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Abstract 

 

Cell-based therapies have been proposed as novel approaches to treating Osteoarthritis and 

Rheumatoid Arthritis. A non-invasive means of monitoring cell populations, post 

implantation could prove valuable in the clinical translation of such therapies. We propose 

the use of superparamagnetic iron oxide nanoparticles (SPIONs; internalised by cell 

populations) with magnetic resonance imaging (MRI) to image and track cell populations in 

vivo.  

We investigate the potential of commercially available SPIONs (SiMAG, Lumirem, 

Nanomag and P904) as potential labelling/tracking agents for in vivo investigations. Human 

mesenchymal stem cells (hMSC) and porcine chondrocytes were labelled with SPIONs 

under passive incubation conditions in either serum free media or serum containing media 

(24 hrs). SiMAG (10 μgFe/ml) demonstrated greatest potential with highest comparative 

internalised Fe content (labelled in serum free media) in vitro. SPION-labelled cell 

population maintained viability and proliferative capacity apart from SiMAG-labelled 

chondrocytes (10 μgFe/ml). Furthermore, SiMAG-labelled hMSC populations demonstrated 

successful differentiation down mesodermal lineages and retained key cell surface markers.  

MRI visibility thresholds were investigated (in vitro and ex vivo). Dose dependant contrast 

was generated only by SiMAG-labelled populations in vitro when MR imaged. In vitro 

minimum visibility of SiMAG-labelled populations was influenced by various ex vivo tissues 

with similar contrast developing in muscle and fat tissue samples but not for ligament. 

Finally, an ex vivo model of articular cartilage damage confirmed the potential clinical 

application of SPIONS as cell tracking agents at optimised conditions (cell dosage and 

SiMAG concentration) using a clinical system.  
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An AIA murine model (Rheumatoid Arthritis) and a MNX rat model (Osteoarthritis) were 

implemented to image and track implanted SiMAG-labelled MSCs (murine) in vivo for 7 

and 29 days, respectively. Additionally, clinically relevant functional outcomes were also 

monitored. Relevant in vitro assessment was performed where mMSCs efficiently 

internalised SiMAG with no impairment on cell activity. Good contrast was generated in 

both studies with SiMAG-labelled cell population located within the synovial cavity after 7 

days (mouse study) and 29 days (rat study) by MRI. Administration of MSCs significantly 

reduced joint swelling in the mouse study without influence from the presence of SiMAG. 

mMSCs significantly influenced weight bearing asymmetry with little influence on paw 

withdraw threshold indicating potential antinocieotive properties of MSCs. In summary, 

SiMAG has demonstrated great potential as a labelling and tracking agent to be implemented 

for imaging and tracking cell populations. 

Keywords: Superparamagnetic Iron Oxide Nanoparticles (SPIONs), Magnetic Resonance 

Imaging (MRI), Mesenchymal stem cells (MSCs), Chondrocytes, Rheumatoid Arthritis 

(RA), Osteoarthritis (OA). 
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ACI Autologous Chondrocytes Implantation 

ADAMTS  A Disintegrin And Metalloproteinase with Thrombospondin Motifs 

BLI Bioluminescence Imaging 

BSA Bovine Serum Albumin 

CD  cluster of differentiation 

CT computed tomography 

DAPI 4',6-diamidino-2-phenylindole 

DMARDS Disease Modifying Antirheumatic drugs 

DMEM Dulbecco's Modified Eagle Medium 

DMSO  Dimethyl sulfoxide 

DNAse  Deoxyribonuclease 

ECM Extracellular Matrix 
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FACS Fluorescence-activated cell sorting 

FBS Fetal Bovine Serum  

FDA Food and Drug Administration  

Fe Iron 

FGF Fibroblast growth factors 

FISP Fast Imaging With Steady State Precession 

FITC Fluorescein isothiocyanate 

FLASH Fat Low Angle Shot 

FLS Fibroblast like synoviocytes 

FSE Fast Spin Echo 

GAG  Glyosaminoglycans 

GEFI Gradient-echo Fast Imaging 

ICP - OAS Inductively Coupled Plasma-Optical Emission Spectrometry 

IL Interlukin 

ISCT International Society for Cell Therapy 

MIA  Monosodium Iodoacetate 

MMP Metalloproteinases 

mMSC Murine mesenchymal stem cells 

MNP Magnetic Nanoparticles 

MPION Micron- Sized particles 

MRI Magnetic Resonance Imaging 

MRS Magnetic Resonance Spectroscopy 

MSC Mesenchymal stem cells 

MSME Multi Slice Multi Spin Echo 

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

MXN  Meniscal Transection 

NC3R  National Centre for the Replacement Refinement and Reduction of Animals in Research 
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NSAID Non-Steroidal Anti-Inflammatory 

OA Osteoarthritis 

OD  Optical Density 

PBS Phosphate buffered saline 

PET Positron Emission Tomography 

PI  Propidium Iodine 

RA Rheumatoid Arthritis 

RARE Rapid Acquisition with Relaxation Enhancement 

SCM Serum Containing Media 

SFM Serum Free Media 

SPECT Single Photon Emission Computed Tomography 

SPIONs Superparamagentic Iron Oxide Nanoparticles 

T  Tesla 

T1 Longitudinal relaxation 

T2 Transverse relaxation 

T2 
eff Transverse relaxation effective 

TA Transfection Agent 

TE Tissue engineering 

TGF Transforming Growth Factor 

TIMP Tissue Inhibitors of Matrix Metalloproteinase 

TNF Tumour Necrosis Factor 

USPION Ultra small Superparamagentic Iron Oxide Nanoparticles 
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1.1. The Promise of Regenerative Medicine and Stem Cell 

Therapies 

 

Regenerative medicine (RM) is a pioneering field which aims to develop strategies to replace 

and regenerate human cells, tissues and organs in order to restore normal function (1). The 

field thrives on the cross collaboration of multiple disciplines to develop tissue engineering 

approaches to achieve these goals. It harnesses the tools and knowledge developed by 

material scientists, molecular biologists, engineers and clinicians for the design and 

development of cellular therapies to treat a broad range of diseases and conditions. RM 

primarily employs the use of stem cells as the fundamental component of most therapies. 

The field of RM has experienced several exciting breakthroughs over the years; for example, 

the development of induced pluripotent stem cells which saw Yamanaka receive the Nobel 

Prize for this discovery (2). In addition, Macchiarini and his colleagues succeeded in 

implanting the first functioning human tissue engineered trachea (3). Popular avenues of 

research currently include; Parkinson’s, Alzheimer’s, spinal cord injury, diabetes and 

arthritis (1). Due to the successful progress by Brittberg and his team (4), cartilage 

restoration approaches are currently in clinical use today and primarily focus on targeting 

osteoarthritis. Nonetheless arthritis still remains to be a burden on healthcare systems 

worldwide. 

This thesis will therefore focus on the contributions regenerative medicine has made in 

tackling rheumatoid arthritis (RA) and osteoarthritis (OA) of the knee and how 

multidisciplinary approaches can contribute to the further understanding and enhancement 

of these therapies.  
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1.2 Arthritis 

 

Arthritis is used to describe a set of musculoskeletal disorders affecting one or more joints 

within the body. Examples include, Rheumatoid Arthritis (RA; a type of inflammatory 

arthritis) and osteoarthritis (OA; classified as degenerative arthritis), (5). The mechanisms 

by which these diseases progress are significantly different with RA being a systemic 

autoimmune disorder whereas OA is a non-systemic degenerative, mechanical disorder (6, 

7). Both forms of arthritis however result in pain and inflammation of the joint and are 

accompanied by joint destruction resulting in an eventual loss of function (6). The knee joint 

is the largest, most common joint affected by arthritis and is the focus of much research 

combating this disease. For this reason the knee joint will be the main joint of focus of this 

thesis. To fully understand arthritis of the knee, it is important to first grasp the key 

anatomical and physiological components making up the knee joint.  

 

1.2.1 The Biology of the Knee 

Characterised as the largest joint in the human body (8, 9) the knee plays a vital role in the 

mobility and movement of the lower body. It is a prime example of a synovial hinge joint 

due to the presence of the synovial lining and the single plane of joint movement. In basic 

anatomy terms, the knee is made up of 3 bones, the femur, the tibia and finally the patella 

(10). The movement of the joint is dependent on the shape of the bones, the characteristics 

of the ligaments and the surrounding soft tissue (11). Figure 1.1 illustrates the general 

anatomy of the knee highlighting the main components.  
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Figure 1.1 Basic anatomy of the human knee. Adapted from Gillian et al. 2000 (12). 

   

The distal ends of the femur progress into two condyles (9).  The surface of these condyles 

are lined with articular hyaline cartilage, a highly load bearing tissue effectively allowing 

for the smooth, almost frictionless movement of one bone over the other and is critical to the 

function of the joint (10, 13). The function of hyaline cartilage is aided by the production of 

synovial fluid which not only nourishes the cartilage but also keeps the coefficient of friction 

low. This fluid is produced by the surrounding membrane (the synovium), and has a tough 

outer layer (the capsule), which essentially prevents excessive movement of the bone.  

Excessive movement of bones is further restricted by the ligaments, which run either within 

or just outside the capsule and hold the three bones mentioned above, together (8). The main 

stabilizing ligaments are the anterior cruciate ligament (ACL), posterior cruciate ligament 

(PCL), medial collateral ligament (MCL) and the lateral collateral ligament (LCL), which 

provide combined stability throughout a range of motions characteristic to the knee (9). 

Furthermore, two “C” shaped pieces of cartilage (meniscus) are located between the cartilage 

layers of the femur and tibia (8). Unlike the cartilage found at the surface of the condyles, 

the meniscus is fibrocartilage in nature and effectively resists compression of weight bearing 
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loads and also allows for the correct alignment of the femoral condyle to the tibial condyles 

(9). Finally, tendons function to attach the muscles to bone (8), and act in an antagonistic 

manner to provide appropriate joint movement. Finally, the patella tendon attaches with the 

patella (kneecap) acting to protect the tendon at the back of the knee (11).  

Major considerations in the efficient functioning of the knee are: a) the geometry of the bone 

and articulating surfaces, b) the functional and anatomical integrity of the surrounding 

supportive structures such as ligaments, tendons and muscles, and c) the mechanical 

properties of the articular cartilage and subchondral bone. Any short comings of these pre-

requisites can ultimately result in a broad range of disorders such as articular cartilage 

damage (14).  

 

1.2.2 Cartilage 

Cartilage is a specialised connective tissue found in various forms and in numerous sites 

within the body playing a key structural and supportive role (15, 16). Cartilage located within 

different areas of the body are subjected to various site specific mechanical stresses (tensile, 

shear and compressive) and therefore have different physical properties to account for such 

site specific biomechanical properties (13, 17). For example, Hyaline cartilage is found at 

the surface of synovial joints functioning to resist compression during joint movement whilst 

also facilitating the smooth and frictionless movement of joint. Furthermore, hyaline 

cartilage makes up the rings of the trachea and the plates in the bronchi providing the 

necessary structural support required by the respiratory system. Fibrocartilage on the other 

hand is found within the intervertebral disks and the meniscus on the knee where its main 

role is to resist tensile loads under stresses. Finally, Elastic cartilage makes up the outer part 

of the ear and is adapted to providing flexible support (16).  
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In general, cartilage is a complex structure made up of collagen fibres, proteoglycans, and 

water, which collectively make up the extracellular matrix (ECM) (9, 17). The ECM is 

maintained by chondrocytes which is the only cell type that sparsely resides within this tissue. 

The specific ratio of these biochemical components effectively dictates the type of cartilage 

present (17).  

Collagen is a highly abundant fibrous protein found within the human body playing a 

significant role in contributing to the strength, structure and 3D shape of cartilage (14) . The 

general structure of collagen can be described as being a triple helix made up of three helical 

α chains twisted around each other to form a superhelix (9). Variations in this structure 

results in alternative forms of collagen such as collagen type I, II, IX and XI, with the various 

types having specific roles in the overall structure of cartilage (14). Collagen type I is 

primarily found in fibrocartilage whereas collagen type II makes up 80-90 % of  hyaline 

cartilage and elastin (9, 16).  Attached to the collagen fibrils, are proteoglycan aggregates 

which contribute to the formation of ECM. Proteoglycans are complex macromolecules 

comprising of a protein core covalently attached to glycosaminoglycan side chains linked 

with a variety of sulphated polysaccharides (chondroitin 4, 6 and keratin sulphate) (9, 14). 

Proteoglycans play an important role in maintaining cartilage function by promoting 

lubrication, providing a structural element within the connective tissue, mediating the 

adhesion of cells to the ECM and providing binding factors that effectively stimulate cell 

proliferation (13, 14). The water content in cartilage varies according to cartilage type, age 

and specific location in the body and is an essential part of maintaining tissue integrity, 

supporting loads and nourishing chondrocytes (7, 9). 

The specific ratios of these biochemical components (collagen and proteoglycans) 

effectively dictate the type of cartilage present (17). Orientation of the collagen fibres further 

impacts the biomechanical properties of cartilage tissue. Longitudinal fibre orientation, (type 
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I collagen) has greater tensional strength in comparison to transverse collagen fibre 

orientation (type II collagen) which are more adapted to  resist compressive forces (18). The 

relative quantities of collagen and proteoglycans making up hyaline and fibrocartilage are 

shown in Table 1.1. Therefore, the function of hyaline cartilage is aided by the presence of 

type II collagen and the high proteoglycan quantity, whereas type I and type II collagen 

content of fibrocartilage allow for resistance to both compression and tension forces. It is 

important at this point to note that fibrocartilage does not have the same biochemical 

composition or structural organisation to provide the mechanical function demanded by the 

knee thus resulting in faster degradation over time due to insufficient load bearing 

capabilities (13, 19). This is an important consideration in tissue engineering of cartilage.  

Table 1.1 The relative proportions of the three major components in hyaline and 

fibrocartilage (19) 

 

Tissue Type Type I collagen Type II collagen Proteoglycan 

Fibrocartilage ++ + + 

Hyaline cartilage 0 +++ +++ 

 

Healthy cartilage is maintained by a dynamic equilibrium between the production and 

degradation of cartilage matrix over time in a process referred to as “cartilage homeostasis” 

(7, 9, 13).  This process is regulated by chondrocytes residing within the cartilage tissue and 

is governed by a variety of soluble catabolic (degrading), anabolic (pro-synthesis), 

inflammatory and apoptotic mediators derived from chondrocytes and the synovium (7, 9). 

Normal homeostasis is dependent on the ability of chondrocytes to detect changes in the 

matrix composition and consequently respond by triggering the degradation of ECM via the 

secretion of matrix degrading enzymes to allow for the deposition of newly synthesised ECM 

specific molecules (collagen, proteoglycans and glyosaminoglycans) (16).  It is vital to have 



                                 Chapter 1- Literature Review                                                                              
   

8 | P a g e  
 

a firm understanding of the factors involved in cartilage homeostasis in order to better 

understand disease pathology. A detailed overview of factors involved in cartilage 

homeostasis are stated in Table 1.2. Furthermore, homeostasis is partially driven by 

mechanical stimulation (mechanotransduction) of chondrocytes where the loading of the 

joint creates mechanical, electrical and chemical signals which are transduced through the 

cartilage matrix effectively directing chondrocytes towards anabolic activities (16).  

However, with age, cells are less able to respond to these signals resulting in a disruption in 

the homeostasis balance (13, 16). In fact, any event (such as trauma, disease and age) causing 

a disruption in this balance may result in excessive catabolic events over anabolic events. 

This ultimately causes the overall breakdown of the matrix subsequently causing cartilage 

damage, pain and reduced mobility (7, 13). Given the limited proliferative capacity of mature 

chondrocytes, these cells are not able to compensate for this damage, resulting in disease 

progression (7).   
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Table 1.2 Catabolic and anabolic factors of normal cartilage homeostasis (9) 

 

 

1.2.2.1 Articular Hyaline Cartilage 

From the Greek word, “hyalos”, meaning glass, articular hyaline cartilage is identified as the 

smooth, glistening white, glass-like tissue found covering the surface of articulating joints 

(13, 16). Hyaline cartilage is a metabolically active tissue whose function lies in the ability 

to provide resistance to compressive, shear and tensile forces occurring during normal joint 

motion. This is made possible by distributing applied forces to the underlying bone in the 

knee without sustaining wear (16, 20).  Although hyaline cartilage is considered to be a fairly 

tough and robust tissue, recovery from damage to the articular surface is not easily overcome 

Catabolic Factors Anabolic Factors 

Cytokines: Interleukin (IL-1) and Tumour 

necrosis factor (TNFα). 

Cytokine inhibitors: Interleukin 

antagonist (IL-1RA) and human cytokine 

synthesis inhibitory factor (IL-10) 

Proteinases:  

a) Cysteine and serine proteinases  

b) Metalloproteinases (MMP). E.g. MMP-1 

(interstitial collagenase), MMP-2 

(gelatinases), MMP-3 (Stromelysin), 

MMP-13 (Collagenase-3), ADAMTS 4 &5 

(A Disintegrin And Metalloproteinase with 

Thrombospondin Motifs) 

Aggrecanase -1 &2                       

Proteinase Inhibitors: Tissue inhibitors of 

matrix metalloproteinase (TIMP) 

 

 

 

 Growth Factors: FGF (Fibroblast growth 

factors), EGF (Epidermal growth factor), 

TGFβ (Transforming growth factor) 

 Mechanical Loading: 

Mechanotransduction 

http://en.wikipedia.org/wiki/Disintegrin
http://en.wikipedia.org/wiki/Metalloproteinase
http://en.wikipedia.org/wiki/Transforming_growth_factor
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(16). This is attributed to the avascular nature and consequent lack of blood supply 

accounting for the limited healing capacity and regeneration of the articular cartilage (13, 16, 

21, 22).   

The mechanical properties of articular cartilage are attributed to the arrangement of the 

macromolecules making up cartilage ECM, as mentioned in section 1.1.2 (16). The relative 

quantities of each constituent making up hyaline cartilage are shown in Figure 1.2. Collagen 

is the major matrix protein found in hyaline cartilage ECM with type II collagen being the 

most abundant and prominent of all collagen types present. Type IX, XI, X and VI are also 

present and work to facilitate interactions with proteoglycans and cells, regulate fibril size 

and organize collagen into 3D structures (13, 16).  The arrangement of collagen fibres not 

only provide the tensile strength for cartilage but can also respond to swelling pressures of 

proteoglycans (15).  

Proteoglycans are made up of: glyosaminoglycans (GAGs), hyaluronan, chondroitin 

sulphate and keratin sulfate. The attachment of GAGs to a protein core essentially creates a 

proteoglycan monomer. Aggrecan is the most abundant proteoglycan found in hyaline 

cartilage, comprising of a protein core with keratin sulfate and chondroitin sulfate side chains.  

These molecules are stabilized by link proteins and are attached to hyaluronic acid molecules 

within the ECM. Up to 200 aggrecan molecules can attach to one hyaluronan molecule, 

forming a macromolecular aggregate, which is shown in Figure 1.2. Negatively charged side 

chains that repel each other encourage the adsorption of water and providing the tissue with 

swelling properties. This is a key aspect in resisting compression and contributing to the 

mechanical properties of the tissue (13, 16). Other proteoglycans (decorin, biglycan and 

lumican) can also be found within hyaline cartilage. The collaborative effect of all 

proteoglycans contributes to the function of cartilage (capacity to resist excessive loads and 

provide frictionless movement of joints) (15, 16). Furthermore, multi-adhesive proteins 
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(non-collagenous and non-proteoglycan linked proteins) found within the matrix are present 

to encourage and facilitate interactions with chondrocytes and cartilage matrix molecules, 

by playing roles in cell anchoring (16). 

Hydration of cartilage matrix is a particularly important aspect of maintaining cartilage 

health and function. Water molecules residing within the pores of ECM not only facilitate 

the diffusion of nutrients and waste to and from the chondrocytes and the synovial fluid, but 

also act to maintain tissue integrity when the joint is in motion. This is significantly 

important given the avascular and alymphatic nature of cartilage (13, 16, 22). During motion, 

cartilage can respond to varying pressure loads resulting in the rapid pressurisation of the 

fluid inside the tissue resulting in the ability to withstand the load (9, 13, 16). 

Chondrocytes reside within the lacunae of ECM and become attached to the ECM via 

integrins (specialised cell surface proteins mediating bidirectional signalling between the 

intracellular and extracellular regions of the cell). This is essential in the maintenance of 

homeostasis, viability and morphology (23).  



                                 Chapter 1- Literature Review                                                                              
   

12 | P a g e  
 

 

Figure 1.2. Structure and molecular composition of hyaline cartilage, adapted from 

(13, 16) 

 

Hyaline cartilage is divided into zones classified by collagen fibre orientation and 

chondrocyte morphology (Figure 1.3). The composition of each zone varies from top to 

bottom i.e. from the surface of the tissue down to the subchondral bone. These regions are 

known as; superficial, middle/intermediate and deep regions. Chondrocyte morphology, 

size, collagen fibre orientation and biochemical composition vary throughout these zones 

and for this reason are identified accordingly (9, 13). 

 The superficial zone forms approximately 10-20 % of the tissue and is characterised 

by; a) densely packed collagen fibres orientated parallel to the cartilage surface, b) 

relatively low proteoglycan content and c) few densely packed and flattened 

chondrocytes, aligned along the neighbouring collagen fibres (9, 13). 
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 The middle zone comprises of about 40-60 % of the tissue thickness. This zone is 

characterised by: a) collagen fibres arranged in an oblique manner, b) high 

proteoglycan content and c) low chondrocyte density with cells more spherical in 

shape (9, 13). 

 Finally, the deep zone is characterised by: a) large collagen bundles orientated 

vertically to the articular surface and fixed to the underlying bone, b) low 

proteoglycan content and c) very low cell density. The chondrocytes in this area are 

elongated and grouped together in a columnar manner (9, 13). 

 

Figure 1.3. Zonal classification of hyaline cartilage highlighting the composition and 

structure in terms of cell morphology and collagen fiber orientation at every level. 

Adapted from  (9, 13) 
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1.2.3 Arthritis Pathology. 

1.2.3.1 Osteoarthritis 

Osteoarthritis (OA) of the knee is considered to be one of the most prevalent forms of joint 

diseases affecting approximately 8.5 million people in the UK (8, 24). It is a chronic disorder 

characterised by the degeneration of articular cartilage ultimately resulting in the destruction 

of the synovial joint (24-26). This consequently causes pain, stiffness and inflammation of 

the diseased joint resulting in a loss of joint function and significantly impacting the quality 

of life of the patient. In fact, OA is considered to be the third leading cause of disease burden 

accounting for a sizeable contribution to morbidity and disability (particularly among the 

elderly) within a population (24, 27, 28).   

OA primarily affects those at risk of developing cartilage damage such as those possessing 

various risk factors. Risk factors (described in Figure 1.4) can be categorised as either 

general susceptibility risk factors or specific biomechanical risk factors. Increasing age and 

obesity for example, significantly enhance a person’s chances of developing OA. These are 

considered general susceptibility risk factors describing those with a predisposition for 

developing OA. Various activities demanding strenuous repetitive activities (such as, sports 

and occupations) place a person at high risk of developing OA. These are considered as 

biomechanical risk factors where everyday activities play a role in OA incidence. It is 

important to appreciate the interplay between risk factors (4, 9, 27).   



                                 Chapter 1- Literature Review                                                                              
   

15 | P a g e  
 

 

Figure 1.4  Risk factors associated with the development of OA. Adapted from (9, 13, 

26, 29) 

 

OA is initiated by damage to the articular cartilage surface creating a delicate balance of 

homeostasis. This is governed by the release of various catabolic factors by chondrocytes 

and synovial fibroblasts in response to a traumatic event (stress response). IL-1β and TNF-

α are key mediators in this process effectively up regulating the expression of various 

proteinases (such as MMP) enzymes working to degrade components of ECM matrix 

(collagen and proteoglycans) (7).  The overall breakdown of ECM matrix consequently leads 

to articular cartilage loss (24, 27). Various intrinsic repair mechanisms efficiently secrete 

anti-inflammatory and anabolic factors to restore the degraded ECM by inhibiting cytokine 

induced MMPs and blocking chondrocyte apoptotic pathways. (7). However, due to the 

notoriously limited healing capacity of articular cartilage, small injuries can progress into 

full degeneration (4, 26). In such cases, damage becomes so severe that the subchondral bone 

becomes exposed, triggering the production of bone and cartilage in the form of osteophytes 

(this response is thought to be a repair mechanism of the joint). This consequently causes 

the misalignments and instability of the joint relying on the stabilising ligaments to work to 

stabilise the joint. These structures therefore become thicker and tougher further limiting 

movement (16, 24-26, 30). Figure 1.5 highlights the key structural changes occurring within 
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an osteoarthritic knee. It can be summarised that OA is not a disease affecting only the 

articular cartilage but in fact a number of components related to the knee (30, 31).  

 

1.2.3.2 Rheumatoid Arthritis  

RA (a systemic autoimmune disease) is characterised by chronic inflammation of the 

synovial joint ultimately leading to joint destruction and subsequent disability or morbidity 

(32-34). It commonly affects multiple symmetrical joints such as the knee, finger and ankle 

in parallel, causing severe pain, inflammation and stiffness (33). RA is considered to be the 

most common autoimmune disease affecting approximately 1 % of the global population 

(32-34) and 400 000 people in the UK (30).  Similar to OA, it bares significant economic 

burden (33) with an annual cost of £8 billion to the NHS in the UK (30). Further disability 

and morbidity is attributed to infection and inflammation of extra-articular organs over time. 

Issues related to pericarditis, pulmonary fibrosis, vasculitis are all examples of complications 

associated with RA (33, 34) further contributing to economic burden and reduced quality of 

life (33, 34).  

People of all ages may be affected by RA, however, it is more prevalent with increasing age 

primarily affecting those over the age of 50. It is also 2-3 times more common in woman 

than in men (33, 34). Within 10 years of diagnosis approximately 40 % present with severe 

disability to the extent that they cannot work (34). The causes of RA are believed to be 

attributed to a combination of genetic and environmental factors (33-36). Genetic factors 

only account for approximately 30 % of the total number of diagnosed cases of RA whilst 

additional risk factors such as smoking, alcohol, stress, diet and infection are also believed 

to further contribute to the onset of RA (33, 34). 
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It is thought that these genetic and environmental factors can trigger the immune system to 

initiate the inflammatory process. This involves the infiltration of inflammatory cells such 

as; neutrophils, macrophages, lymphocytes and monocytes into the synovium causing 

inflammation, pain and swelling (5, 35-38). The subsequent activation of inflammatory cells 

causes a cascade of events whereby pro-inflammatory factors such as TNF –α and IL-B are 

secreted further causing the up regulation of other catabolic factors such as MMPs. This 

consequently causes disruption in cartilage homeostasis resulting in the destruction of the 

articular cartilage (34-38). Furthermore, the diseased, inflamed synovium of the knee is 

characterised by the presence of fibroblast-like synoviocytes (FLS). These cells grow in 

mass resulting in the development of the pannus. This process is fairly invasive resulting in 

continued erosion of bone and cartilage (6, 38). As a result, the patient experiences pain and 

disability.  
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Figure 1.5. Lateral view of: A) healthy, B) OA, C) RA joint highlighting the destruction 

of the synovial joint adapted from Arthritis Research UK (ARUK); (8, 30). 

 

The physical changes in the OA and RA joint are easily diagnosed by X-Ray or magnetic 

resonance imaging (MRI), by evaluating changes in the joint space causing the narrowing of 
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the cartilage and changes in bone thickness. In general, MRI is far more informative of the 

stages and the degree of disease (28, 33). 

 

1.2.3.3 Treating OA and RA 

There are no known cures for either forms of arthritis discussed in this document. Treatment 

regimens are focused on relieving painful symptoms, minimising disability and maintaining 

quality of life.  These range from simple non - pharmacological approaches, to invasive 

surgical techniques (34, 39). Non-pharmacological options such as education, exercise and 

weight loss regiments are implemented in the early stages of the diseases and are aimed at 

improving general wellbeing, reducing stress, whilst increasing the strength of muscles local 

to the knee in order to improve joint alignment (9, 24). These approaches however are not 

effective at tackling the pain and inflammation associated with the disease and thus require 

pharmacological interventions (9). Basic pharmacological approaches implemented in early 

stages of the disease aim to address symptoms such as pain and inflammation by prescribing 

pain killers (analgesia) or anti-inflammatories. In fact, pain is considered to be the worst 

symptom of these diseases affecting even the most basic activities and increasing in intensity 

with disease progression. In extreme cases, pain may even persist at rest (24, 40). Treatments 

for pain have limited efficacy encouraging researchers to find better, more effective means 

of tackling this symptom. Nonetheless, these approaches do not impact disease progression 

(40). Whilst pharmacological interventions are the primary form of treatment for RA (34), 

they are also implemented to address pain and inflammation in early cases of OA forming 

the basic core treatments for OA (24). Nonetheless, these approaches do not impact disease 

progression and so alternative means of tackling these diseases are currently under 

investigation.   
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Osteoarthritis 

When core treatments have failed, and the disease still bares significant burden on the patient; 

surgical approaches become necessary. In these cases, the diseased joint can be replaced 

with an artificial implant (arthroplasty) (13). Joint replacement techniques however are not 

suitable for patients under the age of 50 due to the limited life span of the prosthesis (5-10 

years) (4, 24).  This has motivated research into developing a means of restoring damaged 

hyaline cartilage through cartilage replacement techniques (4, 24, 39, 41). Examples of 

surgical techniques targeting the regeneration and restoration of damaged cartilage mainly 

include microfracture, debridement, ACI (Autologous Chondrocyte Implantation) and 

mosaicplasty. 

 Microfracture involves the release of mesenchymal stem cells (MSC) from the 

underlying bone marrow by arthroscopically drilling into the subchondral bone 

within the defect area (21, 39). This initiates the flow of blood containing 

mesenchymal stem cells (MSCs) and cartilage progenitor cells to enter and clot 

within the micro fractures (20). Although this technique has received some positive 

results, the regenerated cartilage tends to be fibrocartilage in nature, which does not 

compare in terms of mechanical properties (strength) to hyaline cartilage therefore 

undergoing severe degradation within two years (42). Further to this, this technique 

has proved ineffective for elderly patients, overweight patients and for patients with 

lesions larger than 2.5 cm. The success of this approach is heavily dependent on the 

quality and health of native mesenchymal stem cell population and may account for 

the conflicting clinical outcomes (39).  

 Mosaicplasty involves the isolation of osteochondral grafts from non-weight bearing 

regions of the knee to be subsequently transplanted within the defect area (20, 43). 

Practical limitation associated with this technique involves the mismatching of 
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surface shapes resulting in gaps between grafts in addition to damage to the donor 

site. Therefore, this technique is only suitable for smaller lesions (20, 21, 44). 

Issue with these techniques has driven the development of cell therapy strategies to treat 

articular cartilage damage. This involves the administration of cells to the body for 

therapeutic purposes (45). The first articular cartilage focused cell based therapy was 

introduced by Brittberg et al in 1984, in a technique known as Autologous Chondrocytes 

Implantation (ACI). After a series of clinical successes it was later commercialised in 1994 

by Genzyme (4, 42, 46). Multiple hospitals in the UK and worldwide provide ACI in routine 

clinical practices with good manufacturing practise (GMP) laboratories to provide cell 

culture services. 

Autologous Chondrocyte Implantation is a surgical technique whereby samples of the 

patients’ healthy cartilage are harvested from non-load bearing areas of the knee, digested 

to extract chondrocytes, expanded in culture (± 6 weeks) in order to obtain adequate cell 

numbers (5-10x106) and then re-implanted into the area of cartilage damage (Figure 1.6). In 

early versions of this technique, the periosteal flap was sutured over the defect (4). Within 

three months, the defect had closed and was occupied by cartilaginous tissue. Further to this, 

patients experienced a reduction in pain and swelling (47). The actual mechanism of 

cartilage repair in ACI is unknown, however, three theories have been proposed. These 

include;  

1) Repopulation of the defect site by implanted chondrocytes. This causes the synthesis 

of specific cartilage ECM components with the periosteum acting as a physical 

support in localising the cells in place.  

2) Repopulation of the defect site by implanted chondrocytes through the synthesis of 

specific cartilage ECM components stimulated by the periosteum.  
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3) The periosteum and transplanted cells act to stimulate chondrocytes in the 

surrounding cartilage to enter the defected area, divide and regenerate damaged 

cartilage (4). 
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Figure 1.6. Flow chart highlighting critical steps in performing first generation ACI and MASI (matrix associated chondrocyte 

implantation). 
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Although the formation of hyaline cartilage is the ultimate clinical goal of ACI, this is often 

not the case and results in the formation of fibrocartilage instead in certain cases (21, 48). In 

a study with 23 patients, it was found that success was very much dependant on the site of 

the defect (49). Nonetheless, ACI has since undergone various iterations and has evolved to 

enhance its therapeutic potential. Iterations have focused on the replacement of the periosteal 

flap with natural polymers such as collagen, fibrin, and hyaluronic acid (to minimise surgery 

time and donor site morbidity) (50); the use of biocompatible scaffolds in matrix-associated 

chondrocyte implantation (MACI) approaches where scaffold have been implemented to 

support chondrocytes during the remodelling process (42). Little is actually known about the 

fate of cells in the defect. This is a topic of much interest and of vital importance. A better 

knowledge of cell fate post implantation can contribute to the understanding of mechanism 

of repair and with this, enable therapies to be optimised for maximal therapeutic output.  

 

Rheumatoid arthritis 

RA is primarily managed with drugs aimed at either treating the symptoms of the disease 

(pain and inflammation) or by disease modifying agents aimed at preventing further disease 

progression (34).  These include: 

 Anti-inflammatory agents: typically referred to as “non-steroidal anti-

inflammatory (NSAID) drugs”. These are primarily prescribed to address the 

inflammation of the knee whilst also offering some pain relief to the patient. 

Unfortunately, such recommendations are limited in their ability to prevent or 

suppress joint damage with various formulations varying in efficacy. Low doses of 

corticosteroids are also thought to effectively tackle pain and inflammation of the 

diseased joint, however these are limited to offering only short term relief (33, 34).  
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 Disease Modifying Anti-rheumatic drugs (DMARDS) are aimed at reducing or 

preventing further joint damage, hence preserving joint function. Unfortunately, 

DMARDS are limited in their ability to control pain, taking from weeks, up to 

months, to have an effect (33, 34) 

 Cytokine antagonists work to inhibit the activity of cytokines (e.g.TNF-α) 

participating in the onset and progression of inflammation in RA. However, these are 

very expensive requiring intravenous administration and are associated with 

unpleasant toxic effects (51).  

For optimal results, a combination of these drugs is prescribed to address disease symptoms 

in addition to disease progression. However, such drug regiments are particularly unpleasant 

to the patient causing significant side effects whilst also being very expensive. Additionally, 

these drugs have varying effects and results are highly patient dependant. In some cases, 

patients may even become resistant to these drugs, thus continuing to cause significant 

disability (51, 52). In certain extreme cases, minor operations may become necessary to 

either correct deformities or replace the damaged joint in the case of the hip and knee (53).  

The chronic inflammatory environment of the rheumatic arthritic joint renders cartilage 

regeneration techniques (implemented in OA) ineffective, as similarly to the original native 

cartilage, newly formed cartilage undergoes destruction within the hostile environment (6).  

This highlights the growing need for more effective means of restoring damaged cartilage in 

RA patients (42). 
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1.3 Motivation for Cell Therapies.   

 

Pain and inflammation can be effectively treated offering some relief for OA and RA 

sufferers. Although some progress has been made in the restoration of damaged cartilage, 

these techniques (mosaicplasty and microfracture) are not always successful in offering the 

OA patient full function of their joint and are not suitable for RA sufferers (6). Cell therapies 

based on ACI are believed to hold most promise in treating full cartilage defects, even though 

long term follow up studies have not conclusively demonstrated the clinical advantage of 

implementing ACI over microfracture (49) and moisacplasty (54).  

A number of limitations have been attributed to ACI: 

1. The dedifferentiation of chondrocytes when cultured in monolayer encouraging the 

formation of fibrocartilage as opposed to hyaline cartilage when replaced in the joint 

(50).  

2. Quality of isolated chondrocytes is highly donor dependant (age and degree of 

disease progression) leading to impaired cartilage repair (50). 

3. The need to isolate healthy cartilage from a non-weight bearing region in the knee 

placing further burden on the patient, donor site morbidity and increased risk of 

developing OA in the future (50). 

4. The use of the periosteum to localise cells to the defect increases surgery time and 

donor site morbidity. Although commercial product such as Chondroguide have 

reduced this issue (50). 

5. The unpredictable and non-reproducible variability in tissue quality (50). 
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ACI forms a solid foundation to develop alternative cell based therapies for OA and RA. In 

ACI, the cartilage defect is used to trigger the production of cartilage. This environment has 

all the necessary physical and chemical factors required for cartilage regeneration (55). This 

has encouraged the development of approaches mimicking this in vivo environment whereby 

the implanted cells can either repopulate the damaged area or stimulate the surrounding 

cartilage cells to divide and repopulate defected areas (6). ACI is only effective in those 

suffering from OA but not RA. The hostile environment of the rheumatic joint renders this 

approach ineffective as similar to native cartilage the newly synthesised cartilage will also 

undergo destruction. However, by diversifying this approach to include alternative cell types 

such as mesenchymal stem cells, novel and plausible approaches to tackling RA can be 

developed based on the traditional ACI approach. The application of stem cell-based 

therapies therefore has the potential to develop a reproducible means of promoting high 

quality tissue (comparable to that of native cartilage in terms of biochemical and mechanical 

properties). The therapy would aim to replace and/or repair damaged cartilage and provide 

the opportunity for full recovery along with total joint function. This would ultimately hold 

promise to fully eliminating diseases such as OA and RA (21, 24).   

 

1.3.1 Cell Therapies 

The newly established Cell Therapy Catapult in the UK, defines a cell therapy as: “Any 

treatment for a medical condition that employs at its core one or more types of viable human 

cells” (56). Cell therapy is a platform technology employed in many fields of medicine 

including regenerative medicine (57). Cell types employed in the development of such 

therapies include the use of the patient's own cells (autologous), donor derived (allogeneic) 

cells, stem cells (adult stem cell, embryonic stem cells and induced pluripotent stem cells) 
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and immune cells. Examples of cell therapies include; bone marrow transplantation (earliest 

stem cell-based therapy dating back to 1968), the application of chondrocytes in treating 

cartilage lesions as described previously for ACI (56, 58),  the autologous transplantation of 

limbal stem cells for corneal disorders and finally the implementation of  T cell  in 

autoimmune therapies (59). In the context of regenerative medicine, cell therapy approaches 

are implemented to replace, regenerate and restore the function of damaged or injured 

tissues/organs, primarily using stem cells (1, 57) 

Tissue Engineering (TE) is one particular branch in the cell therapy industry (57) and 

involves the combined use of cells, engineering materials and biochemical factors to develop 

ex vivo living tissues and organs that can be implanted within the body to repair injury or 

replace the function of a failing organ (42, 45, 60). TE skin grafts were some of the earliest 

TE strategies developed dating back to 1981 (42). Since then, TE strategies have extended 

to the development of the first bio-artificial neo bladder by Atala and colleagues (61). In fact, 

the possibilities of TE has extended to the engineering of whole organs such as livers, 

pancreases, and cartilage (62). 

Cell therapies are believed to significantly impact the way OA and RA are treated in the 

future.  The precedent for developing cell therapies in treating debilitating diseases such as 

OA and RA lie with ACI (58). The ultimate clinical goal of ACI is to restore and repair 

damaged articular cartilage offering the patient complete function of the joint resulting in 

the improvement of quality of life (63). The choice of cells is vital in the success of such 

therapies. Tissue specific cells, (chondrocytes) and stem cells (MSCs) are ideal candidates 

in the development of cell-based therapies for OA and RA. Reasons will be discussed below.  
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1.3.2 Cell Types 

1.3.2.1 Mature Chondrocytes 

Chondrocytes isolated from articular hyaline cartilage possess the desired phenotype and are 

pre-conditioned to synthesise the correct components required to repair damaged cartilage. 

This makes them potentially the ideal cell source for cartilage regeneration (12)(13). 

Chondrocytes may be isolated from a host, and used either for the same host defining an 

autologous cell therapy or for a different host (of the same species) defining an allogeneic 

cell therapy (45). The standard argument for use of autologous cells versus allogeneic cells 

apply here, where the major disadvantage of using allogeneic cells concerns immune 

rejection and the risk of disease transmission (10). While, isolating autologous chondrocytes 

from healthy tissue limits the amount of cells that can be sourced due to the risk of donor 

site morbidity. This makes it particularly difficult to meet specific patient needs and requires 

the in vitro expansion of isolated chondrocytes to obtain clinically relevant numbers (13, 42, 

62, 64). This introduces the problem of dedifferentiation. Chondrocytes are known to 

dedifferentiate rapidly when cultured in monolayer becoming more fibroblastic like (64). 

Under these conditions, chondrocytes have been known to lose their phenotypic markers 

rapidly subsequently causing the loss in their characteristic expression and instead promoting 

the synthesis of collagen type 1 (characteristic of fibrocartilage). Hence, newly synthesised 

cartilage will lack the mechanical properties required to withstand loads in the knee (7, 13, 

23). These issues are overcome by applying various culture techniques including; a 3D 

culturing environment, hypoxic conditions, mechanical stimulation and growth factors (64). 

Finally, the quality of isolated chondrocytes is highly donor dependant (age and degree of 

disease progression) further limiting the application of chondrocytes in cell therapy 

application (50). Hence, alternative cell sources are desired for better cartilage regeneration 
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such as stem cells which are potential candidates to be incorporated into cartilage tissue 

engineering strategies. (24, 64).  

 

1.3.2.2 Stem Cells 

Stem cells are defined by: a) their ability to self-renew via symmetrical cell divisions to 

maintain the pool of undifferentiated stem cells and b) the ability to undergo asymmetric cell 

division giving rise to daughter progenitor cells capable of differentiation (45, 65). These 

properties are particularly important in vivo to reconstitute any given tissue as a repair 

mechanism (66). Stem cells are found within specialised 3D micro environments also 

referred to as niches. Stem cell niches are responsible for controlling the properties, activities 

and gene expression through signalling molecules, cell-cell interactions and interaction with 

the ECM. Stem cells are further categorised by their plasticity or their flexibility to 

differentiate into mature cell types and are defined as being either totipotent (giving rise to 

all embryonic and extra embryonic cell types e.g. Zygote), pluripotent (giving rise to all cell 

types of the embryo apart from the placental cells e.g. Embryonic Stem Cells ) or multipotent 

(giving rise to few specialised cell lineages e.g. Adult Stem Cells )(42, 66).  

Although embryonic stem cells may have a greater differentiation capacity than adult stem 

cells, their clinical application is limited by ethical concerns linked to their isolation and 

potential teratoma formation (in vivo) (1, 42, 62). In comparison, adult stem cells are easily 

sourced from a range of tissues including, bone marrow, blood, brain, liver, muscle, and skin 

potentially forming the basis of a number of therapies such as diabetes, neural degeneration 

and ischemia (62). Table 1.3 highlights the various adult stem cells available. For these 

reasons adult stem cells are the preferred choice in tissue engineering purposes.  
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Table 1.3. Examples of adult stem cells, their location in vivo and their differentiation 

capacity (67). 

Cell Type Tissue Specific Location Differentiation Capacity 

Hematopoietic 

stem cells 

Bone marrow  

Peripheral blood 

Bone marrow and blood 

lymphohematopoietic cells 

Mesenchymal 

stem cells 

 

Bone marrow  

Peripheral blood 

Bone, cartilage, tendon, adipose 

tissue, muscle, marrow 

stroma, neural cells 

Neural stem 

cells 

Ependymal cells, astrocytes 

(subventricular zone) of 

the central nervous system 

Neurons, astrocytes, 

oligodendrocytes 

Skeletal-muscle 

stem cells or 

satellite cells 

Muscle fibres Skeletal muscle fibres 

 

Bone marrow derived MSCs are considered to be the ideal candidate in the development of 

stem cell-based therapies. This is attributed to the well-established, optimised and 

characterised isolation and expansion protocols with proven therapeutic potential associates 

with this cell source (6, 68). 

 

Mesenchymal Stem cells (MSCs) 

MSCs (also known as bone marrow stem cells and  bone marrow stromal cells)  are 

multipotent cells with the ability to differentiate towards tissues of the mesenchymal lineage 

to form osteocytes, chondrocytes and adipocytes both in vitro and in vivo (69-71). More 

recently it has been discovered that MSCs may potentially have greater plasticity than 

originally thought, as demonstrated by their differentiation into neurons, hepatocytes, 

fibroblasts, tenocytes and cardiomyocytes (72, 73).  MSCs reside within specialized 3D 

micro environments (niches) of connective tissues within various tissues (e.g. bone marrow, 

synovium, adipose tissue and umbilical cord) (24, 31, 46, 69). The bone marrow stroma is a 

complex structure housing a variety of cell populations creating the niche for haematopoietic 

stem cells; synergistically the haematopoietic stem cells also create the required niche for 

the bone marrow stromal population (74). Within the bone marrow cell populations, 

http://en.wikipedia.org/wiki/Stromal_cell
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approximately 0.001-0.01% are known to be multipotent MSCs (68). However, similar to 

chondrocytes, donor variability may play a significant role in impacting quality and 

therapeutic potential of cells.  

MSCs do not possess a unique panel of markers that can be reliably and accurately used for 

characterisation purposes, consequently relying on a combination of techniques to 

successfully identify these cells (46, 68, 69, 75). The following criteria have been set by The 

Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular 

Therapy. These include;  

 Ability to adhere to plastic when maintained under standard culture conditions (75).  

 Positive expression of:  CD (cluster of differentiation) 73, CD90, and CD105  

 Negative expression of haematopoietic markers:  CD11b, CD14, CD19, CD34, 

CD45, CD79a, and HLA-DR (24, 75) 

 Ability to differentiate to osteoblasts, adipocytes, and chondroblasts (75) 

MSCs have had a significant impact in the field of regenerative medicine as demonstrated 

by the extensive and impressive portfolio of therapies in research today. Examples include 

the use of MSCs to treat myocardium infarction (76), spinal cord injuries and osteogenesis 

imperfecta, with successes being demonstrated in a range of animal studies (68).  

The therapeutic potential and consequent clinical application of MSCs are further governed 

by the release of soluble factors (such as growth factors and chemokines) by MSCs, 

generating a regenerative environment by mediating anti-apoptosis, cell proliferation, 

differentiation of stem cells, mitosis and angiogenesis, immunomodulation, anti-scarring and 

chemo-attractant properties (6, 70). This potential is known as trophic activity (6). The 

factors involved in each of these activities are shown in Figure 1.7.  
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Figure 1.7. Paracrine effects of MSCs highlighting key bioactive molecules secreted 

defining the theraputic properties of MSCs; Immunomodulation, Anti-apoptosis, 

Angiogenesis, Chemoattraction, Antiscarring, Growth and differation (70). 

 

It has been suggested that cell therapies focused on treating cartilage defects should not 

ignore other components of the knee such as bone and ligament, as these are also affected 

by the disease. MSCs can therefore not only address the structural issues (attributed to their 

ability to differentiate towards bone, cartilage and adipose tissues - the tissues of interest ) 

(6) but their immunosuppressive and anti-inflammatory properties enable the inflammation 

and autoimmune aspects of the disease to also be addressed (24). The release of cytokines 

and growth factors such as interleukins (IL)-10, (IL)-6, (IL)-11 and TGF-β (transforming 

growth factor – β) act to inhibit T cells and dendritic cells (77, 78) whilst the secretion of 

soluble antigens such as HLA-g (human leukocyte antigen G) effectively disable natural 

killers and moderate dendritic cell and T cell activity. In addition, secreted 

immunosuppressive enzymes such as IDO (Indoleamin 2, 3-dioxygenase), suppress 
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leukocytes such as B cells (77, 78). The combined secretion of these factors, their role in 

tissue homeostasis and repair (governed by signalling mechanism) (79) and the cartilage 

forming ability of MSCs, provide a trophic regenerative environment, stimulating the 

proliferation and differentiation of tissues to achieve intrinsic repair whilst protecting the 

neo tissue in a localised immunosuppressive manner (6, 77, 78). The immunomodulation 

effects have been shown in vivo in animal models where MSCs have shown success in 

treating grafts versus hosts disease (24, 69, 70). This supports the use of MSCs in cartilage 

tissue engineering as a means of treating OA and RA (6). 

 

1.4. Imaging and Tracking – The Need  

 

The clinical adoption of any cell-based therapy demands the systematic and regulated 

progression from bench to bedside to evaluate and demonstrate the safety and efficacy of the 

proposed therapy before ultimately receiving clinical approval (80).  Animal models are in 

place to not only address safety concerns, but also to assess the efficacy of the therapy. Issues 

related to the extent of tissue integration, migratory patterns post transplantation, dosage 

schemes and optimal delivery route, are primarily addressed with the implementation of 

relevant animal models (19, 36).  These questions are central to a wide range of cell based 

therapies, the answers to which are vital in the assessment of the risks and success rates of 

the therapy whilst optimising the therapy’s potential and are of key importance to the 

regulatory bodies (such as the Food and Drug Administration; FDA)(80). These studies can 

fundamentally offer an insight into the short and long term survival of the cells, rate of repair, 

and the number of cells remaining or migrating to/from the desired location (bio-

distribution). With this data, physiological repair mechanisms can be better understood 
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which allows for delivery methods and dosage schemes to be fully optimised (81), therefore 

enhancing therapeutic potential (82). 

Traditionally, gathering such data has been performed by carrying out histological and 

immuno-histochemical tests (83-85). This is highly invasive, as a biopsy of the tissues of 

interest needs to be taken (86) and often demands the euthanization of animals to collect 

tissue samples for assessment. Furthermore, continuous and repetitive long term follow up 

of animals is impossible, therefore high numbers of animals are required to thoroughly 

investigate all parameters to make statistically significant conclusions (83, 86, 87). The 

initiative in place by NC3Rs aims to reduce, refine and replace the number of animals used 

in research. This highlights the need for a non-invasive means of accurately and reproducibly 

evaluating in vivo events occurring post-implantation to evaluate the success and risks of the 

given therapy (86, 88, 89).  

A range of non-invasive clinical imaging modalities are currently available and possible 

candidates to image and track stem cell populations in vivo. These include, Magnetic 

Resonance Imaging (MRI), Magnetic Resonance Spectroscopy (MRS), Positron Emission 

Tomography (PET), Single Photon Emission Computed Tomography (SPECT), 

Bioluminescence Imaging (BLI) and X-ray based computed tomography (CT). However, 

there are pros and cons associated with each of the mentioned imaging modalities for cell 

tracking applications. MRI for example, suffers from low sensitivity but benefits from high 

resolution, i.e. 25-100 µm (90). On the other hand, SPECT, PET and BLI have higher 

sensitivity but unfortunately much lower resolution when compared to MRI (1-2 mm) (90). 

Furthermore, MRI is traditionally linked to the use of FDA approved iron based magnetic 

nanoparticles (SPIONs) contrast agents, which endeavour to improve the sensitivity of the 

technique without the exposure of ionizing radiation (as is the case for SPECT, CT and PET) 

(91). Its non-invasive nature, coupled with the rapid and repetitive acquisition of images (92) 
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and the ability to distinguish between soft and hard tissues at high contrast, makes MRI a 

very powerful clinical diagnostic tool (93) and a highly suitable candidate for the imaging 

and tracking of implanted cell populations in vivo. (84).  

It is thought that superparamagnetic iron oxide nanoparticles (SPION) can be employed in 

conjunction with the use of magnetic resonance imaging (MRI) to track implanted cells in 

vivo (94, 95). In essence, stem cells are encouraged to internalise SPION; in this way, 

implanted cells can be distinguished against host cells/tissues when MR imaged, facilitating 

the identification and tracking of cells in vivo when imaged by MRI (Figure 1.8)  (96). The 

non-invasive imaging and tracking of implanted cells in vivo requires the labelling of cell 

populations with suitable SPIONs at significant quantities to allow implanted cells to be 

distinguished against host cells/tissues (97). It is essential to select biocompatible label e.g 

SPIONs that do not interfere with the basic function of the cell and in turn also not affect 

any aspects of stem cell differentiation (95). With this a great deal of in vivo information can 

be gathered and therapies optimised, not only for arthritic cases but for a large portfolio of 

cell based therapies (89). 
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Figure 1.8. Schematic highlighting the principle of in vivo cell imaging and tracking 

with the application of MRI and SPIONs, image modified and adapted from (86). 

 

Early SPION-based tracking studies involved the intravenous administration of SPIONs 

which were subsequently taken up by various cells such as macrophages. The migratory 

patterns and location of labelled macrophages were easily identified as hypointense regions 

of signal loss on MRI images (98)(97). This proved particularly useful in the in vivo 

evaluation of inflammatory disease models. For example, areas of liver damage were 

identified by the lack of hypointense regions on MR images, implying that the damaged 

structure of the liver prevented the infiltration of labelled Kupffer cells (specialised 

macrophages) (98)(97). Other examples include the monitoring, biodistribution and activity 

of macrophages in rat and mouse models of autoimmune encephalomyelitis as well as 

models of ischemia renal damage. Beckmann et al  demonstrated using SPION and MRI 

technologies, the ability to monitor the infiltration of macrophages into a rat knee of antigen 

induced arthritis (99). Finally, this technology has also been implemented in the visualisation 

of organ engraftment or rejection where a good correlation was found with hypointense 

signal (signifying macrophage infiltration) and graft rejection (100). The practicality and 

usefulness of these studies encouraged the utilisation of MRI and SPION based in vivo 
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molecular imaging in regenerative medicine and tissue engineering applications in order to 

evaluate aspects of cell migration and tissue integration. Stem cell-based therapies primarily 

involve the implantation of stem cell populations within the body, which in contrast to the 

above studies require the labelling of cell populations in vitro as opposed to in vivo (97). 

Since the development of in vivo labelling strategies, small animal in vivo tracking studies 

have been developed (101). Table 1.4 summarises some of the recent SPION and MRI based 

tracking studies in tissue engineering and regenerative medicine.  
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Table 1.4: Recent SPION and MRI based Studies.  

Study Tracking 

system  

Cell Type Particles Size of 

particle 

Concentration  MRI Results Ref 

Tracking the 

delivery and 

engraftment of 

MSCs in 

tumours 

In vivo; 

Rat 

MSC FluidMag 200 nm 0.5 mg/ml 9.4 T Efficient uptake of particles. 

MSC characteristics maintained. 

Proliferation not affected,  

1000 cells visualised at 28 days  

 (102) 

Tracking 

autologous 

MSC in knee for 

ACI 

In vivo; 

Rabbit 

MSC Endorem 150 nm 25 µg/ml 1.5 T  Labelled cells can be visualised by MRI 

Autologous MSC not located within defect  

MSC characteristics maintained,  

Proliferation not affected 

(83) 

Tracking 

autologous 

MSC in knee for 

ACI with 

microsized iron 

oxide particles; 

Defect size 

5mm x 9 mm 

Ex vivo; 

Bovine 

knee 

 

MSC Unknown 1630 nm 2.8  µg/ml 3 T  Efficient uptake of particle by cells 

MSC characteristics maintained,  

Proliferation not affected 

MPIO visualised in the defect  

Effect of MPIOs in chondrogenic 

differentiation showed that pellet did form 

but aggregation of Fe in pellet hinders ECM 

visualisation  

(103) 

Tracking  MSC 

injected into the 

heart 

In vivo; 

Mini pigs 

MSC Resovist  60 nm 25-400 µg/ml 1.5 T Cell growth and viability not affected by Fe 

concentration 

 

(104) 

Detectability of 

labelled MSC 

and gene 

expression 

In vitro;  

Agarose 

gel  

MSC Resovist vs  

Endorem  + 

transfection 

agent 

60 nm 

and 150 

nm 

12.5 µg/ml 

 

 

1.5 T More efficient uptake of particles with 

Feridex than Resovist 

Feridex had greater signal loss implying 

better detectability by MRI. 

Proliferation not affected by either particle. 

Particles lost one week after loading due to 

dilution effect 

Change in expression of Oct -3/4 and CD 45 

of labelled cells 

(105) 

Investigating the 

detectability of 

chondrocytes 

In vitro;  

Hollow 

Chondrocytes Endorem + 

transfection 

agent 

150 nm 25 µg/ml 

bioreactor 

9.4 T Chondrocytes can be labelled efficiently and 

imaged  

No negative effect on chondrogeneic genes. 

(96) 
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within tissue 

engineered 

scaffold 

fibre 

bioreactor,  

Hydrogel   

67 µg/ml 

Hydrogel  

 

Tracking MSC 

in liver cirrhosis 

model 

In vivo; 

Rats 

MSC Ferrite core 

Silica shell 

and 

fluorescent 

material 

(name 

unknown) vs 

Feridex 

Informati

on not 

available 

100 µg/ml  

 

3 T  

 

 

Labelled cells could be seen in the liver 

No significant difference between Feridex 

and Silica labelling 

(106) 

Assess the 

effect of SPIO 

labelling on 

adult human 

chondrocytes 

behaviour 

  

 

In vitro; 

Alginate 

Chondrocytes Endorem 

  

150 nm 168 µg/ml Ex vivo  

3 T 

Cells 

suspen

ded in 

alginate 

Inserting 1000 cells in a defect 4mm in size, 

could not be detected. However, when 10 

000 and 100 000 cells were implanted, clear 

signals were observed and easily 

distinguishable from surrounding cartilage 

This shows how MRI can be used to 

investigate the number of cells required for a 

successful therapy. 

(107) 
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1.5. Nanoparticles 

 

In recent years, nanoscale materials have been the focus of much research in regenerative 

medicine and tissue engineering. Nanoscale materials in the forms of nanoparticles, 

nanofibers, and nanotubes have been fabricated and specifically tailored to suite their role 

and function in the development of cell based therapies and tissue engineering strategies 

(108).  

Of particular interest are nanoparticles due to their unique, electronic, optical, and magnet 

properties. Nanoparticles are organic or inorganic materials with three external dimensions 

at equal nanoscale (109). Their specific size and dimensions allow them to be accurately 

manoeuvred and targeted to a specific biological entity or biological component (110) and 

interact on a cellular (10-100 μm), subcellular (20-250 nm), protein (3-50 nm) or genetic 

scale (10-100 nm) (111, 112). This facilitates a broad range of applications in the biomedical 

field in terms of cell isolation, drug delivery, diagnostics (MRI), cellular imaging and 

magnetic hyperthermia (111, 112). Examples of nanoparticles include liposomes, quantum 

dots, polyplexes, magnetic nanoparticles (MNPs) (86, 113) and carbon-based nanoparticles 

(114). MNPs in particular have a multifunctional role within the field of regenerative 

medicine and tissue engineering where they can be used in the tagging, tracking (115) and 

activation of stem cells with significant implications in cartilage tissue engineering (116-

118). 
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1.5.1 Magnetic Nanoparticles (MNPs) 

Magnetic nanoparticles are principally magnetic materials with three dimensions of equal 

nanoscale.  Various materials can be used to convey the magnetic properties of MNPs such 

as nickel, cobalt and iron. It has been found that cobalt and nickel are toxic to biological 

entities effectively eliminating their biomedical application while iron based particles are 

considered safer for biomedical use (119, 120). Figure 1.9 illustrates the structure of a 

magnetic nanoparticles.  Improved biocompatibility and handling is achieved by coating the 

magnetic core with a variety of organic (fibronectin, polysaccharides) and inorganic (silica 

and gold) polymers (119). The biocompatibility minimises the risk of toxicity as a result of 

being in indirect contact with the metal core, whilst offering a platform to further customise 

the particle for specific applications (121, 122). Surface coating can be functionalised in 

terms of; charge, protein binding capacity and biomolecules (118). This encourages 

enhanced interaction with biological entities with minimal toxic effects (111, 123). The 

nature of the polymer coating and the consequent modifications determine the ultimate 

physical and biological properties of the particles such as the size, charge, toxicity and 

degradability (91). This dictates the success of the chosen application demonstrating how 

important particle characteristic choice is. The versatility of MNP means that they can be 

tailored to specific purposes and so this opens up an enormous range of potential applications. 

In the field of nano-medicine, MNPs have been utilised for applications such as targeted 

gene/drug delivery, hyperthermia treatment of tumours, or stem cell tracking by MRI (124). 



                                 Chapter 1- Literature Review                                                                              
   

43 | P a g e  
  

 

Figure 1.9. Structure of a magnetic nanoparticle. 

 

The behaviour of a MNP within an applied magnetic field is governed by the magnetic 

properties of the particles and can be categorised according to their susceptibility to the 

application of an external magnetic field (125). In general, magnetism observed in nature is 

categorised by the orientation of the magnetic moments and can be defined as: a) 

diamagnetic, b) paramagnetic, c) ferromagnetic, d) antiferromagnetic and e) ferrimagnetic. 

Diamagnetism is considered a very weak type of magnetism displayed by all materials (126) 

while paramagnetic substances are only magnetised when exposed to a magnetic field. On 

the other hand, ferromagnetic or ferrimagnetic materials remain magnetised even after the 

magnetic field has been removed (119). Importantly, ferromagnetic materials develop 

paramagnetic properties as they decrease in size to approximately 20 nm in diameter (110, 

127). This implies that once the magnetic field has been removed, the particles are no longer 

magnetic but still maintain a high magnetic saturation magnetism. This is known as 

superparamagnetism. For the biomedical application of MNPs, particles exhibiting 

superparamagnetic properties are preferred as this implies that the particles will not be 

attracted to each other and so the risk of agglomeration in a medical setting is minimised 

(128, 129).  
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1.5.2 Superparamagnetic Iron Oxide Nanoparticles (SPIONs) 

SPIONs are a specific class of magnetic nanoparticle, which are well known for their 

application as a T2 weighted MRI contrast agent (130). They are typically composed of either 

a magnetite (Fe3O4) or maghemite (γ-Fe2O3) core (125, 131), both of which are ferrimagnetic 

in nature. However, as they decrease in size below 30 nm, they lose their permanent 

magnetism and become superparamagnetic (109). These cores can then either be coated with 

a biocompatible polymer as described previously (121, 132), or precipitated through a larger 

porous polymer hence generating overall larger particles (greater than 30 nm in diameter) 

whilst maintaining superparamagnetic properties (Figure 1.10) (125, 133). Alternatively, the 

larger nanoparticles may be generated by controllably aggregating nanoparticles. SPIONs 

can be further categorised by size although there is no clear consensus as to the specific size 

range making up each class. However, as a general indication, ultrasmall superparamagnetic 

iron oxide nanoparticles (USPION) are below 50 nm in diameter; SPIONs are hundreds of 

nanometers in diameter and micron-sized MNPs are (MPIO) >1 μm (134). For the purpose 

of this thesis, the term SPION will be used to refer to iron oxide nanoparticles with 

superparamagnetic properties of all sizes.  SPIONs are particularly suited in their application 

as MRI contrast agents given their biocompatible nature and ability to generate significant 

contrast with little risk of in vivo agglomeration (97, 120, 129, 135). This highlights the 

potential use of SPIONs to image and track stem cell population in vivo using MRI 

technologies.  
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Figure 1.10. SPIONs demonstrating the size and distribution of superparamagentic 

iron cores within biocompatible polymers to generate UPSIONs and MPIOs.  

 

The use of FDA approved SPIONs are particularly attractive in the implementation of MRI 

based tracking protocols. Endorem (also referred to as Feridex) and Resovist are all 

examples of FDA approved, iron-based MRI contrast agents which have been used to image 

and track cells by MRI in recent years (125, 136). However, these particles have recently 

been removed from the market (125, 137) and alternative particles have been investigated 

for biomedical application such as cell tracking purposes. Based on the intended application 

of these particles, a list has been devised stating the properties that a SPION should have, 

before being considered for cell tracking purposes. The commercial market for SPIONs is 

both large and extensive (119) and therefore, commercially available particles may also be 

suitable for biomedical applications as long as the particles comply with the below list.  
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PROPERTIES OF SPIONS FOR BIOMEDICAL APPLICATIONS (133) 

1. Low toxicity 

2. Biocompatible  

3. Chemically stable in physiological conditions 

4. Biodegradable 

1.6. SPION labelling of cell populations 

 

SPION labelling of cell populations is a necessary prerequisite in the imaging and tracking 

of cell populations by MRI. Intracellular and extracellular approaches have been suggested 

as a means of SPION cell labelling (82, 138, 139) (Figure 1.11). The ability to functionalise 

the surface of SPIONs with various ligands (such as; small molecules, antibodies or specific 

proteins) allows for SPIONs to be specifically targeted to various cell surface receptors or 

ion channels and encourage extracellular labelling (118, 124).  Alternatively, cells can 

actively internalise SPIONs within the cell cavity resulting in intracellular labelling. The 

general mechanism of internalisation in non-phagocytic cells (such as stem cells) is believed 

to be endocytosis with this specifically been divided into the following categories; clathrin-

mediated endocytosis, caveolaemediated endocytosis, macropinocytosis,  phagocytosis and 

receptor mediated endocytosis (86, 91). This technique results in the intracellular 

accumulation of SPION and is shown in Figure 1.11.   

Internalisation is more suited for in vivo tracking as this approach results in increased iron 

concentrations improving the detectability of detecting implanted cells in vivo whilst also 

increasing the resolution of the image (86, 95). Furthermore, SPION internalisation 

http://en.wikipedia.org/wiki/Clathrin-mediated_endocytosis
http://en.wikipedia.org/wiki/Clathrin-mediated_endocytosis
http://en.wikipedia.org/wiki/Caveolae
http://en.wikipedia.org/wiki/Macropinocytosis
http://en.wikipedia.org/wiki/Phagocytosis
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facilitates long term monitoring of implanted cell populations as SPIONs are less likely to 

be dissociated from the cells in the early stages of labelling and tracking (103, 123). However, 

internalisation is limited by the dilution of the SPION label during the proliferation and cell 

division of cells or via the physical removal of the particle by exocytosis. The rate of 

internalisation depends on a number of factors including, cell type, particle size, 

hydrophobicity, surface charge of particle polymer and the rate of cell proliferation (118). 

This method tends to be time consuming and is limited to cells that have a high degree of 

phagocytosis (140). Cells exhibiting a low degree of phagocytosis may require prolonged 

incubation for the efficient internalisation of SPIONs. This may be undesirable, as extended 

culture could impair the potency of the cells or redirect differentiation towards an unwanted 

lineage (141). The use of transfection agents (TA) can be employed to increase labelling 

efficiency in a shorter period of time, as they can form complexes with SPIONs, therefore 

increasing uptake by phagocytosis (98, 123). Examples include poly–L-lysine, protamine 

and cationic liposomes (140).  In a study by Kostura et al it was found that Feridex- poly-

L–lysine inhibited chondrogenesis; however, this was not found with Feridex – protamine 

(142, 143). Thus the effect of the TA must be investigated further as it could interfere with 

the activities of the cell (144). To overcome these limitations incurred by internalisation and 

the use of TA, a technique known as “magnet electroporation” has been introduced (137). 

Essentially, a magnetic field is used to induce the accumulation of the contrast agent in the 

cytoplasm of the cell by increasing membrane permeability (140). This eliminates the need 

for transfection agents (TA) but unfortunately this is considered somewhat damaging to cells 

(137). Past studies demonstrated the ability of SPIONs to be taken up by a wide variety of 

cells by simple incubation, these included; fibroblasts, lung cells, liver cells, stem cells, 

kidney cells, macrophages, nerve cells, endothelial cells and various cancer cells lines (109). 
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Figure 1.11. Schematic highlighting intracellular and extracellular cell labelling. 

Intracellular labelling involved the internalisation of SPION via various endocytic 

mechanisms; clathrin-mediated endocytosis, macropinocytosis, phagocytosis and 

receptor mediated endocytosis. Extracellular labelling involves the attachment of 

SPION to various integrin receptors or ion channels aided by the functionalization of 

particles with specific biomolecules.  

 

http://en.wikipedia.org/wiki/Clathrin-mediated_endocytosis
http://en.wikipedia.org/wiki/Macropinocytosis
http://en.wikipedia.org/wiki/Phagocytosis
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1.7. Toxicity 

 

When considering SPION for any biomedical application, the toxic nature of the particles 

must be considered (145). SPIONs are considered to be inert and biocompatible given the 

nature of iron (146). Iron is a naturally occurring element in the human body (ferritin) 

playing an important role in cellular metabolic processes such as DNA synthesis, oxygen 

transport, and redox reactions (117, 147). The body is therefore adapted for iron metabolism 

and thus labelling cells with SPIONs is not likely to affect biological properties of cells (147). 

However, in high quantities and in various oxidation states, Fe can possibly impair cell 

viability by damaging cell membranes, causing morphological changes in proteins and DNA 

(105, 147). This can have adverse effects on cell viability, proliferation, metabolic activity 

and impair the therapeutic efficiency of the therapy (148, 149). Iron is found in two main 

oxidation states; Fe (II) and Fe (III). Fe (II) is thought to be the main source of cellular 

damage as a direct consequence of free radical generation (150). At the cellular level, 

oxidative stress is thought to be the main cause of toxicity by MNPs. Oxidative stress arises 

when there is an imbalance between damaging oxidants also referred to as reactive oxygen 

species (ROS) such as hydrogen peroxide, hydroxyl radicals, and the protective antioxidants 

of which vitamin C and glutathione are examples. ROS are primarily formed by the 

incomplete reduction of oxygen. The accumulation of oxidants eventually leads to 

destruction of cellular proteins, enzymes, lipids, and nucleic acids, and as a consequence the 

normal cellular processes become impaired leading to the development of diseases and cell 

apoptosis and necrosis (117).  Therefore, it is important to obtain a balance between Fe 

incorporation for the required role and cell function (105). Labelling stem cells for this 

application, therefore demands the preservation of physiological cellular properties and the 

retention of SPIONs over prolonged periods (140).  



                                 Chapter 1- Literature Review                                                                              
   

50 | P a g e  
  

The toxicity of SPIONs on biological entities is highly dependent on a range and  

combination of factors related to the properties of the SPION itself as well as structural 

properties, dosage and the intended use are also among dominating factors (148, 151). The 

chemical composition of the particles themselves can be naturally toxic. Additionally, the 

location of SPIONs in relation to the cells is an extremely important consideration (148). 

For instance SPIONs could invoke a cytotoxic response when internalised by potentially 

interfering with the biological function of the cells but not when attached to the cell 

membrane (123, 148). However, in other cases, SPIONs attached to the surface of cells, may 

interfere with cell surface interaction (123). Furthermore, the physical properties such as the 

particle size, shape and surface coating can also evoke a toxic response by aggregating and 

coagulating according to size and shape (148, 151).  When addressing the possible in vivo 

application of SPION, it is equally important to consider the fate of the SPION after they 

have been released by the cells. Further issues arise when considering the degradation of the 

SPION and the outcome of accumulated SPION or SPION by-products in various tissues 

and organs (109).  Degradation products are thought to possibly react with various 

components of the body or cells. Therefore, the  effects of the breakdown products on the 

surrounding tissue should be fully investigated (98, 109).  

Many investigations have assessed the effect of labelling cells with SPIONs on the viability, 

proliferation and differentiation of stem cells (138). Majority of the studies have reported 

that SPIONs are frequently non-toxic to stem cells and do not affect differentiation (142, 

152). Balakumaran et al reported that the use of SPIONs as tracking agents for MSCs in no 

way interfered with their multi-lineage differentiation potential towards adipogenic, 

chondrogenic and osteogenic lineages (153). Table 1.5 highlights the range of studies and 

the finding on SPION toxicity.  
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Table 1.5 Summary of in vitro studies performed in recent years highlighting commonly used assays aimed at investigating toxicity of 

SPIONs on stem cells and the findings. 

Particle  Coating Size Cells  Concentration Toxicity Assay Result Ref 

Feridex  Dextran 80-150 

nm 

MSC 

(human, 

rat, 

mouse) 

ESC 

(Embryo

nic stem 

cells ) 

25-250  µg/ml Live/dead (7 days post labelling)  

Comet assay 

FACS to evaluate cell death 

Trypan Blue 

No loss of cell viability 

observed after 7 days 

with or without either 

TA 

(136) 

(106) 

(92) 

(154) 

Non 

commercial 

Silica 110 nm hMSCs 200 µg/ml MTT ( 1 hr and 24 hrs) 

Trypan Blue 

No reduction in viability 

after 1 hour. No 

reduction in cell 

proliferation.  

(148) 

Iron 

fluorescent 

particle 

Polystyrene  900 nm Porcine 

MSC 

Unknown Trypan Blue, MTT 

Morphological observations 

Cells maintained 

viability and retained 

label for up to 3 months. 

Differentiation capacity 

not altered.  

(155) 

Manganese 

oxide 

nanoparticles 

Mesoporous silica 65 nm mMSCs Unknown MTT 

 

75 % cell viability 

Limited cell 

differentiation in the 

osteogenic lineage.  

(156) 

Unknown HEDP 

(hydroxyethylide 

bisphosphonic 

acid) 

n/a rMSC 25,  50, 100  

µg/ml 

MTS Cell viability not affected 

at lower concentrations 

but viability decreased to 

70 % at 100 µg/ml 

(157) 
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1.8. MRI 

 

Magnetic Resonance Imaging (MRI) is a clinically relevant imaging modality capable of 

distinguishing between healthy and diseased tissues aiding in the diagnosis of a wide range 

of diseases (130, 158). MRI has rapidly revolutionised the medical diagnostics field with its 

conception dating back to the early 1970`s. The system rapidly developed through the 1980s 

with the first 0.15 T clinical scanner being installed at the Hammersmith Hospital, London. 

By 1996, there were over 10 000 scanners worldwide (130). Today, it is not uncommon to 

find 1.5 and 3 T (tesla) MRI scanners in every hospital (159) whilst 4.7, 7.4, 9 and 11 T  

(160) are being used throughout research labs. MRI permits tracking of implanted cell 

population, whilst still monitoring the surrounding anatomical structures. This is particularly 

useful for the clinician as information on the pathology of the surrounding tissue is a major 

issue when assessing the success of the therapy (82). MRI scanner strength significantly 

influences resolution and contrast, not only defining MRI detection thresholds but also 

defining the quality of images and the extent to which information can be gathered. In 

general, higher strength scanners (similar to those used in research; 4.7, 7, 11.7 T) offer 

better contrast, resolution and specificity (130).  These are all highly attractive qualities in 

the evaluation of cellular therapies in vivo (161). Such resolution however is difficult to 

achieve in clinical grade scanners (1.5 T). Therefore, scanner strength must be carefully 

considered when devising tracking protocols for clinical therapies as it is unlikely that 

resolution achieved in research (4.7, 7, 11.7 T) will be maintained clinically (1.5, 3 T). It 

must also be noted that in addition to scanner strength, SPION properties and total 

intracellular Fe content also impact the detection threshold of implanted cells in vivo.  
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1.8.1 Equipment 

An MRI scanner consists of the follows components (Figure 1.12);  

a) Magnet: produces a strong constant magnetic field. In standard clinical MRI grade 

scanners, superconducting magnets are primarily used with the magnet field present 

at all times. The strength of an MR system is expressed in terms of its magnetic 

strength for example 1.5 T and 3 T where T (tesla) is a unit of magnetic flux (130). 

b) Radio frequency (RF) transmitter coil. This generates the RF pulses that excite 

protons, therefore producing a signal, which can be detected. These are commonly 

built into the magnet although organ specific coils such as knee and head coils are 

also available (130). 

c) RF receiver coil. This detects the MR signal produced by the body in response to 

the RF pulse (130). 

d) Gradient coils. Localisation of the MR signal in the body to produce images and 

controls the pulse sequence in all three directions (x, y and z) to produce a gradient 

field (130). 
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Figure 1.12. Components of an MRI scanner. 1) Magnetic Shield, 2) Magnet 

(commonly superconducting in clinical grade scanners), 3) Gradient Coil and 4) RF 

coil.  

 

1.8.2 Theory 

It is important to understand that MRI is a technique primarily sensitive to protons associated 

primarily within the hydrogen atom of the water and fat molecules. These protons are 

positively charged and are in a constant spin motion spinning about their axis effectively 

generating a small magnetic field Figure 1.13 a. In the presence of an external magnetic field, 

the protons align themselves either with (parallel) or against (antiparallel) the direction of 

the applied magnetic field with opposing moments cancelling out resulting in a net magnetic 

moment Figure 1.13 b. While protons are in alignment, they precess, (following a similar 

motion to a spinning top) Figure 1.13 c with the speed of precession known as the precession 

frequency (Lamor frequency) and is dependent on the strength of the magnetic field. The 

stronger the magnetic field, the faster the precession rate (130, 157) 
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Figure 1.13. Behaviour of protons. A) Proton alignment in a random fashion in the 

absence of a magnetic field. B) Alignment of protons either parallel or anti-parallel to 

the external magnetic field. C) Precession of protons within a strong magnetic field. 

Adapted from Schild et al, 1990 (158) 

 

A person develops a net magnetic charge when placed into the MRI scanner. The magnetic 

moments of the body are aligned with the main field of the MRI scanner (permanent magnet) 

typically the longitudinal or z axis. During scanning, a RF pulse is applied to disrupt the 

alignment of the protons causing the protons to move from the z axis (longitudinal axis) to 

the y axis (transverse axis). This allows for the magnetization of the body to be measured 

(130, 158) and as a result, a signal is created. Once the RF pulse is removed, the 

magnetization reverts back to its equilibrium or relaxes either via spin lattice or spin-spin 

relaxation. Spin lattice relaxation controls the growth of magnetization along the z axis and 

is known as T1 or longitudinal relaxation (Figure 1.14 Aii). Spin- Spin relaxation, controls 

the decay of the signal in the transverse plane and is known as T2 relaxation (Figure 1.14 Ai) 

and is attributed to the dephasing of protons in the transverse plane. Each tissue will have its 
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own characteristic proton density, T1 and T2 values, which all contribute to the image (Figure 

1.14 B). However, by controlling various parameters the contrast of the image can be altered 

to be dependant of just one of the parameters, i.e T1 or T2 weighted contrast where contrast 

is dependant mainly on T1 or T2 relaxation respectively. All MRI images are produced using 

pulse sequences. These sequences are made up of radiofrequency pulses and gradient pulses 

which all have very specific durations, timing and flip angles. These parameters can be 

altered depending on the imaging required. The simplest MRI sequences begins with the 90o 

pulse which knocks the magnetization from the z-axis to the y-axis. There are a great deal 

of MRI sequences available and are most commonly referred to by acronyms. Table 1.6 

highlights some of these acronyms (130).  
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Figure 1.14. T1 and T2 relaxation profiles. A) General relaxation profiles demonstrating 

i) decay curve significant of T2 relaxation and ii) build up curve significant of T1 

relaxation. B) Comparative i) T2 and ii) T1 and relaxation profiles for various tissues 

where white matter refers to the white matter in the brain and the CSF, the 

cerebrospinal fluid. Adapted from (130, 157, 160). Red dashed line demonstrates the 

variation of T1 and T2 values for the different tissue types at a time (t).  

 

Table 1.6. Commonly used MRI Pulse sequence acronyms (130) 

 

 

 

 

 

 

FSE Fast Spin Echo 

RARE Rapid Acquisition with Relaxation Enhancement 

GE Gradient Echo 

FLASH Fat Low Angle Shot 

FISP Fast Imaging With Steady State Precession 
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1.8.3 Contrast Agents 

Contrast agents are applied to aid in the diagnosis of several pathologies where contrast is 

defined as the relative difference in the signal intensities between two adjacent regions. 

Therefore, contrast agents work to enhance the differences between normal and diseased 

tissues by modifying the intrinsic parameters of the tissue. It must be noted that it is the 

effect of contrast agents on the surrounding tissues that we primarily see, not the contrast 

agent itself.  Contrast agents improve the visibility of internal structures by modifying 

relaxation time of protons in the tissue where they accumulate, causing changes in the MR 

signal intensity and consequently imaging contrast. Contrast agents induce shortening of 

relaxation time in either T1 (longitudinal) or T2 (transverse) and exhibited by the shift in the 

relaxation curves (Figure 1.15; denoted by the arrow) (162). Contrast agents are further 

classified as either positive contrast agent or negative contrast agents. Positive contrast 

agents are paramagnetic compounds such as Gadolinium and are used in the clinic as 

extracellular hepatobiliary or blood pool agents by shortening T1. Therefore, tissue/organs 

incorporating these agents appear bright in T1 weighted sequences (159). Negative contrast 

agents are superparamagnetic iron oxide compounds and are applied clinically in order to be 

used as blood pool agents for the diagnosis and imaging of organs such as the liver. T2 

contrast agents work by influencing the relaxation of the protons in the water molecules in 

the near vicinity of the agent. These compounds therefore cause a shortening of T2 causing 

tissues to appear dark in T2 weighted sequences. The magnetic field of the contrast agent 

effectively perturbs the nuclear spin relaxation process of the protons leading to shortening 

of T2 of the protons affected (163). Contrast is dependent on the combination of a variety 

factors; these include intrinsic factors such as proton density and extrinsic factors such as; 

the type of pulse sequence, timing parameters, and the strength of the magnetic field (159).  
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Superparamagnetic iron oxides agent are generally preferred over Gadolinium based contrast 

agents as labelling agents due to their overall better T1 and T2 relaxivity properties, implying 

that contrast can be created at lower concentrations.  (97, 130, 134, 164).  

 

 

Figure 1.15. Schematic illustration demonstrating the effect of MRI contrast agent on 

T1 and T2 weighted MRI scans. The presence of a MRI contrast agents cause the 

shortening of T1 and T2 (shown by the arrow) resulting in decreasing signal for T2 and 

increase in signal for T1 weighted scans.  
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1.9. Multifunctional Application of SPIONs in Regenerative 

Medicine 

 

The use of SPIONs has a multifunctional role in regenerative medicine and can be used for 

the tracking, targeting and activation of stem cells both in vitro and in vivo and these aspects 

are explored in greater detail. 

 

1.9.1 Targeting of Magnetically Labelled Stem Cells 

Incorporating SPIONs into cells allows for non-contact manipulation of cells using an 

external magnetic field gradient. This can be used to precisely position or target the cells to 

the site for regeneration or repair (165, 166), which is a powerful, non-invasive tool in stem 

cell therapy (167, 168). This technology has been applied in the vascularisation of various 

tissues by endothelial progenitor cells (EPC). Attaching magnetic particles to these cells 

displayed no affect on differentiation or proliferation of the cells, and also did not alter the 

membrane proteins which are essential for vascularisation (169). It is thought that attaching 

magnetic particles to EPCs can help in localised cell based therapies as vascularisation is 

essential for tissue formation. Thus, directing these cells from a distance with an external 

magnetic field to areas that require vascularisation can enhance the regeneration/repair of 

damaged tissues. Therefore, the targeting of cells to a specific site and monitoring their 

behaviour in a model system can be examined and translated to in vivo studies (167). 
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1.9.2 Guided Differentiation of Stem Cells using SPIONs 

Mechanical stimulation can be used to facilitate cell proliferation, differentiation and 

migration of stem cells (170). Physical forces include; fluid flow, axial compression, tension, 

and magnetism (116). Biological responses are achieved through the process of  

mechanotransduction, whereby cells convert physiological mechanical stimuli into 

biochemical signals to activate the biological response (171). Using SPIONs functionalised 

with antibodies or peptides, it is possible to attach SPIONS to specific mechano-sensitive 

cell surface receptors and ion channels. This has been shown to result in membrane 

polarisation, receptor activation and subsequent downstream second messenger signals in 

hMSC (172). Using this technology it has been possible to promote an osteochondral 

phenotype of hMSC and human osteoblasts in response to magnetic activation using an 

external oscillating magnetic field (173, 174). 
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1.10 Thesis Aims and Objectives 

 

The overall aim of this project is to develop and implement a non-invasive means of imaging 

and tracking implanted cell populations in vivo with arthritis as the main focus. This imaging 

and tracking modality relies on the combined use of (SPIONs) and magnetic resonance 

imaging (MRI). Through this work it is anticipated that cellular bio-distribution, integration 

and tissue regeneration can potentially be evaluated.  

The specific aims of this thesis are to: 

 Identify a suitable SPION that can be used to label MSC and chondrocytes 

populations 

 Establish and optimise a SPION based labelling protocol 

 Evaluate cellular functions as a result of SPION labelling 

 Investigate MRI visibility threshold in both in vitro and ex vivo environments 

 Apply the developed labelling protocol to animal tracking study.
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2.1 General Cell Culture  

 

Human mesenchymal stem cells (hMSCs), murine mesenchymal stem cells (mMSCs) and 

porcine chondrocytes were cultured and expanded under standard cell culturing practice with 

cells receiving total media changes with their relevant media every 2-3 days and passaged 

when 80-90 % confluent. Incubation conditions were as follows; 5% CO2 and at 37 oC. All 

activities took place within a class II Biological Safety Cabinet under sterile conditions.  

 

2.1.1 Cell Isolation  

2.1.1.1 Human Bone Marrow Derived Mesenchymal Stem Cells. 

Human MSCs were directly isolated from human bone marrow aspirate (Donor Details; 20 

year old Caucasian male) (Lonza, UK). Flasks (T75) were coated with fibronectin (Sigma-

Aldrich, UK, cat # F0895; 10 ng/ml; prepared in PBS) and incubated at room temperature 

for 1 hr. Bone marrow aspirate was then seeded (mononuclear cell density of 1.5 x103 

cell/cm2) in 15 ml isolation media comprising of low glucose (1 mg/ml) DMEM (Lonza 

Biowhittaker, UK Cat # BE12-614 ) supplemented with 10 % Fetal Bovine Serum (FBS; 

Lonza Biowhittaker, UK Cat # DE14-801F), 1 % L-Glutamine (Sigma-Aldrich, UK Cat # 

G7513) and 1 % Penicillin/Streptomycin (Sigma-Aldrich, UK Cat# P4333). Cells were then 

cultured in hMSC isolation media for one week. After this period, a 50 % media change with 

hMSC isolation media was performed followed by a 100 % media change one week later to 

hMSC proliferation media (high glucose (4.5 mg/ml) DMEM (Lonza Biowhittaker, UK Cat 

# BE12614F) supplemented with 10 % FBS, 1 % L-Glutamine and 1 % 

Penicillin/Streptomycin). hMSCs were identified as those which had adhered to the tissue 

culture vessel after 14 days in culture. Adherent hMSCs were then cryopreserved using 
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freezing down media (90 % FBS; 10 % DMSO) at approximately 5x105 cells/ml or expanded 

up until passage 3 for subsequent experiments.  

 

2.1.1.2 Murine Bone Marrow Derived Mesenchymal Stem Cells. 

Murine mesenchymal stem cells (mMSCs) were isolated from BALB/c mice as described 

by Chamberlain et al (175). Femurs and tibia’s were flushed to remove and isolate bone 

marrow cells. Cells were subsequently plated and cultured in mMSCs isolation media 

consisting of RPMI-1640 (Lonza, UK Cat # BE12-702F) media supplemented with 9 % FBS, 

9 % horse serum (Gibco, Life technologies, UK) Cat # 26050088), 1 % L-Glutamine and 1 % 

Penicillin/Streptomycin and incubated in standard conditions 5 % CO2 and at 37 oC for 24 

hrs. Non-adherent cells were then removed and adherent cells cultured for a further 4 weeks 

at which point cells were re-plated at a seeding density of 100 cells per cm2 in proliferation 

media (IMDM  media (Gibco, Life technologies Cat # 211786) supplemented with 9 % FBS, 

9 % horse serum   1% L-Glutamine and 1 % Penicillin/Streptomycin for mMSC expansion. 

 

2.1.1.3 Porcine Chondrocytes 

Chondrocytes were isolated from porcine articular knee cartilage (Staffordshire Meat 

Packers, Stoke-on-Trent, UK) two hours post slaughtering based on a technique adapted 

from Hayman et al (23). Cartilage was carefully removed from the upper condyles of the 

knee, finely diced, weighed and then rinsed three times in a solution of phosphate buffer 

solution (PBS) and 2 % Penicillin/Streptomycin. The extracellular matrix (ECM) of the 

cartilage was digested overnight in chondrocyte isolation media consisting of DMEM 

HAMS F12 (Lonza Biowhittaker, UK Cat # BE12-719F), 2 % Penicillin/Streptomycin, 50 

µg/ml sterilised ascorbate (Sigma-Aldrich, UK, Cat # A4544), 1 mg/ml clostridal 
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collagenase (Sigma-Aldrich, UK, Cat # C6885 ) and 0.1 mg/ ml DNAse (Deoxyribonuclease) 

(Sigma-Aldrich, UK, Cat # D4263) while being continuously agitated using a magnetic 

stirrer at 37 oC and 5 % CO2. Digested cartilage suspension was filtered to remove tissue 

debris through 100 µm cell strainer. Supernatant containing chondrocytes was collected and 

centrifuged at 600G for 10 mins. Trypan blue (Sigma-Aldrich, UK, Cat # T8154) exclusion 

test was carried out at this point in order to determine cell viability (%). Chondrocytes were 

then re-suspended, seeded at 2x104 cells/cm2 and cultured under standard cell culturing 

conditions (5 % CO2 and 37 oC in chondrocytes proliferation media; DMEM HAMS F12 

supplemented with 10 % FBS, 1 % L-Glutamine and 1 % Penicillin/Streptomycin) up to a 

maximum passage number of 3. 

 

2.2. Cell Characterisation 

 

Cell (hMSCs, mMSCs and chondrocytes) were characterised upon isolation prior to the 

establishment of cells banks. Cell banks were continuously maintained by cryopreserving 

(90 % FBS; 10 % DMSO) a minimum of 5x105 cells at each passage (P1-3). 

 

2.2.1 Multi-lineage Differentiation of MSC.  

MSCs (human and murine) were tested for their ability to undergo differentiation into 

osteocytes, adipocytes and chondrocytes. Cells (2.5x103) were seeded into 24 well plates 

(n=3) and cultured in the relevant differentiation media (Table 2.1) or standard proliferation 

media (control samples) for 21 days. Media change was performed every three days.  Cells 

were fixed using 95 % methanol (Fisher Scientific UK, Cat # M395021) (15 mins) for both 

osteogenic and chondrogenic samples and in 4 % formalin (15 mins) for adipogenesis at all 
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time point samples (Day, 0, 7, 14, 21). Fixed cells were then stained with the relevant 

histology staining (section 2.5). In brief, osteogeneisis was confirmed by Alizarin red 

staining (section 2.5.1.1), adipogenesis by oil red “O” staining (section 2.5.1.3) and finally 

chondrogensis by alcian blue staining (2.5.1.2).  

 

Table 2.1. Relevant differentiation media compositions to drive the chondrogenic, 

adipogenic and osteogenic differentiation of hMSCs and mMSCs. 

 

Reagent 

 

hMSCs mMSCs 

CHONDROGENESIS (176) 

ITS (Insulin, Transferin, Sellenium Prefix) (Sigma-

Aldrich, UK, Cat # I3146) 

1 % v/v 1 % v/v 

Dexamethasone (Sigma-Aldrich, UK, Cat # D2915) 0.1μM 0.1 μM 

Ascorbic Acid (Analar, BDH, UK, Cat # 103033E) 50 μM 50 μM 

L-proline (Sigma-Aldrich, UK, Ca t# P5607) 40 μg/ml 40 μg/ml 

Sodium Pyruvate (Sigma-Aldrich, UK, Cat# S8636) 1 % v/v 1 % v/v 

TGF-β3 (Peprotech, UK, Cat # 120-14E) 10 ng/ml 10 ng/ml 

FBS 1 % v/v 1 % v/v 

ADIPOGENESIS hMSCs (71) mMSCs (175) 

3-Isobutyl-1-methylxanthine (Sigma-Aldrich, UK, 

Cat# I5879) 

0.5 mM 0.5 μM 

Dexamethasone 0.5 μM 1 μM 

Insulin (Sigma-Aldrich, UK, Cat # 19278) 10 μg/ml 0 

Indomethecin (Sigma-Aldrich, UK, Cat # 17378) 100 μM 100 μM 

ITS 0 1% v/v 

OSTEOGENESIS hMSCs 

(177) 

mMSCs (175) 

Dexamethasone 0.1μM 0.01μM 

Ascorbic Acid 50 μM 88 ng/ml 

Β-Glycerophosphate (Sigma-Aldrich, UK, Cat# 

G9422) 

50 mM 10 mM 

 

 

2.2.2 Flow Cytometry 

Flow cytometry (Fluorescence-Activated Cell Sorting; FACS) was implemetnted to evaluate 

cell surface markers for hMSCs and mMSCs. hMSCs (P1) and mMSCs (P12) were expanded, 

trypsinised, and re-suspended at a cell dose of 106 cells/ml in blocking solution (hMSCs; 10 % 

Human IgG (Flebogamma), mMSCs; 2 % BSA (Bovine Serum Albumin) in PBS). 
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Following an incubation period of 1 hr at 4 oC, cells were centrifuged at 400 g for 4 min at 

4 °C and the supernatant discarded. Cells were then re-suspended in 2 % BSA/PBS solution 

resulting in a cell density of 1x106/ml and dispensed at a cell density of 8x104 per 5 ml 

Falcon tube. The directly conjugated antibody or the respective isotype control was then re-

suspended in 2 % BSA/PBS and added to cells for a further incubation period of 30 min at 

4 oC on a rocker in the dark. Cells were centrifuged twice (400g, 5 mins) before being re-

suspended in a final volume of 200 µl 2 % BSA/PBS to be analysed. 

 

2.2.2.1 Antibodies 

hMSCs 

Directly conjugated antibodies and their corresponding dilutions (made up in 2 % BSA) used 

in this study were as follows: CD 14 (1:50), CD 19 (1:50), CD 34 (1:100), CD 31 (1:50) CD 

45 (1:200), CD 105 (1:50), (Immunotools, Germany) CD 73 (1:20), CD 90 (1:200) (BD 

Biosciences, UK).  Isotype control antibodies used in this study were HLA – DR (1:200), 

IgG1 (1:50), IgG2a (1:50) (Immunotools, Germany). In this study, propidium iodide staining 

was not included. 

mMSCs 

Antibodies used in this study were as follows: anti-mouse CD 31 (PECAM-1) PE (5 µg/ml), 

anti-human/mouse CD 44 PE (5 µg/ml), anti-mouse CD 11d PE (5 µg/ml), anti-mouse CD 

45 PE (5 µg/ml), anti-mouse Ly-6A (Sca-1) PE (5 µg/ml), anti-mouse CD 105 PE (12,5 

µg/m1). Isotype control antibodies used in this study were: rat IgG2a-PE (5 µg/ml) and rat 

IgG2b-PE (5 µg/ml) (eBioscience). Propidium iodide staining was included in the 

immunophenotyping to evaluate the viability of the cells.  
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2.2.2.2 Flow Cytometric Analysis 

The samples were analysed on a Becton Dickinson FACScan flow cytometer. Fluorescein 

isothiocyanate (FITC) fluorescence was detected using the FL-1 channel, while R-

phycoerythrin (PE) fluorescence was detected in the FL-2 channel. FITC has maximum 

absorbance at 494 nm and maximum emission at 518 nm; R-PE has maximum absorbance 

at 490 and 565 nm and maximum emission at 578 nm. Excitation was achieved at 488 nm 

with an Argon laser. Data gated to exclude dead cells and select the required cell population 

on the basis of forward scatter versus side scatter profiles. Mean fluorescence intensity (MFI) 

and percentage positive cells were measured. Data were collected and displayed in dot plot 

and histogram format using CellQuestPro software (Becton Dickinson, Oxford, UK). 

 

2.2.3 Histological Evaluation of Chondrocytes 

Chondrocytes (P3) were tested for their ability to secrete sulphates glyosaminoglycans.  

Cells (12x103) were seeded into 96 well plates (n=6) and cultured in the chondrogenic 

differentiation media (Table 2.1) or standard proliferation media (control samples) for 21 

days. Media change was performed every 3 days.  Cells were fixed using 95 % methanol (15 

mins) and stained for the secretion of GAG (glycosaminoglycans) using Alcian blue staining 

(section 2.5.1.2).  
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2.3 Particle Labelling  

 

 2.3.1 Superparamagentic Iron Oxide Nanoparticles (SPIONs) 

SPIONs (SiMAG, Lumirem, Nanomag, P904) ranging in size from 25 nm to 1000 nm in 

diameter were selected and assessed as potential labelling agents. The specific properties of 

these particles are listed for comparative purposes in Table 2.2.  

 

Table 2.2. Properties of the four SPIONs selected for this study. 

 

 SiMAG Lumirem Nanomag  P904 

Iron Core Maghemite (Fe2O3) Maghemite (Fe2O3) 

and Magnetite 

(Fe3O4) 

Magnetite (Fe3O4) Maghemite (Fe3O4) 

(178) 

Size 1000 nm 300 nm 50-75 nm 25-30 nm 

Polymer 

Coating 

Silica non porous Siloxane Dextran Glucose derivative 

 

Iron (Fe ) 

contents 

15000 μgFe/ml 175 μgFe/ml 2400 μgFe/ml 22000 μgFe/ml 

FDA approval No Yes No Pre-clinical  

Magnetisation Superparamagnetic Superparamagnetic Superparamagnetic Superparamagnetic 

Application Purification of 

DNA 

MRI contrast agent Magneto-immuno 

assay 

MRI contrast agent 

Functional 

group 

Silanol None None unknown 

Supplier Chemicell, 

Germany (Cat# 

1101) 

Guebert, France 

(Cat# 211786) 

Micromod, 

Germany (Cat# 79-

00-501) 

Guebert, France 

(Cat# G00904.016) 

 

 

2.3.2 SPION labelling of cells 

Cells (hMSCs and porcine chondrocytes, P2 or P3; mMSCs, P12 or P13) were labelled with 

SPIONs. Cells were trypsinised (1% Trypsin and EDTA (Lonza Biowhittaker, UK Cat # 

BE02007E) solution in PBS; 5 mins incubated at 37oC) and then plated at the desired seeding 

density per specific experiment. Cells were allowed to attach for 24 hrs in standard 

proliferation media at 37 oC before aspirating media and washing once with PBS to remove 
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any residual FBS. SPIONs were re-suspended in SF (serum free) proliferation media at the 

desired Fe concentration (Equation 2.1 Appendix) and vortexed well before adding to cells. 

Cells were then incubated with the particle solution for 24 hours at 37 oC. A ratio of 1 ml of 

particle suspension at the desired Fe concentration per 2x105cells was maintained for all 

particles across all experiments. Following incubation, cells were thoroughly washed with 

PBS (3 times) to remove excess particles attached to the surface of the cells, trypsinised, 

collected and counted for subsequent experiments. 

 

2.3.3 Characterisation of cell populations post SiMAG labelling 

SiMAG-labelled cells (hMSCs, mMSCs and chondrocytes) were characterised to ensure that 

the presence of SiMAG had not affected cell properties. hMSCs were characterised by 

evaluating their multi-lineage differentiation abilities as described in section 2.2.1 and the 

expression of key cell surface markers (section 2.2.2). Characterisation of chondrocytes was 

performed by evaluating sulphated GAG secretion (Section 2.2.3). In each case, cells were 

seeded at the required cell density (as described section 2.2.1, 2.2.2 and 2.2.3) and labelled 

according to the particle-cell labelling protocol described in section 2.3.2. Briefly, cells were 

allowed to attach for a period of 24 hrs in standard proliferation media prior to the addition 

of SiMAG solution (10 μgFe/ml; SFM) and allowed to incubate for 24 hrs. The particle 

solution was then removed, cells thoroughly rinsed in PBS (three times) and characterised 

accordingly. 
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2.4 Particle Characterisation 

 

2.4.1 Particle Size 

Hydrodynamic particle size was measured using a Malvern ZetaSizer 3000 HSa. This 

operates on the principal of dynamic light scattering and is an important indicator of particle 

behaviour and size distribution within a colloidal suspension. Working concentrations were 

initially assessed by re-suspending a range of volumes (5 μl – 100 μl) of each particle stock 

solutions (SiMAG, Lumirem, Nanomag and P904) in 3 ml (the total holding volume of the 

cuvette) of dH20, vortexed and analysed using the ZetaSizer. Working volumes were chosen 

based on the volume that resulted in a KCps (count rate) ranging from 50 – 200 counts as 

this was recommended for accurate particle size measurements. Therefore 10 μl volumes 

(SiMAG and P904) and 100 μl volumes of (Nanomag and Lumirem) were used in all 

subsequent zeta-size measurements. Accurate reflection of particle properties relevant to the 

cells was performed at 37 oC in either serum free or serum containing DMEM to obtain 

actual measurements (146). Measurements were taken at 0 and 24 hr incubation periods. 

Three individual samples were prepared with 10 measurements taken for each sample. 

Statistical analysis was performed with two way Anova with Bonferrioni post-test using 

GraphPad.  

 

2.4.2 Particle Surface Charge 

Surface charge of each particle was measured also using the Malvern Zetasizer 3000 HSa 

with the settings being changed from size mode to the zeta potential mode. This is an 

important indication of particle stability and colloidal suspension. Contrary to the size 

measurements, analysis was carried out in dH20 and not in labelling media so as to negate 
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the charge of the particles in the labelling media, (n=5) (179). Here, 10 μl (SiMAG and P904) 

or 100 μl (Nanomag and Lumirem) were re-suspended in 10 ml dH20 and passed through 

the system using a syringe (10 ml) taking care not to allow any air bubbles through the 

system. 

 

2.4.3 Fe Content 

Fe content of each particle was measured using ICP-OES (Inductively Coupled Plasma –

Optical Emission Spectrometry). A serial dilution in dH20 was used to achieve 

concentrations ranging from 0.01, 0.1, 0.5, 1, 5, 10 μgFe/ml of each particle (SiMAG, 

Lumirem, Nanomag, P904). Each sample was then digested by adding 1 ml concentrated 

analytical grade nitric acid (Fisher Scientific, UK, Cat #: N/23001PB17) and heated to 60 oC 

overnight in a chemistry oven. Samples were diluted with dH20 to achieve a final acid 

concentration of less than 10 % prior to scanning using ICP at 3 wavelengths (239.563, 

259.940, and 238.204 nm). Samples were measured against a selection of Fe ICP standards 

(0.1, 1, 5, 10 ppm (parts per million)) made from a Fe stock of 1000 ppm in ddH2O.  

 

2.4.4 Particle Relaxivity 

The relaxivity (R2) of each particle was measured by MR imaging varying concentrations 

of particles and applying T2 specific sequences on the Brucker 2.3 T animal scanner.  

Through serial dilution, 40, 20, 10, 5, 2, 1, 0.5, 0.1, 0.01 μgFe/ml of each particle were 

prepared in water and 100 μl of each sample was then aliquoted in a customised 96 well 

plate and MR imaged using MSME sequences. The inverse of the T2 values for each particle 

were then plotted against particle concentration and the slop of the curve taken as the R2 

values. 
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2.5 Histological Staining  

 

2.5.1 In vitro Histological Staining 

2.5.1.1 Alizarin Red 

Characterisation of osteogenic differentiation of MSCs was confirmed by staining with 

Alizarin Red (Sigma-Aldrich, UK Cat# A5533) prepared at 1% in dH20 and syringe filtered 

using a 2 μm filter. Samples were washed in PBS and treated with 500 μl of alizarin red for 

5 min at room temperature. The stain was then removed and washed 3 times with dH20. 

Calcium ions secreted into the extra cellular matrix were stained red (positive) and imaged 

using a bright field microscope AMG-EVOS x l CORE. 

 

2.5.1.2 Alcian Blue 

Alcian Blue stain (Sigma-Aldrich, UK Cat# A3157; 0.1%) was prepared at pH 1.5 using 3 % 

acetic acid made using dH2O and syringe filtered (0.2μm filter). Fixed samples were 

immersed in the stain overnight at room temperature. Upon removal of the stain, samples 

were washed 3 times in dH20. The presence of GAGs secreted by chondrocytes was 

identified as by areas stained as blue. Stained samples were imaged using a bright field 

microscope Olympus CKX41. 
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2.5.1.3 Oil Red O  

Oil-Red-O (Sigma-Aldrich, UK, Cat # O-0625) stain was prepared at 0.18 % in 60 % 

isopropyl alcohol (IPA) and syringe filtered (0.2 μm filter). Samples were first washed in 

dH20 followed by 60 % isopropyl alcohol. The stain was then added to wells and allowed to 

stain the samples for 15 min at room temperature. Following the incubation period, the stain 

was removed and rinsed 3 times. Lipids secreted by differentiated MSCs into adipocytes 

appeared as small red droplets. Samples were imaged using a bright field Olympus CKX41 

microscope.  

 

Representative images for each stain were taken of various samples at x4, x10 and x20 

magnifications in at least 3 different areas of each sample. 

 

2.5.2 In vivo Histological Assessment. 

2.5.2.1 Knee Joint Processing 

Once all the animals (mice and rats) had been MR imaged, animals were culled and joints 

were collected for histology. Joints were fixed in neutral buffered formal saline, and 

transported to Robert Jones and Agnes Hunt Orthopaedics Hospital Histopathology labs to 

be further processed. Briefly, fixed joint were decalcified with formic acid at 4 oC before 

embedding in paraffin. Mid-sagittal serial sections (4 µm thickness) were obtained using a 

Buehler Isomet low speed saw with a diamond tipped blade (Buehler, An ITW Company, 

Germany).   

 

Joint sections were prepared for subsequent staining by initially de-waxing sections in 100 

% Xylene (Sigma-Aldrich, UK Cat# 534056) for 5 mins. Samples were then rehydrated in 
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100 % ethanol for a further 2 min followed by washes in PBS for 5 min prior to subsequent 

staining.  

 

2.5.2.2 Hematoxylin and Eosin (H&E) Staining 

H&E staining was carried out by the Histopathology Department at the Robert Jones and 

Agnes Hunt Orthopaedic Hospital.  

 

2.5.2.3 DAPI  

The fluorescent dye DAPI (1:200 dilution prepared in PBS; Sigma-Aldrich, UK, Cat# D9542) 

was added (1 ml) over joint sections using a pasture pipette. Hydromount (Analar, UK, Cat# 

360294 H) mounting solution was then used to mount the glass cover slip and allowed to dry 

overnight before imaging using a UV fluorescent microscope (Nikon Eclipse Ti-S).  

 

2.5.2.4 Toluidine Blue 

Joint sections were stained using 0.25 % solution of Toluidine blue with a final pH ranging 

from 3.7-4.1 prepared in buffer (0.63 g citric acid, 0.3 g disodium phosphate and 400 ml 

H20). Samples were treated with 500 μl of toluidine for 20 sec at room temperature. The 

stain was then removed and washed 3 times with dH20. Toluidine blue stained GAGs purple 

whilst nuclear material was stained blue. Stained joint sections were imaged using a 

bright field microscope AMG-EVOS x l CORE. 
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2.5.2.5 Prussian Blue  

A 20 % Aqueous (aq) solution of hydrochloric acid (HCL; Analar, UK, Cat #10307) was 

prepared and added to 10 % aq solution of potassium ferrocyanide (Sigma-Aldrich, UK Cat 

# P3289) in equal parts, immediately prior to use. This involved the reaction of ferrocyanide 

with Fe particles to effectively stain any Fe particles bright blue. 1ml of this solution was 

added to each joint section and left for 20 mins at room temperature. Joint Sections were 

subsequently washed with PBS prior to having coverslips mounted. Sections were imaged 

with a light electron microscope (Nikon Eclipse TS100) equipped with a Canon Eos 400D 

digital SLR camera. 

 

2.6 Particle Uptake Assessment 

 

2.6.1 Inductively Coupled Plasma Optical Emission Spectrometry (ICP-

OES) 

ICP-OEAS was performed to quantify the uptake of all particles (SiMAG, Lumirem, 

Nanomag and P904) by hMSCs, mMSCs (SiMAG only) and chondrocytes. This technique 

allows for the accurate evaluation of Fe within a sample therefore allowing the quantification 

of particle uptake by cells. 6-well plates were seeded with 1x105 cells per well and allowed 

to attach overnight. 10 μgFe/ml of each particle (SiMAG, Lumirem, Nanomag and P904) 

solutions were prepared (Section 2.3.2) in either serum free or serum containing media 

relevant for each cell type. 2 ml of each particle suspension was added to each well (n=3). 

Control plates were set up as follows: Cell control; cells treated with no particles; (n=3) and 
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B) Particle controls: 2 ml of each particle solution added to empty wells to serve as a 

reference to the total amount of particles and subsequent total Fe added to each well. 

 

Following the incubation period, media was removed from each well and collected into 

individual 15 ml centrifuge tubes. Cells were washed twice in PBS with PBS washes also 

collected into the same tubes. After trypsinisation (1 ml), detached cells were then removed 

and collected in a separate tube and washed once with PBS to ensure all cells had been 

collected. 1 ml concentrated analytical grade nitric acid was then added to each tube and 

heated to 60  oC overnight using a chemistry oven to digest the particles thus releasing Fe. 

Finally, samples were diluted with dH20 to achieve a final acid concentration of less than 

10 % prior to being analysed using ICP at 3 wavelengths (239.563, 259.940, and 238.204 

nm) vista-mpx. During each experiment, an ICP standard (1 PPM) was prepared and 

analysed to ensure correct calibration of the instrument.  

 

Data Analysis 

The total Fe content (PPM) within a given sample was calculated by averaging the Fe (PPM) 

detected at each of the 3 wavelengths and subtracting the cell control to find the total net Fe 

content associated with the cells. This value is then adjusted to account for the dilution of 

the sample pre ICP analysis. Finally, the amount of Fe per cell was calculated by dividing 

for all cells in the sample (initial seeding density). Two way Anova followed by Bonferroni 

post test, statistical analysis was applied using Graphpad prism. 
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2.6.2 Prussian Blue 

Prussian blue stain was carried out as a visual assessment of particle uptake. Here, 105 cells 

(hMSCs, mMSCs and chondrocytes) were seeded within 6-well plates and labelled with each 

particle at 0, 1, 5, 10 and 100 μgFe/ml as described previously in Section 2.3.2. Labelled 

cells were fixed and permealised using 95 % methanol for 15 mins at room temperature. 20 % 

(aq) solution of HCL was prepared and added to 10 % (aq) solution of potassium 

ferrocyanide in equal parts immediately prior to use. 1 ml of this solution was added to each 

well and left for 20 mins for the reaction to occur. Potassium ferrocyanide solution was 

removed and samples washed with dH20 three times. Cells were imaged using bright field 

inverted Nikon TI eclipse. 

 

2.6.3 Particle Retention 

The ability of hMSCs and chondrocytes to retain internalised SiMAG over a 28 day period 

was assessed by ICP-OES and Prussian blue staining. Experiments were set up according to 

Sections 2.6.1 and 2.6.2 using hMSCs and chondrocytes labelled with 10 μgFe/ml SiMAG. 

Samples were then either collected to be analysed by ICP-OES or fixed to be stained by 

Prussian blue at various time points  (1, 7, 14, 21 and 28 days) with all samples receiving a 

full media change every two days for the duration of this experiment. Standard students t 

test was performed using Excel.  
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2.7 Cell Viability and Proliferation  

 

2.7.1 MTT Assay 

To determine the effect of particle labelling on the viability and proliferation rate of hMSCs, 

mMSCs and chondrocytes, a tetrazolium salt (MTT; Sigma-Aldrich, UK, Cat #M5655) 

assay was applied. Cells were seeded at 105 cells per well of a 6-well plate and labelled under 

serum free conditions with each particle (SiMAG, Lumirem, Nanomag and P904) at 0, 10 

and 100 μgFe/ml (Section 2.3.2) (n=6). Samples were analysed 24 hrs and 7 days post-

labelling.  A negative control mimicking toxic events was induced at each time point by 

exposing healthy unlabeled cells to 1 ml DMSO (Dimethyl sulfoxide; Sigma-Aldrich, UK, 

Cat# D8418) for 5 mins. At the relevant time points, 0.5 mg/ml MTT working solution 

(prepared in SFM) was added to each well and allowed to incubate for 4 hours at 37 oC. 

Following incubation period, MTT solution was carefully removed and 1ml of DMSO added 

for a further 10 mins to solubilise the crystals. Finally, 200 μl aliquots of this solution were 

then transferred to 96 well plates and read using the plate reader (Synergy 2, Biotek) at a 

wavelength of 570 and 690 nm (excitation/emission). Data was analysed by subtracting the 

blank (DMSO) from each value at the given OD and then subsequently subtracting OD value 

at the 690 nm wavelength from the 570 nm wavelength. All data was then normalised to the 

24 hr untreated samples.  

 

2.7.2 Live Dead Staining 

A live dead assay was implemented to further investigate the toxicity of particle labelling on 

hMSCs, mMSCs and chondrocytes using the LIVE⁄DEAD® Viability⁄Cytotoxicity Kit 

(Invitrogen, UK, Cat# L3224). This assay consists of Calcein-AM and Propidium Iodide (PI) 
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solutions, respectively staining viable cells green and dead cells red. Here, 2 x 104 cells were 

seeded per well of a 24 well plate and labelled with 0, 10 and 100 μgFe/ml of each particle 

(SiMAG, Lumirm, Nanomag and P904) under serum free conditions (Section 2.3.2). Live 

dead staining was applied directly after the labelling period (24 hrs and after 7 days of 

culture). In both cases, the particle media solution was removed after the initial 24 hours of 

culture and cells thoroughly washed with PBS. Fresh proliferation media was added to 

samples continuing in culture for a further 7 days. At the relevant time points (24 hrs and 7 

days) 1 % Calcein AM and 2 % Propidium Iodide solutions prepared in PBS as per 

manufacturer’s instructions and 200 μl added to each well. Following, 45 minutes of 

incubation (37 ᵒC; complete darkness) samples were immediately imaged using a UV 

fluorescent microscope (Nikon Eclipse Ti-S) where live cells appeared green (FITCI filter),  

whilst dead cells appeared red (TRITC filter). 

 

2.7.3 Trypan Blue Exclusion Assay 

Trypan blue exclusion assay was applied to assess cell viability during cell culture. In brief, 

a 10 µL volume of cell suspension was mixed with 10 µL of trypan blue solution. 10µL of 

the mixed solution was then pipetted onto a disposable haemocytometer and cells counted. 

Live cells appeared clear in the centre with a blue outer membrane whilst dead cells appeared 

totally blue.  Viable and non-viable cells were counted separately and an overall average and 

percentage viability gained.  
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2.8 Magnetic Resonance Imaging 

 

2.8.1 MRI Scanners 

2.8.1.1 Bruker 2.35 T Small Animal Scanner 

A research grade Bruker 2.35 T animal scanner was used for all experiments unless 

otherwise stated.  This scanner was operated by Dr Robert Morris of Nottingham Trent 

University. In general samples were placed within the scanner (within the RF (radio 

frequency) coil) (Figure 2.1 Aii) and adjusted to ensure that the samples were placed within 

the centre of the coils and the magnet for best results (approximately 933 mm from the front 

plate, Figure 2.2). A tripilot (3 orthogonal reference image) scan was always performed to 

ensure that the samples were placed in the optimal location to adjust scanning parameters 

accordingly.
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Figure 2.1. The Bruker 2.35 T animal scanner where: (A) is the front of the scanner, (B) the back of the scanner and (C) the side view 

of the scanner. (Ai) highlights the entrance of the scanner with the gradient visible. The RF coil is positioned within the gradient coil 

highlighted by the green box (Aii). The dimensions of this coil are clearly shown in Aii * and Aii ** when the inner diameter of the RF 

coil is 7 cm and the total length of the coil 29 cm 
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Figure 2.2. Cross sectional dimensions of the Bruker 2.35 T animal scanner highlighting key features of the scanner: (A) Gradient coil 

(B) Radio frequency coil (C) Front entrance.
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2.8.1.2 Siemens Symphony 1.5 T Clinical Grade Scanners 

Experiments involving the use of porcine knee specimens (Section 2.8.5.2) were performed 

at the MARIARC centre part of Liverpool University using a clinical grade 1.5 T scanner 

(Figure 2.3). The equipment was operated by Miss Valerie Adams.   

 

Figure 2.3. Siemens Symphony 1.5 T MRI scanner. Image courtesy of Miss Valerie 

Adams (University of Liverpool).  
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2.8.2 MRI Sequences and Parameters 

2.8.2.1 Bruker 2.35 T Animal Scanner 

Table 2. 3 Sequences and corresponding parameters for each MRI experiment performed using the Bruker 2.35T animal scanner.  

Experiment 

  
 

Section Sequence Repetition 

time (ms) 
Echo time 

(ms)  
Number 

of echoes  
Matrix 

size  
Spatial resolution 

(mm)

  

In vitro dose 

response    

Gel 

optimisation 

T2 

2.8.4.1 MSME 1000 10.25 8 256 x 192 0.469 x 0.625 

Gel 

optimisation 

T1 

2.8.4.1 MSME 100 - 5000  10.25 8 256 x 192 0.469 x 0.625 

Collagen Gels 2.8.4.2 MSME 1000 10.25 8 256 x 192 0.469 x 0.625 

Ex vivo  

dose 

response 

  

  

Orthopaedic 

tissues – 

(Muscle, Fat, 

Ligament)  

2.8.5.1 MSME 1000 10.25 8 256 x192 0.391 x 0.365 

In vivo  dose 

response 

 

Mouse model  2.8.6.1 RARE 4000 10.25 4 256 x 192 0.469 x 0.417 

Rat model  2.8.6.1 RARE 4000 10.25 4 256 x192 0.312 x 0.260 

Tracking 

studies 

  

Mouse model  

  

2.8.6.2 RARE day 3 4000 10.25 4 256 x192 0.312 x 0.260 

FLASH day 3 1000 3.35 4 256 x 256 0.45 x 0.29 

RARE day 7 4000 10.25 4 256 x192 0.312 x 0.260 

GEFI day 7  500 4.7 8 256 x 256 0.47 x 0.47 

Rat model 2.8.6.2 MSME day 29 200 11 1 128 x128 1.172 x 1.172 
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2.8.2.2 Siemens Symphony 1.5 T Clinical Grade Scanner 

The following scanning parameters (table 2.4) were implemented in the ex vivo cadaveric porcine model experiment. These sequences are 

considered highly appropriate as these are applied in routine MR diagnosis of knee pathology   

 

Table 2. 4 Sequences and corresponding parameters for the set of ex vivo porcine model performed using the Siemens Symphony 1.5 T 

Clinical Grade Scanner. 

 

Experiment 

  
 

Section Sequence Repetition 

time (ms) 
Echo time 

(ms)  
Number 

of echoes  
Matrix 

size  
Spatial resolution 

(mm)

  

Ex vivo cadaveric porcine 

model study    

 

2.8.5.2 & 

2.8.5.3 

DESS 3500 15-240 (30 ms 

intervals) 

16 256 x 256 0.6 x 0.6 x 3 
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2.8.3. MRI Data Analysis 

2.8.3.1 Bruker 2.35T Animal Scanner 

Data generated by each scan is received by standard ParaVision 4 software. Data managed 

by this software is then saved in the Bruker format, a format that cannot be opened on a 

standard laptop or PC without specialist software. Therefore, data in this format is processed 

using a purpose written Matlab programme (Dr Robert Morris). This programme is capable 

of extracting representative T2
eff values from the Bruker data files and fitting these values 

exponentially to the envelope of the echoes thus generating T2
eff maps.  All gel MRI data 

(section 2.8.4) was processed in this manner. Alternatively, Bruker folders were converted 

to a different format; “Analyze” using a Bruker- to- Analyze converter (Br2Anz) allowing 

for these files to be processed by the MRIcron programme, effectively allowing for all MRI 

images to be opened and analysed on simple windows operating system but not allowing for 

relaxation measurements to be obtained. All animal and tissue work were processed in this 

way.  

 

2.8.4 In vitro MRI. 

2.8.4.1. Optimisation 

2.8.4.1.1 Plate Layout 

The high cost of performing MRI scans limits the number of samples that can be imaged and 

analysed. It thus became necessary to devise a means of increasing throughput to increase 

the number of samples that can be imaged at one time. Early plate layouts (Figure 2.4 i) 

involved the fabrication of an eppendorf holder aligned with the inner dimensions of the 

scanner allowing for 6 x 1.5 ml eppendorf tubes to be places and MRI imaged. This set up 
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limits the number of samples to 6 per scan and also requires a relatively high volume of 

collagen (0.5 ml) per sample. The modification of a standard 96 well plate (Figure 2.4 ii) 

allows for the number of samples capable of being imaged at one time to increase from 6 to 

24. Note, not every well of the modified 96 well could be used due to the restricted field of 

view of this particular MRI scanner, this area is clearly marked (Figure 2.4 ii). Furthermore, 

the very shallow depth of the plate allows for 2 plates to be imaged at the same time, by 

placing one plate over the other further increasing the number of samples to be scanned from 

6 – 48 samples per scan. In this instance, the number of slices are simply increased to account 

for 2 plates with no extra time being added to the overall scan time. Further to this, the use 

of a 96 well plate, reduces the amount of collagen required to be used from 500 μl to 100 μl.  

 

Figure 2.4. Plate layouts. i) Early plate layout facilitating the imaging of 6 samples 

within 1.5ml eppendorf tubes ii) Optimised plate layout facilitating the imaging of 18 

samples within a 96 well plate format.  

  

2.8.4.1.2 Collagen gels concentration optimisation 

Type I collagen gels were prepared at various concentrations (0.5, 2, 5 and 9 mg/ml) by 

combining 10 x DMEM, NaOH (Sigma-Aldrich, UK, Cat # S8045), stock collagen gel (BD 

Biosciences, UK Cat # 354249) and water in certain ratios where the amount of each 

component are worked out according to the following set of equations (Equation 2.2 
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Appendix). All gel components were mixed and stored on ice until use to prevent gelation. 

Standard students t- test was performed using Excel.  

Gels were produced by forming a solution of 10 X DMEM, NaOH, and water with the 

addition of stock collagen solution at the end in order to prevent premature gelation. Gel 

solutions were homogeneously mixed creating a uniform colour solution taking care to not 

create any air bubbles. 100 μl of each gel solution was carefully pipetted into the customised 

96 well plates (n=6) and allowed to set for 1 hr at 37 oC. Plates were then MR imaged using 

Bruker 2.35 T animal scanner applying MSME sequences as described in Table 2.3.  

 

2.8.4.1.3 MRI sequences; 

T1 and T2
eff weighted MRI sequences were investigated by re-suspending hMSCs labelled 

with varying concentrations of SiMAG (0, 1, 5 and 10 μgFe/ml) at various cell densities (103, 

104, 105,  3x105,  5x105) in 2 mg/ml rat tail type I collagen (optimised gel concentration) 

(made up according to equation 2.2 ). 100 μl of each sample was carefully aliquotted within 

the wells of a customised 96 well plate. Samples were MR imaged and relaxation parameters 

T1 and T2
eff estimated for each of the samples using a MSME imaging (Table 2.3). 

T1 relaxation. This involves the realignment of moments with the main magnetic field or 

longitudinal axis (z axis) and is defined as the time taken for magnetization to revert back to 

63% of its full longitudinal magnetization (130, 164).  

T2 relaxation: This involves the loss of transverse magnetization due to the dephasing of 

protons in the transverse plane. Once the RF pulse is removed, the protons start to dephase. 

Although moments are still precessing, each of the magnetic moments is also generating its 

own magnetic field which will affect the neighbouring moments (spin spin interactions). 

This will mean that over time a given magnetic moment will drift out of phase with its 
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neighbours. Dephasing protons are therefore cancelled out with this resulting in a loss of 

magnetization in the transverse plane. We are effectively measuring the number of magnetic 

moments which are in phase with each other at a given time. Therefore T2 can be defined as 

the time taken for the magnetization to decay to 37% of its full value in the transverse plane 

(all moments in phase). T2
eff (effective) is measured by applying a series of pulses which act 

to reverse the effect of protons dephasing seen in T2 decay. This results in a significantly 

slower decay which can be measured more easily when the decay times in question are very 

short.  

 

2.8.4.2 In vitro MRI Dose Response Investigation 

The in vitro minimum visibility threshold for particle-labelled cells was investigated by re-

suspending varying cell doses of labelled cell populations in a 2 mg/ml rat tail type I collagen 

gel, 100 μl samples were then aliquoted into the customised 96 well plates and the gels 

allowed to set for 1 hr (37 oC) prior to MR imaging (MSME Table 2.3) 

 

2.8.4.2.1 hMSCs and Chondrocytes 

hMSCs and porcine chondrocytes were labelled in serum free media with 0, 1, 5, 10 and 100 

μgFe/ml of each particle (SiMAG, Lumirem, Nanomag and P904) and subsequently re-

suspended at varying cell doses, (5x105, 105 and 104) within a 2 mg/ml collagen gel 

suspension, prior MR imaging (MSME Table 2.3).  
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2.8.4.2.2 mMSCs 

Murine MSCs were labelled with 0, 1, 5 and 10 μgFe/ml of SiMAG in serum free media and 

re-suspended into the following cell densities; 5x105, 3x105, 105, 104 and 103 within a 2 

mg/ml collagen gel suspension, prior MR imaging (MSME Table 2.3) 

2.8.5 Ex Vivo MRI. 

2.8.5.1 Orthopaedic Tissues. 

The effects of various tissue structures on in vitro MRI visibility thresholds were investigated 

by re-suspending SiMAG labelled cells (hMSCs and chondrocytes) at different 

concentrations (0, 1, 5 and 10 μgFe/ml) in serum free media and injected (50 µl) at various 

cell densities (5x105, 1x105, 104) using a 21 G needle within key tissues associated with the 

knee (muscle, ligaments and patellar fat pad). Porcine legs were purchased from 

Staffordshire meat packers on the day of the experiments to prevent the need for freezing. 

The knee was identified and dissected from the rest of the leg using a surgical scalpel (21 

Blade). Once the knee had been isolated, the medial and collateral ligaments were identified 

and removed from the structure using a surgical scalpel and all the connective tissue carefully 

removed. The ligament tissue and patella fat tissues were then dissected into equal sized 

pieces and placed within a 24 well plate (n=3), as shown in figure 2.5. Similarly, 1 x 1 cm 

pieces of muscle were extracted from the quadricep femoris muscle and placed within a 24 

well plate (n=3), as shown in figure 2.5. Each well was fully submerged in water before 

injecting cells to prevent any air bubbles from being injected within the tissues. Plates were 

then MR imaged on Brucker 2.3 T animal scanner using MSME sequences stated in Table 

2.3.  
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Figure 2.5. Plate layout for ligament, muscle and fat prepared for MR imaging when 

injected with SiMAG labelled hMSCs and chondrocytes and prepared for ex vivo 

visibility threshold evaluation 

 

2.8.5.2 Porcine Knee Model 

A cadaveric porcine knee model of articular cartilage damage was created to assess the 

visibility threshold of SiMAG-labelled cells within a clinical relevant model.  All MR 

imaging related to this model were carried out at the MARIARC centre part of Liverpool 

University using the Siemens Symphony 1.5 T scanner.  Pig’s legs were purchased from 

Staffordshire meat packers (Staffordshire, UK) and processed to remove all surrounding 

tissue using a surgical scalpel (21 Blade). Once the knee had been isolated, the patella tendon 

was sliced and the patella pulled back revealing the articulating ends of the femur and tibia 

with the articular cartilage being clearly visible as shown in Figure 2.6. The knee was then 

bent to fully expose the upper condyles, and cartilage flaps were created (1.5 cm x 0.5 cm x 

1.5 cm) at various locations across the upper condyles of the knee. A maximum of two 

defects were created on each condyle (left and right) ensuring that defect were at least 0.5 

cm apart. In all experiments (sections 2.8.5.2.1, 2.8.5.2.2, 2.8.5.2.3) SiMAG-labelled 

chondrocytes were suspended in collagen type 1 gel (4.5 mg/ml) and injected within the 

defect while the knee was in the bent upright position. Care was taken to ensure that no 
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bubbles were created and that none of the collagen and cell suspension had leaked out. Once 

the gels had set (1 hr 37 oC) the leg was then straightened, the patella replaced and securely 

bandaged, to prevent excess movement. The leg was then stored at-20oC until MR imaged. 

The joint was defrosted 1 day prior to MR imaging. On the day of imaging, knees were 

transported to the MARIARC centre for scanning. During imaging knees were placed within 

a circularly polarised extremity coil and placed hip first into the scanner and Double Echo 

Steady State (DESS) sequences were applied (Table 2.4). These are common MRI scanning 

conditions implemented in the MR imaging and diagnosis of human knee pathologies. 

 

 

Figure 2.6. Dissected pigs knee with the patella pulled back exposing the upper condyle 

articulating the femur. 
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2.8.5.2.1 Porcine Knee Model Optimisation  

Optimisation experiment included the use of two cadaveric pig knee joints. In the first knee 

(Figure 2.7 A), two defects were created in each of the upper condyle; left condyle: cartilage 

flap was created  and injected with 100 μl volume of type 1 collagen gel (4.5 mg/ml), right 

condyle: the piece of cartilage was completely removed to expose the subchondral bone. The 

purpose of this was too evaluate defect appearances on an MRI image. It is important to 

establish that the defect created on the left condyle is suitable for further SPION-labelled 

cell experiments i.e the creation of the defect to not result in hypointenties when MR imaged 

that could encourage false positives with the implantation of SPION-labelled cells. In the 

second knee (Figure 2.7 B), only one defect was created in the upper left condyle and injected 

with 100 μl of 3x106 SiMAG-labelled chondrocytes in excess (concentration > 100 μg Fe/ml) 

suspended collagen type 1 gel (4.5 mg/ml collagen gel). The purpose of this was assess if 

SPION-labelled cells could be detected within the defect with standard pulse sequences 

while still evaluating knee anatomy.  
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Figure 2.7. Image highlighting the sites of artificially induced cartilage defects across 

the upper left and right condyle of 2 separate knee. (A) Knee 1; Cartilage flap filled 

with collagen (4.5 mg/ml), (B)  Knee 2; Cartilage completely removed C) Cartilage flap 

injected with 3x106 SiMAG-labelled chondrocytes (excess) re-suspended in 4.5 mg/ml 

collagen gel. 

 

2.8.5.2.2 Particle Concentration Investigation 

The effect of particle concentration on the visibility threshold within the clinically relevant 

model was assessed by implanting 5x105 chondrocytes labelled with SiMAG (0.1, 1, 10 

µgFe/ml) into the porcine model (Figure 2.8) and MR imaged as described in section 2.8.5.2 . 
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Figure 2.8. Particle concentration investigation. Schematic highlighting the 

implantation sites of 5x105 SiMAG-labelled chondrocytes: (A) 0.1 µgFe/ml, (B) 1 

µgFe/ml and (C) 10 µgFe/ml. 

 

 

2.8.5.2.3 Cell Dose Investigation  

Finally, the effect of cell densities on the visibility threshold was determined by implanting 

varying cell doses (104, 105 and 5x106) of SiMAG-labelled chondrocytes (5 µgFe/ml and 10 

µgFe/ml) into the porcine model (Figure 2.9 i and ii) and MR imaged as described in section 

2.8.5.  
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Figure 2.9. Cell dose investigation. Schematic highlighting the implantation sites of 

varying cell densities: (A) 104
, (B) 105, (C) 5x105 of chondrocytes labelled with; (i) 10 

µgFe/ml and (ii) 5 µgFe/ml SiMAG.  

 

2.8.6 In vivo MRI 

2.8.6.1 Visibility Threshold: Animal Models 

The in vivo visibility threshold for both animal models (mouse and rat) was determined by 

injecting a 10 μl volume of cell suspension intra-articularly into each joint of healthy (non-

arthritic) mice (10 week old BALB/c mice) and rats (18 week old Wistar rats). SiMAG-

labelled mMSCs (1, 5 and 10 μgFe/ml) were re-suspended at the relevant cell dose (mouse; 

3x105, rat; 1x106 & 2x106) in serum free media prior to injection.   

 

Mice were placed face down into a purpose built holder (Figure 2.10) and inserted head first 

into the scanner. Rats were also positioned head first into the scanner, however, due to 

significantly larger size of the rats no holder was necessary. Mice were then MR imaged on 

Brucker 2.3 T animal scanner where whole body coronal slices were achieved for the mouse 
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while only sagittal knee focused imaged were possible for the rat. (MRI sequence; RARE 

Table 2.3).   

 

 

Figure 2.10. Mouse positioned in the customised holder prior to MR imaging thus 

ensuring that the knees were a suitable distance apart and positioned on an even plane.  

 

Data Analysis- Signal loss profiles 

Bruker files were first converted to Analyze files using Bru2Anz converter and subsequently 

processed using MRIcron. MRIcron allows for relative signal intensities of every point 

within the whole image to be obtained. Once the files were loaded, the slices were assessed 

to identify 3 slices where all the anatomical structures of the knee were in full form (Figure 

2.11; slice number 8, 9 and 10).  The signal intensity (SI) at 10 points of equal intervals 

across each knee of the mouse and 20 points of the rats were then measured. At all times the 

coordinates between slices were maintained. The average SI of the 3 slices were then 

averaged, plotted and compared.  
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Figure 2.11. Slice 1-16 of mouse MR imaged using Bruker 2.35T animal scanner using 

GEFI T2 weighted MR sequences and analysed using MRIcron. Slices outlined in red 

highlight slices whereby signal intensities (SI) profiles were taken.  
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2.8.6.2 In vivo MRI Tracking Studies.  

Once sacrificed (mice; days 3 & 7, rats at day 29) animals were transported to Nottingham 

Trent University to be MR imaged using Bruker 2.3 T animal scanner. Animals were 

positioned within the scanner as described in Section 2.8.6.1. Whole body coronal FLASH 

& RARE sequences (Table 2.3) were applied to image mice at the day 3 time point while 

GEFI & RARE sequences were used for day 7 (Table 2.3). Finally sagittal knee focused 

slices were implemented to MR image rats using MSME sequences day 29. Signal profiles 

were obtained as described in section 2.8.6.1. 

 

2.9. Animal Models 

 

2.9.1 CM-DiI Labelling 

Stock solution of the fluorescent cell-tracer CM-DiI (Molecular Probes, UK, Cat # C7000) 

was prepared in dimethyl sulfoxide (DMSO) at a concentration of 1 mg/ml. Cells were 

trypsinised, suspended in the CM-Dil working solution (2.5 µl of stock per 1 ml of PBS) and 

incubated for 5 mins at 37 o  C, and then for an additional 15 min at 4ᵒ C, in the dark. Unbound 

dye was removed by centrifugation at 300 g for 5 mins and washed twice using PBS. Finally, 

cells were resuspended in serum free media and maintained at 4 0C prior to injection 
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2.9.2 Rheumatoid Arthritis Model  

2.9.2.1 Animals 

Procedures were performed in accordance with Home Office-approved project licence. PPL 

40/3594 were approved by the Ethical Review Committee at Liverpool John Moores 

University UK, February 2012. Experiments were conducted in 10 week old male C57Bl/6 

mice (Harlan, Bicester UK) and carried out by Dr Oksana Kehoe.  

 

2.9.2.2 Induction of Murine Antigen-induced Arthritis (AIA) 

Murine AIA was induced as described by Nowell et al (180). Mice were subcutaneously 

immunised with 100 µl of 1 mg/ml of methylated BSA/PBS emulsified with an equal volume 

of Freund’s complete adjuvant into the right knee using 29 G insulin syringe (BD microfine 

0.5ml). 100 µl heat-inactivated Bordetella pertussis toxin (Sigma-Aldrich, Poole, UK) was 

then injected intraperitoneally. The immune response was boosted 1 week later by 

subcutaneously injecting 1 mg/ml of methylated BSA/PBS emulsified with an equal volume 

of Freund’s complete adjuvant. 21 days after the initial immunisation, murine AIA was 

induced (day 0) by intra-articular (IA) injection of 10 µl of 10 mg/ml BSA/PBS in the right 

knee joint. A left knee joint was treated as control by receiving 10 µl of PBS. 20 hours post 

arthritis induction, 10 μl of serum free media, containing 3x105 CM-DiL labelled mMSCs 

(either labelled with or without SiMAG (10 µgFe/ml) ) were injected intra-articularly into 

the right knee joint (day 1) and monitored for either 3 or 7 days. Experimental groups are 

descried in Table 2.5. Control animals were injected with only serum free CEM. Upon 

experiment termination, animals were sacrificed, MR imaged and joints were also collected 

for histological assessment (section 2.5.2). 
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Table 2.5. Explanations of experimental groups. 

 

Group Description Tracking period Study 

1 (n=6) SiMAG-labelled mMSCs  3 days MRI tracking study 

2 (n=5) SiMAG-labelled mMSCs 7 days MRI tracking study 

3 (n=6) Unlabelled mMSCs 3 days MRI tracking study 

4 (n=5) Unlabelled mMSCs 7 days  Pilot mMSCs study 

5 (n=6) Serum Free Media 3 days  Pilot mMSCs study 

6 (n=5) Serum Free Media 7 days MRI tracking study 

 

 

2.9.2.3 Joint Swelling Measurements.  

Animals were inspected daily for arthritic development by measuring knee joint diameters 

on days 0, 1, 2, 3, 5 and 7 using a digital micrometer (Kroeplin GmbH, Schlüchtern, 

Germany). The difference in joint diameter between the arthritic (right) and non-arthritic 

control (left) in each animal gave a quantitative measure of swelling (in mm). Statistical 

analysis was performed using unpaired t-test. 

 

2.9.3 Osteoarthritis Model  

2.9.3.1 Animals 

This study was carried out in accordance with UK Home Office Animals (Scientific 

Procedures Act 1986) and the guidelines of the International Association for the Study of 

Pain. Experiments were performed in 6 week old male Sprague Dawley Rats ranging in 

weight from 160-200 g obtained from Nottingham University animal house. Surgery was 

carried out by Dr Devi Sagar and Dr James Burston. 
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2.9.3.2 Induction of Osteoarthritis- Meniscal Transection Model (MNX)  

OA was induced by transecting the medial collateral ligament of the left knee of each 

anaesthetised rat and a full thickness cut made through the meniscus (day 0). Incisions were 

then closed using surgical staples. Weight gain, posture and behaviour were carefully 

monitored throughout the post-injury period.  14 days post-surgery, rats were stratified into 

groups (n=4) (Table 2.6) according to pain behavioural responses and prepared for cell 

implantation. Unfortunately, 1 rat did not survive the surgery and for this reason, only 3 rats 

were placed within the SiMAG-labelled group. A 10 μl solution containing 1.5x106 CM-DiL 

labelled mMSCs (either labelled with or without SiMAG (10 µgFe/ml) re-suspended in 

serum free media were then injected intra-articular through the infrapatellar ligament of the 

diseased knee.  

Table 2.6. Explanations of experimental groups. 

Group Description Tracking period 

1 (n=3) SiMAG-labelled mMSCs  29 days 

2 (n=4) Unlabelled mMSCs 29 days 

3 (n=4) Serum Free Media 29 days 

 

 

2.9.3.3 Pain Perception 

Behavioural tests assessing changes in weight-distribution and sensitivity to mechanical 

stimuli were performed for up to 42 days post-surgery by Dr Devi Sagar and Dr James 

Burston. Baseline measurements were taken immediately prior to intra-articular injection 

(day 0) and then from day 3 onwards.  
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2.9.3.3.1 Weight Bearing Asymmetry  

The effects of MNX surgery on the weight-distribution through the left and right knee was 

assessed using an incapacitance tester (Linton Instrumentation, UK) (Figure 2.12) and was 

assessed between post-operative days 3 to 42. The two hind-paws were placed on separate 

sensors and the force (in grams) exerted by each hind limb was calculated and averaged over 

a period of 3 seconds as described previously by Clayton et al and Elmes et al (181, 182).  

Each data point was taken as the mean of three 3 second readings and the weight bearing 

asymmetry calculated by applying the below equation 2.3. Statistical analysis performed by 

two way Anova with Bonferrioni post-test using GraphPad. 

Equation 2. 1 Equation used to calculate the weight bearing asymmetry of rats. This is 

the ratio of the forces placed on the treated (left) and untreated (right) hind legs. 

 

 

Figure 2.12. Incapacitance tester used to evaluate weight bearing asymmetry of rats. 

Rats are placed within a transparent box with hind legs placed on the sensor pads. 

 

2.9.3.3.2 Mechanical Allodynia 

The development of allodynia is commonly assessed using von Frey monofilaments 

(Semmes-Weinstein monofilaments) of bending forces 1, 1.4, 2, 4, 6, 8, 10 and 15 g (40) 
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(Figure 2.13). Rats were placed in transparent plastic cubicles placed on a mesh floored table 

and allowed to acclimatize prior to testing.  Von Frey monofilaments were then applied, in 

ascending order of bending force, to the plantar surface of both hind-paws.  Each von Frey 

was applied for a 3 sec period.  Once a withdrawal reflex was established, the paw was re-

tested with the next descending von Frey monofilament until no response occurred. The 

lowest weight of monofilament which elicited a withdrawal reflex was noted as the paw 

withdrawal threshold. Statistical analysis performed by two way Anova with Bonferrioni 

post-test using GraphPad. 

 

Figure 2.13. Equipment used to measure paw withdrawal threshold. Rats are placed 

within the transparent cubicle shown in A) allowed to settle before assessing pain using 

a range of von Frey monofilaments shown in B.  
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3.1 Introduction 

 

The imaging and tracking of stem cell population in vivo requires the application of a contrast 

agent with the complementing imaging modality to distinguish the implanted cells against 

the biological tissue (84, 93, 183). MR imaging is a highly powerful, non-invasive technique 

benefiting from high spatial resolution, high tissue contrast and importantly, is available in 

most clinics today (93). Furthermore, the use of contrast agents in MR imaging improves the 

diagnostic power of this technique by enhancing the contrast between healthy and diseased 

tissues/organs and also improves image specificity. Of notable importance are the group of 

FDA approved SPION-based MRI contrast agents (119, 128). These are accepted T2 

weighted contrast agents (119, 128) and are commonly used to image the liver and spleen 

(130). Table 3.1 describes the range of commercially available T2 weighted MRI contrast 

agents, specifically focusing on their size and coating characteristics. Noticeably, dextran is 

the preferred coating of choice with a hydrodynamic diameter commonly ranging from 20 – 

150 nm in size.  

Table 3. 1. Commercial FDA approved T2-Weighted Contrast Agents.  

 

Brand Name Generic Name Target Hydrodynamic 

diameter (nm) 

Coating Reference 

Endorem (EU),  

Feridex (USA) 

Ferumoxide Reticulo-

endothelia 

system, 

Liver 

80-150 Dextran (184, 185) 

(186) (91) 

Rienso (EU), 

Feraheme (USA) 

Ferumoxytol Fe 

replacement 

20-30 Carboxyl -

methyldextran 

(91, 187) 

Resovist (EU, USA) Ferucarbotran Blood Pool 20 Carboxydextran (91, 188) 

Sinerem (EU) 

Combidex (USA) 

Ferumoxytol Blood Pool 15-30 Dextran (91, 189) 

(186) 

Lumirem (EU) 

Gastromark (USA) 

Ferumoxsil Liver, 

Blood pool 

300 Silica (91) 

  

The clinical approval of this range of contrast agents (Table 3.1) has encouraged the adoption 

of these particles by research communities working to image and track cells in vivo (83, 184, 
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187). Whilst still in seldom use,  Endorem,  Resovist and Sinerem have officially been off 

the commercial market since 2009 and are no longer available for purchase (91). Therefore, 

extensive efforts have been devoted to the development of novel SPIONs as imaging and 

tracking agents (91, 134). A commercial and literature search has revealed a vast and 

extensive range of SPIONs currently available, ranging in size, coating and functionalities. 

In general terms SPIONs are composed of either a magnetite (Fe3O4) or maghemite (γ-Fe2O3) 

core (125, 131) coated with a biocompatible polymer (121, 132); together defining the 

hydrodynamic diameter of the particle. Both maghemite and magnetite are ferrimagnetic in 

nature; however as their size decreases below 30 nm they lose their permanent magnetism 

and become superparamagnetic in nature (109). This has significant implications in the 

biological context as the superparamagnetic nature of the particles implies that the particles 

do not retain their magnetisation after the removal of the magnetic field. Therefore, will not 

be magnetically attracted to each other and so the risk of agglomeration in a medical setting 

is minimised (120, 129). The biocompatibility of the particle is attributed to the addition of 

the polymer coating preventing the biological entity from adverse effects as a result of being 

in direct contact with the iron core (121, 122). Silica, fibronectin and dextran are all examples 

of biocompatible polymer coatings, all of which can be further surface functionalised to 

enhance cell–SPION interactions (111,118,123). The nature of the polymer coating and the 

consequent modifications determine the ultimate physical and biological properties of the 

particles such as the size, charge, toxicity and degradability (91). 

SPION internalisation is a necessary prerequisite for the successful imaging and tracking of 

stem cell populations in vivo by MRI. Essentially, cells are encouraged to internalise SPIONs 

via various uptake mechanisms in order to accumulate within the cell cavity. When MR 

imaged, the SPIONs effectively alter the transverse relaxation properties of the water protons 

thus producing dark negative contrast providing an effective, simple and non-invasive means 
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of visualising cells against the background of a tissue as hypointense signal voids on MRI 

scans (91). 

Each of the particle characteristics (size, polymer coating and functionalities) have been 

reported to impact the rate and efficiency of SPION internalisation. In addition to the 

physical properties of the particle, cell type and rate of proliferation have also been known 

to affect this process (91, 118). Transfection agents (TA) can be implemented to promote 

SPION uptake (91, 106). A downfall of using TA is associated with unwanted toxic effects 

and impaired biological properties of the cells thus limiting the therapeutic potential of cells 

(91).  

There is no clear consensus as to the ideal set of SPION characteristic that would yield the 

greatest uptake while producing the best contrast. Figure 3.1 lists the criteria defining the 

ideal labelling agent. This includes efficient particle uptake, the ability to create T2 weighted 

contrast, biocompatible and the long term retention of particles to facilitate long term 

tracking.  

 

Figure 3.1. Basic criteria defining the ideal labelling agent for the in vivo imaging and 

tracking of implanted cells.  
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3.2 Aims and Objectives 

 

This chapter aims to investigate four commercially available SPIONs, namely SiMAG, 

Lumirem, Nanomag and P904 and their potential as tracking agents in arthritic stem cell 

based therapies. The criteria listed in Figure 3.1 will form the basic acceptance criteria 

according to which each particle will be assessed. However, this list has been modified 

(Figure 3.2) to increase the likeliness of clinical adoption. 

 

Figure 3.2. Modification of basic criteria defining the ideal labelling agent to increase 

likelihood of clinical adoption.   

 

Therefore, this chapter aims to assess a range of commercially available SPIONs on their 

potential application as in vivo tracking agents based on Figure 3.2. SPION internalisation 

will be assessed and subsequent effects on cell viability, proliferation and biological function 

of hMSCs and porcine chondrocytes will be further evaluated.  
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3.3 Materials and Methods 

 

The flow chart summarises key experimental aims of this chapter in dark blue with specific 

experimental parameters in light blue (Figure 3.3).  Further details can be found in Chapter 

2; Materials and Methods. 

 

Figure 3.3. Experimental plan for the selection of a labelling agent and the development 

of a labelling protocol for the use of SPIONs to track cell populations using MRI. 
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3.4 Results 

 

3.4.1 Cell Characterisation 

Bone marrow derived hMSCs reside within a heterogeneous population of cells within the 

bone marrow.  It is therefore essential to validate the specific characteristics of the isolated 

cells and confirm their identity as multipotent MSCs. hMSCs were characterised by applying 

the minimal criteria, set by the International Society for Cell Therapy (ISCT) (75). 

Similarly, it is necessary to characterise the porcine primary chondrocytes isolated from 

fresh articular knee cartilage. Primary chondrocytes can be characterised by their ability to 

secrete sulphated glycosaminoglycans (50). 

 

3.4.1.1 Human Mesenchymal Stem Cells (hMSCs) 

3.4.1.1.1 Plastic Adherence 

hMSCs were identified as those which after two weeks in culture had adhered to tissue 

culture plastic with a spindle shaped fibroblastic like appearance, as shown in Figure 3.4.   

 

Figure 3.4. hMSCs attached to tissue culture plastic at passage 1. Scale Bar = 100μm. 
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3.4.1.1.2 Cell Surface Marker Expression 

Flow cytometry was implemented to investigate the expression of cell surface markers 

typical to hMSCs and to validate the lack of hematopoietic markers as defined by Dominici 

et al (75). Flow cytometry analysis (Figure 3.5) demonstrated the positive expression of the 

MSC markers: CD 73, CD 90 and CD 105 while proving negative for the expression of 

CD14, CD 19, CD 31, CD 34, CD 45 and HLA-DR although the expression for CD14 was 

higher than expected. Percentage of positive expression of each of these cell markers are 

stated in Table 3.2.  

Table 3. 2. Positive expression of typical MSC Surface Markers. 

Cell Surface Marker % Positive 

CD14 13.50 

CD19 4.25 

CD31 5.60 

CD34 4.89 

CD45 4.66 

CD73 62.13 

CD90 74.57 

CD105 65.91 

HLA-DR 4.77 

 

 

Figure 3.5. Characterisation of the expression profile of typical hMSC surface markers 

(CD 105, CD 73, CD 90) and demonstrating the lack of hematopoietic markers (CD34, 

CD 45, CD 14, CD 19, CD 31 and HLA-DR) using flow cytometry.  
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3.4.1.1.3 Multi-lineage Differentiation of hMSCs 

The multipotent differentiation capacity of bone marrow derived hMSCs was investigated 

by inducing differentiation towards osteogenic, adipogenic and chondrogenic lineages. 

hMSCs underwent successful differentiation towards all three lineages (adipogenic, 

chondrogenic and osteogenic) after 21 days in culture with relevant differentiation media. 

Adipogenesis was confirmed by the presence of lipid and triglyceride droplets stained 

positive with oil red O after 21 days cultured with adipogenic differentiation media (Figure 

3.6 A). Calcium deposition was stained positive by alizarin red for samples receiving 

osteogenic differentiation media, thus confirming osteogenesis (Figure 3.6 B).  Alcian Blue 

stain was used to identify the secretion of sulphated gycosaminoglycans by cells which had 

undergone chondrogenic differentiation (Figure 3.6 C). No positive staining was observed 

in control groups receiving basic proliferation media for all cases nor at day 0 (image not 

shown). This study confirms the multipotency of isolated hMSCs as well as their 

differentiation capacity.  
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Figure 3.6. Multi-lineage differentiation of hMSCs. Images represent differentiation of hMSCs towards (A) Adipogeneic, (B) Osteogenic 

and (C) Chondrogenic lineages with time at days 14 and 21 days. Scale Bar = 100 μm. 
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3.4.1.2 Chondrocytes 

Chondrocyte morphology appeared rounded upon isolation at Passage 0 while at P1, 

chondrocytes appeared to be flatter and more spread out (Figure 3.7). 

 

Figure 3.7. Chondrocyte morphology at passages 0 and 1. Scale Bar = 100 μm  

 

3.4.1.2.1 Alcian Blue Staining 

Porcine chondrocytes (P3) were characterised by their ability to secrete sulphated 

glyosaminoglycans (GAGs) when cultured in monolayer in either standard proliferation 

media or in chondrogenic differentiation media. Alicia blue staining highlights secreted 

sulphated GAGs as blue. Secreted GAGs were detected for chondrocytes cultured in both 

proliferation media and chondrogenic media while the use of chondrogenic media resulted 

in the increased secretion of sulphated GAGS over a 21 day culturing period (Figure 3.8). 

This confirms the identity of chondrocytes.  
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Figure 3.8. Alcian Blue staining of chondrocytes highlighting the secretion of sulphated 

GAGs as blue areas when cultured in chondrogenic media or basic proliferation media 

at day 21. Secreted sulphated GAGS are depicted by blue s. Scale Bar= 100 μm 

 

3.4.2 Particle Characterisation 

The physiochemical properties of the each particle (SiMAG, Lumirem Nanomag and P904) 

were assessed in terms of particle size, particle charge and Fe content. Nanoparticle 

fabrication can be a highly variable process. It is therefore essential to validate the 

information given by the manufacturers, as these parameters can affect the uptake of 

particles by the cells.  

 

3.4.2.1 Size  

The principal of dynamic light scattering was applied to measure and validate the reported 

hydrodynamic diameter (HD) of each particle (SiMAG, Lumirem, Nanomag and P904). 

Particles were characterised under standard cell culturing conditions. Nanoparticles were re-

suspended in either serum free media (SFM) or serum containing media (SCM) and 

incubated for 24 hrs at 37 oC and 5 % CO2  in order to mimic cell labelling conditions. 
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The HD of SiMAG as reported by Chemicell is 1000 nm. The addition of serum to culture 

media (SCM) resulted in a statistically significant decrease in the HD of SiMAG when 

compared to SFM at the same time point (0 hrs) (SFM; 1.23 ± 0.103 μm vs SCM: 0.97 

± 0.041 μm with P < 0.001). This difference became insignificant over the 24 hr incubation 

period time where similar HD sizes were measured for SiMAG when incubated in SFM and 

SM for 24 hrs (SFM 1.19 ± 0.228 μm vs SCM, 1.09 ± 0.178 μm). The effect of  incubation 

time on the HD of SiMAG when incubated in either SFM or SCM resulted in a non-

statistically significant difference in HD over the 24 hr period (SFM: 0 hrs; 1.23 ± 0.103 

μm vs 24 hrs; 1.19 ± 0.228 μm; SCM: 0 hrs 0.97 ± 0.041 μm; vs 24 hrs, 1.09 ± 0.178 μm). 

In all cases, the HD of SiMAG falls approximately within the 1 μm range roughly validating 

the manufacture`s report (Figure 3.9 A).  

The incubation of Lumirem with either SCM or SFM resulted in a marked increase in HD at 

either of the two time points (0 hrs and 24 hrs) when compared to the reported value of 300 

nm. Further to this, the addition of serum and the effect of incubation time had no significant 

impact on the HD of Lumirem (SFM: 0 hrs; 1271± 221 nm, 24 hrs; 1208± 216 nm; SCM: 

0hrs; 1329 ± 168 nm, 24 hrs; 1401 ± 152). (Figure 3.9 B). 

A HD ranging between 50-75 nm has been reported for Nanomag. In this case, the effect of 

serum had a significant effect on the HD of Nanomag whilst the effect of incubation time 

had no effect on this parameter. The addition of serum resulted in a significant (P<0.0001) 

decrease in the HD of Nanomag when compared to SFM at both time points (0 hrs: SFM; 

76.4 ± 2.9 nm vs SCM 48.3 ± 2.8 nm and 24 hrs: SFM 78.5 ± 2.6 nm vs SCM 49.2 ± 1.48 

nm). Both sets of values fall within the reported range highlighting the effect of serum on 

the HD of Nanomag (Figure 3.9 C). 
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Finally, the addition of serum and the effect of incubation time had no statistically significant 

impact on the HD of P904 with values falling in very close to the reported value of 22 nm 

(SFM: 0 hrs; 23.9 ± 1.68 nm, 24 hrs; 24.7 ± 1.01 nm, SCM: 0 hrs; 22.3 ± 1.44 nm, and 24 

hrs 22.1 ±1.21 nm) (Figure 3.9 D). 

 

Figure 3.9. Dynamic light scattering analysis of particle size to investigate the effect of 

SCM (serum containing media), SFM (serum free media) and incubation time on the 

hydrodynamic diameter (HD) of each particle: (A) SiMAG, (B) Lumirem, (C) 

Nanomag and (D) P904 when compared to the equivalent particles in water and the 

reported manufactures value.  Data = mean HD ± SD, n=3. Statistical significance 

levels represented by * where p < 0.05, ** is p < 0.01 and *** is p<0.001.  
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A poly dispersity value is produced by the Malvern H3000 zetasizer to complement the DLS 

data. This is a measure of the size distribution of particles within a suspension. This is a 

dimensionless value ranging from 0-1 and scaled such that the lower range of values are 

representative of monodispersed solutions. Values greater than 0.7 are indicative of a particle 

solution with a highly broad size distribution. Table 3.3 highlights the polydispersity values 

at each condition (SFM or SCM) and time point (0 hrs and 24 hrs) for each particle (SiMAG, 

Nanomag, Lumirem, P904) when measuring HD by DLS. The maximum polydispersity 

value of 1 was reported for Lumirem at all conditions and is thus characterised as being a 

solution with a highly broad size distribution of particles. SiMAG is considered the next 

broadly dispersed solution amongst the group of particles with polydispersity values of 

0.51 ± 0.11 and 0.53 ± 0.28 reported at 0 hrs for both SFM and SCM respectively. This 

value then increases to 0.75 ± 0.28 and 0.78 ± 0.23 for SFM and SCM respectively after the 

24 hr incubation period. This is followed by Nanomag. A lower polydispersity index is 

noticed for Nanomag incubated in SFM at either time point (SFM 0 hrs; 0.29 ± 0.004, 24 

hrs; 0.33 ± 0.004). However, the polydispersity index for Nanomag appeared to increase to 

0.7± 0.006 and 0.74 ± 0.007 when incubated in SCM at either 0 hrs or 24 hrs respectively. 

The lowest range of polydispersity values was observed for P904 with a noticeable trend 

similar to Nanomag.  The polydispersity of P904 was higher when incubated with SCM than 

in SFM at either time point (SFM: 0 hrs; 0.19 ± 0.03, 24 hrs; 0.2± 0.06, SCM: 0 hrs; 0.4 ± 

0.007, 24 hrs; 0.36  ±  0.02). Polydispersity values for all particles (SiMAG, Lumirem, 

Nanomag and P904) in different conditions (SFM vs SCM) are summarised in Table 3.3. 

Furthermore, a schematic diagram illustrating the relative size differences between all four 

particles and the cells used in this study (hMSCs and chondrocytes) under different 

conditions and time points (Figure 3.10). This set of results imply that SiMAG, Nanomag 
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and P904 do not cluster and aggregate in the presence of either SFM or SCM media with the 

measured HD values hovering closely similar to the reported value.  

Table 3.3. Polydispersity values of SiMAG, Lumirem, Nanomag and P904 when 

incubated in serum free and serum containing media at either 0 hrs or 24 hrs. Values 

are expressed as mean ± SD (n=3) 

 

Particle Serum Free Media Serum Containing Media 

 0 hrs 24 hrs 0 hrs 24 hrs 

SiMAG 0.51 ± 0.11 0.75 ± 0.28 0.53 ± 0.17 0.78 ± 0.23 

Lumirem 1 ± 0 1  ± 0 1 ± 0 1 ± 0 

Nanomag 0.29 ± 0.04 0.33 ± 0.04 0.70 ± 0.06 0.74 ± 0.07 

P904 0.19 ± 0.03 0.2 ± 0.06 0.40 ± 0.07 0.36 ± 0.02 

 

 

Figure 3.10. Schematic representing the relative size difference between the four 

selected particles: SiMAG, Lumirem, Nanomag and P904 under various incubation 

conditions (SFM, SCM, for either 0 hrs or 24 hrs) in comparison to the manufactures 

reported value and to a hypothetical hMSCs (20 μm) and Chondrocytes (10 μm) size. 

Scale bar = 5μm 

 



Chapter 3- Labelling 

123 | P a g e  

 

3.4.2.2 Charge – Zeta Potential 

The zeta potential (ζ) is defined as the degree of electrostatic repulsion or attraction between 

particles and is an essential parameter dictating stability of a particle suspension (colloidal 

suspension) (179). SiMAG and Lumirem were discovered to be negatively charged but 

stable (-34.6 ± 0.4 and -61.4 ± 0.8 mV respectively), whilst P904 and Nanomag were both 

found to be positively charged with a lower degree of stability (1.8 ± 3.4 and 2.7± 0.4 mV 

respectively) in comparison to SiMAG and Lumerim, as shown in Table 3.4. 

 

Table 3.4. Zeta potential values for each particle. Values are expressed as a mean ± SD 

(n=5). kCPs refers to the count rate;  Mob refers to the electrophoretic mobility. 

 

Particle kCPs Mob Zeta Potential ζ (mV) 

SiMAG 6765 ± 217 -2.74 ± 0.03 -34.6 ± 0.4 

Lumirem 2980 ± 105 -5.09 ± 0.065 -61.4 ± 0.8 

Nanomag 2383 ± 3.8 0.24 ± 0.031 2.7 ±  0.4 

P904 2380 ± 15 0.14 ± 0.27 1.8 ± 3.4 
 

 

3.4.2.3 Particle Relaxivity 

The relaxivity of a given particle is a measure of its ability to form contrast when MR imaged. 

Figure 3.11 demonstrates the comparative R2 relaxivity of each particle (SiMAG, Lumirem, 

Nanomag and P904) with R2 being defined by the gradient of the slope. Under these imaging 

conditions, Lumirem appears to have the greatest potential to form contrast with an R2 value 

of 0.019 ms-1 in comparison to SiMAG (0.011 ms-1) Lumirem (0.007 ms-1) and finally P904 

(0.0005 ms-1).  
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Figure 3.11. Particle relaxivity (R2) of SiMAG, Lumirem, Nanomag and P904. MR 

imaging of each particle at varying concentrations (5-40 μg Fe/ml; T2 weighted MSME 

sequences) used to determine R2 measurements. Data shown represents the inverse of 

T2 measurements at each concentration with the slope signifying the R2 value.  

  

3.4.3 Assessing Particle Uptake 

3.4.3.1 Prussian Blue Staining 

The visual assessment of particle internalisation following a passive incubation period of 24 

hrs was assessed by Prussian blue staining (Figure 3.12 & 3.13). hMSCs and chondrocytes 

were labelled with SiMAG, Lumirem, Nanomag and P904 ranging in Fe concentration 0, 1, 

5, 0 and 100 μgFe/ml.  The hydrochloric acid component of the stain was used to degrade 

the particle thus exposing the iron core which then reacts with the potassium ferrocyanide 

component. The reaction results in the formation of a blue stain of the iron particles when 

visualized by light microscopy. Prussian blue staining revealed the presence of SiMAG 

within the cell membrane of hMSCs and chondrocytes when labelled with 1, 5, and 10 

μgFe/ml. Particle content was noticed to increase within increasing SiMAG concentration 

1-10 μgFe/ml for both hMSCs and chondrocytes (Figure 3.12 & 3.13). It is obvious that the 
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addition of 100 μgFe/ml of SiMAG is in significant excess, as SiMAG particles are observed 

to almost completely cover the bottom of the well and appear to sit on top of the cells 

(hMSCs and chondrocytes) (Figure 3.12 & 3.13). Further to this, considerably fewer stained 

particles could be detected within hMSCs when labelled with 5, 10 and 100 μgFe/ml 

Lumirem, shown by white arrow in Figure 3.12. No Lumirem particles could be detected at 

either concentration (1, 5, 10 and 100 μgFe/ml) for chondrocytes (Figure 3.13). Furthermore 

no particles could be detected in either cell type when labelled with Lumirem (1 μgFe/ml), 

Nanomag (1, 5, 10 and 100 μgFe/ml), P904 (1, 5, 10 and 100 μgFe/ml) appearing similar to 

unlabelled cells.  
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Figure 3.12. hMSCs stained with Prussian Blue. Light microscopy images (24 hrs post 

labelling) of Prussian blue stained SPION-labelled hMSCs (SiMAG, Lumirem, 

Nanomag & P904; 1, 5, 10, 100 μgFe/ml ). SPION are stained blue and shown by white 

arrow Scale bar = 100 µm.  
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Figure 3.13. Porcine chondrocytes stained with Prussian Blue. Light microscopy 

images (24 hrs post labelling) of Prussian blue stained SPION-labelled chondrocytes 

(SiMAG, Lumirem, Nanomag & P904; 1, 5, 10, 100 μgFe/ml ). SPION are stained blue 

shown by the white arrows. Scale bar = 100 µm 24hrs 

 

3.4.3.2 ICP–OES  

ICP-OES was used to determine the intracellular Fe content of hMSCs and chondrocytes 

when labelled with 10 μgFe/ml of SiMAG, Lumirem, Nanomag, and P904 in either serum 

free (SFM) or serum containing media (SCM). In general, the use of serum free labelling 

media facilitated improved uptake efficiencies for both hMSCs and chondrocytes when 

compared to the use of serum containing labelling media for all particles apart from P904 

and Lumirem labelled chondrocytes. Furthermore, SiMAG was most efficiently internalised 
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by both hMSCs and chondrocytes, corroborating Prussian blue results. Similar uptake trends 

were obtained for hMSCs and chondrocytes when labelled with either SiMAG, Nanomag or 

P904, this however was not the case for Lumirem. (Figure 3.14 & 3.15 E).   

The use of SCM resulted in very similar uptake efficiencies for hMSCs (58 % ± 3.29) and 

for chondrocytes (55 % ± 6.08) (Figure 3.15 A) when labelled with 10 μgFe/ml SiMAG 

resulting in 16±0.7 pgFe/hMSC and 14 ±0.9 pgFe/chondrocyte (Figure 3.14 A). The 

labelling of hMSCs and chondrocytes in SFM resulted in a significant increase in the uptake 

of SiMAG by both hMSCs (p<0.001) and chondrocytes (p<0.01) when compared to SCM 

media, equating to 22 ± 0.41 pgFe/hMSC and 20 ± 0.46 pgFe/chondrocyte (Figure 3.14 A). 

Lumirem labelling (Figure 3.14 and 3.15 B) resulted in significantly greater amount of Fe 

uptake in hMSCs when compared to chondrocytes in both media types (SFM and SCM). 

The labelling of hMSCs with Lumirem in SCM resulted in approximately 11 % of the 

Lumirem being taken up with this equating to 2.4 ± 0.46 pgFe/hMSC. This is a significant 

(p<0.001) increase over chondrocytes where only 0.63 % uptake being detected under 

similar conditions (SCM) equating to 10 times less Fe per cell (0.2  ± 0.13 

pgFe/chondrocyte). Furthermore, there was an insignificant increase in the uptake of 

Lumirem in SFM over SCM for chondrocytes resulting in 1.39 ± 0.35 pgFe/chondrocyte. In 

comparison, there was a statistically significant increase in the uptake of Lumirem in the 

presence of SFM over SCM for hMSCs resulting in 4.8 ± 0.5 pgFe/hMSC (p<0.0001) which 

is also a significant increase over chondrocytes under the same conditions (SFM) (0.45±0.34 

pgFe/chondrocyte p<0.0001). 

Nanomag (Figure 3.14 & 3.15 C) did not demonstrate the ability to be significantly taken up 

for either of the cell types (hMSCs and chondrocytes) with only 0.8 % of the Fe being 

internalised by hMSCs and 1.19 % for chondrocytes when labelled with SCM translating to 
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0.2 ± 0.3 pgFe/hMSC and 0.34 ±  0.2 pgFe/chondrocyte. The uptake efficiency then 

significantly increased in SFM to 4 % for hMSCs (p<0.05) and 4.23 % for chondrocytes 

(p<0.001) which was equivalent to 1 ± 0.3 pgFe/hMSC and 1.3 ± 0.35 pgFe/chondrocyte. 

Over 95 % of the Fe associated with Nanomag was detected in the media (SFM and SCM). 

No significant differences were observed between cell types while the presence of SFM 

resulted in a significant increase in particle uptake over SCM for both cell types. 

Overall, the labelling of chondrocytes with P904 resulted in significantly greater levels of 

Fe per cell than for hMSCs in both types of labelling media (Figure 3.14 & 3.15 E). 

Furthermore, choice of labelling media did not appear to influence uptake. Under SCM 

2.3±0.34 pgFe/chondrocyte were detected. This was just over double the amount found in 

hMSCs under the same conditions (1.3 ± 0.35 pgFe/hMSC; p<0.0001). Significantly greater 

Fe levels were also detected under SFM for chondrocytes (1.7 ± 0.07 pgFe/cell) than hMSCs 

(0.65 ± 0.16 pgFe/cell; p<0.0001). 
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Figure 3.14. ICP-OES quantification and comparison of total Fe content per cell 

(hMSCs and chondrocytes) post particle labelling in either serum free media (SFM) or 

serum containing media (SCM) for: (A) SiMAG, (B) Lumirem, (C) Nanomag and (D) 

P904 labelled with 10μgFe/ml. (E) Shows a comparative graph comparing the total iron 

content for each particle per cell type and media condition. Data = mean Fe ± SD, n=3.  
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Figure 3.15. Percentage Fe uptake and comparison of Fe in media and cells (hMSCs 

and chondrocytes) post particle labelling in either serum free media (SFM) or serum 

containing media (SCM) for: (A) SiMAG, (B) Lumirem, (C) Nanomag and (D) P904. 

E) Shows a comparative graph comparing the total iron content for each particle per 

cell type and media condition. Data = mean ± SD (n=3). 
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3.4.4.3 Particle uptake efficiency 

Prussian blue staining and ICP-OES analysis confirmed the efficient internalisation of 

SiMAG by both hMSCs and chondrocytes. The labelling efficiency was then investigated at 

varying SiMAG concentrations (1, 5 and 10 μgFe/ml) in SFM. Prussian blue staining 

revealed approximately 95% of cells to have internalised SiMAG when labelled with 5 

(hMSC; 94±2% & chondrocytes 94±5%) and 10 μgFe/ml (hMSC; 95±3% & chondrocytes 

95±2%) while fewer cells appeared to be labelled with 1 μgFe/ml (hMSC; 10±1.5% & 

chondrocytes 14±4%) SiMAG (Figure 3.16). As expected, the amount of Fe per cell 

significantly increased (p<0.0001) with increasing SiMAG concentration between each 

condition for both cell types hMSCs; (1 μgFe/ml; 0.22  ± 0.09 pgFe/cell, 5 μgFe/ml; 

14.29  ± 0.59 pgFe/cell and 10 μgFe/ml; 21.88  ± 0.4 pgFe/cell) and chondrocytes; (1 

μgFe/ml; 0.33 ± 0.36 pgFe/cell, 5 μgFe/ml; 13 ± 0.54 pgFe/cell and 10 μgFe/ml; 20 ± 0.3 

pg Fe/cell) (Figure 3.17). 
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Figure 3.16. Prussian blue staining to investigate particle uptake efficiency 24 hrs post labelling. Light microscopy images of Prussian 

blue stained SiMAG-labelled hMSCs (1, 5, & 10 μgFe/ml). SPION are stained blue. Scale bar = 100 µm  



Chapter 3- Labelling 

134 | P a g e  

 

 

Figure 3.17. ICP-OES quantification of internalised Fe as a result of increasing SiMAG 

concentration (1, 5, & 10 μgFe/ml) (n=3). Data = mean 𝑭𝒆 ±SD. Statistical significance 

levels represented by *** where is p<0.001 unless otherwise stated 

 

3.4.4 Cell Viability and Proliferation Assessment 

The effect of particle labelling (SiMAG, Lumirem, Nanomag and P904) on the viability and 

proliferative capacity of hMSCs and chondrocytes was investigated at 24 hrs and 7 days 

when labelled with 10 and 100 μgFe/ml of each particle. This investigated the effect of 
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particle dose and exposure time on the viability of cells. An MTT assay and a double staining 

live dead assay were implemented in this study.   

 

3.4.4.1 MTT Assay  

This a measure of mitochondrial activity and is a standard means of assessing cell viability 

and proliferation (109). Normalised MTT data allows for comparisons between the two cell 

types to be made. MTT analysis revealed no diminished viability for either cell type (hMSCs 

and chondrocytes) when labelled with 10 μgFe/ml of the relevant particle (SiMAG, Lumirem, 

Nanomag and P904) after a 24 hr incubation period when compared to untreated cells 

(Figure 3.18 A & B). A marked increase in optical density (OD) was observed between all 

groups incubated with 10 μgFe/ml of each particle (apart from chondrocytes labelled with 

10 μgFe/ml SiMAG) from 24 hours with those tested at 7 days. When compared to untreated 

cells, no impaired viability could be detected in hMSCs incubated with 10 μgFe/ml of either 

particle type after 7 days exposure.  This represents the proliferative abilities of labelled cells 

with results indicating that labelled hMSCs populations retain their ability to proliferate. 

Conversely, there is a significant reduction in OD for chondrocytes labelled with 10 μgFe/ml 

SiMAG after 7 days exposure. This signifies a reduction in metabolic activity (Figure 3.18 

B).  

As demonstrated in Figure 3.18 the effect of a higher particle dose (100 μgFe/ml) did not 

appear to affect viability and proliferation of hMSCs (Figure 3.18 A) and chondrocytes 

(Figure 3.18 B) labelled with Lumirem, Nanomag and P904 at either time point (24 hrs and 

7 days) when compared to untreated groups. However, for hMSCs and chondrocytes labelled 

with 100 μgFe/ml SiMAG a significantly low OD is measured similar to the negative control 
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(dead cells) and is thus indicative of cell death or reduced metabolic activity at both time 

points. 

 

Figure 3.18. Normalised MTT analysis (A) hMSCs and (B) chondrocytes labelled with 

10 and 100 μgFe/ml and left to culture for 24 hrs and 7 days. Data = mean OD ± SD, 

n=3; Statistical significance levels represented by * where p < 0.05, ** is p < 0.01 and 

*** is p<0.001 
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3.4.4.2 Live Dead Assay  

This is a simple and visual means of assessing cell viability and is based on a double staining 

protocol where live cells, showing intact cell membranes are stained fluorescent green while 

cells with impaired viability and compromised cell membranes are stained fluorescent red. 

A greater number of viable cells (hMSCs and chondrocytes), appearing in green were 

observed in all groups (SiMAG, Lumirem, Nanomag and P904) treated with 10 µgFe/ml in 

comparison to dead cells (red) and displaying similar patterns to the untreated controls 

(Figure 3.19 - 3.21). Furthermore, it was also revealed that there was an increase in the 

overall number of cells (hMSCs and chondrocytes) in these groups after 7 days in culture 

similar to the untreated controls (Figure 3.19-3.21). This demonstrates the proliferative 

abilities of these groups apart from SiMAG-labelled chondrocytes where the proliferation 

activity is clearly demonstrated to be limited as can be seen by the insignificant increase in 

the number of green cells.  

A higher dose (100 μgFe/ml) did not seem to affect the viability and proliferation of hMSCs 

and chondrocytes labelled with Lumirem, Nanomag and P904 at either time point (24 hrs 

and 7 days) when compared to untreated groups, as shown in Figure 3.19 and 3.20. However, 

only a few stained cells (hMSCs and chondrocytes) were visible when exposed to 100 μg 

Fe/ml SiMAG over 24 hrs and 7 days. This is likely due to the excessive amount of particles 

(as depicted by Prussian blue staining (Figure 3.12 & 3.13) preventing the dyes from 

penetrating the majority of the cells.  
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Figure 3.19. Live Dead staining of hMSCs labelled with 10 μgFe/ml and 100 μgFe/ml 

SiMAG, Lumirem, Nanimag and P904 cultured for 24 hrs and 7 days. Green stained 

cells represent live, viable cells whereas red stained cells represent dead, non-viable 

cells. Scale bar = 100 μm. 
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Figure 3.20. Live Dead staining of chondrocytes labelled with 10 μgFe/ml and 100 

μgFe/ml SiMAG, Lumirem, Nanimag and P904 cultured for 24 hrs and 7 days. Green 

stained cells represent live, viable cells whereas red stained cells highlight dead, non-

viable cells. Scale bar = 100 μm. 
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Figure 3.21. Live Dead stain controls. Untreated positive control and DMSO treated 

negative control hMSCs and chondrocytes after 24 hrs and 7 days in culture. Scale 

bar= 100 μm. 

 

3.4.5 Cell Characterisation Post SiMAG labelling. 

The relatively high doses of Fe found in SiMAG-labelled cells (hMSCs and chondrocytes) 

encouraged further investigation into the influence of SiMAG labelling on cell function and 

characteristics. Therefore cells were characterised to ensure cell populations remained robust 

in culture after particle uptake and that biological properties remained intact (75). 

 

3.4.5.1 hMSCs 

3.4.5.1.1 Cell Surface Marker Expression 

Flow cytometry was implemented to investigate the effect of SiMAG labelling (10 μgFe/ml) 

on the expression of standard cell surface markers typical to hMSCs. It demonstrates the 

positive expression of typical mesenchymal markers: CD 73, CD 90 and CD 105 while 
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proving negative for the expression of CD 14, CD 19, CD 31, CD 34, CD 45 and HLA-DR 

as expected (Figure 3.22). Positive expression (%) of each of these cell markers are stated in 

Table 3.7. These values appear similar to values seen in section 3.4.1.1.2 for unlabelled 

hMSCs and can thus be deduced that SiMAG labelling does not influence marker expression. 

Table 3 5. Positive expression of typical mesenchymal cell surface markers in hMSCs 

treated with SiMAG (10 µgFe/ml). 

 

 

  

 

 

  

 

 

Figure 3.22. Characterisation of hMSC surface markers using FACS. hMSCs labelled 

with SiMAG at 10 µgFe/ml for 24 hrs in serum-free conditions. 

 

Cell Surface Marker %Positive 

CD14 22.22 

CD19 5.91 

CD31 6.97 

CD34 4.53 

CD45 5.72 

CD73 77.1 

CD90 80.93 

CD105 73.54 

HLA-DR 5.40 
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3.4.5.1.2 Multi-lineage Differentiation 

SiMAG-labelled hMSCs (10 μgFe/ml) were tested for their differentiation capacity into 

adipocytes, chondrocytes and osteocytes. Labelled cells were incubated for a period of 21 

days in the relevant differentiation medias. Similar to unlabelled hMSCs (Figure 3.6) 

SiMAG-labelled hMSCs underwent successful differentiation towards all three lineages 

(adipogenic, chondrogenic and osteogenic) after 21 days in culture. Adipogenesis was 

confirmed by the presence of lipid and triglyceride droplets stained positive with oil red O 

after 21 days in samples treated with adipogenic differentiation media (Figure 3.23 A). 

Calcium deposition was stained positive by alizarin red for samples cultured in osteogenic 

differentiation media confirming osteogenesis (Figure 3.23 B).  Alcian Blue stain was used 

to identify the secretion of GAGs by cells which had undergone chondrogenic differentiation 

(Figure 3.23 C). No staining was observed in control groups cultured under basic 

proliferation media for all cases (Adipogenesis, Chondrogensis and Osteogenesis) and to the 

day 0 control.  
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Figure 3.23. Multi-lineage differentiation of SiMAG-labelled hMSCs. Multi-lineage differentiation of hMSCs. Images represent 

differentiation of hMSCs towards (A) Adipogeneic, (B) Osteogenic and (C) Chondrogenic lineages with time at days 14 and 21 days. 

Scale Bar = 100 μm. 
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3.4.5.2 Chondrocytes 

SiMAG-labelled chondrocytes (10 μgFe/ml) maintained the ability to secrete sulphated 

GAGs when cultured under standard proliferation media for 21 days. In comparison to day 

0, increased levels of secreted GAGs can be noticed (Figure 3.24) 

 

Figure 3.24. Alician Blue staining of SiMAG-labelled chondrocytes at day 0 and day 

21. Secreted GAGs are shown by blue staining. Scale Bar = 100 μm. 

 

3.4.6 Particle retention 

hMSCs and chondrocytes were labelled with 10 μgFe/ml SiMAG and the retention of 

SiMAG within the cells was monitored over 28 days. Analysis was performed quantitatively 

using ICP-OES and visually using Prussian blue staining on days 1, 7, 14, 21 and 28.  

The amount of Fe associated with SiMAG-labelled hMSCs and chondrocytes over 28 days 

was quantified by ICP-OES. Fe content remained largely stable from day 1 until day 21 for 

both hMSCs and chondrocytes at approximately 20 pgFe/ cell up until day 21. This value 

was seen to significantly decrease to 12 ± 2.8 pgFe/hMSC at day 28 in comparison to days 

1 (p <0.008), days 7 (p<0.008), day 14 (p<0.0116) and day 21 (p<0.0018) (Figure 3.25 A). 

Similarly, the value for SiMAG-labelled chondrocyte was also seen to significantly decrease 

to 6 ±  4.6 pgFe/chondrocytes at day 28 in comparison to day 1 (p<0.0129), days 7 

(p<0.0037), day 14 (p<0.0032) and day 21 (p<0.005) (Figure 3.25 B). 
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Prussian blue staining confirmed the retention of internalised SiMAG by chondrocytes 

(Figure 3.26) for the duration of the study. However, hMSC in comparison a network of 

particles appeared to have developed and it is unclear whether this network was interacting 

with the network of cells (Figure 3.26).   

 

Figure 3.25. ICP-OES quantification of Fe content: (A) hMSC and (B) chondrocytes 

labelled with 10 μgFe/ml SiMAG and cultured for 1, 7, 14, 21 and 28 days post labelling. 

Data point = mean ±SD (n=3); where*p < 0.05, **p < 0.01, ***p < 0.001.   
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Figure 3.26. Prussian blue staining of SiMAG-labelled hMSCs and chondrocytes for 1, 7, 14, 21 and 28 days post labelling.
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3.5 Discussion 

 

Studies by Clift et al and Mairano et al have shown that the exposure of SPIONs to a solution 

containing serum can significantly impact the rate and efficiencies of particle uptake. The 

presence of various proteins in FBS may account for this effect by either causing the 

aggregation of particle or the development of the protein corona (190-192). This theory was 

validated here, where ICP-OES analysis revealed enhanced uptake efficiencies for both 

hMSCs and chondrocytes when labelled with SIMAG, Lumirem and Nanomag in the 

presence of serum free media (SFM) over serum containing media (SCM). The dynamic 

light scattering data (measuring hydrodynamic diameter) did not account for any significant 

SPIONs aggregation with regards to SiMAG, Nanomag and P904 when incubated in either 

SFM or SCM. Although variations in the HD of Nanomag were observed between SFM and 

SCM this is not believed to be a result aggregation but rather an effect of the dextran coating 

and is expected. The measurements of Lumirem (±1200 nm) however resulted in HD 

values far greater than the reported manufacturer’s value (300 nm). This is potentially due 

to the overall application of Lumirem as an oral contrast agent requiring the addition of 

various additives and preservative (and even orange flavouring) to enable its use. Lumirem 

is therefore not a pure SPION solution but has extra additions prohibiting accurate 

measurement of the actual particle size.  Unfortunately, statistical comparison of the 

measured HD of each particle could not be made with the manufacturer’s value due to the 

lack of reported errors. However the measured values are similar to the manufacturers 

reported value and thus assuming a realistic error for all SPIONs, these values can be 

considered acceptable.  



Chapter 3- Labelling 

148 | P a g e  

 

It is unlikely that the lower uptake levels in SCM media are a result of particle aggregating. 

The theory of the development of the protein corona may better account for these results. 

This theory takes the interaction of the protein in the media as well as the surface of the 

SPION. It is thought that proteins interact with the particle to form a complex layer of 

molecules over the SPION. This biological layer is termed as “corona” (190, 193). The 

physical and chemical properties of SPION (size, surface coating and functionalization) 

dictates the binding of molecules to the particles resulting in either a hard or weak corona 

which is significantly different to that of the surface of the particle (190, 193). This affects 

the initial interaction of the cell with the particle as the cell`s first point of contact is with the 

corona and not the surface of the particle (193). In turn, this dictates subsequent cellular and 

tissue responses, thus the presence of the protein corona may impede particle uptake in serum 

containing conditions (190).   

The greatest amount of Fe was detected in cells (hMSCs and chondrocytes) labelled with 

SiMAG, where approximately 20 pgFe/cell was detected in serum free conditions. Less Fe 

was detected in cells labelled with Lumirem and in particular Nanomag and P904 under the 

same conditions. Detected levels, are however comparable to other studies where internal Fe 

content ranged from 1-30 pg of Fe/cell in comparison to a value of 0.1 pg of Fe/cell for 

unlabelled cells (146, 152).  However, it cannot be assumed that the increased Fe content 

detected in SiMAG-labelled cells is a result of enhanced uptake efficiency when compared 

to the other three particles but rather as a result of its size. In general, larger SPIONs have a 

greater Fe content per particle than smaller SPIONs, therefore, fewer larger SPIONs need to 

be internalised to result in significant Fe measurements (194, 195).  To compare SiMAG and 

Nanomag for example; SiMAG is 20 times larger than Nanomag, assuming each SiMAG 

particle has 20 times more Fe than a single Nanomag particle; then cells would need to 

internalise 20 times more Nanomag particles to achieve similar values to SiMAG. Therefore, 
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without counting individual particle within each cell, conclusions of the comparative uptake 

efficiency between the four particles cannot be made. This observation has significant 

implications for non-phagocytic cells being labelled without the use of TA with intended 

MRI applications implying that the application of micron-sized SPIONs may be beneficial 

for non-phagocytic cells such as stem cells, as each cell would need to internalise fewer 

particles than it would if smaller SPIONs were applied to create contrast. This also implies 

that smaller particles may be required at higher concentrations to facilitate sufficient uptake 

(194). No conclusive comments could be made about the uptake efficiency between SPIONs 

of varying sizes in this study.  

The significantly higher levels of Fe (measured by ICP and visually confirmed using 

Prussian blue staining) for Lumirem between hMSCs and chondrocytes can be explained by 

the concept of  “cell vision” presented by Laurent et al,  (196). This refers to the contact 

point between a particle and the cell membrane, which is characterised by surface molecules 

i.e. proteins, sugars and phospholipid composition. The binding of particles to these 

structures may be different for different cell types and explains how individual cell types 

‘‘see’’ the particle.  As a result, the binding of exogenous objects like SPIONs to these 

structures may cause different responses and influence uptake and metabolism depending on 

the cell type (196, 197). The fact that these results are only seen for Lumirem and not for 

other particles may be accounted for by the variations in polymer coatings between the other 

SPIONs.  Alternatively, residual Lumirem solution may have not been washed off properly, 

as Lumirem is a viscous solution which has proved to be difficult to handle.  

A particular limitation associated with ICP-OES is the inability to distinguish between 

intracellular and extracellular Fe.  Multiple wash steps were performed to try and mitigate 

this issue by removing all extracellular SPIONs. Histological Prussian blue staining is a more 

conclusive method of establishing SPION and cell association. Although, there are increased 
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levels of difficulty in seeing smaller particles which may account for the lack of visual 

evidence for Nanomag and P904.  

Ideally, to strategically determine the effect of any one physiochemical parameter 

(hydrodynamic diameter, polymer coating, surface charge and functionalisation) on 

internalisation of particles, all parameter will need to be maintained while varying the 

parameter in question. This is no easy task as physiochemical properties of SPIONs are 

strongly interconnected  thus altering one parameter may subsequently have effects on other 

parameters (198).  

A vast number of studies have reported stem cells tagged with SPIONs to have little or no 

effect on the proliferation and viability of cells (91, 146, 152, 199).  It is still necessary 

however to address the issue of toxicity in a case by case fashion.  Laurent et al demonstrated 

the same concentration of SPIONs caused significant toxicity on neuronal and glial cells 

whilst displaying little toxicity on other cell types like heart and kidney cells (196, 197). In 

general, a combination of factors can influence SPION toxicity. These factors include; 

particle core material, SPION size, polymer coating and also the immediate in vitro (culture 

media) environment (91, 198).  Toxicity may arise from the leaching of ions from metal core 

and the biodegradation polymer coating; processes that are heavily reliant on the physical 

environment of the particles (198).  At the cellular level, oxidative stress is thought to be the 

main cause of toxicity by SPIONs (156). Oxidative stress arises when there is an imbalance 

between damaging oxidants also referred to as reactive oxygen species (ROS) such as; 

hydrogen peroxide, hydroxyl radicals and the protective anti-oxidants of which vitamin C 

and glutathione are examples. ROS are primarily formed by the incomplete reduction of 

oxygen (200). The accumulation of oxidants eventually leads to the destruction of cellular 

proteins, enzymes, lipids and nucleic acids and as a consequence the normal cellular 

processes become impaired (121, 129, 156, 200). ROS can be generated from the surface of 
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SPIONs, the leaching of metal ions from the core or release of oxidants by enzymatic 

degradation of the SPIONs (109). It has been reported that dissociated iron oxide can 

promote the formation of ROS and hydroxyl radicals and as a result may lead to cellular 

toxicity along with impaired cell metabolism and increases in apoptosis (123). 

Even though Fe is a naturally occurring element in the human body with the body adapted 

to metabolise Fe (88, 98, 105, 120, 136, 147), the potential risk of toxicity associated with 

iron based particles is low but does still need to be assessed. It is important to further 

remember that in high quantities, Fe can possibly impair cell viability by damaging cell 

membranes, proteins and DNA, impeding normal cell function (91, 105, 147). Therefore, it 

is important to obtain a balance between Fe incorporation (concentration) for the required 

role and cell function (105). Particle concentration ranging from 2.8- 400 μg/ml have been 

reportedly used in in vivo tracking (83, 104-107). The particle concentration chosen for this 

study were purposely chosen to primarily lie within the lower range of this range. However, 

the problem lies with studies not generally offering enough information of their labelling 

protocols and generally being vague in terms of concentration specifics. For example, it is 

unclear as to what 50 μg/ml of a certain particle refers too; e.g the level of Fe or cell/SPION 

ratio. There is a significant difference between the addition of 50 μg/ml to 105 cells and to 

106 cells.  Therefore, although a concentration of 400 μg/ml seems high, it really does depend 

on the number of cells that are being labelled to properly put this into perspective. For this 

reason the labelling protocol in this study clearly stipulated all of these parameters. In this 

study, SPION concentration (in terms of Fe) ranging from 1-100 μgFe/ml has been 

investigated. The exposure of hMSCs and chondrocytes to 10 μgFe/ml to either of the 

particles (SIMAG Lumirem, Nanomag and P904 had no significant implication on the 

viability of these cell. A slight reduction in metabolic activity however is observed for 

hMSCs labelled with either of the 4 particles (SiMAG, Lumirem, Nanomag and P904) 
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during the first 24 hrs of labelling. This is most likely attributed to resources being directed 

to physically endocytosing SPIONs therefore resulting in reduced cell metabolism. 7 days 

post labelling metabolic activity restored to levels observed by untreated cells.  The exposure 

of hMSCs and chondrocytes to 100 μgFe/ml SIMAG appeared to significantly impact the 

cell viability of both cells. This was not the case for Lumirem, Nanomag and P904. The 

SiMAG result may not be true, however; based on the Prussian blue staining highlighting 

the obvious excess of particle and the inability of the live dead stain to reach the cells, it may 

be possible that the MTT reagent was not able to come into contact with the cell. In any case, 

further investigation of this needs to be explored. Impaired proliferation capacity was only 

identified for SiMAG-labelled chondrocytes labelled with 10 μgFe/ml SiMAG. This may be 

attributed to the development of ROS which have shown to impair biological activities.  

The ability to potentially track cells over time in in vivo is unfortunately limited by the 

dilution of SPIONs with the proliferation of the cell and exocytosis of the particles by the 

cells. It has been reported that exocytosis is size dependent and smaller particles are 

exocytosed at a faster rate than larger particles. Chondrocytes appeared to fully retain 

SiMAG after 28 days in culture whilst this was not as obvious in the case of hMSCs.  

Furthermore, it became obvious that chondrocyte morphology remained consistent 

throughout the 28 day culture period while hMSCs became elongated with confluency with 

hMSCs appearing to be closely packed from day 7 onwards. Prussian blue staining revealed 

the presence of Fe amongst this cell population. Contrary to chondrocytes (where particles 

are clearly observed within the cell), the particles linked to hMSCs formed chains throughout 

this network of cells. This may indicate that the arrangement of the particles within hMSCs 

is altered with cell shape with particles therefore appearing to form network. The conflicting 

hMSCs and chondrocyte results may be explained by referring to the high proliferation rate 
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of hMSCs in comparison to chondrocytes where proliferative rates of chondrocytes were 

found to be impaired with SiMAG labelling.  
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3.6 Conclusion 

 

This chapter investigated the potential of 4 commercially available SPIONs (SiMAG, 

Lumirem, Nanomag, and P904) as possible cell tracking agents when used in conjunction 

with MRI. Labelling condition revealed optimal uptake in serum free media. A range of 

particle doses were further investigated (1-100 μgFe/ml) revealing the greatest measure of 

intracellular Fe content by SiMAG (for both cell types). Furthermore, at optimal 

concentrations (10 μgFe/ml) no diminished viability or proliferative capacity was 

demonstrated by SiMAG, Lumirem, Nanomag and P904 labelled cell population, although 

the presence of SiMAG appeared to impair the proliferation of labelled chondrocytes (10 

μgFe/ml). SiMAG-labelled hMSCs (10 μgFe/ml) successfully underwent differentiation 

down mesodermal lineages whilst maintaining immunophenotypical profiles post labelling.  

The findings from this chapter highlight the potential application of the investigated SPIONs 

(SiMAG, Lumirem, Nanomag and P904) as possible contrast agents given the observation 

of Fe present within both cell types with no impaired cellular function. It can be concluded 

that these SPIONs largely meet the prerequisites presented in Figure 3.2 defining the ideal 

in vivo cell tracking agent. This chapter however failed to assess the contrast forming ability 

of these particles therefore to make a definitive decision regarding these particles this will 

need to be evaluated. With this, chapter 4 has been design to assess the MRI contrast forming 

potential of SPION-labelled cell population.  
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4.1 Introduction 

 

SPION and MRI based technologies have been identified as a practical and non-invasive 

means of generating data linked cell fate in vivo. The internalisation of SPIONs by cells 

allows for the location of SPION-labelled cell populations to be identified in vivo by MR 

imaging as hypointense areas of signal loss. The successful imaging and tracking of 

implanted cell populations in vivo using SPIONs and MRI based technologies requires the 

synergistic and optimised relationship between cell labelling (SPIONs) and subsequent in 

vivo cell imaging (MRI). Chapter 3 describes the investigation of SPION-labelling protocols 

for four commercially available SPIONs (SiMAG, Lumirem, Nanomag and P904) by 

hMSCs and chondrocytes. This chapter therefore aims to evaluate the MR imaging 

component of this strategy and assess the ability of SPION-labelled cells to create contrast 

using clinically relevant MRI scanners.  

It is important to have a firm understanding of the MRI detection limits of the system to be 

able to fully exploit the technology in gathering data for stem cell therapy evaluation. 

Furthermore, understanding key parameters affecting visibility threshold is useful in 

optimising the labelling and tracking strategy for maximum results.  The MRI detection 

limits of SPION-labelled cells is dependent on a range of factors including; 

a) The total SPION concentration for a population of cells. This is governed by the SPION 

uptake efficiency and the total number of labelled cells.  

b) The relaxivity properties of the labelling SPION (91). 

c) MRI parameters e.g sequence choice and magnet strength (134, 159).  
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The ability for a contrast agent to successfully create contrast depends on longitudinal (R1) 

and transverse relaxivities (R2) properties of agent itself. Relaxivities can be defined as the 

inverse of the relevant relaxation times;  R1=
1

𝑇1
 and R2=

1

𝑇2
  (159). Table 4.1 highlights the 

relaxivities of some of the commercially available FDA approved contrast agents.  

Table 4.1 Relaxivity measurements for various positive and negative contrast agents 

when assessed at 1.5T and 37 oC. 

Brand Name Type of 

contrast 

agent 

Magnetic 

material 

Relaxivity 

R1 (s-1mM-1) 

Relaxivity R2 

(s-1mM-1) 

Reference 

Endorem  Negative Fe 10.1 120 (159) 

Resovist  Negative Fe 9.7 189 (159) 

Magnevist Positive Gd 3.3 3.9 (159) 

Dotarem Positive Gd 2.9 3.2 (159) 

 

SPIONs have generally been the preferred contrast agent for cell labelling and tracking 

purposes. Gadolinium contrast agents tend to be extracellular compounds and unlike 

SPIONs are not easily internalised by cells. This not only limits the amount of contrast agent 

that can be associated with the cell but the significantly lower particle relaxivity of 

gadolinium compounds in comparison to SPION compounds (Table 4.1) implies that much 

higher concentrations of the gadolinium compound are required to achieve the same level of 

contrast for cell detection (130).  In addition, gadolinium is not biocompatible and has been 

associated with toxic outcomes when used to label cells in vitro (97). SPIONs on the other 

hand have improved biocompatibility as they are composed of biodegradable iron which can 

be incorporated into normal iron metabolism in addition to having increased contrast 

potential.  

Understanding the relaxivity characteristics of SPIONs used in cell labelling and tracking is 

highly advantageous. Selecting particles with high relaxivities implies that contrast can be 

created in at low particle concentration. This is particularly beneficial to cells with low 
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degree of phagocytosis as fewer particles need to be internalised. Furthermore risk of 

toxicities are minimised with lower particle concentration (186)  

Investigating MRI detection limits or visibility thresholds is a necessary step in the 

development of all cell based therapies and is primarily investigated in vitro by re-

suspending labelled cell populations (varying in cell doses and particle concentrations) 

within a gel e.g collagen, agarose and agar to be MR imaged.   

To our knowledge, no studies have taken this further to investigate the detection limits of 

labelled cell populations in various tissues. Given the varying T1 and T2 properties of tissues 

we hypothesise the visibility threshold or detection limits to be influenced by the host tissue.  

We believe this to be an important consideration in tracking cell in vivo in particularly for 

stem cell based therapies reliant on the ability of cells to migrate towards the injured tissue 

and integrate with the tissue. It is important to be able to recognise the implanted cells at the 

given doses against your tissue of interest in order to investigate parameters such as cell 

integration and migration. This is especially important in the knee where there are a number 

of tissues with which cells can integrate in addition to cartilage. These include the patella fat 

pad, patella tendons and the various stabilising ligaments.  

 

 

 

 

 

 

 



Chapter 4 - Imaging 

159 | P a g e  

 

4.2 Aims and Objectives 

 

 To investigate the contrast forming potential and consequent MRI visibility threshold 

of SPION (SiMAG, Lumirem, Nanomag and P904) labelled hMSCs and 

chondrocytes with relation to particle concentration and cell dosage when visualised 

in vitro. 

 Investigate how the minimum in vitro visibility thresholds are affected by various 

orthopaedic tissue adipose tissue, ligament and muscle  

 Establish an ex vivo model of articular cartilage damage to investigate the minimum 

visibility threshold in a clinically relevant animal model and MRI scanner.   
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4.3 Materials and Methods 

 

4.3.1 Chapter Experimental Plan 

To address the specific chapter aims and objectives, a series of experiments shown in Figure 

4.1 were implemented. More elaborate details of experimental procedures can be found in 

chapter 2; Materials and Methods.   

 

Figure 4.1. Experimental plan for MR-imaging of SPION-labelled cell populations 
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4.3.2 Interpretation of MRI data. 

The presence of SPIONs results in a decrease in signal or a shortening of T2 and is portrayed 

visually by an increase in hypointensity (progression from high signal to low signal). The 

colours are such that blue areas (on colour images) and black areas (on grey scale images) 

are significant of low signal conditions and are referred to as hypointense regions or areas 

of short T2 (Figure 4.2). Areas of high signal are seen as lighter, brighter areas with red areas 

representing areas of the highest signal or longest T2 (Figure 4.2). A decrease in signal 

implies that the likeness of that particular set of conditions to create contrast is improved (0-

1000 ms). The colours produced by the signal offer an indication as to the signal intensity 

range. The specific T2 value can differ within this range. For this reason, the T2
eff is quantified 

as a more accurate means of comparing various conditions and how these could possibly 

affect the visibility threshold. For short values of T2 the signal rapidly decays into the noise 

level. We therefore define the visibility threshold of this particular system as any condition 

(particle concentration and cell dose) which produces a T2
eff value below 75 ms as below 

this value signal cannot be significantly differentiated from the noise thus making it highly 

likely that contrast will be generated within a tissue at those conditions. T2
eff values are taken 

from the periphery of each well as the SI in the center of each well (where the gel dips) 

presents with greater hypointensity.  

 

Figure 4.2. Signal map. Colour range related to signal strength. High signal (red or 

white) representing a long T2 while blue or black areas are significant of low signal and 

short T2 implying that these areas will create contrast.  
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4.4 Results 

 

4.4.1 In vitro MRI visibility threshold. 

4.4.1.1 In vitro MRI dose response optimisation. 

4.4.1.1.1 MRI sequences 

A selection of MRI sequences were investigated and optimised in order to establish a set of 

conditions that will accurately and reproducibly allow for variations in contrast to be 

detected. In this study, hMSCs were labelled with 1, 5 and 10 μgFe/ml SiMAG and re-

suspended within a collagen gel (2mg/ml) at varying cell doses (103, 104, 105, 3x105, 5x105).  

In this set of experiments T2 MSME (Multi Slice Multi Spin Echo) imaging sequences were 

applied in the first instance. Using standard T2 weighted sequences, signal was seen to decay 

rapidly thus making it difficult to obtain values. For this reason it was decided to apply a 

refocusing pulse to delay signal decay allowing for signal to be detected easier. Therefore 

T2
eff was measured in all cases. T1 and T2

eff relaxation parameters were obtained by varying 

repetition times from 100-5000 ms. Figure 4.3 is a graphical interpretation of the effect of 

SiMAG concentration and hMSC cell dose on T1 and T2
eff measurements. As expected T1 is 

not affected by the presence of SiMAG with just a slight variation observed around 1 s at 

each condition (Figure 4.3 B). On the other hand, T2
eff is seen to be greatly affected by 

SiMAG (Figure 4.3 A). T2
eff was found to decrease for increasing numbers of labelled cells 

(from 103 to 5x105) with this further decreasing with increasing SiMAG concentration from 

1 μgFe/ml to 10 μgFe/ml. The T2
eff at 1000 cells labelled with 1 μgFe\ml resulted in a lower 

value than anticipated (0.175 ms). This is likely due to poor distribution of the small number 

of cells. With this, it was decided to limit MRI scans to MSEM T2
eff weighted imaging 

sequences with a repetition time 1000 ms.  
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Figure 4.3. Relationship between SiMAG concentration (1, 5 and 10 μgFe/ml) and cell 

dose (104, 105, 3x105, 5x105) on A) T2
eff and B) T1. 
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4.4.1.1.2 Collagen Gel Concentration.   

SPION-labelled cells will be re-suspended within a collagen gel when investigating the 

effect of cell dose and SPION concentration on the in vitro MRI visibility threshold. The 

collagen gel serves as a means of providing a physiologically relevant environment while 

retaining cells in suspension and preventing SPION-labelled cells from settling during 

imaging. In this study, varying collagen concentrations (0.5, 2, 5 and 9 mg/ml) were MR 

imaged using the established T2
eff MSME imaging sequence (section 4.4.2.1.1). These values 

were then compared to the T2
eff of water (Figure 4.4 A). Little variation in the T2

eff is 

observed between water and 0.5 mg/ml and 2 mg/ml gels while a significant drop 

(p<0.000053) in T2
eff is observed between water and 5 mg/ml and 9 mg/ml gels.  The 

corresponding T2
eff maps (Figure 4.4 B) appears to be similar in appearance across all 

concentration ranges being bright red/yellow in appearance significant of high signal apart 

from the 9 mg/ml sample where the presence of an air bubble is noticed (arrow Figure 4.4). 

From this experiment, it was decided that 2 mg/ml gel would be used in subsequent 

experiments. This implies that a concentration of 2 mg/ml will not influence the T2
eff 

measurement of SPION-labelled cell populations in subsequent in vitro experiments while 

still preventing the settling of particles during imaging.   
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Figure 4.4. T2
eff comparison of varying collagen gel concentration and corresponding 

T2
eff map. Arrow represents air bubble shown as hypointense (blue). Data=mean±SD 

(n=6) where *** is significant of p<0.005. 

 

4.4.1.2 In vitro MRI visibility threshold assessment. 

To investigate the minimum visibility threshold, hMSCs and chondrocytes were labelled 

with varying concentrations (1, 5, 10, 100 μgFe/ml) of each particle (SIMAG, Lumirem, 

Nanomag and P904), re-suspended at varying cell density (104, 105 and 5x105) within 2 

mg/ml of a type 1 collagen gel and MR imaged using the Bruker 2.3T MRI scanner with 

optimised MSME T2
eff weighted sequences (section 4.4.2.1.1). For each particle, a T2

eff map 

was produced comprising of the T2
eff image at each condition (particle concentration and cell 

dose) with the corresponding T2
eff value building the T2

eff plot (n=3). This was carried out 

for each cell type (hMSC and chondrocyte) in addition to an acellular control. Together this 

set of results offers a qualitative and quantitative means of determining the minimum 

visibility threshold. The acellular control represents a scenario whereby 100 % of the 



Chapter 4 - Imaging 

166 | P a g e  

 

particles would hypothetically be taken up by each cell type and how this would set the 

visibility threshold. 

a) Unlabelled cells 

T2
eff images (Figure 4.5 A) appear to be bright (yellow/red) in colour across all cell doses 

for both cell types similar to that exhibited by water. The bright colours (Figure 4.5 A) are 

representative of long T2 values and can be verified by the high T2
eff values in Figure 4.5 B. 

 

Figure 4.5. A) T2
eff map and B) corresponding T2

eff plot of unlabelled hMSCs and 

chondrocytes at varying cell doses (5x105, 104, 103)  

 

b) SiMAG 

Hypointense regions of signal voids (blue areas) highlight the presence of SiMAG-labelled 

cells. Hypointensity is seen to increase with increasing SiMAG concentrations (from 1 

μgFe/ml to 100 μgFe/ml) and increasing cell dose (104 – 5x105). This is significant of signal 

loss while progressing from low concentrations of SiMAG (1 μgFe/ml) towards the higher 

concentrations (100 μgFe/ml) and from lower cell densities (104) towards high cells densities 

(5x105). This trend is clearly observed in the T2
eff plots where a clear relationship is observed 

between the number of labelled cells at each concentration and T2
eff (Figure 4.6) 
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A complete loss of signal is experienced when 5x105 and 105 cells are labelled with 100 

μgFe/ml while the colour is seen to transform to a lighter blue (representing increasing signal) 

when 104 cells are labelled with 100 μgFe/ml (Figure 4.6 Ai and Bi). This effect becomes 

less pronounced with decreasing SiMAG concentration where a complete loss in signal is 

experienced only when 5x105 cells are labelled with 10 μgFe/ml while 104 and 105 are 

represented by a lighter blue area again significant of increasing signal.  Continuing with 

this trend, relatively dark blue area seen when 5x105 cells are labelled with 5 μgFe/ml while 

1x104 labelled with 5 μgFe/ml is represented by bright yellow/red areas significant of high 

signal. Similar trends are observed for hMSCs and chondrocytes alike (Figure 4.6 B). In this 

case, the minimum visibility threshold for SiMAG-labelled hMSCs and chondrocytes will 

be set at 5 μgFe/ml (5x105 labelled cells) (hMSCs; T2
eff = 41.92 ms and chondrocytes; T2

eff 

= 41.66 ms) in terms of minimum particle concentration and 104 cells (100 μgFe/ml) (hMSCs; 

T2
eff = 73.66 ms and chondrocytes; T2

eff = 65.32 ms).   

The acellular control represents a scenario whereby 100% of the particles would 

hypothetically be taken up by each cell type and how this would set the visibility threshold 

(Figure 4.6 C). Under these conditions, the minimum visibility threshold for SiMAG-

labelled hMSCs and Chondrocytes assuming that all the particles were internalised increased 

to 1 μgFe/ml (5x105 labelled cells)( T2
eff = 22.3 ms) and 104 labelled cells (10 μgFe/ml)( T2

eff 

= 50 ms). Noticeably, the T2
eff for 104 labelled with 5 μgFe/ml and 104 and 105 (1 μgFe/ml) 

is measured to be longer (Figure 4.6 C ii) than those measured for hMSC and chondrocytes 

(Figure 4.6 A and B ii).  
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Figure 4.6. In vitro dose response; SiMAG. Investigating the relationship between 

SiMAG concentration (1, 5, 10 and 100 μgFe/ml) and cell dose (104, 105, 5x105) on the 

MR visibility threshold for 2 cell types A) hMSCs and B) Chondrocytes while C) 

represents the acellular control. Data is presented as i) T2
eff map and ii) corresponding 

T2
eff plot. Red line indicated visibility threshold 75 ms. 
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c)  Lumirem   

Greatest signal loss is noticed for hMSCs labelled with 100 μgFe/ml of Lumirem with T2
eff 

increasing with decreasing cell doses from when 5x105 to 104 at this concentration (100 

μgFe/ml). However, only 5x105 hMSCs labelled with 100 μgFe/ml Lumirem created enough 

contrast to fall below the minimal visibility threshold (75 ms) (T2
eff = 56.43ms) (Figure 4.7 

A ii).  Further trends are evident where T2
eff is seen to increase with decreasing Lumirem 

concentration, however, this was only significant of 5x105 Lumirem-labelled hMSCs across 

all concentrations. All other conditions appeared to be bright and yellow in appearance with 

high T2
eff values. (Figure 4.7 A) 

Lumirem-labelled chondrocytes did not appear to follow the trends displayed by Lumirem-

labelled hMSCs. Despite this, 5x105 chondrocytes labelled with 100 μgFe/ml of Lumirem 

still appeared to cause the greatest loss of signal (similar to hMSCs). Although this drop was 

not as intense as that of hMSCs and did not fall below the visibility threshold. All other 

conditions resulted in bright red/yellow areas and supported by the long T2
eff values (Figure 

4.7 Bi & ii). Therefore, the visibility threshold for Lumirem can bet set at 5x105 chondrocytes 

labelled with 100 μgFe/ml and 105 hMSCs labelled with 100 μgFe/ml. 

The acellular control demonstrating the potential signal profiles when total internalisation of 

Lumirem is achieved, sets the minimal visibility threshold at a minimal particle 

concentration of 5 μgFe/ml (5x105) (T2
eff = 74.33 ms) and a minimal cell dose of 104 cells 

labelled with 100 μgFe/ml (T2
eff = 74.89 ms) (Figure 4.7 C) 
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Figure 4.7. In vitro dose response; Lumirem. Investigating the relationship between 

SiMAG concentration (1, 5, 10 and 100 μgFe/ml) and cell dose (104, 105, 5x105) on the 

MR visibility threshold for 2 cell types A) hMSCs and B) Chondrocytes while C) 

represents the acellular control. Data is presented as i) T2
eff map and ii) corresponding 

T2
eff plot. Red line indicated visibility threshold 75 ms. 
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d) Nanomag 

The labelling of hMSCs and chondrocytes by Nanomag did not result in significant contrast 

with long T2
eff values being measured for all conditions (1, 5, 10 and 100 μgFe/ml; 104, 105 

and 5x105 cells) for both hMSCs and chondrocytes (Figure 4.8 Aii and Bii) with no condition 

resulting in a T2
eff below 75 ms. Corresponding T2

eff maps (Figures 4.8 Ai and Bi) were all 

bright and red/yellow in appearance corroborating high T2
eff signal intensities.   

 Significant signal loss was demonstrated by the acellular control with areas of hypointensity 

seen to increase with increasing Nanomag concentrations (from 1 μgFe/ml to 100 μgFe/ml) 

and increasing cell dose (104–5x105). Under conditions facilitating 100% internalisation of 

Nanomag by either hMSCs or chondrocytes, the visibility threshold would be set to a 

minimum of 1 μgFe/ml (labelled with 105) (T2
eff = 75.33 ms) in terms of minimum particle 

concentration and 104 cells when labelled with 10 μgFe/ml (T2
eff = 72.83 ms) in terms of 

minimal cell dose (Figure 4.8 C). 



Chapter 4 - Imaging 

172 | P a g e  

 

 

Figure 4.8. In vitro dose response; Nanomag. Investigating the relationship between 

SiMAG concentration (1, 5, 10 and 100 μgFe/ml) and cell dose (104, 105, 5x105) on the 

MR visibility threshold for 2 cell types A) hMSCs and B) Chondrocytes while C) 

represents the acellular control. Data is presented as i) T2
eff map and ii) corresponding 

T2
eff plot. Red line indicated visibility threshold 75 ms. 
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e)  P904 

Similar to Nanomag neither hMSCs nor chondrocytes resulted in significant hypointensity 

when labelled by P904. Bright, yellow/red areas are noticed at every condition in the P904 

T2
eff map (Figure 4.9A and B i). This is further confirmed by the T2

eff  plots highlighting long 

T2
eff values at each condition. (Figure 4.9A and B ii) 

Shortening of T2
eff was demonstrated by the acellular control with areas of hypointensity 

seen to increase with increasing P904 concentrations (from 1 μgFe/ml to 100 μgFe/ml) and 

increasing cell dose (104–5x105).  Under these conditions the visibility threshold would be 

set to a minimum of 5x105 cells labelled with 1 μgFe/ml (T2
eff = 16.30ms) or 104 cells when 

labelled with 10 μgFe/ml in terms of minimal cell dose (T2
eff = 40.00ms) (Figure 4.9 C) 
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Figure 4.9. In vitro dose response; P904. Investigating the relationship between SiMAG 

concentration (1, 5, 10 and 100 μgFe/ml) and cell dose (104, 105, 5x105) on the MR 

visibility threshold for 2 cell types A) hMSCs and B) Chondrocytes while C) represents 

the acellular control. Data is presented as i) T2
eff map and ii) corresponding T2

eff plot. 

Red line indicated visibility threshold 75 ms. 
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From the above set of data (section 4.4.2.2) it is clear that only SiMAG is internalised by 

hMSCs and chondrocytes to a degree to significantly influence T2
eff (particle and cell dose 

dependant). For this reason, only SiMAG was carried forward from here onwards. 

 

4.4.2 Ex vivo MRI dose response 

The ability to create contrast within a tissue and the effect of tissue type on the perceived 

contrast of SiMAG-labelled cells was investigated. Muscle and fat specimens were isolate 

from the knee joint of a pig, and injected with hMSCs and chondrocytes labelled with 0, 1, 

5, and 10 μgFe/ml at varying cell doses (1x104, 1x105, and 5x105). Ligament was only 

investigated for SIMAG-labelled hMSCs. Specimens were then MR imaged using MSME 

sequences (n=3). In this set of experiments, hypointense areas of signal void (implying the 

presence of SiMAG) are represented by black areas. Comparing the MR images of untreated 

samples of ligament, muscle and fat (Figure 4.10 C) clear differences are noticed in the 

appearance of ligament when compared to that of muscle and fat. Ligament appeared be 

completely black in form creating significant contrast with the surround water in the wells 

of the plate. Conversely, fat and muscle were brighter in appearance, with fat being brighter 

than muscle (similar to that of the surrounding water). No contrast was detected between 

SiMAG-labelled hMSCs and ligament specimens (Figure 4.10 A). The same result is 

expected for SiMAG-labelled chondrocytes when MR imaged against ligament tissue. 

Further to this, implantation of SiMAG-labelled hMSCs and chondrocytes appeared to create 

contrast against both muscle and fat in particular when 105 and 5x105 cells labelled with 5 

and 10 μgFe/ml.  The minimum visibility threshold is set at 105 labelled with 5 μgFe/ml 

(Figure 4.10 A & B).  These results are summarised in Table 4.2. 
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Figure 4.10. Ex vivo MR images of ligament, muscle and fat injected with A) hMSCs 

and B) chondrocytes when labelled with 1, 5, and 10 μgFe/ml SiMAG at varying cell 

doses (104, 105, and 5x105). C) Represent specimens of untreated samples. Red arrows 

represent hypointense regions.  
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Table 4.2. Table summarising results obtained from ex vivo visibility threshold 

investigation emphasising conditions where contrast was created between tissue and 

SiMAG-labelled cells. 

 

 

4.4.3 Porcine Knee Model  

A cadaveric model of cartilage damage in a pigs knees was established with the primary aim 

of translating the established labelling protocol to a clinically relevant scenario. Knees were 

MR imaged using the Symphony 1.5 T clinical canner with a T2/T1 DESS (double echo 

steady state) imaging sequence as this is commonly used for looking at knee cartilage in 

humans to differentiate between cartilage and synovial fluid. It also has a strong T2 weighting 

which is preferential for identifying the presences of particle labelled cells. 
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4.4.3.1 Porcine Knee Model optimisation  

A preliminary study was performed to assess the suitability of the cadaveric model in this 

context. Figure 4.11 highlights the key features of the porcine knee when MR imaged. In the 

first instance, a cartilage flap was created on the upper left condyle while another piece of 

articular cartilage was completely removed in the upper right condyles of the same knee 

(Figure 4.12 i). Figure 4.12 ii demonstrates the coronal MRI view of the knee highlighting 

the appearance of full cartilage thickness in the left condyle (A). The small black marks are 

significant of the cuts made to create the cartilage flap and is more clearly shown in Figure 

4.12 iii). The cartilage of the right condyle is shown to not be intact with a disturbance in the 

articular cartilage (Figure 4.12 i B & iv) 

 

Figure 4.11. Diagram highlighting key anatomical structures of the knee when in A) 

flexion and B) in extension.  
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Figure 4.12. Assessing the suitability of the cadaveric porcine model. From left to right, 

(i) Anatomical schematic highlighting defect sites A) Flap B) Excision ii) DESS MR 

image coronal view highlighting both sites (A & B) of the defect on each of the upper 

condyle iii) Sagittal view highlighting defect site A iv) Sagittal view highlighting defect 

site B  

 

To validate the use of the DESS sequence and its applicability in assessing knee anatomy in 

conjunction with identifying the presence of the labelled cells, 3 million chondrocytes 

labelled with SiMAG in excess were implanted within a cartilage defect and scanned using 

the Symphony 1.5T. Exaggerated hypointensity are observed in areas corresponding to the 

implantation site (upper left condyle) implying that the presence of particle labelled cells can 

be detected with this system (Figure 4.13).  
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Figure 4.13. Hypointense areas of signal void corresponding to implantation of 3 

million chondrocytes implanted on the upper left condyle of each knee, imaged with 

Siemens Symphony 1.5T (double steady state image; DESS). Region of interest (ROI), 

highlighted by cross hairs (red lines).  

 

4.4.3.2 Particle Concentration Investigation 

Here, 5x105 SiMAG-labelled (0.1 µgFe/ml, 1 µgFe/ml and 10 µgFe/ml) were implanted in 

series across the upper condyles within the same knee, as illustrated in Figure 4.14 A. 

Hypointense areas of signal loss are observed only in areas corresponding to the implantation 

site of 10 µgFe/ml SiMAG. All anatomical features of the knee are clearly visible in 

particular the bright white articular cartilage with the implanted cells.  
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Figure 4.14. Particle concentration assessment: A) Schematic highlighting 

implantation sites of 5x105 chondrocytes labelled with 0.1, 1 and 10 µgFe/ml SiMAG B) 

Corresponding coronal DESS image when imaged with Siemens Symphony 1.5T. 

Region of interest (ROI), highlighted by cross-hairs (red lines).  

 

4.4.3.3 Cell dose investigation 

In a similar study chondrocytes labelled with 5 and 10 µgFe/ml SiMAG were implanted at 

varying cell doses (104, 105 and 5x105) in series across the upper condyles within the same 

knee, as illustrated in Figure 4.15 A. Hypointense regions of signal loss were only observed 

in the location corresponding to the implantation site of 5x105 chondrocytes labelled with 5 

µgFe/ml SiMAG (upper right condyle) (Figure 4.15 Bii) with no hypointense regions are 

observed in the left condyle corresponding to the implantation site of 104, 105. chondrocytes 

labelled with 5 µgFe/ml (Figure 4.15 Bii). While hypointense regions are observed (Figure 

4.15 Ci) and ii) in both the right and the left condyles when varying cell doses of 
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chondrocytes labelled with 10 µgFe/ml are implanted. This corresponds to 5x105 and 1x104 

cells.   

 

Figure 4.15. Cell dose investigation: A) Schematic highlighting implantation sites of 

104, 105 and 5x105 SiMAG-labelled chondrocytes B) Corresponding coronal DESS 

image (Siemens Symphony 1.5 T MRI Scanner) for each particle concentration  i) 5 

µgFe/ml ii) 10 µgFe/ml SiMAG. Region of interest (ROI), highlighted by cross-hairs 

(red lines).   
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4.5 Discussion 

 

SPIONs form a group of negative MRI contrast agents designed to overcome the inherent 

low sensitivity associated with MRI (97, 130, 164). They are particularly beneficial in the 

identification of implanted cell populations, in vivo (84, 93, 183). The Fe component of these 

particles disrupts the local magnetic field causing a shortening of T2, therefore allowing for 

SPION-labelled cells to be visualised as signal voids or hypointense areas when imaged with 

T2 weighted MRI pulse sequences. T1 weighed MRI pulse sequences typically have a 

reduced sensitivity to SPIONs (159, 164). This is because T1 is a parameter determined by 

the physical and chemical structure of the sample whilst T2 is strongly affected by local 

changes in the magnetic field such as those caused by the presence of SPIONs. Therefore a 

SPIONs ability to create contrast is dependent on the interactions or communication of the 

magnetic moments associated with the particle and those associated with the neighbouring 

water protons and is appropriately governed by the magnetization of the particles, strength 

of the MRI scanner and proton density of the tissue (97)(14). 

Based on this principle, the ability to detect implanted cell populations (detection limits) by 

MRI is dependent on a number of interconnected factors. These include;  a) the relaxivity 

properties of the particles (contrast forming ability) (97), b) concentration of contrast agent 

(130) (in the case of in vivo MRI imaging and tracking, this refers to the cumulative Fe, 

which is the intracellular Fe content and cell dose relationship), c) magnet strength, d) 

diffusivity of protons within the sample and finally e) MRI pulse sequences.  

For cell imaging and tracking applications, particles with high relaxivity properties are 

extremely beneficial as this implies that relatively lower labelling concentration are required 

to generate contrast in comparison to particles with lower relaxivity properties. However, 



Chapter 4 - Imaging 

184 | P a g e  

 

this would only prove beneficial with the ability to be internalised by cells in appropriate 

doses. An ideal scenario would be the application of a particle with high particle relaxivity 

potential and high cell uptake efficiency. It is equally important to optimise these parameters 

to clinical systems to encourage clinical adoption of such techniques.  

The relaxivity of a SPION is a measure of contrast efficiency and is governed by the 

physiochemical properties of the particles such as: core material, coating thickness and 

crystallinity (91, 162, 201). Furthermore, it is important to understand that relaxivities are 

field dependant and therefore it is difficult to directly compare values between systems. This 

is clearly shown by Hinds et al where the R2 of Feridex was found to be 240 mM-1s-1 when 

measured using a 4.7 T with this value increasing to 498 mM-1s-1when measured using a 

11.7 T (186). As a general indication, particles with large magnetization and stronger 

magnetic field enhances this effect and so creates better contrast with increased sensitivity 

in tissues. However, this is often at the expense of obscuring underlying pathology at the 

higher range of values (known as blooming) (97). The properties of the coating (material 

and thickness) have been reported to further affect relaxivity. Yu et al successfully 

demonstrated the ability to tune particle relaxivity by maintaining core properties but altering 

the thickness of the monodisperse mesoporous silica coating (162). Preliminary relaxivity 

data (Chapter 3 section 3.4.2.3) for particles used in this study (SiMAG, Lumirem, Nanomag 

and P904) indicate greatest transverse relaxivity (R2) for Lumirem closely followed by 

SiMAG, Nanomag and P904. This is not unexpected given that Lumirem is purposely 

designed to be an MRI contrast agent and therefore should have high contrast potential.  

Despite the high potential of Lumirem to generate contrast (highest R2 in comparison to the 

other particles), little contrast was observed by Lumirem labelled hMSC and chondrocyte 

populations. This could be attributed to the limited uptake of Lumirem by hMSCs and 

chondrocytes, which resulted in far less intracellular Fe than SIMAG. It has been reported 
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that as little as 1.4-3.0 pgFe/cell is capable of generating contrast when MR imaged (97, 

202). The intracellular iron values measured by ICP-OES (chapter 3) were significantly 

greater for SiMAG-labelled cell types (hMSCs and chondrocytes; ± 20 pgFe/cell) when 

compared to Lumirem, Nanomag and P904 which ranged from 1.05 pg/cell (Nanomag; 

hMSCs) to a maximum of 4.8 pg/cell (Lumirem; hMSCs). This implies that although these 

values were lower than SiMAG, contrast could still be generated. However, this was not the 

case with these MRI parameter. The discrepancies observed between the reported data in 

this chapter and literature may be accounted for by considering that MRI pulse sequences 

can influence potential contrast (97)(134). The effect of MRI pulse sequences on the contrast 

potential and in vitro visibility threshold was demonstrated by Li et al, where 1x106 labelled 

cells (25 pgFe/cell) demonstrated significant contrast with the application of GRET2*W 

(Gradient Echo T2* weighted sequence), whilst the use of FSET2W (Fast Spin Echo T2 

weighted sequence) failed to generate any contrast at these cell doses with the same strength 

MRI scanner (1.5 T). This demonstrates how the chosen parameters of the MRI sequences 

can influence contrast potential (83, 97, 134) and may account for the lack of contrast 

observed by hMSCs and chondrocytes labelled with Lumirem, Nanomag and P904 at these 

Fe doses and MRI parameters (2.35 T; MSME sequences) in comparison to published studies 

(3 T; FIESTA sequences). This also highlights the difficulty in making direct comparisons 

between studies and the need to optimise visibility threshold in a case by case manner.  

By considering conditions mimicking 100 % particle uptake (Lumirem, Nanomag and P904), 

significant shortening of T2 was observed at each condition. Therefore, it can be deduced 

that the lack of contrast generated by these SPION-labelled cell populations is likely to be 

due to the limited intracellular Fe content either as a result of limited uptake or low labelling 

concentrations. Labelling protocols could therefore benefit from increased labelling 

concentrations or perhaps the application of transfection agents to facilitate better particle 
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uptake. This highlights the importance of designing a SPION-based labelling agent with 

specific physiochemical properties to not only generate contrast but also be efficiently 

internalised.  

It is essential to establish MRI visibility thresholds in terms of particle concentration and 

cell number in vitro and to understand the limits of the tracking study. Labelled cell 

populations were re-suspended in a collagen type I gel (a substrate highly applicable in 

cartilage tissue engineering) (203) and MR imaged using specific T2 weighted sequences. 

This study demonstrated the ability of only SiMAG-labelled hMSCs and chondrocytes to 

form significant dose dependant contrast when MR imaged. As expected, T2
eff was seen to 

decrease with increasing cell numbers and particle concentrations corresponding to the 

increasing Fe content. A minimum in vitro visibility threshold of 5 μgFe/ml (5x105 labelled 

cells) in terms of minimum particle concentration and 105 cells (10 μgFe/ml) in terms of cells 

dose for SiMAG-labelled hMSCs and chondrocytes was set with this system as it is believed 

that these conditions can potentially generate contrast with a host tissue. These values are 

considered to be highly acceptable as similar published studies have reported values ranging 

from a single cell when labelled with micron sized particles (11.7T) (97, 183) to 1x106 

labelled with 12 μg/ml (3T) (101).  

The ability to detect a single cell in vivo may be a highly attractive prospect in specific 

clinical applications especially those focused on the imaging and tracking of implanted cells 

within soft tissue such as liver and brain. However, the availability of high field strength 

scanners in a clinical setting is not realistic as 1.5 and 3 T scanners are primarily found in 

clinical practise today. High strength scanner (4.7 T, 7 T and 11.7 T) are currently limited to 

research application (130, 135, 199). This implies the use of this technology to track a single 

cell in the clinical evaluation of cell based therapies, is not translatable to clinic as yet and 

is thus limited to research application. It is therefore important to design and optimise 
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imaging and tracking protocols in terms of cell number and particle concentration to 

clinically relevant scanners 1.5 and 3 T (130) justifying the use of the 2.35 T scanner in this 

study.  

 

The knee is a complex structure made up of a variety of interconnected tissues such as 

ligaments, adipose tissues, articular cartilage and bone all interacting with synovial fluid. It 

is therefore not unreasonable to question the contrast created with SPION-labelled cell 

populations against these tissues given the migratory ability of especially hMSCs in terms 

of injectable therapies (non-scaffold assisted approaches) and the tissue integration potential. 

For this reason, the visibility threshold established in vitro for SiMAG were further evaluated 

ex vivo within relevant tissue associated with the knee; ligament, adipose tissue in addition 

to skeletal muscle. To our knowledge this has not been evaluated in other similar studies 

before.   

MRI imaging is sensitive to the hydration of the tissue (proton density) and the structure of 

the tissue (204). These factors govern the magnetic susceptibility (extent to which a tissue 

becomes magnetized) of each tissue and is affected by tissue microstructure, relative blood 

volume and the range of induced magnetization (97). Tissues are categorised by their 

magnetic susceptibility and appropriately referred to as; a) fluids e.g. cerebrospinal fluid, 

synovial fluid and oedema, b) fat-based tissues e.g. fat and bone marrow and c) water-based 

tissues e.g. muscle, brain, cartilage and ligaments. Fat is considered to have high magnetic 

susceptibility, (accounting for the high water and lipid content) followed by water based 

tissue. On the other hand, bone has the lowest of all susceptibility generating similar contrast 

to air, in MRI images (130). Tissues of high magnetic susceptibility appear to be brightest 

associated with highest signal intensity where brightness is then observed to decrease with 

decreasing magnetic susceptibility characteristic of low signal intensity such as that seen in 
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bone (dark) (130). The images generated of the native untreated tissues follow this theory 

where adipose tissue appeared to be brighter than muscles under the same scanning 

parameters. Despite ligament being a water based tissue, the characteristic bright “high 

signal” image was not observed, instead the ligament appeared to be dark (low signal 

intensity). This is a common problem associated with the imaging of tendons and ligamnets 

and is as a consequence of the anisotropic diffusion of water within the tightly packed fibre 

structure. Under routine MRI scans, the ligament is commonly positioned parallel to the 

main magnetic field instead of perpendicular due to human physiology. However, by 

adjusting the ligaments to be positioned at the magic angle of 54.7o ligaments appear as 

bright areas of high signal which can be useful diagnostically (205, 206).  

The in vitro visibility threshold of SiMAG labelled cells was found to create contrast against 

muscle and fat with the visibility threshold being slightly different. The in vitro visibility 

threshold for hMSCs and chondrocytes labelled with SiMAG re-suspended within a collagen 

gel was set at a minimum concentration of 5 μgFe/ml (5x105 cells) and a minimal cell dose 

of 105 (when labelled with 10 μgFe/ml) (100 μgFe/ml SiMAG excluded). Within the 

environment of a tissue, this threshold changes to a minimum of 105 cells labelled with 5 

μgFe/ml with no variations observed between adipose tissue and muscle. This implies that 

within these tissues there is increased sensitivity which could be beneficial as less 

concentration is needed to create contrast.  No contrast was generated with SiMAG-labelled 

cell population and the ligament tissue.  

 

The use of MRI in the imaging and tracking of implanted cell population for arthritic cell 

based therapies bares a dual purpose. Not only can it be used to image and track implanted 

cells, but its ability to distinguish between cartilage and bone (99) can be used to assess the 

defect and determine the extent of cartilage repair. The amount of fill in the image could 
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reflect the extent of repair while comparing the signal of the new graft with surrounding 

tissue could indicate the maturity of the graft (207). For this reason, it was important to 

develop a realistic model of articular damage to assess the clinical potential of this imaging 

and tracking protocol. This goes further to analyse the extent to which implanted cell 

population could be detected within a clinical system in relation to the anatomical structures. 

The clinical system applied in this study was a Siemens 1.5 T Symphony Scanner, a knee 

extremity coil and DESS pulse sequences. This is common practise in the diagnosis of 

pathology in the knee. The application of a porcine knee is significant in that the dimensions 

of the knee are similar to that of a human. In addition, the visibility threshold of SiMAG-

labelled cells was further assessed using this system (Siemens 1.5 T Symphony scanner) and 

found to be similar to the ex vivo thresholds established (105 cells labelled with 5 or 10 

μgFe/ml). The implantation of SiMAG-labelled cells generated significant contrast within 

this system and could be clearly detected against anatomical structure. This study encourages 

the clinical translation in therapies such as ACI of the tracking protocol with confidence that 

implanted cell populations can be detected and the extent of tissue repair could be evaluated.  
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4.6 Conclusion 

 

This study has demonstrated the ability of SiMAG-labelled hMSCs and chondrocytes to 

create particle and cell dose dependant contrast in vitro when MR imaged using T2 specific 

MRI sequences (Bruker 2.35 T animal scanner). No significant contrast was generated for 

either cell type when labelled with Lumirem, Nanomag and P904. Enhanced MRI contrast 

efficiency of SiMAG was related to the superior cell uptake intracellular Fe content. 

Minimal in vitro visibility thresholds were set at 5 μgFe/ml (5x105 labelled cells) in terms 

of minimum SiMAG concentration and 105 cells (10 μgFe/ml) in terms of minimal cell dose. 

In vitro visibility threshold was found to be influenced by the presence of fat muscle and 

ligament tissue resulting in a shift in visibility thresholds to 105 cells labelled with 5 μgFe/ml 

with no variation between fat and muscle tissue, whilst no contrast was generated in ligament 

tissue. The development of a clinically relevant cadaveric porcine model of articular 

cartilage damage allowed all anatomical features of the knee to be detected simultaneously 

with the implanted labelled cells when MR imaged using Siemens 1.5 T MRI scanner whilst 

maintaining visibility ex vivo threshold. This study further confirms the applicability of 

SiMAG as a potential tracking agent.  

This study suggests the potential application of SiMAG as a possible tracking agent will 

therefore be implemented in small animal tracking studies. 
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5.1 Introduction 

 

Arthritis can be defined as a set of musculoskeletal disorders responsible for the 

inflammation and destruction of the synovial joint (24). It can be classed as either 

degenerative/mechanical arthritis in the case of OA (osteoarthritis) or as 

inflammatory/autoimmune arthritis in the case of RA (rheumatoid arthritis) (30). The names 

offer some insight as to the broad mechanism of damage with OA generally being classified 

as a wear and tear disease, and affects approximately 8 million people in the UK. RA is 

considered an autoimmune disease and is known to affect approximately 400 000 people in 

the UK every year (30). In both cases, the quality of life for patients is greatly reduced due 

to pain and loss of join function with disease progression (24).  

Regardless of the mechanism of destruction, arthritis treatments involve a combination of 

drug regiments to alleviate symptoms such as pain and inflammation to maintain quality of 

life for the patient. Pain killers such as paracetamol, and non-steroidal anti-inflammatory 

(NSAIDs) drugs are typically prescribed. These approaches however do not target the 

disease process itself (6, 24, 208) thus allowing the disease to progress in severity with most 

individuals continuing to experience pain even at rest (209). In fact, pain is often considered 

the worst symptom by patients, often having severe implications on simple every day 

activities. Therefore, pain relief is clearly of clinically importance and currently is an unmet 

need (210). Current pain treatments have limited efficacies, hence alternative means of 

treating pain have to be investigated (40, 211). Arthroplasty (joint replacement) is often 

recommended in extreme cases of OA (24). However, this technique is not suitable for 

patients under the age of 55 due to the limited life span of the prosthesis (24).  
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In recent years, cell therapy approaches have been applied in an effort to regenerate damaged 

joint tissues (articular cartilage) in order to restore function, ultimately improving quality of 

life (24). These approaches aim to produce a tissue comparable to that of native cartilage, 

which would act to replace and or repair the damaged cartilage (13). Microfracture, 

Mosaicplasty, and Autologous Chondrocyte Implantation (ACI) are examples of cartilage 

regeneration techniques and have shown varying degrees of success (44). The chronic 

inflammatory environment of the rheumatic arthritic joint renders these techniques 

ineffective, as similarly to original native cartilage, newly formed cartilage would again 

undergo destruction within the hostile environment (6). Therefore the above mentioned 

approaches are limited to the damage caused by osteoarthritis and trauma (6). 

Mesenchymal stem cells (MSCs) have been identified as suitable candidates in treating both 

OA and RA (6, 78, 79, 184). They can be implemented to address not only structural 

destruction but also the inflammatory aspects of the disease (24). This potential is a direct 

result of the properties demonstrated by MSCs; these include the ability to home to the site 

of tissue injury and their immunosuppressive and immune-privileged properties. Therefore 

cell therapy approaches involving the implantation of MSCs either encompassed within a 

biodegradable scaffold or simply injected directly into the synovial cavity have been 

investigated (31). The use of small and large animal models are primarily implemented to 

gather data related to the in vivo events occurring post transplantation. This is a vital step in 

understanding and optimising any therapy. Animal models closely resembling the human 

form of RA and OA have been established (212). These models allow for the progressive 

degeneration of articular cartilage with histopathologically accurate features and bare 

significant importance in understanding pathogenesis and evaluating potential treatments for 

these diseases (213, 214). Studies have investigated the effects of MSCs within AIA 

(Antigen Induced Arthritis) models of RA in mice. Here, Kehoe et al demonstrated the 
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significant reduction in inflammation, joint swelling and cartilage destruction in response to 

MSC delivery (article under review). Other studies have demonstrated the significant 

reduction of OA progression and improved healing capacity in both the MIA (Monosodium 

Iodoacetate) (215) and the MXN (Meniscal Transection) (31) models of OA when treated 

with MSCs.   

To investigate aspects linked to the mechanisms of repair (cell migration, tissue integration 

and rate of repair) in vivo, histological analysis has traditionally been performed on the 

animal models. This tends to be very labour intensive and highly invasive as it requires the 

euthanization of the test animal and the processing of all tissues. For these reasons, the recent 

initiative proposed by the NC3R (National Centre for the Replacement Refinement and 

Reduction of Animals in Research) further aims to reduce, refine and replace the number of 

animal models used in scientific experiments today. This initiative has driven the 

development of alternative, non-invasive techniques to evaluate in vivo experiments. Having 

a practical and non-invasive means of identifying and subsequently optimising key 

parameters linked to the therapeutic potential of implanted cells (cell migration, tissue 

integration, rate of repair and mechanism of action) is an extremely powerful tool to have 

and will contribute to the optimisation and eventual clinical adoption of such therapies.  

The combined use of SPIONs and MRI has been proposed as one such technique. Extensive 

in vitro work has been carried out to demonstrate the feasibility of using SPIONs to label 

various cell populations. A range of cell types (fibroblasts, stem cells,  lung cells, liver cells, 

kidney cells, macrophages, nerve cells, endothelial cells and various cancer cells lines) have 

been labelled with a wide variety of SPIONs (Endorem, Feraheme) and optimised towards 

different strength MRI scanners (1.5 T, 4 T, 11.7 T) (109). In recent years these strategies 

have been applied to in vivo animal models of disease processes. Song et al  demonstrated 

the ability to track  human neural stem cells labelled with Endorem (150 nm particle size) 
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within a rat model of focal cerebral brain ischemia over a period of 4 weeks using a 1.5 T 

scanner (216).  Jackon et al  implemented a 9.7 T MR scanner to track USPION labelled 

MSCs within a preclinical rat modal of Parkinson’s for six weeks while studying the 

functional recovery of the rats with behavioural soring methods (217). Furthermore, MRI 

allows for real time correlation of cell localisation with corresponding, measurable 

physiological outcomes (141).  

More relevantly, studies have focused on the development of strategies to image and track 

stem cells within the articular joint for articular cartilage regeneration cell-based therapies.  

Henning et al compared the use of transfection agents to label hMSCs with Endorem. 

Labelled cells were seeded onto agarose scaffolds and implanted within a surgically induced 

osteochondral defect within the distal femur (rats knee) to mimic the MASI approach of 

articular cartilage regeneration. Animals were monitored for 12 weeks using a 3T MR 

scanner. However, Endorem has recently been taken off the market and replaced with 

Feraheme (20-30 nm) instead (184). The study was repeated by the same group later using 

Feraheme, (187). Here, adipose derived MSC labelled with Feraheme (with a transfection 

agent) transfection agent) were seeded within an agarose and gel implanted within an 

osteochondral defect. These cells were monitored in vivo for 4 weeks using a 7 T MR scanner 

(187). Further studies can be found in Table 5.1 which have also demonstrated the ability to 

track particles within animal models.  
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Table 5.1. Tracking studies in arthritic animal models 

 

Cell type Animal 

model 

Particles MRI 

scanner 

Transfection 

agents 

Scaffold Tracking 

period 

Ref 

Chondrocytes Osteochondral 

defects. 

Mini pigs 

Ferric oxide 

nano-

composites 

(79nm) 

3 T None Collagen 

type II gel 

12 weeks (101) 

MSCs Trochlear 

cartilage 

defects.  

Rabbits 

Endorem 

150nm 

1.5 T Protamine 

sulphate 

CGP gel 12 weeks (83) 

Rabbit MSC Ex vivo knee 

model OA. 

Bovine 

Commercial 

1.63μm 

3T None Puramatric None (103) 

 

From these studies, it is evident that SPION based tracking studies have focused on the use 

of scaffold driven approaches to tackle articular cartilage damage in small animal models 

such as in the case of OA. It is evident that SPIONs ranging in size between 30- 150 nm 

(diameter) have primarily been implemented for in vivo studies. It is fair to mention that the 

application of micron sized particles in small animal models such as articular cartilage 

defects has not been widely investigated. Finally, the end point of these studies (Table 5.1) 

assessed the extent and quality of cartilage regeneration while no studies were found which 

investigated any functional outcomes as a result of these approaches.  

To our knowledge, the following gaps have been identified in the literature: 

1. There are no published studies which have adopted the rheumatoid arthritis model to 

track cells in this manner. 

2. There are no studies which inject cells within the joint cavity without the aid of a 

scaffold in order to localise cells within a specific area to be tracked. 

3. Micron sized SPIONs have not been used in the live tracking of cells in arthritic cell 

based therapies. 
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4. Clinically relevant functional outcomes are yet to be assessed in conjunction with 

tracking studies aimed at cartilage regeneration focused cell based therapies. In 

particular the effect of MSC treatment on pain outcomes in OA models.  
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5.2 Aims and Objectives 

 

The work presented in previous chapters suggests the use of SiMAG (a micron sized particle) 

to be implemented to image and track murine mesenchymal stem cells (mMSCs) within two 

separate animal models (RA and OA) to monitor the long and short term bio-distribution of 

implanted stem cells in vivo. In addition, clinically relevant functional outcomes of the 

disease models will also be assessed. Specifically, this chapter aims to investigate the 

relationship between the location of implanted mMSCs and: 

 Joint swelling and inflammation to histopathological features of RA. 

 Pain and histopathological features of OA.  
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5.2 Materials and Methods 

 

5.2.1 Overall Experimental Plan 

A mouse model of RA and a rat model of OA have been selected to evaluate the feasibility 

of the devised protocol (SiMAG, 24hr incubation, SFM) for in vivo tracking of cell 

populations for the treatment of arthritis (OA and RA). Therefore, the protocol will initially 

be optimized to assess the in vitro and in vivo visibility thresholds for SiMAG-labelled 

mMSCs within a mouse and rat model prior to the tracking study. Details of the optimizing 

stages are shown in Figure 5.1. 

 

Figure 5.1. Optimisation and adaption of established labelling protocol for applications 

in tracking.   
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5.2.2 Animal Model Experimental Plan.  

Murine mesenchymal stem cells (mMSCs) were tracked for a total time period of 7 days 

when applied in a RA mouse model and 29 days when applied to an OA model. Figure 5.2 

highlights the general schema applied in the animal studies. In general, experimental groups 

consisted of animals treated either with; SiMAG-labelled mMSCs, unlabeled mMSCs or 

serum free media (Table 5.2 & 5.3). All cells were pre-labeled with a fluorescent tracker; 

CM-DiI prior to implantation. This allows for the therapeutic potential of MSCs to be 

evaluated post SiMAG-labelling but also offers the opportunity to correlate the location of 

implanted cells as deciphered by MRI to histological assessment.  

 

Figure 5.2. Overall experimental plan for the two animal studies: (1) Mouse model of 

RA and (2) Rat model of OA. 
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Rheumatoid Arthritis 

The short term bio-distribution of implanted mMSCs population (SiMAG-labelled and 

unlabelled mMSCs) was assessed over 7 days in a mouse model of RA by MRI. In addition 

the effects of mMSC administration on the progression of RA was assessed in parallel to the 

tracking aspects of the study. Upon RA induction, 3x105 CM-DiI labelled mMSCs (SiMAG-

labelled or unlabelled) were implanted within the joint of arthritic mice and joint swelling 

monitored throughout the experiment. Upon termination of the experiment, animals were 

sacrificed and MR imaged (Days 3 and 7 post implantation). A description of the 

experimental groups is shown in Table 5.2 while key experimental time points are shown in 

Figure 5.3.  

 

Table 5.2. Description of experimental groups; RA. 

Group Description Tracking period Study 

1 (n=6) SiMAG-labelled mMSCs  3 days MRI tracking study 

2 (n=5) SiMAG-labelled mMSCs 7 days MRI tracking study 

3 (n=6) Unlabelled mMSCs 3 days MRI tracking study 

4 (n=5) Unlabelled mMSCs 7 days  Pilot mMSCs study 

5 (n=6) No cells + No Particles  (control) 3 days  Pilot mMSCs study 

6 (n=5) No cells + No Particles  (control) 7 days MRI tracking study 
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Figure 5.3. Experimental timeline for the RA tracking study. Coloured boxes highlight 

days where joint swelling was measured. 

 

Osteoarthritis 

A MNX model of OA was implemented to evaluate the long term tracking of SiMAG-

labelled and unlabelled mMSCs in a rat model of OA. This experiment further serves as a 

short pilot study to investigate the effect of MSC administration and the potential 

antinoceptive abilities of MSCs. To our knowledge, this is the first study of its kind where 

the potential of mMSCs to influence pain are assessed. This has implication in MSC 

therapies for both OA and RA. In this study, 1.5x106 CM-DII-labelled mMSCs (SiMAG-

labelled or unlabelled) were implanted via intra-articular injection within diseased joints and 

pain behavioural assessment (paw withdrawal threshold and weight bearing asymmetry) 

performed throughout the study. Animals were sacrificed and MR imaged 29 days post 

implantation. A description of the experimental groups is shown in Table 5.3 while key 
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experimental time points are shown in Figure 5.4 Description of experimental groups for 

OA 

Table 5.3. Description of experimental groups for OA 

Group Description Tracking period Study 

1 (n=3) SiMAG-labelled mMSCs  29 days MRI tracking study 

2 (n=4) Unlabelled mMSCs 29 days MRI tracking study 

3 (n=4) Serum free media 29 days MRI tracking study 

 

 

 

Figure 5.4. Experimental timeline for the OA tracking study. Coloured boxes highlight 

days where behavioural outcomes were assessed in terms of weight baring asymmetry 

and hind paw withdrawal threshold. 
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5.3 Results 

 

5.3.1 In vitro Assessment.  

5.3.1.1 Particle uptake 

Particle uptake following a 24 hr passive incubation period of SiMAG (10 μgFe/ml) with 

mMSCs was confirmed by Prussian blue staining (Figure 5.5). Internalised particles were 

stained blue and were visible within the cell. Intracellular Fe content was measured by ICP 

as 20.64 ± 1.34 pg/cell. Cells retained morphology post labelling  

 

Figure 5.5. Particle uptake and cell morphology evaluation post 24 hr SiMAG-labelling 

of mMSCs. (A) Unlabelled mMSCs, B) SiMAG-labelled mMSCs, C) Prussian blue stain 

of SiMAG-labelled cells; (i) x 20 magnification, (ii) x 40 magnification. Scale bar = 

100μm.   

 

5.3.1.2 Viability and Proliferation. 

Live dead (Figure 5.6) and MTT (Figure 5.7) analysis revealed no diminished viability and 

proliferation capacity for SiMAG-labelled mMSCs (10 μgFe/ml) when compared to 

unlabelled mMSCs.  Figure 5.6 visually highlights the relative increase in the number of live 

cells (stained green) from 24 hrs to 7 days in culture with no obvious differences observed 

between SiMAG-labelled and unlabelled groups either at 24 hrs or day 7.  
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Live dead results were further validated quantitatively by MTT analysis demonstrating a 

significantly higher OD (Optical density; p < 0.001) (function of metabolic activity) between 

SiMAG-labelled and unlabelled groups at either time point (24 hrs and day 7) when 

compared to the negative control (dead). Additionally, no significant differences in OD was 

observed between SiMAG-labelled and unlabelled groups at either 24 hrs or day 7. The 

significant increase (p <0.001) in metabolic activity from 24 hrs to 7 days as exhibited by 

both groups highlights the proliferative capabilities of SiMAG-labelled and unlabelled 

mMSCs. These results suggest that mMSCs are able to tolerate the internalisation of SiMAG 

(10 μgFe/ml) with no measured impairment to viability and proliferation.  

 

 

Figure 5.6. Cell viability analysis. Live/dead staining of SiMAG-labelled (10 μgFe/ml) 

and unlabelled mMSCs characterised at 24 hrs and 7 days. Scale bar = 100 μm. 

 



Chapter 5 - Tracking 

206 | P a g e  

 

 

Figure 5.7. MTT analysis. SiMAG-labelled (10 μgFe/ml) and unlabelled mMSCs 

characterised at 24 hrs and 7 days. Data expressed as mean ± SD *** Indicates p <0.001. 

 

5.3.1.3 Expression of mMSC Surface Markers pre and post SiMAG-labelling.  

Flow cytometry (Fluorescence activated cell sorting; FACS) analysis was implemented to 

validate the expression of specific cell surface markers associated with mMSCs and then to 

further confirm the retention of these markers post SiMAG-labelling (10 μgFe/ml). FACS 

analysis revealed the lack of hematopoietic markers CD 11b and CD 45 and endothelial cell 

marker CD 31 (PECAM) on both SiMAG-labelled and unlabelled mMSCs (Figure 5.8). 

Furthermore, positive expression was revealed of key mesenchymal markers (CD44 and CD 

105), including the stem cell marker Sca-1 for SiMAG-labelled and unlabelled mMSCs. PI 

(Propidium Iodine) staining confirmed a cell viability of >95 % for both SiMAG-labelled 

and unlabelled cell populations. Similar profiles are observed for SiMAG-labelled and 

unlabelled mMSCs with no significant differences in the percentage of positive expression 

of each of these cell markers (Table 5.4). This data confirmed that the labelling of mMSCs 

with SiMAG did not affect the immunophenotype profile of mMSCs.  
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Figure 5.8. Characterisation of mMSC Surface Markers.  SiMAG-labelled (10 

μgFe/ml) and unlabelled mMSCs showed no variation in immunopheotypical markers 

profiles.  

  

Table 5.3. Positive Expression of key mMSC Surface Markers. 

 

Cell Surface Markers  Positive (%) 

 Unlabelled mMSCs SiMAG-labelled mMSCs 

CD11b 7.71 5.53 

CD31 7.71 1.47 

CD34 22.36 25.38 

CD44 99.47 98.75 

CD45 6.75 5.98 

CD105 88.14 83.57 

SCA -1 99.42 97.87 
 

 

5.3.1.4 Multi-lineage Differentiation Capacity of mMSCs pre and post SiMAG-

labelling. 

SiMAG-labelled (10 µgFe/ml) and unlabelled mMSCs were assessed for their ability to 

undergo differentiation down the mesenchymal lineage (osteogeneic, adipogenic and 

chondrogenic lineages). Both SiMAG-labelled (10 µgFe/ml) and unlabelled mMSCs 

demonstrated successful differentiation towards osteogenic and adipogenic lineages after 21 

days in culture with relevant differentiation media. Calcium deposition was stained positive 

by alizarin red in both labelled and unlabelled cells receiving osteogenic differentiation 
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media confirming osteogenesis (Figure 5.9).  Adipogenesis was confirmed by the presence 

of lipid and triglyceride droplets stained positive with oil red O after 21 days for SiMAG-

labelled and unlabelled cells treated with adipogenic differentiation media (Figure 5.10).  No 

staining was observed in control groups receiving basic expansion media and at day 0.   

mMSCs (either labelled with or without SiMAG) were unable to undergo chondrogenic 

differentiation when performed in 2D monolayer or in 3D micro mass pellet form (data not 

available). This study confirms that the internalisation of SiMAG does not hinder the ability 

of mMSCs to differentiate towards osteogenic and adipogenic lineages.  

 

Figure 5.9. Osteogenic differentiation. SiMAG-labelled mMSCs (10 μgFe/ml) and 

unlabelled mMSCs cultured in osteogenic media for 21 days. Successful differentiation 

demonstrated by alizarin red stained calcium deposits (red). Scale Bar = 100μm 
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Figure 5.10. Adipogenic differentiation. SiMAG-labelled mMSCs (10 μgFe/ml) and 

unlabelled mMSCs cultured in adipogenic media for 21 days. Successful differentiation 

demonstrated by oil red “O” stained oil droplets (red). Scale bar = 100μm 

 

 

5.3.1.5 Evaluating Minimum Visibility Threshold by MRI 

Figure 5.11 demonstrates the relationship between SiMAG concentration and cell number 

(mMSCs) in terms of MRI signal loss or hypointensity (highlighted by blue areas). 

Hypointense regions of signal loss highlight the presence of SiMAG-labelled cells. As 

expected, hypointensity increases with cell number and SiMAG concentration (Figure 

5.11A).  T2
eff was found to be shorter for higher numbers of labelled cells with this further 

decreasing with increasing SiMAG concentration from 1 μgFe/ml to 10 μgFe/ml (Figure 

5.11B). MRI detection thresholds correspond to a minimum SiMAG concentration of 5 

μgFe/ml (3x105 cells) (T2
eff =69.38ms) and a minimum cell dose of 105 cells (10 μgFe/ml) 

(T2
eff =75.81ms). In essence, any cell:particle combination that results in a T2

eff value of 75 

ms or below would be visible by MRI.  
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Figure 5.11. In vitro dose response: (A) T2
eff map for 103,  104, 105, 3x105, 5x105 mMSCs 

labelled with 1, 5 and 10 μgFe/ml SiMAG, re-suspended in collagen gels (2 mg/ml) and 

MR imaged using MSME sequences. Hypointense areas of low signal (Blue) highlight 

the presence of SiMAG-labelled cells. (B) Corresponding T2
eff measurements at each 

particle concentration (1-10 μgFe/ml) and cell dose (103, 104, 105, 3x105, 5x105). Red line 

indicates visibility threshold (75ms). Data = mean T2
eff ± SD (n=6).  

 

5.3.2 Rheumatoid Arthritis Model  

5.3.2.1 In vivo Dose Response  

In vivo dose response was assessed by intra-articular delivery of 3x105 SiMAG-labelled 

mMSCs (0, 1, 5 and 10 μgFe/ml) into each knee (left and right) of a mouse (n=2). Mice were 

MR imaged immediately post-delivery and signal profiles across treated knees compared.  
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Figure 5.12 indicates the key features of a mouse when MR imaged. MR images demonstrate 

good contrast (visualised as hypointense regions of signal losses or black areas over right 

knees, shown by the white arrow in Figure 5.13) in mice receiving mMSCs labelled with 10 

μgFe/ml (Figure 5.13 iii) and 5 μgFe/ml (Figure 5.13 iv) SiMAG in both knees. This was 

not the case for mice receiving doses of 1 μgFe/ml SiMAG (Figure 5.13 ii) and the untreated 

mouse (Figure 5.13 i) where no hypointense regions could be visualised over the treated 

knees. Similar results are seen for the left knee however data is not shown here.   

This was further validated by evaluating and comparing the signal intensity (SI) across the 

treated knees in all groups (Figure 5.14). A greater loss in signal over a greater area was 

observed in mice injected with 5 and 10 μgFe/ml SiMAG in both knees (Figure 5.14 A&B 

(i), A&B (ii)) whilst a less obvious drop in SI was observed for mice injected with 1μgFe/ml 

(SiMAG) (Figure 5.14 A&B (iii)) when compared to the control mouse (untreated) (Figure 

5.14 A&B (iv)). The comparative signal profile clearly highlights differences in signal 

intensities between groups (Figure 5.15).  
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Figure 5.12. Diagram of a mouse: (A) within the customised holder and (B) 

corresponding GEFI MR Image depicting the key structural features of the mouse and 

the relative dimensions.  

 

Figure 5.13. In vivo dose response. GEFI MR Images relating to mMSCs labelled with 

(i) 0 μgFe/ml, (ii) 1 μgFe/ml, (iii) 5 μgFe/ml & (iv) 10 μgFe/ml of SiMAG and implanted 

within the right knee of each mouse. Red line highlights area across which SI was 

measured. 
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Figure 5.14. In vivo dose response. Signal intensity of 10 points measured across both 

the (A) right and (B) left knees relating to delivery of mMSCs labelled with (i) 10 

μgFe/ml, (ii) 5 μgFe /ml, (iii) 1 μgFe/ml & (iv) untreated knees to give a signal profile.  
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Figure 5.15. Comparative signal profile. Comparing the averaged SI of the left and 

right knees as measured over 10 points across the knee for mice treated with 10 

μgFe/ml, 5 μgFe /ml, 1 μgFe/ml & 0 μgFe/ml (untreated knees) SiMAG. Data = average 

of left and right knee.  

 

 5.3.2.2 RA Progression (Joint Swelling)  

A model of antigen induced arthritis (AIA) was applied to investigate the therapeutic effects 

of mMSCs in arthritic mice by measuring joint swelling (mm) as a clinical indication of joint 

inflammation. Upon RA induction (day 0), knee swelling increased approximately 1.5 (3 

day study) and 1.1 (7 day study) times that of the control knee (left). Intra-articular 

administration of mMSCs (SiMAG labelled and unlabelled) on day 1 resulted in an 

immediate decrease in joint swelling in both studies. A significant drop in swelling measured 

on day 2, in the 3 day study (Figure 5.16 A) (SiMAG-labelled; 0.8± 0.09 mm , unlabelled 

mMSCs; 0.8 ± 0.05 mm vs. control group; 1.23 ± 0.07mm p=0.0104) and day 3 of the 7 day 

study (Figure 5.16 B) (SiMAG-labelled; 0.46 ± 0.06 mm p=0.040, unlabelled mMSCs; 0.45 

±0.07mm p=0.026 vs control group; 0.78±0.07mm). This trend continued in the 3 day study 

(SiMAG-labelled; 0.6± 0.11mm, p=0.044 unlabelled mMSCs; 0.5 ± 0.07mm p= 0.0309 vs. 

control group; 0.9 ± 0.08mm) and ultimately in the 7 day study (SiMAG-labelled; 
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0.12 ± 0.05 mm p= 0.0064, unlabelled mMSCs; 0.18 ± 0.07 mm p= 0.0342 vs. control 

group; 0.45 ± 0.08mm). The joint swelling in the control groups of the 7 day study was seen 

to increase in from 0.3± 0.085 mm on day 5 to 0.45± 0.08mm on day 7 (Figure 5.16).  

 

 

Figure 5.16. Joint swelling measurements (mm) as an indication of inflammation and 

RA progression. Comparing joint swelling between SiMAG-labelled mMSCs, 

unlabelled mMSCs and control groups (SFM) over A) 3 days and B) 7 days. Data 

expressed as mean ± SEM Significant levels ** Indicates p<0.01 and * indicates p<0.05. 
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5.3.2.3 In vivo tracking - MRI 

Sacrificed mice were MR imaged at day 3 and 7 using FLASH and GEFI sequences 

respectively. Hypointense areas of signal voids were observed over the diseased knee (right) 

of every mouse in group 1 (+ mMSCs, + SiMAG; day 3; Figure 5.17 A) and group 2 (+ 

mMSCs, + SiMAG; day 7; Figure 5.17 C). This is attributed to the presence of intracellular 

Fe as a result of SiMAG-labelled mMSCs. No signal voids or hypointense regions could be 

detected over the diseased knee in group 3 (+ mMSCs, – SiMAG; day 3; Figure 5.17 B) and 

group 6 (- mMSCs, +SiMAG; day 7; Figure 5.17 D) nor in any of the untreated knees (Left 

knees; Groups 1, 2, 3, 6) as expected.  

This was further validated graphically by plotting signal loss profiles across each knee and 

comparing the signal of the right (diseased and treated joint) (Figure 5.18 i & Figure 5.19 i) 

to the corresponding left (healthy and untreated joint) (Figure 5.18 ii & Figure 5.19 ii). 

Comparative signal loss profiles demonstrated a drop in signal over SiMAG-labelled 

mMSCs treated knees (groups 1 and 2) when compared to untreated knees (Figure 5.18 A 

iii and Figure 5.19 A iii). Similar high-signal profiles are shown for both the right (diseased 

joint) and left (untreated joint) in (groups 3 and 6) (Figure 5.18 B iii and Figure 5.19 B iii). 

These results confirm the ability to identify the presence of SiMAG-labelled cells up to day 

7 post implantation using MRI.  
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Figure 5.17. Whole body coronal MRI images for RA tracking study. (A) Group 1 (+ mMSCs, + SiMAG, Day 3, GEFI sequence), (B) 

Group 3 (+ mMSCs, - SiMAG, Day 3, Flash Sequence), (C) Group 2 (+ mMSCs, + SiMAG, Day 7, GEFI sequence), (D) Group 6 (- 

mMSCs, - SiMAG, Day 7, FLASH sequence). Orange ring represents hypointense areas of signal void highlighting location of SiMAG 

labelled cells.  
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Figure 5.18. Signal loss profiles for RA tracking study. (A) group 1 (+ mMSCs, + 

SiMAG, n=6), (B) group 3 (+ mMSCs, - SiMAG, n=6) where: (i) treated knee (right), 

(ii) untreated knee (left) and (iii) average comparative signal profile. 
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Figure 5.19. Signal loss profiles for RA tracking study. (A) group 2 (+ mMSCs, + 

SiMAG; n=5), (B) group 6 (-mMSCs, -SiMAG; n=5) where: (i) treated knee (right), (ii) 

untreated knee (left) and (iii) average comparative signal profile. 
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5.3.2.4 Histological Evaluation 

Hematoxylin and Eosin Stain (H&E) 

H&E staining was used to identify key structural features of the mouse knee joint shown in 

Figure 5.20. Nuclear material was stained dark purple (hematoxylin) whilst the cytoplasmic 

material, connective tissue and collagen was stained pink (Eosin) (16). H&E staining offers 

a qualitative means of analysing the cellular content within the synovial joint. A greater 

number of cells were noticed within the synovial cavity of the right knee (AIA induced joint) 

of all groups (Figure 5.21 A i, B i, C i, D i, E i, F i) when compared to the left control joint 

knee (Figure 5.21 A ii, B ii, C ii, D ii, E ii, F ii). This was likely due to the influx of immune 

cells (macrophages, neutrophils) as a result of RA induction. No obvious differences 

between days 3 and day 7 studies can be observed. 

 

Figure 5.20. Sagittal H&E section of mouse knee joint (post RA induction) highlighting 

the key structures of the joint. The curvy epiphyseal line denotes the femur while the 

straighter epiphyseal line highlights the tibia. Nuclear material is stained purple while 

connective tissue such as collagen is shown as pink. Scale bar =100μm



Chapter 5 - Tracking 

221 | P a g e  

 

 

Figure 5.21. H&E stained sagittal sections of mice synovial joints:  (A)  group 1 (+mMSCs + SiMAG; day 3; n=6), (B) group 2 (+mMSCs 

+ SiMAG; day 7; n=5), (C)  group 3 (+mMSCs – SiMAG; day 3; n=6),  (D) group 4  (+mMSCs, – SiMAG; day 7; n=5), (E) group 5  (- 

mMSCs, – SiMAG; day 3 ; n=6) and (F) group 6 (- mMSCs, -  SiMAG; day 7; n=5). Nuclear material stained dark purple whilst 

connective tissue is stained pink. Increase in cellular content in the right knees of groups 1-6 is shown by arrow. Scale bar = 100 μm.
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Fluorescence  

Both SiMAG-labelled and unlabelled mMSCs were stained with a cell tracking dye (CM- 

DiI), prior to intra-articular delivery to allow the identification of implanted cells post 

implantation. All sections were counterstained with DAPI (a fluorescent nuclear marker; 

blue) and analysed using fluorescent microscopy under the TRITC and DAPI filter.  CM-

DiI labelled cells (indicated in red) were clearly visible within the synovium (seen in the 

x4 images) up to 7 days post implantation in the right joint of groups receiving mMSC 

treatments (groups 1, 2, 3 and 4) as shown in Figure 5.22 A-D (i,iii). No CM-DiI labelled 

cells could be detected in the untreated joints (left) Figure 5.22 A-D (ii, iv) and in either 

acellular control joints Figure 5.22 E&F (i,- iv). 
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Figure 5. 22. Fluorescent evaluation of the synovial joint (CM-DiI (red) and DAPI (blue). CM- DiI labelled cells visualised in the 

synovium of the right (treated) joints of:  (A) group 1 (+mMSCs, + SiMAG; day 3), (B) group 2 (+mMSCs, + SiMAG; day 7), group 3 

(+mMSCs, – SiMAG; day 3) and group 4 (+ mMSCs, - SiMAG; day 7). No CM-DiI labelled cells were detected in the control (left) 

joints and groups 5 and 6 (-mMSCs, – SiMAG; days 3 and 7 respectively).  Key anatomical structures are labelled in each image 

namely the  meniscus (M),   Femur (F),  Synovium (S)  and the Tibia (T)  . Scale bar = 100μm.
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Prussian Blue 

Prussian blue staining was performed on joint sections to identify the location of SiMAG - 

labelled mMSCs. Prussian blue staining successfully revealed the presence of iron oxide 

particles (stained blue) within the synovium (marked x on the accompanying H&E section; 

Figure 5.23). These areas were found to overlap with the location of CM-DiI labelled 

mMSCs in the treated joints (right) of groups 1 (+ mMSCs, + SiMAG; day 3; Figure 5.23 

Ai, ii) and 2 (+ mMSCs, + SiMAG; day 7; Figure 5.23 Bi, ii). Conversely, no blue staining 

was observed anywhere in the treated joint of group 3 (+ mMSCs, – SiMAG; day 3; Figure 

5.23 C ii) and group 4 (+ mMSCs, – SiMAG; day 7; Figure 5.23 D ii); neither in any of the 

control joints (left joint Figure 5.23 E) in all groups. 
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Figure 5.23. Prussian blue staining of joint sections with corresponding H&E and fluorescent sections. Blue staining highlights the 

presence of iron oxide particles (SiMAG) in the synovium of groups 1 (+ mMSCs, + SiMAG; day 3) and group 2 (+ mMSCs, + SiMAG; 

day 7) corresponding to the location of CM-DiI labelled mMSCs (X). No blue staining was detected for groups 3 (+ mMSCs, - SiMAG; 

day 7) and group 4 (+ mMSCs, - SiMAG; day 7), or for the control joint (left). (M) Meniscus, (T) Tibia and (F) Femur. Scale bar = 

100μm
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Toluidine Blue 

Toluidine blue primarily stains acidic proteoglycans found in articular cartilage deep purple. 

Cartilage depletion is a key characteristic in the AIA model and is significant of 

proteoglycans losses on the articular surface. Therefore toluidine blue staining is an 

applicable stain to assess cartilage depletion in arthritis. Proteoglycan losses are depicted by 

a change in colour from a deeper blue to lighter blue. Proteoglycan loss is clearly visible in 

the treated (right) joint of control groups 5 and 6 receiving SFM (Figure 5.24 E, F arrow). 

No proteoglycan loss can be visualised in groups 1-4 receiving mMSC treatments at either 

day 3 or day 7 (Figure 5.24 A, B, C, D). As expected, the untreated left joint (Figure 5.24 G) 

for the same animals show no cartilage depletion.    
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Figure 5.24. Toluidine staining to demonstrate cartilage depletion within treated joint 

sections for; A) group 1 (+ mMSCs, + SiMAG; day 3), B) group 2 (+ mMSCs, + 

SiMAG; day 7), C) group 3 (+ mMSCs, - SiMAG; day 3), D) group 4 (+ mMSCs, - 

SiMAG; day 7), E) group 5 (− mMSCs, - SiMAG; day 3), F)  group 6 (− mMSCs, - 

SiMAG; day 3). G) Representative left untreated joint. Bars = 100 μm
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5.3.3 OA model  

5.3.3.1 In vivo Dose Response  

Figure 5.25 illustrates the key features of a rat’s hind leg when MR imaged. By comparing 

the sagittal MR images of the untreated (Figure 5.26 D) and the PBS treated joints (Figure 

5.26 C) to all the treated joints (Figure 5.26 A (i,-iii), B (i-iii), obvious variations in 

hypointensities (exaggerated black marks) are clearly observed. The delivery of 1x106 

mMSCs labelled with 5 and 10 μgFe/ml of SiMAG and 2x106 mMSCs labelled with 1, 5 and 

10 μgFe/ml of SiMAG resulted in obvious hypointense areas of signal loss (circled in red, 

Figure 5.26 A (ii, iii), B (i-iii)) in the region of the synovial joint. However, less obvious 

areas of hypointensities could be identified in joints receiving 1x106 mMSCs labelled with 

1 μgFe/ml of SiMAG (Figure 5.26 Ai). As expected, no hypointense regions observed in the 

control groups (untreated and PBS treated joints) when MR imaged (Figure 5.26 C&D). The 

visibility threshold in this system could therefore be set at a minimal cell dose of 1x106 (when 

labelled with 5 μgFe/ml) and minimal particle concentration of 1 μg Fe/ml (2x106 implanted 

cells).  

 

Figure 5.25. Sagittal MR image of a rat’s hind leg highlighting key structural features.  
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Figure 5.26. In vivo dose response: Sagittal GEFI MR images relating to the 

implantation of: (A) 1x106 and (B) 2x106 mMSCs when labelled with: (i) 1 μgFe/ml, (ii) 

5 μgFe/ml and (iii) 10 μgFe/ml SiMAG. Red circles highlight hypointense areas of signal 

loss. (C) PBS treated (D) Untreated. Red line highlights area across which SI was 

measured. 

 

Further assessment of the in vivo dose response was performed by analysing the signal 

profiles produced when 1x106 and 2x106 mMSCs labelled with 0, 1, 5 and 10 μgFe/ml 

SiMAG were injected within the synovial cavity of a rat (Figure 5.27). Similar signal profiles 

were generated for groups receiving 1x106 mMSCs labelled with 5 and 10 μgFe/ml SiMAG 
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(Figure 5.27 Bi, ii) and 2x106 mMSCs labelled with 1, 5 and 10 μgFe/ml SiMAG (Figure 

5.27 A (i-iii)) with no obvious variations between these groups. The signal profile generated 

when 1x106 mMSCs were labelled with 1 μgFe/ml (Figure 5.27 B iii) was overall greater 

and similar to the control groups (Figure 5.27 C&D).  
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Figure 5.27. In vivo dose response: Signal profiles generated by measuring signal 

intensity across 20 points of the rats knee when injected with: (A) 2x106 and (B) 1x106 

mMSCs labelled with: (i) 10 μgF /ml, (ii) 5 μgFe/ml and (iii) 1 μgFe/ml SiMAG C) PBS 

and D) Untreated. 
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5.3.3.2 Pain Perception  

The perception of pain by osteoarthritic rats was assessed by monitoring the weight-bearing 

asymmetry (Figure 5.28 A) and the paw withdrawal threshold (as a measure of mechanical 

allodia) (Figure 5.28 B) for each rat. Following MNX surgery, rats developed a 16 % 

increase in weight-bearing asymmetry from the pre-surgery assessment on day 0 (pre-

surgery) (+mMSCs, + SiMAG; 0.26 ±2.89 %, +mMSCs, - SiMAG; 2.2 ±2.30 %, -mMSCs, 

- SiMAG; -0.2 ±1.84 %) to the pre implantation measurements on day 14 (+mMSCs, + 

SiMAG; 16.3 ±5.70 %, + mMSCs, - SiMAG; 16.3 ±1.17 % -mMSCs, - SiMAG; 16.29 

±3.08 %) in all experimental groups 1-3. Rats receiving an intra-articular injection of SFM 

showed a gradual increase in weight-bearing asymmetry over the 29 days resulting in a final 

measurement of 19.50 ± 0.59 % (at day 42). Intra-articular injection of mMSCs (labelled 

with or without SiMAG) prevented any further increase in weight-bearing asymmetry 

resulting in a significant decrease in the weight-bearing asymmetry of SiMAG-labelled 

mMSC treated animals (group 1; 4.8 % decrease to 12.60 ±4.80 % p<0.05) and unlabelled 

mMSCs (group 2; 8.7 % decrease, to 7.23 ±4.25 % p <0.001) by day 29 when compared to 

SFM treated animals (19.50 ±0.59 %).  

Rats developed a decrease in paw withdrawal threshold in treated (L-left) (Figure 5.28 B) 

paws over 3 days directly following MNX surgery compared to pre-surgery baseline values 

at day 0 (mMSCs with and without SiMAG (L) 15 ±0 g and no mMSCs and SiMAG (L) 

13.75 ±1.15 g). These trends persisted until day 14 at which point mMSCs were implanted 

(+mMSCs, + SiMAG; (L) 7.35 ±1.76 g, +mMSCs, - SiMAG; (L) 7.75 ±2.46 g, -mMSCs - 

SiMAG; (L) 6.65 ±2.06 g). Intra-articular injection of SiMAG-labelled mMSCs resulted in 

no significant increase in the paw withdrawal threshold over 29 days (+mMSCs, + SiMAG; 

(L) 7.6 ±3.60 g,) whereas a further significant decrease in paw withdrawal for unlabelled 
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MSCs and SFM was measured (+mMSCs, - SiMAG; (L) 3 ±0.57 g –mMSCs, - SiMAG; (L) 

2.85 ± 0.67 g p<0.005).  

 

 

Figure 5.28. Pain assessment by monitoring the development of: (A) weight-bearing 

asymmetry and (B) mechanical paw withdrawal thresholds (Allodynia) in the MNX 

model of OA in response to the intra-articular implantation of SiMAG-labelled (10μl) 

(n=3) and unlabelled mMSCs (n=4) and serum free media (n=4) over 42 days. Data is 

expressed as mean ± SEM.  Significant levels *** indicates p<0.001** Indicates p<0.01 

and * indicates p<0.05. 

 

5.3.3.3 In vivo Tracking – MRI  

Increased areas of hypointensity are observed in the synovial cavity of each rat treated with 

SiMAG-labelled mMSCs (Group 1) 29 days post implantation (Figure 5.29 Bi). This 
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represents the presence of SiMAG and is further validated by the signal profile plots, (Figure 

5.29 Ai) a significant loss in signal is detected over the synovial joint. As expected, this was 

not the case for rats in groups 2 (+ mMSCs, – SiMAG) & 3 (-mMSCs, –SiMAG) where MRI 

images (Figure 5.29 Bii & iii) and signal loss profiles (Figure 5.29 Aii and iii) generated 

appear to be similar in appearance to untreated joint (Figure 5.26 D) with the relatively high 

signal across the joint.   
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Figure 5.29. MRI tracking of mMSCs in a MNX rat model of OA 29 days post 

implantation. (A) Signal profile and (B) corresponding sagittal MSME MR images: (i) 

SiMAG-labelled mMSCs (10 μgFe/ml), (ii) unlabelled mMSCs and (iii) SFM.  
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5.3.3.4 Histological Evaluation 

Hematoxylin and Eosin Stain (H&E) and Fluorescence (DAPI) 

H&E staining was used to identify key structural features of the knee joint (rat) whilst 

identifying the location of fluorescent imaging (marked by X on H&E images) (Figure 5.30). 

DiI labelled mMSCs (stained red) were identified in the synovium in the treated (left) knee 

of animals in groups 1 (+mMSCs, + SiMAG) and 2 (+ mMSCs, – SiMAG), and can be seen 

in the fluorescent images (Figure 5.30 A & Biv) and corresponding H&E image (Figure 5.30 

A & Bii, Marked as X).  No labelled cells were visible in any of the untreated knees (right) 

(Figure 5.30 A, B & C iii) or in the treated knee of group 3 (+ mMSCs, + SiMAG) (Figure 

5.30 C iv).  

 



Chapter 5 - Tracking 

237 | P a g e  

 

 

Figure 5.30. H&E and fluorescent stained sagittal sections of rat synovial joints for: (A) group 1 ( + mMSCs,  +  SiMAG; 3 days. n=3),  

B) group 2 ( + mMSCs, +  SiMAG; 7 days. n=4),  C) group 3 (+ mMSCs, - SiMAG; 3 days. n=4). Fluorescent images correspond to 

location marked X on H&E images.  Nuclear material such as cells is depicted by dark purple staining while connective tissue such as 

collagen is stained pink in H&E staining. CM- DiI (red) and DAPI (blue). Left knees are the treated knees while the right knee was used 

as a control. Bars = 100μm 
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5.4 Discussion  

 

Despite the extraordinary medical advances made to tackle RA and OA, these disease remain 

to be a significant burden on society today. Medicine has reached the point where pain and 

inflammation can be treated effectively. However, till now no cures for OA and RA have 

been developed where the damage made to the synovial joint can be reversed giving patients 

full function of their joint. The development of stem cell-based therapies however, aim to 

address this need and has the potential to challenge current gold standard treatments. MSCs 

in particular hold the most promise in achieving this goal. The use of enabling technologies 

such as those described in this thesis may be used to evaluate such therapies to assess risks 

and successes thereby enabling the clinical translation of such therapies. This chapter 

therefore aims to implement the established labelling protocol (1-10 μgFe/ml SiMAG, 24 hr 

passive incubation, serum free media) to track implanted murine MSCs in a mouse model of 

RA and also a rat model of OA with time whilst also assessing clinically relevant functional 

outcomes.   

 

Previous chapters (chapter 3 and 4) have clearly demonstrated the ability of hMSCs and 

chondrocytes to passively and efficiently internalising SiMAG, (a commercially available 1 

μm silica coated SPION) with labelled populations successfully creating dose dependant 

contrast when MR imaged using a Bruker 2.35 T animal scanner. This data has encouraged 

the progression from in vitro experiments to small animal in vivo tracking studies in order to 

explore the potential application of this strategy to track implanted cell populations in 

arthritic cell-based therapies.  
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The implementation of any SPION and MRI based tracking protocol to a new system (cell 

type and animal model), calls for the interaction between the cell type and the tracking agent 

(in this case SiMAG) to be evaluated. It is necessary to assess the effect of cell type on the 

labelling efficiency and consequent visibility threshold for the particular system as well as 

the effect of labelling on the cellular function (viability, proliferation and potency). Failing 

to run these preliminary experiments can impact on the full potential of the established 

imaging protocol and limit the therapeutic efficiency of the cells. Hence, a series of in vitro 

experiments were performed to assess the uptake of SiMAG by mMSCs and the subsequent 

effect of internalisation on hMSCs (cell viability, proliferation and potency).  

Prussian blue staining successfully revealed the presence of SiMAG (stained blue) within 

the cell membrane of mMSCs labelled with 10 μgFe/ml (SiMAG), thus positively 

confirming internalisation with a total iron content of 20.64 ± 1.34 pg/cell. This value is 

comparable to the values detected for hMSC (21.8 ± 0.4 pg) and chondrocytes (20 ±0.3 pg 

of Fe) in chapter 3 when labelled under similar conditions.  

Toxicity and safety is a major concern in the implementation of nano-materials in any cell 

based therapy and can be a major hurdle in the adoption of SPION based tracking protocol 

(117). The application of SPIONs should in no way inhibit the therapeutic potential of the 

cells or should the SPIONs trigger any toxic events either on the cells during the labelling 

stage or evoke an immune response once implanted within the body (198). In vitro cell 

viability assays revealed no diminished cell viability and proliferation capacity on SiMAG-

labelled mMSC populations implying the optimised dose and exposure period was not 

harmful. The in vivo toxicity of SiMAG was not investigated at this time but no abnormal 

behavioural or immune reactions were observed by any of the animals receiving SiMAG-

labelled mMSCs over the duration of either studies. However, the in vivo toxicity should be 

strategically tested in longer term studies.  
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Currently, there is a debate regarding the differentiation ability of MSCs once they have been 

labelled with SPIONs (199). Generally, studies have found that the osteogenic and 

apidogenic potential of MSCs was maintained post SPION labelling whilst there are 

conflicting reviews reported for the differentiation of SPION labelled MSCs to chondrocytes 

(147, 199). Studies have shown that stem cells labelled with Feridex (an FDA approved 

contrast agent), inhibited their differentiation towards the chondrogenic lineage but not for 

osteogenic and adipogenic lineages (105, 143, 199). Kostura et al found that the presence of 

Feridex interfered with the signalling pathways responsible for driving chondrogenic 

differentiation (143). In contrast, Jasmin et al reported that MCSs labelled with Feridex 

underwent successful differentiation down all three lineages (adipogenesis, chondrogenesis 

and osteogenesis) (136). In a study by Henning et al, it was revealed that the differentiation 

of SPION-labelled MSCs to chondrocytes was dependant of the dose of the particle which 

may explain the contrasting results (147). Henning et al, also suggested that the use of a 

transfection agent could mitigate this effect by encouraging the internalisation of particles 

via alternative mechanism and further compartmentalization which might cause less 

interaction with differentiation associated intracellular substrates (147). In this study, it was 

not possible to demonstrate the differentiation of BALB/c mMSCs to chondrocytes labelled 

either with or without SiMAG. In a study by Chamberlain et al. BALB/c derived mMSCs 

were shown to differentiate down osteogenic and adipogenic, but not chondrogenic, lineages 

(175). It may therefore be the case that a lack of chondrogenic potential does not stem from 

the presence of SiMAG but to properties of the cells themselves.  Importantly, we have 

shown that mMSCs labelled with 10 μgFe/ml of SiMAG retain their capability to 

successfully differentiate down osteogenic and adipogenic lineages. 

 

A key aspect of using SPIONs in this context involves establishing and optimising minimal 

doses which achieve best resolution and contrast. Investigating the minimal in vitro MRI 
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visibility thresholds in terms of particle concentration and cell number offers some insight 

as to the optimal doses to be used in subsequent tracking studies. In vitro MRI threshold 

assessment resulted in a minimal cell dose of 105 mMSCs when labelled with 10 μgFe/ml 

SiMAG and a minimal SiMAG concentration of 5 μgFe/ml with 3x105 labelled mMSCs. 

These are considered highly acceptable values as similar studies by Jing et al reported a 

minimal cell dose (5x105) MSCs when labelled with 25 μgFe/ml of Feridex aided by the 

transfection agent protamine sulphate (83). This implies that SiMAG labelling offers 

potentially greater resolution and higher sensitivity in tracking studies. Based on this set of 

results and supported by current literature where therapeutic doses of MSCs ranging from 

3x105 – 106 have been implemented with successful outcomes in similar RA studies (218, 

219), 3x105 SiMAG-labelled MSCs were carried forward to the RA mouse tracking study. 

With regards to the OA model, positive therapeutic effects have previously been reported 

with much higher MSC doses ranging from 1x106 to 10 x106  (31, 215, 220). Therefore, cell 

doses at the lower end of this range (1x106 and 2x106) were chosen for the OA study in an 

effort to mitigate the effects of excessive accumulated Fe content associated with higher cell 

doses in MR imaging such as the blooming effect. The magnetic susceptibility of an 

individual particle results in a blooming artefact which extends beyond the size of the 

individual particles allowing for small injections of particles to be amplified beyond the 

actual location. This makes for practical identification of implanted cells but consequently 

becomes challenging to assess anatomical features in that vicinity (152, 155). 

Detection thresholds and cell doses were consequently validated in vivo for both the mouse 

model and rat model. In this study, 3x105  mMSCs labelled with 1, 5, 10 μgFe/ml SiMAG 

were implanted within mouse joints, whereas 1x106 and 2x106 mMSCs labelled with 1, 5, 

10 μgFe/ml SiMAG were implanted within a rat joint. To my knowledge similar studies have 

not assessed the effect of the in vivo biological environment on the MRI visibility threshold 
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prior to in vivo tracking studies. It is important to understand that the surrounding tissues can 

affect the MR contrast and therefore influence the visibility threshold. Unfortunately, 

relaxivity measurements could not be taken due to the inhomogeneities associated with 

biological tissue and for this reason, the signal intensity across the hypointense regions of 

the knee were read, plotted and compared to each other and  untreated joints.  Mice injected 

with mMSCs labelled with SiMAG (5 and 10 μgFe/ml) revealed a significant loss in signal 

over a substantial area; however, this signal loss was experienced over a greater area in the 

mice injected with 10 μgFe/ml than in 5 μgFe/ml. A less obvious drop in signal intensity 

was observed for mice injected with 1 μgFe/ml when compared to the control mouse. This 

revealed that the minimal visibility threshold for the mouse model was therefore 3x105 cells 

labelled with 5 μgFe/ml. Resultant signal loss profiles of the rat assessment appeared similar 

in form with a significant signal loss (attributed to the presence of SiMAG) when 1x106 

SiMAG-labelled mMSCs (5 & 10 μgFe/ml) and 2x106 SiMAG-labelled mMSCs (1, 5 & 10 

μgFe/ml of SiMAG) were implanted within the synovial cavity of a rat. This implied that 

either one of the mentioned conditions would be suitable for implementation in the OA 

tracking study.  

SiMAG concentration appeared to have a greater influence on the signal profiles created 

within the mouse model as opposed to the rat model where less variations was detected in 

the signal profiles in response to varying cell dose and SiMAG concentration. This is likely 

due to overall greater accumulated Fe content in the rat model causing the blooming to 

saturate at 1x106 mMSCs (5 μgFe/ml). Given the prolonged duration of the OA rat study and 

the unknown in vivo dilution rate of SiMAG-labelled mMSCs, it was decided that 1.5x106 

mMSCs labelled with 10 μgFe/ml would be implemented. This assumes that particle labelled 

cells would still be visible even after a hypothetical 10 fold dilution which is a reasonable 

rate after 4 weeks (97).  
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Generally, MRI images associated with the rat study resulted in greater anatomical details 

of the area of interest (knee) in comparison to the mouse where only whole body images 

were possible. This was expected and is a direct consequence of the overall larger size of the 

rat in comparison to the mouse; an observation also made by Burtea et al highlighting the 

general preferential use of rats in small animal MRI tracking studies for this reason (159). 

As mentioned earlier, the presence of a SPION are amplified beyond their exact location, a 

phenomenon known as the blooming effect. Although the blooming effect can be a useful 

means of identifying the general location of implanted cells, it makes it difficult to 

specifically identify the exact location of the cells with relation to the rest of the anatomical 

features of the knee. This was particularly evident in this study and in tracking within the 

knee in general given the complexity of the knee joint. The application of a purposely 

designed MRI knee transmitter coil (similar to those routinely used clinically in the diagnosis 

of knee pathology (130) in this system would have allowed for better resolution and 

sensitivity allowing for greater anatomical features in conjunction with particle location 

particularly in the rat (130, 158). Alternatively higher field strength MRI scanners (4.7, 7, 

11.7T) could have also improve image resolution (159) however these scanners are limited 

to research applications and therefore do not translate well into clinic. 

The chosen OA and RA animal models have been shown to develop similar pathology to 

human disease and is thus suitable for predicating the efficacy and appropriateness of MSC 

therapy in humans (213). It must be noted that the rodent version of this disease progresses 

at a faster rate than that of the human version (212). The chosen duration of the RA tracking 

study is significant in terms of the acute nature of joint swelling. Based on unpublished 

studies by Kehoe et al, MSC treatment was found to have the greatest effect on joint swelling 

in the first 3-7 days in a study monitoring joint swelling over 28 days. This suggests that 

cells are most active within this time frame and for this reason implemented in this short 
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term tracking study. These time points comply with the current literature where SPION – 

labelled cells could be detect with similar arthritic cell based MR tracking studies as long as 

12 weeks post implantation (101, 184).   

MR imaging revealed the presence of SiMAG-labelled cells which were identified within 

the synovial joint up to 7 days post implantation in the mouse model of RA and 29 days post 

implantation in the rat model of OA. The exact location of SiMAG-labelled and unlabelled 

cells was further verified via histological analysis where Dill-labelled cells were clearly 

identified along the synovial lining in both studies at the final time point (7 day; mouse RA,  

29 days; rat OA) in the treated knees of all groups receiving MSC treatment. No integration 

with the articular cartilage was observed. Henning et al successfully detected the 

transplanted hMSCs (SPION labelled and unlabelled) within the defect site over 12 weeks 

by MRI (184). Similar results were found in the study by Chen et al where the implantation 

of autologous chondrocyte seeded onto a collagen II hydrogel into a surgically induced 

defect (mini-pig) resulted in the persistence of hypointense signal voids up to 12 week post-

surgery within the defect. This implies that the cells had remained within the defect and was 

later confirmed by  histology (101). The use of biological scaffolds may account for the 

conflicting engraftment sites of the cells with the scaffold acting to localise transplanted cells 

within the defect site. This theory is supported by work carried by Murphy et al where 

evidence of cell engraftment in several tissues ( synovial capsule, fat pad, and lateral 

meniscus) in the joint were observed while no cell engraftment in the cartilage was observed 

post intra-articular implantation of MSCs (scaffold free) in an MNX model of OA in goats 

(31). 

This study was able to link the presence of mMSCs (SiMAG-labelled and unlabelled) within 

the synovium to the various clinically relevant functional outcomes; pain and inflammation. 

Pain is caused by multiple mechanisms and results in increased nociceptive inputs via 
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various pain processing pathways linked to the peripheral or central nervous system (40, 

211). In this study, progression in pain was monitored by weight bearing asymmetry and 

paw withdrawal evaluations and are commonly implemented the evaluation of 

pharmaceutical interventions in pain research. Weight bearing asymmetry is a standard 

behavioural correlate of hyperalgesia (increased sensitivity to pain) and is believed be 

initiated from the peripheral system (40). Paw withdrawal threshold on the other hand is 

indicative of mechanical allodeniya (pain due to a stimulus which does not normally provoke 

pain) and is associated with pain stemming from the central nervous system (40) 

Prior to OA induction, animals are able to place equal force on each hind leg when standing 

i.e it can be said that animal have little variation their weight bearing asymmetry. With OA 

induction in one leg, more force will naturally be place on the healthy leg as opposed to the 

injured leg which is experiencing pain. therefore there is an increase in the difference in 

force placed between each leg i.e increase in weight bearing asymmetry. This trend was 

clearly observed in this study where weight bearing asymmetry significantly increased upon 

OA induction and is indicative of pain. The administration of mMSCs (SiMAG labelled and 

unlabelled) was seen to mitigate the development of weight bearing asymmetry in rats with 

established OA. This implies that upon MSCs administration, rats were able to more evenly 

distribute their weight over both legs, significant of alleviated pain. 

Mechanical allodynia describes a scenario whereby pain is initiated by a stimulus what 

would not normally provoke pain. In healthy animals (Pre-OA induction) a large localised 

force would need to be implemented on the hind leg of the rat to provoke the withdrawal of 

their paw as a result of the stimulus. Upon OA induction, rats become more sensitive to this 

pain and therefore, low forces are required to generate a result. There was no effect of 

unlabelled mMSC (unlabelled) on the development of mechanical Allodynia while the 
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administration of SiMAG labelled mMSCs appeared to significantly influence the 

progression of mechanical allodynia.  

Collectively, this set of data indicates that the administration of MSCs may be able to alter 

peripherally-driven pain, but possibly not centrally-mediated pain in established OA. Finally, 

this data may offer insights into the mechanisms of underlying pain in OA.   

The effects of MSC treatment on inflammation in RA were monitored by assessing acute 

inflammation (macrophage, lymphocyte and neutrophil infiltration) in terms of joint 

swelling (99, 213). As expected, a significant decrease in joint swelling was measured upon 

mMSC administration. In a similar way the administration of SiMAG-labelled mMSC also 

resulted in a significant decrease in joint swelling with no statistical difference between 

mMSC groups. This suggests that the immunomodulating properties of mMSC labelled with 

SiMAG was maintained. Biological variation between mice within groups accounted for the 

conflicting rates of joint swelling progression between the two studies where a significant 

drop in joint swelling found on day 2 for the 3 day study, but only on day 3 for the 7 day 

study.  

Toluidine blue staining demonstrated far less cartilage depletion in groups receiving either 

SiMAG-labelled or unlabelled mMSC when compared to control groups. This suggests that 

the therapeutic potential of mMSCs is not affected by SiMAG-labelling. Although the 

mechanism of action is unknown, it can be hypothesised that the implanted cells are not 

differentiating into chondrocytes and repopulating the damaged area as no fluorescently 

labelled cells could be detected within the articular cartilage (corroborating findings by 

Kehoe et al). This suggests that mechanism of repair is attributed to a paracrine effect 

whereby the early MSC treatment acts to prevent proteoglycan loss possibly via the secretion 
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of factors influencing the activity of ADAMTS enzyme, an enzyme responsible for the 

cleaving of aggrecan (an abundant proteoglycan in articular cartilage) (221) 

The presence of SiMAG particles within the synovial lining was identified via Prussian blue 

staining at 7 days in the RA study. It is difficult to ascertain whether this staining was related 

to internalised SiMAG-labelled cells or to the particle dilution effect at this point. Particle 

dilution refers to the loss of particle from labelled cells as a result of either exocytosis or the 

division and proliferation of implanted cells. Released particles may then either be removed 

by the reticuloendothelial system (159)  or taken up neighbouring cells (97). This effectively 

limits the extent of tracking introducing the concerns of false positive where particles are 

being tracked instead of the cells. This becomes an increasing concern with longer tracking 

studies as is the case rat OA and warrants further investigations. (97).  
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5.5 Conclusion 

 

This chapter confirms the potential application of SiMAG as a feasible tracking agent in cell 

based therapies. In vivo MRI scans demonstrated good contrast and the identification of 

SiMAG-labelled populations within the synovial joint up to 7 days (mouse study) and 29 

days (rat OA) post implantation. Furthermore, it has been demonstrated that the presence of 

SiMAG does not affect the therapeutic potential of mMSCs when applied in small animal in 

vivo studies. The presence of mMSCs (SiMAG-labelled or unlabelled ) resulted in a marked 

decrease joint swelling over 7 days in the RA tracking study implying that SiMAG-labelled 

mMSCs maintained their anti-inflammatory and immunosuppressive property. Finally for 

the first time we demonstrate the potential antinociceptive properties of mMSCs as shown 

in the rat OA study.  
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6.1 Overriding Discussion 

 

In response to the lack of effective osteoarthritis and rheumatoid arthritis treatments, cell-

therapies have been developed offering new opportunities in tackling these diseases. 

Mesenchymal stem cells have been identified as ideal candidates in the development of 

arthritic cell-based therapies.  Their specific self-renewal, multipotent differentiation ability, 

migratory, anti-inflammatory and immunosuppresssive properties are all key characteristics 

linked to their success in stem cell based therapies (6, 68, 76, 79, 222). Animal models are a 

vital aspect in the development of these cell-based therapies and are implemented to 

investigate the safety and efficacy of such therapies. The need to rapidly, practically and 

reproducibly assess optimal delivery routes, cell doses, tissue engraftment and cellular bio-

distribution patterns whilst also minimising the number of animals implemented has driven 

the need for non-invasive techniques of monitoring in vivo cell fate. The combined use of 

Magnetic Resonance Imaging (MRI) and superparamagnetic iron oxide nanoparticles 

(SPIONs) have been proposed as one such non-invasive strategy. Therefore, this project has 

sought to develop a MRI and SPION based imaging strategy to potentially evaluate the 

success and risks of arthritic cell-based therapies whilst monitoring clinically relevant 

functional outcomes (pain and inflammation). This thesis is the first to report the use of 

SPIONs and MRI to track implanted MSCs within an AIA mouse model while monitoring 

joint swelling as an indication of inflammation. Furthermore, this thesis is the first to 

investigate the antinociceptive properties of MSCs in addition to tracking implanted cells 

within an MNX rat model of OA. 

Four commercially available SPIONs ranging in size from 25 nm-1000 nm (P904, Nanomag, 

Lumirem and SiMAG) were investigated as potential labelling agents for the application of 



Chapter 6 - Discussion 

251 | P a g e  

 

hMSCs and chondrocytes, in arthritic cell based therapies. Although, it is understood that 

passive incubation methods are limited to cells with a high degree of phagocytosis (a 

property not generally exhibited by stem cells), this technique was preferred over 

transfection agent (TA) mediated labelling due to the complications associated with TA 

labelling and limited clinical prospects. Following a passive incubation period of 24 hrs, 

greatest intracellular Fe content was detected for SiMAG (the largest particle; 1000 nm) 

when internalised by hMSCs or chondrocyte under serum free conditions, specifically. In 

comparison, significantly lower amount of Fe was detected for Lumirem, Nanomag and 

P904. By analysing this data one could assume a size dependant uptake of SPION by hMSCs, 

in particular with the following trend which was revealed (SiMAG; 1000 nm 21.8 pg/cell > 

Lumirem; 300 nm, 4.8 pg/cell > Nanomag; 50 nm 1.05 pg/cell > P904; 25nm 0.65 pg/cell). 

However, it cannot be assumed that these results follow a size dependant uptake relationship 

when assessing the uptake of particles of varying sizes by Fe quantification, due to variation 

in the Fe content of a single particle with varying particle size. Generally, the Fe content of 

a particle increases with increasing size (103, 161). This justifies the significantly higher Fe 

content of SiMAG–labelled cells (hMSCs and chondrocytes) in comparison to other SPIONs 

(Lumirem, Nanomag and P904) suggesting that this result is not related to the size dependant 

uptake of SPION.  

Despite the extensive number of cell labelling studies that have been performed with SPIONs 

of varying sizes, it is still unclear as to which particle size facilitates most efficient 

internalisation by stem cells. This is partially attributed to the limited particle configurations 

investigated in studies where contributing factors such as surface coating, surface charge and 

cell type are not taken into account. Further complications include data generated by using 

TA where the effect is seen to be dose dependant in addition to TA type dependant.  Few 

studies have systematically investigated the size dependant uptake of particles as 
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demonstrated by Thorek and colleagues (194). In their study, the cellular uptake of SPIONs 

of varying sizes (33 nm - 1.5 μm) by non-phagocytic T cells was systematically 

evaluated. Efficient labelling of cells was observed for particles up to 300 nm; however, 

micron-sized particle uptake was limited (194). A review by Li et al further suggested that 

particles sizes less than 100 nm were generally preferred for cell uptake, whilst positively 

charged surfaces further encouraged internalisation. This may be due to the electrostatic 

interactions between the positively charged particles and the negatively charged cell 

membrane (8). In summary, it can be deciphered that particle uptake by cells must be 

evaluated in a case to case manner and according to the desired application. For applications 

in cell imaging and tracking there is an interest in particles that can be internalised in 

sufficient quantities, generating significant contrast when MR imaged. 

The ideal particle size range for cell tracking purposes has further been debated (97, 160, 

194). Contrast is dependent on total intracellular Fe content post labelling. The Fe content 

of a single particle is thought to increase with increasing particle size, subsequently causing 

an increase in magnetic moment (103, 161). Although reports have highlighted the efficient 

uptake of nano-sized particles (< 300 nm), particle of this size range often have relatively 

low Fe content in comparison to their larger (micron-sized) counterparts. This in turn, 

demands the internalisation of many more nanometre sized particles than would be required 

of larger micron-size particles. This calls for a highly efficient and robust labelling protocol 

with higher particle concentrations often requiring the use of TA for the labelling of stem 

cells with nano-sized particles in order to achieve quantities that will generate in vivo contrast 

by MRI (160). On the other hand, larger micro-sized particles may not necessarily facilitate 

better uptake (194) in non-phagocytic cells but the higher Fe content of each particle implies 

that few particles would need to be taken up (ideal for cells with a low degree of phagocytosis) 

in order to generate contrast by MRI. This argument is clearly demonstrated in literature. 
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Passive incubation methods have not demonstrated the significant in vitro internalisation of 

popular FDA approved particles; Endorem, Resovist and Feraheme (20 nm-150 nm) by non-

phagocytic stem cells in sufficient quantities to generate satisfactory in vivo contrast, thus 

relying on the use of TA. This has been observed repeatedly through a wide range of studies 

(107, 188, 223). In comparison, studies by Hinds et al , Shapiro et al  and Saldanha et al  for 

example have all demonstrated the non-transfection mediated uptake of micron-sized 

particles at realistic doses to generate significant contrast in vivo (103, 160, 186). 

Understandably, the clinical approval of FDA approved particles is highly attractive. 

However, the need for transfection agents in my opinion questions the potential clinical 

applicability of using such labelling strategies. 

Our findings have demonstrated that exclusively SiMAG (a micron sized particle) was 

internalised in significant quantities by both hMSCs and chondrocytes to develop dose 

dependant contrast when MR imaged using a 2.35T MRI scanner under these labelling 

conditions. It is essential to establish MRI visibility thresholds in terms of particle 

concentration and cell number, both in vitro and in vivo and to appreciate that the detection 

threshold is affected by magnetic field strength and MRI acquisition parameters (152). The 

overall detection threshold of a population of cells is dependent on the combination of 

intracellular Fe content and the number of cells. The detection thresholds of SiMAG-labelled 

cells within this system was set at 5 μgFe/ml (5x105 labelled cells) in terms of minimum 

particle concentration and 105 cells (10 μgFe/ml) in terms of cell dose. This demonstrates 

the relationship between labelling concentration and cell dose. The lower the labelling 

concentration, the more cells are required for detection.  

MRI scanner strength significantly influences resolution and contrast, not only defining MRI 

detection threshold but also defining the quality of images and the extent to which 

information can be gathered. In general, higher strength scanners (similar to those used in 
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research; 4.7, 7 and 11.7 T) offer better contrast, resolution and specificity (130). These are 

all highly attractive qualities in the evaluation of cellular therapies in vivo. For example, 

single hepatocytes have been reportedly to be imaged by Shapiro et al  and could be detected 

in the liver one month post implantation using a 7 T scanner (161). Hinds et al also 

successfully managed to image a single cell labelled with 900 nm SPION with 11.7 T scanner 

(186). However, it is difficult to achieve such resolution on clinical grade scanners (1.5 T, 3 

T). To my knowledge, only one group has succeeded in achieving single SPION-labelled 

cell detection on clinical systems (1.5 and 3 T). In achieving this, elaborate theoretical 

models were applied pre-imaging, in order to extensively modify standard pulse sequences 

in addition to building customised gradients and RF coils required to achieve such resolution 

(202, 224). Therefore, it is unrealistic to design pre-clinical tracking approaches to high 

strength scanners knowing that such resolution will not be achieved under standard 

conditions. To this end, we have optimised towards current clinical MRI modalities 

commonly found in hospitals which are 1.5 T and 3 T scanners.  

We have adopted two relevant models of arthritis to evaluate the feasibility of the developed 

labelling and tracking strategy (SiMAG; Bruker 2.35T MRI) to evaluate arthritic cell based 

therapies in the future. In addition, we sought to assess the effects of mMSC administration 

on the clinically relevant functional outcomes (pain and inflammation) and ensure that 

SiMAG-labelling of mMSCs does not impair their therapeutic potential in vivo. MRI and 

SPION based technologies offer a practical and non-invasive means of gathering data linked 

to the success and risks of cell based therapies. Although most published studies remain as 

proof-of concept studies, mainly optimising in vitro labelling and detection threshold; few 

cell based tracking studies have managed to offer conclusive data of migratory patterns and 

tissue integration within the knee over time, with reliance on histology. In particular, a 

successful case of cell tracking within an osteoarthritic joint was demonstrated by Jing et al, 
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where serial MRI imaging over 12 weeks highlighted hypointensity associated with MSC 

implantation within synovial fluid (one hour) post implantation using T2 weighted sequences. 

Hypointensity persisted within the synovial fluid for 2 weeks until significant signal changes 

were detected within the defect and intensified over the next 4 weeks, implying that the 

implanted SPION-labelled cells had migrated towards the defect site and repopulated the 

defect. This data was further cross-validated by histological evaluation (83), which 

highlighted the potential of such tracking techniques in non-invasively monitoring cell 

migration in vivo. A key aspect of gathering information on the cellular bio-distribution and 

tissue integration is serial and longitudinal imaging of the same animal. This requires access 

to an MRI suite linked to the animal house to allow for animals to be anesthetised prior to 

being MR imaged facilitating imaging at multiple time points throughout the study. 

Unfortunately, this was not possible in our studies as the MRI suite and the animal houses 

were situated in different universities (MRI; Nottingham Trent University, Mice; Liverpool 

John Moors University; Rat; Nottingham University). Consequently, serial imaging could 

not be performed. This is a significant limitation of the studies presented in this thesis as 

migratory patterns and tissue integration with time could not be assessed. 

Good contrast of implanted cell population was demonstrated for both models over 7 days 

in the RA mouse model and 29 days in the OA rat model when MR imaged. The intracellular 

Fe disturbs the local magnetic field thus allowing cells to be visualised as negative contrast 

or  lack of signal when MR imaged (103, 104, 106, 152, 155, 199, 225). The generation of 

negative contrast by SPIONs is particularly hindering in cell tracking as it becomes difficult 

to discriminate between labelled cells presented as dark exaggerated marks and artefacts 

such as air. In addition, it is also difficult to quantify the effect of particle concentration on 

the extent of signal loss as the signal cannot be quantified below 0, where particles cannot 

be unambiguously distinguished from background (97, 135). Bulte et al suggested the 
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application of a specific “white marker” pulse sequence which would allow SPIONs to be 

detected and quantified as a positive contrast (97).  

The question of particle dilution becomes a concern particularly in the long term OA model. 

Particle dilution is an inherent limitation of all SPION and MRI based tracking in cell-based 

therapies. This defines the loss of the particle labelled cells by either exocytosis or by cell 

division beyond detectable levels. Released particles may be taken up by neighbouring cells 

or phagocytosed by macrophages. In general, small particles are thought to be exocytosed 

more efficiently than larger micro-sized particles. However, larger particles are more 

efficiently taken up by macrophages and removed (159). This may introduce false positives 

where released particles (either taken up my neighbouring cells, macrophages or freely 

moving) are tracked instead of the cells, further limiting the reliability of long term tracking 

studies. In an in vivo study by Baligand et al , the label was visible in tissues for 3 months 

apparently overestimating cell survival by more than 1 week (226). Berman et al suggested 

that particle dilution was an indication of viable cells, as non-viable cells retained the particle 

due to the inability to actively exocytose (227). However, distinguishing between live cells, 

pre-particle loss, released particles and non-viable cells retaining particles is impossible at 

this stage. Furthermore, gathering conclusive data on cell viability, cell activity and the 

differentiation state of cells post labelling is impossible highlighting an additional limitation 

of applying such tracking techniques (95). Overcoming such limitations may require the 

development and implementation of novel particles. Nonetheless, cell viability may be 

indirectly assessed by evaluating the effects of implanted cells in terms of functional 

outcomes over time as presented in this thesis. The positive joint swelling and weight bearing 

asymmetry results imply that cells are active in their role of secreting biological factors 

responsible for reducing joint swelling and minimising pain. Importantly, SiMAG labelling 

did not influence the effects of MSCs on joint swelling or weight bearing asymmetry.   
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6.2 Future Work 

 

This thesis has investigated the potential of four commercially available superparamagnetic 

iron oxide nanoparticles as likely labelling agents in MRI mediated cell tracking. Of the four 

particles, only SiMAG was deemed suitable given the potential to be internalised under 

passive incubation conditions, generate contrast at relevant cell doses on clinical MRI 

systems over a 29 day period with no impaired biological functions. Given the opportunity, 

the potential of the other three particles would be more closely evaluated to determine if 

higher particle concentrations would have facilitated better contrast when MR imaged. 

Furthermore, in terms of tracking studies, pre-implantation images would be taken of every 

animal and subsequently imaged at multiple time points to allow not only the migratory 

patterns and tissue integration to be evaluated, but to more closely link the location of cells 

with measurable functional outcomes such as pain and inflammation. For this to be possible 

it is necessary to fabricate a knee coil for all subsequent experiment. This ensures that images 

of better resolution would be obtained allowing the location of cells to be more precisely 

evaluated in relation to anatomical structures whilst analysing tissue repair. This has been 

difficult to achieve in this particular study due to the anatomical dimension of rats and in 

particular mice. Ideally, future experiments would be performed on larger animals such as 

pigs or goats where the larger joint dimension would facilitate greater anatomical detail. 

Furthermore, greater emphasis would be placed on the clinical success of MSC 

administration in terms of disease progression and tissue repair. Finally, the in vitro and in 

vivo degradation rates of SiMAG would be closely evaluated to assess important aspect such 

as long term tracking potential, physicochemical properties and toxicity.   
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6.3 Concluding Remarks 

 

The data presented in this thesis introduces the application of SiMAG (a 1 μm 

superparamagnetic iron oxide nanoparticle) as a possible tracking agent in arthritic cell-

based therapies. The labelling protocol has been established as the passive incubation of 1-

10 μgFe/ml SiMAG under serum free conditions for 24 hrs and has been validated for 

hMSCs and chondrocytes. Referring to the list presented in Chapter 3 (Figure 3.2) defining 

the pre-perquisites for an in vivo cell tracking agent, we can conclude that SiMAG largely 

meets these criteria. Furthermore, the application of a mouse model of RA and a rat model 

of OA demonstrates the potential to detect implanted cell population over a 29 day period 

using a 2.35T animal MRI scanner. Overall, the proposed labelling and imaging strategy 

lays the foundation for further developments and holds great potential in monitoring the 

success and risks not only arthritic cell-based therapies but cell-therapies in general.    
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A 1. Equations 

 

A 1.1 SPION labelling of cells.   

Equation A.1.1 Example calculation for the labelling of 1x106 cells with 100 μgFe/ml of 

Nanomag 

 

For the labelling of 1x106 cells with Nanomag at an iron concentration of 100 μgFe/ml 

Equation 1: 
𝐹𝑒 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

𝑆𝑡𝑜𝑐𝑘 𝐹𝑒 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
= 𝐴 

 
100

2400
= 0.041𝑚𝑙 

Equation 2: 𝐴 𝑥
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑡𝑜 𝑏𝑒 𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑

200000
=B 

 0.041𝑚𝑙 𝑥
1000,000

200,000
= 0.2𝑚𝑙 

 

Therefore; add 0.2ml of stock Nanomag to the required volume of media for the 

specific flask size.  

 

 

A 1.2 Collagen Gels 

Equation A.1.2. Equations to make up collagen gel. 

 

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 10 𝑋 𝑫𝑴𝑬𝑴 𝑡𝑜 𝑏𝑒 𝑎𝑑𝑑𝑒𝑑(𝑚𝑙) =
𝐴

10
= 𝐷 

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑠𝑡𝑜𝑐𝑘 𝒄𝒐𝒍𝒍𝒂𝒈𝒆𝒏 (𝑚𝑙) =
𝐴 𝑥 𝐵

𝐶
= 𝐸 

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑵𝒂𝑶𝑯 𝑡𝑜 𝑏𝑒 𝑎𝑑𝑑𝑒𝑑 (𝑚𝑙) = 𝐸 𝑥 0.023 = 𝐹  

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝒘𝒂𝒕𝒆𝒓 𝑡𝑜 𝑏𝑒 𝑎𝑑𝑑𝑒𝑑 (𝑚𝑙) = 𝐴 − 𝐷 − 𝐹 
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Where A: Total gel volume required, B: Required collagen concentration, C: Stock collagen 

concentration 

A 2 Iron Content Validation (ICP-OES). 

 

The Fe content (as reported by the manufacturer, shown in Table A 2.1) of each particle was 

validated using ICP-OES. This technique allows the accurate evaluation of Fe within a 

sample. The Fe content of SiMAG was not supplied by the manufactured and for this reason 

was quantified by ICP-OES as 15 mg/ml and validated in the same way. Based on the values 

in Table A 2.1, a range of particle concentration (0.001, 0.01, 0.1, 1, 5, 10 μgFe/ml) were 

made up in dH20, digested, analysed and compared to an ICP-OES Fe standard curve. The 

unit of measurement of the ICP-OES instrument is PPM (1 PPM = 1 μg/ml).  The Fe content 

of SiMAG and P904 has been confirmed in this system to be similar to the reported values 

(Figure A 2.1 and Table A 2.1); whilst Lumirem and Nanomag seemed to be 58 % and 70 % 

respectively of the reported value.   

Table A 2.1 Fe quantification of each of the four particles: SiMAG, Lumirem, 

Nanomag and P904 as reported by the supplier where appropriate. 

Particle Fe content (μgFe/ml) 

SiMAG 15000 

Lumirem 175 

Nanomag 2400 

P904 22000 
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Figure A 2.1. Particle concentration curve for each particle (SiMAG, Lumirem, 

Nanomag and P904) against an ICP-OES Fe standard (1-10 μgFe/ml) as a validation of 

the Fe content of each particle as reported by the manufacturer. Data = mean Fe (n=3) 

± SD. 

 

In addition, the detection limits of ICP-OES have been determined as 0.1 PPM. The ICP-

OES handbook states that the detection threshold of ICP-OES in terms of Fe to be 0.001 

PPM. However as can be seen in Table A 2.2, accuracy is lost below the 0.01 PPM mark 

and for this reason, 0.1 PPM will be considered the detection threshold in this system and 

not 0.001PPM. 
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Table A 2.2. ICP-OES values for SiMAG, Lumirem, Nanomag and P904 ranging in 

concentration from 0.0001 μgFe/ml to 10 μgFe/ml. Red line indicates detection levels 

(0.1 PPM) 
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