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Abstract 

 

Long non-coding RNAs (lncRNAs) play key roles in several processes in healthy and 
cancer settings and the underpinning mechanisms of their action are thoroughly 
investigated. In line with this, this study investigates the role of the lncRNA myocardial 
infarction associated transcript (MIAT) and other novel lncRNAs in neuroblastoma and 
glioblastoma.  

Silencing of MIAT, both siRNA- and GapmeR-mediated, led to decreased long-term 
survival, promoted apoptosis and attenuated migration in neuroblastoma and 
glioblastoma cells. RNA sequencing showed that reduced MIAT expression levels were 
associated with perturbed expression of genes involved in cancer-related processes, 
such as cell growth and survival, migration, reactive oxygen species (ROS) production 
and apoptosis. Further analysis confirmed that MIAT knockdown induces an increase 
in ROS levels in neuroblastoma cells and was associated with perturbed expression of 
genes involved in apoptosis, on mRNA and protein level.  Notably, RNA sequencing 
also revealed that MIAT acts as cis and trans gene expression regulator and 
contributes to regulating alternative splicing.  

Given the complex signalling networks of metformin action, short- and long-term 
exposure of neuroblastoma cells to metformin was used as a platform for an RNA 
sequencing approach, which revealed that hundreds of novel lncRNAs display aberrant 
expression and could, therefore, be potentially involved in the regulation of cell fate 
determination. Of these, the knockdown of LINC00176 and LOC648987 led to 
increased apoptosis and decreased migration.  Furthermore, multiple novel pathways, 
in which the novel lncRNAs could be integrated, were discovered to be deregulated, 
including DNA replication and DNA damage response-related pathways. 

Taken together, this study suggests that MIAT exerts a key role in neuroblastoma and 
glioblastoma cells, confirming its oncogenic role, while multiple novel lncRNAs could 
also be drivers of cell fate decisions in metformin response of neuroblastoma cells. 
Further research is essential to establish MIAT and other novel lncRNAs, such as 
LINC00176 and LOC648987, as biomarkers and therapeutic targets.  
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2 
 

 

1.1. Neuroblastoma 

Neuroblastoma took its name owing to present cells being associated with fibrils in 

arrangements similar to neuroblasts  (Wright, 1910). In contemporary oncology, the term 

neuroblastoma (NB) is used to describe a broad spectrum of neuroblastic tumours including 

neuroblastomas, which comprise the most common type, ganglioneuroblastomas and 

ganglioneuromas (Shohet and Foster, 2017). NB is the most common extracranial 

paediatric cancer that affects primarily infants and young children (Hara, 2012). The 

likelihood of NB appearance varies by age, with most cases being detected during the 

perinatal age and then decreasing with the increase of age over the first ten years of life. 

Adolescent or young adult cases are rare and tend to appear as an indolent disease rather 

than a fatal one (Shohet and Foster, 2017; Nakagawara et al., 2018). NBs comprise ~7-

10% of all tumours of childhood and they are the third most common paediatric tumours 

after leukaemias and tumours of the brain/CNS (Kamijo and Nakagawara, 2012; Pandey 

and Kanduri, 2015; Luksch et al., 2016). They account for approximately 15% of all cancer-

related deaths in childhood (Mullassery and Losty, 2016). For unknown reasons, they tend 

to be more prevalent in boys comparing to girls (Nakagawara et al., 2018) and the 

incidence of the tumour is similar across the populations of industrialised countries. Since 

NB is a relatively rare disease, no environmental factor- tumour development associations 

have been established yet (Shohet and Foster, 2017). The median age of diagnosis is 18 

months (Hara, 2012; Kamijo and Nakagawara, 2012). The vast majority of the cases arise 

as sporadic tumours with only ~1-2% of the patients having a family history of the disease, 

but when this is present it follows an autosomal dominant inheritance pattern (Shohet and 

Foster, 2017). Familial predisposition is also usually characterised by aberrant expression 

of ALK Receptor Tyrosine Kinase (ALK) and Paired Like Homeobox 2B (PHOX2B), while 

less common cases have been reported with Neurofibromin 1 (NF1), Kinesin Family 

Member 1B (KIF1B), LIM domain only 1/3 (LMO1/3) and Polypeptide N-

Acetylgalactosaminyltransferase 14 (GALNT14) mutations (Ahmed et al., 2017). 



3 
 

1.1.1. Diagnosis 

Around 37% of the NB cases are diagnosed as infants, 50% by the age of 2 and a rough 

75-90% of all patients are younger than 5 years old at the time of diagnosis (Ratner et al., 

2016; Ahmed et al., 2017). Similarly to other tumours, NB is diagnosed using a combination 

of means, including laboratory tests, radiography imaging techniques and pathology. 

Perinatal cases can be found as suprarenal masses, as diagnosed by ultrasound 

examination, during or just after pregnancy (Nakagawara et al., 2018).  

Given that NBs are metabolically active tumours, some of the secreted catecholamine 

metabolites can be used for diagnostic purposes. More specifically, dopamine (DA) vanillyl 

mandelic acid (VMA) and homovanillic acid (HVA) measured in urine samples have proved 

to be useful diagnostic tools of high sensitivity (66-100%), and in addition, HVA/VMA and 

DA/VMA ratios have been shown to be associated with prognosis. Moreover, lactate 

dehydrogenase (LDH) comprises a diagnostic, as well as prognostic, indicator linked with 

poor histology and prognosis. Finally, high levels of serum ferritin (>142 ng/ml) and neuron-

specific enolase (NSE) (>100ng/ml) have been used as diagnostic means, as well as 

indicators of prognosis (Mullassery and Losty, 2016; Ahmed et al., 2017).   

In terms of imaging-based diagnostic tools, computed tomography (CT) and magnetic 

resonance imaging (MRI) comprise the commonly used means to diagnose the disease and 

determine the size of the tumour, the regional expansion, the involvement of lymph nodes, 

as well as distant spread-if any- to the neck, the thorax the abdominal area and/or the 

pelvis, while the use of sonography and endoscopy is limited (Ahmed et al., 2017; Arora 

and Bandopadhyaya, 2018). In order to enhance the power of diagnosis, radioiodine-

labelled meta-iodobenzylguanidine (123/131I-MIBG), an analogue of norepinephrine that is 

selectively concentrated in the sympathetic nervous system, has been employed to detect 

not only primary NBs but also metastatic sites. In combination with MIBG, 18F- 

fluorodeoxyglucose positron emission tomography (FDG-PET) is used to detect metastases 

in patients where MIBG is not efficient enough  (Mullassery and Losty, 2016; Ahmed et al., 
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2017). MIBG can also be combined with single-photon emission tomography (SPECT) to 

provide an even more accurate anatomical localisation of the tumour (Tolbert and Matthay, 

2018). Finally, newer radiologic applications are being investigated to be used for NB 

diagnosis, including 18F–fluoro-dihydroxyphenylalanine (18F-DOPA- PET/CT) and 68Ga-

1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic-acid-1-Nal3-octreotide (68Ga-

DOTANOC- PET/CT) (Arora and Bandopadhyaya, 2018; Tolbert and Matthay, 2018).  

In addition to the aforementioned ways to diagnose NBs and their metastases, tissue 

biopsy, either surgical or minimally invasive image-guided, and histological analysis can 

prove useful in confirming a diagnosis. Circulating tumour cells and tumour DNA in 

peripheral blood could also contribute to diagnosis via their “NB-specific” genetic and 

genomic pattern. Although they are not common in practice yet, they comprise a potent 

diagnostic tool, especially when used in conjunction with urine/serum catecholamine 

metabolite detection (Mullassery and Losty, 2016; Ahmed et al., 2017). 

 

1.1.2. Pathogenesis and Clinical Features 

NB is a tumour of the sympathetic nervous system, thus arising in tissues of the 

sympathetic nervous system, the adrenal medulla and the paraspinal ganglia (Hara, 2012; 

Pandey and Kanduri, 2015). Neuroblastoma originates from the neuro-ectoderm, and 

specifically from embryonic neural crest cells, which normally give rise to the sympathetic 

nervous system, due to their improper development and differentiation (Kamijo and 

Nakagawara, 2012; Pandey and Kanduri, 2015; Mazzoccoli et al., 2016). Normally, during 

the developmental period of the embryo, the neural crest cells develop to eventually 

differentiate into different lineages, including sympathetic neuronal cells, sensory cells, 

enteric cells and melanocytes. The majority of the cells will undergo programmed cell 

death, mostly apoptosis, while the remainder will differentiate terminally to give rise to 

mature neuronal cells like ganglion cells (Nakagawara et al., 2018). The fetal adrenal 

medulla consists of a mix of chromaffin cells and mature ganglion cells and, therefore, NBs 
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have been postulated to arise from a pluripotent precursor cell or either of these cell types, 

but not from any lineage other than the sympathoadrenal, suggesting that the oncogenic 

events occur after the decision for the cells to differentiate into sympathetic neurons has 

been taken (Kamijo and Nakagawara, 2012; Nakagawara et al., 2018). From a molecular 

perspective, it is becoming evident that components of the transcriptional machinery, such 

as V-Myc Avian Myelocytomatosis Viral Oncogene Neuroblastoma (MYCN), Achaete-Scute 

Family BHLH Transcription Factor 1 (Mash1), Inhibitor Of DNA Binding 2 (Id2), Heart And 

Neural Crest Derivatives Expressed 2 (dHAND2), Hypoxia Inducible Factor (HIF) and 

Paired Like Homeobox 2 (PHOX2), are involved in the commitment to the sympathetic 

lineage fate and are, therefore, speculated to also play an important role in NB 

development (Nakagawara et al., 2018). 

In ~70% of the patients NBs present as abdominal masses. In terms of primary sites of 

appearance, the adrenal gland comprises the most common one with ~40% of the cases 

arising there, followed by the abdominal area (~25%), the thorax (15%), the cervix (5%) and 

the pelvic sympathetic ganglia (5%) (Ahmed et al., 2017). The clinical features of NBs are 

highly diverse and massively depend on the site of the primary lesion, age, as well as on 

the presence and the extent of metastases and paraneoplastic syndromes, ranging from 

asymptomatic cases to cases of severe pain. NBs of the neck/ upper chest (thoracic 

tumours) can be diagnosed as “incidentaloma” upon chest radiography, and cause Horner’s 

syndrome (ptosis, miosis, anhidrosis), while those across the spinal cord can expand and 

cause paralysis. Abdominal NBs are often accompanied by swelling and/or symptoms due 

to organ compression (constipation, urinary retention) (Kamijo and Nakagawara, 2012; 

Mullassery and Losty, 2016).  

Nearly half of the NB patients have localised or regional disease at diagnosis, while 35% of 

the cases present with regional lymph node spread. At the same time, 50% of the 

diagnosed cases present with distant metastases at diagnosis, which occurs through the 

lymphatic and haematopoietic routes (Ahmed et al., 2017; Shohet and Foster, 2017; Tolbert 
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and Matthay, 2018). High stage NBs also metastasise to lymph nodes and bone marrow, 

liver, skin, orbits and dura, while intracranial and pulmonary spread comprises an 

uncommon metastatic possibility (Kamijo and Nakagawara, 2012; Shohet and Foster, 

2017), and when the metastases are severe the clinical state of the patient gets poorer. In 

these cases, some typical symptoms are the periorbital ecchymosis (“raccoon eyes”) and 

proptosis, while some cases present with pallor, weight loss, pain, fever and visual 

impairment. A minority of cases present with diarrhoea in cases of secondary vasoactive 

intestinal peptide secreting tumours (“VIPomas”), flushing and massive sweating in 

catecholamine-secreting tumours and immune-mediated nystagmus/ “dancing eyes” with 

the cerebellar “opsoclonus-myoclonus” syndrome (Mullassery and Losty, 2016; Ahmed et 

al., 2017). 

 

1.1.3. Patient Classification  

The clinical outcomes of NBs may vary widely, from spontaneous regression due to 

neuronal differentiation and/or apoptosis to malignant progression (Kamijo and 

Nakagawara, 2012; Nakagawara et al., 2018). To evaluate and predict this, careful patient 

stratification is essential. To date, patients are stratified into very low, low, intermediate, 

high and ultra-high risk groups. This stratification is based primarily on histologic 

characteristics, age at diagnosis, stage and genetic/molecular profiles, with age at 

diagnosis being the most indicative prognostic factor (Hara, 2012; Pandey and Kanduri, 

2015; Nakagawara et al., 2018). Given the fact that NB is characterised by high 

heterogeneity, both inter- and intra- tumour, the need for accurate patient classification is 

more urgent than ever before (Aveic et al., 2018). This high degree of heterogeneity is 

partly the consequence of the fact that NBs arise from tissues that are still differentiating 

during embryonal development, and, thus, the initiation of oncogenesis could occur at 

multiple time points (Shohet and Foster, 2017). 
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Historically, NB patients were stratified using the International Neuroblastoma Staging 

System (INSS), which was primarily based on the aggressiveness of the surgical approach 

employed. However, in order to standardise the staging regardless the surgical approach, 

the International Neuroblastoma Risk Group (INRG) was then adopted, incorporating 

image-defined risk factors (IDRFs) identified before surgery, including pathological and 

biological markers, such as tumour extension into a second body compartment, 

encasement of any large blood vessels, tracheal or large bronchial compression, 

involvement of major nerve roots (such as the brachial plexus), invasion of the spinal canal, 

or infiltration of the nearby kidneys, mesentery, pericardium, liver, diaphragm or pancreas. 

These are predictive of worse event-free and overall survival (Tolbert and Matthay, 2018) 

(Table 1.1). However, caution must be taken when using these two systems in tandem, 

since discrepancies can easily occur. (Ahmed et al., 2017; Shohet and Foster, 2017). 

Another widely adopted staging system for NBs, the International Neuroblastoma Pathology 

Classification (INPC), inherent to its name classifies NBs based on their pathology and 

histology. In particular, the classifications are performed based on the relative abundance of 

neural-type cells (primitive neuroblasts, differentiating neuroblasts, maturing ganglion cells) 

versus Schwann-type cells (immature and mature Schwann cells), the extent of cell 

differentiation, the mitosis karyorrhexis index (MKI) and the age of the patient. In general, 

better prognosis is associated with differentiating cells, low to intermediate MKI and age 

<1.5 years (Mullassery and Losty, 2016; Ahmed et al., 2017).  
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Table 1.1. Comparison of NB staging systems.   

. 

 

 

 

 

 

 

 

 

 

 

 

 

*INRG: International Neuroblastoma Risk Group; INSS: International Neuroblastoma Staging 
System (adapted from Ahmed et al., 2017). 

 

Nevertheless, the molecular heterogeneity of NB added an extra layer of difficulty in 

choosing the most suitable therapeutic regiment for NB patients, and therefore, a tumour 

biology component has been added to the stratification strategy. Consequently, the latest 

patient stratification scheme includes the INRG staging, age, histologic category, grade of 

tumour differentiation, MYCN amplification, 11q aberration and ploidy, with some further 

molecular markers conferring even greater accuracy (see below) (Table 1.2). In general, 

according to this system poor or absent cell differentiation, MYCN amplification, and 

presence of 11q aberration and diploidy are regarded as unfavourable biological 

characteristics and are associated with poor outcome. Overall, very low risk is defined as 

>85% event-free survival, low risk 75-85%, intermediate risk 50-75% and high risk <50% 

(Nakagawara et al., 2018; Tolbert and Matthay, 2018). 
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Table 1.2. The INRG staging system with incorporated genetic characteristics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aSome clinical trial groups consider unfavourable pathology with Stage L2, over 18 months of age. 
GN: ganglioneuroma; GNB, ganglioneuroblastoma. Adapted from Nakagawara et al., 2018. 

 

In very low risk NB patients, several tumours display spontaneous regression or even 

complete remission when short-term chemotherapy is provided. The very low risk group 

(~28% of all patients) is comprised by patients falling in the L1/L2 INSS stage, with 

ganglioneuroma maturing or ganglioneuroblastoma intermixed histology, L1 without MYCN 

amplification, and stage MS, younger than 18 months old and without 11q loss. Low risk 

NB patients (~50% of all patients) are INSS stage 1 or 2A/B but without MYCN 

amplification, and INSS stage 4S characterised by hyperdiploidy, younger than 1-year-old, 

favourable histology and have generally favourable clinical prognosis. Intermediate risk 

patients comprise a very heterogeneous group, with variable prognoses depending on the 

histological and molecular background. Generally, non-low risk cases without poor 
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prognostic factors fall within this group. As a result, this group includes INSS stage 3/ 4 

patients, <1 year old without MYCN amplification, INSS stage 4 patients, 12-18 months old, 

with favourable histology but no MYCN amplification, INSS stage 4S patients, < 1-year-old 

(MYCN non-amplified, unfavourable histology and DNA index>1), and finally, patients in 

INSS stage 4S (MYCN non-amplified, favourable histology and DNA index=1) (Shohet and 

Foster, 2017; Nakagawara et al., 2018). 

On the other hand, high risk patients are characterised by amplified MYCN, which is a 

well-established oncogene, age older than 18 months and tumours that are highly 

aggressive and metastatic, little or no response to chemotherapy and generally, have poor 

clinical outcome with a five-year event-free survival percentage 30-50% (Hara, 2012; 

Pandey and Kanduri, 2015). Although the overall survival of NB patients has significantly 

improved over the past decades, high risk NBs still remain one of the toughest tumours to 

cure, despite the advances and combination regimes in treatment (Kamijo and 

Nakagawara, 2012; Nakagawara et al., 2018). In line with this, high risk survivors very often 

develop second malignant neoplasms, importantly haematologic ones (Applebaum et al., 

2017). As a sub-category of high risk patients, there is a group that is described as ultra-

high risk. Patients in this group are characterised by high levels of tyrosine hydroxylase 

(TH) and PHOX2B in the bloodstream, MYCN amplification and bone metastasis, with 

overall and event-free survival rates of 0% (Huang and Weiss, 2013; Nakagawara et al., 

2018). 

 

1.1.4. Molecular Characteristics  

The molecular and genetic profiling is of paramount importance for patient stratification and, 

therefore, for better prediction and prognostication. One of the most important and earliest 

identified genetic alterations in high-risk NB is the amplification of the MYCN-containing 

locus 2p24, which is observed in ~20-25% of the cases (Kamijo and Nakagawara, 2012; 

Pandey and Kanduri, 2015; Nakagawara et al., 2018). Notably, NCYM (also known as 
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MYCNOS) which is a de novo evolved cis- antisense gene of MYCN, is also 100% co-

amplified and co-expressed with MYCN, and its co-overexpression is also associated with 

unfavourable prognosis, as it acts by stabilizing N-Myc through the inhibition of the protein 

responsible for the degradation of N-Myc [Glycogen Synthase Kinase 3 Beta (GSK3β)] 

(Nakagawara et al., 2018). Other genetic signatures include gains at chromosomes 1q, 2p 

and, significantly at 17q (especially unbalanced gains) and chromosomal losses at 1p 

(identified in 30-35% of all NBs), 3p and 11q (35-45% of primary NBs) (Domingo-Fernandez 

et al., 2013; Youssef et al., 2014; Pandey and Kanduri, 2015; Ahmed et al., 2017).  Finally, 

alterations of the total DNA content of the tumour cells are an indication of prediction and 

prognosis. In general terms, higher DNA content, in other words, hyperdiploid tumours with 

DNA index (DI)>1 respond better to therapy and have better prognosis compared to those 

with DI=1, i.e. diploid (Ahmed et al., 2017). 

In addition to these genomic aberrations, numerous studies have identified gene-specific 

risk-related mutations. A lot of these aberrations are to some extent N-Myc-related. For 

example, ALK activating mutations have been reported, especially in cases of hereditary 

NB, and have been associated with pre-malignant states (Kamijo and Nakagawara, 2012; 

Domingo-Fernandez et al., 2013; Pandey and Kanduri, 2015). Due to its proximity to MYCN 

on chromosome 2, ALK is also co-amplified with MYCN and plays an oncogenic role by 

activating the PI3K and RAS/MAPK pathways (Nakagawara et al., 2018). Aurora kinase A 

(AURKA), another N-Myc stabiliser is also frequently overexpressed in MYCN-amplified 

tumours (Nakagawara et al., 2018). In addition, lin-28 homologue B (LIN28B) is 

overexpressed in high risk cases and is an indicator of poor prognosis (Nakagawara et al., 

2018). Of note are the perturbations of the tropomyosin-related kinase (Trk) family 

expression levels. For TrkA, overexpression is associated with low-risk NBs, while low 

expression with high-risk NBs with unfavourable prognosis. On the contrary, TrkB and its 

ligand brain-derived neurotrophic factor (BDNF) are highly expressed mainly in MYCN-

amplified NBs and are indicators of poor prognosis.  (Kamijo and Nakagawara, 2012; 
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Nakagawara et al., 2018). Further, overexpressed Telomerase Reverse Transcriptase 

(TERT) and Alpha-thalassaemia/ mental retardation syndrome X-linked (ATRX) are found 

in 25% and ~11% of high risk NBs, respectively, and are indicators of poor outcome 

(Ahmed et al., 2017; Nakagawara et al., 2018). LMO1/3 aberrations are linked to advanced 

disease and poor outcome (Nakagawara et al., 2018), and Neuroblastoma Breakpoint 

Family Member 23 (NBPF23), BRCA1 Associated RING Domain 1 (BARD1), AT-Rich 

Interaction Domain 1A/1B (ARID1A/ARID1B), Neuroblastoma RAS Viral (V-Ras) Oncogene 

Homolog (NRAS), Leucine-Rich Repeat Neuronal 1 (NLRR1) and Chromodomain Helicase 

DNA Binding Protein 9 (CHD9) alterations have also been associated with aggressiveness 

and poor prognosis (Nakagawara et al., 2018; Tolbert and Matthay, 2018).  

Aberrant expression of tumour suppressor genes (TSGs) is also common in NBs. Loss of 

TP53, the most well-known TSG, has been found in relapsed, treatment-resistant NB cases 

(Singhal et al., 2017; Nakagawara et al., 2018). Moreover, loss of caspase 8 (CASP8) 

expression has been found in a generous percentage of NBs (25-35%), primarily in high-

risk ones (Kamijo and Nakagawara, 2012; Huang and Weiss, 2013). Deletion or loss of 

function of KIF1Bβ is, as well, correlated with advanced disease stages, low expression of 

the Calmodulin-binding Transcription Activator 1 (CAMTA1) and Tumor Suppressor In Lung 

Cancer 1 (TSLC1) is associated with poor outcome, and the absence or very low levels of 

the Chromodomain Helicase DNA Binding Protein (CHD5) chromatin remodeller have been 

found in high risk NBs, resistant to therapy (Nakagawara et al., 2018).  

Apart from the genetic changes that confer poor prognosis and outcome for NB patients, 

the contribution of non-genetic aberrations, that is epigenetic changes and non-coding 

RNAs (see section 1.4.6.2.), should not be ignored. In fact, members of the suppressive 

polycomb group of proteins, have been associated with NB genesis and progression by 

suppressing multiple TSGs, such as Castor Zinc Finger 1 (CASZ1), Clusterin (CLU), RUNX 

Family Transcription Factor 3 (RUNX3) and Nerve Growth Factor Receptor (NGFR). A 

member of the complex, Bmi-1 is highly expressed in nearly all primary NBs (~90%) and 
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contributes to tumourigenesis through the repression of the TSGs KIF1Bβ and TSLC1 

(Nakagawara et al., 2018). 

1.1.5. Therapeutic approaches      

Given the high heterogeneity of NBs, the therapeutic approaches employed for patient 

treatments should comply with the needs and stratification of the patient. Therefore, 

treatments differ massively, ranging from just observation and follow-up of the tumour for 

very low risk patients with spontaneous regression to aggressive, combination therapy for 

the high risk patient group (Tolbert and Matthay, 2018). 

Briefly, the current treatment for low risk patients consists predominantly of surgical 

excision. This is often accompanied by chemotherapy when there is a residual tumour or 

the anatomical location of the tumour does not permit surgery. In other therapeutic 

regimens, surgery or relapse is followed by chemotherapy and irradiation is given when 

neurological symptoms arise (Nakagawara et al., 2018). For intermediate risk patients, the 

therapeutic approaches are diverse, due to the high diversity of the patients’ characteristics 

in this group, but usually include surgery, chemotherapy and/or radiotherapy (Mullassery 

and Losty, 2016; Nakagawara et al., 2018; Tolbert and Matthay, 2018). 

For high risk patients, treatment consists of combination therapy including surgical excision 

of the tumour, radiotherapy and chemotherapy, including induction, consolidation and 

maintenance phases, and autologous hematopoietic stem cell transplantation (AHSCT) 

(Mullassery et al.,2014; Mullassery and Losty, 2016; Nakagawara et al., 2018). The most 

common induction therapy for high risk NBs includes the use of alkylators (temozolomide-

TMZ, cyclophosphamide, ifophamide), anthracyclins, topoisomerase inhibitors (topotecan, 

irinotecan, etoposide, doxorubicin), platinum compounds (carboplatin) and vinca alkaloids, 

(Hara, 2012; Nakagawara et al., 2018; Yavuz et al., 2018) as well as 131I-MIBG therapy 

(Ratner et al., 2016; Nakagawara et al., 2018). Despite the aggressiveness and the multi-

modal nature of the therapeutic approaches, the prognosis of this group remains relatively 

poor, creating the necessity of new, smarter treatment strategies. 
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To address some of the problems caused by poor delivery of chemotherapeutic agents, the 

use of nanoparticles (liposomes, nanocrystals, viruses etc.) could prove to be really useful 

(Arora and Bandopadhyaya, 2018). Meanwhile, other alternative sorts of therapy are under 

intensive investigation. For instance, differentiation-inducing therapy using retinoids, such 

as 13-cis retinoic acid results in some improvement of the overall survival in some patients 

(Mullassery and Losty, 2016; Nakagawara et al., 2018). Like in a diversity of other 

malignancies, immunotherapy is a promising approach for NBs. For high risk NBs, the use 

of a chimeric anti-GD2 monoclonal antibody, with or without the administration of interleukin 

2 (IL-2) and granulocyte monocyte colony-stimulating factor (GM-CSF) is currently under 

thorough investigation (Mullassery and Losty, 2016). In addition, immune checkpoint 

inhibitors, such as the anti-PD-L1 inhibitors atezolizumab and pembrolizumab are already in 

clinical trial stage (Nakagawara et al., 2018), and CAR-T therapy, as well as vaccines, are 

being investigated (Tolbert and Matthay, 2018). What is more, new lines of therapy include 

targeted therapy (Ratner et al., 2016). Some appealing targets include ALK, MYCN, and the 

Phosphatidylinositol-3-Kinase/AKT Serine/Threonine Kinase /mammalian target of 

rapamycin (PI3K/AKT/mTOR) pathway. To this end, some very promising agents are being 

tested against these targets, such as small molecule ALK inhibitors, Aurora kinase A 

inhibitors, [e.g. TP-0903 (Aveic et al., 2018)], and difluoromethylornithin (DFMO), and PI3K, 

Akt and mTOR inhibitors, respectively (Huang and Weiss, 2013; Nakagawara et al., 2018). 

In addition, the multikinase inhibitor sorafenib, PLK1 (polo-like kinase 1) inhibitors and 

rapamycin, comprise agents that are already in clinical trials (Hara, 2012; Kamijo and 

Nakagawara, 2012; Nakagawara et al., 2018). Finally, a number of other agents are 

currently in premature experimental stages but do present outstanding potential, such as 

HDAC inhibitors [e.g. romidepsin (Hegarty et al., 2017)] N-acetyl aspartate (Mazzoccoli et 

al., 2016), actinomycin D (Wang et al., 2007), tetramethylpyrazine (Yan et al., 2014), 

nitrofuran compounds (McNeil et al., 2013), interferon-β (Dedoni et al., 2010), and 

metformin (Costa et al., 2014). 
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1.2. Glioma 

 Glioma is the most common malignant tumour of the Central Nervous System (CNS) in 

adults (Goodenberger and Jenkins, 2012; Y. F. Gao et al., 2016) with 50% of the diagnosed 

brain tumours being gliomas (Boussiotis and Charest, 2018). Primary brain tumours are by 

far fewer, comparing to metastatic disseminated tumours to the CNS (Nikaki et al., 2017; 

Boussiotis and Charest, 2018). The incidence is higher in industrialised countries, and 

especially in white populations and men, mainly during the sixth decade of life (Nikaki et al., 

2017).  Gliomas are generally neuroectodermal tumours and based on their cellular origin 

they are classified according to WHO (World Health Organisation) into astrocytomas, 

oligodendrogliomas, mixed tumours, like oliogoastrocytomas, and ependymomas 

(Goodenberger and Jenkins, 2012; Zhang and Leung, 2014). 

The current study focuses on the most malignant, yet most common, glioma: glioblastoma, 

also known as glioblastoma multiforme (GBM). GBMs account for approximately 15% of all 

primary brain and CNS tumours and 55% of all gliomas. GBMs are almost invariably fatal 

with overall survival of just one year (Zhang and Leung, 2014; André-Grégoire and Gavard, 

2017; Nikaki et al., 2017). In fact, patients with glioblastomas have a 5-year survival rate of 

only 5% (Goodenberger and Jenkins, 2012), while the median survival rate is ~1 year for 

patients treated with surgery, chemotherapy and radiotherapy (Ramos et al., 2016; 

Capdevila et al., 2017). Sadly, this poor survival rate has been improved only slightly, 

despite the multimodal therapy in use (Ferrer et al., 2018). GBMs can be either primary or 

secondary depending on their clinical presentation, with the vast majority (~85%) being 

primary (Boussiotis and Charest, 2018). 

Notably, there is a clear distinction between adult gliomas and their paediatric counterparts 

(Weller et al., 2015). In general, paediatric tumours of the brain affect patients of ages 0-19, 

are characterised by high heterogeneity and differ significantly from the adult in terms of 

incidence, histological characteristics, sites of origin and responsiveness to treatment 

regimes. Nervous system tumours are the most common solid malignancy of childhood, 
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comprising the leading cause of cancer-related morbidity and mortality (Firme and Marra, 

2014). The classification remains the same as in adult gliomas, based on the WHO 

histological criteria (see section 1.2.3)  (Hargrave, 2009; Ryall et al., 2017). GBM, being 

one of the most severe and incurable malignancies across the lifespan, remains virtually 

incurable in children, as well, with only 10-30% of patients surpassing the 2-year survival. 

The majority of paediatric GBMs (pGBMs) arise de novo and unlike adult gliomas, low 

grade gliomas rarely transform into high grade ones. Potential cells of gliomagenesis origin 

are neural stem cells and more differentiated progenitor cells, such as oligodendrocyte 

precursor cells (Sturm et al., 2014). The incidence, anatomic location, progression mode 

and histopathology of pGBM, as well as the molecular features, differ importantly from 

those of adult GBM, rendering current adult GBM treatments, such as temozolomide (TMZ), 

ineffective for pGBM (Fontebasso et al., 2013; Ryall et al., 2017), although some 

histological characteristics, especially in cases of diffuse tumours (explained in section 

1.2.3) remain shared (Ryall et al., 2017). 

 

1.2.1. Diagnosis     

Typically, patients with primary gliomas remain asymptomatic until very bold manifestations 

of the tumour emerge. These include headaches, seizures, nausea/emesis, syncope, 

neurocognitive dysfunction, personality changes, sensory loss, gait imbalance, urinary 

incontinence, hemiplegia, aphasia, hemispatial neglect, and visual field impairment. At the 

same time, secondary GBMs, i.e. those arising from lower grade lesions, such as 

astrocytomas, display symptoms more than six months prior to diagnosis (Goodenberger 

and Jenkins, 2012; Boussiotis and Charest, 2018). Diagnosis can be performed using a 

plethora of diagnostic tests and means, including molecular tests and tumour imaging 

techniques. 

MRI with gadolinium (Gd) enhancement is the golden standard for the detection of brain 

lesions, their response to therapy, as well as their recurrence. As an alternative to or in 
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combination with MRI, 18F-FDG-PET has also been widely used to assess the same 

features of gliomas. Despite its established use as a diagnostic means, 18F-FDG does not 

comprise the most appropriate radio-labelled trace to detect brain lesions. In line with this, a 

number of radio-labelled agents have been developed, including radio-labelled amino 

acids, hypoxia-related detection agents, proliferation markers, such as 18F- Fluorothymidine 

(18F-FLT), and membrane biosynthesis-disruption detectors, like 18F-choline (Nikaki et al., 

2017). In current diagnostics, MRI and PET are used in a supplementary fashion to achieve 

optimal detection of the tumour burden and grade. As a rule, LGGs do not present Gd 

enhancement, 18F-FLT uptake or alterations in cerebral blood volume (CBV), while HGGs 

have mild and high Gd enhancement and 18F- FLT uptake for grade III and IV gliomas, 

respectively (Collet et al., 2015; Nikaki et al., 2017). However, both MRI and 18F-FDG-PET, 

despite their almost ubiquitous use have their limitations. While MRI offers evidence of the 

morphology of gliomas, it offers very limited information on the biological traits of the lesion. 

Meanwhile, although 18F-FDG-PET was initially suggested to distinguish among the tumour 

grades based on the positive association of tumour grade and glycolysis rate, its use has 

been hampered owing to the fact that normal brain areas also display high glucose 

metabolism (La Fougère et al., 2011; André-Grégoire and Gavard, 2017; Nikaki et al., 

2017). 

Unfortunately, to date there exist only a few reliable, established molecular markers of GBM 

that are used for diagnostic purposes, despite the massive molecular changes underpinning 

GBM genesis and development (also refer to section 1.2.4) (André-Grégoire and Gavard, 

2017). Among them, the most widely used are the 6-O-methylguanine-DNA 

methyltransferase (MGMT) methylation status, the Endothelial Growth Factor (EGFRvIII) 

variant, the Isocitrate Dehydrogenase 1 (IDH1) and V-Raf Murine Sarcoma Viral Oncogene 

Homolog B (BRAF) mutations, and the 1p/19q co-deletion (Westphal and Lamszus, 2015; 

Saadeh et al., 2018). To overcome the diagnosis challenge, the detection of GBM-derived 

extracellular vesicles is a promising alternative, since they can be easily obtained with non-
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invasive techniques, unlike intracranial tumour biopsies, and also, their molecular and 

cellular content reflects that of the mother GBM cells. Besides, the short half-life of the 

circulating vesicles suggests a rather accurate diagnosis time-wise and can reflect rapid 

changes of the tumour (André-Grégoire and Gavard, 2017; Azam et al., 2019). 

Nevertheless, accurate diagnosis of gliomas, although of utmost importance, remains 

lagging. 

1.2.2. Pathogenesis and Clinical Features 

Gliomas are tumours that arise from glial cells, anywhere in the brain, usually in the 

cerebral hemispheres (Nikaki et al., 2017; Saadeh et al., 2018). However, the exact cellular 

origin of GBMs remains largely unknown. Although it has been suggested that GBMs arise 

from glial cells that undergo malignant transformation, it has been postulated and backed 

up with evidence that GBMs may also originate from neural stem cells (NSCs) residing in 

the ventricular-subventricular zone (V-SVZ) (Capdevila et al., 2017). Despite the fact that, 

traditionally, it has been believed that postnatally the CNS does not generate new neurons, 

a population of NSCs persists and generates neurons, astrocytes, and oligodendrocytes in 

two forebrain proliferative niches, which can, in turn, give rise to GBMs (Ramos et al., 

2016). 

Diffuse gliomas, including GBMs, are characterised by infiltrative growth through the CNS 

parenchyma, a feature that vastly contributes to the tumours’ aggressiveness. Tumour cells 

invade either individually or as groups, to form a network throughout the neuropil. This 

results in the generation of secondary structures with neoplastic cells surrounding neurons 

(perineuronal satellitosis) and blood vessels (perivascular satellitosis), as well as 

myelinated fibres. These structures can also extend beyond the pial margin (subpial 

spread). (Ryall et al., 2017; Ferrer et al., 2018; Sampetrean and Saya, 2018). 

Interestingly, surgically resected GBMs consist of neoplastic cells but also of rich non-

neoplastic stromal cells, which surprisingly comprise about 30-40% of the tumour bulk. 

Non-neoplastic cells include non-transformed astrocytes and oligodendrocytes, endothelial 
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cells (ECs), pericytes and numerous, diverse immune cells, all of them orchestrating a very 

abnormal extracellular matrix and each one of them uniquely contributing to tumour 

progression (Boussiotis and Charest, 2018; Ferrer, Moura Neto and Mentlein, 2018). For 

example, astrocytes have been shown to protect the tumour from TMZ by preventing 

apoptosis (Chen et al., 2015). Tractography imaging has also revealed a massive loss of 

white matter around GBMs, suggesting that there is a significant loss in the density of 

healthy neurons in and around the tumour, and therefore, a loss of oligodendrocytes, the 

supportive cells responsible for neuronal myelination (Boussiotis and Charest, 2018). In 

addition, the vasculature of the brain is comprised of ECs and pericytes, with ECs 

physically interacting with astrocytes to form the blood-brain barrier (BBB). In contrast with 

the normal brain, the GBM vasculature is highly proliferative allowing for abnormal blood 

vessel structures (e.g. with blunted ends) to be generated. This, in turn, leads to the 

generation of hypoxic regions, something critical for treatment failure, as well as to severe 

haemorrhage. In other cases, abnormal blood vessel permeability leads to severe 

oedemas, a typical feature of the clinical image of GBMs (Saito and Tominaga, 2017; 

Boussiotis and Charest, 2018; Ferrer et al., 2018). Cerebral oedema may result in 

increased intracranial pressure and acute herniation syndromes which can cause 

permanent brain damage (Esquenazi et al., 2017).  

A very important clinical feature of GBMs is their unique immune landscape since even in 

normal physiological conditions the brain’s immunity differs from the rest of the body’s. 

Within malignant gliomas, the immune repertoire consists of microglia, peripheral 

macrophages, myeloid-derived suppressor cells (MDSCs), natural killer (NK) cells, 

leukocytes, CD4+ T helper cells, CD8+ cytotoxic T cells and Tregs. A very large proportion 

of the total immune cells of a glioma are tumour associated macrophages (TAMs), which 

undergo a transition from a pro-inflammatory “M1” phenotype promoting inflammatory, anti-

tumour responses, to a “M2” phenotype that is immunosuppressive, and therefore tumour 

cell-protective. Interestingly, this pattern is also observed in the tumour microglial cells. 
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TAMs hold the capacity to produce and secrete growth and angiogenic factors, as well as 

immunosuppressive cytokines, thus promoting glioma progression. High abundance of 

TAMs has been observed in higher grade tumours compared to lower, rendering the 

presence of TAMs a prognostic factor of poor outcome (Murray et al., 2014; Boussiotis and 

Charest, 2018). Meanwhile, MDSCs act by suppressing the cytotoxic activity of NK cells, 

secreting immunosuppressive cytokines and activating Tregs (Marvel and Gabrilovich, 

2015). NK cells that would normally target abnormal cells for cell lysis, do not recognise 

tumour cells as abnormal, since tumour cells, like normal self- cells, express MHC class I 

molecules on their surface that interact with the killer cell immunoglobulin-like receptor of 

NK cells to inhibit destruction. In addition, NK cell abundance is relatively low in GBM 

patients (Wiendl et al., 2002; Fadul et al., 2011).  Tumour infiltrating leukocytes (TILs) are 

present in the tumour microenvironment, although in lower abundance and less potent to 

exert their cytotoxic role, as they are suppressed by TGF-β and IL-10 secreted by glioma 

and stromal cells. Importantly, there is accumulating evidence that GBMs overexpress PD-

L1, which binds the inhibitory checkpoint molecule PD-1 and in turn inhibits CD4+ and CD8+ 

activation. Finally, the immunosuppressive phenotype is enhanced by the accumulation of 

DCs and Tregs in the tumour microenvironment, with intratumoural Tregs being linked to 

poor prognosis (Kmiecik et al., 2013; Perng and Lim, 2015).  

Some patients present with pseudo-recurrence or pseudo-regression about two months 

after treatment with TMZ or radiation therapy, adding an extra level of complexity in the 

follow-up (Nihashi, Dahabreh and Terasawa, 2013; Nikaki et al., 2017). Although GBM is a 

highly infiltrative tumour diffusing through the CNS, it rarely metastasises outside of it, given 

the very short overall survival of the tumour. In fact, even within the CNS, extracranial 

metastases are rare, affecting 0.4-0.5% of the patients (da Cunha and Maldaun, 2019). 

When it does metastasise, the most common sites are the lungs, pleura and cervical lymph 

nodes, and there are also a few cases of skin metastasis (Lewis et al., 2017).  
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1.2.3. Patient Classification  

For CNS tumours the tumour grade is determined based on histopathological features, 

according to St Anne-Mayo grading system (Gupta and Dwivedi, 2017). The predominant 

characteristics that are assessed are the presence of nuclear pleomorphism (atypia), 

mitotic activity and cellularity, endothelial cell proliferation, and necrosis. The more 

increased all of these features are, the higher the grade of the tumour. In particular, 

tumours that do not meet any of the criteria are classified as grade I, tumours that meet one 

criterion are grade II, tumours that meet any two criteria are grade III, and finally, tumours 

that fulfil three or all four criteria are classified as grade IV (Goodenberger and Jenkins, 

2012; Gupta and Dwivedi, 2017). Generally, grade I and II gliomas are considered as low 

grade gliomas (LGGs), and histopathologically they are either grade I (pilocytic) 

astrocytomas or grade II astrocytomas or oligodendrogliomas, which can progress to higher 

grade tumours. For LGGs the 5-year survival rate is approximately 50% (Goodenberger 

and Jenkins, 2012; Zhang and Leung, 2014). On the contrary, grade III and IV gliomas are 

considered as high grade gliomas (HGGs) and include grade III anaplastic astrocytomas, 

which usually progress to grade IV astrocytomas, also known as glioblastomas, and grade 

III oligodendrogliomas (Goodenberger and Jenkins, 2012; Gao et al., 2016).  

1.2.4. Molecular Characteristics 

Despite being universally used, this classification was based primarily on histopathological 

features of the tumours examined microscopically, with different potential cells of origin and 

different differentiation levels, causing confusion in diagnosis and patient stratification. As a 

result, there was an urgent need to encompass molecular characteristics into the tumour 

classification in order to make the diagnosis, prediction and prognosis more accurate. This 

was achieved through the updated WHO 2016 classification of the CNS tumours, which 

incorporated some fundamental genetic and molecular characteristics of the tumours to re-

classify them with greater accuracy and eliminate interlaboratory discrepancies. The main 

molecular and genetic aberrancies met in adult gliomas that have been introduced in the 
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classification criteria are the IDH1 R132H mutation, the IDH2 R172K mutation, the 1p/19q 

co-deletion, the MGMT methylation status, the TERT C228T and C250T mutations, the 

ATRX loss, the TP53 loss or loss of function and the H3K27M mutation (Table 1.3) (Louis 

et al., 2016; Gupta and Dwivedi, 2017).  
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Table 1.3. WHO 2016 histological grading of tumours of the CNS, incorporating the molecular 
status. 

 

 

 

IDH: Isocitrate dehydrogenase; CNS: Central nervous system; NOS: Not otherwise specified; 
MPNST: Malignant peripheral nerve sheath tumour; AT/RT: Atypical teratoid/rhabdoid tumour. 
(adapted from Gupta and Dwivedi, 2017). 
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In specific, IDH mutations are the most important distinguisher between glioma and gliosis 

and are present in oligodendrogliomas, astrocytomas and GBMs, especially the secondary 

ones arising from astrocytomas. They have generally been correlated with favourable 

prognosis (Gupta and Dwivedi, 2017; Kondo, 2017). In grade II/III gliomas, and, in a non-

1p/19q co-deleted setting they contribute an intermediate clinical outcome (Goodenberger 

and Jenkins, 2012; Weller et al., 2015; X. Q. Zhang et al., 2015). In addition, the paired 

deletion of chromosome arms 1p and 19q is indicative of lower grade gliomas, such as 

oligodendrogliomas and mixed oligoastrocytomas, and has, as well, a favourable outcome 

(Goodenberger and Jenkins, 2012; Weller et al., 2015).  At the same time, it is a reliable 

predictive biomarker to assess response to chemotherapy and radiation therapy (Gupta and 

Dwivedi, 2017).  

MGMT codes for a DNA repair protein that removes alkyl-groups from the O6 position of 

guanine residues. Alkylating agents, such as TMZ, act by causing DNA damage, which 

needs functional DNA repair enzymes, such as MGMT, in order to be repaired. Therefore, if 

MGMT is in an active state, the DNA damage is repaired, thus nullifying the effect of TMZ. 

Hypermethylation of the MGMT promoter inactivates MGMT, allowing TMZ to induce DNA 

damage which remains unrepaired. As a result, MGMT hypermethylation has been reported 

in all GBM subtypes, and when present is correlated with improved prognosis and good 

response to alkylating agents therapy, such as TMZ (Goodenberger and Jenkins, 2012; 

Gupta and Dwivedi, 2017).  

TERT mutations are more prevalent in higher grade lesions, mainly oligdendrogliomas and 

GBMs and are linked to radiotherapy resistance and poor overall outcome (Wiestler et al., 

2013; K. Gao et al., 2016). Loss of ATRX is an indicator of anaplastic tumours, including 

anaplastic astrocytomas (45%), anaplastic oligoastrocytomas (27%) and anaplastic 

oligdendrogliomas (10%), and is also frequent in paediatric astrocytomas (Wiestler et al., 

2013; Gupta and Dwivedi, 2017). Deletions and/or mutations in p53 are spread virtually 
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across all gliomas, mainly medulloblastomas, GBMs and IDH-mutant astrocytomas (Gupta 

and Dwivedi, 2017; Kondo, 2017).  

The H3 K27M mutation is usually found in midline structures, including the brain stem, 

thalamus and spinal cord. H3K27 is a commonly methylated residue and is related to gene 

activation when monomethylated, but gene silencing when di-/trimethyated. Although the 

mutant H3 account for a small percentage (3.6-17.6%), the whole H3 pool is affected, with 

K27M leading to a global loss of H3K27me2/3. In brief, polycomb repressor complex 2 

(PRC2), which is responsible for the epigenetic gene silencing maintenance via 

trimethylating H3K27, aberrantly interacts with the mutant histone. In fact, the enhancer of 

zeste homolog 2 (EZH2) catalytic subunit of PRC2 which establishes the H3K27me3 mark 

is not properly bound to H3. Consequently, PRC2 targets are no longer repressed, leading 

to gliomagenesis and, thus, conferring poor outcome (Jones and Baker, 2014; Sturm et al., 

2014; Wesseling and Capper, 2018). 

Apart from the newly-incorporated in CNS tumour classification genetic and molecular 

marks, there are a plethora of other well-established markers that contribute to patient 

stratification. In terms of chromosomal aberrations, chromosome 7 gain and chromosome 

10 loss are common in the classical GBM subgroup, while loss of heterozygosity (LOH) of 

17p is a common feature of the proneural GBM subgroup. 9p21.3 deletions are extremely 

common both in GBMs and in lower grade malignancies.  Mutations in EGFR, basic 

fibroblast growth factor (bFGF), PDGF (platelet-derived growth factor), Phosphatase and 

Tensin homolog (PTEN), Retinoblastoma (Rb), NF1 and E2F Transcription Factor 1 (E2F-

1) are also frequently met in gliomas, and either alone or in combination with each other 

and with chromosomal aberrations, are predictive and prognostic markers (Goodenberger 

and Jenkins, 2012; Gao et al., 2016). Pilocytic astrocytomas are virtually always marked 

with mutations in the MAPK pathway (Wesseling and Capper, 2018). However, epigenetic 

marks have also emerged and have been used in patient stratification. The most reliable 

one has been the methylation pattern of CpG islands. Hypermethylated CpG islands have 
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been reported in a subset of proneural GBMs and are associated with younger age of onset 

and favourable prognosis. This phenotype is also known as glioma CpG island methylator 

phenotype (G-CIMP) (Boussiotis and Charest, 2018). Finally, several non-coding RNA 

signatures are being tested for their potential use as biomarkers of the disease (see section 

1.11.2). 

High grade gliomas, both astrocytomas and mainly GBMs, comprise extremely 

heterogeneous entities, both at the cellular level and molecular/genetic make-up (Hempel et 

al., 2018; Sampetrean and Saya, 2018). According to the new classification, and mainly 

based on the IDH mutational status, GBMs are divided into IDH-wildtype (~90% of the 

cases, de novo GBMs, usually in patients over 55 years old), IDH-mutant (~10% of the 

cases, mainly secondary GBMs, earlier onset), and GBM not otherwise specified (NOS), for 

those cases where the IDH status determination is not possible (Louis et al., 2016; 

Wesseling and Capper, 2018). Based on their molecular repertoire, historically, GBMs used 

to be further categorised into four subtypes: the proneural- with most of the secondary 

GBMs belonging to this category-, the neural, the mesenchymal and the classical, based on 

their molecular and genetic profiles (Goodenberger and Jenkins, 2012). More recently, 

however, GBMs of the neural type have been recognised as tumours with excessive 

adjacent neural tissue, and have, therefore, been regarded as artefacts (Boussiotis and 

Charest, 2018). The proneural GBMs are divided into two subgroups: those characterised 

by Platelet-Derived Growth Factor Receptor Alpha (PDGFRα) overexpression and loss of 

p53, and those with IDH recurrent mutations. The latter group often has also a G-CIMP 

phenotype, and this combination offers better prognosis. The classical group harbours 

aberrant expression of wildtype or mutated EGFR, almost invariably have a homozygous 

deletion of the INK4a/ARF locus, and in a lot of cases have loss of PTEN. Finally, the 

driving and most characteristic aberration in mesenchymal GBMs is the loss of the tumour 

suppressor NF1 (Boussiotis and Charest, 2018). 
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1.2.5. Therapeutic approaches 

Despite the development of multimodal treatments, some of which are quite aggressive, 

including surgical resection when possible, local radiotherapy and systemic chemotherapy 

(primarily with alkylators) in the past decades, patient outcomes remain unsatisfactory, 

rendering gliomas, and especially GBMs, one of the most morbid and mortal cancers 

across the lifespan (Zhang and Leung, 2014; Hu et al., 2016). So far, despite our profound 

knowledge of the basic molecular mechanisms underpinning the genesis and progression 

of GBMs and the use of distinct biomarkers to stratify patients, personalized treatment 

according to molecular/ genetic profiling remains utopic. On the contrary, the golden 

standard of treatment is given to almost all patients, including surgical excision in cases 

where the tumour localisation is permissive, followed by concomitant fractionated 60Gy 

radiation with TMZ, and adjuvant TMZ afterwards. The administration of steroids, usually 

dexamethasone (Dex), is common practice after surgery for neurological symptomatic relief 

(Marlow et al., 2017; Boussiotis and Charest, 2018). Furthermore, targeted therapy 

attempts have shown very limited success as part of GBM therapeutic regimens, as the 

examples of EGFR and BRAF/MEK inhibitors clearly illustrate, due to the extreme intra 

tumour heterogeneity, the clonal evolution of the tumour cells and the emergence of 

secondary mutations, as well as the pathway redundancy (Olson et al., 2014; Prados et al., 

2015). Anti-angiogenic targeted therapies, such as the widely used anti-VEGF monoclonal 

antibody bevacizumab, a selective multi-targeted receptor tyrosine kinase inhibitor of 

VEGFR-1, VEGFR-2, VEGFR-3, PDGFR-α/β, and c-kit, pazopanib and sorafenib, two small 

molecular inhibitors of several tyrosine protein kinases such as VEGFR and PDGFR and 

RAF proto-oncogene serine/threonine-protein kinase (Raf) kinases, have also shown very 

limited success (Olson et al., 2014; Ferrer et al., 2018).  

Given the tumour biology of GBMs, the reasons for treatment therapy failure are multiple 

and diverse. One massively limiting factor is the poor drug delivery, due to the existence of 

the blood-brain barrier (BBB) (~2% of therapeutic agents can cross the BBB) (Saito and 
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Tominaga, 2017; Hua et al., 2018). Another important contributing factor is the presence of 

glial stem cells (GSCs), which confer resistance to chemotherapy and radiotherapy due to 

their self-renewal properties and their ability to overuse their DNA repair system comparing 

to the non-stem cells (Marlow et al., 2017; Boussiotis and Charest, 2018).  Upregulating 

multidrug resistance genes, such as the Breast Cancer Resistance Protein (BCRP), DNA 

repair enzymes (e.g. MGMT), anti-apoptotic factors (e.g. survivin) and pro-survival 

pathways, including autophagy constitutes another means of rendering chemotherapy 

ineffective. The biophysical properties of the tumour’s microenvironment, for instance, 

stromal stiffness,  interstitial pressure and fluid flow can also be an obstacle for efficient 

drug delivery (Saito and Tominaga, 2017). The excessive adverse effects of potent 

chemotherapeutic agents is also a thus far unsolved problem in GBM treatment (Marlow et 

al., 2017). Besides, the glucocorticoids administered to patients post-surgery to relieve 

treatment-related adverse effects compromise immune responses and in turn the patients’ 

survival (Boussiotis and Charest, 2018). 

To overcome the delivery barrier of the BBB, as well as the increased cytotoxicity of 

systemic therapy, a useful approach is the use of convention-enhanced delivery (CED), 

with which the BBB is circumvented by delivering the drug directly into the tumour via 

continuous positive-pressure infusion (Saito and Tominaga, 2017). So far, the only such 

strategy used in the clinic is Gliadel®, a carmustine wafer that gradually releases 

chloroethylnitrosourea (BCNU) into the resection cavity (Saito and Tominaga, 2017). 

Another way to facilitate and enhance drug delivery is the use of ultrasound (Saito and 

Tominaga, 2017). An alternative way is the use of receptor-mediated transcytosis (RMT), 

which relies on ligand-receptor interactions and aids the accumulation of the drug at a 

specific site, with or without the use of micro- or nanoparticles (Hua et al., 2018; Shankar et 

al., 2018).  

Other promising therapeutic approaches include the use of unconventional genotoxic 

chemotherapeutics. For instance, the susceptibility of IDH1 mutant tumours to NAD+ 
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depletion could be exploited by inhibiting the nicotinamide phosphoribosyltransferase 

(NAMPT). The advantages of such an approach include the selective tumour cell killing 

without the requirement of DNA damage or active replication (Shankar et al., 2018). 

Another clever strategy that is gaining popularity is targeting the deregulated epigenetic 

machineries. This includes inhibiting histone methyltransferases that are known to promote 

tumour progression, such as G9a and EZH2, and such effort has been made with the 

testing of BIX-01294, and DZNep and Tazemetostat, respectively. Histone demethylation 

mediated by histone demethylases (HDMs) is also associated with tumour progression, and 

as a result, inhibiting HDMs with selective inhibitors (e.g. KDM6A/B, GSKJ4) could be a 

promising treatment option. Histone acetylation is correlated with transcription activation 

and is controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs). 

Importantly, an oncogenic role in gliomas has been attributed to a number of HDACs (p300, 

PCAF and GCN5), making them potential targets for therapy. In line with that, several 

HDAC inhibitors have been developed, including those targeting zinc-dependent HDACis, 

such as vorinostat, panobinostat, trichostatin A (TSA) and valproic acid (VPA), and the 

NAD+ -dependent Sirtuin HDACs. However, their efficacy and suitability remain to be 

proved. Finally, the efficacy of DNA Methyltransferase (DNMT) inhibitors also remains 

controversial (Shortt et al., 2017; Chen et al., 2018). 

Given the immense importance of the immune landscape in GBMs, it comes as no surprise 

that a lot of effort is being put on reversing their ongoing immunosuppression to turn it into a 

functional, immune system-mediated anti tumour attack. To this end a plethora of 

immunotherapeutic approaches are being explored, some with very promising results. One 

such approach is the use of vaccines and is based on the uniqueness of glioma neo-

antigens. The principle follows the one of normal vaccination: the patient is immunised with 

specific peptides derived from their own tumour conjugated to a carrier protein and develop 

an immune response against the tumour. Rindopepimut (Celldex) is an anti-EGFRvIII 

peptide vaccine in clinical trials against glioma (Paff et al., 2014; Boussiotis and Charest, 
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2018). This immune response can be enhanced with the administration of the immune 

stimulatory IL-2. In addition to peptide vaccines, DNA vaccines and DC vaccines are being 

tested, following the same principles, with DC vaccines showing very promising results 

(Reardon and Mitchell, 2017). Oncolytic virotherapy is another concept being tested in the 

field of cancer immunotherapy and relies on the ability of viruses to highjack the cells 

replication machinery and use it for their own replication, ultimately leading to cell death. 

Numerous viruses have been used for in this effort including herpes simplex virus 1, 

adenovirus, poliovirus, parvovirus, reovirus, measles virus, Newcastle disease virus and 

Zika virus (Maxwell et al., 2017). Furthermore, like in many other tumours, there are several 

lines of evidence suggesting that CAR-T therapy comprises an efficient therapeutic 

approach. For GBM, some of the specific antigens being tested include EGFRvIII, 

epidermal growth factor receptor 2 (HER2), IL-133α2 and ephrin type-A receptor 2 (Brown 

et al., 2016). Finally, as in various other tumours, the most successful immunotherapeutic 

approach is the checkpoint inhibitors. Anti-CTLA-4 therapy has shown the first evidence of 

being an effective treatment, either as a monotherapy or even more in combination with 

anti-PD-1 or irradiation (Belcaid et al., 2014). Anti-PD-1 and anti-PD-L1 therapies are 

thoroughly being tested at the moment, either as monotherapies or as part of combination 

therapy with other checkpoint inhibitors or other modalities. For instance, ongoing trials are 

testing anti-PD L1 with/without radiotherapy and bevacizumab, as well as anti-PD-1 with 

TMZ and radiotherapy (Boussiotis and Charest, 2018). Although some of the findings in the 

field are encouraging, whether or not immunotherapy will increase the GBM patients’ 

overall survival rates remains to be uncovered. 

 

 1.3. Hallmarks of Cancer 

Cancer is one of the leading causes of death worldwide and has, therefore, been 

thoroughly investigated for the past decades. It is characterised by multistep progression 

and involves deregulations of both the genome and the epigenome (Costa, 2005). Hanahan 
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and Weinberg (2000) described all the six major characteristics of cancer. A decade later, 

they published a revisited version of their initial review, now presenting almost twice as 

many recurring features of cancer cells (Hanahan and Weinberg, 2011). In order to deeply 

understand the modes of initiation and progression of NB and GBM, as well as to examine 

the key molecules mediating these processes, it is first of paramount importance to 

understand the complexity and abundance of cellular and molecular changes cancerous 

cells undergo. Therefore, the different hallmarks of cancer in a neuroblastoma and GBM 

context are outlined briefly below. 

 

Sustaining proliferative signalling and evading growth suppressors 

Cancer cells are capable of sustaining proliferative signalling. To achieve this, they employ 

a number of different mechanisms, including the induction of autocrine and paracrine 

signalling, the disruption of negative feedback loops, the maintenance of hyperactive 

receptors, and, importantly, the constant activation of crucial oncogenes in cancer-related 

pathways, such as Ras, Raf and c-Myc  (Hanahan and Weinberg, 2011). BRAF mutations 

(Saadeh et al., 2018) and loss of p53 (Gupta and Dwivedi, 2017) are among the most 

common mutations in GBM  while MYCN, a MYC family member, amplifications confer poor 

prognosis in NB patients (Ahmed et al., 2017; Nakagawara et al., 2018). At the same time, 

they can evade the negative regulation normally performed by growth suppressors. These 

suppressors are the so-called tumour suppressor genes and include the well-studied Rb in 

cell cycle control, p53 in DNA damage repair and apoptosis, the mTOR inhibitor PTEN and 

others (Hanahan and Weinberg, 2011). Rb and PTEN are commonly mutated in GBMs  

(Gao et al., 2016). 
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Resisting cell death 

Importantly, tumour cells have mechanisms that help them acquire resistance to 

programmed cell death, i.e. apoptosis. Apoptosis is vastly dependent on the sensor of DNA 

damage, p53, and therefore, when p53 is for some reason deregulated or depleted, as in 

cancer cells, the whole equilibrium is disturbed and the anti-apoptotic part is favoured, 

finally causing resistance to apoptosis (Hanahan and Weinberg, 2011). Notably, loss of p53 

is one of the most common molecular alterations in GBMs (Gupta and Dwivedi, 2017) and 

an indicative aberration of advanced NBs (Nakagawara et al., 2018). 

The two branches of apoptosis, the extrinsic and the intrinsic, are regulated by two groups 

of molecules: the regulators (e.g. receptors and some caspases) and the downstream 

effectors. In healthy cells there is a dynamic equilibrium between pro-apoptotic [e.g. BCL-2 

Associated X, Apoptosis Regulator (Bax), BCL-2 Antagonist/Killer (Bak)] and anti-apoptotic 

[e.g. B-cell lymphoma 2/xL/w (BCL-2/BCL-xL/BCL-w), Myeloid Cell Leukemia 1 (Mcl1), 

BCL-2-Related Protein A1 (BFL1] molecules (Campbell and Tait, 2018).  Essentially, in 

both pathways extracellular/intracellular stimuli or their absence trigger the initiation of 

intracellular signalling cascades and ultimately, at the end of the cascade, apoptotic cells 

are marked with “eat me” flags and are phagocytosed (Radogna et al. 2015; Pistritto et al., 

2016). 

The extrinsic pathway, also known as the “Death Receptor” (DR) pathway, is triggered by 

ligand-induced activation of DRs belonging to the tumour necrosis factor receptor (TNFR) 

superfamily, such as Fas, and TNF-related apoptosis-inducing ligand (TRAIL) or TNFR1 

(Radogna, Dicato and Diederich, 2015; Marín-Rubio et al., 2019). The best-characterised 

signalling systems of death receptors-ligands include TNFR1-TNFα, FAS (CD95, APO-1)-

FasL, TRAILR1 (DR4)-TRAIL, TRAILR2 (DR5)-TRAIL (Pistritto et al., 2016). After the 

receptor trimerises, the assembly of the death-inducing signalling complex (DISC) is 

triggered, and in turn, recruits pro-caspase-8 and Fas-Associated Death Domain (FADD). 

The DISC forms due to homotypic interactions employing the death domain (DD) and death 
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effector domains (DED) of adaptor proteins, such as FADD or TRADD and the initiator 

caspases, procaspase-8 and -10. DISC assembly ensures procaspase-8/10 oligomerization 

and cleavage-mediated activation, leading to subsequent cleavage and release of the 

active initiator caspase. As a result, the active caspase-8 cleaves downstream effector 

caspases (caspases-3, -6 and -7), which, once activated, induce DNA fragmentation and 

subsequently apoptosis. In principle, however, the extrinsic pathway occurs without the 

involvement of the BCL-2 family. Nevertheless, in some cells and under specific 

circumstances, the intrinsic and extrinsic pathways overlap and caspase-8 cleavage 

mediates the activation of the BH3 Interacting Domain Death Agonist (Bid), a pro-apoptotic 

member of the Bcl-2 family, generating a truncated version of the protein (tBid) (Micheau et 

al, 2013; Radogna et al., 2015). Apart from this “canonical” apoptosis activation, mediated 

by either Fas or TRAILR, the DR pathway can also be triggered by perforin (da Fonseca et 

al., 2010) and TNFR1-TNFα. In the latter case, binding of TNF-α to TNF-RI induces the 

formation of a membrane bound-complex (complex I), composed of Receptor Interacting 

Serine/Threonine Kinase 1 (RIPK1), TNF Receptor Associated Factor 2 (TRAF-2), 

TNFRSF1A Associated Via Death Domain (TRADD), Inhibitors Of Apoptosis (IAPs), the 

linear ubiquitin chain assembly complex (LUBAC) and Inhibitors Of Nuclear Factor Kappa B 

Kinase (IKKs) that mainly triggers NF-κB activation and promotes cell survival via the 

transcriptional regulation of the caspase-8 inhibitor c-FLIP. From complex I, a pro-apoptotic 

cytosolic complex (complex II) is formed, composed of caspase-8 and FADD. Complex II 

formation is partly regulated by LUBAC, which contains HOIL-1-Interacting Protein (HOIP), 

Heme-Oxidized IRP2 Ubiquitin Ligase 1 (HOIL-1) and Sharpin and its pro-apoptotic function 

is inhibited by c-FLIP (Cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory 

protein). Given that the majority of cells are proficient for NF-kB activation, upon TNF-α 

stimulation, TNF-R1 usually fails to induce apoptosis (Micheau et al., 2013; Vasilikos et al., 

2017).  
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The intrinsic cell death pathway, also known as the “Mitochondrial pathway”, is triggered by 

intracellular death signals generated by some sort of cellular stress, such as DNA damage, 

growth factor starvation, oxidative stress, hypoxia, hyperthermia, endoplasmic reticulum 

stress from disruption of calcium stores or accumulation of unfolded proteins, and, microbial 

infection (Campisi et al.,2014; Radogna et al., 2015; Pistritto et al., 2016). The 

mitochondrial pathway is initiated when the outer mitochondrial membrane loses its 

potential (loss of Δψ). Upon disruption of the mitochondrial outer membrane (mitochondrial 

outer membrane permeability-MOMP), the proteins normally confined in the intermembrane 

space spread into the cytosol. The release of these apoptogenic factors, such as 

cytochrome c, apoptosis-inducing factor (AIF), second mitochondria-derived activator of 

caspase (Smac) / direct inhibitor of apoptosis proteins (IAP) Binding protein with Low PI 

(DIABLO) or Omi/high-temperature requirement protein A (HtrA2) from the mitochondrial 

intermembrane space into the cytosol leads to the formation of a large cytosolic complex, 

composed of cytochrome c and Apaf-1, called apoptosome. The central component of the 

apoptosome is Apaf-1, a caspase-activating protein that oligomerises upon binding Cyt-c 

and then binds procaspase-9 via interaction with its caspase recruitment domain (CARD). 

At the same time, Smac/DIABLO or Omi/HtrA2 enhance caspase activation by binding to 

IAPs, thereby disrupting the interaction of IAPs with caspase-3 or -9. In turn, the activated 

caspase-9 cleaves and activates the executioner caspases, thus initiating the caspase 

cascade, which ultimately leads to apoptosis (Fulda, 2009; Hassan et al., 2014; Pistritto et 

al., 2016).     

As mentioned above, oxidative stress comprises one of the main sources of intracellular 

stress that triggers apoptosis. Oxidative stress is the direct result of the imbalance 

generated between the formation and elimination of oxidant species. When the formation 

outweighs the elimination, the accumulation of these species, including reactive oxygen 

species (ROS) and reactive nitrogen species (RNS), may result in the formation of oxidative 

modifications in biological macromolecules, including DNA, proteins and lipids. Such 



35 
 

excessive generation of free radicals may be the result of intracellular processes, such as 

metabolism or inflammation, or exogenous factors, like irradiation and smoking (Silva et al., 

2018; Lv et al., 2019). ROS may activate or inhibit the NFκB pathway, depending on the 

cellular context, which can in turn, either enhance or inhibit apoptosis. At the same time, 

ROS have been found to promote tumourigenesis, angiogenesis and metastasis via 

interfering with the MAPK/ERK, PI3K/AKT/mTOR and protein kinase D (PKD) pathways 

(Kim and Jang, 2019; NavaneethaKrishnan et al., 2019). However, in higher levels, ROS 

induce apoptosis through both the extrinsic and intrinsic pathway, via various mechanisms 

(Mohammadi et al., 2019; NavaneethaKrishnan et al., 2019). Triggering oxidative stress via 

augmenting the levels of ROS or eliminating their scavengers remains a traditional 

chemotherapeutical approach, especially in cases of non-resectable tumours and also as 

an irradiation sensitiser (Silva et al., 2018; Mohammadi et al., 2019). 

Meanwhile, two other mechanisms of programmed cell death that operate at basal levels in 

healthy cells, necro(pto)sis and autophagy, seem to be deregulated in cancer cells. 

Elevated necrosis causes inflammatory responses in the tumour cell microenvironment, 

attracting tumour-promoting molecules; increased autophagy, on the other hand, is 

protective for cells against cell death (White and DiPaola, 2009; Hanahan and Weinberg, 

2011). There is accumulating evidence suggesting the diverse roles and types of 

necroptosis that are associated with cancer, mainly through the alternative bridging role of 

caspase-8 (Tummers and Green, 2017). The interplay among these complex programmed 

cell death processes and the major players are illustrated in Figure 1.1.  
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Figure 1.1. The basic network pathways of programmed cell death, including apoptosis, 
necrosis and autophagy. Two main pathways that result in the activation of caspases trigger 
apoptosis. The intrinsic apoptotic pathway, activated by oxidative stress and/or DNA damage, is 
regulated by BCL-2 family proteins and requires the permeabilisation of the outer mitochondrial 
membrane (MOMP). Pro-apoptotic Bax and Bak, through oligomerization, induce MOMP forming 
channels that allow the release of mitochondrial cytochrome c, which results in the assembly of a 
caspase-activating complex called the apoptosome. The anti-apoptotic BCL-2 family members BCL-
2, BCL-xL and Mcl1 act against this pro-death function by inhibiting Bax/Bak oligomerization and 
MOMP. However, BH3-only proteins such as Bim or Bad promote MOMP via Bax/Bak channels by 
blocking antiapoptotic BCL-2 family members. The extrinsic pathway of apoptosis is mediated by 
death receptors such as Fas, tumour necrosis factor receptor 1 (TNFR1), or TNF-related apoptosis-
inducing ligand (TRAIL). The execution of necroptosis involves reactive oxygen species (ROS), 
lysosomal membrane permeabilisation (LMP) and Poly (ADP-ribose) polymerase (PARP). 
Autophagy starts with the nucleation of an isolation membrane or phagophore, which sequesters 
cellular material in a double-membrane vesicle (autophagosome) for lysosomal hydrolase 
degradation after its fusion with a lysosome (autophagolysosome). Autophagy may also be a non-
apoptotic form of programmed cell death and/or can intimately cross-link with apoptosis by a 
molecular crosstalk between the two pathways. The autophagy core process (induction, elongation 
and maturation steps) is regulated by autophagy-related proteins (ATGs) and BCL-2 anti-apoptotic 
members (Bcl-2/Bcl-xL). Conversely, pro-apoptotic BH3-only proteins induce autophagy by blocking 
Bcl-2-Beclin-1 interaction. mTOR: mammalian target of rapamycin; PI3K: phosphatidylinositol 3-
kinase (adapted from Radogna et al., 2015). 
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Enabling replicative immortality  

Along with these, cancer cells can also skip contact inhibition, i.e. the inhibition of cell 

proliferation because of the cell contact in dense populations. Some of the crucial players 

are cadherins and NF2 (Neurofibromin-2) (Hanahan and Weinberg, 2011). Also, in contrast 

to normal cells that undergo a limited number of divisions which are to a great extent 

controlled by the inactivation of telomerase (the DNA polymerase responsible for the 

maintenance of the telomeric ends of chromosomes), this is not the case for cancer cells. 

Telomerase is often reactivated in cancer cells, leading to indefinite divisions, resistance to 

senescence, and, therefore, cell immortalization (Hanahan and Weinberg, 2011). In line 

with this, TERT is often mutated in GBMs (Gao et al., 2016; Gupta and Dwivedi, 2017) and 

overexpressed in NBs (Ahmed et al., 2017), and in both cases, it is an indicator of poor 

outcome.  

 

Inducing angiogenesis and activating invasion and metastasis 

What is more, the normally quiescent vasculature is turned on by an ‘angiogenic switch’ 

during tumour progression. As a result, new vessels are constantly sprouting out providing 

oxygen and nutrients that help to sustain the expanding neoplasms. A number of molecules 

have been accused of promoting angiogenesis and primarily members of the VEGF family 

(Hanahan and Weinberg, 2011). In GBM, the vast deregulations of the VEGF family have 

turned it into an attractive therapeutic target for targeted therapy (Ferrer et al., 2018), while 

the evidence of the role of VEGF in NB remains conflicting (Weng et al., 2017). Another 

significant characteristic that tumours gradually acquire is the ability to locally invade 

tissues and metastasise, either to proximal or to distal organs/tissues. The alterations of 

cell-cell and cell-ECM (extra-cellular matrix) interactions promote the local tumour invasion 

and comprise the first step of a multi-step and time-consuming procedure (invasion-

metastasis cascade). Tumour cells first acquire characteristics of mesenchymal cells (e.g. 
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N-cadherin expression, fibroblast-like shape etc.) through a procedure called ‘EMT’ 

(epithelial to mesenchymal transition). This is followed by their entry in neighbouring blood 

or lymphatic vessels (intravasation), their circulation in the bloodstream/ lymphatic system, 

their escape into the parenchyma of permissive distal tissues (extravasation and MET- 

mesenchymal to epithelial transition), the formation of micrometastatic nodules and finally 

the growth of these lesions to form macroscopic tumours (colonisation) (Hanahan and 

Weinberg, 2011). CXCR4, a chemokine receptor with a leading role in the tumour 

microenvironment, is overexpressed in aggressive NBs, ultimately leading to metastasis 

(Borriello et al., 2016), while in GBMs, MMPs (matrix metalloproteinases) are highly 

expressed and associated with poor survival (Thompson and Sontheimer, 2019). 

 

Deregulating cellular energetics and avoiding immune destruction 

The adoption of an alternative metabolic strategy has been attributed to cancer cells. This is 

known as the Warburg effect, according to which cancer cells vastly rely on glycolysis to 

produce energy, even in aerobic conditions (also termed aerobic glycolysis). This state has 

been associated with contexts in which oncogenes are hyperactive and tumour suppressors 

are down-regulated, and is also promoted by hypoxia (Hanahan and Weinberg, 2011). The 

high metabolic rate of tumour cells also results in the accumulation of ROS (Rodic and 

Vincent, 2018; NavaneethaKrishnan et al., 2019). In this context, high levels of LYAR (Ly1 

Antibody Reactive) gene expression, an oxidative stress regulator, in human 

neuroblastoma tissues predicted poor event-free and overall survival in neuroblastoma 

patients (Sun et al., 2017). In GBMs, knockdown of HIF1A, a master regulator transcription 

factor of hypoxia, in human and murine glioma cells impaired their migration in vitro and 

their invasion in vivo (Méndez et al., 2010). Finally, tumours find ways to escape the 

recognition and destruction by the immune system. There is piling evidence suggesting that 

this is mediated both by the secretion of immune-suppressive factors by tumour cells that 

eliminate the action of T-cells and natural killer cells (NKs) and by the attraction of 
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regulatory T-cells that compromise the attempts of tumour destruction (Hanahan and 

Weinberg, 2011). 

 

Tumour promoting inflammation and genome instability and mutation 

All these traits comprise established characteristics of cancer cells. After intensive 

research, it has been proved that there exist some conditions that facilitate the emergence 

and establishment of these features. One of them is the inflammatory response in tumour 

sites. It affects the initiation stage of tumourigenesis and is caused primarily by the tumour 

associated macrophages (TAMs), which attract other pro-inflammatory elements of the 

immune system that, in turn, trigger oncogenic cascades, mainly via cytokine/chemokine 

secretion (Hanahan and Weinberg, 2011). TAMs promote neuroblastoma via STAT3 

phosphorylation and up-regulation of c-Myc (Hadjidaniel et al., 2017), while they comprise 

the dominant infiltrating immune cell population in GBMs, exerting different functions in 

distinct GBM subtypes (Chen and Hambardzumyan, 2018). The other one is the 

generalised genomic instability that tumours acquire during the course of the multi-step 

carcinogenesis. This can be triggered by mutations in a variety of combinations, but also by 

non-mutational changes that affect the gene regulation; in other words, epigenetic 

alterations (Hanahan and Weinberg, 2011).  

 

1.4. Long non-coding RNAs (LncRNAs) 

1.4.1. Discovery and definition  

The advent of and the subsequent advances in Next Generation Sequencing have 

revolutionised our interpretation of the architecture, regulation and complexity of the 

eukaryotic genome. The data acquired from a number of consortia, such as ENCODE 

(ENCODE Project Consortium, 2004) and FANTOM (Bono et al., 2003), have contributed 

vastly to the discovery, quantification and characterisation of this relatively newly 
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discovered class of RNAs (Qureshi and Mehler, 2012). The classification of RNAs as 

coding or non-coding has been challenging, however, the most widely accepted method of 

achieving it is analysing the open reading frames (ORFs) of a candidate transcript. Based 

on this criterion, RNAs that lack an apparent ORF are classified as non-coding (Cao, 2014; 

Mohanty et al., 2015). ncRNAs can be further divided into two subcategories: small and 

long ncRNAs, based primarily on their length.  

Small ncRNAs include ncRNAs with length <200nt and include a great variety of regulatory 

RNAs, such as the well-studied tRNAs, small nuclear RNAs (snRNAs), microRNAs 

(miRNAs), PIWI-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), promoter-

associated small RNAs (PASRs) and small inhibitory RNAs (siRNAs) (Qureshi, Mattick and 

Mehler, 2010; Qureshi and Mehler, 2012; Schmitz, Grote and Herrmann, 2016), as well as 

some new categories including tiRNAs (transcription initiation RNAs)/spliRNAs deriving 

from the transcription start sites and borders of exons, respectively (Mattick, 2018). Of 

them, miRNAs are small cytoplasmic RNAs that are 20-23nt in length and have attracted a 

lot of interest due to their crucial role in gene expression regulation by means of inducing 

gene silencing. miRNAs are transcribed in the nucleus as precursor molecules and are then 

exported to the cytoplasm. They are then diced by the DICER complex into double-

stranded molecules. One of the two strands takes part in the formation of RNA-induced 

silencing complexes in order to silence gene expression post-transcriptionally (Wang and 

Chang, 2011; Boon et al., 2016). miRNAs have been intensively studied over the past 

decade and be involved in several diseases, including cancer (Qureshi and Mehler, 2012; 

Diederichs et al., 2016). 

Long ncRNAs (lncRNAs) are RNA molecules that are either longer than 2kb with a limited 

coding potential or RNA molecules of >200nt length with no protein-coding capacity (Cao, 

2014; Clark and Blackshaw, 2014). However, this classification is not standardized, since 

the cut-off point of 200nt has been arbitrarily utilised, based on RNA purification protocols 

(Mercer et al., 2009; Hung and Chang, 2011; Boon et al., 2016). Moreover, very large 
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regulatory RNAs have been identified to be spread along the human genome, such as the 

very long intergenic RNAs (vlincRNAs, transcripts of >50kb length) and the macroRNAs 

(Laurent et al., 2012; Lazorthes et al., 2015). The different subcategories of RNAs are 

schematically presented in Figure 1.2.  

     

 

 

 

 

 

 

 

 

Figure 1.2. Non-coding RNAs of the human transcriptome. Most of the human genome is 
transcribed, but only a small percentage is translated into proteins, thus resulting in a vastly non-
coding transcriptome with various ncRNA species. The classification does not rely on a strict 200nt 
cutoff. H1 RNA: RNA component of ribonuclease P; miRNAs: microRNAs; mRNA: messenger RNA; 
mtRNA: mitochondrial RNA; piRNAs: piwi-interacting RNAs; RMRP: RNA component of RNase 
MRP; rRNA: ribosomal RNA; scaRNAs: small Cajal body-specific RNAs; 7SL RNA: signal 
recognition particle RNA; snoRNAs: small nucleolar RNAs; snRNAs: small nuclear RNAs; TERC: 
telomerase RNA component; tRNAs: transfer RNAs; YRNAs: part of the RoRNP (adapted from Boon 
et al., 2016). 

 

1.4.2. Characteristics and classification  
 

lncRNAs are among the most abundant classes of ncRNAs, with the numbers varying from 

at least 9640 to the recently reported 58648 in human (Bernstein et al., 2012; Yang, Lu and 

Yuan, 2014; Iyer et al., 2015), and their expression is significantly enriched in the brain 

(Qureshi et al., 2010; Qureshi and Mehler, 2012). Their expression is elegantly regulated, 

following a spatiotemporal- and environmental stimulus-specific fashion (Amaral and 

Mattick, 2008; Cabili et al., 2011). In fact, they have proved to be expressed in lower levels, 

but with higher tissue specificity, compared to protein-coding genes (Ning et al., 2017; Pop 

et al., 2018). This lineage/tissue specificity is a quite expectable feature if one takes into 

consideration the fact that positive selection acts more rapidly on regulatory elements 
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comparing to protein-coding ones and that these regulatory elements have different 

structure-function constraints and are subject to rapid turnover (Mattick, 2018). 

Many lncRNAs resemble mRNAs, taking into account that they are, as well, transcribed by 

RNA polymerase II, they are often 5’ capped and 3’ polyadenylated. Also, they are often 

multi-exonic and most of them are subject to alternative splicing (the process via which 

exons are linked with each other in a number of different combinations to generate different 

isoforms of the same gene) (Qureshi et al., 2010; Schmitz et al., 2016; Ning et al., 2017; 

Mattick, 2018). However, they possess more tandem repeat elements and 

retrotransposons, comparing to mRNAs (Clark and Blackshaw, 2014). Some of the 

lncRNAs are used as precursor molecules for shorter functional RNAs, such as snoRNAs 

and miRNAs (Mattick and Makunin, 2005; Wilusz et al., 2009; Qureshi et al., 2010). As new 

evidence is coming to light, the importance of lncRNAs is becoming more apparent, but at 

the same time, their distinction is becoming more blurred due to confounding factors, such 

as the fact that some of them can also possess protein-coding activity (Wilusz et al., 2009; 

Banfai et al., 2012; Clark and Blackshaw, 2014; Fang and Fullwood, 2016). This is also 

supported by the fact that several lncRNAs are somehow associated with ribosomes, 

probably by having incorporated ORFs that bind to ribosomes to give rise to small 

polypeptides, but this remains a speculation that needs to be further investigated (Ingolia et 

al., 2011; van Heesch et al., 2014; Yao et al., 2019). 

Finally, the majority of lncRNAs display low levels of evolutionary conservation, although 

exceptions do exist, for example, lncRNAs transcribed from ultra-conserved elements 

(UCEs) (~3% of lncRNAs), which exhibit really high levels of conservation, as the name 

itself indicates (Clark and Blackshaw, 2014; Fang and Fullwood, 2016). Furthermore, there 

are fluctuations in the levels of conservation even between elements of the same lncRNA; 

exonic regions, for example, are more conserved than intronic (Clark and Blackshaw, 2014; 

Ning et al., 2017; Mattick, 2018). What is noteworthy, however, is the fact that although the 

sequence conservation tends to be relatively low, equivalent lncRNAs have been found in 
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syntenic genomic regions across several species (Clark and Blackshaw, 2014; Fang and 

Fullwood, 2016; Schmitz et al., 2016). This indicates that functional conservation does exist 

and also, that sequence conservation is less needed in lncRNAs to maintain their function 

(Pang et al., 2006; Laurent et al., 2012; Boon et al., 2016; Schmitz et al., 2016).  

LncRNAs comprise a very heterogeneous class of molecules, making it even more 

challenging to consistently categorise them. So far, the most commonly applied criterion 

has been their genomic position relative to neighbouring protein-coding genes (Chen et al., 

2015; Schmitz et al., 2016). The basic categories are: 

 Long/large intergenic/intervening RNAs (lincRNAs): they usually possess 

signatures indicative of active transcription (e.g. H3K4me3/H3K36me3, 

polyadenylation, RNA pol II occupancy) (Guttman et al., 2009; Marques et al., 2013; 

Clark and Blackshaw, 2014; Pop et al., 2018).  lincRNAs can be transcribed from gene 

regulatory regions, like UTRs, promoters and enhancers (Qureshi and Mehler, 2012). 

They are located between but do not overlap with protein-coding genes, comprise the 

largest group of functional lncRNAs and are primarily involved in epigenetic regulation 

(Pop et al., 2018). 

 

 Enhancer RNAs (eRNAs) and promoter upstream transcripts (PROMPTs): 

lncRNAs transcribed from enhancers (Schmitz et al., 2016) and promoters, 

respectively. eRNAs are mostly bidirectionally transcribed, display certain chromatin 

marks (H3K4me1 and H3K27ac modifications) (Clark and Blackshaw, 2014) and 

should not be confused with the enhancer-associated lncRNAs (elncRNAs) that are 

mostly unidirectionally transcribed from low H3K4me3/H3K4me1 ratio promoters 

(Marques et al., 2013).  PROMPTs have not yet been attributed a specific function; 

however, it is postulated that the process of transcription itself is of importance and not 

the lncRNA (Yao et al., 2019).  

 Intronic lncRNAs: lncRNAs expressed from intronic regions (Schmitz et al., 2016). 
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 Circular lncRNAs (circRNAs): the result of the back-splicing from introns of 

mRNAs or lncRNAs, acquiring a stable circular configuration (Clark and Blackshaw, 

2014; Boon et al., 2016; Schmitz et al., 2016; Yao et al., 2019). 

 Mitochondrial lncRNAs: stem-loop lncRNAs produced in the mitochondria 

(SncmtRNA), as well as Anti-sense mitochondrial ncRNA (AsncmtRNA) (Chandra 

Gupta and Nandan Tripathi, 2017). 

 Novel classes: telomeric lncRNAs (Azzalin et al., 2007), together with the newly 

discovered sno-lncRNAs, flanked by snoRNAs (Geisler and Coller, 2013) and circular 

intronic (ciRNAs), deriving from excised introns. Of particular interest are the newly 

discovered 3’UTR-derived lncRNAs, which are expressed separately from their 

associated mRNA, and also respond to different signals (Mattick, 2018).  

 

LncRNAs can also be transcribed from the same promoter as a protein-coding gene 

(proximal promoter) divergently (pancRNAs) or from a different promoter acting 

convergently, i.e. transcribing the opposite strand of the protein-coding gene. Other 

lncRNAs can overlap with other transcripts in either a sense or antisense (natural 

antisense transcripts- NATs) manner, elegantly regulating their expression, especially 

in the case of NATs (Clark and Blackshaw, 2014; Schmitz et al., 2016) (Figure 1.3). 

Overlapping genes of lncRNA-protein-coding pairs could originate via a process called 

overprinting, during which new genes are created from pre-existing sequences, with 

lncRNAs being younger comparing to their pair protein-coding genes in most cases 

(Ning et al., 2017). 
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Figure 1.3. Classification of lncRNAs relative to neighbouring protein-coding gene(s). The 
most frequently used classification of lncRNAs is based on their location in the genome in relation to 
neighbouring, usually protein-coding genes. Divergently transcribed lncRNA originating from the 
opposite strand of the same promoter region as the adjacent gene (A); lncRNA and neighbouring 
gene convergently transcribed from opposite strands, facing each other (B); long 
intergenic/intervening lncRNA –lincRNA, usually distal (>10kb) to other genes (C); lncRNAs 
overlapping with neighbouring genes, either in opposite directions (antisense-upper case) or in the 
same direction (sense-lower case) (D); enhancer RNAs transcribed either uni-(left) or bi-(right) 
directionally (E); intronic lncRNAs transcribed from introns of genes (F); lncRNA hosting a microRNA 
(G). lncRNAs are painted in green, while protein-coding genes are painted in orange (adapted from 
Schmitz et al.,2016).  

 

1.4.3. Localisation  

The localisation of lncRNAs inside the cell can be a putative indicator of their function. 

lncRNAs are predominantly located in two cellular compartments: the nucleus and the 

cytoplasm (Banfai et al., 2012; Schmitz et al., 2016). Many studies reported that the 

enrichment of the nucleus in lncRNAs is significantly larger compared to the cytoplasm, 

implying the involvement of lncRNAs in epigenetic mechanisms. The main reason for this 

nuclear retention is the presence of C-rich sequences deriving from Alu elements, which 

interact with the nuclear matrix protein Heterogeneous Nuclear Ribonucleoprotein K 

(hnRNPK). In addition, some newly discovered lncRNAs with unconventional forms and 

biogenesis tend to remain in the nucleus (Figure 1.4) (Yao et al., 2019). Moreover, recent 

studies have generated great controversy over the matter,  
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Figure 1.4. The diverse nuclear-retained lncRNAs. Large intervening/intergenic non-coding RNAs 
(lincRNAs), transcribed by Pol II from intergenic regions, are presumably capped, spliced and 
polyadenylated. (a); natural antisense transcripts (NATs) are transcribed from the opposite strands of 
protein-coding genes by Pol II and are presumably mRNA-like lncRNAs (b); MALAT1 and NEAT1_2 
are processed by RNase P and stabilized by U-A-U triple helix structures at their 3' ends. Their 3'-
end products are further processed to form MALAT1-associated small cytoplasmic RNA 
(mascRNAs), which are ~60 nt in length (c); snoRNA-ended lncRNAs (sno-lncRNAs) are derived 
from excised introns. During splicing, the formation of a snoRNP complex at each end protects the 
intronic sequences from degradation, leading to the accumulation of sno-lncRNAs flanked by 
snoRNAs but lacking a 5' m7G cap and 3' poly(A) tail (d);  5' snoRNA-ended and 3'-polyadenylated 
lncRNAs (SPAs) are derived from readthrough transcripts, and their 5' ends are protected by co-
transcriptionally assembled snoRNPs (e); circular intronic RNAs (ciRNAs) are derived from excised 
introns and depend on consensus RNA sequences to avoid debranching of the lariat introns (f); 
circular RNA (circRNAs) are produced by back-splicing circularization of exons of pre-mRNAs. 
During splicing, pre-mRNAs can be spliced into mRNAs or back-spliced into circRNAs (g) (adapted 
from Yao et al., 2019). 
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suggesting more generalised cytoplasmic localisation and novel roles for lncRNAs, such as 

the regulation of translation (Mattick, 2018).  

LncRNAs have been also found in novel loci inside the cell nucleus (Cheng et al., 2016). As 

part of regulatory machineries (described later), the positioning of lncRNAs, as well as 

chromatin, is not stochastic, but, on the contrary, finely regulated and associated with 

specific nuclear compartments (Cremer and Cremer, 2010; Cheng et al., 2016).  In line with 

that and taking into account that the eukaryotic nucleus is highly compartmentalised (Hirose 

and Nakagawa, 2012), RNA, as well as DNA and proteins, can form non-membranous, 

dynamic nuclear structures (Cheng et al., 2016). In fact, more than ten such nuclear bodies 

have been discovered, placed in the interchromosomal space, serving as sites of multiple 

uses, such as the generation of molecular machineries (Mao et al., 2011; Hirose and 

Nakagawa, 2012). This category includes the nucleolus, nuclear speckles (identical to the 

previously discovered interchromatin granules-ICGs-, 20-25/nucleus, irregularly shaped, 

0.8-1.8 μm in diameter) accommodating crucial for the splicing machinery factors, 

promyelocytic leukaemia protein bodies (PML bodies), paraspeckles (average diameter of 

0.36μm bodies in close proximity to nuclear speckles, 10-20/nucleus) and nuclear stress 

bodies (nSBs) (Hirose and Nakagawa, 2012). Importantly, several lncRNAs have been 

associated with a number of nuclear bodies. In these nuclear bodies, they can either be 

solely located, or also function structural components (“architectural RNAs”) and functional 

elements, either as reservoirs of important molecules or actively. For example, nSBs are 

generated upon heat shock as a result of the transcription of  Satellite III (SatIII) and the 

entrapment of multiple splicing factors by the same molecule (Yao et al., 2019). MALAT1 

(metastasis-associated lung adenocarcinoma transcript 1), also known as NEAT2 (nuclear 

enrichment abundant transcript 2), is enriched in nuclear speckles and is involved in 

alternative splicing. Furthermore, the lncRNA NEAT1 (nuclear enrichment abundant 

transcript 1) is a structural and functional component of paraspeckles and finally, the 

lncRNA MIAT (myocardial infarction associated transcript) is localised in novel nuclear 
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bodies that do not co-localise with any known bodies, and functions similarly to MALAT1 

(see section 1.5.) (Hirose and Nakagawa, 2012; Laurent et al., 2012; Cheng et al., 2016; 

Yao et al., 2019).  

1.4.4. Mechanisms of function 

As the involvement of lncRNAs in a diversity of biological processes is becoming stably 

more significant, the need to provide further elucidation and insight concerning their acting 

mechanisms is becoming vital. Consequently, a lot of research groups have been working 

intensively towards this end and have provided a number of potential mechanistic models. 

As suggested by Wang and Chang (2011) and Fang and Fullwood (2016), a lncRNA can 

function as a signal, a decoy, a scaffold, a guide, an enhancer and a short peptide (Figures 

1.5.-1.8).  Virtually all of these functions involve, at least to some extent, chromatin 

remodelling, especially when they occur in the nucleus (Cheng et al., 2016). Further, the 

functions are not mutually exclusive, pointing towards the high plasticity and flexibility of 

lncRNAs (Wang and Chang, 2011). 

To understand deeply these modes of function, one should keep in mind the versatility of 

RNA. Thus, lncRNAs can exert their functions in various ways. Firstly, through sequence-

specific interactions, either RNA-RNA or RNA-DNA, a way that is very common when NATs 

are involved. Typical examples of such interactions involve p15AS (p15 antisense 

transcript) and the CDKN1A (cyclin-dependent kinase inhibitor 1A) antisense RNA for the 

former case, and the DHFR (dihydrofolate reductase) locus regulation by the non-coding 

DHFR for the latter case (Martianov et al., 2007; Hung and Chang, 2011). Secondly, 

interactions can be structure-mediated, because lncRNAs can form secondary and tertiary 

structures to bridge molecules that are distal to each other or exert their own function (Pop 

et al., 2018). RepA (repeat A) and GAS5 (Growth Arrest-specific 5) are indicative examples 

of lncRNAs that fall within this category (Mourtada-Maarabouni et al., 2009; Hung and 

Chang, 2011). Finally, given that a rough 25% of all proteins contain nucleic acid binding 
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domains, it is likely that proteins form complexes with lncRNAs to reach their target, using 

them as adaptors (Hung and Chang, 2011). 

Another significant feature of lncRNAs is that they can function in cis or trans (Clark and 

Blackshaw, 2014; Engreitz et al., 2016). They function in cis when they regulate the function 

of neighbouring genes of the same genomic locus, meaning that their action is limited to a 

proximal area (e.g. ANRIL, also known as CDKN2B-AS1cyclin-dependent kinase inhibitor 

2B antisense transcript 1). On the other hand, they can function in trans when their effect is 

exerted on distal loci, in the same or even a different chromosome (e.g. HOTAIR-Hox 

transcript antisense intergenic RNA) (Qureshi et al., 2010; Kornienko et al., 2013; Clark and 

Blackshaw, 2014; Boon et al., 2016). Intriguingly, some lncRNAs, such as the DHFR 

(Wilusz et al., 2009) and CISTR-ACT (cis- and trans- chromosomal interaction) lncRNA, 

can act in both ways (Maass et al., 2014). In cases where lncRNAs act in cis only, this 

might be the result of direct, local functions of the lncRNA locus, while in cases of dual-

action, this might be the indirect, downstream result of the lncRNA acting somewhere else 

(Engreitz et al., 2016).  Taking all the above into consideration, it comes as no surprise that 

lncRNAs have so many different roles, which are analysed below. 

1.4.4.1. LncRNAs as signals 

Functioning as a signal, a lncRNA has the mission to regulate transcription as a response 

to a diversity of stimuli. This is convenient for the cell since their transcription occurs in a 

very tight spatial and temporal frame. In addition, having a lncRNA as a signal is time-

saving, since it skips the time-consuming procedure of translation. For some lncRNAs, it is 

the final transcript that is essential for subsequent regulation (cis- and trans-acting 

lncRNAs), while for others it is the process of lncRNA transcription itself that mediates the 

signalling (cis-acting RNAs only) (Wang and Chang, 2011; Kornienko et al., 2013).  

Examples of such function can be found in the process of establishing allele-specific 

expression of genes, either through imprinting-related lncRNA expression (e.g. 
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KCNQ1OT1- KCNQ1 opposite transcript 1 or long QT intronic transcript 1, and Air- 

antisense of IGF2R non-protein-coding RNA lncRNAs) or dosage-compensation-

related lncRNA transcription, mainly during X chromosome inactivation (e.g. Xist-X-inactive 

specific transcript, Tsix) (Wang and Chang, 2011). In both cases, the expression of specific 

lncRNAs leads to active silencing, as discussed below. Following the same principles, a 

number of lncRNAs establish the controlled expression of genes during early development. 

For example, it has been found that there is a number of lncRNAs that are transcribed from 

the HOX clusters, during the development of the anterior-posterior axis (e.g. HOTAIR, 

HOTTIP) (Wang and Chang, 2011). Other lncRNAs are tightly bound to processes 

maintaining the pluripotent identity of the cell through the regulation of known pluripotency 

factors, such as Oct4, Sox2 and Nanog [e.g. linc-RoR and MIAT (Sheik Mohamed et al., 

2010). Another stimulus that can induce the expression of lncRNAs functioning as a signal 

is organismal stress, which could be, for example, DNA damage, as in the case of linc-p21 

(Huarte et al., 2010) and PANDA (p21-associated ncRNA DNA damage-activated) (Hung et 

al., 2011) - both located upstream of CDKN1A- or even cold, as in the case of the lncRNAs 

COLDAIR and COOLAIR in plants (Wang and Chang, 2011; Chen et al., 2015). Also, the 

expression level of a protein-coding gene often correlates with the expression level of an 

eRNA involved in its expression. In this case, the eRNAs acquire a more ‘promoter-like’ 

identity. Finally, lncRNAs are surprisingly involved in procedures mediating the mRNA 

degradation (e.g. 1/2 –sbsRNAs- half-STAU1-binding site RNAs- in Staufen 1-mediated 

mRNA decay) (Wang and Chang, 2011). 
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Figure 1.5. Schematic representation of lncRNAs functioning as signals: lncRNA expression 
can faithfully reflect the combinatorial actions of transcription factors (coloured ovals) or signalling 
pathways to indicate gene regulation in space and time (adapted from Wang and Chang, 2011). 

 

1.4.4.2. LncRNAs as decoys 

LncRNAs functioning as molecular decoys (also known as competing endogenous RNAs-

ceRNAs) act primarily in a straightforward mechanism: once these lncRNAs are transcribed 

they bind to molecules that are important for expression regulation and titrate them away. 

These molecules can range from chromatin modifiers to transcription factors, co-activators 

and repressors, and from other ribonucleoprotein complexes to miRNAs (Wang and Chang, 

2011).  In essence, they act as baits to prevent these crucial molecules from reaching their 

target. A typical example in this group is the DHFR- associated lncRNA which binds TFIIB 

(transcription factor IIB) and thus prevents it from binding to the proximal promoter, further 

preventing the initiation of transcription (Martianov et al., 2007). Similarly, TERRA (telomeric 

repeat-containing RNA) regulates the telomere formation and consequently the 

chromosomal end protection (Azzalin et al., 2007), PANDA induces cell survival by 

inhibition of the apoptotic machinery through NF-YA binding (Hung et al., 2011; Maass et 

al., 2014; Mohanty et al., 2015) and GAS5 induces partial resistance to glucocorticoids via 

glucocorticoid receptor (GR) repression through the antagonistic occupation of the receptor 

(Mourtada-Maarabouni et al., 2009). MALAT 1 retains serine/arginine (SR) splicing factors 

in nuclear speckles preventing the correct alternative splicing (Tripathi et al., 2010). Despite 

their low abundance and mainly nuclear localisation, which could deteriorate the ability of 
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lncRNAs to act as ceRNAs for miRNA sponging, a couple of other lncRNAs act as natural 

‘miRNA sponges’ to prevent miRNA-mediated gene regulation in cancerous settings 

(Wilusz et al., 2009; Wang and Chang, 2011; Tay et al., 2014) [e.g. CDR1AS for the miRNA 

let-7 (Schmitz et al., 2016; Yao et al., 2019), lincMD1-muscle differentiation 1- for miR-133 

and 135 (Chen et al., 2015), IPS1-induced by phosphate starvation 1- for miR-399 (Wilusz 

et al., 2009; Wang and Chang, 2011), lincRoR for miR-145 (Wang et al., 2013)  and TUG1-

taurine upregulated gene 1- for miR-26a (Li et al., 2016; Zhao et al., 2019)]. Finally, 

circRNAs comprise a relatively new class of potent ceRNAs, mainly due to their stability 

(Tay et al., 2014).  

 

 

 

 
 

 

Figure 1.6. Schematic representation of lncRNAs functioning as molecular decoys: lncRNAs 
can titrate transcription factors and other proteins away from chromatin or titrate the protein factors 
into nuclear subdomains (adapted from Wang and Chang, 2011). 

 

 

1.4.4.3. LncRNAs as scaffolds 
 

LncRNAs can also act as scaffolds, a feature that had been attributed to proteins until 

recently (Wang and Chang, 2011; Fang and Fullwood, 2016). Scaffolds, either protein or 

lncRNA, serve as platforms that can orchestrate elegantly gene expression by bringing 

together at a given place and time a variety of effector molecules, which can act either 

synergistically or antagonistically (Spitale et al., 2011). Indicative examples of lncRNAs in 

this category are TERC (telomerase RNA), which brings together TERT (telomerase 

reverse transcriptase) and other accessory proteins for the maintenance of telomeres 

(Wang and Chang, 2011; Maass et al., 2014), pericentromeric heterochromatin-associated 
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lncRNAs, ANRIL, which is a scaffold for both PRC1 and PRC2 complexes facilitating gene 

silencing (Kotake et al., 2011), and, again, the well-studied HOTAIR. HOTAIR is remarkable 

in the sense that it can bind simultaneously two complexes: PRC2 at the first 5’ 300nt and 

LSD1/CoREST/REST at the 3’ 700nt. The former complex mediates the H3K27 methylation 

leading to gene repression, while the latter demethylates H3K4, counteracting gene 

activation. Collectively, this leads to a synchronised effort of effector genes’ repression 

(Tsai et al., 2010). Similarly, other lncRNAs can bind both complexes with similar results 

(Khalil et al., 2009). Firre can also act as a scaffold to alter interchromosomal interactions 

via the recruitment of hnRNPU (Heterogeneous Nuclear Ribonucleoprotein U), while 

CCAT1-L (Colorectal Cancer-Associated Transcript1- long isoform) can do so by interacting 

with CTCF (CCCTC-Binding Factor) to create enhancer-promoter loops (Yao et al., 2019).  

The model of ‘intelligent scaffolds’ finely illustrates this mode of function: lncRNAs can 

interact with proteins and other RNAs, sometimes with relatively low affinities, resulting in 

the formation of micro-domains that can, in turn, regulate gene expression by letting key 

components go once they meet elements to which they can bind with higher affinity 

(Laurent et al., 2012).  

 

 

 

 

 
Figure 1.7. Schematic representation of lncRNAs functioning as scaffolds: lncRNAs can bring 
together multiple proteins to form ribonucleoprotein complexes. The lncRNA-RNP may act on 
chromatin as illustrated to affect histone modifications. In other instances, the lncRNA scaffold is 
structural and stabilizes nuclear structures or signalling complexes (adapted from Wang and Chang, 
2011). 
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1.4.4.4. LncRNAs as guides 
 

For the lncRNAs that act as guides, the task is exactly inherent to the name: to bind 

proteins and drive the localisation of the RNA/protein complex to a specific target(s), acting 

either in cis or in trans. To perform this task, active chromatin remodelling is necessary 

(Wang and Chang, 2011).  These chromatin changes can occur co-transcriptionally in cis, 

involving RNA pol II. Alternatively, they can occur in trans as a target for other small 

regulatory RNAs, achieved by duplex or triplex formation (RNA: DNA or RNA:DNA: DNA) or 

by identification of chromatin marks (Hung and Chang, 2011; Wang and Chang, 2011; Pop 

et al., 2018).  Examples of in cis-regulation include lncRNAs such as Xist, pRNA (promoter-

associated RNA, which is complementary to the ribosomal DNA promoter), and HOTTIP, 

while examples of regulation in trans include HOTAIR, linc-p21 and Jpx. Significantly, both 

chromatin activating (e.g. MLL- mixed-lineage leukemia, TxG-trithorax group) and 

repressive (PRC- polycomb repressor complex-) machineries can participate in this type of 

regulation, as well as transcription factors themselves,  adding an extra step of complexity 

to this acting mechanism. Regardless of the particular details, though, the mission remains 

the same: to convey regulatory information through epigenetic modifications, in order to 

finally control the gene of interest (Wang and Chang, 2011).   

 

 

 

 

Figure 1.8. Schematic representation of lncRNAs functioning as guides: lncRNAs can recruit 
chromatin-modifying enzymes to target genes, either in cis (near the site of lncRNA production) or in 
trans to distant target genes (adapted from Wang and Chang, 2011). 
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1.4.4.5. LncRNAs as enhancers and short peptides 

LncRNAs can also be produced by enhancers (eRNAs) to function by influencing the 3D 

DNA conformation, i.e. chromatin. Their role is not fully elucidated yet, but one model 

suggests that they function by remaining attached to the enhancer to bind proteins. These 

proteins, in turn, bind to distal promoters to enable RNA transcription, forming the so-called 

chromatin loops. In light of this, eRNAs are crucial for the establishment and maintenance 

of these loops (Kornienko et al., 2013; Fang and Fullwood, 2016). Generally, the 

transcription of eRNAs has been associated with gene activation (Clark and Blackshaw, 

2014), but some exceptions (e.g. Haunt lncRNA) have been reported (Schmitz et al., 2016). 

Finally, some lncRNAs have been found to also encode short peptides, that are likely to 

exert some functions, but further research is needed to come to safe and generalised 

conclusions (Ingolia et al., 2011; Fang and Fullwood, 2016; Schmitz et al., 2016). 

Impressively, a generous proportion of the aforementioned and other lncRNAs can have 

multiple functions, a fact that indicates their complexity and biological significance. For 

example, HOTTIP can function both as a signal and as a guide, while HOTAIR can function 

both as a signal and a scaffold. As Wang and Chang (2011) suggest, lncRNAs can acquire 

a ‘stepwise complexity’: they can start having a basic function, e.g. eRNAs, and gradually 

obtain new characteristics that help them ‘climb the hierarchy’ to become decoys, guides 

and scaffolds.  

 

1.4.4.6. The effects of lncRNAs on transcriptional regulation  

LncRNAs can exert any of these functions, or, as it often happens, a combination of them, 

to control gene expression both at the level of transcription, theoretically during any of its 
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stages (Kornienko et al., 2013; Schmitz et al., 2016), and at the post-transcriptional level 

(Mercer et al., 2009; Geisler and Coller, 2013) (Figure 1.9). 

Given the exquisite mechanisms of actions and characteristics of lncRNAs, it is natural that 

they regulate transcription at so many levels and in so diverse ways. NATs and lincRNAs 

close to protein-coding genes can repress transcription, possibly via the mechanism of 

transcriptional collision: RNA polymerase II complexes moving along opposite strands 

cannot bypass each other and collide, leading to the cessation of RNA polymerase II and its 

removal by ubiquitination mediated proteolysis (Mohanty et al., 2015; Fang and Fullwood, 

2016). Other lncRNAs repress transcription through direct RNA: DNA interaction, as in the 

case of DHFR, where the non-coding DHFR (ncDHFR), which is produced by a minor 

promoter, binds to the major promoter further inhibiting its interaction with TFIIB (Mohanty 

et al., 2015) and the case of TERRA, where DNA-RNA hybrids promote homologous 

recombination at the telomeres. The formation of R-loops, which bring together several 

components of the transcription machinery is another strategy: lncRNAs coordinate 

regulation via binding to other proteins that can be either transcription factors or 

activators/repressors, instead of binding to DNA itself. For example, PANDA -acting as a 

decoy- binds and sequesters the nuclear transcription factor NF-YA, resulting in cell 

survival promotion through repression of the apoptotic programme (Wang and Chang, 

2011; Yao et al., 2019).  Thus, they can act either as co-activators or co-repressors, to 

promote or repress gene transcription respectively (Chen and Carmichael, 2010; Wang and 

Chang, 2011; Mohanty et al., 2015).  

Furthermore, gene regulation at the transcription level can even be mediated by direct 

interactions of lncRNAs with RNA polymerase II. Such .examples include the lncRNA 

NRON (non-coding repressor of NFAT) that prevents the nuclear localisation of NFAT 

(nuclear factor of activated T-cells) by means of binding its accessory nuclear transporters 

like KPNB1 (Karyopherin subunit beta-1), CSE1L (Chromosome segregation 1-like protein), 

CUL4B (Cullin 4B), and linc-p21 that changes the localisation of hnRNPK to repress p53-
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regulated genes (Wilusz et al., 2009; Mohanty et al., 2015). A well-studied example of a 

lncRNA acting as a transcriptional co-activator is Evf-2 (DLX6 antisense RNA 1). The 

Dlx homeobox-containing family of genes are involved in neurodevelopment and neuronal 

patterning and are regulated by two enhancers in the Dlx5/6 locus. One of them gives rise 

to Evf-2, which binds to the protein Dlx2 to eventually activate Dlx5 and Dlx6 (Ponting et al., 

2009). Similarly, HSR1 (heat shock RNA-1) binds to HSF1 (heat shock TF 1) in response to 

heat shock, to promote the expression of relative genes, and SRA (an isoform of steroid 

receptor RNA activator) acts a co-activator for steroid receptors (Wilusz et al., 2009; Chen 

and Carmichael, 2010). On the other hand, several transcriptional co-repressors have been 

discovered. For instance, a lncRNA is transcribed from the 5’ regulatory region of Cyclin D1 

(CCND1) upon ionizing radiation. It then binds to TLS (translocated in liposarcoma), 

allosterically modifies it and in turn, TLS inhibits the acetyltransferase activity of CBP 

(CREB binding protein) and p300, ultimately resulting in the inhibition of CCND1 

transcription (Wang et al., 2008; Chen and Carmichael, 2010). Finally, in terms of direct 

RNA polymerase II interactions, heat shock-induced short interspersed repeat elements 

(SINEs) produce Alu lncRNAs that bind RNA polymerase II to prevent the pre-initiation 

complex formation, and thus, the transcription from commencing (Chen and Carmichael, 

2010; Chen et al., 2015; Yao et al., 2019). Notably, lncRNA-mediated transcription 

interference can occur both during the initiation and elongation stages (Yao et al., 2019). 

 

1.4.4.7. The effects of lncRNAs on post-transcriptional regulation  

LncRNAs can efficiently regulate a broad variety of post-transcriptional processes, including 

mRNA editing and, especially, (alternative) splicing, transportation, stability and 

degradation, as well as translation (Mercer et al., 2009; Wapinski and Chang, 2011; Ning et 

al., 2017).  

As regulators of the mRNA processing, lncRNAs have the flexibility to influence alternative 

splicing through various pathways (Romero-Barrios et al., 2018). NATs can influence the 
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splicing patterns, once transcribed, directly by forming RNA: RNA inhibitory duplexes (e.g. 

MYC and c-Erbα in neuroblastoma) or indirectly, as in case of the case of ZEB2 (Amaral 

and Mattick, 2008; Mercer et al., 2009; Boon et al., 2016). Even more indirectly, lncRNAs 

acting as decoys can deprive splicing machinery of crucial elements, like SR-rich proteins 

which are sequestered in special nuclear domains by MALAT1, leading to incomplete or 

modulated alternative splicing (Geisler and Coller, 2013). The potential involvement of 

lncRNAs in RNA editing, e.g. adenosine to inosine (A-to-I) editing by ADAR (adenosine 

deaminase acting on RNA), has been implied and is a subject of investigation (Laurent et 

al., 2012; Geisler and Coller, 2013). Finally, details on the potential role of lncRNAs in 

mRNA trafficking from the nucleus to the cytoplasm and/ or vice versa remain to be 

elucidated. 

LncRNAs have been implicated to participate in the regulation of mRNA stability, decay and 

translation. A very representative example of a lncRNA acting to promote mRNA stability by 

rescuing it from the repressing activity of miRNAs is that of the BACE1-AS (beta-site-APP-

cleaving enzyme antisense RNA). This is achieved via the RNA: RNA complex that is 

formed between BACE1 mRNA and BACE1-AS, which prevents miR-485-5p from binding 

to the mRNA, consequently stabilizing it (Wapinski and Chang, 2011; Geisler and Coller, 

2013). In contrast, target mRNAs can be destabilised by the activity of lncRNAs, as it 

happens in the case of 1/2 –sbsRNAs (Wang and Chang, 2011; Geisler and Coller, 2013; 

Yao et al., 2019). Finally, given the fact that miRNAs are crucial elements of post-

transcription and post-translation regulation, ultimately leading to gene silencing, it should 

be stressed that several lncRNAs can eliminate their action by controlling their availability. 

As described above, this is achieved by lncRNAs that function as decoys-miRNA sponges. 

These lncRNAs can be either traditionally linear or can belong to the novel miRNA sponge 

class of circular lncRNAs that are even more stable and potent (e.g. circular ANRIL, 

CDR1AS- Cerebellar degeneration-related antigen 1 antisense- for miR-7) (Geisler and 

Coller, 2013; Mohanty et al., 2015). Finally, in a similar fashion, lncRNAs can act as decoys 
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for elements involved in RNA decay. For instance, PUMILIO1/2 (PUM1/2) binds to a 

PUMILIO response element located on the 3’ UTR of mRNAs and triggers their 

deadenylation and decapping, thereby destabilising them and preventing their translation. 

NORAD (non-coding RNA activated by DNA damage) sequesters PUM1/2, thereby 

promoting the downstream translation of mRNAs (Yao et al., 2019). 

1.4.4.8. The effects of lncRNAs on translation and post-translational 

modifications (PTMs) 

Many lncRNAs have been found to be associated with ribosomes. Given that only an 

extremely limited number of lncRNAs is translated to make short peptides, a more 

reasonable explanation of the phenomenon is that lncRNAs are somehow involved with the 

process of translation. For example, it could be hypothesised that some lncRNAs interfere 

with translation regulation by attaching to ribosomes and keeping them occupied until a 

proper signal is received to release them and make them available to form the translation 

machinery (van Heesch et al., 2014). Research has revealed that Uchl1AS (ubiquitin 

carboxyl-terminal L1 antisense RNA) promotes the formation of active polysomes on Uchl1 

mRNA and therefore its translation (Carrieri et al., 2012; Boon et al., 2016; Yao et al., 

2019). Finally, linc-p21 and KCS1AS (Nishizawa et al., 2008) have been found to directly 

interfere with RNA translation, as well. LncRNAs also interfere with PTMs via masking sites 

bound by PTM enzymes or PTM sites. For example, lnc-DC, a lncRNA specifically 

expressed in DCs, binds to STAT3 and promotes its phosphorylation by inhibiting the 

phosphatase that would normally dephosphorylate it (SHp1). Another lncRNA, NKILA 

(NFκB interacting lncRNA), alters the phosphorylation pattern of IκB, ultimately leading to 

the activation of the pathway and the suppression of breast cancer metastasis (Yao et al., 

2019). 

1.4.4.9. The effect of lncRNAs on chromatin remodelling  

Taking all the aforementioned mechanisms and modes of function of lncRNAs, it is of 

pivotal importance to realise the strong link between lncRNAs and epigenetic modifications. 
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Epigenetics is defined as the study of heritable changes in gene expression that are not 

caused by changes or mutations in the DNA sequence (Maass et al., 2014). Epigenetic 

modifications include primarily DNA methylation at cytosine residues, various histone 

modifications (e.g. phosphorylation, acetylation, methylation and ubiquitination) and 

ncRNA-mediated processes (Lennartsson and Ekwall, 2009; Yen et al., 2016). Histone 

modifications are part of the epigenetic machinery: more than 60 have been discovered and 

they are part of the dynamic regulatory epigenetic network, capable of activating or 

repressing gene expression (Maass et al., 2014). As a result, the importance of the 

machineries that establish the histone signatures has been highlighted. In the context of 

lncRNA mediated regulation, it has to be noted that it is exactly the interaction with 

chromatin regulators that primarily makes this regulation feasible, especially at the level of 

transcriptional regulation. These interactions may be weak and occur between lncRNAs 

and chromatin modifiers that are highly expressed and possess high RNA-binding capacity, 

such as the MLL, G9, PRC1, and importantly, the PRC2 complex (Kornienko et al., 2013; 

Clark and Blackshaw, 2014; Schmitz et al., 2016). This is supported by the finding that in a 

cohort of 3300 human lincRNAs study 20% of them were found to be bound by PRC2 

(Khalil et al., 2009; Chen and Carmichael, 2010; Fang and Fullwood, 2016; Pop et al., 

2018). For example, HOTAIR  has been reported to suppress the expression of HoxD by 

directly recruiting the PRC2 complex to the locus (Yao, Wang and Chen, 2019). Precisely, a 

common mechanism is the recruitment of these complexes to specific loci, either in cis or in 

trans (Cheng et al., 2016), to establish either repressive (e.g. Polycomb Group- PcG) or 

activating/transcription permissive (e.g. TxG) chromatin states (Wilusz et al., 2009).  

 

1.4.4.10. The role of lncRNAs in nuclear architecture  

The transcription of lncRNAs can be involved in the formation of special nuclear domains, 

thereby regulating the gene expression indirectly (Maass et al., 2014). Several lncRNAs are 

associated with the formation and the functionality of such nuclear domains. For example, 
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TUG1 has been linked to repressive PcG bodies (Geisler and Coller, 2013), while MALAT1 

is enriched in nuclear bodies and regulates alternative splicing, and NEAT1 is involved in 

the formation of paraspeckles and retaining A-to-I-modified mRNAs in the nucleus (Chen 

and Carmichael, 2010; Cheng et al., 2016). In addition, upon cellular stress, a number of 

lncRNAs can be induced from ICGs to act as decoys for several proteins (e.g. VHL -Von 

Hippel-Lindau disease tumour suppressor-, Hsp70-heat shock protein 70-, MDM2/PML- E3 

ubiquitin-protein ligase Mdm2/ Promyelocytic leukaemia protein-) to restrict them into the 

nucleolus in the detention centre (DC) (Cheng et al., 2016). Finally, MIAT is located in 

special nuclear subunits and is speculated to be involved in alternative splicing, as detailed 

below (Sone et al., 2007). Astonishingly, lncRNAs are involved in another, different aspect 

of nuclear architecture, this of the assembly and maintenance of the cytoskeleton itself, as 

well as the mitotic spindle. Although this has been studied in Xenopus, it is likely to apply 

for mammals, as well (Kloc et al., 2005; Wilusz et al., 2009). The basic roles of lncRNAs are 

schematically represented in Figure 1.9. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



62 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9. Schematic representation of the various roles and cellular functions of lncRNAs. A 
snapshot of cellular functions of lncRNAs with examples shown in b–n (a); Xist modulates inactive X 
chromosome (Xi) architecture during X chromosome inactivation (XCI) (b); Firre transcripts localise 
to their transcription site and five additional autosomal chromosomal loci in trans to affect 
interactions between distant genomic regions (c); CCAT1-L accumulates in cis to modulate 
chromatin loops between enhancers and the promoter of MYC (d); lncRNAs regulate chromatin 
accessibility. Left, Xist recruits HDAC1-associated repressor protein (SHARP),. Right, Mhrt prevents 
SWI/SNF binding to corresponding DNA loci (e); Khps1 enhances Pol II transcription by forming an 
R-loop (f); lncRNAs interfere with Pol II transcription machineries both at the initiation (left) and 
elongation (right) stages (g); SLERT promotes Pol I transcription by binding DDX21 to alter its 
conformation (h); NEAT1 is an architectural lncRNA that nucleates paraspeckles. (i); MALAT1 
interacts with SR proteins and alters their phosphorylation to impact pre-mRNA splicing in splicing 
speckles (j); A regulatory network consisting of different types of ncRNAs. Cyrano, harbouring miR-7 
binding sites, targets miR-7 for degradation and prevents miR-7 from repressing its target RNAs 
including the circRNA Cdr1as (k); lncRNAs modulate mRNA stability by associating with proteins 
involved in mRNA degradation. Left, double-stranded RNAs formed by Alu-containing lncRNAs with 
mRNA 3′ UTRs recruit STAU1 to induce STAU1-mediated mRNA decay (SMD). Right, NORAD 
stabilizes PUMILIO 1/2 (PUM1/2)-targeted mRNAs via sequestering PUM1/2 from mRNAs (l); 
lncRNAs regulate translation. Association of lincRNA-p21 (linc-p21) with HuR favours the recruitment 
of let-7/Ago2 (m); lncRNAs modulate post-translational modifications. Lnc-DC directly interacts with 
STAT3 to prevent its dephosphorylation by SHP1 (n) (adapted from Yao et al., 2019). 
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1.4.5. Physiological roles of lncRNAs  
 

Together with the aforementioned roles of lncRNAs during gene expression regulating 

processes, lncRNAs are involved in numerous cellular processes and functions. These 

include cell cycle control, retrotransposon silencing, meiotic entry, cell differentiation and 

pluripotency, hematopoiesis, T-cell activation along with other significant epigenetic 

processes, for instance, imprinting of genomic loci and dosage compensation, either 

transcriptionally(Table 1.4a) or post-transcriptionally (Table 1.4b) (Costa, 2005; Wilusz et 

al., 2009; Geisler and Coller, 2013). For some of these roles, the mechanisms of lncRNA 

biogenesis may be of greater importance than the lncRNA itself (Furlan et al., 2018; 

Mattick, 2018).  
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Table 1.4a. lncRNA-mediated gene regulation transcriptionally. 

lncRNA Stage of action Role Mechanism Reference(s) 

Xist Transcriptionally X-chromosome 
inactivation 

Chromatin-mediated 
repression 

(Geisler and Coller, 
2013; Maass et al., 
2014) 

Tsix Transcriptionally X-chromosome 
inactivation 

Xist repression via 
transcriptional 
interference 

(Fenoglio et al., 2013; 
Maass et al., 2014) 

KCNQ1OT1 Transcriptionally Genomic 
imprinting 

Chromatin-mediated 
repression of 
KCNQ1 

(Wang and Chang, 
2011; Geisler and 
Coller, 2013) 

Air Transcriptionally Genomic 
imprinting 

Chromatin-mediated 
repression of 
IGFR2, 
transcriptional 
interference 

(Fenoglio et al., 2013; 
Chen et al., 2015) 

HOTAIR Transcriptionally Development 
Chromatin-mediated 
repression of the 
HOXD locus 

(Wang and Chang, 
2011; Fang and 
Fullwood, 2016) 

HOTTIP Transcriptionally Development 
Chromatin-mediated 
activation of the 
HOXA locus 

(Wang et al., 2011; 
Kornienko et al., 2013; 
Fang and Fullwood, 
2016) 

Evf-2 Transcriptionally Development 
Chromatin-mediated 
activation of the 
Dlx5/Dlx6 locus 

(Wilusz et al., 2009; 
Chen and Carmichael, 
2010; Schmitz et al., 
2016) 

ncDHFR Transcriptionally Nucleic acid 
synthesis 

DHFR inhibition via 
inhibition of the pre-
initiation complex 
formation 

(Wang and Chang, 
2011; Mohanty et al., 
2015) 

Linc-RoR Transcriptionally Pluripotency/ 
Differentiation 

Targeted by the key 
pluripotency factors 
Oct4, Sox2, and 
Nanog 

(Guttman et al., 2009; 
Wang and Chang, 
2011; Clark and 
Blackshaw, 2014) 

NRON Transcriptionally 
T-cell 
differentiation/ 
activation 

Repression of 
NFAT-mediated 
transcription via 
prevention of its 
nuclear localisation 

(Wilusz et al., 2009; 
Qureshi, Mattick and 
Mehler, 2010; 
Mohanty et al., 2015) 

PANDA Transcriptionally 
Cell cycle 
control/apoptosis 
regulation 

Limitation of pro-
apoptotic genes and 
cell cycle arrest via 
NF-YA interactions 

(Wang and Chang, 
2011; Maass et al., 
2014; Chen et al., 
2015) 

ANRIL Transcriptionally 
Cell cycle 
control/apoptosis 
regulation 

Chromatin-mediated 
repression of the 
INK4b-ARF-INK4a 
locus 

(Wang and Chang, 
2011; Gutschner and 
Diederichs, 2012; 
Fang and Fullwood, 
2016) 

Linc-p21 Transcriptionally Apoptosis 
regulation 

Repression of p53-
regulated genes by 
regulation of 
hnRNP-K 
localisation 

(Huarte et al., 2010; 
Wang and Chang, 
2011) 

GAS5 Transcriptionally GR regulation 

Repression of GR-
mediated 
transcription via 
DNA mimicry 

(Mourtada-
Maarabouni et al., 
2009; Hung and 
Chang, 2011; Wang 
and Chang, 2011) 
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Table 1.4b. lncRNA-mediated gene regulation post-transcriptionally. 

lncRNA Stage of action Role Mechanism Reference(s) 

BACE1-AS Post-
transcriptionally 

BACE-mediated 
amyloid precursor 
protein cleavage 

BACE1 mRNA 
stabilisation via 
inhibition of miRNA-
related repression 

(Qureshi and Mehler, 
2012; Fenoglio et al., 
2013; Clark and 
Blackshaw, 2014) 

½-sbsRNA Post-
transcriptionally 

Down-regulation of 
mRNAs 

Staufen-mediated 
mRNA decay 

(Wang and Chang, 
2011; Geisler and 
Coller, 2013) 

CDR1-AS Post-
transcriptionally 

Down-regulation of 
miRNA-mediated 
repression 

miRNA 
sequestration 

(Geisler and Coller, 
2013; Clark and 
Blackshaw, 2014; 
Mohanty et al., 2015) 

MALAT1 mRNA 
processing 

Pre-mRNA splicing 
regulation 

SR splicing factor 
regulation via 
scaffolding by 
nuclear speckles 

(Moran et al., 2012; 
Geisler and Coller, 
2013; Yoshimoto et 
al., 2016) 

MIAT mRNA 
processing 

Pre-mRNA splicing 
regulation 

Splicing factor 
regulation via 
scaffolding by 
subnuclear bodies 

(Cheng et al., 2016; 
Sattari et al., 2016) 

NEAT1 mRNA 
processing 

A-to-I modified 
mRNA retention in 
paraspeckles 

Induction of 
paraspeckle 
formation 

(Chen and 
Carmichael, 2010; 
Hirose and 
Nakagawa, 2012; 
Cheng et al., 2016) 

 

1.4.5.1. Dosage compensation and imprinting  

X-chromosome inactivation and imprinting were the first mechanisms that were associated 

with lncRNAs. Dosage compensation or X-chromosome inactivation (XCI) refers to the 

mechanisms by which the difference in gene dosage for X-linked genes between female 

organisms (XX) and male organisms (XY) is silenced, by means of inactivation of a whole X 

chromosome (Xi), leaving only one active X chromosome (Xa) (Bernstein and Allis, 2005; 

Fenoglio et al., 2013). 

XCI is controlled by elements of a specific genomic locus, known as X inactivation centre 

(XIC). A lncRNA called Xist is highly expressed from Xi during the process, but not from Xa. 

Xist recruits PRC2 complexes, pulls up further X-chromosomal regions in cis, and spreads 

the inactivation via formation and spreading of repressive chromatin, i.e. H3K27 tri-

methylated chromatin. This spreading depends also on RepA, a lncRNA transcribed from 
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the Xist locus. At the same time, the NAT of Xist, called Tsix, is expressed in Xa, preventing 

RepA from binding to PRC2 complexes, thus keeping the Xa active. On top of that, another 

lncRNA, Jpx, displaces the transcription factor CTCF (CCCTC-binding factor) that normally 

inhibits Xist, thus further transactivating Xist. These findings indicate that lncRNAs control 

XCI via an elegant, multi-level regulatory system (Fenoglio et al., 2013; Maass et al., 2014; 

Mohanty et al., 2015). Finally, more recent lines of evidence have revealed that Xist may 

also reshape chromatin architecture by recruiting Xi to the nuclear lamina, given that it can 

associate with nuclear lamina via interaction with lamin B receptor (LBR) (Yao et al., 2019). 

Imprinting is the phenomenon of the monoallelic expression of a subset of genes, either 

from the paternal or the maternal allele in diploid organisms (Fenoglio et al., 2013; Mohanty 

et al., 2015). Similarly to XCI, imprinting is controlled by differentially methylated DNA 

regions called ICRs (imprinting control regions). In several imprinted clusters both protein-

coding genes and lncRNAs can be found to be expressed, like IGFR2 (insulin-like growth 

factor 2)/Air, Dlk1 (Protein delta homolog 1)/MEG3 (maternally expressed 3) and Nesp 

(Neuroendocrine secretory protein 55)/Nespas (Neuroendocrine secretory protein 55 

antisense)/Gnas (Guanine nucleotide-binding protein G(s) subunit alpha isoforms short 

Gene) (Fenoglio et al., 2013). 

Among the best-studied imprinting-associated lncRNAs are the Kcnq1ot1 and Air, both of 

which cause suppression of gene expression on the paternal allele. They both act by 

recruiting chromatin suppressive complexes such as PRC2 and G9a to induce the 

establishment of H3K27me3 and H3K9me3 marks to subsequently silence KCNQ1 and 

IGFR2, respectively (Fenoglio et al., 2013; Yao et al., 2019). 

1.4.5.2. Development and differentiation  

The fact that lncRNAs are positively correlated with the developmental complexity of 

organisms implies their important involvement in the regulation of developmental, as well as 

differentiation, procedures. Notably, the proportion of mammalian genome devoted to 

cognitive function during development, suggests that a plethora of lncRNAs is of vital 
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importance for this process. In line with this, the predominance of lncRNA expression in the 

brain is aligning with this concept (Mattick, 2018). One such example is the imprinting-

associated lncRNA MEG3. This imprinting-associated lncRNA exerts its effect in cis, by 

regulating genes important for development and survival. Its deletion leads to pre-and peri-

natal lethality, underlining its importance (Zhou et al., 2010; Schmitz et al., 2016). Another 

important case is the Hox gene cluster. This homeodomain-containing TF cluster is 

essential for the anterior-posterior axis formation in bilateral organisms (Wang and Chang, 

2011; Fenoglio et al., 2013). Mammals have four such clusters, A-D. HOTAIR and Frigidair 

are lncRNAs transcribed from the HoxC locus. As previously described, HOTAIR acts in 

trans, both as a signal and a scaffold, primarily by recruiting PRC2 to spread H3K27me3 

marks to repress the HoxD cluster (Bracken and Helin, 2009; Wang and Chang, 2011; 

Fang and Fullwood, 2016). On the other hand, HOTTIP and Mistral lncRNAs are 

transcribed from the HoxA locus (Fenoglio et al., 2013). HOTTIP acts as a signal and an in 

cis guide via chromatin looping to drive histone methylation and gene transcription (Wang 

and Chang, 2011; Kornienko et al., 2013). A set of other development-related lncRNAs 

have also been reported, including Fendrr (fetal-lethal non-coding developmental regulatory 

RNA) and Playrr that are involved in organ development, and DEANR1 (Definitive 

Endoderm-associated long non-coding RNA 1) that is associated with mesoderm and 

endoderm development (Schmitz et al., 2016). 

Considering the importance of the cellular differentiation programmes, it is expected that 

lncRNAs play some role in this finely regulated tuning process. In fact, some lincRNAs were 

first discovered in murine embryonic stem cells; however, this field is still premature. 

Regardless, some lncRNAs have indeed been associated with the maintenance of 

pluripotency, such as the lncRNAs RoR and MIAT (Guttman et al., 2009; Sheik Mohamed 

et al., 2010; Clark and Blackshaw, 2014). Other lncRNAs have been associated with driving 

cells to undergo a specific lineage fate, such as Bvht (Braveheart) for the cardiovascular 

lineage, TUG1 for retinal fate, TUNA, Six3OS and Sox2dot for neuronal fate, linc-MD1 for 
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the muscular differentiation and MIAT for retinal and neuronal development (Fenoglio et al., 

2013; Clark and Blackshaw, 2014; Maass et al., 2014). 

1.4.6. Roles of lncRNAs in pathological settings  

Given the emerging roles that are constantly being attributed to lncRNAs, it is not surprising 

that their deregulation and malfunction is a significant part of the aetiology of numerous 

diseases. 

1.4.6.1. Central Nervous System-related conditions  

The human nervous system (CNS) comprises the most sophisticated, complex and highly 

evolved biological system. lncRNA expression is enriched in the CNS, in a spatiotemporal 

manner to promote the neuronal diversification and specification (Mercer et al., 2008; 

Qureshi et al., 2010; Clark and Blackshaw, 2014).  LncRNAs expressed during neural and 

brain development include  Dali, Evf-2, ncRMS (non-coding rhabdomyosarcoma), MIAT and 

ANCR (anti-differentiation ncRNA) (Schmitz et al., 2016). Notably, lncRNAs expressed in 

the CNS are preferentially located in close proximity of protein-coding genes involved in 

neurodevelopment and function primarily in cis (Dinger et al., 2008; Qureshi et al., 2010). 

As a natural consequence of the overwhelming presence and influence of lncRNAs in every 

CNS-related aspect, such as brain patterning, neuro- and gliogenesis, synaptic and neural 

plasticity (Fenoglio et al., 2013), their involvement in CNS-related pathological settings is 

inevitable. 

Several lncRNAs have been implicated in a wide spectrum of neurodevelopmental 

disorders. Some of them are associated with imprinting, such as the Prader-Willi Syndrome 

(PWS) and the Angelman Syndrome (AS). The PWS-AS locus is only maternally expressed 

and some studies have identified the lncRNA Ube3a-AS transcript as a potential regulator 

of the paternal allele repression (Costa, 2005; Qureshi, Mattick and Mehler, 2010; Fenoglio 

et al., 2013). Besides, two FMR1 (Fragile X mental retardation protein)-dysregulation-

related syndromes can be linked to lncRNAs: the fragile-X syndrome (FXS) and the fragile-

X-associated tremor and ataxia syndrome (FXTAS). So far two lncRNAs have been 
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associated with these syndromes, named ASFMR1 and FMR4. Moreover, spinocerebellar 

ataxia type 8 (SCA8), a dominant autosomal disease has a lncRNA-based (ATXN8OS- 

Ataxin 8 opposite strand) causation (Qureshi et al., 2010; Fenoglio et al., 2013). DGCR5 is 

another lncRNA that has been implicated in disorders displaying brain malformations and 

cognitive and behavioural abnormalities, such as the DiGeorge Syndrome. Finally, NRON 

has been suspected to be part of Down’s Syndrome (DS) pathophysiology (Qureshi et al., 

2010). 

LncRNAs are also key players of the pathobiology of neurodegenerative disorders. The 

best-investigated case is this of BACE1-AS (β-site amyloid precursor protein-cleaving 

enzyme 1 antisense transcript) in the development of Alzheimer’s disease (AD).  AD is 

characterized by the accumulation of β-amyloid plaques in the brain. These plaques are 

formed by β- amyloid peptides, which are the result of BACE-mediated APP (amyloid 

precursor protein) cleavage. In AD patients BACE1-AS promotes the production of these 

plaques since its upregulation leads to extra stabilisation of BACE1 mRNA and, therefore, 

more protein production. BC200 (brain cytoplasmic RNA 1), another lncRNA has been 

also implicated in AD (Fenoglio et al., 2013; Clark and Blackshaw, 2014). Other lncRNAs 

that belong to this category are the cyclin D1-related lncRNA found in FUS/TLS-mutated 

ALS (amyotrophic lateral sclerosis) patients and a number of REST-associated candidate 

lncRNAs in patients with Huntington’s Disease (HD) (Qureshi et al., 2010). 

LncRNAs have also been, at least partly, responsible for mediating immune responses of 

the CNS, as suggested by findings supporting their involvement in neuroimmunological 

disorders, like multiple sclerosis, which is characterised by abnormal CD8+ T-cell activity. 

(Qureshi et al., 2010)  Restless Legs Syndrome (RLS) and epileptogenesis may also 

involve lncRNA-mediated regulation (Qureshi et al., 2010). Finally, a wide range of 

psychiatric disorders, including schizophrenia (SZ), schizoaffective disorder, bipolar 

disorder, major depression and autistic spectrum disorders, have been suspected to be 

affected by the lncRNA DISC2-mediated regulation of DISC1. Recently another lncRNA, 
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MIAT, was found to be involved in SZ (Costa, 2005; Qureshi et al., 2010; Fenoglio et al., 

2013). 

1.4.6.2. Cancer     

Numerous studies have confirmed that the involvement of lncRNAs in a diversity of cancers 

(Costa, 2005; Moran et al., 2012) (Table 1.5). Prostate cancer has been associated with the 

deregulation of a couple of lncRNAs, including PCA3 (prostate cancer antigen 3), 

PCAT1 (prostate cancer-associated transcrip t 1), CTBP1-AS1 (C-terminal-binding 

protein 1 antisense RNA 1) and PCGEM1 (prostate-specific transcript non-protein-

coding) (Costa, 2005; Maass et al., 2014). Colorectal cancer, as well, has been correlated 

with a number of lncRNAs, such as KCNQ1OT1 and PCAT1 (Maass et al., 2014). In 

addition, a set of lncRNAs have been associated with breast tumours (e.g. SRA, BC200 

and HOTAIR) (Moran et al., 2012; Maass et al., 2014), with hepatocellular carcinomas, like 

HULC (highly up-regulated in l iver cancer) and HOTTIP, with lung cancer (e.g. 

MALAT1 in non-small cell lung carcinoma),  as well as with melanoma and haematologic 

malignancies (e.g. HOTTIP) (Costa, 2005; Moran et al., 2012; Maass et al., 2014). 

Perturbations in the expression of a number of lncRNAs have been associated with CNS 

tumours like medulloblastomas, gliomas and meningiomas (e.g. H19, TUG1 and NOS2A-

AS- Nitric oxide synthase, inducible antisense) (Qureshi et al., 2010), as well as with 

tumours of the sympathetic nervous system, such as neuroblastomas (Pandey and 

Kanduri, 2015). 

LncRNAs can act as oncogenes, tumour suppressors, as well as drivers of metastasis 

(Cao, 2014; Chandra Gupta and Nandan Tripathi, 2017). They have been associated with 

multiple hallmarks of cancer and potentially the expanding knowledge of the field will 

associate them with the full spectrum of these known hallmarks (Gutschner and Diederichs, 

2012; Rao et al., 2017). Although the exact acting mechanisms have not yet been fully 

elucidated for all cancer-associated lncRNAs, the roles of some of them have been 

thoroughly studied (Table 1.5). On the grounds that perturbations in the cell cycle regulation 
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are tightly bound to tumour formation and progression, a number of cell cycle-related 

lncRNAs have been studied (Kitagawa et al., 2013; Pop et al., 2018).  In addition, several 

cell death resistance-associated lncRNAs have been studied, primarily those associated 

with p53-mediated apoptosis. For example, a NAT called Wrap53 (WD40-encoding RNA 

antisense to p53) stabilises p53 at the mRNA level, thus promoting its expression and its 

overexpression can sensitise tumour cells to apoptosis (Mahmoudi et al., 2009). However, 

upon its overexpression in cancerous settings, it has been found to act as an oncogene, 

promoting cellular transformation (Mahmoudi et al., 2011). Furthermore, upregulation of 

lncRNAs in various cancers, for instance, linc-p21 (transcribed near the p21Cip1 gene, 

another CDK inhibitor and p53 regulator) and PANDA, leads to suppression of apoptosis in 

response to DNA damage, thus promoting carcinogenesis (Hung et al., 2011; Kitagawa et 

al., 2013; Maass et al., 2014). Another lncRNA, BC200, has been attributed oncogenic 

properties in breast cancer settings by binding to the tumour suppressor BCL-xS pre-mRNA 

and recruiting hnRNPA1/B2 to suppress its expression (Stevens and Oltean, 2019). In 

addition, snoRNA host gene expression has been attributed oncogenic properties, like in 

the case of SNHG16 (Chi et al., 2019; Yu et al., 2019), SNHG1 (Sahu et al., 2016; N. 

Zhang et al., 2019; Yang et al., 2019) and SNHG7 (Chi et al., 2019).  Finally, Cancer 

Susceptibility Candidate 15 (CASC15 or linc00340), CASC9 and TUG1 recruit the 

chromatin remodeler EZH2 to suppress the expression of the tumour suppressor 

Programmed Cell Death 4 (PDCD4) in various cancers (Zhao et al., 2019). 

Depending on the tumour setting, the same lncRNA can behave as an oncogene or a 

tumour suppressor. Of particular interest is ANRIL, the antisense transcript of the CDK 

inhibitor p15ink4b that is transcribed from the INK4 locus. ANRIL silences the transcription of 

the INK4 locus via PRC1/PRC2 recruitment and consequent chromatin repression. Upon 

oncogenic processes, ANRIL can be either upregulated or downregulated, acting as an 

oncogene or a tumour suppressor, respectively (Kitagawa et al., 2013; Fang and Fullwood, 

2016).  
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Table 1.5. Deregulated lncRNAs in cancer. 

lncRNA Type of cancer Expression Cancer 
Hallmark Reference(s) 

PCAT-1 Prostate, colorectal 
 Sustaining 

proliferation 

(Gutschner and 
Diederichs, 2012; Zhang et 
al., 2016) 

ANRIL Prostate, leukaemia, 
oesophageal 

 Evading growth 
suppressors 

(Gutschner and 
Diederichs, 2012; Mohanty 
et al., 2015; Fang and 
Fullwood, 2016) 

GAS5 Colorectal, cervical, breast, 
leukaemia 

 Evading growth 
suppressors 

(Mourtada-Maarabouni et 
al., 2009; Mohanty et al., 
2015; Zhang et al., 2016; 
Zhao et al., 2019) 

Linc-p21 Various tumour cell lines 
 Evading growth 

suppressors 

(Gutschner and 
Diederichs, 2012; Maass et 
al., 2014) 

TERC Various tumour cell lines  
Enabling 
replicative 
immortality 

(Gutschner and 
Diederichs, 2012) 

TERRA Various tumour cell lines 
 Enabling 

replicative 
immortality 

(Gutschner and 
Diederichs, 2012; Maass et 
al., 2014; Mohanty et al., 
2015) 

SRA Breast  Activating 
metastasis 

 

(Yao et al., 2010; 
Gutschner and Diederichs, 
2012) 

MALAT1 

Lung, liver, colorectal, ovarian, 
pancreatic, endometrial, multiple 
myeloma, osteosarcoma, 
pancreas, breast, uterus, 
neuroblastoma, glioma 

 
Sustaining 
proliferation 
Activating 
metastasis 

(Costa, 2005; Fang and 
Fullwood, 2016; Zhang et 
al., 2016) 

HOTAIR 
Gastric, colorectal. lung, 
endometrial, cervical, breast, 
glioma, liver, pancreatic 

 Activating 
metastasis 

(Maass et al., 2014; Fang 
and Fullwood, 2016; Zhang 
et al., 2016) 

HULC Liver, pancreatic  Activating 
metastasis 

(Gutschner and 
Diederichs, 2012; Maass et 
al., 2014), 

BC200 Breast, cervical, oesophagus, 
lung, ovarian, parotid, tongue, 

 Activating 
metastasis 

(Costa, 2005; Gutschner 
and Diederichs, 2012; 
Mohanty et al., 2015) 

PCGEM-1 prostate  Resisting cell 
death 

(Costa, 2005; Gutschner 
and Diederichs, 2012; Ling 
et al., 2015) 

H19 Liver, breast, stomach  Sustaining 
proliferation 

(Ling et al., 2015; Mohanty 
et al., 2015; Fang and 
Fullwood, 2016) 

KNCQ1OT1 Colorectal, breast  N/A 
(Maass et al., 2014; 
Mohanty et al., 2015; Fang 
and Fullwood, 2016) 

TUG1 
Epithelial squamous cell, 
bladder, renal cell, glioma, 
cervical, endometrial, 
melanoma, gastric 

 
Sustaining 
proliferation 
Resisting cell 
death Activating 
metastasis 

(Mohanty et al., 2015; Z. Li 
et al., 2016; Zhang et al., 
2016; Zhou et al., 2019) 

NEAT1 
Prostate, acute promyelocytic 
leukaemia, laryngeal squamous 
cell cancer, glioma 

 Resisting cell 
death 

(Almnaseer and Mourtada-
Maarabouni, 2016; Lo et 
al., 2016; Gao et al., 2016) 

MIAT 
Glioma, chronic lymphocytic 
leukaemia, diffuse large B-cell 
lymphoma, neuroblastoma, 
breast  

 Resisting cell 
death 

(Zhang et al., 2013; Mei-
Yee Kiang et al., 2015; 
Sattari et al., 2016; 
Almnaseer and Mourtada-
Maarabouni, 2018; 
Bountali et al., 2019) 
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Moreover, TUG1 can play oncogenic or tumour suppressor roles, depending on the type of 

tumour, but is predominantly addressed as an oncogenic lncRNA (Zhou et al., 2019). As far 

as lncRNAs acting as tumour suppressors are concerned, TERRA has been implicated as a 

tumour suppressor, since its repression promotes cell immortalization (Gutschner and 

Diederichs, 2012). GAS5 acts as a ceRNA that sponges miR-21 to liberate the pro-

apoptotic PDCD4 and let it exert its tumour suppressor activity in cervical cancer. Similarly, 

linc00472, DiGeorge Syndrome Critical Region Gene 5 (DGCR5) and TUG1 sponge miR-

196a, miR-320a, and miR-21, respectively, to let PDCD4 act as a tumour suppressor in 

colorectal cancer, pancreatic ductal adenocarcinoma, and osteosarcoma, respectively 

(Zhao et al., 2019).  

Moreover, MALAT1 has been found to be upregulated in numerous cancers, contributing to 

both the increase of cell proliferation, (Kitagawa et al., 2013) and, primarily, to increased 

metastatic potential in various cancers [e.g. in lung (Costa, 2005; Fang and Fullwood, 

2016), liver (Fang and Fullwood, 2016), colorectal (Fang and Fullwood, 2016), and ovarian 

(Cao, 2014)]. In tandem, upregulated TUG1 in cancers has been associated with increased 

tumour size and distant metastasis (Zhou et al., 2019).  

Given their distinct differential expression in healthy cells versus cancerous cells, as well as 

their detection in biological fluids, including plasma, serum, urine and saliva, lncRNAs 

represent perfect biomarker candidates for tumour diagnosis and patient stratification 

towards better prediction and prognosis (Chandra Gupta and Nandan Tripathi, 2017; Pop et 

al., 2018).  A very indicative such case is PCA3, which is massively overexpressed in 

prostate cancer, but not in other cancers or healthy cells, and has, therefore, been 

approved for prostate cancer diagnosis. Numerous other lncRNAs have also been 

attributed predictive values for prostate cancer (MALAT, FR0348383, AK024556, 

XLOC_007697, LOC100287482, XLOC_005327, XLOC_008559 and XLOC_009911). 

Similarly, UCA1 comprises a diagnostic test for transitional cell carcinoma and oral 

squamous cell carcinoma (OSCC), and HOTAIR, NEAT1 and MEG3 for OSCC (Chandra 
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Gupta and Nandan Tripathi, 2017). Meanwhile, CCAT1/2 have been associated with 

prognosis for colon, hepatocellular (HCC) and oesophageal cancer. HCC prognostic 

lncRNAs include SNHG3, PANDAR, hPVT1, and HOTAIR. The HOTAIR expression could 

also be of prognostic value in gallbladder cancer (GBC) patients, acute myeloid leukaemia 

patients, small-cell lung cancer patients, colon cancer patients, breast cancer patients and 

oesophageal squamous cell carcinoma patients. Some other lncRNAs that are linked with 

cancer prognosis include ANRIL for GBC, AFAP1-AS1(Actin Filament Associated Protein 1 

Anti-sense 1) for pancreatic cancer, LINC00472, H19 and KCNQ101T for breast cancer, 

lncRNA-ATB for colorectal cancer, SChLAP1 (SWI/SNF Complex Antagonist Associated 

With Prostate Cancer 1) for prostate cancer and HIF1A-AS2 for TNBC91 (Chandra Gupta 

and Nandan Tripathi, 2017; Pop et al., 2018). lncRNAs associated with tumours of the 

CNS, and specifically NB and GBMs are analysed separately below. lncRNAs are also 

potent biomarkers of tumour recurrence, especially for breast cancer (Liu et al., 2016; Jiang 

et al., 2016). Finally, SNPs (single nucleotide polymorphisms) are associated with cancer 

predisposition. In fact, ~90% of disease-related SNPs are found in non-coding areas and a 

number of them are found in lncRNAs loci (Ling et al., 2015). Of these, some are strongly 

associated with various cancers, for instance, an SNP in ANRIL that is associated with 

glioma (Ling et al., 2015) and a set of SNP variants, which are associated with poor NB 

prognosis (Pandey and Kanduri, 2015). 
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LncRNAs in Neuroblastoma     

Given the inadequate means of patient stratification and the ineffective means of therapy, 

the search for novel biomarkers and therapeutic targets has been intensive. A number of 

lncRNAs have been identified to be associated with NB predisposition and/or associated 

with the tumour itself since their expression levels are perturbed. Like protein-coding genes, 

in a tumour setting, they can act as oncogenes to drive tumourigenesis and tumour 

progression, as tumour suppressors to inhibit oncogenic processes, and can be involved in 

virtually all hallmarks of cancer. 

Many oncogenic lncRNAs have been identified and studied. Among them, some are co-

deregulated with typical chromosomal aberrations, in particular chromosomal gains in the 

case of oncogenes (Rombaut et al., 2019), as in the case of the overexpressed ncRAN 

(non-coding RNA expressed in aggressive neuroblastoma) in NBs with the 17q gain 

(Watters et al., 2013; Pandey and Kanduri, 2015; Rombaut et al., 2019). The deregulation 

of other lncRNAs is the result of focal amplifications. A typical such example is the co-

amplification of lncUSMycN with MYCN in NBs (Pandey and Kanduri, 2015; Zhao et al., 

2018). lncRNA CAI2 (CDKN2A/ARF Intron 2 lncRNA), whose overexpression is associated 

with high risk NBs, regardless of the MYCN amplification status, suggesting its 

tumourigenic properties (Barnhill et al., 2014; Pandey and Kanduri, 2015) is another 

example. In addition, a number of lncRNAs are transcribed from ultra-conserved regions 

and are significantly associated with patient prognosis in the high-risk NB group (e.g. T-UC 

300A) (Domingo-Fernandez et al., 2013; Pandey and Kanduri, 2015). The expression of 

snoRNA host gene 16 (SNHG16) was revealed to be in line with the clinical staging of NB, 

and high SNHG16 (as well as SNHG1 and SNHG7) expression was positively associated 

with poor clinical outcome. SNHG16 is a cell proliferation regulator in NB through 

transcriptional and translational pathways (Chi et al., 2019; Yu et al., 2019). Knockdown of 

linc01105 inhibited neuroblastoma cell proliferation, migration and invasion, and induced 

apoptosis. In addition, LINC01105 affected the expression of p53 and BCL-2 family proteins 
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and activated the caspase cascade, promoted the expression of the miR-6769b-5p target 

gene VEGFA by acting as a sponge, leading to the conclusion it acts as an oncogene in NB 

(Ye et al., 2019). Xist also displays oncogenic activity in NB via the recruitment of EZH2 to 

the tumour suppressor DKK1 (Dickkopf Wnt signalling pathway inhibitor 1), thus inactivating 

it (Zhang et al., 2019). MIAT has recently been confirmed to be acting as an oncogene in 

NB cells by regulating apoptosis through the production of ROS, long term cell survival and 

migration (Bountali et al., 2019) (Appendix I).  

In other cases, NB-related lncRNAs possessing anti-tumour properties are vastly 

deregulated, like in the case of the deleted tumour suppressor NDM29 (neuroblastoma 

differentiation marker 29) in NBs with chromosome 11 loss (Nakagawara et al., 2018; Zhao 

et al., 2018). What is more, fluctuations in the levels of lncRNAs may be noticed for 

lncRNAs that are located in chromosomes which lack an apparently important role in NB 

formation and progression, as in the case of NBAT1 (neuroblastoma associated transcript 

1) and CASC15 lncRNA on chromosome 6 (Russell et al., 2015; Mondal and Kanduri, 

2019). NBAT1 normally acts as a tumour suppressor that inhibits cell proliferation and 

invasion through the silencing of REST (RE1 Silencing Transcription Factor). Its down-

regulation has been linked with high risk NBs and is significantly related to poor clinical 

outcomes (Pandey et al., 2014; Huarte, 2015; Nakagawara et al., 2018; Mondal and 

Kanduri, 2019). FOXD3-AS1 (Forkhead Box D3 Anti-sense RNA 1) induces neuronal 

differentiation and inhibits cell growth, invasion, and metastasis by binding to poly(ADP-

ribose) polymerase 1 (PARP1) to inhibit the poly-ADP-ribosylation (PARylation) and 

activation of the epigenetic regulator CTCF, resulting in de-repressed expression of 

downstream tumor-suppressive genes (Zhao et al., 2018). The expression of the tumour 

suppressor MEG3 has also been found to be downregulated in NBs (Chi et al., 2019). 

The list of lncRNAs that are associated with NB is steadily growing (Batagov et al., 2013) 

and now includes lncRNAs whose deregulation is clearly implicated in poor outcomes. 

Paupar (Pandey and Kanduri, 2015; Zhao et al., 2018), linc-NeD125 (Bevilacqua et al., 
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2015), as well as the metastasis-associated lncRNAs MALAT1 (Pandey and Kanduri, 2015; 

Bi et al., 2017), HOXD-AS1 (Yarmishyn et al., 2014; Li et al., 2018), LINC01296 (Jing Wang 

et al., 2019), Ets-1 promoter-associated non-coding RNA (pancEts-1) (Li et al., 2018)  are 

included in this extensive list. Also, SNPs on lncRNAs could be of significant prognostic 

value, as in the cases of NBAT1 and CASC15 lncRNA (Pandey et al., 2014; Chi et al., 

2019; Mondal and Kanduri, 2019). Finally, various attempts have been made to generate 

accurate lncRNA-based profiles and signatures, to easily, but at the same time reliably, 

classify patients and allocate them to a clinically relevant risk group (Sahu et al., 2018; 

Rombaut et al., 2019; Yerukala Sathipati et al., 2019), as well as predict the chances of 

recurrence (Utnes et al., 2019). These lncRNAs can be extremely useful biomarkers, and, 

at least some of them, promising therapeutic targets.  

 

LncRNAs in Glioma               

The lagging patient stratification for both children and adults with gliomas, together with the 

inefficiency of the therapeutic approaches for gliomas, have contributed to the generation of 

a shift to novel approaches. The differential expression patterns of lncRNAs between 

tumour cells and their normal counterparts render lncRNAs perfect candidates for glioma 

diagnosis and prognosis, as well as perfect therapeutic candidates since they have been 

postulated to be involved in glioma progression (Pop et al., 2018). There is now mounting 

evidence that points towards the direction that lncRNAs regulate a number of oncogenic 

events and processes in gliomas and are also associated with tumour prognosis. 

A plethora of GBM-associated lncRNAs possesses oncogenic properties. As 

aforementioned, lncRNAs are involved in DNA methylation and chromatin remodelling. In 

gliomas, such examples as the linc-POU3F3 and the well-known HOTAIR have been 

reported to promote glioma pathogenesis. Besides, high expression of HOTAIR is 

associated with poorer prognosis (Guo et al., 2015; Ramos et al., 2016; Gao et al., 2016; 

Pop et al., 2018). Another well- studied lncRNA, H19, has also been implicated in glioma 
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progression and invasion and its upregulation is correlated with poor prognosis (Qureshi et 

al., 2010; Mei-Yee Kiang et al., 2015; Gao et al., 2016; Pop et al., 2018). The lncRNA 

CRNDE (colorectal neoplasia differentially expressed) also shows elevated expression in 

gliomas and is positively correlated with EGFR amplification. The effects of this alteration 

are clear mostly in GBMs, while they are less dramatic in other gliomas, and include 

increased cell growth and invasion (Mei-Yee Kiang et al., 2015; Ramos et al., 2016; Gao et 

al., 2016). Its oncogenic activity is exerted by promoting cell growth, invasion and migration 

via different cancer-related pathways and, interestingly via being regulated by c-Myc (Pop 

et al., 2018). Among the genes which are well-established in glioma pathogenesis and 

progression, MALAT1 and NEAT1 have been reported to play key roles, with the former 

activating the ERK/MAPK oncogenic pathway, and the latter binding the tumour suppressor 

miR-449b-5p, leading to the increase of the c-Met oncogene (Gao et al., 2016; Zhen et al., 

2016; Pop et al., 2018). The expression of MALAT1 is elevated comparing to normal 

tissues and, also, positively correlated with more malignant phenotypes and TMZ 

resistance (Mei-Yee Kiang et al., 2015; Pop et al., 2018). SOX2OT (SOX2 Overlapping 

Transcript), TUG1, and  Xist also promote cell proliferation, migration and invasion, and in 

parallel, inhibit apoptosis in GSCs and glioma cells, respectively (Mei-Yee Kiang et al., 

2015; Gao et al., 2016; Li et al., 2016; Shi et al., 2017; Pop et al., 2018). MIAT has recently 

been confirmed to act as an oncogene in GBM cells by regulating apoptosis, long term cell 

survival and migration (Bountali et al., 2019). Finally, LOC441204, HIF1A-AS2 and Zinc 

finger Anti-sense 1 (ZFAS1) are overexpressed in GBMs, contributing to tumour 

progression and poor prognosis  (Lv et al., 2017; Pop et al., 2018).  

By contrast, numerous lncRNAs tend to act as tumour suppressors in glioma settings. For 

instance, overexpression of MEG3 has been reported in gliomas and has been associated 

with prolonged survival. MEG3 acts as a tumour suppressor by both inhibiting cell 

proliferation and activating the p53-mediated apoptotic pathway (Liu et al., 2015; Mei-Yee 

Kiang et al., 2015). ADAMTS9-AS2 (A disintegrin and metalloproteinase with 
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thrombospondin motifs 9 antisense RNA 2) is largely downregulated in gliomas 

and negatively correlated wi th tumour grade and prognosis . l inc-RoR–although 

usually serving as an oncogene- and lincRNA-p21  act as tumour suppressors in 

GBM context (Ramos et al.,  2016; Pop et al., 2018). Finally, a novel  lncRNA, 

LINC00657 has been found to act as a tumour suppressor in GBM (Chu et al., 

2019). 

As in the case of NB, the list of lncRNAs implicated in gliomas is rapidly growing, something 

that provides an opportunity window for more accurate patient stratification towards 

prognosis and more personalized treatment. A large number of novel lncRNAs are now 

validated players of the glioma pathogenesis [e.g. HOXA11-AS (Gao et al., 2016), HULC 

(Gao et al., 2016), ASLNC22381 and ASLNC20819 (Mei-Yee Kiang et al., 2015; Gao et al., 

2016), ATB (Gao et al., 2016), AB073614 (Hu et al., 2016; Gao et al., 2016), CASC2 (Wang 

et al., 2015; Gao et al., 2016; Palmieri et al., 2017), GAS5 (Mei-Yee Kiang et al., 2015; Gao 

et al., 2016)] (Figure 1.10). In addition, in line with the hypothesis that several lncRNA-

coding pairs show opposite type of expression correlation in healthy versus cancerous 

cases (Chandra Gupta and Nandan Tripathi, 2017), an altered correlation status of SAM 

Domain, SH3 Domain And Nuclear Localization Signals 1 (SAMSN1) and its Anti-sense 

transcript 1 (SAMSN1-AS1) could prove to be a potential biomarker of GBM diagnosis and 

prognosis (Ning et al., 2017). Finally, lncRNA profiling and signature sets are being 

generated to make the prognostication even easier and, mainly more accurate (Han et al., 

2012; Li et al., 2014). In a first attempt, signature profiles were generated to distinguish 

between low and high grade gliomas (Zhang et al., 2012). In subsequent approaches and 

as far as GBM is concerned, more intense research has led to the generation of GBM-

specific lncRNA signatures, such as the six-lncRNA signature discovered by Zhang et al. 

(2013) and the four-lncRNA signature discovered by Chen et al., (2017), as well as the 

lncRNA molecular classification of different GBM subtypes (Reon et al., 2016). 
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Figure 1.10. Graphical representation of differentially expressed lncRNAs in GBM compared 
to normal cells. The red arrow includes upregulated lncRNAs, while the blue arrow includes 
downregulated lncRNAs. lncRNAs in bold are also part of developmental processes.  

 

1.5. Myocardial Infarction-Associated Transcript (MIAT)  

Apart from the nuclear and cytoplasmic lncRNAs, a number of sub-nuclear bodies exist, 

which are associated with specific cellular processes. In line with this, a number of lncRNAs 

have been reported to be localised at such bodies. Some indicative such examples are the 

well-characterised MALAT1 and NEAT1, as well as the relatively newly discovered and 

characterised MIAT. In spite of its relative youth in the field of lncRNAs, MIAT is steadily 

gaining researchers’ attention, and in turn, there exists a rapidly growing body of evidence 

that suggests its importance in healthy and pathological settings, including cancer. 

Nevertheless, in order to elucidate its role in cancer, and in specific NB and GBM, it is 

essential to understand its molecular characteristics, mode of action, as well as its role in 

normal cells. An overview of these is briefly outlined in this section. 
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1.5.1. Characterisation 

MIAT, also known as Gomafu and RNCR2 (retinal non-coding RNA 2) is a lncRNA that is 

located in special sub-nuclear bodies. MIAT is a ~10kb long transcript transcribed from 

chromosome 22q12.1 (Figure 1.11), with the full-length transcript (isoform 1) 

accommodating 5 exons (Fakhr-Eldeen et al., 2019). It is highly conserved in mammals, 

birds and amphibians (Sone et al., 2007; Boon et al., 2016; Cheng et al., 2016). In contrast 

to MALAT1 and NEAT1, which are ubiquitously expressed in numerous cells/ tissues, MIAT 

is mainly expressed in some cells of the fetal brain and the adult brain/CNS [including 

Müller glia, neurons and endothelial cells (Tsuiji et al., 2011; Jiang et al., 2016; Sha et al., 

2018)], especially in the retinal tissue. In fact, this suggests that its expression begins in 

differentiating progenitor cells and is maintained in particular types of post-mitotic neurons 

only (Sone et al., 2007; Cheng et al., 2016). Its involvement in the maintenance of 

pluripotency has been demonstrated in vivo in mouse embryonic stem cells, where it 

participates in a positive feedback loop with the stemness markers Oct4 and Nanog (Sheik 

Mohamed et al., 2010).  

MIAT is localised across the nucleoplasm in a spotted pattern (inherent to its Japanese 

name, Gomafu, which means spotted), but these ‘spots’ do not co-localise with any of the 

known sub-nuclear bodies, and this localisation is actively maintained (Sone et al., 2007; 

Cheng et al., 2016). In addition, MIAT is polyadenylated at the 3’ end, has at least 4 

alternatively spliced variants in human and 10 in mouse, and as analyses have shown, it is 

unlikely to serve as a miRNA precursor (Ishii et al., 2006; Sone et al., 2007). Although MIAT 

is a mRNA-like lincRNA, it escapes nuclear export and is invariably retained in the nucleus 

(Sone et al., 2007; Tsuiji et al., 2011). 

Although the research on MIAT is still at premature stage, it is thought to participate in pre-

mRNA splicing through its binding to SF1 (splicing factor 1), although this interaction is not 

essential for the localisation of MIAT (Cheng et al., 2016). It has also been shown that it 

binds QK1 (quaking homolog, KH domain RNA binding protein), SRSF1 (serine/arginine-
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rich splicing factor 1) and Celf3 (CUGBP Elav-Like Family Member 3) and that its 

deregulation generates abnormal splicing patterns (Ishizuka et al., 2014; Cheng et al., 

2016; Sattari et al., 2016). This is achieved through a UACUAAC repeat on MIAT which 

binds SF1 with greater affinity comparing to the mammalian branch point consensus 

sequence (Tsuiji et al., 2011). In addition, it has been postulated that the knockdown of 

proteins associated with MIAT, such as Celf3 could modulate its expression and distribution 

(Ishizuka et al., 2014). Taken together, these suggest a MALAT1-like mechanism of action 

for MIAT in pre-mRNA splicing regulation (Cheng et al., 2016). Interestingly, MIAT also 

behaves as a miRNA sponge, especially in cancerous context (Fakhr-Eldeen et al., 2019) 

(described in section 1.5.3).   

 

 

 

 

 

 

 

 

 

Figure 1.11. MIAT locus and variants. MIAT is a 10kb long transcript transcribed from 
chromosome 22q12.1 that produces four isoforms as a result of alternative splicing. MIAT lies within 
the cytogenetic band: 22q12.1 on chromosome 22 (base pairs 26,657,482 to 26,676,478) (by 
Ensembl) (a); the four different MIAT variants in human. Variant 1 (NR_003491.3) represents the 
longest transcript; variant 2 (NR_033319.2) lacks an alternate 5' exon compared to variant 1; variant 
3 (NR_033320.2) uses an alternate splice site in the 5' end of the transcript compared to variant 1; 
variant 4 (NR_033321.2) uses an alternate splice site and lacks an alternate 5' exon compared to 
variant 1; browser view from RefSeq on the GRCh38.p13 primary assembly [Integrative Genomics 
Viewer (IGV)] (b).  
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1.5.2. MIAT in Diseases 

MIAT was first discovered as a myocardial infraction associated lncRNA, inherent to the 

name (Ishii et al., 2006). In this context, MIAT is indeed associated with a number of heart 

conditions, including myocardial infarction (MI) and coronary artery disease (CAD) and 

some SNPs have been linked to susceptibility for these disorders (Ishii et al., 2006; Boon et 

al., 2016; Liao et al., 2016). In line with this, vasculature-related disorders have been linked 

with SNPs or increased expression of MIAT (Zhong et al., 2018; Fakhr-Eldeen et al., 2019; 

Hao et al., 2019).  Furthermore, MIAT is involved in the regulation of endothelial cell 

function (Boon et al., 2016), as well as in the interplay of blood vessels and nerves, through 

VEGF regulation, especially under hypoxic conditions (Jiang et al., 2016). MIAT is also 

involved in eye diseases, such as diabetic retinopathies and cataract (Jiang et al., 2016; 

Shen et al., 2016). MIAT is also responsible for pluripotency feedback loops maintenance 

and specific lineage commitment (neuronal and retinal) (Sheik Mohamed et al., 2010; Liao 

et al., 2016). Given its importance in the brain physiology, as well as its massive enrichment 

in the brain, it is a natural consequence that level fluctuations are related to CNS disorders, 

and in particular, brain disorders. Importantly, in these cases and in contrast to the rest of 

the disorders, the problem occurs due to the reduced expression of MIAT or, alternatively, 

due to the existence of specific SNPs, as in the cases of AD (Jiang et al., 2016) and 

paranoid SZ and anxiety (Fenoglio et al., 2013; Barry et al., 2014; Liao et al., 2016) (Table 

1.6). 

 

1.5.3. MIAT in Cancer 

Finally, as expected, MIAT has been implicated in a diversity of cancers. Notably, as far as 

brain/CNS-related tumours are concerned, MIAT has been elucidated to be the most 

abundant lincRNA in NB, as well as a modulator of both MYCN and PHOX2B (Rombaut et 

al., 2019). Moreover, several lines of evidence have already implicated MIAT in NB and 

glioma pathogenesis and progression (Zhang et al., 2013; Mei-Yee Kiang et al., 2015; 
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Bountali et al., 2019). Interestingly, high MIAT expression has been associated with 

prolonged survival in GBM patients (Zhang et al., 2013), while in other tumours MIAT is 

predominantly found to be upregulated and confer poorer outcome. So far, MIAT has been 

implicated in the genesis and progression of a plethora of malignancies, including CLL 

(chronic lymphocytic leukaemia), DLBL (diffuse large B-cell lymphoma) (Sattari et al., 

2016), breast cancer (Almnaseer and Mourtada-Maarabouni, 2018; Li et al., 2018; Zhang et 

al., 2019; Liu et al., 2019), gastric cancer (Zhang et al., 2013; Pop et al., 2018), clear cell 

renal cell carcinoma (Qu et al., 2018; Zhang et al., 2019), osteosarcoma (Zhang et al., 

2019),  lung cancer (Fu et al., 2018; Zhang et al., 2019), neuroendocrine prostate cancer 

(Crea et al., 2016), and papillary thyroid cancer (Liu et al., 2019) (Table 1.6). Importantly, in 

numerous cancer types, MIAT exerts its oncogenic activity by acting as a miRNA sponge, 

to either promote oncogenic pathways or inhibit tumour suppressive ones in a diversity of 

cancer-related processes. Such examples include lung cancer, where gefitinib resistance is 

achieved through epigenetic regulation of miR-34a by MIAT (Fu et al., 2018), and invasion 

is also regulated by MIAT via regulating miR-150 in the ZEB1 pathway (Zhang et al., 2017). 

Other pairs include MIAT with miR-155-5p in breast cancer progression (Luan et al., 2017), 

MIAT and miR-214 in hepatocellular carcinoma (Huang et al., 2018), MIAT and miR-29c in 

clear cell renal carcinoma (Qu et al., 2018), MIAT and miR-141 in gastric cancer (Sha et al., 

2018) and many more. Nevertheless, further research is required to fully shed light to the 

actual acting mechanisms of MIAT in various cancer types and to validate its predictive 

and/or prognostic value. 
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Table 1.6. Diseases associated with aberrations of MIAT. 

Disease Expression/ 
Aberration Reference(s) 

Heart & 
Vasculature 
conditions 

Myocardial Infarction rs2301523 
SNP (Ishii et al., 2006; Liao et al., 2016) 

Coronary Artery 
Disease 

rs2301523 
SNP (Ishii et al., 2006; Liao et al., 2016) 

Diabetic 
cardiomyopathy 

rs2301523 
SNP 

(Zhou et al., 2017; Hao et al., 
2019) 

β- thalassaemia  (Fakhr-Eldeen, Toraih and Fawzy, 
2019) 

Microvascular 
Dysfunction 

 (Yan et al., 2015; Liao et al., 2016; 
Zhong et al., 2018) 

Ischemic Stroke  (Hao et al., 2019) 

Atherosclerosis  (Yan et al., 2015; Zhong et al., 
2018) 

CNS Disorders 

Alzheimer’s Disease  (Fenoglio et al., 2013; Liao et al., 
2016; Jiang et al., 2016) 

Paranoid 
Schizophrenia & 

Anxiety 
/ rs1894720 

SNP 
(Barry et al., 2014; Rao et al., 

2014; Liao et al., 2016; Zhong et 
al., 2018) 

Eye Disorders 

Cataract  (Shen et al., 2016) 

Diabetic Retinopathy  
(Liao et al., 2016; Jiang et al., 

2016; Fu et al., 2018; Zhong et al., 
2018) 

Other Disorders 

Age-related Hearing 
Loss 

rs1894720 
SNP (Hao et al., 2019) 

Chronic Chagas 
Disease 

 (Hao et al., 2019) 

Cancer 

Chronic Lymphocytic 
Leukaemia 

 (Sattari et al., 2016; Hao et al., 
2019) 

B-cell acute 
lymphocytic 
leukaemia 

 
(Sattari et al., 2016) 

Diffuse large B-cell 
lymphoma 

 (Sattari et al., 2016) 

Clear cell renal cell 
carcinoma 

 (Qu et al., 2018; Zhang et al., 
2019) 

Osteosarcoma  (Zhang et al., 2019) 

Breast cancer  
(Almnaseer and Mourtada-

Maarabouni, 2018; Zhang et al., 
2019; Liu et al., 2019) 

Lung cancer  (Fu et al., 2018; C. Zhang et al., 
2019) 

Neuroendocrine 
prostate cancer 

 (Crea et al., 2016) 

Papillary thyroid 
cancer 

 (Wei Liu, Wang, et al., 2019) 

Gastric cancer  (Li et al., 2017; Sha et al., 2018) 

GBM  (Zhang et al., 2013; Pop et al., 
2018) 
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1.6. Aims and Objectives 

There is accumulating evidence that the adoption of lncRNAs as biomarkers for diagnosis, 

prediction and prognosis, as well as their use as therapeutic targets, is a promising 

alternative towards better patient stratification and more efficient treatment of many kinds of 

cancer (Gutschner and Diederichs, 2012). Given that lncRNA expression has been found to 

be enriched in the CNS in a spatiotemporal manner (Mercer et al., 2008; Qureshi et al., 

2010; Clark and Blackshaw, 2014) and that a growing list of ncRNAs has been proved to be 

associated with neuroblastoma and glioma, especially GBM (Mei-Yee Kiang et al., 2015; 

Pandey and Kanduri, 2015; Pop et al., 2018), the discovery of new, potent and reliable 

target lncRNAs is of paramount importance. 

To this end, the current study investigates the role of lncRNAs in glioma and 

neuroblastoma. The ultimate aims of the study are to unveil the underpinning role of MIAT 

in the regulation of glioma and neuroblastoma cell fate decision and identify novel lncRNAs 

with a potential role in the control of this process.   
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Chapter 2: Materials & Methods 
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2.1. Cell culture and passaging 

Three cell lines were used to perform the studies reported herein: the human 

neuroblastoma SH-SY5Y cell line, purchased from the ATCC (ATCC® CRL-2266™), the 

human astrocytoma/GBM 1321N1 cell line and the human GBM T98G cell line, kindly 

donated by Dr N. Leslie, Heriot-Watt University. SH-SY5Y and 1321N1 were cultured using 

the HyClone™ DMEM/F12 1:1 growth media (GE Healthcare Life Sciences, Catalogue # 

SH30126.01,), supplemented with 10% heat-inactivated fetal bovine serum (Biosera, 

Catalogue # FB-1001S/500), 2μM L-Glutamine (Gibco, Catalogue # 25030081), 1μΜ 

Sodium Pyruvate (Sigma-Aldrich, Catalogue # S8636) and 10mg/ml gentamicin solution 

(Sigma-Aldrich, Catalogue # G1272). For T98G the same recipe was used, supplemented 

with an extra 10% FBS, 15% cell-conditioned growth media and 1% MEM non-essential 

amino acid solution (Sigma-Aldrich, Catalogue # 7145). All cells were incubated in a 

humidified incubator at 37°C and 5% CO2 and upon reaching ~80% confluence, were 

washed twice with phosphate buffered saline (PBS), and harvested by trypsinisation. The 

trypsinisation occurred by adding 3ml of 0.25% Trypsin/EDTA solution (Sigma-Aldrich, 

Catalogue # T4049), followed by returning the flask to the incubator for 3 minutes to 

facilitate cell detachment from the plastic. An equal volume of media (3ml) was added to the 

flask to inactivate the trypsin and the content of the flask was transferred to a 15 ml 

centrifuge tube, was centrifuged (1500 rpm, 7 minutes), and finally, the cell pellet was 

resuspended in the appropriate volume of growth media to acquire an 8x104 cells/ml cell 

density for SH-SY5Y, a 15x104 cells/ml cell density for 1321N1 and T98G. Cell lines were 

replaced with fresh stocks after a maximum culture period of 2 months. 

 

2.2. Cell freezing and recovery 

Cells were occasionally stored at -140°C in liquid nitrogen for long term use. They were 

resuspended in 1ml of a special cryoprotectant media composed of 80% growth media, 9% 

FBS and 11% DMSO (dimethyl sulphoxide) (Sigma-Aldrich, Catalogue # D2650), left at -
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80°C overnight and subsequently transferred to the liquid nitrogen. For their recovery, the 

cells were thawed in a 37°C water bath, resuspended in 5ml of fresh complete growth 

media, centrifuged at 1500 rpm for 7 minutes and finally resuspended in the appropriate 

volume of growth media and placed in a humidified incubator (37°C, 5% CO2). 

 

2.3. LncRNA knockdown 

2.3.1. Transfection efficiency 

The efficiency of nucleofection was determined using the Silencer™ siRNA Labeling Kit 

with Cy™3 dye (Ambion, Catalogue #1632). The dye was prepared according to the 

manufacturer’s instructions. 18.3μl RNase free water, 5μl 10x labelling buffer, 19.2μl –ve 

siRNA (20μM) and 7.5μl Cy3 reagent were first added into a 1.5ml Eppendorf tube. The mix 

was covered with aluminium foil and was incubated on a heat block at 37°C for 1h, after 

which aliquots were stored in -80°C for long-term use or -20°C for short-term use.  The cells 

were transfected with 20μM Cy3-labelled siRNA (4μl for nucleofection), were incubated in 

6-well plates and were finally harvested after 48/72 h. Cell viability (~80% for SH-SY5Y, 

~90% for 1321N1 and ~95% for T98G) was assessed using the MUSE® Cell Analyzer 

(Millipore) and transfection efficiency was determined using the EVOS FL Cell Imaging 

System (Life Technologies). Cells were first observed and counted under transmitted light, 

followed by fluorescent microscopy and scoring of the transfected (red) cells using overlay 

images. Transfections of at least 50% of positive cells were considered successful. The 

transfection efficiency of nucleofection was 61-86% for SH-SY5Y cells, 88-94% for 

nucleofection-transfected 1321N1 cells, and 89-97% for T98G cells (Figure 2.1). 
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a.  

                                                                                                                                                                                                                                         ( b)               jl gcgj  ( B)G C 
Figure 2.1. A representative image of nucleofection efficiency for all cell lines. Cells were 
transfected with 20μM Cy3-labelled siRNA (4μl for nucleofection) and were incubated for 48/72 h. 
The transfection efficiency was 61-86% for nucleofection of SH-SY5Y cells (a), 88-94% for 
nucleofection for 1321N1 cells (b) and 89-97% for T98G cells (c). Grey arrows indicate non-
transfected cells. All images are overlays of equivalent light and fluorescent images, taken using the 
EVOS fluorescent microscope. 

 

2.3.2. RNA interference 

The experiments were performed using nucleofection as a method of transfection. The 

siRNAs used included the Silencer® Negative control siRNA (Ambion, Catalogue #4611) 

and three different MIAT-specific siRNAs: MIAT_1 siRNA, MIAT_2 siRNA and MIAT_3 

siRNA (QIAGEN) targeting different sites of the fifth exon of the full-length MIAT transcript 

[NR_003491 (10193 bp)] at a final concentration of 500nM (Table 2.1 and Figure 2.2). The 

Amaxa™ Cell Line Nucleofector™ Kit V (LONZA) and the program A-023 were used for the 

SH-SY5Y cell line, and the Ingenio® kit (Mirus) and the programmes T-016 and X-001 were 

used for the 1321N1and T98G cell lines, respectively. 1.5x106 (SH-SY5Y) and 1.2 x106 

(1321N1 and T98G) cells were transfected according to the manufacturer’s protocol, and 
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were incubated for 48 h and re-plated at 1x105 and 0.5 x105 cells/ml (SH-SY5Y, and 

1321N1/T98G, respectively) for subsequent assessment of cell survival, apoptosis and 

migration.  

 

Table 2.1. The details of MIAT-specific siRNAs. 

 

 

 
Figure 2.2. Schematic representation of the targeting sites of the MIAT-specific siRNAs. The 
targeting site of MIAT_1 is represented on the top, the equivalent of MIAT_2 in the middle, while the 
bottom schema represents the targeting site of MIAT_3. 

 

Cat #/ ID Name/ 
Symbol Target Location Sequence (5’3’) 

AM4611 -ve N/A  N/A 

SI04287423 MIAT_1 MIAT 7284-7304 GGUCUAACAUUCCUCGUUATT 

SI04314919 MIAT_2 MIAT 6488-6508 GCGGGUCUUUCCUACGCUATT 

SI04344158 MIAT_3 MIAT 5109-5129 UGGUGUGAUUAACCUACUATT 
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2.3.3. LNA GapmeR –mediated knockdown 

In addition to siRNAs, LNA GapmeRs (Locked Nucleic Acid GapmeRs) were used in a 

series of experiments to knockdown MIAT, LINC00176 and LOC648987. Antisense LNA 

GapmeRs are highly potent, single-stranded antisense oligonucleotides (ASOs) for 

silencing of lncRNAs in cell cultures. These single-stranded, antisense oligonucleotides 

(ASOs) catalyse RNase H-dependent degradation of complementary RNA targets. They 

are 16 nucleotides long and are enriched with LNA (locked nucleic acid) in the flanking 

regions and DNA in a LNA-free central gap. The LNA-containing flanking regions increase 

target binding affinity, while also conferring nuclease resistance to the antisense oligo. 

When the GapmeR is hybridised to its target RNA, the central DNA gap activates RNase H 

cleavage of the opposing RNA strand. LNA GapmeRs have fully modified phosphorothioate 

(PS) backbones, which ensure exceptional resistance to enzymatic degradation 

(Grünweller et al., 2003; Lundin et al., 2013).  

The GapmeRs that were used included the Negative control A Antisense LNA GapmeR 

(QIAGEN), three custom-designed GapmeRs (namely 1_1, 2_1, 2_2) targeting different 

sites of the fifth exon of the full length MIAT transcript [NR_003491 (10193 bp)], three 

custom-designed GapmeRs targeting different sites of the full length LINC00176  

(NC_000020.11) (namely LINC_1-targeting intron 4, LINC_2- targeting exon 3, LINC_3- 

targeting exon 3) and three custom-designed GapmeRs targeting different sites of the full 

length LOC648987 (NC_000005.10) (namely LOC_1- targeting exon 3, LOC_2-targeting 

intron 4, LOC_3-targeting intron 5) (QIAGEN) (Table 2.2). The Amaxa™ Cell Line 

Nucleofector™ Kit V (LONZA) and the program A-023 were used for the SH-SY5Y cell line, 

and the Ingenio® kit (Mirus) and the programmes T-016 and X-001 were used for the 

1321N1and T98G cell lines, respectively. 1.5x106 (SH-SY5Y) and 1.2 x106 (1321N1 and 

T98G) cells were transfected according to the manufacturer’s protocol, and were incubated 

for 48 h and re-plated at 1x105 and 0.5 x105 cells/ml (SH-SY5Y, and 1321N1/T98G, 

respectively) for subsequent assessment of cell survival, apoptosis and migration. In this 
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case, the final concentration of the GapmeRs was 100nM for MIAT knockdown and 200nM 

for LINC00176 and LOC648987. 

  

Table 2.2.  LNA GapmeR details. 

 

 
 

2.4. RNA extraction 

Total RNA was extracted from cells using the Direct-zol™ RNA MiniPrep kit (ZYMO 

RESEARCH, Cat # R2050), according to the manufacturer’s protocol. Spin column-based 

nucleic acid purification is a solid phase extraction method to quickly purify nucleic acids. 

This method relies on the fact that nucleic acid will bind to the solid phase of silica under 

certain conditions.  

Cells were treated with TRIsure (BIOLINE, Catalogue # BIO-38032), left at room 

temperature for 5 minutes. TRIsure is a monophasic solution of phenol and guanidinium 

isothiocyanate that simultaneously solubilizes DNA and RNA and denatures proteins. Then 

an equal volume of 100% ethanol was added to facilitate RNA precipitation. The mixture 

was then transferred into a Zymo-Spin™ IIC Column in a Collection Tube and was 

centrifuged for 1 minute at 13000 RCF. Afterwards, the column was transferred into a new 

Collection Tube and the Collection Tube containing the flow-through was discarded. RNA 

samples were then in-column DNase treated for genomic DNA residues to be eliminated by 

Cat #/ ID Name/ 
Symbol Target Location Sequence (5’3’) 

LG00000002 -ve N/A N/A N/A 
LG00188240 1_1 MIAT 5734-5749 ACGGGTTAGTAATCGA 
LG00188250 2_1 MIAT 10165-10180 CAGCGTGAATTGATTT 
LG00188251 2_2 MIAT 8275-8290 TACAATTGGTTAGCTC 
LG00200609 LINC_1 LINC00176 4007-4022 GGATAAATCAGGAGAC 
LG00200610 LINC_2 LINC00176 2254-2269 GGTCTTGGATTAACTT 
LG00200611 LINC_3 LINC00176 1582-1597 TGTGATTAAATGCTGT 
LG00200628 LOC_1 LOC648987 3411-3426 GAGAACCTCCGGAATA 
LG00200629 LOC_2 LOC648987 28122-28137 AGCGACGCGAAACAAG 
LG00200630 LOC_3 LOC648987 52101-52116 GCATTGGAGTGGTAGT 
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being washed with 400μl RNA Wash Buffer, followed by the addition of 80μl of a DNase 1 

cocktail and incubation for 15 minutes at room temperature. Then, after being centrifuged (1 

minute, 13000 RCF), 400µl Direct-zol™ RNA PreWash (binding solution) were added to the 

column followed by a centrifugation step (1 minute, 13000 RCF). The centrifuge forces the 

binding solution through a silica gel membrane that is inside the spin column so that the 

nucleic acids bind to the silica-gel membrane as the solution passes through. This step was 

repeated twice and then 700µl RNA Wash Buffer were added to the column, followed by 

centrifugation for 1 minute at 13000 RCF. An extra 2-minute centrifugation was also 

performed to ensure that all flow-through was discarded. The columns were transferred 

carefully into an RNase-free tube and the RNA was eluted with 20 µl of DNase/RNase-Free 

Water by being centrifuged at 16000 RCF for 1 minute. Finally, RNA samples were kept in -

80°C. 

 

2.4.1. Gel electrophoresis 

The assessment of the quality and the quantity of RNA samples was performed by 

spectrophotometric analysis (NanoDrop™ 1000, ThermoFisher Scientific) and gel 

electrophoresis. Samples with NanoDrop 260nm/280nm absorbance ratio 1.8-2 were 

considered of high quality. The RNA integrity was also evaluated with gel electrophoresis 

via the examination of the 28S and 18S ribosomal RNA bands. In intact RNA samples, the 

upper ribosomal band (28S in eukaryotic cells) should be about twice the intensity of the 

lower band (18S in eukaryotic cells). The gel electrophoresis was performed using a 

standardised 1% agarose gel [1%w/v agarose in 1X TAE (Tris-acetate-EDTA) buffer] and 

Ethidium Bromide (EtBr) (Sigma-Aldrich) as a fluorescent tag (4μl EtBr/ 50ml TAE). The mix 

was prepared, microwaved for 2 minutes, left to cool down and afterwards, 5μl of EtBr were 

added. The mix was poured into a casting tray and left to solidify for 30 minutes. 1μg of 

total RNA was prepared in RNase-free water for each RNA sample, 2μl loading buffer were 

added (final volume= 7μl) and the samples were loaded to the gel. A Hyperladder marker 
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was used for the relative quantification of the samples (HyperLadder I, BIOLINE, Catalogue 

# BIO-33053). The samples were run at 100 Volt for 30 minutes and were finally 

photographed under UV light (White/UV)  

 

Figure 2.3. A representative image of RNA analysis by agarose gel electrophoresis. The figure 
shows a representative example of samples derived from SH-SY5Y cells, transfected with different 
siRNAs, together with their controls. A 2:1 intensity ratio between 28S and 18S rRNA, which is a 
feature of intact RNA, is observed for all the samples. The image was taken using a white/UV 
Transilluminator ImageStore 7500. 

 

2.5. Real-time PCR (RT-qPCR) 

2.5.1. Reverse transcription 

RNA extracted from transfected cells was reverse transcribed into cDNA using the 

Omniscript® RT kit (QIAGEN, Catalogue # 205111), 10 μM random primers (Invitrogen, 

Catalogue # 48190-011) and 10  units/μl RNaseOUT recombinant ribonuclease inhibitor 

(Invitrogen, Catalogue # 10777019), following the manufacturer’s instructions. The reverse 

transcription master mix was added to the samples as shown in Table 2.3, which were 

treated according to the manufacturer’s manual in a TECHNE Prime thermal cycler 

(TECHNE) (Table 2.4). 
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Table 2.3. The reverse transcription mix. 

Component Volume/reaction 

10x buffer RT 2 µl 

dNTPmix (5mM each dNTP) 2 µl 

Random primers (10µM) 2 µl 

RNase inhibitor (RNAseOUT) (10units/µl) 1 µl 

Omniscript Reverse Transcriptase 1 µl 

RNase-free water Variable 

Template RNA (2µg) Variable 

Total Reaction Volume 20μl 

 
Table 2.4. Cycling conditions for reverse transcription. 

Method Number of cycles Duration Temperature (°C) 

Reverse transcription 
1 5’ 95 

1 60’ 37 

 

2.5.2. Real-time PCR 

Real-time PCR was subsequently performed for the synthesized cDNA, using TaqMan 

probes SensiFAST™ Probe Hi-ROX mix (Bioline, Catalogue # BIO-82020) and gene-

specific TaqMan Gene Expression Assays (Table 2.5).  The housekeeping gene 18S rRNA 

was used as an endogenous control for normalisation (Hs99999901_s1 and eukaryotic 18S 

rRNA endogenous control-VIC™/MGB probe, Applied Biosystems, Catalogue # 

4319413E), according to the manufacturer’s instructions. Each PCR reaction contained 

12.5μl of SensiFAST™, 7.25μl of Nuclease-free H2O, 1.25μl of gene-specific assay and 4μl 

of newly synthesized cDNA, to a total volume of 25μl and the cycling conditions are 
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described in Table 2.6. The ABI Prism 7000 (Applied Biosystems) was used for the 

measurement of real-time fluorescence and the ABI Prism 7000 SDS software was used to 

perform the data analysis. Expression comparisons were made relative to the negative (-ve) 

siRNA transfected cells, using the 2-ΔΔCt method. 

Table 2.5. TaqMan® gene expression assays’ details. 

 

 

 

Table 2.6. Cycling conditions for RT-qPCR. 

 

Method Number of cycles Duration Temperature (°C) 

RT-qPCR & RT2 

Profiler PCR Arrays 
1 

 
10’ 

 
95 

40 
15” 
1’ 

95 
60 

 

 

2.5.3. RT2 Profiler PCR Arrays  

RT2 Profiler PCR Arrays provide a reliable way to analyse simultaneously the expression 

levels of a panel of genes involved in a specific molecular pathway using 96-well plates 

(QIAGEN). For these experiments, the samples used had already been measured for MIAT 

expression by RT-qPCR after siRNA-mediated knockdown, and the expression of MIAT 

had been confirmed to be silenced by ~90%. Two different Arrays were used: the RT² 

Profiler™ PCR Array Human Cell Death PathwayFinder (QIAGEN, Catalogue # PAHS-

212Z) and the RT² Profiler™ PCR Array Human Apoptosis (QIAGEN, Catalogue # PAHS-

Method Catalogue #/ ID Target Exon 
boundary Assay location 

TaqMan® 

Hs99999901_s1 18S 1-1 604 

4319413E 18S 1-1 604 

Hs00402814_m1 MIAT 5 1864 

Hs00153408_m1 c-Myc 2-3 1325 

Hs01552829_m1 Oct1 (POU2F1) 8-9 1013 

Hs00988121_s1 LINC00176 1-1 378 
Hs00987326_s1 LOC648987 1-1 2304 
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012Z), each one containing in total 84 genes (one/well) and 12 quality and endogenous 

controls. The Human Cell Death PathwayFinder includes genes associated both with 

apoptosis (e.g. Casp2, BCL-2, Apaf1), necrosis (e.g. Kcnip1, Tnfrsf1a/11b) and autophagy 

(e.g. Atg3/12, Ulk1), while the Human Apoptosis one assesses exclusively the expression 

of apoptosis-related genes, such as XIAP, Mcl1, Bid and Fas. The experiments were 

performed following the manufacturer’s protocol using the RT2 First Strand Kit (QIAGEN, 

Catalogue # 330401) and RT² SYBR Green ROX qPCR Mastermix (QIAGEN, Catalogue # 

330520). The genomic DNA elimination mix was prepared, containing the RNA (0.5μg in 

8μl RNase-free water) and buffer GE (2μl), and after an incubation of 5 minutes at 42°C 

and 1 minute on ice, the freshly-made reverse transcription mix was added to the samples 

(containing 4μl buffer BC3, 1μl control P2, 2μl RE3 reverse transcriptase mix and 3μl 

RNase-free water per reaction). Then 25μl of the PCR mix (1350μl RT² SYBR Green 

Mastermix, 102μl cDNA synthesis reaction mix, 1248μl RNase-free water per plate) was 

added to each one of the wells containing a dried assay. The plates were sealed tightly with 

8-cap strips and were placed in an ABI Prism 7000 cycler and were run using the cycling 

steps described in Table 2.6. The RT2 Profiler PCR Array analysis was performed using 

QIAGEN’s Data Analysis web portal (geneglobe.qiagen.com/gb/analyze/). 

 

2.6.  Assessment of cell survival  

2.6.1. Vital dye (trypan blue) exclusion assay 

At specific time intervals after transfection (48/72 h), cell survival was assessed by at least 

two independent methods. First, both cell count and viability were determined using trypan 

blue solution 0.4% (Sigma-Aldrich, Catalogue # T8154) vital dye staining. The use of trypan 

blue is based on a straightforward principle: trypan blue is a cell membrane non-permeable 

azo dye and will only penetrate cells with compromised cell membrane, i.e. dead cells. 

Therefore, live cells with intact cell membranes remain transparent on the haemocytometer, 

while dead cells are stained blue. 
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2.6.2. MUSE® Cell Analyzer Flow Cytometry 

Viable and total cell count, as well as the percentage of viability, were acquired by flow 

cytometry using the MUSE® Cell Analyzer (Millipore) and the MUSE® Count and Viability Kit 

(Millipore, Catalogue # MCH100102). The Muse® Cell Analyzer uses miniaturised 

fluorescence detection and microcapillary cytometry to deliver highly quantitative single-cell 

analysis. This laser-based fluorescence detection of each cell event can evaluate up to 

three cellular parameters (cell size and two colours). Both viable and non-viable cells are 

differentially stained based on their permeability to the DNA-binding dyes in the reagent. 

One of the dyes is membrane-permeant and stains the DNA in all viable nucleated cells. 

This parameter is used to discriminate nucleated cells from debris and non-nucleated cells. 

The Muse™ System counts the stained nucleated events and uses the cellular size 

properties to distinguish cellular debris from cells to ultimately determine a precise total cell 

count. The other dye specifically stains the nucleus of dead and dying cells that have lost 

their membrane integrity. This parameter is used to distinguish between live cells (which do 

not take up the dye) stained non-viable or dying cells (displayed on the Muse™ system as 

“VIABILITY”) (Figure 2.4). 

The experiments were performed according to adapted manufacturer’s instructions: 

trypsinised cells were diluted with the reagent (50μl of cell suspension:150μl of Muse Count 

and Viability Reagent). Cells were allowed to stain for 5 minutes at room temperature and 

were counted. Gates were set according to the manufacturer’s instructions and following 

optimisation experiments. The results were analysed using the MUSE 1.5 Analysis software 

(Millipore). 
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Figure 2.4. Representative image of the output of the Muse® Cell Analyzer displaying the 
results of the number of viable cells and viability. T98G parental cells were stained using the 
Muse Count and Viability Reagent and these results were obtained after completion of acquisition 
using the Muse™ Cell Count and Viability Software, which automatically performs calculations and 
displays data in two dot plots: the population profile distinguishing cells from debris (left panel) and 
the viability profile distinguishing alive from dead cells (right panel). 

 

2.6.3. MTS assay 

The evaluation of the effect of the drug used in this study, Metformin (Metformin 

hydrochloride, Sigma-Aldrich, Catalogue # PHR 1084) on SH-SY5Y viability, i.e. its 

cytotoxicity, as well as of the effect of the down-regulation of lncRNAs was performed by 

the MTS assay, using the CellTiter 96® Aqueous One Solution Cell Proliferation Assay 

(PROMEGA, Catalogue # G3580), which contains a tetrazolium compound [3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner 

salt; MTS] and an electron coupling reagent (phenazine ethosulfate; PES). PES has 

enhanced chemical stability, which allows it to be combined with MTS to form a stable 

solution. The MTS tetrazolium compound (Owen’s reagent) is bioreduced by cells into a 

coloured formazan product that is soluble in tissue culture media. This conversion is 
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presumably accomplished by NADPH or NADH produced by dehydrogenase enzymes in 

metabolically active cells. The quantity of formazan product as measured by the amount of 

490nm absorbance is directly proportional to the number of living cells in culture. For all 

MTS experiments, on the day of the measurement, 20μl of the CellTiter 96® Aqueous One 

Solution Cell Proliferation Assay was added, followed by a 3h incubation at 37°C and 

finally, measurements were taken at 490 nm using the Infinite M200 PRO plate reader 

(Tecan Life Sciences). 

To acquire optimal results, an initial number of cells per well that produces an assay signal 

near the low end of the linear range of the assay must be chosen. To this end, a series of 

optimisation experiments were performed and revealed that among the different seeding 

cell densities tested (0.6/0.8/1/1.2/1.4 x105 cells/ml), the most appropriate cell density was 

1x105 cells/ml for SH-SY5Y and 0.8x105 for 1321N1 and T98G cells. Another set of 

experiments tested the concentration of the drug (metformin) needed to acquire optimal 

cytotoxicity levels (10/ 20/ 50/ 100/ 200/ 500/ 1000μM and  2-50 mM) at 48/72 h after 

metformin was added to the culture. The growth inhibitory effect of metformin was 

calculated according to the following equation: % inhibition of cell growth = 100- [OD490 

of treated sample / OD490 of untreated sample (control)] x 100 

For the metformin cytotoxicity experiments, cells were seeded in 96-well plates (100μl/well), 

incubated for 24h and subsequently, treatment was added (drug diluted in growth media- 

100μl/well) and cells were incubated for 48 h/72 h. 

For the lncRNA knockdown experiments, cells were nucleofected, re-plated at the densities 

mentioned above after 48 h, and then incubated for the desired time interval (48/72 h). For 

the experiments testing whether LINC00176 and LOC648987 down-regulation sensitises 

SH-SY5Y cells to metformin cells were treated with 20mM metformin at 24h after re-plating 

and were then incubated for an extra 48/72 h. 
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2.7. Assessment of apoptosis-mediated cell death 

2.7.1 Flow cytometry 

Flow cytometry comprises one of the most reliable and widely used methods to assess cell 

death, especially when it is apoptosis-mediated. The sample is placed on the flow 

cytometer and the fluidics system (the tubing, pumps, and valves) organises the initial 

sample suspension into a single-file stream of cells as they make their journey through the 

flow cytometer for analysis. The cells interact with laser light at a point called the 

interrogation point (laser intercept). When the laser light beam illuminates a single cell, 

some of the light will strike physical structures within the cell, causing the light to scatter. 

This light scatter can be measured and correlated with relative cell size and structures 

inside the cell. These measurements are termed forward angle scatter (FSC) and side 

angle scatter (SSC), depending on where the light is collected with regards to the path of 

the laser. Simultaneously, light from the laser will excite all fluorophores associated with the 

cell, which produces a fluorescence emission. All of this light is collected by the detector 

and processed through the electronics component of the flow cytometer (Adan et al., 2017). 

With regards to assessing cell death, a common means of flow cytometry is via the use of 

Annexin V. Annexin V (or Annexin A5) is a member of the annexin family of intracellular 

proteins that binds to phosphatidylserine (PS) in a calcium-dependent manner. PS is 

normally only found on the intracellular layer of the cell membrane in healthy cells, but 

during early apoptosis, membrane asymmetry is lost and as an indicative cellular feature, 

PS is flipped out to the external leaflet. Therefore, fluorochrome-labelled Annexin V can be 

used to specifically target and identify apoptotic cells. However, Annexin V binding alone 

cannot differentiate between apoptotic and necrotic cells. To this end, to distinguish 

between the necrotic and apoptotic cells, 7-amino-actinomycin D (7-AAD) is used. Early 

apoptotic cells will exclude 7-AAD, while late stage apoptotic cells will stain positively, due 

to the passage of these dyes into the nucleus where they bind to DNA. 7-AAD has a high 

DNA binding constant and as a result, is efficiently excluded by intact cells. When excited 
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by 488 laser light, 7-AAD fluorescence is detected in the far red range of the spectrum (650 

nm long-pass filter) (Zimmermann and Meyer, 2011; Bundscherer et al., 2013). The 

combination of these two components gives rise to 4 different populations, as described in 

Table 2.7 and Figure 2.4.  

In this study, in order to evaluate the effect of the knockdown of the studied lncRNAs on the 

levels of cell death in neuroblastoma and glioblastoma cell lines, dual staining was 

performed using the FITC-Annexin V Apoptosis Detection Kit with 7-AAD (BioLegend, 

Catalogue # 640922), according to the manufacturer’s instructions. The cells were 

nucleofected, re-plated after 48 h and assessed 48 h/72 h after re-plating. On the day of the 

assessment, cells were harvested, washed twice with cell staining buffer (BioLegend, 

Catalogue # 420201), and resuspended in 100μl of Annexin V Binding Buffer. Afterwards, 

5μl of FITC Annexin V and 5μl of 7-AAD Viability Staining Solution were added to each 

sample, followed by a 15-minute incubation (room temperature, darkness) and finally 400μl 

of Annexin V Binding Buffer were added and samples were analysed with a 6-2L Guava® 

easyCyte Benchtop Flow Cytometer (Merck). The analysis was performed using the 

guavaSoft 3.3 software. The terms “apoptotic cells” and “apoptosis” throughout the current 

study refer to both early and late apoptotic cell populations.  

 

Table 2.7. The different populations as appearing using the dual FITC-Annexin V and 7-AAD 
staining system.  Annexin V distinguishes cells with externalised PS, an indicative sign of 
apoptosis, while 7-amino-actinomycin D (7-AAD) distinguishes cells with compromised membrane 
integrity, an indicator of cell death. 

 

Population FITC-Annexin V 7-AAD 
Non-apoptotic -ve -ve 
Early apoptotic +ve -ve 
Late apoptotic/ necrotic +ve +ve 
Dead/ cell debris -ve +ve 
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Figure 2.5.  Representative image of the cell population distribution after dual FITC-Annexin V 
and 7-AAD staining. 1321N1 parental cells were stained using the FITC-Annexin V Apoptosis 
Detection Kit with 7-AAD (BioLegend), without any treatment (a), half population without any 
treatment and half after being heated at 60°C for 20 minutes (b) and after the whole population being 
heated at 60°C for 20 minutes (c). 

 

2.7.2. Acridine orange 

Acridine orange (AO) is a cell-permeable dye frequently used in fluorescent microscopy. It 

binds or intercalates to nucleic acids, both DNA and RNA, and due to its inherent 

physicochemical characteristics fluoresces green at 520 nm when bound to dsDNA, or red 

at 650nm when bound to ssDNA or RNA (Rijal, 2015). Therefore, it is a common means of 

assessing apoptosis-mediated cell death. In particular, AO fluoresces green in apoptotic 

cells displaying condensed chromatin and fragmented nuclei, two fundamental 

characteristics of cells undergoing apoptosis (Byvaltsev et al., 2019). In this study, at 
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specific time intervals after transfection or re-plating (48 and 72 h) apoptosis was 

determined by the assessment of the nuclear morphology using fluorescence microscopy 

after staining with acridine orange (25μg/ml) (Sigma-Aldrich, Catalogue # 235474). 

 

2.8. Assessment of long-term cell survival (Anchorage-dependent 

clonogenic assay) 

The long term survival of the cells depends on their ability to form colonies. Therefore, 

siRNA or GapmeR transfected cells were re-plated 48/72 h post-transfection in 6-well 

plates at optimised densities and conditions after a series of optimisation experiments for all 

cell lines. For these experiments, parental cells were seeded at different densities 

(25/50/75/100/150/200/300/400/450/500/600/800 cells/ml), with different percentages of 

cell-conditioned media and were observed at different time points (2/3 weeks post-seeding). 

The optimal cell density was based on the ability of the cells to form single colonies (i.e. 

distinct colonies that do not merge) containing at least 50 cells (Franken et al., 2006). The 

percentage of cell-conditioned media and incubation time needed were also based on the 

same criteria. The best seeding density for this assay was 500 cells/ml, 75 cells/ml and 100 

cells/ml for SH-SY5Y, 1321N1 and T98G, respectively (Table 2.8). The colonies were 

stained with 1% w/v crystal violet (Sigma-Aldrich, Catalogue # C3886), air-dried and 

counted. Photos of the colonies were obtained using a GS-800 Calibrated Densitometer 

(Bio-rad). 

Table 2.8. Colony forming assay optimal conditions for SH-SY5Y, 1321N1 and T98G cell lines. 

Cell Line Optimal cell density 
(cells/ml) 

% Cell-conditioned 
growth media (15 vs 

25) 
Incubation time (2 vs 3 

weeks) 

SH-SY5Y 500 15 3 

1321N1 75 15 2 

T98G 100 25 2 
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2.9. Cell migration 

The ability of cell migration was assessed by the wound healing assay. The wound healing 

assay is a standard in vitro technique for assessing collective cell migration in two 

dimensions. In this assay, a cell-free area is created in a confluent monolayer by physical 

exclusion or by removing the cells from the area through mechanical, thermal or chemical 

damage. Exposure to the cell-free area prompts the cells to migrate into the gap  (Jonkman 

et al., 2014). In this study, cells were re-plated in 12-well plates in triplicates at 2x105 and 

1x105 cells/ml (SH-SY5Y, and 1321N1/T98G, respectively), were incubated until fully 

confluent (for 24 and 48 h for 1321N1/T98G and SH-SY5Y, respectively), and a small linear 

scratch was introduced to the cell monolayer using a 200μl pipette tip. The cells were then 

washed with PBS to ensure the removal of detached cells, and 3 ml of fresh media was 

added to the wells. The cells were observed under transmitted light using the EVOS FL Cell 

Imaging System (Life Technologies) and gap measurements were taken at 0/18/24h and 

0/24/48 h for 1321N1/T98G and SH-SY5Y, respectively, and the gap closure was 

calculated using the formula [(Pre-migration)area-(Migration)area/ (Pre-

migration)area] x100 for 15 measurements per sample. Image analysis was performed 

using the ImageJ software. 

 

2.10. RNA sequencing and Pathway analysis 

Global gene expression changes in response to MIAT silencing and metformin treatment 

were determined by sequencing the whole transcriptome. This approach has key 

advantages over equivalent microarray analyses including identification and quantification 

of unknown transcripts and novel splice variants. Total RNA was extracted as detailed in 

section 2.4. Next-generation sequencing was conducted by the Earlham Institute (Norwich, 

UK); sequencing libraries were prepared using the NEXTflex directional RNA-Seq Library 

Kit, and following stringent quality control measures, sequenced to a depth of approximately 

30 million reads per sample, 150bp PE read metric, on the HiSeq 4000 platform.  
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Raw sequencing data were trimmed of sequencing adapters and low quality reads using 

the Trimgalore package, a wrapper that incorporates CutAdapt and FastQC. Quality 

controlled reads were aligned to Human Genome build (hg19) using Tophat, a splice-

junction aware mapping utility necessary for the successful mapping of any Intron-spanning 

(multi-exon) transcripts, transcripts were assembled using Cufflinks (with GTF support) and 

the number of reads mapping to each feature counted and expressed as FPKM using the 

CuffNorm package. 

Differentially expressed mRNAs were condensed into gene networks representing 

biological and disease processes using iPathwayGuide (Advaita Bioinformatics, Ann Arbor, 

MI, USA), to elucidate key mechanisms responsible for mediating the phenotypic effects of 

gene knockdown. These data were analyzed in the context of pathways obtained from the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) database, gene ontologies from the 

Gene Ontology Consortium database, miRNAs from the miRBase and TARGETSCAN 

databases, network of regulatory relations from BioGRID: Biological General Repository for 

Interaction Datasets v3.4.154., and diseases from the KEGG database. The RNA 

sequencing results were analysed using the iPathway Guide by Advaita Bioinformatics 

(advaitabio.com). 

 

2.11. Assessment of Reactive Oxygen Species (ROS) production 

2.11.1. Flow cytometry 

The production of ROS as part of the apoptotic response upon the down-regulation of MIAT 

in 1321N1 and T98G cells was measured by flow cytometry using the CellROX® Green 

Reagent (Life Technologies, Catalogue # C10444). This cell-permeable reagent is non-

fluorescent while in a reduced state, while they exhibit a strong fluorescent signal upon 

oxidation. For this series of experiments, 1321N1 cells and T98G cells (cultured in FBS-free 

growth media to avoid excessive autofluorescence), were nucleofected with either the 
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Negative control siRNA or MIAT_2 and subsequently, the levels of ROS production were 

assessed after 48 h and 72 h. The cells were harvested, the CellROX® Green Reagent was 

added to a final concentration of 2μM and the samples were incubated for 30 minutes at 

37°C. The cells were then washed 3 times with PBS and were then analysed by the 6-2L 

Guava® easyCyte Benchtop Flow Cytometer (Merck). The analysis was performed using 

the guavaSoft 3.3 software. 

 

2.11.2. Alpha-phenyl-N-tert-butyl nitrone (PBN) -mediated ROS scavenging 

Due to the increased levels of autofluorescence observed when using the CellROX® Green 

Reagent in SH-SY5Y cells, an alternative strategy of ROS production evaluation was 

adopted. Alpha-phenyl-N-tert-butyl nitrone (PBN) is a widely used free radical scavenger 

with few side-effects when used in animal studies (Gao et al., 2007; Munoz et al., 2017). A 

series of optimisation experiments testing the scavenging capacity of different 

concentrations (500/600/700/800/900μM) of PBN and different administration methods 

(simultaneous administration versus sequential, with PBN being administrated first, before 

the addition of H2O2) against ROS produced upon MIAT knockdown, as well as against 

H2O2 30% w/w, a well-known ROS inducer, was carried out first. The most efficient 

scavenger proved to be the administration of 600μM PBN (diluted in 100% DMSO) in a 

sequential way. In particular, SH-SY5Y cells were nucleofected with either a Negative 

control siRNA or one of the MIAT- specific RNAs (MIAT_2 or MIAT_3) and re-plated at 

1x105 cells/ml. After 24h a DMSO vehicle was added to the control group of each sample, 

PBN alone in a second group, H2O2 alone in a third group and in a fourth group PBN was 

added first, followed by a 1-hour incubation and H2O2 was added at the end. Apoptosis was 

then assessed after 8, 24 or 48 h with acridine orange and cell viability was assessed after 

48/72 h with MTS assay. 
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2.12. Western Blot 

2.12.1. Cell lysis 

In order for the total proteome to be extracted from cells, cell lysates were prepared. Cells 

were harvested, washed and cell numbers were adjusted to a total 6x105 cells/ sample 

using a haemocytometer. The cells were then resuspended and lysed with 30μl RIPA 

(radioimmunoprecipitation assay) lysis and extraction buffer (25mM Tris-HCl pH 7.6, 

150mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS) (ThermoFisher Scientific, 

Catalogue # 89900) and were incubated on ice for 15 minutes. 1μl of protease inhibitor 

cocktail (Millipore, Catalogue # 535140) was added to eliminate the activity of proteases 

and protect the integrity of the proteins. The samples were then centrifuged for 10 minutes 

at 10000 rpm and the supernatant was transferred into a new tube. 20μl of Laemmli 2× 

Concentrate Buffer (Sigma-Aldrich, Catalogue # S3401) were added to 20μl of each sample 

and the mix was boiled at 90°C for 10 minutes on a Heat Block. 

 

2.12.2. Western Blot preparation 

The protein samples were loaded onto a 12% Mini-PROTEAN™ TGX® gel (Bio-rad, 

Catalogue # 456-1043) and run on a PowerPac™ HC (Bio-rad) machine for 45 minutes at 

150V, 3A in running buffer [25mM Tris-Base (ICN Biomedicals, Catalogue # 819623), 

190mM glycine (BDH, Catalogue # 444495D), 0.1% SDS (Sigma-Aldrich, Catalogue # L-

5750) at pH= 8.3]. The gel was then removed from the running tank and placed into the 

transfer “sandwich”, composed of the supporting grid, two sponge pads and two filter 

papers soaked in transfer buffer (one on each side of the grid) and the nitrocellulose 

membrane (GE Healthcare, Catalogue # 45-004-000). The wet transfer was performed for 1 

hour and 30 minutes at 100V, 0.3A in a tank containing the transfer buffer (25mM Tris-Base 

(ICN Biomedicals, Catalogue # 819623), 190mM glycine (BDH, Catalogue # 444495D), 

20% v/v Methanol at pH=8.3]. After the transfer, the blot was blocked for 1 hour in 5% w/v 

milk in TBS-T [20x TBS buffer (ThermoFisher Scientific, Catalogue # 28358) diluted to a 
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final volume of 1L, supplemented with 1% Tween], followed by three 5-minute washes in 

TBS. Subsequently, one of the primary mouse anti-human antibodies described in Table 

2.9 was added to the blot and the blot was incubated overnight at 4°C on a roller, followed 

by three 5-minute washes in TBS. The secondary antibody (Polyclonal Goat Anti-Mouse 

Immunoglobulin-HRP, Dako, Catalogue # P0447) was then added (1:1000 dilution in 5% 

milk in TBS-T) and the blot was incubated for 1 hour at room temperature on a roller. 

Finally, the blot was washed 3 times for 5 minutes each and was developed using the ECL 

solution (Clarity™ Western ECL Substrate, Catalogue # 1705060) on a ChemiDoc™MP 

Imaging System (Bio-rad). When the stripping of the blot was essential, it was performed 

using the Restore™ PLUS Western Stripping Buffer (Bio-rad, Catalogue # 46430), 

according to the manufacturer’s instructions. The blot was first washed three times for 5 

minutes with TBS-T, was immersed in Restore™ PLUS Western Stripping Buffer for 10 

minutes, washed again three times for 5 minutes with TBS-T, blocked for 30 minutes in 5% 

w/v milk in TBS-T, washed three times for 5 minutes with TBS-T and finally incubated 

overnight at 4°C on a roller in the desired primary antibody. The protein size was 

determined using the Precision Plus Protein™ Dual Color Standards protein ladder (Bio-

rad, Catalogue # 161-0374) and image analysis was performed using the ImageJ software. 
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Table 2.9. Primary antibodies’ details. 

 

 

2.13. Statistical analysis 

Statistical analyses were performed using GraphPad Prism 6 (GraphPad Software). Data 

are presented as the mean ± SEM; the number of observations (n) refers to different 

transfected samples, each transfection being conducted on a separate culture of cells.  

Comparisons were made using an unpaired T-test or One-Way ANOVA with Bonferroni's 

multiple comparison test (MCT). Where multiple parameters were compared, Two-Way 

ANOVA with Sidak, Tukey or Dunnett multiple comparisons was used. Differences were 

considered as statistically significant when the P-value was <0.05 (95% confidence 

intervals).  

 

 

 

 

 

 

 

 

 

 

 

Target protein Catalogue #/ ID Clonality Dilution 

Mcl1 Transduction Laboratories, 
M54020 Mouse-monoclonal 1:1000 

Caspase-8 Millipore, AM46 Mouse-monoclonal 1:500 

XIAP Santa Cruz, sc-55550 Mouse-monoclonal 1:500 
BAD Santa Cruz, sc-8044 Mouse-monoclonal 1:500 

BID Santa Cruz, sc-373939 Mouse-monoclonal 1:500 
β- Actin Sigma-Aldrich,  A5441 Mouse-monoclonal 1:5000 
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3.1. Introduction 
 

MIAT, also known as Gomafu and RNCR2, is a 10kb long nuclear lncRNA that is 

transcribed from chromosome 22q12.1 and is localised across the nucleoplasm in a spotted 

pattern (Blackshaw et al., 2004; Sone et al., 2007; Tsuiji et al., 2011; Boon et al., 2016; 

Cheng et al., 2016). Several lines of evidence suggest that MIAT participates in pre-mRNA 

splicing through its binding to splicing factors (SF1, QK1, SRSF1 and Celf3) and that its 

deregulation generates abnormal splicing patterns (Ishizuka et al., 2014; Cheng et al., 

2016; Sattari et al., 2016). Apart from its physiological roles in a healthy setting, MIAT has 

been linked to various diseases and disorders (Ishii et al., 2006; Fenoglio et al., 2013; Boon 

et al., 2016; Liao et al., 2016), as well as various cancers. 

Although MIAT has been implicated in the genesis and progression of a plethora of 

malignancies, including haematologic malignancies (Sattari et al., 2016), breast cancer 

(Almnaseer and Mourtada-Maarabouni, 2018; Li et al., 2018; Zhang et al., 2019; Liu et al., 

2019), gastric cancer (Zhang et al., 2013; Pop et al., 2018), clear cell renal cell carcinoma 

(Qu et al., 2018; Zhang et al., 2019), osteosarcoma (Zhang et al., 2019),  lung cancer (Fu et 

al., 2018; Zhang et al., 2019), neuroendocrine prostate cancer (Crea et al., 2016), papillary 

thyroid cancer (Liu et al., 2019) and intrahepatic cholangiocarcinoma (Zhou et al., 2019), its 

role in neuroblastoma has been largely understudied. As far as GBM is concerned, only a 

handful of studies have been dedicated to uncovering the link of MIAT with the tumour, and 

of these, the vast majority has investigated MIAT’s role in patient prognosis. High MIAT 

expression had been linked with better survival in GBM patients (Zhang et al., 2013). 

Further, the expression of MIAT is upregulated after de-methylation treatment, a common 

therapeutic approach, in GBM patients (Zhang and Leung, 2014). Also, the prognostic 

value of MIAT has been established for GBM patient stratification together with 5 other 

lncRNAs, as part of a 6-lncRNA signature (Zhang et al., 2013; Zhang and Leung, 2014; 

Mei-Yee Kiang et al., 2015). Nevertheless, the knowledge of the mechanisms mediating 

these effects in both tumours, as well as of the eligibility of this molecule as a biomarker for 
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patient diagnosis and stratification, remains limited, as the precise modes of action of MIAT 

in these systems are far from being fully unveiled.   

To this end, this chapter aims to shed light on the underpinning role of the subnuclear body-

associated lncRNA MIAT in the determination of cell fate in neuroblastoma and 

glioblastoma cells. More specifically, the role of MIAT in the regulation of both short- and 

long-term cell survival, cell death and cell migration of neuroblastoma and glioma cells was 

investigated via transiently silencing the expression of MIAT in these cells. 

 

3.2. Materials and Methods 

3.2.1. Cell culture 

The experiments incorporated in this chapter were conducted using the human 

neuroblastoma SH-SY5Y cell line and the human astrocytoma/ glioblastoma 1321N1 cell 

line, cultured using the HyClone™ DMEM/F12 1:1 growth media, supplemented with 10% 

heat-inactivated fetal bovine serum, 2 μM L-Glutamine, 1 μΜ Sodium Pyruvate and 

10mg/ml gentamicin solution, as well as the human glioblastoma T98G cell line, cultured in 

the aforementioned growth media, supplemented with an extra 10% FBS, 15% cell-

conditioned growth media and 1% MEM non-essential amino acid solution, as described in 

section 2.1.  

 

3.2.2. RNA interference 

In this series of experiments SH-SY5Y, 1321N1 and T98G cells were transfected with 

siRNAs using Nucleofection. The siRNAs used (500nM) included the Silencer® Negative 

control siRNA and three different MIAT-specific siRNAs: MIAT_1, MIAT_2 and MIAT_3 

(details can be found in Table 2.1), targeting different sites of the fifth exon of the full-length 

MIAT transcript,  as detailed in section 2.3.2. 
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In addition to siRNAs, LNA GapmeRs were used in this series of experiments to knockdown 

MIAT, to validate the observed effects. The GapmeRs that were used (100nM) included the 

Negative control A Antisense LNA GapmeR and three custom-designed GapmeRs (namely 

1_1, 2_1, 2_2) (details can be found in Table 2.2) targeting different sites of the fifth exon of 

the full-length MIAT transcript, as described in section 2.3.3. 

 

3.2.3. Real-time PCR (RT-qPCR) 

Total RNA was extracted from cells using the Direct-zol™ RNA MiniPrep kit, according to 

the manufacturer’s protocol and the quality was measured with NanoDrop (as detailed in 

sections 2.4 and 2.4.1). 

RNA extracted from transfected cells was then reverse transcribed into cDNA using the 

Omniscript® RT kit, as described in section 2.5.1. Real-time PCR was subsequently 

performed for the synthesised cDNA. Specific primers were used against MIAT, while 18S 

rRNA was used as a housekeeping gene (Table 3.1), as described in section 2.5.2. 

 

Table 3.1. TaqMan® gene expression assays’ details. 

 

 

 

3.2.4. Functional analysis: determination of cell survival, apoptosis and cell 

migration 

For the lncRNA knockdown experiments, after transfection, cells were harvested by 

trypsinisation and after 48 h were plated for 48 and 72 h. Cell survival was assessed using 

Method Catalogue #/ ID Target Exon 
boundary Assay location 

TaqMan® 

Hs99999901_s1 18S 1-1 604 

4319413E 18S 1-1 604 
Hs00402814_m1 MIAT 5 1864 
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trypan blue solution vital dye staining (explained in section 2.6.1), and by flow cytometry 

using the MUSE® Cell Analyzer and the MUSE® Count and Viability Kit, as detailed in 

section 2.6.2. The long term survival of the cells was assessed with the clonogenic assay. 

siRNA-transfected cells were incubated for 2-3 weeks (as detailed in Table 2.8), were 

stained with 1% w/v crystal violet and counted, as presented in section 2.8.   

In order to evaluate the effect of the knockdown of MIAT on the levels of apoptosis- 

mediated cell death in all cell lines, the cells were stained with acridine orange (25μg/ml), 

and their morphology was observed with fluorescence microscopy at specific time intervals 

after plating (48 and 72 h), as described in section 2.7.2.  

The migratory ability of the cells was assessed by the wound healing assay (detailed in 

section 2.9.). The gaps were measured using the EVOS FL Cell Imaging System at 0, 24 

and 48 h and the gap closure was calculated using the formula [(Pre-migration)area-

(Migration)area/(Pre-migration)area] x100 for 15 measurements per sample. Image 

analysis was performed using the ImageJ software. 

 

3.2.5. Statistical analysis 

Statistical analyses were performed using GraphPad Prism 6 (GraphPad Software). Data 

are presented as the mean ± SEM; the number of observations (n) refers to different 

transfected samples, each transfection being conducted on a separate culture of cells. 

Comparisons were made using an unpaired T-test or One-Way ANOVA with Bonferroni's 

multiple comparison test (MCT). Where multiple parameters were compared, Two-Way 

ANOVA with Sidak, Tukey or Dunnett multiple comparisons was used. Statistical 

significance was set at the 0.05 level. Differences were considered as statistically 

significant when P-value was <0.05 (95% confidence intervals). 

 



117 
 

3.3. Results 

3.3.1. The effects of MIAT knockdown on the survival of SH-SY5Y 

neuroblastoma cells   

The first step encompassed in the investigation of how MIAT affects the determination of 

cell fate was to examine the effects of MIAT silencing on cell survival, including both short- 

and long-term, in the neuroblastoma cell line. For this, SH-SY5Y neuroblastoma cells were 

transfected via nucleofection with one of three different siRNAs which target different sites 

of MIAT. The short-term survival was measured with trypan blue vital dye exclusion and 

with flow cytometry using the MUSE® Cell Analyzer. All of the MIAT-specific siRNAs 

significantly silenced the expression of MIAT (~70% for MIAT_1 and MIAT_3, and 80% for 

MIAT_2), as validated with RT-qPCR (Figure 3.1a). However, although there was a 

tendency of reduced-short term survival, the reduction was not statistically significant for 

any of the three siRNAs, as measured by vital dye staining 48 h post-plating (Figure 3.1b) 

and 72 h post-plating (Figure 3.1d), or as measured by flow cytometry 48 h post-plating 

(Figure 3.1c) and 72 h post-plating (Figure 3.1e). In this instance, it has to be noted that the 

numbers of viable cells acquired by the trypan blue exclusion method are nearly double 

those acquired by the flow cytometry method. This could be attributed to the fact that SH-

SY5Y cells are a highly clumping cell line, and therefore, cell clusters of high volume are 

excluded from the count when using the MUSE® Cell Analyzer. 
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Figure 3.1. MIAT-specific down-regulation does not affect the short-term cell survival of SH-
SY5Y cells. SH-SY5Y cells were transfected with the –ve siRNA or one of the three MIAT-specific 
siRNAs using nucleofection, incubated for 48 h, plated, incubated for another 48 and 72 h and 
assessed. The relative expression of MIAT was measured by Real-Time PCR 48 h post-transfection, 
and was significantly lower for all siRNAs (a); MIAT down-regulation does not lead to a statistically 
significant change in the number of viable cells as assessed with trypan blue exclusion (b, d) and 
flow cytometry (c, e) after 48 or 72 h, respectively **** indicate a p-value<0.001, as measured by 
One-way ANOVA tests with multiple comparisons (MCT). Data are represented as mean +/- SEM, 
n=4 experiments for MIAT_1, n=5 experiments for MIAT_2/3. 
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In addition to the effect of MIAT’s down-regulation on the short-term survival of the SH-

SY5Y cells, we next evaluated the effect on the basal levels of apoptosis. Due to the 

superior silencing of MIAT_2 and MIAT_3, MIAT_1 was excluded from this series of 

experiments. The levels of apoptosis were measured with fluorescent microscopy after 

acridine orange staining 48 h, 72 h and 96 h after transfection. Importantly, the levels of 

apoptotic cells were increased at all time intervals after downregulation by all MIAT-specific 

siRNAs, especially 72 h post-nucleofection, with apoptotic cells comprising about 20% of 

the cell population (Figure 3.2a, b). 

Furthermore, the influence of the silencing of MIAT on long-term survival was assessed 

subsequently. The long-term survival of SH-SY5Y cells, as measured by clonogenic assay, 

was decreased due to the downregulation of MIAT. Specifically, the findings show an 

overall significant decrease in the number of colonies for the two of the three MIAT-specific 

siRNAs assessed (Figure 3.2c) (34.3% for MIAT_2 and 45.8% for MIAT_3), suggesting that 

the survival-inhibitory effect of MIAT knockdown may take longer to appear. 
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Figure 3.2. MIAT-specific down-regulation reduces the long-term survival and increases the 
levels of apoptosis of SH-SY5Y cells. SH-SY5Y cells were transfected with the negative siRNA or 
one of the two MIAT-specific siRNAs (MIAT_2/3) using nucleofection and were assessed 48 and 72 
h post-nucleofection. The levels of apoptosis were significantly elevated, reaching a 3-fold increase 
(a, b); Cells were also seeded and incubated (37°C, 5% CO2) for three weeks, and the colonies 
formed were stained with crystal violet (1% w/v) and counted. MIAT knockdown induced by MIAT-
specific siRNAs led to a reduction of the number of colonies formed (c); representative illustration of 
a clonogenic assay (d); representative illustration of apoptotic cells 72 h post-nucleofection, stained 
with acridine orange and observed using fluorescent microscopy (e). Grey arrows indicate cells 
undergoing apoptosis; ** indicate a p-value<0.01; **** indicate a p-value<0.001, as measured by 
One-way ANOVA tests with multiple comparisons (MCT). Data are represented as mean +/- SEM, in 
n=3 experiments. 
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In order to provide further confirmation of the effect of MIAT downregulation on apoptosis 

and long term survival in SH-SY5Y neuroblastoma cells, a LNA GapmeR-mediated 

silencing approach was employed.  

In fact, all of the used GapmeRs (namely 1_1, 2_1, 2_2) were capable of silencing MIAT, 

as evaluated with RT-qPCR (Figure 3.3a). In specific, the expression of MIAT was reduced 

by 65%, 60% and 55%, for 1_1, 2_1 and 2_2, respectively. In terms of long-term survival as 

assessed by colony forming assay, a decrease in the number of colonies was observed, 

which was significant for two of the three MIAT-specific GapmeRs, with 1_1 causing an 

average 20% decrease and 2_2 triggering an important 33% reduction in the number of 

colonies (Figure 3.3b). As far as basal apoptosis is concerned, as evaluated with acridine 

orange staining via fluorescent microscopy, the obtained results confirmed the siRNA 

results, suggesting that the downregulation of MIAT indeed induces a 2-fold increase of 

apoptotic cells for all of the three different GapmeRs at both assessed time points (48 h and 

72 h) (Figure 3.3c, d). Although overall the effect of MIAT was confirmed with the use of 

GapmeRs as a means of down-regulation, the observed effect in SH-SY5Y was not as 

strong as the one observed when using the siRNA-mediated approach. 
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Figure 3.3. LNA GapmeR- mediated MIAT-specific down-regulation increases the levels of 
apoptosis of SH-SY5Y cells. SH-SY5Y cells were transfected with the -ve Ctrl GapmeR or one of 
the three MIAT-specific LNA GapmeRs using nucleofection and were assessed 48 and 72 h post-
nucleofection. The relative expression of MIAT was significantly lowered for all the three GapmeRs, 
as measured by Real-Time PCR 48 h post-transfection (a); Cells were also seeded and incubated 
(37°C, 5% CO2) for two weeks, and the colonies formed were stained with crystal violet (1% w/v) and 
counted. The number of colonies was significantly reduced upon 1_1- and 2_2- mediated MIAT 
knockdown, but the decrease was non-significant for 2_1 (b). MIAT knockdown induced by MIAT-
specific LNA GapmeRs led to a significant increase of apoptosis levels, especially 72 h after 
nucleofection, reaching a 2-fold increase (c, d); representative illustration of a clonogenic assay (e); 
representative illustration of apoptotic cells 72 h post-nucleofection, stained with acridine orange and 
observed using fluorescent microscopy (f). Grey arrows indicate cells undergoing apoptosis; 1_1, 
2_1, 2_2 MIAT-specific LNA GapmeRs. * indicates a p-value<0.05; ** indicate a p-value<0.01;  
***/**** indicate a p-value<0.001, as measured by One-way ANOVA tests with multiple comparisons 
(MCT). Data are represented as mean +/- SEM, n= 3 experiments. 
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3.3.2. The effects of MIAT knockdown on the survival of 1321N1 

glioblastoma cells   

The effects of MIAT knockdown on the levels of apoptosis and cell survival observed in the 

neuroblastoma cells, together with previous literature that strongly associated MIAT with 

cell survival (Zhang et al., 2013; Zhang and Leung, 2014; Mei-Yee Kiang et al., 2015), 

generated the question whether the same effects would be observed in GBM cell lines. For 

this purpose, 1321N1 astrocytoma/GBM, similarly to the protocols followed for SH-SY5Y 

cells, were transfected via nucleofection with one of three different siRNAs which target 

different sites of MIAT. The short-term survival was measured via trypan blue exclusion and 

flow cytometry. Again, all of the MIAT-specific siRNAs significantly silenced the expression 

of MIAT by 85%, 80% and 70% for MIAT_1, MIAT_2 and MIAT_3, respectively, as 

measured with RT-qPCR (Figure 3.4a). Nevertheless, although there was again a tendency 

of reduced-short term survival, especially at 72 h post-plating, this reduction was not drastic 

enough to be statistically significant for any of the three siRNAs, as measured by trypan 

blue 48 h post-plating (Figure 3.4b) and 72 h post-plating (Figure 3.4d), or as measured by 

flow cytometry 48 h post-plating (Figure 3.4c) and 72 h post-plating (Figure 3.4e). 
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Figure 3.4. MIAT-specific siRNAs effectively down-regulate MIAT in 1321N1 cells. 1321N1 cells 
were transfected with the –ve siRNA or one of the three MIAT-specific siRNAs using nucleofection, 
incubated for 48 h, plated, incubated for another 48 and 72 h and assessed. The relative levels of 
MIAT expression were measured using Real-Time PCR 48 h post-transfection, and were found 
significantly lower for all siRNAs (a); however, MIAT down-regulation does not lead to a statistically 
significant change in the number of viable cells as assessed with trypan blue exclusion (b, d) and 
flow cytometry (c, e) after 48 or 72 h, respectively; **** indicate a p-value<0.001, as measured by 
One-way ANOVA tests with multiple comparisons (MCT). Data are represented as mean +/- SEM, 
n=4 experiments for MIAT_1, n=5 experiments for MIAT_2/3. 
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Following the same rationale and process followed for the SH-SY5Y cells, apoptosis-

mediated cell death was the next feature to be assessed, using acridine orange staining. 

The acquired results have revealed an outstanding increase of apoptosis for all the three 

siRNAs at all both points (48 and 72 h), especially for MIAT_2. As was the case for SH-

SY5Y, the strongest effects were acquired 72 h after transfection (Figure 3.5a, b). In fact, 

MIAT_2- and MIAT_3-mediated knockdown triggered apoptosis in about 23% of the total 

cell population at 72 h, corresponding to a ~3-fold increase. 

The next question that arose was whether, similar to neuroblastoma cells, there is a 

reduction in the long-term survival of the GBM cells upon MIAT knockdown. To this end, 

and similar to the response of the SH-SY5Y neuroblastoma cells to MIAT down-regulation, 

the 1321N1 cells showed a similar response pattern as far as long-term survival is 

concerned. As observed in the colony forming assays, the number of colonies was 

significantly decreased for all three MIAT-specific siRNAs (Figure 3.5c) (18.5% for MIAT_1, 

23.1% for MIAT_2 and 26.2% for MIAT_3, n=5 experiments).  
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Figure 3.5. MIAT-specific down-regulation reduces the long-term survival and increases the 
levels of apoptosis of 1321N1 cells. 1321N1 cells were transfected with the negative siRNA or one 
of the three MIAT-specific siRNAs using nucleofection and were assessed 48 and 72 h post-
nucleofection. The levels of apoptosis were significantly elevated, reaching a 3-fold increase (a, b); 
Cells were also seeded and incubated (37°C, 5% CO2) for three weeks, and the colonies formed 
were stained with crystal violet (1% w/v) and counted. MIAT knockdown induced by MIAT-specific 
siRNAs led to a reduction of the number of colonies formed (c); representative illustration of a 
clonogenic assay (d); representative illustration of apoptotic cells 72 h post-nucleofection, stained 
with acridine orange and observed using fluorescent microscopy (e). Grey arrows indicate cells 
undergoing apoptosis;  * indicates a p-value<0.05; ** indicate a p-value<0.01; ***/**** indicate a p-
value<0.001, as measured by One-way ANOVA tests with multiple comparisons (MCT). Data are 
represented as mean +/- SEM, in n=5 experiments. 
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Following the confirmation of the effect of MIAT provided by GapmeRs in neuroblastoma 

cells, we next followed the same strategy for the glioblastoma cell lines. To this end, 

GapmeRs were employed to confirm the effect on long-term survival and apoptotic cell 

death. Similar to SH-SY5Y, in 1321N1 cells, all GapmeRs were capable of silencing the 

expression of MIAT, with two of them (1_1 and 2_2) reaching a ~85% effect, while 2_1 

caused a 55 % decrease in expression (Figure 3.6a). In this case, all of the three GapmeRs 

were capable of reducing the colony numbers from ~25% for 1_1 and 2_1 to ~35% for 2_2 

(Figure 3.6b). In addition, in terms of apoptosis, again all the three GapmeRs induced 

elevated (~2-fold) apoptosis levels after both 48 h and 72 h (Figure 3.6c, d). 
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Figure 3.6. LNA GapmeR- mediated MIAT-specific downregulation increases the levels of 
apoptosis of 1321N1 cells. 1321N1 cells were transfected with the -ve Ctrl GapmeR or one of the 
three MIAT-specific LNA GapmeRs using nucleofection and were assessed 48 and 72 h post-
nucleofection. The relative expression of MIAT was significantly lowered for all the three GapmeRs, 
as measured by Real-Time PCR 48 h post-transfection (a); Cells were also seeded and incubated 
(37°C, 5% CO2) for two weeks, and the colonies formed were stained with crystal violet (1%w/v) and 
counted. The number of colonies was significantly reduced upon MIAT knockdown mediated by all 
GapmeRs (b). Also, MIAT knockdown induced by MIAT-specific LNA GapmeRs led to a significant 
increase of apoptosis levels, especially 72 h after nucleofection, reaching a 2-fold increase (c, d); 
representative illustration of a clonogenic assay (e); representative illustration of apoptotic cells 72 h 
post-nucleofection, stained with acridine orange and observed using fluorescent microscopy (f). Grey 
arrows indicate cells undergoing apoptosis; 1_1, 2_1, 2_2: MIAT-specific LNA GapmeRs. * indicates 
a p-value<0.05; ** indicate a p-value<0.01; ***/**** indicate a p-value<0.001, as measured by One-
way ANOVA tests with multiple comparisons (MCT). Data are represented as mean +/- SEM, n= 3 
experiments. 



129 
 

 

3.3.3. The effect of MIAT knockdown on the survival of T98G glioblastoma 
cells   

 

Given the consistency in most of the observations between the two tested cell lines, the 

next step implicated the assessment of the role of MIAT in a third cell line, which was again 

a GBM cell line, T98G. In agreement with the previous observations, although the siRNA-

mediated knockdown was efficient (75%, 65% and 80% down-regulation of MIAT for 

MIAT_1, MIAT_2 and MIAT_3, respectively) (Figure 3.7a) the T98G glioblastoma cells also 

failed to display significant changes in the number of viable cells upon MIAT knockdown 

short-term (Figure 3.7b-e), as assessed with vital dye exclusion and flow cytometry.  
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Figure 3.7. MIAT-specific down-regulation does not affect the short-term cell survival of T98G 
cells. T98G cells were transfected with the –ve siRNA or one of the three MIAT-specific siRNAs 
using nucleofection, incubated for 48 h, plated, incubated for another 48 and 72 h and assessed. 
The relative expression of MIAT was measured by Real-Time PCR 48 h post-transfection, and was 
significantly lower for all siRNAs (a); MIAT down-regulation does not lead to a statistically significant 
change in the number of viable cells as assessed with trypan blue exclusion (b, d) and flow 
cytometry (c, e) after 48 or 72 h, respectively **** indicate a p-value<0.001, as measured by One-
way ANOVA tests with multiple comparisons (MCT). Data are represented as mean +/- SEM, n=4 
experiments. 
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As far as the apoptosis levels -as assessed by acridine orange- are concerned, the results 

acquired for the T98G cell line are again in full agreement with previous observations. The 

results have revealed a significant increase of apoptosis for all the three siRNAs at both 

time points assessed (48 and 72 h). The magnitude of the effect was similar at both time 

points, ranging from ~11% to ~13% of apoptotic cells for siRNA-treated cells versus ~4% 

for the negative control, reaching, in this case, a ~2-fold increase (Figure 3.8a, b).  

At the same time, the silencing of MIAT induced a substantial decrease in the colony 

number for all the three MIAT-specific siRNAs (Figures 3.8c), however, this decrease was 

statistically significant only for MIAT_1 and MIAT_3 (24.2% for MIAT_1, and 34.9% for 

MIAT_3, n=4 experiments), while the decrease in MIAT_2 (~19%) was not significant. 
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Figure 3.8. MIAT-specific down-regulation elevates the levels of apoptosis-mediated cell 
death and reduces long-term survival in T98G cells. T98G cells were transfected with the –ve 
siRNA or one of the three MIAT-specific siRNAs using nucleofection, incubated for 48 h, plated, 
incubated for another 48 and 72 h and assessed. The levels of apoptosis were statistically 
significantly increased for all siRNAs reaching a 2-fold increase, as assessed by acridine orange 
fluorescent microscopy at 48 (a) and 72 h (b). Cells were also seeded and incubated (37°C, 5% 
CO2) for two weeks, and the colonies formed were stained with crystal violet (1% w/v) and counted. 
MIAT-specific down-regulation causes a statistically significant decrease in the number of colonies 
formed upon MIAT_1- and MIAT_3- mediated nucleofection, but not MIAT_2 (c); representative 
illustration of a clonogenic assay (d); representative illustration of apoptotic cells 48 h post-plating, 
stained with acridine orange and observed using fluorescent microscopy (e). Grey arrows indicate 
cells undergoing apoptosis; * indicates a p-value<0.05; ** indicate a p-value<0.01; ***/**** indicate a 
p-value<0.001, as measured by One-way ANOVA tests with multiple comparisons (MCT). Data are 
represented as mean +/- SEM, n=3 experiments. 
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In the case of T98G cells, the validation of the effect of MIAT downregulation on long-term 

survival and apoptosis was again performed using MIAT-specific GapmeRs. In this case, 

although all three GapmeRs significantly knocked down MIAT (60% for 1_1 and 80% for 

2_1 and 2_2), the down-regulation was not as strong as it was for the aforementioned cell 

lines or the siRNA-mediated silencing (Figure 3.9a). As a direct consequence, possibly, the 

number of colonies was slightly decreased for all GapmeRs, but the decrease did not 

display statistical significance for any of them (Figure 3.9b). However, the knockdown of 

MIAT had a stronger influence on apoptosis, causing a significant elevation in the number 

of apoptotic cells compared to the negative control (2-fold) for all the GapmeRs used at 

both time points assessed (48 h and 72 h) (Figure 3.9c, d). Collectively, these data suggest 

that although the effect of MIAT down-regulation was overall confirmed in glioblastoma cells 

using a LNA GapmeR-mediated approach, the magnitude of the effect was somewhat 

smaller, suggesting a poorer performance of GapmeRs as compared to siRNAs. 
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Figure 3.9. LNA GapmeR- mediated MIAT-specific downregulation increases the levels of 
apoptosis of T98G cells. T98G cells were transfected with the -ve Ctrl GapmeR or one of the three 
MIAT-specific LNA GapmeRs using nucleofection and were assessed 48 and 72 h post-
nucleofection. The relative expression of MIAT was significantly lowered for all the three GapmeRs, 
as measured by Real-Time PCR 48 h post-transfection (a); Cells were also seeded and incubated 
(37°C, 5% CO2) for two weeks, and the colonies formed were stained with crystal violet (1% w/v) and 
counted. The number of colonies was reduced upon MIAT knockdown mediated by all GapmeRs, 
but none of the changes was statistically significant (b). In addition, MIAT knockdown induced by 
MIAT-specific LNA GapmeRs led to a significant increase of apoptosis levels, especially 72 h after 
nucleofection, reaching a 2-fold increase (c, d); representative illustration of a clonogenic assay (e); 
representative illustration of apoptotic cells 72 h post-nucleofection, stained with acridine orange and 
observed using fluorescent microscopy (f). Grey arrows indicate cells undergoing apoptosis; 1_1, 
2_1, 2_2: MIAT-specific LNA GapmeRs. * indicates a p-value<0.05; ** indicate a p-value<0.01; 
***/**** indicate a p-value<0.001, as measured by One-way ANOVA tests with multiple comparisons 
(MCT). Data are represented as mean +/- SEM, n= 3 experiments. 
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3.3.4. The effect of siRNA-mediated MIAT knockdown on cell migration in 
neuroblastoma and glioblastoma cells 

 

The observation of an altered morphology of the SH-SY5Y cells under the microscope 

following transfection, which revealed more sparsely distributed and truncated structures 

(Figure 3.10), led to the hypothesis that the migratory ability of the cells could be also 

affected, as an indirect consequence of the elevated apoptosis levels. To this end, this 

hypothesis was tested via the wound healing (“scratch”) assay. The results confirmed that 

the migratory capability of the cells is reduced in response to the silencing of MIAT at both 

time points tested (24 and 48 h) for all the three MIAT-specific siRNAs. Specifically, there 

was significantly less gap closure, with the greatest effect being observed after 48 h for 

MIAT_1 (35% less gap closure), MIAT_2 (33% less gap closure) and MIAT_3 (28% less 

gap closure) (Figure 3.11). 
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Figure 3.10. MIAT-specific knockdown alters the cellular morphology of SH-SY5Y cells. SH-
SY5Y cells were transfected with the negative siRNA or one of the three MIAT-specific siRNAs using 
nucleofection, and were subsequently stained with acridine orange and observed using light (left 
panels) and fluorescent (right panels) microscopy. The morphology of the cells was changed after 
transfection. The cells displayed less elongated structures, as well as a more sparse spatial 
distribution pattern. Representative illustration of cells treated with the -ve siRNA (a) and the three 
MIAT-specific siRNAs (b-d). For b, d, the light and fluorescent images do not represent the same 
microscopic field. 
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Figure 3.11. MIAT-specific down-regulation deteriorates the migrating ability of SH-SY5Y 
cells. SH-SY5Y cells were transfected with the -ve siRNA or one of the three MIAT-specific siRNAs 
using nucleofection, plated, and a linear scratch was introduced 48 h post-plating. The % gap 
closure of the scratch was measured after 24 and 48 h. The migrating ability of the cells is reduced 
for all three MIAT-specific siRNAs at both time points assessed, especially at 48 h (a); relative gap 
closure of MIAT-specific siRNAs versus the –ve siRNA (b); representative illustration of a wound 
healing (“scratch”) assay (c);  * indicates a p-value<0.05; ** indicate a p-value<0.01, as measured by 
One-way ANOVA tests with multiple comparisons (MCT). Data are represented as mean +/- SEM, in 
n=3 experiments. 

 

Taken together, these data suggest that although the influence of MIAT down-regulation on 

the short-term survival of neuroblastoma cells is minimal, the long-term survival and 

migratory ability of the cells are significantly reduced, while a ~3-fold increase in apoptosis 

is observed. 
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Similar to the SH-SY5Y cells, an unexpected change in morphology was observed in the 

1321N1 cells as well, giving a lead to assess the cells’ migration ability using the wound 

healing assay. The results provided again confirmation that the ability of cells to migrate is 

radically reduced upon the silencing of MIAT at both 18h and 24h for all the three MIAT-

specific siRNAs. Specifically, there was significantly less gap closure, with the greatest 

results being observed after 24h for MIAT_2 (~38% less gap closure) and MIAT_3 (~37% 

less gap closure) (Figure 3.12). 

 

 
Figure 3.12. MIAT-specific down-regulation reduces the migratory ability of 1321N1. 1321N1 
cells were transfected with the negative siRNA or one of the three MIAT-specific siRNAs using 
Nucleofection, plated, and a linear scratch was introduced 24 h post-plating. The % gap closure of 
the scratch was measured after 18 and 24h. The migrating ability of the cells is overall reduced for all 
three MIAT-specific siRNAs at both time points assessed, especially for MIAT_2 and MIAT_3 at 24 h 
(a); relative gap closure of MIAT-specific siRNAs versus the –ve siRNA (b); representative illustration 
of a wound healing (“scratch”) assay (c);  ** indicate a p-value<0.01; ***/**** indicate a p-
value<0.001, as measured by One-way ANOVA tests with multiple comparisons (MCT). Data are 
represented as mean +/- SEM, n=3 experiments. 
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Finally, to be able to generalise the influence of MIAT down-regulation on cell migration, 

and following the same rationale we followed for the other two cell lines, the migratory 

activity of the T98G cells upon MIAT knockdown was assessed next. The wound healing 

assay results have shown that the ability of the cells to migrate is affected by the 

downregulation of MIAT in this case, as well. In detail, the invasive ability of T98G cells is 

decreased following the downregulation of MIAT by all three MIAT-specific siRNAs. This 

effect is again observed at both time points tested (18 and 24h). Specifically, the greatest 

results were observed after 18h for MIAT_2 (~38% less gap closure), reaching a magnitude 

greater than the one observed for SH-SY5Y cells, and equivalent to this of the 1321N1 cells 

(Figure 3.13).  

 

 

Figure 3.13. MIAT-specific down-regulation reduces the migrating ability of T98G. T98G cells 
were transfected with the negative siRNA or one of the three MIAT-specific siRNAs using 
nucleofection, plated, and a linear scratch was introduced 24 h post-plating. The % gap closure of 
the scratch was measured after 18 and 24 h. The migrating ability of the cells is tremendously 
reduced for all three MIAT-specific siRNAs at both time points assessed, especially for  MIAT_2 (a); 
relative gap closure of MIAT-specific siRNAs versus the –ve siRNA (b); representative illustration of 
a wound healing (“scratch”) assay (c);. * indicates a p-value<0.05; ** indicate a p-value<0.01; *** 
indicate a p-value<0.001, as measured by One-way ANOVA tests with multiple comparison tests 
(MCT). Data are represented as mean +/- SEM, n=3 experiments. 
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3.4. Discussion 

MIAT has lately been the subject of intense research and a growing body of evidence is 

suggesting its role as an oncogenic lncRNA in multiple tumours. For example, it has been 

shown that MIAT is involved in CLL and DLBL (Diffuse Large B-Cell Lymphoma) (Sattari et 

al., 2016), multiple types of breast cancer (Almnaseer and Mourtada-Maarabouni, 2018; Li 

et al., 2018; Zhang et al., 2019; Liu et al., 2019), gastric cancer (Zhang et al., 2013; Pop et 

al., 2018), clear cell renal cell carcinoma (Qu et al., 2018; Zhang et al., 2019), 

osteosarcoma (Zhang et al., 2019),  lung cancer (Fu et al., 2018; Zhang et al., 2019), 

neuroendocrine prostate cancer (Crea et al., 2016), papillary thyroid cancer (Liu et al., 

2019) and intrahepatic cholangiocarcinoma (Zhou et al., 2019), and it has been proved to 

be the most abundant lincRNA in NB, as well as a central expression modulator of both 

MYCN and PHOX2B (Rombaut et al., 2019), two of the most critical genes for NB. 

Therefore, MIAT could become a tool of diagnostic, prognostic and even therapeutic value 

for these tumours.  

In order to extrapolate the role of MIAT in NB and GBM, a series of functional assays were 

performed to evaluate the influence of its silencing on fundamental cell processes, such as 

basal cell survival and apoptosis, as well as cell migration. To this end, this chapter aimed 

at unravelling the role of MIAT in the regulation of these processes in neuroblastoma and 

glioblastoma. To perform this, a siRNA-mediated MIAT down-regulation approach was 

adopted followed by a GapmeR-mediated confirmation approach, using one neuroblastoma 

(SH-SY5Y) and two GBM (1321N1 and T98G) cell lines, which led to a variety of interesting 

observations. Although the silencing of MIAT did not affect the short-term survival, it caused 

a significant decrease in the long-term survival and the migratory ability of the cells, and 

substantially increased the levels of basal apoptosis, suggesting that MIAT is a new lncRNA 

player in cell fate decisions in neuroblastoma and glioblastoma. The GapmeR-mediated 

approach returned results similar to those of the siRNA-mediated approach; however, the 

effects observed with the GapmeRs were weaker and in some cases insignificant. In 
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general, both siRNAs and GapmeRs are considered to be very potent silencers of gene 

expression, although the concentrations required to obtain the same effect may differ 

(Grünweller et al., 2003) depending on the cellular location of the lncRNA and its 

transcriptional landscape (Lennox and Behlke, 2016). In addition, although ASOs are 

considered to be more effective in knocking down nuclear lncRNAs compared to siRNA 

(Lennox and Behlke, 2016), this was not the case in this study, potentially due to the 

localisation of MIAT special subnuclear bodies. Given that the effects of ASOs tend to be 

rather short-lived, it can be speculated that higher concentration of GapmeRs is essential in 

order to prolong their effects so that they are better reflected in the observed phenotypes 

(Watts and Corey, 2012; MacLeod and Crooke, 2017). 

Interestingly, these results have confirmed the oncogenic properties of MIAT in our 

systems, i.e. in neuroblastoma and GBM cells, as revealed by an overall tendency of MIAT-

specific siRNA- and LNA GapmeR-mediated knockdown to cause reduced long-term cell 

viability and a significant increase of the apoptosis levels in all the tested cell lines. These 

effects are in full agreement with several previous studies investigating the role of MIAT in 

the regulation of cell survival. For instance, the in vitro silencing of MIAT leads to reduced 

cell viability and increased levels of basal apoptosis in endothelial cells, Müller glia and 

neurons upon hypoxic or oxidative stress, as well as in vivo, as studied in oxygen-induced 

retinopathy (OIR), optic nerve transection (ONT), Alzheimer’s disease and diabetic 

retinopathy mouse and rat models, causing neurovascular dysfunctions ultimately leading 

to these neurodegenerative disorders (Jiang et al., 2016). Furthermore, Shen et al. (2016) 

found that the down-regulation of MIAT leads to reduced survival of lens epithelial cells in 

cataract patients as a result of augmented ROS production. In a cancerous context, Sattari 

et al. (2016) discovered that siRNA-mediated suppression of MIAT expression led to 

increased apoptosis in a Diffuse Large B-Cell Lymphoma cell line. Recently, another recent 

study has also revealed augmented basal apoptosis levels in various breast cancer cell 

lines representing different types of breast tumours in response to MIAT down-regulation 
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(Almnaseer and Mourtada-Maarabouni, 2018), while another study has shown that 

overexpression of MIAT promotes tumour cell growth in ER-positive breast cancer cells (Li 

et al., 2018). Moreover, in lung cancer cells the knockdown of MIAT results in increased 

apoptosis, as revealed by elevated levels of the pro-apoptotic Bax and cleaved Caspase 3, 

as well as decreased levels of the anti-apoptotic BCL-2 (Fu et al., 2018), and the same 

effect is also present for colorectal cancer cells (Liu et al., 2018) and gastric cancer cells (Li 

et al., 2017). In line with this, another study has revealed that the silencing of MIAT 

expression increases apoptosis as measured by flow cytometry, and also reduces long-

term survival, as measured by colony forming assays non-small cell lung cancer cells, in full 

agreement with our results (Wu et al., 2020). At the same time, colony formation has been 

shown to be decreased in human papillary thyroid cancer cell lines (Wang et al., 2019) and 

clear cell renal cell carcinoma (Qu et al., 2018), while increased apoptosis is a phenomenon 

also observed in osteosarcoma (Zhang et al., 2019) and ovarian cancer cell lines (Shao et 

al., 2018).  

Notably, the effect on long-term survival was not very pronounced in all cases, whereas 

apoptosis was significantly affected. Cancer is a complex disease in which there exist 

numerous pathway cross-talks. There is a variety of cell growth, proliferation and pro-

survival pathways that could potentially be affected following MIAT downregulation to confer 

the observed phenotypes. For instance, the overlapping MAPK, TGF-β and EGFR 

pathways could be downregulated, and as a result, the long-term cell survival of 

neuroblastoma and GBM cells would be decreased. The PI3K/Akt pathway, as a part of the 

MAPK/ERK signalling cascade, could be suspected to exert a crucial role. In fact, all of 

these pathways have been established to be classical cancer-related pathways responsible 

for cell survival, growth and motility in several tumours (Babu and Tay, 2019). Furthermore, 

a recent study has shown that the down-regulation of another well-known lncRNA, H19, 

leads to the inactivation of the MAPK/ERK pathway by reducing the expression levels of p-

MAPK and p-ERK1/2 in HCC (hepatocellular carcinoma) (Ding et al., 2018), raising the 
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possibility that MIAT could exert the same effect. In fact, another study conducted by Yang 

et al. (2019) in melanoma cancer cells has revealed the intriguing finding that MIAT can 

also up-regulate the phosphorylation of PI3K and Akt, thereby activating the pathway (Yang 

et al., 2019), providing extra evidence to speculate that the pathway, and let alone its down-

regulation, could be heavily involved in response to MIAT knockdown in NB and GBM cells.  

Another ambiguous candidate that could mediate the observed phenotypes upon MIAT 

silencing is c-Myc, a master transcription factor responsible for transcribing a multitude of 

genes, mainly associated with cell survival, growth and proliferation. Nevertheless, many 

studies have established that when deregulated, c-Myc favours apoptosis over survival. 

More specifically, it participates in both the mitochondrial apoptotic pathway, therefore 

promoting apoptosis either through the suppression of anti-apoptotic molecules, mainly of 

the BCL-2 family, or through promoting the expression of pro-apoptotic molecules, and the 

death receptor apoptotic pathway (Hoffman and Liebermann, 2008; McMahon, 2014). 

Therefore, it could be hypothesised that short-term after MIAT knockdown, c-Myc is either 

repressed or exerts its unconventional, pro-apoptotic role and, that on the long-term, it 

remains repressed by mechanisms involving MIAT, to further prevent neuroblastoma and 

GBM cells from growing. In line with this hypothesis, MIAT has been found to up-regulate 

the expression of c-Myc in melanoma cells via the up-regulated phosphorylation of PI3K 

and Akt (Yang et al., 2019). It has also been discovered that in HCC cells MIAT up-

regulation is capable of up-regulating c-Myc through the EPHA2 (Ephrin Type-A Receptor 

2) axis, suggesting another potential mechanism that could be implicated in neuroblastoma 

and GBM cells, as well (Xiang et al., 2019). Meanwhile, another study has shown that the 

inhibition of the expression of c-Myc triggered MIAT’s significant up-regulation in GBM. In 

specific, Omomyc (a ninety amino acid long polypeptide obtained by targeted mutations of 

c-Myc bHLHZip domain)-mediated suppression of c-Myc led to the elevated expression –

among others- of MIAT in glioblastoma stem cells (GSCs), thus mediating an onco-

suppressive phenotype (Galardi et al., 2016). Finally, given the fact that c-Myc is also 
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actively epigenetically regulated through various mechanisms including histone 

modifications and DNA methylation (O’Hagan et al., 2011) and that, to at least some extent, 

the action of lncRNAs involves chromatin remodelling (Clark and Blackshaw, 2014; Schmitz 

et al., 2016), a possible scenario would be that MIAT also epigenetically regulates the 

expression of c-Myc. Taken together, it is clear that both c-Myc and MIAT display high 

versatility in terms of gene function and roles, and are involved in complex, potentially 

overlapping molecular networks, with effects ranging among various tumour types. 

Although it is becoming profound that MIAT exerts a crucial role in regulating cell survival 

and apoptosis, the exact mechanisms of action remain to be unveiled, and the potential 

feedback loops with c-Myc still need to be clarified in neuroblastoma and GBM cells. 

Finally, because ROS above a certain threshold exert a pro-apoptotic role, thereby inducing 

apoptosis instead of promoting cell survival, and that c-Myc is a sensor of fluctuations in 

ROS levels (Galadari et al., 2017; Lin, 2019), an attractive scenario would be that there is a 

MIAT/c-Myc/ ROS axis that determines whether cell survival or apoptosis will be favoured in 

neuroblastoma and GBM cells. 

Our functional studies also revealed that the down-regulation of MIAT was associated with 

the attenuation of the migratory ability of neuroblastoma and GBM cells, as shown by the 

significant reduction in gap closure in wound healing assays. Prior functional annotation has 

implied that MIAT is associated with EMT-related canonical pathways in hepatocellular 

carcinoma cells, including the TGF-β pathway, and further MIAT knockdown resulted in the 

increase in the mRNA level of the epithelial marker E-cadherin and in decreased 

expression of the mesenchymal marker N-cadherin and deteriorated migratory and invasive 

capacity of HCC cells (Zhang et al., 2018). Moreover, MIAT downregulation caused similar 

effects (suppressed expression of vimentin, β-catenin, N-cadherin and SNAI1, induced 

expression of E-cadherin) in tongue squamous cell carcinoma cells, effects speculated to 

be mediated by the Wnt/β-catenin axis, given that DKK1 (Dickkopf WNT Signaling Pathway 

Inhibitor 1- an inhibitor of the pathway) effectively reversed the effects MIAT on the 
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expression of EMT markers and the numbers of invasive cells (Zhong et al., 2019). At the 

molecular level, both mechanisms could be mediating the reduced migration phenotype in 

our systems as well. Furthermore, in full concordance with our results, a plethora of other 

studies have also implicated MIAT in cell migration. For instance, MIAT knockdown has 

been shown to reduce the migration of NSCLC cells (Zhang et al., 2017), colorectal cancer 

cells (Liu et al., 2018), clear cell renal cell carcinoma cells (Qu et al., 2018) and breast 

cancer cells (Alipoor et al., 2018). In addition, similar effects have been reported in HCC 

(Xiang et al., 2019), gastric (Li et al., 2017), pancreatic (Li et al.,2018), papillary thyroid 

carcinoma (Liu et al., 2019), melanoma (Yang et al., 2019) and osteosarcoma cell lines 

(Zhang et al., 2019), with all of the cases showing a markedly decreased ability of the 

tumour cells to migrate upon MIAT silencing. All of these pieces of evidence strongly 

suggest that MIAT, apart from being a cell survival and apoptosis regulator, is also a very 

potent mediator of cell migration. Given that cell migration comprises one of the first steps 

towards tumour metastasis, MIAT downregulation could be a potent therapeutic approach 

towards the prevention of metastasis. Mechanistically, this could be achieved by disrupting 

some of the suggested MIAT-involving metastasis-related axes, such as the miR-150-

5p/VEGF axis (Jiang et al., 2016),  the miR-141/DDX5 pathway as described in gastric cells 

(Sha et al., 2018), the miR-132/Derlin-1 pathway as described in CRC cells (Liu et al., 

2018), or through the MIAT/MMP9 axis (Lai et al., 2017). 

In conclusion, the current chapter suggests that the downregulation of MIAT, siRNA- or 

GapmeR-mediated, reduces the long-term survival of neuroblastoma and GBM cells, while 

it promotes basal apoptosis, as well as deteriorates the cells’ ability to migrate. These 

findings highlight the crucial role of MIAT in a variety of cancer-promoting processes in 

neuroblastoma and glioblastoma pathogenesis, verifying its observed role in other tumours. 

Nevertheless, further research is essential in order to establish that MIAT could potentially 

be used as a biomarker in neuroblastoma and GBM, like numerous other lncRNAs in a 

variety of tumours (Melissari and Grote, 2016; Wu et al., 2016; Rao et al., 2017) and open 



146 
 

new prognostic, predictive and even therapeutic avenues for patients suffering from these 

tumours. 
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3.5. Chapter Highlights 

1. siRNA-mediated MIAT silencing does not significantly influence the short-term 

survival of neuroblastoma and GBM cells. 

 

2. MIAT knockdown mediated by siRNA significantly reduces the long-term survival 

in SH-SY5Y, and 1321N1 and T98G cells. 

 

3. siRNA-mediated MIAT down-regulation causes a significant ~3-fold increase in the 

levels of basal apoptosis in NB and GBM cells 

 

4. siRNA-mediated MIAT silencing markedly attenuates the migratory ability of SH-

SY5Y, and 1321N1 and T98G cells. 

 

5. GapmeR-mediated MIAT silencing confirms the effects of siRNA-mediated 

silencing in long-term survival and apoptosis. However, the effects, in this case, 

are not as strong, as compared to the siRNA-induced effects. 
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Chapter 4: RNA sequencing 

reveals the potential molecular 

mechanisms underlying the action 

of MIAT  
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4.1. Introduction 
 

Mounting pieces of evidence suggest that lncRNAs can regulate gene expression in diverse 

ways along every step of it, including post-transcriptional processes, and notably, this 

regulation can be exerted in cis and in trans (Kornienko et al., 2013; Bergmann and 

Spector, 2014; Cheng et al., 2016; Ding et al., 2018). In this context, post-transcriptionally 

during alternative splicing, lncRNAs can regulate the process via sponging essential for 

proper splicing factors, as in the case of MALAT1 (Geisler and Coller, 2013) and MIAT. 

MIAT has been found to act by sequestering SF1, QK1, SRSF1 (Tsuiji et al., 2011; Cheng 

et al., 2016) and Celf3 (Ishizuka et al., 2014), to obstruct normal alternative splicing.  

In addition to its fundamental role in regulating alternative splicing by sponging splicing 

factors that are essential for proper splicing, MIAT is also known to function as a miRNA 

sponge to regulate gene expression and cell fate decisions through diverse axes. In non-

cancerous context, MIAT has been found to sponge  miR-150 to promote cardiac 

hypertrophy in cardiomyocytes and mouse models (Zhu et al., 2016), as well as to sponge 

miR-93 to up-regulate toll-like receptor 4 (TLR4) to promote the same condition (Li et al., 

2018). Moreover, in diabetes mellitus-induced microvascular dysfunction MIAT functioned 

as a ceRNA to form a feedback loop with vascular endothelial growth factor (VEGF) and 

miR-150-5p to regulate endothelial cell function (Yan et al., 2015) and as a sponge for miR-

181b to regulate atherosclerosis progression via the regulation of STAT3 (Zhong et al., 

2018). The same ceRNA activity has also been discovered in cancerous settings. For 

instance, MIAT knockdown enhanced the expression of miR-214 to down-regulate its 

targets EZH2 and β-catenin, leading to decreased cell proliferation and migration in HCC 

(Huang et al., 2018). Besides, again in a HCC model, it was discovered that MIAT acts as a 

decoy for miR-22-3p to up-regulate the expression of Sirt1 and that upon MIAT silencing 

cellular senescence was promoted via the activation of the tumour suppressor pathways 

p53/p21 and p16/pRb (Zhao et al., 2019).  Together with these, it also sponges miR-155-5p 

in breast cancer cells to up-regulate DUSP7 (Dual Specificity Phosphatase 7), while its 
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knockdown increases apoptosis and eliminates EMT to ultimately decrease cell invasion 

(Luan et al., 2017). Finally, MIAT also acts as a ceRNA to sponge miR-141 in an AGO2-

dependent manner via targeting DDX5 (DEAD-Box Helicase) in gastric cancer, and its 

silencing led to cell cycle arrest, apoptosis and decreased migration and invasion (Sha et 

al., 2018). Finally, MIAT sequesters miR-132 to de-repress its target gene Derlin-1, and its 

down-regulation ultimately leads to reduced cell proliferation, migration and invasion in 

CRC cells (Liu et al., 2018).  

The lines of evidence presented in Chapter 3 support the oncogenic nature of MIAT, given 

that its down-regulation increases the levels of apoptotic cell death and eliminates the long-

term survival and the migratory ability of neuroblastoma and glioma cells. However, the 

molecular mechanisms through which MIAT exerts its functions remained an enigma. In line 

with this, this chapter aims to unveil the underpinning molecular mechanisms of MIAT’s 

effects in neuroblastoma cells via a siRNA-mediated knockdown approach followed by RNA 

sequencing. Through sequencing of the whole transcriptome, the study investigates gene 

expression changes and key molecular pathways modulated in response to altered MIAT 

levels. 
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4.2. Materials and Methods 

4.2.1. Cell culture  

The experiments incorporated in this chapter were conducted using the human 

neuroblastoma SH-SY5Y cell line and the human astrocytoma/ glioblastoma 1321N1 cell 

line, cultured using the HyClone™ DMEM/F12 1:1 growth media, supplemented with 10% 

heat-inactivated fetal bovine serum, 2μM L-Glutamine, 1μΜ Sodium Pyruvate and 10mg/ml 

gentamicin solution, as well as the human glioblastoma T98G cell line, cultured in the 

aforementioned growth media, supplemented with an extra 10% FBS, 15% cell-conditioned 

growth media and 1% MEM non-essential amino acid solution, as described in section 2.1.  

 

4.2.2. RNA sequencing and Pathway analysis 

Global gene expression changes in response to MIAT knockdown were determined by 

sequencing the whole transcriptome, as detailed in section 2.10. Next-generation 

sequencing was conducted by the Earlham Institute. Quality controlled reads were aligned 

to Human Genome build (hg19) using Tophat, transcripts were assembled using Cufflinks 

(with GTF support) and the number of reads mapping to each feature counted and 

expressed as FPKM using the CuffNorm package. Differentially expressed mRNAs were 

condensed into gene networks representing biological and disease processes using 

iPathwayGuide (Advaita Bioinformatics, Ann Arbor, MI, USA). The differential expression 

was measured and compared between SH-SY5Y cells transfected with the –ve control 

siRNA and SH-SY5Y cells transfected with MIAT-specific siRNAs, and a cutoff threshold of 

1.5-fold change (and an equivalent 0.6 Log2 Fold Change) was applied. The Log2 Fold 

Change (Log2FC) is referred to as “–fold change” in this chapter. 
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4.2.3. Target validation: mRNA level 

Real-time PCR (RT-qPCR) and RT2 Profiler PCR Arrays 

The validation of changes in expression in several genes of interest was performed on the 

mRNA level via RT-qPCR and RT2 Profiler PCR Arrays. 

Total RNA was extracted from cells using the Direct-zol™ RNA MiniPrep kit, according to 

the manufacturer’s protocol and the quality was measured with NanoDrop and gel 

electrophoresis (as detailed in sections 2.4 and 2.4.1). RNA extracted from transfected cells 

was then reverse transcribed into cDNA using the Omniscript® RT kit, as described in 

section 2.5.1. Real-time PCR was subsequently performed for the synthesised cDNA. 

Specific primers were used against c-Myc and Oct1 (POU2F1), while 18S rRNA was used 

as a housekeeping gene (Table 4.1), as described in section 2.5.2. 

Two different Arrays were used: the RT² Profiler™ PCR Array Human Cell Death 

PathwayFinder and the RT² Profiler™ PCR Array Human Apoptosis, each one containing in 

total 84 genes (one/well) and 12 quality and endogenous controls, as detailed in section 

2.5.3. 

Table 4.1. TaqMan® gene expression assays’ details. 

 

 

4.2.4. Target validation: protein level 

The validation of changes in expression in several genes of interest was performed on the 

protein level via Western Blot, as detailed in sections 2.12.1 and 2.12.2. The proteins 

whose level was measured include Mcl1, Caspase 8, XIAP, BAD and BID, while β-actin 

was used as a housekeeping gene (Table 2.9). 

Method Catalogue #/ ID Target Exon 
boundary Assay location 

TaqMan® 

Hs99999901_s1 18S 1-1 604 

Hs00153408_m1 c-Myc 2-3 1325 
Hs01552829_m1 Oct1 (POU2F1) 8-9 1013 
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4.2.5. Assessment of Reactive Oxygen Species (ROS) production 

The production of ROS as part of the apoptotic response upon the down-regulation of MIAT 

in 1321N1 and T98G cells was measured by flow cytometry using the CellROX® Green 

Reagent. 1321N1 cells and T98G cells were nucleofected with either the Negative control 

siRNA or MIAT_2 and subsequently, the levels of ROS production were assessed after 48 

h and 72 h, as detailed in section 2.11.1. 

Alpha-phenyl-N-tert-butyl nitrone (PBN), a free radical scavenger was used to assess ROS 

levels in SH-SY5Y cells. After a series of optimisation experiments, it was shown that the 

most efficient scavenger was the administration of 600μM PBN in a sequential way 

(described in section 2.11.2). 

 

4.2.6. Functional analysis: determination of cell survival, apoptosis and cell 

migration 

In response to ROS scavenging, cell survival was assessed using the MTS assay 

(CellTiter 96® Aqueous One Solution Cell Proliferation Assay), as described in sections 

2.6.3 and 2.11.2. Cell death via apoptosis was assessed after 8, 24 or 48 h with 

fluorescence microscopy after staining of the cells acridine orange (25μg/ml), as described 

in section 2.7.2  

The migratory ability of the cells was assessed by the wound healing assay (detailed in 

section 2.9.). The gaps were measured using the EVOS FL Cell Imaging System at 0/24/48 

h and the gap closure was calculated using the formula [(Pre-migration)area-

(Migration)area/(Pre-migration)area] x100 for 15 measurements per sample. Image 

analysis was performed using the ImageJ software. 
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4.2.7. Statistical analysis 

Statistical analyses were performed using GraphPad Prism 6 (GraphPad Software). Data 

are presented as the mean ± SEM; the number of observations (n) refers to different 

transfected samples, each transfection being conducted on a separate culture of cells. 

Comparisons were made using an unpaired T-test or One-Way ANOVA with Bonferroni's 

multiple comparison test (MCT). Where multiple parameters were compared, Two-Way 

ANOVA with Sidak, Tukey or Dunnett multiple comparisons was used. Statistical 

significance was set at the 0.05 level. Differences were considered as statistically 

significant when the p-value was <0.05 (95% confidence intervals). The RT2 Profiler PCR 

Array analysis was performed using QIAGEN’s Data Analysis web portal 

(geneglobe.qiagen.com/gb/analyze/). The RNA sequencing results were analysed using the 

iPathway Guide by Advaita Bioinformatics (advaitabio.com). 

 

4.3. Results 

4.3.1. RNA Sequencing reveals ROS-mediated molecular and biological 

perturbations upon MIAT down-regulation in SH-SY5Y cells 

 

In order to elucidate the molecular mechanisms through which MIAT exerts its biological 

effects, RNA sequencing was performed and the genes that exhibited the most pronounced 

expression changes in response to MIAT knockdown were identified. Global gene 

expression analysis revealed that the two MIAT knockdown experiments (MIAT_2 and 

MIAT_3) did not perform equally, with very pronounced effects of the MIAT_2 siRNA noted 

in comparison with almost non-existent effects of the MIAT_3 siRNA, due to the fact that 

MIAT_3 siRNA knockdown did not lead to the desired down-regulation levels of MIAT in 

these specific experiments (Figure 4.1a).  
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Figure 4.1. Expression values of MIAT. Data are expressed as Fragments Per Kilobase of 
transcript per Million mapped reads (FPKM) for the full-length MIAT transcript [NR_003491 (10193 
bp)] (a); MIAT sequence coverage in the different samples (b); -ve: negative siRNA; browser view 
from RefSeq on the GRCh38.p13 primary assembly [Integrative Genomics Viewer (IGV)] 

 

Given the superior effects of our MIAT_2 knockdown siRNA, we next investigated those 

genes that were deregulated by a factor of at least 1.5 fold (log2FC ≥ 0.6) between the 

control and MIAT_2 knockdown samples. 11085 differentially expressed genes were 

identified out of a total of 13412 genes with measured expression, of which the 10000 most 

variable in response to reduced MIAT levels are presented as a heatmap (Figure 4.2). 

These data were analyzed in the context of pathways obtained from the Kyoto 
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Encyclopedia of Genes and Genomes (KEGG) database (Release 81.0+/01-20, Jan 17), 

gene ontologies from the Gene Ontology Consortium database, and miRNAs from the 

miRBase (Release 21) and TARGETSCAN (Targetscan version: 7.1) databases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. MIAT down-regulation induces extensive expressional perturbations. Heatmap of 
Log2 normalised expression values for the 10000 most variable genes. Data are Log normalised 
read counts expressed as Fragments Per Kilobase of transcript per Million mapped reads (FPKM). 
Dark blue colouration represents higher expression, whilst light green colouration denotes lower 
expression for each given gene. Y-axis clustering identifies groups of genes with similar expression 
patterns. The key (top left) represents the density of data (y) against expression level (x); -ve: 
negative siRNA. 
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As an excess of 10000 genes was identified as being deregulated by at least 1.5 fold, we 

elected to condense the individual gene changes into common biological processes and 

pathways prior to interpretation. Pathway analysis revealed that several cellular processes 

were affected by the downregulation of MIAT. Among them, numerous cancer-related 

processes were significantly affected, including apoptosis-mediated cell death, oxidative 

stress, cell migration, angiogenesis and autophagy. These perturbations were also reflected 

in the corresponding molecular pathways. Eight pathways were found to be significantly 

impacted and of these, three were cancer-independent (Alcoholism, Vascular smooth 

muscle contraction and Ribosome), while five were cancer-related: MAPK signalling 

pathway, EGFR tyrosine kinase inhibitor resistance, TGF-beta signalling pathway, 

Phospholipase D signalling pathway and NOD-like receptor signalling pathway (Table 4.2). 

In these cell survival- and apoptosis-related pathways, a plethora of genes displayed 

aberrant expression (168, 63, 59, 88 and 103 differentially expressed genes, respectively). 

Figure 4.3 shows the expression of genes implicated in each of these five pathways. 

Figures 4.4a and 4.4b, c graphically represent the most deregulated pathways, and the 

most deregulated cancer-related pathway, respectively. 
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Figure 4.3. The expression of individual genes implicated in cancer-related pathways: MAPK signalling (a), 
EGFR tyrosine kinase inhibitor resistance (b), TGF-beta signalling (c), Phospholipase D signalling (d) and NOD-
like receptor signalling (e), as determined by sequencing and analysis of the whole transcriptome. Red coloured 
bars correspond to up-regulated gene expression, while blue coloured bars correspond to down-regulated gene 
expression. Data are the difference in expression between cells nucleofected with the –ve siRNA and cells 
nucleofected with MIAT_2 expressed as a normalised log2 fold change (log2FC). A threshold of 0.05 for statistical 
significance (p-value) and a log2 fold change of expression with an absolute value of at least 0.6 were applied. 



159 
 

 

Figure 4.4. Top perturbed cancer-related pathway: MAPK signalling pathway (KEGG: 04010). 
Perturbation vs over-representation: MAPK signalling pathway (yellow circle) is shown, using 
negative log of the accumulation and over-representation p-values, along with the other most 
significant pathways (red circles). Pathways in red are significant, based on the combined 
uncorrected p-values (a). Measured expression vs accumulation of pathway genes: all the genes 
from this pathway are represented in terms of their measured fold change (y-axis) and accumulation 
(x-axis). Accumulation is the perturbation received by the gene from any upstream genes. Genes 
displayed in red had both accumulation and measured fold change. Genes in blue had only 
measured fold change. Genes in green had only accumulation. The remaining genes that were not 
measured and had no accumulation are shown in black. (b). Graphically, the pathway diagram is 
overlayed with the computed perturbation of each gene. The perturbation accounts both for the 
gene's measured fold change and for the accumulated perturbation propagated from any upstream 
genes (accumulation). The highest negative perturbation is shown in dark blue, while the highest 
positive perturbation in dark red. The legend describes the values on the gradient (c).  
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 Table 4.2 Top differentially expressed pathways in response to MIAT down-regulation in SH-SY5Y cells and their biological relevance to cancer.                                 

Pathway name Upregulated 
Genes 

Downregulated 
Genes Cancer Hallmark Oncogene/ 

TSG (p-value) 

MAPK signalling pathway 

DDIT3   
 
 
c-Myc 
FAS 
GADD45A 
 
DAXX 

Sustaining Proliferative Signalling/  
Resisting Cell Death/ Activating Invasion 
and Metastasis 
Evading Growth Suppressors 
Resisting Cell Death 
Evading Growth Suppressors/ Resisting 
Cell Death 
Resisting Cell Death 

Oncogene/TSG 
 
 
Oncogene/TSG 
Oncogene 
Oncogene/TSG 
 
TSG 

0.032 

EGFR tyrosine kinase 
inhibitor resistance 

NRG1 
HRAS 
AKT3 
STAT3 

 Sustaining Proliferative Signalling 
Evading Growth Suppressors 
Resisting Cell Death 
Sustaining Proliferative Signalling/   
Resisting Cell Death/ Activating Invasion 
and Metastasis/ Inducing Angiogenesis 
 

Oncogene 
Oncogene 
Oncogene 
Oncogene 
 

0.035 

TGF-beta signalling pathway 

DCN  
 
SMAD5  
TGFBR1/2 

Inducing Angiogenesis/ Avoiding Immune 
Destruction 
Evading Growth Suppressors 
Evading Growth Suppressors 
 

TSG 
 
TSG 
TSG 

0.046 

Phospholipase D signalling 
pathway 

HRAS 
MAPK3 

 
 
SYK 

Evading Growth Suppressors 
Sustaining Proliferative Signalling 
Evading Growth Suppressors/ Resisting 
Cell Death 
 

Oncogene 
Oncogene 
Oncogene/TSG 0.046 

NOD-like receptor signalling 
pathway 

CASP1/8  
IKBKB/E 
 
 
 
RELA 
 
 
 
VDAC2 

 
 
 
 
 
 
 
 
 
 
XIAP 

Resisting Cell Death  
Sustaining Proliferative Signalling/  
Resisting Cell Death/ Activating Invasion 
and Metastasis 
 
Sustaining Proliferative Signalling/  
Resisting Cell Death/  Activating Invasion 
and Metastasis 
 
Resisting Cell Death 
Resisting Cell Death 

TSG 
Oncogene 
 
 
 
Oncogene 
 
 
 
TSG 
Oncogene 

0.048 
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In addition, 387 Gene Ontology (GO) terms were significantly enriched, including a 

variety of cancer-related processes, as well as multiple molecular functions (Table 4.3).  

Noteworthy, among the perturbed pathways and biological processes as revealed by 

the RNA sequencing, cell survival- and cell growth-associated pathways, such as the 

MAPK and EGFR pathways, as well as apoptosis-related pathways and processes 

(e.g. the NOD-like receptor signalling pathway, “Cell death in response to oxidative 

stress”, “Cellular response to oxidative stress” and “Regulation of oxidative stress-

induced intrinsic apoptotic signalling pathway”) and migration/invasion-associated 

processes, such as “Tissue migration”, “Regulation of cell adhesion mediated by 

integrin” and “Regulation of cell migration”, were significantly deregulated. Importantly, 

the most perturbed biological process, “Cell death in response to oxidative stress”, 

displayed expressional perturbations in 58/59 involved genes, while another highly 

altered process, “Regulation of oxidative stress-induced intrinsic apoptotic signalling 

pathway”, had 25/26 genes perturbed. In addition, “Regulation of MAPK cascade” 

involved 393/446 perturbed genes, and at the same time “Regulation of cell migration” 

displayed changes in 411/480 genes involved in the process. Furthermore, in 

“angiogenesis” 250/285 genes involved had aberrant expression. Collectively, these 

results provide a confirmation of the effects of MIAT silencing on long-term survival, 

apoptosis and migration, as these were observed in the experimental series described 

in Chapter 3 since they show that multiple molecular pathways related to these 

phenotypes are perturbed.  
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ble 4.3. Top perturbed Gene Ontology (GO) terms in response to MIAT down-regulation in SH-SY5Y cellT                                                                 
Table 4.3. Top perturbed Gene Ontology (GO) terms in response to down-regulation in SH-SY5Y cells. 

Biological Process Upregulated 
Genes 

Downregulated 
Genes Cancer Hallmark Oncogene/ 

TSG 

Number of 
perturbed 

genes/ total 
genes in the 

pathway 

(p-value) 

ROS-induced cell death 
 

Cell death in response to 
oxidative stress 

MAPK7  
 
 
 
HIF1A 
 
 
 
 

Sustaining Proliferative Signalling/  
Resisting Cell Death/  Activating 
Invasion and Metastasis 
 
Sustaining Proliferative Signalling/  
Inducing Angiogenesis/ Deregulating 
cellular energetics 
 
 

Oncogene 
 
 
 
Oncogene 
 
 
 

58/59 1.800e-4 

Cellular response to 
oxidative stress 

ETS1 
 
 
 
RELA  

 
 
 
 
 
 
 
 
 

Resisting Cell Death/ Activating 
Invasion and Metastasis/ Inducing 
Angiogenesis 
 
Sustaining Proliferative Signalling/  
Resisting Cell Death/ Activating 
Invasion and Metastasis 
 

Oncogene 
 
 
 
Oncogene 
 
 
 

155/173 0.008 

Regulation of cellular 
response to oxidative 
stress 

 FUT8 
 
MCL1 

Activating Invasion and Metastasis 
 
Resisting Cell Death 
 

Oncogene 
 
Oncogene 46/49 0.021 

Regulation of oxidative 
stress-induced intrinsic 
apoptotic signalling 
pathway 

 XIAP 
 
BAG5 

Resisting Cell Death 
 
Resisting Cell Death 

Oncogene 
 
Oncogene 25/26 0.046 

Cell survival 

Regulation of MAPK 
cascade 

ADAM8 
 
FGF1 
 

 
 
 
 

Inducing Angiogenesis/ Activating 
Invasion and Metastasis 
Evading Growth Suppressors/ 
Inducing Angiogenesis 

Oncogene 
 
Oncogene 
 

393/446 8.400e-4 
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165 

163 

 

 

 

 

 

 

 

 

HRAS  
FAS 
GADD45A 

Evading Growth Suppressors 
Resisting Cell Death 
Evading Growth Suppressors/ 
Resisting Cell Death 

Oncogene 
Oncogene 
Oncogene/TSG 

Cell migration 

Tissue migration 
  

FGF1 
 
CDH13 

 
 
 
 
 
 
 
TGFBR1/2 

Evading Growth Suppressors/ 
Inducing Angiogenesis 
Sustaining Proliferative Signalling 
/Evading Growth Suppressors/ 
Resisting Cell Death/ Activating 
Invasion and Metastasis 
 
Evading Growth Suppressors 
 

Oncogene 
 
TSG 
 
 
 
 
TSG 

149/165 0.004 

Regulation of cell 
adhesion mediated by 
integrin 

MUC1  
SYK 
 
ITGAV 

Activating Invasion and Metastasis 
Evading Growth Suppressors/ 
Resisting Cell Death 
Sustaining Proliferative Signalling/ 
Activating Invasion and Metastasis 
 

Oncogene 
Oncogene/TSG 
 
Oncogene 40/42 0.016 

Regulation of cell 
migration 

ADAM8 
 
 
NRG1 
TERT  

 
 
 
 
 
 
LAMA4 

Inducing Angiogenesis/ Activating 
Invasion and Metastasis 
 
Sustaining Proliferative Signalling 
Enabling Replicative Immortality 
 
Inducing Angiogenesis/ Activating 
Invasion and Metastasis 

Oncogene 
 
 
Oncogene 
Oncogene 
 
Oncogene 

411/480 0.045 
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4.3.2. RNA Sequencing reveals perturbations of the non-coding 
elements upon MIAT down-regulation in SH-SY5Y cells  
 

Given the importance of lncRNAs in cellular and molecular functions, perturbations of 

the non-coding genome were investigated next. The RNA sequencing analysis 

revealed that apart from the perturbations in protein-coding genes and pathways, 

numerous and significant changes in expression were observed in the non-coding 

repertoire, as well. In particular, 502 lncRNAs were found to be deregulated upon MIAT 

knockdown (Supplementary Table 1, Appendix II), belonging to various subcategories: 

41% fell within the NAT subclass, while 20% were lincRNAs and 17% were 

pseudogenes, as shown in Figure 4.5. Markedly, most of the most highly deregulated 

ones have been associated with cancer (Figure 4.5, highlighted in green). Interestingly, 

the tumour suppressor CASC2, which was among the top deregulated lncRNAs, has 

already been associated with a wide variety of tumours, while ZNFX1-AS1, one of the 

most upregulated lncRNAs has been attributed a dual role, depending on the cancer 

type (Wang et al., 2016; Shi et al., 2019). Furthermore, the oncogenic TP73-AS1, 

implicated in numerous cancers, was ~6-fold upregulated, although at the same time 

the tumour suppressor TP73 was also ~10-fold upregulated. MIR22HG, a well-studied 

tumour suppressive lncRNA in a variety of cancers, was also found to be deregulated 

in response to MIAT knockdown. Finally, of note is the fact that the expression of 

HIF1A-AS2, the NAT of HIF1A, a transcription factor that tightly regulates cellular 

responses in hypoxic conditions, was found to be ~4.5-fold increased, while the 

expression of HIF1A itself was decreased ~3-fold upon MIAT knockdown, suggesting a 

potential role of MIAT in the regulation of transcript/NAT pairs. 
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Figure 4.5. The effect of MIAT down-regulation on lncRNA expression of SH-SY5Y cells. 
The knockdown of MIAT induces alterations in the expression of several lncRNAs. The bar 
chart presents only the top perturbed genes in both directions (a). Red coloured bars 
correspond to up-regulated gene expression, while blue coloured bars correspond to down-
regulated gene expression. Data are the difference in expression between cells nucleofected 
with the –ve siRNA and cells nucleofected with MIAT_2 expressed as a normalised log2 fold 
change (log2FC). A threshold of 0.05 for statistical significance (p-value) and a log fold change 
of expression with an absolute value of at least 0.6 were applied. The pie chart schematically 
presents the distribution of differentially expressed lncRNAs into different lncRNA subclasses 
(b); lncRNAs highlighted in green represent cancer-related lncRNAs; DE: differentially 
expressed; NAT: Natural Anti-sense Transcript; lincRNA: Long Intergenic RNA; miRNA host: 
microRNA host gene; snoRNA host: small nucleolar RNA host gene. 
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Furthermore, the expression of 263 miRNAs was predicted to be perturbed in response 

to MIAT down-regulation (Supplementary Table 2, Appendix II). Notably, miR-124, 

which is predicted to be the most deregulated miRNA, is a known tumour suppressor 

miRNA and targets important for tumour progression genes, such as Smad5, Abl2 and 

the transcription factor Oct1. On the contrary, the oncomirs miR-27a/b, which are also 

predicted to be highly perturbed, target important anti-apoptotic molecules such as 

XIAP, as well as CDK6 and the MIAT-related splicing factor QK1. 

 

4.3.3. RNA Sequencing reveals MIAT –mediated in cis regulation in SH-

SY5Y cells and regulation of splice variant relative abundance 

LncRNAs are potent regulators of gene expression both in cis and in trans. In line with 

this, after we established the effect of the down-regulation of MIAT on global gene 

expression, we were then prompted to explore this effect in cis, and, therefore, we 

sought expressional changes in genes located on the same chromosome as MIAT 

(chromosome 22). The analysis of the RNA sequencing results showed that an 

astonishing 334 neighbouring genes were differentially expressed in response to MIAT 

knockdown, including in the vast majority protein-coding genes (310), but also multiple 

lncRNAs (24), as depicted in Figure 4.6 (and Supplementary Table 3, Appendix II). 

Among them, the most upregulated (17-fold), PARVB- a focal adhesion protein, has 

been associated with tumour progression in colorectal cancer (Bravou et al., 2015), but 

also with inhibition of tumourigenicity in breast cancer (Johnstone et al., 2008). In 

addition, the miRNA biogenesis machinery component DGCR8 (DiGeorge Syndrome 

Critical Region gene 8), which has been attributed oncogenic properties, was up-

regulated ~5-fold, a fact that could partially explain the perturbations in miRNAs. In line 

with the elevated levels of apoptosis induced due to MIAT knockdown, the pro-

apoptotic BID and BIK were shown to be ~2-fold upregulated. Interestingly, MIAT 
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seems to be responsible for the simultaneous regulation of protein-coding/NAT pairs on 

chromosome 22, as in the case of NUP50 (Nucleoporin 50) and NUP50-DT 

(LOC100506714), PPARA (Peroxisome Proliferator-Activated Receptor Alpha) and 

MIRLET7BHG (linc-PPARA), CHKB (Choline Kinase Beta) and CHKB-AS1, and MIF 

(Macrophage Migration Inhibitory Factor) and MIF-AS1. 
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Figure 4.6. MIAT down-regulation acts in cis to induce perturbations in gene expression 
on chromosome 22. Top perturbed genes on chromosome 22 upon MIAT knockdown, 
including protein-coding genes and lncRNAs. Red coloured bars correspond to upregulated 
gene expression, while blue coloured bars correspond to downregulated gene expression. Data 
are the difference in expression between cells nucleofected with the –ve siRNA and cells 
nucleofected with MIAT_2 expressed as a normalised log2 fold change (log2FC). A threshold of 
0.05 for statistical significance (p-value) and a log2 fold change of expression with an absolute 
value of at least 0.6 were applied (a); the pie chart schematically presents the distribution of 
differentially expressed genes into protein-coding and non-coding (b).  
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Multiple lines of evidence suggest that MIAT functions as a splicing factor sponge, 

thereby regulating alternative splicing (Tsuiji et al., 2011; Ishizuka et al., 2014; Cheng 

et al., 2016). Therefore, we attempted to identify differentially expressed alternatively 

spliced genes associated with MIAT down-regulation. Among the genes on 

chromosome 22 whose expression was perturbed in response to MIAT knockdown, a 

great number (119) presented differential expression changes depending on the 

isoform of the gene assessed. This differential expression often followed both 

directions, with the expression of one isoform being up-regulated, whilst the expression 

of another isoform being down-regulated, suggesting that MIAT regulates the relative 

abundance of isoforms. This was in agreement with up to date literature and the 

established role of MIAT as a regulator of alternative splicing. Thus, we were prompted 

to assess whether this effect can be extrapolated on global gene expression, testing 

whether MIAT knockdown controls the abundance of splice variants. Based on the 

RNA sequencing results, it was discovered that this was the case, at least for a number 

of genes of interest for this study, including important protein-coding regulators of 

apoptosis (BID, XIAP, CASP8), cell survival (MAPK7) and response to oxidative stress 

(HIF1A), as well as cancer-associated lncRNAs (CASC2, MIR22HG), and the lncRNA 

LOC100506714, located on chromosome 22, as presented in Figure 4.7. These 

differentially expressed alternatively spliced genes could potentially mediate aspects of 

the response to MIAT knockdown. 
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Figure 4.7. MIAT knockdown induces changes in the relative abundance of gene splice 
variants. XIAP (a); MCL1 (b); CASP8 (c); BID (d); MAPK7 (e); HIF1A (f); GADD45A (g); 
LOC100506714 (h); MIR22HG (i); CASC2 (j). Isoform 1 represents the longest transcript. Data 
are Log2 normalised read counts expressed as Fragments Per Kilobase of transcript per Million 
mapped reads (FPKM) and comparisons were made between cells nucleofected with the –ve 
siRNA and cells nucleofected with MIAT_2. 
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4.3.4. The effects of MIAT down-regulation on programmed cell death 

Following the RNA sequencing results, which suggested that ROS-mediated apoptosis 

is induced upon MIAT knockdown, we decided to further validate the influence of MIAT 

on programmed cell death, including apoptosis, given the findings discussed in Chapter 

3 suggesting that the down-regulation of MIAT induces a pronounced elevation in the 

levels of basal apoptosis. The validation was performed for a selection of genes on the 

mRNA level with the use of RT-qPCR and RT2 Profiler PCR Arrays, including the RT² 

Profiler™ PCR Array Human Cell Death PathwayFinder and the RT² Profiler™ PCR 

Array Human Apoptosis, which assessed a panel of cell death- and apoptosis-related 

genes, respectively, as well as on the protein level with the use of western blotting. 

 

4.3.4.1. The effects of MIAT down-regulation on the expression of genes 

associated with cell death  

The RT² Profiler™ PCR Array Human Cell Death PathwayFinder assessed the 

differential expression of a panel of 84 genes associated with three different types of 

programmed cell death: apoptosis, necroptosis and autophagy, with a number of genes 

being associated with more than one type, given the abundance of programmed cell 

death networks. The analysis of the results revealed that among the 84 tested genes 

only two were upregulated upon MIAT knockdown, CD40 (CD40 molecule, TNF 

receptor superfamily member 5) and CD40LG (CD40 Ligand), while 34 were down-

regulated and 48 remained unaffected. The list of down-regulated genes included 

caspases (CASP7/9), apoptosis-related genes such as BCL-2 and BAX, as well as 

autophagy-related genes (ATG5/7) and necroptosis-related genes (Supplementary 

Figure 1a, Appendix II). We then investigated whether this down-regulation of the 

genes coincided with the results acquired with the RNA sequencing. In fact, 16 of the 

34 down-regulated genes were validated to be perturbed as assessed by both means, 

including TP53, PIK3C3, IGF1R, GRB2, GADD45A, DFFA (DNA Fragmentation Factor 
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Subunit Alpha), CASP7/9, BMF (BCL-2 Modifying Factor), BCL-2, BAX and ABL1, 

suggesting the important role of MIAT in the control of programmed cell death (Table 

4.4 and Supplementary Figure 1b, Appendix II). 
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Table 4.4. Programmed cell death-associated differentially expressed genes in response 
to MIAT down-regulation. 

Gene Symbol Gene Name 
Up-

regulated/Down-
regulated 

Function 

ABL1 

ABL Proto-
Oncogene 1, Non-
Receptor Tyrosine 
Kinase. 
 

Down-regulated cell division, adhesion, 
differentiation, response to stress 

APP Amyloid Beta 
Precursor Protein Down-regulated 

apoptosis-inducing pathways 
(mediated by G(O) and JIP), 

oxidative stress 

BAX BCL-2 Associated X Down-regulated heterodimerises with BCL-2 , 
functions as an apoptotic activator 

BCL-2 BCL-2 Apoptosis 
Regulator Down-regulated 

integral outer mitochondrial 
membrane protein blocking the 

apoptotic death 

BMF BCL-2 Modifying 
Factor Down-regulated binds BCL-2 proteins, and 

functions as an apoptotic activator 

CASP7/9 Caspase 7/9 Down-regulated execution-phase of cell apoptosis 

DENND4A DENN Domain 
Containing 4A Down-regulated interferon stimulated, c-Myc 

regulator 

DFFA 
DNA Fragmentation 
Factor Subunit 
Alpha 

Down-regulated 
substrate for caspase-3, triggers 

DNA fragmentation during 
apoptosis 

GADD45A 
Growth Arrest And 
DNA Damage 
Inducible Alpha 

Down-regulated 
responds to environmental 

stresses by mediating activation of 
the p38/JNK pathway 

GRB2 
Growth Factor 
Receptor Bound 
Protein 2 

Down-regulated EGFR/Ras pathway regulator 

IGF1R Insulin-Like Growth 
Factor 1 Receptor Down-regulated 

highly overexpressed in malignant 
tissues, functions as an anti-

apoptotic agent 

PIK3C3 
Phosphatidylinositol 
3-Kinase Catalytic 
Subunit Type 3 

Down-regulated involved in the initiation of 
autophagosomes 

SNCA Synuclein Alpha Down-regulated phospholipase D2 inhibitor 

SYCP2 Synaptonemal 
Complex Protein 2 Down-regulated cell division 

TP53 Tumor Protein P53 Down-regulated 

responds to diverse cellular 
stresses to regulate expression, 

thereby inducing cell cycle arrest, 
apoptosis, senescence, DNA 

repair, or changes in metabolism 
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In an attempt to establish apoptosis as the main route of programmed cell death that is 

affected by the down-regulation of MIAT, the RT² Profiler™ PCR Array Human 

Apoptosis was subsequently employed in order to assess a panel of 84 apoptosis-

related genes, including genes related to both extrinsic and intrinsic apoptotic pathways 

and all apoptotic stages, from initiation to execution. The analysis of the results showed 

that unlike the other RT2 profiler, the expression of most genes was perturbed, with 

only 4 being unaffected. At the same time, 49 genes were up-regulated, including 

caspases 8 and 10, APAF1, BIK, TP73, CFLAR (CASP8 And FADD Like Apoptosis 

Regulator) and BAD, while 31 were down-regulated, including several caspases 

(CASP2/3/4/7), MCL1, FAS, FASLG, FADD, DIABLO, BIRC2/3/6 (Baculoviral IAP 

Repeat Containing 2/3/6) (Supplementary Figure 2a, Appendix II). To further validate 

these results, the differential gene expression was compared between the RNA 

sequencing results and the RT² Profiler results. Notably, this comparison brought to 

light 28 genes whose expression was perturbed in the same direction in both 

approaches (Table 4.5 and Supplementary Figure 2b, Appendix II). This list contains a 

variety of well-known apoptosis-associated genes, such as APAF1, BAD, BCL2L11, 

BIK, TRADD, TRAF2/3, TP73, BIRC2/5/6, CASP2/3/4/6/7/8, FAS, MCL1 and XIAP. 
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Table 4.5. Apoptosis-associated differentially expressed genes in response to MIAT 
down-regulation. 

Gene Symbol Gene Name 
Up-

regulated/Down-
regulated 

Function 

APAF1 Apoptotic Peptidase 
Activating Factor 1 Up-regulated apoptosis initiator, component of 

the apoptosome 

BAD 
BCL-2 Associated 
Agonist Of Cell 
Death 

Up-regulated 
cell apoptosis regulator by forming 

heterodimers with BCL-xL and 
BCL-2 

BAG1 BCL-2 Associated 
Athanogene 1 Up-regulated 

BCL-2-associated athanogene, 
enhances the anti-apoptotic effects 

of BCL-2 

BCL2L11 BCL-2 Like 11 Up-regulated 
interacts with other members of the 
BCL-2 protein family, acting as an 

apoptotic activator 

BIK BCL-2 Interacting 
Killer Up-regulated 

pro-apoptotic activity, interaction 
with anti-apoptotic members of the 

BCL-2 family 

BIRC5 Baculoviral IAP 
Repeat Containing 5 Up-regulated 

member of the inhibitor of 
apoptosis (IAP) gene family, 
negative regulatory protein 

preventing apoptotic cell death 

BIRC2/6 
Baculoviral IAP 
Repeat Containing 
2/6 

Down-regulated 

apoptosis inhibitor by means of 
binding to TRAF1 and TRAF2/  

apoptosis inhibitor through 
facilitating the degradation of 

apoptotic proteins by ubiquitination 

BNIP2 BCL-2 Interacting 
Protein 2 Down-regulated 

interacts with the E1B 19 kDa 
protein, which protects cells from 
virally-induced cell death and the 

E1B 19 kDa-like sequences of 
BCL-2 

BNIP3L BCL-2 Interacting 
Protein 3 Like Down-regulated 

targets mitochondria and causes 
apoptotic changes, including loss 
of membrane potential and the 

release of cytochrome c 

CASP6/8 Caspase 6/8 Up-regulated 

downstream enzyme in the 
caspase activation cascade/ 

involved in apoptosis induced by 
Fas and various apoptotic stimuli 

CASP2/3/4/7 Caspase 2/3/4/7 Down-regulated 

functions in stress-induced cell 
death pathways, cell cycle 

maintenance, and suppression of 
tumorigenesis/ cleaves and 

activates caspases 6, 7, and 9/ 
cleaves and activates its own 

precursor protein and caspase 1 
precursor/ cleaved by caspase 3 
and 10, activated upon cell death 

stimuli and induces apoptosis 

CIDEB 
Cell Death Inducing 
DFFA Like Effector 
B 

Down-regulated apoptosis activator 

DAPK1 Death Associated 
Protein Kinase 1 Down-regulated tumour suppressor candidate 

FAS Fas Cell Surface 
Death Receptor Down-regulated 

apoptosis initiator upon ligand 
binding and NF-kappaB, 

MAPK3/ERK1, and MAPK8/JNK 
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inducer 

HRK Harakiri, BCL-2 
Interacting Protein Up-regulated 

localised in intracellular 
membranes, promotes apoptosis 
by interacting with the apoptotic 

inhibitors BCL-2 and BCL-X(L) via 
its BH3 domain 

MCL1 
MCL1 Apoptosis 
Regulator, BCL-2 
Family Member 

Down-regulated BCL-2 family member, enhances 
cell survival by inhibiting apoptosis 

NOD1 
Nucleotide Binding 
Oligomerization 
Domain Containing 
1 

Up-regulated 
induces apoptosis via its N-terminal 

caspase recruitment domain 
(CARD) 

TNFRSF10B 
TNF Receptor 
Superfamily Member 
10b 

Down-regulated 

TNF-receptor superfamily member, 
containing an intracellular death 

domain. Can be activated by 
TNFSF10/TRAIL/APO-2L, and 
transduces an apoptosis signal 

TP73 Tumor Protein P73 Up-regulated participates in the apoptotic 
response to DNA damage 

TRADD 
TNFRSF1A 
Associated Via 
Death Domain 

Up-regulated 

interacts with TNFRSF1A/TNFR1 
and mediates programmed cell 

death signalling and NF-κB 
activation. Βinds TRAF2, reduces 
the recruitment of IAPs by TRAF2, 

suppressing TRAF2 -mediated 
apoptosis, interacts with 

TNFRSF6/FAS and adaptor protein 
FADD/MORT1, and is involved in 

the Fas-induced cell death pathway 

TRAF2/3 
TNF Receptor 
Associated Factor 
2/3 

Up-regulated 

functions as a mediator of the anti-
apoptotic signals from TNF 
receptors/  induces NF-κB 

activation and cell death initiated 
by LTβ ligation 

XIAP X-Linked Inhibitor Of 
Apoptosis Down-regulated 

functions through binding to 
TRAF1/2 and TRAF2, and inhibits 

at least two members of the 
caspase family of cell-death 

proteases, CASP3/7 
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In light of the fact that several genes with perturbed expression as revealed by RNA 

sequencing and the RT2 are regulated by transcription factors with established roles in 

cancerous contexts, the down-regulation of two of them in response to MIAT 

knockdown was validated, given the fact that they regulate the expression of the 

perturbed genes. Therefore, the expression levels of c-Myc and Oct1 (POU2F1) were 

validated with RT-qPCR, as c-Myc mediates the transcription of BNIP3L, TP53 and 

GADD45A, and Oct1 the transcription of ABL1, NFκB1, BCL2L2 and GADD45A. In line 

with this, the expression of both transcription factors was found to be significantly 

down-regulated (~50% and ~70%, for c-Myc and Oct1, respectively, in agreement with 

the RNA sequencing results, which reported a ~1.2- and ~6-fold decrease, for c-Myc 

and Oct1, respectively (Figure 4.8). 

 

 
Figure 4.8. MIAT down-regulation triggers the down-regulation of the transcription 
factors C-Myc and Oct1 (POU2F1) in SH-SY5Y cells. SH-SY5Y cells were transfected with 
the negative siRNA or MIAT_2 using nucleofection, incubated for 48 h and the relative 
expression of MIAT was measured by Real-Time PCR 48 h post-transfection. The samples 
chosen for the assessment of C-Myc and Oct1 levels had a validated reduction in expression of 
at least 55%. Subsequently, the expression of c-Myc and Oct1 was measured and was found to 
be significantly lower for both c-Myc (~50%) (a) and Oct1 (~70%) (b); ** indicate a p-
value<0.01;*** indicate a p-value<0.001, as measured by unpaired t-test, n=3 experiments. 
Data are represented as mean +/- SEM. 
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4.3.4.2. The effects of MIAT down-regulation on the protein levels of 

proteins involved in programmed cell death  

Mature mRNA transcripts are subject to various post-transcriptional modifications and 

undergo multi-level control steps before they enter the process of translation (Corbett, 

2018). Therefore, the fact that the mRNA levels of numerous genes were perturbed in 

response to MIAT knockdown does not guarantee that the same effect would be 

observed on the protein level. To this end, the next step encompassed in the study was 

to assess the changes of protein levels of a number of apoptosis-related genes, 

namely CASP8, XIAP, BID, BAD and MCL1, via western blotting. 

Western Blot analysis revealed that the effects of the down-regulation of MIAT, despite 

being very pronounced for the aforementioned genes on the mRNA level, were indeed 

present on the protein level of these –mainly intrinsic apoptosis-related genes but, in a 

less pronounced fashion. In specific, the anti-apoptotic MCL1 and XIAP showed the 

most highlighted decrease in protein levels in accordance with the decrease on the 

mRNA level, which, although present for all three MIAT-specific siRNAs, was 

significant only for two of them (MIAT_2, MIAT_3), reaching a ~65% reduction for 

MIAT_2 and ~80% reduction for MIAT_3 for MCL1 (Figure 4.9a), and a ~65% decrease 

for MIAT_2 and a ~70% decrease for MIAT_3 for XIAP (Figure 4.9b). In contrast, 

although the pro-apoptotic BID, BAD and CASP8 did show an increase in levels in 

agreement with the observations on the mRNA level, this increase was not again 

equally pronounced. In fact, as far as BAD is concerned a statistically significant 

increase of ~50% was observed for MIAT_1 only (Figure 4.9c). As shown in Figure 

4.9d, e, for BID and CASP8, although all the three MIAT-specific siRNAs caused an 

increase in the protein levels of both genes, this effect was only significant for MIAT_3 -

treated cells (~40% and ~75% increase, respectively). Collectively, these data suggest 
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that MIAT plays a vital role in triggering the ROS-mediated apoptotic response of SH-

SY5Y cells. 
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Figure 4.9. MIAT down-regulation induces changes on the levels of apoptosis-related proteins in SH-
SY5Y cells. SH-SY5Y cells were transfected with the negative siRNA or one of the MIAT-specific siRNAs 
using nucleofection, incubated for 48 h and the protein levels were measured via Western Blot. The levels of 
MCL1 are significantly reduced for MIAT_2- (~65%) and MIAT_3- (~80%) treated cells (a), while the levels of 
XIAP are also significantly reduced for MIAT_2- (~65%) and MIAT_3- (~70%) treated cells (b). On the 
contrary, MIAT knockdown causes a statistically significant increase in the levels of BAD for MIAT_1- treated 
cells (~50%) (c), while for BID (~40%) (d) and CASP8 (~75%) (e) the increase is significant only for MIAT_3 -
treated cells; representative images of Western Blots for MCL1, XIAP, BAD, BID and CASP8: right panels, a-
e, respectively; data are presented as relative expression of MIAT-specific siRNA/ -ve Ctrl, following 
normalisation against the housekeeping gene β-Actin; * indicates a p-value<0.05; ** indicate a p-value<0.01, 
as measured by unpaired T-test, n=4 experiments. Data are represented as mean +/- SEM. 
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4.3.5. MIAT silencing induces fluctuations in ROS levels in 

neuroblastoma and glioma cells 

On the grounds that the RNA sequencing revealed numerous ROS-associated 

processes to be perturbed upon MIAT knockdown, we further investigated whether 

there is an increase in ROS levels when down-regulating MIAT, and whether this 

perturbation is related to the increased apoptosis and decreased migration of 

neuroblastoma and GBM cells, as observed in Chapter 3. It was, therefore, tested 

whether MIAT_2- and MIAT_3- mediated knockdown of MIAT affects the production of 

ROS. ROS levels were assessed by flow cytometry using the CellROX® Green 

Reagent in all cell lines. However, due to the constant acquisition of very high levels of 

autofluorescence in SH-SY5Y cells, a different approach was adopted (described 

below).  

 

4.3.5.1. MIAT knockdown augments ROS levels in glioma cells 

To evaluate the levels of ROS in response to MIAT-specific knockdown, the 

astrocytoma/GBM 1321N1 cells and the GBM T98G cells were transfected with either 

the –ve siRNA or MIAT_2, were incubated for 48 and 72 h, and ROS production levels 

were assessed by flow cytometry. Notably, for 1321N1 cells, there was a significant 

elevation in ROS levels upon MIAT down-regulation. In particular, a ~100% increase 

was observed both 48 h and 72 h post-seeding (Figure 4.10a, b, respectively). The 

results obtained for T98G cells followed the same trend. There was a ~100% increase 

in the ROS levels of the cells in which MIAT was down-regulated, both 48 h (Figure 

4.10c) and 72 h (Figure 4.10d) post-seeding; however, the increase was statistically 

significant only at 48 h. 
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Figure 4.10. MIAT-specific down-regulation increases ROS levels in glioma cells. 1321N1 
and T98G cells were transfected with the –ve siRNA or the MIAT-specific siRNA MIAT_2 using 
nucleofection, incubated for 48/72 h and assessed for ROS production by flow cytometry using 
the CellROX® Green Reagent. In 1321N1 cells, a statistically significant ~1-fold increase was 
observed both at 48 h (a) and at 72 h (b). In T98G cells, a statistically significant increase of ~1-
fold was observed at 48 h (c), but the equivalent increase at 72 h was not statistically significant 
(d); * indicates a p-value<0.05; ** indicate a p-value<0.01, as measured by unpaired T-test, n=3 
experiments. Data are represented as mean +/- SEM. 



183 
 

 

4.3.5.2. PBN rescues the MIAT-knockdown-mediated increase in 

apoptosis and the decrease in migration of neuroblastoma cells 

In SH-SY5Y cells, the contribution of ROS production in basal apoptosis was evaluated 

through a ROS scavenging approach. To this end, Alpha-phenyl-N-tert-butyl nitrone 

(PBN), a widely used ROS scavenger, was employed. Based on existing literature 

(Miyajima and Kotake, 1995; Gao et al., 2007; Deshmukh and Trivedi, 2013) and 

optimisation experiments (data not shown), 600μΜ PBN were added to the cells 1 hour 

prior to the addition of equal amount of the ROS inducer H2O2  It was revealed that PBN 

can restore the apoptosis levels in SH-SY5Y cells to levels similar to those of the 

untreated control cells (~2% at 8 h and 24 h), as assessed by acridine orange (Figure 

4.11). Moreover, PBN was capable of partially restoring apoptosis caused by H2O2 at 

both time points (Figure 4.11).  

 
Figure 4.11. PBN rescues apoptosis caused by MIAT-specific knockdown in SH-SY5Y 
cells. The best rescue results were acquired when 600μM PBN were added to SH-SY5Y cells, 
the cells were incubated for 1h and then the ROS inducer H2O2 was added to the cells. PBN 
was capable of significantly reducing apoptosis levels in the cells, as assessed by acridine 
orange 8 and 24h after H2O2 addition (b); * indicates a p-value<0.05; **** indicate a p-
value<0.001, as measured by Two-way ANOVA tests with multiple comparisons (MCT), n=3 
experiments. Data are represented as mean +/- SEM. 
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Since the optimisation results revealed that the ROS scavenger PBN is capable of 

rescuing the elevated apoptosis levels in SH-SY5Y cells, it was hypothesised that the 

same effect would be obtained for MIAT_2/3-induced MIAT down-regulation, and in 

addition, that PBN would also be able to restore the migrating ability of SH-SY5Y cells, 

which was severely eliminated upon MIAT knockdown, as described in section 3.3.4. In 

order to test this hypothesis, SH-SY5Y cells were nucleofected with the –ve siRNA or 

one of the two MIAT-specific siRNAs (MIAT_2, MIAT_3), were re-plated after 48 h, and 

PBN was added 24 h post-replating. Apoptosis levels were tested after 24 and 48 h by 

acridine orange staining and the effect on cell migration was tested with the wound 

healing assay at 0, 24 and 48 h post-treatment. 

 

Acridine orange staining not only confirmed that both MIAT_2- and MIAT_3-mediated 

knockdown increased the levels of apoptosis ~2-fold 48 h post-plating (as described in 

section 3.3.1), but also showed that a ~2-fold statistically significant increase in 

apoptosis levels is obtained 24h post-plating, while PBN alone did not have effects on 

basal apoptosis and migration (results not shown). Notably, it was revealed that, as 

hypothesised, the addition of PBN is capable of fully restoring the apoptosis levels 

caused as a result of MIAT down-regulation to levels similar to those of the control 

groups, i.e. from ~9% to ~2/3% for MIAT_2 and MIAT_3, respectively, at 24h (Figure 

4.12a) and from ~10% to ~3/2% for MIAT_2 and MIAT_3, respectively, at 48 h (Figure 

4.12b). 
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Figure 4.12. PBN scavenges MIAT knockdown-mediated apoptosis in SH-SY5Y cells. SH-SY5Y cells 
were nucleofected with the –ve siRNA or one of the two MIAT-specific siRNAs (MIAT_2, MIAT_3), were re-
plated after 48 h, and PBN was added 24h post-plating. Apoptosis levels were tested after 24h and 48 h by 
acridine orange staining. PBN fully restored the apoptosis levels caused as a result of MIAT down-regulation 
to levels similar to those of the control groups for both MIAT_2 and MIAT_3 at 24h (a) and 48 h (b); 
representative illustration of apoptotic cells 48 h post-treatment, stained with acridine orange and observed 
using fluorescent microscopy (c). Grey arrows indicate cells undergoing apoptosis; **** indicate a p-
value<0.001, as measured by Two-way ANOVA tests with multiple comparisons (MCT), n=3 experiments. 
Data are represented as mean +/- SEM. 
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Further to restoring basal apoptosis levels, the addition of PBN to SH-SY5Y cells was 

also able to reverse the effect of MIAT down-regulation on cell migration, i.e. PBN 

administration re-potentiated cells to migrate, in levels equivalent to those of the control 

groups. In specific, this experimental series, not only confirmed the fact that the 

knockdown of MIAT significantly inhibited the migratory ability of the cells ~30-35% (as 

described in section 3.3.4), but also revealed that the addition of PBN can reverse the 

inhibitory effects of MIAT silencing, as reflected in gap closure levels of wound healing 

assays. In detail, for MIAT_2-treated cells, the gap closure was augmented from 38% 

to 65% at 24h (Figure 4.13a) and from 53% to 78% at 48 h (Figure 4.14b), while for 

MIAT_3-treated cells the gap closure was increased from 37% to 64% at 24h (Figure 

4.15a) and from 48% to 77% at 48 h (Figure 4.13b). 
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Figure 4.13. PBN scavenges MIAT knockdown-mediated inhibition of migration in SH-SY5Y cells. SH-
SY5Y cells were transfected with the –ve siRNA or one of the two MIAT-specific siRNAs (MIAT_2, MIAT_3) 
using nucleofection, incubated for 48 h, re-plated, incubated for another 24h before the addition of 600μM 
PBN, and a linear scratch was introduced 24h post-treatment. The % gap closure of the scratch was 
measured after 24 and 48 h. PBN significantly increases the migratory ability of the cells. Both for MIAT_2- 
and MIAT_3-treated cells the gap closure is increased to the levels of the control groups at 24h (a) and 48 h 
(b), i.e. to~60% and 80%, respectively; representative illustration of a wound healing (“scratch”) assay (c); ** 
indicate a p-value<0.01, as measured by Two-way ANOVA tests with multiple comparisons (MCT), n=3 
experiments. Data are represented as mean +/- SEM. 
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4.4. Discussion 

MIAT has been attributed an important role in alternative splicing by acting as a sponge 

to prevent splicing factors, such as SF1, QK1, SRSF1 (Tsuiji et al., 2011; Cheng et al., 

2016) and Celf3 (Ishizuka et al., 2014) from exerting their normal role. In addition, 

MIAT has been found to act as a miRNA sponge, as in the cases of miR-214 and miR-

22-3p in HCC (Huang et al., 2018; Zhao et al., 2019), miR-155-5p in breast cancer 

(Luan et al., 2017) and miR-141 in gastric cancer (Sha et al., 2018). Nevertheless, the 

exact molecular mechanisms underpinning the action of MIAT and its involvement in 

the regulation of cell fate determination remain largely undiscovered. To this end, and 

in light of the evidence presented in Chapter 3 suggesting the involvement of MIAT in 

the regulation of cell survival, basal apoptosis and migration, the current chapter aimed 

at expanding the knowledge on the modes of action of MIAT in neuroblastoma cells, as 

well as at linking MIAT to the regulation of elevated apoptosis and reduced cell survival 

and migration of SH-SY5Y cells. The analysis of the RNA sequencing provided some 

interesting insights. The silencing of MIAT is capable of modulating cancer-related 

processes including ROS-mediated apoptosis, and as an indirect consequence, 

reducing the migratory ability of the cells. Moreover, fluctuation in the levels of MIAT 

can alter the lncRNA landscape, regulate gene expression in cis and affect alternative 

splicing. Following the RNA sequencing lead, aberrant expression of apoptosis-related 

genes was also herein confirmed, as was the fact that cell death induced by MIAT 

down-regulation could be attributed to elevated ROS levels. 

The RNA sequencing demonstrated that a striking 11085 genes were differentially 

expressed, along with 5 cancer-related pathways. In light of the fact that our functional 

studies (described in Chapter 3) showed an overall tendency of MIAT-specific siRNA 

knockdown to cause reduced long-term cell viability and an impressive multi-fold 

increase of the apoptosis levels in all the tested cell lines, our attention was shifted 

towards survival- and apoptosis-related processes and pathways. As the RNA 
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sequencing suggests, a number of cell growth and pro-survival pathways are affected 

following MIAT down-regulation, for example, the overlapping MAPK, TGF-β, EGFR 

and Phospholipase D pathways, with a lot of crucial genes being perturbed in both 

directions (HRAS and SMAD 5, for example), making it extremely hard to decipher the 

direction in which the system is balancing.  

ROS are responsible for activating signal transduction pathways, as well as early 

response TFs (Wei et al., 2019). Notably, the MAPK/ERK pathway, including PI3K/AKT 

and NFκB, have been established to be initiated by changes in ROS levels, leading to 

different outcomes depending on cellular contexts (Babu and Tay, 2019; 

NavaneethaKrishnan et al., 2019). Another such example of complicated regulation is 

c-Myc, a transcription factor that transcribes several target genes, mainly associated 

with cell survival and proliferation. However, it has also been found that when 

deregulated, it participates in both the intrinsic apoptotic pathway, therefore promoting 

apoptosis via anti-apoptotic molecule suppression (e.g. BCL-2 family) and pro-

apoptotic molecule induction, and the extrinsic apoptotic pathway (Hoffman and 

Liebermann, 2008; McMahon, 2014). Additionally, c-Myc, which was found to be down-

regulated (as part of the perturbed MAPK signalling cascade) following MIAT 

knockdown in SH-SY5Y cells in our RNA sequencing, had been previously found to 

cause MIAT’s significant up-regulation when inhibited in GBMs (Galardi et al., 2016). In 

a ROS-related context, high ROS levels induce the up-regulation of c-Myc favouring 

tumour progression; however, above a certain threshold, ROS-induced c-Myc 

expression favours apoptosis and cell death (Babu and Tay, 2019; Florean et al., 2019; 

Lin, 2019). This suggests a high versatility of these genes’ functions, as well as great 

network complexity, especially among different tumour types. Whether MIAT or its 

downregulation is somehow involved in these pathways leading to these phenotypes, 

or whether there is a regulatory loop between the two molecules in neuroblastoma cells 

remains to be elucidated. 
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Given that the most pronounced changes observed in response to MIAT knockdown 

included the elevation of apoptosis levels, it was essential to analyse the molecular 

changes underpinning this phenotype, as well. Following the lead of our RNA 

sequencing results, we performed a series of expression analyses to validate the 

suggested effects. As the sequencing reveals in one of the most pronounced 

deregulated pathways, the NOD-like receptor signalling pathway, there is a 

tremendous upregulation of the initiator Caspase 8, together with a significant 

downregulation of the anti-apoptotic XIAP. To validate that programmed cell death, and 

especially apoptosis, is indeed one of the most affected processes upon MIAT 

knockdown, as indicated by the RNA sequencing, we employed two RT² Profiler™ 

PCR Arrays, assessing cell death including apoptosis, necroptosis and autophagy, and 

apoptosis more in-depth. The former suggested that indeed all the assessed aspects of 

cell death were affected, and validated numerous genes whose expression was 

perturbed as assessed by the sequencing, including TP53, PIK3C3, IGF1R, GRB2, 

GADD45A, DFFA, CASP7/9, BMF, BCL-2, BAX and ABL1. The latter provided even 

more convincing evidence that the down-regulation of MIAT induces both intrinsic and 

extrinsic apoptosis. In this case, a striking 80/84 assessed genes were found to be 

perturbed, including APAF1, BIK, TP73, CFLAR, BAD, several caspases 

(CASP2/3/4/7), MCL1, FAS, FASLG, FADD, DIABLO and BIRC2/3/6. Of these, in 28 

genes, including the well-known apoptosis-associated APAF1, BAD, BCL2L11, BIK, 

TRADD, TRAF2/3, TP73, BIRC2/5/6, CASP2/3/4/6/7/8, FAS, MCL1 and XIAP, the 

expressional perturbation followed the same direction in both the RNA sequencing and 

the array, pinpointing their crucial role in the process. 

Cell death,  including apoptosis, may in many cases be caused by increased levels of 

ROS mediating JNK activation as a response to TNFα stimuli, as well as by regulating 

various elements of the intrinsic apoptotic pathway (Galadari et al., 2017; Aggarwal et 

al., 2019; Florean et al., 2019). In line with this, there is a fundamental link between 
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ROS accumulation and the mitochondrial apoptotic pathway: increased ROS 

production, given that their primary site of generation is the mitochondrion, is capable 

of depolarising the mitochondrial membrane, leading to cytochrome C release, thus 

initiating the cascade. Apart from that, elevated ROS levels can directly trigger 

Caspase 8, as well as modulate Fas- and TRAIL-mediated (extrinsic) apoptosis 

(Galadari et al., 2017; NavaneethaKrishnan et al., 2019). Additionally, it has been 

observed that in the mitochondrial pathway ROS mediate the release of pro-apoptotic 

molecules such as AIF and Smac/DIABLO, in an APAF1-independent way, as well as 

to directly regulate BCL-2 family members, such as BCL-2, MCL1, BAX and BAD 

(Galadari et al., 2017). Our data showing that upon MIAT knockdown ROS levels are 

increased and in turn increase the expression of pro-apoptotic molecules (e.g. TP73, 

BID, BAD, DIABLO and CASP8) and on the contrary, decrease the expression of anti-

apoptotic ones (e.g. BCL-2, MCL1, BIRC2/6 and XIAP), are aligned with up to date 

literature and can propose this as a novel mechanism via which MIAT dictates how 

neuroblastoma cells respond to its silencing to ultimately undergo apoptosis. Finally, 

the fact that MIAT down-regulation also interferes with necroptosis and autophagy, in 

agreement with previous literature (Galadari et al., 2017; Florean et al., 2019), should 

not be neglected. 

Strikingly, the down-regulation of MIAT, on top of the pathway and protein-coding gene 

perturbations, triggers the differential expression of more than 500 lncRNAs, 

suggesting the existence of a complex, probably abundant, network of lncRNAs that 

work synergistically or antagonistically to regulate the response of neuroblastoma cells 

to the silencing of MIAT and further to ROS production, in order for the equilibrium to 

lean towards apoptosis. Notably, apart from the fact that these perturbed lncRNAs 

were spread into most of the known different lncRNA subclasses (with NATs and 

lincRNAs dominating), the expression of a variety of them was co-modulated with their 

protein-coding transcripts. This was particularly important in the case of significant 
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genes with established roles in cancer. For instance, the oncogenic TP73-AS1 (~6-fold 

up-regulated) was co-upregulated with its protein-coding gene TP73 (~10-fold), 

although TP73 is a well-known tumour suppressor. The expression of HIF1A-AS2, the 

NAT of HIF1A, was found to be ~4.5-fold increased, while the expression of HIF1A 

itself was decreased ~3-fold upon MIAT knockdown. Finally, MIRLET7BHG, the 

lncRNA located on chromosome 22, hosting the well-known tumour suppressor miR-

let7b (targeting the down-regulated Fas and Oct1) was ~4-fold up-regulated, while its 

coding transcript PPARA [which is also a redox sensor (Lavrovsky et al., 2000)] was 

10-fold down-regulated, suggesting that MIAT is responsible for elegantly, yet tightly, 

regulating the expression of transcript/NAT pairs. Taken together, this evidence 

highlights the importance of epigenetics, as described broadly to include miRNA- and 

lncRNA- mediated regulation (Kietzmann et al., 2017), on top of genetics, in regulating 

the cell fate of neuroblastoma cells. 

In order to add one more piece to the puzzle of how MIAT regulates gene expression, 

the regulation of in cis gene expression was investigated next, on the grounds that 

numerous lncRNAs are very potent in cis regulators (Cheng et al., 2016). It was 

demonstrated that this is also the case for MIAT, at least in neuroblastoma cells, as 

more than 300 neighbouring genes, coding and non-coding, were differentially 

expressed in response to its knockdown, including up-regulation and down-regulation, 

while the magnitude of the effect reached a 17-fold factor (PARVB). Interestingly, the 

number of genes on chromosome 22 that underwent an increase in expression was 

double the number of those undergoing decrease in expression, possibly revealing a 

tendency of MIAT to suppress gene expression, which is in agreement with its 

traditional role as a decoy (Tsuiji et al., 2011; Cheng et al., 2016). Moreover, in line with 

the observation that the levels of intrinsic apoptosis as induced by MIAT knockdown 

are increased, the pro-apoptotic BID and BIK were shown to be ~2-fold upregulated. 

Furthermore, the ability of MIAT to simultaneously regulate protein-coding/NAT pairs, 
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as described above, is observed on chromosome 22 as well, as in the case of 

NUP50/NUP50-DT, PPARA/MIRLET7BHG, CHKB/CHKB-AS1, and MIF/MIF-AS1. 

Finally, since MIAT has been suggested to regulate alternative splicing through 

sponging basic splicing factors (Tsuiji et al., 2011; Ishizuka et al., 2014; Cheng et al., 

2016), it could be hypothesised that this is reflected on the relative abundance of MIAT-

regulated targets. Our study confirmed this hypothesis, as the down-regulation of MIAT 

caused the differential distribution of same gene isoforms for numerous genes, 

including a selection of genes of interest, located not only on chromosome 22 but also 

spanning other chromosomes (XIAP, MCL1, CASP8, BID, MAPK7, HIF1A, GADD45A, 

MIR22HG, CASC2). 

Interestingly, the analysis of the RNA sequencing data also revealed that numerous 

processes associated with oxidative stress-induced cell death, such as the regulation 

of cellular response to oxidative stress and the regulation of oxidative stress-induced 

intrinsic apoptotic signalling pathway, were remarkably perturbed in response to MIAT 

knockdown. Notably, these RNA sequencing results were confirmed by functional 

assays which revealed an increase in ROS levels in glioma cells, as well as the ability 

of PBN, a ROS scavenger, to reverse the MIAT knockdown-induced apoptosis and 

migration phenotypes. It has long been established that cancer cells are metabolically 

active and undergo severe oxidative stress, leading to the production of ROS (Pelicano 

et al., 2004). ROS have also long been speculated to be associated with diverse 

cellular responses of the cancer cell depending on the cellular background, ranging 

from a transient growth arrest and adaptation, increase in cellular proliferation, 

permanent growth arrest or senescence, apoptosis, and necrosis (Davies, 1999; 

Florean et al., 2019). Recent findings suggest that an extensive list of lncRNAs, 

including NEAT1, lincRNA-p21, UCA1, H19, and MALAT1, are implicated in oxidative 

stress and the consequent hypoxia (Choudhry et al., 2014; Ding et al., 2018), as well 

as in ROS-mediated apoptosis (e.g. SNHG15, NLUCAT1) (Moreno Leon et al., 2019; 
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Saeinasab et al., 2019). In turn, a lot of other cellular processes are affected by 

oxidative stress, including angiogenesis, migration and metastasis, through different 

mechanisms (Dong et al., 2016). Therefore, it comes as no surprise that MIAT seems 

to be involved in oxidative stress regulation and its downstream effects, an effect that 

has also previously been reported in a cataract lenses study, where MIAT-specific 

knockdown enhanced the effects of H2O2-mediated oxidative stress to ultimately 

decrease cell proliferation and enhance apoptosis (Shen et al., 2016). 

Of note, a number of transcription factors implicated in these responses happen to be 

sensors of redox changes. For example, the notorious c-Myc, whose expression was 

downregulated upon MIAT knockdown, has been implicated in the production of ROS 

through oncogenic processes (Vafa et al., 2002; Lin, 2019). In addition, the master 

regulator transcription factor of hypoxia, HIF1A, which regulates and is, at the same 

time, regulated by ROS (Rodic and Vincent, 2018; Ghanbari Movahed et al., 2019; Lin, 

2019), was found to be significantly downregulated (3-fold) upon MIAT down-

regulation, suggesting that the knockdown of MIAT is involved in the regulation of the 

expression of HIF1A, potentially in a ROS-dependent manner, ultimately leading to the 

inhibition of cell survival and proliferation, and/or the increase of apoptosis. Finally, 

NRF2 (Nuclear Factor Erythroid 2-Related Factor 2), a master regulator of the oxidative 

stress response known for its role in the expression of the anti-oxidant machinery to 

promote oxidative stress-scavengers’ expression, is also a redox sensor and was also 

down-regulated (~3-fold) in response to MIAT down-regulation, suggesting that the 

silencing of MIAT is also capable of attenuating the anti-oxidant response to promote 

ROS-mediated apoptosis in neuroblastoma cells.  

On top of protein-coding players in the ROS-regulating network, there are accumulating 

lines of evidence that the non-coding genome vastly contributes to the regulation of 

ROS, and is, simultaneously, regulated by ROS. MicroRNA networks comprise a 

complicated variant in the regulation of oxidative stress (Lin, 2019). In response to the 
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down-regulation of MIAT, a plethora of miRNAs were predicted to be perturbed. Among 

them, a handful has already been implicated in ROS production and ROS-mediated 

cell responses. For instance, miR-15b-5p has been found to induce the production of 

ROS through the GSK3β axis (Xie et al., 2019), which is also down-regulated and 

belongs to one of the most perturbed pathways upon MIAT knockdown (EGFR tyrosine 

kinase inhibitor resistance). MiR-21, a miRNA triggered by TGF-β, is also responsible 

for inhibiting the ROS scavenger SOD2 (Superoxide Dismutase 2) (Lin, 2019; Wei et 

al., 2019) that was found to be ~2-fold down-regulated, as well. Furthermore, miR-30 

has been associated with the response to radiation and oxidative stress (Wei et al., 

2019). Moreover, miR-200 is upregulated in response to elevated ROS and mediates 

apoptosis through inhibiting its target ZEB1 (~2-fold decreased expression) (Lin, 2019). 

Most intriguingly, miR-34a targets the master regulator TF NRF2 and consequently 

contributes to the attenuation of multiple components of the anti-oxidant machinery 

(Lin, 2019). On top of this, it targets the histone deacetylase SIRT1, which is in turn 

responsible for silencing c-Myc, but also directly targets c-Myc (O’Hagan et al., 2011; 

Kong et al., 2019). Therefore, although SIRT1 was ~4-fold down-regulated, c-Myc 

remained downregulated potentially due to the fact, at least partly, that EZH2, a 

significant component of the epigenetic silencing complex PRC, was up-regulated ~6-

fold, given that the promoter of c-Myc is CpG island-rich and that ROS production 

bridges multiple components of the epigenetic machinery including DNA methylases 

(DNMTs) (O’Hagan et al., 2011).  

To link the aforementioned observations, it could be speculated that MIAT also exerts 

its effects through a ROS-induced SP (Specificity Protein) TF mechanism. Sps belong 

to the Sp/Krüppel-like factor (KLF) family of TFs and play important roles in healthy and 

pathological settings, including cancer (Hedrick et al., 2016). It has also been 

established that elevated ROS levels result in decreased expression of Sps, primarily 

Sp1 (Lavrovsky et al., 2000; Lee et al., 2019; Upadhyaya, Liu and Dey, 2019). Among 
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the various family members, Sp1, Sp3 and Sp4 have gained attention, with Sp1 being 

the subject of thorough investigation (Safe et al., 2018), and importantly all three 

members displayed at least a 3-fold decrease upon MIAT knockdown in our RNA 

sequencing, and in addition, numerous regulators of Sp1, including various miRNAs 

(Supplementary Table 4, Appendix II) and eighteen members of the ZBTB (zinc finger 

and BTB) family were significantly deregulated. Since the elevated activity of Sp1 has 

been associated with malignancy and tumour progression in various cancers including 

glioma (Guan et al., 2012; Dong et al., 2014; Safe et al., 2018), it could be assumed 

that its down-regulation could prevent this effect. In fact, a reasonable mechanism 

would suggest that MIAT knockdown induces an increase in ROS production, which in 

turn induces a ROS-mediated epigenetic down-regulation of c-Myc, as described 

above (O’Hagan et al., 2011), leading to the down-regulation of Sp1 via the regulation 

of miRNAs and ZBTB proteins. Interestingly, the downstream effectors of Sp1 include a 

variety of crucial cancer-related genes involved in survival, apoptosis and migration, 

such as c-MET (tyrosine-protein kinase Met), survivin, Fas, BCL-2, VEGFs and MMPs 

(matrix metallopeptidases), of which a variety are deregulated in our study 

(Supplementary Table 5, Appendix II). 

In conclusion, this chapter attempts to elucidate how the downregulation of MIAT 

influences the global gene expression in neuroblastoma cells, to ultimately reduce the 

long-term survival and promote basal apoptosis, as well as to deteriorate the cells’ 

ability to migrate, as demonstrated in Chapter 3. However, the study encompasses one 

important limitation: the acquired RNA sequencing results and their analysis are based 

on single replicates and not triplicates. To compensate for this, target validation was 

performed using multiple means, including RT² Profiler™ PCR Arrays, RT-qPCR, 

Western Blot and functional analyses to confirm ROS levels fluctuations. 

Herein, we are suggesting that these effects are primarily ROS-mediated, as the 

knockdown of MIAT increases ROS levels in neuroblastoma cells, but can also be 
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ROS-independent. It is also essential to highlight the importance of the fact that the 

silencing of MIAT induces the down-regulation of important master regulator 

transcription factors, such as c-Myc, HIF1A, NRF2, Oct1 and Sp1, thus controlling the 

expression of a multitude of downstream targets involved in cell survival, apoptosis and 

migration, as well as ROS production, as well as to bring to onset the vast contribution 

of epigenetics, including miRNAs and lncRNAs, in these processes. The findings on 

MIAT’s modes of action in neuroblastoma cells presented in this chapter are multiple 

and diverse. Therefore, further research is essential to establish that MIAT could be 

used as a biomarker in neuroblastoma samples in the future, like numerous other 

lncRNAs for a variety of tumours (Melissari and Grote, 2016; Wu et al., 2016; Rao et 

al., 2017) and open new prognostic, predictive and even therapeutic avenues, 

especially as part of the “redox” therapy, to further elevate the apoptosis-promoting 

ROS levels. Finally, it is worth noting that across MIAT the area with the most 

differential expression between the control cells and those with silenced MIAT is 

localised at and includes the 3’ UTR. It has been observed that the 3’ UTR of ~1500 

protein-coding human genes can be expressed in an independent way of the coding 

part of the same transcript, and about half such genes in mice show distinct expression 

patterns of the 3’UTRs comparing to the rest of the mRNA (Mercer et al., 2011). In line 

with this, it has been suggested that 3’ UTR-derived lncRNAs are also expressed 

independently of and convey differential signals from their associated mRNAs (Mattick, 

2018). To this end, whether the 3’UTR of MIAT is, at least partly, responsible for the 

effect of MIAT on survival, apoptosis, migration and ROS production in neuroblastoma 

cells, or the expressional change involving it is an artefact, remains to be investigated. 
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4.5. Chapter Highlights 

1. MIAT silencing triggers the differential expression of 11085 protein-coding 

genes and eight pathways, including five cancer-related ones: the MAPK 

signalling pathway, EGFR tyrosine kinase inhibitor resistance, the TGF-beta 

signalling pathway, the Phospholipase D signalling pathway and the NOD-like 

receptor signalling pathway.  

 

2. MIAT down-regulation was also associated with differential expression of 

genes involved in programmed cell death and especially intrinsic and 

extrinsic apoptosis. These changes were validated by RT² Profiler™ PCR 

Arrays. 

 

3. MIAT down-regulation induces changes in the non-coding landscape, 

including 263 (predicted) miRNAs and 502 lncRNAs. 

 

4. MIAT is capable of in cis gene regulation and control of the relative 

abundance of splicing variants. 

 

5. RNA sequencing implicates MIAT down-regulation in oxidative stress-induced 

apoptosis in SH-SY5Y neuroblastoma cells. Functional assays further 

supported these findings in SH-SY5Y neuroblastoma cells, 1321N1 and T98G 

astrocytoma/GBM cells and suggest that down-regulation of MIAT is 

associated with ROS-mediated apoptosis.   

 

6. MIAT silencing triggers complex pathway networks, which involve 

transcription factors, such as c-Myc, NRF2, HIF1A, Oct1 and Sp1, epigenetic 

changes, and are potentially regulated by the cellular levels of ROS. 
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5.1. Introduction 

In light of the findings described in Chapters 3 and 4, suggesting that MIAT  is a  key 

lncRNA regulator of cell fate decisions, especially apoptotic cell death, the focus of the 

study shifted towards the identification of more lncRNAs that would potentially mediate 

these decisions. 

LncRNAs are implicated in physiological cell processes, as well as in diseases, 

including cancer (Schmitz et al., 2016). In line with this, multiple oncogenic and tumour 

suppressor lncRNAs have been identified and studied in NB. Among the oncogenes, 

some are co-deregulated with typical chromosomal aberrations, as in the case of the 

overexpressed ncRAN in 17q gain neuroblastomas (Watters et al., 2013; Pandey and 

Kanduri, 2015; Rombaut et al., 2019). Others are co-amplified with MYCN, with 

lncUSMycN  (Pandey and Kanduri, 2015; Zhao et al., 2018), lncNB1 (Liu et al., 2019) 

and MYCNOS (Vadie et al., 2015; O’Brien et al., 2018) being three representative 

examples. The oncogenic lncRNA list includes lncRNA CAI2,  whose overexpression is 

associated with high risk NBs (Barnhill et al., 2014; Pandey and Kanduri, 2015), T-UC 

300A (Domingo-Fernandez et al., 2013; Pandey and Kanduri, 2015), the pro-

proliferative and anti-apoptotic LINC01105 (Tang et al., 2016; Ye et al., 2019), Xist 

(Zhang et al., 2019), MALAT1 (Bi et al., 2017) and MIAT (Bountali et al., 2019) (as 

presented in Chapters 3 and 4, as well). On the other hand, the tumour suppressor 

lncRNA list also includes numerous lncRNAs whose down-regulation contributes to NB 

progression. Such examples are NDM29 in NBs with chromosome 11 loss 

(Nakagawara et al., 2018; Zhao et al., 2018), FOXD3-AS1 (Zhao et al., 2018), MEG3 

(Tang et al., 2016; Chi et al., 2019), NBAT1 and CASC15 on chromosome 6 (Russell et 

al., 2015; Mondal et al., 2018). The well-known GAS5 (Mazar et al., 2017) and 

KCNQ1OT1 (Li et al., 2019) also act as tumour suppressors in NB context. Many 

lncRNAs have been implicated in tumour-drug resistance (Smallegan and Rinn, 2019; 
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Zhao et al., 2019) in different types of cancer. For instance, down-regulation of GAS5 

enhances the tumour resistance to doxrubicine in liver cancer (Wang et al., 2019) and 

to trastuzumab in breast cancer (Li et al., 2016), while lncRNA MIR100HG mediates 

cetuximab resistance in CRC and HNSCC (Lu et al., 2017). Finally, autophagy is 

another process tightly regulated by lncRNAs (Bermúdez et al., 2019), as in the case of 

GAS5 promoting autophagy in CRC (Liu et al., 2019) and lncRNA SCAMP1 (Secretory 

Carrier Membrane Protein 1) regulating autophagy in paediatric renal cell carcinoma 

(Shao et al., 2019). Notably, these two processes are often linked with each other 

(Wang et al., 2019;  Li et al., 2019; Liu et al., 2019). Thus, many approaches have 

been attempted to generate accurate lncRNA-based profiles and signatures, in order to 

classify patients robustly and provide the most suitable treatment (Sahu et al., 2018; 

Gao et al., 2019; Rombaut et al., 2019; Yerukala Sathipati et al., 2019), as well as 

predict the chances of recurrence (Utnes et al., 2019).  

Metformin is a synthetic biguanide (N’, N’ dimethylbiguanide) that has been used in the 

clinic as a golden standard treatment for type 2 diabetes (T2D) and has been identified 

as an effective anti-cancer drug  (Sahra et al., 2010). The target of metformin appears 

to be the mitochondria and in particular Complex I of the mitochondrial electron 

transport chain (ETC) (Vial et al., 2019). The rationale of repurposing metformin as an 

anti-cancer drug lies in the fact that chronic augmented levels of plasma insulin may be 

a pro-tumourigenic factor, as insulin possesses mitogenic and pro-survival activity, and 

that tumour cells express high levels of the insulin receptor (Emami Riedmaier et al., 

2013). Further studies established that metformin acts through the activation of 

LKB1(liver kinase B1)/AMPK pathway to inhibit mTOR, the induction of (caspase-

mediated) apoptosis and cell cycle arrest (Kourelis and Siegel, 2012; Kumar et al., 

2014; Gong et al., 2016) and protein synthesis inhibition, which can occur via c-Myc/ N-

Myc destabilisation (Wang et al., 2014; Gong et al., 2016). Metformin also promotes 

sensitisation of DNA damage response (DDR) (Menendez et al., 2011) and 
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chemotherapeutic agents/ irradiation, and improvement of the response of 

chemotherapy-resistant CSCs (Li, 2011; Emami Riedmaier et al., 2013; Mouhieddine et 

al., 2015). Moreover, metformin prevents tumour initiation/ progression via inducing 

autophagy-mediated cell death (De Santi et al., 2019) and suppressing the NF-κB 

signalling pathway (Podhorecka et al., 2017; Nguyen et al., 2019).  Notably, metformin 

also mediates epigenetic modifications (Yu et al., 2017) and, given that it vastly affects 

the tumour cell metabolism, it is natural to alter the metabolism-related (Sun et al., 

2018), as well as the broader, lncRNA landscape. 

Cellular processes are controlled by a plethora of interacting molecular signalling 

pathways, comprised of and controlled by numerous protein- and non-protein-coding 

elements. Chemotherapeutic agents tend to alter the molecular landscape in 

cancerous cells, and therefore, their administration comprises a useful platform for the 

study of these changes, which will ultimately affect the fate of the cells, including their 

survival, proliferation, differentiation and death. In line with this, the fact that metformin 

targets multiple signalling pathways in cancer led us to the hypothesis that 

transcriptome analysis of neuroblastoma cells treated with metformin will allow the 

identification of lncRNAs that are potentially involved in the regulation of cell fate 

decision in these cells in response to the administration of the drug. To this end, the 

initial aim of this study, the findings of which are preliminary, was to identify novel 

lncRNAs that can potentially act as regulators of cell fate using RNA sequencing 

analysis of neuroblastoma cells after short- and long-term metformin treatment. 

 

5.2. Materials and Methods   

5.2.1. Cell culture and chronic exposure to metformin 

The experiments incorporated in this chapter were conducted using the human 

neuroblastoma SH-SY5Y cell line, cultured using the HyClone™ DMEM/F12 1:1 growth 
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media, supplemented with 10% heat-inactivated fetal bovine serum, 2μM L-Glutamine, 

1μΜ Sodium Pyruvate and 10mg/ml gentamicin solution, as described in section 2.1. In 

a subset of experiments for which the effects of continuous exposure to metformin was 

assessed, SH-SY5Y cells were cultured for two consecutive months in growth media 

supplemented with increasing concentrations of metformin, in the range of 1-20mM. In 

each round, SH-SY5Y cells were seeded in cell culture flasks and after 24h metformin 

was added (parental SH-SY5Y cells without metformin addition were also cultured to 

be used as control cells). The cells were then incubated (37°C, 5% CO2) until reaching 

~80% confluence. Afterwards, the detached dead cells were removed from the culture, 

whilst the viable attached ones were trypsinised and passaged so that the next round 

of increased metformin dose would follow. 

 

5.2.4. Determination of cell survival 

For the metformin cytotoxicity experiments (10-200μM and 0.25-100 mM) cells were 

seeded in 96-well plates (100μl/well), incubated for 24h and subsequently, treatment 

was added (drug diluted in growth media- 100μl/well) and cells were incubated for 

48/72 h.  Cell survival was assessed using MTS (CellTiter 96® Aqueous One Solution 

Cell Proliferation Assay) (detailed in section 2.6.3). The growth inhibitory effect of 

metformin was calculated according to the following equation: % inhibition of cell 

growth = 100- [OD490 of treated sample / OD490 of untreated sample (control)] x 

100.  

 

5.2.5. RNA sequencing and Pathway analysis 

Global gene expression changes in response to metformin treatment were determined 

by sequencing the whole transcriptome, as detailed in section 2.10. Next-generation 

sequencing was conducted by the Earlham Institute. Quality controlled reads were 
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aligned to Human Genome build (hg19) using Tophat, transcripts were assembled 

using Cufflinks (with GTF support) and the number of reads mapping to each feature 

counted and expressed as FPKM using the CuffNorm package. Differentially 

expressed mRNAs were condensed into gene networks representing biological and 

disease processes using iPathwayGuide (Advaita Bioinformatics, Ann Arbor, MI, USA). 

The differential expression was measured in three different comparison sets: untreated 

SH-SY5Y cells versus SH-SY5Y treated with 20mM metformin (Data Set 1), untreated 

SH-SY5Y cells versus SH-SY5Y with continuous exposure to 3mM metformin (Data set 

2) and SH-SY5Y cells treated with 20mM metformin versus SH-SY5Y with continuous 

exposure to 3mM metformin (Data set 3), and a cutoff threshold of 1.5-fold change 

(and an equivalent 0.6 Log2 Fold Change) was applied. The Log2 Fold Change 

(Log2FC) is referred to as “–fold change” in this chapter. The RNA sequencing results 

were analysed using the iPathway Guide by Advaita Bioinformatics (advaitabio.com). 

 

5.2.6. Statistical  

Statistical analyses were performed using GraphPad Prism 6 (GraphPad Software). 

Data are presented as the mean ± SEM; the number of observations (n) refers to 

biological replicates, each replicate being conducted on a separate culture of cells. 

Comparisons were made using an unpaired T-test or One-Way ANOVA with 

Bonferroni's multiple comparison test (MCT).  
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5.3. Results 

5.3.1. The role of metformin treatment in SH-SY5Y cells 

Effects of metformin treatment on the survival of SH-SY5Y cells 

 

To assess the cytotoxic effect of metformin, two series of dose-response optimisation 

experiments were performed, in which micromolar, as well as millimolar concentrations 

(10-1000μM and 2-50 mM), were tested at 48/72 h. Metformin was ineffective in killing 

cells at μM concentrations, while it was too toxic at very high doses (e.g. ~60% 

inhibition of cell growth at 48/72 h for 50mM and 100mM metformin) (Figure 5.1 and 

Supplementary Figure 1, Appendix III). The concentration of 20mM was selected for 

subsequent experiments, based on the optimisation experiments and prior literature 

(Costa et al., 2014; Garbati et al., 2017; Li et al., 2019; Wu et al., 2019). 

In addition, to assess the effect of the prolonged exposure of the cells to metformin, 

MTS assays were employed to examine the cell viability after 48 and 72 h. As 

expected, only slight, statistically non-significant changes in cell viability were observed 

between non-treated and metformin-resistant SH-SY5Y cells after the administration of 

metformin (Figure 5.2). 
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Figure 5.1. The effects of metformin on the cell survival of SH-SY5Y cells.  Cells were 
seeded in 96-well plates (100μl/well), incubated for 24h and metformin (2-50mM-a, b- and 20-
50mM- c, d) was subsequently added (diluted in growth media-100μl/well). Cell survival is 
reduced by the treatment with various concentrations of metformin comparing to cells growing in 
the absence of metformin, as measured by the MTS assay 48 h and 72 h post-treatment. The 
concentration of 20mM was selected for further experiments. Optical density (OD) at 490nm is 
represented in a, c, while % inhibition of cell survival is represented in b, d. * indicates a p-
value<0.05, ** indicate a p-value<0.01; ***/****   indicate a p-value<0.001, compared to the 
untreated control for 48 and 72 h, respectively, as measured by Two-way ANOVA tests with 
multiple comparisons (MCT). Data are represented as mean +/- SEM, n=3. 

 

 



207 
 

Figure 5.2. Continuous exposure to metformin generates “metformin resistant” SH-SY5Y 
cells. SH-SY5Y cells were cultured in the continuous presence of increasing concentration of 
metformin (120mM) for two months. In order to assess the cells for resistance to metformin, at 
the end of this period, cell viability was compared between parental cells without any treatment 
and cells with suspected resistance, without and after the addition of 20mM metformin, via MTS 
assay at 48 h and 72 h. As expected, metformin reduces cell viability in parental cells, but 
viability levels do not differ between untreated and treated with metformin cells in the “metformin 
resistant” group, both at 48 h (a) and 72 h (b), as measured by One-way ANOVA tests with 
multiple comparisons (MCT), n=4 replicates. Data are represented as mean +/- SEM. 

 

 

 

Identification of novel lncRNAs involved in the response to metformin 

treatment 

In light of the importance of the non-coding component of the human genome, the 

attention of this study was shifted towards the identification of novel lncRNAs that are 

potentially involved in the determination of cell fate. For the purposes of the current 

study, SH-SY5Y neuroblastoma cells were either cultured as a negative control 

(untreated) or were exposed to 20mM metformin for 48 h, followed by total RNA 

extraction and RNA sequencing (Data set 1).  

The RNA sequencing analysis revealed that 5652 out of a total of 13481 were 

differentially expressed genes with measured expression. Among these changes, a 

plethora of perturbations affected the lncRNAome of the cells. Interestingly, 418 

lncRNAs, which are novel in the context of neuroblastoma as they have not been 
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studied before in this tumour, were shown to be differentially expressed, belonging to 

different lncRNA subclasses. The ten most up-regulated lncRNAs were 

LOC100652730, GHRLOS, LOC100130700, PCBP1-AS1, CBR3-AS1, CASC2, 

LOC730227, MIR22HG, LOC100288637 and LOC100507557, presenting a >10-fold 

increase in expression, while the ten most down-regulated included TP73-AS1, PEG3-

AS1, LOC100128420, LOC100288637, LOC100506714, LOC256021, LOC100509894, 

LOC283050, LOC730227 and LOC151300 with a >8-fold decrease in expression. Of 

these, numerous have already been implicated in various types of cancer, confirming 

that the metformin treatment approach used has successfully provided relevant results. 

Such an example is the NAT of TP73, TP73-AS1, which was down-regulated by more 

than 8-fold in metformin-treated cells, and is a well-established driver of tumourigenesis 

in many malignancies (Gong et al., 2020). Another such example is the 9-fold down-

regulated PEG3-AS1, a paternally expressed transcript that has recently been 

associated with head and neck (Hsu et al., 2016) and colorectal cancer (Zhang et al., 

2019). Besides, LOC100288637 is a pseudogene whose expression was massively 

down-regulated upon treatment with metformin (11-fold) and has previously been 

associated with HER-2 positive breast cancer (Yang et al., 2016) and ovarian cancer 

(Feng et al., 2019). In the opposite direction, PCBP1-AS1 (Poly(RC) Binding Protein 1 

anti-sense 1), is a NAT that showed a ~14-fold increase in expression in metformin-

treated cells and has been implicated in B-cell lymphoma (Dai et al., 2015). Moreover, 

the well-studied onco-suppressor CASC2, which has been related with multiple 

tumours (Palmieri et al., 2017), displayed a ~13-fold increase in expression, while the 

NAT CBR3-AS1, which has also been associated with a variety of tumours was 13-fold 

up-regulated, as well. Furthermore, MIR22HG, the thoroughly studied tumour 

suppressive lncRNA, host gene of the microRNAs miR-22-3p and miR-22-5p, showed 

a 12-fold up-regulation. Among the most deregulated lncRNAs, LOC100507557, 

LOC100505695 and LOC100506801 are still uncharacterised. Of the lncRNAs 

displaying perturbed expression, 43% belonged to the NAT category (e.g. PCBP1-AS1, 
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CBR3-AS1, LOC641364, LOC100509894, LOC283050, LOC100506714) rendering 

this class the most abundant, 22% were lincRNAs (such as LOC730227, LOC151300, 

LOC256021, LOC100652730, LOC730227) and 12% pseudogenes, while ~15% were 

uncharacterised genes, proposing a broad lncRNA interference in the molecular 

pathways affected by the action of metformin (Figure 5.3 and Supplementary Table 1, 

Appendix III).  

In addition to lncRNA perturbations, numerous changes in the miRNA repertoire were 

brought to light, enhancing the hypothesis the novel lncRNAs may exert their functions 

via lncRNA-miRNA axes. The prediction of active miRNAs is based on enrichment of 

differentially downregulated target genes of the miRNAs (Friedman et al., 2009), and, 

in general, miRNAs have an inhibitory effect on their targets. The RNA sequencing 

predicted an astonishing 304 miRNAs (Table 5.1) to be altered in response to the 

treatment with metformin, affecting the expression of downstream targets, with miR-

101-3p bearing the most pronounced changes. Some representative targets of miR-

101-3p include APC, a tumour suppressor key regulator of the Wnt signalling pathway, 

involved in processes including cell migration and adhesion, transcriptional activation, 

and apoptosis, c-Myb, a well-studied regulator of transcription, the apoptosis-related 

BCL2L11, and the chromatin remodelling regulator EZH2. In addition, the second most 

perturbed miRNA, miR-519d-3p, also targets a variety of important cancer-related 

genes, including the pro-apoptotic BID, and STAT3, a protein that mediates the 

expression of a variety of genes in response to cell stimuli, and thus plays a key role in 

many cellular processes such as cell growth and apoptosis. 
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Figure 5.3. The effects of metformin on lncRNA expression. Exposure of SH-SY5Y cells to 
20mM metformin for 48 h induces alterations in the expression of lncRNAs. The bar chart 
presents only the top perturbed genes in both directions (a). Red coloured bars correspond to 
upregulated gene expression, while blue coloured bars correspond to downregulated gene 
expression. Data are the difference in expression between untreated control cells and cells 
exposed to 20mM metformin, expressed as a normalised log2 fold change (log2FC). A threshold 
of 0.05 for statistical significance (p-value) and a log fold change of expression with an absolute 
value of at least 0.6 were applied. The pie chart schematically presents the distribution of 
differentially expressed lncRNAs into different lncRNA subclasses (b). DE: differentially 
expressed; NAT: Natural Anti-sense Transcript; lincRNA: Long Intergenic RNA; miRNA host: 
microRNA host gene; snoRNA host: small nucleolar RNA host gene. 
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Table 5.1. Top predicted perturbed miRNAs in metformin-treated SH-SY5Y cells.    

miRNA name Number of perturbed 
targets/ total genes  

Number of targets/ 
total genes p-value 

hsa-miR-101-3p 313 / 426 703 / 1156 6.821e-12 

hsa-miR-519d-3p 303 / 428 689 / 1182 2.411e-11 

hsa-miR-526b-3p 303 / 428 689 / 1181 2.827e-11 

hsa-miR-106b-5p 303 / 428 689 / 1180 3.314e-11 

hsa-miR-20a-5p 303 / 428 689 / 1180 3.314e-11 

hsa-miR-17-5p 303 / 428 689 / 1180 3.314e-11 

hsa-miR-93-5p 303 / 428 689 / 1180 3.314e-11 

hsa-miR-20b-5p 303 / 428 689 / 1180 3.314e-11 

hsa-miR-106a-5p 303 / 428 689 / 1180 3.314e-11 

hsa-miR-29c-3p 301 / 405 652 / 1051 3.609e-11 
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Protein-coding gene alterations and pathway perturbations  

Apart from changes in the expression of lncRNAs, a variety of protein-coding genes 

and pathway perturbations were observed in response to metformin treatment, which 

could potentially be correlated with the novel identified lncRNAs. The top upregulated 

protein-coding genes include ACP5 (acid phosphatase 5), SLC23A3 (solute carrier 

family 23 member 3), GPNMB (Glycoprotein Nmb) and a plethora more, while the top 

downregulated ones include RSPH4A (Radial Spoke Head Protein 4 Homolog A), 

CMPK2 (Cytidine/Uridine Monophosphate Kinase 2) and LDB2 (LIM Domain Binding 2) 

(Figure 5.4a). In addition, significant alterations in cancer-related protein-coding genes 

were observed, with a great number of them being either up-regulated or down-

regulated (Figure 5.4b). For instance, the master regulators of transcription, primarily c-

Myc, but also c-Myb, both displayed a multi-fold decrease in expression levels, 

especially c-Myb (~15-fold). The Wnt signalling-associated APC also showed a 13-fold 

decrease in expression, while the DDR-associated BRCC3 (BRCA1/BRCA2-

Containing Complex Subunit 3) and XRCC3 (X-Ray Repair Cross Complementing 3) 

were also down-regulated by 4- and 3-fold, respectively. On the other hand, multiple 

pro-apoptotic components of the apoptotic machinery were up-regulated, including 

BBC3 (BCL-2 Binding Component 3) (~13-fold), Fas (3-fold) and CASP8 (4-fold), while 

GADD45A, a crucial component of the DDR also showed a nearly 5-fold increase in 

expression. 
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Figure 5.4. The effect of metformin on protein-coding gene expression. Exposure of SH-
SY5Y cells to 20mM metformin for 48 h induces alterations in the expression of protein-coding 
genes (a), including a variety of genes involved in cancer-related processes, including cell 
survival, apoptosis, cell cycle progression and DNA repair (b). The graphs present only some 
representative top perturbed genes. Red coloured bars correspond to upregulated gene 
expression, while blue coloured bars correspond to downregulated gene expression. Data are 
the difference in expression between untreated control cells and cells exposed to 20mM 
metformin, expressed as a normalised log2 fold change (log2FC). A threshold of 0.05 for 
statistical significance (p-value) and a log fold change of expression with an absolute value of at 
least 0.6 were applied.  
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In addition to revealing single gene expression perturbations, the RNA sequencing 

analysis also unveiled perturbations on the molecular pathway level and revealed 

moderations in Gene Ontology terms and diseases, in which the newly identified 

lncRNAs presented above could exert a role. In particular, 28 pathways were found to 

be significantly impacted (Table 5.2 and Supplementary Table 2, Appendix III), 

including numerous cancer-related ones. Intriguingly, some of the already annotated 

cancer-related pathways that have previously been found to be involved in the 

response to metformin have been confirmed, such as cell cycle, apoptosis and 

cytokine/chemokine interactions. Notably, some understudied or even novel ones have 

been brought to onset, including DNA replication and DNA repair processes (e.g. 

mismatch repair, base excision repair and homologous recombination), and Hippo 

(Table 5.3, Figure 5.5. and Supplementary Table 2, Appendix III). Furthermore, 1813 

Gene Ontology (GO) terms, with the most perturbed ones shown in Table 5.4, were 

found to be significantly enriched. Interestingly, some of the most deregulated lncRNAs 

mentioned in the previous section are part of these processes. For instance, TP73-AS1 

mediates p53 signalling and apoptotic responses (Xiao et al., 2018; Yao et al., 2018), 

as well as cell cycle (Xiuyun et al., 2018), PCBP1-AS1 has been implicated in cell cycle 

regulation (Peng et al., 2017) and Fanconi anaemia DNA repair (Velimezi et al., 2018), 

while MIR22HG has also been implicated to regulate cell cycle (Vidyasekar et al., 

2015). 
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Table 5.2. Top perturbed molecular pathways in metformin-treated SH-SY5Y cells.                                                            

Pathway name p-value 
Neuroactive ligand-receptor interaction 1.896e-6 

Complement and coagulation cascades 6.917e-4 

HTLV-I infection 0.005 

Olfactory transduction 0.008 

Glycine, serine and threonine metabolism  0.010 

 

Table 5.3. Top cancer-related perturbed molecular pathways in metformin-treated SH-
SY5Y cells.                                                        

Pathway name Key DEGs p-value 
DNA replication MCM5/7, POLE2 1.088e-9 
Cytokine-cytokine receptor interaction BMPR1B,CTF1, TNFSF18/19, PDGFC 1.041e-6 
Cell cycle CHEK1, MYC 5.928e-6 
Mismatch Repair EXO1, RFC2/4, LIG1 2.230e-5 
Homologous recombination BRCC3, XRCC3, RAD54L 1.518e-4 
p53 signalling pathway CHEK1, BID 4.947e-4 
Basal cell carcinoma APC, FZD3, LEF1 0.004 
Fanconi Anaemia pathway BRCA1, FANCI, HES1, BRIP1 0.009 
Base Excision repair UNG, POLE2 0.023 
Hippo signalling pathway APC,  BMPR1B, LEF1, FZD3, TEAD2 0.024 
Apoptosis BCL2L11, BID 0.035 
Colorectal cancer APC, BCL2L11, LEF1 0.04 
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Figure 5.5. Top perturbed cancer-related pathway: DNA replication (KEGG: 03030). 
Perturbation vs over-representation: DNA replication (yellow circle) is shown, using the negative 
log of the accumulation and over-representation p-values, along with the other most significant 
pathways (red circles). Pathways in red are significant, based on the combined uncorrected p-
values (a). Measured expression vs accumulation of pathway genes: all the genes from this 
pathway are represented in terms of their measured fold change (y-axis) and accumulation (x-
axis). Accumulation is the perturbation received by the gene from any upstream genes. Genes 
in blue had only measured fold change. The remaining genes that were not measured and had 
no accumulation are shown in black (b). Graphically, the pathway diagram is overlayed with the 
computed perturbation of each gene. The perturbation accounts both for the gene's measured 
fold change and for the accumulated perturbation propagated from any upstream genes 
(accumulation). The highest negative perturbation is shown in dark blue, while the highest 
positive perturbation in dark red. The legend describes the values on the gradient (c).  
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Table 5.4. Top perturbed Gene Ontology (GO) terms in metformin-treated SH-SY5Y cells.                                                              

 

Pathway name 
Number of 

perturbed genes/ 
total genes in the 

pathway 
p-value 

Biological Processes 

 

Multicellular organismal 
process 

1999 / 4365 1.100e-12 

Multicellular organism 
development 

1586 / 3418 1.200e-11 

Cell proliferation 658 / 1318 7.300e-11 

System development 1410 / 3026 8.200e-11 

Cellular response to 
stimulus 

2121 / 4697 1.400e-10 

Molecular functions 

Receptor ligand activity 110 / 165 3.900e-11 

Signalling receptor activity 243 / 437 8.000e-10 

Receptor regulator activity 115 / 181 1.300e-9 

Transmembrane signalling 
receptor activity 

206 / 371 1.900e-8 

Transmembrane receptor 
activity 

214 / 389 2.700e-8 
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5.3.2. Continuous exposure to metformin alters the molecular 

landscape of SH-SY5Y cells 

Identification of novel lncRNAs involved in the response to continuous 

exposure to metformin  

Given that low risk NB patients often benefit from spontaneous regression, during 

which cells become differentiated again (Nakagawara et al., 2018), inducing NB cell 

differentiation comprises an attractive strategy. This is usually achieved via the 

administration of all-trans-retinoic acid (ATRA), however, alternative approaches have 

proved to be effective in vitro, such as the use of N-acetylaspartate (NAA) (Mazzoccoli 

et al., 2016). Moreover, metformin promotes neuronal differentiation via ROS 

production (Binlateh et al., 2019). Taking everything into account, and after the 

microscopic observation that long-term exposure of SH-SY5Y cells to metformin leads 

to a neuron-like morphology very similar to the one observed by Costa et al., (2014) 

and Mazzoccoli et al., (2016), it was speculated that continuous exposure to metformin 

could cause moderations in the molecular and cellular landscape of the cells, and 

therefore we would be able to identify novel lncRNAs involved in cell fate decision, 

potentially including cell differentiation as such an aspect. To this end, total RNA was 

extracted from parental SH-SY5Y cells (untreated control) and SH-SY5Y cells with 

continuous exposure to metformin and, therefore, acquired resistance to it (that was 

achieved after weeks of continuous exposure to increasing concentrations of 

metformin) (Figure 5.2), followed by RNA sequencing.  

In this experiment 7855 differentially expressed genes were identified out of a total of 

13741 genes with measured expression. In line with the primary aim of this chapter to 

identify novel lncRNAs mediating cell fate decisions associated with chronic exposure 

to metformin, lncRNA perturbations were analysed next. The analysis of the RNA 

sequencing shed light to a great number of lncRNA perturbations of the cells. Notably, 

482 lncRNAs showed differential expression between the two compared groups, 
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belonging to different lncRNA subcategories. The revealed changes followed both 

directions, with the top ten up-regulated lncRNAs being GHRLOS, LOC100133331, 

CASC2, LOC729678, LOC100288974, LOC100288637, LOC100507173, 

LOC100505695, LOC643401 and LOC100507557 (>5-fold increase 

), whilst in the opposite direction, the most down-regulated lncRNAs were LINC00478, 

LOC653712, LINC00304, LOC392232, LINC00176, LOC100288637, LOC256021, 

LOC100125556, LOC648987 and LOC151300 (>4-fold decrease). Among them, 

various lncRNAs have already been linked with cancer. Astonishingly, the NAT 

GHRLOS (Ghrelin opposite strand/antisense RNA), a lncRNA participating in rather 

complicated cancerous contexts, which has finally been attributed clinical significance 

in cancer (Soleyman-Jahi et al., 2019), was found to be ~15-fold up-regulated.  The 

tumour suppressor CASC2, similar to brief exposure to metformin, showed again a 

massive 12-fold increase in expression, while LOC643401 (also known as PURPL-p53 

upregulated regulator of p53 levels), a modulator of basal p53 levels, also displayed a 

5-fold up-regulation. MIR7-3HG, an autophagy-related, c-Myc-dependent modulator of 

cell proliferation (Capizzi et al., 2017), displayed a 4-fold increase, as well. The 

continuous exposure to metformin also induced a decrease in the expression of 

multiple other important lncRNAs. Importantly, LOC151300, a lincRNA that has been 

linked to colon cancer and its metastases (Lan et al., 2012), showed the most 

pronounced decrease in expression (15-fold) in response to continuous metformin 

exposure. Furthermore, LINC00176, a lincRNA implicated in ovarian (Dai et al., 2019), 

hepatocellular (Tran et al., 2018) and oesophageal (Fan and Liu, 2016) cancer, was 9-

fold down-regulated. In addition, LINC00304 (5-fold decrease) and LINC00478 (4-fold 

decrease), have also been previously associated with cancer. Besides the lncRNAs 

already implicated in other tumours, some of the most deregulated ones remain 

uncharacterised, such as LOC100133331, LOC100505695, LOC100507557 and 

LOC648987 (as well as the up-regulated LOC100133161, LOC284080 and 

LOC284865, which complete the list of the top twenty-in each direction- deregulated 
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lncRNAs). Similarly to data set 1, the largest category was NATs (~39%), including 

GHRLOS, LOC285965, LOC100287559, and LOC100144603, followed by lincRNAs 

(23%) (e.g. LOC729678, LOC100507173, LINC00176, LOC151300, LOC256021) and 

pseudogenes (15%), like LOC100125556, LOC100288637, LOC100288974 and 

LOC100288637. Albeit, ~16% of the identified lncRNAs were newly-discovered, 

uncharacterised genes. Collectively, these results suggest that the lncRNAome holds a 

crucial role in the mechanisms and pathways determining the fate of neuroblastoma 

cells in response to long-term exposure to metformin (Figure 5.6 and Supplementary 

Table 3, Appendix III). 

Based on the biological scenario in which lncRNAs and miRNAs regulate gene 

expression through common axes, on top of the identification of novel lncRNAs, the 

RNA sequencing analysis predicted 321 miRNAs (Table 5.5) to be altered as a result of 

resistance to metformin after continuous exposure, affecting the expression of 

downstream targets, with miR-30c-5p showing the greatest changes. Some 

representative targets of miR-30c-5p include MECP2 (Methyl-CpG Binding Protein 2), 

a protein capable of binding specifically to methylated DNA repressing transcription 

from methylated gene promoters, BCOR (BCL6 Corepressor), a potential influencer of 

apoptosis, and NRP1 (neuropilin 1), which is part of several different signalling 

pathways that control cell survival, migration, and attraction. Other than the miR-30 

family of miRNAs, of which several members were perturbed, miR-183-5p was also 

predicted to be highly perturbed. MiR-183-5p targets and regulates the expression of 

apoptosis-related genes, such as XIAP, as well as genes related to DNA repair 

processes, such as BRCA1, and the p53 inhibitor MDM4. 
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Figure 5.6. The effects of continuous exposure to metformin on lncRNA expression. 
Continuous exposure of SH-SY5Y cells to 3mM metformin induces alterations in the expression 
of lncRNAs. The bar chart presents only the top perturbed genes in both directions (a). Red 
coloured bars correspond to upregulated gene expression, while blue coloured bars correspond 
to downregulated gene expression. Data are the difference in expression between untreated 
control cells and cells with acquired resistance to 3mM metformin, expressed as a normalised 
log2 fold change (log2FC). A threshold of 0.05 for statistical significance (p-value) and a log fold 
change of expression with an absolute value of at least 0.6 were applied. The pie chart 
schematically presents the distribution of differentially expressed lncRNAs into different lncRNA 
subclasses (b). DE: differentially expressed; NAT: Natural Anti-sense Transcript; lincRNA: 
Long Intergenic RNA; miRNA host: microRNA host gene; snoRNA host: small nucleolar RNA 
host gene. 



222 
 

 

Table 5.5. Top predicted perturbed miRNAs in SH-SY5Y cells with continuous exposure 
to metformin.                                                        

miRNA name 
Number of 

perturbed targets/ 
total genes 

Number of 
targets/ total 

genes 
p-value 

hsa-miR-30c-5p 526 / 688 868 / 1311 1.078e-16 

hsa-miR-30a-5p 526 / 688 868 / 1311 1.078e-16 

hsa-miR-30d-5p 526 / 688 868 / 1311 1.078e-16 

hsa-miR-30b-5p 526 / 688 868 / 1311 1.078e-16 

hsa-miR-30e-5p 526 / 688 868 / 1311 1.078e-16 

hsa-miR-183-5p 410 / 529 644 / 970 7.397e-16 

hsa-miR-101-3p 514 / 641 829 / 1169 1.133e-14 

hsa-miR-302c-3p 491 / 625 777 / 1123 2.093e-14 

hsa-miR-124-3p 728 / 999 1257 / 1932 5.905e-14 

hsa-miR-9-5p 475 / 631 770 / 1166 3.393e-13 
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Protein-coding gene alterations and pathway perturbations  

In our effort to identify novel deregulated lncRNAs involved in cell fate determination 

we also identified highly perturbed protein-coding genes and pathways, which could 

potentially be associated with our novel lncRNAs. Therefore, in addition to the 

perturbations in expression observed for the non-coding elements of the genome, 

some of the top differentially expressed protein-coding genes include the up-regulated 

ACP5, NPNT (Nephronectin), whilst ZNF771 (Zinc Finger Protein 771), MAP2 

(Microtubule Associated Protein 2) and CDH7 (Cadherin 7) were among the top down-

regulated ones. Similar to data set 1, multiple cancer-related genes were deregulated 

in both directions, including MMP1 (Matrix Metallopeptidase 1), ITGB4 (Integrin Subunit 

Beta 4) and RASA4 (RAS P21 Protein Activator 4), which were all up-regulated, and 

CNKSR2 (Connector Enhancer Of Kinase Suppressor Of Ras 2), DOK3 (Docking 

Protein 3) and FAM86B1 (Family With Sequence Similarity 86 Member B1), which 

displayed decreased expression (Figure 5.7). 
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Figure 5.7. The effect of continuous exposure to metformin on protein-coding gene 
expression. Continuous exposure of SH-SY5Y cells to 3mM metformin induces alterations in 
the expression of protein-coding genes (a), including a variety of genes involved in cancer-
related processes, such as cell survival and growth, apoptosis and DNA repair (b). The graphs 
present only some representative top perturbed genes. Red coloured bars correspond to 
upregulated gene expression, while blue coloured bars correspond to downregulated gene 
expression. Data are the difference in expression between untreated control cells and cells with 
continuous exposure to 3mM metformin, expressed as a normalised log2 fold change (log2FC). 
A threshold of 0.05 for statistical significance (p-value) and a log fold change of expression with 
an absolute value of at least 0.6 were applied.  



225 
 

Apart from revealing single gene expression perturbations, the RNA sequencing 

analysis also unveiled perturbations on the molecular pathway level, as well as 

alterations in Gene Ontology terms and diseases, which could possibly involve some of 

the identified lncRNAs. Specifically, 31 pathways were found to be significantly 

impacted (Table 5.6. and Supplementary Table 4, Appendix III), including numerous 

cancer-related ones. Intriguingly, similarly to data set 1, some of them that have been 

previously studied and found to be involved in the mechanism of action of metformin 

have been confirmed, such as cell cycle, p53-induced apoptosis and 

cytokine/chemokine interactions. Notably, some understudied or even novel ones have 

been revealed, including DNA replication and DNA repair processes (e.g. mismatch 

repair, base excision repair and homologous recombination) (Table 5.7, Figure 5.8. and 

Supplementary Table 4, Appendix III). Also, 1437 Gene Ontology (GO) terms including 

biological processes and molecular functions, with the most perturbed ones shown in 

Table 5.9, were found to be significantly enriched. Interestingly, some of the key 

perturbed lncRNAs in response to continuous exposure to metformin are also key 

players in these processes, suggesting they could potentially mediate the cell fate 

decisions in neuroblastoma cells. For example, CASC2 is a Wnt signalling (Wang et 

al., 2017) and apoptosis (Wang et al., 2015; Fan et al., 2018) regulator, LOC643401 is 

involved in p53 signalling regulation (Li et al., 2017) and DNA repair (Rashi-Elkeles et 

al., 2011), whilst LINC00176 is an established cell cycle (Tran et al., 2018) and 

apoptosis (Dai et al., 2019) regulator. 
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Table 5.6. Top perturbed molecular pathways in SH-SY5Y cells with continuous exposure 
to metformin. 

Pathway name p-value 
Lysosome  0.001 
Antigen processing and presentation 0.002 
Protein digestion and absorption  0.003 
HTLV-I infection 0.004 
Pertussis  0.004 
 

 

 

Table 5.7. Top cancer-related perturbed molecular pathways in SH-SY5Y cells with 
continuous exposure to metformin.                                                          

Pathway name Key DEGs p-value 
Cytokine-cytokine receptor interaction BMPR1B, CSF2, IL15RA 1.809e-6 
DNA replication POLE2/3, POLA1 2.998e-4 
Cell cycle CHEK1, E2F5, GADD45B 4.963e-4 
Mismatch Repair EXO1, RFC4 0.004 
Base Excision Repair UNG, POLE2 0.008 
p53 signalling pathway CHEK1, GADD45B, MDM4 0.013 
Fanconi Anemia pathway BRCA1 0.014 
Chemokine signalling pathway GNGT1, CXCL8, CCL20, RELA 0.016 
Homologous recombination BRCA1 0.02 
ECM-receptor interaction ITGB4, LAMB3 0.022 
Wnt signalling pathway MAPK10, PRICKLE1, VANGL1 0.043 
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Figure 5.8. Top perturbed cancer-related pathway: Cytokine-cytokine receptor interaction 
(KEGG: 04060). Perturbation vs over-representation: Cytokine-cytokine receptor interaction 
(yellow circle) is shown, using negative log of the accumulation and over-representation p-
values, along with the other most significant pathways (red circles). Pathways in red are 
significant, based on the combined uncorrected p-values (a). Measured expression vs 
accumulation of pathway genes: all the genes from this pathway are represented in terms of 
their measured fold change (y-axis) and accumulation (x-axis). Accumulation is the perturbation 
received by the gene from any upstream genes. Genes displayed in red had both accumulation 
and measured fold change. Genes in blue had only measured fold change. Genes in green had 
only accumulation. The remaining genes that were not measured and had no accumulation are 
shown in black. (b). Graphically, the pathway diagram is overlayed with the computed 
perturbation of each gene. The perturbation accounts both for the gene's measured fold change 
and for the accumulated perturbation propagated from any upstream genes (accumulation). The 
highest negative perturbation is shown in dark blue, while the highest positive perturbation in 
dark red. The legend describes the values on the gradient (c); MMR: Mismatch repair; HR: 
homologous recombination; BER: Base excision repair  
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Table 5.8. Top perturbed Gene Ontology (GO) terms in SH-SY5Y cells with continuous 
exposure to metformin.                      

 

Pathway name 
Number of 

perturbed genes/ 
total genes in the 

pathway 
p-value 

Biological Processes 

 

positive regulation of 
multicellular organismal 
process 

634 / 933 2.700e-
13 

inflammatory response 257 / 355 5.500e-
10 

defense response 535 / 802 2.000e-9 

regulation of multicellular 
organismal process 1110 / 1764 9.600e-9 

positive regulation of 
developmental process 537 / 811 9.600e-9 

Molecular functions 

helicase activity 105 / 140 5.700e-6 

cytokine activity 64 / 80 1.100e-5 

DNA binding 1179 / 1926 1.300e-5 

double-stranded DNA 
binding 371 / 573 5.000e-5 

deoxyribonuclease activity 48 / 59 6.300e-5 
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5.3.3. Metformin treatment and continuous exposure to metformin share 

molecular perturbations 

In an attempt to further explore which aberrations in the lncRNA repertoire and the 

novel molecular pathway changes they are involved in are persistent in neuroblastoma 

cells, as a result from either short term exposure (48 h) to metformin or more chronic 

exposure potentially leading to resistance to metformin, shared alterations between the 

two experiments (Data set 1 and Data set 2) were pinpointed. This was performed 

primarily at lncRNA level, as well as at a cancer-related pathway level. Importantly, a 

significant number of lncRNAs (269), more than half of the perturbed lncRNAs in each 

individual condition, were perturbed in common in both data sets. Among them, a 

number were consistently very highly up- (e.g. GHRLOS, LOC100130700, CASC2, 

MIR22HG, LOC100288637, LOC100507173, LOC100288974, LOC641364, and the 

uncharacterised LOC100505695, LOC100507557 and LOC100506801) or down-

regulated (e.g. LOC100132707, LOC100289092, C17orf76-AS1, LOC285484, 

LOC100506409, LOC340037, LOC100288637, LOC100506714, LOC256021, 

LOC151300, and the uncharacterised LOC100506136, LOC143666 and 

LOC100507346), suggesting their crucial role in mediating the cell fate decisions, as 

well as in transitioning between the simple short-term exposure and continuous, 

chronic exposure effects. For instance, LOC151300 was consistently ~15-fold down-

regulated, and given its association with components of the Wnt signalling pathway 

(Puiggros et al., 2013), it can be speculated that this pathway is a key mediator via 

which metformin exerts its effects. In the opposite direction, the expression of GHRLOS 

was constantly 15-fold increased. Similar to LOC151300, the link of GHRLOS and its 

transcript Ghrelin with components of the Wnt pathway (Seim et al., 2010), points 

towards the importance of the pathway in responses to metformin. Moreover, the well-

known CASC2, which is established to promote apoptotic responses, was 12-13-fold 

up-regulated in both conditions, supporting the hypothesis that metformin induces 
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apoptosis, and potentially, that longer exposure to metformin enhances the levels of 

apoptosis. The shared perturbed lncRNAs also included some well-studied cancer-

related ones, such as MIR22HG, LINC00173, GAS5, MALAT1 and linc-NeD125 

(Figure 5.9b-c and Supplementary Table 1: lilac highlights, Appendix III). Noteworthily, 

the subclass distribution of the shared differentially expressed lncRNAs followed the 

distribution of the individual data sets, i.e. the majority belonged to the NAT 

subcategory (38%), followed by lincRNAs and pseudogenes. 

In addition, of note is the fact that 8 perturbed cancer-related pathways were shared 

between the two data sets, including DNA repair mechanisms, cell cycle regulation, 

DNA replication and apoptosis-related pathways, suggesting their importance in the 

mechanistic action of metformin, regardless of the duration of exposure (Figure 5.9a).  
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Figure 5.9. The shared effects of metformin treatment and continuous exposure to 
metformin. Both short term exposure to 20mM metformin and continuous exposure of SH-
SY5Y cells to 3mM metformin induce shared alterations in the molecular landscape. This is 
observed at the pathway level, summarised in the Venn diagram (a), and at the lncRNA level. 
The bar chart presents only the top perturbed lncRNAs in both directions (b). Red coloured bars 
correspond to upregulated gene expression, while blue coloured bars correspond to 
downregulated gene expression. Data are the difference in expression between untreated 
control cells and cells exposed to 20mM metformin, expressed as a normalised log2 fold change 
(log2FC). A threshold of 0.05 for statistical significance (p-value) and a log fold change of 
expression with an absolute value of at least 0.6 were applied. The pie chart schematically 
presents the distribution of shared differentially expressed lncRNAs into different lncRNA 
subclasses (c). DE: differentially expressed; NAT: Natural Anti-sense Transcript; lincRNA: Long 
Intergenic RNA; miRNA host: microRNA host gene; snoRNA host: small nucleolar RNA host 
gene. 
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5.3.4. The molecular differences between the response to metformin 

and continuous exposure to metformin  

In order to explore whether, despite the shared changes on the molecular level, there 

are novel lncRNAs whose expression is highly perturbed and could possibly be drivers 

of cell fate determination leading to the switch of cells to behave differently after long-

term exposure to metformin, a comparison between the RNA sequencing profile of the 

two conditions (i.e. cells exposed to 20mM metformin for 48 h versus cells with 

continuous exposure to metformin) was generated (Data set 3). 

The RNA sequencing analysis revealed that the lncRNA landscape was again 

massively changed. In this case, the magnitude of the effect was similar to the one 

described in the previous sections, with 468 lncRNAs being significantly up-regulated 

or down-regulated. The top ten up-regulated lncRNAs were LOC283050, 

LOC730227, LOC100509894, LOC100506714, LOC100133331, LOC729678, 

LOC100128420, TP73-AS1, LINC00176 and C17orf76-AS1 (>5-fold increase), and in 

the opposite direction, the top down-regulated ones were  LOC115110, LINC00327, 

LOC400940, LOC392232, LOC641364, LINC00304, LOC100507557, PCBP1-AS1, 

LOC100125556 and LOC100652730 (>3-fold increase). Some of them have already 

been attributed a cancer-related identity. LOC283050, a novel lncRNA, was the 

lncRNA with the most pronounced increase in expression (14-fold) in cells with 

continuous exposure to metformin, suggesting it may be a key driver of cell fate 

decisions leading to acquired metformin resistance. LOC730227, another relatively 

new lncRNA, also displayed a more than 13-fold increase in expression levels, and 

given its association with the response to radiation via ATM and p53 (Narayanan et 

al., 2017), it may also be a key player. In addition, the well-investigated TP73-AS1 

was 8-fold up-regulated as a result of continuous exposure to metformin, and given 

the role of its transcript TP73 in cellular responses to stress, it may as well be a driver 
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of metformin resistance. On the other hand, another novel lncRNA, LOC100652730 

(LINC00659), was the most down-regulated (16-fold) and has been associated with 

the PI3K pathway (Tsai et al., 2018), suggesting a potential involvement in driving 

metformin resistance. PCBP1-AS1, 14-fold down-regulated after continuous 

exposure to metformin, is an autophagy-associated NAT (Luan et al., 2019) whose 

massive decrease in expression could also serve as a driver of cell fate decision 

events ultimately leading to metformin resistance, given the role of autophagy in drug 

response. Curiously, some of the most deregulated lncRNAs comprise totally novel, 

uncharacterised genes, for instance, LOC100133331, LOC400940 and 

LOC100507557. Furthermore, amongst the lncRNAs with pronounced differential 

expression, a number have been previously linked to various cancers, including 

MIR497HG, FLVCR1-AS1, CRYM-AS1, H19 and LINC00092. The subclass 

distribution following the same pattern; NATs were the most abundant category 

(40%), followed by lincRNAs (24%) and pseudogenes (15%), while a generous 16% 

of the lncRNAs were uncharacterised (Figure 5.10 and Supplementary Table 5, 

Appendix III). 
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Figure 5.10. The effect of metformin-treated SH-SY5Y cells versus SH-SY5Y cells with 
continuous exposure to metformin on lncRNA expression Short-term metformin exposure 
and continuous exposure of SH-SY5Y cells to 3mM metformin induces different alterations in 
the expression of lncRNAs. The bar chart presents only the top perturbed genes in both 
directions (a). Red coloured bars correspond to upregulated gene expression, while blue 
coloured bars correspond to downregulated gene expression. Data are the difference in 
expression between cells treated with 20mM metformin for 48 h and cells with acquired 
resistance to 3mM metformin, expressed as a normalised log2 fold change (log2FC). A threshold 
of 0.05 for statistical significance (p-value) and a log fold change of expression with an absolute 
value of at least 0.6 were applied. The pie chart schematically presents the distribution of 
differentially expressed lncRNAs into different lncRNA subclasses (b). DE: differentially 
expressed; NAT: Natural Anti-sense Transcript; lincRNA: Long Intergenic RNA; miRNA host: 
microRNA host gene; snoRNA host: small nucleolar RNA host gene. 
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Interestingly, the analysis of the comparison generated some useful findings regarding 

the driver changes that convert SH-SY5Y cells from metformin-responding to 

potentially metformin resistant. As far as pathways are concerned, 64 were significantly 

impacted, including multiple cancer-related ones, some of which were not present in 

any of the comparisons described in sections 5.3.1. and 5.3.2., such as the NF-κB 

signalling pathway, the TNF signalling pathway and proteoglycans in cancer (Table 5.9 

and Supplementary Table 6a, Appendix III). Besides, 1615 Gene Ontology terms were 

found to be significantly deregulated (Supplementary Table 6b, Appendix III). Taken 

together, these changes signify that the key drivers of metformin resistance as 

compared to responsiveness to metformin treatment include not only lncRNA elements, 

but also protein-coding ones. 

 

Table 5.9. Top perturbed molecular pathways (including cancer-related) in metformin-
treated SH-SY5Y cells versus SH-SY5Y cells with continuous exposure to metformin. 

Pathway name p-value 
NF-kappa B signalling pathway  1.951e-5 

TNF signalling pathway 5.358e-5 

Steroid biosynthesis  5.742e-5 

Chemokine signalling pathway 6.808e-5 

HTLV-I infection 8.278e-5 

Cytokine-cytokine receptor interaction 8.368e-5 

Kaposi's sarcoma-associated herpesvirus infection  8.746e-5 

Terpenoid backbone biosynthesis  1.228e-4 

Antigen processing and presentation 3.310e-4 

Systemic lupus erythematosus  4.165e-4 
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5.4. Discussion 
 

LncRNAs have lately been established as important modulators of cell fate 

determination, including cell survival, apoptosis and migration (Wapinski and Chang, 

2011; Dhamija and Diederichs, 2016; Melissari and Grote, 2016), as well as drug 

resistance in various tumours interfering with diverse mechanisms of acquired 

resistance (Smallegan and Rinn, 2019; Zhao et al., 2019). Given the very low survival 

rates of high risk neuroblastoma patients, as well as the lack not only of understanding 

of the mechanisms that confer the aggressiveness of the tumour in these patients but 

also of druggable therapeutic targets, there is an urge to meet these needs. To this 

end, this chapter aimed to identify novel lncRNAs, which are potentially capable of 

mediating cell fate decisions in SH-SY5Y neuroblastoma cells by measuring and 

evaluating the perturbations in their expression in response to metformin, a biguanide 

traditionally administered orally for the treatment of type 2 diabetes that has been 

widely repurposed over the last decade for the treatment of various cancer types with 

promising results, and has been shown to affect multiple signalling pathways involved 

in cancer (Janjetovic et al., 2011; Li et al., 2019). 

The first line strategy to identify lncRNAs responsible for cell fate decisions driving the 

acute effects of short-term exposure to metformin was to treat NB cells with metformin 

for 48 h. Apart from this, on the grounds that chronic exposure of NB cells to 

metformin, leading, potentially, to acquired resistance to it, could result in permanent 

senescent cell growth arrest, as a result of excessive autophagy that targets vital 

metabolic cancer cell components, and therefore, activating such a senescence 

programme in tumour cells could be an attractive therapeutic strategy (Menendez et 

al., 2011), such an approach was adopted. In particular, the discovery of novel 

lncRNAs and their role in cells with continuous exposure to metformin was investigated 

next. The molecular and pathway alterations between untreated cells and cells with 
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acquired resistance to metformin were also explored, and further, the short-term-

treated group was compared with the long-term-treated one to discover fundamental 

similarities and differences in lncRNA expression, in order to identify novel mediators of 

fate determination driving the switch of the “metformin-responsive” phenotype to the 

“metformin-resistant”. 

The analysis of RNA sequencing results showed that numerous alterations were 

caused in the non-coding landscape. Hundreds of lncRNAs displayed differential 

expression upon metformin treatment, including TP73-AS1, LOC100288637, CBR3-

AS1 and MIR22HG, which were also distributed into different lncRNA subclasses, 

predominantly NATs. The oncogenic TP73-AS1, which was one of the most down-

regulated lncRNAs (8-fold) has been implicated in numerous cancers, (Chu et al., 

2019). TP73-AS1 has been established as a promoter of cell proliferation and invasion 

and metastasis  (Wang et al., 2018; Yao et al., 2018), and given that the mechanisms 

of action of metformin include the regulation of these processes (Kourelis and Siegel, 

2012; Emami Riedmaier et al., 2013), it could, therefore, be speculated that TP73-AS1 

is part of the mechanism by which metformin eliminates these processes in 

neuroblastoma. Another highly down-regulated lncRNA (11-fold), LOC100288637, has 

so far been implicated in gynaecological tumours only (Yang et al., 2016; Huang et al., 

2019), but not in NB, suggesting it may play a yet to be discovered mechanistic role in 

cell fate decisions in response to metformin. CBR3-AS1 is a thoroughly studied 

oncogenic lncRNA, implicated in a plethora of cancers such as prostate (Fang et al., 

2016), osteosarcoma (Luo et al., 2019) and breast (Faramarzi et al., 2018) cancer, that 

was surprisingly 13-fold up-regulated in response to metformin treatment. Due to its 

involvement in the regulation of cell cycle (Li et al., 2014), as well as in the Notch 

signalling pathway (Wang et al., 2018), it could be assumed that CBR3-AS1 exerts its 

role in the response to metformin via this –understudied in terms of metformin 

mechanisms of action- pathway, as well as via a non-canonical regulation of the cell 
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cycle. Moreover, MIR22HG, a tumour suppressor lncRNA, was vastly up-regulated (12-

fold) in cells treated with metformin. MIR22HG has very recently been reported to 

attenuate cell proliferation and migration via negatively regulating the Wnt pathway in 

GBM (Han et al., 2019) and cholangiocarcinoma (Hu et al., 2019). Notably, although 

regulating the Wnt signalling pathway is not the main mechanism of action for 

metformin, metformin has been found to deregulate this pathway in neural crest cells 

(Banerjee et al., 2016) and pancreatic cancer cells (Yue et al., 2014). Taken together, 

these suggest that MIR22HG could participate in a Wnt-dependent mode of action of 

metformin in neuroblastoma. Despite the fact that the aforementioned lncRNAs have 

already been implicated in multiple cancers, they have not been associated with 

neuroblastoma before. Importantly, the list of the most deregulated lncRNAs in 

metformin-treated cells contains a  number of lncRNAs that are completely novel and 

remain uncharacterised (e.g. LOC100507557, LOC100505695) or for which very 

limited studies have been conducted, including in some cases studies related to 

cancer, for instance, LOC100130700 (Dai et al., 2015), PEG3-AS1 (Hsu et al., 2016; 

Zhang et al., 2019), suggesting the existence of novel key players, potentially involved 

in pathways that have not been previously associated with cell fate determination in 

response to metformin in neuroblastoma cells. 

In the attempt to incorporate the novel lncRNAs found to be perturbed in response to 

metformin in a cancer-related molecular pathway context, we also assessed which 

pathways were perturbed, in order to isolate the cell fate-related ones in which these 

lncRNAs could be implicated. Our approach has not only confirmed already studied 

pathways in which our novel lncRNAs could fit as mediators but has also identified a 

number of novel potential mechanisms by which cell fate decisions could be mediated 

in response to metformin. It has now been well established that metformin suppresses 

tumour cell growth through the mTOR pathway, induces p53-related apoptosis, causes 

cell cycle arrest and interferes with tumour-related inflammation (Kourelis and Siegel, 



239 
 

2012; Emami Riedmaier et al., 2013), all of which were confirmed to be perturbed in 

our system. Analysis of the results has revealed that there is a significant change in the 

cell cycle pathway, p53 signalling pathway and cytokine-cytokine receptor interactions 

when untreated SH-SY5Y cells were compared to cells treated with 20mM of metformin 

for 48 h. Intriguingly, apart from the pathways that have already been implicated in 

metformin’s mechanisms of action, numerous understudied or even novel cancer-

related pathways were found to be significantly perturbed. Notably, DNA replication 

was the most downregulated pathway (among cancer-related and non-related 

pathways) in response to metformin, a finding which is in agreement with the study by 

Ma et al., 2014, in which metformin in combination with tamoxifen inhibited DNA 

replication in ER-positive breast carcinoma, as well as with the study by Kim et al. 

(2017), in which metformin downregulated the DNA replication machinery in colorectal 

cancer cells. In addition to DNA replication, the analysis of the RNA sequencing result 

unveiled massive and significant changes in pathways involved in the DNA damage 

response, including mismatch repair (MMR), homologous recombination (HR) and 

base excision repair (BER), all of which were downregulated. The same effect has 

previously been reported in lung cancer cells, where metformin downregulated ERCC1 

(Excision Repair Cross Complementing 1) to sensitise them to paclitaxel (Tseng et al., 

2013). Metformin has also previously been found to sensitise tumour cells against 

further damage via the activation of ATM, an upstream sensor of double strand breaks 

and, therefore, a regulator of HR (Menendez et al., 2011). At the same time of the 

current study, a meta-analysis report confirmed that DNA replication and DDR are 

among the top perturbed pathways in response to metformin as assessed in multiple 

cell lines, not containing neuroblastomas, though (Schulten and Bakhashab, 2019). 

Besides, Hippo, another cancer-related pathway emerged as significantly perturbed. 

Although the link between Hippo and metabolic stress and metformin is still not fully 

elucidated, there is evidence that links the beneficial effect of metformin to Hippo via 

YAP/TAZ (Yes-associated Protein/ Tafazzin) upregulation in glioma cells (Yuan et al., 
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2018), similar to our results. In agreement with these studies, our sequencing results 

showed perturbations in expression of key genes, including MDM4, PCNA, the MCM 

family, CHEK1/2, ERCC1, XRCC3, BRCA1 and BID.  

Importantly, some master regulators of gene expression were significantly perturbed, 

mainly proteins of the MYC family, such as c-Myb and, primarily, c-Myc, which are 

responsible for the regulation of cell cycle, DNA damage, cell survival and apoptosis 

(Kumar et al., 2014). In this case, in the SH-SY5Y system, the MYC family equilibrium 

leaned towards the pro-apoptotic side in response to metformin. As the decrease in 

expression of both c-Myb and c-Myc seemed to promote a tumour suppressive 

response, it can be speculated that these transcription factors kept their traditional 

oncogenic identity. Although in neuroblastomas MYCN amplification is traditionally 

vastly responsible for poor outcome, in MYCN non-amplified tumours-and 

consequently cell lines, such as SH-SY5Y, c-Myc is responsible for aggressiveness 

(Wang et al., 2014). In our case, the decrease in the levels of c-Myc could be 

attributed, at least partly, to the massive increase of MIR22HG in response to 

metformin, as this lncRNA has been shown to negatively regulate c-Myc in breast 

cancer (Zurlo et al., 2019). In addition, c-Myb, a basal transcription factor, has been 

implicated in cell proliferation, differentiation and apoptosis, and its overexpression in 

multiple cancers has led to its classification as a proto-oncogene, like c-Myc (Liu et al., 

2018; Fry and Inoue, 2019). Interestingly, and in line with our results, BRCA1 is a c-

Myb target (Mitra, 2018), and given the abundance of their targets, some of the newly 

identified lncRNAs described above could be targeted by either transcription factor or 

vice versa. Consequently, given their central role as master tumour-promoting 

transcription factors, their reduced expression in response to metformin confirms the 

beneficial, anti-tumour survival role of metformin in this context. 

The continuous exposure of NB cells to metformin gradually led to the reduced 

responsiveness of the cells to the drug, an effect which was –at least partly- mediated 
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by novel lncRNAs. In particular, there was again a massive, significant change in the 

expression of hundreds of lncRNAs (482), including NATs, lincRNAs, pseudogenes 

and a lot of novel, uncharacterised ones. The most deregulated lncRNAs include 

GHRLOS, CASC2, LOC643401 (PURPL) and LINC00176. Importantly, the most 

upregulated lncRNA, GHRLOS, has recently been implicated in colorectal cancer (Wu 

et al., 2017). GHRLOS is the NAT of Ghrelin, which is a hormone responsible-among 

others- for energy homeostasis and pancreatic glucose-stimulated insulin secretion 

(Seim et al., 2010). Since metformin is capable of modulating the levels of glucose and 

insulin (Kourelis and Siegel, 2012; Vial et al., 2019), it could be assumed that GHRLOS 

modulating the levels of Ghrelin could be a new link through which chronic exposure to 

metformin exerts its role in neuroblastoma cells. Furthermore, CASC2, a tumour 

suppressor lncRNA known for its ability to attenuate tumour cell growth, proliferation, 

migration and invasion in multiple cancers (Wang et al., 2015; Li et al., 2019; Sun et al., 

2019; Xing et al., 2019), was among the most upregulated lncRNAs, suggesting its vital 

role in metformin-mediated effects in terms of inhibiting tumour progression, including 

the inhibition of cell growth and invasion. LOC643401, another highly up-regulated 

lncRNA as a result of continuous exposure to metformin, is a recently discovered 

suppressor of the basal levels of p53, thereby leading to tumourigenesis (Ashouri et al., 

2016; Li et al., 2017). Therefore, its up-regulation could be a driver of metformin 

resistance, as apoptosis and DDR may be eliminated as a result of chronic exposure. 

In the opposite direction, one of the most downregulated lncRNAs, LINC00176, which 

was ~9-fold downregulated and is also a c-Myc target, has been involved in multiple 

cancers, including ovarian (Dai et al., 2019), hepatocellular (Tran et al., 2018), clear 

cell renal carcinoma (Wang et al., 2019) and oesophageal (Fan and Liu, 2016), and 

has been shown to be involved in cell survival and proliferation (Wang et al., 2019), as 

well as in cell cycle (Tran et al., 2018) and apoptosis (Dai et al.,2019; Niehus et al., 

2019). Therefore, perturbations in these processes leading to metformin resistance 

could be the result of the tremendous down-regulation of LINC00176. Interestingly, 
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although these lncRNAs have been implicated in a variety of tumours, a link with 

neuroblastoma has not been generated yet. Notably, the most perturbed lncRNAs 

included novel lncRNAs, often yet to be characterised (LOC100133331-13-fold 

upregulated, LOC100505695- 6-fold up-regulated, LOC648987-15-fold down-

regulated), or lncRNAs that are newly discovered with very limited research already 

conducted for them. A typical such example is LOC151300 (LINC00608), which was 

recently discovered as part of non-coding signatures with prognostic value in HNSCC 

(Yang et al., 2019; Ghafouri-Fard et al., 2020), but whose mechanisms of action remain 

to be elucidated. Taken together, these findings suggest that these lncRNAs could be 

used as biomarkers of metformin resistance in neuroblastoma. 

Intriguingly, the two comparisons shed light to multiple shared changes, both in the 

pathway level, and the lncRNA level in the context of neuroblastoma. Surprisingly, 8 of 

the most deregulated cancer-related pathways were shared in the two data sets, 

including DNA repair and DDR pathways. This is a strong indication-supported by other 

studies (Schulten and Bakhashab, 2019)- that these pathways are key players in the 

response of SH-SY5Y cells to metformin, regardless of the duration of exposure and 

the potential acquired resistance, and from a therapeutic prism, they could be 

druggable in combination with metformin for the treatment of neuroblastoma. More 

importantly, the fact that the deregulation in the expression of 269 lncRNAs was shared 

in the two tested conditions, pinpoints the importance of the lncRNAome in 

neuroblastoma and the mechanisms of action of metformin. For instance, GHRLOS, 

CASC2 and LOC151300 were massively deregulated in both conditions, stressing the 

central role of them per se, and their related processes, such as apoptosis, in this 

system, and opening the opportunity for them to be exploited therapeutically as part of 

combination therapy together with metformin. Importantly, the distribution of shared 

lncRNAs followed this of each data set separately: NATs were the most abundant 
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subclass, followed by lincRNAs, stressing the evolutionary preference for overlapping 

genes (Ning et al., 2017).  

Nevertheless, as expected, extended exposure to the drug also attributed some 

changes on the molecular level, allowing the identification of new lncRNAs that 

regulate cell fate aspects accompanying this extended exposure. As far as lncRNAs 

are concerned, 468 were significantly perturbed. Among the most up-regulated, 

LOC283050 (14-fold) is a so far under-studied NAT. However, its coding transcript 

ZMIZ1 (Zinc Finger MIZ-Type Containing 1) has been attributed oncogenic properties 

(Rogers et al., 2013), and therefore this pair could be a candidate contributor to the 

metformin responsiveness switch. Additionally, LOC730227 (13-fold up-regulated) is a 

novel lncRNA that could also mediate this switch. Curiously, TP73-AS1, which was 

down-regulated in response to short-term metformin exposure, was massively (8-fold) 

up-regulated in response to continuous exposure. Owing to the fact that TP73 

mediates cellular responses to stress, a very simplistic potential scenario could be that 

the up-regulation of its NAT induces the elimination of TP73, which in turn silences 

DDR components, rendering metformin incapable of exploiting them. On the other 

hand, the most down-regulated lncRNA LOC100652730 (16-fold), is a novel lncRNA, 

whose modes of action mediating the resistance to metformin need to be investigated. 

Another dramatically down-regulated lncRNA, PCBP1-AS1 (14-fold) has already been 

considered as a biomarker in recurrent neuroblastoma (Utnes et al., 2019), implying it 

could also be used as a predictive marker for potential metformin resistance in these 

patients. In conclusion, all of these lncRNAs are putative drivers of metformin 

resistance in neuroblastoma and could be utilised as biomarkers of predictive value. 

Surprisingly, despite the link of metformin with inflammation via the NF-κB pathway 

(Kourelis and Siegel, 2012; Rizos and Elisaf, 2013), the pathway only emerged- and 

with the highest effect-when comparing the short-term exposure with resistance, and 

not in the comparisons between untreated and treated cells. Moreover, the apoptosis-
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related TNF signalling pathway was the second most affected. Both of them were 

upregulated, suggesting a stronger effect of metformin in terms of apoptosis induction, 

and, therefore, a more efficient anti-tumour effect. Finally, the chemokine and cytokine 

pathways were upregulated. Collectively, these results should be interpreted with 

caution, as the cancer inflammation networks are extremely complex and there is a fine 

line between tumour-eliminating and tumour-promoting inflammation (Hanahan and 

Weinberg, 2011). In addition, it is possible that the aforementioned lncRNAs could be 

associated with these processes, a scenario that needs further investigation. 

Taking everything into account, although the RNA sequencing has revealed numerous 

mechanistic relationships and, primarily, has provided very useful insights of novel, key 

lncRNA mediators of the cell fate determination linked to metformin and of how 

neuroblastoma cells potentially acquire resistance to metformin after prolonged 

exposure to it, this study has only scratched the surface of these complicated effects. 

In fact, due to their preliminary nature, the findings presented herein need to be 

interpreted with caution, and require further investigation. Nevertheless, despite the 

limitation of the RNA sequencing results being extracted by a single replicate (as 

analysed in section 4.4), this study provides confirmation that pathways already 

established to be perturbed in other systems (e.g. cell cycle, DNA replication, 

apoptosis) are indeed altered in our system, the SH-SY5Y neuroblastoma cells, and 

also reveals new modes of action of metformin, including DDR and the Hippo pathway. 

Among the key novel lncRNAs, some are well-studied genes in other tumours; 

however, herein we have established a strong link to neuroblastoma. Other highly 

deregulated lncRNAs, such as LOC100507557, LOC100505695 and LOC648987 

remain uncharacterised, and therefore, their characterisation would facilitate the 

attribution of a specific, evidence-based role in mediating cell fate decisions in 

metformin responses, as well as their connection with the observed perturbed 

molecular pathways. However, metformin is a multifaceted drug, participating in a 
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plethora of signalling pathways and exerting a diversity of tumour-eliminating functions, 

such as inhibiting tumour cell growth and promoting programmed cell death. Thus, 

identifying the key lncRNAs mediating all these effects remains a difficult task that 

needs further investigation. Further research is also needed to establish the link 

between the newly identified lncRNAs that present with highly deregulated expression 

and the perturbed pathways so that the exact mechanisms of action of these lncRNAs 

are elucidated and they gain contextual importance in neuroblastoma. 

 

 

 

 

 

 

 

 

 

 

 

 

 



246 
 

5.5. Chapter Highlights   

1. RNA sequencing has identified 418 perturbed novel lncRNAs, including TP73-

AS1, LOC100288637, CBR3-AS1 and MIR22HG, in response to treatment with 

20mM metformin in SH-SY5Y neuroblastoma cells. 

 

2. 482 lncRNAs, including GHRLOS, CASC2, LOC643401 (PURPL), LOC648987 

and LINC00176 were identified to be altered after continuous exposure of SH-

SY5Y cells to metformin.  

 

3. Treatment with and prolonged exposure to metformin share expression 

perturbations in 269 lncRNAs, including GHRLOS, CASC2 and LOC151300. 

 

4. Besides changes in the lncRNA repertoire, the RNA sequencing demonstrated 

novel cancer-associated perturbations in cell fate-related processes and 

molecular pathways, such as DNA replication and DDR, in SH-SY5Y cells 

exposed to metformin short-and long-term, some of which maintain their 

deregulation in both experimental conditions. 

 

5. Long term exposure to metformin causes modulations in the expression 

levels of 468 lncRNAs, for instance, LOC2830509000, LOC730227, TP73-AS1, 

LOC100652730 and PCBP1-AS1, when compared to short-term treatment. 

Such lncRNAs could be considered as resistance drivers and could be 

exploited as biomarkers of metformin resistance in neuroblastoma. 
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6.1. Introduction 

The evidence presented in Chapter 5 revealed that a multitude of lncRNAs are also 

capable of mediating the neuroblastoma cells’ response to metformin and the switching 

process via which they become resistant to it after continuous exposure. Among the 

lncRNAs whose expression was massively (more than 5-fold) perturbed after 

continuous metformin exposure, a variety has been implicated in cell fate 

determination, including cell survival, apoptosis and invasion. CASC2, a well-studied 

onco-suppressor lncRNA highly up-regulated in response to continuous metformin 

exposure, is involved in Wnt signalling to eliminate tumour growth in glioma (Wang et 

al., 2017) and HCC (Li et al., 2019), and is also an apoptosis, cell survival and invasion 

regulator in HCC cells (Fan et al., 2018; Sun et al., 2019), glioma cells (Wang et al., 

2015) and pancreatic cancer cells (Xu, et al., 2020). LOC643401, also known as 

PURPL, a highly up-regulated lncRNA, is involved in p53 signalling regulation as p53 

suppressor, and therefore, in p53-related responses, such as cell proliferation and 

apoptosis in CRC (Li et al., 2017) and liver cancer (Fu et al., 2019), while its 

overexpression is also a potential biomarker in gastric cancer (Moridi et al., 2019). The 

two most down-regulated (15-fold) lncRNAs in SH-SY5Y cells with continuous 

exposure to metformin, LOC151300 and LOC648987, are both novel lncRNAs that 

remain largely understudied. Nevertheless, LOC151300 has been reported to be 

differentially expressed between primary colon carcinoma and its lymphatic and hepatic 

metastases (Lan et al., 2012). LINC00176 is another highly down-regulated (9-fold) 

lncRNA, which in contrast to LOC151300 and LOC648987 has been given more 

scientific attention and has been associated with cancer (Fan and Liu, 2016; Tran et 

al., 2018; Dai et al., 2019). 

In an attempt to further explore the role of novel lncRNAs characterised in Chapter 5, 

two of the most downregulated lncRNAs, LINC00176 and LOC648987, were chosen 

for further functional analysis. LINC00176 is a lincRNA that spans ~5kb on 
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chromosome 20 and has previously been implicated in a diversity of cancers. Not only 

has it been verified as a biomarker lncRNA in clear cell renal carcinoma (Wang et al., 

2019), HCC (Zhang et al., 2015; Gong et al., 2020) and oesophageal cancer (Fan and 

Liu, 2016), as well as a candidate biomarker in pancreatic cancer (Liu et al., 2019), but 

also it has been attributed a role in tumour cell growth (Zhu et al., 2016) and cancer cell 

fate determination. For instance, it has been demonstrated that LINC00176 can 

regulate cell proliferation, cell cycle and necroptosis and apoptosis-mediated cell death 

in HCC cells (Tran et al., 2018), and apoptosis, invasion and EMT in ovarian cells (Dai 

et al., 2019). Finally, it has also been shown to act as a miRNA sponge in HCC (Zhang 

et al., 2015; Tran et al., 2018) and to be involved in oxaliplatin resistance in the 

chemotherapy of colorectal cancer (Sun et al., 2019). On the other hand, LOC648987 

is a 52kb, still uncharacterised, non-coding locus across chromosome 5, which has 

been demonstrated to be differentially methylated in patients with lung adenocarcinoma 

(Daugaard et al., 2016). Nevertheless, a splice variant of LOC648987, named MPRL 

(miRNA processing–related lncRNA), was found to regulate mitochondrial fission, 

cisplatin sensitivity and apoptosis through miR–483-5p in tongue squamous cell 

carcinoma (TSCC) (Tian et al., 2019).  

Despite the findings described above, the influence of LINC00176 and LOC648987 on 

neuroblastoma cell fate determination, including survival, apoptosis and migration, 

currently remains largely unknown. Based on the findings of Chapter 5, it would be 

expected that the knockdown of LINC00176 and LOC648987 would lead to radical 

changes in terms of cell fate decisions, given that both survival- and apoptosis-related 

pathways were deregulated in response to metformin, and that the expression of both 

of these genes was dramatically reduced.   Therefore, the aim of this chapter was to 

investigate whether LINC00176 and LOC648987 regulate these processes in SH-SY5Y 

neuroblastoma cells, both under basal conditions and after challenging the cells with 

metformin. 
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6.2. Materials and Methods 

6.2.1. Cell culture 

The experiments incorporated in this chapter were conducted using the human 

neuroblastoma SH-SY5Y cell line, cultured using the HyClone™ DMEM/F12 1:1 growth 

media, supplemented with 10% heat-inactivated fetal bovine serum, 2μM L-Glutamine, 

1μΜ Sodium Pyruvate and 10mg/ml gentamicin solution, as described in section 2.1. 

 

6.2.2. LNA GapmeR –mediated knockdown 

LNA GapmeRs were used in this series of experiments to knockdown LINC00176 and 

LOC648987. The GapmeRs that were used (200nM) included the Negative control A 

Antisense LNA GapmeR, three custom-designed GapmeRs (namely LINC_1, LINC_2, 

LINC_3) targeting different sites of LINC00176 and three custom-designed GapmeRs 

(namely LOC_1, LOC_2, LOC_3) targeting different sites of LOC648987 (Table 6.1), 

as described in section 2.3.3. 

Table 6.1.  LINC00176- and LOC648987-specific LNA GapmeRs details. 

 
 
 6.2.3. Real-time PCR (RT-qPCR) 

Total RNA was extracted from cells using the Direct-zol™ RNA MiniPrep kit, according 

to the manufacturer’s protocol and the quality was measured with NanoDrop (as 

detailed in sections 2.4. and 2.4.1.). 

RNA extracted from transfected cells was then reverse transcribed into cDNA using the 

Omniscript® RT kit, as described in section 2.5.1. Real-time PCR was subsequently 

Method Cat #/ ID Name/ 
Symbol Target Sequence (5’3’) 

LNA 
GapmeRs 

LG00000002 -ve N/A N/A 
LG00200609 LINC_1 LINC00176 GGATAAATCAGGAGAC 
LG00200610 LINC_2 LINC00176 GGTCTTGGATTAACTT 
LG00200611 LINC_3 LINC00176 TGTGATTAAATGCTGT 
LG00200628 LOC_1 LOC648987 GAGAACCTCCGGAATA 
LG00200629 LOC_2 LOC648987 AGCGACGCGAAACAAG 
LG00200630 LOC_3 LOC648987 GCATTGGAGTGGTAGT 
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performed for the synthesised cDNA. Specific primers were used against LINC00176 

and LOC648987, while 18S rRNA was used as a housekeeping gene (Table 6.2), as 

described in section 2.5.2. 

 

Table 6.2. TaqMan® gene expression assays’ details. 

 

 

6.2.4. Functional analysis: determination of cell survival, apoptosis and 

cell migration 

For the lncRNA knockdown experiments, after transfection, cells were harvested by 

trypsinisation and after 48 h were re-plated for 48/72 h. Cell survival was assessed 

using trypan blue solution vital dye staining (explained in section 2.6.1.) and MTS 

assay using the CellTiter 96® Aqueous One Solution Cell Proliferation Assay (as 

described in section 2.6.3.). For the experiments testing whether LINC00176 and 

LOC648987 down-regulation sensitises SH-SY5Y cells to metformin (sections 6.3.1.4 

and 6.3.2.4, respectively) cells were treated with 20mM metformin at 24h after plating 

and were then incubated for an extra 48/72 h. 

The long term survival of the cells was assessed with the clonogenic assay. GapmeR-

transfected cells were incubated for three weeks, were stained with 1% w/v crystal 

violet and counted, as presented in section 2.8.  For the experiments testing whether 

LINC00176 and LOC648987 down-regulation sensitises SH-SY5Y cells to metformin, 

cells were seeded, 20mM metformin was added at 24h post-seeding and after 48 h the 

metformin-containing growth medium was replaced by fresh cell-conditioned growth 

medium. 

Method Catalogue #/ ID Target Exon 
boundary Assay location 

TaqMan® 

Hs99999901_s1 18S 1-1 604 

Hs00988121_s1 LINC00176 1-1 378 
Hs00987326_s1 LOC648987 1-1 2304 
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In order to evaluate the effect of the knockdown of LINC00176 and LOC648987 on the 

levels of cell death in SH-SY5Y cells, dual staining was performed using the FITC-

Annexin V Apoptosis Detection Kit with 7-AAD, and, in addition to flow cytometry, 

apoptosis was determined with fluorescence microscopy after staining of the cells with 

acridine orange (25μg/ml), at specific time intervals after re-plating (48 and 72 h), as 

described in sections 2.7.1 and 2.7.2., respectively. For the experiments testing 

whether LINC00176 and LOC648987 down-regulation sensitises SH-SY5Y cells to 

metformin, the assessment was performed 48 h after the addition of metformin. 

The migratory ability of the cells was assessed by the wound healing assay (detailed 

in section 2.9.). The gaps were measured using the EVOS FL Cell Imaging System at 

0/24/48 h and the gap closure was calculated using the formula [(Pre-

migration)area-(Migration)area/(Pre-migration)area] x100 for 15 

measurements per sample. Image analysis was performed using the ImageJ software. 

 

6.2.5. Statistical analysis 

Statistical analyses were performed using GraphPad Prism 6 (GraphPad Software). 

Data are presented as the mean ± SEM; the number of observations (n) refers to 

different transfected samples, each transfection being conducted on a separate culture 

of cells.  Comparisons were made using an unpaired T-test or One-Way ANOVA with 

Bonferroni's multiple comparison test (MCT). Where multiple parameters were 

compared, Two-Way ANOVA with Sidak, Tukey or Dunnett multiple comparisons was 

used. Statistical significance was set at the 0.05 level. Differences were considered as 

statistically significant when the p-value was <0.05 (95% confidence intervals). 
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6.3. Results 

Following the analysis of lncRNA perturbations in all data sets as revealed by RNA 

sequencing (Chapter 5), two highly perturbed lncRNAs were chosen to further examine 

their role in cell fate determination of SH-SY5Y cells: LINC00176 (-9.23 log2FC) and 

LOC648987 (-14.85 log2FC). To this end, the two lncRNAs were silenced using 3 

different LNA GapmeRs for each one. The effectiveness of down-regulation was 

measured with RT-qPCR. The effect of the lncRNAs was explored in terms of cell 

survival, apoptotic cell death and cell migration. 

 

6.3.1. The role of LINC00176 in the cell fate determination of SH-SY5Y 

cells 

6.3.1.1. The effects of LINC00176 down-regulation on the survival of SH-

SY5Y cells 

To examine the effect of the down-regulation of LINC00176 on cell survival, SH-SY5Y 

cells were nucleofected, incubated for 48 h, re-plated and incubated for another 48/72 

h. Cell survival was measured with trypan blue dye exclusion and MTS assay (short-

term), and via clonogenic assay (long-term). All the LINC00176-specific GapmeRs 

effectively knocked down LINC00176 (Figure 6.1a), eliminating its expression by 75%, 

85% and 90% for LOC_1, LOC_2 and LOC_3, respectively. Nevertheless, the 

knockdown did not result in significant changes in the cell viability at 48/72 h, as 

assessed by trypan blue (Figure 5.10b, d) and MTS assay (Figure 6.1c, e). In addition, 

the long term survival was not affected significantly by the down-regulation of 

LINC00176 either, although the number of colonies was very slightly reduced for 

LINC_1 and LINC_2  as assessed by colony forming assay, and ~22% reduced for 

LINC_3 (Figure 6.1f). 
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Figure 6.1. LINC00176-specific down-regulation does not affect the cell survival of SH-SY5Y 
cells. SH-SY5Y cells were transfected with the negative GapmeR or one of the three LINC00176-
specific GapmeRs using nucleofection, incubated for 48 h, re-plated, incubated for another 48/72 h and 
assessed. The relative expression of LINC00176 was measured by Real-Time PCR 48 h post-
transfection(a); LINC00176-specific downregulation does not lead to a statistically significant change in 
the number of viable cells as assessed with trypan blue exclusion (b, d) and MTS assay (c, e) after 48 
h or 72 h, respectively. Cells were also seeded and incubated (37°C, 5% CO2) for three weeks, and the 
colonies formed were stained with crystal violet (1%w/v) and counted. LINC00176-specific 
downregulation causes a slight decrease in the number of colonies formed, without statistical 
significance (f); representative illustration of a clonogenic assay (g); **** indicate a p-value<0.001, as 
measured by One-way ANOVA tests with multiple comparisons (MCT). Data are represented as mean 
+/- SEM (n=3). 
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6.3.1.2. The effects of LINC00176 down-regulation on basal apoptosis 

level in SH-SY5Y cells  

In addition to assessing the effect of LINC00176 down-regulation on short- and long-

term survival, the potential effect on cell death, especially apoptosis, was tested next. 

In order to do so, SH-SY5Y cells were nucleofected, incubated for 48 h, re-plated and 

incubated for another 48/72 h. Apoptosis levels were assessed with Flow Cytometry 

using Annexin V/7-AAD dual staining, as well as with the use of fluorescent microscopy 

after acridine orange staining. Annexin V staining did not reveal any significant 

changes in the percentages of total apoptotic cells when comparing the negative 

control with LINC00176-downregulated cells after 48 h (Figure 6.2a). In comparison, 

assessment with acridine orange showed a significant, near 1-fold increase in 

apoptosis levels for all LINC00176-specific GapmeRs at 48 h (Figure 6.2b). Finally, 

there were no significant changes in apoptosis levels at 72 h, as assessed by both 

means (data not shown). 
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Figure 6.2. The effect of LINC00176-specific down-regulation on apoptosis-mediated cell 
death of SH-SY5Y cells. SH-SY5Y cells were transfected with the negative GapmeR or one of 
the three LINC00176-specific GapmeRs using nucleofection, incubated for 48 h, re-plated, 
incubated for another 48/72 h and assessed. The levels of apoptosis are overall not affected by 
LINC00176 down-regulation as assessed by Flow Cytometry using dual staining Annexin V/7-
AAD after 48 h (a); however, there is a statistically significant increase in apoptosis levels for all 
GapmeRs, as assessed by acridine orange fluorescent microscopy, especially for LINC_1 after 
48 h (b); representative illustration of apoptotic cells 48 h post-re-plating, stained with acridine 
orange and observed using fluorescent microscopy (c, d). Grey arrows indicate cells undergoing 
apoptosis; * indicates a p-value<0.05; ** indicate a p-value<0.01; *** indicate a p-value<0.001, 
as measured by One-way ANOVA tests with multiple comparisons (MCT). Data are represented 
as mean +/- SEM (n=3). 
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6.3.1.3. The effect of LINC00176 down-regulation on the migratory 

ability of SH-SY5Y cells  

In line with the indications of the potential interference of LINC00176 knockdown in the 

increase of levels of apoptosis, the effect of LINC00176 knockdown on the cells’ 

potential to migrate was examined next via wound healing assays. SH-SY5Y cells were 

incubated for 48 h, re-plated, and a linear scratch was introduced 48 h post-re-plating. 

The % gap closure of the scratch was measured after 24 and 48 h. Notably, the down-

regulation of LINC00176 reduced the migratory capacity of the cells nucleofected with 

all the three LINC00176-specific GapmeRs by ~15% after 24h (Figure 6.3a, ), and 

primarily, by ~25% after 48 h (Figure 6.3cb), but the reduction was significant only at 

24 h. 

Collectively, these data suggest that, even though the down-regulation of LINC00176 

did not cause dramatic changes in the survival rate short- or long-term, or in the 

apoptosis levels as assessed by Flow Cytometry, it did, however, slightly decrease the 

long-term survival, increase apoptosis as assessed by acridine orange, especially as 

assessed at 48 h post-re-plating, and importantly reduce the ability of cells to migrate.  
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Figure 6.3. LINC00176-specific down-regulation reduces the migrating ability of SH-SY5Y 
cells. SH-SY5Y cells were transfected with the negative GapmeR or one of the three 
LINC00176-specific GapmeRs using nucleofection, incubated for 48 h, re-plated, and a linear 
scratch was introduced 48 h post-re-plating. The % gap closure of the scratch was measured 
after 24 and 48 h. The migrating ability of the cells is overall reduced for all three LINC00176-
specific GapmeRs at both time points assessed, especially at 48 h. % Gap closure values and 
relative gap closure of LINC00176-specific GapmeRs versus the –ve Ctrl at 24h (a) and 48 h 
(b); representative illustration of a wound healing (“scratch”) assay (c); * indicates a p-
value<0.05, as measured by One-way ANOVA tests with multiple comparisons (MCT). Data are 
represented as mean +/- SEM, n=3. 
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6.3.1.4. The effect of LINC00176 down-regulation on the survival of  SH-

SY5Y cells after treatment with metformin 

Given the fact that LINC00176 was selected for further assessment because of its high 

deregulation in response to metformin, after assessing the effects of its down-

regulation on the determination of cell fate of SH-SY5Y cells, the next stage was to 

assess whether this down-regulation could act synergistically or antagonistically with 

the exposure to metformin. In line with this hypothesis, it was then assessed if the 

down-regulation of LINC00176 sensitises, or on the contrary, desensitises SH-SY5Y 

cells to metformin, and whether, therefore, it improves or deteriorates the cytotoxic 

effect of metformin, as well as its effect on cell apoptosis.  

The short-term cell survival of SH-SY5Y cells was assessed with MTS assay. In terms 

of cell survival, although metformin seemed to significantly reduce cell viability at 48 h 

only for the control groups and LINC_1-treated cells, as assessed by MTS assay 

(Figure 6.4a), it significantly reduced cell survival at 72 h for all experimental groups, 

apart from LINC_2-treated cells, as assessed by MTS (Figure 6.4c). On the contrary, 

pre-treatment of cells with LINC00176-specific Gapmers seemed to attenuate the 

percentage of cell viability loss as compared to treated cells, with this attenuation, 

however, being significant only for LINC_2, both at 48 h and 72 h (~18% and 19% less 

viability loss, respectively) (Figures 6.4b, d), suggesting a rather non-significant effect 

of LINC00176 on the action of metformin in cell survival terms.  
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Figure 6.4. The effect of LINC00176-specific down-regulation on the survival of SH-SY5Y 
cells after treatment with metformin. After transfection, cells were harvested by trypsinisation, 
re-plated after 48 h, treated with 20mM metformin at 24h after re-plating, and incubated for an 
extra 48/72 h to be assessed for cell survival. Metformin reduces the number of live cells in a 
statistically significant fashion only for control groups and LINC_1, as measured by MTS assay 
(a), but % viability loss was significantly reduced only for LINC_2 (b), at 48 h. Metformin 
significantly reduces cell viability for all groups other than LINC_2 at 72 h (c), with % loss of 
viability being significantly reduced for LINC_2 (d); * indicates a p-value<0.05; ** indicate a p-
value<0.01; *** indicate a p-value<0.001, as measured by One- and Two-way ANOVA tests with 
multiple comparisons (MCT) in n=4 experiments. Data are represented as mean +/- SEM. 
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Moreover, the effect on apoptosis levels was evaluated with Flow Cytometry and 

fluorescent microscopy, as above. Metformin increases cell apoptosis significantly 

~10% for the negative control and LINC_2 only at 48 h, as assessed with Annexin V/7-

AAD staining measured with Flow Cytometry (Figure 6.5a). In contrast to Annexin V 

staining, acridine orange staining revealed that metformin significantly increases basal 

apoptosis in all experimental groups at 48 h (Figure 6.5b). In particular, there was a 

~1.5-fold increase in apoptosis levels for the control groups, but only a slighter increase 

(<1-fold) for LINC00176-specific GapmeR-treated cells, without any significant 

differences among the groups.  
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Figure 6.5. The effect of LINC00176-specific down-regulation on apoptosis levels of SH-
SY5Y after treatment with metformin. After transfection, cells were harvested by 
trypsinisation, re-plated after 48 h, treated with 20mM metformin at 24h after re-plating, and 
incubated for an extra 48 h to be assessed for cell apoptosis. Metformin increased the levels of 
apoptosis with statistical significance only for the –ve Ctrl and LINC_2, as measured by Flow 
Cytometry with dual Annexin V/7-AAD staining at 48 h (a). However, this increase was 
significant for all experimental groups, as measured by acridine orange staining at 48 h (b). 
Nevertheless, the increase occurred regardless of LINC00176-specific down-regulation, and, 
therefore LINC00176 specific down-regulation did not contribute a statistically significant 
enhancing or protective effect on the action of metformin; * indicates a p-value<0.05; ** indicate 
a p-value<0.01; *** indicate a p-value<0.001, as measured by Two-Way Anova tests with 
multiple comparisons (MCT). Data are represented as mean +/- SEM, n=3. 
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Taken together, these results suggest a neutral role for LINC00176 when used in 

combination with metformin treatment, since its down-regulation does not change the 

effect of metformin in terms of cell survival and apoptosis. 

 

 

6.3.2. The role of LOC648987 in the cell fate determination of SH-SY5Y 

cells 

6.3.2.1. The effects of LOC648987 down-regulation on the survival of 

SH-SY5Y cells 

Similarly to the rationale behind the experiments checking the effect of LINC00176 

down-regulation, to examine the effect of the down-regulation of LOC648987 on cell 

survival, SH-SY5Y cells were nucleofected, incubated for 48 h, re-plated and incubated 

for another 48/72 h. Cell survival was measured with trypan blue dye exclusion and 

MTS assay (short-term), and via clonogenic assay (long-term). All the LOC648987-

specific GapmeRs effectively knocked down LOC648987, with LOC_1 causing a 60% 

reduction in expression, while LOC_2 and LOC_3 caused a 70% and a 80 % reduction, 

respectively (Figure 6.6a). Nonetheless, the knockdown was not accompanied by 

significant changes in the cell viability at 48/72 h, as assessed by trypan blue (Figure 

6.6b, d) and MTS assay (Figure 6.6c, e). Furthermore, the long term survival was not 

affected significantly by the down-regulation of LOC648987 either, although the 

number of colonies formed was slightly reduced as assessed by colony forming assay 

for LOC_3 (Figure 6.6f,). 
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Figure 6.6. LOC648987-specific down-regulation does not affect the cell survival of SH-SY5Y cells. SH-
SY5Y cells were transfected with the negative GapmeR or one of the three LOC648987-specific GapmeRs 
using nucleofection, incubated for 48 h, re-plated, incubated for another 48/72 h and assessed. The relative 
expression of LOC648987 was measured by Real-Time PCR 48 h post-transfection, and was lower for all 
GapmeRs (a); Overall, LOC648987-specific down-regulation does not lead to a statistically significant change in 
the number of viable cells as assessed with trypan blue exclusion (b, d) and MTS assay (c, e) after 48 h or 72 h, 
respectively. Cells were also seeded and incubated (37°C, 5% CO2) for three weeks, and the colonies formed 
were stained with crystal violet (1%w/v) and counted.  LINC00176-specific down-regulation causes a slight 
decrease in the number of colonies formed, without statistical significance (f); representative illustration of a 
clonogenic assay (g); ** indicate a p-value<0.01; *** indicate a p-value<0.001, as measured by One-way 
ANOVA tests with multiple comparisons (MCT). Data are represented as mean +/- SEM, n=4. 
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6.3.2.2. The effects of LOC648987 down-regulation on basal apoptosis 

level in SH-SY5Y cells 

The next step incorporated in our investigation on top of assessing the effect of 

LOC648987 down-regulation on short- and long-term survival, was to examine the 

potential effect on apoptosis-mediated cell death. SH-SY5Y cells were nucleofected, 

incubated for 48 h, re-plated and incubated for another 48/72 h. Apoptosis levels were 

assessed with Flow Cytometry using Annexin V/7-AAD dual staining, as well as with 

the use of fluorescent microscopy after acridine orange staining. Flow Cytometry did 

not reveal any significant changes in the percentages of apoptotic cells when 

comparing the negative control with LOC648987 down-regulated cells after 48 and 72 

h (Figure 6.7a, c). In comparison, assessment with acridine orange showed a 

significant, near 1-fold increase in apoptosis levels for LOC_2 and LOC_3 at 48 h 

(Figure 6.7b), and for all LOC648987-specific GapmeRs at 72 h (Figure 6.7d). 
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Figure 6.7. The effect of LOC648987-specific down-regulation on basal apoptosis rate in SH-
SY5Y cells. SH-SY5Y cells were transfected with the negative GapmeR or one of the three 
LOC648987-specific GapmeRs using nucleofection, incubated for 48 h, re-plated, incubated for 
another 48/72 h and assessed. The levels of apoptosis are overall not affected by LOC648987 
down-regulation as assessed by Flow Cytometry using dual staining Annexin V/7-AAD after 48 h 
(a); however, there is a statistically significant increase in apoptosis levels as assessed by Acridine 
orange fluorescent microscopy, for LOC_2 and LOC_3 after 48 h (b). There was no significant effect 
on apoptosis levels after 72 h, as assessed by Flow Cytometry (c), however, acridine orange 
fluorescent microscopy showed a small but statistically significant increase for all GapmeRs at 72 h 
(d); representative illustration of apoptotic cells 48 h post-re-plating, stained with acridine orange 
and observed using fluorescent microscopy (e, f). Grey arrows indicate cells undergoing apoptosis; 
* indicates a p-value<0.05; ** indicate a p-value<0.01, as measured by One-way ANOVA (a, b) and 
Two-Way Anova (c, d) tests with multiple comparisons (MCT). Data are represented as mean +/- 
SEM, n=4. 
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6.3.2.3. The effect of LOC648987 down-regulation on the migratory 

ability of SH-SY5Y cells 

In line with the indications of the potential interference of LOC648987 knockdown in the 

increase of levels of apoptosis, the effect of LOC648987 knockdown on the cells’ 

potential to migrate was examined next with scratch assays. SH-SY5Y cells were 

incubated for 48 h, re-plated, and a linear scratch was introduced 48 h post-re-plating. 

The % gap closure of the scratch was measured after 24 and 48 h. Of note, the down-

regulation of LOC648987 significantly reduced the ability of the cells to migrate for all 

the three LOC648987-specific GapmeRs by nearly 15% after 24h (Figure 6.8a), and 

primarily, by ~30% after 48 h (Figure 6.8b).  

Collectively, these observations imply that, although the down-regulation of 

LOC648987 did not cause dramatic changes in the survival rate short- or long-term, it 

enhanced apoptosis, and as a direct consequence, it also significantly impeded the 

migration of neuroblastoma cells. 
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Figure 6.8. LOC648987-specific down-regulation reduces the migrating ability of SH-SY5Y 
cells. SH-SY5Y cells were transfected with the negative GapmeR or one of the three 
LOC648987-specific GapmeRs using nucleofection, incubated for 48 h, re-plated, and a linear 
scratch was introduced 48 h post-re-plating. The % gap closure of the scratch was measured 
after 24 and 48 h. The migrating ability of the cells is overall reduced for all three LOC648987-
specific GapmeRs at both time points assessed, especially at 48 h. % Gap closure values and 
relative gap closure of LOC648987-specific GapmeRs versus the –ve Ctrl at 24h (a 
respectively) and 48 h (b); representative illustration of a wound healing (“scratch”) assay (c); * 
indicates a p-value<0.05; ** indicate a p-value<0.01, as measured by One-way ANOVA tests 
with multiple comparisons (MCT). Data are represented as mean +/- SEM, n=3. 
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6.3.2.4. The effect of LOC648987 down-regulation on the survival of  SH-

SY5Y cells after metformin treatment 

On the grounds that, similarly to LINC00176, LOC648987 was selected for further 

assessment because of its highly altered expression in response to metformin 

treatment, after assessing the effects of its down-regulation on the determination of cell 

fate of SH-SY5Y cells, the next stage was to assess whether this down-regulation 

could have a combinatory effect together with the exposure to metformin. Therefore it 

was then assessed if the down-regulation of LOC648987 affects SH-SY5Y cells’ 

response to metformin. 

The short-term cell survival was assessed with MTS assay. In terms of cell survival, 

although metformin seemed to non-significantly reduce cell viability at 48 h, as 

assessed MTS assay (Figure 6.9a), it did significantly reduce cell survival at 72 h, as 

assessed by MTS (Figure 6.9b). However, the percentages of cell viability loss were 

similar for LOC648987-specific GapmeR-treated cells and the control cells both at 48 h 

(~15-20%) (Figure 6.9b) and 72 h (~30-35%) (Figure 6.9d), implying that the 

knockdown of LOC648987 does not influence the effect of metformin on short-term 

survival of neuroblastoma cells.  
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Figure 6.9. The effect of LOC648987-specific down-regulation on the survival of SH-SY5Y 
cells after treatment with metformin. After transfection, cells were harvested by trypsinisation, 
re-plated after 48 h, treated with 20mM metformin at 24h after re-plating, and incubated for an 
extra 48/72 h to be assessed for cell survival. Metformin reduces the number of live cells in a 
statistically non-significant fashion, as measured by MTS assay at 48 h (a), with % viability loss 
also being non-significantly altered (b). However, there is a statistically significant decrease in 
cell viability at 72 h, as assessed by MTS assay (c), but with % loss of viability being non-
significantly moderated (d); ** indicate a p-value<0.01; *** indicate a p-value<0.001, as 
measured by One- and Two-way ANOVA tests with multiple comparisons (MCT) in n=4 
experiments. Data are represented as mean +/- SEM. 
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The effect on apoptosis levels was measured with Flow Cytometry and fluorescent 

microscopy. In terms of apoptosis levels, metformin increases basal apoptosis 

significantly only for the negative control and LOC_2 by ~8% in both cases at 48 h, as 

assessed by Annexin V staining with Flow Cytometry (Figure 6.10a). Albeit, metformin 

increases the levels of apoptosis significantly for all experimental groups at 48 h, as 

assessed with acridine orange staining by ~2-fold for the control groups and by ~1-fold 

for LOC648987 KD cells (Figure 6.10b). Nonetheless, silencing of LOC648987 did not 

lead to statistically significant additive or protective effects in combination with 

metformin, as far as apoptosis is concerned.  
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Figure 6.10. The effect of LOC648987-specific down-regulation on apoptosis levels of SH-
SY5Y after treatment with metformin. After transfection, cells were harvested by 
trypsinisation, re-plated after 48 h, treated with 20mM metformin at 24h after re-plating, and 
incubated for an extra 48 h to be assessed for cell apoptosis. Metformin increased the levels of 
apoptosis with statistical significance only for the –ve Ctrl and LOC_2, as measured by Flow 
Cytometry with dual Annexin V/7-AAD staining at 48 h (a). This increase was, however, 
significant for all experimental groups, as measured by acridine orange staining at 48 h (b). 
However, the increase occurred regardless of LOC648987-specific down-regulation, and, 
therefore LOC648987 specific down-regulation did not have a statistically significant additive or 
protective effect on the action of metformin; * indicates a p-value<0.05; ** indicate a p-
value<0.01, as measured by Two-Way Anova tests with multiple comparisons (MCT). Data are 
represented as mean +/- SEM, n=3. 
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Collectively, these results propose that the knockdown of LOC648987 does not have 

an effect, promoting or inhibitory, in terms of cell survival and apoptosis when 

combined with metformin treatment. 

 

6.4. Discussion 

The studies and analyses performed in Chapter 5 principally aimed at identifying novel 

lncRNAs whose deregulation is tightly connected to the regulation of cell fate in SH-

SY5Y neuroblastoma cells. Given that high-risk neuroblastoma patients still face very 

poor prognosis and that the reliable and robust biomarkers that can be used for 

diagnosis and prediction are very limited (Nakagawara et al., 2018; Tolbert and 

Matthay, 2018), there is an urgent need for the discovery of such biomarkers. Apart 

from protein-coding genes, lncRNAs comprise perfect candidates due to their diverse 

role in cellular processes in healthy and cancerous cells (Costa, 2005; Chandra Gupta 

and Nandan Tripathi, 2017). Therefore, the identification of novel lncRNAs that can be 

exploited for diagnostic, predictive and prognostic purposes towards more reliable 

patient stratification, as well as therapeutically, is of paramount importance for 

neuroblastoma. 

Among the novel in neuroblastoma lncRNAs with the most pronounced perturbation in 

expression in response to continuous exposure to metformin, LINC00176 and 

LOC648987 were selected to further explore their role in cell fate decisions by 

performing various functional analyses. LINC00176 spans ~5kb on chromosome 20, is 

composed of 7 exons and has previously been implicated in cancer. LOC648987 is a 

52kb, uncharacterised, non-coding locus across chromosome 5, comprised of 6 exons. 

The functional analyses have revealed that neither of the two lncRNAs can cause 

significant changes in the survival of SH-SY5Y cells, short- or long-term. On the 

contrary, both lncRNAs augmented the levels of apoptosis and, in line with the 

increased apoptotic levels, the knockdown of both lncRNAs resulted in the reduced 
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ability of SH-SY5Y cells to migrate, as assessed by wound healing assay, suggesting a 

potential role of both lncRNAs in apoptosis and invasion regulation.  

LINC00176 has already been assessed as a biomarker for clear cell renal carcinoma 

(Wang et al., 2019), HCC (Zhang et al., 2015; Gong et al., 2020), oesophageal cancer 

(Fan and Liu, 2016), and pancreatic cancer (Liu et al., 2019). Also, in a CRISPR-Cas9 

screening conducted by Zhu et al. (2016), LINC00176 was identified among 51 

lncRNAs that can positively or negatively regulate human cancer cell growth. In fact, 

this regulation was partly mediated by the “regulation of gene expression” and 

“regulation of transcription”, giving the first hint that LINC00176 could potentially 

mediate the regulation of cell fate (Zhu et al., 2016). To this end, we assessed the 

effect of LINC00176 knockdown on short-and long-term survival of neuroblastoma 

cells. Our study showed that, although there is a tendency of reduced survival upon 

LINC00176 down-regulation, especially long-term, there is not a significant impairment 

of cell survival in NB cells. This is not in agreement with two previous studies 

demonstrating that the knockdown of LINC00176 leads to impaired tumour growth in 

HCC (Tran et al., 2018) and ovarian cancer (Dai et al., 2019), as evaluated, however 

by the cells’ ability to proliferate rather than survive. Nevertheless, our study 

demonstrates that silencing LINC00176 leads to increased apoptosis-mediated cell 

death as assessed by acridine orange staining, as well as the deteriorated ability of NB 

cells to migrate as a direct consequence of increased apoptosis, which is in full 

agreement with the study conducted by Dai and colleagues (Dai et al., 2019). However, 

given that Annexin V staining failed to demonstrate the same results as acridine orange 

staining, the apoptosis-related findings should be cautiously interpreted. In addition, 

Tran et al. (2018) also reported increased cell death upon LINC00176 silencing, 

although in their case it was necroptosis-mediated rather than apoptosis.  

When combining the knockdown of LINC00176 with the treatment with metformin, the 

observed effect tended to be rather neutral, as the down-regulation of LINC00176 
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neither enhanced nor deteriorated significantly the cytotoxic effect of metformin. This is 

supported by the fact that although one of the LINC00176-specific GapmeRs led to 

significantly less viability loss comparing to control cells, implying there might be a 

protective effect, in general, the effects both on cell survival and apoptosis were non-

significant. This is at odds with similar studies assessing combinations of lncRNA 

manipulations or chemotherapeutic drugs with metformin. For instance, Costa et al. 

(2014), found that NDM29 overexpression, contributed a synergistic effect on 

metformin, as assessed in NB cells. On the contrary, metformin has been shown to be 

protective against therapeutic interventions, as, for example, in the case where it has 

been demonstrated that it reduces cisplatin-induced apoptosis in glioma, leukaemia, 

fibrosarcoma, and importantly, SH-SY5Y neuroblastoma cells (Janjetovic et al., 2011).  

LOC648987, an uncharacterised lncRNA, was found to be the second most down-

regulated lncRNA in neuroblastoma cells with continuous exposure to metformin. 

Similar to LINC00176, the silencing of LOC648987, although it induced a slight 

reduction in cell survival short- and long-term, did not cause a dramatic, significant 

effect. Albeit, it doubled the levels of basal apoptosis in SH-SY5Y cells, as evaluated 

by acridine orange staining, and this increase in apoptosis was accompanied by a 

significant reduction in cell migration. As was the case for LINC00176, the apoptosis 

results are not backed by the Annexin V staining results, a fact that should be brought 

to attention when interpreting the effects of LOC648987 down-regulation on apoptotic 

cell death. Although no functional studies have been conducted on LOC648987 per se 

in the past, a study performed on a variant of LOC648987 by Tian et al. (2019), MPRL, 

has also demonstrated the ability of MPRL to interfere with apoptosis in tongue 

squamous cell carcinoma (TSCC); however, in that case, the shRNA-mediated 

knockdown approach led to the attenuation of apoptosis (Tian et al., 2019). Similar to 

the approach adopted for LINC00176, we also suspected that LOC648987 would 

interfere with the effect of metformin. Nevertheless, similar to LINC00176, silencing 
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LOC648987 does not significantly affect the cell viability loss or the apoptosis levels 

conferred by metformin. Of note, this absence of significant effects is not in agreement 

with the significant cisplatin-sensitising effect of MPRL knockdown that has been 

observed in TSCC cells (Tian et al., 2019). 

Despite their moderate effect on the cell fate determination, especially cell survival, 

LINC00176 and LOC648987 have, as discussed above, both displayed very 

pronounced alterations in expression when treated with metformin, and, therefore, a 

more significant correlation between their down-regulation and the exposure to 

metformin would be suspected. However, this was not the case for our system, SH-

SY5Y cells. Curiously enough, although cell survival was not significantly affected, the 

effect on apoptosis, at least as assessed by acridine orange staining, and consequently 

cell migration, was very pronounced for both lncRNAs. This could be attributed, at least 

to some extent, to the dual nature of c-Myc. A plethora of studies has established that 

c-Myc, despite being a traditional oncogene, can also promote apoptosis over survival 

depending on the cellular context and the availability of factors controlling its own 

transcription (Matsumura et al., 2003; Pelengaris and Khan, 2003). In fact, it can 

promote apoptosis via various mechanisms affecting the intrinsic and extrinsic 

apoptotic pathways, (Hoffman and Liebermann, 2008; McMahon, 2014) and key 

players such as the BCL-2 family members and p53 (Pelengaris and Khan, 2003). 

Given the fact that the expression of LINC00176 is c-Myc-dependent (Tran et al., 

2018), it may be speculated that the complex functional effects of LINC00176 in cell 

fate determination of neuroblastoma cells are a reflection of the complex networks and 

behaviours of c-Myc. 

Notably, the study encompasses some limitations. Although the evaluation of the 

effect of LINC00176 and LOC648987 silencing provided some interesting insights in 

terms of apoptosis, it has to be noted that the increase was only detected as assessed 

with acridine orange, but not as assessed with Annexin V/7-AAD staining. This test is 
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based on the changes in the cell membrane caused by apoptotic processes. The loss 

of cell membrane asymmetry is an early step in apoptosis. In viable cells, the 

membrane phospholipid phosphatidylserine (PS) is located at the inner leaflet of the 

plasma membrane; however, during apoptosis, it is externalised and exposed at the 

cell surface. Annexin V is a Ca2+- dependent phospholipid-binding protein with high 

affinity to PS. Since annexin V is not able to penetrate the phospholipid bilayer, vital 

cells cannot be stained (Bundscherer et al., 2013). A variety of factors could potentially 

influence the detection of apoptosis by this method. For instance, the trypsinisation 

method used (standardised trypsin/EDTA trypsinisation) may not have been the best 

solution, as enzymatic trypsinisation does not comprise the best method of harvesting 

cells in all cases (Bundscherer et al., 2013). Another factor that could influence the 

outcome is the timing of the assessment (Schuffner et al., 2002). It is likely that the 

time of assessment (48 h post-re-plating) was too early and the externalisation of PS 

had not occurred yet. PS externalisation also depends on the bioavailability of calcium, 

temperature (Bundscherer et al., 2013; Stewart et al., 2018), levels of ATP and 

cholesterol (Young et al., 2019), as well as differential flippase (the enzyme responsible 

for the translocation of PS) activity (Vallabhapurapu et al., 2015), either one of which 

could potentially have been sub-optimal, leading to misleading results. In order to 

overcome this problem, the use of alternative methods to assess apoptosis, such as 

DNA fragmentation assessment by  TUNEL assay, PARP (Poly (ADP-ribose) 

polymerase) cleavage assessment or, importantly, Caspase determination would 

provide a solution (Elmore, 2007). Especially for the last case, either colorimetric/ 

fluorimetric assays or antibody-based assays would potentially be a reliable alternative. 

On top of this, this discrepancy could be the result of the limited sensitivity of the used 

flow cytometer in distinguishing subtle changes, as observed in other cases of 

laboratory practice in our laboratory (personal communication). Finally, the lack of 

significant effects, especially in the case of LOC648987, could be attributed to the 

efficiency of the GapmeR-mediated knockdown of the gene. As discussed in section 
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3.4, in the SH-SY5Y cell system, the use of LNA GapmeRs has proved to be less 

efficient comparing to the use of siRNAs, although both manage to down-regulate their 

targets. Consequently, conducting the same experiments using siRNA-mediated 

knockdown may generate clearer and more pronounced results. 

In this set of experiments only limited aspects of cell fate regulation were assessed, 

and as a result, investigating other aspects such as the effect on cell proliferation and 

cell cycle, or -further to migration- invasion and metastasis, may generate more useful 

information to determine the role of these two lncRNAs in the regulation of cell fate. 

Moreover, the weaker than the anticipated effect on some aspects of cell fate, as well 

as on the combinatory effect with metformin, in response to the lncRNAs knockdown, 

could be salvaged by adopting a siRNA-mediated silencing approach. In addition, 

investigating a reverse order of “treatments” may provide more insights on how the two 

lncRNAs mediate the regulation of cellular fate. Whether exposure to metformin prior to 

down-regulation of the two lncRNAs enhances their action remains to be investigated 

and could uncover other roles of the lncRNAs. Finally, due to LINC00176 being a c-

Myc target, it may worth investigating the expression status of c-Myc for the potential 

existence of feedback loops and further effects, given the diverse role of c-Myc. 

The discovery of LINC00176 and LOC648987 as novel, exploitable lncRNAs is a 

matter of utmost importance for neuroblastoma, yet remaining a laborious ‘needle in a 

haystack’ task. This study provided evidence that both lncRNAs can potentially have 

oncogenic properties mainly affecting apoptosis and cell migration. Further research on 

other aspects of cell fate, such as cell proliferation and cell cycle, is essential, for 

LINC00176 and LOC648987 to be considered as biomarker candidates and druggable 

targets in neuroblastoma. 
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6.5. Chapter Highlights 

 

1. LINC00176 and LOC648987 are among the most down-regulated lncRNAs in 

response to continuous exposure to metformin. 

 

2. GapmeR-mediated knockdown of LINC00176 and LOC648987 does not 

significantly affect cell survival in SH-SY5Y cells. 

 

3. GapmeR-mediated down-regulation of LINC00176 and LOC648987 increases 

significantly the levels of apoptosis, and simultaneously, reduces the 

migratory ability of SH-SY5Y cells. 

 

4.  Down-regulation of LINC00176 attenuates the effect of metformin on the 

short-term survival of SH-SY5Y cells non-significantly. 

 

5. LOC648987-specific silencing does not influence the effect of metformin on 

the survival of SH-SY5Y cells. 
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Neuroblastoma is the most common extracranial solid paediatric tumour, accounting for 

15% of cancer-related deaths in children (Hwang et al., 2019; Yoda et al., 2019). 

However, neuroblastomas are highly heterogeneous tumours, presenting diverse 

characteristics and variable response to treatment even within the same risk group, 

rendering patient stratification very challenging. In addition, the mutational spectrum is 

very broad with only few recurrent mutations, suggesting that the diversity in behaviour 

may also be a reflection of epigenetic alterations, potentially including changes in the 

lncRNA repertoire (Hwang et al., 2019). High-risk patients still suffer from poor 

prognosis (Matthay et al., 2016; Nakagawara et al., 2018), high relapse rate and high 

mortality after recurrence (Hurtado et al., 2019).  

Similarly, although GBM comprises one of the most common brain tumours in adults 

accounting for almost half of all malignant brain tumours, it remains the most mortal 

and morbid one, with current treatments being inefficient in conferring a better 

prognosis (Marlow et al., 2017; Stepp and Stummer, 2018). GBMs are highly resistant 

to conventional radiotherapy and chemotherapy, and owing to their infiltrative growth 

nature, their complete surgical resection is a major challenge in controlling the tumours, 

ultimately resulting in high rates of local recurrence, which comprises the primary 

cause of mortality (Sampetrean and Saya, 2018; Wang et al., 2019). Moreover, they 

are genetically heterogeneous and relatively less antigenic as compared to other 

tumours, rendering immunotherapy, a promising therapeutic approach, as well as anti-

angiogenesis therapy, less effective (Arrieta et al., 2018; Stepp and Stummer, 2018). 

Therefore, due to the lack of not only incomplete patient stratification but also efficient 

treatments for both nervous system cancers, it is of paramount importance to discover 

robust and significant biomarkers of the cancers and to explore new therapeutic 

avenues in order to discover novel, potent treatments to improve the prognosis and 

survival of neuroblastoma and GBM patients.  

The advent of new, powerful technologies, such as Next Generation Sequencing, has 
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enabled the discovery of new key players in gene expression regulation, whose 

contribution had previously been ignored. LncRNAs fall within this category; however, 

these >200nt long transcripts have been now brought from the backstage to the onset 

of gene regulation. The paradigm has eventually shifted to an RNA-dominating world, 

and important roles have been attributed to non-coding molecules. In line with this, 

lncRNAs have been thoroughly studied in the context of cancer and have been 

associated with virtually all hallmarks of cancer (Gutschner and Diederichs, 2012; Rao 

et al., 2017). It is also established that lncRNAs can act as oncogenes, tumour 

suppressors, as well as drivers of metastasis (Cao, 2014; Chandra Gupta and Nandan 

Tripathi, 2017). Although the implication of lncRNAs in carcinogenesis and cancer 

progression has been established for a variety of well-known lncRNAs, such as 

HOTAIR, H19, GAS5 and MALAT1, there is still a profound gap in our understanding of 

the exact mechanisms for most of them. Still, lncRNAs are excellent candidates as 

biomarkers to achieve a more precise and reliable patient stratification, as well as 

promising therapeutic targets (Gutschner and Diederichs, 2012).  

In this regard, the sub-nuclear lncRNA MIAT is of particular interest given the fact that 

there are piling lines of evidence implicating it in various tumours, including GBM but 

not neuroblastoma. However, the knowledge of its functional role and the molecular 

mechanisms associated with tumour progression in these cancers remains lagging. 

Together with this, the discovery of novel lncRNAs that could be potent players in cell 

fate decisions in these cancers is also an unmet need, especially for neuroblastoma. 

To this end, to address these questions and needs, this work focuses on the role of 

lncRNAs in neuroblastoma and GBM. 
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7.1. The role of MIAT in neuroblastoma and glioblastoma 

7.1.1. Effects of MIAT silencing on cell fate determination 

MIAT gene is located on chromosome 22q12.1. Its ~10kb long transcript is localised in 

special sub-nuclear bodies, non-overlapping with other known sub-nuclear entities, 

across the nucleoplasm in a spotted, actively maintained pattern (Sone et al., 2007; 

Cheng et al., 2016). MIAT is primarily expressed in some fetal brain cells and the adult 

brain/CNS (Tsuiji et al., 2011; Jiang et al., 2016; Sha et al., 2018). It is a mRNA-like 

lincRNA, that is invariably retained in the nucleus (Sone et al., 2007; Tsuiji et al., 2011) 

and whose main role is to act as a molecular sponge for splicing factors (primarily SF1, 

QK1, SRSF1 and Celf3) to restrain proper alternative splicing, potentially via 

UACUAAC repeat sequence on MIAT  (Tsuiji et al., 2011; Ishizuka et al., 2014; Cheng 

et al., 2016; Sattari et al., 2016). Along with its role in regulating physiological 

processes in healthy cells, it has been established that MIAT is involved in the 

aetiology of heart conditions (Ishii et al., 2006; Boon et al., 2016; Liao et al., 2016), 

vasculature-related disorders, eye diseases (Jiang et al., 2016; Shen et al., 2016), a 

variety of CNS disorders including brain disorders (Fenoglio et al., 2013; Barry et al., 

2014; Liao et al., 2016) and, as anticipated, cancer. 

The expression of MIAT is increased in a diversity of cancers, contributing to poor 

prognosis, as in the case of diffuse large B-cell lymphoma (Sattari et al., 2016), clear 

cell renal cell carcinoma (Qu et al., 2018; Zhang et al., 2019), breast cancer 

(Almnaseer and Mourtada-Maarabouni, 2018; Zhang et al., 2019; Liu et al., 2019) and 

others. This not only suggests that MIAT may be used as a biomarker in several types 

of tumours, following the example of GBM in which MIAT is part of a molecular 

signature of the disease (Zhang et al., 2013), but also that it holds oncogenic 

properties, at least in the majority of tumours.  

The functional analyses carried out in Chapter 3 have confirmed some aspects of the 

tumour-promoting nature of MIAT for the first time in neuroblastoma and GBM cells. 
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LncRNAs are involved in the regulation of cell survival, apoptosis (Wapinski and 

Chang, 2011; Melissari and Grote, 2016) and migration (Dhamija and Diederichs, 

2016), and MIAT followed this rule. Silencing MIAT with the use of MIAT-specific 

siRNAs resulted in elevated levels of basal apoptosis, with the increase reaching 2-3-

fold in both neuroblastoma and GBM cells. In addition to the pronounced changes in 

basal apoptosis levels, the down-regulation of MIAT resulted in the reduced long-term 

survival of the cells, suggesting the possibility that the knockdown of MIAT may be 

involved in in the regulation of the survival of these cells as well. Together with the 

elimination of long-term survival and the elevated levels of basal apoptosis, an 

important attenuation of the migratory ability of the cells was also observed in response 

to MIAT down-regulation, reaching on average ~30% and ~35% less migration for 

neuroblastoma and GBM cells, respectively. The same effects were observed when 

using locked ASOs (GapmeRs) to achieve the down-regulation of MIAT both in 

neuroblastoma and glioblastoma cells, although the obtained magnitude of the effect 

was slightly lower compared to siRNA-mediated silencing.  

Similar effects in concordance with the results herein described have already been 

reported in the literature for multiple conditions, including neurovascular dysfunctions 

and neurodegenerative disorders, such as oxygen-induced retinopathy (OIR), optic 

nerve transection (ONT), Alzheimer’s disease and diabetic retinopathy (Jiang et al., 

2016), as well as cataract, where Shen et al. (2016) also reported that MIAT exerts its 

effects in cataract patients cells via augmented ROS production. Essentially, there are 

also accumulating studies demonstrating similar effects in a variety of cancerous 

contexts. The study conducted by Sattari et al. (2016) demonstrating the oncogenic 

role of MIAT and its involvement in apoptosis in a Diffuse Large B-Cell Lymphoma cell 

line opened Pandora’s box for further studies in other tumours. For example, MIAT 

fluctuations have been studied different types of breast cancer cells, demonstrating the 

oncogenic properties of MIAT (Almnaseer and Mourtada-Maarabouni, 2018; Li et al., 
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2018), while the implications of MIAT’s role have also been intensively studied in lung 

cancer cells, also suggesting its role as a promoter of the tumour in terms of enhanced 

survival and migration/invasion and inhibited apoptosis, especially the mitochondrial 

pathway (Fu et al., 2018; Wu et al., 2020; Zeng et al., 2020). The same effects have 

also been reported in other cancer cells, including gastric cancer cells (Li et al., 2017), 

colorectal cancer cells (Liu et al., 2018), clear cell renal cell carcinoma cells (Qu et al., 

2018), ovarian cancer cell lines (Shao et al., 2018) and most recently, papillary thyroid 

cancer cell lines (Wang et al., 2019) and osteosarcoma cells (Zhang et al., 2019), 

altogether suggesting a rather universally crucial role of MIAT in the regulation of cell 

fate decisions.  

 

7.1.2. Effects of MIAT silencing on gene expression  

Given the magnitude of the MIAT-regulated effects described in Chapter 3, it was 

hypothesised that MIAT would be involved in molecular pathways and networks of 

great significance in cancer settings, and, therefore, that its fluctuations would heavily 

impact significant players linked with carcinogenesis and cancer progression. To this 

end, RNA sequencing approach was adopted in order to investigate the molecular 

mechanisms underpinning the effects observed upon the knockdown of MIAT. 

As presented in Chapter 4, the results of the RNA sequencing were highly enlightening 

in terms of molecular modifications associated with MIAT levels. In terms of apoptosis, 

cell survival and cell migration, numerous pathways and processes were affected, 

including the MAPK, EGFR, TGF-β, Phospholipase D and NOD-like receptor signalling 

pathways, as well as multiple of their overlapping brunches. The EGFR and MAPK 

pathways have been broadly implicated in both tumours, as their mutations are 

indicators of poor prognosis and tumour aggressiveness in neuroblastoma (Eleveld et 

al., 2018; Takeuchi et al., 2018) and comprise very frequent events also contributing 

tumourigenic outcomes in GBM (Anand et al., 2011; Li et al., 2014; Saadeh et al., 
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2018).  Furthermore, the TGF-β pathway and its related proteins have been 

established to undergo expressional changes both in neuroblastoma (Mestdagh et al., 

2010; Lynch et al., 2012) and GBM (Wang et al., 2016; Guo et al., 2018; Zhou et al., 

2018), while the phospholipase D NOD-like receptor signalling pathways are also 

deregulated in both tumours, as part of the complex networks formed by all the 

aforementioned signalling pathways. Notably, a variety of biological processes 

associated with apoptosis as a response to oxidative stress, for instance, cell death in 

response to oxidative stress, cellular response to oxidative stress, regulation of cellular 

response to oxidative stress and regulation of oxidative stress-induced intrinsic 

apoptotic signalling pathway, as well as cell migration, for example, tissue migration, 

regulation of cell adhesion mediated by integrin and regulation of cell migration, were 

among the most deregulated processes upon MIAT knockdown.  

Moreover, it is noteworthy that the silencing of MIAT, on top of changing the molecular 

landscape on a pathway and on a miRNA level, also led to a massive perturbation of 

the lncRNAome, with hundreds of lncRNAs being deregulated, which could also 

contribute to the final phenotype of neuroblastoma cells. Among them, CASC2 

(Palmieri et al., 2017), ZNFX1-AS1 (Wang et al., 2016; Shi et al., 2019), TP73-AS1 

(Gong et al., 2020), MIR22HG (Han et al., 2019) and HIF1A-AS2 (Pop et al., 2018), 

which have all been implicated in several tumours, were highly perturbed. The RNA 

sequencing analysis also predicted changes in expression of multiple miRNAs in 

response to MIAT knockdown, including miR-124, the miR-27 and miR-181 families, 

and miR-34, all of which are known mediators of key cancer-related processes (De 

Antonellis et al., 2014; Ding et al., 2017; Xiao et al., 2018; Zhong et al., 2018). 

Moreover, the RNA sequencing revealed that MIAT, together with regulating gene 

expression in trans, also regulates gene expression in cis, with numerous important 

genes-protein-coding and non-coding- located on chromosome 22 being up- or down-

regulated, including the pro-apoptotic BID and BIK, as well as the invasion-related 
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PARVB, and DGCR8, a miRNA biogenesis machinery component (~5-fold up-

regulated). In fact, the expression of DGCR8 has already been shown to be regulated 

by MIAT in Wilm’s tumour. LncRNAs display broad mechanistic diversity to exert their 

function and in this regard, they can function both in cis and in trans (Kornienko et al., 

2013; Slack and Chinnaiyan, 2019). A plethora of well-studied, significant lncRNAs 

have been established to act in both ways, including DHFR (Wilusz et al., 2009) and 

CISTR-ACT (cis- and trans- chromosomal interaction) lncRNA (Maass et al., 2014), 

ANRIL (Boon et al., 2016) and NEAT1 (Almnaseer and Mourtada-Maarabouni, 2016), 

and, consequently, the fact that MIAT seems to fall in this category highlights its crucial 

role in gene expression regulation. 

Intriguingly, upon MIAT down-regulation the relative isoform abundance of numerous 

mRNAs was vastly affected, not only confirming the role of MIAT as an alternative 

splicing regulator (Tsuiji et al., 2011; Ishizuka et al., 2014; Cheng et al., 2016) but also 

potentially defining the molecular picture of the cells and determining their fate. Of note, 

a multitude is key mediators of the processes perturbed upon MIAT knockdown, for 

instance, BID, XIAP, CASP8 in apoptosis, MAPK7 in cell survival and HIF1A in 

response to oxidative stress, while others comprise cancer-associated lncRNAs 

(CASC2, MIR22HG, LOC100506714). LncRNAs have been recognised as essential 

players both in transcriptional and post-transcriptional regulation of gene expression 

including mRNA maturation and translation (Kornienko et al., 2013; Slack and 

Chinnaiyan, 2019). Therefore, it comes as no surprise that MIAT, like other lncRNAs, is 

part of complex transcriptional and post-transcriptional networks and feedback loops, 

exerting a fundamental role. 

 

7.1.3. The role of MIAT in apoptosis and ROS-mediated responses  

Although cell survival/ growth pathways seemed to be affected by the knockdown of 

MIAT, the most pronounced effect was observed in the levels of basal apoptosis, which 
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were massively elevated, thereby shifting our attention to the mechanisms and key 

players mediating this phenotype. In line with this, the RNA sequencing revealed that 

among all perturbed biological processes, including the ROS-related ones mentioned 

above, “cell death in response to oxidative stress” was the most deregulated process, 

with an impressive 58/59 involved genes displaying altered expression. This prompted 

us to further investigate the role of ROS in the in response to MIAT silencing and their 

interplay with apoptosis. Therefore, some of the mechanisms and key players 

mediating this phenotype were further validated. 

Consequently, besides the RNA sequencing, RT² Profiler™ PCR arrays and Western 

Blotting were employed for target validation and revealed that programmed cell death, 

and primarily apoptosis, are highly deregulated in response to MIAT silencing. In fact, 

both the extrinsic and, mainly the intrinsic, apoptotic pathways exhibited tremendous 

changes in the expression of fundamental components. According to the RT² Profiler™ 

PCR arrays’ results, numerous factors essential for apoptosis displayed perturbed 

expression, including the up-regulation of APAF1, BAD, BCL2L11, BIK, TRADD, 

TRAF2/3, TP73 and CASP8 and the down-regulation of FAS, MCL1 and XIAP.  

Notably, according to the RNA sequencing results, these excessive apoptosis levels 

are attributed, at least to an important extent, to the elevation of ROS levels in 

neuroblastoma cells upon MIAT knockdown, a hint that was further supported and 

confirmed by experimental data that indeed showed augmented ROS levels in 

response to MIAT silencing in neuroblastoma (and GBM) cells. It has been established 

that numerous non-coding RNAs, including lncRNAs and miRNAs, are regulated by 

ROS and/or, inversely, can regulate ROS levels in a cell (Kietzmann et al., 2017; Wei 

et al., 2019). Interestingly, this interplay involves some of the perturbed pathways and 

processes that emerged in the RNA sequencing, as in the case of H19 regulating ROS 

levels via activating the MAPK/ERK pathway in hepatocellular carcinoma (Ding et al., 

2018), and SNHG15 promoting CRC through a ROS/AIF mechanism (Saeinasab et al., 
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2019). In addition, it is noteworthy that, in concordance with our findings, MIAT-specific 

knockdown has been found to enhance the effects of H2O2-mediated oxidative stress to 

reduce cell proliferation and enhance apoptosis in cataract lenses (Shen et al., 2016). 

Finally, a recent study revealed an oncogenic role for MIAT in Wilms' tumour through 

ROS-mediated regulation of DGCR8 (Zhao et al., 2019). There is also increasing 

evidence that apart from apoptosis, ROS also mediate necroptosis-mediated cell 

death, as well as autophagy (Galadari et al., 2017; Florean et al., 2019). In this context, 

numerous autophagy-related genes were perturbed, like ATGs, suggesting there may 

be ROS-mediated autophagy, as well, in response to MIAT silencing in our system. 

 

7.1.4. The multidimensional mechanisms of MIAT function 

Taking all these factors into account, the current study suggests a variety of 

mechanisms, ROS-dependent and ROS-independent, via which MIAT could potentially 

exert its role and mediate the observed phenotypes. Nevertheless, in order to do so, it 

is first essential to recap the nature of a key player in the regulation of cell fate 

determination, c-Myc, which this study suggests that is affected by MIAT down-

regulation, given that its expression was confirmed to be reduced both by the RNA 

sequencing and RT-qPCR. C-Myc is a master regulator transcription factor, which is 

known to promote cell proliferation, survival and growth, thereby acting as an 

oncogene, but at the same time, it is simultaneously a potent regulator of apoptosis 

(Hoffman and Liebermann, 2008; McMahon, 2014). Importantly, the expression of c-

Myc is also dependent on the cellular levels of ROS, as it acts as a redox sensor, and 

in line with this, high ROS levels trigger c-Myc up-regulation to favour tumour 

progression. Nevertheless, above a certain threshold, c-Myc expression as induced by 

elevated ROS levels favours apoptosis (Babu and Tay, 2019; Florean et al., 2019; Lin, 

2019). In line with these, a plethora of lncRNAs have so far been associated with 

oxidative stress and ROS production (Giannakakis et al., 2015; De Paepe et al., 2018), 
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and yet another multitude of lncRNAs has been shown to be involved in regulatory 

loops of c-Myc (Iaccarino, 2017; Slack and Chinnaiyan, 2019), including MIAT (Galardi 

et al., 2016; Xiang et al., 2019). 

As hypothesised and confirmed by the RNA sequencing, silencing MIAT induces 

perturbations in numerous survival-related pathways (MAPK, TGF-β, EGFR and 

Phospholipase D pathways) established to contribute to cancer, with the most 

important being the down-regulation of the MAPK cascade, including the PI3K/Akt 

pathway. There is a growing body of evidence that proposes the involvement of 

lncRNAs in regulating the pathway (reviewed by Benetatos et al., 2017). Importantly, a 

recent study in melanoma cancer cells reported that MIAT is a regulator of the 

phosphorylation of PI3K and Akt, thereby activating the pathway (Yang et al., 2019), 

introducing the possibility that this could be the case in neuroblastoma cells as well. 

Besides, the PI3K/Akt pathway can also be triggered by disturbed ROS levels (Babu 

and Tay, 2019) (Figure 7.1). 

According to the RNA sequencing results, as well as our target validation experiments, 

a variety of oxidative stress- and apoptosis-related genes were perturbed in response 

to MIAT down-regulation. Therefore, we are herein suggesting two possible core 

mechanisms. As far apoptosis is concerned, the knockdown of MIAT could decrease 

the expression of NRF2 (2-fold down-regulated in our dataset), a master regulator of 

the redox machinery (Hybertson and Gao, 2014; Kitamura and Motohashi, 2018), 

which would, in turn, decrease the availability of anti-oxidant proteins and ROS 

scavengers including GSH (glutathione)-a well-known cell death mediator (Lv et al., 

2019) [GCLC (Glutamate-Cysteine Ligase Catalytic Subunit)/GCLM (Glutamate-

Cysteine Ligase Modifier Subunit): the first rate-limiting enzyme of glutathione 

synthesis, both down-regulated), resulting in increased accumulation of ROS in the 

mitochondria. This would consequently lead to increased MOMP, release of Cyt-c and 

would trigger the mitochondrial apoptosis cascade. In addition, MIAT knockdown could 
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induce both the extrinsic and intrinsic pathways independent of ROS production, as 

components of both were found to have aberrant expression. For instance, in the 

former case, Fas and Caspase 8 were down- and up-regulated, respectively, while in 

the latter case, a diversity of pro-apoptotic players were up-regulated (e.g. BID, BIK, 

BAD, APAF1 and NOXA) and at the same time, insidious anti-apoptotic factors were 

down-regulated, including IAPs- and mainly XIAP, BAX, MCL1 and BCL-2. Of note, 

other types of PCD were affected by the silencing of MIAT, including autophagy, as 

revealed by the aberrant, both directions expression of ATGs, and necroptosis (Figure 

7.1). 

The other significant core mechanism suggested evolves around the predominant role 

of c-Myc. Interestingly, apart from the down-regulated c-Myc, the RNA sequencing also 

demonstrated the up-regulation of EZH2 and HIF1A-AS2, and the down-regulation of 

SIRT1, EPHA2, HIF1A, Sp transcription factors and their upstream ZBTB family 

members, as well as the perturbations of Sp downstream targets. Therefore, in this 

scenario, it is possible that the down-regulation of MIAT would lead to augmented ROS 

levels, which in turn could cause the deregulation of elements of the epigenetic 

machinery, such as the down-regulation of SIRT1 and the up-regulation of EZH2 

(O’Hagan et al., 2011), two elements conferring opposite outcomes in transcription, to 

ultimately knockdown c-Myc. In addition, MIAT could directly regulate SIRT1 (Zhao et 

al., 2019) or c-Myc itself. Silencing MIAT could also lead to the down-regulation of c-

Myc via up-regulating miR-520d to reduce the expression of  EPHA2 (Wang et al., 

2014; Xiang et al., 2019). From this point on, it could be assumed that reduced 

expression of c-Myc leads to eliminated expression of Sp transcription factors, 

especially Sp1/3/4, via the regulation of a diversity of miRNAs and ZBTB proteins. 

Interestingly, the decrease in Sp expression could be also c-Myc independent and 

obtained due to high ROS levels (Lavrovsky et al., 2000; Lee et al., 2019; Upadhyaya 

et al., 2019). Consequently, decreased Sp expression would cause aberrant 
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expression of downstream targets associated with survival, apoptosis and migration, 

such as down-regulation of c-MET, Fas, BCL-2, MMPs and VEGFA/C (all verified in 

our RNA sequencing). Curiously, down-regulated VEGFs could also be the result of 

reduced expression of HIF1A, driven either by increased ROS levels or by the 

increased activity of its NAT HIF1A-AS2, ultimately leading to a possible reduction of 

angiogenesis. Another noteworthy loop/ balance is the one of MIAT-induced ROS/ c-

Myc/ GSH, as it is established that all players in this axis regulate the expression and 

bioavailability of each other (Biroccio et al., 2004; Benassi et al., 2006; Torres et al., 

2009; Weldy et al., 2012; Lv et al., 2019). Finally, MIAT knockdown-induced PI3K/Akt 

down-regulation could be intermingled in both core pathways, as it could not only 

promote apoptosis by de-repressing BAD (Manning and Cantley, 2007) but also down-

regulate c-Myc (Yang et al., 2019) (Figure 7.1). 

A third, probably equally important mechanism, includes MIAT/ miRNA/ protein-coding 

gene axes. Apart from acting as a ceRNA for splicing factors, MIAT is also an 

established miRNA sponge (Fakhr-Eldeen et al., 2019). To this end, we are proposing 

that MIAT could be sponging a variety or miRNAs with known roles in cancer 

progression that were predicted to be perturbed in the RNA sequencing, including miR-

34a, miR-124, miR-27a/b and others. Of particular interest, the knockdown of MIAT 

could increase miR-34a to downregulate the expression of MYCN (Wei et al., 2008) 

and its targets MDM2 and FAK (Focal Adhesion Kinase) (both slightly down-regulated 

in our dataset). The same effect could also be independent of miR-34a, as MIAT has 

also been elucidated to be the most abundant lincRNA in neuroblastoma, as well as a 

MYCN modulator (Rombaut et al., 2019). Besides, increased miR-34a could decrease 

the expression of Oct1, which in this study was down-regulated as demonstrated by 

RNA sequencing and RT-qPCR, and its downstream targets (e.g. ABL1, BCL2L, NFκB 

and GADD45A-all confirmed to be down-regulated) and be responsible for the 

increased levels of TP73, which could also be regulated by its NAT TP73-AS1. In 
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addition, TP73-AS1 is also targeted by miR-124 (Xiao et al., 2018), and so is Oct1. 

Interestingly, 263 miRNAs were predicted to be deregulated, including the 

aforementioned ones. Deregulation of such a scale could be attributed to the increased 

expression of DGCR8 (~5-fold up-regulated in the RNA sequencing), a component of 

the miRNA processing machinery, which has also been demonstrated to be linked to 

MIAT in Wilm’s tumour (Zhao et al., 2019). Collectively, these perturbations, together 

with the c-Myc-related mechanisms, could ultimately lead to decreased cell survival, 

increased apoptosis and attenuated cell migration (Figure 7.1).  

Taking everything into account, the current study has verified MIAT as an oncogenic 

lncRNA in neuroblastoma and GBM, as its knockdown led to the significant reduction of 

long-term survival, the pronounced elevation of basal apoptosis levels and, in turn, an 

important attenuation of cell migration in both tumour cells. The Bioinformatics 

approach adopted together with the target validation using RT² Profiler™ PCR Arrays 

and functional assays to quantify ROS levels, have revealed that these phenotypes, 

and especially apoptosis, were ROS-mediated, at least to some extent, and based on 

the RNA sequencing analysis, several potential mechanisms via which MIAT exerts its 

effects are herein suggested. 
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Figure 7.1. Schematic representation of the suggested molecular mechanisms underpinning the response to MIAT down-regulation. The silencing of MIAT potentially leads to increased 
apoptosis, reduced cell survival, migration and angiogenesis, and deregulated autophagy and necroptosis, via multiple molecular pathways in ROS-dependent and independent ways. MIAT 
knockdown augments ROS levels via down-regulating NRF2, and causes their accumulation in mitochondria, while it also down-regulates c-Myc and Oct-1, affecting their downstream targets, as 
well as the MAPK/PI3K/Akt pathway, and changes the expression of multiple lncRNAs and miRNAs, both via decoying them and via up-regulating DGCR8. Apoptosis-related genes and 
mechanisms are presented in blue shades, c-Myc-related ones in pink shades, PI3K/Akt-related ones in purple, miRNA-related ones in yellow shades and angiogenesis-related ones in 
brown. Subcellular organelles are not designed in scale; figure created using biorender.com. 
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7.2. Novel lncRNAs as cell fate regulators in neuroblastoma 

A plethora of lncRNAs has been reported to act either as oncogenes, tumour 

suppressors or to display dual roles depending on the cancerous context in a variety of 

tumours, including neuroblastoma (Pandey and Kanduri, 2015; Slack and Chinnaiyan, 

2019), and can be of prognostic and predictive value for neuroblastoma patients. The 

list of such lncRNAs that are associated with neuroblastoma is steadily growing 

(Batagov et al., 2013), and several approaches have been attempted to generate 

accurate lncRNA-based profiles and signatures, in order to classify patients robustly 

and provide the most suitable treatment (Sahu et al., 2018; Gao et al., 2019; Rombaut 

et al., 2019; Yerukala Sathipati et al., 2019). Nevertheless, accurate patient 

stratification, as well as efficient therapeutic approaches for high risk patients, remain 

an unmet need (Nakagawara et al., 2018), urging the discovery of biomarkers and 

novel therapeutic approaches.  

Metformin is an old anti-diabetic treatment deriving from the plant Galega officinalis 

(French lilac) (Emami Riedmaier et al., 2013; Vial et al., 2019). In contemporary 

medicine, metformin is a synthetic biguanide (N’, N’ dimethylbiguanide), and has been 

used in the clinic as a golden standard treatment for type 2 diabetes (T2D) (Sahra et 

al., 2010). Metformin is a multifaceted chemotherapeutic drug that acts on multiple 

levels and mechanisms [reviewed in depth by Kourelis and Siegel (2012) and Daugan 

et al. (2016)]. On the grounds that metformin interferes with such a great diversity of 

cellular processes and molecular pathways and in so many levels, treatment with 

metformin, both short-term and prolonged, comprises a useful platform to explore the 

possibility of novel lncRNAs potentially regulating cell fate decisions in neuroblastoma 

cells. To this end, an RNA sequencing approach was adopted to identify such 

lncRNAs. The analysis of the RNA sequencing results, as presented in Chapter 5, 

revealed some preliminary, yet interesting, insights towards this direction.  

293 
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First, short-term treatment of neuroblastoma SH-SY5Y cells with metformin modified 

the expression of 418 lncRNAs, while prolonged exposure to metformin led to 

expressional changes in 482 lncRNAs, distributed virtually into all lncRNAs subtypes, 

with NATs being the most abundant. In the former group, several lncRNAs displaying 

high expressional aberrations have been characterised either as oncogenes (e.g. 

TP73-AS1, LOC100288637, CBR3-AS1) or as tumour suppressors (e.g. MIR22HG), 

and, intriguingly, have been implicated in diverse cancer-related processes that are 

affected by the action of metformin, for instance, TP73-AS1 in cell proliferation and 

metastasis (Wang et al., 2018; Yao et al., 2018), CBR3-AS1 in cell cycle regulation (Li 

et al., 2014) and Notch signalling (Wang et al., 2018) and MIR22HG in cell proliferation 

and migration (Han et al., 2019), confirming that our approach of using metformin was 

suitable. Nevertheless, to the best of our knowledge, this is the first report implicating 

them in the cell fate determination of neuroblastoma cells. Substantially, the most 

deregulated lncRNAs include LOC100507557 and LOC100505695, which are 

completely novel and uncharacterised, and others like LOC100130700, PEG3-AS1 and 

LOC100288637, with very limited, relatively recent research on them. LOC100130700 

has been found to be recurrently deleted in primary mediastinal B-Cell lymphoma  (Dai 

et al., 2015), while  PEG3-AS1 exhibits differential expression in cell carcinoma of the 

head and neck and is part of an eight-long non-coding RNA signature for colorectal 

cancer (Hsu et al., 2016; Zhang et al., 2019). Finally, LOC100288637 has been 

positively correlated with HER-2 expression in HER-2-enriched subtype breast cancer 

and up-regulated in ovarian cancer tissues (Yang et al., 2016; Feng et al., 2019).  

Similarly, in the latter group of cells exposed to metformin long-term, multiple highly 

deregulated lncRNAs have a tumour-promoting identity, for instance, LOC643401 

(PURPL) and LINC00176, while others have a tumour-suppressive one [e.g. GHRLOS 

(Zhu et al., 2016; Wu et al., 2017; Soleyman-Jahi et al., 2019), CASC2], and are, 

again, involved in tumour formation-related processes that can be affected by 
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metformin, such as apoptosis [PURPL (Ashouri et al., 2016; Li et al., 2017), 

LINC00176: (Dai et al.,2019; Niehus et al., 2019)], cell survival and proliferation 

[CASC2 (Wang et al., 2015; Li et al., 2019; Sun et al., 2019; Xing et al., 2019), 

LINC00176  (Wang et al., 2019)], cell cycle [LINC00176 (Tran et al., 2018)] and cell 

migration and invasion [CASC2 (Wang et al., 2015; Li et al., 2019; Sun et al., 2019; 

Xing et al., 2019)]. Noteworthy, although these lncRNAs are well-studied, this is the 

first study attempting to establish a link with neuroblastoma. In addition, it should not be 

neglected that LOC100133331, LOC100505695 and LOC648987, which were among 

the discovered lncRNAs in this group are yet to be characterised and attributed a 

specific role, whilst LOC151300 (LINC00608) has just recently discovered but without 

mechanistic details about its role. In particular,  LOC151300 is part of a prognostic 

signature for Head and Neck Squamous Cell Carcinoma (Yang et al., 2019; Ghafouri-

Fard et al., 2020). 

Secondly, in Chapter 5 we also identified a series of lncRNAs (269) whose expression 

was perturbed in both conditions, short- and long-term exposure to metformin, 

suggesting their critical role in mediating metformin-triggered responses, yet their 

rather neutral role in regulating the cell fate decisions in neuroblastoma cells. Such 

lncRNAs include the up-regulated GHRLOS, LOC100130700, CASC2, MIR22HG, 

LOC100288637, LOC100507557, LOC100507173, LOC100288974, LOC100505695 

and LOC641364 and the down-regulated LOC100132707, LOC100289092, C17orf76-

AS1, LOC285484, LOC100506409, LOC340037, LOC100288637, LOC100506714, 

LOC256021 and LOC151300. Among them, GHRLOS, CASC2 and LOC151300 

maintained their high expressional deregulation across different experimental 

conditions further highlighting the central role not only of them per se, but also of the 

molecular processes they are part of, including cell survival and apoptosis, in 

neuroblastoma cells. On the contrary, when comparing short- and long-term exposure 

to metformin LOC283050, LOC730227, TP73-AS1, LOC100652730 and PCBP1-AS1, 
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displayed differential expression, opening the possibility they could be used as 

biomarkers of neuroblastoma cells’ resistance to metformin resulting from prolonged 

exposure to the drug. 

Thirdly, in our approach to identify novel lncRNAs driving cell fate determination, 

whether this was cell survival, proliferation, apoptosis, migration, differentiation or drug 

resistance, we also identified molecular pathways with significant perturbations, in the 

context of which the newly discovered lncRNAs could be incorporated. In line with this, 

our study confirmed the perturbation of multiple established metformin-related 

pathways in which these novel lncRNAs could exert a crucial role to determine the final 

outcome in terms of cell fate, such as the mTOR survival pathway, the p53-related 

apoptosis pathway, cell cycle arrest pathways and cytokine-cytokine receptor 

interactions (Kourelis and Siegel, 2012; Emami Riedmaier et al., 2013) and numerous 

understudied processes and pathways, such as DNA replication  (Ma et al., 2014; Kim 

et al., 2017) that displayed the most pronounced change, and the Hippo pathway 

(Yuan et al., 2018). In addition, novel cancer-related pathways in the context of 

metformin action were revealed to be affected, for example, multiple DDR-related 

processes such as MMR, BER and HR, which were found to be significantly perturbed 

(Schulten and Bakhashab, 2019). Finally, given the substantial emerging role of 

miRNAs in cancer (Lekka and Hall, 2018) and the growing body of evidence of 

lncRNAs acting as miRNA sponges (Wang and Chang, 2011; Tay et al., 2014), we also 

explored the deregulation of the miRNA repertoire. As anticipated, hundreds of 

miRNAs were predicted to have perturbed expression and, importantly some of them 

are known participants of lncRNA/miRNA/mRNA axes, as in the case of CASC2/miR-

24/MUC6 (Xu et al., 2020), CASC2/miR-183/Wnt-β-catenin (Sun et al., 2019), 

MIR22HG/miR-22/ p21-p53 pathway (Vidyasekar et al., 2015) and MIR22HG/miR-

22/ADSL (adenylosuccinate lyase)-c-Myc (Zurlo et al., 2019). Nonetheless, it should be 

taken into account that these results comprise only preliminary indications of how 
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lncRNAs are involved in cell fate decisions in neuroblastoma cells, and further research 

is required to validate and accredit them. 

 

7.2.1. LINC00176 and LOC648987 in neuroblastoma cell fate 

determination 

Among the perturbed lncRNAs described in Chapter 5, which were highly deregulated 

in neuroblastoma cells exposed to metformin long-term, several were suspected to be 

potential regulators of cell fate decisions. To this end, Chapter 6 investigated the role of 

two such lncRNAs, the down-regulated LINC00176 (9-fold) and LOC648987 (15-fold), 

via a series of functional analyses. LINC00176 is a c-Myc-related lncRNA that has 

previously been associated with a variety of cancers, either as a biomarker [clear cell 

renal carcinoma (Wang et al., 2019), HCC (Zhang et al., 2015; Gong et al., 2020), 

oesophageal cancer (Fan and Liu, 2016) and pancreatic cancer (Liu et al., 2019)] or as 

an oncogenic regulator of multiple aspects of cell fate in multiple tumours [HCC cells 

(Zhang et al., 2015; Tran et al., 2018), ovarian cancer cells (Dai et al., 2019) and 

colorectal cancer (Sun et al., 2019)]. On the other hand, LOC648987 is an 

uncharacterised lncRNA, which, however, has been found to display differential 

methylation patterns in patients with lung adenocarcinoma (Daugaard et al., 2016) and 

whose isoform MPRL has been implicated in cisplatin sensitivity and apoptosis in 

tongue squamous cell carcinoma (Tian et al., 2019). Taking the known evidence into 

account, we were prompted to explore the role of these two lncRNAs in cell fate 

determination of neuroblastoma cells, including cell survival, apoptosis, migration and 

combination effect with metformin treatment following a GapmeR-mediated gene 

silencing approach. 

The functional analyses confirmed the oncogenic properties of LINC00176, as it was 

demonstrated that silencing LINC00176 leads to increased levels of basal apoptosis, 

accompanied by an attenuated migratory ability of neuroblastoma cells as a direct 
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consequence of increased apoptosis, in full concordance with the study conducted by 

Dai et al. (2019) and in partial agreement with Tran and colleagues (2018), who also 

showed that LINC00176 silencing leads to increased necroptosis-mediated cell death. 

However, the study failed to establish significant changes in short-and long-term 

survival in neuroblastoma cells in response to LINC00176 knockdown, as the 

aforementioned studies did, although there was a tendency for decreased long-term 

survival. 

Finally, whether the down-regulation of LINC00176 would confer an additive or, on the 

contrary, an inhibitory effect on the action of metformin, since, on top of a diversity of 

other roles that have been attributed to lncRNAs as far as the regulation of cell 

decisions is concerned, lncRNAs have been implicated in the regulation of drug 

response and resistance in multiple tumours (Deng et al., 2016; Majidinia and Yousefi, 

2016; Bester et al., 2018; Corrà et al., 2018; Bermúdez et al., 2019; Smallegan and 

Rinn, 2019; Zhao et al., 2019). Contrary to our anticipations given the massive down-

regulation of the lncRNA in cells with extended exposure to metformin as revealed by 

the RNA sequencing, LINC00176 tended not to confer a significant effect on the action 

of metformin, at least as far as cell survival and apoptosis are concerned, as indicated 

by the fact that its knockdown led to non-significantly different viability loss and 

apoptosis comparing to control cells.  

Similar to LINC00176, knockdown of LOC648987, induced only a slight, statistically 

non-significant reduction of short- and long-term cell survival, however, it led to doubled 

levels of basal apoptosis in SH-SY5Y cells a significant reduction in cell migration. 

Even though LOC648987 is an uncharacterised lncRNA with no functional studies on it 

so far, the only study performed on its variant MPRL (miRNA processing–related 

lncRNA) has also reported the ability of MPRL to interfere with apoptosis in tongue 

squamous cell carcinoma cells, but in the opposite direction, with its knockdown 

mediating the attenuation of apoptosis (Tian et al., 2019). However, this would not be 
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the first case of different isoforms of the same gene causing opposite effects, as this 

has been the case for HIF1A and HIF2A (Florczyk et al., 2011), p38 variants (Pramanik 

et al., 2003) and Wilm’s Tumour isoforms (Menke et al., 1996). Following the approach 

adopted for LINC00176, we also assessed the possibility that LOC648987 could modify 

the effect of metformin. Nevertheless, contrary to our expectations, the silencing 

LOC648987 does not significantly affect the cell viability loss or the levels of apoptosis 

conferred by metformin in neuroblastoma cells. 

Both LINC00176 and LOC648987 were chosen on the grounds that they displayed a 

massive decrease in expression in metformin-treated neuroblastoma cells, a fact that 

led to the hypothesis they may act as regulators of cell fate decisions. Albeit, they both 

minimally affected cell survival, but on the contrary, they caused an increase in basal 

apoptosis and decreased the cells’ migratory ability. Notably, the increased levels of 

apoptosis-mediated cell death were only detected with acridine orange staining, failing 

to be demonstrated by Annexin V staining, a fact that should be taken into account 

when interpreting these results,  In this regard, it could be speculated that these effects 

are the outcome of the dual identity of c-Myc (Matsumura, Tanaka and Kanakura, 

2003; Pelengaris and Khan, 2003; Hoffman and Liebermann, 2008; McMahon, 2014), 

which, apart from its traditional role as an oncogene, also promotes apoptosis, 

depending on the context, and was as well down-regulated. It is possible that short-

term after the knockdown of the lncRNAs, c-Myc is either repressed or exerts its pro-

apoptotic role and, that on the long-term, it remains repressed to inhibit, even slightly 

the survival and growth of the cells. This could be relevant especially for LINC00176, 

which is a c-Myc-regulated lncRNA (Tran et al., 2018). In addition, concerning the 

down-regulation of the lncRNAs as a single intervention and in combination with 

metformin, one should not neglect the fact that the outcome in terms of cell survival, 

apoptosis and migration is the merge of numerous, complex and compensatory 

signalling pathways, and therefore, although the deregulation of certain lncRNAs per se 
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may seem staggering, their effect can be neutralised as a result of complicated cellular 

and molecular procedures. 

Overall, this study suggests that numerous protein-coding and non-coding RNA 

components are involved in the determination of cell fate in neuroblastoma cells. 

Having metformin treatment as a platform, we have identified novel- at least in the 

context of neuroblastoma- lncRNAs, which could be drivers of cell fate decisions and 

be used as biomarkers of resistance to metformin. These novel lncRNAs could also be 

integrated into some of the established metformin action-related mechanisms 

confirmed herein, or in the newly-discovered molecular mechanisms, including DNA 

replication and DDR pathways. In addition, these lncRNAs could act as parts of 

lncRNA/miRNA/mRNA axes mediating these decisions. Two such lncRNAs, 

LINC00176 and LOC648987, were reported to be significantly associated with 

apoptosis and cell migration to promote neuroblastoma. 

7.3. Concluding Remarks and Future Perspectives 

The present study comprises an attempt to investigate the role of lncRNAs in two 

cancers, neuroblastoma and GBM. Despite its multiple and novel findings, this study is 

far from being exhaustive. Further research concerning MIAT is essential and should 

entail studies investigating which parts of MIAT’s sequence are responsible for the 

observed effects and whether the 3’UTR has got a special role, as well as studies 

elucidating key molecules that mediate its action, such as co-lncRNAs or proteins 

interacting with it, potentially transcribed from chromosome 22. It would also be 

interesting to assess which-if any- of the suggested mechanisms can be established as 

modes of action of MIAT. Additionally, future work could involve the validation of the 

effects on other pathways, in addition to apoptosis. For instance, the MAPK/PI3K/Akt 

pathway is a druggable target, and, therefore, modulating the levels of MIAT using 

gene silencing techniques or mimics (Gutschner and Diederichs, 2012; Salehi et al., 

2017) could be a novel way to target the pathway. Similarly, whether LINC00176 and 
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LOC648987 affect other aspects of cell fate, such as cell proliferation or differentiation, 

should also be investigated. The latter could be very useful, as differentiation therapy 

comprises a promising therapeutic approach for neuroblastoma (Nakagawara et al., 

2018).  

A plethora of lncRNAs have been thoroughly studied, such as GAS5, TERRA, 

HOTAIR, ANRIL and MALAT1, and are being tested as potential tumour biomarkers 

(Gutschner and Diederichs, 2012), highlighting their importance in tumour diagnosis, 

prediction and prognosis. In line with this, there is accumulating evidence of lncRNAs 

implicated in neuroblastoma (Pandey and Kanduri, 2015) and GBM (Pop et al., 2018), 

including MIAT. Since almost all of the hallmarks of cancer can be seen through a 

lncRNA glass [as reviewed by Gutschner and Diederichs (2012) and Kunej et al. 

(2014)], therapeutic approaches for cancer are now including lncRNA-based treatment 

as a potential solution. Nevertheless, there is still a growing demand for new 

biomarkers and therapeutic targets for NB and GBM. However, to exploit MIAT and 

other novel lncRNAs therapeutically in these cancers, it is of paramount significance to 

first unveil the underlying mechanisms of their action in order to ultimately aid 

neuroblastoma and GBM patients. 
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Appendix II  
 

Supplementary Table 1. Top differentially expressed lncRNAs upon MIAT down-
regulation. 

lncRNA cytogenetic location log2 fold 
change subclass 

LOC100506714 chr22:45529638-45559662 14,57 NAT 
LOC100128420 chrX:135721701-135724588 11,31 lincRNA 

CASC2 chr10:119806331-119969665 10,56 unclassified 

ZNFX1-AS1 chr20:47862438-47905795 8,12 NAT 
LOC100133331 chr5:180750506-180755196 7,95 uncharacterised 
LOC100507217 chr15:93426072-93441977 7,86 lincRNA 
TRAF3IP2-AS1 chr6:111804674-111927477 7,07 NAT 
TERC chr3:169482397-169482848 5,99 unclassified 
TP73-AS1 chr1:3569128-3663937 5,84 NAT 
LOC728978 chr10:72972291-73062635 5,72 NAT 
C17orf76-AS1 chr17:16342300-16395480 5,69 NAT 
MIR22HG chr17:1614797-1619566 5,42 miRNA host 
LOC100652739 chr6:150139893-150244214 5,31 NAT 
LOC389033 chr2:130680434-130691890 5,18 pseudogene 
LOC150381 chr22:46446338-46454402 5,04 NAT 
GRIK1-AS2 chr21:30909253-31312282 4,87 NAT 
ITPK1-AS1 chr14:93403258-93582263 4,74 NAT 
LOC100505783 chr20:42839599-42854667 4,74 NAT 
LOC400236 chr14:89622515-90085494 4,71 NAT 
CECR5-AS1 chr22:17618409-17646335 4,62 NAT 
LOC100288778 chr12:87983-91263 4,58 pseudogene 
HIF1A-AS2 chr14:62162118-62215807 4,47 NAT 
LOC729678 chr5:180256953-180262726 4,30 lincRNA 
LOC645638 chr17:58160926-58165828 4,25 pseudogene 
LOC399715 chr10:6319649-6377937 4,23 lincRNA 
MIR22HG chr17:1614797-1619566 -3,53 miRNA 
LOC283761 chr15:90048160-90067265 -3,61 lincRNA 
BDNF-AS1 chr11:27528398-27743605 -3,62 NAT 
ADAMTS9-AS2 chr3:64501330-64997143 -3,68 NAT 
SNHG4 chr5:138609440-138667366 -3,80 snoRNA host 
LOC100507495 chr20:1290554-1373816 -3,83 NAT 
LOC100329109 chr2:206980296-206981296 -3,86 pseudogene 
LOC645212 chr15:44826702-44829121 -4,80 NAT 
C17orf76-AS1 chr17:16342300-16395480 -5,46 snoRNA host/ 

NAT 
LINC00461 chr5:87836596-87980620 -5,46 lincRNA 
GHRLOS chr3:10327433-10335133 -8,27 NAT 
LOC256021 chr12:92378751-92539673 -8,97 lincRNA 
LOC100507433 chr19:38039850-38105079 -10,09 NAT 
LOC219347 chr10:81805988-81852307 -10,17 NAT 
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LOC100288637 chr15:30938317-31065209 -10,29 pseudogene 
LOC730101 chr6:52529198-52533951 -10,56 uncharacterised 
LOC100132287 chr5:180750506-180755196 -11,03 uncharacterised 
LOC283050 chr10:80703082-80827205 -11,30 NAT 
LOC100509894 chr13:46626982-46679211 -11,56 NAT 
LOC100125556 chr3:125635443-125655887 -12,47 pseudogene 
CASC2 chr10:119806331-119969665 -12,71 unclassified 
LOC100506714 chr22:45529638-45559662 -13,04 NAT 
LOC100506994 chr3:61547242-62304622 -13,58 NAT 
MIR22HG chr17:1614797-1619566 -14,66 miRNA 
LOC386758 chr19:56905044-56910544 -15,22 NAT 

 

 

 

Supplementary Table 2. Top identified miRNAs upon MIAT knockdown in SH-SY5Y cells.    

miRNA name Number of perturbed 
targets/ total genes  

Number of targets/ 
total genes p-value 

hsa-miR-124-3p 1291 / 1580 1462 / 1881 3.067e-19 

hsa-miR-27a-3p 793 / 962 889 / 1138 1.439e-14 

hsa-miR-27b-3p 793 / 962 889 / 1138 1.439e-14 

hsa-miR-506-3p 821 / 975 914 / 1140 1.825e-14 

hsa-miR-181a-5p 877 / 984 969 / 1131 2.465e-14 

hsa-miR-181c-5p 877 / 984 969 / 1131 2.465e-14 

hsa-miR-181b-5p 877 / 984 969 / 1131 2.465e-14 

hsa-miR-181d-5p 877 / 984 969 / 1131 2.465e-14 

hsa-miR-4262 877 / 984 969 / 1131 2.465e-14 

hsa-miR-519d-3p 817 / 976 917 / 1152 3.512e-14 
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Supplementary Table 3. Top differentially expressed genes on chromosome 22 (including 
protein-coding and lncRNAs) upon MIAT down-regulation. 

gene cytogenetic location log2 fold 
change 

protein-coding 
vs non-coding 

PARVB chr22:44395090-44565112 17,00 protein-coding 

TUBA8 chr22:18593452-18614498 16,76 protein-coding 
MOV10L1 chr22:50528434-50600116 16,36 protein-coding 
FAM19A5 chr22:48885287-49147744 16,11 protein-coding 
KCNJ4 chr22:38822332-38851203 15,14 protein-coding 
RASL10A chr22:29708921-29711748 14,86 protein-coding 
CPT1B chr22:51007289-51021428 14,60 protein-coding 
LOC100506714 chr22:45529638-45559662 14,57 non-coding 
MB chr22:36002810-36019401 14,44 protein-coding 
APOL3 chr22:36536370-36562225 14,09 protein-coding 
GGT1 chr22:24979717-25024972 14,02 protein-coding 
APOL1 chr22:36649116-36663577 13,00 protein-coding 
RNF185 chr22:31556137-31603005 11,88 protein-coding 
CECR5 chr22:17618409-17646335 11,56 protein-coding 
CRYBB2 chr22:25211660-25231869 10,00 protein-coding 
ARSA chr22:51061181-51066601 7,50 protein-coding 
CPT1B chr22:51007289-51021428 6,85 protein-coding 
MTFP1 chr22:30821610-30825041 6,75 protein-coding 
SEC14L2 chr22:30792929-30821291 6,74 protein-coding 
SMTN chr22:31477281-31500610 6,58 protein-coding 
C1QTNF6 chr22:37576205-37584330 6,44 protein-coding 
TOM1 chr22:35695267-35743987 6,34 protein-coding 
TSPO chr22:43547519-43559248 6,32 protein-coding 
CRYBB3 chr22:25595824-25603324 6,28 protein-coding 
KLHL22 chr22:20795805-20850170 6,18 protein-coding 
FOXRED2 chr22:36883232-36903148 -9,08 protein-coding 
AIFM3 chr22:21319417-21335649 -9,74 protein-coding 
TNRC6B chr22:40440820-40731812 -9,97 protein-coding 
ADM2 chr22:50919984-50924866 -10,00 protein-coding 
TUBA8 chr22:18593452-18614498 -10,00 protein-coding 
FAM19A5 chr22:48885287-49147744 -10,02 protein-coding 
PATZ1 chr22:31721789-31742249 -10,17 protein-coding 
LARGE chr22:33669061-34316416 -10,27 protein-coding 
PPARA chr22:46546498-46639653 -10,30 protein-coding 
PLA2G6 chr22:38507501-38577836 -10,80 protein-coding 
KCNJ4 chr22:38822332-38851203 -10,97 protein-coding 
GGT5 chr22:24615621-24641110 -11,40 protein-coding 
POLDIP3 chr22:42979726-43010962 -11,56 protein-coding 
P2RX6 chr22:21369441-21382302 -12,20 protein-coding 
RABL2B chr22:51195513-51238065 -12,39 protein-coding 
CLTCL1 chr22:19166986-19279239 -12,55 protein-coding 
SEC14L2 chr22:30792929-30821291 -12,60 protein-coding 
DGCR5 chr22:18958010-18982142 -12,98 protein-coding 
LOC100506714 chr22:45529638-45559662 -13,04 non-coding 
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SPECC1L chr22:24666789-24813708 -13,89 protein-coding 
TCN2 chr22:31003069-31023047 -13,96 protein-coding 
EWSR1 chr22:29663997-29696515 -14,22 protein-coding 
TCF20 chr22:42556018-42611445 -14,58 protein-coding 
ZNRF3 chr22:29279754-29453476 -15,55 protein-coding 
SGSM1 chr22:25202135-25322813 -16,27 protein-coding 

 

 

Supplementary Table 4. Significantly deregulated miRNAs inhibiting Sp1 upon MIAT 
knockdown. 

miRNA p-value 
miR-137 1,51E-08 

miR-200c 1,96E-08 
miR-429 1,96E-08 
miR-23b 6,76E-06 
miR-145 2,98E-05 
miR-29b 4,90E-04 
miR-29c 4,90E-04 
miR-330 1,41E-02 

miR-133b 1,88E-02 
miR-133a 5,35E-02 
miR-223 1,07E-01 
miR-335 0.003 
miR-375 0.036 

 

 

Supplementary Table 5. Sp (Specificity protein) TF- regulated genes with significant (p-value 
<0.05) differential expression upon MIAT knockdown. 

Sp1 target Up-regulated/ Down-regulated Pathway/ Process 

FAS Down-regulated Apoptosis 

Bcl-2 Down-regulated Apoptosis 

BIRC5 Up-regulated Survival/ Proliferation 

EGFR Down-regulated Membrane signalling 

FGFR3 Down-regulated Membrane signalling 

cMET Down-regulated Membrane signalling 

VEGFA Down-regulated Migration/ 
invasion/metastasis 

VEGFB Up-regulated Migration/ 
invasion/metastasis 

MMP9 Up-regulated Migration/ 
invasion/metastasis 
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Supplementary Figure 1. MIAT down-regulation affects a plethora of programmed cell 
death-related genes. The scatter plot compares the normalised expression of every gene on 
the array between cells treated with –ve siRNA and MIAT_2 by plotting them against one 
another. The central line indicates unchanged gene expression. The dotted lines indicate the 
selected fold regulation threshold. Red points represent genes with up-regulated expression, 
while green points represent genes with down-regulated expression. Average Ct value was 
normalised to a set of 5 own internal housekeeping genes at a cut-off of 38 (a). The graph 
presents perturbed genes validated both by RNA sequencing and the RT² Profiler™ PCR Array 
Human Cell Death PathwayFinder. Blue shaded bars correspond to down-regulated gene 
expression (b). Data are expressed as a normalised log2 fold change (log2FC). A threshold of 
0.05 for statistical significance (p-value) and a log fold change of expression with an absolute 
value of at least 0.6 were applied; the analysis of the results was performed using a web-based 
PCR Array Data Analysis tool (dataanalysis.sabiosciences.com/pcr/arrayanalysis.php). TP53: 
Tumor Protein P53; SYCP2: Synaptonemal Complex Protein 2; SNCA: Synuclein Alpha; 
PIK3C3: Phosphatidylinositol 3-Kinase Catalytic Subunit Type 3; IGF1R: Insulin-Like Growth 
Factor 1 Receptor; GRB2: Growth Factor Receptor Bound Protein 2; GADD45A: Growth Arrest 
And DNA Damage Inducible Alpha; DFFA: DNA Fragmentation Factor Subunit Alpha; 
DENND4A: DENN Domain Containing 4A; CASP7/9: Caspase 7/9; BMF: BCL-2 Modifying 
Factor; BCL-2: BCL-2 Apoptosis Regulator; BAX: BCL2 Associated X, Apoptosis Regulator; 
APP: Amyloid Beta Precursor Protein; ABL1: ABL Proto-Oncogene 1, Non-Receptor Tyrosine 
Kinase. 
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Supplementary Figure 2. MIAT down-regulation affects multiple apoptosis-associated 
genes. The scatter plot compares the normalised expression of every gene on the array 
between cells treated with  –ve siRNA and MIAT_2 by plotting them against one another. The 
central line indicates unchanged gene expression. The dotted lines indicate the selected fold 
regulation threshold. Yellow points represent genes with up-regulated expression, while blue 
points represent genes with down-regulated expression. Average Ct value was normalised to a 
set of 5 own internal housekeeping genes at a cut-off of 40 (a). The graph presents perturbed 
genes validated both by RNA sequencing and the RT² Profiler™ PCR Array Human Cell Death 
PathwayFinder. Red shaded bars correspond to up-regulated gene expression, while blue 
shaded bars correspond to down-regulated gene expression (b). Data are expressed as a 
normalised log2 fold change (log2FC). A threshold of 0.05 for statistical significance (p-value) 
and a log fold change of expression with an absolute value of at least 0.6 were applied; the 
analysis of the results was performed using a web-based PCR Array Data Analysis tool 
(dataanalysis.sabiosciences.com/pcr/arrayanalysis.php). XIAP: X-Linked Inhibitor Of Apoptosis; 
TNFRSF10B: TNF Receptor Superfamily Member 10b; MCL1: MCL1 Apoptosis Regulator, 
BCL-2 Family Member; FAS: Fas Cell Surface Death Receptor; DAPK1: Death Associated 
Protein Kinase 1; CIDEB: Cell Death Inducing DFFA Like Effector B; BNIP3L: BCL2 Interacting 
Protein 3 Like; BNIP2: BCL-2 Interacting Protein 2; TP73: Tumor Protein P73; TRAF2/3: TNF 
Receptor Associated Factor 2/3; TRADD: TNFRSF1A Associated Via Death Domain; NOD1: 
Nucleotide Binding Oligomerization Domain Containing 1; HRK: Harakiri, BCL2 Interacting 
Protein; CASP2/3/4/6/7/8: Caspase 2/3/4/6/7/8; BIRC2/5/6: Baculoviral IAP Repeat Containing 
2/5/6; BIK: BCL2 Interacting Killer; BCL2L11: BCL-2 Like 11; BAG1: BCL2 Associated 
Athanogene 1; BAD: BCL2 Associated Agonist Of Cell Death; APAF1: Apoptotic Peptidase 
Activating Factor 1. 
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Appendix III 
 

 

Supplementary Table 1. Top differentially expressed lncRNAs in metformin-treated SH-
SY5Y cells. Rows highlighted in lilac represent lncRNAs which are also differentially 
expressed in SH-SY5Y cells with continuous exposure to metformin. 

 

lncRNA location log2 fold 
change subclass 

LOC100652730 chr20:61405472-61408208 15,66 lincRNA 
GHRLOS chr3:10327433-10335133 14,97 NAT 
LOC100130700 chr16:34739458-34740840 14,45 pseudogene 
PCBP1-AS1 chr2:70187223-70314147 13,57 NAT 
CBR3-AS1 chr21:37504064-37528606 13,27 NAT 
CASC2 chr10:119806331-119969665 12,63 unclassified 
LOC730227 chr1:203267885-203274453 12,33 lincRNA 
MIR22HG chr17:1614797-1619566 12,21 miRNA host 
LOC100288637 chr15:30938317-31065209 11,32 pseudogene 
LOC100507557 chr6:145946439-146285233 11,1 uncharacterised 
LOC100507173 chr6:27661813-27678001 10,87 lincRNA 
LOC100288974 chr10:81664653-81691557 10,49 pseudogene 
LOC100505695 chr2:171627603-171634757 5,72 uncharacterised 
LOC641364 chr4:138948576-139163503 5,64 NAT 
LINC00173 chr12:116971226-116974318 4,22 lincRNA 
LOC100506801 chr1:21543739-21672034 4,1 uncharacterised 
LOC283050 chr10:80703082-80827205 3,73 NAT 
LOC145216 chr14:104314057-104324386 3,62 lincRNA 
LOC400680 chr19:21666516-21686040 3,52 lincRNA 
LOC100616668 chr13:41363546-41495910 3,38 pseudogene 
LOC344595 chr3:106959538-107045811 3,36 lincRNA 
LOC678655 chr12:6548166-6560884 3,19 NAT 
LOC100292680 chr12:1609656-1613590 3,15 lincRNA 
LOC284865 chr22:20186252-20192441 3,09 uncharacterised 
LOC644242 chr1:120140324-120141914 3,03 lincRNA 
LOC730091 chr3:156465131-156534851 -2,54 lincRNA 
LOC100134259 chr2:47055002-47086145 -2,58 lincRNA 
LOC148709 chr1:202830881-202844369 -2,63 pseudogene 
LOC100507346 chr9:98205263-98279247 -2,7 uncharacterised 
LOC653712 chr3:128580350-128590384 -2,7 pseudogene 
MIR143HG chr5:148786439-148812399 -2,85 miRNA host 
LOC100132707 chr7:154720226-154794682 -2,92 NAT 
LOC285878 chr7:54610018-54639419 -2,99 overlapping 
LOC100289092 chr16:28889808-28936532 -3 NAT 
C17orf76-AS1 chr17:16342300-16395480 -3,09 snoRNA host 
LOC285484 chr4:6202459-6235663 -3,09 lincRNA 
LINC00324 chr17:8123947-8127361 -3,13 lincRNA 
LOC100506409 chr6:10980992-11079377 -3,18 NAT 
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LOC339524 chr1:87595447-87634886 -3,96 lincRNA 
LOC340037 chr5:176853686-176883287 -6,01 NAT 
TP73-AS1 chr1:3569128-3663937 -8,35 NAT 
PEG3-AS1 chr19:57285922-57352097 -9 NAT 
LOC100128420 chrX:135721701-135724588 -9,4 lincRNA 
LOC100288637 chr15:30938317-31065209 -11,01 pseudogene 
LOC100506714 chr22:45529638-45559662 -11,21 NAT 
LOC256021 chr12:92378751-92539673 -12,13 lincRNA 
LOC100509894 chr13:46626982-46679211 -13,55 NAT 
LOC283050 chr10:80703082-80827205 -13,94 NAT 
LOC730227 chr1:203267885-203274453 -14,39 lincRNA 
LOC151300 chr2:219841005-219842644 -15 lincRNA 
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Supplementary Table 2. Perturbed molecular pathways (including cancer-related) in 
metformin-treated cells.  
ipathwayguide.advaitabio.com/report/27441/contrast/33417/pathways/7438).   
 

Pathway name p-value 
DNA replication  1.088e-9 

Cytokine-cytokine receptor interaction 1.041e-6 

Neuroactive ligand-receptor interaction 1.896e-6 

Cell cycle  5.928e-6 

Mismatch repair  2.230e-5 

Homologous recombination  1.518e-4 

p53 signalling pathway  4.947e-4 

Complement and coagulation cascades  6.917e-4 

Basal cell carcinoma  0.004 

HTLV-I infection 0.005 

Olfactory transduction  0.008 

Fanconi anaemia pathway 0.009 

Glycine, serine and threonine metabolism  0.010 

Malaria 0.015 

Protein digestion and absorption  0.016 

Type I diabetes mellitus  0.017 

Staphylococcus aureus infection 0.017 

Antifolate resistance  0.019 

Systemic lupus erythematosus 0.022 

Base excision repair  0.023 

Hippo signalling pathway 0.024 

Intestinal immune network for IgA production  0.034 

Apoptosis - multiple species  0.035 
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Pathogenic Escherichia coli infection  0.035 

Pyrimidine metabolism  0.038 

Colorectal cancer  0.040 

Ovarian steroidogenesis  0.042 

Oocyte meiosis 0.043 
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Supplementary Table 3. Top differentially expressed lncRNAs in SH-SY5Y cells with 
continuous exposure to metformin.  

lncRNA cytogenetic location log2  fold 
change subclass 

GHRLOS chr3:10327433-10335133 13,82 NAT 

LOC100133331 chr5:180750506-180755196 13 uncharacterised 
LOC729678 chr5:180256953-180262726 10,96 lincRNA 
LOC100288974 chr10:81664653-81691557 9,83 pseudogene 

CASC2 
   

chr10:119806331-119969665 12,44 unclassified 

LOC100288637 chr15:30938317-31065209 9,81 pseudogene 
LOC100507173 chr6:27661813-27678001 9,69 lincRNA 

LOC100505695 chr2:171627603-171634757 6,3 uncharacterised 
LOC643401 chr5:27472398-27496508 5,04 lincRNA 

LOC100507557 chr6:145946439-146285233 4,9 uncharacterised 
LINC00173 chr12:116971226-116974318 4,77 lincRNA 
LOC100133161 chr11:126986-131920 4,67 uncharacterised 
LOC284080 chr17:48127712-48133103 4,59 uncharacterised 

LOC285965 chr7:143078359-143220540 4,24 NAT 
LOC100616668 chr13:41363546-41495910 4,12 pseudogene 

MIR7-3HG chr19:4769116-4772568 4,1 miRNA host/ lincRNA 
LOC400680 chr19:21666516-21686040 4,1 lincRNA 
LOC284865 chr22:20186252-20192441 4,1 uncharacterised 
MIR7-3HG chr19:4769116-4772568 4,09 lincRNA 
LOC643650 chr10:47096453-47151400 3,8 lincRNA 

LOC79015 chr20:43285091-43300380 3,74 lincRNA 

LOC389641 chr8:23082733-23088439 3,71 uncharacterised 
LOC100129617 chr16:81478774-81745367 3,63 uncharacterised 
LOC285593 chr5:173006645-173012075 3,63 uncharacterised 
LOC678655 chr12:6548166-6560884 3,31 NAT 
LOC100506810 chr1:234859788-234867390 -2,05 lincRNA 

LINC00319 chr21:44869903-44873771 -2,06 lincRNA 

C17orf76-AS1 chr17:16342300-16395480 -2,06 snoRNA host 
LOC729987 chr1:98676266-98738214 -2,09 lincRNA 

LOC729080 chr5:141275190-141276260 -2,11 pseudogene 

LOC283731 chr15:74418713-74421619 -2,14 uncharacterised 
LOC100128361 chr9:95059639-95432547 -2,15 uncharacterised 
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LOC100130093 chr1:227916239-227968932 -2,15 uncharacterised 
LOC100170939 chr5:69423288-69586004 -2,18 pseudogene 
LOC100133091 chr7:76178657-76257299 -2,18 uncharacterised 
LOC100506136 chr7:96250968-96293650 -2,19 uncharacterised 
LINC00163 chr21:46409778-46414001 -2,2 lincRNA 
LOC100379224 chr19:44598481-44617336 -2,21 uncharacterised 
LOC729799 chr11:43902356-43942494 -2,22 pseudogene 
LOC401127 chr4:39481874-39483523 -2,24 pseudogene 
MAGI2-AS3 chr7:77646373-79100524 -2,26 NAT 
MORC2-AS1 chr22:31318294-31364187 -2,28 NAT 
LOC100128881 chr16:89773540-89883065 -2,3 NAT 
LINC00461 chr5:87836596-87980620 -2,34 lincRNA 
MIR143HG chr5:148786439-148812399 -2,34 miRNA host 
MIR137HG chr1:98453555-98515249 -2,35 miRNA host 
LOC90784 chr2:86247338-86250991 -2,37 uncharacterised 
LOC283663 chr15:57592562-57599967 -2,39 lincRNA 

LOC100499177 chr4:83814604-83841284 -2,4 NAT 
LOC100128292 chr10:79686569-79689583 -2,42 NAT 
CRYM-AS1 chr16:21269838-21329912 -2,44 NAT 
LOC153684 chr5:43042235-43045370 -2,52 uncharacterised 
LINC00208 chr8:11434043-11438850 -2,53 lincRNA 
LOC100132215 chr2:62900985-63275656 -2,54 uncharacterised 
LOC729683 chr17:61777697-61780045 -2,55 uncharacterised 
LOC100505912 chr4:22328989-22341289 -2,56 uncharacterised 
LOC100130992 chr10:22541000-22547477 -2,58 uncharacterised 
MIR17HG chr13:92000073-92006829 -2,6 miRNA host/ lincRNA 

MIR17HG chr13:92000073-92006829 -2,6 miRNA host 
LOC100128191 chr12:98906750-98944157 -2,61 NAT 
LINC00277 chr15:69116302-69564544 -2,63 lincRNA 
LOC144571 chr12:9217772-9268558 -2,66 NAT 

LOC149134 chr1:246952918-246954788 -2,75 lincRNA 
LOC100506123 chr2:98081675-98091049 -2,76 uncharacterised 
LOC157627 chr8:9757573-9760839 -2,82 lincRNA 
LOC400940 chr2:6122109-6128364 -2,89 uncharacterised 
LOC100129961 chr2:135596185-135676176 -2,9 NAT 
LOC100131089 chr15:40331511-40359710 -2,97 NAT 
UCKL1-AS1 chr20:62571181-62601218 -2,98 NAT 
LOC641367 chr19:21906842-21950430 -3 pseudogene 

LOC100129534 chr1:2252695-2322993 -3,01 pseudogene 
LOC100506068 chr19:47150868-47220384 -3,12 NAT 
LOC100505746 chr21:46305867-46349595 -3,22 NAT 
LOC646938 chr15:79044378-79045734 -3,23 pseudogene 
LOC100507433 chr19:38039850-38105079 -3,26 NAT 
LOC100287559 chr15:73043707-73090540 -3,33 NAT 
LOC100144603 chr22:51021454-51022355 -3,4 NAT 
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LINC00478 chr21:17442841-17982094 -3,64 lincRNA 

LOC653712 chr3:128580350-128590384 -3,71 pseudogene 
LINC00304 chr16:89225627-89230083 -4,59 lincRNA 
LOC392232 chr8:73117533-73163869 -5,31 pseudogene 
LINC00176 chr20:62665696-62671315 -9,23 lincRNA 
LOC100288637 chr15:30938317-31065209 -9,96 pseudogene 
LOC256021 chr12:92378751-92539673 -12,29 lincRNA 
LOC100125556 chr3:125635443-125655887 -14,52 pseudogene 
LOC648987 chr5:43014830-43018913 -14,85 uncharacterised 
LOC151300 chr2:219841005-219842644 -15,24 lincRNA 
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Supplementary Table 4. Perturbed molecular pathways (including cancer-related) in SH-
SY5Y cells with continuous exposure to metformin. 
(ipathwayguide.advaitabio.com/report/27030/contrast/32882/pathways/6400). 

Pathway name p-value 
Cytokine-cytokine receptor interaction 1.809e-6 

DNA replication  2.998e-4 

Cell cycle  4.963e-4 

Lysosome  0.001 

Antigen processing and presentation  0.002 

Protein digestion and absorption  0.003 

HTLV-I infection 0.004 

Mismatch repair  0.004 

Pertussis 0.004 

Base excision repair  0.008 

Systemic lupus erythematosus 0.009 

Type I diabetes mellitus  0.012 

p53 signalling pathway  0.013 

Malaria 0.013 

Fanconi anaemia pathway 0.014 

Chemokine signalling pathway  0.016 

Bacterial invasion of epithelial cells  0.017 

Osteoclast differentiation 0.019 

Homologous recombination  0.020 

Other types of O-glycan biosynthesis  0.020 

ECM-receptor interaction 0.022 

Legionellosis 0.025 

Herpes simplex infection  0.026 
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Neuroactive ligand-receptor interaction 0.028 

Cocaine addiction 0.036 

Hypertrophic cardiomyopathy (HCM)  0.038 

Oocyte meiosis 0.039 

Complement and coagulation cascades  0.040 

Wnt signalling pathway  0.043 

Purine metabolism  0.048 

Maturity onset diabetes of the young 0.048 
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Supplementary Table 5. Differentially expressed lncRNAs in metformin-treated SH-SY5Y 
cells versus SH-SY5Y cells with continuous exposure to metformin.       

  

lncRNA cytogenetic location log2 fold 
change subclass 

LOC283050 chr10:80703082-80827205 13,82 NAT 
LOC730227 chr1:203267885-203274453 13,5 lincRNA 
LOC100509894 chr13:46626982-46679211 13,3 NAT 
LOC100506714 chr22:45529638-45559662 12,75 NAT 
LOC100133331 chr5:180750506-180755196 11,22 uncharacterised 
LOC729678 chr5:180256953-180262726 10,64 lincRNA 
LOC100128420 chrX:135721701-135724588 8,99 lincRNA 
TP73-AS1 chr1:3569128-3663937 7,9 NAT 
LINC00176 chr20:62665696-62671315 7,52 lincRNA 
C17orf76-AS1 chr17:16342300-16395480 5,3 snoRNA host 
LOC340037 chr5:176853686-176883287 4,1 NAT 
LOC285965 chr7:143078359-143220540 3,48 NAT 
LOC100505783 chr20:42839599-42854667 3,36 NAT 
LINC00324 chr17:8123947-8127361 3,26 lincRNA 
H19 chr11:2016405-2019065 3,19 lincRNA 
LOC285593 chr5:173006645-173012075 3,11 uncharacterised 
LOC728175 chr4:185262183-185275130 3,01 lincRNA 
LOC728978 chr10:72972291-73062635 2,85 NAT 
LINC00092 chr9:98782013-98784037 2,77 lincRNA 
LINC00535 chr8:94358694-94712661 2,72 lincRNA 
LOC256021 chr12:92378751-92539673 2,69 lincRNA 
LOC100133957 chrX:47511190-47519776 2,66 NAT 
LOC100129617 chr16:81478774-81745367 2,64 uncharacterised 
LOC100133161 chr11:126986-131920 2,63 lincRNA 
LOC100131347 chr17:37213271-37307902 2,6 pseudogene 
LOC100507433 chr19:38039850-38105079 -2,6 NAT 
LOC145216 chr14:104314057-104324386 -2,62 lincRNA 
MIAT chr22:27053445-27072440 -2,65 lincRNA 
LINC00461 chr5:87836596-87980620 -2,68 lincRNA 
ZRANB2-AS2 chr1:71547006-71703406 -2,73 NAT 
LOC100507086 chr3:196769430-197030621 -2,73 NAT 
CRYM-AS1 chr16:21269838-21329912 -2,74 NAT 
LOC100131089 chr15:40331511-40359710 -2,8 NAT 
LOC100287559 chr15:73043707-73090540 -2,8 NAT 
LINC00552 chr13:114451483-114454062 -2,85 lincRNA 
LOC100129316 chr9:93825575-93837414 -2,95 uncharacterised 
FLVCR1-AS1 chr1:213029945-213031480 -2,97 NAT 
LOC100652768 chr11:117049938-117075508 -3,06 uncharacterised 
LOC100130992 chr10:22541000-22547477 -3,07 uncharacterised 
MIR497HG chr17:6915735-6922973 -3,09 miRNA host 
LOC115110 chr1:2481358-2484284 -3,3 NAT 
LINC00327 chr13:24043650-24061603 -3,72 lincRNA 
LOC400940 chr2:6122109-6128364 -3,73 uncharacterised 
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LOC392232 chr8:73117533-73163869 -3,79 pseudogene 
LOC641364 chr4:138948576-139163503 -3,97 NAT 
LINC00304 chr16:89225627-89230083 -4,11 lincRNA 
LOC100507557 chr6:145946439-146285233 -6,56 uncharacterised 
PCBP1-AS1 chr2:70187223-70314147 -13,61 NAT 
LOC100125556 chr3:125635443-125655887 -14,86 pseudogene 
LOC100652730 chr20:61405472-61408208 -16,16 lincRNA 
    

 

Supplementary Table 6a. Top perturbed molecular pathways (including cancer-related) in 
metformin-treated SH-SY5Y cells SH-SY5Y cells with continuous exposure to metformin 
(https://ipathwayguide.advaitabio.com/report/40623/contrast/49745). 

Pathway name p-value 
NF-kappa B signalling pathway  1.951e-5 

TNF signalling pathway  5.358e-5 

Steroid biosynthesis  5.742e-5 

Chemokine signalling pathway  6.808e-5 

HTLV-I infection 8.278e-5 

Cytokine-cytokine receptor interaction 8.368e-5 

Kaposi's sarcoma-associated herpesvirus infection  8.746e-5 

Terpenoid backbone biosynthesis  1.228e-4 

Antigen processing and presentation 3.310e-4 

Systemic lupus erythematosus 4.165e-4 

IL-17 signalling pathway  4.402e-4 

NOD-like receptor signalling pathway  7.143e-4 

Proteoglycans in cancer  8.660e-4 

Chagas disease (American trypanosomiasis) 9.639e-4 

MicroRNAs in cancer  0.001 

Staphylococcus aureus infection 0.001 

Rheumatoid arthritis 0.001 
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Renin secretion  0.001 

AGE-RAGE signalling pathway in diabetic complications  0.002 

Complement and coagulation cascades  0.002 

Transcriptional misregulation in cancer  0.003 

Pathways in cancer  0.003 

Apelin signalling pathway  0.006 

Circadian entrainment 0.006 

Osteoclast differentiation  0.007 

Herpes simplex infection  0.007 

Wnt signalling pathway  0.008 

Ferroptosis 0.010 

Metabolic pathways * 0.012 

Signalling pathways regulating pluripotency of stem cells  0.014 

Axon guidance  0.015 

MAPK signalling pathway 0.015 

Protein digestion and absorption  0.016 

cGMP-PKG signalling pathway  0.018 

PI3K-Akt signalling pathway  0.019 

Malaria 0.022 

B cell receptor signalling pathway  0.022 

Hematopoietic cell lineage  0.022 

Phagosome  0.022 

Colorectal cancer  0.022 

Biosynthesis of amino acids  0.024 

Thyroid hormone synthesis 0.025 
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Circadian rhythm  0.026 

Pertussis 0.027 

African trypanosomiasis 0.029 

Small cell lung cancer  0.029 

Bladder cancer  0.033 

Focal adhesion 0.033 

Apoptosis - multiple species  0.034 

Glycosaminoglycan biosynthesis - keratan sulfate  0.035 

Mineral absorption  0.036 

Epstein-Barr virus infection 0.037 

Viral carcinogenesis  0.038 

Legionellosis 0.038 

Hypertrophic cardiomyopathy (HCM)  0.041 

Cholinergic synapse  0.042 

Cytosolic DNA-sensing pathway  0.043 

Regulation of actin cytoskeleton  0.044 

Cell adhesion molecules (CAMs)  0.044 

Salivary secretion 0.045 

Alcoholism 0.045 

Dilated cardiomyopathy (DCM) 0.046 

Prostate cancer  0.046 

Arrhythmogenic right ventricular cardiomyopathy (ARVC)  0.048 

 

 

 

 



381 
 

Supplementary Table 6b. Top perturbed Gene Ontology (GO) terms metformin-treated 
SH-SY5Y cells versus SH-SY5Y cells with acquired resistance to metformin. 

 

Pathway name 

Number of 
perturbed genes/ 
total genes in the 

pathway 

p-value 

Biological Processes 

 

Response to external 
stimulus 

118 / 2076 1.400e-15 

Inflammatory response 54 / 674 9.600e-13 

Signalling 239 / 6194 5.700e-12 

Regulation of response to 
stimulus 

168 / 3857 9.400e-12 

Response to stimulus 296 / 8338 1.800e-11 

Molecular functions 

Protein binding 354 / 11021 9.900e-8 

Receptor binding 70 / 1454 2.700e-6 

Collagen binding 9 / 63 5.300e-5 

Receptor regulator activity 28 / 464 9.300e-5 

Receptor ligand activity 26 / 437 2.100e-4 
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Supplementary Figure 1. The effects of metformin on the cell survival of SH-SY5Y cells.  
Cells were seeded in 96-well plates (100μl/well), incubated for 24h and 100mM metformin were 
subsequently added (diluted in growth media-100μl/well). Cell survival is reduced by the 
treatment with 100mM metformin comparing to cells growing in the absence of metformin, as 
measured by the MTS assay 48 h and 72 h post-treatment. The concentration of 100mM was 
too toxic for the cells. Optical density (OD) at 490nm is represented in a, while % inhibition of 
cell survival is represented in b. Data are represented as mean, in n=1 experiment. 
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