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Vibrational spectroscopies, based on infrared absorption and/or Raman scattering provide a detailed

fingerprint of a material, based on the chemical content. Diagnostic and prognostic tools based on these

technologies have the potential to revolutionise our clinical systems leading to improved patient

outcome, more efficient public services and significant economic savings. However, despite these strong

drivers, there are many fundamental scientific and technological challenges which have limited the

implementation of this technology in the clinical arena, although recent years have seen significant pro-

gress in addressing these challenges. This review examines (i) the state of the art of clinical applications of

infrared absorption and Raman spectroscopy, and (ii) the outstanding challenges, and progress towards

translation, highlighting specific examples in the areas of in vivo, ex vivo and in vitro applications. In

addition, the requirements of instrumentation suitable for use in the clinic, strategies for pre-processing

and statistical analysis in clinical spectroscopy and data sharing protocols, will be discussed. Emerging

consensus recommendations are presented, and the future perspectives of the field are assessed, particu-

larly in the context of national and international collaborative research initiatives, such as the UK EPSRC

Clinical Infrared and Raman Spectroscopy Network, the EU COST Action Raman4Clinics, and the

International Society for Clinical Spectroscopy.

Introduction

The potential of vibrational spectroscopy for biomedical appli-
cations has been well established through many proof of
concept studies over the past decades.1–4 Due to its unique
fingerprinting capability, vibrational spectroscopy can play a
significant role in histopathology, cytology, biopsy targeting,
surgical targets, treatment, monitoring and drug studies.
However, translation into the clinical environment has been
slow, and a recent discussion paper has outlined the chal-
lenges facing progress to the realisation of applications poten-
tial.5 At present, the field of spectral diagnosis is in a dynamic
evolutionary phase, and a number of key issues remain to be
addressed; there has been very little progress towards stan-
dardisation of either sample preparation, measurement proto-
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cols or reporting and very few studies on the scale of clinical
trials have been undertaken. Although this is an exciting time,
the lack of consistency in the field may deter investors,
hamper product development and delay translation.

Progress towards the objectives of translation requires close
collaboration across the range of disciplines involved, and a
clear identification and understanding of what the un-met
clinical needs are, and the limitations of current “gold stan-
dard” techniques. These techniques are based on subjective
clinical evaluation of morphological changes in cells and/or
tissue, and therefore consultation with clinicians is imperative,
such that improved performance of spectroscopic approaches
can be compared to consensus standards.

Understanding the complexities of light interaction with
the physically and chemically complex milieu of biological
samples is, in itself, a challenge. Although vibrational spec-
troscopy has the potential to provide characteristic chemical
signatures of disease, the chemical and physical inhomogen-
eity of the samples can confound these signatures, and,
although significant progress has been made towards under-
standing scattering processes and dealing with them during
data pre-processing routines,6–10 there remain questions
surrounding interference effects in some measurement
modalities.11–14

Standardisation of sample preparation and measurement
protocols is also critical, and although collective efforts have
been made to establish consensus in a research context,15–17

the development of protocols for the preparation of cells,
tissue and biofluids for clinical spectroscopy should be pri-
marily guided first and foremost by the demands of current
clinical practice. Validation of the robustness of the techniques
through inter-laboratory “round robin” or ring trials is also
required.

Data pre-processing and analysis techniques remain the
subject of ongoing debate and development, in an academic
context.18 However, it has become increasingly important that
a consensus on optimal data pre-treatment is reached and
adopted such that the limits and scope of the data analysis
can be established and demonstrated in a clinical setting.
Equally, the requirement to establish sharing protocols for the
increasingly complex datasets is rapidly emerging.

The field of clinical application of vibrational spectroscopy
is also enriched by the emergence of novel techniques and
methodologies which potentially add analytical capabilities
and capacity, but also introduce new challenges associated

with technical aspects as well as with integration into a clinical
workflow.

From fundamental research to clinical translation, the field
is broadly multi- and interdisciplinary, involving as it does fun-
damental and applied research, chemometrics, biomedical
applications and ultimately clinical translation. There is, there-
fore, a critical need for concerted effort which integrates all
stakeholders, through consortia such as the UK EPSRC
Clinical Infrared and Raman Spectroscopy Network, the EU
COST Action Raman4Clinics, and CLIRSPEC – the
International Society for Clinical Spectroscopy. This paper
reviews the state of play of efforts to realise the translation of
vibrational spectroscopic techniques into the clinical setting,
while addressing the challenges identified, and projecting the
future perspectives of the field.

State of the art
In vivo-intraoperative characterisation of tumour resection
margins

Perhaps one of the most striking recent demonstrations of the
potential for clinical translation of vibrational spectroscopy
has been the deployment of fibre based Raman spectroscopy
for intra-operative guidance of brain surgery.19 Identification
of tumour margins is critical to minimise the potential for
recurrence, and this is particularly difficult for Gliomas, which
have poorly defined margins. The benefit of minimising the
amount of tissue removed is obvious, particularly in the case
of brain surgery, and therefore the additional guidance of a
spectroscopic probe to detect invasive brain cancer in situ in
real time in patients is potentially invaluable. Jerym et al.
demonstrated the use of a handheld contact fiber optic Raman
spectroscopy probe to distinguish brain cancer (glioma) from
normal brain in situ. Using state-of-the-art neuro-navigation
techniques, MRI was used for visualisation and for estimating
the location of each Raman measurement on the preoperative
images. The system was able to measure in vivo spectra and
when the data was used to build a boosted tree machine learn-
ing classification model, using the gold-standard for training,
it was possible to show that the Raman signals could accu-
rately differentiate normal brain from dense cancer and
normal brain invaded by cancer cells, with a sensitivity of 93%
and a specificity of 91%. The probe enabled identification of
the diffusely invasive brain cancer cells at cellular resolution
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in patients with grade 2 to 4 gliomas. In a further study, the
impact of the ambient environment of the operating theatre
on the performance of the probe system was characterised.20

In a study of 35 patients, Vaqas et al. similarly deployed
Raman spectroscopy to analyse tissue at the brain surface,
en route to the tumour, in superficial and deep tumour zones
and resection margins in vivo during surgery, demonstrating
that, in comparison to matched core biopsy samples verified
by routine histopathology, meningiomas and metastases as
well as low and high grade gliomas could be identified with
high accuracy.21 These and other recent developments of appli-
cations of Raman based spectroscopy for improving the accu-
racy of brain tumour surgery have been reviewed by Hollon
et al.22 In the field of oral cancer, Barroso et al.23 have demon-
strated discrimination between oral cancer and healthy tissue
based on water content of freshly excised tongue specimens,
determined by Raman spectroscopy in the high wavenumber
region. This dramatic signature difference can be used to
determine the location of the tumor border in oral cancer
surgery.24

In vivo-endoscopic probes for disease detection

Fibre based in vivo applications have also been explored for
endoscopic gastrointestinal probes. Early work by Shim et al.
showed the potential25 but insufficient signal to noise was
obtained for early diagnosis of malignancies. Huang et al.
have been exploring different probe configurations to provide
diagnostic signals from the lining of hollow organs such as the
oesophagus.26 These multifibre probes have been shown to be
efficient in terms of light collection, and ongoing work has
enabled more specific sampling of diagnostically relevant
surface signals. The collaborative works of Stone et al., have
been devoted to developing and testing a confocal probe able
to measure signals from only the surface 100–200 μm of the
oesphageal mucosa,27,28 shown to be the optimum depth for
identification of early dysplastic changes leading to cancers.29

This system is currently undergoing in vivo trials, funded by
UK NIHR.

A sequence of early feasibility studies have shown that
Raman spectroscopy can accurately identify metastatic inva-
sion in lymph nodes from the axilla, mediastinum, and head
and neck (H&N) using Raman microscopic mapping of the cut
surface of the nodes.30–32 Foundation studies in head and
neck malignancies using NIR Raman have enabled the demon-
stration that Raman can identify the pathology of swollen
lymph nodes. Raman spectra can clearly be separated into
reactive nodes (those swollen from reaction to infection),
primary malignancies (lymphomas) and secondary malignan-

cies (metastatic squamous cell carcinomas and adenocarcino-
mas) (90% sensitivity/86% specificity33).

This performance has been reproduced in the operating
theatre, using a low-cost commercially available, portable
probe-based Raman system to measure the molecular finger-
print of the excised sentinel lymph nodes (SLN). Greater that
85% sensitivity and 96% specificity was achieved for identifi-
cation of metastatic nodes. The performance of Raman in the
breast SLN feasibility study versus other intra-operative results
showed Raman measurements to be equivalent to the mole-
cular assay approaches, but they require no tissue destruction
(allowing for follow up histopathology). Furthermore, Raman
provided more rapid results and could be applied in vivo.34

A smart Raman needle probe has been developed and
tested for potential in vivo and ex vivo use, capable of measur-
ing Raman molecular tissue signals in <1–2 seconds down a
hypodermic needle.35 The hand-held device containing the key
optical components is coupled to disposable needle probe
tips.36 Initial ex vivo feasibility testing of the technique was
performed on excised head and neck lymph nodes from 62
patients undergoing surgery. A Principal Components/Linear
Discriminant Analysis classification model tested using leave-
one-patient-out cross-validation showed sensitivities and speci-
ficities of this first feasibility test exceeding 80%.37

For in vivo surgical applications, an interesting study by
Ashton et al. explored the translation of Raman spectroscopic
signatures of diseased tissue in to audio signals to provide
real-time guidance to surgeons without disturbing the visual
focus on the patient.38

The field of Raman Spectroscopy for cancer detection and
cancer surgery guidance has recently been reviewed by Santos
et al., demonstrating real progress towards clinical translation
of these techniques and adoption by the medical community,
as well as highlighting challenges.44

In contrast, there have been few demonstrations of in vivo
clinical applications of mid – IR spectroscopy. However, initial
studies of the skin have demonstrated that high peak power
Quantum Cascade Laser (QCL) light sources may allow the
measurement of signals below the stratum corneum in the
skin.45 Indeed, the goal of the EU MINERVA project is to
achieve in vivo MIR molecular vibrational spectroscopy,46,47

promising further developments in this aspect of the field.

Ex vivo-spectroscopic histopathology

Ex vivo applications of vibrational spectroscopy include ana-
lyses of samples taken directly from the body for diagnostic
purposes, namely tissue biopsies (histological samples), cell
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biopsies (cytological samples) and liquid biopsies (bodily
fluids such as blood plasma/serum, saliva, etc.).

In general, adoption by the medical community is regarded
as a key stage of development, and, in this context, minimal
disruption to the normal workflow is recommended. The
adoption of appropriate clinical sample preparation and pres-
entation for spectroscopic analytical procedures is therefore
critical. Ideally, spectroscopic diagnostic techniques should
add technical/medical value without compromising cost and/
or efficiency. In some cases, however, it may be argued that sig-
nificant improvements over an established gold standard may
warrant significant changes to currently accepted protocols.
Such disruptive innovations may not be the most strategic
targets for translation of the technology into the clinic,
however, and so adaptation of the state of the art spectroscopic
capabilities to the clinical environment should be prioritised,
rather than vice versa. The development of protocols for the
preparation of cells, tissue and biofluids for clinical spec-
troscopy should therefore be guided first and foremost by
current clinical practice.

In the context of surgical procedures, an important appli-
cation of spectroscopic monitoring has been identified as
“near patient” screening of tissue biopsies, taken intra-opera-
tively to guide the surgeon in identifying tumour resection
margins. Ideally, analysis should be performed on fresh tissue,
and screening time, including data processing, should be kept
to a minimum.

The incorporation of Focal Plane Array (FPA) detectors in
FTIR microscopes has greatly improved data acquisition and
processing speeds,48 enabling the acquisition of several thou-
sand spectra simultaneously. Nevertheless, images from a
large area of tissue (cm2) or from a large tissue micro array
(TMA), often take several hours to acquire. Data analysis and
management of these burgeoning data sets is also a major
problem. Reducing the spectral resolution or reducing the
number of co-added scans can reduce acquisition times but
ultimately deteriorates the quality of the data. Recently, it has
been suggested that the full spectral range is not required for
accurate disease diagnosis using spectral histopathology.49,50

These studies suggest that, once spectral biomarkers are
known, it may be possible to diagnose disease based on a
limited number of discrete spectral features. In this context,
recent developed high intensity infrared sources, including
free electron lasers (FEL), optical parametric oscillators (OPO)
super continuum and QCLs, have indicated a route towards
significant further advances in the field.

QCLs51 are high intensity, tuneable semiconductor lasers
which can emit across the mid infrared region of the electro-
magnetic spectrum. Availability of these high intensity tune-
able sources has renewed interest in unmultiplexed, scanning
infrared spectrometers utilising discrete frequencies.52 In a
recent study,53 a QCL imaging system was used to image a
large TMA consisting of 207 breast core biopsies. In addition
to rapid imaging at a pixel size of 4.25 × 4.25 μm2, the high
magnification optical configuration with a pixel size of 1.36 ×
1.36 μm2 can measure high definition images providing a
greater level of detail of finer structures not visible using a con-
ventional desktop FTIR imaging system that has a pixel size of
5.5 × 5.5 m2 (Fig. 1). Using the QCL microscope to collect a
chemical image of the amide I band, the full TMA composed
of a 10 × 12 array of infrared tiles was collected in just
9 minutes. Measurements on the same sample using a state of
the art FTIR FPA system required approximately 19 hours.
Although the direct comparison is unfair, in that the FTIR col-
lects the full spectral range and the QCL only collected one dis-
crete frequency, the potential speed advantage over FTIR is
undeniable, enabling the possibility of high throughput
imaging of tissue biopsies from a large numbers of patients.
One consideration is the speed of collection for each infrared
tile when multiple frequencies are being collected. FTIR spec-
troscopy collects all wavelengths simultaneous, and sufficient
scans are co-added to ensure adequate signal to noise. QCLs
are not continuous sources, requiring the source to be tuned
to the desired wavelength, and data points need to be recorded
stepwise for each frequency of interest.54 Despite this, once
spectral biomarkers have been identified, the instrument
could be assigned to collect a limited number of key features,
enabling high throughput imaging. Recent work has shown
that excellent classification of cancerous sample can be
achieved with as few as 25 frequencies, although classification
accuracy starts to drop off rapidly as the number of frequencies
is reduced.55

Although the speed advantage of QCL discrete frequency
imaging is clear, the main focus of research has been on
throughput rather than accurate disease diagnosis. There are
still significant obstacles that need to be overcome before such
technology can be used routinely. For example, it is still not
clear how to deal with baseline correction when measuring
highly scattering samples such as glandular prostate tissue.
Acceptance of this new technology will depend on whether
high quality infrared spectra can be rapidly acquired and still
maintain the diagnostic accuracy demonstrated using FTIR
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spectroscopy. Furthermore, given that imaging with a QCL
system presents a quantum leap in current technology, it
needs to be demonstrated that infrared spectra similar to
those using a conventional FTIR spectroscopic system can be
acquired. Despite these exciting developments, large scale
trials are now required to correctly assess the future of the
technology, and its potential in the clinical setting.

For screening of large sample areas such as tissue biopsies,
the required pixel dwell times of the order of 0.1 to 10 seconds

limits the application of high-resolution Raman microspectro-
scopy in many areas of clinical practice, particularly histo-
logical screening. Coherent Raman scattering (CRS)56 provides
enhancement of signals by several orders of magnitude and,
when applied in a microscopy format, benefits from the non-
linear nature of the process which confines the signal to a sub-
micron focus that can be scanned in space, allowing rapid 3D
mapping of bio-molecules with sub-micron resolution.57 CRS
microscopy can be implemented by recording the coherent
anti-Stokes Raman scattering (CARS) or stimulated Raman
scattering (SRS) signal. While the former has gained popularity
for rapid screening of large areas, its nonlinear dependence on
the number of scatterers means that the spectral profiles are
not trivially interpreted, and so SRS is favoured for analytical
applications.58

While other reviews have provided a more comprehensive
summary of the technical implementation and applications of
CRS,59–61 this report aims to highlight the current state-of-the-
art in the clinical translation of CRS which is paving the way
towards its integration into widespread clinical use. The appli-
cations of CRS microscopies to clinical and biological studies
have also been reviewed by Schie et al.62 Fig. 2 shows an
example of the use of CARS for the rapid subcellular analysis
of Hep2 liver cells.62 CRS techniques also have significant
potential to overcome the time limitations of conventional his-
tology. Ji et al.63 demonstrated that SRS microscopy enables
rapid, in situ label-free acquisition of H&E like images based
on the ratio of Raman signals at 2930 and 2845 cm−1, reflect-
ing the different lipid and protein contents. Using this tech-
nique, they were able to differentiate tumour from non-neo-
plastic tissue in a human glioblastoma xenograft mouse model
and demonstrated excellent correlation between SRS and con-
ventional H&E microscopy for detection of glioma infiltration.
Orringer et al.64 have demonstrated the clinical translation of
SRS microscopy for intraoperative tumour margin detection, a
significant innovation being the application of a balanced-
detection scheme that allowed SRS to be performed using
compact portable fibre lasers and an image-processing
method (stimulated Raman histology, SRH) to convert the SRS
signals into virtual H&E slides so the existing clinical expertise
could be applied to make on the spot decisions, in this appli-
cation, an SRH mosaic of ∼0.6 × 1.0 mm was recorded in
∼2.5 minutes. SRH was shown to have remarkable agreement
with conventional histology, showing an accuracy >92%. Most
recently, Francis et al.65 introduced an improvement to narrow-
band SRS pathology through spectral slicing of broadband
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University of Exeter, UK. His research is in the field of
Biophotonics – the interface between Biology and Photonics that
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has worked to pioneer the field of novel optical diagnostics within
the clinical environment. He has published over 150 papers and
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Fig. 1 (a) Expanded view of TMA core (b) FTIR chemical image of amide
I, pixel size = 5.5 × 5.5 μm2. (c) QCL chemical image of amide I, pixel size
= 1.36 × 1.36 μm2.53
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(femtosecond) pulses. Drawing upon the higher peak power of
femtosecond pulses while preserving the spectral resolution of
picosecond pulses, they demonstrated the same chemical
specificity as narrowband SRS while achieving a higher signal-
to-noise ratio (SNR).

The examples above rely on narrowband (picosecond) exci-
tation, in which the excitation bandwidth is confined to the

line width of the Raman mode used for contrast. While this
scheme provides efficient excitation of single Raman bands,
spectral mapping requires sequential acquisition of multiple
Raman modes to acquire morphochemical contrast. However,
for spectral imaging, they suffer from limitations in motion
artefacts between acquisition of images at sequential Raman
shifts and the speed of laser tuning. Broadband CRS tech-
niques overcome this limitation by using broadband (femto-
second) pulses to simultaneously excite multiple Raman bands
which are then separated using spectroscopic detection. There
are many examples of biomedical applications of broadband
CRS, and, notably Camp et al.66 recently presented a technique
for efficient hyperspectral CRS image acquisition over the full
spectral range (500–3000 cm−1) using intrapulse three-colour
excitation to achieve high-resolution microspectroscopy with
pixel dwell times of a few microseconds.

Josep Sulé-Suso is Professor of Oncology at the University Hospital
of North Midlands and Keele University, UK. He obtained his
MB ChB in Barcelona (1987) and PhD in Medicine from Keele
University (2003). He was a Research Fellow at the National
Cancer Institute, Milan, Italy (1993–1995). He is a founding
member of the CLIRSPEC.

Fig. 2 (a) CARS image of cellular lipid droplet accumulations in HepG2 cells after the exposure to 250 μM of oleic acid (OA) and 250 μM palmitic
acid (PA). Raman spectra were taken from the indicated cellular lipid droplets. The pie charts show the relative amount of oleic and palmitic acid in
the individual lipid droplets determined from the Raman spectra. The percentile values are plotted below. The GC values indicate the amount for OA
and PA determined from lipid droplets of millions of cells. It can be seen that the values based on Raman spectroscopy and GC are in good agree-
ment. (b) Multiphoton image of HepG2 cells. The CARS signal from cellular lipid droplets is in green, and TPEF signal of green fluorescence protein
expressed in peroxisome in blue. The unnormalized Raman spectra for the indicated point are shown below. The peak intensity of the CH2 stretch
vibration at 2854 cm−1 is 9.8 times lower from peroxisome [ref. 62, reproduced with permission].
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Ex vivo-spectroscopic cytology

Cytological screening is commonly employed as a routine pre-
ventative measure for early stage disease detection, notably for
cervical and oral disease.67,68 In the case of cervical, screening
programmes are well established in the “first world” and so
sample throughput is very high. This puts increased demands
on the cost effectiveness of alternatives or adjuncts to currently
employed clinical practice.

The use of vibrational spectroscopy as an adjunct or
alternative to currently employed cytological screening
methods may be a viable strategic target objective. Particularly
in the case of automated liquid based cytology methods, it can
conceivably be easily integrated into the workflow. Using
Raman spectroscopy to characterise Thin Prep exfoliated cervi-
cal cytological samples, Ramos et al. reported sensitivities and
specificities of 94% and 95% for low grade squamous intra-
epithelial lesion and 84 and 100% high grade squamous
intraepithelial lesion.69 When calculated according to the
histological grading system of cervical intraepithelial neo-
plasia, the sensitivities and specificities improved further.
Sensitivity to HPV infection has also been reported promising
an integrated screening for early stage disease.70

A limited number of infrared absorption spectroscopy
studies have demonstrated the feasibility of using oral exfo-
liated cells. Papamarkakis et al.71 demonstrated that oral cells
could be classified according to anatomical region through
principal components analysis (PCA). In addition, samples
from patients with reactive atypical changes or malignancy
associated changes were seen to be spectrally similar to a
sample from a patient with squamous cell carcinoma, rather
than samples from healthy volunteers. Furthermore, spectral
changes were identified in oral cells infected with the herpes
simplex virus. Further studies from the same group72,73

showed that spectra from exfoliated cells from the tongues of
healthy volunteers could be discriminated from exfoliated cells
from the tongues of patients with oral dysplasia and cancer.
Although there have been few studies of exfoliated oral cells,
the protocol for cervical spectrocytology should be relatively
easily translated, as demonstrated recently by Behl et al.74

Ex vivo-liquid biopsies

Screening of bodily fluids (“liquid biopsy”) is a further ex vivo
application which is currently attracting increasing attention
and may represent a strategic, achievable target for clinical
translation.75 Biofluids offer an ideal diagnostic medium due
to their routine use, ease of collection, acceptance by patients
and the fact that they offer the ability to provide a snapshot of
human health (e.g. via systemic bodily fluids such as blood
(serum, plasma etc.)) and specific tissue function assessment
via specific biofluids (e.g. bile, sputum etc.)76 Suspended or
dissolved analytes are present in rather low concentrations,
however, and many studies to date have been performed on
dried samples.77,78

Pioneering work by Petrich et al. demonstrated the use of
serum spectroscopic diagnostics to be able to aid in the triage

of patients with acute chest pain discriminating between acute
myocardial infarction and chest pain of other origin to sensi-
tivities and specificities of 88.5% and 85.1% respectively.79

Recent work on serum spectroscopic diagnostics has shown
the ability of ATR-FTIR spectroscopy to distinguish between a
brain cancer serum set of 433 patients (3987 spectra) demon-
strating the ability to distinguish between cancer vs. non-
cancer, metastatic cancer vs. organ confined, brain cancer
severity and organ of metastatic disease with optimum sensi-
tivities and specificities between 80.0 and 100.0% depending
upon the question being asked.80 In addition, Raman spec-
troscopy has recently been shown to be sensitive to disease sig-
nature for bodily fluid analysis by enabling the discrimination
of cirrhotic patients with hepatocellular carcinoma (HCC) and
without to overall rates of accuracy of 84.5% to 90.2% for dried
serum drops and 86% and 91.5% for freeze-dried serum
drops.81 Importantly this study was conducted with a benign
inflammatory disease background showing the capability to
distinguish the malignant disease.

Translational work by the group from Monash University,
based on the use of ATR-FTIR spectroscopy for the determi-
nation of malaria parasitemia in whole blood samples,82 has
been recently demonstrated in field trials in austere environ-
ments proving the robustness and capability of serum biofluid
diagnostics.

In vitro-drug screening and companion diagnostics

In vitro studies of cell cultures are plentiful in the literature
and are invaluable for the development and validation of new
measurement technologies, measurement and data processing
and analysis protocols, and ultimately the exploration of the
limits of the techniques in identifying and screening bio-
markers associated with biological function and dysfunction.
The techniques may also provide valuable information on, for
example, radiation and chemotherapeutic resistance, and
present opportunities in their own right for potential appli-
cations in screening for drug delivery mechanisms and
efficacy, radiation damage and toxicology,83–88 given the drive
for a reduction in the use of animal models for evaluating tox-
icity, due to regulatory developments in both the EU and US
(EU Directive-2010/63/EU and US Public Law 106–545, 2010,
106th Congress) generally based on the principle of the 3 R’s,
to replace, reduce and refine the use of animals used for scien-
tific purposes.

In this context, the development of 3D cell culture models
which better mimic the in vivo environment is critical. As an
example, multicellular tumour spheroids are commonly used
to provide a better model of tumour structure,89,90 in particu-
lar to model redox and pH gradients, which can be probed
by functionalised surface enhanced Raman spectroscopy
probes.91

The ability of vibrational spectroscopy to characterise
responses of resistant and sensitive cell types to drugs opens
up potential clinical applications as a Companion Diagnostics
(CD) tool, and ultimately personalised medicine
approaches.92,93 Companion diagnostics is a fast-emerging
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area of in vitro diagnostics that seeks to identify a patient’s
response to a specific therapy and thus guide disease interven-
tion. Currently, Companion Diagnostic techniques rely on
single biomarker detection, but, with increasing understand-
ing of disease pathophysiology, advanced techniques need to
be developed, based on patient profiling and multiplex
platforms.

Farhane et al.94,95 demonstrated that Raman spectroscopy
could be employed to differentiate the respective responses of
two different lung cancer lines (A549 and Calu I) to doxo-
rubicin (DOX) exposure, indicating that Raman can be
employed to help understand cellular resistance pathways.
Cellular resistance pathways have also been targeted by Yosef
et al.96 and El-Mashtoly et al.,97 who used Raman spectral
imaging to investigate the oncogenic mutation resistance to
epidermal growth factor receptor targeting therapy.
Specifically, in related studies, colon cancer cells with and
without oncogenic mutations such as KRAS and BRAF
mutations were treated with erlotinib and pantinolib, inhibi-
tors of epidermal growth factor receptor, in order to detect the
impact of these mutations on Raman spectra of the cells as
markers of cell resistance. Rutter et al.98 utilised a cell cloning
technique to specifically isolate sensitive and resistant cells
from a mixed cell population, and investigated the difference
in response of gemcitabine-sensitive and gemcitabine-resistant
CALU-1 epidermoid lung cancer cells to the commercial drug
gemcitabine, using IR spectroscopy. Furthermore, Siddique
et al. showed that it was also possible to identify differences of
nilotinib-sensitive and nilotinib resistant K562 (a chronic
myelogenous leukaemia cell line) cloned cells, using both
FTIR and Raman microspectroscopies.99

Technological challenges
In vivo-fibre probes

The major technological challenges of in vivo use of vibrational
spectroscopies lie in the limited penetration depth of mid-IR
light in water rich tissues and the relatively weak signals from
Raman scattering, which can be compromised by background
signals from measurement systems, scattering and/or fluo-
rescence. Use of near-infrared laser illumination can minimise
tissue fluorescence contributions, but signals from the silica
fibres can dominate Raman spectra without recourse to careful
optical design and filtration; these signals can be subtracted
but the accompanying shot noise can not. This may be
sufficient to impact on the relatively small Raman signals
obtained in the ideally short time scales. In vivo measurements
need relatively low intensity illumination to ensure no thermal
damage ensues and short acquisition times (a few seconds or
less) to minimise movement and patient discomfort. A recent
review provides more detail on the strategies to optimise
in vivo Raman measurements with Raman probes.100

Beyond accessing disease specific molecular signals using
fibre probes, the rapidly developing technique of deep Raman
spectroscopy is emerging as a powerful in vivo tool. Early

studies, in pioneering the field of deep Raman spectroscopy
for biomedical applications, have established the basic feasi-
bility of recovering Raman signals (both native and exogenous)
from depths of several centimetres beneath the surface of
animal tissue. This is, by around two orders of magnitude,
deeper than achievable with conventional approaches such as
confocal Raman microscopy. Deep Raman sampling involves
the use of either transmission (TRS) illumination and collec-
tion geometries, or spatially offset Raman spectroscopy
(SORS), whereby illumination and collection points are
spatially separated on the outer surface of the tissue.39–41

Initial work has involved the study of signals from substances
such as those found in calcified tissues, whereby the signal is
distinct from that found in soft tissues. Clinically relevant con-
centrations of calcifications have been detected to depths of
up to 40 mm in animal tissue phantoms (i.e. at near clinically
relevant depths; X-ray mammographic screening compression
ranges from 1.9 to 5 cm thick) demonstrating the basic viabi-
lity of scanning human breasts.42 This penetration depth was
accomplished by dramatically increasing the Raman photon
gathering rates (by around 100 times) when compared with the
first TRS Raman system used.43 This indicates the feasibility of
using TRS for non-invasive analysis of breast tissues in vivo.

One of the most significant requirements of in vivo Raman
systems relates to the specific sampling volume of the clinical
application and sampling method. NIR light is highly scattered
and minimally absorbed in tissue, and therefore optical
designs that do not restrict light collection to the surface scat-
tered photons can result in deep signal collection, which may
confound results. An example of this is when no beam steering
or focussing is used in hollow organ endoscopic fibre probes.
The relevant diagnostic signal may originate from the surface
100–200 μm in organs such as the oesophagus or bladder, and
any deeper signals may contain contributions from, for
example, normal cell division and adipose tissue on the outer
organ surface.101 As an illustration, Fig. 3 compares spectra
obtained using a confocal Raman microscope of bladder
biopsy surfaces versus that obtained with a simple in vivo
probe design of six collection fibres around one illumination
fibre.

Ex vivo-spectroscopic histopathology

The long standing problem of optical aberrations in FTIR
microspectroscopy have been systematically addressed,103–108

by introducing a novel, practical, yet elegant, approach to
remove scattering artefacts, whereby the tissue biopsy is
inverted such that the CaF2 window sits between the biopsy
and objective. Then, an added lens, of the same material as
the window, is placed on top of the window, centred to the
optical axis, to form a pseudo hemisphere. In this way, the rays
of light from the sample to the objective pass normal to the
CaF2 surface and do not refract. The scattering is also reduced
or removed as the refractive index of the biopsy more closely
matches that of the CaF2 than it does air. Both these advan-
tages make this added lens approach ideal for measuring biop-
sies.106,108 The originality and simplicity of this approach has
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surprised many working in the field, as it was thought that
optical aberrations are unavoidable when infrared windows
were used as a substrate.109 The other important advantages to
this added lens approach are the increase in magnification
and the removal of chromatic aberration, the latter of which
would otherwise occur when measuring samples through a
window, for example imaging of live cells in microfluidic
devices.108,110,111 As such, this method is a state-of-the-art
method to acquire high-quality spectra without chromatic
aberration and scattering.

High spatial resolution in spectroscopic imaging is vital for
revealing histological domains or structures on the micrometre
scale within biological samples. Until recently, biomedical
applications of FTIR spectroscopic imaging have mainly been
performed in transmission mode but it has been demon-
strated that FTIR imaging in ATR mode can provide images
with much higher spatial resolution. In particular, a stringent
test for the assessment of the spatial resolution achieved in
FTIR spectroscopic imaging in both ATR and transmission
modes has been presented and it has been demonstrated that
the true spatial resolution is much lower than what is expected
from the projected pixel size, which is often used, albeit incor-
rectly, as a value for spatial resolution.103,105,108 Recently micro
ATR-FTIR spectroscopic images of living cells have been ana-
lysed with disrelation mapping which allowed differentiating
molecular states of water as well as studying hydration of pro-
teins within living cells (Fig. 4).112 he most recent develop-
ments in the area of FTIR spectroscopic imaging have been
reviewed, where the current state of the art is summarised in
detail.106,108,113–116 Notably, Kimber and Kazarian specifically
highlight improvements in spatial resolution and spectral

quality through the use of novel added lenses and compu-
tational algorithms, as well as quantum cascade laser imaging
systems, which offer advantages over traditional Fourier trans-
form infrared systems with respect to the speed of acquisition
and field of view.117

In the case of infrared spectral pathology (using either FTIR
or QCL microscopes), there are technological challenges
associated with the most appropriate substrate to use. The
obvious choice, from the spectroscopists point of view, is to
use an infrared transparent substrate such as CaF2 or BaF2,
both of which also happen to be transparent in the visible,
and contribute minimally to Raman spectra in the regions of
interest for biological samples, and are therefore ideal for
microscopy applications. The low frequency cut-off for these
materials is ∼900 cm−1 and 700 cm−1, respectively, meaning
that most of the important biological spectral features can be
recorded. The use of such slides for thin tissue sections,
measured in standard transmission mode, results in clean
spectra with very little spectral distortion other than scattering
from the sample itself. However, these slides are brittle and
less robust than glass meaning that there is a significant risk
of fracturing in the automated sample preparation equipment
commonly used in pathology labs.

An alternative solution is to use infrared reflective micro-
scope slides. These can be stainless steel, aluminium or more
commonly a glass slide with a reflective coating, such as com-
mercially available low e-slides,103 whereupon the measure-
ment is performed in reflection mode (more commonly known
as transflection mode). The transflection mode effectively
doubles the path-length through the sample giving better
signal to noise ratio for the same thickness and they are rela-

Fig. 3 Comparison of Raman spectra from the bladder surface (left) measured using a six collection fibres around one illumination fibre probe with
no beam steering/focussing at 785 nm (ref. 101 reproduced with permission) and (right) Raman spectra measured from bladder biopsy surface using
a semi-confocal, 830 nm Raman microspectrometer (ref. 102 reproduced with permission). The right hand spectra are the ‘true’ surface spectra,
most demonstrating early malignant changes, whereas the in vivo spectra show spectra combining the spectral signals from all layers in the bladder
wall including the adipose tissue surrounding the outside of the bladder wall. This is clear from the highly lipid-rich spectra and highlights the impor-
tance of designing probes to optimally sample tissue regions/volumes of interest.
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tively inexpensive. The cost is a significantly less than that of
CaF2 or BaF2 although, at ∼€1 each, they are still slightly more
expensive than conventional glass. The drawback of the trans-
flection mode is that the spectra often display frequency
dependent non-Beer–Lambert absorption behaviour as a func-
tion of thickness. Brooke et al.104 first reported this phenom-
enon explicitly when investigating multilayer polymer spheres
and found that absorption band intensities did not scale line-
arly with the thickness of the films. They suggested that the
variation could be approximated by a squared sinusoidal func-
tion and proposed that the effect was caused by the electric
field standing wave (EFSW), a view supported by Filik et al.13

The EFSW effect occurs due the interference of the incident
and reflected wave. An oscillating electric field in the plane of
the reflecting surface is very effectively screened such that it
forces a node at the surface. This means that the strength of
the electric field just above the surface, within a wavelength or
so, is frequency dependent, and therefore different thicknesses
of tissue will give slightly different intensity spectra even when
normalised. The work of Bassan et al.11,12 conclusively demon-
strated the existence of the physical phenomenon and high-
lighted the implications this could have on the analysis of
tissue. They showed that the classification accuracy was signifi-
cantly influenced by sample thickness, which was not the case
for the same samples measured in transmission. This work
led to a flurry of papers on the subject, making the case either
for or against the use of transflection. In the case of the
former, several authors suggested that the use of the second
derivative spectrum essentially negates the non-Beer–Lambert
absorption behaviour, while others suggested that all tissue
studies should be performed in transmission. Recently Lee105

has cast doubt on the EFSW being responsible for the
phenomenon, suggesting instead that it is due to a simple
interference effect between the reflecting surface and the

surface of the sample layer. Regardless, it is important to note
that the non-linear absorption as a function of thickness is not
in dispute, and that therefore measurements in the transflec-
tion mode may compromise diagnostic accuracy.

A key question in terms of sample preparation for Clinical
Applications, both histological and cytological, is, can we
afford not to work with glass microscope slides? In the
research environment, many of the proof of concept studies
have been conducted with optimised experimental conditions,
including choice of substrate, to minimise spectroscopic inter-
ference in the case of Raman,118 or maximise signal by trans-
mission or transflection in the case of IR absorption.16

However, routine clinical practice, notably, for example, the
high throughput ThinPrep procedure for routine cervical
screening, uses standard microscope slides and the cost impli-
cations of a change in this practice must be considered.

Based on estimates from the Royal Preston Hospital, Royal
Stoke University Hospital and the Coombe Women & Infants
University Hospital, Dublin, for a population base of
65 million (UK, 2015), a total of 2.6 million tissue biopsies +
10 million cytological smears are carried out annually. The
current cost of Raman grade CaF2 substrates, in orders of
100+, is ∼£25, implying an additional annual cost of
∼£65 million for analysis of tissue biopsies and ∼£250 million
for routine cytological screening programmes, based on spec-
troscopy. The requirement for sample archiving implies the
substrates are not reusable, and although it may be argued
that widespread adoption of the techniques will, in the future,
drive down the cost of the spectroscopically optimal substrates
and potentially eradicate the need for associated consumables
such as cellular and tissue stains, any substantially increased
running cost such as this will not aid in the drive for clinical
translation. The implications for adaptation of the spectro-
scopic protocols should therefore be considered.

Fig. 4 Two molecular states of water in HEK cell. The disrelation map emphasises the regions where water molecules interact with proteins (i.e.
hydration). Reproduced from ref. 112.
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Bassan et al. suggested that, for a simple case of dis-
tinguishing malignant from non-malignant tissue using FTIR
transmission, a simple glass microscope slide could be used

as substrate.119 Although the low wavenumber cut-off for such
a side is 2500 cm−1, implying no access to any of the finger-
print region, there is still enough information in the remain-
ing spectrum to get a reasonable classification. This work was
followed up by Pilling et al. who used standard coverslipped
H&E stained sections and TMA cores, and again demonstrated
that tissue pathology and malignant classification could be
obtained.120 Fig. 5 shows the mean spectra of the different
tissue regions 182 H&E stained prostate tissue cores measured
in the glass transmission window, while Fig. 6 shows the false
colour spectroscopic images of the classified prostate tissue
cores. The ability to perform spectro-histolopathology on glass
substrates is important, since this would mean no disruption
to the sample preparation workflow, thus removing a signifi-
cant barrier to clinical adoption. It remains to be seen,
however, if more detailed diagnostic information can be
obtained using such a limited portion of the spectrum.

The effect of substrate choice for spectral histopathology by
Raman microspectroscopy, has been studied by Fullwood
et al., highlighting the difficulties of operating with 785 nm on
glass substrates.121 However, Raman microspectroscopy may
be favoured for cytological samples because the smaller spot-
size/higher spatial resolution enables specific targeting of the
nucleus or even nucleoli to achieve better classification.122,123

Fig. 5 Mean spectra of epithelium, stroma, blood and concretion in the
glass transmission window obtained for 182 H&E stained prostate tissue
cores.120

Fig. 6 False colour image of the classified prostate tissue cores: red = malignant epithelium, orange = cancer associated stroma, green = normal
epithelium, purple = normal stroma.120
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In development of Raman protocols, choice of wavelength is
intimately linked with choice of substrate, and the recent com-
prehensive study of substrates for cytological samples and
their dependence on commonly used Raman sources by Kerr
et al.118 demonstrated that, although not the optimum for
spectral quality, the optimal wavelength for glass microscope
slides is 532 nm. At this wavelength, the contribution of the
substrate spectrum is minimum, and can be routinely sub-
tracted as an independent component by automated routines
such as Non-negatively Constrained Least Squares Analysis, as
previously demonstrated for the so-called digital dewaxing pro-
cedure,8,124 or EMSC, as demonstrated by Kerr et al.125

Recently, it has been demonstrated that readily available
and inexpensive aluminium (Al) foil can be used as a versatile
and suitable substrate for preparing diverse cytology and his-
tology specimens for ATR-FTIR, transflection FTIR or Raman
spectroscopic measurements.126 The low and almost feature-
less background spectra of Al foil enables the acquisition of
high-quality IR and Raman spectra without substrate inter-
ference and sacrificing important fingerprint biochemical
information of biomedical specimen. Furthermore, low-cost
stainless steel slides have been reported as potential candidate
substrates in a routine pathology laboratory setting.127 These
potential new substrates would need to be incorporated into a
robust protocol acceptable to a diagnostic setting and clinically
trialled.

The form of tissue presentation for measurement obviously
depends on the clinical applications and sample availability.
Fresh (frozen) sections are available for near patient intra-
operative screening and are closest to in vivo tissue architec-
ture and biochemistry. However, fixed sections are preferred
for histopathology,128 and, for research purposes, analyses of
archived tissue libraries may add much to understanding
disease progression and patient prognosis. Standardised pro-
tocols for spectroscopic analysis of Formalin Fixed Paraffin
Processed (FFPP) are therefore important.

Notably, it has been demonstrated that it is not necessary
to remove the paraffin to obtain usable spectral infor-
mation.124,129 Leaving the paraffin in place reduces scattering
artefacts in FTIR and background scattering in Raman spec-
troscopy. Recognising the increased variability of the signal in
Raman microspectroscopy due to the scattering of the
polarised source by microcrystalline wax residues, improved
“digital dewaxing” protocols have recently been demonstrated
by Ibrahim et al., for the case or oral tissue.124 However, the
debate over whether to dewax or not to dewax continues. It
may be argued that greater consistency of spectral information
is achieved when sections are deparaffinised, and deparaffinis-
ing enables histological staining of the sections. However, it
has been noted and emphasised that the efficiency of the
deparaffinisation process, and therefore staining procedures,
can be very variable and even depend on the tissue pathol-
ogy.130 Measurement of dewaxed tissue samples increases
issues of scattering in both FTIR and Raman spectroscopy,
although water immersion has been shown to substantially
reduce scattering background in Raman spectra of tissue

samples, due to the optical phase matching effects of the
aqueous environment,131 while also substantially reducing any
photothermal damage, due to the heat sinking effect.132 These
effects are less problematic in cytological samples, however.

Ex vivo-spectroscopic cytology

Sample processing protocols for routine clinical cytological
screening are well established for the case of cervical screening
and have been shown to be compatible with spectroscopic ana-
lysis, in the case of Raman spectroscopy.69 Similar sample col-
lection and ThinPrep preparation protocols have been adapted
for analysis of exfoliated oral cells.133 In liquid based cytology
applications, operation at 532 nm may imply the need for
additional washing protocols. In cytology laboratories, cell sus-
pensions prepared for ThinPrep or smear samples are anno-
tated according to a blood scale, whereby 0 indicates a clear
solution and 3 indicates a bloody sample. Samples presenting
a grade 2 or 3 on the blood scale are either rejected as being
unsuitable or treated using Cytolyte or various solutions to
wash the cells before preparing the samples. A study by
Bonnier et al., demonstrated that even samples graded as 0 or
1 can present significant influences of trace amounts of blood
in their Raman profiles using 532 nm as source, resulting in a
significant variability in spectral profiles of normal
samples.134 Haemoglobin is resonant at 532 nm and so the
Raman contribution is significantly enhanced compared to the
cellular signal, resulting in the enhanced sensitivity to even
trace amounts of blood in the sample. The employment of an
additional hydrogen peroxide (H2O2) treatment of the
ThinPrep slides was demonstrated to eradicate the impact of
the blood contributions. The additional washing process was
seen to have no impact on the cellular classification and could
easily be introduced into the automated sample processing
protocol.

Operation at such wavelengths raises questions in relation
to sample degradation, and an early study by Puppels et al.,
demonstrated that, in live cells, whereas at 633 nm negligible
photodamage is observable, this is not the case at 532 nm.135

Photodamage associated with a photon energy dependence is
normally associated with photoxidation, however, and the
reduced oxygen content in fixed cytological samples signifi-
cantly reduces the impact of photodegradation. In unstained,
fixed cytological samples, 532 nm causes negligible observable
damage to the samples over the measurement period.
However, photodamage due to absorption and/or large fluo-
rescent backgrounds due to clinical stains presents a signifi-
cant problem for the use of Raman spectroscopy as an adjunct
to cytological screening, although not an issue for IR absorp-
tion studies.136 Conventionally stained samples cannot be
simultaneously optically and spectroscopically screened,
suggesting that a fully automated procedure for unstained cell
recognition, spectral analysis and assessment may be required.
In such a procedure, however, registration of cell identification
for transfer to the pathologist would be required. As an
alternative, new stains are required which, while rendering the
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cell morphology visible under white light, do not absorb at the
Raman source wavelength of 532 nm.

Ex vivo-liquid biopsies

Biofluids potentially offer the ideal option for a spectroscopic
clinical trial due to the advantages mentioned previously.
However, the analysis of such samples can suffer from pro-
blems associated with relatively low concentrations of the
analyte of interest. Concentration of samples using centrifugal
filtration devices has been shown to offer an alternative which
allows measurement of the analytes in the native aqueous
environment. Although Raman appears most promising in
this context, due to the relatively lower contribution of the
water, sufficient concentration of the sample also allows ana-
lysis of the fingerprint region by FTIR spectroscopy.137

Centrifugal filtration also allows fractionation according to
molecular weight of the constituent analytes, potentially allow-
ing targeting of molecular biomarkers of disease.138

Alternatively, the samples can be dried for analysis.
However, this introduces chemical and physical inhomogen-
eity into the sample during the drying process, due to the so-
called coffee ring effect, cracking and gelation patterns, redu-
cing reproducibility and sensitivities.139,140 Compositions and
concentrations vary significantly across the dried droplet, due
to different molecular weights and relative molecular solubili-
ties, and can cause band saturation in transmission FTIR26

but Raman signals are highly reproducible within the ring.
Lovergne et al. performed an infrared microspectroscopic
imaging study on pure, 2 fold, 3 fold and 4 fold diluted serum
(serum diluted with deionised water).141 The images (Fig. 7)
highlight the spectral and visible differences between the
different sample states. It can be seen that the total signal
intensity varies within a drop and the highest intensity occurs
at the drop edge, confirming a gradient of concentration of
molecules from the centre to the periphery as a result of the
drying process, resulting in this “coffee ring effect”, which in
the case of human serum is more appropriately known as the
Vroman effect.142 This relationship is repeated for the diluted
samples with concurrent decrease in overall intensity. It can
also be seen that major molecular components (proteins-
amide I and II 1648 cm−1 and 1542 cm−1, lipids 1452 cm−1

and nucleic acids 1078 cm−1) all follow this same trend. This
trend is accentuated in the diluted samples. The variability of
the composition requires mapping of the droplet profile,
increasing significantly the screening time, particularly for
Raman analysis, although a quicker and simpler regime of
measuring 5–10 spectra in the ring has been shown to provide
reproducible signals. The Vroman effect is an unavoidable
result of sample preparation but current efforts to reduce this
effect have focused on the analysis of minute volumes, and the
spraying of the biofluid onto a surface. Bulk ATR-FTIR spectro-
scopic measurements have been shown to reduce such
effects,143 in effect providing an average spectrum of the dried
droplet. Furthermore, fractionation of human serum by cen-
trifugal filtration has been demonstrated to improve the quan-
titative analysis of low molecular weight biomarkers using

ATR-IR spectroscopy, for the case of the variation of glucose
levels in patient samples, such that it is comparable to cur-
rently employed clinical analysis techniques144 and quantifi-
cation of glycine to a level 50 times lower than when using
whole human serum. Raman spectroscopy has similarly been
demonstrated to accurately predict Hepatitis C viral loads in
dried patient plasma samples,145 although the inherently
higher spatial resolution of Raman microscopy renders it less
favourable for integrating measurements over an inhomo-
geneous, dried deposit. Ultimately, in order to enable clinical
translation there needs to be a focus on large population
studies and procedural and instrumental standardisation to
enable regulatory requirements to be met.146

In vitro

For in vitro cytological studies, formalin fixation has been
demonstrated to best reproduce the characteristics of live
cells.147 Protein coated substrates148 and 3-D matrices have
also been explored to improve measurement protocols.149,150

Bonnier et al.,151 and Casey et al.152 have demonstrated that
caution must be taken when applying conventional 2D cyto-
toxicity assay and drug dosing protocols to cells in a 3D
environment, due to differing bioavailabilities of the assay or
drug. Nevertheless, it is generally accepted that such 3D
environments better mimic the in vivo extracellular matrix.
Addressing the depth of a 3D environment by optical methods
is, however, challenging. Recent studies have used functiona-
lised nanoparticles to probe physicochemical gradients of
potential clinical relevance,153 as well as the effects of radi-
ation therapies in 3D models154 based on the SERS technique.
Such multicellular tumour spheroids are relatively small in
diameter (∼500 μm), however, and thicker tissue mimicking
samples may require similar tissue processing techniques for
analysis.155

Data processing and analysis. The US NIH (National
Institute of Heath) has defined biomarkers as being:

“Biological characteristics that are objectively measured
and evaluated as indicators of normal biological processes,
pathological processes or pharmacologic responses to a thera-
peutic intervention”.156

In terms of infrared and Raman spectroscopies, these will
be multivariate signatures that allow one, for example, to
differentiate between patients with disease and healthy con-
trols or in longitudinal studies investigate the effect of radio-
therapeutic, drug or nutritional intervention on a cohort of
individuals.

In the biomarker discovery process, samples are taken from
individuals (e.g. a body fluid), and are then measured in an
unbiased way using spectroscopy. Data preprocessing is
applied, and analyses are used to elucidate which are the dis-
criminatory peaks or patterns within the data. However, before
pursuing this path, one needs to consider the intrinsic vari-
ations in the experiment. These may be at the biological level,
the way in which the samples have been prepared and the
spectra measured, and of course could be related to the instru-
ment itself. Spectral signatures of disease are often subtle per-
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Fig. 7 ATR-FTIR serum dilution study of dried drops. Original spectral images were atmospheric corrected. Other spectral images were constructed
using a single wavenumber. Reproduced from ref. 141.
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turbations to the norm, and therefore any unwanted experi-
mental variability needs to be considered before any spectro-
scopic analyses are performed, as experimental design is key
to avoiding false discovery. Indeed, there is a significant
problem with many clinical studies in which the aim is to dis-
cover new biomarkers, in part due to poor experimental design
and a lack of reproducibility,157–160 leading to the current
crisis in biomarker discovery.161–164

To affect good design of experiments, is recommended to
enlist the help of a (bio-) statistician at the planning stage of a
project, to ensure that the appropriate individuals are selected
so that intrinsic factors in human biology are accounted for.
These include, but are not limited to: age, gender, genotype,
reproductive cycle or other diurnal patterns, as well as body
mass index.165 If this is done correctly, in case-control studies,
the only non-random factor is that which is being testing for
and the judicious experimental design will have resulted in the
correct patients with disease (the cases) being carefully
matched with healthy individuals (the controls).

An important consideration in the application of multi-
variate methods to spectral data analysis is the requisite size of
dataset. Statistical significance is a critical consideration, and
when patient diagnosis is the outcome, misclassification has
serious consequences. Beleites et al., have carried out a study
examining the effects of sample size on multivariate classifier
models for clinical biospectroscopy.166 It was demonstrated
that, while learning curves for dataset sizes common to small
scale academic studies (2–25) can indicate acceptable perform-
ance, the model testing is itself limited by the dataset size and
that datasets of 75–100 samples are required to produce “a
good but not perfect classifier”.

Once the spectra data has been collected, the next stage
entails the data analysis and this, and the above processes, are
shown in a flow diagram in Fig. 8. The approaches and pro-
cesses within the ‘Chemometrics Zoo’ are immense and this
zoo contains many data pre-processing, data pre-treatment
and data analysis (processing) algorithms. Several reviews of

spectroscopic data processing and analysis protocols have
been published, for guidance.18,167 Many different algorithms
are used commonly used and these may have to be optimized.
In the chemometrics community, the adage ‘no free lunch’ is
often used and this is because, if one finds the optimum data
analysis method for one scenario, then it is not guaranteed to
translate and work on the next problem. The biological ques-
tion of interest should drive the selection of the most appropri-
ate type of multivariate analyses (MVA) to be used and exem-
plars of these are briefly detailed in Table 1. The compu-
tational code for these and links to other resources are avail-
able to the clinical spectroscopy community here: clirspec.org/
resources/.

Critically, during the data analysis phase, statistical vali-
dation should be used to assess how robust the supervised
learning methods (Table 1) have been. This is because, as the
name suggests, the analysis is being supervised with training
pairs of inputs (X-data from infrared or Raman) and outputs
(Y-data representing the prediction; either categorical for
classification or quantitative for continuous outputs). Thus,
some data not used in model construction should be used to
assess how well the model has been calibrated. Validation is
usually achieved by resampling the data and this is performed
in several different ways, such as Leave-one-out validation,
K-fold validation, bootstrapping validation, external validation,
for which new samples are obtained to generate an indepen-
dent data set to test the models, and may be from a different
cohort of individuals from a different geographical location
and can be blind encoded to the investigated for additional
rigour. This validation step is critically important, and may
also be prone to error.168

In a clinical context, it is imperative that spectroscopic data
is validated according to clinical “gold standards”, including
appropriate controls. The subjectivity and therefore variability
of these standards themselves is often quoted as a driving
force for the development of objective technologies such as
spectroscopy, and therefore the use of consensus is strongly,
where possible, and, when not, the study should highlight the
standard agreement of pathologists for the clinical condition
in question. Classification models must be validated, and it is
insufficient to provide training results only. Furthermore,
when reporting performance against the gold standard, one
should consider using the same measures used to compare
two or more observers, such as Kappa statistics, and to provide
the performance demonstrated in the literature for the
gold standard discrimination of the pathologies under
consideration.

Visualisation of the results of data analysis is essential, as
multivariate analyses are used to reduce and simplify the data,
and it is recommended that any figures are presented as objec-
tively as is possible. If scores plots of latent variables are gener-
ated from, for example, principal component analysis or some
discriminant analysis, then biplots should be used of latent
variable 1 (LV1) versus latent variable 2 (LV2) or LV1 versus LV3,
and so on. 2-Dimensional projections of a 3-D plot (LV1 v. LV2
v. LV3) with colour coding showing the groups to be differen-

Fig. 8 The experimental pipeline in a typical spectroscopic experiment.
In all cases this pipeline starts with a clinical or biological question and
ends up with interpretation of the system, which may then be feedback
to refine the experiment and to generate (synthesise) new knowledge of
the biological system.
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tiated could be biased, as these scatter ordination plots may
have been rotated to show what the researcher wants to see,
rather than the results being displayed in a completely objec-
tive manner.

Chemical image analysis is also highly visual and can also
be performed using infrared or Raman spectroscopy, whereby
peak areas or LV scores are used to construct images using
false-shading from some arbitrary low to arbitrary high value.
In a nice article by Ashton et al.169 it was demonstrated that
different shading approaches can guide the eye to the wrong
conclusion. For example, in rainbow scaling from red to violet,
the average value on this scale is yellow and yet this is a very
bright and dominant colour. In this scenario, the eye can be
falsely drawn into thinking this is significant, when clearly it
is not. A much better approach would be to use a more linear
colour gradient from, for example, blue for low values to yellow
for high values of each pixel.

Data sharing. The reasons to share data are many and
varied. Take, as an example, an experiment where tissue biop-
sies are analysed to see whether it is possible to determine if
cancerous tissue is present.120 Serial sections of tissue are
stained with haematoxylin and eosin (H&E), or undergo IR
image analysis. Some of the H&E sections will be annotated by
a pathologist to determine cancerous regions. Spectra from
corresponding regions of the IR analysed section are then
used to develop a model for detection of the cancer. The path-
ologist acts as a gold standard for identification of the cancer-
ous tissue and the model building exercise aims to replicate
the pathologist’s determination.

The IR data acquired during this experiment could also be
used in later experiments, for example to see whether different
pathologists identify slightly different regions of the tissue,
thereby changing the model produced, or used in the identifi-
cation of tissue architecture. All pathologists will follow the
relevant guidelines, but classification of cancer is not a
straightforward issue. Therefore, it may be interesting to
reinterpret existing data in the light of evolving pathology
guidelines.

The clinical translation of vibrational spectroscopies will
result in a range of non-ideal environmental conditions such
as temperature, humidity, sample thickness, sample storage
conditions, substrate quality and variation, magnification etc.
The requirement for high throughput will also impact signal-
to-noise characteristics. Having archival data with a range of
provenance will aid identification of robust algorithms.

An increasing number of funders require data, produced as
a result of their financial input, to be made openly available.
On a more prosaic level, a field able to indicate the extent and
usefulness of its data can help to justify the financial and
resource outlay of the past, secure continuing investment and
foster a growing community.

Data sharing has some practical considerations; what to
share and where to share. Along with many other fields, the
community of clinical IR and Raman spectroscopists currently
has no domain-specific repository. Most journals offer a small
amount of space in which to store information supplementary
to an article, but only subscribers to the journal can access
this data. To cater for the long tail of science, general purpose

Table 1 Appropriate data analysis strategies and typical algorithms used to address clinically and biologically-driven research questions

Data analysis
approach Research question being asked Algorithm features Chemometric MVA solutions

Exploratory data
analysis

• What can we find out about the
relationship between these samples?

• No prior information is required • Principal component analysis
(PCA)

• e.g., to investigate gender or age • Unsupervised method is used • Dendrograms
• Self-organising Map (SOM)

Classification of
samples

• Can I classify samples into different
groups?

• Prediction of unseen samples into
groups

• Linear discriminant analysis
(LDA)

• e.g., case-control studies • Supervised learning is used • Partial least squares-DA
(PLS-DA)

• Should include validation • Support vector machines
(SVM)
• Random forests (RFs)
• Neural networks

Quantitative
analysis

• Can spectra be correlated with a
continuous variable

• Allows quantitative prediction of
unseen samples to some continuous
variable

• PLS regression

• e.g., time, age, disease status, drug dose • Principal component
regression (PCR)
• Support vector regression
(SVR)

Explanatory
analysis

• What are the differences in chemical or
physical state between samples

• Highlights spectral changes as function
of group membership

• Many algorithms can be used:

• e.g., can I find vibrational features that
relate to group separation or a continuous
feature

• Need to know which group each
spectrum belongs to

• Based on loadings vectors;
e.g., LDA, PLS-DA, PLSR, PCR

• Feature selection in RFs; use
of Gini
• Genetic algorithms (GAs) as
input selectors for MVA
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data repositories have emerged, examples of which include fig-
share,170 Mendeley Data171 and Zenodo.172 Some journals now
offer to host large volumes of data, relating to Open Access
publications173 and many universities and research institutes
are establishing their own repositories to host data from their
researchers. All these repositories will allocate a unique digital
object identifier (DOI)174 to the data set, enabling a permanent
indicator to the location of the data, ‘permanent’ typically
implying in excess of 10 years.

In order to fill the gap between a domain-specific repository
and widely scattered data stores, a Community has been
created on the Zenodo platform for clinical IR and Raman
data.175 The underlying Zenodo repository allows for an unlim-
ited number of data sets per user, each up to 50 GB in size,
larger data sets being accommodated on request. There is no
fee for contributing data, or downloading it. Embargo periods
are available on this, and most other platforms, to enable the
data owner time to publish additional papers before the data
is released openly.

In determining what to share, it can be helpful to divide
the available data into broad categories: spectra, including
hyperspectral images; metadata, which is the information
describing the sample, experiment and the workflow executed;
and computer code used to process the spectra. These cat-
egories will be taken in turn.

Spectra and hyperspectral image files should be stored in
their raw form in the proprietary format of the instrument
vendor. These files contain the most information that it is
possible to collect regarding the experiment performed. In
addition, to cater for those without the software able to
access these files, a number of de facto standards can be
used. Open standards available to the IR and Raman commu-
nity include JCAMP-DX,176,177 SPC and HDF5,178 and some
vendors’ software will export data to files in these formats
directly. The reason for sharing in both proprietary and open
formats is to maximise the information content of the
resource. If there is only capacity for one type, then the open
version is preferred. If data size becomes an issue, file com-
pression can be used.

The spectra and hyperspectral images are what one might
usually consider to be ‘data’; however, on their own they lack
the context to be useful. Metadata, sometimes described as
data about data, supplies that context and describes all para-
meters involved in the experiment lifecycle. The various stages
that the experiment comprises can include the following:

• Patient information such as gender, age, the organ of
interest, biobank identifiers and other ethically restricted
information;

• Sample type; tissue, bodily fluid, bone;
• Sampling method; in vivo, ex vivo, orientation of sample

in original organ
• Time and state of sampling; before/after drug treatment
• Sample preparation; storage, filtration, fixation and

embedding processes;
• Experiment performed; instrumental parameters and

acquisition conditions;

• Experiment repetition; biological replicates, or technical
replicates;

• Data treatment; algorithms and parameterisation of
quality tests and other operations.

Some of this information will be captured in the research
paper, but the level of detail can be important179 and therefore
as much information as practically possible should be
included. Some information will be captured in standard oper-
ating procedures (SOP) which should be stored separately, in
an open manner, and referred to via a DOI. Deviations from a
recorded SOP should be documented and released as a new
SOP, referencing the original to highlight the modifications.
The separation of the SOP(s) from a given experiment allows
for re-use of the protocol in a different context. SOPs for clini-
cal IR and Raman can be uploaded to the CLIRSPEC Zenodo
Community repository mentioned above.

Where patient data is restricted for ethical reasons, it may
be possible to store identifiers such that other researchers,
granted access to the controlled information, will be able to
match the same patients to their spectroscopic data. Care
should be taken to abide by any data protection guidelines in
force.

The methods employed for data preprocessing and analysis
should be recorded, together with all relevant parameters such
as the window size for differentiation, the number of principal
components for PCA denoising, or the discrimination levels
for quality testing. The computer code used to perform these
steps should be identified so that the end-user can repeat the
steps on this, or other, data, or in a different order. The
version number of software should be recorded. This is par-
ticularly important for regularly updated, open source compu-
ter code; for example ref. 180–185. In-house computer codes
should be stored in version controlled source code repositories
such as GitHub186 or Bitbucket.187 These resources record ver-
sions of the code as it evolves. Users of the GitHub platform
can automatically generate a DOI for a software release on the
Zenodo platform,188 allowing for a historical snapshot with a
unique identifier. Similar to the case for SOPs, software
should be stored separately from the data, with unique identi-
fiers supplied relating the two entities.

When re-using, data it is important to recognise any restric-
tions imposed by the original owner. These are listed in the
form of licence conditions attached during deposition. For
spectroscopic data, metadata and SOPs the Creative Commons
CC-BY licence is recommended.189 This allows the user to
adapt and redistribute the data, but requires that appropriate
credit is given to the original owner, and any modifications
identified. For software, a permissive licence such as the GNU
Lesser General Public License (LGPL)190 is preferred. This
allows for re-use for any purpose, but requires acknowledge-
ment of the original author, and that any modified versions of
the code be released under an equally liberal licence.191 In
order for a researcher to re-use data, they must first find it. It
is recommended that any papers making use of the data,
including its original creation, cite the DOI of the storage
point. This is a requirement if published under a CC-BY
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licence. The repository should also list the DOI of any papers
making use of the data. This cross-linking will give the data as
much publicity, and therefore potential for re-use, as possible.

The (meta)data generated has the potential to assist in the
growth and understanding of the clinical IR and Raman field,
and the sharing of data, simply another form of sharing exper-
tise and knowledge. It loses value, however, if the appropriate
information about patient cohort, instrument calibration, pre-
and post processing parameters etc. are provided. Journal
editors, reviewers and indeed readers should strive to enforce
the requirement for the provision and deposition of all such
data, since, without it, the knowledge content of the research
is greatly limited.

Outlook: clinical translation

Most spectroscopic analysis and imaging systems are state-of-
the-art research grade instruments designed for the research
laboratory and often come with “bells and whistles” appropri-
ate for a range of different analytical applications. They are
analytical instruments rather than purpose built medical diag-
nostics instruments and their designs are not necessarily com-
patible with a clinical environment. It is clear that many of the
potential functions are simply not required for many clinical
applications.

As they address many potential analytical applications, the
market for such instrumental technologies is broad, ranging
from academic research, to food science, the pharma industry,
and forensic science, to name but a few application areas.
Instrument manufacturers are therefore, by and large, reluc-
tant to dedicate instrument design to the specific area of clini-
cal/medical diagnostics, in which the techniques have not yet
been firmly established.

It is worth noting that, currently, commercially available
spectroscopic instrumentation has been, by and large, opti-
mised for sophisticated analysis of chemically pure materials.
Perhaps a significant step towards clinical translation may be
the design of instrumentation which is specifically tailored to
accommodate the chemical and physical inhomogeneities and
complexities of clinical samples. An example of such an
approach could be the inclusion of integrating collection
optics as default, to minimise scattering losses.192 In the case
of Raman spectroscopy for in vivo applications, the situation is
somewhat further advanced. RiverD International B.V. in the
Netherlands has developed Raman instrumentation specifi-
cally for in vivo skin measurement, although applications for
the study penetration and transdermal delivery of topically
applied materials are predominantly promoted.193

Furthermore, Raman probes have been developed specifically
for in vivo clinical applications, although each research group
has their own design.

It is important to ask “what is the minimum quality of
instrumentation and the minimum number of functions/flexi-
bility that is required for a clinical spectroscopy system/micro-
scope”. This has not yet been evaluated, since it very much

depends on the specimen under study. The requirements will
be different for applications involving tissue, cells, biofluids,
whether the instrument is to be situated in an operating
theatre, a pathology laboratory, or indeed employed for remote
field trials, whether the samples will be frozen or not etc.

The question of “How good is good enough?”, is one that
has been extensively discussed by the community over the past
decade. Some of the deliberations are summarised in, for
example the editorials of the special issues of Analyst, Optical
Diagnostics, derived largely from panel or group discussions
of the SPEC 2014 and SPEC 2016 conferences.5,194 The Faraday
Discussions (2016) on Advanced Vibrational Spectroscopy for
Biomedical Applications includes aspects of clinical trans-
lation, but also many of the other more technical consider-
ation.115 It is clear that there is no single answer to the ques-
tion, and that required performance depends on the appli-
cation, and critically clinical demand. In applications such as
evaluation of resection margins in neurosurgery, there is no
alternative comparator and the value to the patient is in esti-
mable. In routine screening applications such as cervical cyto-
logical screening, current protocols are well established, and
improved performance must be more closely scrutinised.
Justification of improved performance must also consider, for
example, clinical workflow and health economics. Indeed, an
indication of some progress in the field is the evolution of the
language used by the spectroscopy community, which demon-
strated an increased understanding of clinical requirements.
The patient perspective is of course of critical importance.195

It is also important that the robustness of the techniques is
evaluated, in terms of reproducibility of the diagnostic per-
formance of individual instruments and comparison of
different instruments, and operators, sites, etc. In recent years,
a limited amount of attention has been paid to such consider-
ations, and notably, Isabelle et al. conducted a UK based
multi-centre trial of Raman spectral mapping of oesophageal
cancer tissues.196 They developed a classification model to dis-
criminate between adenocarcinoma (AC) and non-cancerous
intraepithelial metaplasia (IM) oesophageal tissue samples,
measured on three different Raman instruments in three
different locations. Spectra were corrected using system trans-
fer spectral correction algorithms including wavenumber shift
(offset) correction, instrument response correction and base-
line removal which minimized the instrument and sample
quality variations within and between the instrument sites.
Notably, strict calibration protocols were also required (around
0.2 cm−1 peak reproducibility). The EU COST Action
Raman4clinics is currently (sept 2016–sept 2018) undertaking
a series of more extensive ring trials which will encompass lab-
oratories across Europe.197

It is clear that significant advances towards demonstration
of the potential of vibrational spectroscopy for clinical appli-
cations continue to be made. Many of the technical challenges
have been and/or are being addressed, and emerging techno-
logies such as QCL based IR microscopy and nonlinear Raman
techniques are poised to dramatically improve the acquisition
timescales. Much of the proof of concept research is per-
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formed on within an academic context, and such research has
addressed many of the fundamental challenges of dealing
with the interaction of light with complex media, analysis of
the complex data sets, and many advances in the associated
technologies have been made. However, such academic
research, by its nature, requires innovation on the timescale of
postgraduate qualifications (3–4 years). Within this context,
standardisation of protocols and methodologies is difficult to
implement, and, in general, translation requires a significantly
longer timescale to affect.198 Increasingly, however, the aca-
demic community has been working ever closer with clinical
and instrument manufacturer partners, towards a better
understanding of the clinical needs and identification of rea-
listic strategic target applications. In this context, the impor-
tance of collaborative frameworks such as the UK EPSRC
Clinical Infrared and Raman Spectroscopy for Medical
Diagnosis Network, and the EU COST Raman4Clinics Action
are invaluable. Much of the current EU wide community was
brought together through the EU FP6 SSA DASIM, which led to
significant advances in understanding and addressing issues
of resonant scattering in IR spectroscopy.6–8 It is hoped that
the formalism of the International Society for Clinical
Spectroscopy (http://www.clirspec.org) will continue to facili-
tate progress in a similar fashion, promoting consensus of
sample presentation and measurement as well as data proces-
sing protocols, towards the translation of spectroscopy into the
clinical environment, for the general benefit of patients, to
improve patient diagnosis and prognosis.
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