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ABSTRACT

Computationally efficient digital signal processing algorithms
suited for speech signals are investigated, A new efficient time domain
algorithm for estimating the pitch period of votced speech is presented.
This algorithm has no multiply operations and can be implemented in integer
arithmetic without scaling on a 16-bit microprocessor. The algorithm gives
a low error rate with signal to noise ratio higher than 10 dB. Moreover, a
good signal intensity estimation is obtained as a by-product of the
algorithm.

The importance of the zero-cressing counts of a differentiated
speech waveform is explored in terms of a discrete mathematical analysis.
The potential of this parameter is shown by jts use in a new speaker
verification system, The verification score obtained using this parameter
in combination with the intensity compares well with the score obtained
using only the pitch period parameter, These three parameters have also
been compared in terms of their ability to discriminate between speakers,
The computational effort necessary to extract the zero-crossing count of
differentiated speech is very small and it can be extracted using a
microprocessor in real time,

An efficient way of creating reference templates using a nonlinear
mapping technique to cater for intraspeaker variations is presented, Results
show that the speaker verification score is improved when intraspeaker
variations are considered in creating reference templates,

A speaker dependent digit recognition system has been implemented
using Burg's Partial Correlation coefficients and their nonlinear transforms,
The results show that the recognition scere obtajned is 100 per cent with
three or more Burg's coefficients, and that a simple 'city block' distance
measure is adequate,

Finally a new computationally efficient multiplication technique

which speeds multiplication at the expense of memory space is developed.
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CHAPTER - 1

INTRODUCTION AND PROPOSED WORK

1.1 Description of Speech Processing Problems

The digital processing of speech has advanced greatly in the
past decade. This is due to theoretical advances in the area of digital
signal processing of speech signals, Prijor to the mid-196Q0's almost all
the speech processing systems were based on analog hardware, However,
modern digital computer systems and the use of microprocessors as well
as highly specialized digital hardware systems provide flexibility in
processing speech signals, This flexibility has led researchers to
experiment digitally using sophisticated algorithms which cannot be
implemented practically in analog hardware. The development of new speech-
processing a]gorithms is actively being researched and almost all modern
speech processing systems rely on digital signal processing algorithms.

This thesis describes research carried out between 1979 and 1981
to develop computationally efficient digital signal processing algorithms
suited tq speech signals of telecommunications bandwidth (0 to 3.4 KHz).

Speech processing systems can be generally categorised into three

major areas, These are:~

(a) Speaker recognition systems
(h) Speech recognition systems

(¢] Veice response systems

The major part of the research described here falls into the first two

areas.
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Figure 1.1 The general representation of the speaker recognition process




1.1.1  Speaker Recognition Systems

There are twq sub-areas of speaker recoegnition;-

(a) Speaker verification

(b) Speaker identificatien
Though this research interest falls into the first category, both speaker
verification and speaker identification problems are briefly examined.
The general representation of the speaker recognition problem is shown
in Figure 1.1, As seen in Figure 1.1 the problem of speaker recognition
may he divided intq twq parts: parameter extraction and classification.
In the first part a representation (pattern) of the speech signal is
obtained using digital processing techniques which preserve the speaker
dependant information in speech. In the second part appropriate decision
rules are used after comparing the unknown speech pattern to previously
prepared reference patterns to make a choice amgng available alternatives.

In speaker verification the task is to verify if the unknown
utterance was spoken by a claimed speaker (i.e. the customer enters his
identity claim and speaks his prearranged verification phrase). In
speaker identification the task is to assign an unknown utterance to one
person in a group of several knawn speakers (here there is no claimed
jdentity from the user, but essentially the question asked is "who am I?").
Althqugh these two areas have much in common the recognition procedure
used in each case can be very different. Speaker verification requires a
binary decision, namely, that of accepting or rejecting the claimed
identity of an utterance. In practice, it means comparing the unknown
utterance with a reference utterance of the claimed speaker and deciding
if the two are similar enqgugh, based on a pre-computed threshold value.
(The threshold s obtained from the training set and included in the

reference pattern data). Only ene comparison is required regardless of the



size of the speaker population.

In the case of speaker identification, if the total population
is N speakers, then N comparisors have to be made, compared to just one
comparison in the speaker verification problem, in order to assign an
unknown utterance to one speaker of the population. Since the unknown
utterance is compared to each of the N reference patterns, there is a
finite probability of an incorrect decision for each comparison and it
is apparent that the overall probability of an incorrect decision must be
a monotonically increasing function of N. In the speaker verification
problem the probability of an incorrect decision is independent of the
population size. The tasks of verification and identification can be

summarized as follows:-

Speaker verification Speaker identification
(a) 1identity claimed no claimed identity
(b) one comparison N comparisons
(c) accept or reject claim absolute identification among N
(d) *P.(e) is independent of *P.(e) 1 as N> o

population size
*Pr(e) - Probability of incorrect decision

It is clear that as the total population increases, reliable speaker
identification becomes very difficult. Therefore the verification problem
is judged not only more tractable but also of more practical interest.

Two kinds of errors are possible in the speaker verficiation
process. The first kind of error is : a false verification occurs when
an imposter is verified as claimed speaker. The second kind of error is :
a false rejection occurs when an honest speaker is rejected. The

relative frequency of each error type is controlled by the value chosen
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as the threshold. If the threshold is high few false rejections occur,
however, many false verifications will occur. The reverse is true for
a small threshold value. Normally the threshold is chosen to equalise
the false (imposter) verification and faise (customer) rejection rates.
This is called equal error criterion. In many real-world applications
the two types of error would not be equal. For example, in a Banking
situation the rate of rejecting a customer would be lower than the rate
of accepting an imposter. In this case the threshold would be adjusted
appropriately.

One of the most important steps in successful speaker verification
is the selection of speech parameters capable of efficiently representing
the speaker dependent information in speech. The chosen speech parameters
should have the following properties:-

(1) Capable of representing the speaker dependent information.

(2) Easy to measure so that real time speaker verification

systems are possible.
(3) Independent of speaking environment.

(4) Not susceptible to mimicry.

One way of checking that the extracted parameters have the
above properties is to have training and reference utterances of the
designated speaker and calculate the probability of error in recognising
the speaker. Alternatively a statistical feature selection approach could

be used to examine the effectiveness of the parameters. (Atal 1976)

1.1.2 Speech Recognition Systems(SRS)

Speech recognition enables a human operator to use simple

spoken commands that can be recognised and interpreted by an automatic

speech recognition system (ASRS, e.g. computer). Examples of its use are
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speech control of machines, "dialling" a telephone, entering computer
programs into a computer memory etc. It is very convenient and fast
for people to communicate with machines in speech rather than using
keyboards. Fast communication with machines via keyboards is possible
only for skilled (or trained) people whereas the same speed or more is
obtainable with untrained people when speech is used. The speech
recognition system (SRS) can be sub-divided into a large number of sub-

areas depending on the following factors:-

(1) Type of Speech

The type of speech can be divided into two categories:
Isolated and continuous speech. The isolated speech (word)
recognition system requires a short pause before and after
the word that is to be recognised. The minimum duration of
a pause is a few hundred milliseconds. In continuous speech
there is no clear break to distinguish where one word ends

and another begins.

(2) Type of Speakers and Systems

The SRS can be designed for different types of speakers namely,
male, female and child. Since speech characteristics vary a lot
between male, female and child as a result of the variation due to
the excitation frequency (or pitch period) and formant frequencies,
the ASRS can be designed for a particular type of speaker.
Alternatively it can be designed for all types of speakers. An
SRS developed for male speakers cannot be used for female speakers.
As a result of this distinction, normally, two types of ASRS are
possible and they are named as speaker dependent and speaker
independent systems. In the first case the ASRS is trained to an

individual speaker and the training is done by analysing several



repetitions of the same utterance spoken by the same speaker.

In the latter case no training is required in order to use the
ASRS. The speaker dependent and speaker independent systems can
be designed by having different reference patterns in each case.

The overall system will be similar tq Figure 1.1.

(3) Speaking Enyironment

The speaking envirgnment {s an important factor in designing
ASRS because the signal-to-noise ratio varies a lot from environ-
ment to environment. Typical environments encountered are sound-
proof booths, computer rooms and noisy situations (e.g. public
places). The signal-to-noise ratio in a sound-proaf both can
exceed 50 dB and hence it is used only for experimental ASRS, The
quality of speech obtainable in a computer room where there is no
noisy peripheral equipment working is the same as in a laboratory
or office environment and the expected signal-tq-noise ratio is more
than 30 dB. Most of the ASRS are designed to gperate under these
conditions. In a public place the signal-to-noise ratio can be as
low as 10 dB, Factories are also categorised as noisy environments

where signal-to-noise ratios of typically 15 dB are obtained,

(4) Transmission System

The transmission system depends on the type of application,
It can be a telephone line with a low quality microphone connected
or a short transmission 1ine with a high quality microphone

connected.

It can ngw. be seen that a variety of qptions are available in
designing ASRS and the selection of the option depends on the type of

application concerned, This research is restricted to the area defined



- ba -
MUSCLEl FORCE NASAL TRACT = NOSTRIL

UN

—{T |1

LUNGS TRACHEA VOCAL VOCAL TRACT MOUTH
BRONCHI CORDS

Figure 1.2 Schematic_diagram of the vocal apparatus

T
—
Iapul t l t fe(t) vocal tract parameters
wpulse
ge::::'t‘or voiced speech
voiced f
Time
9(t varyin? )
- Filter v(t)
finvo'ced speech
Noise Amlitude II i
generator A, unvoiced speech

Figure 1.3 Time model for speech production

6(w) l V(w)y\/v\ S(w)
’l w W
n

S(w) = G(w)-V(w)
<« Voiced

T

G(w) { V(w) S(w) {w) = G(w) V(w)
+ Unvoiced
"w 4"

w

figure 1.4 Speech spectrum for voiced and unvoiced

Speech




by the following options:-

(a) Isolated word recognition

(b) Male speakers and speaker dependent systems

(c) Computer room environment

(d) High quality microphone with a short transmission line

(e) The vocabularies are digits 0 to 9 and letter 'Oh’.

1.2 Time Model for Speech Production

In order to apply digital signal processing techniques to the
previously discussed speech processing problems it is important to
understand the fundamentals of the speech production process. Speech
signals are composed of a sequence of sounds and the sequence of sounds
are produced as a result of acoustical excitation of the vocal tract
when air is expelled from the lungs. A schematic diagram of the human
vocal apparatus is shown in Figure 1.2. The speech sounds can be
classified into two major classes according to their mode of excitation:
The voiced sounds are produced as a result of excitation by a series of
nearly periodic pulses (Figure 1.3) generated by the vocal chords. The
glottis is that part of the throat which supports the vocal chords.
Examples of voiced sounds are vowels, semi-vowels, voiced stops and
nasals [Rabiner 1978]. The fundamental frequency of the vocal chord
vibrations is determined by the mass and tension of the vocal chord. The
range of fundamental frequencies in speech is normally between 60 Hz and
400 Hz. The spectrum of the vocal excitation function (Figure 1.4)
consists of a series of harmonics whose amplitude falls off at
approximately 12 dB per octave. The spacing between the adjacent
harmonics is determined by the period of the vocal chord vibration (known

as pitch). A1l the voiced sounds are radiated at the 1ips except the



nasal sound. For nasal sounds the front part of the vocal tract is
coupled throeugh the velar agpening to the nasal cavities (Figure 1,2),
thereby producing sound radiation from the nostrils, The velar opening
is generally clesed when sqund is radiated at the 1ips,

Unvoiced seunds ar fricatives are produced by forming a con-
striction at some point in the vocal tract and forcing air through the
constriction at a high velocity to create turbulance which produces a
source of noise (Figure 1,3) which excites the vqcal tract. In this mode
the vocal chords are held open (not vibrating). The excitation spectrum
(Figure 1.4) in this case is unifarmly distributed qver a wide frequency
range. Examples of unvoiced sounds are various fricatives such as
f, s, sh, etc, The sounds p, t and k are called plosive sounds and are
produced by making a complete closure toward the front of the vocal tract,
building up pressure behind the closure, and abruptly releasing it,

The vocal tract (Figure 1,2) is a non-uniform acoustic tube
that is terminated at one end by the vocal chords and at the other end
by the lips. The cross-sectional area of the vocal tract is determined
by the position of the tongue, 1ips, jaw and velum. The spectrum
(Figure 1.4) of the vocal tract response consists of a number of resonances
whose locations depend upon the vocal tract shape, The resonance
frequencies of the vocal tract are called formants, The speech sounds,
as discussed above, when generated in the throat, propagate down the
non-uniform acoustic tube (vocal tract) and are radiated at the lips qr from
the nostrils,

The basic assumption of almost all speech processing systems is
that the source of excitation and the vocal tract system are independent,
Therefore, it is a reasenable approximation to model the source of
excitation and the vocal tract system $eparate1y as shown in Figure 1,3,

The vocal tract changes shape pather slowly in continugus speech and it is



reasgnable to assume that the vocal tract has fixed characteristics
over a time interval of the aerder of 10 ms. Thus once every 10 ms,

on average, the vacal tract configuration is varied preducing new vocal
tract parameters'(1.e, LPC parameters, ATAL 1972), Figure 1.4 shows
the spectrum of the vaiced speech composed of harmonically related
frequencies whese amplitudes are determined by the vocal tract response
at these frequencies (i.e, S(w) = G(w),V(w)). However the speech
spectrum for the unvgiced squnds reflectsentirely the vocal tract

response as shown in Figure 1.4 (i.e. S(w) = G(w).V(w) = V(w)).

1.3 Previqus Work on Speaker Verification Systems

Until early 1970, almost all the studies on speaker verification
were based on frequency domain analysis. Thereafter time domain analysis
became popular because the time domain speech parameters need very little
computational effort in order to extract them from the speech signal,
compared to frequency domain parameters. Therefore early attempts at
speaker verification using time domain speech parameters will be studied
in detail, and for the sake of completeness the important speaker verification

systems using frequency domain analysis will be briefly presented.

1. " Li et al (1966)

One of the first attempts at experimental verification systems
is due to Li et al, A spectral representation of the input speech,
ohtained from a bank of 15 bandpass filters spanning the frequency range

300-4000 Hz was used, A set of weights for the various frequency bands were

T Every 10 ms, tn additien tq the LPC parameter, the pitch and
the gain are also varied,
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ghtained by having a training gession, The weights characterise the
speaker. A targe number of training and test utterances were collected
qver telephane lines, Verificatien error rates around 10 per cent were
reparted.

*

2. Luck (1969)

In this study cepstral measurements were used to characterise
two vowels |I| and |Q| in a standard test phrase "My code is —— ",
The length of the word "My" and the speaker's average pitch period qver
the two vowel segments were used as additignal parameters. The speaker
trained the system by repeating the test phrase an adequate number of
times, The abave parameters were analysed and sa;ed for each repetition.
The classification rule used was the simple Euclidean distance measure.
A test utterance was evaluated by finding the distance from it to the nearest
utterances in the training set. If this distance was less than or equal
to a pre-determined threshold value the utterance was accepted. Experiments
with four true speakers and thirty imposters produced an error rate
between 6% and 13%. Luck demonstrated the necessity aof collecting reference
utterances in a number of separate recording sessions in order to
adequately sample the variations in a speaker's voice over time. He also
demgnstrated that imposters attempting to mimic the true speaker could
not improve their ability to deceive the system significantly.

Atal (1968) demonstrated in a speaker recognition experiment
that it t{s more reliable to use the entire pitch contour of a sentence~
length utterance than just using the average pitch of the speaker (as in
Luck's case), He used an entirely vaiced sentence namely "May we all

learn a yellow lien rear", He argued that an imposter may be able to

* Frequency domain analysis
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mimic these veice characterigtics of a speaker which pemain fixed in

time (e.g. averaged pitch), Haowever, it appears to be difficult for

an imposter to mimic easily the entire vartatien of pitch as a function
of time, Further he showed that no-one is able to produce an utterance
twice at exactly the same speaking rate. That is, the duration of the
pitch contours were found to vary from one qccasion to another. In his
case a new set qf time co-ordinates was computed for the utterance by
Tinear time warping of the original time co-ordinates such that the

total duration of the utterance was twe seconds, Atal further argued
that pitch information has important advantages over spectral information
as the spectral patterns are affected by the frequency characteristic of
the transmission system whereas pitch is unaffected by the transmission
system. Though his experiment was based on speaker recognition tests it

is also valid for speaker verification,

3. " Das et al (1969)

This system operated on output signals from a filter bank of
20 bandpass filters covering the range of centre frequencies from 188
to 8023 Hz. The output of each filter was full-wave rectified and passed
to a re-settable integrator with a 20 ms integration time. That is,
each band's energy was obtained. In addition to band energies the system
used the pitch contour as explained by Atal (1968), and the formant contour.
This system used five experimental phrases and one of which was “check
intermediate allowance". This experiment involved 700Q phrase length
utterances of 118 speakers. An errer rate of about 1 per cent was reported,
However, this errer rate was accompanied by a 10 per cent "No decision“
rate and was qbtained by using 50 training utterances per true speaker,
In this experiment time alignment was done using a process of

identification of events (i.e, "segmentation"). The performance
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of the scheme depends qn successful segmentation which is belieyed
to be a difficult gperatian,

The prablems encountered by the previous three pegple were
studied carefully by the other researchers and the following conclusqions

were drawn;-

(3) Filter banks should be avoided

(b) Time alignment by "segmentation" must be avoided

(c) Though linear time scaling is acceptable, it does not
give a perfect match and therefore non-linear time
scaling must be done,

(d) A1l the extracted parameters shquld be a function of

time (i,e. contours),

The first attempt at speaker verification using the "rules" listed

above was made by Doddington (1971).

4. Doddington (1970, 1971)

Doddington did not use filter banks, hut extracted the pitch
contour, intensity contour and formant frequency contour directly. He
developed a procedure for non-linear time scaling in order to synchronise
the unknown utterance with the stored reference utterance., The
verification phrase was "We were away a year agq" which was used previqusly
by Rosenberg (1971) in a "listener performance" experiment, Since the
second formant contour has large clear excursions that are characteristic
of the utterance and relatively consistent across speakers itwas used as
the basis of non-1inear time warping function, The time warping function
was obtained using second formant contour and the qther contours such as
pitch, intensity, first formant and third formant were suhsequently warped

using the same function. The system was evaluated for a population of
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forty male speakers, Erpqr rates of about 1 per cent were reported,

The matn problem with this system was the necessity of a large computing
capability in order to extract the formant frequencfes, However,

Doddingten reperted that distance measures based on formant data contribute
relatively little te the final accuracy, The formant computation cannot
however be omitted, as the second formant {s required for time registration.
This system reponded either "accept" or "reject" to every utterance, but

"no decision" was nat allowed.

5. Lummis (1973]
After studying the results of Doddingten (197Q, 1971) Lummis used

the intensity contour for non-1inear time warping in place of second formant
cgntour, His overall scheme was similar to Doddington's with the principal

difference as follows:-

(a) Time registration was based on the intensity pattern, A1l the

contours were warped tq a standard length of 2 seconds.

(b) Different distance formulas were used; Following the time warping
the contqurs were divided into 20 equal length segments. In each
segment a set of distance measures were applied to both the unknown
and reference contours and the square difference was calculated.
The distance measures were in fact the Euclidean distance between
the coefficients of orthogonal polynamials fitted to the reference
and test contours. An overall distance for each measurement was
calculated by summing the weighted squared differences over the 20
segments Qf a contour, In addition to the four distance measures
for each contqur, there was alse a distance based on overall cross-
correlatign of the unknown and reference contqur, An additional
distance measurement based en the first three orthogonal polynamial

coefficients was computed for the time warping function. A total of
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28 distances were measured which characterise the dissimilarity

between the unknown and the reference utterances,

(c) The speech parameter contours were smogthed by a 16 Hz low-pass

filter,

(d) Reference utterances were censtructed differently. A1l the utterances
were linearly stretched or compressed to a standard length before non-
linear time warping was applied. The utterances used were those

collected by Deddington (197Q, 1971) and were used by him to measure

the performance of his system. Forty-one speakers were included.
They were all male and eight were designated "customers", thirty-two
were "casual impesters" and the last was an identical twin brother
of one of the customers. Lummis demonstrated that automatic
verification based solely upon voice pitch and intensity yields
ayerage error rates below 1 per cent for this small population.

I't is important tQ note that high quality speech was used in this
case and also that the intensity contour was obtained after filtering

the speech by a 600 Hz low pass filter.

6. Rosenberg and 3ambur (1975)

Experience with the implementation of Doddington and Lummis
jndicated the desirability of omitting formant analysis. However, in a
separate study Lummis and Rosenberg (1972) showed that formant contours
may be significant with respect tqo the class of imposters that deliberately
attempt to imitate customer utterances, They cqoncluded that formant
contours cannat be eliminated if a reasonably mimic-resistant system is
required. Roesenherg and Sambur were searching for new features to
supplement pitch and intensity and replace formant analysis, This goél

was satisfied by using vecal tract parameters (LPC parameters or filter
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coefficients, Atal (1971)). The evaluation was initially performed

for 12 LPGC parameters with 4 speakers. The utterance used was "we were
away a year ago", It was shown that there was an extremely high negative
correlation between adjacent coefficients and that the an, 7th and

12th predictaor coefficient contours were needed to obtain good speaker
verification results, The experimental results confirmed that the error
rate when all 12 ceefficient contours were used was not appreciably better
than the eror rates obtained with the selected three coefficient contours.
In the final implementation they used pitch, intensity and 4th and 8th
filter coefficients as the parameters for the speaker verification system.
The distance measures used are similar to those used by Lummis,

however, the overall distance measure is the sum of weighted individual
distances. The weights were obtained by using a training set. Twenty-two
customers and fifty-five imposters participated in this experiment. Each
customer gave fifty utterances and recording was done over two months.
Forty utterances were used as test utterances and ten were used to form
reference utterances, The evaluation indicates that the verification
error rate is approximately 1 per cent with respect to well-trained
mimics. The reason for selecting filter coefficients is that they are
easier to compute than the formant frequencies and provide improved

verification rates.

7. Atal (1974

Atal used the filter coefficients and ather parameters derived from
them such as impulse responge, autg-correlation function, area function
and the cepstrum function in a speakerrecognition experiment, When these
parameters wepe applied to a speaker verification system, the cepstrum
function gave the hest results and an error rate of 2 per cent was reported.

Ten speakers participated in this experiment and the spoken sentence was
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"May we all learn a yellow lion roar".

8. Rasenherg (1976)

Since it 1s difficult to extract LPC parameters and formant
frequency in real time, Raesenberg implemented a real time speaker
verification system (SVS) using only pitch and intensity contours. The
system uses a population of nearly 100 male and female speakers and the
recordings were done over five months over dialled-up lines, The purpose
of this implementation was to determine how well the verification system
would operate under "Real world conditions" using these two parameters,
The conditions involved wereacoustic background noise and disturbances
generated at the users end. The distance measure used for classification
was the same as Lummis' distance measure. However, the non-1inear time
warping was done using dynamic programming techniques., This technique
is believed to be the best method qof warping and achieves almost perfect
time synchronization. The technique was first introduced into the speech
processing area by Sakoa and Chiba (1971) and then by Itakura (1975).

The intensity contour is the guide contour for the pracedure. The unknown
intensity contour is linearly stretched or compressed to the normalised
length of the reference intensity contour, Then a distance is calculated

th th point in the

between the i~ point in the unknown contour and the j
reference contour for each value of { and j. The dynamic program algorithm
js used to find the path of least accumulated distance through the matrix
of distances {dij}' The optimal path specifies the warping function

required te replot the unknown contour time aligned to the reference

contour, The system gave an average errqor rate of approximately 7 per cent.

§ince 1976 till the present (1981), all the near-real time
speaker verificatign systems have used pitch and intensity as the speech

parameters because they can be extracted easily. In the last ten years

e S
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research has shown that these parameters are suited to SVS. In a
recent study, McGonegal et al (1979) concludes that pitch and gain are
robust features for use in a SVS, after studying the effects of the

transmission system on SVS.

1.4 Proposed Work on Speaker Verification

I't is clear that the pitch period contour is an important
parameter in speaker verification experiments. Consequently a wide
variety of pitch extraction algerithms have been proposed by previous
researchers using time domain as well as frequency domain methods.

However, most of these require an excessive amount of computation
(Rabiner 1976) which make then unsuitabhle for real time operation
unless they are implemented in expensive hardware. Therefore this
thesis examines a new pitch estimation technique for extracting the
pitch period efficiently in the time domain.

It is apparent from the previqus sections that the third parameter
which is necessary in addition to pitch and intensity in speaker verifica-
tion systems are LPC parameters or a formant frequency. However, much
computation is required for LPC analysis aor formant estimation. This
makes the use of both parameters impractical for real time SVS. The use
of the zero crossing counts of differentiated speech as the third parameter
is proposed by the author as this can be extracted with very 1ittle computa-
tional effort and alsq it carries a lot of information about the speech
signal,

The $V§ perfarmance depends highly on the method used to create
the reference utterance, The creatign of reference utterances {s simple
provided that the variance hetween the repetition of the "verification
phrase" is small, For many speakers this is not the case and the creation

of the reference utterance requires care, Many researchers in the past
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ohtained the refepence utterance by averaging all the utterances of the
training set, However, the authar propases that a "cluster analysis" of
the training set, obtained from the true speakers over a long periqd of
time, be used, The cluster analysis will indicate how many reference
utterances are necessary to represent all the intra-speaker variations.
[t also eliminates any un-typical samples. This sophistication will

improve the verification score.

1,5 Previqus Work gn Digit Recognitign Systems

Until early 1975, all the digit recognition systems or isolated
word recognition systems were implemented using feature sets such as
energy, zero-crossing counts, bandpass filter outputs (time domain features),
spectral coefficients and cepstral coefficients (frequency domain features).
Thereafter LPC parameters and suitable transformations of them hecame
popular because of the development of numerous theoretical interpretations of
LPC parameters in terms of spectral matching (Atal, 1971, Makhoul, 1973,
Makhoul, 1975) and vocal tract area functions (Wakita 1973). Since 1952
most researchers have treated word recognition as a pattern recognition
problem. Recognising the importance of LPC parameters, some early attempts
at digit recognition systems using LPC parameters will be examined and where-
ever necessary digit recognition systems using other feature sets will be

explained briefly.

1. Sambur and Rabiner (1975)

This system did nqt use the pattern recqgnitien approach. The
scheme was based on segmenting the unknown word inte three regions and
then categorizing the region into one of the six broad acoustic classes,
The vocabulary used in this system consisted of the digits (0 to 9) and

the used features were zero-crqessing counts, energy, two-~pole LPC analysis,
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and the residual of the LPC analysis, The experiment was conducted over
five weeks using five male and five female speakers, The recordings were
made in a quiet room with a high-quality microphone. A tree-structured
dectsion algorithm was used to recognise the words. The sequence of
branches in the tree was designed to resqlve the mqost obvious sounds and
thenproceeded to the more difficult decisiens. This was a speaker
independent digit recognition system and the reported error rate was

2.7 per cent,

2. ltakura (1975)

This system used the pattern recognition approach and the system
performance was evaluated for a 36-word vocabulary (A to Z, 0 to 9). The
linear predictive residual was used as the feature measurement while
dynamic programming was used to achieve time alignment of the unknown and
the reference word. A sequential decision procedure was ﬁsed to reduce
the amount of computation in dynamic programming, A new distance measure
for the recognition phase was introduced, that is, the logarithm of the
ratio of prediction residual. This is called Itakura's distance measure.
This system was speaker trained system and only one speaker participated
in the experiment. The reported recognition accuracy is 88.6%. The
system was implemented on a PDP-516 computer and the recognition time was

about 22 times real time.

3. Scott (1976)

The vocabulary used in this system consisted of the digits (0 to 9)

and four control commands (cancel, erase, verify, terminated). This

system used 19 contiguous actiye bandpass filters ranging in centre

frequency from 260 Hz to 7626 Hz, The output of the filters were full-wave

rectified and lagarithmically compressed. A spectral change detector

»:
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derived a spectral derivative feature, The spectral shape and its changes
with time were continuously measured over the frequency range of interest
and this was the feature set for the recognitian experiment. Thirty
speakers who did not have any experience in the automatic speech recognition
system participated in this experiment and the reported error rate was

2 per cent, It was a speaker independent digit recognition system and

the reference patterns were formed from 9300 test data,

4, Khite (1976)
White's system was very similar to Itakura's system. The major

difference between the systems was that Itakura used telephone speech

(0 to 3 KHz) sampled at 6.67 KHz and used 8 linear predictive coefficients,
whereas White used a high quality microphone, 5 KHz lowpass filter,

10 KHz sampling rate and 14 linear predictive coefficients. This was a
speaker dependent system using only one speaker. The speaker gave five
repetitions of the vocabulary, out of which one repetitign served as the
reference utterance. White reported that the error rate was 3 per cent for
the same vocabulary used by Itakura. It was found that the system performed
better than Itakura's system primarily because of the bandwidth difference.
The experiment was repeated by grouping the vocabulary as monosyllables
(e.g. one) and polysyllables (e.g. seven), Then the 14-coefficient LPC
residual technique was compared with the 20 channel bandpass filter bank
technique. The filters covered the frequency spectrum from about 100 Hz

to 10 KHz. The output of the filters were rectified and integrated over

10 ms. White concluded the following from his experiment:-

(a) When using the filter bank parameters as the feature measurement
and Euclidean distance measure, the recagnition rate obtatned

will be approximately equal to that obtained using LPC
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parameters as the feature set and Itakura's distance measure
as the similarity measure. In other words we can say that the
two methods have essentially the same power to measure the

similarity of speech sounds.

(b) Suitable alignment methods are 1inear time shifting and dynamic
programning. The dynamic programming approach to time alignment is
of major importance only for recognition of polysyllables as it
gives the best match between reference and unknown utterance. However,
for monosyllables linear time scaling is as good as dynamic

programming.

The abgve four investigations provided a large contribution to
the isolated word recognition field. Other researchers utilised the above
observations and decided to investigate further into this field. The

following conclusions were drawn:-

1. Filter banks can be avoided as the LPC parameters are as good

as filter bank parameters.

2. Isolated word recognition systems must be treated as a pattern

recognition problem.

3. Future systems should include LPC parameters as the feature
measurement and log ratio of linear predictive residual as the

similarity measure.

4. Non-linear time warping using dynamic programming can be used

for time alignment of both manosyllables and polysyllables.

5. Future research sould be concentrated on methods of creating
the reference utterances for speaker-dependent as well as

speaker-independent word recognition systems. That is, a speaker,

dependent word recognition system can be used as a speaker
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independent word recognition system (vice versa) by

interchanging the set of refepence utterances,

The first attempt made on the above basis was Rabiner (February 1978).

5. Rabiner (February 1978)

Rabiner concentrated gn methods of creating reference utterances
(templates) for a speaker independent isolated ward recognition system,
His recognition system was designed for a 54 word vocabulary and he used
8 LPC coefficients as the feature set. He also introduced a method of
combining word patterns from a number of speakers, and using cluster
analysis to choose which patterns should be merged to create a word
template. His cluster analysis determines the number of templates that
are necessary to be used for each word in the vocabulary, Hence he
implemented a procedure for creating multiple reference templates for
speaker independent recognition of isolated words.

Eight speakers participated in the training set, bqth females
and males. For testing the system a new set of eight speakers were used
and the reperted recognition rate was 85 per cent, When all the training
words were used to form the reference utterance without cluster analysis
the recognition accuracy fell to 77 per cent. An impertant conclusign
of this study was that a few carefully constructed templates can represent
a large speaker population adequately for the purpose of speaker
independent word recognition.

As a result of Rabiner's demgnstration it was realised that
clustering can be a powerful tgol for selecting reference templates for
speaker-independent word recognition and therefore Levinsion et al (April
1979) described four clustering techniques tq identify large prominent
clusters. They have given examples of the performance of these techniques

on synthetic and speech data, The techniques have been applied to a large

speech data base consisting of four repetitions of a 39 vocabulary
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spoken by fifty male and fifty female speakers.

6. Rabiner et al (August 1979)

Rabiner et al have implemented a speaker independent word
recognition system using multiple templates. The word templates were
ohtained from a statistical clustering analysis described by Levinsion
et al (1979). The database consisted of one hundred repetitians of
the 39-word vocabulary by 100 talkers (i.e, once by each), The
recognition system accepted telephone quality speech (100 Hz to 32Q0 Hz),
The speech was sampled at 6,67 KHz and 8 pole analysis was carried qut.
The authors performed several tests with new talkers who did not belong
to the original 100 talker database, The analysis showed that for
highest recegntition accuracy 10 to 12 templates have to be used,

They also used the digits (zero to nine) as a vocabulary,
reformed the clusters and tested the recognition accuracy. A total of
12 clusters per digit were used. The overall accuracy was 98.2 per cent.
They also performed various other tests and concluded that the error
rates with this system using multiple templates are comparable or better
than those obtajned with speaker dependent isolated word recagnitign

systems (Martin, 1976, Rosenberg and Itakura, 1976).

7. Rabiner and Wilpon (December 1979)

Rabiner and Wilpen implemented a speaker independent recognition
system using a 39 word vocabulary. The vocabulary consisted of the twenty-
six letters of the alphabet, ten digits and three command words. To train
the system, 100 talkers (fifty male and fifty female) were used. After
training and clustering the system was tested by thirty speakers whe
did not belong to the training set, To obtain reference templates they

used fully autematic clustering procedures given by Rabiner and Wilpon
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(September 1979), Since the vocabulary consisted of a large number of
acoustically similar words (e.g. : h,c,d,e,g,p.t,v,z) the recognition
accuracy was fqund tq be gnly 80 per cent. The experiments were repeated
usting the 54 word vecabulary used by Gold, (1966) and the reported recognition
accuracy was 95-98 per cent. The numher of templates used in this experiment
was 12 and 8 pole analysis was done on the speech data, These results
show considerable improvement over earlier speaker independent recognisers
using the same vecabulary,

$ince 1978 until the present (1981) all werd recognitiqn systems
have used the type of pattern recognition approach described above.
Rabiner et al (August 1979) indicated (although the research is based gn
speaker independent recognition systems) that speaker dependent recognition
systems can be implemented using the same pattern recognition approach,
however, the applicability of the cluster approach to speaker dependent
recognition systems has tq be investigated (i.e. to ascertain the number
of templates necessary to accommadate the whaole span of intraspeaker

variations).

1.6 Proposed Work on Digit Recognition

The currently available digit recognition systems are a subset
of the large vocabulary isolated word recognitiqon systems. All these
automatic word recognition systems utilise LPC coefficients and
Itakura's distance measure, The number of LPC coefficients used in the
systems are 8 to 14, For real time applications this is a little high
unless LPC coefficients are calculated using complex hardware. Moreover,
in calculating the LPC coefficients high precision has to be maintained,
otherwise stability of the vocal tract (digital filter) is not guaranteed.

It is knewn that by pre-~emphasising the speech and using low sample rates



- 25 -

a smaller word length can be used in the computation of the LPC
coefficients. However, when sampling rates greater than 10 KHz are
used, 16-hit fixed point arithmetic is not sufficient to maintain the
required precision (Markel et al 1974), Therefore the author proposes
to investigate Burg's Partial correlation coefficients and the transform
of them as the feature measurement as they could be extracted with
finite word length arithmetic (Makhoul 1977). To the author's knowledge

there are no reported results using Burg's coefficients in any automatic

word recognition problems. The proposed automatic word recognition
system wil ] contain the digits 0 to 9 and the letter 'oh' as the
Yocadulary,

Makhoul (1973) showed that a two coefficient filter (or two
pole model) is adequate to make a gross characterisatfan of the shape
of the spectrum of a particular sound. The author estimates that if
Burg's coefficients are used for digit recognition systems then 3 to 4
coefficients apre sufficient for the recognition phase. The other
Parameters of interest to the author are the log area coefficients and
the arcsin of the Burg's coefficients as they have goed quantisation
Properties,

Though Itakura's distance measure is being used in a variety of
applications it is unsuitable for real time applications because it
Needs a considerable amount of computation time, Therefore the author
Proposes to inyestigate the simple city block distance measure without
any weighting matrix as the similarity measure when Burg's coefficients
and their transforms are used as the feature set,

The reference utterances will be formed using the same cluster
analysis proposed for the speaker verification system in section 1.4,

The author intends to investigate how many Burg's coefficients

are necessary to mplement an automatic digit recognitien system with a
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good recognition rate, when the city block distance measure is used
as the similarity measure, This proposed research emphasises the
computational aspects of digit recognition systems related to real-

time implementation.



CHAPTER 2

FEATURE EXTRACTION METHODS

This chapter gives a brief introduction to the digital processing
model for speech production as this is necessary for the understanding of
the subsequent theory,

A new time domain pitch estimation algorithm is then presented with
the necessary theoretical derivations. A new method of analysing the zero-
crossing counts of differentiated speech for vowel sounds using digital
signal processing methods is also presented. The later part of the chapter
js devoted to the theory of Burg's Partial Correlation {PARCOR) Coefficients.
The pitch and the zero-crossing counts of the differentiated speech are
used in speaker verification systems and Burg's PARCOR coefficients are used

in digit recognition systems.

2.1 The Speech Production Model

The acoustic speech waveform s(t) produced by the speech production
model shown in Figure 1.3 is sampled every TS units of time to obtain a
discrete signal s(nTS).

Choice of sampling frequency

Tne vocal tract can be represented as a concatenation of N lossless
tubes each of length &. Thus the overall length of the vocal tract is
L=N&. (The detajls of the tube and the Wave propagation are explained
in Appendix 1.1). If T is the time taken for a wave to propagate along a
simple section then t = &/C where C is the velocity of sound in the air.
The waves propagated down the tubes are partially reflected and partially

propagated at the junctions. It is shown by Rabiner (1978) that to represent
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the vocal tract by a discrete-time system the speech waveform s(t) has to

be sampled every 2t sec. Therefore the sampling frequency fs’

fs = 1/2t = C/2% = NC/2L 2.1

This equation tells that the required sampling frequency is roughly
proportional ta the number of sections of the lossless tubes. However this
is a rough estimation and it will depend to some extent on the speaker as

L varies with speaker. For a male the average length of the vocal tract

is 17 cm. Rabiner (1978) further shows that the vocal tract has many
properties in common with digital filters and that the samples of the
speech waveform can be modelled as the output of a time varying digital
filter.

Consider a discrete time model for voiced speech production. This

is shown in Figure 2.1a. The voiced speech production system can be
modelled by cascading models of the glottis, vocal tract and 1lips as shown

in figure 2.1a. The fallowing equations are valid for figure 2.la:-

ug(n) = Avve(n)*g(n) - for glottal model

uz(n) = ug(n) * y(n) - for vocal tract model

s(n) = ug(n) * r(n) - for lip radiation model
Therefore,

sn) = A [(etm) * g v(m] « r(n) 2.2

h

where s(n) is the nt speech sample,

Taking the z transform of both sides of equation 2.2 we get:-

M2) = pg(z) - V(2) - R(2) 2.3
E(z)

where the z transform of a signal p(n) is defined as P(z) = } p(n)z-n.
n=0

Equation 2.3 is the transfer function of the voiced speech model.
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The excitation in the case of voiced speech is a train of
Dirac Impulses spaced by the pitch period P = ITS where I is a positive

integer, i.e.,

e(n) Y 8(n - Ik). Therefore,
k=0

E(z)

"
N
!
—_—
+
N
+
N
+
N
+
1
1
1
[
]

2.1.1 Glottal Model

The excitation impulses are applied to the model of the glottis

whose transfer function is G(z):-

6(z) = ! (Markel 1976)

(]_e'CTS Z_] )2

cTS is generally much less than unity and if this is assumed, e'CTS +

and the transfer function can be approximated by:-

6(z) = —— + — 2.4

(1-z71) (1271

That is, the glottal volume velocity ug(n) as shown in figure 2.1a is
modelled as the output of a two-pole lowpass filter with an estimated
cut off frequency of about 100 Hz.

The gain control Av (Figure 2.1a) controls the intensity of the

voiced excitation as a function of time.

2.1.2 Vocal Tract Model

As explained previously a simple model of the vocal tract can be
made by representing it as a discrete time-varying linear filter containing
poles and zeros. However, Fant (1970) showed that for non-nasal voiced
speech sounds the transfer function of the vocal tract has no zeros and

consequently for these sounds the vocal tract can be represented by an

all-pole digital filter.
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Atal (1971) demonstrated that if the vocal tract consists of
N cylindrical sections of equal length then its transfer function can
be adequately represented by N poles. If N is the number of poles, then
from equation 2.1, the number of poles required to model the transfer
function of the vocal tract is roughly proportional to the sampling frequency
(kHz). If the number of poles is N then the maximum number of resonances
(formants) of the vocal tract can be at most N/2. For example if
C = 34000 cm/sec, L = 17 cm then from equation 2.1 the required sampling
frequency is N kHz. If the speech is band limited to 4 kHz and the
sampling frequency is 8 kHz then four resonances are possible. The
shorter the overall vocal tract length (L), the fewer the number of
resonances and vice versa.

The all-pole vocal tract model can be considered as a cascade of
two-pole resonators. The poles are either real or occur in complex
conjugate pairs and for stability must be inside the unit circle. Each
two-pole generator models one of the vocal tract formants.

For speech signals band limited to 3.4 kHz, three formants
(F], F2 and F3) are possible, assuming a vocal tract length of 17 cm,

F] is approximately in the range of 200 Hz to 700 Hz, Fo is in the range
of 800 Hz to 2000 Hz and Fy is above 2000 Hz. The transfer function of
the vocal tract is given by,

U,(z)
Vz) = 2— =— ! = L 2.5
Ug(z) ﬁ (1 + bkz' t ¢z )
k=1

where p = 2¢K. For vowel sounds the poles usually form complex conjugate
pairs indicating the presence of resonance.

2.1.3 Lip Radiation Model

The volume velocity at the 1ips uz(n) is transformed into an

acoustic pressure waveform some distance away from the lips by the lips'
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radiation function. Rabiner (1978) has shown that the pressure s(n) at
the microphone is related to the volume velocity uz(n) at the lips by a
highpass filtering function. A suitable highpass filter function for the
1ip model is a differentiator R(z):

R(z) = A2 -y .1 2.6
U,(2)

2.1.4 Transfer function of the speech production model for voiced

and unvoiced sounds

By substituting equations 2.4, 2.5 and 2.6 in equation 2.3, the
transfer function of the complete speech production system for voiced

speech in terms of glottal, vocal tract and radiation model is obtained.

Mz) . Av' ! . 1 . (1-2'1)
f(z) (-2 1+ E a 27k
k1 K

There is only one numerator term (1-2'1) due to the 1ip radiation and it

1

is cancelled by one of the denominator terms (1-z ') produced by the

glottal transfer function. Thus the overall transfer function for voiced

speech is represented by an all-pole model:-

S(z) . Av - Av 2.7

E p
o Lo b

p+l
1+ ] dz
k=1

For an unvoiced sound, the glottis is inoperative and does not

need to be modelled. Consequently the overall transfer function is given

by,

32) - o, V() +R(2)
E(z) u

The gain control amplitude Auv for an unvoiced sound is very much less
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than A, of a voiced sound, A typical ratjq of Av/Auv is about 10, The
1ip radiation function R(z) for voiced and unvoiced sounds is unchanged.
However, for unvoiced sound or nasal sounds the transfer function of the

vocal tract, V(z) must contain poles and zeros of the form:-

L “k - -1 1, -1
1+ kZ1 Bk 2 (1-vqz )z )(A-yq2 7)) ===== (1-y 2 ')
V(z) = ; = >
-k -k
1+ a, z 1+ a, z
k§1 k kél k

Since the zeros of the transfer function of the vocal tract for unvoiced

sound 1ie within the unit circle in the z plane (Atal, 1971) each factor

]) ----- (l-yLz']) in the numerator can be approximated

(-vq2 1), (-2
by multiple poles in the denominator of the transfer functions. That is,
if |y| < 1 then,

-1 1
1-yz ' =
Y 1

2 3

syl 2233

(W +y2 + =mmen)

and normally the contributions due to high terms such as y3, y4, --- yL are
negligible. Therefore:

1 -v Z_.I =z 1

1+ L yz 272

If there are L zeros in the transfer function, then they could be replaced by
2L poles in the transfer function of the vocal tract model. Thus the overall

transfer function for the unvoiced speech sound can be approximated by:-

L
-k
T+ ] B 2 A e (1og"]
$z) - o k=1 - (12T = W ( ) 2,8
E(2) W : E -k g -
+ a, 2 1+ O 2
S k1 K

where q = p + 2L.

2.2 Pitch estimation of speech squnds and the problems associated with it

As discussed in Chapter I, pitch information is an important

speaker-dependent speech characteristic in speaker verification systems



and it is important to estimate the pitch period very quickly so that the
verification process can be performed with 1ittle delay.

In vocoder applications the requirements on pitch determination
are even more demanding : an accurate estimate of the pitch period is
required in real time. The quality of the vocoded speech is greatly influenced
by the quality of the pitch measurement because the ear is an order of
magnitude more sensitive to changes of fundamental frequency than to
changes of other speech signal parameters.

The problems associated with pitch estimation are briefly explained
below: voiced speech has a quasi-periodic waveform and this waveform is
complicated by the fact that it not only varies in period but also in
amplitude. Another difficulty in pitch estimation is the effect of the
vocal tract response on the glottal excitation. This is demonstrated in
figure 1.4, where the glottal excitation spectrum is shaped by the vocal
tract frequency response to produce the speech spectrum. This shaping
suppresses the amplitude of the fundamental pitch frequency and enhances
its harmonics. The enhancement of ‘harmonics' can lead the pitch estimation
algorithm to mistake a harmonic of the pitch frequency for the fundamental
frequency.

The problem is further compounded if the speech has been transmitted
over a telephone channel which acts as a bandpass filter (300 Hz to 3400 Hz).
The fundamental frequency may be heavily attenuated, thereby making accurate
pitch estimation more dfficult. The final difficulty in pitch estimation
js defining the exact beginning and end of a pitch period during Tow-level
voiced speech. In spite of all the above mentioned problems there exists
a wide variety of pitch estimation algorithms in the time as well as frequency
domains. However most of them need large computational effort. In the

next section a new time domain pitch estimation algorithm is presented.
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2.3 The Time Domain Periodogram Algorithm (TDPA)

Periodograms were first used by researchers at the turn of the
century in grder to detect the unknown periedicities of the sunspot cycle
(Wittaker, 1948). This is a computationally inefficient method and it is
described in the appendix 1.2,

The new algerithm described here is based upon the periodogram
but various modifications have been made to make it meet the requirements

of efficient speech processing by a microprocessor. The requirements are,

(a) Involyes no multiply or division operations

Multiplications and divisions are time consuming operations
and their elimination allows the algorithm to be implemented on

micropraocessors in simple external hardware.

(b) May be implemented on a 16-bit machine without exceeding
its dynamic range

16-bit microprocessors with fast instruction sets are now
available, For a 16-bit microprocessor the largest integer value

is (2

- 1). When TDPA is implemented on a microprocessor using
Integer arithmetic and if the results of the arithmetical calcula-
tions do not exceed the dynamic range, (+2]5 ~ 1), then the TDPA
implementation is possible with very few instructions, If the
dynamic range is exceeded, then implementation of TDPA is possible
only by partial evaluation with integer scaling (e.g. division by

2, 2%, 23, . .\,

The scaling process and partial evaluation
takes more time. Therefore the integer arithmetic implementation
of the TDPA without exceeding the dynamic range of the microprocessor

is preferred,

(c) ‘Accurate pitch estimation in presence of Noise

In telecommunication applications the pitch estimates should

not fail even with signal-to-noise ratios as low as 20 dB.
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(d) Suitable for hardware implementation

In some applications TDPA has to be implemented in
special-purpose hardware capable of real time operation and
in these applications TDPA does not require either a great

deal of hardware or computational speed.

2.3.1 Theory of TDPA faor Vqiced Speech

A digitised speech signal s(n) is said to be periodic over
some period length N, if N is the smallest integer for which s(n+N) = s(N).
In order to test whether speech samples s(1), s(2), ----- s(n) contain
a period of length N, the speech samples can be written in rows of length
N as shown in Table 2.1. This table is known as Buys-Ballot Table
(Wittaker, 1948). We denote the sums of the individual columns of the

table 2.1 by the sequence c(1), c(2), c(3) ---- c(N),

m-1
c(n) = } s(i*N +n) 2.9
i=0
where m is the number of rows used to form the table, N is the trial
period, n = 1, 2, 3, ---- N and s(n) is the nth speech sample. In this

case the number of rows m is kept constant for all trial periods. If m
rows are considered, then mN speech samples will be utilised to form the
Buys-Ballot table and the rest of the samples are ignored.

For example assume the sequence s(n) consists of 100 samples
(s(1) to s(100)) and if m = 2, N = 20, then the only samples used to
form the table are s(1) to s(40) and samples s(41) to s(100) are ignored.
Similarly if m=4, N=25 then all the 100 samples are utilised to form the
table 2.1, The major property of the table 2.1 is that the sequence c(n)
accentuates any periodicity of length N that may be present in the speech
samples and attenuates other periodicities,

The oscillation amplitude I(n) corresponding to the trial period

N is defined as the difference between the greatest (n=ng) and the least
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(n=n&) values of the sequence c(n). That fis,

m-1 m-1
= ) s(i-N+ ng) - Y s(i*N +n

-c(n)
greatest

I(n) = c(n) 94)

least
2.10

Assume the minimum possible pitch and the maximum possible pitch period
of the digitised speech as Nmin and Nmax respectively. So, a value of
I(N) given by equation 2.10 is calculated for each value of N between
Nmin and Nmax and the values of I(N) are stored.

The TDPA works as follows: If the speech samples contain a
period of length N (Nmin SN Nmax)’ then the vertical column total c(n)
will accumulate because s(n), s(n+N), ----, s(n+(m-1)N) are all in phase,
Hence the peak amplitude of s(n) will be increased m times. Therefare
when a periodicity N exists the value of I(N) will be much larger than
when the period N does not exist in the sequence. By locating the position
of the absolute maximum value of I(N) it is possible to determine the
pitch period of voiced speech (An absolute maximum is defined as the
maximum of all the available maxima in the vector I(N)). If the speech
samples are due to unvoiced sound then I(N) will be very small because the
peak values of the waveform do not repeat periodically.

It is known that the pitch frequency of the recorded sampled
speech generally lies in the range 80 Hz to 400 Hz (that is, a search
range of periods between 2.5 and 12.5 ms) which corresponds to trial
periods N between 20 and 100 for a sampling period of 125 us. Therefore,
Nmin and N, are chosen as 18 and 102 respectively.

The equation defining I(N) as a function of N for a periodic
signal can be derived as follows: consider a periodic sequence s(n) with
a period of N samples, i.e. then s(n) = s(n+N) -» < n < o, Then s(n)

can be represented as the sum of its Fourier components by:-
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. 2T
® (J(=) kn)
s(n) = I Bk e N

==Cq

where the only possible frequencies of s(n) are given by:-

wk = =N -0 < k ¢ »

(5% kn) (330 (keK)n)
e

Since, e N = for 0 < K < o

the above equation can be expressed in the form:-

., 2T
M (i(=) kn)
s(n) = kzl B(k) e N

where M is the number of harmonics of the fundamental (2m/N) which are
present and g(k) represent the amplitude of the harmonics. Let:
6 (relative frequency) = waTS = Zw(TS/Ta) = 2m/N

where TS is the sampling period and Ta period of the analogue waveform.

Using equation 2.9 c(n) can be written as,

c(n) = s(n)+s(n+N)+s(n+2N)+ ~==cee-- +s(n+(m-1)N)
Y jekn , N jok(n+N M ik
= p(k) 3" 4 ¥ g(k) IOKINM) 4 . + ) 8(k)eIOk(n+(m-1)N)
k=] k=1 k=]
- T ag etk [1 + IOKN , GIBk2N + eJ'Gk(m—Un]
k=1
m-1 . m .
Using the result:- iXO r! o= :'" where r = e oKN
= -r
Therefore, .
jokn 1 - eJBkmN

c(n ? k)
= 8 e
(n) k=1 (
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M Jok(n + 3mN)  _3jmNek _ _-3jmoNk
c(n) = 1 B(K) T— = & =
k=1 (2OKNj GHIONK _ -33ONK
N6
c(n) = ? 8(k) ijLfL:ZZJi edk(n + 3 (m-1) N) 2.11
k=1 sin %? k

The speech signal is band limited to 3.4 kHz and the fundamental
frequency of speech 1ies between 80 Hz and 400 Hz. Therefore the range
of Mis 9 $ MS 43. In order to avoid interference of the higher order
harmonics in c(n) the speech samples are filtered before processing so that
only the first formant region is present. This is done by a digital filter
after sampling or by an anlogue filter before sampling, The cut-off
frequency of the filter is made about 600 Hz (this will be dealt with in
the next chapter) and this forces the value of M to 1ie between 1 and 7.

Normally the amplitude of the fundamental frequency is greater
than the amplitude of the harmonics (i.e. B(1) > B(2) > B(3) ---- > B(7)).
However, this is not always true if the vocal tract frequency response due
to the first formant shapes the glottal excitation spectrum heavily. Under
these circumstances 8(1) $ B(2) and therefore spectral flattening has to
be done before the periodogram analysis and again this will be dealt with
in the next section. In most cases B(1) >> B(k) k = 2, 3, 4 ----. Therefore,
if equation 2.11 is analysed with k=1 it will be sufficient to obtain the

pitch. From equation 2.10 one obtains:-

I(N) = C(ng) - ¢(ny) so that,
Ne
2 E(j(nge+5(m-l)Ne)) i e(i(ﬂge+i(m-1)N6))]

2.12
This is the general equation of the periodogram. The imaginary part

of equation 2.12 is the Periodogram for a sinusoidal signal.
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That {s,
NT
st 2T NT 20T NT
™ . T m T
I(N) = A+ ——— [Sin(ng —2 + (m-1) —2) - Sin(n, —2 + (m-1)—2)
NT, 9 T, T, T T,
sin T —
Ta
A : L v J [y v .
P(N) Q(N) R(N)

where g(1)=A and e=2n(TS/Ta). This expression is plotted in figures
2.2a, 2.2b and 2.2c for values of m (the number of rows) of 2, 3 and 4.

For example consider m=2 : P(N) = -2A, 2A, ---- for (NTs/Ta) =1,
2, --- respectively. Similarly Q(N) = -1, 1, -1, ---- for (NT/T,) =1,
2, 3 --- and R(N) will take on the same values of Q(N) but with opposite
sign. Therefore I(N) will always be positive. This is seen from Figure
2.2a. If equation 2.13 is analysed for m=3 and 4 it is found that I(N)
is a small fraction except when (NTS/Ta) =1, 2, 3 ---- as shown in figure
2.2b and figure 2.2c. Thus the detection of the first major peak of the
function with respect to (NTs/Ta) = 0 or the difference between two
successive major peaks will give the period of the sinusoidal signal. From
figures 2.2a, 2.2b and 2.2c it is evident that there are always m-2 minor
lobes present between two major peaks. However the amplitude of these
minor lobes is small particularly if m is large and so the estimation of
the pitch period is not affected. Though increasing the number of rows
sharpens the peaks (from equation 2.13) making the pitch estimation more
accurate, an upper limit of four is kept on the number of rows since speech
sounds are not stationary (Rabiner, 1978) over a long interval. Therefore
for speech suitable values of m are 2, 3 and 4.

If the mean value of the digital samples are zero, the TDPA can
be modified to reduce the required computational effort by finding only

the maximum values I'(N), where I'(N) is:

I'(N) = P(N) - Q(N) 2.13a
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i.e. c(n&) {s not evaluated, The above equation 2,Ba possesses the same
characteristic as equation 2,13 except the amplitude of I'(N) is half of
I(N).

Here onwards PA2, PA3, PA4 denote the time domain periodogram
algorithms or MPA2, MPA3, MPA4 as modified time domain periodogram
algorithms using 2, 3 and 4 rows respectively. For the analysis voiced
speech is sectioned into 25.5 ms, 38.5 ms, 50.5 ms blocks for m = 2, 3

and 4 respectively and successive blocks are displaced by 12.75 ms.

2.3.2 Noise analysis of TDPA

As mentioned earlier it is necessary that the pitch estimation
algorithm be accurate even in the presence of noise. The effect of noise
on the TDPA can be analysed as follows:-

If a sinusoidal signal, s(n), with added noise x(n), is

considered, then:

s(n) = A sin(nd) + x(n)

There is no correlation between A sin(n8) and x(n). Therefore c(n) can

be written as,

sin my—e-
2 . N6
¢(n) = A= g Sin [n6 + (m=1) ——] + X(n)
sin — 2
2
m-1 .
where X(n) = .20 x(n+i+N)
]:

We note that the input peak signal amplitude to noise amplitude ratio is

-—ll—. The amplitude of the output peak in the periodogram is,
*rms I NT.]
sin rmrT—S-

cn) = |[A ——2| = Am
NTs

sin —T—-
a

max
If the noise samples are uncorrelated, the variance of the sum of the

noise samplies is equal to the sum of the individual variances. Hence:
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Vy(n) = varjance of [x(n) + x(n+N) + x(nt2N) + =mm= + x(n+(m-1)N}]

=m vx(n) where vx(n) is the variance of the noise.

Hence the rms value of the noise is increased by vm,

t.e. Xong = /m X

Therefore the output peak signal amplitude to noise amplitude ratio is
given by:-
_/mA

rms X rms

(g4
=

>

Hence the output peak signal amplitude to noise amplitude ratio has been
improved by vm due to the process of signal averaging in the algorithm.
Since I(N) = c(ng) - c(nl), the peak signal amplitude to noise amplitude

ratio of this quantity has been enhanced by the same amount.

2.3.3 Intensity contour of TDPA

The oscillation amplitude I(N), which is a by-product of the
TDPA can be used as the intensity measurement normally performed by the
short-time average magnitude algorithm (Rabiner 1978). The intensity
contour is a second important parameter in a speaker verification system
(Rosenberg, 1975). For a sinusoidal signal the average magnitude E is

defined as,

L L
E = Y |A sin(n8)| = A k, where k; = } |sin(ne)]|
n=1 ] Vondy

This implies that for a particular frame of analysis, E is proportional
to A, the signal amplitude, and hence can be used as an intensity parameter.

In the case of TDPA, the oscillation amplitude for a sinusoid is:-

MN) = c(ng) - c(n&) =2Am=A Ky
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where k, 1s a constant and {ts value depends on the number of the rows (m).
Hence for the same analysis frame I(N) is propartional to A and both E

and I(N) give an intensity measure. The same argument can be applied

to any short term stationary signal such as speech where the shape of the
waveform can be assumed constant over an analysis frame.

In the average magnitude algorithm,k] is obtained by summing L
speech samples (say L=100) and its value can vary appreciably from the
previous frame to the current frame, depending on the position of the
analysis frame with respect to the signal peak within the pitch period.
However, in the TDPA k, is a constant and will not vary from frame to
frame and the variation of I(N) is solely due to A. Therefore the
tntensity contour obtained by TDPA will reveal the complete intensity
profile of the utterance. Because of this property I(N) can be used as

a gain control, Av’ in the speech synthesis model shown in figure 4.12.

2.3.4 Comparison of TDPA with AMDF

The average magnitude difference function (AMDF) is used widely
in speech processing to estimate the pitch period of voiced speech. The
reason for comparing AMDF with TDPA is that both operate in the time domain
as well as both needing no multiplication.

The AMDF (Ross et al 1974) is a variation of the autocorrelation
function and it is based upon the idea that for a truly periodic input
signal of period P, the sequence d(n) = s(n) - s(n-k) would be zero for

k = 0, tP, 2P, + ---. The short-time AMDF is thus defined as,

p L L
D(k) = = I [d()] = Y [s(1) - s(i+)]
L' i=1 t=1

When k equals or is close to the period of voiced speech, the AMDF will
exhibit a strong minimum. The number of samples L' should be chosen
according to the expected pitch period and since the longest pitch period

of interest is 12.5 ms, L' must be at least 100 samples or more to ensure
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that a minimum of one pitch period is available in the analysis frame.
If L' is cho;en as 100 samples,then 200 speech samples are sufficient to
calculate k in the range of 18 and 100. The above definition is known as
the cross-correlation AMDF (CC-AMDF) method. Since the upper limit of the
summation is always kept as L', the relative depths of the nulls remain
constant as the trial period increases from 18 onwards.

For TDPA, the number of samples used for the calculation of I(N)
and also the number of summations performed depends on the trial period
N while for the AMDF, the number of summations performed is a fixed value,
j.e. independent of the trial period as illustrated in Figure 2.3 for
typical frame lengths of L' = 100, and 150 samples. The number of samples
and summations required for TDPA is always less than the number of samples
and summations required for AMDF when trial period N < 100. This is shown

in Figure 2.3.

2.4 Determination of the composite formant structure using zero-
crossing analysis of differentiated speech

Zero-crossing analysis of speech signals has proved useful for
the segmentation and recognition of speech sounds. Bezdel and Chandler
(1965) used zero-crossing count (zcc) contours of speech to classify five
different vowels and later in 1969 they used the zcc of lowpass and highpass
filtered speech to recoggise the digits 1 to 9 with 90 per cent accuracy.

Ito and Donaldson (1971) explored the zcc of differentiated speech
waveform for recognition. They concluded that zcc of differentiated speech
js a useful parameter for classification of speech sounds. However the
importance of the zcc of the differéntiated speech waveform is not explored
in detail or in terms of a discrete mathematical analysis.

Recently King and Gosling (1978) used "complex zeros" (previously

introduced by Bond and Cahn in 1958) that are converted to “"real zeros"

by a single differentiation of speech in encoding the speech waveform.
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The "complex zeros" are a subset of the zcc of differentiated speech.

The principle of "complex zeros" and "real zeros" is breifly explained

in Appendix 1.3. Although previous research shows that the zcc of the
differentiated speech is a powerful tool in speech processing applicatiaons
1ittle work has been done using them and {n the area of speaker verifica-
tion systems they have not been used at all. It is clear also that the
computational effort necessary to extract zcc of differentiated speech

is very small and consequently they could be extracted using a u-processor
or simple hardware.

In the next section a new mathematical analysis of the zcc of
differentiated speech for vowel sound using digital signal processing
methods is presented and it is shown that the composite effect of the
resonant frequencies of the vocal tract can be characteristed by counting
the number of maxima plus minima (NMM) of the speech waveform or counting
the zcc of the differentiated speech waveform over a pitch period. The
reason for restricting the analysis tq voiced sounds is because the phrase
which is used in speaker verification systems consists only of vowel

sounds.

2.4.1  Theory of zero-crossing analysis of differentiated speech

This analysis is applicable only for voiced speech (ie vocal
tract is excited by periodic impulses). Assume for the present that the
vocal tract is approximated by a two-pole model. The transfer function
of the two-pole model is given by,

22

2
z¢ + b]z + b2

H(z) =

Accarding to Makhqul (1973) when the vocal tract is modelled by two poles
then for vowel sounds the poles of the transfer function occur in complex
conjugate pairs. If the filter coefficients b,, b, are expressed in terms

of the co-ordinates of the complex conjugate poles in the z plane one
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obtains:-
2

Hz) = — z > 2.14
2¢ - 2r COs 612 +r

where r e‘je is the pole position. Hence,

b] = =2r cos 6]
2

b2 = r

6] = wo TS

-l--sampling frequency of the speech waveform

Ts

Wy - resonance frequency of the vocal tract.

It can be proved that the impulse response of the vocal tract represented

by equation 2.14 is a damped sinusoid and it is given by,

n
h(n) = r'sin (n + 1) 83 215
sin e]

where the resonant frequency of the vocal tract is,
Af -b
wo = ..1_ co0S ._]_
T, 2v/b7

The number of maxima plus minima per cycle of h(n) is two and also the

number of zero-crossings per cycle is two. Therefore the zcc of the
differentiated impulse response, Q%fﬂl, is also two per cycle.
n

Now consider the vocal tract which is represented by 2 two-pole

models cascaded together: the transfer function of the model is now

given by,
1 1

A

1+ blz‘] + bzz'] 1+ c]z'] + czz‘2

-1 -1
_ A] + B]z R A2 + Bzz 2 16
1 + bIZ'] + bzz'2 1 + c]z‘1 + c22'2

H(z)
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Where Al’ Az’ B], BZ are related in terms of the filter coefficients
bys bps € and c,, The relationship is derived in Appendix 1.4,

Equation 2.16 can be rewritten in the following form:-

-1 -1
A B. 2z A B, z
H(z) = 1 + 1 + 2 + 2

1+b1'z']+bzz'2 1+b]z']+bzz'2 1+clz']+czz'2 1+clz']+c22'2

1 t T PR

X](z) X2(z) X3(z) X4(z)

It is assumed that all the poles of the vocal tract are complex and if
one analyses the impulse response of Xi(z) for i=1 to 4 then the overall
impulse response of H(z) is summation of the individual responses (ie

4
h(n) =} xi(n)). One can see from equation 2.17 that the difference
1=1

between the impulse response of xl(n) and xz(n) is that x2(n) is delayed
by one sample with respect to x;(n). This is true for x3(n) and x4(n).
Now according to equation 2,15, x](n) and x2(n) can be written as

r] sin(n+1) 0

Xy(n) = Ay -
1 1 sin e]

n-1 _.
g s1n(nel)

xz(n) By *

sin 6]
Similarly x4(n) and x4(n) also can be written in the above form. Thus

the overall impulse response of the vocal tract is given by,

n_. n-1 _. n .
an) = |a ry sin(n+1)8, . ry - sin(ng,) . ra sin(n+1)e,
1 sin 8, ! sin 6, 2 sin 6,
n-1 _.
. g ! + By rz =in (n6p) 2.18
hy(n) Sin 6,
\ v— 4

hg(n)
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Where the resonance frequency of the first and the second sections of

the tube are given respectively by,

_ -b
cos 1 ———ll and Wy =
2/by)

- -C
cos™! |—L

1
W = -
TS ZV/CZ

1
TS.
The above equation 2.18 shows that h](h) and h,(n) which both differ in
resonénce frequency are added up to provide the overall impulse response.
That is, the damped sinusoid h](n) is disturbed by the damped sinusoid
hz(n) and its number of maxima and minima are altered. This shows that

the number of maxima and minima of the impulse response gives some
information about the effect of the resonance frequencies of the vocal
tract. As stated in the previous section one can see that the counts of
number of maxima plus minima can be regarded as a representation which
carries the effect of the resonance frequencies of the vocal tract on
speech sounds. An example of two impulse responses added together is given
in Figure 2.4. This figure supports the above statement. If this theory
is extended further, assuming that the vocal tract is approximated by N
two-pole resonators, then the overall impulse response is given by,

n
'

N .
hn) = L (Ay sin(n+1)8; + By vy sin (ney))  2.19

sin ei
Equation 2.19 reveals that the NMM of h(n) depends on the resonance
frequencies of the vocal tract 8y, 65, ---- 6.

So far the analysis was based on the vocal tract excited by only
one impulse. However in speech production the vocal tract is excited by
several impulses spaced by a pitch period of x ms. Consider M samples
of the speech waveform produced by excitation of the vocal tract by
impulses spaced by a pitch period of I samples. Therefore within M samples
of speech waveform there will be |- tmpulses exciting the vocal

I Integer
tract. If it is assumed that I {s greatér than the length of the impulse
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response (Y&) of the vocal tract then the number of maxima plus minima

of the speech waveform within M samples is given by [}M:] . g

Where g is the NMM of h(n), Integer
It 13 possible to mthematically find the number of maxima and

minima of h(n) by differentiating h(n) and equating to zero:-

NoOA B.
dh(n) . L Ll sin (ne1) o) + —— L (17 sin ney)| = 0
dn t=1 Sine, dn ' Sin 0, dn 1

2.19%
Equation 2.19a can be used to check that the experimentally determined the

NMM similar to the NMM whilst is obtained theoretically for specified values
of predictor coefficient. The theoretical NMM determined from equation 2.19a
js likely to be more reliable than the experimentally obtained NMM

which may be corrupted by noise. This is because the predictor coefficient
can be obtained accurately using linear predictive analysis even in the
presence of noise,

However, in practice with high signal to noise ratio environments
differentiating the speech waveform and then counting the number of zero-
crossings yields the required result.

When this algorithm is implemented several practical problems are
encountered: In practice I } h(n), this can be overcome by making the
analysis frame start at the sample corresponding to the beginning of the
pitch period then the NMM of speech waveform within the frame is only due
to the formant frequencies of the vacal tract. This implies that a pitch
synchronous analysis is needed and it is computationally not very efficient.

If the analysis is done pitch synchronously and if the analysis
frame encompasses an integer number of pitch periods then the NMM of

“speech waveform within the frame is not only dependent qn the formant

frequencies of the vacal tract but is also effected by the pitch period
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In this case, for the purpose of simplicity, the analysis
frame starts at an arbitrary sample and it encompasses a small number
of pitch perieds and ends at an aribtrary sample, Therefore the NMM
within the speech wave is a composite measure of the effect of formant

frequencies of the vocal tract and the pitch period,

2.5 The use of Partial Correlation (PARCOR) Coefficients in Speech
Processing

Partial correlation coefficients (termed reflection ceefficients of
the vocal tract by the speech community) give a measure of the degree of

)th and s(n-i)th speech samples when the

correlation between the s(n
jntervening (i-1) values s(n-1), s(n-2), n--~- s(n-j+1) are assumed constant,
The correlation coefficients evaluated in this way can be shown to be equal
to the reflection coefficients of the vocal tract when it is modelled as

a cascade of lossless tubes, The reflection coefficients define the

ratios between areas of adjacent sections of the vocal tract, Thus, it is
possible to use Partial Correlation (PARCOR) coefficients as feature

vectors in any automatic word recognition system. Another attractive

h coefficient can

feature of partial correlation coefficients is the it
be calculated using the (i-l)th coefficient without altering it. Because
the partial correlation coefficients are always bound between -1 and +1
(Rabiner 1978) it is a useful parameter to test the stability of the vocal
tract in generating synthesis filters,

In this section the theory of Partial cerrelation coefficients is
presented and then the autocorrelation, covariance and Burg's method of
extracting the coefficients are briefly discussed, The comparison of the
three methods of extracting partial correlation coefficients showing the
adyantage of Burg's methad s also explained,

It should be noted that although Burg's cgefficients have
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been known to the speech community for a long time they have not

previously been used in any automatic word recognition system.

2.5.1 Definition of PARCOR Coefficients

The form of sampled data speech is {1lustrated in Figure 2.5.
The speech samples s(n) are related to the excitation u(n) by the simple
difference equation (Atal 1971),

i
s(n) = I a.s(n-j) + Gu(n) 2.20
=1

This equation reveals that the current speech samples are linear
combinations of the past samples plus the excitation (ie the vocal

th order

tract can be considered as a recursive filter). Consider an i
system and multiplying both sides of equation 2,20 by s(n-i) and
assuming i > 0, one obtains:-
i
s(n) s(n-t) = 321 a; s(n-j) s(n-i) + Gu(n) s(n-i) 2.21
It is assumed that s(n-1), s(n-2), =----- s(n-i+1) are held constant in time

(Durbin 1960) and also assumed that u(n) and s(n-i) are uncorrelated.

Taking the expected value of both sides of equation 2.21 yields,

E[s(n) s(n-i)] E[s(n) s(n-i)]

a., = fori=1, 2, 3 «----
1 Els(n-1)2) ol
A
= ki
where 02 = Variance of s(n) and s(n) is a zero mean stationary signal.

The coefficient ki is the PARCOR coefficient at Lag i. It can be seen
that k; describes the correlation between s(n) and s(n-i) where the
intervening (i-1) values are assumed to be constant.

h

It is proved in Appendix 1.1 that the it order filter

coefficient a, which is the PARCOR coefficient according to the
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definition is equal to the reflection coefficient at the ith junction

of the tube.

2.5,2  Autocqrrelation method of extracting PARCOR coefficients

From equation 2.20 it is seen that when the excitation is zero
then the current samples are linearly predictable in terms of the past i
samples. This is the situation with real speech between pitch pulses.
Thus, except for one sampleat the beginning of every pitch period, the
samples of voiced speech are linearly predictable in terms of the past

i speech samples. If the predicted current sample value s(n) is defined
by:

j
s(n) = ) ajs(n-j)
J=1

then the error between actual value s(n) and the predicted value §(n)
is given by,
a i .
ec(n) = s(n) -s(n) = s(n) - } a, s(nj)
f j=1 J
ef(n) is known as the forward prediction error (Figure 2.5). The short-

time average prediction error is defined as:-
2 i ' 2
E = [ e(n)® = [ [s(n)- ) a;s(nj)] 2,22
n n j=1 J

The predictor coefficients 3; of equation 2.Zare chosen so as to

minimise the short-time average prediction error E and their optimal

value is obtained by setting 55- =0, j=1, 2, ~--- i. Differentiating
a [

. J . .
equation 2,22 with respect to aj and equating to zero gives:-

} s(n) s(n-k) = ,i 3; ) s(n-§) s(n-k) 2.23
n J=1 n

for k =1, 2, 3 ===, If it is assumed that the waveform segment s(n)

is identically zero outside the interval 0 § n & N - 1 (ie multiply the
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signal s(n) by a window function), then the set of equations defined in

2.23 can be written in a matrix form as:-

R(1)] TR(0) R(1) - - - - - R(i-1)1 o
R(2) R(1)  R(0) : 2
| : : : 2.24
O LR I ()% B
N-T-k
where R(k) = nge s(n) » s(ntk) 1 gk i and is known as auto-

correlation function. The coefficient ai(=ki) is the required partial
correlation coefficient as shown in section 2.5.1.

Equation 2.24 can be solved to find a, (Makhoul, 1975) using a

i
recursive procedure which is given in Appendix A1.5. This is known as the

autocorrelation method of calculating the PARCOR coefficients.

2.5.3 Cqvariance method of extracting PARCOR coefficients

In the covariance method the summation (}) in equation 2.23
n
is allowed to use values of s(n) outside the interval 0 $n & N - 1.
On substituting the limits on equation 2.23 one obtains the following

set of equations (Rabiner, 1978),

¢(1,0)] c(1,1)  ¢(1,2) = - - - - c(Li)]  [oq]
c(2,0) c(2,1) : ay

o= : ! : 2.25
(10| el - - - - s |a;

N-k=1
where c(j.k) = I s(n) s(n+k-j) 1 $iSp, 05kSp
n:—

k
Therefore to evaluate c(i.k) one uses values of s(n) in the interval
-p & n $ N - 1. Therefore in this case no window is necessary as the

required values are made available from outside the interval 0 § nS N - 1.
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The solutions to equation 2,25 can be solved recursively to obtain

kT' For details refer to Rabiner (1978).

2.5.4 Burg's methad of extracting PARCOR cqefficients
)th

Burg's approach s that s(n sample can be predicted using
s(n-1), s(n-2), - - - s(n-1) and at the same time the s(n-i)th sample
can be predicted using s(n-i+1), s(n-142), s(n-i+3), - - - s(n). Burg's
argument is that there is not a statistically significant difference
between a forward and backward (or time reQersed) prediction error. The
forward and backward predictors are shown in the right hand side of
Figure 2.5. Thus the equation for the forward and the backward prediction
error is given by:-

§

stn) = L2y s(n)

ef(n)

1
s(n-1) - 1 a5 s(n+j - 1)

e AN
(") j=1

Burg determines the PARCOR coefficients ki by minimising the sum of the
short-time average forward and backward prediction errors, Ei, of ith

filter. The short-time average prediction error is given by:-

. N-1 . .
et o= 1 ek o e 2.26

where the relationships between ki and e} (n) and eg (n) using the
recursive equation 1 of Appendix Al.5 are derived in Appendix Al.6 and

aregiven by:-

e} () = e ) -k eéi'])(n-1) 2.27

el ) = V) -k eéi'])(n-l) 2,28

After substituting equation 2.27 and 2.28 into equation 2.26 the unknown

coefficient ki can be determined from the minimization criterion which
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i
Setting %

E" S A
2 *
a(k;) ok

gtves — = 0 and
K
i

gives:-

= 0 and solving for ki
:

N-1 . .
(i-1) . 1) /e
2 1 [e D - ol )]

B ol 5 e

n-'-‘

k? = 2.29

Since expression 2.29 is in the form of a cross-correlation function,
it is an indication of the degree of cross correlation between the
forward and backward prediction errors. The parameter ki is known as

Burg's Partial Correlation Coefficient.

2.5.5 Comparison of Autocorrelation, covariance and Burg's method

When the PARCOR coefficients are evaluated by the autocorrelation
method, a tapered time window must be used to guarantee stability of
vocal tract model. This is important in speech synthesis. However the
guarantee of the stability for the autocorrelation method may not hold
in practice if the autocorrelation function is not computed with sufficient
accuracy. Markel and Gray (1974) have shown that if a pre-emphasis filter
is used on speech before calculating the autocorrelation function, then
smaller word lengths can be used in order to calculate PARCOR coefficients.

when ki is calculated using recursive procedure, it should be
noted that quantization of ki within the recursion is not allowable in
the autocorrelation method. A further problem in using the autocorrelation
method is that the input speech spectrum is distorted because it is convolved
with the transform of the window function. Despite all these disadvantages,
this method has the advantage that it is computationally efficient.

The major drawback in the covariance method is that it may produce
zn unstable recursive filter even with floating point computations.
However, tt does nat use any kind of window. The computational effort
required is the same as the autocorrelation method. Quantization of the

reflection coefficients within the recursion is not allowable as it can
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produce an unstable filter. In practice this method is not used for
calculating ki'

The advantages of using Burg's rniethod over the other two methods
are that windowing is not used and at the same time stability is
guaranteed. Moreover quantization of ks within the recursion is permissible
and stability is sure even though finite word length computatiohs are
used,

Unfortunately Burg's method of calculating the PARCOR coefficients
requires greater computational effort than the autqcorrelation ar
covariance methods. For this reason the method has not been used in
practice by previous researchers. Recently Makhoul (1977) showed that,
instead of solving the computationally inefficient equation 2.29 to
obtain k; one can relate ef(n)z, eb(n—l)2 and eg(n) « €,(n-1) in terms
of the covariance of the input speech signal and then use this relation-
ship to solve equation 2.29. If this procedure is used, Makhoul claims
that Burg's method is then computationally as efficient as the auto-
correlation method.

The author's proposal is to use Burg's ki as a feature vector
in the automatic digit recognition system as it might yield a high
recognition score using only a few PARCOR coefficients, since the speech
spectrum is not disturbed by any window function and at thé same time low
accuracy arithmetic can be used in their computation.

. which are

i
related to ki by a non-linear transformation first introduced to the

In the next section two parameters gi and o

speech community by Viswanathan et al (1975) and Atal, are presented as
these are used as feature vectors in the digit recognition system.

The quantization properties of ki’ 95 and 6; are also briefly

presented.



2.5.6 Quantization properties of the PARCOR coefficients

Wakita (1973) proved that the reflection coefficient of the

vocal tract r, is equal to 'ki and from equation 5 of Appendix 1.1,

r? is given by:-

A. - A,
SR & e s A 2.30

A

DAt A T A 1-k
where A, - area of the i section of the lossless tube (vocal tract).
After k; is calculated, they are normally 1inearly quantized to a number
of bits sufficient to ensure negligible spectral distortion. However,
Viswanathan and Makhoul (1975) showed after studying the spectral
sensitivity of the log of the frequency response of the all-pole model
with respect to changes fin ki’ that linear quantizatjon of ki is not
permissible when ki takes values close to 1. Their study is based on

the following:-

The spectral sensitivity for the ki is defined by,

3s
3k

AS

Aki

= L1|‘|_1Aki_)0

where AS is the deviation of the all-pole model frequency response due

to a perturbation Aki in the ith ki’ Experimentally (gfi-)was computed

by using a sufficiently small value for Aki' A spectra? sensitivity curve
was plotted against each ki by analysing a large number of speech

samples. The results of the study show that each sensitivity curve has

the same general shape irrespective of the index i and these curves are
U-shaped with an even symmetry about ki = 0. These properties indicate
that linear quantization of the PARCOR coefficients is not desirable
especially when they take values close to 1 (e.g. voiced sounds generally
have a higher spectral sensitivity than unvoiced sounds because some of

the PARCOR coefficients for voiced sounds have magnitudes close to 1).

Therefore non-linear quantization has to be performed.
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Viswanathan and Makhoul (1975) showed that nonlinear
quantization of ki is equivalent to a linear quantization of another
paraimeter g; which is related to k; by a nonlinear transformation.

The transformation is:-

1+ ki
gi = Tlog i=1, 2,3, ----
] - k.-‘

It is known that for filter stability -1 < ki * 41 and therefore

-oo<g1<oo
The spectral sensitivity of the new parametenr gi is nearly

flat for -1 S k, $ 1. From equation 2.30,
A, 1+k.
= log

Ain i

g; = log = 2 tanh” (k, ) 2.31

This is called the log area ratio transformation.
Another nonlinear transformation was suggested by Atal in

order to reduce the spectral sensitivity, That is arcsin transformation
of ki’
= cin-]
91 sin (ki) 2.32
This transformation spreads out the distribution of the PARCOR

coefficients around the peak (i.e. when ki is close to 1).



CHAPTER 3

PREPROCESSING OF SPEECH SIGNALS

In many areas of speech processing it is important to detect
the presence of speech against a background of noise. This task is
referred to as endpoint detection. In this chapter the parameters
necessary to implement an endpoint detection algorithm are described
and modifications to Rabiner's (1975) endpoint detection algorithm
are proposed.

Secondly, in this chapter two more preprocessing techniques,
linear filtering and spectral flattening, are explained as these are
important to aid the accurate pitch estimation of the voiced speech.
The function of the linear filter is to select the first formant region
of the speech spectrum, whereas the spectral flattener flattens the
speech spectrum within the first formant regton.

Any extracted speech parameter contours such as intensity, zero-
crossing counts, pitch period etc. are normally subjected to a data
smoothing algorithm to obtain smoothed contours. Therefore the later

part of this chapter is devoted to a nonlinear smoothing technique.

3.1 Endpaint Detection

The purpese of endpoint analysis is to locate the beginning and
end of a speech utterance in the presence of "background noise" so that
only the parts of the input that correspond to speech are processed. If
the endpoints of the utterance are accurately detected then the amount of
processing of speech data can be kept to a minimum. Hence a simple, fast

and reliable algorithm is required.
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The energy of voiced sounds is much higher than the energy
of the "background noise"” and therefore for utterances cgnsisting only
of voiced sounds, a simple energy measure is capable of distinguishing
the speech from background netse, However, an utterance consisting of
both voiced and unveiced sounds needs another parameter in additijon to
energy, to enable the unvoiced speech to be distinguished from background
notse.

A possible second parameter for this application is a zero-
cressing count (zcc). This is able to distinguish between unvoiced speech
and background noise because its value for background noise is usually
lqwer than for unvoiced speech.

Consequently the endpoint algorithm is based on short-time energy
and the zero-crossing counts (Rabiner, 1975) as these are fast to compute.

An algorithm has been developed by Rabiner (1975) and has been
successfully tested on a variety of speakers and background noise levels.
However, the algorithm is not able to accurately locate the end of a word
when the speaker sighs or puffs after reciting the word. This algorithm
has been slightly modified in this work so that for the limited vocabulary
used it locates the correct end of the word.

The next section describes how the short time energy is measured

from the sampled input waveform,

3.1.1 Average magnitude

The measurement of energy requires that the input samples be

. gquared and summed. This {s computationally time consuming and so instead

of measuring the short-time energy, the average magnitude function is calcu-
lated as it {s fast tQ compute and {s related to the short time

speech energy, The weighted sum of average magnitude Mi defined as:-

M, = T [s(n)] 3.1

n=0
where i =1, 2, 3, . . . p is the frame number and N is the number of
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speech samples for each frame (in this case N = 100) and s(n) are speech
th

samples. The -1, 141" frames are non-overlapping. M. is used

to distinguish between vqiced speech and background silence i; the
utterance.

The next section describes how the zero-crossing count is measured
from the sampled input waveform and how it is used to distinguish between

unvoiced speech and backgkound noise,

3.1.2 Zerq-crossing counts (zcc)

The zero-crossing count of speech is defined as the number of
zero crossings per 12.5 ms (100 samples) interval. Hence the zcc is
given by:-

N-1
Z1 = 3 nzl sign (s(n)) - sign (s(n+l1)) 3.2

where i-frame number, N-number of samples and

1 s(k) 2 0
-1 s(k) <0

sign (s(k))

Although the zcc is highly susceptible to 50 Hz hum and dc offsets,
in most cases it is a reasonably good measure of the presence or absence of
unvoiced speech. Voiced speech and background noise have low zcc, typically
in the range of 1 to 30 and 10 to 20 respectively. The unvoiced speech has
a high zcc, typically in the range of 20 to 80.

Some knowledge of the character of background noise is needed to
implement the endpoint detection algorithm and so in the next section,

measurement of statistics of background noise are considered.

3.1.3  Statistics of the background nqise

It is always assumed that during the first 125 ms (10 frames) of
the receridng interval there i{s no speech present and thus the statistics

of the background noise are measured during this interval. Characteristic
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values for the zero-crgssing count (ZT) and the energy (ET) for the
background noise are calculated in the follewing way:-

The average energy during the first 10 frames (N) of the
recording interval is given by,

ET =

Ies12

M 3.3
1 1

1

N i
The zero-crossing value, ZT’ is chosen as either the maximum zcc
encountered in the first 10 frames (MC) or the average zcc over the

ten frames, (ZA), plus twice the standard deviation (¢) of the zcc over

the same period, The laower of ZA and MC 1s chosen as the value for ZT'

ZT = Min (MC, ZA + 20) 3.4

3.1.4  Proposed modification to Rabiner's endpoint detection algorithm

Rabiner's algorithm first calculates the values of Mi and Z
given by equations 3.1 and 3.2 respectively for the entire recording

interval and then using Er, ZT and [MJ » & set of thresholdsare computed

max
(for details Rabiner, 1975). Using these threshold values Rabiner's
algorithm begins from the first frame and searches for start point and then
starting from the last frame, searching begins backwards to find the endpoint.

The methad of searching backwards from the last frame to find the
endpoint will not work properly if the speaker sighs or puffs after reciting
the word.

The modified endpoint analysis used here locates the endpoints of
the word spoken in isolation and avoids the necessity of calculating M;
and Zi over the entire recording interval,

The eperatien of the medified algorithm s demonstrated by example
for the utterance "six", whose energy and zcc plot are shown in Figure 3.1.
The endpoint detection algerithm warks as follows:-

The algorithm calculates average magnitude (Mi) and zero-crossing
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counts (Z;) until it finds the point of maximum energy, 'T' as shown
in Figure‘3,1g It was found empirically by analysing many utterances
that the tnitial endpoints S and Q as shown in Figure 3.1 Tie in the
region where the energy is 10th to 20th of the maximum energy. Using

this rule a threshold (XT) is set:-

p = [Mi]ma’/P 3.5

where 10 § P $ 20 for medium to high signal to noise ratio environments.
In this example P is assumed to be 20.

The experimental analysis for various utterances shows that once
points S and Q are located the actual start and endpoint will be within
20 to 40 frames backwards and forwards of S and Q respectively. Therefore,
to accurately locate the endpaints with respect to points S and Q a new
energy threshold (YT) and zero-crossing threshold (ZT) calculated using
equations 3.4 are used. The new energy threshold YT is chosen as XT
or one and a half times the average background noise energy, ET’ whichever

is the lower (see equation 3.3) ij.e.
Yr = Min (XT’ 1.5 * ET) 3.6

The algorithm proceeds to examine 30 frames preceeding the points
S and Q using the new energy threshold YT and it locates updated endpoints
(S] and Q]) with respect to S and Q.

The next step is to fix the endpoint with greater accuracy with
respect to S] and Q] by comparing the zero-crossing count with the threshold

yA If the zcc exceeds ZT two times or more the point 5 is moved back

t: the first point at which the zero-crossing threshold was exceeded. This
s known as the 'START' point of the utterance. A similar procedure is
followed at the end to locate ‘END' peint of the utterance. For further
details refer to Appendix A5.1 for program listing of endpoint detection

algorithm.
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It is clear that once the position Q is known then M, and Zi
need only be calculated for 30 frames after Q. The rest of the samples
are ignored. This avoids the possibility of locating the wrong endpoint

when a speaker sighs after reciting the word.

3.2 Preprocessing to aid pitch estimation

As discussed in Chapter 2, several prablems are associated with
pitch estimation. The problems can be partially eliminated if a certain
amount of preprocessing on the speech waveform is done before the pitch
estimation algorithm is applied to it. Two preprocessing techniques,
linear filtering and a spectral flattening are used. The linear filter
selects approximately the first formant region of the speech spectrum in
which the fundamental frequency of speech normally lies (60 Hz to 400 Hz)
while the spectral flattener flattens the speech spectrum within the
first formant region. Figure 3.2 shows a block diagram of the preprocessors

along with the spectrum of the signal at each stage.

3.2.1 Linear Digital Filtering

It is assumed that the speech signal is of telephone quality which
is band limited to 3.4 KHz and that at least three formant frequencies are
present within this band (Figure 3.2). It is known that the fundamental
frequency of the speech sound will normally lie in the first formant region.
Therefore in order to estimate the pitch period of the speech sound it is
passed through an analogue filter before sampling or a digital filter after

nd and 3rd formant frequencies. This filtering

sampling, to reject the 2
process avoids harmonics of the fundamental pitch frequency being enhanced
by the 2" and 3" formant frequencies and being mistaken for the fundamental
frequency in the pitch estimation algorithm.

If the input speech contains the fundamental frequency a lowpass

filter with 36 dB per octave (Gold, 1969) roll-off beyond 600 Hz works well.
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It is intended to use a linear digital filter for this purpose. An FIR
filter can be used if phase information of the speech is to be maintained
or alternatively an IIR filter can be used if phase distortion of speech
ts acceptable.

(a) Design of FIR digital filter

The filter coefficients are obtained using computer aided
destgn approach (McCellan, 1973) for FIR filters. The amplitude

response specification of the filter is given below:-

Pass band cut off frequency = 600 Hz
Stop'band cut off frequency = 1100 Hz
Pass band ripple = 0.03 dB
Stop band attenuation = 45 to 50 dB

By using the computer program it was found that a filter order of
40 satisfies the above requirement. The lowpass filter response
and the filter coefficients are given in Appendix A2.1.

(b) Implementation of FIR digital filter

If s(n) is the speech input to an N-point finite impulse response
digital filter with impulse response h(n), 0 § n § N-1 the speech
output is called y(n), then:

N-1
y(n) =} h(k) + s(n-k) 3.7

An N-point FIR digital filter represented by the above equation when
implemented in software, generally requires N multiplications, N
additions and (N-1) shifts per output sample. However, the use of a
simplified computational algorithm (Rabiner, 1977) which is explained
in Appendix 2,2 allows the implementation of the filter with N
multiplications, N additions and one indexing operation.

Since a major aim of the research was to develop speech processing

techniques suitable for implementation on a microprocessor the possibility
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of implementing FIR or IIR filter with fixed coefficients 3gs 315 85, - - ay
on a 16-bit microprocessor (Intel 8086) was studied, It is known that most
of the computational time is spent on multiplication of the filter coefficients
by the current and previous speech samples. A computationally efficient
multiplication technique was developed during this work, which speeds the
multiplication at the expense of memory space. This technique uses the
Intel 8086 u-processor instruction set without using its multiplication
algorithm, The following equation is the basis for the multiplication
technique:-

2 = (Py) 2+ (avgg) 24 4 () 2° 3.8
where Y10 is multiplicand (speech signal) z is the product and Pi are

derived from the 12-bit filter coefficients Xg2 Xps X5 = = = - X1 as

follows for i = 1, 2 and 3.

~ - o - F.8-
P M Yo %o *g %7 4
Pol = [|X5 Xg Xg  Xg X3 | | 2

1
P3 X3 Xp X X5 X4 1
e - - - R J

For details and implementation procedure refer to Appendix 2.3.

3.2.2 Spectral flattening

After eliminating the second and higher formants of the speech
signal using linear filtering the speech is left with only the first
formant. The frequency response of the vocal excitation (Figure 1.3)
shows that the amplitude of the higher harmonics is lower than the fundamental
frequency: However, due to the resonant nature of the first formant the
amplitude of the fundamental pitch frequency is suppressed (Figure 3.2)
and within the passband of the FIR filter, the first formant frequency has
the highest amplitude in the frequency spectrum.

If the TDPA is applied to a nonflattened speech signal then in

addition to major peaks at  NTs = 9, 2, 3 (according to equation 2.13)
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there will he some other peaks of similar amplitude to the major peak

and they will appear in the periodogram in positions between NTs . 1 and

2, 2 and 3 etc. (Figure 2,2), These additional peaks are cau;Eh by the
damped oscillation (due to 1St formant) of the vocal tract response and
the peak picking algorithm will be unable to determine which peaks are due
to the pitch period and which due to the formant.

This problem can be reduced by "spectral flattening', where the
effect of the first formant is removed and all harmonics within the passband
of the FIR filter are brought to approximately the same amplitude level.

Numerous spectral flattening techniques have been proposed
(Sondhi, 1968; Markel, 1973; Rabiner, 1977), however, a technique called

"centre clipping" was used as it can be implemented using integer arithmetic.

The input-output relationship of a simple centre clipper is given below:

y(n) = s(n) s(n) % €,
=0 Cy § s(n) § Cp
= s(n) s(n) $ N 3.10

The adaptive clipping levels CP and Cy (as shown in Figure 3.3) are
obtained by the method described by Dubnowski et al (1976). However,
unlike Dubnowski's method, the positive (CP) and negative (CN) thresholds
were calculated separately. The reason for this modification is explained
later in this section.

The clipping levels must be chosen carefully to prevent loss of
waveform information when large and small amplitude waveforms co-exist
within a frame., This would occur when the frame encompass both voiced
speech and the beginning or ending of voicing.

The ¢lipping levels are chosen in the following way: For example
#n a 3-row periodogram (PA3) analysis, a maximum of 300 samples would be
used to calculate the pitch period. The spectral flattening algorithm

finds the maximum absolute peak levels for positive samples and negative
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samples separately, for the first and the last 100 samples of the speech

segment, Then,

CN = k +» min (N]:Nz) 3. 11

where k = 60% to 80% (Rabiner, 1978), (P],N]) and (PZ’NZ) are positive
and negative maximum absolute peak level obtained from the first 100 and
last 100 samples respectively,

If the two threshold technique is not used, {i.e. CP = CN and
the positive peak samples are much greater than the negative absolute peak
samples, then the Cp will set the negative samples to zero. If this
occurs there will be no difference in performance between PA2 and MPA?
or PA3 and MPA3 or PA4 and MPA4., In order to avoid this, two thresholds
are required, one for positive samples and the other for negative samples.
Whenever the absolute value of the positive excursion is equal to the
negative excursion then Cp will equal Cy- This adaptive threshold setting
not only reduces the effect of the formant structure, but also helps to

eliminate low level noise from the speech signal.

3.3 Smoothing of Data

Smoothing of the pitch period contour, zero-crossing contour, etc.
is fmportant in speech analysis. Smoothing of the pitch contour is necessary
whatever pitch estimation algorithm is used, because ali algorithms make some
errors in estimating the pitch period of the speech signal. The zero-
crossing contour could have a noise-1ike component superimposed on to it as
the analysis is done over a short averaging time. Thus the contour is
smgothed out before further processing,

The selection of a smoother depends on the type of data being

smoothed. For example in a pitch period contour one may see a sharp
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discontinuity at the position where a transition between voiced and
unvoiced sound occurg, This s because the pitch period of the unvoiced
speech is zerq. Thus the smoothing algorithm must not destroy the
sharp discontinuities. A Tinear smoother will not perform this job
properly hecause, it will severelydistort the contour, at the transition
between voiced and unvoiced speech. Therefore a nonlinear smoother must
be used,

The important property of a nonlinear smoother is that it can
smooth out isolated errors (Figure 3.2) in the data without destroying

sharp transition. 1In the next section a nonlinear smoother is presented.

3.3.1 Nonlinear smoother

The principle of operation of a nonlinear smoother was introduced
by Tukey (1977). Let p(n) be the data contour which needs smoothing, and
g(n) be a smoothed contour approximately equal to p(n). The smoothed

data contour is then given by q(n),
q(n) = g(n) + smoothed [p(n) - g(n)] 3.12

Tukey further showed that g(n) can be obtained from p(n) by using a
"running median" of the data and running medians of length 3, 5 and 7 can
be used. The principle of running medians is explained in Appendix A2.4.
Tukey further demonstrated that the sequence [p(n) - g(n)] can be smoothed
using the same "running median" procedure.

An example of the running median smoothing of an artificially
created sequence and linear smoothing of the same sequence is given in
Appendix A2.4. This example shows that the 3 point running median smoother
eliminates the sharp discontinuities and preserves longer duration
discontinuities, whereas the linear smoother smears qut the discontinuities.

Figure 3.4 shows a block diagram of a 3 point running median

smoother implemented using the above equatian 3.12. There are two smoothing
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paths available, This smeother was used and was found to provide
sufficient smgothing of the pitch contour, zcc of differentiated speech,
etc. As shown in Figure 3.4 the 3 point median smoother has a delay of
one sample and the overall delay is two samples. That is p(n) will reach

the qutput q(n) after 27 delay.



CHAPTER 4

THE, EXPERIMENTAL SYSTEM AND RESULTS

An experimental system was developed to enable various speech
processing algorithms as well as the speaker verification and speaker
recognition systems to be evaluated experimentally. The basic function
of the system (shown in Figure 4.1) is to take speech utterances from a
microphone and convert them to digital form for storage or processing
by a minicomputer. The processed results produced by the computer can

be displayed repeatedly on an oscilloscope or printed out on paper.

4.1 Computer Interface

The interface is shown in the block diagram of Figure 4.1.
The analogue speech is lowpass filtered to 3.4 KHz and the band 1imited
speech signal is digitised by the coder to 8-bit compressed PCM samples.
The minicomputer is interfaced to the external world in order to read these
digitised speech samples,

The input/output interface is cantrolled by the minicomputer and
control signals are generated by the minicomputer under software control
jn order to switch the tape recorder on and off. The results of the speech
analysis (e.g. periodogram, pitch contour etc.) are displayed on the
oscilloscope via a 12-bit digital to analogue converter and the digitised
input speech samples can be examined by replaying them through an amplifier
connected to the D/A.

The technical details of the input/output interface to the mini-
computer are given in Appendix A3.1. Figure 4.2 shows the experimental

system organisation.
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4.1.1 Software input/qutput routine

LSI-11 assembly language is used to control the tape recorder,
two indicators and to input and output the speech samples. Having read
N digitised samples under program control, the software routine converts
the N compressed PCM samples (8 bits, A-law) to N PCM samples in 2's
complement numbeys (13 bits). These linear PCM samples are then returned
to the same locatigns from which they were read in. A-law has the form

shown below:-

sgn S3 S5 5y 14 I3 12 I]
+ 4 4
sign bit segment Interval within
code segment

The 8-bit compressed PCM to Tinear PCM conversion table AT2.1 is given
in Appendix A3.2, The assembly language program for reading the speech
samples and converting to PCM samples is given in Appendix A5.2.

Qutput of speech samples is also performed by an assembly
language routine. The program incorporates delay to achieve an 8 kHz
output rate. A spectral distortion occurs due to the sample and held
form of the D/A output and care is taken in the program to minimize this
distortion. This is explained as follows:-

Ideally the D/A output should be of the following form:-

() = Iy - sen .
where ya(t) is output of the D/A and y(n) is the input to the D/A.
However, a practical system must involve holding the output sample for a
certain time as shown below:- pa(t) ]

Fo(t) = ya(t) * py(t) et 4.2

where pq(t) is a weighting function
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In frequency domain the equation 4,2 is written as:-

Fa) = ya(w) + p, (W) 4.3

stn x

It is known that pa(w) is function. This function introduces an
undesirable distortion in ya(w). If pa(w) is approximated to 1 by some

means over the range 0 to 3.4 kHz then the output spectrum will be,
y =y (w) + 4.4
YaW) = y,(w) :

One way that this could be achieved is to reduce the value of 'r'.

The output routine outputs the speech samples to the output
latches (see Appendix 3.1) but clears them after a time t. T has been
chosen as 22.75 us, so that the first zero of Py (W) occurs at
approximately 50 kHz and P, (W) is almost constant over the band 0 to

3.4 kHz. The output assembly language routine is 1isted in Appendix A5.3.

4.2 Experimental results for the TDPA

In the remainder of this chapter the experimental results obtained
using the TDPA with speech and sinusoidal signals are described and the
TDPA's noise performance is evaluated. Following this, the real time
implementation of the TDPA on a microprocessor is described.

As explained in Chapter 2, an intensity contour is obtained as a
by-product of the TDPA analysis, One of the applications of such an
intensity contour is as a gain control in a speech synthesiser. Consequently
the last part of the chapter is briefly devoted to the description of an
experiment to verify that the intensity measure obtained from the TDPA

is suitable for use as a gain control in a speech synthesiser.

Results of the TOPA far speech signals

The TDPA has been tested for male, female and child speakers

using the experimental system shown in Figure 4.3. Pitch and intensity
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Fig. 4.4b Oscilloscope traces of Pfc and AVMDF of the voiced
section of the utterance 'cne' for 10 dB SNR
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contqurs were ohtained for the sentence "we were away a year ago", as well
as for {solated werds and the analysis was performed with and without

spectral flattening.

4.2,1 Qualitative results of the TDPA for speech signal

The oscilloscope patterns for the perijodogram (I(N) against N)
and AMDF (D(N) against N) of speech signals corresponding to the voiced
sectian of the utterance 'one' are shown in Figure 4.4a.

Examination of the TDPA traces shows that they have the form
predicted by equation 2.13. The width of the major peak corresponding to
the pitch period in PA4 is smaller than that of PA3, which in turn is
smaller than PA2, This sharpening effect improves the accuracy of the
location of the peak (especially when the speech is embedded in noise).

Comparing the TDPA with AMDF, it is seen that the AMDF trace
shows a null corresponding to the major peaks in PA2, PA3 and PA4, Since
the analysis is done for a spectrally unflattened speech signal, a peak
appears on PA4 at the half pitch period. Although this peak does not
affect the detection of the major peak, its amplitude can be reduced by
spectrally flattening the speech signal before periodogram analysis. The
minor nulls in the AMDF trace (Figure 4.4a) are smooth compared to the
minor peaks in the periodogram. This effect {s due to the fact that the
number of samples used in AMDF is fixed for any trial perjod whereas in
TDPA it varies with trial period. However, the minor peaks (TDPA) and minor

nulls (AMDF) are not important in the estimation of pitch period.

4.2.2  Quantjtative results of the TDPA for speech signals

Figure 4.5 shows the pitch period contour measured by PA2 and AMDF
for male, female and child speakers, It can be seen that both methods
give equally accurate pitch estimates. For the same utterance PA3, PA4,
MPA3 and MPA4 preduced similar pitch contours to that shown in Figure 4.5.

However MPA2 produced errors in the region of the onset and the trailing
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portign of voiced speech. Therefore, although MPA2 is the fastest
method of detecting the pttch period, it cannqt be used outside the

high intensity region. Hqwever, it should be noted that for several
speakers MPA2 gave correct estimates of pitch period throughout the
utterance, for SNR greater than 35 dB. MPA2 is particularly suitable for
use in speaker verification systems because the pitch periods are
normally determined only in the high intensity regions of the
utterance.

Some discqntinuities can be seen in Figure 4.5, but these can
be smoothed by using a median smoothing algorithm as explained in
Chapter 3. It is noticeable that for the male speaker the pitch period
varies between 55 samples and 98 samples over the whole utterance,
however, for the female and child speakers the range of the pitch
period is very small.

The pitch contours shown in Figure 4.5 were obtained without
using spectral flattening. The TDPA analysis has been performed on
the utterance "we were away a year ago" for forty speakers and these
contours have been used successfully in a speaker verification system

which is described in the next chapter.

4,2.3 Intensity contour results

Figure 4.6 shows the intensity contours obtained by the TDPA
ané1ysis and by the short-time average magnitude for the same utterance
and speaker. As explained in the theory (section 2.3.3) it can be seen
that the oscillation amplitude contour is a smoother estimate of the
intensity contour; than the short term average magnitude. Also as
expected both contours give the nulls and peaks at similar frames.

Since TDPA provides the intensity contqur as a by-product, a

gmall amount of program memory and space is gained.
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4.3 Results of the noise analysis

The results of the vulnerability of the TDPA to noise are
given first by a qualitative example, quantitative results follow
later.

White ngise generated by a nojse generator was bandlimited to
3.4 kHz and sampled at 8 kHz and these samples were added to the speech
segment shown in Figure 4.4aand this segment was analysed using TDPA
and AMDF. Figure 4.4b shows the result of PA2 and AMDF for the noisy
speech segment. The major peak corresponding to the pitch period in
PA2 is still evident despite the fact that in this example, the noise is
only 10 dB down on the signal.

Before adding the noise samples to the speech samples the
noise amplitude was adjusted to obtain the required SNR. The SNR which
determines the noise power added to speech {s given By,

N 2

I (s(n)-5)
SNR in d& = 10 lag N2 a5

N 2
I (e(n)-€)
n=1

where s(n) are the speech samples, e(n) are the noise samples § and
are the means of the speech and noise samples respectively. In this
analysis only voiced sounds are considered, therefore the summation n=1
to N extends over the length of the voiced speech. When noise samples
were added to the speech signals, pitch errors were caused mostly in the
region of onset and trailing portion of voicing because the amplitude of
the speech samples at these times is small. The number of errors generated
were speaker dependent,

The errors made by the TDPA for high SNR (2 30 dB) were hand
corrected and the corrected pitch contour is denoted by Pc(n). The pitch

cantour obtained after adding noise samples to speech is denoted by PN(n)'
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NUMBER OF GROSS ERRORS
S/N Ratio Utterance TYPE OF
(dB) and SPEAKER
Duration PA2 | PA3 | PA4 | MPA3 | MPA4
38 MUMMY 2 1 2 2 2
465 ms | MALE
(SPK-1)
5 4 5 3 4 3
30 MUMMY 2 0 0 2 1
500 ms MALE
(SPK-2)
5 3 3 2 5 4
31 MUMMY 3 3 2 4 6
590 ms FEMALE
(SPK-3)
8 7 7 5 9 6
41 ONE 5 5 5 5 5
565 ms MALE
(SPK-4)
8 5 3 5 5 3
48 ONE 2 2 2 2 2
550 ms CHILD
(SPK-5)
18 10 7 4 6 6
36 ONE 9 9 2 7 2
563 ms FEMALE
(SPK-3)
10 15 6 7 5 7

T4.1 Some results of the gross errors committed by

TDPA before and after adding noise samples to speech

signals
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A gross error is defined as:-
9(n) = |Pe(n) - Py(n)| % 8 samples

Most of the grass errors occurring in the analysis were due to pitch
halving for male speakers, and pitch doubling and tripling for female
speakers. These were usually found at the onset of voicing.

Examples of the number of gross errors committed by the TDPA
when noise samples were added to speech is given in Table T4.1 for five
speakers. The errors made by MPA3 and MPA4 are normally greater than the
errors made by PA3 and PA4 respectively. The analysis shows that at high
and low signal to noise ratios PA2 produces more errors than PA3 which
in turn produces more errors than PA4.

When speaker-4 uttered 'one' the errors observed were due tq
pitch halving in the onset of voicing and no errors were found in the
trailing portion. For speaker-3, utterance ‘one', the errors were mostly
due to the correlation at multiples of pjitch period. For both these
speakers the errors occurred in successive frames at the onset of voicing.
Although this prevented the decision logic correcting the errors, they were
not propagated throughout the utterance. The interesting effect shown in
the last row of the table T4.1 is that the errors made by PA3 and MPA3
are 9 and 7 respectively (before adding the noise to speech samples), but
after noise samples were added to speech samples the errors were reduced
to 6 and 5 respectively. The reason for this is that the higher correlation
at the multiples of the pitch period enhanced the peaks of periodogram
before noise'samples were added, however after adding the noise samples,
these peaks of the periodegram were fairly constant in amplitude. This
type of behavioup is speaker dependent,

Utterances such as 'year', 'away! and 'worm' were also analysed

for various speakers and the TDPA performed well at SNR's as low as 10 dB
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for almost all the speakers. Different utterances and other speakers
are to be considered to find the SNR 1imits at which the PA2 and PA3

and PA4 will perform well,

4.4 Qualitative results qof the TDPA for sinusoidal signals

Figure 4.7 shows the results obtained when a pure sinusoid
(SNR 2 30 dB, frequency 310 Hz)and a noisy sinusoid (SNR = 10 dB,
frequency = 310 Hz) are analysed using PA4. The first peak corresponds
to the correct pitch and the second and third peaks are due to pitch
doubling and tripling respectively. Equation 2.13 indicates that for
m=4 there are two minor lobes between the major peaks. This is evident
from Figure 4.7. Also evident from the same figure is that the PA4 can
be used successfully to detect the period of the noisy sinusoid. In the
case of a sinusoid it is pgssible to use more than four rows in the
algorithm because a sinusoid is not quasi periodic like a speech signal.
This further sharpens the major peak, increasing the resolution of pitch

measurement and improving the noise-rejection.

4.5 The behaviour of the TDPA at onset and trailing portion of voicing

The onset of voiced speech from a child speaker is shown in
Figure 4.8. Since the pitch period length is 22 samples, there are four
major peaks evident in the PAZ. A serious problem in onset of voicing
analysis is that the heights of the major peaks corresponding to multiples
of the pitch period are greater than the height of the peak corresponding
to the correct pitch on the periodogram. This is due to the speech signal
amplitude increasing more rapidly during onset of voicing as shown in
Figure 4.8, When this qccurs, the 'peak picking logic' often selects the
wrong peak. This problem can be Qvercome by reversing these speech samples

in time before using the TDPA.
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The trailing portien of the voiced speech of a child speaker
is shown in Figure 4.9, together with the periodogram. These show that
the peak at the correct pitch period is enhanced automatically in the
periodogram with respect to peaks at multiples of the pitch period and
thus that reversing the speech samples in time is unnecessary. At the
trailing portion of voicing, the amplitude of the peak corresponding to
pitch halving is occasionally greater than the amplitude of the peak
corresponding to the true pitch period on the periodogram. In this case
the past history of the pitch period must be used to select the correct

pitch period.

4.6 Results of spectral flattening

Consider an example to illustrate the effect of the simple
centre clipping operation on the perjodogram. Figure 4.10a shows a
speech segment of 37.5 ms. The absolute peak levels of positive and

negative speech samples as defined in Chapter 3 are:-

P] = 1749, P2 = 1651, N-l = 1626 and N2 = 1454

Therefore,
Cy = k min (N],Nz) = 1163

The threshold constant 'k' defined in Chapter 3 is assumed to be 80%.

Figure 4.10b shows the clipped speech segment. Figure 4.10c and Figure 4.10d
show the periodegram (PA3) for unclipped and clipped speech respectively.

The pertodogram of the clipped speech has only one minor peak compared to

the several minor peaks which appear in the periodogram of the unclipped
speech. These minor peaks on the periodogram are due to the damped

oscillations of the vocal tract. When few extraneous peaks appear in the



Speech Utterance,
with and duration
without and PA2 PA3 PA4 MPA2 MPA3 MPA4
spectral type of speaker
flattening
SUF "We were away 9 5 6 6 4 4
a year ago"
1075 ms
SF male (spk 1) 6 5 5 5 4 4
Suf "We were away 10 17 14 5 4 6
a year ago"
1300 ms
SF male (spk 2) 4 8 14 3 2 4
SuF "One" 4 3 2 5 3 1
525 ms
male (spk 3)
SF 2 2 2 5 3 3
Suf "We were away 9 3 6 16 5 6
a year ago"
1500 ms
SF male (spk 4) 3 3 4 16 5 6

Table 4,2 Number of gross errors committed by
TDPA with and without spectral flattening

SuF - speech without spectral flattening SF - Speech with spectral flattening

-pgz-
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periqdogram, then the gstimation of the pitch period will be easy and
accurate.

In order to study the effect of spectral flattening on speech,
an experiment was conducted using foeur male speakers. Pitch errors made
by the pitch estimation algorithm before and after spectral flattening
were noted, Table 4.2 shows the improvement in the number of gross
errors obtained by using spectral flattening. These errors were due to
pitch halving for all the male speakers.

When speaker-2 uttered "we were away a year ago", the errors
made by PA2, PA3 and PA4 were severe (see Table 4.2) and it was found
that the high Q nature of the vocal tract caused the impulse response
to decay very slowly. Spectral flattening of the speech signal partially
eliminates these damped oscillations and reduces the number of errors
made by the TDPA.

It is evident from Tahle4.2that MPA2 performed well for the first
three speakers, however for speaker 4 it did not perform well. This is
due to the fact that when the speaker spoke the utterance, there were a
few pauses between words and this caused several low intensity regions to
appear in the whole utterance. As explained in section 4.2.2, MPA2
cannot cope with onset of voicing or the trailing portion of voicing.
Consequently MPA2 shows many errors in the pitch estimation process in this
case.

Most of the remaining errors in Table 4.2 can be eliminated by

applying the non linear smoothing algorithm explained in Chapter 3.

4.7 Implementation of the peak picking logic

The algorithm which chqoses the peak in TDPA output which
corresponds to the actual pitch period {s known as the “peak picking
lagtc". There are several ways of implementing this. However, the method

used in this research was developed by analysing various threshold levels
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from a variety of speakers,

The optimum form for the “peak picking logic" (PPL) depends
on whether spectrally flattened speech is used or ngt, However the
developed PPL warks reasonably well for both spectrally flattened and
spectrally unflattened speech and it was developed empiricaily by
examining the periodogram results for various speakers and also obtaining

suitable threshold levels.

Once the values of I(N) (i.e. oscillation amplitude) for different

values of N are calculated, the PPL starts to search for a peak from

N=19. If it finds a peak it sets a threshold I],

I I(N) + k; * I(N) 4.6

where 0 S k] < 0.1 and searching continues up to a value of N = 101. If
the amplitude of a subsequent peak is greater than the threshold level the
threshold is updated and the peak position is recorded. The last location
found by the PPL is known as N] and the amplitude is IP. Once this is

done PPL sets a second threshold 12,
I, = I,-k, °* I 4.7

where 0.1 $ k2 0.2 and the search begins again from N=19 up to
N=N]- If any value of I(N) corresponding to a trail period N is greater
than I, then the PPL checks whether the value N is a multiple of the
current N in order to select the present location as the new pitch.

If this is so PPL checks whether N falls within 45 per cent of
the ayerage of the last five pitch periods before the decision is made.
This is because the future pitch period will never vary more than 35 to

45 per cent of previgus pitch periads. This type of decision is useful

hecause in any type @f pitch detector (TDPA ar AMDF) the higher correlation

at the multiples of the pitch pertqd sometimes enhance the peak
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corresponding to it on. the periqdogram with respect to the peak at the
cqrrect pitch period (mestly for high pitched speakers). For example,
one child speaker was able tQ produce speech squnds with fundamental
frequency of 400 Hz en many occasions. The abave decision algorithm
successfully located the correct pitch pertod from all multiples of pitch
periqd and also from several spurfous maximum caused on the periodogram
by the interaction of the formants,

After the above mentioned two threshold decisions are set,
further logical decisions are made to correct for isolated errors and
errops which occur in twa or three successive frames. For further details
of PPL refer to fortran program listing given in Appendix A5.4.

The threshold constants k] and k2 in equations 4.6 and 4.7 were
set by 0.1 and 0.2 respectively, These values were optimised experimentally
hy analysing speech utterances of various speakers. It is important to
note that in this method the present pitch period is decided after
examining one future pitch period and also by using the previous pitch
periods.

If IP falls below the background noise threshold, which is
calculated beforehand by analysing 100 ms of bakcground noise using PA2,

then no pitch period computation is performed.

4.8 Real-time implementation Qf TDPA on Intel 8086 u-Processar

Runtime estimates foﬁ implementation of PA2 and MPA2 on a 16-bit
micraprocessor (Intel 8086) are presented. The flow chart of Figure 4,11
ts far the calculation of the PA2 in integer arithmetic and the same
flow chart can be used for MPA2 hy remeving the dashed block. The inner
logp takes 85 clock cycles (this includes maeve, add, tndexing and also test,
compare and jump for picking greatest and least values) and the quter
loop takes 57 clock cycles. (This includes store, tnitialization and loop

control). Assuming the trail period varies between 18 and 102 samples, the
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total time interval for the calculation of PA2 is [85(18+19+20+ ---- +102)
+57 x 85] = 438345 clock cycles. Since one clock cycle takes 200 ns, the
total time estimate will be approximately 88 ms. The run time estimate for
MPA2 is [71(18+19+ ---- +102)+49 x 85] = 366265 clock cycles (approximately
74 ms). However it should be noted that in the case of MPAZ2 the inner loop
takes 71 clocks and the outer loop takes 49 clocks). The time required for
the peak picking logic is not included in this time estimation.

The additions, subtraction and comparison process all take 3
clock cycles in the Intel 8086 processor whereas the jump instruction takes
16 clock cycles. Since the jump instruction is five times slower than the
add, subtract or compare instructions for this processor, an impfementation
of the algorithm on a processor where the jump, add, subtract instructions
take nearly the same time will result in a considerable improvement in run
time. The implementation of PA2 on this processor requires 60 bytes of
program storage where MPA2 requires 45 bytes of storage.

For a 16-bit machine the largest integer value is +(215-1). The
speech samples are available as 13 bit 2's complement number's and therefore

the largest value obtainable in the input data is i(Z]Z-]). For the case

of PA4,

I(N) (5("g)+ - - - +S("g+3N)) = (sng)+ - - - + s(n,43N)),

3)

15

4(2]2-1) - (4(-2]2-1)) = 2 —23, a value which is

therefore I(N)
within the dynamic range of the microprocessor., Hence the TDPA can be
implemented in integer arithmetic on a 16-bit microprocessor for m N
The CC-AMDF can alsq be considered for the same input data. The
evaluation of |s(i) - s(i+k)| can produce a maximum value of 2(2]2-1).
Summing over the block length gives a maximum number of 200(2]2-1) which

19

is greater than 2 and thus outside the number range of the machine. This

can only be evaluated by performing partial sums and scaling i.e.
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This could be implemented on the Intel 8086 praocessor with a 100 byte
program, The total run time estimate of the CC-AMDF for all trials within
the 18-102 sample range is 533383 clocks (approximately 107 ms). An
alternative method of reducing the computational time of CC-AMDF is given
in Ross et al (1974), but the input data accuracy is limited to 11 bits and
the summation is limited to the order of 70 samples, which causes some
deterioration in the pitch estimation process,

The assembly language program listing for the above implementation

is given in Appendix A5.5.

4.9 Speech Synthesis

A block diagram of the linear predictive syithesiser is shown in
Figure 4.12. The time varying control parameters needed by the synthesiser
are the pitch period, excitation for voiced and unvoiced speech, gain control
and i predictor coefficients.

Normally the r.m.s. values of the speech samples obtained by a
speech analysis algorithm are used as a gain control G. However in this
speech synthesiser (Program given in Appendix 5.6), the oscillation amplitude
I(N) obtained from the TDPA has been used successfully as a gain control
for both voiced and unvoiced sounds.

The reconstructed speech samples are determined by,

12
s(n) = k;} a, s(n-k) + G+ u(n)

where akls are the Tinear predictive coefficients obtained from Burg's
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PARCOR coefficients. The speech samples are finally lowpass filtered
to provide a continuous speech wave s(t).
The following sentences were synthesised for both male and

female speakers:-

a) Merry Christmas

b) We were away a year ago

Listening tests showed that the oscillation amplitude I(N) is suitable

for use as a gain control in a speech synthesiser.



CHAPTER 5

IMPLEMENTATION OF A SPEAKER VERIFICATION SYSTEM (SVS)

In this chapter the speaker verification system (SVS) implementation
is briefly explained and then the time warping problem is discussed.
Furthermore an efficient method of creating reference templates, based on
a non-linear mapping technique is presented. This allows the speaker
verification system to cater for intraspeaker variations.

The effectiveness of the three parameter contours, pitch period,
intensity and zcc of differentiated speech are studied in terms of the
ratio of interspeaker to intraspeaker variance.

The later part of the chapter is devoted to the implementation

and performance of the speaker verification system.

5.1 Speaker verification system

Figure 5.1 shows a block diagram of a speaker verification system.
The verification phrase used is the all voiced sentence "we were away a year
ago". Once the speech utterance has been sampled as shown in Figure
5.1, the endpoint detection algorithm scans the whole utterance to locate
the beginning and end of the utterance. The endpoint detection can be
accomplished by means of energy calculation only, because the utterance
contains only voiced sounds. After the endpoints have been located, the

utterance is subjected to the following feature analyses:-

(a) A pitch estimator is used to measure the pitch contour of the
utterance (this is accomplished using the TDPA). A pitch period

value is obtained every 12.5 ms throughout the utterance and the
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resulting pitch contour is smoqthed using the 3-point median smogther,

as explained in Chapter 3, The pitch cgntour is denoted by "PC".

(h) The short-time average magnitude defined by equation 3.1 is

calculated every 12.5 ms throughout the utterance to obtain the
intensity conteur over the 0 to 3.4 kHz band. This intensity contour
is normalised so that its maximum value is assigned a value of 100.

That ts,

K = (Peak value of average magnitude)/]OO

where the whqle average magnitude contour is scaled by ln The normalised

K
contour is then smoothed using a 3-point median smoother. The intensity

contour is denoted by "IC".

(c) The zero crossing counts of the differentiated speech are

calculated over the 0 to 3.4 kHz band every 12.5 ms throughout the
utterance and the resulting contour is smoothed by a 3-point median
smoother. The zero-crossing counts of the differentiated speech contour

is denoted by "ZDC".

These three contours comprise the basic features for the speaker
verification system. These contours are compared with a set of reference
contours (templates) associated with the claimed identity. The reference
templates are created using a cluster analysis which is explained later in
this chapter.

Before comparing the extracted contours with the reference contours
(Figure 5.1), time warping is carried out on the extracted contours using a
linear time warping (LTW) procedure which is explained in section 5.1.1.
This step {s necessary, because the speaking rate of a particular speaker
yarjes from repetition to repetition of the verification phrase.

The final step in the verification process of Figure 5.1 is to
compute the overall distance measure between the extracted contours and the

.
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refepence cqntqurs and then campare the qverall distance tq an appropriately
chaosen threshold, The computation of gverall distance is described in
Sectign 5.1,3,

The entire speaker verification system shown in Figure 5.1 has

been jmplemented in software on a (LSI 11~V03) minicomputer,

5.1,1  Time Warping

It is well known that the events in two utterances (e.g. a
maximum or minimum in the extracted parameter contours) are seldom
synchronised in time, although bath utterances have the same text spoken
by the same speaker., The variable speaking rgte causes this fluctuation
in the extracted parameter time axis. Therefore the elimination of this
fluctuation is important in any speaker verification system. One simple
way of eliminating the time difference between speech pattern contours is
to compress or stretch linearly the pattern contours to a precomputed
average time length (LA) so that they become the same length. LA is
obtained by averaging the time durations obtained from several répetitions
of the utterance spoken by the same speaker. This method is called linear
time warping. White (1976) reports that for monosyllabic words or utterances
tinear time warping is an excellent tool for eliminating the time difference
between two speech pattern contours. For multisyllabic utterances more
accurate time synchronization is achieved using a non-linear time warping
procedure (Itakura 1975), but Rosenberg (1976) shows that before non-linear
time warping is applied tao the speech pattern contours, the contours should
be 1inearly stretched or compressed to a normalised length, In this
research only linear time warping is used, as non-linear time warping is
computatienally expensive.

Figure 5,2 i1lustrates the time warping problem, Assume that
p(n) ts an intensity contour, The start frame of the contour is N;, and

the end frame is N,. For simplicity i1t is assumed that the start frame
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of the utterance is fixed and that the linear time warping algorithm
stretches or compresses the utterance with respect to the start frame.

Lp is known as the unwarped time length, given by,

Lp = N, - N] (see Figure 5.2a)
and the pre-computed average time length {s given by,

A 3 1 (see Figure 5.2b and 5.2c)
Therefore the time warping ratio (w) is defined as,

N, - N

ne>
N

1 _ duration of the unknown utterance 5.1

N, - N] average duration of the precomputed
utterances

whenw > 1, p](n) js known as a linearly stretched contour (Figure 5.2b)
and when w < ],pz(n) is known as a linearly compressed contour (Figure 5.2c).
The equation which performs the linear time warping is derived as

follows:-

h

The data value p(i) is obtainable when the nt data point and the

(n+])th data point are known (Figure 5.2d) i.e. p(i) is given by,
p(i) = p(n) + x = p(n) + (p(n+l) - p(n)) « (Ap/A) 5.2

since the time difference between two data points is 1, A=1. If Ap is
equal to the time warping ratio given by equation 5.1, then the linear

time warping equation is givenby,
p(n) = p(L) + (p(L+1) = p(L)) * (wen ~ L) 5.3

where p'(n) is the linearly warped intensity contour, p(n) is the unwarped
intensity contour, n =1, 2, 3, - - - and L = Integer EVﬂﬂ. Similarly
equatfon 5.3 can be applied to the pitch contour and the zcc of differentiated

speech contour individually in order to obtain the warped contours.
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The effects of linear time warping and smoothing on the speech
intensity and the zcc of differentiated speech contours are shown in
Figure 5.3 and Figure 5.4 respectively, In this example a male speaker
uttered "we were away a year agq" and the intensity contour and the zcc
of the differentiated speech contour for the unwarped and unsmoothed
utterance, along with the warped and smoothed contours are shown in
Figure 5.3 and Figure 5.4, The reference templates shown in these figures
were obtained by averaging each of the three parameter contours over ten
repetitions of the same utterance,

It is eV1dént from these figures that linear time warping
achieves a reasonable time synChronization and that corresponding maximum
and minimum values of the contours are nearly coincident following time

synchronization,

5.1.2 Cluster analysis

The creation of reference patterns or templates for the speaker
verification system is simple provided that the variance between repetitions
of the verification phrase uttered by the same speaker is small. However,
for most speakers this is not true. A possible way of obtaining reference
templates is to obtain a training set from the designated speaker over a
long period of time. This training set is then separated into groups of
utterances whose features are similar, and which can be characterised by one
template. This process is known as clustering, The number of templates
necessary to represent intraspeaker variations is equal to the number of
distinct clusters produced by the cluster analysis. This method when
applied tq the creatiqn of reference templates will increase the verification
perfqrmance, ignoring any un~typical samples in the creation of reference
templates,

Numerqus clustering methods have heen deyeloped and u§ed by
previous researchers, in various other fields (Everitt 1974) and the

optimum method is dependent on the data to be clustered.
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When multidimensional data are encountered, as in section 5,1.2,2,
it s difficult to evaluate the performance of the various clustering
methods, as it is impractical to visualise the geometrical properties of
a multi-dimensional space,

In this research a clustering method was required to map the
multi-dimenstonal data onto a two-dimensional space, for visual inspection,
such that the inherent structure of the data is approximately preserved
under the mapping. This allaws the similarities or differences between
utterances to be visualised. With the above criterion in mind, the following

two clustering methods were initially selected:-

1) Principal component analysis (Patrick 1972)

2) Nonlinear mapping for data structure analysis (Sammon 1969)

Sammon has shown experimentally by analysing various data that
a nonlinear mapping procedure is superior to principal component analysis
for data anlysis. Although it is a simple and efficient algorithm it has

not previously been applied to speech processing.

5.1,2,1 Sammon's Nonlinear Mapping algqrithm

The objective of this algorithm is to map the N vectors in an
L-D space to the 2-D space such that the inherent structure of the data
is approximately preserved under the mapping. The mapping should be such
that the intervector distances in 2-D space approximate to corresponding
intervector distances in the L-D space.

Suppose that there are N vectors in an L-D space, designated by
xj» 1= 1, 2, 3, ---- N and corresponding to these, there are N vectors
jﬁ a 2-D space designated by yi; i=1, 2, --~- N, Let the distance between

*
the vectors Xj, XJ in the L~D space he denoted by did and the distance
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between corresponding vectors i yj in the 2-D space be denoted by dij’

where both distance measures are the Euclidien metric. It is known that

d:j = d}i and therefore that the distance matrix (D) whose ijth element
is d:j, is symmetrical about the diagonal.

The structure of the data is strictly preserved under the mapping
if for all i and j, d:j = dij“ This preservation is impossible to achieve
under nanlinear mapping, however, approximate preservation is possible.

The result of the approximate data preservation causes an error known as

the deviation (8) to be introduced, where,
§ = d.. - d.. 5.4

When each deviation is squared and summed, one obtains the stress s,

s = z (dq. - d..) 5.5
i<j 1J 1J

1<

N
Wherethe notation ) denotes the sum operation over all i and j such
L,
that i<j. Equation 5.5 is normalised by dividing it by a scaling factor

T and therefore:-

N o N,
s/T = 1 (dis-dii)7/ ) (dis) 5.6
(CS S A
N x 2
where T = -Z. (dij)
1<)

Equation 5.6 is the measure of the "goodness of fit". Using equation 5.6,

sammon defines an error surface, E as,

* 2
1 N (d,. - d..)
E = — ¢ z_ LN N 5.7
N * <9 g
Z (dij) 1J
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(E is sqmetimes also called the normalised stresg).

Sammons nonlinear mapping algorithm works as follows: Initially
a set of vectors, y1 (yl, Yos Y35 ===- yN), are chasen in the 2-D space.
The 2-D space intervector distances dij are then computed and the value of
E (see equation 5.7) is obtained. This represents how well the "first guess"
configuration of N-vectors in 2-D space fits the N-vectors in the L-D space.
The next step is tao adjust the N vectars in the 2~D space so as to decrease
the value of the error E. This process in 2-D space continues until a

sufficiently low value of E is achieved, That is:-

E > 0,2 poor fit
0.10 < E < 0,15 reasonable fit
0.05 < E < 0.10 satisfactory fit
0 S E < 0,05 good fit
The set of y%s (Y15 ¥ps ¥3» ===- yy) at the point where the required E

vyalue is achieved is the final configuration.
The error surface E given by equation 5.7 is a function of 2N

*
independent variable, as d;; is fixed and therefore:-

E = f(_Y-I, .st .Y3s === .VN) = f((.y”s .Y'|2)s (.Yz'ls y22)’ --- (.YN]a .yNz)

These 2N variables must be adjusted simultaneously to yield the
new configuration. This is achieved by carrying out a steepest descent
procedure to search for the minimum of the error surface. The new 2-D

space configuration at time n+l {is given by the recursive relation,

Yﬁ(’”’]) = .Yij(,")_ - % A‘U(n) 5.8
The factar, «» was determined empirically by Samman tq be 0.3 or 0.4 and
45-”(") s given by,

3E _.aZE
ayy(n) [ | oyy5(m@
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The equation relating the 1St and 2nd partial derivatives of the erreor

surface to Y is given in Appendix 4.1,

5.1.2,2 Caleulations of the distance matrix (D) fqr speech parameters

The speech utterances are represented by the following parameter
contours:-
a) Burg's PARGOR coefficient contours
b) Pitch pertod contours (PC)
c) Intensity contours (IC)
d) zcc of differentiated speech contours (ZDC)
In the case of a Burg's PARCOR coefficient contour, there will be
N] frames and each frame is represented by 12 PARCOR coefficients. Therefore,
the Burg's PARCOR coefficients are considered as contours in 12-dimensional

h h

space. The distance between the it contour (Xi) and the jt contour (yj)

in L-space will be,
N
* 1 12 2

1
dis = — I (X = Yip) 5.9
Ny k=1 m=1 ~ km  “km

Sammon's algorithm is based upon a point mapping of N L-D space
vectors to N 2-D space vectors. However speech parameters are contours
in L-D space rather than points, but the nonlinear mapping algorithm is
still applicable, because once the distance matrix D is calculated using
equation 5.9, then there is no distinction between points and contours.

In the case of a pitch period, intensity or a zcc of differentiated
speech cantour there will be only one data point available for each frame.
In order to represent the information about the shape of the contour in a
convenient form the whole contour is divided intq N, segments, each segment
congisting of 10 frames (data points), These segments of the contours can
then be represented in 10-dimengional space and subjected to the mapping

procedure described earlier. This segmentation method has not been used
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previously and is a useful tool in obtaining clustered templates.

Although the initial configuration of the 2-~D space can be determined
by random selection of the y%s, Sammon has suggested that in practice the
initial configuration could Be found by projecting the L-dimensional vectors
orthogonally on to a 2-D space. Details of this are explained in Appendix
4,2.

Figure 5.5a shows an example of a cluster analysis performed using
the NLM algorithm for two speakers, male and female. The feature vector
used in this example is Burg's PARCOR coefficients, Over a two week
period nine repetitions of the word "one" were obtained from the male
speaken, while five repetitions of the same word were obtained from the
female speaker. The 2-dimensional plot shows well-separated male and
female clusters. It also shows that the male speaker forms two clusters.
The stress value (E) given by equation 5.7 after 60 iterationsis 0.067
which is satisfactory mapping value,

Figure 5.5b shows another example of a cluster analysis using the
parameter contours, pitch period, intensity and zcc of differentiated
speech for a male speaker, Five repetitions of the utterance "we were
away a year ago" were obtained from the speaker in themorning and another
five in the evening. Figure 5,5b shows that at least two clusters are
necessary in order to represent the intraspeaker vartations. It is also
evident from the same figure that the same utterances may not be
clustered together when different feature vectors are chosen for the
nonlinear mapping algerithm, For example the points a, b and ¢ cluster

together only when the pitch contour is used as the feature vector.

5.1,2.3 Creation of reference templates

Reference templates are created in the following manner:-
Once the clusters are identified and any outliers have been

eliminated cluster centres are obtained by averaging the feature vectors



- 95 -

of the utterances (in.L-D space) corresponding to each cluster, These
cluster centres are then taken as reference templates, This procedure

is shown in the following exampie,

Consider twe Burg's PARCOR coefficients contqurs Py(n) and py(n), each
cantour consists of fifty frames where there are twelve PARCOR coefficients

(k1) in each frame, Therefore:-

n

p](_n)_ ('_k](]), k](Z), - - - k](_i) - - k1(50))

"

Pa(n) = (kp(1)s kp(2)s = = = ky(d) - - = ky(50))

where kq (i) = (kl(i), ko(i)s k3(i), - - - klz(i)) and similarly for k,(i).

When contours p](n) and pz(n) are averaged, q1(n) is produced,
q(n) = (a(1), a(2), - - - q(50))

where q(i) = ;[k](i) + ky(1)]. Therefore in general when there are N

contours to be averaged, q(i) will be,

N
q(i) = )

13 «k.()
N j=1
A similar procedure applies to Pitch period, intensity and zcc of
differentiated speech contoqurs.

This cluster analysis study shows that the variance between
repetitions of the same utterance from the same speaker is large and
thus that some method of clustering is necessary to obtain better recognition/
verification scores.

The cluster analysis program, written in Fortran, is given in

Appendix A59.7,

5.1.3  Distance measure

As mentioned previously the extracted parameter contours are
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linearly time warped and are compared with a set of reference contours
assqciated with the claimed identity. The cqmparison is normally
performed using a suitable distance measure which quantifies the degree

of disgimilarity between the extracted parameter contours and the reference
contours, If the cenautrs are identical then the distance measure yields
zerq value, However, in practice this is rapely the case and the distance
measure yields a positive value. Several distance measures have been
investigated for this purpose (Rosenberg, 1976), however, in this work

the weighted sum of the squared differences distance measure is used. The

method of computing the distances is explained below:-

Let the pre-computed average time length (LA) be 100 frames and the
parameter contour be divided into twenty contiguous segments, each 62.5 ms
in duration, That is, within each segment there are five data points.
Each of these segments is then characterized by the average value of the
parameter data points in that segment. Each parameter contour is thus
represented by a total of twenty average data points, and some additional
smqothing is thus obtained. This operation is performed on all three
parameter contours,

If By Bgs Bgs = = = Bygg 3re the data values corresponding to
the extracted parameter caontour, and Gys Ggs G3 = = = Oyag are the
data values of the reference contour, then the unweighted sum of the squared
differences will be,

L M

§ = 121 (‘521 Byj) - (JX] %) 5.10
where L 15 the total number of segments (20), and M is the number of data
points within the segment (5), Each segment is weighted by a weighting
factor to make the calculated distance more sensitive to those segments

which are more strangly clustered. Instrasegment variance is a good weighting



factor for this purpese (Wqlf 1972). The vartances for each segment
are calculated from the training set used to construct the reference

templates., This procedure is as follows:-

Let N be the numher of uttepances in the training set and e Yog?

th

- = Yygoy, be the data values corresponding to &7 utterance in

Y3g® ~
the training set, The intrasegment variance is given by,

2 1y |y M
% ° 'ﬁ Z (mzl Ym&i) - (mzlqmgi) 5.11

when i is the segment number and i=1, 2, - - - L, M is the number of data
points within the segment. Therefore the weighted distance measure is
given by,

2

M M 9
(jzl Bij) - (jzl aij) 01 5.12

d is calculated for all three parameter contours.

Q.

Ll
It o~
—

i

The performance of the SVS is evaluated using the distance

measures as defined below:-

ol [ppé] narmalised 5.13
D, = [dic) normatised 5.14
D3 = [dzncdnormalised 5.15
Dy = Dy * 103 5.16
Dy = Dy * D5 5.17

where dp(» dIC and d,pc are the distances calculated using equation 5.12
for the pitch contour , intensity contour and the zcc of differentiated

speech contour respectively.
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For the purpose of the normalization, each distance measure d is divided
by the average value of d obtained from the utterances assoctated with
the training set,

The final step of the speaker verification process is a decistion
procedure which compares the qverall distance with a speaker dependent
threshold and determines whether to accept or reject the identity claim,
Selection of the threshold distance is explained later in this chapter.

Figure 5.6a and figure 5.6b show examples of the behaviour of the
intrasegment variance (see equation 5.11) evaluated over ten utterances
(we were away a year ago), pronounced by two male speakers (speaker 1
and speaker 2). These utterances were recorded in the morning and in the
evening of the same day.

The smaller the value of o? the stronger the clustering of the
1th segment of each contour in the training set. When 05 Was evaluated
on the pitch period contours for both speakers, it was found that segments
15 and 16 achieved large values of o (Figure 5.6). This is due to the
fact that these segments are in the region where the transition between
voiced to background noise and vice-versa occurred, and the pitch period
in these regions is highly variable.

In the case of the zcc of differentiated speech contour, the
segment clustering effect is more reliable over all the segments, however,
in the case of the intensity contours the segment clustering is poor. It
can be seen from Figure 5.6 that for both speakers the intrasegment variance
is often large, Appendix A4.3 gives the values of of for all three
parameters cerrespending ta speaker 1 and speaker 2 and Appendtx A5.8 gives
the Fortran listing of the ahove analysis.

In concluston, a small o? implies that the ith

segment is more
reliabte and is more heavily weighted in the distance calculation (see
equation 5,12), A large @? implies that the 1™ segment is less reliable

and therefore slightly weighted in the distance calculation.
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5.2 Speech data callectign

The puppose of this phase 1is to evaluate the performance of
the SVS and also to evaluate the effectiveness of the parameters used.
The experimental system described in Chapter 4 was used to collect the
speech data from various speakers in two phases.

In the first phase 4 native English male speakers were recruited
to provide 14 repetitions (seven repetitions in the morning and seven
in the afternoon of the same day) of the utterance "we were away a year
age". These speakers were designated as true speakers. The recordings
were made in a room where the expected SNR was greater than 30 dB and the
utterances were recorded on a high quality tape recorder (Revox A77) using
a high quality microphone (AKG D202).

The fourteen utterances given by each speaker were partitioned
into design and test sets. Ten utterances were used to create reference
templates and two utterances were used to compute speaker dependent
threshold values, while the other two utterances were used to test the
performance of the speaker verification system. These speakers were not
given any instructions about the manner in which they should pronounce
the utterances, however, they were told to speak fast enough so that
there were not many pauses between the wards.

In addition to these four male speakers, thirty-eight additianal
male speakers provided one recording session each. These recordings were
designated as imposter utterances. These imposters did not attempt to
jmitate anyone, but spoke naturally.

In the an phase of speech data collection, one imposter was

h true speaker and fifty-six recordings

arbitarily designated as the St
were done over a one month period. The recordings were made in six

separate sessions. Between two sessions at least two days elapsed. In
each recording session, the speaker uttered the utterance five times in

the morning and five times in the evening.
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Two months after the last recording,speaker 5 gave three
more repetitions of the utterance in three sessions three days apart.
The purpose of the second phase of recording was to study the
long term variations of the speech characteristic of speaker 5, and
also to test the speaker verification system performance.
In the next section the effectiveness of the extracted
parameter contours, pitch period, intensity and zcc of differentiated
speech are studied in terms of the ratio of interspeaker to intraspeaker

variance.

5.3 Parameter evaluation

The effectiveness of the speech parameters must be evaluated
in terms of their ability to discrimminate between different speakers.
Pruzansky et al (1964) has suggested a statistical feature selection
technique to evaluate the effectiveness of the speech parameters.

Wolf (1972) used this technique and evaluated six speech parameters, of
which the pitch period achieved the highest score in discriminating
between speakers. However, the parameter evaluation was not done for
intensity and zcc of differentiated speech contours. Hence in this:
section, individual evaluation of the extracted parameters is carried
out using the statistical feature selection technique suggested by

Pruzansky et al (1964).
According to Pruzansky a good measure of effectiveness for a
single parameter would be the ratio of interspeaker to intraspeaker

variance, often referred to as the F-ratio. The F-ratio is defined as,

variance of speaker means
average intraspeaker variance

F =

This is explained in the following way:-

Assume q speakers each gave p repetitions of the utterance "we
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were away a year ago". The three parameters PC, IC and ZDC were

extracted for each of the pq utterances, These contours exist in
multi-dimensional space as explained in section 5.1,2.1, but for the purpose
of explanation consider the 2-dimensional mapping obtained using the NLM
technique for each parameter. For example the adjacent figure shows the

ZDC mapped on to 2-space,

! spk-2
Spk-] @
< Feature vector : zcc of diff.
— speech
ea @ZDC )
o~ spk-3 i
=
(=]
7
=
Ll
=
a
DIMENSION 1
ays 85y 83 = - - ai are the averaged

cluster centres for speaker 1, speaker 2,
- - - speaker i respectively and a is the
overall mean of the cluster centres,

a], azs - - ai*

Goqd speaker discrimination is only possible if the individual
speaker distributions are as narrow (i.e. tightly clustered) and as
widely separated from each other as possible. The F-ratio is defined
mathematically as follows: If each parameter contour after time warping
is diyided into twenty contiguous segments and within a segment the five

data points are characterised by an average value, then the F-ratio for

the ith segment will be,
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2
F = __.E_ (_a, —'a—,) ] ( 2 5-18
i q-1 Jg" ji i CI(P“]) kg‘l jz'[ kJT JT

th th

where “kji is the i™ segment data value on the contour far the k

repetition by the jth speaker, t=1, 2, - - ~ 20, j=1, 2, 3, -~ - - q,

k=1, 2, 3, =~ = = p
as. = 1 E alji 5.19
7= Eaﬁ 5.20

q m=l

aji is the averaged cluster centre for the jth speaker in the ith

segment and a is the overall mean.

According to equation 5.18 the higher the value of Fi’ the
narrower the individual speaker distribution and as a result the
selected parameter shows good discrimination Equatign 5.18 is evaluated
for all three parameters individually, in all twenty segments.

In order to study the F-ratio variations over all the segments
for all three parameters (PC, IC and ZDC) an experiment was conducted
using the collected speech data (see section 5.2). Four speakers participated
and ten utterances from each speaker were used to create a reference
template. All three parameters corresponding to the ten utterances from
each speaker were averaged individually to obtain three templates.

Figure 5.7 shows the reference templates obtained using the
pitch period parameter, It is evident that for all four speakers there is
a transition region in the pitch period contour hetween frames 70 and 85.
This is due to voiced to background transitign or vice versa. Apart from
the transition the general shape is almost the same for all speakers.

Figure 5.8 shows the reference templates obtained using the
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intensity parameter, As expected it shows many local peaks and
valleys.

Figure 5.9 shows the reference templates obtained using the
zcc of differentiated speech. Compared to the intensity contour this
does not have many valleys and peaks.

The F~ratio was evaluated for four speakers using equation
5.18 and the result is shown in Figure 5,10 and tabulated in Appendix
4.4.

This analysis shows important results. That is the F-ratio
for the pitch contour achieves the highest score, the zcc of differentiated
speech contour achieves the next highest score, and the intensity contour
obtains the least score. This shows that the zcc of differentiated speech
contour is superijor to the intensity contour in discriminating between the
speakers.

The F-ratio values of the pjtch period parameter in segments
11, 12, 13 and 14are very much higher than the F-~ratio values of the other
two parameters in these segments. Thus the speakers can be well
discriminated using only these four segments. However, the F-ratio value
of the zcc of differentiated speech parameter in segments 15, 16, 17
and 18 is higher than the F-ratio of the other two parameters.

The value of the F-ratio for the intensity contour is low
over all segments, however, in segments 4, 5, 9 and 10 it is higher
than the zcc of differentiated speech contour F-ratio.

It is evident from figures 5.10a and b, that the pitch contour,
and the zcc of differentiated speech contour (ZUC) achieve large values
in different segments. Therefore these two can be combined to obtain
good speaker discrimination without using the intensity contour. Similarly,
as high F-ratio values for the intensity contour and the zcc of differen-
tiated speech contour also occur in non-overlapping segments, (Figure 5.10)

these two parameters can be combined to give good discrimination.
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5,4 Results for the Speaker Verification System (SVS)

In order to evaluate the performance of the speaker verification
system, the acceptance/rejectign threshold (6) first has to be determined.
When the overall distance hetween the extracted parameter contours and the
reference parameter contours of the claimed speaker is smaller than the
threshold, 8, the speaker is verified, otherwise the speaker is rejected.
Thus the threshold value has to be optimized.

There are two kinds of errors which are possible in a speaker
verification task, i.e, a true speaker can be rejected by the speaker
verification system, or an imposter can be verified as the claimed speaker.
The first error is known as false rejection (FR) and the latter kind is
known as false verification (FV). These errors are controlled by the
acceptance/rejection threshold.

If the threshold is high, few utterances of the true speaker
will be rejected, but many imposter utterances will be accepted. A low
threshold rejects the imposter utterances, but only some true utterances
are accepted. Therefore, a compromise is necessary in selecting the
threshold value. The procedure for selecting such a threshold is
explained below.

Assume many imposter and true utterances have been obtained. The
overall distances are computed (e.g. Dy or Dy see equation 5.16) for all
imposter and true utterances. (It is assumed that the reference templates are

already available). The result is a graph shown in the adjacent figure.

P
P

Threshold

P(N)

D

true spk.

overall distance (D)

fe—

Trial utterance (N) »
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Let the impgster curve be denqoted by f(N) and the true speaker curve be
denoted by p(N), If hoth curves do not intersect each other, then the
threshold (8) is set at a level just below the least value of f(N). When
both f(N) and p(N) intersect then false rejection (FR) and false
verification (FV) can take place, If pg is the greatest value of p(N)

and f, is the least value of f(N), then the threshold (6) is given by,

)

f, S 6 < p

% 9
& can be adjusted so that the number of false verificationsis equal to,
greater than, or less than the number of false acceptances. This selection
varies from application to application. In this research the threshold
is chosen such that the number of false verifications is equal to the
number of false acceptances.

The performance of the speaker verification system was evaluated
using the speech data collected in phase-1 and phase-2. The phase-1
speech data base was used in the following way to assess the feasibi]ity
of using the pitch, zcc of differentiated speech or intensity contours
individually or in some combinations with each other, e.g. zcc of
differentiated speech + intensity.

Of the four true speakers, gne speaker at a time was designated
as the true speaker and the remaining three, along with the thirty-eight
previous speakers, were considered as imposters (14 utterances x 3 speakers
+ 38 imposter utterances = 80 imposter utterances). Ten utterances from
the true speaker were used to form the reference template and two utterances
from the same speaker were used to compute the threshold value (8). The
remaining twq utterances were used tq test the performance of the speaker
verification system, This gives a total of 80 imposter and two true
utterances to he tested against the true speaker reference template,

The above tests (for all four speakers) were conducted using

single and double templates, The single template was qbtained by averaging
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Table 5.1
| Single template Two templates
SVS Parameters SVS Parameters
Speakers
ZDC ZDC
PC | ZDC | IC + ZDC | IC +
IC IC
FR 0 0 1 0 1 1 0
Speaker 1
FV 0 0| 12 0 0 6 0
FR 0 1 0 0 0 0 0
Speaker 2
Fv 0 7 |12 0 0 0 0
FR 0 0 1 0 1 1 0
Speaker 3
FV 0 1 3 1 0 3 1
FR 0 0 1 1 0 0 0
Speaker 4
FV 0 16 16 10 5 12 1
SVS - speaker verification system PC - pitch period contour
ZDC - zero crossing counts of IC - intensity contour

differentiated speech
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ten utterances from the true speaker and two templates were obtained
by subjecting the ten utterances to the cluster program explained in
Section 5.1,2 (see clustering example of Figure 5,5 (speaker 1)).

Equations 5.13 ta 5.17 were used to calculate the normalised
distances. Because the number of utterances available for computing
the threshold valye was two, the threshold was chosen as the maximum
value of the distance score obtained for the two true utterances,

The result of this experiment {s tabulated in Table 5.1, When
a single template was used, the pitch contour parameter achieved the
highest score. That is the number of false rejections and false verifications
is zero. This was expected because the F~ratio for all four speakers
showed very high values, as explained in the previous section. The next
highest score was obtained when the zcc of differentiated speech was used
as the parameter contour. The least score was obtained when the intensity
contour was used.

However, when the distance scores corresponding to the zcc of
differentiated speech contour and the intensity contour were combined
(i.e. D4 was evaluated using equation 5.16) a significant improvement
in the number of false verifications and rejections was obtained for all
four speakers (see table 5.1). Table 5,1 confirms that the zcc of
differentiated speech contour can be successfully supplemented with the
intensity contour, as was suggested by the results in section 5,3.

The evaluation of the speaker verification system using the
combination of the pitch contqur and zcc of differentiated speech
contour was not performed, as good verification was obtained using the
pitch period parameter only,

The same experiment was repeated using two templates to take
account of intraspeaker vartation, for all four true speakers and the
experimental results are tabulated in table 5,1, The results show that

when the zcc of differentiated speech contour was supplemented by the
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Table 5.2

Two templates

SVS Parameters

Speaker PC ZDC
* + +
PC ZDC IC ZDC IC
5.2 3.6 3.4 13.0 7.3
Speaker 5 FR 1 2 2 0 1
FV 2 4 7 1 2

Imposter utterances = 93 (i.e. 4 x 14 + 37)

True

e -

FV

ZDC -

speaker utterances = 47 (i.e. 44 + 3)

threshqld value FR - Number of times false rejection

occurred
number of times false|PC -
verification qccurred

pitch peiod contour

zcc of differentiated
speech contour

IC - intensity contour

a graph (distance against trial utterance) is
given for this parameter cqontqur in Figure 5,11
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intensity contour ({.e. D, was evaluated) using two templates, the

error performance obtained was almost as good as the errar performance

when the pitch period contour alone was used (i.e. D1 only was calculated),
The results of this preliminary experiment show the

following:-

a) a gooed verification score is possible when the zcc of
differentiated speech contour is supplemented by the
intensity contour.

b) cluster analysis is a powerful tool in creating speaker
dependent reference templates in order to improve the

verification score.

To study these two observations further, the speech data
obtained in phase-2 was used in a more rigorous experiment. In this
experiment two reference templates were obtained using cluster analysis.
0f the first 57 recordings made from speaker 5 over a period of a month,
in six sessions, one utterance in the morning and one in the afternoon
were selected randomly from each session (total of 12 utterances).

These utterances were used to create two reference templates using
cluster analysis. The remaining 44 true utterances, along with three
more utterances given by the same speaker 5 two-months after the previous
recording, were used to test the performance of the speaker verification
system. The 37 imposter utterances plus the four previous speaker
(phase 1) utterances (4 speaker x 14 utterances = 56 utterances) were
used as imposter utterances to evaluate the performance of the speaker
verification systenm,

The results for speaker 5 are tabulated in Table 5.2,where the
distance measures were ohtained using equations 5.13 te 5.17 (i.e, Dys
Dys D3, Dy and Dc). The results show that when pitch, intensity and

zcc of differentiated speech are used individually as speaker verification
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parameters, pqor verification scores are obtained. However, if the
pitch contour is supplemented by the zcc of differentiated speech
contour, a good verification score is obtained. That is the number of
false rejecttions, out of 47 true utterances is zero and the number of
false vepifications out of 93 jmposter utterances is 1. When the zcc
of differentiated speech contour was supplemented by the jintensity
contour, only one false rejection and two false verifications occurred.

The variation of distance (D3) against trijal utterance for
speaker 5 is shewn in Figupre 5.11. In this figure the zcc of
differentiated speech is taken as the parameter contour. Each point
represents the distance (D3) for a particular trial utterance. An
error occurs for each true utterance in which a point lies above the
threshold line, Two such errors occur over 44 true utterances. The
same figure shows the distance (D3) of the 93 imposter utterances.
False verificatian occurs for each trial in which a point lies below
the threshold line. Four such errors can be seen over the 93 imposter
utterances. Similar plots were obtained for other parameter contours and
the combination of the parameter contours, Using these plots the
threshold (8) was calculated in each case and the values are shown in
Table 5.2.

The three utterances obtained for speaker 5 after calculating
the threshold are also shawn in Figure 5.11, These utterances were
obtained two months after the last utterance used to examine the error
performance, It can be seen that the computed distance (D3) for these
three utterances is still well below the threshold level, and thus that
intraspeaker variation qover a long period has been accounted for in the
reference templates, This is also true for all the other parameter
contours,

Figure 5,12 shows the empirical distribution functions with respect

to distance, for the parameters zcc of differentiated speech, intensity,
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and the combination of these two, These distribution functions are
deriyed from the data in Figure 5.11, by dividing them into a number of
small bands and counting the points falling in each band., The number
of points in each band is plotted against distance (D3) and this plot
is called the empirical distribution function.

If enough speech data is available then the size of the band
can be made very small. However, in this case only a small number of
true utterances and imposter utterances were available and therefore the

following band sizes were selected:~

_zcc of Intensity + zcc of
diff, speech Intensity diff. speech
Band size for
true utterances 0.2 0.2 0.4
Band size for
imposter utterances 2 2 2

In general it can be seen that the distribution functions of
the true speaker utterances (speaker 5) are very narrow compared to the
distribution functions of the imposter utterances. Moreover when the
zcc of differentiated speech and the intensity parameters are combined,
the resulting true and imposter utterance distribution functions are seen
to be much further separated (Figure 5.12 c) than the distributions
obtained using the individual speech parameters (Figure 5.12a and
Figure 5.12b), This shows clearly the power of using the zcc of diff.
speech and intensity parameters for speaker verification.

If a large populatijon were available then curve fitting could
be performed for each distribution and the true error rate (i.e., number
of false verifications and false rejections) could be found from the curve
fitted distributions,

In canclusion, it can be said that the verification performance

obtained using the combination of the zcc of differentiated speech contour
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and the intensity contour is close to that obtained using the pitch

contour supplemented by the zcc of differentiated speech contour, This

is an important result because the zcc of differentiated speech and

the intensity can be computed with less effort than the pitch period.
The Fortran pregram listing of the speaker verification system

is given in Appendix A5,8,



CHAPTER 6

IMPLEMENTATION OF A DIGIT RECOGNITION SYSTEM

In this chpater the tmplementation of a digit recognition
system is described and the necessity of pre-emphasising the speech
samples before extracting Burg's PARCOR coefficients (ki) is discussed.
The effects of pre-emphasis on the Burg's PARCOR coefficients are
presented.

A simple and suitable distance measure for the feature vectors
based upon the PARCOR coefficients is selected and the clustering analysis
explained in Chapter 5 is used to create reference templates.

The latter part of this chpater is devoted to a detailed’
description of the implementation and performance of a digit recognition
system. The results show that the Burg's PARCOR coefficients and their

non-linear transforms are good parameters for a word recognition system.

6.1 Overview of the digit recagnition system

Figure 6.1 shows a block diagram of a digit recognition system.
The vocabulary to be recognised consists of the digits 0 to 9 and the
letter 'oh'. The input speech is filtered between 0 and 3400 Hz and then
sampled at 8 kHz. The first step of processing after the digitization is
to determine the points in time at which the input word begins and ends.
This endpoint detection is accomplished by means of energy and zero-crossing
count calculations, The endpoints detection algarithm described in Chapter
3 is used to perform this function,

Following endpoints detection, the input speech samples are

grouped into frames for analysis. Each frame consists of N speech samples
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(N=100). Adjacent frames qverlap by 15 samples. The frame of data
is subjected to a first order digital pre-emphasis filter., The reason
for pre-~emphasis is explained in the next section. The pre-emphasised
speech frames are then subjected to the following feature analysis:

The Burg's coefficients given by equation 2,29 are calculated
for each frame. In this analysis 12 Burg's coefficients (k1,k2,k3,--- k12)
are extracted and are stqred as contours for subsequent processing
and/or creation of reference templates.

Once the Burg's coefficients are extracted, then the other
feature vectors (gi and pi), which are non-linear transforms of the
Burg's coefficients, are calculated using equations (2.31) and (2.32).
Following the extraction of the three feature vecotrs, l1inear time warping
is performed on each vector contour to achieve time synchronization. The
Burg's coefficients and the two non-linear transforms are calculated for
different words (the digits 0 to 9 and the letter ‘'oh') and are stored in
the memory as reference contours.

The recognition of an unknown input word is a matching process
in which the Burg's coefficient contours of an unknown input word are
compared with an ensemble of stored reference contours. In the comparison
a frame-by-frame scan of the unknown input contour is carried out against
each reference contour and a distance score is calculated and accumulated.
The reference contour which gives the Towest accumulated distance is
designated as the recognised word. The distance computation {s explained
in section 6.1.3.

The entire digit recegnition system has been impiemented on a

minicomputer (LSI 11 -V03).

6.1,1 The use of pre-emphasis

It has been shown by Markel and Gray (1974), and Gray and
Markel (1974) that the speech samples must be pre-emphasised before
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extracting the reflection coefficients or filter coefficients of the
vocal tract using the autocorrelation methad (as explained in Chapter
2). Some of the reasons given by Markel and Gray for pre-emphasising

the speech are hriefly given below:~

The overall transfer function for vojced speech is represented by an

all-pole model:-

S(Zb/%(z) = Av/kl-z-l) ¢ (1 + E akz-1) (see equation 2.7)

The above equation shows thatduring voiced sounds there is a natural

attenuation of 6 dB/octave due to the term (1—2-]

). This is due to the
spectral slope characteristic introduced by the effect of glottal volume
velocity (modelled by approximately -12 dB/octave slope, see equation
2.4) and the 1ip radiation characteristic (modelled by approximately

6 dB/octave slope, see equation 2.6). If this natural attentuation is
counter-acted by pre-emphasising the speech by a first order digital
filter, then the spectral properties of the vocal tract without the
effects of the glottal waveform and 1ip radiation characteristic can be
studied. Markel and Gray (1974) showed that this pre-emphasis reduces
the spectral dynamic range (i.e. improves the spectral flattness) and
thus the quantization properties f the PARCOR coefficients calculated
using the autocorrelation method are improved, i.e. the values of the
PARCOR coefficients (ki’ i=1, 2, --- p) are decreased. This is desirable
because when ki takes a low value, the spectral sensitivity (see section
2.5.6) to numerical errors is reduced.

This reduction in spectral dynamic range is particularly useful
when the PARCOR coefficients are evaluated using the autocorrelation
technique because it tends tq cancel the increase in spectral dynamic
range caused by the windowing inherent in the autocorrelation method.

If unchanged this windowing would increase the PARCOR coefficients
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quantization sensitivity.

In the case af Burg's technique there is no time window needed
because of the way in which the data is utilised. Moreover, from the
comparison given in section 2,5.5, it is evident that Burg's method of
extracting PARCOR coefficients can be used with finite word length
arithmetic witheut causing instability.

It is, therefore, proposed to investigate whether any advantage
is ta be gained by using pre-emphasis in conjunction with Burg's method.
The clustering properties of the Burg's PARCOR coefficients and the mean
values of the coefficients with and without pre-emphasis are studied
because better clustering of the coefficients can improve the recognition
score, while low mean value of the coefficients reduces the spectral

sensitivity.

6.1.1.1 Pre-emphasis filter

The pre-emphasis {s accomplished by the following difference
equation:-

s{(n) = s(n) - u s(n-1) 6.1
where n=0, 1, 2, --- N-1, p is a pre-emphasising factor of value
0 $u ST, Thus u provides a means of controlling the degree of pre-
emphasis ranging from no pre-emphasis (u=0), to full pre-emphasis (u=1).
Markel and Gray (1974) showed that for voiced speech the optimal pre-
emphasis factor (u) takes values in the range of 0.9 to 1.0 and for
unvoiced sounds it takes a value close to zero, They further showed that

u can be calculated adaptively and is given by,

W= R(1/R(Q) 6.2

where R(n) is the autocerrelation sequence,
When a constant pre~emphasis factor (0.9 § u $ 1.0) is used

then over-emphasis of unvoiced sounds in the speech utterance is possible,
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whereas adaptive pre-emphasis overcomes this problem but is computationally
expensive. Nevertheless, Rabiner (1978, 1979) extensively used the constant
pre-emphasis facter (pu=0,95) successfully in automatic word recognition
systems and it was decided to use the same pre-emphasis factor in the

following experimental study,

6.1.1.2 Effects of pre-emphasis of Burg's (PARCOR) coefficients

The effects of a fixed pre-emphasis on Burg's (PARCOR Jcoefficients
are first illustrated by two examples and then the clustering properties
of the coefficients are studied statistically.

Two utterances (Digit-6) spoken by a male and a female speaker
were analysed. The reason for analysing the digit six is that it contains
both voiced and unvoiced regions.

Figure 6.2 shows the variations of Burg's (PARCOR) coefficients
(ko to k12) over the whole utterance for the female speaker. Frames 1 to
8 and frames 19 to 33 are unvoiced regions, while frames 9 to 18 are the
voiced region. The values of the coefficients k] to k6 in the voiced
region, when pre-emphasis is applied, change more radically compared to k]
to k6 when pre-emphasis is not applied. For the coefficients k7 to k]2 pre-
emphasis causes little change (Figure 6.2),

The maximum energy of the utterance qccurs at frame 11. It is
evident that the coefficients corresponding to the maximum energy frame
and adjacent frames change very markedly when pre-emphasis is applied.

It can also be seen that the PARCOR coefficients in the unvoiced
regions undergo only small changes in the coefficient values when pre-
emphasis is applied.

Figure 6.3 shows the PARCOR coefficient variations of k], k3,
k6’ k8 and k]2 with and without pre-emphasis for a male speaker., The
voiced region in this case is from frames 14 to 25 and the maximum energy

frame is 16. The values of coefficients k] to kg in the voiced region
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change considerably when pre-emphasis is applied. That is, compared with
the female speaker, two additional coefficients (k7 and k8) are affected
by pre-enphasis. In this case the maximum energy frame and the adjacent
frames alsq undergo large changes in coefficient values (Figure 6.3).

The effects of pre-emphasis on Burg's (PARCOR coefficients were
studied statistically in the following manner:-

A male speaker gave ten repetitions of the word 'six'. The
recordings were done over a period of one month. The maximum energy frame
was located for all ten repetitions and Burg's (PARCOR coefficients k] to

k]2 were extracted from these frames, both with and without pre-emphasis.

The following statistical properties of each coefficient were computed across

all ten maximum energy frames.

(a) The mean of the ith coefficient: This is given by,
g,o- L
where i = 1, 2, 3 === p (=12), N is the number of maximum energy frames
and ky; is the it Burg's (PARCOR) coefficient of the i frame.
(b) The variance of the ith coefficient: This is given by,
N
2 1 2
= —_— o - T(-- .
F " jzl (k3 i) 6.4
where i =1, 2, - - - p.
(¢) The range f the ith coefficient: This is given by,
ry = max (kij) - min (kij) 6.5

where 1 =1, 2, === p, j =1, 2, == N,

Equation 6,3 was evaluated both with and without pre-emphasis

and the results are shown in Figure 6.4a, It can be seen that the mean of
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the coefficients k], k4, k5, k6 and k7 changes more than the mean of the
other coefficients when pre-emphasis is applied. The mean value of the
first coefficient (k]) is close to 1 when pre-~emphasis is not applied,

thus making T1inear quantization of this coefficient impossible as explained
in section 2.5.6, When the speech samples were pre-emphasised the mean

of this coefficient changed from 0.76 to -0,02.

The effects on the coefficients can be further studied by
evaluating equations 6.4 and 6.5. A reduction in the standard deviation
(Qi) or in the range (ri) would indicate a corresponding reduction in
coefficient variability or a tight coefficient cluster. Figure 6.4b shows
the standard deviation of each coefficient obtained for the male speaker
and it is evident that the pre-emphasis has caused a reduced standard
deviation for most of the coefficients. This implies a tighter coefficient
cluster in 12-D space for the ten frames considered in this analysis.

This result again shows that pre-emphasis is necessary if only small
intraspeaker variations in the coefficients are desired.

Figure 6.4c is a plot of the range (ri) of each coefficient,
with and without pre-emphasis. Coefficients k7 and k8 have the largest
range without pre-emphasis. This shows that these two coefficients have
high intraspeaker variations, however, when pre-emphasis was applied to
the speech samples the ranges of these coefficients were reduced. Eight
of the coefficients underwent a reduction in range with pre-emphasis,
while four had a range increase. In general the application of pre-emphasis
contributed to a reduction in variability of the Burg's(PARCOR)coefficients,
These results are summarized in Table A4.5 (see appendix 4).

From the results it is evident that fixed pre-emphasis (u=0.95)
improves the clustering properties of the Burg's(PARCOR)coefficients and

therefore fixed pre-emphasis is used in the remainder of this chapter.
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6,1,2  Linear time warping and the creation of reference templates

Stnce all the words used in this speech recognition system are
monesyllabic (except the digit 7), linear time warping to obtain time
synchronizatien is sufficient,

The Burg's (PARCOR)ceeffictent contours are therefore linearly
stretched or compressed to a standard length according to the linear time
warping equation 5,3, In this analysis 12 coefficients per frame are
extracted from the input word and all 12 coefficient contours are subjected
individually to the linear time warping process. The other two feature
vector coentours gi and p,i are also subjected to the same linear time
warping (equation 5.3).

Since the digit recagnition system is to be used for a single
speaker (speaker dependent) the reference contours are obtained by the

cluster analysis methad explained in section 5.1.2.

6,1.3 Distance measure

| After linear time warping is performed the next step is the
choice of a pattern similarity measure which quantiatively shows the
closeness of a reference contour to the unknown input word contours. The
choice of similarity measure depends on the feature vector (Gray et al,
1976). In this research the 'weighted city block' distance measure has
been used successfully, The ‘'city block' measure of the similarity
between an unknown contour and the reference contour is given by,

LS
D(uys ry) = nzl RS 1®ymn = Cpunl * ¥ 6.6

where w=1, p 19 the number of Burg's PARCOR coefficient, N is the number
of frames in the contour, u is the unknown contour, r is the reference
contour, 6 is the linearly time warped centqurs K> 9p OF Py i=1,2,--M
and M is the number of the yocabulary word,

In order to reduce the probability of recognition errors due to
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poor endpoint detection this distance measure is used in the following
manner (White and Neely, April 1976), The unknown input contqur is

shifted 1inearly five frames right and five frames left relative to the
reference cantours and D(uj, ri) given by equation 6.6 is calculated

eleven times in total (i.e. j =1, 2 ~-- 11). D(u6, ri) is known as

the unshifted distance. The smallest value of D(uj, ri) for j =1, 2, --- 11

is assumed te be the result of the proper time alignment. That is,

D (1) = min [D(u],ri), D(UZ’ri)’ - - - D(ull’ri)) 6.7

where i (=1, 2, 3, --- M) is the ith vocabulary word.

This method of right and left shifting is not necessary if the
endpoints of the utterance can be located without errors and therefore
calculation of D(u6, ri) only is adequate.

The last step in Figure 6.1 is the decision rule which chooses
the reference contour most closely matched to the unknown input contour,
i.e. equation 6.7 is evaluated for each reference contour and the reference
contour which gives the Min [Ds(i)] is designated as the recognised word.
This decision rule is kno;:]a:otwe nearest neighbour rule. The above
explanation assumes that only one reference contour for each vocabulary

is available, however, for multiple templates (reference contours) for

each vocabulary, the same procedure holds.

6.2 Speech data collectign

Speech data were cqllected from a designated male speaker using
the experimental system described in Chapter 4. The recordings were made
in a rogm where the expected SNR was greater than 30 dB and the input
words were recorded on a high quality tape recorder using a high quality
microphone,

A designated male speaker pronounced twelve repetitions of an

11 word vocabulary (the digits 0 to 9 and the letter ‘oh') over a two
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month period. These repetitions were made in twelve sessions, with at
least two days between each session. In each recording session the speaker
uttered all the elven words in the vocabulary in a random order, leaving
sufficient pauses between words. At the end of the recording sessions
132 utterances (12 repetitions x 11 words = 132) were available for the
evaluation of the digit recognition system performance. Of the 132 utterances,
77 utterances (7 utterances per word) were used tq form reference templates
and the remaining 55 utterances served as a test set.

Each of the 132 utterances were digitised and the autamatic
endpoint detection algorithm explained in Chapter 3 located the endpoints
correctly without manual intervention, except in one case for the digit eight,
where wrong endpoints were obtained. However, when the tape was replayed
the endpoint algorithm located the endpoints correctly, The endpoint
algorithm in all cases eliminated the plosive (t) which can appear when the
digit eight is uttered. This is desirable because the plosive is not stable
in each repetition, i.e., in some repetitions of the digit eight the plosive

is absent, while in others it has a high amplitude.

6.3 Digit recognition system results

The speech data cqllected in section 6.2 were used to evaluate the
performance of the digit recognition system. A1l 77 utterances (seven
utterances per word) were c]ustered'using the naonlinear mapping procedure
explained in Chapter 5. Clustering analysis showed that in order to
represent the intraspeaker variations for this particular speaker one
reference template was sufficient. Therefore the reference templates
(reference contours) were obtained by simply averaging the seven contours
(i.e. PARCOR coefficient contour) for each word. At the end of this
averaging process, a total of 11 templates were available (i.e. one

template per word). The same procedure was adopted in obtaining the

reference templates for the other two parameters, i.e. g4 and P;-
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1 Pole analysis 2 Pole analysis 3 to 12 Pole
Features analysis
N T T
k; 7 3 0
9; 12 5 0
p.i 11 ) 0
TABLE 6.1
1 Pole analysis 2 Pole analysis 3 to 12 Pole
Features analysis
h [P I | T T
Ky 10 3 1 5 0 0
95 8 3 0 4 0 0
P; 7 1 0 2 0 0
TABLE 6.2
T] - the number of errors made in recognising words.

the number of times the ratio between minimum distance and

the next-to-minimum distance falls below value 1.1 and the

recognised word was not in error.
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After obtaining these reference contours an experiment was

conducted in the follewing mannek:-

(a) The 77 utterances which were used to create the reference
contours, served as the test set against the eleven templates.
The reasan for doing this test is to verify that the eleven
reference contours obtained are well separated in N-dimensional
space, If they are not well separated then these reference

cantours will not achieve good recognition rates.

(b) 55 utterances (5 utterances per word) which did not belong
to the above mentioned 77 utterances were used as a test set
agatnst the 11 templates. This test will show how well the
templates cater for intraspeaker variations and whether the
selected feature vectors ki’ 93 and p; are suitable for word

recognition,

Table 6,1 summarises the results obtained for the three feature
vectors using the 77 utterances. This shows that more than two PARCOR
coefficients must be compared with the template to achieve good
recognition,

The recognitiqn accuracy of the Z"d

part of the experiment using
55 utterances is given in Table 6.2, The actual purpose of this
experiment is to measure the recognition accuracy as a function of the
number of Burg's PARCOR coefficient per word. Equation 6.6 (city block
distance measure) was used in evaluating the recognition accuracy for

all three parameters, In table 6.2 the quantity T] (the number of errors
made in recognising words) is an absolute measure of the accuracy of the
digit recaognition system. The quantity T, measures the number of times

the ratio between the minimum distance and the next-to-minimum distance

falls below the value 1,1 and the recognised word was not in error. This
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value is chosen because T2 less than 1,1 provides insufficient
discrimination between words for reliable recongition. Increasing
this threshold gives a more stringent test of the recognition system.

As shown in Tahle 6.2 when the ISt and ohd PARCOR coefficients
and their nonlinear transforms were used, the recognition results were
poor as expected., However, when the number of PARCOR coefficients used
was equal to or greater than three then there was no recognition errors.
This is also true for the other two parameters (gi and pi). In this
experiment the rejection ratio, which indicates the degree of separation
between the lowest and the next lowest distance, usually lay between

1.30 and 2.0.

6.3.1 An example of clustering analysis as used in digit recognition

Figure 6.5 shows the results of the nonlinear mapping technique
applied to the eleven reference contours of the male speaker. It is evident
that all the reference contours are well separated in the 12-D space. When
these reference contours were mapped on to 2-D space, the stress value
after 80 iterations was 0.0507, which is a good mapping value.

A test digit (eight) was taken from the 55 utterances and
tested against these reference contours. The test digit was also mapped
onto a 2-D space with the reference contours, and it can be seen that it
is very close to the reference contour eight. Therefore, it was recognised
as eight. The caluclated ratio between the minimum distance and the
next-to-minimum distance was found to be 1.83 and the same ratio measured
using figure 6.5, was 1.82 (the next contour or point close to the test
digit s five). This example demonstrates that any unknown digit can be
mapped onto a 2-D space and recognised visually, The same figure shows that
for this particular speaker the digits one, nine and three are close to
each other, compared to the other digits, When two or more points in

the 2-D space are very close together, then multiple templates should be



- 123 -

used,

This example reveals the usefulness of the nonlinear mapping
technique in yisualising the recognition process.

In conclusign it can be said that the Burg's PARCOR coefficients
and their nonlinear transfoprms are good parameters for an automatic
digit recognition system and that a simple city block distance measure
is adequate.

The digit recognition program, written in Fortran, is given

in Appendix A5.9.



CHAPTER 7

DISCUSSIONS AND SUGGESTIONS FOR FUTURE WORK

Several computationally efficient techniques for speech
processing have been investigated in this research. Many pitch
estimation algorithms are available in time and frequency domains,
however, most of the time domain algorithms are entirely heuristic or
computationally expensive. Frequency domain pitch estimation algorithms
are not suitable for real time. applications. Attention was focussed
therefore on developing an efficient, fast and simple time domain
algorithm for estimating the pitch period of voiced speech. In Chapter
2 a time domain periodogram algorithm (TDPA) is presented along with a
theoretical analysis.

Rabiner, et al (1976) compared several pitch estimation algorithms
which operate in the time domain. According to Rabiner et al there are
only three time domain algorithms which are very efficient, the fastest
of which was developed by Miller (1975). The next fastest was developed
by Gold and Rabiner (1969), and the third efficient algorithm is AMDF
(Ross et al, 1974). The first two algorithms are called "feature
extraction" algorithms and they are almost entirely heuristic. Furthermore
the performance of these two algorithms with low signal to noise ratios
is unknown. For this reason the AMDF is the only algorithm which can be
compared with the TDPA.

The performance of the TDPA is compared with the AMDF in Chapter
4 and the results show that the TDPA is as accurate as the AMDF in
estimating the pitch period, however, the MPAZ2 is approximately 30% faster
than AMDF, whereas the PA2 is approximately 20% faster than AMDF. These
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runtime estimates were obtained using the Intel 8086 microprocessor
instruction set which is not favourable to the TDPA, as the jump
instruction is five times slower than the add instruction. Assuming
implementation on a processor whose jump instruction is only three
times slower than the add instruction, then the MPAZ2 will be 35% faster
than AMDF. Another advantage of TDPA is that the memory required is
reduced by 50% for the MPA2 compared to the AMDF.

It has been proved theoretically in Chapter 2 that TDPA provides
as a by-product, a well behaved estimate of the signal intensity. In
Chapter 4 this is verified by analysing a short time average magnitude
contour, and the results show that both contours have the same shape,
however, the oscillation amplitude contour is smoother than the average
mangitude contour. This suggests that the oscillation amplitude can be
used as the intensity parameter in any speaker verification system which
wes pitch and intensity contours as the feature vectors. Because these
two parameters can be extracted using a 16-bit microprocessor in integer
arithmetic, a faster speaker verification system is possible. Further it
is shown in Chapter 4 that the oscillation amplitude can be used as a
gain control in a speech synthesiser.

Good performance has been obtained using TDPA with signal to noise
ratios as low as 10 dB. This performance is more than sufficient for
speech applications. TDPA has been shown to give good performance for
male, female and child speakers,

In this research the TDPA used only a maximum of four rows, as
the speech signal is not stationary over long periods, however, more than
four rows are possible for periodic signals other than speech. Thus the
TDPA is a general signal processing algorithm which can be used to estimate
the hidden perjodicity of any signal corrupted by noise.

TDPA has a well defined theory in the time domain and therefore

any practical observations can be analysed theoretically.
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An efficient parameter to supplement pitch and intensity in
speaker verification systems was proposed and the zcc of differentiated
speech was selected for this purpose. In Chapter 2 the potential of the
zcc of differentiated speech is shown by a discrete mathematical analysis.
The analysis shows that this parameter carries a lot of information about
the composite formant structure and pitch period and that it can be used
as a feature vector in a speaker verification system (SVS). The SVS
implemented in Chapter 5 uses the three parameter contours pitch period,
intensity and zcc of differentiated speech. These parameter contours have
been evaluated statistically to study their ability to discriminate between
speakers. The evaluation based upon the F-ratio, shows that the pitch
period is the best parameter to discriminate between speakers and that the
zcc of differentiated speech is the next best parameter. The intensity
contour is the parameter which shows least discrimination between speakers.

The interesting result of this study is that the best discrimination
between speakers for pitch period and zcc of differentiated speech occur in
different speech segments of the key phrase. Therefore the advantage of
combining these two parameters for better speaker discrimination is evident.
That is the F-ratio analysis clearly indicates that by combining the zcc
of differentiated speech and pitch period no information is duplicated as
the highest F-ratio values occurred in different speech segments. The
same observation is true for combining the zcc of differentiated speech
and intensity contours. However, the combination of the pitch period and
the intensity will not give better discrimination for the small population used
in this study, as the F-ratio values for the pitch period contours alone
are very much greater than those for the intensity contour.

Based on this observation a speaker verification system was
implemented for a true speaker who gave 47 utterances over two months

with 93 imposter utterances. The results show that the verification score
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obtained using the combination of the zcc of differentiated speech

contour and the intensity contour is equal to the verification score
obtained using the pitch period contour alone. These results are
important because in practice the evaluation of the zcc of differentiated
speech and intensity contours requires much less computational effort

than the evaluation of the pitch contour., When the pitch period contour
was supplemented by the zcc of differentiated speech a further improvement
in the verification score was obtained, These important results should be
verified with a very large population,

The next idea was to find an efficient parameter and a suitable
distance measure in order to implement a digit recognition system, The
parameter selected was Burg's Partial correlation coefficients and the
similarity measure is the simple city block distance. In the last section
of Chapter 2 the advantage of extracting Burg's Partial correlation
coefficients over the auto-correlation and covariance methods of extracting
PARCOR coefficients is shown. The potential of the PARCOR coefficients is
shown by implementing a digit recognition system in Chapter 6, The results
show that for the single speaker tested, (55 utterances, 5 utterances per
digit recorded over two months) three or more Burg's ceoefficients are
sufficient to obtain 100 per cent recognition score using a simple city
block distance measure. The computational effort necessary to evaluate
the city block distance is very small.

Two nonlinear transforms of Burg's coefficients have also
yielded 100 per cent recognitign score when used as feature vectors.

Although this recognition system is speaker dependent, it can be
used in a speaker independent manner, That is the templates could be
replaced to obtain a speaker independent system,

The clustering properties of the Burg's coefficients under

pre-emphasis have also heen investigated, The 1imited results show that
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the clustering properties of the Burg's PARCOR coefficients k], k2, k5
and k6 are not enhanced whenpre-emphasis is applied, while the remaining
eight coefficients are forced into tighter clusters by pre-emphasis.
This test was done only for the maximum energy frames in several repetitions
of the test utterance 'six'.

In Chapter 5 an efficient method of creating reference templates
to cater for intraspeaker variations is presented. This method uses a
nonlinear mapping technique. When this method was used to create the
templates for the speaker verification and the digit recognition systems,
the verification/recognition score was improved. Results in Chapter 5
show that for the speakers tested two templates were required to get an
improved verification score. Thus the cluster analysis shows that one
template is insufficient to cater for very short term intraspeaker
variations.

Although this nonlinear mapping technique is suited for point§
in N dimensional space, it is also successfully used for contours in N-D
space. It has been further shown that NLM technique is not only valid
for Bug's PARCOR coefficients, but also applicable to pitch, intensity and
zcc of differentiated speech contours, provided these three parameter
contours are segmented properly to represent them in N-D space. This is
supported by the results obtained from the speaker verification system.

Further it was shown that in the case of digit recognition, non-
linear mapping can be used not only for creating reference templates, but
also in visualising the separation between the reference templates, and the
separation between the reference templates and an unknown digit, in N-D
space. It is shown that the nonlinear mapping is an efficient procedure
for creating speaker dependent templates.

Finally in Chapter 3 a computationally efficient multiplication

technique is presented. This is useful when IIR or FIR filters with fixed
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coefficients must be implemented on a microprocessor in speech processing

or in other applications, It #s shown that the multiplication technique when
implemented on the Intel 8086 microprocessor, can be used to perform
multiplication faster than the machine multiply instruction, The

technique uses an extension of Booth's algorithm, and the results show

that the speed enhancement is obtained at the expense of memory space.

At this point there are two major easily identifiable areas of
future work. It is suggested that the pitch period contour be further
statistically investigated with a large number of speakers to determine
the segment in which it shows maximum speaker discrimination,

In a practical SVS the pitch peried could then be evaluated only
for the selected segment of the utterance in whigh good speaker discrimination
is given and the result combined with the results from:the zcc of
differentiated speech and the intensity over the complete utterance. This
would probably give good verification scores while saving on the computational
effort involved in evaluating the pitch period over the complete utterance.
This could make a real time speaker verifjcation system using microprocessor
controlled hardware or using two microprqcessors passible,

In order to improve the verification score further, nonlinear
time warping and some additional distance measures have to be used,

The second area for future investigation is to evaluate the
minimum number of Burg's coefficients required for reliable recognitign
scores with many speakers, There s no spectral distortion due to
windowing in extracting Burg's coefficients and therefore the author hbelieves
that digit recognition must be possible with few Burg's Partial correlation
coefficients. Future research should involve a rigorous test with different
utterances to study the clustering properties of Burg's coefficients
under pre-emphasis, so that the coefficients which have poor clustering

properties can be omitted in the final recognition process,
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APPENDIX 1

A1.1 Wave Propagation in Concatenated Lossless Tubes

The vocal tract can be represented as a concatenation of lossless

tubes of N sections of equal length & as shown in Figure Al.1. The length

th tube with cross-

of the acoustic tube is L=N&. If we consider the k
sectional area, Ak’ the pressure, Pk> and the volume velocity, Vis

(Rabiner, 1978) in that tube have the form,

= PC
o) - 5 [v¢ + ] (1)
uk(x,t) = Ve m Vg (2)

where Ve = u:(t - x/C), Vp = u;(t + x/C), x is the distance neasured from

th

the left-hand end of the k™ tube (Figure Al.1) and u:( ) and u;( ) are

th tube and

positive-going and negative-going travelling waves in the k
X 2 0. The positive-going wave moves in the direction from the glottis

to the lips and the negative-travelling wave moves in the direction from
the lips to the glottis. p- is the density of air and C is the velocity
of sound in air.

The positive- and negative-travelling wave in each sectian can by
related to each other by virtue of the fact that at the boundary between
sectiqns the yolume velqcity and pressure must be continuous. As a result
at the boundary between sections some fraction of the positive-travelling
wave gets transmitted through the next section and some fraction is
reflected back as a negative travelling wave in each section. Consider
the k" )th

and (k+1 tubes as depicted in Figure A1.2. Applying continuity

conditions at the junction gives:-

Py, t) = Pr+1(0,t)
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Fiqure A1.4 Flow graph representation of a junction in z domain




Uk(lk, t) = Uk+'l(0,t)
by substituting this continuity condition in equations 1 and 2

one obtains,
Fo) = (O e - ot 3
Uk+]( ) = (1 + rk) Uk( Tk) t T uk+1( ) (3)

Ut + 1) = e Ut - )+ (1= ) upa(t) (4)

where Ty = zkﬁ: is the time for a wave to travel the length of the kth

tube and e is given by,

re - 2k+1 ; 2k (5)
k+1 k
The quantity e is called the reflection coefficient for the kth junction.
Since the areas are all positive, -1 ¢ e $£1, as the configuration of the
vocal tract changes for different sounds, the cross-sectional area of
each section, or equivalently the reflection coefficients rys are modified.

From equation 5 one obtains,

£ - (6)

This shows that if the two sections A and Ak+1 have identical areas

there is no reflection (rk = 0). The Equations 3 and 4 are depicted in
Figure A1.3 using signal flow graph conventions. Each junction of the
Figure Al.1 can be represented using Figure Al,3. It is shown by Rabiner
(1978) that to represent the vocal tract by a discrete-time system the
speech waveform s(t) has to be sampled at every 2T, sec (rk = T4y = T).
Therefore an equivalent discrete-time system {s possible if t is replaced
by 3 sample delay (t = —>). This is equal to 2°% in 2 domain. Figure
A1.4 shows the flow gra;i representing the relationship among z-transforms

at a junction. The z-transform equations for this junction are:~-

up (@) = (er) 278 ui(2) + vy upq(2) (7)



u(2) = ne 2 k) o+ (er) 27 () (8)

Salving far u;(z) and u;(z) we obtain,

. -3 rzh n
ug(2) . < fuen(2)
1+rk ’I+rk
= -3
- -T2 3 -
ug (2) k z Up,1(2)
k T+r T+r k+1
L Lk kI L
Ye = Py U (%)

By repeatedly applying equation 9, it is possible to relate the

th

variables at the input to the i~ tube to the variable at the output

of the jth tube. That is :-

« P u

Bim B~ Pz w0 0 By g

—i+]

J
ug = TP (10)

STl kS
Equation 10 reveals that if the boundary conditions at the '1ips' and

'glottis' are known, then it is possible to find out the overall transfer
u, (2)
2

function of the lossless tube v(z) = ( ) in terms of reflection

Uq(z
coefficients at the functions (Rabiner ]998)

Boundary Conditions

It is known that velqcity and pressure are analogous tao current
and voltage respectively, Assume the glottal end is the 15t tube and the

h

lips end is the N tube. The lips are assumed to be connected to another

section with an infinite area. Therefore from the equations 1 and 5 one

obtains the following,

pN+](X’t) > 0 as AN+'I + ©

also N -+ 1 as AN+1 > oo,
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)th

It is assumed that the (N+1 tube is infinitely long so that there

is no negative-going wave in the (N+1)th tube, In substituting this

boundary condition for lips in equations (3) and (4) we get,

upe () = () uy (t-1) (1)

u&(t+r) = -ry uﬁ (t-1) (12)

The equations 11 and 12 are depicted in Figure A1.5. Rabiner (1978)

takes a general case and abtains the fallowing equations for the glottal

end.
+ 1+r _
up(t) = —32 u (t) +r. uj(t) (13)
1 2 g g 1
°c
. 97 Ay
where rg is the glottal reflection coefficient = 1
zg + C
M

where zg is the glottal source impedance; A] is the area of the ISt

tube at the glottal end. The equation 13 is depicted in Figure Al.6.

Transfer function of the Lossless tube model in terms of reflection

Coefficients

In order to complete the overall model, express the boundary
conditions at the glottis and lips ends in terms of the z transform.

From equation 13 we obtain,

u(z) = |2, %9 uy (2 (14)
9 Ter,  14r -
rg g u](z)

To find v(z) in a convenient form, it is helpful to represent the
boundary condition at the lips in the same manner as all the junctions
in the tube and assume (N+1)th tube is infinitely long so that there is

no negative-going wave in the (N+1)th tube. Therefore



a1 (2) = ug(2)
uy(2) = 0
u;+](z) 1
= uy(z) (15)
u&+1(z) 0

By substituting equations 14 and 15 in equation 10, one ohtains the

transfer function v(z) in terms of reflection coefficients,

-2r
2 g 1
u (Z) = . « P, ¢ P ¢« o s o P oo u (z)
g T+4r T+4r -1 = —N 0 ] %
g g
For example let N=2, then,
- éﬂ ~ - r -
3 -ryZ 3
: u (z) A ‘ 2 ||
—_ = = s g 1+r1 1+r] 1+r2
v(z) u,(z) T+r T+r
% g ] I T, 3
1 Z n - 0
T+r T+4r
3 1 ] - b .JL — o

0.5(1+rg) (T4ry) (1+ry) 27 (16)

v(z) =

-1 -
1+(r] ro + 1 rg) zZ o+ rg z 2

This is the transfer function of the vocal tract and it has no zeros
and only poles. The denominator is a polynominal, D(z), of the order

of N, i.e.
where N is the number of the tube

N .

= =J

h(z) T jz] 3 2 and 3 - filter coefficients.

As a special case, if rg = 1 (i.e. z

g
Nth order filter coefficients is equal to the reflection coefficient at

th

= ®) then, ay = Iy Thus the

the N° junction of the tube.




A1.2 The Original Version of the Periodogram Algorithm

The original periodogram algorithm can be described as
follows: By using the Buys-Ballot table (Table 2.1) one can form
means a(1), a(2), - - - a(N) of the values of c(n) in the individual
columns by dividing c(n) by m. That is, a(n) = c(n)/m. Then the
correlation ratio n is defined as the ratio of the standard deviation

of a(n) and s(n). That is,
N mN
n(N) = [l I (a(n) -3)2} [—‘- T (s(n) —E)Z} (1)
N n=1 mN n=1

Where a and s are the means of a(n) and s(n) respectively. The number

of rows (m) are obtained from the total number of samples (T) by

N

large number of values of N and the results plotted as a curve in which

m = [J:] . The value of n(N) is calculated in this way for a
Integer

N is the abscissa and the corresponding value of n(N) is the ordinate.
This curve will be called a periodogram. It is easy to see why the

ratio of the standard deviation of a(n)'s to the standard deviation of
the s(n)'s is a suitable indicator of periodicity. When a periodocity of
period N exists, the standard deviation of the a(n)'s has a value much
larger than when a periodicity of this period does not exist in the

periodogran.

Periqdogram for a Digital Sinusqid

Let us assume that the digital sinusoid is corrupted by noise,
and we can write:-
u(n) = Asin (ng8) + p(n)
Denote by % the standard deviation of the p(n)'s and by o the standard
deviation of the s(n)'s, Since the standard deviation of sin (n @) is

1 and there is na correlation between p(n) and A sin (n 8) we have

02 = 3 A2 + sz



] Un

If m rows are considered in the Buys-Ballot table, than the standard

deviation of the c(n)'s is,

sin2 m No
g = 12 — % 4 w7
2 . 2 No P
sin. —
2

The standard deviation of the mean a(n)'s will be:-

R
m
Therefore the correlation ratio n(N) = y/a2 = B/mzo2
? sin2 m O
n(N) = L S (% A2 + cpz)
2 m2 Sinz %? m P

This is the equation of the periodogram of a digital sinusoid
corrupted by noise.

One can see that the calculation of n(N) (equation 1) is
computationally inefficient, though this periodogram gives accurate
pitch estimate and also good noise reduction. An alternate form of

equation 1 is,

i N _ 1 ™ _
n(N) = [+ Y la(n) -3||/f— I Is(n) -5]
N n=1] mN n=1

Replacing the multiplication of equation (1) with the modulus function

is acceptable and causes a large reduction in computational effort.

Al,3 Theory of "Real Zeros" and "Complex Zeros"

Bond and Cahn (1958) and Voelcker (1966) explain in detail the
concepts of zeros (including real and complex zeros) to a band limited
signal. Let us briefly explain this concept considering an example.

Consider a real signal of a single frequency wave combined with a dc
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bias voltage.

A - B cos wt A, B20O

s(t)

]

A- B [exp(wt) + exp(-jwt)] 1
2

Case I

When A=0 (i.e. ne dc camponent available), then s(t) has roots

at t = L, 3n . klug g = = = = = and it crosses the real time axis t at

W 2w 2w
these points. If this occurs then we say the "real zeros" of s(t) occur

at regular intervals. The real zero locations are shown in Figure Al.6a.

Case 1T
When A < B one can see that the zeros of s(t) will start to
converge in pairs as shown in Figure Al1.6b and when A=B then s(t)

vanishes at points t=0, aul s An as shown in Figure Al.6c. The zeros

W W
are still called real zeros as they cross the real time axis.

Case II1

When A > B then s(t) will never vaﬁish and the signal has no
real roots as can be seen in Figure Al.6d. However, if t is generalised
to a complex argument T = t + ju (T is a complex variable whose real axis
coincides with the real time axis) then we can introduce the concept of
"complex zeros". To find complex zeros replace t with T =t + ju in the

equation 1.
Assume y = T and an substituting this in s(T) we get:-

s) = A-B[-l]= '—B[yz—%yﬂj
J 2y B

The roots of this equation are obtained when s(y) = 0, i.e.

Yo -By o0 s y=eMNY L1 g ATTEY
B



Taking logarithms of both sides we get,

t+ju = 2™ 3 o0 (dasvaz-p2y)
B

W W

% [Z'rrn + j cosh™! (A/B):I when A > B
The location of the complex zeros is given by the above equation. From
Figure Al1.6d it is clear that a larger dc bias signal will move the
complex zeros further from the real time axis. The complex zeros are
symmetrical about the real time axis. The minima of s(t) (Figure Al.6d)
provides the clue regarding the location of the complex zeros. When
negative dc bias is present then the maxima of s(t) provide the clue
regarding the location of the complex zeros. However if |s(t)| is
considered then the complex zeros are always related to the number of
minima of the waveform, The complex zeros can be converted to real zeros
by a single differentiation. The differentiation eliminates the dc bias
and the differentiated waveform has a zero mean. In general a band
1imited signal has "real zeros" as well as "complex zeros" and this
applies to speech waveform too. It is clear also that the complex zeros
are a subset of the zero-crossing counts of the differentiated speech

waveform.

Al1.4 Parallel Form Representation of the Vocal Tract

Let us consider the following transfer function of the vocal

tract.

4
H(z) = 1 . 1 - Z

]+b]z']+bzz'2 ]+c]z']+czz"2 (zz+b]z+b2) (22+c]z+c2)




x](n)+x2(n)

+>_.
d (n)+x](n)

1 %3

Figure A1.8 Parallel form representation of the vocal tract




1l

3 A z+B A, z+B

Let Hy(z) = z = 11 + 22
1 2 2 2 2

(z +b]z+b2) (z +c]z+c2) z +b]z+b2 Z7+c Z4Cy

23 = (Alz+B]) (zz+c]z+c2) + (A§+B2) (22+b]z+b2)

Equating the ceoefficients of 23, 22, z], z0 on both sides and then
solving the equations obtained, we get,
-b
A, = -2 andB, = —2
1 p 1
1 P
2
(Cz'bz)

(b,cy=b,c

Where Py = (c]-b]) + )
2“1701%

-

A2 = Lf:](b]cz-bzc]) - cz(cz-bz{‘ Py

By = |Pa(cabp) - by(bycy=bycy) P

2
where pp = (b]cz-bzc]) (c]-b]) - (c2-b2)

-1
Therefore H(z) = + + +

-1 -2 -1 -2 -1 -2 3 -
1+b]z +b22 1+b]z +b22 ]+c]z +C)Z G2

f I o

X1(2) X5(2) X3(z) Xq(2)

1 2

+sz

The above form suggests a parallel form implementation and it is depicted

in Figure A1.8. The impulse respanse is gjven as,

h(n) = xl(n) + xz(n) + x3(n) + X4(n)



A1.5 Recursive Solution far the Autocorrelation Equations

Equation 2.24 can be solved recursively to obtain a1s aps

az = - - ap. The solution is given by,

e - go)
S G-y i-1

ki = |R(i)- Y a R(i-3)|/[E 1§38y
=

(1) .

ai ki

a§i) = a§i']) - ks agfgl) 1535 €1

e = (1-ky) g7D)

a, = agp) 183sp

where p - number of poles.

The recursion allows the prediction of the Tth

order filter
coefficients from the (1’—1)th order filter coefficients in such a way
as to minimise the short-time average prediction error (E). a§i) is
the jth predictor coefficient for a predictor order i where ki is the

PARCOR coefficient for a predictor order i.

A1.6 Derivation of the relationship between forward prediction error

and PARCOR Coefficients
th

For an i order filter the forward and backward prediction

errors can be written as:-

. 1 .

e}(n) = s(n) - jz a§1) s(n-3) 1
. i .

e;(n) = s(n-i) - jZ1 a§1) s(n+j-1) 2



s
!

Cansidering only equation 1 and rewriting it in the following form:

- -1 ,
eb(n) = s(n) - ;E] () stn-d) - o) stn-i) ;

i) _
where a% ) - ki

On substituting equation 1 {in the ahove equation 3, the following

equation is obtained:-

. i-1 .
e%(n) = s(n) - ;Z] a§‘“1) s(n=J) + Ky Z a(1 1) n-j) - kys(n-1)
eéi-])(n)

On the above equation first replace j by j'+i and then replace j' by

-j. Hence:
ei(n) = el n) + Z a{T™1) s(neg-i) - k; s(n-1)
= el (n) -k [s(n-i) J; a{™™ 1) §(nj- 1)}
| eé‘:”(n-l) |
Therefore,
epn) = ef ) - Ky el Nin1) 4
similarly, ed(n) = e{""V(n) - ks eIV (n-1) 5

Equations 4 and 5 define the forward and backward prediction error

sequences for an ith order predictor in terms of the corresponding

prediction errors of an (1-1)th order predictor and 1th PARCOR coefficient.
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APPENDIX 2

A2.1 Amplitude response and ¢oefficients qf the 40th

order lowpass filter

A2.2 A simplified computational algorithm for implementing

FIR digital filters

A2.3 A computationally efficient multiplication technique

for a 16-bit microprocessor

A2.4 Examples of median smoathing of a sequence with sharp

and long duration discontinuities.
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A2.2 A simplified computational algorithm for implementing FIR

digital filters

In considering the implementation of FIR digital filter it
is useful to represent the filter by the block diagram shown in
Figure A2.2.

The output of the filter y(n) is given by,

y{(n) bos(n) + b]s(n-l) + bzs(n-2) + ----- + bN s{n-N)

N
kzo by, s(n-k) where N is the number of filter coefficients.

i.e. y(n)

An efficient procedure of solving the above filter equation is given

below:-

(a) Each new input speech sample is stored in two lacations, displaced

by N samples in the array (Figure A2.3).

(b) Maintain the index pointers to show where s(n) is to be stored in

the array.

(c) For each new input speech sample the pointer location is indexed by
one location, and must be checked to ensure that it remains within

the bounds of the array.

The figure A2.3 shows the pointer locations, direction of movement of

th

the points, and the array length for n™" and (n+1)th samples.



A2.3 A computationally efficient multiplication technique for a 16-bit

microprocessor

The usual form of Booths' algorithm can be described as follows.
If x (the multiplier) is represented by a k-bit binary number in 2's
complement notation, the decimal value of x is given by:-
k-2 .
- _ok-1 i
Xjp = "2 Xy * 'Z 2" x, (1)
1=0
On multiplying equation 1 by 2 and then subtracting equation 1 from it,
one obtains:-

= (- - k-1 k-2 .
X1 = (=87 X, 1+ 27 x ot 270 x ) ¥ 27 (x5 X-2)

- 1 0
20 (X g " X_g) * - 42 (xg - x]) +27(x_q - xo)

. k-1, K2
ie. X9 = (X _p = X_q) 2 + 1

2" (x_q - %) (2)

when x_; = 0, equation 2 is known as Booths algorithm for grouping
2 bits.

Consider now the case when the multiplier is a 12-bit number
(k=12). By grouping 5-bits together and manipulating equation 2, X10

could be re-written as:-

L k-4
Xp0 = (=B + 80+ DXz + X * X g) 2

k-8
t(-8xy _g) +Ax o+ WX g+ X gt X g) 2

+ (-8x, _g + 4x + 2x

0
k-10 ¥ X1 Xeaq2 t Xe-13) 2

_ 8 4 0
Xjg = P32 +P, 2 +P, 2 (3)



1o

where k = 12, and

[-87
r - p- -
P3 M %o X *g X 4
P2 x7 x6 x5 x4 x3 2
:
AT i T T T R
- 1

Equation 3 is called the extension of Booths' algorithm (e.b.a.). If all
the possibilities are considered then P3 and P2 can take any of the values
+8, +4, x2, 1, 0, +7, 6, *5, #3. P] takes all the values except +8 since
X_1 is always zero.

To implement the above algorithm on a 16-bit microprocessor, the
multiplicand must be restricted to 12 bits or less. The multiplier can be
either 16, 12, 8 or 4 bits, but in this case 12-bit multipliers are
considered.

Let Y10 be the muitiplicand and the multiplier X10 will be
represented by equation 3. If z = Y10 M0° then using equation 3, z

could be written as:-
8 4 0
z = (P3y]0) 2"+ (P2y10) 27 + (P1y10) 2 (4)
Equation 4 will be used to perform multiplication on the microprocessor.
The following steps are executed to obtain the result z:-

Step 1: Perform (P]y10) and give arithmetic shift 4 bits to the right

Step 2: Perform (szlo) and add it to the result obtained in step 1,

then again perform an arithmetic shift 4 bits to the right.
Step 3: Perform (P3y]0) and add it to the result obtained in step 2,

again perform an arithmetic shift 3 bits to the right.

The result z will be a (2x12-1) 23-bit number. If P], P, or Pq take
any values *8, +4, +2, 1, 0 then calculation of (P]y]o), (szlo) and
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‘Requ1red Required
12-bit coefficient Type of nu??gzkof nu@?ggkof
in 2's complement ceefficient cycles cycles

(e.b,a.) (mim.i.)

000000100100 Positive 87 146
010101010101 Positive 89 146
100000010010 Negative 91 146
1170011001100 Negative 90 146
111100010101 Negative 92 146
110101001001 Negative 99 146
100010101010 Negative 103 146
000100010001 Positive 82 146

Table 1




(P3,y]0) could be done efficiently with only arithmetic shifts.

This algorithm was impiemented on a 16-bit microprocessor
(Intel 8086), and Table 1 gives the comparison between the extension
of Booth's algorithm (e.b.a.) and the machine multiply instruction
(m.m.i.). This comparison shows that the e.b.a. can take significantly

less machine time.
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y(n) FIR filter

Figure A2.4 Median smoothing and linear smoothing

of an artificially created input sequence

*1 (Hanning filter) ™
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A2.4 Example of median smoothing of a sequence with sharp and long

duration discontinuties

3 Point Median

Consider, three at a time, 17 input data values of y(n) as
shown in Figure A2.4. Arrange each set of three in order of magnitude
and take their median. The median of y(n-1), y(n), y(n+l) is y(n)
provided y(n-1) § y(n) $ y(n+1)

or y(n-1) 2 y(n) % y(n+1)

For the first and last data points there is an end-value problem.
In this analysis the end-values y(0) and y(18) were replaced by y(1) and
y(17) respectively. The artificially created input sequence y(n) is given
by

|
4, 4, 2, 4, 4, 4, 1,1, 1, 1, 4, 4, 3, 4, 1,4, 4 ; 4

%
y(0) y(18)
The input and output waveform of the three point median is shown in
Figure A2.4, and the output sequence is given by w(n):-
4! 4’ 4! 4’ 4’ 49 ]’ ]9 l! ]9 4’ 49 4’ 3’ 4) 4’4
If w(n) is further smoothed by passing it through yet another three point

median then the result will be a rectangular pulse.

Linear Filter

Consider a Hanning Filter with impulse response

h(n)

$ n=0
3 n=1
i n

2
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The output of the linear filter, f(n), as shown in Figure A2.4, is
4, 4, 3.5, 3, 3.5, 4, 3.25, 1.75, 1, 1, 1.75, 3.25, 3.75, 3.5, 3, 2.5,
3.25.

From this demonstrative example, it is clear that a linear filter
smears the input sequence, whereas the three point median preserves

sharp and long discontinuity.



APPENDIX 3

A3.1 Description of the minicomputer interface

A3.2 8-bit compressed PCM (A-Law) to linear PCM (2's complement

number) conversion table.



Figure A3.1 Circuit Diagram
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A3.1 Description of the minicomputer interface

The 16-bit minicomputer (LSI-11) is interfaced via an interface
module (DRV11-P) to the external world in order to read the digitised
speech. This module is supplied with the logic necessary for interfacing
to the minicomputer bus. The logic provides 16 bi-directional data
lines with associated control signals for data input and output. The

hardware which is interfaced to this module consists of the following:-

(a) Coder - The purpese of the coder is to convert band 1imited

analogue signals to standard companded PCM.

(b) D/A Converter - This is interfaced to the data bus and to

an ascilloscope.
(c) Relay - This is used to control the tape recorder.

(d) Latches, buffers and control gates - These are used to buffer

data lines and to latch

control and data signals.

(e) Amplifiers and lowpass filters - The lowpass filters limit the

frequency band of speech and
amplifiers are used to adjust

its level.

The coder (ZNPCM1) converts the band limited speech signals into
8-bit compressed PCM samples by delta sigma modulation (DSM) as an inter-
mediate code. The compressed PCM (A-law) is clocked out serially at the
rate of 64 kHz. The coder timing waveforms (2048 kHz, 64 kHz, 8 kHz, ETV)
are generated by a separate clock circuit connected to the coder as shown
in Figure A3.1. For further details of the timing waveforms refer

Ferranti application report on ZNPCMI.



Hob

Figure A3.2 Photograph showing the interface module and the
hardware connected to the computer interface



The serial output of the coder is connected to a shift
register (74164) clocked at 64 kHz, Data on the parallel shift register
outputs is clocked into a 8-bit latch every 8 kHz. In this way the
single bit 64 kHz code is converted to a 8-bit 8 kHz format for input
to the computer. The 8 kHz clock also triggers a monostable which
provides the 'data ready' signal to the computer, On receiving this
signal the computer reads the output of the latch and stores the speech
sample in memory (8 bit compressed PCM), A delay is jncorporated into
the speech input software routine for synchronization,

The 16 output data lines are connected to latches, the most
significant 12 latch outputs being connected to a D/A while the least

significant 4 outputs are used as follows:-

(a) 2% bit This bit is used to control a tape recorder via a

transistor and relay as shown in Figure A3.1.

(b) 2" bit - This bit is used to light the bulb. That is to
inform the user that the tape recorder is turned on
and background noise samples are being stored by the

computer.

(c) 27 bit - This bit is used to Tlight another bulb (Figure A3.1)
as soon as the user presses switch 1 informing the
computer that speech utterance is ready for reading

in the speech samples.

(d) 23 bit - This bit is used for two purposes:-
(a) To send external trigger signal to oscilloscope
when the results of the analysis are displayed

on the oscilloscope.

(b) To check the switch 1 position (On/0ff).
Figure A3.2 shows the interface module and the hardware connected to

the computer interface.



Let 'A-Law' Input Be:-

Then output given by:-

A3.2 8-bit Compressed PCM (A-Law) to Linear PCM

Sgn
f

Sign

(2's complement number) conversion table

S

Segment Code

Sgn S3 Sy Sy
1 0 O
1 0 0 1
1 o 1 0
1 o 1 1
1 1 0 O
1 1 0 1
1 1 1 0
1 T 1 1
0 0 0 O
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 T 1 1

So

f

s] 14 I

f

Interval within segment

msb 1sb
a/a a a aaaaaaaaa/
13 %12 11 %10 %9 %8 %7 % %5 % %3 Y% %
6 0 0 0 0 0 0 0 I, I I, I, 1
0 0 o0 0 0 0 0 VI, Iy I, I 1
o 0o 0 0 0 0 1 1I,I; I, I, 1 0
o 0 0 0 0 VI, I;I, I, 1 0 0
0 0o 0 0 11, I3, I 0 0 0
o 0o o0 1 I, I;1I,I, 1 0 0 0 0
o o 11, I I, I, T 0 0 0 0 0
0 1 I, I I, I, 1.0 0 0 0 0 O
LA S S R I I R A A T
11 1 1 1 1 0T, 1,0 I
1T 1 1 1 11 0, I;T, ;10
11 1 1 1 0T, T, T, 5,01 000
1T 1 1 1 0, I, T, ; 1.0 0 0
1 1 1 0 I, 3T, I 1 0 0 0 0
1 1 0 I, I3, ;,; 1.0 0 0 0 0
1 0 I, I3 I, I; 1.6 0 0 0 0 0
— i |
/

13 bit Two's complement 0/P
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A4.1 Equations relating to the 15¢ and ond partial derivative of the

error surface E to yij

The distance between ith vector and jth vector is given

by:-

d.., = v// % (Yo=Y )2 1.
iJ k=1 1k 7k

From equation 5.7, E is given by:-

* 2
(dij-dij)

N
E = 1 )
Cc 'i<

j *
dij
N,
where ¢ = ) (d;.) is a constant.
i<j 1

The 1St partial derivative can be found by differentiating equation
2 with respect tq yij’

2

*
o1y a0 Metd e Fo gy M
= * o * 1
N [d) -d
. 2 ik ik -
T | Wig ! >
ik ik
Similarly the an partial derivative can be obtained and it is given by:-
2 N (Vs sy, )2 d -d.
_3_E__ =-_2_ Z ] (d* 'd- ) - 1J kJ (-‘ + 1k 1k)
ays: ¢ k=1 .d%, d, 1k "k d, d.
1] ik Tik ik ik



A4.2 Selection of the initial configuration in 2-D space

Sammen suggests that the itnitial configuration can be found by
projecting the L-dimensiqnal vectors orthogonally on to 2-dimensional
space, spanned by the 2 original co-ordinates with the largest variances,
This is done in the case of PARCOR contours in the following way.

Let there be N contours in L-D space where each contour has
fifty frames and each frame has L PARCOR coefficients (k), The variances

(V) in L-D space is given by,

2 2 . 2
Vy o= ok ok t * Ky
2 2 2
V2 = ki * Kyt - t ke
1 1 ' 1
1 ] | 1
: : | :
1 1 i 1
o2 2 2
where
2 2 2 . 2
kiy = Ky oKy t o * Ky(Fs0)
2 2 2 . 2
koy = kap1y * oKpqpey * T + k2(Fs0)
]
: E :
i i :
- : |
2 2 2
T L T2 Tt + Kn(F50)
Fi {s the ith frame (i.e. F1 is the 15t frame, F50 is the 50th frame).

Now V, to V| are arranged in decending order and two highest variances
are selected. For example, if V, and V3 are the two highest variances,

then the initial configuration will be,



"ol

mp o, etk o * %2(Fs0)
Y1 © = = « Contour
) Yi2] 90 {Kypry * K32y t T Ka(eso) 1
: L I L2
YN T = — < Contour
+ e mmecccmccooe- N

el %0 [k3(pn)

A similar procedure is applied in selecting the init{al configuration

for the other parameter contours.



A4.3 Intrasegment Variance

Speaker 1 Speaker 2
Segment Segment
Number  Variance (PC) Variance (IC) Variance (ZDC) Number  Variance (PC) Variance (IC) Variance (ZDC)
1 5.74 272.16 12,17 1 5.22 42.06 27.92
2 11.01 119.96 9.43 2 5.73 20,22 25.40
3 13.05 74.99 8.95 3 6.50 12.51 12.66
4 18.94 85.23 3.57 4 5.28 41.94 16.51
5 17.58 94.95 11.74 5 9.79 47.67 13.48
6 23.81 204,98 13.74 6 12.55 170.16 17.11
7 10.83 364.31 77.23 7 4.75 51.04 48.39
8 16.97 23.71 30.00 8 5.99 54.28 22.54
9 42.28 75.37 7.89 9 13.03 73.55 14.20
10 20.90 103.52 10.10 10 5.09 50.17 7.76
1 3.50 38.86 8.50 1 3.66 16.19 34.44
12 1.29 98.75 13.20 12 3.98 29.06 60.00
13 4.17 105.48 5.14 13 5.27 35.46 42.43
14 2.92 70.41 8.16 14 7.79 38.99 46.07
15 141.54 72.95 11.29 15 305.40 100.41 30.79
16 401.43 95.02 7.45 16 205.89 65.27 23.32
17 6.74 204.65 12.15 17 2.79 30.45 30.33
18 10.03 70.94 6.49 18 2.88 38.16 16.22
19 3.89 67.57 5.24 . 19 9.06 21.75 2.88
20 73.71 8.10 5.11 20 93.64 8.75 6.86

PC - Pitch Period Contour IC - Intensity Contour IDC-zcc of differentiated speech contour

by,
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A4 .4 Results of the F-ratio analysis

Segment Number F-ratio (PC) F-ratio (IQ) F-ratio (ZDC)

1 65.32 1.38 1.24
2 93.59 5.98 0.70
3 92.30 5.15 2.68
4, 86.94 16.36 1.62
5 103.19 25.52 13.38
86.94 5.34 4.33
7 100.06 9.77 2.29
8 69.24 1.77 9.06
9 34.43 10.47 2.22
10 69.24 14.06 0.15
[ 212.86 5.33 11.16
12 297.28 3.34 14.59
13 217.72 0.99 12.27
14 133.76 1.56 14,72
15 22.57 2.92 33.63
16 1.42 0.29 27.61
17 15.12 2.52 45.53
18 35.24 5.83 47.74
19 . 67.33 1.58 58.03
20 3.37 0.67 19.23
PC - Pitch Period Contour IC - Intensity Contour

ZDC - zcc of differentiated speech contour



Trial K1 K2 K Ks K6 K7 ks K9 ko Ku o Ke
1 0.72 -0.07 028 -0.42 -041 -0.48 -045 037 011 -0.20 005 -0.09
2 079 -0.15 021 -0.40 -0,49 -043 -051 020 023 -0,17 0.04 -0.06
3 077 -0,08 028 -046 -041 -0.43 -0.39 033 015 -021 007 -0.13
4 060 005 036 -0.19 -0.35 -0.45 -0.50 -0.20 056 001 005 -0.01
5 079 -0.07 017 -0.38 -0.38 -0,36 -0.43 043 039 -023 004 -0.06
6 090 -0.29 001 -0.36 -0.46 -0.29 023 018 015 004 019  0.02
7 080 -o.u 021 -048 -045 -0.39 -0,32 027 041 -021 012 -0.08
8 081 -0,09 012 -0.44 -045 -0.36 -047 039 044 -019 010 -0.09
9 0.76 -0.07 023 -0,30 -0.46 -0.32 -0.49 037 047 -0.15 -0.02 -0.03
10 0.74 -0,03 037 -053 -0,28 -053 -0,29 045 0,28 -0.06 0.07 -0.09
Qﬁﬂe 077 -0.09 022 -0,39 ,O -0.40 -0.36 0.28 032 -0.14 007 -0.07
Standard
Doierc 007 008 010 009 006 007 021 018 015 009 005 004
Range 030 034 036 034 020 024 075 066 044 027 020 015
Without pre-emphasis
Trial K1 k2 K3 K4 K5 K6 *7 K8 K3 KIo K1 KR
i -0.08 -0.37 032 020 010 -0.16 -0.70 -0.28 0.04 -0.21 -0.05 -0.12
2 0.04 -0.31 030 026 -001 -0.15 -0.66 -0.44 000 -0.20 -0.08 -0.11
3 -0.04 -0.36 036 019 004 -0.17 -0.65 -0.31 006 -021 -0.01 -0.17
4 -0.24 -046 011 023 024 006 -035 -0.74 -0.11, -0.13 -0.07 -0.06
5 -0.03 -0.24 028 021 009 -0.02 -0.68 -049 015 -0.13 -0.00 -0.10
6 023 -0.09 027 026 -0.06 -049 -0.31 -0.23 -011 -0.23 -0.05 -0.08
7 001 -0.29 039 022 -002 -021 -0,59 -0.53 012 -021 -001 -0.09
3 001 -0.20 034 021 -0.05 -0.07 -091 '-0.55 012 -0.17 0.02 -0.13
9 001 -020 034 021 -005 -007 -0.71 -055 0.12 -0.17 002 -0.13
10 -0.06 -0.32 022 028 -001 002 -0.68 -056 008 -0.06 001 -0.08
Jzﬁﬂ; -0.03 -031 03 022 005 -014 -060 045 0.03 -0.17 -0.02 -0.10
Standard 011 011 009 005 010 015 014 015 009 0.05 0.04 003
Deviation ’ ’ : : : ’ ’ : : : : :
Range 047 0.37 034 018 030 055 040 051 026 017 011 011

With Pre-emphasis

Table A4.5 Table showing the effect of pre-emphasis on the Burg®s PARCOR

Coefficients
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APPENDIX 5

COMPUTER PROGRAMS

Fortran program listing of endpoint detection algorithm
Assembly program for input of speech samples

Assembly program for qutput of speech samples

Fortran program 1isting of the TDPA implementation

Assembly program of Intel 8086 p-processor to implement

TDPA and AMDF

Speech synthesiser program

Fortran program listing of the cluster analyses

Fortran program listing of the speaker verification system

Fortran praogram listing of the digit recegnitian system
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o

n

10

200

A5.1 Fortran prograia listing of endpoint detection algori timi

ENDPOINT ANALYSIS

THIS PROGRAM FIRST CALLS A SUBROUTINE 10 READ
0-BIT COMPRESSED PCM SAMPLES.THEN IT FINDS
THE ENDPOINT OF THE UTTERANCE AND STORES THE
SAMPLES ON DISC.

DIMENSION 1S (17000)»12E<170)rAM<170)
L1=s17000

"INPUT' IS A SUBROUTINE URITTEN IN
ASSEMBLY LANGUAGE.

CALL INPUT(LIFIS(I))

MEASURE STATISTICS FOR BACKGROUND

SILENCE USING FIRST 1000 SAMPLES

ONLY.

IMAX=0

IAVZ=0

AVM=0

DO 200 J=I»10

N2=J%100

CALCULATE BACKGROUND SILENCE ENERGY AND
ZERO-CROSSING COUNTS.

N3=N2-V9

NZERO=0

EN=0 =

DO 10 1=1»100

N4-N3-1+1

N5=N41 1

IF <(<IS(N4).GT.O).AND.(IS(NS).LT.0)).0OR.<IS<N4>
1.EC(.0) «OR=( (1S (N4).LT.O) .AND. (IS(NS) .GT.0)))
2 NZERQ-NZERO+1

EN=ENFf(ADS(FLOAT(IS<N4>)))

CONTINUE

CALCULATE MAX. NUMBER OF ZzCC.
IF(IMAX.LE.NZERO) IMAX=NZERO
IAVZ=IAVZTNZERO

AVM AVMIEN

STORE ZCC AND ENERGY.

1ZE(J)=NZERO

AM(J)-EN

CONTINUE

IAVZ«IAVZ/10

AVM=AVH/10

CALCULATE SID | UR zcCC.

1STD-0

I»0 13 1-1»10
1SIH-ISTDI(JAVZ 1ZL< J) >**2
coniinije

ISID-1SIH /10

SET I»IRESUOI D FOR zCC.

I1/L 1AVZT(JSTD)

I /PE /»AVM »1AOZ »1 (H/L » 1 MAX

FORMAT(/7 AENE='»F12.2*" AVE.ZCC=7»13»
17 IHR.ZCC-" »13» 7 MfiX/CC-'*13)

11(1 MAX =Gl .11HZE) (il) 10 1

I TH/ZI “IMAX

GO 10 1

11

20

101
92
90

©

100

400

TYPE 3
FORMAT(* **** GET READY TO SPEAK AGAIN *¥ **')
GO TO 4

SET-0

NF=0

IFINI=0

THE MAJOR LOOP STARTS HERE.

DO 400 J=11r(170-NP)

N2=J%100

N3=N2-99

NZERU=0

EN=0

CALCULATE ZCC AND ENERGY.

DO 20 1=1»100

N4=N3-1+1

N5=N4f1
IF(((IS(N4).GT.0O).AND.(IS(N5).LT.0)).0R.(IS(N4)
1.EQ.0).OR.((IS(N4).LT.0O).AND.(IS(NS).GT.0)>>
2 NZERO=NZEROf1

EN=EN+(ABS(FLOAT(IS(N4))))

CONTINUE

STORE 2ZCC AND ENERGY.

1ZE(J)=NZERU

AM(J)=EN

IF(IFINI.EQ.I) GO TO 400

IF("M(J).GE.SET) GO TO 100

SET THE THRESHOLD ONCE THE MAX.ENER.

IS KNOWN.

THR=SET/20~

IF(AM(J).GE.THR) GO TO 400

IF(J.GE.130) GO TO 8
NF-130-3

MEN' IS INITIAL END POINT.
IENB=1J

IFINI=1

DO 101 1=1r100
IF(AM(IPGINT-1).LT.THR) GO TO 102
IF((IPOINT-1).LE.10) GO TO 92
CONTINUE

TYPE 90

FORMAT(7 BACK-GROUND NOISE LEVEL IS HIGH7)
STOP

TYPE 9

FOh'MAH7 FULL UTTERANCE 1S NO! SAMPLED7)
Go TO 11

IF((IPOINT-1).LE.10) GO TO 92
STARTING BLOCK IS DENOTED BY *ISTART *
ISTART=If OINT-I

GO TO 400

SET-AM(J)

IPOINT=J

CON!INUL

USE ENERGY THRESHOLD 10 MOVE IMF
INITIAL START AND END PUINIS.
XTHE-THR

IF (THR «GT . (1 .5*AVn> ) XIHL-1 .SfAVFI



51
26

52

46

4555

5555

32

96

501
uvi4

86

IAEND=ISTART

DO 25 1=1»12

IF< (AM(ISTART-HI >.GE .XTHE) ) GO TO 28 9252
GO TO 27

IAEND=ISTART-I

CONTINUE

ISTART IS THE ACTUAL INITIAL FRAME c
FOUND BY ENERGY THRESHOLD.

IAINIT*IAEND 255
USE ZCC THRESHOLD TO FIND THE INITIAL

FRAME»

DO 26 1=1»12 600
IF (<IZE<IAEND-IT1).GE*1THZE).AND.(IZE(LAEND-I)»GE=ITHZE)) 300
1 GO TO 51

GO TO 52

IAINI*IAEND -1

CONTINUE

ISTOP- INITIAL END FRAME.

ISTOP=IEND

XTHE=THR

USE ENERGY THRESHOLD TO FIND THE END

FRAME.

IFCTHR.GT*(2.1A0M)) XTHE«2.*AVM

DO 46 1=1»29

Isu =1

IF<(AM<IEND11-1).GT.XTHE))
GO 10 5555

CONIINUE

GO 10 5555

1STOP“IEND tIfl

GO TO 46

IF <ISU.GE.29) GO TO 501
USE ZCC THRESHOLD TOFIND END
OF SPEECH.

IEPS*ISTOP

DO 32 1=1SU»29
IF'UI = IEF*STI- 1

IPU2=1EPSFI

IPU3 IEPSTL1T1

IPU4=IEPSTIT2

IF ((1ZE(IPU1) .GE. 1111/E) .AND. (1ZE<IPU2) .GE.ITHZE))
1 60 TO 96

CUNTINUE

GO TO 501

IF(<IZE<IPU3).Ul .ITHZF).AND.(IZE(LPU4).GE=ITHZE))
1 fSTOP*IPU4

GO TO 32

TYPE 094 »ISTART »IEND»IPOINT »IAL1NL1»ISTOP

FORMAI<' IR="»13»"' ER~#»13»" M.ED*'»13»

1" AIN='»13»' AFl=e »13>

NSA=(ISIOP-1AINI11)1100

IIL-<1AIN11 1)+ 100
IRLCU NSA/100

IYPL UGB »NSA» IRF.CO
FORMAI('" NLAMP '»16x»"
1HLOCR ISTOP-IAINIF1

GO TO 4555

FRAME

NUMDER OF RECORDS"'»14)

TIME=<FLOAT<IBLOCK)*12.5>

TYPE 9252»TIME

FORMAT!" DURATION OF THE UTTERANCE™*'»
1F12.3»"' hiLLISEC ' >

IBEG=1AINI-1

CALL DISPLY <NSA»IS(IBEG*100))
URITE THE SPEECH SAMPLES ON DISC.
URITE(2»255) (1S (1 >»1=ITE»NSALIIE>
FORMAT <1017)

DO 300 1=1» (170-NF’)

URITE(3?2600)1 »1ZE(lI)»AM(l)
FORMAT(3X»I13»4X»13»3X»F12.1)
CONTINUE

STOP

END



»
R7
>
INPUT1
OUTPUT

TAPEON
SPEKON
REDYON
TAPEOFF

i

1

i
DELAY
store:
inter:
ADDRES:

AS.2 Assento)y prograia for input of speech samples

PROGRAM FOR READING

THE INPUT SPEECH SAMPLES
THIS ASSEMBLY PROGRAM IS DIVIDED INTO TWO
SECTIONS.FIRST SECTION R'EADS INPUT SPEECH
SAMPLES VIA THE INTERFACE CONNECTED TO
PDP-11 COMPUTER.
SECTION-2 CONVERTS THE 8-DITCOMPRESSED PCM
TO LINEAR PCM SAMPLES.

L.TITLE INPUTSAMPLES

*GLORI. INPUT

REGISTER ASSIGNMENT

~X7

ADDRESS OF THE INPUT il OUTPUT PORTS
=177774

=177776

BIT ASSIGNMENT FOR THE OUTPUT PORT IN ORDER
TO SWITCH ON THE TAPE RECODER.

=000003

=000005

=000002

=000000

ONCE THE LSD OF ADDRESS IS SET.A DELAY MUST BE
INTRODUCED IN ORDER TO SWITCH ON THE RELAY OF THE
TAPE RECORDER.LET THE DELAY BE 1 SEC.

=177777

.word o

.word o

.WORD O

MAIN ENTRY OF THE ASSEMBLY PROGRAM.

START THE TAPE RECORDER.

MOV #REDYON»6»0UTPUT
MoV 1DELAY»R3 »START THE DELAY LOOP
DEC R3

BNE 1s

DEC R3

BNE 8%

MoV »TAPEON»8#0UTPUT
DEC R3

BNE 4+

DEC R3

BNE 6%

MOV #001750»R4

GElI THE NUMBER OF ARGUMENTS FROM THE MAIN PROGRAM

MOV (R5)+»R1 »NUT USED FOR ANY PURPOSE
GET 1HE VAI.UE OF 'N'

MOV €e<R5)f»R3

MOV R3rSTORE »TEMPORARY STORE OF R3
SUB R4»R3

GET IHE START ADDRESS OF LOG: ISAMP(I)

MOV (R5>F rhl

MOV R1»ADORES

IN ORDER 10 READ THE INPIJ! SAMPLES CHECK WHETHER
DA 1A READY SIGNAI IS AVAIIl ABLE.I .E:IF THE MSB

i rill. REGISTER 177776 1S SEI THEN READ THE 1NPU
SAMPLE »UTIIEfttJ1SL LOOP.

MOV &#INPUT 1»R2 $READ THE INPUT PORT

come:

SEGZER

negati:

BPL 2% »LOOP IF POSITIVE
STORE THE SAMPLE IN LOCATION

MoV R2» <R1)+

DEC R4

BNE 2% »D0 TILL '1000"

LIGHT THE RED
fSPEKON»CtOUTPUT

MOV
A DELAY
MOV
MOV
DEC
BNE
MOV
MOV
BPL
MOV
DEC
BNE

BULB

OF 250 MS

R3»INTER

#0000601R3

R3

5%

INTER»R3

6#INPUT1»R2

7%

R2» <R1)+

R3

7% »D0O TILL
RECORDER.

STOP THE TAPE
#TAPEOFF»e#OQUTPUT

MoV
CONVERT THE COMPRESSED
LINEAR PCM.13-BITS
MOV STORE»R3
MoV ADDRES»R1
Moy <RI)rrR2
MOV R2»R0

MoV R2»R4

CHOP THE SIGN BIT
BIC *177760»R0
ASL RO 1

INC RO

BIC #177617»R4
BEO SEGZER

IF THE SEGMENT CODE
SHIFT RIGHT

ASR R4

ASR R4

ASR R4

ASR R4

BIS #000040»RO
DEC R4

BEQ SEGZER

ASL RO

IMP 3$

ASLB R2

BCC NEGATE
STORE THE RESULT
MoV RO» (RDF
BEC R3

ARE ALL

ONE COME
RETURN TO THE MAIN
RTS PC

NEG RO

IMP GO

LEND INPUT

IN 2°'S

»COPY THE
»COPY THE

AND

N-1000"

PCM(8-BIT

POINTED

SAMPLES

A-LAU)

COMPLEMENT.

INPUT
INPUT

SEGMENT CODE.

»SEGMENT CODE

IS NOT

FOUR TIMES

CF'CM CUNVERTEU TO

PROGRAM

ZERO

LPCM ?

BY THE

SAMPLES ARE

ARE

TO

REGJRI

STORED

STORED.
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A5.4 Fortran program listing of the TDPA Implementation

PROGRAM FOR ESTIMATING THE
PITCH PERIOD AND INTENSITY
CONTOUR OF VOICED SPEECH
USING TDPA AND AMDFe

THE SPEECH SAMPLES ARE FILTERED USING AN FIR FILTER
(0-600HZ) AND FILTERED SAMPLES ARE GROUPED INTO
FRAMES. EACH FRAME IS ANALYSED TO ESTIMATE THE
PITCH PERIOD USING PA2fPA3FfPA4,MPA2,MFA3,MPA4 1AMGF
ANALYSIS IS DONE UITH AND UITHOUT SPECTRAL FLATTEN-
ING.
DIMENSION 1S <14000),IW<402>*10S8<107),QS(60),IPUNC60)
DIMENSION C(40)»X(82)

DIMENSION IMA(60)»IPER(60),AU(60),0S(60>

READ THE FIR FILTER COEFFICIENTS

READ (1,81XC(1>,l«1,40)

FORMAT(EI6.0)

TYPE 1

FORMAT<' WHAT IS THE NOISE THRES.(IN)«'*)

ACCEPT * »INI

TYPE 7

FORMAT(' HUU MANY UNFIL.SAMPLES TO BE READS»'*)
ACCEPT *,NSA

READ(2,4X1S(1) ,1=1,NSA>

FORMAT(1017)

PERFORM FIR FILTERING ON SPEECH SAMPLES

NCOF-40

TWO INDEX POINIERS ARE 1CAL AND IPOINT.
IPULNI-NCOFf1

ICAL 1

DU 02 1=1fNSA

IAMBI=ICAL fl

STORL EACH NEW INPUT SAMPLE IN 7WO LOCAI.

X (IPOINT)»FLOAT(IS(IAMBI))

X (IPUJNT-NCOF)«FLOAT(IS(IAMBI))

Y-0.0

DO 03 J=1fNCUF

Y-Y4C(I)*X(IPOINT-JH )

CONTINUE

IPOIN I- IPOXNTH

CHECK THE DOUND

IF(IIUINT.GT.00) IPOINT=NCOF+1

IS (I)y-1FIX(Y)

CONTINUE

IPf-NSA 100

IDIFF-(NSA/100) -1

1HEU-1

1TPE 06, IP I r1llIF»

fORMAI(' NSAMP-'f16,2Xf' NDLOK=",13)
INITIALISE THE VARIABLES

Icou-0

1SPEC-0

ICHECK-0

K-2 PA2,R-3--PA3,K-4--PA4
DU 40 R-2 f4

o

105

119

127

140

493

882

IF(K.EO.2) GO TO 91
IF(K.E0.3) GO TO 105
IF(K<EG=4) GO TO 119

M4=2
ITR=IN1*2

IF(ICHECK.EQe1l) ITR=ITR/2
IT 1=0

112=0

GO TO 127

M4=3

ITR=(IN1*3)
IF(ICHECK»EQ.1) ITR=ITR/2

1TI=1

IT2=0

GO TO 127

M4=4

ITR-IN1*4

IF(ICHECK*EQ.1) ITR=ITR/2

IT1=1

IT2=1

FOR SIMPLICITY ALWAYS START ON 3RD FRAME
PITCH PERIODS FOR 1ST AND 2ND FRAMES ARE
ZERO.IPERO — PITCH PERIOD.

IBEG=3

IAV=0

IPQINT=0

NBLOCK=1

IF'ER (1) =0

IPER(2)=0

I0OFFSE=0

IONSET=0

ICOUNT=0

INUDE=1

ILAG=0

L4-1S POINTERFIBEG- IS FRAME COUNTER
L4=(IBEG)*100+1

Y=0.

DO 493 1KUS=L4,L4f102
Y=YEABS(FLOAT(IS(IKUS)))

CONTINUE

QS(IBEG)=Y

IF VARIADLE ISPEC=1 PERFORM SPECTRAL
FLATTENING.

IF(ISPEC.ED.O) GO TO 191

HAX*32767
MIN=32767
NHS=0

DO 803 KL=1f2
NAB=0

NFD=0

GET PEAK ABS. FOS & PEAK NEU
DO 802 1=1,100
1AB=IS(L4-Til+NHS)
IF(IAB.LE.O) GO TO 322
IF(IAB.GT.NAB) NAB=1AD
CONT7INUE
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73

75

7788

77
avyv

76
72

88/7

55

1 GU TO 75

IF(10S(KI)*LTeISR) GO TO 72 C
CONTINUE c
GO TO 72
IF(KI.UE.IEXP) GO TO 55
NUM1-FOR CHECKING TWO TINESTHEPITCH PERIOD*
NUM1~2*K]I
IF(NUrti*GE»101) GO TO 55
IF<(NUN1.GE.IVARL).AND.(NUN1.LE.IVAR2))
1 GU TO 7788
NUN1-FOR CHECKING THREETINES THE PITCH PERIOD.
NUMI1=3*KI c
IF(NUNI.GE.IOI) GO TO 76 c
IF((NUM1GE=IVAR1)=AND.<NUN1.LE.IVARZ2)) GO TO 7788 6666
NUM1— FOR CHECKING FOUR TINES THE PITCH PERIOD
NIINL-4*N1I
IF<NUN1«GE.101) GO TO 76
IF((NUNL1.GE.IVAR1).AND.(NUNL1.LE.IVAR2))
1 GO TO 7708
CHECK FIVE TINES THE PITCH PERIOD
NUNL1=5*KI
IF<NUH1.GE.101) GO TO 76 4177
IF<(NUN1.GE.IVAR1).AND.(NUN1.LE.IVAR2)) 5555
1 GO TO 7788
GO TO 55
IF<ILAG*EQ.1) GO TO 8877
IF PITCH DQUDL.ING» TRIPPLING ETC OCCURSITHEN
CHECK IF THE ESTIMATED PITCH LIES BETUUEEN
IAVI<IAV/20)*9 AND IAV-<IAV/20)»V.IF IT IS
O0.K. THEN DO NOT CHANGE THE PITCH PERIOD
ELSE CHANGE IT TO NEU VALUE 'K I'.
IKAS=1AV
ISTEL=<1AV/20)*V
IPOSI=IKAS«ISTEL Vs
INEG1=IKAS-ISTEL
ICOfWIPERABEG)
IF< <ICOM.LE.IPOS1I.ANB.<ICOM.GE.INEG1>> 701
x no ro 55
TTPE 8yyyrIBEU.IAV.KI.NUMI
X'ORMAX<' BEG=".13»" AVE“'.13.'KI“'.13." NUM1=".13> 110
IPER«IBEG)=KI
IMAXIBEGI-ISET
GO U 55
IPKU-0
CONTINUE
GXI Il 55
IPER« XBEG) --KI 4778
GU 10 56
SMUG1IIING
CURKTCT OCCASIONAL ERRORS 5600
IF< Il Ati.Ett. 1) GO TO 56
IF (IKHA .01: =4) IKHA 0 c

GO TO 5555
PITCH PERIOB
PERIODS.

IF(INUBE.EQ.I)
ESTIMATE THE PRESENT
PAST ANB FUTURE PITCH
IPUSS-«IFER<IBEG-2)>/5
ISTE1=IPUSS+IPER<IBEG-2)
IPOS1=IPER<IBEG-21-1PUSS
ICOM=IPER(IBEG)
IF((ICOM.GE.IPOSL>.
1 GO TO 6666
INUBE=1

GO TO 5555

CHECK WHETHER THE PREVIOUS PITCH
WITHIN 10% OF THE ONE BEFORE.
IPUSS=(IPER<IBEG-2))/10
ISTE1=IPUSS+IPER(IBEG-2)
IPOS1=IPER<IBEG-2)-1PUSS
ICON=IPERCIBEG-1)

IF( (ICON.GE.IPOSL1).AND.(ICON.LE.ISTEL1))

1 GO TO 5555
IPER(IBEG-1)=(IPER<IBEG)fIPER(IBEG-2))/2

TYPE 4777rIBEGTrIPER(IBEG)

FORNAT(/' BEG-'»13»' PERI*'»13)
IPGT*<IPER(IBEG-1)+IPER(IBEG-2)+IPER<IBEG-3))/3
IPUSS=IFQT/5

ISTEI=IPOTr+IPUSS

IPOS1=IPOT-IPUSS

ICON=IPER(IBEG-1)

IF((ICOM.GE.IP0OS1) .AND.(ICON.LE.ISTE1))

1 GO TO 225

GO TO 701

ICOM=IPER(IBEG-2)
IF((ICOM.GE.IP0S1) . AND.(ICOM.LE.ISTEL1))

1 GO TO 98

GO TO 701

ICOM*IPER(IBEG-3)
IF((ICOM.GE.IP0OS1).AND.(ICOM.LE.ISTEL1))

1 GO TO 118

INUDE=0

IKHA-0

GO TO 56

IPUSS=IPUT/4

ISTE I s31POT+IPUSS

IPOS1-1POT-IPUSS

ICON*IPER(IBEG)
IF((ICON.GE.IP0S1).AND.(ICON.LE.ISTEL1))

1 GO TO 5600

TYPE 4778»IBEG»IPER(IDEO)

FROM CINE

ANB.<ICOM.LE.ISTEL1))

PERIOD IS

FORMAT«/" **BEG*#*' »13» ' PER*'»13>
IKHA-IKHA41
IF(IKHA.GE.4) GO TO 56

IPER(IBEG)*IPGT
INUDE=1

GO 10 56

IKHA -0

INUDE*0

END UF SMOOTHING



322

881

883

884

981

983

1434

i TO 881 c
IAD=IABS( IAB>

IF<IAD.GT.NFD) NFD=1AD

GO TO 882 111
IFCNAB.LT.MAX) MAX-NAB c

IF <NFD.LT «MIN) MIN-NFU C

NHS-NHS+(K'1)*100
CONTINUE

SET THE POSITIVE AND NEGATIVE THRESHOLDS
INS=K*100
MAX=(MAX/10)*8
MIN—(MIN/10)#8

DO 884 J=1rINS
IF<ISCL4-1+J).LE.O)
IF<IS(L4-1+J).LE.MAX)
IU<J)=1S<L4-1EJ>
CONTINUE c
GO TO 191
IF(IS(L4-1+J).GE.(-MIN))

GO TO 981 c
GO TO 983

GO TO 903

STORE FLATTENED SPEECH. c
ILKJ)=1SU .4-1id) c
GO TO 884 c
ILK J>=0

GO TO 884
END OF SPECTRAL FLATTENING

TDPA ANALYSIS STARTS HERE. 95
THE TRIALS
DO 111 1=18»102
IPE=-1
IVA=1 c
COLUMN ADDITION
DO 222 J=1»l 110
IF(IUNSET<-EQ.0) GO TO 3
MI=L4t(K*102)“3+1
M2«M1-1
M3=M2 |
M5-M3 | 2222
GO TO 1434 c
MI=L4 -1+ c
M2-M1F]I c
M3=M2M
M5=M3II
IF<ISPEC *EQ=0) GO 10 143
IC-ILK.1) ULK Jf1)FIU<J42* >*IT1+IU<JE3*I>*IT2 5688
IF<IONSET.E0.0) GO TO 149
M1=M1 L4 c
M2=M1 | 5788
MJI=M2-1 c
MS -M3- 1 79

IC-ilKMIMILKM2)41U<M 3)*ITIilU(MS)*IT2
GO 10 149
1C—1S(M1)FIS<M2)fIS(M3)*ITIFIS(M5)*1T2

I1CK 1IP MAX. AND MIN. VALUES.
IF<IC.01.1PL) 1P L-10
IF(IC.LT.IVA) IVA-1C

CONI INIIC

I0S-OSCILLATION AMPLI HIDE
10S<I1)=IPE-XVA

IF(ICHECK.EQe1) 10S<I)=1IPE

CONTINUE
THE DECISION LOGIC
PICK UP ABSOLUTE MAXIMUM
IE=0
ISET=-1

DO 5 J=19»101

IF <<1GS(J).GE.IOS(J-1)).AND.<10S<J>.GT.105<JT1>>)
I GO TO 110

IFCIOSCJ).EQ.I0OSCJF1)> GO TOo 110

CONTINUE

ISR-2ND THRESHOLD
ISR=ISET-(ISET/5)

IPER <IBEG)=IEXP

STORE PITCH PERIOD AND
IMA<IBEG)=ISET
IPUN(IBEG)=IEXP

IF ANY OF THE PAST 6 FRAMES HAS PITCH PERIOD
ZERO CHECK IF ISET> 50*ITR<NOISE THRES.).IF
SO COMPUTE PITCH ELSE SET TO ZERO.

DO 95 ISUB=1»6
INAS=IBEG-ISUB

IF CIPER<INAS).EQ.0)
CONTINUE
IA1=IPER<IBEG-1JEIPERCIBEG-2>+IPER<IBEG-3>
IAV=< |IA1l + IF*ER( IBEG-4) TIPER( IDEG-5) )/5
ILAG=0

JUMP TO CHECK PITCH
GO TO 79

IF <(ISET-fIE).GT.I10S(J))
ISET=105<1J)
IE=(ISET/10)
IF<ISET.GE.(20*ITR)) GO TO 2222
IF(IDEG.LE.B) IE=0
IEXP=J

IVAR1 AND IVAR2 ARE
THESE WILL DE USED FOR CHECKING PITCH
AND PITCH TRIPPLING ETC.

IVARI=IEXP-4

IVAR2=IEXP+4

INTENSITY

GO TO 5688

DOUBLING TRIPPLING ETC.

GO TO 5

INTERMEDIATE VARIABLES AND
DOUBLING

GO TO 5

IF<ISET.GE.(50*ITR>> GO TO 5708

GO TO 56

LAG=0 INDICATES PREVIOUS SIX FRAMES ARE UNVOICED.
I AU=1

DOUBLING»TRIPLING ETC.
GO TO 55

CHECK PITCH
IF<IEXP.LE.20)
IPRU=0

DO 72 J=19»IVAR2
IF(I0S(J).LT.ISR) CO TO 76
IF (IPRU.EQ. 1) GO TCI 72
1PRU=1

DO 73 KI=J»J+25
IF(<10G (KI).GE

10 S(KI-1))=AND<IUSiKI).0OFf.10SvKI I1)))



56

5668

195

92

999

568

569
567
15

16

789
778
48

135

64
63

IF(ISET .GE=ITR) GO TO 195 342
IF THE PROGRAM PASSES THIS SECTION IT IMPLIES c
THAI THE PREVIOUS BLOCKS ARE UNVOICED.

IOFFSE=I

IONSET-0

ICGUNT=0 338
GO TO 197

IF<IDEG.EQ.3) GO TO 5668 335
IF THE CNTROL LOOP PASSES THIS SECTION IMPLIES

NEXT FRAME IS VOICED REGION.

IF(IOFFSE.EQ.I) GO TO 92
GO TO 197

IQNSET-1 62
IF<ICOUNT.GE.S) GO TO 196 80
GO TO 197

IF THE 'COUNTER' VALUE IS >5 MEANSPREVIOUS 822
FIVE FRAMES ARE UNVOICED.

IONSET=0

IQFFSE=0 854
ICOUNT=0 877
ICOUNT*ICOUNTI 491
CHECK IF ALL FRAMES ARE SUBJECTED TOTDPA

ANALYSIS. 498
IBEG=IBEGf1

IFUBEG.ECI. (IDIFF-3)) GO TO 999 600

GO TO 140
IF «ICHECK=EQ=0) GO TO 567

TYPE 568

FORMAT«/' THE RESULTS OF THEMODIFIEDPERIQDOGRAM") 602
TYPE 569

FORMATS' * %% ¥ a ks xxaxhhx s k¥ xkxxh kXXX XXX XXX XXX X H N x5 ) (015

TYPE 15»M4
FORMAT«/' NUMBER OF ROUS ARE*'»12)

TYPE 16

FORMAT«' BLOCK MPER. PERI. AMP.

DO 770 1*1»IDIFP-4

TYPE 789 »I »IPER(I)»IPUN<1)»lhA«l)»QS«l)

FORMAT «1X»14»6X »14»' * * '»14»4X»18»3X»F12.1)
CONTINUE

CONTINUE

AVERAGE MAGNITUDE DIFFERENCE FUNCTION METHOD
IF«ICHECK.EQ.1> GO TO 491

IPER«1)=0

IDEG =2

L4-<IBLG)*100f1

DO 63 1*18»102

AU<i >-0.

DO 64 J*Irl0O

AU<I)-AU<1)\ (ADS(FLOAT(IS (L142J)-1S(L4TJIH -1)))>

ENERGY")

CONTINUE
CONI INHL
1LX -0

RESET -80000.

DO 342 J-19»101

IF <AU<J) L1 .AU<J- 1) .AND =«AU«J) .LT.AU(JFfl >)) GO TO 338
IF<All«J) .EO.AO«JI 1)) GO I(J 338

CONTINUE

IBEG*IBEGT1
IF(IBEG.EQ.(IDIFF-3)) GO TO 62

GO TO 135

IF«AU(J).LT.«RESET-EX)) GO TO 335

GO TO 342

RESET=AU<J)

EX=RESET/10.

IPER«IBEG)=J-1

0S«IBEG)=AU<J)

GO TO 342

TYPE 80

FORMAT«/' AVERAGE MAG. DIFF. METHOD")
TYPE 822

FORMAT«' BLOCK

DO 877 1=1»IDIFF-4
TYPE 854»IrIPER«I)»0S(I)
FORMAT«1X»I3»9X»I13»6X»F12.1>
CONTINUE

IF<ICHECK.EQ.O) GO TO 498

IF «ICHECK=EQ=1) GO TO 600
ICHECK*1

GO TO 444
IF<ISPEC-EQ-=1)
ICHECK=0
ISPEC*1
TYPE 602
FORMAT«///"
GO TO 444
sTop

END

PERIOD

GO TO 6015

FOLLOWING RESULTS ARE FOR

AMPLITUDE")

FLATTENED

SPEECH")



- honno

strt:

REP -~

ri:

STRT :

A5.5 Assembly program of
to implement TDPA and AMDF

ASSEMBLY

*kkkKkKk pAD

INITIALISATION

PROGRAM TO
TDPACPA2 ANH MPA2)
INTEL 8080 MICROPROCESSOR

»N—N+1

e ek Kk

fPOINTER

fI1G
TiL
M

IS(M) TO ACCUMULATOR

OSCILLATION

Kk kK kK

fN-N U

MoV BPrOOIIH

ADD Spf0O500H

MAIN LOOP STARTS HERE

INC BP

MoV CXrBP

MoV BX.FFFFH

MoV DX.0001H

MoV S1fOIFEH

MOV DI fBP

SAL DI

ADD BI1fSI

INNER LOOP STARTS HERE

INC Sl

INC Sl

INC [il

INC DI

MOVE

MoV AXFCSIT

IC=1S(M)+IS(MFN)

ADD AXFfCDU

XCHG A X FRX

CMP BXFAX

JGE TI

XCHG DXFAX

cMP DX fAX

JLE TI

MoV DX fAX

IS M-N?

Lourp REP

CALCULATE

SUD DX fDX

PUSH B X

IS N-102?

cMP BPfOOA6H

IN2 STRT

IMP I
sxxkxr MPA2

N-17

MoV BPfOOIIH

POINTER

ADD SP £050011

INC BP

MoV CX FDP

MoV BXTfFKFFH

MoV SI1fOIFEH

MoV DI FDP

SAL DI

ADD DI fS 1

AMPLITUDE

f1G
™

Intel 8086 p-processpr

IMPLEMENT
AND AMUP ON

STRT

REP *

T2J

T3]

INNER LOOP STARTS HERE

INC Sl cmEmi
INC Sl
INC DI
INC DI
MOV AXFCSIT fIS(M)
ADD AXFCDIT
IS IC > 16 2
CMP DX fAX T41
JGE TI F
MOV DX fAX
LooP REP
STORE THE OSCILLATION AMPLITUDE
PUSH DX
IS N= 102 ?
CMP BP.0066H
INZ STRT
IMP T
T5
Kok ok ok ok ok AMDF Kok ok Kk kK F
AMDF IS EVALUATED USING PARTIAL SUMS
MOV BPrOOIIH iK-17
ADD SPFfOSOOH »POINTER
MAJOR LOOP STARTS HERE
INC DP K=K+1
MOV SI1fOIFEH
MoV D IfDP F
SAL DI
ADD DIfSI F
MOV CX f0019H FN=25
XOR DXfDX
it
XOR DX fDX riPSUM=0
INC S
INC S rM=M+1
INC DI
INC DI
MOV AXFCSIT fIS(M)
ISUM * 1S(M)-1S<M+K)
SUB AXfCDIT
JGE T2
NEG AX fISUM < 0
IPSUM-1PSUM FISUM
ADD DXtAX
PERFORM NEXT PARTIAL SUM
INC S
INC S
INC DI
INC DI
MOV AXFCSIT
SUB AXFCBIT
JGE T3 fFISUM > 0
NEG AX fISUM < 0
ADD DX fAX
PERFORM NEXT PARTIAL SUM

INC Sl

INC Sl

INC DI

INC DI

MoV AXFCSIT
SUD AXFCDIT
JGE T4

NEG AX

ADD DXfAX
PERFORM THE LAST
INC Sl

INC Sl

INC DI

INC DI

MOV AXFCSIT
SUB AXFCDIT
JGE TS

NEG AX

ADD DXfAX
DO SCALING!I.E
SAR DX

SAR DX

SAR DX

SAR DX

SAR DX

ADD DXfDX
LOOP REP
STORE THE RESULT
PUSH DX

1S Kk = 100 ?
CMP BPfOO66H
INZ STRT
IMP T

PARTIAL

172+%5)
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A5.6 Speech synthesiser Program

SPEECH SYNTHESISER
PROGRAM

THIS PROGRAM USES THE FOLLOWING PARAMETERS

(A) PITCH PERIOD

(B) INTENSITY AS GAIN CONTROL

<C) bURG'S PARCOR COEFFICIENTS.

NO'!E:-SINCE THE CONTROL PARAMETER'(PITCH» INTENSITY * PARCO.)
ARE NOT DETERMINED PITCII-SYNCHRONQUSLY IN THE ANALYSIS»

NEW PARAMETERS ARE COMPUTED BY SUITABLE INTERPOLATION OF

THE ORIGINAL PARAMETERS TO ALLOW PITCH-SYNCHRONOUS RESETTING
OF THE SYNTHESISER.

DIMENSION IP(1SO)»IG<150)»IFP<150)»IFG<150)
DIMENSION PAR<1800)»GAMA(20)»10U(9000)
DIMENSION RE(20)»RV(20)»RN(20)»SPA(2000
DIMENSION S(20)»Y (102)* PREDI 20)
INITIALISE ALL THE REQUIRED ARRAYS(THIS COULD BE OMITTED )
DO 1 1=1»20
RE(1)=0.0
RV (1)=0+0
RN<1)=0.0
S(1)=0.0
INITIALISATION
I N=100
P0S-=0.95
10R SIMPLICITY START WITH UNVOICED FRAMES(FRAME 1»FRAME 2)
AND WITH ZERO GAIN.THEREFORE FIRST 200 SYNTHESISED SAMPLES
ARE ALL ZERO»ALSO NO CROSSING SAMPLES ACROSS FRAME
BOUNDARY <ITC=1) BETWEEN FRAME 1 AND FRAME 2.
V=0
Ic=1
IFC=1
GE=0<0
GV=0.0
GA=0+0
SINCE UV SPEECH 1S CHARACTERISED BY RANDOM NOISE EXCITATION
HIE CONTROL PARAMETERS ARE RESET ONCE EVERY 12.5 MS(I.E.
100 SAMPLES) THIS CAN BE INDICATED DY SETTING IPI»IPV TO 100.
1PE-O
IPV=100
IP1»100
MI*=1
IPC-1
JR*0
KR-0
NR-1
EX-0.0
TP-0.0
LP1 INDEX POINTER FOR PARCO(IUOO) ARRAY.
El 2 INDEX POINTER TOR PITCH SYNCHRONOUS PARCO ARRAY.
Nil INDEX POINTER FOR PIICH SYNCHRONOUS GAIN & PITCH
PERIOD ARRAY.
LP1-0
112-0
NP1-1

225

226

229

115

119

LKN--NUMBER OF FRAMES
NGRDER--NUMBER OF POLES

TYPE 2

FORMAT(' NUMBER OF FRAMES="*)
ACCEPT *,LKK

TYPE 3

FORMAT<' PREBICTOR ORDER®“'*)
ACCEPT »rNORBER

TYPE 5

FORMAT«' GAIN REBUCTION FACTOR®'*)
ACCEPT *,INT

TYPE 4

FORMAT«' GIVE INTEGER CONVERSION VALUE®'*)
ACCEPT »risul

READ PITCH PERIOD FROM THE DISC
READ (11r225X1P<1).1=1.LKK)
FORMAT(1014)

READ THE GAIN FROM THE DISC
READ(12.226)(1G<1).1“1.LKK)
FORMAT«1017)

SCALE THE GAIN CONTOUR

BO 229 I=1,LKK
1G«1)=1G (1)/INT
LQ1=0
1L0S=1

DEFINE FILE 10<LKK.24rUriLOS)
REAIKIO'ILOS)«PAR«I+LQ1>11=1.NURDER>

LQ1=LG1+NORDER

IF(ILOS.GT.LKK) GO TO 119

GO TO 115

CLOSE<UNIT=10)

IF IPC EXCEEDS IPI THEN IT IS TIME TO OBTAIN NEW PITCH PERIOD.
IFUPC.LE.IPI) GO TO 128

IPC=1

IF IFC DOES NOT EXCEED ILN(=100> THEN THE PREVIOUS AND CURRENT
FRAMES ARE TESTED TO SEE UHETHER THEY ARE BOTH VOICED. IF SO
THEN IT IS TIME FOR INTERPOLATION.(DEFINE NEW PITCH PERIOD
GAIN AND PARCOR).AFTER INTERPOLATION NEW SAMPLES ARE
SYNTHESISED UNTILL IPOIPI.

IF«IFC,LE,ILN) GO TO 92

IFC=IFC~ILN

IF(NB.GT.LKK) GO TO 1000

COPY ALL THE CURRENT FRAME VALUES TO THE PREVIOUS FRAME AND
GET READY FOR READING NEW VALUES IN THE CURRENT FRAME.

CUPY PARCO.

DO 52 J=1*NORDER

RE<J)=RV<J>

IPE=IPV

IEND=IE

COPY THE VOICED TO UNVOICED INDICATION VARIABLE

IE=1V

CHECK WHETHER |IHE PREVIOUS OR LAS1 TRAUL IS UVIUMVOICED)



450

432
54

470

o0 oo

92

110

IF UV THEN RESET THE BUFFER S(J> OTHERWISE LEAVE THE BUFFER
S(J) UNCHANGED.
IF<(IEND.EQ.0).OR.(IE
HO 450 J=1»NORDER
$<J)=0.0

LEO.1)) GO TO 432

READ THE CONTROL PARAMETERS
READ THE PARCO.
DO 54 J-IWNORDER
RV <J)-PAR (JfLF*l)
LPI-LPI-fNORDER
VARA=FLQAT(IG (ND))
IPV=I1P(NB)
Nb=NBfl
IF(IPV.GT.0) GO TO 470
GV=VARA
THIS FRAME IS UNVOICED
V=0
GO TO 45
THIS FRAME IS VOICED
V=1
GV-VARA
IF THE CURRENT AND PREVIOUS FRAMES ARE NOT VOICEDrTHEN IT IS
ASSUMED THAT WE ARE GOING TO DEAL WITH UV FRAMES.THEREFORE
THE FRAME LENGTH IS SET TO 100<BY SETTING IPI=100) AND WARPING
RATL0<WAR) IS SET TO 0.
IF< <IV.EQ.1>.AND.(IE.EQ.1>) GO TO 891

IP1-IPE
IF(1E.EQ.0) IPI=ILN-IFCtI
UNVOICED FRAME

WAR-0<0

GO TO 199

FOR VOICED FRAMES CALCULATE THE WARPING RATIO AND INTERPOLATE
(USING STRAIGHT FORWARD LINEAR INTERPOLATION) THE NEW PITCH
PERIOD.

WAR-FLOAT<IFC-1)/FLOAT(ILN-1)
DUL=<FLOAT <IPM -IPE)) *WARTFLOAT(IPE)

CONVERT TO INTEGER NUMBER

IPI-IFIX(DDL)

DRIVING FUNCTION FOR VOICED FRAME
IF FRE-EMPHASIS HAS BEEN APPLIED IN THE ANALYSIS
THEN DE-EMPHASIS MUST BE APPLIED AT THE OUTPUT
OF THE SYNTHESIS FILTER.
NEXT TWO INSTRUCTION GIVES APPROXIMATELY
ZERO MEAN EXCITATION.
DRI-1.0
EX--1.0/<IP1-1)
INTERPOLATE PARCO COLFF. USING PREVIOUS AND CURRENT FRAME PARCOR
no 110 J-IfNURDER
RN(J)-(RV(J) RE(J))*WAR1Rh <J)
IF<RN<J).01.1.0) ITPE 5555 »ND
CUNIINUt
GA-(GV GE)*WARTGE
STORE NIL PITCH SYNCHRONOUS CONTROL PARAMETERS
IFPiMPI > 11 |

114

600

601
400

128

142

1123

2999

1000

666

IFG(NP1)=IFIX(GA)
STORE PARCO.<INTERPOLATED)

DO 114 1=1rNORDER

SPA<I+LP2)=RN<I)

NP1=NP1+1

LP2=LP2fNORDER

CONVERT THE INTEFXPOLATED PARCO TO PREDICTOR COEFFICIENTS
PRED<1)=RN<1)

DO 400 =2»NORDER

PRED(1)=RN(I)

DO 600 J=2»I

GAMA(J)=PRED <J-1)-RN (I )*PRED<I+1-1J)

DO 601 J-2»I

PRED(J-1)=GAMA<J)

CONTINUE

IF THE CURRENT FRAME IS UNVOICED SET THE EXCITATION BY
RANDOM NOISE UNIFORMLY DISTRIBUTED AND AMPLITUDE IS BETWEEN
-1 AND +1.(RAN(JR»KR)--—--RANGE IS BETWEEN -1 AND 1)

IF (IE-EQe1) GO TO 142

DRI-(RAN(JR»KR)*2.0-1.0)

PERFORM RECURSIVE FILTERING.

TEMP=DRI*GA

DO 1122 1=1»NORDER

JKI=NORDER-I+1

'"PERFORM FILTERING

TEMP=TEMP+S<JKI)*PRED<JKI)
IF<JKI-1-EQ-0) GO TO 1123

STORE THE PREVIOUS SAMPLES
S(IKI)=S(JIKI-1)

CONTINUE

S(1)=TEMP
DE-EMPHASIS»Y<N)=Y<N)+0.95*Y (N-1I)
Y(MP)=TEMPTPOS*YP

DRI=E£X

STORE THE SYNTHESISED SAMPLE
P=Y<MP)

IFC=I1FC+1

MP=MP+1

IPC-IPCf1

CHECK WHETHER FRAME IS COMPLETED
IFiMP.LE.100) GO TO 19

MF-1

STORE ALL THE 100 SYNTHESISED SAMPLES IN MEMORY
BO 2999 J=1»100

IOU< JILLA) =1FIX <Y (J))/FLOAT(ISUL)
LLA=LLA+100

GO TO 19

SEND THE SAMPLES TO D/A.

CALL  DISF'LY (NL«*100» IOU( 1))
WRITE<3»226)<I0OU<I)»I=1»ND*100)

TYPE *» (' PIT INPIT GAIN INTGAL)
TYPE 666»(IF'<I)»1FP (1)»1G (I)VIF'G (1)»1=I»NPi)
FORMAT (I5»4X»I5»4X»17»4X»17)

ILos=1

IKI1-2*NP1

DEFINE FILE 13 (1»IKU»U»1L0OS>



9888

9282

8332
Siii

WRITE(L13'ILOS)(IFP (I)»IFG (I)ri1-1¢NPI)

CLOSE(UNIT®13)
LAM-0
11.0s=1

DEFINE FILE 14(NP1*24*U»ILOS)
WRITE<14* ILOS) <SPA< I+LAM) »1=1fNORDER)

LAM=L AMfNORDER
IF(ILOS«GT=NP1)
GO TO 9888
CLOSE(UNIT=14)
TYPE 8382fNP1
FORMAT<' NUMBER
FORMAT<' BLOCK
sTOP

END

GO TO 9282

OF PITCH SYNCHRONOUS BLOCKS®'fl5>
IS UNSTABLE®'f17)

»
OUTPUT
store:
ADDRESS
tempi:

»

bisply:

op :

- © -

3%:

compen:

Ab.3 Assembly program for output of speech samples

ASSEMBLY PROGRAM TO
OUTPUT THE SPEECH SAMPLES

output SAMPLES ARE SENT AT 8KHZ VIA D/A.

LTITLE OSCILLOSCOPE
«GLOBI. DISPLY

ADDRESSES OF THE OUTPUT PORT
=177776

.WORD 0

.WORD 0

.WORD 0

MAIN ENTRY OF THE PROGRAM

MoV <R5)+rSTORE +NUMBER OF ARGUMENTS
MoV e<RS)+rSTORE »STORE 'N '
MoV <R5)+fADDRES

INITIALISE THE COUNTER

MoV f000000 »RO

MoV RO tR4

START THE LOOP

MOV + 000000 rR4

MOV STOREfR3

MOV ADDRESVRI

MOV (R1)P»R2

LS13-BITS ARE THE PCM SAMPLES.HOWEVER
THE'D/A 1S HARDWIRED TO MS12-BITS»
THEREFORE THE FOLLOWING THREE SHIFTS
ARE NECESSARY.

ASL R2
ASL R2

ASL R2

SEND THE OUTPUT SAMPLE.
MoV R2»(?#0UTPUT
TIME DELAY TO OBTAIN 125 US (8 KHZ)
ADD +000001FR2

ADD #000001FR2

ADD +000001FR2

MoV #000000 f(?#TEMP1
MoV STORE fR2

DEC R2

SOFTWARE TIMER

ADD +000001fRO

ADC R4

cCMP 41000017 R4

BEO ouT

DEC R3

BNE COMPEN

IMP 3i

IMP TES

TIME COMPENSATION

MOV STORET¥R2

MOV ADDRES fR2

MOV K2fR2

IMP POP

RTS PC

.END DISPLY
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75

10

25

300

A5.7 Fortran program listing of the cluster analyses

CLUSTER ANALYSIS PROGRAM - 1

THIS PROGRAM IS WRITTEN IN FOUR SECTIONS:-
(1) DISTANCE MATRIX CALCULATIONS

(2) INITIAL CONFIGURATION

(3)NONLINEAR MAPPING ANALYSIS

<J)CREATING REFERENCE TEMPLATES

FEATURE VECTORJ-PARCOR COEFFICIENTS
DISTANCE MATRIX CALCULATIONS

DIMENSION D IS(20r20) »Z<1200)rY(1200>

INTEGER RAUMAX rCOLMAX r1»»PU

TYPE 1

FORMAT(' HOU MANY TOKENS?2«'*)

ACCEPT * tIROU

N=IROU/2+10

M1-0

KU-10

IMIN-ROUFJMIN— COLUMN

NiNda-f2

THE START FILE IS 11.
KU=KU+1

LP-0

READ THE FILE

ILUS=1

DEFINE FILE KU(2t1200,U,ILUS)
READ (KU'ILOS)<Z<I+LP),1=1,600)
LP-LP+600

IF(ILOS.GE.3) GO TO 10

GO TO 6
CLOSE <UNIT=KU>
P-0.

PARCOR COEF.«12»FRAMES-50
DO 25 K1=1,600

CALCULA IE THE DISTANCE
Pl=Z(Ki>-Z<KIi600)

P2-P14P1

P*PiP2

DIS<IttINrJMIN)-SURT<P)
IF(KU.EQ.N) GO 10 100

PU-KIJ

L1-IMINL2

12-IMINT3

PII—PIi11

1105=1

SINCE IHI DISTANCE MATRIX IS
SYMME IR ICAL. ,CAl CULATE ONLY HALF
DISTANCE MATRIX.

1P-0

DEFINE FILE FU(2» J200,11,IL0S)

R (PUILO0S)<Y <l «lP)»1=1»600)
P 3N 600

If <iLOS.GE..5) GU 10 20
GO 10 7/

20

10

40

30

70

60

42

o

80

START FILE NAME 11
KU=KUf1

LP-0

READ THE FILE

1Los=1

DEFINE FILE KU<2r1200,U,ILOS)
READ(KU'ILOS)(Z<ITLP)»1=1»600)
LP=LP+600

IF<ILOS«GE=3) GO TO 10

GO TO 6

CLOSE(UNIT=NU)

12 PARCOR COEFFICIENTS ARE CONSIDERED

DO 30 1=1»12

L=0

$S=0.

Q=0.

50 FRAMES ARE CONSIDERED.
DO 40 J=1»50

S=S+Z<l+1L)

CALCULATE THE VARIANCES IN 12 DIMENSIONS.

Q=GFZ<ITL)*Z(I+L)
L=LT12

CONTINUE
DAD(MPTI)=S

DSQ <MP+1)=Q

CONTINUE
MP=MP+12

DO 60 1=1,12
L=0.

$=0.

Q=0

DO 70 J=1,50

ADD CORDINATES IN EACH DIMENSION.

S=S+Z(I+L+600)

ADD THE VARIANCES IN EACH DIMENSION.

0=0+Z<ITLT600)*Z <ITL+600)
L=LT12

CONTINUE

DAD(MPTI)=S

DSQ(MPFI>=Q

CONTINUE

MP=MPT12

IF(KU.EQ.N) GO TO 42

GO TO 20

MAX=-9000.

ARRANGE VARIANCES VI TO V12 IN
ORDER.

SELECT THE FIRST TWO VARIANCES
MIN=-8000-«

LP-0

V1=0.

DO 80 .J-1,16
V1=V1»DSOCLPT1)
V2-V2TDSQ(LPT2)
LP=LPI12

DESCENDING



20

26

200

100
500

CLOSE(UNL1T=PU)

&h.

P=0.
0=0"
HO 26 J=1 »000
P1=2<J)-Y(J)
Q1»Z<JF600)-Y<J)
R1=Z<J)-Y<J+600)
S1=Z<J+600>-Y<J+600>
P2»P1*P1

02=01*01

R2=R1*R1

§2=81*S1

P:P+Pﬁ

R-R+R2
S-Sis2

CONTINUE

STORE THEDISTANCE MATRIX VALUES.

DIS(IMIN,L1 )=SGRT(P)

DIS<IMIN,L2)=SORT<R)

DIS<JMIN,L1>=SQRT<Q)

DIS(JOIN,L2)=SGRT <S)

Li-LIf2

L2=L2+2

IF(PU.EO.N) GO TO 200

GO TO 300

MI=MI+2

GO TO 75

PRINT OUT THE DISTANCEMATRIX

TYPE 500

FORMAT<//,38Xt' INTERVECTOR DISTANCE MATRIX'/)
TYPE400,< <DIS<0,M>,M=1rIROW),D=1»IRON)
FORMAT(16F6.3)

ILOS=1
IP=IROW*IROU

IKU-2%1P

DEFINE FILE 1(1 »IKU,U,1L08S)
WRITE(1'11.0S)<<DIS<D,M> ,M«1 ,IROW),D=1,IROW)
CLOSE(UNITED

sToP

END

INIT TIAl. CONFIGURAT I ON
CHOOSE AN INITIAL 2-SPACE CONFIGURATION FOR N POINTS.
INITIAL CONFIGURATION FOR THE VECTORS IS POUND BY PROJECTING
THE L-HTMLNSIONAL DATA URTHOGONAI LY ON TO A D-SPACE.

DIMENS1ON
JHU GER D
TYPE 1
FORMAT«' HOW MANY TOKENS«'™)
ACCEPT *,1R(JW

N (JRUW/2)+10

MF=0

KU-10

/<1200), DAD(200), DSO<200>,R<20,2 >

725

26

120

90

00000

75

76

192

300

400

500

0000 0

TYPE 725,V 1,V2

FORMAT <* VI=',6F20.5,' V2=',F20.5>
MAX=V1

MIN=V2

IFIRST =1

ISECON=2

IF(V1.6T«V2) GO TO 26
MAX=V2

MIN=V1

IFIRST=2

ISECON=1

DO 90 J=3 »12

LP=0

V1=z0.

DO 120 1=1,16

V1=V1+DSQ<J+LP)

LP=LP+12

IF(VI.GT*MAX) GO TO 75
IF(V1.GT.MIN) GO TO 76

CONTINUE

ONCE THE DIMENSION IS KNOWN,THEN
TAKE THE CORDINATES CORRESPONDING
TO THAT DIMENSIONS.THOSE CORDINATES
WILL BE THE STARTING POINT FOR THE
NONLINEAR MAPPING ANALYSIS.

GO TO 192

MIN=MAX

MAX=V1

ISECON=IFIRST

IFIRST =1

GO TO 90

IMIN=V1

ISECON=J

GO TO 90

TYPE 300»IF1RST,ISECON

FORMAT(® IFIRST="r13," ISECON«',13,7)
LP=0

DO 400 1=1,IROW
R<1,1)=DAD<IFIRST+LP)
R<Iv2)=DAD(ISECON+LP)

LP=LP+12

TYPE 500, ((R(D,M) ,M=1,2) ,D=1, IROU)
FORMAT(F18.12,4X,F18.12)

ILOS=1

IP=2*IROW

IKU=2*IP

DEFINE FILE 4(1,IKIJ,U,ILOS)

WRITE <4 ' ILOS)<<R<D,M)»M=1,2)»D=1, IROW)
CLOSE(UNIT=4)

S TOT-
END
NONLINEAR MAPPING ANALYSIS
IF THE -STRESS* CALCULATED AFTER ‘P

ITERATIONS IS > .05 BUT < 0.10 THFN THE
MAPPING IS ASSUMED TO BE SATISFACTORY.
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5555
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IF 0 < STRESS <0.05 THE RESULT IS
IMPRESSIVE.
DIMENSION
DIMENSION
INTEGER D
TYPE 1
FORMAT<' HOW MANY TOKENS»'*)
ACCEPT *» IROW
TYPE 4444
FORMAT(' WHAT
ACCEPT ttYPA
TYPE 5555
FORMAT«' HOW MANY
ACCEPT *.NAMA
ILQs=1
IP=IROW*IROW 16
IKU=2*IP

DEFINE FILE 1(1.l1KU.U.ILOS>

READ«1 'ILOS)<(DIS(D.M).M=1.IROW).D=1.IROU)

CLOSE«UNIT=1)
SCALE THE DISTANCE
TOTAL FRAME 1S 50)
DO 3 1=1» (IROW-1)
J=1+1

DO 4 K=JrlROW 26
DIS(1.K)=DIS(I.KI/50« 25
DIS(K.I1)=DIS(I .K)

CONTINUE

CONTINUE 28
CHOOSE THE INITIAL 2-SPACE CONFIGURATION

THESE CORDINATES ARE CALCULATED AND STORED ON THE DISC
BY ANOTHER THE PROGRAM.

1Los=1

IP=2*1R OW

IKU=2*1P

DEFINE FILE 4(1.1KU.U.ILOS)

READ«4 "ILOS)(<Y2D(D.M).M=1.2).D=1.1ROU)

CLOSE(UNIT=4)

DU 5 1=1.2

DU 6 J=1»IROW

Y2D(J. 1)=Y2D(J.D/50.

CONTINUE 60
TEMPORARY

IYPE 1111

FORMAT«/.'" THE INITIAL CORDINATES IN
TYPE O ,<(Y2D<D.M)»M—1.2).D=1.IROW)
FORMAT(F18.12.4X.F18.12)

CALCULATE "C*

IX=«IRUW /2>*(IROW -1)

THEN

DISC20.20).UPDIS(20.20).Y2D<20.2)
XT(100)rYT(100)

222
110

STRESS VALUE DO YOU EXPECT='*)

ITERATION-'S$)

MATRIX BY 50.(SINCE THE

2-SPACE")

c -o.

L.-0

DU V IN 1»(IROW-1)

1J=INM

DU 1011K—IJ.IMIU
¢

C=CIDIS<IN.ICO

CONTINUE

NO=0
MAS=0
TYPE 2222
FORMAT«/."'
MAS=MASF1
CALCULATE

THE UPDATED

THE DISTANCE

DO 15 ILL=1.(IROW-1)
1JJ=1LL+1
DO 16 INN=1JJrlROW

S1=Y2D(ILL.1)-Y2D (INN.I)
§2=Y2D(ILL.2)-Y2D<INN.2)
$3=S1*S1FS2*S2
UPDIS«ILL.INN)»SORT(S3)
UPDIS <INN.ILL)«SORT(S3)
CONTINUE

CALCULATE THE STRESS
E=0.

DO 25 ILL=1.IROW-1
1JJ=1LL+1

DO 26 INN=I1JJ.IROW

E1=DIS(ILL.INN)-UPDIS(ILL.INN)

E2=«EL*EL1)/DIS(ILL.INN)
E=EFE2

CONTINUE

E=E/C

TYPE 28.MAS.E

FORMAT«' ITERATION«' r14. "

GO TO 200
GO TO 201

IF(E.LT.0.2)
IF(MAS.GE.NAMA)

DO 40 1=1.2
DO 50 J=1»IROW
CALCULATION OF FIRST
P1=0.

DO 60 K=1»IROW
IF(K.EQ.J) GO TO 60

P2=DIS(J.K)-UPDIS(J.K)
P2=P2/(DIS<J.K)*UPDIS<J.K))
P2*P2*(Y2D(J.1)-Y2D (K.I))
P1=P1+P2
CONTINUE
PI=PI*(-2.0)/C
CALCULATION OF
DO 70 KA=1.IROW
IF(KA.EQ.J) GO TO 70
02=

@.1D-Y2DKAD)
04=03+%03
04=04/(UPDIS« J.KA))
05=DIS(J.KA)-UPDIS(J.KA)
05=05-(04%02)

06=05/«DIS<J.KA)»UPDIS(J.KA))

STRESS

MATRIX

2ND DERIVATIVE

ARE

IN

DERIVATIVE

GIVEN BELOW?")

2-DIMENSIONS

) »F16.8)

DIS<J.KA)-UPDIS(J.KA))/UPDIS(J.KA)
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50
40

201
203

200

445
B02

800

666

800
642

643

10
12

111

CONTINUE
G1=Ql*(-2.0)/C

Q1=ABS(Q1) 33
UPDATE THE COEFFICIENTS

0.3 IS THE "MAGIC FACTOR*.IT CAN TAKE 105
ANY VALUES DETWEEN 0.3 AND 0.4.
Y2D<Jr 1)-Y2D<Jr1)-0.3*(P1/Ul)

CONTINUE

CONTINUE

GO TO 110

TYPE 203rNAMA

FORMAT(" ITERATION EXCEEDS'r16) 200

GO TO 802

IF(E.GTe<YPA)) GO TO 800
DO 444 KUSA=1rIROW
YT(KUSA)=Y2D(KUSATI)

DO 445 KAKA=1r1lROW
XT<KAKA)“Y2D (KAKAT2)
N=IROU

TYPE 888

FORMAT(/rSXr* DINRENSIUN-1(X)'r5Xr' DIMENSION-2CY) 'r/>

TYPE 666r(<Y2D(DrM)rM -1r2)rD=1rIROW)
FORMAT(5XrF10.7r10XrF10.7)

STOP

DU 642 KUSA=1rIROW

YT(MJISA)-Y2D (KUSAT1)
DO 643 KAKA=IrIROW
XT <KAKA)=Y2D (KAKAT 2 >
GO0 TO 777
END

CREATING REFERENCE TEMPLATES
CLUSTER CENTRES ARE
PARCOR COEFFICIENTS.
DIMENSION Z(600)rY (600)

OBTAINED BY AVERAGING

1.P-0

TYPE 1

FORMAT<' HOW MANY DATA F'Il.ES-'$)
ACCEPT + »N

K-0

DO O 1=1»600

Y<1)=0.0

TYPE 12

FORMAI(' GIVE DATA FILE NAME="%)
ACCEPT *rKku

IPU-1

DEFINE FILE KU<1r1200rlJr IPU)

RLAIKKU'IPU) <Z(1)ri1=1r600)
LT.USL <UNI1-KU)

DU V | —1r600
Y(1)«Y(IHZ(1>

K-KI 1
IF(K.EQ.N)
GU 10 10
DO 33 J*Ir600

GU TO 111

Y(J)=Y(J)/FLOAT <N)
IF(ADS(Y(J)).UT.1.)
CONTINUE

TYPE 105

FORMAT<' GIVE THE
ACCEPT %tIKU
ILos=1

DEFINE FILE 1KU<1r1200rUriLOS)
WRITE<IKU 'ILOS)<Y (J)rd-1r600)
CLOSE(UNIT=1KU)

ILP=1

FILE NAME"')

TYPE 200rILP
FORMAT(* ILP="rl12>
sToP

END
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PROGRAM FUR CAI CUI.AfING

I--RATIO
DIMENSIUN IS1 (40) »XT (20)
morosion pkioo )»utiioo>»r i<ioo >*ur<20>

INIT11ALIZATIUN

DO 12 1-1+%20

UI(1)-0-0

XT(1>=0.0

TYPE 1

FORMAT(" GIVE |IHE FILE NAMES OF SPEAKER'>
FOUR SPEAKERS (EACH GAGE 10 UTTERANCES)
ACCEPT 4*(1S1(1)»1—1»40)

TYPE 2» (I1S1(1)»1—1»40)

FORMAT</*1013>

READ FILE 10 <I| ,E.=SPK1+SPK2+SPK3FSPK4/4 )
IKU-10

1L0S-1

DEFINE FILE IKU(1»200»UrlLOS)
READ(IKU'ILOS)(PT(1>»1=1»100)

CLOSE <UNIT-I1KU)

LQ-0

SEGMENTATION AND DATA REDUCTION

DO 3 J-1»20

PAL-0.0

DO 4 K-1*5

PAL“PALTP i (KILO)

PAL =PAL/5.0

PT(J)-PAL

LO-LUTS

CONTINUE

MEAN OF SPK1=FTW1.DAI|»MEAN OF SFK2=FTN2.DAT
MEAN OF SF'K3=FTN3 «DAT »MEAN OF SPK4=FTN4.DAT
READ THE FILES

IKU=1

ILoS=1

DEFINE FILE IKU(1»200»U»ILOS)

READ< IKU 'ILOSXQTd)»l=1»100)
CLOSE<UNIT=IKU>

SEGMENTATION AND DATA REDUCTION

L0=0

DO 5 J=1%20

PAL-0.0

DO 6 k -1 »5

PAL -=PAL IUT (KFLO)

PAL-PAL/5.0

01(J)=PAL

ul-Ltll 5

CONTINUE

EVALUAIE HIE NUMERAIOR (1.E»VARIANCE OF SPEAKER

MEANS)

DU U 1-1»20

SI-P1 <) (11(1)

RI1<1) [Tlilliil

DU 10 1 1»20

Uld ) Ui (f)TRX 1)

[INIER TN NINE

Il <lkll.fcU.5) (Ml U 100

HU 111  ‘e*

i20.0 is mi st:/.i i i At.ink

100
It»

102

okl

26

25

225

36

35

80

90

400

DO 15 J-1»20
Ultd)-Ul(J)4120.0

TYPE 102»(UTd )*1=1»20)
FORMAT(5F15.5)

EVALUATE HIE DENOMINATOR il.E. AVERAGE
SPEAKER VARIANCE)

hi*l— SPK1»MI=2— SPK2.M1=3— SPK3.MI-4—
L1=1

DO 40 MI=1»4

IKU=M1

IL.OS- 1

DEFINE FILE IKUC1 »200»U» I1.US)
READ!IKU'ILUS)<PT<1)»1=1»100)
CLOSE(UNIT“IKU)

LQ=0

SEGMENTATION AND DATA REDUCTION
DO 25 J=1*20

FAL=0.0

DO 26 K=1*5

PAL=F*AL+PT (K+L.Q)

PAL=PAL/5.0

PT(J)=PAL

LO=LQ+5

CONTINUE

M2=1 TO 10 ==> 10 UTTERANCES
DO 400 M2=1»10

ILA=1S1(LI>

TYPE 225*ILA

FORMAT<' FILE NAME®“'. 15)
ILOS=1

DEFINE FILE ILAi1*200*U*ILUS)
READ(ILA'ILOS)(QT(1)*1=1%*100)
CLOSE(UNIT“ILA)

LQ=0

DO 35 J=1*20

PAL=0.0

DO 36 K=1»5

PAL=PAL+QT(K+LO)

PAL-=PAL/5 =0

QT(J)*PAL

LU-LUYS

CONTINUE

DO 80 1=-1.20

ST=PT(1)-QT (1)

RT<Il)=sr*sl

DO 90 1=1*20
XT(I)=XT(I)FRT (1)

L1=L1+1

CONTINUE

CONTINUE

CALCULATE HIE F RATIO

DO 500 J=1»20

PT(J)-U 1 (.3)/XT <J)

CONIINUL

TYPE 600» <J»P1 <J>»J 1*20)
1URMA I (' LRAIJIJ( *t2+ ) - |]5.5)
STOP

END

OF INIRA-

SPK3



Ab.9 Fortran program listing of the digit recognition system

ISOLATED WORD RECOGNITION TEP(M6)=E(M6B)-Y(M2)4B(M6-1)
PROGRAM 441 WAR(M6)=B(M6-1)-Y(M2)»E(M6)
c STORE THE FORWARD AND BACKWARD ERRORS.
THREE FEATURE VECTORS SUCH AS PARCOR COEFF. DO 814 J=M2T4»115
LOG(AREA) AND ARCSIN(PARCOR) ARE TESTED E(J)=TEP(J)
USING THIS PROGRAM.THE VOCABULARIES USED ARE 814 B(J)=WAR(J)
DIGITS ONE TO NINE(INCLUDING ZERO) AND LETTER 448 CONTINUE
"'OH"' . LP=LP+12
IT IS ASSUMED THAT THE REFERANCE TEMPLATES c CHECK FOR LAST FRAME
AND SPEECH SAMPLES(AFTER ENDPOINT DETECTION) IF(ILOS.GT=IBLOCK) GO TO 100
ARE AVAILABLE ON DISC. GO TO 10
BEFORE STORING THE SPEECH SAMPLES ONDISC c
THEY ARE SUBJECTED TO LINEAR AMPLITUDE SCALING c COPY PARCOR COEFFICIENTS TO ANOTHER
AND PRE-EMPHASIS. c ARRAY.
DIMENSION Y (14)»E<116)»D(116)»1Z(20)»TEPiI6600) 100 DO 75 1=1»(IBLOCK412)
DIMENSION PAR(750)»UAR(800)»QAP(750) 75 QAP(1)=PAR(l)
REAL MIN»NEXT c INITIALISE ARRAY
REAL KALI DO 2 1=1»800
TYPE 42 2 WAR<I)=0 »0
FORMAT(' HOW MANY FEATURE VECTORS(MAX.=3)='$) CLOSE(UNIT=2)
ACCEPT * »ITE TYPE 4001
THE NUMBER OF RECORDS IS OBTAINED FROM c LINEAR TIME WARPING IS APPLIED HERE.
THE ENDPOINT DETECTION PROGRAM. c A— WARPING RAT10»PARCOR COEFF. CONTOUR
TYPE 1 c IS STRETCHED OR COMPRESSED TO 50 FRAMES.
FORMAT(' NUMBER OF RECORDS/'*)
ACCEPT 4»IBLOCK 105 A=FLOAT(IBLOCK)/50.
ILOS=1 IP=IBLOCKA412
DEFINE FILE 2(IBLOCK»230»U»ILOS) [of COPY THE COEFF. OF LAST BLOCK TO NEXT
LP=-0 c BLOCK.
READ EACH FRAME TO CALCULATE PARCOR COEFF. IL=1P-11
READ(2 'ILOS)<QAP(1)»1=1»115) DO 20 1=1»12
ZEROTH OREDER PREDICTOR ISEQUIVALENT TO 20 PAR(IP+1)=PAR(IL+1-1)
E(1)-B(1)=S(1) »E(2)-B(2)=5(2) » c THE UNWARPED COEFFICIENTS FOR THE FIRST
DO 445 K=1»115 c BLOCK ARE THE WARPED COEFFICIENTS.
E(K>=QAP(K) DO 21 J=1»12
B(K)=UAP <K) UAR(JFf60)“PAR(J)
NUMBER OF POLES IN THIS ANLYSIS IS 12 MI=J+60
NPOLE*12 DO 22 L=1»49
SOLVE THE BURG'S EUUATION M1=M1tl2
DO 44U M2=1»NPQLE T=A4FL OAT(L)
770, IF=1FIX(T)
- 1G=1F+1
V-=0. H*T-FLOAT(IF)
NUMERATOR AND DENOMINATOR CALCULATIONS PUL=PAR(IF412+1J)
DO 449 MS —16»115 [ WARPING EQUATION
Z=E(MS)*B(MS-1)tz 22 WAR(MI)=PUL+(PAR(IG412iJ)-PUL)4M
U=E(M5)4C(MS)1W 21 CONTINUE
V=B(H5~1)4D(M5-1) TV 2000 TYPE 44
Y(M2) IS THE PARCOR COEFFICIENTS. 44 FORMAT(' ARE YOU READY WITH TEMPLATES(Y=1»N=0)
Y(M2)*2.4Z/(UTV) ACCEPT 4»IRE
PAR(IPIM2)-Y(M2) IF (IRE.EC).0) GO TO 2000
IF PARCOR COEFF. IS > 1 OR < -1 M22-0
THEN THE FILTER 1S UNSTABLE* c TEMPLATE CORRESPONDING 10 DIGIT ONE IS
IF(ADC(Y(M2)).GT.J.) 00 10 789 c IN FILE Il AND DIGIT TWO IN FIIE 12
UPDATE FORWARD AND BACKWARD ERRORS. c AND SO ON.FILE 21 CORRESPONDS TO TEMPIATE

DO 441 M6-M21 4»11S C OF LETTER 'OH"'.



4425

2225
326

90
8225

80

61

70

110

112

-

KU-11
ILos=1

DEFINE FILE KU<1»1200»U»ILOS)
READ(KU'ILOS)(TEP(IFM22)»1=1»600)
CLUSE(UNIT=KU>

M22=M22+600

IF(KU»EQe21) GO TO 2225

KU=KUH

Uo TO 4425

INITIALISATION FOR DISTANCEMEASURE
IFUS=12

KAL«11

M22=0

KU*0

KAL=KAL MO

KU=KUM 1

MAJOR LOOP FOR THE RECOGNITION STARTS
HERE.

DO 8225 KUM=1»600

PAR <KUM)=TEP< KUM4M22)

M1N=99997.

DO 70 J=1»11

IAD=<J-1)*12

DIS=0 .0

IAN=1

IPRU-0

ACCUMULATE DISTANCE SCOREFOR EACH FRAME
DO 61 ISM=1»50

IPRU=-1ANFIPUS-1

DO 80 1=1AN»IPRU

CITY BLOCK DISTANCE MEASURE
POO-PAR(I)-WAR(IAD+1)
D1S=DXSFABS(POO)

CONTINUE

IAN=IANFL12

CONTINUE

STORE THE DISTANCE SCORE FOR EACH TEMPLATE
Y(J)=DIS

IF<Y(J).LT.MIN) GO TO 110
CONTINUE

GO TO 112

MIN=Y(J)

1K 1S 53

GO TO 70

E<KU-10)=MIN

RECOGNISED DIGIT

1ZUOJ- 10)=1KIS

IF(KU-EQ*KAL) GO TOO05

INCREMENT IHE POINTERFOR OBTAINING
NEXT TEMPLATE

M22-M221600

KU-KU41

GO TO 90

MINIMUM ACCUMUI ATEUDISTANCE CORRESPONDS
TO RECOGNISED DIGIT

85

98

o

325

788

99

86

140

141

866
89

3000

72

56

78

4001
4002

4003

789

MIN=99997.

DO 98 J=1»KAL-10
IF(E(J).LT.MIN) GO TO 99
CONTINUE

RECOGNITION 1S OBTAINED FOR
TO 12-POLE

1-POLE

PRINT POLE VALUE AND RECOGNISED DIGIT

TYPE 325»I1PUS

FORMAT(/»14X»I13» * -POLE ANALYSIS")

TYPE 788»IBIGIT
FORMAT<14X» ' THE RECOGNISED
Go TOo 86

MIN=E<J)

IDIGIT=J

IF(IDIGIT.GE.10) IDIGIT=0
GO TO 98

DIGIT «'»13)

CALCULATE NEXT DIGIT TO RECOGNISED DIGIT

DISTANCE RATIO.
NEXT=99997-«

DO 140 1=1»KAL-10
IF(E(I).LT.NEXT) GO TO 150
CONTINUE

NEXT=NEXT/MIN

TYPE 141»NEXT

FORMAT<' DIS.RATIO(MIN.DIS/CLOSEST*DIST) ="»F10.5)

GO 'TO 866
IF(E(lI).EG.MIN) GO TO 140
NEXT=E(I)
GO TO 140

TYPE 89» <I»E(I)»1Z(1>»1=1»KAL-10>

FORMAT<' MIN('»I12»"' )="»F15.10»3X»"' POS.OF SHIFT

IPUS=IPUS-1
IF(IPUS-EG=0) GO TO 3000
GO TO 326

CONVERT PARCOR TO LOG(AREA)
IF(ITE.EQ.3) TYPE 4002
IF(I IE.EU.2) TYPE 4003
1TE=ITE-1

IF(ITE.EQ.O0) STOP
IF(ITE.EQ.1) GO TO 56

DO 72 11=1»(1BLOCK*12)
LOG(AREA) CALCULATION
PP1=1-0AP(Il)
PP2=14QAP(Il)

PAR(II)=ALOG (PP1/PP2)

GO TO 105

ARCSIN(PARCOR) CALCULA 110N
DO 78 1=1»(IBLOCK412)
SO=QAP(I)
KALI«SORT(1~SO#S0)
PAR(I)=ATAN(SO/KALI)

GO TO 105

FORMATIi' PARCO(KI) ARE USED

FORMAT(//»14X»" LOO(1-KI/14KI> USED FOR RECOGNITION'/)
USED FOR RECOGNITION'/)

FORMAI(//»14X»' ARCSINE(KI)
STOP

OR ARCSIN(PARCO)

FUR RECOGNITION")



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

figure Captions

Fig, 10
Plot of the number of samples and summations (necessary for the
calculation of the PA2, MPA2, AMDF) versus the trial period.
Block diagram of the pitch extraction system
Oscilloscope traces of PA2, PA3, PA4 and AVDF of the voiced section
of the utterance “one" for high StIR.
Table 1
Table 2

Oscilloscope traces of PA2 and AVDF of the voiced section of the

utterance “one" for 10 dB SNR.

Pitch period analysis (PA¥) for a 310 Hz sine wave for high SNR
and for 10 dB SNR.

Oscilloscope traces of the onset of voicing (frame size 25 ms) and

the periodogram.

Oscilloscope traces of the trailing portion of the voiced speech

(frame size 25 ms) and the periodogram.

Pitch period contour for “we were away a year ago".

(without non-linear smoothing).

Intensity contour of the utterance "we were away a year ago".

(male speaker only).

plow chart to generate PA2 in real-time

For PA3 and MPAS IC = IS(M) +IS(M+H) + IS(M+211)
For PA4 and MPA4 IC = IS(M) + IS(M+il) + IS(M+2t() + IS(M+3N)

For the calculation of MPA2, MPA3 and MPM the dashed
block could be omitted.

N - Trial Period, IS=Speech samples
IC « sums of the column
IG and IL are the greatest and the least values respectively.

The 6uys-6allot Table

Some results of the gross errors committed by TDPA before and
after adding noise samples to speech signals.



Table 1 Table 2

1st row S(h S(2) i, - S(N)
2nd row S(N+1) S(N+2) — e S(2N) S/N Ratio  Utterance NUMBER OF GROSS ERRORS TYPE OF
\ \ I| | | (dB) and ~SPEAKER
I I I } Duration PA2 PA3 PA4 MPA3 MPA4
| | | |
(m-D)th row  S((Mm-2)N+l) S((m-2)N+2) -— §((m-1)N) 38 MUMVY 2 1 2 2 2
465 ms MALE
SPK-1
mh row S((m-1)N+1) S((M-)N+2) - §(mN) 5 4 5 3 4 3 ( :
30 MUMWY 2 0 0 2 1
suras c(1) C(2) s C(N) 500 ms MALE
(SPK-2)
5 3 3 2 5 4
31 MUY 3 3 2 4 6
590 ms FEMALE
(SPK-3)
8 7 7 5 9 6
41 ONE 5 5 5 5 5
565 ms MALE
(SPK-4)
8 5 3 5 5 3
48 ONE 2 2 2 2 2
550 ms CHILD
(SPK-5)
18 10 7 4 6 6
36 ONE 9 9 2 7 2
563 ms FEMALE
(SPK-3)

10 15 6 7 5 7
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FIG. 3

Speech Signal
(Male speaker)

Periodogram
(PA2)

Periodogram
' (PA3)

PeriodoEram

AMDF

FIG. 4

Speech Signal
Plus Noise

Periodogram
(PA2)

AMDF



FIG. 5

Sinusoidal
310 Hz

Periodogram
(PA4)

Sinusoidal
Plus Noise

Periodogram
(PA4)

FIG. 6

FIG. 7

Speech Signal
(Child speaker)

Periodogram
(PA2)

Speech Signal
(Child speaker)

Periodogram
(PA3)
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APPENDIX |

The original periodogram algorithm can be described as follows:
by using the Buys Ballot table (Table 1) one can form means a(l), a(2),
. a(N) of the values of C(n) in the individual columns by dividing C(n)
by m That is, a(n) = C(n)/m. Then the correlation ratio is defined as

the ratio of the standard deviation of a(n) and s(n). That is,

N p m d
ng| @ - a2 1 rg' SO -y (1)

mil

r(N):

Z—

Where a and s are the means of a(n) and s(n) respectively. The number of

rows (m) are obtained from the total number of samples (T) by m= -
lInteger
The periodogram is then the plot of n(N) against M The periodogram for a

digital sinusoid would be:-

ns (N) '“1, 3 sin2m L= "-Ut2
2 m 2

sin

N|%

Ore can see that the calculation of n(N) (equation 1) is computationally
inefficient, though this periodogram gives accurate pitch estimate and also

good noise reduction. An alternate form of equation 1 is:-

1 f,
N = = B 1am)-al sy - s |
H nl1 N n=l

Replacing the multiplication of equation (1) with taking the absolute value

is acceptable and causes a large reduction in computational effort.

F1G-10
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