is broken down and released. There is some evidence to 
125indicate that I-labelled rabbit IgG is degraded more slowly than other 

proteins that have been studied. Thus, in Table 8.2 an impression is 

given of the time-course of release^quoting the gradient of the plot 

of substrate release (acid-solubles and acid-insolubles) against time 

over the last 80 minutes of the 3h reincubation period. A low gradient 

indicates that release is almost complete after the first 80 min.

A low gradient is evident for TCA-insoluble release at most concentrations, 

but a higher gradient is found for the release of TCA-solubles j 

especially at the higher loading concentrations. These findings, 

together with the great amount of substrate accumulated in the rabbit 

yolk-sac tissue following loading with high substrate concentrations, 
indicate that the release of radioactivity is almost complete after 
the first 80 min of reincubation. No saturation level of the degradative 

pathway is apparent in contrast to the findings with the protective 

IgG pathway. In Figure 8.2 where percentage release at 3h reincubation 

is plotted against the loading concentration, a gradual decrease in 

the total percentage release can be observed, reaching a level of less 

than 50% at a substrate concentration of 200 yg/ml. Expressed 

differently, more than 50% of the substrate taken up remains within the 

tissue. This great accumulation of I-labelled rabbit IgG by the 

rabbit yolk sac (also observed in Chapter 6) could be indicative of 

either an overloading, by high quantities of I-labelled rabbit IgG, 

of the lysosomal enzyme in the rabbit yolk sac, making breakdown the
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rate-limiting process, or alternatively, of an accumulation of rabbit 

IgG in the protective pathway, either in coated vesicles (Wild,1975) or 

adsorbed to protective sites on the walls of ordinary pinosomes or 
heterolysosomes.

The first possibility is more likely, since support for this suggestion

comes from the experiments investigating the proteolytic capacity of
enzymes derived from rabbit yolk sacs against a number of proteins 
125 . 125( I-labelled albumin and I-labelled bovine, human, rabbit and rat IgG)

. 125at different pH values. I-labelled rabbit IgG is by far the least
susceptible to breakdown by the proteolytic enzymes derived from the 

rabbit yolk sac (Fig. 8.4). (Incidentally, in the rat yolk sac too the 

homologous IgG species may be the one that is least readily degraded.)
These findings have very interesting implications in the ongoing Brambell/ 

Wild controversy about the mechanism of transfer of passive immunity.

Unlike the Wild hypothesis, the Brambell hypothesis advocates differential 

degradation of proteins within the same vesicle followed by exocytosis 

of substrate at the basal or lateral plasmalemma. Brambell’s suggested 

cause of this selective degradation was the presence of protective 

receptors on the inner membrane of pinocytic vesicles. If, in addition 

to such receptors, the homologous IgG is also especially resistant to 

the degradative enzymes contained in the heterolysosomes, the result 

would be a greater release of the intact homologous IgG. Such an 
increased resistance of the homologous IgG to degradation would add 

a new dimension to the Brambell theory without however, fundamentally 

modifying it. In the terms of the Wild hypothesis, an increased 
resistance of homologous IgG to degradation by the yolk sac would be 

entirely incidental and not advantageous. Resistance to degradation 

would not lead to an enhanced transport across the cell, but rather to an 

accumulation of the undegraded species in the heterolysosomes, since the
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latter are not expected to exocytose. Thus, if it is possible to 

experimentally render the homologous IgG harder to degrade, the 

predictions that arise concerning the fate of the homologous IgG 

in the rat and rabbit yolk sac, using Brambell's theory, differ from 
those that would arise according to Wild’s theory. This idea will be 

further developed and discussed in Chapter 9, with the hope that the 

evidence would point to one or other of the prevailing theories of IgG 

transfer.

The finding that the rank order of susceptibility to degradation
of the various proteins is the reverse of the order observed for

transfer across the tissue, is thus rather interesting, since it suggests

that those protein species that are least susceptible to degradation are
most readily transported intact across the yolk sac. It would even

be possible to postulate that selectivity in IgG transmission is due

merely to the differential susceptibility of the proteins to lysosomal

enzymes. This is an extremely attractive suggestion to bear in mind

if one tries to correlate the observation that IgG subclasses differ

in their susceptibility to degradation with their ease of transfer in

vivo. (Rousseau et̂  al. (1980), using IgG subclasses derived from rat

immunocytomas, found interesting differences in both their degradation

by trypsin, pepsin, plasmin and papain and in their extents of transfer.)

The one protein, however, that does not fit this scheme in the rabbit 
. 125yolk sac is I-human IgG. Although degradation of this substrate by 

the cell-free rabbit yolk-sac extract is rapid, transfer in vivo and 

release of TCA-insolubles iii vitro following "loading" of the yolk sac 
with this substrate are both high. These findings do not support the 

suggestion that susceptibility to degradation alone can determine the 

degree of transport of this substrate.

The finding that cell-free extracts from both rat and rabbit yolk
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sacs degrade all substrates maximally within the pH range of 3.5 - 4.5, 

that isjin the region of the pH optimum of lysosomal enzymes, parallels 

the findings of Ghetie & Motas (1971) on the degradation of rabbit IgG 
by cathepsin-rich subcellular fractions derived from rat hepatocytes, 

where the pH optimum was also 3.5. In the present work no significant 
peaks were found elsewhere in the pH range tested (3.0 - 9.0), which 

is indicative of an exclusive degradation of these IgG species and 

albumin within the lysosomes. As the amounts of cell-free rat and 

rabbit yolk sac extract used were equal (i.e. same protein content) the 

percentage degradation could be compared meaningfully, and it seems 

that the catabolic potential of the rabbit yolk sac exceeds that of the 

rat yolk sac for the protein species tested. Thus it is difficult to 

explain the elevated transport capacity of the rabbit yolk sac, relative 

to that of the rat, in terms of a corresponding decrease in its 

catabolic capacity. There appears to be plenty of opportunity for

endocytic vesicles to fuse with lysosomes in rabbit yolk sacs so that it 

would appear that any vesicle-mediated transcellular transport must 

somehow avoid direct confrontation with this system.

In summary, the most important findings in this chapter are:

1. The protective IgG pathway in the rabbit yolk sac is saturable, but 

only at high concentrations of homologous IgG. In contrast, the 

degradative pathway does not seem to be readily saturable.
1252. A preference of I-labelled homologous IgG for the non-degradative 

IgG route in the rabbit yolk sac is apparent.

3. In their basic behaviour rat and rabbit yolk sacs do not differ, 
but the capacity for IgG transport is greater in the rabbit than in 

the rat yolk sac.

1254. I-labelled albumin and homologous and heterologous IgG species 

are degraded by enzymes derived from both rat and rabbit yolk sacs
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at pH 3.5 - 4.5, i,e, in the pH region considered optimum for 
lysosomal enzymes.

5. Differences between the proteolytic susceptibility of homologous 

and heterologous IgG species to degradation by rat and rabbit yolk 

sac enzymes can be demonstrated. Homologous IgG is the least 

susceptible and bovine IgG the most susceptible to degradation by 

yolk-sac extracts from both species.

6. The proteolytic capacity of rabbit yolk sac seems to exceed that 

of rat yolk sac hence it is not possible to explain the greater 
transport capacity of rabbit yolk sacs in terms of a decreased or 

absent proteolytic enzyme capacity.



CHAPTER NINE

An Investigation of the Effects of Leupeptin 

on the Release of Homologous IgG from Rat 

and Rabbit Yolk Sacs
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Of the three theories advanced to account for the selective 

transfer of proteins across the yolk sac of the rat and rabbit, 

that put forward by Hemmings & Williams (1976) was shown to be highly 

unlikely (see Chapters 6 and 7). So far, however, no conclusive 
evidence has been found either for or against the Brambell or the Wild 

theories. In this chapter an attempt will be made to investigate 

some factors that may help to distinguish between these two theories.

According to Brambell, the IgG to be transferred is taken up

into ordinary endocytic vesicles that later fuse with lysosomes to

form heterolysosomes. It is suggested that protection of IgG molecules

against the degradative action of lysosomal enzymes occurs by adsorption
to specific receptors on the inner face of the vesicle membrane. In

order to transfer the protected proteins to the foetal circulation,

these heterolysosomes are postulated to release their contents at the

lateral or basal plasmalemma by exocytosis. During this process of

exocytosis, however, it would be expected that other contents of the

heterolysosomes would also be released. Hence, both lysosomal enzymes

and any non-digestible marker molecules would be expected to be released

in the same manner as adsorptively protected IgG. Therefore,
125"loading" the rat and rabbit yolk sacs with I-labelled PVP should 

result in a release of this polymer during reincubation in fresh medium 
if Brambell's theory is correct. If, however, Wild’s theory is valid, 

no great amount of PVP would be expected to be released because, 

according to this hypothesis, only coated micropinocytic vesicles 
exocytose their contents (homologous and some heterologous IgG) at the 

basal and lateral plasmalemma (Wild, 1975).

In a study using rat yolk sacs incubated ija vitro, Williams & 

Ibbotson (1979) could find no evidence for the release of PVP from

9.1 INTRODUCTION
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preloaded yolk sacs; likewise, no attendant release of lysosomal 

enzymes could be detected (Ibbotson, thesis). It remains to be 
established whether the same holds for the rabbit yolk sac. Thus, 

a study of the release of a non-degradable marker molecule from the rabbit 
yolk sac (that is, an attempt to demonstrate exocytosis from heterolysosomes) 

should be informative in deciding whether the Brambell theory is correct. 

Moreover, it would be expected, according to Brambell, that a greater 

release of IgG would result if non-adsorbed IgG, free within the lumen 

of the heterolysosomes, could somehow be prevented from being degraded 
by lysosomal enzymes. The finding in Chapter 8, that rabbit IgG is 

very poorly degradable at acid pH by a cell-free extract of rabbit 

yolk sac, gives some support to Brambell's theory, expanding it somewhat 

by providing a second mechanism responsible for protection. If 
degradation could be further prevented, for example by the addition of 

a specific inhibitor of lysosomal proteinases, then according to the 

Brambell mechanism a greater amount of IgG would be expected to be 

transported across yolk sac iii vivo or released in the in vitro 
system. According to Wild's theory, no such enhanced release of intact 

immunoglobulin should result on inhibiting intralysosomal proteolysis, 

because heterolysosomes are not expected to exocytose their contents.

In Chapter 4 ammonium ions were shown to be inhibitors of lysosomal 

enzymes, but they also strongly inhibit pinocytosis (Livesey et al.,

1980). These workers found leupeptin to be a more specific, hence a 

more suitable, inhibitor of lysosomal proteolysis (Knowles et al., 1981). 

Leupeptin is the name given to a group of compounds, comprising methyl-, 

acetyl- or propionyl-L-leucyl-L-leucyl-L-arginal and their analogues 

in which a leucine may be replaced by either isoleucine or valine 

(Kondo et al., 1969; Kawamura et al., 1969). The structure of the 

molecule used in this study is as follows :
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Leupeptin is of microbial origin and is reported to inhibit competitively 

plasmin, trypsin, kallikrein, thrombokinase, papain and cathepsin B 

(Aoyagi et al., 1969; Aoyagi & Umezawa, 1975; Fritz et al_., 1973).
It also inhibits cathepsin L, but not cathepsin D (Kirschke et al.,

1977). The advantages of using leupeptin to inhibit the action of 

lysosomal enzymes are as follows : 1) it has been shown to be non­

toxic at even quite high concentrations. Umezaywa & Aoyagi (1977) 
showed that the LD,.q (i.e. the quantity of leupeptin needed to kill 

half the test population) was 118 mg/kg body weight in mice, when the

inhibitor was injected intraveneously. 2) Leupeptin has been shown
125not to affect pinocytic uptake of I-labelled formaldehyde-treated 

BSA into the rat yolk sac (Knowles et al., 1981), while inhibiting the 
degradation of this molecule by more than 50%. 3) Leupeptin has a

molecular weight of 300, and this implies that it is taken up into the 

tissue by pinocytosis only.

In summary, the questions posed in this chapter are:

1251) Does a non-degradable marker, like I-labelled PVP get released 

from rabbit yolk sacs that have been loaded with this substrate 

in vitro, or is it retained in the same manner as observed in
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rat yolk sacs?

2) Is it possible to induce a greater amount of homologous 
IgG to be released intact from rat and rabbit yolk sacs 

by inhibiting lysosomal enzymes with leupeptin?

125I-labelled 

in vitro,
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9.2.1 Exocytosis, from rat and rabbit yolk sacs reincubated in
125serum-free medium 199, of I-labelled PVP accumulated by 

prior incubation in serum-free medium 199

The general method outlined in Section 1.12 was followed using
125I-labelled PVP as substrate. The initial incubation period in 

125the presence of I-PVP (10 yg/ml) was 2h for 24-day rabbit yolk 

sacs and 3h for 17.5-day rat yolk sacs.

1259.2.2 Uptake of homologous I-labelled IgG by rat and rabbit 

yolk sacs incubated in serum-free medium 199 containing 
leupeptin

Rat yolk sacs (17.5-day) or rabbit yolk-sac pieces (24-day) were
incubated in serum-free medium 199 as described in Section 1.7.

Leupeptin (30 yg/ml) was added to the incubation medium together with the
125substrate, homologous I-labelled IgG (2 yg/ml). Yolk-sac incubations 

were then terminated at regular intervals up to 5.5h, and assays of the 

amount of radioactivity contained in the medium and in the yolk sacs' 

were performed as outlined in Section 1.4 and 1.6. Uptake of substrate 

was plotted against time for each set of data and the Endocytic Index 

and the Tissue-Accumulation Rate derived (see Section 1.10 for details 

of calculations).

9.2.3 Exocytosis from rabbit and rat yolk sacs of homologous 
125I-labelled IgG accumulated by the tissue during a prior 

incubation in medium 199 containing leupeptin

The general method outlined in Section 1.12 was followed and 

either 17.5-day rat yolk sacs or 24-day rabbit yolk-sac pieces were 

incubated in serum-free medium 199. Three different regimes were

9.2 METHODS

adopted for exposing the tissues to leupeptin.
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1. Leupeptin (30 pg/ml) was added to the "loading" phase medium
125at the same time as I-labelled homologous IgG (10 pg/ml).

After washing, the tissue was reincubated in fresh serum-free
125medium 199, containing neither I-labelled IgG nor leupeptin, 

and samples were removed at regular intervals up to 3h.

2. The initial 2h incubation period of the yolk sacs was in serum-
125free medium 199 containing only homologous I-labelled IgG 

(10 pg/ml) but, following washing,yolk sacs were reincubated in 

fresh medium 199 containing leupeptin (30 pg/ml). Samples were 
removed at regular intervals, taking care to replace the removed 

leupeptin when replenishing the medium in order to maintain a 
constant concentration of leupeptin.

3. Leupeptin (30 pg/ml) was present during both, the "loading" 

and the reincubation phases.
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9.3.1 Release of____I-labelled PVP from rat and rabbit yolk-sac

tissue that had previously been exposed to this marker 
macromolecule in vitro

125The time-course of release of I-labelled PVP from rat yolk sacs

is presented in Figure 9.1 and for rabbit yolk sacs in Figure 9.2.

Over the 3h reincubation period only a very small amount of the marker

accumulated in either tissue was released into the reincubation medium.

Expressed as a percentage of the total, rat yolk sacs released 6.7%
125and rabbit yolk sacs released 2.3% of the I-labelled PVP. In contrast,

*i c  * *1 r

when I-labelled homologous IgG replaced the i-labelled PVP, 83.0%

(rat) and 80.6% (rabbit) of the radioactivity contained in the yolk sacs
was released (544 ng/mg and 1216 ng/mg; see Table 5.7). It should be

125noted that the absolute amount (ng) of I-labelled PVP released is 

considerably smaller than the quantity TCA-insolubles of homologous 

'̂ '’i-labelled IgG released.
1259.3.2 Uptake of I-labelled homologous IgG by rat and rabbit yolk 

sacs incubated in serum-free medium 199 containing leupeptin

125The Endocytic Indices of I-labelled homologous IgG, obtained in 

rat and rabbit yolk sacs in serum-free medium, differ considerably 
(Tables 9.1 and 9.2). (This point has been discussed previously, see 

Chapter 2). The same differences between tissues are observed for 

Tissue-Accumulation Rates. The addition of leupeptin to the incubation 

medium caused no change in the E.I.s for either substrate. The T.A.R.s, 

however, rose sharply for I-labelled homologous IgG in rat and rabbit 

yolk sacs incubated in serum-free medium in the presence of 30 yg/ml of 

leupeptin. Expressed in the form of the ratio T.A.R./E.I., the rise 

was from 47.2% to 71.8% in the rabbit yolk sac and from 9.5% to 55.8% 
in the rat yolk sac.

9.3 RESULTS

125



160.

. 1259.3.3 Release from rabbit and rat yolk sacs of I-labelled 
homologous IgG accumulated by the tissue during a prior 
incubation in medium 199 containing leupeptin

In considering the effects of the presence of leupeptin in the
125incubation medium on the release of I-labelled homologous IgG

from rat and rabbit yolk sacs, data obtained with rat tissue will be

considered first (Figure 9.3). In the histograms, the total amounts

of substrate-derived radioactivity released by 3h under the various

conditions of reincubation are reported. A value is also given for

the total amount of radioactivity associated with the tissue before

reincubation. Without leupeptin present, in the rat yolk-sac incubations
125most (80%) of the I-labelled rat IgG associated with the tissue is 

released. The presence of leupeptin, however, either during the loading 
or the reincubation phase, or both, caused a considerable amount of IgG 

to accumulate in the yolk sac, but not to be released. The greatest 

percentage tissue-accumulation or tissue-retention of substrate was 
observed when leupeptin was present in both loading and reincubation phases 

(47%), followed by leupeptin in only the loading phase (39%), and the 

least when leupeptin was present during only the reincubation phase 

(31%). It may also be noted that under these conditions the total 

amount of substrate accumulated in the rat yolk-sac tissue was markedly 

higher than for the controls. Again the highest values were recorded 

for rat yolk-sac incubations with leupeptin present in the loading phase 

or during the entire length of loading and reincubation, but even with 

leupeptin present during only reincubation phase, the elevation in the 

total tissue-accumulation level is marked. The total amounts of 

radioactivity released were very similar under all conditions. When 

leupeptin was present in either the loading or reincubation phases or 

both, the extent of release of TCA-solubles was slightly higher than for
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the controls.

With rabbit yolk sacs, even in the control series the total
125percentage release of substrate from tissue loaded with i-labelled 

rabbit IgG was not as high as in corresponding incubations with rat 
yolk sacs. This tended to mask the effect of any tissue-retention 
induced by the presence of leupeptin (Figure 9.4). Nevertheless, the 

accumulation of substrate by the yolk sac appeared to be slightly 

higher when leupeptin was present either during loading alone or during 

both loading and reincubation. When leupeptin was present during the 

reincubation phase only, the retention of substrate in the tissue 
appeared to be even lower than in the control incubation. TCA-soluble 

release remained the same whether leupeptin was present or not in the 

incubation medium, and more importantly, no increase of TCA-insoluble 

activity release was recorded. Rather, when leupeptin was present in 

the reincubation phase only, TCA-insoluble release was, if anything, 

slightly decreased.

Summarizing the most important of the above findings, the presence
of leupeptin in the medium at any phase of incubation did not

significantly affect the release of the TCA-insolubles. That is,
125release of the macromolecular form of the homologous I-labelled 

IgG molecule does not appear to be enhanced by the presence of leupeptin 

in either the "loading" or the reincubation media.



f r o m  r a t  y o l k - s a c s  p r e v i o u s l y  e x p o s e d  t o  t h i s  m a r k e r  m a c r o ­

m o l e c u l e  i n  v i t r o

1 7 . 5 - d a y  r a t  y o l k - s a c s  w e r e  f i r s t  i n c u b a t e d  i n  s e r u m - f r e e  

m e d i u m  1 9 9  c o n t a i n i n g  ^ ^ I - l a b e l l e d  P V P  ( 1 0  | j g / m l ) .  A f t e r  

3 h  y o l k - s a c s  w e r e  w a s h e d  a n d  r e i n c u b a t e d  i n  f r e s h  m e d i u m  1 9 9 , 

u p  t o  a  f u r t h e r  3 h .  V a l u e s  s h o w n  a r e  m e a n s  ( +  S . D . )  f r o m  

6  s e p a r a t e  e x p e r i m e n t s .
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F i g u r e  9 . 2  T i m e  c o u r s e  o f  r e l a s e  o f  ^ ^ ^ I - l a b e l l e d  P V P  

f r o m  r a b b i t  y o l k - s a c  p r e v i o u s l y  e x p o s e d  t o  t h i s  m a r k e r  m a c r o -  

m o l e c u l e  i n  v i t r o

2 ^ - d a y  r a b b i t  y o l k - s a c  p i e c e s  w e r e  f i r s t  i n c u b a t e d  i n  s e r u m -  

f r e e  m e d i u m  1 9 9  c o n t a i n i n g  ^ ^ I - l a b e l l e d  P V T  ( 1 0  j j g / m l ) .

A f t e r  2 h  y o l k - s a c s  w e r e  w a s h e d  a n d  r e i n c u b a t e d  i n  f r e s h  m e d i u m  

1 9 9 ,  u p  t o  a  f u r t h e r  3 h .  V a l u e s  s h o w n  a r e  m e a n s  ( +  d . I ) . )  f r o m  

6 s e p a r a t e  e x p e r i m e n t s .
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125Rat yolk sacs (17.5-day) were incubated in serum-free medium 199 containing I-labelled rat IgG 
(2 yg/ml) and leupeptin (30 yg/ml) . Incubations were terminated at regular intervals up to 5.5h.
(For details of this method see Section 9.2.2.) From the plots of TCA-solubles released and total 
tissue uptake against time, the rates of proteolysis,the tissue-accumulation rate and the Endocytic 
Index could be calculated. The correlation coefficients of the plots are shown in parentheses.

Table 9.1 The effect of the presence of leupeptin in the incubation medium on the rates of uptake,
proteolysis and tissue-accumulation of i^I-labelled rat IgG in rat yolk sacs

Concentration No. of Endocytic Tissue
Accumulation

Rate
(yl/mg per h)

Rate of
of leupeptin 

(yg/ml)
yolk sacs Index

(yl/mg per h)
Proteolysis 
(yl/mg per h)

0 10 64.15 (0.793) 6.13 (0.680) 57.20 (0.904)
(control)

30 10 52.92 (0.955) 29.29 (0.904) 24.47 (0.938)
30 10 71.11 (0.887) 43.91 (0.881) 27.79 (0.894)
30 10 70.45 (0.921) 35.23 (0.878) 35.23 (0.999)

MEAN VALUES (±S.D) 64.83 ± 10.51 36.14 ± 7.35 29.16 ± 5.51



. . 125Rabbit yolk-sac pieces (24-day) were incubated in serum-free medium 199 containing I-labelled 
rabbit IgG (2 yg/ml) and leupeptin (30 yg/ml). Incubations were terminated at regular intervals up

Table 9.2 The effect of the presence of leupeptin in the incubation medium on the rates of uptake,
proteolysis and tissue-accumulation of l^I-labelled rabbit IgG in rabbit yolk sacs

to 5.5h. (For detailed method see Section 9.2. 2.) Other details as in the legend to Table Ç>.l

Concentration 
of leupeptin in 
incubation medium 

(yg/ml)

No. of 
yolk sacs

Endocytic
Index

(yl/mg per h)

Tissue
Accumulation

Rate
(yl/mg per h)

Rate of 
Proteolysis 
(yg/mg per h)

0 8 34.97 (0.852) 13.01 (0.717) 23.23 (0.935)
0 9 39.79 (0.947) 22.60 (0.851) 17.09 (0.937)
0 9 20.19 (0.916) 10.27 (0.706) 11.56 (0.902)
0 9 38.19 (0.943) 17.22 (0.857) 20.76 (0.869)
0 9 31.83 (0.823) 14.89 (0.638) 18.42 (0.919)

MEAN VALUES (± S.D.) 32.99 ±7.78 15.59 ± 4.67 18.21 ±4.39

30 10 21.46 (0.898) 11.95 (0.828) 10.11 (0.897)
30 9 20.53 (0.968) 15.39 (0.943) 5.61 (0.911)
30 9 33.80 (0.920) 26.47 (0.877) 7.37 (0.857)
30 9 37.90 (0.963) 27.88 (0.932) 9.57 (0.892)

MEAN VALUES (± S.D.) 28.42 ± 8.75 20.42 ± 7.94 8.16 ± 2.07
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125nF i g u r e  9 * 5  E f f e c t  o f  l e u p e p t i n  o n  t h e  r e l e a s e  o f  ^ - l a ­

b e l l e d  r a t  I g G  f r o m  r a t  y o l k - s a c s  i n c u b a t e d  i n  s e r u m - f r e e  

m e d i u m  1 9 9

r a t  y o l k - s a c s  w e r e  i n c u b a t e d  i n  s e r u m - f r e e  m e d i u m  199 

a n d  ^ ^ I - l a b e l l e d  r a t  I g G  ( 1 0 p g / m l ) ,  t h e n  r i n s e d  a n d  r e i n c u b a ­

t e d  i n  f r e s h  m e d i u m .  L e u p e p t i n  ( 3 0  | j g / m l )  w a s  a d d e d  i n  e i t h e r  

t h e  e n d o c y t o s i s  p h a s e  ( e n d o  o n l y )  o r  t h e  e x o c y t o s i s  p h a s e  ( e x o  

o n l y )  o r  b o t h  ( e n d o  +  e x o )  a s  o u t l i n e d  i n  S e c t i o n  9 . 2 . 3 .  S u b s t r a ­

t e  r e l e a s e  w a s  m o n i t o r e d  f o r  u p  t o  3h .  T h e  g r a p h  e x p r e s s e d  t h e  

t o t a l  a m o u n t  o f  s u b s t r a t e  a s s o c i a t e d  w i t h  t h e  y o l k - s a c  a t  t h e  

b e g i n n i n g  o f  r e i n c u b a t i o n  Q  , t h e  t o t a l  a m o u n t  o f  s u b s t r a t e  

r e l e a s e d  ^  , t h e  T G A - s o l u b l e  a c t i v i t y  r e l e a s e d  ^  a n d  t h e

T C A - i n s o l u b l e  a c t i v i t y  r e l e a s e d  | | J  a t  3 h  o f  r e i n c u b a t i o n  f o r  

e a c h  o f  t h e  e x p e r i m e n t a l  r e g i m e s  m e n t i o n e d .  V a l u e s  s h o w n  a r e  

m e a n s  ( +  S . D . )  f r o m  6 s e p a r a t e  e x p e r i m e n t s  f o r  e a c h  c o n d i t i o n .
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125I-R ab b it IgG o n ly
F i g u r e  9 . 4 -  E f f e c t  o f  l e u p e p t i n  o n  t h e  r e l e a s e  o f

exo 
only

1 2 5 I - l a -

b e l l e d  r a b b i t  I g G  f r o m  r a b b i t  y o l k - s a c s  i n c u b a t e d  i n  s e r u m -  

f r e e  m e d i u m  199

2 4 — d a y  r a b b i t  y o l k - s a c  p i e c e s  w e r e  i n c u b a t e d  i n  s e r u m - f r e e  

m e d i u m  1 9 9  a n d  ^ ^ I - l a b e l l e d  r a b b i t  I g G  ( 1 0  g g / m l ) ,  t h e n  r i n s e d  

a n d  r e i n c u b a t e d  i n  f r e s h  m e d i u m  1 9 9 .  L e u p e p t i n  ( 3 0  g g / m l )  w a s  

a d d e d  i n  e i t h e r  t h e  e n d o c y t o s i s  p h a s e  ( e n d o  o n l y )  o r  t h e  e x o c y -  

t o s i s  p h a s e  ( e x o  o n l y )  o r  b o t h  ( e n d o  +  e x o )  a s  o u t l i n e d  i n  g r e a ­

t e r  d e t a i l  i n  S e c t i o n  9 . 2 . 3 .  S u b s t r a t e  r e l e a s e  w a s  m o n i t o r e d  

f o r  u p  t o  3 h .  T h e  g r a p h  e x p r e s s e s  t h e  t o t a l  a m o u n t  o f  s u b s t r a t e  

a s s o c i a t e d  w i t h  t h e  y o l k - s a c  a t  t h e  b e g i n n i n g  o f  r e i n c u b a t i o n Q  

t h e  t o t a l  a m o u n t  o f  s u b s t r a t e  r e l e a s e d  ,  t h e  T G A - s o l u b l e

a c t i v i t y  r e l e a s e d  ^  a n d  t h e  T C A - i n s o l u b l e  a c t i v i t y  r e l e a s e d  ^  

a t  3h  o f  r e i n c u b a t i o n  f o r  e a c h  o f  t h e  e x p e r i m e n t a l  r e g i m e s  m e n ­

t i o n e d .  V a l u e s  s h o w n  a r e  m e a n s  ( +  S . D . )  f r o m  3 s e p a r a t e  e x p e r i ­

m e n t s  f o r  e a c h  c o n d i t i o n .



F i g u r e  9 . 5  T i m e  c o u r s e  o f  r e l e a s e  o f  I - l a b e l l e d  s p e c i e s  

f r o m  r a t  y o l k - s a c s  o n  r e i n c u b a t i n g  t i s s u e s  p r e v i o u s l y  e x p o s e d  

t o  ^ 2 ^ I - l a b e l l e d  r a t  I g G

■'1 7 . 5 - d a y  r a t  y o l k - s a c s  w e r e  f i r s t  i n c u b a t e d  i n  s e r u m - f r e e  

m e d i u m  1 9 9  c o n t a i n i n g  ^ ^ I - l a b e l l e d  r a t  I g G  ( 1 0  | j g / m l ) .  A f t e r  

2 h  y o l k - s a c s  w e r e  w a s h e d  a n d  r e i n c u b a t e d  i n  f r e s h  m e d i u m  1 9 9 » 

u p  t o  a  f u r t h e r  3 h  ( s e e  S e c t i o n  9 . 2 . 3  f o r  d e t a i l s ) .  V a l u e s  

s h o w n  r e p r e s e n t  m e a n s  f r o m  6 s e p a r a t e  e x p e r i m e n t s .  F i g u r e  9 . 5  

s e r v e s  a s  c o n t r o l  f o r  F i g u r e s  9 . 6 ,  9 * 7  a n d  9 * 8  ,  w h e r e  d a t a  i s  

p r e s e n t e d  f r o m  r a t  y o l k - s a c  i n c u b a t i o n s  w i t h  l e u p e p t i n , a s  w e l l  

a s  s u b s t r a t e ,  p r e s e n t .

T o t a l  r a d i o a c t i v i t y  r e l e a s e d  ------- A ----------

T C A - s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  —  • - - - - -

T C A - i n s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d O

%
 r

el
ea

se



1 2 5
F i g u r e  9 . 6  T i m e  c o u r s e  o f  r e l e a s e  o f  ^ I - I a b e l l e d  s p e c i e s

f r o m  r a t  y o l k - s a c s  o n  r e i n c u b a t i n g  i n  l e u p e p t i n - c o n t a i n i n g

1 2 5medium 199 t i s s u e s  p r e v i o u s l y  e x p o s e d  t o  ^ I - l a b e l l e d  rat I g G  

a n d  l e u p e p t i n

1 7 . 5 - d a y  r a t  y o l k - s a c s  w e r e  f i r s t  i n c u b a t e d  i n  s e r u m - f r e e  

m e d i u m  1 9 9  c o n t a i n i n g  b o t h  ^ ^ I - l a b e l l e d  r a t  I g G  ( 1 0  y g / m l )  

a n d  l e u p e p t i n  ( J O  y g / m l ) .  A f t e r  2 h  y o l k - s a c s  w e r e  w a s h e d  a n d  

r e i n c u b a t e d  i n  f r e s h  m e d i u m  1 9 9  c o n t a i n i n g  l e u p e p t i n  ( J O  p g / m l ) ,  

u p  t o  a  f u r t h e r  J h  ( s e e  S e c t i o n  9 . ^ . 5  f o r  d e t a i l s ) .  V a l u e s  s h o w n  

r e p r e s e n t  m e a n s  f r o m  6  s e p a r a t e  e x p e r i m e n t s .

T o t a l  r a d i o a c t i v i t y  r e l e a s e d  - - - - - - A - - - - - -

T C A - s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d - - - - • - - - - - -

TCA-insoluble radioactivity released--- O  ---
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1 2 5F i g u r e  9 . 7  T i m e  c o u r s e  o f  r e l e a s e  o f  ^ I - l a b e l l e d  s p e c i e s

1 2 5o n  r e i n c u b a t i n g  t i s s u e s  p r e v i o u s l y  e x p o s e d  t o  ^ I - l a b e l l e d  

r a t  I g G  i n  t h e  p r e s e n c e  o f  l e u p e p t i n

1 7 » 5 - d a y  r a t  y o l k - s a c s  w e r e  f i r s t  i n c u b a t e d  i n  s e r u m - f r e e  

m e d i u m  1 9 9  c o n t a i n i n g  b o t h  ^ ^ I - l a b e l l e d  r a t  I g G  ( 1 0  y g / m l )  

a n d  l e u p e p t i n  ( J O  | j g / m l ) .  A f t e r  2 h  y o l k - s a c s  w e r e  w a s h e d  a n d  

r e i n c u b a t e d  i n  f r e s h  m e d i u m  1 9 9 ,  u p  t o  a  f u r t h e r  J h  ( s e e  

S e c t i o n  9 * 2 . 3  f o r  d e t a i l s ) .  V a l u e s  s h o w n  r e p r e s e n t  m e a n s  

f r o m  6  s e p a r a t e  e x p e r i m e n t s .

Total radioactivity released ---A ---
TCA-soluble radioactivity released — • —  
TCA-insoluble radioactivity released -- O
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f r o m  r a t  y o l k - s a c s  o n  r e i n c u b a t i n g  i n  l e u p e p t i n - c o n t a i n i n g  

m e d i u m  199  t i s s u e s  p r e v i o u s l y  e x p o s e d  t o  ^ I - l a b e l l e d  r a t  _ 1 e 9

1 7 . 5 - d a y  r a t  y o l k - s a c s  w e r e  f i r s t  i n c u b a t e d  i n  s e r u m - f r e e  

m e d i u m  1 9 9  c o n t a i n i n g -  ^ - ^ I - l a b e l l e d  r a t  I g G  ( 1 0  y g / m l ) .  A f t e r  

2 h  y o l k - s a c s  w e r e  w a s h e d  a n d  r e i n c u b a t e d  i n  f r e s h  m e d i u m  199 

c o n t a i n i n g  l e u p e p t i n  (30  j j g / m l ) ,  u p  t o  a  f u r t h e r  3h  ( s e e  

S e c t i o n  9 . 2 . 3  f o r  d e t a i l s ) .  V a l u e s  s h o w n  r e p r e s e n t  m e a n s  f r o m  

6 s e p a r a t e  e x p e r i m e n t s .

Total radioactivity released --- A ---
TGA-soluble radioactivity released—  • ---
f C A - i n s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  - - - - -  O  - - - - - - -
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12S
F i g u r e  9 . 9  T i m e  c o u r s e  o f  r e l e a s e  o f  ^ 1 -  l a b e l l e d  s p e c i e s  

f r o m  r a b b i t  y o l k - s a c  o n  r e i n c u b a t i n g  t i s s u e s  p r e v i o u s l y  e x p o s e d  

t o  ^ ^ I - l a b e l l e d  r a b b i t  I g G

2 4 - d a y  r a b b i t  y o l k - s a c  p i e c e s  w e r e  f i r s t  i n c u b a t e d  i n  s e r u m -  

f r e e  m e d i u m  1 9 9  c o n t a i n i n g  ^ I - l a b e l l e d  r a b b i t  I g G  ( 1 0  p g / m l ) .  

A f t e r  2 h  y o l k - s a c s  w e r e  w a s h e d  a n d  r e i n c u b a t e d  i n  f r e s h  m e d i u m  

1 9 9 »  u p  t o  a  f u r t h e r  3 h  ( s e e  S e c t i o n  9 . 2 . 3  f o r  d e t a i l s ) .

V a l u e s  s h o w n  r e p r e s e n t  m e a n s  f r o m  3 s e p a r a t e  e x p e r i m e n t s .

F i g u r e  9 . 9  s e r v e s  a s  c o n t r o l  f o r  F i g u r e s  9 . 1 0 ,  9 . 1 1  a n d  9 - 1 2 ,  

w h e r e  d a t a  i s  p r e s e n t e d  f r o m  r a b b i t  y o l k - s a c  i n c u b a t i o n s  w i t h  

l e u p e p t i n ,  a s  w e l l  a s  s u b s t r a t e ,  p r e s e n t .

T o t a l  r a d i o a c t i v i t y  r e l e a s e d  - - - - -  A - - - - - - -

T C A - s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  —  • - - - - - - -

T C A - i n s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  - - - - - O ---
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1 2 S
F i g u r e  9 . 1 0  T i m e  c o u r s e  o f  r e l e a s e  o f  I - l a b e l l e d  s p e c i e s

f r o m  r a b b i t  y o l k - s a c s  o n  r e i n c u b a t i n g  i n  l e u p e p t i n - c o n t a i n i n g

12Sm e d i u m  1 9 9  t i s s u e s  p r e v i o u s l y  e x p o s e d  t o  ^ I - l a b e l l e d  r a b b i t  

I g G  a n d  l e u p e p t i n

2 4 - d a y  r a b b i t  y o l k - s a c  p i e c e s  w e r e  f i r s t  i n c u b a t e d  i n  s e r u m -  

f r e e  m e d i u m  1 9 9  c o n t a i n i n g  b o t h  ^ I - l a b e l l e d  r a b b i t  I g G  

( 1 0  u g / m l )  a n d  l e u p e p t i n  ( 3 0  u g / m l ) .  A f t e r  2 h  y o l k - s a c s  w e r e  

w a s h e d  a n d  r e i n c u b a t e d  i n  f r e s h  m e d i u m  1 9 9  c o n t a i n i n g  l e u p e p ­

t i n  ( 3 0  J j g / m l ) ,  u p  t o  a  f u r t h e r  3 h  ( s e e  S e c t i o n  9 * 2 . 3  f o r  

d e t a i l s ) .  V a l u e s  s h o w n  r e p r e s e n t  m e a n s  f r o m  3 s e p a r a t e  e x p e r i  

m e n t s .

Total radioactivity released ---A ---
TCA-soluble radioactivity released --• ---
TGA-insoluble radioactivity released ---  O
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1 2 5F i g u r e  9 . 1 1  T i m e  c o u r s e  o f  r e l e a s e  o f  ^ I - l a b e l l e d  s p e c i e s

1 2 5p n  r e i n c u b a t i n g  t i s s u e s  p r e v i o u s l y  e x p o s e d  t o  ^ I - l a b e l l e d  

rabbit I g G  i n  t h e  p r e s e n c e  o f  l e u p e p t i n

2 4 - d a y  r a o b i t  y o l k - s a c  p i e c e s  w e r e  f i r s t  i n c u b a t e d  i n  s e r u m -
A OC.

f r e e  m e d i u m  1 9 9  c o n t a i n i n g  b o t h  ^ I - l a b e l l e d  r a b b i t  I g G  ( 1 0  | j g /  

m l )  a n d  l e u p e p t i n  ( 5 0  j j g / m l ) .  A f t e r  2 h  y o l k - s a c s  w e r e  w a s h e d  

a n d  r e i n c u b a t e d  i n  f r e s h  m e d i u m  1 9 9 , u p  t o  a  f u r t h e r  3h  ( s e e  

S e c t i o n  9 . 2 . 3  f o r  d e t a i l s ) .  V a l u e s  s h o w n  r e p r e s e n t  m e a n s  f r o m  

3 s e p a r a t e  e x p e r i m e n t s .

T o t a l  r a d i o a c i t v i t y  r e l e a s e d  — A —

P C A - s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d - - - - - • - - - - - - -

T C A - i n s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d — O --
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f r o m  r a b b i t  . y o l k - s a c s  o n  r e i n c u b a t i n g  i n  l e u p e p t i n - c o n t a i n i n g  

m e d i u m  1 9 9  t i s s u e s  p r e v i o u s l y  e x p o s e d ,  t o  ^ - ^ I - l a b e l l e d  r a b b i t

IgGt
2 4 - d a y  r a b b i t  y o l k - s a c  p i e c e s  w e r e  f i r s t  i n c u b a t e d  i n  s e r u m -  

f r e e  m e d i u m  1 9 9  c o n t a i n i n g  ^ ^ ^ I - l a b e l l e d  r a b b i t  I g G  ( 1 0  | j g / m l ) .  

A f t e r  2 h  y o l k - s a c s  w e r e  w a s h e d  a n d  r e i n c u b a t e d  i n  f r e s h  m e d i u m  

199  c o n t a i n i n g  l e u p e p t i n  (30  p g / m l ) ,  u p  t o  a  f u r t h e r  3 h  ( s e e  

S e c  c i o n  9 . 2 . 3  f o r  d e t a i l s ) .  V a l u e s  s h o w n  r e p r e s e n t  m e a n s  f r o m  

3 s e p a r a t e  e x p e r i m e n t s .

T o t a l  r a d i o a c t i v i t y  r e l e a s e d  — A —
T C A - s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  —  •  ------

T C A - i n s o l u b l e  r a d i o a c t i v i t y  r e l e a s e d  —  O --
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9.4 DISCUSSION

One of the main differences between the Brambell and the Wild

theories for selective transport of IgG across rabbit foetal membranes

lies in the mechanism of release of the intact IgG from the tissue.
In the Brambell mechanism, heterolysosomes exocytose their contents at

the lateral and basal plasmalemma. In the Wild mechanism, only

micropinocytic coated vesicles release IgG at these sites by exocytosis;

heterolysosomes do not fuse with the plasma membrane. (In support of

the latter point, Moxon et^al., 1976 in an ultrastructural study on

rabbit yolk sacs, never observed macropinocytic vesicles near the basal
and lateral plasma membrane.) The assumption in the Brambell theory,

that heterolysosomes can take part in exocytosis, provides a means of
testing this theory experimentally in an irx vitro system in which living

cells undergo pinocytosis and exocytosis. Not only should IgG be

exocytosed,but also other macromolecular materials that have been

captured by pinocytosis but which are resistant to hydrolysis by lysosomal
enzymes. It should therefore be easy to find experimental support

for this theory if it is valid. From Figures 9.1 and 9.2, however, it

is apparent that only a very low release of the non-digestible marker 
1 25I-labelled PVP occurs on reincubating rat and rabbit yolk sacs loaded 

with this substrate. As the release of marker from yolk sacs
is reported in absolute terms (ng/mg tissue), it is possible to compare

125 125the amounts of I-labelled PVP released with the amounts of I-

labelled homologous IgG released from the same tissues (see Table 5.7),

where the loading concentration of the substrate was the same. Not
125only is the total release of homologous I-labelled IgG from rat and
125rabbit yolk sacs considerably higher than I-PVP release, but with

125labelled IgG the TCA-insoluble activity released exceeds I-PVP 

release 22-fold for the rat and 116-fold for the rabbit. In other words,
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more homologous IgG seems to be transported across the rat and rabbit
125yolk sacs intact compared with the amount of I-labelled PVP being 

released from the tissue. The implications of this observation are that 
heterolysosomes do not exocytose their contents into the intercellular 

spaces or, if exocytosis does occur, it is not sufficient to account 
for the great amount of IgG getting released intact from the rat and 
rabbit yolk sacs in vitro.

The second strand of the investigation pursued in this chapter was

to examine another of Brambell's assumptions: namely that within rabbit
yolk-sac heterolysosomes the IgG that is free in the lumen becomes

degraded by lysosomal enzymes and so is no longer intact when exocytic

release of the contents occurs. An attempt was made to increase the

amount of unbound but intact IgG within heterlysosomes by the use of
leupeptin, an inhibitor of lysosomal enzymes. If the Brambell theory

is correct, the amount of IgG released intact from heterolysosomes

containing this inhibitor should rise sharply. Table 9.1 and 9.2
125show the action of leupeptin on uptake of homologous I-labelled IgG

by rat and rabbit yolk sacs. In agreement with the findings of Knowles

et al. (1981) who used formaldehyde-treated BSA as a substrate in the
125rat yolk sac, the Endocytic Indices of I-labelled homologous IgG

was not changed in either the rat or the rabbit yolk sac when leupeptin
was present in the incubation medium. The Tissue-Accumulation Rates,
on the other hand, increased in both tissues, especially in the rat.

Hopgood et_ al. (1977) showed that in isolated rat hepatocytes leupeptin

inhibited endogeneous protein breakdown; Knowles & Ballard (1976)

similarly demonstrated leupeptin to be an effective inhibitor of protein

breakdown in Reuber H35 hepatoma cells. Also Knowles e£ al. (1981) by
125incubating rat yolk sacs in medium containing I-labelled formaldehyde- 

treated albumin and leupeptin found digestion of the substrate very much
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impaired, as expressed by a very high accumulation of the albumin in

the tissue. The high Tissue-Accumulation Rates for homologous 
125I-labelled IgG in the presence of leupeptin can therefore be explained

in terms of intralysosomal accumulation of undegraded or poorly degraded

material in the rat and rabbit yolk sacs. It was important to establish
125such tissue-accumulation of I-labelled IgG in the rat and rabbit yolk 

sacs and to be sure that the concentration of leupeptin used was 

effective, before going on to reincubation studies. By making use of 

leupeptin in reincubation studies, the Brambell versus Wild argument could 

be investigated more thoroughly.

The greatest effect of leupeptin on intralysosomal degradation is
expected when the inhibitor is present during loading as well as during

the reincubation phases. Looking at incubation of rat and rabbit yolk
sacs under different conditions (Figures 9.3 and 9.4), it is indeed
apparent that the inhibition of degradation is strongest when leupeptin

is present both during uptake and during reincubation. In both tissues
125the total percentage release of I-labelled IgG is lower than for the 

controls and for the other incubation conditions. In this context it is 

appropriate to comment on one apparently unusual finding, in the rat 

yolk sac. In this tissue, leupeptin seems to exert an effect, even 

when present during only the reincubation phase, not only on the tissue 
retention of substrate, but also on the total tissue-accumulation level, 

by increasing both. While the first effect is not surprizing (leupeptin 

should decrease the breakdown of substrate during the reincubation phase 

and hence lead to an accumulation in the tissue), the second finding is 

more unexpected. But, as the tissue level is determined during the 
uptake phase, it is obvious that this elevation cannot be due to any action 

of leupeptin; instead, it must be accounted for by a general variability 

in uptake and total tissue-accumulation of substrate by yolk sacs. This 

suggestion finds support in the data reported in Figures 2.5, 3.2, 4.1,
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. . 1254.6 and 5.7 for other incubations of rat yolk sacs with I-labelled

rat IgG followed by release in fresh medium. In these experiments, a

variability in the amounts of total tissue-accumulation is also apparent
(409 ng - 655 ng/mg tissue).

125Returning to the main findings, when degradation of I-labelled IgG 

is inhibited this substrate accumulates in the rat and rabbit yolk sacs.

But, according to the hypothesis for selectivity of IgG transport forwarded 

by Brambell, undegraded IgG would be expected to be released in the 

undegraded form, rather than be accumulated. However, looking at the 
release of TCA-insolubles (Figures 9.3 and 9.4), no such elevated release 

can be observed in either the rat or the rabbit yolk-sac tissues, thus 
giving little evidence to support the Brambell hypothesis. The high 

retention of substrate in the tissue is more compatible with the suggestion 
that non-degraded IgG, being of too high a molecular weight to diffuse 
across the heterolysosoraal membrane, is not released from the tissue by 

exocytosis but rather stays within those vesicles. This behaviour 

would in fact be expected if the Wild hypothesis were correct. Unless 

leupeptin interferes with the formation of coated vesicles, TCA-insoluble 

release should remain unaffected by the addition of leupeptin to the 

incubation medium during loading, reincubation or both, because protective 

IgG transport is supposed to take place in only coated vesicles, hence 

there is no necessity for heterolysosomes to engage in exocytosis.

Looking at the figures depicting the detailed time-course of release Figs
9.5-9.12,it is very interesting to note that the release of TCA-solubles

is very much affected by the presence of leupeptin in the various stages

of incubation. When the inhibitor is present during both the loading

and the reincubation periods in both tissues, release of TCA-solubles 
125(i.e. degraded I-labelled IgG) is very low, but continues to rise 

almost linearly with reincubation time. When leupeptin was present
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during only the ’loading" phase, the pattern of release of TCA-solubles

was very similar, but perhaps with a slightly more pronounced rise of

release towards the end of the reincubation period, suggesting that

the action of leupeptin on lysosomal enzymes in the rat and rabbit
yolk sacs may be a short-term effect. When leupeptin was present in

the reincubation period only, it had no detectable effect on the release

of TCA-insoluble activity relative to controls. As in control

incubations, TCA-soluble release reached almost its final level by

70 min. Such results indicate that leupeptin needs to be endocytosed
continuously by the tissue to be effective as lysosomal enzyme inhibitor.

125Exposure of the tissue to leupeptin after it had accumulated I-labelled 

IgG had little effect, because leupeptin being taken up by the tissue 
endocytically needed some time to reach a sufficiently high concentration 
in the tissue to be effective in inhibiting enzyme action.

The most important finding, however, related to the release of 

TCA-insolubles. Both the total amounts and the time-courses of 

TCA-insolubles release remained virtually unaffected by the presence of 

leupeptin at any stage of incubation of rat and rabbit yolk sacs.

This observation is most convincingly explained in terms of a specialized 

IgG transport system independent of the lysosomal system and therefore 

unaffected by leupeptin. Coated micropinocytic vesicles as suggested 

by Moxon at al. (1976) fit the criteria for such a special transport 
system.

In summary, the findings in this chapter are:

1) As in the rat yolk sac, the non-digestible macromolecular marker 
125I-labelled PVP is not released when rabbit yolk sacs are reincubated 

after loading with this substrate in vitro.

2) Leupeptin decreases the rate of intralysosomal degradation of
125homologous I-labelled IgG while leaving endocytosis of these
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proteins unaffected.

3) The presence of leupeptin in the incubation medium either during 

loading or reincubation or both did not cause the rate of release 

of intact IgG (TCA-insoluble material) to increase.

The main implications of the findings reported in this chapter are 

that they lend more support to the Wild than to the Brambell theory, 

having undermined two of the main assumptions of the latter.
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GENERAL DISCUSSION

The principal aim of the work reported in this thesis has been 
to investigate the controversy surrounding the mechanism of transfer of 

IgG across the rabbit (and rat) yolk sac by employing a different 
experimental technique. It was hoped that a novel approach, in which 

it was possible to study the isolated tissue in vitro, would give a new 

insight into the dynamics of transcellular transfer of IgG.

The first and vital step was to determine whether the method 

developed for incubating rat yolk sacs in vitro was also adaptable for 

incubating rabbit yolk sacs, this tissue having been established as 
the principal site of IgG transfer in the rabbit. The preliminary 

experiments reported in Chapter 2 indicate that in vitro the rabbit 
yolk sac, like the rat yolk sac, is an endocytically active tissue.
In fact, both rat and rabbit yolk sacs show very similar endocytic 

properties with respect to most substrates investigated; also the catabolic 

capacities towards homologous and heterologous species of IgG were 

similar. However, in the rabbit yolk sac a slightly higher catabolic 

capacity was demonstrated.

At this point it is pertinent to comment on the various IgG 

preparations used in this study. The homologous and heterologous 

IgG fractions used were commercially purchased and not further purified 

(for sources see General Materials and Methods Section, Chapter 1).

The use of highly purified IgG fractions or, even better, monoclonal 

antibody subclasses would have been an advantage in this study, as 

any specific differences in endocytic or transport properties of 

homologous and heterologous species of IgG could thus be more readily 

explained in terms of structural features of the molecules. As it 

is, possible impurities in the preparations may be partly responsible for 

some of the observed effects. The use of crude IgG preparations can,
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however, be justified on as least two grounds. First, a less refined 

commercial preparation of homologous and heterologous IgG will contain 

a more respresentative cross section of gamma globulins so will more 
closely resemble the population of molecules that come into contact 
with the yolk sac in vivo than will some arbitrarily chosen, purified 

IgG fraction the behaviour of which may not be representative of the 
other IgG molecules. The second and more obvious reason for using 

the commercial IgG preparation is a financial one. Highly purified 

preparations of IgG are much more expensive (whether purchased or 

prepared). In view of the rather large quantities of IgG used in 
"Interference" studies (Chapter 6) and "Loading concentration" studies 

(Chapter 8), the use of highly purified IgG could not be justified in an 
initial round of investigations. Since the findings of these initial 
experiments were quite interesting, it does suggest that certain key 

experiments should be repeated with purer fractions of IgG to check 

that the trends established in the work reported in this thesis hold 

good.

As in vitro techniques can often be criticized on the grounds that 

they do not truly represent in vivo conditions, the next chapters were 
devoted to establishing that the behaviour of rat and rabbit yolk sacs 

in vitro was compatible with that of the same tissues in vivo. Thus it 

was shown (Chapter 4) that substrates (especially homologous IgG) were 
indeed internalized endocytically by the tissues. This was a very 

important point to establish, as the yolk-sac reincubation technique used 

relied on the internalisation of the substrate to yield interpretable
results.

In vivo the rabbit yolk sac and also the rat yolk sac have been 

shown to be very selective in the transfer of homologous and heterologous 

IgG species (Brambell, 1970). This same selectivity has been shown 

(Chapter 5) to be a characteristic of the tissues in vitro, with the
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rank orders being extremely similar. Such similarities could possibly 

be fortuitous, but are compatible with the in vitro behaviour of the 
tissue reflecting its in vivo function. After these preliminary 
investigations, the further work dealt more directly with the question 
of the cellular mechanism of IgG transfer across the rat and rabbit yolk 
sac. It may be remembered that in the General Introduction a table was 

compiled giving the assumptions and predicted behaviour of the yolk 

sac according to the Brambell, Wild, Hemmings theories; this table 

is shown again overleaf. These predictions will now be discussed 
in detail in the light of both the findings presented in this work and 

the published literature.
The first point concerns the nature of the mechanisms proposed for 

protein selection in the process of IgG transfer. On this issue 

Brambell and Wild both propose the presence of specific receptors to 
which IgG binds selectively. In this respect these authors are similar 

and differ from Hemmings who is less specific about the mechanism of 

selection, but, when pressed, envisages the site of selection to be 

entirely different, namely the basal membrane which is thought to 

operate some vague diffusion-based selection process in favour of 

some IgG species. But diffusion across plasma membranes has to date 

not been demonstrated for any molecules in the molecular weight region 

of IgG or even anywhere near it, as pointed out before by Lloyd (1976) 
in response to the first proposal of the Hemmings theory. The presence 

of receptors, specific for homologous and some heterologous IgG species, 

on the other hand, has not only been proposed, but has also been 
experimentally demonstrated (Wild & Dawson, 1977; Hillman et al., 

1977; Sonoda & Schlamowitz, 1972; Tsay & Schlamowitz, 1975; Schlamowitz 

et al̂ ., 1975). This puts the greater weight of experimental evidence 

behind the Brambell and Wild theories. In Chapter 6 the presence of 

specific protective IgG receptors has also been demonstrated in the



Comparison of the main features of the different mechanisms proposed for the selective transfer of IgG

2.

3.

4.

5.

6. 

7.

1.

8.

9.

10.

11.

r
Feature of the process considered

Predicted behaviour or feature in the model according to: __________________________________ -* - ________________________________
Brambell Wild Hemmings & Williams

Mechanism responsible for 
selection of transferred IgG
Location of the specific 
receptors involved in IgG 
transmission
Can the protective IgG route 
be saturated?
Location of IgG in the cell

Location of protected IgG in 
the cell
Location of protein destined 
for degradation
Minimum number of vesicle- 
types proposed
Presence of lysosomal enzymes 
in transport vesicles is 
suggested?
Uptake of protein not destined 
for transport is by the 
following mechanism

Selective binding to 
membrane receptors
Inner face of pinosome 
or heterolysosome

Yes

Pinosome or heterolysosome 

Pinosome or heterolysosome 

Pinosome or heterolysosome

1
Yes

Fluid-phase pinocytosis

Selective binding to 
membrane receptors
Outer surface of 
plasma-membrane

Yes

Pinosome, heterolysosome 
or coated vesicle
Coated vesicle

Pinosome or heterolysosome

2
No

Fluid-phase or adsorptive 
pinocytosis

Selective diffusion at 
basal membrane
No receptors postulated 

No

Pinosome, heterolysosome 
or cytosol
Cytosol

Pinosome or heterolysosome 

1
Yes

Fluid-phase or adsorptive 
pinocytosis

Release of IgG from the cell 
is by the following mechanism

Exocytosis of pinosomes/ Exocytosis of coated
heterolysosomes at basal/ vesicles at basal/ 
lateral membrane lateral membrane

Differential diffusion 
at basal/lateral Membrane

Is release of lysosomal enzymes 
or a non-degradable marker 
possible from transplant vesicles?

Yes No No
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dynamic yolk-sac system (rat and rabbit) by interference studies. The 

degree of specificity displayed by those receptors closely parallelled 

the rank orders for IgG transport in vivo in these tissues.

The second point concerns the location of these protective receptors 
on the yolk sac. In the Wild mechanism, active receptors have to be 
located on the outer face of the plasma membrane, whereas for Brambell 

it is important that receptors are functional on the inner face of the 

limiting membrane of the endocytic vesicle. Considered in isolation, 

the interference experiments conducted in Chapters 6 may not give 
conclusive and satisfying evidence for the location of the receptors 

on the outer plasma membrane. It is just possible to envisage 
interference taking place subsequent to internalisation rather than 

during or before the invagination process. However, when considered 

together with the results of specific binding of IgG to non-living 

membrane preparations, that show the rank order of binding to be

the same as those from experiments with the living tissue, it is 
possible to postulate that the receptors are localized on the outer 

plasma membrane. This in itself does not invalidate the Brambell theory, 
because it can be envisaged that IgG receptors are distributed over 

the entire outer yolk-sac plasma-membrane facing the uterus. Binding 

of IgG occurs at these sites followed by vesicle formation, and 

protection of the homologous IgG against proteolytic enzymes is ensured 
as postulated. However, to have demonstrated specific receptors on 

the outer yolk-sac cell membrane clearly goes against the findings of 

Hemmings and Williams (1976) but, by itself, is insufficient evidence to 

disprove the Hemmings' theory. If selection does happen at the cell 

surface, it is hard to imagine why an additional mechanism of selection 

should be necessary at the basal membrane. In addition, the third 

point in the table picks out another characteristic that distinguishes 

the Wild and Brambell theories from that of Hemmings, namely the
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saturability of the protective route. A receptor-mediated transport 

process must of necessity be saturable if only a limited number of 

receptors is present. A process, on the other hand, without receptors 

and relying on diffusion or a similar mechanism should not be limited in 
such a way. In Chapter 8 rather interesting findings are presented 

which show that in both rat and rabbit yolk sacs the protective route 
can be saturated, albeit over different concentration ranges. In 

keeping with the proposal that the rabbit yolk sac is specialized for 

the transport of IgG, the transport capacity of the rabbit yolk sac 
is greater than that of the rat yolk sac. Thus, the experimental 

findings are again more compatible with the Brambell and Wild theories, 
rather than the Hemmings' theory.

The next three points (4,5 and 6) will be considered together, 

as they are related. All 3 theories agree that pinosome/heterolysosome 

are one possible location for internalized IgG, especially that IgG 

destined for degradation. But, whereas for Brambell this is the only 
intracellular location, Wild proposed coated micropinocytic vesicles as 

an additional site whereas Hemmings’ mechanism predicts that free IgG 

will also be found in the cytosol. In support of Wild's model,
Moxon, Wild & Slade (1976) showed the presence of HRP-conjugated human, 

rabbit and bovine IgG in coated micropinocytic vesicles; rabbit anti-HRP 

antibodies, free HRP and human IgG also became localized within coated 
vesicles. All these proteins plus bovine anti-HRP antibodies, IgG- 

ferritin conjugates and free ferritin were also found in smooth 

macropinocytic vesicles and dense bodies. (A possible argument against 

these findings is that some markers like HRP have a very "fuzzy" 

appearance under the electron microscope. This may well cause 

difficulties in deciding whether a vesicle is coated or not, but 

Rodewald (1973) in the suckling rat gut also produces evidence for the
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presence of ferritin-conjugated IgG within coated vesicles.)
Hemmings & Williams (1976) found, in a study of IgG transport

125across the rabbit yolk-sac, that a lot of ferritin and I-labelled 
bovine and human IgG were located in the cytoplasm together with the 

presence of broken pinocytic vesicles, after yolk sacs had been exposed 
to these markers iji vitro. These findings, together with those from 
a previous investigation, suggested that no selective binding occurred 

on the membrane between bovine and rabbit IgG. These findings caused 
Hemmings and Williams (1976) to formulate their alternative theory.

When the theory was put forward at the 1976 Brambell Symposium (see 

Hemmings, 1976) in the discussion following the paper Slade suggested 

that free substrate in the cytoplasm together with the presence of 

broken vesicles may well occur as an artefact of fixation. The 
occurrence of broken vesicles has been more universally supported by 

observations (Wild, 1970; Padykula et al., 1966). These workers, 

however, could not discern any purpose for their presence in IgG 

transfer and it could be argued that broken vesicles too, may simply 

be artefacts.
The seventh point, concerning the minimal number of distinct 

vesicles postulated by the respective theories, can be passed over 

quickly. The presence, in yolk-sac cells, of a variety of distinct 
vesicles (primary lysosomes, heterolysosomes, coated vesicles, pinosomes, 
autosomes, etc.) has been demonstrated by electron microscopy studies. 

Whether any of these vesicles are specialized to perform the function Of 

exclusively transporting homologous and some heterologous IgG species 

to the foetal circulation is an open question.

At this point is may be concluded that the overall evidence 

accumulated renders the Hemmings' theory highly unlikely. Therefore 

the further discussion will concentrate on the remaining two theories.
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Turning to point 8 in the table, it can be seen that the presence

of lysosomal enzymes in transport vesicles is suggested by the Brambell
theory but not by the Wild theory. This is an important point, since

a consequence of this factor in the Brambell mechanism is that the
exocytosis of lysosomal enzymes together with the transferred IgG at the

basal or lateral plasma membrane is predicted. Now, the exocytosis

of lysosomal enzymes has indeed been frequently observed from cultured

cells. Ibbotson (Ph.D. thesis) tried to demonstrate the same for

rat yolk sacs in vitro. He incubated 17.5-day rat yolk sacs in the 
125presence of I-labelled rat IgG, washed yolk sacs after 2h and

reincubated them in fresh medium (same method as outlined in Section
1251.12). The medium was then assayed for intact and degraded I-

labelled IgG and also for 8-NAG, a lysosomal enzyme. Plenty of 
125intact I-labelled rat IgG was found in the medium, but little or 

no 8~NAG, leading to the claim that the presence of lysosomal enzymes 

in the transport vesicles is highly unlikely. Also Wild (1975) could 

not demonstrate the presence of cathepsin D outside rabbit yolk-sac 
endodermal cells, which should release this enzyme if secondary 

lysosomes are undergoing exocytic discharge. The presence of IgG 

in vesicles containing lysosomal enzymes has not yet been shown.

However, to demonstrate IgG in heterolysosomes would still be compatible 

with Wild's hypothesis because he postulated that surplus IgG (i.e. 
not transported IgG) is treated in the same manner as any other protein 

and is degraded in heterolysosomes. If the presence of lysosomal 

enzymes and substrate in coated vesicles (as has been suggested by 

Friend & Farquhar, 1967 in the rat vas deferens) could be demonstrated, 

this would constitute evidence against the Wild hypothesis, but no 

such evidence has yet been forwarded.

Point 9 concerns the uptake of those proteins not destined for 

transport, i.e. the normal mode of protein uptake. For Brambell, the
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mechanism of uptake of protected IgG and that of other proteins

destined for degradation differ in that the former process, involves

specific receptors; the remainder of protein ingested was proposed to

be captured by fluid-phase pinocytosis. The distinction between

those two types of uptake was made by Jacques (1969). Later it was
experimentally shown that the rates of these two types of uptake process

differed considerably, being higher when receptors were involved (see

Prat ten ej: al_., 1980 for a review). Lloyd (1976) then argued that
125since the uptake of I-labelled BSA into the rat yolk sac was by

adsorptive pinocytosis (as shown by the very much higher Endocytic

Indices than are accepted for fluid-phase uptake), the mere fact that
a protein adsorbs to the plasma membrane prior to invagination cannot

ensure its protection within the cell. In Chapter 6 of this thesis
it was also shown that both homologous and heterologous IgG species

enter the rat and rabbit yolk-sac cells by adsorptive endocytbsis

and the rates of uptake in the absence of calf serum are considerably
higher than the sum of the rates of fluid-phase and "protective"

uptake. Consequently, it was suggested that the uptake of homologous

IgG and heterologous IgG destined for degradation was by adsorptive

pinocytosis. From the additional findings that in the rabbit yolk sac 
125I-labelled rabbit and human IgG are released intact to almost 

equal degrees upon reincubation (Chapter 5), but have very different 
Endocytic Indices, it was deduced that the receptors or binding sites 

mediating the two protein routes must differ in their specific 

requirements for binding. Also connected with this point and a 
consequence of the observed differences between human and rabbit IgG 

is the following conclusion. Different parts of the IgG molecule 

must be responsible for binding to the two types of receptors/binding 

sites. The existence on the plasma membrane of two or more types of 
binding site seems perfectly compatible with the Wild theory, especially
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if, as Anderson ej; al. (1977) proposed, the coated vesicle receptors 

all cluster in a specific region that invaginates to internalize any 
protein bound to this area. On the other hand, the unoccupied 

receptors may be distributed randomly over the plasma membrane in which 
case "capping" would have to occur before invagination.

Up to this point the experimental findings presented in this work 

and also in the literature are more compatible with the Wild theory than 

with the original Brambell theory. The latter theory could, however, 

be modified to fit the experimental evidence. For this purpose it 
would be necessary to propose that both the specific (transport) 

receptors and the non-specific (degradative) binding sites for 

homologous IgG are located on the outer face of the plasma membrane and 

that binding takes place there, instead of after internalization. If 

uptake of IgG into the degradative route occurs by adsorption to the 

non-specific binding sites of limited specificity, it is probable that 

the differential effect on degradation in secondary lysosomes could 

result from binding to protective IgG receptors being either firmer or 

causing a steric hindrance to the lysosomal enzymes. The binding of 

IgG to "degradative route binding sites", on the other hand,must be 
without impairment of the lysosomal enzymes.

In the following aspect of IgG transport considered (Point 10) 
a very clear distinction is made between the two theories considered.

The point in question is the mechanism of release of transported IgG 

from the cell. According to Brambell, transport takes place in 

heterolysosomes, and the proposed release is by exocytosis from these 
vesicles. Wild, on the other hand envisages transport as occurring 

in coated vesicles and it is therefore only these vesicles that must 

exocytose. Indeed, Moxon et al. (1976) claims to have observed 

such exocytosis from coated vesicles i.e. coated invaginated areas on 

the basal and lateral membrane and coated vesicles in confluence with
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the plasma membrane at these sites. Wild & Richardson (1979) showed 

by SRBC (Sheep red blood cell) binding that Fc receptors are located 
not only on the apical cell membrane but also at the basal cell face, 
an observation that they ascribed to receptors being returned to the 
plasma membrane by exocytosis before being possibly recycled.

The electron micrographs, although they seem convincing, suffer 

from the same shortcoming that was pointed out earlier, namely, that 

the behaviour of a dynamic system is being interpreted from a static 

snapshot. Expressed most simply, it is impossible to decide the 
direction of movement, i.e. whether endocytosis or exocytosis is 

being observed. Still, in such coated vesicles the presence of 

HRP-conjugated homologous and human IgG, rat anti-HRP antibody and 

human IgG are demonstrated very frequenctly, a finding predicted by 
Wild's theory.

The lack of experimental support for exocytosis from heterolysosomes 

was instrumental in triggering off research to find a possible 
alternative to the Brambell theory. Wild (1975, 1976) and Moxon 

et al. (1976) claim that heterolysosomes are not even to be found 

near the basal membranes. But not only is supporting evidence absent, 

it is also possible to test this particular aspect of the IgG transfer 

mechanism experimentally using the in vitro system, because of the 

predictions that can be made if it is valid. Namely, if heterolysosomes 

exocytose IgG, other molecules contained in the vesicle must be released 

as well. It has already been shown that lysosomal enzymes are not 

released (Wild, 1975; Ibbotson, 1979). Small degradation products are 
difficult to trace, but it is easy to demonstrate the release of a

non-digestible macromolecule following its uptake by the tissue.
125Using I-labelled PVP as a test macromolecule it was demonstrated 

(Williams & Ibbotson (1979) for the rat yolk sac, and in Chapter 9 of 

this work for the rabbit yolk sac) that no significant amount of this
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marker (at least not comparable to IgG release) is released from the 

cells. Instead, the marker was shown to accumulate steadily in the 
tissue.

Another more subtle and even more convincing experiment makes 
use of the homologous IgG itself as the non-degradable substrate.

In Chapter 8 it was shown that the homologous IgG species is the 

most resistant of the proteins to digestion by enzymes derived from 

rat and rabbit yolk sacs. This finding alone would give a boost to 

the Brambell theory by also providing (in addition to specific and 
protective membrane binding) a different protective mechanism for the 

homologous IgG. Considering this finding and the proposed exocytosis 

of heterolysosomes it would follow that more homologous IgG could be 
transferred through the cells intact if it was rendered more 

resistant to degradation. Furthermore, if the action of lysosomal 

enzymes could be inhibited by the addition of a very potent and specific 

agent (e.g. leupeptin), more IgG would be expected to be released from 

the cells intact according to Brambell's theory. In Chapter 9 data 

were collected from such experiments with rat and rabbit yolk sacs.

The finding in all cases was that, although degradation of IgG was 

clearly inhibited, no increased release of homologus IgG could be 

demonstrated. These findings are, most emphatically not compatible 

with the Brambell theory and can be taken as strong evidence against this 
theory.

Considering the leupeptin experiments and the predictions of Wild's 

hypothesis, no increased release of homologous IgG is expected when the 
degradation of this substrate is inhibited, because the degradative and 

protective routes are entirely separate. The surplus IgG would merely 

accumulate in heterolysosomes when leupeptin is present. Such 

accumulation has in fact been demonstrated in reincubation studies, 

where a very great tissue retention of substrate was observed especially
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when leupeptin was present at all times of incubation of rabbit yolk 

sacs (see Chapter 9, Figure 9.4).
To conclude this section on the assumptions and predictions put 

forward in the table it is quite clear that the experimental findings 
presented in this work support the Wild rather than the Brambell (or 

the Hemmings) theories. In the following section, therefore, a 

critical appraisal of the Wild theory will be attempted.

At first sight it appears like an easy way out of a dilemma to 
propose the presence of a different class of vesicle to carry IgG 
when difficulties seem to have arisen with an existing theory based 

on transport within heterolysosomes. However, coated micropinocytic 

vesicles have been demonstrated in a great number of cells and now 

constitute a distinct subclass of vesicle. The difficulties connected 

with the Brambell theory are so numerous and grave that apparently no 
modification of the original theory can satisfactorily account for the 

body of conflicting experimental evidence that can now be assembled.

A possible reservation concerning the Wild theory comes from another 
quarter and is connected with the nature and properties of coated 

vesicles themselves. Evidence for the role of coated vesicles in the 

transfer of passive immunity comes from Wild and his group for the rabbit 

yolk sac (Moxon et al., 1976) and also from Rodewald (1973) for the rat 
gut. Also in the rat yolk sac coated vesicles could be documented 

(Lambson, 1966; Jollie & Triche, 1971). But coated vesicles have been 

more universally found, for example in the oocyte of mosquito dedes 

aegypti L. (Roth & Porter, 1964), toad spinal ganglia (Rosenbluth & 
Wissig, 1963), rat cerebellum (Palay, 1963), rat intestine (Palay, 1963; 

Cardell et al., 1967), pericardial cell of aphids (Bowers, 1964), 

erythroblasts of guinea pig bone marrow (Fawcett, 1964), rat vas 

deferens (Friend & Farquhar, 1967), rat ganglion nodosum neurons 

(Holtzman et al., 1967), nerve endings of guinea pig brain (Kanaseki &
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Kadota, 1969)y guinea pig yolk sac (King & Enders, 1970), endodermal 
chick yolk-sac cells (Lambson, 1966), guinea pig chorioallantoic 

placenta (King & Enders, 1971) frog neuromuscular junction (Heuser &
Reese, 1973), rat eosinophilic leucocytes (Komiyama & Spicer, 1975), 
implanting mouse blastocyts (Prelmann, 1975), rat sinusoidal endothelial 

cells of bone marrow (de Bruyns ejt al., 1975), lactating rat mammary 
epithelial cells (Franke et al., 1976), human placenta (Ockleford,

1976, Ockleford et al., 1977) porcine brain, adrenal medulla, lymphoma 

cell line (Pearse, 1975, 1976), human cultured fibroblasts (Anderson 

et al., 1977; Goldstein et̂  al,, 1979), porcine brain, chicken oocytes 

(Woods et al., 1978) and arachnoid of optic nerve (de la Motte, 1979).

The functions that coated vesicles perform in the above systems 

are by no means uniform but fall into two major categories: 1) membrane 

recycling and 2) protein transport, endocytosis or secretion. Membrane 

recycling as a function has been reported for synapses after neurotrans­

mitter release (Heuser & Reese, 1973), but Franke & Herth (1974) also 

gives some evidence for that role of coated vesicles in exponentially 
growing plant cells. Protein transport can follow uptake of exogenous 

materials, mainly proteins, by the cell into coated vesicles (e.g. 

uptake of yolk protein in the oocyte of mosquito aedes aegypti L.

(Roth & Porter, 1964), uptake of ferritin by toad spinal ganglia after 
intraperitoneal injection of this marker (Rosenbluth & Wissig, 1963), 

uptake of gold in rat eosinophilic leucocytes (Komiyama & Spicer, 1975)9 

ferritin uptake in rat yolk sacs (Lambson, 1966) ferritin and HRP uptake 

in the guinea pig chorioallantoic placenta (King & Enders, 1971).
Such coated vesicles are thought to form at the outer cell membrane. 

Another type of coated vesicle apparently forms, not at the plasma 

membrane, but within the cell. Thus, Rodewald (1973) envisages a 

scheme in the formation of coated vesicles at the ends of tubular vesicles 

(see also Wild, 1979). Geuze & Kramer (1974) found that in stimulated
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exocrine pancreas cells of rats some coated vesicles originated by 

pinching off from mature Golgi cisternae and condensing vacuoles and 
they propose that the possible function of coated membrane is the 

concentration of exportable protein within forming secretory granules.
Friend & Farquhar (1967) also say that some coated vesicles originate 

from the Golgi region and they claim that such small vesicles show acid 

phosphatase activity so are primary or secondary lysosomes. The same 

has been proposed by Holtzman jit al. (1967) and de Bruyns et al. (1975).

It is obvious that, as far as IgG transport is concerned, these findings 

present a potential problem. Another series of observations consolidates 

this problem, namely that at least some coated vesicles apparently 

fuse with other vesicles and primary lysosomes (Roth & Porter 196.4;
King & Enders, 1970, 1971; Anderson et al., 1977; de Bruyns et al.,

1975). To highlight the difficulty posed to the Wild theory it must be 

remembered that one of the aspects of this theory was that the vesicle 

coat has the function of preventing fusion of the vesicle with lysosomes 
(Wild, 1975). If such fusion is generally reported for coated 

vesicles, either the Wild hypothesis has to be reconsidered or alternatively 

the claimed fusion of coated vesicles with other vesicles examined more 

closely. It is apparent that, in all cells investigated to date, 

preceding fusion coated vesicles shed their coats (Roth & Porter, 1964;

King & Enders, 1970; de Bruyns et al., 1975). This could support the 

point made by Wild (1976) that the vesicle coat has a protective 

function and prevents fusion with other vesicles. But an interesting 

question raised at the same time concerns the mechanism of the coat shedding. 
Formulated simply, what determines whether the vesicle coat is retained 

or shed? An answer to this question is urgently needed.

A second argument in favour of the Wild hypothesis is that in many 

cell types at least two distinct classes of coated vesicles have been 

traced (Prelmann, 1975; de Bruyns et al., 1975; Worthington & Graney, 1973;
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Bowers, 1964; Friend & Farquhar, 1967) differing from each other in size. 
Some workers also claim that they differ in function, the larger class 
of coated vesicles (> 100 nm) being involved mainly with uptake of 

exogenous protein and found mainly in the apical region. The smaller 
coated vesicles (< 70 nm) are located in the Golgi region and are 

either involved in the transport of enzymes to vesicles or in membrane 
recycling (Friend & Farquhar, 1967; Holtzmanet al., 1967). If coated 

vesicles can be subdivided into distinct classes, then it would be easy 
to envisage that a subpopulation was specialized to transport antibodies 

and to avoid fusion with other vesicles in the process in a Wild type 

mechanism. A point against this is that Ockleford et al. (1977), by 

contrast, cannot see size groups of coated vesicles corresponding to 

different functions. In this he has support from the group of workers 
investigating the structures of coated vesicles who all comment on a 
great similarity of coated yesicle structure independent of origin 

(Pearse, 1976, 1980; Ockleford, 1976; Crowther et al., 1976; Woods et al., 

1978). They found that coated vesicles are made up from varying numbers 

of identical subunits organized in pentagons and hexagons (Crowther et al., 

1976) consisting mainly of the protein termed clathrin (Pearse, 1976).

A certain uniformity in structure has been shown for coated vesicles 

derived from the adrenal medulla and a lymphocyte cell line (Pearse, 1976), 

pig brain and chicken oocytes (Woods et al., 1978) and the humap placenta 

(Ockleford, 1976). In this context, however, it is interesting that 

Woods et al. (1978) found in chicken oocytes the presence of two other 

major proteins apart from clathrin, in the coat of coated vesicles, and 

they suggest that one of these may be a building block of a specific 

receptor protein. If it could be shown that there is indeed a marked 

interspecie^ heterogeneity caused by specific receptors in the coat, it 

would not be difficult to claim different special functions for coated 

vesicles depending on the cell of origin.
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One experimental step towards resolving this problem of a coated 
vesicle specialized for IgG transport in the rabbit yolk sac can be 
proposed by making use of the in. vitro yolk-sac incubation method

employed in this thesis. If rabbit yolk sacs were "loaded" in vitro
125with I-labelled homologous IgG, then coated vesicles isolated from 

such tissues (the method could be modified from Pearse, 1975, 1976), 
it should be possible to assay the coated vesicles for their contained 

immunoglobulin and lysosomal enzyme activity.

In conclusion of this section, even though coated vesicle have 

been shown to sometimes contain lysosomal enzymes and also to fuse with 

other vesicles, thus presenting problems to the Wild theory, the Wild 

theory is still tenable. Assuming then that the coated vesicle theory 

put forward by Wild (1975, 1976) is correct, it is interesting to 

speculate about the mechanism of receptor segregation in the formation 
of these vesicles. It has been shown in Chapters 6 and 7 that receptors 

or binding sites are involved in the specific, protective uptake as well 

as in the uptake of proteins in the degradative system of the yolk sac 
cell (see also Kaplan et al., 1975 and Unkeless, 1977 for similar findings 

in the mouse macrophage"). With two receptor-mediated uptake processes 

taking place on the plasma membrane of the same cell at the same time, 

there must be some control mechanism operating. Two mechanisms can be 

suggested for the organisation of receptors. First there may be 
localized concentrations of receptors distributed over the cell surface, 

similar to the coated regions observed by Anderson et al., 1977a, 

for low density lipoprotein uptake in human fibroblasts. Such coated 

regions seem to exist on the cell surface without the necessity of the 

presence of LDL. Also Ockleford & Menon (1977) showed that in the 

human placenta distinct regions of the plasma membranes apparently 

specialized for iron uptake could be demonstrated. These workers go 

as far as to raise these regions to the status of separate organelles.
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If the plasma membrane can be differentiated, in this manner, into a 

number of distinct regions, each with a different function, the mechanism 
of segregating different proteins into those destined for transport or 

degradation arises simply by different specialized vesicles arising 
from different regions of the cell surface.

The second possible mechanism for the organisation of "protective" 

and "degradative" receptors on the rat and rabbit yolk sac is slightly 

more complex and is based on the observation by a number of workers 

that receptors are, at least initially, freely distributed over the 

entire cell surface and that subsequently clustering or capping of 
coat/receptor complexes occurs (Kaplan et al., 1975; Taylor et al.,

1971; Ockleford & Whyte, 1977; Anderson et al., 1977b; Goldstein et al., 
1979). Regarding the mechanism of capping^these workers fall into 

two groups. Anderson £t al. (1977b) and Goldstein e_t al. (1979) 

think that clustering of receptors is independent of the presence of 

any bound proteins or ligand and happens more or less spontaneously.

This suggestion is also supported by their earlier findings (Anderson 

et al. (1977a) that ready-formed coated regions were even found on 

formaldehyde-fixed tissues and that a "receptor mislocation mutation" 

of the fibroblasts prevented the clustering process. The other group 

of workers, by contrast, suggests the involvement of effectors in 

cap formation. Thus Taylor et al. (1971) say that lymphocyte surface 
immunoglobulins are possibly induced by anti-immunoglobulin antibodies 

to gather over one pole of the cell. As cap formation was shown to be 

an energy-dependent process by these workers, the interaction and 
activation of microfilaments by the bound proteins was postulated. This 

involvement of the microfilaments in receptor clustering is also 

proposed by Ockleford & Whyte (1977), who elaborate this point by saying 

that receptors probably repel each other and need ligands to bind them 

together and cause capping at the base of microvilli. Divalent cations
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have been forwarded for the role as ligands. For example Maxfield 

et al. (1978) showed that extracellular Ca++ was required for the 
aggregation of ligand/receptor complexes over coated pits. Davies 

et al. (1980) recently suggested that the intracellular enzyme 

transglutaminase (which is known to covalently cross-link proteins 

and requires Ca++ for its activity) may have a major role to play in 

receptor clustering in coated pits. When these findings are applied 

to the protein segregation of the yolk-sac cell surface the following, 

speculative, picture emerged. At least two distinct types of receptors/ 

binding sites are distributed randomly over the outer cell membrane 

surface (having been synthesized within the cell or recycled).

Receptors of the one type may cluster spontaneously (Anderson et al., 
1977a_,b) taking up proteins and other substrates. Receptors of the 

other type need the previous binding of ligands (immunoglobulins) to 

trigger off clustering preceding coated vesicle formation with the 

protection of the contained immunoglobulins. These schemes are, of 

course, speculative, but they serve to highlight that protein 
segregation on the membrane is theoretically possible. The possible 

differential involvement of cations in vesicle formation could be 

investigated by use of the iri vitro incubation technique of yolk sacs. 

Adding, for example C a + to the incubation medium (during "loading") 

may well lead to a decrease in the transport of intact IgG while leaving 

the 'tiegradative" protein route unaffected.

In summary, the main body of evidence obtained by incubating rat 

and rabbit yolk sacs in vitro supports the Wild hypothesis of IgG
transport to the foetus by a separate class of vesicle.
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