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Abstract 

Zeolites represent one of the most important groups of industrial heterogeneous 

catalysts with large-scale applications in refining, petrochemistry and increasing potential in 

environmental catalysis and synthesis of fine chemicals. This broad range of catalytic 

applications comes from their unique set of acidic properties; it is therefore, vital to 

understand these properties. 

The main aim of this doctoral thesis is the further study of the acidity properties of a 

variety of zeolite materials using in situ infrared spectroscopy (FTIR) in combination with 

different probe molecules. The focus of the work will be on the generation of accurate 

quantitative and qualitative analysis, and the development of new methodologies for the 

application of various probe molecules with different kinetic diameters and basicity. The 

approaches developed in this research expand upon the characterisation of the nature, 

number, accessibility and strength of acid sites in medium-, large- and mixed pore zeolites 

subject to different synthesis methods and post-synthesis modifications. 

This work demonstrates the importance of cross-validation of data between 

characterisation techniques and significance of utilising different approaches to understand 

interactions between acid site and different probe molecules. This study also provides a 

detailed investigation on the textural, structural and acidity properties in different zeolite 

structures and relevant catalytic materials. The methodologies for the use of various probe 

molecules with FTIR presented offer a better understanding of the acid sites and their 

properties, in a great variety of zeolites and relevant catalytic materials. 
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Chapter 1 Literature Overview 

 Zeolites  

1.1.1 From discovery to synthesis  

Zeolites were discovered in cavities and vugs of basalts more than 250 years ago. The 

Swedish mineralogist Axel F Crønstedt was the first scientist to describe a distinctive 

property of these materials; upon heating in a blow-pipe flame, the mineral released a 

substantial amount of water, which it adsorbed again from the atmosphere on cooling 

without any noticeable change [1]. From this unique behaviour, it was given the designation 

of zeolite, by using the Greek words Zeo ("boiling") and Lithos (stone or rock) [2]. 

There are many naturally occurring zeolites, such as analcime, clinoptilolite, erionite, 

heulandite, laumontite and mordenite, which have valuable properties as sorbents and 

catalysts [3]. Such zeolites, however, often have faults and irregularities in their structures 

and do not meet the huge industry demands [4,5]. The development of synthetic zeolites 

made it possible to adjust their properties, such as pore size and chemical composition. The 

first synthetic zeolites (X, Y and A) started to be used in the industry as adsorbents, ionic-

exchangers (laundry detergents) and, mainly, as heterogeneous catalysts [6,7]. Since then, 

the development of this field was mainly to formulate new materials (e.g. 

aluminophosphates, mesoporous materials) and to improve the characterisation techniques 

[8-10]. 

Having recognised the importance of optimising the size and shape of pores for 

catalytic applications, the number of synthetic zeolites has increased exponentially over the 

last decades. Up to 2018, the International Zeolite Association (IZA) had accepted more than 

240 types of zeolitic structures [11]. Using electron diffraction, X-ray diffraction and 

specific software, numerous zeolites and related materials have been identified, by 

describing the connectivity of the tetrahedral units (TO4). Each framework is identified by a 

three-letter mnemonic code, according to IZA [12], the three-letter code comes normally 
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from the name of the zeolite or “type of material”, for example, FAU from the mineral 

faujasite, LTA from Linde Type A. The IZA association is responsible for listing different 

arrangements, regulating and assigning the classification of the different zeolite structures. 

1.1.2 Definition and structure 

Zeolites are crystalline solids with a well-defined microporous structure consisting of 

molecular scale pores and channels (0.3-2 nm). Their primary units TO4 (SiO4 or AlO4) 

tetrahedra are linked by oxygen (O) atoms at their vertices (Figure 1.1). The angle formed 

by the T-O-T (inter-tetrahedrons) varies in a broad interval (130º-180º) [13], creating a 

variety of known zeolite structures [12,14]. The AlO4 units in the zeolite impart a negative 

charge within the framework which is normally balanced by cationic species (e.g H+, Na+ or 

K+). 

 

Figure 1.1. (a) TO4 tetrahedron (b) TO4 tetrahedra sharing a common O vertex. 

The cations, along with water molecules, occupy the intra-crystalline space of the 

aluminosilicates. These cationic species are retained by steric effects and electrostatic 

interactions and can be exchanged with other cations, making zeolites highly valuable as 

cation-exchangers [5,15,16]. 

The typical chemical composition of the zeolite crystal framework has the following 

empirical formula (Equation 1.1): 

(𝑀𝑚+)𝑦
𝑚 ⁄ (𝑆𝑖𝑂2)𝑥 ∙  (𝐴𝑙𝑂2

−)𝑦 ∙ 𝑧𝐻2𝑂     Equation 1.1 
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Where m is the valence of the cation M, x and y are the total number of tetrahedra of 

Si and Al per unit cell respectively, x/y represents the atomic Si/Al ratio and z is the number 

of water molecules per cell unit [16].  

The ‘aluminium avoidance’ rule (Löwenstein rule) states that whenever two tetrahedra 

are linked by an O bridge if the centre of one is occupied by an Al atom, the other must be 

occupied by Si atom [17]. This rule, therefore, prohibits –Al–O–Al– linkages from occurring 

within zeolites, restricting the minimum Si/Al ratio of any zeolite to unity. Conversely, 

recent investigations into zeolites synthesised at high temperatures have shown non- 

Löwenstein distributions in the various protonated zeolites [18]. 

Different zeolite structural types have been recognized by varying in size, shape and 

connectivity of their channels [14,19]. Due to this variation of the pore size, zeolites can be 

divided into three major groups (Figure 1.2): small-pore zeolites with 8 membered-ring pore 

apertures (e.g. zeolite FER), medium-pore zeolites with 10 membered-ring pore apertures 

(e.g. zeolites MFI or MEL) and large-pore zeolites with 12 membered-ring pore apertures 

(e.g. zeolite BEA or FAU) [19]. Recently, zeolites with extra-large pores (14- 16, 18-, 20-, 

28-, and 30 membered-rings) were also synthesised [5,10]. For all the zeolite topologies, the 

primary arrangements of T atoms are the same and it is possible to build different zeolite 

topologies by assembling different geometric arrangements of SiO4 and AlO4 tetrahedra 

(Secondary Building Units, SBU). 
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Figure 1.2. Classification of zeolites according to their membered-ring openings [12]. 

Medium- and large-pores zeolites are the most commonly used in a great number of 

catalytic reactions [6,20]. However, small-pore systems are particularly efficient in the 

conversion of methanol into olefins, due to the small size of the reactants and products [6,21-

23]. Additionally, the development the extra-large microporous zeolites not only enrich the 

structural chemistry of these materials but also enlarged the potential applications of zeolites 

in catalysis and sorption–separation [10]. 

1.1.3 Properties and applications 

Synthetic zeolites have been used for decades in adsorption and separation [24,25], ion 

exchange [26] and catalysis [7,6,14,20] with new emerging applications in microelectronics, 

medicine and sensor fabrication [27]. The success of these materials is the result of their 

unique set of properties such as high adsorption capacity, intrinsic acidity, hydrothermal 

stability and shape selectivity. Furthermore, they have a good cost/benefit ratio and allow 

clean and ecological processes. Their microporous framework can act as reaction channels 
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in which activity and selectivity are improved through the introduction of active sites. The 

existence of strong electric fields and controllable adsorption properties within the pores 

produce an exceptional characteristic for their use in catalysis and therefore they can be 

considered as catalytic micro-reactors [15]. 

Zeolites with their regular well-defined pore dimensions can discriminate reactants 

and products by size and shape when they present significant differences in diffusivity 

through a given pore channel system [15]. This shape-selective property is very important, 

as most of the active sites are located inside the intra-crystalline pore structure (where 

catalytic reactions mainly occur) [28], which constrains the formation of transition states, 

reaction intermediates and the diffusion of both reactants and products molecules. The size 

and shape of both molecules and zeolite pores influences the diffusion rate inside a zeolitic 

system [15]. For this reason, zeolites can permit or reject the entry of molecules into their 

pores, restrict the formation of some molecules within themselves or prevent their exit 

[15,29]. 

Another important parameter that applies a strong influence in zeolites is their 

chemical composition. These materials can be synthesised over a range of Si/Al ratios which 

directly affect properties such as maximum ion-exchange capacity, thermal and 

hydrothermal stability, hydrophobicity, concentration and strength of acid sites and the unit 

cell dimensions of a zeolite [16]. The ion-exchange capacity of a zeolite is related to its Al 

content, a lower Si/Al ratio (high in Al) results in a higher ion-exchange capacity [16]. A 

great deal of attention has been devoted to post-synthesis methods such as hydrothermal, 

acid leaching treatments and extraction or insertion of Al, able to change the framework 

Si/Al ratio [5,30-32]. However, many elements other than Si and Al can also be incorporated 

in the zeolitic structure; materials containing phosphorous, titanium, vanadium, iron and 

other transition metals in the framework have recently attracted interest as catalysts for 

selective oxidations [33-34]. 
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The acidic nature of the zeolites has always been a major source of interest and is the 

key property for their successful applications; many processes in refinery, petrochemistry 

[20,35-38], fine chemicals [39,40] and environment protection [24,41] require a highly 

efficient solid acid catalyst. These applications are based on the nature, concentration, 

location, accessibility and strength of the acid sites. A detailed description of the acidic 

nature of zeolites will be addressed in Section 1.2. 

The advances in zeolite catalyst technology have changed the nature of the refinery 

and petrochemical processes, requiring less separation, less energy, smaller reactors and 

simple process configurations. 

 Acidity characterisation of zeolite materials 

Several experimental techniques, such as calorimetric measurements [42,43] 

temperature-programmed desorption (TPD) of basic molecules [43-45], 1H, 13C, and 27Al 

solid-state nuclear magnetic resonance (NMR) [43,46-48], theoretical studies [45,49,50] 

infrared (IR) [43,51-54] and Raman vibrational spectroscopies [55-57] are employed to 

characterise the acidic behaviour of zeolites. 

1.2.1 Infrared spectroscopy - basis concepts 

The infrared (IR) corresponds to a specific variation of the electromagnetic spectrum 

(from 12000 to about 20 cm-1), where its interaction with a specific molecule produces 

changes in their vibrational and rotational behaviour. This changes can provide information 

about molecular vibrations and can discriminate the different geometrical distortions of the 

molecules according to the adsorption state on a site [52]. 

Based on an approximation to the simple harmonic oscillator, each normal mode of 

vibration of a polyatomic molecule acts as an independent oscillator (without interaction). 

On the other hand, each normal mode of vibration has a fundamental characteristic, νj: 

 𝜈𝑗 =
1

2𝜋
(

𝑘

𝜇
)

1/2

                                                                                           Equation 1.2 
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where νj is the frequency of vibration (s-1), k is the force constant (Kg·s-2) and µ is the reduced 

mass (Kg), this equation shows that the frequency is directly proportional to the force 

constant and indirectly proportional to the mass of the atoms involved in the vibration. The 

variation of µ is successfully used to identify functional groups [58,59]. 

 An IR spectrum is displayed as a plot of the energy of the infrared radiation (usually 

expressed in wavenumbers) versus the percentage of light transmitted by the compound. The 

spectrum of the molecule appears as a series of broad absorption bands or peaks of variable 

intensity; each provides structural information. Each absorption band or peak in the spectrum 

corresponds to a vibrational transition within the molecule and gives a measure of the 

frequency at which the vibration occurs. However, for a particular vibrational mode to 

absorb infrared radiation, the vibrational motion associated with that mode must lead to a 

change in the dipole moment of the molecule. 

IR spectroscopy is commonly divided into three groups: near-IR (ν > 3000 cm-1), 

mid-IR (ν = 4000–400 cm-1) and far-IR (ν < 300 cm-1) [59]. For zeolite science, the mid-IR 

region provides information on OH groups, adsorbed molecules and framework vibrations. 

The integration and position of particular peaks and bands in the IR spectrum can estimate 

the acidity of zeolite materials in terms of type, concentration, location, accessibility and 

strength. Although the IR technique is versatile for those structures and surfaces, not all 

information can be obtained by direct spectral analysis and in many cases probe molecules 

with specific vibrational spectroscopic properties need to be used (Section 1.2.4). 

Being a very sensitive technique, IR spectroscopy also allows the detection of 

impurities on the surface of zeolites, such as water, carbonates (formed by catalyst contact 

with ambient atmosphere), organics and other residual species after synthesis [52]. These 

impurities may inhibit the adsorption of probe molecules or interfere with data collection. It 

is therefore fundamental a thermal activation step in the removal of the molecules capable 

of perturbing the O-H stretching [52,53,60]. The preparation of zeolite samples as thin self-

supported discs with a thickness of about 10 mg cm−2 is usually required.  
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1.2.2 Hydroxyl groups  

The direct evaluation of the wavenumber associated with the stretching vibration 

frequency of hydroxyl groups (OH), can identify different types of hydroxyl groups in the 

zeolitic material (Figure 1.3). These stretching vibrations can be observed in the region 

between 3800 and 3500 cm-1 and are normally responsible for the existence of Brønsted 

acidity. At lower frequencies (> 3400 cm-1) are typically detected hydroxyl groups originated 

by hydrogen bonding interactions. 

 

Figure 1.3. FTIR spectra the main hydroxyl groups of several activated zeolites. 

At higher frequencies, zeolites exhibit two peaks at ~3745 cm-1 and ~3735 cm-1 

corresponding to silanol groups (Si-OH) located on the external and internal surfaces, 

respectively (Figure 1.3) [60]. The intensity of the external silanols peak is strongly affected 

by the zeolite particle size; where small sizes are related to higher peak intensities (e.g BEA 

zeolite) [61]. 



9 

 

In the frequency range of 3650-3600 cm-1 it can be observed the region of bridging 

hydroxyl groups (Si-OH-Al) or also called framework aluminium (FAl). These Si-OH-Al 

groups are typically associated with the strong protonic acidity of the zeolite (Brønsted acid 

sites, BAS) and are formed by the bonding of a proton to a framework O atom connecting 

two tetrahedrally coordinated Si and Al atoms [44] (Figure 1.4). Any perturbation of the Si-

OH-Al groups can lead to a peak shift to lower wavenumbers [60]. The structure type, 

framework Si/Al ratio, the nature of the trivalent ion, the location of the OH groups and the 

existence of extra-framework cations are some of the many factors that can influence the 

position of the Si-OH-Al peak [43,60,61]. 

 

Figure 1.4. Bridging Si-OH-Al groups associated to Brønsted acidity.  

Aluminium hydroxyls groups (Al-OH) are also observed in some zeolites; Al-OH not 

in framework positions is normally observed at 3670-3660 cm-1 and ~3782 cm-1 [60]. 

However, the appearance of these peaks depends on their structure, synthesis and treatment 

conditions [60]. 

The stretching vibrational frequency (OH), is normally related to the strength of the 

OH bond: the lower the stretching frequency, the weaker the OH bond and therefore the 

higher the acid strength. However, this simple approach cannot be applied to zeolites with 

different types of bridging Si-OH-Al groups. One good example is Y zeolite; this zeolite 

displays two different bridging Si-OH-Al groups: OH groups hosted in the supercages (at 

3640 cm-1) and OH groups located in the sodalite cages of zeolite Y (at 3545 cm-1) (Figure 

1.3). The bond between the hydrogen and the framework oxygen in the sodalite cage is 
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considered strong due to the small size of the cage, indicating that the acid strength of 

bridging OH groups in this zeolite cannot be measured by the frequency of the IR peak 

[44,53]. 

1.2.3 Brønsted and Lewis acid sites  

Brønsted acid sites (BAS), the most important catalytic sites in acid catalysis, are 

related to Si-OH-Al groups being typically found inside the pores of the zeolite (Figure 1.2). 

The presence of these protons (and any extra-framework cations) is a consequence of the 

overall negative charge of AlO4 tetrahedra [15,16]. It has been suggested that the maximum 

number of BAS equals the number of Al atoms in the framework (FAl). In reality, however, 

the number of BAS may be lower than the number of FAl species as a result of an incomplete 

exchange or dihydroxylation and dealumination phenomena [43]. 

Lewis acid sites (LAS), are electron-acceptor sites and the majority originate from 

extra-framework Al3+ (EFAl), which are normally the result of dealumination caused by mild 

steaming or calcination, and Al structural defects caused by dihydroxylation of BAS as a 

consequence of dehydration of the structure at high temperatures [42,43]. These acid sites 

can also be created by the presence of charge-balancing extra-framework cations (Na+, Mg2+, 

La2+, Ca2+) and heteroatoms substituted at framework T positions [53]. LAS can become 

extremely important in catalytic reactions that involve redox steps [41,62,63]. Depending on 

the structure, synthesis and post-synthesis treatments, the surfaces of zeolites can exhibit 

BAS, LAS and also a combination of both. 

1.2.4 Probe molecules in the determination of zeolite acidity 

As discussed above IR spectroscopy deals with the direct vibrational mode of hydroxyl 

groups and BAS, but Lewis acidity can only be determined with the help of suitable probe 

molecules [64]. The adsorption of a base probe molecule allows the characterisation of the 

zeolite acidity; these molecules with particular properties (e.g. basicity, kinetic diameter) 

interact with acid sites present in these materials producing characteristic adsorption signals.  
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By considering the electronic or geometrical distortion of the probe molecule induced 

by adsorption, or the chemical modification, it is possible to gain information in terms of 

number, strength, type, accessibly and location of the acid sites [47]. To be an applicable 

probe, the molecule should accomplish several requirements, summarised in several review 

articles [43,52,53,60,64-66]: 

(i) The probe molecule should be basic enough to interact with strong and weak 

acid sites.  

(ii) The interaction should be selective to a particular type of acid site. The 

resulting spectrum should allow the discrimination of protonic and non-

protonic sites (different types of acid sites). 

(iii) The probe molecule should be sensitive to acidity strength. Acid-base 

interaction induces displacements in certain peaks which can be used to 

measure acid site strength.  

(iv) The reactivity of the probe molecules in the experimental conditions should be 

low or none; not causing any chemical modification of the zeolite. 

Decomposing probes, however, can be used when the temperature and the 

mechanism of the decomposition are known and reveal additional and 

necessary information [43]. 

(v) The size of the probe molecule should be related to the accessibility of the acid 

sites. Small probe molecules are often used to allow access even to acid sites 

located in the narrow pores and channels (e.g. adsorption of NH3 on MOR 

zeolites). Some bulky probes can also be utilised to characterise only acid sites 

located on the external surface of the zeolite (e.g. substituted pyridines). 

However, no probe can be universally utilised and each interaction reveals a particular 

property of the zeolite acidity in terms of the probe under use. The variety of commonly used 

probe molecules (ammonia, acetonitrile, benzene, substituted benzenes, pyridine, substituted 
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pyridines, carbon monoxide and hydrogen) provides a large range of chemical reactivity and 

steric hindrance. Each probe molecule has different basicity, dimensions and limitations and 

therefore requires different experimental conditions. 

Pyridine is considered a standard probe [45,51-53,60,67,68]; this molecule is 

thermally stable, with a kinetic diameter of 5.4 Å and interacts with the BAS forming 

pyridinium ions (Py-H+ complexes, i.e. protonated Py) and H-bonded complexes (strong and 

weak acidity, respectively) and LAS (Py-L complexes). The interaction produces 

characteristic adsorption signals allowing the discrimination between the different types of 

acid sites (Figure 1.5). Two peaks at ~1545 (ν19b) and 1637 (ν8a) cm-1 due to pyridinium ions 

resulting from Py protonation on Brønsted acid sites two peaks assigned to Py coordinated 

to Lewis acid sites at ~1456 (ν19b) and 1622 (ν8a) cm-1 and the signals of Py on Lewis and 

Brønsted acid sites at ~1491 (ν19a) cm-1. 

 

Figure 1.5. FTIR spectrum following Py adsorption at 150°C of zeolite BEA (12.5). 

As a probe molecule, Py is normally used to obtain the overall number of acid sites 

existing in medium- (e.g. ZSM-5) and large-pore zeolites (e.g. BEA), while the kinetic 

diameter is too large to access all acid sites in small-pore zeolites. To achieve accurate results 
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using Py as a probe molecule, it is important to consider the experimental details, in 

particular weakly adsorbed species (physisorbed Py). The standard procedure is to adsorb 

the Py at 150°C at a vacuum pressure of 10-6 Torr to allow the diffusion of Py vapours into 

the pores and ensure that weakly adsorbed species are removed [60]. 

Bulky alkylpyridines such as, 2,6-di-tert-butylpyridine [69-72], 2,6-dimethylpyridine 

[69,73-76] and 2,4,6-trimethylpyridine [77-80] have been recently used for accessibility 

characterisation. These substituted pyridines allow the discrimination between acid sites 

located on the internal and external surfaces since they are too bulky to enter the internal 

pores and channels of most zeolite structures [81]. The location of acid sites and how easy 

it is to access them is important for the understanding of the relationship between acidity and 

catalytic performance [16,60]. 

The adsorption of weak bases is typically adopted to characterise the acid site strength 

of the hydroxyl group. Probe molecules such as carbon monoxide [51,82,83], hydrogen [84], 

benzene [85,86] or acetonitrile [87,88], form a H-bond with the acidic OH group resulting 

in a downward shift of the O-H stretching modes. The magnitude of the shift is a measure 

of the acid site strength and is proportional to the proton affinity of the surface groups 

[43,61]; since the larger the shift the stronger the interaction. The apparent strength of acid 

sites can also be obtained by desorbing Py at increasing temperatures, where the stronger 

sites retain the pyridine at higher temperatures. 

 Complementary characterisation techniques 

Fundamental characterisation techniques are inevitable to study the zeolite properties 

and catalytic activity. The influence of structural, chemical, morphological and textural 

information in their applications makes characterisation essential to the understanding of 

these materials. In this work, a broad characterisation of the zeolite materials was also 

performed to obtain a better understanding of their properties and changes. The 

complementary techniques used were: powder X-ray diffraction (XRD), scanning electron 
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microscopy with an EDX analytical system (SEM-EDX), argon (Ar) physisorption, X-ray 

photoelectron spectroscopy (XPS), X-ray fluorescence (XRF) and aluminium (27Al) and 

phosphorous (31P) solid-state nuclear magnetic resonance (27Al and 31P NMR). 

Powder X-ray diffraction (XRD) 

X-ray diffraction is based on constructive interference of monochromatic X-rays and 

crystalline material. The X-rays are generated by a cathode tube, filtered to produce 

monochromatic radiation, collimated to concentrate and directed toward the sample. The 

interaction of the incident X-rays with the material creates constructive interference (and a 

diffracted X-ray) when the conditions satisfy the Bragg's Law (nλ=2dsinθ). This law relates 

the wavelength of electromagnetic radiation to the diffraction angle and the lattice spacing 

in a crystalline material. The diffracted X-rays are then detected, processed and counted. By 

scanning the sample through a range of 2θ angles, all possible diffraction directions of the 

lattice are found due to the random orientation of the powdered material. Conversion of the 

diffraction peaks to d-spacings allows identification of the material because each material 

has a set of unique d-spacings. Typically, this is accomplished by comparison of d-spacings 

with standard reference patterns [89,90]. 

XRD allows the examination of the long-range atomic structure of crystalline zeolitic 

materials, this includes the framework topology and the positions of extra-framework cations 

and adsorbed molecules [91]. The XRD patterns of known zeolite structures are compiled in 

Collection of Simulated XRD Patterns for zeolites [92]. 

Argon physisorption at 87 K 

Gas adsorption occurs whenever an adsorbable gas (adsorptive) is brought into contact 

whit the surface of the solid (adsorbent), calculating the amount of the adsorbate gas bound 

by relatively weak forces (Van der Waals forces) to a monomolecular layer on the surface 

[93,94]. The amount of gas adsorbed can be measured by volumetric or continuous flow 

procedure. For microporous materials, such as zeolites, argon (Ar) at 87 K seems to be the 

https://serc.carleton.edu/research_education/geochemsheets/BraggsLaw.html
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adequate adsorbable gas, due to the absence of the quadrupole moment (in contrast to 

nitrogen) and the high temperature of the experiments. The cross-section area of Ar is less 

sensitive to differences in the structure of the microporous surfaces and at 87 K this molecule 

allows a straightforward correlation between the pore filling pressure and the confinement 

effect, which is particularly important in zeolitic materials [94]. 

The knowledge of the textural parameters (surface areas, pore volumes and sizes) 

obtained by this technique contributes to the understanding of the behaviour of a zeolite 

since the material surface can be determinant for an efficient distribution of catalytically 

active sites, while the type of porosity can affect the accessibility and the diffusion process 

of reactant and product molecules through the porous structure [95]. Parameters such as pore 

volume and pore-size distribution are also crucial for shape selectivity catalysts [95]. 

Scanning electron microscopy (SEM)  

Scanning electron microscopy (SEM) is a method for determining the size and 

morphology of zeolites crystals, this method can obtain three-dimensional backscatter 

images of the surface of a wide variety of heterogeneous materials in a nanometre (nm) and 

micrometre (μM) range. During the analysis, an electron gun produces an electron beam that 

is focused into a fine spot as small as 1 nm in diameter on the sample surface. This beam is 

scanned in a rectangular raster over the specimen and the intensities of various signals 

created by interactions between the beam electrons and the specimen are measured and 

stored in computer memory. The stored values are then mapped as variations in brightness 

on the image display. The secondary electron (SE) signal is the most frequently used signal 

and it varies with the topography of the sample surface [96,97]. Because zeolites are not 

electrically conductive in the SEM, it is advantageous to disperse large aggregates into 

smaller fragments that can have better contact with a conductive surface. 
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Energy-dispersive X-ray spectroscopy (EDS)  

Energy-dispersive X-ray spectroscopy (EDX) is an analytical technique were element-

specific radiation is used for chemical characterisation of a material surface and it is normally 

coupled with SEM, transmission electron microscopy (TEM) and scanning transmission 

electron microscopy (STEM) [96]. When combined with SEM, provides elemental 

analysis on areas as small as nanometres in diameter. 

This technique is based on the collection of X-rays generated as incident electrons 

impinge upon the sample [96]. When the interaction energy between the incident electron 

and an atom of the sample is high enough, an electron in the inner shell (lower energy shell) 

of the sample is ejected, creating a vacancy [96,98]. An electron from an outer shell (higher-

energy shell) then fills this vacancy, and the difference in energy between the higher-energy 

shell and the lower energy shell is released in the form of an X-ray. The number and energy 

of the X-rays emitted from a sample are then measured by an energy-dispersive spectrometer 

[98]. 

X-ray fluorescence (XRF) 

X-ray fluorescence spectrometry (XRF) is a relatively effective quantitative technique 

to determine the elemental composition of any material [89]. XRF is often used to verify the 

XRD data and vice versa. The sample is excited by a primary high-energy X-ray, emitting 

characteristic X-rays (so-called secondary X-rays or X-ray fluorescence) from the sample, 

with energy lower than the incident X-rays. These fluorescent X-rays are used to determine 

the elements, while the intensity of these rays is proportional to the abundance of the 

elements present in the sample [89]. This technique is used for routine and non-destructive 

bulk chemical analyses, however, it cannot distinguish between isotopes of an element and 

ions of the same element in different valence states. 
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X-ray photoelectron spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) is a widely used surface analysis technique 

and is useful in the determination of the chemical composition and the oxidation state of the 

elements present in the solid materials. This technique works by exciting the sample with 

mono-energetic Al kα x-rays leading to the emission of photoelectron from the sample 

surface. An electron energy analyser is utilised to measure the energy of the emitted 

photoelectrons. From the binding energy and intensity of a photoelectron peak, it is possible 

to identify and quantify an element and their chemical state [89]. 

Magic angle spinning nuclear magnetic resonance (MAS NMR) 

Solid-state NMR spectroscopy is largely used to obtain important information on the 

structural properties of solids and demonstrate high sensitivity for chemical bonds in the 

local structure of the resonating nuclei, such as of framework atoms, extra-framework 

species, surface sites, and adsorbate complexes in zeolites [42,43]. 

The most important technique for solid-state nuclear magnetic resonance is the magic 

angle spinning (MAS), as it averages the nuclear interactions in solids. This technique 

consists in quickly spinning the entire sample at a rotation of thousands of revolutions per 

second, to minimize the effects of the immobility of the molecules and the anisotropic 

interactions. This spinning is executed at an angle of 54.74° with the magnetic fields to 

withdraw the effect of the dipole-dipole interactions. 

The understanding of zeolite acidity using MASNMR can be achieved by exploiting 

several magnetically active nuclei such as 29Si, 27Al, 1H, 17O, 15N, 31P. These analyses have 

become essential in the study of zeolite chemistry, giving distinctive information about the 

nature and concentration of acid sites. 29Si and 27Al enable the determination of the acid sites 

concentration, while the 1H, 17O, 15N, and 31P can give information on the acid strength of 

BAS [44,47]. For this purpose, zeolite samples dehydrated at elevated temperatures in 

vacuum are filled in gas-tight magic-angle spinning (MAS) rotors or sealed in glass inserts.  
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 Objectives and thesis outline 

The main focus of this PhD thesis is to further develop characterisation of zeolite based 

catalysts in terms of their acid-site type, accessibility, concentration and strength, by 

improving the use of in situ infrared spectroscopy (FTIR) in combination with different 

probe molecules. Particular emphasis is given to the development of efficient quantitative 

analysis and the expansion of methodologies using a diverse range of probe molecules with 

different basicity and kinetic diameters. In addition, this knowledge will be applied to 

characterise a great diversity of zeolite structures and important catalytic materials. An 

extensive characterisation of the zeolite materials was also carried out using a wide range of 

techniques such as XRD, SEM-EDX, Ar physisorption, 27Al solid-state NMR, 31P solid-state 

NMR, XPS and XRF. The insights gained in this research should improve future 

characterisation of acidity, help in the cross-validation of different characterisation 

techniques and obtain a better understanding of catalytic performances using zeolite based 

catalysts. 

This thesis is organised into six chapters. This introductory chapter is Chapter 1 and 

the main results of this thesis are described in Chapters 2 to 6. 

Accurate determination of molar adsorption coefficients for Py species adsorbed on 

Brønsted and Lewis acid sites in various zeolitic structures and the improvement of 

quantitative analysis by FTIR spectroscopy using Py as a probe molecule are described in 

Chapter 2. A study of the validity of the Beer-Lambert law for FTIR studies of zeolite 

materials is also included. 

In Chapter 3 an investigation of the stability of thermally treated and cation-containing 

zeolites was carried out, to obtain information on their textural, structural and acidic 

properties. This study focuses on quantitative measurements of the different types of active 

sites in the two zeolitic structures (BEA and ZSM-5). A combination of different techniques 

is used to described the changes after the post-synthesis modifications and evaluate the 

stability of both structures. 
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An extensive FTIR investigation of accessibility and location of acid sites in medium- 

(ZSM-5), large- (BEA) and mixed-pore (MOR and MAZ) zeolites is presented in Chapter 4. 

The interaction between the zeolite Brønsted acid sites and different probe molecules are 

studied to optimise the experimental procedures for the application of a combination of probe 

molecules in FTIR spectroscopy. 

Chapter 5 describes the acidic properties of two sets of P/H-ZSM-5 zeolites prepared 

by different methods. A detailed evaluation of the effects of the incorporation of 

phosphorous on the number, location and accessibility of the acid sites in ZSM-5 zeolite is 

examined. 

Finally, Chapter 6 summarises and integrates the main conclusions withdrawn from 

this research project. 
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Chapter 2 Molar absorption coefficients of Py-H+ and Py-L complexes in 

acidic zeolites 

2.1 Introduction  

Infrared spectroscopy (IR) is an important and well-developed tool to carry out 

quantitative analysis of acidity in zeolite-based catalysts. The key to quantitative 

measurements is the use of the Beer-Lambert law (Equation 2.1), which requires the 

knowledge of molar absorption coefficients (ε). These coefficients are relevant to determine 

the amount of probe molecule that interacts with the solid material and the number of 

adsorption sites (acidic, basic and accessible metallic sites). The accuracy of the quantitative 

measurements strongly depends on the precise determination or choice of the ε values. 

𝐴 =  𝜀 × 𝑐 × 𝑙        Equation 2.1 

Where A is absorbance or intensity of the peak, c is the molar concentration of probe 

molecule introduced in the IR cell and l is the pathlength. Pyridine (Py) is the most 

commonly used probe molecule to quantify acidity (Chapter 1 Section 1.5), and there are a 

wide range of ε values published in the literature (Table 2.1) for Py species adsorbed onto 

Brønsted (Py-H+ or BAS) and Lewis acid sites (Py-L or LAS). However, significant 

differences are observed between the values reported by the different laboratories; the values 

vary by six orders of magnitude (Table 2.1) suggesting that ε reported may be associated 

with significant errors [1]. The lack of a good description of the experimental approach is 

one of the factors leading to these discrepancies [2]. Furthermore, the geometry and physical 

properties of the sample (thickness of the disc, pressure used to prepare the disc, particle size 

etc.) [3] and all experimental parameters (resolution, temperature, vacuum system or in gas 

flow) may have a large influence on the ε values obtained by different researchers. 
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Table 2.1. Molar absorption coefficients (ε) values for Py adsorb5ed on BAS and LAS reported in the literature.  

Material εBAS Units εLAS Units εBAS/εLAS 
Resolution 

cm-1 

Temperature 

°C 
Year Ref 

Silica-alumina - - - - 
8.8 ± 

15% 
2 or 4 - 1964 [4] 

Silica-alumina - - - - 6.0±9 - - 1966 [5] 

NH4Y 3.03±0.13 cm µmol-1 3.26±0.13 cm µmol-1 0.93 - 150 1967 [6] 

MOR - - - - 2.61 - - 1968 [7] 

MOR - - - - 1.54 4 - 1971 [8] 

NaY 0.059 ±0.004 µmol cm-2 - - - - 150 1980 [9] 

NaHY 0.059±0.004 cm2 µmol-1 
0.084±0.0

03 
cm2 µmol-1 0.70 - - 1981 [10] 

ZSM-5 1.3×10-6 cm µmol-1 1.5×10-6 cm µmol-1 0.87 - 150 1986 [11] 

Al2O3, Y 0.73 cm µmol-1 1.11 cm µmol-1 0.66 2 200 1992 [12] 

MOR, ZSM-5, Y 1.67±0.12 cm µmol-1 2.22±0.21 cm µmol 0.75 1 150 and 350 1993 [13] 

BEA 1.3×10-6 cm µmol-1 1.5×10-6 cm µmol-1 0.87 - 30 1994 [14] 

HY 1.8±0.1 cm µmol-1 1.5 cm µmol-1 1.2 - - 1994 [2] 

Y 

 EMT 

1.1 

1.6 

cm µmol-1 

cm µmol-1 

- 

- 

- 

- 

- 

- 
2 

30 

30 
1995 [15] 

MOR 1.8 cm µmol-1 - - - 2 30 1995 [16] 

MOR , Y 0.078±0.004 cm2 µmol 
0.269±0.0

1 
cm2 µmol 0.29 - 145 1996 [17] 

MOR, Al2O3 1.13 cm µmol-1 1.28 cm µmol-1 0.88 - n.a 1997 [18] 

Y 0.085±0.005 cm2 µmol - - - - 145 1997 [19] 

MAZ 1.13 cm µmol-1 1.28 cm µmol-1 0.88 - - 1998 [20] 

MCM-41 1.47 cm µmol-1 1.98 cm µmol-1 0.74 - 150 1999 [21] 

BEA, MOR, Y, 

Silica-alumina 
0.73±0.04 cm µmol-1 0.64±0.04 cm µmol-1 1.14 2 150 1999 [22] 
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Y 1.36±0.03 cm µmol-1 - - - 4 200 2004 [23] 

HMCM-41, Al2O3 0.070 cm µmol-1 0.100 cm µmol-1 0.70 2 150 2005 [24] 

BEA, VBEA 0.070 cm µmol-1 0.100 cm µmol-1 0.70 2 150 2006 [25] 

MCM-48, MCM-68 0.078 cm µmol-1 0.165 cm µmol-1 0.47 2 170 2010 [26] 

Silica-alumina 0.57 cm µmol-1 1.5 cm µmol-1 0.38 - - 2010 [27] 

SBA-15 1.67±0.12 cm µmol 2.22±0.21 cm µmol 0.75 4 30 2010 [28] 

Silica-alumina 1.67±0.12 cm µmol 2.22±0.21 cm µmol 0.75 4 150 2012 [29] 

HY  

SnBEA 

1.95±0.13 

- 

cm µmol-1 

- 

1.45±0.10 

1.42±0.30 

cm µmol-1 

cm µmol-1 

1.34 

1.37 
2 150 2016 [30] 

SAPO-34 0.06 cm2 µmol-1 - - - 4 - 2017 [31] 

ZSM-5 0.07 cm2 µmol-1 0.10 cm2 µmol-1 0.70 2 170 2017 [32] 

BEA, ZSM-5, Y 

1.98±0.16 

2.98±0.49 

2.55±0.28 

mmol/gcat/area 

2.53±0.38 

~2.2 

2.27±0.41 

mmol/gcat/area 

0.78 

1.35 

1.12 

4 30 2018 [33] 
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For other probe molecules, there is a lack of ε values in the literature, however, some 

reports have been published on the calculation of these coefficients for ammonia, quinoline, 

acetonitrile and substituted pyridines [34-38]. 

Important advances in new tools for the determination of ε values have been made in 

the last few years [23,39-40], such as the combination of high-precision thermogravimetry 

and FTIR (AGIR-Analysis by Gravimetry and IR). This technique, in which a microbalance 

is integrated with an FTIR in situ cell in a single set-up, allows simultaneous monitoring of 

the weight changes of the sample along with its IR spectra during adsorption or desorption 

of probe molecules, and consequently, highly accurate quantitative data (e.g. the molar 

absorption coefficient values, can be obtained directly). The method was successfully used 

to investigate ε values for water and ammonia on FAU zeolites and demonstrated the 

importance of the conditions in which the experiments are carried out [40].  

The aim of this work was to carry out accurate quantitative analysis of the number of 

acid sites in different zeolites and to determine the role of experimental conditions that are 

essential for the reliable characterisation of the acidic properties of zeolite based catalysts. 

This study also examines the validity of the Beer-Lambert law in solids materials. The molar 

absorption coefficients of Py adsorbed on Brønsted, ɛ(Py-H+), and Lewis, ɛ(Py-L), acid site 

have been determined using the in situ FTIR experiments and the AGIR technique. Overall, 

the optimisation of the experimental procedures is imperative for the successful quantitative 

evaluation of different types of acid sites in zeolitic materials. With the new level of 

instrumentation available now, this work sets a benchmark for the quantitative acidity 

measurements in zeolites and related materials. 

2.2 Experimental  

2.2.1 Materials 

Ammonium forms of zeolites BEA (CP814E, Zeolyst International, Si/Al=12.5), BEA 

(CP814C, Zeolyst International, Si/Al=19) ZSM-5 (CBV8014, Zeolyst International, 
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Si/Al=40), MOR (Crossfield, Si/Al=7.0), FAU (Crossfield, Si/Al=2.6), fumed silica (SiO2, 

Sigma-Aldrich, 99.8%) and ɤ-alumina (Puralox, Sasol) were obtained in powder form. The 

materials were either used as received or calcined ex situ at 450C-900ºC in a muffle furnace 

for 5 hours. This procedure gives materials with the same type of zeolite framework but with 

the different BAS/LAS ratios necessary for molar absorption coefficient measurements 

using in situ FTIR experiments. 

2.2.2 Beer-Lambert law studies  

Preliminary studies were carried out to verify the validity of the Beer-Lambert law in 

solid materials and to evaluate the influence of different parameters on quantitative 

measurements using FTIR spectroscopy. For this preliminary work scanning electron 

microscopy (SEM) and Py-FTIR spectroscopy analyses were performed. The selected 

materials (fumed silica, BEA and ZSM-5 zeolites) were pressed into 1.3 cm self-supporting 

discs with a cross-section area of (S) 1.3 cm2 using a hydraulic bench press. The discs were 

made with different mass (~2-40 mg), load (0, 1, 2, 5 and 8 tonnes) and time under load (1, 

3, 5 and 120 sec). The discs from SEM measurements were fixed to 15 mm stubs by sticky 

carbon tabs and the SEM micrographs were collected on a Hitachi TM3000 scanning 

microscope equipped with an EDX analytical system and heat beam of 15 keV. FTIR 

experiments were performed according to the description below (Section 2.2.3 In situ 

experiments). 

2.2.3 Molar absorption coefficients calculations  

In situ experiments  

The experiments were carried out at Keele University using an in situ IR cell attached 

to a vacuum system and the analysis was monitored by a Thermo iS10 spectrometer, 

equipped with a DTGS detector, at a spectral resolution of 1-8 cm-1 (Figure 2.1). Prior to 

FTIR studies, the zeolites were pressed into self-supporting discs (1.3 cm in diameter, S=1.3 

cm2, ~2.6-40 mg) and pre-treated in an in situ IR cell at 450°C under vacuum (10-5 Torr) for 
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5 h. Small portions of Py were admitted into the cell by injection at 150ºC until no changes 

in the peaks under investigation were observed in the spectra. Physisorbed molecules were 

subsequently removed by evacuation at adsorption temperature. The obtained infrared 

spectra were analysed (including integration, subtraction, and determination of peak 

positions) using specialised Thermo software, Omnic. All the spectra presented in this 

chapter were normalised and offset for clarity. The in situ FTIR measurements were carried 

out on different zeolitic structures with different Si/Al ratios and subject to different 

calcination temperatures: BEA (12.5), BEA (19), ZSM-5 (40), MOR (7) and Y (2.6), where 

the values in brackets refer to Si/Al ratios. 

 

Figure 2.1. In situ FTIR spectroscopy equipment at Keele University. 

The modified Beer-Lambert law (Equation 2.2) allows the calculation of the ε values 

when knowing the total amount of Py introduced and the intensity of the peak under 

investigation.  

𝐴 = 𝜀 
𝑛𝑡𝑜𝑡𝑎𝑙

𝑆
        Equation 2.2 

Where ntotal is the number of Py species in the sample disc and S is the cross-section 

area of the zeolite disc (S=1.3 cm2 for studies with the in situ IR cell). As zeolites often have 

more than one type of acid sites (BAS and LAS) and Py interacts with both of these acid 
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sites, the relationship between the amount of Py that interacts with each type of acid site and 

the molar absorption coefficients values are given by the following equations: 

𝑛𝑡𝑜𝑡𝑎𝑙
𝑃𝑦

= 𝑛𝐵𝐴𝑆
𝑃𝑦

+ 𝑛𝐿𝐴𝑆
𝑃𝑦

       Equation 2.3 

𝑛𝐵𝐴𝑆
𝑃𝑦

=
𝐴𝐵𝐴𝑆×𝑆

𝜀𝐵𝐴𝑆
        Equation 2.4 

𝑛𝐿𝐴𝑆
𝑃𝑦

=
𝐴𝐿𝐴𝑆×𝑆

𝜀𝐿𝐴𝑆
         Equation 2.5 

𝑛𝑡𝑜𝑡𝑎𝑙
𝑃𝑦

=
𝐴𝐵𝐴𝑆×𝑆

𝜀𝐵𝐴𝑆
+  

𝐴𝐿𝐴𝑆×𝑆

𝜀𝐿𝐴𝑆
      Equation 2.6 

To obtain 𝑛𝑡𝑜𝑡𝑎𝑙 
𝑃𝑦

, small and known amounts of Py are injected into the in situ IR cell 

and the changes of the IR peaks under investigation (~1454 cm-1 for Py-H+ and ~1445 cm-1 

for Py-L) were monitored. In the first injections, there is a linear relationship between the 

amount of Py introduced and the changes in the peak intensities. When all sites are saturated, 

Py is no longer absorbed on the acid sites and a plateau is observed (e.g Figure 2.2). 

 

Figure 2.2. Titrations of increasing amounts of Py at 150°C on zeolite BEA (12.5) calcined 

at 600°C. (a) Difference spectra of Py region following Py adsorption at 150°C. (b) 

Integrated areas of the Py-H+ and Py-L peaks over the ntotal (Py) added. 

However, Equation 2.6 still contains two unknown parameters (εBAS and εLAS) and in 

a single experiment, it is impossible to determine the two parameters. It is, therefore, 

necessary to use zeolitic materials with different BAS/LAS ratios (calcined zeolites). The 
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calculation of both εBAS and εLAS were achieved using Equation 2.7, which is a rearrangement 

of Equation 2.6. 

𝐴𝐵𝐴𝑆×𝑆

𝑛𝑡𝑜𝑡𝑎𝑙
𝑃𝑦 = −

𝜀𝐵𝐴𝑆

𝜀𝐿𝐴𝑆
 ×

𝐴𝐿𝐴𝑆 ×𝑆

𝑛𝑡𝑜𝑡𝑎𝑙
𝑃𝑦 +  𝜀𝐵𝐴𝑆      Equation 2.7 

By plotting Equation 2.7 both εBAS and εLAS can be determined from the gradient and 

the y-intercept of the trendlines. 

AGIR experiments 

The experiments using the AGIR set-up were carried out in the Laboratoire Catalyse 

et Spectrochimie (LCS) at Normandie University. In this set-up, the mass (and therefore the 

number of adsorbed molecules) and IR spectra of the sample can be measured 

simultaneously in real-time operando conditions in a gas-flow system at a temperature 

between 30-500°C (Figure 2.3). 

 

Figure 2.3. AGIR set-up at LCS laboratories, Caen, France. 

The analyses were carried out on self-supporting discs (~20 mg, 1.6 cm in diameter 

S=2.0 cm2) and pre-treated in the IR reactor cell at 450°C under a flow of Ar for 5 h. IR 

spectra of the samples were recorded at every 300 secs with a Nicolet 6700 spectrometer 

equipped with an MCT detector, at a spectral resolution of 4 cm-1. In parallel, the weight 
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changes were continuously monitored by a SETSYS-B Setaram microbalance and the outlet 

gas flow composition was observed by a MS analyser (Pfeiffer Omnistar GSD301). All the 

spectra presented in this chapter were normalised and offset for clarity. Measurements were 

carried out on different zeolitic structures: BEA (12.5), ZSM-5 (40), MOR (7) and Y (2.6), 

ɤ-alumina and Na-ZSM-5 (40), where the values in brackets refer to Si/Al ratios. 

2.3 Beer-Lambert law studies  

Preliminary work in selected materials (fumed silica, ZSM-5 (40) and BEA (12.5) 

zeolites) was carried out to check the validity of the Beer-Lambert in solids for the FTIR 

characterisation and to illustrate the effects of the preparation procedure in quantitative 

measurements. As an example, Figure 2.4 presents two SEM micrographs collected to obtain 

thickness data. Thickness of the discs decreases with increasing loads for all selected 

materials and this effect is more noticeable for heavier discs (40 mg) (Figure 2.5). The 

changes are also observed when the discs are pressed at a different time under load, 

especially for the 40 mg discs. There are no significant changes in the thickness in lower 

weight discs (10 mg) mainly after 5 seconds under pressure. These conclusions are similar 

for all materials selected for this part of the study. 

 

Figure 2.4 SEM micrograph of self-supported BEA (12.5) discs at different magnifications. 

(a) 10mg BEA (12.5) prepared at an 8 tonne load for 1 sec and (b) 40 mg BEA (12.5) 

prepared at an 8 tonne load for 1 sec. 
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Figure 2.5. Thickness of the self-supporting discs prepared with different mass, load and 

time under load. (a) Fumed silica, (b) BEA (12.5), (c) ZSM-5 (40) zeolites. 

The influence of the different preparation parameters (mass and load) in quantitative 

measurements using FTIR spectroscopy was also evaluated (e.g. Figures 2.6, 2.7 and 2.8). 

FTIR spectra of BEA zeolite show two major peaks at 3745 cm-1, with a shoulder at ~3735 

cm-1, and 3610 cm-1 (Figure 2.6 a). The peak at 3610 cm-1 is assigned to acidic bridging Si-

OH-Al groups and the peaks at ~3745 and ~3735 cm-1 are attributed to the external and 

internal Si-OH groups, respectively. The interaction of Py with the zeolites gives rise, in the 

range of 1400-1700 cm-1, to the following sets of peaks: two peaks at 1545 and 1637cm-1 

due to pyridinium ions (Brønsted acid sites, Py-H+), two peaks assigned to Py coordinated 

to Lewis acid sites (Py-L) at 1456 and 1622 cm-1 and the signals of Py on Lewis and Brønsted 

acid sites at 1491 cm-1 (Figure 2.6 b). The intensities of the peaks of Si-OH-Al (~3610 cm-
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1), Si-OH (~3745 cm-1) groups, BAS (~1545 cm-1) and LAS (~1456 cm-1) increase with disc 

mass (Figures 2.6). These data show a clear linear relationship between absorbance and the 

mass of the discs (which is used by proxy for the effective sample pathlength), demonstrating 

that the Beer-Lambert law is valid for solid materials in IR spectroscopy (Figure 2.7), 

although, some noticeable deviation from it is observed for samples heavier than 25 mg (20 

mg/cm2). For practical FTIR measurements, the sample size between 5 and 15 mg/cm2 

should be recommended. 

 

Figure 2.6. (a) FTIR spectra of the hydroxyl region following Py adsorption at 150°C of 

BEA (12.5) discs with different mass (~2-40 mg). (b) Difference spectra Py region following 

Py adsorption at 150°C of BEA (12.5) discs with different mass (~2-40 mg). 

 

Figure 2.7. Linear relationship between the zeolite disc mass and the integrated absorbance 

of the IR bands of OH groups and Py adsorbed on BAS and LAS in BEA (12.5). 
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The increasing load (0.5-8 tonnes) used to prepare the discs leads to a decrease in the 

intensity of the peak at ~3610 cm-1 corresponding to Si-OH-Al groups and in consequence 

the peak related to BAS (~1545 cm-1). This decrease is due to residual ammonia still present 

in the zeolite disc, which results from an incomplete activation during the pre-treatment step 

especially for discs prepared at excessive high loads. These results are observed not only for 

discs with higher mass (40 mg) as shown in Figure 2.8 but also for discs with lower mass 

(10 mg). The preparation conditions of the discs must be carefully controlled since zeolites 

are sensitive and their structure can be altered. The intensity of the transmitted light 

significantly depends on the optical path. 

 

Figure 2.8. (a) FTIR spectra of the hydroxyl region following Py adsorption at 150°C of 40 

mg BEA (12.5) discs prepared with different load (0.5-8 tonnes) (b) FTIR spectra of the Si-

OH-Al peak at ~3610 cm-1 of 40 mg BEA (12.5) discs prepared with different load (0.5-8 

tonnes). 

The results demonstrate that sample preparation and activation procedure needs to be 

carefully controlled to obtain quantitative data. Although the experimental data confirm the 

validity of Beer-Lambert law for solid materials, these experiments have been performed 

with BEA zeolite, which is a zeolite with low scattering at the mid-IR range. For materials 

with stronger scatter IR radiation, the sample density used for the measurements should be 

limited to 10 mg/cm2 to ensure both good quality and quantitative nature of the FTIR 

measurements. Additionally, the pressure applied while making the self-supported discs 
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should be kept to a minimum, below 0.5 tonne/cm2, as a higher pressure can lead to the 

incomplete sample activation and structural damage in extreme cases. To obtain accurate 

measurements of ε values using the Beer-Lambert law it is essential the carefully design of 

the experimental conditions. 

2.4 Calculation of molar absorption coefficients using in situ FTIR spectroscopy  

Quantitative addition of Py was performed for all samples to obtain the amount of Py 

necessary to saturate all acid sites (ntotal) in each sample, as shown in Figure 2.2. The 

integrated areas of the peaks corresponding to Py adsorbed on BAS (Py-H+) and LAS (Py-

L) and ntotal, for each sample under investigation, were plotted in Figure 2.9, according to 

Equation 2.7. Three or four data points for each zeolite were obtained using zeolites calcined 

at different temperatures, which allow the investigation of the same structure but with 

samples with different BAS/LAS ratios. The ɛBAS and ɛLAS were evaluated from the plotted 

trendlines where −
𝜀𝐵𝐴𝑆

𝜀𝐿𝐴𝑆
 is the gradient and ɛBAS is the y-intercept, being expressed in 

cm/µmol (Table 2.2). 

 

Figure 2.9. Determination of molar absorption coefficients for Py in BAS and LAS on 

various zeolites obtained by in situ FTIR experiments. 
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Table 2.2. Summary of the molar absorption coefficients for Py in BAS and LAS on various 

zeolites obtained by in situ FTIR experiments. 

Zeolites 
εBAS 

(cm/mol) 

εLAS 

(cm/mol) 
εBAS/εLAS 

BEA (12.5) 0.88 2.77 0.32 

BEA (19) 1.30 1.20 1.08 

ZSM-5 (40) 1.22 1.31 0.93 

MOR (7) 1.23 4.31 0.29 

Y (2.6) 1.30 3.65 0.36 

Average 1.18 2.65 - 

StDev 0.18 1.39 - 

 

Both εBAS and εLAS values are different for different zeolites; this indicates that ε values 

are dependent on the zeolite structure, which disagrees with the assumptions of Emeis [13] 

and Gould et al. [33]. The εBAS value obtained for BEA (12.5) is much lower than the values 

for other zeolites. This is probably due to the presence of a high number of LAS and weakly 

acidic groups (most likely Si-OH groups) in this zeolite structure. The value of εLAS varies 

from 1.20 to 3.87 cm/mol, which could be due to the different nature of LAS existing in 

the different zeolite materials and a significant experimental error. 

Although both εBAS and εLAS values can be calculated from FTIR in situ experiments, 

the values are strongly dependent on the zeolite, the nature of the acid sites and the presence 

of weak acid sites such as Si-OH and Al-OH groups. The assumption that one type of BAS 

and one type of LAS is present within the zeolite structure must be made when considering 

Equation 2.7. However, in practice, this is not true in the majority of cases. For instance, a 

significant number of defect sites are present in zeolite BEA, such as Si-OH and Al-OH 

groups with weak or moderately strong Brønsted acidity, while the nature of Lewis acidity 

is still under discussion. Another limitation with this method is the lack of knowledge of the 

real amount of Py which is chemisorbed on the zeolite disc. An unknown amount of Py can 

be adsorbed on the walls of the IR cell at the same time as it is chemisorbed, leading to an 
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inaccurate determination of the amount of probe molecule interacting with each type of acid 

site (BAS and LAS) and strongly affecting the calculations [40,42]. Therefore, it is ideal to 

obtain a direct measurement of disc mass changes and IR analysis (AGIR set up) during the 

adsorption of the probe molecule to allow the evaluation of a more precise εBAS and εLAS 

values. 

2.5 Calculation of molar absorption coefficients using AGIR 

The new combination technique offers the possibility to measure the quantitative 

relationship between the amount of adsorbed species and the intensities for its characteristic 

adsorption bands (Figures 2.10). Adsorption of Py at 150°C (Figure 2.10 a and b) using the 

AGIR system on BEA (12.5) zeolite leads to the formation of peaks at 1545 and 1456 cm-1 

corresponding to Py-H+ and (pyridinium ions, BAS) and Py-L (coordinated to LAS), 

respectively. 

 

Figure 2.10. (a) FTIR spectra of the 

hydroxyl region following Py adsorption 

at 150°C of BEA (12.5) zeolite. (b) FTIR 

spectra of the Py region following Py 

adsorption at 150°C of BEA (12.5) zeolite. 

(c) TGA of BEA (12.5) zeolite during the 

course of one experiment using the AGIR 

set-up. 
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The increase of the amount of Py in the system increases the intensity of Py-H+ and 

Py-L peaks until saturation is achieved (no changes in the peaks is observed). The IR data 

acquired using this set-up is in agreement with spectral observations obtained by in situ FTIR 

spectroscopy. The mass of the sample disc is monitored during the course of the experiment 

(Figure 2.10 c). An increase of the disc mass can be observed over time due to Py species 

formation. This parallel increase of disc mass and the intensity of IR peaks with the Py 

amount allow a direct calculation of ε values. 

2.5.1 Effect of physisorbed Py species 

Py adsorption on zeolites is typically performed at 30-150°C followed by the removal 

of physisorbed Py species, which are held on the zeolite surface by weak hydrogen-bonding 

and van-der-Waals interactions giving rise to the peaks at 1585-1595 and 1438-1445 cm-1 

[1,43]. The effect of physisorbed Py on the intensity of the IR bands is exemplified by the 

spectra obtained for BEA zeolite after Py desorption at 150°C (Figure 2.11). 

 

Figure 2.11. Difference FTIR spectra of Py region following Py adsorption at 150°C on 

BEA (12.5) zeolite after desorption over 60 min. 
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Over ~60 minutes, the intensity of the peak shoulder at ~1440 cm-1 decreases, 

indicating that the physisorbed Py species are being removed at 150°C. At the same time, 

the TG signal shows a ~27% decrease (from 850 to 615 mol/g), but the intensity of the 

peak corresponding to Py-H+ species at ~1545 cm-1 increases by ~25%. These observations 

can be explained by a “solvent” effect, as weakly bound Py molecules reduce the transient 

dipole moment of the protonated Py-H+ species (probably, by forming Py···Py-H+ 

complexes, in which the N-atom of the Py molecule forms a H-bond with the pyridinium 

ion) that would cause a decrease in the value of εBAS. These data demonstrate that the 

removal of physisorbed Py species should be conducted at 150-200°C (depending on the 

zeolite) by purging or evacuating the system and should be monitored to ensure the accuracy 

of acidity measurements and the one-to-one interaction between Py and BAS. 

2.5.2 Effect of the resolution 

Table 2.1 shows the significant differences in the experimental approaches described 

by different laboratories, especially the resolution at which the IR spectra are collected. The 

usual resolution used is 4 cm-1, however, depending on the research laboratory, the values 

utilised vary from 1 to 4 cm-1 or are not mentioned (Table 2.1) and this could be one of the 

factors leading to discrepancies in the literature values. 

The effect of the use of different resolutions on both Py-H+ and Py-L peaks was studied 

using BEA (19) zeolite after adsorption of Py at 150°C (Figure 2.12). The main differences 

can be observed in the shape of both peaks of Py-H+ and Py-L. However, this effect is more 

pronounced in the intensity of the Py-L peak for spectra collected at higher resolutions 

(Table 2.3). 
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Figure 2.12. Difference spectra of Py region following Py adsorption at 150°C of BEA (19). 

Spectra collected at different resolutions (1-8 cm-1). 

 

 

Table 2.3. Integration of the peaks areas and heights of Py-H+ and Py-L (at ~1545 and at 

~1456 cm-1, respectively) of BEA (19). Spectra collected at different resolutions from 1 to 8 

cm-1. 

Resolution 

cm-1 

Peak Area Peak height 

BAS LAS BAS LAS 

1 
2.52 5.40 0.15 0.70 

- - - - 

2 
2.51 5.30 0.14 0.67 

0.6% 1.9% 0.7% 4.7% 

4 
2.50 5.08 0.14 0.58 

0.6% 5.9% 2.8% 17.1% 

8 
2.43 4.63 0.13 0.41 

3.5% 14.3% 10.3% 41.3% 

Integration of both peaks (Table 2.3) shows noticeable experimental errors associated 

with the spectroscopic data collected at different resolutions, especially when the 

measurements are done by the peak height (~17% for Py-L at 4 cm-1 of resolution). It is best 
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to compare results obtained under the same conditions, but when this is not possible it is 

better to use measurements obtained by peak area instead of peak height.  

2.5.3 Effect of the temperature 

The temperature of the measurements has a very significant effect on the calculation 

of ɛ values (Figure 2.13). With the increase in the temperature of the measurements 

(temperature of the sample in the IR cell), both peaks of Py-H+ and Py-L become boarder 

and their peak intensity decreases. As the temperature increases by 100°C the Py-H+ peak 

shifts by 2 cm-1 and Py-L peak shifts by 1 cm-1. 

 

Figure 2.13. Difference spectra of Py region following Py adsorption at 150°C of BEA 

(12.5) after desorption at increasing temperatures (100-300°C).  

These results are evidence that εBAS and εLAS values obtained will be different 

depending on the temperature of the measurements, which disagrees with previous 

assumptions [13]. Furthermore, as indicated in Table 2.1, the experimental temperature used 

for adsorption of Py is often not specified in many published reports, which can introduce 

another source of error in the calculation of the number of acid sites using this literature data 

of the molar adsorption coefficients. 



48 

 

2.5.4 Molar absorption coefficients  

The integrated areas of the peaks corresponding to Py adsorbed on BAS and LAS and 

ntotal (obtained by TGA), for each material under investigation, were used to calculate εBAS 

and εLAS values according to the Beer-Lambert law (Equation 2.1). The obtained values at 

different temperatures were plotted (e.g. Figure 2.14). 

 

Figure 2.14. Molar absorption coefficients for Py on BAS and LAS on ZSM-5 (40) zeolite 

obtained using AGIR experiments. 

The ε values for other zeolite materials were also obtained using the same approach, 

(Table 2.4). As the presence of both BAS and LAS in the same sample can interfere with the 

calculations, to obtain ε values directly and minimise experimental errors, measurements of 

εBAS and εLAS values were carried out separately. Zeolites with only BAS (e.g. ZSM-5 (40)) 

were used to calculate εBAS and zeolites with only LAS were used to calculate εLAS (e.g. ɤ-

alumina). 

  



49 

 

Table 2.4. Summary of the molar absorption coefficients extrapolated to 90°C for Py on 

BAS and LAS on various zeolites obtained by AGIR experiments. 

Zeolites 
εBAS 

(cm/mol) 

εLAS 

(cm/mol) 

ZSM-5 (40) 1.16±0.08 - 

BEA (12.5) 1.19±0.16 - 

MOR (7) 1.38±0.04 - 

Y (2.6) 1.64±0.15 - 

ɤ-alumina - 1.87±0.1 

Na/ZSM-5 (40) - 1.88±0.2 

The εBAS values vary from 1.16 to 1.64 cm/mol confirming the dependence of these 

values on the zeolitic structure. The Si/Al ratios, confinement effects and the number and 

nature of both BAS and LAS are expected to influence the calculations and be responsible 

for the differences in the values. The discrepancies in the values are lower when compared 

with the results obtained by in situ FTIR experiments (Section 2.4). εLAS values are less 

affected by these factors, as the values obtained for Al2O3 and Na/ZSM-5 are very similar.  

The values obtained in this section were used on the quantitative measurements of acid 

sites presented in the following chapters of this thesis.  

2.6 Summary 

In this study, a method was developed for calculating more accurate εBAS and εLAS 

values for Py species adsorbed onto a different range of zeolitic structures. Studies on the 

Beer-Lambert law confirmed that this law is valid for IR studies of zeolites and made evident 

that to obtain precise measurements, it is necessary to carefully design and give attention to 

the experimental details. The quantitative measurements using in situ FTIR experiments 

demonstrated the dependency of the calculations on the zeolitic structure and the importance 

of knowing the exact amount of Py chemisorbed on the sample disc. The quantitative 

measurements using the AGIR system allowed a more precise and direct determination of 

both εBAS and εLAS values for different zeolitic structures. The Si/Al ratio, confinement 
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effects, number and nature of both BAS and LAS, adsorption temperature, physisorbed 

species and experimental set-up are the most important factors which can affect the 

calculations of these values. 

Despite the significant progress made in the calculation of ε values, this work could be 

further extended to the evaluation of other zeolite materials containing different types of 

BAS and LAS and studies about the effect of acid site strength on the values of ɛ. The 

experimental εBAS and εLAS values obtained in this project should expand the accuracy of the 

quantitative analysis of acid sites of different zeolite-based catalysts using IR spectroscopy. 
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Chapter 3 Thermal stability of ZSM-5 and BEA zeolites 

3.1 Introduction 

The diversity of reactions catalysed by zeolites relates to their acid-base character, 

indeed H-form zeolites represent one of the most important classes of materials applied in 

industry as catalysts [1-3]. Recently, there has been a great deal of interest in the 

development of solid Lewis acid catalysts for processes involving biomass conversion [4,5], 

isomerisation [6] and gaseous ozone elimination [7]. One of the developments in zeolite 

catalysis has come from the recognition that metal-containing zeolites are highly active and 

stable catalysts. Zeolites containing transition metals find applications as redox catalysts 

[8,9], while zeolites containing alkali metals and alkaline earth metals are used as industrial 

adsorbents for gas purification [10-13], production of membranes for gas separation [14] and 

as ion exchangers for water softening [15]. Cationic zeolites can also be used in 

heterogeneous catalysis as stable supports for other catalytic active phases [16-18] and more 

recently in biomass conversion [19-21].  

The acid-base characteristics and structural properties of zeolites are very much 

dependent on the type and severity of post-synthesis modifications. These modifications tune 

the physicochemical and acidity characteristics favourable for a particular application and 

are important steps in the preparation of a stable and active catalyst. Thermal treatment is 

one of the most common post-synthesis modification methods [22,23] and for this reason, 

the understanding of zeolite behaviour upon heating is of particular importance since 

sorptive, catalytic and molecular sieve properties are often altered during calcination and 

under operating conditions [24]. Additionally, zeolite activation and regeneration requires 

thermal treatments, which can cause their structural degradation and the loss of catalytic 

activity and selectivity. Thermal treatment often leads to a removal of aluminium (Al) atoms 

from the zeolite framework (dealumination) accompanied by the formation of Lewis acid 

sites (LAS, extra-framework Al species), resulting in a change in the number and strength 
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of the acid sites [25,26]. This post-synthesis modification is the main cause of the formation 

of framework defects and silanol groups (Si-OH). Besides changes in the acidic properties, 

dealumination by calcination also affect the zeolite pore network resulting in a gradual 

collapse of the structure and pore blockage by aggregated forms of Al [27-30]. Cation 

introduction into zeolites may also require a thermal treatment, which leads to the 

decomposition of the salts used and redistribution of cationic species in the cavities of the 

zeolite [16]. It is essential to verify the thermal stability of the zeolite under investigation, 

knowing that these properties are significantly dependent on the framework topology, Si/Al 

ratio, Al distribution and the nature and number of the cation [22,25]. Thermal stability of 

zeolites is generally very high, and in the absence of water vapour, many zeolites can be 

heated to temperatures of 800°C without loss of crystallinity or recrystallisation to denser 

phases. Typically high-silica zeolites (e.g. ZSM-5), are more stable than low-silica zeolites 

(e.g. USY) [24,25,29,31]. Higher thermal stability of a zeolite structure can be achieved 

through ion exchange with multivalent cations. 

Systematic quantitative studies that explore how thermal treatment affects the 

properties of commercial and cation-containing zeolites are rare. In this work, a detailed 

investigation of the thermal stability of thermally treated and cation-containing zeolites was 

carried out by combining different characterisation techniques. The main goal was to obtain 

information on their structural, textural, and acidic properties, with particular emphasis on 

quantitative measurements of the different types of active sites in two zeolitic structures, 

BEA and ZSM-5 containing common metal cations (Na+, K+, Ca2+, and Mg2+). The results 

should provide new insights into ZSM-5 and BEA structural stability and acidity changes at 

temperatures relevant to different catalytic reactions and zeolite regeneration.  
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3.2 Experimental  

3.2.1 Zeolite modification 

Thermal treatment  

Ammonium forms of zeolites BEA (CP814E, BEA framework, Si/Al=12.5) and ZSM-

5 (CBV8014, MFI framework, Si/Al=40) were obtained from Zeolyst International in 

powder form. The two zeolite structures were calcined at different temperatures (450ºC, 

600ºC, 700ºC, 800ºC and 900ºC) in a muffle furnace for 5 hours. The samples are reported 

in Table 3.1 and the calcination profile is shown in Figure 3.1. 

Table 3.1. BEA and ZSM-5 zeolites prepared using different temperature. 

Calcination 

 temperature (°C) 

BEA (12.5) 

samples 

ZSM-5 (40) 

samples 

- BEA ZSM-5 

450 BEA 450ºC ZSM-5 450ºC 

600 BEA 600ºC ZSM-5 600ºC 

700 BEA 700ºC ZSM-5 700ºC 

800 BEA 800ºC ZSM-5 800ºC 

900 BEA 900ºC ZSM-5 900ºC 

 

 

 

Figure 3.1. Calcination temperature profile. 
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Incipient wetness impregnation 

Cation-containing zeolites modified by incipient wetness impregnation were prepared 

at Keele University. The impregnation was performed with aqueous solutions of potassium 

nitrate (KNO3, Alfa Aesar, 99%), sodium nitrate (NaNO3, Alfa Aesar, 98%), calcium nitrate 

(Ca (NO3)2 4H2O, Lancaster Synthesis, 99%) and magnesium nitrate (Mg (NO3)2 6H2O, Alfa 

Aesar, 98%). The cation-containing zeolites were prepared from aqueous solutions of nitrate 

salt with a ratio 1mL/1g ZSM-5 and 1.5mL/1g BEA. The solution concentrations were 

calculated so that different quantities of cations would be incorporated (25, 50 and 100% of 

cation per Al atom; e.g. 1 K/BEA sample would contain 100% of K+
 or 1:1 K/Al). 4g of 

zeolite was introduced into a 50 mL beaker, and the aqueous solution of one of the nitrates 

was added dropwise at room temperature. The mixture was stirred for 15min and 

subsequently dried at 60ºC overnight. Finally, the cation-containing zeolites were calcined 

at the desired temperature (450ºC or 800ºC). The impregnation and subsequent calcinations 

were repeated for each parent zeolite using the same experimental conditions. 

A “blank” impregnation was also completed with ammonium nitrate (NH4NO3, BHR, 

99%) in order to evaluate the effect of the nitrate on both zeolitic structures. These 

experiments did not show any differences in the thermal stability between the parent and 

zeolites impregnated with NH4NO3. Tables 3.2 and 3.3 summarise the cation-containing 

zeolites prepared by impregnation.   
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Table 3.2. Cation-containing BEA zeolites prepared by impregnation followed by thermal 

treatment. 

Zeolite Salt 
Tcalcination 

(oC) 
Cation Target 

(%) 
Cation/Al 

(EDX) 
Zeolite ID 

BEA 

KNO3 

450 

25 0.2 0.25 K/BEA-IM 450ºC 

50 0.3 0.5 K/BEA-IM 450ºC 

100 0.4 1 K/BEA-IM 450ºC 

800 

25 0.2 0.25 K/BEA-IM 800ºC 

50 0.3 0.5 K/BEA-IM 800ºC 

100 0.4 1 K/BEA-IM 800ºC 

NaNO3 

450 

25 0.2 0.25 Na/BEA-IM 450ºC 

50 0.4 0.5 Na/BEA-IM 450ºC 

100 0.5 1 Na/BEA-IM 450ºC 

800 

25 0.2 0.25 Na/BEA-IM 800ºC 

50 0.4 0.5 Na/BEA-IM 800ºC 

100 0.5 1 Na/BEA-IM 800ºC 

Ca(NO3)2 4 

H2O 

450 

25 0.6 0.25 Ca/BEA-IM 450ºC 

50 0.8 0.5 Ca/BEA-IM 450ºC 

100 1.7 1 Ca/BEA-IM 450ºC 

800 

25 0.6 0.25 Ca/BEA-IM 800ºC 

50 0.8 0.5 Ca/BEA-IM 800ºC 

100 1.7 1 Ca/BEA-IM 800ºC 

Mg(NO3)2 6 

H2O 

450 

25 0.3 0.25 Mg/BEA-IM 450ºC 

50 0.9 0.5 Mg/BEA-IM 450ºC 

100 1.7 1 Mg/BEA-IM 450ºC 

800 

25 0.3 0.25 Mg/BEA-IM 800ºC 

50 0.9 0.5 Mg/BEA-IM 800ºC 

100 1.7 1 Mg/BEA-IM 800ºC 
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Table 3.3. Cation-containing ZSM-5 zeolites prepared by impregnation followed by thermal 

treatment.  

Zeolite Salt 
Tcalcination 

(oC) 
CationTarget 

(%) 
Cation/Al 

(EDX) 
Zeolite ID 

ZSM-5 

KNO3 

450 

25 0.2 0.25 K/ZSM-5-IM 450ºC 

50 0.4 0.5 K/ZSM-5-IM 450ºC 

100 1.0 1 K/ZSM-5-IM 450ºC 

800 

25 0.2 0.25 K/ZSM-5-IM 800ºC 

50 0.4 0.5 K/ZSM-5-IM 800ºC 

100 1.0 1 K/ZSM-5-IM 800ºC 

NaNO3 

450 

25 0.3 0.25 Na/ZSM-5-IM 450ºC 

50 0.6 0.5 Na/ZSM-5-IM 450ºC 

100 0.8 1 Na/ZSM-5-IM 450ºC 

800 

25 0.3 0.25 Na/ZSM-5-IM 800ºC 

50 0.6 0.5 Na/ZSM-5-IM 800ºC 

100 0.8 1 Na/ZSM-5-IM 800ºC 

Ca(NO3)2 4 

H2O 

450 

25 0.3 0.25 Ca/ZSM-5-IM 450ºC 

50 0.4 0.5 Ca/ZSM-5-IM 450ºC 

100 0.9 1 Ca/ZSM-5-IM 450ºC 

800 

25 0.3 0.25 Ca/ZSM-5-IM 800ºC 

50 0.4 0.5 Ca/ZSM-5-IM 800ºC 

100 0.9 1 Ca/ZSM-5-IM 800ºC 

Mg(NO3)2 6 

H2O 

450 

25 0.2 0.25 Mg/ZSM-5-IM 450ºC 

50 0.6 0.25 Mg/ZSM-5-IM 800ºC 

100 0.8 0.5 Mg/ZSM-5-IM 450ºC 

800 

25 0.2 0.25 Mg/ZSM-5-IM 800ºC 

50 0.6 0.5 Mg/ZSM-5-IM 800ºC 

100 0.8 1 Mg/ZSM-5-IM 800ºC 

 

Ion exchange  

Cation-containing zeolites modified by ion exchange were prepared at Keele 

University. The modification was carried out with aqueous solutions of potassium nitrate 

(KNO3, Alfa Aesar, 99%), sodium nitrate (NaNO3, Alfa Aesar, 98%), calcium nitrate (Ca 

(NO3)2 4H2O, Lancaster Synthesis, 99%) and magnesium nitrate (Mg (NO3)2 6H2O, Alfa 

Aesar, 98%). 4g of the zeolite were added to 20 mL of an aqueous solution of each nitrate 

salt at room temperature, where different quantities of cations were incorporated (25, 50 and 

100% of cation per Al atom; e.g. 1 K/BEA contains 100% of K+
 or 1:1 K/Al). The mixture 

was stirred for 24h followed by centrifugation to separate the solid, washed with deionised 
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water and dried in an oven at 80°C for 24h. Subsequently, the cation-containing zeolites were 

calcined at the desired temperatures (450ºC and 800ºC). The ion exchange and subsequent 

calcinations were repeated for each parent zeolite using the same experimental conditions. 

3.2.2 Zeolite characterisation 

A comprehensive structural characterisation of selective materials was carried out 

using powder X-ray diffraction (XRD), scanning and transmission electron microscopy with 

an EDX analytical system (SEM-EDX), argon (Ar) physisorption, 27Al solid-state NMR and 

FTIR spectroscopy using pyridine (Py) as probe molecule. 

Py-FTIR experiments and SEM-EDX analyses are detailed described in Chapter 2. For 

the quantification of the zeolite acidic properties using adsorption of Py, the values of the 

molar absorption coefficients applied were those obtained in Chapter 2. The quantification 

of cationic species was obtained by deconvolution of the peaks in the range 1460-1420 cm-

1 using a mixed Gaussian-Lorentzian function in OMNIC software and the molar absorption 

coefficients value for LAS. The error margin of the quantification was estimated as ± 5%. 

X-ray diffraction patterns were recorded by a Bruker D8 Advance diffractometer with 

nickel-filtered CuKα radiation scanning in the range of 5-60º (2θ) and at an angular rate of 

0.3º/min with a step size of 0.01º. The estimated relative crystallinities (%) were calculated 

using the areas of several peaks in the range of 15-35º (2θ) and using the respective parent 

material (ZSM-5 and BEA uncalcined) as a reference. Physisorption experiments were 

performed with a Micromeritics 3Flex using Ar as the adsorbate at -185°C. The zeolites were 

pre-treated under vacuum for 1h at 90ºC and subsequently at 300ºC for 16h. The apparent 

surface areas (SBET) were calculated by applying the Brunauer-Emmett-Teller (BET) 

equation, while the external surface area (Sext), micropore area (Smicro) and micropore volume 

(Vmicro) were calculated by the t-method. The solid-state MAS NMR spectra were acquired 

at a static magnetic field strength of 9.4 T (v0(
1H) =400MHz) on a Bruker Avance III console 

using TopSpin 3.1 software. The probe used for 27Al solid-state MAS NMR was tuned to 
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104.27 MHz and referenced to yttrium aluminium garnet (YAG) at 0.0 ppm. Prior to the 

experiments, the zeolites were stored overnight in a humid environment before being packed 

into a zirconia MAS rotor with Kel-F caps and the sample mass was recorded. All solid-state 

NMR and Ar physisorption experiments were performed at Johnson Matthey PLC. 

3.3 Effect of thermal treatment 

3.3.1 Structural and textural properties 

The morphology of BEA zeolite demonstrates agglomerates of crystals about 40-50 

nm in size (Figure 3.2 a), which is in agreement with the dimension of BEA zeolite 

mentioned in the literature [30,32]. ZSM-5 zeolite shows a typical morphology of an MFI 

structure with individual particles forming larger and irregular aggregates. Therefore, it is 

difficult to determine the mean size of the primary particles from the SEM image (Figure 

3.2 b). All thermally treated zeolites maintain the Si/Al ratio of the parent zeolite being ~12 

for BEA and ~32 for ZSM-5 (Table 3.4). This demonstrates that after thermal treatment even 

at high temperatures, all Al species remain in the zeolite structure (as framework and extra-

framework Al). 

 

Figure 3.2. SEM micrographs of the parent zeolites. (a) BEA and (b) ZSM-5 at different 

magnifications. 

According to XRD, all parent and thermally treated zeolites are well-crystallised 

materials with low background, which is indicative of the absence of an amorphous phase 
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(Figure 3.3). The XRD patterns of BEA zeolites suggest that this structure is a material of 

~60% of polymorph A and 40% of polymorph B [33]. The XRD patterns of ZSM-5 zeolites 

are ascribed to the typical structure characteristic of the MFI framework (Figure 3.3 b) [33]. 

Although the XRD patterns show no significant changes in the zeolite’s structure, the 

estimated values for the relative crystallinities gradually decrease (Table 3.4), indicating a 

loss of crystal structure with the increasing calcination temperature. This loss can be 

attributed to dealumination caused by thermal treatment, which could lead in extreme cases 

to a collapse of the structure. 

 

Figure 3.3. X-ray diffraction patterns obtained for (a) BEA and (b) ZSM-5 zeolites. 
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Table 3.4. Structural and textural properties of parent and thermally treated BEA and ZSM-

5 zeolites.  

Zeolite 
Si/Al 

(EDX) 

Relative 

crystallinity 

(%)a 

Apparent SBET 

(m2/g) 

Sext 

(m2/g) 

Smicro 

(m2/g) 

Vmicro 

cm3/g 

BEA 11.9 100 604 214 390 0.15 

BEA 450°C 11.7 90 580 217 364 0.14 

BEA 600°C 11.6 85 550 217 333 0.13 

BEA 700°C 11.0 81 527 191 336 0.13 

BEA 800°C 12.1 63 525 186 342 0.13 

BEA 900°C 11.4 62 418 166 251 0.10 

ZSM-5 32.0 100 450 57 392 0.15 

ZSM-5 450°C 32.1 99 459 55 404 0.15 

ZSM-5 600°C 32.3 97 460 57 402 0.15 

ZSM-5 700°C 31.6 94 442 55 387 0.14 

ZSM-5 800°C 31.4 90 445 58 387 0.14 

ZSM-5 900°C 32.1 85 448 58 389 0.14 

 

The increase in the temperature of the thermal treatment also leads to a gradual 

decrease in the textural properties of BEA zeolite (apparent SBET, Smicro, Sext and Vmicro) 

especially when the zeolite is calcined at temperatures above 700°C (Table 3.4). In contrast, 

there are no remarkable changes in the textural parameters of ZSM-5 zeolite, not even when 

calcined at higher temperatures (Table 3.4), which is in agreement with previous reports 

[34]. The parent and thermally treated ZSM-5 zeolites display a type-I isotherm, which is 

typical of solids with a microporous structure having relatively small external surfaces 

(Figure 3.4 b) [35] while BEA thermally treated zeolites show a mix between type-I and IV 

isotherm (Figure 3.4 a) [35]. The shape of adsorption and desorption isotherms for both sets 

of zeolites are very similar within each group, even after high calcination temperatures. 
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Figure 3.4. Ar adsorption-desorption isotherms for parent and thermally treated zeolites. (a) 

BEA (b) ZSM-5. 

Thermal treatment promotes changes in the relative crystallinities of both zeolites and 

in the textural properties of zeolite BEA. The modification in this zeolite properties are more 

pronounced than in ZSM-5 zeolite; changes in the structural and textural properties of BEA 

zeolite occur at low calcination temperatures (450°C), which agrees with other reports 

[36,37]. The literature on the structural stability of this zeolite is inconsistent and studies 

have already shown a structural collapse at 900ºC [38,39]. However, in the set of thermally 

treated BEA zeolites studied in this work, there is only a partial degradation of the structure 

(~62%).  

From these results there is no evidence of structural collapse in ZSM-5 zeolite, but 

structural alterations are observed in samples calcined (450-900ºC), in similarity to previous 

studies [34,40,41]. It has been shown that ZSM-5 is more resistant to dealumination during 

thermal treatments than other zeolites [31,42], such as BEA, MOR and FAU with a high 

amount of Al, which are less stable against dealumination at high temperatures [25,43] 

Additionally, the flexibility in the coordination sphere of the Al atoms in the 12-MR system 

of zeolite BEA [44,45], makes it more susceptible to dealumination, while ZSM-5 zeolite is 

more resistant to high temperature treatment. 
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3.3.2 Acidic properties 

FTIR spectra of parent zeolites BEA and ZSM-5 show two major peaks at 3610 cm-1 

and 3745 cm-1, with a shoulder at ~3735 cm-1 (Figures 3.5 and 3.6). The peak at 3610 cm-1 

corresponds to acidic bridging Si-OH-Al groups. The peaks at 3745 and 3735 cm-1 are 

attributed to external and internal silanol groups (Si-OH), respectively. The separation of 

external and internal Si-OH peaks is more noticeable in the spectra of the BEA zeolites, 

which is a result of the relatively small crystal dimensions of this material (Figure 3.5) [32]. 

Thermal treatment causes a decrease in intensity of the peak of Si-OH-Al groups at 3610 

cm-1 in both sets of zeolites. This peak completely disappears after calcination at high 

temperatures (for BEA at 700-900ºC and for ZSM-5 at 900ºC). This decrease results from 

the breaking of Si-O-Al bonds during the thermal treatment and is accompanied by the 

formation of extra-framework aluminium species (EFAl) and hydroxyl nests [25,26] 

(Figures 3.5 a and 3.6 a). The breaking of Si-O-Al bonds is dependent on the calcination 

temperature; a higher calcination temperature leads to a greater degree of dealumination, 

complete removal of Si-OH-Al groups (BEA 700-900ºC and ZSM-5 900ºC) and partial 

collapse of the zeolitic structure. BEA 450C-900ºC and ZSM-5 600-800ºC samples display 

two additional peaks at 3782 cm-1 and 3662 cm-1 assigned to Al-OH groups formed through 

the dealumination of Al from the framework [46]. The Al-OH groups with a peak at 3782 

cm-1 is associated to Lewis acidity, similar to Al-OH groups observed in alumina, while the 

peak at 3662 cm-1 is related to weak Brønsted acidity (BAS). With the breaking of the Si-O-

Al bonds more defects are generated in the structure, which are associated with the small 

increase in the intensity of the peak at ~3745 cm-1 (terminal Si-OH groups) and the 

appearance of the Al-OH peaks at 3782 and 3662 cm-1. 
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Figure 3.5. FTIR spectra of hydroxyl groups of BEA parent and thermally treated zeolites 

(a) before (solid lines) and after Py adsorption at 150ºC (dashed lines). (b) Difference spectra 

of the hydroxyl groups following Py adsorption at 150ºC. (c) Difference spectra of the Py 

region following Py adsorption at 150ºC. (1) Parent BEA zeolite, (2) BEA 450ºC, (3) BEA 

600ºC, (4) BEA 700ºC, (5) BEA 800ºC and (6) BEA 900ºC. 
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Figure 3.6. FTIR spectra of hydroxyl groups of ZSM-5 parent and thermally treated zeolites 

(a) before (solid lines) and after Py adsorption at 150ºC (dashed lines). (b) Difference spectra 

of the hydroxyl groups following Py adsorption at 150ºC. (c) Difference spectra of the Py 

region following Py adsorption at 150ºC. (1) Parent ZSM-5 zeolite, (2) ZSM-5 450ºC, (3) 

ZSM-5 600ºC, (4) ZSM-5 700ºC, (5) ZSM-5 800ºC and (6) ZSM-5 900ºC. 

The interaction of Py with ZSM-5 and BEA zeolites (Figures 3.5 and 3.6) results in a 

complete disappearance of the peaks at 3610 cm-1 and 3662 cm-1 corresponding to bridging 

Si-OH-Al groups and Al-OH groups. A decrease in the intensity of the Si-OH peak at ~3745 

cm-1 is also observed. The reduction in the intensity of the Si-OH-Al and Al-OH peaks 

demonstrates the acidic character of these hydroxyl groups. The decrease in the intensity of 

the Si-OH peak shows that part of Si-OH groups interacts with Py; these groups are probably 

located close to LAS. The remaining Si-OH groups not interacting with Py are usually 

attributed to non-acidic terminal species in the framework or extra-framework positions 
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distant from LAS [47]. The Al-OH peak at 3782 cm-1 in BEA 450-900ºC and ZSM-5 600-

800ºC also decrease in intensity after adsorption of Py, which according to [48] are non-

acidic OH groups similar to Al-OH groups observed in alumina. 

In the range of 1400-1700 cm-1, chemisorbed Py is revealed by the following sets of 

peaks: two peaks at 1545 and 1637 cm-1 due to pyridinium ion (Py-H+ or BAS), two peaks 

at 1456 and 1622 cm-1 assigned to Py coordinated to Lewis acid sites (Py-L or LAS) and the 

peak at 1491 cm-1 corresponding to the signal of Py on Lewis and Brønsted acid sites 

(Figures 3.5 c and 3.6 c). ZSM-5 zeolite shows a lower total concentration of acid sites when 

compared with BEA zeolite (Table 3.5). That is explained by the lower amount of Al in 

ZSM-5 structure, Si/Al=~ 40 for ZSM-5 vs Si/Al=~12.5 for BEA.  

Table 3.5 Concentration of acid sites for BEA and ZSM-5 parent and thermally treated 

zeolites in quantitative experiments using Py adsorption monitored by FTIR. 

Zeolite 
BAS 

(μmol/g) 

LAS 

(μmol/g) 

Total amount 

(μmol/g) 
BAS/LAS 

BEA 352 195 547 2.0 

BEA 450°C 224 328 552 0.7 

BEA 600°C 207 291 498 0.7 

BEA 700°C 144 251 395 0.6 

BEA 800°C 83 129 212 0.6 

BEA 900°C 48 96 144 0.5 

ZSM-5 338 25 363 13.3 

ZSM-5 450°C 304 31 335 9.7 

ZSM-5 600°C 263 45 308 5.9 

ZSM-5 700°C 166 71 237 2.3 

ZSM-5 800°C 55 78 133 0.7 

ZSM-5 900°C 15 28 43 0.6 

 

The number of BAS in both set of samples gradually decreases with the increasing 

calcination temperature. This decrease is directly related to the breaking of the Si-O-Al 

bonds resulting in the increase of the number of LAS attributed to the formation of EFAl 

species. Thermal treatment affects more strongly the acidic properties of BEA zeolite. After 
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calcination at 450°C BEA zeolite losses ~46% of the total number of BAS, while ZSM-5 

only losses 10% total number of BAS. Zeolites BEA 800-900ºC and ZSM-5 900ºC (Figures 

3.5 a and 3.6 a) display a total loss of Si-OH-Al groups, however the 27Al NMR (Figure 3.7) 

shows the presence of tetrahedral Al (δ ~60ppm) related to Si-OH-Al groups. This indicates 

that the breaking of the Si-O-Al bonds leads to the formation of cations such [Al=O]+, acting 

as contour ions to neutralise the change, which are still visible in the 27Al NMR spectra at δ 

~60-54 ppm. The presence of BAS in some of the zeolites after the loss of the majority of 

the Si-OH-Al groups confirms the existence of weak protonic sites (weak BAS), not related 

to Si-OH-Al groups but weakly acidic hydroxyl groups such as Al-OH (3662 cm-1) and Si-

OH groups (3745 cm-1 and ~3735 cm-1) perturbed by EFAl species (which are LAS 

interacting with weak Si-OH groups and therefore increasing their acid strength, which leads 

to an increased number of BAS) (Table 3.5). 

 

Figure 3.7. Normalised 27Al solid-state MAS NMR spectra of selected (a) BEA and (b) 

ZSM-5 zeolites. 

The changes in the number of Si-OH-Al groups and BAS for ZSM-5 zeolite (Figure 

3.8 b) at different calcination temperatures are very similar. This indicates that no more weak 

acidic hydroxyl groups are formed in this structure; the ratio between strong/weak BAS 



72 

 

remains the same for all thermally treated ZSM-5 zeolites. For BEA, the changes in the 

number of Si-OH-Al groups and BAS do not coincide, suggesting the contribution of Si-OH 

groups affected by EFAl species to the Brønsted acidity of this zeolite (Figure 3.8 a). BEA 

zeolite shows a higher number of LAS than ZSM-5 zeolite (Table 3.5). The concentrations 

of this type of acidic sites are clearly dependent on the zeolitic structure (and its Si/Al ratio) 

and calcination temperature. The number of LAS increases with thermal treatment, which 

can be explained by the framework Al removal. At calcination temperatures of 600ºC for 

BEA and 800ºC for ZSM-5 a decrease in the number of LAS can be observed (Table 3.5 and 

Figure 3.8). This decrease is a result of the agglomeration of EFAl species or alumina-like 

clusters (Al2O3), and coincides with the loss of crystallinity of the structures as the 

calcination temperature increases (Table 3.4). 

 

Figure 3.8. Evolution of intensities of the peaks of OH groups and acid sites of thermally 

treated zeolites in the difference spectra following Py adsorption at 150°C. (a) BEA (12.5). 

(b) ZSM-5 (40). 

Various mechanisms can produce LAS during thermal treatment (Figure 3.9). The first 

two mechanisms, shown below in equations 1 and 2, produce a one-to-one BAS-to-LAS 

ratio and are indistinguishable from one mechanism to another as silanol groups are not 

quantifiable.  For these mechanisms to successfully occur there should be no loss in the total 

number of acid sites as the temperature increases. 
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Si-OH + Si-OH-Al → LAS (EFAl) + H2O                                1 BAS→ 1 LAS      (1) 

2 Si-OH-Al → 2 LAS (EFAl)                                                    2 BAS→ 2 LAS      (2) 

For the mechanism 3 to operate, as the calcination temperature increases, the total number 

of 2 BAS + 1 LAS should remain constant (and approximate the same as the initial 

concentration) and the experimental lines should be parallel to the x-axis. 

2 Si-OH-Al → LAS (EFAl) + H2O                                           2 BAS→ 1 LAS      (3) 

For the mechanism 4 to be valid, as the calcination temperature increases, the total number 

of 2 BAS + 1 LAS should remain constant (and approximate the same as the initial 

concentrations) and the experimental lines should be parallel to the x-axis.  

Si-OH + Si-OH-Al → LAS (EFAl) + LAS (≡Si) + H2O           1 BAS→ 2 LAS      (4) 

According to the experimental data (Figure 3.9), mechanism 3 can be excluded (red 

lines). For the zeolites calcined at lower temperatures (< 600ºC), the loss of one Si-OH-Al 

group with the formation of one (Figure 3.9 mechanisms 1 or 2 black lines) or the loss of 

two Si-OH-Al group with the formation of one LAS (Figure 3.9 mechanism 4 blue lines) are 

more likely to take place in both ZSM-5 and BEA zeolite structures. Above this calcination 

temperature, none of these mechanisms is valid due to the significant reduction in the number 

of acid sites. This is probably due to agglomeration of Al2O3-like species, forming large 

clusters, in which some of the Al is not accessible to Py. 
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Figure 3.9. Number of acid sites reflecting possible mechanisms for LAS formation in (a) 

BEA (12.5) and (b) ZSM-5 (40) zeolites. 

Calcination of BEA zeolite leads to an increase in the amount of octahedral EFAl 

species with a chemical shift δ~0 ppm (Figure 3.7 a), agreeing with the increase of the 

number of LAS obtained by Py-FTIR (Figure 3.8 a). In addition, BEA zeolites show a 

noticeable broad signal for the framework Al species (δ ~60-54 ppm), which is indicative of 

the increasing disorder of the local Al environment resulting from the thermal treatment [49] 

(Figure 3.7 a). From the comparison of 27Al MAS NMR and FTIR data, it can be concluded 

that Py molecules producing Py-L complexes observed in the infrared spectra may interact 

with these distorted tetrahedral Al species. Thermal treatment at 450ºC did not cause the 

formation of octahedral EFAl species at δ~0 ppm in ZSM-5 zeolite and the bulk of Al 

remains in tetrahedrally coordinated framework positions (Figure 3.7 b). At higher 

calcination temperatures (800ºC) is observed an increase in the amount of octahedral EFAl 

species at δ~0 ppm and a noticeable signal boarding for the framework Al species (δ~60-54 

ppm). These 27Al MAS NMR results are in agreement with the changes demonstrated by 

acid site quantification obtained by Py-FTIR for thermally treated ZSM-5 zeolites (Table 3.5 

and Figure 3.8 b).  

The effect of Py desorption temperature on the Si-OH-Al peak intensities and peaks 

corresponding to adsorbed Py species (deduced from the difference between spectra, before 

Py adsorption and after thermodesorption) was also examined for both sets of zeolites 
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(Figures 3.10 and 3.11). Figure 3.10 shows difference IR spectra of the parent BEA zeolite 

in the OH and Py regions whereas Figures 3.11 summarise the quantitative changes in the 

relative intensities of the bands corresponding to Si-OH-Al, Py-H+ and Py-L species for all 

zeolites. The relative intensity of the Si-OH-Al peak remains constant up to 300ºC gradually 

decreasing at higher desorption temperatures for all zeolites that still present Si-OH-Al 

groups. After desorption at 450ºC, a significant number of Si-OH-Al groups still interact 

with Py, for samples calcined at temperature below 700ºC (e.g. 74% for the parent ZSM-5 

and 79% for parent BEA). A small restoration of the Si-OH-Al peak, represented by the 

decrease in the intensity of the negative peak of the Si-OH-Al in Figure 3.10 a, is observed 

in all samples during the Py desorption. 

 

Figure 3.10. Difference spectra of the (a) hydroxyl region and (b) Py region of BEA parent 

zeolite following Py desorption at increasing temperatures (150°C- 450°C). 

The relative intensity of the Py-H+ peak decreases for all samples, following 

desorption above 150ºC (Figure 3.11 b and e). This confirms the presence of relatively weak 

BAS interacting with Py (weaker than Si-OH-Al, which retain Py up to desorption 

temperatures of 300ºC), such as Al-OH and Si-OH groups. The results demonstrate a 

significant decrease in the apparent strength of BAS in both structures especially when 

calcined at high temperatures. This decrease in apparent strength is explained by the decrease 

in the number of bridging Si-OH-Al groups (strong BAS), resulting in fewer Py desorption-
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readsorption cycles (‘travel’ of Py along the zeolite channels), which can be observed as a 

lower desorption temperature required to remove Py. 

 

 

 

Figure 3.11. Quantitative changes in relative intensities of the peaks corresponding to Si-OH-Al 

groups, Py-H+ and Py-L species after desorption of Py at increasing temperatures (150-450ºC). (a-c) 

BEA (12.5) and (d-f) ZSM-5 (40) zeolites. 
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The relative intensities of the Py-L peak vary to a lesser degree with the increasing of 

desorption temperature, when compared with the Py-H+ peak. Parent and thermally treated 

zeolites calcined at lower temperatures (450-600°C) show a small increase in the Py-L 

relative intensities. This increase is due to the appearance of a shoulder at ~1462 cm-1 (e.g. 

Figures 3.10 b) at desorption temperatures above 350ºC. The peak is assigned to iminium 

ions, which are possibly Py molecules coordinated to Lewis in EFAl positions and at the 

same time interacting through an H-bond with BAS [30] and have been already studied in 

BEA [46,50] and MAZ zeolites [51]. 

3.4 Effect of cation incorporation by impregnation 

3.4.1 Structural and textural properties 

All cation-containing zeolites obtained after the impregnation method show XRD 

patterns which are very similar to those of the respective calcined zeolites (e.g. Figure 3.12). 

Evidence of a broad feature in the patterns of 1 Ca/BEA 800°C and 1 Mg/BEA 800°C 

samples impregnated with higher amounts of Ca2+ and Mg2+ can be observed, which 

indicates the presence of an amorphous material. No extra diffraction peaks assigned to 

different phases (e.g. hydroxides) or significant changes in the peak positions have been 

observed. The absence of additional peaks, even in the presence of high amounts of cations 

suggests a good dispersion of the species through the zeolitic structure. 
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Figure 3.12. X-ray diffraction patterns obtained for (a) Ca/BEA 450ºC (b) Ca/BEA 800ºC 

(c) K/ZSM-5 450ºC (b) K/ZSM-5 800ºC zeolites. 

The estimated relative crystallinities decrease with the increase of the cation content 

and calcination temperature (Tables 3.6 and 3.7). The impregnation of BEA zeolite with 

Ca2+ and Mg2+ cations affects significantly the framework of BEA, especially followed by 

thermal treatment at 800°C. There is a decrease in the estimated crystallinity to 36% for 1 

Mg/BEA 800°C and 22% to 1 Ca/BEA 800°C with the increasing cation content (Table 3.6). 

This decrease in the crystallinity is typically ascribed to partial damage of zeolite framework 

during thermal treatment [21]. The observation is supported by the decrease in both apparent 

SBET and Smicro areas obtained by Ar physisorption for 1 Ca/BEA 800°C and 1 Mg/BEA 

800°C zeolites (Figure 3.13), indicating the possible partial blockage to the zeolite pores 

resulting in lower adsorption capacity or the formation of amorphous phases. These results 
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can be explained by the excess of Ca2+ and Mg2+ cations existing in zeolite BEA (Table 3.6), 

which could lead to an excessive formation of oxide clusters especially during thermal 

treatment at high temperatures (800°C). Normally, the incorporation of solvated cations 

followed by calcination leads to the formation of metal oxide particles occluded in the 

cavities of the zeolite and the excess of these clusters promotes pore blockage and structural 

degradation of the zeolite framework [16]. 
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Table 3.6. Structural properties of parent and cation-containing BEA zeolites prepared by 

impregnation. 

Zeolite ID 
Si/Al 

(EDX) 

Cation/Al 

(EDX) 

Relative  

Crystallinity  

(%) 

BEA 11.9 - 100 

BEA 450ºC 11.7 - 90 

BEA 800ºC 12.1 - 73 

0.25 K/BEA-IM 450ºC 11.9 0.2 100 

0.5 K/BEA-IM 450ºC 12.1 0.3 97 

1 K/BEA-IM 450ºC 12.0 0.4 94 

0.25 K/BEA-IM 800ºC 11.9 0.2 92 

0.5 K/BEA-IM 800ºC 12.1 0.3 90 

1 K/BEA-IM 800ºC 12.0 0.4 81 

0.25 Na/BEA-IM 450ºC 11.6 0.2 100 

0.5 Na/BEA-IM 450ºC 11.6 0.4 96 

1 Na/BEA-IM 450ºC 11.1 0.5 90 

0.25 Na/BEA-IM 800ºC 11.6 0.2 94 

0.5 Na/BEA-IM 800ºC 11.6 0.4 91 

1 Na/BEA-IM 800ºC 11.1 0.5 87 

0.25 Ca/BEA-IM 450ºC 12.2 0.6 100 

0.5 Ca/BEA-IM 450ºC 11.7 0.8 95 

1 Ca/BEA-IM 450ºC 12.0 1.7 77 

0.25 Ca/BEA-IM 800ºC 12.2 0.6 91 

0.5 Ca/BEA-IM 800ºC 11.7 0.8 64 

1 Ca/BEA-IM 800ºC 12.0 1.7 22 

0.25 Mg/BEA-IM 450ºC 11.8 0.3 100 

0.5 Mg/BEA-IM 450ºC 12.0 0.9 92 

1 Mg/BEA-IM 450ºC 12.4 1.7 80 

0.25 Mg/BEA-IM 800ºC 11.8 0.3 91 

0.5 Mg/BEA-IM 800ºC 12.0 0.9 64 

1 Mg/BEA-IM 800ºC 12.4 1.7 36 
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Table 3.7. Structural properties of parent and cation-containing ZSM-5 zeolites prepared by 

impregnation.  

Zeolite ID 
Si/Al 

(EDX) 

Cation/Al 

(EDX) 

Relative 

Crystallinity  

(%) 

ZSM-5 32.0 - 100 

ZSM-5 450ºC 32.1 - 99 

ZSM-5 800ºC 31.4 - 90 

0.25 K/ZSM-5-IM 450ºC 33.1 0.2 100 

0.5 K/ZSM-5-IM 450ºC 32.5 0.4 101 

1 K/ZSM-5-IM 450ºC 32.6 1.0 89 

0.25 K/ZSM-5-IM 800ºC 33.1 0.2 93 

0.5 K/ZSM-5-IM 800ºC 32.5 0.4 93 

1 K/ZSM-5-IM 800ºC 32.6 1.0 89 

0.25 Na/ZSM-5-IM 450ºC 31.6 0.3 100 

0.5 Na/ZSM-5-IM 450ºC 31.6 0.6 107 

1 Na/ZSM-5-IM 450ºC 32.4 0.8 97 

0.25 Na/ZSM-5-IM 800ºC 31.6 0.3 97 

0.5 Na/ZSM-5-IM 800ºC 31.6 0.6 97 

1 Na/ZSM-5-IM 800ºC 32.4 0.8 89 

0.25 Ca/ZSM-5-IM 450ºC 35.3 0.3 100 

0.5 Ca/ZSM-5-IM 450ºC 35.3 0.4 99 

1 Ca/ZSM-5-IM 450ºC 35.2 0.9 94 

0.25 Ca/ZSM-5-IM 800ºC 35.3 0.3 93 

0.5 Ca/ZSM-5-IM 800ºC 35.3 0.4 90 

1 Ca/ZSM-5-IM 800ºC 35.2 0.9 83 

0.25 Mg/ZSM-5-IM 450ºC 31.9 0.2 100 

0.25 Mg/ZSM-5-IM 800ºC 31.2 0.6 100 

0.5 Mg/ZSM-5-IM 450ºC 31.6 0.8 100 

0.25 Mg/ZSM-5-IM 800ºC 31.9 0.2 93 

0.5 Mg/ZSM-5-IM 800ºC 31.2 0.6 92 

1 Mg/ZSM-5-IM 800ºC 31.6 0.8 91 

  



82 

 

 

 

Figure 3.13. Textural properties of selected cation-containing zeolites. (a) BEA-cation 

containing zeolites 450°C. (b) BEA-cation containing zeolites 800°C. (c) ZSM-5-cation 

containing zeolites 450°C. (b) ZSM-5-cation containing zeolites 800°C. 

Cation-containing ZSM-5 as well as Na and K/BEA zeolites show no significant 

differences in apparent SBET and Smicro areas (Figure 3.13). In addition, all samples prepared 

by impregnation maintain the Si/Al ratio of their respective parent zeolite (Tables 3.6 and 

3.7). 

3.4.2 Acidic properties  

Cation impregnation followed by calcination results in a variation in the OH region of 

the FTIR spectra of BEA and ZSM-5 zeolites (e.g. Figure 3.14). In general, the intensity of 

the Si-OH-Al groups peak at 3610 cm-1 decreases gradually with increasing cation content. 

At high loadings of cations, most of the samples do not show the Si-OH-Al peak at 3610 cm-
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1 (Figure 3.14 a), demonstrating a complete ion exchange of H-form with alkali and alkaline 

earth metal cations. The decrease in the intensities of the Si-OH-Al peak is more pronounced 

in the samples calcined at 800ºC (Figure 3.14 b), in agreement with the observations that 

higher calcination temperatures a leads to greater degree of dealumination (Section 3.3.2). 

 

 

Figure 3.14. FTIR spectra of the hydroxyl region of (a) BEA K-containing zeolites calcined 

at 450ºC. (1) BEA 450ºC (2) 0.25 K/BEA 450ºC-IM (3) 0.5 K/BEA 450ºC-IM and (4) 1 

K/BEA 450ºC-IM. (b) BEA K-containing zeolites calcined at 800ºC (1) BEA 800ºC (2) 0.25 

K/BEA 800ºC-IM (3) 0.5 K/BEA 800ºC-IM (4) 1 K/BEA 450ºC-IM. (c) ZSM-5 Mg-

containing zeolites calcined at 450ºC. (1) ZSM-5 450ºC (2) 0.25 Mg/ZSM-5 450ºC-IM (3) 

0.5 Mg/ZSM-5-IM 450ºC and (4) 1 Mg/ZSM-5 450ºC-IM. (d) ZSM-5 Mg-containing 

zeolites calcined at 800ºC (1) ZSM-5 800ºC (2) 0.25 Mg/ZSM-5 800ºC-IM. (3) 0.5 

Mg/ZSM-5 800ºC-IM and (4) 1 Mg/ZSM-5 800ºC-IM. 

An incomplete exchange of H-form for Ca2+ and Mg2+ cations in ZSM-5 zeolite can 

be observed, as the peak of Si-OH-Al groups at 3610 cm-1 is still present in the spectra (e.g 
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Figure 3.14 c and d). This limited exchange could be due to the degree of the hydration and 

the higher charge density of these ions. Hence, Mg2+ and Ca2+ cations cannot balance the 

charge of the so-called isolated Al containing tetrahedra, which are separated by a 

considerable distance in high-silica zeolites [52,53]. Loading low amounts of Na+ and K+ 

ions in BEA zeolite (samples 0.25 Na/BEA 450ºC and 0.25 K/BEA 800ºC) leads to an 

increase in the intensity of Si-OH-Al peak at the 3610 cm-1, when compared with the BEA 

zeolite calcined. This could be an indication that low loadings of these ions in BEA zeolite 

prevents the breaking of Si-O-Al bonds and the formation of EFAl species that normally 

take place during thermal treatment (spectra not shown, see Figure 3.16 a and d).  

The intensity in the peak at 3745 cm-1 (Si-OH groups) is unchanged for ZSM-5 cation-

containing zeolites, due to their weak acidity. These OH groups are usually not affected by 

the modification with cations (e.g. Figure 3.14 c and d). However, the same peak in BEA 

cation-containing zeolites shows considerable changes especially after impregnation of 

higher amounts of Mg2+ and Ca2+. This could be due to a neutralisation reaction between the 

Si-OH groups and Mg and Ca oxide particles formed during thermal treatment. The changes 

can also be linked to the partial destruction of BEA crystal structure, resulting in a 

condensation of the Si-OH groups and the formation of dense amorphous silica [16]. The 

Al-OH peak at 3780 cm-1 gradually disappears with the increasing loadings of cations, 

indicating that these EFAl species could interact with charge-compensating cations, being 

able to exchange with the salts of metals [16]. 

After Py adsorption at 150ºC in all cation-containing zeolites, the peaks at 3610 cm−1, 

3782 cm-1 and 3662 cm-1 completely disappear (e.g. Figure 3.15 a and b) proving their acidic 

character. This decrease is accompanied by the appearance of bands at 1545 cm -1 and 1455 

cm-1, which are ascribed to the interaction of Py with BAS and LAS, respectively. The 

appearance of peaks at 1441, 1443, 1445 or 1448 cm-1 results from Py coordinated to K+, 

Na+, Ca2+ and Mg2+ (Py-K, Py-Na, Py-Ca and Py-Mg) and are usually associated with Lewis 
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acidic centres due to their extra-framework positions (e.g. Figure 3.15 c). The frequency of 

these bands has been widely studied and increases with cation charge/size ratio [54,55]. 

 

Figure 3.15. FTIR spectra of the hydroxyl region of BEA K-containing zeolites calcined at 

450ºC prepared by impregnation (a) before (full lines) and after (dashed lines) Py adsorption 

at 150ºC. (b) Difference spectra of the hydroxyl region following Py adsorption at 150ºC. 

(c) Difference spectra of the Py region following Py adsorption at 150ºC: (1) BEA 450ºC, 

(2) 0.25 K/BEA 450ºC-IM, (3) 0.5 K/BEA 450ºC-IM and (4) 1 K/BEA 450ºC-IM. 

The quantification of BAS, LAS and cationic species for each zeolite was carried out 

using the Py peaks in the 1400-1700 cm-1 region and is described in the experimental section 

3.2.2, using (Figures 3.16 and 3.17). The changes in the total number of BAS (peak at 1545 

cm -1, Py-H+) are directly associated with the variations in the Si-OH-Al groups. There is a 

gradual decrease in the number of BAS with the increase of cation loadings (Figures 3.16 

and 3.17) and calcination temperature (Figure 3.16 and 3.17 compare left and right) due to 
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the breaking of the Si-O-Al bonds. A few samples with higher cation content, demonstrated 

a complete loss of BAS associated with the complete removal of Si-OH-Al groups at 3610 

cm-1. Cation-containing BEA zeolites calcined at 800ºC still present a small number of BAS 

even after complete disappearance of Si-OH-Al groups (Figure 3.16 a and d). The presence 

of these BAS confirms that weakly acidic hydroxyl groups affected by EFAl species (e.g. 

Si-OH∙∙∙∙∙ EFAl) contribute to the Brønsted acidity of this zeolite structure. The constant 

number of BAS in ZSM-5 cation-containing zeolites with alkaline earth cations is in 

agreement with the incomplete exchange of H+ for Ca2+ and Mg2+ cations (Figure 3.18 a and 

d). 

The introduction of cations also affects the number of extra-framework species 

detected. There is a decrease in the number of LAS and an increase in the number of cationic 

species (Py molecules adsorbed on the cations). The increase in the number of cationic 

species is in line with the increasing concentration of cations introduced in the zeolites 

during the modification treatment, while the decrease in the number of LAS suggests a 

limited formation of LAS due to the presence of these cationic species (Figures 3.16 and 

3.17). Previous reports have proposed that the loss of both LAS and BAS is a consequence 

of steric effects caused by the introduced cations [56-58], leading to a decreased accessibility 

of the acid sites to Py. However, there is no evidence of decreased acid site accessibility in 

these samples, as all existing Si-OH-Al groups are still accessible to Py.  

Py is more strongly held when the zeolite contains cations with a smaller size or with 

a stronger electrostatic field. The strength of the interaction changes as followed: Mg2+ > 

Ca2+ > Na+ > K+ (Figures 3.16 and 3.17 c and f). However, BEA containing-alkaline earth 

metals followed by thermal treatment at 800ºC demonstrate a reduced availability of Mg2+ 

and Ca2+ for the interaction with Py (Figure 3.16 f). This could be due to the excessive 

formation of oxide-like species and the partial collapse of the crystalline BEA framework. 

This observation can be confirmed by the decline in the relatively crystallinities, apparent 

SBET and Smicro areas for this zeolite when calcined at 800ºC (Table 3.6 and Figure 3.14). The 
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damage of the zeolite lattice influences the internal channels of BEA zeolite, leading to a 

reduction in the micropore areas and a decrease in the potentially available cationic exchange 

sites. 
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Figure 3.16. Relationship between number of acid sites and cation amount in cation 

containing BEA zeolites. (a-c) Cation containing BEA zeolites prepared by impregnation 

followed by calcination at 450ºC and (d-f) cation containing BEA zeolites prepared by 

impregnation followed by calcination at 800ºC. 
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Figure 3.17. Relationship between number of acid sites and cation amount in cation 

containing ZSM-5 zeolites. (a-c) Cation containing ZSM-5 zeolites prepared by 

impregnation followed by calcination at 450ºC and (d-f) cation containing ZSM-5 zeolites 

prepared by impregnation followed by calcination at 800ºC. 
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Additional confirmation of partial degradation of the zeolite BEA when overloaded 

with Ca2+ ions is given by the 27Al MAS NMR spectra (Figure 3.18). The spectra show a 

significant decrease in the amount of tetrahedral Al species with a signal at ~60-54 ppm; 

and a complete disappearance of the signal at δ~0 ppm related to EFAl species. The 

remaining BEA cation-containing zeolites display a decrease in the framework Al and EFAl 

species, which agrees with the data obtained by Py-FTIR. The broad signal of the tetrahedral 

Al species (~60-54 ppm) in all BEA cation-containing zeolites is indicative of the 

increasing disorder of the local Al environment caused by impregnation and thermal 

treatment. ZSM-5 cation-containing zeolites show no clear evidence of the formation of 

additional octahedral EFAl species (~0 ppm) or distorted tetrahedral Al species (spectra not 

shown).  

 

Figure 3.18. Normalised 27Al solid-state MAS NMR spectra of selected zeolites. (a) BEA 

800ºC, (b) 1 K/BEA 800ºC (c) 1 Na/BEA 800ºC (d) 1 Ca/BEA 800ºC (e) 1 Mg/BEA 800ºC. 
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In summary, preparation of cation-containing zeolites by impregnation followed by 

thermal treatments leads to three main changes in the acidic properties of both BEA and 

ZSM-5 zeolites: 

(i) Decrease in the number of Si-OH-Al groups and BAS. 

(ii) Protection of zeolite structure during thermal treatment- small amounts of Na+ 

ions and possibly K+ ions tend to prevent the breaking of the Si-OH-Al groups 

(BAS). Additionally, the presence of cations limits the formation of species 

acting as LAS.  

(iii) Degradation of the zeolite structure at higher calcination temperatures- when 

BEA zeolite is overloaded with Mg2+ and Ca2+ cations. 

These changes are strongly dependent on a large number of factors, such as the type 

of zeolitic structure, amount, size, and charge of cation incorporated and the calcination 

temperatures used during the modification. 

3.5 Effect of cation incorporation by ion exchange 

BEA and ZSM-5 zeolites were also ion exchanged with nitrate aqueous solutions of 

K+, Na+, Mg2+ and Ca2+, to compare the effect of different incorporation methods (ion 

exchange versus impregnation) on properties of both zeolite structures. For simplicity and 

due to the high volume of work only the most relevant results are described in Section 3.5. 

3.5.1 Structural properties 

The XRD patterns of selected ZSM-5-containing zeolites obtained after ion exchange 

with Mg2+ and Ca2+ are very similar to the respective parent and calcined zeolite (Figure 

3.19). There is no evidence of additional peaks that could be assigned to the cations, which 

indicates a good dispersion of the species through the zeolitic structure.  
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Figure 3.19. X-ray diffraction patterns obtained for selected zeolites (a) Ca/ZSM-5 800ºC 

(b) Mg/ZSM-5 800ºC. 

The estimated values for the relative crystallinities slightly decrease (Table 3.8) with 

the presence of the cations. This decrease suggests a small loss of crystal structure associated 

with the high temperature at which the zeolites were calcined, in similarity with cation-

containing zeolites prepared by impregnation. There are no significant changes in the Si/Al 

ratios after ion exchange and thermal treatment. The cation/Al ratios obtained after 

modification by ion exchange are very low for the selected zeolites (Table 3.8), indicating 

an incomplete exchange between H+ and the cations. 

 Table 3.8. Structural properties of selected ZSM-5 cation-containing zeolites prepared by 

ion exchange. 

Zeolite ID 
Si/Al 

(EDX) 

Cation/Al 

(EDX) 

Relative 

Crystallinity 

(%) 

ZSM-5 32.0 - 100 

ZSM-5 800ºC 31.4 - 90 

0.25 Ca/ZSM-5 800ºC 32.9 0.04 100 

0.5 Ca/ZSM-5 800ºC 32.3 0.05 97 

1 Ca/ZSM-5 800ºC 32.1 0.07 97 

0.25 Mg/ZSM-5 800ºC 32.1 0.03 100 

0.5 Mg/ZSM-5 800ºC 32.4 0.07 98 

1 Mg/ZSM-5 800ºC 32.5 0.09 99 

 



93 

 

3.5.2 Acidic properties 

Ion exchange with Mg2+ and Ca2+ ions results in a variation in the OH region of the 

FTIR spectra (e.g. Figure 3.20). There is a gradual increase in the intensity of both peaks at 

3610 cm-1 and 3745 cm-1 (bridging Si-OH-Al and Si-OH groups, respectively) with the 

increase of cation loadings. The increase in the intensity of the Si-OH-Al peak indicates that 

both Mg2+ and Ca2+ ions have a protective effect over the Si-OH-Al groups during thermal 

treatment. The more cation exchanged, less Si-O-Al bonds are broken leading to an increase 

in the intensity of the peak at 3610 cm-1 when compared with ZSM-5 calcined at 800ºC (with 

H+ as extra-framework cation). The changes in the intensity of the Si-OH peak could be due 

to a neutralisation reaction between these groups and Mg and Ca oxide particles and the 

creation of more defects in the structure.  
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Figure 3.20. FTIR spectra of the hydroxyl region of ZSM-5 Ca-containing zeolites calcined 

at 800ºC prepared by ion exchange (a) before (full lines) and after (dashed lines) Py 

adsorption at 150ºC. (b) Difference spectra of the hydroxyl region following Py adsorption 

at 150ºC. (c) Difference spectra of the Py region following Py adsorption at 150ºC: (1) ZSM-

5 800ºC, (2) 0.25 Ca/ZSM-5 800ºC-IE, (3) 0.5 Ca/ZSM-5 800ºC-IE and (4) 1 Ca/ZSM-5 

800ºC-IE. 

Adsorption of Py at 150ºC leads to the disappearance of the Si-OH-Al peak at 3610 

cm−1 and a slight decrease of the Si-OH peak at 3745 cm-1 (Figure 3.20 a and b). From the 

interaction with Py, the number of BAS, LAS and cations can be obtained (in a similar way 

to zeolites in Section 3.3.2 and 3.4.2) using the peaks in the 1400-1700 cm-1 region (Figure 

3.20 c and 3.21). The number of BAS gradually increases with cation loadings. These 

changes are directly related to the Si-OH-Al groups in each zeolite, both Mg2+ and Ca2+ 

prevent the breaking of the Si-O-Al bonds due to thermal treatment. The number of LAS 
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slightly decreases demonstrating that the modification does not produce additional EFAl 

species. 

 

Figure 3.21. Relationship between number of acid sites and cation amount in ZSM-5 zeolites 

prepared by ion exchange followed by calcination at 800ºC. 

3.6 Summary 

An extensive characterisation of BEA and ZSM-5 zeolites was performed to evaluate 

the effects of thermal treatment and incorporation of alkali and alkaline earth cations on the 

zeolite structures. Thermal treatment leads to a decrease in the zeolite crystallinity of both 

zeolites and in the textural properties of BEA zeolite. The results indicate that this post-

synthesis treatment causes the breaking the of Si-O-Al bonds, resulting in the reduction of 

strong BAS and formation of LAS (EFAl). Although no severe structural degradation is 

observed in both zeolites even at higher calcination temperatures, BEA zeolite is more 
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affected by thermal treatment in comparison with ZSM-5 zeolite, due to the flexibility in the 

coordination sphere of the Al atoms in the 12-MR system of this zeolite.  

Both ion exchange and impregnation methods have no large effect on the crystallinity 

and porosity of ZSM-5 and BEA zeolites, however, they affect the hydroxyl groups and 

acidic properties significantly. In general, cation-containing zeolites showed a lower number 

of BAS when compared with the parent zeolite, due to the incorporation of the cations and 

thermal treatment. A limited formation of EFAl species acting as LAS and an increase of 

cationic species is also observed. Introduction of Mg2+ and Ca2+ ions by ion exchange in 

ZSM-5 zeolites leads to a recovery of the BAS. These cations induce a protective effect on 

the acidic properties of the zeolite, preventing the breaking of Si-O-Al bonds at high 

temperatures (800ºC). The same results were achieved for zeolite BEA, by impregnation of 

small amounts of K+ followed by thermal treatment at 450ºC. Significant degradation of the 

structure was observed for BEA zeolite after overloading with Mg2+ and Ca2+ ions followed 

by thermal treatment at high temperatures (800ºC). 

These results demonstrate that post-synthesis modifications have a great influence in 

the structural, textural, and acidic properties of both ZSM-5 and BEA zeolites. This work is 

evidence that it is possible to adapt the properties (especially acidic properties) of both 

structures to give selective catalysts for desired reactions. 
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Chapter 4 Accessibility and location of acid sites in zeolites with different 

pore sizes 

4.1 Introduction  

The microporous nature of zeolites determines some of their essential properties, such 

as high surface area, adsorption capacity and shape selectivity. However, the presence of 

micropores may lead to diffusional limitations, shorter catalyst lifetime and poor activity 

[1,2]. To achieve the full potential of a zeolite catalyst, it is important to maximise the 

accessibility of acid sites within the micropore system and the transport efficiency for feed 

molecules and products in catalytic reactions [3-6]. Acid sites hosted on the external surface 

of a zeolite are commonly accessible; the accessibility within the microporous system is 

dependent upon the dimensions of the pore space relative to the guest molecule [7,8]. In the 

last few years, hierarchical and modified zeolites have provided a method to overcome the 

diffusion limitations [2,3]. Therefore, the understanding of the accessibility and location of 

acid sites is a very important issue. For that reason, it is necessary to know the location of 

Brønsted acid sites (BAS) and how easy it is to access them. This chapter will provide a 

methodology, using IR spectroscopy to determine the distribution, location, and accessibility 

of BAS in a series of different zeolites structures. 

The use of various probe molecules with FTIR represents one of the most important 

tools to give a better understanding of acid site accessibility and location in different zeolitic 

structures. A variety of probe molecules such as hydrocarbons, nitriles and substituted 

nitriles have been already utilised [9-14]. These probes, when compared with other probe 

molecules, interact with acid sites less effectively, creating relatively weak bonds with the 

Brønsted acid sites (BAS) and Lewis acid sites (LAS).  

Nesterenko et al. [15,16] and Bleken et al. [17] presented a methodology based on co-

adsorption of alkylpyridines and carbon oxide (CO) for the analysis of acid site distribution 

in dealuminated MOR and MFI zeolites. The use of these probe molecules, with increasing 
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kinetic diameter, allows discrimination between acid sites located on the internal and 

external surfaces. Both pyridine (Py) and alkylpyridines are protonated by BAS. However, 

due to steric hindrance produced by bulky substituents, some alkylpyridines probes do not 

interact with LAS [18]. Such bulky probe molecules have limited access to some micropores 

due to their large kinetic diameter, and therefore, can be used to indicate the distribution of 

BAS in a variety of zeolites [19].  It should be noted that diffusion of such molecules though 

the zeolite micropores can be affected by the zeolite crystallite size. Co-adsorption of CO 

and nonane has also been used to examine the spatial distribution of platinum in the 

micropores and mesopores of bi-functional PtH-MFI catalysts [20]. This method involves 

nonane pre-adsorption between two successive CO chemisorption experiments. 

Many reports have been published on the application of alkylpyridines such as, 2,6-di-

tert-butylpyridine (DTBPy) [15,21-23] 2,6-dimethylpyridine (Lut) [15,24-27] and 2,4,6-

trimethylpyridine (Coll) [16,28-30] for accessibility characterisation. For instance, 

adsorption of Py and Lut was used to detect traces of coke in MFI catalysts and to determine 

which acid sites are specifically perturbed by coke molecules [31]. The authors found that 

coke deposits, resulting from ortho-xylene isomerisation, do not perturb BAS but perturb 

non-acidic silanol groups (Si-OH) inside the micropore system. Using the same approach, 

Barbera et al. [28] confirmed that the presence of coke could influence catalyst deactivation. 

Both studies clearly distinguish between internal and external Si-OH and show that silanol 

defects play an important role in coke formation over MFI catalysts. Corma et al. [22] used 

the DTBPy to investigate the external surface of many zeolitic structures. DTBPy can enter 

the 12-membered channels of BEA but not the 10-membered ring channels of ZSM-5 and 

MCM-22. Therefore, it can be used to identify acid sites situated on the external surface of 

medium-pore zeolites. 

 Coll and Lut were used in the novel approach introduced by Thibault-Starzyk et al. 

[32], to quantify the accessibility of acid sites in ZSM-5 samples prepared with different 

degrees of intracrystalline mesoporosity. This approach is based on the calculation of the 
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accessibility index (ACI), the ratio between the number of BAS detected by substituted 

pyridines and the total number of BAS in the zeolite detected by Py. The results showed that 

the formation of mesoporosity reduces the average length of micropores and leads to an 

increase in the availability of acid sites at the pore mouths of ZSM-5. This methodology has 

been successfully used to evaluate the accessibility of acid sites in both nanocrystalline 

zeolites and in materials with a relatively large crystal size [32,33]. DTBPy was used to 

quantify external BAS in various parent and modified zeolites indicating that the extended 

mesoporosity and decreased average length of micropores resulted in an enhanced 

accessibility of BAS [23]. 

Overall, the optimisation of experimental procedures and the application of a 

combination of probe molecules are imperative for the successful evaluation of the location 

and accessibility of acid sites in different zeolite-based materials. Furthermore, it is 

necessary to understand which probe molecule or combination of probe molecules is suitable 

for a specific zeolitic structure, depending on its channel size, number of acid sites and 

modification treatments. In this study, medium- (ZSM-5), large- (BEA) and mixed-pore 

(MOR and MAZ) zeolites are characterised by monitoring the interaction between the zeolite 

BAS and probe molecules with a range of basicity and kinetic diameters. The aim is to 

establish the location and accessibility of BAS in the zeolitic structures, using FTIR, and to 

optimise the experimental procedure for the application of different probe molecules. This 

study also provides examples in the application of these methodologies in medium- and 

large- and mixed-pore structures converted into hierarchical meso-microporous catalysts. 

4.2 Experimental 

4.2.1 Parent and hierarchical zeolites 

Ammonium forms of zeolites BEA (CP814E, BEA framework, Si/Al=12.5), ZSM-5 

(CBV8014, MFI framework, Si/Al= 40) and MOR (CBV 21A, Si/Al= 10) were obtained 

from Zeolyst International. Proton form of MAZ zeolite (Si/Al= 4.7) was prepared and 
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provided by Johnson Matthey PLC site in Billingham, UK. An extensive structural 

characterisation of BEA and ZSM-5 zeolitic structures is presented in Chapter 3.  

Several hierarchical materials were prepared by Aqeel Al-Ani at Keele University 

from parent zeolites ZSM-5, BEA, MOR and FAU, according to [34] in order to generate an 

intracrystalline network of mesopores. A detail characterisation of the hierarchical zeolites 

used in this chapter is presented in Table 4.1 [34]. The results suggest that well-defined 

networks of interconnected micro- and mesopores are formed in the materials following 

surfactant-templating treatment. The intracrystalline nature of uniform mesopores and a 

degree of long-range ordering have been previously confirmed for the large-pore (12-MR) 

FAU and MOR zeolites. In zeolite BEA (12-MR), the formation of mesopores is complicated 

by the random intergrowth of polymorphs A and B, whereas the medium-pore ZSM-5 zeolite 

is relatively “resistant” to this treatment as the 10-MR micropores are by and large 

inaccessible to the surfactant species. The mesopores produced in BEA and ZSM-5 has a 

broader pore size distribution and show little evidence of the long-range order.  

Table 4.1. Textural properties of the parent and hierarchical zeolites. 

 

Zeolite 
Si/Al Si/Al Crystallinity SBET Vmicro Vmeso 

(SEM) (NMR) (%) (m2g-1) (cm3g-1) (cm3g-1) 

Y 2.5 2.6 98 855 0.33 0.04 

M-Y 4 3.1 65 830 0.21 0.28 

BEA (19) 19 18.7 98 695 0.26 0.06 

MBEA (19) 15 13.2 81 740 0.2 0.12 

MOR 10 9.3 93 488 0.20 0.03 

MMOR 8.5 6.3 77 600 0.14 0.18 

ZSM-5 (15) 15 - 97 395 0.20 0.03 

MZSM-5 (15) 12 - 90 430 0.20 0.20 
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4.2.2 Probe molecules  

The selected probes to evaluate the location and accessibility of BAS were: pyridine 

(Acros Organics, 99.5%), 2,6-dimethylpyridine (Sigma-Aldrich, 99%), 2,4,6-

trimethylpyridine (BDH reagents, 95%), 2,6-di-tert-butyl-pyridine (Sigma-Aldrich, 97%) 

and 1,3,5-triisopropylbenzene (TIPB, Acros Organics, 95%). The properties and chemical 

structure of these probe molecules are summarised in Table 4.2 and Figure 4.1. 

Table 4.2. Probe molecules and their properties selected for this study [7]. 

Probe molecule Chemical formula 
Kinetic diameter 

(Å) 
pKa 

Pyridine (Py) C5H5N 5.4 5.4 

2,6-dimethylpyridine (Lut) C7H9N 6.5 6.7 

2,4,6-trimethylpyridine (Coll) C8H11N 7.3 7.4 

2,6-di-tert-butylpyridine (DTBPy) C13H21N 7.9 7.9 

1,3,5-triisopropylbenzene (TIPB) C15H24 8.5 - 

 

 

Figure 4.1. Chemical structure of (a) Pyridine (Py); (b) 2,6-dimethylpyridine (Lut); (c) 

2,4,6-trimethylpyridine (Coll); (d) 2,6-di-tert-butylpyridine (DTBPy) and (e) 1,3,5-

triisopropylbenzene (TIPB). 
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4.2.3 Acidity and accessibility studies 

Prior to FTIR studies, the zeolites were pressed into self-supporting discs (~8-10 mg) 

and pre-treated in an in situ IR cell at 450°C under vacuum (10-5 Torr) for 5 h. The adsorption 

experiments with different probe molecules were monitored by a Thermo iS10 spectrometer, 

equipped with a DTGS detector, at a spectral resolution of 4 cm-1. An excess of probe 

molecules was introduced as 1.0 μl portions into the IR cell. Adsorption of TIPB was 

performed at 30°C. Py, Lut, Coll and DTBPy were adsorbed at 150-250°C. Physisorbed 

molecules were subsequently removed by evacuation at the adsorption temperature. The 

obtained infrared spectra were analysed (including integration, subtraction, and 

determination of peak positions) using specialised Thermo software, Omnic. Deconvolution 

of peaks was carried out using the Gaussian/Lorentzian function. All the spectra presented 

in this chapter were normalized to 10 mg sample mass and offset for clarity. 

Quantification of the zeolite acidic properties was obtained by adsorption of Py and 

using the molar absorption coefficients values calculated on Chapter 2 Section 2.5.4. For 

quantification using alkylpyridines was carried out using the molar absorption coefficients 

for BAS from the literature [16,23,25]; ε (Lut) =6.8 cm µmol-1, ε(Coll) =10.1 cm µmol-1 and 

ε(DTBPy) =0.62 cm µmol-1. The accessibility factors (AF) using alkylpyridines was 

calculated following the procedure described in [32] (Equation 4.1). 

𝐴𝐹 =
𝑛 𝐵𝐴𝑆 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 

𝑛𝐵𝐴𝑆 𝑡𝑜𝑡𝑎𝑙
× 100%                                                                      Equation 4.1  

AF for TIPB was determined as the percentage of the intensity changes of the bridging 

OH-groups before and after adsorption of the probe molecule using difference FTIR spectra. 

The error margin for the acid site quantification was estimated as ±5%. 27Al solid state MAS 

NMR experiments were performed at Johnson Matthey PLC and a detailed description is 

presented in Chapter 3. 
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4.3 Preliminary studies 

Preliminary studies were made with several probe molecules in order to establish 

which ones were suitable for location and accessibility studies on each type of zeolite 

structure. The first approach included co-adsorption of different linear or aromatic 

hydrocarbons (nonane, pentadecane, dodecane, p-xylene and 1.2-diisopropylbenzene) 

followed by adsorption of Py or acetonitrile. The hydrocarbons were used to block access to 

acid sites on the internal surface leaving only acid sites on the external surface accessible to 

larger probe molecules (Py or acetonitrile). However, all hydrocarbons tested were displaced 

by the more basic probe molecules (Py and acetonitrile) from the channels of both zeolitic 

structures after desorption of the probe molecules above room temperature (RT).  

The second approach involved the use of bulky probe molecules, such as 

alkylbenzenes and alkylpyridines (with higher kinetic diameter than Py) and it is described 

in this chapter. These probe molecules are not able to access certain parts of the microporous 

system of the zeolitic structures. The analysis of the interaction of these probe molecules, 

along with the comparison with the results obtained from Py adsorption, allows to identify 

and quantify on the location of BAS. 

4.4 Study of acid sites in medium- and large-pore zeolites 

ZSM-5 zeolite is a medium-pore size zeolite (10-MR channels) characterised by 

straight channels with a nearly circular opening of 5.3 Å × 5.6 Å and sinusoidal channels 

with an elliptical opening of 5.3 Å × 5.6 Å. BEA zeolite is a large-pore size zeolite (12-MR 

channels) with larger pore openings of 7.5 × 5.7 Å and smaller pore openings of 5.6 Å × 5.6 

Å (Figure 4.2) [35].  
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Figure 4.2. Structures of (a) ZSM-5 (10 MR channels 5.3 Å × 5.6 Å, 3D) and (b) BEA 

zeolites (12 MR channels 7.5 × 5.7 Å, 3D) viewed along [010] and [100], respectively.  

4.4.1 Acidity measurements 

FTIR spectra of BEA and ZSM-5 zeolites show two major peaks at 3745 cm-1, with a 

shoulder at ~3735 cm-1, and at 3610 cm-1 (Figure 4.3 a). The peak at 3610 cm-1 is assigned 

to acidic bridging Si-OH-Al groups and the peaks at ~3745 and ~3735 cm-1 are attributed to 

the external and internal Si-OH groups, respectively. The separation of external and internal 

Si-OH groups is more noticeable in the BEA zeolite due to its relatively small crystal 

dimensions, and thus, a higher contribution from the external Si-OH groups [7] and can be 

distinguish by adsorption of bulky probe molecules in combination with FTIR, see Section 

4.4.2. The interaction of Py with BEA and ZSM-5 zeolites (See Chapter 3, Figures 3.5 and 

3.6) results in a complete disappearance of the peak at 3610 cm-1 corresponding to bridging 
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Si-OH-Al groups and a decrease in the intensity of both peaks assigned to Si-OH groups 

(3745 cm-1and ~3735 cm-1). The disappearance of bridging Si-OH-Al groups means that 

pyridine is able to access all the acid sites of these two zeolites providing an overall 

concentration of acid sites. In the range of 1400-1700 cm-1, chemisorbed Py is revealed by 

the following sets of peaks: two peaks at 1545 and 1637cm-1 due to pyridinium ions (PyH+), 

two peaks at 1456 and 1622 cm-1assigned to Py coordinated to Lewis acid sites (PyL) and 

the signal at 1491 cm-1 from Py on Lewis and Brønsted acid sites (Figure 4.3 b). 

 

Figure 4.3. (a) FTIR spectra of the hydroxyl region of parent zeolites. (b) Difference spectra 

of Py region following Py adsorption at 150°C on (1) BEA (12.5) and (2) ZSM-5 (40). 

 

Table 4.3. Concentration of acid sites in ZSM-5 (40) and BEA (12.5) zeolites in quantitative 

experiments using Py adsorption monitored by FTIR. 

Zeolite 
Altheoretical 

(μmol/g) 

Total amount 

(μmol/g) 

BAS 

(μmol/g) 

LAS 

(μmol/g) 

ZSM-5 (40) 340 363 338 25 

BEA (12.5) 1032 547 352 195 

ZSM-5 zeolite (Si/Al=40) has less Al in the structure compared to BEA (Si/Al=12.5) 

and consequently, a lower total concentration of acid sites. The theoretical amount of Al in 

zeolite BEA is considerably higher than the total amount of acid sites detected by Py (1032 

versus 547 μmol/g). This is explained by the defective structure of this zeolite, BEA has a 

high number of LAS, which could form clusters and aggregates not fully accessible to this 
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probe molecule. In contract, ZSM-5 zeolite shows similar values for the theoretical amount 

of Al and the total concentration of acid sites, with only ~7% of LAS in the structure (Table 

4.3). Further evidence for the nature of the acid sites is provided by the 27Al MAS NMR data 

(Figure 4.4), which displays a signal at 50 ppm characteristic of the tetrahedrally coordinated 

aluminium atoms in the framework (AlO4) of both zeolites. Additionally, BEA zeolite shows 

a shoulder at ~48 ppm corresponding to distorted AlO4 and a signal at 0 ppm resulting from 

the presence of Al in octahedral coordination (AlO6) assumed to be extra-framework species 

[36]. 

 

Figure 4.4. Normalised 27Al solid-state MAS NMR spectra of the BEA (12.5) and ZSM-5 

(40) zeolites. 

4.4.2 Accessibility and location of acid sites 

Adsorption of Lut at 150°C on ZSM-5 (40) zeolite (Figure 4.5) reduces the peak at 

~3610 cm-1 assigned to bridging Si-OH-Al groups. The intensity of the Si-OH peak at 3742 

cm-1 decreases slightly and the peak seems to shift to lower wavenumbers (~3740 cm-1). 

Difference spectra of the OH region after adsorption of Lut (Figure 4.5 spectrum 3) show 

two negative peaks at ~3610 cm-1 and at ~3745 cm-1. These negative peaks correspond to 

the portion of OH groups interacting with Lut. The reduced intensity of the bridging Si-OH-

Al peak and the respective negative peak (~3610 cm-1) confirms that Lut can access BAS 
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within the ZSM-5 microspore system and the negative peak at 3745 cm-1 means that Lut is 

interacting with the external Si-OH groups. 

 

Figure 4.5. FTIR spectra of the hydroxyl region of ZSM-5 (40) (1) before and (2) after 

adsorption of Lut at 150°C, (3) difference spectra in the OH region after adsorption of Lut 

at 150°C. 

The reduction of these two peaks gives rise to a range of bands around 1600-1680 cm-

1 characteristic of Lut interacting with the acidic sites (Figure 4.6). There are four main 

contributing peaks that can be deconvoluted: the peak at ~1616 cm-1 due to Lut coordinated 

to strong LAS and the peaks at 1627, 1636 and 1647 cm-1 characteristic of Lut protonated on 

BAS [37,38]. However, depending on the temperature of the experiment this probe molecule 

interacts differently with the acid sites in the zeolite structures (Figure 4.6). 
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The Lut desorption temperature effect on the Si-OH-Al, Si-OH peak intensities and 

peaks corresponding to adsorbed Lut species (deduced from the difference between spectra, 

before Lut absorption and after Lut thermodesorption) was also examined (Figure 4.7). The 

relative intensity of the Si-OH-Al groups at 3610 cm-1 (black line) interacting with Lut 

increases up to desorption temperatures of 350°C, remaining unchanged above this 

temperature. This increase is directly related to the increase in the peak at 1647 cm-1 (blue 

line) associated with Lut protonated on BAS, meaning that these BAS are strong acid sites 

related to Si-OH-Al groups. On the contrary, the relative intensity of the peaks at 3745 and 

1616 cm-1 (red and purple lines) decrease with temperatures increase. As the peak at 3745 

cm-1 corresponds to Si-OH groups, this similar behaviour in both 3745 and 1616 cm-1 peaks 

suggests that Lut interacting with external Si-OH groups gives rise to the 1616 cm-1 peak 

and the probe can be desorbed from these hydroxyl groups at lower temperatures. These 

Figure 4.6. Deconvolution of the 

band in the range ~1600-1680 cm-1 

corresponding to the interaction of 

Lut with the acid sites of (a) ZSM-5 

(40) at 150°C (b) ZSM-5 (40) zeolite 

at 300°C and (c) BEA (12.5) at 

300°C. 
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results confirm that Lut interaction with the different hydroxyl groups is significantly 

dependent on the temperature. The peaks at 1627 and 1636 cm-1 (yellow and green lines) 

could be associated with weaker BAS.  

 

Figure 4.7. Evolution of intensities of the peaks of OH groups and acid sites of ZSM-5 (40) 

zeolite in the difference spectra at increasing temperatures (150-450°C). 

At 150°C, Lut probes 26% of the total number of BAS, which means that this probe 

interacts with BAS located on the internal surface of ZSM-5 zeolite. At 250°C Lut can access 

42% of the total number of BAS (Table 4.4). The access of this alkylpyridine to the channel 

spaces of ZSM-5 changes with increasing temperatures, which indicates that the diffusion 

of this probe is restricted and is dependent on the temperature and time of the experiment. 

Armaroli et al. [27] have reported similar results; Lut rapidly enters the pores of the ZSM-5 

zeolite and is protonated on the bridging Si-OH-Al groups even at room temperature. 

Similarly, Thibault-Starzyk. [32] have shown that Lut can probe up to 50% of the acid sites 

in their ZSM-5 parent zeolite. These data confirm that both molecular sieving and the 

strength of the interaction (between the probe and the acid site) control the accessibility of 

the acid sites in the zeolite micropores. Also, the literature suggests that Lut still forms 

coordinated bonds with LAS [24,25,35] at 1616 cm-1, however the results in this work 
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demonstrate that this peak could be associated with the interaction of Lut with external Si-

OH groups, instead of LAS. The steric hindrance of the methyl groups, especially at high 

temperatures, favours the interaction of this probe with Si-OH-Al groups acting as BAS 

[8,39]. The results of this work suggest that this probe is not suitable to quantify BAS on the 

external surface of 10-MR zeolites, however it could be an adequate probe to study the 

enhanced accessibility in hierarchical ZSM-5 zeolites [32] and zeolites, such as FER, with 

pore systems smaller than ZSM-5 [27]. 

Table 4.4. Concentrations of acid sites in ZSM-5 zeolite in quantitative experiments using 

Lut adsorption monitored by FTIR. 

 Py Lut ads at 150°C Lut ads at 250°C 

Concentration of 

accessible BAS 

(μmol/g) 

340 88 
143 

AF (%) 100 26 42 

Adsorption of Coll and DTBPy at 150°C on ZSM-5 zeolite (Figure 4.8 a) reduces the 

intensity of the peak at 3745 cm-1, associated with Si-OH groups on the external surface, 

whereas the shoulder at ∿3735-3725 cm-1 is left unperturbed. The difference spectra provide 

a direct spectroscopic confirmation of the presence of external and internal Si-OH groups in 

ZSM-5, agreeing with recent studies [28,30]. The peak of bridging Si-OH-Al groups is 

virtually unaffected after Coll and DTBPy adsorption, implying that most of the 

corresponding sites are not accessible to these probes. However, the difference spectra in the 

OH region, (Figure 4.8 b) show a low intensity negative peak at ~3615 cm-1 after adsorption 

of the two probes. The negative peak corresponds to a small fraction of Si-OH-Al groups 

interacting with the Coll and DTBPy, which are BAS located on the external surface or close 

to the pore mouths of this zeolite. These results agreed with reports by Thibault-Starzyk et 

al [31,32] demonstrating that Coll and DTBPy are not able to access BAS located in the 

micropore system of a medium-pore zeolite, quantifying only BAS located on the external 
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surface. Coll adsorption (Figure 4.8 c, spectrum 1) gives rise to the band at ~1634 with a 

shoulder at ~1649 cm-1, resulting from the interaction with BAS, and two low intensity bands 

at 1619 cm-1 and 1575 cm-1, assigned to the probe adsorbed on Si-OH groups [31]. The 

spectra of DTBPy (Figure 4.8 c spectrum 2) show a band at 1615 cm-1 attributed to the probe 

bonded to BAS [23]. Coll and DTBPy being bigger than Py (7.4 and 7.9 Å respectively, 

versus 5.4 Å) reach less than 10% number of BAS in the zeolite (Table 4.5). These two 

probes are too bulky to enter ZSM-5 micropores, accessing the small fraction of BAS located 

on the external surface or near the pore mouths of ZSM-5. 

 

 

 

 

 

 

Figure 4.8. (a) FTIR spectra of the 

hydroxyl region of ZSM-5 (40) (1) 

before and after adsorption of 

alkylpyridines: (2) Coll and (3) DTBPy. 

(b) Difference spectra in the OH region 

after adsorption of alkylpyridines. (c) 

Difference spectra in the region of the 

aromatic ring vibrations of 

alkylpyridines: (1) Coll and (2) DTBPy. 
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Table 4.5. Concentration of acid sites in ZSM-5 (40) zeolite in quantitative experiments 

using Coll and DTBPy adsorption monitored by FTIR. 

 Py Coll DTBPy 

Concentration of 

accessible BAS 

(μmol/g) 

340 25 
15 

AF (%) 100 7 4 

 

For BEA zeolite, FTIR spectra show that all three alkylpyridines reduce the peaks at 

3745 cm-1 and ~3735 cm-1 assigned to external and internal Si-OH groups. The peak at 3610 

cm-1 related to Si-OH-Al groups completely disappears after adsorption of the three probes. 

This means that all alkylpyridines interact with all of the BAS of 12-MR BEA zeolite; their 

behaviour during adsorption is very similar to the adsorption of Py. Indeed, the size of the 

substituted pyridines is similar to the dimensions of the larger pores in the BEA structure 

(7.7 Å × 6.6 Å) allowing their access to the BAS in the micropore system. Neither of the 

alkylpyridines is an ideal probe molecule to quantify BAS located on the external surface of 

BEA zeolite, which is in disagreement with data reported in [21] stating that only 50% of 

the acid sites are accessible to DTBPy in a parent zeolite BEA. 

 Therefore, additional experiments utilising a larger probe molecule were carried out 

to evaluate the changes in accessibility of BAS in large-pore zeolites. Adsorption of TIPB 

at 30°C on ZSM-5 and BEA zeolites (Figures 4.9) leads to a significant reduction in the 

intensity of the Si-OH peak at 3745 cm-1. The changes in the intensity of the Si-OH-Al peak 

at ~3610 cm-1 are best interpreted from the difference spectra (Figure 4.9 b and d). Indeed, 

a low intensity negative peak at ~3610 cm-1 is observed for both zeolites, which corresponds 

to the external acidic Si-OH-Al groups interacting with the hydrocarbon molecules through 

hydrogen bonding. 
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Figure 4.9 (a) FTIR spectra of the hydroxyl region of ZSM-5 (40) (1) before and (2) after 

adsorption of TIPB at 30°C. (b) Difference spectrum of ZSM-5 (40) after adsorption of 

TIPB. (c) FTIR spectra of the hydroxyl region of BEA (12.5) (1) before and (2) after 

adsorption of TIPB at 30°C. (d) Difference spectrum of BEA (12.5) after adsorption of TIPB. 

Note the differences in the absorbance scale indicated on the y-axis. 

This conclusion is confirmed by the deconvolution of the 3610 cm-1 peak in ZSM-5 

after TIPB adsorption (Figure 4.10). The spectra show that the band at ~3610 cm-1 (black-

coloured) is a composite of two peaks: one due to the Si-OH-Al groups in the micropores 

not interacting with the probe (blue-coloured, ∿3610 cm-1), and the other due to Si-OH 

groups OH-bonded to the benzene ring of TIPB (green-coloured, ∿3590 cm-1). The same 

explanation applies for the results obtained for BEA zeolite. The accessibility of TIPB to 

BAS in both these zeolites is low, 4% for ZSM-5 and to 6% for BEA. The results 

demonstrate that this probe molecule, which is too large to enter the zeolite micropore 
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systems, can provide information about BAS on the external surface of both medium- and 

large-pore zeolites.  

 

Figure 4.10. Deconvolution of the 3610 cm-1 peak corresponding to Si-OH-Al groups of 

ZSM-5 (40) after adsorption of TIPB at 30°C. 

4.5 Study of acid sites in mixed-pore zeolites  

Both MOR and MAZ zeolites are mixed-pore size zeolites with similar structures and 

openings. Zeolite MOR consists of large-pore size channels (12-MR channels) with an 

opening of 7.0 × 6.5 Å and side pockets to the main channel composed to small-pore size 

channels (8-MR channels, 5.7 × 2.6 Å). MAZ zeolite has large 12-MR openings (7.4 × 7.4 

Å) while the small channels measures of 3.1 × 3.1 Å [35] (Figure 4.11).  

Mixed-pore zeolites are an excellent case study to highlight the relationship between 

the pore architecture and acidity of zeolites. BAS in these zeolites can be located in the large 

unidirectional channels, with little or no confinement, or in small side pockets and small 

channels where very little space is available for reactants or probe molecules. The goal of 

this section is to characterise and distinguish between BAS located in different channels and 

surfaces of these two mixed-pore zeolitic structures (MOR and MAZ). 
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Figure 4.11. Structures of (a) MOR (12 MR channels 7.0 × 6.5 Å, 1D) and (b) MAZ (12 

MR channels 6.0 × 6.0 Å, 1D) zeolites viewed along [001]. 

4.5.1 Acidity measurements 

FTIR spectra of zeolites MOR and MAZ show two major peaks at 3745 cm-1 and 

~3600 cm-1, assigned to Si-OH groups and acidic bridging Si-OH-Al, respectively (Figure 

4.12). The asymmetric shape of the peak at ~3600 cm-1 reveals the heterogeneity and 

complexity of the OH groups of both zeolites. The second derivative and deconvolution of 

this peak show the existence of two overlapping bands with the maxima around 3585 and 

3610 cm-1 in MOR zeolite. The low-frequency (LF) peak at 3585 cm-1 is assigned to BAS 

located in the smaller 8-membered ring side pockets and the high-frequency (HF) peak at 
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3610 cm-1 corresponds to BAS in the larger 12-membered ring channels (Figure 4.12 a) 

[7,40,41]. Additional differentiation between BAS types in MOR has been proposed 42,43]; 

however, there is no evidence of further OH groups in the MOR used in this study. Although 

the Si-OH-Al peaks in both zeolites are very similar, the deconvolution of the ~3600 cm-1 

peak in MAZ zeolite, demonstrates the presence of at least five different peaks at 3653, 3624, 

3600, 3572 and 3540 cm-1(Figure 4.12 b). The LF peaks at 3572 and 3540 cm-1 are assigned 

to BAS located in smaller 8-membered ring pores while the HF peak at 3600 cm-1 

corresponds to the BAS located in the 12-membered ring channels. The peaks at 3653 and 

3624 cm-1 correspond to EFAl species and OH groups located in a non-porous phase 

(probably impurities), respectively. The complexity of the acidity in MAZ presented in this 

work have been previously reported [44,45]. 

 

Figure 4.12 (a) FTIR spectra of the hydroxyl region of MOR (10). (b) FTIR spectra of the 

hydroxyl region of MAZ (4.7).  

The adsorption of NH3 and Py was studied in order to obtain the overall concentration 

of acid sites in both zeolitic structures (Figure 4.13 and Table 4.5). Adsorption of NH3 at 

150°C on MOR zeolite (Figure 4.13 a) leads to a decrease in the intensity of the peak at 3745 

cm-1, associated with Si-OH groups, and complete disappearance of the peak related to Si-

OH-Al groups at 3606 cm-1. The relatively small size of NH3 (~2.6 Å) allows access to all 

BAS in this zeolitic structure (~1215 µmol/g) (Table 4.6). In contrast to NH3, Py only 
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accesses a portion of the total number of acid sites in MOR (~864 µmol/g). This is due to 

diffusion limitations of the relatively bulky probe molecule inside the small 8-membered 

ring channels of MOR [43]. 

The adsorption of NH3 at 150°C on MAZ zeolite (Figure 4.13 b) reduces the intensity 

of both peaks at 3745 cm-1 and 3600 cm-1 corresponding to Si-OH and bridging Si-OH-Al 

groups, respectively. The portion of the Si-OH-Al peak not interacting with this probe is 

located in the non-porous phase represented by the peak at 3624 cm-1. The concentration of 

BAS in MAZ determined by Py adsorption is significantly lower than that determined by 

NH3. These observations could be explained by (i) restricted diffusion of the probe in the 

small channels, as observed for MOR zeolite and (ii) blockage of access to some of the acid 

sites positioned in the large channels by a non-zeolitic material [45]. Although Py, as a probe 

molecule, does not access all acid sites in both zeolites, it allows to information to be 

obtained on the presence of LAS and the ratios BAS/LAS existing in these structures (Table 

4.5). 

 

Figure 4.13. (a) FTIR spectra of the hydroxyl region of MOR (10). (b) FTIR spectra of the 

hydroxyl region of MAZ (4.7) (1) before adsorption of the probe molecules, (2) after 

adsorption of Py at 150°C and (3) after adsorption of NH3 at 150°C. 
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Table 4.6. Concentration of acid sites in MOR (10) and MAZ (4.7) zeolites in quantitative 

experiments using NH3 and Py adsorption monitored by FTIR. 

Zeolite 
BAS NH3  

 (μmol/g) 

BAS Py 

(μmol/g) 

LAS Py 

(μmol/g) 
BASPy/LASPy 

MOR (10) 1215 864 122 7.1 

MAZ (4.7) 1178 157 81 1.9 

4.5.2 Accessibility and location of acid sites 

In the previous section (Section 4.5.1) it was established that NH3 is a suitable probe 

to quantify the total concentration of BAS in both structures. Py adsorption demonstrated 

different acid site accessibilities in zeolites with similar structures and pore sizes. To 

distinguish and quantify BAS located in different channels and surfaces of MOR and MAZ 

zeolites, various probe molecules with different kinetic diameters were utilised (Table 4.7).  

For MOR zeolite the results are straightforward and agree with a series of previous 

reports [40,43]. Adsorption of hexane and benzene at 30°C probe ~60% of the total amount 

of Si-OH-Al groups, which correspond to BAS located on the large channels of this 

structure. Although Coll adsorption has been used to determine the accessibility of BAS in 

microporous mordenites [15], the results obtained in this work demonstrate that the diffusion 

of this test-molecule into the micropores is dependent on the temperature and duration of the 

experiment. To quantify the number of BAS on the external surface of large-pore zeolites, 

TIPB is the most adequate probe molecule. This probe molecule access ~2% of the total 

number of bridging Si-OH-Al groups and these sites are located on the external surface or 

close to the pore mouths of MOR zeolite. 

Table 4.7. Accessibility factor (AF) for MOR (10) and MAZ (4.7) zeolites determined using 

adsorption of NH3, Py, hexane, benzene, Coll and TIPB. 

Zeolite 
AFNH3 

 (%) 

AFPy  

(%) 

AFHexane 

(%) 

AFBenzene 

(%) 

AFColl 

 (%) 

AFTIPB 

 (%) 

MOR 100 73 60 57 22 2 

MAZ 92 14 2 5 5 2 
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The accessibility of bridging Si-OH-Al groups of MAZ zeolite is very restricted. Most 

of the probe molecules tested are only able to access BAS located on the external surface of 

MAZ. These observations are explained by the restricted diffusion of the probes in the small 

channels and blockage of the larger channels of the zeolite. 

4.6 Application to hierarchical zeolites 

The introduction of mesoporosity in addition to the existing network of micropores in 

zeolites has received considerable attention in the last few years [3-6]. These hierarchical 

zeolites are now important for industrial applications of zeolites, due to the increased 

accessibility and reduction of diffusion limitations. Therefore, the comparison and 

quantification of this enhanced accessibility has become significant. The aim of this section 

is to apply the understanding obtained in the former sections to characterise the acid site 

accessibility for a series of mesostructured zeolites.  

The spectra of the modified samples also show a decrease in the intensity of the 

bridging Si-OH-Al groups and a parallel increase in the intensity of the peak at 3745 cm-1 

assigned to the external Si-OH groups, confirming the removal of the framework Al and Si 

atoms during the formation of mesopores (e.g. Figure 4.14) [3]. 

 

Figure 4.14. FTIR spectra of the hydroxyl region of (1) Y and (2) mesoporous Y zeolite. HF 

and LF stand for high frequency and low frequency bridging OH groups in the FAU 

framework, respectively. 
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Py has been used in this study in order to determine the number of BAS and LAS 

(Figure 4.15). The surfactant templating mesostructuring treatment leads to a decrease in the 

concentration of BAS and an increase in the concentration of LAS in all zeolitic structures. 

In agreement with previous studies, these changes result from partial desilication and 

dealumination of the modified zeolites followed by their calcination [46,47]. 

 

Figure 4.15. Concentration of acid sites in (a) parent (b) hierarchical zeolites in quantitative 

experiments using Py adsorption monitored by FTIR. Values in brackets refer to Si/Al ratio. 

The accessibility of acid sites in both parent and mesostructured zeolites has been 

monitored by FTIR spectroscopy of adsorbed Py, Coll and TIPB (Table 4.7). The relatively 

large size of Coll molecules (7.4 Å) prevents their access to BAS in the micropores of ZSM-

5 allowing the determination of the BAS accessibility of hierarchical ZSM-5 zeolites 

(Section 4.4). Both parent and hierarchical ZSM-5 contain a small number of BAS accessible 

to the bulky Coll molecules; these acid sites are located on the external surface or close to 

the pore mouths of the parent zeolite. Desilication, leading to the formation of a secondary 

system of mesopores, results in a rather modest increase in the accessibility of BAS to Coll 

for both ZSM-5 zeolites (Si/Al=15 and 40). As previously discussed, TIPB is the most 

suitable probe to study the accessibility of BAS in large pore zeolites, such as BEA and 

MOR (e. g. Figure 4.9 c and d), considering the low intensity negative peak at ~3610 cm-1 

assigned to the acidic Si-OH-Al groups interacting with the hydrocarbon molecules and 
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forming a hydrogen bond. The accessibility of the bridging OH-groups increases from 10 to 

22% for BEA and from 2 to 12% for MOR following the mesostructuring treatment (Table 

4.8) as there are more acid sites interacting with TIPB in the mesopores and in the pore 

mouths of the zeolite micropores in comparison with the parent structures [48]. 

Table 4.8. Accessibility factor (AF) for parent and hierarchical zeolites determined using 

adsorption of Py, Coll and TIPB. AF was calculated from the intensity of the Si-OH-Al 

peaks. 

Zeolite AFPy (%) AFColl (%) AFTIPB (%) 

ZSM-5 (15) 100 4(4)a 3 

MZSM-5 (15) 100 4(6)a 3 

ZSM-5 (40) 100 7(7)a 4 

MZSM-5 (40) 100 17(10)a 4 

BEA (19) 100 100 10 

MBEA (19) 100 100 22 

MOR 73 22b 2 

MMOR 63 25b 12 

Y (2.6) 100 (HF) 15 (LF) 100 (HF) 24 (LF) 49 (HF) 4 (LF) 

MY (2.6) 100 (HF) 46 (LF) 100 (HF) 49 (LF) 58 (HF) 6 (LF) 

a The data in brackets are calculated from the intensity of the Coll peak in the spectra.  
b Depends on the time and temperature of the adsorption experiments. 

 

Zeolite Y presents two types of hydroxyl groups, a high-frequency peak (HF, at 3650-

3625 cm-1) located in the supercages and a low-frequency peak (LF, at 3550 cm-1) located 

in the sodalite cages. Several studies investigating acidity and accessibility of acid sites in Y 

zeolites have been already reported [49-54], but so far there is no adequate probe molecule 

able to distinguish between BAS located on the external and internal surfaces of this zeolitic 

structure. Owing to the large dimensions of the supercages (13 Å), acid sites located in the 

supercages are easily accessible to Coll and Py. Although the access to the supercages is 

restricted by the 12-MR windows (7.4 Å × 7.4 Å), the experimental FTIR spectra 

demonstrate that even the bulky TIPB molecules interact with ~50% of BAS in large cages 

(Table 4.8). In addition, some acid sites located in the smaller cages can interact with the 
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Coll and Py because both probes are strong bases, which can displace the acid sites from 

their original position. Therefore, the degree of interaction of Coll and Py with the BAS 

located in the smaller cages has been utilised as an indication of the acid site accessibility. 

Upon mesostructuring treatment, the sodalite cages of zeolite Y become more accessible to 

both Py and Coll probe molecules (Table 4.8). This is probably due to the opening of sodalite 

cages following partial dissolution of the zeolite framework 

In general, the obtained hierarchical zeolites show a greater degree of interaction with 

bulky probe molecules due to the shorter average length of the residual micropores between 

the newly formed mesopores, a significantly faster diffusion in the mesopores and a greater 

fraction of accessible acid sites. These results demonstrate the importance of choosing the 

appropriate probe for quantification of accessibility of different zeolitic structures. 

4.7 Summary 

The accessibility and the number of acid sites on the internal and external surfaces of 

ZSM-5 and BEA zeolites have been determined using adsorption of bulky probe molecules 

monitored by FTIR, hence providing a clear method for the detailed examination of the acid 

properties of these structures. Coll and DTBPy proved to be suitable probe molecules to 

quantify BAS on the external surface of ZSM-5 while TIPB can be used to distinguish BAS 

sites located on the external and internal surfaces in the large-pore channels of BEA. These 

results demonstrate that it is essential to select the right probe molecule for quantification of 

accessibility of different zeolitic structures. The method can be further extended to include 

detailed characterisation of hierarchical and mixed-pore zeolites, particularly utilising a 

combination of several probe molecules. In addition, the experimental procedure should 

improve the accuracy of the quantitative analysis under in situ and realistic reaction 

conditions and help in cross validation of the data obtained from different techniques. 
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Chapter 5 Accessibility and location of acid sites in ZSM-5 zeolites 

modified with phosphorous  

5.1 Introduction  

Zeolite ZSM-5 plays an important role in heterogeneous catalysis. Industrially, H-

ZSM-5 is used in fluid catalytic cracking (FCC), alkylation of aromatics, methanol and 

dimethylether conversion to light olefins, aromatics and fuels, the dehydrogenation of 

paraffins, dehydration of bioalcohols, fast pyrolysis of biomass, and in photocatalytic 

reactions [1-8]. The successful application of this zeolite is due to the combined shape 

selectivity and strong acidity, however the characteristics of the zeolite structure must be 

adjusted during synthesis or post-synthesis treatments to achieve the catalyst’s full potential. 

Such alterations are commonly accomplished by ion exchange, framework dealumination 

and the incorporation of phosphorous (P) compounds [9,10]. 

Phosphorous modification of H-ZSM-5 zeolite is a recognised inexpensive and simple 

modification utilised to change hydrothermal stability, acidity, selectivity and increase anti-

coking tendency in a range of reactions. This process was reported for the first time in the 

late 1970s [2,11,12] and since then it has been found that P can act as a promoter [1,13,14] 

or as a poison [15] for zeolite-based catalysts. The introduction of P followed by calcination 

improves hydrothermal stability and modifies the number and strength of the acid sites in 

the H-ZSM-5 [13,14,16-23]. Besides, depending on the incorporation process, there is also 

a loss of the Si-O-Al bonds and dealumination [14,24,25]. Thermal treatment after this 

modification could lead to a loss of 45% of strong acid sites by dealumination depending on 

the treatment conditions [26-28]. P also promotes the hydrolysis of the Si-OH-Al groups, 

which leads to a change in the total amount of acid sites, and studies have shown that samples 

with P contents above 5 wt.% lack strong acid sites altogether [29,30]. Even without thermal 

treatment, the incorporation of P leads to a decrease in the number of acid sites. This decrease 

can be reversed when the samples are washed with hot water [16,27,31]. The introduction 
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of P also lowers the strength of the acid sites, and the effect is more pronounced at higher P 

loadings. Three different causes for the decrease in the overall strength of the acid sites are 

proposed [32]: (1) a decrease in the strength of the Si-OH-Al groups; (2) the loss of 

predominantly stronger acid sites and (3) the formation of new weak acid sites, such as 

silanol nests (Si-OH), extra-framework aluminium (EFAl) or P-OH groups. 

A decrease of pore dimensions and accessibility are also found in modified ZSM-5 

samples. The decrease in the surface area and micropore volume is gradual and is more 

pronounced at higher loadings of P. Furthermore, dealumination, partial blockage of 

channels and aggregation of zeolite particles are also observed [19,20,22,33-35]. These 

changes induce longer diffusion pathways for reactants and products, which consequently, 

products that diffuse quickly out of the zeolitic structure will be formed with an increased 

selectivity [2]. P species are mainly located on the external surface of the zeolite 

[11,24,36,37] and only enter the zeolite channels at higher loadings. In fact, it was suggested 

that P content above 5 wt.% promotes the formation of polyphosphates on or close to the 

external surface of the zeolite [30]. The formation of different P species in ZSM-5 depends 

strongly on the pre- and post-treatment of the zeolite during P modification. Some authors 

proposed the formation of local silicoaluminophosphate (SAPO) interfaces with the 

hydrolysis of Si-O-Al bonds during thermal treatment [26,38,40]. However, Damodaran et 

al [39] and Hendrik et al [40] showed that at higher P loadings the spectroscopic signatures 

of P in local SAPO interfaces became more like aluminium phosphate (Al(PO4))
1 species. 

This proves that with higher loadings of P more Si-O-Al bonds are broken and replaced by 

Al-O-P bonds [39,40]. There is a synergistic effect between the presence of P and subsequent 

thermal treatment, as P-containing species actively promote the dealumination of zeolites 

during thermal treatment and the formation of Al–O–P bonds is energetically favoured [32]. 

                                                 

1Aluminium phosphate species will be referred to as Al(PO4) to avoid confusion with 

aluminophosphate materials which are commonly represented by AlPO4.  
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Also, EFAl species present in the zeolite before modification can interact with P forming 

Al(PO4) [13,16,23] leading to a decrease in their concentration.  

These changes in the catalyst can be beneficial or detrimental for catalytic reactions. 

For example, the control of the number and strength of the acid sites is useful in the 

methanol-to-hydrocarbon (MTHC), methanol-to-olefin (MTO) processes and in the 

production of green fuels [17,20,31,41]. Furthermore, the improvement of the hydrothermal 

stability and reduction of the coke formation, when P modified zeolites are used, causes a 

higher selectivity and activity with time-on-stream [23]. On the contrary, P treatment has a 

negative impact on metal ion-exchanged zeolites used in selective catalytic reduction (SCR) 

of exhaust gases, e.g. NOx [15].  

Although there are many studies on the P modification of zeolites, further work is 

required to expand the understanding of the nature and effects of acidity this modification 

has on zeolites. This work provides details on characterisation for two sets of P/H-ZSM-5 

zeolites prepared using different methods. The main goal is to evaluate the effect of P on the 

acidity of ZSM-5, examine the location and accessibility of acid sites following P 

modification and compare the two different methods of preparation. An extensive 

characterisation provides a better understanding of the interactions between P and the acid 

sites in this zeolitic structure.  

5.2 Experimental 

5.2.1 Materials  

Two different sets of modified ZSM-5 zeolites (MFI structure, 10-MR) were studied 

for this part of the work (Table 5.1). The first group of zeolites was prepared and provided 

by the Johnson Matthey PLC site in Savannah, US. Zeolite ZSM-5 was loaded with 

increasing amounts of P followed by thermal treatment as a post-synthesis modification 

(P/ZSM-5-PS). The second group of zeolites was prepared and provided by the Johnson 



138 

 

Matthey PLC site in Billingham, UK; and the incorporation of P into ZSM-5 was carried out 

by direct one-pot synthesis (P/ZSM-5-OP). 

Table 5.1. ZSM-5 samples loaded with different amounts of P. 

P introduction 

method 
Zeolite ID 

P wt % 

(XRF)a 

Si/Al 

(XRF)a 

P/Al bulk 

(XRF)a 

P/Al surface 

(XPS)a 

Post-synthesis 

ZSM-5 - 12.0 - - 

0.7 P/ZSM-5-PS 0.7 14.5 0.23 0.50 

1.9 P/ZSM-5-PS 1.9 14.2 0.63 0.79 

3.0 P/ZSM-5-PS 3.0 15.3 1.10 1.00 

One-pot 

synthesis 

ZSM-5 - 15.6 - - 

0.6 P/ZSM-5-OP 0.6 13.6 0.19 < 0.06 

0.7 P/ZSM-5-OP 0.7 15.5 0.26 0.13 

0.9 P/ZSM-5-OP 0.9 13.8 0.29 < 0.06 

a XRF and XPS data provided by Johnson Matthey PLC. All the values were corrected for 

water content using TGA data.  

 

5.2.2 Zeolite characterisation  

A comprehensive structural and acidic characterisation of the zeolites was carried out 

using X-ray photoelectron spectroscopy (XPS), X-ray fluorescence (XRF), argon (Ar) 

physisorption, FTIR using pyridine (Py) and collidine (Coll) as probe molecules and 31P 

solid state MAS NMR. A detailed description of Ar physisorption, Py- and Coll-FTIR 

spectroscopy and SEM-EDX analysis is available in Chapters 3 and 4. XPS, XRF, Ar 

physisorption and 31P solid state MAS NMR analyses were performed and provided by 

Johnson Matthey PLC. Prior to the XPS analysis, all zeolites were attached to a sample stub 

using carbon tape and the study was carried out with a Thermo Escalab 250. Energy scales 

were corrected such that the silicon 2p signal maxima were at 103.3 eV (silica). The 31P 

solid-state MAS NMR spectra was acquired at a static magnetic field strength of 9.4 T (Vo 

(1H) = 400 MHz) on a Bruker Avance III console using TopSpin 3.1 software. The probe 

was tuned to 161.98 MHz and referenced to adenosine di phosphate (ADP) at 0.9 ppm. Prior 
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to the experiments, all zeolites were stored overnight in a humid environment before being 

packed into zirconia MAS rotors with Kel-F caps and the sample mass was recorded.  

5.3 Effect of modification of ZSM-5 zeolite by post-synthesis  

5.3.1 Structural and acidity properties  

Ar physisorption results (Table 5.2) show that the apparent BET surface area (apparent 

SBET) and micropore volume (Vmicro) of the zeolites decrease with P loadings, however, this 

change only occurs at loadings equal to or higher than 1.9%. At low P contents there are no 

remarkable changes in both parameters, indicating that low loadings of P are suitable for 

retaining high specific surface area and pore volume of ZSM-5 zeolites, consistent with the 

data reported previously [14,19,34]. This decrease in apparent SBET and Vmicro is attributed 

to the formation of phosphate species at the entrance of pore channels of ZSM-5 [39]. 

Table 5.2 Textural properties of parent and P/ZSM-5-PS zeolites. Experiments were 

performed at Johnson Matthey PLC. 

Zeolite 
Apparent SBET 

(m2/g) 

Sext 

(m2/g) 

Vmicro 

(cm3/g) 

ZSM-5 431 21 0.21 

0.7 P/ZSM-5-PS 445 15 0.22 

1.9 P/ZSM-5-PS 349 15 0.17 

3.0 P/ZSM-5-PS 277 15 0.14 

 

FTIR spectra of all ZSM-5 zeolites show four major peaks at 3782 cm-1, 3745 cm-1 

(with a shoulder at 3722 cm-1), 3662 cm-1 and 3609 cm-1 (Figure 5.1 a). The most intense 

peak at 3609 cm-1 is assigned to acidic bridging Si-OH-Al groups and the peaks at 3745 and 

3722 cm-1 correspond to different silanol groups (external and internal Si-OH, respectively). 

The peaks at 3662 cm-1 and 3782 cm-1 are commonly assigned to two kinds of Al-OH groups, 

Al-OH from EFAl species and Al2O3-like species, respectively [42].  

The intensities of the peaks of the OH groups change significantly after P modification. 

This indicates that P interacts with both non-acidic and acidic hydroxyl groups. The decrease 
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in the intensity of Si-OH-Al groups is explained by the framework dealumination and the 

formation of Al(PO4) species [25,39]. The breaking of Si-O-Al bonds often leads to the 

formation of new acid sites, such as Si-OH groups interacting with EFAl species [32]. The 

peak at ~3722 cm-1 became more predominant in zeolites with higher P contents, this peak 

is due to internal Si-OH groups resulting from the breaking of Si-O-Al bonds [21,24,26]. It 

is important to point out that all samples have been thermally treated after modification with 

P, which is known to cause dealumination and breaking of Si-O-Al bonds (Chapter 3).  

The interaction of Py at 150ºC (Figure 5.1 b, dashed lines) with acid sites results in a 

complete disappearance of the peaks at 3782 cm-1 and 3609 cm-1 corresponding to Al-OH 

and bridging Si-OH-Al groups, respectively. A small decrease in the intensity of the peaks 

at 3745 cm-1 and 3662 cm-1 assigned to Si-OH and Al-OH groups, respectively, is also 

observed. The disappearance of the Si-OH-Al peak at 3609 cm-1 means that pyridine is able 

to access all the acid sites in the zeolites. The removal of the Al-OH peak at 3782 cm-1 is 

attributed to Py interacting with Lewis acid sites (LAS) to which they are linked [37]. 

In the range of 1400-1700 cm-1, chemisorbed Py is revealed by the following sets of 

peaks: two peaks at 1545 and 1637 cm-1 due to pyridinium ion (PyH+), two peaks at 1456 

and 1622 cm-1 assigned to Py coordinated to Lewis acid sites (PyL) and the signal at 1491 

cm-1 corresponding to Py on Lewis and Brønsted acid sites (Figure 5.1 c). The introduction 

of P leads to a significant decrease in the intensities of the peaks corresponding to PyH+ and 

PyL. The total concentration of acid sites for ZSM-5 parent zeolite is ~718 μmol/g, with a 

BAS/LAS ratio of 2.5. The concentration of both BAS and LAS gradually decreases with 

increasing P loadings. In fact, the introduction of P leads to a loss of ~73% of the initial 

concentration of acid sites (Table 5.3). Similar changes in LAS and BAS have been observed 

in previous reports [21,22]. 
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Figure 5.1. (a) FTIR spectra of the hydroxyl region. (b) FTIR spectra of the hydroxyl region 

before (solid lines) and after (dashed lines) adsorption of Py at 150°C. (c) Difference spectra 

Py region for: (1) ZSM-5 (2) 0.7 P/ZSM-5-PS, (3) 1.9 P/ZSM-5-PS and (4) 3.0 P/ZSM-5-

PS zeolites activated at 450°C. 

 

Table 5.3. Concentration of acid sites of parent and P/ZSM-5-PS zeolites in quantitative 

experiments using Py adsorption monitored by FTIR. 

Zeolite 
P 

(μmol/g)a 

BAS 

(μmol/g) 

LAS 

(μmol/g) 
BAS/LAS 

BAS+LAS 

(μmol/g) 

ZSM-5 - 514 204 2.5 718 

0.7 P/ZSM-5-PS 226 255 143 1.8 398 

1.9 P/ZSM-5-PS 617 225 74 3.0 299 

3.0 P/ZSM-5-PS 982 163 30 5.4 193 

a These results were calculated using XRF data. 
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The effect of Py desorption temperature on the intensities of the Si-OH-Al peak and 

peaks corresponding to adsorbed pyridine species (deduced from the difference spectra, 

before pyridine absorption and after pyridine adsorption-desorption) was also examined 

(Figures 5.2 and 5.3). Figure 5.2 shows difference IR spectra of the ZSM-5 parent zeolite in 

the OH and Py regions whereas Figure 5.3 summarises the quantitative changes in the 

relative intensities of the bands corresponding to Si-OH-Al, Py-H+ and Py-L species for all 

zeolites. The relative intensity of the Si-OH-Al peak remains constant up to 350ºC gradually 

decreasing at higher desorption temperatures for ZSM-5 and 0.7 P/ZSM-5-PS zeolites. 

Zeolites with higher P contents show a decrease in the relative peak intensity at lower 

temperatures, 300ºC for 1.9 P/ZSM-5 and 200ºC for 3.0 P/ZSM-5. After desorption at 450ºC 

a significant proportion of Si-OH-Al groups still interact with Py (e.g. 76% for the parent 

ZSM-5 and 72% for 0.7 P/ZSM-5-PS). In contrast, the relative intensity of the Py-H+ peak 

decreases for all samples, following desorption above 150ºC (Figure 5.3 b). This indicates 

the presence of relatively weak BAS interacting with Py (weaker than Si-OH-Al, which 

retain Py up to desorption temperatures of ~300ºC), such as Al-OH and Si-OH groups. The 

data shows a considerable reduction in the apparent strength of BAS, which occurs with 

increasing amounts of phosphorus, as shown for zeolites with P contents above 1 wt% in 

agreement with data reported previously [22]. This loss in the apparent strength could be 

explained (i) by the formation of new weak acid sites, which are attributed in the literature 

to P-OH groups and internal Si-OH groups [13,30,43] observed in Figure 5.1, and (ii) by the 

decrease in the concentration of Si-OH-Al resulting in fewer Py desorption-readsorption 

cycles (‘travel’ of Py along the zeolite channels), which is observed as a lower desorption 

temperature required to remove Py. 
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Figure 5.2. Difference spectra of the (a) hydroxyl region and (b) Py region of ZSM-5 parent 

zeolite after Py desorption at increasing temperatures (150°C- 450°C). 

 

 

5.3.2 Accessibility and location of acid sites  

FTIR using Py as probe molecule has provided information about the acid strength, 

concentration and the presence of LAS in the samples. However, as Py is a small probe 

Figure 5.3. Quantitative changes in the 

relative intensities of the peaks 

corresponding to (a) Si-OH-Al groups, 

(b) Py-H+ and (c) Py-L species of parent 

and P/ZSM-5-PS zeolites after 

desorption of Py at increasing 

temperatures (150-450°C). 
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molecule (5.4 Å), it does not give any information about the accessibility of the different 

acid sites in this zeolite structure. As shown in Chapter 4, the relatively large size of Coll 

(7.3 Å) prevents its access to BAS in the micropores of ZSM-5 (10-MR zeolite), which 

allows the probe to quantify acid sites on the external surface and provide a better 

understanding on the location of different acid sites in this zeolites.  

Adsorption of Coll at 250ºC only leads to a reduction in the intensity of the peak at 

3745 cm-1 that corresponds to Si-OH groups while the other OH-species remain virtually 

unaffected (Figure 5.4 a spectra 1 and 2). However, the difference spectra in the OH region 

(e.g. Figure 5.4 a, spectrum 3) show two low intensity negative peaks at ~ 3745 and ~3610 

cm-1 after Coll adsorption. These negative peaks correspond to the fraction of Si-OH and Si-

OH-Al groups located on the external surface or near the pore mouths of the zeolite, which 

are interacting with the probe molecule. Coll adsorption (Figure 5.4 b) also gives rise to the 

band at ~1634 with a shoulder at ~1649 cm-1, resulting from the interaction with BAS, and 

two low intensity bands at 1619 cm-1 and 1575 cm-1, assigned to the probe adsorbed on Si-

OH groups. This behaviour is similar for all samples studied. 

 

Figure 5.4 (a) FTIR spectra of the hydroxyl region of 0.7 P/ZSM-5-PS (1) before and (2) 

after Coll adsorption at 250ºC, (3) difference spectrum after Coll adsorption at 250ºC 

(spectrum was multiplied by 4 for clearer presentation). (b) Difference spectrum in the 

region of the aromatic ring vibrations after Coll adsorption at 250ºC. 
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Coll with a kinetic diameter of 7.4 Å, is too large to enter ZSM-5 micropores, reaching 

no acid sites on the internal surface and only interacting with BAS located on the external 

surface and in the pore mouths of the zeolite. At higher loadings of P, the accessibility values 

decrease gradually, however, the error margin of these data is quite high as the number of 

BAS detected on the external surface is very small (Table 5.4). This decrease in acid site 

concentration on the external surface has been previously reported in samples with P/Al 

above 0.6 [44], which corresponds to samples 1.9 P/ZSM-5-PS and 3.0 P/ZSM-5-PS in this 

work. 

Table 5.4. Concentration of BAS and accessibility factor (AF) for parent and P/ZSM-5-PS 

zeolites in quantitative measurements using Py and Coll adsorption monitored by FTIR. 

Zeolite 
BAS total 

(μmol/g) 

BAS external 

(μmol/g) 

AF 

(%) 

ZSM-5 514 10 1.9 

0.7 P/ZSM-5-PS 255 6 2.2 

1.9 P/ZSM-5-PS 225 4 2.0 

3.0 P/ZSM-5-PS 163 2 1.3 

Quantification of acid sites for the 0.7 P/ZSM-5-PS sample shows a significant 

reduction in the total number of BAS and a modest decrease in the number of LAS and BAS 

detected on the external surface of the zeolite (when compared to the parent zeolite ZSM-5) 

(Figure 5.5). For this 0.7 P/ZSM-5-PS sample, the amount of BAS removed and the amount 

of P introduced is almost the same, which could suggest that each P incorporated is 

interacting with one BAS from the zeolite. However, XRF data (Table 5.1) demonstrates an 

increase in the Si/Al ratio (from 12.0 to 14.5), which indicates that some of the Al species 

(BAS and LAS) in the zeolite are removed from the structure during the modification 

treatment (e.g. by leaching). P incorporation and Al removal cause the decrease in the total 

number of acid sites. 

The XPS and XRF analysis (Table 5.1) show a greater P/Al ratio for the external 

surface than the zeolite bulk for 0.7 and 1.9 P/ZSM-5-PS samples. This suggests that P 
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species, in relative terms, are preferentially located on the external surface of the ZSM-5 

zeolite at the initial stages of the P modification, as compared to the latter stages (0.7 P/ZSM-

5-PS versus 3.0 P/ZSM-5-PS). As the number of BAS on the external surface changes very 

little, it is therefore impossible to conclusively state that P interacts with the BAS located on 

the external surface. This may be attributed to the formation of polyphosphates even at low 

P loadings. Further evidence of the polyphosphates formation is also observed in the 31P 

NMP spectra (Figure 5.6).  

At higher loadings of P, the total number of BAS, LAS, and BAS located on the 

external surface decrease further (Figure 5.5 a). According to the elemental analysis, the 

increase in the P loadings leads to a more even distribution of these species on both internal 

and external surfaces (Table 5.1), in agreement with other reports [11,24,36,37]. The amount 

of P introduced is greater than the number of BAS removed during the modification (Figure 

5.5 b), which is confirmed by the increase in the polyphosphates signals evident in the 31P 

NMR spectra (Figure 5.6) in samples with higher P contents. According to the literature, the 

distribution of these P species in the ZSM-5 structure is dependent on the P/Al ratio, crystal 

size, surface OH groups, Al distribution and preparation method of the sample [32].  
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Figure 5.5 (a) Variation of number of acid sites with increasing P loadings. (b) Relationship 

between BAS removed and P content (µmol/g) incorporated. 

Modification with P also leads to the formation of Al(PO4) along with polyphosphates 

species (Figure 5.6). These Al(PO4) species are mainly formed due to the interaction of P-

containing species with the acid sites of zeolite and increase with P content. The 

polyphosphate species are mostly formed in zeolites with high P loading (above 1 wt%), 

demonstrating that in these samples P is less evenly distributed over the ZSM-5, increasing 

the possibility of the formation of clusters and pore blockage. Evidence of the formation of 

different P species after modification has been also reported [22,25,38-40] (Figure 5.7).  
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Figure 5.6. Normalised 31P solid-state MAS NMR spectra. (1) 0.7 P/ZSM-5-PS (2) 1.9 

P/ZSM-5-PS and (3) 3.0 P/ZSM-5-PS. Asterisks indicate spinning sidebands. 

 

 

 

Figure 5.7. Schematic representation of possible polyphosphate species formed during P 

modification in ZSM-5 zeolite (a) [P3O9]
3- (b) [P3O10]

5- and (c) [ P4O12]
4-. 

Although there is no clear indication of the SAPO- or AlPO4-like species, the 

possibility of formation of this type of species cannot be excluded. The 31P NMR overlapping 
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signals around -33 ppm (Figure 5.6) could also be assigned to SAPO-like species, normally 

present in SAPO-34 materials [45]. The increase in the Al(PO4) signal in the 31P MAS NMR 

spectra confirms that higher loadings of P favour the breaking of more Si-O-Al bonds 

replacing them with Al-O-P bonds [32,39,40]. Furthermore, the increase in the number of 

internal Si-OH groups observed by FTIR spectroscopy (Figure 5.1) agrees with this 

statement. The importance of controlling the amount of P incorporated can be appreciated 

from these results, as the formation of polyphosphate species increases with the P loadings. 

These polyphosphates could be responsible for the loss of pore volume and surface area 

(Table 5.2) as well as changes in the acidic properties of the ZSM-5 zeolite (Figures 5.3 and 

5.5).  
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Figure 5.8. Simplified schematic model for the location of acid sites and P species in 

P/ZSM-5-PS zeolites. (a) Typical distribution of external and internal acid sites in parent 

ZSM-5. (b) Distribution of P in 0.7 P/ZSM-5-PS. (c) Distribution of P in 1.9 P/ZSM-5-PS. 

(d) Distribution of P in 3.0 P/ZSM-5-PS. 

Figure 5.8 demonstrates a simplified model describing the location of P species in the 

set of P/ZSM-5-PS zeolites, which is based on the experimental data presented. This 

estimation can be made assuming (i) an approximately even distribution of Al through the 

zeolite and (ii) that the ratio between external and internal surface area is 1:20 (given by Ar 

physisorption analyses). The amount of P atoms on the external surface of the zeolites can 

be estimated using these assumptions and the XRF and XPS data shown in Table 5.1. For 
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sample 0.7 P/ZSM-5-PS, the amount of P atoms on the external surface is ~24 µmol/g and 

in the bulk is ~202 µmol/g (total of P atoms = 226 µmol/g, Table 5.3), which means that 1 

out of ~10 P atoms are located on the external surface. For the sample with higher amounts 

of P (3.0 P/ZSM-5-PS), the amount of P atoms on the external surface and bulk is ~45 and 

937 µmol/g (total of P atoms = 982 µmol/g, Table 5.3), respectively, indicating that 1 out of 

21 P atoms are located on the external surface. Additionally, there is decrease in the overall 

number of acid sites, which is caused by the P introduction and additional Al removal (BAS 

and LAS) possibly due to leaching. In samples with higher P contents, a considerable amount 

of polyphosphates is formed and the overall number of acid sites decreases even further.  

5.4 Effect of modification of ZSM-5 zeolite by direct synthesis  

Ar physisorption results (Table 5.5) show that both apparent SBET and Vmicro of the 

zeolites decrease when the synthesis takes place in the presence of P. However, there are no 

remarkable changes in both parameters between zeolites with different amounts of P. The 

Sext is higher for the P-free ZSM-5 and 0.7 P/ZSM-5-OP zeolites, which indicates that these 

two samples have a smaller crystal size in comparison with the 0.6 and 0.9 P/ZSM-5-OP. 

Table 5.5. Textural properties of P-free ZSM-5 and P/ZSM-5-OP zeolites. Experiments 

were performed at Johnson Matthey PLC.  

Zeolite 
Apparent SBET 

(m2/g) 

Sext 

(m2/g) 

Vmicro 

(cm3/g) 

ZSM-5 465 86 0.21 

0.6 P/ZSM-5-OP 401 26 0.20 

0.7 P/ZSM-5-OP 413 63 0.19 

0.9 P/ZSM-5-OP 403 39 0.19 

FTIR spectra show four major peaks at 3782 cm-1, 3745 cm-1 (with a shoulder at 3722 

cm-1), 3662 cm-1 and 3609 cm-1 (Figure 5.9 a). These peaks are assigned to Al-OH from 

EFAl species, Si-OH groups, acidic bridging Si-OH-Al groups and Al2O3-like species, 

respectively [42], which is similar to the samples described in Section 5.3.1. The four 



152 

 

zeolites show identical OH group signatures, with the exception of 0.6 P/ZSM-5-OP zeolite, 

which shows a peak at 3722 cm-1, related to internal Si-OH groups. 

 

Figure 5.9. (a) FTIR spectra of the hydroxyl region. (b) Difference spectra of Py region for: 

(1) ZSM-5-OP (2) 0.6 P/ZSM-5-OP, (3) 0.7 P/ZSM-5-OP and (4) 0.9 P/ZSM-5-OP zeolites 

activated at 450°C. 

Interaction of Py at 150ºC (Figure 5.9 b) allows the overall concentration of acid sites 

in these zeolites to be obtained (Table 5.6). The P-containing zeolites exhibit similar 

concentrations of BAS (within experimental error). However, with the introduction of 

increasing amounts of P, the number of LAS slightly decreases, when compared with P-free 

zeolite. The BAS/LAS ratios are found to increase from P-free ZSM-5 to P/ZSM-5 zeolites, 

which suggest that BAS are not as much affected by P as LAS. This indicates that the 

introduction of P during synthesis prevents the breaking of Si-O-Al bonds and dealumination 

in contrast to results demonstrated in P/ZSM-5 zeolites obtained by post-modification 

treatments. In this set of zeolites, P is protecting the zeolitic structure from losing strong Si-

OH-Al groups related to BAS, decreasing the amount of LAS (EFAl species).  Overall, the 

total concentration of acid sites remains similar for all P/ZSM-5-OP zeolites.   
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Table 5.6. Concentration of acid sites of P-free ZSM-5 and P/ZSM-5-OP zeolites in 

quantitative experiments using Py adsorption monitored by FTIR. 

Zeolite 
P 

(μmol/g)a 

BAS 

(μmol/g) 

LAS 

(μmol/g) 
BAS/LAS 

BAS+LAS 

(μmol/g) 

ZSM-5 - 451 155 2.9 606 

0.6 P/ZSM-5-OP 190 619 109 5.7 728 

0.7 P/ZSM-5-OP 232 551 95 5.8 646 

0.9 P/ZSM-5-OP 294 597 117 5.1 714 

a These results were calculated using XRF data. 

The effect of Py desorption temperature on the intensities of the Si-OH-Al peak and 

peaks corresponding to adsorbed pyridine species (deduced from the difference spectra) was 

also examined (Figure 5.10). Figure 5.10 summarises the quantitative changes in the relative 

intensities of the bands corresponding to Si-OH-Al, Py-H+ and Py-L species for all of the 

zeolite samples. The relative intensity of the Si-OH-Al peak remains constant up to 300ºC 

gradually decreasing at higher desorption temperatures. After desorption at 450ºC, a 

significant proportion of Si-OH-Al groups still interact with Py (e.g. 74% for the P-free 

ZSM-5 and 69% for 0.7 P/ZSM-5-OP). In contrast, the relative intensity of the Py-H+ peak 

decreases for all samples, following desorption above 150ºC (Figure 5.10 b). This indicates 

the presence of relatively weak BAS interacting with Py (weaker that Si-OH-Al, which retain 

Py up to desorption temperatures of 300ºC), such as Al-OH and Si-OH groups. When ZSM-

5 is modified with P during synthesis, there are no considerable differences in the apparent 

strength of both BAS and LAS. All samples show very similar Py desorption profiles, and 

as a result, similar apparent strengths. 
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According to XRF and XPS data (Table 5.1), a very small amount of P species is 

located on the external surface of ZSM-5-OP samples, independent of the amount of P 

loaded. This indicates that P species when incorporated during synthesis tend to be deposited 

on the internal surface of the zeolites. The combination of Py- and Coll- FTIR results (Table 

5.7 and Figure 5.11) shows no significant differences found within this set of samples. The 

only differences are due to the varying crystal sizes of these zeolites. These results are in 

line with Ar physisorption data presented in Table 5.5. 

Figure 5.10. Quantitative changes in 

the relative intensities of the peaks 

corresponding to (a) Si-OH-Al groups, 

(b) Py-H+ and (c) Py-L species of P-free 

and P/ZSM-5-OP zeolites after 

desorption of Py at increasing 

temperatures (150-450°C). 
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Figure 5.11. Variation of the number of BAS with different P contents. 

 

Table 5.7. Concentration of BAS and accessibility factor (AF) for P-free ZSM-5 and 

P/ZSM-5-OP zeolites in quantitative measurements using Py and Coll adsorption monitored 

by FTIR. 

Zeolite 
BAS total 

(μmol/g) 

BAS external 

(μmol/g) 

AF 

(%) 

ZSM-5 451 30 6.6 

0.6 P/ZSM-5-OS 619 7 1.2 

0.7 P/ZSM-5-OS 551 27 4.9 

0.9 P/ZSM-5-OS 597 15 2.5 
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Figure 5.12. Simplified schematic model for the location of acid sites and P species in 

P/ZSM-5-OP zeolites (a) Typical distribution of external and internal acid sites in P-free 

ZSM-5. (b) Distribution of P in 0.7 P/ZSM-5-OP zeolite. 

Based on the data presented, the model above for the distribution of P species and acid 

sites in P/ZSM5 zeolites can be proposed (Figure 5.12). Incorporation of P during synthesis 

results in the localisation of P species inside the micropore structure of ZSM-5 zeolite and 

these species lead to a decrease in the concentration of LAS, while the concentration of BAS 

remains unchanged. All P/ZSM-5-OP samples presented in this section show very similar 

results. 

5.5 Summary 

A detailed characterisation of the ZSM-5 zeolite porosity and acidity has been 

performed to evaluate the effects of P modification. One of the most important outcomes 

from this work is that most textural and acidic changes induced by P and their distribution 

are strongly dependent on the method of P incorporation.  

The results indicate that the post-synthesis modified P/ZSM-5 zeolite samples show 

no significant pore blockage, for P contents of 0.7 wt.% or lower, while changes in the acidic 

properties are immediately apparent. In relative terms, P species are preferential located on 
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the external surface of the ZSM-5 zeolite at the initial stages of the modification, when 

compared with the latter stages. There is a reduction in the number of acid sites, especially 

those with stronger acidity and located on the internal surface of the zeolite, along with the 

formation of new weak acid sites. 

Incorporation of P during the synthesis causes a decrease in the number of LAS from 

the P-free to P/ZSM-5 zeolite samples, and consequently an increase in the BAS/LAS ratio. 

However, when comparing zeolite samples with different P contents, there are no significant 

changes in the number and strength of acid sites in ZSM-5 zeolite. In P/ZSM-5 samples 

modified during the zeolite synthesis, P species show a preferential location on the internal 

surface of the structure. 
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Chapter 6 Concluding remarks  

The main objective of this research was the characterisation of acid sites in zeolites in 

terms of nature, accessibility, concentration and strength using suitably selected probe 

molecules in combination with FTIR. Additionally, this study aimed to improve qualitative 

and quantitative measurements, create new methodologies for a detailed examination of 

acidic properties in a great variety of zeolite structures and apply this knowledge to 

particularly important catalytic materials. 

The first goal of this thesis was the calculation of molar absorption coefficients for 

more accurate quantitative analysis of acidity of zeolite based catalysts using pyridine as a 

probe molecule. A reliable approach to the determination of ε values has been developed 

based on the direct measurement of the sample weight and the IR spectra of each material. 

It was observed that ɛBAS values, unlike ɛLAS, are affected by the type of zeolite structure. 

Other factors that affect ɛ calculations are the number and nature of the acid sites, 

experimental details of the procedure and the experimental set-up. 

Quantitative and qualitative analysis of structural, textural and acidity of thermally 

treated and cation-containing zeolites demonstrated how the properties of medium- and 

large-pore zeolites can be altered by using different post-synthesis modifications. The results 

obtained showed that thermal treatment leads to a decrease in the acidity, crystallinity and 

porosity of the zeolites.  Divalent cations (Ca2+ and Mg2+) introduced by ion exchange in 

ZSM-5 induce a protective effect on the Brønsted acidity of the zeolite, avoiding the decline 

in the number of acid sites which normally occurs during the thermal treatment. In general, 

the selected cations also prevent the formation of extra-framework Al species acting as LAS 

in cation-containing zeolites. 

The accessibility studies established a clear methodology for the use of different bulky 

pyridine and benzene derivatives as probe molecules. These results demonstrated the 

importance of choosing the suitable probe molecule for the quantification of accessibility 

and indirect location of Brønsted acid sites. This detailed investigation showed the 
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significance of taking into account the dimensions of the zeolite pores, the kinetic diameter 

of the probe molecule and the strength of the interaction between the acid sites and the probe 

molecule. 

Using the best approach acquired in the accessibility studies for medium-pore zeolites, 

the nature, location and accessibility of acid sites in ZSM-5 modified with phosphorous were 

investigated. The extensive characterisation performed revealed that changes in the number, 

nature and accessibility of acid sites and phosphorous species are dependent not only on the 

amount of phosphorous loaded but also on the incorporation method. For zeolites prepared 

by post-synthesis methods, the ratio between P species on the internal and external surfaces 

is greater for samples with higher P contents. 

This research provides a more comprehensive FTIR characterisation of acidity in 

different zeolite structures and a better understanding of the zeolite properties following 

different treatments. This study also developed a better methodology, which provided a new 

insight into the interactions between different probe molecules and the acid sites of each 

zeolite structure under investigation. The experimental approaches obtained from this work 

should improve the accuracy of quantitative analysis under in situ and realistic reaction 

conditions and help in cross-validation of the data obtained from different characterisation 

techniques. 
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