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Abstract

In the field of solid-state laser materials, YLiF4 and BaMgF4 are two actively researched

systems, with YLiF4 having been shown as a viable laser source. BaMgF4 is less

developed. The work presented here provides an atomistic computational chemistry

study into the two materials.

A introduction to the field of optical materials and computational chemistry is given

before a detailed description of the atomistic methodologies is provided. The work

utilises the widely used and studied methods of this field. The interionic interactions are

modelled using the pair-wise approximation, a Coulomb interaction for the long-range

interaction, which is summed using an Ewald summation, and a Buckingham potential

for the short-range interactions. Electronic polarisability of the fluoride ions is included

through a core-shell model coupled with a spring. Energy minimisation of the lattice is

achieved through geometry optimisation and the resulting structures reproduced the

reported structure of YLiF4 and BaMgF4 to within 2%.

The intrinsic defect properties of the two materials are calculated through the Mott-

Littleton method. For YLiF4, the Frenkel defect energies were found to be lower than

the Schottky energies, with the two lowest energy defect formations being a F Frenkel

and a Li Frenkel. Thermal expansion coefficients of the lattice were also calculated using

Free Energy minimisation techniques. For BaMgF4, the Schottky defect energies are of

similar magnitude to the Frenkel defects. Within the Frenkel defects the fluorine and

magnesium Frenkel are 2.5 times smaller than the barium Frenkel defect. In comparison

to the intrinsic defect energies for YLiF4, the defect energies are greater.

To utilise these material in solid-state laser devices, the addition of rare earth dopant
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ions to the lattice is needed, as it is these ions that provide the electronic structure

required for the laser action. The solution energies for the incorporation of the rare

earth ions were calculated at both cation sites in both materials. In YLiF4 the dopant

ions will dope at the yttrium site. In BaMgF4, the doping site varies across the rare

earth group, as does the charge compensation method. For ions La3+ to Nd3+ the

preferred site is barium with a magnesium vacancy. The remaining rare earth ions dope

at the magnesium site with either a barium or magnesium vacancy.

An attempt is made to calculate the doping limit of rare earth ions in each lattice.

This is an important value to obtain so that a comparison across the rare earth ions

can be made. It also allows different host lattices to be compared. Rare earth dopant

solubility is of importance because, while for many devices the doping level is small,

ideally the dopants should be homogenous throughout the host lattice and not clustered.

In the case of YLiF4 the doping limit was calculated to be between 0.69% for La3+

and 1.51% for Yb3+. BaMgF4 gives smaller maximum doping limit, and in some cases

negative values, implying the lattice is less accepting of rare earth ions than YLiF4.

The likelihood of transition metal ion defects being incorporated into a Yb:YLiF4

lattice is studied as a result of the work into YLiF4 as a laser cooling device. A new

potential set was derived for various transition metal fluoride ions. The results suggest

that the 1+ and 3+ transition metal ions are most likely to be incorporated into the

lattice with Cu1+ and Ti3+ being the most likely.

The surface properties are also modelled using the same model parameters as in the

bulk studies. Surface and attachment energies are given for the low index surfaces and

these are used to predict surface morphologies. For YLiF4 the equilibrium morphology

is dominated by the (112) and (011) surfaces and the growth morphology by the (001)

and (120) surfaces. For BaMgF4 the morphologies are dominated by the (010) and

(110) surfaces.

The segregation of rare earth dopants to the surfaces is calculated by comparing

the difference between defect energy at the surface and in the bulk. For a number of

surfaces of YLiF4 a driving force for segregation is found. Simulation cells are scaled
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to consider concentration effects of rare earth dopants at the surfaces. A Perl script

is used to automate the creation of every configuration of the dopant ions at various

concentrations. The lowest energy configurations are used to predict how the surface

energy of each low index surface would change with the presence of dopant ions. This

is used to predict the impact on surface morphology. In YLiF4 the (110), (112), (012),

(221), (021), (122) and (010) surfaces showed a reduction in surface energy with the

presence of some of the rare earth ions. For BaMgF4 all rare earth dopants segregated

to the three surfaces studied, with the segregation force to the (010) surface the greatest.

There is a correlation between the ionic radius mismatch between the lattice site and

the rare earth ion, and the degree of segregation.

The content of this thesis is an important contribution to the research of these two

materials, which should aid further research, both computational and experimental,

into them.
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Thesis aims and outline

This thesis provides a detailed computational chemistry study into two, actively re-

searched, solid-state laser materials YLiF4 and BaMgF4. The aim is to provide insight

into the dopant chemistry of these materials and its impact on laser application. In

detail, the thesis aims to:

a) produce an accurate bulk computer model of the systems,

b) calculate intrinsic and extrinsic defect energies,

c) confirm where the optically active rare earth ions will dope within the lattice,

d) calculate the solubility limits of the dopants,

e) extend the model parameters to produce a working surface model,

f) predict undoped surface morphologies,

g) calculate segregation energies of defects,

h) predict dopant effects on surface morphology,

i) identify any trends across the rare earth lanthanide series,

j) relate the results to the application of solid-state lasers,

k) evaluate the energies involved in impurity contamination in YLiF4 as a laser cooling

crystal.

The structure of the thesis is now given.

Chapter 1 introduces the field of computational chemistry and the main method-

ologies used in the field. An introduction to solid-state fluorides and optical materials,

including the details of laser operation, is also given.

xvi



Thesis aims and outline

Chapter 2 provides the details behind the field of atomistic bulk modelling; intro-

ducing the code GULP, the mathematical description of the interactions between ions,

Ewald summation, energy minimisation techniques and methods for calculating defect

energies.

Chapter 3 describes atomistic surface modelling; introducing the code METADISE,

surface classifications, energies, defects and morphologies and then outlining how

defective surface energies can be predicted.

Chapters 4 and 5 provide the results of the modelling studies into the YLiF4 and

BaMgF4. The results are presented by technique used in the same order as chapters 2

to 3.

Chapter 6 concludes the studies and outlines future work.
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Chapter 1

Introduction

1.1 Computer modelling

Computational chemistry is the use of computer science to aid in the understanding of

solids, molecules and reactions. It uses the mathematics and theorems of theoretical

chemistry and incorporates them into computer programmes that allow structures

and properties to be simulated. A good computer model of a material can be used

to understand an experimentally seen occurrence, predict defect properties and even

predict the structure of other materials.

The mathematics used within the field of computational chemistry is nothing new,

however, it is only since the computer revolution that the field has grown due to the

increasing computer power that enables more complex and useful simulations to be

done. For example, some of the earliest work in computer modelling was into simple,

ionic materials such as alkali halides [2]. Today far more complex simulations are carried

out including phenomena such as, for example, oxygen adsorption on zirconia surfaces

[3] and band-gap states of metal oxides [4] .

Computational chemistry studies aid experimental work rather than replace them.

A computer simulation study can typically be completed with reduced cost in terms

of both time and money. The results can then be used by experimentalists to provide

them with viable structures, defect properties and other information as to ensure they

concentrate on those structures that showed viability during the modelling stage. Take
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for example, the study of the development of nuclear clocks by Schumm et al 2012.

The cost of the isotope of thorium they are using is around $50,000 per milligram, so a

modelling study was carried out prior to experimental work [5]. Another example is

the field of nuclear research into UO2 and PuO2, where it is also cheaper and safer to

model. An example of such work can be found in [6].

There are limitations to computational studies. Firstly, with all modelling techniques

there are a number of approximations that have to be made. Any approximation must

be limited and checked to ensure it does not produce unphysical outcomes. In most

cases the approximations have been used for many years and have been validated across

a range of materials to ensure they do not affect the results beyond acceptable error.

Another limitation is that a model is always the ideal case, which may not be easy to

reproduce at the experimental level through synthesis.

All models require the physics of the system to be described mathematically such

that it reproduces the known structure. This means the interactions between the

atoms in the system need to be described. There are a number of different techniques

available to a computational chemist to achieve this all of which offer varying degrees of

accuracy, type of result and computational expense. In general, it is possible to model

the interatomic interactions in two ways; classically or quantum mechanically.

1.1.1 Atomistic simulations

In the classical approach force-fields are used with classical physics such as Coulombic

and Van der Waals interactions. This approach takes no explicit account of the electronic

structure of the system; it treats the ions as charged units. This has the disadvantage

that no detail about electronic structure can be obtained, which may be of importance

in certain materials if the phenomenon the model is attempting to simulate is due to

electronic effects. However, because the technique uses relatively simple mathematics

interacting between discrete units the computational cost is extremely low. This type

of modelling can reproduce structures, calculate defect properties and lattice migrations

and can be extended to look at surfaces and grain boundaries. It is usually used
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in solid-state modelling because of the periodic nature of these materials. It should

be noted that this technique requires experimental data on the material in order for

the interatomic potentials to be empirically fitted. This adds the condition that the

model can only be as good as the experimental data it is fitted to. Finally, classical

approaches can also be taken to model non-static systems through molecular dynamics

and Newton’s Laws of Motion.

Some of the first atomistic calculations were done to determine Schottky defect

energies in sodium chloride structured materials by Boswara and Lidiard [2, 7]. These,

like all of the early simulated work, were highly ionic systems with simple structures

[8]. In the 1970s transition metal oxides were also investigated [9, 10] where the major

pioneering work in the field was carried out by the Harwell Laboratory. The focus was

predominantly on uranium dioxide, UO2, defect energies and fission products [11, 12, 13],

but the methodologies developed are still used widely today and form a large part of

this thesis.

Simulations of surfaces were a later development with the first fully developed code

being MIDAS [14]. While this code allowed the modelling of a wide range of systems

they were all limited to the condition of charge neutral surfaces. Defects within surfaces

could only be modelled with the later CHAOS code [15]. Modern surface codes such as

GULP/GDIS [16] and METADISE [17] utilise the fundamentals of these earlier codes.

1.1.2 Electronic simulations

It is also possible to model a system using its electronic structure. This requires

the use of quantum mechanics. The technique requires the electronic structure of

the whole system to be calculated, which for large systems can only be done with

an approximation method such as Hartree Fock (HF) or Density Functional Theory

(DFT). Electronic structure modelling is extremely computationally expensive but it

can produce properties of the material that atomistic modelling cannot, such as Density

of States (DOS) and charge density. There are two approaches to electronic modelling

that describe the atomic orbitals in one of two ways; Plane Wave and Gaussian Basis
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Set. Finally, electronic structure modelling can be done semi-empirically or ab intio

(meaning from first principles of quantum mechanics).

1.1.3 Hybrid methods

The final method for modelling is a hybrid of the two previously mentioned techniques.

In this approach a region around the defect centre, that is of interest, is modelled using

an electronic structure method, and the remaining bulk is modelled using atomistic

methods. This is a relatively new technique and is still in its infancy, however, it has

been used successfully for a number of materials using the CHEMSHEL code [18, 19].

For examples see [20, 21].

1.1.4 Comparison

These three approaches for creating a model offer increasing levels of complexity (and

computational time), however, they should not be seen as increasing in accuracy or

suitability. Each chemical problem will require a different approach and the type

of approach taken to modelling should be considered carefully. For example, if the

simulation is to determine a simple intrinsic defect energy, choosing a hybrid or electronic

approach is excessive. Alternatively, if the property under examination is a result of

electronic effects an electronic (or hybrid) approach is required. Another important

consideration is scalability. Atomistic methods scale to consider simulations of many

atoms far easier than electronic methods. Typically an atomistic approach can consider

thousands to tens of thousands of atoms in one simulations, whereas with an electronic

approach the scale of the simulation would be limited to just tens to hundreds of atoms.
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1.2 The solid state

Solid-state chemistry deals with the structure and properties of substances that have

been cooled into a solid form of regular repeating arrays. X-ray diffraction is usually

used to determine the structure of inorganic crystals because the crystals, whose atoms

are spaced at a distance of the same order of magnitude as X-ray wavelengths, acts

as a diffraction grating, and therefore the resulting diffraction pattern can be used to

calculate the internal atomic positions. Due to the periodicity of crystals, symmetry

can be used to define a unit that when repeated infinitely in all directions reproduces

all the atomic positions of the crystal. This repeating unit is called the unit cell.

1.2.1 Space groups and crystal classification

The unit cell is expressed as three lengths (a, b, c), three angles (α, β, γ), and the

minimum atomic coordinates needed to reproduce the structure. This leads to seven

crystal systems as listed in Table 1.1. These seven classes of crystals can be of four

different types, namely, primitive (P), body-centred (I), face-centred (F) or face-centred

(C), where they have the following properties.

1. The primitive cell (P) has a lattice point at each corner.

2. The body-centred cell (I) has a lattice point at each corner and one in the centre of

the cell.

3. The face-centred cell (F) has a lattice point at each corner and in the centre of each

face of the cell.

4. The face-centred cell (C) has a lattice point at each corner, and one in the centres of

one pair of opposite faces.

Combining the seven classes with the four types, the 14 Bravais lattices are produced.

It is not possible to have all types in every class due to the symmetry requirements,

hence there are only 14 Bravais lattices. The work in deducing these space lattices was

first done by Frankenheim in 1835 (who said there were 15 space lattices), however,
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System Unit Cell

Triclinic
α 6= β 6= γ 6= 90◦

a 6= b 6= c

Monoclinic

α = γ = 90◦

β 6= 90◦

a 6= b 6= c

Orthorhombic
α = β = γ = 90◦

a 6= b 6= c

Trigonal
α = β = γ 6= 90◦

a = b = c

Hexagonal

α = β = 90◦

γ = 120◦

a = b 6= c

Tetragonal
α = β = γ = 90◦

a = b 6= c

Cubic
α = β = γ = 90◦

a = b = c

Table 1.1: The seven crystal systems.

Figure 1.1: The 14 Bravais lattices. Taken from [23]
.

the system is now named after Bravais who noticed a mistake in Frankenheim’s work

pointing out that there are only 14 lattices [22]. Figure 1.1 shows the 14 Bravais lattices.

If the full symmetry of the crystal is accounted for there are 32 point groups. A

point group is a set of symmetry operations around a fixed point that generates the

other points. When this is combined with the Bravais lattices, removing those groups

that break symmetry constraints, there are 230 space groups that a crystal can take.

It is these space groups that are used to, firstly, describe the system in the smallest

amount of detail, and secondly, reduce the terms in any model to increase computing

efficiency.

6



Chapter 1. Introduction

Figure 1.2: Example Miller indices. Shown are the (110), (111) and (100) surfaces.
The origin is taken from the rear left corner.

1.2.2 Miller indices

Planes within the lattice are defined using the method popularised by W.H. Miller, and

hence are known as Miller indices. In Figure 1.2 the first example is the (110) plane.

The Miller index is the reciprocal of the intercept on the three unit cell vectors. Thus

(110) intercepts a at 1, b at 1, and does not intercept c. In general terms, the Miller

index is given by (hkl) where
a

h
,
b

k
, and

c

l
are the intercepts with the unit cell. The

location of the origin is required for the Miller index to be explicit as the intercept

position is measured from the origin. Indices may be defined backwards from the origin

resulting in a negative Miller index, which is written as h̄k̄l̄. In surface modelling, it

is sometimes necessary to calculate the perpendicular spacing between parallel Miller

indices. These are known as d-spacings (dhkl).

1.2.3 Bonding

Crystals can be held together through a number of types of bonding including metallic,

covalent or ionic. In metallic bonding the regular array of metal cations are surrounded

by a ‘sea’ of electrons occupying the space between the cations. The electrons are free to

move providing the properties that characterise metals. Covalent bonds share electrons

between two atoms resulting a strong directional bond.

The crystal systems considered in this thesis are all ionic. Ionic bonding forms

between two oppositely charged ions. There is an attractive electrostatic force between
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the cation and anion, which is given by the Coulomb Law:

F ∝ q1q2

r2
(1.1)

where q1 and q2 are the charges on the ions and r is the interionic distance. There is also

a repulsive force between like-charge ions. The ionic bond is non-directional and is long

range with an inverse proportional relationship with ionic distance. In ionic crystals,

the ions pack together such to maximise the Coulombic attraction while minimising

the repulsion. The bonding within the systems studied in this thesis and how they are

modelled is discussed in detail in Chapter 2.

1.2.4 Defects

Crystals as discussed above, with each ion occupying the correct lattice position in a

regular array and aligned with the correct symmetry as defined by the spacegroup, can

only exist in thermodynamic equilibrium at zero Kelvin. Any real-world crystal (i.e., a

crystal above 0 K) will contain some deviations from this ideal due to entropy.

All systems tend to increase their entropy and because a perfect crystal has low

entropy, as it is highly ordered, the presence of defects increases the disorder and

increases the entropy. Thus, the complete randomisation of the lattice ions would

be the highest entropy state, however, the creation of defects requires energy and

therefore, at any temperature, an equilibrium is established between the two terms

to minimise the free energy. This can be seen with the Gibbs free energy equation,

with the defect formation energy increasing the enthalpy term, H, and the increase in

disorder increasing the entropy term, S:

G(p, T ) = H − TS (1.2)

There are a number of types of defects that can occur within crystals and they can

be grouped into categories based on the dimensions of the defect. Within each category

there are a large number of types of defects.
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Figure 1.3: Diagram showing a perfect lattice at zero Kelvin on the left and a lattice
containing a Schottky defect on the right. A cation and an anion vacancy is created to

ensure charge neutrality. Adapted from [1].

1. Point defects - intrinsic and extrinsic

2. Line defects - dislocations

3. Planar defects - stacking faults, surfaces, grain boundaries

This thesis will only consider point defects and one type of planar defect - surfaces -

however, all three groups are important and will be discussed briefly here.

Point defects are any defects that extend no further than a few interatomic distances

[24] and are divided into two groups - intrinsic and extrinsic. Intrinsic point defects are

imperfections that result from thermal effects and do not affect the chemical composition

of the system. Vacant cation or anion lattice sites are one form of imperfection that can

occur. Due to the requirement for charge neutrality stoichiometric units of vacancies

must be created and these are known as Schottky defects [25, 26] (Figure 1.3). For

example, in a MX3 system the Schottky defect is a cation vacancy with three anion

vacancies.

The second type of intrinsic point defect is the Frenkel defect [27] (Figure 1.4). This

is created by an ion moving from its lattice site to an interstitial site leaving a vacancy.

Ionic size and lattice spacing are extremely important in determining the concentration

of Frenkel defects.

The presence of defects affects the physical properties of the system, for example,

vacancies and interstitials can migrate within the lattice increasing conductivity. In
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Figure 1.4: Diagram showing a perfect lattice at zero Kelvin on the left and a lattice
containing a Frenkel defect on the right. A cation vacancy is created when the ion

moves to a non-lattice interstitial site. Adapted from [1].

general, if the anion and cation differ in size, Frenkel defects are more common and

the opposite is true for Schottky defects. However, crystallography is important in

understanding the defects present too, as in close packed systems with little space in

the lattice, Frenkel disorder is restricted due to the high energy of forming interstitial

ions.

One final type of intrinsic defect that is extremely unlikely to occur in ionic systems,

such as those in this work due to electrostatic repulsion, is antisite disorder. This is

where two atoms within the lattice switch site.

Extrinsic point defects are different from intrinsic ones as they require a change

in the chemical composition of the lattice, either through non-stoichiometry or the

presence of impurity ions. These impurity ions may be as a result of contamination

during crystal growth or purposely incorporated into the lattice to change the properties

of the system in a useful way. The latter process is known as doping and forms the

main focus of the defect simulations in this thesis.

Line defects are an extended defect that occur when ions are misaligned or vacancies

form in a line and are known as dislocations. There are many types of dislocations,

however they have not been studied in this work so no further discussion will be given

here.

Planar defects are another type of extended defect, however, they occur in 2-

dimensions. The most obvious of these is a surface, where the regular infinite array of

10



Chapter 1. Introduction

ions is only present in 2-dimensions and therefore, the ions at the surfaces are in a very

different environment to the rest of the crystal. Two other planar defects include grain

boundaries, which are the boundaries formed between seeds during crystal growth, and

stacking faults, which is when a stack is out of sequence in the packing.

Defect formations are described throughout this thesis using the standardised Kröger-

Vink notation [28]. In this notation the lattice site and charge on the defect is included

and is given in general terms by:

Xc
s

where X is the species, s is the site, and c is the overall charge. To illustrate the types

of notation consider the following examples in CaF2.

CaCa a calcium ion at a calcium lattice site, which is charge neutral.

Ca··i a calcium ion at an interstitial site, which has a charge of plus 2 (indicated by

two ·).

V
′′
Ca a calcium vacancy, which has a charge of minus 2 (indicated by two ′). Note that

V refers to both a vacancy and vanadium.

Kröger-Vink notation can be combined to form defect formation reactions. The

reactions for Schottky and Frenkel defects, as discussed above, for a MF3 system are

now given.

Schottky: MM + 3FF → V
′′′
M + 3V ·F

Frenkel: MM + Vi →M ···
i + V

′′′
M
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1.3 Optical materials

This research is concerned with modelling solid-state inorganic crystals that have

been shown, or are actively being researched, as possible materials for use in an

optical application. Examples of optical applications include lasers, scintillators and

communication devices. In all of these examples the key to their useful optical properties

is due to defects and impurities within the crystal structure.

Highly coloured naturally found crystals, such as Blue John, only have their intense

colour due to defects within the lattice. Blue John is CaF2 that is coloured due to the

presence of electrons trapped at vacant F− sites. Defects turn this simple crystal into a

purple-blue attractive crystal that is used for ornamental purposes. This example shows

how defects within a crystal can change its properties and value. For more technical

applications it is often the addition of dopant ions to the lattice that produces systems

with desirable optical properties for use in applications. The systems studied in this

thesis are being researched as laser sources, where the laser-active dopants are rare

earth ions. In most solid-state lasers the dopants used are either rare earth or transition

metal ions.

It is the process of finding doped crystals that provide an electronic structure of

practical use that drives this research. Being able to model accurately such materials

and provide an understanding of their structures is vital to the continued search for

better more tunable solid-state lasers and other optical devices.

1.3.1 Lasers

Laser stands for Light Amplification by Stimulated Emission of Radiation, although

was originally termed optical maser, where maser was the process to describe earlier

work involving amplification in the microwave region [29]. The theoretical origins of the

laser came from the emerging quantum mechanical view of the atom in the early 1900s.

The first working laser, however, was a pulsed ruby laser demonstrated by Maiman in

1960 [30], which was made from a synthetic ruby and produced pulses of red laser light

with a wavelength of 694 nm. Around the same time a helium-neon gas laser [31] was
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Figure 1.5: Diagram of stimulated emission. The incoming photons ‘stimulates’ the
emission of the photon into the same spatial mode, resulting in amplification.

also demonstrated, which produced laser light with a wavelength of 633 nm. Lasers

have a number of properties that make them useful for a variety of applications. They

produce a narrow coherent beam of light that can propagate over large distances with

little divergence and can be emitted as a continuous beam or pulsed.

1.3.2 Stimulated emission

The principle behind the laser operation is stimulated emission. To explain stimulated

emission one must first define spontaneous emission. Spontaneous emission occurs

within a lattice, where an excited ion in a high-energy state decays, after some time,

to a lower energy level, resulting in a release of a photon. The emitted photon is in a

random spatial direction. In the stimulated emission process, the photon emission is

stimulated by incoming photons if they have a suitable energy (See Figure 1.5). The

photon is emitted into the same spatial direction as the incoming photon, which results

in the amplification of the incoming radiation [32].

1.3.3 Population inversion

At thermal equilibrium there will be a Boltzmann distribution of electrons, which

populates the ground-state. This reduces the rate of stimulated emission and even

prevents it unless there are a higher number of laser-active ions in a higher energy state

than are in the ground-state. This can be achieved through pumping the system with

energy and causing what is termed a population inversion. There are a number of ways
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Figure 1.6: Diagram showing the differences between a 3 and 4 level laser system. The
4 level system has the lower laser level above the ground state unlike the 3 level system,

resulting in a number of advantages.

to introduce energy into the system, with the most common being electrical discharge

and optical irradiation [32].

In a system that contains two energy levels, E1 and E0, population inversion can

never be reached. This is because the transition E0→1 would equal E1→0, and thus

the two level would be equally populated. Laser systems, therefore, require at least

a three-level system, where the pumping energy raises the ions into a high state, E2,

before decaying rapidly into a metastable state, E1. The population inversion is created

between the ground state, E0 and the metastable state, E1 as shown in Figure 1.6. An

example of such a laser is the ruby laser [30]. A 4-level system has the lower laser level

above the ground state, which quickly depopulates through non-radiative decay. The

advantages of a 4-level system, over a 3-level, are that a lower threshold pump power is

required and reabsorption of laser radiation is avoided. Nd:YAG (Nd3+:Y3Al5O12) is

an example of such a laser [33]. In both cases the pumping level, E2, can in practice be

a band of close energies that all decay to the same metastable level. This increases the

efficiency of the pumping.

14



Chapter 1. Introduction

Figure 1.7: A laser schematic showing the basic set-up of a solid-state laser. Light
oscillates between the two mirrors passing through the (optically pumped) laser crystal,

resulting in the amplification of the light.

1.3.4 Solid-state lasers

Solid-state lasers are one type of laser system. These consist of doped, usually large

band gap, materials where it is dopant ions that provide the laser transitions. The

host lattice is still however important since it modifies the energy levels of the dopant

ions, and the physical properties such as thermal conductivity affect the power levels

at which the laser can operate. Figure 1.7 shows a schematic of a typical solid-state

laser. Light circulates between the two mirrors and passes through the laser crystal.

This light would normally become weaker on each cycle, however, the laser crystal (the

gain medium) amplifies the light through stimulated emission. Pumping of the laser

crystal is achieved either by an electrical current or through optical pumping with a

lamp [34]. The latter of these is most common in rare earth lasers, like those studied

in this work. Although excitation through flash lamps is cheap and can provide high

powers, it has disadvantages because of the moderate lifetimes of the lamps and the

strong thermal effects on the crystal [35]. The thermal effects can be reduced through

pulsing of the lamp. It is crucial to ensure as much radiation as possible goes into the

laser medium. Thus the laser material is often rod shaped and placed next to the flash

lamp inside a container with highly reflective walls [36].

This type of laser is widely used in a variety of applications with one of the most

common being Nd:YAG (Nd3+:Y3Al5O12), which produces a strong laser transition

from 4F3/2 to 4I11/2 producing a wavelength of 1064 nm. (The origin of these levels is

discussed in Section 1.3.8). Optically pumping the system with a lamp of wavelength

808 nm excites the electrons within the doped ion to a higher metastable state. On

15



Chapter 1. Introduction

Figure 1.8: An example of laser operation. System shown is the typical operation of
Nd:YAG. Pumping wavelength is 808 nm and the laser transition is 1064 nm.

relaxation of these electrons the emitted light is the laser action. This laser is a 4-level

type laser as the lower laser level is sufficiently above the ground-state to be empty

at room temperature [36]. Both continuous wave and pulsed operation is possible.

Figure 1.8 shows the electronic configuration for Nd:YAG, the pumping (808 nm)

wavelength and the laser action of 1064 nm.

Another example of a solid-state laser is the ruby laser (Cr3+:Al2O3). The laser-

active dopant in this laser is Cr3+ and is typically doped to about 0.05% weight [34].

The lower laser level is at the ground-state, thus ruby is a 3-level laser system. The main

laser transition is between 2E and 4A2. These energy states have crystal field notation

because, for transition metal dopants, the crystal field splitting has a larger importance

then the spin-orbit coupling in rare earth ions (see Section 1.3.8) [34]. Pulsed operation

is the most common due to the pumping requirements of a three-level system. Figure 1.9

shows the energy levels involved in the ruby laser.

When considering a solid-state laser material, the properties of the laser crystal that

are required are:

• a laser transition in the desired wavelength,

• a host lattice with high transparency in the laser transition and pumping region,
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Figure 1.9: Schematic of the ruby laser showing: i) the energy levels of pumping from
blue light (4T1) and from green light (4T2), ii) the metastable upper laser level, 2E, and

iii) the laser transitions back to 4A2. Adapted from [34].
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• an upper-state lifetime of length suitable for the laser type (i.e., long for Q

switched),

• a four-level system (see Section 1.3.3),

• a robust, chemically stable material with good thermal conductivity (to transfer

pumping heat efficiently),

• a crystal which has good optical quality that can be cut and polished easily,

• and a host lattice with a high solubility of laser-active dopants with no tendency

to cluster (see Section 1.3.10).

Within the laser operation there are a number of losses that have to be overcome

and therefore there is a threshold gain coefficient that has to be reached for the laser

action to proceed. One of the losses which occurs in solid-state lasers are Fresnel losses

[34]. This is light that can be lost from the system from reflection at the laser medium

- air interface. These can be minimised by, firstly coating the ends of the laser rod with

antireflective coating, and secondly, by reducing the loss in a particular direction of

polarisation through cutting the rod ends at the Brewster angle [34]. For Nd:YAG this

angle is 61.2◦ [37] and is given generally by:

θB = tan−1

(
n2

n1

)
(1.3)

where n2 and n1 are the refractive indices of the media. Cutting at this angle causes

the laser output to be plane polarised. Other losses include scattering at the mirrors,

diffraction around the mirror boundaries, transitions in the laser material other than

the desired one, and scatting at defects within the crystal [34].

1.3.5 Gas laser

As well as solid-state lasers there are a wide variety of other types of lasers. This is

one of the reasons why lasers are used in almost all industries as they are extremely

versatile.
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In comparison to solid-state laser media, gas lasers have a much lower density and

therefore can only achieve a smaller population inversion, thus, gas lasers are usually

large [35]. One advantage is their homogeneous nature and their efficient cooling. Gas

lasers are usually excited within a gas discharge [35]. The following three brief examples

demonstrate that the laser transition can take place between the energy levels of atoms,

ions or molecules.

The helium-neon, HeNe, laser is a mixture of helium and neon in a 5 to 1 ratio [36].

The gas is contained in a narrow tube and a discharge is induced. The laser transition

occurs between the energy levels of Ne (i.e., an atomic gas laser). This laser is a 4-level

type system but the details of the operation have many subtleties. A good description

of the HeNe laser operation can be found in reference [34].

The helium-cadmium, HeCd, laser is an example of an ionic laser. The laser

transitions take place between the electronic energy levels of the ion, thus ionisation

has to occur first. Solid Cd metal is heated in a gas discharge to obtain a vapour. A

process called Penning ionisation then takes place, which ionises and excites the Cd

atoms through energy exchange with exited He atoms [36, 34]. This can be expressed

as:

He∗ + Cd→ (Cd+)∗ + e (1.4)

where * indicates an excited state. The emission of an electron carries away any energy

difference between the two excited states. Lasing takes place between Cd∗ and the

ground-state Cd+, which then decays to Cd ground state with collisions at the tube

walls. The lasing wavelengths are 325 nm and 442 nm [38].

The final example of a gas laser is the molecular carbon dioxide, CO2, laser. This

laser is one of the most important gas lasers as it is highly efficient and has high power

output, making it possible to use the laser for application such as welding, cutting

and weaponry [36]. The lasing transitions occur due to the energy levels resulting

from the vibrational and rotational energy of the CO2 molecule. The excitation of

the CO2 molecules takes places through an intermediate. The first vibrational level

of nitrogen is very close to the asymmetric mode vibrational level of CO2 and is used
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as the intermediate [32, 38]. Laser transitions occur from this vibrational level to a

range of other vibrational/rotational levels, with the strongest transition at 10.6 µm

[38]. The high efficiency of this laser is due to a number of reasons. Firstly, the first

excited state of nitrogen is 0.3 eV above the ground state, compared to the 20 eV for

the HeNe laser, resulting in efficient pumping [34, 38]. Secondly, the excited nitrogen

state is metastable, so once excited the nitrogen is highly likely to exchange its energy

with CO2 before relaxing back to the ground-state. Finally, helium is usually added to

the system to aid in the transferring of heat and depopulating the lower laser levels

[34, 38].

1.3.6 Liquid dye laser

Laser media can also be liquid based. Liquids are more homogeneous than solids and

have a higher density of active atoms than gases making them a good laser medium.

They also can be circulated for efficient cooling during operation. Liquid dye lasers are

usually organic dyes dissolved in liquid solvents [35]. These solutions strongly fluoresce.

An example is rhodamine 6G in ethanol [34]. The wide absorption band means optical

pumping is usually used. Laser transitions occur between bands known as singlet states.

These correspond to a total spin state of the molecule of zero. A detailed description of

the energy levels can be found in reference [34].

1.3.7 Semi-conductor laser

As well as the doped, insulator solid-state laser, as discussed above, there are also

semi-conductor lasers. These lasers are a type of solid medium laser in which popu-

lation inversion is achieved by having a high density of electrons and holes [38]. This

requirement means only a small region within the laser is active. The operation of

semi-conductor lasers is very different to all other types considered. A detailed expla-

nation can be found in reference [34]. Figure 1.10 shows the schematic of a simple

gallium arsenide, GaAs, semi-conductor laser. The p-type GaAs and the n-type GaAs

are shown, with dotted region between them the laser active zone. An external current
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Figure 1.10: Schematic of the GaAs semiconductor laser. The p- and n- type sections
are shown with the narrow band for the junction. The laser output is confined to this
small region. The applied electrical current is also shown. Diagram adapted from [34].

is applied to drive the system. In practice, a more complicated design is used than this

to ensure optimum output. The semi-conductor laser is one of the most commercially

viable laser types due to the wide variety of applications they can be used for including

laser printers and DVD players [34]. Their main advantage is the small size of the laser

allowing them to be used in the miniaturisation of technology that is commonplace in

this age. Disadvantages include the small active region and the low power output.

1.3.8 Electronic structure of rare earth ions

Rare earth ions are the usual dopants used in solid-state lasers due to their electronic

structure providing the required transitions for laser action [35]. Nd3+ is a common

dopant and has the electronic configuration

[Xe]4f 3

This means, like all rare earth ions, that the ion is characterised by the unfilled 4f

subshell (Nd3+ has 3 electrons out of a capacity of 14 in the 4f subshell). The low lying

energy levels of the dopant ion are determined by the forces acting on the electrons
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in the unfilled shells [34]. The three main interactions, in order of importance for rare

earth ions, are:

1. the inter-electron Coulomb force, which is the force acting between the electrons

in the unfilled subshells,

2. the spin-orbit coupling, which is the coupling between the electron spin and the

orbital angular momentum,

3. the crystal field splitting, which is the interaction between the host lattice ionic

charges and the electrons in the unfilled subshells.

The crystal field term is the weakest of the three because the full 5s and 5p subshells

in rare earth ions shield the 4f electrons. The inter-electron Coulomb interaction splits

the electron configuration into terms related to the angular and spin momenta [34]. For

example, the 4f 3 subshell in Nd3+ is split into a number of terms including 4F , where

the usual spectroscopic notation for the total angular momentum, L, is used such that,

F corresponds to value of L = 3, with L = 0 is S, L = 1 is P , etc. The superscript is

the spin multiplicity and is equal to 2S + 1, where S is the total spin quantum number.

Thus 4F corresponds to L = 3 S = 3
2
. A detailed explanation of this can be found in

reference [34].

The spin-orbit coupling splits the terms up into multiplets by requiring the energy

state to be dependent on the quantum number J (the total momentum quantum

number). Therefore, the 4f term is split into 4 multiplets with J = 9
2
, 7

2
, 5

2
, 3

2
. These

are determined from the sum of L and S. The J term is written in subscript giving the

energy levels written as 2S+1LJ . The crystal field will split these levels further although

this is as far as needs to be considered here. Figure 1.11 shows the splitting of the 4f 3

subshell in Nd3+ as described.

It is the electronic structure that make rare earth ions so useful in laser design

because they provide metastable levels for population inversion and thus stimulated

emission.
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Figure 1.11: Diagram showing the energy level splitting of the 4f 3 subshell in Nd3+.
Adapted from [34].
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1.3.9 Q switching and tunablity

Q switching is the name given to the process where typically nanosecond, high energy

pulses are generated. Rare-earth-doped laser crystals have weakly allowed transitions

[32]. This results in long upper-state lifetimes, which means large amounts of energy can

be stored making these crystals suitable for Q switching. Tunable lasers have output

Figure 1.12: Energy level diagram for the Alexandrite tunable laser. Adapted from [34].

wavelengths that can be adjusted as required. An example is the Alexandrite laser,

Cr:BeAl2O4. The active dopant Cr3+ can operate with a lasing wavelength between

700 nm and 820 nm [38]. Figure 1.12 shows the energy level diagram for this laser.

Electrons are thermally excited from the 2E storage level into the 4T2 laser level. These

transition to a band of vibrational levels that arise from lattice vibrations. In order to

use this group of vibrational levels to create a tunable laser, a variable, very narrow

bandwidth filter has to be introduced into the system [34]. The aim of the filter is

to introduce little loss at the desired wavelength but high loss at all others. There

are two common filter methods used with the first being the insertion of a prism into

the system. The angle of the prism controls which wavelength hits the mirror and is

reflected back through the system. It is also possible to use polarisation as a method to
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filter the wavelengths (see reference [34] for further details). Applications of this type

of laser include spectroscopy, laser cooling, fibre communications [34] and in some skin

condition treatments [38].

1.3.10 Clustering and energy transfer

In an ideal laser, the laser-active ions within the host lattice would be uniformly spread.

In reality, they are often not and may in some cases tend to form clusters. This process

of clustering is usually undesirable and leads to a serious degrade of gain and power

efficiency of the laser through quenching processes [32]. The quenching occurs because

when laser-active ions are close enough, energy transfer between them can take place.

There are a number of transfer processes that can occur and they all can have a positive

or negative effect on the laser system depending on the exact nature of the process.

Energy transfers can take place to impurities within the crystal or to colour centres

(defects within the structure). For example, if the excitation energy is transferred to

crystal defects where non-radiative decay occurs, a loss in efficiency results. Energy

can also transfer between ions of different species, which is often exploited in lasers, see

references [39] and [40] for examples. Figure 1.13 shows a visualisation of this process.

Here the pump energy is efficiently absorbed by the Yb3+ ions, which then transfer

their excitation energy to the Er3+ ions. These then decay into a level that acts as the

upper laser level for a transition to the ground state.

Figure 1.13: Diagram showing the useful energy transfer process between two different
dopants. The pump energy is absorbed by by the Y b3+ ions, which, transfers to the

Er3+ ions. Adapted from [32].

Cross relaxation is another type of energy transfer as shown in Figure 1.14. In this
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Figure 1.14: Diagram showing the cross relaxation energy transfer process. Ion 1
transfers part of its energy to another in the ground state resulting in both being at an

intermediate level. Adapted from [32].

[h]

Figure 1.15: Diagram showing the upconversion energy transfer process. Ion 1 transfers
its energy to another in the the same state. Adapted from [32].

process, an excited ion transfers part of its energy to another ion in the ground state,

resulting in both ions being at an intermediate level.

Another process that can occur is energy transfers that depopulate the lower laser

level. In systems where the lower laser level is long-lived, the laser action may self-

terminate if the level is not depopulated, so these transfers are vital to the laser

operation.

Cooperative upconversion is another process (Figure 1.15). In this case, the energy

transfer from one ion raises another ion into a higher energy state. This can also be

achieved though additional pumping, but upconversion has the advantage that only one

pump source is required. Cooperative upconversion can also be degrading if it occurs

in a laser where upconversion is not required.

These energy transfer processes show that unless the laser system requires a specific

process to work, they should be minimised. Even systems where energy transfer is

required, the type of transfer that occurs has be be selective to avoid degradation. All

energy transfers can be avoided by reducing clustering, which in turn, can be reduced

by selecting dopant ions that show less tendency to cluster in the host lattice, by
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keeping the dopant concentration low, and by selecting a host lattice with a high dopant

solubility [32].

1.3.11 Laser applications

Lasers are used in a large variety of applications in a vast range of areas from home

electronics to scientific instruments to military uses. This section will briefly outline some

of the possible uses of lasers. The applications considered can be split into five categories:

measurement, machining, medicine, very high power, and optical information.

Measurement is one of the simplest applications of a laser. Optical alignment in

which a laser beam is used to position an object or for guidance in construction, is

the most basic of these. Extending this, laser beams can be used with interferometric

techniques to measure short distances highly accurately. Interferometers, such as the

Fizeau interferometer [41, 34], can be used to measure variation between a test and

reference surface. The advantage of using a laser is that as the beam is coherent across

large distances the surfaces can be separated, preventing damage to them. There are

many more applications that are achieved through various interferometer set-ups that

use lasers. Lasers can also be used to measure large distances through techniques such

as pulse-echo. A typical hand-held military range-finder comprises a Nd:YAG laser

that emits a pulse and has a detector that records the reflection of the beam off the

distance object [42, 34, 43]. The time taken from emission to detection allows the

distance to be calculated. This technique, which is often known as optical radar or lidar

[44], can be extended to measure the topography of the Earth’s surface for mapping

through airborne systems to more complex techniques for measuring pollutants in the

air. Optical radar has even been used to measure the distance to the moon to an

accuracy of ±0.15 m. This was achieved by using reflectors that were left on the surface

of the moon during the Apollo missions [45]. Finally, in the measurement applications,

lasers can detect rotation using laser gyroscopes [46]. These usually consist of a ring

system with two lasers travelling in opposite directions. The system is adjusted so the

total distance around the ring is an integer number of wavelengths. If the ring rotates,
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the paths of the two beams will change (one becomes longer, the other shorter). This

change can be used to measure the rotation speed.

An area in scientific applications is laser spectroscopy. Typically spectrometers

use quartz halogen or xenon lamps to obtain monochromatic radiation, however, it

is possible to use a laser source [34]. The advantage of using a laser source is the

increased power compared to lamps and the smaller bandwidth, which leads to greater

resolution and sensitivity. Laser uranium enrichment is another scientific application.

Traditionally U-235 isotopes have been separated from nonfissile U-238 isotopes through

centrifuge techniques and gas diffusion. These are both relatively inefficient processes.

With the upsurge in interest in nuclear energy, attention is turning to laser enrichment,

which is believed to offer a lower energy method [47]. The leading research company

into the technique was Silex, which since 2008 is now owned by GE Hitachi Nuclear

Energy [48]. The method Silex used is based around uranium hexafluoride gas that is

cryogenically cooled and sprayed out of a nozzle at high speed. Rapid pulses from an

infrared laser penetrates the gas. The laser is tuned to 16 µm which excites the U-235

atom selectively over the U-238. This allows the U-235 to be siphoned off.

Machining using lasers is a common application in industry [34]. Material processing

applications include surface hardening, welding, cutting and drilling [36]. Surface

hardening of ferrous materials involves heating the surface and then quenching [34].

This can be achieved with a high power laser which can produce a large amount of heat.

The very localised heating that can be achieved with a laser allows it to be used to

weld two metals together. There are many other types of welding techniques, but laser

welding offers a few advantages. The first being that no physical contact is made with

external components, and the second is the localised nature of the heating. In laser

cutting, the high powered beam vaporises a narrow piece of material, cutting through it.

It is necessary to keep the heat affected area as narrow as possible to prevent damage

to the rest of the material. In industrial laser cutters an oxygen gas stream surrounds

the laser beam to aid with the heating and to help remove the molten material from

the area [34].

28



Chapter 1. Introduction

In the field of medicine, lasers can be used for cutting of tissue, as in particular the

output of the CO2 laser of 10.6 µm is strongly absorbed by water molecules. There

are a number of advantages to laser cutting over conventional methods including

the positioning of the beam can be highly accurate, there is limited damage to the

adjacent tissue, and the laser has a cauterising effect on the nearby blood vessels

reducing bleeding. The only disadvantage is the need for a laser system that is easily

manoeuvrable. Argon-ion lasers are used in ophthalmology to treat detached retinas.

The laser radiation is strongly absorbed by the red blood cells and the thermal effects

from this re-attach the retina. Lasers can also be used to bleach some skin conditions

and to remove tattoos [38].

Two theoretical laser uses that are being researched are based on very high power

laser systems. It has long been the goal to produce nuclear fusion of light elements for

power production. There are efforts to achieve the conditions needed for this with high

powered lasers. The National Ignition Facility (Nif) in the US is close to producing a

surplus of energy from the method and, in 2011, were joined by the Rutherford Appleton

Laboratory and AWE in the UK [49]. Another high power laser application is weaponry.

This requires very high power outputs and the systems must be compact, light and

robust. Trials have been carried out and the one envisaged aim is to have a weapon

situated in space capable of destroying missiles [50]. The US Army have developed a

Laser-Induced Plasma Channel weapon, which has an optical power output of 50 billion

Watts [51].

1.3.12 Laser cooling

Laser cooling, or optical refrigeration, of solids, which involves the refrigeration of a

solid by exposing it to optical radiation, dates back to Pringsheim who theorised that

phonon energy (thermal vibrations) could be removed by anti-Stokes fluorescence in

1929 [52]. Anti-Stokes fluorescence is the emission of higher energy photons than those

which are absorbed, and hence can cause the removal of energy from the material. For

the cooling to occur there needs to be high quantum efficiency and the anti-Stokes
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Figure 1.16: Diagram showing the anti-Stokes cooling process. The fluorescence is of
higher energy than that of the pump light source, thus removing some phonon energy

from the system. Adapted from [53].

fluorescence light has to leave the crystal without being reabsorbed [53]. Figure 1.16

shows the anti-Stokes process.

It was initially argued by Vavilov that laser cooling by anti-Stokes fluorescence

contradicted the second law of thermodynamics because the process was reversible and

therefore the energy yield would be equivalent to complete transformation of heat to

work [54, 55, 53, 56]. However, Landau [57] proved that the process was irreversible

by considering entropy. The incident laser light has a very small bandwidth and a

defined direction compared to the fluorescence, which has a relatively wide bandwidth

and is emitted in all directions. This change in entropy satisfies the second law of

thermodynamics.

The first experimental evidence of anti-Stokes cooling in a solid was observed by

Epstein in 1995 [58] in ytterbium-doped glass. Ytterbium, being a rare earth metal, is

an ideal dopant for laser cooling of solids because the optically active 4f electrons are

shielded by the filled 5s and 5p outer shells. This limits the interaction with the host

lattice and reduces nonradiative decay. Fluoride glasses and crystals are often used as

host lattices as these have low phonon energy, which help to reduce nonradiative decay

further and increase quantum efficiency [53].

A number of applications have been suggested including a cryocooler [59], and a

radiationally-balanced laser [60]. The concept behind a radiationally-balanced laser

was proposed by Bowman in 1999 [60]. In any laser heat generation from the process of

excitation and emission cause undesirable changes within the material such as thermal

fracture and lensing. Bowman suggested that anti-Stokes fluorescence within the laser
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host could balance out the heat generated by the laser generation.

Detailed reviews of laser cooling of solids can be found in references [56, 53].

1.3.13 Fluorides as lasers

Since the invention of the first laser, fluoride materials have been of interest [61]. Initially,

the interest was in simple fluoride systems such as LaF3, which has been subject to both

experimental [62] and computational studies [63, 64]. More recently, interest has moved

into mixed metal fluorides. Examples of these include BaLiF3 doped with divalent ions

[65] and with trivalent ions [66, 67, 68], BaY2F8 [69, 70, 71], LiCaAlF6 and LiSrAlF6

[72, 73, 74], and the K2YF5 family of materials [61]. Two further materials are YLiF4

and BaMgF4. These form the basis of the work in this thesis.

Fluorides are of interest due to favourable properties for the application of lasers as

they readily dope with rare earth ions. They are also generally possess good thermo-

mechanical properties with high optical damage threshold [61]. Any laser host lattice

must withstand the pumping input, the laser output and any thermal effects of these

to ensure a long-lived device. Other favourable properties of fluorides are the presence

of a wide band gap, long radiative lifetimes and low phonon frequencies [61].
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Atomistic bulk modelling

2.1 Introduction: the code GULP

In this chapter the theories and methods that underpin atomistic modelling are described.

The approach taken is to describe the system through empirically fitted interatomic

potentials, which is then geometrically optimised through energy minimisation tech-

niques. Defective lattices are then modelled using Mott-Littleton methods [75]. All

bulk atomistic modelling was carried out using the General Utility Lattice Programme.

The General Utility Lattice Programme, GULP, was first published in 1997 [76] by

Julian Gale. Its aim was to combine the features of the various atomistic codes into a

single, fully-featured modern code. It was revised in 2003 [16] and the current version

is 4.0 (although the work described in this thesis was carried out using version 3.4.7).

The code allows full space-group information for periodic systems to be utilised along

with a wide range of potential forms. System optimisation, supercells, Mott-Littleton

defect approximations and index planes are among its features.
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2.2 Interionic interactions

All systems studied in this thesis are inorganic ionic crystals, which means they consist of

a series of alternatively charged ions that are held together through Coulomb electrostatic

attraction. Therefore, these systems can be described using the classical ionic theory

of Madelung [77] and Born [78, 79], in which the ions are treated as uniform charged

spheres that interact through simple forcefields and no account of electronic structure

is taken, although some electronic properties can be included through extensions, such

as the Shell Model [80], to the basic forcefield model.

For a model to accurately represent a real-world structure all of the interactions

between all of the species have to be included. The general form of this can be expressed

as the following series sum:

Ψ(r) =
∑
ij

Ψij(r) +
∑
ijk

Ψijk(r) +
∑
ijkl

Ψijkl(r) + ... (2.1)

where Ψij(r) is the interaction between pairs of ions ij, and Ψijk(r) is the interaction

between triplets of ions ijk, etc. To evaluate this sum would be computationally

expensive and so it is approximated to just the pair interactions, i.e.:

Ψ(r) =
∑
ij

Ψij(r) (2.2)

This is the pair-wise potential approximation. It is valid because in ionic solids the

pair term dominates [81]. The pair-wise approximation allows the long range Coulombic

interaction to be given by:

VCoulomb =
1

4πε0

qiqj
rij

(2.3)

where ε0 is the permittivity of free space, qi and qj are the ionic charges and rij is the

interatomic distance. This interaction accounts for approximately 90% of the total

energy [61]. The 1/r dependency in this potential is a very slowly converging if summed

directly. The Coulombic term is therefore evaluated through Ewald summation [82] as

discussed in Section 2.2.1.
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The interactions between the ions provides the basis for the lattice energy of the

system such that the lattice energy is given by:

Elattice =
1

2

∑
ij

(
1

4πε0

qiqj
rij

)
+

1

2

∑
ij

φij(rij) (2.4)

where the first term is the long range Coulomb energy and the second is the total short

range interaction energy. The short range interaction is discussed in Section 2.2.2.

2.2.1 Ewald summation

In order to evaluate the lattice energy (Equation 2.4), the sum of the Coulombic

interaction across the ions is needed. The long range nature of this term results in the

sum being problematic to calculate. The solution to this problem was devised by Paul

Ewald in 1921 [82]. The method sums the interactions between ions and its array of

periodic images. The original derivation is mathematically complex and beyond the

scope of this thesis, therefore, a simplified explanation based on the derivation in Kittel

1976 [83] follows outlining the key points.

The total potential acting at a lattice point can be split into two parts with one, φ1,

in real space and the other, φ2, in reciprocal space. This can be expressed as:

φ = φ1 + φ2 (2.5)

φ1 is the real potential and is comprised of the point charges with an additional

Gaussian charge distribution of the same magnitude but opposite sign superimposed on

top (see Figure 2.1). The net result of this is to prevent neighbouring ions interacting.

This potential is evaluated at the object ion and it comprises three components: the

charge associated with the ion, the Gaussian distribution within a sphere of radius rij

(i.e. distance to the nearest neighbour), and the Gaussian distribution of the ion outside

the sphere.

The potential in reciprocal space, φ2, comprises an array of Gaussian charge distri-

bution with equivalent charge as the original point charges in the real crystal. However,
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Figure 2.1: Graphical representation of the real part of the Ewald splitting. The red
lines represent the point charges of the lattice ions and the black curves are the

Gaussian distributions of equal magnitude but opposite sign superimposed on top.
Adapted from [84].

Figure 2.2: Graphical representation of the reciprocal part of the Ewald splitting.
Guassian distributions are placed at the lattice ion locations, φa and φb represents the
lattice ion itself. φb is taken away from φa to leave the potential used in Ewald splitting,

φ2. Adapted from [84].

because the Madelung constant, which allows electrostatic potentials in crystals to be

calculated by approximating the ions as point charges, states that the individual ions

do not feel their own electrostatic field [83], the reciprocal potential, φ2, is made up of

the Gaussian charge distribution, φa, minus the charge distribution of the ion, φb, such

that:

φ2 = φa − φb (2.6)

Figure 2.2 gives a graphical representation of the reciprocal potentials. The two

components of the Ewald splitting combine to form the original point charge. The

reason for the spitting is to achieve convergence. φa and its charge density can be
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expanded in terms of a Fourier series and related though the Poisson’s equation [85],

yielding a charge density, ρk. The integral of the φa charge density Fourier series over

the unit cell volume equals the integral of the Gaussian charge density for a single

ion over the whole crystal. This charge density relationship can be substituted back

into the φa Fourier series and this evaluated to give a summation for φa that can be

converged. φb is the Gaussian distribution of the ion and can be evaluated as such.

Combining these results (Equation 2.5) enables φ to be calculated. In performing

this mathematical treatment a parameter, η, can be optimised to determine the width

of the Gaussian peaks, such that both parts converge rapidly. Catlow and Norgett [86]

determined an optimal value for η and it is given by:

η =

(
Nπ3

V2

)1/6

(2.7)

where N is the total number of ions in the system and V is the unit cell volume.

2.2.2 Short range potential

The short range interaction is more complex than the long range one because it has

to account for a number of phenomena. Electron cloud overlap occurs at short ionic

distances, which results in a repulsion caused by two effects. Firstly, the Pauli Exclusion

principal [87, 88], in a generalised form, states that no two fermions may occupy the

same quantum state. This increases the energy of the electron configuration of the

two overlapping electron clouds. Thus an increasing repulsive force occurs as the

ions are moved closer together. The second repulsive term, which applies at very

short interaction distances, arises from nuclear-nuclear interactions. The short range

interaction also contains an attractive force, which occurs due to the spontaneous

formation of instantaneous dipoles on adjacent electron clouds. This is known as the

van der Waals interaction. Having this many terms in the short range interaction makes

selection of a potential of suitable form less straightforward.

The first attempt to find a short range potential was done by Born and Landé [89]
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and was in the form:

φ =
b

rnij
(2.8)

where b and n are fitted variables. In early work n was set to 9 [90]. This potential

worked well for some systems, but with more quantum mechanical knowledge it became

clear it was insufficient. Born and Mayer [91] developed the following as a consequence:

φ = Aexp

(
rij
ρ

)
(2.9)

where A and ρ are variables. This potential is generally used when the ions have

small polarisablities due to the potential form taking no account of the van der Waals

interaction.

The Lennard-Jones potential [92] added the van der Waals interaction as determined

by London [93, 94] to the Born and Landé equation (Equation 2.8):

φ =
b

rnij
− C

r6
ij

(2.10)

where b and n are variables as before, with n usually set to 12. C is a variable that can

be altered to adjust the van der Waals strength. This potential form is commonly used

in the modelling of liquids and gases [95, 90].

The common potential form used in ionic solids modelling (examples of successful

studies include [96, 97, 98]) and therefore the one used in this work is the Buckingham

potential [99]. This potential takes the van der Waals term from the Lennard-Jones

potential (Equation 2.10) and couples it to the Born-Mayer potential (Equation 2.9):

φ = Aexp

(
−rij
ρ

)
− C

r6
ij

(2.11)

where, as before, A, ρ and C are variables used to fit the potential to the structure.

One downside to the Buckingham potential is that at close interionic separation the

positive C terms leads to an unphysical attractive term. This only becomes an issues

if defects are placed in high energy locations in close proximity to lattice ions. There
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are a number of ways to negate the attraction however. For cation-anion interactions

Buckingham potentials are derived with the C parameter set to zero. These potentials

now take the Born-Mayer form. As discussed above, this type of potential takes no

account of van der Waals interactions. For anion-anion interactions, where van der

Waals are more important an alternative known as the 4-range Buckingham potential is

used. 4-range Buckingham potentials were derived by Jackson for UO2 [100] and they

has been used extensively since. In this work some of the ion interactions are modelled

using this type of potential.

The 4-range Buckingham takes the form given in Equation 2.12. The potential is

split into 4 ranges with the constraints that the functions and their first and second

derivatives are continuous at the boundary points and also that the function possess a

minimum stationary point at rmin. The potentials acts up to rmax, the short-range cut

off. The polynomial constants are calculated by the spline fitting procedure embodied

within GULP.

φBuck4(rij) =



Aij exp

(
−rij
ρij

)
if rmin < rij ≤ cut1

5∑
m=0

amr
m
ij if cut1 < rij ≤ rmin

3∑
n=o

bnr
n
ij if rmin < rij ≤ cut2

−Cij
r6
ij

if cut2 < rij ≤ rmax

(2.12)

There is a further potential form worth mentioning, as it is used in systems with

covalent nature, the Morse Potential [95]:

φ = Dij[1− exp(−β(rij − r0))]2 (2.13)

where Dij is the bond disassociation energy and β is a variable. An example of this

potential in use can be found in the work of Basak 2003 [101].

All short range potentials by their nature are short range and so are only evaluated

to a certain distance before being cut-off. The value for the cut-off may be determined
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Figure 2.3: Plot of lattice energy convergence with short range potential scaling for
YLiF4. Also shown is the relative computation time. A cut-off of 10 Å was chosen.

by plotting lattice energy against cut-off and selecting a value where the lattice energy

has plateaued and therefore the short range interaction contribution has reached its

maximum, although it is usually sufficient to choose a typical value. See Figure 2.3 for

the cut-off determination for YLiF4.

The short range potential is coupled to the long range Coulomb potential to form

the overall potential to describe the interaction between ions. Figure 2.4 shows the

Mg-F Buckingham and Coulomb potentials used in this work as well as the overall

potential.

2.2.3 Potential derivation

The short range potentials used within this work are all in the Buckingham form

(although some have C = 0 so are technically Born-Mayer potentials). Where possible

the potentials have been transferred from other models. The main advantage in this

approach is that potentials that have been fitted to only one structure have effectively

only be tested at one interionic distance and the inclusion of defects into the lattice can
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Figure 2.4: Plot showing the long range Coulombic Potential, the short range
Buckingham potential and the potential resulting from combining these two. All

potentials shown are the Mg-F potential used in this work.

alter this distance. Potentials that can be transferred (i.e. work for a range of systems)

are therefore more robust, as they have been tested at a range of interionic distances

corresponding to the different systems. This approach of fitting to a range of structures

can be taken to derive new potentials, however it is time consuming (e.g. [102, 103]).

For the interactions where there were no reliable potentials to transfer to this current

work, namely the transition metal fluorine potentials, new potentials were derived using

the following method based on the approach taken by Read 2010 [104].

A GULP input file was generated using empirical data for the structure of the

potential that needed fitting (i.e. for a Cr3+-F potential the structure for CrF3 was

used to fit to). Geometry optimisation (see Section 2.3.2) was carried out for a range of

Buckingham potential variable values and the outputs tabulated. The variable range

was typically A = 800 eV to 4000 eV and ρ = 0.2000 Å to 0.4000 Å with C set to 0

eVÅ6. By comparing the structural fit and the extent of minimisation (gnorm), a set

of a few potentials were generated. These were compared to other physical properties,
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if known, and the best potential selected. Fine tuning of the potential was then done

through a similar method but with a finer step change in the variables to optimise the

fit. The whole process was automated with the development of a fitting script.

The advantage of this approach is that a wide range of potentials could be examined

very quickly, however, as discussed above, the limitation is that the potential has only

been fitted to one structure and therefore one interionic separation. Another potential

limitation is the experimental data. With empirical fitting, the end result can only be as

good as the data it is fitted to. Comparing structural and physical data (such as elastic

constants) can be problematic as they are usually determined experimentally from

different techniques (power diffraction and single crystal) and crystals. The material

examined may also have had defects within affecting the result.

During the course of this work, some transferred potentials were found to be giving

unphysical results when applied to surface calculations. These were refitted using the

method above. Another important note is that potentials have to be consistent. That

is to say that a cation-fluoride potential is only compatible in models that use the same

fluoride-fluoride potentials that was used in its derivation. It is for this reason that two

different F-F potentials are used in this work.

2.2.4 Electronic polarisability

Figure 2.5: Shell Model devised by Dick and Overhauser [80] for polarisable ions. The
(blue) core is surrounded by the massless (orange) shell, coupled together by a spring,

which acts as the polarisation.

The Shell Model, which was devised by Dick and Overhauser [80], allows for electronic

polarisability to be accounted for in the model. The concept of the model is to replace
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the rigid, billiard-ball-type charged spheres representing the ions with a core-shell

system. In the Shell Model, the ion is described by a massive core that is surrounded by

a massless shell (Figure 2.5). The core and the shell are coupled together by a harmonic

spring with a force constant k. When an electric field is applied to the ion, the shell

moves relative to the core, creating a dipole and thus simulates dielectric polarisablity

(Figure 2.6). The formal charge of the ion is split between the core and the shell, such

that they sum to give the correct formal charge. The polarisability, αe, of an isolated

ion is given by [90]:

αe =
1

4πε0

(
Y 2

k

)
(2.14)

where Y is the shell charge, ε0 is the permittivity of free space, and k is the force

constant. The model parameters; charge on the shell, charge on the core, and the spring

constant are fitted empirically. In this work only the fluoride ions were treated with

the Shell Model as these are the most polarisable and using a Shell Model adds to the

computational expense.

The Shell Model has been used in many studies and shown to be very successful.

Faux and Lidiard [105] also proved its value in defect calculations. One of the advantages

of the Shell Model in calculations is that because the short range interactions are coupled

to the shell (rather than the core), extra degrees of freedom are introduced into the

relaxation. In effect, it adds many body terms since the position of the shells depends

on the electrostatic interactions from all ions in the crystal. The model does however

have some limitations. The limitations arise because of the two assumptions in the

model, namely, that the potential is a function of the separation of the ions and not their

directions, and that only dipolar distortions are allowed. Both of these assumptions

mean the Shell Model is a centrosymmetric model, thus it implies the elastic constants

C12 and C44 are equal for a cubic system. Experimentally, however, many materials are

found where this is not true. This is known as the Cauchy Violation [106] and the Shell

Model cannot reproduce this. Schroder created an extension to the model that allowed

the radius of the shell to adjust to account for the case when C12 < C44. This is known

as the Breathing Shell Model [107]. Sangster [108] added a further enhancement by
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Figure 2.6: Diagram showing the polarisation effect with the Shell Model.
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allowing the shell to distort in an ellipsoidal manner (the Breathing Shell Model only

allows spherical distortion). However, these models are difficult to parameterise and

add extra computational requirements. They are therefore not utilised in this work.
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2.3 Perfect systems

2.3.1 Generation of structure

All material crystal structures were found using a literature search using the Inorganic

Crystal Structure Database (ICSD). If multiple papers reported the structure the newest

paper in terms of age that obtained the structure at ambient pressure and at the lowest

temperature was chosen. The structure obtained was used as the starting input for all

calculations.

2.3.2 Energy minimisation

All calculations are performed at 0 K, which is to say, lattice vibrations and config-

urational entropy are not accounted for in the model. Instead the minimum energy

atomistic arrangement is achieved through minimisation techniques.

This is achieved by calculating all ionic interactions and each ion is then shifted

proportionally to, and in the direction of, the force acting on it. The lattice energy

can be minimised in a number of ways with the most common methods being either

at constant pressure or constant volume. The latter of these determines the minimum

energy from ionic coordinates only, whereas, the former accounts for strain not just

in the ions but the also the unit cell and therefore offers a more realistic simulation.

The computational expense is greater for constant pressure minimisation, however, it

is now the standard form of minimisation due to the greater computer power today.

To understand how the energy of the system can be minimised, consider the simpler

case of constant volume minimisation. If Ulatt is the lattice energy of a system with

coordinates, r, then the lattice energy of the system with shifted coordinates, r′, is,

Ulatt(r
′) = Ulatt(r) + gT · δ +

1

2
(δT ·H · δ) (2.15)
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where g is the first derivative of the lattice energy with respect to ion coordinates,

g =
∂Ulatt
∂r

(2.16)

and δ is the displacement of an ion,

δ = r′ − r (2.17)

and H is the second derivative of the lattice energy with respect to ion coordinate,

which is known as the Hessian Matrix,

∂2Ulatt
∂r2

(2.18)

The first derivative of this shifted coordinate lattice energy with respect to displacement

will be zero at equilibrium, as the forces will be zero.

∂r′

∂δ
= g + Hδ (2.19)

The ion displacement to achieve the energy minimum is therefore given by,

δ = −H−1 · g (2.20)

To consider constant pressure minimisation, strain in the cell is also minimised

through the relaxation of the cell vectors. A detailed description of the mathematics

for this can be found in [109].

Achieving the energy minimum takes cycles of the above procedure as the system

will not reach a minimum in a single step. The ionic coordinates are shifted iteratively

until the forces on the atoms are zero. There are a number of minimisation algorithms

available to achieve this. The most common two are Conjugate Gradient, which is a

first-order minimisation, and Newton-Raphson, which is a second-order minimisation.

Conjugate gradient is a more complex, but more accurate, form of a simple gradient
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descent method. In a gradient descent, steps are taken proportional to the negative

of the local gradient and a line search is used to determine the magnitude of the step,

whereas with conjugate gradient method, steps are taken conjugate to each other. The

problem with the simple gradient method is that the rate of convergence slows as the

minimum is approached. Also, in shallow gradients zig-zagging occurs slowing the rate

further and causes the line search to oscillate around the energy minimum [110]. The

conjugate gradient method removes some of these problems, however, it does require

more computational storage as the previous gradient is required at each step as well as

the current.

The next stage of complexity is to consider second derivatives as well as first to

increase the rate of convergence. This is achieved through the Newton-Raphson method.

In this method the value of the displacement vector ∆x is given by

∆x = −αH−1 · g (2.21)

where α is a scalar value, g is the first derivative of the vector and, as before, H is the

Hessian Matrix (the second derivative matrix).

The Newton-Raphson method achieves fast convergence, however, the storage and

calculation of the inverse Hessian is computationally expensive. Additionally, the

Hessian may only change slightly from one step to the next and therefore it is not

calculated explicitly at every step of the minimisation. Instead the Hessian is updated

through changes in the gradient between cycles. There are a number of such updating

schemes, with Broyden-Fletcher-Goldfarb-Shanno (BFGS) [111] being the one used

in this work. In this scheme the initial step is to calculate the exact inverse Hessian

and then it is updated for a number of cycles. It is however, sometimes necessary to

recalculate the exact inverse Hessian again and in GULP this is triggered by one the

the following possible situations that are all controlled by parameters set within the

code (or altered by the input) [16]:

• The process has reached the maximum number of cycles

47



Chapter 2. Atomistic bulk modelling

• The gradient vector and search vector angle has reached the threshold

• The energy decreased by more than the threshold in one cycle

• The energy cannot be lowered any further along current search vector

It is also possible to begin with an estimated inverse Hessian before preceding with

the BFGS algorithm. This is useful if the system is large. Crystal symmetry is used

whenever possible to reduce the convergence time of the optimisation. Symmetry allows

the number of independent geometric variables to be reduced and defines certain atomic

positions as special sites that are not allowed to vary.

The minimisation of total energy is stopped once the criteria for convergence has

been met. Typically this is when the gradient norm (root mean square gradient) has

reached 10−3. The resulting structure is said to be geometry optimised.

The minimisation techniques discussed allow for the local minimum to be found,

however, other minimisation methods can be taken to find other stationary points on

the potential energy surface if required in modelling transition states for example, such

as Rational Functional Optimisation or Nudged Elastic Band. Also, the techniques

discussed take no explicit account of temperature and are effectively run at zero Kelvin.

In many solid-state problems the inclusion of temperature is important, however, it is

not a straightforward solution to include it. Firstly, the potentials used in the model

are derived from empirical data. This causes a problem as the data has an implicit

temperature built into it (the temperature at which the data was obtained). The net

result is a temperature-free minimisation of a temperature-dependent structure. In

practice this does not usually cause a problem. The problem is avoided if the potentials

are derived from quantum mechanical methods at zero Kelvin, however, this approach

relies on an accurate quantum mechanical model. Secondly, the approach to take to

include temperature depends on the magnitude of the temperature and the level of

detail required.

At very low temperatures the atoms in the system will vibrate harmonically around

their lattice sites and this can be modelled using Lattice Dynamics and free energy
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minimisation. Extensions to this can be used to allow for the anharmonic vibrations at

higher temperatures, however, as the temperatures becomes high enough for diffusion to

occur other approaches have to be taken. Molecular Dynamics, which utilises Newton’s

laws of motion is a common approach. Within this work, only Lattice Dynamics have

been considered.

Free energy minimisation uses the quasi-harmonic approximation, which states the

atoms vibrate harmonically while the cell parameters are adjusted to minimise the

free energy. This approximation makes intuitive sense as most materials when heated

undergo thermal expansion. It has also been shown to be valid until the temperature is

approximately half the melting point of the material [16]. Within GULP two methods

based on the Kantorovich analytical derivatives [112] of free energy are encoded. The

first of these is the Zero Static Internal Stress Approximation (ZSISA) [113], in which

the unit cell is minimised with respect to free energy, while the internal degrees of

freedom are maintained at a minimum with respect to internal energy [16]. The second

approach is Full Free Energy Minimisation (FFEM), in which both the unit cell and the

internal degrees of freedom are minimised with respect to free energy. Both methods

assume the second derivative matrices with respect to free energy, which are required

for Newton-Raphson optimisation, can be approximated by ignoring the free energy

contribution to them and using the internal energy Hessian instead. This is done

because calculating these second derivatives, which corresponds to the fourth derivative

of internal energy, is expensive.

2.3.3 Calculating material properties

Physical properties can be found from the derivatives of the lattice energy, which can

be compared to experimental data. The second derivative with respect to strain gives

the elastic constant matrix, C, describing the mechanical hardness of the material with

deformation. The elastic constant matrix in GULP is a 6x6 matrix, which is usually

reduced through symmetry.

1

V

∂2Ulatt
∂εiεj

= C (2.22)
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Bulk (K) and shear (G) moduli also contain information relating to the hardness of the

material with respect to various types of deformation. An equation of state, typically a

third or fourth order Birch-Murgnahan equation [104], can be fitted to a plot of isotropic

pressure versus volume to produce the bulk modulus from one the curve parameters. It

is also possible to relate the bulk and shear moduli to the elastic constants, however,

there is no unique way of doing this transformation. In this work the Voight approach

is used.

KV oight =
1

9
(C11 + C22 + C33 + 2(C12 + C13 + C23)) (2.23)

GV oight =
1

15
(C11 + C22 + C33 + 3(C44 + C55 + C66)− C12 − C13 − C23) (2.24)

These terms may be reduced through symmetry, for example, in a cubic system

C11 = C22 etc. Two further moduli may be calculated from bulk and shear moduli;

Young’s modulus and Poisson’s ratio. Under uniaxial tension the ratio of stress to

strains defines the value of the Young’s modulus for that axis.

Y =
σ

ε
(2.25)

The Young’s modulus can be calculated from the bulk (K) and shear (G) moduli with

the following equation:

Y =
9KG

3K +G
(2.26)

Complementary to Young’s modulus is Poisson’s ratio (ν), which measures the change

in the material at right angles to the uniaxial stress. Most materials shrink orthogonal

to the applied tension and therefore most Poisson ratios are positive (with a maximum

theoretical value of 0.5). The value may be obtained from the following equation.

ν =
3K − 2G

2(3K +G)
(2.27)

The most important properties, in terms of model fitting, are the dielectric constants.

Furthermore, the dielectric properties are important in many contexts beyond the model

fitting and the bulk properties. For example, the response of the material to a charged
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defect depends on the inverse of the dielectric constant. The value of the constant varies

with the electromagnetic frequency applied, and therefore for calculation purposes two

extremes are usually taken. The static dielectric constant refers to the case where

all degrees of freedom, both nuclear and electronic, respond to the electric field and

provide screening. This can be calculated from the cartesian second derivative matrix

of all particles and the charges of all particles. The other extreme is the high frequency

dielectric constant, in which because the oscillation is greater than the maximum

vibrational frequency of the material, only the electrons are able to respond to the

electric field. The calculation is therefore identical except that the second derivative

matrix now only includes cartesian components for any shells present within the model.

For rigid ion models the high frequency dielectric tensor is a unit matrix.

The importance of the dielectric properties in fitting the model parameters arises

because the dielectric tensor is related to the inverse second derivative matrix and

therefore has many of the characteristics of the Hessian matrix. This allows a check

for extreme values, particularly negatives ones, which might indicate an inadequate

potential. Also, the high frequency dielectric constant is useful in fitting the parameters

of the shell model due to the direct correlation.

Finally, the refractive indices of the material can be obtained from the dielectric

constants.

n =
√
ε (2.28)
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2.4 Defective systems

After the simulation of the bulk properties of the material the next stage is to consider

defects within the lattice. This is of extreme importance as many of the key applications

of solid-state systems utilise defects. Within this work, it is the addition of extrinsic

dopants within the lattice that provides the key properties for applications. However,

the properties of intrinsic defects that may be present alongside the dopants are also of

importance.

There are two approaches to modelling defects in solids. The first is an extension

of bulk simulations through supercells. This approach is usually taken when high

concentrations of defects are to be modelled. The second approach uses a infinite

dilution cluster method based on the pioneering work of Mott and Littleton [75]. The

approach is therefore referred to as the Mott-Littleton method.

2.4.1 Mott-Littleton method

The Mott-Littleton method treats the problem with a two region strategy. The defect

is located within a spherical region (called region 1) around a point known as the defect

centre. The defect centre is, in the case of a single defect, usually at the same site as

the defect. In multiple defect simulations the centre is usually located at the midpoint

of the defects. A second region is defined outside of this first region, as region 2, that

extends to infinity. In region 1, the ions are strongly perturbed by the defect and

therefore all the interactions are calculated explicitly. Region 2 is split into two separate

regions, region 2a and 2b (Figure 2.7). Ions that lie within region 2 are only weakly

perturbed by the defect and so the energy is approximated.

The total energy of the system can be expressed as the sum of the energies within

the two regions and between them:

Utotal(x, ξ) = U11(x) + U12(x, ξ) + U22(ξ) (2.29)

where U11(x) is the energy of region 1 as a function of cartesian coordinates, x, U22(ξ)
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Figure 2.7: Diagram of the Mott-Littleton method used for defect calculations. The
effect the defect has on Region 1 is calculated explicitly, whereas Region 2a is

approximated. Image taken, with permission, from Read [104].
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is the energy of region 2 as a function of cartesian displacement, ξ, and U12(x, ξ) is

the energy of the interaction between the regions. It is possible to write the energy

of region 2 as a harmonic function if it is assumed the forces acting on the region are

small such that the response of the atoms in the region is harmonic.

U22(ξ) =
1

2
ξTH22ξ (2.30)

In this expression H22 is the Hessian matrix for region 2. The displacements in region 2

will be the equilibrium values and so it it possible to write the following condition:

(
∂Utotal(x, ξ)

∂ξ

)
x

=

(
∂U12(x, ξ)

∂ξ

)
x

+H22ξ = 0 (2.31)

Combining Equations 2.29, 2.30, and 2.31 removes the energy of region 2 from the total

energy (along with the Hessian matrix which would be of infinite dimension).

Utotal(x, ξ) = U11(x) + U12(X, ξ)− 1

2

(
∂U12(x, ξ)

∂ξ

)
x

ξ (2.32)

The problem is simplified further by the cancellation of terms through calculating the

defect energy rather than the individual contributions, where the defect energy is the

difference between the energy of the perfect regions, Uperf
total , and the defective regions,

Udef
total.

Udefect(x, ξ) = Udef
total(x, ξ)− U

perf
total (x, ξ) (2.33)

One important difference in defect calculations compared to bulk ones is that the

energy is optimised with respect to the forces rather than by energy. It is also vital to

minimise the system before any defect calculation is performed due to the inclusion of

region 2 displacements in the calculation.

Within region 2, the ions are treated in different ways in each of the two subregions.

The forces on ions in region 2a are calculated explicitly and the displacements determined.

In should be noted that within GULP a common approximation is used which only

calculates the forces due to the defect species. Region 2b extents to infinity and so
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the forces cannot be calculated explicitly. Instead, it is assumed that the only force

acting is due to the Coulomb potential. This assumption is valid if the radius of region

2a is larger than that of region 1 plus the short-range potential cut-off. To simplify

the calculation further, the electrostatic potential due to the defects in region 1 are

represented by the monopole moment (the net charge) of the defect, thus the energy

of region 2b is calculated as the ‘induced relaxation energy due to the net charge of

the defect’ [16]. Further particulars of the exact mathematics used to calculate defect

energies within GULP can be found within the GULP literature [16].

The size of the regions for the defect calculation is important. The larger the

regions the more valid the approximations in the methodology become and hence the

more accurate the defect energy becomes. However, the computational time increases

dramatically with increasing region size. It is therefore necessary to find a balance

between defect energy convergence (i.e. region sizes) and computation time. Figures 2.8

and 2.9 show the energy convergence for a Ce ion doped at a Ba site in BaMgF4 with

respect to the Mott-Littleton region sizes. Relative CPU time is also plotted. From this

it can be seen that a region 1 size of at least 10 Å and a region 2 size of 13 Å is needed

for convergence, with the CPU time increasing dramatically as the size of region 1 is

increased while the size of region 2 has a smaller effect on the CPU time.

For the majority of the work within this thesis regions of 10 Å and 15 Å were used.

Any results from larger region sizes are noted as such.
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Figure 2.8: Convergence of defect energy with respect to region 1 size (region 2 size is

held at 15 Å). The defect energy is for the substitution of a Ce3+ ion at a Ba site in

BaMgF4. CPU time is also given

Figure 2.9: Convergence of defect energy with respect to region 2 size (region 1 size is

held at 10 Å). The defect energy is for the substitution of a Ce3+ ion at a Ba site in

BaMgF4. CPU time is also given.
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2.4.2 Rare earth dopants

The inclusion of dopants to the system requires potentials for the new ions. This work

is concerned with the 14 rare earth elements, La to Lu (excluding Pm). Fortunately,

Valerio and Jackson published a set of rare earth fluoride potentials in 2000 [114] that

have been utilised in this work.

2.4.3 Solution energies

In order to be able to compare defect energies, for example different charge compensation

mechanisms or different dopants, solution energies are used and not individual defect

energies. Solution energies incorporate all of the terms in the reaction scheme (products

minus reactants) and so can be directly compared. For example, consider the generic

case of a dopant, D, within a lattice, MX, in Kröger-Vink notation (see Page 11),

where the dopant has the same formal charge as the lattice cation.

DX +MM → DM +MX

The solution energy for this reaction scheme would be:

Esol = Elatt(MX) + Edef (DM)− Elatt(DX) (2.34)

2.4.4 Predicting doping limits

One important, and non-trivial, problem is predicting the doping limit of a particular

dopant within a material. It is important to evaluate this as the level of solubility for

dopant ions may have an effect on the application of the system. It is however, not a

straight-forward problem to answer.

The first step is to write the doping reaction and generate the solution energy

equation. To illustrate, consider the general doping reaction:

αDX3 + (1− α)MNX4 →M1−αDαNX4 +MX3 (2.35)
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where D is the dopant, M and N are the lattice cations, X is the lattice anion and α

is the mole fraction of dopant ions. The solution energy for this reaction would be:

Esol = Elatt(M1−αDαNX4)− [αElatt(DX3) + (1− α)Elatt(MX3)] (2.36)

The doping limit can be determined by setting Esol to zero and solving for α. The prob-

lem arises with determining the lattice energy for the defective lattice, Elatt(M1−αDαNX4).

A number of approaches to solve this problem have been suggested.

The first method considered here is the Jackson-Valerio (2011) method as published

in [115]. In this the defective lattice energy is assumed to be equal to the perfect lattice

plus the defect formation energy as determined from Mott-Littleton calculations, scaled

by the mole fraction:

Elatt(M1−αDαNX4) = (1− α)Elatt(MNX4) + αEdef (DM) (2.37)

This approach does not take into account any defect-defect interactions as the defect

energy is taken from an infinite dilution simulation and therefore the doping limit is the

limit at which defects interact. The major problem with this method is that a divalent

system such as CaF2 does not work due to a reduction of terms through cancelling,

resulting in a nonsensical equation.

The second method to determine the defect lattice energy is a modified version

[116] of the previous [115]. Equation 2.36 remains the starting point, but the defective

lattice is now considered to be equal to the perfect lattice plus α-amounts of the defect

formation energy. The solution energy is given by:

Esol = [Elatt(MNX4) + αEdef (DM)]

− [αElatt(DX3) + (1− α)Elatt(MX3) + Elatt(NX)] (2.38)

For the case where α = 0, i.e. there are no dopants present, the solution energy simplifies
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to:

Esol = Elatt(MNX4)− [Elatt(MX3) + Elatt(NX)] = Eform(MNX4) (2.39)

In this case the solution energy equals the formation energy of the perfect lattice. Rear-

ranging Equation 2.36, with Esol set to zero, to separate the α-terms and substituting

for Eform gives:

α =
−Eform(MNX4)

Edef (DM) + Elatt(MX3)− Elatt(MX3)
(2.40)

This modified Jackson-Valerio method improves on some of the issues with the previous

approach, however, the non-interacting defect assumption is still present.

Finally, it is possible to try to evaluate the defect lattice energy explicitly using

supercells with varying concentrations of dopants, minimising the lattice energy and

assuming a linear response to predict the maximum concentration of dopants. Besides

the assumption of a linear response, the choice of minimisation freedom will affect the

result. From a full constant pressure minimisation, with all degrees of freedom adjusted,

the resulting optimised structure may barely resemble the initial structure when high

concentrations of dopants are present. This leads to an inflation of the doping limit.

The assumption of a linear response is also not valid and configurational entropy would

need to be considered.

Within this work, a number of approaches are taken and the differences in the

results discussed.

59



Chapter 3

Atomistic surface modelling

3.1 Introduction: the code METADISE

In any solid state system the surface structure and properties are of interest because it

is at the surface that many reactions take place, and the surface properties may have

an impact on any application the system is being investigated for use for. Modelling

the surfaces is therefore an important, and vast, area of study.

Atomistic simulation of surfaces was pioneered by Tasker [14, 117] and Mackrodt

and Stewart [118]. As with the early bulk simulations the first surface simulations were

of simple systems such as cubic halides [117], MgO [119] and NiO [120]. After these,

studies of more complex systems such as Cr2O3 [121] were carried out. The effects of

oxidation [122] and temperature [123] on the surface structure were also later studied.

In addition, methodologies for grain boundaries were developed with Duffy and Tasker

studying the grain boundaries in NiO [124, 125].

In 1996, Watson et al. [126] published a new surface simulation code METADISE

(Minimum Energy Techniques Applied to Dislocation, Interface and Surface Energies).

This code aims to provide a full set of features to study linear and planar defects and is

still under development today at the University of Bath.

All surface simulations within this work were carried out using METADISE (version

5.60), however there are other atomistic surface simulation codes that could have been

used including MARVIN [127], which has been incorporated in GULP [16]. Electronic
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surface modelling is also possible but it is more computationally demanding and does

not provide this study with anything that atomistic methods cannot. In addition, it

would have required a new set of modelling parameters, whereas using an atomistic

approach allows for the same potentials and parameters as for the bulk simulations.

Electronic surface modelling could not have been scaled to consider defect concentration

effects easily either.
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3.2 Perfect systems

Modelling surfaces involves cutting the unit cell at the Miller index under study and

then systematically slicing through layers of atoms working through the repeat unit of

that particular index to find the valid cuts. It is also possible to instead cut through

individual atoms within each layer if required, however, this approach has not been

taken in this work. A valid cut is one that is non-polar and therefore has a non-infinite

surface energy. These can either be a type 1 or 2 surface as defined by Tasker [117]. In

contrast, a type 3 surface has a dipole perpendicular to the surface and can only be

studied if the surface is reconstructed to remove the dipole first. The three types of

surfaces are shown in Figure 3.1. Once the valid surface planes have been found, the

energy of them is calculated through energy minimisation techniques and this is used

to predict morphologies and as a starting structure for any defect calculations.

3.2.1 Two region method

The approach taken by METADISE to simulate the surface is a two region one where

the crystal is considered to be made up of planes of atoms periodic in two dimensions.

Atoms in region 1, which lie close to the surface, are allowed to fully relax through

minimisation techniques. The atoms in region 2 are fixed to represent the bulk. The

size of region 1 is made sufficiently large so that the upper-most atoms relax completely

without seeing the presence of region 2. This is checked through scaling of region

sizes until convergence is achieved and lowest most ions in region 1 experience no

displacement during relaxation, thereby ensuring there is no disjoint across the region

boundary.

The interactions between the ions are described in exactly the same way as with

bulk modelling with a long-range Coulombic term and a short-range potential. The

energy of the system is calculated using the techniques discussed in Chapter 2, namely,

energy minimisation through atomic coordinate shifting to achieve zero force. The

only difference is with the calculation of the Coulombic term. In bulk simulations

(i.e. 3-dimensional periodicity) the Ewald method is used to achieve convergence. For
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Figure 3.1: Figure showing the three types of surfaces as defined by Tasker [117]. Type
1 and 2 have repeat units that have no dipole perpendicular to the surface. The surface
energy of these can be calculated, however, for type 3 there is a dipole and so the energy

diverges. This dipole has to be removed before the surface energy can be calculated.
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Figure 3.2: Two region approach in METADISE.

surface simulations (i.e. 2-dimensional periodicity) an analogue to the Ewald method is

used that was developed by Parry [128].

3.2.2 Surface and attachment energy

Surface energy is defined as the energy per unit area needed to transform a bulk region

into a surface region and is given by:

γ =
Esurf − 1

2
Ebulk

A
(3.1)

where Esurf and Ebulk are the energies of the surface and bulk regions respectively and

A is the surface area. The factor of a half arises due to the bulk calculation containing

twice the number of the ions as the surface (Figure 3.2). A low, positive value indicates

a stable surface.

It is also possible to express the energy of a surface in terms of attachment energy,

which is defined as the energy released when a new layer of thickness dhkl is added to

the surface [129]. Although attachment energy is a thermodynamical quantity it can

64



Chapter 3. Atomistic surface modelling

be used as a pseudo-kinetic one [117] because it is a measure of the ease to which a

new layer is added. The limitation with this method is that it is assumed there is bulk

termination of the surface and no surface relaxation occurs [130]. Gay and Rohl with

their MARVIN [127] code attempted to include relaxation into the attachment method,

however it is unclear what this represents physically within the model [130]. This work

therefore uses the two assumptions of bulk termination and no surface relaxation.

3.2.3 Morphology prediction

In 1901 Wulff, working from the earlier proposed theorem of Gibbs that the equilibrium

form of a crystal should have minimal total surface free energy for a given volume [131],

suggesting the equilibrium shape of a crystal is determined by the surface energies of

its various surfaces such that the morphology is the shape that gives minimum total

surface free energy [132].

The surface free energies can be assumed to be the surface energies obtained from

static lattice simulations [133], because at 0 K, the surface free energy is a close

approximation of the surface energy due to the entropy term in the surface free energy

being small compared to the enthalpy term [134]. The height of the face is therefore

proportional to the surface energy of that index. Thus, if two indicies have the same

surface (free) energy they will have the same height. This theorem is only true if all

surfaces form in equilibrium, thus a morphology plot using this technique is known as

the equilibrium morphology.

Morphology predictions are important from an applicational viewpoint but they

are also useful as a tool to check the model is simulating the system correctly. This

is because it is difficult to compare surface energies to experimental results. Rather a

comparison of the predicted morphology to the experimental morphology is made. One

issue arises in this approach that experimental morphologies often depend on kinetic

factors and not just thermodynamic ones [135]. Attachment energies have been used to

try to overcome this problem by assuming the attachment energies are proportional

to the growth rate for each surface producing a kinetic morphology [129, 136]. These
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energies are exothermic and therefore the absolute value is taken when constructing the

morphology such that those surfaces with low (absolute) attachment energy are the

slow growing faces and therefore dominate the morphology. For the reasons discussed

previously, attachment energies are not entirely satisfactory due to limitations in the

calculation.

66



Chapter 3. Atomistic surface modelling

3.3 Defective systems

As with defect modelling in the bulk, there are broadly two approaches that can be

taken for surface defects, either through a supercell in which the defect is repeated

periodically throughout the crystal, or through an isolated approach. The work carried

out in this thesis uses both methods depending on the type of calculation required.

3.3.1 CHAOS: infinite dilution method

For single defects, or small clusters of surface defects an infinite dilution approach was

taken in a similar way to bulk defect modelling using the Mott-Littleton method. The

CHAOS code developed by Duffy and Tasker [15] is integrated into METADISE and

allows for such simulations.

CHAOS uses a two-region approach in which the crystal is divided into a region 1

and a region 2, with region 2 divided further in 2a and 2b. The interactions between ions

in regions 1 and 2a are calculated explicitly, while those with the rest of the system are

approximated using Mott-Littleton methods (see Section 2.4.1). Further approximations

have to be made due to the unique properties of surface defect calculations; for example,

the energy is calculated as a sum of planar and volume integrals rather than a summation

[130, 120]. Also, the defect at the surface creates a dielectric discontinuity and therefore

a dipole, which induces a dipole in region 2b. The interactions between region 1 and 2b

therefore include these charged induced dipoles. It is assumed that the defect only effects

the geometry locally around the defect and the rest of the crystal is only affected by the

dipole. The sizes of regions 1 and 2a are selected as a trade-off between convergence

and computation time.

3.3.2 Segregation energy

A useful value to calculate is the segregation energy of a defect. This is the difference

between the energy of the defect within a bulk environment and the same defect at the
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surface.

Eseg = Esurf
def − E

bulk
def (3.2)

A negative segregation energy results from a lower defect energy at the surface, and

thus a driving force for the defect to segregate to the surface exists. The driving force

is proportional to the magnitude of the segregation energy. The segregation of defect

ions to the surfaces would have an effect on the morphology of the system and may

impact on the application of the material.

A number of theories, based on relative ion size, have been suggested to explain the

segregation of defects [137, 138]. The primary drive for defect segregation, as suggested

by McLean [139], is elastic strain induced by the defect ion in the lattice. The proposed

relationship is given as:

Eelastic =
6πBr3(∆r

r
)2

1 + 3B
4µ

(3.3)

where r is radius of the lattice ion, ∆r is the difference in radius between the defect

and lattice ion, B is the bulk modulus of the defect and µ is the shear modulus of the

lattice. µ is constant across all simulations and so if B is assumed to be constant across

the rare earth ions, then the elastic strain, and hence the segregation energy, would be

proportional to (∆r
r

)2.

Estrain ∝
(

∆r

r

)2

∝ Eseg (3.4)

A plot of segregation energy against (∆r
r

)2 should produce a straight line plot if the above

relationship is correct. This type of analysis has been performed for some systems, for

example with haematite [140], and a highly significant correlation was found confirming

the McLean theory. However, it was found that it was important to use the optimum

segregation energy for the correlation to be high. The optimum segregation energy may

not be equivalent to a single isolated defect at the surface, as defect-defect interactions

may lower the energy at higher concentrations [140, 141, 142, 143].
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3.3.3 Multiple defects

Considering isolated, infinite dilution defect energies and their segregation energies

do not take into account binding energy between defects that may have an important

impact. It also do not simulate real-world situations. It is therefore appropriate to

attempt to consider clusters of defects within surface environments.

Using CHAOS and the same method as previously described, small clusters of

defects can be considered. This resulting defect energy is the total defect energy for the

cluster and includes the defect binding energy. This approach is advantageous due to

the relative simplicity of the method and that while the defect is a cluster it is still in

an infinite dilution meaning the configuration of the defects is less of an importance.

However, to consider a large number of defects requires large region sizes to ensure

convergence. The net result is this approach is best suited to small clusters of defects.

Furthermore, while the approach provides a defect energy (and therefore a segregation

energy), it does not directly calculate the surface energy with the defects present. This

is of importance if a prediction of the impact dopants on the equilibrium morphology

is to be made. However, attempts have been made to relate segregation energy to

the change in surface energy to overcome this limitation. This is discussed in the

‘equilibrium segregation method’ section.

Alternatively, a supercell approach allows for higher concentrations of defects and

gives a direct calculation of the defective surface energy. In this method, the simulation

cell is scaled such that there are many defect sites located at the surface, which are

then filled with defects and the energy calculated as the difference between the energy

of simulation cell with defects and the energy of the perfect simulation cell.

Edef = Edef
surf − E

perf
surf (3.5)

3.3.4 Equilibrium segregation method

The first approach to calculate defective surface energies, which can then be used to

study the impact of dopants on the crystal morphology, was put forward by Alfredsson

69



Chapter 3. Atomistic surface modelling

et al. (2007) and relates the segregation energy to the change in surface energy [144].

It will be referred to as the ‘equilibrium segregation’ (ES) method in this work.

Starting from a perfect, undoped surface, the surface energy is calculated as before

using Equation 3.1. If a defect segregates to this surface, the energy is changed by the

segregation energy, Eseg, amount. When n defects are present in the surface area, A,

the defective surface energy is given by

γdef (n) = γperf +
(n
A

)
Eseg (3.6)

This allows the surface energy to be calculated as a function of defect concentration

using the CHAOS code to obtain segregation energies. If it is then assumed that the

bulk contains an infinite reservoir of defects, each surface will reach a state where defects

will segregate until the segregation energy is greater then zero independently from each

other. This assumption is valid for large crystals with a high bulk to surface site ratio.

In low concentrations of defects, or small crystals, this assumption breaks down as

the segregation process may complete at n < nmax, where nmax is the maximum number

of defects for which there is still a segregation. In this case, a more complex analysis

is needed as each surface cannot be considered independently from the other surfaces.

The other extreme is where n > nmax, which may occur under non-equilibrium growth.

Equation 3.1 defines the surface energy as the difference between equal and stoichio-

metric regions of bulk and surface per surface area. The difficulties with calculating

defective surface energies is that the surface (containing defects) may have a different

stoichiometry to the bulk. The advantage to this method is that is resolves the issue of

non-stoichiometry by not explicitly calculating a defective surface energy.

For low concentrations of defects, as a first approximation, the segregation energy

can be assumed to be independent of the defect concentration. However, a more

accurate surface energy can be obtained by modelling defect clusters in CHAOS to

obtain the segregation energy. As the size of the cluster increases this calculation

becomes increasingly more computationally demanding (due to the large region sizes

required) and the configuration of the defects has to be considered.
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3.3.5 Defective surface minimisation

An alternative approach is to consider the defects in the surface simulation block directly.

It will be referred to as the ‘defective surface minimisation’ (DSM) method in this work.

Defects are placed at surface sites within the simulation block and the energy of the

block minimised in the usual way. The resulting block energy, Edef
surf , can be used to

obtain the defective surface energy. As discussed previously, the difficultly is ensuring

the bulk region is equivalent to the surface region. This is achieved by defining the

defective bulk energy as

Edef
bulk = Eperf

bulk + Edef (3.7)

where Edef is the defect energy, obtained through either Mott-Littleton or supercell

calculations, for the same number of defects as in the surface region. The defective

surface energy is therefore given by

γdef =
Edef
surf −

(
Eperf
bulk + Edef

)
A

(3.8)

and this can be used to determine the lowest surface energy possible through systemat-

ically filling the defect sites from empty to full. Scaling the simulation cell increases

the number of defect sites at the surface available and allows the effect of dopant

concentration to be considered.

In considering large numbers of defects the configuration of the defects may be

important. A Perl script was developed, based on a script created by David Cooke of

Huddersfield University, to automate the generation of the defect configurations.

The simulation cell is first orientated to the index of interest and scaled to produce

a large number of defect sites (typically around six). A perfect surface block is first

minimised and the energy output, followed by one defect present, then two defects and

so on considering all configurations of defects each time. The lowest surface energy

block for each defect number is recorded along the corresponding configuration.

The advantage of using this approach as opposed to the ES method is that the

defective surface block energy is calculated explicitly. This allows a full relaxation of
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the surface block with the defects present, compared with just the addition of a defect

energy in the ES method. The only assumption made in this method is that the bulk

energy can be written as the perfect bulk plus a defect energy. This assumption is valid

providing the defect energy is well minimised and results in the defective bulk block

being stoichiometrically equivalent to the defective surface block.

It is possible to show that the two methods are equivalent and as such validate each

other. Starting from ES equation (Equation 3.6):

γdef (n) = γperf +
(n
A

)
Eseg

but, Eseg = Esurf
def − E

bulk
def

∴ γdef (n) = γperf +
(n
A

)
Esurf
def − E

bulk
def

but, Esurf
def =

(
Edef
surf − E

perf
surf

)
∴ γdef (n) = γperf +

(n
A

)(
Edef
surf − E

perf
surf

)
− Edef

assume n=1 and γperf = Eperf
surf − E

perf
bulk

γdef (n) =
−Eperf

bulk + Edef
surf − Edef
A

This is the same equation used in the DSM approach (Equation 3.8). The two

methods are therefore equivalent. The only difference between them is the way the

values to populate the equations are determined through simulation.

3.3.6 Defective morphology prediction

Obtaining defective surface energies for all low index surfaces using either method

described above, allows predictions of the impact the defects have on the crystal

morphology. Producing defective morphologies is not a trivial task however, as the

effect of the defects depends on a number of factors.

The simplest scenario is when each surface reaches the lowest surface energy through

having the optimum number of defects present. This will occur if each surface can reach
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optimum defect coverage independently from the other surfaces. Providing the crystals

are large, such that there is a high ratio of bulk to surface sites, and there is a high

enough level of defects present this scenario would occur, as the remaining dopant ions

would reside in the bulk. However, if there are too few defects present for all surfaces

to reach their lowest surface energy, each surface cannot be considered independently.

Instead, those surfaces with largest segregation energies would take the defects over

those surfaces with lower segregation energies.
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YLiF4

4.1 Structural description

YLiF4 (YLF) is a material being researched as a solid state laser host lattice. It is

particularly of interest because of the Y3+ cations present, which are of similar size and

the same formal charge as the rare earth cations that provide the electronic structure

for laser application.

The YLF crystal is obtained from a equimolar mixture of LiF and YF3, and

has the scheelite structure that belongs to the tetragonal crystal system with the

centrosymmetric space group I41/a, with four formula units per cell. The structure is

shown in Figure 4.1. Each Li+ ion is located at the centre of a regular tetrahedron of

four F− ions and each Y3+ ion is surrounded by eight F− ions forming a tetragonal

dodecahedron [145] (Figures 4.2 and 4.3).

YLF is a naturally birefringent material, capable of producing linearly polarised

output with virtually no depolarisation loss [146].

The structure used in this work was reported by Garcia [145].

4.1.1 Literature review

Since the 1970s rare earth doped YLF has been well known as a laser active medium.

In the early days, research on this crystal was driven by the demand for Nd3+ -doped
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Figure 4.1: Unit cell of YLF as reported by [145]. The unit cell is 5.164 Å by 10.565 Å
in size. The atoms are shown in relative ionic size.

Figure 4.2: Unit cell of YLF showing the yttrium coordination. Each Y3+ ion is
surrounded by eight F− ions forming a tetragonal dodecahedron. The atoms are shown

in relative ionic size.
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Figure 4.3: Unit cell of YLF showing the lithium coordination. Each Li+ ion is
surrounded by four F− ions forming a regular tetrahedron. The atoms are shown in

relative ionic size.

crystals, in particular because of some advantages of this host over the well researched

and widely used Nd:YAG laser. Some of the advantages of YLF over YAG include

longer fluorescence lifetime and smaller thermal lensing effect [147, 148]. There has been

to date considerable research into YLF as a laser host lattice and it is also available as

a commercial laser device [149]. YLF is particularly suited to UV laser applications

because the YLF lattice has small absorption in the UV range.

Laser action in Ce:YLF was first demonstrated by Ehrlich [150], who observed a

poor performance for this system resulting from the formation of permanent colour

centres that absorb at the lasing transition. The Ce3+ ion is a good candidate for a

UV tuneable laser source. The ground 4f state of Ce3+ splits into two levels, 2F5/2 and

2F7/2. The upper f level is not populated thermally at room temperature. The 5d state

splits into four levels, and the transition between the 5d and 4s states provide a four

level laser system. In 1993, the first demonstration of a large gain YLF laser system

doped with Ce3+ was reported by Okada et al. [151]. Okada et al. reported a large

gain and tunability when the crystal was excited at either 193 nm or 248 nm. In 1997,

the local environment around the Ce3+ ion in YLF was studied further by Yosida et

al. using electron spin resonance [152]. Baldochi in 1999 also reported the growth of

Ce:YLF. Measurements revealed a dopant concentration of 0.15% with the initial melt
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mixture at a doping concentration of 0.5% [153].

Other rare earth dopants have also been investigated. In 2001, Bensalah et al.

reported the growth and properties of a YLF system co-doped with Tm3+ and Ho3+

building on the previous work into Tm, Ho:YLF [154, 155, 156]. The interest in co-doped

systems arises due to the process where the energy is efficiently transferred from one

dopant ion to the other. In this case the Tm3+ ions transfer energy to the Ho3+. The

paper reported that the distribution coefficients of the dopant ions were close to unity,

as expected, due to the comparable ionic radius of the dopants. In 2007, Ranieri et al.

reported the introduction of a third dopant ion to act as a second sensitiser. A YLF

crystal co-doped with 0.5% Tm3+, 20% Yb3+ and 1.3%3+ Nd was grown. The paper

concluded that the Nd3+ ion as a second sensitiser for Yb:Tm:YLF crystals ‘improves

the upconversion mechanism that gives rise to the Tm3+ blue emission in 475 nm and

as such there is an efficient mechanism for energy transfer from Nd3+ to Yb3+ and from

Yb3+ to Tm3+’ [157]. However, the paper did note that the concentration of Nd3+ must

be around 0.8% to prevent back transfer from Yb3+ to Nd3+, which is detrimental.

A Tm:YLF laser was reported in 2008 by Schellhorn [146]. This system was doped

at 3.5% as this was found to be the optimum doping concentration because while

‘increasing the Tm3+ doping level leads to a higher quantum yield (the number of ions

excited to the upper laser level per absorbed pump photon), the rate of energy-transfer

upconversion increases at higher doping levels and will give rise to an extra heat load

in the laser crystal because of multiphonon relaxation of the up-converted ions’ [146].

The lasing output was at 1910 nm.

A 1.7% doped Nd:YLF laser was reported by Santo et al. in 2006 with an output at

1047 nm (an IR laser) [158]. The doped YLF system was grown in fibres and it was

reported that ‘the Nd3+ incorporation and distribution is enhanced in the grown YLF

fibres’ [158] compared to bulk crystals. Another Nd:YLF laser was reported by Lu et al.

in 2009 [159]. This was a 1% Nd3+ doped YLF laser system producing a laser transition

of 1321 nm. The system was pumped directly into the emitting level by a diode laser

at 880 nm. One of the most recent publications reports an Nd3+ doped YLF system
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emitting at 1053 nm [160].

Yb3+ ions have also been incorporated in YLF. Yb-doped crystals have shown

excellent properties such as efficiency, wide wavelength tunability and femtosecond

pulse generation. These properties are due to the simple energy level structure of the

Yb3+ ion. It consists of only two electronic multiplets, with a transition between them

in the near infrared, leading to a relatively small quantum defect, low thermal loading,

and reduced up-conversion losses [161, 162]. The strong electron-phonon interaction

provides broad emission bandwidth also [163]. The system was doped to 5% and the

output was in the wide range of 1009 to 1069 nm [164].

Other rare earth doped YLF laser systems reported in papers include Er3+ [165].

The successful growth of optically clear single crystals of YLF doped with rare earth

ions depends not only on the growth process, but on the purity of the starting materials

and the presence of certain complexes in the environment [153]. This has resulted a

wide range of crystal growing techniques being used across the papers listed in this

brief review.

In addition to the above experimental research into YLF a number of computer

simulation studies have been carried out. Ogasawara et al. carried out a study in 2004

into the multiplet energy levels of all trivalent lanthanides in YLF using first-principles

calculations [166]. The absorption spectra of Pr3+, Ho3+, and Tm3+ in YLF were also

calculated. In 2009, Yin et al. published work into defect formation in the YLF lattice

that may impact on the quality of the lasing action. F-type colour centres were modelled

[167] as were Li vacancies [168]. The Yin group have also published a paper of DFT

simulations of Yb3+ ions in YLF, concluding that the doping of Yb3+ can weaken the

330 nm absorption band [169]. They also note that ‘it would be desirable to study

different rare earth ions at the Y3+ site since this is the main experimental interest’

[169] but that this is a difficult task with DFT simulations.

Rare earth doped YLF has also been reported as a laser cooling device, with a 5%

Yb:YLF crystal having been shown to cool to 110 K [170].

This brief review highlights some of the work into YLF as a laser source. Most

78



Chapter 4. YLiF4

research has focussed on the various growing techniques and spectrographic studies.

Ce3+, Nd3+, Yb3+, Tm3+, Ho3+, and Er3+ are the main rare earth ions that have been

shown to produce laser systems of various qualities. There has been some limited

computer simulation work, which has been DFT focussed.
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4.2 Atomistic bulk modelling

4.2.1 Perfect system

In YLF, the ion interactions were modelled using potentials take from previous work

on this material [110], and were in the form of electrostatic supplemented Buckingham

potentials for the interactions between Y3+-F− and Li+-F−, while the F−-F− interaction

was modelled with a 4-range Buckingham potential (see page 38) and a Shell Model to

represent the polarisability of these ions. The potentials used are given in Table 4.1.

All potentials were cut so they acted between 0.0 Å and 10.0 Å. The values used in this

work were selected based on a balance between convergence and computation time.

Interaction A / eV ρ / Å C / eVÅ6 Spline points

Y3+-F− 1547.6200 0.3023 0.0000 - - -

F−-F− 1127.7000 0.2753 15.8300 2.0000 2.7950 3.0310

Li+-F− 113.7200 0.3654 0.0000 - - -

Shell F Shell q − 1.59 |e| K (Fcore-Fshell) 20.77 eVÅ−2

Table 4.1: Interatomic potentials used in the atomistic modelling of YLF taken from

previous work [110]. All potentials are in the form of the Buckingham potential with

the F−-F− interaction described with a 4-range Buckingham potential.

These potentials accurately reproduce the system to within 2% of the observed [145]

unit cell dimensions as shown in Table 4.2. Further properties, such as elastic constants

and dielectric constants, can be used to confirm the model. Blanchfield and Saunders

[171] report the elastic constants and bulk modulus (see Table 4.3). It should be noted

that the potentials have not been fitted to the YLF structure, but rather taken from

previous work for consistency, and therefore the fit to the reported elastic constants

is rather poorer than might be expected if new potentials were fitted. Section 2.2.3

outlines the advantages of using transferred potentials where possible.
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Parameter Modelled /GPa Reported [171] /GPa Percentage difference /%

C11 118.8 121.0 −1.8
C12 49.2 60.9 19.2
C13 62.1 52.6 18.1
C16 −7.6 −7.7 −1.3
C33 207.5 156.0 33.0
C44 33.2 40.9 −18.8
C66 24.0 17.7 35.6

Bulk modulus 88.0 80.0 10.0

Table 4.3: Comparison between reported elastic constants and bulk modulus, and
modelled ones. Experimental values are quoted at room temperature.

Parameter Modelled Reported [145] Percentage difference /%

a 5.193 Å 5.164 0.57

b 5.193 Å 5.164 0.57

c 10.565 Å 10.741 −1.64

α/β/γ 90.000◦ 90.000◦ 0.00

Table 4.2: Comparison of modelled YLF unit cell parameters to the reported parameters

[145].

Further physical properties are listed in Table 4.4 as calculated from the simulation.

4.2.2 Intrinsic defects

Defect calculations were performed using the Mott-Littleton method with region sizes of

10 Å and 15 Å for regions 1 and 2a respectively. These correspond to approximately 600

ions in region 1 and 1300 ions in region 2a. The lattice energies used throughout this

chapter for defect calculations are listed Table 4.5; they were obtained from simulations

using the potentials listed for consistency. The region sizes were chosen based on the

need for converged defect energy values but also a sensible computation time.

Intrinsic defects are those that appear naturally within the system through thermal

action and involve no non-native species. The first of these defects is the formation of

a vacancy. Table 4.6 lists the formation energy of vacancies of the three constituent

ions. It is assumed that all fluoride ions require the same energy to be removed from
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Property Modelled

Shear Modulus 36.2 GPa

Young’s Modulus
x: 86.7 GPa
z: 161.6 GPa

Poisson’s Ratio

xy: 0.3
xz: 0.4
zx: 0.2
yz: 0.2

Static dielectric
xx: 9.2
yy: 9.2
zz: 8.8

High frequency dielectric
xx: 2.4
yy: 2.4
zz: 2.4

Static refractive indices
1: 3.0
2: 2.4
3: 2.4

High frequency refractive indices
1: 1.6
2: 1.6
3: 1.6

Table 4.4: Table listing physical properties of YLF obtained from the simulation.

82



Chapter 4. YLiF4

System Elatt /eV Reference

YF3 −52.465 calc.
LiF −9.919 calc.

YLiF4 −63.145 calc.
LaF3 −49.701 [114]
CeF3 −50.154 [114]
PrF3 −50.596 [114]
NdF3 −51.040 [114]
SmF3 −51.244 [114]
EuF3 −52.246 [114]
GdF3 −52.238 [114]
TbF3 −52.234 [114]
DyF3 −52.850 [114]
HoF3 −53.374 [114]
ErF3 −53.466 [114]
TmF3 −53.633 [114]
YbF3 −53.961 [114]
LuF3 −54.253 [114]

Table 4.5: Lattice energies of YF3, LiF, YLiF4 and all REF3 studied as used in the
calculation of solution energies.

Vacancy Formation energy /eV

Y3+ 46.71
Li+ 7.91
F− 4.73

Table 4.6: List of defect formation energies for the constituent ion vacancies in YLF.

the lattice as they are in similar environments. The second is interstitials, which are

constituent ions at non-lattice sites. Table 4.7 lists the lattice sites considered in this

thesis and the formation energy associated with forming an interstitial there for each of

the three ions in this system. Figures 4.4 and 4.5 shows the location of these interstitial

sites within the unit cell.

The Y3+ ion is the most energetically demanding to remove from the lattice requiring

almost a 6 fold increase in energy over the Li+ ion. It is therefore unlikely for Y3+

vacancies to be within the lattice. However, for the two interstitial sites studied, Y3+ has

a favourable formation energy. In order to understand if Y3+ interstitials are likely to

form, realistic models of the actual process involved have to be calculated. Interstitials

are usually formed through Frenkel defects. A Frenkel defect is the movement of a ion
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Lattice site Formation energy /eV

a) 0.250, 0.000, 0.375
Y3+ −34.88
Li+ −3.06
F− −1.49

b) 0.250, 0.250, 0.250
Y3+ −36.17
Li+ −5.18
F− −0.98

Table 4.7: List of defect formation energies for the constituent ion interstitials in YLF.

Figure 4.4: Unit cell of YLF showing the first interstitial site considered at fractional
coordinates 0.250, 0.000, 0.375. The atoms are shown in relative ionic size.

Figure 4.5: Unit cell of YLF showing the second interstitial site considered at fractional
coordinates 0.250, 0.250, 0.250. The atoms are shown in relative ionic size.
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from a lattice site to a non-lattice site. This is modelled by creating a vacancy and

an interstitial. The other major form of intrinsic defect are Schottky defects. These

are the creation of stoichiometric vacancies within the lattice. There are a number of

types of Schottky defects that can be calculated; Schottky and pseudo-Schottky. The

reaction schemes for all intrinsic defects studied are:

1. EFrenkel = Evac + Eint

2. ESchottky = Yvac + Livac + 4(Fvac) + Elatt(Y LiF4)

3. EY F3pseudo = Yvac + 3(Fvac) + Elatt(Y F3)

4. ELiFpseudo = Livac + Fvac + Elatt(LiF )

Defect Edef /eV Ebound
def /eV

Frenkel (F)a 3.24 1.11
Frenkel (F)b 3.75 2.34
Frenkel (Y)a 11.83 2.54
Frenkel (Y)b 10.53 2.03
Frenkel (Li)a 4.85 3.35
Frenkel (Li)b 2.73 1.41

Schottky 10.38 6.84
YF3 pseudo-Schottky 8.42 4.32
LiF pseudo-Schottky 2.72 2.18

Table 4.8: List of intrinsic defects energies in YLF including Frenkel and Schottky
defects. The Frenkel defects are considered at the two interstitial sites listed in Table 1.7

The intrinsic defect energies are given in Table 4.8. The Frenkel energies are

subscripted ‘a’ and ‘b’ to correspond to the lattice site coordinates given in Table 4.7 for

the interstitial location. The table lists two defect energies for each scheme. The first of

these is obtained from adding the individual components that make up the total defect.

For example, the Frenkel energy is obtained by adding the vacancy formation energy to

the interstitial formation energy. The second value listed is for a bound defect energy.

This is obtained from simulating the total defect in one calculation. For example, for

the Frenkel defect a vacancy and an interstitial are modelled together. The advantage

of this approach is that the binding energy of the two defects is included, which often
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lowers the defect energy. The non-bound and the bound defect energies are both listed

to provide a measure of the binding energy, as:

Ebinding = Ebound
def − Edef (4.1)

It can be seen from these that the lowest energy process is the formation of a F

Frenkel at the (a) coordinate site, with the formation of a Li Frenkel at the (b) site at

a similar low energy. These two intrinsic defects are therefore likely to dominate the

YLF structure, although, most of the Frenkel defects modelled are at a relatively low

energy (around 1 to 2 eV) and so are also likely. Schottky defects have defect energies

greater than the Frenkel defects and are therefore less likely to form apart from at high

temperatures.

The formation of Y3+ vacancies (Table 4.6) is a high energy process, which can be

seen in the un-bound Y Frenkel defect energies. Despite this, the bound Y Frenkel

defect energies are comparable to the other Frenkel defects. This is due to a large

reduction in defect energy (due to a large binding energy) between the un-bound and

bound simulations.

To quantify the likelihood of Frenkel and Schottky defects forming at a given

temperature, the following equations may be used. In the Schottky equation (Equation

4.2), ns is the number of Schottky defects, N is the number of lattice sites, Edef is the

Schottky formation energy, k is the Boltzmann constant, and T is the temperature.

In the Frenkel equation (Equation 4.3) nf is the number of Frenkel defects, Ni is the

number of interstitial sites available, and the other terms have the same meaning as

before. These equations typically produce values that reveal intrinsic defects are very

sparse at room temperatures, for example the Schottky defect energy in YLF gives the

ratio of vacant sites as 3.7 x 10−59. In reality, the ratio may be higher than this if the

crystals are grown at a high temperature and cooled quickly.

ns ≈ N exp

(
−Edef
2kT

)
(4.2)
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nf ≈ (NNi)
1
2 exp

(
−Edef
2kT

)
(4.3)

4.2.3 Rare earth dopant solution energies

The standard oxidation state of rare earth ions is 3+, as it is for yttrium, so when

considering the doping of YLF, no charge compensation is required to maintain a

neutral system if the rare earth ion dopes at the Y site. For doping at the lithium site

there are a number of possible compensation methods. Two different Li substitution

schemes, and the one Y scheme, are considered in this thesis.

1. REF3 + YY → REY + Y F3

2. REF3 + LiLi → RE··Li + 2V
′
Li + 3LiF

3. REF3 + LiLi → RE··Li + V
′′′
Y + V ·F + Y LiF4

Solution energies for these reactions are given below and were used to calculate the

energy required for each dopant reaction scheme.

1. Esol = Elatt(Y F3) + Edef (REY )− Elatt(REF3)

2. Esol = 3(Elatt(LiF )) + 2(ELi
vac) + Edef (REY )− Elatt(REF3) (4.4)

3. Esol = Elatt(Y LiF4) + EF
vac + EY

vac + Edef (RELi)− Elatt(REF3)

The lattice energies used in all solution energy calculations are provided in Table 4.5.

The potentials for the rare earth fluoride interactions were taken from [114] and are

reproduced in Table 5.9. Upon carrying out the surface modelling work (see the next

Chapter), two of the potentials were found to produce unphysical results. These were

refitted using the methodology outlined in Section 2.2.3. Using these the solution

energies for scheme 1 (doping at the Y site) can be calculated (Table 4.10).

The solution energies show that the doping process requires a small amount of energy

and that the process becomes more favourable as the ionic radius of the dopant becomes

smaller. This occurs because of the comparability of the host and dopant ionic radii. For
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Interaction A / eV ρ / Å C / eVÅ6

La3+-F− 2817.74 0.2980 0.0
Ce3+-F− 2627.13 0.2980 0.0
Pr3+-F− 2453.39 0.2980 0.0
Nd3+-F− 2488.27 0.2950 0.0
Sm3+-F− 1764.57 0.3064 0.0
Eu3+-F− 2085.74 0.2950 0.0
Gd3+-F− 1667.02 0.3037 0.0
Tb3+-F− 1541.15 0.3065 0.0
Dy3+-F− 1536.68 0.3037 0.0
Ho3+-F− 2590.91 0.2809 0.0
Er3+-F− 1880.44 0.2920 0.0
Tm3+-F− 1390.19 0.3037 0.0
Tm3+-F−* 3173.80 0.2733 0.0
Yb3+-F− 2381.55 0.2808 0.0
Lu3+-F− 1448.23 0.2990 0.0

Lu3+-F−* 2901.80 0.2735 0.0

Table 4.9: Rare earth fluoride potentials used in this work. Taken from [114]. The two
potentials marked * were refitted for the defective surface modelling as the original

potentials produced proved to be inadequate.

RE Edef (REY ) /eV Solution energy /eV

La 3.86 1.10
Ce 3.31 1.00
Pr 2.77 0.90
Nd 2.25 0.83
Sm 1.84 0.62
Eu 0.83 0.66
Gd 0.85 0.63
Tb 0.77 0.54
Dy 0.21 0.60
Ho −0.37 0.54
Er −0.50 0.50
Tm −0.57 0.60
Yb −0.99 0.51
Lu −1.13 0.66

Table 4.10: Rare-earth dopant at Y site solution energies in YLF along with defect
formation and lattice energies used in the calculations.
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RE Edef /eV Ebound
def /eV Esol /eV Ebound

sol /eV

La −28.97 −14.62 6.79 5.32
Ce −29.62 −15.52 6.59 4.88
Pr −30.25 −16.12 6.41 4.72
Nd −30.83 −16.67 6.27 4.61
Sm −31.39 −17.19 5.92 4.30
Eu −32.41 −18.19 5.90 4.30
Gd −32.51 −18.27 5.79 4.21
Tb −32.63 −18.38 5.66 4.09
Dy −33.26 −19.00 5.65 4.09
Ho −33.75 −19.51 5.68 4.12
Er −33.99 −19.73 5.53 3.98
Tm −34.20 −19.92 5.49 3.96
Yb −34.47 −20.21 5.55 3.99
Lu −34.85 −20.54 5.46 3.96

Table 4.11: Rare earth dopant at Li site solution energies in YLF along with the defect
formation energies used in the calculations. Scheme 2; compensation of Li+ vacancies.

Esol = 3(Elatt(LiF )) + 2(ELi
vac) + Edef (REY )− Elatt(REF3)

substitution at the Li lattice site two schemes were modelled. Table 4.11 lists the solution

energy for scheme 2 which involves two Li+ vacancies as charge compensation, as listed

above in the reaction schemes. Vacancy defect energies needed for unbound calculations

were given previously in Table 4.6. Table 4.12 shows the solution energy for scheme

3 (charge compensation via a Y3+ vacancy and F− interstitial). Bound and unbound

calculations are shown, which shows the effect of defect binding is approximately 1.5

eV.

The two charge compensation methods for doping at the Li site are of comparable

energy when considering the bound solution energies. However, the energy for doping

at the Y site is still more favourable. This is as expected due to the like charge of the

cations and similar ionic radius. Figure 4.6 shows these solution energies graphically.

There is interest in co-doped YLF, for the reasons discussed in Chapter 1 relating

to transfer techniques. Bensalah et al [40] looked at co-doping with Tm3+ and Ho3+, as

the addition of Tm3+ efficiently transfers the absorbed pumping energy into the Ho3+

metastable energy state. This was modelled, using the same method as above, and the

bound solution energy calculated was 0.94 eV, which is comparable to the substitution

of one dopant.
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RE Ebound
def /eV Esol /eV Ebound

sol /eV

La −17.98 9.02 4.54
Ce −17.36 8.82 4.37
Pr −16.75 8.64 4.20
Nd −16.19 8.50 4.08
Sm −15.67 8.15 3.77
Eu −14.65 8.12 3.75
Gd −14.57 8.02 3.67
Tb −14.47 7.89 3.56
Dy −13.85 7.88 3.56
Ho −13.31 7.91 3.54
Er −13.21 7.76 3.53
Tm −13.06 7.72 3.55
Yb −12.61 7.78 3.42
Lu −12.44 7.96 3.54

Table 4.12: Rare earth dopant at Li site solution energies in YLF along with the defect
formation energies used in the calculations. Scheme 3; compensation of Y3+ vacancies
and F− interstitials. Esol = Elatt(Y LiF4) + EF

vac + EY
vac + Edef (RELi)− Elatt(REF3)

Figure 4.6: Plot of rare earth solution energies for the three schemes modelled.
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4.2.4 Doping limit

As discussed in Section 2.4.4 an important, but non-trivial, calculation to make is to

estimate the theoretical doping limit of the rare earth ions within the YLF lattice.

The first step in determining the doping limit is to write the solid-state reaction. In

general form for YLF, with the rare earth ion doping at the Y site, this is:

xMF3 + (1− x)Y F3 + LiF → Y(1−x)xM
·
YLiF4 (4.5)

where MF3 is the rare earth fluoride and x is the mole fraction of dopant ions. The

solution energy can be determined in the usual way and is given by:

Esol = Elatt
(
Y(1−x)xMYLiF4

)
−

[Elatt (xMF3) + Elatt ((1− x)Y F3) + Elatt (LiF )] (4.6)

The doping limit can be determined by setting Esol to zero and solving for x, the

mole fraction of dopant ions. The problem arises with determining the lattice energy

for the defective YLiF4 lattice, Elatt
(
Y(1−x)xMYLiF4

)
.

The first method considered to overcome this problem is the Jackson-Valerio 2011

method as published in [115]. In this, the defective lattice energy is assumed to be

equal to the perfect YiLF4 lattice plus the defect formation energy as determined from

Mott-Littleton calculations. Both terms are adjusted by the mole fraction of dopant

ions.

Elatt
(
Y(1−x)xMYLiF4

)
= (1− x)Elatt (Y LiF4) + xEdef (MY ) (4.7)

The solution energy is then given by:

Esol = [(1− x)Elatt (Y LiF4) + xEdef (MY )]−

[Elatt (xMF3) + Elatt ((1− x)Y F3) + Elatt (LiF )] (4.8)

Table 4.13 lists the solution energy functions for each of the rare earth ions and the
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RE Function Max % MF3 /%

La Esol = 64.24x− 0.76 1.18
Ce Esol = 64.14x− 0.76 1.19
Pr Esol = 64.04x− 0.76 1.19
Nd Esol = 63.97x− 0.76 1.19
Sm Esol = 63.76x− 0.76 1.19
Eu Esol = 63.81x− 0.76 1.19
Gd Esol = 63.77x− 0.76 1.19
Tb Esol = 63.69x− 0.76 1.20
Dy Esol = 63.74x− 0.76 1.19
Ho Esol = 63.69x− 0.76 1.20
Er Esol = 63.65x− 0.76 1.20
Tm Esol = 63.75x− 0.76 1.19
Yb Esol = 63.65x− 0.76 1.20
Lu Esol = 63.81x− 0.76 1.19

Table 4.13: Concentration method for rare earth doping in YLF based on the
Jackson-Valerio 2011 method [115]. x in the function is molefraction of MF3 used. The

max percentage is found by setting Esol to zero.

maximum doping percentage based on this equation.

The results suggest that the YLF lattice is not very soluble to rare earth ions, with

a maximum doping of 1.2%. The doping limit being constant across the rare earth

ions is the other observation. In reality, it would be expected that the doping limit is

low based on the criteria used, however, with the large difference in defect formation

energies across the rare earth group a change in doping limit might be expected.

To understand these results it is important to consider the assumptions made in the

calculation. Firstly, the defect formation energy is for a single, infinite dilution defect

and does not take into account any defect-defect binding energy. Such binding energy

often lowers the overall defect formation energy for multiple defect clusters and would

increase the maximum doping limit. Therefore, the doping limit obtained from this

calculation is the doping limit for non-interacting defects.

There are a number of problems with this approach, which may explain the consistent

doping limit across the rare earth group. The calculation is highly sensitive to the

lattice energies and is not affected by the defect energy (due to the relative magnitude

of the numbers). The sensitivity is such that a small change of just 1% in a lattice

energy, can alter the doping limit by up to 80%.
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The second method to determine the defect lattice energy is a modified version [116]

of the previous method [172]. Equation 4.6 remains the starting point, but the defective

lattice is now considered to be equal to the perfect lattice plus x-amounts of the defect

formation energy.

Elatt
(
Y(1−x)xMYLiF4

)
= Elatt (Y LiF4) + xEdef (MY ) (4.9)

The difference in this approach to the previous is that the perfect lattice energy is not

scaled by the mole fraction of dopant ions (compare Equation 4.7 to 4.9). This equation

is more logical than the previous Jackson-Valerio method as the defect formation energy

includes the change in the perfect lattice to the defective one. Also, in the previous

method the Li and F amounts were scaled by the mole fraction as well the Y sites,

despite these amounts not changing. This new approach is more robust and solves the

problem that occurred with divalent dopants in the old method.

Considering the case when x = 0, i.e. there are no dopants present, the solution

equation simplifies to:

Esol = Elatt (Y LiF4)− [Elatt (Y F3) + Elatt (LiF )] = Ef (Y LiF4) (4.10)

In this case, the solution energy equals the formation energy of YLiF4. Rearranging

Equation 4.6, with Esol set to zero, to separate the x−terms and substituting for

Eform (Y LiF4) gives:

x = − Eform (Y LiF4)

Edef (MY ) + Elatt (Y F3)− Elatt (MF3)
(4.11)

Combining Equations 4.10 and 4.11 allows the doping limit, x, to be calcuated.

Table 4.14 lists the calculated percentages of x using this methodology.

The immediate difference with the values from this method is a change across the

rare earth group that is more in line with what is expected. Lu has double the doping

limit of La (1.5% compared to 0.7%), which correlates with the solution energies for the
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RE Max % MF3

La 0.69
Ce 0.76
Pr 0.85
Nd 0.92
Sm 1.23
Eu 1.15
Gd 1.22
Tb 1.41
Dy 1.28
Ho 1.40
Er 1.52
Tm 1.33
Yb 1.51
Lu 1.49

Table 4.14: Concentration method for rare earth doping in YLF based on a modified
Jackson-Valerio method [116].

single defects. The largest value of 1.5% is still very low, however this calculation still

assumes that the defects are non-interacting. This is an important value to know as in

some applications it is important to have non-interacting defects. Even in applications

were some interaction is not an issue, comparing the non-interacting defect doping

limit for various systems/dopants gives a guide to the solubility allowing the optimal

combination of lattice and dopant/s to be found.

It would be possible to extend this approach to consider interacting dopants by

calculating the defect formation energy for clusters of 2, 3, 4, etc. dopants and using

the lowest defect formation energy per dopant from these calculations in Equation

4.11. However, in practice this requires more calculations, does not provide any major

advantage over the simpler single defect calculation, and, in the case of YLF, only

increases the doping percentage slightly.

Another assumption made in this method is that the unit cell of the lattice is

minimally effected by the presence of the dopant ions. This arises because the calculation

is based on the energy of the formation of a single defect. High levels of doping may be

possible under extreme conditions that distort the unit cell and destroy space-group

symmetry. These conditions cannot be calculated using a single defect formation energy
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calculation.

Within the literature, YLF is typically doped from around 0.1% to 2%. Some papers

report higher concentrations ([146][164]) than that, however, most list the dopant

concentration based on the ratio in the crystal melt. This may not be the dopant

concentration in the resulting crystal.

The aim of calculating the maximum doping limit is to obtain a measure that can

be compared across systems and doping reactions in a simple method. Additionally, for

most applications the doping level is small and the resulting lattice is similar to the

original. In conclusion, there is no reason to attempt to calculate the defective lattice

energy directly as the modified Jackson-Valerio method provides an approach of worth.

4.2.5 Thermal effects

Most lattices expand with temperature and using free energy minimisation (see Section

2.3.2) the expansion of the lattice parameters can be modelled. Using this type

of minimisation also allows the potentials to be tested with increasing temperature.

Two methods for calculating the free energy were taken. The first, Full Free Energy

Minimisation (FFEM) minimises the unit cell and the internal degrees of freedom with

respect to the free energy, whereas the second, Zero Static Internal Stress Approximation

(ZSISA) minimises only the unit cell with respect to the free energy with the internal

degrees of freedom minimised with respect to the internal energy. Generally ZSISA is

the more robust approach to take as FFEM tends to drive the system toward instability

[16] through the creation of soft modes as a result of the coupling to the free energy.

This was the case for YLF too. FFEM minimisation above 300 K oscillated around

the minimum resulting in hundreds of cycles. Whereas, with ZSISA the number of

minimisation cycles stayed low (less than 70) up to the highest modelled temperature

(1000 K). The data from FFEM was therefore disregarded and the results that follow

use the ZSISA approach.

Figure 4.7 shows the change in the ‘a’ parameter, ‘c’ parameter, volume, and free

energy with temperature from 0 K to 1000 K. The calculations were performed at
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constant pressure. The ‘a’ parameter initially increases in size with temperature, up to

around 300 K, before there is a decrease in size. This is followed, at 600 K, by a flat

region with no change in the parameter with increasing temperature. This no-change

region may be a result of an inadequate approach or the potentials breaking down at

this temperature. The inclusion of a Shell Model into the potential form can result

in difficulties at higher temperatures, as the core and shell may separate. Another

possibility is a phase change.

At higher temperatures, the ‘c’ parameter also shows a similar pattern of no change

in its size. At lower temperatures there is an increase in size with temperature after

250 K. Before this the data fluctuates.

The unit cell volume increases (almost) linearly up to 600 K, despite the decrease in

the ‘a’ parameter. After 600 K, as before, the volume stops increasing.

Overall, these three plots reveals that the volume of the unit cell increases linearly

with temperature, with the increase a result of the ‘a’ parameter increasing between 0

K and 300 K, and then a result of the ‘c’ parameter increasing after 250 K. Data after

600 K is ignored. As discussed previously, the harmonic motion assumptions used in

this method mean that the method tends to breakdown above half of the melting point

of the material. In the case of YLF this limit is at 675 K.

The final plot in Figure 4.7 shows the change in free energy with temperature.

A line-of-best-fit was fitted to the ‘a’ vs temperature plot for values up to 300 K so

that the thermal expansion coefficient could be calculated and compared to experimental

data. The same was done for the ‘c’ parameter, but over the temperature range 250 K

to 600 K. These regions were chosen because they are the linear section of the plots. The

gradients of these lines were used to calculate the linear thermal expansion coefficient

for the two axes using Equation 4.12, where L0 is the initial parameter length and ∆L
∆T

is the calculated gradient.

α =
1

L0

∆L

∆T
(4.12)

A similar analysis was carried out for the volume resulting in the volume thermal

expansion coefficient. Table 4.15 lists these coefficients and any experimental data.
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Figure 4.7: Plots of the free energy simulations for YLF using ZSISA. Plot top-left
shows the change in the unit cell parameter ‘a’ with temperature. A function is fitted
from 0 K to 300 K with the gradient displayed. The plot top-right shows the change in
the unit cell parameter ‘c’ with temperature. A function is fitted from 250 K to 600 K
with the gradient displayed. The plot bottom-left shows the overall change in volume
with temperature. A function is fitted from 0 K to 600 K and the gradient displayed.

The plot bottom-right shows the change in free energy with temperature.
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Parameter Thermal expansion coefficient

Modelled / K−1 Reported [173] / K−1

a 4.62× 10−5 1.33× 10−5

c 8.33× 10−5 8.30× 10−6

Volume 7.02× 10−5 -

Table 4.15: Comparison of calculated and reported thermal expansion coefficients.

Where data is available the coefficients calculated from the simulation are larger than

the reported ones, although, for the ‘a’ parameter the value is in the same order of

magnitude.

The discrepancies may be due to the approximations made in the thermal simulations.

It is also important to note that the starting structure was obtained at room temperature

yet is assumed to be the 0 K structure in the simulation. Nevertheless, the poor

agreement with the experimental thermal expansion coefficients and the unstable FFEM

suggest that the potentials are not suited to considering thermal effects and would have

to be refitted before any non-static calculations were made.

Despite some concerns about the suitability of the potentials for non-static calcula-

tions, the results presented here are interesting. The decrease in the ‘a’ parameter of

the unit cell between 300 K and 600 K has not been reported to date and should be

the subject of further work.

4.2.6 Laser cooling

There is interest in YLF as a laser cooling crystal as well as a laser host matrix, with

5% Yb:YLF having been shown to cool to 110 K [170]. A lower temperature may not

have been achieved due to defects with the crystals where undesirable non-radiative

decay occurred. One class of defect are transition metal ions that act as acceptors for

excitation energy from the excited rare earth ion. The use of crystals appears to offer

an advantage over glasses that have been used in many other studies, as the growth

of the crystal is in itself a purification process. It tends to exclude ions that are not

part of the perfect crystal lattice, and it is selective for certain oxidation states for the

impurities that do get incorporated. In YLF, to a first approximation, transition metal
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Transition Potential parameters

metal ion A /eV ρ /Å C /eVÅ6

Co (II) 2514.01 0.2490 0.00
Cr (II) 744.55 0.3120 0.00
Cr (III) 1005.91 0.3044 0.00
Cu (I) 2860.66 0.2070 0.00
Cu (II) 2219.60 0.2540 0.00
Fe (II) 728.90 0.3060 0.00
Fe (III) 714.11 0.3300 0.00
Mn (II) 2929.58 0.2520 0.00
Mn (III) 1195.20 0.2910 0.00
Ni (II) 940.00 0.2980 0.00
Ti (III) 710.90 0.3390 0.00
V (II) 2971.00 0.2487 0.00
V (III) 709.50 0.3310 0.00

Table 4.16: List of derived transition metal fluoride potentials used in this work.

ions with oxidation states of 1+ and 3+ are likely to be incorporated more preferentially

than 2+ and 4+ ions, as there are 1+ and 3+ sites in the crystal. While this may

be a good initial guess, it is not necessarily true as non-isovalent defect incorporation

may be equally as probably when binding energy between the defect and the charge

compensation is considered.

As 2+ transition metals are believed to be most detrimental to laser cooling, Dr

Hehlen from Los Alamos National Laboratory, NM, USA suggested to the Jackson

research group at Keele University that this assumption might explain why Yb:YLF

works as well as it does. In order to provide some evidence for this argument and to

provide guidance on purification strategies to achieve sub-100 K laser cooling, a range

of transition metal defect solution energies were calculated.

A new set of transition metal fluoride potentials was developed using the method

outlined in Section 2.2.3. They were in the form of rigid-ion Buckingham potentials

with a ‘C’ parameter set to zero. Table 4.16 lists the derived potentials and Table 4.17

lists the structures they were fitted too, along with the percentage difference between

the modelled structure and the reported. All structures are reproduced to within 2% of

the reported with the exception of CuF2, which is within 3%.

These newly derived potentials were used to calculate the solution energy of incor-
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Transition metal fluoride Lattice energy / eV

CoF2 −30.089
CrF2 −27.929
CrF3 −56.759
CuF −11.394
CuF2 −27.929
FeF2 −28.691
FeF3 −55.022
MnF2 −29.055
MnF3 −57.570
NiF2 −29.996
TiF3 −53.251
VF2 −29.444
VF3 −54.889

Table 4.18: List of lattice energies for the transition metal fluorides based on the
derived potentials.

porating the transition metal into a Yb:YLF lattice. The lattice energies of the 13

transition metal fluorides, calculated using the potentials, are given in Table 4.18.

Eight different reaction schemes were considered for the transition metal (TM)

incorporation.

For 1+ ions they were:

1A. TMF + LiLi → TMLi + LiF

1B. TMF + YY → TM
′′
Y + 2V ·F + Y F3

For 2+ ions:

2A. TMF2 + YY → TM
′
Y + V ·F + Y F3

2B. TMF2 + YY + LiF → TM
′
Y + Li·i + Y F3

2C. TMF2 + LiLi → TM ·
Li + F

′
i + LiF

2D. TMF2 + 2LiLi → TM ·
Li + V

′
Li + 2LiF

For 3+ ions:
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3A. TMF3 + YY → TMY + Y F3

3B. TMF3 + 3LiLi → TM ··
Li + 2V

′
Li + 3LiF

Two approaches were taken to calculate the solution energy for the incorporation of

the transition metal ions. In the first, the transition metal ion was added to a YLF

lattice using a Mott-Littleton infinite dilution method with a single Yb3+ ion introduced

as a defect at the same time. This approach did not allow for the 5% Yb doping, as

used in the laser cooling paper by Seletskiy et al. (2011) [170], to be studied directly.

However, it did include the binding energy between a single Yb3+ ion and the transition

metal ion. Solution energies for this approach for the eight reaction schemes are given

below. The Yb3+ defect energy, Edef(Y bY ), is subtracted off to provide the solution

energy for just the transition metal ion incorporation.

1A. Esol = Elatt(LiF ) + Edef (Y bY + TMLi)− Elatt(TMF )− Edef (Y bY )

1B. Esol = Elatt(Y F3) + Edef (Y bY + TM
′′

Y + 2V ·F )− Elatt(TMF )− Edef (Y bY )

2A. Esol = Elatt(Y F3) + Edef (Y bY + TM
′

Y + V ·F )− Elatt(TMF2)− Edef (Y bY )

2B. Esol = Elatt(Y F3) + Edef (Y bY + TM
′

Y + Li·i)− Elatt(TMF2)− Edef (Y bY )

2C. Esol = Elatt(LiF ) + Edef (Y bY + TM ·
Li + F

′

i )− Elatt(TMF2)− Edef (Y bY )

2D. Esol = Elatt(2LiF ) + Edef (Y bY + TM ·
Li + V

′

Li)− Elatt(TMF2)− Edef (Y bY )

3A. Esol = Elatt(Y F3) + Edef (Y bY + TMY )− Elatt(TMF3)− Edef (Y bY )

3B. Esol = Elatt(3LiF ) + Edef (Y bY + TM ··
Li + 2V

′

Li)− Elatt(TMF3)− Edef (Y bY )

(4.13)

Table 4.19 lists the resulting solution energies from the infinite dilution method.

The table is ordered alphabetically by the transition metal ion.

The second approach used a Mean Field to approximate the 5% Yb3+ doped YLF

lattice. A Mean Field calculation assigns partial charges to the Y sites within the

lattice, such that each site is a hybrid ion consisting of 95% Y3+ and 5% Yb3+. The

potentials are scaled to match. The transition metal ions were then incorporated using
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Transition metal ion Reaction scheme Solution energy / eV

Co (II) 2A 3.56
Co (II) 2B 3.41
Co (II) 2C 3.93
Co (II) 2D 3.39
Cr (II) 2A 3.29
Cr (II) 2B 3.21
Cr (II) 2C 4.29
Cr (II) 2D 3.30
Cr (III) 3A 2.85
Cr (III) 3B 5.01
Cu (I) 1A 1.49
Cu (I) 1B 5.23
Cu (II) 2A 3.54
Cu (II) 2B 3.39
Cu (II) 2C 3.92
Cu (II) 2D 3.37
Fe (II) 2A 3.49
Fe (II) 2B 3.38
Fe (II) 2C 3.68
Fe (II) 2D 3.21
Fe (III) 3A 2.72
Fe (III) 3B 4.96
Mn (II) 2A 3.22
Mn (II) 2B 3.11
Mn (II) 2C 4.43
Mn (II) 2D 3.44
Mn (III) 3A 2.58
Mn (III) 3B 4.06
Ni (II) 2A 4.98
Ni (II) 2B 4.87
Ni (II) 2C 5.94
Ni (II) 2D 4.95
Ti (III) 3A 2.43
Ti (III) 3B 4.34
V (II) 2A 3.32
V (II) 2B 3.22
V (II) 2C 4.42
V (II) 2D 3.43
V (III) 3A 2.71
V (III) 3B 4.97

Table 4.19: Table listing the solution energies for the 13 transition metal ions studied
using the eight infinite dilution reaction schemes. The corresponding solution energy

equations are given in Equation 4.13.
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a Mott-Littleton method into the Mean Field lattice. This approach simulates the same

doping percentage as used in the Seletskiy et al. paper. A downside to this is that,

for any reaction schemes involving defects at an Y site, the defect energy is for the

hybrid Yb3+-Y3+ site rather than a pure Y3+ one. The solution energy equations for

this second approach are given below.

1A. Esol = Elatt(LiF ) + TMLi − Elatt(TMF )

1B. Esol = Elatt(Y F3) + TM
′′

Y + 2V ·F − Elatt(TMF )

2A. Esol = Elatt(Y F3) + TM
′

Y + V ·F − Elatt(TMF2)

2B. Esol = Elatt(Y F3) + TM
′

Y + Li·i − Elatt(TMF2)

2C. Esol = Elatt(LiF ) + TM ·
Li + F

′

i − Elatt(TMF2)

2D. Esol = Elatt(2LiF ) + TM ·
Li + V

′

Li − Elatt(TMF2)

3A. Esol = Elatt(Y F3) + TMY − Elatt(TMF3)

3B. Esol = Elatt(3LiF ) + TM ··
Li + 2V

′

Li − Elatt(TMF3) (4.14)

Table 4.20 lists the resulting solution energies from the Mean Field method. The

table is ordered alphabetically by the transition metal ion as before.

Table 4.21 summaries the solution energies for both methods and is ordered by

solution energy. The tables shows there is good agreement with the order of the

transition metal ions across the two methods. Additionally, for each ion the reaction

scheme that was the lowest energy was the same across both methods. All 1+ ions

substituted at the Li site (scheme 1A). This was expected as the lattice ion and the

defect ion have the same formal charge. Likewise, all 3+ ions substituted at the Y site

(scheme 3A) for the same reason. The six most favoured substitutions are the 1+ and

3+ ions, with the 2+ ions at higher solution energy.

For the 2+ ions the lowest energy reaction was varied. For ions Mn2+, Cr2+, V2+,

and Ni2+, the preferred substitution was at the Y3+ site with a Li+ vacancy. Whereas,

Fe2+, Cu2+, and Co2+ substituted at the Li+ site with a Li+ vacancy. The ionic radius

of the Y3+ ion is larger than the Li+ ion, which correlates with those transition metal
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Transition metal ion Reaction scheme Solution energy / eV

Co (II) 2A 2.21
Co (II) 2B 2.58
Co (II) 2C 4.62
Co (II) 2D 2.09
Cr (II) 2A 1.92
Cr (II) 2B 1.84
Cr (II) 2C 2.44
Cr (II) 2D 2.01
Cr (III) 3A 1.35
Cr (III) 3B 4.41
Cu (I) 1A −0.01
Cu (I) 1B 4.23
Cu (II) 2A 2.19
Cu (II) 2B 2.50
Cu (II) 2C 3.70
Cu (II) 2D 2.08
Fe (II) 2A 2.11
Fe (II) 2B 2.11
Fe (II) 2C 3.54
Fe (II) 2D 1.94
Fe (III) 3A 1.22
Fe (III) 3B 4.39
Mn (II) 2A 1.83
Mn (II) 2B 1.75
Mn (II) 2C 2.76
Mn (II) 2D 2.14
Mn (III) 3A 1.08
Mn (III) 3B 3.97
Ni (II) 2A 3.59
Ni (II) 2B 3.19
Ni (II) 2C 5.32
Ni (II) 2D 3.65
Ti (III) 3A 0.93
Ti (III) 3B 4.26
V (II) 2A 1.95
V (II) 2B 1.53
V (II) 2C 3.14
V (II) 2D 1.92
V (III) 3A 1.20
V (III) 3B 4.40

Table 4.20: Table listing the solution energies for the 13 transition metal ions studied
using the eight Mean Field reaction schemes. The corresponding solution energy

equations are given in Equation 4.14.
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ions that substitute at the Y3+ site rather than the Li+ (with the exception of Ni2+).

The results suggest that the assumption that 2+ defect ions are unlikely to be

present in Yb:YLF, which is one reason why the system works well as a laser cooling

crystal, is correct. The solution energy for the incorporation of all 2+ defect ions

studied were greater than the 1+ and 3+ defects ions. The most likely defect ions to

be incorporated into the Yb:YLF lattice are Cu+1 and Ti3+, which both have small

solution energies of less than 1 eV (based on Mean-Field simulation). The other 3+

ions, Mn3+, V3+, Fe3+, Cr3+, also have small solution energies but are greater than 1

eV (but less than 1.5 eV). The six ions mentioned would incorporate into the Yb:YLF

lattice if present and therefore if a purer Yb:YLF lattice is desired these ions should be

removed from the growing conditions. The 2+ ions with the lowest solution energies,

that should also be considered during the production of the Yb:YLF crystal are V2+,

Mn2+, Cr2+, and Fe2+ which have energies less than 2 eV.
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4.2.7 Summary

In summary, the intrinsic thermal defects for YLF have been modelled and the defect

formation energies calculated. These show that the Frenkel defect energies are lower

than the Schottky energies, with the two lowest energy defect formations being a F

Frenkel and a Li Frenkel.

The interionic potentials used in this work were tested at various temperatures

and were found to be inadequate above 600 K, however, this may have been due

to the harmonic motion approximation used in the calculations. As such, if non-

static simulations were to be performed the potentials should be refitted or the model

parameters adjusted. The thermal expansion profiles up to 600 K revealed that the

‘a’ lattice parameter increases linearly in size with temperature up to 300 K but then

decreases. The ‘c’ lattice parameter increases linearly only after 250 K. Despite this,

overall the volume increases linearly however. This unusual decrease in the ‘a’ parameter

should be the subject of a future study. The thermal expansion coefficients calculated

were different to those listed in the literature - 4.62 x 10−5 K−1 calculated, 1.33 x

10−5 K−1 reported.

Solution energies for the doping of rare earth ions into the lattice were also calculated

and concluded that doping at the Y site is the most favourable process as the Li site

has a five-fold increase in energy compared to the Y site. This forms the basis of all

further defect work into YLF.

Various methods were considered to calculate the doping limit for the dopant ions

within the YLF lattice. A modified Jackson-Valerio [116] was determined to provide a

good measure of the doping limit and could be used to compare the doping solubility of

various dopant ions within a lattice, or a dopant ion’s solubility in various host lattices.

The limit calculated is strictly for non-interacting defect ions and as such always provides

small doping limits, however, as a tool for comparing trends across dopants or host

lattices it could be extremely useful. The maximum doping was calculated for Yb3+ at

1.51%.

Finally, the likelihood of transition metal ion defects being incorporated into a
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Yb:YLF lattice was studied as a result of the work into YLF as a laser cooling device.

The results suggest that the 1+ and 3+ transition metal ions are most likely to be

incorporated into the lattice with Cu1+ and Ti3+ being the most likely. In order to

ensure an optimal crystal for the laser cooling application 1+ and 3+ transition metal

ions should be not allowed to contaminate the growing environment. The 2+ ions have

higher solution energies.

The impact of this work in the field of lasers comes from a number of results. Firstly,

the confirmation that the rare earth ions will substitute at the Y site is an important

result when considering the structure of these doped materials. The large difference

in the solution energies between substituting at the Y and Li sites effectively means

that rare earth ions will be exclusively at Y cation sites within the lattice unless very

harsh conditions (high temperature and fast quenching) are used during crystal growth.

Secondly, the ability to calculate the doping limit for each of the rare earth ions provides

a useful measure when designing a laser system. For high power laser applications, high

concentrations of dopant ions would be required and therefore a dopant with higher

solubility in the host lattice should be selected.
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4.3 Atomistic surface modelling

The surface structure of any ionic material is an important property especially when

doping is required for application purposes. The surface properties of YLF were studied

using METADISE with the same potential set as used in the bulk modelling work. The

results are presented in this section.

4.3.1 Methodological detail

The bulk studies given in Section 4.2.3 showed that rare earth dopants are most likely

to dope at the Y site. This was used as the basis for the surface work in this section.

All potentials and cut-offs remained the same as those used before and are listed

in Table 4.1. Mott-Littleton region sizes for surface defects, using the CHAOS code,

were 9 Å and 35 Å for regions 1 and 2a respectively. Region 1 was chosen as a balance

between converged values and calculation size. Region 2 was set to a suitable value

based on the region size criteria built into the code. Within CHAOS some combinations

of region sizes result in charged spheres and these must be avoided.

4.3.2 Surface and attachment energies

Surface and attachment energies were calculated for all of the valid cuts up to the 2nd

index. Table 4.22 lists these for the most stable cut along with the area of each surface.

The lowest surface energy corresponds to the (112) surface, which is therefore the most

stable, and the second most stable is the (011) surface. The slowest growing surface is

the index with the highest attachment energy and that is the (001) surface.

The lowest energy (i.e. most stable) repeat unit for each surface is given in Figure

4.8. Each box represents the surface atomic makeup, with the ions at a height of 0.0

Å being the surface termination. The block is repeated to generate the full structure.

In some cases, the repeating unit is large. These repeat units contain a mirror plane,

such that the ions above the mirror are reflected below it to form the complete repeat

unit. Most surfaces are anion terminated, with the exceptions of (110), (121), and (221).
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Index Surface area /Å2 Surface energy /Jm−2 Attachment energy /eV/unit-cell

(001) 26.972 0.718 −0.101
(010) 54.869 0.657 −0.161
(011) 61.140 0.596 −0.160
(012) 76.946 0.750 −0.367
(021) 113.004 0.645 −0.972
(110) 77.597 0.717 −0.308
(111) 82.151 0.635 −0.401
(112) 94.505 0.560 −0.260
(120) 122.691 0.744 −0.139
(121) 125.621 0.725 −0.584
(122) 134.027 0.766 −1.220
(210) 122.691 0.818 −1.225
(211) 125.621 0.645 −0.853
(221) 157.520 0.838 −1.147

Table 4.22: Surface and attachment energies for YLF along with the surface area of
each index. Attachment energy is scaled per unit cell. Indices up to index 2 were

modelled and the energies quoted are for the most stable cut.

Of these exceptions only one surface, (110), has a mixed cation termination.

4.3.3 Morphology predictions

The morphologies of YLF were constructed using a Wulff construction. Both the

equilibrium (surface energy based) and the growth (attachment based) morphology

were drawn and they are shown in Figure 4.9. The two morphologies show considerable

differences. The (001) surface dominates the growth morphology (46.74%), whereas in

the equilibrium morphology it is a much smaller surface (2.28%). Also, the (112) surface,

which dominates the equilibrium morphology, does not appear in the growth based

model. Table 4.23 lists the percentage surface area coverage for the surfaces appearing

in the equilibrium and growth morphologies, as well as the coverage in the unrelaxed

equilibrium morphology. These values are based on unrelaxed surface energies and are

largely meaningless, however, they allow the extent of relaxation in the surfaces to be

seen. For example, the high index surface (211) appears in the equilibrium morphology

(1.78%) due to a large reduction in surface energy through relaxation. It does not

appear in the unrelaxed morphology. Two other surfaces, (010) and (111), also appear
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Figure 4.8: The lowest energy (i.e. most stable) terminations the low index surfaces of
YLF. Each box contains the repeat unit for that surface. The uppermost ions form the

surface termination layer. Note that some height scales are abbreviated for space
reasons. Some boxes contain a mirror plane, indicated by \\\, for the same reason.
The ions above the mirror are reflected below it to form the complete repeat unit.
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Figure 4.9: Equilibrium (a) and growth morphologies of YLF (b).

Surface Percentage coverage

Unrelaxed Equilibrium Growth

(001) 1.22% 2.28% 46.74%
(010) - 0.71% 5.31%
(011) 49.42% 30.07% 13.17%
(111) - 6.30% -
(112) 49.36% 58.86% -
(120) - - 34.78%
(211) - 1.78% -

Table 4.23: Surface area percentage coverage of each surface appearing in predicted
morphologies.

only after relaxation. The stability of these three surfaces reduces the size of the (011)

surface in the equilibrium morphology.

Many other studies have found a similar situation in which the two morphologies are

different from each other [17][186][133]. This is to be expected because morphologies

depend on a number of factors, including the conditions during growth, and therefore

the prediction results depends on which model (and which assumptions) are used. There

is currently no experimental data to compare these predictions with, but other studies

[17][186][133] show that the predictions made by these methods are reliable. The reader

can therefore have confidence in their reliability.
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4.3.4 Rare earth dopant segregation

YLF is of interest when doped with rare earth lanthanide ions. This may affect the

energy of some surfaces, particularly where there is strong segregation. Any significant

change in surface energy will alter the morphology.

The results from the bulk modelling (Section 4.2.3) showed that the rare earth ions

would dope at the Y3+ site and the defect energies for these were calculated (Table 4.10).

To extend this bulk work, the morphologically dominating surfaces, (112), (001) and

(011), were doped at the Y3+ sites at different depths from the surface working down

into the crystal. These three surfaces were chosen because they account for 91% of

the total equilibrium morphology. While the (111) surface is more dominant in this

mode, the (001) surface was studied because it also appears strongly in the growth

morphology. The plots in Figures 4.104.11 show the difference in energy between doping

at a particular depth on a surface compared to the bulk (i.e. the segregation energy).

A negative value indicates there is a driving energy for the dopant to lie at that surface

depth rather than in the bulk. As expected, the difference in energy tends to zero with

increasing depth, due to the defect energy tending towards the bulk defect energy.

These plots show surface segregation to the morphologically important surfaces,

however it is to a much greater extent with the (112) surface. At the (001) surface,

for the first seven rare earth cations the lowest energy position is around 3.8 Å from

the surface, with the lowest being for La3+. The amount of segregation decreases

moving across the row of rare earth cations, with ions from Tb3+ onwards having little

segregation. The two exceptions are Tm3+ and Lu3+, where the energy minimum is at

the nearest Y3+ site to the surface. A very similar trend is seen for the (011) surface

but with the minimum occurring at around 7 Å. The difference in energy at this depth

compared to the bulk is very small suggesting that surface segregation to this face is

unlikely.

The (112) surface segregation plot has a more complicated profile with defect energies

not reaching bulk values until 9 Å in depth. Rare earth cations Tb3+ to Er3+ and

Yb3+ to Gd3+ show no segregation to this surface while Tm3+ and Lu3+ show a small
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Figure 4.10: Plots showing the difference in defect energy at a surface depth and the
bulk for surfaces (001) and (011). A negative energy indicates there is a driving forces

for the dopant to lie at that depth rather than in the bulk.
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Figure 4.11: Plots showing the difference in defect energy at a surface depth and the
bulk for the (112). A negative energy indicates there is a driving forces for the dopant

to lie at that depth rather than in the bulk.

tendency. However, the cations La3+ to Sm3+ show a large segregation to this surface.

The deep surface depth of strong segregation suggests there are many sites for dopants

at this surface, indicating there may be clustering towards this face. Clustering of

the dopant ions can cause energy transfer between them due to the small interionic

separation. This can result in the degradation of their activity [32]. To study this

further, higher concentrations of dopant ions would need to be considered.

The primary driving force for isovalent dopant segregation is elastic strain induced

in the lattice [139]. This results in dopants with ionic radius most different to the lattice

ion radius segregating most. The ionic radius of Y3+ is 1.019 Å and the rare earth

cations have ionic radii starting at 1.16 Å for La3+, decreasing across the period to

0.977 Å for Lu3+. The ionic radius of Ho3+ is the most similar to Y3+, being just 0.4%

different (see Table 4.24). This radii mismatch explanation fits with the segregation

profile for the three surfaces studied, that showed strong segregation for the first four

cations in period. The positive value for segregation energy for Ho ions also agrees as

there would be small elastic strain induced to the close match in radii of the cations.
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Ion Ionic radius /Å Percentage difference to Y3+ /%

Y3+ 1.019 0.0
La3+ 1.160 13.8
Ce3+ 1.143 12.2
Pr3+ 1.126 10.5
Nd3+ 1.109 8.8
Sm3+ 1.079 5.9
Eu3+ 1.066 4.6
Gd3+ 1.053 3.3
Tb3+ 1.040 2.1
Dy3+ 1.027 0.8
Ho3+ 1.015 0.4
Er3+ 1.004 −1.5
Tm3+ 0.994 −2.5
Yb3+ 0.985 −3.3
Lu3+ 0.977 −4.1

Table 4.24: Ionic radii of Y3+ and the rare earth dopant ions. Radius information
taken from [187].

4.3.5 Multiple defects

To study more realistic levels of doping, and to consider the effect dopants may have on

the surface morphology, more than one dopant ion had to be included. Two methods

are outlined in Chapter 3 - defective surface minimisation (DSM) and equilibrium

segregation (ES) - that are equivalent, however, the results that follow use the DSM

approach as this method allows for the configuration of the rare earth ions to be

considered more easily and the defects are minimised within the simulation cell without

resorting to the CHAOS infinite dilution code.

In the DSM approach more than one dopant was included in the simulation cell

directly. The simulation cells for all low index surfaces were grown such that they

contained around six Y3+ sites in the surface layer. Rare earth dopants ions were then

progressively added to these sites from 0% to 100% coverage of the surface layer. All

configurations of the dopant ions were considered, however only the lowest energy ones

are reported here. The minimised (defective) simulation cell was used to calculate the
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surface energy for that number of dopant ions, as given in Equation 3.8

γdef =
Edef
surf +

(
Eperf
bulk + Edef

)
A

(3.8)

For each of the low index surfaces the change in surface energy is plotted against

dopant concentration per surface area. This allows the effect of multiple dopants at the

surface to be seen. In some cases the dopants have a stabilising effect and reduce the

surface energy. It is important to note that the rare earth dopant ions have all been

placed in the same layer, which is the layer of Y3+ ions nearest to the surface. The

depth of this layer varies for each of the surfaces depending on the repeat unit. This

is of importance because the depth profiles in the previous section highlighted that

the uppermost layer of Y3+ ions was not necessarily the lowest energy position when

considering single dopant ions.

Figure 4.12 shows the plots for the (001) surface. In this surface, all dopant ions

have a destabilising effect and increase the surface energy. The single dopant ion

depth profile for this surface revealed that the uppermost surface site had a positive

segregation energy and so this result is not surprising. However, for some dopant

ions, La3+, Ce3+ and Pr3+, there is a non-linear change in surface energy meaning

that clusters of multiple dopant ions are more stable than single ones. Although the

reduction in energy is not sufficiently great to reduce the energy below the perfect YLF

surface energy. The dopant ion that has the smallest destabilising effect on the surface

is Dy3+.

As stated above, the Tm3+-F− and Lu3+-F− potentials were refitted for this surface

modelling. This was because at this stage, the results produced unphysical results for

this surface. The original rare earth fluoride potential derivation paper revealed that

these two systems reproduced the lattice structure more poorly than the others, and

so they were refitted for this work. Note, that the earlier bulk results were obtained

with the original published potentials. A check was carried out to see the difference the

newly fitted potentials made on the bulk defect energies and was it found to be small.
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Figure 4.12: Surface energy against dopant concentration for the (001) surface. The
rare earth ions are split across two graphs for clarity.
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Figure 4.13: Surface energy against dopant concentration for the (010) surface. The
rare earth ions are split across two graphs for clarity.
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The (010) surface (Figure 4.13) is also destabilised by most rare earth ions, with

the exception of La3+ and Dy3+. The presence of Dy3+ ions at this surface has little

effect on the energy of the surface, with only a small increase in energy at the higher

dopant concentrations. There is a slight decrease in surface energy with one La3+ ion

present on the surface (0.2%), however the surface energy increases dramatically at

higher doping levels. As with the (001) surface, the three dopants that have the smallest

impact on the surface energy are Dy3+, Er3+ and Tb3+. Likewise the dopant that has

the largest effect again is Tm3+.
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Figure 4.14: Surface energy against dopant concentration for the (011) surface. The
rare earth ions are split across two graphs for clarity.
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The (011) surface has a more complicated plot (Figure 4.14). None of the dopant

ions reduce the surface energy below that of a perfect surface, however, for some of the

dopant ions (La3+, Pr3+, Gd3+, Tb3+, Dy3+, Er3+, Yb3+, Lu3+) zero-gradient sections

where the addition of another dopant ion does not increase the surface energy occur.

For example, the surface energy of an Dy3+ doped face does not increase from the

perfect surface until there is 1 dopant per nm. The surface energy remains at this value

up to (at least) 2 dopants per nm. This implies that this surface is less affected by

the presence of the dopants and that clusters of dopants are equally as likely. The

dopant that has the largest impact in the surface energy is La3+, which at the maximum

doping level increases the surface energy by 3%. Comparing this to the largest increase

in surface energy for the two previously discussed surfaces - (001) Tm3+ results in a

29% increase, (010) Tm3+ results in a 14% increase - it reveals that this surface is less

effected by the dopant ions. The repeat unit for this surface shows that the Y3+ layer

(i.e. the dopant layer) is relatively deep within the crystal, and is a mixed layer of Y3+

cations and F− anions. The layers immediately around the Y3+ layer are also anion

layers. It may be the close proximity of these anion that help to reduce the energy of

the dopant-filled surface. In the two previous surfaces discussed, (001) and (010), the

Y3+ layer is a mixed cation layer with Li3+ ions.

The (012) surface is the first surface that the inclusion of rare earth ion dopants

reduces the surface energy and stabilises the surface. The layer in which the rare earth

ions dope in this surface is a mixed layer that contains all three constituent ions of

YLF. La3+ and Ce3+ ions reduce the surface energy with up to 1.3 dopants per nm

before the energy increases at higher dopant concentrations (Figure 4.15). In the case

of La3+ ions the reduction in energy is around 4%. All other rare earth ions show an

increase in surface energy with increasing concentration of dopant ions. While La3+ ions

decrease the surface energy of this surface at lower concentrations, the surface energy

quickly increases at higher concentrations. The three lowest surface energies at the

maximum concentration are, as with all surfaces, Dy3+, Er3+ and Tb3+. These dopant

ions consistently produce shallow gradient plots meaning that they do not impact on
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Figure 4.15: Surface energy against dopant concentration for the (012) surface. The
rare earth ions are split across two graphs for clarity.
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the stability of the surface to any great degree. These three rare earth ions are most

similar in ionic radius to Y3+, with the exception of Ho3+. The mismatch in ionic radii

for these ions is between 2% and −2%. This explains the pattern seen in the results.

However, Ho3+, in the surfaces discussed so far, is one of the dopant ions that effects

the surface energy the most, despite it having the closest ionic radius match to Y3+.

The (021) surface has a similar mixed ion doping layer. A similar trend (Figure

4.16) is seen for the surface, with La3+, Ce3+ and Pr3+ showing some decrease in surface

energy. For La3+ the maximum decrease in surface energy occurs for 0.7 dopants per

nm with a reduction of 1.5%. Again Dy3+, Er3+ and Tb3+ are the three dopant ions

that alter the surface energy the least.
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Figure 4.16: Surface energy against dopant concentration for the (021) surface. The
rare earth ions are split across two graphs for clarity.
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The plots for the (110) surface are very different to the first five surfaces discussed

(Figure 4.17). This surface is the first surface in which the doping layer is at the surface

termination (i.e. 0 Å). All rare earth dopant ions, apart from Dy3+ and Er3+, reduce

the surface energy to some degree. La3+ produces the greatest reduction in surface

energy (14.5%), then Ce3+, then Pr3+, and then Nd3+. This aligns with the theory of

defect segregation due to elastic strain induced by the mismatch of ionic radii.

Doping within the (111) surface is also in a mixed Y-Li-F layer like in the surfaces

(012) and (021). However, unlike with those surfaces no reduction in surface energy is

seen (Figure 4.18). Again Dy3+, Tb3+ and Er3+ cause the least effect on the surface

energy.
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Figure 4.17: Surface energy against dopant concentration for the (110) surface. The
rare earth ions are split across two graphs for clarity.
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Figure 4.18: Surface energy against dopant concentration for the (111) surface. The
rare earth ions are split across two graphs for clarity.
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(112) is the first surface to show significant reductions in surface energy across

the rare earth series. At this surface, dopants ions La3+ through to Dy3+ (with the

exception of Eu3+) reduce the surface energy. The largest decrease occurs for around

2 La3+ ions per nm. The reduction is equal to 7.7%. While this is not the largest

percentage decrease, this surface is unique in that it accepts more of the rare earth ions

than any of the others. The maximum doping level is also greater than the other others.

The three dopant ions that affect the surface energy least are Tb3+, Dy3+, and Gd3+.

These are slightly different to the previous surfaces, where Gd3+ was the fourth ion not

third. The opposite is true at this surface.

Although the doping layer at the (120) surface is similar to that at the (001) surface,

the plots produced are linear in style and show no decreases in energy due to clustering

from this linear increase. In common with all surfaces, Dy3+, Tb3+ and Er3+, are the

ions that increase the surface energy the least (with Gd3+ being the next ion).

The (121) surface shows an almost identical pattern to the (120) surface. The only

exception being Sm3+, which has a lower surface energy.
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Figure 4.19: Surface energy against dopant concentration for the (112) surface. The
rare earth ions are split across two graphs for clarity.
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Figure 4.20: Surface energy against dopant concentration for the (120) surface. The
rare earth ions are split across two graphs for clarity.
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Figure 4.21: Surface energy against dopant concentration for the (121) surface. The
rare earth ions are split across two graphs for clarity.
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For the smaller rare earth ions (Sm3+ onwards), the effect at the (122) surface is

similar to the previous two surfaces, with an (almost) linear increase in surface energy

with dopant concentration. However, the first four rare earth ions (La3+, Ce3+, Pr3+,

and Nd3+) show a decrease in surface energy with dopant concentration, with La3+

giving the largest reduction at 0.68 Å equal to 0.7%. This is a small decrease in surface

energy compared to other surfaces. The doping layer at this surface is a mixed cation

and anion layer, similar to the (012) and (021) surfaces, which also showed a decrease

in surface energy (albeit to a larger extent). The largest doping concentration modelled

at this surface is smaller than many of the other surfaces, due to the mixed ion make

up of the surface.

The (210) surface shows no decrease in surface energy with increasing concentration

of dopant ions. The trends seen match those seen in the other surfaces.
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Figure 4.22: Surface energy against dopant concentration for the (122) surface. The
rare earth ions are split across two graphs for clarity.
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Figure 4.23: Surface energy against dopant concentration for the (210) surface. The
rare earth ions are split across two graphs for clarity.
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The final two surfaces, (211) and (221) are both of a different type to all those

considered so far. The doping layer at these surface contains just Y3+ ions. The Y3+

layer at the (211) surface is at a depth of 0.8 Å. No reduction in surface energy is seen.

At the (211) the Y3+ layer is at the surface termination. The only other surface

termination doping considered was at the (110) surface, at which most rare earth ions

decreased the surface energy with La3+ reducing the energy by 14.5%. Here most rare

earths do not decrease the energy, with the exceptions of La3+, Ce3+, and Nd3+. Again

La3+ provides the largest decrease in surface energy (3.1%).
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Figure 4.24: Surface energy against dopant concentration for the (211) surface. The
rare earth ions are split across two graphs for clarity.
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Figure 4.25: Surface energy against dopant concentration for the (221) surface. The
rare earth ions are split across two graphs for clarity.
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Looking more generally at the results from the low index defective surface energies,

it is seen that those rare earth ions with similar ionic radii to Y3+ tend to affect the

surface energy least. This is expected because similar ionic radii between dopant and

lattice site ion means a small elastic strain induced in the lattice. As segregation energy

is proportional to elastic strain, and the defective surface energy is proportional to

segregation energy, the defective surface energy should be minimally affected.

γdef ∝ Eseg

and Eseg ∝ Estrain

∴ γdef ∝ Estrain

The exception to this is Ho3+, which has the closest ionic radius to that of the Y3+

ion. Ho3+ consistently across all surfaces was one of the highest energy dopant ions.

There is no obvious explanation for this, and it should be examined further. A possible

cause is with the potential. The rare earth fluoride potentials used in this work have

not been used in surface modelling before, and as seen some of them broke down during

use. It is possible that the Ho3+-F− potential is also inadequate and should be further

tested by refitting.

Table 4.25 lists the seven surfaces that for La3+ doping the surface energy decreased.

The table gives the maximum percentage change in surface energy and the concentration

at which that occurs. It also lists the remaining surfaces along with the increase in

surface energy for La3+ when doped with six rare earth ions. The top three surfaces,

(111), (112) and (012), have the La3+ ion doped in a mixed layer that contains F− ions.

There are also layers of F− ions either side of the doping layer. The next surface, (211),

has the dopants in a pure Y3+ layer with Li+ in the surrounding layers. This highlights

what is generally true, that there appears to be no immediately obvious relationship

between doping layer environment and defective surface energy.

As outlined previously, there is an alternative method to achieve the same result as

presented here that is referred to as the ES method (equilibrium segregation method).
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Surface Percentage change Concentration of

in surface energy /% La3+ /dopants per nm

(110) −14.5 0.61
(112) −7.7 2.12
(012) −4.1 1.30
(221) −3.1 0.21
(021) −1.5 0.63
(122) −0.7 0.76
(010) −0.2 0.61
(210) 0.6 0.82
(011) 3.0 1.96
(120) 3.6 1.22
(111) 5.0 1.22
(121) 7.3 1.19
(211) 9.3 1.59
(001) 10.7 1.16

Table 4.25: Change in surface energy with La3+ ions present. For those surfaces where
the change reduces the surface energy, the value quoted is for the maximum reduction.

For the other surfaces, the value quoted is for doping with six La3+ ions.

In this method the dopant ions are embedded in a CHAOS simulation and the defect

energy calculated. From this the segregation energy is determined and this is used

to determine the defective surface energy using Equation 3.6. The two methods are

equivalent and should produce the same results, however, this was not found to be the

case. To provide an example of the difference, Table 4.26 lists the defective surface

energies for one to three La3+ and Eu3+ ions at the (001) and (112) surfaces obtained

using both methods. The lowest energy configuration of dopant ions obtained from

the DSM method was used in the ES simulation. There is a slight difference in the

surface energies, which the author attributes to the defect formation energy as a result

of convergence with the CHAOS code and the nature of the isolated simulation cell.

4.3.6 Dopant ion configurations

For each concentration of dopants there are a number of possible arrangements within

the surface layer. All surface energies quoted previously are for the configuration of

dopant ions that was the lowest energy. Across all of the low index surfaces and all rare

earth ions there are many different configurations that form the lowest energy. Detailing
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Dopant Number of Surface energy Surface energy

dopants from DSM /J nm−2 from ES /J nm−2

(001) La
1 0.734 0.706
2 0.722 0.699
3 0.724 0.783

(001) Eu
1 0.734 0.777
2 0.750 0.835
3 0.766 0.893

(112) La
1 0.734 0.706
2 0.722 0.699
3 0.724 0.783

(112) Eu
1 0.734 0.777
2 0.750 0.835
3 0.766 0.893

Table 4.26: Difference in La3+ doped surface energies obtained from DSM and ES
methods. The ES surface energy is determined from calculating the defect energy at the
surface, for the same configuration of dopant ions as the DSM method, using CHAOS.
The difference in the energy arises due to the methodology used and should be equal.

all configurations would be time consuming and provide little information of importance.

Instead a few examples from the (001) surface are presented to highlight the general

trend shown in Figure 4.26. Comparing the configuration of Ce3+ to Sm3+ (for low

numbers of dopant ions) the trend seen is that Ce3+ ions tend to sit in different planes

within the doping layer, while Sm3+ sits in the same plane. This trend is true across

the rare earth series, with the first few ions (La3+ to Eu3+) separating across different

planes and the latter ions residing in the same plane. This can be explained with ionic

radius and lattice strain, as the first few ions are larger than the Y3+ ion they replace.

As the doping level increases, the number of possible configurations decreases and the

rare earth ions are forced to reside in the same plane as each other. The configurations

shown in Figure 4.26 represent just a few of the lowest energy configurations, as for the

lower concentration systems there are more than one configuration that produces the

same energy.
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Figure 4.26: Selected dopant ion configurations at the (001) surface. a) shows the

lowest energy configuration for 2 Ce3+ ions, b) for 2 Sm3+ ions, c) for 3 Ce3+ ions, d)

for 3 Sm3+ ions, e) for 4 Ce3+ ions, and d) for 5 Ce3+ ions. There may be more than

one configuration has the same energy but only one is shown here. The plots are

orientated such that x-plane is into the page (i.e. the view is of the surface layer with

the bulk crystal below into the page).
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4.3.7 McLean relationship

Throughout the defective surface work, the explanation given for many of the trends

seen has been elastic strain induced in the lattice through ionic radii mismatch between

the dopant ion and the lattice ion it replaces. To confirm this quantitatively the

relationship proposed by McLean [139] can be used. The proposed relationship is:

Eelastic =
6πBr3(∆r

r
)2

1 + 3B
4µ

(3.3)

where r is the radius of the lattice ion, ∆r is the difference in radius between the defect

and lattice ion, B is the bulk modulus of the defect and µ is the shear modulus of the

lattice. µ is constant across all simulations and so if B is assumed to be constant across

the rare earth ions, the segregation energy would be proportional to (∆r
r

)2.

The segregation energies used in the plot are the optimum segregation and therefore

are not for equal dopant concentrations. Previous studies [140, 141] have shown the

importance of concentration in determining the segregation energy because segregation

energy is not independent of surface coverage. The values were calculated by obtaining

the surface defect formation energy by calculating the difference between the defective

surface block energy and the perfect surface block energy.

Plotting (∆r/r)2 against segregation energy produced a non-linear complicated plot.

Unlike with other studies, for example [188, 140], where the fit was excellent here the

McLean relationship did not fit with the segregation data. However, if just the first rare

earth ions are considered (i.e. La3+ to Nd3+) linear plots are produced (Figure 4.27).

These four rare earth ions are the most the dissimilar in ionic size to the host Y3+ site

and therefore should induce the largest strain in the lattice. The rare earth ions Tm3+,

and Lu3+ also fit to some degree with the linear trend created by the first four rare

earth ions. These are the two potentials that were refitted for this work.

The plots show that all surfaces fit to the linear trend predicted by the McLean

relationship and all of the linear lines have negative gradients meaning those dopants

with largest difference in ionic size have the lowest segregation energy.

The rest of the rare earth series have not been plotted, as the data is extremely
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Figure 4.27: Plot of relative ionic size of dopant against segregation energy for the first
four rare earth ions (La3+ to Nd3+) as proposed by McLean [139].

scattered resulting in a poor linear fit. However, the linear fit for them are all positive.

This is not the trend that is predicted but may be a result of the similarity in the ionic

size of these dopants to the host Y3+ site.

There are a number of reasons why the plots do not produce a linear trend as

predicted by McLean. It may be due to poor potentials. Two potentials were refitted

during the work as they were found to be inadequate and these two rare earth ions lie

closer to the linear trend than the other ions. The theory appears to work for those

ions that show strong segregation but breaks down for the ions that do not in YLF.

This may be true for other systems too. Finally, the McLean plot assumes that the

bulk modulus of the rare earth ions is constant.
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4.3.8 Defective morphology

It has been shown that surfaces with dopants present have different surface energies.

This will lead to a different equilibrium morphology prediction as the size of each

interface is proportional to the surface energy. In order to consider the changes dopant

ions may have on the crystal morphology, a number of properties have to be defined.

Firstly, as the morphology prediction is based on surface energy the crystal must be

at equilibrium for the Wulff construction to be valid. Secondly, the two properties of

the system that can change are the crystal size and the level of doping. These two

properties affect the parameters of the prediction.

Crystal size is important as large crystals will have a high ratio of bulk to surface

sites and can therefore accommodate higher concentrations of dopant ions in non-surface

sites compared to small crystals. This relates to the doping level to produce four possible

scenarios.

Large crystal, low doping In this case not all surfaces would reach optimum surface

energy as the doping level is too low. Surfaces with the greatest segregation energy

would reach the optimum surface energy first. If there was very low doping then

all dopants may reside in surface sites.

Small crystal, low doping In the case of very low doping not all surfaces would

reach the optimum surface energy. Surfaces with the greatest segregation energy

would reach the optimum surface energy first. This scenario is very similar to the

previous.

Large crystal, high doping All surfaces would reach the optimum surface energy

with the remaining dopant ions residing in the bulk.

Small crystals, high doping Dopant ions would be forced to surface sites if the ratio

of bulk to surface sites was low and there was high doping levels.

The simplest of these to model is the scenario of large crystals and high doping.

While this is referred to as high doping, the doping level only needs to be great enough
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to all surfaces to reach the optimum surface energy. As for YLF most surface energies

are increased with the presence of the rare earth dopants the level of doping required for

this scenario is relatively low. Figures 4.28 and 4.29 show the morphology predictions

for the rare earth ions considered in this work along with the percentage change from

the perfect YLF morphology.

The most obvious difference in the morphologies is that the (111) surface, which

appears in the perfect YLF morphology, is replaced by the (110) surface when La3+,

Ce3+, Pr3+, and Nd3+ ions are present. Table 4.25 shows that the (110) surface was the

surface most greatly affected by the present of dopant ions. It is therefore unsurprising

that the surface energy is reduced enough for it to replace the (111) surface. For La3+

ions the (110) surface energy changed by −14.5% whereas the (111) surface changed

by 5%. For Sm3+ doped YLF neither the (111) or the (110) surface appears in the

morphology. The extra surface area is taken up by the (112) surface in this case. For

the rare earth ions from Eu3+ to Lu3+ the (111) appears again. The latter rare earth

doped YLF morphologies are all similar to the perfect YLF morphology.

The first five rare earth ions (La3+, Ce3+, Pr3+, Nd3+ and Sm3+) show the greatest

difference from the perfect YLF morphology. This is due to these ions having the

strongest segregation tendency. For all five ions the (112) surface area is increased. The

(112) surface was the second most affected surface by the presence of dopants (Table

4.25). The next four surfaces in decreasing order of dopant segregation are the (012),

(221), (021) and (122). These do not decrease in energy sufficiently to appear in any of

the morphologies.

The (211) surface is the other surface that changes across the morphologies. This

is despite the surface energy of this surface not changing, as all dopant ions cause an

increase in the surface energy. The surface energy for this surface is therefore the perfect

(211) surface energy for all rare earth ion doped systems. The change in the surface

area coverage is caused by the change in the surface energies of other surfaces.

While the relative size of each surface alters across the rare earth ions, the overall

shape of the morphology remains consistent. Even the (111) surface being replaced
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with the (110) does not alter the overall shape.

The three other scenarios can be considered qualitatively from the results shown

for the large crystal with high doping. If the crystals are large, but the doping level is

lower then only those surfaces with large segregations energies would reach optimum

surface energy. The morphology predictions would therefore be very similar to those

shown as the surfaces that change the most in surface area coverage are those with the

largest segregation energy.

In the two scenarios with small crystals, the low doping would again produce

morphology predictions very similar to those shown. In the case of high doping, dopant

ions may be forced to surface sites, providing there is enough energy. In this case the

morphologies would be different, however, it is not easy to predict them as the Wulff

construction theory relies on equilibrium growth. To make an attempt to predict the

morphologies, the smallest positive segregation energies would be assumed to be where

the dopants would be forced to reside after the negative segregation sites were filled.

The surfaces that have the greatest reduction in energy with dopant ions present are

most likely to be the surfaces with the lowest positive segregation energies also. The

morphology predictions are therefore likely to contain the same surfaces as before, just

in different ratios of surface area coverage. As the doping level is increased, other

surfaces would start to appear.
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Figure 4.28: Morphology predictions based on defective surface energy for dopant ions
La3+ to Tb3+. Surface area percentages are given and colour coded. Surfaces that

increase in area from the perfect YLF morphology are green. Those that decrease are
red. Only the surfaces that change from the perfect YLF morphology are labeled.
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Figure 4.29: Morphology predictions based on defective surface energy for dopant ions
Dy3+ to Lu3+. Surface area percentages are given and colour coded. Surfaces that

increase in area from the perfect YLF morphology are green. Those that decrease are
red. Only the surfaces that change from the perfect YLF morphology are labeled.
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4.3.9 Summary

Surface and attachment energies were calculated for YLF and were used to predict the

equilibrium and growth morphologies. The equilibrium morphology was dominated

by the (112) and (011) surfaces as these had the lowest surface energies. The rest of

the morphology consisted of the (001), (010), (111) and (211) surfaces. The growth

morphology was dominated by the (001) and (120) surfaces as these were the slowest

growing faces. The rest of the growth morphology consisted of the (010) and the (011)

surfaces.

Rare earth dopant segregation to the surfaces that appear in the morphologies were

calculated. This revealed that there was segregation to all surfaces studied - (001),

(011), (112) - but was to a much greater degree for the (112) surface. At the (112)

surface the defect energies did not reach their bulk values until a depth of 9 Å; far

greater than with the other two surfaces. Common across all three surfaces was that

the first rare earth ions in the group have stronger segregation tendencies than the

latter ones, with La3+ producing the largest segregation energy of them all. As the

primary driving force for defect ion segregation is elastic strain induced in the lattice

by a mismatch in defect ion radius to lattice host radius, this result was as expected.

To analyse the segregation of defects further a methodology was established to

consider clusters of multiple defects at the surfaces of all low index faces and the effect

they had on the surface energy. The same trend was seen from these results in that

those rare earth ions with similar ionic radius to Y3+ tend to affect the surface energy

least. One exception to this appeared. Ho3+, which has the closest ionic radius to that

of the Y3+ ions, had one of the greatest impacts on the surface energy. Considering the

case of La3+, as this ion produced the greatest reduction in surface energy, the surface

that changed the most in energy was the (110) surface, which saw a reduction of 14.5%

in surface energy. The next surfaces in decreasing size of the reduction in energy are:

(112), (012), (221), (021), (122) and (010). The remaining surfaces all showed increases

in surface energy with the presence of La3+ ions (and therefore all rare earth ions).

Using the defective surface energies it was possible to predict the defective mor-
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phology. In the case of large crystals, such that there is a high ratio of bulk to surface

sites, and high doping levels, all surfaces would reach the optimum surface energy with

the remaining dopant ions residing in the bulk. For systems with La3+ to Nd3+ ions

present the (111) surface is replaced by the (110) surface in the morphology. For Sm3+

neither the (111) or the (110) surface appears. As expected for the latter rare earth

ions the predicted morphology is similar to the perfect YLF morphology. Despite the

surfaces that appear in the morphology changing, and the relative ratios of surface

areas changing, the overall shape does not change.

The results from this work into the surface properties of YLF provide important

information needed for the design, development and improvement of this laser material.

For example, ideally a doped laser crystal would be homogeneous as clustering of defects

makes cutting and polishing any crystals more difficult, and dopant ions that lie close

to each other can cause problems through energy transfer processes that may degrade

the laser action. The calculated segregation of dopant ions can be used to provide an

insight into possible clustering of dopant ions. It is shown that the latter rare earth

ions are more suited for this application as they tend to cluster less. The dominance of

the (112) surface in the surface morphology and the stabilisation of this surface with

the presence of dopant ions may have an impact on the quality of the crystal and must

therefore be considered.
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4.4 Future work

This work into YLF has raised a number of interesting results that should be examined

further. Firstly, the unusual decrease in the ‘a’ parameter with increasing temperature

should be investigated further. To achieve this, the potentials need to be improved for

non-static simulations. Stiffening the spring constant in the Shell Model may be enough

and should be tried as a first approach.

To extend the work in the prediction of the impact dopant ions have on the

morphology, the other scenarios of crystal size and doping level could be examined

explicitly. The work carried out so far assumed the dopant ions were at the uppermost

cation layer to the surface termination. The depth profiles of the morphologically

important surfaces revealed that often the defect energies do not reach bulk values until

a deep depth. The work carried out in this thesis could therefore be repeated but at

the second cation layer down.

The simulation cells could be scaled further to see if the same results are produced.

The surfaces in this work were filled from 0% to 100% and so with larger simulation

cells the effect of concentration and surface coverage could be examined further.

Finally, as it is the electronic properties of the rare earth dopant ions that provides

this system with its useful properties, detailed electronic structure modelling should be

carried out. This would not be a trivial task as yttrium and the rare earth ions are large

complex elements that would cause problems in this type of modelling, particularly if

concentration effects were to be looked at.
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BaMgF4

5.1 Structural description

BMF has the formula BaMgF4 and is a material that is actively being researched for its

optical properties that arise when doped with rare earth ions. These properties open

up the possibility of practical applications for the material, mainly in the area of solid

state lasers that operate in the IR (infrared), UV (ultraviolet), and near UV region.

BMF consists of Ba2+ ions surrounded by six F− ligands forming a trigonal prism

and two F− ligands in a plane containing the Ba2+ ion perpendicular to the c-axis.

There are four crystallographically distinct fluorine sites. Mg2+ ions and six F−

ligands form a distorted octahedron. Structural and electronic calculations indicate the

octahedral distortion arises because the undistorted unit cell is unable to accommodate

the energetically preferred Mg - F1 bond lengths, forcing the F1 anion outward to

achieve the favoured separation [189]. This distortion and rotation gives rise to the

ferroelectric spontaneous polarisation, directed along the c-axis [190, 191, 192]. BMF

belongs to the orthorhombic crystal system with the space group Cmc21. The structure

is shown in Figure 5.1 as reported by [193] with unit cell parameters of a = 4.13 Å, b

= 14.52 Å, c = 5.82 Å.
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Figure 5.1: Unit cell of BMF as reported by [193] with unit cell parameters of a = 4.13
Å, b = 14.52 Å, c = 5.82 Å. Atoms are shown in relative ionic size.

Figure 5.2: Unit cell of BMF showing the magnesium coordination. Atoms are shown
in relative ionic size.
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Figure 5.3: Unit cell of BMF showing the barium coordination. Atoms are shown in
relative ionic size.

5.1.1 Literature review

BMF is of interest as a UV laser host lattice due to a number of its properties. It is

colourless and transparent down to approximately 130 nm [194, 195]. BMF has a large

bandgap to cover the UV/VUV (ultraviolet/vacuum ultraviolet) wavelength region,

which is more generally true of fluoride single crystals. They tend to have a larger

bandgap than oxides and that is why fluoride single crystals have high potential in

UV/VUV laser applications [196]. Pyroelectric and piezoelectric properties of BMF

have been reported [190], as have ferroelectric properties with thin films of BMF having

been investigated for memory applications [197, 198].

In the area of laser development, BMF has been studied less widely than YLF and

is, to date, not available as a working, commercial laser device. It is still however, a

candidate and the BMF lattice offers a number of advantages. Shimamura and Villora

in 2011, after a range of studies into solid-state laser materials, concluded there is ‘high

potential for BMF as a laser source with generation at 193 nm’ [196]. Kodama et al.

[199] grew Ce:BMF crystals with various concentrations of Na+ ions from 0% to 2.5%

as charge compensation. The Ce3+ ion concentration was 0.5% in all cases. The aim

was to produce a tunable laser, however, on being irradiated with an intense 266 nm

laser, colour centres were formed that caused the material to turn brown (green at high
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temperature). Despite this, the material is still believed to offer potential as a tunable

laser [200].

Kuck and Sokolska (2002) report the growth and characteristics of Pr3+ doped BMF

[201] as an alternative to the Ce3+ doped systems. The use of other dopants has been

reported including Yb3+ by Garcia-Santizo [202] and Nd3+ by Munoz-Santiuste [203].

There have been a small number of electronic structure modelling studies into BMF.

In 2010, Huang et al. published a plane-wave pseudopotential study into BMF which

reported the electronic band structure of the material [204]. A further computational

paper was published by Watanabe et al. in 2006 outlining work into the 4f5d transition

in Ce3+ doped crystals including BMF [205]. Most recently, Janssens, Williams and

Clarke reported the growth of Ce3+, Nd3+, and Eu3+ doped BMF nanoparticles [206].

Based on the photoluminescence results the authors remark that the Ce3+ and Eu3+

ions occupy two distinct crystal sites.

Research has not just focussed on BMF as a laser source but also as a possible

scintillator device. The scintillation properties of BMF have been reported [207, 208, 209]

and in 2010, Yanagida et al. carried out further studies and concluded ‘BMF is generally

a suitable candidate for radiation measurements with high counting rate’ [210].

A study by Posse, Friese and Grzechnik (2011) into the stability of BMF at high

pressure revealed BMF undergoes a reversible phase transition to the paraelectric phase

at pressures between 5 and 6 GPa [211].
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5.2 Atomistic - bulk modelling

5.2.1 Perfect system

The ion interactions were modelled using potentials taken from previous work on this

material [96]. Electrostatic supplemented Buckingham potentials were used for the

interactions between Ba2+-F− and Mg2+-F−, while the F−-F− interaction was modelled

with a Shell Model to represent the polarisability of the ions. The Mg2+-F− potential

was modified to reproduce the BMF structure and the MgF2 lattice. The potentials

used are given in Table 5.1.

These potentials produce a model which is within 1.6% of the observed lattice

parameters [193] (Table 5.11). Further properties such as elastic constants can be

compared to ensure the model reproduces the system accurately. Elastic constant data

is reported in Table 5.3. The fit of the elastic constants is variable, however, it should be

noted that the potentials used in this work were not fitted to the elastic constants. The

accurate reproduction of the lattice parameters and that successful use of the potentials

in other work [96] provides support to the model’s accuracy.

Further physical properties are listed in Table 5.4 as calculated from the simulation.

All potential cut-offs were set to 0.0 Å and 10.0 Å, and all defect calculations were

performed using the Mott-Littleton method with region sizes of 10 Å and 15 Å. These

correspond to approximately 500 ions in region 1 and 1100 ions in region 2a. The

lattice energies used throughout this chapter for defect calculations are listed Table 5.5,

and they were obtained from simulations using the potentials listed for consistency.

The region sizes were chosen based on the need for converged defect values but also a

Interaction A /eV ρ /Å C /eVÅ6 F shell q K (Fcore-Fshell) /eVÅ−2

Ba2+-F− 3090.2000 0.2987 0.0000 - -
F−-F− 1153.6000 0.1365 0.0000 -2.321 |e| 48.40

Mg2+-F− 1140.0000 0.2664 0.0000 - -

Table 5.1: Interatomic potentials used in the atomistic modelling of BMF taken from
previous work [96] with the exception of Mg2+-F−, which was modified. All potentials

are in the form of the Buckingham potential.
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Parameter Modelled Observed [193] Percentage difference /%

a 4.17 Å 4.13 Å 0.97
b 14.37 Å 14.52 Å 1.03
c 5.91 Å 5.82 Å 1.55

α/β/γ 90.00◦ 90.00◦ 0.00

Table 5.2: Comparison of modelled BMF unit cell parameters to the observed
parameters.

Parameter Modelled /GPa Reported [212] /GPa Percentage difference /%

C11 114.3 104.0 −9.9
C12 34.1 28.7 −18.8
C13 52.8 63.7 17.19
C22 75.6 81.0 6.7
C23 30.2 35.8 15.6
C33 89.1 130.0 31.5
C44 16.8 32.1 47.7
C55 46.0 55.1 16.5
C66 25.2 24.7 −2.0

Table 5.3: Comparison between reported elastic constants and modelled ones.
Experimental values are quoted at room temperature.

Property Modelled

Shear Modulus 28.4 GPa
Bulk Modulus 57.0 GPa

Young’s Modulus
x: 79.0 GPa
y: 62.1 GPa

z: 65.5

Static dielectric
xx: 11.1
yy: 9.0
zz: 7.7

High frequency dielectric
xx: 2.2
yy: 2.1
zz: 2.1

Static refractive indices
1: 2.7
2: 3.0
3: 3.3

High frequency refractive indices
1: 1.5
2: 1.5
3: 1.5

Table 5.4: Table listing physical properties of BMF obtained from the simulation.
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System Elatt /eV Reference

BaF2 −23.940 calc.
MgF2 −29.920 calc.

BaMgF4 −54.052 calc.
LaF3 −49.701 [114]
CeF3 −50.154 [114]
PrF3 −50.596 [114]
NdF3 −51.040 [114]
SmF3 −51.244 [114]
EuF3 −52.246 [114]
GdF3 −52.238 [114]
TbF3 −52.234 [114]
DyF3 −52.850 [114]
HoF3 −53.374 [114]
ErF3 −53.466 [114]
TmF3 −53.633 [114]
YbF3 −53.961 [114]
LuF3 −54.253 [114]

Table 5.5: Lattice energies of BaF2,MgF2 and all REF3 studied used in the calculation
of solution energies.

sensible computation time.

5.2.2 Intrinsic defects

Intrinsic defects are those that appear naturally within the system through thermal

action and involve no non-native species. The first of these defects is the formation

of a vacancy. Table 5.6 lists the formation energy of vacancies of all three constituent

ions. There are four unique F− positions in the system so they are treated separately,

with an average value also given. The second is interstitials, which are constituent ions

at non-lattice sites. Table 5.7 lists the lattice sites considered in this thesis and the

formation energy associated with forming an interstitial there for the each of the three

ions in this system.

The results show, as expected, the formation energy of a F− vacancy is considerably

lower in energy than the cation vacancies. Cation vacancies are therefore unlikely

to appear in the lattice, however, the formation energies for cation interstitials are

favourable. Vacancies and interstitials occur in the lattice in the form of Frenkel defects.
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Vacancy Formation energy /eV

Ba 19.23
Mg 25.15
F1 4.70
F2 4.55
F3 4.55
F4 4.56

F(av) 4.59

Table 5.6: List of defect formation energies for constituent ions vacancies in BMF.

Lattice site Formation energy /eV

a) 0.2500, 0.7151, 0.3028
Ba −12.01
Mg −21.18
F −1.49

b) 0.5000, 0.5710, 0.5385
Ba −9.47
Mg −18.64
F −0.79

Table 5.7: List of defect formation energies for constituent ions interstitials in BMF.

To calculate the likelihood of Frenkel defects occurring, the solution energy has to be

calculated.

The reaction schemes for all intrinsic defects studied are:

1. EFrenkel = Evac + Eint

2. ESchottky = Bavac +Mgvac + 4(Fvac) + Elatt(BaMgF4)

3. EBaF3pseudo = Bavac + 2(Fvac) + Elatt(BaF2)

4. EMgFpseudo = Mgvac + 2(Fvac) + Elatt(MgF2)

The intrinsic defect energies are give in Table 5.8. The Frenkel energies are sub-

scripted ‘a’ and ‘b’ to correspond to the lattice site coordinates given in Table 5.7.

Two defect formation energies are given. The first of these is obtained from adding

the individual components that make up the total defect. For example, the Frenkel

energy is obtained by adding the vacancy formation energy to the interstitial formation

energy. The second value listed is for a bound defect energy. This is obtained from

simulating the total defect in one calculation. For example, for the Frenkel defect a
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Figure 5.4: Unit cell of BMF showing the first interstitial site considered at fractional
coordinates 0.2500, 0.7151, 0.3028. The atoms are shown in relative ionic size.

Figure 5.5: Unit cell of BMF showing the second interstitial site considered at fractional
coordinates 0.5000, 0.5710, 0.5385. The atoms are shown in relative ionic size.
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Defect Edef /eV Ebound
def /eV

Frenkel (F)a 3.10 2.11
Frenkel (F)b 3.80 3.11

Frenkel (Ba)a 7.22 5.41
Frenkel (Ba)b 9.76 9.47
Frenkel (Mg)a 3.97 2.62
Frenkel (Mg)b 6.51 2.71

Schottky 8.69 3.20
BaF2 pseudo-Schottky 4.47 2.10
MgF2 pseudo-Schottky 4.41 1.59

Table 5.8: List of intrinsic defects energies in BMF including Frenkel and Schottky
defects. Both bound and unbound defect energies are given.

vacancy and an interstitial is modelled together. The advantage of this approach is that

the binding energy of the two defects is included, which often lowers the defect energy.

The non-bound and the bound defect energies are both listed to provide a measure of

the binding energy, as:

Ebinding = Ebound
def − Edef (4.1)

It can be seen from these that the formation of Ba Frenkel defects are high energy,

with both the F and Mg Frenkel defect energies smaller. Schottky defects are of a

similar magnitude to the F and Mg Frenkel due to a large binding energy. The lowest

energy defect is the formation of a MgF2 pseudo-Schottky. In comparison with the

defect energies obtained for YLF in the previous chapter the energies for BMF are

greater.

In summary, the intrinsic defects most likely to dominate the BMF lattice are F

Frenkel, MgF2 pseudo-Schottky and BaF2 pseudo-Schottky.

5.2.3 Rare earth dopant solution energies

The optically important rare earth dopants all have a standard oxidation state of 3+.

However, there are no cations within the BMF lattice with this charge therefore charge

compensation is required in all cases. Six different reaction schemes were considered

and they are:
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1. 2REF3 + 3BaBa → 2RE·Ba + V
′′
Ba + 3BaF2

2. 2REF3 + 2BaBa +MgMg → 2RE·Ba + V
′′
Mg + 2BaF2 +MgF2

3. REF3 +BaBa → RE·Ba + F
′
i +BaF2

4. REF3 +MgMg → RE·Mg + F
′
i +MgF2

5. 2REF3 + 3MgMg → 2RE·Mg + V
′′
Mg + 3MgF2

6. 2REF3 + 2MgMg +BaBa → 2RE·Mg + V
′′
Ba + 2MgF2 +BaF2

The solution energies for these reactions are:

1. Esol =
1

2
[3(Elatt(BaF2) + EBa

vac + 2(Edef (REBa))− 2(Elatt(REF3))]

2. Esol =
1

2
[Elatt(MgF2) + 2(Elatt(BaF2)) + EMg

vac + 2(Edef (REBa))− 2(Elatt(REF3))]

3. Esol = Elatt(BaF2)) + E(Fi) + Edef (REBa)− Elatt(REF3) (5.1)

4. Esol = Elatt(MgF2)) + E(Fi) + Edef (REMg)− Elatt(REF3)

5. Esol =
1

2
[3(Elatt(MgF2)) + EMg

vac + 2(Edef (REMg))− 2(Elatt(REF4))]

6. Esol =
1

2
[Elatt(BaF2 + 2(Elatt(MgF2)) + EBa

vac + 2(Edef (REMg))− 2(Elatt(REF3))]

The potentials for the rare earth fluoride interactions were taken from [114] and are

reproduced in Table 5.9. Upon carrying out the surface modelling work of YLF (see

the previous Chapter), two of the potentials were found to produce unphysical results.

These were refitted using the methodology outlined in Section 2.2.3.

Table 5.10 lists the defect formation energies for rare earth dopants at both cation

sites and also the formation energy of a F interstitial at the ‘a’ lattice site. This

interstitial site was used for reaction schemes 3 and 4. The defect formation energies

are smaller for the rare earth ion at the Ba2+ site than at the Mg2+ site, however, to

evaluate which reaction scheme is the lowest energy, the solution energies have to be

calculated. All solution energies were calculated using both bound and unbound defects

in order to provide a measure of binding energy. Table 5.11 lists the solution energies

for the six reaction schemes. The scheme highlighted in red for each rare earth ion is
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Interaction A / eV ρ / Å C / eVÅ6

La3+-F− 2817.74 0.2980 0.0
Ce3+-F− 2627.13 0.2980 0.0
Pr3+-F− 2453.39 0.2980 0.0
Nd3+-F− 2488.27 0.2950 0.0
Sm3+-F− 1764.57 0.3064 0.0
Eu3+-F− 2085.74 0.2950 0.0
Gd3+-F− 1667.02 0.3037 0.0
Tb3+-F− 1541.15 0.3065 0.0
Dy3+-F− 1536.68 0.3037 0.0
Ho3+-F− 2590.91 0.2809 0.0
Er3+-F− 1880.44 0.2920 0.0
Tm3+-F− 1390.19 0.3037 0.0
Tm3+-F−* 3173.80 0.2733 0.0
Yb3+-F− 2381.55 0.2808 0.0
Lu3+-F− 1448.23 0.2990 0.0

Lu3+-F−* 2901.80 0.2735 0.0

Table 5.9: Rare earth fluoride potentials used in this work. Taken from [114]. The two
potentials marked * were refitted for the defective surface modelling as the original

potentials produced proved to inadequate.

the lowest energy scheme. For the first rare earth ions (La3+, Ce3+, Pr3+, and Nd3+)

the preferred doping site is the Ba2+ site with Mg2+ vacancies. For some of these ions

a F− interstitial instead of the vacancy as charge compensation is similar in solution

energy. The solution energy for Sm3+ doping is the same for both the Mg2+ and Ba2+

sites. The remaining rare earth ions dope at the Mg2+ site with vacancies as charge

compensation.

The ionic radius of Ba2+ is 1.42 Å while the ionic radius of Mg2+ is 0.89 Å. Rare

earth ion radii range from 1.16 Å for La3+, decreasing across the period to 0.98 Å for

Lu3+. (Radius information taken from [187]). This provides an explanation for why the

larger rare earth ions reside at the Ba2+ site.

These results are summarised into two graphs with one for each cation site; Figures

5.6 and 5.7. The graphs reveal that the solution energies at the Ba2+ site are more

constant across the rare earth ions compared to the Mg2+ site. At the Mg2+ there is a

clear decrease in solution energy for the latter rare earth ions.

The solution energy results allow all simulations with rare earth doping from now

on to be considered as listed in Table 5.12.
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RE Edef (REBa) /eV Edef (REMg) /eV

La −21.38 −14.04
Ce −21.79 −14.72
Pr −22.20 −15.40
Nd −22.62 −16.00
Sm −22.96 −16.81
Eu −23.74 −17.77
Gd −23.74 −18.02
Tb −23.81 −18.21
Dy −24.32 −18.96
Ho −24.87 −19.20
Er −24.99 −19.70
Tm −25.05 −20.15
Yb −25.46 −20.14
Lu −25.58 −20.89

Edef (Fi) /eV −1.49

Table 5.10: Defect formation energies at both cation sites in BMF and F interstitial
energy. Values are used to calculate solution energies for all reaction schemes.

Figure 5.6: Plot of rare earth solution energy for the three schemes for doping at the
Ba2+ site.
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Figure 5.7: Plot of rare earth solution energy for the three schemes for doping at the
Mg2+ site.

RE Scheme Doping method

La 2 RE·Ba + V
′′
Mg

Ce 2 RE·Ba + V
′′
Mg

Pr 2 RE·Ba + V
′′
Mg

Nd 2 RE·Ba + V
′′
Mg

Sm 6 RE·Mg + V
′′
Ba

Eu 6 RE·Mg + V
′′
Ba

Gd 6 RE·Mg + V
′′
Ba

Tb 5/6 RE·Mg + V
′′
Ba or RE·Mg + V

′′
Mg

Dy 5 RE·Mg + V
′′
Mg

Ho 6 RE·Mg + V
′′
Ba

Er 6 RE·Mg + V
′′
Ba

Tm 5 RE·Mg + V
′′
Mg

Yb 6 RE·Mg + V
′′
Ba

Lu 5 RE·Mg + V
′′
Mg

Table 5.12: Table summarising the doping method that was calculated as the lowest
energy scheme for each rare earth.
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5.2.4 Doping limit

As discussed in Section 2.4.4 an important, but non-trivial, calculation to make is to

estimate the theoretical doping limit of the rare earth ions within the BMF lattice.

The first step in determining the doping limit is to write the solid-state reaction.

As there are three different reaction schemes considered in BMF (Table 5.12) there are

three solid-state reactions. In general form, where MF3 is the rare earth fluoride and x

is the mole fraction of dopant ions, they are:

Scheme 2:

xMF3 + (1− x)BaF2 + (1− 0.5x)MgF2 → Ba(1−x)xM
·
BaMg(1−0.5x)(0.5x)V

′′
MgF4

Esol = Elatt[Ba(1−x)xM
·
BaMg(1−0.5x)(0.5x)V

′′

MgF4]−

[Elatt(xMF3) + Elatt((1− x)BaF2) + Elatt((1− 0.5x)MgF2)] (5.2)

Scheme 5:

xMF3 +BaF2 + (1− 1.5x)MgF2 → BaM ·
Mg(0.5x)V

′′
MgMg(1−1.5x)F4

Esol = Elatt[BaM
·
Mg(0.5x)V

′′

MgMg(1−1.5x)F4]−

[Elatt(xMF3) + Elatt(BaF2) + Elatt((1− 1.5x)MgF2)] (5.3)

Scheme 6:

xMF3 + (1− 0.5x)BaF2 + (1− x)MgF2 → Ba(1−0.5x)xM
·
Mg(0.5x)V

′′
BaMg(1−x)F4

Esol = Elatt[Ba(1−0.5x)xM
·
Mg(0.5x)V

′′

BaMg(1−x)F4]−

[Elatt(xMF3) + Elatt((1− 0.5x)BaF2) + Elatt((1− x)MgF2)] (5.4)
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The solution energy are determined in the usual way. The doping limit can be deter-

mined by setting the solution energy to zero and solving for x, the mole fraction of dopant

ions. The problem arises with determining the lattice energy for the defective BaMgF4

lattice. The first method considered to overcome this problem is the Jackson-Valerio

2011 method as published in [115]. In this, the defective lattice energy is assumed to be

equal to the perfect BaMgF4 lattice plus the defect formation energy as determined from

Mott-Littleton calculations. Both terms are adjusted by the mole fraction of dopant ions.

Scheme 2:

Assume:

Elatt[Ba(1−x)xM
·
BaMg(1−0.5x)(0.5x)V

′′

MgF4] =

(1− x)Elatt(BaMgF4) + 0.5xEdef (2M
·
Ba + V

′′

Mg)

Then:

Esol = (1− x)Elatt(BaMgF4) + 0.5xEdef (2M
·
Ba + V

′′

Mg)−

[Elatt(xMF3) + (1− x)Elatt(BaF2) + (1− 0.5x)Elatt(MgF2)] (5.5)

Scheme 5:

Assume:

Elatt[BaM
·
Mg(0.5x)V

′′

MgMg(1−1.5x)F4] =

(1− x)Elatt(BaMgF4) + 0.5xEdef (2M
·
Mg + V

′′

Mg)

Then:

Esol = (1− x)Elatt(BaMgF4) + 0.5xEdef (2M
·
Mg + V

′′

Mg)−

[xElatt(MF3) + Elatt(BaF2) + (1− 1.5x)Elatt(MgF2)] (5.6)
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RE Function Max % MF3

La Esol = 52.34x− 0.19 0.39
Ce Esol = 52.51x− 0.19 0.39
Pr Esol = 52.39x− 0.19 0.39
Nd Esol = 52.84x− 0.19 0.38
Sm Esol = 58.02x− 0.19 0.35
Eu Esol = 58.10x− 0.19 0.35
Gd Esol = 57.92x− 0.19 0.35
Tb Esol = 57.73x− 0.19 0.35
Dy Esol = 51.64x− 0.19 0.39
Ho Esol = 57.79x− 0.19 0.35
Er Esol = 57.52x− 0.19 0.35
Tm Esol = 51.21x− 0.19 0.39
Yb Esol = 57.68x− 0.19 0.35
Lu Esol = 51.07x− 0.19 0.40

Table 5.13: Concentration method for rare-earth doping in BMF. X in the function is
mole-fraction of MF3 used. The max percentage is found by setting Esol to zero.

Scheme 6:

Assume:

Elatt[Ba(1−0.5x)xM
·
Mg(0.5x)V

′′

BaMg(1−x)F4] =

(1− x)Elatt(BaMgF4) + 0.5xEdef (2M
·
Mg + V

′′

Ba)

Then:

Esol = (1− x)Elatt(BaMgF4) + 0.5xEdef (2M
·
Mg + V

′′

Ba)−

[xElatt(MF3) + (1− 0.5x)Elatt(BaF2) + (1− x)Elatt(MgF2)] (5.7)

Table 5.13 lists the solution energy functions based on this Jackson-Valerio assump-

tion and the calculated doping limit for each of the rare earth ions. This shows that

BMF does not readily accept high levels of doping of rare earth ions with levels at

approximately 0.4%. However, as discussed in the previous chapter, there are significant

problems with this method. The results for BMF highlight them again.

A modified version of the Jackson-Valerio method has the same starting point, but

the defective lattice is now considered to be equal to the perfect lattice plus x-amounts
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of the defect formation energy.

Edef
latt (BMF ) = Elatt (BaMgF4) + xEdef (5.8)

The difference in this approach to the previous is that the perfect lattice energy is

not scaled by the mole fraction of dopant ions. This equation is more logical than the

previous Jackson-Valerio method as the defect formation energy includes the change in

the perfect lattice to the defective one. This new approach is more robust and solves

the problem that occurred with divalent dopants in the old method.

Considering the case when x = 0, i.e. there are no dopants present, the solution

energy equations simplify to:

Esol = Elatt (BaMgF4)− [Elatt (BaF2) + Elatt (MgF2)] = Ef (BaMgF4) (5.9)

In this case, the solution energy equals the formation energy of BaMgF4. Rearranging

the solution energy equations (Equations 5.2, 5.3 and 5.4), with Esol set to zero, to

separate the x−terms and substituting for Eform (BaMgF4) gives:

Scheme 2:

x = − Eform (BaMgF4)

Edef
(
2M ·

Ba + V
′′
Mg

)
+ Elatt (MgF2) + 2Elatt (BaF2)− 2Elatt (MF3)

(5.10)

Scheme 5:

x = − Eform (BaMgF4)

Edef
(
2M ·

Mg + V
′′
Mg

)
+ 3Elatt (MgF2)− 2Elatt (MF3)

(5.11)

Scheme 6:

x = − Eform (BaMgF4)

Edef
(
2M ·

Mg + V
′′
Ba

)
+ 2Elatt (MgF2) + Elatt (BaF2)− 2Elatt (MF3)

(5.12)

Combining Equations 5.9 and 5.10/5.11/5.12 allows the doping limit, x, to be

calcuated. Table 5.14 lists the calculated percentages of x using this methodology.

Some of the percentages are negative, implying that with the conditions imposed by
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RE Max % MF3 Scheme

La −0.06 2
Ce −0.07 2
Pr −0.06 2
Nd −0.08 2
Sm 0.03 6
Eu 0.02 6
Gd 0.03 6

Tb (5) −0.04 5
Tb (6) 0.03 6

Dy −0.04 5
Ho 0.03 6
Er 0.03 6
Tm −0.04 5
Yb 0.03 6
Lu −0.03 5

Table 5.14: Concentration method for rare earth doping in BMF based on a modified
Jackson-Valerio method [116].

the calculations the BMF lattice is insoluble to rare earth ions. Those values that are

positive are for Scheme 6, but these are also very small positive numbers.

5.2.5 Thermal effects

Most lattices expand with temperature and using free energy minimisation (see Section

2.3.2) the expansion of the lattice parameters can be modelled. Using this type

of minimisation also allows the potentials to be tested with increasing temperature.

Two methods for calculating the free energy were taken. The first, Full Free Energy

Minimisation (FFEM) minimises the unit cell and the internal degrees of freedom with

respect to the free energy, whereas the second, Zero Static Internal Stress Approximation

(ZSISA) minimises only the unit cell with respect to the free energy with the internal

degrees of freedom minimised with respect to the internal energy.

FFEM minimisation failed above 150 K with the simulation oscillating around the

minimum resulting in hundreds of cycles. The Shell Model parameters were therefore

removed from the potentials as it is often the separation of core and shell that causes

issues. Using rigid ion potentials solved the minimisation problem and the simulations

minimised in a few cycles up to 1000 K. With ZSISA, the minimisations were less
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Parameter Thermal expansion coefficient

Modelled / K−1

a 1.62× 10−5

b 1.52× 10−5

c 1.16× 10−5

Volume 4.53× 10−5

Table 5.15: Calculated thermal expansion coefficients for BMF.

successful with some data points having to be removed due to an unsatisfactory gradient

normal. Figure 5.8 shows the change in the ‘a’ parameter, ‘b’ parameter, ‘c’ parameter,

and volume with temperature from 0 K to 1000 K using the ZSISA simulation. The

calculations were performed at constant pressure. The data points are slightly scattered

but, particularly for the unit cell volume, show a linear increase in size with temperature.

The scatter and the poor minimisation of some data points (that are not included in

the plots) reveals that the potentials are not suitable for non-static minimisation.

Figure 5.9 shows the change in the lattice parameters using FFEM with rigid

ion potentials. These plots all produce good linear trends, with a sight curve at low

temperatures. The fit is good in all cases, which implies that the original potentials fail

because of the Shell Model. If non-static simulations were to be carried out either the

spring constant coupling the shell to the core for the fluoride ions would need to be

stiffened, or rigid ion potentials used, to prevent the potentials failing.

Lines-of-best-fit were fitted to the plots so that the thermal expansion coefficients

could be calculated. The gradients of these lines were used to calculate the linear

thermal expansion coefficient for the three axes using Equation 4.12, where L0 is the

initial parameter length and ∆L
∆T

is the calculated gradient.

α =
1

L0

∆L

∆T
(4.12)

A similar analysis was carried out for the volume resulting in the volume thermal

expansion coefficient. Table 5.15 lists these coefficients.
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Figure 5.8: Plots of the free energy simulations for BMF using ZSISA. Plot top-left
shows the change in the unit cell parameter ‘a’ with temperature. The plot top-right

shows the change in the unit cell parameter ‘b’ with temperature. The plot bottom-left
shows the change in the unit cell parameter ‘c’ with temperature. The plot bottom-right

shows the overall change in volume with temperature.
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Figure 5.9: Plots of the free energy simulations for BMF using FFEM with rigid ion
potentials. Plot top-left shows the change in the unit cell parameter ‘a’ with

temperature. The plot top-right shows the change in the unit cell parameter ‘b’ with
temperature. The plot bottom-left shows the change in the unit cell parameter ‘c’ with

temperature. The plot bottom-right shows the overall change in volume with
temperature. A function is fitted to all plots and the gradients displayed.
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5.2.6 Summary

In summary, the intrinsic thermal defects for BMF have been modelled and the defect

formation energies calculated. These show that the Schottky defect energies were of

similar magnitude to the Frenkel defects. Within the Frenkel defects the fluorine and

magnesium Frenkel are 2.5 times smaller than the barium Frenkel defect. In comparison

to the intrinsic defect energies for YLF in the previous chapter, the BMF defect energies

are greater. Solution energies for the doping of rare earth ions into the lattice have also

been calculated. As there is no cation site with the same formal charge as the dopant

ions, various reaction schemes were considered. There was a correlation between the

dopant ionic radius and the cation radius the dopant replaced in the lattice, such that

the larger rare earth ions (La3+, Ce3+, Pr3+ and Nd3+) dope at the larger of the two

lattice cation sites (i.e. the Ba2+ site) while the rest dope at the Mg2+ site. The rare

earth doping solution energies are small with none greater than around 1.1 eV. This

puts them in the same order of magnitude as the solution energies for YLF.

The doping limit of rare earth ions was also calculated. Using the original Jackson-

Valerio method the doping limit was calculated to be around 0.4%. Issues with this

method have been documented throughout this thesis and therefore the doping limit

was also calculated using the modified Jackson-Valerio method. This produced limits

which were negative implying that using the criteria assumed in the method, namely

non-interacting defects with minimal unit cell distortion, the lattice does not readily

accept rare earth dopant ions.

The impact of this work in the field of lasers is similar to that for YLF bulk results.

Calculating which rare earth ions will substitute at which cation site within the lattice

is an important result when considering the structure of these doped materials. As

for YLF, the ability to calculate the doping limit for each of the rare earth ions in

BMF provides a useful measure when designing a laser system. As BMF shows smaller

solubility of rare earth dopant ions than YLF, it is likely that YLF is a more suitable

laser host lattice especially for high power lasers.
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5.3 Atomistic - surface modelling

The surface structure of any ionic material is an important property especially when

doping is required for application purposes. The surface properties of BMF were studied

using METADISE with the same potential set as used for bulk modelling work. The

results are presented in this section.

5.3.1 Methodological detail

The bulk studies given in the previous Section showed that rare earth dopants are

doped at both cation sites depending on the rare earth ion. The charge compensation

method also varied between rare earth ions. Table 5.16 listed the reaction scheme(s) for

each rare earth ion dopant and it is reproduced here for clarity. These were used as the

basis for the surface work in this section. All potentials and cut-offs remained the same

as those used before and are listed in Table 5.1. Mott-Littleton region sizes for surface

defects using the CHAOS code were 9 Å and 35 Å for regions 1 and 2a respectively.

The rare earth ion potentials are listed in Table 5.9.

5.3.2 Surface and attachement energies

Surface and attachment energies have been calculated for all of the valid cuts up to the

3rd index. Table 5.17 lists these for the most stable cut along with the surface area

of each surface. The lowest surface energy corresponds to the (010) surface, which is

therefore the most stable, followed by the (110) surface. The slowest growing surface is

the index with the highest attachment energy and that is the (010) surface. Compared

to the surface energies obtained for YLF, these are smaller surface energies. There are

only nine unique surfaces that are non-polar up to the 3rd index. This is partly due to

the symmetry of the unit cell and partly due to a number of surface being a Type 3 as

defined by Tasker [14], with the (001) surface being an example.

The first repeat unit for each of the surfaces is given in Figure 5.10. All of the

surfaces are very different, with the lowest index ones having large repeat units compared
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RE Scheme Doping method

La 2 RE·Ba + V
′′
Mg

Ce 2 RE·Ba + V
′′
Mg

Pr 2 RE·Ba + V
′′
Mg

Nd 2 RE·Ba + V
′′
Mg

Sm 6 RE·Mg + V
′′
Ba

Eu 6 RE·Mg + V
′′
Ba

Gd 6 RE·Mg + V
′′
Ba

Tb 5/6 RE·Mg + V
′′
Ba or RE·Mg + V

′′
Mg

Dy 5 RE·Mg + V
′′
Mg

Ho 6 RE·Mg + V
′′
Ba

Er 6 RE·Mg + V
′′
Ba

Tm 5 RE·Mg + V
′′
Mg

Yb 6 RE·Mg + V
′′
Ba

Lu 5 RE·Mg + V
′′
Mg

Table 5.16: Table summarising the doping method that was calculated as the lowest
energy scheme for each rare earth.

to the rest. The (100), (130), and (310) surfaces are the only ones to have cations in the

termination layer, although they are not purely cation layers. The remaining surfaces

all have fluoride terminations.

5.3.3 Morphology predictions

It was not possible to construct a morphology prediction using the surface energies

listed, because no surface is defined in the z-direction. The morphology requires a plane

Index Surface area /Å2 Surface energy /Jm−2 Attachment energy /eV

(010) 24.681 0.243 −0.025
(100) 84.994 0.546 −0.182
(110) 88.505 0.448 −0.251
(120) 98.289 0.698 −0.467
(130) 122.723 0.553 −0.552
(210) 171.771 0.552 −0.637
(230) 185.415 0.646 −1.012
(310) 256.174 0.527 −0.527
(320) 259.717 0.527 −1.260

Table 5.17: Surface and attachment energies for BMF along with surface area of each
index. Attachment energy is scaled per unit-cell. Indices up to index 3 were modelled

and the energies quoted are for the most stable cut.
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Figure 5.10: Terminations of the low index surfaces of BMF. Each box contains the
repeat unit for that surface. The uppermost ions form the surface termination layer.
Note that some height scales are abbreviated for space reasons. Some boxes contain a
mirror plane, indicated by \\\, for the same reason. The ions above the mirror are

reflected below it to form the complete repeat unit.
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in this in order to bound the construction. The lowest index surface in the z-direction is

the (001) surface. (Also because the unit cell is non-centrosymmetic the (001̄) surface).

This surface is a polar surface and as such is not listed in the surface energy table above

because the surface energy could not be calculated. It should be possible to directly

calculate the surface energy of these polar surfaces by removing the dipole. This can

sometimes be achieved through moving ions from the termination layer to the bottom

of the simulation cell, thus creating vacancies at the surface. However, for the (001)

surface in BMF this proved not to remove the dipole. Dipoles were attempted to be

removed for the next two surfaces as well - (011) and (111) surfaces. No simple solution

was found and so the morphology was constructed using values chosen rather than

calculated.

In testing, it was found that the second order indices, (201), (211), and (221), never

appeared in the morphology. The remaining surfaces, (001), (011), (111), (101), (021),

and (121), were systematically tested to provide good prediction as to which would

appear in the morphology. In the simplest case of the surfaces all having the same

surface energy the morphology prediction, contained the (001) and the (011) surfaces,

with the (001) surface being the larger of the two. The surface energy value chosen was

as a value greater than the other calculated indices to reflect the stability of such a

surface. Then by increasing the energy of each surface in turn, a list can be produced

of the likelihood of each surface appearing in the morphology. It was found to be as

follows: (001) >(011) >(101) >(021) >(111) >(121)

The same order was assumed for the attachment energy based morphology. The

morphologies of BMF were constructed using a Wulff construction. Both the equilibrium

(surface energy based) and the growth (attachment based) morphology were drawn.

The two morphologies are shown in Figure 5.11. They show a similar plate-like shape

terminated with the (001) surface. The energy value given for the polar surfaces only

affected the length of the (010), (100) and (110) surfaces in the morphology prediction

and not the shape.

The surface area coverages are given in Table 5.18. The unrelaxed values are based
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Figure 5.11: Equilibrium and growth morphologies of BMF.

Surface Percentage coverage

Unrelaxed Equilibrium Growth

010 63.57% 51.58% 86.57%
100 29.31% - 11.98%
110 - 33.43% -
001 3.56% 7.49% 0.72%

Table 5.18: Percentage coverage of each surface appearing in predicted morphology.

on unrelaxed surface energies and are largely meaningless, however, they allow the

extent of relaxation in the surfaces to be seen. For example, the (110) surface does not

appear in the unrelaxed morphology but does feature prominently in the equilibrium

morphology due to a reduction in surface energy through relaxation. The largest surface

in both the equilibrium and the growth morphologies is the (010) surface. The only

difference between the two predictions is that the (100) surface appears instead of the

(110) surface in the growth morphology.

These morphology predictions are less than ideal due to the polar nature of many of

the surfaces. In order to produce more accurate predictions further work is needed to

remove the dipole in these surface so that surface energies can be calculated. Despite

this, the surface energies for the non-polar surfaces have been calculated explicitly and a

thorough test of the possible likelihood of the polar surfaces appearing in the morphology

done. As such, some confidence can be taken with the morphology prediction.

5.3.4 Rare earth dopant segregation

BMF is of interest when doped with rare earth lanthanide ions. This may affect the

energy of some surfaces, particularly where there is strong segregation. Any significant
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change in surface energy will alter the morphology.

To study the doping of rare earth ions at the surface, a methodology was needed

to calculate which of the defects, the dopant ion or the charge compensation, would

segregate to the surface. The procedure used was to dope the rare earth ion at the

cation site nearest to the surface. The cation being either Ba2+ or Mg2+ depending on

which reaction scheme was calculated to be the lowest energy for that rare earth (as

discussed in Table 5.12). The dopant was then moved systematically down through

the system deeper into the simulation cell from cation site to cation site. The defect

formation energy at a deep depth should be equal to that obtained through bulk studies.

Due to the charged nature of these individual defects the two energies did not always

agree. To overcome this a normalising correction factor was added to the METADISE

values. This normalisation factor was obtained by comparing the defect formation

energy at a deep depth in METADISE to the value obtained from GULP bulk studies.

A similar method was used for the charge compensation defects. Only those surfaces

that appear in the morphology were considered (i.e. (010), (100) and (110)).

The full tables of the results can be found in Appendix 1. The tables list the defect

formation energy for each rare earth ion at the first four cation sites from the surface and

the value for the bulk. The segregation energies are also listed along with the correction

factor that was used. The same is listed for the charge compensation methods.

All defects showed a tendency to segregate to the surface of the three morphologically

important surfaces. It was therefore assumed that the defect cluster (i.e. the rare earth

ion plus the charge compensation) would segregate to the surface together. Defect

clusters were placed at the lowest energy sites, based on the individual defect results,

and a bound defect energy obtained. This was compared to bulk modelling studies in

GULP and a cluster segregation calculated. Figure 5.12 shows the segregation of these

defect clusters for each rare earth ion to the morphologically important surfaces. (The

values are tabulated in Appendix 1.)

It can be seen from this plot that the (010) surface has the greatest degree of

segregation for all rare earth ions, followed by the (110) surface and then the (100)
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Figure 5.12: Plot showing the difference in defect energy at the surface depth and the
bulk for the defect cluster of each rare earth ion and the appropriate charge

compensation method.
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surface. All three surfaces do, however, show considerable segregation of the single

defect cluster. This maybe an important consideration with this system. The three

surfaces have very different repeat units. The major difference is that for the (100)

surface the termination layer contains cations. Therefore the rare earth dopant ions

would be at the termination of the surface whereas in the other two surfaces they would

reside slightly below the termination.

Considering just those rare earth ions that dope at the Ba2+ site (La3+ to Nd3+ and

Tb13+) there is a decrease in segregation along the group with Tb3+ giving a segregation

tendency around twice as large as La3+. The ionic radius of Ce3+ is the closest in size

to that of Ba2+, with the difference increasing through the group of rare earth ions.

This difference will create increasing strain in the lattice and as such would increase the

segregation tendency. From Sm3+ onwards the rare earth ion is doped at the Mg2+ site.

The opposite trend with ionic radii is true here. Lu3+ has the closest radius to Mg2+

and therefore it is expected that the segregation becomes less from Sm3+ to Lu3+. This

is the trend seen.

5.3.5 Summary

In summary, the surface energies and attachment energies of the non-polar, low index

surfaces of BMF have been calculated. These were, along with a sensible value for the

polar (001) surface, used to predict the equilibrium and growth morphologies. Both

morphologies were flat, plate-like shapes dominated by the (010) and (110) surfaces.

Rare earth dopant ions were placed at various cation sites at these morphologically

important surfaces, working from the termination layer down into the crystal. It was

found that all rare earth dopants had a negative segregation energy implying there was

a driving force for the ions to segregate to the surface. The same was found for the

vacancy charge compensation defects. Using this, it was assumed that the dopant ion

and charge compensation defect cluster would segregate towards the surface together,

rather than one segregating and the other remaining in the bulk. The defect cluster

energies were calculated and the overall segregation energy found. This revealed that
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all rare earth dopants segregated to the surfaces, with the segregation force to the

(010) surface the greatest. There was a correlation between the ionic radius mismatch

between the lattice site and the rare earth ion, and the degree of segregation.

The results from this work into the surface properties of BMF provide important

information needed for the design, development and improvement of this laser material.

Ideally a doped laser crystal would be homogeneous as clustering of defects can cause

problems through energy transfer processes that may degrade the laser action. The

results shown here show that the segregation of dopant ions is significant in BMF. This

segregation can be used as a measure of possible clustering of dopant ions.
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5.4 Future work

This work into the bulk and surface properties of BMF has shown it to be an interesting

material with many complex properties. The current published literature on BMF

contains various difficulties research groups have had in developing a laser system, and

reveals many complex properties. The work in this thesis lays the initial foundations

for further computer modelling of BMF and the dopant behaviour within it. To extend

the work, time would need to be taken to remove the dipoles from the polar surfaces

so that the surface energies could be calculated. The work here has shown that the

dipoles cannot be removed through any simple procedure, such as vacancy creation,

and therefore, the surface reconstruction would be of considerable interest once found.

Calculated surface energies would allow more accurate morphologies to be obtained.

Rare earth segregation should also be considered to all low index surfaces and not

just the three considered in this work. Continuing this to model concentration effects

is the logically next step as the work showed the dopant clusters would segregate to

the surface. Knowing how many dopants would segregate before the energy becomes

unfavourable would allow defective morphology predictions to be made. Due to the

many combinations of dopant ions and charge compensation ions, plus the complex

surface profiles in BMF, this would be a resource heavy task.

The work in this thesis assumed the rare earth dopants ion had their usual formal

charge of +3. Some of the rare earth ions (Nd, Dy, Sm, Eu, Tm and Yb) do exist in a

+2 state albeit with less stability than the +3 charge. This would make an important

study as the lattice cations are both +2. To achieve this work, new potentials for the

rare earth ions would have to be derived.

Finally, as it is the electronic properties of the rare earth dopant ions that provides

this system with its useful properties, detailed electronic structure modelling should

be carried out. This would not be a trivial task as the rare earth ions are large

complex elements that would cause problems in this type of modelling, particularly if

concentrations effects were to be looked at.
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Conclusions

In conclusion, two solid-state laser host lattices have been simulated using atomistic

techniques. A set of potentials for the host lattices, YLiF4 (YLF) and BaMgF4 (BMF),

are given along with potentials for the rare earth fluoride dopant ions. A new potential

set is derived for various transition metal fluoride ions also.

Both systems are actively being researched as laser sources as well for use in other

devices, such as scintillators and memory devices. YLF has been subject to a wide

range of research since the 1970s, with a number of new papers on the properties of the

material or the growth of YLF crystals every year. The work in this thesis has provided

research into the bulk and surface properties, with particular focus on rare earth ion

dopants.

Using well established methodologies, the perfect YLF lattice was reproduced to

within 2% of the reported structure. Intrinsic thermal defects were modelled and the

defect formation energies calculated. These shows that the Frenkel defect energies are

lower than the Schottky energies, with the two lowest energy defect formations being a

F Frenkel and a Li Frenkel.

The interionic potentials used for YLF are tested at various temperatures and are

found to be inadequate above 600 K however this may be due to the approximation of

harmonic vibration assumed in the model breaking down. Therefore, for any future

non-static simulations the potentials would have to be refitted or the model parameters

adjusted. The thermal expansion profiles up to 600 K reveal that the ‘a’ lattice
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parameter increases linearly in size with temperature up to 300 K but then decreases.

The ‘c’ lattice parameter increases linearly only after 250 K. Despite this, overall the

volume increases linearly. This unusual decrease in the ‘a’ parameter should be the

subject of a future study. The thermal expansion coefficients are calculated.

Solution energies for the doping of rare earth ions into the lattice are also calculated

and this reveals that doping at the Y site is the most favourable process as the Li site

has a five-fold increase in energy compared to the Y site.

Various methods are considered to calculate the doping limit for the dopant ions

within the YLF lattice. A modified Jackson-Valerio method was determined to provide

a good measure of the doping limit and can be used to compare the doping solubility

of various dopant ions within the lattice, or a dopant ion’s solubility in various host

lattices. The limit calculated is strictly for non-interacting defect ions and as such

produced small doping limits, however, as a tool for comparing trends across dopants

or host lattices it is extremely useful. The maximum doping is calculated for Yb3+ at

1.51%. The lowest is for La3+ at 0.69%. These values suggest that the YLF lattice

will readily accept rare earth dopants at low concentrations without interacting. This

suggests a homogeneous doping of up to 1.5% rare earth ion should be possible. This

agrees with the values in the literature.

The likelihood of transition metal ion defects being incorporated into a Yb:YLF

lattice was studied as a result of the work into YLF as a laser cooling device. The

results suggest that the 1+ and 3+ transition metal ions are most likely to incorporate

into the lattice with Cu1+ and Ti3+ being the most likely. In order to ensure an optimal

crystal for the laser cooling application 1+ and 3+ transition metal ions should not be

allowed to contaminate the growing environment. The 2+ ions have higher solution

energies.

The detailed bulk studies were followed by simulations of the surface of YLF. An

atomistic approach was taken for this, using the same potentials as the bulk study.

The advantage of an atomistic approach with surface studies was that the simulation

cells can be scaled easily to consider concentration effects. This is not possible with
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electronic structure simulation techniques and the facilities available.

Surface and attachment energies are calculated and were used to predict the equilib-

rium and growth morphologies. The equilibrium morphology is dominated by the (112)

and (011) surfaces. The rest of the morphology consisted of the (001), (010), (111) and

(211) surfaces. The growth morphology is dominated by the (001) and (120) surfaces as

these are the slowest growing faces. The rest of the growth morphology consists of the

(010) and the (011) surfaces.

Rare earth dopant segregation to the surfaces that appear in the morphologies were

calculated. This revealed that there is segregation to all surfaces studied - (001), (011),

(112) - but it is to a much greater degree for the (112) surface. At the (112) surface,

the defect energies do not reach their bulk values until a depth of 9 Å; far greater than

with the other two surfaces. Common across all three surfaces is that the first rare

earth ions in the group had stronger segregation tendencies than the latter ones, with

La3+ producing the largest segregation energy.

To analyse the segregation of defects further, a methodology was established to

consider clusters of multiple defects at the surfaces of all low index faces and the effect

they had on the surface energy. Those rare earth ions with similar ionic radius to Y3+

tend to affect the surface energy least. Ho3+, which has the closest ionic radius to

that of the Y3+ ions, is an exception to this, as it has one of the greatest impacts on

the surface energy. Considering the case of La3+, as this ion produced the greatest

reduction in surface energy, the surface that changes the most in energy is the (110)

surface, with a reduction of 14.5% in surface energy. The next surfaces in decreasing

size of the reduction in energy are: (112), (012), (221), (021), (122) and (010). The

remaining surfaces all show increases in surface energy with the presence of La3+ ions

(and therefore all rare earth ions).

The defective surface energies were used to predict the defective morphology i.e.

a prediction of what the morphology may be when the YLF lattice is doped. In the

case of large crystals, such that there is a high ratio of bulk to surface sites, and high

doping levels, all surfaces would reach the optimum surface energy with the remaining
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dopant ions residing in the bulk. For systems with La3+ to Nd3+ ions present, the (111)

surface is replaced by the (110) surface in the morphology. For Sm3+ neither the (111)

or the (110) surface appear. As expected for the latter rare earth ions the predicted

morphology is similar to the perfect YLF morphology. Despite the surfaces that appear

in the morphology changing, and the relative ratios of surface areas changing, the overall

shape does not change.

This work into YLF has raised a number of interesting results that should be

examined further. Firstly, the unusual decrease in the ‘a’ parameter with increasing

temperature should be investigated further. To extend the work in the prediction of

the impact dopant ions have on the morphology the other scenarios of crystal size and

doping level could be examined explicitly. The work carried out so far assumed the

dopant ions were at the uppermost cation layer to the surface termination. The depth

profiles of the morphologically important surfaces revealed that often the defect energies

do not reach bulk values until a deep depth. The work carried out in this thesis could

therefore be repeated but at the second cation layer down. The simulation cells could

be scaled further to examine the effect of concentration and surface coverage further.

Finally, as it is the electronic properties of the rare earth dopant ions that provides

this system with its useful properties, detailed electronic structure modelling should be

carried out. This would not be a trivial task as yttrium and the rare earth ions are large

complex elements that would cause problems in this type of modelling, particularly if

concentrations effects were to be looked at.

A similar approach was taken for the second material studied, BaMgF4 (BMF).

This material has been subject to less research and has not been successfully used in a

viable, commercial laser device to date. There has nonetheless been a number of studies

into the properties of BMF including crystal growth, pyroelectric and piezoelectric

properties, and the properties of rare earth dopants within the lattice. The work in

this thesis has aimed to produce an insight into this material through both bulk and

surface simulations to provide experimentalists information for future development of

the system.
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Using an atomistic approach, the intrinsic thermal defects for BMF were modelled

and the defect formation energies calculated. These showed that the Schottky defect

energies are of similar magnitude to the Frenkel defects. Within the Frenkel defects the

fluorine and magnesium Frenkel are 2.5 times smaller than the barium Frenkel defect.

In comparison to the intrinsic defect energies for YLF, the BMF defect energies are

greater. Solution energies for the doping of rare earth ions into the lattice were also

calculated. As there is no cation site with the same formal charge as the dopant ions,

various reaction schemes were considered. There is a correlation between the dopant

ionic radius and the cation radius the dopant replaced in the lattice, such that the

larger rare earth ions (La3+, Ce3+, Pr3+ and Nd3+) dope at the larger of the two lattice

cation sites (i.e. the Ba2+ site) while the rest dope at the Mg2+ site. The rare earth

doping solution energies are small with none greater than around 1.1 eV. This puts

them in the same order of magnitude as the solution energies for YLF.

The doping limit of rare earth ions was also calculated. Using the original Jackson-

Valerio method the doping limit is calculated to be around 0.4%. Using the modified

Jackson-Valerio method, some limits are negative implying that using the criteria

assumed in the method, namely non-interacting defects with minimal unit cell distortion,

the lattice does not readily accept rare earth dopant ions. This result does not mean that

no rare earth dopants will dope into the BMF lattice, but it does reveal that the BMF

lattice accepts rare earth dopant ions less easily than the YLF lattice. The literature

provides many examples of studies where the authors have had unusual spectrographic

results [199], with some authors suggesting two different dopant environments exist

[206]. Taken as a whole, the results lead to the conclusion of a complex dopant picture

with BMF that should be studied further.

BMF was also subject to surface studies. The surface energies and attachment

energies of the non-polar, low index surfaces were calculated. These were, along with a

sensible value for the polar (001) surface, used to predict the equilibrium and growth

morphologies. Both morphologies are flat, plate-like shapes dominated by the (010)

and (110) surfaces.
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Rare earth dopant ions were placed at various cation sites at these morphologically

important surfaces, working from the termination layer down into the crystal. It is

found that all rare earth dopants have a negative segregation energy implying there is

a driving force for the ions to segregate to the surface. The same was found for the

vacancy charge compensation defects. It was, therefore, assumed that the dopant ion

and charge compensation defect cluster would segregate towards the surface together.

The defect cluster energies were calculated and the overall segregation energy found.

This revealed that all rare earth dopants segregated to the surfaces, with the segregation

force to the (010) surface being the greatest. There is a link between the ionic radius

mismatch between the lattice site and the rare earth ion, and the degree of segregation.

The work in this thesis lays the initial foundations for further computer modelling

of BMF and the dopant behaviour within it. To extend the work, the dipoles from

the polar surfaces would need to be removed, so that the surface energies could be

calculated. The work here has shown that the dipoles cannot be removed through any

simple procedure, such as vacancy creation, and therefore, the surface reconstruction

would be of considerable interest once found. Calculated surface energies would allow

more accurate morphologies to be obtained.

Rare earth segregation should also be considered to all low index surfaces and

not just the three considered in this work. Modelling concentration effects should be

done also, as knowing how many dopants would segregate before the energy becomes

unfavourable would allow defective morphology predictions to be made. Due to the

many combinations of dopant ions and charge compensation ions, plus the complex

surface profiles in BMF, this would be a resource heavy task.

The work in this thesis assumed the rare earth dopants ion had their usual formal

charge of +3. Some of the rare earth ions do exist in a +2 state. This would make an

important study as the lattice cations are both +2. To achieve this work, new potentials

for the rare earth ions would have to be derived.

Comparing BMF and YLF, this thesis has concluded that YLF is more suited to

the incorporation of rare earth ions both in terms of (non-interacting) doping limit and
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the impact the dopants have on the surface morphology, although the intrinsic defect

formation energies were found to be smaller in YLF. BMF has been shown to be a

complex material, that requires further study.

The impact of this work is two-fold. Firstly, while many of the techniques used are

tried and tested methods, some of the analysis carried out is novel and important not

just for the work described here but also for use in further studies into other systems. For

example, the ability to quickly calculate doping limits so that comparisons can be made

across possible dopant ions in a useful tool in material design for applications. Equally

being able to compare alternative host lattices with the same dopant ion offers valuable

knowledge from a material design point of view. The work on doping limits in this body

of research is therefore an important contribution to the field and the methodology

will be used in many future studies. Another important methodological contribution

from this work is the technique to calculate defective surface energies and ultimately

the impact defects have on the morphology of the crystal. This has vast implications

for research as crystal morphology is of huge importance in many applications, in

particular ones where the surface chemistry is key (for example catalysts). Even in

those applications where the morphology is of less importance, the ability to calculate

the likelihood of defect segregation to surface sites is useful. Finally, the derivation of

transition metal fluoride potentials is a good contribution as they can be utilised in any

future modelling of such materials.

The second impact of the research is from the results from the studies into the laser

host materials themselves. Both YLF and BMF are of interest as laser host materials.

The results from this body of work provide important information needed in the design,

development, and improvement of these laser materials. For example, ideally a doped

laser crystal would be homogeneous as clustering of defects makes cutting and polishing

any crystals more difficult, and dopant ions that lie close to each other can cause

problems through energy transfer processes that may degrade the laser action. This

work has calculated the segregation of dopant ions, which can be used to provide an

insight into possible clustering. In general, it is shown that the latter rare earth ions are

194



Chapter 6. Conclusions

more suited for this applications as they tend to cluster less. The contrast between the

two systems studied is also an important result that suggests efforts should be focussed

on YLF as a laser system over BMF.

The work carried out in the thesis has fulfilled the aims of the study. Insight into

two solid-state laser lattices has been given with bulk and surface properties examined.

The content is an important contribution to the research of these two materials, which

should aid further research, both computational and experimental, into them. The work

has raised a number of important questions that should be the aim of further work.

Finally it is worth repeating that, computational modelling is a vital tool in chemistry

and material science, that can provide insight into a materials, help explain observed

phenomena, and even make predictions.
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Appendix 1: BaMgF4 surface

results

Rare earth doping defect segregation

The following tables list the defect formation energies for each rare-earth ions and

the charge compensation methods at the first four surface sites and at a bulk value.

These are corrected using a the factor given to bring them inline with bulk defect

formation values from GULP and are used to produce the segregation energy at that

depth. Positions highlighted in red are the sites used to in the defect cluster. The

values in blue are to indicate which Mg cation site is used in those schemes where more

than one Mg site is required.
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La: RE·Ba + V
′′
Mg

Surface (010)

Position/Å E(REBa) /eV Eseg /eV Position /Å E(VMg) /eV Eseg /eV

3.322 −24.41 −3.03 0.667 22.09 −3.06
6.115 −24.03 −2.65 2.226 25.20 0.05
10.485 −21.33 0.05 7.189 25.81 0.66
13.593 −21.36 0.01 14.372 25.53 0.38
Bulk −21.38 - Bulk 25.15 -

Correction 0.34 eV Correction 1.12 eV

Surface (100)

Position /Å E(REBa) /eV Eseg /eV Position /Å E(VMg) /eV Eseg /eV

0.145 −21.70 −0.32 0.152 23.79 −1.36
1.996 −21.28 0.10 0.269 23.49 −1.66
2.081 −21.45 −0.07 1.920 24.51 −0.64
4.075 −21.58 −0.20 2.247 23.62 −1.53
Bulk −21.38 - Bulk 25.15 -

Correction 0.85 eV Correction −1.26 eV

Surface (110)

Position /Å E(REBa) /eV Eseg /eV Position /Å E(VMg) /eV Eseg /eV

0.331 −21.94 −0.56 1.984 22.18 −2.97
1.279 −20.98 0.40 1.684 22.58 −2.57
1.398 −21.83 −0.45 3.072 22.99 −2.16
3.821 −21.76 −0.38 2.791 24.22 −0.93
Bulk −21.38 - Bulk 25.15 -

Correction −0.80 eV Correction 2.02 eV

La cluster

(010) (100) (110)

E(cluster)/eV Eseg /eV E(cluster) /eV Eseg /eV E(cluster) /eV Eseg /eV

Surface −22.08 −2.94 −19.69 −0.55 −21.34 −2.20
Bulk −19.14 - −19.14 - −19.14 -

Correction0.22 eV Correction 0.39 eV Correction 0.44 eV

220



Ce 1: RE·Ba + V
′′
Mg

Surface (010)

Position /Å E(REBa) /eV Eseg /eV

3.322 −25.54 −2.75
6.115 −26.32 −3.53
10.485 −22.74 0.05
13.593 −22.75 0.04
Bulk −22.79 -

Correction 0.66 eV

Surface (100)

Position /Å E(REBa) /eV Eseg /eV

0.145 −23.24 −0.45
1.996 −22.78 0.01
2.081 −22.92 −0.13
4.075 −23.30 −0.51
Bulk −22.79 -

Correction 1.85 eV

Surface (110)

Position /Å E(REBa) /eV Eseg /eV

0.331 −23.50 −0.71
1.279 −23.34 −0.55
1.398 −23.52 −0.73
3.821 −23.17 −0.38
Bulk −22.79 -

Correction 0.19 eV

Ce cluster

(010) (100) (110)

E(cluster) /eV Eseg /eV E(cluster) /eV Eseg /eV E(cluster) /eV Eseg /eV

Surface −24.42 −4.48 −20.93 −0.99 22.14 −2.20
Bulk −19.14 - −19.14 - −19.14 -

Correction 0.22 eV Correction 0.31 eV Correction 0.46 eV
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Pr 1: RE·Ba + V
′′
Mg

Surface (010)

Position /Å E(REBa) /eV Eseg /eV

3.322 −26.10 −3.90
6.115 −24.44 −2.24
10.485 −22.15 0.05
13.593 −22.16 0.04
Bulk −22.79 -

Correction−0.35 eV

Surface (100)

Position /Å E(REBa) /eV Eseg /eV

0.145 −22.79 −0.59
1.996 −22.29 −0.09
2.081 −22.40 −0.20
4.075 −22.75 −0.55
Bulk −22.79 -

Correction 0.84 eV

Surface (110)

Position /Å E(REBa) /eV Eseg /eV

0.331 −22.71 −0.51
1.279 −23.20 −1.00
1.398 −23.01 −0.81
3.821 −22.61 −0.41
Bulk −22.20 -

Correction−0.81 eV

Pr cluster

(010) (100) (110)

E(cluster) /eV Eseg /eV E(cluster) /eV Eseg /eV E(cluster) /eV Eseg /eV

Surface −25.18 −4.44 −21.91 −1.17 −24.21 −3.46
Bulk −20.74 - −20.74 - −20.74 -

Correction 0.24 eV Correction 0.24 eV Correction 0.49 eV
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Nd: RE·Ba + V
′′
Mg

Surface (010)

Position /Å E(REBa) /eV Eseg /eV

3.322 −26.10 −3.90
6.115 −24.44 −2.24
10.485 −22.15 0.05
13.593 −22.16 0.04
Bulk −22.79 -

Correction −0.35 eV

Surface (100)

Position /Å E(REBa) /eV Eseg /eV

0.145 −23.31 −0.69
1.996 −22.78 −0.16
2.081 −22.89 −0.27
4.187 −23.20 −0.58
Bulk −22.62 -

Correction 0.84 eV

Surface (110)

Position /Å E(REBa) /eV Eseg /eV

0.331 −23.13 −0.51
1.279 −23.62 −1.00
1.398 −23.43 −0.81
3.821 −23.03 −0.41
Bulk −22.62 -

Correction −0.39 eV

Nd cluster

(010) (100) (110)

E(cluster)/eV Eseg /eV E(cluster) /eV Eseg /eV E(cluster) /eV Eseg /eV

Surface −27.08 −5.36 −23.68 −1.99 −27.04 −5.39
Bulk −21.68 - −21.68 - −21.68 -

Correction 0.66 eV Correction 0.30 eV Correction 0.67 eV
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Sm: RE·Mg + V
′′
Ba

Surface (010)

Position /Å E(REMg) /eV Eseg /eV Position /Å E(VBa) /eV Eseg /eV

0.667 −19.88 −3.07 3.322 15.76 −3.47
2.226 −21.52 −4.71 6.388 18.72 −0.51
7.189 −16.71 0.10 10.485 19.61 0.39
9.689 −16.85 −0.04 13.593 19.42 0.19
Bulk −16.81 - Bulk 19.23 -

Correction −0.27 eV Correction 1.22 eV

Surface (100)

Position /Å E(REMg) /eV Eseg /eV Position /Å E(VBa) /eV Eseg /eV

0.152 −18.51 −1.70 0.145 17.33 −1.90
0.269 −17.96 −1.15 1.996 19.18 −0.05
2.247 −17.62 −0.50 2.081 17.38 −1.85
4.216 −17.87 −1.06 4.075 19.05 −0.18
Bulk −16.81 - Bulk 19.23 -

Correction 0.95 eV Correction −1.17 eV

Surface (110)

Position /Å E(REMg) /eV Eseg /eV Position /Å E(VBa) /eV Eseg /eV

1.984 −17.85 −1.04 0.331 15.85 −3.38
1.684 −18.53 −1.72 1.279 18.76 −0.47
3.072 -17.35 −0.54 1.398 17.79 −1.44
2.791 −18.34 −1.53 3.821 17.73 −1.50
Bulk −16.81 - Bulk 19.23 -

Correction −0.74 eV Correction 2.13 eV

Sm cluster

(010) (100) (110)

E(cluster) /eV Eseg /eV E(cluster) /eV Eseg /eV E(cluster) /eV Eseg /eV

Surface −23.27 −7.38 −18.99 −3.09 −20.70 −4.80
Bulk −15.89 - −15.89 - −15.89 -

Correction 0.71 eV Correction 0.19 eV Correction 0.19 eV
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Gd: RE·Mg + V
′′
Ba

Surface (010)

Position /Å E(REMg) /eV Eseg /eV

0.667 −21.07 −3.05
2.226 −21.46 −3.44
7.189 −17.97 0.09
9.689 −18.03 −0.01
Bulk −18.02 -

Correction −0.34 eV

Surface (100)

Position /Å E(REMg) /eV Eseg /eV

0.152 −19.21 −1.19
0.269 −19.07 −1.05
2.247 −18.36 −0.34
4.216 −18.55 −0.906
Bulk −18.02 -

Correction 0.87 eV

Surface (110)

Position /Å E(REMg) /eV Eseg /eV

1.984 −18.86 −0.84
1.684 −19.65 −1.63
3.072 −18.78 −0.76
2.791 −19.04 −1.02
Bulk −18.02 -

Correction −0.81eV

Gd cluster

(010) (100) (110)

E(cluster) /eV Eseg /eV E(cluster) /eV Eseg /eV E(cluster) /eV Eseg /eV

Surface −23.50 −5.01 −21.94 −3.44 −23.32 −4.83
Bulk −18.50 - −18.50 - −18.50 -

Correction 0.72 eV Correction 0.26 eV Correction 0.26 eV
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Tb 1: RE·Mg + V
′′
Ba

Surface (010)

Position /Å E(REMg) /eV Eseg /eV

0.667 −21.40 −3.19
2.226 −22.30 −4.09
7.189 −18.12 0.09
9.689 −18.19 0.02
Bulk −18.17 -

Correction −0.34 eV

Surface (100)

Position /Å E(REMg) /eV Eseg /eV

0.152 −19.39 −1.18
0.269 −19.24 −1.03
2.247 −18.77 −0.56
4.216 −18.18 −0.84
Bulk −18.21 -

Correction 0.87 eV

Surface (110)

Position /Å E(REMg) /eV Eseg /eV

1.984 −18.85 −0.64
1.684 −19.82 −1.61
3.072 −18.82 −0.61
2.791 −19.22 −1.01
Bulk −18.21 -

Correction −0.81 eV

Tb cluster

(010) (100) (110)

E(cluster) /eV Eseg /eV E(cluster) /eV Eseg /eV E(cluster) /eV Eseg /eV

Surface −24.95 −6.08 −21.77 −2.90 −23.49 −4.62
Bulk −18.87 - −18.87 - −18.87 -

Correction 0.74 eV Correction 0.27 eV Correction 0.27 eV
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Tb 2: RE·Mg + V
′′
Mg

Tb cluster

(010) (100) (110)

E(cluster) /eV Eseg /eV E(cluster) /eV Eseg /eV E(cluster) /eV Eseg /eV

Surface −19.15 −6.33 −14.75 −1.93 −16.25 −3.99
Bulk −12.82 - −12.82 - −12.82 -

Correction 0.86 eV Correction 0.60 eV Correction 0.55 eV
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Dy: RE·Mg + V
′′
Mg

Surface (010)

Position /Å E(REMg) /eV Eseg /eV

0.667 −21.88 −2.92
2.226 −23.04 −4.08
7.189 −18.87 0.09
9.689 −18.93 0.03
Bulk −18.96 -

Correction −0.34 eV

Surface (100)

Position /Å E(REMg) /eV Eseg /eV

0.152 −20.32 −1.36
0.269 −19.93 −0.97
2.247 −19.15 −0.19
4.216 −19.40 −0.75
Bulk −18.96 -

Correction 0.87 eV

Surface (110)

Position /Å E(REMg) /eV Eseg /eV

1.984 −19.69 −0.73
1.684 −20.64 −1.68
3.072 −19.68 −0.72
2.791 −19.93 −0.97
Bulk −18.96 -

Correction −0.801 eV

Dy cluster

(010) (100) (110)

E(cluster) /eV Eseg /eV E(cluster) /eV Eseg /eV E(cluster) /eV Eseg /eV

Surface −20.28 −5.94 −16.79 −2.45 −17.56 −4.44
Bulk −14.34 - −14.34 - −14.34 -

Correction 0.91 eV Correction 0.92 eV Correction 1.22 eV
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Ho: RE·Mg + V
′′
Ba

Surface (010)

Position /Å E(REMg) /eV Eseg /eV

0.667 −24.07 −4.87
2.226 −22.31 −3.11
7.189 −19.11 0.09
9.689 −19.26 −0.06
Bulk −19.20 -

Correction −0.35 eV

Surface (100)

Position /Å E(REMg) /eV Eseg /eV

0.152 −20.40 −1.20
0.269 −20.17 −0.97
2.247 −19.52 −0.32
4.216 −20.17 −0.97
Bulk −19.20 -

Correction 0.87 eV

Surface (110)

Position /Å E(REMg) /eV Eseg /eV

1.984 −20.03 −0.83
1.684 −20.90 −1.70
3.072 −19.95 −0.75
2.791 −20.20 −1.00
Bulk −19.20 -

Correction −0.81 eV

Ho cluster

(010) (100) (110)

E(cluster) /eV Eseg /eV E(cluster) /eV Eseg /eV E(cluster) /eV Eseg /eV

Surface −26.93 −5.80 −23.93 −3.06 −25.63 −4.77
Bulk −20.86 - −20.86 - −120.86 -

Correction 0.72 eV Correction 0.33 eV Correction 0.32 eV
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Er: RE·Mg + V
′′
Ba

Surface (010)

Position /Å E(REMg) /eV Eseg /eV

0.667 −22.17 −2.47
2.226 −23.76 −4.06
7.189 −19.61 0.09
9.689 −19.67 0.03
Bulk −19.70 -

Correction −0.34 eV

Surface (100)

Position /Å E(REMg) /eV Eseg /eV

0.152 −20.82 −1.12
0.269 −20.62 −0.92
2.247 −20.12 −0.42
4.216 −20.45 −0.75
Bulk −19.20 -

Correction 0.87 eV

Surface (110)

Position /Å E(REMg) /eV Eseg /eV

1.984 −20.26 −0.56
1.684 −21.25 −1.55
3.072 −20.38 −0.68
2.791 −20.27 −0.69
Bulk −19.70 -

Correction−0.81 eV

Er cluster

(010) (100) (110)

E(cluster) /eV Eseg /eV E(cluster) /eV Eseg /eV E(cluster) /eV Eseg /eV

Surface −27.15 −6.08 −24.66 −2.84 −26.72 −4.90
Bulk −21.82 - −21.82 - −21.82 -

Correction 0.75 eV Correction 0.33 eV Correction 0.33 eV
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Tm: RE·Mg + V
′′
Mg

Surface (010)

Position /Å E(REMg) /eV Eseg /eV

0.667 −22.72 −2.57
2.226 −22.91 −2.76
7.189 −20.06 0.09
9.689 −20.11 0.04
Bulk −20.15 -

Correction −0.34 eV

Surface (100)

Position /Å E(REMg) /eV Eseg /eV

0.152 −20.88 −0.73
0.269 −20.04 −0.89
2.247 −20.18 −0.03
4.216 −20.71 −0.34
Bulk −20.15 -

Correction 0.87 eV

Surface (110)

Position /Å E(REMg) /eV Eseg /eV

1.984 −20.67 −0.52
1.684 −21.77 −1.62
3.072 −20.85 −0.70
2.791 −21.06 −0.91
Bulk −20.15 -

Correction −0.80 eV

Tm cluster

(010) (100) (110)

E(cluster) /eV Eseg /eV E(cluster) /eV Eseg /eV E(cluster) /eV Eseg /eV

Surface −20.10 −3.34 −18.57 −1.18 −19.79 −3.03
Bulk −16.76 - −16.76 - −16.76 -

Correction 1.02 eV Correction 0.93 eV Correction 0.69 eV
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Yb: RE·Mg + V
′′
Ba

Surface (010)

Position /Å E(REMg) /eV Eseg /eV

0.667 −22.49 −2.35
2.226 −23.88 −3.74
7.189 −20.04 0.10
9.689 −20.11 0.03
Bulk −20.14 -

Correction −0.34 eV

Surface (100)

Position /Å E(REMg) /eV Eseg /eV

0.152 −21.18 −1.04
0.269 −21.04 −0.90
2.247 −20.36 −0.22
4.216 −20.95 −0.81
Bulk −20.14 -

Correction 0.87 eV

Surface (110)

Position /Å E(REMg) /eV Eseg /eV

1.984 −20.69 −0.55
1.684 −21.61 −1.47
3.072 −20.86 −0.72
2.791 −21.08 −0.94
Bulk −20.14 -

Correction −0.80 eV

Yb cluster

(010) (100) (110)

E(cluster) /eV Eseg /eV E(cluster) /eV Eseg /eV E(cluster) /eV Eseg /eV

Surface −27.58 −4.89 −25.38 −3.04 −27.60 −4.91
Bulk −22.69 - −22.69 - −22.69 -

Correction 0.75 eV Correction 0.35 eV Correction 0.35 eV
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Lu: RE·Mg + V
′′
Mg

Surface (010)

Position /Å E(REMg) /eV Eseg /eV

0.667 −24.59 −3.36
2.226 −24.83 −3.60
7.189 −21.14 0.08
9.689 −21.18 0.04
Bulk −20.89 -

Correction −0.34 eV

Surface (100)

Position /Å E(REMg) /eV Eseg /eV

0.152 −20.88 −0.73
0.269 −20.04 −0.89
2.247 −20.18 −0.03
4.216 −20.71 −0.34
Bulk −20.15 -

Correction 0.87 eV

Surface (110)

Position /Å E(REMg) /eV Eseg /eV

1.984 −21.27 −0.38
1.684 −22.45 −1.60
3.072 −21.49 −0.60
2.791 −21.78 −0.89
Bulk −20.89 -

Correction −0.80 eV

Lu cluster

(010) (100) (110)

E(cluster) /eV Eseg /eV E(cluster) /eV Eseg /eV E(cluster) /eV Eseg /eV

Surface −22.64 −4.37 −20.46 −2.20 −21.89 −3.63
Bulk −18.26 - −18.26 - −18.26 -

Correction 1.05 eV Correction 0.94 eV Correction 0.71 eV
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