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Abstract 

Gout is a chronic disease of monosodium urate crystal deposition in the setting of 

hyperuricemia that typically presents with recurrent flares of acute inflammatory arthritis that 

occur due to innate immune response to deposited crystals. The molecular mechanism of the 

progression from hyperuricemia to clinical gout is poorly understood. Here we provide 

insights into this progression from a genetic study of 2.6 million people, including 120,282 

people with gout. We detected 376 loci and 410 genetically independent signals (148 new 

loci in urate and gout). We identified 1,768 candidate genes with subsequent pathway 

analysis revealing urate metabolism, type 2 diabetes, and chromatin modification and 

structure as top pathways in gout. Genes located within or statistically linked to significant 

GWAS loci were prioitized for their potential to control the progression from hyperuricemia 

to gout. This identified strong candidate immune genes involved in epigenetic remodelling, 

cell osmolarity, and regulation of NLRP3-inflammasome activity. The genetic association 

signal at XDH, encoding the urate-producing enzyme xanthine oxidoreductase (XOR), co-

localizes with genetic control of XDH expression, but only in the prostate. We demonstrate 

XOR activity and urate production in the mouse prostate, and use single-cell RNA sequence 

data to propose a model of urate reuptake, synthesis, and secretion by the prostate. The gout-

associated loci were over-represented for genes implicated in clonal hematopoeiesis of 

indeterminate potential (CHIP) and Mendelian randomization analysis provided evidence for 

a causal role of CHIP in gout. In concert with implication of epigenomic regulators, this 

provides support for epigenomic remodelling as causal in gout. We provide new insights into 

the molecular pathogenesis of gout and identify an array of candidate genes for a role in the 

inflammatory process of gout. 
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Introduction 

Gout is an important public health issue of increasing prevalence1 and burden2 that is 

exacerbated by co-morbidity with cardiometabolic and renal disease3. Prevalence is 

approximately four-fold greater in men than in women1. It typically presents as recurrent self-

limiting attacks of extremely painful acute inflammatory arthritis (termed ‘gout flares’). Gout 

is a chronic disease of monosodium urate (MSU) crystal deposition in joints and other 

structures that occurs in the setting of elevated serum urate levels (hyperuricemia)4. The gout 

flare is initiated when MSU crystals interact with resident macrophages to form and activate 

the NOD-like receptor protein 3 (NLRP3) inflammasome, which results in production of 

mature IL-1β and IL-185. The inflammatory response is then amplified by the recruitment 

and activation of innate immune cells such as neutrophils, with the resolution phase mediated 

by processes including anti-inflammatory cytokines and aggregated neutrophil extracellular 

traps6. Soluble urate trains the immune system7 to have increased activity and response to 

MSU crystals through durable epigenetic modifications8. 

 

Large genome-wide association studies (GWAS) have provided insight into the molecular 

mechanisms of urate control, with genetic variation in loci containing renal and intestinal 

urate transporters being prominent (e.g. SLC2A9, ABCG2, SLC22A12), with the kidney and 

liver the main organs in which genetic control is exerted9. In contrast, GWAS in gout have 

been relatively small9-15, the largest studies comprise 13,1799 and 37,10516 individuals with 

gout and identified 27 and 52 gout-associated genes, respectively; the majority of which also 

associate with urate levels. Whilst understanding the genetic and molecular control of serum 

urate is important in gout, most individuals with hyperuricemia do not develop gout (only up 

to 36%17,18) and many individuals with hyperuricemia who have not experienced a gout flare 
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have imaging-confirmed monosodium urate crystal deposits.19 Subclinical inflammation is 

associated with these deposits, indicating other factors must be involved in developing 

symptomatic gout20. Estimates of serum urate heritability from twin studies range from 45 to 

73%, but there are no credible estimates of the heritability of gout based on twin studies20. 

Heritability calculated using genome-wide genotype data in a cohort of unrelated European 

individuals was estimated at 28 to 30%, which is consistent with a recently-reported 

heritability estimate (27.9%) of clinically-defined gout in Japanese populations21, suggesting 

gout may be less heritable than hyperuricemia. Nevertheless genetic studies should be able to 

elucidate mechanisms involved in progressing from hyperuricemia to gout22. 

 

There is some evidence for genetic variants controlling the progression from hyperuricemia 

to gout. GWAS in gout comparing to individuals with asymptomatic hyperuricemia have 

identified a small number of loci10,23,24 (most of which also associate with serum urate 

levels9,25), and a Polynesian-specific variant in IL-37 associates with gout compared to 

asymptomatic hyperuricemia26. However, these loci cannot necessarily be interpreted as 

controlling the progression from hyperuricemia to symptomatic gout because hyperuricemia 

is defined by a single urate measure in each study, which does not allow accounting for the 

lifetime burden of urate27. Candidate gene studies have associated variants in inflammatory 

genes with gout, but none are widely replicated20. We present findings from the largest 

GWAS in gout to date utilizing 120,282 cases and 2,502,548 controls over four ancestral 

groups. The findings illuminate previously unidentified candidate pathways with the potential 

to control the progression from hyperuricemia to clinical gout. 
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Results 

Study overview 

The study design is summarized in Figure S1. This study comprised GWAS in four ancestral 

groups (African, East Asian, European, Latinx) and a trans-ancestry meta-analysis, each 

including sex-specific analyses. Summary statistics were amalgamated from 120,282 people 

with and 2,502,548 people without gout. The effect of a polygenic risk score on risk and 

prediction of gout was evaluated, as was genome-wide genetic correlation with other 

phenotypes. Follow-up analyses included identification of candidate genes by co-localizing 

signals of association with expression quantitative trait loci (eQTL), identifying genes with 

candidate missense variants, and genes identified by MAGMA28. These candidate genes were 

applied to pathway analysis. A prioritization scheme identified candidate genes for the 

progression from hyperuricemia to gout. Mechanistic studies included investigation of the 

role of xanthine oxidoreductase in the prostate in synthesizing urate, and the evaluation of a 

causal role for the clonal hematopoiesis of indeterminate potential (CHIP) pathway in gout. 

 

Identification of GWAS signals 

Single- and trans-ancestry genome-wide analyses 

We carried out fixed-effect inverse-variance weighted GWAS meta-analyses for gout in four 

ancestral groups (African (AFR) – 3,052 cases and 77,891 controls; East Asian (EAS) – 

10,729 cases and 82,807 controls; European (EUR) – 100,661 cases and 2,106,003 controls; 

and Latinx (LAT) – 5,840 cases and 235,847 controls) (Table S1). The four GWAS were 

conducted using imputed genotypes  that included only biallelic single nucleotide 

polymorphisms (SNPs) with a minor allele frequency > 0.1% (Methods and Table S1). The 

African meta-analysis included 24,649,233 SNPs, the East Asian meta-analysis included 
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10,194,540 SNPs, the European meta-analysis included 13,443,610 SNPs, and the Latinx 

meta-analysis included 18,956,225 SNPs. A trans-ancestry meta-analysis of the variants 

present in all four ancestry-specific GWAS (6,386,511 SNPs) was also conducted to 

maximize locus discovery by increased sample size, and it comprised 120,282 cases and 

2,502,548 controls. Whilst there was some indication of inflation of GWAS test statistics 

(�GC = 1.050AFR, 1.121EAS, 1.611EUR, 1.105LAT), linkage disequilibrium (LD) score regression 

analysis revealed no evidence of inflation due to factors such as population structure (LD 

score intercept = 1.025AFR, 1.049EAS, 1.026EUR, 1.048LAT), with the elevated �GC observed in 

the European GWAS likely being due to polygenicity between individual cohorts 

contributing to the ancestry-specific meta-analysis29. 

 

Identification of significant loci and independent signals 

A total of 296 genome-wide significant loci (defined as a genomic segment with ≥1 lead 

variant(s) that define a genetically independent signal) were detected in the trans-ancestry 

meta-analysis (log10BF ≥ 6), 20 with >1 genetically-independent signal, resulting in 318 

independent genome-wide significant signals. In the separate ancestry GWAS, two genome-

wide significant loci were detected in the African GWAS, 10 in the East Asian GWAS, 277 

in the European GWAS (13 with multiple signals resulting in 291 independent lead SNPs), 

and ten in the Latinx GWAS (Figure 1; Figure S1, S2; Table S2). There was a total of 339 

non-overlapping loci and 365 genetically independent signals across all analyses. Only two 

loci were common to all ancestral-specific analyses (Figure 1), both on chromosome 4 and 

containing the well-studied SLC2A9 and ABCG2 genes20. The ABCG2 locus had the strongest 

statistical evidence for association with gout in the East Asian, European, Latinx, and trans-

ancestry GWAS. A total of 119 loci were unique to one of the five GWAS conducted. Where 
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a locus was identified across more than one of the five GWAS, but there was a different lead 

SNP between the ancestries, the majority of the divergent lead SNPs were in high linkage 

disequilibrium (r2 ≥ 0.8; 93 of 139 loci; Table S2). For the identified lead variants, there was 

strong correlation between effects on serum urate level in the UK Biobank and gout risk 

(Pearson correlation r = 0.92; Figure S3). 

 

Sex-stratified analyses 

The prevalence of gout is at least three to four-fold greater in men than women1,30. Therefore, 

we conducted sex-stratified GWAS for each of the four ancestral groups and the trans-

ancestry meta-analysis. In each ancestry-specific analysis there were fewer female gout cases 

than male gout cases (ranging from a 1:2 ratio to a 1:23 ratio of women to men; Table S1). A 

total of 247 loci were identified in the male-only trans-ancestry meta-analysis (19 with 

multiple signals resulting in 266 independent genetic associations) and 15 significant loci 

were identified in the female-only trans-ancestry meta-analysis (17 independent signals) 

(Table S2). Across all ancestries there was a total of 299 independent signals in the male-

only analyses and 26 independent signals in the female-only analyses; 29 of the male-only 

loci (36 signals) and 8 of the female-only loci were not detected in the full (combined sexes) 

analyses. One locus was detected in both the male-only and female-only analyses, but not the 

full (combined sexes) analysis (Figure 1). This was due to heterogeneity between the male-

only and female-only signals (Table S4). 

 

Of the 410 genetically independent signals identified across all analyses, 44 (representing 36 

loci) had significant heterogeneity (P < 1×10-6) between the male-only and female-only 

results, with effect sizes greater in men for all 36 loci (Table S3). Thirty-two (89%) had 
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previously been associated with urate9 and include the 10 loci with the strongest effects on 

urate31 (SLC2A9, ABCG2, SLC17A1, SLC16A9, GCKR, SLC22A11, INHBC, RREB1, 

PDZK1, SLC22A12). ABCG2 was heterogenous in all datasets excepting African, and 

SLC2A9 was heterogenous in the trans-ancestry meta-analysis and European GWAS. Of the 

32 loci previously associated with urate, 13 had also been reported as exhibiting 

heterogeneity between sexes in urate control9, with ten having a stronger effect in men and 

three in women (SLC2A9, A1CF, IGF1R). 

 

Previously unreported loci 

Of the 376 loci identified across all analyses, 148 (four with two independent signals) have 

not previously had any variant within the locus boundaries associated with urate or gout. 

Thus, these 148 loci can be considered newly identified associations with gout (Table S4). Of 

the remaining 228 loci, 143 had the same lead SNP or were in high LD (r2 ≥ 0.8), 64 in low to 

moderate LD (0.1 ≤ r2 < 0.8), and 21 were in no linkage disequilibrium (r2 < 0.1) with a SNP 

previously reported to be associated with serum urate or gout (Table S4). Of the 30 loci with 

>1 independent signal, 18 loci (19 independent signals) had no linkage disequilibrium (r2 < 

0.1) between the previously reported SNP(s) at the locus and one of the independent lead 

SNPs. Thus, 188 (148 + 21 + 19) of the independent signals can also be considered newly 

identified gout associations. 

 

Risk prediction and genetic relationships 

Polygenic risk score and risk of gout 

Gout polygenic risk scores (PRS) consisting of 289 SNPs from the European and 316 from 

the trans-ancestry GWAS, weighted by effect size, were generated and applied to the UK 
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Biobank European-ancestry cohort to assess how well the GWAS results predict gout status 

(Table S5). The risk score values were split into ten bins with equal ranges, and gout 

prevalence increased across these ten risk score bins from 0.0 to 24.3% and 0.0 to 41.7%, 

respectively for the European and trans-ancestry scores (Figure 2; Figure S4; Table S5). 

Compared to the risk score bin that included the most individuals, age- and sex-adjusted 

odds-ratios (ORs) ranged from 0.22 [95% CI 0.11; 0.45] and 0.07 [0.02; 0.28], for European 

and trans-ancestry respectively, in the lowest risk score bin, to 20.7 [9.2; 46.8] and 50.0 

[20.4; 122.6], respectively, in the highest risk score bin. For comparison, male sex conferred 

a gout risk of 13.9 [12.7; 15.1]. Male prevalence of gout in the highest European and trans-

ancestry risk score bins was 39.1% (OR = 23.7 [10.1; 55.4]) and 58.8% (OR = 60.7 [22.7; 

162.5]), respectively. While there were no females with gout in the highest bin for either risk 

score, analysis of the highest bin with gout cases gave OR = 9.4 [3.8; 23.3] and OR = 6.2 

[2.3; 17.0] for European and trans-ancestry risk scores, respectively. 

 

Equivalent risk scores were generated using SNPs from the European and trans-ancestry 

male-only and female-only GWAS. The 246-SNP risk score derived from the male-only 

European GWAS had a higher prevalence of gout (50.0%) and higher risk of gout (OR = 36.4 

[2.2; 609.3]) in the highest risk score bin than the highest risk score bin generated from the 

full (sexes combined) European GWAS SNPs (Figure S5). The 265-SNP risk score derived 

from the male-only trans-ancestry GWAS did not improve upon the full trans-ancestry risk 

score in the highest risk score bin (gout prevalence 26.9%; OR = 15.1 [6.2; 36.3]). Both the 

European and trans-ancestry female-only risk scores had higher gout prevalence (5.3% and 

3.8%) and OR (12.6 [3.0; 53.6] and 12.4 [3.8; 40.1]), respectively, in the highest bin than the 

risk score derived from the respective full (sexes combined) GWAS (Figure S4). 
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The 289-SNP European gout risk score improved gout risk prediction in Europeans (area 

under the receiver operating characteristic curve (AUROC) estimate of 0.71), compared to a 

114-SNP risk score generated from a serum urate GWAS in European individuals9 (AUROC 

estimate of 0.66) (Figure S6; Table S5). These estimates were the same in the male-only 

AUROC estimates, and lower in the female-only estimates (0.68 for the gout risk score and 

0.62 for the urate-derived risk score). Adding age increased the prediction accuracy of the 

gout risk score to 0.73 in males and 0.74 in females. 

  

Genetic relationships with other phenotypes 

To investigate the genetic correlation between gout and other complex phenotypes, LD score 

regression was undertaken using 934 traits reported in the UK Biobank, the European gout 

GWAS data and, for comparison, data generated from a GWAS of serum urate in European 

UK Biobank participants without gout (Methods). There was significant genetic correlation 

between gout and 348 phenotypes, which spanned 25 out of 27 broad phenotype categories 

(Figure 3, Figure S7, Table S6). As expected, the strongest correlations were with gout and 

urate (rg ≥ 0.89). Outside of cardiovascular disease and its body composition-related risk 

factors, established as associated with gout, negative correlations were seen with two sex-

related blood biomarkers, testosterone (rg = -0.17) and sex hormone-binding globulin (rg = -

0.31). This is consistent with a recent report of greater genetically predicted levels of each 

hormone associating with reduced risk of gout32. There was positive genetic correlation 

between gout and blood counts of leukocytes, lymphocytes, neutrophils, eosinophils, and 

reticulocytes (rg = 0.17, 0.14, 0.15, 0.12, and 0.26, respectively). Finally, positive genetic 

correlations between gout and various measures of negative mood were observed. The 
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genetic correlations with urate levels were very similar (Figure 3) with 300 of the 348 

phenotypes correlated with gout also significantly correlated with urate in the UK Biobank in 

a consistent direction. 

 

To investigate the possibility of testing for causality of gout for the 348 phenotypes correlated 

with gout, we tested the 289 SNPs that were included in the European gout polygenic risk 

score (above) for evidence of vertical pleiotropy with the 348 phenotypes using two-sample 

Mendelian randomization (MR) in MRBase by the MR-Egger (Egger intercept) approach. 

There was extensive pleiotropy, with 69 phenotypes having evidence of pleiotropy at a 

Bonferroni-corrected level of significance (0.05/348 = 1.4×10-4), 93 with P < 0.001, and 146 

with P < 0.01, which would complicate interpretation of any causal relationships identified 

via Mendelian randomization (Table S7). In the absence of a clear understanding of the 

molecular mechanisms of the genetic variants comprising the genetic instrument, further 

Mendelian randomization analysis was not pursued.  

 

Candidate Variants, Genes, and Tissues 

Tissues enriched in gout  

We analyzed the summary statistics of the four ancestries (African, East Asian, European, 

and Latinx) for significantly enriched tissues / cell-type groups and specific cell-types using 

covariate-adjusted LD score regression (cov-LDSC; Methods)33. In East Asian there was 

evidence of significant enrichment of tissues (Bonferroni-corrected Pcoef ≤ 0.05/40) in kidney 

(10.8-fold enrichment; Pcoef = 2.3×10-4), and in European there was enrichment in the kidney 

and liver (11.6-fold enrichment; Pcoef = 8.6×10-7 and 5.1-fold enrichment; Pcoef = 8.3×10-6, 

respectively) (Table S8; Figure S8). There were no significant enrichments observed in 
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either of the African and Latinx analyses. With respect to which specific cell-types were 

significant in European, we observed significant cell-type associations (false discovery rate 

(FDR) ≤ 0.05) in small and large intestine, colonic mucosa, duodenum mucosa, rectal 

mucosa, pancreas, skeletal muscle, kidney, and liver (Table S9; Figure S9). There were three 

significant kidney cell histone marks found in the East Asian cell-type analysis (H3K4me3, 

H3K9ac, and H3K27ac) that were also identified in the European ancestry analysis (Table 

S9). 

 

Cis- and trans-eQTL co-localization analyses 

To identify candidate causal genes that are possibly controlled through regulation of gene 

expression, we focused on gout association signals that co-localized with cis- and trans-

eQTL across 49 tissues in the Genotype Tissue Expression (GTEx) database. Of the 342 

trans-ancestry and European lead SNPs present in GTEx (or its proxy if the lead variant was 

not present), 290 (84.8%) had at least one co-localized eQTL (posterior probability of co-

localization (PPC) ≥ 0.5) representing 890 genes. There were 2,717 cis-eQTL over multiple 

tissues for 626 genes and 332 trans-eQTL (31 were both cis- and trans-eQTLs) over multiple 

tissues for 326 genes with evidence of co-localization (Table S10; Figure S10). 

 

Of the 921 eQTL implicated by co-localization analysis, ten had control of expression by 

both a cis- and trans-eQTL (ADK, HSP90AA1, RABEP2, SEPT9, SPN1, VPS9D1, RNF157, 

SLC16A9, TANC1 and TUBB8P7). For example, rs1171614 is the lead SNP for a co-

localized cis-eQTL for SLC16A9 (encodes kidney monocarboxylate transporter SLC16A9 

involved in carnitine transport) and SLC16A9 is a trans-eQTL of rs73592376 at the CUBN 

(proximal tubule uptake receptor) locus. We also noted that 47 of the 343 eQTL that had an 
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eQTL in multiple tissues had opposing effects on gene expression between tissues (Table 

S11). Focusing on genes that may have a role in gout inflammation there were 11 genes with 

eQTLs in whole blood, of these genes five (AQP10, BAG4, FADS1, SCAP, RP11-936I5.1) 

had a direction of effect opposite to all other tissues in which an eQTL was observed. 

 

Only five co-localized kidney cortex eQTL were observed in GTEx (FGF5, HLF, ITIH4, 

RP11-307C18.1, NUDT2), therefore we also leveraged comprehensive kidney eQTL data 

from the Susztaklab Kidney Biobank34 to identify additional kidney eQTL. We used LD (r2 > 

0.8) between the lead gout and the lead kidney eQTL SNPs to identify 137 genes with gout-

associated kidney eQTL, 69 of which also had a co-localized eQTL identified in other tissues 

within the GTEx data (Table S12).  

 

We used Activity-By-Contact (ABC) data35 to determine if the lead signals with co-localized 

eQTL showed evidence of gene regulation through enhancers. Of the 290 lead variants that 

had signals co-localized with cis- and/or trans-eQTL, 55 variants were within an ABC 

enhancer for 386 genes with ABC-score ≥ 0.015 (Table S13). 31 of these 55 variants were 

within an activity-by-contact enhancer for 48 co-localized eQTL (all in cis; Table S14), 

indicating that these variants may be altering gene expression by directly affecting the 

functional interaction between the putative enhancer and gene promoter. 

 

Tissue-specific eQTLs 

Reasoning that co-localized eQTL restricted to a single GTEx-defined tissue may be more 

tractable to specific biological insights than those expressed in multiple tissues, we filtered 

for tissue-specific co-localized eQTL (Table S15), identifying 581 eQTL genes. Of specific 
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interest are the eQTL in the testis for SLC34A1, HNF4G, and PRPS2 – genes with known 

roles in urate transport, production, and homeostasis – suggesting that the function of these 

genes in urate control could have male-specific mechanisms. Additionally, the co-localized 

eQTL for XDH (encoding xanthine oxidoreductase (XOR)) was specific to the prostate. In 

female-specific tissues (ovary, vagina and uterus), we identified COG5, JAZF1-AS1, 

FDX1P1, SPDYE18, and SDK1, none of which play known roles in urate homeostasis or gout 

risk. We identified only two co-localized eQTLs specific to kidney tissue in GTEx (FGF5 

and ITIH4), and an additional 68 kidney eQTL from the Susztaklab Kidney Biobank34 not 

present in GTEx. Notable amongst the 68 was SLC22A12 (encodes canonical urate 

transporter URAT136) that has not previously been demonstrated to have gout-associated 

genetic control of expression in the kidney. We found seven liver-specific (BSN, KLB, 

STK19B, TNKS, RAI1, ZDHHC14, and ZNF320) and 16 whole blood-specific (DGAT2, 

RPS6KB1, MBD5, C5orf42, MAP2K1, CDKL5, ARID4B, CARS, CSNK1G1, AUH, 

HEATR5B, AF064858.8, IL27, HAUS1P1, ZNF675 and DPEP3) co-localized eQTL. 

 

DNA Methylation QTL co-localization analysis 

The epigenetic reprogramming (‘trained immunity’) of monocytes by elevated levels of 

soluble urate is implicated in the etiology of gout7,37,38. To evaluate the possibility that gout-

associated loci also associated with control of DNA methylation status in the blood, we 

conducted co-localization analysis between whole blood DNA methylation QTL (meQTL) in 

the GoDMC data set39 derived from European participants, using the 291 lead SNPs in the 

European GWAS. We identified 520 methylation CpG sites within 1Mb of a lead gout-

associated SNP that also co-localized with a European GWAS signal (Table S16; PPC ≥ 0.8 

and ≥ 100 variants in the 1Mb segment used for co-localization). To determine whether the 
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implicated 520 CpG sites were involved in transcriptional regulation, we tested for 

enrichment in protein-binding within ±50 base pairs of the CpG sites using merged ChIP-seq 

data for 338 DNA-binding proteins from 1,536 cell-lines40. Significant enrichment was 

observed for 27 DNA-binding proteins (Bonferroni-corrected Fisher’s exact P ≤ 1.48×10-4) 

(Table S17) that bind to a total of 499 (96.0%) co-localized meQTL CpG sites (median = 54 

CpG sites, mean = 76.9 CpG sites). Of the 27 DNA-binding proteins identified, only one was 

within a gout genetic association signal (IRF1). Amongst the top enriched DNA-binding 

proteins were the histone acetylation writers and readers EP300 and BRD4. BRD4 has 

previously been implicated in the regulation of the NLRP3 inflammasome through regulation 

of NFκΒ signalling,41 BRD4 inhibition ameliorates urate crystal-induced gouty arthritis by 

regulation of pyroptosis in a rat model42.43 

 

The kidney is a key organ in urate homeostasis. Given that variation in DNA methylation in 

the kidney mediates 46% of heritability in kidney function traits44, we also identified 328 

genetic variants that were kidney meQTL for 576 CpG sites in strong LD (r2 
≥ 0.8) with a 

gout genetic association using the Liu et al.44 dataset (Table S18). The 50 kidney eQTL that 

also had at least one kidney meQTL were enriched for transcription factor binding of HNF4G 

using the enrichr gene set search engine45 (P = 0.03). For each of the kidney eQTL with co-

localized meQTL we looked for SNPs in linkage disequilibrium (r2 
≥ 0.8) with the lead gout 

SNPs that overlap a transcription factor binding site for HNF4G using HaploReg. We found 

three variants that overlap and disrupt a matching HNF4A/G motif: rs2453583 at SLC47A1, 

rs1165183 at H2BC1 (at the SLC17A1-4 locus) and rs260512 at SKI. Regulatory control of 

SKI and H2BC1 has not previously been associated with gout or serum urate. 
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Fine-mapping of loci  

We used three approaches (Bayes factor, FINEMAP46, and PAINTOR47) for fine-mapping 

the 376 unique loci in the European and trans-ancestry datasets from all analyses (full, male-

only, and female-only. We considered 99% credible sets from any one of the separate 

approaches with at least one variant with posterior inclusion probability (PIP) ≥ 0.5. Between 

the three fine-mapping approaches and cohorts, we found a credible set with at least one 

variant with PIP ≥ 0.5 in 285 loci (76.6%) (Table S19). The fine-mapping of complex 

phenotype loci is compromised when summary statistics derived from meta-analysis of 

cohorts using different genotyping arrays and/or imputation panels are used. Therefore, we 

first identified and excluded compromised loci using SLALOM48. Of the 285 loci, 70 loci 

(24.6%) in total were flagged as compromised by SLALOM in at least one of the cohorts 

(Table S20). 215 loci remained after removing the compromised loci from the relevant 

cohort (Table S21) and 608 candidate causal SNPs (PIP ≥ 0.5 in one or more of the fine-

mapping approaches and within a 99% credible set with ≤5 SNPs) were selected for further 

analysis (Table S22). Of these 608 variants, 37 were identified by two fine-mapping 

approaches and 16 were identified by all three approaches. We created a pool of 1,466 unique 

candidate causal variants (Table S24) from; a) the 799 lead SNPs from single- and trans-

ancestry GWAS in all cohorts (254/799 = 31.8% present in the fine-mapping credible set 

results); b) from an additional 185 variants identified as conditionally associated with gout 

after applying GCTA-COJO49 to the European GWAS data (Methods; Table S23) (26/185 = 

14.1% present in the fine-mapping credible sets); and c) the 608 variants identified by fine-

mapping (Table S22) (there were 126 variants common to the three categories). The 1,466 

SNPs in this pooled list were then assessed for their potential to disrupt gene function. 
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Candidate causal missense variants 

Of the 1,466 SNPs in the pooled list, there were 21 missense variants. There were an 

additional 173 missense variants that were in strong LD with the 1,466 candidate variants (r2 

> 0.8 in any of the relevant ancestries from 1000 Genomes) (Table S25). In addition to the 

genes with the 21 missense variants there were 26 other genes with a missense variant that 

was a lead SNP in one of the GWAS (including lead SNPs identified by conditional analysis) 

or had LD of r2 
≥ 0.98 with a lead SNP (Table 1). Of the combined 47 genes there were 16 

with missense variants with information on protein function impact that supports causality, 

including 7 not previously reported as genetically or functionally implicated in serum urate 

control or gout (ABCA6 p.Cys1359Arg, GLS2 p.Leu581Pro, MC4R p.Val103Ile, PNPLA3 

p.Ile148Met, SH2B3 p.Trp262Arg, SLC39A8 p.Ala391Thr, SLCO1B1 p.Val174Ala). Two of 

the genes with missense variants associated with serum levels of amino acids (CPS1 and 

GLS2), and the CUBN and LRP2 genes (encoding cubilin and megalin, respectively) 

physically interact in the kidney proximal tubule to resorb proteins from filtered urine50. 

 

Candidate causal non-coding variants 

To further investigate the remaining 1,445 non-coding candidate causal variants, we used the 

FATHMM51 non-coding score to determine if the SNP was predicted to be deleterious, and 

overlapped with activity-by-contact enhancer regions to determine if the variant mapped 

within an enhancer region that contacts a gene promoter35. Ninety-nine variants (7.0%) were 

predicted to be deleterious based on the FATHMM score for non-coding variants (FATHMM 

score ≥ 0.5), 256 variants (18.0%) were within an ABC-predicted enhancer for at least one 

gene (ABC-score ≥ 0.015), and 32 SNPs had a high FATHMM score and were also within an 

ABC enhancer that mapped to 78 genes (Figure S11, Table S26). Of these 32 SNPs, 29 
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overlapped enhancer marks and/or DNase hypersensitivity regions in blood, and ten had a co-

localized eQTL for the gene(s) with which they physically interacted through an ABC 

enhancer (Table S27). Of the ten only two had eQTL in whole blood: rs2439303 (NRG1) and 

rs2645479 (RPS6KB1).  

 

Investigation of underlying function 

Pathway analysis 

To gain insights into biologic mechanisms we carried out pathway and gene ontology (GO) 

analyses using the 1,768 genes (Table S28) from the combination of missense genes with 

candidate casual missense variants (Table 1), co-localized eQTL genes, and the significant 

MAGMA genes (Table S29). These analyses were significantly enriched for the GO term 

urate metabolism, REACTOME pathways Chromatin Organization and Chromatin 

Modifying Enzymes, and the KEGG pathways Type II Diabetes Mellitus and PI3K-Akt 

signalling pathway (Figure 4). The 46 genes that contribute to both the REACTOME 

Chromatin Organization and Chromatin Modifying Enzymes terms included histone 

methyltransferases EZH2, KMT2A, SETD1A, SETD2, and three lysine demethylases KDM3A, 

KDM4C, and KDM6B. The 15 genes that contribute to the KEGG Type II Diabetes Mellitus 

and the 59 genes that contribute to the PI3K-Akt signalling pathways, include the insulin 

receptor (INSR), insulin substrate receptor 1 (IRS1), insulin growth factor 1 receptor (IGF1R), 

NFκΒ subunit RELA, p70S6 kinase (RPS6KB1), and PIK3CB. 

 

Prioritization of genes predicted to control gout inflammation 

To identify candidate causal genes for follow-up that are more likely to be involved in the 

progression from hyperuricemia to gout, we developed a set of gene-centric criteria 
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(Methods) that we applied to 5,014 unique genes within the boundaries of all identified 

GWAS loci and an additional 412 cis- and trans-eQTL genes outside the boundaries (Table 

S30). Following application of the gene-based criteria to the 5,426 genes we sub-ranked the 

genes within each score by function-agnostic criteria: 1) gene with closest transcription start 

site; 2) implicated by activity-by-contact; and 3) containing a strong candidate missense 

causal variant (Table 1). This prioritization scheme revealed strong candidate genes for a role 

in the initiation and resolution of the gout flare (Figure 5). We found 117 genes with 

prioritization scores between four and seven, with transcription start sites closest to the lead 

gout-associated SNP and/or evidence from activity-by-contact for regulation of expression by 

an enhancer. This prioritization evidence strongly warrants follow-up analyses in these 117 

genes. Among these genes are FADS1, DGAT2, and the highest scoring gene FADS2, that are 

all involved in lipid metabolism, and IRF5, IL1R1, TRAF4, IL6R, IK, and MAST3 all 

implicated in the inflammatory response. To support our prioritization approach, we 

identified category enrichments using DAVID52 for the gene-disease association dataset class 

category ‘Immune’ (P = 2.9×10-11) and the transcription factor NFκB (P = 3.8×10-17) for 585 

genes scored ≥3 in the prioritization scoring (Table S31). These enrichments were 

maintained in the 519 genes that remained when we excluded the 66 genes at the HLA locus 

(P = 1.3×10-3 and 2.5×10-15, respectively; Table S32).  

 

The IL1RN locus and IL-1β response to monosodium urate crystal stimulation  

The Human Functional Genomics Project (500FG) is a repository of cytokine QTL (cQTL) 

data, including data on association between IL-1β and IL-6 response to monosodium urate 

crystal/C16 stimulation in peripheral blood mononuclear cells53. We investigated the 

associations between the 500FG IL-1β or IL-6 response to stimulation and 41 lead SNPs 
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from the European or trans-ancestry GWAS that were not associated with urate in the UK 

Biobank (Methods) and had genotype data available in the 500FG dataset (either the variant 

itself or a proxy; r2 ≥ 0.8) and of 202 lead variants associated with urate. There was evidence 

of amplification of association signals in the 41 non-urate-associated SNPs for IL-

1β response, but not in the 202 urate-associated SNPs (Figure S12, S13). The lead SNP at 

the IL1RN locus was the only SNP significantly associated with IL-1β response to 

monosodium urate crystal stimulation (rs9973741; risk-allele (G) β = 0.34, P = 3.6×10-4 < 

0.05/41). IL-6 response to monosodium urate crystal/C16 stimulation also associated with 

rs9973741 (β = 0.32, P = 2.4×10-4). This SNP did not associate with either response upon 

stimulation by C. albicans (β = 0.04, P = 0.20 and β = −0.07, P = 0.19, respectively). 

 

Association signals at this locus co-localized between gout and genetic control of IL1RN 

expression in testis and sub-cutaneous adipose tissues, and IL1F10 (IL-38) expression in skin 

(Figure S14). The G-allele associated with increased expression of IL1RN in the testis and 

skin (β = 0.29, P = 4.0×10-11; β = 0.13, P = 1.7×10-8) and reduced expression in sub-

cutaneous adipose (β = -0.13, P = 2.0×10-5), and with reduced expression of IL1F10 in the 

skin (β = -0.18, P = 1.1×10-9). Collectively, these findings are consistent with the hypothesis 

that the genetic influence on the risk of gout occurs through control of IL-1β production by 

the innate immune system when activated by MSU crystals, contributing to the control of 

IL1RN and/or IL1F10 gene expression. 

 

Xanthine oxidoreductase 

Xanthine oxidoreductase (XOR), the sole enzymatic source of urate that oxidizes 

hypoxanthine to xanthine and then xanthine to urate, is a key gout intervention point with 
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urate-lowering therapy. XOR is transcribed and translated as xanthine dehydrogenase (XDH), 

with the circulating form exhibiting dehydrogenase and oxidase activity. Given the key role 

of XOR in the pathogenesis of gout and evidence for association of a burden of rare variants 

in XDH with reduced urate level54, we explored the significant association of the XDH locus 

with gout in more depth. There were clear signals of association with urate in the independent 

UK Biobank (Methods) and Tin et al.9 studies that overlapped the gout signal (Figure 6), 

with the gout risk allele in strong LD with the urate-increasing allele in each of the urate 

datasets. At the XDH locus we identified a cis-eQTL for XDH that was specific to the 

prostate (Table S15). The gout risk allele associated with increased XDH expression in the 

prostate. There were eQTL for XDH in other tissues (the notable exception being the liver) 

but none co-localized with the gout genetic association signal (Figure 6). Sex-stratified 

analysis of the gout GWAS data provided evidence for an association signal in men but not in 

women (Figure 6; rs7594951 C-allele ORfemale = 1.02 [95% CI; 0.99-1.05], ORmale = 1.05 

[95% CI; 1.03-1.08]). 

 

The presence of urate in seminal fluid,55 urate crystals in 19/40 (47.5%) of non-malignant 

prostate sections,56 and the expression of XDH in the prostate (gtex.org) suggests that the 

prostate synthesizes urate. Supporting this we demonstrated Xor activity and urate content in 

the prostate of 7-week-old C57Bl/6 mice, with the urate concentration equivalent (per mg of 

protein) to that in liver (Figure 6). Our genetic data in humans implicate shared genetic 

control of prostate XDH expression and the risk of gout in men, suggesting that the prostate 

may secrete urate into the blood. Investigating this possibility further, we first assessed 

expression of urate transporters in GTEx data. Three genes encoding urate transporters were 

expressed: ABCC4 (median transcripts per million (TPM) of 1.73, tissue with second highest 
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expression after bladder); ABCG2 (TPM of 7.6, widely expressed); and SLC2A9 (TPM of 3.5, 

tissue with 4th highest expression after kidney, esophageal mucosa, bladder). There was 

negligible expression of SLC22A6-A8, SLC22A11/A12, and SLC17A1-A4. Analysis of 

prostate single-cell RNA expression data showed that the expression of both XDH and 

SLC2A9 occurs in basal epithelial cells, ABCC4 is expressed in basal and luminal epithelial 

cells and the expression of ABCG2 is restricted to endothelial cells (Figure 6).  

 

Clonal hematopoiesis of indeterminate potential (CHIP) 

CHIP is defined as the presence of clonally expanded cells with somatic mutations in an 

individual with no evidence of hematologic malignancy. Mutations are present in a suite of 

71 genes, most prominently in genes that encode epigenetic modifiers. Recently CHIP has 

been associated with incident57 and prevalent gout58 but not urate57 and has been 

hypothesized to play a role in epigenetic reprogramming of the innate immune system to be 

more responsive to stimulation by monosodium urate crystals59. Given also that our pathway 

analysis also revealed chromatin modification to be a significant enrichment term, we 

investigated if germline genetic variation in the loci harbouring the 71 CHIP genes could play 

a role in gout. Nineteen of the 71 genes (Table S33) were present in the 2,598 protein-coding 

genes (out of a total of 21,474 from GenCode) within the boundaries of all identified gout-

associated loci, a significant over-representation (P = 0.0002), consistent with the hypothesis 

that the CHIP pathway plays a causal role in gout. Enabled by a GWAS for CHIP risk 

alleles,57 we performed two-sample Mendelian randomization to test for a causal relationship 

of the CHIP phenomenon for gout (Figure 7; Table S34). There was evidence for a positive 

causal role of DNMT3A-CHIP in gout (weighted median MR estimate 0.034, P = 0.003; 

inverse variance weighted MR estimate 0.061, P < 0.001) but not for CHIP per se or TET2-
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CHIP. For the DNMT3A-CHIP analysis, there was no suggestion of horizontal pleiotropy by 

MR-EGGER (intercept 0.013, P = 0.23; Table S34). 

 

Loci with cis-eQTL for protein-coding and lncRNA genes – candidate immune-priming 

lncRNAs  

Of the lead variants, 212 were a cis-eQTL for a protein-coding gene, of which 75 (35.3%) 

also had a cis-eQTL for a long non-coding (lnc) RNA. The lncRNAs at these 75 loci are 

candidate immune-priming lncRNAs (IPLs) that may prime immune genes for robust 

transcription by facilitating transcriptional machinery assembly (e.g. the prototypical 

UMLILO lncRNA60), and can be regarded as potential targets for RNA-mediated 

therapeutics. Indeed, two gout associated loci containing CSF1 and IRF1 were previously 

identified as being connected by a IPL60. To identify candidate IPLs amenable for follow-up 

mechanistic study, we prioritized the 75 loci based on the protein-coding gene having an 

eQTL in whole blood, and a high prioritization score (Table S30) for a role in the 

progression from hyperuricemia to gout (Table 2). We also included in this set the lncRNA 

DRAIR, previously functionally implicated in the immune response of macrophages61. Two 

of the eQTL-lncRNA pairs both had an eQTL in whole blood (DGAT2/RP11-535A19.2 and 

BAG4/RP11-350N15.5).  

 

We used GeneHancer to examine evidence of physical connections between the lead genetic 

variants, the lncRNA and the protein-coding gene at DGAT2 (Figure 8) and other genes in 

Table 2 (Figure S15). We identified physical connections between the lncRNA and the 

protein-coding genes at DGAT2 and other loci. Of particular interest is the highly prioritized 

gene DGAT2 (Figure 5). The gout risk allele associates with decreased DGAT2 and RP11-
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535A19.2 expression. The promoters of DGAT2, RP11-535A19.2 and UVRAG are marked by 

H3K4me3 (Figure 8). There are also six CpG sites at DGAT2 with co-localized meQTL. The 

gout risk allele associates with increased CpG methylation at all sites except cg02337499, 

which is found at the promoter of UVRAG. A GeneHancer physical connection was observed 

between a maximally associated variant rs11236533, the lncRNA and DGAT2. Functional 

data for rs11236533 indicates that it is bound by CTCF (a CHIP gene which also maps to a 

male-only gout-associated locus) in numerous cell types including monocytes and neutrophils 

and is predicted to alter a CTCF motif. Rs11236533 physically connects to DGAT2 via two 

GeneHancer regions containing additional maximally associated variants (region 1: 

rs7947512, rs10899119, rs11823869 and rs10219339; and region 2: rs11236530). In the 

ImmuNeXUT dataset62, rs11236533 is the lead variant for an eQTL for DGAT2 and CTD-

2530H12.2 in neutrophils and the gout risk allele decreases expression of both genes in 

blood. Collectively these data suggest the possibility that this region is under immune cell-

specific regulatory control that may be mediated by DNA methylation and the expression of 

lncRNA RP11-535A19.2 at this locus. 

 

Drug targets 

We took a systematic approach to identifying drug targets using the Genome for 

Repositioning (GREP) drugs pipeline. We used MAGMA28 (for generalized gene set analysis 

of GWAS data) on the combined trans-ancestry meta-analysis to identify 476 genes (Table 

S35) for input into GREP (Figure S16)63, which examines a gene set for enrichment in drug 

targets by clinical indication category (Anatomical Therapeutic Chemical Classification 

System (ATC) or International Classification of Diseases 10 (ICD10) diagnostic code). In the 

ATC analysis the only category nominally significant was ‘antigout preparations’, driven by 
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target genes SLC22A12 (encoding URAT1) and SLC22A11 (encoding OAT4) and uricosuric 

drugs lesinurad, sulfinpyrazone and probenecid. Xanthine oxidase inhibitors were excluded 

because the XDH gene was not significant (P=1.0) in the MAGMA analysis and was not 

included in the input gene list. In the ICD10 analysis nominally significant categories were 

neoplasms, blood biochemistry and metabolic disorders, driven by the CASP9, CCND1, 

CHEK2, DRD5, IGF1R, INSR, PPARG and DGAT2 genes. The ICD10 M5-M14 

‘inflammatory polyarthropathies’ category that includes gout was not significant (P = 0.16), 

nor was ICD10 M10 gout code (P=0.59). 
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Discussion 

The sample size of this trans-ancestry gout GWAS (2.6M individuals) represents a 3.2-fold 

increase in people with gout over the previous largest study, the Global Biobank Meta-

analysis Initiative that detected 52 loci16. The increase in sample size allowed a substantial 

increase in detected loci, to 376 in total (of which 148 were new in urate and gout), 

facilitating new findings into the molecular pathogenesis of gout. Study size allowed us to 

perform sex-specific GWAS and to discover 39 loci not detected in the main analysis. We 

present evidence for genetic control of expression of XDH that co-localizes with genetic 

association with gout and urate levels only in the prostate, implicating the prostate in urate 

homeostasis, and we provide evidence for a causal role of clonal hematopoiesis of 

indeterminate potential in gout. Top pathways identified are synthesized into Figure 9. Given 

previous major insights into the molecular control of urate levels by GWAS9,25,64,65, we 

focused this study on identifying molecular mechanisms of the progression from 

hyperuricemia to symptomatic gout for which we generated a comprehensive list of target 

genes for follow-up studies. 

 

Co-localization of the male gout genetic association signal at XDH, with genetic control of 

XDH expression only in the prostate, with the gout-risk allele associated with increased 

prostate expression of XDH, generates the hypothesis that the human prostate synthesizes 

urate, contributing to increased urate levels and higher risk of gout in men. The relative 

contribution of different tissues to circulating urate in humans is not quantified, although the 

liver is a substantial contributor (in mouse, ~50% of plasma urate is contributed by the liver66 

with relative contributions of other murine tissues unknown). Urate is a constituent of human 

semen55,67and MSU crystals were present in 19 of 40 (47.5%) non-malignant prostate 
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sections56, suggesting that it is common to have urate super-saturation in the prostate. The 

supposition that the prostate exhibits XOR activity is supported by demonstration of XOR 

activity and urate content in the prostate of C57Bl/J6 mice with the prostate urate 

concentration equivalent to the liver (Figure 6). XDH, SLC2A9 and ABCC4 are co-expressed 

in the urothelial cells, and the gene encoding the urate secretory transporter ABCG2 is 

predominantly expressed in the endothelial cells of the human prostate. This is consistent 

with a model of urate reuptake by GLUT9 (encoded by SLC2A9) from the urethra by 

urothelial cells, and urate synthesis in epithelial cells by XOR. Urate could then be 

transported out of epithelial cells by GLUT9 and/or ABCC4 and transported from endothelial 

cells into the circulation by ABCG2. 

 

From the full GWAS, 36 loci had effect sizes that differed between sexes, all with a stronger 

effect size in men. These are dominated by previously urate-associated loci. This is consistent 

with the emerging consensus that urate control and subsequent risk of gout has a stronger 

genetic component in men (e.g. contributing to lower fractional excretion of urate in men68), 

whereas in women, who develop gout at an older age, increased urate levels are driven by a 

higher burden of comorbidity27,69,70. Excepting the African analysis, ABCG2 consistently 

exhibited heterogeneity with a stronger effect size in men, consistent with the heterogeneity 

observed in association with urate9. In contrast, SLC2A9 has a stronger urate effect size in 

women9, but a stronger gout effect size in men, as did A1CF and IGFR1. The reason for this 

is unclear, but it may reflect an additional role of the loci in the progression from 

hyperuricemia to clinical gout. Considering SLC2A9 and IGFR1, in the context of urate 

control, there is a differential effect of IGFR1 genotype on urate levels between men and 
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women in the presence of the urate-lowering genotype at SLC2A9. Functionally, IGF1 

stimulates urate reuptake by GLUT9 (encoded by SLC2A9) via IGFR171. 

 

We developed an approach to prioritize from the gene pool encompassed by the 376 loci 

genes for follow-up, predicted to control the innate immune response to MSU crystals. Our 

primary prioritization scheme focused, by necessity, on the gene per se, and did not 

incorporate aspects of previously proposed functionally-agnostic variant-to-gene criteria72,73. 

However, we secondarily ranked on some genomic criteria which serves to increase 

confidence in causal candidacy. This analysis identified several notable genes that illuminate 

new pathways in gout. The top-ranked gene (out of 5426) was FADS2, with FADS1 ranked 

13th. These genes, adjacent on chromosome 11, encode fatty-acid desaturases involved in the 

synthesis of unsaturated omega-3 fatty acids that inhibit NLRP3 inflammasome activation74. 

Increased FADS2 expression correlates with reduced circulating arachidonic acid and 

increased circulating IL-1β, TNF-α, and IL-6 levels75. Furthermore FADS2-knockdown 

reduced innate immune response to C. albicans and FADS2 inhibition reduces proliferation 

of innate immune cells75,76. Consistent with a role for FADS2 in gout, the risk allele 

(rs61897795 G-allele) associates with increased expression of FADS2 in blood. The genes 

encoding interleukin-1 receptor 1 (IL1R1) and interleukin-6 receptor (IL6R) were ranked 15th 

and 47th, respectively. They both are co-localized eQTL in monocytes, are differentially 

expressed in monocytes exposed to lipopolysaccharide or monosodium urate crystals43, their 

TSSs are contacted by an enhancer, and they have the closest TSS to the lead gout-associated 

genetic variant. IL-1R1 is antagonized by anakinra, which is an effective option for treatment 

of gout flares77. Interestingly the IL-1R1 genetic signal, along with an intergenic signal on 

Chr21:40.4 - 40.5Mb (rs4817983, rs2836884), are the only signals to be present in both the 
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European and trans-ancestry analyses (including sex-specific) and which have not been 

previously reported in gout or urate related GWAS. The Chr20 locus has been found to 

associate with white blood cell traits78,79 and other inflammatory conditions including 

ulcerative colitis79 and Takayasu’s arteritis80. Interleukin-6 is secreted by monosodium urate 

crystal/lipopolysaccharide-activated monocytes 81. Although neither IL-6 nor IL-6R have 

been rigorously evaluated as targets in the management of gout, the JAK-inhibitor baricitinib, 

one effect of which is to block IL-6R signalling, reduces IL-1β secretion in the response of 

IL-6-primed neutrophils to monosodium82
￼, and case reports indicate efficacy for the IL-6R 

antagonist tocilizumab in refractory gout 83-85. 

 

We identified 47 genes with candidate causal missense variants. AQP10, encoding aquaporin 

10, ranked 296th in our prioritization scheme and is a co-localized eQTL in whole blood, 

however the lead associated variant is also in strong linkage disequilibrium (r2 
≥ 0.98) with 

two missense variants (rs6668968/p.Arg15Gln and rs6685323/p.His123Tyr). Aquaporins 

allow small solutes (e.g. water, glycerol) to cross membranes. AQP10 has low levels of 

expression in most tissues, with higher expression in whole blood, fallopian tube, lung, 

spleen and testis, and transports water in a pH-independent manner and glycerol in a pH-

dependent manner, playing a role in lipolysis in adipocytes86. The regulation of cell volume 

induces ionic changes that regulate NLRP3 inflammasome activation87 and monosodium 

urate crystal-induced production of IL-1β by THP-1 monocytes is reduced with inhibition of 

aquaporins88, suggesting cellular osmolarity to be a newly implicated causal mechanism in 

gout. The CUBN and LRP2 genes encode cubilin and megalin, large endocytic proteins 

expressed in the kidney proximal tubule that resorb protein from the urine. Both genes also 

associate with urate levels and the combined activity of cubilin and megalin may influence 
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urate levels and the risk of gout through an influence on filtration of urate by the kidney. 

Interestingly, the CUBN locus controls expression of SLC16A9 in trans – the SLC16A9 locus 

itself associates with urate, gout and carnitine levels89 and SLC16A9 encodes a creatine 

transporter in the kidney proximal tubule. SLC5A1 encodes sodium-glucose transporter 1 

(SGLT1) and is primarily expressed in the small intestine. Recently, in the context of the 

established urate-lowering effect of SGLT2 inhibitors90 (SGLT2 is expressed primarily in the 

kidney), Mendelian randomization using the rs17683430 (p.Ala411Thr) variant supported 

SGLT1 inhibition as a therapeutic option in gout91.  Two mitochondrial enzymes CPS1 

encoding carbamoyl phosphate synthase 1 and GLS2 encoding glutaminase 2 have candidate 

missense variants, with the gout risk allele of CPS1 associated with lower arginine levels92 

and the gout risk allele of GLS2 associates with reduced glutamine levels93.  The missense 

variants may impact Krebs cycle metabolites and possibly contribute to gout risk via 

immunometabolic epigenetic reprogramming through histone modifications94.  

 

Clonal hematopoiesis of indeterminate potential (CHIP) occurs as a result of white blood cell 

somatic mutation in a suite of genes, predominantly in TET2 and DNMT3A. Consistent with a 

previous report of association of CHIP with gout58 we observed an over-representation of 

genes mutated in CHIP mapping to gout loci. By Mendelian randomization, using 

instruments comprised of genetic variants associated with CHIP per se, TET2-CHIP and 

DNMT3A-CHIP, we provided evidence for a causal role of CHIP for gout, implicating CHIP 

(specifically DNMT3A-CHIP) as a causal pathway in the pathogenesis of gout. Genes 

mutated in CHIP and associated with gout include epigenetic regulators (e.g. TET2, EZH2), 

damage response proteins (e.g. PPM1D) and metabolic enzymes (e.g. IDH2). TET2, EZH2 

and IDH2 are all strong candidate genes for gout, being eQTL that co-localize with gout-
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associated GWAS signals. IDH2, encoding isocitrate dehydrogenase 2, produces α-

ketoglutarate in the Krebs cycle, a source of substrates for epigenomic modification and also 

a co-factor for histone demethylases and the TET family of demethylases95. It is unclear how 

CHIP per se could cause gout. However, somatic mutation in CHIP genes associated with 

gout,58 combined with knowledge of their functional roles and that inherited genetic variants 

influence their expression and are associated with gout, provides further evidence for 

epigenomic remodelling in the pathogenesis of gout. This would include epigenomic 

alteration of the innate immune system by soluble urate (training)7. Implication of the PIK3-

AKT-mediated insulin signalling pathway, that may stimulate glycolysis and provide 

substrate for the Krebs cycle, suggests that the pathogenesis of gout involves insulin-

stimulated production of substrate for epigenomic remodelling. Indeed, IGF1R and IRS1 are 

central to insulin signalling, are co-localized eQTLs, and have been implicated in the training 

mechanism96. CHIP also associates with heart failure97-99 and deteriorating kidney function100 

and may link the etiologies of gout and co-morbid cardiorenal conditions via an inflammatory 

state. Supporting a role for the NLRP3-inflammasome, TET2-CHIP has been implicated in 

heart failure through the NLRP3-inflammasome and IL-1β101. Tet2-deficient mice have 

increased IL-1β response to MSU crystals, with Tet2-deficient isolated macrophages having 

increased IL-1β response to MSU crystal/lipopolysaccharide stimulation58. 

 

Testing lead genetic variants for association with increased IL-1β production by PBMC ex 

vivo after stimulation with MSU crystals directly implicated IL1RN and IL-38, emphasizing 

the IL-1β pathway as crucial in gout. The genetic signal co-localizes with genetic control of 

expression of IL1RN (encoding IL-1RA, an IL-1 receptor antagonist) and IL38, suggesting 

that the genetic influence on risk of gout is mediated by the control of expression of either or 
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both genes. The G-allele associates with reduced expression of IL1RN in ex vivo PBMC upon 

stimulation with MSU crystal and C16.0 and lower levels of circulating IL1RA102. Consistent 

with these data, IL1RA acts as an inhibitor of IL-1β action by competitive binding to the 

IL1R1 receptor.103 This generates the hypothesis that IL1RA insufficiently compensates for 

IL-1β induction and activity in gout103. We did not detect genome-wide evidence for 

association at any genes encoding well-characterized components of the NLRP3 

inflammasome or accessory molecules, nor innate molecules such as toll-like receptors, with 

the IL1RN and IL1R1 loci representing the most well-characterized molecules that can be 

directly connected to IL-1β. Rather, the new genes and pathways discovered in this study 

(e.g. epigenomic mechanisms) likely revolve around priming and regulation of the NLRP3 

inflammasome response to monosodium urate crystals. In addition to CHIP-related genes, 

FADS2 and AQP10 discussed above, other genes highly ranked in the prioritization include 

TMEM176B (encoding a transmembrane calcium channel that inhibits NLRP3-

inflammasome activation)104, SCAP (encoding SREBP cleavage-activating protein, the 

SCAP-SREBP2 complex activates the inflammasome)105, and INSIG2 (encoding a binding 

partner of SCAP)106. 

 

A major limitation of our study is the dominance of participants of European ancestry 

(84.1%), with 9.2% of Latinx ancestry and only 3.6% and 3.1% for East Asian and African 

ancestry, respectively. This means that the new insights into the pathogenesis of gout 

presented here, and new interventions based on these insights, are not necessarily 

transferrable even to the included Latinx, East Asian and African ancestry populations, or to 

other non-European populations107-109, for example Indigenous populations in the Asia-

Pacific region which suffer a high prevalence of and severe impact from gout1,110. There is a 
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crisis of inequitable participation in genomics studies107,108. Factors causing this situation 

include decades of inertia from Euro-centric researchers, funders and institutions, and deep-

rooted mistrust of western institutions and researchers by minority and Indigenous 

populations as a result of colonization, misuse of samples and deficit framing. Increasing 

participation of non-European participants requires well-considered addressing of concerns, 

meaningful engagement with and maintenance of ongoing relationships with communities for 

the lifetime of the research, from initial collaboration and consultation, through recruitment 

and the research process to when findings are generated and new knowledge is returned to 

communities. It is most critical to build capability of genomics researchers from under-

represented populations, and to establish data governance and protection that balances the 

interest of communities over that of researchers111. The extant inequity contributes not only to 

under-powered GWAS but also to the lack of adequate publicly available essential 

genetic/genomic resources required for translation of genetic signals of association into 

mechanistic knowledge that include large genome sequence reference panels, body-wide 

eQTL datasets, and epigenomic datasets. Concerted international efforts are required to pool 

extant non-European genetics and genomics datasets to conduct GWAS and follow-up 

analyses equivalent to those done for Europeans.  

 

Other limitations represent inherent current limitations of the field. For example, we 

performed co-localization analysis for eQTLs using tissues largely from GTEx and meQTL 

datasets generated from whole blood and kidney. With respect to meQTL in particular, 

additional datasets are needed across the gout disease state, for example the gut (important in 

urate excretion), the liver (urate production), the synovial lining (urate transport into the 

synovium), the kidney in different developmental stages, white blood cells and their subsets 
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during the gout flare (e.g. monocytes) and, ex vivo, monocyte response to urate crystals. 

While we did not include replication in our study design, high correlation between gout and 

urate effect sizes reduces our concern about false positives. Finally, some methods of gout 

diagnosis (self-report and use of administrative medication data) are not as direct as clinical 

diagnosis. However, we have previously reported that these survey definitions of gout 

contributing to the Global Genetics of Gout Consortium (one of the contributing datasets 

(Table S1)) have 82% sensitivity and 72% specificity112, similar to a definition from the 

Study for Updated Gout Classification Criteria (SUGAR) that used five weighted items that 

included a clinical measure (hyperuricemia)112.    

 

To summarize, our study reveals a broad array of strong candidate genes and molecular 

processes in the pathogenesis of gout suitable for follow-up studies, for example implicating 

the prostate as contributing to hyperuricemia in men. In particular, we have provided new 

insights into the molecular mechanism of the acute inflammation in gout. Our findings, 

including implicating the CHIP phenomenon and other epigenetic regulators, further support 

epigenetic reprogramming (training) as a causal mechanism in gout.   
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Methods 

Study participants and phenotype definition 

Study participants were sourced from 13 cohorts11,113-121 (Supplementary Note, Table S1). 

Gout was defined according to self-reported diagnosis and/or use of urate-lowering 

medication, clinical diagnosis, and/or the American College of Rheumatology (ACR) gout 

classification criteria122,123 dependent on the information available in each source cohort. 

Participants from these cohorts were divided into four ancestral groups (African: AFR, East 

Asian: EAS, European: EUR, and Latinx: LAT) based on their self-reported ethnicity or 

genetic ancestry. This resulted in two African, five East Asian, ten European, and two Latinx 

case-control study sets for analysis. Written informed consent was acquired from all 

participants and each study had ethical approval from the appropriate local ethics committee. 

One key cohort was the UK Biobank124 that was also used for genetic risk prediction, genetic 

correlation analysis with other phenotypes, Mendelian randomization and fine-mapping. 

23andMe cohort participants125 provided informed consent and participated in the research 

online, under a protocol approved by the external AAHRPP-accredited IRB, Ethical & 

Independent Review Services (E&I Review). Participants were included in the analysis on 

the basis of consent status as checked at the time data analyses were initiated. Ethical & 

Independent Review Services was recently acquired, and its new name as of July 2022 is 

Salus IRB (https://www.versiticlinicaltrials.org/salusirb).  

 

Genotyping and imputation 

Genotyping was performed separately for each of the 13 source cohorts. Cohort-specific 

genotyping and imputation platforms and post-imputation quality control filters are detailed 

in Table S1. Genotypes were imputed to one of the following reference panels: UK10K126 + 
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1000 Genomes Project Phase 3 (all ancestries)127, Haplotype Reference Consortium panel 

v1.1128, 1000 Genomes Phase 3 (all ancestries), combined Haplotype Reference Consortium 

panel v1.1 and UK10K + 1000 Genomes Project Phase 3 (all ancestries), HapMap phase 2129 

(build 36), or population-specific Sequencing Initiative Suomi project v3 (build 38)130. The 

genome coordinates of the build 36 and build 38 imputed genotypes were converted to their 

equivalent build 37 (hg19) coordinates using snptracker v1.0 (released Dec 2014)131 or 

GATK Liftover132, respectively. Post-imputation quality control filters per cohort included 

filters for Hardy-Weinberg equilibrium, genotype missingness, minor allele frequency, and 

imputation quality. 

 

Study-specific association analysis 

A genome-wide logistic regression analysis was conducted for each of the 19 case-control 

study sets separately with gout as a binary outcome. The regression model was adjusted for 

sex, age, genetic principal component vectors, and any necessary cohort-specific variables 

(e.g., genotyping platform) (Table S1). Regression analyses were repeated in male-only and 

female-only sub-sets for each case-control study set where possible, including the same 

adjusting variables except sex. Quality control steps applied to the per-study regression 

summary statistics included the removal of multi-allelic variants within and between study 

sets, exclusion of results for SNPs present in less than 5% of participants, and removal of any 

results outside the statistical bounds of each output (e.g. standard error = infinity). Variants 

with a minor allele frequency less than 0.1% or an absolute effect size (logOR) greater than 

10 were also removed from the study-specific summary statistics. 
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Ancestry-specific and trans-ancestry meta-analysis 

An inverse-variance weighted meta-analysis of the regression results for the full, male-only, 

and female-only subsets was conducted for each of the four ancestral groups using 

METAL133. LD score regression analysis revealed no evidence of inflation due to factors 

such as population structure, therefore no genomic control correction was applied during this 

meta-analysis. SNPs with a heterogeneity I2 statistic >95% were excluded from any further 

analysis. Variants analysed in <50% of the case-control study sets contributing to the meta-

analysis (where there were more than two contributing cohorts) and/or variants that were 

analysed in <20% of all contributing samples were also excluded from any further analysis.  

 

The ancestry-specific meta-analysis results were then used as an input for trans-ancestry 

meta-analysis with MANTRAv1134. Only SNPs with an effect size present in all four ancestry 

groups were included in the trans-ancestry meta-analysis. Genetic variants with a meta-

analysis P < 5×10-8 or log10Bayes’ factor ≥ 6.0 were considered statistically significant in the 

ancestry-specific and trans-ancestry meta-analyses, respectively (Supplementary Notes). 

Within the trans-ancestry meta-analysis, MANTRA was also used to calculate the posterior 

probability of heterogeneity which estimates the homogeneity in allelic effects across 

ancestral groups. A posterior probability > 0.90 indicates strong evidence for heterogeneity. 

In addition, loci with heterogenous effect sizes between sexes were identified by performing 

an inverse-variance weighted meta-analysis of the male-only and female-only ancestry-

specific GWAS or trans-ancestry meta-analysis effect estimates. A SNP was considered 

significantly heterogeneous between sexes if the heterogeneity Q-statistic had a P < 1×10-6. 
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Identification of genome-wide significant signals and loci 

All nominally significant SNPs were identified (P < 1×10-7 for ancestry-specific GWAS or 

log10Bayes factor > 5.0 for the trans-ancestry meta-analysis) and a ±50kb window of padding 

was added to the SNP chromosome position. The genomic overlap of these padded 

chromosome positions was then identified and the outer boundaries of these regions were 

created using GenomicRanges135 v3.12. After defining these loci boundaries, any regions 

with ≤ 1 SNP classified as genome-wide significant (P < 5×10-8 or log10Bayes factor > 6.0136) 

were disregarded in further loci definitions or analyses due to potential unreliability of single 

variant associations. Lead SNP(s) within each of the significant loci defined above were 

identified by conducting LD-based clumping using PLINKv1.9b4137 with an ancestry-

matched 1000 Genomes Project reference panel (Supplementary Notes). Significant loci 

were designated based on their chromosome and start/end position (in Mb) of the significant 

region (e.g. chr 5:129.52MB-131.88MB).  

 

A regional association plot (Locus Zoom) was created for each locus (Figure S2) using an R 

script “LocusZoom-like Plots”138 with GENCODE human genome build 37 (release 38) gene 

annotation file to define gene start/end positions and gene names (HGNC gene symbol)139. 

Gene track information was coloured based on MAGMA28 gene-based association analysis 

P-values (Supplementary Notes). After creating these regional association plots, each locus 

with multiple lead SNPs was visually inspected to determine whether the labelled SNPs 

represented a single association signal or multiple independent association signals. For the 

SLC2A9 and ABCG2 loci with an extremely strong association signal, only a single lead SNP 

was included to represent the locus even if multiple lead SNPs were identified by LD-based 

clumping (Supplementary Notes). Details of all excluded lead SNPs can be found in 
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Supplementary Notes. To identify additional associations, the European GWAS loci were 

analyzed with GCTA-COJO140 using the UK Biobank cohort as a reference panel 

(Supplementary Notes). Due to a lack of adequately sized reference panels for the other 

ancestries, we did not conduct conditional analysis on the remaining GWAS datasets. 

 

Previously unreported genome-wide significant loci and signals 

To identify newly detected loci and signals we searched the literature for all previously 

reported SNPs associated with serum urate or gout. A search of GWAS Catalog141 was 

performed on 19th July 2022, using the keywords “urate”, “uric acid”, “hyperuric[a]emia”, 

and “gout.” This identified 68 studies published over the period of November 2007 to 

November 2021. All significant SNPs identified in these 68 studies were downloaded. Using 

build 38 genomic locations (our locus boundaries were converted to build 38 genomic 

locations using LiftOver132), we identified any previous GWAS signal that fell within our 

significant loci boundaries defined above. LD between the lead SNP and all previously 

identified SNPs in the locus was calculated using 1000 Genomes reference panels in 

LDlinkR142 with ancestry-matching to the lead SNP. LD values were categorized into high (r2 

≥ 0.8), moderate (0.8 > r2 ≥ 0.5), low (0.5 > r2 ≥ 0.1), or no LD (r2 < 0.1) groups to assess 

how similar the previously reported association signal was to the lead SNP. A locus was only 

considered new if none of the 68 urate and gout GWAS had previously reported a significant 

SNP within the locus boundaries. 

 

Testing of gout-associated loci for association with urate 

332,370 unrelated participants of European ancestry were selected from the UK Biobank 

using self-reported and genetic (PC-determined) ancestry information (Supplementary 
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Notes). Participants with evidence of gout (n = 7,131) based on hospital-diagnosed gout, self-

reported gout, and use of urate-lowering medication, and those with no serum urate 

measurement (n = 15,531) were excluded, resulting in 309,708 participants in the association 

analysis for serum urate level. Variants with INFO < 0.3, MAF < 0.0001 and HWE P < 

1.0×10-6 were removed. Association analysis was carried out using PLINK v1.9b6.10 with 

hard-called imputed genotype data, adjusted by age, sex, and PC1-40. 

 

Genetically predicted risk of gout 

A polygenic risk score was calculated from 289 lead variants from the European GWAS that 

were available in the UK Biobank. The SNPs were weighted by their effect size. The 

resulting PRS score was divided into 10 bins. Generalized linear modeling was used to 

regress the PRS score against gout, adjusted by age and sex, in 332,346 European participants 

from the UK Biobank. The lowest PRS score bins were excluded due to an absence of gout 

cases. This was repeated with 316 lead variants from the trans-ancestry meta-analysis in the 

same cohort. Sex-specific analysis was also undertaken for each of the PRS scores. For the 

female analysis, the top PRS bins were also excluded. Area under the receiver operating 

characteristic curve (AUROC) estimates were obtained using pROC143. 

 

LD score regression with UK Biobank traits and diseases 

LD score regression29 was used to run genetic correlation analysis of UK Biobank 

phenotypes with European gout GWAS summary statistics. Summary statistics for 934 

primary phenotypes (Supplementary Notes) and baseline v1.1 reference LD scores for 

European ancestry was used. Since we included the FinnGen cohort in our European GWAS 

meta-analysis, we excluded all FinnGen phenotypes to avoid complete sample overlap 
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(Supplementary Notes). We considered any genetic correlation with our European gout 

GWAS to be significant if the p-value was less than a Bonferroni-corrected significance 

threshold of P < 5.4×10-5 (0.05/934). The resulting significantly correlated GWAS were then 

tested for horizontal pleiotropy using two-sample Mendelian randomization package 

TwoSampleMR144. 

 

Covariate-adjusted LD score regression 

LD score intercepts, cell-type group (CTG), and cell-type specific (CTS) enrichment analysis 

for each ancestry (African, East Asian, European, and Latinx) were determined using 

covariate-adjusted LD score regression (cov-ldsc)29. Baseline LD scores for each ancestry 

were generated using ancestry-specific PCs from the 1000 Genomes Project (Supplementary 

Notes), annotations from baseline v1.1, and LD window set to 20cM. Baseline LD scores for 

CTG and CTS analyses were generated similarly using the CTG and CTS annotations. The 

significance threshold for the coefficient p-value for the CTG analysis was set at 0.005 for a 

standard cut-off (for 10 cell-type groups) and 0.00125 for a conservative cut-off (for 10 cell-

type groups and four ancestries), and the threshold for CTS analysis was set at 2.3×10-4 for a 

standard cut-off (for 220 cell-types) and 5.7×10-5 for a conservative cut-off (for 220 cell-types 

and four ancestries). 

 

Statistical fine-mapping and credible set construction 

European loci were fine-mapped using PAINTOR145, FINEMAP46, and the Bayes’ factor 

(BF) approach134,146. The region to be fine-mapped was set to the locus boundary described in 

Table S2 unless the region was larger than 1 Mb; in such cases the fine-mapping region was 

defined as the 1 Mb region around the lead SNP, but in such a way that the region to be fine-
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mapped did not exceed the locus boundary if the lead SNP was within 500 kb of the 

boundary (Supplementary Notes). For PAINTOR and FINEMAP, LD information from the 

UK Biobank was used (Supplementary Notes). All variants were aligned to the same allele 

as the UK Biobank and any variant with MAF that differed by > 5% were excluded from the 

fine-mapping analysis. Prior standard deviation for FINEMAP was set to 0.058 

(Supplementary Notes) and shotgun stochastic search algorithm was used (--sss option) with 

the maximum number of causal variants in a locus set to five (default). Five annotations were 

used for PAINTOR: four annotations were chosen based on the relevance of the annotation 

with the European gout GWAS summary statistics (Supplementary Notes) and one 

annotation was included to give more weight to missense variants. PAINTOR was run with 

full enumeration (--enum option) assuming single causal variants except for those loci with 

evidence for multiple signals, in which case a maximum of three causal variants was 

assumed. For the BF approach, Bayes’ factors of all variants were summed within the fine-

mapping region and the posterior probability of each variant being causal in the region was 

calculated by dividing the variant’s Bayes’ factor with the total Bayes factor of the region. 

The 99% credible set was determined by including the variant with the highest posterior 

probability in the region until the cumulative posterior probability of the set was greater than 

0.99.  

 

Identification of compromised loci with SLALOM 

To mitigate fine-mapping miscalibration when different genotyping arrays and imputation 

panels are used in meta-analysis, the summary statistics used for fine-mapping were checked 

with SLALOM48. Conversion-unstable positions (CUPs)147 were downloaded and reference 

LD from gnomAD (build 37) was calculated in the Non-Finnish European population for the 
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European loci and a mixture of African/African American, Latinx/Admixed American, East 

Asian, and European populations (proportional to the number of samples used in the trans-

ancestry meta-analysis) were used for the trans-ancestry loci. A locus was identified as 

possibly miscalibrated if the locus contained at least one variant with r2 > 0.6 with the lead 

variant (in the relevant reference population) and DENTIST-S148 P-value was <1×10-4 in 

either the European or the trans-ancestry SLALOM analyses.  

 

Candidate missense and non-coding variants 

A pool of 1466 candidate variants was gathered from lead variants, conditionally associated 

variants and variants identified from fine-mapping. LD of 1425 non-coding variants was 

calculated using 1000 Genomes Project data (Supplementary Notes), and direct lead or high 

LD (r2 ≥ 0.8) missense and nonsense variants were identified using information from dbSNP 

(build 155). FATHMM scores for the 1425 variants were queried and the variants were 

overlayed for activity-by-contact enhancers (Methods).  

 

Co-localization of signals of genetic association with eQTL 

Lead SNPs from the European and trans-ancestry analyses, or a proxy if the lead variant was 

not present in GTEx, were used to query GTEx data for identification of cis-eQTL. For all the 

SNPs with a significant eQTL, a 1Mb region around the lead variant was used for co-

localization analysis using the ‘coloc’ R package64,149. A posterior probability of >0.5 for H4 

(hypothesis 4) was taken as evidence for co-localization, which indicates the scenario that the 

association between gout and gene expression was due to the same functional variant. We 

also carried out trans-eQTL analysis combining GTEx and publicly available HiC data 

integrated using the CoDeS3D algorithm150 and COLOC151  (Supplementary Notes). 
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Co-localization of signals of genetic association with methylation QTL (meQTL) 

The GoDMC data set39 was used to first identify all significant DNA methylation QTL 

(meQTL) within ±1Mb window of the 444 lead European GWAS variants. For each pair of 

variant-CpG sites, a ±500kb region around the lead GWAS variant was defined and tested for 

co-localization with the meQTL signal using the ‘coloc’ R package. Regions with < 100 

variants with meQTL summary statistics for the CpG sites were excluded and regions with 

PPH4 ≥ 0.8 were considered as significant. 

 

Enrichment analysis of transcription factor (TF) binding at meQTL CpG sites 

1,544 TF ChIP-seq experiment data sets (344 TFs and 221 cell lines)40 were downloaded 

(Data Availability). Eight TF ChIP-seq experiment datasets were excluded to ensure all of 

the ChIP-seq experiments were from human cell lines (Supplementary Notes), leaving 338 

unique TFs for enrichment analysis. Positions for 232,477 independent CpG sites used in 

GoDMC were extracted. For each TF, the total number of CpG sites the TF overlapped 

(±50bp) within the CpG sites was determined and 520 co-localized meQTL CpG sites 

identified. 338 two-by-two contingency tables were constructed and Fisher’s exact test was 

used to determine if there was significant enrichment of TF binding to the meQTL CpG sites.  

 

Overlap of variants and CpG sites with activity-by-contact (ABC) enhancer region 

ABC enhancer-gene connection data for 131 cell types and tissues with ABC-scores ≥0.01535 

was downloaded (Data Availability). The positions of candidate non-coding SNPs, lead 

SNPs that have co-localized eQTL, and CpG sites that have co-localized meQTL were 
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queried in the ABC data to determine whether the SNP and/or the CpG site was within an 

ABC enhancer region. 

 

Gene prioritization for gout inflammation 

To select the input list of candidate genes, association signal boundaries from all of the loci 

lists were used to select genes from GENCODE, and co-localized cis-/trans-eQTL genes not 

already in the list were added. Satisfying each of the following seven criteria scored the gene 

one point in the primary prioritization scheme: 1) having an eQTL co-localized with GWAS 

signal in whole blood; 2) having an eQTL in monocytes (ImmuNexUT62 or OneK1K152 

datasets); 3) within a locus with a co-localized meQTL; 4) within a locus with gout 

association signal that also genetically associates with one or more of 36 white blood cell 

traits78 (Table S36 and Supplementary Notes); 5) differentially expressed in gout 

(Supplementary Notes); 6) expressed in GTEx whole blood tissue (Supplementary Notes); 

and 7) differentially expressed in monocytes stimulated with MSU crystals and/or 

lipopolysaccharide (LPS) (LPS vs MSU crystal, LPS vs phosphate-buffered saline control, 

MSU crystal vs PBS control)43. Given that some of the categories used results that were 

derived using European ancestry and/or trans-ancestry data and could not be applied to all 

ancestral groups, the prioritisation scores were standardized based on the number of 

categories to which the gene was applied (depending from which ancestral group the gene 

was implicated) (Supplementary Notes). Following this, within each standardized score 

category, genes were secondarily ranked according to: 1) one of 47 genes containing a strong 

candidate missense causal variant (Table 1); 2) one of the 385 target genes of the activity-by-

contact enhancer; 3) gene with FANTOM5 transcription start site (TSS) closest to the lead 

SNP. Given that not all genes had TSS information from the FANTOM5153 dataset, scores for 
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those genes without TSS information were standardized (Supplementary Notes). Since 

multiple different SNPs can represent a specific locus (due to different lead SNP across 

ancestry and/or sex) the highest scoring SNP-gene row was selected to represent the gene. 

 

Mendelian randomization analysis of CHIP vs gout 

GWAS summary statistics for overall CHIP, DNMT3A CHIP and TET2 CHIP were 

downloaded and filtered to only include variants with P < 1×10-6, variants in the European 

meta-analysis for gout, and variants with MAF > 1% in Europeans. For each GWAS, variants 

were then extracted from the UK Biobank before LD pruning to keep only variants at r2 < 0.2 

using 50 kb windows, testing every 5th variant (default parameters using PLINK 1.9b6.10). 

Summary statistics for these variants were extracted for all three CHIP classes along with 

gout. These summary statistics were used in a two-sample Mendelian randomization analysis, 

performed using the MendelianRandomization package in R 4.2.1. Beta and standard error 

values were transformed into log odds ratios and standard errors for each CHIP GWAS. For 

each CHIP trait, MR was run using three different models: weighted median, inverse 

variance-weighted and MR-Egger regression. 

 

Drug repurposing analysis 

We applied GREP63 to perform the drug repositioning analysis using 476 significant genes in 

the MAGMA analysis (P < 0.05 / (17,225 genes) = 2.9×10-6). GREP uses Fisher’s exact tests 

to examine whether the 476 genes were enriched in genes targeted by drugs in a clinical 

indication category: Anatomical Therapeutic Chemical Classification System (ATC) or 

International Classification of Diseases 10 (ICD10) diagnostic code. ATC has 14 anatomical 

categories, which are further categorized into 85 detailed classes. GREP lists potentially 
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repositionable drugs targeting the gene set. The threshold for significant enrichment was set 

as P = 0.05/10, 0.05/85, and 0.05/221 in the ATC large set, the ATC detailed set, and the 

ICD10 set, respectively, adjusted by the Bonferroni correction for the number of categories. 

The ATC large set has 14 anatomical categories (e.g. M: MUSCULO-SKELETAL 

SYSTEM), which are further categorized into ~90 detailed classes (e.g. M04: ANTIGOUT 

PREPARATIONS) in the ATC detailed set. 

 

Experimental studies  

Analysis of single cell RNAseq prostate data   

FASTQ files from two single cell RNAseq analyses in prostate tissue involving 3154 and 6155 

samples (3 x 2 zones) were downloaded and analyzed using CellRanger v6.1.0 and Seurat 

v4.1.1 in R 4.0.2.  For each pair of FASTQ files (containing forward and reverse reads 

respectively), the CellRanger count was used to produce a read count matrix for each sample. 

The CellRanger count output was read into R using Seurat, then a quality control procedure 

applied to ensure that cells had less than 20% mitochondrial reads and had greater than 80% 

complexity (log10 gene count / UMI). Genes with fewer than 10 reads across all cells of each 

sample were not analyzed. Following quality control, read counts were scaled and 

transformed using the SCTransform function from Seurat. Samples were then integrated for 

each study using Seurat, with Henry et al. data155 analyzed separately for the peripheral and 

transition/central zones. Uniform manifold approximation and projection (UMAP) for 

dimensionality reduction were performed for each sample, then cells were clustered prior to 

cluster identification. Expression of genes of interest within each cluster was done using the 

VlnPlot function from Seurat for each study. 
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Measurement of xanthine oxidoreductase (XOR) activity and urate levels in mice 

C57Bl/6J mice were housed in the West Virginia University facility in specific pathogen free 

conditions. All experiments used only 7-week old male mice and were approved by the WVU 

Institutional Animal Care and Use Committee. Urate concentration was measured in 

surgically-dissected liver, prostate and seminal vesicle using HPLC coupled to 

electrochemical detection (ESA Coul-Array System) and expressed per mg protein as 

previously described66. XOR 1121 3212321activity (1 Unit = 1 µmol urate/min) was also 

assessed using reverse-phase HPLC coupled to electrochemical detection similar to above for 

urate but with preincubation with xanthine with and without allopurinol to determine 

contributions directly associated to XOR activity versus existing urate levels 66. 
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Data availability 

The full GWAS summary statistics for the 23andMe discovery data set will be made 

available through 23andMe to qualified researchers under an agreement with 23andMe that 

protects the privacy of the 23andMe participants. Datasets will be made available at no cost 

for academic use (https://research.23andme.com/collaborate/#dataset-access/); 1000 

Genomes Project Phase 3 data was downloaded from 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/; information on UK Biobank cohort can be viewed 

at  https://www.ukbiobank.ac.uk/; GWAS Catalog (https://www.ebi.ac.uk/gwas/); GTEx data 

were downloaded from https://gtexportal.org/home/datasets; variant information from dbSNP 

was downloaded from 

https://ftp.ncbi.nih.gov/snp/latest_release/VCF/GCF_000001405.25.gz; CUPs used for 

SLALOM were downloaded from https://github.com/cathaloruaidh/genomeBuildConversion; 

GoDMC methylation QTL data were downloaded from 

http://mqtldb.godmc.org.uk/downloads; RELI transcription factor ChIP-seq data 

https://tf.cchmc.org/external/RELI/RELI_public_data.tar.bz2; baseline LD score v1.1, cell-

type specific, and cell-type group annotations were downloaded from 

https://alkesgroup.broadinstitute.org/LDSCORE/; functional annotations for PAINTOR were 

downloaded from https://ucla.box.com/s/x47apvgv51au1rlmuat8m4zdjhcniv2d; LD score 

regression summary statistics of UK Biobank traits were downloaded from 

https://nealelab.github.io/UKBB_ldsc/downloads.html; ABC enhancer-gene connection data 

were downloaded from 

ftp://ftp.broadinstitute.org/outgoing/lincRNA/ABC/AllPredictions.AvgHiC.ABC0.015.minus

150.ForABCPaperV3.txt.gz); FATHMM scores for non-coding variants were obtained from 

http://fathmm.biocompute.org.uk/; ImmuNexUT eQTL data were downloaded from 
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https://humandbs.biosciencedbc.jp/en/hum0214-v6; OneK1K eQTL data were downloaded 

from https://onek1k.s3.ap-southeast-2.amazonaws.com/onek1k_eqtl_dataset.zip; Henry et 

al.155 prostate single cell RNA-seq FASTQ data were downloaded from 

https://www.gudmap.org/chaise/record/#2/RNASeq:Study/RID=W-RAHW; Crowley et al.154 

prostate single cell RNA-seq count matrices were downloaded from GEO (GSE150692); 

CHIP summary statistics were downloaded from 

https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90102001-

GCST90103000/; Susztak Kidney Biobank (https://susztaklab.com/); a list of differentially 

expressed genes in stimulated monocytes can be obtained from Table S2 in the original 

paper43; GWAS data for white blood cell traits used in gene prioritization analysis (Table 

S30) (https://www.ebi.ac.uk/gwas/); FANTOM5 TSS data were downloaded from 

https://fantom.gsc.riken.jp/5/datafiles/phase1.3/extra/TSS_classifier/; HaploReg is available 

at https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php; GeneHancer tracks were 

accessed through USCS; pathway analysis websites were https://david.ncifcrf.gov/ and 

https://maayanlab.cloud/Enrichr/. 

 

Coding tools availability 

Code for “Locus Zoom-like plots” is available at https://github.com/Geeketics/LocusZooms; 

PLINKv1.9 is available at https://www.cog-genomics.org/plink/;  

GATK is available at https://gatk.broadinstitute.org/hc/en-us;  

FINEMAP is available at http://www.christianbenner.com/;  

PAINTOR is available at https://github.com/gkichaev/PAINTOR_V3.0;  

LD score regression is available at https://github.com/bulik/ldsc;  
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cov-LD score regression is available at https://github.com/immunogenomics/cov-ldsc;  

SLALOM is available at https://github.com/mkanai/slalom;  

CoDeS3D is available at https://github.com/alcamerone/codes3d;  

GCTA-COJO is available at https://yanglab.westlake.edu.cn/software/gcta/;  

GREP is available at https://github.com/saorisakaue/GREP. 
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Tables and Figures 

Figure 1: Numbers of significant loci and independent signals, across the ancestry-

specific and trans-ancestry analyses and in the full (combined sexes), male-only, and 

female-only analyses. A) summarizes the cohorts used, the GWAS done, and loci detected. 

B) shows a Venn diagram of the overlap between significant loci across the full, male-only, 

and female-only GWAS amalgamated across all ancestries. C) shows an upset plot of the 

overlap between the significant independent signals in the single-ancestry and trans-ancestry 

analyses for the full cohort. 

 

Figure 2: Association of polygenic risk score with gout in European participants of the 

UK Biobank in combined sexes, men, and women. A) shows the polygenic risk score bin 

distribution, B) shows the gout prevalence in different polygenic risk score bins, C) shows 

the risk of gout for each different risk score bin, compared to the most common bin (as 

visualized in panel A), and D) shows the area under the receiver operating characteristic 

curve graphs. 

 

Figure 3: Genetic correlation between the European gout GWAS and UK Biobank 

GWAS traits.  A) Volcano plot of genetic correlation between our European gout GWAS 

results and 934 UK Biobank GWAS traits. Points are coloured based on whether the 

equivalent correlation between our UK Biobank serum urate GWAS and the trait of interest 

was significant (P < 5.35x10-5). B) linear relationship between the genetic correlation results 

of our European gout GWAS and our UK Biobank serum urate GWAS. Points are coloured 

based on whether they were significant in both, one, or neither of the genetic correlation 

analyses. C) genetic correlation values (rg) across 27 trait categories. In all plots, each point 
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represents the result of a genetic correlation analysis between our European gout GWAS and 

one of the 934 UK Biobank GWAS traits. Non-significant results are shown as transparent 

plot points for clarity. 

 

Figure 4: Functional and pathway enrichment analyses of gout candidate genes. The 

DAVID database was used to identify GO Biological Function term, KEGG, and 

REACTOME pathways enriched in the gout GWAS dataset. Significance (FDR) of the 

enrichment is denoted on the y-axis, size of the circle denotes number of genes contributing 

to the enrichment term. 

 

Figure 5: Genes prioritized for a role in gouty inflammation. A) 117 genes with a 

normalized prioritization score ≥4 are listed from highest to lowest score. The seven 

prioritization categories (left), three function agnostic categories (middle), and the normalized 

scores (right) are given for each gene. Cells are colored if the gene gained a point in the 

prioritization/function agnostic scores based on the criteria of that category and crossed if the 

category data was unavailable for that gene. Red gene labels represent those that were 

identified as a trans-eQTL. B) ideogram showing the genomic location of the 117 genes with 

a prioritization score ≥4. Bolded gene labels represent those that had a function agnostic 

score ≥1 and red gene labels represent those that were identified as a trans-eQTL. Light blue 

highlighting within the ideogram chromosomes indicates the genomic location of all 

significant loci identified, amalgamated across all ancestry-, trans-ancestry, and sex-specific 

analyses. 
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Figure 6: XDH expression and xanthine oxidoreductase (XOR) activity in the prostate. 

A) Locus Zoom plots of genetic association at the XDH locus with gout (European full 

analysis; left) and serum urate in Europeans (UK Biobank; right). Each genetic variant is 

represented by a single dot plotted according to genomic position on the x-axis with strength 

of evidence for association (-log10P) on the y-axis. The lead variant is highlighted with a 

purple diamond; other variants are colored according to their LD with the lead variant (strong 

(red) to weak (dark blue)). B) the European male gout (top left) GWAS signal co-localizes 

with XDH expression in prostate tissue (GTEx v8; bottom left), but not with the European 

female gout GWAS signal (top right). Shown also is the expression signal of XDH in the liver 

(GTEx v8; bottom right). C) XOR activity and urate levels in prostate, liver, and seminal 

vesicle tissue from seven-week old C57Bl/6 male mice.  A Kruskal-Wallis test was used to 

determine whether the differences between tissues were significant. D) and E) bar plots show 

the percentage of cells expressing XDH in a given cell cluster, alongside three urate 

transporter genes expressed in the prostate (ABCG2, SLC2A9, ABCC4) in prostate cell 

clusters. Single cell RNA-seq data were obtained from Crowley et al.154 (panel D) and Henry 

et al.155 (panel E). 

 

Figure 7: Mendelian randomization of CHIP vs gout for all CHIP, DNMT3A CHIP, and 

TET2 CHIP. A), C), and E) are plots of the relative effect sizes of CHIP-associated variants 

on gout for each of the three CHIP types, respectively. Overlaid lines indicate the Mendelian 

randomization estimates from weighted median, inverse variance weighted, or MR-Egger 

regression. B), D), and F) show the Mendelian randomization estimates as forest plots for 

each of the three CHIP types, respectively, including the MR-Egger intercept for each model. 
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Figure 8: DGAT2: Example of genome organization at a candidate immune-priming 

lncRNA locus. ENCODE H3K4me3 signal track from CD14+ monocytes indicates 

enrichment at the promoters of DGAT2, the lncRNA RP11-535A19.2, and UVRAG. 

ENCODE CCCTC-binding factor (CTCF) signal track from neutrophils and CD14+ 

monocytes indicates CTCF binding at the SNP rs11236533. Genehancer connections are 

indicated in green and illustrate physical connections (Hi-C) between rs11236533, which 

disrupts a CTCF binding site and additional maximally associated SNPs at two Genehancer 

regulatory elements. Red and blue dots indicate the CpG locations that are associated with 

co-localized meQTL and the colour denotes direction of effect of the gout risk allele (red = 

higher methylation, blue = lower methylation). 

 

Figure 9: Linking of urate metabolism and transport, insulin signalling, the Krebs cycle, 

and epigenomic reprogramming with candidate gout-associated genes. Candidate genes 

are encircled in bold lines, CHIP-implicated genes in red bold lines. 

Table 1: Table of missense lead variants or variants that are in high LD with lead 

variants. Candidate causal variants were drawn from Table S19 as either a lead variant 

(including from conditional COJO analysis) or in very strong LD (r2 ≥ 0.98) with a lead 

variant (including from conditional COJO analysis). 1, indicates LD in European, unless 

otherwise stated; 2, indicates frequency of risk allele in European, unless otherwise stated. 

 

Table 2: Table of candidate immune-priming lncRNAs. Candidate immune-priming 

lncRNAs were extracted from Table 120 based on the lead variant having a cis-eQTL for 

both a lncRNA and a protein-coding gene, and the gene having a high prioritization score in 

Table S30. SNP positions are noted in human genome build GRCh38 coordinates. a, 
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prioritization score used rs28407119 (European male-only lead variant) as the locus SNP. b, 

prioritization score used rs4669524 (trans-ancestry full (combined sexes) lead variant) as the 

locus SNP. c, prioritization score used rs112537099 (European male-only lead variant) as the 

locus SNP.  
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Ethics statement 

For the 23andMe Inc. Cohort participants provided informed consent and participated in the 

research online, under a protocol approved by the external AAHRPP-accredited IRB, Ethical 

and Independent Review Services (www.eandireview.com). The UK Biobank (UKBB) was 

undertaken with ethical approval from the North West Multi-Centre Research Ethics 

Committee of the UK. GlobalGout obtained ethical approval from the following committees: 

the New Zealand Multiregional Ethics Committee (MEC05/10/130); the Northern Y 

Region Health Research Ethics Committee (Ngāti Porou Hauora Charitable Trust study; 

NTY07/07/074); Research and Ethics Committee, Repatriation General Hospital, South 

Australia (32/08); Research Ethics Committee, University of New South Wales; 

Ethikkommission, Technische Universität Dresden (EK 8012012); South East Scotland 

Research Ethics Committee (04/S1102/41); Commission Cantonale (VD) D'éthique de la 

Recherche sur l'être Humain, Université de Lausanne; Commissie Mensgebonden Onderzoek 

regio Arnhem—Nijmegen; Partners Health Care System Institutional Review Board.hTe 

Institutional Review Board of the Kaiser Foundation Research Institute provided ethical 

approval for the Kaiser Permanente sample set. The FinnGen study was approved by 

theCoordinating Ethical Committee of the Hospital District of Helsinki and Uusimaa. The 

ethics review board at the Affiliated Hospital of Qingdao University approved the study in 

China. In Japan ethical approvals were provided by the institutional ethical committees of the 

National Defense Medical College, Nagoya University and RIKEN. The Korean Association 

Resource (KARE) was approved by the institutional review board of the Korea National 

Institute of Health. The FAST study and Generation Scotland was ethically approved by the 

UK Multi-Centre Research Ethics Committee (Reference number: 2011-001883-23) and the 
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NHS Tayside Committee on Medical Research Ethics (REC Reference Number: 

05/S1401/89). 
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Table 1: Table of missense lead variants or variants that are in high linkage disequilibrium with lead variants. 

Gene 
Variant Lead or 

LD with 
lead1 

Risk Allele Frequency2 CADD Variant functional consequence 
AA Change rsID 

ABCA6 p.Cys1359Arg rs77542162 Lead Cysteine 0.99 28.7 

ATP-binding cassette subfamily member 
A6. May play a role in macrophage lipid 
transport and homeostasis. Arginine allele 
disrupts protein stability1. 

ABCG2 
p.Gly141Lys 
p.Val12Met 

 

rs2231142 
rs2231137 

 

Lead 
Lead 

(COJO) 

Lysine 
Valine 

 

0.09 
0.94 

 

16.4 
2.4 

 

ATP-binding cassette subfamily member 
G2. Lysine allele of pGly141Lys causes 
internalization of ABCG22, preventing 
secretion of urate3. p.Val12Met has not been 
associated with ABCG2 phenotype4. 

ADH1B p.His48Arg rs1229984 Lead Histidine 0.03 13.1 

Alcohol dehydrogenase 1B. The histidine 
allele causes rapid oxidation of alcohol5, 
predicted to increased depletion of the ATP 
pool and increase urate by ADP catabolism.  

ALDH2 p.Asp504Lys rs671 
1.0 

(EAS) 
Glutamate 0.83 (EAS) 32.0 

Aldehyde dehydrogenase 2. Glutamate allele 
causes increased ALDH2 activity, consistent 
with increased hypoxanthine and urate levels 
after ingestion of alcohol6,7. 

CPS1 p.Thr1412Asn rs1047891 Lead Threonine 0.70 18.2 
Carbamoyl phosphate synthase. Threonine 
allele associates with lower levels of blood 
arginine8. 

GCKR p.Leu446Pro rs1260326 Lead Leucine 0.41 13.2 

Glucokinase regulatory protein. Leucine 
allele causes relaxation of inhibition of 
glucokinase9,10, predicted to increase glucose 
phosphorylation, deplete ATP pool and 
increase urate by ADP catabolism. 

GLS2 p.Leu581Pro rs2657879 1.0 Proline 0.21 15.2 Glutaminase 2. Regulated by METTL3. 
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Proline allele associates with lower plasma 
glutamine levels11. 

HNF4A p.Ala98Val rs1800961 
Lead 

(COJO) 
Threonine 0.96 21.4 

Hepatocyte nuclear factor 4A. Threonine 
variant reduces transactivation of the 
ABCG2 promoter, predicted to reduce 
ABCG2 levels and urate secretion12. 

MC4R p.Val103Ile rs2229616 1.0 Valine 0.99 18.5 

Melanocortin 4 receptor. Isoleucine variant 
protective of obesity. Gain of function 
variant13. Likely reflects causal effect of 
obesity on gout. 

PNPLA3 p.Ile148Met rs738409 1.0 Isoleucine 0.78 13.7 

Patatin-like phospholipase domain-
containing protein 3 (adiponutrin). 
Methionine allele is loss of function and 
reduces hepatic VLDL secretion14. 

SH2B3 p.Trp262Arg rs3184504 
1.0 

(EAS/ 
AFR) 

Tryptophan 0.46 10.7 

SH2B adaptor protein 3. Negative regulator 
of cytokine signalling. Deficiency promotes 
monocyte proliferation upon stimulation15. 
Tryptophan allele is loss of function16.  

SLC17A1 p.Thr269Ile rs1165196 Lead Isoleucine 0.56 8.5 

Solute carrier family member 17A1, encodes 
NPT1. Secretory urate transporter. 
Isoleucine allele reduces urate transport 
activity17. 

SLC17A3 p.Gly279Arg rs56027330 0.99 
(COJO) 

Arginine 0.14 17.4 
Solute carrier family member 17A3, encodes 
NPT3. Secretory urate transporter. Arginine 
allele reduces urate transport activity18. 

SLC2A9 p.Gly25Arg rs2276961 
0.98 

(COJO) 
Arginine 0.53 2.3 

Solute carrier family member 2A9, encodes 
GLUT9. Reuptake urate transporter. The 
variant does not influence urate transport 
activity19. 

SLC39A8 p.Ala391Thr rs13107325 Lead Alanine 0.92 22.0 
Encodes solute-carrier gene, a zinc / 
cadmium / manganese transporter. Increases 
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NF-κβ signalling in macrophages20. 
Threonine allele slightly reduces transport 
activity21. 

SLCO1B1 p.Val174Ala rs4149056 Lead Valine 0.84 25.1 
Solute carrier organic anion transporter 
family member 1B1. Uptake transporter. 
Alanine allele reduces transporter activity22. 

       Gene function 

ADO p.Gly25Trp rs2236295 Lead Glycine 0.63 24.1 
2-aminoethanethiol dioxygenase. Forms 
hypotaurine. 

AP4E1 p.Cys88Arg rs2306331 1.0 
(EAS) 

Cysteine 0.53 17.3 
Adaptor-related protein complex 4 subunit 
epsilon 1. Role in mediating vesicle 
formation in secretion and endocytosis. 

AQP10 p.His123Tyr rs6685323 1.0 Histidine 0.68 5.6 
Aquaporin 10. Water-selective integral 
membrane channel. 

BSCL2 p.Lys268Arg rs6856 0.99 Lysine 0.81 5.7 
Encodes endoplasmic reticulum 
transmembrane protein seipin. Important for 
lipid droplet morphology. 

CRIP3 p.Ile188Thr rs2242416 0.98 Isoleucine 0.42 21.1 Cysteine-rich protein 3. 

CUBN 
p.Ile2984Val 
p.Glu3002Gly 

rs1801239 
rs1801240 

1.0 
Valine 

Glycine 
0.09 

15.0 
19.3 

Cubilin. Intrinsic factor-vitamin B12 
receptor. Range of physiological functions. 
Associates with megalin (LRP2) in proximal 
tubule of kidney to resorb filtered proteins23. 

CTAGE9 p.Leu398Val rs202051647 
1.0 

(EAS) Leucine 0.92 17.8 
CTAGE family member 9. Predicted 
involved in endoplasmic reticulum to Golgi 
vesicle transport. 

DTL p.Ala394Val rs3135474 1.0 Alanine 0.04 7.6 
Denticleless E3 ubiquitin protein ligase 
homolog. Involved in protein ubiquitination. 

DDIT4L p.Lys180Arg rs201713115 1.0 Arginine 0.09 22.9 
DNA damage inducible transcript 4 like. 
Promotes autophagy via mTOR24. 

EPB41 p.Ala214Ile rs111642750 Lead Isoleucine 0.04 22.5 Erythrocyte membrane protein band 4.1. 
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Involved in erthrocyte shape. 

EVI5 p.Ile336Val rs2391199 1.0 Isoleucine 0.91 4.3 
Ecotropic viral integration site 5. Involved in 
endosome to Golgi transport. 

FAM35A p.Ser550Cys rs11202365 0.99 Cysteine 0.36 22.8 
Encodes shieldin complex subunit 2. 
Shieldin complex involved in DNA repair. 

FGF21 p.Leu174Pro rs739320 Lead Leucine 0.37 5.9 
Fibroblast growth factor 21. Hepatokine that 
regulates sugar intake and metabolism. 

FRK p.Gly122Arg rs3756772 0.99 Arginine 0.42 19.3 Fyn related Src family tyrosine kinase 

GLIS3 p.Pro456Gln rs6415788 Lead Proline 0.37 14.5 
GLI-similar zinc finger protein family. Has a 
role in islet β-cell development25. 

INHBC p.Arg322Gln rs2229357 0.99 Arginine 0.81 19.6 
Inhibin subunit beta C. Member of TGF-β 
superfamily. Inhibition of activin A 
signalling. 

HNF1A p.Ala98Val rs1800574 Lead Alanine 0.97 22.6 
Hepatocyte nuclear factor 1A. The valine 
variant implicated in MODY3. 

JMJD1C p.Glu2535Asp rs1935 Lead Aspartate 0.51 11.2 
Jumonji domain containing 1C a.k.a 
KDM3C. A histone demethylase.  

KIAA0100 p.Val1373Gly rs12602520 1.0 Glycine 0.07 15.9 
Bridge-like lipid transfer protein family 
member 2 (BLTP2). 

LRP2 p.Lys4094Glu rs2075252 0.99 Glutamate 0.24 13.1 
LDL receptor-related protein 2 (megalin). 
Associates with cubilin in kidney proximal 
tubule to resorb filtered proteins23. 

MLXIPL 
p.Ala191Val 
p.Gln203His 

rs35332062 
rs3812316 

0.99 
Lead 

Alanine 
Histidine 

0.88 
0.88 

19.4 
17.1 

MLX interacting protein like. Transcription 
factor, activates motifs of triglyceride 
synthesis genes. 

MFSD12 p.Tyr182His rs2240751 Lead Tyrosine 0.99 27.4 
Major facilitator superfamily domain-
containing 12. A mediator of cysteine 
transport26. 

NPHS2 p.Arg226Gln rs61747728 Lead Arginine 0.96 22.8 
Encodes podocin, regulates glomerular 
permeability. 

POM121 p.Pro955Ser rs9955 Lead Proline 0.87 1.1 Encodes a transmembrane nucleoporin. 
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Inhibits macrophage LPS response by 
blocking NF-κβ translocation to the 
nucleus27. 

SH2B1 p.Thr171Ala rs7498665 1.0 Alanine 0.33 12.8 
SH2B adaptor protein 1. Involved in kinase 
activation and signalling. 

SLC25A5 p.Leu111His rs371749 Lead Arginine 0.75 22.3 

Solute carrier family member 25A5. 
Encodes ADP:ATP translocase 2 (ANT2) 
that mediates transport of ADP into the 
mitochondrial matrix. Drives 
proinflammatory macrophage activity28. 

SLC5A1 
p.Asn51Ser rs17683011 0.98 Serine 0.06 20.2 Solute carrier family member 5A1. Encodes 

sodium / glucose cotransporter 1 (SGLT1). 
A haplotype of missense variants.  

p.Ala411Thr rs17683430  Alanine  15.7 
p.His615Gln rs33954001  Glutamine  5.4 

SLC5A9 p.Ala600Val rs78427303 
1.0 

(COJO) Alanine 0.91 0.0 Encodes sodium/glucose transporter SGLT4. 

SOS2 pPro191Arg rs72681869 Lead Arginine 0.99 22.5 
SOS Ras/Rho guanine nucleotide exchange 
factor 2. 

TSPAN6 p.Ala108Thr rs1802288 Lead Alanine 0.81 26.0 
Tetraspanin 6. Implicated in production of 
extracellular vesicles29. 

UPF3A p.Arg64Lys rs3752105 0.99 Lysine 0.26 15.2 
UPF3A regulator of nonsense-mediated 
mRNA decay.  

Candidate causal variants were drawn from Table S25 as either a lead variant (including from conditional COJO analysis) or in very strong 

linkage disequilibrium (r2
≥0.98) with a lead variant (including from conditional COJO analysis). 1, in European, unless otherwise stated; 2, risk 

allele in European, unless otherwise stated. First section, genes with candidate causal missense variants with information available on impact of 

the variant on protein function and phenotype; Second section, the remaining genes. 
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Table 2: Table of candidate immune-priming lncRNAs. 

Gene lncRNA 
Lead Variant Normalized Prioritization 

Score Gene Function 
rsID Chr:Position Gene lncRNA 

AUH RP11-305L7.7 rs2387099 9:91223542 4.7 1.2 

3-methlyglutaconyl-CoA hydratase. In 
leucine degradation pathway. Located in 
mitochondrial membrane. Binds to AU-
rich elements in 3-UTRs of rapidly 
decaying RNAs. 

BAG4 
RP11-350N15.4 
RP11-350N15.5 

rs4537271 8:38040503 4 
1 
3 

Bcl2-associated athanogene 4. Negative 
regulator of apoptosis. BAG4 and RP11-
350N15.5 have whole blood eQTL. 

CPEB2 
LINC00504 

CPEB-DT (DRAIR) 
rs12646450 4:14943190 3a 2a 

1a 

Cytoplasmic polyadenylation element 
binding protein 2. DRAIR induces 
proinflammatory macrophages1. 

DGAT2 RP11-535A19.2 rs10899113 11:75757419 5 2 

Diacylglycerol acyl transferase-2. 
Connects diacylglycerol to long-chain 
fatty acyl-CoA in triglyceride synthesis. 
DGAT2 and RP11-535A19.2 both have 
whole blood eQTL. 

IK CH17-140K24.6 rs2256547 5:139996011 4 1 
Cytokine implicated in immunoregulation 
of lupus and inflammatory arthritis2. 

KLF11 RP11-254F7.2 rs10165255 2:10199601 4 1.2b 
Kruppel like factor 11. Implicated in 
NFκβ signalling3. 

LAMC1 RP11-181K3.4 rs6660111 1:183045154 3.5 0 
Laminin gamma 1. Extracellular matrix 
glycoprotein. 

MAST3 CTD-3149D2.3 rs273496 19:18241857 4 1 
Microtubule-associated serine/threonine-
protein kinase gene-3.  Implicated in 
TLR4 signalling and inflammatory 
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response via NFκβ2. 

NAPG RP11-883A18.3 rs489837 18:10485360 4 1 

N-ethylmaleimide-sensitive factor 
attachment protein gamma. Aka gamma-
SNAP. Regulates endosomal trafficking 
of transferrin4. 

PROCA1 RP11-20B24.7 rs9896098 17:27008721 6 3 
Protein interacting with cyclin A. 
Predicted to be involved in lipid 
metabolism. 

SLC22A4 
AC116366.6 
AC063976.7 

rs7705189 5:132287665 4 
3 
2c 

SLC22A4 encodes OCTN1, that 
transports the antioxidant ergothioneine 
into cells. 

YAF2 
RP11-328C8.2 
RP11-351C21.2 

rs11181466 12:42370879 4 
2 
1 

YY1-associated factor 2. Is a component 
of Polycomb repressive complex 1 
(PRC1). 

 

Candidate immune-priming lncRNAs were extracted from Table S10 based on the lead variant having a cis-eQTL for both a lncRNA and a 

protein-coding gene with a high prioritization score in Table S30. SNP positions are noted in human genome build GRCh38 coordinates. a, 

prioritization score used rs28407119 (European male-only lead variant) as the locus SNP. b, prioritization score used rs4669524 (trans-ancestry 

full (combined sexes) lead variant) as the locus SNP. c, prioritization score used rs112537099 (European male-only lead variant) as the locus 

SNP. 
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Figure 1: Numbers of significant loci and independent signals, across the ancestry-specific and trans-ancestry

analyses and in the full (combined sexes), male-only, and female-only analyses. A) summarizes the cohorts

used, the GWAS done and loci detected. B) shows a Venn diagram of the overlap between significant loci

across the amalgamated full, male-only, and female-only GWAS. C) shows an upset plot of the overlap

between the significant independent signals in the single-ancestry and trans-ancestry analyses for the full

cohort.
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Figure 2: Association of polygenic risk score with gout in European participants of the UK Biobank in
combined sexes, men and women. The top panel (A) shows the PRS bin distribution, the middle panel (B)
the gout prevalence in di↵erent PRS bins and the bottom panel (C) the risk for gout of the di↵erent PRS bin
compared to the most common bin (D) the area under the receiver operating characteristic curve graphs.
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Figure 3: Genetic correlation between the European gout GWAS and UK Biobank GWAS traits. In all plots,
each point represents the result of a genetic correlation analysis between our European gout GWAS and one
of the 934 UK Biobank GWAS traits. Non-significant results are shown as transparent plot points for clarity.
A. Volcano plot of genetic correlation between gout European GWAS results and 934 UK Biobank GWAS
traits. Points are coloured based on whether the equivalent correlation between the UK Biobank serum
urate GWAS and trait of interest was significant (P < 5.35 ⇥ 10�5). B. Linear relationship between the
genetic correlation results of the European gout GWAS and the UK Biobank serum urate GWAS. Points are
coloured based on whether they were significant in both, one, or neither of the genetic correlation analyses.
C. Genetic correlation values (rg) across 27 trait categories. Significant correlations are highlighted.
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Figure 7: Mendelian randomization of CHIP vs gout. Results of CHIP MR for either all CHIP, DNMT3A
CHIP, or TET2 CHIP. Plots A, C, and E show the relative e↵ect sizes of the di↵erent CHIP-associated
variants on gout, with overlaid lines indicating the MR estimates from either weighted median, inverse
variance weighted, or MR-Egger regression. Plots B, D, and F show the MR estimates as forest plots,
including the MR-Egger intercept for each model.
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Figure 8: DGAT2: Example of genome organization at a candidate immune-priming lncRNA locus. EN-
CODE H3K4me3 signal track from CD14+ monocytes indicates enrichment at the promoters of DGAT2, the
lncRNA RP11-535A19.2 and UVRAG. ENCODE CTCF signal track from neutrophils and CD14+ mono-
cytes indicates CTCF binding at the SNP rs11236533. Genehancer connections are indicated in green and
illustrate physical connections (Hi-C) between the rs11236533 which disrupts a CTCF site and additional
maximally associated SNPs at two Genehancer regulatory elements. Red and blue dots indicate the CpG
locations that are associated with co-localized meQTL and the colour denotes direction of e↵ect of the gout
risk allele (red = higher methylation, blue = lower methylation)
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Figure 9: Linking of insulin signalling, the Krebs cycle and epigenomic reprogramming with candidate gout-
associated genes. Candidate genes are encircled in bold lines, CHIP-implicated genes in red bold lines.
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