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ABSTRACT

Context. Originating from several sources (Big Bang, stars, cosmic rays) and being strongly depleted during stellar
lifetime, the lithium element is of great interest as its chemical evolution in the Milky Way is not yet well understood.
To help constrain stellar and galactic chemical evolution models, numerous and precise lithium abundances are necessary
for a large range of evolutionary stages, metallicities, and Galactic volume.
Aims. In the age of industrial parametrization, spectroscopic surveys such as APOGEE, GALAH, RAVE, and LAMOST
have used data-driven methods to rapidly and precisely infer stellar labels (atmospheric parameters and abundances).
To prepare grounds for future spectroscopic surveys like 4MOST and WEAVE, we aim to apply machine–learning
techniques for lithium study/measurement.
Methods. We train a Convolution Neural-Network (CNN) coupling Gaia-ESO Survey iDR6 stellar labels (Teff, log(g),
[Fe/H] and A(Li)) and GIRAFFE HR15N spectra, to infer the atmospheric parameters and lithium abundances for
∼ 40 000 stars.
Results. We show that the CNN properly learns the physics of the stellar labels, from relevant spectral features, over a
large range of evolutionary stages and stellar parameters. The lithium feature at 6707.8Å is successfully singled out by
our CNN, among the thousands of lines in the GIRAFFE HR15N setup. Rare objects like lithium-rich giants are found
in our sample. Such performances are achieved thanks to a meticulously built high-quality and homogeneous training
sample.
Conclusions. The CNN approach is very well adapted for the next generations of spectroscopic surveys aiming at studying
(among other elements) lithium, such as the 4MIDABLE-LR/HR (4MOST Milky Way disk and bulge low- and high-
resolution) surveys. In this context, the caveats of the machine–learning applications should be properly investigated
along with realistic label uncertainties and upper limits for abundances.

Key words. techniques: spectroscopic – methods: data analysis – Surveys – Catalogs – Stars: fundamental parameters
– Stars: abundances – Galaxy: stellar content – Galaxy: evolution

? Based on observations made with the ESO/VLT, at Paranal
Observatory, under program 188.B-3002 (The Gaia-ESO Public
Spectroscopic Survey, PIs G. Gilmore and S. Randich). Also
based on observations under programs 171.0237 and 073.0234
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1. Introduction

The element lithium1 is of great interest in Astrophysics due
to its complex origin and evolution. Lithium was produced
during the Big Bang (BB), and its primordial abundance
can be used to constrain the standard model of cosmology.
The standard BB Nucleosynthesis (SBBN) model predicts
the primordial lithium abundance to be A(Li)2 ∼ 2.75 dex
(Pitrou et al. 2018). The attempts of astrophysical measure-
ment of this primordial Li using old, warm (Teff> 5600K)
metal-poor ([Fe/H]<-1.5 dex) halo dwarf stars has resulted
in observation of a thin spread of lithium abundance, inde-
pendent of metallicity and effective temperature, called the
“Spite plateau” with A(Li) ∼ 2.2 dex (Spite & Spite 1982;
Bonifacio & Molaro 1997). This factor of three difference
between the theoretical prediction and observation presents
the famous cosmological lithium problem (e.g. Fields 2011).

At later times Li is produced at two distinct sources;
in the Inter Stellar Medium (ISM) via a spallative interac-
tion of galactic cosmic rays and the ISM through the p +
C,N,O or α+C,N,O reaction channels (Reeves et al. 1970)
and in stellar sources like Asymptotic Giant Branch (AGB)
stars (McKellar 1940), Red Giants (Sackmann & Boothroyd
1999), core collapse supernovae and novae (D’Antona &
Matteucci 1991; Izzo et al. 2015). However, the stellar
yields for the different sources are not well constrained, and
present large uncertainties (Matteucci et al. 1995; Romano
et al. 1999, 2001; Prantzos et al. 2017; Randich & Magrini
2021).

One production channel for Li in the stars is known as
the Cameron-Fowler mechanism (Cameron & Fowler 1971)
where, first, 7Be is formed in temperatures hotter than
4 × 107 K by the reaction 3He + α→ 7Be + γ. The fresh
7Be must then be quickly moved to cooler layers by con-
vection where it decays to 7Li and is conserved and even-
tually released to the ISM. This mechanism explains the
existence of Li-rich giants (Brown et al. 1989; Charbon-
nel & Balachandran 2000; Hong-liang & Jian-rong 2022).
Li could also be produced via the ν−process happening in
the external shells of collapsing massive stars (Woosley &
Weaver 1995; Kusakabe et al. 2019). Additionally, Li can
also be easily destroyed in stars by the proton capture re-
action 7Li(p, α)4He at temperatures as low as 2.5 × 106 K
already in the pre-main sequence (PMS) and in later stages,
whenever that temperature is reached (Pinsonneault 1997).
For example, the meteoritic A(Li) is ∼3.26 dex (Lodders
& Palme 2009), which represents the initial ISM Li for
the Sun while the Solar photospheric abundance of only
A(Li) ∼ 1.05 dex (Grevesse et al. 2007) suggests an inter-
nal destruction by a factor > 150. In order to investigate
the stellar and galactic evolution of lithium, one needs a
statistically robust and homogeneous sample, such that a
large metallicity domain and different evolutionary stages
are covered. In recent years, due to the availability of larger
samples of stars (typically several hundred), it became pos-
sible to study lithium abundance in the context of chemical
evolution of the thick and thin disks, internal destruction
in stars, galactic chemical evolution and exoplanet connec-
tion (Lambert & Reddy 2004; Ramírez et al. 2012; Del-
gado Mena et al. 2015; Bensby & Lind 2018). For example,
Guiglion et al. (2016) homogeneously built from ESO high
1 Unless differently indicated, by lithium (Li) we refer to the
main isotope of lithium, 7Li
2 A(Li) = log(NLi/NH) + 12

resolution spectra a Li catalog composed of 7300 stars, and
studied the lithium evolution in the Milky Way. In very
recent years, the number of stars with available Li abun-
dances has rapidly increased thanks to large scale Milky
Way spectroscopic surveys such as the Gaia-ESO (Fu et al.
2018; Randich et al. 2020; Magrini et al. 2021b; Romano
et al. 2021), LAMOST (Gao et al. 2019), and GALAH (Gao
et al. 2020) and have contributed to our understanding of
the evolution of Li.

A way to precisely measure atmospheric parameters and
chemical abundances in stellar atmosphere is to use stellar
spectroscopy. Lithium abundance is usually derived from
the Li doublet at 6707.8 Å, shown in Fig. 1, which is the
strongest Li feature in the optical wavelength regime. Other
neutral Li lines at 6103 Å and 8126 Å have also been used
for Li abundance analysis (Gratton & D’Antona 1989) but
these lines are very weak and are detectable and measur-
able only in high-resolution and/or at high-Li abundances.
The 6707.8 Å Li line strength has a strong dependence
on the star’s effective temperature and Li abundance. The
Li doublet blends with an Fe i line. It is thus challenging
for classical spectroscopic pipelines to provide precise Li
abundances at intermediate and low-resolution, or in the
presence of noise.

1.1. The Machine–Learning approach

Over the last three decades, the community has gener-
ally measured Li abundances using classical spectroscopic
pipelines3 (SME, Valenti & Piskunov 1996; MOOG, Sneden
et al. 2012). In the era of future large spectroscopic surveys
such as 4MOST (de Jong et al. 2019), and WEAVE (Dal-
ton 2016), several 107 spectra will be gathered and supple-
mented by the wealth of astrometric and photometric data
provided by the Gaia satellite (Gaia Collaboration et al.
2016, 2020). The community will have to adapt their meth-
ods, and machine–learning is believed to be the way for-
ward.

Machine–Learning (ML) tools are becoming popular for
all research fields where it is necessary to quickly process
large amount of data, and/or automatically learn the com-
plex correlations from high dimensional data. One family
of extremely versatile ML algorithms are Neural-Networks
(NN). They become very popular and have been success-
fully applied in many other astronomy fields, for instance,
gravitational lensing (Petrillo et al. 2017), search for open
clusters in Gaia data (Castro-Ginard et al. 2020), detec-
tion of gravitational waves (Lin & Wu 2021), photomet-
ric redshift prediction (Lima et al. 2022) and many oth-
ers. Although with a very simple architecture compared to
modern networks, NNs actually have been long used in as-
trophysical applications: Bailer-Jones et al. 1997 used NN
to parametrize Teff, log(g), and [M/H] from stellar spec-
tra and Bailer-Jones et al. (1998) used NN and Principal
Component Analysis (PCA) to classify spectral types.

ML approaches also started to play an important role in
the derivation of stellar labels. Such methods transfer the

3 Classical pipelines refer to the tools that usually compare the
observed spectrum to a model spectrum which is based on a line-
list, a model atmosphere, and a prediction on the line shape and
intensity (curve of growth) based on a model. These pipelines
provide the stellar labels for training in the context of machine–
learning methods.
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knowledge from a reference set of data, so-called training
sample to a larger set of data, in order to derive the stellar
labels. The reference set of data can be constructed from
either empirical data or by employing spectral synthesis
models. The Cannon (Ness et al. 2015) is one of the pio-
neering data-driven spectroscopic analysis tools. The Payne
(Ting et al. 2019) demonstrated that one can combine phys-
ical stellar models using Neural Networks as a function to
generate spectra, instead of a quadratic polynomial func-
tion as in the case of Cannon. It is important to note that
the Payne uses noiseless synthetic spectra as the training
set. A modification of the Payne named Data Driven-Payne
(Xiang et al. 2019) has also been applied to the LAMOST
low-resolution spectra.

A few recent studies used a class of neural network
called Convolutional Neural-Networks (CNN; LeCun et al.
1989; LeCun & Bengio 1995) to derive atmospheric param-
eters and chemical abundances from both high- and low-
resolution stellar spectra. CNNs are very efficient at fea-
ture extraction, hence, they can be used to learn about the
spectral features in stellar spectra and relate it to the atmo-
spheric parameters and chemical abundances. Fabbro et al.
(2018) developed the StarNet pipeline based on a CNN and
a synthetic training set. Bialek et al. (2020) applied Star-
Net to Gaia-ESO Survey UVES spectra by training the
CNN with various synthetic spectral grids while mitigat-
ing the “synthetic gap". Leung & Bovy (2019) developed
the astroNN tool, able to handle missing labels, trained
on observational data to derived 22 stellar parameters and
chemical abundances based of APOGEE DR14 spectra and
labels. Zhang et al. (2019) used StarNet to estimate at-
mospheric parameters and chemical abundances of LAM-
OST low resolution spectra, based on the high resolution
APOGEE labels. Guiglion et al. (2020) performed similar
label transfer from APOGEE DR16 to the intermediate-
resolution RAVE survey in addition to combining astrom-
etry and photometry as additional inputs. Guiglion et al.
(2020) showed that it is possible to improve the quality
of predicted effective temperature and surface gravity by
lifting the degeneracy in log(g) using the absolute magni-
tudes. Very recently, novel methods such as auto-encoders
and generative domain adaptation have also been imple-
mented for stellar spectroscopy, see for instance O’Briain
et al. (2021); Čotar et al. (2021). These research efforts and
the developments in future spectroscopic surveys, computa-
tional power and better ML techniques are the motivation
to prepare the ML ground for future spectroscopic surveys.

The main aim of this work is to provide reliable atmo-
spheric parameters and Li abundances for a large sample of
spectra and use it to study lithium evolution in the Milky
Way. We adopted a CNN as a supervised ML method, and
our training labels are: effective temperature Teff, surface
gravity log(g), iron abundance [Fe/H] and lithium abun-
dance A(Li). Any supervised ML method demands a very
careful choice of training labels as the trends and biases
present in the training data are also learned and hence
easily transferred to the predicted labels. This paper goes
together with Ambrosch et al. (sub) that focuses on the
chemical evolution of Al and Mg abundances with CNN
from GES GIRAFFE HR10&21 spectra.

The paper is organized as follows: in Sect. 2, we present
the spectral data set adopted in this study; in Sect. 3, we
detail the CNN procedure. The catalog of lithium abun-
dances is presented in Sect. 4, while its validation is done

in Sect. 5. We present two scientific application of our cat-
alog in Sect. 6, and we summarize our work and draw some
future prospects in Sect. 7.

2. Observation and Data

Our goal is to prepare the ground for 4MOST and WEAVE
Li analysis; we looked for public spectra similar to the
red arm of these two surveys, with associated high-quality
lithium and atmospheric parameters. We adopted the Gaia-
ESO Survey (GES, Gilmore et al. 2012; Randich et al. 2013)
data. GES gathered spectra for all major Galactic compo-
nents (halo, bulge, thin and thick disks), including a large
number of open and globular clusters, and calibration ob-
servations such as benchmark stars, radial velocity (Vrad)
standards, asteroseismic CoRoT/K2 fields (see Bragaglia
et al. 2022; Pancino et al. 2017a; Stonkutė et al. 2016;
Valentini et al. 2016). For this study, we use the spectra and
parameters+abundances from the internal Data Release 6
(iDR6)4.

The spectra were obtained using the GIRAFFE instru-
ment of the Fibre Large Array Multi Element Spectrograph
(FLAMES; Pasquini et al. 2002) located at Very Large Tele-
scope (VLT) Observatory at Cerro Paranal (ESO) in Chile.
We use the H665.0/HR15N setup that includes the Li dou-
blet at 6 708Å. The HR15N setup is centered at 6650Å,
and covers the domain [6470-6790]Å with a resolving
power R=19 200, very similar to the WEAVE and 4MOST
HR red arm. The GES-iDR6 also comprises Li abundances
for ∼ 6400 UVES spectra which, however, has not been
used in this work.

The spectroscopic analysis within GES was performed
by multiple nodes which use different spectroscopic tools,
but adopting the same line list and model atmospheres
(Smiljanic et al. 2014; Lanzafame et al. 2015; Heiter et al.
2021; Gilmore et al. 2022; Randich et al. 2022; Worley et
al., in prep.). The atmospheric parameters from each of the
nodes are homogenised to provide a single measurement
and associated uncertainty as the node-to-node dispersion.
The different methods can be summarized into three cat-
egories: i) equivalent width (EW) analysis where the at-
mospheric parameter determination is based on the exci-
tation and ionization balance of the Fe lines; ii) spectral
synthesis method that estimates atmospheric parameters
from a χ2 fit to the observed spectra, and iii) multi-linear
regression method that derives atmospheric parameters and
abundances by projecting the observed spectrum into vec-
tor functions which are constructed as the best linear com-
bination of synthetic spectra from a grid. GES-iDR6 at-
mospheric parameters Teff, and log(g), as well as [Fe/H]
abundance ratio were adopted for this project.

GES-iDR6 provides one dimensional local thermody-
namical equilibrium (1D LTE) abundances for 7Li, mea-
sured using the EW measurement of the spectral feature
at 6707.8 Å. The measured EWs are converted to lithium
abundances using curves of growth (only one GES node
contributed to Li determinations; see section 2.1 of Ro-
mano et al. 2021, and Franciosini et al., in prep.). For GI-
RAFFE spectra, the Li line is blended with a nearby FeI
line at 6707.4 Å, hence a correction was applied. When the
Li spectral line is very weak or not visible an upper limit
to the abundance is provided. GES also provides a flag for
4 http://ges.roe.ac.uk/, http://casu.ast.cam.ac.uk/gaiaeso/
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Fig. 1: An example GIRAFFE HR15N spectrum. This spectrum is of a star with labels: Teff 4897 K, log(g) 2.55 dex, [Fe/H] -0.11
dex and A(Li) 2.63 dex. Lithium spectral feature is shaded with blue while the gray shaded region centered at Hα is masked and
not used in the spectral analysis using CNN.

Li abundances (UPPER_COMBINED_LI1, 0=detection,
1=upper limit); upper limit is provided when the 6707.8Å
Li line is undetected (too low S/N or too low lithium) (see
Franciosini et al., in prep. for details).

2.1. Training and Observed Sample

To build the training set, we apply several selection cri-
teria. Starting with the total of 41 710 HR15N spectra,
we selected objects with signal-to-noise ratio (S/N)> 40
(see Sect. 4.2 below) and apply the following cuts
for labels: 4 000 < Teff < 7 000K, 1.0 < log(g) < 5.0 dex,
−2.0 < [Fe/H] < 0.5 dex and 0 < A(Li) < 4.0 dex. We fur-
ther cleaned the training set by applying uncertainty cuts
of eTeff < 100K, elog(g) < 0.3 dex, e[Fe/H] < 0.2 dex and
eA(Li) < 0.5 dex. We rejected stars with Li upper limits.
We also apply an uncertainty cut on the radial velocity
E_VRAD < 0.5 km s−1 (see Sect. 3.2.3). Spectra with GES
flags for data reduction and analysis problems (TECH) and
for peculiarities affecting the spectra (PECULI) were also
rejected (see Gilmore et al. 2022 for more details). During
the training, some variable and high proper motion stars
were identified with significant variability in flux seen in
their multiple observations. GES provides same homoge-
nized labels for these multiple observations; these objects
were subsequently removed from the training. The training
set is then composed of 7 031 spectra. The remaining 33 119
spectra, not included in the training set, comprise the ob-
served sample. We do not provide labels for 1560 spectra
due to missing Vrad or very high Vrad which shifts a spec-
trum out of the desired wavelength range after correction.

Next we apply radial velocity correction to the GES
normalized spectra and remove the random cosmic fea-
tures. Any pixel value exceeding median of the continuum
by over five sigma is replaced by a median of the contin-
uum. Negative pixel value is replaced by a median of the
continuum+lines. The spectra were then re-sampled to a
common wavelength coverage λ ∈ [6450 - 6810] Å while
keeping the original pixel separation of 0.05 Å.

The HR15N sample consists of many young objects
which have strong Hα emission lines. As dealing with this
is out of the scope of the current work, we mask the region
of 16Å around Hα.

The only requirement for the observed sample was that
the radial velocity should be present in the recommended
Radial Velocity Catalog provided with the Gaia-ESO sur-
vey iDR6. Spectra with S/N values as low as 2 are present
in the observed sample. The implication of such a low-S/N
on the CNN predictions are discussed later (see Sect. 3.1.3).
GES provides repeat observations, hence some stars have
multiple spectra available with varying S/N values. These
repeat spectra are present in both training and observed
samples and provide a good test for the consistency of the
CNN.

2.2. Pre-processing Training and Observed Sample

We used Scikit-learn (Pedregosa et al. 2011) for pre-
processing. Using the train_test_split function we adopt
25% of the total training data as the test set (leading to
1 758 spectra). The test set is not directly used for training
of the CNN model but is only used to monitor the per-
formance of the trained models. The train set is then com-
posed of 5 273 spectra. Train and test samples are uniformly
distributed across the label range, as homogeneity is crucial
to help the CNN generalizing instead of over/under-fitting.
See Sect. 2.3 for further discussion on homogeneity.

We normalized the stellar labels, to values between 0 to
1, using the MinMax normalization function. Normalizing
all the stellar labels within same value range helps in train-
ing the CNN with easier and faster convergence to the loss
function global minimum.

2.3. t-SNE for homogeneity check and outlier detections

To check the homogeneity of our train and test sets, we
apply the t-distributed stochastic neighbor embedding (t-
SNE; Van der Maaten & Hinton 2008), an un-supervised
ML method. It works by assigning similar objects, in the
high-dimensional space, with higher probability distribu-
tion and hence modelling them closer in the lower dimen-
sional map, while dissimilar objects are mapped further
apart. t-SNE has been widely used for astrophysical ap-
plication (Matijevič et al. 2017; Anders et al. 2018). For
example, Anders et al. (2018) successfully apply t-SNE to
explore stellar abundance-space and identify substructures
as well as chemically peculiar stars.
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Fig. 2: 2D projection of t-SNE output for the 7 031 spectra of the training sample, colored by the labels Teff , log(g), [Fe/H]
and A(Li) respectively. The right-most plot shows the t-SNE as the train and test samples to highlight their similar distribution
across the label range. In the left subplot we show the mean [Fe/H] and A(Li) for the highlighted island which consists of Spite
plateau-like stars in the globular cluster NGC6752.

We plot the t-SNE maps (perplexity = 50.0) for the
whole training data (7 031 spectra) in Fig. 2. The axes
value themselves have no physical meaning while the nearby
points represent similar spectra. The right-most plot shows
how well the train and test samples follow each other in
the t-SNE. This is only possible if they are homogeneously
distributed across the range of labels. The figure shows a
few outliers identified by the t-SNE; we checked these spec-
tra and found them to have low S/N and are affected by
bad cosmic ray removal. The island at tSNE_X = −25
and tSNE_Y = −45, consist of Spite plateau-like stars
([Fe/H] = −1.62, A(Li) = −2.23) in the globular cluster
NGC6752, which represents the most metal-poor group
in the training sample. The figure also shows how spec-
tra and atmospheric parameters correlate. This reveals that
they are intrinsically linked by a high-complexity mapping,
which the CNN will have to learn during its training.

3. Convolutional neural network for stellar
parametrization

3.1. Architecture of the CNN

We build our CNN model with the open source Deep Learn-
ing library Keras (Chollet et al. 2015) using the TEN-
SORFLOW backend (Abadi et al. 2015). Keras provides a
Python interface in a compact and easy manner to develop
high level Artificial Neural-Networks. TENSORFLOW, de-
veloped by Google Brain Team, is an opensource software
library for ML.

In deep learning methods, the final choice of the archi-
tecture is usually an outcome of a lot of experimentation
with various setups and tuning of hyperparameters. The
architecture of the CNN makes a significant impact on the
training and prediction performances. Implementation of
various architectures for stellar spectra parametrization can
be found in literature, we refer readers to the work refer-
enced in Sect. 1 for details. For this project we built on work
from Guiglion et al. (2020), and optimized the architecture.

Figure 3 shows the architecture of our CNN. The pre-
processed spectrum is provided as input and as output the
CNN predicts Teff, log(g), [Fe/H] and A(Li). The model has
3 convolution layers and 4 (3 + 1) dense layers including
the output layer (discussed below). Studies such as Leung
& Bovy (2019); Fabbro et al. (2018) have also adopted a

Fig. 3: Architecture of the CNN adopted for this study is shown
as a block diagram on the left and its detailed structure with
layers is shown on the right panel. The model can be divided into
4 distinct sections: Input Layer, Convolution Layers, Fully Con-
nected Layers and Output Layer and has a total of 448 134 train-
able parameters. The numbers, for example (6861, 1) and (6852,
8), represent the shape of input and output of first Conv1D layer.

similar architecture as a good trade-off between desired pre-
cision, and computation time.

3.1.1. The Convolution and the Fully Connected Layers

Convolution Layers are the central part of the CNN class of
Neural Networks as they are the key to identifying patterns
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and features in input data (Fukushima & Miyake 1982; Le-
Cun et al. 1989). The 1D stellar spectra we use are char-
acterized by absorption features governed by the physical
properties of the stellar atmosphere. CNN’s goal is then to
learn how these spectral features correlate with the stel-
lar labels. The convolution layer, consisting of a collection
of filters, when convolved with the 1D input from previ-
ous layer, extract the features. During the learning process,
these filter parameters are optimized. After extensive tests,
we adopted the model with 3 Conv1D layers with 8, 6 and
4 filters respectively. Using multiple filters in each convo-
lution layer is similar to looking at the same object with
different perspectives.

After the first and second convolution layers we apply
Maxpooling which reduces the feature map size by half.
This is very useful to reduce the overall training parameters,
which also reduces training time, while network focuses on
important features. Maxpooling isn’t applied after the third
convolution layer to avoid losing too much information.

At the heart of every neural network lies the fully con-
nected layers (or dense layers) (Lecun et al. 2015). It is the
central component that adds complexity and meaning to
the functional approximation of the relationship between,
in our case, the input spectrum and the output labels. As
shown in Fig. 3, the features learned from the input spec-
trum by the convolution layers are passed to the dense lay-
ers. This combination of convolution and dense layers en-
sures that the model learns from the whole spectral range
instead of just the individual spectral features.

Our architecture contains three dense layers and one
output layer (also a dense layer). The 4 feature maps from
the last Conv1D layers are flattened before being fed to the
1st dense layer. The 1st dense layer has 64 neurons and
receives input form the 6788 neurons of the flattened layer.
The 2nd and 3rd dense layers have 128 and 32 neurons
respectively. The output dense layer is naturally composed
of 4 neurons corresponding to the four training labels. Our
choice of the number of layers and neurons is based on many
experimentation, with the goal of having a CNN complex
enough, without mitigating the training performance.

3.1.2. The choice of hyperparameters

Hyperparameters are set at the beginning of the training
and remain the same throughout the training, as opposed
to the learn-able model parameters such as the weights and
biases. Here we discuss some important hyperparameters:

1. Weight Initialization: The weights of all parameters
in the model have to be initialized before the train-
ing, and neural networks are very sensitive to the initial
weight values as poor initialization can lead to a non-
convergence. We adopted the intensively used “golrot
uniform" that initializes weights from a uniform distri-
bution within a certain range.

2. Activation functions: Activation functions are the
mathematical functions that decide whether a neuron
is activated or not. It adds non-linearity to the network
and decides the output of any node or layer depending
on the input. Each layer is activated using the “Leaky-
ReLu" activation function and for the output layer we
use “linear" activation.

3. Epochs: One complete pass of the training data
through the network is called an epoch. Multiple epochs

are needed for a good training. We allow large number
of training epochs until the training and test loss curves
flatten out and stopped by using the EarlyStopping. See
Fig. 4.

4. Batch size: It is the number of data items used for one
update of the model parameters during a single train-
ing epoch. The “mini batch stochastic gradient descent"
learning algorithm updates the model weights multiple
times depending on the batch size in a single training
epoch. It is an excellent way to lower the training time.
A good choice of batch size also provides regularization
and stability during the training. We adopt a batch size
of 64 as balance between good approximation of the
training set and faster training time.

5. Learning rate: The learning rate (η) is the amount
by which the weights are updated during the training
and affect both the smooth convergence and training
time. We tested several values of η, and found that the
best performances, for our model, are achieved for η =
0.0001.

3.1.3. Model Generalization: Avoiding Over/Under-fitting

Generalization and proper convergence of the model dur-
ing the training is important to avoid over/under-fitting
and to ensure that the training progresses smoothly. Our
choice of convolution and dense layers ensures that the
model does not under-fit the training data, hence attention
is needed to avoid over-fitting. For this we employ regu-
larization, dropouts and early-stopping procedures detailed
below.

In each of the three convolution layers the L2 Regu-
larization function is applied, allowing to penalise the loss
function (see Sect. 3.2) by adding to it a squared magni-
tude of model weights as a penalty term. The penalty term
minimizes the model weights and makes sure that less sig-
nificant features in the spectrum do not significantly affect
the label prediction.

We apply Dropout layer on the inputs of the 3 inner
dense layers. At each training epoch (explained below in
Sect. 3.1.2), a certain number of neurons are randomly se-
lected and their contribution to the activation of neurons in
subsequent layers is temporally removed. This forces net-
work to learn from the whole wavelength range of the spec-
trum as the model weights do not rely only on a very few
spectral features, and do not neglect less significant fea-
tures. As shown in Fig. 3, 20% of the neurons are dropped
before the dense layers.

While training the CNN model, it is recommended to
stop the training once the validation performance starts
to degrade. For this task, we employ a callback called
EarlyStopping in the model. This callback monitors the
validation/test loss at the end of each training epoch and
once the loss degrades or stagnates, over the last 25 epochs,
the training is stopped and the model weights of the best
training epoch are saved.

Besides these techniques, the noise in the real observa-
tional data also plays an important role in preventing over-
fitting and allow a faster training. Model based networks
that do not use real observations but synthetic data, such
as The Payne (Ting et al. 2019) using noise free spectra and
StarNet (Fabbro et al. 2018) with added Gaussian noise, are
usually not representative of the inherent correlated noise
of real spectra. Interstellar extinction, atmospheric extinc-
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tion, and instrumental signatures are not simulated in the
synthetic spectra and can lead to a significant synthetic
gap. The data-driven CNN employed in our study is effi-
ciently able to deal with the real noise. The noise in the
data lead to a more efficient regularization, and reduced
generalization errors.

3.2. Training the CNN

Our CNN model architecture, as illustrated in Fig. 3, has
a total of 448 134 trainable parameters. These parameters
include all the weights and biases for the different lay-
ers present in the model. The training process optimizes
the values for the parameters by minimizing the value of
a loss function and judges the performance of the train-
ing by calculating metric on the test data. We use "Mean
Squared Error (MSE)" as loss function as well as the metric.
The EarlyStopping callback, defined in Sect. 3.1.2, mon-
itors the metric and the best model weights are saved.
We trained an ensemble of 30 models56, where for each
model, weights were randomly initialized. The training for
the models stopped at different epochs due to the stochastic
nature of the learning algorithm.

In Fig. 4, we show the progress of the training by plot-
ting the evolution of the loss functions of the training (blue)
and test (orange) samples for the 30 models. The loss curves
shows that the training was smooth and provides a good fit
as the training and test loss decreases to a point of stability
with a small gap between the two final loss values.

The models with higher test loss than the 80th percentile
value are discarded and the predictions from the selected
24 models are averaged as the final result. The dispersion is
provided as the label uncertainties. (See Sec. 4.3 for more
on uncertainties.)

Fig. 4: Value of the loss functions for the train (blue) and test
(orange) samples for the 30 CNN runs as a function of the epoch.
The red stars identify the selected 24 models.

3.2.1. Result of the Training

In Fig. 5, we show comparison of the input GES-iDR6 la-
bels to the CNN prediction for the train and test samples.
The figure shows a well behaved 1-to-1 relation with no ap-

5 The training of the models required a time period of 16 to 26
minutes using only CPU on the COLAB cloud service at AIP
for compute and storage.
6 We adopted 30 models for the Ensemble method as a good
trade-off between the reliable statistics and computational load.

parent systematic trends. The bias and scatter values repre-
sent the mean and the standard deviation of the residuals.
The results show no bias (negligible for Teff). The scatter
is comparable for the train and test samples, with slightly
higher scatter for scarcely populated label regions such as
log(g) < 2.0 dex and [Fe/H] < -0.5 dex. Overall the test
sample follows the train sample, showing that the trained
models do not over-fit. Even though the wavelength range
in the GIRAFFE HR15N setup is not optimal for atmo-
spheric parameters determination (Lanzafame et al. 2015),
and despite masking Hα line which is an important spectral
feature for the estimation of Teff and log(g), the CNN shows
very good performances. This indicates that the trained
CNN models have learned significantly from the available
spectral features.

In Fig. 6, we present Kiel diagrams (Teff v.s. log(g))
for the train (top panels) and test (bottom panels) sam-
ples. The left columns show the input iDR6 labels and right
columns show the labels as predicted by the CNN. We see
that the main features of the Kiel diagram are well recov-
ered. The dwarfs and giants are clearly separated with a
smooth transition from main-sequence turn-off to the sub-
giants and the metallicity gradient in the giant branch is
very well described for both the train and test samples.
The dwarfs which span a large Teff range from 7000 K to
4000 K are well parametrized even for the very hot and the
very cool regime. The metal-poor giants, around 5 000 K,
show much less scatter for CNN output compared to the
GES-iDR6. Two distinct issues can explain this difference:
1. This region is very sparsely populated in the training
data, so the one way to improve CNN prediction would be
to add more training data in this region. 2. No benchmark
stars are present in this region i.e., metal-poor giants (See
Sect. 5.1 for details). Similar lower scatter, at the metal-
poor end for giants when predicted by the ML methods,
have been reported by Ness et al. (2015), see Fig 12 and
Ting et al. (2019), see Fig 7; both studies compared their
results with isochrones, to find their ML results at this re-
gion in better agreement with stellar isochrones compared
to the surveys, suggesting discrepancies due to calibration
issues.

In Fig. 7 we present the lithium abundance trends, col-
ored by Teff, for both train and test sets. The main features
are also very well recovered. The most metal-poor globu-
lar cluster NGC6752 with [Fe/H]<-1.5 and A(Li)∼2.2 is
well located for both train and test samples. We also find
good agreements for globular clusters like NGC1281 and
NGC2808, seen around -1.5<[Fe/H]<-1.0 and A(Li)∼1.2.
The Teff dependence for Li, with higher Li abundance for
hotter stars and lower Li abundance for cooler stars, is also
seen. The highest Li abundances, at the metal-rich regime,
seen for the hottest stars and the coolest PMS stars, are
also recovered for both train and test samples. It is consis-
tent, for instance with Romano et al. (2021), who use GES
iDR6 to infer the highest, undepleted Li abundances for
both field (hot stars) and cluster (hot MS and cool PMS)
stars.

3.2.2. Does the CNN learn from spectral features?

Considering our neural network as a mathematical function
which maps input spectra to output labels, it is desirable
to check how each part of the input spectrum influences the
output labels. In other words, if we can calculate the sensi-
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Fig. 5: 2d histograms showing 1-to-1 comparison between the GES-iDR6 labels (CNN input, x-axis) and CNN predictions (y-axis)
for the train (top row) and test (bottom row) samples. The bias=mean(CNN-iDR6) and σ=std(CNN-iDR6) are also calculated.

Fig. 6: Kiel Diagrams for the input and CNN output colored by
[Fe/H]: Top two panels show the train sample stars using iDR6
input labels on the left and CNN output on the right. Bottom
two panels show the same for the test sample.

tivity of output labels to each of the input fluxes we can un-
derstand if the CNN is learning from the spectral features.
This is easily achieved by calculating partial derivatives of
each of Teff, log(g), [Fe/H] and A(Li) with respect to every
input neuron (or wavelength), i.e., ∂Label/∂λ. The gradi-
ent of an output label is a sort of back propagation of the
model through the CNN. In Fig. 8, we show the gradients
of log(g) and A(Li) for the 13 solar twins in our training
sample. We can make several observations:

1. The gradient of the lithium label with respect to λ is
only active at the lithium line and almost flat elsewhere.
This shows the ability of our CNN to discard all other
wavelengths and learn from this singular feature. The
CNN then properly measures lithium abundances, in-

Fig. 7: [Fe/H] vs A(Li) for the iDR6 input and CNN output
colored by Teff: Top two panels show the train sample stars
using iDR6 input labels on the left and CNN output on the
right. Bottom two panels show the same for the test sample.

stead of simply inferring them from correlations among
the labels.

2. Damiani et al. (2014) showed that the quintet feature,
between 6490-6500Å consisting of blended FeI, CaI,
BaII and TiI lines, is highly sensitive to gravity. The
TiII 6491.56Å line, on bluer side of the quintet, was
also considered as an important line for their spectral in-
dices. Here, the CNN gradients ∂ log(g)/∂ λ shows that
these wavelength regions are indeed very sensitive to
log(g).

3. Jofré et al. (2015) listed the ionised Scandium, ScII,
line at 6604.6Å as a Golden Line for FGK dwarfs and
giants but not for metal-poor stars and M giants. Our
log(g) gradients also show very high response at this
wavelength region.
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Fig. 8: Gradients of the output labels with respect to input pixels for the solar twins in the training sample. Selected as
Teff = 5 777 ± 25K, log(g) = 4.44±0.10 dex and [Fe/H] = 0.0±0.05 dex, there are 13 stars. Top row shows mean input spectrum
and the second and third row represent the gradient/response for log(g) and A(Li) respectively. Left column shows wavelength
region [6450 - 6550] Å and right shows [6580 - 6730] Å as we mask the Hα region. The various spectral features that are discussed
in the text are labelled.

Such diagnostic checks confirmed that CNN properly
learns from spectral features, and these gradients could
allow to identify new sensitive spectral features, that are
presently not used by standard classical pipelines. Then,
the classical pipelines and the CNN could be used in a sort
of feedback manner, to improve their mutual output.

3.2.3. Sensitivity to the Radial Velocity

Fig. 9: Scatter plots showing residuals as a function labels for
the selected observed sample stars color-coded by the reported
uncertainties in radial velocities. The trends in residuals show
the sensitivity of CNN to the uncertainties in radial velocity.

Accurate and precise radial velocities are crucial for a
reliable estimate of the atmospheric parameters and chemi-
cal abundances as it matches the observed spectrum to the
line-list which is the ground truth for any EW or spectral
fitting methods. The radial velocities (and associated uncer-
tainties) of the GIRAFFE HR15N spectra were estimated

by GES, by spectral fitting of the observations to model
spectra (Gilmore et al. 2022). The radial velocity is mea-
sured using the HR15N spectra, but an offset is applied to
it during homogenization process to bring radial velocities
measured from different setups to the same scale. The off-
sets are measured considering HR10 (5340Å - 5620Å) setup
as a zero-point of the radial velocity scale; GES made sure
that HR10 radial velocities have a good agreement with
Gaia radial velocity standards. Yet, such a combination of
different setups can be a source of small systematics. While
GES reports highest Vrad precision achieved to be of the
order of 0.25 km s−1 (see (Gilmore et al. 2022)), over 80% of
the HR15N sample have Vrad errors larger than 0.25 km s−1

and with a third of the sample above 0.55 km s−1.
Figure 9, shows the residual (CNN-iDR6) plots for the

selected observed sample colored in bins of GES radial ve-
locity uncertainties. We clearly see that the dispersion in-
creases with increasing Vrad uncertainties and a very clear
trend is seen for E_VRAD > 0.5 km s−1. Due to such re-
sults, we apply a cut at E_VRAD < 0.5 km s−1 in our
training sample. Jackson et al. (2015) report that Vrad pre-
cision for GIRAFFE spectra worsens for Teff > 5 200 K,
as a result of paucity of strong narrow lines in hotter stars.
We also observe that E_VRAD > 0.5 km s−1 are mostly for
stars hotter than 5 500 K in iDR6. The HR10 re-calibration
is a function of Teff, log(g), [Fe/H], and could create tiny
Vrad corrections that the CNN is able to detect. We avoid
deeper investigation as it is outside the scope of this paper.

However, we showed that ML pipelines can be very sen-
sitive to small wavelength shifts in the input data. For up-
coming surveys like 4MOST and WEAVE, which will ob-
serve in multiple setups, precise radial velocity estimation
will be more important as ML techniques will be exten-
sively used due to the larger volume of observations. Also,
another source of Vrad errors for GES could be the fact
that the different wavelength ranges were not observed at
the same time and were calibrated independently (Randich
et al. 2022). The expected accuracy of 4MIDABLE-HR ra-
dial velocities is expected be <1.0 km s−1(de Jong et al.
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2019). Further tests on real 4MOST spectra will be neces-
sary in order to estimate the CNN sensitivity to Vrad.

3.2.4. Can CNN infer lithium abundances without lithium
line?

Fig. 10: CNN vs GES-iDR6 A(Li) for the CNN trained using
spectra masked at 6707.8 Å Li line. Blue and orange represent
train and test samples respectively. The bias=mean(CNN-iDR6)
and σ=std(CNN-iDR6) are also calculated. The dashed line rep-
resents the 1-to-1 line. The red ellipse shows the incorrectly in-
ferred Li-rich giants.

ML algorithms are efficient at learning astrophysical
correlations, for example inferring oxygen abundances from
spectra with no oxygen feature (Ting et al. 2017, 2018).
Lithium abundance is highly correlated to the Teff, and de-
pends a lot of the surface gravity, see for instance Fig. 2.
To test whether one can infer lithium based on pure astro-
physical correlations, we trained a CNN with the same GI-
RAFFE training sample, but masking the 6707.8 Å lithium
line. In Fig. 10, we compare the CNN Li abundance with
GES-iDR6 Li abundance to find very poor performance
compared to Fig. 5, with a large scatter for both the train-
ing and the test samples. Li rich giants (see Sect. 6.2) are
completely missed when inferring lithium only from astro-
physical correlations. Li must be then measured from spec-
tral features, and not inferred based on correlations.

4. Catalog of Stellar Parameters & Li Abundance

4.1. CNN parametrization of GES GIRAFFE spectra

We used CNN models to predict the atmospheric parame-
ters and lithium abundances for the observed sample spec-
tra. Prediction using a trained model is very fast and takes
only ∼20 seconds for the 4 labels, Teff, log(g), [Fe/H] and
A(Li), of all 33 119 observed sample spectra. The prediction
for the selected 24 models then takes only ∼9 minutes. An
average of the 24 predictions is computed as the final result
and the dispersion as an uncertainty.

For the stars within the training set limits, a typical Kiel
diagram is seen similar to Fig. 11 (a) with clear distinction
between the main sequence and the giants, along with the
metallicity gradient for the giants as well as turn-off stars.
At the cool end, we see few stars with log(g) ∼ 4.0: we

checked the spectra for these stars and found the presence
of emission lines. An example of a HR15N spectrum with
nebular emission lines and molecular bands is shown in Fig.
12. For the second column Kiel diagram in Fig. 11, we see
similar trends as in the case of training limits except there is
a cool dwarf clump. The group consists of very young clus-
ters members, and have emission lines and TiO molecular
bands (M dwarfs). As there were no cool M dwarfs (Teff <
3500 K) in the training set, CNN will provide un-reliable
parameters for these stars. GES is still refining the flags
and thus further exploration of the particular flags is out of
the scope of this project. In the third column Kiel diagram,
the observed sample with radial velocity uncertainties >0.5
km s−1 are presented. Most of these stars lie in the warm
dwarf region as uncertainties in VRAD increases with Teff,
as discussed in 3.2.3. The metallicity gradient is also seen
for these warm dwarf stars.

In Fig. 11 d-f, we also present lithium abundance trends
with respect to [Fe/H]. We see that most of the stars in the
panels (d) and (e) are cool Li-poor stars, with a peak at
solar [Fe/H]. For the observed sample stars in the train-
ing set limits we see a clear trend with Teff, with only a
few cool stars with A(Li)>3.0 dex. In plot (e), an increase
of cool stars with high lithium is seen. These are young
cluster members, for which the Li depletion has not been
completed. In plot (f) we see the stars with GES flags and
E_VRAD>0.5 km s−1. Most of these stars are hotter stars
with Teff > 5 500 K (see Sect. 3.2.3). Some of these warm
lithium rich stars probably represent the warm group of
stars on the left side of lithium dip.

In Fig. 13, we present the comparison of CNN predicted
labels with iDR6 labels for a selection of the observed sam-
ple with S/N>20, E_VRAD<1.0 km s−1 and no TECH
and PECULI flags. In the first row, we show 4 481 ob-
served sample stars with iDR6 Li abundance with the flag
UPPER_COMBINED_LI1 = 0.0. The second row shows
comparison for 3 099 stars, with Li upper limits given by
UPPER_COMBINED_LI1 = 1.0. GES provides an upper
limit on the Li abundance when the 6707.8Å Li line is un-
detected (too low S/N or too low lithium). For stars with
GES Li measurement, we see a very good one to one match
with no bias. There is a scatter of 162K for Teff, 0.22 dex
for log(g), 0.13 dex for [Fe/H] and 0.23 dex for A(Li). For
the stars with GES Li upper limit, a very good one to one
match with iDR6 measurement is seen with a small bias of
13K for Teff and no bias for log(g) and [Fe/H]. A larger
bias and scatter for A(Li) is observed, but this is expected
as the iDR6 values are upper limits and we provide lithium
measurement for these stars. The scatter, for Teff, log(g)
and [Fe/H], is higher for the Li measurement stars as most
of these spectra (∼ 80%) have S/N<40 while the most of
the Li upper limits have higher S/N; this is because stars
with higher S/N and Li measurement, i.e. not a limit, are
included in the training set. Also, most of the stars with
lithium upper limit are giants having already evolved past
their Li depletion phase (defined in Sec. 6.1).

Our catalog of atmospheric parameters (Teff, log(g)),
[Fe/H], and lithium abundances for ∼ 40 000 stars is sum-
marised in Table 1. The data table is available at: doi:// to
be added upon paper acceptance.
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Fig. 11: Results for the Observed Sample. Top Row: (a) Kiel diagram for the observed sample stars with S/N>10 and labels
within training limits color-coded with [Fe/H]. (b) Same plot as (a) but for stars with S/N>10, GES-iDR6 flags and E_VRAD
< 0.5 km s−1. (c) Same selection as (b) but for E_VRAD ≥0.5 km s−1. Each subplot shows a histogram of the labels on the left
and top axis. Bottom Row: A(Li) vs [Fe/H] color-coded with Teff for the same stars as the Kiel diagram on top.

Fig. 12: HR15N spectra with nebular emission lines highlighted in yellow. From left to right the lines are; 6548 Å NII, 6563 Å
Hα, 6583 Å NII, 6678 Å HeI, 6716 Å SiII, 6731 Å SiII. For the upper spectrum, the region for the strong molecular bands of TiO
starting at 6569 Å and 6651 Å are seen. The relative flux values for top spectrum are increased by a unit for the ease of plotting.

4.2. Effects of noise and rotation on CNN predictions

The CNN was trained with spectra with S/N> 40 per pixel
as it provided a balance in the training sample size and
good quality. Noise is an unavoidable aspect of observa-
tional data (see Sect. 3.1.3 above). In poor S/N spectra,
the spectral features can be affected by the noise and can
lead to a poor training performance as the CNN starts to
learn the unwanted correlations due to noise. We find the
mean difference between GES input and CNN output is
uniform for different S/N ranges and do not see any signif-
icant increase with decreasing S/N (for both the training

and observed samples). We conclude that CNN do not show
any significant bias as a function of S/N.

Another important aspect concerns the stellar rota-
tional velocity. As the projected rotational velocity (vsini)
increases, the spectral lines get wider and shallower and
there is increased blending conserving the EW. Classical
spectroscopic pipelines must take into account rotational
broadening during analysis of a spectrum.

Our training sample of 7 031 spectra has a distri-
bution of rotational velocities (in km s−1) as follows:
vsini ≤ 10=62%, 10< vsini ≤ 30=34%, 30< vsini ≤ 50
= 3% and vsini > 50=1%. Considering stars with vsini
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Fig. 13: One-to-One comparison for observed sample stars with, S/N > 20, eVrad less than 1 km s−1, no PECULI and TECH
flags and within training label range. Here bias=mean(CNN-iDR6) and σ=std(CNN-iDR6). Top row: stars with Li measurement,
bottom row: stars with Li upper limit. Most of the stars in the observed sample with Li measurement have low S/N spectra, hence,
the higher scatter for Teff, log(g)) and [Fe/H].

Table 1: Atmospheric parameters, Li abundances, and bound-
ary flags of the publicly available online catalog for ∼ 40 000
stars.

Col Format Units Label Description
1 char - cname GES ID
3 float K teff Effective temp. (Teff)
4 float K eteff Error of Teff
5 int - flag_teff Boundary flag for Teff
6 float cm s−2 logg Surface gravity
7 float cm s−2 elogg Error on log(g)
8 int - flag_logg Boundary flag for log(g)
12 float dex feh [Fe/H] ratio
13 float dex efeh Error on [Fe/H]
14 int - flag_feh Boundary flag for [Fe/H]
15 float dex li Li abundance
16 float dex eli Error on Li
17 int - flag_li Boundary flag for Li

> 10 km s−1 as fast-rotators, the training sample has a sig-
nificant number of such spectra. In fact, the CNN can learn
from spectral features about the rotational broadening ef-
fects, even if vsini is not used as a stellar label. As shown in
Fig. 14, for vsini < 50 km s−1, there is no significant change
in dispersion (between input and output labels) and we ob-
serve no visible trends with the increasing rotation, even for
hot stars with Teff > 6000 K, indicating an excellent CNN
performance. For very fast rotators at vsini > 50 km s−1,
the line shapes are significantly altered; we see an increase
in dispersion, to 159K and 0.22 dex, for Teff and A(Li). Also
for [Fe/H], for vsini > 70km s−1, we see a trend of under-
prediction by CNN. We conclude that CNN do not suffer
from significant systematics due to rotational broadening,
and allows to accurately parametrize fast rotating stars.

4.3. CNN internal uncertainty and estimation of precision
and accuracy

The CNN internal uncertainties are calculated as the dis-
persion of the predictions from 24 selected models, and is
representative of the internal precision of the CNN. In Fig.
15, we present the uncertainty distributions for atmospheric
parameters and Li abundance for the 31 272 observed sam-
ple stars with S/N>10 per pixel. Overall, the uncertainties
are low and similar to the training sample and reflect that
our models provide stable results. We find larger uncertain-
ties for lower S/N spectra and for stars with labels outside
the training limits.

The train, test and observed samples show similar un-
certainties, if the observed sample is restrained to the train-
ing set limits. The uncertainties are very low with medians
of about 19K for σTeff, 0.03 dex for σlog(g), 0.017 dex for
σ[Fe/H] and 0.035 dex for σA(Li) for the train, test and
observed samples (within the training set limits). It comes
from the fact that the training sample covers a higher S/N
range and also includes spectra without any TECH or PE-
CULI flags. The increased error for the whole observed sam-
ple is simply the irreducible uncertainty due to the sampling
of the noise in the training set. We note that nearly 60% of
the observed sample have S/N below the training minimum
of 40 per pixel. The train, test and observed samples follow
each other well, meaning that the CNN models are able to
generalize properly.

The CNN internal uncertainties could however be
under-estimated. To show a realistic approximation of the
accuracy and precision of the method, in Fig. 16 we present
the bias (running mean difference) and sigma (running
mean dispersion) curves for our train, test, and observed
sample predictions, compared to GES-iDR6 labels. The ob-
served sample is selected within the training set limits, with
S/N>20 and no GES flags, and GES lithium detection.
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Fig. 14: Residuals (∆label = GES - CNN) as a function vsini
(km/s) for the train (blue), test (orange) and selected observed
sample (green) stars. The observed sample is selected within
training label limits, S/N>10, E_VRAD<0.5 km s−1, with no
GES flags and with Li measurement. The mean scatter of the
residuals (σ) in the vsini bins (≤10, (10,30], (30,50] & >50) is
also shown for each label.

The bias curves corresponds to the accuracy and the sigma
curves correspond to the precision of CNN.

For Teff, between 4 400 K < Teff < 6 600 K the accu-
racy is within 25K and increases only at the edges of the
training set limits due to sparse training data. We report a
good precision within 100 K for the train and test samples
and within 120 K for the observed sample, affected by the
lower S/N data. Similarly, for log(g) an excellent accuracy
is seen within 0.1 dex across the label range except at the
edges, due to the low statistics. A similar effect is seen in
the precision curves within 0.2 dex across the range except
log(g)<2.0 and 3.0< log(g)<4.0 which are less populated.
For [Fe/H]<-1.0, with just 19 stars with available GES-
iDR6 values in the observed sample, the bias and σ curves
cannot be well interpreted. For [Fe/H]>-1.0, we achieve a
very good accuracy within 0.05 dex and precision within
0.1 dex. For A(Li), the observed sample bias curve follows
the train set, with an excellent accuracy within 0.05 dex
except at A(Li)>3.5 where we have very few stars. The
precision of the train and test samples are within 0.2 dex,
while the observed sample is within 0.3 dex as ∼90% of the
stars have S/N<40. For future applications, such sigma and
bias curves could be used to provide realistic precision and
accuracy estimates.

5. Validation of CNN predictions

5.1. Validation with Gaia Benchmark Stars

The Gaia benchmark stars (GBS; Heiter et al. 2015; Blanco-
Cuaresma et al. 2014; Jofré et al. 2014) sample provides pre-
cise stellar parameters and chemical abundances, derived
from the best available spectra with very high-resolution
and S/N along with the requirements of having accurate
parallaxes, angular diameters from interferometry, bolo-
metric flux, and stellar masses. The GBS are selected to
represent typical Milky Way FGK stars covering different
regions of the Hertzsprung–Russell diagram and a wide
range of metallicity. Benchmark stars are commonly used as
validators/calibrators by large spectroscopic surveys, such
as GES (Pancino et al. 2017b). In Fig. 17, we compare
CNN predictions with the GBS catalog Version 2.1 (Jofré
et al. 2018) which contains 36 benchmark stars in total.
The benchmarks stars were excluded from the training
sample. There were 26 benchmark stars from the GBS in
GES-iDR6, with high S/N, for which we compare the Teff,
log(g) and [Fe/H] to the CNN predictions. As the GBS
catalog does not provide lithium abundances, we used the
AMBRE Li abundances from Guiglion et al. (2016) which
has 15 stars in common between the GBS and GES-iDR6.
The AMBRE Li catalog provides Li abundances derived
from high resolution (R = 40 000) ESO spectra using an op-
timization pipeline GAUGUIN, based on a synthetic spec-
tra grid and a Gauss-Newton algorithm.

The benchmark stars in Fig. 17, are sorted by increas-
ing Teff, and most of the stars are within the training set
limits. We find that for most of the GBS, CNN results
compare very well. The cool giants alf_Cet, gam_Sge and
alf_Tau have Teff and log(g) outside the training limits,
hence we see a spread in log(g) and [Fe/H]. The GBS cat-
alog also reports higher uncertainty for these three stars
and the CNN [Fe/H] measurements are within the uncer-
tainty limits. There are three metal-poor stars, HD122563,
HD140283 and HD84937, with [Fe/H] less than -2.0 dex.
HD122563 is the most metal-poor star with [Fe/H] = -2.62
for which we see the highest differences in Teff, log(g) and
[Fe/H], although CNN estimate for A(Li) agrees with the
AMBRE value. For HD140283, with [Fe/H] = -2.36, we see
a difference of ∼500 K for Teff and 0.7 dex in [Fe/H] while
the estimates for log(g) and A(Li) are in a good match. For
HD84937, CNN predictions for Teff, log(g) and A(Li) are
in a very good agreement with GBS and AMBRE measure-
ments, but we note a difference of 0.5 dex for [Fe/H]. In case
of lithium, for most of the GBS stars, CNN predictions com-
pare well with AMBRE abundances within 1 − σ. For the
stars with A(Li) below the training set limit of 0.0 dex, we
see a difference of up to 0.8 dex in CNN and AMBRE/iDR6
predictions, as well as for stars which are within training
limit and have A(Li)<1.5, a small difference (∼0.25 dex) in
CNN, iDR6 and AMBRE measurements are seen. Overall,
the CNN performs very well across the training label range
and differences are seen only for stars outside the train-
ing range. Future spectroscopic surveys should be careful
to target more metal-poor stars and cool giants. Also the
benchmark stars should include more metal-poor stars and
cool giants.

In Fig. 18, we present the HR15N spectra around the
6707.8 Å lithium line for some solar twins, in different A(Li)
regimes. The solar twins are selected from the training sam-
ple with S/N > 90 and with Teff = 5777± 150K, log(g)
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Fig. 15: 2D histograms showing CNN uncertainties (internal precision) as a function of 4 labels (Teff, log(g), [Fe/H], A(Li)) and
S/N for the observed sample with S/N>10, i.e., 31,272 spectra. The red dashed line shows the limits of the training labels. The
x-axis represents the labels, and the y-axis the uncertainty (σ).

Fig. 16: Running mean bias and mean dispersion as a function of labels for the train (blue), test (orange), and observed (green)
samples calculated in bin sizes: 250K for Teff, 0.3 dex for log(g), [Fe/H] and A(Li). The curves are representative of the real
accuracy and precision of our CNN predictions. Bias = mean(CNN-iDR6) and σ=std(CNN-iDR6) for each bin. On the right
column we present the distribution of the train, test and observed samples in logarithmic y-axis. The observed sample is selected
within the training set, with S/N>20 and no GES flags; for A(Li), we select only stars with Li measurement instead of those with
upper limit Li estimates.
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Fig. 17: Comparison of CNN prediction for the Gaia Benchmarks Stars (GBS). The reference Teff, log(g) and [Fe/H] are from
Jofré et al. (2018) and A(Li) from Guiglion et al. (2016). GES-iDR6 values are also shown for comparison. On x-axis we present
the GBS names sorted by increasing Teff and on y-axis we present the 4 labels. The shaded region for each label represents the
training set limits. The CNN predictions and error bars are mean of the estimates for the multiple spectra. CNN error bars are
too small to be seen.

Fig. 18: Li feature for Solar Twins with varying Li abundance.
The solar twins in the training sample are selected with S/N >
90 and with GES Teff = 5 777 ± 150K, log(g) = 4.44±0.15 and
[Fe/H] = 0.0±0.15. The different colors represent the GES Li
bins as listed on the left. On right we show the mean of CNN
prediction for the shown spectra in each bins.

= 4.44±0.15 and [Fe/H] = 0.0±0.15. CNN provides robust
measurements for A(Li)≥1.25. Below this limit, CNN suf-
fers from a positive bias, i.e. the Solar abundance reported
by GES is A(Li)=1.07, while CNN measures 1.3 dex. For
A(Li) of 1.07 dex (blue) and 1.25 dex (orange), the spectral
features look almost identical within the noise. For these
spectra we see that the maximum flux absorption is ∼ 1.5%
and most of the signal comes from an Fe blend.

An accurate measurement for lithium below 1.25 dex in
Solar twins at resolution R ∼ 20 000 with CNN is then chal-
lenging and basically Li < 1.25 dex should be considered
as limit. This could explain the difference in CNN, iDR6
and AMBRE measurements for the lithium measured in
some of the benchmark stars. We did the same exercise for
a typical RC stars (around Solar [Fe/H]), and the line be-
ing deeper, the CNN performs with no significant bias up
to Li=0. For 4MOST-LR/HR, it will be important to gen-
eralise this type of detection limit to the whole parameter
space of the sample.

5.2. Validation with GALAH-DR3

The Galactic Archaeology with HERMES (GALAH, Buder
et al. 2021) survey provides stellar parameters and chem-
ical abundances, including lithium, using the spectrum
synthesis code Spectroscopy Made Easy (SME) and 1D
MARCS model atmospheres along with additional photom-
etry and astrometry. GALAH spectra are obtained at a
higher resolution of R∼28 000, compared to the GIRAFFE
at R∼20 000, and in four non-contiguous spectral bands
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Fig. 19: Comparison of CNN results for stars in common with GALAH-DR3 Buder et al. (2021). GES-iDR6 sample has stars
selected with S/N>30, within the training label limits, eVRAD< 0.5km s−1 and no GES flags and GALAH stars are selected with
snr_c3_iraf > 30, flag_sp = 0, flag_fe_h = 0 and flag_Li_fe = 0. The dash-dot line is the 1-to-1 line and two dotted lines are
at ± 250 K for Teff, ± 0.3 dex for log(g), ±0.2 dex for [Fe/H], ±0.3 dex for A(Li). The error bars show the errors reported in
GES-iDR6 and GALAH-DR3; CNN uncertainties are too small to be seen.

between 4700Å and 7900Å. In Fig. 19, we present a com-
parison of CNN results for GES-iDR6 HR15N stars in com-
mon with the third data release GALAH-DR3 Buder et al.
(2021). The selected GES/CNN sub-sample has 73 HR15N
stars in common with GALAH with available Teff, log(g),
[Fe/H] and A(Li). For GES/CNN we only consider the stars
within the training set limits, S/N > 30, eVRAD < 0.5
km s−1 and no GES flags. For GALAH stars, we followed
the GALAH recommended S/N and flags, i.e. snr_c3_iraf
> 30, flag_sp = 0, flag_fe_h = 0 and flag_Li_fe = 0 (the
flags= 0 represent no identified problems with determina-
tion of stellar parameters, iron and lithium abundances re-
spectively). The CNN atmospheric parameters and lithium
predictions agree very well with GALAH, within 250 K for
Teff, 0.3 dex for log(g), 0.2 dex for [Fe/H], 0.3 dex for A(Li).
For the case of A(Li)< 1.0, the spread in 1-to-1 relation is
less for the case of CNN vs GALAH, indicating that CNN
results are in better agreement with GALAH than the iDR6
measurements. Given the higher resolution for GALAH, it
should be able to capture weaker lithium lines hence provid-
ing more precise lithium at A(Li)< 1.0. CNN works better
at low lithium than standard pipelines, because it can effi-
ciently deal with the noise. We see systematic Teff offsets in
GALAH vs iDR6 with lower iDR6 measurements for cooler
stars, and higher for hotter stars. This is also seen in the
GALAH vs CNN comparison. A similar systematic offset is
seen for lithium with lower CNN/iDR6 measurements for
A(Li) < 2.5 and higher CNN/iDR6 measurements for A(Li)
> 2.5. Overall, GALAH and CNN are in a good agreement
and the offsets seen are systematic between GALAH and
GES-iDR6.

5.3. Validation with Asteroseismic gravities

We aim here at comparing CNN surface gravities with pre-
cise asteroseismic gravities. In Fig. 20, we present a com-
parison of log(g) for 32 stars present in the CoRoT-GES
sample of Valentini et al. (2016) with the CNN predictions.
We selected only stars with good asteroseismic results given
by flag OFLAG_GIR=0 from Valentini et al. (2016) and
CNN/iDR6 stars are selected within the training label lim-
its, S/N>30, eVRAD<0.5 km s−1, no GES flags. Fig. 20
shows that there is an intrinsic bias between GES-iDR6
and CoRoT labels due to the different methods for deriv-
ing log(g). The CNN results are consistent with the GES-
iDR6 values and they show similar trend. The comparison
shows presence of some outliers, below we discuss two of
such outliers:

For the star CNAME=19264480+0032497, with Teff =
4815K and log(g) = 3.59 in iDR6, CNN results (4635K and
2.83 dex) agree better with CoRoT-GES values (4550K and
2.71 dex). The star has a high projected rotational velocity
(vsini) of 27.6 km s−1, which can be a cause of this differ-
ence. About 35% of our training sample have stars with
vsini > 10 km s−1, hence, the CNN can learn about the
rotationally broadened spectral features.

For the star CNAME=19240528+0152010, the iDR6
predictions are Teff = 4663K, log(g) = 3.27 and [Fe/H]
= 0.01, which is in agreement with CNN output (4872K,
3.2 dex and 0.04 dex), while there is a discrepancy with
Corot predictions (4514K, 1.77 dex and -0.46 dex). A sig-
nificantly lower log(g) and [Fe/H] is provided by CoRoT-
GES. We compare the spectrum of this star with another
star for which the atmospheric parameters are similar to
our CNN result, and for which CNN, iDR6 and CoRoT-
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Fig. 20: Comparison with asteroseismic results. Left: CoRoT-
GES vs GES-iDR6 labels, Right: CoRoT-GES vs CNN pre-
dictions. Blue, orange and green symbols represent the train,
test, and observed sample selected within the training set limits
(S/N>30, eVRAD<0.5 km s−1, no GES flags) and with CoRoT-
GES flag OFLAG_GIR=0. The bias=mean(CNN-CoRoT) and
σ=std(CNN-CoRoT) are provided. The dash-dot line is the 1-
to-1 line and two dotted lines are at ± 0.3 dex.

GES results agree. Both spectra looks similar (besides the
slightly lower log(g) of the second spectrum), showing that
Corot atmospheric parameters for this star should be taken
with caution.

Such a comparison between CNN predictions and Corot
tells us that CNN is able to properly parametrize giants,
considering the HR15N is not an optimal setup for pre-
cisely constraining log(g)s. We also showed that CNN can
correct inaccurate labels that are miss-classified by stan-
dard pipelines.

6. Constraining the chemical evolution of lithium
in the Milky Way

6.1. Galactic Evolution of lithium

Recently, many studies challenged the possibility to use
main-sequence stars (Teff > 5 500K) to trace the lithium
ISM abundance. Guiglion et al. (2019) suggested that the
upper boundary of lithium in the super-solar metallicity
main-sequence stars do not reflect the original ISM content
but rather lithium depletion due to an interplay between
stellar evolution and radial-migration (see also Miglio et al.
2021 and references therein). Randich et al. (2020) investi-
gated this Li decrease using GES stars both on the warm
side of the lithium dip (Teff > 6 800K) in metal-rich open
clusters together with PMS stars from very young clus-
ters7 (age < 100 Myr). They showed a lithium plateau of
A(Li)∼3.4 at 0.1<[Fe/H]<0.3. Their conclusion supported
the scenario of Guiglion et al. (2019) which has recently
been confirmed by Dantas et al., in prep.

Stars on the hot side of this dip have not undergone
any Li depletion, and are the best candidates for the study
of the galactic evolution of lithium with metallicities, ages
and Galactocentric distances. However, atomic diffusion
might have changed the original Li abundances in the at-
mospheres of (some) solar-metallicity stars (Romano et al.
2021; Charbonnel et al. 2021). Indeed, the lithium-dip (Li-
dip), the drop in A(Li) observed in the main sequence stars
in temperature range of 6400-6800 K, has been confirmed in
both cluster and field stars (eg. Boesgaard & Tripicco 1986;

7 An updated list of clusters comprising also the OCs released
in iDR6 can be found in Table 2 of Romano et al. (2021)

Deliyannis et al. 2019. The origin of the Li-dip at this nar-
row Teff range has been attributed to an interplay of mass-
temperature dependent processes, most importantly, shal-
low surface convective zone and higher atmospheric mixing
due to significant spin-down of initial PMS rotational ve-
locity. Charbonnel et al. (2021) recently showed that hot
metal-rich field stars do not exhibit any lithium decrease
using GALAH and AMBRE data. This finding is in agree-
ment with the result in Gao et al. (2020) using warm field
stars from GALAH, and Randich et al. (2020) using OC
stars, and Romano et al. (2021) using both.

In Fig. 21, we further investigate the Li ISM, with a sam-
ple of stars on the warm side of the Li-dip (warm group). We
find stars with Li around 3.4 dex at [Fe/H]∼ 0.2 dex, con-
sistently with the peak at A(Li)∼3.4 reported by Randich
et al. (2020). We note the presence of super-solar [Fe/H]
stars with lithium between 2.2 and 3.0 dex. These stars
could be old (>6-7 Gyr) and have depleted their lithium.
To be able to confirm these stars have indeed migrated
from inner regions, an estimate of their birth-radii would
be needed (e.g. Minchev et al. 2018).

We investigate further the ISM evolution in the metal-
licity regime -1.0<[Fe/H]<0.0. All of these stars have Li
abundance above the Spite plateau value and there is
a clear increase of lithium with metallicity from 2.2 to
3.2 dex. Given the small sample size, we cannot reli-
ably confirm the presence/absence of a warm plateau at
A(Li)= 2.69 (see GALAH survey, Gao et al. 2020), in
the region of -1.0<[Fe/H]<-0.5. But the mean A(Li) for
the 29 stars present in that metallicity range is lower at
A(Li)= 2.46±0.11 and show a gradient with metallicity. If
we trust that the hot stars on the hot side of the dip are
accurate tracers of the lithium ISM, we do not measure
the usually reported steep rise of the ISM in the domain
-1<[Fe/H]<-0.5 (based on cool dwarfs), but a shallow in-
crease.

The consequence of such finding for the modelling the
lithium ISM on the domain -1<[Fe/H]<-0.5 would be to
take into account earlier Li production by more massive
sources and a longer delay in the production of lithium by
the long-lived sources (as suggested by the chemical evo-
lution model of Cescutti & Molaro 2019). Romano et al.
(2021) arrived to the same conclusion based on GES-
iDR6 data, suggesting a shorter delay in the production of
lithium, claiming that nova white-dwarf progenitors must
be in the range 3-8 MSun rather than 1-8 MSun, as usually
assumed (see Fig. 8 of Romano et al. 2021).

6.2. Search for lithium-rich Giants

Standard stellar evolution models predict that the sur-
face Li abundances of low-mass red giants after the first
dredge-up decreases by ∼60 times to below A(Li)∼1.50
(e.g. Lagarde et al. 2012) when starting from an initial
A(Li)= 3.3 (solar meteoritic value). Lithium-rich giants are
rare objects and confirm that lithium can be produced in
stellar interiors (see e.g. Magrini et al. 2021b, and refer-
ences therein). The responsible mechanism is the Cameron
& Fowler (1971) mechanism. These authors proposed that
the reaction 3H+α → 7Be+γ produces 7Be, which is
then rapidly transported outwards by convection and non-
standard mixing processes to lower temperatures where it
decays into 7Li. Li-rich giants are believed to play a role in
the enrichment of the ISM (Romano et al. 2001). Stellar Li
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Fig. 21: Left: Effective temperature vs. surface gravity diagram with the stars color-coded according to their Li abundance. The
approximate location of the Li-dip region according to Gao et al. (2020) is highlighted in pink. The red points represent the warm
stars, Teff >6800 K and S/N>50.0. Right: [Fe/H] vs. Li abundance trend for the warm stars shown as red points. Gray dots
represent the stars over-plotted in left plot color-coded with A(Li).

enrichment is also possible due to external sources such as
the measured over-abundance of Li as a result of mass trans-
fer process in a binary system, where the companion pro-
duces Li through the Cameron-Fowler mechanism. Planet
engulfment was also proposed to explain such high lithium
abundance in giants, although it seems this mechanism can
increase the abundance only up to A(Li)∼ 2.2 (Aguilera-
Gómez et al. 2016). We refer the readers to Casey et al.
(2016) for a review on the enrichment processes in Li-rich
giants.

Our training sample contains just 38 lithium rich gi-
ants, considering a strict condition of log(g)<3.2 and
A(Li)> 2.0. It is important that the CNN is able to iden-
tify these rare objects as they are of a great scientific inter-
est. Li-rich giants have previously been reported in earlier
Gaia-ESO papers (Casey et al. 2016; Smiljanic et al. 2018;
Sanna et al. 2020) and some of them are present in our
training sample. In addition, we report the discovery of 31
new lithium rich giants by CNN in the observed sample (see
Fig. 22). These stars were not reported on previous Gaia-
ESO papers. We also check the GALAH survey’s catalog, in
the southern sky, of Li-rich giants by Martell et al. (2021)
to find no match.

To identify the Li-rich giants, we select stars with
Teff<5500K, log(g)<3.5 and A(Li)> 2.0 for which GES-
iDR6 has not provided either one or all of the labels.
To assure a reliable parameter estimation, we further se-
lect spectra with low CNN uncertainties of eTeff<50K,
elog(g)<0.1, e[Fe/H]< 0.1 and eA(Li)< 0.1 and S/N>25
and E_VRAD<0.5 km s−1. We also check for good pho-
tometry in Gaia EDR3 by selecting RUWE≤ 1.4. The
CNAME and atmospheric parameters for the 33 stars
are listed in Table 2. Out of the 31 Li-rich giants, half
of the stars have A(Li) between 2.0-3.0 dex with half
have A(Li)>3.0 with a maximum lithium abundance of
3.88 dex. One of the Li-rich giants is a fast-rotator with
vsini=12.1 km s−1; giants with high vsini and A(Li) can
indicate planetary engulfment and needs further study.
We additionally confirmed that our Li-rich giants are not
miss-classified objects (for instance PMS stars) using the
γ−index of Damiani et al. (2014).

As seen in Fig. 22, our new Li-rich giants seem to be
distributed along the whole giant branch, although a clear
concentration is seen at the position of the red clump. How-
ever, in recent years, the view that Li-rich giants can be
found only in the He-core burning red clump phase has
emerged (Deepak & Reddy 2019; Deepak & Lambert 2021;
Martell et al. 2021). Further analysis of our new sample
is essential to investigate their properties and evaluate the
possible mechanisms for their Li enrichment. Further inves-
tigations on these 31 Li-rich giants could be complemented
by very precise asteroseismic log(g) (see for instance Zhou
et al. 2022 with LAMOST data), if available with surveys
such as TESS and PLATO (Singh et al. 2021).

CNAME Teff log(g) [Fe/H] A(Li)
08512566-4135067 4331 2.20 0.23 3.15

Table 2: The 31 newly discovered GES Li-rich giants and
their CNN associated atmospheric parameters and lithium abun-
dances. The table is ordered by A(Li).

7. Summary and future prospects

To prepare the ground for the future 4MOST and WEAVE
spectroscopic surveys, we developed a convolutional neural-
network approach for determining atmospheric parameters
(Teff, log(g), [Fe/H]) and lithium abundances from GES
stellar spectra. We built a training set of 7 031 stars, based
on high-quality stellar labels from GES iDR6. The main
results are summarized here:

- Our CNN shows very good performances, even though
we mask Hα and despite the wavelength range in GIRAFFE
HR15N setup is not considered optimal for atmospheric
parameters determination (Lanzafame et al. 2015). These
results indicate that our trained CNN models are compe-
tent and have learned the available spectral features. The
CNN is able to provide results with typical uncertainties of
∼35 K for Teff, 0.05 dex for log(g), 0.03 dex for [Fe/H] and
0.06 dex for A(Li).
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Fig. 22: Left: Kiel-diagram showing the newly-discovered Li-rich giants (black stars) along with the training sample color-coded
according to their Li abundance. Right: Gaia Color-Magnitude diagram for the same stars. The training sample stars are colored
by their surface gravities.

- Overall, the CNN predictions compare very well with
the GES-iDR6 input labels. The CNN achieves a good per-
formance for all S/N values including the low S/N (≈ 20)
spectra. Thanks to the large variety of rotational veloci-
ties in the training sample, the CNN is able to accurately
predict atmospheric parameters, even for the fast rotators
for which the spectral features are broadened and can be
blended with neighbouring lines. As CNN is sensitive to
even small systematics in the input data, we found that
large uncertainties in Vrad (>0.5 km s−1) can degrade the
CNN performances.

- Gaia benchmark stars within the training label range
are accurately predicted within 1-sigma by CNN while those
outside show some systematics. The origin of such a discrep-
ancy could be a lack of metal-poor stars (both dwarfs and
giants) in the training set. It also could come from the fact
that metal-poor stars are more difficult to parametrize due
to weaker lines, and possible NLTE effect.

The CNN atmospheric parameters and lithium predic-
tions agree very well with GALAH DR3, within 250 K for
Teff, 0.3 dex for log(g), 0.2 dex for [Fe/H], 0.3 dex for
A(Li). Systematic offsets are present between the GALAH
DR3 and CNN (also with respect to input GES-iDR6 la-
bels) due to the different instrument setup, spectroscopic
pipelines and calibration strategies. We also show that the
CNN atmospheric parameters match nicely with asteroseis-
mic results from CoRoT and also demonstrated that CNN
can correct wrongly assigned labels.

- We also verify that the CNN is learning from relevant
spectral features for the atmospheric parameters (for ex-
ample, the Quintet are sensitive to log(g)) and found that
CNN is able to single-out the lithium line among hundreds
of other lines, for precisely determining lithium. Using cor-
relations for inferring elemental abundances without spec-
tral features should be avoided.

- We investigated the ISM chemical evolution of lithium
with the stars on the hot side of the lithium dip (more repre-
sentative of the ISM). Our findings suggested that the usu-

ally reported steep rise of the upper-boundary of lithium is
not visible on the domain -1< [Fe/H]<0, exhibiting a more
shallower rise of the ISM. This suggests that earlier Li pro-
duction by more massive sources and a longer delay in the
production of Li by the long-lived sources for enriching the
ISM should be taken in account, as claimed by recent chem-
ical evolution modelling (Cescutti & Molaro 2019; Romano
et al. 2021). In addition, there is no decrease of lithium
boundary with [Fe/H]>0, but we report the presence of
stars with lithium between 2.2 and 3.0 dex, likely to have
depleted their lithium content.

- We report the discovery of 33 new Li-rich giants.
Follow-up study using asteroseimic data for these stars
could provide an insight on stellar Li production and mix-
ing mechanisms. 4MOST is expected to discover thousands
of these objects, making it possible to study these peculiar
stars over a large Galactic volume, for instance in the
Bulge, and metallicity range.

Our work confirms that CNNs are efficient for deriv-
ing lithium abundances based on HR15N spectra, i.e. very
similar data as 4MOST and WEAVE. It gives excellent per-
spectives for data analysis with CNN in the context of these
2 surveys. In order to increase the diversity in the training
sample, one could think about adding spectra of binary
stars, and properly dealing with emission features.

For the future use of CNNs, it will be crucial to build
the training sets pro-actively, i.e. not only relying on sets
we build for a given survey, but carefully filling-in regions of
the HR diagram with proper targets. Especially, attention
should be paid for populating the metal-poor tail of the
training set, in order to avoid biases.

In future work, it would be interesting to explore
Bayesian NNs, and different types of loss functions like neg-
ative log likelihood , in order to provide a better uncertainty
estimates.

One important aspect of spectroscopy that was not
taken into account in this project are the NLTE effects
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coupled with a 3D structure of the atmosphere that can af-
fect lithium abundance measurements. Several studies pub-
lished grids of NLTE corrections for lithium abundances,
such as Lind et al. (2009), and more recently Wang et al.
(2021). This NLTE-3D corrections affect mainly the cool-
giants (up to +0.3 dex) in the high-lithium regime. For
metal-rich dwarfs, the typical correction in of the order of
-0.1 dex, for 5 000<Teff<6500K (see also Figures 1 & 2
of Magrini et al. 2021a). Future task could be to include
these NLTE corrections to the training set lithium label,
but we expect no major change in the results presented in
this work. In the context of future surveys, 3D NLTE mea-
surements should be performed homogeneously for as many
elements as possible. For instance α−elements such as O,
Mg, and Ti will be measurable by 4MIDABLE-HR and are
affected by 3D NLTE in a non-negligible way (Bergemann
et al. 2021, 2017; Sitnova et al. 2018; Bergemann et al.
2012).

Concerning the optimization of the training set, prop-
erly including M stars with strong TiO bands in the train-
ing set will allow to accurately parametrize this type of
objects. It will be a necessity for 4MOST, that plans to
observe among other targets, open-clusters.

Regarding the sensitivity of CNN to Vrad, the future
surveys observing with multiple spectrographs should pay
attention in providing accurate radial velocities, to mini-
mize the possible systematics during the training phase.

We have seen, in this study, that lithium abundances in
solar type stars with lithium lower than 1.25 dex can not
be measured precisely at the GIRAFFE HR15 resolution
(∼ 20 000). For the future use of CNN or in general ML for
stellar abundances measurements, one will have to develop
an objective criterion to decide whether an abundance is a
real detection or an upper limit.
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