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ABSTRACT

We consider theoretically the two-dimensional flow in a vertically aligned thick liquid film supported at the top and bottom by wire frames.
The film gradually thins as the liquid drains due to gravity. We focus on investigating the influence of non-Newtonian and viscoplastic
effects, such as shear thinning and yield stress, on the draining and thinning of the liquid film, important in metallic and polymeric melt
films. Lubrication theory is employed to derive coupled equations for a generalized Newtonian liquid describing the evolution of the film’s
thickness and the extensional flow speed. We use the non-Newtonian (power-law and Carreau) and viscoplastic (Bingham and
Herschel–Bulkley) constitutive laws to describe the flow rheology. Numerical solutions combined with asymptotic solutions predict the late-
time power-law thinning rate of the middle section of the film. For a Newtonian liquid, a new power law thinning rate of t�2:25 is identified.
This is in comparison with a thinning rate of t�2 predicted for a thin Newtonian liquid film neglecting gravity, suggesting a weak dependence
on gravity for the drainage of thicker films. For a non-Newtonian and viscoplastic liquid, varying the power law index and the yield stress
influences the timescale of the thinning, but has weak dependence on the late-time thinning rate relative to the Newtonian thinning rate. The
shortcomings of the power-law model are exposed when the shear rate is low and these are resolved using the Carreau model.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0075248

I. INTRODUCTION

The draining, thinning, and breakup of liquid films that inter-
twine a network of gas bubbles are a common occurrence in foams.
They are integral to the formation and stability of foams, and in pre-
dicting their lifetime.1–3 The dynamics play a crucial role in a variety
of applications, such as in liquid and solid foam networks, relevant in
the manufacture of cellulose foams,4,5 metallic, polymeric, and ceramic
foams,1,6,7 the food industry (e.g., bread dough8), processing in the
petro-chemical industry,9,10 and the biological and life sciences.11 In a
liquid foam network, there are gas bubbles separated by thin liquid
lamellae. If one is interested in predicting the lifetime of a foam or its
overall stability, then, as a starting point, understanding the drainage
within the lamella is important.

The process of liquid drainage and thinning of the lamella is well
studied in aqueous Newtonian foams3 where surfactants are required
to stabilize foams. In pure molten metal and polymeric foams, how-
ever, the drainage and thinning of the lamella is rapid and rupture can

happen on the order of milliseconds. Surfactants are not available to
affect the surface tension of metallic foams. Therefore, particles are
often added to metallic foams to increase the effective liquid viscosity
and to slow down the drainage, thinning, and rupture time.1,12 Such
foams display non-Newtonian, such as shear-thinning, viscoelastic,
and viscoplastic, such as a yield stress, behavior. Foams made from
non-Newtonian and viscoelastic solutions have attracted much less
attention so far in comparison with Newtonian foams, and there are a
few studies on their drainage. Safouane et al.13 have performed forced
drainage experiments in non-Newtonian foam solutions displaying
shear-thinning behavior. Their results showed that the dynamics of
liquid drainage in a foam with a shear-thinning liquid solution is iden-
tical to the drainage of foam having a Newtonian liquid if an effective
viscosity based on an estimated shear rate within the foam is used.
They also demonstrated that foams made of aqueous solutions of a
polymer drain faster than foams made with Newtonian solutions of
the same bulk viscosity.13,14 They attributed this behavior to the
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viscoelastic properties of the polymer. Indeed, experimental investiga-
tion by Koponen4 on drainage of fiber-laden cellulose foams have
shown that the general drainage behavior is similar to that of a pure
foam model;5 however, the timescale of drainage given by the model
was almost an order of magnitude longer than in the experiments. The
authors concluded that the time scales could be matched by using an
appropriate effective viscosity, similar to Safouane et al.,13 but could
not rigorously justify this method by the known properties of the sys-
tem. A quantitative analysis of the drainage of non-Newtonian and
viscoelastic films and foams is, therefore, important from both a prac-
tical and theoretical point of view.

The classical experimental investigation by Mysels et al.15 using
soap films attached to wire frames gave the first comprehensive
description of the draining and thinning of soap films. Subsequently,
this has spurred several experimental and theoretical studies investi-
gating the thinning and drainage of liquid films using the model sys-
tems for Newtonian liquids under isothermal conditions. These
include a liquid film supported within a wire frame or between two
rigid supports,15,16 or a liquid film partially drawn out of a bath of
liquid.17–21 These two configurations mimic the fluid dynamics associ-
ated with the draining of a lamella into a Plateau border. The latter
configuration also allows investigation of the speed at which the wire
frame is drawn out of the bath and its influence on the stability of the
draining film.17

The draining and thinning of free liquid films have been widely
studied for a surfactant-free22–25 system using a purely extensional
flow framework and for a surfactant-stabilized system using a combi-
nation of extensional and shear flow.16,18–21,23,24,26 Particularly relevant
to this work are the following studies. Breward23 and Breward and
Howell24 have developed and analyzed models describing surfactant-
free and surfactant-stabilized drainage of a foam lamella. For the capil-
lary number, Ca ¼ l?U?=c? ¼ Oð�Þ (where l? and c? are the liquid
viscosity and surface tension, respectively, U? is a characteristic speed
and �� 1 is the film’s aspect ratio), they performed an asymptotic
decomposition of the liquid domain into a capillary-static Plateau bor-
der, a time-dependent thinning film, and a quasi-steady transition
region between the two. They use matched asymptotic analysis to
describe the evolution of each region, which is then used to derive the
thinning rates with and without surfactant. They determined that the
lamella drains or the film thins as t�2, where t is the time, for a
surfactant-free film. They found that surfactants can reduce the drain-
ing of the lamella and greatly increase its lifetime. Brush and Davis25

derive the thinning rate of a surfactant-free lamella in a gas–liquid
foam using matched asymptotic analysis, in the spirit of Breward23

and Breward and Howell.24 Two limiting cases were identified at small
capillary number: a semi-arid foam having O(1) liquid fraction and an
arid foam in which the liquid fraction is small. They found that the
long-time lamellar thinning rates in both cases followed a t�2 power-
law behavior; the dynamics and rupture times were different for both
foam types.

The influence of gravity on the drainage of surfactant-stabilized
aqueous films has been widely studied, in particular its influence on
the drainage, thinning, and rupture of the lamella.16,18–21 However, the
gravity-driven drainage of surfactant-free films is relatively under-
studied, generally neglected under the assumption that the film is thin.
To the best of our knowledge, the only study to have examined the
role of gravity in the drainage and thinning of flow from the lamella

into the plateau border is by Davis et al.27 They combine numerical
simulations and asymptotic analysis (based on the domain decomposi-
tion procedure24,25) to demonstrate how gravitational effects strongly
modify the shape of the plateau border interfaces and enhance the
drainage flow in the liquid films. The lamella thins non-uniformly
with exponential decay of the minimum film thickness, which is signif-
icantly faster than the t�2 power-law thinning predicted when gravita-
tional effects are negligible.23–25 Motivated by this study, we focus on
the scenario when the liquid film is sufficiently thick so that the liquid
flow driven by gravity is non-negligible, and could significantly influ-
ence its draining and thinning.

Even fewer models have considered the influence of non-
Newtonian rheology, such as shear-thinning and viscoplastic behavior.
Brush and Roper28 extend their two-dimensional small capillary num-
ber matched asymptotic analysis for Newtonian liquids25 to determine
the thinning rates of thin liquid films in surfactant-free, non-
Newtonian gas–liquid foams. The liquid viscosity is modeled as a
power-law function of the shear rate and by the Ellis law.29 They
observed that the Ellis model is more realistic than the power-law
model at a low shear rate, where the viscosity is well behaved in the
Ellis model, while it diverges to infinity in the power-law model. They
observed the thinning rate to be t�2 for both models, which is the
same as that for a Newtonian liquid. They reasoned that the non-
Newtonian behavior influences the time to rupture without affecting
the thinning rate. Although the work undertaken here is in the spirit
of the study by Brush and Roper,28 we derive the evolution equations
in an uncomplicated way and assume that the liquid film is relatively
thick so that the effect of gravity is included.

Based on the above considerations, the goal of this paper is two-
fold: first, to develop a theoretical framework for the draining of a ver-
tically aligned free thick liquid film, incorporating gravity, extensional
viscous, surface tension, and a shear-rate dependent viscosity for a
generalized Newtonian liquid; second, to investigate the influence of
non-Newtonian effects, such as shear thinning, and viscoplastic effects,
such as yield stress, on the draining and thinning of the liquid film.
This paper is organized as follows. In Sec. II, we focus on the distin-
guished limit balancing the extensional viscous stresses and gravity to
derive the master equations for a generalized Newtonian liquid
describing the time-evolution of the film’s free surface and the exten-
sional flow speed. In Sec. III, we explore the solutions when the
rescaled capillary number, Ca=� ¼ Oð1Þ or larger. This is done first
for a Newtonian liquid and then for a non-Newtonian liquid using the
power-law and Carreau models to describe the shear-thinning and
thickening behavior, and the Herschel–Bulkley and Bingham model to
describe the weakly yielding behavior. In Sec. IV, we provide conclud-
ing remarks and outline future work.

II. MODEL FORMULATION

We consider the two-dimensional flow due to the draining of a
liquid in a vertically aligned film with two free surfaces and suspended
between two horizontal solid frames, as shown in Fig. 1. This configu-
ration assumes the pre-existence of a stable initial liquid film of speci-
fied height and thickness. In experiments, the film is drawn out of a
bath of liquid and whether a film of specified height and thickness can
be achieved would depend on the speed at which it is drawn out.17

This speed also significantly influences the stability of the draining
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film.17 Here, we assume that the film is drawn out sufficiently quickly
for a stable initial film profile to exist.

The configuration shown in Fig. 1 mimics the thinning of the
lamella and is a simple idealization of the physical situation. However,
the supported ends are not a true replication of the plateau borders in
liquid foam films. One would need to consider lifting the wire frame
completely out of a bath of liquid resulting in a liquid film that con-
nects onto the bath at its lower end (e.g., see Champougny et al.17 and
Naire et al.18–21). The bottom end of the film connecting onto the
bath’s surface is representative of the Plateau border region.
Nonetheless, the current theoretical framework is still applicable to
this configuration, except that one needs to apply appropriate bound-
ary conditions for the film to match onto the bath. As we will see
below, this is much simpler with the configuration shown in Fig. 1.

The initial liquid film is sufficiently thick for gravity to play a sig-
nificant role in its drainage. The flow evolves due to the effects of grav-
ity, viscous forces, and surface tension causing the liquid in the film to
drain downward in the direction of gravity and resulting in the thin-
ning of the film. The liquid is assumed to be an incompressible and
generalized Newtonian liquid with a shear rate-dependent viscosity.
We also assume isothermal conditions, so the liquid properties are
independent of variations in temperature. Figure 1 shows a schematic
of the geometry. We consider a two-dimensional Cartesian coordinate
system ðx?; z?Þ with the x?-axis in the vertical direction pointing
downward in the direction of the film length and the z?-axis in the
horizontal direction along the film’s thickness. The horizontal frames
are separated by a distance L? and are of width 2H?

0 . Gravity acts verti-
cally downward. We assume symmetry about the film’s centerline at
z? ¼ 0. The two free surfaces of the film are represented by
z? ¼ 6h?ðx; tÞ. Assuming left-right symmetry, we only consider half
of the film between z? ¼ 0 and z? ¼ h?ðx; tÞ. The superscript ? refers
to dimensional quantities.

A. Governing equations

The flow is described by the Navier–Stokes equations. The den-
sity q? is assumed constant (due to the incompressibility assumption),
so the continuity equation reduces to

u?x? þ w?z? ¼ 0: (1)

In the above, v? ¼ ðu?;w?Þ are the flow speeds in the x? and z? direc-
tions, respectively, and the subscript denotes differentiation with respect
to the subscript variable. The momentum equations can be written as

q? u?t? þ u?u?x? þ w?u?z?
� �

¼ �p?x? þ s?xxx? þ s?xzz? þ q?g?; (2a)

q? w?t? þ u?w?x? þ w?w?z?
� �

¼ �p?z? þ s?xzx? þ s?zzz? ; (2b)

where p? is the liquid pressure; s?xx and s?zz are the extensional vis-
cous stresses in the x? and z? directions, respectively; s?xz is the viscous
shear stress; and g? is the acceleration due to the gravity.

We use a constitutive law for a generalized Newtonian liquid
relating the viscous stress s? and the shear rate _c? of the form

s? ¼ l?ð _c?Þ _c? ; (3)

where l?ð _c? Þ is the shear rate-dependent viscosity,
_c? ¼ ½12 Traceð _c? � _c?Þ�1=2 ¼ ½2ðu?2x? þ w?

2

z? Þ þ ðu?z? þ w?x?Þ
2�1=2, is the

second invariant of the shear rate tensor, and

s? ¼
s?xx s?xz

s?xz s?zz

 !
; (4a)

_c? ¼
c?xx c?xz

c?xz c?zz

 !
¼

2u?x? u?z? þ w?x?

u?z? þ w?x? 2w?z?

 !
: (4b)

B. Boundary conditions

Symmetry along the centerline z? ¼ 0 is imposed through the
boundary conditions

w? ¼ u?z? ¼ s?xz ¼ 0 at z? ¼ 0: (5)

At the free surface, z? ¼ h?ðx?; t?Þ, we have the stress boundary con-
ditions normal and tangential to the free surface. The normal stress
boundary condition balances the jump in the total normal stress
(between the outside air and the liquid) with the product of the surface
tension times the curvature of the free surface

�p? þ 1

1þ h?2x?
h?

2

x?s
?xx � 2h?x?s

?xz þ s?zz
h i

¼ c?h?x?x?

1þ h?2x?
� �3

2

; (6)

where c? is the surface tension (assumed constant), and
h?x?x?=ð1þ h?

2

x?Þ
3
2 is the surface curvature. Without loss of generality,

we take the atmospheric pressure to be zero; therefore, the liquid pres-
sure p? is relative to the atmospheric pressure. The tangential stress
boundary condition imposes continuity of stress at the free surface.
Assuming that the stress applied in the outside air phase is zero, this
can be written as

ð1� h?
2

x?Þs?xz þ hx s?zz � s?xxð Þ ¼ 0: (7)

Finally, the kinematic boundary condition at the free surface is given
by

FIG. 1. Schematic of a vertically aligned two-dimensional free liquid film draining
under gravity between two rigid frames.
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h?t? ¼ w? � u?h?x? at z? ¼ h?ðx?; t?Þ: (8)

At the top and bottom boundary, x? ¼ 0; L?, respectively, the film is
pinned to the end of the frame and we impose no slip

h? ¼ H?
0 and v? ¼ 0 at x? ¼ 0; L?: (9)

Using Eq. (1) and applying Leibniz’s rule, one can re-write the
kinematic boundary condition, Eq. (8), as

h?t? þ Q?
x? ¼ 0; Q? ¼

ðh?
0
u?ðx?; z?; t?Þ dz?; (10)

where Q?ðx?; t?Þ is the liquid flux at any location x? along the length
of the film. Equation (10) represents the evolution of the film thick-
ness, h?ðx?; t?Þ.

C. Nondimensionalization of the governing equations
and boundary conditions

The governing equations and boundary conditions are nondi-
mensionalized using

x? ¼ L?x; ðz?; h?Þ ¼ H?
0 ðz; hÞ; u? ¼ U?u; w? ¼W?w;

ðp?; s?xx; s?zz; s?xzÞ ¼ P?p;T?sxx;T?szz;
T?

�
sxz

� �
;

ðc?xx; c?zz; c?xzÞ ¼ l?0
U?

L?
cxx;

U?

L?
czz;

U?

�L?
cxz

� �
;

t? ¼ L?

U?
t; Q? ¼ U?H?

0Q;

(11)

where l?0 is a reference viscosity of the liquid, and U?; W?; P?, and
T? are characteristic speeds, pressure, and stress, respectively. The
ratio of the two lengthscales is denoted by � ¼ H?

0
L? , which is typically

much less than one. We are interested in deriving the thin film equa-
tions in the asymptotic limit �! 0.

We focus on the scenario where the flow is primarily extensional
(or plug flow) and there is a balance between extensional viscous
stresses and gravity. In this case, the downward pressure gradient (p?x? )
is comparable to the gradient of the extensional viscous stress (s?xxx? ) in
Eq. (2a). As such, p?x? � s?xxx? , which implies that the stress scale
T? ¼ P?. We also demand that in Eq. (2a), the downward pressure
gradient (p?x? ) is comparable to the force due to gravity (q?g?); hence,
the characteristic pressure scale P? ¼ q?g?L?, so the characteristic
stress scale T? ¼ q?g?L?. The extensional flow speed U? will be deter-
mined later based on a distinguished limit. Equation (1) implies
u?x? � w?z? , which gives W? ¼ �U?. Table I provides the values of the
dimensional quantities based on a viscous silicon oil as a representative
Newtonian liquid.

Substituting Eq. (11) into the governing equations and boundary
conditions gives the following nondimensionalized system:

ux þ wz ¼ 0; (12a)

�2Reðut þ uux þ wuzÞ ¼ ��2px þ �2sxxx þ sxzz þ �2B; (12b)

�2Reðwt þ uwx þ wwzÞ ¼ �pz þ sxzx þ szzz ; (12c)

sxx sxz

sxz szz

 !
¼ lð _cÞ

2ux uz þ �2wx

uz þ �2wx 2wz

 !
; (12d)

w ¼ uz ¼ sxz ¼ 0 at z ¼ 0; (12e)

�

Ĉa

hxx

ð1þ �2h2xÞ
3
2

¼ �pþ 1
1þ �2h2x

�2h2xs
xx � 2hxs

xz þ szz
� �

at z ¼ hðx; tÞ; (12f)

ð1� �2h2xÞsxz þ �2hxðszz � sxxÞ ¼ 0 at z ¼ hðx; tÞ; (12g)

ht þ Qx ¼ 0; Q ¼
ðh
0
uðx; z; tÞ dz; (12h)

h ¼ 1; u ¼ w ¼ 0 at x ¼ 0; 1: (12i)

The dimensionless form of the function lð _cÞ depends on the constitu-
tive law used, for example, for a Newtonian liquid, lð _cÞ ¼ 1.

In the above, the dimensionless number B ¼ q?g?L?
2

l?0U
? compares

gravity and extensional viscous forces, Re ¼ q?U?2 =L?

l?0U
?=L?2

is the Reynolds

number (compares inertial and extensional viscous forces), and

Ĉa ¼ l?0U
?

c? is the capillary number (compares extensional viscous and

surface tension forces). There are two distinguished limits to be con-
sidered here based mainly on the order of magnitude of B and Re. We
also note a third distinguished limit, which is not the focus of this
work.

(i) Balancing extensional viscous forces and gravity, B � 1.16,17

This gives a characteristic speed U? � q?g?L?2

l?0
� 0:1 m/s.

The inertial forces are smaller in comparison, with corre-
sponding Re � 0:1.

(ii) Balancing extensional viscous forces and inertia, Re � 1.22

This gives a characteristic speed U? � l?0
q?L? � 1 m/s. The

force due to gravity is smaller in comparison, with corre-
sponding B � 0:1.

(iii) If B � 1=�2, that is, corresponding U? � �2, then the lead-
ing order balance is between viscous shear forces and grav-
ity (see, e.g., Naire et al.18–21).

Our work focusses on the balance between extensional viscous
forces and gravity; hence, we set B¼ 1, which sets the characteristic

speed U? ¼ q?g?L?2

l?0
� 0:1 m/s. The corresponding Reynolds number

Re¼ 0.1. We will see later on that surface tension effects will be impor-
tant over smaller lengthscales, so in anticipation of this, we define a

rescaled capillary number, Ca ¼ l?0U
?

�c? ¼ Ĉa=�; Ĉa ¼ Oð1Þ, and retain

TABLE I. Characteristic values of the dimensional quantities, assuming that the liq-
uid is silicon oil.

Dimensional quantities Values

Density, q? 103kg/m3

Viscosity, l?0 10 Pa s
Surface tension, r? 42mN/m
Length, L? 10�2 m
Width, H?

0 50 lm
Characteristic speed, U? ¼ q?g?L?

2

l?0
0.1m/s

Characteristic pressure, p? ¼ q?g?L? 103N/m2

Characteristic time, t? ¼ L?
U? 0.1 s
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the surface tension term at leading order. Estimates of the dimension-
less parameters are provided in Table II.

D. The master PDEs

We use the lubrication approximation exploiting the fact that

� ¼ H?
0

L? � 1 and expand each of the unknowns variables
ðu;w; p; sxx; szz; sxz; hÞ as a power series in �2 of the form

ðu;w;p;sxx;szz;sxz;hÞ ¼ ðu;w;p;sxx;szz;sxz;hÞ0ðx;z; tÞ
þ�2ðu;w;p;sxx;szz;sxz;hÞ1ðx;z; tÞþOð�4Þ:

(13)

Substituting this in Eq. (12), we can sequentially solve for the O(1) and
Oð�2Þ quantities, using which the master system of PDEs and bound-
ary conditions for the evolution of the film’s free surface h0ðx; tÞ and
the extensional flow speed u0ðx; tÞ can be derived at leading order.
The details of the derivation are provided in Appendix A. The master
system of PDEs and boundary conditions are given by (for brevity, we
drop the subscript 0)

ht þ Qx ¼ 0; (14a)

Q ¼ uhþ �2 h
3

3
1

lðjuxjÞ

�
4 lðjuxjÞuxð Þx

"

þ 1
Ca

hxxx þ 1� Reðut þ uuxÞ
	
� uxx

#
; (14b)

Re hðut þ uuxÞ � 4ðhlðjuxjÞuxÞx � h
1
Ca

hxxx þ 1


 �
¼ 0; (14c)

hð0; tÞ ¼ hð1; tÞ ¼ 1; hxxxð0; tÞ ¼ hxxxð1; tÞ ¼ �Ca;
uð0; tÞ ¼ uð1; tÞ ¼ 0:

(14d)

Equation (14d) provides the six boundary conditions required in total
for Eqs. (14a)–(14c), which correspond physically to the film being
pinned at the top and bottom [first two boundary conditions in Eq.
(14d)], and no flux out of the rigid wire supports, so Q¼ 0 [repre-
sented by the last four boundary conditions in Eq. (14d)]. As a conse-
quence of this, both u and ux are forced to be zero near the ends and
the film evolves to quasi-static shapes there. In Eq. (14b), the contribu-
tion from the shear flow (second term on the right-hand side) is Oð�2Þ
smaller than the extensional component (first term on the right-hand

side). Hence, to leading order in �, the evolution of the film thickness
given by Eq. (14a) is hyperbolic. We include the Oð�2Þ terms as a regu-
larization for the boundary conditions in Eq. (14d) to be satisfied.
Equation (14) is parametrized by the constitutive relationship for
lðjuxjÞ, the capillary number, Ca, and the Reynold’s number, Re. We
seek solutions of Eq. (14) for Ca� 1, which corresponds to much
weaker surface tension in comparison with gravity, and Re� 1.

Similar equations for a generalized Newtonian liquid have been
derived by Brush and Roper,28 without the Oð�2Þ regularization terms,
and not including the effect of gravity. In the case of a Newtonian liq-
uid, the equations and boundary conditions are the same as those
derived by Schwartz and Roy,16 except that we do not include surfac-
tants or surfactant-related effects here. Similar evolution equations
have also been derived focusing on particular balance of physical
effects, for example, Erneux and Davis22 (extensional flow balancing
inertia, not including gravity), Champougny et al.17 (extensional flow
balancing gravity and van der Waals forces) and Breward,23,24 Brush
and Davis25 (balancing extensional flow with surface tension effects,
not including gravity), and Davis et al.27 (balancing extensional flow
with surface tension effects, including gravity).

We consider different functional forms of the constitutive law for
lðjuxjÞ in Eq. (14) corresponding to liquids displaying generalized
Newtonian (represented by power-law and Carreau models) and vis-
coplastic behavior (represented by the Herschel–Bulkley model).
These can be written as

lðjuxjÞ ¼ Kjuxjn�1 power-lawð Þ; (15a)

lðjuxjÞ ¼ Kjuxjn�1 þ
sp
juxj

if sxx > sp;

ux ¼ 0 otherwise Herschel-Bulkleyð Þ;
(15b)

lðjuxjÞ ¼ l1 þ ð1� l1Þ 1þ ðkjuxjÞ2
� �ðn�1Þ=2

Carreauð Þ; (15c)

where K ¼ 2n�1ðK?=l?0ÞðU?=L?Þn�1 is a dimensionless liquid consis-
tency index; n is the power-law index (for n< 1, the fluid is shear thin-
ning; n> 1 the fluid is shear thickening; n¼ 1 is the Newtonian case);

sp ¼
s?p

l?0U
?=L? is the Bingham number, which compares the liquid yield

stress to the extensional viscous stress; l?1 ¼ l?1=l
?
0 is the viscosity in

the limit of large shear rate; and k ¼ k?L?=U? is a relaxation time.
Characteristic values of these parameters are based on those reported
for polymeric liquids, polystyrene, aluminum soap, and hydroxyethyl-
cellulose, in Table 1 in Myers.29 For polystyrene, n¼ 0.39 (power-law
model), K? ¼ 3:5� 105 Pa sn, n¼ 0.4 (Carreau model), l?1 ¼ 4� 106

Pa s, and k? ¼ 46:4 s–1. This corresponds to K¼ 12 and k ¼ 10�3,
assuming the reference viscosity l?0 ¼ l?1. For aluminum soap, n¼ 0.2
(power-law model), K? ¼ 68:07 Pa sn, n¼ 0.2 (Carreau model),
l?1 ¼ 89:6 Pa s, and k? ¼ 1:41 s–1. This corresponds to K¼ 0.7 and
k ¼ 1, assuming the reference viscosity l?0 ¼ l?1. For hydroxyethylcel-
lulose, n 	 0:51 (power-law model), K? ¼ 0:84 Pa sn, n 	 0:51
(Carreau model), l?1 ¼ 0:22 Pa s, and k? 	 0:067 s–1. This corre-
sponds to K 	 0:1 and k 	 30, assuming the reference viscosity
l?0 ¼ l?1.

We note that lðjuxjÞ in Eqs. (15b) and 15(c) has a singularity
when ux ¼ 0 for n< 1, which occurs near the top and bottom of the
draining film, and where the flow speed attains its maximum value. In
practice, we relieve this singularity by regularizing the power-law and

TABLE II. Estimates of the dimensionless parameters.

Dimensional quantities Values

� ¼ H?
0=L

? 10�2

B ¼ q?g?L?2

l?0U?

1

Re ¼ q?U?L?

l?0U?

0.1

Ĉa ¼ l?0U
?

c?
25

Ca ¼ Ĉa
�

2:5� 103
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Herschel–Bulkley models by adding a sufficiently small positive num-
ber, d, to ux, namely,

lðjuxjÞ ¼ K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ d2

q
 �n�1
regularised power-lawð Þ; (16a)

lðjuxjÞ ¼ K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ d2

q
 �n�1
þ

spffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ d2

q
regularisedHerschel-Bulkleyð Þ: (16b)

The effect of regularization on the Herschel–Bulkley model is that at
low shear rates, the fluid becomes weakly yielding when sxx < sp.

30

III. RESULTS

In the numerical results to follow, we mainly focus on investigat-
ing the influence of the capillary number Ca, the consistency index K,
the power-law index n, and the yield stress sp, on the evolution of the
film thickness h(x, t) and extensional flow speed u(x, t). We also inves-
tigate the influence of the more realistic Carreau model and the corre-
sponding index n. The parameter range investigated is based on the
estimates provided above. Re� 1 has no significant influence on the
evolution of the film and the extensional speed; hence for all the results
to follow, we choose Re¼ 0. The regularization parameter, d, is chosen
based on solving a simplified version of the governing equations in
which h¼ 1 (which is chosen to be the initial condition for h). For this
case, Eq. (14c) with Re¼ 0 has an analytical solution for u given by Eq.
(17) using the non-regularized power-law constitutive model [Eq.
(15a)]. We then numerically solve Eq. (14c) with h¼ 1 and Re¼ 0
using the regularized power-law model [Eq. (16a)], and choose the
value of the regularization parameter d so that the error between the
numerical and analytical solutions is less than a specified tolerance
for a given set of parameter values. This value of d is then kept fixed
throughout the time evolution. The initial condition is hðx; 0Þ ¼ 1,
and the corresponding initial condition for the extensional flow
speed uðx; 0Þ obtained by solving Eq. (14c) for h¼ 1 and Re¼ 0 is
given by

uðx; 0Þ ¼ 4Kn
nþ 1

1� Lð Þ
4K


 �nþ1
n

� x � Lð Þ
4K


 �nþ1
n

" #
ðfor L 
 x 
 1Þ;

(17a)

uðx; 0Þ ¼ 4Kn
nþ 1

1
4K

L


 �nþ1
n

� 1
4K

L� xð Þ

 �nþ1

n

" #
ðfor 0 
 x 
 LÞ;

(17b)

with L¼ 1/2, for the value of n chosen. In the case when n¼ 1, the
analytical solution is uðx; 0Þ ¼ xð1� xÞ=8.

We discretize Eq. (14) on a uniform mesh using second-order
finite difference method for the spatial derivatives, but keep the time
derivative continuous. The resulting system of differential-algebraic
equations are solved using the method of lines.31 We use the implicit
solver ode15i in MATLAB (MATLAB 6.1, The MathWorks Inc.,
Natick, MA, 2000) for our numerical simulations. This solves a system
of equations of the form f ðt; y; y0Þ ¼ 0, for the dependent variable y.
The unknowns hi and ui are numbered according to y ¼ ðh1; u1; h2;
u2;…; hNþ1; uNþ1Þ. This enables the Jacobian matrix to have a much
smaller bandwidth, which accelerates the computations, compared to

a numbering system, for example, y ¼ ðh1; h2;…; hNþ1; u1; u2;…;
uNþ1Þ, which has a much bigger bandwidth. In all the results to follow,
we choose the mesh size Dx ¼ 5� 10�4 for accuracy and convergence
of the solutions.

We first consider the case of a Newtonian liquid with n¼ 1.
Figures 2(a)–2(c) show the evolution of h(x, t) [h(x, t) is plotted on a loga-
rithmic scale in (b)] and u(x, t), respectively, for varying t¼ 0 to t ¼ 103,
with Ca ¼ 103, K¼ 1 (the reference liquid viscosity l?0 ¼ K?) and
Re¼ 0. At early times, the fluid in the film drains downward [Fig. 2(c)]
leading to thinning of the film in the upper region and a thickening in the
lower region, and the film shape is concave-out [Fig. 2(a)]. At late times,
the fluid has drained significantly toward the lower end of the domain
forming a quasi-static pendant drop there, leaving a very thin and almost
flat film (lamella) in the middle region, and a quasi-static capillary menis-
cus at the upper end [Fig. 2(a)]. This late-time behavior can be clearly
observed using a logarithmic scale for h(x, t) shown in Fig. 2(b). This
shows the middle lamella region connecting onto quasi-static curves at
the top and bottom represented by the capillary meniscus and the pen-
dant drop, respectively. The maximum flow speeds are in the middle
lamella section of the film [Fig. 2(c)], which causes the film thickness to
decrease severely there. The flow speed is zero near the top in the capillary
meniscus region, and at the bottom in the pendant drop region.

It is instructive to describe the characteristic late-time flow and
film evolution dynamics in transitions regions of very small width of
Oð1=CaÞ near the top (where the upper meniscus meets the middle
lamella) and bottom ends (where the middle lamella meets the pen-
dant drop) of the film. The dynamics in these regions control the liq-
uid flux between the O(1) lengthscale capillary menscii and the lamella
and hence influence the thinning and draining of the middle lamella
region. Figures 3(a)–3(c) show the evolution of the film thickness
h(x, t), the extensional flow speed u(x, t), and the stress balance given
by (14c) near the bottom end, respectively, for t ¼ ð5; 6; 7; 8; 9; 10Þ
�102, n¼ 1, Ca ¼ 103, and Re¼ 0. We observe a similarity solution
behavior in the evolution of h and u. The similarity solution behavior
of h [see Fig. 3(a)] shows a family of solutions gradually thinning in
time at its upstream end; at the downstream end, each solution con-
nects onto a single quasi-static curve (represented by the pendant
drop) at different locations [see Fig. 3(a)]. The similarity solution
behavior of u shows a characteristic jump (or shock-like behavior) in
u at its downstream end [see Fig. 3(b)]. This sudden deceleration of
the flow is due to the sudden increase in film curvature (from almost
zero in the lamella to OðCaÞ � 1 as the lamella connects onto the
pendant drop). Indeed, the stress balance shown in Fig. 3(c) shows
that the dominant contribution to the downward flow is due to the
surface tension-related term, hhxxx=Ca (shown by the solid black
curves), which is dominant compared to the contribution to the down-
ward flow due to gravity in this region. This is balanced by the resistive
(in this scenario) extensional stress term, 4ðhuxÞx (shown by the
dashed curves). The resistive extensional stress results in the sudden
deceleration of the flow. Figures 4(a)–4(c) show the evolution of the
film thickness h(x, t), the extensional flow speed u(x, t), and the stress
balance given by (14c) near the upper end, respectively, for
t ¼ ð5; 6; 7; 8; 9; 10Þ � 102, n¼ 1, Ca ¼ 103, and Re¼ 0. We also
observe a similarity solution behavior in the evolution of h and u. The
similarity solution behavior of h [see Fig. 4(a)] shows a family of solu-
tions gradually thinning in time at its downstream end [much more
severe thinning compared to that shown in Fig. 3(a)]; at the upstream
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end, each solution connects onto a single quasi-static curve (repre-
sented by the capillary meniscus) at different locations. The similarity
solution behavior of u shows a region where the flow is in the upward
direction [see Fig. 4(b) where u< 0]. This reversal of the flow is due to
the sudden increase in film curvature (from almost zero in the lamella
to Ca� 1 as the lamella connects onto the capillary meniscus).
Indeed, the stress balance shown in Fig. 4(c) shows that the contribu-
tion due to the surface tension-related term, hhxxx=Ca (shown by the
solid black curves), dominates that due to gravity in this region.
Moreover, hhxxx=Ca is negative resulting in flow being sucked into the
capillary meniscus leading to the reversal in flow. However, at the
downstream end of this region, the contribution of hhxxx=Ca is negli-
gible in comparison with gravity, resulting in downward flow [see solid
black curves in Fig. 4(c)].

Figures 5(a) and 5(b) show the effect of increasing the capillary
number, Ca ¼ 102, 103, 104, for fixed n¼ 1 and Re¼ 0, on hðx; tf Þ
and u(x, t), respectively. Here, tf is a fixed time for purposes of com-
parison, which is taken to be 103 for Ca ¼ 102, 103; tf ¼ 339 for
Ca ¼ 104, as the film thins rapidly for very large values of Ca. We
observe from Fig. 5(a) that as Ca increases the film thins more rapidly
and the middle lamella section becomes much longer with a corre-
sponding increase in the liquid collecting in the pendant drop at the

bottom. As Ca increases, the effect of surface tension decreases in rela-
tive to gravity, thereby draining the film further. We also observe that
the flow speed is much higher for larger values of Ca [Fig. 5(b)], result-
ing in faster drainage, and hence the film thins rapidly.

In Appendix B, we develop asymptotic solutions for the Newtonian
case in the limit of Ca� 1 describing the early and late-time quasi-
steady and self-similar evolution behavior displayed by the film and the
extensional flow speed in the numerical simulations shown in Figs. 2–5.
The early-time dynamics is described in Appendix B 1 based on the
“growing exponential horn” similarity solution identified by
Schwartz and Roy.16 The majority of the film exhibits a characteristic
concave-out form [see Figs. 2(a) and 2(b) at early times]. This is due
to the dominating extensional viscous flow, with the effect of surface
tension confined to boundary layers near the ends [Fig. 2(a) and
2(b)]. Figures 6(a) and 6(b) show a comparison between the numeri-
cal solution [Figs. 2(a) and 2(b)] at early times and the similarity solu-
tion for h and u [given by Eqs. (B12) and (B14)], respectively, for
times t ¼ 1; 2; 3; 4; 5; 6; 7. Good agreement is observed at early time
for h, except for the surface tension boundary layers near the top and
bottom supports. As t increases, the agreement is not so good. Good
agreement is also observed at early time for u, except that the similar-
ity solution slightly overestimates the corresponding numerical

FIG. 2. The evolution of (a), (b) the film thickness h(x, t) [(b) plots h(x, t) on a logarithmic scale], and (c) the extensional flow speed u(x, t), for varying t¼ 0 to t ¼ 103. The
parameter values are as follows: n¼ 1, Ca ¼ 103, K¼ 1, and Re¼ 0.
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solution. This may be due to the influence of the boundary layers
near the top and the bottom supports.

For late times, based on the observations from the numerical sol-
utions shown in Figs. 2–5, we postulate a self-similar structure of the
late-time evolution for Ca� 1. The domain is divided into five
regions (see Fig. 18 in Appendix B 2), comprising three long regions:
region I, the capillary meniscus; region II, the middle lamella draining
section; and region III, the pendant drop, and two short transition
regions, A and B. In Appendix B 2, we describe the dominant physical
mechanisms in each region and the corresponding equations, using
which we derive semi-analytical approximate solutions. The quasi-
steady evolution of each region is captured by the time evolution of
characteristic variables, x1;2ðtÞ; h1;2 and hminðtÞ (see Appendix B 2 for
their definitions). Finally, we derive closure relationships based on
global volume conservation, which allows the time evolution of the
characteristic variables to be determined.

The late-time self-similar solution structure reveals the relation-
ship between Q1;2, the fluxes from the lamella (region II) to the upper
plateau border (region I), and the lower plateau border region
(upstream part of region III), respectively, and x2 � x1, the width of
the lamellar region (see Appendix B 2 for details). The fluxes Q1;2 are
shown to contribute to increasing the volume of the plateau border

regions; the increased volume reduces the width x2 � x1, which in
turn influences Q1;2 via the dynamics in the transition regions (regions
A and B). An approximate analysis of the lamella shows that its mini-
mum thickness hmin � Q2=ðx2 � x1Þ2, while the corresponding maxi-
mum in extensional flow speed umax � ðx2 � x1Þ2. We develop an
algorithm to determine the relationship between Q2 and x2 � x1
numerically; however, we are unable to derive an analytical relation-
ship to determine a power-law thinning rate analytically using the
above relationships for ðhmin; umaxÞ. It is worth noting here that the
theoretical analysis by Breward23,24 and Brush and Davis25 is based on
determining the functional relationship Q2ðhminÞ. In their analysis,
without including gravity, Eq. (B56) in region B can be integrated, and
the relationship Q2ðhminÞ is obtained using the boundary conditions.
Moreover, without the inclusion of gravity, the extensional flow in the
lamellar region (region I) is linear; hence, the film thickness h in this
region is a time-dependent constant. One can then solve the differen-
tial equation in Eq. (B22) to obtain a thinning rate, hmin;t � t�2 deter-
mined by Breward.23,24 However, quasi-steady nature of the problem
and the inclusion of gravity precludes the derivation of such analytical
solutions. Nevertheless, using the numerical simulations shown in
Fig. 1, we can compute hminðtÞ—the global minimum in h—which
is attained in the middle lamella section of the film. The red curve in

FIG. 3. The evolution of the (a) film thickness h(x, t), (b) extensional flow speed u(x, t), and (c) stress balance given by (14c) near the bottom end, for
t ¼ ð5; 6; 7; 8; 9; 10Þ � 102. The parameter values are as follows: n¼ 1, Ca ¼ 103, K¼ 1, and Re¼ 0.
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FIG. 4. The evolution of the (a) film thickness h(x, t), (b) extensional flow speed u(x, t), and (c) stress balance given by (14c) near the upper end, for
t ¼ ð5; 6; 7; 8; 9; 10Þ � 102. The parameter values are as follows: n¼ 1, Ca ¼ 103, K¼ 1, and Re¼ 0.

FIG. 5. (a) Film thickness hðx; t ¼ tf Þ, and (b) extensional flow speed uðx; tf Þ, for varying capillary number, Ca ¼ 102, 103, 104, for n¼ 1, K¼ 1, Re¼ 0 and tf ¼ 103 for
Ca ¼ 102, 103; tf ¼ 339 for Ca ¼ 104.
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Fig. 9(c) shows the time evolution of hminðtÞ on a logarithmic scale for
a Newtonian liquid (n¼ 1). Using this, a power-law thinning rate of
t�2:25 is predicted, in comparison with the t�2 power-law behavior in
the absence of gravity. Although this is a weak dependence of the thin-
ning rate on gravity, it suggests the long-lived influence of gravity still
persists even after it becomes very thin. This prediction holds until the
dimensionless film thickness is Oð10�3Þ below which the film thins
rapidly and the numerical solution breaks down. Additional physics,
such as van der Waals forces, need to be included to capture the
appropriate behavior at these small thicknesses.

In the next set of results, we show the influence of varying the liq-
uid consistency index K (or dimensional K?). This can also be ana-
lyzed by choosing K¼ 1, so that the reference liquid viscosity,
l?0 ¼ K?ð2U?=L?Þn�1 or l?0 ¼ K?1=nð2q?g?L?Þðn�1Þ=n, for a liquid of
given consistency K?. The characteristic speed and time of draining of
the flow and thinning of the film can then be shown to scale with K?

as U? � 1=K?1=n and t? � K?1=n , respectively. We choose not to scale
K out of the results shown here by using the above scalings in order to
explicitly investigate its influence. This will be useful in the results to
follow. Figures 7(a)–7(c) show the effect of varying K on hðx; t ¼ 30Þ
and uðx; t ¼ 30Þ and hminðtÞ, respectively, for n¼ 1, Ca ¼ 103 and
Re¼ 0. The time t¼ 30 is chosen arbitrary so as to capture the evolu-
tion for low values of K before the film thins below a threshold value
and the numerical solution breaks down. We observe that the film
thins more rapidly as K decreases [Fig. 7(a)] due to the faster exten-
sional flow speed as K decreases [Fig. 7(b)]. Reducing K leads to lower
viscosities, resulting in much faster drainage (note that u � 1=K1=n).
Figure 7(c) tracks hmin, the global minimum in h(x, t), as a function of
time t. We observe that the film thins more rapidly as K decreases, in
line with the observations in Figs. 7(a) and 7(b). We also note that the
timescale for thinning scales like t � K1=n. To better understand the
above described variations in K, we plot key outputs, hðx; t ¼ 30Þ;
uðx; t ¼ 30Þ, the shear-rate uxðx; t ¼ 30Þ, and the shear-rate depen-
dent viscosity lðjuxjÞ for K¼ 0.02 (corresponding to a liquid of a very
low consistency index) in Fig. 8(a), K¼ 0.1 (corresponding to a liquid
of a low consistency index) in Fig. 8(b), K¼ 1 (corresponding to a liq-
uid of an intermediate consistency index) in Fig. 8(c), and K¼ 10 (cor-
responding to a liquid of a high consistency index) in Fig. 8(d), for
fixed n¼ 1, Ca ¼ 103 and Re¼ 0. We observe that the magnitude of

shear rate juxj is larger for the lower values of K [Figs. 8(a) and 8(b)],
in comparison with the higher values of K [Figs. 8(c) and 8(d)]. We
also observe a sharp peak in ux for K¼ 0.02 concentrated in the transi-
tion region where the lamella connects onto the pendant drop region
near the bottom [Fig. 8(a)], which progressively becomes smaller as K
increases [Figs. 8(b)–8(e)]. This results in lower viscosities for smaller
K [Figs. 8(a) and 8(b)] and higher viscosities as K increases [Figs. 8(c)
and 8(d)].

Next, we consider the case of a non-Newtonian liquid. We first
show the influence of varying the power-law index n. We choose
l?0 ¼ K? (by choosing n¼ 1 or a Newtonian liquid reference viscos-
ity). Then, KðnÞ ¼ ðU?=L?Þn�1 ¼ ðq?g?L?=K?Þn�1 ¼ Kn�1

0 . Figures
9(a) and 9(b) show the effect of varying the power-law index,
n ¼ 0:75; 1; 1:2, on hðx; t ¼ 360Þ and uðx; t ¼ 360Þ, respectively, for
fixed K0 ¼ 1; Ca ¼ 103 and Re¼ 0. We observe that the film thins
more rapidly as n increases [Fig. 9(a)] due to the faster extensional
flow speed as n increases [Fig. 9(b)]. Note Fig. 9(a) only shows the
middle lamella region as the upper and lower parts of the film are not
significantly affected by varying n. Figure 9(c) tracks hmin, the global
minimum in h(x, t), as a function of time t, for n ¼ 0:6; 0:65; 0:75;
0:85; 1; 1:1; 1:2. We observe that the film thins more rapidly as n
increases, in line with the observations in Figs. 9(a) and 9(b). We esti-
mate the thinning rates to be t�2 when n< 1, t�2:25 when n � 1, sug-
gesting a weak dependence of the thinning rate on n. This power-law
estimate is at best valid near n¼ 1 as shown in Fig. 9(c), where the
range of power-law behavior reduces as n moves further away from
one. To better understand the above described variations in n, we plot
key outputs, hðx; t ¼ 360Þ; uðx; t ¼ 360Þ, the shear-rate uxðx; t
¼ 360Þ, and the shear-rate dependent viscosity lðjuxjÞ for n¼ 0.75
(corresponding to the shear-thinning fluid case) in Fig. 10(a), n¼ 1
(corresponding to the Newtonian fluid case) in Fig. 10(b), and
n¼ 1.25 (corresponding to the shear thickening fluid case) in
Fig. 10(c), for fixed K0 ¼ 1; Ca ¼ 103 and Re¼ 0. We observe that
the shear rate ux � 1 across the entire film, and throughout the evolu-
tion process, for the value of K0 (K?) investigated here. This results in
higher viscosities for n< 1 [Fig. 10(a)] and lower viscosities for n � 1
[Figs. 10(b) and 10(c)]. Moreover, we observe from Fig. 10(a) that the
spatial profile of viscosity for n< 1 is maximum near the top, bottom,
and lamella regions where the shear rate ux¼ 0. The opposite happens

FIG. 6. Computed film thickness profiles, h (a) and extensional flow speeds, u (b) (solid lines) and the corresponding early-time similarity solution (dashed lines) given by Eqs.
(B12) and (B14), for times, t ¼ 1; 2; 3; 4; 5; 6; 7.
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for n> 1 [Fig. 10(c)], with a spike in viscosity corresponding to a
change in shear rate observed where the flat middle region of the film
connects onto the pendant drop near the bottom of the film [see
Fig. 10(b)]. We note here that power-law model is not accurate at very
low shear rates (see Myers29) as observed here; hence, we need to be
careful in interpreting the above results. In order to further investigate
the influence of varying n, we consider a much higher value of
K0 ¼ 30 (which corresponds to smaller consistency index K?). The
resulting flow is of similar mobility, and the shear rates are also similar
to the previous case with K0¼ 1. Moreover, KðnÞ ¼ Kn�1

0 depends on
n, which was not the case before for K0 ¼ 1, so the influence on n will
now come from lðjuxjÞ ¼ Kn�1

0 juxjn�1. As such, if the shear rates are
low and n< 1, then the higher value of juxjn�1 could be offset by the
lower value of Kn�1

0 (which is approximately 0.5 for n¼ 0.9), resulting
in a lower viscosity lðjuxjÞ. In contrast for n> 1, then juxjn�1 is small,
but Kn�1

0 is large (which is approximately 2 for n¼ 1.2), which could
result in a higher viscosity lðjuxjÞ. An illustration of this behavior is
observed in Fig. 11, which plots hmin vs t for K0 ¼ 30, and
n ¼ 0:85; 1; 1:2. We observe that at early to intermediate times during
the draining process, hmin thins faster for n¼ 0.85 compared to
n¼ 1.2. This is due to the faster drainage for n< 1 at the given value
of K0 ¼ 30, in comparison with a relatively slower drainage for n> 1

(results not shown). At later times, the roles are reversed and the thin-
ning behavior is similar to the case corresponding to K0 ¼ 1. This is
due to the fact that the shear rates have become very small, so that the
Kn�1
0 can no longer offset the juxjn�1 term, which is very large for

n< 1 and very small for n> 1. If we were to further increase K0, then
the thinning behavior observed at early and intermediate times would
persist for much longer times.

The power-law model might not accurately reflect the dynamics
of the low shear rate cases.29 We now investigate the Carreau model,
which is well behaved at low shear rates. Moreover, no regularization
is required at low shear rates for n< 1 either, unlike in the power-law
model. In the simulations to follow, we investigate the Carreau model
for varying n, with l1 ¼ 1 (so the reference viscosity is chosen to be
the zero shear rate viscosity), Ca ¼ 103, k ¼ 100 (k? ¼ 10 s), and
l1 ¼ 0 fixed. (Note that l1 � 1.) Figures 12(a) and 12(b) show the
effect of varying the power-law index, n ¼ 0:75; 1; 1:2, for Ca ¼ 103

and Re¼ 0, on hðx; t ¼ 800Þ; uðx; t ¼ 800Þ. We observe that the film
thins more rapidly as n decreases [Fig. 12(a)] due to the faster exten-
sional flow speed as n decreases [Fig. 12(b)]. The low flow shear rates
during the evolution result in lower viscosities for n< 1 (shear thin-
ning) and higher viscosities for n> 1 (shear thickening), resulting in
much slower drainage for n> 1. Figure 12(c) tracks hmin, the global

FIG. 7. (a) Film thickness hðx; t ¼ 30Þ, (b) extensional flow speed uðx; t ¼ 30Þ, and (c) the global minimum hmin as a function of time t, for varying consistency parameter K.
The parameters are as follows: n¼ 1, Ca ¼ 103 and Re¼ 0.
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minimum in h(x, t), as a function of time t, for n ¼ 0:6; 0:65; 0:75;
0:85; 1; 1:1; 1:2. We observe that the film thins more rapidly as n
decreases, in line with the observations in Figs. 12(a) and 12(b). We
estimate the thinning rate to be t�2:25 for n � 1 and n< 1. To better
understand the variations in n, we plot key outputs, hðx; t ¼ 800Þ;
uðx; t ¼ 800Þ, the shear-rate uxðx; t ¼ 800Þ, and the shear-rate
dependent viscosity lðjuxjÞ for n¼ 0.75 (corresponding to the shear-
thinning fluid case) in Fig. 13(a), and n¼ 1.2 (corresponding to the
shear thickening fluid case) in Fig. 13(b). We observe that the shear
rate ux � 1 across the entire film and throughout the evolution pro-
cess. This results in lower viscosities for n< 1 [Fig. 13(a)] and higher
viscosities for n � 1 [Fig. 13(b)]. Moreover, we observe from
Fig. 13(a) that the spatial profile of viscosity for n< 1 is less than 1
near where the shear rate ux 6¼ 0. The opposite happens for n> 1
[Fig. 13(b)], with a spike in viscosity corresponding to a change in
shear rate observed where the middle lamella region connects onto the
pendant drop near the bottom of the film.

We now consider the effects of varying the yield stress sp on the
evolution using the regularized Herschel–Bulkley constitutive model.
The values of sp chosen are informed based on the absolute value of

the extensional stress profile jsxxxj ¼ junx j determined from the initial
shear rate uxðx; t ¼ 0Þ corresponding to the initial profile of u given
by Eq. (17). The maximum value of the initial stress sxxx then provides
the maximum value of sp; the flow will not yield from its initial state
for any value of sp greater than this maximum value; any value of sp
less than this maximum value will result in sections of the flow yield-
ing, while others do not yield (weakly yielding for the regularized form
of the Herschel–Bulkley constitutive model). We explore this below
for varying power-law index n. Figures 14(a)–14(c) show the effect
of varying the yield stress sp ¼ 10�4; 5� 10�3; 10�2; 2� 10�2;
4� 10�2, for n¼ 0.75, K0 ¼ 1; Ca ¼ 103, and Re¼ 0, on
hðx; t ¼ 103Þ; uðx; t ¼ 103Þ, and the global minimum hmin as a func-
tion of time t, respectively. We observe in Fig. 14(b) that increasing the
yield stress sp slows u and exhibits weakly yielding behavior for large
sp. This results in the central region of the film to be much thicker
near the top and the bottom as sp is increased, as observed in
Fig. 14(a). Indeed, Fig. 14(c) shows that the film’s minimum thickness
hmin increases slightly as sp increases, for any given time t. We estimate
the thinning rates to be t�2 for sp ¼ 10�4 and t�1:8 for
sp ¼ 2� 10�2. This suggests that the thinning rate decreases as sp

FIG. 8. The film thickness hðx; t ¼ 30Þ (black curve), the extensional flow speed uðx; t ¼ 30Þ (blue curve), the shear-rate uxðx; t ¼ 30Þ (red curve), and the shear-rate
dependent viscosity lðjux jÞ (green curve) for (a) K¼ 0.02, (b) K¼ 0.1, (c) K¼ 1, and (d) K¼ 10. The parameter values are as follows: n¼ 1, Ca ¼ 103 and Re¼ 0.
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increases. A weak dependence of the yield stress on the thinning rate is
observed when measured against the zero yield stress thinning rate of
t�2 for n¼ 0.75. Figures 15(a)–15(c) show the effect of varying
the yield stress sp ¼ 2� 10�2; 10�2; 5� 10�3; 10�4, for n¼ 1,
K0 ¼ 1; Ca ¼ 103 and Re¼ 0, on hðx; t ¼ 103Þ; uðx; t ¼ 103Þ, and
the global minimum hmin as a function of time t, respectively. Figures
15(a)–15(c) show similar behavior and trends as in the previous case for
n¼ 0.75, except that u (and the corresponding shear rate ux and stress s)
are larger as n increases (note that the maximum u is much higher than
that for n¼ 0.75, and at later time). We estimate the thinning rates to be
t�2:25 for sp ¼ 10�4 and t�1:7 for sp ¼ 2� 10�2. This suggests that the
thinning rate decreases as sp increases. A weak dependence of the yield
stress on the thinning rate is observed when measured against the zero
yield stress thinning rate of t�2:25 for n¼ 1. Figures 16(a)–16(c) show
the effect of varying the yield stress sp¼1:6�10�2;10�2;5�10�3;
10�4, for n¼1.2, K0¼1;Ca¼103 and Re¼0, on hðx;t¼360Þ;
uðx;t¼360Þ, and the global minimum hmin as a function of time t,
respectively. Figures 16(a)–16(c) again show similar behavior and
trends as in the previous two cases for n¼0:75;1, except that u (and
the corresponding shear rate ux and stress s) are much larger as n
increases. In Fig. 16(c), we estimate the thinning rates to be t�2:35

for sp¼10�4 and t�2 for sp¼1:6�10�2. This suggests that the

thinning rate decreases as sp increases. A weak dependence of the yield
stress on the thinning rate is observed when measured against the zero
yield stress thinning rate of t�2:35 for n¼1.2.

IV. CONCLUSION

In this paper, we investigated the draining of a vertically aligned
free non-Newtonian liquid film between two rigid supports due to
the combined effects of extensional viscous, gravity, and surface
tension forces. Our numerical simulations and asymptotic analysis
have focused on the case when the rescaled capillary number
Ca ¼ Ĉa=�� 1, where the capillary number Ĉa ¼ l?U?=c?

¼ Oð1Þ. This limit recreated the decomposition of the liquid domain
into a lamella connecting onto plateau borders, which replicates the
drainage due to gravity in liquid foams.23–25

We considered the draining of initially thick films and focused
on the dominant balance between the extensional viscous and gravity
forces. This was shown to control the drainage and thinning within
the middle lamella section of the film [Figs. 2(a) and 2(b) and region II
in Appendix B 2]. The balance of surface tension forces and gravity
resulted in the development of a plateau border (or a capillary-static
meniscus) region near the top support [Figs. 2(a) and 2(b) and region
I in Appendix B 2], while the liquid collects near the bottom support,

FIG. 9. (a) Film thickness hðx; t ¼ 360Þ and (b) extensional flow speed uðx; t ¼ 360Þ for varying power-law index n, and (c) the global minimum hmin as a function of time t
for varying power-law index, n ¼ 0:6; 0:65; 0:75; 0:85; 1; 1:1; 1:2. The parameters are K0 ¼ 1; Ca ¼ 103 and Re¼ 0. The corresponding thinning rates are t�2 for n< 1
and t�2:25 for n � 1.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 012113 (2022); doi: 10.1063/5.0075248 34, 012113-13

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


forming a pendant drop region [Figs. 2(a) and 2(b) and region III in
Appendix B 2]. The middle lamella region is shown to connect to the
upper and lower regions via short-lengthscale transition regions,
where extensional viscous, surface tension, and gravity all balance to
control the flux out or into the middle region [Figs. 3(a)–3(f) and
regions A and B in Appendix B 2].

Our model incorporated the effects due to non-Newtonian and
viscoplastic behavior (shear-thinning and yield stress). A variety of
non-Newtonian and viscoplastic constitutive relationships, such as
power-law, Carreau, and Herschel–Bulkley, were investigated to model
the apparent viscosity and the yield stress. A study of the system
parameters, mainly, the liquid consistency index K, the power-law
index, n, and the liquid yield stress, sp, was undertaken. Numerical
simulations revealed the influence of varying these parameters on the
evolution of the film’s free surface, its long-time thinning rate, and the
draining of liquid from the film. For a Newtonian liquid film, we
observed power-law behavior in the thinning rate of the middle
lamella section of the film, which is estimated as t�2:25 [Fig. 9(c)]. This
is in comparison with previous studies by Breward23,24 and Brush and

FIG. 10. Film thickness hðx; t ¼ 360Þ (black curve), the extensional flow speed uðx; t ¼ 360Þ (blue curve), the shear rate uxðx; t ¼ 360Þ (red curve), and the shear rate-
dependent viscosity lðjux jÞ (green curve) for (a) n¼ 0.75 (corresponding to the shear-thinning fluid case), (b) n¼ 1 (corresponding to the Newtonian fluid case), and (c)
n¼ 1.25 (corresponding to the shear-thickening fluid case). The parameters are K0 ¼ 1; Ca ¼ 103 and Re¼ 0.

FIG. 11. The global minimum hmin as a function of time t, for varying power-law
index, n ¼ 0:85; 1; 1:2, for fixed K0 ¼ 30; Ca ¼ 103, and Re¼ 0.
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FIG. 12. (a) Film thickness hðx; t ¼ 800Þ, (b) extensional flow speed uðx; t ¼ 800Þ, and (c) the global minimum hmin as a function of time t, for the Carreau model with
n ¼ 0:6; 0:65; 0:75; 0:85; 1; 1:1; 1:2; l1 ¼ 1; Ca ¼ 103, k ¼ 100 (k? ¼ 10 s), l1 ¼ 0, and Re¼ 0 fixed. We estimate the thinning rate to be t�2:25 for n< 1 and n � 1.

FIG. 13. The film thickness hðx; t ¼ 800Þ (black curve), the extensional flow speed uðx; t ¼ 800Þ (blue curve), the shear rate uxðx; t ¼ 800Þ (red curve), and the shear rate-
dependent viscosity lðjux jÞ (green curve) for (a) n¼ 0.75 (corresponding to the shear-thinning fluid case), and (b) n¼ 1.2 (corresponding to the shear-thickening fluid case),
for fixed l1 ¼ 1; Ca ¼ 103, k ¼ 100 (k? ¼ 10 s), l1 ¼ 0, and Re¼ 0.
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Davis25 who derive a t�2 power-law behavior. The new and slightly
accelerated thinning rate reported here is due to the additional influ-
ence of gravity (and possibly contribution from the unsteady flow in
the transition regions), which was not considered in these studies. This
suggests the long-lived influence of gravity in enhancing the draining
of the lamella, and accelerating its thinning rate, hence needs to be
included in liquid foam models. Our predictions of power-law thin-
ning behavior is in contrast to a similar study by Davis et al.27 They
demonstrated that the lamella thinned non-uniformly with exponen-
tial decay of the minimum film thickness, which is significantly faster
than the t�2 power-law thinning predicted when gravitational effects
are negligible,23–25 and the t�2:25 predicted here. While we have not
made a direct comparison to determine why this is the case, a possible
explanation may be due to their starting film thickness being much
smaller than ours. Therefore, their late-time behavior corresponds to
our early-time solution behavior described in Appendix B 1)—there is
a close resemblance in the form of both solutions. This would need to
be further investigated before any conclusion is reached.

For a non-Newtonian liquid film, we observed dependence of the
power-law index n on the power-law thinning rate, with t�2 thinning
rate for n< 1 and t�2:25 for n � 1 [Fig. 9(c)]. A similar study done by
Brush and Roper28 without the influence of gravity analytically pre-
dicted the film’s thinning rate to be t�2 and independent of the
power-law exponent n, which is the same as that for a Newtonian liq-
uid. They concluded that the effect of n was to shift the hmin vs t curve,

without affecting the thinning rate. Our numerical results shown in
Fig. 9(c) are broadly similar to theirs, except for the dependence of the
thinning rate on n. This weak dependence on shear thinning is a con-
sequence of including gravity. We were unable to validate our predic-
tions using the late-time asymptotic framework described in Appendix
B 2 due to not being able to solve the equations analytically, although
the asymptotic framework could be extended for a generalized
Newtonian liquid (not shown here).

The draining and thinning behavior of a viscoplastic liquid film
was close to that of a Newtonian film for small values of the yield stress
sp. When sp was increased, the flow exhibited weakly yielding behavior
primarily in a region around the maximum in the extensional flow
(corresponding to the minimum in the film thickness); the width of
this weakly yielding region increased as the value of sp increases. The
weakly yielding region slowed down the extensional flow speed in the
lamellar region leading to a relatively thicker middle section in com-
parison with a film with zero yield stress at any given instant of time.
We observed a noticeable decrease in the film’s thinning rate as sp was
increased, with a t�2 thinning rate for n> 1 (in comparison with
t�2:35 for sp ¼ 0) and t�1:7 thinning rate for n¼ 1 (in comparison
with t�2:25 for sp ¼ 0). For n< 1, the dependence was weak with t�1:8

thinning rate (in comparison with t�2 for sp ¼ 0). To the best of our
knowledge, the influence of viscoplastic effects due to a yield stress has
not been previously investigated in thin liquid film draining flows
associated with metallic and polymeric melts using this flow

FIG. 14. (a) Film thickness hðx; t ¼ 103Þ, and (b) extensional flow speed uðx; t ¼ 103Þ, and (c) the global minimum hmin as a function of time t, for varying yield stress
sp ¼ 10�4; 5� 10�3; 10�2; 2� 10�2; 4� 10�2, for n¼ 0.75, K0 ¼ 1; Ca ¼ 103, and Re¼ 0. The corresponding thinning rates are t�2 for sp ¼ 10�4 and t�1:8 for
sp ¼ 2� 10�2.
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configuration. Our new findings provide the basis to advance the cur-
rent understanding to a wider class of liquid film draining flows related
to foams.

It is known that power-law fluids are inappropriate for certain low-
shear rate flows.29 Therefore, in the absence of any experimental evi-
dence, our thinning rate predictions for the low shear rates are question-
able. Our results identified the parameter, K ¼ ðK?=l?0ÞðU?=L?Þn�1
(a dimensionless liquid consistency index), to play a key role in the
draining and thinning dynamics. Decreasing K for fixed n increased
the extensional flow speed and corresponding shear rates (which scaled

like 1=K1=n, resulting in the film thinning very rapidly on a timescale,
which scaled likeK1=n. Moreover, this also indicated that for small values
of K, the highest shear rates and severest thinning rates would be for
n< 1. For large values of K, the film drains and thins faster for n> 1
compared to n< 1. Experimental data for polymeric fluids show that
K 	 ð10�2 � 20Þ (see Table 1 in Myers29). For the smaller range of val-
ues of K, the shear rate would be significantly larger and in the range of
validity of the power-law model for the film thinning rate predictions to
be more reliable. However, for these values of K the thinning of the film
is very rapid for any power-law behavior to be observed.

FIG. 15. (a) Film thickness hðx; t ¼ 103Þ, and (b) extensional flow speed uðx; t ¼Þ, and (c) the global minimum hmin as a function of time t, for varying yield stress
sp ¼ 2� 10�2; 10�2; 5� 10�3; 10�4, for n¼ 1, K0 ¼ 1, and Ca ¼ 103. The corresponding thinning rates are t�2:25 for sp ¼ 10�4 and t�1:7 for sp ¼ 2� 10�2.

FIG. 16. (a) Film thickness hðx; t ¼ 360Þ, and (b) extensional flow speed uðx; t ¼ 360Þ, and (c) the global minimum hmin as a function of time t, for varying yield stress
sp ¼ 1:6� 10�2; 10�2; 5� 10�3; 10�4, for n¼ 1.2, K0 ¼ 1; Ca ¼ 103 and Re¼ 0. The corresponding thinning rates are t�2:35 for sp ¼ 10�4 and t�2 for
sp ¼ 1:6� 10�2.
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We also investigated the Carreau model, which is well behaved at
low shear rates.29 We had to choose a large value of k? 	 10 s (dimen-
sionless k ¼ 100; although not unrealistic, e.g., experimental data for
polystyrene liquid showed that k? 	 4629) to observe variation in the
viscosity from the Newtonian case. We observed that the film drains
and thins more rapidly for n< 1, compared to n> 1, unlike the
power-law model (compare Figs. 9 and 12 for power-law and Carreau
models, respectively). The thinning rates appeared to be less depen-
dent on n, with a thinning rate estimated to be t�2:25, similar to the
Newtonian case. The disparity in the results between the power-law
models and the Carreau model highlights the inappropriateness of
applying the power-law fluid model at low shear rates. At higher shear
rates, one would need to compare both models by choosing appropri-
ate values for K and k. Such comparisons can be made, for example, in
the shear thinning region by choosing K? ¼ l?0k

?n�1 (or dimensionless
K ¼ kn�1).28,29 Figures 17(a) and 17(b) show hmin vs t for two differ-
ent liquids, polystyrene and hydroxyethylcellulose, respectively, using
the power-law and Carreau models. The parameter values used are
based on those reported for these liquids in Table 1 in Myers,29 except
the value of n¼ 0.8 is chosen for both liquids, while their reported val-
ues are n ¼ 0:4; 0:5 for polystyrene and hydroxyethylcellulose, respec-
tively.29 We were unable to compute the solutions for low values of n.
We note here that the comparison for polystyrene was done using
experimentally reported values for K and k, while these values for
hydroxyethylcellulose were obtained by comparing the two models in
the shear thinning region, as explained above. We observe from
Fig. 17(a) that the comparison is not good for polystyrene, but the two
models are in good agreement for hydroxyethylcellulose. This is consis-
tent with the results shown in Sec. III. The power-law model predicts
low shear rates for large values of K resulting in a large effective viscosity
and slower thinning of the film. For smaller values of K, even though the
shear rates could be low, this is offset by the lower value of K, resulting
in a lower effective viscosity and quicker thinning of the film.

The theoretical framework developed here is versatile and can be
readily adapted to accommodate other complex liquids, such as visco-
elastic liquid films. Indeed, one can use the form of the evolution equa-
tions written in terms of the extensional stresses, sxx, szz, and the shear
stress sxz, and use a constitutive model appropriate for a viscoelastic

liquid, for example, Oldroyd-B model,32,33 to relate these stresses to their
corresponding shear rates. This will be investigated in the future. Our
study is under isothermal conditions. In molten films, for example, the
liquid melt properties (viscosity, surface tension, yield stress, and power-
law index) could be strongly temperature dependent, especially when
they undergo cooling. As part of future work, we would need to extend
our model to include temperature-dependent effects. These are relevant
in the manufacturing of solid foams by cooling polymeric melts.1

In conclusion, the theoretical model developed is versatile in
investigating a broad class of non-Newtonian draining flows applicable
to a wide range of foam applications. This is both novel and timely
and will pioneer further theoretical studies in this area. This insight
would form the basis for future developments of this model to incor-
porate additional effects mentioned above and to utilize the results to
investigate the overall behavior of a foam network, using the frame-
work proposed by Stewart et al.,34 for example.
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APPENDIX A: DERIVATION OF THE MASTER PDES
IN (14)

We use lubrication approximation exploiting the fact that
� ¼ H?

0
L? � 1 and expand each of the unknown variables ðu;w; p; sxx;

szz; sxz; hÞ as a power series in �2 of the following form:

FIG. 17. Comparison between the power law and Carreau models for two different liquids, (a) polystyrene ðn; K; kÞ ¼ ð0:8; 4; 0:001Þ and (b) hydroxyethylcellulose
ðn; K; kÞ ¼ ð0:8; 0:51; 30Þ.
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ðu;w;p; sxx; szz; sxz;hÞ ¼ ðu;w;p; sxx; szz; sxz;hÞ0ðx; z; tÞ
þ�2ðu;w;p; sxx; szz; sxz;hÞ1ðx; z; tÞ þOð�4Þ:

(A1)

For brevity, we will ignore the ? on the variables. Substituting this
into Eqs. (12a)–12(h), we obtain at O(1),

u0x þ w0z ¼ 0; (A2)

sxz0z ¼ 0; (A3)

�p0z þ sxz0x þ szz0z ¼ 0; (A4)

w0 ¼ u0z ¼ sxz0 ¼ 0 at z ¼ 0; (A5)

�p0 þ szz0 � 2h0xs
xz
0 ¼

1
Ca

h0xx

ð1þ �2h20xÞ
3=2

at z ¼ h0; (A6)

sxz0 ¼ 0 at z ¼ h0: (A7)

Equations (A3), (A5), and (A7) imply that

sxz0 ðx; z; tÞ ¼ 0: (A8)

Integrating Eq. (A4) with respect to z and using Eqs. (A5) and (A6),
we obtain

p0 ¼ szz0 �
1
Ca

h0xx: (A9)

To determine sxx;zz0 , we need to analyze the Oð�2) equations.
Before we do this, we note the following: u0z ¼ 0, so u0 ¼ u0ðx; tÞ,
using sxz0 ¼ 0 and Eq. (12d) at leading order. In addition,
szz0 ¼ �sxx0 , using Eq. (A2) in Eq. (12d). Equation (A2) also gives
w0z ¼ �u0x , which on integrating with respect to z and using
w0 ¼ 0 at z¼ 0, gives w0ðx; z; tÞ ¼ �u0xz. At Oð�2), we have

Reðu0t þ u0u0x þ w0u0zÞ ¼ �p0x þ sxx0x þ sxz1z þ 1; (A10)

Reðw0t þ u0w0x þ w0w0zÞ ¼ �p1z þ sxz1x þ szz1z; (A11)

w1 ¼ u1z ¼ sxz1z ¼ 0 at z ¼ 0; (A12)

sxz1 þ h20xs
xz
0 þ h0xðszz0 � sxx0 Þ ¼ 0 at z ¼ h0: (A13)

Integrating Eq. (A10) with respect to z and using Eq. (A12), we
obtain

sxz1 ¼ � 2sxx0x þ
1
Ca

h0xxx þ 1� Reðu0t þ u0u0xÞ

 �

z: (A14)

Substituting this into Eq. (A13) gives

2ðh0sxx0 Þx þ h0
1
Ca

h0xxx þ 1


 �
� Re h0ðu0t þ u0u0xÞ ¼ 0: (A15)

Equation (A15) represents the force balance at the free surface of
the extensional stress (represented by the first term), surface tension
(represented by the second term), gravity (represented by the third
term), and inertia (represented by the last term).

To determine the evolution equation of h0 using Eq. (12h), we
also need to determine u0 and the Oð�2) correction u1. We use the
constitutive law to determine these. From Eq. (12d), we obtain

u0x ¼
1

2lð _c0Þ
sxx0 ; (A16)

u1z þw0x ¼
1

lð _c0Þ
sxz1 ) u1z ¼

1
lð _c0Þ

sxz1 �w0x ¼
1

lð _c0Þ
sxz1 þ u0xxz;

(A17)

where _c0 ¼ ju0xj is the leading order second invariant of the shear
rate tensor. Integrating Eq. (A14) and using the boundary condition
u1 ¼ 0 at z ¼ h0 gives

u1ðx; z; tÞ ¼
1
2
� 1

lðju0xjÞ

�
2sxx0x þ

1
Ca

h0xxx




þ1� Reðu0t þ u0u0xÞ
	
þ u0xx

�
ðz2 � h20Þ: (A18)

Finally, the evolution equation for h0 can be obtained from Eq.
(12h) as

h0t þ Q0x þ �2Q1x ¼ 0; (A19a)

Q0 ¼ u0h0; (A19b)

Q1 ¼
1
3
h30

1
lðju0xjÞ

ð2sxx0x þ
1
Ca

h0xxx þ 1� Reðu0t þ u0u0xÞÞ � u0xx�:

(A19c)

Hence, Eqs. (A19), (A15), and (A16) provide a coupled system of
three PDEs for the film’s free surface evolution, h0ðx; tÞ, the exten-
sional stress, sxx0 ðx; tÞ, and the extensional flow speed u0ðx; tÞ,
respectively. In practice, it is instructive to combine Eqs. (A15) and
(A16) to write a single evolution equation for u0. This can be writ-
ten as

�Re hðu0t þ u0u0xÞ þ 4ðh0lðju0xjÞu0xÞx þ h0
1
Ca

h0xxx þ 1


 �
¼ 0:

(A20)

APPENDIX B: ASYMPTOTIC MODEL

1. Early-time evolution

At early times, the majority of the film exhibits a characteristic
concave-out form. This is due to the dominating extensional vis-
cous flow, with the effect of surface tension confined to boundary
layers near the ends [see Figs. 2(a) and 2(b)]. The early-time simi-
larity solution was identified by Schwartz and Roy.16

The early-time similarity solution for this section of the film is
determined primarily by the simplified equations for the film thick-
ness, h, and extensional flow speed, u, namely,

ht þ ðuhÞx ¼ 0; (B1)

ðhuxÞx ¼ �
1
4
h: (B2)

Integrating (B2) with respect to x, we obtain

huxjxx1ðtÞ ¼ hux ¼ �
1
4

ðx
x1ðtÞ

h dx; (B3)

where x1ðtÞ is the location at which uxðx1ðtÞÞ ¼ 0. Applying the
method of characteristics to (B1), we obtain
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dh
dt
¼ �uxh ¼

1
4

ðx
x1ðtÞ

h dx; (B4)

dx
dt
¼ uðx; tÞ; (B5)

along the characteristics given by x ¼ xðn; tÞ.
Conservation of liquid mass along the characteristics (which is

valid at least at early times) implies hdx ¼ h0dn, where
h0 ¼ hðn; t ¼ 0Þ. We take h0 equal to a constant which in our simu-
lations is h0 ¼ 1. Using this, we have

Ð x
x1ðtÞ h dx ¼ h0

Ð n
n1ðtÞ dn¼ h0ðn� n1ðtÞÞ, where x1ðtÞ ¼ xðn1ðtÞÞ. Hence,

dh
dt
¼ 1

4
h0ðn� n1ðtÞÞ: (B6)

Integrating with respect to t and using the initial condition,
hðn; t ¼ 0Þ ¼ h0, we obtain

hðxðn; tÞ; tÞ ¼ h0 1þ 1
4

�
nt �

ðt
0
n1 dt

	" #
: (B7)

Now, we have hðxðn; tÞ; tÞ ¼ h0
dn
dx (using mass conservation along a

characteristic). Hence,

dn
dx
¼ 1þ 1

4

�
nt �

ðt
0
n1 dt

	
or

dn
dx
� 1
4
nt ¼ 1� 1

4

ðt
0
n1 dt: (B8)

The solution for this using the boundary condition, xðn ¼ 0; tÞ ¼ 0
(or nðx ¼ 0; tÞ ¼ 0), is

nðx; tÞ ¼ �4 1� ext=4½ �
t

1� 1
4

ðt
0
n1 dt

" #
: (B9)

Using this, (B7) can be written as

hðxðn; tÞ; tÞ ¼ h0e
xt=4 1� 1

4

ðt
0
n1 dt

" #
: (B10)

Using (B3) and the above relations, we obtain

ux ¼ �
1� e�xt=4½ �

t
: (B11)

Integrating this and using the boundary condition, uðx ¼ 0; tÞ ¼ 0,
gives

uðx; tÞ ¼ � x
t
� 4
t2

eðx1�xÞt=4 � ex1t=4½ �: (B12)

Using the boundary condition, xðn ¼ 1; tÞ ¼ 1 (or nðx ¼ 1; tÞ ¼ 1),
in (B9) gives

1� 1
4

ðt
0
n1 dt ¼

1
4

t

et=4 � 1½ � : (B13)

Hence,

hðxðn; tÞ; tÞ ¼ 1
4
h0

text=4

et=4 � 1½ � : (B14)

Using the boundary condition, uðx ¼ 1; tÞ ¼ 0, we can solve for
x1ðtÞ as

x1ðtÞ ¼
4
t
log

t

4 1� e�t=4½ �

� �
: (B15)

2. Late-time evolution

Based on the observation from the numerical solutions shown
previously for capillary number, Ca� 1, we postulate a self-similar
structure of the late-time evolution, which can be divided into five
regions (see Fig. 18), namely,

(i) Region I: a quasi-static capillary meniscus in 0 
 x 
 x1ðtÞ
where gravity and surface tension forces balance.

(ii) Region II: an almost flat draining section of the film
between x1ðtÞ 
 x 
 x2ðtÞ, where gravity and extensional
viscous forces balance, and surface tension is negligible.

(iii) Region III: a quasi-static pendant drop in x2ðtÞ 
 x 
 1
where gravity and surface tension forces balance.

(iv) Region A: a short transition region of width Oð1=CaÞ
between regions I and II, where extensional viscous and sur-
face tension forces balance.

(v) Region B: a short transition region of width Oð1=CaÞ
between regions II and III where extensional viscous and
surface tension forces balance.

FIG. 18. Late-time self-similar spatial structure of the film thickness h, showing
region I, the capillary meniscus, region II, the almost flat draining section, region III,
the pendant drop, and two transition regions, A and B. The characteristic variables,
x1;2ðtÞ; h1;2 and hminðtÞ, are explained in the sections describing each region.
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The film evolution process is characterized by the key varia-
bles: x1ðtÞ, representing the location of the leading edge of the capil-
lary meniscus in region I; h1ðtÞ the film thickness at x1ðtÞ; x2ðtÞ,
representing the location of the leading edge of the pendant drop in
region III; h2ðtÞ, the film thickness at x2ðtÞ; and hminðtÞ, the mini-
mum film thickness in region II. We also define xf1;2g1ðtÞ, repre-
senting the location corresponding to the minimum and maximum
in the change in curvature hxxxðtÞ in the transition regions A and B,
respectively, and xf1;2g1 ¼ limt!1 xf1;2g1 to be their limiting values.
The quantities xf1;2g1 characterize the final state (say) separating
region I, with volume V1, and region III, with volume V2 ¼ 1� V1

by a film of negligible thickness in region II. We will show below
that the closure conditions, that will enable us to fully describe the
asymptotics of the evolution, assumes that the locus of points
ðx1;2; h1;2Þ will lie along the final state of regions I and III, respec-
tively. Their evolution will be determined by the change in volume
in each of these regions due to flux entering or leaving the thin film
in region II.

Figure 19 (solid lines) shows the time evolution of x1;2 and
xf1;2g1 [Fig. 19(a)], and h1;2;min [Fig. 19(b)] determined from the
numerical solution of the PDEs for time t ¼ 5� 102 � 103, with
Ca ¼ 103 and Re¼ 0. These are computed from the numerical
solution as follows: x1 is the location corresponding to the end
point of the interval near the top of the film where hxxx þ Ca dif-
fers from zero for the first time (>10�6, in practice; these quanti-
ties are necessarily equal to zero for x < x1 and non-zero for
x > x1), with corresponding film thickness h1; x2 is the location
corresponding to the starting point of the interval near the bottom
of the film where hxxx þ Ca is equal to zero for the first time
(<10�6, in practice; these quantities are necessarily equal to zero
for x > x2 and non-zero for x < x2), with corresponding film
thickness h2; x11 is the location corresponding to the minimum
value of hxxx near the top of the film where hxxx < 0 (note that
x1 < x11 ); x21 is the location corresponding to the maximum value
of hxxx near the bottom of the film where hxxx > 0 (note that
x2 > x21 ); and hmin is the minimum film thickness in region II,
corresponding to the location where the extensional flow speed u
is maximum.

We note from Fig. 19(a) that xf1;2g1 are almost constant in time,
with x11 ¼ limt!1 x1 	 0:134 64 (corresponding to V1 	 0:04) and
x21 ¼ limt!1 x2 	 0:511 (corresponding to V2 	 0:96). The evolu-
tion of the characteristic variables shown in Fig. 19(a) suggests that the
late-time evolution is characterized by two quasi-static regions, regions
I and III, and region II connects onto these two regions via a family of
solutions representing the transition regions A and B. The family of sol-
utions in the transition regions emanate from the two quasi-static
regions at x1;2ðtÞ. Figure 19(b) shows that the late-time thinning is
severest in the film’s middle section followed by less severe thinning
near the top and then near the bottom.

We now describe each region in turn.

a. Region I: The capillary meniscus

This region lies between 0 
 x 
 x1 and is quasi static with
u¼ 0. The evolution is determined by balancing gravity and surface
tension,

hxxx ¼ �Ca: (B16)

Integrating thrice with respect to x and applying the boundary con-
dition, hðx ¼ 0Þ ¼ 1, the solution is given by

hðxÞ ¼ �Ca
6
x3 þ Cx2

2
þ Dx þ 1; (B17)

where C and D are constants of integration that need to be deter-
mined. To determine C and D, we assume that the long-time behav-
ior of the meniscus is such that it meets the centerline z¼ 0 at the
location x ¼ x11 with zero effective contact angle, that is, with
zero slope, hx¼ 0. As such, we prescribe hðx11Þ ¼ hxðx11Þ ¼ 0.
Applying these two boundary conditions at x ¼ x11 gives two
simultaneous equations for C and D, namely,

hðx ¼ x11Þ ¼ �
Ca
6
x311 þ

Cx211
2
þ Dx11 þ 1 ¼ 0;

hxðx ¼ x11Þ ¼ �
Ca
2
x211 þ Cx11 þ D ¼ 0:

(B18)

Solving the above equations simultaneously, we obtain

FIG. 19. Evolution of the characteristic variables: (a) x1;2 and xf1;2g1 , and (b) h1;2 and hmin, for time t ¼ 5� 102 � 103 from the numerical solution (solid curves) and the
asymptotic model (dashed curves). The parameter values are Ca ¼ 103 and Re¼ 0.
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C ¼ 2
x211
þ 2Cax11

3
;

D ¼ � 2
x11
þ
Cax211

6

 !
:

(B19)

Hence,

hðx; tÞ ¼ �Ca
6
x3 þ Cx2

2
þ Dx þ 1; (B20)

with C and D given by the above expressions depending on the
capillary number Ca and x11 . The unknown quantity x11 is deter-
mined by imposing that the volume of this region is V1. Hence,Ð x11
0 h dx ¼ V1. Using this, we obtain

Cax411 � 8
1
x211
þ Cax11

3

" #
x311

þ12 2
x11
þ
Cax211

6

" #
Cax211 þ 24ðV1 � x11Þ ¼ 0: (B21)

Equation (B21) is a quartic equation for x11 for a given value of Ca
and V1.

Figure 20 plots h vs x � x11 (black curves) for
t ¼ 5� 102–103 using the numerical solution shown in Fig. 2(a),
for Ca ¼ 103. The dashed line shows the corresponding late-time
asymptotic solution given by Eq. (B20), using V1 ¼ 0:04 (corre-
sponding x11 ¼ 0:134 64). We observe that the asymptotic solution
agrees very well with the scaled numerical solution.

b. Region II: The middle draining section

Extensional viscous forces control the film evolution in this
region between x1 
 x 
 x2. The film is almost flat, so surface

tension effects are negligible. The flow in this region is controlled
by competing extensional viscous forces and gravity

ht þ ðuhÞx ¼ 0; (B22)

ðhuxÞx ¼ �
1
4
h: (B23)

Integrating (B22) with respect to x, we obtain

ðuhÞðx; tÞ ¼ ðuhÞðx1Þ �
ðx
x1

ht dx or Q ¼ Q1ðtÞ �
ðx
x1

ht dx; (B24)

where Q ¼ uh and Q1ðtÞ ¼ ðuhÞðx ¼ x1ðtÞÞ. Hence,

hðx; tÞ ¼
Q1ðtÞ �

ðx
x1

ht dx

uðx; tÞ : (B25)

Also, using (B24), we can write

Q2ðtÞ ¼ Q1ðtÞ �
ðx2
x1

ht dx; (B26)

where Q2ðtÞ ¼ ðuhÞðx ¼ x2ðtÞÞ. Using Eq. (B25), we can rewrite
Eq. (B23) in terms of u as

Q1ðtÞ �
ðx
x1

ht dx

" #
ux
u

 !
x

¼ � 1
4

Q1ðtÞ �
ðx
x1

ht dx

" #

u
: (B27)

We are unable to determine the solution of Eqs. (B25) and (B27)
analytically. However, it will be useful to determine the behavior of
h and u near x1;2 to match with regions A and B, respectively. We
rewrite Eq. (B27) as

Qðx; tÞ uuxx � u2x
� �

þ Qxðx; tÞuux þ
1
4
Qu ¼ 0; (B28)

where Q(x, t) is defined in Eq. (B24). We seek the behavior of u sub-
ject to the boundary conditions, uðx1;2; tÞ ¼ uxðx1;2; tÞ ¼ 0. We
expand u in a Taylor’s series about x ¼ x1;2,

uðx; tÞ ¼ uð2Þðx1;2; tÞ
ðx � x1;2Þ2

2
þ uð3Þðx1;2; tÞ

ðx � x1;2Þ3

6

þ uð4Þðx1;2; tÞ
ðx � x1;2Þ4

24
þ � � � : (B29)

Here, the superscript represents a higher order derivative with
respect to x. We also expand Q(x, t) in a Taylor’s series about
x ¼ x1;2,

Qðx; tÞ ¼ Q1;2ðtÞ þ Qð1Þðx1;2; tÞðx � x1;2Þ

þQð2Þðx1;2; tÞ
ðx � x1;2Þ2

2
þ � � � : (B30)

Substituting the above in Eq. (B28), we obtain the following
sequence of problems. At Oððx � x1;2Þ2Þ, we have uð2Þðx1;2; tÞ ¼ 1

4.
At Oððx � x1;2Þ3Þ, we obtain

FIG. 20. Evolution of h in region I using data shown in Fig. 2(a) for time
t ¼ 5� 102 � 103 (solid black curves) for Ca ¼ 103. The dashed line shows the
corresponding late-time asymptotic solution given by Eq. (B20), using V1 ¼ 0:04
(corresponding x11 ¼ 0:13464).
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�Q1;2u
ð2Þðx1;2Þuð3Þðx1;2Þ � Qð1Þðx1;2; tÞ uð2Þðx1;2Þ

h i2
þ 2
3
Q1;2u

ð2Þðx1;2Þuð3Þðx1;2Þ þ Qð1Þðx1;2; tÞ uð2Þðx1;2Þ
h i2

þ 1
24

Q1;2u
ð3Þðx1;2Þ þ

1
8
Qð1Þðx1;2; tÞuð2Þðx1;2Þ ¼ 0: (B31)

Using uð2Þðx1;2Þ ¼ 1=4, we obtain uð3Þðx1;2Þ ¼ 3
4
Qð1Þðx1;2;tÞ

Q1;2
. The solu-

tions for u and h about x ¼ x1;2 are then given by

uðx; tÞ ¼ 1
8

x � x1;2ðtÞ
� �2

1þ Qð1Þðx1;2; tÞ
Q1;2

ðx � x1;2Þ
" #

þOððx � x1;2Þ4Þ; (B32)

hðx; tÞ ¼ 8Q1;2ðtÞ
x � x1;2ðtÞ
� �2 ; (B33)

near x ¼ x1;2, respectively. We approximate Q ¼ Q1ðtÞ �
Ð x
x1
ht dx

near x ¼ x1 as Q ¼ Q1ðtÞ � h1t ðtÞðx � x1Þ þ Oððx � x1Þ2Þ. Hence,
Qð1Þðx1; tÞ 	 �h1t ðtÞ, so the solution of u and h near x ¼ x1 can be
written as

uðx; tÞ ¼ 1
8
x � x1ðtÞ½ �2 1� h1t ðtÞ

Q1
ðx � x1Þ


 �
þ Oððx � x1Þ4Þ;

(B34)

hðx; tÞ ¼ 8Q1ðtÞ
x � x1ðtÞ½ �2

; (B35)

respectively. Similarly, we approximate Q ¼ Q1ðtÞ �
Ð x
x1
ht dx

¼ Q2ðtÞ þ
Ð x2
x ht dx near x ¼ x2 as Q ¼ Q2ðtÞ � h2t ðtÞðx � x2Þ

þOððx � x2Þ2Þ. Hence, Qð1Þðx2; tÞ 	 �h2t ðtÞ, so the solution of u
and h near x ¼ x2 can be written as

uðx; tÞ ¼ 1
8
x � x2ðtÞ½ �2 1� h2t ðtÞ

Q2
ðx � x2Þ


 �
þ Oððx � x2Þ4Þ;

(B36)

hðx; tÞ ¼ 8Q2ðtÞ
x � x2ðtÞ½ �2

; (B37)

respectively.
In order to make analytical progress, we resort to making

some meaningful approximations, particularly, to the unsteady
term ht. The accuracy of the solution based on these approxima-
tions will be tested against corresponding numerical solutions.

c. Quasi-steady approximation ht 	 0 (Q1 5 Q2 5 Q)

Equation (B27) can then be written as

ux
u

� �
x

¼ � 1
4u

or uuxx � u2x þ
1
4
u ¼ 0; (B38)

subject to the boundary conditions, uðx1ðtÞÞ ¼ uðx2ðtÞÞ ¼ 0. This
has the solution

uðx; tÞ ¼ ðx2ðtÞ � x1ðtÞÞ2

8p2


 �
sin2 p

x � x1ðtÞ
x2ðtÞ � x1ðtÞ


 �� �
:

Hence, the approximate solution in this region is given by

hðx; tÞ ¼ 8p2QðtÞ
ðx2ðtÞ � x1ðtÞÞ2

" #
1

sin2 p x�x1ðtÞ
x2ðtÞ�x1ðtÞ

h i� 	 ; (B39)

uðx; tÞ ¼ ðx2ðtÞ � x1ðtÞÞ2

8p2


 �
sin2 p

x � x1ðtÞ
x2ðtÞ � x1ðtÞ


 �� �
; (B40)

where Q(t) is a constant flux in this region. The maximum exten-
sional flow speed, umaxðtÞ, and minimum film thickness, hminðtÞ, in
this region are at x ¼ x1ðtÞ þ ðx2ðtÞ � x1ðtÞÞ=2 and are given by

hminðtÞ ¼
8p2QðtÞ

x2ðtÞ � x1ðtÞ½ �2
; (B41)

umaxðtÞ ¼
x2ðtÞ � x1ðtÞ½ �2

8p2
: (B42)

The unknown flux Q(t) and the evolution of x1ðtÞ and x2ðtÞ will be
determined from the transition regions A and B. Figure 21 shows
the family of solutions characterized by x1;2 for the extensional flow
speed u(x, t) vs ðx � x1ðtÞÞ=ðx2ðtÞ � x1ðtÞÞ for t ¼ 5� 102–103

using the numerical solution shown in Fig. 2(a). The dashed curves
show particular solutions of Eq. (B40) for x1;2 evaluated from the
numerical solution at t ¼ 5� 102; 8� 102; 103, respectively. We
observe that although the quasi-steady approximation captures the
general trends, assuming a constant flux of liquid through this
region does not work very well in describing its evolution. This sug-
gests the important contribution of the unsteady term ht in this
region.

d. Approximation ht 	 hmin;t

A simple approximation of the unsteady term ht is to assume
it to be constant, ht 	 hmin;t (say), where hmin is the minimum film

FIG. 21. Evolution of u in region II using data shown in Fig. 2(a) for time
t ¼ 5� 102 � 103. The dashed curves show the solution of Eq. (B40) for x1;2
evaluated from the numerical solution at t ¼ 5� 102; 8� 102; 103, respectively.
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thickness of the middle section of the film. Using this approxima-
tion, Eqs. (B25) and (B27) can be simplified to

hðx; tÞ ¼ Q1ðtÞ � hmin;tðx � x1Þ
uðx; tÞ ; (B43)

Q1ðtÞ � hmin;tðx � x1Þ
� � ux

u

� �
x

¼ � 1
4

Q1ðtÞ � hmin;tðx � x1Þ
� �

u
:

(B44)

We are unable to solve Eq. (B44) for the solution of u analytically.
Using the approximation ht 	 hmin;t in Eq. (B26), we obtain

Q2ðtÞ ¼ Q1ðtÞ � hmin;tðx2 � x1Þ ) hmin;t ¼
Q1ðtÞ � Q2ðtÞ½ �
x2ðtÞ � x1ðtÞ½ � ;

(B45)

which provides an evolution equation for hmin. Also, using this
approximation, h1;2t 	 hmin;t ; hence, u and h near x ¼ x1;2 can be
written as

uðx;tÞ¼1
8
x�x1ðtÞ½ �2 1�hmin;tðtÞ

Q1
ðx�x1Þ


 �
þOððx�x1Þ4Þ; (B46)

hðx; tÞ ¼ 8Q1ðtÞ
x � x1ðtÞ½ �2

; (B47)

uðx;tÞ¼1
8
x�x2ðtÞ½ �2 1�hmin;tðtÞ

Q2
ðx�x2Þ


 �
þOððx�x2Þ4Þ; (B48)

hðx; tÞ ¼ 8Q2ðtÞ
x � x2ðtÞ½ �2

; (B49)

respectively.

e. Region III: The pendant drop

This region lies between x2 
 x 
 1 and is quasi static with
u¼ 0. The evolution is determined by balancing gravity and surface
tension,

hxxx ¼ �Ca; (B50)

which on integrating thrice with respect to x and using the bound-
ary condition, hð1Þ ¼ 1, gives

hðxÞ ¼ �Ca
6
ðx � 1Þ3 þ C

ðx � 1Þ2

2
þ Dðx � 1Þ þ 1; (B51)

where C and D are constants of integration that need to be deter-
mined. To determine C and D, we assume that the long-time behav-
ior of the pendant drop is such that it meets the centerline z¼ 0 at
the location x ¼ x21 with zero effective contact angle, that is, with
zero slope, hx ¼ 0. As such, we prescribe hðx21Þ ¼ hxðx21Þ ¼ 0.
Applying these two boundary conditions at x ¼ x21 gives two
simultaneous equations for C and D, namely,

C ¼ 2

ðx21 � 1Þ2
þ 2Caðx21 � 1Þ

3
;

D ¼ � 2
ðx21 � 1Þ þ

Caðx21 � 1Þ2

6

 !
;

(B52)

to give

hðx; tÞ ¼ �Ca
6
ðx � 1Þ3 þ Cðx � 1Þ2

2
þ Dðx � 1Þ þ 1; (B53)

with C and D given by the above expressions, depending on the
capillary number Ca and x21 . The unknown quantity x21 is deter-
mined by imposing that the volume of this region is V2 ¼ 1� V1.
Hence,

Ð 1
x21

h dx ¼ V2. Using this, we obtain

Caðx21 � 1Þ4 � 8
1

ðx21 � 1Þ2
þ Caðx21 � 1Þ

3

" #
ðx21 � 1Þ3

þ 12
2

ðx21 � 1Þ þ
Caðx21 � 1Þ2

6

" #
ðx21 � 1Þ2

þ 24ðV2 � x21 þ 1Þ ¼ 0: (B54)

Equation (B54) is a quartic equation for x21 for a given value of Ca
and V2.

Figure 22 plots h vs x � x21 (black curves) for t ¼ 5 �102–103
using the numerical solution shown in Fig. 2(a), for Ca ¼ 103. The
dashed line shows the corresponding late-time asymptotic solution
given by Eq. (B53), using V2 ¼ 1� 0:04 ¼ 0:96 (corresponding
x21 ¼ 0:511). We observe that the asymptotic solution agrees very
well with the scaled numerical solution.

f. Region B: The transition region between regions
II and III

This region around x ¼ x21 is characterized by a large change
in the curvature hxxx [see Fig. 3(c)]. Hence, surface tension due to
changes in curvature is the primary mechanism driving a down-
ward flow into the pendant drop in region III with gravity playing a
secondary role further contributing to the downward flow; this flow
is resisted by the extensional viscous forces. The lengthscale of this
region based on balancing surface tension and extensional viscous

FIG. 22. Evolution of h in region III using data shown in Fig. 2(a) for time
t ¼ 5� 102 � 103 (solid black curves) for Ca ¼ 103. The dashed line shows
the corresponding late-time asymptotic solution given by Eq. (B53), using
V2 ¼ 1� 0:04 ¼ 0:96 (corresponding x21 ¼ 0:511).
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forces is of Oð1=CaÞ. Letting x ¼ x21 þ ð1=CaÞn, we can write the
evolution equations for h and u as

1
Ca

ht � x21t hn þ ðuhÞn ¼ 0; (B55)

4ðhunÞn þ h hnnn þ
1

Ca2

� �
¼ 0: (B56)

For Ca� 1, Eq. (B55) can be written at leading order in 1=Ca as
�x21t hn þ ðuhÞn ¼ 0. We assume that any changes to the flux in the
moving frame of reference are negligible; hence, Eq. (B55) simplifies
to ðuhÞn ¼ 0. Integrating gives uh ¼ Q2ðtÞ, where Q2ðtÞ is the flux
out of this region into region III. Substituting u ¼ Q2ðtÞ=h into Eq.
(B56) gives the following boundary-value problem for h,

�4Q2ðtÞ
1
h
hn


 �
n
þ h hnnn þ

1
Ca2

� �
¼ 0; (B57a)

subject to the boundary conditions

h! 8Q2Ca2

ðn� n2Þ2
; n! �1; n2 ¼ Caðx2 � x21Þ > 0; (B57b)

h! � 1
6Ca2

ðn� n1Þ3 þ Cðn� n1Þ2

2Ca2

þ D
Ca
ðn� n1Þ þ 1; n!1; where n1 ¼ Cað1� x21Þ > 0;

(B57c)

with C and D defined in region III above. Note that we leave the
1

Ca2 h term in Eq. (B57a) so that we can match with regions II and
III. The boundary conditions in Eqs. (B57b) and (B57c) are
obtained by taking the limit as x! x�2 in Eq. (B33) and x ! xþ2 in
Eq. (B53), respectively.

In principle, we can use a shooting method to solve for the
eigenvalue Q2 in order to determine the numerical solution for the
boundary value problem in Eq. (B57). For a given Ca� 1, x2, x21 ,
and V2 (these quantities are evaluated at some time t), we start with
the boundary condition at the downstream end, Eq. (B57c)

(evaluated at n ¼ n2 ¼ Caðx2 � x21Þ, where n2 � 1 and n2 < n1),
choosing Q2 as the shooting parameter until the boundary condi-
tion at the upstream end, Eq. (B57b), is satisfied (evaluated at
n ¼ �n22 , where n22 � 1). In practice, we shoot with Q2 to satisfy

unn ¼ Q2½2
h2n
h3 �

hnn

h2 � ! 1
4Ca2 as n! �1. Figures 23(a) and 23(b)

compare the computed solution of h and u (solid lines) with the
similarity solution given by Eqs. (B55) and (B57), using the similar-
ity coordinate n for t ¼ ð5; 6; 7; 8Þ � 102. The values of Q2 com-
puted using the shooting method are Q2 ¼ ð2:70; 1:38; 0:426;
0:174Þ � 10�7, for t ¼ ð5; 6; 7; 8Þ � 102, respectively. We use values
of x2 computed from the numerical solution shown in Fig. 19(a) at
the given times, and x21ðtÞ ¼ x21 ¼ 0:510 583. We observe that the
similarity solution clearly captures the qualitative characteristics of
the quasi-static evolution, namely, the family of solutions of h [see
solid lines (numerical solution) and dashed lines (similarity solu-
tion) in Fig. 23(a)] emanating from the quasi-static solution of
region III given by Eq. (B53) in the similarity variable n for 0 
 n

 n1 [see dotted line in Fig. 23(a)], and the sudden deceleration
of the flow u resulting in a shock-like discontinuity near n ¼ 0
[Fig. 23(b)]. Although the quantitative match is not perfect, the
similarity solution given by Eqs. (B57) and (B55) captures very well
the dynamics in this transition region.

g. Region A: The transition region between regions
I and II

This region lies around x11 and is also characterized by a large
change in the curvature hxxx [see Fig. 3(f)]. Hence, surface tension
due to changes in curvature is the primary mechanism driving an
upward flow against gravity [see Fig. 2(e) for u in this region]. In
the upstream part of this region, although, changes in curvature are
negligible in comparison with gravity, and the flow changes direc-
tion to a downward gravity-driven flow [see Fig. 3(e) for u in the
upstream part of this region]. Below, we describe the evolution of h
and u this region based on the above observations. The lengthscale
of this region by balancing surface tension and extensional viscous

FIG. 23. Computed film thickness profiles, h, (a) plotted on a semi-logarithmic axis and the extensional flow speed, u (b) (solid lines) using the similarity coordinate
n ¼ Caðx � x21 ðtÞÞ for t ¼ ð5; 6; 7; 8Þ � 102. The dashed lines show the corresponding late-time similarity solution given by Eqs. (B55) and (B57). The dotted curve in (a)
shows the quasi-static solution of region III given by Eq. (B53) in the similarity variable n for 0 
 n 
 n1. The parameter values are Ca ¼ 103, Re¼ 0 and x21 ¼ 0:510 583.
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forces is of Oð1=CaÞ. Letting x ¼ x11 þ ð1=CaÞn, we can write the
evolution equations for h and u as

1
Ca

ht � x11t hn þ ðuhÞn ¼ 0; (B58)

4ðhunÞn þ h hnnn þ
1

Ca2

� �
¼ 0: (B59)

For Ca� 1, Eq. (B58) at leading order in Oð1=CaÞ can be written
as �x11t hn þ ðuhÞn ¼ 0. We assume that any changes to the flux in
the moving frame of reference are negligible, hence (B58) simplifies
to ðuhÞn ¼ 0. Integrating gives uh ¼ �Q1ðtÞ for n < 0� and
uh ¼ Q1ðtÞ for n > 0þ. We assume that the flux changes sign over
a much smaller lengthscale, and the flux is of the same magnitude
but opposite sign on either side of n ¼ 0. The numerical solutions
suggest this, and also that Q1 is small (Q1 � Q2), so this approxi-
mation is reasonable. Using this, we obtain

u ¼ �Q1

h
if n < 0; u ¼ Q1

h
if n > 0: (B60)

Substituting Eq. (B60) into Eq. (B59) gives the following boundary-
value problem for h,

�4 HðQÞ 1
h
hn


 �
n
þ h hnnn þ

1
Ca2

� �
¼ 0; (B61a)

subject to the boundary conditions

h! � 1
6Ca2

ðn1 þ nÞ3 þ Cðn1 þ nÞ2

2Ca2

þ D
Ca
ðn1 þ nÞ þ 1; n! �1; where n1 ¼ Cax11 > 0;

(B61b)

h! 8Q1Ca2

ðn� n1Þ2
; n!1; n1 ¼ Caðx1 � x11Þ < 0; (B61c)

where the piecewise constant function HðQÞ ¼ �Q1 if n < 0 and
Q1 if n > 0; C and D are defined in region I above. The boundary

conditions in Eqs. (B61b) and (B61c) are obtained by taking the
limit as x ! x�1 in Eq. (B20) and x ! xþ1 in Eq. (B33), respectively.
Similar to region B, we use a shooting method to determine the
numerical solution of the boundary value problem in Eq. (B61)
using Q1 as the shooting parameter. In practice, we use a regular-
ized form of the function H ¼ Q1tanh½An�, where A> 0 (A¼ 1 in
the solutions shown in Fig. 24). For a given Ca, x1, x11 , and V1

(these quantities are evaluated at some time t), we start with the
boundary condition at the upstream end, Eq. (B61b) (evaluated at
n ¼ n1 ¼ Caðx1 � x11Þ < 0, where jn1j � 1 and jn1j < n1), choos-
ing Q1 as the shooting parameter until the boundary condition at
the downstream end, Eq. (B61c), is satisfied (evaluated at n ¼ n12 ,
where n12 � 1). In practice, we shoot with Q1 to satisfy

unn ¼ Q1½2
h2n
h3 �

hnn

h2 � ! 1
4Ca2 as n!1.

Figure 24 compares the computed solution of h and u (solid
lines) with the similarity solution given by Eqs. (B58) and (B61),
using the similarity coordinate n for t ¼ ð5; 6; 7; 8Þ � 102. The val-
ues of Q1 computed using the shooting method are Q1 ¼ ð2;
0:05; 0:001; 0:0001Þ � 10�9, for t ¼ ð5; 6; 7; 8Þ � 102, respectively.
(Note that Q2 � Q1, as observed from the numerical solutions.)
We use values of x1 computed from the numerical solution shown
in Fig. 19(a) at the given times, and x11ðtÞ ¼ x11 ¼ 0:134 64. We
observe that the similarity solution clearly captures the qualitative
characteristics of the quasi-static evolution, namely, the family of
solutions of h [see solid lines (numerical solution) and dashed lines
(similarity solution) in Fig. 24(a)] emanating from the quasi-static
solution of region I given by Eq. (B20) in the similarity variable n
for �Cax11 
 n 
 0 [see dotted line in Fig. 24(a)], and the reversal
of the flow u near n ¼ 0 [Fig. 24(b)]. Although the quantitative
match is not perfect, the similarity solution given by Eqs. (B57) and
(B55) captures very well the dynamics in this transition region.

h. Closure relationships to determine evolution
of characteristic variables

The solution of the boundary value problems given by Eqs.
(B57) and (B61) depends on the values of Ca and the characteristic

FIG. 24. Computed film thickness profiles, h, (a) plotted on a semi-logarithmic axis, and the extensional flow speed, u, (b) (solid lines) using the similarity coordinate
n ¼ Caðx � x11 ðtÞÞ for t ¼ ð5; 6; 7; 8Þ � 102. The dashed lines show the corresponding late-time similarity solution given by Eqs. (B58) and (B61). The dotted curve in (a) shows the
quasi-static solution of region I given by Eq. (B20) in the similarity variable n for�Cax11 
 n 
 0. The parameter values are Ca ¼ 103, Re¼ 0 and x11 ¼ 0:134 64.
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quantities, x1;2 and Q1;2, at any instant of time starting from some

initial conditions xð0Þ1;2 . Note that xf1;2g1ðtÞ is almost constant [see
Fig. 19(a)], and we assume that x11ðtÞ ¼ x11 ¼ 0:134 64 and
x21ðtÞ ¼ x21 ¼ 0:511. The solution to the boundary value problem
in Eq. (B57) provides the flux Q2 as a function of x2, at any instant
of time. Similarly, the solution to the boundary value problem in
Eq. (B61) provides the flux Q1 as a function of x1, at any instant of
time. We determine the late-time evolution of x1;2 using volume
conservation in regions I and II, dV1

dt ¼ Q1 and dV2
dt ¼ Q2, respec-

tively. The algorithm to obtain the time evolution of x1;2, and the
corresponding family of solutions of (B57) and (B61) is as follows:

1. Start with initial conditions xð0Þ1;2 at some time t ¼ tð0Þ. Compute

the corresponding volume Vð0Þ1 ¼
Ð xð0Þ1
0 h dx and V ð0Þ2 ¼

Ð 1
xð0Þ2

h dx.

2. Solve the boundary value problems in Eqs. (B57) and (B61) to
obtain the initial flux, Qð0Þ1;2.

3. Determine the values of xð1Þ1;2 at some time t ¼ tð0Þ þ Dt (where
Dt is a small increment in time), using the updated volume

Vð1Þ1 	 V ð0Þ1 þ Qð0Þ1 Dt ¼
Ð xð1Þ1
0 h dx and Vð1Þ2 	 V ð0Þ2 þ Qð0Þ2 Dt

¼
Ð 1
xð1Þ2

h dx. Using the expressions for h in region I [given by Eq.

(B20)] and that in region II [given by Eq. (B53)], these are quar-

tic equations in xð1Þ1;2 , which need to be solved to get the updated
values of x1;2 [similar to Eqs. (B21) and (B54) for xf1;2g1 ,
respectively].

4. Use xð1Þ1;2 to solve the boundary value problem in Eqs. (B57) and
(B61) to obtain the flux, Qð1Þ1;2 at time tð1Þ.

5. Now repeat steps 3 and 4 to obtain the solution and characteris-
tic variables at time tðnÞ ¼ tð0Þ þ nDt.

6. Use Eq. (B45) to numerically solve for hmin, for example, using a
forward Euler time-stepping scheme, hminðtðnÞÞ ¼ hminðtðn�1ÞÞ
þDt ½Q

ðn�1Þ
1 ðtÞ�Qðn�1Þ2 ðtÞ�
½xðn�1Þ2 ðtÞ�xðn�1Þ1 ðtÞ�

.

7. Plot the characteristic variables and the family of solutions as a
function of time.
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