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ABSTRACT 

Low back pain (LBP) is a global public health problem. Keele University developed the STarT 

Back tool to stratify LBP patients according to their risk of persistent disability, matching 

treatments to individual risk. A 12-month trial-based economic evaluation showed this stratified 

care model to be cost-effective. A recent trial, the SCOPiC trial, aimed to evaluate a modified 

stratified care model for sciatica patients consulting in primary care. However, the longer-term 

cost effectiveness of both care models is unknown.  

To estimate the long-term cost-effectiveness of stratified care, two separate decision models 

were developed. The model conceptualisation process included expert consultations, and two 

systematic literature reviews assessing the use of decision analytic modelling in LBP and 

sciatica, and stratified care. 

A de-novo state-transition cohort model was developed to estimate the cost-utility of stratified 

care for the management of LBP in primary care, from the NHS perspective, over a ten-year 

horizon. Model results provided support for the cost-effectiveness of the Keele stratified care 

model.  

A de-novo individual-level simulation model was chosen to estimate the cost-utility of stratified 

care vs best usual care vs usual care for the management of those consulting with sciatica in 

primary care, from the NHS perspective, over a ten-year horizon. Model results suggest this 

model of stratified care is not cost-effectiveness relative to best usual care.  

Both cost-effectiveness results were robust to structural assumptions, however, sensitivity 

analyses highlighted how assumptions regarding health states, long-term patient prognosis and 

EQ-5D values could affect cost-effectiveness results. Furthermore, the first Expected Value of 
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Perfect Parameter Information (EVPPI) analyses in decision modelling for LBP and sciatica 

highlight the value of further research exploring transitons between health states.  

The thesis concludes with recommendations for modelling in low back pain and sciatica, 

including the need to strengthen modelling methodologies and fully explore structural and 

parameter uncertainty.   
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Chapter 1: INTRODUCTION 

  

1.1 Background 

Low back pain (LBP) is a major global public health problem (Hoy et al., 2014). The often 

chronic nature of the condition places a significant burden upon individuals owing to 

disability and reduced wellbeing. The condition also carries significant societal costs 

resulting from high workplace absence and healthcare usage (Hoy et al., 2014).  

The majority of LBP patients are managed in primary care, with treatment options agreed 

between patient and clinician. Keele University developed the STarT Back tool (Hill et al., 

2011) to stratify LBP patients according to their risk of persistent disability, matching 

treatments to individual risk. A short-term clinical trial with 12 months follow-up 

demonstrated this stratified care model to be clinically effective compared with usual non-

stratified care (Hill et al., 2011).  

However, as available resources are limited, decision makers also must decide whether or 

not an intervention represents good value for money. An economic evaluation is the 

process by which the cost-effectiveness of an intervention is measured (Goodacre and 

McCabe, 2002). An economic evaluation parallel to the STarT Back trial, showed the 

Keele stratified care model also to be cost-effective over 12 months, leading to higher 

quality-adjusted life years (QALYs), lower NHS costs, and reduced time off work 

(Whitehurst et al., 2012; Whitehurst, et al., 2015). Whilst the STarT Back care model for 

LBP has been implemented by many commissioning bodies in England and endorsed in 

clinical guidelines (NICE, 2016), the longer-term cost-effectiveness of this approach 

remains unknown.  

A stratified care model was also tested for sciatica patients in the SCOPiC (Sciatica 

Outcomes in Primary Care) trial (Foster et al., 2017). The results of the SCOPiC trial are 
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currently unpublished, nonetheless the trial revealed that stratified care was neither 

clinically nor cost-effective compared to usual non-stratified care (paper submitted for 

publication, under review) (K Konstantinou, 2019, personal communication).  

Where a condition is considered chronic, or treatment impact long-term, decision makers 

generally prefer long-term cost-effectiveness evidence. LBP and sciatica are such 

conditions, with a natural history characterised by symptom recurrence. As a general rule, 

compared with a within-trial economic evaluation, decision analytic modelling (DAM) is 

considered a more appropriate tool for conducting an economic evaluation (Sculpher et al., 

2006). The economist’s preference for DAM stems predominantly from their ability to 

extrapolate outcomes over the long-term, synthesise available evidence and include all 

available comparator technologies and treatments in an analysis.  

At present, there are no published decision analytic models which evaluate the cost-

effectiveness of a stratified care approach for LBP and sciatica. This thesis is, therefore, 

concerned with exploring the use of decision analytic modelling in the clinical areas of low 

back pain and sciatica, as well as stratified care treatment approaches. The thesis then 

brings together these insights to perform two cost-effectiveness analyses of stratified care, 

one for the management of LBP, and one for the management of sciatica. As there was no 

superiority for stratified care in the SCOPiC trial, stratified care and non-stratified usual 

care in the trial were compared with usual care outcomes and costs found in a usual care 

cohort study. 

1.2 Structure of this Chapter 

In what follows, sub-section 1.3 provides a brief overview of the context as well as the 

rationale for the use of economic evaluations and cost-effectiveness analyses in healthcare 

decision making. Section 1.4 reflects upon the role and value of decision analytic 

modelling in economic evaluation. The purpose of both sub-sections is to briefly explore 
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the contextual justifications for performing a model-based cost-effectiveness analysis as 

subsequently used in the thesis.  

Sub-sections 1.5 and 1.6 provide a brief review of the clinical areas of LBP and sciatica 

and discuss the challenges for treating both conditions in primary care. The Keele 

University stratified care approaches for treating LBP and sciatica in primary care are then 

discussed, including existing economic evidence for these approaches.  

Sub-section 1.7 outlines the justifications for the thesis, 1.8 summarises aims and 

objectives, whilst 1.9 provides a summary to the chapter. 

1.3 Economic Evaluation in Healthcare  

In recent years, there has been a surge in demand placed upon health services, driven for 

the most part by an ageing population and increased prevalence of chronic diseases 

(Charlesworth and Johnson, 2018). Meanwhile, after the financial crisis of 2008, the 

political economy of most developed countries has been characterised by changes in 

attitudes towards government spending and the debt burden, the consequence of which has 

been a considerable slowing in real terms health service funding (Appleby, 2016). Facing 

increased demand and restricted resources, decision makers now more than ever face tough 

decisions about how to ration scarce resources.  

Given the moral significance of allocating scarce resources, ‘people, time, facilities 

equipment or knowledge’ (Drummond et al., 2015), decision-makers often express a 

preference for explicit evidence-based processes for making resource allocation decisions 

(Donaldson and Mitton, 2009). Choices informed by a systematic consideration of the 

costs and consequences will nearly always produce superior outcomes to those based upon 

‘gut feelings’, ‘what we did last time’, or ‘educated guesses’ (Drummond et al., 2015). 

Accordingly, agencies such as the National Institute for Health and Care Excellence 

(NICE), which issue guidance concerning whether various health technologies should be 
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available through the public healthcare system, explicitly demand systematic and evidence-

based analysis of both benefits and costs of new treatments (NICE, 2013).  

The demand from decision makers for such guidance has led to increased prominence for 

economic evaluation in healthcare (Gray et al., 2011; Kluge et al., 2007). In the healthcare 

context, an economic evaluation can be understood as a systematic comparison of the costs 

and benefits of an intervention(s), with the aim of providing explicit accountability in 

decision making (Al-Janabi et al., 2012). The fundamental idea lying at the heart of 

economic evaluation is that of opportunity cost, the cost, in terms of benefits forgone, of 

choosing one course of action over alternate uses of those resources (Drummond et al., 

2015). The practical activity of performing an economic evaluation requires the analyst to 

identify, measure, value and compare the costs and consequences of alternatives being 

considered (Drummond et al., 2015). Provided with this information the decision maker 

should, in theory, be able to maximise the benefits available for a given amount of 

healthcare resource, the essence of the principle of allocative efficiency (Morris et al., 

2012).  

The undertaking of an economic evaluation can hold tremendous potential value for 

decision makers. Nonetheless, it must be acknowledged that what appears an objective 

endeavour is underpinned by considerable subjectivity. The analyst is required to make 

normative decisions which can profoundly influence the results of an evaluation (Morris et 

al., 2012). Normative economics is a strand of economics that deliberates upon value 

judgments regarding “economic fairness” or what the public policy ought to seek to 

achieve (Samuelson and Nordhaus, 2004). In health economics normativity is endemic 

because judgments will always be required regarding what is “fair” and what constitutes 

“costs” and “benefits” (Morris et al., 2012). Certainly, normative decisions will lie at the 

heart of this thesis. 
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 The concepts briefly discussed above, as well as other important considerations will be 

explored in more detail in sub-sections of chapter three, which explores in full the rationale 

for and appropriate conduct of economic evaluations. This chapter now turns to consider 

the role of decision analytic modelling in economic evaluation.  

1.4 Decision analytic modelling in Economic Evaluation  

Randomised controlled trials (RCTs) are a common method of assessing the efficacy and 

effectiveness of healthcare interventions (Morris et al., 2012). Their clinical value derives 

from producing estimates of relative treatment effects within a population of interest, 

where randomisation minimises the risk of selection bias (Sculpher, 2015). However, an 

economic evaluation has a somewhat different purpose, aiming to compare not only 

outcomes but also costs of alternative treatments in order to inform decision-makers about 

resource allocation decisions (Petrou and Gray, 2011). Indeed, the application of a single 

RCT as a vehicle for economic analysis has been criticised as providing an inadequate 

basis for decision-making (Sculpher et al., 2006). A trial-based economic evaluation may 

not include all long-term costs and outcomes, use all available evidence, nor include the 

full range of comparator technologies (Morris et al., 2012; Sculpher et al., 2006). 

To overcome these problems it is recommended that decision-analytic models should be 

used in most circumstances (NICE, 2013). Decision-analytic models, considered from the 

perspective of economic evaluation, can be defined as the application of mathematical 

relationships to compare expected costs and consequences of decision options over time, 

by synthesising information from multiple sources (Raiffa, 1968; Barton et al., 2004; 

Brennan et al., 2006).  

A decision model uses mathematical relationships to define the likelihood of potential 

health consequences occurring for each comparator under evaluation. Each health 

consequence within the model has costs and benefits attached, meaning that the expected 
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cost-effectiveness of each option is a joint mathematical function of expected costs and 

benefits and the probability of each occurring (Briggs et al., 2006).  Numerous techniques 

have been developed to enable decision models to extrapolate short-term trial data to 

longer-term horizons, include all relevant comparators in the analysis, and include the full 

range of available evidence (Ramsey et al., 2015; Sculpher et al., 2006; Sculpher and 

Drummond, 2005).  

Decision modelling also facilitates the formal assessment of uncertainty (Briggs et al., 

2006). Indeed decision analysis, from which decision modelling originates, has been 

defined as a systematic approach to decision making under uncertainty (Raiffa, 1968). 

Providing an estimate of the uncertainty of the results of an evaluation can be important, 

since the costs of incorrect decisions can be extremely high (Briggs et al., 2006).  

Having established the justification for the use of decision-analytic models it must be 

acknowledged that concerns have been raised that inappropriate model selection is 

widespread in economic evaluation (Brennan et al., 2006). One systematic review of 

economic evaluations of screening for chlamydia trachomatis concluded that nearly all the 

models were methodologically flawed, with significant impact upon the validity of their 

results (Roberts et al., 2006). However, there are no published guidelines on modelling 

approaches in LBP or sciatica to assist with the development of a modelling methodology 

to underpin this thesis, nor are there many models from which to learn.  

Even though both LBP and sciatica may often require long-term management, cost-

effectiveness studies for both conditions tend to be conducted alongside short term clinical 

trials. For example, a systematic review of non-invasive and non-pharmacological 

interventions for LBP (Andronis et al., 2016), found 33 suitable studies met their inclusion 

criteria however only two (Kim et al., 2010; Norton et al., 2015) of these were decision 

analytic models. A review of the cost-effectiveness of management strategies for sciatica 
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(Lewis et al., 2011) found only one decision analytic model (Launois et al., 1994).  This 

thesis will pay significant attention to consideration of what form an appropriate model for 

the condition and its treatment, would take. 

1.5 Low back pain 

Low back pain can be defined as pain, discomfort, or stiffness in the lower back region, 

which is commonly considered as the area below the costal margin and above the inferior 

gluteal folds (NICE, 2009; Weiner and Nordin, 2010). The condition can either be 

classified as specific or non-specific. Specific LBP is defined as that caused by a specific 

mechanism such as malignancy, infection, fracture, spondylitis or inflammatory disorder 

(NICE, 2009; Balague et al., 2012). Non-specific low back pain (NSLBP) meanwhile is 

defined as pain, tension, stiffness and/or soreness in the lower back region where no 

specific cause of the pain can be identified given current diagnostic tools (van Tulder and 

Waddell, 2005; NICE, 2009). Around 85% of patients presenting with LBP are thought to 

have (NSLBP) (Deyo and Weinstein, 2001). In approximately 60% of patients presenting 

with NSLBP, there is radiation of pain from the low back to the leg(s) (Hill et al., 2011). 

LBP is a substantial international health concern, with a lifetime prevalence of 80–85% 

(WHO, 2003). In the United Kingdom (UK) around 14% of all primary care consultations 

are for LBP (Jordan et al., 2010). Whilst many episodes of LBP are short lived and many 

patients stop seeing their general practitioner (GP) in the first three months, the condition 

presents significant challenges for clinical management, with only 20-40% of patients 

reporting no pain or disability a year after first seeing a GP (Croft et al., 1998; Hestbaek et 

al., 2003). Maniadakis and Gray (2000) estimated the societal impact in terms of periods of 

work absence related to LBP to be between £7 and £12 billion, with NHS and community 

care costs in excess of £1 billion (1998 prices).  
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In making referral decisions regarding patients with NSLBP, clinical intuition is often 

used, despite the suggestion that this leads to inconsistent access to treatment (Hill et al., 

2011; DoH, 2006). On the other hand, simply referring all patients for treatment is 

considered unnecessary and inefficient owing to the patient volume and cost of doing so 

(McGrail et al., 2001; Savigny et al., 2009; DoH, 2006). A one-size-fits-all primary care 

strategy is suboptimal because it ignores the heterogeneity in patient presentation of 

symptoms (van der Windt et al., 2008). 

1.5.1 Stratified Care in LBP 

Stratified care can be defined as the targeting of treatments according to biological or risk 

characteristics of subgroups of patients with similar characteristics (Hingorani et al. 2013). 

Subgrouping can be effective because it reduces variability in treatment, serving to 

improve treatment benefit, reduce harm and contribute to efficient health-care delivery 

(Sowden et al. 2018). Indeed research suggests subgrouping generates better outcomes 

than treatment based solely on clinical guidelines (Fritz et al., 2003).  

In relation to LBP a longstanding research aim has been to develop effective means of 

subgrouping of LBP patients in an effort to improve patient outcomes (Cherkin et al., 

2009). There is no exact consensus as to how LBP patients ought to be stratified and Keele 

University has pioneered one approach, the STarT Back approach (Hay et al., 2008; Hill et 

al., 2008). The STarT Back approach comprises subgrouping patients according to risk of 

persistent disability (low, medium, high risk) via a screening tool (the STarT Back tool); 

patients are then matched to appropriate treatments for their risk. The STarT Back tool was 

developed for, and validated with, primary care patients with LBP (with and without leg 

pain) and captures eight key modifiable physical and psychological prognostic indicators 

for persistent disabling symptoms using nine questions. In this sense, stratification here 

uses baseline information to make inferences about a patient’s likely to response to 
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treatment to tailor their treatment decisions. Thus stratification can be differentiated from 

stepped care, where it is the actual response to previously offered treatment which guides 

future treatment (Hingorani et al. 2013). 

The matched interventions delivered as part of the RCT investigating the effectiveness of 

this approach (Hill et al., 2011) are as follows. Those patients in the low-risk group receive 

advice, a 15-min educational video entitled ‘Get Back Active’ and given the Back Book. 

Medium-risk patients received further standard physiotherapy sessions to address 

symptoms and function (in addition to advice and booklet). High-risk patients further 

received psychologically informed physiotherapy interventions to address psychosocial 

obstacles to recovery (in addition to advice and booklet). 

This stratified care approach was further tested in an implementation before-and-after 

study (Foster et al., 2014). The clinical and cost-effectiveness results of both the trial and 

implementation study demonstrated this approach was both clinically effective and led to 

greater QALYs, cost-savings to the NHS and reduction in time off work over 12 months 

follow up (Hill et al., 2011; Whitehurst et al., 2012; Foster et al., 2014; Whitehurst et al., 

2015).  

To-date, the approach has been recommended in UK treatment guidelines and has been 

adopted by a number of clinical commissioning groups in the UK as well as services 

overseas (NICE, 2016; Keele University, 2015). Despite the progressive implementation of 

the approach, the current economic evidence for the STarT Back approach for LBP 

(Whitehurst et al., 2012; Whitehurst et al., 2015) is based upon a single short-term trial 

finding, with longer-term cost-effectiveness unknown. Short trial-based economic evidence 

regarding treatments for LBP (and sciatica) studies is unlikely to capture the full extent of 

the associated costs and benefits (Andronis et al., 2016). As stated previously, where a 
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condition is predominately chronic, decision makers are likely to prefer evidence on the 

long-term cost-effectiveness of treatments.  

1.6 Sciatica 

Sciatica is a symptom of radiating pain from the low back to the leg, often extending to the 

foot (Valat et al., 2010; Navarro-Siguero et al., 2013). Patients may also have other leg 

symptoms such as pins and needles, numbness or leg muscle weakness (Fairbank, 2007; 

Valat et al., 2010; Qin et al., 2015). The most common reasons for sciatica are compression 

or irritation of a lumbar spinal nerve root (s) by a prolapsed or bulging disc or tightening of 

the spinal or lateral canal (spinal stenosis) (Kobayashi et al., 2005). Sciatica is known by a 

range of terms in the literature, such as lumbosacral radicular syndrome, radiculopathy, 

nerve root pain and nerve root entrapment or irritation (Konstantinou and Dunn, 2008). 

Sciatica is less prevalent compared with NSLBP, with a lifetime reported prevalence of 

between 12.2% and 43% (Konstantinou and Dunn, 2008). There is a link between LBP and 

sciatica, in that patients who previously had LBP were between 1.5 and 3 times more likely 

to develop a first incidence of sciatica (LeClerc et al., 2003; Kääriäl et al., 2011).  

The true economic cost of sciatica is unclear. A cost of illness study from the Netherlands 

in 1991 estimated the impact of sciatica to be US $128m for hospital care, US $730m for 

absenteeism, and US $708m for disablement (van Tulder et al., 1995). Fitzsimmons et al. 

(2014) note the cost would be US $219m for hospital care and US $1.2bn for absenteeism 

(2013 prices).  

Compared with patients with NSLBP, sciatica patients suffer more persistent and severe 

pain, higher and more prolonged levels of disability, higher absence from work, and 

require more healthcare resources (Konstantinou et al., 2013; Goode et al., 2011). One 

study suggested that 55% of patients still had some symptoms of sciatica after two years 

and 53% after four years (Tubach et al., 2004). This problem of persistence arises in part 
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from the fact that as sciatica becomes more chronic (>12 weeks) or recurrent, it becomes 

less responsive to treatment (Furlan et al., 2009).  

The current clinical guidelines for the management of sciatica advocate a ‘stepped’ 

treatment approach, where patients initially receive educational materials, advice, and 

analgesic medications (NICE, 2016). For those not improving, referral to physiotherapy is 

recommended, for appropriate treatments such as exercise and manual therapy. Only 

patients with more persistent symptoms are referred to specialist services for further 

assessment and consideration of more invasive interventions such as spinal injections and 

surgery (NICE, 2016). Currently, there is no evidence to guide clinicians as to which 

patients may need more invasive treatments earlier in the presentation of sciatic pain, and 

there is variation in the treatment of sciatic patients in the UK, as noted by the U.K Spinal 

Taskforce (NHS, 2013). A model of stratified care for patients presenting in primary care 

with sciatic pain has been tested in an RCT, the SCOPiC trial (ISRCTN75449581) (Foster 

et al., 2017), HTA report in press.  

1.6.1 Summary of the SCOPiC trial  

The SCOPiC trial (Sciatica Outcomes in Primary Care) was a multi-center pragmatic 

assessor-blind, two-arm randomised controlled trial, set in primary care. The trial tested 

whether the stratified care model tested led to faster recovery and overall better outcomes 

for sciatica patients compared to usual non-stratified care and whether it was cost-

effective.  

In the SCOPiC trial the allocation of sciatica patients to one of three matched care 

pathways, was based on the combination of prognostic information, using the STarT Back 

tool, and information from the clinical examination. The details of the algorithm used to 

allocate sciatica patients in one of three groups are given in Konstantinou et al. (2019), and 

the matched treatments details are described in Foster et al. (2017). Briefly, patients were 
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allocated to group one, if their total score on the STarT Back tool was less than or equal to 

three out of a possible nine, and they were referred to primary care physiotherapy for 

management options of low treatment intensity. Using a combination of the STarT Back 

tool score (if ≥4) and a number of findings from the clinical examination, patients were 

allocated to group 2 or group 3. Those in group 2 were referred to physiotherapy for 

management options of higher treatment intensity, with those in group 3 being fast-tracked 

to a specialist spinal opinion and imaging tests. 

As noted above, the results of the SCOPiC trial are at present unpublished, nonetheless the 

trial revealed that stratified care was neither clinically nor cost-effective compared to usual 

non-stratified care. 

1.7 Rationale for the thesis   

Where a condition is predominately chronic, decision makers are likely to prefer longer-term 

cost-effectiveness evidence which reflects the period over which the costs and /or effects of 

alternate options would be expected to differ (Drummond et al. 2015). The absence of 

evidence over the long-term cost-effectiveness of the STarT Back approach for LBP justifies 

the construction of the decision analytic model for stratified management of LBP in this 

thesis. In relation to sciatica, it was the view of the experts consulted (Appendix 8) that usual 

care in the SCOPiC trial was more reflective of best available care than usual care generally 

available to patients. As a consequence it was decided than an analysis should compare 

stratified care and ‘best usual care’ obtained in the SCOPiC trial, with that of ‘usual care’ in 

a cohort study.    

Given the scarcity of decision analytic modelling around LBP and sciatica, no consensus 

over an appropriate methodology has emerged. Careful development of a modelling 

methodology for both conditions as well as the stratified nature of treatments will form a 

fundamental component of this thesis, and ensuring suitable model development will require 



13 
 

preliminary research. Therefore, it was necessary to carry out a systematic review of current 

modelling approaches for both conditions to help inform such a process. Given the 

stratification involved in the Keele approach, it was also necessary to ensure the modelling 

reflects this. A separate review of decision analytic modelling approaches to stratified care 

was therefore required.  

Finally, having conducted research regarding modelling methodologies and built both 

decision analytic models, reflection upon this process can guide future modelling 

endeavours.   

1.8 Aims, objectives and structure of the Thesis  

1.8.1 Aims and Objectives of the Thesis 

The thesis has two broad objectives, namely, to explore themes related to decision 

modelling in both conditions, as well as produce cost-effectiveness analyses of stratified 

care in both conditions.  

Specifically, these broad objectives will be met by five specific aims;  

 1) To systematically review the current economic modelling literature in LBP and 

sciatica in order to explore decision modelling in both conditions.  

2) To systematically review economic evaluations of stratified care/personalised 

medicine interventions in order to explore decision modelling in stratified care. 

3) To conduct a decision model to estimate the long-term cost-effectiveness of a 

stratified care approach for LBP 

4) To conduct decision model to estimate the long-term cost-effectiveness of a 

stratified care approach for sciatica 
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5) To draw upon the insights gained from the reviews and model building process to 

produce guidance on approaches to decision modelling in LBP/sciatica and for stratified 

care. 

1.8.2 Structure of the Thesis 

The rest of this thesis is structured as follows:  

Chapter Two provides an overview of the clinical areas of both LBP and sciatica. The 

chapter includes definitions, a review of the epidemiological literature, detail on 

management of the conditions, and a review of their economic impact. The purpose of this 

chapter is threefold, providing context to the thesis, informing the appraisal of modelling 

studies included in the systematic reviews, and identifying key features of each condition 

that ought to be considered when constructing the decision analytic models.  

Chapter Three sets out the broad rationale for the use of economic evaluation in 

healthcare funding decisions, as well as the justification for the specific use of decision 

analytic models as a method of economic evaluation. Other issues considered in this 

chapter are; how to select the appropriate model type, as well as best practices around 

model construction and execution. The content of chapter is primarily chosen to provide 

context, inform the systematic review, and guide the process of building and appraising the 

decision analytic modelling.  

Chapter Four presents a systematic review of the modelling literature in both LBP and 

sciatica. The review provides a current statement regarding the use of decision analytic 

models in both conditions. This review also identifies critical considerations for the 

process of the building of the two de-novo models in this thesis.  
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Chapter Five is a literature review of the modelling literature on approaches to the 

economic evaluation of stratified care. The purposes of this review are identical to the 

clinical review, namely to inform the model building process.  

 Chapter Six presents the first decision analytic model, a Markov model to examine the 

cost-effectiveness of stratified care in a general back pain population compared to usual 

care. Analyses include a full examination of the uncertainty owing to structural, 

methodological, heterogeneity and parameter uncertainty, as well as value of information 

analysis.  

Chapter Seven presents the second decision analytic model, an individual patient model, 

to examine the cost-effectiveness of stratified care in a sciatica population compared to 

best usual care and usual care. Analyses include a full examination of the uncertainty 

owing to structural, methodological, heterogeneity and parameter uncertainty, as well as 

value of information analysis.  

Chapter Eight discusses the findings of the models presented in Chapters six and seven.  

It provides a discussion of the main findings, the policy implications, implications for 

future research, strengths and weaknesses of the research, and comparison with other 

papers. The chapter also answers the fifth objective of the PhD, to generate insights from 

the reviews and model building process to provide guidance on decision modelling in both 

low back pain and sciatica and stratified care.  

1.9 Conclusion  

In summary, this PhD thesis aims to produce an economic analysis of the long-term cost-

effectiveness of the STarT Back approach for the management of LBP and the SCOPiC 

trial stratified approach for the management of sciatica. These objectives will be achieved 

by developing a modelling methodology, which will combine insights gleaned from 

systematic reviews and from clinicians and health economic modellers with the data 
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available in Keele cohort studies and trials. The thesis will subsequently reflect upon these 

processes and produce guidance for future modelling endeavours, both in LBP and sciatica 

in stratified care.    
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Chapter 2:  OVERVIEW OF THE CLINICAL AREA 

 

2.1 Introduction  

Low back pain (LBP) is one of the most significant contemporary global public health 

problems (Hoy et al., 2014). For most cases of LBP, it is not possible to find a specific 

cause for the pain and the term NSLBP (non-specific low back pain) is widely used 

(Hartvigsen et al., 2018). Globally, the prevalence of LBP is rising, driven by an ageing 

population, as well as trends in factors such as falling rates of physical activity and rising 

levels of obesity (Duthey, 2013). The condition presents major challenges for clinical 

management, is associated with high healthcare resource usage, absence from work, long-

term incapacity, and is the leading cause of global disability, responsible for the most life 

years lost to disability (Buchbinder et al., 2013; NICE, 2016; Balague et al., 2012;, 

Hartvigsen et al., 2018, Buchbinder et al., 2018). 

Sciatica (also called radicular pain or nerve root pain), a common variation of LBP which 

is due to spinal nerve root compression (Koes et al., 2007), is less prevalent when 

compared to NSLBP. However the impact upon patients is often worse than the impact of 

LBP alone (Konstantinou et al., 2013), and up to one-third of patients with severe sciatica 

continue to have significant pain at one year (Balague et al., 1999). Overall, reported rates 

of recovery at one-year for patients with sciatica range from 49% to 58% (Koes et al., 

2007; Haugen et al., 2011; Konstantinou et al., 2018). Patients with sciatica report lower 

health-related quality of life than the general population and even lower than those 

suffering from cancer or heart failure (Laroche and Perrot, 2013).  Whilst cost of illness 

studies are rare for sciatica,  a Dutch study estimated that the cost of sciatica to society 

represents 13% of all LBP related costs (van Tulder et al., 1995), which translates to an 

annual impact to the UK economy of £268 million in direct medical costs and £1.9 billion 

in indirect costs (Foster et al., 2017). 
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This chapter aims to explore the epidemiology of both LBP and sciatica, their 

recommended management options reflecting updated NICE (2016) guidelines, alongside a 

brief review of the evidence which underpins these treatment options. The chapter 

concludes by reviewing the healthcare usage and broader economic impact associated with 

LBP and sciatica.  

2.2 Epidemiology of low back pain 

2.2.1 Prevalence 

There is substantial literature on LBP prevalence rates, although there is no consensus over 

the exact rate, implying that mean estimates ought to be interpreted with caution (Hoy et 

al., 2012). Differences in the estimates often reflect different populations, alternate 

definitions, study designs, and data collection methods (Jones and MacFarlane, 2005; 

Balague et al., 2012). For example, where LBP was defined as requiring sick leave in the 

past six months, the prevalence was reported to be 8%, yet where defined as “pain lasting 

one-day” prevalence was estimated to be as high as 45% (Ozguler et al., 2000).   

The WHO (2003) state that globally, the lifetime prevalence of NSLBP is estimated to be 

around 80–85%. Whilst other studies estimate that in industrialised nations, the lifetime 

prevalence is 60–70%, with a one-year prevalence of 15–45% (Duthey, 2013). A recent 

systematic review and meta-analysis found the mean lifetime prevalence of LBP to be 39% 

(Hoy et al., 2012).   

There is no strong evidence that prevalence rates vary across age groups (Calvo-Munoz et 

al., 2013) with those around the age of 18 years having a similar prevalence to adults (Hoy 

et al., 2012) and those aged over 60 have similar prevalence to those in middle age (Fejer 

and Leboeuf-Yde, 2012).  However, older age groups are more prone to experience severe 

pain. For example, the prevalence of severe back pain and loss of function is known to 

increase with age (Dionne et al., 2006; Dunn et al., 2013b). 
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2.2.2 Clinical course 

Historically most studies had shown that most people with acute LBP recover in timely 

fashion (Balague et al., 2012). One review reported around half of patients who consult 

with acute NSLBP can expect to resume their normal activities within 4 to 6 weeks, by 12 

weeks the recovery rate is approximately 90%, whilst only 6-10% of patients experience 

chronic pain and work incapacity (Von Korff et al., 2005).  

However, literature emerged showing that that LBP does not necessarily fully improve for 

many, in fact a study by Croft et al., 1998 had already reported that of those experiencing 

pain and disability at baseline only 18% had fully recovered one year on. A systematic 

review reported that 40–50% of individuals with acute LBP still have symptoms at three 

months (May, 2010). Whilst other studies suggest that at least 40% of people seeking 

healthcare recover within a year of an episode (Hestbaek et al., 2003), and around one-

third of patients had not recovered after one year, whilst amongst those still experiencing 

pain at 3 months 60% had not recovered at one year (Henschke et al., 2008). Dart et al. 

(2012) found that persistence of LBP up to 6 weeks reduces the probability of recovery. 

The seeming tensions in the findings arose not only from different definitions of 

improvement, but as Croft et al. (1998) found most patients with LBP were not returning to 

consult their doctor about their continuing pain, with only 8% continuing to consult for 

more than three months.  

Studies with longer-term follow-up indicate that the number of patients reporting persistent 

symptoms represent a small minority. A Danish study with over 5-years follow-up, found 

around 10% reported more than 30 days of back pain at all points (Hestbaek et al., 2003). 

One Swiss study with annual follow-ups over five years indicated 14% of people suffering 

from back pain at all follow-up points, although only 35% back-pain free at all points 

(Kolb et al., 2011). These studies suggest that although most people will suffer from back 



20 
 

pain at some point during their life, it is less common to progress to chronic symptoms and 

long-term persistent back pain.  

Overall evidence indicates that at a population level, the prognosis of acute LBP is 

generally good with highly likely substantial improvement in the first month (Hestbaek et 

al., 2003) whereas chronic pain may occur in 1 out of 5 patients seeking care for LBP 

(Weiner and Nordin, 2010).   

2.2.2.1 Recurrence  
Recent evidence suggests that rather than experiencing isolated LBP episodes, individuals 

experience repeated episodes of pain throughout life (Dunn et al., 2013a). Large 

epidemiological studies show that recurrence is a common feature of LBP (da C Menezes 

Costa et al., 2012; Stanton et al., 2008). The recurrence rate or episode rate varies 

considerably because of the difficulties in estimation arising from the lack of a 

standardised definition (Weiner and Nordin, 2010). One systematic review estimated a 

one-year recurrence incidence to be between 24% and 80%, and also suggested about 60–

70% of those who 'recover' from an episode have a recurrence within the following year 

(Hoy et al., 2010). At two years of follow-up the recurrence rate of NSLBP has been 

estimated between 5% and 80% (Carey et al., 1999; Campello et al., 1976; Vingard et al., 

1976).  

2.2.2.2 Low back pain trajectories  

Recent research suggests that most LBP patients tend to follow a particular trajectory of 

pain over time, with most patients displaying patterns reflecting little variation around their 

mean long-term pain (Dunn et al., 2013a; Dunn et al., 2006; Axen et al., 2011; Kongsted et 

al., 2015; Tamcan et al., 2010). The concept of pain trajectories is a refutation of the 

differentiation between acute and chronic LBP, instead seeing patients as having distinct 

pain trajectories over time (Dunn et al., 2013b).   
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Reviewing the literature in this area, a recent systematic review concluded that despite 

differential trajectories within different settings, there are general congruent patterns 

visible across cohorts and settings (Kongsted et al., 2016). The authors suggest that the 

majority of LBP patients in primary care do not experience either recovery or chronic 

severe pain (only one in five have persistent severe pain), but have patterns of pain of mild 

intensity or infrequent LBP episodes which are relatively stable over time.  

Moreover, particular LBP trajectories are associated with different patient characteristics, 

suggesting that trajectory patterns might have the potential for supporting clinical decision-

making. For example, treatments directed at a flare-up of LBP could be differentiated from 

interventions aimed at managing long-term LBP patterns (Kongsted et al., 2016). At 

present there are no established ways with which to differentiate group trajectories, and 

different authors use different subgroupings; Dunn et al. (2006) and Kongsted and 

Leboeuf-Yde (2010) group according to pain intensity; Tamcan et al. (2010) use pain 

characteristics, medication use, healthcare use and social and work limitations; and Axen et 

al. (2011) use clinical background variables. All studies described meaningful differences 

in trajectories according to these sub-groupings.  

2.2.3 Risk factors for onset of LBP 

NSLBP is multifactorial with medical, biomechanical, psychosocial, and socio-

demographic risk factors at play (Ramond-Roquin et al., 2015b). There is reason to suggest 

that occupational factors contribute towards the development of LBP taking into account 

the higher prevalence of LBP within the working population (Ramond-Roquin et al., 

2015a). For example, higher risk of LBP has been associated with heavy load lifting, 

exposure to vibrations, persistent standing, working more hours than planned, occupational 

driving, working in construction, bending and twisting and repetitive trunk movements 



22 
 

(Ramond-Roquin et al., 2015a; Duthey, 2013; Coeuret-Pellicer et al., 2010; Karacan et al., 

2004).  

Biological characteristics, such as height and obesity, have also been associated with an 

elevated risk of developing LBP (Andersson et al., 1999; Deyo and Weinstein, 2001; 

Hollingworth et al., 2002, Shiri et al. (2010a; 2010b)). Genetic components could also be 

important, with some suggestion that both LBP and intervertebral disc narrowing have a 

certain degree of heritability (Balague et al., 2012). Psychosocial factors may also 

potentially have a causal effect (Balague et al., 2012). Higher LBP incidence has been 

reported amongst those suffering from negative affectivity, low social support, low level of 

job control, high psychological demands, work dissatisfaction, stress, anxiety, and/or 

depression (Duthey, 2013).  

2.2.4 Risk factors for poor outcomes and/or recurrence  

There are many studies which have investigated factors associated with poor prognosis in 

LBP. These include pain severity, with higher baseline levels associated with poor 

outcome over time (Campbell et al., 2013), having pain in more than one site (Dunn et al., 

2013b), being older (Henschke et al., 2008), having either limited or excessive levels of 

physical activity (Heneweer et al., 2009), coming from a lower socioeconomic background 

(Beneciuk et al., 2017) and having lower educational levels (Dionne et al., 2001) 

Psychosocial factors are particularly implicated in poor LBP prognosis (Balague et al., 

2012). One recent systematic review found that depression, psychological distress, self-

rated psychosocial health, passive coping strategies, patients’ expectations of recovery, and 

high levels of pain-related fear were each independently associated with poor outcome in 

LBP patients (Ramon-Roquin et al., 2011a;b). Maladaptive pain coping behaviours 

(including avoidance and catastrophising) and presence of psychiatric comorbid conditions 
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are also strong predictors of poor outcomes at one year (Chou et al., 2010; Chou et al., 

2014).  

2.3 Epidemiology of sciatica  

2.3.1 Prevalence of sciatica  

Of those patients who have LBP, between 20-35% suffer from sciatica (radicular pain) 

(Laroche and Perrot, 2013). However, there are fewer epidemiological studies on sciatica 

compared to LBP (Kääriäl et al., 2011) but a similar variability as regards prevalence 

estimates (Konstantinou and Dunn, 2008). This variation arises from a number of factors; 

differences between self-reported and clinically assessed symptoms; data collection 

methods; populations studied; time frames; and significant variability in the definitions of 

sciatica, particularly poor differentiation between “true sciatica” which is leg pain due to 

lumbar spinal nerve root involvement, and all other referred leg pain (Konstantinou and 

Dunn, 2008; Valat et al., 2010; Lewis et al., 2011). In a review of sciatica prevalence 

estimates, lifetime prevalence estimates were between 12.2% and 43%, annual period 

prevalence between 2.2% and 34%, and point prevalence estimates ranged from 1.6% to 

13.4% (Konstantinou and Dunn 2008). In this review, there were three UK studies, all 

reported period prevalence reflective of experience of symptoms in the prior year. The 

estimates from both the Hillman et al. (1996) and Palmer et al. (2003) studies, 17.8% and 

14.2%, fall around midway between the lowest and highest international period 

prevalence’s found by the Konstantinou and Dunn (2008) review. Whilst in the study with 

the lowest UK prevalence (Lyons et al., 1994), 6.3%, sciatica was ascertained by clinical 

diagnosis. Generally, where clinical assessment or stricter case definitions are used, lower 

prevalence rates are reported (Heliovaara, 1987).  
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2.3.2 Recurrence  

It was commonly thought that the clinical course of acute sciatica is favourable, and 

usually improves within 2–4 weeks regardless of treatment (van Tulder et al., 2010). 

However, literature indicates that compared to patients with NSLBP, sciatica patients 

suffer more persistent and severe forms of pain and loss of function, as well as less 

favourable outcomes, more prolonged disability and higher absence from work, consuming 

more health resources in the process (Konstantinou et al., 2013; Goode et al., 2011). One 

study, suggested that 55% of patients still had some symptoms of sciatica after two years 

and 53% after four years (which includes those who had recovered at year two but relapsed 

between years two and four)  (Tubach et al., 2004). As sciatica becomes more chronic (>12 

weeks) or recurrent, it becomes less responsive to treatment (Furlan et al., 2009) hence 

treatments that might prevent patients developing chronic forms of sciatica are imperative.  

2.3.3 Risk factors for onset of Sciatica 

Two studies on risk factors indicated that patients who previously had a case of LBP were 

between 1.5 and 3 times more likely to develop a first incidence of sciatica (LeClerc et al., 

2003; Kääriäl et al., 2011). Another study reported that those who had a previous episode 

of severe LBP were 4.5 times more likely to report an incidence of sciatica (Riihimäki et 

al., 1994). Those in poor health are also three times more likely to suffer a first case of 

sciatica (LeClerc et al., 2003).  

Various activities involving particular forms of movement are known to increase the risk 

of developing sciatica (radicular pain). Factors include constant heavy workload 

(Riihimäki et al., 1994; Miranda et al., 2002), frequent flexing and twisting the trunk, 

kneeling or squatting, raising arms above shoulder (Miranda et al., 2002; Laroche and 

Perrot, 2013). Other factors associated with a higher incidence of sciatica include obesity 

(Shiri et al., 2007, Rivinoja et al., 2011; Kääriäl et al., 2011), and smoking, both current 

and previous, (Kääriäl et al., 2011; Manninen et al., 1995; Miranda et al., 2002, Qiao et al., 
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2000). Two studies reported that those who are physically active or moderately physically 

active, and those who walk moderately and actively, have higher risk of developing 

sciatica (Kääriäl et al., 2011; Miranda et al., 2002). Age is also known to be a factor, with 

evidence that the incidence rate for developing radicular pain peaks in the fifth decade and 

declines thereafter (Miranda et al., 2002; Laroche and Perrot, 2013). Height is a risk factor, 

with those over 180cm in height three times as likely to develop first incidence of sciatica 

(LeClerc et al., 2003). 

There are few studies examining the impact of psychosocial factors on sciatica incidence, 

reporting conflicting results (Kääriäl et al., 2011). One Finnish study showed that low job 

control was associated with increased hospitalisations owing to intervertebral disc 

disorders (Leino-Arjas et al., 2004). Two other studies showed an association between 

sciatica and psychological distress and mental stress (Pietri-Taleb et al., 1995; Miranda et 

al., 2002). However, two other studies found no relationship between sciatica and 

psychosocial factors (Leclerc et al., 2003; Kääriäl et al., 2011).  It may be that different 

definitions and means of measuring psychosocial factors contribute to conflicting findings.  

2.3.4 Risk factors for poor outcome 

There are a number of studies investigating prognostic factors for sciatica patients. Research 

on characteristics potentially associated with outcome in sciatica has identified a limited 

number of prognostic factors independently associated with outcome, mainly in studies of 

secondary care cohorts (Ashworth et al., 2011; Peul et al., 2008; Verwoerd et al., 2013; 

Konstantinou et al., 2018).   

Only pain and condition-specific disability are consistently associated with having spinal 

surgery, which in this secondary care context is taken as a proxy of poor outcome for 

natural course and conservative management (Verwoerd et al., 2013). A UK primary care 

cohort of patients with suspected sciatica found that the impact of sciatic pain on patients, 
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and their expectation of non-improvement over time were independently associated with 

non-improvement (Konstantinou et al., 2018). Several other factors (e.g. age, gender, 

psychosocial factors) commonly thought to be associated with outcome in LBP, do not 

seem to be associated with outcome in sciatica presentations (Ashworth et al., 2011, 

Verwoerd et al., 2013, Konstantinou et al., 2018).  

2.4 Management of low back pain and sciatica 

In what follows, each of the potential treatment options for LBP and sciatica advocated in 

national clinical guidelines issued by NICE (2016) are discussed in turn, with a brief 

summary of the evidence base.  

2.4.1 Use of stratification tools for guiding treatment  

NICE (2016) recommends the use of stratification tools, such as the STarT Back tool (Hay 

et al., 2008; Hill et al., 2008) to assist clinical decisions about the management of patients 

with NSLBP or back pain with sciatica. The STarT Back tool estimates the risk of future 

poor outcome (low, medium or high). The overall approach combines the estimation of 

prognostic risk and matched treatments according to the level of risk (Hill et al., 2011). 

The STarT Back tool assesses a number of physical and psychological factors potentially 

associated with poor recovery from LBP, with treatment tailored to the individual patient. 

Patients at low risk of poor outcome are expected to improve and are likely to do well with 

minimal input comprising advice and reassurance. For patients at medium risk of future 

poor outcome, a course of physiotherapy treatment tailored to the individual patient’s 

needs is recommended which may include advice, reassurance, exercise, or manual therapy 

techniques. For patients at high risk of a poor outcome, physiotherapy input is also 

recommended with more emphasis on addressing psychosocial obstacles to recovery, such 

as excessive worry about the condition and unhelpful pain-related fear of moving and 

physical activity.  
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2.4.2 Self-management 

Where self-management strategies are appropriate, practitioners are advised to provide 

patients with advice and information specifically tailored to their needs at all steps of 

treatment pathways. This would include information on the nature of LBP and sciatica as 

well as encouragement to stay active and continue normal activities. All patients should 

receive information about treatment and prognosis (NICE, 2016).  

Guidelines generally advocate remaining active, based upon evidence that continuing with 

daily activities is more effective than resting in reducing pain and improving functional 

status for patients with either acute or sub-acute LBP (Dahm et al., 2010). Where patients 

require bed rest to relieve severe symptoms, they ought to be encouraged to return to 

regular activity as soon as possible (Chou et al., 2007).  

2.4.3 Exercise 

Clinical guidelines (NICE 2016) recommend group exercise programmes, which could be 

biomechanical, aerobic, or mind–body or combination, can be considered on the NHS for 

people with a specific episode or flare-up of LBP with or without sciatica. Patient’s 

specific needs, preferences and capabilities should be considered when choosing the form 

of exercise (NICE, 2016). This guidance reflects evidence suggesting that structured 

exercise programmes are clinically and cost-effective compared with usual care (NICE, 

2016).  

Research evidence indicates that individually designed exercise programmes offered in a 

supervised group setting are the most effective means of delivering exercise programmes 

(Hayden et al., 2005a). These measures are more effective in patients with chronic NSLBP 

but not in patients with acute back pain (Hayden et al., 2005).  
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Yoga has also been suggested as being useful in managing back pain. A meta-analysis of 

10 RCTs found that yoga was associated with beneficial effects on short- and long-term 

pain and back-specific disability (Cramer et al., 2013).  

In contrast, the evidence on physical activity and sciatica is conflicting. Reviewing RCTs 

on restricting physical activity, Lewis et al. (2011) report no difference in outcomes at 

various time points between bed rest and either advice to stay active or exercise. However, 

it makes intuitive sense that remaining active as able is likely to be overall more beneficial 

than resting for too long.  

2.4.4 Manual therapies 

Manual therapy, spinal manipulation, mobilisation or soft tissue techniques, can be offered 

but only as a component of a treatment package including exercise and/or psychological 

therapy (NICE, 2016). For acute LBP (duration <4 weeks), spinal manipulation 

administered by providers with appropriate training is associated with small to moderate 

short-term benefits (Assendelft et al., 2004). One systematic review found ‘high-quality 

evidence’ that spinal manipulation therapy was at least as effective as a variety of other 

interventions for reducing pain and improving function in patients with chronic LBP 

(Rubinstein et al., 2011). Studies on soft tissue techniques are exclusively taken from 

populations of LBP without sciatica, and reveal modest effects. In a review of these 

studies, only one of three studies found a clinically significant reduction in pain compared 

to sham (NICE, 2016).  

2.4.5 Psychological interventions 

NICE (2016) recommends cognitive behavioural approaches to be offered as part of a 

treatment package, including exercise, with or without manual therapy interventions. In a 

review of 22 studies across various psychological therapies including, cognitive 

behavioural therapy (CBT), self-regulatory therapy (SRT), behavioural therapy, and 
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multidisciplinary therapies, psychological therapy was found to be significantly superior to 

control treatments, including usual care and physiotherapy across all treatments across all 

time periods, all outcomes and all control treatments (Hoffman et al., 2007). Another 

review of 30 trials, found behavioural treatments more effective than usual care for short-

term pain relief although no differences in the intermediate and long term (Henschke et al., 

2010).  

2.4.6 Combined physical and psychological programmes 

A combined physical and psychological programme can be considered for people with 

persistent LBP or sciatica where there are either significant psychosocial obstacles to 

patient recovery or where previous treatment has been ineffective (NICE, 2016). 

Functional restoration with a cognitive-behavioural component and intensive 

interdisciplinary rehabilitation reduces work absenteeism due to LBP in occupational 

settings (Schonstein et al., 2003; Guzman et al., 2001). Patients with chronic LBP 

receiving multidisciplinary biopsychosocial rehabilitation experienced moderately less 

pain and disability, and more likely to be in employment, compared to those receiving 

usual care or physical treatment (Kamper et al., 2014). For patients with chronic disabling 

LBP, particularly those with psychosocial risk factors, intensive interdisciplinary or 

multidisciplinary therapy consisting of physical, vocational, and behavioural interventions 

provided by a multidisciplinary healthcare team seems more effective than standard care 

and is an important treatment option (Guzman et al., 2001; Karjalainen et al., 2001). 

2.4.7 Return-to-work programmes 

Returning to work and normal daily activities should be promoted and facilitated wherever 

possible (NICE, 2016). There is some evidence that physical conditioning as a component 

of a return to work strategy for workers with back pain has some effect compared to usual 

care. One systematic review of 25 RCTs, showed that for workers with chronic LBP, 
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physical conditioning reduces sick leave compared to usual care after 12 months 

(Schaafsma et al., 2013). For patients with sub-acute or acute LBP these interventions do 

not seem to be as effective when compared to usual care. 

2.4.8 Pharmacological interventions 

NICE (2016) acknowledges that the evidence base is weak but suggests the consideration 

of analgesic medications as appropriate in the management of LBP and sciatica, to 

facilitate recovery or maintenance of function. Analgesic options include non-steroidal 

anti-inflammatory drugs (NSAIDs) and weak opioids.  Clinicians are advised to consider 

the lowest effective dose for the shortest possible period, informed by the risks and 

benefits of medication according to each patient’s profile.  

2.4.9 Invasive procedures 

Referral for assessment for radiofrequency denervation can be considered for those with 

LBP where all three of the following conditions are satisfied; (i) where non-surgical 

treatment has not worked; (ii) where the origin of pain is considered to come from the 

medial branch nerve, (iii) and where localised back pain is considered to be moderate or 

severe at time of referral (NICE, 2016). Radiofrequency denervation is an option in people 

with chronic LBP after a positive response to a diagnostic medial branch block. 

Consideration of epidural injections of local anaesthetic and steroid is recommended for 

those with acute and severe sciatica (NICE, 2016). A meta-analysis of ‘good’ RCTs 

showed epidural injections for the treatment of sciatica were ‘significantly’ better than 

inactive control at short-term follow up for reduction of pain and improving functional 

status, although no evidence of a difference in the longer and medium term (Lewis et al., 

2011).  
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Spinal decompression can be considered for people with sciatica, where non-surgical 

treatment has failed to improve pain or function and where radiological findings are 

consistent with sciatic symptoms (NICE, 2016).  

2.5 Healthcare usage and economic costs of low back pain and sciatica  

Most of the costing literature on LBP comes from cost-of-illness studies, which 

predominantly take two forms, prevalence or incidence approaches. The prevalence 

approach takes a given year and derives the total annual cost of a certain disease. A more 

complex approach, the incidence approach, involves calculating lifetime costs of incident 

cases (Rice, 1994). 

Published studies to-date use the prevalence approach to derive annual costs. Costs in these 

studies are commonly sub-divided into direct medical costs and indirect costs, the former 

relate to healthcare costs, whilst the latter relate to work absenteeism or productivity 

losses. 

2.5.1 Direct costs of low back pain 

In terms of healthcare usage, Maniadakis and Gray (2000) estimate 15% of the total costs 

relating to LBP fall within the healthcare sector, which amounts to £2.97bn in 2016 prices. 

However, the authors also found that 35% of these costs related to services provided 

privately, implying the NHS costs would be around £1.93bn in 2016 prices.   

The NHS cost burden of LBP reflects in part the demands the condition places upon GPs. 

In the UK, a recent cohort study found that 5.9% of adults consult their GP about LBP 

each year and that 14% of all UK primary care consultations are for LBP complaints 

(Jordan et al., 2010). Similar results were also found in France (Plenet et al., 2010). The 

costs related to specific types of healthcare for LBP have not been subject to extensive 

investigation in the UK. A study conducted in the Netherlands, (Lambeek et al. 2011) 

found that 21% of expenses related to inpatient care, 1% to diagnostic evaluations, 25% to 
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outpatient care, 49% to physical therapy, chiropractor or massage, and 4% to prescription 

medication. There is trial-based evidence from the UK, for example in the usual care arm 

of a UK cost-utility study (Whitehurst et al., 2015) of the implementation of stratified care, 

the IMPaCT Back study, highest risk patients saw 15% of their total costs related to 

primary care consultations, 22% related to consultant consultation, 11% related to 

diagnostic tests and epidurals, 37% relate to consultations with physiotherapists, 

acupuncturists, osteopaths etc., 6% arose from prescription medication, and 8% arose from 

over the counter medications.  

2.5.2 Indirect costs of low back pain 

Studies investigating the costs associated with LBP consistently show that the indirect 

costs far outweigh the direct costs of treatment, with healthcare costs only estimated to be 

only 7–14% of the total cost of LBP (May, 2010). The extent of these indirect costs reflects 

the fact that LBP is the leading cause of activity limitation and work absence throughout 

much of the world. In the UK, LBP is the most common cause of disability in adults with 

an estimated 137 million work days lost per year (ONS, 2017). As the working population 

is particularly affected by LBP, it drives high work absenteeism and subsequent 

productivity losses, which are the predominant contributors to the considerable 

socioeconomic costs (Ramond-Roquin et al., 2015a). This can clearly be seen in the 

selected cost of illness studies shown in Table 2.1.   
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Table 2.1 Costs associated with LBP (selected studies) 

Lead author, country  Year  Total 

societal 

costs 

Costs as a 

proportion of 

2016 GDP 

Indirect cost, % 

Maniadakis, UK 1998 £19.77bn 1.00% 85 

Rizzo and Lou, USA 1998 £60.82bn 0.38% 53 

Van Zundert, Belgium 1999 £1.44bn 0.38% 84 

Ekman, Sweden 2001 £2.19bn 0.52% 84 

Walker, Australia 2001 £8.42bn 0.85% 89 

Weiser, Switzerland 2005 £6.68bn 1.22% 62 

Lambeek, Netherlands 2007 £3.65bn 0.58% 88 

*Adapted from Harvigsen et al. (2017). Costs inflation-adjusted to 2016 prices using nation-specific inflator 

from World Bank Indicators, GDP deflator, (available at 

https://data.worldbank.org/indicator/NY.GDP.DEFL.ZS, accessed 12th August 2019) converted to GBP using 

2016 currency convertors from The World Bank Indicators, Official Exchange Rate (available at 

https://data.worldbank.org/indicator/PA.NUS.FCRF, accessed 12th August 2019).  

Referring to Table 2.1, although comparisons between countries is not straightforward 

because of different costing perspectives, health systems, methodologies, and time periods, 

the results indicate the gravity of the economic burden of LBP, ranging from 0.38% of 

GDP in Belgium/USA to 1.22% in Switzerland. The table also highlights the significance 

of indirect costs in that burden, responsible for between 53% of the burden in the US to 

89% of the burden in Australia, with indirect costs making up 85% of the burden in the 

UK. 
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Maniadakis and Gray (2000) quantified the burden of LBP in the UK, using estimates of 

prevalence, healthcare resource use, and unit cost data. Their study estimated that the cost 

of back pain in 1998 was £12.3bn (£19.86bn in 2016 prices) using the human capital 

methods (HCM), and £6.7bn (£10.77bn) using the friction cost approach. The HCM, which 

has been the traditional method of estimating productivity loss, estimates losses by 

multiplying some time loss from work absence by a wage rate. Whilst use of the HCM is 

common place in economic evaluation, it has been criticised for producing inflated 

estimates of productivity losses, and therefore overestimating societal costs 

(Koopmanschap et al., 1995).  The friction cost method on the other hand assumes that 

productivity losses are limited only to the period of time taken to restore productivity 

levels, by training a replacement work (Koopmanschap et al., 1995).  

Trial-based economic evidence would suggest that cost is associated with severity of 

presentation. For example, in the IMPaCT Back study, in the usual care arm, of those 

consulting with low back pain in primary care, high risk patients had £1459 of LBP-related 

work absence,  even £1135 in medium risk patients, falling to £30 in low risk patients 

(Whitehurst et al., 2015). 

2.5.3 Economic burden of sciatica 

Although it is recognised that the impact of sciatica has on patients is more substantial than 

LBP alone (Konstantinou et al., 2013), the economic costs relating to sciatica are far less 

well understood. The only cost of illness study found in a literature search was from the 

Netherlands in 1991, and estimated that the cost of sciatica, to be 13% of the total costs of 

LBP, $128m of which were for hospital care, $730m for absenteeism, and US $708m for 

disablement (van Tulder et al., 1995). Converting these into UK prices, Foster et al. (2017) 

note that the UK costs would be £268m for hospital care and £1.9bn for absenteeism.  
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At the individual level, Kigozi et al. (2019) and estimate NHS costs associated with 

sciatica to be £312.85 per annum, with societal costs £1246.92, implying NHS costs are 

around 25% of the total costs. The two largest contributors to direct costs were NHS 

physiotherapy (£113.96) and GP consultations (£78.57), jointly responsible for 62% of 

total direct costs.  

2.6 Summary 

The purpose of this chapter was to provide an overview of LBP and sciatica. The chapter 

has explored aspects of both conditions which will be relevant to the modelling process, as 

well as what is known about the economic evidence in both conditions. The next chapter 

reviews the role of economic evaluation and decision modelling in healthcare.  
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Chapter 3:  OVERVIEW OF THE USE OF DECISION ANALYTICAL 

MODELLING IN ECONOMIC EVALUATION IN HEALTHCARE 

 

3.1 Introduction 

As stated in the introductory chapter, the role of economic evaluation is to aid decision-

makers in making choices about which healthcare interventions to fund from scarce 

resources (Drummond et al., 2015). The purpose of this chapter is to explore the analytical 

techniques used by health economists, which are utilised in this thesis.  

The chapter initially briefly restates the rationale for the use of economic evaluation in 

healthcare explored in the introduction, before moving onto consider both the 

philosophical origins of healthcare economic evaluation as well as the technical 

methodologies available to the analyst. The second half of the chapter investigates why a 

model-based evaluation can better meet the evidential needs of decision-makers than a 

trial-based evaluation, concluding, by considering the different types of decision model 

and particular circumstances under which each model may be regarded as appropriate.  

3.2 Economic evaluation in healthcare  

Economic evaluation in healthcare can be defined as a systematic framework of evidence 

synthesis, for quantifying the costs and benefits associated with choosing one intervention, 

service or policy over potential alternative courses of action (Drummond et al., 2015). 

Underpinning the use of economic evaluation in healthcare is the notion of resource 

scarcity - the idea that people, time, facilities, equipment, and knowledge are scarce 

(Drummond et al., 2015). This scarcity forces decision-makers to take difficult decisions 

about which often-costly treatments or technologies ought to receive funding (Cooper et 

al., 2006). The rationale for basing decision-making upon systematic analysis is clear, 

given that tradition, intuition, ideology, or incomplete evidence can lead to incorrect 

decisions and waste health system resources (Sculpher et al., 2006).  
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Agencies such as, the National Institute for Health and Care Excellence (NICE), which 

issue guidance concerning whether various health technologies should be made available 

through the public healthcare system, explicitly demand systematic evidence-based 

analysis of both costs and benefits of new treatments (Barton et al., 2004; Brennan et al., 

2006). Accordingly, the purpose of economic evaluation in health is to provide decision-

makers with the best available evidence upon which to base decisions about the efficient 

allocation of healthcare resources (Weinstein, MC, 2006; Petrou and Gray, 2011). 

3.2.1 Philosophical Foundations of Economic Evaluation  

Economics can be said to have two strands, normative and positive economics. Positivist 

economics uses empirical evidence to describe and explain relationships between 

economic phenomena (Morris et al., 2012). Normative economics is a strand of economics 

that deliberates upon value judgments regarding “economic fairness” or what the public 

policy ought to seek to achieve (Samuelson and Nordhaus, 2004).  

Descriptive and predictive in nature, an economic evaluation is, in essence, a practical 

positivist technique, yet underpinned by strong normative theoretical foundations (Morris 

et al., 2012). In health economics, normativity is endemic because judgments will always 

be required regarding what is considered fair and what constitutes a cost and what 

constitutes a benefit, but also the perspective that the evaluation assumes (Morris et al., 

2012). The different practical approaches discussed below (3.2.2) reflect profound 

philosophical differences.  

3.2.1.1 Welfarism 

Traditionally economic evaluations in many policy domains, such as transport, the 

environment, infrastructure, are performed using Cost-benefit analysis (CBA). CBA itself 

is situated within the philosophical approach known as welfarism, which many health 

economists (e.g. Culyer, 1991; Culyer and Evans, 1996; Hurley, 1998) consider unsuitable 
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for economic evaluation. Welfarism can be defined as “the systematic analysis of the social 

desirability of any allocation of resources in terms of the utility obtained by individual 

people” (Morris, 2012, pg.205). To the welfarist, utility is considered the “wantability” of 

goods and services consumed (Dolan and Kahneman, 2008). Welfarism is therefore an 

individualistic approach, where individuals are the assumed best judges of their own 

welfare and strive to maximise utility accordingly (Anand, 2010). Accordingly, social 

welfare is understood to be a mathematical function of all individual utilities (Culyer, 

1991). The implication being that governments ought to promote individual preference 

satisfaction; if individuals obtain more of what they desire, the economy provides higher 

utility (Simonetti et al., 2010). In health, the implication is that treatments should be 

supplied in accordance with individual preferences with paternalistic policy solutions 

deemed helpful (Brouwer et al., 2008). The role of the expert in the welfarist paradigm 

concerns the provision of information to assist individuals with their decisions (Seixas, 

2017).   

In traditional economics, a CBA attempts to value policy or an intervention, using prices 

revealed in markets. However, markets do not exist for health services in the UK, and 

therefore economists are required to establish a hypothetical ‘willingness-to-pay’ (WTP) 

valuation representing the price a patient would be ‘willing-to-pay’ for various treatments. 

Theoretically, in the health context using WTP ought to ensure the most cost-effective 

treatments are those which are more highly valued by the patient relative to their costs. 

Moreover, in an efficient market, the costs of providing those services would at most 

match the consumer’s (patient’s) willingness-to-pay. In traditional economics, where 

goods and services are supplied in accordance with consumer preferences, this is called 

allocative efficiency, which is the allocation that maximises welfare.  
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Whilst pharmaceutical firms may place monetary valuations on health treatments, such 

valuations are considered ethically unacceptable to health service professionals and the 

public (Birch and Donaldson, 2003). In fact, the primary objection in the literature to 

welfarism in health appears to be that basing welfare measurements on willingness-to-pay 

is indefensible because the ability to pay dictates that the allocation of healthcare resources 

could be ‘skewed’ towards the wealthy (Coast et al., 2008). Indeed, Coast et al. (2008) 

argue that had health economists not abandoned such an unpopular approach then 

economic evaluation may not have achieved such influence in healthcare decision-making.  

3.2.1.2 Extrawelfarism 

Concerns regarding the use of the welfarist paradigm in health, have led to the 

development of a philosophical tradition known as ‘extra-welfarism’, from which cost-

utility analysis (CUA) was developed. The extra-welfarist paradigm stems from Culyer’s 

(1991) development of Sen’s (1986) work on ‘functionings’ and ‘capabilities’. Sen (1992) 

disputed the central tenant of welfarism, the concept of ‘utility’, arguing that utility is not 

an appropriate measure in any analysis since those in persistent deprivation will have 

preferences which reflect their own individual deprivation and ought not to be considered a 

true reflection of their true desires. For Sen, various human acts and states have value in 

themselves, not just in the extent to which they produce utility (Brouwer et al., 2008). 

Building on from this, Culyer (1991, pg15) argued that utility is too concerned with 

reactions to commodities, without considering what those commodities enable you to do. 

Extra-welfarism is an attempt to broaden that evaluative space, allowing that welfare can 

be derived not only from utility, but “extra” sources such as health, freedom, mobility, etc., 

the so-called “basic functionings”.  

Several consequences stem from these philosophical differences. Firstly, each paradigm 

attaches a different meaning to health. Whilst welfarism considers health only insofar as it 
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contributes to overall welfare, extra-welfarism on the other-hand offers the health 

economist an evaluative space pursuing health as an end in itself (Coast et al., 2008; 

Brouwer et al., 2008). For analytical purposes, this allows that an economic evaluation can 

consider information about health states directly in their analysis because ultimately health 

states do influence the preferred social state (Coast et al., 2008).  

Secondly, the extra-welfarist can suggest society could be better off were it to embody 

some feature (health or wellbeing) not because it was preferred but because ethically it was 

right thing to do (Brouwer et al., 2008).  Health can be weighted according to 

particularities, such as equity, wealth, need (defined by capacity to benefit), equality of 

access, potentially facilitating basic equality in healthcare provision (Brouwer et al., 2008). 

Third, extra-welfarism also allows that outcomes could be weighted according to need. For 

example, Hurley (1998) contrasts effective market demand with ‘effective need’ which 

reflects the prospects for gaining health and unrelated to the consumer’s ability to pay, thus 

shielding welfare judgments from the prevailing income distribution and the Pareto 

principle used within traditional welfarism. Theorists have argued that the concept of 

effective need could be particularly appropriate in health, which is commonly considered 

as not the type of good can be subject to initial inequities in distributions (Brouwer et al., 

2008). The distribution of income may be of further importance given the correlation 

between income and health states and the use of healthcare services (Deaton, 2002).  

Finally, perhaps most importantly for economic analysis, is that whilst the welfarist 

considers “interpersonal comparisons in the evaluative space of utility…impossible or 

meaningless” (Brouwer et al., 2008) extra-welfarism allows interpersonal comparability in 

terms of characteristics like health, or quality of life. In healthcare, NICE do mostly base 

their recommendations for allocation decisions upon cost-utility analyses, which express 

utility outcomes in a simple generic measure, the QALY, the quality-adjusted life year. 
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The QALY is a unit of life expectancy adjusted for the quality of life during those years 

and is conventionally calculated by multiplying the time spent in a given health state by the 

health-related quality of life relating to that health state (Bhattacharya et al., 2014).The use 

of a simple generic measure allows comparisons between patient groups and conditions, 

offering much-needed accountability to the decision-making process (Drummond et al., 

2015) and avoids difficulties in policy formulation which may result from refusals to 

compare individual welfare and reliance on Pareto efficiency (Brouwer et al., 2008). 

3.2.2 Techniques of economic evaluation  

Underpinning the use of economics in health is the notion of opportunity cost, the idea that 

committing resources to the production of one good or service means forfeiting benefits 

from those resources not used in their next best alternative (Morris et al., 2012). In this 

context, the role of economic evaluation is to quantify the health gain achieved by a new 

treatment or policy with that forgone by the treatment displaced, which requires formal 

means of measuring the costs and benefits. Whilst the calculation of cost can only be 

expressed in monetary terms (although may cover costs accruing to a variety of different 

sectors), the measurement of the consequences of interventions comes in various different 

forms (Drummond et al., 2015).  

There are five main analytic approaches for economic evaluation, each with their own 

means of evaluating the consequences of an intervention. Cost-minimization analysis 

(CMA) is used under very specific contexts where alternative treatments have equivalent 

clinical effectiveness facilitating the comparison of costs-per-course of treatment 

(Drummond et al., 2015). However given the rarity of circumstances in which it would be 

an appropriate means of analysis, CMA was pronounced as “(near) death” by Briggs & 

O’Brien (2001). 
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Cost-consequence analysis (CCA) is also less frequently used but can be a first step in an 

evaluation, insightful and easy to understand the CCA does not aggregate consequences 

into QALYs or cost-effectiveness ratios but presents a listing of associated costs and 

outcomes (Russell et al., 1996).  

3.2.2.1 Cost-benefit analysis 

In many countries, health economists use cost-benefit analysis (CBA) which, as noted 

above, measures consequences in monetary terms. In the UK, CBA is a traditional analytic 

method used outside of health, in areas such as the environment or transport economics. 

Where used in health economics, CBA assigns a monetary value to the days lost to 

sickness, extra years of life, or medical complications (Drummond et al., 2015). 

Drummond et al. (2015) note that CBAs could be used in health economics within a 

broader social perspective. For example, a recent study suggested that one pound spent on 

mental health research gained a recurring 37p annual benefit for the economy in increased 

productivity and decreased healthcare costs (Economist, 2015). Similarly, a recent study 

estimated the implementation of a brief vocational advice service to improve work 

outcomes for MSK patients, would yield an overall societal benefit of £500 million for a 

cost of £10 million (Wynne Jones et al., 2018). However, owing to the criticisms of the 

welfarist paradigm the use of the CBA is unpopular in health economic evaluation in the 

UK, where the two most common frameworks for economic evaluation are cost-

effectiveness analysis (CEA) and cost-utility analysis (CUA).  

3.2.2.2 Cost-effectiveness analysis 

Cost-effectiveness analysis (CEA) is an analytical framework, which compares the health 

gain arising from a given treatment with the cost of that treatment (Bhattacharya et al., 

2014). In a CEA, health gain is measured in natural units common to all comparators used 

in the analysis. Costs and effects of a given intervention are usually shown in the form of 
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an incremental cost-effectiveness ratio (ICER), which represents the difference in costs 

divided by the difference in effects, between options under comparison during a given 

period (Cooper et al., 2006). 

CEAs are often conducted alongside clinical trials (Drummond et al., 2015). For example, 

an analysis might use a denominator such as ‘reduction in the number of patients who fell’ 

(Haines et al., 2013) or ‘successfully treated patients’ (Lewis et al., 2011). In such cases, 

the results can indicate whether an intervention can minimise the costs associated with 

achieving a certain level of health benefit, or maximise benefits holding costs constant 

(Drummond et al., 2015).  

Standard cost-effectiveness decision rules consider that if an intervention is cheaper and 

more effective than the comparator(s), the intervention is dominant and unequivocally 

cost-effective (Briggs et al., 2008). However, if an option is more effective but also more 

costly than the comparator(s), the ICER will be calculated and compared with alternative 

uses of health services resources (Briggs et al., 2008). In a direct comparison, the preferred 

option will be that which delivers the lowest cost for a given unit of health outcome. 

Comparisons can also be made between the ICER and a ‘cost-effectiveness threshold’, a 

notional threshold value which decision-makers are prepared to pay for a unit of health 

(Briggs et al., 2008).  

The most significant limitation of CEA is the inability to make direct comparisons across 

different areas of health, owing to the use of a measurement of effect which is disease-

specific (Briggs et al., 2008). Consequently, it is difficult to compare the opportunity costs, 

for example, with funding a programme to prevent falls at the expense of not funding 

surgery for sciatica. This is especially problematic where programmes receive their 

funding from the same budget (Drummond et al., 2015). To make the comparison of the 

benefits gained from a new intervention with those lost from any displaced existing 
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programme; some generic measure of benefit relevant to all interventions is required 

(Drummond et al., 2015). 

3.2.2.3 Cost-utility analysis 

Cost-utility analysis (CUA) is essentially a cost-effectiveness analysis which uses the 

QALY, quality-adjusted-life-year, as the effect measure (Briggs et al., 2008). Presentation 

of results in a CUA comes in the form of the ratio of incremental costs to incremental 

effectiveness measured by quality-adjusted life years gained (Cooper et al., 2006). For a 

CUA, this will be the cost-per-QALY gained (Drummond et al., 2015).  

A major advantage of CUA is that it allows comparison of interventions across different 

areas of healthcare, for example, comparison between treatments for cancer and treatments 

for back pain, facilitating the assessment of the opportunity cost of implementing one over 

the others.  Cost-utility analyses are now the most widely published form of economic 

evaluation (Drummond et al., 2015). In part, this owes to the publication of influential 

guidelines advocating such methods. For example, NICE recommend cost-utility analysis 

as the appropriate method for economic evaluation, ‘For the reference case, cost–utility 

analysis is the preferred form of economic evaluation. This seeks to establish whether 

differences in expected costs between options can be justified in terms of changes in 

expected health effects. Health effects should be expressed in terms of QALYs’ (NICE 

2013, p.37). Since the early 2000s, NICE has advocated a cost-effectiveness threshold of 

£20,000 to £30,000 per-QALY (McCabe et al., 2008).  

3.2.3 Sources of evidence  

When conducting an economic evaluation, it is common to see either a trial-based 

evaluation, or an evaluation via a decision analytic model. In what follows, the advantages 

of the use of a decision analytic model are explored in contrast to the trial-based analysis.   
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3.2.3.1 Trial-based evaluations  

The trial-based economic evaluation considers only the results of a single clinical trial, 

where the collection of economic data (e.g. resource utilisation, quality of life values) takes 

place alongside clinical trials (Petrou and Gray, 2011). Indeed, given their essential role in 

generating evidence for the evaluation of healthcare programmes, some researchers have 

argued RCTs ought to provide a vehicle for economic analysis (Drummond et al., 2015). 

There are several benefits of doing so. Firstly, trial-based economic evaluations provide 

robust estimates of relative treatment effect, where appropriate randomisation minimises 

the risk of selection bias (Sculpher et al., 2006). Second, trial-based economic evaluations 

not only broaden the evidence base on particular interventions but also can prove timely 

where decision-makers can use evidence regarding the value of a drug to make early 

adoption decisions (Glick et al., 2014).  

Third, statistical and econometric techniques can utilise individual patient-specific data, for 

example, to analyse the relationships between specific events and health related quality of 

life (HRQOL), and/or perform subgroup analysis (Drummond et al., 2015; Petrou and 

Gray, 2011). There may also be good quality information on the costs of interventions and 

resource use, as well as good patient level utility data. Finally, given typically substantial 

fixed costs incurred in collecting clinical data, the marginal cost of collecting economic 

data maybe modest (Petrou and Gray, 2011). 

Whilst there are advantages to using trial-based evaluations, they may well not always 

meet the requirements for which economic analytic framework must fulfil. For reasons 

explored below, almost without exception, trial-based economic evaluations often fail to 

satisfy these demands (Sculpher et al., 2006).  
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3.2.3.2 Criticism of the trial-based paradigm.  

An influential paper by Sculpher et al. (2006) called into question the ability of trial-based 

evaluations to fulfil the evidentiary needs of healthcare decision makers. The main 

objections raised by Sculpher and colleagues are now discussed in turn.   

Synthesis 

Consistent with principles of evidence-based medicine (e.g. Sacket, 1996) economic 

evaluations which seek to inform the decision-making process must use and explicitly 

synthesise all relevant evidence on the decision problem (Sculpher et al., 2006; Briggs et 

al., 2008). One of the criticisms of trial-based economic evaluation is that a trial-based 

analysis may ignore other important information derived from trials, meta-analyses, and 

observational studies, including relevant insights into risks of complications and adverse 

events (Sculpher et al., 2006; Petrou and Gray, 2011). Decision analytic modelling can 

provide a full synthesis of the available evidence, even where the rates are in non-constant 

forms and/or there are no direct comparisons of treatments (e.g. Ades et al., 2006).  

Consideration of all relevant comparators 

Many diseases may be amenable to or require a number of interventions and any 

evaluation to inform decision-making ought to evaluate all the available treatments 

(Sculpher et al., 2006). However, typically, RCTs often consider only two comparators - 

the new technology plus the ‘standard’ intervention, often-usual care (Sculpher et al., 

2006). Furthermore, economic evaluations conducted alongside trials undertaken for drug 

registration purposes often have a placebo or older therapy as comparator, neither of which 

represents relevant or current practice in the selected jurisdiction for the condition under 

investigation (Drummond et al., 2015). A related issue is that for many chronic diseases, 

therapies are sequential, with few RCTs comparing alternative treatment sequences 

(Sculpher et al., 2006). Where appropriate options are not included in the analysis, the 
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result will be a partial analysis, which could potentially result in inappropriate adoption 

decisions (Sculpher et al., 2006). It is likely, therefore, that data will require synthesis from 

several clinical studies. A decision-analytic model using appropriate statistical methods 

provides the perfect framework for such synthesis (e.g. Sutton and Abrams, 2001; Ades et 

al., 2006).  

Appropriate time horizon  

Any evaluation seeking to inform decision-making must adopt a time horizon sufficient to 

capture differences in economic outcomes between options (Petrou and Gray, 2011). For 

example, if the treatment is more effective in the longer-term, not only will the patient gain 

additional QALYs but may also incur additional costs (Sculpher et al., 2006). Some RCTs 

cover the lifetime horizon, especially in trials for the treatment of terminal conditions. 

However, follow-up periods in RCTs are generally shorter than necessary for economic 

evaluation (Ramsey et al., 2015). To provide reliable estimates of cost-effectiveness the 

analyst should construct a decision model to structure the extrapolation of costs and effects 

beyond the length of the trial (Sculpher et al., 2006; Briggs et al., 2008).  

A related issue concerns the suitability of common endpoints used in trials for economic 

evaluations (Ramsey et al., 2015). In general, outcome measures in RCTs reflect some 

clinically meaningful measure of treatment efficacy. Nowadays, it is standard practice to 

collect economic data alongside the study however; these economic aspects are commonly 

‘piggybacked’ on and viewed as an afterthought (Glick et al., 2014; Drummond et al., 

2015). Owing to the clinical focus of many pharmaceutical trials the outcome measures are 

commonly intermediate biological markers, e.g. total blood cholesterol. For cost-

effectiveness analysis, the link to final health outcomes will have to be quantified, which 

can be achieved through decision modelling informed by clinical evidence (Drummond et 

al., 2015).  
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Uncertainty 

A fundamental component of economic evaluation for decision-makers is the need to 

indicate how uncertainty in available evidence translates into decision uncertainty (Briggs 

et al., 2008). Trial-based economic evaluations can characterise uncertainty, but only 

regarding the evidence contained in that trial (Sculpher et al., 2006). Failure to include 

evidence from other sources on relevant parameters and functions of parameters can lead 

to less precision in parameter estimates, which, all things being equal will result in over-

estimates of the expected value of information (Sculpher et al., 2006).  

If the decision maker requires an assessment of variability in the results rather than simple 

mean outputs, stochastic models may be necessary instead of deterministic models 

(Brennan et al., 2006).  NICE now expects an analysis to contain probabilistic sensitivity 

analysis (PSA) to allow quantification of the uncertainty in mean outputs owing to 

parameter uncertainty (Brennan et al., 2006). Probabilistic decision-analytic models can 

present this uncertainty to decision makers at a minimum by facilitating the production of 

cost-effectiveness acceptability curves (CEACs), but the probabilistic output also 

facilitates value of information (VoI) analysis (Sculpher et al., 2006). VOI is essentially a 

quantitative method of assessing the marginal cost and marginal value of further studies, 

and further translate it into information about the optimal design of additional research 

(Briggs et al., 2008; Wilson, 2015). 

In summary, a trial-based evaluation can provide valuable evidence relating to the disease 

and technology of concern, the first stage of the evaluative process (2006). However, in 

matters relating to syntheses, comparators, time horizons, and uncertainty, the trial-based 

economic evaluation will usually not provide an adequate basis to inform decision-makers 

charged with regulatory and reimbursement responsibilities (Briggs et al., 2008; Petrou and 

Gray, 2011). Evidence from RCTs should sit within a second evaluative phase, this broad 
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framework of evidence synthesis focussed upon decision-makers objectives (Sculpher et 

al., 2006). This second phase is the essence of the role of decision-analytic modelling; 

firstly to synthesise evidence for the production of robust estimates of the relative cost-

effectiveness of specific healthcare options, and then to quantify the variability and 

uncertainty associated with decision options (Briggs et al., 2008). 

3.2.3.3 Decision-analytic modelling  

Considered from the perspective of economic evaluation, a decision analytic model applies 

mathematical relationships to compare expected costs and consequences of decision 

options over time, by synthesising information from multiple sources (Raiffa, 1968; Barton 

et al., 2004; Brennan et al., 2006). Over the past two decades there has been an increased 

prominence for decision modelling in economic evaluation (Weinstein, 2006; Sculpher et 

al., 2006; Briggs et al., 2008; Petrou & Gray, 2011; Drummond et al. 2015). For example, 

in guidance over how to conduct methods of technology appraisal, NICE (2013) explicitly 

state that “most” technology appraisals require decision analytic models, for the very 

reasons discussed above.  

3.3 Types of decision-analytic models  

Given the critical role of decision-analytic modelling in economic evaluation, attention 

now turns to consider which model is appropriate in what contexts. 

The responsibility of specifying model structure usually lies with the economic analyst 

rather than the decision-maker, this is a significant responsibility given the influence of the 

various assumptions of each model type upon a model’s results (Brennan et al., 2006). 

However, to-date few published model-based economic evaluations attempt to justify their 

model choice, and guidance on the choice of model structure to assist the analyst in 

choosing an appropriate model is insufficient (Brennan et al., 2006; Peñaloza Ramos et al., 

2015). The papers used in the following section, whilst containing important overarching 
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points, were mostly drawn from early 2000-2012 when computer processing limited the 

application of more complex modelling approaches to some degree.  

Existing literature advises that model structure should be consistent with a coherent theory 

of the health condition under evaluation (Philips et al., 2006).  Whilst data availability may 

limit or refine the model’s structure, data availability should not be an overriding factor in 

the development of the structure of a model (Philips et al., 2006). Briggs et al. (2008) 

offers four critical considerations to make when structuring the model; (i) Have health-

related events occurring over time been considered? (ii) Do event risks change over time? 

(iii) Does intervention effectiveness change over time? (iv) Is the probability of health-

related events over time dependent upon patient history? 

The consensus across existing guidance favours the simplest model given the study 

objectives and natural history of the disease and treatment pathways (Brennan et al., 2006; 

Philips et al., 2006; Sculpher et al., 2000; Karnon, 2003; Barton et al., 2004; Koopman et 

al., 2001). The discussion below develops some of the most important themes identified in 

these papers. The discussion is structured around Figure 3.1, a reworking of Barton et al’s 

(2004) flowchart, which the authors developed to assist researchers in identifying 

appropriate modelling techniques for health economic evaluations.  
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Figure 3-1 Flowchart to help identify appropriate decision-analytic model 

 

According to Barton et al. (2004), the first consideration in choosing model structure 

should include whether individual interactions are important.  

3.3.1 Models without interaction 

Most modelling for health economic evaluations does not involve representing interaction 

between individuals (Brennan et al., 2006). Interaction, in the context of modelling, is 

conceptually distinct from interactions in statistics. A modelling interaction refers to the 

fact that in some health conditions when one has the health state, they are likely to pass it 

on to another - the concept of an “interaction” is therefore fundamental to infectious 

disease modelling. Traditionally, on the assumption of independence between individuals, 

health economists have used state transition models, decision trees and/or Markov models, 

to perform their modelling (Brennan et al., 2006). Indeed ISPOR guidance (Roberts et al., 

2012; Siebert et al., 2012) states that a state transition model is the reasonable choice of 

model, so long as using states for the decision problem is logical, individual interactions 

are irrelevant, and the population is a closed cohort. A cohort model sees groups of 
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individuals with a particular health condition followed over time with no new individuals 

added to the group as time progresses. 

3.3.1.1 Cohort models without interaction 

Where a cohort model is appropriate and interaction is not required, the analyst should first 

consider whether a decision tree could adequately represent patient pathways (Barton et al., 

2004).  

Decision trees 

If the decision problem is short term, using a decision tree is generally sufficient (Barton et 

al., 2004). The value of the decision trees lies in their simplicity, transparency, and ability 

to clarify options of interest (Petrou and Gray, 2011). The simplicity of a decision tree is its 

key advantage, which is easier to develop and understand and thus easier to validate 

(Barton et al., 2004). Simple models that still accurately reflect disease progression and 

healthcare delivery to the extent needed by a given decision problem are to be ultimately 

desired (Barton et al., 2004; Brennan et al., 2006).  

The basis of the decision tree is the representation of alternative treatment pathways 

displayed explicitly by various branches of the decision-tree, as demonstrated in figure 3.2 

in relation to Sciatica. The decision problem here relates to which strategy is most cost 

effective to manage patients with sciatica.    
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Figure 3-2 Decision Tree schematic of economic evaluation to identify cost-

effectiveness of treatment combinations for sciatica (Lewis et al., 2011) 

The tree begins with a decision node (denoted by a square), from which the five treatment 

options follow, usual care, activity restriction, opioids, education and advice, and non-

opioids. The decision node is always structured according to the nature of the decision 

(Cooper et al., 2006). The pathways, which follow from each option, represent a series of 

logically ordered alternative events, denoted by branches emanating from further decision 

nodes (denoted by the black circular symbols). This decision tree shows only the branches 

for the non-opioids option, but the denotation of (+) following the other four treatment 

options is modelling shorthand to tell us the structure we see emanating from non-opioids 

will repeat for each of the other four treatment options.  

The alternatives at each chance node must be mutually exclusive and their probabilities 

should sum exactly to one (Barton et al., 2004). The endpoints of each pathway are 

denoted by terminal nodes (triangular symbols) to which values or pay-offs, such as costs, 

life years, or quality-adjusted life years (QALYs), are assigned (Brennan et al., 2006). In 

this decision tree, we can see that all successes are terminal nodes; failure only has a 

terminal node attached if a patient reaches a third treatment, which can only be disc 
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surgery or epidural. Once the probabilities and pay-offs are entered, the decision tree is 

“averaged out” and rolled back, allowing the expected values of each option to be 

calculated (Briggs et al., 2008). In the example above, success and failure is assigned a 

quality of life score independent of treatment; therefore the most effective interventions 

will be those who maximise the success whilst minimising failures.  

There are several limitations to using decision trees. A major limitation is the lack of 

explicit time variable, making it difficult to deal with time-dependent elements of an 

economic evaluation (Drummond et al., 2015). Second, decision trees are not suitable to 

model recursion or looping. Attempting to incorporate recurring events to represent 

chronic diseases, for example, can cause decision trees to become complex with numerous 

lengthy pathways (Petrou and Gray, 2011). Moreover, given that the time horizon of the 

model should extend far enough into the future to reflect all crucial differences between the 

strategies under evaluation (Philips et al., 2006), decision trees will often not allow the 

analyst to capture intervention effects into the future. Where these issues are present, 

analysts will commonly select a Markov model over a decision-tree (Brennan et al., 2006; 

Karnon and Brown, 1998). 

Markov models 

Markov models alone or in combination with decision trees are the most common models 

used in economic evaluations. There are three crucial advantages of using a Markov model 

in relation to a decision tree. Firstly, they permit recurrence (a Markov model is essentially 

a recursive decision-tree), secondly, they allow for patient progression through the model 

to be time-dependent, and thirdly they allow modelling of chronic diseases over the 

lifetime (Briggs et al., 2008; Petrou and Gray, 2011). Relative to sampling models, cohort 

models may be preferred if the decision problem can be adequately captured within the 
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cohort model, this is because of the transparency, efficiency, computational expense, ease 

of debugging, and ability to conduct value of information analysis (Roberts et al., 2012).  

In a Markov model, a homogenous cohort of patients reside in one of a finite number of 

health states at any point in time, and patients transition between those health states over a 

series of discrete time cycles (Cooper et al., 2006; Drummond et al., 2015). The probability 

that a patient remains in a state or moves to another in each cycle depends upon a set of 

defined transition probabilities (Petrou and Gray, 2011). The transition probability depends 

only on the state in which the patient is at the start of the cycle - a major assumption within 

Markov models, known as the Markovian assumption.  

Patients in any given state may only complete a single transition per cycle (Cooper et al., 

2006). The nature and quantity of health states and the duration of these cycles usually 

relate to the decision problem and condition-specific health processes (Petrou and Gray, 

2011). Guidelines suggest that states reflect clinical classifications of disease, remaining 

life expectancy, and allow transitions to occur that are consistent with the clinical problem 

and intervention effects (Philips et al., 2006; Briggs et al., 2008; Roberts et al., 2012).  

For example, the Markov model shown in Figure 3.3 shows a state transition diagram used 

for assessing the cost-effectiveness of acupuncture for treating patients with chronic LBP; 

accordingly the health states are temporal classifications of low back pain.  
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Figure 3-3 A Markov model for low back pain by Kim et al. (2010) 

 

Here, we can see that patients will occupy one of four health states, Acute LBP, Chronic 

LBP, Well, and Death. For each cycle, patients may move between the states as designated 

in the transition matrix above, e.g. the movement from Chronic LBP to Well is represented 

by the probability tCTW. Note that movements from each state at the end of each cycle 

must sum to 1. In this case, movements from aLBP to other health states, denoted by 

tATC, tATW, and MP, must always sum to 1.   

In order to end the Markov process, some condition must be set. The model could end 

either within a set number of cycles, a proportion of patients accumulating or passing 

through a specified state, or the entire population reaching an absorbing state that cannot 

be left (e.g. dead) (Petrou and Gray, 2011). The calculation of expected costs and outcomes 

involves summing each cost and outcome for each cycle across each health state, and 
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weighting by the proportion of the cohort expected to be in each state (Briggs et al., 2008). 

If the model time horizon exceeds one year, then discounting is required to estimate 

expected costs and outcomes in terms of their present value (Petrou and Gray, 2011). 

Discounting in this context relates to the need to discount future costs and benefits to 

presents costs, and is performed to account predominantly for differences in how future 

benefits and costs are valued in the present (Drummond et al. 20015).   

In some situations, it may become appropriate to combine the decision-tree with a Markov 

model, which can be useful where some initial or short-term event affects the proportion of 

the patient cohort passing into some health state at the end of the treatment or event 

(Drummond et al., 2015). The Markov model would then estimate the expected quality-

adjusted survival duration and lifetime cost conditional on the patient’s status at the end of 

the decision-tree (Briggs et al., 2008). This could be an efficient and transparent way to 

model diagnostic test strategies and short-term treatments.  

 The considerations raised by the flowchart of Barton et al. (2004) show the major 

distinctions that an analyst must take when selecting a model. However, there are a number 

of other considerations which an analyst must make. For example, a modeller must decide 

whether parameter values in their models are to be mean values, or whether this could be 

restrictive and the aim may be to give representation to randomness and patient 

heterogeneity (Brennan et al., 2006). Markov models can allow for both deterministic 

models by using expected values or can take a stochastic form by using simulated random 

transitions (Brennan et al., 2006).  

The primary limitation of Markov models however, is the Markovian assumption that 

transition probabilities depend only on the current health state, independent of and thus 

ignoring time spent in a given state or previous patient history (Barton et al., 2004; Petrou 

and Gray, 2011). The Markovian assumption can be severely limiting where these aspects 
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are strong determinants of future disease progression, such as where a disease has 

important comorbidities (Philips et al., 2006).  

Solutions to overcoming this limitation could be to introduce a number of non-temporary 

health states so called “tunnel states”, or to introduce temporary states for which patients 

may only enter for one cycle, or have a series of temporary states visited in a fixed 

sequence (Gray et al., 2010). However, whilst either approach is feasible in a simple 

model, it is easy to see how modelling increasing number of ‘adverse events’ and ‘post-

adverse event’ states will require an ever-increasing number of states, potentially creating 

models which lack transparency and are slow to run (Brennan et al., 2006).  

3.3.1.2 Individual models without interaction 

Decision trees and Markov models track patient cohorts in progressing through the states 

simultaneously; however, the analyst may wish to distinguish one individual from another. 

If it is impossible to represent the decision problem in a manageable quantity of health 

states such that fundamental characteristics of the decision problem are captured, then the 

cohort state-transition model may need to be rejected.  

Individual Sampling Models 

As stated in the previous section, to modify a Markov model to overcome the Markovian 

assumption, an ever-increasing number of states are required. An alternate solution is to 

use an individual sampling model (ISM) for which the Markovian assumption either does 

not apply or can be relaxed. An ISM minimises the number of states by varying transition 

probabilities according to a patient’s heterogeneous attributes (Barton et al., 2004). As a 

result, individual patients progress through such models according to their multiple risk 

factors and patient histories, which may also evolve over time (Weinstein, 2006). Applying 

Monte Carlo simulation generates individual transitions partly dependent upon random 

number generation (Roberts et al., 2012). As patients progress through the model, an 
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accumulated history of transitions, costs, and health outcomes is produced. This feature 

allows the ISM to model dynamic intervention strategies, where future decisions depend 

on present and/or historical patient characteristics, whilst updating patient characteristics in 

the process (Brennan et al., 2006).  

Unlike Markov models, simulation models can also simulate the patient’s time-to-next-

event, as well as generating a duration for which the patient spends in the given state 

(Brennan et al., 2006).  In a discrete event simulation model patients can, occupy given 

states for a variable time-period and experience multiple events in parallel (Brennan et al., 

2006). Individual simulation models can also model individual characteristics as 

continuous variables, whereas Markov models or decision trees categorise continuous 

variables. Indeed the flexibility of the ISM in relation to a Markov model has led to an 

increase in the use of simulation of individual patients in economic evaluation, especially 

as computing capabilities have improved (Brennan et al., 2006).  

There are several limitations associated with the use of ISMs. For example, ISMs require 

additional evidence to populate models due to the increase in the potential number of 

parameters. The major problem with the individual sampling model is, however, that they 

require time-consuming replications to arrive at stable estimates of outcomes of interest, a 

time which will only increase with the size of the population modelled (Jaime-Caro et al., 

2012; Brennan et al., 2006). Computation time may become even more problematic if 

probabilistic sensitivity analyses or value-of-information analyses are required (Siebert et 

al., 2012), although hardware and software innovations are improving computation times.   

3.3.2 Models with interaction 

Interactions are particularly significant where modelling infectious diseases because the 

risk to the individual of becoming infected depends upon how many others already have 

the disease (Brennan et al., 2006). Modelling interactions can also more accurately 
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represent situations where treatment choices made for one patient affect that which is 

available for another (Barton et al., 2004). Where interaction is important, discrete event 

simulation (individual level) and system dynamics models (cohort) should be used.  

3.3.3 Assessment of uncertainty 

Having considered why decision analytic models are employed, as well as the various 

model options, it is worth revisiting the idea of uncertainty. As noted, uncertainty analysis 

forms a vital component of any informative economic evaluation and will be fundamental 

to the analyses performed in this thesis. Uncertainty is endemic in economic evaluation 

because it is impossible to predict with total certainty what costs and effects of a particular 

treatment will be (Bojke et al., 2009). Modellers should distinguish between the four 

principal types of uncertainty - methodological, structural, heterogeneity, and parameter 

(Philips et al., 2006). Each must be differentiated, assessed and commented upon within an 

evaluation.  

3.3.3.1 Methodological  

Methodological uncertainty relates to whether particular analytic steps taken in the analysis 

are most appropriate, for example, the discount rate that has been used. Methodological 

uncertainty can be addressed by running alternative versions of the model with different 

methodological assumptions.  

3.3.3.2 Structural 

There is no standard definition of structural uncertainty, perhaps reflecting its recent 

identification. To differentiate from the methodological uncertainty, Ghabri et al. (2016) 

suggest structural uncertainty relates to uncertainty regarding model structure and the 

fundamental assumptions contained within. Meanwhile, Bojke et al. (2009) suggest 

structural uncertainty reflects the uncertainty arising from various simplifications and 

scientific judgments which form part of the process of constructing a decision model. On 
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these understandings, structural uncertainty may consider issues such as choice of health 

states, how those states are defined, assumptions about possible movements between those 

states, or perhaps even the assumptions one makes regarding how patients move over time.   

Similar to the manner with which methodological uncertainty is treated, structural 

uncertainties should be addressed as sensitivity analyses using alternative structural 

assumptions. This would involve re-running the model with a series of alternative 

extrapolation techniques and presenting the results under each scenario. For example, 

sensitivity analysis could consider the effect of changing the values used to extrapolate 

long-term effects, or changing the choice of health states.  

3.3.3.3 Heterogeneity  

It is essential to distinguish between uncertainty resulting from the process of sampling 

from a population, and variability due to the heterogeneity arising from systematic 

differences between population subgroups (Philips et al., 2006). In the case of 

heterogeneity, it is advisable to run the model separately for different subgroups (Philips et 

al., 2006).  

3.3.3.4 Parameter  

Parameter uncertainty reflects the uncertainty over the true values of parameter estimates 

in any given model (Briggs et al., 2008). There is disagreement about how to appropriately 

explore parameter uncertainty, sometimes called second-order uncertainty (e.g. Sculpher et 

al., 2000; Soto et al., 2002). Philips et al. (2006) discuss these debates, and settle on the 

following recommendations;  

Where the incorporation of data into models takes the form of point estimates - univariate 

or multivariate sensitivity analysis may be undertaken to explore parameter uncertainty, 

with ranges used in sensitivity analysis stated and justified. However, standard approaches, 

such as varying one or multiple parameters simultaneously to assess the impact upon 
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results are limiting because choosing the parameters to vary and by how much is 

essentially arbitrary. Philips et al. (2006) endorse the position of Briggs (2000) that 

probabilistic sensitivity analysis is far more appropriate in handling parameter uncertainty 

because it can evaluate the combined impact of uncertainty across all parameters. 

Moreover, it allows for value-of-information analysis to be run, which can explicitly assess 

the effects of decision uncertainty.  

Parameter variability is differentiated from parameter uncertainty. Variability reflects 

situations where the parameter mean could systematically vary in relation to the patient 

characteristics or treatment location. This variability should be assessed using standard 

sensitivity or scenario analysis, where the value of the given parameter has its mean value 

and distribution re-specified. As with structural uncertainty, the analysis should be re-run 

with newly specified parameters (Philips et al., 2006).  

3.4 Critical appraisal of modelling quality  

Finally, it is worth noting that there is significant variation in both the conduct and 

reporting of health economic analyses (Neumann 2005). Several authors have written on 

the subject of the limitations and restrictions of using decision modelling in health 

economic analysis (Sheldon, 1996; Buxton, 1997; Kuntz and Weinstein, 2001). There are 

particular concerns regarding model structures, the data chosen to populate the model, and 

transparency. As a result, rather than ignoring modelling, methodological guidelines were 

created to guide the analyst in generating models which have transparent methods, 

assumptions and data, all of which reflect available evidence (e.g. McCabe and Dixon, 

2000; Sculpher et al., 2000).  

Philips et al. (2006) have reviewed and contrasted these recommendations to develop a 

framework for systematic assessment of the quality of decision-analytic models, 

commonly referred to as “the Philips checklist”. The checklist develops three key themes; 
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‘Structural’ which relates to the scope and mathematical structure of the model; ‘Data’ 

which concerns issues pertaining to data identification and appropriately addressing 

uncertainty; and finally ‘Consistency’ which refers to the overall quality of the model.  

This checklist has been included in Appendix 1.  

3.5 Summary 

The purpose of this chapter was to provide an overview of the use of economic evaluation 

and decision-analytic models specifically. The chapter has explored the philosophical 

origins of economic evaluation, and how that manifests in the practical analytic techniques 

available to the economic analyst. The necessity of using decision-analytical models in 

economic evaluation was explored with reference to their advantages over trial-based 

analyses.  The specific types of decision model available to the analyst were outlined, as 

well as particular situations conducive to their use. The next chapter systematically reviews 

decision analytic models of LBP and sciatica.  
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Chapter 4:  SYSTEMATIC REVIEW OF DECISION ANALYTIC 

MODELLING IN ECONOMIC EVALUATIONS FOR LOW BACK 

PAIN AND SCIATICA 

 

4.1 Introduction 

 

The preceding two chapters provided an overview of both the clinical area and decision 

analytic modelling in economic evaluation. In what follows, the focus turns towards the 

practice of decision analytic modelling, specifically, within LBP and sciatica. The purpose 

of this review chapter is to inform the model development processes detailed in the 

empirical chapters.  

The review has four specific objectives:   

1. Document and classify existing model-based economic evaluations for treatment and 

management of LBP and sciatica.  

2. Critically appraise current modelling techniques, analytical methods, data inputs, and 

model structure, using narrative synthesis.  

3. Identify examples of good modelling practice.   

4. Identify currently unresolved methodological problems and gaps in the literature. 

Particular deliberation focusses upon model choice and representation of the condition 

within health states, origins of key parameter values, and methods used for extrapolation of 

treatment effect, resource use and utility values.  

The results presented here have been previously given in the following peer reviewed 

paper, Hall J, Konstantinou K, Lewis M, Oppong R, Ogollah R, Jowett S (2019) 

Systematic review of decision analytic modelling in economic evaluations of low back 
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pain and sciatica Applied Health Economics and Health Policy, doi: 10.1007/s40258-019-

00471-w. 

4.2 Methods 

4.2.1 Search strategy  

Systematic literature searches were conducted, according to a pre-specified protocol, in 

order to identify economic evaluations of interventions for treatment or management of 

low back pain and sciatica. The protocol for this systematic review was developed using 

the PRISMA-P checklist (http://www.prisma-statement.org/Extensions/Protocols.aspx). 

Articles were identified using database searches with studies subsequently identified by 

reference searching also included.  

Searching took place in the following health databases: OVID INTERFACE (MEDLINE, 

EMBASE, PsychINFO), EBSCO INTERFACE (Cumulative Index to Nursing and Allied 

Health Literature (CINAHL), Allied and Complimentary Medicine Database (AMED), 

EconLit), COCHRANE LIBRARY INTERFACE (Database of Abstracts of Reviews of 

Effects (DARE), Cochrane Database of Systematic Reviews (CDSR), Health Technology 

Assessment (HTA) Database, NHS Economic Evaluation Database (NHS EED)), and 

THOMSON REUTERS INTERFACE (Web Of Science).  

In developing the search strategy, economic terms were based upon a strategy developed 

by the NHS Centre for Reviews and Dissemination at the University of York, itself based 

upon the SIGN (Scottish Intercollegiate Guidelines Network) approach. Clinical terms 

reflected strategies taken by other systematic reviews of economic evaluations in LBP and 

sciatica (Andronis et al., 2017; Lewis et al., 2011). The search strategy was subsequently 

refined with the assistance of the supervisory team (SJ, KK, RaO, ReO) with input from 

Dr. Nadia Corp, Research Associate: Systematic Reviews at Keele University. Search 

terms used for 3 databases (MEDLINE, PsychINFO, NHS EED) are included in Appendix 
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2. Initial database searching took place during January 2017 with the review updated in 

February 2019.  

4.2.2 Inclusion and exclusion criteria  

The protocol specified that studies would be included in this review if undertaking cost-

effectiveness, cost-consequence, cost-benefit or cost-utility analyses. Studies could 

consider any treatment or management approach for patients with LBP and sciatica, 

providing the study stipulated the use of decision analytic modelling. Reviews would be 

eligible for inclusion providing the publication also contained a unique economic model.  

Inclusion criteria:  

1. Model-based economic evaluation studies using cost-effectiveness, cost-

consequence, cost-benefit, cost-utility, or cost-minimisation analysis.  

2. The study must either have: 

(i) Specified the use of a decision model, a decision tree, a Markov model, an 

individual sampling (or patient level) model, a Monte Carlo model or simulation, a 

discrete event simulation, dynamic transition model, or systems dynamic model.  

Or  

(ii) stated the use of a (possibly unspecified) economic model.  

3. Studies must consider any treatment for any patient group in any setting for LBP 

patients, and any sciatica treatment which patients in the SCOPiC trial could viably 

receive.  

Exclusion criteria:  

1. Any economic evaluation which does not include decision analytic modelling, e.g. 

trial-based evaluations.  

2. Studies which do not fully report methods, such as conference abstracts or 

editorials.   



67 
 

3. Studies not in English language.  

4.2.3 Data selection and extraction  

 

A two-stage exclusion process was employed. The first reviewer (JH) excluded studies in 

accordance with the protocol exclusion criteria. Due to the volume of studies, 10% of these 

excluded studies were independently checked by one other reviewer (SJ). Studies 

considered potentially relevant were then subdivided into “included” and “possible” by the 

first reviewer (JH). A second reviewer (SJ) checked the suitability of “included” studies, 

whilst all “possible”’ studies were independently reviewed by all four other reviewers (SJ, 

KK, RaO and ReO) for relevance. The five authors (SJ, KK, RaO, ReO, and JH) then 

reached consensus regarding the inclusion of the final studies.  

Data were extracted according to a pre-specified protocol. Namely, nine tables, each 

representing different aspects of the economic evaluation and model construction process; 

(i) summary of studies, (ii) analytical characteristics, (iii) study rationale and results, (iv) 

model design, (v) model scope, (vi) modelling assumptions, (vii) model inputs, (viii) 

sensitivity analysis, (ix) validity checks, and (x) quality appraisal. The process of quality 

appraisal was undertaken using the Philips checklist, with each study scored according to 

how adequately the study fulfilled each aspect of the checklist. A second reviewer (SJ) 

checked 25% of the quality appraisal to ensure no major disagreement.  

4.3 Systematic Review Results  

 

Figure 4.1 illustrates the process of selecting and identifying studies eligible for inclusion 

in the review.  
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Figure 4-1 PRISMA flow diagram showing study selection for inclusion in the 

systematic review 

6512 records were imported into Endnote, of which 1556 were duplicates. Of the 4956 

unique studies, 4823 were excluded in accordance with the protocol exclusion criteria by 

the first reviewer (JH). 3762 studies were excluded because they did not reflect the clinical 

area, 877 were not economic evaluations with an economic model, and 175 were abstracts 

and nine conference publications. 10% (or 400) of these excluded studies were 

independently checked by one other reviewer (SJ). The 133 titles that were considered 

potentially relevant were then subdivided into “included” and “possible” by the first 
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reviewer (JH). A second reviewer (SJ) checked the suitability of “included” studies, whilst 

all “possible”’ studies were independently reviewed by all four other reviewers (SJ, KK, 

RaO and ReO) for relevance. In Figure 4.1, publications deemed “clinically irrelevant” 

were studies that the first two authors (JH) and (SJ) were not able to determine were 

sciatica or non-specific LBP, these were excluded following further consultation with the 

clinician on the team (KK) regarding whether or not the various conditions described in the 

studies, constituted a diagnosis of sciatica or non-specific LBP. Having reviewed all of the 

possible studies independently, the five authors (SJ, KK, RaO, ReO, and JH) then reached 

consensus regarding the inclusion of the final 20 studies, and one additional study (which 

was referenced in one of the original 20) was also added.  

4.3.1 Overview of studies  

Table 4.1 provides an overview of the studies included in this review.  Studies were 

classified according to whether patients had LBP or sciatica, as each condition requires a 

potentially different modelling approach. Sciatica studies were further subdivided 

according to whether they contained a non-surgical comparator, as modelling studies solely 

for surgical treatments could require a unique structure. Accordingly, tables show (i) 

studies with treatments for LBP, (ii) studies considering at least one non-surgical treatment 

for sciatica, and (iii) studies evaluating solely surgical treatments for sciatica.  

There were only five models for treatment or management of LBP, three for chronic low 

back pain and two for acute. These studies considered a variety of interventions, including 

heat wraps, cognitive behavioural therapy (CBT), acupuncture and pharmaceutical 

treatments. Nine modelling studies (of eight unique models) included a non-surgical 

treatment option for sciatica; most studies include models where conservative care is used 

a comparator (n=8). These studies considered various pathologies pertaining to sciatic 

pain, commonly lumbar disc herniation and lumbar spinal stenosis (LSS). The English 
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HTA (Health Technology Assessment) model (Lewis et al., 2011; Fitzsimmons et al., 

2014) considered the full range of treatment options available for UK patients with 

sciatica. Finally, seven models solely evaluating surgical treatments for populations with 

sciatica were included, again featuring various forms of sciatic pain. Studies evaluated 

either specific instruments/implants used in surgical procedures or different types of 

surgery.  

Nearly all included studies are recent publications, eighteen published after 2010 with only 

three before 2010. Twelve of the studies were conducted in the US, four in the UK, with 

the remaining six from Canada, South Korea, France, Japan, Iran and Australia.  
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Table 4.1 Overview of studies included in this review 

Author Country Condition and Population Intervention Comparator(s) 

Low back pain decision modelling studies 

Lloyd et al. 

(2004)  
U.K 

Adult patients, with acute nonspecific 

LBP 

Heat wrap therapy 

(ThermaCare® Procter and 

Gamble Ltd.). 

Paracetamol, Ibuprofen 

Kim et al. 

(2010)  

South 

Korea 

Cohort of 60-year old females with 

CLBP  

Acupuncture plus routine care 

options 

Routine care (NSAIDs, heat therapy, electrotherapy 

and lumbar traction) 

Wielage et 

al. (2013a)  
U.S.A CLBP patients 

Duloxetine 

 

Celecoxib, Naproxen, Pregabalin, Oxycodone 

APAP, Oxycodone ER, Tapentadol, Tramadol 

Wielage et 

al. (2013b)  
Canada CLBP patients  

Duloxetine 

 

Celecoxib, Naproxen, Pregabalin, Hydromorphone, 

Oxycodone ER, Amitriptyline 

Norton et 

al. (2015)  
U.S.A Adult CLBP patients  

CBT with educational 

materials 

Educational materials on managing pain, activity 

and symptoms.  

Sciatica decision modelling studies 

Launois et 

al. (1994)  
France 

Patients with radicular pain caused by 

lumbar disc herniation 
Chemonucleolysis Surgical discectomy 
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Author Country Condition and Population Intervention Comparator(s) 

Lewis et al. 

(2011)  
U.K Patients presenting with sciatica Full range of Sciatica treatments used in the U.K  

Skidmore et 

al. (2011)  
U.S.A 

Patients at least 50-years old with 

moderately impaired LSS 

Decompression using the X-

STOP ® Interspinous Spacer 

Conservative care (epidural, supplemented by 

NSAIDS, oral steroids, physical therapy, or spinal 

manipulation).  

 Laminectomy 

Fitzsimmon

s et al., 

 (2014)  

U.K See Lewis et al. (2011) 

Koenig et 

al. (2014)  
U.S.A 

Patients of various age cohorts, with 

lumbar disc herniation 
Lumbar discectomy Non-surgical treatments 

Udeh et al. 

(2015)  
U.S.A 

Patients with moderate to severe LSS 

who failed conservative therapy. 

mild®, ESI or laminectomy 

surgery 

Standard treatment for LSS patients after failure of 

conservative therapy 

Igarashi et 

al. (2015)  
Japan 

Patients with moderate or severe LBP 

alongside neuropathic pain 
Pregabalin Usual care (standard analgesic) 
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Author Country Condition and Population Intervention Comparator(s) 

Parker et al. 

(2015)  
U.S.A 

Patients with diagnosis of LSS who 

have completed six months of 

conservative treatment. 

Minimally-invasive 

interspinous spacer. 

CC comprised of (physical therapy, 

NSAIDs, mild opioids, and epidural injections).  

DS 

Tapp et al. 

(2018)  
U. S. A 

Patients with LSS with no previous 

surgery 

 

Minimally-invasive 

interspinous spacer 

CC 

DS 

Sciatica decision modelling studies – surgical treatments 

Kuntz et al. 

(2000)  
U.S.A 

Patients with degenerative lumbar 

spondylolisthesis and LSS 

Non-instrumented fusion and 

instrumented fusion 
Laminectomy without fusion 

Kim et al. 

(2012)  
U.S.A 

Patients with LSS who failed 

conservative treatment 

Lumbar decompression 

without fusion 
Lumbar decompression with fusion 

Parkinson 

et al. (2012)  

Australi

a 

Patients with axial back pain and/or 

radicular pain who failed conservative 

treatment 

Lumbar AIDR 

Lumbar fusion.  

Anterior lumbar interbody fusion.  

PLF 
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Author Country Condition and Population Intervention Comparator(s) 

Schmier et  

al. (2014)  
U.S.A 

Patients with moderate to severe 

sciatica and low-grade generative 

spondylolisthesis 

Coflex® interlaminar 

stabilization inserted following 

decompressive surgical 

laminotomy 

Instrumented posterolateral lumbar fusion 

Bydon et al. 

(2015)  
U.S.A 

Patients with degenerative 

spondylolisthesis  

Posterior lumbar interbody 

fusion or transforaminal 

lumbar interbody fusion 

Non-interbody fusion and posterolateral fusion 

Vertuani et 

al. (2015)  

U.K and 

Italy 

Patients with degenerative lumbar 

spinal conditions  
MIS 

Open Surgery 

 

Yaghoubi et 

al. (2016) 
Iran 

Patients requiring surgery for 

treatment of LSS 

Dynamic Interspinous Spacer 

(Coflex®) and Static Spacer 

(X-STOP ®) 

Laminectomy 

Abbreviations: AIDR (Artificial intervertebral disc replacement); CBT (Cognitive behavioural therapy); CC (Conservative care); CLBP (Chronic low back pain); DS 
(Decompression surgery); ESI (Epidural steroid injections); HRQoL (Health Related Quality of Life); ICER (Incremental cost-effectiveness ratio); LBP (Low back 

pain); LSS (Lumbar spinal stenosis); mild® (Minimally invasive lumbar decompression); MIS (Minimally invasive surgery); NHS (National Health Service); NSAID 
(Nonsteroidal anti-inflammatory drug); PLF (Posterolateral fusion); QALY (Quality adjusted life year). 
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4.3.2 Purpose and Results of the Models  

Of the 21 studies included, 18 were applied cost-effectiveness or cost-utility studies with 

the explicit purpose of comparing a variety of treatment options. Three studies took a 

methodological angle; Koenig et al. (2014) reviewed the impact of incorporating 

productivity costs into an economic evaluation for lumbar discectomy; Tapp et al. (2018) 

sought to understand factors affecting the long-term cost-effectiveness of interspinous 

spacer devices; and Parkinson et al. (2012) reviewed the extent to which the cost-

effectiveness of lumbar artificial intervertebral disc replacement was driven by choice of 

comparator. 

 The cost-effectiveness results can be summarised as follows. For episodes of acute LBP, 

heat wrap dominates paracetamol and ibuprofen (Lloyd et al., 2004). In Korea, 

acupuncture appears to be a cost-effective means of managing chronic LBP, relative to 

routine care (Kim et al., 2010). Duloxetine is suggested to be a cost-effective means of 

managing chronic LBP pain in the U.S and Canada, and dominates most other 

pharmacological comparators, although it is unclear whether or not it is cost-effective 

relative to Naproxen (although there are further author correspondences regarding the 

modelling of tapentadol) (Wielage et al., 2013a; 2013b). CBT (Cognitive Behavioural 

Therapy) is cost-effective relative to educational materials in treating chronic LBP in 

Canada (Norton et al., 2015). Societal analyses considerably decreased the cost per QALY 

for the most effective treatments (i.e. made the intervention more cost-effective) (Kim et 

al., 2010; Wielage et al., 2013b).  

In sciatica, a comparison of two pharmacological approaches for managing patients with 

severe LBP pain alongside a neuropathic component showed that pregabalin was cost-

effective compared to usual care treatment with standard analgesia (Igarashi et al., 2015). 

All other sciatica studies considered some form of surgery as a comparator, with the length 



76 
 

of time that patients spend receiving conservative care, and ordering of treatments, 

seeming to determine the cost-effectiveness of surgery. For example, in a review of over 

100 different potential treatment combinations for patients presenting with sciatica, Lewis 

et al. (2011) and Fitzsimmons et al. (2014) show that in the UK, stepped care approaches 

based on initial treatment with non-opioids are the most cost-effective, whilst referring 

patients who fail an initial treatment to surgery, is unlikely to be cost-effective. However, 

evidence from the U.S suggests that surgery after one course of failed treatment or 

extended duration of symptoms could be cost-effective. In one study of patients with 

moderate to severe lumbar spinal stenosis (LSS), who failed conservative therapy, 

minimally invasive lumbar decompression maybe cost-effective ($43,760 per QALY) 

relative to standard non-surgical treatment (Udeh et al., 2015). Compared with ongoing 

conservative care, Skidmore et al. (2011) show that for moderately impaired patients with 

LSS, decompression surgery using a spacer is cost-effective relative to non-surgical care 

and dominates laminectomy. Amongst LSS patients complete six months of conservative 

treatment without improvement, Parker et al. (2015) show that the minimally invasive 

interspinous spacer and decompression surgery are highly cost-effective relative to 

conservative care at $16,300 per QALY and $15,200 per QALY respectively. Tapp et al. 

(2018) show that over ten years, for patients with LSS and no previous surgery, minimally 

invasive procedures using a spacer and decompression are cost-effective relative to usual 

care at $25,000 per QALY and $30,874 per QALY respectively. Although the evidence on 

surgery for patients with lumbar disc herniation suffering functional limitations, suggests 

discectomy may not be cost-effective relative to non-surgical care ($52,416 per QALY), 

although the inclusion of societal costs decreases the incremental cost-effectiveness ratio 

(ICER) to $35,146 per QALY (Koenig et al., 2014).  

Of the papers which evaluate solely surgical techniques, three U.S studies suggest that 

various spinal fusion techniques are not cost-effective relative to other surgical techniques 
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without fusion. Kuntz et al. (2000) found laminectomy without fusion more cost-effective, 

Kim et al. (2012) lumbar decompression without fusion (Kim et al., 2012), and Schmier at 

al. (2014) Coflex® interlaminar stabilization following decompressive laminotomy. 

Furthermore, evidence from Iran supports the cost-effectiveness of the Coflex® relative to 

the X-Stop and laminectomy (Yaghoubi et al., 2016). In studies evaluating only means of 

performing fusions, for U.S patients with degenerative spondylolisthesis, interbody fusions 

were found cost-effective relative to non-interbody fusion, at $9,883.97 per QALY (Bydon 

et al., 2015). Amongst Australian patients with radicular pain who failed conservative 

treatment, posterolateral fusion was deemed to be the most cost-effective surgical approach 

for lumbar fusion or artificial intervertebral disc replacement (AIDR) (Parkinson et al., 

2012). Finally, in the UK and Italy, minimally invasive surgery dominated open surgery 

for one- or two-level lumbar spinal fusion in the treatment of degenerative lumbar spinal 

conditions (Vertuani et al., 2015).
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Table 4.2 Study purpose and findings 
Low back pain decision modelling studies 

Author Sponsor Purpose of Model ICER Value / Main findings 

Lloyd et al. (2004) 

Proctor and Gamble 

Health Sciences 

Institute  

Establish cost-effectiveness of treating an 

episode of LBP with heat wrap 

Heat wrap dominates comparator, at £48.72 per successfully treated 

patient. Paracetamol next best at £131.63 per successful patient   

 

Kim et al. (2010) None  

Establish cost-effectiveness of usual care 

with acupuncture compared to usual care 

alone 

Acupuncture cost-effective vs routine care (ICER 3,421,394 KRW/ 

QALY).  Inclusion of indirect costs lowers ICER to 1,349,463 

KRW/ QALY 

Wielage et al. 

(2013a) 

Eli Lilly and 

Company, 

Indianapolis, USA 

Establish cost-effectiveness of Duloxetine 

in CLBP patients. 

Duloxetine cost-effective treatment for LBP compared to all but 

generic NSAIDS. Duloxetine ICER of $59,473 vs Naproxen. 

Wielage et al. 

(2013b) 

Eli Lilly and 

Company, 

Indianapolis, USA 

Establish cost-effectiveness of Duloxetine 

in CLBP patients 

Naproxen least expensive. From societal perspective Celecoxib 

ICER of $19,881/QALY, and duloxetine ICER $43,437/QALY 

relative to Naproxen. Others dominated.  

 

Norton et al. 

(2015) 
None  

Evaluate the cost-effectiveness of CBT 

for treatment of persistent CLBP patients 

 

ICER of $5855/QALY for CBT vs advice alone at ten years.  
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Sciatica decision modelling studies – non-surgical treatments 

Author Sponsor Purpose of Model ICER Value / Main findings 

Launois et al. 

(1994) 
None  

Evaluate both the costs and effectiveness 

of discectomy and Chemonucleolysis for 

lumbar disc herniation 

Chemonucleolysis dominates discectomy. More effective, and 

9,126 Francs cheaper 

Lewis et al. (2011) None 
Estimate the cost-effectiveness of 

treatment regimens for sciatica patients 

Stepped approaches based on initial treatment with non-opioids 

most cost-effective regimens relative to direct referral to surgery. 

Referring patients who fail initial treatments to surgery unlikely to 

be cost-effective 

Skidmore et al. 

(2011) 

Medtronic, Inc 

Sunnyvale, CA. 

Evaluate cost-effectiveness of 

decompression with the X-STOP 

Interspinous Spacer compared to 

conservative care, and laminectomy, to 

treat LSS 

 

X-STOP cost-effective when compared with CC (ICER 

$17,894/QALY. X-STOP spacer dominant compared with 

Laminectomy 

Fitzsimmons et al. 

(2014) 
None  See Lewis et al. (2011) 

Koenig et al. 

(2014) 

American Academy of 

Orthopaedic Surgeons 

Does inclusion of productivity costs 

impact cost-effectiveness of lumbar 

discectomy? 

Consideration societal costs reduces the ICER for discectomy from 

$52,416/QALY to $35,146/QALY over 4 years 



80 
 

Author Sponsor Purpose of Model ICER Value / Main findings 

Udeh et al. (2014) 

Outcomes Research 

Department of 

Cleveland 

Evaluate cost-effectiveness of three 

options to 

treat LSS 

mild® most cost‐effective ($43,760/QALY), ESI next best at 

additional $37,758/QALY. Laminectomy least cost‐effective 

($125,985/QALY) 

Igarashi et al. 

(2015) 
Pfizer Inc 

Cost-effectiveness of pregabalin for 

chronic LBP with accompanying 

neuropathic pain 

 

Pregabalin cost-effective relative to usual care, ICERs 

¥2,025,000/QALY. Inclusion of societal costs decreases ICER to 

¥1,435,000/QALY 

 

Parker et al. (2015) VertiFlex, Inc. 

Compare cost-effectiveness of 

conservative care and decompressive 

surgery to a new minimally-invasive 

interspinous spacer. 

 

CC had the lowest cost at $10,540, but also lowest QALY increase 

(0.06). ICER for Spacers compared to CC was $16,300/QALY and 

for DS was $15,200/QALY 

Tapp et al. (2018) 

Agency for Healthcare 

Research and Quality 

and from the National 

Institute for Arthritis, 

Musculoskeletal and 

Skin Diseases 

 

Characterize the factors affecting the 

long-term cost-effectiveness of 

interspinous spacer devices relative to 

decompression surgery 

DS cost effective relative to CC at $25,000/QALY. Spacer cost-

effective relative to decompression at $89,500/QALY  
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Sciatica decision modelling studies – surgical populations 

Author Sponsor Purpose of Model ICER Value / Main findings 

Kuntz et al. (2000) None  
Assess cost-effectiveness of different 

types of laminectomy. 

Laminectomy with non-instrumented fusion costs $56,500/QALY 

versus laminectomy without fusion. ICER for instrumented fusion 

compared with non-instrumented fusion was $3,112,800/QALY 

Kim et al. (2012) 
W.Garfield Weston 

Foundation 

Determine cost-utility of decompression 

with and without instrumented fusion for 

lumbar spondylolisthesis patients.  

 

Compared with decompression alone, decompression plus 

instrumented fusion cost $185,878/QALY.  

Parkinson et al. 

(2012) 

Australian Department 

of Health and Ageing 

Establish cost-effectiveness of lumbar 

AIDR and how choice of comparator 

impacts result.   

AIDR cost‐saving compared with lumbar fusion ($1600/patient). 

However anterior lumbar interbody fusion and PLF were less costly 

by $2155 and $807.  

Not all comparators had cost/QALY. PLF dominates AIDR on 

cost/QALY.  

Schmier et  al. 

(2014) 

Unclear – authors 

work consultancies.  

Determine cost effectiveness of Coflex® 

interlaminar stabilization vs instrumented 

posterolateral lumbar fusion for treating 

LSS and spondylolisthesis 

 

QALYs higher for Coflex patient’s vs fusion. Costs lower for 

Coflex compared to fusion, at $15,182 compared to $26,863 for the 

fusion control 
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Author Sponsor Purpose of Model ICER Value / Main findings 

Bydon et al. (2015) None  

Compare cost-effectiveness of interbody 

fusion vs posterolateral fusion for patients 

with lumbar spondylolisthesis. 

ICER for the interbody fusions vs non-interbody fusion, 

$9,883.97/QALY 

Vertuani et al. 

(2015) 
Medtronic 

Evaluate cost-effectiveness of minimally 

invasive versus open surgery techniques 

for lumbar spinal fusion.  

MIS dominant compared with open surgery, yielding cost savings 

and improved HRQoL. Total cost saving per procedure €973 for 

Italy and €1666 for the UK, with an improvement of 0.04 QALYs 

over 2 years  

Yaghoubi et al. 

(2016) 
None  

Evaluate cost-effectiveness of Dynamic 

Interspinous Spacer (Coflex®) and Static 

Spacer (X-Stop) versus laminectomy.   

ICER for X-stop and Coflex versus laminectomy was US$ 

665.9/QALY and US$ 780.7/QALY. X-stop the most cost-effective 

treatment strategy.   

Abbreviations: AIDR (Artificial intervertebral disc replacement);  

CBT (Cognitive behavioural therapy); CC (Conservative Care); CLBP (Chronic low back pain); DS (Decompressive surgery); ESI (Epidural steroid injections); HRQoL 

(Health-related quality of life); ICER (Incremental Cost-Effectiveness Ratio); LBP (Low back pain); LSS (Lumbar spinal stenosis); MIS (Minimally invasive surgery); NSAID 

(Nonsteroidal anti-inflammatory drug); PLF (Posterolateral fusion); QALY (Quality-Adjusted Life Year);  
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4.3.3 Model Analytical Characteristics  

4.3.3.1 Analytical characteristics of models for LBP 

The sole cost-effectiveness analysis (CEA) (Lloyd et al., 2004) considered ‘successfully 

treated patients’ as the benefit measure and did not discount as this was a short-term 

decision tree.  The remaining four studies were identified as cost-utility analyses (CUA), 

having presented the benefits of their interventions in ‘cost-per-QALY’ terms. These four 

studies discounted both costs and benefits as the time horizon was beyond one year. The 

five studies took a variety of perspectives, one private payer, two societal, one commercial 

payer, and one NHS.     

4.3.3.2 Analytical characteristics of models for non-surgical sciatica treatment 

Most studies identified themselves as either cost-effectiveness or cost-utility studies and 

discounted correctly given their time frame. However, Skidmore et al. (2011) did not 

discount, as the study did not clarify a time horizon, it is impossible to determine whether 

this was the correct approach.  

Studies took numerous different perspectives, two used the UK NHS, three took the payer 

perspective, one took the societal perspective and three the US Medicare perspective. Two 

studies (Igarashi et al., 2015; Koenig et al., 2014) performed their analysis from both a 

payer and societal perspective.  

4.3.3.3 Analytical characteristics of models for surgical treatment for sciatica 

Included studies were either cost-utility or cost-effectiveness analyses. Most reported cost-

per-QALY, although Yaghoubi et al. (2016) used cost-per- Visual Analogue Score (VAS) 

score reduction and Parkinson et al. (2012) a number of cost-per measures including 

QALYs, but also cost-per-discontinuation, -overall treatment success and -success in 

reducing condition specific disability (using the Oswestry Disability Index – ODI).  
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Three studies discounted correctly, two (Yaghoubi et al., 2016; Vertuani et al., 2015) did 

not discount but had an unclear time horizon, whilst Parkinson et al. (2012) and Bydon et 

al. (2015) did not use discounting despite having a time horizon beyond one year.  

As in previous studies, models took a variety of different perspectives; three took the 

healthcare perspective, one the societal, one the hospital, and one the third-party 

perspective. Bydon et al. (2015) did not state which perspective they took. 
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Table 4.3 Analytical Characteristics 
Low back pain decision modelling studies 

Author Type of Analysis Perspective  
Currency / Price 

Year  

Benefits  Discounting  

Lloyd et al. (2004) Cost-Effectiveness  UK NHS GBP 2004 Successfully treated patients None 

Kim et al. (2010) Cost-Utility  
South Korean 

Societal 
Korean Won 2009 QALYs 5% costs and benefits 

Wielage et al. (2013a) Cost-Utility  Private Payer US dollar 2011 QALYs 3% costs and benefits 

Wielage et al. (2013b) Cost-Utility  
Quebec 

Societal 
Canadian dollar 2011 QALYs 5% costs and benefits 

Norton et al. (2015) Cost-Utility  

US 

Commercial 

payer 

US dollar 2015 QALYs 3% costs and benefits 

Sciatica decision modelling studies – non-surgical treatments 

Launois et al. (1994) Cost-Utility  Unstated French Franc 1990 QALYs 5% costs and benefits 

Lewis et al. (2011) Cost-Effectiveness  UK NHS GBP 2009 
Successfully treated patients / 

QALYs 
None 

Skidmore et al. (2011) Cost-Effectiveness  US Societal 
US Dollar 2009 

 
QALYs None 

Fitzsimmons et al. 

(2014) 
Cost-Effectiveness  UK NHS GBP 2009 

Successfully treated patients / 

QALYs 
None 
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Author Type of Analysis Perspective  
Currency / Price 

Year  

Benefits  Discounting  

Koenig et al. (2014) Cost-Effectiveness 

US Private 

Payer / 

Societal 

US Dollar 2009 QALYs 3% costs and benefits 

Udeh et al. (2014) 
Cost-Effectiveness 

Analysis 
Medicare US Dollar 2013 QALYs 3% costs and benefits 

Igarashi et al. (2015) Cost-Utility  
Japanese payer 

and societal 

Japanese Yen price 

year unclear 
QALYs None 

Author Type of Analysis Perspective  
Currency / Price 

Year  

Benefits  Discounting  

Parker et al. (2015) Cost-Effectiveness  Payer US Dollar 2014 QALYs / cost-per-patient 3% costs and benefits 

Tapp et al. (2018) Cost-Effectiveness Medicare  
US Dollar price year 

unclear 
QALYs 3% costs and benefits 

Sciatica decision modelling studies – surgical treatments 

Kuntz et al. (2000) Cost-Effectiveness  US Societal  
US Dollar 1997  

 

QALYs 3% costs and benefits 

Kim et al. (2012) Cost-Utility  U.S Hospital  
Canadian Dollar 

2010  

QALYs 3% costs and benefits 

Parkinson et al. 

(2012) 

Cost-Effectiveness and 

Cost-Utility 
Healthcare  

Australian Dollar 

2011  

QALYs /discontinuation/ overall 

success/ ODI success. 

None  
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Author Type of Analysis Perspective  
Currency / Price 

Year  

Benefits  Discounting  

Schmier et  al. 

(2014) 
Cost-Effectiveness  Third party  US Dollar 2013  

QALYs 3% costs and benefits 

Bydon et al. (2015) Cost-Effectiveness  Unstated US Dollar 2010  QALYs None  

Vertuani et al. 

(2015) 
Cost-Effectiveness  

Healthcare 

Payer  
Euro 2013  

QALYS  None  

Yaghoubi et al. 

(2016) 
Cost-Effectiveness  

Iran 

Healthcare 

provider  

US Dollar  price year 

unclear 

VAS scores  None  

Abbreviations: NHS (National Health Service); ODI (Oswestry Disability Index); QALY (Quality-Adjusted Life Year); 
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4.3.4 Model Design and Structure 

4.3.4.1 Model Type  

Table 4.4 summarises the characteristics of model design and structure. Model selection 

generally reflected study time horizon rather than condition-specific health processes. For 

example, across both conditions, five studies modelled decision trees and all had a time 

horizon between one to two years.  Of the models with an identifiable modelling approach, 

the majority used Markov modelling; four out of five LBP models, six out of ten non-

surgical sciatica models, and four out of seven surgical sciatica models.  Two models, one 

for LBP (Norton et al., 2015) and one for sciatica (Launois et al., 1994) used a decision 

tree prior to their Markov model.  

A number of studies had ambiguous modelling methodologies. Kuntz et al. (2000) used a 

model consistent with their claim to have used Markov modelling; however, without a 

diagram, the structure of their model is unclear.  Three studies (Skidmore et al., 2011; 

Vertuani et al., 2015; Schmier et al., 2014) did not state their choice of model. In the case 

of Schmier et al. (2014) their diagram and inputs were suggestive of a Markov approach. 

Despite declaring the use of a model, it is uncertain that Vertuani et al. (2015) used one; it 

certainly appears QALYs have been derived from mean utility values of patients receiving 

either treatment, regardless of treatment outcome.  

Despite reportedly using a Markov model, Parkinson et al. (2012) used a similar approach 

for the calculation of their QALY totals. They state overtly that QALY values reflected 

mean values of treated patients at the trial endpoint regardless of the outcome.     

4.3.4.2 Cycle Length and Time Horizon. 

A variety of time horizons were employed in both conditions. Of the four Markov models 

for LBP, three stated their cycle length and all used three-month cycles (Wielage et al., 
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2013a; Wielage et al., 2013b; Kim et al., 2010). Only the Wielage and colleagues papers 

used the lifetime horizon for their analysis.  

Of the non-surgical treatments for sciatica, a variety of cycle lengths and time horizons 

were used. The two decision trees took either a one-year time horizon used by the HTA 

model or a two-year horizon (Udeh et al., 2014). Of the five Markov models, Parker et al. 

(2015) and Launois et al. (1994) used 3-month cycles, with the former running their model 

for two years and the latter for seven years. Igarashi et al. (2015) used a one-month cycle 

in their model lasting only one year. The other Markov model by Koenig et al. (2014) used 

one-year cycles lasting four and eight years. Tapp et al. (2018) did run their model for ten 

years but did not state the cycle length. The horizon and cycle length used by Skidmore et 

al. (2011) was unclear, as was the model type.  

Of the surgical treatment for sciatica models, generally, the time horizons were longer. 

Four used a time horizon of five years or more (Kuntz et al., 2000; Bydon et al., 2015; Kim 

et al., 2012; Schmier et al., 2014).  However, only Kim et al. (2012) and Parkinson et al. 

(2012) had easily identifiable cycle lengths, the former using a one year cycle for a ten 

year time horizon and the latter a one month cycle for a two-year horizon. Of the models 

which did not state cycle length, two did not stipulate a time horizon (Yaghoubi et al., 

2016; Vertuani et al., 2015).  

4.3.4.3 Health States, Model Events and Risk Factors 

There was considerable diversity in states used to represent health across models, with 

states usually chosen to reflect model purpose, such as “success” or “failure” of treatment 

for example, rather than the underlying health processes.   

LBP models 

Wielage et al. (2013a) used four simple states - ‘treatment’, ‘death’, ‘adverse events’ and 

‘post-adverse events’, with the two adverse event states representing an amalgamation of a 
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comprehensive range of adverse events. The focus on adverse events reflected the impact 

upon health of adverse events associated with pharmaceutical interventions. The authors 

(Wielage et al., 2013a; 2013b) also used age-dependent utilities and mortality risk in their 

models.  

The model by Norton et al. (2015) opted for a simpler structure, using three states, 

‘improved’, ‘not improved’ and ‘dead’. The model did allow for recurrence but included 

no dependent risk factors or adverse events. Similarly, Kim et al. (2010) allowed for 

recurrence and had no adverse events. In terms of states, they used four, ‘acute LBP’, 

‘chronic LBP’, ‘well’ and ‘dead’, each possessing its own distinct utility level. However, 

their model classified a patient with two episodes of back pain within five years to have 

“chronic LBP”. The model also allows for age and gender-associated mortality risk.  

Lloyd et al. (2004) took a different approach using a decision tree, reflecting their acute 

decision problem. The tree begins with ‘successful treatment’ or ‘not’, with success 

representing a level of clinically relevant pain reduction. Treatment failure is followed by 

‘re-consultation’ or ‘not’, with those seeking re-consultation either ‘treated with 

physiotherapy’ or ‘with NSAIDs’. Each state has a risk of adverse events, although no 

mortality or risk factors were included in the model.  

Non-surgical sciatica treatment models 

Amongst these sets of models, six of the eight models with identifiable structures used 

“treatment success” to structure their models regardless of model type. In addition, all 

models allowed for representation of either recurrence of symptoms or reoperation (itself 

implying recurrence of symptoms).  

For example, the decision tree in the HTA model used over one hundred different branches 

allowing for various treatment options which either succeed or fail. Initial treatment 

failures received a second-line treatment, which if resulting in another failure would allow 
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the patient to be ‘referred to disc surgery’ or ‘epidural (injection)’ each possessing its own 

probability of ‘success or ‘failure’. Their model focusses on three pathways for treatment. 

The first pathway considers management within primary care including, usual care 

education/advice, activity restriction, non-opioids or opioids. The second pathway 

represents the stepped care approach, which includes use of various intermediate 

treatments administered in primary or secondary care, including manipulation, traction, 

passive physical therapy modalities, active physical therapy modalities, alternative 

treatments (for example acupuncture) and biological agents. This second pathway also 

allows for more invasive treatments, epidural injections followed by disk surgery, if the 

intermediate treatments fail to resolve symptoms. The third pathway is immediate referral 

for surgery following initial treatment failure in primary care. 

Similar, albeit simplified structures, with a reduced range of treatments, are present in the 

decision trees of Launois et al. (1994) and Udeh et al. (2014), as well as the Markov model 

by Parker et al. (2015). Koenig and colleagues perform further simplification, using only 

four states, ‘successful’ or ‘unsuccessful’ outcomes, ‘death’ or ‘revision (surgery)’. The 

Koenig model was also the only study to model mortality risk according to age and gender.   

Two models did not structure using success. Tapp et al. (2018) used an alive/dead model 

with allowance for surgery in the surgical arm. Whilst Igarashi et al. (2012) opted to use 

four states reflecting pain severity, ‘mild or no pain’, ‘moderate pain’, ‘severe pain’ with 

movement between all states in the first two months (see Figure 4.2). Although, with 

movement between pain states not allowed between months 3 to 11, long-term symptom 

recurrence was not be modelled.     
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Figure 4-2 Cohort simulation model used by Igarashi et al. (2015) 

 

Surgical sciatica treatment models  

Some of these studies had unclear model structure and methodologies. Vertuani et al. 

(2015) do not describe states or events in their model. The names of the states used by 

Kuntz et al. (2000) in their Markov model are unclear; although it is clear they have 

modelled complications, recurrence, and re-operation rates somehow. Similarly, the exact 

quantity of states, and their names, in the Schmier et al., model was unclear. The approach 

of Yaghoubi et al. (2016) was identifiable, although presented a simple decision tree, with 

three treatment options and two branches attached to each for success or failure.  

The four models identifiable as state transition models (Kim et al., 2012: Parkinson et al., 

2012; Bydon et al., 2015; Tapp et al., 2018) had identifiable quantities and descriptions of 

their health states, as well as key events. Parkinson et al. (2012) and Bydon et al. (2015) 

structured their Markov model around treatment success, with the former using a 
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comprehensive range of states relating to surgical procedures and possible outcomes, and 

the latter a comprehensive range of adverse events. Tapp et al. (2018) using two different 

Markov models used an alive/dead model for their conservative care, with the addition of 

‘surgery’ and ‘complication’ states for their surgical model.   

Kim et al. (2012) had a simple structure with only four states, ‘unwell’, ‘well’, ‘no 

improvement’ and ‘death’ (,Figure 4.3). Their model presented all important events, 

including relapse, reoperation (including the possibility that a patient may not have a re-

operation despite worsening of symptoms), clinical worsening, clinical improvement, 

general and perioperative death.  

 

Figure 4-3 Markov state diagram used by Kim et al. (2012) 
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Table 4.4 Model Design and Structure 
Low back pain decision modelling studies 

Author Model Type  Cycle 
Length 

Time 
Horizon  

No. of 
States  Names of key states  Key Events Dependent risk factors  

Lloyd et al. 
(2004) Decision tree Unclear 1 episode 6 

Successfully treated or not, 
Consultation or not, Refer to physio or 

treat with NSAID  

AEs related to the 
treatments  

None  

Kim et al. 
(2010) 

Markov 
model  

3 
months  5 years  4 Acute LBP, Chronic LBP, Well, Death Recurrence of symptoms  Age and gender related 

mortality risk.  

Wielage et 
al. (2013a) 

Markov 
model  

3 
months Lifetime  4 Treatment, Adverse Event, Post-

Adverse Event, Death. 

Numerous persistent and 
transient AEs 

Age dependent 
utilities, mortality, and 

risk of AE.  

Wielage et 
al. (2013b) 

Markov 
model  

3 
months Lifetime  4  Treatment, Adverse Event, Post-

Adverse Event, Death 

Numerous persistent and 
transient AEs 

Age dependent 
utilities, mortality, and 

risk of AE. 

Norton et al. 
(2015) 

Decision tree 
and Markov 

model 
Unclear 1 year and 

10 years 3 Improved, Not improved, Dead 
Recurrence of symptoms  None  

Sciatica decision modelling studies – general treatments 

Launois et 
al. (1994) 

Decision tree 
and Markov 

model  

3 
months  7 years  8 

Success or Failure, Maintained or Free 
Survival; Re-Op, Deterioration no 
reoperation or Definitive failure 

Both treatments may fail. 
Symptoms recurrence. 

Reoperations are possible.  

None  

Lewis et al. 
(2011) Decision tree 1 

episode  12 months Over 
100 

First line treatments succeed or fail. 
Failures have 2nd treatment. 2nd 

failures have possible disc surgery or 
epidural, each with success or failure. 

Stepped model, with over 
100 different treatment 

possibilities 

None  

Skidmore et 
al. (2011) 

 “Economic 
model”, type 

unclear.  
Unclear Unclear  Unclea

r  Unclear  
Treatment success, re-
operation, various AEs 

None  

Fitzsimmons 
et al. (2014) See Lewis et al. (2011) 
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Author Model Type  Cycle 
Length 

Time 
Horizon  

No. of 
States  Names of key states  Key Events Dependent risk factors  

Koenig et al. 
(2014) 

Markov 
model 1 year  4 and 8 

years 4  Satisfactory outcome, Unsatisfactory 
outcome, Death, and Revision.  

Revision possible for 
surgery. Patients may not 

leave states after 3 
months.  

Age and gender related 
mortality risk  

Udeh et al. 
(2014) Decision-tree  Unclear  2 years  21 

Various reflecting type of treatment, 
complications during treatment, and 

any further treatments.  

Model allows for 
complications, revision 
and treatment failure. 

None  

Igarashi et 
al. (2015) 

Markov 
model 1 month 12 months  4 

Mild or no pain, Moderate pain, 
Severe pain, After surgery. 

 

Recurrence of symptoms  None  

Parker et al. 
(2015) 

Markov 
model 

3 
months  2 years  7 

7 states with failure or success 
attached. Conservative care, DS, 

Continue post-DS, Spacer implant, 
Continue post-spacer, (DS and 
continue post-DS after spacer).   

All treatments allow for 
failure.  

No death in the model.  

Tapp et al. 
(2018) 

2 unique 
Markov 

models for 
CC and 
surgery 

Unstate
d 

3 and 10 
years 

CC:2  
Surger

y: 4 

CC Markov: alive, dead 
Surgery model: Surgery, post-surgery, 

post major complication  

Model allows for 
reoperation and 
complications 

Probability of surgery 
varies by model stage 

Sciatica decision modelling studies – Surgical populations  

Kuntz et al. 
(2000) 

Stated as 
Markov, but 
no diagram  

Unclear 10 years  Unclea
r  Unclear.  

Surgical complications, 
recurrence of symptoms, 

and reoperation. 

Age adjusted mortality 
risk  

Kim et al. 
(2012) 

Markov 
model  1 year 10 years 4  Unwell, Well, No improvement, and 

Death.  

Re-operate, Clinical 
worsening or 
improvement, 

perioperative or general 
death, relapse.  

 

None  
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Author Model Type  Cycle 
Length 

Time 
Horizon  

No. of 
States  Names of key states  Key Events Dependent risk factors  

Parkinson et 
al. (2012) 

Markov used 
for costs. 

Utility values 
are pooled.   

1 month  2 years  9 

Initial surgery, Successful surgery, 
Failed surgery; Replace, Remove 

without replace, Revise, Supplemental 
fixation, Other re-operation > 

successful surgery following re-
operation 

Allows for revised 
surgery and for 

reoperation.  

Death not included in 
model 

Schmier et  
al. (2014) 

Undefined, 
resembles a 

Markov.   
Unclear 5 years  Unclea

r  
Surgery, Short-term postoperative, 

Long-term postoperative.   

Complications, revisions, 
and treatment failure 

None  

Bydon et al. 
(2015) 

Markov 
model  Unclear 9 years? 

4 
(AE’s 

merged
) 

Re-operation or No re-operation. PLF 
may have an additional reoperation or 

not.  

Re-operations. Plus a 
plethora of complications. 

None  

Vertuani et 
al. (2015) Unclear  Unclear Unclear  Unclea

r  Unclear  Unclear  Unclear 

Yaghoubi et 
al. (2016) 

Basic 
decision Tree  Unclear Unclear  2  Success or Fail.  None  None  

Abbreviations: AE (Adverse events); CC (Conservative care); CLBP (Chronic low back pain); DS (Decompressive surgery);  LBP (Low back pain); NSAID (Nonsteroidal anti-
inflammatory drug): PLF(posterolateral fusion) 
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4.3.5 Key assumptions regarding modelling and extrapolation.   

Given the absence of data to directly populate the models, a large number of assumptions 

about missing data and extrapolation, as well as model structure were utilised in all studies 

(see Table 4.5).  

4.3.5.1 Assumptions and extrapolation for LBP models.    

For the LBP studies, Wielage et al. (2013a; 2013b) and Kim et al. (2010) have made 

assumptions regarding absent data. For example, given the absence of utility values, the 

latter has assumed that patients treated with acupuncture patients have a higher QoL than 

those treated in usual care. They have also made the structural assumption that a single 

recurrence of pain in the ‘well’ state moves someone into ‘chronic’ LBP, meaning a patient 

experiencing two flare-ups of pain in 5 years is considered to have CLBP.  

All studies in this review extrapolated using a blend of trial data, literature and assumption. 

For example, Norton et al. (2015) used literature to derive the probability of recurrence 

over time and supplemented this with an assumption that the long term efficacy of CBT 

declined by a rate of 20% per year.  Meanwhile, Kim et al. (2010) assumed a constant 

relative risk of moving from chronic to well between treatments over the long term and 

used literature to identify long term recurrence. Both models by Wielage and colleagues 

were able to produce a lifetime model by adjusting the adverse event (AE) profiles 

according to age-dependent relative risks. Age-dependent utility values and mortality risks 

were also used.  

4.3.5.2 Assumptions and extrapolation for models concerning non-surgical treatments for 

sciatica.  

Some studies made a number of assumptions regarding parameter values, specifically on 

recurrence, surgical success, re-operation and adverse events. However, far more prevalent 

within this category of studies were structural assumptions. For example, the HTA model 
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made several assumptions regarding how the patient receives their treatment, such as 

assuming the healthcare for treatment failures occurs outside the NHS. Koenig et al. (2014) 

assumed those treated non-surgically never receive a surgical intervention. Launois et al. 

(1994) assume discectomy failure did not lead to re-operation. Parker et al. (2015) made 

assumptions about the settings within which the procedures would take place, as well as 

the length of treatment. Udeh et al. (2014) made numerous assumptions about treatment 

sequencing.  

Three models attempted extrapolation. Koenig et al. (2014) attempted an extrapolation of 

four-year data to eight years but did not specify the assumptions underpinning this process. 

Igarashi et al. (2015) simply extrapolated an eight week trial to 52 weeks. Tapp et al. 

(2018) set all usual care costs to zero and analysed the costs and disutility associated solely 

with surgery and related complications. Therefore they required only the assumptions that 

long-term rates of surgery and re-operation from year 4-10 were equal to those in the third 

year, as with the utility values. The HTA model explicitly ruled out extrapolation on the 

grounds of inadequate evidence. The remaining studies used a time horizon which matched 

the time horizon of their source data.   

4.3.5.3 Assumptions and extrapolation for models of surgical treatments for sciatica.  

Structural assumptions were the most common form of assumption in this category of 

models, especially regarding surgical pathways and patient behaviour. Most of the studies 

made assumptions about absent parameter values. For example, Kuntz et al. (2000) 

assumed that LSS patients have the same utility as patients with ‘severe LBP’ as well as 

assuming that patients recovering from treatment have a utility the same as an individual in 

perfect health. Bydon et al. (2015) reference Kuntz and colleagues as providing the utility 

values for patients with the specific condition of lumbar spondylolisthesis. However, they 

did not state that the Kuntz utility values are those for severe LBP.   
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In performing extrapolation, Kim et al. (2012) categorised their health states to represent 

either “well” or “unwell”, plus a state for “return of symptoms” (see Figure 4.3), with long 

term mean utility values associated with these states derived from their one-year 

observational cohort study. In order to justify the use of these one-year values across ten 

years, they reference a study by Weinstein et al. (2009) who suggest that utility values 

derived at one year are relatively stable across four years. Kim et al. (2012) then assume 

that utility values remain further stable from four to ten years albeit adjusted downwards 

by 3% per year to account for ‘ageing, clinical deterioration and comorbidities’ (although 

they suggest this as their justification for discounting their benefits). The authors, then set 

movements between those states over time, with the ten-year reoperation rate for 

transitioning from “no improvement” to “re-operation” based upon an administrative 

database which they also use for the ten-year probabilities of moving from “well” to no 

“improvement”. They derived their ten-year clinical improvement, for patients moving 

from “unwell” to “well” from the satisfaction rate from the senior surgical authors’ 

practice.   

Schmier et al. (2014) extrapolated two-year trial data to treatment outcomes over five years 

based upon the assumption that probabilities do not change substantially over five years. 

They set utility values associated with success or failures of treatment, and then assumed 

that utility values achieved at two years could be extrapolated to five years.  

Of the remaining studies, one (Kuntz et al., 2000) attempted extrapolation but used 

unjustified assumptions, two (Parkinson et al., 2012; Beydon et al., 2015) did not engage in 

extrapolation as their data matched their time horizon, and two (Vertuani et al., 2015; 

Yaghoubi et al., 2016) were problematic to analyse because of the manner with which the 

authors described their methods.
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Table 4.5 Assumptions and Extrapolation 
Low back pain decision modelling studies 

Author Key Assumptions Methods for Extrapolation 

Lloyd et al. 

(2004) 

(i) various AE’s were unrelated to treatment, (ii) most heat wraps bought 

over counter, (iii) 24% exempt from prescription charge, (iv) AE’s have GP 

consultation  

50% of patients re-consult for treatment, likelihood of 

physiotherapy referral was 18% 

Kim et al. 

(2010) 

(i) usual care and treatment has same cost and effect, (ii) recurrence of LBP 

in well state is considered chronic, (iii) CLBP patients treated by 

acupuncture have higher utility than usual care, (iv) same relative risk 

between treatments over time. 

Treatment effectiveness measure for acupuncture vs usual care 

assumed to have same relative risk over time. Long term recurrence 

from literature.  

Wielage et 

al. (2013a) 

(i) equal efficacies for various comparators owing to shortages of data, (ii) 

AE rates for oral treatments similar across MSK conditions, (iii) patients 

receive medication every day. 

AEs extrapolated using initial rates combined with age-dependent 

risks derived from literature. Age and AE dependent mortality used, 

calculated from literature. 

Wielage et 

al. (2013b) 

(i) equal efficacies for various comparators owing to shortages of data, (ii) 

AE rates for oral treatments similar across MSK conditions, (iii) patients 

receive medication every day, (iv) utility value can be derived from pain 

scores. 

AEs extrapolated using initial rates combined with age-dependent 

risks derived from literature. Age and AE dependent mortality used, 

calculated from literature. 

Norton et 

al. (2015) 
(i) gradual loss of efficacy of CBT over time by 20%. 

Extrapolating CBT effectiveness assumed probability of recurrence 

over 10 years was 0.60 - a rate ‘reflected in literature’. Utilities 

assumed the same in respective states over 10 years as in a 1-year 

study. 
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Sciatica decision modelling studies – general treatments 
Author Key Assumptions Methods for Extrapolation 

Launois et 

al. (1994) 

(i) discectomy failures not re-operated, (ii) Unreferenced and unjustified 

assumptions regarding the rate of recurrence for reoperation of 3% in year 

1, 2% in year 2, and 1% in the following years. 

Most extrapolation based upon studies included in literature review 

Lewis et al. 

(2011) 

(i)patients managed through one of 3 pathways, (ii) ultimate treatment 

failures resort to therapies outside health system, (iii) inactive control 

assumed no NHS  cost, (iv) utility gains continue for 12 months, (v) each 

prescription required a GP 

No extrapolation on grounds on inadequate evidence 

 
consultation, more for analgesics (vi) not seeking further treatment 

following 
 

Lewis et al. 

(2011) 

(cont.) 

failure assumed no cost, (vii) no reduction in utility for 2nd failure, (viii) 

combined therapies as effective as stand-alone treatments. 
No extrapolation on grounds on inadequate evidence 

Skidmore 

et al. 

(2011) 

(i) treatment-related AE's treated the same regardless of initial treatment, 

(ii) success and re-op rates the same for LAMI with fusion and without 

fusion, (iii) utility of LAMI does not change one-year after postop. 

No extrapolation required, trial same as the model time horizon. 

Fitzsimmo

ns et al. 

(2014) 

See Lewis et al. (2011) See Lewis et al. (2011) 

Koenig et 

al. (2014) 
(i) patients treated non-surgically never receive surgical treatments. Extrapolations all based upon literature and fully sourced. 
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Author Key Assumptions Methods for Extrapolation 

Udeh et al. 

(2014) 

(i)If no relief anytime within 2 years after mild  procedure, procedure was 

considered failed and patients receive surgical option, (ii) same for surgical 

intervention patients failing who receive repeat surgical intervention, (iii) 

no further treatment option considered for serial epidural patients, (iv) serial 

epidural injections offer minimal relief 

No extrapolation required, trial data and sources match model time 

horizon 

Igarashi et 

al. (2015) 

(i) in months 3-11 patients are “stuck” in the states they exit month 

2 at, (ii) assuming pregabalin was no longer effective after 

discontinuation, (iii) postsurgical pain severity score assumed 

to be 2 as "confirmed by independent Japanese clinicians", (iv) 

surgery assumed to occur only after the 3rd month of treatment 

and only to those in severe pain 

(ii)  

Pain beyond 8-week extrapolated to 1 year based on pain scores 

observed in clinical trials and studies.  

Parker et 

al. (2015) 

(i) spacer follow-up service utilization, physician visits, medications, 

diagnostics assumed same as DS patients, (ii) spacer procedures assumed to 

be performed in the hospital outpatient setting, (iii) various assumptions 

about procedure length 

 

No extrapolation required, trial same as the model time horizon 

Tapp et al. 

(2018) 

(i) annual spacer failure rate for years 4–10 assumed to be the same as year 
3, (ii)  

Utility for the spacer group assumed equal to that of decompression.  

Assumed re-operation rates were the same years 4-10 as in year 3. 

Assumed utilities are the same years 4-10 as year 3. Usual care 

costs are set to zero, so only costs of surgeries and complications 

are included.   
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Sciatica decision modelling studies – surgical populations 

Author Key Assumptions Methods for Extrapolation 

Kuntz et al. 

(2000) 

(i) postoperative mortality from fusion independent of instrumentation 

use, (ii) multiple assumptions regarding rates of AE’s, (iii) assumptions 

regarding healing of fusion, (iv) 65% of laminectomy patients assumed to 

experience clinical improvement, (v) probability of clinical improvement 

independent 

of fusion healing, (vi) assumed annual rate of symptom recurrence twice 

the annual reoperation rate, (vii) stenosis patients have same utility as 

"severe back pain", (viii) post-surgery assumed the same utility as 

perfectly health  

Patients who did not experience improvement at 6 months one half 

assumed to have another operation and assigned cost and disutility 

for laminectomy with non-instrumented fusion. 60% of patients 

who underwent a second operation assumed to experience relief of 

their symptoms. Among patients who improved at 6 months 2.3% 

had another operation owing to worsening symptoms. Annual rate 

of symptom recurrence assumed twice the annual re-op rate 

(4.65%) 

Kim et al. 

(2012) 

(i)patients have no prior spinal surgery at entry, (ii) no direct consideration 

of adverse events, except for perioperative mortality although cost data 

cover any in-hospital costs incurred for postsurgical AE’s, (iii) patients 

experiencing surgical failure or recurrence have possible reoperation after 

a year in no improvement  

Various long-term studies used to derive movements between 

health states. For their utilities they use trial data, referencing a 

source suggesting that outcomes achieved at 1-year are maintained 

for 4-years, then assume utility is constant over 10 years 

Parkinson et 

al. (2012) 

(i) all types of artificial discs / bone grafts assumed equally effective, (ii) 

removal without replacement is not an option for certain types of surgery, 

(iii) supplemental fixation is not an option for certain surgeries, (iv) for 

fusion, hardware replacement same approach as taken initially, (v) only 

one re-operation is considered, following which patients enter ‘successful 

surgery post re-operation’  

No extrapolation required because of the time horizon and nature of 

the sources used 
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Author Key Assumptions Methods for Extrapolation 

Schmier et  

al. (2014) 

(i) assumptions regarding the no. of months each complication affected 

utility scores, (ii) 68% of cases were one-level, and the remainder were 

two-level, (iii) costs set at Medicare value plus 20% 

24 month TE’s and utilities assumed the same continuously through 

five years. Utilities weighted for experience of specific 

complications. Complication rates from trial data extrapolated using 

published sources.  

 

Bydon et al. 

(2015) 

No stated assumptions. However assume patient’s recovering from 

surgery have same utility as perfectly well patients. Moreover, utility 

values for lumbar spondylolisthesis are not actually for this condition, but 

for severe low back pain. There is no acknowledgment of this assumption.  

No extrapolation required, cohort study same as model time 

horizon. 

Sciatica decision modelling studies – surgical populations (cont’d) 

Bydon et al. 

(2015) 

No stated assumptions. However assume patient’s recovering from 

surgery have same utility as perfectly well patients. Moreover, utility 

values for lumbar spondylolisthesis are not actually for this condition, but 

for severe low back pain. There is no acknowledgment of this assumption.  

No extrapolation required, cohort study same as model time 

horizon. 

Vertuani et 

al. (2015) 

(i) blood transfusion was necessary for OS but not for MIS, (ii) surgical 

wounds were drained postoperatively in 20% of MIS and 92% of OS 

patients following surgery, (iii) use of bone grafts or substitutes same for 

MIS and OS, (iv) antibiotic treatment assumed necessary after SSIs, (v) 

for OS re-op after post-surgical complication in MIS, assumed patient had 

same hospital stay as initial OS patient, (vi) additional expenses due to 

certain complications assumed similar in both procedures. 

Temporal features of model unclear. 
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Author Key Assumptions Methods for Extrapolation 

Yaghoubi et 

al. (2016) 
Unstated  Totally unclear 

Abbreviations: AE (Adverse events); CBT (Cognitive behavioural therapy); CEA (Cost-Effectiveness Analysis); CLBP (Chronic low back pain); CUA (Cost-Utility Analysis); 

DS(Decompression surgery); ESI (Epidural steroid injections); GP (General Practitioner); LAMI (Laminectomy); LSS (Lumbar spinal stenosis); MIS (Minimal Invasive 

Surgery); MSK( Musculoskeletal); NHS (National Health Service); NSAID (Nonsteroidal anti-inflammatory drug); OS (Open Surgery); SSI (Surgical Site Infection); TE 

(Treatment Effect). 
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4.3.6 Parameter sources and methods of derivation  

4.3.6.1 Parameter sources for treatment efficacy.  

Overall, derivation of treatment efficacy for the LBP models was performed in keeping 

with best, or at least good practice. The two studies by Wielage and colleagues used meta- 

analysis of trial data to derive their treatment effects, as did Kim et al. (2010) who also 

used two additional cohort studies to derive their treatment parameters. Two other studies 

(Norton et al., 2015; Lloyd et al., 2004) used the results of a single trial to derive their 

parameters, although both trials have adequate sample sizes.   

Of the non-surgical treatment models for sciatica, only the HTA model used a systematic 

review and meta-analysis. Tapp et al. (2018) used the Medicare Provider Analysis and 

Review database for complication and re-operation rates, with expert opinion for 

extrapolation. The remaining studies used literature review (Launois et al., 1994) or trial 

data with adequate sample sizes (Koenig et al., 2014 Igarashi et al., 2015; Tapp et al., 

2018). Two studies used a combination of both trial data and literature (Skidmore et al., 

2011; Parker et al., 2015) although both trials had small sample sizes. For example 

Skidmore et al. (2011) used data from only 131 patients, with parameters for first-line 

laminectomy derived from 21 patients who had a second line LAMI.  

In the surgical treatment models, two studies used meta-analysis from a systematic review 

(Parkinson et al., 2012; Yaghoubi et al., 2016). Three of the studies were driven almost 

exclusively by relatively small studies, a prospective cohort study of 150 (Kim et al., 2012) 

an RCT of 150 (Schmier et al., 2014), and data on 137 patients collected retrospectively 

(Bydon et al., 2015). Kuntz et al. (2000) used a mixture of six prospective and 

observational studies.  
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4.3.6.2 Parameter sources for recurrence 

Not all studies reported a recurrence rate, although generally recurrence and reoperation 

rates were derived from existing literature (Norton et al., 2015; Kim et al., 2010; Igarashi 

et al., 2015; Launois et al., 1994; Tapp et al., 2018; Koenig et al., 2014; Kim et al., 2012; 

Bydon et al., 2012). Three studies combined literature, with trial data (Skidmore et al., 

2011) and expert opinion (Kuntz et al., 2000; Schmier et al., 2014). Parkinson et al. (2012) 

derived their revision and re-operation rate from their systematic review and meta-analysis 

of RCT’s. Three studies had unclear sources for recurrence or reoperation (Udeh et al., 

2014; Yaghoubi et al., 2016; Vertuani et al., 2015).  

4.3.6.3 Utility values 

The actual utility values used as inputs in studies in this review are presented with their 

sources shown in Table 4.6 and discussed in the following subsection, 4.3.6.4. 

There were some differences in the utility values used in the LBP studies, likely partly 

explained by their specific population. The meta-analyses of chronic LBP patients who 

were prescribed pharmacological treatments, showed that chronic LBP patients had utility 

values of between 0.7282 (Pregabalin) and 0.7688 (Naproxen) (Wielage et al., 2013a; 

2013b). Meanwhile, the other studies suggested lower values; Kim et al. (2010) used 0.62 

and 0.65 for chronic LBP patients on usual care and acupuncture, respectively, although 

acute LBP (0.85) and “well” states (0.96) were considerably higher; and Norton et al. 

(2015) used much lower scores, with an improving chronic LBP patient having utility of 

0.640, and a non-improver having utility of 0.59.  

 There was some consistency across some of the sciatica decision models which 

incorporated conservative care and used utility values independent of treatment. Igarashi et 

al. (2015) report that a sciatica patient without pain would have a utility of 0.867, whilst 

“severe pain” would be 0.611, somewhat consistent with the scores used by Koenig et al. 
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(2014) for treatment of herniated intervertebral disc.  Both studies are consistent also with 

the value used for “improvement” in sciatica patients by Lewis et al. (2011) and 

Fitzsimmons et al. (2014), although the “non-improvement” score in the latter is lower 

than other scores at 0.37.  

Skidmore et al. (2011) use utility scores for each treatment which are weighted averages of 

both improvers and non-improvers on each treatment, and are weighted also for likelihood 

and disutility of adverse events. Their weighted average for conservative care (which has 

only a 4.8% success rate), is a utility value of between 0.61 and 0.65 over the duration of 

the model. Given that non-improvers are the predominant constituent of the conservative 

care group, this value is consistent with the utilities of the other non-improving patients in 

the prior four studies discussed. The values used by Tapp et al. (2018) for post –surgery, 

which represents a patient after surgery without complications, is slightly higher at 0.77, 

although the values also account for the disutility associated with complications and 

recurrence separately.  

For the solely surgical studies, the two studies which used the Beaver Dam Study, applied 

a utility value of 0.79, for symptomatic spinal stenosis patients in one study (Koenig et al., 

2014) and for lumbar spondylolisthesis patients with a negative outcome in another 

(Yaghoubi et al., 2016). Both studies also used a utility value of 0.97 for having a positive 

outcome. These values are far higher than the two other studies to use”improve” / “non-

improve” to differentiate patients. For patients with lumbar spondylolisthesis;  Kim et al. 

(2012) used 0.74 for an improvement with fusion and no-fusion, compared to non-

improvement of 0.50 and 0.54 respectively, baseline patients had a utility value of 0.58, 

and Schmier et al. (2014) used a value for “clinical success” of 0.692, whilst “failure” had 

utility 0.552 and “worsening pain” 0.599.  
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Parkinson et al. (2013) used much lower baseline pre-operation utilities of 0.42 and 0.36, 

although possibly explained by their specific population, patients with sciatica who had 

failed conservative treatment. After two years their patients who had AIDR had average 

utility of 0.67 and patients who had fusion had utility of 0.69. These scores are similar to 

the patients undergoing spinal fusion to which Vertuani (2015) assigned utilities of 0.72 

after two years following minimally invasive surgery and 0.68 following open surgery. 

4.3.6.4 Parameter sources for utility values 

The calculation of utility values in both studies by Wielage et al. (2013a; 2013b) was 

consistent with best practice guidelines, deriving pain scores for various pharmaceutical 

treatments for CLBP and translating those into utility values weighted for age and sex. 

Norton et al. (2015) used a large RCT (n=701) to derive EQ-5D data to convert to utility 

scores for both CBT and usual care arms. Kim et al. (2010) used survey data and a large 

RCT to derive utility values for acupuncture and usual care.   

For the non-surgical treatment models for sciatica, nearly all studies used questionnaire or 

trial data and converted these into utility values, although many used small sample sizes. 

Launois et al. (1994) used Rosser coefficients from a patient survey (n=146) with no 

information or reference provided for the survey. Skidmore et al. (2011) used SF-6D data 

from an RCT with a small sample (n=131), with the utility value for first line laminectomy 

derived from 21 patients who had a 2nd line laminectomy second to CC or X-STOP. 

Parker et al. (2015) used SF-6D values from two separate studies for each of their arms, 

although both studies had small sample sizes. 

Similarly, derivation of utility values for the HTA model appears not entirely appropriate. 

Firstly, they used EQ-5D scores obtained from a very small RCT (van den Houdt et al., 

2008). Second, the same utility values for “successful” or “failed” treatment was applied 

for all interventions in the model. Secondly, the utility value used for “successful 
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treatment” in the HTA model, 0.83, is the highest mean utility value achieved by a specific 

intervention, early surgery, during the one year duration of the RCT. Third, the “treatment 

failure” score in the HTA model represents the utility at baseline in the RCT, 0.37.  

Igarashi et al. (2015) converted pain scores taken from a non-interventional trial into utility 

values, but these scores were from eight weeks follow-up which they proceeded to use as 

one-year utility values. Koenig et al. (2014) used the utility values from a previous 

economic evaluation (Malter et al., 1996) of treatments for herniated intervertebral disc. 

However Malter did not use utility values for patients treated for herniated intervertebral 

disc as Koenig et al. (2014) claim, but had actually applied utility results for 83 patients 

with “severe LBP” from the Beaver Dam study (Fryback et al., 1993). Finally, Udeh et al. 

(2014) used ‘QALY gains’ reported in various trials of patients with mild or moderate 

LSS, and adjusted their QALY gains downwards by 25% as patients in their model had 

more severe LSS although this approach was not justified in their paper. Furthermore, all 

of their treatment QALY gains originated from very small sample sizes, the ESI QALY 

gain derived from 39 patients. Moreover, they compound this problem by erroneously 

calculating the QALY gain for ESI, reporting a QALY gain of 0.21 per 2-months when the 

paper they took this information from clearly stated this QALY gain of 0.21 was for a 3 

month period. 

For the surgical treatment models, two more studies (Kuntz et al., 2000; Bydon et al., 

2015) used utility values for “severe LBP” patients from the Beaver Dam study (Fryback et 

al., 1983) as utility values for their LSS and spondylolisthesis patients. Kuntz et al. (2000) 

did acknowledge that using LBP utility values could be inappropriate for LSS patients; 

Bydon et al. (2015) failed to acknowledge that the utility values were not for his target 

population. Both studies used a utility value of 0.97 for symptom resolution, the utility 

score from the Beaver Dam study for individuals with perfect health.  
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Two papers based their utility values upon small samples. Parkinson et al. (2012) used EQ-

5D values derived from a small RCT (n=150) and converted them into utility values. Kim 

et al. (2012) supplemented utility values from their own small prospective cohort (n=115) 

study with published literature. However, as noted above, the authors acknowledge 

extrapolation of utility values should have accounted for ‘ageing, deterioration, and 

comorbidities’ which they confused with the need to discount benefits.  

One study (Yaghoubi et al., 2016) derived utility values from VAS scores from a 

systematic review and meta-analysis of studies of surgery for spinal stenosis, where 

patients received either dynamic or static implants. Finally, Vertuani et al. (2015) 

converted EQ-5D scores from the Swedish National Registry (n=2437) into utility scores, 

although further evaluation is not possible as it is unclear how they have taken data from 

the original source.    

4.3.6.4 Parameter Sources for costs 

Most of the actual costing of the resource use into monetary terms comes from national 

health cost databases, which represent the best practice standard for deriving costs (Philips 

et al., 2006). There was however a variety of methods employed to estimate resource use.  

For the LBP models, Wielage et al. (2013a; 2013b) used published literature and expert 

opinion was used to derive resource usage.  Two studies (Norton et al., 2015; Kim et al., 

2010) used trial data supplemented by literature. Lloyd et al. (2004) used manufacturer 

costs, as well as published studies and the BMA formulary.   

For the sciatica non-surgical treatments, most studies used expert opinion, with only two 

studies (Koenig et al., 2014; Tapp et al., 2018) managing to obtain their resource use from 

a database. Although, Tapp et al. (2018) only calculate the cost of surgery but no other 

healthcare expenditures relating to back pain.  
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The HTA model used ‘clinical opinion’ to determine resource use. Similarly, Igarashi et al. 

(2015) used a physician based internet survey. Skidmore et al. (2011) used estimates 

provided by a panel of experts. Two studies contacted patients, Launois et al. (1994) used 

their unreferenced patient survey, and Parker et al. (2015) used a telephone interview. 

Finally, Udeh et al. (2014) used three published studies to derive resource use.   

The surgical population models also used a variety of methods. Two studies were able to 

use administrative databases to derive resource use, Kuntz et al. (2000) using a previous 

study deriving their values from one hospital database and Kim et al. (2012) used one of 

their author’s hospital financial department. Bydon et al. (2015) used their 137 case 

reviews supplemented by data from Kuntz et al. (2000). Parkinson et al. (2012) used expert 

opinion to derive resource usage. Schmier et al. (2014) use various published sources, 

analysis of the Medicare Limited Data, and expert opinion to estimate their resource usage.  

Two studies appear to have derived costs directly, without describing resource use. 

Vertuain et al. (2015) use systematic review and meta-analysis for costing, whilst 

Yaghoubi et al. (2016) derived costs from the literature, patient bills, and manufacturer 

costs.  

4.3.6.5 Methods and Parameter sources for calculating Societal Costs  

Six of the nineteen distinct models used the societal perspective for their model (Table 

4.6a). Three models (Kim et al., 2010; Skidmore et al., 2011; Wielage et al., 2013b) 

performed their analysis solely from societal perspective with three (Kuntz et al., 2000; 

Igarashi et al., 2015; Keonig et al., 2014) including a societal analysis as a sensitivity or 

subsidiary analysis.  

Igarashi et al. (2015) based their productivity costs in their analysis on the Work 

Productivity and Activity Impairment (WPAI) questionnaire adapted for LBP. The “work 

productivity” component of the WPAI includes absenteeism and presenteeism, providing 
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an estimate of the overall work impairment in line with friction cost approaches. To 

estimate LOP, productivity was defined as a percentage from 0% to 100% and mapped to 

pain scores, such that each point change in pain score represented a change in productivity. 

The authors estimate their costs using mean monthly income in Japan.  

Two studies (Wielage et al.,2013b; Koenig et al., 2013) used variants of the human capital 

approach to estimate their indirect costs. Both studies estimated the amount of days lost 

owing to the condition and then transformed that into a monetary value using different 

measures of national wages. Kim et al. (2010) attempted a similar approach, although their 

losses only stemmed from the treatment sessions.  

Two studies (Skidmore et al., 2011; Kuntz et al., 2000) claimed that health-related quality-

of-life measures already capture the impact of disability upon lost income, and therefore 

including some estimate of lost wages would be double counting. Kuntz et al. (2000) do at 

least model the impact of relaxing this assumption and include the impact of lost wages on 

cost-effectiveness in a sensitivity analysis.  

4.3.6.6  Parameter Sources for Adverse Events  

Only half of the papers included states for adverse events in their models, most of which 

were surgical treatment models for sciatica.  

Of the LBP studies, Wielage et al. (2013a; 2013b) derived rates of AE’s related to 

pharmaceutical treatments from their systematic review and meta-analysis as well as expert 

opinion.  Lloyd et al. (2004) also used expert opinion to judge whether the cause of certain 

events could be attributed to the treatment. For non-surgical treatment models for sciatica, 

Skidmore et al. (2011) and Tapp et al. (2018) derived probability of AE’s, and 

complication rates in the case of the latter, from Medicare claims databases. Parker et al. 

(2015) obtained rates directly from a small trial and prospective spinal registry. Udeh et al. 

(2014) used eight different sources, a combination of different studies and databases.  



114 
 

For the surgical populations, Kuntz et al. (2000) used numerous different sources of 

different types; Bydon et al. (2015) used their 137 patient institutional series; Schmier et al. 

(2014) used the results of a small RCT and extrapolated those results using expert opinion. 

Vertuani et al. (2015) used a systematic review and meta-analysis to derive rates of AE’s 

and complications. The methods of Yaghoubi et al. (2016) were unclear.  
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 Table 4.6 Model Parameters 

Author Treatment Efficacy  Recurrence  QoL  Utility Values Resource Use 

Low back pain decision modelling studies 

Lloyd et al. 

(2004) 

Successful or unsuccessful 

treatment 

SOURCE: pivotal trial of 

heat wrap (n=371) by 

Nadler et al. (2002) 

N/A 

Successfully treated patients 

(meaningful reduction in NRS 

pain scores and RMDQ)  

SOURCE: Nadler et al. 

(2002) 

No utility values 

provided 
SOURCES: Assumptions 

regarding number of 

painkillers taken, number of 

GP and physio appointments 

Kim et al. 

(2010) 

Movements between acute, 

chronic, well and death 

states. Treatment effect 

assumed to have same 

relative risk over time 

SOURCES: Cohort studies 

by Grotle et al. (2005) 

(n=123) and Cassidy et al. 

(2005) (n=1100). “Chronic” 

to “Well” in both treatments 

from meta-analysis of 

RCT’s. 

 

“Well” to 

“Chronic” 
SOURCE: 

Cassidy et al. 

(2005) 

SOURCES: “Acute LBP” 

AND “Well” from Korean 

National Health and Nutrition 

Survey. CLBP from 

pragmatic RCT by Witt et al. 

(2006) (n=11630) 

Well 0.96 

Acute LBP 0.85 

CLBP Usual Care 0. 62 

CLBP Acupuncture 

0.65 

SOURCES: Resource usage 

derived from 2 pragmatic trials 

(Witt et al., 2006; Thomas et 

al., 2006) 
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Wielage et 

al. (2013a) 

3-month discontinuation and 

post-discontinuation rates 

SOURCE: Meta-analysis of 

CLBP and OA trials 

AEs extrapolated using age-

dependent risks derived 

from literature 

N/A 

Utilities derived from pain 

scores, age/sex weighted 

SOURCES: Pain scores from 

meta-analysis of CLBP trials. 

Age/sex utility weights from 

US National Health 

Measurement Study 

CLBP on Duloxetine 

0.7541 

CLBP on Celecoxib 

0.7688 

CLBP on Naproxen 

0.7688 

CLBP on Pregabalin 

0.7282 

CLBP on Oxycodone 

0.7628 

SOURCES: Resource use 

provided by expert opinion. 

Costs associated with AE’s 

from the Agency for 

Healthcare Research and 

Quality database and published 

literature 

Wielage et 

al. (2013b) 

 

3-month discontinuation and 

post-discontinuation rates 

SOURCE: Meta-analysis of 

CLBP and OA trials 

AEs extrapolated using age-

dependent risks derived 

from literature 

N/A 

Utilities derived from pain 

scores, age/sex weighted 

SOURCES: Pain scores from 

meta-analysis of CLBP trials. 

Age/sex utility weights from 

Canadian community health 

survey 

See Wielage et al. 

(2013a) 

SOURCES: Physician and 

drug costs from IMS-Brogan 

Provincial Formulary 

Database. 

Cost of AE’s from published 

literature, IMS-Brogan 

Database, and Ontario Costing 

Analysis Tool 
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Norton et al. 

(2015) 

Initial treatment success, 

long-term relapse and 

improvement 

SOURCES: Back Skills 

Training Trial (n=701) 

Assumed gradual loss of 

efficacy for CBT by 20%  

SOURCES: 
Mortimer et al. 

(2006); Hestbaek 

et al. (2003); 

Enthoven et al. 

(2004) 

Ten-year 

recurrence was 

0.60 as ‘reflected 

in literature’ 

Utilities derived from EQ-5D 

scores 

SOURCE: Back Skills 

Training trial 

Utilities assumed the same in 

respective states over 10 years 

as in a 1-year study 

LBP Improved 0.640 

LBP Not-improved 

0.592 

SOURCES: Intervention costs 

from Back Skills Training trial 

Healthcare costs for “similar 

patients” identified using the 

Ingenix Impact Research 

Database. Symmetry Episode 

Treatment Grouper used to 

identify medications 

associated with LBP 

Sciatica decision modelling studies 

Launois et 

al. (1994) 

Success, Deterioration  

 

SOURCES: Literature 

review of various types of 

studies  

Extrapolation based upon 

studies in literature review 

Recurrences and 

re-operations  

SOURCES: 
6 studies 

identified in 

literature review  

Utilities come from 

conversion of Rosser 

coefficients 

SOURCE: Rosser 

coefficients from a “survey of 

146 patients” who underwent 

chemonucleolysis and surgery 

No utility values stated 

in the paper 

SOURCE: Resource usage 

obtained from "the survey" 

Administrative costs, with 

laboratory and radiology 

examinations added, 

unsourced 

Lewis et al. 

(2011) 

Success or failure of 

treatments 

SOURCE: Systematic 

review of treatment 

N/A  

Annual utilities derived from 

6-12 week EQ-5D scores 

SOURCE: RCT (n=283) by 

van den Hout et al. (2008) 

Sciatica - Improved 

0.83 

Sciatica - Not 

Improved 0.37 

SOURCES: Resource use 

based upon “clinical opinion 

from members of the clinical 

team”  



118 
 

effectiveness for sciatica 

treatments. Pair-wise Meta-

analysis and mixed-

treatment comparison 

 

Skidmore et 

al. (2011) 

Successful treatment 

SOURCES: CC and X-

STOP success from an RCT 

(n=131) (Zucherman et al., 

2005). Success for 

laminectomy comes from 

literature  

Re-op rate  

SOURCES: CC 

and X-STOP 

from RCT 

(Zucherman et 

al., 2005). 

Laminectomy 

from ‘published 

literature’ 

Utility values derived from 

SF-36 

SOURCES: Zucherman et al. 

(2005). 

CC 0.61 – 0.65* 

XStop 0.62 – 0.79* 

Laminectomy 0.53 - 

0.67* 

SOURCES: Resource use 

from ‘expert panel’ estimates. 

Fitzsimmons 

et al., 

 (2014) 

 

See  Lewis et al. (2011) 

Koenig et al. 

(2014) 

Satisfaction with treatment 
SOURCES: Randomised 

observational study, the 

SPORT trial (n=743) 

(Weinstein et al., 2006; 

Weinstein et al., 2008) 

Revision  

SOURCES:  
Three 

observational 

studies (Osterman 

et al., 2006; 

SOURCE: Utilities come 

straight from an economic 

evaluation for treating 

herniated intervertebral disc 

(Malter et al. 1996), originally 

from the Beaver Dam health 

Satisfactory outcome 

0.89 

Unsatisfactory 

outcome 0.56 

Revision surgery 0.69 

SOURCE: Surgery frequency 

from 2009 Medicare claims 

database. Medical resource use 

from SPORT trial (Toteson et 

al., 2008) 
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Extrapolations all based 

upon literature and fully 

sourced 

Weinstein et al., 

2006; Atlas et al., 

2005).  

outcomes study (Fryback et 

al. 1993). 

Udeh et al. 

(2014) 

Relief of symptoms 

SOURCE: Unclear 

Revisions 

SOURCE: 
unclear 

SOURCES: ESI QALY gains 

from Whynes et al. (2014). 

DS gains from an RCT (n=91) 

by Glassman et al. (2012) and 

trial (n=601) by Tosteson et 

al. (2011). Values reduced by 

25% as patients in this study 

had ‘severe’ LSS. For ‘mild’ 

ODI scores from 4 trials 

(n=301) were converted to 

utility scores 

Authors only provide 

QALY Gain  

SOURCES: Resource use 

appears to be from 3 published 

studies in the literature 

Igarashi et 

al. (2015) 

Movements between health 

states 

SOURCE:  8 week study 

by Taguchi et al. (2015) 

(n=331). Surgery risk from 

Medical Data Vision Co 

database (n=69,325) 

Recurrence of 

symptoms in 

months 1-2 

SOURCE:  
Taguchi et al. 

(2015) 

NRS Pain scores from trial 

converted to utility values.  

SOURCE: Taguchi et al. 

(2015) 

Extrapolated 8 week pain 

scores to 52 weeks, citing a 

previous study as justification 

CLBP with 

neuropathic component 

No / mild pain 0.867 

 Moderate pain 0.739 

Severe Pain 0.611 

SOURCES: Resource use 

from physician internet based 

survey of clinicians 

 



120 
 

Parker et al. 

(2015) 

Success or failed treatment 

SOURCES: DS estimates 

from prospective spinal 

Registry. CC estimates from 

prospective study by Parker 

et al. (2014) (n=100). 

Spacer data from Spacer 

trial (Patel et al., 2014) 

(n=129) 

 

N/A  

Utility values derived from 

SF-36.  

SOURCE:  DS estimates 

from prospective spinal 

Registry (n=129). CC 

estimates from Parker et al. 

(2014) (n=100). Spacer data 

from Spacer trial (Patel et al., 

2014) (n=129) 

Authors only provide 

QALY Gain 

 

SOURCES: Resource use for 

follow up care for CC and DS 

patients collected by telephone 

interviews. Spacer assumed 

the same  

Tapp et al. 

(2018) 

Re-operation or 

complication 

SOURCES: Medicare 

Provider Analysis and 

Review database for 

complication and re-

operation within 3 years 

[uncited]. Reoperation 4-10 

years, for spacer expert 

opinion, and for 

Re-operation was 

the major 

treatment efficacy 

(see column left) 

Utility values are EQ-5D 

SOURCES: Utilities for CC, 

decompression, and fusion 

taken from pooled SPORT 

trial (Tosteson et al. 2008) 

and observational study 

results (Yano et al. 2008) 

(n=634). Spacer utility 

assumed equal to 

Conservative Care / 

Pre Surgery 0.71 

Post-surgery 0.77 

Post - Major surgical 

complication 0.55 

Major complication -

0.08 

Non-major 

complication -0.04 

Costs stated directly, no 

resource use as such. 

COST SOURCES: 

CC costs assumed as zero for 

incremental purposes. Spacer 

and decompression surgical 

costs, as well as costs of 

complications taken directly 

from Medicare Provider 
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decompression 4 cohort 

studies 

decompression. Disutility 

associated with complications 

based upon expert opinion.  

Expert opinion  Analysis and Review database 

[uncited].  

Sciatica decision modelling studies – surgical treatments 

Kuntz et al. 

(2000) 

Clinical improvement and 

fusion healing rate 

SOURCES: Mix of 

prospective and 

observational studies 

Extrapolation used literature 

and assumptions   

Recurrence 

SOURCE: 
Assumptions and 

Deyo et al. (1993) 

Extrapolation 

used literature 

plus assumptions 

Utility scores from time-

trade-off technique 

SOURCE:  (Fryback et al. 

1996). 

Symptoms of spinal 

stenosis 0.79 

CLBP 0.79 

Symptom free 0.97 

 

SOURCE: 
Previous study by Katz et al. 

(1997) who used a hospital 

cost accounting system, in one 

Boston hospital 

Kim et al. 

(2012) 

Clinical improvement or 

worsening, death, relapse 

SOURCE: Death rates from 

Deyo et al. (2010). All other 

transition probabilities from 

their observational study 

(n=150) 

 

 

Reoperation 

SOURCE: Their 

observational 

study 

Combined utility values from 

their study with literature 

SOURCES:   Their 

observational study and 

observational study by 

Toteston et al. (2008) (n=601) 

Referenced a source 

suggesting outcomes achieved 

at 1-year are maintained for 4-

years, authors then assume 

Patients with lumbar 

spondylolisthesis 

Baseline 0.58 

Decompression 

Improve 0.74 

Decompression Not 

improve 0.50 

SOURCE: 
Costs derived from the authors 

hospital financial department 
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utility is further constant over 

10 years 

Decompression Fusion 

Improve 0.74 

Decompression Fusion 

Not Improve 0.54 

Parkinson et 

al. (2012) 

Success or failure of surgery 

SOURCE: Systematic 

review and meta-analysis of 

RCT’s 

Revision, Re-

operation, other 

surgical outcomes 

SOURCES: 

Systematic 

review and meta-

analysis of RCT’s 

Utilities derived from EQ-5D 

SOURCE: 
RCT (n=150) by Berg et al. 

(2009) 

AIDR Pre-OP 0.42 

AIDR @ 1 year 0.71 

AIDR @ 2 years 0.67 

PLF / PLIF Pre-Op 

0.36 

PLF / PLIF @ 1 year 

0.63 

PLF / PLIF @ 2 years 

0.69 

SOURCES: Resource use 

based upon expert opinion, 

Medicare Benefits Schedule 

database, their SR, Australian 

department of Health 

publications 

Schmier et  

al. (2014) 

Clinical success 

SOURCES: Initial rates 

come from an RCT (n=322) 

by Davis et al. (2013).  

Extrapolated via published 

sources, Medicare data, and 

Revisions and 

complications 

SOURCES:  
Published 

sources, Medicare 

Utility scores converted from 

ODI scores 

SOURCES: The RCT by 

Davis et al. (2013) 

extrapolated using expert 

opinion.  

Lumbar spinal stenosis 

Clinical success 0.692 

Clinical failure 0.552 

New or worsening pain 

0.599 

SOURCES:  
Expected treatment patterns 

derived from published 

sources, analysis of the 

Medicare Limited Data, and 

expert opinion 
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expert opinion. 24 month 

treatment effect assumed the 

same continuously through 

five years 

data, and expert 

opinion.  

Extrapolated 

using published 

sources 

24 month utilities assumed the 

same continuously through 

five years 

Bydon et al. 

(2015) 

Resolution of symptoms  

SOURCE: Retrospective 

data on 137 patients from a 

single institutional series  

Re-operation 

rates  

SOURCE: The 

137 patient 

institutional 

series   

Utility values taken directly 

from Kuntz et al. (2000)  

SOURCE:  Kuntz et al. 

(2000) from Fryback et al 

(1996).  

Lumbar 

spondylolisthesis 

Positive outcome 0.97 

Chronic back pain / 

Neurologic deficit 0.79 

SOURCE:  
The 137 patient institutional 

series, supplemented by Kuntz 

et al. (2000) 

Vertuani et 

al. (2015) 

No treatment effects as 

such. Their model appears 

more of an amalgamation of 

costs and QALY’s   

N/A 

EQ-5D 
SOURCE: Swedish National 

Registry for Lumbar Spine 

Surgery Report 2008 

(n=2437)  

MIS for Spinal Fusion 

after 2-years 0.72 

Open Surgery for 

Spinal Fusion after 2-

years 0.68 

SOURCE:  
Resource use based upon 

systematic literature review 

and meta-analysis 

Yaghoubi et 

al. (2016) 

Success or failure of surgery 

SOURCE:  
Meta-analysis and SR 

N/A 

Reported as VAS scores 

SOURCE:  
Meta-analysis and SR 

No utility values 

provided 

SOURCE:  

Costs are derived directly from 

literature, “the bill of 30 

patients in Tehran” and 

manufacturer costs 
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Abbreviations: AE (Adverse events); CBT (Cognitive behavioural therapy); CC (Conservative care); CLBP (Chronic low back pain); DS (Decompression surgery); EQ-5D 

(EuroQoL-5D); ESI (Epidural steroid injections); GP (General Practitioner); LBP (Low back pain); LSS (Lumbar spinal stenosis); MIS (Minimally invasive surgery); NRS 

(Numerical rating scale); OA (Osteoarthritis); QALY (Quality-adjusted life year); ODI (Oswestry Disability Index); RCT (Randomised controlled trial); RMDQ (Roland 

Morris Disability Questionnaire); SF-36 (Short Form (36) Health Survey); SR (Systematic review); VAS (Visual Analogue Scales) 

 

 

 

Table 4.6a – Methods for Calculating Indirect costs 

Author Condition  Costs included Costing methods  Sources 

Wielage et al. 

(2013b)  

LBP 

Indirect costs owing 

to LOP from both 

LBP and treatment 

related AE’s 

Human capital 

approach; valued 

using No. of hours 

worked per week, 

minimum wage and 

retirement age 

CLBP LOP from German study (Becker et al. 2010). AE 

LOP from guidelines for return to work (Work loss Data 

Institute, 2010).  

Author Condition  Costs included Costing methods  Sources 

Kim et al. (2010)  LBP 

Direct non-medical 

costs (patient costs). 

Indirect non-medical= 

Daily Wage * 

%Economically active 

Direct non-medical from KNHNS (2007) data 

Indirect non-medical from Ministry of Employment and 

Labour 
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Indirect non-medical 

costs (lost wages) 

* %employed * No. 

treatment sessions 

Skidmore et al. 

(2011)  

General sciatica 

“Indirect costs of lost productivity is not estimated directly but instead is implicitly included incorporated in 

utility values” 

Koenig et al. (2013)  General sciatica 

Indirect costs arising 

from missed 

workdays and loss to 

household earnings 

Inferred effect upon 

earnings and workdays 

from change in patient 

functional status 

Missed workdays and income come from NHiS. Change in 

functional status from observation study (Weinstein et al. 

2006). 

Igarishi et al. (2015)  General sciatica 

Indirect costs. “Work 

productivity 

component” of WPAI 

provides estimate of 

both productivity  

% productivity was 

mapped to pain scores, 

each % change in pain 

score resulted in  

WPAI adapted for LBP (WPAI:CLBP-NeP). 

Costs estimated based on mean monthly income in Japan. 

Author Condition  Costs included Costing methods  Sources 

Igarishi et al. (2015) 

cont. 

 

losses from 

absenteeism and 

Estimate of 

productivity loss. 
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presenteeism 

(Lofland et al. 2004) 

Kuntz et al. (2000)  Sciatica surgery 

Annual cost of lost 

wages for patients 

Unclear Unclear 

Abbreviations: AE (Adverse event); CLBP (Chronic Low back pain); KNHNS (Korean National Health and Nutrition Survey); LBP (Low back pain); LOP (loss of 

productivity); NHIS (National Health Interview Survey); WPAI (Work Productivity and Activity Impairment) 
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4.3.7 Sensitivity Analyses  
The scope of sensitivity analyses was limited. All studies aside from Launois and 

colleagues performed some form of deterministic sensitivity analysis. Most deterministic 

analyses addressed parameter uncertainty by varying at least one parameter, and most 

studies undertook analysis to address different forms of methodological and structural 

uncertainty.  

Five studies attempted sub-group analysis. Wielage et al. (2013a; 2013b) ran their models 

for different age and risk groups; Igarashi et al. (2015) for patients with different initial 

pain level; Koenig et al. (2014) used different age groups and inpatient / outpatient 

treatment mix; and Skidmore et al. (2011) ran their model for various different patient age-

groups.  

Five studies (Wielage et al., 2013a; 2013b; Kim et al., 2010; Igarashi et al., 2015; Parker et 

al., 2015) attempted Probabilistic Sensitivity Analysis (PSA), with each study varying a 

significant number of parameters in their PSA. One study (Lloyd et al., 2004) bootstrapped 

costs and effects.  

Nine studies attempted best case / worse case analysis. Two LBP studies (Norton et al., 

2015; Lloyd et al., 2004) considered situations where their parameter values would 

produce the highest costs for the intervention. Of the non-surgical sciatica treatments, the 

HTA model engineered various best case / worst case cost scenarios, whilst Launois et al. 

(1994) looked at the effect of high / low estimates of treatment efficacy. Skidmore et al. 

(2011) considered the impact of increasing the utility of the comparator as well as if re-

operation success with the X-STOP was lower. Udeh et al. (2014) investigated the impact 

of high utility values for comparators. Whilst Tapp et al. (2018) looked at the impact of a 

high cost scenario with a lower utility value scenario for surgery. Only one of the surgical 

treatment models conducted best case/ worst case analysis, Kim et al. (2012) considered 
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the effect upon cost-effectiveness of using extreme values of numerous different 

parameters, including utility values, clinical effectiveness and revisions.  

Seven studies performed threshold analysis, four of which were non-surgical sciatica 

models. The HTA model investigated the required cost of non-opioids to alter the cost-

effectiveness decision, they also identified the surgery success rate and the relative ratio of 

utility values required to change the result. Parker et al. (2015) considered the required 

utility value of spinal decompression such that the cost-effectiveness decision would 

change. Finally, Udeh et al. (2014) considered how many ESI’s would need to be 

administered per-treatment course, as well as what degree of QALY gains would be 

required, to alter the cost-effectiveness decision. Three models for surgical treatments 

considered threshold analysis. Schmier et al. (2014) claimed to have run various threshold 

scenarios although there was no reporting of the results. Parkinson et al. (2012) estimated 

the relative treatment success required to change the decision. Vertuani et al. (2015) 

investigated what level of cost of minimal invasive surgery would need to take to alter the 

cost-effective result.  

Only one study attempted to perform Value of information Analysis (Kim et al., 2010). In 

their analysis they attempted to place a value on the benefits likely to accrue from further 

research into the cost-effectiveness of acupuncture. At the generally accepted generally 

accepted societal threshold for willingness to pay at 20,000,000 KRW per QALY, they 

estimate a population EVPI of 120,000,000,000 KRW, around £80m in 2020 prices. This 

appears to be low, given the size of their population and model horizon, but the exact 

parameters of the calculation are not provided. 

In terms of the different kinds of analysis, studies generally assessed the uncertainty 

associated with three main areas. As discussed in the chapter on health economic 

modelling, ‘Parameter uncertainty’ is the name given to the uncertainty the analyst has 
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regarding the real value of any of the input parameters in the model, such as transition 

probabilities, costs or utility values (Mahon, 20124). As noted, many of the analyses in 

these studies address parameter uncertainty to some degree, although few performed 

probabilistic analysis.  

Methodological uncertainty generally refers to normative choices regarding which 

evaluative approach optimises decision making, for example choice of perspective, of 

costs, or discount rate (Bilcke et al., 2011). In this review it was common to vary in a 

univariate manner the cost perspective (Kim et al., 2010; Fitzsimmons et al., 2014; Lewis 

et al., 2011; Kim et al., 2012; Schmier et al., 2014).  

‘Structural uncertainty’ refers to the appropriateness of what is imposed by the model 

framework (Bojke et al., 2009). Common approaches in this regard were to explore 

different assumptions regarding the treatment pathway or setting in which treatment was 

delivered (Lloyd et al., 2004; Fitzsimmons et al., 2014; Lewis et al., 2011; Skidmore et al., 

2011; Parker et al., 2015; Kim et al., 2012; Schmier et al., 2014; Vertuani et al. (2015). 
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Table 4.7 Sensitivity Analysis 

Author Deterministic  Sub-group 
Analysis PSA  Best case / Worst 

case  
Threshold Analysis Value of 

Information 

Low back pain decision modelling studies 

Lloyd et al. 
(2004) ü ✘ ü ü ✘ ✘ 

Kim et al. 
(2010) ü ✘ ü ✘ ✘ ü 

Wielage et 
al. (2013a) ü ü ü ✘ ✘ ✘ 
Wielage et 
al. (2013b) ü ü ü ✘ ✘ ✘ 
Norton et 
al. (2015) ü ✘ ✘ ü ✘ ✘ 

Sciatica decision modelling studies – general treatments 

Launois et 
al. (1994) ✘ ✘ ✘ ü ✘ ✘ 

Lewis et al. 
(2011) ü ✘ ✘ ü ü ✘ 

Skidmore 
et al. 

(2011) 
ü ü ✘ ü ✘ ✘ 

Fitzsimmo
ns et al. 
(2014) 

ü ✘ ✘ ü ü ✘ 

Koenig et 
al. (2014) ü ü ✘ ✘ ✘ ✘ 
Udeh et al. 

(2014) ü ✘ ✘ ü ü ✘ 
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Author Deterministic  Sub-group 
Analysis PSA  Best case / Worst 

case  
Threshold Analysis Value of 

Information 
Igarashi et 
al. (2015) ü ü ü ✘ ✘ ✘ 
Parker et 
al. (2015) ü ✘ ü ✘ ü ✘ 

Tapp et al. 
(2018) ü ✘ ✘ ü ✘ ✘ 

Sciatica decision modelling studies – Surgical populations  
Kuntz et al. 

(2000) ü ✘ ✘ ✘ ✘ ✘ 
Kim et al. 

(2012) ü ü ✘ ü ✘ ✘ 
Parkinson et 

al. (2012) ü ✘ ✘ ✘ ü ✘ 

Schmier et  
al. (2014) ü ✘ ✘ ✘ ü ✘ 

Bydon et al. 
(2015) ü ✘ ✘ ✘ ✘ ✘ 

Vertuani et 
al. (2015) ü ✘ ✘ ✘ ü ✘ 

Yaghoubi et 
al. (2016) ü. ✘ ✘ ✘ ✘ ✘ 
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4.3.8 Model Validity Checks  
Table 4.8 highlights that models within this review did not commonly perform validity 

checks. Only two studies (Kim et al., 2010; Kim et al., 2012) reported internal validity, 

noting that they had tested their model output to check that it was sensible. Bydon et al. 

(2015) offered brief reflection upon whether aspects of their model results were realistic. 

The quality appraisal dimension for validity (Philips dimension C1-C2 (iii) in Table 4.9), 

show that where validity checks were performed they were rarely done in accordance with 

best practice. Adequate discussion of the standard academic practice of comparing study 

results with previous studies occurred in only 13 out of 21 studies. Tapp et al. (2018) 

perhaps provided the best example of this, comparing their results with other economic 

evaluations in this area, as well as considerable exploration in the discussion regarding re-

operation rates in other studies. 

Only one study (Kim et al., 2012) provided discussion of external and internal validity, 

comparing their results with other models and checking that the output of their model 

produced realistic results.  
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Table 4.8 Validity checks 

Low back pain decision modelling studies 

Author External Validity Internal Validity 

Lloyd et al. (2004) Unreported Unreported 

Kim et al. (2010) 

Authors acknowledge the absence of other modelling 

studies, and therefore compare their results with those of 

other trial-based evaluations. 

 

Output produced by the usual care option matched with real data on 

chronic low back pain  

Wielage et al. (2013a) 
Unreported, but acknowledge this is due to absence of 

comparative information.  
Unreported 

Wielage et al. (2013b) 
Unreported, but acknowledge this is due to absence of 

comparative information. 
Unreported 

Norton et al. (2015) Compared to previous trial-based evaluations.  Unreported 

Sciatica decision modelling studies – general treatments 

Launois et al. (1994) Unreported Unreported 

Lewis et al. (2011) Unreported Unreported 
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Author External Validity Internal Validity 

Skidmore et al. (2011) Comparison with other modelling studies Unreported 

Fitzsimmons et al. (2014) Unreported Unreported 

Koenig et al. (2014) Comparison with other trial-based evaluations. Unreported 

Udeh et al. (2014) Unreported Unreported 

Igarashi et al. (2015) 
No prior models. Have compared to previous trial-based 

evaluations.  
Unreported 

Parker et al. (2015) 
Results compared with one other model based evaluation, 

as well as to trial-based evaluations. 
Unreported 

Tapp et al. (2018) 
Considerable exploration in the discussion regarding re-

operation rates in other studies.  
Unreported 

Sciatica decision modelling studies – surgical populations 

Kuntz et al. (2000) Some discussion of counter-intuitive results.  Unreported 

Kim et al. (2012) 

Extensive comparison with both model and trial based 

evaluations. Compared their results with deviation 

from previous findings.  

Compared recurrence with Canadian recurrence rates. Utilities and re-

operation rates compared with real world data to ensure mathematical 

logic of model was correct.  
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Author  External validity  Internal validity  

Parkinson et al. (2012) Some discussion of previous trial-based evaluations.   Unreported 

Schmier et  al. (2014) Unreported Unreported 

Bydon et al. (2015) Unreported Limited discussion of whether values in the model are realistic 

Vertuani et al. (2015) Unreported Unreported 

Yaghoubi et al. (2016) Vague comparison with other studies and data sources Unreported 
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4.3.9 Quality appraisal  
Table 4.10 demonstrates significant inconsistency in the overall quality of modelling 

papers in this review. The ‘Total’ column on the right-hand side of Table 4.10 represents a 

score out of twenty (one point for each of the twenty papers) for each dimension of the 

Philips checklist. In order to score 20 each Philips dimension must have been satisfied 

sufficiently in every paper in the review. In the table, full compliance with the Philips 

criteria is represented by the ‘ü’which scores one point, partial compliance receives a ‘~’ 

and scores half of a point, and a ‘✘’ scores zero points and represents a non-compliant or 

poorly compliant study.   

Generally, the structural components of the modelling were of reasonable quality. Indeed 

for Philips dimensions concerned with structure (S1a-S9) there are only six dimensions 

which at least 50% of papers failed to meet adequately; S1c, stating the primary decision 

maker; S3b, sources used to developed the structure of the model; S5b, all feasible and 

practical options evaluated; S5c, justification of exclusion of all feasible options; S7a, 

sufficient time horizon; and S9, cycle length stated and justified in terms of the condition.  

The dimensions relating to data are of a much lower quality. Data identification methods 

(D1a-D1e) scored badly, especially assessment of data quality (D1d) which scored only 

full compliance in four studies. The scoring for baseline data (D2a) was especially poor 

driven by the omission of half cycle correction (D2a(iii)) and lack of justification for doing 

so (D2a(iv)). Treatment effect (D2b) scores were low owing to poor documentation and 

justification of extrapolation methods (D2b(ii)), continuing treatment effects (D2b(iv)) and 

exploring of alternate assumptions in subsequent sensitivity analysis (D2b(iii) and D2b(v)). 

For reasons discussed in the previous section, the utility values used in the models (D2d(i)) 

are rarely considered fully appropriate, despite all four LBP models using appropriate 

values. Indeed, none of the sixteen sciatica models used entirely appropriate utility values. 
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Costing transparency, sourcing, and discounting (D2c) scored well generally, although as 

reported in Section 5.3.6 few studies used real world clinical data to obtain resource use.  

Some of the lowest scores in the review came for the characterisation of uncertainty (D4). 

Only four studies (Wielage et al., 2013a; 2013b; Koenig et al., 2004; Skidmore et al., 

2011) scored adequately in barely half of the dimensions for uncertainty.  Dimensions 

concerned with internal and external validity (C1-C2C) scored even lower as noted in the 

previous sub-section. 
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Table 4.9 Quality Appraisal  

 Low Back Pain Models Sciatica non-surgical treatments  Sciatica surgical treatments  
 

Philips 
Dimension 

Wielege 
(2013a) 

Wielege 
(2013a) Norton Lloyd Kim et al. 

(2010) 
Fitzsimm

ons Lewis Igarashi Launois Koenig Skidmore Parker Udeh Kuntz Bydon Kim et al. 
(2012) Yaghoubi Schmier Parkinson Vertuani 

Total  

S1a ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü 20 

S1b ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü 20 

S1c ü ✘ ✘ ✘ ✘ ü ü ✘ ✘ ~ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ 
3.5 

S2a ü ü ü ü ü ü ü ü ✘ ü ü ü ü ✘ ✘ ü ✘ ü ✘ ü 15 

S2b ü ü ü ü ü ü ü ü ü ü ü ü ü ü ✘ ✘ ü ü ? ü 17/19 

S2c ü ü ü ü ü ü ü ü ü ü ü ü ü ü ~ ü ✘ ü ✘ ~ 17 

S2d ü ü ü ✘ ü ü ü ü ü ü ü ü ü ~ ü ü ü ü ü ü 18.5 

S3a ü ü ü ~ ü ü ü ü ü ü ü ~ ü ~ ü ~ ✘ ü ~ ✘ 
15.5 

S3b ü ü ~ ~ ~ ü ü ✘ ✘ ✘ ü ~ ✘ ~ ü ü ✘ ~ ✘ ✘ 
10 

S3c ü ü ✘ ü ~ ü ü ~ ✘ ü ü ~ ü ~ ü ü ✘ ✘ ü ~ 13.5 

S4a ü ü ✘ ü ~ ü ü ü ✘ ü ü ü ü ~ ~ ~ ✘ ✘ ü ✘ 
13 

S4b ü ü ✘ ~ ~ ü ü ~ ✘ ~ ü ~ ü ~ ~ ~ ✘ ü ~ ✘ 
11.5 

S5a ü ü ü ü ü ü ü ü ✘ ✘ ü ü ü ü ü ü ü ü ü ü 18 

S5b ü ~ ✘ ü ✘ ü ü ✘ ✘ ~ ~ ~ ü ✘ ✘ ✘ ✘ ~ ~ ✘ 
8 

S5c N/A ü ✘ N/A ✘ N/A N/A ✘ ü ✘ ✘ ✘ ~ ✘ ✘ ü ü ü ✘ ✘ 
5.5/16 

S6 ü ü ü ü ü ~ ~ ü ~ ü ~ ü ü ü ü ü ✘ ü ü ✘ 
16 

S7a ü ü ~ ✘ ~ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ~ ~ ~ ✘ ✘ ✘ ✘ 
4.5 

S7b ü ü ü ✘ ü ~ ~ ~ ~ ~ ü ü ü ~ ü ü ✘ ~ ~ ~ 13.5 

S8 ü ü ~ ~ ~ ü ü ~ ü ✘ ü ü ü ~ ü ~ ✘ ~ ü ✘ 
13.5 

S9 ü ü ✘ N/A ~ N/A N/A ü ✘ ~ ✘ ~ ✘ ✘ ✘ ü ✘ ~ ~ ✘ 
6/17 
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 Low Back Pain Models Sciatica non-surgical treatments  Sciatica surgical treatments  
 

Philips 
Dimension 

Wielege 
(2013a) 

Wielege 
(2013a) Norton Lloyd Kim et al. 

(2010) 
Fitzsimm

ons Lewis Igarashi Launois Koenig Skidmore Parker Udeh Kuntz Bydon Kim et al. 
(2012) Yaghoubi Schmier Parkinson Vertuani 

Total  

D1a ü ü ü ~ ü ü ü ✘ ü ~ ~ ✘ ✘ ✘ ✘ ~ ü ü ~ ~ 12 

D1b ü ü ✘ ✘ ü ü ü ✘ ü ✘ ~ ✘ ✘ ✘ ✘ ~ ü ü ✘ ✘ 
9 

D1c ü ü ~ ✘ ü ✘ ✘ ✘ ~ ~ ü ~ ✘ ✘ ✘ ü ~ ü ~ ✘ 
9 

D1d ~ ~ ~ ✘ ü ü ü ✘ ✘ ✘ ✘ ✘ ~ ✘ ✘ ~ ~ ü ✘ ~ 7.5 

D1e ü ü N/A N/A N/A ü ü ✘ N/A N/A ü N/A N/A N/A N/A N/A N/A ~ ~ N/A 6/8 

D2 ü ü ü ü ? ü ü ~ ~ ü ✘ ~ ü ? ü ~ ü ? ✘ ✘ 
12.5/17 

D2a(i) ü ü ~ ✘ ü ü ü ✘ ü ~ ü ~ ✘ ~ ~ ~ ü ü ~ ~ 13 

D2a(ii) ? ? ? ? ü ü ü ? ü ? ? ? ? ✘ N/A ? ✘ ? ? ? 4/6 

D2a(iii) ✘ ✘ ✘ N/A ✘ N/A N/A ✘ N/A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ 
0/16 

D2a(iv) ✘ ✘ ✘ N/A ✘ N/A N/A ✘ N/A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ 
0/16 

D2b(i) ü ü N/A N/A ü ü ü N/A ü N/A N/A ü ✘ ✘ ✘ N/A ü N/A ü N/A 9/12 

D2b(ii) ~ ~ ü ✘ ✘ N/A N/A ~ ~ ✘ N/A N/A N/A ~ ✘ ~ ✘ ü N/A ✘ 
5/14 

D2b(iii) ? ? ü ✘ ✘ N/A N/A ✘ ✘ ✘ N/A N/A N/A ~ ✘ ~ ~ ✘ N/A ✘ 
2.5/12 

D2b(iv) ~ ~ ✘ ✘ ✘ N/A N/A ~ ü ✘ N/A N/A N/A ~ ✘ ü ✘ ✘ N/A ✘ 
4/14 

D2b(v) ? ? ü ✘ ~ N/A N/A ✘ ✘ ✘ N/A N/A N/A ~ ✘ ~ ~ ✘ N/A ✘ 
4/12 

D2c(i) ü ü ü ü ü ✘ ✘ ✘ ~ ~ ü ~ ü ~ ü ✘ ~ ✘ ü ü 14.5/20 

D2c(ii) ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü 20 

D2c(iii) ü ü ü N/A ü N/A N/A N/A ü ü ~ ü ü ü ✘ ü ✘ ü ü ✘ 
13/16 

 

D2d(i) ü ü ü N/A ü ✘ ✘ ~ ~ ✘ ~ ~ ~ ✘ ✘ ~ N/A ~ ✘ ? 7.5/17 

D2d(ii) ü ü ü N/A ü ü ü ü ✘ ü ü ü ü ü ü ü N/A ü ü ü 
17/18 
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 Low Back Pain Models Sciatica non-surgical treatments  Sciatica surgical treatments  
 

Philips 
Dimension 

Wielege 
(2013a) 

Wielege 
(2013a) Norton Lloyd Kim et al. 

(2010) 
Fitzsimm

ons Lewis Igarashi Launois Koenig Skidmore Parker Udeh Kuntz Bydon Kim et al. 
(2012) Yaghoubi Schmier Parkinson Vertuani 

Total  

D2d(iii)j ü ü ü N/A ü ✘ ✘ ü ü ✘ ✘ ü ü ~ ✘ ü N/A ü ✘ ✘ 
10/18 

D3a ü ü ü ü ü ü ü ü ü ü ü ü ü ~ ü ~ ~ ü ü ü 18.5/20 

D3b ü ü N/A ✘ ü ü ü ✘ ✘ ✘ ~ ü ~ ✘ ü ü ~ ü ü ? 11.5/18 

D3c ✘ ✘ ü ~ ü ü ü ü ü ✘ ü ~ ü ü ü ~ ~ ✘ ü ü 14 

D3d ✘ ✘ ✘ N/A ~ ü ü ~ N/A N/A N/A ~ ~ N/A N/A N/A N/A N/A N/A N/A 4/9 

D3e ✘ ✘ ✘ N/A ü N/A N/A ~ N/A N/A N/A ~ ~ N/A N/A N/A N/A N/A N/A N/A 2.5/7 

D4(i) ü ü ✘ ✘ ✘ ✘ ✘ ~ ✘ ü ü ~ ~ ✘ ✘ ~ ✘ ✘ ✘ ✘ 
6  

D4(ii) N/A N/A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ü N/A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ 
1/17 

D4a ü ü ü ✘ ~ ✘ ✘ ü ✘ ü ü ✘ ~ ✘ ✘ ü ✘ ü ✘ ✘ 
9 

D4b ü ü ✘ ü ✘ ü ü ✘ ✘ ü ü ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ 
7  

D4c ü ü ✘ ✘ ✘ ✘ ✘ ü ✘ ü ü ✘ ✘ ✘ ✘ ü ✘ ü ✘ ✘ 
7 

D4d(i) ~ ~ ✘ ~ ü ~ ~ ~ ✘ ✘ ~ ü ü ~ ✘ ~ ✘ ✘ ~ ✘ 
8 

D4d(ii) ~ ~ ✘ ü N/A ✘ ✘ ✘ ~ ~ ~ N/A ~ ~ ✘ ✘ ✘ N/A ✘ ~ 5/17 

C1 ✘ ✘ ✘ ü ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ~ ü ✘ ✘ ✘ ✘ 
2.5 

C2a N/A N/A N/A N/A N/A N/A N/A N/A ~ N/A N/A N/A N/A ü N/A ü ✘ ✘ N/A N/A 2.5/5 

C2b ✘ ✘ ü ü ü ✘ ✘ ✘ ~ ✘ N/A N/A N/A N/A ✘ ü ü ✘ ✘ N/A 5.5/15 

C2c ~ ✘ ü ✘ ü ✘ ✘ ü N/A ü ü ü ✘ N/A ✘ ü ~ ✘ ü ✘ 
9/18 
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4.4 Discussion  

4.4.1 Statement of principal findings 

4.4.2 LBP models 

4.4.2.1 Model structure 

 

Choice of time horizon should be justified, and reflect important differences between 

comparators not be driven by data availability (Philips et al., 2006; Jaime-Caro et al., 2012; 

Karnon et al., 2003; Sibert et al., 2012). The two models by Wielage et al. (2013a; 2013b) 

were the only models to use the lifetime horizon, possibly because data were readily 

available for their specific decision problem. For the other three studies, the use of 

medium-term time horizons could be permissible, given that many treatments for LBP do 

not provide a long-term treatment effect. 

In terms of model type, four LBP models used Markov state transitions, suggesting that 

these authors considered this approach appropriate for modelling LBP. However, in 

situations in which an early event or a patient characteristic determines future patient 

pathways, and the number of health states required might be unwieldy, individual-level 

microsimulation methods should be considered (Philips et al., 2006). 

Health states should adequately reflect the condition-specific health processes (Philips et 

al., 2006). On this basis, the three-state approach used by Norton et al. (2015), i.e. 

‘improved’, ‘not improved’ and ‘dead’ might be considered an oversimplification. While 

using ‘improved’ and ‘not-improved’ will to some degree always incorporate the pain 

associated with each treatment, unless utility values are always collected separately for 

each treatment, interventions that deliver higher rates of long-term improvement at a lower 

level of utility will be advantaged by using health states reflecting ‘improvement’. 
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For LBP, an approach starting from the structure used by Kim et al. (2010) could be the 

most appropriate, the authors chose health states reflecting a temporal classification of 

LBP, i.e. ‘acute LBP’, ‘chronic LBP’, ‘well’ and ‘dead’. However, the structural validity of 

their particular model is limited by the structural assumption that one recurrence of back 

pain in the ‘well’ state can move the patient into a ‘chronic LBP’ state. This leads to the 

possibility that a patient with only two episodes of LBP across 5 years would be 

considered to have ‘chronic LBP’. Nonetheless, the modelling of degrees of symptoms is 

preferred over a dichotomy as it is likely to produce results that better reflect the patient 

experience. It is also worth noting that it is likely there is heterogeneity in pain severity 

within temporal classifications. 

Current research evidence suggests that a potentially more appropriate categorisation of 

patients with LBP could reflect pain severity as well as the rate of recurrence (Dunn et al., 

2013). For example, Dunn et al. (2013) show that pain level after 1 year is predictive of 

pain level at 7 years, and patients are categorised into three groups, according to 

persistence and severity, i.e. ‘no or occasional pain’, ‘persistent mild pain’, and ‘persistent 

severe pain’, with a fourth category used for those who show no consistent pattern. Given 

the relative consistency of symptoms over time it is perhaps surprising more studies have 

not engaged in extrapolation over longer-periods.  

Ultimately, model structure and health state selection should involve consultation with 

subject experts and stakeholders (Philips et al., 2006). While experts were clearly involved 

in the construction of these models, none of the studies clearly justified or discussed issues 

related to their model structure. The lack of discussion around choice of health states, or 

model choice and time horizon, is problematic for improving the representation of both 

conditions in model form as such subjective components of the modelling process should 
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be predicated on a clear understanding and subsequent critique of the principles upon 

which such decisions are made. 

4.4.2.2 Model data 

High-quality information on resource use in LBP patients does not seem to be available; 

however utility values for the LBP models were obtained in accordance with best practice 

(Kim et al., 2010; Norton et al., 2015; Launois et al., 1994; Lloyd et al., 2004).   

Four LBP models extrapolated over a longer period than their data allowed, although only 

Wielage et al. (2013a; 2013b) attempted lifetime extrapolation. Having evidence available 

to them, both studies modelled across the lifetime by adjusting the AE profiles according 

to age-dependent relative risks, and used age-dependent utility values directly obtained 

from the available literature.  

However, often in decision problems relating to LBP, evidence of long-term treatment 

effect is likely to be unavailable because trials commonly only span across 1 year of 

patient observation. Nonetheless, Norton et al. (2015) and Kim et al. (2010) show how an 

incomplete evidence base can still be extrapolated in a decision analytic model by using 

assumptions and expert opinion in addition to the literature, and offer methods which can 

be used to guide the necessary assumptions to be made in the models in this thesis. Both 

studies defined their health states independently of treatment, and established utility values 

for those specific health states, therefore requiring only information on the long-term 

movement of patients between health states. Lacking data on long-term treatment efficacy, 

Norton et al. (2015) assumed a gradual loss in efficacy (resolution of symptoms) over time 

of 20% per annum. Similarly, Kim et al. (2010) extrapolated short-term treatment efficacy, 

assuming short-term relative risks between the treatment arms remained constant over 

time.  
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Parameter behaviour over time, such as the long-term treatment effect, often represents the 

largest source of uncertainty within a model (Mahon et al., 2014). Accordingly, studies 

performing extrapolation should be expected to undertake rigorous examination of 

temporal uncertainty (Philips et al., 2006). However, none of the five LBP models really 

addressed temporal uncertainty, despite the importance of extrapolation assumptions used 

by Norton et al. (2015) and Kim et al. (2010). Consequently, the reader is left without an 

understanding of how uncertainty over the long-term treatment effect could impact the cost 

effectiveness of these treatments for LBP. 

4.4.3 Sciatica non-surgical treatment models 

4.4.3.1 Structure  

Three studies used Markov modelling and three used decision trees. However, given that 

surgery was a comparator in all models, and would be expected to improve long-term 

outcomes for sciatica patients, short time horizons modelled within a decision tree may 

seem unsuitable in this condition. The use of individual sampling models (ISM) could be 

of real value in this condition, given that candidacy for surgery is likely to be event-

dependent, e.g. having a failed previous treatment, and/or time spent in severe pain. 

Treatment guidelines for sciatica in the UK follow a stepped pathway, in that patients can 

receive more invasive treatments dependent on prior treatment failures. Most models did 

allow between one and three stepped treatment failures before they allow surgery to take 

place (e.g. Lewis et al., 2011; Launois et al., 1994; Igarashi et al., 2015; Skidmore et al., 

2011; Parker et al., 2015).Lewis et al. (2011) and Fitzsimmons et al. (2014) not only 

presented the stepped nature of the treatment pathway but also provided 100 different 

treatment combinations. Yet, the complexity of the representation of the treatment pathway 

appears in contradiction to the simplicity of the estimates used for the utility values, which 

in turn may limit the validity of the study results. While there is clearly a need to represent 
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the stepped pathway when modelling a presurgical period of the treatment pathway, it is 

doubtful that a typical model should consider all combinations of possible treatments 

unless that is the specific goal of the analysis, as was the case in the Lewis et al. (2011) and 

Fitzsimmons et al. (2014) publications. 

If the aim of the analysis is to compare an intervention with usual care, then it might be 

more efficient to have a comparator that represents common/usual practice. Indeed, most 

models only compared two or three treatment options, one of which included conservative 

care. Two studies (Skidmore et al., 2011; Parker et al., 2015) used a comparator that 

reflected a specific combination of usual care treatments based on an observed 

combination of treatments. For example, Skidmore et al. (2011) used ‘conservative care’ as 

their comparator, defined as at least one ESI, supplemented by non-steroidal anti-

inflammatory drug [NSAIDs], oral steroids, analgesics, physical therapy, or spinal 

manipulation therapy. Their data on treatment were derived from a trial where patients 

received usual care, as considered appropriate for the individual patient. Finally, Parker al. 

(2015) refer to conservative care as physical therapy, pain medications (NSAIDs, mild 

opioids), and ESIs, as guided by clinical judgement of the treating physician. Their data 

were derived from analysis of institutional registry data, and trial data. 

The approach used by the Institute for Clinical and Economic Review (2011) in its model 

of treatments for lumbar disc herniation, even though grey literature are not included in the 

review, is nonetheless worthy of consideration. It uses a Markov model that allows patients 

to continue on some specific combinations of usual care treatments (identified by 

systematic review), and also allows a specific proportion of the cohort to move into receive 

a discectomy. Upon receiving a surgical procedure, patients can then improve, receive a 

second reoperation, or suffer a complication. 
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Assuming that the model requires the entire pathway to be modelled, we would advocate 

taking the best of these approaches, by representing the stepped nature of the treatment 

pathway by initially defining usual care as the treatment combination which evidence 

shows that sciatica patients initially receive. If the model took the form of an ISM or a 

discrete event simulation, it would be possible to use tracker variables to track the length of 

time a patient remained symptomatic, and/or received the described initial usual care. After 

some defined period of non-improvement, a patient could either become eligible for a more 

intense usual care treatment option (a second step), and/or upon failure of that second 

treatment become eligible for surgery. As well as time spent in the receipt of usual care, a 

patient’s candidacy for surgery could also be a function of the unique characteristics of that 

patient, although the degree of complexity will be limited by available data. 

With regard to the choice of health states, similar to the LBP models, all but one model 

(2015) used health states relating to treatment success. The use of health states such as 

‘improved’ and ‘not improved’ are perhaps more appropriate in models for sciatica, in 

which perhaps interventions such as spinal injections and/or surgery might be expected to 

provide a more pronounced and sustained treatment response, on average, when compared 

with treatment effects for non-specific LBP. However, as noted above, with respect to 

modelling, if such health states are used, this will necessitate that utility values are 

collected for each intervention as some interventions could deliver their improvement at 

very different utility levels. None of the models in this analysis undertook this endeavour. 

A related issue is that all of the studies use different definitions of success or improvement, 

making comparison between studies difficult. 

Guidance suggests that where health states reflect the treatment pathway effect, this ought 

to be justified, and alternative methods of doing so explored in a sensitivity analysis 

(Mahon et al., 41); however, none of the studies justified their approach or explored 
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alternate methods. The only model in this review to provide health states based on pain 

severity (Igarashi et al., 2015) provides a starting place for how pain severity could also be 

used to conceptualise health states for sciatica. No pain/mild pain, moderate pain and 

severe pain are used as health states. Nonetheless, the inability to move between health 

states during a period of 3–11 months and the model’s short 12-month timeframe, 

somewhat diminishes its potential as an example of best practice if it is accepted that the 

analytical framework ought to be over a longer period. While ‘improved’ or ‘success’ 

models are likely to be conceptually linked with pain severity to some degree, the potential 

implications for cost-effectiveness estimates of using an ‘improved’- or ‘success’-based 

model over one based on pain states could be one area of future research. 

4.4.3.2 Data   

Only three of nine models attempted extrapolation, although those that did can offer 

insights into potential methods. For example, Tapp et al. (2018) extrapolated from 4 to 

10 years by determining the long-term rate of reoperation for decompression from the 

literature, and lacking data on long-term reoperation with the spacer, assuming the rate was 

identical to decompression. They also used the same utility values over time, and assumed 

that complication rates were the same regardless of first surgery or reoperation. However, 

their study cannot be held as an example of best practice given their cost estimates are 

unlikely to be representative, as they do not include costs of other treatments aside from 

surgery, and conservative care and post-surgical care carry zero costs. 

The fact that only three of nine non-surgical sciatica models attempted extrapolation was 

typically justified by the claims made by Fitzsimmons et al. (2014) of a “lack of evidence 

regarding relapse and recurrence rates” making “it difficult to extend the analysis beyond 

this time period”. It is certainly the case that, where estimates extend well beyond known 

available data, the accuracy of the estimates may be questionable. However, as stated 
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above, best practice guidelines in decision analytic modelling state that data availability 

should not define the time horizon of the model (Philips et al., 2006). The apprehension 

regarding extrapolation is perhaps somewhat unfounded given that two of the LBP studies 

above (Kim et al., 2010; Norton et al., 2015), and one sciatica model (Tapp et al., 2018), 

made simple assumptions regarding the long-term treatment effect. Moreover, there are 

many techniques to infer values for unobserved model parameters (Mahon et al., 2014). 

For example, Mahon and colleagues advocate fitting parametric functions through 

statistical methods, and/or using expert opinion to derive some probabilistic assessment of 

the likelihood a parameter function takes a certain shape. Nothing approaching this level of 

sophistication was attempted in any of these papers in this review. And moreover, as was 

the case with the LBP models, none of the models undertaking extrapolation attempted 

even a basic assessment of temporal uncertainty.  

Given the productivity costs associated with both LBP and particularly sciatica, it might be 

expected to see more analyses performed from a societal perspective, at least as a 

secondary evaluation. However, as shown in Table 4.3, and detailed in Table 4.6a, in this 

review only six models performed some form of societal analysis, which were of varying 

rigour. The most detailed method (Igarashi et al., 2015) used the established methodology 

of the WPAI scale (Lofland and Pizzi, 2004), a validated method to assess lost productivity 

that assesses the losses due to both absenteeism and presenteeism, although, for a full 

societal analysis, other non-medical costs should also be included, as per the paper by Kim 

et al. (2010). 

The utility values used in this class of models reflect to some degree the lack of availability 

of utility data for sciatica patients. The methods used by Lewis et al. (2011) and 

Fitzsimmons et al. (2014) to calculate utility values show why it is not necessarily 

advisable to have values based on the success or failure of a treatment because an 
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appropriate analysis would require many unique utility values. As this information is 

clearly not available, the authors used the same utility values for ‘success’ or ‘failure’ of all 

treatments in their study, which would bias against those treatments that delivered higher 

utility gains where successful, and/or treatments that minimise utility losses where they 

fail. Moreover, while their value of 0.83 for treatment improvement seems consistent with 

other studies (Igarishi et al., 2015; Koenig et al., 2014), their ‘non-improvement’ score of 

0.37 is significantly lower than values used for non-improvement in most other studies in 

this review. This highlights the need for consistent health state selection and definition in 

the models. Admittedly, the authors of both studies (Lewis et al., 2011; Fitzsimmons et al., 

2014) acknowledged the problems with utility values, which they attempted to address 

using alternate scenarios in sensitivity analyses, although the results of these analyses were 

not presented, and differential EQ-5D scenarios between treatments were not tested.  

There were also concerns in relation to the derivation of resource use estimates, which 

ought to originate from real clinical practice instead of clinical trials (Soto et al., 2002). 

However, for the sciatica non-surgical treatments, only Tapp et al. (2018) obtained some of 

their cost estimates from a database reflecting actual patient healthcare use, and half had to 

rely on expert opinion, suggesting a problem with the availability of high-quality resource 

use information. This is understandable given how challenging it can be to identify and 

attribute visits when conditions may be mentioned only incidentally. 

4.4.4 Sciatica surgical treatment models 

4.4.4.1 Structure  

While it is commendable that the time horizons considered by the surgical intervention 

models were longer than the non-surgical models, this group of models was replete with 

methodological problems. Of the models with identifiable structure, five of seven were 

Markov models, which are recommended for decision problems, such as modelling 
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surgical procedures, where model horizon is longer, and/or the model contains time-

varying transition probabilities (Roberts et al., 2012). In the case of models that begin 

from a surgical process, a Markov model is sufficient, provided it allows the possibility 

of future reoperation following the recurrence of symptoms. The need for an ISM is less 

pressing than in the case of a sciatica model including a preoperative period, although 

allowing a risk of recurrence to be dependent on individual characteristics would offer 

the model more flexibility. 

Given that all comparators in this group were surgical procedures and did not feature 

conservative care, health states generally are reflective of the ‘success’ or ‘failure’ of 

surgery rather than health-specific processes. As noted above, there is still a need among 

these models to use consistent health states and definitions for comparability. The 

structure used by Kim et al. (2012) could provide a basic template for developing a more 

sophisticated model structure. Their model health states were potentially more 

appropriate because of the use of health states such as ‘well’, ‘unwell’ or ‘return of 

symptoms’, which partially reflect the condition-specific health processes, and captured 

all important events for sciatica patients, e.g. relapse, reoperation (including the 

flexibility of choosing whether or not to reoperate), clinical worsening and improvement, 

and general and perioperative death. 

4.4.4.2 Data 

The Kim et al. (2012) structure can also provide a framework within which to engage in 

extrapolation processes. Using the health states of ‘well’, ‘unwell’, or ‘return of 

symptoms’, they then derived long-term utility values associated with these states, 

independent of treatment approach, from their 1-year observational study. To justify the 

use of these 1-year values across 10 years, Kim et al., referenced a study by Weinstein et 
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al. (2009), who suggested that utility values derived at 1 year are relatively stable across 

4 years, and then assumed further stability to 10 years, although the authors then adjusted 

the values downwards by 3% per year to account for clinical deterioration rather than 

present net value. Where possible, the impact of age on the utility of the patient population 

should be modelled using available data or a data-driven assumption. Regardless, having 

established their utility values, they then required only annual transition probabilities 

between states for 10 years, which they derived using an administrative database study and 

data from the senior surgical author’s practice. 

As with the sciatica non-surgical models, the quality of the utility values was generally 

poor, as would be expected given that they are for similar populations. However, while it is 

to be lauded that attempts were made to derive patient- and treatment-specific utilities, 

small sample sizes (Schmier et al., 2014; Parkinson et al., 2013) and the use of LBP utility 

values from the Beaver Dam study (Kuntz et al., 2000; Bydon et al., 2015) were a common 

limitation of this group of publications. The use of the Beaver Dam values of 0.97 for 

being symptom-free (2000) or having a positive outcome (Bydon et al., 2015), and 0.79 for 

having CLBP, are quite different to the utility values used in other studies. 

The use of administrative databases in five studies (Kuntz et al., 2000; Kim et al., 2012; 

Schmier et al., 2014; Bydon et al., 2015; Parkinson et al., 2013) facilitates precise 

calculation of resources associated with each treatment, and therefore offers more 

confidence in the accuracy of the costs associated with these surgical procedures. 

4.4.5 Strengths and weaknesses of the study 

This is the first systematic review to identify, document and classify model-based 

economic evaluations of treatments for LBP and sciatica. It is possible that the search 
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criteria may prove restrictive in that model-based economic evaluations faced exclusion 

if they did not contain both economic and modelling terms. The search strategy may have 

been improved by including the term ‘utility’, however the use of a very broad search 

strategy was employed, including ‘economic’ or ‘model’ as standalone terms, with the 

specific aim of increasing the potential number of studies. The breadth of these search 

criteria, as well the variety of databases used, is a key strength of this review, and the 

addition of a single paper identified from reference lists demonstrates that the search was 

exhaustive. 

4.4.6 Implications for researchers, clinicians and policymakers 

This chapter has identified flaws, and suggests opportunities, in models evaluating 

interventions for LBP and sciatica. Concerns relating to studies in this review include not 

only modelling across inadequate time horizons but also the inappropriate use of utility 

data, calculation errors, a lack of transparency regarding methodologies, and the failure to 

consider the extent to which uncertainty and assumptions limit the applicability and 

generalizability of the results. 

Overall, the current cost-effectiveness evidence is indicative of the uncertainty around the 

clinical-effectiveness evidence on these treatments to date. Most of the studies included in 

this review report on the limitations of available effectiveness data in order to populate 

models. Policymakers’ attention is directed to the sensitivity analyses in these studies, 

which in some cases help with accounting for the uncertainty of model parameters. Longer 

follow-up in trials, and the collection of health-related quality-of-life scores, would help in 

reducing the uncertainty around the long-term cost effectiveness of treatment. 

In considering the cost-effectiveness results from studies that included a non-surgical 

comparator, it is evident that surgery after the failure of conservative care could be cost 

effective; however, there does not appear to be a consensus regarding at what stage 
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surgical procedures might become cost effective. This could be a potentially valuable 

research priority, alongside factors that influence the cost effectiveness of surgery 

following these repeated failures of conservative care. It is also noted that research needs 

to explore the implications of using different health states in both conditions. 

Health economists and modellers developing models in both conditions also need to be 

more willing to explore the implications of extrapolation of treatment effect over an 

appropriate time horizon. The thesis by Mahon (et al., 2014) provides a comprehensive 

review of the methods that can be used to infer parameters where they are unobserved. 

Additionally, guidance is available on how to capture the associated uncertainty relating to 

extrapolation of unobserved treatment parameters in sensitivity analyses. National Institute 

for Health and Care Excellence (NICE) methods guidance advocates scenario analyses 

with (1) nil treatment effect over the unobserved period; (2) treatment effect during the 

unobserved period is set equal to the observed period; and (3) treatment effect diminishes 

over time (NICE, 2013).  

Future models should pay particular attention to the methodological challenges raised here 

to ultimately help enable more useful comparisons between treatments. Until modellers 

produce more high-quality modelling studies, consistent with modelling guidelines (e.g. 

Philips et al., 2006; Siebert et al., 2012; Soto et al., 2002; Roberts et al., 2012; Husereau et 

al., 2013), the standard of discourse necessary to stimulate methodological improvements 

in these areas will be severely restricted.  

4.5 Conclusion  

This review identified a number of insights to inform the modelling process, including 

some examples of good practice. The principle finding of interest to inform the modelling 

chapters is that whilst only limited extrapolation has been done, with no exploration of 
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temporal uncertainty, studies have engaged with extrapolation using trial-based evidence, 

and combining with literature and assumptions.  

Nonetheless the standard of modelling is currently inadequate to provide much needed 

economic evidence in both conditions. In order to improve the standard of modelling, 

future model-based analyse ought to adopt strong methodologies which follow good 

practice recommendations and guidelines, as well as being transparent about the model, 

structure and parameters used with uncertainties being adequately addressed.   
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Chapter 5:  SYSTEMATIC REVIEW OF DECISION ANALYTIC 

MODELLING IN STRATIFIED CARE: Using Osteoporosis as a case 

study.   

5.1 Introduction 

Chapter 2 explored the clinical and economic value of stratified care treatments for low 

back pain, whilst Chapter 4 systematically reviewed decision analytic models undertaken 

to-date in treatments for low back pain and sciatica. In the latter review, it can be noted 

that there was an absence of modelling studies containing stratified treatment pathways for 

either condition. Therefore, there is a need to understand how health economists have 

attempted to model stratified treatments and understand how this could differ from 

modelling non-stratified care.  

Various guidelines have been produced to guide modellers in creating high quality and 

consistent economic evaluations in the area of stratified treatments (e.g. Degeling et al., 

2017). However, these guidelines focus upon stratification by means of genetic testing 

which has its own specific methodological debates, such as, what is the utility value 

associated with a patient knowing that they carry a genetic mutation? Or, can the model be 

constructed such that the uncertainty of the sensitivity and specificity of the test are 

represented? Whilst these are interesting debates, these reviews and guidelines do not 

provide information on specific methodological issues which may arise from having to 

model stratified care pathways within decision analytic models.  

There are a number of methodological questions which this review aims to explore.  

1. Which type of decision analytic model is commonly employed to represent the 

stratification in the treatment pathway?  

2. Which health states are used to represent the process of determining the stratified 

risk group in the model?  
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3. Upon stratification does each risk group have a unique model structure?  

4. What methods had health economists used to identify parameters for each risk 

(stratification) groups?  

 In order to answer these questions a review of decision analytic models in stratified care 

approaches in musculoskeletal disease was undertaken. The review had three specific 

objectives:   

To identify, document and classify existing model-based economic evaluations of stratified 

care pathways in musculoskeletal diseases in terms of i) their modelling techniques ii) data 

inputs, and iii) structure of the models. Narrative synthesis will be used to summarise and 

explain findings.    

5.2 Methods 

5.2.1 Search strategy  

The protocol designed for this systematic review was developed by considering the 

PRISMA-P checklist (http://www.prisma-statement.org/Extensions/Protocols.aspx). The 

protocol specified that studies that were considered relevant for inclusion in this review if 

they were an economic evaluation undertaking decision analytic modelling of any stratified 

treatment for any musculoskeletal condition. Stratified treatment was understood in broad 

terms, to include personalised medicine, targeted treatments, and other associated terms.  

After a scoping search, which identified a large number of potentially relevant studies, the 

review was restricted to include only osteoporosis studies. Face-to-face discussions were 

held between all authors regarding which conditions ought to be included in the review. 

Osteoporosis was selected on the basis that, of all the conditions identified by the review, 

the stratification and subsequent matching of patients to a matched treatment occurred in a 

manner most similar to that of the stratified care approach considered in this thesis.  



157 
 

Articles were identified using database searches, with subsequent studies identified in the 

literature and backward citations were included. The following health and health economic 

databases were used to conduct searching: OVID INTERFACE (MEDLINE, EMBASE, 

PsychINFO), EBSCO INTERFACE (Cumulative Index to Nursing and Allied Health 

Literature (CINAHL), Allied and Complimentary Medicine Database (AMED), EconLit), 

COCHRANE LIBRARY INTERFACE (Database of Abstracts of Reviews of Effects 

(DARE), Cochrane Database of Systematic Reviews (CDSR), Health Technology 

Assessment (HTA) Database, NHS Economic Evaluation Database (NHS EED)), 

THOMSON REUTERS INTERFACE (Web Of Science).  

In developing the search strategy, economic study terms were created using the SIGN 

strategy developed by the NHS Centre for Reviews and Dissemination at the University of 

York. Terms relating to stratified medicine were developed after a discussion with 

academic experts in the stratified care research group at Keele, as well as input from 

supervisors, and from Dr. Nadia Corp, Research Associate: Systematic Reviews at Keele 

University, who also helped further define the strategy. Search terms used for 2 of the 

databases, (Embase and NHS EED) are included in Appendix 3. Database searches were 

conducted during August 2017; searches covered the lifetime of the databases and were 

limited to English papers.  

5.2.2 Inclusion and exclusion criteria  

Studies were included if they were economic evaluations that contained any form of 

decision analytic model. In order to be considered a modelling study, articles had to state 

that they had used any of the modelling types discussed in Chapter 4. Studies could include 

any treatment for osteoporosis providing they were evaluating a stratified treatment 

approach, either in comparison to another method of stratification or a non-stratified 

approach.  
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Inclusion criteria:  

1. Model-based economic evaluation studies using cost-effectiveness, cost-

consequence, cost-benefit, cost-utility or cost-minimisation analysis.  

2. To be considered a modelling study the paper must either (i) specified to have used 

either a decision tree, Markov model, decision analytic model, individual sampling 

or patient (simulation) model, dynamic transition model, or (ii) declared to have 

used an economic model, even if specific model type was unspecified. 

3. Any stratified treatments for patients with osteoporosis in any care setting.   

Exclusion criteria:  

1. Any economic evaluation which does not include decision analytic modelling, e.g. 

trial-based evaluations.  

2. Conference abstracts, editorials.  

3. Studies not in English language.  

4. Studies using stratification tools to perform sub-group analysis or consider 

particular patient cohorts, without directly comparing a stratified care pathway with 

a non-stratified treatment.  

5.2.3 Data selection and extraction  
 

Records obtained from the databases were imported into ENDNOTE. Duplicates were 

removed and stored. A two stage exclusion process was used. Firstly, titles were scanned 

on the basis of title and abstract, with clearly irrelevant studies excluded. Studies were then 

placed into three folders named “included”, “possible”, and “excluded”. SJ checked that 

studies placed into the “included” folders were indeed suitable for inclusion. At the second 

stage, the list of ‘possible’ studies was reviewed independently by SJ and KK to scan for 

relevance using the criteria reported above.  
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5.3 Systematic Review Results 
 

Figure 5.1 illustrates the process of selecting and identifying studies eligible for inclusion 

in the review.  

 

Figure 5-1 PRISMA flow diagram showing study selection for inclusion in the 
systematic review 

 

9260 studies were imported into Endnote, of which 2728 were duplicates. Of the 6532 

unique studies, 6477 were excluded in accordance with the protocol exclusion criteria, by 
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the first reviewer. 10% of these excluded studies, or 600, were checked independently by 

the second reviewer (SJ). The 55 possible studies were all independently reviewed by all 

four other reviewers (SJ, KK, RaO, and ML). 17 studies were excluded on the basis they 

did not perform an economic evaluation, 9 studies were economic analyses but did not 

include a clear decision modelling methodology, and 20 studies were excluded on the basis 

they were threshold or sub-group analyses not direct comparisons between a stratified care 

pathway and another method of stratification, and/or a non-stratified treatment. 

5.3.1 Overview of studies  

Table 5.1 provides an overview of the modelling studies included in this review. The table 

reports results for nine studies concerned with stratified treatment approaches for 

osteoporosis.  

All included studies were stated to be cost-effectiveness analyses. Note that, Stevenson et 

al. (2007) is a publication of the model built in the HTA Monograph. All studies had the 

aim of evaluating screening methods to identify the most efficient means of stratifying the 

prescribing of treatments for osteoporosis. The treatments considered were either strontium 

ranelate (Borgstrom et al., 2010; Stevenson et al., 2007), oral bisphosphonate treatment 

commonly alendronate (Mueller and Gandjour et al., 2008; Nayak et al., 2011; 2012; 

Schott et al., 2007; Ito et al., 2009; 2014), or hormone replacement therapy (Nagata-

Kobayashi et al., 2002).  

Five of the papers (Schott et al., 2007; Nayak et al., 2011;  Ito et al., 2009; Ito et al., 2014; 

Mueller and Gandjour et al., 2006) had two stage stratification of patients, which involved 

patients having some initial test to determine their suitability for some further (more 

expensive) evaluation. The remaining four papers were concerned with identifying the 

cost-effectiveness of using a particular sole screening mechanism to determine whether 

patients should receive the treatment for osteoporosis.  
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Common comparators were no screening (Schott et al., 2007; Nayak et al., 2012), no 

screening and no treatment (Stevenson et al., 2007), watchful waiting (Ito et al., 2014), and 

universal scans (Schott et al., 2007; Ito et al., 2009). 
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Table 5.1 Overview of studies included in this review 

Author Country Osteoporosis 
Treatment  Population Test Type Comparators Purpose  

Type of 
Economic 
Evaluation 

Borgstrom 
et al. 

(2010) 
U.K. Strontium 

ranelate 

Postmenopausal 
women with 
clinical risk 
factors for 

fracture 

 
FRAXA (R) algorithm and 

T-scores for BMD  
 

No treatment To identify cost-effective 
thresholds 

Cost-
effectiveness 

Analysis 

Ito et al. 
(2009) U.S Alendronate 

White males aged 
70 and over with 

no previous 
osteoporotic 

fracture 

Treatment based upon 
selective bone densitometry 

using the OST. 
DOUBLE 

STRATIFICATION 
 

No bone 
densitometry 
and universal 

bone 
densitometry 

 

To evaluate the cost-
effectiveness of 
performing bone 

densitometry according to 
risk stratification 

Cost-Utility 
Analysis 

Ito et al. 
(2014) U.S Alendronate 

Rural women 
aged 65 years and 

above with no 
previous fracture 

 
Treatment initiated based 
upon screening using the 

BMD. Patients with 
Osteopenia were 

subsequently assessed using 
FRAX  

DOUBLE 
STRATIFICATION.  

 

Watchful 
waiting 

To assess the cost-
effectiveness of various 

strategies for rural women 
with limited access to 

duel-energy X-ray 
absorptiometry 

Cost-
effectiveness 

Analysis 

Mueller 
and 

Gandjour 
(2008) 

Germany Alendronate 

Women of the 
general 

population aged 
50–90 years 

 
Screening with 

QUS as a pre-test for DXA 
and treatment 

DOUBLE 
STRATIFICATION 

Immediate 
access to DXA 

and (ii) no 
screening. 

To determine the cost 
effectiveness of 

osteoporosis screening 
with 

QUS as a pre-test for 
DXA and treatment with 

alendronate 

Cost-
effectiveness 

Analysis 
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Author Country Osteoporosis 
Treatment  Population Test Type Comparators Purpose  

Type of 
Economic 
Evaluation 

Nagata-
Kobayashi 

et al. 
(2002) 

Japan 
Hormone 

replacement 
therapy  

Postmenopausal 
women aged 50 
and over without 
specific risk of 
breast cancer. 

DXA 

No screening 
or treatment; 
treatment for 

osteopenia and 
osteoporosis 

after 
screening; and 

universal 
treatment 

To identify the cost-
effectiveness of screening 

for osteoporosis in 
postmenopausal Japanese 

women 

Cost-
effectiveness 

Analysis 

Nayak et 
al. (2011) U.S 

Oral 
bisphosphonate 

therapy 

Postmenopausal 
U.S. women aged 
55 years or older. 

Comparison of various screening and treatment 
strategies. 

Three different tests; Central DXA; QUS; 
SCORE tool. 

 
Also use of DOUBLE STRATIFICATION - 

SCORE tool to determine whether patients 
receive DXA. 

 

To identify the cost-
effectiveness of various 
screening strategies for 

osteoporosis in  
postmenopausal 

American women 

Cost-
effectiveness 

Analysis 

Nayak et 
al. (2012) U.S Alendronate 

Community-
dwelling women 
aged 65 and over 

Screening with dual-energy 
x-ray absorptiometry (DXA) 

of the femoral neck and 
lumbar spine. 

No screening 
with treatment 

only after 
fracture 

Assess the impact of 
Generic Alendronate Cost 
on the Cost-Effectiveness 
of Osteoporosis Screening 

and Treatment 

Cost-
effectiveness 

Analysis 

Schott et al. 
(2007) France Risedronate or 

Alendronate 

Postmenopausal 
women aged 70 
years and over 

Measuring BMD, using 
DXA, of those having at least 
one risk factor (based upon 

ANAES guidance). 
Double stratification. 

DOUBLE 
STRATIFICATION 

Measuring 
BMD of all 

women; 
No screening 

Identify the cost-
effectiveness of screening 

strategies applied to 
elderly women aged 70 

years and older 

Cost-
effectiveness 

Analysis 
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Author Country Osteoporosis 
Treatment  Population Test Type Comparators Purpose  

Type of 
Economic 
Evaluation 

Stevenson 
et al. 

(2007) 
UK Strontium 

ranelate 

Postmenopausal 
women without a 

prior fracture 
aged 50-84. All 
patients in the 
model have 

CRF’s to make 
them candidates 

for treatment, and 
therefore the 

model does not 
represent 

stratification by 
CRF. 

Measuring BMD, using DXA 

Neither 
treatment nor a 

BMD scan; 
 

Treatment 
without a 

BMD scan. 

To assess the impact of 
alternative identification 
approaches on the cost-

effectiveness of the 
screening strategies for 

receipt of strontium 
ranelate for prevention of 

osteoporotic fractures 

Cost-
effectiveness 

Analysis 

Abbreviations; BMD (Bone mineral density); CRF (Clinical risk factors); DXA (dual energy x-ray absorptiometry);  OST (Osteoporosis Self-Assessment Tool); QUS (Calcaneal 
quantitative ultrasonography); SCORE (Simple Calculated Osteoporosis Risk Estimation).  
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5.3.2 Modelling Structure  
Of the eight models which specified the time horizon of their analysis, six were lifetime, 

and two (Schott et al., 2007; Stevenson et al., 2007) used ten-year time horizons.  

In terms of model type, six models used a Markov cohort model (Borgstrom et al., 2010; 

Ito et al., 2009; Ito et al., 2014; Mueller and Gandjour, 2006; Nagata-Kobayashi et al., 

2002; Schott et al., 2007), and three an individual state transition model (Nayak et al., 

2011; Nayak et al., 2012; Stevenson et al., 2007). Four models featured a schematic with a 

decision tree prior to their main model to represent the stratification process, two models 

placed their decision tree prior to Markov models (Ito et al., 2014; Schott et al., 2007) and 

two models placed their decision tree prior to individual simulation models (Nayak et al., 

2012; Stevenson et al., 2007). Models which did not provide such a schematic (n = 5) used 

the same arithmetic calculations as if they had used a decision tree (Borgstrom et al., 2010; 

Ito et al., 2009; Mueller and Gandjour, 2006; Nagata-Kobayashi et al., 2002; Nayak et al., 

2011).  

The approach to the structuring of all six Markov models was similar and can be best 

highlighted by considering the schematic provided by Ito et al. (2014), shown in figure 5.2. 

In the model, the decision tree shows that all women were assigned to either the watchful 

waiting or stratified by a bone mineral density (BMD) or clinical risk factor (CRF) based 

strategy which would determine whether or not they would receive treatment. 



166 
 

 

 

Figure 5-2 Decision Tree showing how each strategy impacts upon whether or not a 
patient receives treatment (Ito et al., 2014) 

Those under watchful waiting did not receive treatment until experiencing a fracture. 

Those women undergoing a BMD-based strategy were stratified by the World Health 

Organization Fracture Risk Assessment Tool calculated with BMD (FRAX-BMD) after 

undergoing dual-energy X-ray absorptiometry (DXA) screening, with those considered to 

have osteoporosis and high-risk osteopenia receiving treatment. Meanwhile, those in the 

CRF-based strategy, patients were stratified according to the World Health Organization 

Fracture Risk Assessment Tool calculated without BMD (FRAX-Clinical), and again, 

high-risk patients received treatment. With the proportions of patients who would receive 

treatment in each strategy determined, patients were then entered into a Markov model of 

which the health states are essentially concerned with fractures, see Figure 5.3. 
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Figure 5-3 Markov model structure, Ito et al. (2014) 

In the Markov model, all women were entered in the fracture-free state. Each year women 

were at risk of sustaining a fracture (hip, vertebral, wrist, or other) or death from other 

causes. Whether or not they experienced an event determined whether they remained in 

“fracture-free” or proceed to any of the “post-fracture” states, or became absorbed into the 

death state. The probability of experiencing a fracture was determined as a function of the 

baseline characteristics of the cohort (e.g. age, BMD, history of fracture) but also of 

whether or not they had received the treatment. In other words, each cohort faced an 

identically structured Markov model, with differential fracture risks based upon the 

characteristics of their cohort, as well as whether or not they received treatment. The other 

cohort models (Borgstrom et al., 2010; Ito et al., 2009; Mueller and Gandjour et al., 2008; 

Nagata-Kobayashi et al., 2002) all used the same principles and schematics.  

The decision tree and Markov model by Schott et al. (2007), see figure 5.4, demonstrates 

how such a model is generated within the specific software used in the modelling chapters 

of this thesis, TreeAge for Healthcare (TreeAge Software Inc., Williamstown, MA, USA).  
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Figure 5-4 Decision tree and Markov model by Schott et al. (2007) 

This model is one of the types with a double stratification. The first stratification is based 

upon risk factors, with a second subsequently based upon BMA test for those who received 

one. The fracture risks in this model are dependent upon age and dependence, as well as 

whether the patient received treatment or not.   

The simulation models in this review have similarities to the cohort state transition models, 

with the exception that these models simulate individual women through the model one at 

a time. Of the three models which used individual simulation models, two were by the 

same author, Nayak et al. (2011; 2012). The two models by Nayak and colleagues are 

schematically similar to the Markov models which have a decision tree prior to them. 

Essentially, the authors evaluated seven testing strategies alongside no screening, although 

their model allowed for the strategy to be repeated every five years and also every ten 

years, resulting in 22 alternative strategies. Again, the same principles are adopted to that 

of the Markov models, i.e. with a positive screening result, the individual is offered 

treatment which lowers fracture risk. Key difference with this class of models is that 

patients can experience a series of events over time, including a new osteoporotic fracture, 

death, moving to a nursing home, or recovery, as well as adverse medication events. These 

events subsequently determine future progression through the model. The use of the 
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simulation model allows an individual patient to have their fracture risk based upon the 

women’s characteristics, such as age, femoral neck or lumbar spine BMD, and presence or 

absence of a history of fracture. 

Finally, Stevenson et al. (2007) also run a simulation model in their HTA monograph. 

Their analysis differs most from the analytical models in other studies. This is because 

their analysis ran patients through the following simulation model first to answer their first 

research question related to the use of strontium ranelate as a treatment for osteoporosis, it 

is only subsequent that this model is used as the basis for identifying the optimum 

screening strategy.  

 

Figure 5-5 Simulation model by Stevenson et al. (2007) 

In their model, full patient history is recorded, meaning that events such as prior fractures 

and current residential status can, therefore, be used to determine the likelihood of events 

in the next period. Again, treatment lowers fracture risk but incurs treatment costs.  

Having established the cost-effectiveness of using treatment in various groups of patients 

using a simulation model, Stevenson et al. (2007) then move to identifying the cost-

effectiveness of identification strategies in various groups. They do this essentially by 
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arithmetic calculations on the principle of monetary net benefit, with the optimal strategy 

being the strategy with the highest monetary net benefit.  

They evaluate three strategies for different ages, and CRFs, (a) offer neither treatment nor 

a BMD scan; (b) offer treatment without a BMD scan; and (c) offer BMD scans to all and 

treatment to those whose T-score shows that they can be treated cost-effectively. These 

strategies were compared to current standard practice. For option a) the net benefit is 

assumed to be zero minus the costs of identification, which would include the costs of 

asking the initial questions. For option (b) the net benefit is the number of women in each 

T-score band who can be treated cost-effectively multiplied by the appropriate net benefit 

from treatment, minus the costs of identification and BMD scanning. The net benefit for 

option (c) is the number of women multiplied by the appropriate net benefit of treatment 

minus the cost of identification.  
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Table 5.2 Modelling Characteristics 

Author  Model 
Type  Name of States  Time horizon Method of comparing strategies  

Borgstro
m et al. 
(2010) 

Markov 
cohort  

Wrist fx, Well, Other Osteo fx, 
Vertebral fx, Hip fx, Post Vertebral 

fx, Post hip fx, Dead 

Time horizon 
death or 100 
years of age.  

The same model structure was used for each stratified risk group.   
Each subgroup group faces a unique set of model parameters based upon the 
fracture risk.   BMD testing determines how many osteoporotic patients are 

identified and thus receive treatment.   
Results are presented separately for whether the cohort receives BMD test or 

not.  

Ito et al. 
(2009)  

Markov 
cohort  

Death from nonfracture, adverse 
event from alendronate therapy, wrist 

fracture, subclinical vertebral 
fracture, clinical vertebral fracture, 
hip fracture, or second hip fracture.  
Long terms states “death, nursing 
home, community-dwelling but 

dependent, or community-dwelling 
and well” 

Time horizon 
death or 100 
years of age.  

The same model structure was used for each stratified risk group.   
The number of patients identified and subsequently treated is dependent upon 
testing strategy. Each cohort essentially faces a fracture risk dependent upon 
receipt of treatment, as well as age and pre-fracture functional status of the 

patient.  
Results are shown in a table showing the ICER for testing strategies.  

Ito et al. 
(2014)  

Decision 
tree prior 

to 
Markov 
cohort  

Fracture-free, post-hip fracture, post-
vertebral fracture, post-wrist fracture, 

post-other fractrure, dead.  

Time horizon 
death or 100 
years of age.  

The same model structure was used for each stratified risk group.   
Decision tree shows that two types of patients enter their Markov model, 

those who receive treatment on the basis of the screening and those who do 
not. Whether or not the patient had received treatment, as well as patient 

characteristics, then determines fracture risk within the model. 
Results are shown in a table showing the ICER for testing strategies. 

 

Mueller 
and 

Gandjour 
(2006)  

Markov 
model 

Stratification unspecified.  
Clinical stages in Markov model with 
eight stages, no fracture, hip fracture, 
vertebral fracture, forearm fracture, 

post-fracture hip, post-fracture 
vertebral and forearm) 

 

Time horizon 
death or 100 
years of age.  

The same model structure was used for each stratified risk group.   
The difference between the two strategies being the number of women 

selected for treatment, not graphically modelled in the study. Fracture risks 
based upon receipt of treatment, as well as risk factors and BMD,  

Results are shown in a table showing the ICER for testing strategies. 
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Author  Model 
Type  Name of States  Time horizon Method of comparing strategies  

Nagata-
Kobayash

i et al. 
(2002) 

Markov 
cohort  

Healthy, Acute hip fracture, good 
prognosis, poor prognosis, death.   

The same model structure was used for each stratified risk group.  
Fracture risk dependent upon risk level, as well as receipt of treatment. The 

hypothetical cohort classified into 3 groups according level of risk of hip 
fracture: 41.7% of people at low risk of hip fracture; 31.0% with osteopenia, 
and 27.3% with osteoporosis. All patients in cohort run through the model 
for the four different strategies. Post-fracture outcomes are standardised 

regardless of initial risk group.  

Nayak et 
al. (2011)  

Individual 
state 

transition 
model 

Screening strategies (8); Treatment 
(2); Fracture state (5); Outcomes (11) 

Lifetime of the 
patient.  

The same model structure was used for each stratified risk group. 
Patient were sent through the individual sampling model such that their 

screening strategy influenced whether they received bisphosphonate, which 
in turn, along with individual characteristics, influenced the degree to which 

they obtained fractures or not.  
Results are shown in a table showing the ICER for testing strategies. 

Nayak et 
al. (2012)  

Decision-
Tree prior 

to 
individual 

state 
transition 

model 

Decision Tree (4): DXA screening 
and no screening (into usual care).  

ISTM(6): (I) 5 fracture types or 
death. (II) Survive or Death. (III) 
Community dwelling or nursing 
home. (IV) No new fracture, new 

wrist fracture, new vertebral fracture, 
new hip fracture, hospital death. (V) 

Alendronate Adverse Event or no 
adverse event.  

Lifetime of the 
patient  

The same model structure was used for each stratified risk group.  
Patient were sent through the ISTM, with their screening strategy influencing 
whether they receive alendronate, which in turn, along with their individual 

characteristics, then influences fracture risk.  
Results are shown in a table showing the ICER for testing strategies. 

Schott et 
al. (2007) 

Decision 
tree prior 

to 
Markov 
model 

Three branches of a decision tree - 
Screening strategies (3); DXA 

screening or not (2); treatment or not 
(2).  

All stratifications used decision tree.  
 

Markov model for all patients - good 
health, hip fracture, dependence, or 

death (4) 

Ten year  time 
horizon 

The same model structure was used for each stratified risk group.  
Patients are stratified according to the risk factors, and then those with the 
presence of risk factors have a subsequent stratification according to DXA 
score. In the model, the fracture risks are dependent upon presence of risk 
factors and whether they had treatment or not.  This process is shown in a 

decision tree.  
Results are shown in a table showing the ICER for testing strategies. 
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Author Model 
Type Name of States Time horizon Method of comparing strategies 

Stevenson 
et al. 

(2007) 

Decision 
tree then 

individual 
state 

transition  

Then ISM for health states -  
No event; hip fracture (to non-fatal 

hip fracture (to nursing home or 
resides in the community) or fatal hip 

fracture); vertebral fracture; 
proximinal humerus fracture; wrist 

fractures; breast cancer (to non-fatal 
breast cancer or fatal breast cancer); 
coronary heart disease (to non-fatal 

coronary heart disease); death.  

Ten-year time 
horizon 

The same model structure was used for each stratified risk group. Patient 
outcomes are simulated in an ISM, using fracture risks and death rates 
dependent upon whether the patient received treatment as well as individual 
risk factors. 

The net benefit for each testing strategy reflects an arithmetic function of 
costs of identification and the variation in costs and outcomes for those 

receiving treatment. 

Abbreviations; BMD (Bone mineral density); CRF (Clinical risk factors); DXA (dual energy x-ray absorptiometry); fx (Fracture); ICER (Incremental cost-effectiveness ratio); 
ITSM (Individual state transition model);  OST (Osteoporosis Self-Assessment Tool).  
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5.3.3 Sensitivity analyses  
 

Given this review is about the stratification process, this section concerns only sensitivity 

analyses directly related to the stratification.  

The predominant form of sensitivity analyses in this study which related to the 

stratification process, concerned the cost-effectiveness implications of varying the 

sensitivity and specificity of the test. Deterministic analysis appeared in five studies (Ito et 

al., 2009; Ito et al., 2014; Mueller and Gandjour, 2008; Nayek et al., 2011), these studies 

also included uncertainty over their screening rate in their PSA.  

Nagata-Kobayashi et al. (2002) included a deterministic analysis on the proportion of 

screened patients in each risk group. Whilst Stevenson et al. (2007) performed a 

deterministic analysis on GP time to perform initial risk assessment and time to discuss 

DXA scan, as well as the admin costs of DXA scan.  
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Author  Sensitivity Analyses   

Borgstrom et al. 

(2010) 
None 

Ito et al. (2009)  Deterministic analysis around the age which the patient receives screening, as well as the  sensitivity and specificity of the OST tool  

Ito et al. (2014)  Deterministic and probabilistic sensitivity analyses were performed upon varying screening rates  

Mueller and 

Gandjour (2008)  
Sensitivity analysis conducted for the sensitivity and specificity of the tests  

Nagata-Kobayashi et 

al. (2002) 
Deterministic sensitivity analysis on the proportion screened in each risk group.  

Navak et al. (2011)  
Deterministic analyses varying the duration of rescreening, and the ages of patients entering the analysis.  

PSA reviews the uncertainty regarding the test sensitivity and specificity.  

Nayak et al. (2012)  None 

Schott et al. (2007) Many variables were tested, and only those with the greatest effect were disclosed.  

Stevenson et al. 

(2007)  

Deterministic analysis performed on GP time to perform initial risk assessment, time to discuss DXA scan, and the admin costs of DXA 

scan.  

Abbreviations; DXA (dual energy x-ray absorptiometry); GP (General Practitioner);  OST (Osteoporosis Self-Assessment Tool); PSA (Probabilistic sensitivity analysis).  

Table 5.3 Sensitivity Analysis 
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5.3.4 Treatment Efficacy  
 

As previously noted, with few exceptions, the health states included in this review reflect 

some form of fracture. The treatments in these analyses impact the cost-effectiveness by 

reducing the risk of fracture. Therefore fracture risk, as well as treatment efficacy 

(reduction in fracture risk), are the key parameters in these models.  

A key question for modelling in stratified care therefore must be, does the progression 

through the model relate to the stratification. In relation to fracture risk, as noted, all of the 

eight models follow a similar pattern with models using fracture risks which are for the 

most part independent of the stratification of patients. Whilst fracture risks are not based 

upon the stratification, many of the risk factors which are used for the stratification of 

patients are also used to parameterise fracture risk. In other words, progression through the 

model is not determined by the stratification, but rather based upon similar characteristics 

used to stratify. For example, five models which stratify using BMD score also allow BMD 

to influence fracture risks (Ito et al., 2014; Mueller and Gandjour, 2008; Nagata-kobayashi 

et al., 2002; Nayak et al., 2012; Nayak et al., 2011). Meanwhile, Ito et al. (2009) use the 

OST tool, which is used for stratification also to impact upon fracture risk.  

The six models which use cohort modelling use cohort characteristics to derive their 

fracture risks, whilst the three which use individual simulation models have the benefit of 

basing their fracture risks upon individual characteristics and previous events experienced 

in the model.  

In terms of how the stratification impacts upon treatment efficacies within the model, 

treatments, commonly alendronate, reduce the fracture risk for patients, which were 

modelled as a relative risk reduction in all models. In all but one of the models, treatment 

efficacy was set as entirely independent from the stratification mechanism, with the 
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exception of Nayak et al. (2011) who set their treatment efficacies as partially dependent 

upon T-score.  
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Table 5.4 Treatment Efficacy 

Author Sources  Method of deriving parameters for 
fracture risks 

Fracture risk 
independent 

of 
stratification 

Method of deriving parameters 
for treatment efficacy  

Treatment 
efficacy 

independent of 
stratification 

Borgstrom et 
al. (2014) 

Baseline risks come from 
prospective study by Singer et 

al. (1998) and systematic review 
by Stevenson et al. (2005). 

Fracture risks calculated using 
the FRAX® tool. 

 
Effects of risedronate on 

fracture risk from meta-analysis 

Fracture risks in model cohorts were set 
as relative risks to the ‘normal 

population’. 
 

Risks reflected cohort characteristics; 
low BMI, prior fragility fracture, parental 
history of hip fracture, long-term use of 

oral glucocorticoids, rheumatoid arthritis, 
current smoking status, and alcohol 

consumption. 

ü 
 

Treatment using risedronate 
impacts upon relative risk of 

fracture, independent of 
stratification. 

 
Fracture reduction benefit 
returns to null in a linear 
fashion over 5 years post-
completion of risedronate 

therapy. 

ü 

Ito et al. 
(2009) 

Baseline fracture incidence from 
a population-based survey  

 
Fracture relative risks due to the 

presence of osteoporosis, 
fractures, and OST score.  

 
Relative risk reduction of 

fractures owing to alendronate 
therapy based on meta-analysis 

Fracture risks in model cohorts set as 
relative risks relative to incidence rates in 

the ‘nonosteoporotic population’. 
 

Risks reflected cohort characteristics; 
OST score (age and low body weight), 

presence of osteoperosis, vertebral 
fracture.  

Nursing home placement also impacts 
fracture risk.  

 
 

ü 
 

Treatment using alendronate 
impacts upon relative risk of 

fracture, independent of 
stratification. 

 
Treatment benefit assumed to 
start in year three of therapy. 

Fracture reduction benefit 
returns to null in a linear 
fashion over 5 years post-
completion of risedronate 

therapy. 

ü 

Ito et al. 
(2014) 

Baseline fracture incidence from 
the US National Inpatient 

Sample database. 
 
 

Fracture risks in model cohorts were set 
as relative risks to the general population. 

 
Risks reflected cohort characteristics; 
age, BMD Z-score, and history of prior 

fractures. 

ü 
 

Treatment using alendronate 
impacts upon relative risk of 

fracture, independent of 
stratification. 

 
 

ü 
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Author Sources  Method of deriving parameters for 
fracture risks 

Fracture risk 
independent 

of 
stratification 

Method of deriving parameters 
for treatment efficacy  

Treatment 
efficacy 

independent of 
stratification 

Ito et al. 
(2014) 
(contd) 

Treatment effect, and relative 
risks of fracture from 

metaanalyses. 
  

Fracture reduction benefit 
returns to null in a linear 
fashion over 5 years post-
completion of alendronate 

therapy. 

 

Mueller and 
Gandjour 

(2008)  

Fracture risk in baseline, and 
risk groups determined by 

various methods of integrating 
sources with assumptions.  

 
Effectiveness of alendronate was 

derived from meta-anaylsis of 
studies identified via literature 

search.  

Fracture risks in model cohorts were set 
as relative risks to the general population. 

 
Risks reflected cohort characteristics; 
age, prior fracture, body weight, smoking 

status, mobility, number of falls, and 
family history. High risk patients 

determined by BMD T-score.  

ü 

Treatment using alendronate 
impacts upon relative risk of 

fracture, independent of 
stratification. 

 

ü 

Nagata-
Kobayashi et 

al. (2002)  

Risk group cohorts obtained 
from epidemiological study 

(Fujiwara et al., 1995). 
 

HRT treatment effect from a 
review of observational studies 
by Grady et al. (1992). Weiss et 
al., [1980] reported that the risk 
of hip fracture decreased with 

prolonged use of HRT. 

Model uses three defined risk groups 
(fracture risk) according to BMD T-score, 
41.7% of people at low risk; 31.0% with 

osteopenia; 27.3% with osteoporosis. 
 

Risks reflected cohort characteristics; 
age, BMD T-score.  

Nursing home placement also impacts 
fracture risk.  

 
 

ü 
  

Treatment using HRT impacts 
upon relative risk of fracture, 
independent of stratification. 

 

ü 

Nayak et al. 
(2012)  

 
Fracture rates for women not on 

alendronate treatment were 
based on Study of Osteoporotic 

Fractures (SOF) data.  

Fracture risks in model simulations were 
set as relative risks to population without 
risk factors.  

 
 

ü 

Treatment using alendronate 
impacts upon relative risk of 

fracture, independent of 
stratification. 

 

ü 
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Author Sources Method of deriving parameters for 
fracture risks 

Fracture risk 
independent 

of 
stratification 

Method of deriving parameters 
for treatment efficacy 

Treatment 
efficacy 

independent of 
stratification 

 

Relative risk reduction for 
alendronate from a study by 

Liberman et al. (1995), meta-
analysis by Karpf et al. (1997), 

and 3 trials 
 

Risks reflected individual characteristics; 
age, femoral neck or lumbar spine BMD, 

and history of fracture. 
   

Nayak et al. 
(2011) 

 
Fracture risks probabilities 

calculated used logistic 
regression equations developed 

from Study of 
Osteoporotic Fractures data.  

 
Treatment effects of oral 

bisphosphonate from meta-
analysis.  

Fracture risks in model simulations were 
set as relative risks to population without 
risk factors.  

 
Risks reflected individual 

characteristics; age, femoral neck or 
lumbar spine BMD, and presence or 

absence of a history of fracture.  
 

  
ü 

Treatment using alendronate 
impacts upon relative risk of 
fracture, dependent upon T-
score used for stratification. 

 
Fracture reduction benefit 
returns to null in a linear 
fashion over 5 years post-
completion of alendronate 

therapy 

ꭓ 

Schott et al. 
(2007) 

Hip fracture rates (Baudoin et 
al., 1996; 1997).  

 
 

35% reduction of hip fracture 
incidence over 10 years after a 
treatment 5 years based upon 

three Kanis et al. (2002a; 2002b; 
2004) studies.  

 

Fracture risks seem to be the same across 
the population, with annual hip fracture 

probability.  
 

Risks reflected cohort characteristics; 
 Unstated.   

 
Hip fractures were modelled at a higher 

rate in nursing home resident 
 
 

 
ü 

Treatment using alendronate 
impacts upon relative risk of 

fracture, independent of 
stratification.  

The treatment effect over the 
time horizon took into account 
efficacy, offset, compliance, 

and discontinuation rate.  

ü 
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Author Sources Method of deriving parameters for 
fracture risks 

Fracture risk 
independent 

of 
stratification 

Method of deriving parameters 
for treatment efficacy 

Treatment 
efficacy 

independent of 
stratification 

Stevenson et 
al. (2007) Stevenson et al. (2007)  

  Individual fracture risks in model 
simulations set as function of risk factors 

 
Risks reflected individual 

characteristics; age, previous fracture at 
each site, and residential status. 

ü 

Treatment using alendronate 
impacts upon relative risk of 

fracture, independent of 
stratification. 

 
Fracture reduction benefit 
returns to null in a linear 
fashion over 5 years post-
completion of alendronate 

therapy 

ü 

Abbreviations; BMI (Body Mass Index); BMD (Bone Mineral Density); DXA (dual energy x-ray absorptiometry); FRAX ( Fracture Risk Assessment Tool); GP (General 
Practitioner);  OST (Osteoporosis Self-Assessment Tool); PSA (Probabilistic sensitivity analysis);  
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5.3.5 Utility Values  
 

An important issue for assessment within the models is how utility values are calculated 

for each stratified comparator, and none of the models appear to use risk-specific utility 

values. In Table 5.5, the column on the far-right shows that of the eight models which use 

utility values in their analysis, all of them used utility values which were independent of 

their initial stratification type, and were based upon defined health states. All models had 

utility values associated with fractures, most had specific post-fracture states with unique 

utility values (Ito et al., 2014; Mueller and Gandjour, 2008; Nayak et al., 2011; Stevenson 

et al., 2007), some had utility values associated with mode of residence (Ito et al., 2009; 

Nayak et al., 2012; Nayak et al., 2011; Stevenson et al., 2007) as well as disutilities 

associated with adverse events (Ito et al., 2009; Nayak et al., 2012; Nayak et al., 2011; 

Stevenson et al., 2007). One model included a utility value based upon ‘prognosis’ after 

hip fracture (Nagata-Kobayashi et al., 2002).  
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Table 5.5 Utility Values 

Author Sources  Method of deriving parameters for individual 
risk groups  

Utility values 
independent of 
stratification 

Borgstrom et al. 
(2014)  

Two prospective observational cohort studies (Borgstrom et al., 2006; 
Strom et al., 2008). Supplemented by expert opinion in a published 
study, a study containing empirical observations and the population 
tariff values for the UK.  

Population tariff values for the UK are used. 
Fracture states carry specific utility losses. 

Utility losses in the first year after a fracture 
at the hip, spine, or forearm were based on 

empirical estimates.  

ü 

Ito et al. (2009) 

Baseline utility for well state was collected from nationally 
representative survey (Hanmer et al., 2006) 

Utility multipliers for each fracture type were obtained from 
systematic review (Brazier et al., 2002). 

 

Utility values are set for each health state, 
with specific values calculated for the 

fracture states, as well as dwelling type, and 
esophageal ulcer.  

 

 
ü 

Ito and Leslie (2014)  “Nationally representative samples” come from a report by Hanmer et 
al. (2006).   Cohort study by Kanis et al. (2004).  

Utility values are set for each health state, 
with specific values calculated for the 
fracture states, as well as post-fracture state.  

ü 

Mueller and 
Gandjour (2008) 

For the no-fracture state (QOL) data from the general population was 
used, estimated by a 

time trade-off questionnaire by Brazier et al. (2002). Utility values for 
forearm and clinical vertebral fractures were calculated using the EQ-

5D, as reported in Kanis et al. (2004). Quality-adjusted life 
expectancy associated with hip fractures was modelled in a previous 

paper (Gandjour et al., 2006). 
For the post-fracture state QOL improved, although not to the prior 

level, authors reference (Schousboe et al., 2005).  

Utility values are set for each health state, 
with specific values calculated for the 

fracture and post-fracture states. 
ü 

Nagata-Kobayashi et 
al. (2002) Time-trade off study by Salkeld et al. (n=194) Utility values are set for health state, and 

prognosis after hip fracture.  ü 

Nayak et al. (2012)  
 Baseline values from Hammer et al. (2006).  

Disutilities come from six multiple published studies on various 
fractures.  

This analysis uses a baseline utility, then 
subtracts disutilities associated with 

fractures, living in a nursing home, and 
medication adverse events. 

ü 
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Author Sources  Method of deriving parameters for individual 
risk groups  

Utility values 
independent of 
stratification 

Nayak et al. (2011)  

Baseline values come from Hanmer et al. (2006), a report of 
nationally representative values for the noninstitutionalized US adult 

population.  
Other utility values are derived from numerous other sources.  

Utilities are given for each health state and 
are also set as dependent upon age. Post-

fracture states, nursing home residence, and 
esophagitis also have utility values.  

ü 

Schott et al. (2006) Effectiveness was estimated as the average number of years without hip fracture over 10 years N/A 

Stevenson et al. 
(2007)  

 
Utility values for fractures were calculated using the EQ-5D, as 

reported in Kanis et al. (2004).  

Utility values are calculated before the 
strategy calculations are performed.  ü 

Abbreviations; BMI (Body Mass Index); BMD (Bone Mineral Density); DXA (dual energy x-ray absorptiometry); FRAX ( Fracture Risk Assessment Tool); GP (General 
Practitioner);  OST (Osteoporosis Self-Assessment Tool); PSA (Probabilistic sensitivity analysis).  
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5.3.6 Costing stratification and individual risk groups  

A further key issue for this review was how the stratification process impacted upon the 

costs included in the model, and how the costs were derived.  

Firstly, as was the case with utility values, costs were associated with the health states, 

which were independent of the stratification process. Therefore the models in this review 

did not make any significant alterations to the costing process. In terms of costs associated 

with stratified treatments, all studies included the costs associated with screening and 

testing patients, but it was not clear how this was included in the model, e.g. which states 

or which time points were used for these costs.   

Some studies included some unique aspects of the testing process. Firstly, Ito et al. (2014) 

included in their societal analysis not only the costs of administering the test, but also 

travelling to the test site, as well as lost earnings from the trip. Second, Mueller and 

Gandjour et al. (2008) included the costs of false positives and follow up of patients. Third, 

Schott et al. (2007) included the costs of a screening campaign. Finally, Stevenson et al. 

(2007) used a rigorous and thorough method for costing the identification process. They 

cost the GP’s initial risk assessment and subsequent GP consultation of the algorithm in 

minutes, treatment without a DXA scan is given a further 10-minute appointment to 

discuss and initiate treatment. They also cost booking and execution of the DXA scan, 

followed by a 10- minute appointment to discuss the DXA results.  

All studies included the direct costs of the treatments as well as the costs associated with 

managing fractures, and as these are not related to stratification these are not listed in table 

5.6. 
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Table 5.6 Costs 

Author  Sources  Costs associated with risk groups  
How was cost of the test 

incorporated into the 
analysis 

Borgstrom et al. 
(2014)  Cost analysis by Stevenson et al. (2006) 

Costs were independent of stratification, other than testing 
costs. 

Other costs included; Nursing home costs for hip fracture  

Unclear.  
The cost of the test was 

included for those who had 
the test and for those who 

didn’t.  

Ito et al. (2009) 

Direct medical costs taken from a 
population-based cost analysis (Gabriel et 

al., 2002).   
Home healthcare or nursing home care 
costs from a cost study (Harrow et al., 

1995).  
Costs of screening for osteoporosis 

Medicare Physician Fee Schedule Look-
up Tool.  

The price of generic alendronate was 
taken from an online retail pharmacy.  

Costs were independent of stratification, other than testing 
costs. 

Other costs included; Adverse events, home healthcare 
and nursing home care costs.  

 

Cost of the test included. 
Unclear where test cost was 

included. 

Ito et al. (2014)   

Cost of DXA and physician visit from 
2014 Medicare National Average Rates 
(ACoR, 2014). Median weekly earnings 

from the US Bureau of Labor Statistics to 
estimate the opportunity cost of travel 

time to complete DXA (USDoL, 2014).   
Treatment costs included cost of generic 

alendronate reported in online retail 
pharmacy (Drugstore.com, 2014). Fracture 

costs from a population-based cost 
analysis in Olmsted County, MN (Gabriel 

et al., 2002)  

Costs were independent of stratification, other than testing 
costs.  

Other costs included; societal costs included patient 
travelling to the test site as well as lost earnings also.  

 

Cost of the test included. 
Unclear where test cost was 

included.  
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Author  Sources  Costs associated with risk groups  
How was cost of the test 
incorporated into the 
analysis 

Mueller and 
Gandjour (2008)  

Costs of DXA based on the German price 
list for outpatient treatment. QUS costs 
based on the German medical fee 
schedule.  
The price for alendronate was taken from 
a public database at the Federal Statistical 

Office Germany.  
 

Costs were independent of stratification, other than testing 
costs. 
Other costs included; costs of false positive results and 
follow-up.  
 
 

Costs of test included. 
Unclear where test cost was 
included.  

Mueller and 
Gandjour (2008) 

cont’d 

Costs of Treatment for Fractures For hip 
fractures, all inpatient, using weighted 
average diagnosis-related group rates 

(InEK, 2006) 
 

  

Nagata-Kobayashi et 
al. (2002)  

All costs except for drug costs were based 
upon a cost of illness study for 

osteoporosis [Ogawa et al., 1996) 

Costs were independent of stratification, other than testing 
costs. 

 

Cost of the test included. 
Unclear where test cost was 

included. 

Nayak et al. (2012)  

Medicare database - Centers for Medicare 
and Medicaid Services national physician 

fee schedule website (2010) 
 

Drug Topics Red Book.: Physician’s Desk 
Reference 

 

Costs were independent of stratification, other than testing 
costs. 

Cost of the test included. 
Unclear where test cost was 

included. 

Nayak et al. (2011)  

Fracture-related resource use from 
Medicare reimbursement rates (CMMS, 

2011).  
Nursing home costs based upon a national 

nursing home insurance survey (GE, 
2003). Over-the-counter omeprazole price 

from a low-cost pharmacy (Walmart, 
2010). 

Costs were independent of stratification, other than testing 
costs.  

Cost of the test included. 
Unclear where test cost was 

included..  
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Author  Sources  Costs associated with risk groups  
How was cost of the test 

incorporated into the 
analysis 

Schott et al. (2007) 

In France, the price of DXA a cost of 75 
euros based on the average costs observed 

in practices.  
Costs of the screening campaign were 

derived from French screening campaign 
for breast cancer [Watt, 2003]. Costs for 

preventive treatments based on risedronate 
or alendronate (Kanis and Johnson, 2002).   
Costs of hospitalization after a hip fracture 
were based on three previous French data. 

Costs were independent of stratification, other than testing 
costs. 

Other costs included; Costs of a screening campaign.  
 

Cost of the test included. 
Unclear where test cost was 

included. 

Stevenson et al. 
(2007)  

This report uses the costs reported in a 
systematic review by Kanis and colleagues 
(Kanis et al., 2002) having inflated, where 
applicable, to 2003/04 prices (Curtis et al., 

2004).  
NICE appraisal (2005). 

BMD scan cost (Stevenson et al., 2005).   

Costs were independent of stratification, other than testing 
costs. 

Other costs included; Costing of GP consultation times in 
minutes for the entire testing process.  

Cost of the test included. 
Unclear where test cost was 

included. 

Abbreviations; BMD (Bone Mineral Density); DXA (dual energy x-ray absorptiometry; GP (General Practitioner);  OST (Osteoporosis Self-Assessment Tool);  
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5.4 Discussion of results 
5.4.1 Statement of principal findings 
The review demonstrated that the decision models built to assess stratified care in 

osteoporosis had used consistent methods. In what follows, the particular aspects of the 

modelling process will be discussed, as well as suggestions of how these approaches might 

inform model construction in subsequent chapters.  

5.4.2 Modelling Structure  
Modelling guidelines stipulate that the analyst should favour the simplest model able to 

appropriately represent the study objectives, natural history of the disease, and the 

treatment pathways (e.g. Philips et al., 2006). A simple model has the advantage of 

transparency and clarity, which facilitates easier validation (Barton et al., 2004). Due to the 

long time horizons considered in the analyses and natural history of the condition, none of 

the models used the simplest of model structures, the decision tree, with studies using 

either Markov or ISM models. Six of the models selected a Markov cohort model, which at 

a superficial level at least appears appropriate given in all these models the decision 

problem requires patients to transition in and out of transient and potentially recurrent 

health states over time, such as osteoporotic hip fractures.  

However, generally Markov models are used for homogenous cohorts, so the crucial 

consideration is; can Markov models appropriately model a heterogeneous cohort which 

requires subdivision according to risk stratification? The answer appears to be yes to a 

degree. The Markov models in this review commonly modelled the stratification with the 

inclusion of a decision tree prior to the Markov analysis, where the branches of the 

decision tree reflect the different groups within the stratification. The different model 

parameters associated with different risk groups and treatments were used to parameterise 

unique Markov models for each branch. The overall costs and effects of stratification by 

screening risk factor, therefore, becomes a function (weighted by the probabilities on the 

branches) of the costs and effects associated with each of the Markov models associated 
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with the branching of the cohort in the decision tree. Given six of the models appear to 

have adopted such an approach; it seems these authors consider it as a reasonable means 

with which to approach modelling a stratified pathway.  

Clearly, there are advantages of using the decision-tree prior to the Markov model in 

representing a stratified cohort, namely the simplicity of the approach. However, in more 

complex stratifications, the number of branches in the decision tree will increase, and 

where there are many states in the Markov model, the model may become unmanageable. 

Indeed, three models used an individual sampling model, albeit with some similarities in 

structure. The rationale given by these papers for the use of the ISM was the ability of the 

individual patient approach to provide more accuracy and flexibility than the cohort 

approach. Obviously, where stratified treatment pathways are being modelled numerous 

individual parameters are likely to influence subsequent model events than non-stratified 

treatments. For example, in the simulation model by Nayak et al. (2011), fracture risk is 

dependent upon age, femoral neck or lumbar spine BMD, and history of fracture. Given 

that seven strategies are being evaluated, with two treatment types, and fracture risks based 

upon four individual patient characteristics, and a Markov model with 14 states, it is clear 

that a Markov structure, in this case, would be impractical.  

Therefore the critical issue for the analyst selecting the modelling approach, is can all 

relevant information relevant to the cost-effectiveness of a stratified care approach be 

captured within the decision tree and Markov structure? Or is an ISM model using 

individual parameters required to capture all information relevant to the cost-effectiveness 

of the approach? This is likely to depend upon the number of states in the model, as well as 

the importance of individual parameters deemed necessary in order to parameterise future 

events in the model.  
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5.4.3 Parameter Values  
In terms of how the stratification affected the derivation of model parameters, in certain 

studies the fracture incidences were partially reflective of the same risk factors used to 

perform the stratification. However, this is conceptually different from basing those values 

solely upon which group patients were stratified to. For osteoporosis, data on fracture risks 

according to particular characteristics are readily available, and therefore obtaining such 

data posed no significant difficulties. In some case, models were able to base fracture risks 

upon a complex array of individual or cohort characteristics. This may not be the case for 

other conditions which make use of stratified treatments.  

It was however noted that data were lacking on the long-term outcomes for patients who 

were stratified to receive either alendronate or risedronate. As a consequence, five studies 

assumed that the fracture reduction benefit returned to zero in a linear relationship over 

five years after completion of either therapy.  

In all bar one study, the stratification process had no direct relationship with the treatment 

effect, with treatment effect set as a relative risk reduction for patients identified as having 

an osteoporotic fracture. Costs and utility values for the models were also set as reflective 

of health state, and independent of which group the patient was stratified or which 

treatment path the patient followed. The concept of having health states set independently 

of the treatment, and reflective of the natural biology of the condition, was also endorsed in 

the previous review of modelling in low back pain and sciatica in chapter 4. Part of the 

justification for doing so, which also appears relevant here, is reducing the number of 

parameters required and avoids problems such as that associated with the HTA model in 

the previous chapter, where the authors assumed the utility values associated various 

different treatments were all the same as successful surgery. Where a model is structured in 

such a way, the primary concern then becomes deriving differential parameters for 

movements between the states, in this case, fracture risks.  
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As expected the costs of stratification testing were included in the model to different 

degrees of complexity, this was the only way in which the stratification impacted upon the 

model parameters. Unfortunately, it is not clear in which states or stages the costs were 

inputted into any of the models.  

5.4.4 Sensitivity Analyses 
It was considered important by several authors to include the impact of varying the 

sensitivity and specificity of the stratification tool in various forms of sensitivity analysis. 

The commonality of this approach suggests that this ought to be included within any 

analyses where the sensitivity and specificity of the test are likely to impact upon its cost-

effectiveness. Indeed, two of the studies included the uncertainty regarding the value of the 

test specificity and sensitivity in their PSA.  

Screening rates, as well as age cohorts for screening, were also included in sensitivity 

analyses; these were shown as sub-group and scenario analyses. Clearly running the model 

for different cohorts will provide decision makers with richer information upon which to 

base a decision, and these analyses ought to reflect important sub-groups relevant to the 

decision.  

5.4.5 Strengths and weaknesses of the review  
The major strength of the review relates to the breadth of the search criteria as well as the 

variety of databases used to identify studies. Moreover, this is the first systematic review to 

identify, document and classify model-based economic evaluations of stratified treatment 

pathways for osteoporosis.  

The major limitation of this review could relate to the search criteria. It is possible that 

model-based economic evaluations were excluded because they did not contain both 

‘economic’ and ‘modelling’ terms used by the search strategy. In order to overcome this, 

the review did use as broad a search strategy as possible, using terms such as ‘economic’ 

or ‘model’ which in other contexts could be said to lack specificity.  
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Relating this back to the purpose of the thesis, to construct decision analytic models for 

stratified care in LBP and sciatica; whilst there are similarities between these two 

conditions and osteoporosis, there are also important differences between the two. For 

example, back pain is highly recurrent, whereas movement into and out of osteoporotic 

fractures are not likely to be as frequent as future flare-ups of back pain. Mean pain levels 

associated with back pain is also more constant over time, whereas osteoporotic fractures 

are mostly isolated events. These differences could limit the applicability of the approaches 

described in this review.   

5.4.6 Implications  

The review identified a consensus around the use of particular methodologies in the area of 

modelling in osteoporosis. It may, therefore, be possible to advocate the use of the 

techniques within this review for other stratified treatment approaches which share 

common features.  

- The use of decision trees to subdivide the cohort, followed by a Markov structure 

can be considered appropriate. In some instances it may be necessary to use an ISM 

model in order to handle increasingly complex decision problems. This is a 

decision which ought to be taken in consultation with clinicians and experts in the 

field.  

- States are best set as reflective of the underlying condition, instead of the treatment 

itself. This limits the number of parameters required in order to populate the model.  

- Associated model utility values and transition probability have commonalities with 

the means of stratification, but are not directly associated with stratification.  

- Sensitivity analyses may be required to consider the sensitivity and specificity of 

the test where this impacts the cost-effectiveness of the approach. It could also be 

important to consider the cost-effectiveness of the approach according to different 

sub-groups; this includes although is not limited to age cohorts and screening rates.  
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5.5 Conclusion  

This review has highlighted commonalities in approaches towards the modelling of 

stratified treatments in the condition of osteoporosis. Namely, all models are initially sub-

divided by a decision tree, following which each of the risk groups has its own Markov 

model (with same model structure regardless of stratification). Each Markov model is then 

differentially parameterised on the basis of cohort or individual characteristics. Treatment 

efficacies, utilities and costs, are almost entirely unrelated to the stratification process, with 

fracture risks only partially dependent upon the same data used to stratify patients. 

These approaches were considered and in some cases applied, in the construction of the 

LBP and sciatica models in the following two chapters (Chapters 6 and 7 respectively). 
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Chapter 6:  MARKOV MODEL-BASED COST-EFFECTIVENESS 
ANALYSIS OF STRATIFIED CARE VERSUS USUAL CARE FOR 
LOW BACK PAIN 

 

6.1 Introduction and Objective 

The previous chapters have explored the theoretical and practical underpinnings of 

decision analytic modelling in health economic analysis; the presentations and clinical 

course of low back pain (LBP) and sciatica; and systematically reviewed the use of 

decision analytic modelling in both conditions and stratified care. In this chapter, all the 

above are considered together, beginning by describing the methodological approaches 

adopted for the Markov state transition model for LBP, outlining the justifications and 

assumptions which underpin model structure, data inputs and methods of analysis, 

reporting the model findings, finishing with a discussion of the implications of these 

results.  

Chapter 1.5 described the current management of LBP patients including the stratified care 

model for LBP (STarT Back approach) which is clinically and cost-effective compared to 

non-stratified care. However, the long-term cost-effectiveness of the STarTBack stratified 

care model for LBP, is currently unknown, this could be addressed by decision modelling. 

In the systematic review of published studies with decision model-based economic 

evaluations in LBP in Chapter 4, these models were shown to have several shortcomings 

(Hall et al., 2019). These include failing to adequately characterise the condition in health 

states and the absence of modelling the long-term pathway due to the lack of data and 

difficulty of modelling symptom flare-ups. Moreover, there are currently no decision-

analytic models of a stratified care approach to managing LBP. Therefore, the work 

described in this chapter aims to conceptualise the first decision model of a stratified care 

approach for the management of LBP.  
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6.2 Methods 

A Markov model was constructed with two-monthly cycles, and analysis performed over a 

ten-year time horizon in order to assess the cost-effectiveness of stratified care versus usual 

care from the NHS perspective, with a secondary analysis also performed from the societal 

perspective. In what follows, each aspect of the methodological approach is discussed in 

turn.  

6.2.1 Consultation with experts 

The lack of adequate modelling in both LBP and sciatica meant it was imperative to ensure 

that at all stages of the model development process consultation took place with clinicians 

as well as experts drawn from epidemiological and health economic research backgrounds 

(full details in appendix 4).   

6.2.2 Choice of Model 

In determining which model to select, the simplest model ought to be chosen to adequately 

capture the complexity of the decision problem (Barton, 2004). A Markov model was 

determined as the most appropriate for this condition, given that patients move between 

different levels of functioning and can experience periods of recurring poor function due to 

LBP.  

A decision-tree model cannot easily facilitate representation of adequate time horizon 

necessary for the clinical course of LBP and was therefore ruled out. An individual 

simulation model (ISM) had initially been proposed, in Chapter 5, ISM models were 

shown to be suitable to model stratified treatments, owing to their ability to track and 

update patient characteristics, as well as allow the probability of future events to be 

dependent upon the aforementioned characteristics. After consultation with experts, and 

analysis of relevant available data from cohort studies (BaRNS, see 6.3.10; BeBack see 

6.3.11), it became evident that movement of patients between health states over the long-
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term (between twelve months and seven years) would be best dependent upon their health 

state at twelve months. In a Markov model, the number of states needed to incorporate the 

dependency could cause the model to grow infinitely complex, whereas simulation 

modelling via trackers allow for the incorporation of these phenomena whilst avoiding 

unnecessary complexity. However, the use of matrix algebra to generate the transition 

probabilities (Chhatwal et al., 2016) determined that transition probabilities from 12-

months to 7-years assumed a linear form. Accordingly, during this period, patients would 

transition as a mathematical function of patient function at 12-months (full explanation in 

6.3.7).  

ISMs can also be appropriate where the analysis is of interventions with heterogeneous 

populations, such as LBP. However, given the data available for analysis, the use of an 

ISM would have provided little informational gain relative to the loss of statistical power 

that occurs from having low numbers of observations to derive estimates for each patient’s 

profiles. Information presented in Appendix 5, shows that even the introduction of one 

additional patient characteristic, function at baseline, would lead to very low sample sizes 

for transition estimates. Therefore, given the use of individual trial-based sampling would 

have reduced statistical power and therefore widened the uncertainty around model 

estimates, and with only treatment and function at twelve month determining progression 

through the a cohort model was settled upon. Heterogeneity was explored to a degree in 

sub-group analysis, where each risk-group had an individual unique analysis.    

The model was constructed in TreeAge Pro 2017 version. All statistical analyses were 

performed in STATA 15 / MP.    

6.2.3 Model Population 

Whilst the treatment effect, costs, and utility values used in the base case analysis were 

derived from the STarT Back trial (Hill et al., 2011; Whitehurst et al., 2012), the consensus 
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of the experts involved in consultations was that the IMPaCT Back study (Foster et al., 

2014) population would most closely resemble the consulting population who would likely 

receive the intervention. As a consequence, the relevant study population was drawn from 

the IMPaCT Back study (full methods are reported, Foster et al., 2014). Briefly, IMPaCT 

Back was a prospective, primary care–based, quality improvement study in England with a 

before-and-after design, including adults aged over 18 years old, consulting with non-

specific LBP of any duration, as identified using standardised Read codes (Hassey et al. 

2001). Baseline model characteristics were taken directly from the before phase of this 

study, where participants had a mean age of 53 years at the start of the model, 55% were 

female, 37% were classified as low-risk on the STarT Back tool, 41% medium-risk, and 

22% were high-risk. Baseline characteristics of patients who consented to participate in the 

study are presented in Table 6.1 below. 

Table 6.1 Baseline characteristics of IMPaCT Back study patients 

Characteristic of participating patients Before After 

Age, mean (SD), y 53.0 (15.0) 54.1 (14.8) 
Sex, female, No. (%) 202 (55) 330 (60) 
Currently in paid employment, No. (%) 227 (62) 323 (59) 
Time off work for back pain in past 12 months, No. 
(%) 

109 (49) 133 (42) 

Disability: RMDQ score, mean (SD) 8.7 (5.9) 8.4 (5.7) 
Pain intensity: NRS rating, mean (SD) 5.3 (2.4) 5.0 (2.6) 

Duration of back pain episode, No. (%) 
 <1 month 75 (20) 94 (17) 
 1–3 months 62 (17) 102 (18) 
 3–6 months 75 (20) 111 (20) 

 6 months to 3 years 82 (22) 130 (24) 
 >3 years 74 (20) 117 (21) 
Risk group, No. (%) 
 Low 136 (37) 214 (39) 
 Medium 151 (41) 232 (42) 

 High 81 (22) 108 (20) 
Abbreviations: NRS (Numerical Rating Scale); RMDQ (Roland Morris Disability 

Questionnaire); SD (Standard deviation) 
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6.2.4 Definition of the intervention for non-specific LBP 
 

Details of the intervention (including the stratification tool used) are reported in 1.5.1, and 

described in full elsewhere (Hay et al., 2008; Hill et al., 2011). Briefly, in the intervention 

group, patients’ risk group was calculated using the STarT Back Screening Tool during the 

baseline clinical assessment, and patients were matched to treatments recommended for 

their risk group. Patients in the low-risk group had one off session where they received 

advice on appropriate levels of activity and return to work, explanation of the condition 

and reassurance on expected good outcome/prognosis. Medium-risk patients were referred 

for further physiotherapy sessions to address symptoms and function. High-risk patients 

were referred for further physiotherapy with emphasis on addressing psychosocial 

obstacles to recovery in addition to symptoms and function.  

In the control group, usual care, during baseline clinical assessment, further management 

decisions were made in accordance with the assessing physiotherapist’s clinical judgment, 

without the use of the STarT Back Tool, and physiotherapy treatments received were part 

of normal NHS physiotherapy care. 

6.2.5 Model health states and structure  

The model had seven different health states, shown in figure 6.1.  

Initially, for the first twelve months, a patient’s transition through the model states of risk 

reflect transitions derived from the STarT Back trial directly, imposed upon underlying 

baseline patient risk profiles drawn from the IMPaCT Back cohort. Accordingly, patients 

begin in one of three risk groups, low-, medium-, or high-risk of persistent disability, and 

may move between these states during the first year; patients could also exit the model at 

any time into death. These states were considered reasonable by all experts involved in the 

consultation phase.   
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Figure 6-1 State transition model schematic 

As indicated by the arrows, patients were able to move between the risk groups throughout 

the first-year in each two-month time cycle and had utility values associated with their risk 

group. However, it was not possible to calculate the individual contribution of each two-

monthly cycle to overall first-year cost owing to healthcare resource use data only being 

available for patient healthcare use in the “past twelve months”. Accordingly, costs for the 

first year were a one-off annual cost based upon baseline risk group and attached at cycle 

1.  

At twelve months, as indicated by the three arrows projecting from risk states towards 

function states, patients moved into one of three possible states dependent upon their 

function as measured by their RMDQ (Roland Morris Disability Questionnaire) score 

(Roland and Fairbank, 2000) at the end of the trial. The RMDQ is a measure of back pain-

related disability, where a higher score reflects higher levels of disability on a 24-point 

scale.  
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Having initially proposed using pain or trajectory grouping (see 2.2.3) as health state, the 

decision to use patient function as the long-term health state choice was initially suggested 

during the consultations with the clinicians and experts in the field, on the grounds that 

improving patient function was the main aim of treatments provided in the STarTBack 

trial. Pain as a health state is included as a sensitivity analysis. Further expert consultations 

endorsed this approach. Function data (RMDQ scores) from the BaRNS cohort study 

(Dunn et al., 2013) were also available across seven years, to allow estimates of patient 

prognosis based upon function. In The BaRNS prospective cohort study (Dunn et al., 

2013), 228 people consulting their GP with LBP, aged 30-59 years, on whom data had 

previously been collected during 2001 and 2003, were surveyed again in 2009. One 

hundred fifty-five participants responded and provided sufficient longer-term data for the 

model’s primary analyses. To calculate model transitions, RMDQ scores taken at twelve 

months were used as a baseline, with ratings collected at the start of the seventh year of 

follow up used to determine how patients had moved between function states throughout 

that period in the model.  

There was, however, an absence of literature on the definition of RMDQ score cut-offs for 

LBP patients. As a result, opinions were elicited from experts and augmented by analysis 

of the distribution of RMDQ scores in the risk groups in the STarT Back trial and from 

evidence on RMDQ cut-offs in sciatica patients (Patrick et al., 1995). The following 

categories were used; RMDQ score of 11 and over was classified as poor function, 5 to 10 

inclusive was considered moderate function, and 0-4 was considered good function.  

6.2.6 Model time horizon and cycle length 

In this model, a time horizon of ten years was adopted, which was considered adequate to 

capture meaningful differences between stratified care and usual care. This view was 

endorsed by researchers in stratified care at Keele, as well as the GPs and physiotherapists 
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advising on these issues. In terms of cycle length, because of the time points in the STarT 

Back trial, it was considered appropriate to use two-monthly cycles to facilitate calculation 

of the transition probabilities used.  

6.2.7 Transition probabilities  

In the first year of the Markov model, patients transitioned every two months between 

states representing risk groups from the STarT Back trial (low, medium, high). At the 

twelve-month endpoint of the trial, patients then transitioned into health states based upon 

their allocated function category, as measured by RMDQ in the STarT Back data. Upon 

assignment to the initial functional category, patients subsequently transitioned every two 

months between states (or remained in the same state) for the remaining nine years of the 

model. Their transitions for this period were based upon observed transitions in patients 

with the same function at twelve months to seven years follow-up from the BaRNS cohort 

study.   

6.2.8 Transition probabilities for the first year 

In order to derive the transition probabilities for the first year in both stratified and usual 

care, matrix multiplication was used to transform the four-month (representing baseline to 

four months) and eight-month (representing four to 12 months) transition probabilities 

available in the STarT Back data into two-monthly probabilities. The matrices require the 

simplifying assumption that transition probabilities are linear across the first four months, 

and then assume a different linear function across four to 12 months. The use of matrix 

multiplication transforms the probability into an underlying rate, and where there is 

movement between various states over time; it has been shown to produce more accurate 

estimates than the traditional method (Chhatwal et al., 2016).  

Using the transitions of patients within the first four months of the STarT Back trial allows 

the model to represent the initial improvement achieved in that first four months on both 
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stratified care and usual care. Using separate transitions for zero to four months, and four-

12 months is preferred to using zero-12 month transitions where the rate of transition 

would have been the linear across the entire first year.  

Full details of the process of Matrix multiplication can be found in Appendix 6.  Tables 6.2 

and 6.3 show how this method of minimising the sum of errors between the observed data 

and the numbers predicted by the matrix, using the Microsoft Excel solver add-on, 

generate closely matching estimates between predicted patients and transitions observed 

directly in STarT Back data.   

Table 6.2 Observed number of patients moving in risk groups from baseline to four 
months on stratified care (from observed data – STarT Back trial) 

From/ to n n n n 
 low med high Total 

low 99 6 2 107 
med 150 38 6 194 
high 81 21 9 111 

    412 
Table 6.3 Predicted numbers of patients moving in risk groups from baseline to four 
months on stratified care (from Matrix multiplication) 

From / To n n n n 

 low Med high Total 

low 99 7 1 107 

med 150 37 7 194 

high 81 21 9 111 
    412 

As the transition probabilities were calculated for each risk group separately, no 

standardisation was applied as it was assumed that these probabilities could be directly 

applied to the risk groups in the IMPaCT Back study population, although it is 

acknowledged that there could be some small differences between the characteristics of 

risk groups in both studies.  
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Table 6.4 Model transition probabilities and distributions. 

 Stratified Care Usual Care 

Movement Mean 
(SE) Dist α,β or n Mean 

(SE) Dist α,β or n 

Zero to Four Months 

Low to Medium 0.053 
(0.022) Beta 5.64, 100.4 0.105 

(0.043) Beta 5.35,45.65 

Low to High 0 N/A - 0 N/A 
 - 

Medium to Low 0.588 
(0.035) Dirichlet 114.1 0.764 

(0.044) Dirichlet 71 

Medium to Med 0.279 
(0.032) Dirichlet 54.1 0.035 

(0.019) Dirichlet 3.3 

Medium to High 0.133 
(0.024) Dirichlet 25.8 0.201 

(0.042) Dirichlet 18.7 

High to Low 0.386 
(0.046) Beta 42.5, 67.5 0 N/A  

High to Medium 0.614 
(0.046) Beta 67.5,42.5 0.639 

(0.067) Beta 31.97,45.65 

Four months to Twelve Months 

Low to Low 0.965 
(0.011) Beta 259.67,9.33 0.966 

(0.017) Dirichlet 105.3 

Low to Medium 0.035 
(0.011) Beta 9.33,259.67 0.030 

(0.016) Dirichlet 3.3 

Low to High 0 N/A - 0.004 
(0.006) Dirichlet 0.5 

Medium to Low 0.146 
(0.049) Dirichlet 7.6 0.166 

(0.066) Dirichlet 5.3 

Medium to 
Medium 

0.784 
(0.057) Dirichlet 40.8 0.787 

(0.072) Dirichlet 25.2 

Medium to High 
0.069 

(0.035) 
 

Dirichlet 3.6 0.047 
(0.037) Dirichlet 1.5 

High to Low 0.065 
(0.071) Dirichlet 0.2 0 N/A - 

High to Medium 0.198 
(0.115) Dirichlet 2.38 0.223 

(0.120) Beta 8.54,2.45 

High to High 0.737 
(0.127) Dirichlet 9.48 0.777 

(0.120) Beta 
 

2.45,8.54 
 

Initial Distributions of patients into function states 

Movement Mean 
(SE) Dist α,β or n Mean 

(SE) Dist α,β or n 

Low-risk to 
Poor Function 

0.071 
(0.026) Dirichlet 21 0.038 

(0.017) Dirichlet 5 

Low-risk to 
Moderate 
Function 

0.203 
(0.023) Dirichlet 60 0.269 

(0.039) Dirichlet 35 

Low-risk to 
Good 

Function 

0.726 
(0.015) Dirichlet 215 0.692 

(0.041) Dirichlet 90 

Medium-risk 
to Poor 

Function 

0.595 
(0.062) Dirichlet 38 0.765 

(0.074) Dirichlet 26 

Medium-risk 
to Moderate 

Function 

0.343 
(0.060) Dirichlet 22 0.269 

(0.039) Dirichlet 5 
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Movement Mean 
(SE) Dist α,β or n Mean 

(SE) Dist α,β or n 

Medium-risk 
to Good 
Function 

 

0.062 
(0.031) Dirichlet 4 0.088 

(0.049) Dirichlet 3 

High-risk to 
Poor Function 

0.857 
(0.078) Beta 16.28,2.71 0.90 

(0.100) Beta 7.2, 0.8 

High-risk to 
Moderate 
Function 

0.143 
(0.078) Beta 2.71,16.28 0.100 

(0.100) Beta 0.8, 7.2 

High-risk to 
Good 

Function 
0 N/A - 0 N/A - 

Transitions between function states, one year to ten years 
 Mean (SE) Distribution n 

Poor to Poor 0.986 
(0.017) Dirichlet 48.3 

Poor to Moderate 0.005 
(0.011) Dirichlet 0.3 

Poor to Good 0.008 
(0.013) Dirichlet 0.4 

Moderate to Poor 0.009 
(0.013) Dirichlet 0.4 

Mod to Mod 0.959 
(0.029) Dirichlet 46 

Moderate to 
Good 

0.032 
(0.025) Dirichlet 1.6 

Good to Poor 0.001 
(0.003) Dirichlet 0.1 

Good to 
Moderate 

0.007 
(0.008) Dirichlet 0.8 

Good to Good 0.991 
(0.009) Dirichlet 110 

For probabilistic analyses, Dirichlet distributions, a multivariate form of the beta 

distribution, were used for transition probabilities, unless one of the movements out of the 

state was known to be zero, in which case beta distributions were used.  

Transitions to death were calculated by using 2015/16 ONS life tables (ONS, 2016). 

Annual probability of death for males and females between 55 and 65 was calculated by 

firstly by weighting annual mortality risk towards the 57% of the IMPaCT Back sample 

which was female. Weighted annual mortality risk was converted to annual probability 

using ! = 1 −	&'(). This annual probability was converted into a two-monthly rate using 

* = +
) ln(1 − !), and then converted to a two-monthly probability again using ! = 1 −

	&'(). Transitions to death used in the model are shown in Table 6.5 
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Table 6.5 Two monthly model transition to death 

Age 
Weighted two-monthly 

probability of death 

55 0.000652 

56 0.000704 

57 0.000767 

58 0.000842 

59 0.000937 

60 0.001044 

61 0.001131 

62 0.001241 

63 0.001365 

64 0.001481 

65 0.001589 

 

6.2.9 Moving from the risk groups to the function health states 

At twelve months, patients moved into health states representing function, the values of 

which are shown in Table 6.4 under the heading “Initial distributions of patients into 

function states”. These transition probabilities were based upon the proportion of patients 

in each function state in each of the risk groups at twelve months in the STarT Back data. 

As the model is calibrated with STarT Back data, proportion of patients in each function 

state at twelve months in the model is almost identical to function group at twelve months 

in the STarT Back data. Probabilities were calculated separately for both stratified care and 

usual care, in order to reflect the lower proportion of stratified care patients in poor 

function at twelve months. In the model, costs and rewards associated with each of the 

function states are first attached in cycle seven, at fourteen months, based upon the 

proportion of patients in each of the function states at twelve months.  

6.2.10 Transition probabilities for twelve months to seven years. 

From 14 months onwards, the transition probabilities between function states were exactly 

the same in both the stratified care and usual care arms. However, the differential 
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distribution of patients into function states at twelve months, with equal transitions from 

one year onwards, means that fewer stratified care patients remained in poor function for 

the duration of the model. This assumption that transitions between function states occur at 

the same rate in both arms was explored further in sensitivity analysis. Whilst patient 

movement between the states is linear over time, they are able to move between any of the 

states, although only a small proportion of patients make movements from good to poor 

function. 

Again, matrix algebra was used to derive the transition of patients from one year to seven 

years using data from the BaRNS prospective cohort study (Dunn et al., 2013). To 

determine whether it was appropriate to calculate transition for the model population from 

BaRNS data, mean RMDQ scores for each function state in the STarT Back trial patients at 

twelve months were compared with the mean RMDQ scores of the patients in the BaRNS 

sample at twelve months and seven years. These comparisons are shown in Table 6.6. 

Table 6.6 Mean RMDQ scores of patients in STarT Back trial and BaRNS cohort  

Function 
STarT Back at 

twelve months 

BaRNS at 

twelve 

months 

BaRNS at 

seven years 

Poor 15.021 16.227 15.591 

Moderate 7.228 6.691 6.667 

Good 1.177 1.237 1.374 

 

Whilst the overall scores were slightly lower in the STarT Back trial sample at twelve 

months relative to the BaRNS sample at the same time, neither of the samples had 

statistically significant differences either in population or function state RMDQ (p<0.05).  

With a gap of six years between the twelve-month and seven-year follow questionnaires in 

the BaRNS study, it was again necessary to use the matrix algebraic methods described 

above to transform six-year transition probabilities into two-monthly transitions. One set of 
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matrix derived transition probabilities were used for all movements in the model from 

twelve months onwards, equal in both stratified care and usual care; these are shown in 

Table 6.7. 

Table 6.7 Matrix derived two-month transition probabilities used for extrapolation 

Two months  function  

From / To Poor Moderate Good 

Poor 0.98640 0.00544 0.00816 

Moderate 0.008725 0.959074 0.032201 

Good 0.00130 0.00739 0.99131 

 

Whilst these transition probabilities were calculated reflecting patient movement from 

twelve months to seven years, it was further assumed that the derived probabilities would 

hold over the next three years. Accordingly, these probabilities were used to move patients 

between states from seven to ten years in the model. In all cases the standard errors were 

calculated by using SE (p) = √(p(1-p)/n), where p was the probability of movement 

between the states as generated by the matrices, and n reflects the number of patients in 

each of the function/risk states at the beginning of the period the matrix is reflecting, 

directly obtained from the BaRNS cohort data.  

6.2.11 Costs  

The base-case economic evaluation was performed from the NHS perspective, which takes 

into account costs solely incurred by the NHS and excludes the value of private healthcare 

costs. Costs associated with the first year reflected the resource usage from the Start Back 

trial (Whitehurst et al., 2012). The data used were the same as that presented in the 

published within-trial analysis, which performed multiple imputation and included costs 

directly associated with the trial (Whitehurst et al., 2012). The resource use data for the 

first year originates from STarT Back data reflecting responses to self-report 
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questionnaires and included consultations with GPs and nurses, other healthcare 

professionals, prescriptions, hospital procedures, as well as prescribed medications and 

over the counter treatments, the costs of the latter were included only in the societal 

perspective.  

As the modelling for the first year is predicated upon the treatment effect associated with 

the trial, the costs related to delivering the stratified care model in the trial were included, 

including the costs associated with the trial-specific protocol. The mean costs for low, 

medium and high-risk patients (classified at baseline) were calculated separately for 

stratified care and usual care. Resource usage estimates are similar, although not identical, 

to those reported by the cost-utility analysis of the STarT Back trial (Whitehurst et al., 

2012). The difference in the value of the costs used for the first year in this study originates 

primarily from the differential increase in unit costs since the initial trial evaluation used 

2008 costs.  

Beyond the first year, data from the BeBack study (Foster et al., 2008) were used to derive 

the costs associated with one year of healthcare for LBP patients in each of the function 

states. The BeBack study was a prospective cohort study of patients aged 18 to 60 years, 

consulting their GP for LBP between September 2004 and April 2006. One thousand five 

hundred and ninety-one patients participated in the cohort at the baseline stage. The 

BeBack study data reflect healthcare usage in what would be considered “usual care”, and 

therefore for the base case analysis, it was assumed that stratified care does not impact 

upon the long-term healthcare usage of patients beyond 12 months. Given this represents 

one of the most significant sources of uncertainty in the model, the impact of varying this 

assumption is explored later.   

Unit costs in the model were based upon 2015/2016 prices, and are shown in Table 6.8. 

Total costs were discounted at 3.5% as reflective of NICE guidance (NICE, 2018). It is 
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noted that all costs are derived from questionnaires, which stipulate costs directly related to 

back pain only. Physiotherapy, nurse and GP visits were costed from the Unit Costs of 

Health and Social Care 2016 (PSSRU, 2016). The PSSRU includes the capital overheads 

associated with the receipt of care, whilst costs-per-visit were calculated by using face-to-

face patient multipliers from the 2009 version of the document (PSSRU, 2009). X-Ray, 

blood test, and epidural injection costs were not available in the National Schedule of 

Reference Costs; therefore the costs were taken from the original Whitehurst et al. (2012) 

study and inflated using the Health Service Cost Index (HCSA, 2016). The costs associated 

with over-the-counter and prescribed medications in all cycles were taken from STarT 

Back trial data, owing to the greater detail in the STarT Back trial than the BeBack cohort 

study. These costs were also inflated using the Health Service Cost Index (HCSA, 2016).  

Resource usage data derived from STarT Back and BeBack studies were multiplied by the 

unit prices to create annual costs associated with each state; these are shown in Table 6.9. 

As noted above, in the first year, these estimates were entered into the model at cycle zero, 

to reflect the initial risk group. In cycles seven onwards, the annual estimates of the costs 

associated with each of the function states are divided by six to create a two-monthly cost.  
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Table 6.8 Unit costs assigned to healthcare resource use data 

Healthcare Resource Unit cost Source 

Primary Care:   

GP consultation £34.00 Unit costs of Health and Social Care 2016* 

Nurse consultation £15.93 Unit costs of Health and Social Care 2016* 

Physiotherapy: Initial 

session 
£41.88 Unit costs of Health and Social Care 2016* 

Physiotherapy: initial 1-hour 

assessment (high-risk) 
£55.84 Unit costs of Health and Social Care 2016* 

Physiotherapy: Follow up 

sessions (1/2 hour) 
£27.92 Unit costs of Health and Social Care 2016* 

Hospital-Based Care:   

Consultant LBP first 

attendance 
£136 NHS National Schedule of Reference Costs 

Consultant LBP follow up £83 NHS National Schedule of Reference Costs 

Admission to A and E £147 NHS National Schedule of Reference Costs 

X-Ray £34.23 NHS National Schedule of Reference Costs 

CT Scan £99 NHS National Schedule of Reference Costs 

MRI Scan £145 NHS National Schedule of Reference Costs 

Blood test £18.49 Whitehurst et al. (2012)# 

Epidural injections £218.89 Whitehurst et al. (2012)# 

First consultation with other 

HC professionals 
£57.00 NHS National Schedule of Reference Costs 

Follow up consultation with 

other HC professionals 
£47.00 NHS National Schedule of Reference Costs 

Over Counter medication Patient specific STarT Back data 

Prescribed medication Patient specific STarT Back data 

*Ratio of patient face-to-face contact is taken from Unit Costs of Health and Social Care 2009. All visits 
assumed to be to surgery, no home visits.  

#Costs inflated to 2016 prices using the Health Service Cost Index 
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Table 6.9 Total annual costs per state 

 NHS annual Annual private costs 

 Distributions 
Costs(£) 

mean (SD) 
α, λ 

Costs(£) 

mean (SD) 
α, λ 

Costs year 1 

Low-risk_UC Gamma 136.47 (147.20) 0.86, 0.006 23.57 (51.27) 0.211, 009 

Medium-

risk_UC 
Gamma 312.72 (313.09) 0.998,0.003 42.71 (114.21) 0.14, 0.003 

High-risk_UC Gamma 372.35 (399.93) 0.867,0.002 35.35 (69.12) 
0.262, 

0.007 

Low-risk_SC Gamma 90.90 (169.27) 0.288,0.003 22.70 (72.50) 0.098,0.004 

Medium-

risk_SC 
Gamma 248.81 (239.96) 3.436,0.014 37.09 (120.67) 0.094,0.003 

High-risk_SC Gamma 375.26 (228.09) 2.708,0.007 30.82 (85.62) 0.130,0.004 

Costs 2-10 years 

Poor function Gamma 503.53 (703.66) 0.512,0.001 174.09 (380.65) 0.209,0.001 

Moderate 

function 
Gamma 235.45 (340.11) 0.479,0.002 153.26 (300.34) 0.260,0.002 

Good function Gamma 85.10 (245.73) 0.120,0.001 112.02 (249.01) 0.202,0.002 

Abbreviations: SC (Stratified care); UC (Usual care) 

 

For the societal analysis, due to lack of nationally representative unit cost estimates for 

private health care, unit costs associated with private healthcare were assumed to be the 

same as that of the NHS equivalent. Resource use was taken from the BeBack and STarT 

Back datasets, which provide detail on the number of visits to healthcare practitioners, 

alongside whether those visits were to an NHS professional or a private one. In relation to 

healthcare practitioner visits, very few patients received both NHS and private care, and 

where patients indicated they had received both NHS and private healthcare, the number of 

visits was divided by two, with half of the total cost allocated to NHS and half to private. 

The first-year cost breakdown is presented in Table 6.10.   
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Table 6.10 Healthcare costs, £ (2016), first year, for stratified care and usual care, by 
risk group 

 Stratified care Usual care 

 Low Medium High Low Medium High 

Clinic and 

physiotherapy 
40.18 141.56 213.76 98.97 114.98 122.11 

GP 15.05 33.51 61.41 20.62 47.48 61.13 

Nurse 0.00 0.98 5.09 0.34 1.65 3.63 

Other consultations 0.00 4.41 1.76 4.52 10.61 4.11 

Hospitalisation 

costs 
6.85 12.30 23.80 3.08 21.76 23.36 

Non-study NHS 

physio 
23.59 21.95 43.92 14.37 57.29 93.95 

Non-study private 

physio 
0.59 2.06 6.22 4.71 15.92 6.83 

NHS other 1.76 12.44 25.41 3.60 19.97 30.11 

Private other 12.63 21.33 11.07 9.04 9.64 8.64 

Prescriptions 3.30 17.26 22.68 1.08 28.32 12.31 

OTC medication 9.49 13.65 13.61 17.74 17.15 19.89 

Total NHS costs 90.90 248.81 375.26 136.47 312.72 372.35 

Total private costs 22.70 37.09 30.82 23.57 42.71 35.35 

Total healthcare 

costs 
113.60 286.43 407.23 160.04 355.44 407.80 

OTC: Over the counter 

 

The breakdown of annualised costs associated with each of the function states, is presented 

in Table 6.11 below. 
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Table 6.11 Costs, £ (2016) associated with function states beyond 12-months 

 Poor function Moderate function Good function 

GP NHS 121.91 55.75 23.1 

GP private 0.81 0 0.25 

Nurse NHS 3.77 3.91 0 

Nurse private 0 0.28 0.94 

Hospital Attendance* NHS 70.51 28.05 6.31 

Hospital Attendance* private 15.13 14.39 1.52 

NHS physio 207.62 108.75 31.02 

private physio 36.64 61.52 51.27 

NHS other 63.39 27.17 31.55 

Private other 19.65 9.29 4.51 

Prescriptions 26.69 10.66 0.97 

OTC medication 17.39 12.83 7.16 

Total NHS costs 503.53 235.45 85.10 

Total private costs 174.09 153.26 112.02 

Total healthcare costs 677.62 388.71 197.12 

OTC: Over the counter 

*Hospital attendance includes the cost of imaging 

 

To assess the impact of stratified care upon work participation, self-reported days of work 

absence owing to back pain were estimated from the STarT Back and BeBack datasets, 

with associated costs assigned using the HCM, whereby productivity losses are estimated 

by multiplying some time loss from work absence by a wage rate. In this particular model, 

during the first year work absence in days was estimated from the STarT Back study, and 

multiplied by a daily mean IMPaCT Back population wage (derived from respondent-

specific wage estimates based upon social class), and inflated to 2015/16 equivalent using 

the ONS Wages and salaries annual growth rate (ONS, 2019). For the remainder of the 
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model, length of work absence was derived from the BeBack data and multiplied by mean 

wage identified in IMPaCT Back estimates and adjusted using ONS inflators. In both 

cases, mean work absence in days has been adjusted to account for the 40.35% not in 

employment in the IMPaCT Back study.  

Table 6.12 presents the mean absence due to back pain in the STarT Back trial and BeBack 

cohort study, the wage used, and the percentage of participants employed in the model 

population, the costs of work absence, and total societal costs used in the analysis.  
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Table 6.12 Societal costs of stratified care vs usual care 

 Stratified care Usual care 

Mean days absence due to 
back pain (STarT Back data) 

Low: 0.37 Low: 3 

Medium: 4.07 Medium: 18.44 

High: 9.85 High: 10.57 

Mean daily wage (IMPaCT 
Back data) £95.24 

% employed in IMPaCT Back 
study 59.65% 

Mean cost of back pain 
related work absence* 

Low: £23.56 Low: £176.30 

Medium: £179.59 Medium: £968.82 

High: £444.45 High: £449.86 

Total societal costs (HC costs 
plus absenteeism costs) 

Mean (SD) 

Low: £137.17 (£233.01) Low: £340.17 (£975.86) 

Medium: £471.31 
(£1125.12) 

Medium: £1324.26 (£3588.46) 

High: £867.55 
(£2499.55) High: £867.43 (£1494.77) 

By function 

Mean days absence due to 
back pain (BeBack data) 

Poor: 27.43 

Moderate: 13.20 

Good: 5.60 

Mean wage (IMPaCT Back 
data) 

£95.24 

Mean cost of back-pain 
related work absence* 

Poor: 727.26 (1677.50) 

Moderate: £527.45 (1336.14) 

Good: £232.85 (721.23) 

Total societal costs (HC costs 
plus LOP costs) 

Mean (SD) 

Poor: 1276.78 (149.57) 

Moderate: 900.41 (131.38) 

Good: 429.56 (82.39) 

* Patients who do not work accrue zero days off and £0 societal cost, numbers are adjusted for 0.5965 of 
model population in employment 

LOP Loss of productivity 
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6.2.12 Quality adjusted life years (QALYs) 
A QALY is a function of quality and quantity of life and is calculated simply by the 

multiplication of a quality of life (QoL) score, by the number of years lived. For the model, 

EQ-5D 3L scores for the first year were taken from STarT Back data, with longer-term 

values originating from BeBack. Both sets of responses were converted to utility scores 

based upon the York tariff (Dolan et al., 1995). In the model, QALYs were discounted at 

3.5% per year, as per current NICE guidelines (NICE, 2018). In the PSA, the model uses 

EQ-5D scores sampled from their distribution, and subsequently divides by six in order to 

obtain two-monthly QALYs.  

There were a number of calculations used to obtain the EQ-5D scores used in the first year 

of this model. The patient population reflected standardised mean baseline EQ-5D score in 

the IMPaCT Back study and applied a treatment effect upon EQ-5D score for each risk 

group derived from the STarT Back trial data. Therefore, it was assumed that the absolute 

changes in EQ-5D for each of the risk groups in STarT Back trial are transferrable to the 

IMPaCT Back study population.  

These steps were necessary because the IMPaCT back population generally had higher 

EQ-5D scores at baseline compared to the STarT Back study population. These are shown 

in Table 6.13.  

Table 6.13 EQ-5D values at baseline in IMPaCT Back study 

Risk Group 
Baseline EQ-5D 

IMPaCT Back 

Baseline EQ-5D 

STarT Back 

Low 0.798 0.730 

Medium 0.677 0.551 

High 0.389 0.299 

 

Stratified care and usual care each provided different changes in EQ-5D score in each risk 

group across the first twelve months. To calculate the EQ-5D treatment effect across the 
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first year, regression analysis would usually have been employed to estimate the change in 

EQ-5D score for each intervention, controlling for baseline EQ-5D in each risk group at 

the three different time points. However, because patients move risk groups in each of the 

time intervals, this was not possible.  

Instead, EQ-5D scores were calculated at three time points; baseline, four, and twelve 

months, for each risk group, across both stratified care and usual care, using simple 

descriptive statistics, shown in Table 6.14. The impact of the treatment upon mean EQ-5D 

score in each risk group was then calculated at four months, and again at twelve months, to 

produce a value of the treatment effect for each risk group. For example, low risk on 

stratified care, improved by 0.057 from baseline to four months.  

Table 6.14 Treatment effect upon EQ-5D, stratified care vs usual care 

Risk Group Baseline 4 months 12 months 
Treatment 
Effect 0-4 

months 

Treatment 
Effect 4-

12 
months 

Low_ SC 0.728 0.785 0.779 +0.057 -0.006 

Medium_SC 0.541 0.480 0.414 -0.061 -0.066 

High_SC 0.325 0.108 0.156 -0.217 +0.048 

Low_UC 0.733 0.798 0.750 +0.065 +0.017 

Medium_UC 0.571 0.530 0.425 -0.041 -0.105 

High_UC 0.245 0.176 0.235 -0.069 -0.010 

Abbreviations: SC Stratified Care; UC Usual Care 

 

Next, EQ-5D scores in each of the risk groups for each arm of the IMPaCT Back study 

were standardised to the population mean, low-risk (0.798), median (0.667) and high 

(0.389), shown in Table 6.15 as model baseline utility. The treatment effects calculated 

(Table 6.14), were now added to each of the standardised model baseline utility scores to 

create standardised four and twelve-month utility scores with treatment effect.   
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Table 6.15 Standardised baseline, four and twelve month utility values 

Risk Group 

Model 

baseline 

utility 

Standardised 

4-month 

utility with 

TE 

α,β or n 

Standardised 

12-month 

utility with TE 

α,β or n Distribution 

Low_SC 0.798 0.855 1655,281 0.849 1700,302 Beta 

Medium_SC 0.677 0.616 204,127 0.550 190,156 Beta 

High_SC 0.389 0.172 9,41 0.220 13,47 Beta 

Low_UC 0.798 0.863 1593,253 0.880 1919,436 Beta 

Medium_UC 0.677 0.636 206,118 0.531 185,163 Beta 

High_UC 0.389 0.320 24,52 0.310 31,51 Beta 

Abbreviations: SC Stratified Care; TE Treatment Effect; UC Usual Care 

As these scores were artificially created, standard errors were taken from EQ-5D scores at 

equivalent time points in the STarT Back trial. To generate the utility values at 2, 6, 8, and 

10 months, values were assumed to take a linear function between observed periods; these 

appear in the columns entitled “generated x months” in table 6.16. Standard errors 

originate from the STarT Back trial baseline and four-month data.  

Table 6.16 Estimating EQ-5D scores at unobserved time points 

Risk Group 
Model 

baseline 
utility 

Genera
ted 2-
month 
utility 

Standardise
d 4-month 
utility with 

TE 

Generate
d 6-

months 

Gen 8 
month

s 

Gen 
10 

month
s 

Standardise
d 12-month 
utility with 

TE 

Low_SC 
0.798 

(0.011) 
0.827 

 
0.855 

(0.008) 
0.854 

 
0.852 

 0.851 
0.849 

(0.008) 

Medium_SC 0.677 
(0.014) 0.647 0.616 

(0.027) 0.600 0.583 0.567 0.550 
(0.027) 

High_SC 0.389 
(0.022) 0.281 0.172 

(0.053) 0.184 0.196 0.208 0.220 
(0.053) 

Low_UC 0.798 
(0.011) 

0.831 0.863 
(0.008) 

0.867 0.872 0.876 0.880 
(0.008) 

Medium_UC 
0.677 

(0.014) 0.657 
0.636 

(0.027) 0.610 0.584 0.557 
0.531 

(0.027) 

High_UC 0.389 
(0.022) 0355 0.320 

(0.053) 0.318 0.315 0.313 0.310 
(0.053) 

Abbreviations; SC( Stratified Care); TE (Treatment Effect); UC(Usual care) 
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EQ-5D scores for the function states (beyond 12-months) originated from patients in the 

BeBack study sample who were categorised by function based upon the RMDQ thresholds. 

BeBack data were used, as there were no EQ-5D scores available in the BaRNS cohort 

study. However, as there were no EQ-5D scores in the BeBack 5-year follow up study, 

twelve-month follow-up values were used under the assumption that EQ-5D scores for 

each of the function states at twelve months were stable over the next nine years. EQ-5D 

scores used from fourteen months onwards in each of the function states are shown in 

Table 6.17. 

Table 6.17 EQ-5D scores for function states, years 1-10 of model 

Risk Group Mean Standard 
Error n Distributions α,β 

Poor Function 0.371 0.033 101 Beta 79.13, 134.16 
Moderate 
Function 0.686 0.023 88 Beta 278.65, 127.54 

Good 
Function 0.886 0.009 231 Beta 1103.92, 142.04 

 

The validity of assuming stable EQ-5D scores over time is evidenced by the statistically 

indistinguishable RMDQs score at twelve-months and five-years in the BeBack study data, 

shown in appendix 7.  

6.2.13 Methods of Analysis 

6.2.13.1 Base case analysis  

The base case is a cost-utility analysis of stratified care versus usual care for LBP, 

performed from the NHS perspective. The results are presented in the form of a cost-per-

additional QALY gained. In order to obtain the base case estimates Monte Carlo 

simulation was utilised to perform 10,000 iterations of the model, the purpose of this was 

to capture the extent to which uncertainty over the parameter values impacts upon the cost-

effectiveness. Accordingly, base case QALYs and costs are not point estimates, but means 

of 10,000 replications. The distributions, standard errors, and standard deviations around 
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the point estimates required to perform this analysis are detailed in Tables 6.4, 6.9, and 

6.16. 

 Monte Carlo simulation also facilitates probabilistic sensitivity analysis (PSA). As noted 

in chapter 3, the PSA aims to quantify the degree of confidence in the analytical output 

with reference to the uncertainty associated with parameter values. The results from the 

PSA are represented by cost-effectiveness planes, showing all of the 10,000 model 

simulations, graphically plotting the difference in costs against the difference in QALYs. 

The range of values presented is a visual representation of the uncertainty over differences 

in costs and QALYs between the two treatments. The plane has four quadrants: in the 

north-east (NE) quadrant, a new intervention will offer more health gains but be more 

expensive; in the NW quadrant a new intervention offers worse health outcomes and is 

more expensive; in the SW quadrant an intervention will be cheaper and less effective, and 

in the SE quadrant the intervention will be more effective and cheaper. In the SE quadrant, 

therefore, the intervention is said to be dominant over the comparator; whereas in the NW 

usual care is dominant.  

The uncertainty associated with the adoption decision is commonly represented using a 

cost-effectiveness acceptability curve (CEAC) (Briggs et al., 2006), which is a graphical 

plot of a range of cost-effectiveness thresholds against the probability that the intervention 

is cost-effective at said thresholds. The CEAC allows the decision-maker to assess the 

uncertainty associated with making a particular adoption decision. In the results, 

Willingness to pay (WTP) thresholds of between £20,000 and £30,000 per QALY gained 

are commonly displayed, as these are the values considered acceptable by NICE guidelines 

(NICE, 2008).   
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6.2.13.2 Secondary analyses  

Methodological uncertainty can be defined as the uncertainty in the results of an economic 

evaluation which arise from the choice of analytic methods (Briggs and Gray, 1999).  

Whilst all results are presented discounted, methodological uncertainty (6.3.2) is 

considered by representing subsidiary analysis showing base case results undiscounted.  

Next owing to the high private healthcare costs and volume of time taken off work 

associated with LBP (detailed in Chapter 2), analysis was performed from the societal 

perspective.   

Sub-groups analysis (6.3.3) was also performed on the discounted base case, with the 

model run separately for the three STarT Back risk groups, as the cost-effectiveness 

implications are likely to be different in each risk group.  

6.2.13.3 Deterministic sensitivity analyses  

The various assumptions, simplifications and scientific judgments made when constructing 

a model, can be referred to as structural uncertainty (Bojke et al., 2009). Given the 

uncertainty associated with the long-term parameters in the model, a number of sensitivity 

analyses were performed to assess the robustness of the results to both these structural 

uncertainties as well as parameter uncertainties (6.3.4), namely changes in modelling 

assumptions or temporal assumptions over input parameters used in the base case. All 

scenarios considered were pre-specified in conjunction with the advice and views of the 

group of experts. 

There were a number of analyses assessing structural and parameter uncertainties.  

Subsidiary analysis explored the cost-effectiveness implications of the different expert 

views regarding the impact of stratified care upon long-term treatment costs (6.3.4.1). 

Analysis explored a raising or lowering of the long-term cost of stratified care by 2%, 5%, 

and 10%.  
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As baseline model utility values originated from the IMPaCT Back study population, 

analysis also explored the impact of using the STarT Back utility values throughout the 

first year (6.3.4.2). 

Experts agreed that the most significant source of uncertainty in the model was the long-

term treatment effect for patients who received stratified care. Accordingly, two analyses 

consider the implications of pessimistic (6.3.4.3) and optimistic (6.3.4.4) long-term 

treatment effects by varying the numbers of patients in each function states over time on 

stratified care. A related issue was that the IMPaCT Back treatment effect may better 

represent the true treatment effect possible in this population. An analysis for the 6-month 

treatment effect achieved in the IMPaCT Back study is therefore presented (6.3.4.5). A 

worst-case scenario is also explored (6.3.4.6) whereby, costs are 10% higher long-term on 

stratified care, whilst patients achieve no overall improvement in function beyond two 

years.  

There were some differences in the private cost estimates derived from BeBack and STarT 

Back datasets, and consequently, an alternate deterministic costing scenario (6.3.4.7) was 

evaluated for first-year costs. This analysis applied mean healthcare cost-per-patient 

observed in the STarT Back trial (e.g. £318.26 on usual care) but split those costs across 

the public and private sector using the distribution of NHS vs private costs observed in the 

BeBack study (66% vs 34%).  

Finally, since pain is acknowledged to be an important outcome for LBP patients, it was 

also suggested that a sensitivity analysis (6.3.4.8) assesses the impact of modelling pain 

states instead of function states. In this analysis, transitions were taken from the BeBack 

data, and patients were categorised according to their pain intensity, as measured in the 

STarT Back study, e.g. average across three questions (average LBP pain in last 2 weeks, 

least LBP pain in past 2 weeks, and most painful LBP pain in last 2 weeks). Patients were 

then categorised as in the original BeBack study (Dunn et al., 2006), where >=5 was 
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classified as severe pain; >=1 and <5 as moderate pain, and <1 as no pain. Transitions, EQ-

5D values and costs were calculated from the BeBack data for each of the pain states. In 

order to transition patients from twelve months into pain states, patients were also allocated 

a pain state at the end of the STarT Back trial (by 12 months). 

6.2.13.4 Value of Information Analysis 

As noted in chapter 3, the purpose of value of information analysis (VOI) is to quantify the 

value of conducting further research. The “value” as such, derives from the fact that 

decision-makers want to implement the most cost-effective treatment, and where there is 

uncertainty regarding which is the best option, an incorrect adoption decision could follow. 

In this case, two VOI analyses were performed, an expected value of perfect information 

(EVPI) analysis, and an expected value of perfect parameter information (EVPPI) analysis 

on the base case model. The EVPI uses the quantification of uncertainty from the PSA 

output, and calculates the net value of eliminating that uncertainty, such that the best 

treatment option could be selected in each iteration. This analysis will provide a 

quantification of the value of further research to the NHS. The EVPPI can be estimated by 

assessing the impact of reducing the standard error of a particular parameter to zero on the 

reduction in standard error of overall INB. In other words, the EVPPI is the (expected) 

reduction in expected loss from the reduction in overall decision uncertainty attributable to 

eliminating uncertainty in a particular parameter. 

Using the PSA output an expected value of perfect information (EVPI) per person is 

calculated. To obtain the overall value of removing decision uncertainty, the individual 

estimate is then multiplied by the population expected to benefit from the intervention. In 

order to consider the total value of removing decision uncertainty, it is essential to account 

for, not only the population impacted by this decision annually, but also the duration that the 

comparison holds relevancy. This comparison is assumed to hold relevance for the next ten 
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years, and this time frame is adopted in this analysis. Accordingly, population EVPI can be 

denoted by the following equation:  

 EVPI* ∑ 12
(+3()2

4)5+  

Where EVPI is the individual EVPI estimate, 6) is incidence in the tth year, T is total number of years the 
research would be relevant, and r is the discount rate.  
 
In this study, per person EVPI was estimated using the Sheffield Accelerated Value of 

Information (SAVI) software (Strong et al., 2014). Information about the chosen willingness 

to pay threshold, and units of cost and effect measures, were entered into the software. 

Iterations of parameters, costs and effects from the PSA were saved as .csv files and inputted 

into the software.  

In order to calculate the population expected to benefit, to ensure there is no double counting, 

ten-year consultation prevalence is required. Such a calculation was not found in the 

literature for LBP, so based upon Jordan et al. (2012) who estimated a cumulative seven-

year consultation prevalence of 21.13% it is assumed that the ten-year prevalence is 25%, 

and as a consequence the prevalence of “new” annual consulters is 2.5%. This assumption 

was checked with Kelvin Jordan author of the original paper.  

As the SAVI software does not incorporate a discount rate, the estimated total 10-year 

prevalence was discounted at 3.5%. In order to do this, the 2.5% new consultation rate, was 

multiplied by the UK 2016 population over 18 years old, 51,863,500 (ONS, 2018) to derive 

an annual population likely to receive the intervention, of 1,296,588. This was then 

discounted over 10-years using the formula, ∑ 12
(+3()2

4)5+ , which gives a discounted 10-year 

consultation prevalence of 11,160, 526. 

In order to calculate the single and group parameter EVPPI, the Sheffield Accelerated Value 

of Information (SAVI) software (Strong et al., 2014) was used. Given that there are 75 

parameters in the model, it was expected that the initial contribution of each parameter to 

the overall uncertainty would be minor, and therefore EVPPI was computed for groups of 
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associated parameters. Subsets used in analysis were first year transition probabilities, utility 

values, and costs.  

6.2.14 Validity Checks 

Internal model validity was assessed by running the model in Excel, and comparing 

proportions of the sample in each of the states and one year, and ten years.  

External validity will be assessed by comparing the proportions in each state, as well as 

costs and QALYs at one-year with that of the STarT Back trial. In terms of the longer-term 

validity the model will be compared with the proportions in each state in the BaRNS 

cohort study.  

6.3 Model Results  
 

The presentation of the results appears in four components. Firstly, base case analysis is 

presented, with accompanying CEAC and cost-effectiveness planes. Secondly, subsidiary 

analyses on the base case are performed, namely undiscounted results, a societal analysis, 

and sub-group analysis for each of the risk groups. Thirdly, deterministic sensitivity 

analysis addresses the structural uncertainty over the long-term costs and treatment effect. 

Finally, a value of information analysis considers the potential value of further 

information.  

All results presented are obtained from 10,000 replications using Monte Carlo simulation, 

and all results are discounted aside from those in the undiscounted analysis. Results are 

presented with willingness to pay thresholds of £20,000 per QALY gained.  

6.3.1 Base case analysis 
 

The results of the base case analysis are presented in Table 6.18, showing the QALYs and 

NHS costs associated with stratified care and usual care for the model population.  
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Table 6.18 Base case analysis stratified care vs usual care 

 Mean Cost (£) Mean QALYs 

Stratified Care 1596.83 6.35 

Usual Care 1732.02 6.21 

Difference (Stratified care-

usual care) 
-135.19 +0.14 

 

The ten-year LBP related healthcare costs of stratified care were estimated to be £1596.83 

per patient, with mean QALYs experienced by a patient during the time of 6.35. Usual care 

treatment was more expensive at £1732.02 per patient, and produced 6.21 QALYs. 

Therefore stratified care yielded 0.14 more QALYs and saved £135.19 per patient. 

Stratified care dominates usual care.  

The Monte Carlo simulations demonstrate the variability in these results, shown in the 

cost-effectiveness plane in figure 6.2, where each point on the scatterplot represents one 

iteration of the simulated model, with associated costs on the y-axis and effects on the x-

axis.  

 

Figure 6-2 Cost effectiveness plane, stratified care vs. Usual Care, base case 
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In the majority of the 10,000 simulations, stratified care was more effective, indicated by 

most of the scatter points lying to the right of the y-axis, in SE and NE quadrants. In most 

iterations, stratified care was also less costly with the majority of points below the x-axis in 

the SE and SW quadrants. However, a few of the replications are also in the NW quadrant 

where usual care is cheaper and more effective, indicating that there is still some minor 

uncertainty over the cost-effectiveness of stratified care. 

When these results are plotted onto a cost-effectiveness acceptability curve (see figure 6.3) 

in order to understand how this uncertainty impacts the likelihood of stratified care being 

cost-effective at different WTP thresholds, it can be seen that it is very likely that stratified 

care is cost-effective relative to usual care given the variability in the results.  

 

 

Figure 6-3 Cost-Effectiveness Acceptability Curve, stratified care vs usual Care, base 
case 

At the critical threshold of £20,000 per QALY, stratified care is 87.4% likely to be cost-

effective, rising slightly to 87.5% at £30,000 per QALY.  

To understand this result it is important to observe how the model estimates patient 

prognosis (in terms of function state) on stratified care and usual care. Table 6.19 shows 

model estimates of prognosis over time in each function group. At ten years after treatment 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0

30
00

60
00

90
00

12
00

0

15
00

0

18
00

0

21
00

0

24
00

0

27
00

0

30
00

0

33
00

0

36
00

0

39
00

0

42
00

0

45
00

0

48
00

0

51
00

0

54
00

0

57
00

0

60
00

0

P 
(C

os
t-

ef
fe

ct
iv

e)

Threshold ICER (£/QALY)

Stratified Care Usual Care



229 
 

there are a greater proportion of patients in good function on stratified care (63.1%) vs 

usual care (61.4%) with associated lower costs and higher QALYs.  

Table 6.19 Patient function, stratified care vs usual care, over 10 years 

 End of One-year End of Five years End of Ten years 

Stratified care*    

Good Function 58.2% 62.8% 63.1% 

Moderate Function 22.3% 16.5% 14.2% 

Poor Function 19.1% 18.4% 16.9% 

Usual Care*    

Good Function 53% 59.7% 61.4% 

Moderate Function 23.4% 16.8% 14.2% 

Poor Function 23.2% 21.3% 18.7% 
*Death not shown, same in both arms 

6.3.2 Sensitivity analyses, methodological uncertainty 

Accordingly, this component of the results section assesses the impact of methodological 

uncertainty, e.g. the uncertainty caused by analytical choices, by assessing how the 

inclusion of societal costs in the analysis, as well as not discounting costs and outcomes, 

impact the cost-effectiveness of the approach.  

6.3.2.1 Undiscounted analysis  

The base case model was rerun with no discounting performed; results are shown in Table 

6.20. 

Table 6.20 Stratified care vs usual care, no discounting 

 Mean Cost (£) Mean QALYs 

Stratified care 1876.13 7.50 

Usual Care 2029.60 7.33 

Difference (Stratified care-

usual care) 
-153.47 +0.17 
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When discounting is not performed, the incremental cost savings of the intervention are 

£18.28 higher than in the base case (-£153.47 vs -£135.19), and produce higher 

incremental QALYs (+0.17 vs +0.14). Accordingly, not discounting does not significantly 

impact the probability the intervention is cost-effective; at £20,000 WTP threshold it is 

87.5% likely to be cost-effective, and dominant over usual care.  

6.3.2.2 Societal Analysis 
The results of the societal analysis, showing QALYs and total societal costs associated 

with stratified care and usual care for the IMPaCT Back study population are shown in 

Table 6.21.  

Table 6.21 Societal analysis stratified care vs usual care 

 Mean Cost (£) Mean QALYs 

Stratified care 8146.90 6.35 

Usual Care 8836.89 6.21 

Difference (Stratified care-

usual care) 
-689.99 +0.14 

 

The ten-year societal cost of LBP-related expenses was £8146.90 per patient with the mean 

QALYs experienced by a patient during the time reaching 6.35. Treatment with usual care 

was more expensive at £8836.89 and produced 6.21 QALYs. Stratified care contributed 

0.14 more QALYs and costed £689.99 less. Therefore, from the societal perspective usual 

care is also dominated by stratified care. Compared with the base case results, mean cost 

savings from stratified care are now much higher when societal costs are included (£689.99 

vs £135.19).  

6.3.3 Heterogeneity, sub-group analysis 
 

The base case model was run separately for each of the risk subgroups. QALYs and NHS 

costs associated with stratified care and usual care for each risk subgroup are shown in 

Table 6.22.  
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Table 6.22 Stratified care vs usual care, by risk group 

Low-Risk Mean Cost (£) Mean QALYs 

Stratified care 1396.07 6.50 

Usual Care 1465.35 6.46 

Difference (Stratified care-

usual care) 
-69.28 +0.04 

Medium-Risk   

Stratified care 1659.12 6.30 

Usual Care 1788.11 6.21 

Difference (Stratified care-

usual care) 

 

-128.99 +0.09 

High-Risk Mean Cost (£) Mean QALYs 

STarT Back 1821.10 6.20 

Usual Care 2088.80 5.78 

Difference (Stratified care-

usual care) 
-267.70 +0.42 

Stratified care provides a small QALY gain to patients in the low-risk group (+0.04 

QALY), a good benefit (+0.09 QALY) in medium-risk patients and greater benefits for 

high-risk patients (+0.42 QALY). Stratified care is cheaper in all of the risk groups, but 

most cost-saving in the high-risk group (-£267.70). Stratified care dominates usual care in 
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all risk groups, and is most cost-effective for high-risk patients, saving £267.70 and 

providing an additional 0.42 QALYS.  

The probabilistic simulations show considerable variability in results for low-risk patients, 

demonstrated in figure 6.4 

 

Figure 6-4 Cost effectiveness plane, stratified care vs usual care, low-risk patients 

 

This uncertainty over whether or not stratified care is effective for low-risk patients is 

demonstrated in the Cost-Effectiveness Acceptability Curve in figure 6.5 which shows that 

for low-risk patients at £20,000 per QALY, stratified care is 63.9% likely to be cost-

effective, and 63.7% likely to be cost-effective at £30,000 per QALY.  
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Figure 6-5 Cost-Effectiveness Acceptability Curve, stratified care vs usual care, low-
risk patients 

Stratified care was shown to be £128.99 cheaper (£1659.12) than usual care (£1788.11) for 

medium-risk patients, and provided 0.09 more QALYs (Table 6.22). As there are mean 

cost savings, and only a small treatment benefit, the cost-effectiveness plane in figure 6.6 

shows more of the points of the scatterplot in the southern quadrants (NE and SE).  

 

Figure 6-6 Cost-effectiveness plane, stratified care vs usual care, medium-risk 
patients. 
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The cost-effectiveness curve in figure 6.7 shows that for medium-risk patients, at the 

£20,000 and £30,000 WTP thresholds, there is a 75.8% chance that stratified care is cost-

effective.  

 

Figure 6-7 Cost-Effectiveness Acceptability Curve, stratified care vs usual care , 
medium-risk patients 

 

For high-risk patients, stratified care was £267.70 cheaper than usual care, with a QALY 
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for high-risk patients lie in the eastern quadrants, indicative that stratified care provides 

much more benefit.  

 

Figure 6-8 Cost-effectiveness plane, stratified care vs usual care, high-risk patients. 

The CEAC in figure 6.9 shows that at the WTP threshold of £20,000, there is a 99.5% 

chance that stratified care is cost-effective. At £30, 000 per-QALY that rises to a 99.6% 

likelihood. 

 

Figure 6-9 Cost-Effectiveness Acceptability Curve, stratified care vs usual care, high-
risk patients 
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6.3.4 Sensitivity analyses, structural and parameter uncertainty  

In what follows this section assesses the impact of differing assumptions regarding the 

long-term costs and effectiveness of stratified care, as well as using the implementation 

study data on treatment effect, EQ-5D values from the STarT Back trial, and running the 

model using pain states instead of function, beyond one-year.  

6.3.4.1 Temporal uncertainty over treatment cost 

Table 6.23 shows the impact upon cost-effectiveness of different costing assumptions 

regarding the effect of long-term treatment. The table also presents the probability that 

stratified care is cost-effective at a £20,000 WTP threshold given the different costing 

assumptions.  

 

Table 6.23 Cost-effectiveness of stratified care versus usual care, in different cost 
scenarios 

Cost-variation 
Per patient 

cost, SC 

Incremental Cost, SC vs 

Usual care 

% cost-effective at 

£20,000 WTP 

10% lower costs on SC 1459.74 -271.98 89.2% 

5% lower costs on SC 1524.19 -211.00 88.5% 

2% lower costs on SC 1570.83 -159.82 87.9% 

Base case 1596.83 -135.19 87.4% 

2% higher costs on SC 1623.17 -115.37 87.1% 

5% higher costs on SC 1665.16 -71.76 87.0% 

10% higher costs on SC 1732.05 -1.60 86.5% 
Abbreviations: ICER (Incremental cost-effectiveness ratio); SC (Stratified Care) 

 

It can be seen that the costs of treatment change the incremental cost of the stratified care 

intervention, ranging from saving £271.98 to £1.60, but the likely cost-effectiveness of the 

approach is relatively unchanged. Stratified care is dominant in all scenarios.  
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6.3.4.2 STarT Back trial utility values 

Using the baseline utility values from the STarT Back trial, results in a fall in total QALYs 

of 0.1 from 6.35 to 6.25 for stratified care, and of 0.09 from 6.21 to 6.12 for usual care. 

Accordingly, incremental QALYs for the intervention fall slightly to 0.13 QALYs 

compared with 0.14 in the base case. Stratified care is once again dominant, and likely 

cost-effectiveness remains high at 86%. Results are shown in Table 6.24.  

Table 6.24 Stratified care vs usual care, STarT Back study utility values 

 Baseline EQ-5D used Mean QALYs 

Stratified care 0.73; 0.551; 0.299 6.25 

Usual Care 0.73; 0.551; 0.299 6.12 

Difference (Stratified care-

usual care) 
 0.13 

 
 

 

6.3.4.3 Temporal uncertainty over long-term treatment effect, pt.1 
 

The impact upon cost-effectiveness of more pessimistic assumptions regarding patient 

function on stratified care, are shown in Table 6.25. In the table, the column “convergence 

at year” represents scenarios where, for example, in the case of the row titled “2 years” at 

the end of two-years the distribution of the patient cohort in each of the function states is 

identical on stratified care and usual care, and remains so for the remainder of the model. 

In this sense there is a convergence in patient function at each time point instead of the 

base case assumption that there are always more patients are in good function on stratified 

care throughout the model.  
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Table 6.25 Impact of assumptions over long-term treatment effect upon cost-
effectiveness of stratified care 

Convergence at year Incremental cost Incremental QALY 

% cost-effective at 

£20,000 WTP 

threshold 

2-years -51.25 +0.05 65.2% 

3 years -74.45 +0.08 70.2% 

4 years -86.07 +0.09 73.9% 

5 years -94.98 +0.09 76.6% 

6 years -111.58 +0.11 81.4% 

7 years -119.82 +0.12 83.9% 

8 years -126.45 +0.13 84.6% 

9 years -129.90 +0.13 85.2% 

Base case – no 

convergence 
-135.19 +0.14 87.5% 

 

Whilst stratified care was dominant in all scenarios, the impact of varying assumptions 

over treatment effect changed the probability of cost-effectiveness. Where the same 

proportion of patients are in function groups at 2 years, the probability that stratified care is 

cost-effective falls to 65.2% from 87.5% in the base case. 

6.3.4.4 Temporal uncertainty over long-term treatment effect, pt.2 
 

More optimistic scenarios were modelled, where stratified care is assumed to have a 

continued positive impact, transitioning more patients into good function over time. 

Results for stratified care achieving 2.5% and 7.5% more patients in good function at ten 

years relative to usual care are shown in Table 6.26.  

Table 6.26 Stratified care vs usual care, additional treatment benefit on stratified care 

Additional patients in 

good function at ten 

years 

Incremental cost Incremental QALY 

% cost-effective at 

£20,000 WTP 

threshold 

+2.5% -157.17 +0.17 91.4% 
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+7.5% -173.72 +0.21 93.8% 

 

It can be seen that the cost-effectiveness of stratified care is influenced by increasing 

numbers of patients in good function, reaching 93.8% chance to be cost-effective if 7.5% 

more patients were to achieve good function with this management, at ten years.  

6.3.4.5 IMPaCT Back study treatment effect 
 

A sensitivity analysis was conducted using the treatment effect obtained in the IMPaCT 

Back implementation study. Results are shown in Table 6.27.  

Table 6.27 Costs and effects associated with the implementation study treatment 
effect 

 Mean Cost (£) Mean QALYs 

Stratified care 1632.81 6.28 

Usual Care 1783.15 6.16 

Difference (Stratified care-

usual care) 
-150.34 +0.12 

 

Despite a reduced improvement in function in the first year relative to usual care, stratified 

care remains dominant, saving £150.34 with a 0.12 QALY gain, and an 83.1% chance of 

being cost-effective at a £20,000/QALY threshold.  

6.3.4.6 Worst Case Scenario Analysis 

A worst-case scenario was performed, where patient function was equalised on both 

comparators at the end of the second year, and future costs were 10% higher for patients in 

stratified care, shown in Table 6.28.  

Table 6.28 Stratified care vs usual care, Worst case scenario 

 Mean Cost (£) Mean QALYs 

Stratified care 1814.87 6.26 

Usual Care 1734.38 6.21 
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Difference (Stratified care-

usual care) 
+80.51 +0.05/ ICER= £1610/QALY 

 

In the worst case scenario, stratified care resulted in 0.05 additional QALYs but costed 

£80.51 more, giving an ICER of £1610/QALY. Given the variability in the results, 

probabilistic output showed that stratified care was still 63.9% likely to be cost-effective at 

a £20,000 WTP threshold.   

6.3.4.7 Alternate NHS vs private cost distribution, first year 

On the basis that the STarT Back trial may overstate NHS costs relative to private costs, if 

total healthcare costs taken from the STarT Back trial are assigned to the NHS costs using 

the NHS vs private split (66% vs 34%) found in the BeBack cohort study, mean NHS costs 

are lower in both stratified and usual care arms than the base case, as shown in table 6.29. 

Accordingly, the cost savings associated with the approach are slightly less from the NHS 

perspective than in the base case (-£97.83 vs £135.19), but stratified care is still dominant.  

 

Table 6.29 Stratified care vs usual care, NHS costs using BeBack cost distribution 

 Mean Cost (£) Mean QALYs 

Stratified care £1532.35 6.35 

Usual Care £1630.18 6.21 

Difference (Stratified care-

usual care) 
-97.83 +0.14 

 

Probabilistic analysis in this scenario showed that the intervention is 87.1% likely to be 

cost-effective at the £20,000 WTP threshold, slightly below the 87.4% in the base case.  
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6.3.4.8 Use of pain states instead of function states 

Where patients transition into pain states the cost-effectiveness of the stratified care was 

considerably lower. Results are shown below in Table 6.30.  

Table 6.30 Stratified care vs usual care, pain level to determine health states 

 Mean Cost (£) Mean QALYs 

Stratified care £2020.53 6.11 

Usual Care £2058. 53 6.07 

Difference (Stratified care-

usual care) 
-£38.00 +0.04 

 

The use of pain health states to perform the extrapolation reduces the likely cost-

effectiveness of the approach, to 65% at the £20,000 WTP threshold.  

It is important to note that this result arises because the analysis uses equivalent EQ-5D 

values for pain states on stratified care and usual care beyond 12-months. However, as 

Table 6.31 shows, in the STarT Back trial, at 12-months mean EQ-5D was higher in each 

of the pain states on the stratified care arm.  

 

Table 6.31 EQ-5D scores on stratified care vs usual care, at twelve-months 

 STarT Back Usual care 

Pain state n EQ-5D n EQ-5D 

No pain 95 0.8948 44 0.8726 

Moderate pain 176 0.743 86 0.7036 

Severe pain 99 0.3786 47 0.3682 

 

As a consequence as patients accrue their QALYs at 14-months the model using pain states 

provides a lower QALY benefit for stratified care than the data would suggest.  
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6.3.5 Value of information analysis 
A VOI analysis was performed for uncertainty relating to all parameterised components of 

the model. Results in Table 6.32 show an individual level EVPI of £262.90 per patient, 

which can be extrapolated to a population EVPI using the consultation population expected 

to benefit (11,160, 526), this is shown in the right-hand column.  

Table 6.32 Per-Person and population EVPI  

Scenario 
Annual Per Person EVPI at 

£20,000 WTP threshold 

Ten-year population EVPI at 

the £20,000 WTP threshold 

Base case £262.90 £2,934,102,285 

Abbreviations; EVPI (Expected value of perfect information); WTP (Willingness to pay) 

 

When conducting VOI analysis, estimating which parameters are the major contributors to the 

decision uncertainty can be of particular interest, as can the potential value of reducing that 

uncertainty. As noted in 6.2.13.4, this forms the basis of expected value of partial perfect 

information (EVPPI) analysis, estimates for single parameters are shown in Table 6.33.  

 

 

 

 

 

Table 6.33 Single parameter EVPPI, Per Person and population 

Parameters 

Annual Per Person 

EVPPI at £20,000 

WTP threshold 

Approximate 

Standard Error 

Ten-year population 

EVPPI at the £20,000 

WTP threshold 

TP: SC, low to low 

risk, months 4-12 
1.22 

1.06 
13,570,000 

TP: SC: low risk to 

function, 12 months 
0.04 

0.12 
482,500 
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TP: UC: medium to 

high risk, months 4-12 
10.17 

2.64 
113,500,000 

TP: UC: medium to 

medium risk, months 

4-12 

0.02 

0.17 

277,300 

*Parameters with zero EVPPI are not shown 

Abbreviations; EVPPI (Expected value of partial perfect information); SC (Stratified Care); TP 
(Transition probabilities); UC (Usual care); WTP (Willingness to pay) 

 

It can be seen that the parameter with the most influence on the uncertainty in the model is the 

transition of medium risk patients on usual care from 4 to 12 months, with a ten-year EVPPI of 

£113,500,000. The transition of low risk patients on the stratified care from 4 to 12 months has 

some role in contributing to the uncertainty, with a ten-year EVPPI of £13,570,000. However, most 

other parameters in the table play a small role, and the majority of the parameters in the model are 

not given in the table, because the single parameter EVPPI estimates are returned at zero.  

Often EVPPI estimates are more informative when computed for groupings of related parameters, 

for example all transition probabilities. Group EVPPI estimates therefore are the maximum 

expected value of further research which informs this set of parameters (Strong et al. 2014). Table 

6.34 shows EVPPI estimates related to transition probabilities, utility values, and costs.  

 

 

Table 6.34 EVPPI parameter groups, per person and population 

Parameter(s) 
Annual Per Person 
EVPPI at £20,000 

WTP threshold 

Approximate 
Standard Error Population EVPPI at the 

£20,000 WTP threshold 

Transition probabilities 
first year 

261.07 7.14 £2,913,680,442 

Transition probabilities 
year 2-10 0.40 0.96 £449,249 

All Utilities  7.72 10.033 £86,121,677 

All Costs  0.00 0.69 0.00 
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Abbreviations; EVPPI (Expected value of partial perfect information); WTP (Willingness to pay) 

 

Given the constitution of this model structure, first year transition probabilities create the largest 

source of uncertainty in this decision model; there is high benefit to resolving that uncertainty, of 

£2,913,680,442. However, interpretation of this result requires logical and statistical thought, and is 

further elucidated in the discussion in 6.4.3.    

6.3.6 Validity 
 

In order to check the internal and external validity of the model, checks between model output and 

observed data were undertaken, and reported as follows.  

In Table 6.35, it can be seen that the proportion of patients in each of the risk groups at twelve 

months is almost identical in the model as in the observed data from the STarT Back trial. To 

assess the internal validity of the model, the observed data was weighted to the standardised model 

population.  

 

 

 

 

Table 6.35 Proportion of patients in each risk group at 12 months, modelled estimates 
versus observed data 

 Model Output Observed Data* 

Usual Care 

Low Risk 74.5% 74.5% 

Medium Risk 18.5% 18.9% 

High Risk 6.90% 6.60% 

Stratified Care 

Low Risk 78.8% 78.8% 

Medium Risk 16.3% 16.7% 
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High Risk 4.8% 4.40% 

*Observed data weighted for model population.  
 

The same is also true of function at seven years, where patient function on usual care is very 

similar to that within the BaRNS usual care cohort study, shown in Table 6.36.  

Table 6.36 Proportion of patients in each function state at 7 years, modelled estimates 
versus observed data 

 
Function at 7-years 

BaRNS data 

Function at 7-years 

model output UC 

Function at 7-years 

model output SC 

Poor function 21.2% 20.8%% 18.5% 

Moderate function 15.9% 16.2% 15.9% 

Good function 62.9% 63.0% 65.6% 

Abbreviations; SC (Stratified care); UC (Usual care) 

 

6.4 Discussion  
The discussion includes three principal components, the statement of principal findings, 

followed by the strengths and weaknesses of the study, and finally the implications of the 

results.  

6.4.1 Principal findings 
The body of work contained within this chapter reflects the design and realisation of a state 

transition model to perform a cost-effectiveness analysis of the potential application of a 

stratified care model (STarT Back approach) for the management of LBP. The Monte 

Carlo simulations performed for the base case analysis, from the NHS perspective, 

including the assumption of no additive treatment effect from stratified care beyond one-

year, showed that the intervention is very likely to be cost-effective and cost-saving, on 

average. 

There are however, important caveats. Firstly, it is important to remember it is impossible 

in this analysis, to isolate the impact of the stratification of care, with the matched 

treatments available. It is plausible it is the psychologically informed physiotherapy that 

drives the QALY gain in high risk patients for example. Moreover, as has been mentioned 
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throughout this thesis, the long-term treatment effect for LBP patients managed according 

to this stratified care model is unknown. Conceptually, this is important. Whilst the impact 

upon cost-effectiveness when altering the long-term costs of the stratified care even in the 

two extreme cost scenarios was minimal, the impact of different assumptions over how 

patient function improves on stratified care over the duration of the model, had far more 

impact upon model results.   

Indeed, during consultation with experts, there was considerable disagreement regarding 

the impact of treatment on patient function. It is worth noting that both the modelled 

optimistic and pessimistic scenarios were based on the suggestions of experts. Many 

experts believed that there would be some degree of convergence of patients in terms of 

function over the longer-term. Model results show that if patient function is identical at 

two-years the likely cost-effectiveness falls to only 65%. Whilst advocates of stratified 

care argued that there would be additional gain in function above and beyond modelled in 

the base case, if 7.5% more were in good function at ten years on stratified care the cost-

effectiveness rises as high as 94%. The significant variation in cost-effectiveness according 

to long-term patient exemplifies why this long-term uncertainty is a caveat over the result, 

although the treatment approach is still likely cost-effective even in the pessimistic 

scenario.  The relevance of this sensitivity to patient prognosis is explored in more detail in 

8.2.1 

Considering the cost differentials between the function states (shown in Table 6.9), and the 

proportions of patients in each function state over time for stratified care and usual care 

(Table 6.19), it is evident why the long-term treatment effect is such a significant influence 

upon model results. A patient in good function has costs of only £85.10, whereas a patient 

in poor function has annual costs of £503.53. A treatment that can keep patients in better 

function over time will prove to be highly cost-effective.  
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The use of pain as a state instead of function could also provide caveats over the results. 

Where patients transitioned into pain states at twelve-months, this stratified care model 

was much less likely to be cost-effective. This analysis does, however, highlight the 

importance of the suggestion contained within the systematic review (Hall et al., 2019) that 

choice of state is likely to have a considerable effect upon cost-effectiveness results. 

Moreover, assuming that modelled transitions between states will fully capture the 

fundamental impact of treatment upon HRQoL could be a flawed assumption. For 

example, building a model using pain states (with equal extrapolated EQ-5D scores per 

state), as in 6.3.4.8, is not sensitive enough to capture the improvements in EQ-5D on 

stratified care at 12-months. This issue was also raised in the systematic review in Chapter 

4, where it was suggested that using equal EQ-5D scores for “success” and “failure” for all 

treatments will not adequately represent the quality of life gain. To rectify or supplement 

the pain state model in 6.3.4.8, either one could assume continued EQ-5D gain over some 

period, or different assumptions explored in scenario analyses. This was not necessary with 

the use of function states, because the differences between the EQ-5D scores for the 

function states were minimal between stratified care and usual care at 12 months.  

Leaving aside these methodological debates, there are other reasons to think that this 

model of stratified care is cost-effective in the long term. The first is that the stratified care 

trial (STarT Back) showed lower mean costs associated with low-risk and medium-risk 

patients on stratified care, with these two groups accounting for most patients. However 

this long-term reduction on costs on stratified care is not modelled in the base case 

analysis, it is likely, therefore, some further reduction in the longer term costs associated 

with the implementation of stratified care are plausible. A 10% fall in treatment costs did 

raise incremental cost-savings and likely cost-effectiveness slightly. Second, as was the 

case with other modelled cost-effectiveness analysis on LBP (Kim et al., 2010), the 

inclusion of societal costs in the analysis, if the intervention has a favourable impact upon 
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function, will improve the desirability of the intervention. The results here are very 

promising; the societal analysis shows that stratified care produces a cost saving of 

£689.11 per person over model duration.    

Risk sub-group analysis also reveals interesting results. Where high-risk patients only were 

entered into the model, stratified care was 95.1% likely to be cost-effective, saving a 

significant £267.70 per patient, and affording a 0.42 incremental QALY gain over model 

duration. The reason this is so cost-effective in this group is that stratified care seems very 

effective at moving more patients out of the high-risk group at zero to four months (see 

Table 6.5). The transition from high-risk to low-risk is 0.386 on stratified care but zero on 

usual care. In addition, there is a higher rate of transition from high-risk to poor function 

on usual care at 12 months (0.90 versus 0.86 on stratified care). However, clinicians noted, 

it was plausible that patients in poor function on stratified care will experience some 

deterioration of function over and above that which was captured amongst high-risk 

patients in the BeBack study. Of course this is likely to be the case, but these patients may, 

if they wish, revisit their GP and access the effective matched treatments. With any further 

effect of psychologically informed physiotherapy not included in the base case analysis 

beyond one-year, there could be some offsetting between deterioration and availability of 

future effective treatments.   

6.4.2 Strengths and weaknesses of the study 

There are three major strengths of this analysis. Firstly, it is the first decision model 

produced for stratified care for LBP; in that regard it is a novel development. Secondly, 

and related, it offers solutions to the methodological problems identified in chapter 4, the 

review of previous LBP models. Through extensive consultations with a number of experts 

from clinical practice, health economics and academic research in the field of LBP and 

stratified care, the model is an attempt to adequately represent the condition to meet the 



249 
 

needs of modelling guidance. The use of states of function to represent the patient pathway 

is a methodological advance and allows the modeller to sidestep somewhat the issue of 

modelling the frequent recurrence of LBP symptoms. Mean EQ-5D at each time point is in 

essence an average of those who have, and those who do not have recurrence of symptoms.  

Third, as identified in the systematic review (Hall et al., 2019); there is a hesitance to 

produce modelled cost-effectiveness analyses over an extended time horizon. By meeting 

with clinicians and academic experts, this analysis was able to make assumptions about the 

long-term treatment effect, and then test the significance of these assumptions through a 

series of sensitivity analyses on a number of expert informed likely scenarios. The 

probabilistic output is also robust, using 10,000 replications, and offering probabilistic 

output for all scenario analyses.  

The study has a number of potential weaknesses which need to be considered. Whilst the 

PSA samples transitions of patients between function states beyond one year, and is in that 

sense probabilistic, the assigning of equivalent transitions to patients in both treatments 

(stratified and usual care) does not capture the “true” uncertainty over long-term 

transitions. The “true” probabilistic uncertainty over the long-term treatment effect, 

therefore, could only be accounted for by attaching a probability distribution to the 

differential transitions of patients on stratified care versus usual care, over time. This 

information is currently unknown, and therefore the modeller could consider options such 

as (i) try and parameterise this distribution possibly through elicitation and/or Bayesian 

methods or (ii) attempt statistical extrapolation of the treatment effect (Mahon, 2013), or 

make a base case assumption with robust scenario analyses included (NICE, 2014). The 

latter was the approach taken here, and the study has attempted to investigate all possible 

scenarios and explain how this would impact the likely long-term cost-effectiveness.  



250 
 

It is worth proposing caution over the generalisability of the results. This model is 

predicated upon the treatment benefits obtained in the STarT Back trial, a particular patient 

population with healthcare practices specific to Staffordshire, United Kingdom. Moreover, 

as Whitehurst and colleagues (2015) also noted, policymakers must interpret the findings 

alongside the need to support both GPs and physiotherapists to use this stratified care 

model.  

In relation to data; transitions beyond one-year were only available at seven years, and as a 

consequence, the transitions do not accurately reflect the likely fluctuations in function 

state for patients between twelve months and seven years. Although the assumption of 

linear transition may be unrealistic, it does impact both stratified and usual care, in the 

same manner. Moreover, EQ-5D scores were not available at follow up points in the cohort 

studies used in this analysis, although RMDQ scores in BaRNS were stable over time. 

Whilst it is acknowledged that RMDQ and EQ-5D are conceptually distinct, stability in 

RMDQ implies that assuming stability in EQ-5D scores is likely to be a reasonable 

assumption.   

There are some points to consider regarding costings. Resource use was taken from the 

first year of the BeBack cohort study, and therefore may over represent likely long-term 

costs. The cohort study was undertaken in 2006 and perhaps does not represent current 

treatment pathways for usual care. The fact that all healthcare resource use came from self-

report, can be considered a limitation, on the grounds of recall bias (Petrou et al., 2002). 

Nonetheless, self-report resource use questions provide an efficient means of collecting 

information where routine data sources are not available, and are used extensively in 

economic analyses (Whitehurst et al., 2015).  

It is also noted that, despite very similar NHS costs, the private healthcare cost estimates 

obtained from the STarT Back dataset are lower (£35.83) than those observed in the 
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BeBack observational cohort study (£282.44) (Table 6.8). However, where different 

absolute costings and distributions of those costs were analysed (6.3.4.7), the likely cost-

effectiveness differed very little from the base case.  

6.4.3 Implications for researchers, clinicians and policymakers 

The findings in these analyses strengthen the economic case for the cost-effectiveness of 

this model of stratified care for the management of patients consulting with non-specific 

LBP, which includes systematic identification of future risk of back pain-related disability 

with matched treatments according to risk level.  The results are important because they 

indicate not only that the approach can produce tangible treatment benefits, but that it can 

also contribute towards the ongoing rationalisation of efficient healthcare.   

When considering the effect of applying treatment estimates from other stratified care 

implementation studies investigating the same approach, although there is some reduction 

in the likely cost-effectiveness, stratified care remains cost-effective and dominant. This 

result does support the assertion in the economic evaluation of IMPaCT Back study 

(Whitehurst et al., 2015), that the degree of cost-effectiveness of the approach will 

correspond to the level of implementation. The analysis contained here within supports the 

assertion that improving the utilisation of stratified care could help improve clinical 

outcomes and cost-savings.  

The results of the risk sub-groups analysis show the large treatment effect the stratified 

care management (provided in STarT Back trial) afforded to high-risk patients in the long-

term. These results are different to the one-year STarT Back trial, and demonstrate the 

importance of engaging in longer-term extrapolation, where the treatments are likely to 

improve long-term patient outcomes, however, it should be remembered that these results 

are dependent on specific, underlying assumptions. 
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The VOI analysis showed that removing some of the uncertainty detailed in this study 

could be valuable. The considerable size of the estimate reflects the fact that the condition 

can incur considerable costs, whilst affecting a significantly large population. The EVPPI 

estimates suggest that the first-year transition probabilities are the largest source of 

uncertainty in the model. However, given that patients on stratified care and usual care 

move at identical rates between function states beyond 12 months, the first year transitions 

become in essence a proxy for the entire patient trajectory during the entire model. A 

related point, it is not surprising that the value of reducing uncertainty around cost and 

utility is minimal given that the uncertainty over cost and utility estimates at all stages of 

the model are not as significant as differences in cost and utility estimates between each 

stages. It is logical that parameters that determine movements into the stages would drive 

the parameter uncertainty. As a consequence, the logical interpretation of the EVPPI result 

is to say that further investigation of the transitions of patients on stratified care and usual 

care across a time period of ten years could reduce the uncertainty in the model.   

6.5 Conclusion 

In this chapter, the design of and analysis of a model-based cost-effectiveness analysis of 

stratified care versus usual care over a long 10-year-time horizon, were presented, from the 

healthcare perspective in patients consulting in primary care with non-specific LBP. The 

analyses conclude that this stratified care model was cost-saving and provided incremental 

QALY gains in nearly all scenarios modelled. Base case results showed it is likely to be 

cost-effective at £20,000 WTP threshold. Sensitivity analyses and value of information 

analysis stress the importance of investigation of the long-term treatment effect upon the 

likely cost-effectiveness of the approach.  
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Chapter 7:  A COST-EFFECTIVENESS ANALYSIS OF STRATIFIED 
CARE VERSUS BEST CARE AND USUAL CARE FOR SCIATICA  

 

Adopting the same structure as Chapter 6, this chapter begins by describing the 

methodological approaches adopted for an individual simulation model for sciatica, and 

moves on to outline the justifications and assumptions which underpin the model structure, 

data inputs and methods of analysis. The chapter then reports the model findings, and the 

implications of these results are discussed.  

7.1 Background and objectives 

When compared to patients with NSLBP, sciatica patients suffer more severe pain, higher 

levels of disability, higher absence from work, and require more health resources 



254 
 

(Konstantinou et al. 2013). The SCOPiC trial (Sciatica Outcomes in Primary Care) (section 

1.6.1) was a multi-center, pragmatic, assessor-blind, two-arm, randomised controlled trial. 

The trial tested whether stratified care leads to faster recovery and overall better outcomes 

for sciatica patients compared to usual, non-stratified care, and as noted in 1.6.1, the trial 

found stratified care was not more clinically or cost-effective relative to usual care 

provided in the trial. 

Nonetheless, given that there are currently no decision-analytic models of a stratified care 

approach to managing sciatica, and concerns were expressed with the methods used in 

existing model-based sciatica analyses, this chapter, therefore, aims to explore these 

challenges by conceptualising the first decision model of a stratified care approach for 

management of patients with sciatica. 

Moreover, in expert consultations it was suggested that the outcomes obtained in the usual 

care arm of the SCOPiC trial were better than had been expected, and therefore experts 

suggested labelling this “best usual care” and including usual care from a cohort study into 

the model as a further comparator, “usual care”. In what follows, stratified care will be 

compared with best usual care and usual care.  

7.2  Methods 

In order to assess the cost-utility of stratified care versus best usual care versus usual care 

in sciatica patients, from the NHS perspective, an individual sampling model was 

constructed with two-monthly cycles, and analysis was performed over a ten year time 

horizon. Each aspect of the methodological approach is now discussed in turn.  

7.2.1 Consultation with experts 

The lack of adequate modelling in sciatica meant it was imperative to ensure that at all 

stages of the model development process, consultation took place with clinical 
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practitioners as well as experts from epidemiological and health economic research 

backgrounds (full details in appendix 8).   

7.2.2 Choice of Model 

When selecting the model type, the simplest model ought to be chosen to adequately 

capture the complexity of the decision problem (Barton, 2004). Following discussion with 

experts, it was determined that an individual sampling model (ISM) would be most 

appropriate for this condition. In chapter 5, ISMs were shown to be suitable for modelling 

stratified treatments, owing to their ability to track and update patient characteristics, as 

well as easily allowing the probability of future events to be dependent upon the 

aforementioned characteristics.  

After consultation with experts, and analysis of the BeBack cohort study (see 6.3.11), it 

became evident that movement of patients between health states over the long-term 

(between twelve months and ten years) should reflect patient function at baseline 

(measured by the RMDQ score), symptom resolution at 12-months, as well as whether or 

not the patient had undergone spinal surgery. A decision-tree model cannot easily facilitate 

longer time horizons, or the dependency necessary for the clinical course of sciatica, and 

was therefore ruled out. Whereas in a Markov model, the number of states needed to 

incorporate dependency alongside patient stratification would cause the model to grow 

infinitely complex. Simulation modelling allows the incorporation of these phenomena 

easily, via trackers.   

The model was constructed in TreeAge Pro 2017 version. All statistical analyses were 

performed in STATA 15 / MP.    

7.2.3 Model Population 

The consensus of the experts involved in consultations, was that the SCOPiC study 

population would most closely resemble those who would receive stratified care. The 
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SCOPiC trial recruited adults (≥ 18 years old), consulting with suspected sciatica. Baseline 

characteristics in this model were taken directly from this study, patients had a mean age of 

52 at the start of the model, 54.6% were female. 54% were classified as having poor 

function, 34% moderate function, and 12% good function (as per RMDQ cut-offs 

determined in the previous chapter 6). Table 7.1 shows baseline characteristics of patients 

who consented to participate in the study.  

 

 

 

 

 

 

 

Table 7.1 Baseline characteristics of SCOPiC patients 

Characteristic of participating patients 

Stratified Care 

n=232 

Best usual care 

n=230 

Population 

n=462 

Age, mean, y (SD) 50.86 (0.96) 53.36 (0.88) 52.10 (0.66) 

Sex, female, n (%) 129 (55.36) 124 (53.91) 253 (54.64) 

Currently in paid employment, n (%) 162 (70.13) 155 (67.98) 317 (69.06) 

Disability: RMDQ score, mean (SD) 11.17 (0.35) 11.20 (0.35) 11.18 (0.25) 

Pain intensity: NRS rating, mean (SD) 5.88 (0.18) 5.75 (0.201) 5.81 (0.14) 

Symptom duration, n (%)    

0-3 months  167 (72.99) 172 (74.78) 339 (73.38) 

3-6 months  31 (13.36) 28 (12.17) 59 (12.77) 

6-12 months 10 (4.31) 8 (3.48) 18 (3.9) 
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Characteristic of participating patients 

Stratified Care 

n=232 

Best usual care 

n=230 

Population 

n=462 

>12 months 24 (10.34) 22 (9.57) 46 (9.96) 

Function state*    

Poor, n (%)  125 (53.88) 126 (54.78) 251 (54.33) 

Moderate, n (%) 76 (32.76) 80 (34.78) 156 (33.77) 

Good, n (%) 31 (13.36) 24 (10.44) 66 (11.90) 

Abbreviations: NRS (Numerical rating scale); RMDQ (Roland Morris Disability Questionnaire) 
*Good function (RMDQ 0-4); Moderate function (RMDQ 5-10): Poor function (RMDQ 11-24) 

 

At the beginning of the model, the sampling model defined patient age, gender, and 

function derived from this distribution of patients in the SCOPiC trial. These 

characteristics, as well as an occurrence of surgery, are then tracked throughout the 

duration of the time horizon.  

Ages were defined in direct proportion to their relationship with gender in the model 

population, e.g. an age of under 30 was selected in 4.3% of the simulations for males and 

8.3% for female. Summary table of age category by gender is provided below in Table 7.2.  

 

 

Table 7.2 Age by gender, composition of model population 

Age group Male, n (%) Female, n (%) 

Under 30 9 (4.29) 21 (8.30) 

31-40 36 (17.14) 42 (16.60) 

41-50 44 (20.95) 58 (22.92) 

51-60 56 (26.67) 55 (21.74) 

61-70 48 (22.86) 44 (17.39) 

71-80 16 (7.62) 29 (11.46) 

81-90 1 (0.48) 4 (1.58) 

Total 210 253 
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Within the model, age was updated by 2 months every cycle, and age and gender both 

determined probability of death. However, age and gender were not used to determine 

transitions between resolved (meaning recovery from sciatica symptoms), unresolved and 

having surgery, owing to lack of statistical power in both SCOPiC and BeBack datasets. 

The issue related primarily to subdivision of patients in the BeBack dataset, meaning some 

transitions and EQ-5D scores were already based upon <10 observations and subdivision 

by age and gender would have reduced this even further.  

7.2.4 Definition of the intervention and comparator 

Details of the interventions were reported in 1.6.1, and described in full elsewhere (Foster 

et al. 2017).  In the stratified care arm, an algorithm was used to allocate patients in one of 

three groups with matched care pathways; group 1: brief physiotherapy input in one or two 

sessions to support self-management, group 2: a course of physiotherapy of up to 6 

sessions, group 3:  fast-track referral to MRI test and specialist spinal services, and 

(Konstantinou et al 2019).  

The SCOPiC usual care arm, ‘best usual care’ in this model, was based on non-stratified 

usual care, delivered by physiotherapists not involved in the stratified care arm of the trial. 

All usual care patients received their first treatment in the SCOPiC research clinic (a one-

off session of assessment, advice and education), where the treating physiotherapist could 

arrange referral to NHS community physiotherapy or specialist spinal services as required. 

Most usual care patients were referred for a course of physiotherapy. 

Experts advised that the most appropriate data source to derive usual care parameters 

would be the BeBack cohort study (see 6.3.11). As BeBack includes patients with LBP 

only as well as LBP and leg pain, only those reporting pain below the knee at baseline 

were considered to be representative of patients with sciatica (Konstantinou et al. 2012; 
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Dionne et al. 2008), and were subsequently included in this analysis. Baseline 

characteristics of the BeBack sample are shown in Table 7.3.  

Table 7.3 Baseline characteristics of BeBack sciatica patients 

Characteristic of participating patients 
Usual care 

n=1591 

Age, mean, y (SD) 43.88 (0.259) 

Sex, female, n (%) 922 (58.50) 

Currently in paid employment, n (%) 1177 (75.06) 

Disability: RMDQ score, mean (SD) 8.64 (0.151) 

Pain intensity: NRS rating, mean (SD) 4.64 (0.068) 

Symptom Duration, n (%)  

0-3 months 1023 (66.86) 

3-6 months 148 (9.67) 

Over 6 months 359 (23.47) 

State of function*, n (%)  

Poor, 504 (31.70) 

Moderate, 624 (39.25) 

Good, 462 (29.06) 

Abbreviations: NRS (Numerical rating scale); RMDQ (Roland Morris Disability 
Questionnaire) 

*Good function (RMDQ 0-4); Moderate function (RMDQ 5-10): Poor function (RMDQ 11-24) 
 

The BeBack cohort was younger than the SCOPiC population, with lower mean disability 

and pain intensity, although there were more patients with longer symptoms duration in 

BeBack. There were also more patients in good function in the BeBack sample, although 

differences in function by category were controlled for in the modelled analysis by 

applying a model population standardised by baseline function group.  

7.2.5 Model health states and structure  

The model had seven different health states, shown in figure 7.1, with the model in 

TreeAge form shown in Figure 7.2. 
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Initially, for the first twelve months, patient movement through the model directly reflected 

the SCOPiC data, and BeBack data in the case of the usual care patients. Accordingly, all 

patients began in a symptomatic state, and as indicated by the solid dark orange arrows, 

patients either stayed symptomatic, moved to surgery, or recovered. Movements between 

these health states in the model were dependent upon patient function at baseline. 

Resolution of symptoms was calculated using the global measure of change (ordinal scale 

for global perceived change (GPC)) which is measured on a six-point ordinal scale. The 

definition of resolution used in this model was ‘completely recovered’, ‘much better’, and 

‘better’ in terms of sciatica symptoms. This differed from the primary analysis in the 

SCOPiC trial, which used a definition of symptom resolution as ‘completely recovered’ or 

‘much better’., with patients considered symptomatic if they reported ‘better’, ‘same/no 

change’, ‘worse’ or ‘much worse’ on the same scale. These states were settled upon as a 

consequence of discussions with researchers and clinicians, the difference with the 

SCOPiC trial definition made on the basis that the SCOPiC definition was too strict. State 

definitions were considered reasonable by all experts involved in the consultation phase. 

All comparators used the same core model structure.  

 

 



261 
 

 

Figure 7-1 State transition model schematic 

Patient’s utility values, and transitions between states, were associated not only with their 

health state of symptomatic, resolved or surgery, but also their function at baseline. The 

decision to use patient function to stratify patients in the model so as to determine patient 

progression was suggested during expert consultation. Prognostic risk groups could not be 

used in this case, as in the LBP model, as this was not relevant for groups 2 and 3 in the 

SCOPiC population. Function groups were the same as those used in the LBP model, and 

based upon the process described in 6.2.5.  

As in the LBP model (6.2.11), it was not possible to calculate the individual contribution of 

each two-monthly cycle to the overall first-year cost, owing to healthcare resource use data 

only being available for patient healthcare used in the “past twelve months”. Accordingly, 

costs for the first year were a one-off annual cost based upon baseline function group, and 

resolution, and attached at cycle 6 (month 12). 
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Surgery was incorporated into the model, however only for patients in moderate or poor 

function at baseline. Patients, spend one cycle in surgery, and have the utility values of 

patients with poor function with unresolved symptoms. Once patients have received 

surgery, they initially move back to “resolved” in the subsequent time cycle. However, 

once in the resolved health state, they do have a possibility of re-operation, according to a 

probability assigned from the literature.  

At twelve months, as indicated by the two dashed arrows projecting from the year 1 states 

towards resolution by pain states, patients moved into one of two possible states dependent 

upon their resolution of symptoms, as measured by numerical rating scale (NRS) pain 

intensity at twelve months. A score of 5 and below was categorised as resolved, whereas 

above 5 was categorised as symptomatic. The use of pain scores was necessary, given that 

the global measure of change (ordinal scale for global perceived change (GPC)) was not 

available in the BeBack study beyond 12-months.  

As can be seen from the Table 7.4, using NRS pain scores to denote resolution appears to 

be valid as most patients reporting symptom improvement on the GPC scale also report 

low levels of pain according to the NRS. A Spearman rank correlation coefficient test 

found a correlation of 0.69 between resolution by pain and global resolution at 12 months, 

and 0.72 between NRS pain score and global perceived change in symptoms at 12 months.  

Table 7.4 Resolution by global perceived change vs NRS pain scale 

 
Resolved (using NRS pain 

scores) 
Unresolved (using NRS 

pain scores) Total 

Resolved (using GPC 
scale) 126 11 137 

Unresolved (using 
GPC change) 

4 32 36 

Total 130 43  
NRS: Numerical rating scale, (0-5 Resolved; >5 Unresolved) 
GPC: Global perceived change, (Resolved – ‘completely recovered’, ‘much better’, and ‘better’; 
Unresolved - ‘same/no change’, ‘worse’ or ‘much worse’).  
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7.2.6 Model time horizon and cycle length 

In this model, a time horizon of ten years was adopted, which was considered adequate to 

capture meaningful differences between treatment options. This view was endorsed by the 

experts. In terms of cycle length, because of the 4-month and 12-month follow up in the 

SCOPiC trial, it was considered appropriate to use two-monthly cycles to facilitate 

calculation of our transition probabilities. These two-monthly cycles were used throughout 

the model horizon.  

7.2.7 Transition probabilities  

In the first year of the individual sampling model, patients transitioned every two months 

between symptomatic, resolved, and surgery, with movements determined also by their 

function at baseline. These movements were based upon the SCOPiC trial for stratified 

care and best usual care, and on BeBack data for usual care. At the endpoint of the 

SCOPiC trial (twelve months), patients then transitioned into model health states, of 

symptomatic, resolved, and surgery, determined by their pain level (measured by NRS pain 

scores) and function at baseline. Upon assignment to symptomatic, resolved, and surgery 

states based upon NRS pain scores, patients subsequently moved between these states (or 

remained in the same state) for the remaining nine years of the model. Patient transitions 

for this period were based upon observed transitions in patients from the BeBack cohort 

study. Transitions used in the model are shown in Table 7.5, and now discussed in turn.  
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Table 7.5 Model transition probabilities and distributions 

 Stratified Care Best Usual Care Usual care 

Transition to 

resolved/ unresolved 

by patient function 

Mean 

(SE) 

 

Dist 
(α,β) 

Mean (SE) 
Dist 
(α,β) 

Mean 

(SE) 
Dist 
(α,β) 

Zero to Four Months  

Poor to resolved 
0.386 

(0.049) 

Beta 

(37.4,59.6) 

0.500 

(0.05) 

Beta 

(49.5,49.5) 

0.163 

(0.036) 

Beta 

(16.8,86.2) 

Moderate to resolved 
0.527 

(0.066) 

Beta 

(30,27) 

0.500 

(0.061) 

Beta 

(33.5,33.5) 

0.256 

(0.036) 

Beta 

(37.6,109.4) 

Good to resolved 
0.423 

(0.095) 

Beta 

(11,15) 

0.541 

(0.114) 

Beta 

(9.7,8.3) 

0.246 

(0.081) 

Beta 

(6.6,20.4) 

Four months to Twelve Months  

Poor resolved to 

unresolved 

0.077 

(0.047) 

Beta 

(2.4,28.6) 

0.089 

(0.036) 

Beta 

(5.4,55.6) 
0 - 

Poor unresolved to 

resolved 

0.128 

(0.047) 

Beta 

(6.27,42.7) 

0.163 

(0.092) 

Beta 

(2.4,12.6) 

0.024 

(0.029) 

Beta 

(0.7,27.3) 

Moderate resolved to 

unresolved 

0.022 

(0.023) 

Beta 

(0.8,38.2) 

0.043 

(0.030) 

Beta 

(2,44) 

0.120 

(0.046) 

Beta 

(5.8,42.2) 

Moderate unresolved 

to resolved 

0.182 

(0.129) 

Beta 

(1.5,6.5) 

0.174 

(0.101) 

Beta 

(2.3,10.7) 

0.067 

(0.047) 

Beta 

(1.9,26.1) 

Good resolved to 

unresolved 

0.032 

(0.043) 

Beta 

(0.5,15.5) 

0.152 

(0.059) 

Beta 

(0.6,11.4) 

0.075 

(0.152) 

Beta 

(0.2,1.8) 

Good unresolved to 

resolved 

0.118 

(0.132) 

Beta 

(0.6,4.4) 

0.105 

(0.153) 

Beta 

(0.3,2.7) 

0.184 

(0.173) 

Beta 

(0.7,3.3) 

Initial distributions of patients into resolved/unresolved by NRS 

Poor resolved to 

unresolved 

0.063 

(0.031) 

Beta 

(3.9,58.1) 

0.068 

(0.033) 

Beta 

(3.9,54.1) 

0.188 

(0.098) 

Beta 

(2.8,12.2) 

Poor unresolved to 

resolved 

0.154 

(0.071) 

Beta 

(3.9,21.2) 

0.428 

(0.094) 

Beta 

(11.6,15.4) 

0.324 

(0.077) 

Beta 

(11.7,24.3) 

Moderate resolved to 

unresolved 
0 - 

0.02 

(0.020) 

Beta 

(1,48) 

0.04 

(0.028) 

Beta 

(2,47) 

Moderate unresolved 

to resolved 

0.50 

(0.158) 

Beta 

(4.5,4.5) 

0.308 

(0.128) 

Beta 

(3.7,8.3) 

0.688 

(0.082) 

Beta 

(21.3,9.7) 

Good resolved to 

unresolved 

 

0 - 
0.063 

(0.061) 

Beta 

(0.9,14.1) 
0 - 
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Mean 

(SE) 
Dist 

Mean 

(SE) 
Dist 

Mean 

(SE) 
Dist 
(α,β) 

Good unresolved to 

resolved 

0.333 

(0.192) 

Beta 

(1.7,3.3) 

0.333 

(0.272) 

Beta 

(0.7,1.3) 

0.50 

(0.354) 

Beta 

(0.5,0.5) 

Surgical transitions (poor & moderate only), by time 

Time Mean SE 
Distribution 

(α,β) 

First year 0.004  0.003 
Beta 

(1.8,439.9) 

Second year 0.016  0.006 
Beta 

(7,429) 

Third year 0.026  0.007 
Beta 

(13,502) 

Fourth year 0.032  0.008 
Beta 

(15,468) 

Fifth year 0.037  0.009 
Beta 

(19,464) 

Sixth year 0.041  0.009 
Beta 

(20,465) 

Seventh year 0.045  0.010 
Beta 

(19,409) 

Eighty year 0.048  0.010 
Beta 

(22,434) 

Ninth year 0.051  0.010 
Beta 

(24,458) 

Tenth year 0.053  0.010 
Beta 

(27,474) 

Recurrence (any year) 0.002  0.004 
Beta 

(0.25,123) 

Transitions between resolved states, one year to ten years   

 Mean SE 
Distribution 

(α,β) 

Resolved to unresolved 0.006 (0.016) 
Beta 

(0.3,44.7) 
 

Unresolved to resolved 0.018 (0.043) 
Beta 

(0.3,15.7) 
 

*Good function (RMDQ 0-4); Moderate function (RMDQ 5-10): Poor function (RMDQ 11-24) 
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7.2.7.1 Transition probabilities for first year 

In order to derive the transition probabilities for the first year in both stratified and best 

usual care, 4-month (representing baseline to 4 months) and 8-month (representing 4 to 12 

months) transition probabilities available in the SCOPiC data, were transformed into two-

monthly probabilities. Firstly, probabilities (p) from the data were transformed into a two-

monthly rate using the formula; * = +
) ln(1 − !), where r is the rate per time unit t. Two 

monthly rates were then transformed to a two-monthly probability using! = 1 −	&'(). For 

the usual care patients, observations were available at baseline, six months, and 12 months 

in the BeBack data, and therefore similar calculations were undertaken to transform six 

monthly transition probabilities into two-monthly probabilities.  

As the transition probabilities were calculated for each function group, no standardisation 

was applied as it was assumed these probabilities reflect movements of patients of similar 

function, although it is acknowledged that there could be some small differences between 

the characteristics of function groups in SCOPiC and BeBack populations. 

Derivation of surgical probabilities was taken from SCOPiC trial data whereby 9 patients 

had spinal surgery in one-year. This corresponds to an annual probability of surgery of 

0.019 or 1.9% for any patient in the SCOPiC trial, and is the probability used in this model. 

However, because only poor or moderate function symptomatic patients could receive 

those surgeries within the model, the probability of surgery, in symptomatic patients in 

poor and moderate function, throughout the model had to be weighted towards the 

proportion of patients in those two states at each cycle. In order to establish how many 

patients were in symptomatic poor and moderate function health states over time, a 

SCOPiC model population was simulated in Excel combining stratified and usual care 

patients.  
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For the first six cycles, unique probabilities were set for each cycle, reflecting the rapid 

improvement in patients within that trial. For the first cycle, 88% of patients began the 

model in poor and moderate function symptomatic states and could receive surgery in the 

model; therefore 415 of the total 472 patients in SCOPiC trial were eligible to receive 

those 9 surgeries in the model. Therefore the annualised probability of surgery in poor and 

moderate function patients was 9/415, equal to 2.12% or 0.0212. Converting this annual 

probability to a two-monthly rate; * = +
) ln(1 − !), where r is the rate per time unit t, the 

two monthly rate is 0.00357. Translating this rate back to a probability using; ! = 1 −

	&'(), yields a two monthly probability of 0.0036.  By cycle 6 however, only 21% of the 

sample were symptomatic in poor and moderate function, and therefore the annualised 

probability of surgery in those states that year was 9/99, 9.1% or 0.091, this yields a two-

monthly rate of 0.0159, equating to a two-monthly probability of 0.0158 (1.58%). 

From 12-months onwards an annual rate of surgery is set, which changes every six cycles 

as the proportion of patients in those states changes. By cycle 54, the two-monthly 

probability of surgery in those states reaches 5.3% as few patients remain in the 

symptomatic states. This assumes a constant annual probability of surgery across time, and 

possibly overstates the number of surgeries. Given the cost implications of surgery, and the 

fact that the SCOPiC trial was not designed to detect differences in rates of surgery 

between comparators, it is assumed that surgery is equivalent on all three comparators 

throughout the model horizon. 

The recurrence rate for surgery is 6% over five years, as found in Lequin et al. (2013), this 

was transformed to a two-monthly probability to provide a two-monthly recurrence 

probability of 0.002, SD (0.004). This is kept constant throughout the model, and is the 

same for all management strategies.  
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Note that all transition probabilities are assigned Beta distributions, this reflects the fact 

that at each node in the TreeAge model there is a dichotomous choice, death/survive, 

surgery/no surgery, resolved/unresolved, see Figure 7.2. Where a state transition (p) was 

assigned a Beta distribution, the probability of movement into the other state was set in 

TreeAge as # a notation representing (1-p), to prevent the probabilities of moving out of 

the state exceeding one. 

 

Figure 7-2 Use of dichotomies and Beta distributions. 

Transitions to death were calculated by using 2016/17 ONS life tables (ONS, 2018). The 

annual mortality rate for males and females between ages 18 and 100 were taken from the 

life tables, and converted to annual probabilities using ! = 1 −	&'(). This annual 

probability was converted into a two-monthly rate using, * = +
) ln(1 − !), and then 

converted to a two-monthly probability again using ! = 1 −	&'().  
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7.2.8 Moving from resolved / symptomatic by GPC to resolved / symptomatic by 

NRS pain scores 

At twelve months, patients moved into the same health states, e.g. resolved / symptomatic / 

surgery, but in this case, these state definitions reflect pain change instead of global 

perceived change. The values of these transitions are shown in Table 7.5 under the heading 

“Initial distributions of patients into resolved/unresolved by pain NRS”. These transition 

probabilities were based upon the proportion of patients in each state of resolution in each 

of the function groups at twelve months. Probabilities were calculated separately for 

stratified care, best usual care, and usual care, in order to reflect the lower proportion of 

patients who achieved resolution (NRS pain score) at twelve months, on usual care. In the 

model, costs and QALYs associated with each of the resolution by pain states were first 

attached in cycle seven, at fourteen months, based upon the proportion of patients in each 

of the resolved by pain states at twelve months.  

7.2.9 Transition probabilities for twelve months to ten years.  

In order to perform the extrapolation, the assumption that patients transition at equivalent 

rates over time on all comparators is again used. Accordingly, from fourteen months 

onwards, the transition probabilities between resolution states, shown in Table 7.5 under 

the heading ‘Transitions between resolved states, one year to ten years’, were assumed to 

be exactly the same in stratified care, best usual care, and usual care. However, the 

differential distribution of patients into resolved by pain states at twelve months, with 

equal transitions from one year onwards, ensures that more patients in best usual care 

achieve resolution for the duration of the model.  

Natural logs were used to transform the four-year transition of patients using data from the 

BeBack cohort study, (6.3.11) into two-monthly transitions for the model. In the analysis, 

NRS pain scores were then assessed at twelve months with scores 5 and below taken to be 
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symptom resolution, and above 5 taken to be unresolved. For each resolution state, NRS 

pain scores were then assessed at five years, in order to determine how patients have 

transitioned across those four years. Whilst these transition probabilities were calculated to 

reflect patient movement from twelve months to five years, it was further assumed that the 

probabilities calculated from the linear matrix would hold over the next five years. 

Accordingly, these probabilities were used to move patients between states from five to ten 

years in the model. In all cases the standard errors were calculated by using 7(+'7)√9  where p 

was the probability of movement between the states as generated by natural logs, and n 

reflects the number of patients in each of the states at the beginning of the period the 

matrix is reflecting, directly obtained from BeBack data.  

To understand whether five-year data from the BeBack study were appropriate to calculate 

transitions for the model patient population, mean RMDQ scores for each function and 

resolution state in the SCOPiC patients at twelve months, were compared with the RMDQ 

scores of the patients in the BeBack sample at twelve months, shown in Table 7.6 

Table 7.6 Mean RMDQ scores in SCOPiC and BeBack patients 

Function and resolution 
yes/no 

SCOPiC at twelve 
months BeBack at twelve months 

Poor Resolved 4.61 7.44 

Poor Unresolved 14.37 15.60 

Moderate Resolved 2.4 3.98 

Moderate Unresolved 11.06 10.54 

Good Resolved 1.54 1.58 

Good Unresolved 5.86 8.00 

Population 5.17 5.83 

*Good function (RMDQ 0-4); Moderate function (RMDQ 5-10): Poor function (RMDQ 11-
24) 
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Whilst there were some small differences between the three different comparators across 

the periods, most of the groups did not have statistically significant differences (p<0.10), 

aside from patients who began in poor function who had resolution of symptoms, who 

were in better function in the SCOPiC dataset. Patients in the BeBack sample were in 

slightly worse function overall (5.83 vs 5.17).  

7.2.10 Costs  

The base-case economic evaluation was performed from the NHS perspective which takes 

into account costs solely incurred by the NHS and excludes the value of private healthcare 

costs. Costs associated with the first year reflected the resource usage from the SCOPiC 

trial in the case of stratified care and best usual care, and the BeBack cohort study for usual 

care. The SCOPiC data used was from the within-trial economic analysis (submitted for 

publication), which performed multiple imputation and included costs directly associated 

with the trial. The resource use data reflected responses to self-report questionnaires and 

included consultations with GPs and nurses, other healthcare professionals, prescriptions, 

hospital procedures, as well as prescribed medications and over the counter treatments. The 

costs of the latter were included only in a secondary analysis from a societal perspective.  

As the modelling for the first year is predicated upon the treatment effect associated with 

the trial, the costs related to delivering the stratified care model in the trial were included, 

including the costs associated with the trial-specific protocol for treatment. The mean costs 

for patients in poor, moderate and good function (classified at baseline), were calculated 

separately for stratified, best usual care and usual care.  

Beyond the first year, data from the BeBack cohort (Foster et al. 2008) were used to derive 

the costs associated with one year of healthcare for sciatica patients dependent upon their 

function and pain at the beginning of the cycle. Costs derived from BeBack were 

annualised, and therefore the costs per 2-month time cycle in the model reflect 1/6 of the 
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total first year costs in BeBack. BeBack reflects healthcare usage in what would be 

considered “usual care”, and therefore for the base case analysis it was assumed that 

neither stratified care nor best usual care impact upon long-term healthcare usage of 

patients. Given this represents one of the most significant sources of uncertainty in the 

model, the impact of varying this assumption is discussed later.  Unit costs in the model 

were based upon 2017 prices, and are shown in Table 7.7. Total costs were discounted at 

3.5% as per NICE guidance (NICE, 2018), and were derived from questionnaires which 

stipulate costs directly related to back pain and sciatica only. 
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Table 7.7 Unit prices for healthcare 

 

Resource use data derived from SCOPiC and BeBack were multiplied by unit prices to 

create annual costs associated with each state, shown in Table 7.8. As noted above, in the 

first year, these estimates were entered into the model at cycle six to reflect the initial 

function group and resolution. In cycles seven onwards, the annual estimates of the costs 

associated with each of the resolution by pain states were divided by six to create a two-

monthly cost. The cost of surgery was a one-off non-variable cost of £5298.  

 

 

Health care resource Unit cost (£) Unit Cost Source 
Primary care contacts:   
General Practitioner: surgery consultation 37 Unit costs of Health and 

Social Care 2017 
Practice Nurse: surgery consultation 11 Unit costs of Health and 

Social Care 2017 
Practice Nurse: home visit 94 Unit costs of Health and 

Social Care 2017 
Hospital-based care    
Consultant: Sciatica pain first attendance 167 DOH, 2017 
Consultant: Sciatica pain follow-up 141 DOH, 2017 
Consultant: Pain management first attendance 177 DOH, 2017 
Consultant: Pain management follow-up 101 DOH, 2017 
Physiotherapist: First attendance 65 DOH, 2017 
Physiotherapist: Follow-up attendance 49 DOH, 2017 
Consultation: A&E 180 DOH, 2017 
Hospital nurse 89 DOH, 2017 
Diagnostic tests: x-ray 31 DOH, 2017 
Diagnostic tests: CT scan 103 DOH, 2017 
Diagnostic tests: MRI scan 169 DOH, 2017 
Diagnostic tests: Blood test 6 DOH, 2017 
Spinal epidural injection 575 DOH, 2017 
Surgery (Discectomy) 5,298 DOH, 2017 
Out-of-pocket treatments Participant reported costs 
Prescribed medication Participant-

specific 
BNF, 2017 

Work absence/reduced productivity  Participant -
specific 

ONS, 2017 
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Table 7.8 Total annual costs and gamma parameters, per health state 

 NHS annual costs Total annual societal costs 

First year costs 

  SC BUC UC SC BUC UC 

Poor 

Resolved 

£ 

SD 

α, λ 

628.91 

(525.55) 

1.43,0.002 

587.43 

(583.53) 

1.24,0.002 

497.72 

(557.86) 

0.80,0.002 

1016.14 

(1142.63) 

0.791,0.001 

1222.86 

(2079.02) 

0.346,0.0002 

1845.45 

(5162.20) 

0.128,0.0001 

Poor 

Unresolved 

£ 

SD 

α, λ 

808.04 

(618.74) 

1.71,0.002 

456.73 

(457.32) 

0.545,0.001 

791.58 

(1039.17) 

0.58,0.001 

1129.48 

(836.37) 

1.824,0.002 

695.67 

(1048.97) 

0.44,0.00 

2559.05 

(4834.75) 

0.28,0.0001 

Moderate 

Resolved 

£ 

SD 

α, λ 

575.72 

(703.05) 

0.67,0.001 

598.38 

(834.74) 

0.724,0.001 

252 

(446.77) 

0.318,0.001 

1334.40 

(2767.79) 

0.232,0.001 

1040.17 

(1749) 

0.354,0.0003 

1999.73 

(1434.07) 

1.944,0.001 

Moderate 

Unresolved 

£ 

SD 

α, λ 

567.6 

(880.96) 

0.415,0.001 

536.80 

(494.78) 

0.371,0.001 

409.54 

(559.40) 

0.536,0.001 

1969.41 

(4230.57) 

0.217,0.001 

760.63 

(478.48) 

2.527,0.003 

1080.69 

(4551.04) 

0.056,0.0001 

Good 

Resolved 

£ 

SD 

α, λ 

441.99 

(657.58) 

0.451,0.001 

278.9 

(496.85) 

0.18,0.001 

69.30 

(129.30) 

0.287,0.004 

730.35 

(974.51) 

0.562,0.001 

439.96 

(733.19) 

0.360,0.001 

366.25 

(430) 

0.725,0.002 

Good 

unresolved  

£ 

SD 

α, λ 

505.05 

(518.84) 

0.948,0.002 

216.08 

(166.02) 

0.173,0.001 

8.97 

(3.06) 

8.59,0.958 

1228.96 

(664.85) 

3.417,0.003 

1655.41 

(2360.18) 

0.492,0.0002 

28.13 

(13.06) 

4.639,0.165 

 Annual costs years 2-10 

Resolved  £, SD 

α, λ 

289.00 (466.74) 

0.383,0.001 

1383.42(3322.53) 

0.173,0.0001 

Unresolved £, SD 

α, λ 

599. 79 (863.85) 

0.482,0.001 

1492(4425.16) 

0.114,0.0001 
Abbreviations; BUC (Best Usual care); SC (Stratified care); UC (Usual care) 
α, λ are gamma parameters 

 

For the secondary analysis, using a societal perspective, the costs associated with private 

healthcare were assumed to be the same as that of the NHS equivalent. This is due to lack 

of nationally representative unit cost estimates for private healthcare.  Resource use was 
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taken from the BeBack and SCOPiC datasets, which provide detail on the number of visits 

to a healthcare practitioner, alongside whether those visits were to an NHS professional or 

private healthcare. Very few patients received both NHS and private care, and where 

patients indicated they had received both NHS and private healthcare, the number of visits 

was divided by two, with half of the total cost allocated to NHS and half to private.  

To assess the impact of stratified care upon work participation, self-reported days of work 

absence owing to sciatica were estimated from SCOPiC and BeBack datasets, with 

associated costs calculated using the human capital approach. For the first year of the 

model, for stratified care and best usual care, work absence in days was estimated from the 

SCOPiC study, and multiplied by the UK population mean wage in 2017. For usual care in 

the first twelve months, work absence was derived from the BeBack data, and multiplied 

by the UK population mean wage in 2017. In all cases, mean work absence in days has 

been adjusted to account for the 30.94% not in employment in the SCOPiC study.   

Table 7.9 presents the work absence due to back pain and sciatica in the SCOPiC and 

BeBack studies, the wage used, and the percentage of participants employed in the model 

population.  

 

 

 

 

 

 

 



276 
 

Table 7.9 Work absence, stratified care, best usual care, and usual care 

 Stratified care Best usual care Usual care 

Mean days absence due 

to back pain 

Poor: 1.13 Poor: 3.47 P:12.66 

Moderate: 3.80 Moderate: 1.1 M:7.56 

Good: 1.12 Good: 2.83 G:3.10 

Population: 2.12 Population: 2.57 Population: 7.86 

Mean daily wage 

(SCOPiC) 
£107.74 

% employed in 

SCOPiC 
69.06% 

 By pain resolution 

Mean days absence due 

to back pain (BeBack) 

Resolved: 7.73 

Unresolved: 7.99 

 

7.2.11 Quality adjusted life years (QALYs)  

EQ-5D 5L scores for the first year were taken from SCOPiC data for stratified care and 

best usual care, and converted to their 3L equivalent using the EQ-5D crosswalk algorithm 

(van Hout et al. 2012).  

Usual care values were derived from the BeBack study, which used the EQ-5D 3L. Both 

sets of responses were converted to utility scores based upon the York tariff (Dolan et al. 

1996). In the model, QALYs were discounted at 3.5% per year, as per current NICE 

guidelines (NICE, 2018). In the PSA, the model uses annual EQ-5D scores sampled from 

their distribution and then divided by six in order to obtain two-monthly weighted QALYs.   

There were a number of calculations used to obtain the EQ-5D scores used in the first year 

of this model. Baseline EQ-5D for each function group in the model reflected standardised 

mean baseline EQ-5D scores of patients in the SCOPiC study. In order to obtain utility 
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values for each treatment, function group, and whether or not resolution was achieved, a 

treatment effect upon EQ-5D score for resolved and unresolved states was calculated for 

each function group. Treatment effect upon EQ-5D was calculated using linear regression 

analysis controlling for baseline EQ-5D score. In the case of the SCOPiC data, regression 

models were calculated separately for stratified and best usual care patients, results are 

shown in Table 7.10. These treatment effects were then added or subtracted to a baseline 

model population EQ-5D for each patient function. This was necessary because there were 

differences in baseline EQ-5D amongst the three comparators. 

Table 7.10 EQ-5D treatment effect by time point and comparator 

Function, by 
resolution 
(Yes/No) 

Model 
Baseline 
EQ-5D 

EQ-5D treatment effect at four 
months 

EQ-5D treatment effect at twelve 
months 

  SC  BUC UC SC BUC UC 

Poor function 
Resolved 

0.3995 +0.319 +0.285 +0.249 +0.332 +0.361 +0.324 

Poor function 
Unresolved 

-0.039 +0.010 -0.016 -0.023 +0.186 -0.102 

Moderate 
function 
Resolved 

0.5906 +0.203 +0.180 +0.095 +0.231 +0.231 +0.198 

Moderate 
function 
Unresolved 

+0.055 +0.061 -0.044 +0.021 +0.043 -0.087 

Good function 
Resolved 

0.7360 +0.109 +0.129 +0.028 +0.129 +0.199 +0.046 

Good function 
Unresolved 

-0.014 -0.083 -0.043 -0.198 -0.133 +0.058 

Abbreviations; BUC (Best Usual care); SC (Stratified care); UC (Usual care) 

*Good function (RMDQ 0-4); Moderate function (RMDQ 5-10): Poor function (RMDQ 11-24) 
 

As these scores were artificially created, standard errors were taken from actual EQ-5D 

scores in SCOPiC data, at baseline, four months, and 12-months, and BeBack data at 

baseline, six and 12 months.  
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To generate the utility values between time-points, values were assumed to take a linear 

function between observed periods; these are shown only for stratified care, in the columns 

titled “generated x months” in Table 7.11. Calculations for other treatments were identical. 

Table 7.11 Estimating EQ-5D scores at unobserved time points, stratified care 

Function / 
Resolution 

group 

Model 
baseline 
utility 
Mean 
(SE) 

Generated 
2-month 
utility 

Standardised 
4-month 

utility 
Mean (SE) 

α, λ 

Generated 
6-months 

Gen 8 
months 

Gen 10 
months 

Standardised 
12-month 

utility 
Mean (SE) 

α, λ 
Poor 

function 
Resolved 

 

0.399 

(0.019) 

 

0.559 

0.718 

(0.022) 

230,118 

0.721 0.725 0.728 

0.732 

(0.025) 

222,81 

Poor 
function 

Unresolved 

 

0.399 
(0.019) 

 
0.395 

0.392 

(0.039) 

62,96 

0.388 0.384 0.381 

0.377 

(0.063) 

22,36 

Moderate 
function 
Resolved 

 

0.591 

(0.014) 
0.691 

0.794 

(0.018) 

409,106 

0.801 0.808 0.814 

0.821 

(0.02) 

307,67 

Moderate 
function 

Unresolved 

 

0.591 

(0.014) 
0.618 

0.648 

(0.055) 

49,26 

0.639 0.630 0.621 

0.611 

(0.071) 

28,18 

Good 
function 
Resolved 

 

0.736 

(0.017) 
0.800 

0.845 

(0.026) 

161,30 

0.850 0.855 0.860 

0.865 

(0.032) 

98,15 

Good 
function 

Unresolved 

 

0.736 

(0.017) 
0.729 

0.722 

(0.035) 

62,96 

0.676 0.630 0.584 

0.538 

(0.052) 

49,43 

*Good function (RMDQ 0-4); Moderate function (RMDQ 5-10): Poor function (RMDQ 11-24) 
 

EQ-5D scores for the resolution states (beyond 12-months) originated from patients in the 

SCOPiC population, and were determined in the model by resolution (pain score) at 12 

months and baseline function, shown in Table 7.12. As with the LBP model, the 
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assumption is made that twelve-month follow-up values were stable over the next nine 

years.  

Table 7.12 EQ-5D scores for symptom resolution, years 2-10 of model 

Function / Resolution group Mean 
Standard 

Error 
n Distributions α,β 

Poor function Resolved 0.744 (0.016) 134 Beta 553,190 

Poor function Unresolved 0.447 (0.040) 46 Beta 69,85 

Moderate function Resolved 0.808 (0.013) 100 Beta 741,176 

Moderate function Unresolved 0.596 (0.046) 19 Beta 67,46 

Good function Resolved 0.833 (0.025) 35 Beta 185,37 

Good function Unresolved 0.671 (0.067) 11 Beta 32,16 

*Good function (RMDQ 0-4); Moderate function (RMDQ 5-10): Poor function (RMDQ 11-24) 
 

7.3 Methods of Analysis 

7.3.1 Base case analysis  

The base case is a cost-utility analysis of stratified care versus best usual care versus usual 

care for sciatica patients, performed from the NHS perspective. In order to obtain the base 

case estimates, Monte Carlo simulation was utilised to perform 25,000 patient 

microsimulations. The results are presented in the form of a cost-per-additional QALY 

gained. As the interest of the analysis is the cost-effectiveness of stratified care, results will 

be presented in tables as two-way comparisons between stratified care and best usual care, 

and stratified care and usual care.  

Probabilistic sensitivity analyses were also performed to explore the uncertainty arising 

from parameter uncertainty. Second-order Monte Carlo simulation was repeated 1000 

times using all parameters with distributions attached, transitions, utility values, and costs. 

Given the presence of three strategies, probabilistic analyses are presented by cost-

effectiveness acceptability curves (CEAC) in the form of three-way comparisons between 

all comparators.  



280 
 

7.3.1.1 Secondary analyses  

Three main secondary/supplementary analyses were undertaken as follows:  

1. Whilst all results are presented discounted, methodological uncertainty is 

considered by representing undiscounted results.  

2. Due to the high private healthcare costs and volume of time taken off work 

associated with sciatica (detailed in Chapter 2), a secondary analysis was performed 

from the societal perspective.   

3. Sub-group analysis was performed on the discounted base case, with the model run 

separately for patients in each of the three SCOPiC groups. This analysis was 

performed by assigning each of the SCOPiC groups a different function profile; 

Group 1 (8% poor, 51% moderate, and 41% good function), Group 2 (58% poor, 

38% moderate, and 5% good function), and Group 3 (82% poor, 17% moderate, 

1% good function).  

7.3.2 Deterministic sensitivity analyses  

Given the uncertainty associated with the long-term parameters in the model, a number of 

sensitivity analyses were performed to assess the robustness of the results in light of these 

structural and parameter uncertainties, namely changes in assumptions or input parameters 

used in the base case. All scenarios considered were pre-specified in conjunction with the 

views of the group of experts. 

1. With stratified care likely to lead to an altered treatment pathway, analyses 

explored the opinion of experts that stratified care may lower long-term treatment 

costs.  

2. As utility values for each state beyond 12-months were assumed to be the same on 

each comparator, an analysis explored the impact of using the higher EQ-5D scores 
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for patients on best usual care for equivalent states (as found in the SCOPiC trial) 

lasting one, two, five, and ten years.    

3. Finally, given the concerns regarding the impact of health-state choice upon likely 

cost-effectiveness of the approach, alongside the importance of function as an 

outcome for sciatica patients, it was also suggested that a sensitivity analysis assess 

the impact of modelling function states instead of resolution by symptom/pain. In 

this analysis, the model proceeds in a similar structure but patient’s transition 

between function states, accruing costs and QALYs related to their function instead 

of resolution of symptoms.  

The results of all sensitivity analyses are presented in the form of a cost-per-additional 

QALY gained, based upon 25,000 first order simulation trials and 1000 second-order 

Monte Carlo samples, results are displayed either as CEACs, or in numeric form in tables 

reflecting the % likelihood of cost-effectiveness at WTP thresholds of £20,000 per QALY.  

7.3.3 Value of information Analysis 

This analysis will provide a quantification of the value of further research to the NHS. 

Using the PSA output, an expected value of perfect information (EVPI) per person is 

calculated. To obtain the overall value of removing decision uncertainty, the individual 

estimate is then multiplied by the population expected to benefit from the intervention.  

To consider the total value of removing decision uncertainty it is essential to account for, 

not only the population impacted by this decision annually, but also the duration that the 

comparison holds relevancy. This comparison is assumed to hold relevance for the next 10 

years, and this time frame is adopted in this analysis.  

Per person EVPI was estimated using the Sheffield Accelerated Value of Information 

(SAVI) software (Strong et al., 2014). In order to calculate the population expected to benefit 

and to ensure there is no double counting, 10-year consultation prevalence is required. Such 
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a calculation was not found in the literature for sciatica, so based upon the assumed 10-year 

consultation prevalence used in the LBP model (derived from the estimates of Jordan et al. 

(2012)) and that between 20-35% of LBP patients suffer from sciatica (Laroche & Perrot, 

2013), it was assumed that the consulting population was 27.5% of the LBP population, 

giving a 10-year discounted consultation prevalence of 3,885,026.  

The Sheffield Accelerated Value of Information (SAVI) software (Strong et al., 2014) was 

also used in order to calculate the single and group parameter EVPPI. Given that there are 

over 100 parameters in this model, it is expected that the initial contribution of each 

parameter to the overall uncertainty will be minor, and therefore EVPPI was computed for 

groups of associated parameters. Subsets used in analysis will be first year transition 

probabilities, transition probabilities years 2-10, utility values, and costs.  

7.4 Model Results  

The presentation of the results is in four components. Firstly, the base case analysis is 

presented, with accompanying CEACs reflecting probabilistic analyses on second-order 

uncertainty. Secondly, sensitivity analyses on the base case are performed, namely 

undiscounted results, a societal analysis, and subgroup analysis for each of the sciatica 

subgroups. Third, deterministic sensitivity analysis addresses the structural uncertainty 

over the long-term costs. Finally, a value of information analysis (using the base case PSA 

output), considers the potential value of further information. All results, except those in the 

undiscounted analysis, are discounted. Results are presented with willingness to pay 

thresholds of £20,000 per QALY gained.  

7.4.1 Base case analysis 

The results of the base case analysis are presented in Table 7.13, showing the QALYs and 

NHS costs associated with stratified care, best usual care and usual care for the model 

population.  
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Table 7.13 Base case analysis stratified care vs usual care vs best usual care 

 Mean Cost (£) Mean QALYs 

Stratified Care  4781.84 5.16 

Best Usual Care  4474.01 5.19 

Difference (SC-BUC) +307.83 -0.03 

Usual Care  5038.62 4.85 

Difference (SC-UC) -256.78 +0.31 
Abbreviations: BUC (Best usual care); (Quality-adjusted life year); SC (Stratified 

care), UC (Usual care) 
 

The ten-year sciatica-related healthcare costs of stratified care were estimated to be 

£4781.84 per patient, with mean QALYs experienced per-patient of 5.16 during the 10-

year time horizon. Treatment with best usual care was cheaper at £4474.01 per patient, and 

produced 5.19 QALYs. Therefore, stratified care yielded 0.03 less QALYs for an 

additional cost of £307.83 per patient over 10 years, and was dominated by best usual care. 

Stratified care is however dominant relative to usual care, offering 0.31 more QALYs at 

£256.78 cheaper.   

The second-order Monte Carlo PSA demonstrate the variability in these results, shown in 

the cost-effectiveness acceptability curve in Figure 7.3, indicate that at £20,000 per QALY, 

best usual care is 63% likely to be cost-effective, stratified care 37%, both more likely to 

be cost-effective than usual care. At willingness-to-pay thresholds above around £2,500 

per QALY likely cost-effectiveness of usual care falls to near zero.    
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Figure 7-3 Cost-Effectiveness Acceptability Curve, Stratified care vs best usual care 
vs usual care, base case 

 

To understand why the model estimates the cost-effectiveness to be so uncertain despite 

the inferiority of stratified care in the trial data, Table 7.14 shows EQ-5D scores by pain 

resolution at 12 months obtained from trial data compared with the model population score 

used for the extrapolation.  

Table 7.14 EQ-5D scores for symptom resolution at 12 months, stratified care vs best 
usual care 

 
Stratified 

Care 

Best Usual 

Care 

Model 

Population 

Poor Resolved 0.736 0.765 0.744 

Moderate Resolved 0.813 0.806 0.808 

Good Resolved 0.820 0.854 0.833 

Poor Unresolved 0.364 0.50 0.447 

Moderate Unresolved 0.508 0.624 0.596 

Good unresolved 0.437 0.72 0.671 

 

As can be seen, similar to the LBP model, in all but moderate resolved, best usual care had 

EQ-5D scores higher than stratified care at 12 months. Yet the modelled extrapolation 
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beginning at 12 months assumes that EQ-5D scores were equal for each state on all model 

treatments. The consequence of this assumption is that the first extrapolation cycle 

overestimates stratified care and underestimates best usual care by 0.003 QALYs per cycle, 

the combined effect of which would be 0.02 QALYs annualised. As this was the pre-

specified analysis this was not changed for the base case, instead the impact of using 

higher EQ-5D scores for best usual care is explored in sensitivity analysis.  

7.4.2 Secondary analyses for methodological uncertainty and heterogeneity 

This component of the results section assesses the impact of analytic choices, by assessing 

how the inclusion of societal costs, as well as not discounting costs and outcomes, impact 

on the cost-effectiveness of the approach.  

7.4.2.1 Undiscounted analysis  

The base case model was rerun with no discounting performed; results are shown in Table 

7.15. 

Table 7.15 Stratified care vs best usual care vs usual care, no discounting 

 Mean Cost (£) Mean QALYs 

Stratified Care  £5584.13 6.12 

Best Usual Care  £5263.50 6.14 

Difference (SC-BUC) +320.63 -0.02 

Usual Care  £5906.71 5.78 

Difference (SC-UC) -322.58 +0.34 
Abbreviations: BUC (Best usual care), QALY (Quality-adjusted life year); SC (Stratified care), UC 

(Usual care) 

When discounting is not performed, the incremental cost of stratified care vs best usual 

care is higher than in the base case (£320.63 Vs £307.83), and produces a slightly lower 

incremental QALY gain for best usual care (+0.02 Vs +0.03). Accordingly, not 

discounting, slightly improves the probability that stratified care is cost-effective; at the 

£20,000/QALY WTP threshold it is 40% likely to be cost-effective, see below.  
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Figure 7-4 Cost-Effectiveness Acceptability Curve, Stratified care vs best usual care 

vs usual care, undiscounted 

7.4.2.2 Societal Analysis 

The results of the societal analysis, showing QALYs and total societal costs are shown in 

Table 7.16.  

Table 7.16 Societal analysis for stratified care versus best usual care versus usual care 

 Mean Cost (£) Mean QALYs 

Stratified Care  £8555.62 5.16 

Best Usual Care  £8134.09 5.19 

Difference (SC-BUC) +£421.53 -0.03 

Usual Care  £8998.78 4.85 

Difference (SC-UC) -443.16 +0.31 
Abbreviations: BUC (Best usual care); SC (Stratified care), UC (Usual care) 

 

The ten-year societal cost of sciatica related expenses on stratified care was £8555.62 per 

patient with a mean QALY of 5.16 experienced per-patient during that time. Treatment 

with best usual care was cheaper at £8134.09 and produced 5.19 QALYs. Stratified care 

costed £421.53 more compared to best usual care, this was more than the incremental cost 
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in the base case (£307.83), reflecting the additional societal costs accruing to stratified care 

in the first year, and slight advantage of best usual care over the longer-term.   

7.4.2.3 Subgroup analysis  

The results of the base case analysis ran separately for each of the SCOPiC sciatica 

subgroups, estimating QALYs and NHS costs associated with all three comparators, results 

are shown in Table 7.17.  

Table 7.17 Stratified care vs best usual care vs usual care in each SCOPiC subgroup 

Group 1 Mean Cost (£) Mean QALYs 
Cost-effectiveness 

result 

Stratified care £3568.90 5.95  

Best usual care £3541.93 5.84  

Difference (SC- 

BUC) 
+26.97 +0.11 £245.18/ QALY 

Usual Care £4086.39 5.61  

Difference (SC-UC) £517.49 +0.24 Dominant 

Group 2 

Stratified care £4976.27 5.10  

Best usual care £4655.02 5.16  

Difference (SC- 

BUC) 
+£321.25 -0.06 Dominated 

Usual Care £5228.83 4.81  

Difference (SC-UC) -£252.56 +0.35 Dominant 

Group 3 

Stratified care £5339.22 4.70  

Best usual care £4880.10 4.78  

Difference (SC- 

BUC) 
+459.12 -0.08 Dominated 

Usual Care £5432.28 4.39  

Difference (SC-UC) -93.06 +0.31 Dominant 
Abbreviations: BUC (Best usual care); QALY (Quality-adjusted life year); SC (Stratified care), UC (Usual 

care) 
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Relative to best usual care stratified care provides significant additional benefit to patients 

in Group 1 (+0.11 QALY), and dis-benefit for patients in Group 2 (-0.06 QALY) and 

Group 3 (-0.08 QALY). Stratified care is more expensive than best usual care for all 

patients, but considerably more expensive for patients with the most severe symptoms in 

Group 3 (+459. 12). Stratified care is cost-effective relative to usual care for Group 1 

patients only (£245/QALY), and dominated by best usual care in Group 2 and 3.  

The probabilistic simulations show considerable likelihood that for patients in Group 1 

stratified care is cost-effective relative to best usual care, as demonstrated in Figure 7.5. 

For patients in Group 1 at £20,000 per QALY, stratified care is 78% likely to be cost-

effective, with best usual care only 22% likely.  

 

Figure 7-5 Cost-Effectiveness Acceptability Curve, Stratified care vs best usual care 
vs usual care, Group 1 patients 

In Table 7.17 stratified care was shown to be £321.25 more expensive for patients in 

Group 2, providing 0.06 less QALYs than best usual care, which dominates stratified care.  

The CEAC in Figure 7.6 shows that for patients in Group 2, at the £20,000/QALY WTP 
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threshold, there is only a 28% chance that stratified care is cost-effective with best usual 

care most likely (72%) to be cost-effective).  

 

Figure 7-6 Cost-Effectiveness Acceptability Curve, Stratified care vs best usual care 
vs usual care, Group 2 patients 

In Table 7.17 it was shown that for patients in Group 3, stratified care was dominated by 

best usual care, costing £459.12 more and producing 0.08 less QALYs over ten years. 

Accordingly, as Figure 7.7 shows, at the WTP threshold of £20,000, there is only a 25% 

chance that stratified care is cost-effective for patients in poor function with best usual care 

more likely (75%) to be cost-effective).  
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Figure 7-7 Cost-Effectiveness Acceptability Curve, Stratified care vs best usual care 
vs usual care, Group 3 patients 

7.4.3 Structural uncertainty 

This section assesses the impact upon cost-effectiveness of differing assumptions regarding 

the long-term costs of stratified care, assumptions over long-term EQ-5D values, and 

running the model using function states instead of symptom resolution beyond one-year. 

Whilst there is some overlap with parameter uncertainty these are included here as 

structural uncertainties as they are based upon long-term structural assumptions.  

7.4.3.1 Temporal uncertainty over treatment cost 

Table 7.18 shows the impact upon the cost-effectiveness of different assumptions 

regarding the long-term treatment impact on the costs of treatment. Note, the cost of 

surgery is not changed in these analyses.  The table also presents the probability that 

stratified care is cost-effective at a £20,000/QALY WTP threshold.  
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Table 7.18 Cost-effectiveness of stratified care versus best usual care, in different cost 
scenarios 

Cost-variation Per patient 

cost, SC 

Incremental Cost,  

SC Vs BUC 

Likely cost-

effectiveness SC 

10% lower costs on SC £4529.96 +£55.95 41% 

5% lower costs on SC £4630.35 +156.34 39% 

2% lower costs on SC  £4684.89 +£210.88 38% 

Base case  £4781.84 +307.83 37% 
Abbreviations: BUC (Best usual care); QALY (Quality adjusted life year); SC (Stratified Care) 

 

It can be seen that whilst the incremental costs of treatment change considerably, falling to 

£55.95 in the 10% lower cost scenario, stratified care is always more expensive, and the 

likely cost-effectiveness of the approach is relatively unchanged by increased potential cost 

savings.   

7.4.3.2 Alternate utility values 

Using the initial assumption that EQ-5D values would be equal on stratified care versus 

usual care in the base case, was inconsistent with findings from the EQ-5D scores at 12 

months in the SCOPiC trial. Results shown in Table 7.19 suggest what happens if the 

higher EQ-5D scores achieved on best usual care were maintained for another 1, 2, 5 and 

10 years.  Only stratified care and best usual care are shown here, since best usual care is 

more cost-effective than usual care even using the conservative base case assumptions 

regarding EQ-5D.   
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Table 7.19 Stratified care vs best usual care, trial EQ-5D scores beyond 12 months 

Duration Incremental QALY SC Likely cost-effectiveness SC 

10 years +0.16 9% 

5 years +0.09 24% 

2 years +0.06 30% 

1 year +0.04 33% 

Base case +0.03 37% 
Abbreviations: QALY (Quality adjusted life year); SC (Stratified Care) 

 

Under the assumption of higher EQ-5D scores for best usual care, the likely cost-

effectiveness of stratified care falls for each additional year the assumption is held. As 

Table 7.14 suggests these results arise because best usual care patients had a mean EQ-5D 

score 0.03 higher than stratified care patients at twelve months, despite stratified care 

patients having marginally more favourable outcomes according to time to symptoms 

resolution.  

7.4.3.3 Use of function states instead of pain 

Where patient’s transition into states of function instead of resolution defined by pain state 

at twelve months, stratified care is even less favourable than in the base case, and therefore 

still dominated by best usual care. Results are shown below in Table 7.20.  

Table 7.20 Stratified care Vs best usual care, function used as a state. 

 Mean Cost (£) Mean QALYs 

Stratified Care £5380.39 5.25 

Best Usual Care £4960.28 5.32 

Difference (SC-BUC) +£420.11 -0.07 
Abbreviations: BUC (Best usual care); QALY (Quality adjusted life year); SC (Stratified Care) 
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The use of function states alters the likely cost-effectiveness implications, with stratified 

care now costing more and producing less QALYs than in the base case, and only 27% 

likely to be cost-effective at the £20,000/QALY WTP threshold.  

7.4.4 Internal and external validity 

The internal validity of the model was checked by a series of logic checks, including 

dummy runs of all model parameters. A patient cohort was also simulated in Excel in order 

to check the validity of the model, results showed no more than 1% difference in resolution 

at both 5 and 10 years against the output in TreeAge.  

In order to assess the external validity of the model, outcomes were compared at five years, 

with that of patients in the BeBack cohort study, shown in Table 7.21 

Table 7.21 Model output vs cohort study observations. 

 SC  BUC  UC BeBack 

Symptom resolution 

in base case  

84.7% 84% 79.1% 76.2% 

Abbreviations: BUC (Best usual care); SC (Stratified Care); UC (Best Usual care) 

 

It can be seen that patients in usual care performed slightly better than the BeBack cohort 

at five years. The higher proportions in SC and BUC reflect the significantly improved 

symptom resolution achieved in SCOPiC trial relative to the BeBack cohort study.  

7.4.5 Value of Information analysis 
A value of information analysis was performed for uncertainty relating to all parameterised 

components of the model. Results in Table 7.22 show individual level EVPI, £343.16 per 

patient, which can be extrapolated to a population using the consultation population 

expected to benefit (3,885,026), this is shown in the right-hand column at £1,333,185,522.  
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Table 7.22 Per-person and population Value of information 

Scenario 
Per Person EVPI at £20,000 

WTP threshold (£) 

Population EVPI at the 

£20,000 WTP threshold (£) 

Base case 343.16 1,333,185,522 

Abbreviations; EVPI (Expected value of perfect information); WTP (Willingness to pay) 

As we can see from Table 7.23, there are many parameters which can be considered to 

have mae minor contributions to the ovveral decision uncertainty. However, those 

parameters which make the largest contributions are predominantly transition probabilities 

from 4 to 12 months for stratified and best usual care.  

Table 7.23 Single parameter EVPPI, Per Person and population 

Parameters 

Annual Per Person 

EVPPI at £20,000 

WTP threshold 

Approximate 

Standard Error 

Ten-year population 

EVPPI at the £20,000 

WTP threshold 

TP: Stratified care, H1 £0.05 0.25 £179,200 

TP: Stratified care, poor 

function to resolved, 

months 4-12 

£13.64 

3.15 

£52,980,000 

TP: Stratified care, poor 

function to unresolved, 

months 4-12 

£0.93 

0.97 

£3,617,000 

TP: Stratified care, 

moderate function to 

resolved, months 4-12 

£0.86 

1.24 

£3,353,000 

TP: Best usual care, poor 

function to unresolved, 

months 4-12 

£11.31 

2.63 

£43,930,000 

TP: Best usual care, 

moderate function to 

unresolved, months 4-12 

 

£0.76 

0.77 

£2,941,000 
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TP: Best usual care, 

good function to 

unresolved, months 4-12 

£8.32 

1.67 

£32, 320,000 

TP: BUC, good resolved 

to resolved, 12 months 
£0.06 

0.11 
£237,700 

TP: BUC, moderate 

resolved to resolved 
£0.53 

0.30 
£2,054,000 

TP: BUC, poor function, 

resolved to resolved 
£0.16 

0.19 
£632, 200 

Utility, poor function, 

resolved, years 2-10 
£0.01 

0.14 
£23,160 

Utility, good function, 

unresolved, years 2-10 
£0.08 

0.34 
£323,200 

Costs, BUC, year 1, poor 

function resolved 
£3.13 

0.98 
£12.160,000 

Costs, BUC, year 1, poor 

function unresolved 
£0.04 

0.12 
£148, 900 

Costs, BUC, year 1, 

moderate function 

resolved 

£2.61 

0.88 

£10,130,000 

Costs, usual care, poor 

resolved  
£0.02 

0.08 
£62,190 

*Parameters with zero EVPPI are not shown 

Abbreviations; BUC EVPPI (Expected value of partial perfect information); SC (Stratified Care); TP 
(Transition probabilities); UC (Usual care); WTP (Willingness to pay) 

 

When these parameters are grouped, in Table 7.24, it becomes evident just how much the 

transition probabilities contribute to the decision uncertainty.  

 

 



296 
 

Table 7.24 EVPPI parameter groups, per person and population 

Parameter(s) 

Annual Per Person 

EVPPI at £20,000 

WTP threshold 

Approximate 

Standard Error 

Population EVPPI at 

the £20,000 WTP 

threshold 

Transition 

probabilities first 

year 

£266.87 7.55 £1,036,807,900 

Transition 

probabilities year 2-

10 

£0.00 0.00 0.00 

All Utilities £55.99 9.98 £217,527,002 

All Costs £12.22 3.47 £47,467,204 

Abbreivations; EVPPI (Expected value of partial perfect information); WTP (Willingness to pay) 

 

7.5 Discussion  

7.5.1 Principal findings 

The body of work contained within this chapter reflects the design and realisation of an 

individual simulation model to perform a cost-effectiveness analysis of the potential 

application of stratified care for the management of sciatica in primary care. The 

simulations performed for the base case analysis, from the NHS perspective, containing the 

assumption of no additive treatment from stratified care beyond one-year, equivalent EQ-

5D scores for each state beyond 12-months,  showed that the stratified care intervention is 

not cost-effective relative to best usual care, although dominant relative to usual care.  
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However, the relative uncertainty of the result must be taken within the context of the 

results of the subsidiary and sensitivity analyses, namely that, as shown in Table 7.1, 

patients on best usual care have higher EQ-5D scores within the same states compared with 

stratified care patients. Currently, there are no means of determining how long the EQ-5D 

benefits of best usual care could last (or indeed if they are statistically significant). Yet, as 

Table 7.19 shows, even assuming they last two years pushes the likely cost-effectiveness 

even further towards best usual care. Table 7.19 provides a clear indication of the 

sensitivity of model results towards this structural assumption, a vivid illustration of the 

concerns raised in Chapter 4 about assuming equivalent EQ-5D scores for identical states 

across different treatments. This highlights it is imperative to explore the implications of 

different structural assumptions in future modelled analyses in sciatica.   

A similar issue arises when function states are used instead of symptom resolution states, 

showing improved QALY gain, higher incremental cost savings, and higher likely cost-

effectiveness for best usual care relative to stratified care. This result arises from the fact 

that at twelve months, patients were marginally more likely to be in favourable states of 

function on best usual care vs stratified care compared with symptom resolution by pain. 

Moreover, this analysis does not include the slightly more favourable EQ-5D scores 

achieved on best usual care vs stratified care found in the SCOPiC trial. Taken together, 

the base result, results from the EQ-5D analysis, and the use of function as a state, suggest 

that it is highly likely that stratified care is not cost-effective relative to best usual care.   

Interestingly, the results from the subgroup analysis demonstrated that stratified care 

produces beneficial outcomes and saves significant amounts of money for patients in good 

function, but is more costly and less effective for patients in poor function. This result 

suggests that the approach seems effective for patients who were in better condition, but 
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the overall cost-effectiveness of this stratified care model is compromised by the care 

pathway for patients in poor function.   

In relation to the results achieved on stratified care and best usual care versus usual care, it 

is clear that both best usual care and stratified care were superior to results obtained by 

patients in the usual care cohort. The significance of the difference between these results is 

interesting, however difficult to interpret. It may be that despite usual care patients being 

younger and having lower levels of disability and pain, the higher proportion of patients 

with longer symptom duration in BeBack may have contributed towards this differential. It 

should also be noted that the BeBack cohort study was from 2006; expert consultations 

suggested that since then, care for sciatica patients has changed to some degree with GPs 

referring sooner, and directing more patients for treatment such as physiotherapy, and to 

specialist services. Since 2006, physiotherapists also have improved in terms of knowledge 

and training regarding the biopsychological model on which stratified care leans, and it is 

plausible that the lack of impact of stratified care found in the trial and this secondary 

analysis reflect overall underlying improvements in treating patients rather than treatment 

protocols related to the SCOPiC trial. As mentioned above, the SCOPiC stratified care 

model for patients in poor function seemed to drive the overall lack of cost-effectiveness of 

the approach. This is possibly due to the fact that the stratification algorithm used to 

identify patients for fast-track to MRI and spinal specialist assessment, was not adequately 

specific or discriminant, and although patients in Group 3 had the higher levels of pain and 

disability, not all of them needed to be fast-tracked to specialists.  

Nonetheless, the results obtained here possibly lend some support to the idea that providing 

some good quality of care (mainly conservative management) early on in the presentation, 

over and above what might be expected in true usual care, whether it be stratified care or 

best usual care, can improve patient outcomes in the short term, and potentially result in 
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partial repayment of initial outlay across time if the improvements in symptoms are 

maintained.   

7.5.2 Strengths and weaknesses 

There are three major strengths of this analysis. Firstly, it is the first decision model 

produced for stratified care in sciatica; in that regard it is a novel development. Here by 

importing the simulation modelling techniques used in osteoporosis stratification 

modelling, the model offers a different approach to the representation of patient 

stratification than that of the LBP model in Chapter 6. This allows the model to track 

patient function at baseline and experience of surgery, and subsequent transitions 

dependent upon those characteristics. This was especially useful when tailoring different 

configurations of patient function for the subgroup analyses on the SCOPiC sciatica 

groups. Moreover, on the face of it, the model itself has a very simple structure, although 

the underling logic and commands are more complex, it is therefore intuitively 

straightforward to interpret and explain to others, and prevents the number of Markov 

states becoming unmanageable.  

Second, and related, whilst not finding solutions to all of the methodological problems 

identified in chapter 4, the analysis has demonstrated how important structural and 

temporal assumptions over EQ-5D scores across time and choice of health state can be for 

the likely cost-effectiveness of comparisons between interventions with similar outcomes 

at twelve months.  

Third, as identified in the systematic review in chapter 4, there is a hesitance to produce 

modelled cost-effectiveness analyses over an extended time horizon. By meeting with 

clinicians and other experts, this analysis was able to make assumptions about long-term 

treatment outcomes being dependent upon resolution by NRS pain scores at twelve months 

and five years.   
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The study has some weaknesses. Whilst the PSA samples transitions of patients between 

states of resolution beyond one year, and it is in that sense probabilistic, as was the case in 

the LBP model, the assigning of equivalent transitions to patients in all three treatments 

does not capture the “true” uncertainty over long-term transitions. The “true” probabilistic 

uncertainty over the long-term treatment effect, therefore, could only be accounted for by 

attaching a probability distribution to the differential transitions of patients on stratified 

care versus best usual care versus usual care over time. This information is currently 

unknown, and in this case the impact of having best usual care achieve better outcomes for 

patients, was addressed by looking at improved EQ-5D scores for patients on best usual 

care at various time points. The same is true for the uncertainty over long-term EQ-5D 

scores, and costs, not being parameterised between the comparators. These could have 

been assessed more formally and empirically parameterised using more sophisticated 

methods (see Bojke et al. 2009 for a review), such as model averaging and 

parameterisation, and whilst lying outside the scope of this work, could be a future 

endeavour in modelling in both areas.  

In relation to the cost-effectiveness result in the usual care comparator, there were more 

patients in the BeBack sample with symptoms of longer duration, which was not controlled 

for in the analysis of transitions or EQ-5D scores. However, by using EQ-5D scores 

controlling for baseline EQ-5D, and applying a model population standardised by baseline 

function category, it was hoped to control for important differences between cohorts.  

In relation to data, the transition probabilities beyond one-year were only available at five 

years, and as a consequence this raises two issues. Firstly, the assumption of linear 

transitions between twelve months and five years in unrealistic and does not accurately 

reflect the likely fluctuations in function experienced by patients, although at least impacts 

each treatment in the same manner. Moreover, assuming equivalent transitions from years 
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five to ten are similar to one to five years could be unrealistic. As could the assumption of 

stable EQ-5D scores of stability of time.  

Validity checks showed the model predicts higher symptom resolution that would be 

expected from the BeBack data. This possibly reflects the fact that surgical patients are 

placed into symptom resolution at twelve months, and is a possible limitation of the model. 

Further analysis of outcomes for surgical patients could help improve this issue.  

Moreover, the superior results achieved for stratified care and best usual care in the model 

could reflect the superior improvements experienced by patients in the SCOPiC trial. 

However, it is possible that this result may require a tempering of the base case assumption 

that patients who already improved significantly during the first year on the SCOPiC trial, 

would continue to improve at the same rate as patients in the BeBack sample over time, 

given those patients in BeBack hadn’t experienced that same initial improvement.   

There were a number of issues regarding costings. Resource use is taken from the first year 

of the BeBack cohort study, and therefore may over-represent likely long-term costs. This 

study was also undertaken in 2006 and possibly does not represent the nature of the 

treatment pathway today. As previously noted, that all healthcare resource use came from 

self-report can be considered a limitation, on the grounds of recall bias (Petrou et al. 2002). 

Additionally, there is a significant difference in the number of days off work experienced 

by patients in the SCOPiC trial, and patients in the BeBack cohort study, this could reflect 

underlying changes in work absence in this population.  

7.5.3 Implications for researchers, clinicians and policymakers 

The findings in these analyses provide strong evidence that either stratified care or best 

usual care, is almost certainly likely to be cost-effective relative to usual care for the 

management of sciatica. Lacking the evidence to determine whether or not, stratified care 

improves symptoms, versus best usual care, or whether best usual care improves EQ-5D 
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scores versus stratified care, future research could provide benefits given the potential cost 

savings likely to follow from a cost-effective management approach for sciatica.  

The results of the subgroup analysis show how the more costly, and less effective 

outcomes for patients in poor function, compromise the cost-effectiveness of the approach, 

and perhaps this provides evidence that researchers ought to target their future work 

towards better identification of those sciatica patients that truly need to see a specialist 

early on, and also towards improving the interventions for patients with greater disability.  

The value of information analysis showed that removing the uncertainty detailed in this 

study could hold significant value. This very high value reflects not only the degree of 

uncertainty over which is the best treatment, but the large potential net benefit of 

identifying timely and effective treatments for sciatica. In terms of interpretation of this 

result it is to be concluded that there is undoubtedly value in identifying cost-effective 

treatment approaches for this patient population going forward. However, whether or not 

further investigation of stratified care (or different models of stratified care) vs best usual 

care is useful is likely to be a clinical judgment reflecting whether or not clinicians believe 

that this approach has value in this patient population. Subgroup results in this analysis do 

at least help by suggesting where this approach provided clear benefit, e.g. SCOPiC Group 

1.  

Results of single parameter and parameter groupings can help suggest further avenues for 

research, namely collection of data on the first year transition probabilities on stratified and 

best usual care. However, further logical consideration must be given to the nature of the 

model structure, which assumes equivalent transitions from years 2-10. The EVPPI output 

from such a structure will not adequately capture the value of information associated with 

identifying these longer-term parameters, with first-year transition probabilities acting as a 

catch-all for the uncertainty associated with all transitions across the model horizon. 
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Therefore, research on the likely long-term treatment effect would also help reduce the 

uncertainty in the model, as well as being able to differentiate accurately between sources 

of uncertainty.    

7.6 Conclusion 

This chapter presented the design and analysis of a model-based cost-effectiveness analysis 

of stratified care versus best usual care versus usual care from the healthcare perspective, 

in patients consulting in primary care with sciatica. The analyses conclude that stratified 

care is not cost-effective, although providing patients with care above or beyond what they 

might reasonably expect in usual care, best available care is likely to be cost-effective over 

the long-term. Sensitivity analyses reveal, once again, that certain structural uncertainties 

impact upon the model results.   
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Chapter 8:  DISCUSSION AND RECOMMENDATIONS  
 

This chapter comprises a discussion of the overall findings and their relevance as a valuable 

source of information to policy makers, as well as wider implications for decision modelling 

in low back pain and sciatica.  

8.1 Context 
 

The longer-term cost effectiveness of the Keele stratified care model was unknown in both 

LBP and sciatica. The ultimate objective of the thesis was the production of long-term cost-

effectiveness estimates of stratified care approaches in both conditions, by extrapolating 

beyond trial results.  In order to provide these estimates, in addition to data analysis, a 

process of learning was undertaken to consider how modellers had approached modelling in 

both conditions as well as representing stratified care pathways in models. As a consequence, 

it is possible to comment upon methodological issues relating to modelling in these 

conditions, as well as the specific cost-effectiveness implications of the two treatment 

approaches. Therefore, this thesis concludes by offering recommendations on decision 

analytic modelling in both conditions.  

The purpose of this chapter is to unite the methodological and empirical work within this 

thesis. The first section provides an overview of key findings from the thesis. The next 

section then considers the overall strengths and limitations of the thesis. Third, the findings 

for policy and future research are presented. The chapter concludes with potential modelling 

guidance in these conditions.  

8.2 Research objectives in this thesis 
 

The following section answers four of the five specific research objectives detailed in 

1.8.1. The final objective concerning guidance is explored in Section 1.3  
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8.2.1 What are the lessons to be learnt regarding current modelling approaches in 
low back pain and sciatica 

 

Both decision models designed for this thesis are de-novo models and include modelling 

methodologies unique to this body of work. The LBP model takes a unique model 

structure, using patient functional status achieved at twelve months in order to extrapolate 

trial results over ten years. Stratification in this model is reflected by the use of three 

separate Markov models for each risk subgroup. The sciatica model uses an individual 

sampling model, a novel development within this condition, and suggested to be the most 

appropriate means to model sciatica given that outcomes are dependent upon patient 

characteristics, and surgery is an infrequent but nonetheless available treatment for this 

population.  

The cost-effectiveness result amongst high-risk patients in the LBP model highlights the 

importance of modelled analyses in both conditions. In the modelled analysis, stratification 

dominated usual care over ten-years, yet in the one-year trial was more expensive than 

usual care. The problem with one-year trial analyses is they do not capture the potential 

long-term benefits and cost savings, in this case treating the high-risk patients with initially 

costly stratified care with cost savings expected later.  

Given the value in the production of high-quality economic evidence based upon decision 

modelling it makes it all the more surprising that that existing model-based economic 

evidence is either non-existent or of poor quality (Chapter 4, Section 4.4; Hall et al. 2019). 

The review identified critical flaws in existing models of interventions for LBP and 

sciatica. Issues related to studies not modelling across adequate time horizons, 

inappropriate use of utility data, calculation errors, a lack of transparency regarding 

methodologies, and the failure to consider the extent to which uncertainty and assumptions 
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limit the applicability and generalisability of the results. It is the argument of this thesis, 

that all these issues can be addressed, through rigor and adherence to modelling guidance.  

Extrapolation using decision analytic modelling ought to now be considered a research 

imperative, given that many treatments for both LBP and sciatica now aim at a) 

encouraging the patient to self-manage, and b) treat patients early and appropriately, in the 

hope of better outcomes and overall improvement in prognosis, and/or saving future 

treatment costs. This should begin at the trial design stage, so thought ought to go into a 

potential modelling strategy, which preserves the integrity and reporting transparency of 

the working methodologies.  

Ultimately, health economists and modellers developing models in both conditions need to 

be more willing to explore the implications of extrapolation of treatment effect over an 

appropriate time horizon. Guidance is available on how to capture the associated 

uncertainty relating to extrapolation of unobserved treatment parameters in sensitivity 

analyses. The National Institute for Health and Care Excellence (NICE, 2013) methods 

guidance advocate scenario analyses with (1) nil treatment effect over the unobserved 

period; (2) treatment effect during the unobserved period is set equal to the observed 

period; and (3) treatment effect diminishes over time. The analysis presented in this thesis 

used a variant on (1), with sensitivity analyses (see Chapter 6, section 6.4.4) attempting to 

represent both (2) and (3).  

Yet, notably, none of the existing studies in the systematic review using extrapolation 

undertook sensitivity analyses with sufficient rigour to capture the uncertainty over the 

long-term treatment pathway that their assumptions demanded. Both models in this thesis, 

attempt to extrapolate using data in conjunction with expert input as regards assumptions, 

and capture, to the best degree possible, the cost-effectiveness implications of different 

extrapolation assumptions. The results of these analyses show the importance of 
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undertaking these sensitivity analyses, given the impact that different structural and 

temporal assumptions can have on the cost-effectiveness of different approaches.    

Moreover, further research needs to explore the implications of using different structural 

assumption, in modelled analysis of both conditions. In both models, whilst it did not 

affect the overall cost-effectiveness result, the choice of health state significantly affected 

the degree of cost-effectiveness decision. In studies with closer cost-effectiveness result, 

this could be extremely significant.  

In relation to the question of which health state ought to be selected, established guidance 

(Philips et al. 2006), states that disease states should reflect the underlying biological 

disease process and intervention impact. In this case, using function, symptom resolution, 

or pain, as health state, could all fall within the scope of this guidance. An analysis could 

choose a health state classification in order to improve the cost-effectiveness of the 

intervention, or conversely a team may not capture the full benefits or cost savings 

accruing to their intervention, both scenarios are equivalently likely to lead to incorrect 

adoption decisions. In order to minimise the impact of uncertainty over appropriate health 

state, analyses should be performed using different health states, it is suggested here that 

function and pain (possibly dichotomised to indicate symptom resolution) be used as health 

states in LBP or sciatica models.  

Moreover, calibration of utility values should be undertaken in order to avoid a scenario 

(as in Chapter 6, section 6.4.4.9) where patients in each of the states of pain, had higher 

EQ-5D scores on usual care than on stratified care. This situation also arose in the sciatica 

model, where EQ-5D scores for “success” or “resolution” were set as equal across the 

length of the extrapolated analysis, despite evidence that this is not the case at twelve 

months, this is likely to cause bias in the model results. The solution, as performed in 

7.4.3.2, was to run the model for alternate assumptions regarding EQ-5D score 
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differentials. With regard to the otherwise excellent Lewis et al. (2011) model, and various 

other models that used similar methodology, the evidence presented here suggests that 

assuming equivalent EQ-5D scores for a “success” or “failure” on different treatments 

could compromise the overall cost-effectiveness result.  

Future models should endeavour to pay attention to the methodological challenges raised 

in Chapter 4, and Chapters 6-8, and summarised in Hall et al. 2019, to ultimately help 

advance this field, and enable more useful comparisons between treatments, and a better 

standard of cost-effectiveness evidence. Until modellers produce more high-quality 

modelling studies, consistent with modelling guidelines, the standard of discourse 

necessary to stimulate methodological improvements in these areas, is likely to be 

restricted.  

Finally, a note on extrapolation, the fundamental principles underpinning the extrapolation 

used in this analysis, were reflective of the work on trajectories (Dunn et al. 2013). Whilst 

the statistical methodologies differ, the principle of extrapolation used in this thesis reflects 

the idea that groups of patients have trajectories, which are stable over time, and therefore 

it is reasonable to perform linear extrapolation between observed periods. Even where a 

longer-term dataset is not available, it may be possible to use information from the 

trajectories literature, to perform extrapolation.  

8.2.2 What are the lessons to be learnt regarding current modelling approaches to 
stratified care? 

 

The stratification in these analyses were modelled in accordance with how modellers had 

constructed their models previously, presented in the review in Chapter 5. Using different 

model forms, both analyses presented here demonstrated how a Markov state-transition, or 

an individual sampling model, could adequately carry out this form of analysis.  
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Clearly, the principal lesson to be learnt from the data analysis performed in this thesis 

relates to the problem of data. When deriving parameters for a model-based analysis, 

having the stratification presents another means by which the statistical power of the 

estimates is reduced. In the LBP model, the BaRNS cohort study had sufficient data with 

which to derive the longer-term transitions as dependent upon patient function, although 

not risk group. Patient transitions ultimately became a function of the composition of 

patient function states at twelve-month, with results in each risk-group reflective of patient 

function within that risk-group at twelve months. Similarly, in the sciatica model, patient’s 

subdivision could only account for function and symptom resolution at twelve months, 

given the limitations of data in the BeBack study. This somewhat diminishes the value of 

using individual simulation modelling in this thesis, and also compromises the accuracy of 

the sub-group analyses.  

8.2.3 Is stratified care for low back pain likely to be cost-effective?  

A de-novo state transition model was constructed to perform a cost-effectiveness analysis 

of the potential application of a stratified care model (STarT Back approach) for the 

management of LBP. The Monte Carlo simulations performed for the base case analysis, 

from the NHS perspective, including the assumption of no additive treatment effect from 

stratified care beyond one-year, showed that the intervention is very likely to be cost-

effective and cost-saving, on average, with cost-effectiveness result robust to sensitivity 

analyses.  

There are some caveats about the effectiveness of this stratified care model for LBP. 

Notably, the clinical results have not been replicated by others, in other areas/countries 

(e.g. Cherkin et al. 2018; Morso et al. 2018), and therefore there are questions about the 

generalisability of these results beyond the UK, or indeed beyond Staffordshire and 

surrounding regions. This model could provide a theoretical platform for authors in those 
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countries researching this model of care, to perform their own analyses, as there may be 

reasons to assume that there could be future cost savings accruing to stratified care patients 

that are not captured within their trial-based analyses to-date. If the results of the trials 

provide non-inferiority but are likely to lead to short-term and long-term cost savings, then 

modelling can be undertaken and may show that on balance it is likely that stratified care 

could be cost-effective even where it is not likely to lead to clearly superior clinical 

outcomes.  

8.2.4 Is stratified care for sciatica likely to be cost-effective? 

The base case result for the de-novo individual sampling model performed for sciatica was 

unambiguous about the likely cost-effectiveness of either of the trial management options 

relative to usual care assumed in the cohort study. However, stratified care was not cost-

effective in comparison to best usual care. Results could be used to hypothesise that the 

provision of effective early care, received either in the stratified care arm of the trial, as 

well as best usual care, that are likely to be cost-effective. Although, the analysis may 

partially be reflecting underlying changes in the sciatica treatment pathway over the past 

15 years.   

The results in the sub-groups were informative, given that stratified care provided strong 

benefits and cost-savings for patients in good function, but inferior and more costly 

outcomes for patients in poor function, providing some evidence to motivate an improved 

future model of care. Clearly there are dimensions to the stratified care model which can be 

cost-effective, and the evidence suggests it should be considered a work in progress.  

8.3 Guidelines for modelling in both conditions 

In what follows, the implications of this work are considered with respect to future 

modelling endeavours.  
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• A clear need for those conducting economic evaluations to consider the use of 

decision modelling 

Given the evolution of the understanding of back pain as a chronic condition, with 

frequent recurrence over time, there is a clear need for economic evaluations to 

consider the use of decision modelling to capture the long-term impacts of treatments 

for both conditions, a need made more urgent by the rising socio-economic burden of 

both conditions.  

• More engagement with economic modelling to strengthen methodologies. 

This thesis has identified, and attempted to resolve the methodological issues related to 

decision modelling in both conditions.  However, the answers provided here are 

intended to be the beginning of conversations, there will need to be more engagement 

with economic modelling to strengthen methodologies.  

• Suitable, high quality data is needed to underpin the modelling process.  

As is evident, there are shortages of data with which to perform the extrapolation. The 

data used here for extrapolation of transition probabilities, was of high quality, but was 

low on statistical power, which contributes to substantial decision uncertainty. 

Moreover, costs were taken from older cost sources, and quality of life values used in 

the extrapolation were derived at 12 month follow-up. Researchers need to produce 

high-quality research on patient function over time, but also quality of life, and 

healthcare costs. Direct evidence on the impact of stratified care would improve the 

validity of the modelling. Considering the data needs of decision models at the trial-

design stage could be of real utility.  

• Health economists and modellers developing models in both conditions need to be 

more willing to explore the implications of extrapolation of treatment effect over an 



312 
 

appropriate time horizon. In expert consultations, the consensus appeared to be 

extrapolation over ten-years should be the absolute minimum time horizon in both 

conditions.  

This is because extrapolation better captures the extent of longer-term benefits and cost-

savings associated with treatments, and modelling could plausibly alter the cost-

effectiveness implications of treatments in certain scenarios. This is an imperative, given 

the proliferation of treatment approaches in both LBP and sciatica, which have the explicit 

aim of treating early to save money and improve patient outcomes further down the line. It 

is also likely that encouraging patients to self-manage in the longer-term, will potentially 

lower treatment costs – again the full extent of the potential savings accruing to the health 

service are not likely to be captured within a twelve-month evaluation. As described in 

Chapter 4, methods exist to handle temporal parameter uncertainty.  

• Where data is limited in engaging in extrapolation, modellers should follow as a 

minimum the NICE guidance.  

Modellers should ensure their base case and sensitivity analyses cover the three scenarios 

advised by NICE (2013); (1) nil treatment effect over the unobserved period; (2) treatment 

effect during the unobserved period is set equal to the observed period; and (3) treatment 

effect diminishes over time. This thesis provides a starting point for how this could be done 

in these conditions (Chapter 6, section 6.4.4.3 – Temporal uncertainty over long-term 

treatment effect).  

• Parameter and structural uncertainty need to be addressed in accordance with best 

practice.  

There was under representation of probabilistic analyses in the systematic review (Hall et 

al. 2019). Whilst the sensitivity analyses in these studies account for some of the 
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uncertainty in model parameters, studies rarely undertook probabilistic analyses or the 

rigorous sensitivity analyses required to capture the uncertainty over the long-term 

treatment pathway that their assumptions demanded. The two modelled analyses in this 

thesis demonstrate how sensitive the cost-effectiveness outcomes were to assumptions 

regarding long-term patients’ outcomes, EQ-5D values, and choice of health state. It could 

be argued that this thesis would have benefited from inclusion of a further sensitivity 

analysis to review the impact of alternative cut-offs for function in the LBP model, and 

resolution in the sciatica model. Modellers in both conditions should, as a minimum follow 

the Philips et al. (2004) checklists related to sensitivity analysis. 

• Research needs to explore the implications of using different health states in both 

conditions. 

In both modelled analyses it was shown that changing the health states used in the analyses 

altered the cost-effectiveness results, and whilst not changed the implied adoption decision 

in both models, given the degree of sensitivity could likely influence the cost-effectiveness 

implications where the comparators were more similar in cost-effectiveness. In order to 

avoid incorrect adoption decisions, two health states ought to be modelled as a minimum. 

In a related matter, work in both conditions should continue to advance the dialogue within 

this thesis related to consideration of what the most appropriate health states might be it is 

suggested function and pain are appropriate.  

• The importance of the calibration of utility values. 

As was shown by the systematic review, it was common to use identical EQ-5D scores for 

various states on both treatments, over the long-term. The significance of this issue was 

highlighted in the sciatica analysis, where altering the EQ-5D scores for each state, 

significantly changed the QALY gain. The implication of alternative assumptions should 

be modelled in sensitivity analysis.   
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• Future modelling studies should pay attention to the methodological challenges 

raised in Chapter 4, and Chapters 6-8, and summarised in (Hall et al. 2019. 

Strengthening methodologies will ultimately enable a better standard of cost-effectiveness 

evidence to compare between treatments. The potential value of improving research in this 

area was evidence by the value of information analyses indicating the potential benefit of 

further information is extremely high.  

• EVPPI should be produced to guide future research.  

Given the need for better quality of economic evidence in this field, it is imperative that 

data needs are continually highlighted; EVPPI is a key tool in highlighting where to guide 

future research. Yet none of the models included in the review included EVPPI, with only 

one including an EVPI estimate.  

8.4 Strengths and limitations of the research 

Taken as a body of work, this thesis has provided a high standard of cost-effectiveness 

evidence on the long-term cost-effectiveness of stratified management options for both 

conditions. However, having engaged with extensive issues related to the modelling of 

treatments and management approaches, this thesis has provided far more than that.  

Referring to the issues raised in the review, the work has shown with some fairly simple 

assumptions, that models in both conditions can extrapolate trial results over ten years, and 

the extensive body of sensitivity analyses provides suggestions as to a means of 

quantifying the uncertainty around those assumptions. The inputs used in the models, 

therefore not only represent suggestions for methods that could be employed in order to 

undertake extrapolation, but also provide estimates that could be used in alternate models 

to undertake similar approaches. The presentation of a range of reasonably powered and 

appropriate utility values especially, could also aid decision modelling in this field. 
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The work has identified the key points of sensitivity in models addressing both conditions. 

Namely, EQ-5D scores on treatments, assumptions around long-term patient outcomes, 

and choice of health states. EQ-5D scores and long-term patient outcomes can be resolved 

by improved data availability. However, debates around how to represent the condition in 

the form of health states, as the sensitivity analysis results have shown is not 

inconsequential.  Selection of health states for these models could perhaps be an empirical 

question, perhaps reflecting whether pain or function do better predict long-term patient 

outcomes. Whilst not issuing a definitive solution, engaging with these debates is a key 

strength of this thesis.  

Clearly, the absence of data on long-term outcomes and healthcare costs, limit the 

applicability of the study results. It is strongly advised that readers interpret base case 

results in conjunction with the sensitivity analysis, and not rely solely upon the base case 

estimates, which lean heavily upon assumptions and involve possibly problematic data. 

Findings must also be interpreted with reference to the data limitations considered within 

each of the modelling chapter discussions (6.4.2 and 7.5.2). Cost estimates used in the 

extrapolations are a particular concern, given they are from the first year of a cohort study 

from 2006, there is reason therefore to consider that these results do not represent current 

resource usage associated with each condition. However, sensitivity analyses undertaken in 

both analyses reveal that results are fairly robust to even major changes in assumptions 

regarding costs. In this case, it is sensible to uphold concerns regarding the estimates, 

whilst accepting the cost-effectiveness implications of the analyses using these estimates 

are likely to be robust.  

8.5 Implications for future research 

The results of the EVPI analyses highlight the potential value from further research. Whilst 

the stratified care approach for LBP is likely to be cost-effective, the high value of future 
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research arises from the large numbers consulting in this population. The value in sciatica 

arises from the uncertainty of the cost-effectiveness relative to best usual care. Meanwhile, 

the EVPPI analyses show that improving upon the data limitations acknowledged in the 

study regarding long term transition probabilities, could lead to a reduction in overall 

uncertainty, and can act as a motivation for future research. Other uncertain structural 

assumptions could be resolved by the facilitation of data collection, e.g. longer-term follow 

up data for EQ-5D scores and healthcare usage which are powered to detect differences in 

stratification groups.  

In relation to stratified care for sciatica patients, the sub-group analyses produced in this 

thesis highlight the value of stratified care for patients in good function, but perhaps serve 

to motivate improvements in stratification approaches for patients experiencing more 

severe symptoms.  

8.6 Conclusion 

The purpose of this research was to investigate the methodologies that had been used in 

decision analytic modelling in low back pain and sciatica as well as stratified care, to 

develop de-novo models to perform cost-effectiveness analyses for stratified care for low 

back pain, and sciatica.  

The modelled analyses show that stratified care for low back pain is likely to be cost-

effective, whereas stratified treatment of sciatica is unlikely to be cost-effective. Findings 

were robust to a number of scenario analyses  

However, the main theoretical message of the thesis is that the state of decision modelling 

in both conditions is still in its infancy, and long-term cost-effectiveness evidence to date, 

is sparse. This thesis calls for not only more attempts at modelling, but for further 

discussion of issues considered within this body of work, and lays out the importance of 
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doing so. The need for the production of better quality data to place into decision models 

was also discussed, and EVPPI analyses show long-term patient transitions as a priority.  

This work, produces guidance and suggestions on how  decision modelling might proceed, 

produces some parameter estimates which may be of use going forward, and highlights the 

key drivers of uncertainty within these models, the ultimate subsequent aim being the 

production of high-quality long-term economic evidence in both conditions.  
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Appendix 2: Search strategies for Chapter 4 
 

Search Strategy for Medline, hosted by OVID.  
backache.ti,ab.  

backache/  

(spin* adj5 (disease or stenosis)).ti,ab.  

exp Spinal Stenosis/  

spinal diseases/  

(ischi* or sciatic*).ti,ab.  

sciatica/  

radicul*.ti,ab.  

Radiculopathy/  

polyradiculopath*.ti,ab.  

Polyradiculopathy/  

(nerve adj5 (pain or syndrome*)).ti,ab.  

Nerve Compression Syndromes/  

spondylosis.ti,ab.  

spondylosis/  

spondylitis.ti,ab.  

spondylitis/  

exp Intervertebral Disc Displacement/ or exp Intervertebral Disc Degeneration/  

(disc* adj5 (displacement* or protru* or avulsion or degeneration*)).ti,ab.  

herniat*.ti,ab.  

back injur*.ti,ab.  
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exp Back Injuries/  

(leg adj5 pain).ti,ab.  

(refer* adj5 pain).ti,ab.  

lumbago.ti,ab.  

lumbago/  

1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 
or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26  

(spinal or spine).ti,ab.  

spine/  

spinal canal/  

(lumba$ or lumbo$).ti,ab.  

lumbar vertebrae/  

exp Intervertebral Disc/  

Neuropathic.ti,ab.  

exp Spinal Nerve Roots/  

((disc or nerve) adj5 sacral).ti,ab.  

exp back/  

back.ti,ab.  

28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38  

exp pain/  

(pain or painful or ach*).ti,ab.  

40 or 41  

39 and 42  

27 or 43  
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expenditure$.ti,ab.  

econom*.ti,ab.  

health care rationing/  

(cost or costs).ti,ab.  

exp economics/  

"Quality of Life"/  

models, economic/  

value of information analys$.ti,ab.  

45 or 46 or 47 or 48 or 49 or 50 or 51 or 52  

monte carlo.mp.  

state-transition.mp.  

markov.mp.  

(decision* adj5 (analytic* or analys#s or tree*)).mp.  

exp decision theory/  

individual sampling.mp.  

individual patient level.mp.  

system dynamic*.mp.  

discrete event simulation.mp.  

model*.ti,ab.  

54 or 55 or 56 or 57 or 58 or 59 or 60 or 61 or 62 or 63  

44 and 53 and 64  

limit 65 to humans  

limit 66 to english language  
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Search strategy for PsychINFO, hosted by OVID. 
backache.ti,ab.  

(spin* adj5 (disease or stenosis)).ti,ab.  

(ischi* or sciatic*).ti,ab.  

radicul*.ti,ab.  

polyradiculopath*.ti,ab.  

(nerve adj5 (pain or syndrome*)).ti,ab.  

spondylosis.ti,ab.  

spondylitis.ti,ab.  

(disc* adj5 (displacement* or protru* or avulsion or degeneration*)).ti,ab.  

herniat*.ti,ab.  

back injur*.ti,ab.  

(leg adj5 pain).ti,ab.  

(refer* adj5 pain).ti,ab.  

lumbago.ti,ab.  

exp Back Pain/  

exp neuropathic pain/  

1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16  

(spinal or spine).ti,ab.  

exp Spinal Nerves/  

(lumba$ or lumbo$).ti,ab.  

exp Lumbar Spinal Cord/  

Neuropathic.ti,ab.  

exp neuropathy/  
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((disc or nerve) adj5 sacral).ti,ab.  

exp "back anatomy"/  

back.ti,ab.  

18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26  

(pain or painful or ach*).ti,ab.  

exp chronic pain/ or exp pain/  

28 or 29  

30 and 27  

31 or 17  

expenditure$.ti,ab.  

econom*.ti,ab.  

exp Economics/  

(cost or costs).ti,ab.  

exp "Costs and cost analysis"/  

quality of life.ti,ab.  

exp "Quality of life"/  

value of information.ti,ab.  

33 or 34 or 35 or 36 or 37 or 38 or 39 or 40  

monte carlo.mp.  

state transition.mp.  

markov.mp.  

exp Markov chains/  

(decision* adj5 (analytic* or analys#s or tree*)).mp.  
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decision theory.mp.  

individual sampling.mp.  

individual patient level.mp.  

system dynamic*.mp.  

discrete event simulation.mp.  

model*.ti,ab.  

42 or 43 or 44 or 45 or 46 or 47 or 48 or 49 or 50 or 51 or 52  

32 and 41 and 53  

limit 54 to human  

 

Search strategy for NHS EED, and HTA databases, hosted by Cochrane  
 

ID Search Hits 

#1 MeSH descriptor: [Back Pain] explode all trees  

#2 back pain:ti,ab,kw   

#3 backache*:ti,ab,kw   

#4 MeSH descriptor: [Spinal Diseases] explode all trees  

#5 spin* near/5 (disease or stenosis):ti,ab,kw   

#6 spondyl*:ti,ab,kw   

#7 "Intervertebral disc":ti,ab,kw   

#8 disc* near/5 (displacement* or protu* or prolapse* or avulsion or degeneration* or 
hernia*):ti,ab,kw   

#9 MeSH descriptor: [Sciatica] explode all trees  

#10 sciatic*:ti,ab,kw   

#11 MeSH descriptor: [Radiculopathy] explode all trees 

#12 radicul*:ti,ab,kw   

#13 polyradicul*:ti,ab,kw   
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#14 MeSH descriptor: [Nerve Compression Syndromes] explode all trees  

#15 nerve near/5 (pain or syndrome* or compression* or inflammation*):ti,ab,kw   

#16 MeSH descriptor: [Back Injuries] explode all trees  

#17 back injur*:ti,ab,kw   

#18 MeSH descriptor: [Pain, Referred] explode all trees  

#19 refer* near/5 pain:ti,ab,kw   

#20 MeSH descriptor: [Neuralgia] explode all trees  

#21 MeSH descriptor: [Sacrum] explode all trees  

#22 #1 or #2 or #3 or #4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12 or #13 or 
#14 or #15 or #16 or #17 or #18 or #19 or #20 or #21   

#23 MeSH descriptor: [Leg] explode all trees  

#24 leg:ti,ab,kw   

#25 MeSH descriptor: [Spine] explode all trees  

#26 spin*:ti,ab,kw   

#27 lumbar*:ti,ab,kw   

#28 lumbo*:ti,ab,kw  

#29 MeSH descriptor: [Intervertebral Disc] explode all trees  

#30 intervertebral:ti,ab,kw   

#31 MeSH descriptor: [Spinal Nerve Roots] explode all trees  

#32 neuropathic:ti,ab,kw   

#33 MeSH descriptor: [Back] explode all trees  

#34 back:ti,ab,kw   

#35 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34   

#36 MeSH descriptor: [Pain] explode all trees  

#37 pain:ti,ab,kw   

#38 #36 or #37   

#39 #35 and #38   

#40 #22 or #39   



377 
 

#41 MeSH descriptor: [Monte Carlo Method] explode all trees  

#42 "Monte Carlo"   

#43 MeSH descriptor: [Markov Chains] explode all trees  

#44 Markov   

#45 MeSH descriptor: [Decision Support Techniques] explode all trees  

#46 MeSH descriptor: [Decision Theory] explode all trees  

#47 decision near/5 (analytic* or analy?s or tree* or theor*)   

#48 Individual near/5 (sampling or patient level)   

#49 MeSH descriptor: [Systems Analysis] explode all trees  

#50 system near/2 dynamic*   

#51 Dynamic near/2 transition*   

#52 "Discrete Event Simulation"   

#53 Model:ti,ab,kw   

#54 #41 or #42 or #43 or #44 or #45 or #46 or #47 or #48 or #49 or #50 or #51 or #52 
or #53   

#55 #40 and #54 in Technology Assessments and Economic Evaluations 
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Appendix 3: Search strategies for Chapter 5 
 

Search strategy for Embase 
 

1. (econom* adj3 (evaluation* or analy* or stud* or health)).ti,ab. 
 

2. health economics/ or device economics/ 

3. (cost* adj3 (effect* or benefit* or utilit* or consequence* or minimi* or analy*)).mp. 

4. exp cost effectiveness analysis/ 

5. 1 or 2 or 3 or 4 

6. "state transition".mp. 

7. exp monte carlo method/ 

8. markov.mp. 

9. "decision tree".mp. 

10. (decision* adj3 (analytic* or analys#s)).mp. 

11. decision theory/ 

12. "monte carlo".mp. 

13. (individual* adj3 (patient* or sampling)).mp. 

14. (dynamic adj3 (system* or transition*)).mp. 

15. (simulation adj3 (individual* or patient* or discrete)).mp. 

16. (model* adj3 (based or economic* or decision* or simulat* or analy*)).mp. 

17. 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 

18. exp personalized medicine/ 

19. ("system medicine" or "systems medicine").mp. 

20. (stratifi* adj3 (care or medicine* or treatment* or therap* or intervention*)).mp. 

21. (personal* adj3 (care or medicine* or treatment* or therap* or intervention*)).mp. 

22. (individual* adj3 (care or medicine* or treatment* or therap* or intervention*)).mp. 

23. (precisi* adj3 (care or medicine* or treatment* or therap* or intervention*)).mp. 

24. (target* adj3 (care or medicine* or treatment* or therap* or intervention*)).mp. 

25. (guide* adj3 (care or medicine* or treatment* or therap* or intervention*)).mp. 

26. 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 
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27. (risk adj3 (classifi* or stratifi* or assess*)).mp. 

28. (care or medicine* or treatment* or therap* or intervention*).mp. 

29. 27 and 28 

30. 26 or 29 

31. 5 and 17 and 30 

32. animal/ not human/ 

33. 31 not 32 

34. limit 33 to embase 

 

Search strategy for DARE, CDSR, HTA, NHS EED 
 

#1 MeSH descriptor: [Monte Carlo Method] this term only  

#2 "Monte Carlo"   

#3 MeSH descriptor: [Markov Chains] this term only  

#4 Markov   

#5 MeSH descriptor: [Decision Support Techniques] explode all trees  

#6 MeSH descriptor: [Decision Theory] explode all trees  

#7 decision near/3 (analytic* or analys?s or theor*)  

#8 "decision tree"   

#9 MeSH descriptor: [Systems Analysis] explode all trees  

#10 Individual* near/3 (sampling or patient*)   

#11 dynamic near/3 (system* or transition*)   

#12 simulation* near/3 (individual* or patient* or discrete)   

#13 model* near/3 (based or decision* or analy* or economic* or simulat*)   

#14 #1 or #2 or #3 or #4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12 or #13   

#15 Econom* near/3 (evaluation* or analy* or stud* or health*):ti,ab,kw   

#16 MeSH descriptor: [Health Expenditures] explode all trees  

#17 MeSH descriptor: [Health Care Rationing] explode all trees 

#18 MeSH descriptor: [Costs and Cost Analysis] explode all trees  
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#19 cost* near/3 (effect* or benefit* or utilit* or consequence* or minimi* or analy*)   

#20 #15 or #16 or #17 or #18 or #19   

#21 stratifi* near/3 (care or treatment* or medicine* or therap* or intervention*)   

#22 individual* near/3 (care or treatment* or medicine* or therap* or intervention*)   

#23 personal* near/3 (care or treatment* or medicine* or therap* or intervention*)   

#24 target* near/3 (care or treatment* or medicine* or therap* or intervention*)   

#25 precisi* near/3 (care or treatment* or medicine* or therap* or intervention*)   

#26 guide* near/3 (care or treatment* or medicine* or therap* or intervention*)   

#27 "systems medicine" or "system medicine"   

#28 #21 or #22 or #23 or #24 or #25 or #26 or #27   

#29 risk near/3 (classif* or strati* or assess*)   

#30 (care or treatment* or medicine* or therap* or intervention*)   

#31 #29 and #30   

 

Appendix 4: Expert consultations and the model building process  
 

April 2018  Keele Stratified Care 

Research Group (SCRG)  

KK, SJ, RaO, and ML also 

present 

Discussion of health states, 

RMDQ cut-offs, model 

assumptions, model 

population, costs, and 

sensitivity analyses 

August 2018 Dr John Bedson (GP), 

Keele  

Discussion of health states, 

RMDQ cut-offs, model 

assumptions, and sensitivity 

analyses 

August 2018 Dr Elizabeth Cottrell (GP), 

Keele 

Discussion of health states, 

RMDQ cut-offs, model 
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assumptions, and sensitivity 

analyses 

March 2019  Dr Katrina Humphreys 

(physiotherapist), and Dr 

Adrian Chudyk (GP), Keele 

Discussion of health states, 

RMDQ cut-offs, model 

assumptions, and sensitivity 

analyses 

April 2018 Dr. Pelham Barton (Health 

Economist), Birmingham 

Initial model 

conceptualisation ideas 

June 2018 Dr. Pelham Barton (Health 

Economist), Birmingham 

Feedback upon model 

structure, help with 

transition probabilities 

February 2019 Dr. Pelham Barton (Health 

Economist), Birmingham 

Value of Information 

Analyses 
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Appendix 5: Function at 7-years, dependent upon both function at base and function 
at twelve months.  

7YR Base function if base function =0 
AND m12 function equals 2 
  n  %    
Low  0 0   
Medium 2 25   
High 6 75   
Totals  8     

 

7YR Base function if base 
function =1 AND m12 
function equals 0 
  n  %  
Low  4 66.67 
Medium 2 33.33 
High 0 0 
Totals  6   

 

7YR Base function if base 
function =2 AND m12 
function equals 0 
  n  %  
Low  0 0 
Medium 0 0 
High 0 0 
Totals      
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Appendix 6: Details of Matrix algebraic methods used to transform transition 
probabilities 

 

  

Figure A6-1 Transition matrices in Excel 

Before entering formulae into the matrix, six separate rows were created to represent each 

of the movements between states (Cells A1:B6), e.g. low to med, med to high, high to low, 

and initially entered a value half of the actually observed proportions in the data. The aim 

of this is to create an approximation from which to allow the Microsoft excel solver to 

create their actual value.  

Each of the movements represented in the six rows (A1:B6) were linked to a transition 

matrix, (A9: D12), such that, for example, the low to medium movement in the matrix 

(C10) was set as equal to the value in the row “low to medium” (B1). As the probability of 

remaining in the same state was not allocated a row, in the transition matrix the probability 

was set as one minus the other two transitions on that matrix row, e.g. cell B10 set equal to 

(1-C10-D10).  

Seven other matrices were set up on the page in order to complete this process. First, 

Matrix algebra was used to transform eight-month transitions (A21:D24) into a two-
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monthly transition matrix (A9:D12). Next, an observed eight-month transition matrix was 

created (G27:J31) using STaRT Back data, to represent the actual number of patients 

moving between states over eight months, as well as the number of patients in each of 

starting risk states at 4-months (J28:J30). Next, a prediction transition matrix was created 

(A27:E31) where start numbers at four months (E28:E31) were set equal to observed totals 

(J28:J31). The cells representing actual transitions in this matrix (B28:D30) were set equal 

to the estimated eight-month transitions from the matrix algebra (B22:D24) multiplied by 

the start numbers at four months (E28:D30).  

A matrix of errors (L28:N30) was set up to compare the differences between the observed 

numbers (G28:I30) and the predicted numbers (B28:D30). For example Cell L28 was set 

as equal to the square of G28-B28. A cell was set up to represent the sum of squared errors 

(L8), and the set equal to the sum of all the squared errors (L28:L30). Finally, using the 

solver function in Excel, the sum of these errors were minimised by varying the six 

arbitrary probabilities assigned to the rows reflecting the six movements between the states 

(B1:B6). The matrix, therefore, will yield the best possible fit to the data. The additional 

orange (I15:K18) and purple matrix (E9:H12) were used to create distributions for the 

PSA.  

The same method was employed to estimate two-monthly transition probabilities for 

STaRT Back at four to twelve months, as well as two-monthly transition probabilities for 

the first four months.  
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Appendix 7: RMDQ scores 12-months and 7-years in BeBack data 
Risk Group RMDQ 12-months RMDQ 5 years 

Poor Function 15.30 15.42 

Moderate Function 7.00 7.024 

Good Function 1.369 1.297 

 

Appendix 8: Expert consultations and the model building process 
 

January 2019  Keele Stratified Care 

Research Group (SCRG)  

KK, RaO, and ML also 

present 

Discussion of health states,  

model assumptions, model 

population, costs, and 

sensitivity analyses 

February 2019 Dr. Pelham Barton (Health 

Economist), Birmingham 

Initial model 

conceptualisation ideas, 

feedback upon model 

structure, help with 

transition probabilities 

March 2019  Dr Katrina Humphreys 

(physiotherapist), and Dr 

Adrian Chudyk (GP), Keele 

Discussion of health states, 

model assumptions, 

sensitivity analyses, and 

treatment protocols. 
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