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ABSTRACT

Context. With its origin coming from several sources (Big Bang, stars, cosmic rays) and given its strong depletion during its stellar
lifetime, the lithium element is of great interest as its chemical evolution in the Milky Way is not well understood at present. To help
constrain stellar and galactic chemical evolution models, numerous and precise lithium abundances are necessary for a large range of
evolutionary stages, metallicities, and Galactic volume.

Aims. In the age of stellar parametrization on industrial scales, spectroscopic surveys such as APOGEE, GALAH, RAVE, and LAM-
OST have used data-driven methods to rapidly and precisely infer stellar labels (atmospheric parameters and abundances). To prepare
the ground for future spectroscopic surveys such as 4MOST and WEAVE, we aim to apply machine learning techniques to lithium
measurements and analyses.

Methods. We trained a convolution neural network (CNN), coupling Gaia-ESO Survey iDR6 stellar labels (T, log(g), [Fe/H], and
A(Li)) and GIRAFFE HRI15N spectra, to infer the atmospheric parameters and lithium abundances for ~40 000 stars. The CNN ar-
chitecture and accompanying notebooks are available online via GitHub.

Results. We show that the CNN properly learns the physics of the stellar labels, from relevant spectral features through a broad range
of evolutionary stages and stellar parameters. The lithium feature at 6707.8 A is successfully singled out by our CNN, among the
thousands of lines in the GIRAFFE HR15N setup. Rare objects such as lithium-rich giants are found in our sample. This level of
performance is achieved thanks to a meticulously built, high-quality, and homogeneous training sample.

Conclusions. The CNN approach is very well adapted for the next generations of spectroscopic surveys aimed at studying (among
other elements) lithium, such as the 4AMIDABLE-LR/HR (4MOST Milky Way disk and bulge low- and high-resolution) surveys. In
this context, the caveats of machine-learning applications should be appropriately investigated, along with the realistic label uncer-
tainties and upper limits for abundances.

Key words. techniques: spectroscopic — methods: data analysis — surveys — stars: fundamental parameters — stars: abundances —
Galaxy: stellar content

* Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (130.79.128.5) or via
https://cdsarc.cds.unistra. fr/viz-bin/cat/J/A+A/671/A61
** https://github.com/SamirNepal/Li_CNN_2022
*** Based on observations collected with ESO telescopes at the La Silla Paranal Observatory in Chile, for the Gaia-ESO Large Public
Spectroscopic Survey (188.B-3002, 193.B-0936, 197.B-1074).
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1. Introduction

The element lithium' (Li) is of particular interest in astrophysics
given its complex origin and evolution. Lithium was produced
during the big bang (BB), and its primordial abundance can
be used to constrain the standard model of cosmology. The
standard BB nucleosynthesis (SBBN) model predicts the pri-
mordial lithium abundance to be A(Li)? ~2.75 dex (Pitrou et al.
2018). Attempts to obtain an astrophysical measurement of this
primordial Li using old, warm (Tex > 5600K), metal-poor
([Fe/H] < —1.5dex) halo dwarf stars has resulted in observa-
tion of a thin spread of lithium abundance that is indepen-
dent of metallicity and effective temperature — referred to as
the “Spite plateau,” with A(Li) ~ 2.2dex (Spite & Spite 1982;
Bonifacio & Molaro 1997). This difference of a factor of three
between the theoretical prediction and observation brings on the
famous cosmological lithium problem (e.g., Fields 2011).

At later times, Li is produced at two distinct sources; in the
interstellar medium (ISM) via a spallative interaction of galac-
tic cosmic rays and the ISM through the p+C,N,O or a+C,N,O
reaction channels (Reevesetal. 1970) as well as in stellar
sources such as asymptotic giant branch (AGB) stars (McKellar
1940), and red giants (Sackmann & Boothroyd 1999), as well
as core-collapse supernovae and novae (D’ Antona & Matteucci
1991; Izzo etal. 2015). However, the stellar yields for the
different sources are not well constrained and present large
uncertainties (Matteucci et al. 1995; Romano et al. 1999, 2001;
Prantzos et al. 2017; Randich & Magrini 2021).

One production channel for Li in the stars is known as
the Cameron—-Fowler mechanism (Cameron & Fowler 1971)
whereby "Be is first formed in temperatures hotter than 4 x
107 K via the reaction *He + @ — "Be + 7. The fresh "Be must
then be quickly moved to cooler layers by convection, where
it decays to ’Li and is conserved and eventually released to
the ISM. This mechanism explains the existence of Li-rich
giants (Brown et al. 1989; Charbonnel & Balachandran 2000;
Hong-liang & Jian-rong 2022). Lithium could also be produced
via the v-process taking place in the external shells of collapsing
massive stars (Woosley & Weaver 1995; Kusakabe et al. 2019).

Additionally, Li can already be easily destroyed in stars
by the proton capture reaction 'Li(p,)*He at temperatures
as low as 2.5 x 10°K as early as the pre-main sequence
(PMS) and in later stages, whenever that temperature is reached
(Pinsonneault 1997). For example, the meteoritic A(Li) is
~3.26 dex (Lodders & Palme 2009), which represents the initial
ISM Li for the Sun; whereas the Solar photospheric abundance
of only A(Li) ~ 1.05 dex (Grevesse et al. 2007) suggests an inter-
nal destruction by a factor >150.

In order to investigate the stellar and galactic evolution
of lithium, we need a statistically robust and homogeneous
sample, such that a large metallicity domain and different evo-
lutionary stages are covered. In recent years, due to the avail-
ability of larger samples of stars (typically several hundred),
it has become possible to study lithium abundance in the
context of chemical evolution of the thick and thin disks, inter-
nal destruction in stars, galactic chemical evolution, and exo-
planet connection (Lambert & Reddy 2004; Ramirez et al. 2012;
Delgado Mena et al. 2015; Bensby & Lind 2018). For exam-
ple, Guiglion et al. (2016) used high-resolution spectra from
ESO to homogeneously build a Li catalog composed of 7300
stars, while studying the lithium evolution in the Milky Way.

! Unless differently indicated, by lithium (Li) we refer to the main iso-
tope of lithium, "Li.
2 A(Li)=log (Npi/Nu) + 12.
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Most recently, the number of stars with available Li abundances
has rapidly increased thanks to large-scale Milky Way spectro-
scopic surveys such as Gaia-ESO (Fu et al. 2018; Randich et al.
2020; Magrini et al. 2021b; Romano et al. 2021), LAMOST
(Gao et al. 2019), and GALAH (Gao et al. 2020), contributing
significantly to our understanding of the evolution of Li.

One way to precisely measure atmospheric parameters and
chemical abundances in stellar atmosphere is to use stellar spec-
troscopy. Lithium abundance is usually derived from the Li dou-
blet at 6707.8 /DX, shown in Fig. 1, which is the strongest Li
feature in the optical wavelength regime. Other neutral Li lines at
6103 A and 8126 A have also been used for Li abundance anal-
ysis (Gratton & D’ Antona 1989), but these lines are very weak
and they are only detectable and measurable in high-resolution
and/or at high-Li abundances. The 6707.8 A Li line strength has
a strong dependence on the star’s effective temperature and Li
abundance. The Li doublet blends with the FeI line, thus mak-
ing it challenging for classical spectroscopic pipelines to provide
precise Li abundances at intermediate and low resolution or in
the presence of noise.

Over the last three decades, the community has generally
measured Li abundances using classical spectroscopic pipelines®
(SME, Valenti & Piskunov 1996; MOOG, Sneden et al. 2012).
In the era of future large spectroscopic surveys such as 4MOST
(de Jong et al. 2019), and WEAVE (Dalton 2016), a number of
107 spectra will be gathered and supplemented by the wealth
of astrometric and photometric data provided by the Gaia satel-
lite (Gaia Collaboration 2016, 2021; Lindegren et al. 2021). The
community will have to adapt their methods and machine learn-
ing is believed to be the way forward.

Machine learning (ML) tools are becoming popular for
all research fields where it is necessary to quickly process
large amount of data and/or automatically learn the com-
plex correlations from high-dimensional data. One family of
extremely versatile ML algorithms are neural networks (NN),
which have become very popular and successfully applied
in many other astronomy fields, such as gravitational lens-
ing (Petrillo et al. 2017), the search for open clusters in Gaia
data (Castro-Ginard et al. 2020), detecting outliers in astronom-
ical imaging data sets (Margalef-Bentabol et al. 2020) detecting
gravitational waves (Lin & Wu 2021), photometric redshift pre-
dictions (Lima et al. 2022), and many more. Neural networks
have actually been used in astrophysical applications for a long
time, even though their architecture was relatively simple com-
pared to the modern networks. For example: Bailer-Jones et al.
(1997) used NN to parametrize T.g, log(g), and [M/H] from stel-
lar spectra and Bailer-Jones et al. (1998) used NN and principal
component analysis (PCA) to classify spectral types.

Such machine learning approaches have also started to play
an important role in the derivation of stellar labels. Such methods
transfer the knowledge from a reference set of data, a so-called
“training sample,” to a larger set of data to derive the stellar
labels. The reference set of data can be constructed from either
empirical data or by employing spectral synthesis models. The
Cannon (Ness et al. 2015) is one of the pioneering data-driven
spectroscopic analysis tools, while the Payne (Ting et al. 2019)
has demonstrated that we can combine physical stellar models
using neural networks as a function to generate spectra, instead

3 Classical pipelines refer to the tools that typically compare the
observed spectrum to a model spectrum based on a line-list, a model
atmosphere, and a prediction on the line shape as well as intensity
(curve of growth) based on a model. These pipelines provide the stellar
labels for training in the context of machine learning methods.
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Fig. 1. Example GIRAFFE HR15N spectrum. This spectrum is of a star with labels: Ty = 4897 K, log(g) =2.55 dex, [Fe/H] =—0.11 dex, and
A(Li) =2.63 dex. Lithium spectral feature is shaded with blue, while the gray shaded region centred at He is masked and not used in the spectral

analysis using CNN.

of a quadratic polynomial function (as in the case of Cannon). It
is important to note that the Payne uses noiseless synthetic spec-
tra as the training set. A modification of the Payne tool, named
data driven-Payne (Xiang et al. 2019), has also been applied to
the LAMOST low-resolution spectra.

A few recent studies used a class of neural networks
called convolutional neural networks (CNN; LeCun et al. 1989;
LeCun & Bengio 1995) to derive atmospheric parameters and
chemical abundances from both high- and low-resolution stel-
lar spectra. Such CNNs are very efficient at feature extrac-
tion, hence, they can be used to learn about the spectral fea-
tures in stellar spectra and relate it to the atmospheric param-
eters and chemical abundances. Fabbro et al. (2018) devel-
oped the StarNet pipeline based on a CNN and a synthetic
training set. Bialek et al. (2020) applied StarNet to Gaia-ESO
Survey UVES instrument spectra by training the CNN with
various synthetic spectral grids while mitigating the “synthetic
gap”. Leung & Bovy (2019) developed the astroNN tool (capa-
ble of handling missing labels) trained on observational data
to derive 22 stellar parameters and chemical abundances based
on APOGEE DR 14 spectra and labels. Zhang et al. (2019) used
StarNet to estimate the atmospheric parameters and chemi-
cal abundances of LAMOST low-resolution spectra, based on
the high resolution APOGEE labels. Guiglion et al. (2020) per-
formed similar label transfer from APOGEE DRI16 to the
intermediate-resolution RAVE survey, in addition to combining
astrometry and photometry as additional inputs. Guiglion et al.
(2020) showed that it is possible to improve the quality of
predicted effective temperature and surface gravity by lifting
the degeneracy in log(g) using the absolute magnitudes. Very
recently, novel methods such as auto-encoders and generative
domain adaptation have also been implemented for stellar spec-
troscopy (e.g., in O’Briain et al. 2021; Cotar et al. 2021). These
research efforts and the developments in future spectroscopic
surveys, computational power, and improved ML techniques are
the motivation for preparing the ML ground for future spectro-
scopic surveys.

The main aim of this work is to provide reliable atmospheric
parameters and Li abundances for a large sample of spectra
and use it to study lithium evolution in the Milky Way. We
adopted a CNN as a supervised ML method and our training
labels are as follows: effective temperature, 7., surface gravity,
log(g), iron abundance, [Fe/H], and lithium abundance, A(Li).
Any supervised ML method demands a very careful choice of

training labels, as the trends and biases present in the train-
ing data are also learned and, hence, easily transferred to the
predicted labels. This paper goes together with the work of
Ambrosch et al. (2023), which focuses on the chemical evolu-
tion of Al and Mg abundances with CNN from GES GIRAFFE
HR10 and HR21 spectra.

The paper is organized as follows. In Sect. 2, we present the
spectral data set adopted in this study. In Sect. 3, we detail the
CNN procedure. The catalog of lithium abundances is presented
in Sect. 4, while its validation is done in Sect. 5. We present two
scientific application of our catalog in Sect. 6 and we summarize
our work and draw some future prospects in Sect. 7.

2. Observation and data

Our preliminary goal is to prepare the ground for 4AMOST and
WEAVE Li analyses. We looked for public spectra similar to
the red arm of these two surveys, with associated high-quality
lithium and atmospheric parameters. We adopted the Gaia-ESO
Survey (GES, Gilmore et al. 2012; Randich & Gilmore 2013)
data. Spectra was gathered by GES for all major Galactic com-
ponents (halo, bulge, and thin and thick disks), including a large
number of open and globular clusters, as well as calibration
observations such as benchmark stars, radial velocity (V;,q) stan-
dards, and asteroseismic CoRoT/K?2 fields (see Bragaglia et al.
2022; Pancino et al. 2017; Stonkuté et al. 2016; Valentini et al.
2016). For this study, we use the spectra and parameters and
abundances from the internal Data Release 6 (iDR6)*.

The spectra were obtained using the GIRAFFE instrument of
the Fibre Large Array Multi Element Spectrograph (FLAMES;
Pasquini et al. 2002) located at Very Large Telescope (VLT)
Observatory at Cerro Paranal (ESO) in Chile. We used the
H665.0/HR15N setup that includes the Li doublet at 6708 A.
The HR15N setup is centred at 6650 A, and covers the domain
[6470-6790] A with a resolving power R = 19200, very sim-
ilar to the WEAVE and 4MOST HR red arm. The GES-iDR6
also comprises Li abundances for ~6400 UVES spectra, which,
however, we do not use in this work.

The spectroscopic analysis within GES was performed by
multiple data analysis nodes which use different spectroscopic
tools, but adopting the same line list and model atmospheres

4 http://ges.roe.ac.ukhttp://casu.ast.cam.ac.uk/
gaiaeso
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(Smiljanic et al. 2014; Lanzafame et al. 2015; Heiter et al. 2021;
Gilmore et al. 2022; Randich et al. 2022; Worley et al., in prep.).
The atmospheric parameters from each of the nodes are homog-
enized to provide a single measurement and associated uncer-
tainty as the node-to-node dispersion. The different methods
can be summarized into three categories: (i) equivalent width
(EW) analysis where the atmospheric parameter determination
is based on the excitation and ionization balance of the Fe lines;
(ii) spectral synthesis method that estimates atmospheric param-
eters from a y? fit to the observed spectra; and (iii) multilin-
ear regression method that derives atmospheric parameters and
abundances by projecting the observed spectrum into vector
functions that are constructed as the best linear combination of
synthetic spectra from a grid. Here, we adopted the GES-iDR6
atmospheric parameters, T, and log(g), as well as the [Fe/H]
abundance ratio.

GES-iDR6 provides one-dimensional local thermodynami-
cal equilibrium (1D LTE) abundances for “Li, measured using
the EW measurement of the spectral feature at 6707.8 A. The
measured EWSs are converted to lithium abundances using curves
of growth (only one GES node contributed to Li determina-
tions; see Sect. 2.1 of Romano et al. 2021, and Franciosini et al.
2022). For the GIRAFFE spectra, the Li line is blended with
a nearby Fel line at 6707.4 A, hence, a correction was applied.
When the Li spectral line is very weak or not visible, an upper
limit to the abundance is provided. GES also provides a flag
for Li abundances (UPPER_COMBINED_LI1, 0 =detection,
1 =upper limit); an upper limit is provided when the 6707.8 ALi
line is undetected, as a result of too low values for the signal-to-
noise ratio (S/N) or too little lithium (see Franciosini et al. 2022
for details).

2.1. Training and observed sample

To build the training sample’, we applied several selection crite-
ria. Starting with the total of 41 710 HR15N spectra, we selected
objects with S/N > 40 pix~! (see Sect. 4.2 below) and applied the
following cuts for labels: 4000 < T < 7000K, 1.0 < log(g) <
5.0dex, —2.0 < [Fe/H] < 0.5dex and 0 < A(Li) < 4.0dex.
We further cleaned the training sample by applying uncertainty
cuts of eTes < 100K, elog(g) < 0.3dex, e[Fe/H] < 0.2dex,
and eA(Li) < 0.5dex. We rejected stars with Li upper lim-
its. We also applied an uncertainty cut on the radial velocity
E_VRAD < 0.5kms™! (see Sect. 3.2.3). Spectra with GES flags
for data reduction and analysis problems (TECH) and for pecu-
liarities affecting the spectra (PECULI) were also rejected (see
Gilmore et al. 2022 for more details). During the training, some
variable and high proper motion stars were identified with sig-
nificant variability in flux seen in their multiple observations.
As GES provides the same homogenized labels for these multi-
ple observations, these objects were subsequently removed from
the training. The training sample is then composed of 7031
spectra and respective labels. The remaining 33 119 spectra, not
included in the training sample, comprise the observed sample.
We do not provide labels for 1560 spectra due to missing Viaq
or very high V.4 values, shifting the spectrum out of the desired
wavelength range after correction.

Next, we applied radial velocity correction to the GES
continuum-normalized spectra and removed the random cos-
mic features. Any pixel value exceeding median of the contin-

3> Throughout the paper, “training sample” refers to the whole data use
for training and cross-validation purpose; “train set” and “test set” refer
to 75% and 25% of the “training sample,” respectively.
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uum by over five sigma is replaced by a median of the con-
tinuum. Negative pixel values are replaced by a median of the
continuum-+lines. The spectra were then re-sampled to a com-
mon wavelength coverage 1 € [6450-6810] A, while keeping
the original pixel separation of 0.05 A.

The HR15N sample consists of many young objects that
have strong He emission lines. Since dealing with this is out
of the scope of the current work, we masked the region of
16 A around He. The only requirement for the observed sam-
ple was that the radial velocity should be present in the rec-
ommended radial velocity catalog provided with the Gaia-ESO
survey iDR6. Spectra with S/N values as low as 2 are present
in the observed sample. The implication of such a low S/N on
the CNN predictions are discussed later (see Appendix A.3). As
GES provides repeated observations, some stars have multiple
spectra available with varying S/N values. These repeated spec-
tra are present in both training and observed samples and provide
a good test for the consistency of the CNN.

2.2. Pre-processing training and observed sample

We used Scikit-learn (Pedregosa et al. 2011) for pre-processing.
Using the train_test_split function, we adopted 25% of the total
training sample data as test set (leading to 1758 spectra and asso-
ciated labels). The test set is not directly used for training of the
CNN model, but it is only used to monitor the performance of
the trained models at the end of each epoch (see Appendix A.2).
The train set is then composed of 5273 spectra (75% of the train-
ing sample). Train and test sets are uniformly distributed across
the label range, as homogeneity is crucial to help the CNN gen-
eralizing instead of over- or underfitting. We refer to Sect. 2.3
for a further discussion on homogeneity.

We normalized the stellar labels to values between 0 and
1, using the MinMax normalization function. Normalizing all
the stellar labels within same value range helps train the CNN
with easier and faster convergence to the loss function global
minimum.

2.3. The t-SNE method for homogeneity check and outlier
detections

To check the homogeneity of our train and test sets, we
apply the #-distributed stochastic neighbour embedding (-SNE,;
Van der Maaten & Hinton 2008), an unsupervised ML method.
It works by assigning similar objects in the high-dimensional
space with a higher probability distribution and, hence, model-
ing them closer together in the lower dimensional map, while
dissimilar objects are mapped further apart. Overall, +~-SNE has
been widely used in astrophysical applications (Matijevic et al.
2017; Anders et al. 2018). For example, Anders et al. (2018)
successfully applied 7-SNE to their study of the stellar abundance
space and identifying substructures as well as chemically pecu-
liar stars.

We plotted the #-SNE maps (perplexity = 50)° for the whole
training data set (7031 spectra with ~7000 pixels each) in Fig. 2.
The axes value themselves have no physical meaning, while
the nearby points represent similar spectra. The right-most plot
shows how well the train and test sets follow each other in the #-
SNE. This is only possible if they are homogeneously distributed
across the range of labels. The figure shows a few outliers iden-
tified by the +-SNE; we checked these spectra and found them

® Perplexity is a parameter that sets the number of effective nearest
neighbours; a higher value is usually recommended for larger samples.
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input layer, convolution layers, fully connected layers, and output layer,
with a total of 448 134 trainable parameters. The numbers, for example,
(6861, 1) and (6852, 8), represent the shape of input and output of first
Convl1D layer.

to have low S/N and we see they are affected by bad cosmic
ray removal. The island at tSNE_X = -25 and tSNE_Y =
—45, consists of Spite plateau-like stars ([Fe/H] = —1.62 dex,
A(Li) = 2.23 dex) in the globular cluster NGC 6752, which rep-
resents the most metal-poor group in the training sample. The
figure also shows how spectra and atmospheric parameters are
correlated. This reveals that they are intrinsically linked by a

high-complexity mapping, which the CNN will have to learn
during its training.

3. Convolutional neural network for stellar
parametrization

3.1. Architecture of the CNN

We built our CNN model with the open source deep learn-
ing library Keras (Chollet 2015), using the TENSORFLOW
backend (Abadi et al. 2015). Keras provides a Python interface
in a compact and easy manner to develop high-level artifi-
cial neural networks. Then, TENSORFLOW developed by the
Google Brain Team, is an open-source software library for ML.
We trained the CNN with the gradient-based Adam optimizer
(Kingma & Ba 2014).

In deep learning methods, the final choice of the architecture
is usually an outcome of a lot of experimentation with various
setups and tuning of hyperparameters. The architecture of the
CNN makes a significant impact on the training and prediction
performances. The implementation of various architectures for
stellar spectra parametrization can be found in the literature, we
refer to the work referenced in Sect. 1 for further details. For
this project, we built on the work of Guiglion et al. (2020) and
optimized the architecture.

Figure 3 shows the architecture of our CNN. The pre-
processed spectrum is provided as input and as output the
CNN predicts T, log(g), [Fe/H] and A(Li). The model has
three convolution layers and four (3 + 1) dense layers, includ-
ing the output layer (discussed in Appendix A). Studies such as
Leung & Bovy (2019), Fabbro et al. (2018) have also adopted a
similar architecture as a good trade-off between desired preci-
sion and computation time.

Further details on the CNN architecture, the choice of hyper-
parameters, and model generalization (avoiding over- or under-
fitting) of the CNN can be found in Appendix A.

3.2. Training the CNN

Our CNN model architecture, as illustrated in Fig. 3, has a total
of 448 134 trainable parameters. These parameters include all
the weights and biases for the different layers present in the
model. The training process optimizes the values for the param-
eters by minimizing the value of a loss function and judges the
performance of the training by calculating a metric on the test
data. We use the mean squared error (MSE) as the loss function
as well as the metric. The EarlyStopping callback, defined in
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Fig. 4. Value of the loss functions for the train (blue) and test (orange)
sets for the 30 CNN runs as a function of the epoch. The red stars iden-
tify the selected 24 models.

Appendix A.2, monitors the metric and the best model weights
are saved. We trained an ensemble of 30 models’®, where for
each model, weights were randomly initialized. The training
for the models stopped at different epochs due to the stochastic
nature of the learning algorithm.

In Fig. 4, we show the progress of the training by plotting
the evolution of the loss functions of the training (blue) and
test (orange) sets for the 30 models. The loss curves show that
the training was smooth and provides a good fit as the training
and test loss decreases to a point of stability, with a small gap
between the two final loss values.

The models with higher test loss than the 80th percentile
value are discarded, and the predictions from the selected 24
models are averaged as the final result. The dispersion is pro-
vided as the label uncertainties (see Sect. 4.3 for more on
uncertainties).

3.2.1. Result of the training

In Fig. 5, we show a comparison of the input GES-iDR6 labels to
the CNN prediction for the train and test sets. The figure shows a
well-behaved 1-to-1 relation with no apparent systematic trends.
The bias and scatter values represent the mean and the standard
deviation of the residuals. The results show no bias (negligible
for Tes). The scatter is comparable for the train and test sets,
with slightly higher scatter for scarcely populated label regions
such as log(g) <2.0dex and [Fe/H] < —0.5 dex. Overall, the test
set follows the train set, showing that the trained models do not
over-fit. Even though the wavelength range in the GIRAFFE
HRI5N setup is not optimal for determination of atmospheric
parameters (Lanzafame et al. 2015), and despite masking the Ha
line, which is an important spectral feature for the estimation of
Teq and log(g), the CNN shows very good performances. This
indicates that the trained CNN models have learned significantly
from the available spectral features.

InFig. 6, we present Kiel diagrams (7 g vs. log(g) for the train
(top panels) and test (bottom panels) sets. The left columns show
the input iDR6 labels and the right columns show the labels as
predicted by the CNN. We see that the main features of the Kiel
diagram are well recovered. The dwarfs and giants are clearly sep-
arated with a smooth transition from main-sequence turn-off to the

7 The training of the models required a time period of 16-26 min using
only normal CPU on the COLAB cloud service at AIP for compute and
storage.

8 We adopted 30 models for the Ensemble method as a good trade-off
between the reliable statistics and computational load.
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subgiants and the metallicity gradient in the giant branch is very
well described for both the train and test sets. The dwarfs, which
span a large T.q range from 7000 K to 4000 K, are adequately
parametrized even for the very hot and the very cool regime. The
metal-poor giants, around 5000 K, show much less scatter for the
CNN output compared to the GES-iDR6. Two distinct issues can
explain this difference: 1. This region is very sparsely populated
in the training data, so the one way to improve CNN prediction
would be to add more training data in this region. 2. No benchmark
stars are present in this region, namely, there are no metal-poor
giants (see Sect. 5.1 for details). Similar lower scatter, at the metal-
poor end for giants when predicted by the ML methods have been
reported by Ness et al. (2015, see Fig. 12 and Ting et al. 2019,
see Fig. 7); both studies compared their results with isochrones to
find their ML results at this region in better agreement with stel-
lar isochrones compared to the surveys, suggesting discrepancies
due to calibration issues.

In Fig. 7, we present the lithium abundance trends, col-
ored by Teg, for both train and test sets. The main features are
also very well recovered. The most metal-poor globular cluster
NGC 6752 with [Fe/H] <—-1.5dex and A(Li)~2.2dex is well
located for both train and test sets. We also find good agree-
ments for globular clusters such as NGC 1281 and NGC 2808,
seen around —1.5 < [Fe/H] < —1.0dex and A(Li)~ 1.2 dex. The
T dependence for Li, with higher Li abundance for hotter stars
and lower Li abundance for cooler stars, is also seen. The high-
est Li abundances, at the metal-rich regime, seen for the hottest
stars and the coolest PMS stars, are also recovered for both train
and test sets. It is consistent, for instance, with Romano et al.
(2021), who use GES iDR6 to infer the highest, undepleted Li
abundances for both field (hot stars) and cluster (hot MS and
cool PMS) stars.

3.2.2. Examining if the CNN can learn from spectral features

Treating our neural network as a mathematical function that
maps input spectra to output labels, it is desirable to check how
each part of the input spectrum influences the output labels. In
other words, if we can calculate the sensitivity of output labels
to each of the input fluxes, we can understand whether the CNN
is learning from the spectral features. Calculating gradients is
one such method for generating a sensitivity map for a spectrum
by performing partial derivatives of each of Tg, log(g), [Fe/H],
and A(Li) with respect to every input neuron (or wavelength),
namely, dLabel/0A. The gradient-based optimizing algorithm
Adam (Kingma & Ba 2014) calculates a negative gradient of the
weight matrix at each iteration to reduce the loss function, hence,
calculating gradients are inherent to neural networks. The gradi-
ent of an output label is a kind of back-propagation of the model
through the CNN and is obtained by using the simple chain rule
of derivative moving backward from output to the hidden layers
and finally to the input layer. This is achieved via a set of tech-
niques called automatic differentiation®, which makes it possi-
ble to evaluate the derivative of the function represented by the
CNN. We used the GradientTape function from Tensorflow to
calculate the gradients.

In Fig. 8, we show as an example, the gradients of log(g)
and A(Li) for the 13 solar twins in our training sample. We
make following representative observations: First, the gradi-
ent of the lithium label with respect to A is only active at the

° For further details on automatic differentiation and gradients, see
https://www.tensorflow.org/guide/autodiff.
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the test set.

lithium line and almost flat elsewhere. This shows the ability
of our CNN to discard all other wavelengths and learn from
this singular feature. The CNN then properly measures lithium
abundances, instead of simply inferring them from correlations
among the labels. Second, Damiani et al. (2014) showed that the
quintet feature, between 6490-6500A consisting of blended Fel,
Cal, Ball, and Til lines, is highly sensitive to gravity. The Till
6491.56 A line, on the bluer side of the quintet, was also con-
sidered as an important line for their spectral indices. Here, the
CNN gradients 0log(g)/d A show that these wavelength regions
are indeed very sensitive to log(g). Finally, Jofré et al. (2015)
listed the ionized Scandium, Scll, line at 6604.6 A as a Golden
Line for FGK dwarfs and giants but not for metal-poor stars and
M giants. Our log(g) gradients also show very high response at
this wavelength region.
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T T T
Train: 5273 stars
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Fig. 7. [Fe/H] vs. A(Li) for the iDR6 input and CNN output colored by
Teq: top two panels show the train set stars using iDR6 input labels on
the left and CNN output on the right. Bottom two panels show the same
for the test set.

Such diagnostic checks confirmed that CNN properly learns
from spectral features and these gradients could allow for the
identification of new sensitive spectral features that are presently
not used by standard classical pipelines. Then, the classical
pipelines and the CNN could be used in a sort of feedback man-
ner to improve their mutual output.

3.2.3. Sensitivity to the radial velocity

Accurate and precise radial velocities are crucial for obtaining
a reliable estimate of the atmospheric parameters and chem-
ical abundances, as it matches the observed spectrum to the
line-list which is the ground truth for any EW or spectral
fitting methods. The radial velocities (and associated uncer-
tainties) of the GIRAFFE HRI5N spectra were estimated by
GES, by spectral fitting of the observations to model spectra
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Fig. 8. Gradients of the output labels with respect to input pixels for the solar twins in the training sample. Selected as Ty = 5777 = 25K,
log(g) =4.44+0.10dex and [Fe/H] = 0.0+0.05 dex, there are 13 stars. The top row shows the mean input spectrum and the second and third row
represent the gradient/response for log(g) and A(Li), respectively. Left column shows wavelength region [6450-6550] A and right shows [6580—

6730] A as we mask the Ha region. Various spectral features that are discussed in the text are labeled.

(Gilmore et al. 2022). The radial velocity is measured using the
HR15N spectra, but an offset is applied to it during the homoge-
nization process to bring radial velocities measured from differ-
ent setups to the same scale. The offsets are measured consid-

ering HR10 (5340 A-5620A) setup as a zero-point of the radial
velocity scale; GES made sure that HR10 radial velocities are
in good agreement with Gaia radial velocity standards. How-
ever, such a combination of different setups can be a source of
small systematics. While GES reports the highest V;,q precision
achieved to be on the order of 0.25kms™' (see Gilmore et al.
2022), over 80% of the HRI5N sample have Vrad errors
larger than 0.25kms™! and with a third of the sample above
0.55kms™".

Figure 9 shows the residual (CNN-iDR6) plots for the
selected observed sample, colored in bins of GES radial velocity
uncertainties. We clearly see that the dispersion increases with
increasing V;,q uncertainties and a large bias is visible for stars
with large E_VRAD, for instance, as shown by the red dots.
Due to such results, we apply a cut at E_VRAD <0.5kms™" in
our training sample. Jackson et al. (2015) report that V.4 pre-
cision for GIRAFFE spectra worsens for Tz > 5200K, as a
result of paucity of strong narrow lines in hotter stars. We also
observe that E_VRAD >0.5kms™' are mostly for stars hotter
than 5500K in iDR6. The HR10 re-calibration is a function of
Tet, log(g), and [Fe/H], and this could create tiny V;,q correc-
tions that the CNN is able to detect. We avoid a deeper investi-
gation as it is outside the scope of this paper.

However, we showed that ML pipelines can be very sensi-
tive to small wavelength shifts in the input data. For upcom-
ing surveys such as 4MOST and WEAVE, which will observe
in multiple setups, a precise radial velocity estimation will be
more important as ML techniques will be extensively used
due to the larger volume of observations. Also, another source
of V4 errors for GES could be the fact that the different
wavelength ranges were calibrated independently (Randich et al.
2022). The expected accuracy of 4AMIDABLE-HR radial veloc-
ities is expected to be <1.0kms~'(de Jong et al. 2019). Further
tests on real 4MOST spectra will be necessary in order to esti-
mate the CNN sensitivity to Vi,q.
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3.2.4. Inferring lithium abundances without a lithium line

ML algorithms are efficient at learning astrophysical correla-
tions, for example, inferring oxygen abundances from spectra
with no oxygen feature (Ting et al. 2017, 2018). Lithium abun-
dance is highly correlated to the T4, and depends a lot on the
surface gravity (see e.g., Fig. 2). To test whether it is possi-
ble to infer lithium based on pure astrophysical correlations, we
trained a CNN with the same GIRAFFE training sample, but
masking the 6707.8 A lithium line. In Fig. 10, we compare the
CNN Li abundance with GES-iDR6 Li abundance, finding very
poor performance compared to Fig. 5, with a large scatter of over
0.5 dex throughout the label range for both the train and the test
sets. Here, we note that the A(Li) output by CNN comes purely
from the correlations among labels and it is not a measurement
from the spectral feature. Hence, we see an underprediction at
higher values and an overprediction at lower values, also known
as regression dilution. The Li-rich giants (see Sect. 6.2) are com-
pletely missed when inferring lithium solely from astrophysical
correlations. We visually inspected the Li sensitivity map, as we
did in Sect. 3.2.2, and most of the HR15N features are used to
infer Li. Then, Li must be then measured from Li spectral feature
instead of being inferred based on correlations.

4. Catalog of stellar parameters and Li abundances
4.1. CNN parametrization of the GES GIRAFFE spectra

We used CNN models to predict the atmospheric parameters
and lithium abundances for the observed sample spectra. Pre-
diction using a trained model is very fast and takes only ~20s
for the four labels, Teg, log(g), [Fe/H], and A(Li), for all 33119
observed sample spectra. The prediction for the selected 24 mod-
els takes only about nine minutes. An average of the 24 pre-
dictions is computed as the final result and the dispersion as an
uncertainty.

For the stars within the training set limits, a typical Kiel dia-
gram is seen, similar to Fig. 11a, with clear distinction between
the main sequence and the giants, along with the metallicity gra-
dient for the giants as well as the turn-off stars. At the cool
end, we see few stars with log(g) ~ 4.0: we checked the spec-
tra for these stars and found the presence of emission lines. An
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their reported uncertainties in radial velocities. For each label, the
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example of a HR15N spectrum with emission lines and molec-
ular bands is shown in Fig. 12. For the second column Kiel dia-
gram in Fig. 11, we see similar trends as in the case of training
limits, except there is a cool dwarf clump. The group consists
of very young clusters members, with emission lines and TiO
molecular bands (M dwarfs). As there were no cool M dwarfs
(Teg < 3500K) in the training set, some systematics may be
present in the parametrization of these stars. However, GES is
still refining the flags, thus further exploration of the particular
flags is out of the scope of this project. In the third column of the
Kiel diagram, the observed sample with radial velocity uncer-
tainties >0.5 kms~! are presented. Most of these stars lie in the

! T T T T
o Train set Ea
4 X Test set A

A(Li) (dex) CNN

2 3
A(Li) (dex) iDR6

Fig. 10. CNN vs. GES-iDR6 A(Li) for the CNN trained using3 spectra
masked at 6707.8 A Li line. Blue and orange represent train and test sets
respectively. The dashed line is the 1-to-1 line, and two dotted lines are
at 0.5 dex. The red ellipse shows the incorrectly inferred Li-rich giants.

warm dwarf region, as uncertainties in VRAD increase with T.¢
(as discussed in Sect. 3.2.3). The metallicity gradient is also seen
for these warm dwarf stars.

In Fig. 11d—f, we also present lithium abundance trends with
respect to [Fe/H]. We see that most of the stars in the panels
d and e are cool Li-poor stars, with a peak at solar [Fe/H]. For
the observed sample stars in the training set limits, we see a clear
trend with T, with only a few cool stars with A(Li) > 3.0 dex. In
plot e, an increase of cool stars with high lithium is seen. These
are young cluster members, for which the Li depletion has not
been completed. In plot f we see the stars with GES flags and
E_VRAD > 0.5kms™~!. Most of these stars are hotter stars with
T > 5500K (see Sect. 3.2.3). Some of these warm, lithium-
rich stars are likely to represent the warm group of stars on the
left side of lithium dip.

In Fig. 13, we present the comparison of CNN pre-
dicted labels with iDR6 labels for a selection of the observed
sample with S/N>20pix~!, E_VRAD<1.0kms™' and no
TECH and PECULI flags. In the first row, we show 4481
observed sample stars with iDR6 Li abundance with the
flag UPPER_COMBINED_LI1 = 0. The second row shows
comparison for 3099 stars, with Li upper limits given by
UPPER_COMBINED_LII = 1. There is an upper limit pro-
vided by GES on the Li abundance when the 6707.8 A Li line
is undetected (too low S/N or too low lithium). For stars with
GES Li measurement, we see a very good one to one match with
no bias. There is a scatter of 162 K for Teg, 0.22 dex for log(g),
0.13 dex for [Fe/H] and 0.23 dex for A(Li). For the stars with
GES Li upper limit, a very good one to one match with iDR6
measurement is seen with a small bias of 13 K for T and no
bias for log(g) and [Fe/H]. A larger bias and scatter for A(Li)
is observed, but this is expected as the iDR6 values are upper
limits, and we provide lithium measurement for these stars. The
scatter for T, log(g), and [Fe/H] is higher for the Li measure-
ment stars as most of these spectra (~80%) have S/N < 40 pix~!,
while the most of the Li upper limits have higher S/N; this is
because stars with higher S/N and Li measurements, that is,
those without a limit, are included in the training set. Also,
most of the stars with an upper limit for lithium are giants that
have already evolved past their Li depletion phase (defined in
Sect. 6.1).
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Fig. 12. HR15N spectra with emission lines highlighted in yellow. From left to right: lines: 6548 A NII, 6563 A H,,, 6583 A NII, 6678 A Hel,
6716 A Sill, and 6731 A Sill. For the upper spectrum, the region for the strong molecular bands of TiO starting at 6569 A and 6651 A are seen.
The relative flux values for top spectrum are increased by a unit for the ease of plotting.

Our catalog of atmospheric parameters (T.g, log(g)), [Fe/H],
and lithium abundances for ~40000 stars is summarized in
Table 1. Of course, the apt use of this catalog will depend on
the scientific application, but we encourage the reader to use
lithium abundances within the training set limits (flag_li=1),
and Li uncertainties below 0.15 dex (S/N > 20). Similarly, atmo-
spheric parameters are reliable only within the training set limits
(flag_x =1). In addition, we make the CNN code, spectra and
labels available to the community online via GitHub'?.

10 https://github.com/SamirNepal/Li_CNN_2022
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4.2. Effects of noise and rotation on CNN predictions

The CNN was trained with spectra with S/N >40pix~!, as this
provides a balance in the training sample size and good qual-
ity. Noise is an unavoidable aspect of observational data (see
Appendix A.3). In poor S/N spectra, the spectral features can be
affected by the noise and can lead to a poor training performance
as the CNN starts to learn the unwanted correlations due to noise.
We find the mean difference between GES input and CNN output
is uniform for different S/N ranges and do not see any significant
increase with decreasing S/N (for both the training and observed
samples). We conclude that CNN does not show any significant
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the training label range. Here, bias = mean(CNN-iDR6) and o = std(CNN-iDR6). Top row: stars with Li measurements. Bottom row: stars with
Li upper limit. Most of the stars in the observed sample with Li measurement have low S/N spectra, hence, the higher scatter for T.g, log(g), and

[Fe/H].

Table 1. Atmospheric parameters, Li abundances, and boundary flags
of the publicly available online catalog for ~40 000 stars.

Col  Format  Units Label Description

1 char - cname GES ID

2 char - spectra_name Name of Spectrum

3 float K teff Effective temp. (Tefr)
4 float K eteff Uncertainty of T

5 int - flag_teff Boundary flag for Teg
6 float cms2  logg Surface gravity

7 float cms2  elogg Uncertainty of log(g)
8 int - flag_logg Boundary flag for log(g)
9 float dex feh [Fe/H] ratio

10 float dex efeh Uncertainty of [Fe/H]
11 int - flag_feh Boundary flag for [Fe/H]
12 float dex li Li abundance

13 float dex eli Uncertainty of Li

14 int - flag_li Boundary flag for Li
15 int pixel!  snr Signal-to-noise ratio

bias as a function of S/N (see Appendix B and Fig. B.1 for fur-
ther details).

Another important aspect concerns the stellar rotational
velocity. As the projected rotational velocity (vsini) increases,
the spectral lines get wider and shallower and there is an increase
in the line blending (with conserved EW). Classical spectro-
scopic pipelines must take into account rotational broadening
during analysis of a spectrum.

Our training sample of 7031 spectra has a distribution of
rotational velocities (in kms™") as follows: [vsini < 10] = 62%,
[10<vsini<30] =34%, [30<vsini<50]=3%, and
[vsini>50] = 1%. Assuming that stars with vsini > 10kms™!
are fast-rotators, the training sample has a significant number of
such spectra. In fact, the CNN can learn from spectral features
about the rotational broadening effects, even if v sini is not used
as a stellar label. As shown in Fig. 14, for vsini<50kms~!,
there is no significant change in dispersion (between input
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Fig. 14. Residuals (Alabel = GES —CNN) as a function of vsini
(km s™!) for the train (blue), test (orange), and selected observed sample
(green) stars. The observed sample is selected within training label lim-
its, S/N> 10 pix‘l, E_VRAD <0.5kms™!, with no GES flags and with
Li measurement. The mean scatter of the residuals (o) in the v sin i bins
(<10, (10,30], (30,50] and >50) is also shown for each label.

and output labels) and we observe no visible trends with
the increasing rotation, even for hot stars with T.g > 6000,
indicating an excellent CNN performance. For very fast rotators
atvsini>50kms~!, the line shapes are significantly altered; we
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see an increase in dispersion, to 159 K and 0.22 dex, for T and
A(Li). Also for [Fe/H], for vsini>70kms~!, we see a trend
of under-prediction by CNN. We conclude that CNN does not
suffer from significant systematics due to rotational broadening,
thus it allows us to accurately parametrize fast-rotating stars.

4.3. CNN internal uncertainty and estimation of precision
and accuracy

The CNN internal uncertainties are calculated as the disper-
sion of the predictions from 24 selected models and is repre-
sentative of the internal precision of the CNN. In Fig. 15, we
present the uncertainty distributions for atmospheric parameters
and Li abundance for the 31272 observed sample stars with
S/N> 10 pix". Opverall, the uncertainties are low and similar to
the training sample and reflect that our models provide stable
results. We find larger uncertainties for lower S/N spectra and
for stars with labels outside the training limits.

The train, test, and observed sets show similar uncertainties,
if the observed sample is restrained to the training sample limits.
The uncertainties are very low, with medians of about 19K for
0 Tesr, 0.03 dex for olog(g), 0.017 dex for o[Fe/H] and 0.035 dex
for o A(Li) for the train, test, and observed sets (within the train-
ing sample limits). It comes from the fact that the training sam-
ple covers a higher S/N range and also includes spectra without
any TECH or PECULI flags. The increased error for the whole
observed sample is simply the irreducible uncertainty due to the
sampling of the noise in the training set. We note that nearly 60%
of the observed sample have S/N below the training minimum
of 40 per pixel. The train, test, and observed sets follow each
other well, meaning that the CNN models are able to generalize
properly.

The CNN internal uncertainties may, however, be underes-
timated. To show a realistic approximation of the accuracy and
precision of the method, in Fig. 16 we present the bias (running
mean difference) and sigma (running mean dispersion) curves
for our train, test, and observed sample predictions, compared
to GES-iDR6 labels. The observed sample is selected within the
training set limits, with S/N>20pix~! and no GES flags, and
GES lithium detection. The bias curves corresponds to the accu-
racy and the sigma curves correspond to the precision of CNN.

For T.g, between 4400 < T.x < 6600K, the accuracy is
within 25 K and increases only at the edges of the training set
limits due to sparse training data. We report a good precision
within 100 for the train and test sets and within 120 for the
observed sample, affected by the lower S/N data. Similarly, for
log(g), an excellent accuracy is seen within 0.1 dex across the
label range except at the edges, due to the low statistics. A simi-
lar effect is seen in the precision curves within 0.2 dex across the
range except log(g) <2.0dex and 3.0 <log(g) <4.0dex, which
are less populated. For [Fe/H] <—1.0dex, with just 19 stars
that have available GES-iDR6 values in the observed sam-
ple, the bias and o curves cannot be adequately interpreted.
For [Fe/H] > —1.0dex, we achieve a very good accuracy within
0.05 dex and precision within 0.1 dex. For A(Li), the observed
sample bias curve follows the train set, with an excellent accu-
racy within 0.05 dex except at A(Li) > 3.5 dex, where we have
very few stars. The precision of the train and test sets are within
0.2 dex, while the observed sample is within 0.3 dex as ~90% of
the stars have S/N < 40 pix~!. For future applications, such sigma
and bias curves could be used to provide realistic precision and
accuracy estimates.
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5. Validation of CNN predictions
5.1. Validation with Gaia benchmark Stars

The Gaia benchmark star (GBS; Heiteretal. 2015;
Blanco-Cuaresma et al. 2014; Jofré et al. 2014) sample provides
precise stellar parameters and chemical abundances, derived
from the best available spectra with very high-resolution and
S/N along with the requirements of having accurate parallaxes,
angular diameters from interferometry, bolometric flux, and
stellar masses. The GBS are selected to represent typical Milky
Way FGK stars covering different regions of the Hertzsprung—
Russell diagram and a wide range of metallicities. Benchmark
stars are commonly used as validators or calibrators by large
spectroscopic surveys, such as GES (Pancino et al. 2017). In
Fig. 17, we compare CNN predictions with the GBS catalog
Version 2.1 (Jofré et al. 2018) which contains 36 benchmark
stars in total. The benchmarks stars were excluded from the
training sample. There were 26 benchmark stars from the GBS
in GES-iDR6, with high S/N, for which we compare the Te,
log(g), and [Fe/H] to the CNN predictions. As the GBS catalog
does not provide lithium abundances, we used the AMBRE Li
abundances from Guiglion et al. (2016), which has 15 stars in
common between the GBS and GES-iDR6. The AMBRE Li
catalog provides Li abundances derived from high-resolution
(R = 40000) ESO spectra using an optimization pipeline GAU-
GUIN, based on a synthetic spectra grid and a Gauss-Newton
algorithm.

The benchmark stars in Fig. 17, are sorted by increasing
T, and most of the stars are within the training set limits. We
find that for most of the GBS, the CNN results compare very
well. The cool giants alf_Cet, gam_Sge and alf_Tau have T.¢
and log(g) outside the training limits, hence, we see a spread in
log(g) and [Fe/H]. The GBS catalog also reports higher uncer-
tainty for these three stars and the CNN [Fe/H] measurements
are within the uncertainty limits. There are three metal-poor
stars, HD 122563, HD 140283, and HD 84937, with [Fe/H]
less than —2.0dex. HD 122563 is the most metal-poor star
with [Fe/H]=-2.62dex for which we see the highest differ-
ences in T, log(g) and [Fe/H], although CNN estimate for
A(Li) agrees with the AMBRE value. For HD 140283, with
[Fe/H] = —2.36 dex, we see a difference of ~500 for T.¢ and
0.7 dex in [Fe/H], while the estimates for log(g) and A(Li) are in
a good match. For HD 84937, CNN predictions for Teg, log(g)
and A(Li) are in a very good agreement with GBS and AMBRE
measurements, but we note a difference of 0.5 dex for [Fe/H]. In
the case of lithium, for most of the GBS stars, CNN predictions
compare well with AMBRE abundances within 1-o. For stars
with A(Li) below the training set limit of 0.0 dex, we see a differ-
ence of up to 0.8 dex in CNN and AMBRE/iDR6 predictions; for
stars that are within the training limit and have A(Li) < 1.5 dex, a
small difference (~0.25 dex) in CNN, iDR6, and AMBRE mea-
surements are seen. Overall, the CNN performs very well across
the training label range and differences are seen only for stars
outside the training range. Future spectroscopic surveys should
be careful to target more metal-poor stars and cool giants. Also,
the benchmark stars should include more metal-poor stars and
cool giants.

In Fig. 18, we present the HRISN spectra around the
6707.8 A lithium line for some solar twins, in different A(Li)
regimes. The solar twins are selected from the training sam-
ple with S/N>90 pix‘1 and with Teg = 5777 =+ 150K,
log(g) =4.44+0.15dex and [Fe/H]=0.0+£0.15dex. CNN pro-
vides robust measurements for A(Li)>1.25dex. Below this
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limit, CNN suffers from a positive bias, namely, the Solar abun-
dance reported by GES is A(Li)=1.07, while CNN measures
1.3 dex. For A(Li) of 1.07 dex (blue) and 1.25 dex (orange), the
spectral features look almost identical within the noise. For these
spectra, we see that the maximum flux absorption is ~1.5% and
most of the signal comes from an Fe blend.
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An accurate measurement for lithium below 1.25dex in
Solar twins at resolution R ~ 20000 with CNN is then chal-
lenging and basically Li < 1.25 dex should be considered as limit
in the dwarf regime. This could explain the difference in CNN,
iDR6 and AMBRE measurements for the lithium measured in
some of the benchmark stars. We carried out the same exer-
cise for a typical RC star (around Solar [Fe/H]), and given the
line is deeper, the CNN performs with no significant bias up
to Li=0dex. It is representative of the well-known tempera-
ture dependence of the lithium line-shape. For 4AMOST-LR/HR,
it will be important to generalize this type of detection limit to
the whole parameter space of the sample.

5.2. Validation with GALAH-DR3

The Galactic Archaeology with HERMES (GALAH,
Buder etal. 2021) survey provides stellar parameters and
chemical abundances, including lithium, using the spectrum
synthesis code Spectroscopy Made Easy (SME) and 1D
MARCS model atmospheres, along with additional photometry
and astrometry. GALAH spectra are obtained at a higher reso-
lution of R ~ 28 000, compared to the GIRAFFE at R ~ 20 000,
and in four non-contiguous spectral bands between 4700 A
and 7900 A. In Fig. 19, we present a comparison of CNN
results for GES-iDR6 HR15N stars in common with the third
data release GALAH-DR3 (Buder et al. 2021). The selected
GES/CNN sub-sample has 73 HRI5SN stars in common with
GALAH with available T.g, log(g), [Fe/H], and A(Li). For
GES/CNN we only consider the stars within the training set lim-
its, S/N > 30 pix~!, eVRAD < 0.5 kms~!, and no GES flags. For
GALAH stars, we followed the GALAH recommended S/N and
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flags, namely, snr_c3_iraf > 30 pix‘l, flag_sp=0, flag_fe_h =0,
and flag_Li_fe =0 (the flags = 0 represent no identified problems
with determination of stellar parameters and iron and lithium
abundances, respectively). The CNN atmospheric parameters
and lithium predictions agree very well with GALAH, within
250 for T, 0.3 dex for log(g), 0.2dex for [Fe/H], 0.3 dex for
A(Li). For the case of A(Li)<1.0dex, the spread in 1-to-1
relation is less for the case of CNN versus GALAH, indicat-
ing that CNN results are in better agreement with GALAH
than the iDR6 measurements. Given the higher resolution for
GALAH, it should be able to capture weaker lithium lines,
hence providing more precise lithium values at A(Li) < 1.0 dex.
We see that CNN works better at low lithium than standard
pipelines in the cool regime (see also Fig. 13). Also, CNN
can also efficiently deal with the noise. We see systematic T
offsets in GALAH vs. iDR6 with lower iDR6 measurements
for cooler stars, and higher for hotter stars. This is also seen
in the GALAH vs. CNN comparison. A similar systematic
offset is seen for lithium, with lower CNN/iDR6 measurements
for A(Li)<2.5dex and higher CNN/iDR6 measurements for
A(Li) > 2.5 dex. Overall, GALAH, and CNN are in a good agree-
ment and the offsets seen are systematic between GALAH and
GES-iDR6.

5.3. Validation with Asteroseismic gravities

Here, we are aiming to compare CNN surface gravities with
precise asteroseismic gravities. In Fig. 20, we present a com-
parison of log(g) for 32 stars present in the CoRoT-GES sam-
ple of Valentini et al. (2016) with the CNN predictions. We
selected only stars with good asteroseismic results given by flag
OFLAG_GIR=0 from Valentini et al. (2016) and CNN/iDR6
stars are selected within the training label limits, S/N > 30 pix~!,

eVRAD <0.5kms™!, and no GES flags. Figure 20 shows that
there is an intrinsic bias between GES-iDR6 and CoRoT labels
due to the different methods for deriving log(g). The CNN results
are consistent with the GES-iDR6 values, and they show a sim-
ilar trend. The comparison shows presence of some outliers and
we discuss two such outliers below.

For the star CNAME=19264480+0032497, with T = 4815
K and log(g) = 3.59 dex in iDR6, the CNN results (4635 K and
2.83 dex) agree better with CoRoT-GES values (4550 K and 2.71
dex). The star has a high projected rotational velocity (v sini) of
27.6kms~!, which can be a cause behind this difference. About
35% of our training sample have stars with vsini > 10kms™!,
hence, CNN are able to learn about the rotationally broadened
spectral features.

For the star CNAME = 19240528+0152010, the iDR6 pre-
dictions are T.x = 4663K, log(g)=3.27dex, and [Fe/H] =
0.01 dex, which is in agreement with CNN output (4872K,
3.2 dex, and 0.04 dex), while there is a discrepancy with Corot
predictions (4514 K, 1.77dex, and —0.46dex). A significantly
lower log(g) and [Fe/H] is provided by CoRoT-GES. We com-
pare the spectrum of this star with another star for which the
atmospheric parameters are similar to our CNN result and for
which the CNN, iDR,6 and CoRoT-GES results agree. Both
spectra look similar (besides the slightly lower log(g) of the sec-
ond spectrum), showing that Corot atmospheric parameters for
this star should be taken with caution.

Such a comparison between the CNN predictions and Corot
tells us that CNN is able to properly parametrize giants, while
considering the HR15N is not an optimal setup for precisely con-
straining log(g)s. We also show that CNN can correct inaccurate
labels that are misclassified by standard pipelines; it is illustra-
tive of the anomaly detection capability of CNNs.
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6. Constraining the chemical evolution of lithium in
the Milky Way

6.1. Galactic evolution of lithium

Recently, a number of studies have challenged the possibility
to use main-sequence stars (7. > 5500 K) to trace the lithium
ISM abundance. Guiglion et al. (2019) suggested that the upper
boundary of lithium in the super-solar metallicity main-sequence
stars do not reflect the original ISM content — but, rather,
lithium depletion due to an interplay between stellar evolution
and radial-migration (see also Miglio et al. 2021 and references
therein). Randich et al. (2020) investigated this Li decrease using
GES stars both on the warm side of the lithium dip (T >
6800K) in metal-rich open clusters together with PMS stars
from very young clusters!! (age < 100Myr). They showed
a lithium plateau of A(Li)~3.4dex at 0.1 <[Fe/H] <0.3 dex.
Their conclusion supported the scenario of Guiglion et al. (2019)
which has recently been confirmed by Dantas et al. (2022).
Stars on the hot side of this dip have not undergone any
Li depletion and they are the best candidates for the study of
the galactic evolution of lithium with metallicities, ages, and
galactocentric distances. However, atomic diffusion might have
changed the original Li abundances in the atmospheres of (some)

" An updated list of clusters comprising also the OCs released in iDR6
can be found in Table 2 of Romano et al. (2021).
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solar-metallicity stars (Romano et al. 2021; Charbonnel et al.
2021). Indeed, the lithium-dip (Li-dip), namely, the drop in
A(Li) observed in the main sequence stars in temperature range
of 6400-6800 K, has been confirmed in both cluster and field
stars (e.g., Boesgaard & Tripicco 1986; Deliyannis et al. 2019).
The origin of the Li-dip at this narrow T.s range has been
attributed to an interplay of mass-temperature dependent pro-
cesses, most importantly, shallow surface convective zone and
higher atmospheric mixing due to significant spin-down of ini-
tial PMS rotational velocity. Charbonnel et al. (2021) recently
showed that hot metal-rich field stars do not exhibit any lithium
decrease using GALAH and AMBRE data. This finding is in
agreement with the result in Gao et al. (2020) using warm field
stars from GALAH, and Randich et al. (2020) using OC stars,
and Romano et al. (2021) using both.

In Fig. 21, we further investigate the Li ISM, with a sample
of stars on the warm side of the Li-dip (warm group). To select
these stars we adopted the following criteria: S/N > 75 pix~',
Tt >6800K, 3.8 <log(g) <4.25 dex, —1 < [Fe/H] < 0dex, A(Li)
>1.0dex, eVRAD < 1.0kms™!, eT.5 <200 K, elog(g) < 0.1 dex,
e[Fe/H] <0.2dex, and eA(Li)<0.2dex and also avoid pecu-
liar stars and stars with emissions. We find stars with Li
around 3.4dex at [Fe/H]~ 0.2 dex, consistently with the peak
at A(Li) ~ 3.4 dex reported by Randich et al. (2020). We note
the presence of super-solar [Fe/H] stars with lithium between
2.2 and 3.0dex. These stars could be old (>6-7 Gyr) and have
depleted their lithium. To be able to confirm these stars have
indeed migrated from inner regions, an estimate of their birth-
radii would be needed (e.g., Minchev et al. 2018).

We further investigate the ISM evolution in the metallicity
regime —1 < [Fe/H] < 0 dex. All of these stars have Li abundance
above the Spite plateau value and there is a clear increase of
lithium with metallicity from 2.2 to 3.2dex. Given the small
sample size, we cannot reliably confirm the presence/absence
of a warm plateau at A(Li)=2.69dex (see GALAH survey,
Gao et al. 2020), in the region of —1.0<[Fe/H] < —0.5dex.
However, the mean A(Li) for the 33 stars present in that metallic-
ity range is lower at A(Li) =2.44 + 0.12 dex and show a gradient
with metallicity. If we trust that the hot stars on the hot side of
the dip are accurate tracers of the lithium ISM, we do not mea-
sure the usually reported steep rise of the ISM in the domain
—1.0 < [Fe/H] < —0.5 dex (based on cool dwarfs), but, instead, a
shallow increase.

The consequence of such finding for the modeling of the
lithium ISM on the domain —1 < [Fe/H] < —0.5 dex would be to
take into account earlier Li production by more massive sources
and a longer delay in the production of lithium by the long-
lived sources (as suggested by the chemical evolution model of
Cescutti & Molaro 2019). Romano et al. (2021) arrived to the
same conclusion based on GES-iDR6 data, suggesting a shorter
delay in the production of lithium, claiming that nova white-dwarf
progenitors must be in the range 3-8 M, rather than 1-8 Mg, as
usually assumed (see Fig. 8 of Romano et al. 2021).

6.2. Search for lithium-rich giants

Standard stellar evolution models predict that the sur-
face Li abundances of low-mass red giants after the first
dredge-up decreases by ~60 times to below A(Li)~ 1.50dex
(e.g., Lagardeetal. 2012) when starting from an initial
A(Li) = 3.3 dex (solar meteoritic value). Lithium-rich giants are
rare objects and confirm that lithium can be produced in stellar
interiors (see e.g., Magrini et al. 2021b, and references therein);
this results from the Cameron & Fowler (1971) mechanism.
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Fig. 21. Effective temperature vs. surface gravity diagram, with the stars color-coded according to their Li abundance (left). The approximate location
of the Li-dip region according to Gao et al. (2020) is highlighted in pink. The red points represent the warm stars, T > 6800 and S/N > 75 pix~'.
The [Fe/H] vs. Li abundance trend for the warm stars shown as red points. Gray dots represent the other stars shown in the left plot (right).

These authors proposed that the reaction H + @ —’ Be + y firmed that our Li-rich giants are not misclassified objects (e.g.,

produces ’Be, which is then rapidly transported outwards by
convection and non-standard mixing processes to lower temper-
atures, where it decays into "Li. The Li-rich giants are believed
to play a role in the enrichment of the ISM (Romano et al.
2001). Stellar Li enrichment is also possible due to exter-
nal sources such as the measured over-abundance of Li as a
result of a mass transfer process in a binary system, where the
companion produces Li through the Cameron—Fowler mech-
anism. Planet engulfment was also proposed to explain such
high lithium abundance in giants, although it seems this mech-
anism can increase the abundance only up to A(Li) ~ 2.2 dex
(Aguilera-Gomez et al. 2016). We refer to Casey et al. (2016) for
a review on the enrichment processes in Li-rich giants.

Our training sample contains just 38 lithium rich giants,
considering a strict condition of  log(g)<3.2dex and
A(Li) >2.0dex. It is important that the CNN is able to identify
these rare objects, as they are of a great scientific interest. The
Li-rich giants have previously been reported in earlier Gaia-ESO
papers (Casey et al. 2016; Smiljanic et al. 2018; Sanna et al.
2020) and some of them are present in our training sample. In
addition, we report the discovery of 31 new lithium rich giants
by CNN in the observed sample (see Fig. 22). These stars were
not reported in previous Gaia-ESO papers. We also checked the
GALAH survey catalog in the southern sky of Li-rich giants by
Martell et al. (2021) and found no match.

To identify the Li-rich giants, we selected stars with
T <5500K, log(g) <3.5dex and A(Li)>2.0dex, for which
GES-iDR6 has not provided either one or any of the labels. To
assure a reliable parameter estimation, we further selected spec-
tra with low CNN uncertainties of eTg < S0 K, elog(g) < 0.1 dex,
e[Fe/H] < 0.1 dex and eA(Li) <0.1dex, and S/N>25 pix‘1 and
E_VRAD <0.5kms™'. We also checked for good photom-
etry in Gaia EDR3 (Gaia Collaboration 2021) by selecting
RUWE < 1.4. The CNAME and atmospheric parameters for the
33 stars are listed in Table 2. Out of the 31 Li-rich giants,
half of the stars have A(Li) between 2.0 and 3.0 dex with half
have A(Li)>3.0dex with a maximum lithium abundance of
3.88 dex. One of the Li-rich giants is a fast-rotator with vsini =
12.1kms™!; giants with high vsini and A(Li) can indicate plan-
etary engulfment and needs further study. We additionally con-

PMS stars) using the y-index of Damiani et al. (2014).

As seen in Fig. 22, our new Li-rich giants seem to be dis-
tributed along the whole giant branch, although a clear concen-
tration is seen at the position of the red clump. However, in recent
years, a view has emerged staring that Li-rich giants can be found
only in the He-core burning red clump phase (Deepak & Reddy
2019; Deepak & Lambert 2021; Martell et al. 2021). Further
analyses of our new sample is essential for investigating their
properties and evaluating the possible mechanisms for their Li
enrichment. Further investigations on these 31 Li-rich giants
could be complemented by very precise asteroseismic log(g) (see
for instance Zhou et al. 2022 with LAMOST data), if available
with surveys such as TESS and PLATO (Singh et al. 2021).

7. Summary and future prospects

To prepare the ground for the future 4MOST and WEAVE spec-
troscopic surveys, we developed a convolutional neural network
approach for determining atmospheric parameters (Tes, log(g),
[Fe/H]) and lithium abundances from GES stellar spectra. We
built a training set of 7031 stars, based on high-quality stel-
lar labels from GES iDR6. The main results are summarized
as follows:

1. Our CNN shows very good performance, even though we
masked Ha and despite the fact that the wavelength range
in GIRAFFE HRI5N setup is not considered optimal for
determinations of atmospheric parameters (Lanzafame et al.
2015). These results indicate that our trained CNN models
are competent and have learned the available spectral fea-
tures. The CNN is able to provide results with typical uncer-
tainties of ~35K for T, 0.05dex for log(g), 0.03 dex for
[Fe/H], and 0.06 dex for A(Li).

Overall, the CNN predictions show a very good agreement
in comparison with the GES-iDR6 input labels. The CNN
achieves a good performance for all S/N values, including
the low S/N (x20 pix~') spectra. Thanks to the large variety
of rotational velocities in the training sample, the CNN is
able to accurately predict atmospheric parameters, even for
the fast rotators for which the spectral features are broadened
and can be blended with neighbouring lines. As CNN is sen-
sitive to even small systematics in the input data, we found
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Table 2. 31 newly discovered GES Li-rich giants and their CNN asso-
ciated atmospheric parameters: T (K), log(g) (dex), [Fe/H] (dex); and
lithium abundances, A(Li) (dex).

CNAME Ter  log(g) [Fe/H] A(Li)
07434938-3841399  4841.0 2.84 -031 3.88
10495937-6345553  4805.0 2.72 —-0.16 3.83
07464933-3750081 4948.0 290 -020 3.62
08064077-4736441  4797.0 2.66 —-0.10 3.56
16271097-2455213 49200 282 —-0.45 3.55
06410348+0905141  5071.0 3.13  —-0.18  3.50
07493206-3759457  4799.0 2.69 -024 3.48
10430727-6456318  4619.0 247  —-0.16 3.43
08110435-4853491 4831.0 2.68 -030 3.42
10400095-6419586  4525.0 234 001  3.29
08084532-4701292 4836.0 2.74 -0.19 3.26
07462219-3712141 4862.0 2.82 -020 3.22
06273069-0440141 47140 253  -0.68 321
08512566-4135067 4331.0 220 023  3.15
08102172-4845417 45140 236 -0.06 3.14
06255393-0457404 4981.0 293 029  3.03
08083354—4711111 4441.0 231  0.10  3.00
07442999-3812166 4857.0 2.65 024 2.98
10350175-6405092  4469.0 235 0.1  2.88
07475310-3733040 4853.0 2.80 -021 2.86
10483936-6327542  4383.0 221  0.08 2.74
10420066-6421333  4397.0 222 008  2.73
11130526-7617396  4815.0 2.67 -032 273
11123294-7727006 43150 231  0.16 2.6l
10575316-7634459 48580 2.70 -021 242
07472841-3850499  5276.0 347 -0.12 235
10513847-6335341 43520 224 031 229
07472390-3856376  5049.0 293  -024 227
06272996-0518528  4522.0 244  —-0.02 2.20
08075108-4744027 4719.0 257 -0.13  2.19
07483625-3724338  4939.0 3.01 -0.15 2.03

Notes. Table is ordered by A(Li).

that large uncertainties in Vy,q (>0.5km s71) can degrade the
CNN performances.

3. Gaia benchmark stars within the training label range are
accurately predicted within 1-sigma by CNN while those
outside show some systematics. The origin of such a dis-
crepancy could be a lack of metal-poor stars (both dwarfs
and giants) in the training set. It could also come from the
fact that metal-poor stars are more difficult to parametrize
due to weaker lines and possible NLTE effect.

4. The catalog of atmospheric parameters and Li abundances
for ~40000 stars is publicly available at CDS. In addition,
we have made the CNN code, spectra and labels available to
the community'?.

5. The CNN atmospheric parameters and lithium predictions
agree very well with GALAH DR3, within 250K for T,
0.3 dex for log(g), 0.2 dex for [Fe/H], 0.3 dex for A(Li). Sys-
tematic offsets are present between the GALAH DR3 and
CNN (also with respect to input GES-iDR6 labels) due to
the different instrument setup, spectroscopic pipelines, and
calibration strategies. We show that the CNN atmospheric
parameters match up nicely with asteroseismic results from

2 https://github.com/SamirNepal/Li_CNN_2022
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CoRoT. We also demonstrate that CNN can correct wrongly

assigned labels.

6. We have verified that the CNN is learning from relevant spec-
tral features for the atmospheric parameters (e.g., the Quintet
is sensitive to log(g)) and found that CNN is able to single
out the lithium line among hundreds of other lines, for pre-
cisely determining lithium. Using correlations for inferring
elemental abundances without spectral features should be
avoided.

7. We investigated the ISM chemical evolution of lithium, with
the stars on the hot side of the lithium dip (more represen-
tative of the ISM). Our findings suggest that the usually
reported steep rise of the upper boundary of lithium is not
visible on the domain —1 < [Fe/H] < 0 dex, exhibiting a shal-
lower rise of the ISM. This suggests that earlier Li produc-
tion by more massive sources and a longer delay in the pro-
duction of Li by the long-lived sources for enriching the ISM
should be taken in account, as claimed by recent chemical
evolution modeling (Cescutti & Molaro 2019; Romano et al.
2021). In addition, there is no decrease in the lithium bound-
ary with [Fe/H] > 0 dex, but we report the presence of stars
with lithium between 2.2 and 3.0 dex which are likely to have
depleted their lithium content.

8. We report the discovery of 31 new Li-rich giants. A follow-
up study using asteroseimic data for these stars could pro-
vide an insight on stellar Li production and mixing mech-
anisms. 4MOST is expected to discover thousands of these
objects, making it possible to study these peculiar stars over
a large Galactic volume, for instance, in the bulge, and
metallicity range.

Our work confirms that CNNs are efficient for deriving lithium
abundances based on HR15N spectra, namely, very similar data
as 4MOST and WEAVE. It gives excellent perspectives for data
analysis with CNN in the context of these two surveys. However,
several improvements could be made in order to refine CNN per-
formance. For instance, in order to increase the diversity in the
training sample, adding the spectra of binary stars and properly
dealing with emission features could be helpful.

For the future use of CNNs, it will be crucial to build the
training sets proactively, namely, not only relying on sets we
build for a given survey, but carefully filling in regions of the
HR diagram with proper targets. In particular, attention should
be paid to populating the metal-poor tail of the training set in
order to avoid biases. In such a way, the training set limits would
be extended and a larger label space could be probed — as the
current application is clearly limited within the available train-
ing set limits. In a future work, it would be interesting to explore
Bayesian NNs and different types of loss functions such as the
negative log likelihood to provide better uncertainty estimates.

One important aspect of spectroscopy that was not taken into
account in this project are the NLTE effects coupled with a 3D
structure of the atmosphere that can affect lithium abundance
measurements. Several studies have published grids of NLTE
corrections for lithium abundances, such as Lind et al. (2009),
and more recently Wang et al. (2021). This NLTE-3D correc-
tions affect mainly the cool-giants (up to +0.3 dex) in the high-
lithium regime. For metal-rich dwarfs, the typical correction is
on the order of —0.1dex, for 5000 < T < 6500K (see also
Figs. 1 and 2 of Magrini et al. 2021a). A potential future task
could be to include these NLTE corrections to the training-set
lithium label, but we expect no major change in the results pre-
sented in this work. In the context of future surveys, 3D NLTE
measurements should be performed homogeneously for as many
elements as possible. For instance, a-elements such as O, Mg,
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Fig. 22. Kiel-diagram showing the newly-discovered Li-rich giants (black stars) along with the training sample color-coded according to their Li
abundance (left). Gaia color-magnitude diagram for the same stars (right). The training sample stars are colored by their surface gravities.

and Ti will be measurable by 4AMIDABLE-HR and are affected
by 3D NLTE in a non-negligible way (Bergemann et al. 2021,
2017, 2012; Sitnova et al. 2018).

Concerning the optimization of the training set, properly
including M stars with strong TiO bands in the training set will
allow us to accurately parametrize this type of object. It will be
a necessity for 4MOST, which is planned to observe (among
other targets) open-clusters. Regarding the sensitivity of CNN
to Vyug, future surveys observing with multiple spectrographs
should take care to provide accurate radial velocities in order
to minimize the possible systematics during the training phase.

On this study, we show that lithium abundances in solar-
type stars with lithium lower than 1.25 dex can not be measured
precisely at the GIRAFFE HRI15 resolution (~20000). For the
future use of CNN (or ML in general) for stellar abundance
measurements, it will be necessary to develop an objective crite-
rion for deciding whether an abundance is a real detection or an

upper'? limit.
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Appendix A: CNN model technical details

In the following sections, we detail the technical aspect of the
CNN, in particular, the architecture, the choice of hyperparame-
ters, and model generalization.

A.1. Convolution and the fully connected layers

Convolution layers are the central part of the CNN class of neu-
ral networks, as they are key to identifying patterns and features
in input data (Fukushima & Miyake 1982; LeCun et al. 1989).
The 1D stellar spectra we use are characterized by absorption
features governed by the physical properties of the stellar atmo-
sphere. The CNN'’s goal is then to learn how these spectral fea-
tures correlate with the stellar labels. The convolution layer, con-
sisting of a collection of filters, when convolved with the 1D
input from the previous layer, is able to extract the features. Dur-
ing the learning process, these filter parameters are optimized.
After extensive tests, we adopted the model with 3 Conv1D lay-
ers with eight, six, and four filters, respectively. Using multiple
filters in each convolution layer is similar to looking at the same
object with different perspectives.

After the first and second convolution layers, we apply a
Maxpooling process, which reduces the feature map size by half.
This is very useful to reduce the overall training parameters,
which also reduces training time, while the network focuses on
important features. Maxpooling isn’t applied after the third con-
volution layer to avoid losing too much information.

At the heart of every neural network are the fully connected
layers (or dense layers) (Lecun et al. 2015). They make up the
central component that adds complexity and meaning to the
functional approximation of the relationship between (in our
case) the input spectrum and the output labels. As shown in
Fig. 3, the features learned from the input spectrum by the convo-
lution layers are passed to the dense layers. This combination of
convolution and dense layers ensures that the model learns from
the whole spectral range instead of just the individual spectral
features.

Our architecture contains three dense layers and one output
layer (also a dense layer). The four feature maps from the last
Convl1D layers are flattened before being fed to the first dense
layer. The first dense layer has 64 neurons and receives input
from the 6788 neurons of the flattened layer. The second and
third dense layers have 128 and 32 neurons, respectively. The
output dense layer is naturally composed of four neurons corre-
sponding to the four training labels. Our choice of the number of
layers and neurons is based on a good deal of experimentation,
with the goal of having a CNN that is complex enough, without
mitigating the training performance.

A.2. Choice of hyperparameters

Hyperparameters are set at the beginning of the training and
remain the same throughout the training, as opposed to the learn-
able model parameters such as the weights and biases. Here we
discuss some important hyperparameters:

1. Weight initialization: The weights of all parameters in the
model have to be initialized before the training and neu-
ral networks are very sensitive to the initial weight values,
as poor initialization can lead to a non-convergence. We
adopted the intensively used “golrot uniform" that initializes
weights from a uniform distribution within a certain range.

2. Activation functions: Activation functions are the mathe-
matical functions that decide whether a neuron is activated or

not. It adds non-linearity to the network and decides the out-
put of any node or layer depending on the input. Each layer
is activated using the “Leaky-ReLu" activation function and
for the output layer, we use the “linear" activation.

3. Epochs: One complete pass of the training data through the
network is called an epoch. Multiple epochs are needed for a
good training. We allow for large number of training epochs
until the training and test loss curves flatten out and stopped
by using the EarlyStopping process (see Fig. 4).

4. Batch size: This refers to the number of data items used for
one update of the model parameters during a single training
epoch. The “mini batch stochastic gradient descent” learning
algorithm updates the model weights multiple times depend-
ing on the batch size in a single training epoch. It is an excel-
lent way to lower the training time. A good choice for the
batch size also provides regularization and stability during
the training. We adopted a batch size of 64 as a balance
between good approximation of the training set and faster
training time.

5. Learning rate: The learning rate (77) is the amount by which
the weights are updated during the training and affect both
the smooth convergence and training time. We tested several
values of n7 and found that the best performances, for our
model, are achieved for n = 0.0001.

A.3. Model generalization: Avoiding over- or under-fitting

The generalization and proper convergence of the model
during the training is important to avoid over or under-
fitting and to ensure that the training progresses smoothly
(Filipi Gongalves dos Santos & Papa 2022). Our choice of con-
volution and dense layers ensures that the model does not under-
fit the training data, hence, attention must be paid to avoiding
overfitting the model. For this purpose, we employ the following
regularization, dropouts, and early-stopping procedures detailed
below.

In each of the three convolution layers, the L2 Regulariza-
tion function is applied, allowing for a penalization of the loss
function (see Sect. 3.2) by adding to it a squared magnitude of
model weights as a penalty term. The penalty term minimizes
the model weights and ascertains that less significant features in
the spectrum do not significantly affect the label prediction.

We applied a dropout layer on the inputs of the three inner
dense layers. At each training epoch (explained below in Sect.
A.2), a certain number of neurons are randomly selected and
their contribution to the activation of neurons in subsequent
layers is temporally removed. This forces the network to learn
from the whole wavelength range of the spectrum as the model
weights do not rely only on a very few spectral features and do
not neglect less significant features. In Fig. 3, we can see that
20% of the neurons are dropped prior to the dense layers.

While training the CNN model, it is recommended that the
training stop once the validation performance starts to degrade.
For this task, we employed a callback called EarlyStopping in
the model. This callback monitors the validation and test loss
at the end of each training epoch and once the loss degrades or
stagnates, over the last 25 epochs, the training is stopped and the
model weights of the best training epoch are saved.

Besides these techniques, the noise in the real observational
data also plays an important role: noise in the training data acts
as a regularizer and reduces over-fitting Bishop (1995), allow-
ing for a faster training. Model based networks that do not
use real observations but synthetic data instead, such as The
Payne (Ting et al. 2019) using noise free spectra and StarNet
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(Fabbro et al. 2018) with added Gaussian noise, are usually not
representative of the inherent correlated noise of real spectra.
Interstellar extinction, atmospheric extinction, and instrumental
signatures are not simulated in the synthetic spectra and can lead
to a significant synthetic gap. Furthermore, these synthetic data
are also normally homogeneous in terms of labels, which is also
not a true representation of the observations. The data-driven
CNN employed in our study is able to deal with the real noise
efficiently. The noise in the data lead to a more efficient regular-
ization and reduced generalization errors.

Appendix B: Performance at different S/N

Here, we investigate the robustness of CNN predictions for dif-
ferent S/N regimes. As illustrated in Fig. B.1, the mean bias

and mean scatter between CNN and GES predictions remains
constant across the different S/N bins for our four labels, in the
training sample. For the observed sample, even though there are
fewer stars in the higher S/N bins, CNN performances are simi-
lar compared to the training sample for the atmospheric param-
eters. In the bins S/N < 30, the values are slightly higher for
the observed sample, but are expected considering the level of
noise and spectral resolution. The bias and o for Lithium show
an increasing trend for S/N > 50 in the observed sample due
to low statistics for these bins. Also, the iDR6 A(Li) values
for these stars mostly lie at the edges of our training A(Li)
range, namely, above 3.0 dex or below 1.0 dex. We conclude
that is robust to the noise in both the training and observed
samples.
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Fig. B.1. Histogram showing the number of spectra in each S/N bin for the training (yellow, 7031 stars) and observed (green, 5096 stars) samples
(top panel). Bias (Bias = mean (CNN-iDR6), solid) and dispersion (o = std(CNN-iDR6), dash-dot) as a function of S/N (bottom 4 panels). The
observed sample is selected within training label limits, eVRAD < 1.0 km/s, with no GES flags and with UPPER_COMBINED_LI1 = 0.0. For
the observed sample, we have very few stars in the two highest S/N bins in comparison to the lower S/N bins.
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