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ABSTRACT

Computationally efficient digital signal processing algorithms 

suited for speech signals are investigated, A new efficient time domain 

algorithm for estimating the pitch period of voiced speech is presented.

This algorithm has no multiply operations and can be implemented in integer 

arithmetic without scaling on a 16-bit microprocessor, The algorithm gives 

a low error rate with signal to noise ratio higher than 10 dB, Moreover, a 

good signal intensity estimation is obtained as a by-product of the 

algorithm.

The importance of the zero-crossing counts of a differentiated 

speech waveform is explored in terms of a discrete mathematical analysis.

The potential of this parameter is shown by its use in a new speaker 

verification system, The verification score obtained using this parameter 

in combination with the intensity compares well with the score obtained 

using only the pitch period parameter. These three parameters have also 

been compared in terms of their ability to discriminate between speakers,

The computational effort necessary to extract the zero-crossing count of 

differentiated speech is very small and it can be extracted using a 

microprocessor in. real time,

An efficient way of creating reference templates using a nonlinear 

mapping technique to cater for intraspeaker variations is presented. Results 

show that the speaker verification score is improved when intraspeaker 

variations are considered in creating reference templates,

A speaker dependent digit recognition system has been implemented 

using Burg’s Partial Correlation coefficients and their nonlinear transforms, 

The results show that the recognition score obtained is 100 per cent with 

three or more Burg's coefficients, and that a simple 'city block’ distance 

measure is adequate,

Finally a new computationally efficient multiplication technique 

which speeds multiplication at the expense of memory space is developed.
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CHAPTER 1

INTRODUCTION AND PROPOSED WORK

1.1 Description of Speech Processing Problems

The digital processing of speech has advanced greatly in the 

past decade. This is due to theoretical advances in the area of digital 

signal processing of speech signals, Prior to the mid-1960's almost all 

the speech processing systems were based on analog hardware, However, 

modern digital computer systems and the use of microprocessors as well 

as highly specialized digital hardware systems provide flexibility in 

processing speech signals, This flexibility has led researchers to 

experiment digitally using sophisticated algorithms which cannot be 

implemented practically in analog hardware. The development of new speech

processing algorithms is actively being researched and almost all modern 

speech processing systems rely on digital signal processing algorithms.

This thesis describes research carried out between 1979 and 1981 

to develop computationally efficient digital signal processing algorithms 

suited to speech signals of telecommunications bandwidth (0 to 3,4 KHz),

Speech processing systems can be generally categorised into three 

major ane^s, These are:~

(a) Speaker recognition systems

(b) Speech recognition systems

(c) Voice response systems

The major part of the research described here falls into the first two

areas.



verification/identification 
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Figure 1.1 The general representation of the speaker recognition process
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1,1.1 Speaker Recognition Systems

There are two sub-areas of speaker recognition?-

(a) Speaker verification

(b) Speaker identification

Though this research interest falls into the first category, both speaker 

verification and speaker identification problems are briefly examined.

The general representation of the speaker recognition problem is shown 

in Figure 1.1, As seen in Figure 1.1 the problem of speaker recognition 

may be divided intq twq parts: parameter extraction and classification.

In the first part a representation (pattern) of the speech signal is 

obtained using digital processing techniques which preserve the speaker 

dependant information in speech. In the second part appropriate decision 

rules are used after comparing the unknown speech pattern to previously 

prepared reference patterns to make a choice among available alternatives.

In speaker verification the task 1s to verify if the unknown 

utterance was spoken by a claimed speaker (i.e. the customer enters his 

identity claim and speaks his prearranged verification phrase). In 

speaker identification the task is to assign an unknown utterance to one 

person in a group of several known speakers (here there is no claimed 

identity from the user, but essentially the question asked is "who am I?"). 

Although these two areas have much in common the recognition procedure 

used in each case can be very different. Speaker verification requires a 

binary decision, namely, that of accepting or rejecting the claimed 

identity of an utterance. In practice, it means comparing the unknown 

Utterance with a reference utterance of the claimed speaker and deciding 

if the. two are similar enough, based on a pre-computed threshold value.

(The threshold is obtained from the training set and included in the 

reference pattern data), Only one comparison is required regardless of the



- 3 -

size of the speaker population.

In the case of speaker identification, if the total population 

is N speakers, then N comparisons have to be made, compared to just one 

comparison in the speaker verification problem, in order to assign an 

unknown utterance to one speaker of the population. Since the unknown 

utterance is compared to each of the N reference patterns, there is a 

finite probability of an incorrect decision for each comparison and it 

is apparent that the overall probability of an incorrect decision must be 

a monotonically increasing function of N. In the speaker verification 

problem the probability of an incorrect decision is independent of the 

population size. The tasks of verification and identification can be 

summarized as follows:-

Speaker verification

(a) identity claimed

(b) one comparison

(c) accept or reject claim

(d) *Pr(e) is independent of 

population size

Speaker identification 

no claimed identity 

N comparisons

absolute identification among N

*P (e) -»-1 as N » r'

*Pr(e) ~ Probability of incorrect decision

It is clear that as the total population increases, reliable speaker 

identification becomes very difficult. Therefore the verification problem 

is judged not only more tractable but also of more practical interest.

Two kinds of errors are possible in the speaker verficiation 

process. The first kind of error is : a false verification occurs when 

an imposter is verified as claimed speaker. The second kind of error is : 

a false rejection occurs when an honest speaker is rejected. The 

relative frequency of each error type is controlled by the value chosen
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as the threshold. If the threshold is high few false rejections occur, 

however, many false verifications will occur. The reverse is true for 

a small threshold value. Normally the threshold is chosen to equalise 

the false (imposter) verification and false (customer) rejection rates.

This is called equal error criterion. In many real-world applications 

the two types of error would not be equal. For example, in a Banking 

situation the rate of rejecting a customer would be lower than the rate 

of accepting an imposter. In this case the threshold would be adjusted 

appropriately.

One of the most important steps in successful speaker verification 

is the selection of speech parameters capable of efficiently representing 

the speaker dependent information in speech. The chosen speech parameters 

should have the following properties

(1) Capable of representing the speaker dependent information.

(2) Easy to measure so that real time speaker verification 

systems are possible.

(3) Independent of speaking environment.

(4) Not susceptible to mimicry.

One way of checking that the extracted parameters have the 

above properties is to have training and reference utterances of the 

designated speaker and calculate the probability of error in recognising 

the speaker. Alternatively a statistical feature selection approach could 

be used to examine the effectiveness of the parameters. (Atal 1976)

1.1.2 Speech Recognition Systems(SRS)

Speech recognition enables a human operator to use simple 

spoken commands that can be recognised and interpreted by an automatic 

speech recognition system (ASRS, e.g. computer). Examples of its use are
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speech control of machines, "dialling" a telephone, entering computer 

programs into a computer memory etc. It is very convenient and fast 

for people to communicate with machines in speech rather than using 

keyboards. Fast communication with machines via keyboards is possible 

only for skilled (or trained) people whereas the same speed or more is 

obtainable with untrained people when speech is used. The speech 

recognition system (SRS) can be sub-divided into a large number of sub- 

areas depending on the following factors:-

(1) Type of Speech

The type of speech can be divided into two categories:

Isolated and continuous speech. The isolated speech (word) 

recognition system requires a short pause before and after 

the word that is to be recognised. The minimum duration of 

a pause is a few hundred milliseconds. In continuous speech 

there is no clear break to distinguish where one word ends 

and another begins.

(2) Type of Speakers and Systems

The SRS can be designed for different types of speakers namely, 

male, female and child. Since speech characteristics vary a lot 

between male, female and child as a result of the variation due to 

the excitation frequency (or pitch period) and formant frequencies, 

the ASRS can be designed for a particular type of speaker. 

Alternatively it can be designed for all types of speakers. An 

SRS developed for male speakers cannot be used for female speakers. 

As a result of this distinction, normally, two types of ASRS are 

possible and they are named as speaker dependent and speaker 

independent systems. In the first case the ASRS is trained to an 

individual speaker and the training is done by analysing several
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repetitions of the same utterance spoken by the same speaker.

In the latter case no training 1s required in order to use the 

ASRS. The speaker dependent and speaker independent systems can 

be designed by having different reference patterns in each case.

The overall system will be similar to Figure 1,1.

(3) Speaking Environment

The speaking environment 1s an important factor in designing 

ASRS because the signal-to-noise ratio varies a lot from environ

ment to environment. Typical environments encountered are sound

proof booths, computer rooms and noisy situations (e,g, public 

places). The signal-to-noise ratio in a sound-proof booth can 

exceed 50 dB and hence it is used only for experimental ASRS, The 

quality of speech obtainable in a computer room where there is no 

noisy peripheral equipment working is the same as in a laboratory 

or office environment and the expected signal-tQ-noise ratio is more 

than 30 dB. Most of the ASRS are designed to operate under these 

conditions. In a public place the signal-to-noise ratio can be as 

low as 10 dB, Factories are also categorised as noisy environments 

where signal-to-noise ratios of typically 15 dB are obtained,

(4) Transmission System

The transmission system depends on the type of application,

It can be a telephone line with a low quality microphone connected 

or a short transmission line with a high quality microphone 

connected.

It can now be seen that a variety of options are available in 
designing ASRS and the selection of the option depends on the type of 

application concerned, This research is restricted to the area defined
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by the following options

(a) Isolated word recognition

(b) Male speakers and speaker dependent systems

(c) Computer room environment

(d) High quality microphone with a short transmission line

(e) The vocabularies are digits 0 to 9 and letter 'Oh'.

1.2 Time Model for Speech Production

In order to apply digital signal processing techniques to the 

previously discussed speech processing problems it is important to 

understand the fundamentals of the speech production process. Speech 

signals are composed of a sequence of sounds and the sequence of sounds 

are produced as a result of acoustical excitation of the vocal tract 

when air is expelled from the lungs. A schematic diagram of the human 

vocal apparatus is shown in Figure 1.2. The speech sounds can be 

classified into two major classes according to their mode of excitation: 

The voiced sounds are produced as a result of excitation by a series of 

nearly periodic pulses (Figure 1.3) generated by the vocal chords. The 

glottis is that part of the throat which supports the vocal chords. 

Examples of voiced sounds are vowels, semi-vowels, voiced stops and 

nasals Qlabiner 1978]]. The fundamental frequency of the vocal chord 

vibrations is determined by the mass and tension of the vocal chord. The 

range of fundamental frequencies in speech is normally between 60 Hz and 

400 Hz. The spectrum of the vocal excitation function (Figure 1.4) 

consists of a series of harmonics whose amplitude falls off at 

approximately 12 dB per octave. The spacing between the adjacent 

harmonics is determined by the period of the vocal chord vibration (known 

as pitch). All the voiced sounds are radiated at the lips except the



nasal sound, For nasal sounds the front part of the vocal tract is 

coupled through the velar opening to the nasal cavities (Figure 1,2), 

thereby producing sound radiation from the nostrils, The velar opening 

is generally closed when sound is radiated at the lips,

Unvoiced sounds or fricatives are produced by forming a cgn^ 

striction at some point in the vocal tract and forcing air through the 

constriction at a high velocity to create turbulance which produces a 

source of noise (Figure 1,3) which excites the vocal tract. In this mode 

the vocal chords are held open (not vibrating). The excitation spectrum 

(Figure 1.4) in this case is uniformly distributed oyer a wide frequency 

range. Examples of unvoiced sounds are various fricatives such as 

f, s, sh, etc, The sounds p, t and k, are called plosive sounds and are 

produced by making a complete closure toward the front of the vocal tract, 

building up pressure behind the closure, and abruptly releasing it.

The vocal tract (Figure 1,2) is a non-uniform acoustic tube 

that is terminated at one end by the vocal chords and at the other end 

by the lips, The cross-sectional area of the vocal tract is determined 

by the position of the tongue, lips, jaw and yelum. The spectrum 

(Figure 1,4) of the vocal tract response consists of a number of resonances 

whose locations depend upon the vocal tract shape, The resonance 

frequencies of the yocal tract are called formants, The speech sounds, 

as discussed above, when generated in the throat, propagate down the 

non-uniform acoustic tube (vocal tract) and are radiated at the lips or from 

the nostrils,

The basic assumption of almost all speech processing systems is 

that the source of excitation and the vocal tract system are independent, 

Therefore, it is a reasonable approximation to model the source of 

excitation and the vocal tract system separately as shown in Figure 1,3,

The vocal tract changes shape rather slowly in continuous speech and it is

- 8 ^
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reasonable to assume that the vocal tract has fixed characteristics 

over a time interval of the order of 10 ms- Thus once every 10 ms, 

on average, the vocal tract configuration is varied producing new vocal 

tract parameters^Ct.e, UPC parameters, ATAL 1972), Figure 1,4 shows 

the spectrum of the voiced speech composed of harmonically related 

frequencies whose amplitudes are determined by the vocal tract response 

at these frequencies (i,e, S(w) = G(w),Y(w)), However the speech 

spectrum for the unvoiced sounds reflects entirely the vocal tract 

response as shown in Figure 1,4 (i,e. S(w) = G(w),V(w) = V(w)).

1.3 Previous Work on Speaker Verification Systems

Until early 1970, almost all the studies on speaker verification 

were based on frequency domain analysis. Thereafter time domain analysis 

became popular because the time domain speech parameters need very little 

computational effort in order to extract them from the speech signal, 

compared to frequency domain parameters. Therefore early attempts at 

speaker verification using time domain speech parameters will be studied 

in detail, and for the sake of completeness the important speaker verification 

systems using frequency domain analysis will be briefly presented.

1« Lj et al (1966)

One of the first attempts at experimental verification systems 

is due to Li et al, A spectral representation of the input speech, 
obtained from a bank of 15 bandpass filters spanning the frequency range 

300-4000 Hz was used, A set of weights for the various frequency bands were

t Every IQ ms* in additiQn to the LPQ parameter, the pitch and 
the gain are also varied,
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obtained, by having a training session, The weights characterise the 

speaker, A large number pf training and test utterances were collected 

over telephone lines, Verification error rates around IQ per cent were 

reported,

2, *Luck fl969)

in this study cepstral measurements were used to characterise

two yowels |I:| and |Q| in a standard test phrase "My code is ----- ",

The length of the word "My" and the speakers average pitch period over 

the two vowel segments were used as additional parameters. The speaker 

trained the system by repeating the test phrase an adequate number of 

times, The above parameters were analysed and saved for each repetition.

The classification rule used was the simple Euclidean distance measure.

A test utterance was evaluated by finding the distance from it to the nearest 

utterances in the training set, if this distance was less than or equal 

to a pre-determined threshold value the utterance was accepted. Experiments 

with four true speakers and thirty imposters produced an error rate 

between 6% and 13%. Luck demonstrated the necessity of collecting reference 

utterances in a number of separate recording sessions in order to 

adequately sample the variations in a speaker's voice over time. He also 

demonstrated that imposters attempting to mimic the true speaker could 

not improve their ability to deceive the system significantly.

Atal (1968) demonstrated in a speaker recognition experiment 

that it is more reliable to use the entire pitch contour of a sentence-' 

length utterance than just using the average pitch of the speaker (as in 

Luck's case), He used an entirely voiced sentence namely "May we all 

learn a yellow lion roar"» He argued that an imposter may be able to

*
Frequency domain analysis
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mimic those voice. characteristics of a, speaker which remain fixed in 

time (e.g, averaged pitch), However. 1t appears to he difficult for 

an imposter to mimic easily the entire variation of pitch as a function 

of time, Further he Showed that no-one is able to produce an utterance 

twice at exactly the same speaking rate. That 1s, the duration of the 

pitch contours were found to vary from one occasion to another. In his 

case a new1 set of time co-ordinates was computed for the utterance by 

linear time warping of the original time co-ordinates such that the 

total duration of the utterance was two seconds, Atal further argued 

that pitch information has important advantages over spectral information 

as the spectral patterns are affected by the frequency characteristic of 

the transmission system whereas pitch is unaffected by the transmission 

system. Though his experiment was based on speaker recognition tests it 

is also valid for speaker verification,

3. * Das et al (1969)

This system operated on output signals from a filter bank of 

20 bandpass filters covering the range of centre frequencies from 188 

tp 8023 Hz, The output of each filter was full-wave rectified and passed 

to a re-settable integrator with a 20 ms integration time. That is, 

each band's energy was obtained. In addition to band energies the system 

used the pitch contour as explained by Atal (1968), and the formant contour, 

This system used five experimental phrases and one of which was "check 

intermediate allowance", This experiment involved 7000 phrase length 

utterances of 118 speakers. An error rate of about 1 per cent was reported. 

However, this error rate was accompanied by a 10 per cent "No decision" 

rate and was obtained by using 50 training utterances per true speaker, 

jn this experiment time alignment was done using a process of 

identification of events (i,e, ^segmentation"). The performance
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of the scheme depends on successful segmentation which is believed 

to be a difficult operation,

The problems encountered by the previous three, people were 

studied carefully by the other researchers and the following conclusions 

were drawn:-

(a) Filter banks should be avoided

(b) Time alignment by "segmentation" must be avoided

(c) Though linear time scaling is acceptable, it does not 

give a perfect match and therefore non-linear time 

scaling must be done,

(d) All the extracted parameters should be a function of 

time (i,e. contours),

The first attempt at speaker verification using the "rules" listed 

above was made by Doddington (1971).

4. Doddington (1970, 1971)

Doddington did not use filter banks, but extracted the pitch 

contour, intensity contour and formant frequency contour directly, He 

developed a procedure for non-linear time scaling in order to synchronise 

the unknown utterance with the stored reference utterance, The 

verification phrase was "We were away a year ago" which was used previously 

by Rosenberg (1971) in a "listener performance" experiment. Since the 

second formant contour has large clear excursions that are characteristic 

of the utterance and relatively consistent across speakers itwas used as 

the basis of non-linear time warping function, The time warping function 

was obtained using second formant contour and the other contours such as 

pitch, intensity, first formant and third formant were subsequently warped 

using the same function. The system was evaluated for a population of
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forty male speakers, Error rates bf about 1 per cent were reported,
The main problem with this system was the necessity of a large computing 

capability in order to extract the formant frequencies, However,

Doddington reported that distance measures based on formant data contribute 

relatively little to the final accuracy, The formant computation cannot 

however be omitted, as the second formant is required for time registration. 

This system reponded either ‘'accept" or "reject" to every utterance, but 

•'no decision" was not allowed,

5. Lummis (1973)

After studying the results of Doddjngtqn (197Q, 1971) Lummis used 

the intensity contour for non-linear time warping in place of second formant 

contour. His overall scheme was similar to Doddington's with the principal 

difference as follows;-

(a) Time registration was based on the intensity pattern, All the 

contours were warped tq a standard length of 2 seconds.

(b) Different distance formulas were used; Following the time warping 

the contours were divided into 20 equal length segments. In each 

segment a set of distance measures were applied to both the unknown 

and reference contours and the square difference was calculated.

The distance measures were in fact the Euclidean distance between 

the coefficients of orthogonal polynomials fitted to the reference 

and test contours. An overall distance for each measurement was 

calculated by summing the weighted squared differences over the 20 

segments <jf a contour, JJn addition to the four distance measures 

for each contour* there was also a distance based on overall cross^ 

correlation of the unknown and reference contour, An additional 

distance measurement based on the first three orthogonal polynomial 

coefficients was computed for the time warping function. A total of



28 distances were measured which characterise the dissimilarity 

between the unknown and the reference utterances,

(c) The speech parameter contours were smoothed by a 16 Hz low-pass 

filter,

(d) Reference utterances were constructed differently. All the utterances 

were linearly stretched or compressed to a standard length before non

linear time warping was applied. The utterances used were those 

collected by Doddington (̂ 197(5, 1971) and were used by him to measure 

the performance of his system. Forty-one speakers were included.

They were all male and eight were designated "customers", thirty-two 

were "casual imposters" and the last was an identical twin brother

qf one of the customers, Lummis demonstrated that automatic 

verification based solely upon voice pitch and intensity yields 

average error rates below 1 per cent for this small population, 

it is important to note that high quality speech was used in this 

case and also that the intensity contour was obtained after filtering 

the speech by a 600 Hz low pass filter.

6, Rosenberg and Sambur (1975)

Experience with the implementation of Doddington and Lummis 

indicated the desirability of omitting formant analysis. However, in a 

separate study Lummis and Rosenberg (1972) showed that formant contours 

may be significant with respect to the class of imposters that deliberately 

attempt to imitate customer utterances, They concluded that formant 

contours cannot be eliminated if a reasonably mimic-resistant system is 

required, Rosenberg and Sambur were searching for new features to 

supplement pitch and intensity and replace formant analysis, This goal 

was satisfied by using vocal tract parameters (LPC parameters or filter
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coefficients, Atal 0971 )), The evaluation was initially performed 

for 12 l,PQ parameters with 4 speakers. The utterance used was "we were 

away a year ago". It was shown that there was an extremely high negative 

correlation between adjacent coefficients and that the 2 ,  7tn and
1 L

12 ' predictor coefficient contours were needed to obtain good speaker 

verification results. The experimental results confirmed that the error 

rate when all 12 coefficient contours were used was not appreciably better 

than the eror rates obtained with the selected three coefficient contours.

In the final implementation they used pitch, intensity and 4th and 8*^ 

filter coefficients as the parameters for the speaker verification system. 

The distance measures used are similar to those used by Lumnvjs, 

however, the overall distance measure is the sum of weighted individual 

distances. The weights were obtained by using a training set. Twenty-two 

customers and fifty-five imposters participated in this experiment. Each 

customer gave fifty utterances and recording was done over two months.

Forty utterances were used as test utterances and ten were used to form 

reference utterances. The evaluation indicates that the verification 

error rate is approximately 1 per cent with respect to well-trained 

mimics. The reason for selecting filter coefficients is that they are 

easier to compute than the formant frequencies and provide improved 

verification rates.

7, Atal (1974)
Atal used the filter coefficients and other parameters derived from 

them such as impulse response, auto-correlation function, area function 

and the çepstrum function in a speaker recognition experiment, When these 

parameters were applied tp a speaker verification system, the cepstrum 

function gave the best results and an error rate of 2 per cent was reported. 

Ten speakers participated in this experiment and the spoken sentence was
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"May we all learn a yellow lion roar".

8, Rosenberg (1976)

51nee it 1s difficult to extract LPC parameters and formant 

frequency in real time, Rosenberg Implemented a real time speaker 

verification system ($VS) using only pitch and intensity contours. The 

system uses a population of nearly 100 male and female speakers and the 

recordings were done over five months over dial 1ed-up lines. The purpose 

of this implementation was to determine how well the verification system 

would operate under "Real world conditions1' using these two parameters,

The conditions involved were acoustic background noise and disturbances 

generated at the users end. The distance measure used for classification 

was the same as Lummis' distance measure. However» the non-linear time 

warping was done using dynamic programming techniques, This technique 

is believed to be the best method of warping and achieves almost perfect 

time synchronization. The technique was first introduced into the speech 

processing area by Sakoa and Chiba (1971) and then by Itakura (1975).

The intensity contour is the guide contour for the procedure. The unknown 

intensity contour is linearly stretched or compressed to the normalised 

length of the reference intensity contour, Then a distance is calculated 

between the i n point in the unknown contour and the j n point in the 

reference contour for each value of i and j. The dynamic program algorithm 

is used to find the path of least accumulated distance through the matrix 

of distances {d.y}, The optimal path specifies the warping function 

required tq replot the unknown contour time aligned to the reference 

contour. The system gave an average error rate of approximately 7 per cent.

Since 1976 till the present (1981), all the near-real time 

speaker verification systems have used pitch and intensity as the speech 

parameters because they can be extracted easily, In the last ten years
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research has shown that these parameters are suited to SYS, In a 

recent study, McGanegal et al (1979) concludes that pitch and gain are 

robust features for use in a SVS, after studying the effects of the 

transmission system on SYS,

1.4 Proposed Work on Speaker Verification

It is clear that the pitch period contour is an Important 

parameter in speaker verification experiments. Consequently a wide 

variety of pitch extraction algorithms have been proposed by previous 

researchers using time domain as well as frequency domain methods.

However, most of these require an excessive amount of computation 

(Rabiner 1976) which make then unsuitable for real time operation 

unless they are implemented in expensive hardware. Therefore this 

thesis examines a new pitch estimation technique for extracting the 

pitch period efficiently in the time domain.

It is apparent from the previous sections that the third parameter 

Which is necessary in addition to pitch and intensity in speaker verifica

tion systems are LPC parameters or a formant frequency. However, much 

computation is required for LPC analysis or formant estimation. This 

makes the use of both parameters impractical fpr real time SYS, The use 

Of the zero crossing counts of differentiated speech as the third parameter 

is proposed by the author as this can be extracted with very little computa

tional effort and also it carries a lot of information about the speech 

signal,

The SYS performance depends highly on the method used to create 

the reference utterance, The creation of reference utterances is simple 

provided that the variance between the repetition of the "verification 

phrase" Is small« For roany speakers this is not the case and the creation 
of the reference utterance requires care, Many researchers in the past
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obtained tfoe. rçfçpçnçç utterance by averaging all the utterances Qf the 

training set, however, the author proposes that a "cluster analysis." of 

the training set, obtained from the true, speaker? over a long period of 

time, be used. The cluster analysis will indicate how many reference 

utterances are necessary to represent all the intra-speaker variations.

It also eliminates any un-typical samples, This sophistication will 

improve the verification score.

1,5 Previous Hork on Digit Recognition Systems

Until early 1975, all the digit recognition systems or isolated 

word recognition systems were implemented using feature sets such as 

energy« zero-crossing counts, bandpass filter outputs (time domain features), 

spectral coefficients and cepstral coefficients (frequency domain features). 

Thereafter LPC parameters and suitable transformations of them became 

popular because of the development of numerous theoretical interpretations of 

LPC parameters in terms of spectral matching (Atal, 1971, Makhoul, 1973, 

Makhoul, 1975) and vocal tract area functions (Wakita 1973). Since 1952 

most researchers have treated word recognition as a pattern recognition 

problem. Recognising the importance of LPC parameters, some early attempts 

at digit recognition systems using LPC parameters will be examined and where- 

ever necessary digit recognition systems using other feature sets will be 

explained briefly.

1, Sambur and Rabiner (1975)

This system did not use the pattern recognition approach. The 

scheme was based on segmenting the unknown word into three regions and 

then categorizing the region into one of the six broad acoustic classes,

The vocabulary used in this system consisted of the digits (0 to 9) and 

the used features were zero-crossing counts, energy, two^pole LPC analysis,
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and the residual of the UPC analysis, The experiment was conducted over 

five weeks using five male and five female speakers. The recordings were 

made in a quiet room with a high-quality microphone. A tree-structured 

decision algorithm was used to recognise the words. The sequence of 

branches in the tree was designed to resolve the. most obvious sounds and 

then proceeded to the more difficult decisions, This was a speaker 

independent digit recognition system and the reported error rate was 

2.7 per cent,

2, EtaKura C W S )

This system used the. pattern recognition approach and the system 

performance was evaluated for a 36-word vocabulary (A to Z, 0 to 9), The 

linear predictive residual was used as the feature measurement while 

dynamic programming was used to achieve time alignment of the unknown and 

the reference word. A sequential decision procedure was used to reduce 

the amount of computation in dynamic programming, A new distance measure 

for the recognition phase was introduced, that is, the logarithm of the 

ratio of prediction residual. This is called Itakura’s distance measure. 

This system was speaker trained system and only one speaker participated 

in the experiment. The reported recognition accuracy is 88,6%. The 

system was implemented on a PDP-516 computer and the recognition time was 

about 22 times real time.

3, Scott (1976)

The vocabulary used in this system consisted of the digits (Q to 9) 
and four control commands (cancel, erase, verify, terminated), This 

system used 19 contiguous active bandpass filters ranging in centre 

frequency from 260 Hz to 7626 Hz, The output of the filters were full-wave 

rectified and logarithmically compressed. A spectral change detector
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derived a spectral derivative feature, Th,e spectral shape and its changes 

with time were continuously measured over the frequency range of interest 

and this was the feature set for the recognition experiment. Thirty 

speakers who did not have any experience in the automatic speech recognition 

system participated in this experiment and the. reported error rate was 

2 per cent, It was a speaker independent digit recognition system and 

the reference patterns were formed from 9300 test data,

4, White (1976)
White's system was very similar to Itakura's system. The major 

difference between the systems was that Itakura used telephone speech 

(Q to 3 KHz) sampled at 6,67 KHz and used 8 linear predictive coefficients, 

whereas White used a high quality microphone, 5 KHz lowpass filter,

10 KHz sampling rate and 14 linear predictive coefficients. This was a 

speaker dependent system using only one speaker. The speaker gave five 

repetitions of the vocabulary, out of which one repetition served as the 

reference utterance. White reported that the error rate was 3 per cent for 

the same vocabulary used by Itakura. It was found that the system performed 

better than Itakura's system primarily because of the bandwidth difference. 

The experiment was repeated by grouping the vocabulary as monosyllables 

(e.g. one) and polysyllables (e.g, seven), Then the 14-coefficient LPC 

residual technique was compared with the 20 channel bandpass filter bank 

technique. The filters covered the frequency spectrum from about 100 Hz 

to 10 KHz. The output of the filters were rectified and integrated over 

10 ms. White concluded the following from his experiment:-

(a) When using the filter hank parameters as the feature measurement 

and Euclidean distance measure, the recognition rate obtained 

will be approximately equal to that obtained using LPC



parameters as the feature set and Itak.ura's distance measure 

as the similarity measure. In other words we can say that the 

two methods have essentially the same power to measure the 

similarity of speech sounds.

(b) Suitable alignment methods are linear time shifting and dynamic 

programming. The dynamic programming approach to time alignment is 

of major importance only for recognition of polysyllables as it 

gives the best match between reference and unknown utterance. However, 

for monosyllables linear time scaling is as good as dynamic 

programming.

The above four investigations provided a large contribution to 

the isolated word recognition field. Other researchers utilised the above 

observations and decided to investigate further into this field. The 

following conclusions were drawn:-

1. Filter banks can be avoided as the LPC parameters are as good 

as filter bank parameters.

2. Isolated word recognition systems must be treated as a pattern 

recognition problem.

3. Future systems should include LPC parameters as the feature 

measurement and log ratio of linear predictive residual as the 

similarity measure.

4. Non-linear time warping using dynamic programming can be used 

for time alignment of both monosyllables and polysyllables.

5. Future research diould be concentrated on methods of creating 

the reference utterances for speaker-dependent as well as 

speaker-independent word recognition systems. That is, a speaker,

dependent word recognition system can be used as a speaker



- 22 -

independent word recognition system (vice versa) by 

interchanging the set of reference utterances,

The first attempt made on the above basis was Rabiner (February 1978).

5. Rabiner (February 1978)

Rabiner concentrated on methods of creating reference utterances 

(templates) for a speaker independent isolated word recognition system,

His recognition system was designed for a 54 word vocabulary and he used 

8 LPC coefficients as the feature set. He also introduced a method of 

combining word patterns from a number of speakers, and using cluster 

analysis to choose which patterns should be merged to create a word 

template. His cluster analysis determines the number of templates that 

are necessary to be used for each word in the vocabulary* Hence he 

implemented a procedure for creating multiple reference templates for 

speaker independent recognition of isolated words.

Eight speakers participated in the training set, both females 

and males. For testing the system a new set of eight speakers were used 

and the reported recognition rate was 85 per cent, When all the training 

words were used to form the reference utterance without cluster analysis 

the recognition accuracy fell to 77 per cent. An important conclusion 

of this study was that a few carefully constructed templates can represent 

a large speaker population adequately for the purpose of speaker 

independent word recognition.

As a result qf Rabiner's demonstration it was realised that 

clustering can be a powerful tool for selecting reference templates for 

speaker-independent word recognition and. therefore hevinsion et al (April 

1979) described four clustering techniques to identify large prominent 

clusters. They have given examples of the performance of these techniques 

on synthetic and speech data, The techniques have been applied to a large 

speech data base consisting of four repetitions of a 39 vocabulary
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spoken by fifty male; and fifty female speaker?,

6, Rabiner et al (August 1979)

Rabiner at al have* implemented a speaker independent word 

recognition system using multiple template?. The word templates were 

obtained from a statistical clustering analysis described by Levinsion 

et al (1979), The database consisted of one hundred repetitions of 

the 39-word vocabulary by 100 talkers (i-e , once by each), The 

recognition system accepted telephone quality speech (100 Hz to 32Q0 Hz), 

The speech was sampled at 6,67 KHz and 8 pole analysis was carried Qut.

The authors performed several tests with new talkers who did not belong 

to the original 100 talker database, The analysis showed that for 

highest recognition accuracy 10 to 12 templates have to be used,

They also used the digits (zero to nine) as a vocabulary* 

reformed the clusters and tested the recognition accuracy. A total of 

12 clusters per digit were used. The overall accuracy was 98.2 per cent. 

They also performed various other tests and concluded that the error 

rates with this system using multiple templates are comparable or better 

than those obtained with speaker dependent isolated word recognition 

systems(Martin, 1976, Rosenberg and Itakura, 1976).

7, Rabiner and Hilpon (December 1979)

Rabiner and Wilpon implemented a speaker independent recognition 

system using a 39 word vocabulary, The vocabulary consisted of the twenty- 

six letters of the alphabet, ten digits and three command words. To train 

the system, 100 talkers (fifty male and fifty female) were used. After 

training and clustering the system was tested by thirty speakers who 

did not belong to the training 9et, To obtain reference templates they 

used fully automatic clustering procedures given by Rabiner and Wilpon
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(September 1979), Since the vocabulary consisted of a Urge number Qf 

acoustically similar words (e,g. : b>c,d»e,g,p,t,y,z) the recognition 

accuracy was found to be only 80 per cent. The experiments were repeated 

using the 54 word vocabulary used by Gold, (1966) and the reported recognition 

accuracy was 95-98 per cent, The number Qf templates used in this experiment 

was 12 and 8 pole analysis was done on the speech data, These results 

show considerable improvement over earlier speaker independent recognisers 

using the same vocabulary,

Since 1978 until the. present fl981) all word recognition systems 

have used the type of pattern recognition approach described above.

Rabiner et al (August 1979) indicated (although the research is based on 

Speaker independent recognition systems) that speaker dependent recognition 

systems can be implemented using the same pattern recognition approach, 

however, the applicability of the cluster approach to speaker dependent 

recognition systems has to be investigated (i,e, to ascertain the number 

of templates necessary to accommodate the whole span of intraspeaker 

variations),

1,6 Proposed Work on Digit Recognition

The currently available digit recognition systems are a subset 

of the large vocabulary isolated word recognition systems. All these 

automatic word recognition systems utilise LPC coefficients and 

Itakura's distance measure. The number of LPC coefficients used in the 

systems are 8 to 14, For real time applications this is a little high 

unless LPC coefficients are calculated using complex hardware. Moreover, 

in calculating the LPC coefficients high precision has to be maintained, 

otherwise stability Of the vocal tract (digital filter) is not guaranteed.

H  is known that by pre^emphasising the speech and using low sample rates
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a smallep wopd length can be used in the computation of the LPC 

coefficients, However» when sampling rates greater than 10 KHz are 

used, 16-bit fixed point arithmetic is not sufficient to maintain the 

required precision (Markel et al 1974), Therefore the author proposes 

to investigate Burg's Partial correlation coefficients and the transform 

of them as the feature measurement as they could be extracted with 

finite word length arithmetic (Nakhoul 1977], To the author's knowledge 

there are no reported results using Burg s coefficients in any automatic 

word recognition problems, The proposed automatic word recognition 

system wfl 7 contain the digits 0 to 9 and the letter oh as the 

vocaùu/ary,

Makhgul (1973) showed that « two coefficient filter (or two 

pole model) is adequate to make a gross characterisation of the shape 

Qf the spectrum of a particular sound. The author estimates that if 

Burg's coefficients are used for digit recognition systems then 3 to A 

coefficients are sufficient for the recognition phase. The other 

parameters of interest to the author are the log area coefficients and 

the arcsin of the Burg's coefficients as they have good quantisation 

properties,

Though nature's distance measure is being used in a variety of 

applications it is unsuitable for real time applications because it 

needs a considerable amount of computation time. Therefore the author 

proposes to investigate the simple city block distance measure without 

any weighting matrix as the similarity measure when Burg's coefficients 

and their transforms are used as the feature set.

The reference utterances will be formed using the same cluster 

analysis proposed for the speaker verification system in section 1,4,
The author intends to investigate how many Burg's coefficients 

are necessary to implement an automatic digit recognition system with a
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good recognition rate, when the city block distance measure is used 

as the similarity measure. This proposed research emphasises the 

computational aspects of digit recognition systems related to real

time implementation.



CHAPTER 2

FEATURE EXTRACTION METHODS

This chapter gives a brief introduction to the digital processing 

model for speech production as this 1s necessary for the understanding of 

the subsequent theory,

A new time domain pitch estimation algorithm is then presented with 

the necessary theoretical derivations. A new method of analysing the zero

crossing counts of differentiated speech for vowel sounds using digital 

signal processing methods is also presented. The later part of the chapter 

is devoted to the theory of Burg's Partial Correlation (PARCOR) Coefficients. 

The pitch and the zero-crossing counts of the differentiated speech are 

used in speaker verification systems and Burg's PARCOR coefficients are used 

in digit recognition systems.

2.1 The Speech Production Model

The acoustic speech waveform s(t) produced by the speech production 

model shown in Figure 1.3 is sampled every T$ units of time to obtain a 

discrete signal s(nTs).

Choice of sampling frequency

The vocal tract can be represented as a concatenation of N lossless 

tubes each of length %. Thus the overall length of the vocal tract is 

L=N£. (The details of the tube and the Wave propagation are explained 

in Appendix 1.1). If t is the time taken for a wave to propagate along a 

simple section then t = 1/C where C is the velocity of sound in the air.

The waves propagated down the tubes are partially reflected and partially 

propagated at the junctions. It is shown by Rabiner (1978) that to represent
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the vocal tract by a discrete-time system the speech waveform s(t) has to 

be sampled every 2t sec. Therefore the sampling frequency f$,

f = 1/2t = C/2A = NC/2L 2.1
¥

This equation tells that the required sampling frequency is roughly 

proportional to the number of sections of the lossless tubes. However this 

is a rough estimation and it will depend to some extent on the speaker as 

L varies with speaker. For a male the average length of the vocal tract 

is 17 cm. Rabiner (1978) further shows that the vocal tract has many 

properties in common with digital filters and that the samples of the 

speech waveform can be modelled as the output of a time varying digital 

filter.

Consider a discrete time model for voiced speech production. This 

is shown in Figure 2.1a. The voiced speech production system can be 

modelled by cascading models of the glottis, vocal tract and lips as shown 

in figure 2.1a. The following equations are valid for figure 2.1a:-

u (n) = Av»e(n)*g(n) - for glottal model

u0(n) = u_(n) * v(n) - for vocal tract modelx, g

s(n) = u (n) * r(n) - for lip radiation model
y

Therefore,

S(n) = Ay[(e(n) * g(n))* v(n)j * r(n) 2.2
i.L

where s(n) is the n n speech sample.

Taking the z transform of both sides of equation 2.2 we get:-

. A G(z) • V(z) • R(z) 2.3
E(z) v

00

Where the z transform of a signal p(n) is defined as P(z) = l p(n)z"n .
n=0

Equation 2.3 is the transfer function of the voiced speech model.
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The excitation in the case of voiced speech is a train of 

Dirac Impulses spaced by the pitch period P = ITS where I is a positive 

integer, i.e.,

e(n) = 1 <5(n - Ik). Therefore, 
k=0

E(z) = l z"Ik = 1 + z"1 + z"21 + z‘31 + 
k=0

1

1-z-I

2.1.1 Glottal Model

The excitation impulses are applied to the model of the glottis 

whose transfer function is G(z):-

G(z) = ------ 1---^  (Markel 1976)
(l-e"cTs z-1)̂

_CT
cT$ is generally much less than unity and if this is assumed, e s + 1 

and the transfer function can be approximated by:-

G(z)
1 . 1 

(l-Z-l) (1-z-1)
2.4

That is, the glottal volume velocity ug (n) as shown in figure 2.1a is 

modelled as the output of a two-pole lowpass filter with an estimated 

cut off frequency of about 100 Hz.

The gain control Ay (Figure 2.1a) controls the intensity of the 

voiced excitation as a function of time.

2.1.2 Vocal Tract Model

As explained previously a simple model of the vocal tract can be 

made by representing it as a discrete time-varying linear filter containing 

poles and zeros. However, Fant (1970) showed that for non-nasal voiced 

speech sounds the transfer function of the vocal tract has no zeros and 

consequently for these sounds the vocal tract can be represented by an

all-pole digital filter.



- 30 -

Atal (1971) demonstrated that if the vocal tract consists of 

N cylindrical sections of equal length then its transfer function can 

be adequately represented by N poles. If N is the number of poles, then 

from equation 2.1, the number of poles required to model the transfer 

function of the vocal tract is roughly proportional to the sampling frequency 

(kHz). If the number of poles is N then the maximum number of resonances 

(formants) of the vocal tract can be at most N/2. For example if 

C = 34000 cm/sec, L = 17 cm then from equation 2,1 the required sampling 

frequency is N kHz. If the speech is band limited to 4 kHz and the 

sampling frequency is 8 kHz then four resonances are possible. The 

shorter the overall vocal tract length (L), the fewer the number of 

resonances and vice versa.

The all-pole vocal tract model can be considered as a cascade of 

two-pole resonators. The poles are either real or occur in complex 

conjugate pairs and for stability must be inside the unit circle. Each 

two-pole generator models one of the vocal tract formants,

For speech signals band limited to 3,4 kHz,three formants 

(F-j, F2 and F3) are possible, assuming a vocal tract length of 17 cm,

F1 is approximately in the range of 200 Hz to 700 Hz, F2 is in the range 

of 800 Hz to 2000 Hz and F3 is above 2000 Hz. The transfer function of 

the vocal tract is given by,

Y(z)

V z)
___________ 1___________

n (i + V 1 + ckz“2) 
k=l k

l 2.5

where p = 2»K. For vowel sounds the poles usually form complex conjugate 

pairs indicating the presence of resonance.

2.1.3 Lip Radiation Model

The volume velocity at the lips u^(n) is transformed into an 

acoustic pressure waveform some distance away from the lips by the lips'



- 31 -

radiation function. Rabiner (1978) has shown that the pressure s(n) at 

the microphone is related to the volume velocity u^(n) at the lips by a 

highpass filtering function. A suitable highpass filter function for the 

lip model is a differentiator R(z):

R(z) = zLiiL = 1 - z'1 2.6

V z>

2.1.4 Transfer function of the speech production model for voiced 

and unvoiced sounds

By substituting equations 2.4, 2.5 and 2.6 in equation 2.3, the 

transfer function of the complete speech production system for voiced 

speech in terms of glottal, vocal tract and radiation model is obtained.

m .
E(z)

1

1 + I akz'k=l k

)

There is only one numerator term (l-z~^) due to the U p  radiation and it 

is cancelled by one of the denominator terms (l-z~^) produced by the 

glottal transfer function. Thus the overall transfer function for voiced 

speech is represented by an all-pole model

S(z)

E(z)
(l-z-1) • 1 ♦ ^  akz-k + P?

k=l dkz

2.7

For an unvoiced sound, the glottis is inoperative and does not 

need to be modelled. Consequently the overall transfer function is given 

by,

^  ■ A V(z) • R(z)
E(z) uv

The gain control amplitude Auy for an unvoiced sound is very much less
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than Av of a voiced sound, A typical ratio of Ay/Auv is about 10, The 

lip radiation function R(z) for voiced and unvoiced sounds is unchanged. 

However, for unvoiced sound or nasal sounds the transfer function of the 

vocal tract, V(z) must contain poles and zeros of the form;-

Y(z)

1 + Ï 6k * 'k (1-r1z '1)(l'T2z"1)(l-T3z '1) ........ d - v ' 1)
____k"*1 _ ________ ____________________________________

P p -k
1 + 1 ak z 1 + I ak z k

k=l K k=l K

Since the zeros of the transfer function of the vocal tract for unvoiced 

sound lie within the unit circle in the z plane (Atal, 1971) each factor

(l-y-jZ-^), (1-y2z_1) ----  (1-y^z“1) in the numerator can be approximated

by multiple poles in the denominator of the transfer functions. That is, 

if |y| < 1 then,

-1 11 - T z
-1 7 - 7  3 -3

(1 + y z  + yc z i + y * z *  + ---- )

3 4 Land normally the contributions due to high terms such as y , y , —  y are

negligible. Therefore: 

-1 ~1 - y z 1

-1 2 - 2  1 + y z 1 + yc z l

If there are L zeros in the transfer function, then they could be replaced by 

2L poles in the transfer function of the vocal tract model. Thus the overall 

transfer function for the unvoiced speech sound can be approximated by;-

iiii = A 
E(z)

i + 1
k=l *

,-k

uv
= _uy_ O - z “1)

1 + l a 
k=l

-k
1 + l ak z'

k=l K

2,8

where q = p + 2L.

2,2 Pitch estimation of speech sounds and the problems Associated with it 
As discussed in Chapter I, pitch information is an important 

speaker-dependent speech characteristic in speaker verification systems
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and it is important to estimate the pitch period very quickly so that the 

verification process can be performed with little delay.

In vocoder applications the requirements on pitch determination 

are even more demanding ; an accurate estimate of the pitch period is 

required in real time. The quality of the vocoded speech is greatly influenced 

by the quality of the pitch measurement because the ear is an order of 

magnitude more sensitive to changes of fundamental frequency than to 

changes of other speech signal parameters.

The problems associated with pitch estimation are briefly explained 

below: voiced speech has a quasi-periodic waveform and this waveform is 

complicated by the fact that it not only varies in period but also in 

amplitude. Another difficulty in pitch estimation is the effect of the 

vocal tract response on the glottal excitation. This is demonstrated in 

figure 1.4, where the glottal excitation spectrum is shaped by the vocal 

tract frequency response to produce the speech spectrum. This shaping 

suppresses the amplitude of the fundamental pitch frequency and enhances 

its harmonics. The enhancement of 'harmonics' can lead the pitch estimation 

algorithm to mistake a harmonic of the pitch frequency for the fundamental 

frequency.

The problem is further compounded if the speech has been transmitted 

over a telephone channel which acts as a bandpass filter (300 Hz to 3400 Hz). 

The fundamental frequency may be heavily attenuated, thereby making accurate 

pitch estimation more dfficult. The final difficulty in pitch estimation 

is defining the exact beginning and end of a pitch period during low-level 

voiced speech. In spite of all the above mentioned problems there exists 

a wide variety of pitch estimation algorithms in the time as well as frequency 

domains. However most of them need large computational effort. In the 

next section a new time domain pitch estimation algorithm is presented.
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2.3 The Time Domain Periodogram Algorithm (TDPA)

Periodograms were first used by researchers at the turn of the 

century in order to detect the unknown periodicities of the sunspot cycle 

(Wittaker, 1948), This is a computationally inefficient method and it is 

described in the appendix 1.2,

The new algorithm described here is based upon the periodogram 

but various modifications have been made to make it meet the requirements 

of efficient speech processing by a microprocessor. The requirements are,

(a) ^nyplyes no multiply or division operations

Multiplications and divisions are time consuming operations 

and their elimination allows the algorithm to be implemented on 

microprocessors in simple external hardware.

(b) May t>e implemented on a 16-bjt machine without exceeding
jts dynamic range

16-bit microprocessors with fast instruction sets are now

available, For a 16-bit microprocessor the largest integer value 
15

is +(2 - 1), When TDPA is implemented on a microprocessor using

Integer arithmetic and if the results of the arithmetical calcula

tions do not exceed the dynamic range, (+215 - 1), then the TDPA 

implementation is possible with very few instructions. If the 

dynamic range is exceeded, then implementation of TDPA is possible

only by partial evaluation with integer scaling (e,g. division by 

1 2  3 N2 , 2 , 2 ,  . . , . 2"), The scaling process and partial evaluation 

takes more time. Therefore the integer arithmetic implementation 

of the TDPA without exceeding the dynamic range of the microprocessor 

is preferred,

(c) Accurate pitch estimation jn presence of Noise

In telecommunication applications the pitch estimates should 

not fail even with signal-to-no1se ratios as low as 20 dB.
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1st row s(l) s(2)------------ s(N)

2nd row sCN+1) s(N+2)---------- s(2N)

(m-l)th row s((m-2)N+l) s((m-2)N+2).....s((m-l)N)

ra**1 rov̂  s((m-l)N+l) s((m^l)N+2) — — — s(mN)

sums c(l) c(2)----------- c(N)

T2,l Buys-B^llot Table
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(d) Suitable for hardware implementation

In some applications TDPA has to be implemented in 

special-purpose hardware capable of real time operation and 

in these applications TDPA does not require either a great 

deal of hardware or computational speed.

2.3.1 Theory of TDPA fQr Voiced Speech

A digitised speech signal s(n) is said to be periodic over 

some period length N, if N is the smallest integer for which s(n+N) = s(N).

In order to test whether speech samples s(l), s(2), ----  s(n) contain

a period of length N, the speech samples can be written in rows of length 

N as shown in Table 2.1. This table is known as Buys-Ballot Table 

(Wittaker, 1948). We denote the sums of the individual columns of the 

table 2.1 by the sequence c(l), c(2), c(3) ---  c(N),

m-1
c(n) = l s(i-N + n) 2.9

i=0

where m is the number of rows used to form the table, N is the trial
XL

period, n = 1, 2, 3, ---  N and s(n) is the n speech sample. In this

case the number of rows m is kept constant for all trial periods. If m 

rows are considered, then mN speech samples will be utilised to form the 

Buys-Ballot table and the rest of the samples are ignored.

For example assume the sequence s(n) consists of 100 samples 

(s(l) to s(100)) and if m = 2, N = 20, then the only samples used to 

form the table are s(1) to s(40) and samples s(41) to s(100) are ignored. 

Similarly if m=4, N=25 then all the 100 samples are utilised to form the 

table 2.1, The major property of the table 2.1 is that the sequence c(n) 

accentuates any periodicity of length N that may be present in the speech 

samples and attenuates other periodicities.

The oscillation amplitude I(n) corresponding to the trial period 

N is defined as the difference between the greatest (n=Og) and the least
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(n=n9) values of the sequence c(n). That Is,

m-1 m-1
X(n) = c(n)

greatest

-c(n)

least

I s(i*N + n ) - l s(i*N + n.) 
1=0 9 1=0 *

2 . 1 0

Assume the minimum possible pitch and the maximum possible pitch period 

of the digitised speech as Nmin and N respectively. So, a value of 

I(N) given by equation 2.10 is calculated for each value of N between 

Nm^n and N[Tjax and the values of I(N) are stored.

The TDPA works as follows: If the speech samples contain a

period of length N (Nm4n $ N ^ N v), then the vertical column total c(n) r nil n max

will accumulate because s(n), s(n+N), --- , s(n+(m-l)N) are all in phase.

Hence the peak amplitude of s(n) will be increased m times. Therefore 

when a periodicity N exists the value of I(N) will be much larger than 

when the period N does not exist in the sequence. By locating the position 

of the absolute maximum value of I(N) it is possible to determine the 

pitch period of voiced speech (An absolute maximum is defined as the 

maximum of all the available maxima in the vector I(N)). If the speech 

samples are due to unvoiced sound then I(N) will be very small because the 

peak values of the waveform do not repeat periodically.

It is known that the pitch frequency of the recorded sampled

speech generally lies in the range 80 Hz to 400 Hz (that is, a search

range of periods between 2.5 and 12.5 ms) which corresponds to trial

periods N between 20 and 100 for a sampling period of 125 ys. Therefore,

N . and N are chosen as 18 and 102 respectively, 
min max

The equation defining I(N) as a function of N for a periodic 

signal can be derived as follows: consider a periodic sequence s(n) with 

a period of N samples, i.e. then s(n) = s(n+N) < n < ». Then s(n) 

can be represented as the sum of its Fourier components by:-
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s(n) = l BOO e

where the only possible frequencies of s(n) are given by:-

(j(^r)(k±KN)n)
for 0 < K < oo

the above equation can be expressed In the form:-

M (j(^) kn)
s(n) = l 3(k) e N

k=l

where M is the number of harmonics of the fundamental (2tt/N) which are 

present and 3(k) represent the amplitude of the harmonics. Let: 9

9 (relative frequency) = w T = 2tt(T /T ) = 2-it/N
a S S a

where T is the sampling period and T period of the analogue waveform. 

Using equation 2.9 c(n) can be written as,

c(n) = s(n)+s(n+N)+s(n+2N)+ -------- +s(n+(m-l)N)

k=l

Using the result:- l r = —
1=0 1-r

i l-rm where r = e^0^

Therefore,
1 _ eJ0kmN

1 „ ej0kN
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c(n)
M
l m
k=l

eJ0k(n + JmN) 

el0kNj

e|jPlN9k w e-ym0Nk 

eJj6Nk w e-|j0Nk

c(n)
M
I 3(k) 
k=l

sin m -y 

sin ^  k

k ejek(n + \ (m-1) N) 2,11

The speech signal is band limited to 3,4 kHz and the fundamental 

frequency of speech lies between 80 Hz and 400 Hz. Therefore the range 

of M  is 9 $ M $ 43. In order to avoid interference of the higher order 

harmonics in c(n) the speech samples are filtered before processing so that 

only the first formant region is present. This is done by a digital filter 

after sampling or by an anlogue filter before sampling, The cut-off 

frequency of the filter is made about 600 Hz (this will be dealt with in 

the next chapter) and this forces the value of M to lie between 1 and 7.

Normally the amplitude of the fundamental frequency is greater

than the amplitude of the harmonics (i.e. 6(1) > 6(2) > 6(3) ---  > 6(7)).

However, this is not always true if the vocal tract frequency response due 

to the first formant shapes the glottal excitation spectrum heavily. Under 

these circumstances 6(1) } 6(2) and therefore spectral flattening has to 

be done before the periodogram analysis and again this will be dealt with

in the next section. In most cases 6(1) »  6(k) k = 2, 3, 4 --- . Therefore,

if equation 2.11 is analysed with k=l it will be sufficient to obtain the 

pitch. From equation 2.10 one obtains:-

I(N) = c(ng) - c(n^) so that,

I(N) = 6(1)
sin m N0

cin Nesin —  
2

^(¿(ngQ+Hm-l )N0)) _ e(j(nAe+J(m- 1)N0))J

2.12

This is the general equation of the periodogram. The imaginary part 

of equation 2.12 is the Periodogram for a sinusoidal signal.
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2ttT ttNT.
) - Sin(n, — 5. + (m-i)— i)

T, Ta

2 .
I «_________ - y  _____ . 1

P(N) Q(N) R(N)

where 3(1 )=A and 0=2ir(Ts/Ta). This expression is plotted in figures 

2.2a, 2.2b and 2.2c for values of m (the number of rows) of 2, 3 and 4.

For example consider m=2 : P(N) = -2A, 2A, ---  for (NT$/Ta) = 1,

2, --- respectively. Similarly Q(N) = -1, 1, -1, ---  for (NTS/Ta) = 1,

2, 3 —  and R(N) will take on the same values of Q(N) but with opposite 

sign. Therefore I(N) will always be positive. This is seen from Figure 

2.2a. If equation 2.13 is analysed for m=3 and 4 it is found that I(N)

is a small fraction except when (NTS/Ta) =1, 2, 3 ---  as shown in figure

2.2b and figure 2.2c. Thus the detection of the first major peak of the 

function with respect to (NT /TJ = 0 or the difference between two 

successive major peaks will give the period of the sinusoidal signal. From 

figures 2.2a, 2.2b and 2.2c it is evident that there are always m-2 minor 

lobes present between two major peaks. However the amplitude of these 

minor lobes is small particularly if m is large and so the estimation of 

the pitch period is not affected. Though increasing the number of rows 

sharpens the peaks (from equation 2.13) making the pitch estimation more 

accurate, an upper limit of four is kept on the number of rows since speech 

sounds are not stationary (Rabiner, 1978) over a long interval. Therefore 

for speech suitable values of m are 2, 3 and 4.

If the mean value of the digital samples are zero, the TDPA can 

be modified to reduce the required computational effort by finding only 

the maximum values I'(N), where I'(N) is:

I'(N) = P(N) • Q(N)

That is,

I(N)

stn rwr
NT,

NT,
sin ir

Sin(n
2irT

9 T.
+ (m-1)

ttNT,

2.13a
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1,e, c(n^) is not evaluated, The above equation 2,13a possesses the same 

characteristic as equation 2,13 except the amplitude of V (N) is half of 

I(N).

Here onwards PA2, PA3, PA4 denote the time domain periodogram 

algorithms or MPA2, MPA3, MPA4 as modified time domain periodogram 

algorithms using 2, 3 and 4 rows respectively. For the analysis voiced 

speech is sectioned into 25.5 ms, 38.5 ms, 50.5 ms blocks for m = 2, 3 

and 4 respectively and successive blocks are displaced by 12.75 ms.

2.3.2 Noise analysis of TDPA

As mentioned earlier it is necessary that the pitch estimation 

algorithm be accurate even in the presence of noise. The effect of noise 

on the TDPA can be analysed as follows:-

If a sinusoidal signal, s(n), with added noise x(n), is 

considered, then:

s(n) = A sin(ne) + x(n)

There is no correlation between A sin(ne) and x(n). Therefore c(n) can 

be written as,

where

c(n) = A

N6sin m —  
2

N6
2

sin

m-1
X(n) = l x(n+i«N) 

i=0

+ X(n)

We note that the input peak signal amplitude to noise amplitude ratio is

The amplitude of the output peak in the periodogram is,
'rms

• NTs,sin rm?— — f

c(n) =

sin tt
NTS

= A«m

'-i max

If the noise samples are uncorrelated, the variance of the sum of the 

noise samples is equal to the sum of the individual variances. Hence:
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YX(n) = variance of [x(n) + x(n+N) + x(n+2N) + — —  + x(n+(m-l)Nj]

= m Vx(n) where Vx^nj ts the variance of the noise,

Hence the rms value of the noise is increased by »''m.

i .e. xm s

Therefore the output peak signal amplitude to noise amplitude ratio is 

given by:-

c(n) _ i/m A 

xrms xrms

Hence the output peak signal amplitude to noise amplitude ratio has been 

improved by due to the process of signal averaging in the algorithm. 

Since I(N) = c(ng) - c(nA), the peak signal amplitude to noise amplitude 

ratio of this quantity has been enhanced by the same amount.

2.3.3 Intensity contour of TDPA

The oscillation amplitude I(N), which is a by-product of the 

TDPA can be used as the intensity measurement normally performed by the 

short-time average magnitude algorithm (Rabiner 1978). The intensity 

contour is a second important parameter in a speaker verification system 

(Rosenberg, 1975). For a sinusoidal signal the average magnitude E is 

defined as,

L L
E = l |A* sin(ne)| = A k, where k, = T |sin(ne)| 

n=l 1 1 n=l

This implies that for 4 particular frame of analysis, E is proportional 

to A, the signal amplitude, and hence can be used as an intensity parameter. 

In the case of TDPA, the oscillation amplitude for a sinusoid is:-

I(N) = c(ng) - c(n^) = 2 A m = A k2
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where k2 t9 * constant and its value depends on the number of the rows (m). 

Hence for the same analysts frame I(N) is proportional to A and both E 

and I(N) give an intensity measure. The same argument can be applied 

to any short term stationary signal such as speech where the shape of the 

waveform can be assumed constant over an analysis frame.

In the average magnitude algorithm,k-j is obtained by summing L 

speech samples (say L=100) and its value can vary appreciably from the 

previous frame to the current frame, depending on the position of the 

analysis frame with respect to the signal peak within the pitch period. 

However, in the TDPA k2 is a constant and will not vary from frame to 

frame and the variation of I(N) is solely due to A. Therefore the 

Intensity contour obtained by TDPA will reveal the complete intensity 

profile of the utterance. Because of this property I(N) can be used as 

a gain control, Ay, in the speech synthesis model shown in figure 4.12.

2,3.4 Comparison of TDPA with AMDF

The average magnitude difference function (AMDF) is used widely 

in speech processing to estimate the pitch period of voiced speech. The 

reason for comparing AMDF with TDPA is that both operate in the time domain 

as well as both needing no multiplication.

The AMDF (Ross et al 1974) is a variation of the autocorrelation 

function and it is based upon the idea that for a truly periodic input 

signal of period P, the sequence d(n) = s(n) - s(n-k) would be zero for 

k = 0, ±P, ±2P, + — . The short-time AMDF is thus defined as,

1 L’ L'
D(k) - ± l |d(i)[ = l |s(i) - s(i+k)|

L’ i=l i=l

When k equals or is close to the period of voiced speech, the AMDF will 

exhibit a strong minimum. The number of samples L' should be chosen 

according to the expected pitch period and since the longest pitch period 

of interest is 12»5 ms, L' must be at least 100 samples or more to ensure
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Fig. 2.3 Plot of the number of samples and suiranations 
(necessary for the calculation of the PA2, 
MPA2 & AMDF) versus the trial period.
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that a minimum of one pitch period is available in the analysis frame.

If L' is chosen as 100 samples,then 200 speech samples are sufficient to 

calculate k in the range of 18 and 100. The above definition is known as 

the cross-correlation AMDF (CC-AMDF) method. Since the upper limit of the 

summation is always kept as L', the relative depths of the nulls remain 

constant as the trial period increases from 18 onwards.

For TDPA, the number of samples used for the calculation of I(N) 

and also the number of summations performed depends on the trial period 

N while for the AMDF, the number of summations performed is a fixed value, 

i.e. independent of the trial period as illustrated in Figure 2.3 for 

typical frame lengths of L' = 100, and 150 samples. The number of samples 

and summations required for TDPA is always less than the number of samples 

and summations required for AMDF when trial period N < 100. This is shown 

in Figure 2.3.

2.4 Determination of the composite formant structure using zero

crossing analysis of differentiated speech

Zero-crossing analysis of speech signals has proved useful for 

the segmentation and recognition of speech sounds. Bezdel and Chandler 

(1965) used zero-crossing count (zee) contours of speech to classify five 

different vowels and later in 1969 they used the zee of lowpass and highpass
i

filtered speech to recognise the digits 1 to 9 with 90 per cent accuracy.

Ito and Donaldson (1971) explored the zee of differentiated speech 

waveform for recognition. They concluded that zee of differentiated speech 

is a useful parameter for classification of speech sounds. However the 

importance of the zee of the differentiated speech waveform is not explored 

in detail or in terms of a discrete mathematical analysis.

Recently King and Gosling (1978) used "complex zeros" (previously 

introduced by Bond and Cahn in 1958) that are converted to "real zeros" 

by a single differentiation of speech in encoding the speech waveform.
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The ''complex zeros" are a subset of the zee of differentiated speech.

The principle of "complex zeros" and "real zeros" is breifly explained 

in Appendix 1.3. Although previous research shows that the zee of the 

differentiated speech is a powerful tool in speech processing applications 

little work has been done using them and in the area of speaker verifica

tion systems they have not been used at all. It is clear also that the 

computational effort necessary to extract zee of differentiated speech 

is very small and consequently they could be extracted using a y-processor 

or simple hardware.

In the next section a new mathematical analysis of the zee of 

differentiated speech for vowel sound using digital signal processing 

methods is presented and it is shown that the composite effect of the 

resonant frequencies of the vocal tract can be characteristed by counting 

the number of maxima plus minima (Nlfi) of the speech waveform or counting 

the zee of the differentiated speech waveform over a pitch period. The 

reason for restricting the analysis to voiced sounds is because the phrase 

which is used in speaker verification systems consists only of vowel 

sounds.

2.4.1 Theory of zero-crossing analysis of differentiated speech

This analysis is applicable only for voiced speech (ie vocal

tract is excited by periodic impulses). Assume for the present that the

vocal tract is approximated by a two-pole model. The transfer function

of the two-pole model is given by,

z 2
H(z) = -5-- L —

zc + b-|Z + b2

According tq Makhoul (1973) when the vocal tract is modelled by two poles 

then for vowel sounds the poles of the transfer function occur in complex 

conjugate pairs. If the filter coefficients b p  b2 are expressed in terms 

of the co-ordinates of the complex conjugate poles in the z plane one
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obtains;-

H(z)

where r eJ0 Is

z2 - 2 r cos 0̂  z + r2

the pole position, Hence,

-2r cos 0-| 

r2

"q Ts

2,14

—  - sampling frequency of the speech waveform 

Ts

wQ - resonance frequency of the vocal tract.

It can be proved that the impulse response of the vocal tract represented 

by equation 2.14 is a damped sinusoid and it is given by,

h(n) = r" s1n <n + n 9A 2.15
sin 0|

where the resonant frequency of the vocal tract is,

W
-1

cos

The number of maxima plus minima per cycle of h(n) is two and also the

number of zero-crossings per cycle is two. Therefore the zee of the

differentiated impulse response, ill’ll, is also two per cycle.
dn

Now consider the vocal tract which is represented by 2 two-pole 

models cascaded together: the transfer function of the model is now 

given by,

HU) = -----T----- t ' ----------- =■
1 + b|Z'‘ + b2z-1 1 + c-j z" +

A t + B-iZ Ao + BoZ

= ---- 1--- r1------ - + ---- ----r—------ - 2,16
1 + bjZ"l + b2z~2 1 + CjZ“ ' + c2z”2
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Where A^, A2, B-j, B2 are related in terms of the filter coefficients 

b-j, b2, ĉ  and c2 , The relationship is derived in Appendix 1.4, 

Equation 2.16 can be rewritten in the following form;-

H(z)
A1 B1 z'1

+ A2 B2 z"1

l+b^^+bgZ-2
m

f

l+b.z~^+b2z”2

f

-1 -2 
l+C'jZ +c2z
m

t

1+CjZ

t

X^z)

1

X2(z)

1

X3(z)

1

X4(z)

It is assumed that all the poles of the vocal tract are complex and if

one analyses the impulse response of X|(z) for i=l to 4 then the overall

impulse response of H(z) is summation of the individual responses (ie 
4

h(n) = I x.j(n))- One can see from equation 2.17 that the difference

between the impulse response of x^n) and x2(n) is that x2(n) is delayed 

by one sample with respect to x-|(n). This is true for x3(n) and x^(n). 

Now according to equation 2,15, x^(n) and x2(n) can be written as

r!J* sin(n+l) 0-j
x-| (n) = A1

x2(n) = B1

sin 01

n-1 siin(n0j)

sin 01

Similarly x3(n) and x4(n) also can be written in the above form. Thus 

the overall impulse response of the vocal tract is given by,

h(n) =
r" sin(n+l)0-| 

sin 0!
+ B. r 1 sin(n01 )

h-i(n)

sin 01

rj-j sin(n+l)02

+ B,

sin 0,

n— 1
r2" sin (n02) 

sin 0o
2.18

h 2 ( n )
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Figure 2.4 Impulse response of the vocal 
tract modelled by four poles_________
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Where the resonance frequency of the first and the second sections of 

the tube are given respectively by,

-L cos-1

f 1
-bl and w, = —  cos-^

* N
’"I

TS l2/b2j Ts 2/co

The above equation 2.18 shows that h-j(n) and h2(n) which both differ in 

resonance frequency are added up to provide the overall impulse response. 

That is, the damped sinusoid h^(n) is disturbed by the damped sinusoid 

h2(n) and its number of maxima and minima are altered. This shows that 

the number of maxima and minima of the impulse response gives some 

information about the effect of the resonance frequencies of the vocal 

tract. As stated in the previous section one can see that the counts of 

number of maxima plus minima can be regarded as a representation which 

carries the effect of the resonance frequencies of the vocal tract on 

speech sounds. An example of two impulse responses added together is given 

in Figure 2,4. This figure supports the above statement. If this theory 

is extended further, assuming that the vocal tract is approximated by N 

two-pole resonators» then the overall impulse response is given by,

N r ?  1
h(n) = l --- —  CA^ sin(n+l)0. + B, r. sin (n9|)) 2.19

i=l sin 0. ' i l l  '

Equation 2.19 reveals that the NMM of h(n) depends on the resonance

frequencies of the vocal tract 6|, 02, ---- 0^.

So far the analysis was based on the vocal tract excited by only

one impulse. However in speech production the vocal tract is excited by

several impulses spaced by a pitch period of x ms. Consider M samples

of the speech waveform produced by excitation of the vocal tract by

impulses spaced by a pitch period of I samples. Therefore within M samples

of speech waveform there will be -  impulses exciting the vocal
LlJ Integer

tract. If it is assumed that I is greater than the length of the impulse
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response (y^) of the vocal tract then the number of maxima plus minima 

of the speech waveform Within M samples is given by -  • g

Where g is the NMM of h(n), Integer

It is possible to mathematically find the number of maxima and 

minima of h(n) by differentiating h(n) and equating to zero:-

dh(n)

dn

N Aj j n B • j «1
l — 1—  —  (r? Sin (n+1) M  + — —  (r!'1 Sin ne,)

i=l Sin 0^ dn 1 Sin 0^ dn ' '
= 0

2.19a

Equation 2.19a can be used to check that the experimentally determined the 

NMM similar to the NMM whilst is obtained theoretically for specified values 

of predictor coefficient. The theoretical NMM determined from equation 2.19a 

is likely to be more reliable than the experimentally obtained NMM 

which may be corrupted by noise. This is because the predictor coefficient 

can be obtained accurately using linear predictive analysis even in the 

presence of noise.

However, in practice with high signal to noise ratio environments 

differentiating the speech waveform and then counting the number of zero- 

crossings yields the required result.

When this algorithm is implemented several practical problems are 

encountered: In practice I } h(n), this can be overcome by making the 

analysis frame start at the sample corresponding to the beginning of the 

pitch period then the NMM of speech waveform within the frame is only due 

to the formant frequencies of the vocal tract. This implies that a pitch 

synchronous analysis is needed and it is computationally not very efficient.

If the analysis is done pitch synchronously and if the analysis 

frame encompasses an integer number of pitch periods then the NMM of 

speech waveform within the frame is not only dependent on the formant 

frequencies of the vocal tract but is also effected by the pitch period
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In this case, for the purpose of simplicity, the analysis 

frame starts at an arbitrary sample and it encompasses a small number 

of pitch periods and ends at an aribtrary sample, Therefore the NMM 

within the speech wave is a composite measure of the effect of formant 

frequencies of the vocal tract and the pitch period,

2,5 The use of Partial Correlation (RARÇ0R) Coefficients in Speech 

Processing

Partial correlation coefficients (termed reflection coefficients Of 

the vocal tract by the speech community) give a measure of the degree of
I L  J .L

correlation between the s(n)cn and s(n-i)tn speech samples when the 

intervening (i-1) values s(n-l), s(n-2), n— s(n-i +1) are assumed constant, 

The correlation coefficients evaluated in this way can be shown to be equal 

to the reflection coefficients of the yocal tract when it is modelled as 

a cascade of lossless tubes, The reflection coefficients define the 

ratios between areas of adjacent sections of the vocal tract, Thus, it is 

possible to use Partial Correlation (PARCOR) coefficients as feature 

vectors in any automatic word recognition system. Another attractive 

feature of partial correlation coefficients is the ith coefficient can
X u

be calculated using the (i-1) n coefficient without altering it. Because 

the partial correlation coefficients are always bound between -1 and +1 

(Rabiner 1978) it is a useful parameter to test the stability of the vocal 

tract in generating synthesis filters,

In this section the theory of Partial correlation coefficients is 

presented and then the autocorrelation, covariance and Burg's method of 

extracting the coefficients are briefly discussed. The comparison of the 

three methods of extracting partial correlation coefficients showing the 

advantage of Burg's method is also explained,

jvt should be noted that although Burgas coefficients have
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been Known to the speech community for a long time they have not 

previously been used in any automatic word recognition system.

2.5.1 Definition of PARCQR Coefficients

The form of sampled data speech is illustrated in Figure 2.5.

The speech samples s(n) are related to the excitation u(n) by the simple 

difference equation (Atal 1971),

i
s(n) = I a.s(n-j) + Gu(n) 2.20

This equation reveals that the current speech samples are linear 

combinations of the past samples plus the excitation (ie the vocal
1L

tract can be considered as a recursive filter). Consider an iLn order 

system and multiplying both sides of equation 2,20 by s(n-i) and 

assuming i > 0, one obtains:-
i

s(n) s(n-i) = l a, s(n-j) s(n-i) + Gu(n) s(n-i) 2.21 
j=l J

it is assumed that $(n-l)» s(n-2), ....  s(n-i+l) are held constant in time

(Durbin 1960) and also assumed that u(n) and s(n-i) are uncorrelated.

Taking the expected value of both sides of equation 2.21 yields,

E[s(n) s(n-i)]

E[s(n-i)9

E[s(n) s(n-i)J 

cj2
for i = 1, 2, 3 ---

o
where a = Variance of s(n) and s(n) is a zero mean stationary signal. 

The coefficient is the PARCQR coefficient at Lag i. It can be seen 

that k.j describes the correlation between s(n) and s(n-i) where the 

intervening (i-1) values are assumed to be constant.

It is proved in Appendix 1.1 that the i *̂1 order filter 

coefficient a^ which is the PARC0R coefficient according to the
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definition is equal to the reflection coefficient at the ith junction 

of the tube.

2.5,2 Autocorrelation method of extracting PARCOR coefficients

From equation 2.20 it is seen that when the excitation is zero 

then the current samples are linearly predictable in terms of the past i 

samples. This is the situation with real speech between pitch pulses. 

Thus, except for one sample at the beginning of every pitch period, the 

samples of voiced speech are linearly predictable in terms of the past 

i speech samples. If the predicted current sample value s(n) is defined 

by:

- 1
s(n) = l a. s(n-j)

then the error between actual value s(n) and the predicted value §(n) 

is given by,

ef(n) = s(n) - §(n) = s(n) - \ a. s(n-j)
T 3

e^(n) is known as the forward prediction error (Figure 2,5). The short- 

time average prediction error is defined as;-

E = I ef(n)2 = I [s(n) - l a. s(n-j)]2 2,22
n n j=l J

The predictor coefficients a, of equation 2.22are chosen so as to
J

minimise the short-time average prediction error E and their optimal
8E

value is obtained by setting —  = 0, j*l, 2, ---  i. Differentiating
3a j

equation 2,22 with respect to a^ and equating to zero gives:-

l s(n) s(n-k) - l a- l §(n-j) s(n-k) 2,23
n J=1 J n

for k = 1» 2, 3 -—  i. If it is assumed that the waveform segment s(n) 

is identically zero outside the interval 0 $ n $ N - 1 (ie multiply the

- 51 -
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signal $(n) by a window function), then the set of equations defined in 

2,23 can be written in a matrix form as:-

' R ( l ) ' ' R ( O )  R ( l ) ....................... R ( i - l ) ' a l

R ( 2 ) R ( l )  R ( 0 )  ; 

■ 1
a 2

1

R (1 )_

■ 1 

R ( t - l )  - - - - - - - -  R ( 0 ) y
N-l-k

where R(k) = £ s(n) » s(n+k) 1 5 k < i and is known as auto- 
n=Q

correlation function. The coefficient a^(=k^) is the required partial 

correlation coefficient as shown in section 2.5.1.

Equation 2.24 can be solved to find a^ (Makhoul, 1975) using a 

recursive procedure which is given in Appendix A1.5, This is known as the 

autocorrelation method of calculating the PARCOR coefficients.

2,5.3 Covariance method of extracting PARCOR coefficients

In the covariance method the summation (£) in equation 2.23
n

is allowed to use values of s(n) outside the interval 0 £ n i N - 1. 

On substituting the limits on equation 2.23 one obtains the following 

set of equations (Rabiner, 1978),

"c(l ,0) c(1,1) c(l,2) - - ■- - - C(l,l) V
c ( 2,0 ) 

1
c(2,l) 1

1 a2
1

cCi.O)

1
1

c ( i . l )  .............

r

- - Ç(i»t) *1

2.25

N-k-1
Where c(j,k) = l s(n) s(n+k-j) l £ j * p ,  0 $ k * p 

n=-k

Therefore to evaluate c(i,k) one uses values of s(n) in the interval 

-p 4 n 3 N - 1, Therefore in this case no window is necessary as the 

required values are made available from outside the interval 0 S n £ N - 1.
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The solutions to equation 2,25 can be solved recursively to obtain 

k^. For details refer to Rabiner (1978).

2,5,4 Burgvs method of extracting PARCOR coefficients
1L

Burg's approach Is that s(n) sample can be predicted using
XL

s(n-l), s(n-2), ----  s(n-i) and at the same time the s(n-i) n sample

can be predicted using s(n-i+l), s(n-i+2), s(n-i+3), ----  s(n). Burg's

argument is that there is not a statistically significant difference 

between a forward and backward (or time reversed) prediction error. The 

forward and backward predictors are shown in the right hand side of 

Figure 2.5. Thus the equation for the forward and the backward prediction 

error 1s given by:-
i

ef(n) = s(n) - £ a. s(n-j)
1 3=1 J

i
eb(n) = s(n-i) - l a. s(n + j - 1)
D j=l J

Burg determines the PARCOR coefficients k̂  by minimising the sum of the
i th

short-time average forward and backward prediction errors, E , of i 

filter. The short-time average prediction error is given by:-

E1 = [(ef {n))2 + (eb n̂))2] 2.26

where the relationships between k̂  and e| (n) and e^ (n) using the 

recursive equation 1 of Appendix A1.5 are derived in Appendix A1.6 and 

are given by:-

4  (") - ep'^ in ) ' kt 2.27

ej (n) = e^1_1)(n) - k, e<1_1>Cn-1) 2,28

After substituting equation 2.27 and 2,28 into equation 2.26 the unknown 

coefficient k̂  can be determined from the minimization criterion which
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j\ri
gives —  = 0 and -----? > 0, Setting--- - v unu o

9k^
= 0 and solving for

gives

2.29

Since expression 2.29 is in the form of a cross-correlation function, 

it is an indication of the degree of cross correlation between the 

forward and backward prediction errors. The parameter k.. is known as 

Burg's Partial Correlation Coefficient.

2,5,5 Comparison of Autocorrelation, covariance and Burg's method

When the PARCOR coefficients are evaluated by the autocorrelation 

method, a tapered time window must be used to guarantee stability of 

vocal tract model. This is important in speech synthesis. However the 

guarantee of the stability for the autocorrelation method may not hold 

in practice if the autocorrelation function is not computed with sufficient 

accuracy. Markel and Gray (1974) have shown that if a pre-emphasis filter 

is used on speech before calculating the autocorrelation function, then 

smaller word lengths can be used in order to calculate PARCOR coefficients.

When k| is calculated using recursive procedure, it should be 

noted that quantization of k̂  within the recursion is not allowable in 

the autocorrelation method. A further problem in using the autocorrelation 

method is that the input speech spectrum is distorted because it is convolved 

with the transform of the window function. Despite all these disadvantages, 

this method has the advantage that it is computationally efficient.

The major drawback in the covariance method is that it may produce 

an unstable recursive filter even with floating point computations.

However, it does not use any kind of windQw. The computational effort 

required is the same as the autocorrelation method. Quantization of the 

reflection coefficients within the recursion is not allowable as it can
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produce an unstable filter. In practice this method is not used for 

calculating kj.

The advantages of using Burg's method over the other two methods 

are that windowing is not used and at the same time stability is 

guaranteed. Moreover quantization of kj within the recursion is permissible 

and stability is sure even though finite word length computations are 

used.

Unfortunately Burg's method of calculating the PARCOR coefficients 
requires greater computational effort than the autocorrelation or 

covariance methods. For this reason the method has not been used in 

practice by previous researchers. Recently Makhoul (1977) showed that,

instead of solving the computationally inefficient equation 2.29 to

2 2obtain kj one can relate ef(n) , eb(n-l) and ef(n) « eb(n-l) in terms 

of the covariance of the input speech signal and then use this relation-« 

ship to solve equation 2.29, If this procedure is used, Makhoul claims 

that Burg's method is then computationally as efficient as the auto

correlation method.

The author's proposal is to use Burg's kj as a feature vector 

in the automatic digit recognition system as it might yield a high 

recognition score using only a few PARCOR coefficients since the speech 

spectrum is not disturbed by any window function and at the same time low 

accuracy arithmetic can be used in their computation.

In the next section two parameters g^ and 0j which are 

related to kj by a non-linear transformation first introduced to the 

speech community by Viswanathan et al (1975) and Atal, are presented as 

these are used as feature vectors in the digit recognition system.

The quantization properties of kj, gj and 6j are also briefly 

presented.
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2.5.6 Quantization properties of the PARCQR coefficients

Wakita (.1973) proved that the reflection coefficient of the. 

vocal tract r- is equal to -k. and from equation 5 of Appendix 1.1, 

r^ is given by:-

Ai+1 ' Aj

A1+l * Ai 
.th

ki
Ai

A,1+1

1+ ^

l-k4
2.30

where A^ - area of the i section of the lossless tube (vocal tract). 

After k.. is calculated, they are normally linearly quantized to a number 

of bits sufficient to ensure negligible spectral distortion, However* 

Viswanathan and Makhoql (1975) showed after studying the spectral 

sensitivity of the log of the frequency response of the all-pole model 

with respect to changes in k^, that linear quantization of k^ is not 

permissible when kj takes values close to 1, Their study is based on 

the following

The. spectral sensitivity for the k̂  is defined by,

as
dk

= Li in

l
Ak.j-*0

AS

Ak.

where AS is the deviation of the all-pole model frequency response due

th
to a perturbation Ak^ in the i k^. Experimentally (— )was computed

3kj
by using a sufficiently small value for Ak^, A spectral sensitivity curve 

was plotted against each k̂  by analysing a large number of speech 

samples. The results of the study show that each sensitivity curve has 

the same general shape irrespective of the index i and these curves are 

U-shaped with an even symmetry about k̂  = 0. These properties indicate 

that linear quantization of the PARCOR coefficients is not desirable 

especially when they take values close to 1 (e.g, voiced sounds generally 

have a higher spectral sensitivity than unvoiced sounds because some of 

the PARCOR coefficients fpr voiced sounds have magnitudes close to 1). 

Therefore non-linear quantization has to be performed.



- 57 -

Viswanathan and Makhoul (1975) showed that nonlinear 

quantization of k^ is equivalent to a linear quantization of another 

parameter which is related to k̂  by a nonlinear transformation. 

The transformation is:-

1 + k.
gt = log ----- 1

i - k t
1 - 1. 2, 3, — -

It is known that for filter stability -1 $ k̂  * +1 and therefore

1
The spectral sensitivity Qf the new parameter is nearly

-oo < g , <oo

flat for -1 ^ k. ? 1 From equation 2.30,

9i = log f Ai ]

. V
= log

( y

,+ki = 2 -1= 2 tanh '(k.) 2.31

This is called the log area ratio transformation.

Another nonlinear transformation was suggested by Atal in 

order to reduce the spectral sensitivity. That is arcsin transformation 

of k^.

6t = s1n_l(kj) 2,32

This transformation spreads out the distribution of the PARCOR 

coefficients around the peak (i.e. when k̂  is close to 1).



CHAPTER 3

PREPROCESSING OF SPEECH SIGNALS

In many areas of speech processing it is important to detect 

the presence of speech against a background of noise. This task is 

referred to as endpoint detection. In this chapter the parameters 

necessary to implement an endpoint detection algorithm are described 

and modifications to Rabiner's (1975) endpoint detection algorithm 

are proposed.

Secondly, in this chapter two more preprocessing techniques, 

linear filtering and spectral flattening, are explained as these are 

important to aid the accurate pitch estimation of the voiced speech.

The function of the linear filter is to select the first formant region 

of the speech spectrum, whereas the spectral flattener flattens the 

speech spectrum within the first formant region.

Any extracted speech parameter contours such as intensity, zero

crossing counts, pitch period etc. are normally subjected to a data 

smoothing algorithm to obtain smoothed contours. Therefore the later 

part of this chapter is devoted to a nonlinear smoothing technique.

3.1 Endpojnt Detection

The purpose of endpoint analysis is to locate the beginning and 

end of a speech utterance in the presence of "background noise" so that 

only the parts of the input that correspond to speech are processed. If 

the endpoints of the utterance are accurately detected then the amount of 

processing of speech data can be kept to a minimum. Hence a simple, fast 

and reliable algorithm is required.
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The energy of voiced sounds is much higher than the energy 

of the "background noise" and therefore, for Utterances consisting only 

of voiced sounds, a simple energy measure is capable of distinguishing 

the speech from background noise, However, an utterance consisting of 

both voiced end unvoiced sounds needs another parameter in addition to 

energy, to enable the unvoiced speech to be distinguished from background 

noise,

A possible second parameter for this application is a zero

crossing count (zee), This is able to distinguish between unvoiced speech 

and background noise because its value for background noise is usually 

lower than for unvoiced speech.

Consequently the endpoint algorithm is based on short-time energy 

and the zero-crossing counts (Rabiner, 1975) as these are fast to compute.

An algorithm has been developed by Rabiner (1975) and has been 

successfully tested on a variety of speakers and background noise levels. 

However» the algorithm is not able to accurately locate the end of a word 

When the speaker sighs or puffs after reciting the word. This algorithm 

has been slightly modified in this work so that for the limited vocabulary 

used it locates the correct end of the word.

The next section describes how the short time energy is measured 

from the sampled input waveform,

3,1.1 Average magnitude

The measurement of energy requires that the input samples be 

squared and summed. This is computationally time consuming and so instead 

of measuring the short-time energy* the average magnitude function is ealeu 

lated. a.s It 1$ fast to compute and 1§ related to the short time 

speech energy» The. weighted sum of average magnitude defined as:-

N-l
M* * l |s(n)| 3.1
' n=0

where 1 = 1, 2, 3, . . . p is the frame number and N is the number of



- 60 -

speech samples for each frame (in this case N = 100) And s(n) are speech

to distinguish between voiced speech and background silence in the 

utterance.

The next section describes how the zero-crossing count is measured

from the sampled input waveform and how it is used to distinguish between 

unvoiced speech and background noise,

3,1,2 Zero-crossjng counts (zee)

The zero-crossing count of speech is defined as the number of 

zero crossings per 12.5 ms (100 samples) interval. Hence the zee is 

given by : -

Although the zee is highly susceptible to 50 Hz hum and dc offsets, 

in most cases it is a reasonably good measure of the presence or absence of 

unvoiced speech. Voiced speech and background noise have low zee, typically 

in the range of 1 to 30 and 10 to 20 respectively. The unvoiced speech has 

a high zee, typically in the range of 20 to 80.

Some knowledge of the character of background noise is needed to 

implement the endpoint detection algorithm and so in the next section, 

measurement of statistics of background noise are considered.

3.1.3 Statistics of the background noise

It is always assumed that during the first 125 ms (10 frames) of 

the recoridng interval there is no speech present and thus the statistics 

qf the background noi9e are measured during this interval. Characteristic

N-l
Z4 = h l sign (s(n)) - sign (s(n+1)) 
' n=l

3.2

where i-frame number, N-number of samples and

sign (s(k)) = 1 

= -1

s(k) $ 0 

$(k) < 0
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Values for the zero-crossing count (Zy) and the energy (Ey) for the 

background noise ape calculated in the following y/ay3-

The average energy during the first 10 frames (N) of the 

recording interval is given by,

The zero-crossing value, Zy, is chosen as either the maximum zee 

encountered in the first 10 frames (MC) or the average zee over the 

ten frames, (ZA), plus twice the standard deviation (a) of the zee over 

the same period. The lower of ZA and MC is chosen as the value for Zy.

Zy = Min (MC, ZA + 2a) 3,4

3.1.4 Proposed modification to Rabiner's endpoint detection algorithm 

Rabiner's algorithm first calculates the values of M^ and Ẑ  

given by equations 3.1 and 3.2 respectively for the entire recording 

interval and then using ET , ZT and ( M _ .  a set of thresholds are computedi I * maa

(for details Rabiner, 1975), Using these threshold values Rabiner's 

algorithm begins from the first frame and searches for start point and then 

starting from the last frame, searching begins backwards to find the endpoint.

The method of searching backwards from the last frame to find the 

endpoint will not work properly if the speaker sighs or puffs after reciting 

the word,

The modified endpoint analysis used here locates the endpoints of 

the word spoken in isolation and avoids the necessity of calculating M^ 

and z. over the entire recording interval,

The operation Of the modified algorithm is demonstrated by example 

for the. utterance "six1', whose energy and zee plot are shown in Figure 3,1. 

The endpoint detection algorithm works as follows:-

The algorithm calculates average magnitude (M^) and zero-crossing
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counts (Z.) until it finds the point of maximum energy, 'T' as shown 

in Figure 3,1, It was found empirically by analysing many utterances 

that the initial endpoints S and Q as shown in Figure 3,1 lie in the
J-b. i . L

region where the energy is 10 n to 20 n of the maximum energy. Using 

this rule a threshold (Xy) is set:-

XT = 3'5

Where 10 ^ P 3 20 for medium to high signal to noise ratio environments.

In this example P is assumed to be 20.

The experimental analysis for various utterances shows that once 

points S and Q are located the actual start and endpoint will be within 

20 to 40 frames backwards and forwards of S and Q respectively. Therefore, 

to accurately locate the endpoints with respect to points S and Q a new 

energy threshold (Yj) and zero-crossing threshold (Zy) calculated using 

equations 3,4 are used. The new energy threshold Yy is chosen as Xy 

or one and a half times the average background noise energy, Ey, whichever 

is the lower (see equation 3,3) i.e.

YT = Min (Xy, 1.5 * Ey) 3.6

The algorithm proceeds to examine 30 frames preceeding the points 

3 and Q using the new energy threshold Yy and it locates updated endpoints 

(S-j and Q-j) with respect to S and Q.

The next step is to fix the endpoint with greater accuracy with 

respect to S-j and by comparing the zero-crossing count with the threshold 

Z y  If the zee exceeds Zy two times or more the point is moved back 

to the first point at which the zero-crossing threshold was exceeded. This 

is known as the 'START' point of the utterance. A similar procedure is 

followed at the end to locate 'END' point of the utterance. For further 

details refer to Appendix A5.1 for program listing of endpoint detection 

algorithm.
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I;t js clear that once the position Q is» known then M.. and 

need only be calculated for 30 frames after Q, The rest of the samples 

are ignored. This avoids the possibility of locating the wrong endpoint 

when a speaker sighs after reciting the word.

3.2 Preprocessing to aid pitch estimation

As discussed in Chapter 2, several problems are associated with 

pitch estimation. The problems can be partially eliminated if a certain 

amount of preprocessing on the speech waveform is done before the pitch 

estimation algorithm is applied to it. Two preprocessing techniques, 

linear filtering and a spectral flattening are used. The linear filter 

selects approximately the first formant region of the speech spectrum in 

which the fundamental frequency of speech normally lies (60 Hz to 400 Hz) 

while the spectral flattener flattens the speech spectrum within the 

first formant region. Figure 3.2 shows a block diagram of the preprocessors 

along with the spectrum of the signal at each stage.

3.2.1 Linear Digital Filtering

It is assumed that the speech signal is of telephone quality which 

is band limited to 3.4 KHz and that at least three formant frequencies are 

present within this band (Figure 3.2). It is known that the fundamental 

frequency of the speech sound will normally lie in the first formant region. 

Therefore in order to estimate the pitch period of the speech sound it is 

passed through an analogue filter before sampling or a digital filter after 

sampling, to reject the 2na and 3ra formant frequencies. This filtering 

process avoids harmonics of the fundamental pitch frequency being enhanced 

by the 2nd and 3rd formant frequencies and being mistaken for the fundamental 

frequency in the pitch estimation algorithm,

$f the input speech contains the fundamental frequency a lowpass 

filter with 36 dB per octave (Gold, 1969) roll-off beyond 600 Hz works well.
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It is intended to use a linear digital filter for this purpose. An FIR 

filter can be used if phase information of the speech is to be maintained 

or alternatively an IIR filter can be used if phase distortion of speech 

is acceptable.

(a) Design of FIR digital filter

The filter coefficients are obtained using computer aided 

design approach (McCellan, 1973) for FIR filters. The amplitude 

response specification of the filter is given below:-

Pass band cut off frequency
(

Stop band cut off frequency 

Pass band ripple 

Stop band attenuation

= 60Q Hz 

= 1100 Hz 

= 0.03 dB 

= 45 to 50 dB

By using the computer program it was found that a filter order of 

40 satisfies the above requirement. The lowpass filter response 

and the filter coefficients are given in Appendix A2.1.

(b) Implementation of FIR digital filter

If s(n) is the speech input to an N-point finite impulse response 

digital filter with impulse response h(n), 0 $ n ^ N-l the speech 

output is called y(n), then:

N-l
y(n) = l h(k) . s(n-k) 3.7

k=Q

An N-point FIR digital filter represented by the above equation when 

implemented in software, generally requires N multiplications, N 

additions and (N-l) shifts per output sample. However, the use of a 

simplified computational algorithm (Rabiner, 1977) which is explained 

in Appendix 2,2 allows the implementation of the filter with N 

multiplications, N additions and one indexing operation.

Since a major aim of the research was to develop speech processing 

techniques suitable for implementation on a microprocessor the possibility
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pf implementing FIR or H R  filter with fixed coefficients aQ, a^, a2, - - 

on a 16-bit microprocessor (Intel 8086) was studied, It is known that most 

of the computational time 1s spent on multiplication of the filter coefficients 

by the current and previous speech samples. A computationally efficient 

multiplication technique was developed during this work, which speeds the 

multiplication at the expense of memory space. This technique uses the 

Intel 8086 p-processor instruction set without using its multiplication 

algorithm. The following equation is the basis for the multiplication 

technique

z " (p3y10^ 2 + (P2y10^ 2 + (plylo) 2< 3.8

where y 1Q is multiplicand (speech signal) z is the product and P. are 

derived from the 12-bit filter coefficients xQ) ^  x ^  ------- X11 as
1, 2 and 3.

»

X11 x10 X9 X8 X7

!—
 

X

X6 X5 x4 x3

x3 X2 X1 x0 X-1

-
** «%
-8

4

• 2

1

wJ 1
» «

For details and implementation procedure refer to Appendix 2.3.

3.2.2 Spectral flattening

After eliminating the second and higher formants of the speech 

signal using linear filtering the speech is left with only the first 

formant. The frequency response of the vocal excitation (Figure 1.3) 

shows that the amplitude of the higher harmonics is lower than the fundamental 

frequency. However, due to the resonant nature of the first formant the 

amplitude of the fundamental pitch frequency is suppressed (Figure 3.2) 

and within the passband of the FIR filter, the first formant frequency has 

the highest amplitude in the frequency spectrum.

If the TDPA is applied to a nonflattened speech signal then in

addition to major peaks at NTs = i . ? 3 ^r —  '• * (according to equation 2.13)
T«v
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there will he some Qther peaks of similar amplitude to the major peak

and they will appear in the periodogram in positions between = 1 and
l"a

2, 2 and 3 etc, (Figure 2,2), These additional peaks are caused by the

s tdamped oscillation (due to 1 formant) of the vocal tract response and 

the peak picking algorithm will be unable to determine which peaks are due 

to the pitch period and which due to the formant.

This problem can be reduced by "spectral flattening", where the 

effect of the first formant is removed and all harmonics within the passband 

Of the FIR filter are brought to approximately the same amplitude level.

Numerous spectral flattening techniques have been proposed 

(Sondhi, 1968; Markel, 1973; Rabiner, 1977), however, a technique called 

"centre clipping" was used as it can be implemented using integer arithmetic. 

The input-output relationship of a simple centre clipper is given below:

y(n) = s(n) s(n) $ Cp

= 0  CN * s(n) $ Cp

= s(n) s(n) v Cĵ  3.10

V
The adaptive clipping levels Cp and CN (as shown in Figure 3.3) are 

obtained by the method described by Dubnowski et al (1976). However, 

unlike Dubnowski's method, the positive (Cp) and negative (CN ) thresholds 

were calculated separately. The reason for this modification is explained 

later in this section.

The clipping levels must be chosen carefully to prevent loss of 

waveform information when large and small amplitude waveforms co-exist 

within a frame, This would occur when the frame encompass both voiced 

speech and the beginning or ending of voicing.

The clipping levels are chosen in the following way: For example 

in a 3-row periodogram (PA3) analysis, a maximum of 3Q0 samples would be 

used to calculate the pitch period. The spectral flattening algorithm 

finds the maximum absolute peak levels for positive samples and negative
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Sample«* separately, for the first and the last 100 samples of the speech 

segment. Then,

Cp = k « min (P-j .P2)

CN = k « min ( N ^ r y  311

where k = 60* to 80* (RsMner, 1978), (P,,N,) ,nd (P2,N2) are positive 

and negative maximum absolute peak level obtained from the first 100 and 

last 100 samples respectively,

If the two threshold technique is not used, i,e, Cp = CN and 

the positive peak samples are much greater than the negative absolute peak 

samples, then the Cp will set the negative samples to zero. If this 

occurs there will be no difference in performance between PA2 and MPA2 

or PA3 and MPA3 or PA4 and MPA4, In order to avoid this, two thresholds 

are required, one for positive samples and the other for negative samples. 

Whenever the absolute value of the positive excursion is equal to the 

negative excursion then Cp will equal CN. This adaptive threshold setting 

not only reduces the effect of the formant structure, but also helps to 

eliminate low level noise from the speech signal.

3.3 Smoothing of Data

Smoothing of the pitch period contour, zero-crossing contour, etc. 

is important in speech analysis. Smoothing of the pitch contour is necessary 

whatever pitch estimation algorithm is used, because all algorithms make some 

errors in estimating the pitch period of the speech signal. The zero

crossing contour could have a noise-like component superimposed on to it as 

the analysis is done over a short averaging time. Thus the contour is 

smoothed out before further processing,

The selection of a smoother depends on the type of data being 

smoothed. For example in a pitch period contour one may see a sharp



3 point 
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smoother

Delay (T)

Delay (T)
q(n)

■*>
3 point
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P(n)-g(n) smoothed [p(n)-g(n)3

Figure 3,4 Block diagram of a median smoother
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discontinuity a,t the position where a transition between voiced and 

unvoiced sound occurs, This is because the pitch period of the unvoiced 

speech is zero. Thus the smoothing algorithm must not destroy the 

sharp discontinuities, A linear smoother will not perform this job 

properly because, it will severely distort the contour, at the transition 

between voiced and unvoiced speech» Therefore a nonlinear smoother must 

be used.

The important property of a nonlinear smoother is that it can 

smooth out isolated errors (Figure 3,2) in the data without destroying 

sharp transition. In the next section a nonlinear smoother is presented.

3.3.1 Nonlinear smoother

The principle of operation of a nonlinear smoother was introduced 

by Tukey (1977). Let p(n) be the data contour which needs smoothing, and 

g(n) be a smoothed contour approximately equal to p(n). The smoothed 

data contour is then given by q(n),

q(n) = g(n) + smoothed [p(n) - g(n)] 3,12

Tukey further showed that g(n) can be obtained from p(n) by using a 

“running median" of the data and running medians of length 3, 5 and 7 can 

be used. The principle of running medians is explained in Appendix A2.4. 

Tukey further demonstrated that the sequence [p(n) - g(n)] can be smoothed 

using the same "running median" procedure.

An example of the running median smoothing of an artificially 

created sequence and linear smoothing of the same sequence is given in 

Appendix A2.4, This example shows that the 3 point running median smoother 

eliminates the sharp discontinuities and preserves longer duration 

discontinuities, whereas the linear smoother smears out the discontinuities.

Figure 3,4 shows a block diagram of a 3 point running median 

smoother implemented using the above equation 3.12. There are two smoothing
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paths available, This smoother was used and was found to provide 

sufficient smoothing of the pitch contour, zee of differentiated speech, 

etc. As shown in Figure 3,4 the 3 point median smoother has a delay of 

one sample and the overall delay is two samples. That is p(n) will reach 

the output q(n) after 2T delay.



CHAPTER 4

THE EXPERIMENTAL SYSTEM AND RESULTS

An experimental system was developed to enable various speech 

processing algorithms as well as the speaker verification and speaker 

recognition systems to be evaluated experimentally. The basic function 

of the system (shown in Figure 4.1) is to take speech utterances from a 

microphone and convert them to digital form for storage or processing 

by a minicomputer. The processed results produced by the computer can 

be displayed repeatedly on an oscilloscope or printed out on paper.

4.1 Computer Interface
The interface is shown in the block diagram of Figure 4.1.

The analogue speech is lowpass filtered to 3.4 KHz and the band limited 

speech signal is digitised by the coder to 8-bit compressed PCM samples.

The minicomputer is interfaced to the external world in order to read these 

digitised speech samples,

The input/output interface is controlled by the minicomputer and 

control signals are generated by the minicomputer under software control 

in order to switch the tape recorder on and off. The results of the speech 

analysis (e.g, periodogram, pitch contour etc.) are displayed on the 

oscilloscope via a 12-bit digital to analogue converter and the digitised 

input speech samples can be examined by replaying them through an amplifier 

connected to the D/A.

The technical details of the input/output interface to the mini

computer are given in Appendix A3.1. Figure 4.2 shows the experimental 

system organisation.



Clock 8 bit 8kHz

Figure 4.1 Block diagram of the experimental system
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4.1,1 Software jnpqt/output routine

LSI-11 assembly language is used to control the tape recorder, 

two indicators and to input and output the speech samples. Having read 

N digitised samples under program control, the software routine converts 

the N compressed PCM samples (8 bits, A-law) to N PCM samples in 2's 

complement numbers(13 bits), These linear PCM samples are then returned 

to the same locations from which they were read in. A-law has the form

shown below:-

sgn s3 s2 S1 i4 i3 i2 i,

+ t +

sign bit segment Interval within
code segment

The 8-bit compressed PCM to linear PCM conversion table AT2.1 is given 

in Appendix A3.2. The assembly language program for reading the speech 

samples and converting to PCM samples is given in Appendix A5.2.

Output of speech samples is also performed by an assembly 

language routine. The program incorporates delay to achieve an 8 kHz 

output rate. A spectral distortion occurs due to the sample and held 

form of the D/A output and care is taken in the program to minimize this 

distortion. This is explained as follows:-

Ideally the D/A output should be of the following form:- 

00
ya(t) = l y(n) • <5(t-nT) 4.1

n=Q

where ya(t) is output of the D/A and y(n) is the input to the D/A. 

However, a practical system must involve holding the output sample for a

T
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Fig. 4.3 Block diagram of the pitch extraction system
INL - threshold value set by the TDPA 
I(N)- oscillation amplitude



- 72 -

In frequency domain the equation 4,2 is written as;-

yaM  = V W) • P*(w) 4,3

It Is known th»t p,(w) ts -SlS-JS function. This function introduces an
A

undesirable distortion in ya (w). If p#(w) is approximated to 1 by some 

means over the range 0 to 3.4 kHz then the output spectrum will be,

ia(w> - V * )  ' 1 4.4

One way that this could be achieved is to reduce the value of ’t ’.

The output routine outputs the speech samples to the output 

latches (see Appendix 3.1) but clears them after a time T. t has been 

chosen as 22.75 ps, so that the first zero of p (w) occurs at 

approximately 50 kHz and pft(w) is almost constant over the band 0 to

3.4 kHz. The output assembly language routine is listed in Appendix A5.3.

4,2 Experimental results for the TDPA

In the remainder of this chapter the experimental results obtained 

using the TDPA with speech and sinusoidal signals are described and the 

TDPA's noise performance is evaluated. Following this, the real time 

implementation of the TDPA on a microprocessor is described.

As explained in Chapter 2, an Intensity contour is obtained as a 

by-product of the TDPA analysis, One of the applications of such an 

intensity contour is as a gain control 1n a speech synthesiser. Consequently 

the last part of the chapter is briefly devoted to the description of an 

experiment to verify that the intensity measure obtained from the TDPA 

is suitable for use as a gain control in a speech synthesiser.

Results of the TDPA for speech signals

The TDPA has been tested for male, female and child speakers 

using the experimental system shown in Figure 4.3, Pitch and Intensity
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speech signal 
(male speaker)

periodonram
(PA2)

periodogram 
(PA3)

periodogram
(PA4)

AMDF

Fig. 4.4a Oscilloscope traces of PA2, PA3, PA4 and AMDF of voiced 
section of utterance 'one' for high SNR (> 30 dB)

*•
.  \ '* t

-* A
•  / .
* f”'. 
* V . speech signal 

plus noise

. a a*A* V* ^

.-N /• v

periodogram
(PA2)

Fig. 4.4b Oscilloscope traces of PAL and AMDF of the voiced 
section of the utterance 'cne' for 10 dB SNR
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CQntqufs y/ere obtained for the sentence "we were away a year agq", as well 

as for Isolated words and the analysis was performed with and without 

spectral flattening,

4 . 2 . 1  Qualitative results of the TDPA, f o r  speech signal

The oscilloscope patterns for the penodogram (I(N) against N) 

and AMDF (D(N) against N) of speech signals corresponding to the voiced 

section of the utterance 'one' are shown in Figure 4.4a.

Examination of the TDPA traces shows that they have the form 

predicted by equation 2.13. The width of the major peak corresponding to 

the pitch period in PA4 is smaller than that of PA3, which in turn is 

smaller than PA2, This sharpening effect improves the accuracy of the 

location of the peak (especially when the speech is embedded in noise).

Comparing the TDPA with AMDF, it is seen that the AMDF trace 

shows a null corresponding to the major peaks in PA2, PA3 and PA4. Since 

the analysis is done for a spectrally unflattened speech signal, a peak 

appears on PA4 at the half pitch period. Although this peak does not 

affect the detection of the major peak, its amplitude can be reduced by 

spectrally flattening the speech signal before periodogram analysis. The 

minor nulls in the AMDF trace (Figure 4,4a) are smooth compared to the 

minor peaks in the periodogram. This effect is due to the fact that the 

number of samples used in AMDF is fixed for any trial period whereas in 

TDPA it varies with trial period. However, the minor peaks (TDPA) and minor 

nulls (AMDF) are not important in the estimation of pitch period.

4.2.2 Quantitative results of the TDPA for speech signals

Figure 4,5 shows the pitch period contour measured by PA2 and AMDF 

for male, female and child speakers, it can be, seen that both methods 

give equally accurate pitch, estimates. For the same utterance PA3, PA4,

MPA3 and MPA4 produced similar pitch contours to that shown in Figure 4.5. 

However MPA2 produced errors in the region of the onset and the trailing
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TOM (Nkt)

Fig. 4.5 Pitch period contour for "we were away a year ago" 
(without applying nonlinear smoothing)

Fig. 4.6 Intensity ccntour of the utterance "we 'ere away a year age 
(male speaker only)
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portiqn of voiced speech. Therefore, although MPA2 1s the fastest 

method of detecting the pitch period,it cannot be used outside the 

high intensity region. However, it should be noted that for several 

speakers MPA2 gave correct estimates of pitch period throughout the 

utterance,for SNR greater than 35 dB. MPA2 is particularly suitable for 

use in speaker verification systems because the pitch periods are 

normally determined only in the high intensity regions of the 

utterance.

Some discontinuities can he seen in Figure 4,5, but these can 

be smoothed by using a median smoothing algorithm as explained in 

Chapter 3. It is noticeable that for the male speaker the pitch period 

varies between 55 samples and 98 samples over the whole utterance, 

however, for the female and child speakers the range of the pitch 

period is very small.

The pitch contours shown in Figure 4.5 were obtained without 

using spectral flattening. The TDPA analysis has been performed on 

the utterance "we were away a year ago" for forty speakers and these 

contours have been used successfully in a speaker verification system 

which is described in the next chapter.

4.2.3 Intensity contour results

Figure 4.6 shows the intensity contours obtained by the TDPA 

analysis and by the short-time average magnitude for the same utterance 

and speaker. As explained in the theory (section 2.3.3) it can be seen 

that the oscillation amplitude contour is a smoother estimate of the 

Intensity contour, than the short term average magnitude. Also as 

expected both contours give the nulls and peaks at similar frames.

Since TDPA provides the intensity CQntqur as a by-product a 

small amqunt of program memory and space is gained.
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4.3 Results, of the, nois.e analysis

The results of the vulnerability of the TDPA to noise are 

given first by a qualitative example, quantitative results follow 

later.

White noise generated by a noise generator was band!invited to

3.4 kHz and sampled at 8 kHz and these samples were added to the speech 

segment shown in Figure 4.4aand this segment was analysed using TDPA 

and AMDF. Figure 4.4b shows the result of PA2 and AMDF for the noisy 

speech segment. The major peak corresponding to the pitch period in 

PA2 is still evident despite the fact that in this example, the noise is 

only 10 dB down on the signal.

Before adding the noise samples to the speech samples the 

noise amplitude was adjusted to obtain the required SNR. The SNR which 

determines the noise power added to speech 1s given by,

N 2
I (s(n)-s)

SNR in dB = IQ log — ------  4.5
N 2
l (e(n)-e) 

n=i

where s(n) are the speech samples, e(n) are the noise samples s' and F  

are the means of the speech and noise samples respectively. In this 

analysis only voiced sounds are considered, therefore the summation n=l 

to N extends over the length of the voiced speech. When noise samples 

were added to the speech signals, pitch errors were caused mostly in the 

region of onset and trailing portion of voicing because the amplitude of 

the speech samples at these times is small. The number of errors generated 

were speaker dependent,

The. errors made by the TDPA for high SNR ($ 3Q dB) were hand 

corrected and the corrected pitch contour is denoted by Pq(n). The pitch 

contour obtained after adding noise samples to speech is denoted by P^(n).
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S/N Ratio Utterance
NUMBER OF GROSS ERRORS

TYPE OF
(dB) and

Duration PA2 PA3 PA4 MPA3 MPA4
SPEAKER

38 MUMMY 
465 ms

2 1 2 2 2
MALE

5 4 5 3 4 3
(SPK-1)

30 MUMMY 
500 ms

2 0 0 2 1
MALE

5 3 3 2 5 4
(SPK-2)

31 MUMMY 
590 ms

3 3 2 4 6
FEMALE

8 7 7 5 9 6
(SPK-3)

41 ONE
565 ms

5 5 5 5 5
MALE

8 5 3 5 5 3
(SPK-4)

48 ONE 
550 ms

2 2 2 2 2
CHILD

18 10 7 4 6 6
(SPK-5)

36 ONE 
563 ms

9 9 2 7 2
FEMALE

10 15 6 7 5
_______

7
(SPK-3)

T4.1 Some results of the gross errors committed by 

TDPA before and after adding noise samples to speech

signals



A gross error i$ defined, as:-

g (n) = pc<n> ‘ pN(n) $ 8 samples

Most of the gross errors occurring in the analysts were due to pitch 
halving for male speakers» and pitch doubling and tripling for female 

speakers. These were usually found at the onset of voicing.

Examples of the number of gross errors committed by the TDPA 

when noise samples were added to speech is given in Table T4.1 for five 

speakers. The errors made by MPA3 and MPA4 are normally greater than the 

errors made by PA3 and PA4 respectively. The analysts shows that at high 

and low signal to noise ratios PA2 produces more errors than PA3 which 

in turn produces more errors than PA4.

When speaker-4 uttered 'one' the errors observed were due to 

pitch halving in the onset of voicing and no errors were found in the 

trailing portion. For speaker-3, utterance 'one’, the errors were mostly 

due to the correlation at multiples of pitch period. For both these 

speakers the errors occurred in successive frames at the onset of voicing. 

Although this prevented the decision logic correcting the errors, they were 

not propagated throughout the utterance. The interesting effect shown in 

the last row of the table T4.1 is that the errors made by PA3 and MPA3 

are 9 and 7 respectively (before adding the noise to speech samples), but 

after noise samples were added to speech samples the errors were reduced 

to 6 and 5 respectively. The reason for this is that the higher correlation 

at the multiples of the pitch period enhanced the peaks of periodogram 

before noise samples were added, however after adding the noise samples, 

these peaks of the periodogram were fairly constant in amplitude. This 

type of behavioup is speaker dependent,

Utterances such as 'year', 'away' and 'worm' were also analysed 

for various speakers and the TDPA performed well at SNR's as low as 10 dB
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Fig. *+

Sinusoidal 
310 Hz

periodogran
(PA4)

sinusoidal 
plus noi sa

periodogran
(PA4)

.'/ Pitch period analysis (PA4) for a 310 Hz sineyave 
for high SNR and for 10 dB SNP.

Speech Signal 

(Child speaker)

Periodogram

(PA2)

Fig. 4.8 Oscilloscope traces showing the onset of vcicinn 
(frane size 25 ms) and the periocirgram (PA2) J
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fqr almost all the speakers- Different utterances and other speakers 

are to be considered to find the SNR limits at which the PA2 and PA3 

and PA4 will perform well,

4.4 Qualitative results Qf the TDPA for sinusoidal signals

Figure 4.7 shows the results obtained when a pure sinusoid 

(SNR $ 30 dB, frequency 310 Hz)and a noisy sinusoid (SNR = 10 dB, 

frequency = 310 Hz) are analysed using PA4. The first peak corresponds 

to the correct pitch and the second and third peaks are due to pitch 

doubling and tripling respectively. Equation 2.13 Indicates that for 

m=4 there are two minor lobes between the major peaks. This 1s evident 

from Figure 4.7. Also evident from the same figure is that the PA4 can 

be used successfully to detect the period of the noisy sinusoid. In the 

case of a sinusoid it is possible to use more than four rows in the 

algorithm because a sinusoid is not quasi periodic like a speech signal. 

This further sharpens the major peak, increasing the resolution of pitch 

measurement and improving the noise-rejection.

4.5 The behaviour of the TDPA at onset and trailing portion of voicing

The onset of voiced speech from a child speaker is shown in 

Figure 4.8. Since the pitch period length is 22 samples, there are four 

major peaks evident in the PA2. A serious problem in onset of voicing 

analysis is that the heights of the major peaks corresponding to multiples 

of the pitch period are greater than the height of the peak corresponding 

to the correct pitch on the periodogram. This is due to the speech signal 

amplitude increasing more rapidly during onset of voicing as shown in 

Figure 4.8. When this occurs, the 'peak picking logic' often selects the 
wrong peak- This problem can be overcome by reversing these speech samples 

in time before using the TDPA-
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speech signal 
(child speaker)

periodogran 
( P A 3 )

Fig. 4.9 Oscilloscope traces of the trailing portion of voiced 
speech (frame size 25 ms) and the periodogram (PA3)

Fig. 4.10 Effects of the centre clipping on the periodgram 
(a) speech signal (b) clipped speech
(c) periodogram (PA3) for unclipped speech
(d) periodogram (PA3) for clipped speech
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The trailing portion of the voiced speech of a, child speaker 

is shown in Figure 4,9,together with the periodogram. These show that 

the peak at the correct pitch period is enhanced automatically in the 

periodogram with respect to peaks at multiples of the pitch period and 

thus that reversing the speech samples in time is unnecessary. At the 

trailing portion of voicing, the amplitude of the peak corresponding to 

pitch halving is occasionally greater than the amplitude of the peak 

corresponding to the true pitch period on the periodogram. In this case

the past history of the pitch period must be used to select the correct 

pitch period.

4,6 Results of spectral flattening

Consider an example to illustrate the effect of the simple 

centre clipping operation on the periodogram. Figure 4.10a shows a 

speech segment of 37.5 ms. The absolute peak levels of positive and 

negative speech samples as defined in Chapter 3 are:-

P1 = 1749, P2 = 1651, N-j = 1626 and = 1454

Therefore,

Cp = k min (PltP2) = 1320

CN = k min (N1,N2) = 1163

The threshold constant 'k' defined in Chapter 3 is assumed to be 80%.

Figure 4.10b shows the clipped speech segment. Figure 4.10c and Figure 4.10d

show the periodogram (PA3) for unclipped and clipped speech respectively.

The periodogram of the clipped speech has only one minor peak compared to 

the several minor peaks which appear in the periodogram of the undipped 

speech. These minor peaks on the periodogram are due to the damped 

oscillations of the vocal tract. When few extraneous peaks appear in the



Speech 
with and 
without 
spectral 

flattening

Utterance,
duration

and
type of speaker

PA2 PA3 PA4 MPA2 MPA3 MPA4

SUF "We were away 
a year ago"

9 5 6 6 4 4

SF
1075 ms 

male (spk 1) 6 5 5 5 4 4

Sup "We were away 
a year ago"

10 17 14 5 4 6

SF
1300 ms 

male (spk 2) 4 8 14 3 2 4

SuF "One" 
525 ms

4 3 2 5 3 1

SF
male (spk 3)

2 2 2 5 3 3

SuF "We were away 
a year ago"

9 3 6 16 5 6

SF
1_______________

1500 ms 
male (spk 4) 3 3 4 16 5 6

Table 4.2 Number of gross errors committed by 

TDPA with and without spectral flattening

SuF - speech without spectral flattening SF - Speech with spectral flattening
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periodqgram, then the estimation of the pitch period will he easy and 

accurate.

in order to study the effect of spectral flattening qn speech, 

an experiment was conducted using four male speakers. Pitch errors made 

by the pitch estimation algorithm before and after spectral flattening 

were noted. Table 4.2 shows the improvement in the number of gross 

errors obtained by using spectral flattening. These errors were due to 

pitch halving for all the male speakers.

When speaker-^ uttered "we were away a year ago", the errors 

made by PA2, PA3 and PA4 were severe (see Table 4.2) and it was found 

that the high Q nature of the vocal tract caused the impulse response 

to decay very slowly. Spectral flattening of the speech signal partially 

eliminates these damped oscillations and reduces the number of errors 

made by the TDPA.

It is evident from Table4.2that MPA2 performed well for the first 

three speakers, however for speaker 4 it did not perform well. This is 

due to the fact that when the speaker spoke the utterance, there were a 

few pauses between words and this caused several low intensity regions to 

appear in the whole utterance. As explained in section 4.2.2, MPA2 

cannot cope with onset of voicing or the trailing portion of voicing. 

Consequently MPA2 shows many errors in the pitch estimation process in this 

case.

Most of the remaining errors in Table 4.2 can be eliminated by 

applying the non linear smoothing algorithm explained in Chapter 3.

4.7 Implementation of the peak picking logic

The algorithm which chooses the. peak to TDPA output which 

corresponds to the actual pitch period is, known as the "peak picking 

logic". There are several ways of implementing this. However, the method 

used in this research was developed by analysing various threshold levels
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from a variety of speakers,

The optimum form fQr the ''peek picking logic" (PPL) depends 

on whether spectrally flattened speech is used or not. However the 

developed PPL works reasonably well for both spectrally flattened and 

spectrally unflattened speech and it was developed empirically by 

examining the periodogram results for various speakers and also obtaining 

suitable threshold levels.

Once the values of I(N) (i.e. oscillation amplitude) for different 

values of N are calculated, the PPL starts to search for a peak from 

N=19. If it finds a peak it sets a threshold 1^,

= I(N) + k] • I(N) 4.6

where 0 ^ k-j $ 0.1 and searching continues up to a value of N = 101. If 

the amplitude of a subsequent peak is greater than the threshold level the 

threshold is updated and the peak position is recorded. The last location 

found by the PPL is known as N-j and the amplitude is Ip. Once this is 

done PPL sets a second threshold I2,

I2 — Ip - k2 • Ip 4.7

where 0.1 £ k2 v 0.2 and the search begins again from N=19 up to 

N=N-|. If any value of I(N) corresponding to a trail period N is greater 

than I2 then the PPL checks whether the value N-j is a multiple of the 

current N in order to select the present location as the new pitch.

If this is so PPL checks whether N falls within 45 per cent of 

the average of the last five pitch periods before the decision is made.

This is because the future pitch period will never vary more than 35 to 

45 per cent of previous pitch periods. This type of decision is useful 

because in any type Qf pitch detector (TDPA or AMDF) the higher correlation 

at the multiples of the pitch period sometimes enhance the peak
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Fig. 4.

N :17
POINTER : X X

n  :n i  i N-Trial period

IG : I Nil 
IL : IN I2

IG - greatest value 
IL - least value

M : ADDRESS

M : M 4 1

1C : ISCM 5 4 
IS CM +N )

IS - speech samples 
IC - sums of the column

** For the calculation of 
MPA2, MPA3 & MPA4 the 
dashed block could be 
omi tted

VALUES OF 
PA 2

ARE NOW 
AVAILABLE

11 Flow chart for real-time generation of PA2.
For PA3 & MA3 IC = IS(M)+IS(M+N)+IS(M+2N)
For PA4 & MA4 IC = IS(M)+IS(M+N)+IS(M+2N)+IS(M+3N)
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corresponding to It on the periodogram with respect to the peak at the 
correct pitch period (mostly for high pitched speakers), For example, 

one child speaker was able to produce speech sounds with fundamental 

frequency of 400 Hz on many occasions. The above decision algorithm 

successfully located the correct pitch period from all multiples of pitch 

period and also from several spurious maximum caused on the periodogram 

by the interaction of the formants,

After the above mentioned two threshold decisions are set, 

further logical decisions are made to correct for isolated errors and 

errors which occur in two or three successive frames. For further details 

of PPL refer to fortran program listing given in Appendix A5.4.

The threshold constants k-| and k2 in equations 4.6 and 4.7 were 

set by 0.1 and 0.2 respectively. These values were optimised experimentally 

by analysing speech utterances of various speakers. It is important to 

note that in this method the present pitch period is decided after 

examining one future pitch period and also by using the previous pitch 

periods.

If Ip falls below the background noise threshold, which is 

calculated beforehand by analysing 100 ms of bakcground noise using PA2, 

then no pitch period computation is performed.

4.8 Real-time implementation of TDPA on Intel 8086 u-Processor

Runtime estimates for implementation of PA2 and MPA2 on a 16-bit 

microprocessor (Intel 8Q86) are presented. The flow chart of Figure 4,11 

is for the calculation of the PA2 in integer arithmetic and the same 

flow chart can be used for MPA2 by removing the dashed block. The inner 

loop takes 85 clock cycles (this includes move, add, indexing and also test, 

compare and jump for picking greatest and least values) and the outer 

loop takes 57 clock cycles, (This includes store, initialization and loop 

control). Assuming the trail period varies between 18 and 102 samples, the
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total time interval for the calculation of PA2 is [85(18+19+20+ ---  +102)

+57 x 85] = 438345 clock cycles. Since one clock cycle takes 200 ns, the 

total time estimate will be approximately 88 ms. The run time estimate for

MPA2 is [71(18+19+ ---  +102)+49 x 85] = 366^65 clock cycles (approximately

74 ms). However 1t should be noted that in the case of MPA2 the inner loop 

takes 71 clocks and the outer loop takes 49 clocks). The time required for 

the peak picking logic is not included in this time estimation.

The additions, subtraction and comparison process all take 3 

clock cycles in the Intel 8086 processor, whereas the jump instruction takes 

16 clock cycles. Since the jump instruction is five times slower than the 

add, subtract or compare instructions for this processor, an implementation 

of the algorithm on a processor where the jump, add, subtract instructions 

take nearly the same time will result in a considerable improvement in run 

time. The implementation of PA2 on this processor requires 60 bytes of 

program storage where MPA2 requires 45 bytes of storage.

15For a 16-bit machine the largest integer value is +(2 -1). The

speech samples are available as 13 bit 2's complement number's and therefore
12the largest value obtainable in the input data is ±(2 -1). For the case 

of PA4,

I(N) = (s(ng) + -------+S(ng+3N)) - (s(< \)+ --------- + s(nA+3N)),

therefore I(N) = 4(212-1) - (4(-212-l)) = 215-23, a value which is

within the dynamic range of the microprocessor. Hence the TDPA can be

implemented in integer arithmetic on a 16-bit microprocessor for m £ 4.

The CC-AMDF can also be considered for the same input data, The
12

evaluation of |s(i) - s(i+k)| can produce a maximum value of 2(2 -1),
12

Summing over the block length gives a maximum number of 200(2 -1) which 

19
is greater than 2 and thus outside the number range of the machine. This 

can only be evaluated by performing partial sums and scaling i.e.
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1 4 1 8D(k) = —  l |s(t) - s(1+k)| + —  l |s(t) - s(i+k)| + -----
25 i =1 25 i=5

! 100
+ -7  l |s(D - s(t+k)|

25 1=97

This could be Implemented on the Intel 8086 processor with a 100 byte 

program. The total run time estimate of the CC-AMDF for all trials within 

the 18-102 sample range is 533̂ 383 clocks (approximately 107 ms). An 

alternative method of reducing the computational time of CC-AMDF is given 

in Ross et al (1974), but the input data accuracy is limited to 11 bits and 

the summation is limited to the order of 70 samples, which causes some 

deterioration in the pitch estimation process.

The assembly language program listing for the above implementation 

is given in Appendix A5.5,

4.9 Speech Synthesis

A block diagram of the linear predictive syithesiser is shown in 

Figure 4.12. The time varying control parameters needed by the synthesiser 

are the pitch period, excitation for voiced and unvoiced speech, gain control 

and i predictor coefficients.

Normally the r.m.s, values of the speech samples obtained by a 

speech analysis algorithm are used as a gain control G, However in this 

speech synthesiser (Program given in Appendix 5.6), the oscillation amplitude 

I(N) obtained from the TDPA has been used successfully as a gain control 

for both voiced and unvoiced sounds.

The reconstructed speech samples are determined by,

12
s(n) = l s(n-k) + G • u(n) 

k=l K

where a^'s are the linear predictive coefficients obtained from Burg's
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PARCOR coefficients. The speech samples are finally lowpass filtered 

to provide a continuous speech wave s(t).

The following sentences were synthesised for both male and 

female speakers

a) Merry Christmas

b) We were away a year ago

Listening tests showed that the oscillation amplitude I(N) is suitable 

for use as a gain control in a speech synthesiser.



CHAPTER 5

IMPLEMENTATION OF A SPEAKER VERIFICATION SYSTEM (SVS)

In this chapter the speaker verification system (SVS) implementation 

is briefly explained and then the time warping problem is discussed. 

Furthermore an efficient method of creating reference templates, based on 

a non-linear mapping technique is presented. This allows the speaker 

verification system to cater for intraspeaker variations.

The effectiveness of the three parameter contours, pitch period, 

intensity and zee of differentiated speech are studied in terms of the 

ratio of interspeaker to intraspeaker variance.

The later part of the chapter is devoted to the implementation 

and performance of the speaker verification system.

5.1 Speaker verification system

Figure 5.1 shows a block diagram of a speaker verification system. 

The verification phrase used is the all voiced sentence "we were away a year 

ago". Once the speech utterance has been sampled as shown in Figure 

5.1, the endpoint detection algorithm scans the whole utterance to locate 

the beginning and end of the utterance. The endpoint detection can be 

accomplished by means of energy calculation only, because the utterance 

contains only voiced sounds. After the endpoints have been located, the 

utterance is subjected to the following feature analyses

(a) A pitch estimator is used to measure the pitch contour of the 

utterance (this is accomplished using the TDPA). A pitch period 

value is obtained every 12.5 ms throughout the utterance and the
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resulting Pitch contour is smoothed ysing the 3-point median smoother, 

as explained in Chapter 3, The pitch contour is denoted by "PC".

(b) The short-time average magnitude defined by equation 3,1 is 

calculated every 12.5 ms throughout the utterance to obtain the 

intensity contour over the 0 to 3,4 kHz band. This intensity contour 

is normalised so that its maximum value is assigned a value of 100.

That is,

K; = (Peak, value Qf average magnitude) j 100

where the whole average magnitude contour is scaled by -. The normalised
K

contour is then smoothed using a 3-point median smoother. The intensity 

contour is denoted by "IC".

(c) The zero crossing counts of the differentiated speech are 

calculated over the 0 to 3.4 kHz band every 12.5 ms throughout the 

utterance and the resulting contour is smoothed by a 3-point median 

smoother. The zero-crossing counts of the differentiated speech contour 

is denoted by "ZDC".

These three contours comprise the basic features for the speaker 

verification system. These contours are compared with a set of reference 

contours (templates) associated with the claimed identity. The reference 

templates are created using a cluster analysis which is explained later in 

this chapter,

Before comparing the extracted contours with the reference contours 

(Figure 5,1), time warping is carried out on the extracted contours using a 

linear time warping (LTW) procedure which is explained in section 5.1.1,

This step 1$ necessary, because the speaking rate Qf a particular speaker 

varies from repetition to repetition of the verification phrase.

The final step in the verification process of Figure 5.1 is to 

compute the overall distance measure between the extracted contours and the



- 86a -

(b)

P9(n) Linearly compressed 
intensity contour

N1
------ 1--------------

n3 n2

[_x____
p(n+l)-p(n)

P(n) iAp i P(1) P(n+1)

n i n+1
r»-----

A

Figure 5,2 Linear time warping problem

(c)

Cd)



- 87 -

reference cqntyurs and then compere the overall distance tQ an appropriately 

chosen threshold, The computation Qf overall distance is described in 

Section 5.1,3,

The entire speaker verification system shown in Figure 5.1 has 

been implemented in software on a (LSJJ 11^03) minicomputer,

5.1,1 Tjme Warping

It is well known that the events in two utterances (e,g. a 

maximum or minimum in the extracted parameter contours) are seldom 

synchronised 1n time, although both utterances have the same text spoken 

by the same speaker, The variable speaking rate causes this fluctuation 

in the extracted parameter time axis. Therefore the elimination of this 

fluctuation is important in any speaker verification system. One simple 

way of eliminating the time difference between speech pattern contours is 

to compress or stretch linearly the pattern contours to a precomputed 

average time length (LA) so that they become the same length. LA is 

obtained by averaging the time durations obtained from several repetitions 

of the utterance spoken by the same speaker. This method is called linear 

time warping. White (1976) reports that for monosyllabic words or utterances 

linear time warping is an excellent tool for eliminating the time difference 

between two speech pattern contours. For multisyllabic utterances more 

accurate time synchronization is achieved using a non-linear time warping 

procedure (Itakura 1975), but Rosenberg (1976) shows that before non-linear 

time warping is applied to the speech pattern contours, the contours should 

be linearly stretched or compressed to a normalised length, In this 

research pnly linear time warping is used, as non-linear time warping is 

computationally expensive.

Figure 5,2 illustrates the time warping problem, Assume that 

p(n) is an intensity contour, The start frame of the contour is N^, and 

the end fra"!6 Is N2’ fr°r H  is assumed that the start frame
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of the utterance is fixed and that the linear time warping algorithm 

stretches or compresses the utterance with respect to the start frame.

Lp is known as the unwarped time length, given by,

Lp = N2 N-j (see Figure 5.2a)

and the pre-computed average time length 1$ given by,

LA = N3 " N1 (see Figure 5.2b and 5.2c)

Therefore the time warping ratio (w) is defined as,

N - Nw = -2 1 _ duration of the unknown utterance ^ 1
N3 - N.j average duration of the precomputed

utterances

when w > 1, p^(n) is known as a linearly stretched contour (Figure 5.2b) 

and when w < 1, p2(n) is known as a linearly compressed contour (Figure 5.2c). 

The equation which performs the linear time warping is derived as

follows

The data value p(i) is obtainable when the n 1̂ data point and the 
th(n+l) data point are known (Figure 5.2d) i.e. p(i) is given by,

P(i) = P(n) + x = p(n) + (p(n+l) - p(n)) • (Ap/A) 5.2

Since the time difference between two data points is 1, a =1 . If Ap is 

equal to the time warping ratio given by equation 5.1, then the linear 

time warping equation is given by ,

PXn) = P(L) + (P(L+1) - p(L)) • (W*n « L) 5,3

where p'(n) is the linearly warped intensity contour, p(n) is the unwarped

intensity contour, n = 1, 2, 3, ----  and L = Integer [w-nj. Similarly

equation 5.3 can be applied to the pitch contour and the zee of differentiated 

speech contour individually in order to obtain the warped contours.
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The effects of linear time warping and smoothing on the speech 

intensity and the zee of differentiated speech contours are shown in 

Figure 5.3 and Figure 5.4 respectively. In this example a male speaker 

uttered Mwe were away a year agq" and the intensity contour and the zee 

qf the differentiated speech contour for the unwarped and unsmoothed 

utterance, along with the warped and smoothed contours are shown in 

Figure 5.3 and Figure 5.4, The reference templates shown in these figures 

were obtained by averaging each of the three parameter contours over ten 

repetitions of the same utterance.

It is evident from these figures that, linear time warping 

achieves a reasonable time synchronization and that corresponding maximum 

and minimum values of the contours are nearly coincident following time 

synchronization,

5.1.2 Cluster analysis

The creation of reference patterns or templates for the speaker 

verification system is simple provided that the variance between repetitions 

of the verification phrase uttered by the same speaker is small. However, 

for most speakers this is not true, A possible way of obtaining reference 

templates is to obtain a training set from the designated speaker over a 

long period of time. This training set is then separated into groups of 

utterances whose features are similar, and which can be characterised by one 

template. This process is known as clustering. The number of templates 

necessary to represent intraspeaker variations is equal to the number of 

distinct clusters produced by the cluster analysis. This method when 

applied tp the creation of reference templates will increase the verification 

performance, ignoring untypical samples in the creation of reference 

templates,

Numerous clustering methods have been developed and used by 

previous researchers, in various other fields (Eyeritt 1974) and the 

optimum method is dependent on the data to be clustered.
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Wt\en multidimensional data ape encountered, as in section 5,1.2,2, 

it is difficult to evaluate the performance of the various clustering 

methods, as it is impractical to visualise the geometrical properties of 

a multi-dimensional space,

I;n this research a clustering method was required to map the 
multi-dimensional data onto a two-dimensional space, for visual inspection, 

such that the inherent structure of the data is approximately preserved 

under the mapping, This allows the similarities or differences between 

utterances to be visualised. With the above criterion in mind, the following 

two clustering methods were initially selected;-

1) Principal component analysis (Patrick 1972)

2) Nonlinear mapping for data structure analysis (Sammon 1969)

Sammon has shown experimentally by analysing various data that 

a nonlinear mapping procedure is superior to principal component analysis 

for data anlysis. Although it is a simple and efficient algorithm it has 

not previously been applied to speech processing,

5.1,2,1 Sammon^s Nonlinear Mapping algorithm

The objective of this algorithm is to map the N vectors in an

L-D space to the 2-D space such that the inherent structure of the data

is approximately preserved under the mapping. The mapping should be such

that the intervector distances in 2-D space approximate to corresponding

interyector distances in the L-D space.

Suppose that there are N vectors in an L-D space, designated by

i = 1» 2, 3, — -- N and corresponding to these, there are N vectors

in a 2^D space designated by y^? i = 1, 2, —  »■>- N, Let the distance between
*

the vectors xi? x^ in the L-D space be denoted by d ^  and the distance
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between corresponding vectors y., y. tn the 2-D space be denoted by d..,
T J 1J

where both distance measures are the Eucltdien metric. It is known that

* * thd. . = d.. and therefore that the distance matrix (D) whose ij element 
ij JT v '
is d.., is symmetrical about the diagonal.1J

The structure of the data is strictly preserved under the mapping 
*

if for all i and j, d ^  = d^. This preservation is impossible to achieve 

under nonlinear mapping, however, approximate preservation is possible.

The result of the approximate data preservation causes an error known as 

the deviation (5) to be introduced, where,

6 = dTj - 5-4

When each deviation is squared and summed, one obtains the stress s,

s I (d - - - d 
i<j U  V

5.5

N
Where the notation l denotes the sum operation over all i and j such

i<0
that i<j. Equation 5.5 is normalised by dividing it by a scaling factor 

T and therefore

s/T =
N
l
i<j

(dIJ
2 N 

J 1<J
* o

(d. Y  
v

5.6

r * 2
where T = l (d..)

i<j J

Equation 5„6 is the measure of the "goodness of fit". Using equation 5.6, 

Sammon defines an error surface, E as,

1

N *

N
I
i<j

(dij - di.1)
2

E 5.7
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(E ]s sometimes also called the normalised stress).

Sammons nonlinear mapping algorithm works as follows,: Initially 

a set of vectors, (y^, y2» y3> yN), are chosen in the 2-D space.

The 2-D space intervector distances d^^ are then computed and the value of

E (see equation 5.7) is obtained, This represents how well the "first guess" 

configuration of N-vectors in 2-D space fits the N-vectors in the L-D space. 

The next step is to adjust the N vectors in the 2-D space so as to decrease 

the value of the error E, This process in 2-D space continues until a

sufficiently low value of E is achieved, That is:-

E ? 0,2 poor fit

0.10 < E < 0,15 reasonable fit

0,05 < E < 0,10 satisfactory fit

0 > E < 0,05 good fit

The set of yjs (y1, y2, y3> ---  yN) at the point where the required E

value is achieved is the final configuration.

The error surface E given by equation 5.7 is a function of 2N 
★

independent variable, as d ^  is fixed and therefore:-

e = f{y}* y2» y 3* — - yN) = f ((yn» y^)» 2̂1 » y22}* —  ( % »  % )

These 2N variables must be adjusted simultaneously to yield the 

new configuration. This is achieved by carrying out a steepest descent 

procedure to search for the minimum of the error surface. The new 2-D 

space configuration at time n+1 is given by the recursive relation,

The factor* was determined empirically hy Sammon to be 0,3 or 0,4 and 

A^(n) Is given by,

y^-Cn+l) = y^j(n) - « • A^(n) 5.8
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s t ndThe- equation relating the 1 end 2 partial derivatives of the error 

surface to y,^ is given in Appendix 4,1,

5,1.2,2 Calculations of the distance matrix (D) for speech parameters

The speech utterances are represented by the following parameter

contours:-

a) Burg's PARCQR coefficient contours

b) Pitch period contours (PC)

c) Intensity contours (IC)

d) zee of differentiated speech contours (ZDC)

In the case of a Burg's PARCOR coefficient contour, there will be 

frames and each frame is represented by 12 PARCOR coefficients. Therefore, 

the Burg's PARCOR coefficients are considered as contours in 12-dimensional 

space. The distance between the i n contour (x..) and the jtn contour (y^) 

in L-space will be,

*
d
tJ l

N1 k=l

12

J. (xkm ~ ^km^ 5.9

Sammon's algorithm is based upon a point mapping of N L-D space 

vectors to N 2-D space vectors. However speech parameters are contours 

in L-D space rather than points, but the nonlinear mapping algorithm is 

still applicable, because once the distance matrix D is calculated using 

equation 5.9, then there is no distinction between points and contours.

In the case of a pitch period, intensity or a zee of differentiated 

speech contour there will be only one data point available for each frame.

In order to represent the information about the shape of the contour in a 

convenient form the VfhQle contour is divided into N2 segments, each segment 

consisting gf IQ frames (data points), These segments of the contours can 

then be represented in 10-dimensional space and subjected to the mapping 

procedure described earlier, This segmentation method has not been used



DI
ME

NS
IO

N

NONLINEAR MAPPING, STRESS - 0.064 _ ,

Feature vector: BURG'S PARCOR COEFFICIENTS

DIMENSION 1

< a >

NONLINEAR MAPPINGISPKl ) .STRESS-0 ■ 050
Futur* *tct*r : HT» KltlOO

NONLINEAR NAPPINGfSPK1 / .STRESS.-C G5<
fMtvrt mtir : liffCRSITY

NONLINEAR HflPPINGiSPKl) .STRESSrQ.053
Fm Imt* vtcur : ZO*-CM$SIM COOTS V  

itrrno TU To  smc*

< b >

AVI

AV2

average for male 
cluster

average for female 
cluster

Fig. 5.5 Examples of clustering analysis using a 
nonlinear napping technique



- 94 -

previously and is a useful tool in obtaining clustered templates.

Although the initial configuration of the. 2-D space can be determined 

by random selection of the yjs, Sammon has suggested that in practice the 

initial configuration could be found by projecting the L-dimensional vectors 

orthogonally on to a 2-D space. Details Qf this are explained in Appendix 

4,2.

Figure 5.5a shows an example of a cluster analysis performed using 

the NLM algorithm for two speakers, male and female. The feature vector 

used in this example is Burg's PARC0R coefficients. Over a two week 

period nine repetitions of the word "one" were obtained from the male 

speaker, while five repetitions of the same word were obtained from the 

female speaker. The 2-dimensional plot shows well-separated male and 

female clusters. It also shows that the male speaker forms two clusters. 

The stress value (E) given by equation 5.7 after 60 iterations is 0.067 

which is satisfactory mapping value.

Figure. 5,5b shows another example of a cluster analysis using the 

parameter contours, pitch period, intensity and zee of differentiated 

speech for a male speaker, Five repetitions of the utterance "we were 

away a year ago" were obtained from the speaker in the morning and another 

five in the evening. Figure 5,5b shows that at least two clusters are 

necessary in order to represent the intraspeaker variations. It is also 

evident from the same figure that the same utterances may not be 

clustered together when different feature vectors are chosen for the 

nonlinear mapping algorithm, For example the points a, b and c cluster 

together only when the pitch contour is used as the feature vector.

5.1,2,3 Creation of reference templates

Reference templates are created in the following manner 

Once the clusters are identified and any outliers have been 

eliminated cluster centres are obtained by averaging the feature vectors
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qf the utterances (jn k-D space) çorpespending to each cluster, These 

cluster centres are then taken as reference templates. This procedure 

is shown In the following example,

Consider twq Burg's PARC0R coefficients contours p^n) and p2(n), each 

contour consists of fifty frames where there are twelve PARCOR coefficients 

(k.|) in each frame. Therefore;«

Pi(n) = C.k-j( 1 )» ^(2), - « - k^CD - - - k-j(50))

P2(n) = (k2(l), k2(2), - - - k2(i) ----  k2(50))

where k^(i) = (k^i), k2(i), k^(i)» ---- k^2(l)) and similarly for k2(i).
When contours p^n) and p2(n) are averaged, q](n) is produced,

^ ( n )  = ( q ( l ) .  q ( 2 ) ,  -  -  «  q ( 5 0 ) )

where q(i) - i[k^(i) + k2(i)]. Therefore in general when there are N 

contours to be averaged, q(i) will be,

l Nq(i) = -  l Mi)
N j=l J

A similar procedure applies to Pitch period, intensity and zee of 

differentiated speech contours.

This cluster analysis study shows that the variance between 

repetitions of the same utterance from the same speaker is large and 

thus that some method of clustering 1s necessary to obtain better recognition/ 

verification scores.

The cluster analysis program, written in Fortran, is given in 

Appendix A5,7,

5,1,3 Distance measure

As mentioned previously the extracted parameter contours are
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linearly time Vftrpe<t and are compared with a set of reference contours 

associated with the claimed Identity, The comparison is normally 

performed using a suitable distance measure which quantifies the degree 

Of dissimilarity between the extracted parameter contours and the reference 

contours, If the conoutrs are identical then the distance measure yields 

zero value, However, in practice this is rarely the case and the distance 

measure yields a positive value, Several distance measures have been 

investigated for this purpose (Rosenberg, 1976), however, in this work 

the weighted sum of the squared differences distance measure is used. The 

method of computing the distances is explained below:-

L,et the pre-computed average time length (L^) be 100 frames and the 

parameter contour be divided into twenty contiguous segments, each 62.5 ms 

in duration. That is, within each segment there are five data points.

Each of these segments is then characterized by the average value of the 

parameter data points in that segment. Each parameter contour is thus 

represented by a total of twenty average data points, and some additional 

smoothing is thus obtained. This operation is performed on all three 

parameter contours,

If 3^» 33» " " ■ 3-jqq are the data values corresponding to 

the extracted parameter contour, and ot-j, c*2, <x3 - - - a^gQ are the 

data values of the reference contour, then the unweighted sum of the squared 

differences will be,

Where U is the total number of segments (20), end M is the number of data 
points within the segment (5), Each segment is weighted by a weighting 

factor to make the calculated distance more sensitive to those segments 
Which are more strongly clustered, Instrasegment variance is a good weighting

5,10
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factor for this purpose (Wolf 1972), The variances fqr each segment 

are calculated from the training set used to construct the reference 

templates, This procedure is as follows:-

L,et N be the number of utterances in the training set and y ^ >

Ys^, - - - y ^ooji be tbe data values corresponding to $,tb utterance in 

the training set. The intrasegment variance is given by,

2

2 . 1 ?
^  N Jl=l

M

( \ _ m=l

M |

m=l j
5.11

when i is the segment number and i=l, 2, - - - L, M i s  the number of data 

points within the segment. Therefore the weighted distance measure is 

given by,

L M M /  2

d ' A ( I Pi-j) - ( L  <*4j)
_j=l 1J j=l TJ J

/ o f  5.12

d is calculated for all three parameter contours.

The performance of the SVS is evaluated using the distance

measures as defined below:-

Di ■ t g  normalised 5.13

D2 * normalised 5.14

°3 - [dZDcl normalised 5.15

°4 ' D2 + °3 5.16

D5 ■ D1 + D 3
5.17

where dpQ, d^c and dZDC are the distances calculated using equation 5,12 

for the pitch contour , intensity contour and the zee of differentiated 

speech contour respectively.
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pqr the purpose of the normalization, each distance measure d is divided 

by the average value of d obtained from the utterances associated with, 

the training set,

The final step Of the speaker verification process is a decision 

procedure which compares the overall distance with a speaker dependent 

threshold and determines whether to accept or reject the identity claim, 

Selection of the threshold distance is explained later in this chapter.

Figure 5.6a and figure 5.6b show examples of the behaviour of the 

intrasegment variance (see equation 5.11) evaluated over ten utterances 

(we were away a year ago), pronounced by two male speakers (speaker 1 

and speaker 2). These utterances were recorded in the morning and in the 

evening of the same day.
2

The smaller the value of ck the stronger the clustering of the

ith segment of each contour in the training set. When o^ was evaluated

on the pitch period contours for both speakers, it was found that segments

15 and 16 achieved large values of o\. (Figure 5.6). This is due to the

fact that these segments are in the region where the transition between

voiced to background noise and vice-versa occurred, and the pitch period

in these regions is highly variable.

In the case of the zee of differentiated speech contour, the

segment clustering effect is more reliable over all the segments, however,

in the case of the intensity contours the segment clustering is poor. It

can be seen from Figure 5.6 that for both speakers the intrasegment variance
2

is often large, Appendix A4,3 gives the values of Oj for all three

parameters corresponding to speaker 1 and speaker 2 and Appendix A5,8 gives

the Fortran listing qf the above analysis,
2 +h

In conclusion, a small o,i implies that the iwn segment is more

reliable and is more heavily weighted in the distance calculation (see
2 th

equation 5,12), A large implies that the i segment is less reliable 

and therefore slightly weighted in the distance calculation.
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5.2 Speech data collection

The purpose of this phase is to evaluate the performance qf 

the SV’S end also to evaluate the effectiveness of the parameters used.

The experimental system described in Chapter 4 was used to collect the 

speech data from various speakers in two phases,

in the first phase 4 native English male speakers were recruited 

to provide 14 repetitions (seven repetitions in the morning and seven 

in the afternoon of the same day) of the utterance "we were away a year 

ago". These speakers were designated as true speakers. The recordings 

were made in a room where the expected SNR was greater than 30 dB and the 

utterances were recorded on a high quality tape recorder (Revox A77) using 

a high quality microphone (AKG D202).

The fourteen utterances given by each speaker were partitioned 

into design and test sets. Ten utterances were used to create reference 

templates and two utterances were used to compute speaker dependent 

threshold values, while the other two utterances were used to test the 

performance of the speaker verification system. These speakers were not 

given any instructions about the manner in which they should pronounce 

the utterances, however, they were told to speak fast enough so that 

there were not many pauses between the words.

In addition to these four male speakers, thirty-height additional

male speakers provided one recording session each. These recordings were

designated as imposter utterances. These imposters did not attempt to

imitate anyone, but spoke naturally, 

ndIn the 2 a phase of speech data collection, one imposter was 

arbitarily designated as the 5 true speaker and fifty-six recordings 

were done over a one month period. The recordings were made in six 

separate sessions. Between two sessions at least two days elapsed. In 

each recording session, the speaker uttered the utterance five times in 

the morning and five times in the evening.
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T\yo months after the last recording,speaker 5 gave three 

more repetitions of the utterance in three sessions three days apart.

The purpose of the second phase of recording was to study the 

long term variations of the speech characteristic of speaker 5, and 

also to test the speaker verification system performance.

In the next section the effectiveness of the extracted 

parameter contours, pitch period, intensity and zee of differentiated 

speech are studied in terms of the ratio of interspeaker to intraspeaker 

variance.

5.3 Parameter evaluation

The effectiveness of the speech parameters must be evaluated 

in terms of their ability to discrimminate between different speakers. 

Pruzansky et al (1964) has suggested a statistical feature selection 

technique to evaluate the effectiveness of the speech parameters.

Wolf (1972) used this technique and evaluated six speech parameters, of 

which the pitch period achieved the highest score in discriminating 

between speakers. However, the parameter evaluation was not done for 

intensity and zee of differentiated speech contours. Hence in this 

section, individual evaluation of the extracted parameters is carried 

out using the statistical feature selection technique suggested by 

Pruzansky et al (1964),

According to Pruzansky a good measure of effectiveness for a 

single parameter would be the ratio of interspeaker to intraspeaker 

variance, often referred to as the F-ratio. The F-ratio 1s defined as,

p _ variance of speaker means

average intraspeaker variance

This is explained in the following way:-

Assume q speakers each gave p repetitions of the utterance "we
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were away ? year ago", The three parameters PC, IC and ZDC were 

extracted for each of the pq utterances. These contours exist in 

multi-dimensional space as explained in section 5.1,2,1, but for the purpose 

of explanation consider the 2-dimensional mapping obtained using the NLM 

technique for each parameter. For example the adjacent figure shows the 

ZDC mapped on to 2^space,

al’ a2* a3 ---- ai are t*ie averaged

cluster centres for speaker 1, speaker 2,

—  - speaker i respectively and a is the 

overall mean of the cluster centres,

al» ®2, ~ ~ ~ a.j,

Good speaker discrimination is only possible if the individual 

speaker distributions are as narrow (i.e, tightly clustered) and as 

widely separated from each other as possible. The F-ratio is defined 

mathematically as follows: If each parameter contour after time warping 

is divided into twenty contiguous segments and within a segment the five 

data points are characterised by an average value, then the F-ratio for 

the ith segment will be,
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2 / p  9
4 - —  l / — !-----  I I (akii-aif)2
1 q-1 j=l 01 ’ / q(p-1) k=l j=l kJt Jt

5,18

1.L  i i

where is the itn segment data value on the contour for the k '
X L

repetition by the j speaker, 1=1, 2, - - - 2Q, j=l, 2, 3, - - - q, 

k=1, 2 , 3 , ---- p.

aji = J ¿ } am 5,19

a = -  l a., 5.20
q m=l

i .  L.

is the averaged cluster centre for the j n speaker in the i 

segment and a is the overall mean.

According to equation 5.18 the higher the value of F^, the 

narrower the individual speaker distribution and as a result the 

selected parameter shows good discrimination, Equation 5.18 is evaluated 

for all three parameters individually, in all twenty segments.

In order to study the F-ratio variations over all the segments 

for all three parameters (PC, IC and ZDC) an experiment was conducted 

using the collected speech data (see section 5.2). Four speakers participated 

and ten utterances from each speaker were used to create a reference 

template. All three parameters corresponding to the ten utterances from 

each speaker were averaged individually to obtain three templates.

Figure 5.7 shows the reference templates obtained using the 

pitch period parameter, It is evident that for all four speakers there is 

a transition region in the pitch period contour between frames 70 and 85.

This is due to voiced to background transition or vice versa. Apart from 

the transition the general shape is almost the same for all speakers.

Figure 5.8 shows the reference templates obtained using the
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SEGMENT NUMBER

Feature vector: zee of diff. speech 
and intensity

SEGMENT NUMBER
Figure 5.10 F-ratio analysis for pitch period, intensity and 

zee of differentiated speech contours for male speakers
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-Intensity parameter, As expected it shows many local peaks and 

valleys.

Figure 5,9 shows the reference templates obtained using the 

zee of differentiated speech. Compared to the intensity contour this 

does not have many valleys and peaks.

The F-ratio was evaluated for four speakers using equation 

5.18 and the result is shown in Figure 5.10 and tabulated in Appendix 

4.4.

This analysis shows important results. That is the F-ratio 

for the pitch contour achieves the highest score, the zee of differentiated 

speech contour achieves the next highest score, and the intensity contour 

obtains the least score. This shows that the zee of differentiated speech 

contour is superior to the intensity contour in discriminating between the 

speakers.

The F-ratio values of the pitch period parameter in segments 

11, 12, 13 and H a r e  very much higher than the F-ratio values of the other 

two parameters in these segments. Thus the speakers can be well 

discriminated using only these four segments. However, the F-ratio value 

of the zee of differentiated speech parameter in segments 15, 16, 17 

and 18 is higher than the F-ratio of the other two parameters.

The value of the F-ratio for the intensity contour is low 

over all segments, however, in segments 4, 5, 9 and 10 it is higher 

than the zee of differentiated speech contour F-ratio.

It is evident from figures 5.1Qa and b, that the pitch contour, 

and the zee of differentiated speech contour (ZDC) achieve large values 

in different segments. Therefore these two can be combined to obtain 

good speaker discrimination, without using the intensity contour. Similarly, 

as high F-ratio values for the intensity contour and the zee of differen

tiated speech contour also occur in non-overlapping segments, (Figure 5.10) 

these two parameters can be combined to give good discrimination.
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5,4 Results for the Speaker Verification System (SVS)

In order to evaluate the performance of the speaker verification 

system, the acceptance/rejectipn threshold (0) first has to be determined. 

When the overall distance between the extracted parameter contours and the 

reference parameter contours of the claimed speaker is smaller than the 

threshold, 0, the speaker is verified, otherwise the speaker is rejected.

Thus the threshold value has to be optimized.

There are two kinds of errors which are possible in a speaker 

verification task, i.e, a true speaker can be rejected by the speaker 

verification system, or an imposter can be verified as the claimed speaker. 

The first error is known as false rejection (FR) and the latter kind is 

known as false verification (FV). These errors are controlled by the 

acceptance/rejection threshold.

If the threshold is high, few utterances of the true speaker 

will be rejected, but many imposter utterances will be accepted. A low 

threshold rejects the imposter utterances, but only some true utterances 

are accepted. Therefore, a compromise is necessary in selecting the 

threshold value. The procedure for selecting such a threshold is 

explained below.

Assume many imposter and true utterances have been obtained. The 

overall distances are computed (e.g, or see equation 5.16) for all 

imposter and true utterances. (It is assumed that the reference templates are 

already available). The result is a graph shown in the adjacent figure.
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l_et the imposter curve, be denoted by f(N) and the true speaker curve be 

denoted by p(N), If both curves do not Intersect each other, then the 

threshold (9) is set at a level just below the least value of f(N). When 

both f(N) and p(N) Intersect then false rejection (FR) and false 

verification (FY) can take place, If p is the greatest value of p(N)
«7

and f^ is the least value of f(N), then the threshold (0) is given by,

0 can be adjusted so that the number of false verifications is equal to, 
greater than, or less than the number of false acceptances. This selection 

varies from application to application. In this research the threshold 

is chosen such that the number of false verifications is equal to the 

number of false acceptances.

The performance of the speaker verification system was evaluated 

using the speech data collected in phase-1 and phase-2. The phase-1 

speech data base was used in the following way to assess the feasibility 

of using the pitch, zee of differentiated speech or intensity contours 

individually or in some combinations with each other, e.g. zee of 

differentiated speech + intensity.

Of the four true speakers, one speaker at a time was designated 

as the true speaker and the remaining three, along with the thirty-eight 

previous speakers, were considered as imposters (14 utterances x 3 speakers 

+ 38 imposter utterances = 80 imposter utterances), Ten utterances from 

the true speaker were used to form the reference template and two utterances 

from the same speaker were used to compute the threshold value (0). The 

remaining two utterances were used to test the performance of the speaker 

verification system, This give? a total of 80 imposter and two true 

utterances to be tested against ithe true speaker reference template.

The above tests (for all four speakers) were conducted using 
single and double templates. The single template was obtained by averaging
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Table 5,1

Single template Two templates

Speakers

SVS Parameters SVS Parameters

PC ZDC IC
ZDC
+
IC

ZDC IC
ZDC
+
IC

FR

Speaker 1

FV

0 0 1 0 1 1 0

0 Q 12 0 0 6 0

FR

Speaker 2

FV

0 1 0 0 0 0 0

0 7 12 0 0 0 0

FR

Speaker 3

FV

0 0 1 0 1 1 0

0 1 3 1 0 3 1

FR

Speaker 4

FV

0 0 1 1 0 0 0

0 16 16 10 5 12 1

SVS - speaker verification system PC - pitch period contour

ZDC - zero crossing counts of IC - intensity contour
differentiated speech
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ten utterances from the true speaker and two templates were obtained 

by subjecting the ten utterances to the cluster program explained in 

Section 5.1,2 (see clustering example of Figure 5,5 (speaker Ill-

Equations 5,13 to 5,17 were used to calculate the normalised 

distances. Because the number of utterances available for computing 

the threshold value was two, the threshold was chosen as the maximum 

value of the distance score obtained for the two true utterances,

The result of this experiment is tabulated in Table 5.1, When 

a single template was used, the pitch contour parameter achieved the 

highest score. That is the number of false rejections and false verifications 

is zero. This was expected because the F-ratio for all four speakers 

showed very high values, as explained in the previous section. The next 

highest score was obtained when the zee of differentiated speech was used 

as the parameter contour. The least score was obtained when the intensity 

contour was used.

However, when the distance scores corresponding to the zee of 

differentiated speech contour and the intensity contour were combined 

(i.e. was evaluated using equation 5,16) a significant improvement 

in the number of false verifications and rejections was obtained for all 

four speakers (see table 5.1). Table 5,1 confirms that the zee of 

differentiated speech contour can be successfully supplemented with the 

intensity contour, as was suggested by the results in section 5,3.

The evaluation of the speaker verification system using the 

combination of the pitch contour and zee of differentiated speech 

contour was not performed, as good verification was obtained using the 

pitch period parameter only,

The same. experiment vyas repeated using two templates to take 

account of intraspeaker variation, for all four true speakers and the 

experimental results are tabulated in table 5,1, The results show that 

when the zee of differentiated speech contour was supplemented by the
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Table 5,2

Two templates

Speaker

SVS Parameters

PC ZDC* IC

PC
+

ZDC

ZDC
+
IC

e

Speaker 5 FR 

FV

5.2 3.6 3.4 13.0 7.3

1 2 2 0 1

2 4 7 1 2

Imposter utterances = 93 (i.e. 4 x 14 + 37)

True speaker utterances = 47 (i,e. 44 + 3)

e

FV

ZDC

threshold value FR - Number of times false rejection 
occurred

number of times false PC - pitch peiod contour 
verification occurred

zee of differentiated IC - intensity contour 
speech contour

a graph (distance against trial utterance) is 
given for this parameter cgntgur in Figure 5,11
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intensity contour (i,e, was evaluated) using two templates, the 

error performance obtained was almost as good as the error performance 

when the pitch period contour alone was used (i.e, only was calculated), 

The results of this preliminary experiment show the 

followingj-

a) a good verification scope is possible when the zee of 

differentiated speech contour is supplemented by the 

intensity contour,

b) cluster analysis is a powerful tool in creating speaker 

dependent reference templates in order to improve the 

verification score.

To study these two observations further, the speech data 

obtained in phase-2 was used in a more rigorous experiment. In this 

experiment two reference templates were obtained using cluster analysis.

Of the first 57 recordings made from speaker 5 over a period of a month, 

in six sessions, one utterance in the morning and one in the afternoon 

were selected randomly from each session (total of 12 utterances).

These utterances were used to create two reference templates using 

cluster analysis. The remaining 44 true utterances, along with three 

more utterances given by the same speaker 5 two-months after the previous 

recording, were used to test the performance of the speaker verification 

system. The 37 imposter utterances plus the four previous speaker 

(phase 1) utterances (4 speaker x 14 utterances = 56 utterances) were 

used as imposter utterances to evaluate the performance of the speaker 

verification system,

The results for speaker 5 are tabulated in Table 5,2,where the 

distance, measures were, obtained using equations 5,13 tq 5,17 (i,e, D-j,

Dg, Dg, and D5), The results show that when pitch, intensity and 

zee of differentiated speech are used individually as speaker verification
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parameters, poor verification scores are obtained, However, if the 

pitch contour is supplemented by the zee of differentiated speech 

contour, a good verification score is obtained. That is the number of 

false rejections, out of 47 true utterances is zero and the number of 

false verifications out of 93 imposter utterances is 1, When the zee 

of differentiated speech contour was supplemented by the intensity 

contour, only one false rejection and two false verifications occurred.

The variation of distance (Dg) against trial utterance for 

speaker 5 is shown in Figure 5,11. In this figure the zee of 

differentiated speech is taken as the parameter contour. Each point 

represents the distance (Dg) for a particular trial utterance. An 

error occurs for each true utterance in which a point lies above the 

threshold line, Two such errors occur over 44 true utterances. The 

same figure shows the distance (Dg) of the 93 imposter utterances.

False verification occurs for each trial in which a point lies below 

the threshold line. Four such errors can be seen over the 93 imposter 

utterances. Similar plots were obtained for other parameter contours and 

the combination of the parameter contours. Using these plots the 

threshold (0) was calculated in each case and the values are shown in 

Table 5,2.

The three utterances obtained for speaker 5 after calculating 

the threshold are also shown 1n Figure 5.11, These utterances were 

obtained two months after the last utterance used to examine the error 

performance, it can be seen that the computed distance (Dg) for these 

three utterances is still well below the threshold level, and thus that 

intraspeaker variation over a long period has been accounted for in the 

reference templates, This is also true for all the other parameter 

contours,

Figure 5,12 shows the empirical distribution functions with respect 

to distance, for the parameters zee of differentiated speech, intensity,



Figure 5.12 Empirical Distribution Functions for the 

Intensity Contour, the ICC of Differentiated Speech 
Contour and the Combination of these two

Feature vector : zee of diff. speech
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Feature vector : zee of diff. speech + intensity_______________
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distribution 
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and the combination of these two, These distribution functions ape 

derived from the data in Figure 5,11, by dividing them into a number of 

small bands and counting the points falling in each band, The number 

of points in each band is plotted against distance (D3) and this plot 

is called the empirical distribution function.

If enough speech data is available then the size of the band 

can be made very small. However, in this case only a small number of 

true utterances and imposter utterances were available and therefore the 

following band sizes were selected:-

Band size for 
true utterances

zee of
diff, speech Intensity

Intensity + zee of 
diff. speech

0.2 0.2 0.4

Band size for
imposter utterances 2 2  2

In general it can be seen that the distribution functions of 

the true speaker utterances (speaker 5) are very narrow compared to the 

distribution functions of the imposter utterances. Moreover when the 

zee of differentiated speech and the intensity parameters are combined, 

the resulting true and imposter utterance distribution functions are seen 

to be much further separated (Figure 5.12 c) than the distributions 

obtained using the individual speech parameters (Figure 5.12a and 

Figure 5.12b), This shows clearly the power of using the zee of diff. 

speech and intensity parameters for speaker verification.

If a large population were available then curve fitting could 

be performed for each distribution and the true error rate (i.e. number 

of false verifications and false rejections) could be found from the curve 

fitted distributions,

In conclusion, it can be said that the verification performance 

Obtained using the combination of the zee of differentiated speech contour
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and the intensity contour is close to that obtained using the pitch 

contour supplemented by the zee of differentiated speech contour. This 

is an important result because the zee of differentiated speech and 

the intensity can be computed with less effort than the pitch period.

The Fortran program listing of the speaker verification system 

is given in Appendix A5,8,



CHAPTER 6

IMPLEMENTATION OF A DIGIT RECOGNITION SYSTEM

In this chpatep the implementation of a digit recognition 

system is described and the necessity of pre-emphasising the speech 

samples before extracting Burg's PARCOR coefficients (k^) is discussed.

The effects of pre-emphasis on the Burg's PARCOR coefficients are 

presented.

A simple and suitable distance measure for the feature vectors 

based upon the PARCOR coefficients is selected and the clustering analysis 

explained in Chapter 5 is used to create reference templates.

The latter part of this chpater is devoted to a detailed 

description of the implementation and performance of a digit recognition 

system. The results show that the Burg's PARCOR coefficients and their 

non-linear transforms are good parameters for a word recognition system.

6.1 Overview of the digit recognition system

Figure 6.1 shows a block diagram of a digit recognition system.

The vocabulary to be recognised consists of the digits 0 to 9 and the 

letter 'oh'. The input speech is filtered between 0 and 3400 Hz and then 

sampled at 8 kHz, The first step of processing after the digitization is 

to determine the points in time at which the input word begins and ends.

This endpoint detection is accomplished by means of energy and zero-crossing 

count calculations, The endpoints detection algorithm described in Chapter 

3 is used to perform this function,

Following endpoints detection, the input speech samples are 

grouped into frames for analysis, Each frame consists of N speech samples
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Figure 6.1 Block diagram of the digit recognition system
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(N=10G), Adjacent frames Qverlap by 15 samples. The frame Qf data 

is subjected to a first order digital pre-emphasis filter. The reason 

for pre-'emphasis is explained in the next section. The pre-emphasised 

speech frames are then subjected to the following feature analysis:

The Burg's coefficients given by equation 2,29 are calculated 

for each frame. In this analysis 12 Burg's coefficients (k-j^.k-j,—  k-j2) 

are extracted and are stored as contours for subsequent processing 

and/or creation of reference templates,

Once the Burg's coefficients are extracted* then the other 

feature vectors (g^ and p|), which are non-linear transforms of the 

Burg's coefficients, are calculated using equations (2,31) and (2,32), 

Following the extraction of the three feature vecotrs, linear time warping 

is performed on each vector contour to achieve time synchronization, The 

Burg's coefficients and the two non-linear transforms are calculated for 

different words (the digits 0 to 9 and the letter 'oh') and are stored in 

the memory as reference contours.

The recognition of an unknown input word is a matching process 

in which the Burg's coefficient contours of an unknown input word are 

compared with an ensemble of stored reference contours. In the comparison 

a frame-by-frame scan of the unknown input contour is carried out against 

each reference contour and a distance score is calculated and accumulated. 

The reference contour which gives the lowest accumulated distance is 

designated as the recognised word. The distance computation is explained 

in section 6.1.3.

The entire digit recognition system has been implemented on a 

minicomputer (LSI 11 -V03).

6.1,1 The u$e of pre-emphasis

l̂ t has been shown by Markel and Gray (.1974) , and Gray and 

Markel (1974) that the speech samples must be pre-emphasised before
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extracting the reflection coefficients or filter coefficients of the 

vocel tract using the autocorrelation method (as explained in Chapter 

2). Some of the reasons given by Markel and Gray for pre-emphasising 

the speech are briefly given belowin

The overall transfer function for voiced speech is represented by an 

all-pole model

S(z)yE(z) = Ay/(l-z-1) • (1 + \ akz_1) (see equation 2.7)

The above equation shows thatduring voiced sounds there is a natural 

attenuation of 6 dB/octave due to the term (1-z"^). This is due to the 

spectral slope characteristic introduced by the effect of glottal volume 

velocity (modelled by approximately -12 dB/octave slope, see equation 

2.4) and the lip radiation characteristic (modelled by approximately 

G dB/octave slope, see equation 2.6). If this natural attentuation is 

counter-acted by pre-emphasising the speech by a first order digital 

filter, then the spectral properties of the vocal tract without the 

effects of the glottal waveform and lip radiation characteristic can be 

studied. Markel and Gray (1974) showed that this pre-emphasis reduces 

the spectral dynamic range (i.e. improves the spectral flattness) and 

thus the quantization properties qf the PARCOR coefficients calculated 

using the autocorrelation method are improved, i.e. the values of the 

PARCOR coefficients (k^. 1=1, 2, -—  p) are decreased. This is desirable 

because when ki takes a low value, the spectral sensitivity (see section 

2.5,6) to numerical errors is reduced.

This reduction in spectral dynamic range is particularly useful 

when the PARCOR coefficients are evaluated using the autocorrelation 

technique because it tends to cancel the increase in spectral dynamic 

range caused by the windowing inherent in the autocorrelation method, 

if unchanged this windowing would increase the PARCOR coefficients
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quantization sensitivity,

In the case of Burg's technique there is no time window needed 

because of the way in which the. data is utilised. Moreover, from the 

comparison given in section 2,5,5, it is evident that Burg's method of 

extracting PARCQR coefficients can be used with finite word length 

arithmetic without causing instability.

It is, therefore, proposed to investigate whether any advantage 

is to be gained by using pre-emphasis in conjunction with Burg's method. 

The clustering properties of the Burg's PARCOR coefficients and the mean 

values of the coefficients with and without pre-emphasis are studied 

because better clustering of the coefficients can improve the recognition 

score, while low mean value of the coefficients reduces the spectral 

sensitivity,

6,1.1,1 Pre-emphasjs fjlter

The pre-emphasis is accomplished by the following difference 

equation:-

s(n) = s(n) - p s(n-l) 6.1

where n=0, 1, 2, —  N-l, p is a pre-emphasising factor of value 

Q 3 p > 1, Thus p provides a means of controlling the degree of pre

emphasis ranging from no pre-emphasis (p=0), to full pre-emphasis (p=l). 

Markel and Gray (1974) showed that for voiced speech the optimal pre

emphasis factor (p) takes values in the range of 0,9 to 1.0 and for 

unvoiced sounds it takes a value close to zero, They further showed that 

p can be calculated adaptively and is given by,

h = RCD/RW) 6.2

Whore. RCn) 1s the autocorrelation sequence,

When a constant pre-emphasis factor (0,9 ^ p ^ 1.0) is used 

then over-emphasis of unvoiced sounds in the speech utterance is possible,
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Female Speaker! 

with pre-emphasis 

without pre-emphasis

V - voiced region 

UV - unvoiced region

Figure 6.2 An example showing Burg's(PARCORCoefficients 

with and without pre-emphasis for the word 'six' 

(female speaker)
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whereas adaptive pre-emphasis overcomes this problem but is computationally 

expensive. Nevertheless, Rabiner (1978, 1979) extensively used the constant 

pre-emphasis factor (p=Q,95) successfully in automatic word recognition 

systems and it was decided to use the same pre-emphasis factor in the 

following experimental study,

6.1,1,2 Effects of pre-emphasis of Burgas (PAPCQR) coefficients

The effects of a fixed pre-emphasis on Burg’s (PARCORCoefficients 

are first illustrated by two examples and then the clustering properties 

of the coefficients are studied statistically.

Two utterances (Digit-6) spoken by a male and a female speaker 

were analysed. The reason for analysing the digit six is that it contains 

both voiced and unvoiced regions.

Figure 6,2 shows the variations of Burg’s (PARCOR)coefficients 

(k2 to k|2) over the whole utterance for the female speaker. Frames 1 to 

8 and frames 19 to 33 are unvoiced regions, while frames 9 to 18 are the 

voiced region. The values of the coefficients k-j to kg in the voiced 

region, when pre-emphasis is applied, change more radically compared to k| 

to kg when pre-emphasis is not applied. For the coefficients k^ to k^2 pre

emphasis causes little change (Figure 6.2),

The maximum energy of the utterance occurs at frame 11, It is 

evident that the coefficients corresponding to the maximum energy frame 

and adjacent frames change very markedly when pre-emphasis is applied.

It can also be seen that the PARCOR coefficients in the unvoiced 

regions undergo only small changes in the coefficient values when pre

emphasis is applied.

Figure 6,3 shows the PARCOR coefficient variations of k-j, kg, 

kg, kg and k12 with and without pre-emphasis for a male speaker. The 

voiced region in this case is from frames 14 to 25 and the maximum energy 

frame is 16. The values of coefficients k1 to kg in the voiced region
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Fiyure 6.3 An

- voiced region

- unvoiced
region

coefficients for the word 'six'
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change, considerably when pre-emphasis Is applied. That is, compared with 

the female speaker, two additional coefficients (ky and kQ) are affected 

by pre-emphasis, in this case the maximum energy frame and the adjacent 

frames alsq undergo large changes in coefficient values (Figure 6.3).

The effects of pre-emphasis on Burg's (PARC0P& coefficients were 

studied statistically in the following manner:-

A male speaker gave ten repetitions of the word ‘six’. The 

recordings were done oyer a period of one month. The maximum energy frame 

was located for all ten repetitions and Burg's (PARCOR) coefficients k-| to 

k-j2 were extracted from these frames, both with and without pre-emphasis.

The following statistical properties of each coefficient were computed across 

all ten maximum energy frames.

.th(a) The mean of the i coefficient: This is given by,

N

j:

where i = 1 , 2 , 3  —  p (=12), N is the number of maximum energy frames

1 N
= 1  l kii

1 N j=l
6.3

and k.. is the î *1 Burg's (PARCOR) coefficient of the jul frame.
' J

*th(b) The variance of the l coefficient: This is given by,

N

.th

O? -  — I  ( k . j  -  V
’ N j=l 10 '

where i = 1, 2, - - - p.

6.4

J .L

(c) The range of the 1 coefficient: This is given by,

= max (k|j) - min (k^) 

where i = 1, 2, —  - p, j = 1, 2, r—  N,

6.5

Equation 6,3 was evaluated both with and without pre-emphasis 

and the results are shown in Figure 6,4a, It can be seen that the mean of
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Range

Standard deviation (STD)

with pre-emphasis 

without pre-emphasis

Figure 6.4 Mean value, standard deviation and the range of the Burg's 
(PARCOR)coefficients with and without pre-emphasis (the 
analysis was done for the maximum energy frame of the 

____________ utterance 'six' spoken by a male speaker)._________________
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the coefficients k-j, k^, kg, kg and ky changes more than the mean of the 

other coefficients when pre-emphasis is applied. The mean value of the 

first coefficient (k-j) is close to 1 when pre-emphasis is not applied, 

thus making linear quantization of this coefficient impossible as explained 

in section 2.5.6, When the speech samples were pre-emphasised the mean 

of this coefficient changed from 0.76 to -0,02,

The effects on the coefficients can be further studied by 

evaluating equations 6,4 and 6,5. A reduction in the standard deviation 

(a^) or in the range (r^) would indicate a corresponding reduction in 

coefficient variability or a tight coefficient cluster. Figure 6,4b shows 

the standard deviation of each coefficient obtained for the male speaker 

and it is evident that the pre-emphasis has caused a reduced standard 

deviation for most of the coefficients. This implies a tighter coefficient 

cluster in 12-D space for the ten frames considered in this analysis.

This result again shows that pre-emphasis is necessary if only small 

intraspeaker variations in the coefficients are desired.

Figure 6.4c is a plot of the range (_r̂ .) of each coefficient, 

with and without pre-emphasis. Coefficients ky and kg have the largest 

range without pre-emphasis. This shows that these two coefficients have 

high intraspeaker variations, however, when pre-emphasis was applied to 

the speech samples the ranges of these coefficients were reduced. Eight 

of the coefficients underwent a reduction in range with pre-emphasis, 

while four had a range increase. In general the application of pre-emphasis 

contributed to a reduction in variability of the Burg's(PARCOR)coefficients, 

These results are summarized in Table A4,5 (see appendix 4).

From the results it is evident that fixed pre-emphasis (y=0.95) 

improves the clustering properties of the Burg's(PARCOR)coefficients and 

therefore fixed pre-emphasis is used in the remainder of this chapter.
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6J.,2 Linear time warping and the creation of reference templates

Singe ell the words used in this speech recognition system are 

monosyllabic (except the digit 7), linear time warping to obtain time 

synchronization is sufficient.

The Burg’s (PARC0R)coefficient contours are therefore linearly 

stretched or compressed to a standard length according to the linear time 

warping equation 5,3, In this analysis 12 coefficients per frame are 

extracted from the input word and all 12 coefficient contours are subjected 

individually to the linear time warping process. The other two feature 

vector contours g^ and p^ are also subjected to the same linear time 

warping (equation 5,3),

Since the digit recognition system is to be used for a single 

speaker (speaker dependent) the reference contours are obtained by the 

cluster analysis method explained in section 5,1.2.

6,1.3 Distance measure

After linear time warping is performed the next step is the 

choice of a pattern similarity measure which quantiatively shows the 

closeness of a reference contour to the unknown input word contours. The 

choice of similarity measure depends on the feature vector (Gray et al, 

1976). In this research the 'weighted city block' distance measure has 

been used successfully, The 'city block' measure of the similarity 

between an unknown contour and the reference contour is given by,

D(V  r1> = j, J, l?umn - VrJ ’ w 6'6

where w=l> P is the number of Burg’s PARCOR coefficient, N is the number 
Qf frames in the contour» u is the unknown contour, r is the reference 

contour» 9 is the linearly time warped contours kn» gn or Pn> i =1» 2, —  M 

and M is the number of the vocabulary word.
In order to reduce the probability of recognition errors due to
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poop endpoint detection this distance measure is used in the following 

manner (White and Neely, April 1976), The unknown input contour is 

shifted linearly five frames right and five frames left relative to the 

reference contours and D(u^, r^) given by equation 6.6 is calculated 

eleven times in total (i.e. j =1, 2 11). D(Ug, r..) is known as

the unshifted distance. The smallest value of D(u., r.) for j = 1, 2, —  11
J !

is assumed to be the result of the proper time alignment. That is,

D$(i) = min [DCu^r^), D(u2,r^), - - - DCu^.r^)] 6.7

where i (=1, 2, 3, —  M) is the i n vocabulary word.

This method of right and left shifting is not necessary if the

endpoints of the utterance can be located without errors and therefore

calculation of D(ug, r^) only is adequate.

The last step in Figure 6,1 is the decision rule which chooses

the reference contour most closely matched to the unknown input contour,

i.e. equation 6,7 is evaluated for each reference contour and the reference

contour which gives the Min [Dc(i)l is designated as the recognised word.
i=l to M

This decision rule is known as the nearest neighbour rule. The above 

explanation assumes that only one reference contour for each vocabulary 

is available, however, for multiple templates (reference contours) for 

each vocabulary, the same procedure holds.

6.2 Speech data collection

Speech data were collected from a designated male speaker using 

the experimental system described in Chapter 4. The recordings were made 

in a room where the expected SNR was greater than 30 dB and the input 

words wepe recorded on a high quality tape recorder using a high quality 

microphone,

A designated male speaker pronounced twelve repetitions of an 

11 word vocabulary (the digits 0 to 9 and the letter 'oh') over a two
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month period. These repetitions were made in twelve sessions, with at 

least two days between each session. In each recording session the speaker 

uttered all the elven words in the vocabulary in a random order, leaving 

sufficient pauses between words. At the end of the recording sessions 

132 utterances (12 repetitions x 11 words =132) were available for the 

evaluation of the digit recognition system performance. Of the 132 utterances, 

77 utterances (7 utterances per word) were used to form reference templates 

and the remaining 55 utterances served as. a test set.

Each of the 132 utterances were digitised and the automatic 

endpoint detection algorithm explained in Chapter 3 located the endpoints 

correctly without manual intervention, except in one case for the digit eight, 

where wrong endpoints were obtained. However, when the tape was replayed 

the endpoint algorithm located the endpoints correctly, The endpoint 

algorithm in all cases eliminated the plosive (t) which can appear when the 

digit eight is uttered. This is desirable because the plosive is not stable 

in each repetition, i.e., in some repetitions of the digit eight the plosive 

is absent, while in others it has a high amplitude.

6.3 Digit recognition system results

The speech data collected in section 6.2 were used to evaluate the 

performance of the digit recognition system. All 77 utterances (seven 

utterances per word) were clustered using the nonlinear mapping procedure 

explained in Chapter 5. Clustering analysis showed that in order to 

represent the intraspeaker variations for this particular speaker one 

reference template was sufficient. Therefore the reference templates 

(reference contours) were obtained by simply averaging the seven contours 

(i.e. PARCOR coefficient contour) for each word. At the end of this 

averaging process, a total of 11 templates were available (i.e. one 

template per word). The same procedure was adopted in obtaining the 

reference templates for the other two parameters, i.e. g.¡ and p.¡.
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Features

1 Pole analysis 

Ti

2 Pole analysis 

Ti

3 to 12 Pole 
analysis

Ti

ki
7 3 0

9i
12 5 0

Pi
11 5 0

TABLE 6.1

Features

1 Pole analysis 

T1 T2

2 Pole analysis 

T1 T2

3 to 12 Pole 
analysis

T1 T2

10 3 1 5 0 0

h 8 3 0 4 0 0

pi 7 1 0 2 0 0

TABLE 6,2

T-j - the number of errors made in recognising words.

T2 - the number of times the ratio between minimum distance and 

the next-tQ-minimum distance falls below value 1.1 and the 

recognised word was not in error.
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After obtaining these reference contours an experiment was 

conducted in the following piannerj-

(a) The 77 utterances which were used to create the reference 

contours, served as the test set against the eleven templates.

The reason for doing this test is to verify that the eleven 

reference contours obtained are well separated in N-dimensional 

space, If they are not well separated then these reference 

contours will not achieve good recognition rates.

(b) 55 utterances (5 utterances per word) which did not belong 

to the above mentioned 77 utterances were used as a test set 

against the 11 templates, This test will show how well the 

templates cater for intraspeaker variations and whether the 

selected feature vectors k^, g^ and p^ are suitable for word 

recognition.

Table 6,1 summarises the results obtained for the three feature 

vectors using the 77 utterances. This shows that more than two PARCOR 

coefficients must be compared with the template to achieve good 

recognition,

The recognition accuracy of the 2na part of the experiment using 

55 utterances is given in Table 6.2, The actual purpose of this 

experiment is to measure the recognition accuracy as a function of the 

number of Burg's PARCOR coefficient per word. Equation 6.6 (city block 

distance measure) was used in evaluating the recognition accuracy for 

all three parameters, In table 6.2 the quantity T.j (the number of errors 

made |n recognising words) is an absolute measure of the accuracy of the 

digit recognition system. The quantity T2 measures the number of times 

the ratio between the minimum distance and the next-to-minimum distance 

falls below the value 1,1 and the recognised word was not in error. This
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DIMENSION-1
Figure 6.5 Cluster analysis showing the reference templates of the male 
_______________________ speaker and the test digit________________________
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value is chosen because T  ̂ less than 1,1 provides insufficient 

discrimination between words for reliable recongition, Increasing 

this threshold gives a more stringent test of the recognition system.

As shown in Table 6,2 when the 1st and 2nd PARCQR coefficients 

and their nonlinear transforms were used, the recognition results were 

poor as expected. However, when the number of PARCOR coefficients used 

was equal to or greater than three then there was no recognition errors.

This is also true for the other two parameters (g^ and p^). In this 

experiment the rejection ratio, which indicates the degree of separation 

between the lowest and the next lowest distance, usually lay between 

1.30 and 2.0.

6.3,1 An example of clustering analysis as used in digit recognition

Figure 6.5 shows the results of the nonlinear mapping technique 

applied to the eleven reference contours of the male speaker. It is evident 

that all the reference contours are well separated in the 12-D space. When 

these reference contours were mapped on to 2-D space, the stress value 

after 80 iterations was 0.0507, which is a good mapping value.

A test digit (eight) was taken from the 55 utterances and 

tested against these reference contours. The test digit was also mapped 

onto a 2-D space with the reference contours, and it can be seen that it 

is very close to the reference contour eight. Therefore, it was recognised 

as eight. The caluclated ratio between the minimum distance and the 

next-to-minimum distance was found to be 1.83 and the same ratio measured 

using figure 6.5, was 1.82 (the next contour or point close to the test 

digit is five). This example demonstrates that any unknown digit can be 

mapped onto a 2-D space and recognised visually. The same figure shows that 

for this particular speaker the digits one, nine and three are close to 

each other, compared to the other digits. When two or more points in 

the 2-D space are very close together, then multiple templates should be
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used,

This example reveals the usefulness of the nonlinear mapping 

technique in visualising the recognition process,

In conclusion it can be said that the Burg's PARCOR coefficients 

and thefr nonlinear transforms are good parameters for an automatic 

digit recognition system and that a simple city block distance measure 

is adequate.

The digit recognition program, written in Fortran, is given 

in Appendix A5.9.



CHAPTER 7

DISCUSSIONS AND SUGGESTIONS FOR FUTURE WORK

Several computationally efficient techniques for speech 

processing have been investigated in this research. Many pitch 

estimation algorithms are available in time and frequency domains, 

however, most of the time domain algorithms are entirely heuristic or 

computationally expensive. Frequency domain pitch estimation algorithms 

are not suitable for real time applications. Attention was focussed 

therefore on developing an efficient, fast and simple time domain 

algorithm for estimating the pitch period of voiced speech. In Chapter 

2 a time domain periodogram algorithm (TDPA) is presented along with a 

theoretical analysis.

Rabiner, et al (1976) compared several pitch estimation algorithms 

which operate in the time domain. According to Rabiner et al there are 

only three time domain algorithms which are very efficient, the fastest 

of which was developed by Miller (1975). The next fastest was developed 

by Gold and Rabiner (1969), and the third efficient algorithm is AMDF 

(Ross et al, 1974). The first two algorithms are called "feature 

extraction" algorithms and they are almost entirely heuristic. Furthermore 

the performance of these two algorithms with low signal to noise ratios 

is urrknown. For this reason the AMDF is the only algorithm which can be 

compared with the TDPA,

The performance of the TDPA is compared with the AMDF in Chapter 

4 and the results show that the TDPA is as accurate as the AMDF in 

estimating the pitch period, however, the MPA2 is approximately 30% faster 

than AMDF, whereas the PA2 is approximately 20% faster than AMDF. These
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runtime estimates were obtained using the Intel 8086 microprocessor 

instruction set which is not favourable to the TDPA, as the jump 

instruction is five times slower than the add instruction. Assuming 

implementation on a processor whose jump instruction is only three 

times slower than the add instruction, then the MPA2 will be 35% faster 

than AMDF. Another advantage of TDPA is that the memory required is 

reduced by 50% for the MPA2 compared to the AMDF.

It has been proved theoretically in Chapter 2 that TDPA provides 

as a by-product, a well behaved estimate of the signal intensity. In 

Chapter 4 this is verified by analysing a short time average magnitude 

contour, and the results show that both contours have the same shape, 

however, the oscillation amplitude contour is smoother than the average 

mangitude contour. This suggests that the oscillation amplitude can be 

used as the intensity parameter in any speaker verification system which 

uses pitch and intensity contours as the feature vectors. Because these 

two parameters can be extracted using a 16-bit microprocessor in integer 

arithmetic, a faster speaker verification system is possible. Further it 

is shown in Chapter 4 that the oscillation amplitude can be used as a 

gain control in a speech synthesiser.

Good performance has been obtained using TDPA with signal to noise 

ratios as low as 10 dB, This performance is more than sufficient for 

speech applications, TDPA has been shown to give good performance for 

male, female and child speakers,

In this research the TDPA used only a maximum of four rows, as 

the speech signal is not stationary over long periods, however, more than 

four rows are possible for periodic signals other than speech. Thus the 

TDPA is a general signal processing algorithm which can be used to estimate 

the hidden periodicity of any signal corrupted by noise.

TDPA has a well defined theory in the time domain and therefore 

any practical observations can be analysed theoretically.
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An efficient parameter to supplement pitch and intensity in 

speaker verification systems was proposed and the zee of differentiated 

speech was selected for this purpose. In Chapter 2 the potential of the 

zee of differentiated speech is shown by a discrete mathematical analysis.

The analysis shows that this parameter carries a lot of information about 

the composite formant structure and pitch period and that it can be used 

as a feature vector in a speaker verification system (SVS). The SVS 

implemented in Chapter 5 uses the three parameter contours pitch period, 

intensity and zee of differentiated speech. These parameter contours have 

been evaluated statistically to study their ability to discriminate between 

speakers. The evaluation based upon the F-ratio, shows that the pitch 

period is the best parameter to discriminate between speakers and that the 

zee of differentiated speech is the next best parameter. The intensity 

contour is the parameter which shows least discrimination between speakers.

The interesting result of this study is that the best discrimination 

between speakers for pitch period and zee of differentiated speech occur in 

different speech segments of the key phrase. Therefore the advantage of 

combining these two parameters for better speaker discrimination is evident. 

That is the F-ratio analysis clearly indicates that by combining the zee 

of differentiated speech and pitch period no information is duplicated as 

the highest F-ratio values occurred in different speech segments. The 

same observation is true for combining the zee of differentiated speech 

and intensity contours. However, the combination of the pitch period and 

the intensity will not give better discrimination for the small population used 

in this study, as the F-ratio values for the pitch period contours alone 

are very much greater than those for the intensity contour.

Based on this observation a speaker verification system was 

implemented for a true speaker who gave 47 utterances over two months 

with 93 imposter utterances. The results show that the verification score
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obtained using the combination of the zee of differentiated speech 

contour and the intensity contour is equal to the verification score 

obtained using the pitch period contour alone, These results are 

important because in practice the evaluation of the zee of differentiated 

speech and intensity contours requires much less computational effort 

than the evaluation of the pitch contour, When the pitch period contour 

was supplemented by the zee of differentiated speech a further improvement 

in the verification score was obtained. These important results should be 

verified with a very large population,

The next idea was to find an efficient parameter and a suitable 

distance measure in order to implement a digit recognition system, The 

parameter selected was Burg's Partial correlation coefficients and the 

similarity measure is the simple city block distance, In the last section 

of Chapter 2 the advantage of extracting Burg's Partial correlation 

coefficients over the auto-correlation and covariance methods of extracting 

PARCOR coefficients is shown. The potential of the PARCOR coefficients is 

shown by implementing a digit recognition system in Chapter 6, The results 

show that for the single speaker tested, (55 utterances, 5 utterances per 

digit recorded over two months) three or more Burg’s coefficients are 

sufficient to obtain 100 per cent recognition score using a simple city 

block distance measure. The computational effort necessary to evaluate 

the city block distance is very small.

Two nonlinear transforms of Burg's coefficients have also 

yielded 100 per cent recognition score when used as feature vectors.

Although this recognition system is speaker dependent, it can be 

used in a speaker independent manner, That is the templates could be 

replaced to obtain a speaker independent system,

The clustering properties of the Burg's coefficients under 

pre-emphasis have also been investigated, The limited results show that
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the clustering properties of the Burg's PARCOR coefficients k-j» k2, k5 

and k6 are not enhanced when pre-emphasis is applied, while the remaining 

eight coefficients are forced into tighter clusters by pre-emphasis.

This test was done only for the maximum energy frames in several repetitions 

of the test utterance 'six'.

In Chapter 5 an efficient method of creating reference templates 

to cater for intraspeaker variations is presented. This method uses a 

nonlinear mapping technique. When this method was used to create the 

templates for the speaker verification and the digit recognition systems, 

the verification/recognition score was improved, Results in Chapter 5 

show that for the speakers tested two templates were required to get an 

improved verification score. Thus the cluster analysis shows that one 

template is insufficient to cater for very short term intraspeaker 

variations.

Although this nonlinear mapping technique is suited for points 

in N dimensional space, it is also successfully used for contours in N-D 

space. It has been further shown that NLM technique is not only valid 

for Bug's PARCOR coefficients, but also applicable to pitch, intensity and 

zee of differentiated speech contours, provided these three parameter 

contours are segmented properly to represent them in N-D space. This is 

supported by the results obtained from the speaker verification system.

Further it was shown that in the case of digit recognition, non

linear mapping can be used not only for creating reference templates, but 

also in visualising the separation between the reference templates, and the 

separation between the reference templates and an unknown digit, in N-D 

space. It is shown that the nonlinear mapping is an efficient procedure 

for creating speaker dependent templates.

Finally in Chapter 3 a computationally efficient multiplication 

technique is presented. This is useful when IIR or FIR filters with fixed



- 129 -

coefficients must be implemented on a microprocessor in speech processing 

or in other applications: It is shoyw that the multiplication technique when 

implemented on the Intel 8086 microprocessor, can be used to perform 

multiplication faster than the machine multiply instruction, The 

technique uses an extension of Booth's algorithm, and the results show 

that the speed enhancement is obtained at the expense of memory space.

At this point there are two major easily identifiable areas of 
future work. It is suggested that the pitch period contour be further 

statistically investigated with a large number of speakers to determine 

the segment in which it shows maximum speaker discrimination,

In a practical SVS the pitch period could then be evaluated only 

for the selected segment of the utterance in which good speaker discrimination 

is given and the result combined with the results from the zee of 

differentiated speech and the intensity over the complete utterance. This 

would probably give good verification scores while saying on the computational 

effort involved in evaluating the pitch period over the complete utterance. 

This could make a real time speaker verification system using microprocessor 

controlled hardware or using two microprocessors possible,

In order to improve the verification score further, nonlinear 

time warping and some additional distance measures have to be used,

The second area for future investigation is to evaluate the 

minimum number of Burg's coefficients required for reliable recognition 

scores with many speakers, There is no spectral distortion due to 

windowing in extracting Burg's coefficients and therefore the author believes 

that digit recognition must be possible with few Burg's Partial correlation 

coefficients. Future research should involve a rigorous test with different 

utterances to study the clustering properties of Burg's coefficients 

under pre-emphasis, so that the coefficients which have poor clustering 

properties can be omitted in the final, recognition process,
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A1.1 Wave Propagation in Concatenated Lossless Tubes

The vocal tract can be represented as a concatenation of lossless 

tubes of N sections of equal length l as shown in Figure Al.l. The length
I. L

of the acoustic tube is L=NJL, If we consider the ktn tube with cross- 

sectional area, A^, the pressure, pk, and the volume velocity, vk, 

(Rabiner, 1978) in that tube have the form,

pk(x*t) = f  [vf + vr] <’>
k

uk(x,t) = vf - vr (2)

where vf = u£(t - x/C), vr = uĵ (t + x/C), x is the distance measured from 

the left-hand end of the k**1 tube (Figure Al.l) and u£( ) and ujj ) are
XL

positive-going and negative-going travelling waves in the k n tube and 

x * 0. The positive-going wave moves in the direction from the glottis 

to the lips and the negative-travel ling wave moves in the direction from 

the lips to the glottis. P- is the density of air and C is the velocity 

of sound in air.

The positive- and negative-travelling wave in each section can by 

related to each other by virtue of the fact that at the boundary between 

sections the YQlume velocity and pressure must be continuous- As a result 

at the boundary between sections some fraction of the positive-travelling 

wave gets transmitted through the next section and some fraction is 

reflected back as a negative travelling wave in each section. Consider 

the k n and (k+1) n tubes as depicted in Figure A1.2. Applying continuity 

conditions at the junction gives:-

pk(Ak* t) = P|c+l(0.t)
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Figure A1.3 Signal flow representation of the junction 

between the kth and (k+1)^1 tubes (t(c=t|<+i=t:)
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(t+Tk+l^

Figure A1.4 Flow graph representation of a junction in z domain



w t) = V i C 0^)

by substituting this continuity condition in equations 1 and 2

one obtains,

uk+i<t) = (1 + rk) uj(t - Tk) + rk Vift) (3)

V *  + Tk> = -rk uk(‘ • V  + <’ - rk> V i W (4)

where = SL̂ /c is the time for a wave to travel the length of the k 

tube and rk is given by,

th

Ak+1 ~ Ak 

Ak+1 + Ak
( 5 )

thThe quantity r^ is called the reflection coefficient for the k junction. 

Since the areas are all positive, -1 ^ r^ ^ 1, as the configuration of the 

vocal tract changes for different sounds, the cross-sectional area of 

each section, or equivalently the reflection coefficients r^, are modified, 

from equation 5 one obtains,

A,. 1 " rt

1 + r,
( 6 )

k+1 ' 'k

This shows that if the two sections and A ^  have identical areas

there is no reflection (rk = 0). The Equations 3 and 4 are depicted in

figure A1.3 using signal flow graph conventions. Each junction of the

Figure Al.l can be represented using figure Al,3. It is shown by Rabiner

(1978) that to represent the vocal tract by a discrete-time system the

speech waveform s(t) has to be sampled at every 2Tk sec (t^ = = t ).

Therefore an equivalent discrete-time system is possible if t is replaced

Ts -iby \ sample delay (t = — ). This is equal to z 2 in z domain. Figure
2

A1.4 shows the flow graph representing the relationship among z-transforms 

at a junction. The z-transform equations for this junction are;-

uk+l ( 2> - d+rk) z'* u£(z) f  rk uk+T<2) (7)



(8 )u^(z) = rk Z_1 uk(z) + (1“rk) z~^ uk+l(z) 

Solving for u£(z) and uĵ (z) we obtain,

r zJ -r, ẑ i rL

UJ(Z)
k

uk+i<z)
1+rk ,+rk

uk<z>

— -r z"* rkz zi
V i < z>

u\• m

Hk ” — k — k+1

By repeatedly applying equation 9, it is possible to relate the
XL

variables at the input to the iL tube to the variable at the output 

of the jth tube. That is

-1 = ’ ii+l — i+2 • • -£j> “j+1

U. = IT  P. • U .-i k=, -k -o+l ( 1 0 )

Equation 10 reveals that if the boundary conditions at the ’lips' and 

'glottis' are known, then it is possible to find out the overall transfer

function of the lossless tube v(z) = (-
ugv*-

coefficients at the functions (Rabiner 1978)

■V z>.
Uo(z)

-) in terms of reflection

Boundary Conditions

It is known that velocity and pressure are analogous to current
c f

and voltage respectively, Assume the glottal end is the 1 tube and the
XL

lips end is the Ntn tube. The lips are assumed to be connected to another 

section with an infinite area. Therefore from the equations 1 and 5 one 

obtains the following,

PN+l(x,t)

also

0 as An+1 + -

rN + 1 as ^ ■* 00.
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Figure A1.5 Termination at the lip end of the

vocal tract

Figure Al.b Termination at the glottal end 

of the vocal tract
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It is assumed that the (N+l) n tube is infinitely long so that there
j. h

is no negative-going wave in the (N+l) tube, In substituting this 

boundary condition for lips in equations(3) and (4) we get,

V i ( t )  = (l+rN) uj (t-x) (11)

ujj(t+x) = -rN uj (t-x) (12)

The equations 11 and 12 are depicted in Figure A1.5. Rabiner (1978) 

takes a general case and obtains the following equations for the glottal 

end.

, 1 + r
u{(.t) = ----- a ug(t) + rg u"(t) (13)

2 pC
zg “ n

where rg is the glottal reflection coefficient = ______ _1_

zQ + &

9 A11 stwhere zg is the glottal source impedance; A-j is the area of the 1 

tube at the glottal end. The equation 13 is depicted in Figure A1.6.

Transfer function of the Lossless tube model in terms of reflection 

Coefficients

In order to complete the overall model, express the boundary 

conditions at the glottis and lips ends in terms of the z transform. 

From equation 13 we obtain,

[ 2 -2ra" r +/ \*T
U](Z)

.1+r9 1+r9.

(14)

To find v(z) in a convenient form, it is helpful to represent the 

boundary condition at the lips in the same manner as all the junctions
1L

in the tube and assume (N+l)tn tube is infinitely long so that there is 

no negative-going wave in the (N+l)^ tube. Therefore



':v

uî+i(z) = M z)

UN+1(Z) = 0

mN+1 (z)l

> l ( z)

1

0

V z) (15)

By substituting equations 14 and 15 in equation IQ, one obtains the 

transfer function v(z) in terms of reflection coefficients.

-2r 1 A

ug(z) '

2

1+r
L g

______a

U r 9.
•El -Î2

. . . .  ^ . 1

0

For example let N=2, then,

1

V(z)

V z)

V z)

2

U r 9

*» "rlz^ 1
Hr, Hr, l+r2

-rlz* zi 0
1+r^ Hr,

«d

V(Z)
0.5(Urg) ( 1 +r-j) (l+r2 ) z’1

1+(rl r2 + rl rg) Z_1 + r2 rg

(16)

This is the transfer function of the vocal tract and it has no zeros 

and only poles. The denominator is a polynominal, D(z), of the order 

of N, i.e.

where N is the number of the tube
N ^

D(z) 1 + ^  aj z and coefficients.

As a special case, if rg = 1 (i.e. zg = °°) then, a^ = r^. Thus the
XL

lvn order filter coefficients is equal to the reflection coefficient at
x L

the Ntn junction of the tube.



A1.2 The Original Version of the Perjodogram Algorithm

The original periodogram algorithm can be described as 

follows: By using the Buys-Ballot table (Table 2.1) one can form 

means a(l), a(2), - - - a(N) of the values of c(n) in the individual 

columns by dividing c(n) by m. That is, a(n) = c(n)/m. Then the 

correlation ratio n is defined as the ratio of the standard deviation 

of a(n) and s(n). That is,

n(N) «
■ n : 
- 1 (a(n) - a) / ” i mN o 

—  I (s(n) - sy
N n=l• «J/ mN n=l

( 1 )

Where a and s are the means of a(n) and s(n) respectively, The number

of rows (m) are obtained from the total number of samples (T) by 

Tm =
N

. The value of n(N) is calculated in this way for a
l ” j integer

large number of values of N and the results plotted as a curve in which

N is the abscissa and the corresponding value of n(N) is the ordinate. 

This curve will be called a periodogram. It is easy to see why the 

ratio of the standard deviation of a(n)'s to the standard deviation of 

the s(n)'s is a suitable indicator of periodicity. When a periodocity of 

period N exists, the standard deviation of the a(n)'s has a value much 

larger than when a periodicity of this period does not exist in the 

periodogram.

PerlQdQgratn for a Digital Sinusoid

Let us assume that the digital sinusoid is corrupted by noise, 

and we can write:-

u(n) = A sin (n 6) + p(n)

Denote by ap the standard deviation of the p(n)'s and by a the standard

deviation of the s(n)'s. Since the standard deviation of sin (n 0) is

~  and there is no correlation between p(n) and A sin (n 0) we have

2 , „ 2 . 2



)Uo

If m rows are considered in the Buys-Ballot table, than the standard 

deviation of the c(n)'s is,

sin2 m —

B = -  A2 --------- + m  2
2 , 2 N6 psin —

2
The standard deviation of the mean a(n)'s will be:-

Y = —
™2

2 2 2Therefore the correlation ratio n(N) = y/a = 3/m Q

n(N) =
m

sin2 m M

_____L + l a 2
m Psin2 N8

U  A2 + <ip2)

This is the equation of the periodogram of a digital sinusoid 

corrupted by noise.

One can see that the calculation of n(N) (equation 1) is 

computationally inefficient, though this periodogram gives accurate 

pitch estimate and also good noise reduction. An alternate form of 

equation 1 is,

N
1  l

*
\  mN
—  1 |s(n) - s|la(n) - a| /

N n=l * mN n=lW 4

Replacing the multiplication of equation (1) with the modulus function 

is acceptable and causes a large reduction in computational effort.

AI ,3 Theory of1 "Real Zeros" and "Complex Zeros"

Bond and Cahn (1958) and Voelcker (1966) explain in detail the 

concepts of zeros (including real and complex zeros) to a band limited 

signal. Let us briefly explain this concept considering an example. 

Consider a real signal of a single frequency wave combined with a dc



Figure AT.6c First order zeros merge into second order real zeros (A=B)

Figure A1.6d Complex-conjugate zeros (A>B)



bias voltage,

s(t) = A - B cqs wt A, B > 0

= A - -  [exp(jwt) + exp(-jwt)] 1
2

Case I

When A=0 (j,e, no etc component available), then $(t) has roots
o  L

at t = —  , —  , —  , - —  - -  and it crosses the real time axis t at 
2w 2w 2w

these points. If this occurs then we say the "real zeros" of s(t) occur 

at regular intervals. The real zero locations are shown in Figure A1.6a.

Case II

When A < B one can see that the zeros of $(t) will start to

converge in pairs as shown in Figure A1.6b and when A=B then s(t)
2tt 4tt

vanishes at points t=Q, —  , —  as shown in Figure A1.6c. The zeros
w w

are still called real zeros as they cross the real time axis.

Case III

When A > B then s(t) will never vanish and the signal has no 

real roots as can be seen in Figure Al.od, However, if t is generalised 

to a complex argument T = t + ju (T is a complex variable whose real axis 

coincides with the real time axis) then we can introduce the concept of 

"complex zeros". To find complex zeros replace t with T = t + ju in the 

equation 1.

s(T) = A - B/2 [ejwT ♦ e-J“T]

Assume y = eJwT and on substituting this in s(T) we get;- 

s(y) = A - B

The roots of this equation are obtained when s(y) = 0, i.e. 

y2 - ̂  y + 1 = 0 - y = ejw<t+Ju> . 1  (At ¿ ¡ T T ? )

1 B̂ y2 ' —  y + lly - -
. yJ 2y B



Taking logarithms of both sides we get,

t + ju = ^  i  ¡in (- (A ± /A* 2 - B2 )) 
w w B

1
w

2-nn ± j cosh-1 when A > B

The location of the complex zeros is given by the above equation. From 

Figure A1.6d it is clear that a larger dc bias signal will move the 

complex zeros further from the real time axis. The complex zeros are 

symmetrical about the real time axis. The minima of s(t) (Figure A1.6d) 

provides the clue regarding the location of the complex zeros. When 

negative dc bias is present then the maxima of s(t) provide the clue 

regarding the location of the complex zeros. However if |s(t)| is 

considered then the complex zeros are always related to the number of 

minima of the waveform. The complex zeros can be converted to real zeros 

by a single differentiation. The differentiation eliminates the dc bias 

and the differentiated waveform has a zero mean. In general a band 

limited signal has "real zeros" as well as "complex zeros" and this 

applies to speech waveform too. It is clear also that the complex zeros 

are a subset of the zero-crossing counts of the differentiated speech 

waveform.

A1.4 Parallel Form Representation of the Vocal Tract

Let us consider the following transfer function of the vocal

tract.

-1 - 2 -1 
1+b-jZ +b2z 1+c^z +c2z

4__________ z____________

2 2 (z +b1z+b2) (z +c1z+c2)
H(z)



Figure Al .8 Parallel form representation of the vocal tract



I US'

Let H-, ( z ) =
A-, z+B-, A2z+B2

(zSb-|Z+b2) (z +c-|Z+c2) z +b,z+b2 z +c-|Z+c2

. . z3 = (A-jZ+B,) (z2+c,z+c2) + (A^+B2) (z^+b-jZ+b2)

3 2 1 0Equating the coefficients of z , z , z , z on both sides and then 

solving the equations obtained, we get,

c2 “bp
A, = —  and B, = —

p, Pi

where P, = (c-j-b, ) +
(c2-b2)‘

(b2ci“bic2)

C1 (^ic2"^2cl  ̂ ~ c2̂ c2*"̂ 2̂ J /  P2
3 /

= [b2(c2"b2) - b,(b,c2-b2c,)

where p2 = ( b ^ - b ^ , )  (c-,-b1 ) - (c2-b2)‘

Therefore H(z) = S______ , Bl2
-1

-1  - 2  -1  - 2  l+b,z +b2z c l+b,z +b2z

t
X1_______, B2Z

-1

X1(z) X2(z)

l-tc^'^cgz'2 l ^ z ’^ g z - 2

' I t
X3(z) X4(z)

The above form suggests a parallel form implementation and it is depicted 

in Figure A1.8, The impulse response is given as,

h(n) = x,(n) + x2(n) + x3(n) + x4(n)



A1.5 Recursive Solution for the Autocorrelation Equations

Equation 2.24 can be solved recursively to obtain a-j, a£,

a? - - - a . The solution is given by, 
o P

e (°) = R(0)

i
i-l

R(1) ' .1 
0=1

(1> = c.
i l

W  - ^  - k.
j J 1

(i) = (1-k.) E(i‘

,0 -1) R(i-j) -i-l

, 0 - D

1 « i £ p

1 3 j < i-l

aj = aj
(p) U o i p

where p - number of poles.
¿ L

The recursion allows the prediction of the i order filter
i . L

coefficients from the (i-l) n order filter coefficients in such a way 

as to minimise the short-time average prediction error (E). aj^ is 

the j*"*1 predictor coefficient for a predictor order i where is the 

PARCOR coefficient for a predictor order i.

A1.6 Derivation of the relationship between forward prediction error 

and PARCOR Coefficients
1 L

For an iin order filter the forward and backward prediction 

errors can be written as:-

ej(n) = s(n) - ^  ajl} s(n-j) 1

ej(n) = s(n-i) - J a ^  s(n+j-i)
j=l J

2



Considering only equation 1 and rewriting it in the following form:

ef(n) = s(n) - l ai1) s(n-j) - a W  s(n-i) 3
r j=l J 1

where a|^ =

On substituting equation 1 in the above equation 3, the following 

equation is obtained:-

eI(n) = s(n) - l ai1-1) s(n-g) + k, l a s(n-j) - kfs(n-i) 
’ j=l d j=l 1 J

V J

On the above equation first replace j by j'+i and then replace j 1 by 

-j. Hence:

el(n) = ei1_1)(n) + kt \ aj1-1  ̂ s(n+j-i) - k. s(n-i) 
f J=1 J T

= e|1-1)(n) - k. s(n
i-1

■i} -i, a3=1 J
(i-1) s(n+j-i)

— y —

,(i-l) (n-1)

Therefore,

ej(n) = ef 'U fn ) - e^1_l)(n-1) 4

similarly, ej(n) = e 1̂_1 ̂ (n) - k̂  e^"')(n-l) 5

Equations 4 and 5 define the forward and backward prediction error
XL

sequences for an i n order predictor in terms of the corresponding
t h th

prediction errors of an (i-1) order predictor and l n PARCOR coefficient.
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A2.2 A simplified computational algorithm for implementing FIR

digital filters

I;n considering the implementation of FIR digital filter it 

is useful to represent the filter by the block diagram shown in 

Figure A2.2.

The output of the filter y(n) is given by,

y(n) = bgS(n) + b-|S(n-l) + b2s(n-2) + ---- + b^ s(n-N)

N
i.e. y(n) = 7 b,, s(n-k) where N is the number of filter coefficients.

k=Q K

An efficient procedure of solving the above filter equation is given 

below:-

(a) Each new input speech sample is stored in two locations, displaced 

by N samples in the array (Figure A2.3).

(b) Maintain the index pointers to show where s(n) is to be stored in 

the array.

(c) For each new input speech sample the pointer location is indexed by 

one location, and must be checked to ensure that it remains within 

the bounds of the array.

The figure A2.3 shows the pointer locations, direction of movement of 

the points, and the array length for n n and (n+l)tn samples.



microprocessor

A2.3 A computationally efficient multiplication technique for a 16-bit

The usual form of Booths' algorithm can be described as follows. 

If x (the multiplier) is represented by a k-bit binary number in 2's 

complement notation, the decimal value of x is given by:-

9k-l ^ kr2 9i
x10 " "2 xk-l .\Q 2 xi

On multiplying equation 1 by 2 and then 

one obtains:-

( 1 )

subtracting equation 1 from it,

x10 ’ ("2 xk-l + 2 xk-2 + 2 xk-l* + 2 (xk-3 ' xk-2*

+ 2k'3(xk_4 - xk_3) + — - + 21(x„ - x,) + 2°(x_, - xQ)

k-2
i.e. x1Q = (xk_2 - xk-1) 2k_1 + j  21 (x.^ - x.) (2)

when x_^ = 0, equation 2 is known as Booth's algorithm for grouping 

2 bits.
Consider now the case when the multiplier is a 12-bit number 

(k=12). By grouping 5-bits together and manipulating equation 2, x-jq 

could be re-written as:-

x10 = ("8xk-1 + 4xk-2 + 2xk-3 + xk-4 + xk-5^ 2

+ (-8V 5 } + 4xk-6 + 2xk-7 + xk-8 + xk-9} ^  ^

+ ("8xk-9 + 4xk-10 + 2xk-ll + xk-12 + xk-13^ 2°

v10 = P3 28 + P2 24 + P] 2° (3)



where k = 12, and

w  m

P3 X11 X10 X9 X8 X7

P2 x7 X6 X5 X4 X3

1
-o

1__
__

x3 X2 X1 X0 X-1

4

2

1

1

-8

Equation 3 is called the extension of Booths' algorithm (e.b.a.). If all 

the possibilities are considered then Pg and can take any of the values 

±8, ±4, ±2, ±1, 0, ±7, ±6, ±5, ±3. P̂  takes all the values except +8 since

x_-j is always zero.

To implement the above algorithm on a 16-bit microprocessor, the 

multiplicand must be restricted to 12 bits or less. The multiplier can be 

either 16, 12, 8 or 4 bits, but in this case 12-bit multipliers are 

considered.

Let y-|Q be the multiplicand and the multiplier x-jg will be 

represented by equation 3. If z = y-jg x^g, then using equation 3, z 

could be written as:-

z = (p^ t q ) 28 + (P2y,o> 24 + C V i o >  2° (4)

Equation 4 will be used to perform multiplication on the microprocessor. 

The following steps are executed to obtain the result z:-

Step 1: Perform ( o) anc* 9lve ar->thmetic shift 4 bits to the right

Step 2: Perform anc* add ^  to the reSL>lt obtained in step 1,

then again perform an arithmetic shift 4 bits to the right.

Step 3: Perform ( ^ - iq) and add it to the result obtained in step 2, 

again perform an arithmetic shift 3 bits to the right.

The result z will be a (2x12-1) 23-bit number. If P̂ » ?2 or Pg take 

any values ±8, ±4, ±2, ±1, 0 then calculation of (P]y-|o^’ (P2yl(P and



12-bit coefficient 
in 2's complement

Type of 
coefficient

Required 
number of 

clock 
cycl es 
(e,b,a.)

Required 
number of 

clock 
cycles 
(m.m.i.)

0 0 0 0 0 0 1 0 0 1 0 0 Positive 87 146

0 1 0 1 0 1 0 1 0 1 0 1 Positive 89 146

1 0 0 0 0 0 0 1 0 0 1 0 Negative 91 146

1 1 0 0 1 1 0 0 1 1 0 0 Negative 90 146

1 1 1 1 0 0 0 1 0 1 0 1 Negative 92 146

1 1 0 1 0 1 0 0 1 0 0 1 Negative 99 146

1 0 0 0 1 0 1 0 1 0 1 0 Negative 103 146

0 0 0 1 0 0 0 1 0 0 0 1 Positive 82 146

Table 1



(P3y i q ) could be done efficiently with only arithmetic shifts.

This algorithm was implemented on a 16-bit microprocessor 

(Intel 3086), and Table 1 gives the comparison between the extension 

of Booth's algorithm (e.b.a.) and the machine multiply instruction 

(m.m.i.). This comparison shows that the e.b.a. can take significantly 

less machine time.



Figure A2,4 Median smoothing and linear smoothing

of an artificially created input sequence



A2.4 Example of median smoothing of a sequence with sharp and long

duration discontinues

3 Point Median

Consider, three at a time, 17 input data values of y(n) as 

shown in Figure A2.4, Arrange each set of three in order of magnitude 

and take their median. The median of y(n-l), y(n), y(n+l) is y(n) 

provided y(n-l) S y(n) ^ y(n+l)

or y(n-l) S y(n) y(n+l)

For the first and last data points there is an end-value problem. 

In this analysis the end-values y(0) and y(18) were replaced by y(l) and 

y (17) respectively. The artificially created input sequence y(n) is given 

by,

| 4, 4, 2, 4, 4, 4, 1, 1, 1, 1, 4, 4, 3, 4, 1, 4, 4 ! 4

y(0) y( 8 )

The input and output waveform of the three point median is shown in 

Figure A2.4, and the output sequence is given by w(n):-

4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 4, 4, 4, 3, 4, 4, 4

If w(n) is further smoothed by passing it through yet another three point 

median then the result will be a rectangular pulse.

Linear Filter

Consider a Hanning Filter with impulse response

h(n) = | n = 0

= \ n = 1

= i n = 2



The output of the linear filter, f(n), as shown in Figure A2.4, is 

4, 4, 3.5, 3, 3.5, 4, 3.25, 1.75, 1, 1, 1.75, 3.25, 3.75, 3.5, 3, 2.5, 

3.25.

From this demonstrative example, it is clear that a linear filter 

smears the input sequence, whereas the three point median preserves 

sharp and long discontinuity.



APPENDIX 3

A3.1 Description of the minicomputer interface

A3.2 8-bit compressed PCM (A-Law) to linear PCM (2's complement 

number) conversion table.



Figure 
A3.1 

Circuit Diagram



A3.1 Description of the minicomputer interface

The 16-bit minicomputer (LSI-11) is interfaced via an interface 

module (DRV11-P) to the external world in order to read the digitised 

speech. This module is supplied with the logic necessary for interfacing 

to the minicomputer bus. The logic provides 16 bi-directional data 

lines with associated control signals for data input and output. The 

hardware which is interfaced to this module consists of the following:-

(a) Coder - The purpose Qf the coder is to convert band limited

analogue signals to standard companded PCM.

(b) D/A Converter - This is interfaced to the data bus and to

an oscilloscope.

(c) Relay - This 1s used to control the tape recorder.

(d) Latches, buffers and control gates - These are used to buffer

data lines and to latch 

control and data signals.

(e) Amplifiers and lowpass filters - The lowpass filters limit the

frequency band of speech and 

amplifiers are used to adjust 

i ts 1evel.

The coder (ZNPCM1) converts the band limited speech signals into 

8-bit compressed PCM samples by delta sigma modulation (DSM) as an inter

mediate code. The compressed PCM (A-law) is clocked out serially at the 

rate of 64 kHz. The coder timing waveforms (2048 kHz, 64 kHz, 8 kHz, ETV) 

are generated by a separate clock circuit connected to the coder as shown 

in Figure A3.1. For further details of the timing waveforms refer 

Ferranti application report on ZNPCM1.



Hob

Figure A3.2 Photograph showing the interface module and the 
hardware connected to the computer interface



The serial output of the coder is connected to a shift 

register (74164) clocked at 64 kHz, Data on the parallel shift register 

outputs is clocked into a 8-bit latch every 8 kHz. In this way the 

single bit 64 kHz code Is converted to a 8-bit 8 kHz format for input 

to the computer. The 8 kHz clock also triggers a monostable which 

provides the 'data ready' signal to the computer, On receiving this 

signal the computer reads the output of the latch and stores the speech 

sample in memory (8 bit compressed PCM), A delay is incorporated into 

the speech input software routine for synchronization,

The 16 output data lines are connected to latches, the most 

significant 12 latch outputs being connected to a D/A while the least 

significant 4 outputs are used as follows:-

(a) 2° bit This bit is used to contrQl a tape recorder via a 

transistor and relay as shown in Figure A3.1.

(b) 2̂  bit - This bit is used to light the bulb. That is to

inform the user that the tape recorder is turned on 

and background noise samples are being stored by the 

computer.

(c) 2 bit - This bit is used to light another bulb (Figure A3.1) 

as soon as the user presses switch 1 informing the 

computer that speech utterance is ready for reading 

in the speech samples.

3
(d) 2 bit - This bit is used for two purposes

(a) To send external trigger signal to oscilloscope 

when the results of the analysis are displayed 

on the oscilloscope.

(b) To check the switch 1 position (0n/0ff).
Figure A3.2 shows the interface module and the hardware connected to

the computer interface.



A3.2 8-bit CQmpressed PCM (A-Law) to Linear PCM

(21s complement number) conversion table

Let ‘A-Law1 Input Be:-

Sgn s3 s2 S1 *4 *3 l2 *1

t I i
Sign Segment Code Interval within segment 

Then output given by:-
msb Isb

Sgn S3 S2 S1
/

a13 a12 au aio a9 a8 a7 a6 a5 a4 a3 a2
/

al

1 0 0 0 0 0 0 0 0 0 0 0 >4 >2 h 1

1 0 0 1 0 0 0 0 0 0 0 1
‘4 '3 h ■i 1

1 0 1 0 0 0 0 0 0 0 1 u >3 >2 h 1 0

1 0 1 1 0 0 0 0 0 1 !4 h '2 h 1 0 0

1 1 0 0 0 0 0 0 1 ‘4 >3 l2 h 1 0 0 0

1 1 0 1 0 0 0 1 >4 ‘3 h h 1 0 0 0 0

1 1 1 0 0 0 1 *4 >3 *2 1 0 0 0 0 0

1 1 1 1 0 1 >4 *3 >2 ‘l 1 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 u h h h 1

0 0 0 1 1 1 1 1 1 1 1 0 u h l2 h 1

0 0 1 0 1 1 1 1 1 1 0 u ‘3 h 1 0

0 0 1 1 1 1 1 1 1 0 h *2 h 1 0 0
0 1 0 0 1 1 1 1 0 *4 !3 h 1 0 0 0

0 1 0 1 1 1 1 0 u *3 h h 1 0 0 0 0

0 1 1 0 1 1 0 u h h h 1 0 0 0 0 0

0 1 1 1 1 0 h >3 h h 1 0 0 0 Q 0 0
k---------------------------------------------------- __j

s
13 bit Two's complement 0/P



APPENDIX 4

A4.1 Equations relating to the 1st and 2nd partial derivative 

of the error surface E to y..
J J

A4.2 Selection of the initial configuration in 2-D space

A4.3 Table showing the intrasegment variances for speaker 1 

and speaker 2

A4.4 Table showing the results of the F-ratio analysis

A4.5 Table showing the effect of pre-emphasis on the Burg’s

PARCOR coefficients



/

C  +■  w J
A4.1 Equations relating to the 1st and 2no partial derivative of the 

error surface E to y-jj

i,L  J_ L_

The distance between l n vector and j n vector is given

by:-

d1j (y^k-yjk)

From equation 5.7, E is given by:'

E _ 1  y ( V V 2

c ^  d*.

N *
where c = l (d..) is a constant.

I J
i<J

c t
The 1 partial derivative can be found by differentiating equation

2 with respect tq y ^ ,

3E = 1_ y 9 (dik“dik) _ -2
3d.

c ^  3yij dik

v 1 A \ 1k
l. —  (dik‘dik^

c k=l dik
3y. .
^lj

-2 N 
- -  l

c k=l

' * * 
d..-d., 
ik ik

d* d., ik ik
< * u - V

3.

n/H
Similarly the 2na partial derivative can be obtained and it is given by

9E
l

3yij c k=1 dik dik

* v (y ii"yki)2 dik”dikx
(dik“dik) -----J ■ (1 + — . - ■ )

dik
d.Ik J

4,



A4.2 Selection of the initial configuration in 2-D space

Sammon suggests that the Initial configuration can be found by 

projecting the L-dimensional vectors orthogonally on to 2-dimensional 

space, spanned by the 2 original co-ordinates with the largest variances. 

This is done in the case of PARCOR contours in the following way.

Let there be N contours in L-D space where each contour has 

fifty frames and each frame has L PARCOR coefficients (k), The variances 

(V) in L-D space is given by,

1
2 4. k2 X _______ -1_ k2
11 i k21 T ^ T

kNl
2

X k2 X _ _ _ X i/2
KN2
11

12
11

i k22
i
i

T “ T

t11
2

X

1
k2 X _L

11
k2
knl1L

T

k2L
T +

where

2 - k2 i I'2 i -  + k211 " kl(Fl) kl(F2) 1 kl.(F50)

2 - k2 2 (FI)
111

i k2 i , |/2
21
111

1 K2fp2) 1 + k2(F50)
111

111
2

111
= k2 ' kN(Fl)

....... + i/2 '
N1 + kN(F50)

Fi is the 1th frame (i.e. FI is the 1st frame, F5Q is the 5 0 ^  frame). 

Now V-| to VL are arranged in decending order and two highest variances 

are selected. For example, if V2 and Vg are the two highest variances, 

then the initial configuration will be,



'b?

V —
V 1 k2 ( F l )  + k2 ( f 2 )  + + k 2 ( F 5 0 )

y l
1
1
111

* 1 2 50
|_k3 ( F l ) +  k3 ( F 2 )  + , + k3 ( F 5 0 ) J

111
11
1
11
1 y Nl 1

1
11

k 2 ( F l )  +  ...........................................................

y N =
*N2,

50

------------1
1111111111111111111111f1111+lZCO

1

•*- Contour 
1

«- Contour 
N

A similar procedure is applied in selecting the initial configuration 

for the other parameter contours.



A4.3 Intrasegment Variance

Speaker 1 Speaker 2

Segment
Number Variance (PC) Variance CUC) Variance (ZDC)

Segment
Number Variance (PC) Variance (IC) Variance (ZDC)

1 5.74 272.16 12.17 1 5,22 42.06 27.92
2 11.01 119.96 9.43 2 5.73 20.22 25.40
3 13.05 74.99 8,95 3 6.50 12.51 12.66
4 18.94 85.23 3.57 4 5.28 41.94 16.51
5 17.58 94.95 11.74 5 9.79 47.67 13.48
6 23.81 204,98 13.74 6 12.55 170.16 17.11
7 10.83 364.31 77.23 7 4.75 51.04 48.39
8 16.97 23.71 30.00 8 5.99 54.28 22.54
9 42.28 75.37 7.89 9 13.03 73.55 14.20
IQ 20.90 103.52 10.10 10 5.09 50.17 7.76
11 3.50 38.86 8.50 11 3.66 16.19 34.44
12 1.29 98.75 13.20 12 3.98 29.06 60.00
13 4.17 105.48 5.14 13 5.27 35.46 42.43
14 2.92 70.41 8.16 14 7.79 38.99 46.07
15 141.54 72.95 11.29 15 305.40 100.41 30.79
16 401.43 95.02 7.45 16 205.89 65.27 23.32
17 6.74 204.65 12.15 17 2.79 30.45 30.33
18 10.03 70.94 6.49 18 2.88 38.16 16.22
19 3.89 67.57 5.24 19 9.06 21.75 2.88

20 73.71 8.10 5.11 20 93.64 8.75 6.86

PC - Pitch Period Contour IC - Intensity Contour ZDC-zee of differentiated speech contour



A4,4 Results of the F-ratio analysis

Segment Number F-ratio (PC) F-ratio (IC) F-ratio (ZDC)

1 65.32 1.38 1.24

2 93.59 5.98 0.70

3 92.30 5.15 2.68

4. 86.94 16.36 1.62

5 103.19 25.52 13.38

6 86.94 5.34 4.33

7 100.06 9.77 2.29

8 69.24 1.77 9.06

9 34.43 10.47 2.22

10 69.24 14.06 0.15

11 212.86 5.33 11.16

12 297.28 3.34 14.59

13 217.72 0.99 12.27

14 133.76 1.56 14.72

15 22.57 2.92 33.63

16 1.42 0.29 27.61

17 15.12 2.52 45.53

18 35.24 5.83 47.74

19 67.33 1.58 58.03

20 3.37 0,67 19.23

PC - Pitch Period Contour IC - Intensity Contour

ZDC - zee of differentiated speech contour



Tria l K1 K2 K4 KS K 6 K7 K8 Kg K10 K11 K12

1 0.72 -0.07 0.28 -0.42 -0.41 -0.48 -0.45 0.37 0.11 -0.20 0.05 -0.09

2 0,79 -0.15 0,21 -0.40 -0,49 -0.43 -0.51 0.20 0,23 -0,17 0.04 -0.06

3 0.77 -0,08 0.28 -0,46 -0,41 -0.43 -0.39 0.33 0.15 -0.21 0.07 -0.13

4 0.60 0.05 0,36 -0.19 -0.35 -0.45 -0.50 -0.20 0.56 0.01 0.05 -0.01

5 0.79 -0.07 0,17 -0.38 -0.38 -0,36 -0.43 0.43 0.39 -0.23 0.04 -0.06

6 0.90 -0.29 0.01 -0.36 -0.46 -0.29 0.23 0.18 0.15 0.04 0.19 0.02

7 0,80 - o . u 0,21 -0,48 -0,45 -0.39 -0,32 0.27 0,41 -0.21 0.12 -0.08

8 0,81 -0,09 0.12 -0.44 -0.45 -0.36 -0,47 0.39 0.44 -0.19 0.10 -0.09

9 0.76 -0.07 0.23 -0,30 -0.46 -0.32 -0.49 0.37 0.47 -0.15 -0.02 -0.03

10 0.74 -0,03 0,37 -0.53 -0,28 -0,53 -0,29 0.45 0,28 -0.06 0.07 -0.09

Mean
Value 0.77 -0.09 0.22 -0,39

O1 -0.40 -0.36 0.28 0.32 -0.14 0.07 -0.07

Standard
Deviation 0.07 0.08 0.10 0.09 0.06 0.07 0.21 0.18 0.15 0.09 0.05 0.04

Range 0.30 0,34 0.36 0.34 0,20 | 0,24 0.75 0.66 0.44 0.27 0.20 0.15

Without pre-emphasis

Tria l K1 k2 K3 K4 K5 K6 *7 K8

—

K9 K10 K11 K12

i -0.08 -0.37 0.32 0.20 0.10 -0.16 -0.70 -0.28 0.04 -0.21 -0.05 -0.12

2 0.04 -0.31 0.30 0.26 -0.01 -0.15 -0.66 -0.44 0.00 -0.20 -0.08 -0.11

3 -0.04 -0.36 0.36 0.19 0.04 -0.17 -0.65 -0.31 0.06 -0.21 -0.01 -0.17

4 -0.24 -0.46 0.11 0.23 0.24 0.06 -0.35 -0.74 -0.11 „ -0.13 -0.07 -0.06

5 -0.03 -0.24 0.28 0.21 0.09 -0.02 -0.68 -0.49 0.15 -0.13 -0.00 -0.10

6 0.23 -0.09 0.27 0.26 -0.06 -0.49 -0.31 -0.23 -0.11 -0.23 -0.05 -0.08

7 0.01 -0.29 0.39 0.22 -0.02 -0.21 -0,59 -0.53 0.12 -0.21 -0.01 -0.09

3 -0.01 -0.20 0.34 0.21 -0.05 -0.07 -0.91 '-0.55 0.12 -0.17 0.02 -0.13

9 -0.01 -0.20 0.34 0.21 -0.05 -0.07 -0.71 -0.55 0.12 -0.17 0.02 -0.13

10 -0.06 -0.32 0.22 0.28 -0.01 0.02 -0.68 -0,56 0.08 -0.06 0.01 -0.08

Mean
Value -0.03 -0.31 0.3 0.22 0.05 -0.14 -0.60 0.45 0.03 -0.17 -0.02 -0.10

Standard
Deviation 0.11 0.11 0.09 0.05 0.10 0.15 0.14 0.15 0.09 0.05 0.04 0.03

Range 0,47 0.37 0.34 0,18 0,30 0.55 0.40 0.51 0.26 0,17 0,11 0.11

With Pre-emphasis

Table A4.5 Table showing the effect of pre-emphasis on the Burg's PARCOR

Coefficients



APPENDIX 5

COMPUTER PROGRAMS

A5.1 Fortran program listing of endpoint detection algorithm

A5.2 Assembly program for input of speech samples

A5.3 Assembly program, for output Qf speech samples

A5.4 Fortran program listing of the TDPA implementation

A5.5 Assembly program of Intel 8086 y-processor to implement 

TDPA and AMDF

A5.6 Speech synthesiser program

A5.7 Fortran program listing of the cluster analyses

A5.8 Fortran program listing of the speaker verification system

A5.9 Fortran program listing of the digit recognition system
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A 5 . 1  F o r t r a n  p r o g r a i a  l i s t i n g  o f  e n d p o i n t  d e t e c t i o n  a l g o r i  timi 

E N D P O I N T  A N A L Y S I S

T H I S  P R O G R A M  F I R S T  C A L L S  A  S U B R O U T I N E  1 0  R E A D  
0 - B I T  C O M P R E S S E D  P C M  S A M P L E S . T H E N  I T  F I N D S  
T H E  E N D P O I N T  O F  T H E  U T T E R A N C E  A N D  S T O R E S  T H E  
S A M P L E S  O N  D I S C .
D I M E N S I O N  I S ( 1 7 0 0 0 ) » I 2 E < 1 7 0 ) r A M < 1 7 0 )
L l = s 1 7 0 0 0

'  I N P U T '  I S  A  S U B R O U T I N E  U R I T T E N  I N  
A S S E M B L Y  L A N G U A G E .
C A L L  I N P U T ( L l r l S ( l ) )

M E A S U R E  S T A T I S T I C S  F O R  B A C K G R O U N D  
S I L E N C E  U S I N G  F I R S T  1 0 0 0  S A M P L E S  
O N L Y .
I M A X = 0
I A V Z = 0
A V M = 0
DO  2 0 0  J = l » 1 0  
N 2 = J * 1 0 0

C A L C U L A T E  B A C K G R O U N D  S I L E N C E  E N E R G Y  A N D  
Z E R O - C R O S S I N G  C O U N T S .
N 3 = N 2 - V 9  
N Z E R 0 = 0  

E N = 0  •
D O  1 0  1 = 1 » 1 0 0  
N 4 - N 3 - 1 + 1  
N 5 = N 4 1  1

I F  < ( < I S ( N 4 ) . G T . O ) . A N D . ( I S ( N S ) . L T . O ) ) . O R . < I S < N 4 >
1 .  E C ( . 0  ) • O R  • ( ( I S  ( N  4 ) . L T . O )  . A N D .  ( I S ( N S )  . G T . O )  ) )
2  N Z E R Q - N Z E R O + 1
E N = E N f ( A D S ( F L O A T ( I S < N 4 > ) ) )

C O N T I N U E
C A L C U L A T E  M A X .  N U M B E R  O F  Z C C .
I F ( I M A X . L E . N Z E R O )  I M A X = N Z E R O
I A V Z = I A V Z T N Z E R O
A V M  A V M I E N
S T O R E  Z C C  A N D  E N E R G Y .
I Z E ( J ) = N Z £ R O  
A M ( J ) - E N  
C O N T I N U E  

I A V Z « I A V Z / 1 0  
A V M = A V H / 1 0
C A L C U L A T E  S I D  I U R  Z C C .
1 S T D - 0

l»0 1 3  I  - 1  » 1 0
1 S I H - I S T D I ( J A V Z  I Z L <  J ) > * * 2
c o n i  i n i j e

I S I D - I S I H / I O
S E T  I  » IRE  S U O I  D  F O R  Z C C .
l l l l / L  l A V Z T ( J S T D )
I / P E  / » A V M  » I A O Z  » I  ( H / L  » I  M A X

F O R M A T ( / 7 A E N E = ' » F 1 2 . 2 * '  A V E . Z C C = 7 » 1 3 »
l 7 I  H R . Z C C - ' » 1 3 »  7 M f i X / C C - ' *  1 3 )
1 1 ( 1  M A X  • G I  . 1 1 H Z E  ) ( i l)  I O  1 
I I H / l  “ l M A X  

G O  I O  1

11
3

20

101
9 2
9 0

8
9

100

4 0 0

T Y P E  3

F O R M A T (* * * * *  G E T  R E A D Y  T O  S P E A K  A G A I N  * ¥ * * '  )
G O  T O  4 
S E T - 0  
N F = 0  

I F I N I = 0
T H E  M A J O R  L O O P  S T A R T S  H E R E .

D O  4 0 0  J = l l r ( 1 7 0 - N P )
N 2 = J * 1 0 0  
N 3 = N 2 - 9 9  

N Z E R U = 0  
E N = 0
C A L C U L A T E  Z C C  A N D  E N E R G Y .
D O  2 0  1 = 1 » 1 0 0  
N 4 = N 3 - 1 + I  
N 5 = N 4 f 1
I F ( ( ( I S ( N 4 ) . G T . O ) . A N D . ( I S ( N 5 ) . L T . 0 ) ) . O R . ( I S ( N 4 )  
1 . E Q . O ) . O R . ( ( I S ( N 4 ) . L T . O ) . A N D . ( I S ( N S ) . G T . 0 ) > >
2  N Z E R O = N Z E R O f 1

E N = E N + ( A B S ( F L O A T ( I S ( N 4 ) ) ) )

C O N T I N U E
S T O R E  Z C C  A N D  E N E R G Y .

I Z E ( J ) = N Z E R U  
A M ( J ) = E N
I F ( I F I N I . E Q . l )  G O  T O  4 0 0
I F ( ^ M ( J ) . G E . S E T )  G O  T O  1 0 0
S E T  T H E  T H R E S H O L D  O N C E  T H E  M A X . E N E R .
I S  K N O W N .

T H R = S E T / 2 0 •
I F ( A M ( J ) . G E . T H R )  G O  T O  4 0 0  
I F ( J . G E . 1 3 0 )  G O  T O  8 
N F - 1 3 0 - J
M E N '  I S  I N I T I A L  E N D  P O I N T .
I E N B = J

I F I N I = 1
D O  1 0 1  1 = 1 r 1 0 0
I F ( A M ( I P G I N T - I ) . L T . T H R ) G O  T O  1 0 2  
I F ( ( I P O I N T - I ) . L E . 1 0 )  G O  T O  9 2  
C O N T I N U E  
T Y P E  9 0
F O R M A T ( 7 B A C K - G R O U N D  N O I S E  L E V E L  I S  H I G H 7 )
S T O P  
T Y P E  9
F O h ' M A H 7 F U L L  U T T E R A N C E  I S  N O !  S A M P L E D 7 )
G O  T O  1 1
I F ( ( I P O I N T - I ) . L E . 1 0 )  G O  T O  9 2  
S T A R T I N G  B L O C K  I S  D E N O T E D  B Y  * I S T A R T  *
I S T A R T = I f  O I N T - I  
G O  T O  4 0 0  
S E T - A M ( J )

I P O I N  T = J  
C O N ! I N U L

U S E  E N E R G Y  T H R E S H O L D  1 0  M O V E  I M F  
I N I T I A L  S T A R T  A N D  E N D  P U I N I S .
X T H E - T H R
I F  ( T H R  • G T  . ( 1  . 5 * A V n >  ) X  l H L - 1  . S f A V f l



I A E N D = I S T A R T  

D O  2 5  1 = 1 » 1 2
I F <  ( A M (  I  S T A R T - H I  > . G E  . X T H E )  ) G O  T O  2 8  9 2 5 2
G O  T O  2 7

2 8  I A E N D = I S T A R T - I
2 5  C O N T I N U E

C  I S T A R T  I S  T H E  A C T U A L  I N I T I A L  F R A M E  C
C  F O U N D  B Y  E N E R G Y  T H R E S H O L D .

2 7  I A I N I * I A E N D  2 5 5
C  U S E  Z C C  T H R E S H O L D  T O  F I N D  T H E  I N I T I A L
C  F R A M E •

D O  2 6  1 = 1 » 1 2  6 0 0
I F ( < I Z E < I A E N D - I T 1 ) . G E • 1 T H Z E ) . A N D . ( I Z E ( 1 A E N D - I ) » G E • I T H Z E ) ) 3 0 0

1 G O  T O  5 1  

G O  T O  5 2
5 1  I A I N I * I A E N D - I
2 6  C O N T I N U E

C I S T O P -  I N I T I A L  E N D  F R A M E .
5 2  I S T O P = I E N D  

X T H E = T H R
C  U S E  E N E R G Y  T H R E S H O L D  T O  F I N D  T H E  E N D
C  F R A M E .

I F C T H R . G T • ( 2 . 1 A 0 M ) ) X T H E « 2 . * A V M
D O  4 6  1 = 1 » 2 9
I S U = I
I F < ( A M < I E N D 1 I - 1 ) . G T . X T H E ) )  G O  T O  4 5 5 5  
G O  1 0  5 5 5 5  

4 6  C O N I I N U E

G O  I 0  5 5 5 5
4 5 5 5  1 S T O P “ I E N D t I f l

G O  T O  4 6

5 5 5 5  I F  < I S U . G E . 2 9 ) G O  T O  5 0 1
C  U S E  Z C C  T H R E S H O L D  T O  F I N D  E N D  F R A M E
C  O F  S P E E C H .

I E P S * I S T O P  
D O  3 2  I  =  I S U » 2 9  
l F ' U l  =  I E F * S T I -  1 
I P U 2 = I E P S f I  
I P U 3  I E P S T 1 T 1  
I P U 4 = I E P S T I T 2
I F  ( ( 1 Z E  ( I P U 1 )  . G E .  1 1 I I / E )  . A N D .  ( I Z E < I P U 2 )  . G E .  I T H Z E ) )

1 6 0  T O  9 6  
3 2  C U N T I N U E

G O  TO 5 0 1
9 6  I F ( < I Z E < I P U 3 ) . U I  . I T H Z F ) . A N D . ( I Z E ( 1 P U 4 ) . G E • I T H Z E )  )

1 f S T 0 P * I P U 4  

G O  T O  3 2
5 0 1  T Y P E  0 9 4  » I S T A R T  » I E N D » I P O I N T  » I A 1 N 1 » I S T O P  
U V 4  F O R M A I < '  I R = ' » 1 3 » '  E R ~ # » 1 3 » '  M . E D * ' » 1 3 »

1 '  A I N =  '  » 1 3  » '  A F 1 =• '  » 1 3  >
N S A = ( I S I O P - I A I N I 1 1 ) 1 1 0 0  
l I L - < I A 1 N 1 1  1 ) ♦ 1 0 0  
I R L C U  N S A / 1 0 0  
I Y P L  U 6  » N S A »  I  R F .C O

86 F O R M A I ( '  N L A M P  ' » 1 6 » '  N U M D E R  O F  R E C O R D S ^ ' » 1 4 )
1 H L O C R  I S T O P - I A I N I F 1

T I M E = < F L 0 A T < I B L 0 C K ) * 1 2 . 5 >
T Y P E  9 2 5 2 » T I M E
F O R M A T ! '  D U R A T I O N  O F  T H E  U T T E R A N C E * ' »  
1 F 1 2 . 3 » '  h i L L I S E C  '  >
I B E G = I A I N I - 1
C A L L  D I S P L Y  < N S A » I S ( I B E G * 1 0 0 ) )

U R I T E  T H E  S P E E C H  S A M P L E S  O N  D I S C .
U R I T E ( 2 » 2 5 5 ) ( I S ( I > » I  =  I T E » N S A 1 I I E > 
F O R M A T  < 1 0 1 7 )
D O  3 0 0  1 =  1 »  ( 1 7 0 - N F ’ )

U R I T E ( 3 ? 6 0 0 ) I » 1 Z E ( I ) » A M ( I )
F O R M A T ( 3 X » I 3 » 4 X » I 3 » 3 X » F 1 2 . 1 )
C O N T I N U E
S T O P
E N D



AS. 2 Assento)y prograia for input of speech samples

i  P R O G R A M  F O R  R E A D I N G

! T H E  I N P U T  S P E E C H  S A M P L E S
i T H I S  A S S E M B L Y  P R O G R A M  I S  D I V I D E D  I N T O  TWO
; S E C T I O N S . F I R S T  S E C T I O N  R ' E A D S  I N P U T  S P E E C H
; S A M P L E S  V I A  T H E  I N T E R F A C E  C O N N E C T E D  T O
» P D P - 1 1  C O M P U T E R .
i S E C T I O N - 2  C O N V E R T S  T H E  8 - D I T  C O M P R E S S E D  P C M
i T O  L I N E A R  P C M  S A M P L E S .

. T I T L E  I N P U T S A M P L E S  
• G L O R I .  I N P U T

» R E G I S T E R  A S S I G N M E N T
R 7  ~X7
> A D D R E S S  O F  T H E  I N P U T  il O U T P U T  P O R T S

I N P U T 1  = 1 7 7 7 7 4  
O U T P U T  = 1 7 7 7 7 6

i B I T  A S S I G N M E N T  F O R  T H E  O U T P U T  P O R T  I N  O R D E R
; T O  S W I T C H  O N  T H E  T A P E  R E C O D E R .
T A P E O N  = 0 0 0 0 0 3  
S P E K O N  = 0 0 0 0 0 5  

R E D Y O N  = 0 0 0 0 0 2  
T A P E O F F  = 0 0 0 0 0 0

i  O N C E  T H E  L S D  O F  A D D R E S S  I S  S E T . A  D E L A Y  M U S T  B E

! I N T R O D U C E D  I N  O R D E R  T O  S W I T C H  O N  T H E  R E L A Y  O F  T H E
i T A P E  R E C O R D E R . L E T  T H E  D E L A Y  B E  1 S E C .
D E L A Y  = 1 7 7 7 7 7
s t o r e : . w o r d  o  
i n t e r : . w o r d  o

A D D R E S :  . W O R D  O

! M A I N  E N T R Y  O F  T H E  A S S E M B L Y  P R O G R A M .
• S T A R T  T H E  T A P E  R E C O R D E R .
i n p u t : M O V # R E D Y O N » 6 » O U T P U T

M O V 1 D E L A Y » R 3  » S T A R T  T H E  D E L A Y  L O O P
i $ : D E C R 3

B N E 1 $
8 $ : D E C R 3

B N E 8 $
M O V » T A P E O N » 8 # O U T P U T

a h D E C R 3
B N E 4 *

ó ì : D E C R 3
B N E 6%
M O V # 0 0 1 7 5 0 » R 4

f G E I T H E  N U M B E R  O F  A R G U M E N T S  F R O M  T H E  M A I N  P R O G R A M
M O V ( R 5 ) +  » R 1 » N U T  U S E D  F O R  A N Y  P U R P O S E

i G E T 1 H E  V A l . U E  O F  ' N '
M O V e < R 5 ) f »R 3

M O V R 3 r S T O R E  » T E M P O R A R Y  S T O R E  O F  R 3
S U B R 4 » R 3

» G E T I H E  S T A R T  A D D R E S S  O F  L O G :  I S A M P ( l )
M O V ( R 5 > F  r h l
M O V R 1 »A D O R E S

» I N  O R D E R  I O  R E A D  T H E  I N P I J !  S A M P L E S  C H E C K  W H E T H E R

» D A  1A R E A D Y  S I G N A I  I S  A V A I l  A B L E . I . E : I F  T H E  M S B
» II I  r i l l .  R E G I S T E R  177776  I S  S E I  T H E N  R E A D  T H E  1 N P U
» S A M P L E  » U T I l E f t t J  1 S L  L O O P .
jt: M O V & # I N P U T  1 » R 2  » R E A D  T H E  I N P U T  P O R T

7 * :

c o m e :

3 « :

S E G Z E R

»

g o :

»

»

n e g a t i :

{ R E A D  T H E  I N P U T  P O N T

B P L  2%  » L O O P  I F  P O S I T I V E
S T O R E  T H E  S A M P L E  I N  L O C A T I O N  P O I N T E D  B Y  T H E  R E G J R l  
M O V  R 2 »  < R 1 ) +
D E C  R 4
B N E  2 $  » D O  T I L L  ' 1 0 0 0 '  S A M P L E S  A R E  S T O R E D
L I G H T  T H E  R E D  B U L B  
M O V  f S P E K O N » C t O U T P U T
A  D E L A Y  O F  2 5 0  M S .
M O V  R 3 » I N T E R
M O V  # 0 0 0 0 6 0 1R 3

D E C  R 3
B N E  5 $

M O V  I N T E R » R 3
M O V  6 # I N P U T 1 »  R 2

B P L  7%
M O V  R 2 »  < R 1 ) +

D E C  R 3
B N E  7%  » D O  T I L L  ' N - 1 0 0 0 '  S A M P L E S  A R E  S T O R E D .
S T O P  T H E  T A P E  R E C O R D E R .
M O V  # T A P E O F F » e # O U T P U T
C O N V E R T  T H E  C O M P R E S S E D  P C M ( 8 - B I T  A - L A U )  T O
L I N E A R  P C M . 1 3 - B I T S  I N  2 ' S  C O M P L E M E N T .

M O V S T O R E » R 3
M O V A D D R E S » R 1

Moy < R l ) r R 2
M O V R 2 » R 0  » C O P Y  T H E  I N P U T
M O V R 2 » R 4  » C O P Y  T H E  I N P U T
C H O P  T H E  S I G N  B I T  A N D  S E G M E N T  C O D E .

B I C * 1 7 7 7 6 0 » R O
A S L R O  1
I N C R O
B I C # 1 7 7 6 1 7 » R 4  » S E G M E N T  C O D E

B E O S E G Z E R
I F  T H E S E G M E N T  C O D E  I S  N O T  Z E R O

S H I F T R I G H T  F O U R  T I M E S
A S R R 4
A S R R 4

A S R R 4

A S R R 4
B I S # 0 0 0 0 4 0 » R O

D E C R 4
B E Q S E G Z E R
A S L R O
J M P 3 $
A S L B R 2
B C C N E G A T E

S T O R E T H E  R E S U L T
M O V R O »  ( R D F
B E C R 3
A R E  A L L  C F ' C M  C Ü N V E R T E U  T O  L P C M  ?
O N E C O M E
R E T U R N T O  T H E  M A I N  P R O G R A M

R T S P C
N E G R O
J M P G O
. E N D I N P U T



n
n

n
n

n
n

n
n

n
n

n
n

C

8 1

1

7

4

C
10

c

c

8 3 

C

02

0 6
c

c
4 4 4

A5.4 Fortran program listing of the TDPA Implementation

P R O G R A M  F O R  E S T I M A T I N G  T H E  

P I T C H  P E R I O D  A N D  I N T E N S I T Y  
C O N T O U R  O F  V O I C E D  S P E E C H
U S I N G  T D P A  A N D  A M D F • V I

T H E  S P E E C H  S A M P L E S  A R E  F I L T E R E D  U S I N G  A N  F I R  F I L T E R

( 0 - 6 0 0 H Z )  A N D  F I L T E R E D  S A M P L E S  A R E  G R O U P E D  I N T O
F R A M E S .  E A C H  F R A M E  I S  A N A L Y S E D  T O  E S T I M A T E  T H E

P I T C H  P E R I O D  U S I N G  P A 2 f P A 3 f P A 4 , M P A 2 , M F A 3 , M P A 4  1 A M G F
A N A L Y S I S  I S  D O N E  U I T H  A N D  U I T H O U T  S P E C T R A L  F L A T T E N -  1 0 5
I N G .

D I M E N S I O N  I S < 1 4 0 0 0 ) , I W < 4 0 2 >  * I O S < 1 0 7 ) , Q S ( 6 0 ) , I P U N C 6 0 )
D I M E N S I O N  C ( 4 0 ) » X ( 8 2 )
D I M E N S I O N  I M A ( 6 0 ) » I P E R ( 6 0 ) , A U ( 6 0 ) , 0 S ( 6 0 >
R E A D  T H E  F I R  F I L T E R  C O E F F I C I E N T S  1 1 9
R E A D ( 1 , 8 1 X C ( I > , I « 1 , 4 0 )
F O R M A T ( E l  6 . 0 )
T Y P E  1

F O R M A T < '  W H A T  I S  T H E  N O I S E  T H R E S . ( I N ) « ' * )
A C C E P T  *  » I N I  C
T Y P E  7  C
F O R M A T ( '  H Ü U  M A N Y  U N F I L . S A M P L E S  T O  B E  R E A D » ' * )  C
A C C E P T  * , N S A  1 2 7
R E A D ( 2 , 4 X I S ( I )  , I  =  1 , N S A >
F O R M A T ( 1 0 1 7 )

P E R F O R M  F I R  F I L T E R I N G  O N  S P E E C H  S A M P L E S  
N C 0 F - 4 0

TW O I N D E X  P O I N I E R S  A R E  1 C A L  A N D  I P O I N T .  
I P U 1 N l - N C O F f 1 
I  C A L  1

D U  0 2  1 = 1 f N S A  
I A M B I  =  I C A L  f I

S T O R L  E A C H  N E W  I N P U T  S A M P L E  I N  7 WO L O C A I .
X ( I P Û I N T ) » F L O A T ( I S ( I A M B I ) )  C
X ( I P Ü J  N T - N C O F ) « F L O A T ( I S ( I A M B I ) )  1 4 0
Y - 0 . 0

D O  0 3  J = 1 f N C U F  
Y - Y 4 C ( J ) * X (  I P O I N T - J H  )

C O N T I N U E  4 9 3
I P O I N  I -  I  P O X  N T H

C H E C K  T H E  D O U N D  C
I F ( I I U I N T . G T . O O )  I P 0 I N T = N C 0 F + 1  C

I S ( I ) - I F l X ( Y )
C O N T I N U E  
I P f - N S A  1 0 0  
I D I F F - ( N S A / 1 0 0 )  -1 

1 H E Ü - 1
1 Î P E  0 6 ,  I P  I  r 1 I I  I F »

f O R M A I ( '  N S A M P - ' f 1 6 , 2 X  f '  N D L 0 K = ' , I 3 )
I N I T I A L I S E  T H E  V A R I A B L E S  C
I C Ü U - 0  
1 S P E C - 0  
I C H E C K - 0
K - 2  P A 2 , R - 3 - - P A 3 , K - 4 - -  P A 4

D U  4 0  R - 2  f 4 8 8 2

I F ( K . E O . 2 )  G O  T O  9 1
I F ( K . E O . 3 )  G O  T O  1 0 5  *
I F ( K • E G • 4 )  G O  T O  1 1 9  
M 4 = 2
I T R = I N 1 * 2
I F ( I C H E C K . E Q • 1 )  I T R = I T R / 2
I T  1= 0
1 1 2 = 0
G O  T O  1 2 7
M 4 = 3
I T R = ( I N 1 * 3 )  .

I F ( I C H E C K »E Q . 1 )  I T R = I T R / 2
I  T l  =  1
I T 2 = 0
G O  T O  1 2 7
M 4 = 4
I T R - I N 1 * 4

I F ( I C H E C K •E Q . 1 )  I T R = I T R / 2
I T  1 =  1
I T 2 = 1
F O R  S I M P L I C I T Y  A L W A Y S  S T A R T  O N  3 R D  F R A M E  
P I T C H  P E R I O D S  F O R  1 S T  A N D  2 N D  F R A M E S  A R E  

Z E R O .  I P E R O — P I T C H  P E R I O D .
I B E G = 3
I A V = 0
I P Q I N T = 0  ^
N B L 0 C K = 1
I F ' E R  ( 1 )  = 0
I P E R ( 2 ) = 0
I 0 F F S E = 0
I 0 N S E T = 0
I C O U N T = 0
I N U D E = 1
I L A G = 0
L 4 - I S  P O I N T E R f I B E G -  I S  F R A M E  C O U N T E R

L 4 = ( I B E G ) * 1 0 0 + 1
Y = 0 .
D O  4 9 3  I K U S = L 4 , L 4 f 1 0 2  
Y = Y E A B S ( F L O A T ( I S ( I K U S ) ) )
C O N T I N U E  
Q S ( I B E G ) = Y
I F  V A R I A D L E  I S P E C = 1  P E R F O R M  S P E C T R A L  
F L A T T E N I N G .
I F ( I S P E C . E D . O ) G O  T O  1 9 1

H A X *3 2 7 6 7
M I N = 3 2 7 6 7

N H S = 0
D O  8 0 3  K L = 1 f  2
N A B = 0
N F D = 0
G E T  P E A K  A B S .  F O S  & P E A K  N E U  

D O  8 0 2  1 = 1 , 1 0 0  
1 A B = I S ( L 4 - l i I + N H S )
I F ( I A B . L E . O )  G O  T O  3 2 2  
I F ( I A B . G T . N A B )  N A B = 1 A D  
C 0 N 7 I N U E



n
n

h
n

n

1 G U  T O  7 5
I F ( I O S ( K I ) * L T • I  S R )  G O  T O  7 2  

7 3  C O N T I N U E
G O  T O  7 2

7 5  I F ( K I . U E . I E X P )  G O  T O  5 5
C  N U M 1 - F O R  C H E C K I N G  T W O  T I N E S  T H E  P I T C H  P E R I O D *

N U M 1 ~ 2 * K I
I F ( N U r t l * G E » 1 0 1 )  G O  T O  5 5
I F < ( N U N 1 . G E . I V A R 1 ) . A N D . ( N U N 1 . L E . I V A R 2 ) )
1 G U  T O  7 7 8 8

C  N U N 1 - F 0 R  C H E C K I N G  T H R E E  T I N E S  T H E  P I T C H  P E R I O D .
N U M 1 = 3 * K I
I F ( N U N l . G E . l O l )  G O  T O  7 6
I F ( ( N U M 1 • G E • I V A R 1 ) • A N D . < N U N 1 . L E . I V A R 2 ) )  G O  T O  7 7 8 8  

C  N U M 1  — F O R  C H E C K I N G  F O U R  T I N E S  T H E  P I T C H  P E R I O D
N I J N 1 - 4 * N I
I F  < N U N 1 • G E . 1 0 1 )  G O  T O  7 6
I F ( ( N U N 1 . G E . I V A R 1 ) . A N D . ( N U N 1 . L E . I V A R 2 ) )
1 G O  T O  7 7 0 8

C  C H E C K  F I V E  T I N E S  T H E  P I T C H  P E R I O D
N U N 1 = 5 * K I
I F < N U H 1 . G E . 1 0 1 ) G O  T O  7 6
I F < ( N U N 1 . G E . I V A R 1 ) . A N D . ( N U N 1 . L E . I V A R 2 ) )
1 G O  T O  7 7 8 8  
G O  T O  5 5

7 7 8 8  I F < I L A G * E Q . 1 )  G O  T O  8 8 7 7
I F  P I T C H  D Q U D L . I N G »  T R I P P L I N G  E T C  O C C U R S r T H E N  
C H E C K  I F  T H E  E S T I M A T E D  P I T C H  L I E S  B E T U U E E N  
I A V I < I A V / 2 0 ) * 9  A N D  I A V - < I A V / 2 0 ) » V . I F  I T  I S  

O . K .  T H E N  D O  N O T  C H A N G E  T H E  P I T C H  P E R I O D  
E L S E  C H A N G E  I T  T O  N E U  V A L U E  ' K I ' .

C
C

C
C

6666

4 7 7 7
5 5 5 5

I K A S = I A V

I S T E 1 = < 1 A V / 2 0 ) * V
I P 0 S I = I K A S « I S T E 1  V S

1 N E G 1 = I K A S - I S T E 1
I C O f W I P E R d B E G )
I F <  < I C O M . L E . I P 0 S 1 I . A N B . < I C O M . G E . I N E G 1 > >  7 0 1
x no  ro  55

7 7  T T P E  8 y y y r I B E U . I A V . K I . N U M l
a v y v  X 'O R M A  X < '  B E G = ' . I 3 » '  A V E “ ' . I 3 . '  K I “ ' . I 3 . '  N U M 1 = ' . I 3 >  1 1 0

I P E R « I  B E G ) = K I  
I M A X I B E G I - I S E T  
G O  I U  5 5  

7 6  I P K U - 0

7 2  C O N T I N U E
GXI I I I  5 5

8 8 / 7  I  P E R «  X B E G ) - - K I  4 7 7 8

c
G U  1 0  5 6

c
c
c SMUG 1 I I I N G

5 6 0 0c C U R K T C T  O C C A S I O N A L  E R R O R S

55 I F <  I I  A t i . E t t .  1 ) G O  T O  5 6
I F  ( I K H A  .01: • 4  ) I K H A  0 C

I F ( I N U B E . E Q . l )  G O  T O  5 5 5 5
E S T I M A T E  T H E  P R E S E N T  P I T C H  P E R I O B  F R O M  C INE 
P A S T  A N B  F U T U R E  P I T C H  P E R I O D S .
I P U S S - « I F E R < I B E G - 2 ) > / 5  
I S T E 1 = I P U S S + I P E R < I B E G - 2 )
I P 0 S 1 = I P E R < I B E G - 2 I - I P U S S  
I C O M = I P E R ( I B E G )
I F ( ( I C O M . G E . I P 0 S 1 > . A N B . < I C O M . L E . I S T E 1 ) )
1 G O  T O  6 6 6 6  
I N U B E = 1  
G O  T O  5 5 5 5

C H E C K  W H E T H E R  T H E  P R E V I O U S  P I T C H  P E R I O D  I S  
W I T H I N  1 0 %  O F  T H E  O N E  B E F O R E .

I P U S S = ( I P E R < I B E G - 2 ) ) / 1 0  
I S T E 1 = I P U S S + I P E R ( I B E G - 2 )
I P 0 S 1 = I P E R < I B E G - 2 ) - I P U S S  
I C O N = I P E R C I B E G - 1 )
I F (  ( I C O N . G E . I P 0 S 1 ) . A N D . ( I C O N . L E . I S T E 1 ) )
1 G O  T O  5 5 5 5

I P E R ( I B E G - 1 )  =  ( I P E R  < I B E G ) f I P E R ( I B E G - 2 ) ) / 2  
T Y P E  4 7 7 7 r I B E G r I P E R ( I B E G )
F O R N A T ( / '  B E G - ' » 1 3 » '  P E R I * ' » 1 3 )
I P G T * < I P E R ( I B E G - 1 )  +  I P E R ( I B E G - 2 ) +  I P E R  < I B E G - 3 ) ) / 3
I P U S S = I F Q T / 5
I S T E l = I P O r + I P U S S
I P 0 S 1 = I P O T - I P U S S
I C O N = I P E R ( I B E G - 1 )
I F ( ( I C O M . G E . I P 0 S 1 ) . A N D . ( I C O N . L E . I S T E 1 ) )

1 G O  T O  2 2 5  
G O  T O  7 0 1  
I C O M = I P £ R ( I B E G - 2 )

I F ( ( I C O M . G E . I P 0 S 1 ) . A N D . ( I C O M . L E . I S T E 1 ) )
1 G O  T O  9 8  
G O  T O  7 0 1  

I C 0 M * I P E R ( I B E G - 3 )
I F ( ( I C O M . G E . I P 0 S 1 ) . A N D . ( I C O M . L E . I S T E 1 ) )
1 G O  T O  1 1 8
I N U D E = 0  

I K H A - 0  
G O  T O  5 6  

I P U S S = I P U T / 4  
I S T E  I s31 P O T  +  I P U S S  
I P O S 1 - I P O T - I P U S S  

I C O N * I P E R ( I B E G )
I F ( ( I C O N . G E . I P 0 S 1 ) . A N D . ( I C O N . L E . I S T E 1 ) )
1 G O  T O  5 6 0 0
T Y P E  4 7 7 8 » I B E G » I P E R ( I D E O )

F O R M A T « / '  * * B E G * # * '  » 1 3 »  '  P E R * ' » I 3 >
I K H A - I K H A 4 1
I F ( I K H A . G E . 4 )  G O  T O  5 6  
I P E R (  I B E G ) * I P G T  
I N U D E = 1  
G O  1 0  5 6  
I K H A —O  
I N U D E * 0

E N D  U F  S M O O T H I N G



n
 n

 n

C

8 8 1

8 8 3  
C

8 8 4

9 8 1

C

9 8 3

1 9 1

C

3

1 4 3 4

1 4 3

c

3 2 2

1 4 9

ü ü  T O  8 8 1  

I A D = I A B S (  I A B >
I F < I A D . G T . N F D )  N F D = I A D  
G O  TO 8 8 2
I F C N A B . L T . M A X )  M A X - N A B  
I F  < N F D . L T  « M I N )  M I N - N F Ü  

N H S - N H S + ( K ' l ) * 1 0 0  
C O N T I N U E
S E T  T H E  P O S I T I V E  A N D  N E G A T I V E  T H R E S H O L D S
I N S = K * 1 0 0

M A X = ( M A X / 1 0 ) * 8
M I N — ( M I N / 1 0 ) #8
D O  8 8 4  J = 1 r I N S
I F < I S C L 4 - 1 + J ) . L E . O )  G O  T O  9 8 1  

I F < I S ( L 4 - 1 + J ) . L E . M A X )  G O  T O  9 8 3  
I U < J ) = I S < L 4 - 1 E J >
C O N T I N U E  
G O  T O  1 9 1
I F ( I S ( L 4 - 1 + J ) . G E . ( - M I N ) )  G O  T O  9 0 3  
S T O R E  F L A T T E N E D  S P E E C H .
I L K  J )  =  I S U . 4 - l i J )
G O  T O  8 8 4  

I L K  J > = 0  
G O  T O  8 8 4

E N D  O F  S P E C T R A L  F L A T T E N I N G  
T D P A  A N A L Y S I S  S T A R T S  H E R E .

T H E  T R I A L S  

D O  1 1 1  1 = 1 8 » 1 0 2  

I P E = - 1  
I  V A = 1
C O L U M N  A D D I T I O N  
D O  2 2 2  J = 1 » I
I F ( I U N S E T • E Q . 0 )  G O  T O  3
M l = L 4 t ( K * 1 0 2 ) “ J + l
M 2 « M 1 - I
M 3 = M 2  I

M 5 - M 3  I
G O  T O  1 4 3 4
M l = L 4  - 1 + J
M 2 - M 1 F I
M 3 = M 2 M
M 5 = M 3 I I
I F  < I S P E C  * E Q • 0 )  G O  1 0  1 4 3

I C - I L K . I )  U L K  J f 1 ) F I U <  J 4 2 * I  > * I T 1 + I U <  J E 3 * I > * I T 2
I F < I O N S E T . E O . O )  G O  T O  1 4 9
M 1 = M 1  L 4

M 2 = M 1  I
M J = M 2 - I
M S  - M 3 -  1
I C - i l K M l M I L K M 2 ) 4 I U < M 3 ) * l T l i l U ( M S ) * I T 2  

G O  1 0  1 4 9
1 C — I S ( M 1 ) F I S < M 2 ) f I S ( M 3 ) * I T I F I S ( M 5 ) * 1 T 2  

I 1 C K  I I P  M A X .  A N D  M I N .  V A L U E S .
I F  < I C . 0 1 . 1 P L )  1 P L - 1 0  
I F ( I C . L T . I V A )  I V A - 1 C  
C O N I  I N I I C

111
C
C

C

C

C
C
C

9 5

C

110

2222
C

C
C

5 6 8 8

C

5 7 8 8
C

7 9

I O S - O S C I L L A T I O N  A M P L I  H I D E  
I O S < I ) = I P E - X V A  
I F ( I C H E C K . E Q • 1 )  I O S < I ) = I P E  
C O N T I N U E

T H E  D E C I S I O N  L O G I C  
P I C K  U P  A B S O L U T E  M A X I M U M  
I E = 0  
I S E T = - 1  

D O  5  J = 1 9 » 1 0 1
I F  < < I G S ( J ) . G E . I O S ( J - l ) ) . A N D . < I O S < J > . G T . I O S < J T 1 > > )
I  G O  T O  1 1 0
I F C I O S C J ) . E Q . I O S C J F 1 ) > G O  T O  1 1 0  
C O N T I N U E
I S R - 2 N D  T H R E S H O L D  

I S R = I S E T - ( I S E T / 5 )
I P E R  < I B E G ) = I E X P
S T O R E  P I T C H  P E R I O D  A N D  I N T E N S I T Y  
I M A < I B E G ) = I S E T  
I P U N ( I B E G ) = I E X P
I F  A N Y  O F  T H E  P A S T  6  F R A M E S  H A S  P I T C H  P E R I O D  
Z E R O  C H E C K  I F  I S E T >  5 0 * I T R < N 0 I S E  T H R E S . ) . I F  
S O  C O M P U T E  P I T C H  E L S E  S E T  T O  Z E R O .
D O  9 5  I S U B = 1 »6 
I N A S = I B E G - I S U B

I F  C l P E R < I N A S ) . E Q . 0 )  G O  T O  5 6 8 8  
C O N T I N U E
I A 1 = I P E R < I B E G - 1 J E I P E R C I B E G - 2 > + I P E R < I B E G - 3 >

I A V = <  I A 1  +  I F * E R (  I B E G - 4 )  T I P E R (  I D E G - 5 )  ) / 5  
I L A G = 0
J U M P  T O  C H E C K  P I T C H  D O U B L I N G  T R I P P L I N G  E T C .
G O  T O  7 9
I F  < ( I  S E T  - f l E ) . G T . I O S ( J ) )  G O  T O  5  
I S E T = I O S < J )
I E = ( I S E T / 1 0 )
I F < I S E T . G E . ( 2 0 * I T R ) ) G O  T O  2 2 2 2  
I F ( I D E G . L E . 6 ) I E = 0  
I E X P = J

I V A R 1 A N D  I V A R 2  A R E  I N T E R M E D I A T E  V A R I A B L E S  A N D  
T H E S E  W I L L  D E  U S E D  F O R  C H E C K I N G  P I T C H  D O U B L I N G  
A N D  P I T C H  T R I P P L I N G  E T C .
I V A R l = l E X P - 4  
I V A R 2 = I E X P + 4  
G O  T O  5

I F < I S E T . G E . ( 5 0 * I T R > >  G O  T O  5 7 0 8  
G O  T O  5 6
L A G = 0  I N D I C A T E S  P R E V I O U S  S I X  F R A M E S  A R E  U N V O I C E D .
I I  A U  =  1
C H E C K  P I T C H  D O U B L I N G » T R I P L I N G  E T C .
I F < I E X P . L E . 2 0 )  G O  T O  5 5  
I P R U = 0

D O  7 2  J = 1 9 » I V A R 2  
I F ( I O S ( J ) . L T . I S R )  C O  T O  7 6  
I F  ( I P R U . E Q .  1 ) G O  TCI 7 2  
1 P R U = 1
D O  7 3  K I = J » J + 2 5

I F ( < I O G ( K I ) . G E . I O S ( K I - l ) ) • A N D • < I U S i K I ) . O f . I O S v K I  I l ) ) )



3 4 25 6  I F ( I S E T  . G E • I T R )  G O  T O  1 9 5

C  I F  T H E  P R O G R A M  P A S S E S  T H I S  S E C T I O N  I T  I M P L I E S  C
C  T H A I  T H E  P R E V I O U S  B L O C K S  A R E  U N V O I C E D .

5 6 6 8  I O F F S E = l  
I O N S E T - O
I C G U N T = 0  3 3 8
G O  T O  1 9 7

1 9 5  I F < I D E G . E Q . 3 )  G O  T O  5 6 6 8  3 3 5
C  I F  T H E  C N T R O L  L O O P  P A S S E S  T H I S  S E C T I O N  I M P L I E S
C  N E X T  F R A M E  I S  V O I C E D  R E G I O N .

I F ( I O F F S E . E Q . l )  G O  T O  9 2  
G O  T O  1 9 7

9 2  I Q N S E T - 1  6 2
I F < I C O U N T . G E . S )  G O  T O  1 9 6  8 0
G O  T O  1 9 7

C I F  T H E  ' C O U N T E R '  V A L U E  I S  > 5  M E A N S  P R E V I O U S  8 2 2
C  F I V E  F R A M E S  A R E  U N V O I C E D .

1 9 6  I O N S E T = 0
I Q F F S £ = 0  8 5 4

I C 0 U N T = 0  8 7 7
1 9 7  I C O U N T * I C O U N T t l  4 9 1

C C H E C K  I F  A L L  F R A M E S  A R E  S U B J E C T E D  T O  T D P A

C A N A L Y S I S .  4 9 8
I B E G = I B E G f 1
I F U B E G . E C I .  ( I D I F F - 3 ) )  G O  T O  9 9 9  6 0 0
G O  T O  1 4 0

9 9 9  I F  « I C H E C K •E Q • 0 )  G O  T O  5 6 7
T Y P E  5 6 8

5 6 8  F O R M A T « / '  T H E  R E S U L T S  O F  T H E  M O D I F I E D  P E R I Q D O G R A M ' ) 6 0 2
T Y P E  5 6 9

5 6 9  F O R M A T < '  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * '  ) ¿ 0 1 5

5 6 7  T Y P E  1 5 » M 4
1 5  F O R M A T « / '  N U M B E R  O F  R O U S  A R E * ' » 1 2 )

T Y P E  1 6

1 6  F O R M A T « '  B L O C K  M P E R . P E R I .  A M P .  E N E R G Y ' )

D O  7 7 0  1 * 1 » I D I F P - 4
T Y P E  7 8 9  » I » I P E R ( I ) » I P U N < 1 ) » I h A « I ) » Q S « I )

7 8 9  F O R M A T  « 1 X » 1 4 » 6 X  » 1 4  » '  * * ' » I 4 » 4 X » I 8 » 3 X » F 1 2 . 1 )
7 7 8  C O N T I N U E
4 8  C O N T I N U E

C A V E R A G E  M A G N I T U D E  D I F F E R E N C E  F U N C T I O N  M E T H O D
I F « I C H E C K . E Q . 1 >  G O  TO 4 9 1  

I P E R « 1 ) = 0  
I D E G =2

1 3 5  L 4 - < I B L G ) * 1 0 0 f 1
D O  6 3  1 * 1 8 » 1 0 2  

A U < i  > - 0 .
D O  6 4  J * l r l O O
A U  < I ) - A U  < 1 ) \ ( A D  S ( F L  0 A  T ( I S ( L  ■4 1 J ) - 1 S ( L 4  i J H - 1 ) ) ) >

6 4  C O N T I N U E
6 3  C O N I  I N H L

1 L X  - 0
R E S E T  - 8 0 0 0 0 .
D O  3 4 2  J - 1 9 » 1 0 1
I F  < A U <  J )  • L 1 . A U <  J -  1 ) . A N D  • « A U «  J )  . 1. T . A U (  J f l  > ) ) G O  TO 3 3 8  
I F < A l ! «  J )  . E O . A O «  J l  1 ) )  G O  l ( J  3 3 8

C O N T I N U E

I B E G * I B E G T 1
I F ( I B E G . E Q . ( I D I F F - 3 ) ) G O  T O  6 2  
G O  T O  1 3 5
I F « A U ( J ) . L T . « R E S E T - E X ) ) G O  T O  3 3 5  
G O  T O  3 4 2  
R E S E T = A U < J )
E X = R E S E T / 1 0 .
I P £ R « I B E G ) = J - 1  
O S « I B E G ) = A U < J )
G O  T O  3 4 2  
T Y P E  8 0
F O R M A T « / '  A V E R A G E  M A G .  D I F F .

T Y P E  8 2 2
F O R M A T « '  B L O C K  P E R I O D  
D O  8 7 7  1 = 1 » I D I F F - 4  
T Y P E  8 5 4 » I r I P E R « I ) » O S ( I )

F O R M A T « 1 X » I 3 » 9 X » I 3 » 6 X » F 1 2 . 1 >
C O N T I N U E
I F « I C H E C K . E Q . O )  G O  T O  4 9 8  
I F  « I C H E C K • E Q • 1 )  G O  T O  6 0 0  

I C H E C K * 1 
G O  T O  4 4 4
I F < I S P E C • E Q • 1 )  G O  T O  6 0 1 5  
I C H £ C K = 0  

I S P E C * 1 
T Y P E  6 0 2

F O R M A T « / / / '  F O L L O W I N G  R E S U L T S  A R E  F O R  F L A T T E N E D  S P E E C H ' )
G O  T O  4 4 4
S T O P
E N D

M E T H O D ' )

A M P L I T U D E ' )

-o



n
o
n
n
o

A5.5 Assembly program of Intel 8086 p-processpr
___________ to implement TDPA and AMDF

A S S E M B L Y  P R O G R A M  T O  I M P L E M E N T  

T D P A C P A 2  A N H  M P A 2 )  A N D  A M  U P  O N  
I N T E L  8 0 8 Ó  M I C R O P R O C E S S O R

******  P A 2  ******
r I N I T I A L I S A T I O N

M O V B P r O O l l H
A D D S p f 0 5 0 0 H f P O I N T E R F

i M A I N L O O P  S T A R T S  H E R E
s t r t : INC B P  » N — N + 1

M O V C X r B P
M O V B X . F F F F H fIG T l
M O V D X . 0 0 0 1 H Î I L F
M O V S I f O I F E H f M
M O V D I  f B P •
S A L D I
A D D B I fSI

i I N N E R L O O P  S T A R T S  H E R E I T
R E P • I N C  S I

I N C  S I

I N C  [i I
I N C  D I

f M O V E  I S ( M ) T O  A C C U M U L A T O R
M O V A X f C S I T

F I C = I S ( M ) + I S ( M F N ) F
A D D A X f C D U S T R T

F
X C H G A X f R X
C M P B X f A X
J G E T l
X C H G D X f A X
C M P D X f A X
J L E T l F
M O V D X f A X R E P  *

F I S  M - N ?
r i  : L O U P R E P
F C A L C U L A T E  O S C I L L A T I O N  A M P L I T U D E

S U D D X f D X
P U S H B X

F I S  N - 1 0 2 ? I
C M P B P f O O A ô H
J N 2 S T R T

i l  : J M P I I

F
F * * * * * *  M P A 2  * * * * * *

F
T 2 J

F N - 1 7 F
M O V B P f O O I I H

F P O I N T E R
A D D S P  f 0 5 0 0 1 1

S T R T  : I N C B P  f N - N  U
M O V C X  F D P
M O V B X f F K F F H  f I G
M O V S I f O I F E H  Î M
M O V D I  F D P
S A L D I T 3 J

A D D D I  f S 1 F

I N N E R  L O O P  S T A R T S  H E R E I N C S I

I N C S I  ; m = m + i I N C S I
I N C S I I N C D I
I N C D I I N C D I

I N C D I M O V A X f C S I T
M O V A X f C S I T  f I S ( M ) S U D A X f C D I T
A D D A X f C D I T J G E T  4
I S  I C  > I G  ? NEG A X
C M P D X f A X T 4 Î A D D D X f A X
J G E T l F P E R F O R M  T H E  L A S T  P A R T I A L
M O V D X f A X I N C S I
L O O P R E P I N C S I
S T O R E  T H E  O S C I L L A T I O N  A M P L I T U D E I N C D I
P U S H D X I N C D I
I S  N =  1 0 2  ? M O V A X f C S I T
C M P B P . 0 0 6 6 H S U B A X f C D I T
J N Z S T R T J G E T 5
J M P I T N E G A X

T 5 : A D D D X f A X

****** A M D F  * * * * * * F D O  S C A L I N G ! I . E .  l / 2 * * 5 )
A M D F  I S E V A L U A T E D  U S I N G  P A R T I A L  S U M S S A R D X

S A R D X

M O V B P r O O l l H  i K - 1 7 S A R D X

A D D S P f O S O O H  » P O I N T E R S A R D X
M A J O R  L O O P  S T A R T S  H E R E S A R D X
I N C D P  f K = K + 1 A D D D X f D X
M O V S I f O I F E H L O O P R E P
M O V D I f D P F S T O R E T H E  R E S U L T
S A L D I P U S H D X

A D D D I f S I F I S  K  = 1 0 0  ?

M O V C X  f 0 0 1 9 H  f N = 2 5 C M P B P f 0 0 6 6 H

X O R D X f D X J N Z S T R T
i t : J M P I T

X O R D X f D X  r I P S U M = 0
I N C S I
I N C S I  r M = M + 1
I N C D I

I N C D I
M O V A X f C S I T  f I S ( M )
I S U M  *  I S ( M ) - I S < M + K )
S U B A X f C D I T

J G E T 2
N E G A X  f I S U M  <  0

I P S U M - 1 P S U M  F I S U M
A D D D X t A X
P E R F O R M N E X T  P A R T I A L  S U M

I N C S I
I N C S I
I N C D I
I N C D I *
M O V A X f C S I T

S U B A X f C B I T
J G E T 3  f I S U M  >  0
N E G A X  f I S U M  <  0
A D D D X f A X

P E R F O R M  N E X T  P A R T I A L  S U M
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n
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A5.6 Speech synthesiser Program

S P E E C H  S Y N T H E S I S E R  c

P R O G R A M  c

C
T H I S  P R O G R A M  U S E S  T H E  F O L L O W I N G  P A R A M E T E R S
( A )  P I T C H  P E R I O D  2
( B ) I N T E N S I T Y  A S  G A I N  C O N T R O L  
< C )  b U R G ' S  P A R C O R  C O E F F I C I E N T S .

N O ! E : - S I N C E  T H E  C O N T R O L  P A R A M E T £ R ' ( P I T C H »  I N T E N S I T Y  *  P A R C O . )  3
A R E  N O T  D E T E R M I N E D  P I T C I I - S Y N C H R O N Q U S L Y  I N  T H E  A N A L Y S I S »

N E W  P A R A M E T E R S  A R E  C O M P U T E D  B Y  S U I T A B L E  I N T E R P O L A T I O N  O F
T H E  O R I G I N A L  P A R A M E T E R S  T O  A L L O W  P I T C H - S Y N C H R O N O U S  R E S E T T I N G  5
O F  T H E  S Y N T H E S I S E R .

1

C

L
C

D I M E N S I O N  I P ( I S O ) » I G < 1 5 0 ) » I F P < 1 5 0 ) » I F G < 1 5 0 )
D I M E N S I O N  P A R < 1 8 0 0 ) » G A M A ( 2 0 ) » I O U ( 9 0 0 0 )
D I M E N S I O N  R E ( 2 0 ) » R V ( 2 0 ) » R N ( 2 0 ) » S P A ( 2 0 0 0 )
D I M E N S I O N  S ( 2 0 ) » Y ( 1 0 2 ) *  P R E D I  2 0 )
I N I T I A L I S E  A L L  T H E  R E Q U I R E D  A R R A Y S ( T H I S  C O U L D  B E  O M I T T E D  )
D O  1 1 = 1 » 2 0  

R E ( I ) = 0 . 0  
R V ( I ) = 0 • 0  
R N < I ) = 0 . 0  
S ( I ) = 0 . 0

I N I T I A L I S A T I O N
I I  N = 1 0 0  
P 0 S - = 0 . 9 5

1 0 R  S I M P L I C I T Y  S T A R T  W I T H  U N V O I C E D  F R A M E S ( F R A M E  1 » F R A M E  2 )  
A N D  W I T H  Z E R O  G A I N . T H E R E F O R E  F I R S T  2 0 0  S Y N T H E S I S E D  S A M P L E S  
A R E  A L L  Z E R O » A L S O  N O  C R O S S I N G  S A M P L E S  A C R O S S  F R A M E  
B O U N D A R Y  < I T C = 1 ) B E T W E E N  F R A M E  1 A N D  F R A M E  2 .
I V = 0  
I C = 1  
I F C = 1  
G E = 0 • 0  

G V = 0 . 0  
G A = 0 • 0

S I N C E  U V  S P E E C H  I S  C H A R A C T E R I S E D  B Y  R A N D O M  N O I S E  E X C I T A T I O N  
H I E  C O N T R O L  P A R A M E T E R S  A R E  R E S E T  O N C E  E V E R Y  1 2 . 5  M S ( I . E .
1 0 0  S A M P L E S )  T H I S  C A N  B E  I N D I C A T E D  D Y  S E T T I N G  I P I » I P V  T O  1 0 0 .
1 P E - 0
I P V = 1 0 0
I P I » 1 0 0

M l * = l
I P C - 1
J R * 0
K R - 0

N R - 1
E X - 0 . 0

T P - 0 . 0
L P 1 I N D E X  P O I N T E R  F O R  P A R C O ( I U O O )  A R R A Y .
E l  2  I N D E X  P O I N T E R  T O R  P I T C H  S Y N C H R O N O U S  P A R C O  A R R A Y .

N i l  I N D E X  P O I N T E R  F O R  P I I C H  S Y N C H R O N O U S  G A I N  & P I T C H  
P E R I O D  A R R A Y .
L P 1 - O 
1 1 2 - 0  
N P 1 - 1

4
C
C

2 2 5  
C

2 2 6  

C

2 2 9

1 1 5

1 1 9

C
. 5

C
C
c

L K N - - N U M B E R  O F  F R A M E S  
N G R D E R - - N U M B E R  O F  P O L E S

T Y P E  2
F O R M A T ( '  N U M B E R  O F  F R A M E S = ' * )
A C C E P T  * , L K K  
T Y P E  3
F O R M A T < '  P R E B I C T O R  O R D E R “ ' * )
A C C E P T  » r N O R B E R  
T Y P E  5
F O R M A T « '  G A I N  R E B U C T I O N  F A C T O R “ ' * )
A C C E P T  * , I N T  

T Y P E  4
F O R M A T « '  G I V E  I N T E G E R  C O N V E R S I O N  V A L U E “ ' * )

A C C E P T  » r I S U l

R E A D  P I T C H  P E R I O D  F R O M  T H E  D I S C  
R E A D ( l l r 2 2 5 X I P < I ) . I  =  l . L K K )

F O R M A T ( 1 0 1 4 )
R E A D  T H E  G A I N  F R O M  T H E  D I S C  
R E A D ( 1 2 . 2 2 6 ) ( I G < I ) . I “ 1 . L K K )

F O R M A T « 1 0 1 7 )
S C A L E  T H E  G A I N  C O N T O U R
B O  2 2 9  I = 1 , L K K
I G « I ) = I G ( I ) / I N T
L Q 1 = 0
I L 0 S = 1

D E F I N E  F I L E  1 0 < L K K . 2 4 r U r I L O S )
R E A I K I O ' I L O S ) « P A R « I + L Q 1 > 1 1 =  1 . N U R D E R >
L Q 1 = L G 1 + N O R D E R  

I F ( I L O S . G T . L K K )  G O  T O  1 1 9  
G O  T O  1 1 5  
C L O S E < U N I T = 1 0 )
I F  I P C  E X C E E D S  I P I  T H E N  I T  I S  T I M E  T O  O B T A I N  N E W  P I T C H  P E R I O D .

I F U P C . L E . I P I )  G O  T O  1 2 B
I P C = 1
I F  I F C  D O E S  N O T  E X C E E D  I L N ( = 1 0 0 >  T H E N  T H E  P R E V I O U S  A N D  C U R R E N T  
F R A M E S  A R E  T E S T E D  T O  S E E  U H E T H E R  T H E Y  A R E  B O T H  V O I C E D .  I F  S O  
T H E N  I T  I S  T I M E  F O R  I N T E R P O L A T I O N . ( D E F I N E  N E W  P I T C H  P E R I O D  
G A I N  A N D  P A R C O R ) . A F T E R  I N T E R P O L A T I O N  N E W  S A M P L E S  A R E  

S Y N T H E S I S E D  U N  T I L L  I P O I P I .
I F « I F C , L E , I L N )  G O  T O  9 2

I F C = I F C ~ I L N
I F ( N B . G T . L K K )  G O  T O  1 0 0 0
C O P Y  A L L  T H E  C U R R E N T  F R A M E  V A L U E S  T O  T H E  P R E V I O U S  F R A M E  A N D  
G E T  R E A D Y  F O R  R E A D I N G  N E W  V A L U E S  I N  T H E  C U R R E N T  F R A M E .

C U P Y  P A R C O .
D O  5 2  J = 1 * N O R D E R  
R E < J ) = R V < J >
I P E = I P V

I E N D = I E
C O P Y  T H E  V O I C E D  T O  U N V O I C E D  I N D I C A T I O N  V A R I A B L E  

I E = I V
C H E C K  W H E T H E R  I  H E  P R E V I O U S  O R  L A S  1 T R A U L  I S  U V I U M V O I C E D )



C  I F  U V  T H E N  R E S E T  T H E  B U F F E R  S ( J >  O T H E R W I S E  L E A V E  T H E  B U F F E R
C  S ( J )  U N C H A N G E D .

I F < ( I E N D . E Q . O ) . O R . ( I E . E O . 1 ) )  G O  T O  4 3 2  
H O  4 5 0  J = 1 » N O R D E R  

4 5 0  S < J ) = 0 . 0

C  R E A D  T H E  C O N T R O L  P A R A M E T E R S
C  R E A D  T H E  P A R C O .

4 3 2  D O  5 4  J - l v N O R D E R
5 4  R V  < J ) - P A R  ( J f  L F * I  )

L P l - L P l - f  N O R D E R  
V A R A = F L Q A T ( I G ( N D ) )
I P V = I P ( N B )
N b = N B f 1
I F ( I P V . G T . O )  G O  T O  4 7 0  

G V = V A R A
C  T H I S  F R A M E  I S  U N V O I C E D

I V = 0
G O  T O  4 5

C  T H I S  F R A M E  I S  V O I C E D
4 7 0  I V = 1

G V - V A R A

C  I F  T H E  C U R R E N T  A N D  P R E V I O U S  F R A M E S  A R E  N O T  V O I C E D r T H E N  I T  I S
C  A S S U M E D  T H A T  WE  A R E  G O I N G  T O  D E A L  W I T H  U V  F R A M E S . T H E R E F O R E
C  T H E  F R A M E  L E N G T H  I S  S E T  T O  1 0 0 < B Y  S E T T I N G  I P I = 1 0 0 )  A N D  W A R P I N G
C  R A T 1 0 < W A R )  I S  S E T  T O  0 .

9 2  I F <  < I V . E Q . 1 > . A N D . ( I E . E Q . 1 > )  G O  T O  8 9 1

I P I - I P E
• I F ( I E . E Q . 0 )  I P I = I L N - I F C t l  

C  U N V O I C E D  F R A M E
W A R - 0 • 0  
G O  T O  1 9 9

C  F O R  V O I C E D  F R A M E S  C A L C U L A T E  T H E  W A R P I N G  R A T I O  A N D  I N T E R P O L A T E
C  ( U S I N G  S T R A I G H T  F O R W A R D  L I N E A R  I N T E R P O L A T I O N )  T H E  N E W  P I T C H
C  P E R I O D .

8 9 1  W A R - F L O A T  < I F C - 1 ) / F L O A T ( I L N - 1 )
D U L = < F L O A T  < I P M - I P E ) ) * W A R T  F L O A T ( I P E )

C  C O N V E R T  T O  I N T E G E R  N U M B E R
I P I - I F I X ( D D L )

CC
[ D R I V I N G  F U N C T I O N  F O R  V O I C E D  F R A M E
C  I F  F R E - E M P H A S I S  H A S  B E E N  A P P L I E D  I N  T H E  A N A L Y S I S

C  T H E N  D E - E M P H A S I S  M U S T  B E  A P P L I E D  A T  T H E  O U T P U T
C  O F  T H E  S Y N T H E S I S  F I L T E R .

C  N E X T  TWO I N S T R U C T I O N  G I V E S  A P P R O X I M A T E L Y
C  Z E R O  M E A N  E X C I T A T I O N .

1 9 9  D R I - 1 . 0
E X - - 1 . 0 / < I P I - 1  )

C  I N T E R P O L A T E  P A R C O  C O L F F .  U S I N G  P R E V I O U S  A N D  C U R R E N T  F R A M E  P A R C O R
n o  1 1 0  J - l f N U R D E R  
R N ( J ) - ( R V ( J ) R E ( J ) ) * W A R  1 R h  < J )

I F < R N < J ) . 0 1 . 1 . 0 )  I T P E  5 5 5 5  » N D  

1 1 0  C U N I I N U t
G A - ( G V  G E ) * W A R T G E

C  S T O R E  N I L  P I T C H  S Y N C H R O N O U S  C O N T R O L  P A R A M E T E R S
I F P i M P l  > I I  I

n
 n

 n

C

1 1 4

C

6 0 0

6 0 1
4 0 0

1 2 8

C
1 4 2

C

C

1122
1 1 2 3

C

C

C

C

2 9 9 9

C
1000

666

I F G ( N P 1 ) = I F I X ( G A )
S T O R E  P A R C O . < I N T E R P O L A T E D )
D O  1 1 4  1 = 1 r N O R D E R  
S P A < I + L P 2 ) = R N < I )
N P 1 = N P 1 + 1  
L P 2 = L P 2 f N O R D E R
C O N V E R T  T H E  I N T E F x P O L A T E D  P A R C O  T O  P R E D I C T O R  C O E F F I C I E N T S  
P R E D < 1 ) = R N < 1 )
D O  4 0 0  I = 2 » N O R D E R  
P R E D ( I ) = R N ( I )
D O  6 0 0  J = 2 » I
G A M A ( J ) = P R E D  < J - 1 ) - R N ( I ) * P R E D < I  + 1  -  J  )

D O  6 0 1  J - 2 » I  
P R E D ( J - l ) = G A M A < J )
C O N T I N U E
I F  T H E  C U R R E N T  F R A M E  I S  U N V O I C E D  S E T  T H E  E X C I T A T I O N  B Y  
R A N D O M  N O I S E  U N I F O R M L Y  D I S T R I B U T E D  A N D  A M P L I T U D E  I S  B E T W E E N
- 1  A N D  + 1 . ( R A N ( J R » K R ) ------R A N G E  I S  B E T W E E N  - 1  A N D  1 )

I F ( I E • E Q • 1 )  G O  T O  1 4 2  
D R I - ( R A N ( J R » K R ) * 2 . 0 - 1 . 0 )
P E R F O R M  R E C U R S I V E  F I L T E R I N G .
T E M P = D R I * G A  
D O  1 1 2 2  1 = 1 » N O R D E R  
J K I = N 0 R D £ R - I + 1  

' P E R F O R M  F I L T E R I N G  
T E M P = T E M P + S < J K I ) * P R E D < J K I )
I F < J K I - 1 • E Q • 0 )  G O  T O  1 1 2 3  

S T O R E  T H E  P R E V I O U S  S A M P L E S  

S ( J K I ) = S ( J K I - 1 )
C O N T I N U E  

S ( 1 ) = T E M P
D E - E M P H A S I S » Y < N ) = Y < N ) + 0 . 9 5 * Y ( N - l )

Y ( M P ) = T E M P T P O S * Y P
D R I = £ X
S T O R E  T H E  S Y N T H E S I S E D  S A M P L E  
Y P = Y < M P )
I F C = I F C + 1  
M P = M P + 1  
I P C - I P C f 1
C H E C K  W H E T H E R  F R A M E  I S  C O M P L E T E D
I F i M P . L E . 1 0 0 )  G O  T O  1 9
M F - 1
S T O R E  A L L  T H E  1 0 0  S Y N T H E S I S E D  S A M P L E S  I N  M E M O R Y  

B O  2 9 9 9  J = l » 1 0 0
I O U <  J I L L A )  =  I F I X  < Y ( J ) ) / F L O A T ( I S U 1 )

L L A = L L A + 1 0 0  
G O  T O  1 9
S E N D  T H E  S A M P L E S  T O  D / A .
C A L L  D I S F ' L Y  ( N L « * 1 Ö 0 »  I O U (  1 ) )
W R I T E < 3 » 2 2 6 ) < I O U < I ) » I = 1 » N D * 1 0 0 )
T Y P E  * » ( '  P I T  I N P I T  G A I N  I N T G A I ' )
T Y P E  6 6 6 » ( l F ' < l ) » I F P ( I ) » I G ( I ) v I F ' G ( I ) » I  =  l » N P i )
F O R M A T ( I 5 » 4 X » I 5 » 4 X » I 7 » 4 X » I 7 )

I L 0 S = 1

I K I I - 2 * N P 1
D E F I N E  F I L E  1 3 ( 1 » I K U » U » 1 L O S >



9 8 8 8

9 2 8 2

8 3 3 2

S j j j

W R I T E ( 1 3 ' I L O S ) ( I F P ( I ) » I F G ( I ) r 1 - 1 f N P I )
C L O S E ( U N I T ® 1 3 )
L A M - 0  

I l . O S =  1
D E F I N E  F I L E  1 4 ( N P 1 * 2 4 * U » I L O S )
W R I T E < 1 4 '  I L O S )  < S P A <  I + L A M )  » 1 =  1 f N O R D E R )
L A M = L  A M f N O R D E R
I F ( I L O S « G T •N P 1 ) G O  T O  9 2 8 2
G O  T O  9 8 8 8
C L O S E ( U N I T = 1 4 )
T Y P E  8 3 8 2 f N P 1
F O R M A T < '  N U M B E R  O F  P I T C H  S Y N C H R O N O U S  B L O C K S ® ' f I 5 >  

F O R M A T < '  B L O C K  I S  U N S T A B L E ® ' f 1 7 )
S T O P
E N D

Ab.3 Assembly program for output of speech samples

A S S E M B L Y  P R O G R A M  T O  

O U T P U T  T H E  S P E E C H  S A M P L E S

1 o u t p u t S A M P L E S  A R E  S E N T A T  8 K H Z  V I A  D / A .

. T I T L E O S C I L L O S C O P E
« G L O B I . D I S P L Y

» A D D R E S S E S  O F  T H E  O U T P U T P O R T
O U T P U T = 1 7 7 7 7 6
s t o r e : . W O R D 0
A D D R E S S . W O R D 0
t e m p i : . W O R D 0
» M A I N  E N T R Y  O F  T H E  P R O G R A M
b i s p l y : M O V < R 5 ) + r S T O R E fN U M B E R  O F  A R G U M E N T S

M O V e < R S ) + r S T O R E » S T O R E  ' N '
M O V < R 5 ) + f A D D R E S

» I N I T I A L I S E  T H E  C O U N T E R
M O V f O O O O O O  » R O
M O V R O  t R 4

? S T A R T  T H E  L O O P
M O V ♦ 000000 r R 4

t e s : M O V S T O R E f R 3
M O V A D D R E S v R l

p o p  : M O V ( R 1 ) P » R 2
i L S 1 3 - B I T S  A R E  T H E  P C M  S A M P L E S . H O W E V E R
9 T H E ' D / A I S  H A R D W I R E D  T O M S 1 2 - B I T S »
f T H E R E F O R E  T H E  F O L L O W I N G T H R E E  S H I F T S
» A R E  N E C E S S A R Y .

A S L R 2
A S L R 2
A S L R 2

» S E N D  T H E  O U T P U T  S A M P L E .
M O V R 2 » ( ? # 0 U T P U T

9 T I M E  D E L A Y  T O  O B T A I N  1 2 5 U S  ( 8  K H Z )
A D D ♦ 0 0 0 0 0 1 f R 2
A D D # 0 0 0 0 0 1 f R 2
A D D ♦ 0 0 0 0 0 1 f R 2

M O V # 0 0 0 0 0 0  f ( ? # T E M P 1
M O V S T O R E  f R 2
D E C R 2

9 S O F T W A R E  T I M E R
A D D ♦ 0 0 0 0 0 1 f R O
A D C R  4
C M P ♦  0 0 0 0 1 7  f R 4
B E O O U T
D E C R 3
B N E C O M P E N
J M P 3 i

3 $ : J M P T E S
9 T I M E  C O M P E N S A T I O N
c o m p e n : M O V S T O R E fR 2

M O V A D D R E S  f R 2
M O V K 2 f R 2
J M P P O P

o u t : R T S P C
. E N D D I S P L Y



o
o

n
n

n
n

n
n

n
n

n

A5.7 Fortran program lis t in g  of the cluster analyses

C L U S T E R  A N A L Y S I S  P R O G R A M  -  1 C
20

T H I S  P R O G R A M  I S  W R I T T E N  I N  F O U R  S E C T I O N S : -  C
( 1 )  D I S T A N C E  M A T R I X  C A L C U L A T I O N S
( 2 )  I N I T I A L  C O N F I G U R A T I O N
( 3 )  N O N L I N E A R  M A P P I N G  A N A L Y S I S  6 
< J ) C R E A T I N G  R E F E R E N C E  T E M P L A T E S

F E A T U R E  V E C T O R J - P A R C O R  C O E F F I C I E N T S
D I S T A N C E  M A T R I X  C A L C U L A T I O N S  1 0

D I M E N S I O N  D I S ( 2 0 r 2 0 )  » Z  < 1 2 0 0 ) r Y ( 1 2 0 0 >  C
I N T E G E R  R A U M A X  r C O L M A X  r 1»»P U  

T Y P E  1
1 F O R M A T ( '  H O U  M A N Y  T O K E N S ? « ' * )

A C C E P T  *  t I R O U
N = I R 0 U / 2 + 1 0  C
M l  - 0
K U - 1 0

C  I M I N - R O U r J M I N — C O L U M N  C
7 5  I M I N - M 1  + 1

JMIN-M1-f 2
C  T H E  S T A R T  F I L E  I S  1 1 .  4 0

K U = K U + 1  
L P - 0

C  R E A D  T H E  F I L E  3 0

I L U S = 1
D E F I N E  F I L E  K U ( 2 t 1 2 0 0 , U , I L U S )

6 R E A D  ( K U ' I L O S ) < Z  < I + L P ) , 1 = 1 , 6 0 0 )
L P - L P + 6 0 0
I F ( I L 0 S . G E . 3 )  G O  T O  1 0  

G O  T O  6
1 0  C L O S E  < U N I T = K U >  C

P - 0 .

C  P A R C O R  C O E F . « 1 2 » F R A M E S - 5 0  C
D O  2 5  K 1 = 1 , 6 0 0

C  C A L C U L A  I E  T H E  D I S T A N C E
P l = Z ( K i > - Z < K l i 6 0 0 )  7 0
P 2 - P 1 4 P 1  

2 5  P * P i P 2
D I S < I t t I N r J M I N ) - S U R T < P )  6 0
I F ( K U . E Q . N )  G O  1 0  1 0 0
P U - K I J

L 1 - I M I N L 2
l  2 - I M I N T 3  4 2

3 0 0  P l l —P l i  1 1 C
1 1 0 5 = 1  C

C S I N C E  I H I  D I S T A N C E  M A T R I X  I S  C
C  S Y M M E  I R  l  CAL.  , C A I  C U L A T E  O N L Y  H A L F
C D I S T A N C E  M A T R I X .

1 0 A L  I  P - 0
D E F I N E  F I L E  F U ( 2 »  J 2 0 0 , 1 1 , I L O S )

/ R E A D ( P U ' I l  O S ) < Y  < I  « I P ) » 1 =  1 » 6 0 0 )
I PJM 600
I f  < i L O S . G E . . 5 )  G Ü  I O  2 0  

G O  I O  / 8 0

S T A R T  F I L E  N A M E  1 1

K U = K U f 1
L P - 0
R E A D  T H E  F I L E  
I L 0 S = 1
D E F I N E  F I L E  K U < 2 r 1 2 0 0 , U , I L O S )
R E A D ( K U ' I L O S ) ( Z < I T L P ) » 1 = 1 » 6 0 0 )
L P = L P + 6 0 0
I F < I L O S • G E • 3 )  G O  T O  1 0
G O  T O  6
C L O S E ( U N I T = N U )
1 2  P A R C O R  C O E F F I C I E N T S  A R E  C O N S I D E R E D
D O  3 0  1 = 1 » 1 2
L = 0

S = 0 .
Q = 0 .
5 0  F R A M E S  A R E  C O N S I D E R E D .
D O  4 0  J = 1 » 5 0  
S = S  + Z  < I +  L )

C A L C U L A T E  T H E  V A R I A N C E S  I N  1 2  D I M E N S I O N S .  
Q = G F Z < I T L ) * Z ( I + L )
L = L T 1 2  
C O N T I N U E  
D A D ( M P T I ) = S  
D S Q  < M P + 1 ) = Q  
C O N T I N U E  
M P = M P + 1 2  
D O  6 0  1 = 1 , 1 2  

L = 0 .
S = 0 .
Q=0 •
D O  7 0  J = 1 , 5 0
A D D  C O R D I N A T E S  I N  E A C H  D I M E N S I O N .
S = S + Z ( I + L + 6 0 0 )
A D D  T H E  V A R I A N C E S  I N  E A C H  D I M E N S I O N .
0 = 0 + Z < I T L T 6 0 0 ) * Z  < I T L + 6 0 0 )
L = L T 1 2  
C O N T I N U E  
D A D ( M P T I ) = S  
D S Q ( M P F I > = Q  
C O N T I N U E  
M P = M P T 1 2
I F ( K U . E Q . N )  G O  T O  4 2  

G O  T O  2 0  
M A X = - 9 0 0 0 .
A R R A N G E  V A R I A N C E S  V I  TO  V I 2  I N  D E S C E N D I N G  

O R D E R .
S E L E C T  T H E  F I R S T  TWO V A R I A N C E S  
M I N = - 8 0 0 0 •
L P - 0
V 1 = 0 .

D O  8 0  . J - 1 , 1 6  
V 1 = V 1 » D S O C L P T 1 )  
V 2 - V 2 T D S Q ( L P T 2 )  
L P = L P I 1 2



r
, 

n
 n

 n
 n

2 0  C L O S E ( U N 1 T = P U )

R = 0 .  7 2 5
S=0.
P = 0 .
0 = 0 .'

H O  2 6  J = 1  » 0 0 0  

P 1 = Z < J ) - Y ( J )
Q 1 » Z < J F 6 0 0 ) - Y < J )
R 1 = Z < J ) - Y < J + 6 0 0 )
S 1 = Z < J + 6 0 0 > - Y < J + 6 0 0 >
P 2 » P 1 * P 1
0 2 = 0 1 * 0 1  2 6
R 2 = R 1 * R 1
S 2 = S 1 * S 1
P = P + P 2
0=0+02
R - R + R 2  1 2 0
S - S i S 2

2 6  C O N T I N U E

C  S T O R E  T H E  D I S T A N C E  M A T R I X  V A L U E S .  9 0
D I S ( I M 1 N , L 1  ) = S G R T ( P )  C
D I S < I M I N , L 2 ) = S 0 R T < R )  C

D I S < J M I N , L 1 > = S Q R T < Q )  C
D I S ( J O I N , L 2 ) = S G R T  < S )  C
L l - L l f 2  C
L 2 = L 2 + 2

I F ( P U . E O . N )  G O  T O  2 0 0  7 5
G O  T O  3 0 0  

2 0 0  M l = M l + 2
G O  T O  7 5

C P R I N T  O U T  T H E  D I S T A N C E  M A T R I X

1 0 0  T Y P E  5 0 0  7 6
5 0 0  F O R M A T < / / , 3 8 X t '  I N T E R V E C T O R  D I S T A N C E  M A T R I X ' / )

T Y P E 4 0 0 , <  < D I S < 0 , M > , M = 1 r I R O W ) , D = 1 » I R O N )

4 0 0  F O R M A T ( 1 6 F 6 . 3 )  1 9 2
I L 0 S = 1  3 0 0
I P = I R O W * I R O U  

I K U - 2 * I P
D E F I N E  F I L E  1 ( 1  » I K U , U , 1 L 0 S )
W R I T E ( 1 '  I I . O S ) < < D I S < D , M >  , M « 1  , I R O W ) , D = 1 , I R O W )
C L O S E  ( U N I  T E D  4 0 0
S T O P

E N D  5 0 0

I N I  T I  A l .  C O N F I G U R A T  I  O N
C H O O S E  A N  I N I T I A L  2 - S P A C E  C O N F I G U R A T I O N  F O R  N  P O I N T S .
I N I T I A L  C O N F I G U R A T I O N  F O R  T H E  V E C T O R S  I S  P O U N D  B Y  P R O J E C T I N G  

T H E  L - H T M L N S I  O N A L  D A T A  U R T H O G O N A l  L Y  O N  T O  A  D - S P A C E .

D I M E N S 1 O N  / < 1 2 0 0 ) ,  D A D ( 2 0 0 ) ,  D S O < 2 0 0 > , R <  2 0 , 2  >
J H U  G E R  D  

T Y P E  1
F O R M A T « '  HO W  M A N Y  T O K E N S « ' * ) C

A C C E P T  * , 1 R ( J W C
N  ( J R U W / 2 ) + 1 0 C
M F =0 c
K U - 1 0 c

T Y P E  7 2 5 , V I , V 2
F O R M A T  < * V I  =  ' , F 2 0 . 5  , '  V 2 = ' , F 2 0 . 5 >
M A X = V 1
M I N = V 2
I F I R S T = 1
I S E C 0 N = 2
I F ( V I . G T • V 2 ) G O  T O  2 6
M A X = V 2
M I N = V 1
I F I R S T = 2

I S E C 0 N = 1
D O  9 0  J = 3  » 1 2
L P = 0
V 1 = 0 .

D O  1 2 0  1 = 1 , 1 6  
V 1 = V 1 + D S Q < J + L P )
L P = L P + 1 2
I F ( V I . G T • M A X ) G O  T O  7 5  
I F ( V 1 . G T . M I N )  G O  T O  7 6  
C O N T I N U E
O N C E  T H E  D I M E N S I O N  I S  K N O W N , T H E N  

T A K E  T H E  C O R D I N A T E S  C O R R E S P O N D I N G  

T O  T H A T  D I M E N S I O N S . T H O S E  C O R D I N A T E S  
W I L L  B E  T H E  S T A R T I N G  P O I N T  F O R  T H E  
N O N L I N E A R  M A P P I N G  A N A L Y S I S .
G O  T O  1 9 2
M I N = M A X
M A X = V 1

I S E C O N = I F I R S T  
I F I R S T = J  
G O  T O  9 0  
I M I N = V 1  
I S E C O N = J  
G O  T O  9 0

T Y P E  3 0 0 » I F 1 R S T , I S E C O N
F O R M A T (' I F I R S T = ' r 1 3 , '  I S E C O N « ' , 1 3 , / )
L P = 0
D O  4 0 0  1 = 1 , I R O W  
R  < 1 , 1 ) = D A D < I F I R S T + L P )
R < I v 2 ) = D A D ( I S E C O N + L P )
L P = L P + 1 2
T Y P E  5 0 0 ,  ( ( R ( D , M )  , M = 1 , 2 )  , D = 1 ,  I R O U )
F O R M A T ( F 1 8 . 1 2 , 4 X , F 1 8 . 1 2 )
I L 0 S = 1
I P = 2 * I R 0 W
I K U = 2 * I P

D E F I N E  F I L E  4  ( 1 ,  I K I J , U , I L O S )
W R I T E  < 4  ' I L O S ) < <  R  < D , M ) » M = 1 , 2 ) » D = 1 , I R O W ) 
C L O S E ( U N I T = 4 )
S  TOT- 

E N D
N O N L I N E A R  M A P P I N G  A N A L Y S I S

I F  T H E  - S T R E S S *  C A L C U L A T E D  A F T E R  ' P '  

I T E R A T I O N S  I S  >  . 0 5  B U T  <  0 . 1 0  T H F N  T H E  
M A P P I N G  I S  A S S U M E D  T O  B E  S A T I S F A C T O R Y .



f
in

n
 

n
 n

 
o

n I F  0  <  S T R E S S  < 0 . 0 5  T H E N  T H E  R E S U L T  I S  

I M P R E S S I V E .
D I M E N S I O N  D I S C  2 0 . 2 0 ) . U P D I S ( 2 0 . 2 0 ) . Y 2 D < 2 0 . 2 )
D I M E N S I O N  X T ( I O O ) r Y T ( 1 0 0 )
I N T E G E R  D  
T Y P E  1

1 F O R M A T < '  HO W  M A N Y  T O K E N S » ' * )
A C C E P T  * » I R O W  
T Y P E  4 4 4 4

4 4 4 4  F O R M A T ( '  W H A T  S T R E S S  V A L U E  D O  Y O U  E X P E C T = ' * )
A C C E P T  ttY P A  
T Y P E  5 5 5 5

5 5 5 5  F O R M A T « '  HO W  M A N Y  I T E R A T I O N - ' $ )
A C C E P T  * . N A M A  

I L Q S = 1
I P = I R O W * I R O W  
I K U = 2 * I P
D E F I N E  F I L E  1 ( 1 . I K U . U . I L O S >
R E A D « 1 ' I L O S ) < ( D I S ( D . M ) . M = l . I R O W ) . D = 1 . I R O U ) 
C L 0 S E « U N I T = 1 )
S C A L E  T H E  D I S T A N C E  M A T R I X  B Y  5 0 . ( S I N C E  T H E  
T O T A L  F R A M E  I S  5 0 )
D O  3  1 =  1»  ( I R O W - 1 )
J = I  +  1
D O  4  K = J r I R O W

D I S ( 1 . K ) = D I S ( I . K l / 5 0 •
D I S ( K . I ) = D I S ( I . K )

4 C O N T I N U E

3 C O N T I N U E
C H O O S E  T H E  I N I T I A L  2 - S P A C E  C O N F I G U R A T I O N
T H E S E  C O R D I N A T E S  A R E  C A L C U L A T E D  A N D  S T O R E D  O N  T H E  D I S C

B Y  A N O T H E R  T H E  P R O G R A M .
I L 0 S = 1  
I P = 2 * I R 0 W 

I K U = 2 * 1 P
D E F I N E  F I L E  4 ( 1 . I K U . U . I L O S )
R E A D « 4 ' I L O S ) ( < Y 2 D ( D . M ) . M = l . 2 ) . D = l . I R O U )
C L O S E ( U N I  T =  4 )
D U  5  1 = 1 . 2  
D U  6  J = l » I R O W

6 Y 2 D (  J .  I  ) =  Y 2 D (  J . D / 5 0 .
5  C O N T I N U E

C T E M P O R A R Y
I Y P E  1 1 1 1

1 1 1 1  F O R M A T « / . '  T H E  I N I T I A L  C O R D I N A T E S  I N  2 - S P A C E ' )
T Y P E  O , < ( Y 2 D < D . M ) » M — 1 . 2 ) . D = 1 . I R O W )

U F O R M A T ( F 1 8 . 1 2 . 4 X . F 1 8 . 1 2 )
; C A L C U L A T E  " C “

I X = « I R U W / 2 > * ( I R O W - 1 )
C  - O .
L . - O
D U  V  I N  1 » ( I R O W - 1 )

1 J = I N M
D U  1 0  1 K - I J . I M I U  

K-l\ ♦ 1
1 0  C = C I D I S < I N . I C O

222
110

1 6
15

2 6
2 5

2 8

7 7 7

6 0

C O N T I N U E

N 0 = 0  
M A S = 0  
T Y P E  2 2 2 2
F O R M A T « / . '  T H E  U P D A T E D  S T R E S S  A R E  G I V E N  B E L O W ' )  
M A S = M A S F 1
C A L C U L A T E  T H E  D I S T A N C E  M A T R I X  I N  2 - D I M E N S I O N S  
D O  1 5  I L L = 1 . ( I R O W - 1 )
I J J = I L L + 1

D O  1 6  I N N = I J J  r I R O W  
S 1 = Y 2 D ( I L L . 1 ) - Y 2 D ( I N N . l )
S 2 = Y 2 D ( I L L . 2 ) - Y 2 D < I N N . 2 )
S 3 = S 1 * S 1 F S 2 * S 2  

U P D I S « I L L . I N N ) » S O R T ( S 3 )
U P D I S  < I N N . I L L ) « S O R T ( S 3 )
C O N T I N U E
C A L C U L A T E  T H E  S T R E S S  
E = 0 .
D O  2 5  I L L = 1 . I R O W - 1  
I J J = I L L + 1
D O  2 6  I N N = I J J . I R O W

E 1 = D I S ( I L L . I N N ) - U P D I S ( I L L . I N N )
E 2 = « E 1 * E 1 ) / D I S ( I L L . I N N )
E = E F E 2
C O N T I N U E
E = E / C

T Y P E  2 8 . M A S . E

F O R M A T « '  I T E R A T I O N « ' r 1 4 . '  ) ' » F 1 6 . 8 )
I F ( E . L T . 0 . 2 )  G O  T O  2 0 0  
I F ( M A S . G E . N A M A )  G O  T O  2 0 1  
D O  4 0  1 = 1 . 2  
D O  5 0  J = 1 » I R 0 W
C A L C U L A T I O N  O F  F I R S T  D E R I V A T I V E  
P 1 = 0 .
D O  6 0  K = 1 » I R O W  
I F ( K . E Q . J )  G O  T O  6 0  
P 2 = D I S ( J . K ) - U P D I S ( J . K )
P 2 = P 2 / ( D I S < J . K ) * U P D I S < J . K ) )
P 2 * P 2 * ( Y 2 D ( J . I ) - Y 2 D ( K . I ) )
P 1 = P 1 + P 2
C O N T I N U E
P l = P l * ( - 2 . 0 ) / C

C A L C U L A T I O N  O F  2 N D  D E R I V A T I V E
01=0.
D O  7 0  K A = 1 . I R O W  

I F ( K A . E Q . J )  G O  T O  7 0
0 2 = ( D I S < J . K A ) - U P D I S ( J . K A ) ) / U P D I S ( J . K A )
02=02FI
03=Y2D(J.I)-Y2D(KA»I)
0 4 = 0 3 * 0 3
0 4 = 0 4 / ( U P D I S «  J . K A ) )

0 5 = D I S ( J . K A ) - U P D I S ( J . K A )
0 5 = 0 5 - ( 0 4 * 0 2 )
0 6 = 0 5 / « D I S < J . K A ) » U P D I S ( J . K A ) )

01=011 06



n
n

n
n

n
 

n
n

n
n

7 0  C O N T I N U E

G l = Q l * ( - 2 . 0 ) / C  
Q 1 = A B S ( Q 1 )
U P D A T E  T H E  C O E F F I C I E N T S  
0 . 3  I S  T H E  " M A G I C  F A C T O R * . I T  C A N  T A K E  
A N Y  V A L U E S  D E T W E E N  0 . 3  A N D  0 . 4 .
Y 2 D <  J r  I ) - Y 2 D <  J r  I ) - 0 . 3 * ( P l / U l )

5 0  C O N T I N U E
4 0  C O N T I N U E

G O  T O  1 1 0
2 0 1  T Y P E  2 0 3 r N A M A
2 0 3  F O R M A T ( '  I T E R A T I O N  E X C E E D S ' r 1 6 )

G O  T O  8 0 2
2 0 0  I F ( E . G T • < Y P A ) ) G O  T O  8 0 0

D O  4 4 4  K U S A = 1 r I R O W  
4 4  4 Y T ( K U S A ) = Y 2 D ( K U S A r l )

D O  4 4 5  K A K A = 1 r 1 R Û W  

4 4 5  X T  < K A K A ) “ Y 2 D ( K A K A r 2 )
B 0 2  N = I R O U

T Y P E  888
8 0 0  F O R M A T ( / r S X r * D I h E N S I Ü N - 1 ( X ) '  r 5 X r  '  D I M E N S I 0 N - 2 C Y ) ' r / >

T Y P E  6 6 6 r ( < Y 2 D ( D r M ) r M - l r 2 ) r D = 1 r I R O W )
6 6 6  F 0 R M A T ( 5 X r F 1 0 . 7 r 1 0 X r F 1 0 . 7 )

S T O P
8 0 0  D U  6 4 2  K U S A = 1 r I R O W
6 4 2  Y T ( M J S A ) - Y 2 D ( K U S A r 1 )

D O  6 4 3  K A K A = l r I R O W  
6 4  3  X T  < K A K A ) = Y 2 D ( K A K A r  2  >

G O  T O  7 7 7  
E N D

C R E A T I N G  R E F E R E N C E  T E M P L A T E S

C L U S T E R  C E N T R E S  A R E  O B T A I N E D  B Y  A V E R A G I N G  

P A R C O R  C O E F F I C I E N T S .
D I M E N S I O N  Z ( 6 0 0 ) r Y ( 6 0 0 )
I I . P - 0  
T Y P E  1

1 F O R M A T < '  HOW M A N Y  D A T A  F ' l l . E S - '  $ )
A C C E P T  ♦ »N  
K - 0
D O  0 1 = 1 » 6 0 0  

ü  Y < I ) = 0 . 0
1 0  T Y P E  1 2
1 2  F O R M A I ( '  G I V E  D A T A  F I L E  N A M E = '%)

A C C E P T  * r K U  

I P U - 1
D E F I N E  F I L E  K U <  1 r 1 2 0 O r l J r  I  P U )

5  R L A I K K U '  I P U )  < Z (  I  ) r 1 =  1 r 6 0 0 )

L T . Ü S L  < U N I  1 - K U )
D U  V  I  — 1 r 6 0 0  

V  Y ( 1 ) « Y (  I  H Z (  1 >
K - K I  l
I F ( K . E Q . N )  G U  T O  1 1 1  
G U  1 0  1 0

1 1 1  D O  3 3  J * l r 6 0 0

Y ( J ) = Y ( J ) / F L O A T  < N )

I F ( A D S ( Y ( J ) ) . U T . l .  ) I L P = 1  
3 3  C O N T I N U E

T Y P E  1 0 5
1 0 5  F O R M A T < '  G I V E  T H E  F I L E  N A M E  '  ) 

A C C E P T  %t I K U  
I L 0 S = 1

D E F I N E  F I L E  I K U < 1 r 1 2 0 0 r U r I L O S )  
W R I T E < I K U  ' I L O S ) < Y ( J ) r J - l r 6 0 0 )  
C L O S E ( U N I T = I K U )
T Y P E  2 0 0 r I L P

2 0 0  F O R M A T (* I L P = ' r I 2 >
S T O P

E N D



C  P R O G R A M  F U R  C A I  C U l . A f  I N G
c  I - - R A T I O  100

D I M E N S I U N  I  S I  ( 4 0 )  » X T  ( 2 0 )  It»
m o r o s  i o n  p k i o o ) »  u t  i i o o > » r i < i o o  > * u  r  < 20  >

«; I N I  1 1 A L Í Z A T I U N  1 0 2
D O  1 2  1 - 1 * 2 0  C
U I ( I ) - O • 0  c

1 2  X T ( 1 > = 0 . 0  C
T Y P E  1

1 F O R M A T (' G I V E  I H E  F I L E  N A M E S  O F  S P E A K E R  ' >
C  F O U R  S P E A K E R S  ( E A C H  G A G E  1 0  U T T E R A N C E S )

A C C E P T  4  * ( I S 1 ( I ) » 1 — 1 » 4 0 )
T Y P E  2 » ( I S 1 ( I ) » I — 1 » 4 0 )

2  F O R M A T < / * 1 0 I 3 >
C  R E A D  F I L E  1 0  < I  , E .  = S P K 1 + S P K 2 +  S P K 3 F S P K 4 / 4  )

I K U - 1 0
1 L 0 S - 1  C
D E F I N E  F I L E  I K U ( 1 » 2 0 0 » U r  I L O S )
R E A D ( I K U '  I L O S ) ( P T (  I  > » 1 =  1 » 1 0 0 )
C L O S E  <U N I T - I K U )
L Q - 0  2 6

C  S E G M E N T A T I O N  A N D  D A T A  R E D U C T I O N
D O  3  J - l » 2 0  
P A L - 0 . 0
D O  4  K - l * 5  2 5

A P A L “ P A L T P  i ( K I L O )  C
P A L  = P A L / 5 . 0  
P T ( J ) - P A L  
L 0 - L Ü T 5

3  C O N T I N U E  2 2 5
C  M E A N  OF S P K 1 = F T W 1 . D A  I »M E A N  O F  S F K 2 = F T N 2 . D A T

C  M E A N  O F  S F ' K 3 = F T N 3  • D A T  » M E A N  O F  S P K 4 = F T N 4 . D A T
C  R E A D  T H E  F I L E S

I K U = 1
2 0  I L  0 S = 1

D E F I N E  F I L E  I K U ( 1 » 2 0 0 »U » I L O S )
R E A D <  I K U ' I L O S X Q T d ) » 1 =  1 » 1 0 0 )
C L O S E < U N I T = I K U >

C  S E G M E N T A T I O N  A N D  D A T A  R E D U C T I O N  3 6
L 0 = 0
D O  5  J =  1 * 2 0  
P A L - 0 . 0
D O  6  k  - l  » 5  3 5

A  P A L  - = P A L  I U T  ( K  F L O )
P A L - P A L / 5 . 0
0 1 ( J ) = P A L  8 0
U l - L t l l  5

5  C O N T I N U E  9 0
C  E V A L  U A I E  H I E  N U M E R A  I O R  ( 1 . E  » V A R I A N C E  O F  S P E A K E R

C  M E A N S )  4 0 0
D U  Ü  1 - 1  » 2 0  ‘10
S l - P Í  < I  ) ( 1 1 (  I  )  C

II R I < I ) l i l l i i l

D U  1 0  1 1 » 2 0
l o  U  I d  ) U i  ( f )  T R X  1 ) 5 0 0

II.II II. IJ I1
II < l k l l . f c Ü . 5 )  (Ml IU  100 ¿00
H U  111 '•.*

c  i 2 o . o  i s  m i  st:/.i  i  i  A t . i n k

D O  1 5  J - l » 2 0
U I t J ) - U I ( J ) 4 1 2 0 . 0

T Y P E  1 0 2 » ( U  T d  ) * 1 = 1 » 2 0 )
F O R M A T ( 5 F 1 5 . 5 )
E V A L U A T E  H I E  D E N O M I N A T O R  i l . E .  A V E R A G E  O F  I N I R A -  
S P E A K E R  V A R I A N C E )
h i * l — S P K 1 » M l = 2 — S P K 2 . M 1 = 3 — S P K 3 . M l - 4 — S P K 3  
L  1 =  1
DO  4 0  M l  =  l » 4 
I K U = M 1  

I L . O S -  1
D E F I N E  F I L E  I K U C 1  » 2 0 0 » U »  I I . U S )
R E A D ! I K U ' I L U S ) < P T < I ) » 1 = 1 » 1 0 0 )
C L O S E ( U N I T “ I K U )
L Q = 0
S E G M E N T A T I O N  A N D  D A T A  R E D U C T I O N
DO  2 5  J = 1 * 2 0
F A L = 0 . 0
D O  2 6  K = 1  * 5
P A L = F * A L + P T  ( K + L . Q )
P A L = P A L / 5 . 0  
P T ( J ) = P A L  
L 0 = L Q + 5  
C O N T I N U E

M 2 = l  T O  1 0  = = >  1 0  U T T E R A N C E S  
D O  4 0 0  M 2 = l » 1 0  
I L A = I S 1 ( L I >
T Y P E  2 2 5 * I L A
F O R M A T < '  F I L E  N A M E “ ' . 1 5 )
I L 0 S = 1
D E F I N E  F I L E  I L A i 1 * 2 0 0 * U * I L Ü S )
R E A D ( I L A ' I L O S ) ( Q T ( I ) * 1 = 1 * 1 0 0 )
C L O S E ( U N I T “ I L A )
L Q = 0
D O  3 5  J = 1 * 2 0  
P A L = 0 . 0  

D O  3 6  K = 1 » 5  
P A L = P A L + Q T ( K + L O )
P A L - = P A L / 5  • 0  
Q T ( J ) * P A L  
L Ü - L Ü Y 5  
C O N T I N U E  
D O  8 0  I  = - 1 . 2 0  

S T = P T ( I ) - Q T ( 1 )
R T < I ) = s  r * s I  
D O  9 0  1 = 1 * 2 0  
X T ( I ) = X T ( I ) F R T ( I )
L 1 = L 1 + 1  

C O N T I N U E  
C O N T I N U E
C A L C U L A T E  H I E  F R A T I O  
D O  5 0 0  J = 1 » 2 0  
P T ( J ) - U  I ( .J) / X T  < J )
C O N I 1 N U L

T Y P E  6 0 0 »  < J » P 1  < J > »  J  1 *  2 0 )
1 U R M A  I ( '  L R A l J l J (  * t 2 *  ) - ' *
S T O P  
E N D

I 15.5)



Ab.9 Fortran program lis t in g  of the d ig it  recognition system

I S O L A T E D  W O R D  R E C O G N I T I O N

P R O G R A M  4 4 1
C

T H R E E  F E A T U R E  V E C T O R S  S U C H  A S  P A R C O R  C O E F F .
L O G ( A R E A )  A N D  A R C S I N ( P A R C O R )  A R E  T E S T E D
U S I N G  T H I S  P R O G R A M . T H E  V O C A B U L A R I E S  U S E D  A R E  8 1 4
D I G I T S  O N E  T O  N I N E ( I N C L U D I N G  Z E R O )  A N D  L E T T E R  4 4 8
' O H '  .

I T  I S  A S S U M E D  T H A T  T H E  R E F E R A N C E  T E M P L A T E S  C
A N D  S P E E C H  S A M P L E S ( A F T E R  E N D P O I N T  D E T E C T I O N )

A R E  A V A I L A B L E  O N  D I S C .
B E F O R E  S T O R I N G  T H E  S P E E C H  S A M P L E S  O N  D I S C  C
T H E Y  A R E  S U B J E C T E D  T O  L I N E A R  A M P L I T U D E  S C A L I N G  C
A N D  P R E - E M P H A S I S .  C
D I M E N S I O N  Y ( 1 4 ) » E < 1 1 6 ) » D ( 1 1 6 ) » I Z ( 2 0 ) » T E P Í 6 6 0 0 )  1 0 0
D I M E N S I O N  P A R ( 7 5 0 ) » U A R ( 8 0 0 ) » Q A P ( 7 5 0 )  7 5
R E A L  M I N » N E X T  C
R E A L  K A L I
T Y P E  4 2  2

F O R M A T ( '  H O W  M A N Y  F E A T U R E  V E C T O R S ( M A X . = 3 ) = ' $ )
A C C E P T  * » I T E
T H E  N U M B E R  O F  R E C O R D S  I S  O B T A I N E D  F R O M  C
T H E  E N D P O I N T  D E T E C T I O N  P R O G R A M .  C
T Y P E  1 C
F O R M A T ( '  N U M B E R  O F  R E C O R D S ^ ' * )
A C C E P T  4  » I B L O C K  1 0 5
I L 0 S = 1

D E F I N E  F I L E  2 ( I B L O C K » 2 3 0 » U » I L O S )  C
L P = - 0  C
R E A D  E A C H  F R A M E  T O  C A L C U L A T E  P A R C O R  C O E F F .
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figure Captions
F ig , 10

F ig . 1

F ig . 2 

F ig . 3

F ig . 4

F ig . 5

F ig . 6

F ig . 7

F ig . 8

Plot of the number o f samples and summations (necessary fo r  the 

ca lcu latio n  o f the PA2, MPA2, AMDF) versus the t r ia l  period.

Block diagram of the p itch  e xtraction  system

Oscilloscope traces o f PA2, PA3, PA4 and AMDF of the voiced section 

of the utterance “one" fo r high StIR.

Oscilloscope traces o f PA2 and AMDF o f the voiced section o f the 

utterance “one" fo r 10 dB SNR.

Pitch period analysis  (PA1*) fo r a 310 Hz sine wave for high SNR 

and for 10 dB SNR.

Oscilloscope traces o f the onset of vo icing (frame s iz e  25 ms) and 

the periodogram.

Oscilloscope traces o f the t r a i l in g  portion of the voiced speech 

(frame s ize  25 ms) and the periodogram.

Pitch period contour fo r  “we were away a year ago".

(without non-linear smoothing).

In tensity contour of the utterance "we were away a year ago".

(male speaker o n ly).

Table 1 

Table 2

F ig . 9

plow chart to generate PA2 in real-tim e

For PA3 and MPAS IC = IS(M) +IS(M+H) + IS(M+211)
For PA4 and MPA4 IC = IS(M) + lS(M+il) + IS(M+2t() + IS(M+3N)

For the ca lcu la tio n  of MPA2, MPA3 and MPA4 the dashed 
block could be omitted.

N - T r ia l  Period, IS=Speech samples 
IC « sums of the column
IG and IL  are the greatest and the le a s t  values resp e ctive ly . 

The 6u ys-6a llo t Table

Some re su lts  of the gross errors committed by TDPA before and 
a fte r  adding noise samples to speech s ig n a ls .



Table 1

1s t  row S ( l )  S ( 2 ) .....................-  S ( N)

2nd row S(N+1) S(N+2) — .............S(2N)
I I

I I  I I
I I  I I
I I  I I
I I  I I
I I  I I

(m - l) th row S ( (m-2) N +l) S((m -2)N+2) - —  S((m -1)N )

mth row S((m -1)N+1) S ((m -l)N + 2 ) -------  S(mN)

suras C(1) C ( 2 ) ..............C(N)

Table 2

S/N R a tio
(dB)

U tterance
and

D u ratio n

NUMBER OF GROSS ERRORS TYPE OF

PA2 PA3 PA4 MPA3 MPA4
~SPEAKER

38 MUMMY 
465 ms

2 1 2 2 2
MALE

5 4 5 3 4 3
(S P K -1 )

30 MUMMY 
500 ms

2 0 0 2 1
MALE

5 3 3 2 5 4
(SP K-2)

31 MUMMY 
590 ms

3 3 2 4 6
FEMALE

8 7 7 5 9 6
(SP K-3)

41 ONE 
565 ms

5 5 5 5 5
MALE

8 5 3 5 5 3
(S P K -4 )

48 ONE 
550 ms

2 2 2 2 2
CHILD

18 10 7 4 6 6
(SP K-5)

36 ONE 
563 ms

9 9 2 7 2
FEMALE

10 15 6 7 5 7
(SP K-3)
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FIG-IO

APPENDIX I

The original periodogram algorithm can be described as follows: 

by using the Buys Ballot table (Table 1) one can form means a ( l ) ,  a(2 ), 

. . .  a(N) of the values of C(n) in the individual columns by dividing C(n) 

by m. That i s ,  a(n) = C(n)/m. Then the correlation ratio  is  defined as 

the ratio of the standard deviation of a(n) and s (n ). That i s ,

n(N) =
1 N p 
1 l (A(n) - a)2

, mN o'
(.1 l (S(n) - ly

N n=l mil n=l
( 1 )

Where a and s are the means of a(n) and s(n) respectively. The number of

rows (m) are obtained from the total number of samples (T) by m = -
l I n t e g e r

The periodogram is  then the plot of n(N) against M. The periodogram for a 

d ig ita l sinusoid would be:-

, i
ns (N) , 1 A2 s in2raI r ~2 ____L '

2 m . 2 Ne sin  —
2

'-U'2

One can see that the calculation of n(N) (equation 1) is  computationally 

in e ffic ie n t, though this periodogram gives accurate pitch estimate and also 

good noise reduction. An alternate form of equation 1 i s : -

1 p f , n«
n(N) = -  1 1 a(n) - a | —  1 |S(n) - s |

H n-1 mN n=l

Replacing the m ultiplication of equation (1) with taking the absolute value 

is  acceptable and causes a large reduction in computational e ffo rt.
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