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Abstract 
 

Groundwater-surface water exchange significantly impacts proglacial hydrology and 

ecology. This study applies a multidisciplinary approach to investigate groundwater-

surface water exchange  in the proglacial zones of two retreating glaciers in SE Iceland. 

Mapping of decadal changes in the extent of proglacial groundwater seeps in the large 

outwash plain of Skeiðarársandur has shown a 97% decline, as well as substantial falls in 

groundwater levels. Field and laboratory measurements suggested high spatial variability 

in hydraulic conductivity at the Skaftafellsjökull foreland. The highest hydraulic 

conductivity was measured in areas underlain by glaciofluvial deposits whilst the lowest 

hydraulic conductivities were associated with glacial tills and lacustrine deposits.  

Precipitation was identified as an important control on groundwater levels on various 

temporal scales. Automated monitoring of meltwater and groundwater levels also 

identified fluctuations in meltwater level as an important control on hydraulic heads, whose 

importance on groundwater levels has been observed during various flow regimes. The 

close connection between meltwater and groundwater levels suggest high meltwater-

aquifer exchange. However, high meltwater-aquifer exchange is contested by significantly 

different geochemical and isotopic composition of groundwater and meltwater. 

Hydrogeological flux estimates suggest high spatial variability in groundwater seepage 

into the Instrumented Lake, which was attributed to the high variability in hydraulic 

conductivity around the lakeshores. These are also supported by high –resolution 

temperature mapping at the lake bed, which suggested that groundwater upwelling in the 

fine-grained lakeshore took place at discrete locations.  

This study suggests climate and glacier margin fluctuations as primary controls on 

proglacial groundwater-surface water exchange. It also highlights the importance of 

groundwater contributions to water quality and ecology, with groundwater-fed bodies 

possibly sustaining important ecological niches. However, proglacial groundwater-fed 
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features are transient and are threatened by changes in precipitation and glacier retreat. 

Further declines in groundwater-fed hydrological systems are therefore projected to 

adversely impact proglacial groundwater-surface water interaction. 
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1. Introduction 

1.1. Scientific rationale 
 

Groundwater provides an almost ubiquitous source of generally high quality fresh water 

which supports ecosystems and  socioeconomic development in a variety of settings (e.g. 

Green et al., 2011; Taylor et al., 2013; Foster et al., 2013). Groundwater provides around 

1/3 of global freshwater withdrawals, sourcing approximately 42%, 36%, and 27% of the 

water used for agricultural, domestic, and industrial uses, respectively (Döll et al., 2012; 

Taylor et al., 2013). Additionally, groundwater also provides critical water storage, which 

becomes especially important during times of low precipitation and drought (e.g. Alley, 

2001; 2007; Vicuña et al., 2012; Andermann et al., 2012). Despite this importance, there 

is a paucity of research with regards to the impacts of climate change on groundwater 

systems (Arnell et al., 2001; Kundzewicz, 2007; Taylor et al., 2013). This uncertainty is 

particularly relevant in catchments dominated by snow and ice melt, where groundwater 

systems have received substantially less research than surface water systems 

(Piotrowski, 2007; Robinson et al., 2008; Crossman et al., 2011).  

Glaciers significantly impact the hydrology (e.g. Braun et al., 2000; Favier et al., 2008; 

Crochet, 2013; La Frenierre and Mark, 2014), ecology (e.g. Milner et al., 2009), and 

geomorphology (e.g. Brardinoni and Hassan, 2006) of their catchments. Over 1/6 of the 

world’s population rely on water which originates from snow and icemelt for their water 

supply (Barnett et al., 2005). Climate change is projected to enhance glacier retreat and 

substantially alter the magnitude and timing of precipitation events. These changes are 

projected to cause lower and earlier peak meltwater discharge (Lanke et al., 2007; 

Crochet, 2013). Catchments where glacial melt provides most streamflow during dry 

periods are especially vulnerable to the projected long term reduction in meltwater 

(Barnett et al., 2005; Tague and Grant, 2009; Langston et al., 2011; Vicuña et al., 2012; 
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Thorsteinsson et al., 2014). It is unclear whether glaciated basins contain sufficient 

storage capacity which will be able to buffer such changes, or whether these changes will 

lead to a reduction in effective water supply (Barnett et al., 2005; Langston et al., 2011; 

2013). Some of this required storage can be provided by groundwater systems (e.g. Clow 

et al., 2003; Hood et al., 2006; Roy and Hayashi, 2008; 2009; Langston et al., 2011; 2013; 

Vicuña et al., 2012; Andermann et al., 2012).  

Groundwater forms a key component of the hydrology of glaciated basins, with 

groundwater contributions significantly augmenting surface water runoff, especially during 

dry seasons or baseflow conditions (Mark and Seltzer, 2003; Jefferson et al., 2008; Roy 

and Hayashi 2008; 2009; Baraer et al., 2009; Andermann et al., 2012; Crochet, 2013). 

Groundwater discharge also significantly impacts the physicochemical parameters of 

surface water bodies, with greater groundwater contributions enhancing proglacial (the 

area in front of the glacier margin; Thomas and Goudie, 1991) ecology (e.g. Milner and 

Petts, 1994; Roy and Hayashi, 2008 and 2009; Milner et al., 2009; Gibert and Culver, 

2009; Slemmons et al., 2013; Kurylyk et al., 2014a, b).  

Hydrological exchange between groundwater and surface water significantly impacts 

instream water levels, physicochemical parameters (biogeochemistry), and the ecology of 

both systems. Additionally, this exchange also significantly impacts the zone where active 

mixing takes place, known as the hyporheic zone (e.g. Bencala, 1993; Hannah et al., 

2009; Kløve et al., 2011a, b; Krause et al., 2009a, b; 2011; 2014). Therefore, groundwater 

and surface water form a single, integrated resource (e.g. Krause et al., 2009a). This 

integrated understanding of groundwater and surface water is crucial for the effective 

management of groundwater and surface water systems, compliance with regulatory 

frameworks (such as the Water Framework Directive), and to improve the resilience to 

projected changes in climate and land use (e.g. Hood et al., 2006; Roy and Hayashi, 

2008; 2009; Krause et al., 2014). The increasingly interdisciplinary research on 

groundwater-surface water interaction significantly advanced the understanding of the 
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physical controls (e.g. Harvey and Bencala, 1993; Lewandowski et al., 2009; Sawyer et 

al., 2009; Krause et al., 2012; 2014) and the ecological (Milner and Petts, 1994; Brunke 

and Gonser, 1997; Boulton et al., 1998; Brown et al., 2007a, b; Roy et al., 2011) and 

biogeochemical (e.g. Ullah et al., 2014; Abnizova et al., 2014) importance of groundwater-

surface water exchange. However, there is still a substantial paucity of research with 

regards to the temporal and spatial variability of groundwater-surface water exchange and 

the availability of freshwater downstream (e.g. Krause et al., 2014). This understating is 

particularly important in catchments dominated by snow and ice, where climate change 

and glacier retreat are projected to substantially alter the availability and timing of 

meltwater discharge, which will impact groundwater-surface water exchange (e.g. Hood et 

al., 2006; Gooseff et al., 2006; 2013; Rossi et al., 2012; Ala-aho et al., 2013; Drexler et al., 

2013; Connon et al., 2014).  

This project focuses on the proglacial zones of Skaftafellsjökull and western 

Skeiðarárjökull, two retreating glaciers in SE Iceland, where groundwater-fed lakes, 

seeps, and streams form important ecological niches. These niches sustain a variety of 

flora and fauna, in these otherwise relatively barren environments (e.g. Robinson et al., 

2009a). This project has used a combination of field and laboratory techniques in order to 

investigate the controls on the spatial and temporal variability of, proglacial groundwater-

surface water exchange. 

This project addresses current gaps in research and adds to existing knowledge on:  

 Decadal-scale changes in proglacial groundwater systems in an area of rapid glacial 

retreat. This includes mapping of changes in the extent of proglacial groundwater 

seeps and monitoring of changes in proglacial groundwater levels. 

 The contribution of meltwater-derived groundwater to surface water bodies in the 

catchment.  
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 Improved process understanding with regards to the controls, temporal dynamics, and 

spatial variability of proglacial groundwater exchange with lakes and rivers.  

1.2. Project aim 
 

The aim of this project is to investigate the spatial and temporal variability and 

hydrological processes of groundwater-surface water exchange at the proglacial zones of 

Skeiðarárjökull and Skaftafellsjökull, two retreating glaciers in SE Iceland. 

1.3. Specific objectives 
 

i. To investigate the impact of glacier margin fluctuations on groundwater levels and on 

the spatial extent of proglacial groundwater-fed features in western Skeiðarársandur, 

which is impacted by rapid glacier retreat and high magnitude, low frequency events 

such as glacier surges and jökulhlaups (glacial outburst floods).   

ii. To provide a hydrogeological framework for the Skaftafellsjökull foreland. 

iii. To investigate the sources of groundwater and surface water recharge at the 

Skaftafellsjökull foreland.  

iv. To investigate the spatial and temporal patterns and controls on proglacial 

hydrological exchange between the meltwater river and the aquifer at the 

Skaftafellsjökull foreland.  

v. To investigate the spatial and temporal patterns and controls on proglacial 

hydrological exchange between the aquifer and lakes at the Skaftafellsjökull foreland.  
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1.4. Methods 
  

This study applied remote sensing, hydrogeological, geochemical, isotopic, and 

geophysical methods in order to investigate proglacial groundwater-surface water 

exchange (Table 1.1). This approach follows the need in research on groundwater-surface 

exchange, which is becoming increasingly multi-disciplinary (e.g. Fleckenstein et al., 

2010). The detailed methodologies for the respective techniques are found in Chapters 4-

8. The structure of the thesis is described in  

Table 1.2. 

Table 1.1. The methods applied to address the specific objectives of the study 

Objective Methodology 

i) Investigation of the impact 
of long term ice margin 
fluctuations on proglacial 
groundwater levels and on 
the extent of groundwater 
seeps.  

 Mapping of changes in the area and extent of 
groundwater seeps and lakes using aerial 
photographs (dated from 1986, 1997, and 
2012). 

 Long term monitoring of proglacial 
groundwater levels (July 2000-August 2012). 
This dataset combines the results from 
Robinson et al. (2008) with measurements 
from the network that was installed in July 
2011. The two networks were levelled to a 
common datum in 2012. 

ii) Hydrogeological 
characterization of the 
Skaftafellsjökull foreland.   

 Determination of hydraulic conductivity from 
single well response (slug) tests for single 
piezometers and Particle Size Analysis 
(PSA). 

 Delineation of groundwater flow direction 
from the distribution of hydraulic heads in 
piezometers and piezometer nests.  

 Calculation of aquifer volume, groundwater 
discharge, and groundwater velocity using 
the results of the current study and values 
from the literature.  

iii) To investigate the sources 
of recharge for proglacial 
groundwater and surface 
water. 

 Environmental tracing using major cation and 
anion geochemistry and water stable isotopes 
(δ18O and δD).  
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iv) To investigate the spatial 
and temporal patterns and 
controls on proglacial 
hydrological exchange 
between the meltwater river 
and the aquifer. 

 Automated and manual monitoring of 
proglacial meltwater and groundwater levels 
in piezometer nests and piezometers.  

 Environmental tracers (water temperature, 
electrical conductivity, geochemistry and 
stable isotopes). 

v) To investigate the spatial 
and temporal patterns and 
controls on proglacial 
hydrological exchange 
between the aquifer and 
lakes. 

 High resolution mapping of lakebed 
temperature anomalies using Fibre Optic 
Distributed Temperature Sensing (FO-DTS). 

 Quantification of groundwater seepage fluxes 
using Vertical Temperature Profiles (VTP) 
and hydrogeological measurements (Darcian 
fluxes).   

 

Table 1.2. Structure of the thesis.   

Chapter Main contents 
1. Introduction  Aims and objectives 

 Scientific rationale 

 Field sites  

2. Literature review  Water sources in glaciated catchments 

 Proglacial groundwater flow 

 Groundwater-surface exchange 

3. Methodology  Monitoring infrastructures 

 Geochemistry and physicochemical 
parameters 

 Hydrogeology 

 Temperature tracing 

4. Long term changes in proglacial 
hydrogeology 

• Changes in the extent of groundwater 
seeps in western Skeiðarársandur  

• Changes in groundwater levels in 
western Skeiðarársandur  

5. Hydrogeology • Dominant geomorphic processes on 
proglacial hydrogeology  

• Spatial heterogeneity in hydrogeological 
parameters 

• Delineation of horizontal and vertical 
groundwater flow.  

6. Geochemistry and stable 
isotopes 

• Physicochemical parameters 
• Major anions and cations  
• Water stable isotope composition  

7. River-aquifer exchange • Horizontal groundwater flow direction  
• Vertical groundwater flow direction  
• The impact of low magnitude, high 

frequency processes (ablation and 
precipitation) on proglacial groundwater-
surface water exchange 

• The impact of jökulhlaups on 
groundwater-surface water exchange  
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8. Lake-aquifer exchange • Mapping of lakebed temperature 
anomalies 

• Quantification of seepage fluxes using 
pore-water temperatures and 
hydrogeological measurements 

9. Proglacial groundwater-surface 
water exchange 

• Conceptual model of the controls on 
proglacial groundwater-surface water 
exchange  

10. Conclusions • Summary of major findings 
• Wider implications 
• Further research 
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2. Literature review 

2.1. Introduction  
 

This chapter reviews the current literature on the research areas which are pivotal for this 

study and highlights gaps within the current state of knowledge. The literature review 

begins by describing the main water sources within glaciated catchments and the 

mechanisms of groundwater flow within these catchments. It then describes the 

importance of hydrological exchanges between groundwater and surface water and the 

factors which control them. The literature review also summarises projected impacts of 

climate change on the hydrology, groundwater flow, and groundwater-surface water 

exchange within glaciated catchments.   

 

2.2. Water sources in glaciated catchments  
 

This section describes the main water sources and hydrology of glaciated catchments, 

such as the storing of precipitation within snow and ice. The section also describes the 

projected impacts and implications of climate change and glacier retreat in catchments 

which are impacted by snow and ice melt. Glaciers cover approximately 10% of the 

earth’s surface. The accumulation and melting of snow and ice exerts substantial controls 

on the water resources, natural hazards, sediment transport, geomorphology, and ecology 

of glaciated catchments (e.g. Gurnell et al., 1999). Meltwater from glaciers and ice sheets 

also exerts important control on sea-level changes (e.g. Frezzotti and Orombelli, 2014).  

Glaciers are divided into an accumulation zone (where precipitation is stored) and ablation 

zone (where precipitation is released). The divide between the accumulation and ablation 

zones is known as the Equilibrium Line Altitude (ELA). Glacier mass balance shows the 

difference between accumulation and ablation. Hence, when accumulation exceeds 
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ablation, glaciers have a positive mass balance and advance, and vice versa. Globally, 

glaciers have generally been losing mass during the 1940-50s. Ice losses slowed until the 

1970s, but then began to accelerate again (e.g. Zemp et al., 2009; Radić et al., 2013). 

However, there are some exceptions to this trend, with glacier advances in areas such as 

New Zealand, Scandinavia, and the Karakoram (Vaughan et al., 2013). These advances 

have been attributed to increases in precipitation (Lemke et al., 2007) and instabilities in 

glacial dynamics, such as surges (Quincey et al., 2011; Bolch et al., 2012). Hence, 

despite the advances in some areas, ice caps and glaciers in most regions, including 

Iceland, are generally retreating (e.g. Björnsson and Pálsson, 2008). 

Glaciers store precipitation in the forms of snow, firn (snow that remained for at least one 

melt season), and ice (e.g. Jansson et al., 2003; de Woul et al., 2006). This storage forms 

an important control on the hydrology of glaciated catchments, and it also makes glaciers 

important natural water reservoirs. The storage and release of snow and ice leads to 

distinct diurnal, seasonal, and annual fluctuations in the discharge of meltwater-fed 

streams (e.g. Hubbard et al., 1995; Déry et al., 2009). Additionally, meltwater contributions 

increase discharge above the levels expected if streams were solely precipitation-fed (e.g. 

Barnett et al., 2005; Huss et al., 2008; Ruelland et al., 2011). The contributions to 

discharge from snow and ice melt are especially important in catchments with a distinct 

dry season, where meltwater sustains rivers during periods of low precipitation (e.g. 

Hannah et al., 1999; 2000; Mark and Seltzer, 2003; Favier et al., 2008; Juen et al., 2007; 

Baraer et al., 2009; 2012; Nolin et al., 2010; Condom et al., 2012). The significant impact 

of snow and icemelt on the hydrology of glaciated catchments is illustrated by the 

estimation that over 1/6 of the world’s population relies on water which originates from 

snow packs and glaciers (Barnett et al., 2005).   

In addition to the aforementioned impacts on meltwater generation, another striking 

outcome of the sustained glacial retreat is the global expansion in proglacial zones (Zemp 

et al., 2008; Cooper et al., 2011). The hydrology of proglacial zones is highly dynamic, 
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where the interaction between icemelt, snowmelt, precipitation and groundwater 

significantly impacts catchment hydrology, water quality, geomorphology, and ecology 

(e.g. Tockner et al., 1997; Ward et al., 1999; Robinson et al., 2008).  

Groundwater is a key component of proglacial hydrology, which provides important water 

storage (Malard et al., 1999; Clow et al., 2003; Hood et al., 2006; Crossman et al., 2011; 

Rossi et al., 2012; Ala-aho, 2013). The main recharge sources of proglacial groundwater 

are precipitation, snow, and icemelt (e.g. Robinson et al., 2009b). Groundwater recharge 

is substantially impacted by  geology and geomorphology (e.g. Meriano and Eyles, 2009; 

Blackport et al., 2014). Proglacial areas underlain by permeable deposits, such as 

alluvium, sustain significant aquifers (e.g. Tockner et al., 1997; Malard et al., 1999; 

Crossman et al., 2011: Bajc et al., 2014). Conversely, low permeability deposits and 

layers, such as permafrost and buried ice, which acts as aquitards, impede groundwater 

recharge and flow (e.g. Cooper et al., 2002; 2011; Langston et al., 2011; Magnusson et 

al., 2014). Additionally, groundwater recharge is also impacted by the availability of 

meltwater and its controls which include climate, altitude, latitude and aspect (e.g. Brown 

et al., 2006a, b; Jonsson et al., 2009). The spatial distribution of proglacial recharge 

components varies within the catchment, with the proportion of icemelt generally falling 

with distance from the glacier margin (e.g. Ward et al., 1999; Robinson et al., 2009a, 

Cauvy-Fraunié et al., 2014). The proportion of contribution of groundwater to surface 

runoff also varies temporally. The proportion of groundwater contribution to surface runoff 

is generally at its lowest during spring and summer, when snowmelt and icemelt dominate 

discharge. Groundwater contributions then increase during autumn and winter (Figure 2.1) 

(e.g. Malard et al., 1999; Ward et al., 1999; Marciniak et al., 2014).  
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Figure 2.1. Temporal changes in the contributions of proglacial water sources. 

The figure is adapted from (Brown et al., 2003).  

Climate change is projected to impact all water sources within proglacial basins, with 

scenarios projecting substantial alterations in precipitation regimes, glacial extent and 

glacial mass balance (e.g. IPCC, 2007; Milner et al., 2009; Vaughan et al., 2013). Such 

changes have already been observed in the Andes (Mark et al., 2005; Juen et al., 2007; 

Mark, 2008; Baraer et al., 2009), Himalayas (Hagg et al., 2007; Yong et al., 2010), China 

(Li et al., 2010; Liu et al., 2010; Wang et al., 2014), the Rockies (Clow et al., 2003; St. 

Jacques et al., 2013),  the Alps (Collins, 2006; Stott and Mount, 2007; Gremaud et al., 

2009; 2010; Finger et al., 2012; 2013), and Iceland (e.g. Björnsson and Pálsson, 2008; 

Crochet, 2013; Bradwell et al., 2013). Enhanced snowmelt and glacial melt will alter the 

amount of generated runoff and the timing of peak discharge, with discharge projected to 

fall during dry seasons (e.g. Barnett et al., 2005; Jefferson, 2008; Tague and Grant, 

2009). These reductions will increase the vulnerability of water resources in catchments 

which are impacted by meltwater (IPCC, 2007; Adam et al., 2009; Huss et al., 2010; 

Taylor, 2013; Thorsteinsson et al., 2014). In contrast to these projections, studies from 

some glaciated basins have actually reported increasing discharges. However, this water 

originates from melting ice, which reduces non-renewable reserves (e.g. Huss et al., 
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2008; Baraer et al., 2012; Bliss et al., 2014). Hence, after crossing a certain threshold, 

water supply is projected to decrease (Figure 2.2)  (Jansson et al., 2003; Mark et al., 

2005; Coudrain et al., 2005; Flowers et al., 2005; Aðalgeirsdóttir et al., 2006; Painter, 

2007; Casassa et al., 2009; Cauvy-Fraunié  et al., 2014).  

Figure 2.2. The relation between glacial mass balance, volume and runoff (Adapted from 
Jansson et al., 2003. p. 119)  

The arrow denotes the threshold after which further reduction in glacial volume will cause 
runoff to decrease..  

Groundwater in catchments which are impacted by snow and icemelt is also projected to 

alter following climate change and glacier retreat. However, the impact of climate change 

on groundwater has received much less research than surface water (e.g. Taylor et al., 

2013). Due to the variety of water sources within proglacial environments, any 

assessment of changes in groundwater due to climate change needs to encompass the 

dynamic interactions between snowmelt, icemelt and groundwater contributions (Malard et 

al., 2006; Milner et al., 2009). Climate change models generally project an increase in air 

temperature and alteration in the magnitude and timing of precipitation events. These 

projections will alter the dynamics and distribution of snow, such as an increase in the 

rain/snow ratio (e.g. Adam, 2009; Okkonen et al., 2009; Crochet, 2013), which will affect 

recharge. The increase in temperatures, evapotranspiration, and the extent of dry periods 

A conceptual model showing the relation between mass balance, glacier volume and glacial 

runoff. From Jansson et al., 2003, p. 119.

Accum. = ablation

Glacier retreat (ablat.>accum.)

An increase in discharge might initially occur. But, after crossing a 

certain threshold, in which the glacier retreats, discharge will start to 

decrease. This leads to a reduction in available water. 

Glacier retreat 
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is projected to reduce groundwater levels during the summer (Mäkinen et al., 2008). 

Winter runoff and flooding are projected to increase due to the increase in rain/snow ratio 

(Adam et al., 2009). However, the increase in runoff and the earlier peak in melt is 

projected to reduce spring recharge, which will subsequently lower summer baseflow 

(Tague et al., 2007; 2008; Okkonen and Kløve, 2010).  

In summary, glaciated basins have unique hydrology, which is controlled by the temporal 

storage and release of snowmelt, icemelt, and groundwater. This storage substantially 

impacts the hydrology, ecology, geomorphology and socioeconomic activities of glaciated 

catchments. However, climate change and glacier retreat are projected to alter the timing 

of melt and reduce meltwater. These changes are projected to bring adverse outcomes in 

the long term to communities and ecosystems who rely on meltwater. The storage 

provided by proglacial groundwater systems  can provide some mitigation to the fall in 

meltwater-dominated surface water discharge (e.g. Hood et al., 2006; Roy and Hayashi, 

2008).   

2.3. Groundwater flow in glaciated environments 
 

2.3.1. Introduction  
 

This section describes the processes and mechanisms that control groundwater flow and 

drainage in glaciated catchments. The section begins by describing the roles of geology, 

geomorphology, and glacier thermal regime on groundwater flow. It then describes 

groundwater flow during glaciations.  

Alongside its importance in proglacial hydrology (e.g. Earman et al., 2006), groundwater 

can also influence glacier movement (Boulton et al., 1993; 2001; Eyles, 2006; Piotrowski, 

2007; Iverson and Person, 2012) and geomorphology (Boulton et al., 2007a, b; Robinson 

et al., 2008; Meriano and Eyles, 2009; Kehew et al., 2012). Groundwater in glacial 



Chapter 2  Literature Review 
 

14 
 

environments also influences water resources management (Meriano and Eyles, 2003; 

2009; Person et al., 2007; Finger et al., 2013; Hublart et al., 2013; Khan et al., 2014), 

economic activities, such as mining (e.g. Melvold et al., 2003), and the disposal of nuclear 

waste (e.g. Normani and Sykes, 2012; Vidstrand et al., 2013; Hartley and Joyce, 2013). 

Groundwater contributions also substantially impact proglacial ecology (Milner and Petts, 

1994; Gibert and Culver, 2009; Roy et al., 2011). However, despite its importance, 

groundwater in glacial environments has received much less research than surface water 

(e.g. Dragon and Marciniak, 2010; Radić and Hock, 2014). 

2.3.2. Processes of groundwater flow in glaciated 
environments   

 

The understanding that glaciers can flow over soft, deformable beds, rather than merely 

over hard bedrock, has only developed within the last three decades (Boulton, 1986). 

However, this paradigm shift is essential for the explanation of significant aquifers which 

are found in proglacial zones underlain by permeable deposits and in karst areas (e.g. 

Goldscheider and Gremaud, 2010). Groundwater flow underneath glaciers is generally 

controlled by similar mechanisms to the ones which control groundwater flow within 

confined aquifers in non-glaciated areas (e.g. Piotrowski, 2007). Water flow within a 

porous bed is governed by Darcy’s Law (Equation 2.1) 

  









dl

dh
KAQ

   

Equation 2.1. Darcy’s Law of groundwater flow (1856)  

 

With Q denoting groundwater flow flux (m3/day), K the hydraulic conductivity, A the flow 

cross-sectional area, h the hydraulic head and l the flow length (Darcy, 1856). The 

hydraulic head (h, Equation 2.1) is a key parameter in hydrogeology. It is calculated as the 
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sum of the elevation head (the elevation of water level measured at the base of the 

piezometer above a datum) and the pressure head (the length of the water column) (e.g. 

Domenico and Schwartz, 1998). Groundwater flow is driven by the gradient between 

hydraulic heads 








dl

dh
, with groundwater flowing from high to low hydraulic heads. The 

hydraulic gradient of unconfined groundwater flow systems in non-glaciated environments 

is generally determined by topography (e.g. Tóth, 1963; 2009; Freeze and Cherry, 1979). 

In contrast to that, the hydraulic gradient of subglacial groundwater is mainly determined 

by the ice-surface slope and the overburden ice pressure, with the subglacial groundwater 

flow lines mirror-imaging the ice sheet flow lines (Shreve, 1972; Fountain and Walder, 

1998). Therefore, basal meltwaters will enter the substrate (forming groundwater 

recharge) if the pressure at the ice/bed interface exceeds the pressure at the glacial bed 

(Piotrowski, 2007; Lemieux et al., 2008a). The potentiometric surface of groundwater 

confined by a glacier stretches approximately parallel to the ice surface, with its height 

corresponding to the water pressure (Piotrowski, 2007). Using water pressures estimated 

from fine-grained sediments of overridden till, Piotrowski (1997a) calculated the 

potentiometric surface to equal roughly 72% of the ice thickness. Other observations from 

consolidated glacial sediments and current measurements of water pressure underneath 

the West Antarctica Ice Sheet have shown that hydraulic heads at the base of ice sheets 

were within 30% of the ice flotation value, with average heads being less than 7 m below 

flotation level (Iverson and Person, 2012). Conversely, at the glacier margin, the pressure 

within the aquifer becomes lower, which increases groundwater discharge. Additionally, 

the fall in pressure (exerted by the glacier) also alters the aquifer from confined to 

unconfined (Haldorsen et al., 2010; 2012). 

Subglacial groundwater may include components of snow melt and the melt of 

supraglacial, englacial and subglacial ice, which are routed and joined at the glacier bed. 

Supraglacial and englacial ice melt are routed to the glacier bed through fractures, 
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crevasses, moulins, and cavities (Figure 2.3) (e.g. Nienow et al., 1998; Cowton et al., 

2013). The efficiency of these drainage paths is significantly controlled by climatic 

conditions and the glacier’s thermal regime (Röthlisberger and Lang, 1987; Richards et 

al., 1996; Bell, 2008; Gulley et al., 2009; Rutter et al., 2011; Irvine-Fynn et al., 2011; Chu, 

2014; Hodgkins et al., 2013; Dahlke et al., 2014). In addition to the meltwater which has 

reached the glacier bed via the routes depicted in Figure 2.3, subglacial groundwater also 

consists of water which are generated at the glacier bed by ice deformation and ice melt 

which is caused by geothermal heat and basal friction (e.g. Piotrowski, 2007).  

 

 

Figure 2.3. The supraglacial, englacial, and subglacial drainage routes by which snow and 
ice melt reach the glacier sole. Adapted from Irvine-Fynn et al. (2011) 

 

The ability of the glacier bed to drain meltwater as groundwater is a key control on glacial 

motion and stability (e.g. Boulton and Zatsepin, 2006; Meierbachtol et al., 2013). The 
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drainage capacities of the glacier bed exert a key control on the effective pressure of the 

glacier bed, which is the difference between the overburden pressure and pore-water 

pressure. The effective pressure is controlled by the interaction between meltwater supply 

and the drainage capacity of the glacier bed. Failure to evacuate the meltwater increases 

pore water pressure, which can lower the effective pressure below the critical level for 

failure. This can cause decoupling between the bed and glacier, which reduces the 

strength of the subglacial sediments, which bears potential for shear sediment 

deformation and enhanced glacier movement (Kamb, 1987; Boulton et al., 2009; Hoffman 

and Price, 2014). In addition to drainage capacity, the temperature at the glacier bed also 

controls glacial stability, as an ice/bed interface which is at or above the Pressure Melting 

Point (PMP) temperature will generate water at the bed. This water must be drained in 

order to maintain glacial stability (e.g. Fountain and Walder, 1998).   

Subglacial drainage systems are broadly divided into efficient (channelized) and inefficient 

(distributed) systems (e.g. Hubbard and Nienow, 1997; Fountain and Walder, 1998; Irvine-

Fynn et al., 2011). An efficient drainage system is composed of subglacial tunnels that 

either arch up into the ice (R channels; Röthlisberger, 1972) or carve into the glacial bed 

(N channels; Nye, 1973). An efficient drainage system can effectively transfer large water 

fluxes from the bed to the glacier margin. Therefore, sudden changes in drainage 

efficiency, caused by rapid fluctuations in water supply or channel blockage, which takes 

place when meltwater encounter zones of low hydraulic conductivity or frozen beds, can 

reduce glacial stability. R channels can quickly adjust to fluctuating water fluxes, hence, 

they serve as important stabilising mechanisms for ice sheets (Boulton et al., 2009).  

In contrast to the rapid meltwater flows within efficient drainage systems, a distributed 

(inefficient) glacial drainage system is characterized by low flow velocities. Water flow 

within a distributed system takes place through linked cavities on irregular bedrock (Kamb, 

1987), a thin film (~1 mm) at the bed/ice interface, which is generated by regelation 

(Weertman, 1972), “canal” systems within soft subglacial sediments (Walder and Fowler, 
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1994) and groundwater flow through subglacial sediments (Boulton and Hindmarsh, 

1987). The slow flow velocity within distributed systems raises the water pressure as the 

water flux rises, which can then approach the ice overburden pressure and lead to 

decoupling between the glacier and the bed (Boulton et al., 2007a). The seasonal 

evolution of the glacial drainage system has been studied extensively. Generally, an 

inefficient distributed drainage system operates at the start of the melt season, with 

drainage shifting into an efficient system as the melt season progresses. At the end of the 

melt season, the distributed drainage is resumed. These seasonal dynamics also impact 

groundwater flow, which is generally higher when the drainage system is efficient. Despite 

considerable variability, this general pattern has been reported from a variety of different 

glacial settings (e.g. Hodgkins et al., 1998; Nienow et al., 1998; Mernild, 2004; Chandler 

et al., 2013; Cowton et al., 2013). 

2.3.3. Geological controls on subglacial and proglacial 
groundwater flow  

 

Similar to non-glacial environments, geology exerts a  significant control on subglacial and 

proglacial groundwater flow and recharge. The understanding that glaciers can be 

underlain by soft, deformable sediments and permeable beds, as opposed to solely hard 

bedrock (Boulton, 1986), implies that a portion of the subglacial meltwaters will enter the 

bed and be directed towards the margin as groundwater. Groundwater drainage is 

strongly controlled by the hydrogeological parameters of the glacier bed (e.g. Piotrowski, 

1997a, b; Janszen et al., 2012; Atkinson et al., 2013). Therefore, substantial groundwater 

flow has been observed in glaciers underlain by permeable substrates (e.g. Rossi et al., 

2012; Boulton et al., 2007a, b; Kehew et al., 2012;), karst systems (e.g. Gremaud and 

Goldscheider, 2009 Gremaud et al., 2010; Finger et al., 2013), and faults (e.g. Haldorsen 

and Heim, 1999). Significant groundwater systems have also been reported from 

proglacial zones which are underlain by coarse alluvial deposits, which sustain significant 
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aquifers (e.g. Ward et al., 1999; Crossman et al., 2011). These aquifers sustained 

groundwater flow through the summer months, and became particularly important during 

periods of low meltwater discharge (Malard et al., 1999). Conversely, groundwater flow in 

proglacial areas which are underlain by low permeability substrates, such as fine-grained 

deposits, permafrost, and buried ice is much lower (e.g. Boulton et al., 2007a; Haldorsen 

et al., 2010; Langston et al., 2011).  

The hydrogeological parameters of sorted granular materials in glaciated environments 

are similar to those found in non-glacial conditions. However, glacial environments are 

impacted by an array of geomorphic processes, which include glacial, glaciofluvial, 

lacustrine, and aeolian processes (e.g. Freeze and Cherry, 1979; Bajc et al., 2014). 

Hence,  the hydraulic conductivity of subglacial tills varies over several orders of 

magnitude, ranging between 10-1 and 10-7 m/s (Freeze and Cherry, 1979), with significant 

implications to groundwater fluxes (the K parameter, Equation 2.1).  

The hydraulic conductivity of subglacial till is controlled by various sedimentological 

processes. For instance, compression and shear deformation lead to high anisotropic 

distribution of till properties (e.g. Boulton and Zatsepin, 2006). Laboratory experiments 

have shown that particle alignment causes horizontal hydraulic conductivity to exceed 

vertical hydraulic conductivity by up to two orders of magnitude (Murray and Dowdeswell, 

1992). Pervasive deformation of till can advect significant amounts of groundwater 

towards the margin within the high-porosity deforming layer (Alley et al., 1986, 1987). 

Although such deformation may demolish the drainage paths within the ice/bed interface, 

it is hypothesised to enhance the drainage through the bed (Murray and Dowdeswell, 

1992).  

Despite the major gaps in knowledge with regards to the hydrogeological properties of 

glacial deposits, it is safe to conclude that they are subject to high spatial and temporal 

variability, imposed by the stresses applied by the overriding glaciers, source material, 
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and secondary processes (e.g. Domenico and Schwartz, 1998; Fischer and Clarke, 2001; 

Evans et al., 2006). This variability in the hydrogeological properties of glacial deposits is 

an important control on the spatial variability in proglacial groundwater flow (e.g. Robinson 

et al., 2008; Roy and Hayashi, 2008; Langston et al., 2013). In addition to the 

aforementioned processes, the field sites in southern Iceland are also substantially 

impacted by volcanic activity and jökulhlaups (e.g. Marren, 2005). This wide variability in 

geomorphic processes leads to high variability in depositional environments and 

hydrogeological parameters, which may significantly impact subglacial and proglacial 

groundwater flow (e.g. Bajc et al., 2014). 

2.3.4. The impact of geomorphology on proglacial 
groundwater flow 

 

Geomorphology also exerts an important control on proglacial groundwater flow. For 

instance, moraines have a complex, heterogeneous internal structure, which leads to 

various hydrogeological conditions, such as coarse-grained deposits, stepped and 

perched water tables (e.g. van Overmeeren, 1994; Robinson et al., 2008; Langston et al., 

2011; Bajc et al., 2014). Fully or partially impermeable layers (buried ice, ground ice, and 

bedrock) can direct groundwater flow and focus it towards areas where water can infiltrate 

into the deeper flow system (Langston et al., 2011). Additionally, impermeable layers can 

also prevent groundwater recharge and lead to perched water tables (e.g. Robinson et al., 

2008). The heterogeneous hydrogeology within moraines has been shown to generate 

different groundwater residence times, which impacts groundwater quality and 

groundwater-surface water exchange (Roy and Hayashi, 2008; 2009).  
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Figure 2.4. Schematic diagram of the internal structure and hydrology of the Opabin 
moraine, the Canadian Rockies (From Langston et al., 2011).  

 

Coarse proglacial deposits, such as talus, also significantly impact groundwater flow and 

storage. Studies from the Colorado Rockies suggested that groundwater from talus 

deposits contributed over 60% (Liu et al., 2004) and 75% (Clow et al., 2003) of total 

streamflow between early summer and late fall. Furthermore, talus provided important 

storage for groundwater from snowmelt recharge, with groundwater contributions from the 

talus continuing even after the disappearing of snow (e.g. Muir et al., 2011). The impact of 

geomorphology on groundwater flow was also reported from the Cordillera Real in Bolivia, 

where experimental tracer studies have shown that groundwater flow through talus slopes 

exceeded groundwater flow through moraines by 24 hours (Caballero et al., 2002). In 

addition to talus slopes, eskers also contain highly permeable deposits, which sustain 

substantial aquifer systems. Studies of esker aquifers in Finland have shown significant 

exchange between groundwater and surface water, which substantially impacted surface 

water quality and levels (Rossi et al., 2012, Ala-aho et al., 2013).  
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In addition to the impact of high-permeability landforms on groundwater flow, the impact of 

low-permeability landforms and substrates also substantially impact proglacial 

groundwater systems. For instance, the low permeability of permafrost, which acts as an 

aquitard, substantially impedes groundwater recharge and discharge (e.g. Haldorsen and 

Heim, 1999; Lemieux et al., 2008a b; Bense et al., 2009; Scheidegger et al., 2012; 2014). 

However, seasonal shallow groundwater flow takes place in some catchments which 

contain permafrost. Shallow groundwater in such catchments is therefore strongly 

controlled by the seasonal development of the active layer (e.g. Carey et al., 2013). 

Although western Skeiðarársandur and the Skaftafellsjökull foreland are not underlain by 

permafrost, the sites are probably impacted by seasonally-frozen ground, which impedes 

groundwater recharge and increases runoff. However, such conditions were not observed 

during the fieldwork undertaken and are beyond the scope of this study.  

The aforementioned studies illustrate the high variability in proglacial geomorphology, 

which substantially impacts proglacial groundwater systems. The field sites in Iceland also 

have high variety in depositional environments and geomorphology, which include glacial, 

glaciofluvial, and lacustrine landforms.  It is therefore expected that the variability in 

proglacial hydrogeology and groundwater flow will be high.  

 

2.3.5. The impact of glacial thermal regime on 
groundwater flow 
 

Glacier thermal regime is a key control on subglacial groundwater recharge and flow. 

Glaciers are classified according to their thermal regime: Temperate (warm based), 

polythermal, and cold-based glaciers. Temperate glaciers contain ice whose temperature 

are near the Pressure Melting Point (PMP) throughout the glacier, with the exception of a 

thin surface layer which freezes during the winter, but is removed by melt in the following 

summer (Ahlmann, 1935, cited in Hodgkins, 1997). Temperate glaciers can be found in 
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various glacial environments between mid and sub-polar latitudes. These glaciers 

experience large mass transfers from the accumulation to the ablation zone. Temperate 

glaciers move by internal deformation, sediment deformation, and basal sliding. This 

sliding can lead to the fracturing of near surface ice and the formation of crevasses, which 

route meltwater to the glacier bed. In addition to that, the relatively high motion of 

temperate glaciers enhances meltwater generation at the glacier sole. Therefore, 

temperate glaciers which override permeable substrates generally have significant 

groundwater drainage systems (e.g. Piotrowski, 2007).  

In contrast to temperate glaciers, the ice temperatures of cold-based glaciers are lower 

than the PMP. Hence, melt plays a minimal role in ablation, which mainly occurs by 

sublimation or calving. Meltwater penetration into the bed of cold-based glaciers is also 

low, due to the lack of englacial drainage routes. This paucity is a result of the slow rates 

of deformation of cold based glaciers, which reduces the formation of crevasses. 

Additionally, the formation of superimposed ice, which occurs on the glacier surface by the 

refreezing of meltwater also reduces englacial drainage (Hagen et al., 1991; Hodgkins, 

1997; Gulley et al., 2009). Observations from Svalbard show that superimposed ice bears 

an important influence on drainage during the early melt season, as it serves as an 

aquitard, preventing water from entering the glacier, and causes it to form lakes within 

depressions The absence of meltwater lubrication causes cold glaciers to move slowly, 

mainly by internal creep, which significantly reduces their rates of movement and 

crevassing. This reduces both their impacts as geomorphic agents (Eyles, 2006) and 

hydrologically induced flow instabilities (Bingham et al., 2006). Groundwater underneath 

cold based glaciers is therefore suggested to be low (Haldorsen et al., 2010). .  

Polythermal glaciers consist of ice with spatially heterogeneous temperature distribution. 

Generally, cold ice is found at the glacier margin and ice at the PMP upglacier from the 

margin. Warm-based ice may occur underneath thick sections of the glacier, due to the 

higher pressures and geothermal heat transfer. As glacial drainage is substantially 
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controlled by the basal thermal regime, the distribution of temperate ice within polythermal 

glaciers is an important control on groundwater drainage underneath polythermal glaciers 

(e.g. Haldorsen et al., 2010).  

Glacier thermal regime also impacts subglacial and proglacial groundwater systems 

through its impact on permafrost formation. Permafrost distribution is significantly 

impacted by glaciation conditions, as ice sheets insulate the ground from lower surface 

temperatures, which prevents permafrost development. When an ice sheet develops over 

existing permafrost, it will insulate the permafrost from the low surface temperatures. This 

will gradually raise permafrost temperatures to the PMP, leading to permafrost migration 

along the periphery of the ice sheet margins (Lemieux et al., 2008). The glacier beds at 

Skeiðarársandur and Skaftafellsjökull are temperate and permafrost-free (Marren 2002; 

Robinson et al., 2008). Hence, further discussion about cold based, polythermal glaciers, 

and permafrost lies beyond the scope of this study.  

2.3.6.  Groundwater flow underneath past ice sheets  
 

The development of ice sheets and glaciers over permeable substrates alters the 

groundwater systems within these substrates from being topographically-controlled, 

precipitation-fed systems to ones which are pressurized and recharged by the overlying 

ice (e.g. Haldorsen and Heim, 1999; Haldorsen et al., 2010). Additionally, changes in 

glacial conditions also alter the loading and relaxation stresses on the underlying 

sediments. These alterations lead to substantial changes in the direction, magnitude and 

composition of groundwater flow (Lemieux et al., 2008a,b; Person et al., 2007a b; Bense 

and Person, 2008; 2009; Lemieux and Sudicky, 2010; Normani and Sykes, 2012; Person 

et al., 2012; Provost et al., 2012; Grundl et al., 2013). Studies of groundwater flow 

underneath former ice sheets and glaciers have significantly contributed to the 

understanding of glacial movement and geomorphology, particularly the origins of tunnel 

valleys and eskers, which indicate areas with a surplus of basal meltwaters (Piotrowski, 
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2007; Boulton et al., 2007a, b; Boulton et al., 2009; Kehew et al., 2012). However, the 

attempts to quantify the amount of meltwater that discharged the major ice sheets during 

the last glaciation as groundwater have also caused many controversies in the literature.  

Some models suggested that glaciers positioned over aquifers with sufficiently high 

hydraulic transmissivity were able to drain most meltwater as groundwater. For instance, 

Boulton and Dobbie (1993) suggested that during the Saalian glaciation, areas in the 

Netherlands were able to drain the entire meltwater supply as groundwater. Using a 

higher melting rate (25 mm/year) when modelling the groundwater flow along the transect 

from the Scandinavian ice divide to the periphery in the Netherlands, Boulton et al. (1995) 

also reached similar conclusions. However, their modelled aquifer only had one input of 

hydraulic conductivity (3.00x10-4 m/s), which corresponds to the conductivity of sand. 

However, this modelled homogenous aquifer clearly ignores the high variability of 

hydraulic conductivity which is found within glacial deposits (e.g. Freeze and Cherry, 

1979; Meriano and Eyles, 2009).  

The approach of a homogenous aquifer, suggested that substantial proportions of 

meltwater discharged as groundwater from the European ice sheets (e.g. Boulton and 

Dobbie, 1993; Boulton et al., 1995), have been contested by numerical models and field 

evidence from relict ice sheets in Europe and North America. For instance, a 3D 

groundwater flow model that did account for the heterogeneity of Quaternary sediments 

suggested that only ~25% of meltwater was evacuated as groundwater through the bed. 

The model also suggested that the remaining water drained through subglacial channels 

in spontaneous bursting episodes (Piotrowski, 1997b; Piotrowski et al., 2009). The 

relatively low proportion of groundwater drainage is also supported by field observations 

of tunnel valleys, some up to 80 metres deep, which were found at the study area 

(Piotrowski, 1994). Modelling of groundwater drainage from Nordfjord, Norway, suggested 

that initially, the entire basal meltwater drained as groundwater. However, as deglaciation 

progressed, only 14-38% of the basal meltwater drained as groundwater. The model 
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suggested that the addition of surface meltwater exhausted the capacity of groundwater 

drainage, which generated the formation of alternative drainage routes (Moeller et al., 

2007). Estimations from North America also suggested that relatively small proportions of 

meltwater were discharged via the aquifer. Models of the Laurentide Ice Sheet hydrology, 

suggest that only around 5-10% of meltwaters drained as groundwater (Person et al., 

2007a). Models of the Laurentide Ice Sheet’s Lake Michigan Lobe have shown that even 

when the hydraulic conductivity of the entire bed is increased by two orders of magnitude, 

the aquifers were still not capable of draining the entire meltwater supply and maintain the 

pore-water pressure below the overburden pressure (Breemer et al., 2002). Modelling of 

the impact of the Wisconsian glaciation on groundwater flow in Canada suggested that 

43% of the melt drained away as groundwater. However, these higher estimations were 

calculated using conservative melt rates (Lemieux et al., 2008a). Other research from 

Europe (Piotrowski and Kraus, 1997) and North America (Brown et al., 1987) also 

suggested that relatively small proportions of meltwaters were evacuated as groundwater. 

These studies suggest that significant proportions of meltwater would be transmitted to 

the proglacial zone as groundwater. However, overall, groundwater was not the main 

route of meltwater discharge.   

2.3.7.  Summary  
 

Subglacial and proglacial groundwater flow is described by similar mechanisms to 

groundwater systems in non-glaciated systems. However, subglacial groundwater 

systems are driven by the pressure of the overburden ice rather than topography. The 

characteristics of the substrate exert key controls on groundwater flow, with thick coarse, 

unconsolidated substrates leading to substantial groundwater flow. Proglacial 

geomorphology is also an important control on proglacial groundwater flow, with 

landforms such as talus slopes, eskers, and moraines supporting extensive aquifer 

systems. However, the internal hydrology of these features can be highly heterogeneous. 
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The englacial and subglacial drainage systems, alongside glaciation conditions, which 

control basal thermal regime and the extent of permafrost, also exert key controls on 

subglacial and proglacial groundwater systems. The quantification of groundwater flow 

beneath past ice sheets has led to significant controversies. Some studies have 

suggested that substantial amounts of the overall melt discharged as groundwater, whilst 

others suggested much smaller proportions of melt were discharged in this way. 

Skeiðarársandur and Skaftafellsjökull are temperate glaciers, which are generally 

underlain by permeable beds, hence, contributions of glacial melt to groundwater flow is 

expected to be significant. However, the variability in hydrogeological parameters at the 

sites is also expected to be high. This section described the main mechanisms and 

controls on groundwater flow in glaciated environments. The following section builds on 

this knowledge to describe the controls and impact on proglacial groundwater-surface 

water exchange.   

2.4. Groundwater-surface water exchange  

2.4.1. Introduction  
 

This section describes the importance, key concepts, and main controls of groundwater-

surface water exchange. The interaction between groundwater and surface water 

substantially controls the physicochemical parameters and the cycling of energy, carbon, 

and nutrients between both systems (e.g. Brunke and Gonser, 1997; Bencala et al., 1993; 

Krause et al., 2009; Young et al., 2010). Additionally, this interface also impacts water 

quality and provides natural attenuation for certain pollutants by mixing, sorption, and 

biodegradation processes (e.g. Krause et al., 2009; Byrne et al., 2014; Neumann et al., 

2013; Ullah et al., 2014; Weatherill et al., 2014; Chang and Yeh, 2014). The impact of 

proglacial groundwater-surface water exchange on water physicochemical parameters 

and ecology has also been studied in various proglacial settings (e.g. Brown et al., 2007a, 

b; Roy et al., 2010; Gooseff et al., 2013). However, the understanding that groundwater 
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and surface water are integrated, rather than separated components of the hydrological 

cycle has only increased significantly within the last three decades (e.g.; Winter and 

Rosenberry, 1995; Winter et al., 1998; Krause et al., 2009; 2014; Fleckenstein et al., 

2010).  

It is important to increase our understanding of groundwater-surface water interactions in 

order to improve the management of rivers and lakes, particularly in response to projected 

changes in climate and land use (e.g. Smerdon et al., 2005; 2012; Schmidt et al., 2010; 

Kidmose et al., 2013; Muellegger et al., 2013; Khan et al., 2014; Ullah et al. 2014;). 

Additionally, improved understanding of groundwater-surface water exchange will also 

help to implement legal directives such as the European Union’s Water Framework 

Directive (WFD)  (e.g. CEC 2000; EA 2009; Krause et al., 2014).  

The mixing between groundwater and surface water takes place at the hyporheic zone 

(HZ), which forms the saturated zone between groundwater and surface water (Figure 

2.5). The HZ derives its physicochemical and biogeochemical characteristics from the 

active mixing between groundwater and surface water, hence, it is characterised by sharp 

chemical gradients in Dissolved Oxygen (DO) and redox potential (Boulton et al., 1998), 

high biogeochemical activity (e.g. Gooseff et al., 2003), and highly specialised flora and 

fauna (Ward and Stanford, 1989; Brunke and Gonser, 1997; Kløve et al., 2011a, b).  
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Figure 2.5 conceptual model of the Hyporheic Zone and groundwater-surface water 
exchange (Adapted from the EA, 2009). 

 

Hydrological connectivity is an important concept in the study of groundwater-surface 

water exchange. Hydrological connectivity describes water-mediated transfer of energy, 

matter, and or organisms within or between different components of the hydrological cycle 

(Pringle, 2003). The concept of hydrological connectivity has been used extensively in 

riverine landscapes, including proglacial environments (e.g. Tockner et al., 1997). The 

interactive pathways within riverine landscapes occur along three spatial dimensions: 

vertical (river-groundwater), lateral (river-riparian zone-floodplain), and longitudinal 

(headwater-estuary) (e.g. Ward and Stanford, 1989). Complex patterns of hydrological 

connectivity have been reported from various proglacial environments (e.g. Tockner et al., 

1997; Ward et al., 1999; Cooper et al., 2002; 2011; Crossman et al., 2011). For instance, 

studies from the Val Roseg catchment, a complex alluvial valley in the Swiss Alps, which 

is formed in glacial outwash, suggested that the valley contained various types of 
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channels, such as  the main channel, side channels, intermittently-connected channels, 

mixed channels, groundwater channels, and tributaries. Hence, groundwater-surface 

water interaction at the catchment takes place on various spatial scales (Ward et al., 

1999).  

The temporal variability in groundwater-surface water exchange is mainly controlled by 

climatic/meteorological conditions (e.g. Fairchild et al., 1999b; Aragón et al., 2011; Ward 

et al., 2013; Kirillin et al., 2013). However, anthropogenic activities, such as the operation 

of dams, can also exert important controls on groundwater-surface exchange (e.g. Sawyer 

et al., 2009; Francis et al., 2010). Groundwater-surface water exchange within proglacial 

environments is mainly controlled by meltwater levels which vary on diurnal, seasonal, 

annual and decadal time scales (Hubbard et al., 1995; Brown et al., 2006; Cauvy-Fraunié  

et al., 2013). Additionally, low frequency, high magnitude events, such as floods and 

jökulhlaups can also impact proglacial groundwater-surface water exchange (Cooper et 

al., 2002; 2011; Kristiansen et al., 2013).  

2.4.2. The impact of topography on proglacial   
groundwater-surface water exchange  

 

Groundwater-surface water exchange is substantially impacted by topography and the 

position of surface water features within the landscape. Groundwater flow systems 

generally form a subdued replica of the surface (e.g. Hubbert, 1940; Freeze and Cherry, 

1979). Groundwater flow systems in areas of irregular topography are divided into local, 

intermediate, and regional flow systems, which are nested in this ascending order (Tóth, 

1963). Local groundwater systems flow to a nearby discharge location, such as streams 

and ponds. Regional groundwater flow systems travel longer distances than local ones, 

and discharge into the oceans, major rivers, or large lakes. Intermediate flow systems 

have one or more topographic high and low found between its recharge and discharge 

area. However, in contrast to the regional flow system, it does not contain both a major 
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topographic high and low (Tóth, 1963; 1999). The interaction between groundwater and 

streams, lakes, ponds, and wetlands is controlled by the position of these water bodies 

with respect to the groundwater systems. Local groundwater flow systems are generally 

found in areas of higher topographic relief, while intermediate and regional groundwater 

systems are generally found in areas of low relief. For instance, studies from 

Skeiðarársandur suggested that the regional groundwater flow system flows away from 

the glacier margin, towards the coast. The local groundwater systems at the site were 

found in areas of higher topography, and were generally located in moraine areas (Figure 

2.6) (Robinson et al., 2008).  

 

Figure 2.6. Conceptual model of the different scales of groundwater flow systems in western 
Skeiðarársandur. 

In addition to high frequency, low magnitude accumulation and ablation processes, the area 
is also impacted by glacier surges and jökulhlaups. Adapted from Robinson et al. (2008).  
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The position of surface water systems within the landscape is an important control on 

groundwater-surface water exchange, with surface water bodies (e.g. lakes and ponds) 

connected to local groundwater flow systems reported to have lower exchange with the 

groundwater systems than surface water bodies connected to intermediate and regional 

groundwater flow systems (e.g. Campbell et al., 2004). These patterns have been 

reported from an array of hydrogeological settings, including boreal forests (Smerdon et 

al., 2005), alpine ridges (Campbell et al., 2004), esker aquifers (Ala-aho et al., 2013), and 

proglacial outwash plains (sandurs) (Bahr et al., 1997; Robinson et al., 2008). These 

differences in groundwater-surface water exchange also lead to substantial differences 

between the hydrology and biogeochemistry of lakes and ponds in topographically-high 

and topographically-low areas (e.g. Campbell et al., 2004).  

The connectivity of lakes and ponds with groundwater systems is also an important 

control on their vulnerability to climate change, in situations where groundwater discharge 

increases surface water levels. Hence, lakes and ponds with lower connectivity to 

groundwater systems, which can buffer the projected falls in meltwater, are more 

vulnerable to projected changes in precipitation (e.g. Young et al., 2010;  Ala-aho et al., 

2013).  

2.4.3. The impact of hydrogeology and geomorphology 
on proglacial groundwater-surface water 
exchange 

 

Similar to their impact on groundwater flow, hydrogeology and geomorphology also exert 

important controls on groundwater-surface water exchange. Surface water features with 

low permeability beds generally have lower rates of exchange with the groundwater 

systems, as reported from an array of hydrogeological settings, including wetlands 

underlain by clay deposits (Ferone and Devito, 2004), lakes underlain by low-permeability 

beds (e.g. Roy and Hayashi, 2008; Shaw et al., 2013), and streambeds with high 
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proportion of fine-grained sediment (e.g. Conant, 2004). The hydraulic gradient between 

the surface water body and groundwater is also an important control on the interface 

between groundwater and rivers (e.g. Storey et al., 2003; Hannah et al., 2009; Krause et 

al., 2012), wetlands (Ferone and Devito, 2004), and lakes (e.g. Smerdon et al., 2005; 

Kirillin et al., 2013). Hydraulic gradients in proglacial environments are substantially 

impacted by meltwater levels, which vary on a diurnal, seasonal, annual and episodic 

basis (e.g. Cooper et al., 2002; Dragon et al., 2014). Proglacial groundwater-surface water 

exchange is also controlled by the prevalent high variability in hydrogeological 

parameters. This variability is caused by the array of geomorphic processes (e.g. Marren 

et al., 2005; Robinson et al., 2008; Bajc et al., 2014) and high sediment heterogeneity that 

is prevalent in these environments (e.g. Malard et al., 1999; Hoehn and Meylan, 2009; 

Magnusson et al., 2014).  

Geomorphic variability is also an important control on groundwater-surface water 

exchange (e.g. Kalbus et al., 2006; Norman and Cardenas, 2014). For instance, field 

observations have shown that coarse-grained landforms such as talus and moraines 

provided significant exchange between proglacial groundwater, lakes, and streams (e.g. 

Hood et al., 2006; Roy and Hayashi, 2008; 2009). Additionally, talus and rock glaciers 

also provided storage of groundwater recharge, some of which originated from snow and 

icemelt, which was then slowly released into streamflow (e.g. Clow et al., 2003; Liu et al., 

2004).     

In addition to the impact of large-scale landforms on groundwater flow, smaller scales of 

landforms are also important for groundwater-surface water exchange. For instance, a 

study from a losing stream in the Colorado Rockies has shown the impact of bed 

morphology on groundwater-surface water exchange, where stream water entered the 

alluvium and re-emerged after a short distance. Recharge and discharge took place at 

locations of transitions in bed slope, such as the transition between pools and steeper 

units (Harvey and Bencala, 1993). The impact of streambed topography on hyporheic 
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exchange has also been reported from a gravel-bed stream in Idaho (Gariglio et al., 

2013). The impact of geomorphic features such as pools and riffles in lowland rivers, 

which impact river-aquifer exchange through their control on stream velocity, bed 

sedimentology and hydraulic conductivity, has also been reported (e.g. Käser et al., 

2009).  

Preferential Flow Paths (PFP) also exert important control on groundwater-surface water 

exchange. Soil pipes, which are made from connected subsurface macro pores are an 

important example of a PFP. These features were commonly observed in various settings 

of hill slope hydrology, including glaciated environments (Faeh, 1997; Uchida et al., 2001; 

Cozzetto et al., 2013). For instance, pipe flow at the boundary between frozen and 

unfrozen streambed sediments has served as a PFP in the hyporheic zone of a stream in 

Antarctica. The hyporheic exchange acted as a positive feedback, where the PFP 

enhanced hydrological connectivity and flow due to its impact on water viscosity and 

temperature (Cozzetto et al., 2013). The impact of PFP on subsurface water and solute 

storage and catchment biogeochemistry has also been reported from a field site in Alaska, 

where the flow paths were observed along the boundary between thawed ground and the 

permafrost (Koch et al., 2013). Water tracks are zones of high soil moisture which route 

water downslope over the ice table in polar environments, such as the Dry Valleys of 

Antarctica (Levy et al., 2011). These features were observed to transport water, energy, 

and nutrients between streams and lakes in Antarctica’s Dry Valleys, which makes them 

important enhancers of hydrological connectivity. Although their magnitude is substantially 

smaller than that of meltwater discharge, the solute content of the water tracks is equal to 

or higher than that of streamflow. Hence, water tracks serve as important hydrological 

pathways, which substantially impact the geochemistry of streams and lakes (Levy et al., 

2011). 
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2.4.4.The impact of climatic conditions on groundwater-
surface water exchange  
 

Climatic factors are also important controls on groundwater-surface exchange. Rainfall 

and evaporation are important controls on the levels of shallow groundwater and surface 

water bodies (e.g. Roy and Hayashi, 2008). These factors also affect the gradient 

between groundwater and surface water, which impacts hydrological exchange. For 

instance, rising river stage can reduce the hydraulic gradient between the river and 

aquifer, which can then reduce exchange (Karan et al. 2014). During substantial rainfall 

events this can also cause flow reversals with river stage rising so that it recharges 

groundwater, which can also alter the solute concentrations and biogeochemistry of the 

river and aquifer (e.g. Cooper et al., 2002; Bartsch et al., 2014). Evapotranspiration, which 

lowers shallow groundwater and surface water levels, hence impacting the gradient 

between groundwater and surface water, also exerts a control on groundwater-surface 

water exchange (e.g. Lewandowski et al., 2009). Within glacial environments, climate 

exerts a strong control on snow and ice melt, which are primary controls of groundwater 

and surface water exchange in proglacial environments through its impact on discharge 

levels (e.g. Brown et al., 2006). Climate also controls evaporation and ice formation, which 

also impact groundwater-surface exchange, with the low permeability of ice limiting 

groundwater-lake exchange (e.g. Smerdon et al., 2005; Kirrillin et al., 2013; Blume et al., 

2013). 

2.4.5. Monitoring of groundwater-surface water exchange  
 

The spatial patterns of groundwater-surface water exchange can vary on a scale of 

centimetres to meters in streams (Brunke and Gonser, 1997; Brunke et al., 2003; Kalbus 

et al., 2007; Roy et al., 2011; Krause et al., 2012) and lakes (Kidmose et al., 2011; 2013; 

Blume et al., 2013). Additionally, groundwater-surface water exchange also exhibits 
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substantial temporal variability (e.g. Hubbard et al,. 1995; Smerdon et al., 2005; Kirillin et 

al., 2013). It is therefore important to have methods that can accurately, simply, and 

unobtrusively characterize this fine scale spatial variability in groundwater-surface water 

exchange. The chosen methods also need to be appropriate for the respective aims of the 

investigation (e.g. Kalbus et al., 2006; Schmidt et al., 2007). The main methods which are 

covered in this literature review are based on direct measurements, environmental 

tracers, and hydrogeological measurements. However, this literature review only provides 

a general description of the methods. Further information can be found in individual 

research articles and in general (e.g. Kalbus et al., 2006) and method-specific (e.g. 

Anderson, 2005b; Rau et al.,, 2014) literature reviews and special issues of publications 

(e.g. Krause et al., 2009a, b; 2014; Fleckenstein et al., 2010).  

Direct measurements of water fluxes between groundwater and surface water are usually 

performed using seepage meters, composed of a bottomless cylinder, which is inserted 

into the sediment, and a deflated bag, which collects water fluxes between the aquifer and 

surface water. Water fluxes can then be calculated from the cross section area of the 

cylinder, collected volume, and the time taken to fill the bag (e.g. Lee, 1977; Kalbus et al., 

2006). This method has been used extensively in streams (Murdoch and Kelly, 2003), 

lakes (e.g. Rautio and Korkka-Niemi, 2011; Ala-aho et al., 2013), and wetlands (e.g. Hunt 

et al., 1996). Seepage meters provide direct measurements at relatively low cost. 

However, seepage meters only provide point measurements and may not reflect substrate 

heterogeneity effectively (e.g. Kalbus et al., 2006). Additionally, seepage meters are also 

subjected to uncertainties such as bag distortion, folding, and other technical difficulties. 

However, some of these uncertainties can be overcome by technological advances, such 

as automated seepage meters (e.g. Krupa et al., 1998; Paulsen et al., 2001; Sholkovitz et 

al., 2003).   

Environmental tracers investigate groundwater-surface water exchange assuming 

significant differences between end-members (e.g. Rossi et al., 2012). The main 
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environmental tracers which are used to study groundwater-surface water exchange are 

temperature, Electrical Conductivity (EC), water stable isotopes (δ18O and δD), and solute 

concentrations. Temperature has been used increasingly as a tracer for groundwater-

surface water exchange, exploiting the relative stability of groundwater temperatures, in 

comparison to the higher variability of surface water temperature (e.g. Anderson, 2005b). 

Significant temperature differences between groundwater and surface water can therefore 

be used to identify the general behaviour of a reach (whether it is impacted by 

groundwater upwelling or downwelling), with gaining reaches characterised by relatively 

stable pore-water and surface water temperatures (e.g. Winter et al., 1998; Krause et al., 

2012). Conversely, losing reaches are characterized by high variability in pore-water and 

surface water temperatures (Constantz, 1998; Constantz and Stonestrom, 2003; Kalbus 

et al., 2006). The significant differences between groundwater and meltwater 

temperatures, therefore make temperature an especially useful tracer for proglacial 

groundwater-surface water exchange (e.g. Schneider et al., 2011; Ala-aho et al, 2013; 

Tristram et al., 2015). The use of temperature in investigating groundwater-surface water 

exchange has substantially increased in the last two decades. This increase has been 

stimulated by the increasing availability of robust, inexpensive, and simple heat sensors 

and technologies such as Fibre Optic Distributed Temperature Sensing (FO-DTS), which 

provide temperature monitoring at very high spatial and temporal resolutions (e.g. Selker 

et al., 2006a, b).  

Temperature profiles from the sediment-water interface and the lake/stream bed can be 

used in various ways to infer and quantify groundwater discharge into streams and lakes. 

For instance, temperature profiles are used to solve the heat transport equation, which is 

analogous to the advection-dispersion equation of solute transport in groundwater (e.g. 

Suzuki, 1960; Hatch et al., 2006). Temperature measurements which are taken in high 

spatial and temporal resolution from a stream/lakebed can also be used to investigate 

groundwater-surface water exchange. This approach assumes that the measured 
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temperature variations can be attributed to spatial, rather than temporal, variations in 

groundwater-surface water exchange (e.g. Conant, 2004; Schmidt et al., 2006; 2007). 

Another approach which uses temperature to investigate groundwater-surface water 

exchange applies a heat balance equation, where surface water temperatures are a 

function of groundwater discharge, the differences between groundwater and surface 

water temperatures, and additional heat fluxes through the stream surface (Becker et al., 

2004).  

Geochemistry and water stable isotopes, notably δ18O and δD, have also been used as 

environmental tracers in various proglacial environments (e.g. Roy and Hayashi, 2008; 

2009; Robinson et al., 2009 b; Flaim et al., 2013). These methods are based on the 

different geochemical and isotopic composition between different recharge sources, which 

result from the different controls and hydrological processes which impact the different 

end-members (e.g. Tranter et al., 1993; Robinson et al., 2009a, b). These distinct 

compositions have been previously used to investigate various hydrological issues such 

as sources of recharge (e.g. Fairchild et al., 1999b), hydrological flow paths (e.g. Gooseff 

et al., 2013), hydrological pathways and residence time (e.g. Boucher and Carey, 2010), 

hydrograph separation (Williams et al., 2006), and groundwater-surface water exchange 

(e.g. Roy and Hayashi, 2009). Radon (222Rn), which is used to measure the residence 

time of groundwater, has also been increasingly used as a tracer for groundwater-surface 

water exchange (e.g. Dugan et al., 2012; Kluge et al., 2012; Diova et al., 2013; 

Magnusson et al.,2014). Geochemistry and stable isotopes provide simple, relatively 

inexpensive measurements. However, these methods only provide point measurements, 

which can lower the spatial resolution (e.g. Yde et al., 2008; Hindshaw et al., 2011). 

Additionally, investigating groundwater geochemistry and stable isotopes requires 

infrastructure for the collection of water samples, which may be difficult in remote and 

protected areas (e.g. Cooper et al., 2011). 
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Groundwater-surface water exchange can also be investigated using surface water levels 

and hydraulic heads. These measurements can be used to map horizontal and vertical 

groundwater flow direction which can then be used to infer groundwater-surface water 

interaction (e.g. Drexler et al., 1999; Magnusson et al., 2014). Additionally, such 

measurements, in addition to the hydraulic conductivity, can also be used to calculate 

groundwater seepage (Darcian) fluxes (e.g. LaBaugh et al., 1997). The advantage of 

these methods are the accuracy and relative simplicity of the measurements of hydraulic 

heads (e.g. Brassington, 2008). However, these methods rely on an accurate 

determination of hydraulic conductivity, which is highly variable within proglacial 

environments (e.g. Robinson et al., 2008; Langston et al., 2013). Additionally, the logistics 

and intrusive nature of hydrogeological monitoring networks can be problematic, 

particularly in protected and remote areas (e.g. Cooper et al., 2011).  

2.4.6. Summary 
 

There is an increasing understanding with regards to the integration between groundwater 

and surface water systems. Groundwater-surface water exchange substantially impacts 

the hydrology, ecology, and biogeochemistry of both systems and the hyporheic zone. 

Groundwater-surface water exchange is controlled by topography, geology, and climatic 

conditions. However, groundwater-surface water exchange is subjected to substantial 

temporal and spatial variability. This is particularly true for proglacial environments, which 

have high spatial heterogeneity in substrate characteristics, and high temporal variability 

in discharge and recharge characteristics. There is a wide array of methods to investigate 

groundwater-surface water exchange such as direct measurements, hydrogeological 

methods, and environmental and temperature tracing. However, despite the increase of 

research on groundwater-surface water exchange, there is still a significant paucity of 

research with regards to the temporal and spatial variability in proglacial groundwater-

surface water exchange. The high heterogeneity in meltwater discharge and 
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hydrogeological parameters at the Skaftafellsjökull foreland and Skeiðarársandur 

therefore suggests that proglacial groundwater-surface water exchange will be highly 

variable.   

2.5. The impact of groundwater on proglacial 
habitats  

 

This section describes the impact of groundwater on the conditions of proglacial surface 

water habitats. This section also describes the projected impacts of climate change and 

glacier retreat on proglacial hydrology and ecology. Proglacial ecosystems are 

substantially impacted by climatic variability, diverse water sources , and the hydrological 

connectivity between these water sources, which lead to high variability in small-scale 

habitats (Ward et al., 1999; Füreder et al., 2001; Malard et al., 2001; Finn et al., 2013). 

The interactions between the different water sources create variable hydrological, 

physiochemical and geomorphic conditions, which significantly control the structure, 

distribution and function of stream ecosystems (e.g. Milner and Petts, 1994; Malard et al., 

2006; Jacobsen et al., 2012; 2014).  

2.5.1. The impact of water source on water  
physicochemical parameters in glaciated 
catchments  

 

The hydrology of proglacial catchments is highly variable, with icemelt, snowmelt, rainfall 

and groundwater contributing most runoff. Streams within alpine catchments were 

traditionally divided according to their contributing water source: glacial (kryal), snowmelt 

(rhithral) or krenal (groundwater) streams (Milner and Petts, 1994). The distinction 

between stream types according to this classification was almost solely based on stream 

temperature. Later classification categorised streams were then  based on the relative 

contributions of each water source (Brown et al., 2003). 
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Glaciated and recently deglaciated catchments are characterised by harsh ecological 

conditions, caused by the prevalent high sediment mobility, strong winds, and lack of 

fertile soils (Jumpponen et al., 1999; Marteinsdóttir et al., 2010; 2013). Krenal (icemelt-

fed) and rhithral (snowmelt-fed) streams are characterised by high and variable discharge, 

high suspended sediment concentrations, and high concentrations of dissolved oxygen. 

The environmental conditions in these streams are harsh due to the cold temperatures, 

low nutrients, high turbidity, and high variability in discharge leading to low channel 

stability (e.g. Milner and Petts, 1994; Tockner et al., 1997; 2002; Gooseff et al., 2003; 

Slemmons et al., 2013; Brown et al., 2007a; Cauvy-Fraunié  et al., 2013; 2014). 

Conversely, groundwater-fed (krenal) streams in glacial environments generally have 

higher temperatures, nutrient concentrations and channel stability. These streams also 

have lower turbidity and variability in discharge (e.g. Milner and Petts, 1994; Malard et al., 

1999; 2000; 2001; Ward et al., 1999; Roy et al., 2011; Brown et al., 2007a, b, Crossman 

et al., 2011; Jacobsen et al., 2012). The distance from the glacier margin is an important 

control on water physicochemical parameters within glaciated basins. Temperatures and 

nutrient concentrations generally increase with distance from the glacier margin due to 

increasing contributions from groundwater, rainfall, and snowmelt (e.g. Brown et al., 

2006a).  Algal biomass also increases with distance from the glacier margin (e.g. 

Uehlinger et al., 2010). Hence, the variability in water temperature, chemistry, and ecology 

increases with distance from the glacier margin (e.g. Füreder et al., 2001; Milner et al., 

2009; Cauvy-Fraunié  et al. 2013; Slemmons et al., 2013). 

Water temperature critically influences the growth, development, emergence, 

reproduction, and distribution of aquatic fauna (Ward and Stanford, 1982; Brown and 

Hannah, 2008; Kurylyk et al., 2014a, b). Crossing critical temperature thresholds can 

increase disease vectors, metabolic stress, and impede fish migration, which adversely 

affects organisms and ecosystems (Acuña and Tockner, 2009). The temperatures of 
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meltwater and groundwater-fed streams within proglacial environments are controlled by 

an array of factors including water source, proximity to the glacier margin, climate, basin 

and channel characteristics, riparian conditions, and hyporheic exchanges (Webb and 

Zhang, 1999; Brown et al., 2005; Brown and Hannah, 2008; Acuña and Tockner, 2009; 

Cauvy-Fraunié  et al., 2013). Glacial coverage significantly reduces stream temperatures, 

with a 10% increase in catchment glaciation equating to a cooling of stream temperature 

by 1-2 °C in July/August and 0.6 °C in September (Moore, 2006). In contrast to surface 

water temperatures in proglacial environments, groundwater temperatures are mainly 

determined by the mean annual, rather than the prevailing, air temperature (e.g. Bonan, 

2008). Therefore, groundwater temperatures are generally higher and less variable than 

those of meltwater (e.g. Füreder et al., 2001). For instance, studies from the Val Roseg 

have shown that hyporheic temperatures exceeded meltwater temperatures by 12.1°C in 

the summer and 2.7°C during winter (Malard et al., 2001; Acuña and Tockner, 2009). 

Higher groundwater temperatures than meltwater temperatures have also been reported 

from glaciated catchments in the Alps (e.g. Lafont and Malard, 2001; Malard et al., 2001), 

the Pyrénées (e.g. Brown et al., 2006; 2007b), the Andes (e.g. Jacobsen et al., 2010; 

2012), New Zealand (Datry et al., 2007), Iceland (Gíslason et al., 2000; Tristram et al., 

2014), and Svalbard (e.g. Blaen et al., 2013). In addition to buffering the variability in 

stream temperatures, groundwater discharge can also provide thermal refugia, which 

increases the heterogeneity of river thermal regime and enables the survival of fauna in 

river reaches that would not be suitable otherwise (e.g. Sutton et al., 2007; Kurylyk et al., 

2014). Groundwater contributions to streams therefore increase stream temperature and 

thermal stability, which also significantly impacts stream ecology. Higher biodiversity has 

generally been observed in streams with high groundwater contributions (e.g. Milner and 

Petts, 1994; Ward et al., 1999; Brown et al., 2007a, b; Crossman et al., 2011; 2013).   

Water source in glaciated catchments also substantially impacts water chemistry, which 

impacts nutrient levels. Groundwater-fed streams and lakes generally have higher solute 



Chapter 2  Literature Review 
 

43 
 

concentrations than snow and glacial fed streams, due to longer residence time, hence 

interaction, of groundwater with the substrate (Füreder et al., 2001; Malard et al., 2001; 

Gooseff et al., 2003; 2006; Wimpenny et al., 2010; Fortner et al., 2011). However, 

groundwater chemistry can vary within and between catchments due to the different 

residence times and lithology with which groundwater interacts (e.g. Cooper et al., 2002; 

Dragon and Marciniak, 2010; Hindshaw et al., 2011; Gooseff et al., 2013). In addition to 

geology, water chemistry is also controlled by the distance from the glacier margin. 

Observations from the Val Roseg catchment showed that streams near the glacier margin 

contained only a limited amount of allochotonous organic matter, which was attributed to 

sparse vegetation. Nutrient and organic matter concentrations then increased with 

distance from the glacier terminus (e.g. Zah and Uehlinger, 2001; Milner et al., 2009; 

Slemmons et al., 2013).  

Stream water source also substantially impacts biogeochemistry. Within the various 

stream sources in the Val Roseg catchment, groundwater was observed to have the 

highest concentrations of dissolved organic carbon (DOC) (Tockner et al., 2002). 

Observations of low flow conditions during winter from SE Alaska also report an increase 

in DOC concentrations during winter, due to an increase in the baseflow contribution of 

DOC-rich groundwater (Hood and Berner, 2009). Glacial meltwater are also reported to 

have substantially higher nitrate concentrations than those of snowmelt water (Robinson 

and Kawecka, 2005; Hood and Scott, 2008; Slemmons and Saros, 2012; Slemmons et al., 

2013). In addition to the studies from streams in glacial environments, the impact of water 

source on aquatic biogeochemistry and ecology has also been reported in other proglacial 

water bodies. For instance, substantial differences in water physicochemical parameters 

have been observed in kettle holes at Skeiðarársandur, Iceland, where icemelt-fed kettle 

holes had lower EC and higher turbidity. Conversely, kettle holes which are hypothesized 

to be groundwater-fed had higher EC and low turbidity. Additionally, the kettle holes had 

distinct sulphide oxidation reactions, which were hypothesised to be bacterially-mediated. 
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These reactions and field observations of algal mats and invertebrates suggest that the 

groundwater-fed kettle holes serve as important ecological niches (Robinson et al., 

2009a). The ecological impacts of shallow groundwater systems have also been reported 

from the McMurdo Dry Valleys in Antarctica, where solute transport through water tracks 

and the hyporheic zone of streams enhanced solute mobilisation and improved habitat 

conditions for microbial and invertebrate communities (Gooseff et al., 2013).  

Water source within glaciated environments also substantially impacts water turbidity. 

Turbidity is high in glacial-fed streams due to the high suspended sediment 

concentrations, which reduces water clarity (Hallet et al., 1996; Malard et al., 2006; Hood 

and Berner, 2009; Moore et al., 2009). Conversely, groundwater-fed streams have lower 

concentrations of suspended sediment concentration, hence lower turbidity (e.g. Brown et 

al., 2007a; Milner et al., 2009). Turbidity can substantially impact aquatic ecology. For 

instance, observations from lakes that receive significant glacial melt inputs have shown 

that the high turbidity can attenuate 20-25% of photosynthetically active radiation and 

ultraviolet radiation (Hylander et al., 2011). This attenuation of radiation impacts the 

distribution and behaviour of fauna, with possible implication for aquatic food webs (Utne-

Palm, 1999; Jönsson et al., 2011; Hylander et al., 2011). Therefore, the low turbidity of 

groundwater-fed streams is hypothesised to enhance aquatic biodiversity (e.g. Milner et 

al., 2009).  

2.5.2. Projected impacts of climate change on 
proglacial hydrology and ecology  

 

Climate change is projected to enhance glacial retreat and substantially alter the 

magnitude and timing of snow and icemelt. These changes are projected to alter the 

hydrology of glaciated basins, reducing streamflow meltwater contributions and increasing 

rainfall and groundwater contributions (e.g. Milner et al., 2009; Blaen et al., 2013; 2014). 

These changes are projected to impact water physicochemical parameters, such as 
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temperature. For instance, a decrease of 10% in catchment glaciation was modelled to 

have a similar impact to an increase of 1.6 °C in stream Mean Weekly Annual 

Temperature (MWAT), which is an important indicator of thermal suitability for fish species 

(Nelitz et al., 2008).  

These changes are also projected to substantially impact the ecology of glaciated basins 

(e.g. Milner et al., 2009; Slemmons et al., 2013; Blaen et al., 2013; 2014). The biodiversity 

of aquatic fauna is assessed using various biological indices which focus on the site (α), 

inter-streams (β) and regional (γ) scales (Brown et al., 2007b). Models project complex 

reactions of ecosystems to a reduction in meltwater input. The mollification of the harsh 

conditions associated with glacial streams due to increased proportions of groundwater is 

projected to increase α biodiversity (e.g. Milner et al., 2009). However, the reduction in 

snow, ice melt, and groundwater recharge can lead to a loss of habitat heterogeneity, 

which will reduce the β biodiversity. Alongside the reduction in meltwater input, the 

steepening of the temperature gradient, due to glacier retreat, is also projected to have 

detrimental effects on the biodiversity of these environments (e.g. Milner et al., 2009; Finn 

et al., 2010). The implications of shifting water sources within glaciated basins can be 

illustrated by the disappearance of highly endemic species which are adapted to the 

unique conditions found in glacial meltwater, such as high variability in discharge (e.g. 

Cauvy-Fraunié et al. 2013), low water temperatures and channel stability (e.g. Milner et 

al., 2001; Rossaro et al., 2006), and high turbidity (e.g. Hylander et al., 2011). These 

extinctions are also projected to reduce γ biodiversity (Brown et al., 2007b; Hannah et al., 

2007; Milner et al., 2009). These projections are supported by observations and modelling 

from various proglacial settings. For instance, a comparison between the biodiversity 

indices of glaciated and deglaciated catchments in the Pyrénées has shown that the 

gamma indices of the former were significantly lower than the latter (Finn et al., 2014). 

Observations from the Apennines in Italy suggest the disappearance of chironomid 

species which are endemic to glacial snouts following the disappearance of the glaciers 
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(Rossaro et al., 2006).  The impact of falling meltwater discharge due to glacial retreat has 

also been investigated in Antisana, in the Ecuadorian Andes. Models suggest that glacier 

retreat will lead to a significant reduction in habitats which are impacted by high hydraulic 

stress (caused by the high variability in meltwater discharge). The models therefore 

project a reduction in the abundance of macroinvertebrate species adapted to living in 

such habitats (Cauvy-Fraunié et al., 2014). These studies suggest that the projected 

changes in the contributions of icemelt, snowmelt and groundwater to proglacial streams 

following glacial retreat, will significantly impact proglacial biodiversity (e.g. Blaen et al., 

2013; 2014).  

2.5.3. Summary 
 

The main water sources within proglacial environments are icemelt, snowmelt, and 

groundwater. The relative contribution of each source significantly impacts water 

physicochemical parameters, biogeochemistry, and ecology. Meltwater generally has very 

low temperatures and nutrient concentrations and high variability in discharge. 

Conversely, groundwater temperatures and nutrient concentrations are higher, while the 

variability in discharge is smaller. These favoured conditions in groundwater substantially 

impact proglacial ecology, with higher biodiversity generally reported from water bodies 

with higher groundwater contributions. Climate change and glacier retreat are projected to 

alter the amount of timing of melting, which will alter the contributions of icemelt, snowmelt 

and groundwater within proglacial streams. These changes are projected to have mixed 

impacts on proglacial biodiversity. On one hand, the mollification of the harsh conditions 

associated with meltwater is projected to increase site biodiversity. Conversely, inter-

stream and regional biodiversity are projected to fall due to the reduction in abundance, 

and possible extinction, of highly endemic species following the decline in habitat 

heterogeneity.  
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2.6. Conclusions 
 

This chapter has summarised current research on: 1) the unique hydrological 

characteristics of glaciated basins, 2) The dominant processes and controls on 

groundwater flow within glacial environments, 3) the importance and controls on 

groundwater-surface water exchange, 4) the impact of groundwater contributions to 

proglacial ecology. Additionally, the projected impacts of climate change on proglacial 

groundwater hydrology and groundwater-surface water exchange have also been 

summarised. This literature review highlights the paucity of research with regards to 

proglacial groundwater systems and groundwater-surface water exchange. The literature 

review also highlights the following research priorities:  

 The need for long term monitoring of proglacial groundwater levels and the extent of 

groundwater-fed surface water features.  

 Determination of the spatial variability of hydrogeological parameters within proglacial 

settings using field and laboratory methods in order to understand the patterns of 

proglacial groundwater flow at the site and to develop a hydrogeological framework for 

the individual site margins.   

 Quantitative analysis of hydrological exchange between meltwater, lakes, and 

groundwater in order to improve the understanding with regards to proglacial 

groundwater-surface water exchange.   

These highlighted issues will be addressed in this study using a combination of 

geographical, hydrogeological, and geochemical techniques. These results will improve 

the understanding of the spatial and temporal variability of groundwater-surface exchange 

at the proglacial zones of two retreating glaciers in SE Iceland.  
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3. Field sites 

3.1. Introduction  
 

This chapter describes the field sites where research has taken place. Fieldwork for this 

project was undertaken during three campaigns: 10 July-15 August 2011, 15 June-01 

August 2012, and 23-31 August 2012. Fieldwork took place at the proglacial zone of 

Skaftafellsjökull and the proglacial outwash plain (sandur) of western Skeiðarársandur, 

which are located in SE Iceland (Figure 3.1, Figure 3.2). These sites were chosen for the 

following reasons:  

 The groundwater table at the sites is relatively shallow (approximately 1.5 m below 

ground). Hence a simple, shallow piezometer network is sufficient for the effective 

monitoring and sampling of proglacial groundwater and for the investigation of 

groundwater-surface water exchange. 

 The proglacial outwash plain of Skeiðarársandur was chosen due to the extensive 

background data on aquifer properties, hydrogeology (e.g. Bahr, 1997; Fairchild et al., 

1999a; Guðmundsson, 2002; Robinson et al., 2008; 2009a, b) and geomorphology 

(e.g. Marren 2002a; 2005; Russell et al., 2006; Robinson et al., 2008; Mountney and 

Russell, 2009). This data includes records of groundwater levels which spans from 

July 2000 to August 2012. The background data also includes aerial photographs of 

western Skeiðarársandur from the years 1986, 1997, and 2012, which were used to 

map changes in the extent of groundwater seeps. These data sets were used to 

investigate the impact of glacier retreat on proglacial groundwater levels and the 

extent of groundwater seeps over time (objective i).  

 The proglacial flow regimes at the field sites are impacted by a wide array of 

processes which provide opportunities to investigate groundwater-surface water 
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exchange at various temporal and spatial scales, including episodic low frequency, 

high discharge events (floods and jökulhlaups) (objective iv). 

 The importance of groundwater to the proglacial ecology. Relatively high abundance 

of flora and fauna has been observed around groundwater seeps and groundwater-fed 

streams and lakes, which suggests that these features provide important ecological 

niches in the otherwise barren proglacial environments. However, groundwater-fed 

hydrological systems are likely to be impacted by glacier retreat and changes in 

precipitation. Therefore, an enhanced understanding of proglacial groundwater-

surface water exchange will help to increase the understanding with regards to the 

resilience of these systems to the projected adverse impacts of climate change.  

 The proximity of the sites to Route no. 1 and the Skaftafell camp site eased 

accessibility and simplified the logistics of the project.  

Section 3.2 briefly describes the hydrogeological and hydrological setting of Iceland. 

Sections 3.3 and 3.4 describe the field sites at western Skeiðarársandur and 

Skaftafellsjökull, respectively. Section 3.5 describes the design of the piezometers which 

were used for groundwater monitoring at the sites and monitoring procedures.  

3.2. Icelandic hydrology and hydrogeology 
 

Iceland is located along the North Atlantic mid-ocean ridge, which runs through the island 

in a SW to NE direction. The geology of Iceland is composed of volcanic rocks, of mainly 

basaltic composition (80-85%). The remaining 15-20% are composed of basaltic 

sediments and andesitic intrusions (Johannesson and Saemundsson, 1989; Óskarsdóttir 

et al., 2011). Due to crustal accretion, the age of rocks increases with distance from the 

volcanic rift zones, hence, Iceland’s oldest geology is located in the East and West Fjords 

[Figure 3.1] (Oskarsson et al., 1982).  
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Figure 3.1. The principal components of the geology of Iceland, including the main fault 
structures, volcanic zones, and field sites.  

The abbreviations are as follows: RR-Reykjanes Ridge; RVB-Reykjanes Volcanic Belt; SISZ-
South Iceland Seismic Zone; WVZ-West Volcanic Zone; MIB-Mid-Iceland Belt; EVZ-East 
Volcanic Zone; NVZ-North Volcanic Zone; TFZ-Tjörnes Fracture Zone; KR-Kolbeinsey Ridge; 
ÖVB, Öræfi Volcanic Belt; SVB, Snæfellsnes Volcanic Belt. Adapted from Thordarson and 
Larsen (2007).  

 

Icelandic hydrology and hydrogeology are strongly influenced by the interaction between 

volcanism, glaciers, seasonal snow cover and groundwater (Sigurðsson, 1990; 1993; 

Björnsson and Pálsson, 2008; Óskarsdóttir et al., 2011). Geology forms an important 

control on Icelandic hydrology and hydrogeology, with surface runoff dominating the 

Tertiary and Quaternary formations. Conversely, the fissure swarms and lava fields found 

in the younger volcanic zones have high permeability and hydraulic conductivity, which 

enhances infiltration and the formation of springs and spring-fed streams. Therefore, 

surface runoff is less dominant in these regions (e.g. Hjartarson, 1994; Gíslason et al., 
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1996; Sigurðsson and Einarsson, 1988; Sigurðsson 1990; 1993; Jónsdóttir, 2008 

Einarsson and Jónsson, 2010a, b). Additionally, substantial aquifers can also be found 

within proglacial outwash plains (sandurs) whose thickness can reach several hundred 

metres (Bahr, 1997; Robinson et al., 2008).  

Glaciers and seasonal snow cover, which store and delay runoff on various temporal 

scales, also exert important controls on Icelandic hydrology and hydrogeology (e.g. 

Björnsson and Pálsson, 2008; Crochet, 2013). Icelandic glaciers store the equivalent of 

15-20 years of mean annual precipitation (Jóhannesson et al., 2006). Icelandic rivers are 

usually divided according to their source: precipitation (snow and rainfall), glacial rivers, 

and groundwater-fed rivers (e.g. Kjartansson, 1945; Óskarsdóttir et al., 2011). Although 

precipitation contributes the highest proportion to runoff, glacial and groundwater-fed 

rivers also contribute substantial amounts (e.g. Jónsdóttir, 2008; Robinson et al., 2009a, 

b; Einarsson and Jónsson, 2010a, b). Glacial runoff usually has higher Suspended 

Sediment Concentration (SSC) and lower Total Dissolved Solutes (TDS) than non-glacial 

rivers (Anderson et al., 2000; Wimpenny, 2010). However, the SSC in glacial-fed rivers is 

related to discharge, and highest during summer and early autumn. Spring-fed rivers in 

Iceland have low variability in temperature, discharge, and chemical content, and low SSC 

(Sigurðsson and Einarsson, 1988; Sigurðsson, 1990; Gíslason, 2008). The mean runoff 

for Iceland is approximately 1500-1600 mm/year (Tómasson 1981, 1982; Jónsdóttir, 

2008). Simulations suggest an increase of 25% in runoff, due to climate change and 

enhanced glacial melt, between 2071 and 2100 (Jónsdóttir, 2008).  

Glaciers cover around 11% of Iceland’s land surface, and receive about 20% of its 

precipitation (Jóhannesson et al., 2006; Björnsson and Pálsson, 2008). Icelandic glaciers 

are temperate, hence, they are dynamic and actively respond to changes in climatic 

conditions. Despite several exceptions, Icelandic glaciers have generally been retreating 

since the 1890s, with ice surface elevation within the ablation zone dropping by dozens of 

metres. Some glacier margins are retreating at nearly 100 m/year (Björnsson and 
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Pálsson, 2008; Bradwell et al., 2013; IGS 2013). The modelled changes in snowmelt and 

glacier mass balance project substantial changes in the magnitude and timing of glacial 

runoff. These changes impose significant challenges, particularly to the hydroelectric 

power industry (e.g. Thorsteinsson and Björnsson, 2011). Changes in runoff are also 

projected to impact river and coastal sedimentation, ocean salinity, and currents 

(Einarsson and Jónsdóttir, 2008). Glacier retreat is also projected to cause substantial 

shifts in drainage routes (Flowers et al., 2003; 2005) and to enhance the formation of ice 

contact lakes, with repercussions to proglacial hydrology (Schomacker, 2010; Marren and 

Toomath, 2013).  

Iceland is located in a climatically important region within the North Atlantic, at the 

interface between the mid-latitude and polar atmospheric circulation cells and ocean 

currents. Its location between warm and cold ocean currents also increases its sensitivity 

to changes in oceanic circulation (Flowers et al., 2005; Björnsson and Pálsson, 2008). 

Most climate change projections for Iceland suggest that over the 21st century 

temperatures will increase at around 0.2-0.3°C/decade, with higher increases during 

winter. Precipitation is also projected to increase around 0.5-1.8 % per decade (Nawri and 

Björnsson, 2010).  

Modelling the impact of climate change on the Icelandic ice caps project glacier retreat 

and changes in meltwater runoff. The loss of glacier volume is projected to increase runoff 

from the icecaps until around 2060, when runoff will begin to decrease (Guðmundsson et 

al., 2009). Jóhannesson et al. (2006) modelled projected changes in temperature and 

precipitation on the mass balance and runoff of Langjökull, Hofsjökull and southern 

Vatnajökull. Their results suggest that the glaciers with the largest mass balance turnover 

and longest ablation season had the highest static sensitivity (change in mass balance 

due to a rise of 1°C). Such changes, along with diurnal and seasonal alterations in 

meltwater generation (de Woul et al., 2006), are projected to significantly impact water 

resources in Iceland (Jóhannesson et al., 2006). Climate change models for Langjökull 
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and Hofsjökull also project substantial changes in the ice caps’ extent within 100-200 

years (Guðmundsson et al., 2009). Hofsjökull is approximately 300 m higher, with its ice 

thickness exceeding that of Langjökull by approximately 100-200 m. These differences 

substantially impact the ice caps’ response to warming, as Langjökull is projected to 

disappear within approximately 145 years. Conversely, the highest peaks of Hofsjökull are 

projected to remain ice-covered after 200 years (Guðmundsson et al., 2009).  

The field sites for this study are located in the proglacial zones of Skeiðarárjökull and 

Skaftafellsjökull, which are outlet glaciers of the Vatnajökull ice cap, the largest icecap in 

Europe. The impacts of climate change on the Vatnajökull ice cap have also initiated 

various studies due to its extent and geometry, which control groundwater and surface 

water discharge, jökulhlaup generation, and ice divides (e.g. Flowers et al., 2003; 2005; 

Aðalgeirsdóttir et al., 2006). The majority of Vatnajökull’s mass is stored in low elevations, 

which increases the sensitivity of its geometry to small changes in air temperature 

(Flowers et al., 2003). Vatnajökull’s volume has decreased by about 300 km3 (10%) since 

1890, with major outlets retreating by 2 to 5 km (Björnsson and Pálsson, 2008; IGS, 

2013). Climate warming is projected to significantly impact the hydrology of Vatnajökull 

and its surroundings. Following retreat, the southern outlets are projected to experience a 

substantial reduction in runoff (Flowers et al., 2005). Models also project that changes in 

glacial extent will dramatically reduce discharge and shift drainage patterns. An extensive 

retreat of Skeiðarárjökull is also projected to disturb the frequency and routing of 

jökulhlaups (Flowers et al., 2005). Glacier retreat is also projected to increase the 

influence of topography on river routing, diverting waters between basins. The 

reorganisation of drainage following glacier retreat can therefore isolate catchments in 

southern Vatnajökull from glacial runoff (Flowers et al., 2005).  
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Figure 3.2. Skeiðarársandur and southern Vatnajökull.  

A. Location of the Vatnajökull ice cap in Iceland. The red box denotes the extent of image B. 
B. The outlet glaciers of Southern Vatnajökull. The field sites are outlined in black. Images 
are taken from Google Earth (2013).  

3.3. Western Skeiðarársandur 
 

Skeiðarársandur forms the proglacial outwash plain of Skeiðarárjökull (latitude 63°57’ N, 

longitude 17°21’ W), a retreating temperate piedmont glacier in SE Iceland that is a 

southern outlet glacier of the Vatnajökull ice cap (Figure 3.2). Skeiðarársandur is reputed 

to be the world’s largest active sandur (~1,000 km2) (Marren, 2002a). It extends across 

the ~23 km wide glacier margin of Skeiðarárjökull and ~20 km from the glacier margin to 

the Atlantic coast (Figure 3.3). Several active volcanic centres, including Grímsvötn, which 

last erupted in May 2011, are located beneath Vatnajökull (Figure 3.2) and are the source 

of periodic glacial outburst floods (jökulhlaups) which impact Skeiðarársandur. 

Skeiðarársandur is drained by three major meltwater rivers: The Skeiðará, Gígjukvísl and 
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Súla, located in the eastern, central and, western parts of Skeiðarársandur, respectively 

(Guðmundsson et al., 2002) (Figure 3.3). Substantial changes in sandur drainage 

occurred in 2009 when ongoing glacier retreat led to a rerouting of the majority of 

meltwater from the Skeiðará into the Gígjukvísl river system. Skeiðarársandur is also 

impacted by jökulhlaups in the Súla river system from Lake Grænalón, which is located to 

the north west of the sandur (Figure 3.2).  

 

Figure 3.3. The field sites at Skeiðarársandur and the Skaftafellsjökull foreland. 

A. Site location in Iceland showing the field sites at  western Skeiðarársandur (1) and the 
Skaftafellsjökull foreland (2). B. General field site map (the map is from Skaftafell Sérkort 5 
hiking map, 2009) 
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Figure 3.4. A view of the field site in western Skeiðarársandur. 

A. Location map of Skeiðarárjökull in Iceland. B. The Skeiðarársandur outwash plain and the 
study area (denoted in solid white line) in western Skeiðarársandur (from Google Earth, 
2013). OD1 and OD2 show the locations of overdeepenings in eastern/central and western 
Skeiðarárjökull, respectively. These locations are based on Björnsson et al. (1999). C. The 
field site in western Skeiðarársandur (the Icelandic Geodetic Service, Landmælinger Íslands 
[LMÍ], 1997). The study area is denoted by the dashed white line. Shallow piezometers are 
denoted in white with the different shapes denoting the different hydrogeological 
environments in which the piezometers were installed (see legend). The solid white line 
denotes the main area of groundwater seeps in 1997.   

 

The Skeiðarárjökull geomorphic landsystem has been classified using the landsystem 

model of Evans and Twigg (2002) as a temperate, actively-receding glacier margin that 

also experiences periodic surge events. The main depositional domains are marginal 

moraines, incised and terraced glaciofluvial forms, and subglacial landforms (Robinson et 

al., 2008). The geomorphology and hydrology of Skeiðarársandur are impacted by the 

interaction between high frequency, low magnitude processes (i.e. seasonal and annual 

accumulation and ablation) and low frequency, high magnitude events (i.e. glacial surges 
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and jökulhlaups) (Marren, 2005). The mean annual precipitation between 1978-2012 was 

1712±218 mm (Figure 3.5, Table 3.1). The mean air temperature was 4.81± 0.64 °C 

(Icelandic Meteorological Office [IMO, 2013]). The mean annual and seasonal air 

temperature and precipitation in western Skeiðarársandur and Skaftafell are shown in  

Table 3.1.  

 

Figure 3.5. Total annual precipitation and mean annual air temperature for western 
Skeiðarársandur (1978-2012). 

 The data was obtained from the Kirkjubæjarklaustur meteorological station (IMO, 2013).  
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Table 3.1. Annual and seasonal mean air temperature and total precipitation at the 
Skeiðarársandur and Skaftafellsjökull field sites.  

The data was obtained from the IMO meteorological stations in Kirkjubæjarklaustur (A) and 
Skaftafell (B) (IMO, 2013).  

Mean Variable Temperature (°C) Precipitation (mm) 

A. Western Skeiðarársandur 

Annual    

Winter (December-February) 

Spring (March-May) 

Summer (June-August) 

Autumn (September- 

November) 

0.08 ± 0.88 

3.62 ± 1.06 

10.78 ± 0.58 

4.82 ± 0.87 

491 ± 125 

360 ± 91 

388 ± 91 

484 ± 146 

B. Skaftafellsjökull foreland 

Annual  5.15 ± 0.38 1595 ± 302 

Winter (December-February) 2.38 ± 0.11 497 ± 184 

Spring (March-May) 4.36 ± 2.65 329 ± 132 

Summer (June-August) 10.23 ± 0.58 313 ± 116 

Autumn (September- 

November) 

5.05 ± 3.07 470 ± 142 

 

The margin of western Skeiðarárjökull has been retreating since the end of the 19th 

Century, the Little Ice Age (LIA) maxima in Iceland (Björnsson and Pálsson, 2008). 

Western Skeiðarárjökull has retreated a net distance of approximately 3.5 km beyond its 

position since monitoring began in 1932 (The Icelandic Glaciological Society [IGS], 2013). 

However, this distance excludes advances in the years 1946, 1965-6, 1973-5, and 1985-6 

and the 1991 surge event (Figure 3.6). From 1978 to 2012, the glacier margin retreated 

~2 km, at a mean rate of 30 m/year. However, this distance was offset by advances during 

the mid 1980s and the 1991 surge. Consequently, the net retreat of the glacial margin 

between 1978 and 2012 was approximately 1 km. Following the 1991 surge, western 

Skeiðarárjökull has retreated continuously. The distance of retreat between 1997 and 
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2012 was approximately 1.5 km. The mean annual rate of retreat during this period has 

increased by a threefold (from 31 m/a to 95 m/a). The rates of retreat which were 

measured in western Skeiðarárjökull are 2-4 times higher than those reported from 

smaller retreating outlet glaciers of southern Vatnajökull (Bradwell et al., 2013; IGS, 2013; 

Marren and Toomath, 2013). 

 

Figure 3.6. Fluctuations in the position of the glacier margin of western Skeiðarárjökull 
(1932-2012).   

A. The cumulative retreat distance of western Skeiðarárjökull from 1932 to 2012 (IGS, 2013). 
The arrows show the years of the aerial images (Chapter 4). 2B. Annual changes in the 
position of the glacial margin of Western Skeiðarárjökull (1932-2012). The full length of the 
mapping of groundwater seeps (1986-2012) and the period of groundwater monitoring are 
marked. The data was obtained from the database of the IGS, 2013. The figure was taken 
from Levy et al. (2015).  

 

Western Skeiðarársandur is also substantially impacted by glacial surges, which lead to 

significant advances of the glacier margin. These events are coupled with a shift of the 
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subglacial drainage from an efficient, channelized drainage system, into an inefficient, 

linked-cavity system (Kamb et al., 1985; Björnsson, 1998). Such changes to the subglacial 

drainage system are likely to impact the spatial distribution and amount of water 

transmission into the glacier bed, which will impact subglacial groundwater recharge 

(Boulton et al., 2001a, b; Boulton and Zatsepin, 2006). 

Skeiðarárjökull has experienced glacial surges in 1929 and 1991. During the 1991 surge, 

the western glacier margin advanced up to one km between September-November 1991, 

advancing at ~9.4 m/day. The surge increased the glacier surface area by ~10 km2 

(Pálsson et al., 1992; Waller et al., 2008). The extent of surging during the 1991 event 

varied across the Skeiðarárjökull margin, with a significant advance in the west (~1 km) 

and only minor advance in the east (Waller et al., 2008). This study focuses on the ice-

marginal zone of the more dynamic western area of the glacier (Figure 3.4B). The 

geomorphic impacts of surges in western Skeiðarársandur include the formation of push 

moraines, deposition of outwash fans adjacent to the glacier, and changes in the routing 

of meltwater drainage (Russell et al., 2001; Van Dijk and Sigurðsson, 2002; Waller et al., 

2008). Surges also impact proglacial hydrology and hydrogeology by steepening the ice 

surface slope and the hydraulic gradient (Wiśniewski et al., 1997; Russell et al., 2001; 

Robinson et al., 2008). The steeper hydraulic gradient is expected to increase 

groundwater flow (Haldorsen and Heim, 1999).  

The geomorphology and hydrology of Skeiðarársandur are also substantially impacted by 

the interaction between Vatnajökull and its subglacial volcanoes, which include Grímsvötn 

and Gjalp. The subglacial Grímsvötn volcano is located about 40 kilometres to the north of 

Skeiðarársandur (Figure 3.2). It is Iceland’s most active volcano in historic times, with an 

eruption frequency of 7 eruptions/100 years (Óladóttir et al., 2011). Recent eruptions of 

Grímsvötn took place in 1996, 1998, 2004 and May 2011 (Jude-Eton et al., 2012). The 

activity of the Vatnajökull’s subglacial volcanoes substantially impacts Skeiðarársandur 
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through the generation of subglacial jökulhlaups (e.g. Russell et al., 2006) and, to a lesser 

extent, ash fall.  

The main impact of glacier-volcanic interaction is the generation of jökulhlaups, which 

originate from glacio-volcanic interactions with the subglacial volcanic centres beneath 

Vatnajökull. In addition to the small jökulhlaups which occur regularly, substantial 

jökulhlaups with peak discharges between 25,000-53,000 m3/sec took place in 1934, 

1938, and November 1996 (Guðmundsson et al., 1995; Magilligan et al., 2002). Major 

jökulhlaup events are associated with substantial hydrogeological and geomorphic 

impacts. These include rearrangement of the subglacial and proglacial drainage, the likely 

pressurisation of the groundwater system, and extensive sediment erosion and 

deposition. The latter processes can change the depth to the water table, which also 

alters the response of groundwater to precipitation. Jökulhlaup deposition and erosion 

also alters the distribution and extent of aquifer properties, which will also impact 

groundwater flow. The highest and most variable values of hydraulic conductivity in 

Skeiðarársandur were measured in the shallow subsurface zones that were inundated by 

the November 1996 jökulhlaup (Robinson et al., 2008). This event also resulted in an 

extensive formation of kettle holes, which originate from the melting of grounded ice 

blocks that were carried during jökulhlaups (Fay, 2002). Groundwater-filled kettle holes 

can provide important, yet transient, ecological niches (Robinson et al., 2009a).  

The hydrogeology of Skeiðarársandur is significantly impacted by the wide variability of 

geomorphic processes (glacial, glaciofluvial, volcanic, and aeolian) which occur on 

Skeiðarársandur and leads to significant heterogeneity in hydrogeological parameters 

(Robinson et al., 2008). The sandur stratigraphy forms an extensive unconfined aquifer 

where thickness varies from 80-100 m near the glacier margin to ~250 m near the coast 

(Guðmundsson et al., 2002). The main sources of groundwater recharge are local 

precipitation and glacial melt, which originates from several different sources including 

basal melt; subglacially-routed, supraglacial, and englacial melt; and the melting of buried 
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stagnant ice. Stable isotopes (δD and δ18O) have shown that the influence of glacial melt 

on groundwater decreases rapidly with distance from the margin (Robinson et al., 2009b). 

However, this pattern can be complicated due to hydrological exchange between 

groundwater and meltwater rivers. Skeiðarársandur is also locally underlain by buried ice 

(Everest and Bradwell, 2003), which can strongly impact groundwater recharge, dynamics 

and routing (Robinson et al., 2008).  

The regional groundwater system generally flows from north to south. However, local, 

perched groundwater systems, which are imposed on the regional groundwater flow 

system (Tóth, 1963), have also been identified. These perched groundwater systems 

were mainly found within moraine areas (Robinson et al., 2008). The groundwater table 

across most of the sandur is shallow, typically 2-3 m below ground level. The proximal 

sandur is generally dominated by groundwater recharge, while the distal sandur is 

dominated by groundwater discharge, with water table depths reducing to a few 

centimetres near the coast (Bahr, 1997; Robinson et al., 2008). The spring lines are 

generally parallel to the Skeiðarárjökull margin, which suggests that the position of the 

glacier margin, rather than the lateral rivers, controls their distribution. The calculated 

regional groundwater discharge is ~2.5 m3/sec, with mean regional groundwater velocity 

of 0.15 m/day (Robinson et al., 2008). High sediment mobility, strong winds, and the lack 

of fertile soils create harsh ecological conditions in Skeiðarársandur (Marteinsdóttir et al., 

2013). Field observations report relatively high abundance of flora and fauna near 

groundwater-fed seeps, which possibly form important ecological microsites where growth 

conditions are more favourable (Figure 3.7). 
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Figure 3.7. The impact of groundwater seeps on proglacial ecology. 

Relative abundance of vegetation around a groundwater seep in western Skeiðarársandur. 
The relative abundance suggests that these sites serve as important ecological niches. In 
addition to volcanic and glaciofluvial processes, aeolian activity (in the background) is also 
prevalent in this harsh proglacial landscape.  

 

The field site in western Skeiðarársandur is located between the Súla and Gígjukvísl river 

systems (Figure 3.8) and is characterised by a range of contrasting landsystems. The 

western boundary of the study site is defined by an active braid plain of the River Súla. 

This river system drains subglacially from Lake Grænalón, an ice-dammed lake located 

alongside Skeiðarárjökull’s extreme western margin, approximately 20 km  north of the 

field site (Figure 3.2). As well as discharging glacial meltwater, this river system also 

includes non-glacial contributions from the surrounding valley sides. The northern limit of 

the study area is characterised by a distinct moraine ridge bordered by stagnant ice and 

hummocky moraine on its ice proximal side and fine-grained outwash fans on its distal 

side. This landform assemblage marks the limit of the 1991 surge event (Russell et al., 
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2001). The southern limit of the area is associated with a broader zone of higher-relief 

moraines that comprises part of a larger moraine system that is a distinctive feature of this 

part of Skeiðarársandur. This high-relief moraine complex has similarly been related to an 

earlier surge event (Russell et al., 2001). Whilst parts of  this complex feature clear 

moraine ridges, other parts, including the area located immediately south of a lake basin 

referred to as Twin Peaks Lake (TPL), are characterised by relict meltwater channels and 

pitted outwash surfaces indicating the influence of former jökulhlaups. The proximal 

boundary of the high-relief moraines is characterised by a prominent ice-contact slope. 

Finally, the eastern border of the field site is marked by the meltwater channel of the 

Gígjukvísl tributary.  

The Twin Peaks Lake area is a prominent feature of the western part of the study area, 

located at the foot of the ice-contact slope and is characterised by a series of enclosed 

depressions that feature prominent cracks with sharp edges that are suggestive of the 

presence and gradual melt-out of buried ice. The presence of ice on the proximal side of 

the high-relief moraines is consistent with the observation of buried ice in a large moraine 

section exposed on the western bank of the River Gígjukvísl (Everest and Bradwell, 

2003). To the north of this area, the topography is characterised by a large area of low-

relief moraines. The occurrence of small moraine ridges and possible crevasse-fill ridges 

suggest that this is a former subglacial surface (Waller et al., 2008).  

The eastern part of the study area is characterised by a braid plain formed by a 

combination of supraglacial and subglacial drainage that resulted from advance during the 

1991 surge. This braid plain was also active during the subsequent November 1996 

outburst flood (e.g. Russell et al., 2006). Progressive glacier recession and down wasting 

following the 1991 surge has resulted in a decrease in the extent of fluvial activity in this 

area. The distal part of this braid plain forms one of the lowest parts of the study area and 

is the main area of active seeps. An extensive monitoring network was emplaced in this 

area in 2000 and 2001 (Robinson et al., 2008). However, following glacier retreat, 
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groundwater levels have continued to fall below the intake of most piezometers. The 

monitoring infrastructure was therefore augmented in July 2011. 

 

Figure 3.8. The field site in western Skeiðarársandur (the Icelandic Geodetic Service, 
Landmælinger Íslands [LMÍ], 1997).  

The study area is denoted by the dashed white line.  Shallow piezometers are denoted in 
white with the different shapes denoting the different hydrogeological environments in 
which the piezometers were installed (see legend). The solid white line denotes the main 
area of groundwater seeps. Piezometers which were installed in 2011 are outlined in red. 

 

3.4. The Skaftafellsjökull foreland field site 
 

Skaftafellsjökull (64°00’42.84’’N, 16°54’20.77’’W) is a temperate valley glacier, located in 

SE Iceland . The glacier sources most of its ice from the Vatnajökull ice cap, with a minor 

component in the east that originates from Öræfajökull (Figure 3.2) (Tweed et al., 2005; 

Cook et al., 2010). The glacier margin is approximately 120 m above sea level, and is part 

of the extensive low lying coastal plain sandur, which stretches from Skeiðarárjökull to 
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Öræfajökull. The Skaftafellsjökull glacier margin is approximately three km wide, and is 

drained by the meltwater river Skaftafellsá (Figure 3.9) (Marren, 2002b). 

 

Figure 3.9. Study area of the Skaftafellsjökull foreland (Vatnajökull National Park, 2007). 

The main changes between the photo and the study (2012) are the expansion of the ice 
contact lake at the Skaftafellsjökull foreland, the shrinking of Dead Bird Lake, and the 
diversion and drying out of the western branch of the Skaftafellsá. The black rectangle 
shows the approximate location for Figure 3.11. 

Figure 3.10 shows the fluctuations in the position of the Skaftafellsjökull glacier margin, 

which has been monitored at the present site since 1942 (Thorarinsson 1943, 1956; 

Thompson 1988; Sigurðsson, 1998). The glacier reached its LIA maximum extent 

between 1870 and 1904. Up until 1935, Skaftafellsjökull and the adjacent glacier 

Svínafellsjökull (Figure 3.3) were joined, forming a single piedmont lobe (Thorarinsson, 

1943). Skaftafellsjökull retreated steadily between 1904 and 1970. However, some 

advances took place in 1951-2, 1957 and 1968. The mean rate of retreat between 1942 

and 1970 was 72 m/a. The glacier generally advanced between 1971 and 1988, with a 

total advance of 96 m. This placed the margin in similar position to its location during the 

mid 1960s. Following these advances, the glacier retreated 136 m between 1989 and 

1995. This retreat was followed by an advance between 1996 and 1998 (Figure 3.10A). 
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The glacier has been retreating continuously since 1999, during which it has retreated 

approximately 600 m (Figure 3.10B) (Marren and Toomath, 2013; IGS, 2013).  

 

Figure 3.10. Fluctuations in the position of the Skaftafellsjökull foreland.  

A. Annual glacier margin fluctuations for Skaftafellsjökull (1943-2012). B. Cumulative glacier 
margin fluctuations (1943-2012). Data was kindly donated by the Icelandic Glaciological 
Society.   

 

The retreat of the glacier margin from the LIA maximum left a series of parallel moraine 

ridges, which are separated by a relict sandur (Thompson, 1988; Marren and Toomath, 

2012). The moraines confine the two branches of the meltwater channel within the 
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proximal proglacial zone. The channels then merge behind a large moraine ridge, which 

dates back to 1939 (Figure 3.9). Past the moraine belt, the Skaftafellsá forms an 

unconfined sandur plain, which stretches to the coast (Thompson, 1988, Marren, 2002; 

Marren and Toomath, 2012). Similar to other outlet glaciers of Vatnajökull, an over-

deepened basin has also been detected beneath Skaftafellsjökull (Tweed et al., 2005). 

The overdeepening significantly impacts sediment entrainment, the formation of ice by 

glaciohydraulic supercooling, and the expansion of the ice-contact lake (Tweed, 2005; 

Cook et al., 2010; Cook and Swift, 2012).  

Glacier retreat has substantially impacted the proglacial hydrology and geomorphology of 

the Skaftafellsjökull foreland (Marren and Toomath, 2013; 2014). The recent retreat of 

Skaftafellsjökull into the overdeepening has substantially increased the size of the ice-

contact lake (Figure 3.11) (Schomacker, 2010; Marren and Toomath, 2013). This 

expansion intercepted the eastern meltwater outlet and made it topographically lower. 

This lowering diverted meltwater from the western outlet, which was abandoned in late 

2010. The area between the two outlets contains several moraine lake basins (The 

Northern Oasis, Figure 3.9), which are underlain by fine-grained sediment. Field 

observations have shown substantial decreases in the extent of these lakes between July 

2011 and August 2012 (Figure 3.11). 
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Figure 3.11. Aerial view of the Skaftafellsjökull glacier margin (August, 2012).  

Note the expansion of the ice-contact lake and the desiccation of Dead Bird Lake. The relict 
meltwater channels of the Skaftafellsá can be seen in the foreground (Photo courtesy of Z. 
Robinson).   

Annual and seasonal meteorological data for the site has been obtained from the IMO 

[Veðurstofa ĺslands] (2013) station near the Skaftafell Visitor Centre, where available 

meteorological records date back to 1995 (Figure 3.12). The mean annual precipitation 

(1995-2012) was 1595 mm/year. The mean annual temperature was 5.15°C (IMO, 2013). 

The highest precipitation falls in winter and autumn. However, the seasonal distribution of 

precipitation is fairly even ( 

Table 3.1B)  [IMO, 2013].  
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Figure 3.12. Total annual precipitation and mean annual temperature at the IMO Skaftafell 
meteorological station (IMO, 2013).  

 

The geomorphology of the Skaftafellsjökull foreland reflects the combined influence of 

proglacial, subglacial, glaciofluvial and glaciolacustrine processes (e.g. Marren 2002b). 

The influence of subglacial and proglacial processes are predominant in the areas of 

higher topography and are responsible for the development of undulating surfaces and a 

prominent series of recessional moraines. Whilst they are only 1-2 m in elevation, the 

recessional moraines are laterally extensive and describe a saw-tooth pattern that 

illustrates both the ongoing recession of the glacier margin and its crevassed and lobate 

nature. These areas associated with subglacial and proglacial deposition are generally 

underlain by fine-grained tills that can reach a few metres in thickness. Glaciofluvial 

processes are represented by the formation of a series of braid plains composed of 

outwash sands and gravels. The braid plain adjacent to the Eastern branch of the 

Skaftafellsá (Figure 3.9) is the only one that is currently active and there are a series of 

higher elevation braid plains that have become inactive as a result of ongoing glacier 
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recession. These inactive braid plains often occur as distinct corridors of outwash (e.g. to 

the east of the “Instrumented Lake”), which illustrate the influence of proglacial topography 

on the routing of proglacial drainage. The active and inactive braid plains are also often 

separated by prominent terraces that reflect progressive incision and a lowering in the 

elevation of the key drainage routes over time. Finally, the proglacial area also features a 

series of lakes and lake basins. These are particularly prominent along the current ice 

margin as a result of the recession of the ice margin into a subglacial overdeepening 

(Marren and Toomath, 2013). In more distal areas, the foreland features lakes that are 

impacted by glacial meltwater, characterised by high suspended sediment loads, which  

appear light grey in the imagery. Conversely, lakes which appear darker (Figure 3.9) are 

fed primarily by groundwater and precipitation, hence the lower suspended sediment 

loads (e.g. Crossman et al., 2012).  

The main monitoring area at the Skaftafellsjökull foreland is located between the eastern 

meltwater channel of the Skaftafellsá and the Svínafellsjökull track (Figure 3.9). This area, 

termed “the Southern Oasis”, sits mainly within a relict braid plain extending from east to 

west that was originally fed by meltwater from the adjacent glacier Svínafellsjökull (Figure 

3.3). The Southern Oasis contains several freshwater lakes and a groundwater-fed 

stream, which are significant to the local ecology, supporting birds, fish, and a wide range 

of invertebrates. A small moraine ridge, which runs from north to south, bounds the area 

from the west (Figure 3.13).  
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Figure 3.13. An oblique view of the Skaftafellsjökull foreland, July 2012.  

A. The main features within the Skaftafellsjökull foreland study area (looking west). The 
Southern Oasis is denoted by the red box. The black box shows the approximate 
boundaries of the Northern Oasis. B. The main hydrological and geomorphic features of the 
Southern Oasis lakes field site. The transect (piezometers T1-T3) is located between the 
Skaftafellsá and Swan Lake, where pressure transducers monitored groundwater levels in 
order to investigate river-aquifer-lake exchange.   

 

The meteorological conditions at the Skaftafellsjökull foreland were obtained from the IMO 

meteorological station, which is located approximately 5 km northwest of the fieldsite. The 

mean monthly precipitation and temperature are based on the measurements of the 

aforementioned station between 1995 and 2013 (Table 3.1, Figure 3.12). The mean 

hourly air temperature and total daily precipitation during the 2012 field season are 

presented in Figure 3.14. Rainfall was the only form of precipitation during the field 

season. The total amount of rainfall during the field season was 142 mm. The highest 

daily rainfall was 33.3 mm, which was recorded on the 23/07/2012. Apart from this event, 
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only three days within the season had rainfall in excess of 10 mm, (11/08, 21/08, and 

24/08) (IMO, 2013). The mean air temperature during the field season was 11.17±3.75 °C. 

The maximum temperature was 22.40 °C, which was measured at 1300 hours on 

08/07/2012. The minimum temperature was 0.90 °C, measured at 0700 hours on 

30/08/2012 (IMO, 2013). 

 

Figure 3.14. Meteorological conditions at the Skaftafellsjökull foreland during the 2012 field 
season (IMO, 2013).  

The figure shows total daily rainfall and the minimum and maximum hourly air temperature 
at the Skaftafell IMO meteorological station.  

 

The comparison between the total monthly precipitation during the years of the study 

(2011-2013) and the mean monthly precipitation at the IMO Skaftafell meteorological 

station (Figure 3.15) shows that the precipitation regime at the Skaftafellsjökull foreland is 

highly variable. During the autumn and winter of 2011-2012 (October 2011-March 2012), 

the total monthly precipitation in each month (except December 2011) exceeded the long 

term mean total monthly precipitation by approximately 120 mm. In contrast, the total 
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monthly precipitation between April-December 2012 was ~50-150 mm lower than the long 

term monthly mean (Figure 3.15). It is hypothesised that the low precipitation between 

April-June 2012 had a substantial impact on the decline in lake levels at the field site.  

The precipitation regime in 2013 was very different to that of 2012. Precipitation 

substantially exceeded the long term monthly mean in January and February 2013, with 

unusually high precipitation levels measured in February 2013, when the total monthly 

mean was exceeded by 350 mm. The high precipitation in February included unusually 

large precipitation events of 70.2 (09-10/02/2013) and 307.5 mm (25-26/02/2013) [IMO, 

2013], which led to substantial runoff and flooding (Ogmundsson 2013, personal 

communication).  In contrast to these high rainfall events, precipitation in March-June 

2013 was either substantially below (March, April) or only slightly above (May, June) the 

mean monthly precipitation (Figure 3.15). 



Chapter 3  Field sites  

75 
 

 

Figure 3.15. Comparison between total monthly precipitation in January 2011 to June 2013 
and the mean monthly precipitation.  

A. Mean monthly precipitation at Skaftafell (black bars) and the recorded monthly 
precipitation between January 2011 to June 2013 (white bars). B. Deviation of monthly 
precipitation between January 2011 and June 2013 from the mean monthly precipitation. 
The figure is based on data from the IMO (2013).  

 

The comparison between mean monthly air temperature during the years of the study 

(2011-2013) and the mean monthly air temperature at the IMO Skaftafell metrological 

station (Figure 3.16) shows that the air temperature at the Skaftafellsjökull foreland is 

highly variable. Alongside the high precipitation rates during the winter of 2012, 
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temperatures were also ~2°C warmer than average during February and March 2012. In 

contrast, spring temperatures (April-June) in 2012 were slightly lower than the long-term 

monthly mean. The temperatures in July and August 2012 were ~ 1°C above the monthly 

mean. Similar to the winter of 2012, temperatures in January and February 2013 were 

also warmer than average, exceeding the mean monthly temperatures by ~2.5 and ~3°C 

respectively. In contrast to that, temperatures in March-May 2013 were between 0.5 and 

2°C lower than average. Temperatures in June exceeded the monthly mean by ~ 0.3°C. 

Hence, the winter of 2013 was warmer and spring colder, than the mean temperatures 

(Figure 3.16).  
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Figure 3.16. Comparison between measured monthly air temperature during the study and 
mean monthly air temperature. 

A. Mean monthly air temperature at Skaftafell (black bars) and the measured mean monthly 
mean air temperature between January 2011 to June 2013 (white bars). B. Deviation of 
monthly air temperature between January 2011 and June 2013 from the mean monthly 
precipitation. The figure is based on data from the IMO (2013).  

  



Chapter 3  Field sites  

78 
 

3.5. Monitoring of proglacial groundwater systems  

3.5.1. Piezometer design and installation  
 

Groundwater levels were monitored in this study in order to investigate the impact of 

fluctuations in the position of the glacier margin on proglacial groundwater levels 

(objective i) and for the investigation of proglacial river-aquifer and lake-aquifer exchange 

(objectives iv and v). The monitoring of proglacial groundwater in western 

Skeiðarársandur and the Skaftafellsjökull foreland were done using drive-point 

piezometers, whose design and installation were modified from Krause et al. (2011b). Two 

types of piezometers were installed (using their notation): 

GW - 40 mm (28 mm inner) diameter plastic pipes. The full length of the piezometer was 

2.00 m. The screen length is 0.60 m long, with the holes (0.08 cm diameter) drilled 0.10 m 

apart. The screened section was then covered in fine cloth mesh, in order to prevent 

sediment from entering the piezometer. In order to assist the driving of the piezometers 

into the ground and to prevent sediment entrance from the bottom, each piezometer was 

equipped with a sharp metal end, which was driven into the ground using a sledge 

hammer (Figure 3.17).  These piezometers were used for sampling and automated 

measurements of groundwater levels (using pressure transducers) and for performing 

slug tests to measure hydraulic conductivity. Additionally, a stilling well, which was 

constructed in a similar manner to the GW piezometers (although the screen section was 

not covered with mesh) was installed in the Skaftafellsá to monitor river levels. Lake levels 

at the Instrumented Lake (IL) were measured manually every day using a stage board.  

Lx (if located around the Instrumented Lake at the Skaftafellsjökull foreland). The full 

length of the piezometer is 2.00 m. The inner diameter is 12 mm. The screen length is 

approximately 0.40 m long, and consisted of 5-7 holes (0.08 cm diameter), which were 

0.07 m apart. These piezometers were used for sampling and manual measurements of 
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groundwater levels. The bottom of these piezometers was sealed with a wall plug and a 

washer, which was also used to drive the piezometer into the ground. In some instances a 

pit, into which the piezometers were inserted, was dug prior to the driving of the 

piezometer into the ground. The 12 mm piezometers were initially emplaced within a wider 

tube, which was then driven into the ground. When reaching the desired depth, the outer 

tube was pulled out, leaving the piezometer in the ground.  

 

Figure 3.17. Shallow piezometers for the monitoring of proglacial groundwater.  

A sketch of the 40 mm (GW) piezometers is shown on the right. The image on the left shows 
T2 piezometer, located between the Skaftafellsá meltwater channel and the Instrumented 
Lake.  

 

The underlying substrate exerted an important control on the location of the piezometers, 

with difficulties in installing piezometers in substrates with high proportion of clay or 

boulders. For instance, it was intended to install piezometers near the Skaftafellsjökull 

margin. However, this plan was abandoned due to difficulties in inserting piezometers into 

the coarse substrate of the glaciofluvial channels in the relict sandur near the 

Skaftafellsjökull margin (Figure 3.9). The author is aware of the bias in the understanding 
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of site hydrogeology which was introduced due to the instalment of piezometers mainly in 

coarse-grained areas. However, despite these limitations, the drive point method still 

provided a simple, cost-effective, and efficient monitoring network. Once emplaced, the 

piezometers were left for several days in order to equilibrate with the aquifer (Brassington, 

2007).  

The instrumentation emplaced in the Skaftafellsjökull foreland in June 2012 covered a 

relatively small area (Figure 3.18). The infrastructure design was intended to investigate 

groundwater exchange with the meltwater river (objective iv) and the lakes (objective v). 

Groundwater-meltwater river exchange was investigated at the GW5, GW9; and T1-T3 

piezometers. Groundwater exchange with lakes was investigated at the Instrumented 

Lake (IL) using piezometers L1-L8, which were emplaced around the lake perimeter. In 

addition to the piezometers around the IL, two piezometer nests were installed in the 

eastern (fine-grained) and western (coarse-grained) ends of the IL. These nests consisted 

of piezometers which were less than 1 metre apart, but were installed at different depths: 

1.50, 1.00 and 0.50 m below the lake bed. The nests were used to measure the direction 

of vertical groundwater flow around the IL. In addition to the instrumentation around the IL, 

several piezometers (GW10-12) were also emplaced in the coarse outwash deposits, 

north of the IL (Figure 3.18) in order to provide an understanding of the regional 

groundwater flow direction at the Skaftafellsjökull foreland (Chapter 7). The configuration 

of groundwater flow and river-aquifer exchange at the Skaftafellsjökull foreland is 

described in Chapter 7.  The investigation of  aquifer-lake exchange is described in 

Chapter 8.  
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Figure 3.18. Instrumentation at the Skaftafellsjökull field site.  

A. The main hydrological features of the Southern Oasis. B. The piezometers installed at the 
Southern Oasis. Note that the Skaftafellsá channel has migrated east since the date of the 
image (2007). The position of the river (meltwater) channel during the monitoring in June-
August 2012 is marked by the dashed blue line. The figure also shows the location of the 
stilling well (MW) in the meltwater channel. 

 

The majority of the monitoring infrastructure in the Skaftafellsjökull foreland was 

concentrated at the Instrumented Lake (the IL) (64°00’42.84’’N, 16°54’20.77’’W) (Figure 

3.19). This lake is surrounded to the north, south and east by small moraines (~3 m high). 

The lake length is ~30 m and width is ~50 m. The circumference is ~150-160 m. Lakebed 

sedimentology varies substantially between the eastern and western lake shores. The 

eastern section of the lake is underlain by ~0.5 m of fine-grained deposits and boulders, 

with coarser substrate below that depth. Conversely, the western section is underlain by 

sands and gravels, which suggests glaciofluvial origin.  
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The investigation of aquifer-lake exchange at the IL (objective v) was executed using 

hydrogeological and temperature measurements. The hydrogeological measurements 

were obtained from the piezometers around the IL. The temperature measurements were 

obtained using Fibre Optic Distributed Temperature Sensing (FO-DTS) and three Vertical 

Temperature Profiles (Figure 3.19) (Chapter 8).  

 

Figure 3.19. Instrumentation around the Instrumented Lake.  

L1-L7 are 12 mm piezometers. The deployment of the FO-DTS cable is denoted in red.  The 
locations of the Vertical Temperature Profiles are also shown. Moraines are shown in 
brown.  The figure also illustrates the differences in lakebed sedimentology.   
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3.5.2. Topographic surveying of the piezometers 
 

The piezometers in western Skeiðarársandur and the Skaftafellsjökull foreland were 

levelled to a single datum in August 2012, using a Leica Geosystems TCRP1205 Total 

Station (TS). It was used with a 360° prism. The accuracy is ±2-5mm (Leica user manual, 

2004). In the Skaftafellsjökull foreland, the wells were levelled to an arbitrary datum (which 

was assigned to be 100 m), chosen by the line of sight to the maximum number of wells. 

When possible, the levelling was done to the top of the wells. In instances when this was 

not possible, the distance from the ground to the top of the well was measured, and then 

added in order to calculate the height of the well. When the wells were not visible from the 

datum, the TS was placed at an intermediate high point which enabled sight of the desired 

wells and levelled back to the datum. Similar procedures were followed during the 

topographic levelling of the wells at western Skeiðarársandur, although more intermediate 

points were required due to the size of the sandur. Back sightings were then taken to the 

former location of the TS. When setting up, maximum efforts were made to place the TS 

as close as possible to the location where the staff was previously. The differences 

between the back sights and fore sights were generally below 2 cm. The elevation of the 

piezometers are found in Appendix 1). 

  

3.5.3. Monitoring of groundwater levels  
 

Groundwater levels at the Skaftafellsjökull foreland were monitored both manually and 

automatically. Manual groundwater level monitoring was performed using a Solinst 

acoustic dip meter, which emits a sound when the sensor touches water. This then allows 

the measurement of the height of the pressure head (e.g. Brassington, 2007). In order to 

ensure accuracy and precision, measurements were taken by two people, until a 
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consensus within  0.5 cm was reached (Robinson et al., 2008). The monitoring of 

groundwater levels at the Skaftafellsjökull foreland was usually done twice a day.  

Automated monitoring of groundwater levels, temperatures and EC at the Skaftafellsjökull 

foreland were performed using two types of Solinst automated pressure transducers: The 

Solinst model 3001 Level Temperature Conductivity (LTC) Levelogger Junior measures 

(accuracy in brackets) groundwater levels (0.1% Full Scale), temperature (±0.1°C), and 

Electrical Conductivity (2% or 20µS/cm). The Solinst Levelogger Junior Edge measures 

groundwater Level (0.1% FS) and Temperature (±0.1°C). Additionally, a Solinst model 

3001 Barologger Edge was used to measure air pressure during the two field seasons. 

These measurements are needed to separate between actual changes in groundwater 

levels from those which reflect changes in air pressure (Brassington, 2007). The accuracy 

of the barologger is (±0.05 kPa). The Barologger was emplaced above the water table at 

GW12 (Figure 3.18).  

The pressure transducers were emplaced at the transect, (T1-T3) and in a stilling well 

(MW) at the Skaftafellsá meltwater river (Figure 3.18) in order to investigate meltwater 

river-groundwater exchange. Groundwater levels, river levels; temperature and EC were 

recorded hourly between 20/06/2012 to the 31/08/2012, including during three weeks in 

which the field site was unmanned (31/07-23/08/2012). The data was measured hourly in 

order to be synchronised with the measurements from the IMO. The data was then 

compensated for fluctuations in atmospheric pressure using the Solinst Levelogger 4.0 

software. Hydraulic heads were calculated by adding the pressure heads (obtained from 

the pressure transducers) and the elevation (section 3.3.2). 
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4. Long-term variability of proglacial 
groundwater-fed hydrological 
systems in Skeiðarársandur 

 

4.1. Introduction  
 

The aim of this chapter is to investigate the long term impacts of fluctuations in the 

position of the glacier margin on proglacial groundwater systems (objective i). The chapter 

maps long term changes (between 1986 to 2012) in the spatial extent of proglacial 

groundwater seeps and groundwater levels (monitored between 2000 and 2012) in 

western Skeiðarársandur, which is impacted by rapid glacial retreat, glacial surges, and 

jökulhlaups (section 3.3). In spite of the importance of proglacial groundwater systems 

and the likelihood that they will be impacted by climatically-driven changes, there is a 

severe lack of research into the potential impacts of climate change and glacier retreat on 

the extent and distribution of proglacial groundwater-fed hydrological systems. The 

specific objectives for this chapter are:  

1. To map the spatial distribution and extent of groundwater seeps in western 

Skeiðarársandur during different time periods (1986, 1997, 2007).  

2. To monitor long term (2000-2012) changes in groundwater levels in western 

Skeiðarársandur. 

3. To determine the controls and drivers on the extent of proglacial groundwater seeps 

and levels.  
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4.2. Methods of monitoring long term changes in 
proglacial groundwater levels and the extent 
of groundwater seeps 

 

The impact of long term changes in the position of the glacier margin on proglacial 

groundwater hydrological systems and groundwater levels (objective i) was investigated in 

western Skeiðarársandur (Figure 3.4). The changes in the extent of groundwater seeps in 

western Skeiðarársandur were mapped from historical aerial imagery (dating from 1986, 

1997, and 2012) using ArcMap© 9.3.1. The photographs were georectified using Ground 

Control Points (GCP) as described by Bennett et al. (2010). Groundwater seeps and 

groundwater-fed streams were then mapped in the three images based on water colour 

and shading. Water colour, and hence black and white shading, is determined by the 

interaction between the upwelling light reflectance of suspended inorganic and organic 

compounds and the downwelling of solar irradiance. When black and white images are 

used, the high turbidity and reflectance of meltwater make them appear lighter than 

groundwater. When colour images are used, the high turbidity of meltwater streams 

makes them appear brown. Conversely, the low turbidity of groundwater-dominated 

bodies makes them appear green-brown (Jerome et al., 1994a, b). These differences 

were therefore used to map groundwater seeps and meltwater streams. The likelihood of 

the mapped areas in western Skeiðarársandur to be impacted by groundwater has been 

ground-truthed. A similar approach was previously used in the western USA to map 

changes in the extent of groundwater-fed fens following changes in snowmelt (Drexler et 

al., 2013).  

Groundwater levels in western Skeiðarársandur were monitored since July 2000 by 

Robinson (2003) and Robinson et al. (2008). Their piezometers were emplaced in a 

transect which projected away from the glacier margin for ~1.5 km, around moraine lake 

basins, and in areas of groundwater seeps (Figure 3.8). However, following the 
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continuous retreat of the Skeiðarárjökull margin (Figure 3.6), groundwater levels at 

western Skeiðarársandur have declined substantially and fell below the intake of many 

piezometers. Therefore, new piezometers were installed in July 2011 in order to augment 

the network and continue the long term monitoring of proglacial groundwater levels in 

Skeiðarársandur. The new piezometers were emplaced near moraine lakes, near the 

remains of groundwater seeps, and near a small meltwater channel (Figure 3.8). The 

design of the piezometers installed in 2011 is similar to the piezometers which were 

installed at the Skaftafellsjökull margin (section 3.5.1). Groundwater levels in western 

Skeiðarársandur area were monitored using the same methods and device (Solinst dip 

meter) which were used at the Skaftafellsjökull foreland (section 3.5.3). The topographic 

levelling of the piezometers in western Skeiðarársandur was performed with the same 

instrument as the levelling in Skaftafellsjökull. However, in order to extend the existing 

records, the 2011 piezometers were tied into the 2000 datum using relative heights from a 

2000 piezometer baseline (P31m, whose top is at the height of 82.78 m). The top of the 

pipe was used, as this height is less likely to change than the distance between the top of 

pipe and the ground following sediment erosion and deposition. 

4.3. Temporal changes in the extent of 
groundwater seeps  

 

4.3.1. 1986 aerial photograph 
 

The extent of groundwater seeps and lakes in 1986 (the Icelandic Geodetic Survey 

(Landmælinger Íslands [LMÍ]), 1986) is shown in Figure 4.1. The glacier margin retreated 

a net distance of ~2.5 km between the start of monitoring in 1932 and the time of this 

image. Groundwater seeps in this image have the largest areal extent, ~ 2,767,200 m2 of 

the three time slices (Table 4.1). The main area of groundwater seeps is bordered to the 

north and east by a large meltwater and groundwater-fed braided channel (“the Gígjukvísl 
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tributary”); to the west by an area of low-relief moraines and stagnant ice that is located to 

the north of Twin Peaks Lake (TPL); and to the south by the high-relief moraine belt. In 

1986, groundwater seeps covered the entire area between the Gígjukvísl tributary and the 

eastern limit of the low-relief moraines. The main seeps area was connected to the seeps 

east of TPL by an active groundwater-fed channel. Additional areas of groundwater seeps 

existed east of the Gígjukvísl tributary and to the north of TPL and Lake A (Figure 4.1).  

 

Figure 4.1. The extent of groundwater seeps in western Skeiðarársandur in 1986 (LMÍ, 1986). 

Groundwater seeps are outlined in blue. Lakes are denoted in turquoise. The position of the 
glacier margin (red line) is only an approximation, due to the extensive amounts of buried 
ice in this area.  

  

4.3.2. 1997 aerial photograph 
 

The extent of groundwater seeps in 1997 and the impacts of the November 1996 

jökulhlaup (LMÍ, 1997) are shown in Figure 4.2. Following the advances during the mid 

1980s and the 1991 surge, the glacier margin has advanced by ~ 420 m relative to its 

position in 1978 (Figure 4.2). The area of groundwater seeps has declined by ~20% since 

1978 (Table 4.1). The main declines took place around the main jökulhlaup route, near 

jökulhlaup outlets at the glacier margin, and to the north west of TPL. Approximately 
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430,000 m2 (~18%) of the groundwater seeps that were mapped in 1978 were buried by 

jökulhlaup deposits. Following the jökulhlaup, the main seep area has shrunk and moved 

southwards, away from the margin. However, it has also expanded to the east, with seeps 

replacing areas that contained braided channels in 1986 (Figure 4.1).  

 

Figure 4.2. The extent of groundwater seeps in western Skeiðarársandur in 1997 (LMÍ, 1997). 

Groundwater seeps are outlined in blue. Lakes are denoted in turquoise. The figure also 
shows the main route (denoted by the black arrow) and outlets of the November 1996 
jökulhlaup. The position of the glacier margin is only an approximation, due to the extensive 
amounts of buried ice in this area.  

 

4.3.3. 2012 aerial photograph 
 

The extent of groundwater seeps in 2012 is presented in Figure 4.3 (Google Earth, 2013). 

The figure illustrates the continued recession of western Skeiðarárjökull, which retreated 

845 m beyond its position in 1997. The mean annual rate of glacier retreat has also 

substantially increased during this period (Figure 3.6). During this period of retreat there 

has also been a substantial decline in the area of groundwater seeps and lakes (Figure 

4.4, Table 4.1). 
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Figure 4.3. The extent of groundwater seeps in western Skeiðarársandur in 2012 (Google 
Earth, 2013). 

Groundwater seeps are outlined in green. The lakes are denoted in turquoise. The position 
of the glacier margin is only an approximation, due to the extensive amounts of buried ice in 
this area.  
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Figure 4.4. Oblique aerial view of the remains of the main groundwater seep area in western 
Skeiðarársandur (August 2012) 

The area of groundwater seeps has declined by ~97% between 1986 and 2012, with only 

small springs remaining within the main groundwater seep area (Figure 4.4). The surface 

area and perimeters of lakes also declined substantially between 1986 and 2012, with the 

areas of TPL and GW2 Lake declining by 95% and 44%, respectively. Many of the smaller 

lakes have substantially shrunk or completely dried out, including Lake A (Figure 4.5, 

Table 4.1).  
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Figure 4.5. Changes in the extent of groundwater seeps and lakes in western 
Skeiðarársandur (1986-2012).  

The figure shows the extent of groundwater seeps in 1986 (red), 1997 (blue) and 2012 
(green). The position of the glacier margin is shown by the solid lines of the respective 
colours. The area of Twin Peak Lake is illustrated for the following years: 1986 (turquoise), 
2012 (orange). The 1997 extent of Twin Peaks Lake was very similar to that in 1986 and was 
therefore omitted to improve clarity. The image was taken from Levy et al. (2015) 
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Table 4.1. Changes in the area and perimeter of proglacial groundwater seeps and lakes in 
western Skeiðarársandur (1986-2012).  

 1986 1997 2012 % change 
(1986-
1997) 

% change 
(1986-
2012) 

Area (m2) 

Seeps  2,767,200 2,195,800  90,600 -21 -97 

TPL 119,000 106,500 5,900 -10 -95 

Lake A 15,600 12,800  0 -18 -100 

GW2 lake 16,600 18,800  9,200 13 -44 

Perimeter (m) 

Seeps  110,200 121,000  9,300 -10 -91 

TPL 2,900 2,400 300 -18 -88 

Lake A 650 525  0 -19 -100 

GW2 lake 740 746  500 -1 -33 

 

4.4. Changes in groundwater levels in western 
Skeiðarársandur 

 

This section describes changes in proglacial groundwater levels between July 2000 and 

August 2012 (objective 2) (Table 4.2). Proglacial groundwater levels were monitored 

regularly over a ~6 week period in the summers of 2000, 2001 and 2011. Additionally, 

spot measurements were taken in March 2001, October 2001, August 2009, April 2011, 

and the summer of 2012. Groundwater levels at the study site declined substantially 

between July 2000 and 2012 (Figure 4.6). These declines were observed over both 

decadal (2000-2012) and annual (2011-2012) time scales, and have shown a 

considerable spatial variability. Groundwater levels have fallen below the bottom of the 

borehole screened section (intake) in most piezometers at the site, meaning that only 

minimum amounts of water table decline can be measured. Such declines were already 

observed at P4, P6 and WT A by August 2009 (Figure 4.6). The largest measured 

declines between 2000 and 2009 were >1.97 m near the glacial margin (borehole P6) and 

>1.77 m in an area of dried groundwater seeps north of TPL (borehole P3) (Table 4.2). 

Groundwater levels at P13, located near the remains of the main groundwater seep area 

(Figure 3.8) fell by ~1.55 m between 2000 and 2012. However, this area contained the 
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only piezometer in the 2000 network where groundwater levels have not fallen below the 

intake. Groundwater levels in the piezometers installed in 2011 have also declined 

between August 2011 and August 2012 (Table 4.2). 

Table 4.2. Changes in proglacial groundwater levels at the different hydrogeological 
environments of western Skeiðarársandur (July 2000-August 2012). 

Piezometers in italics were installed in July 2011. Water table elevation with < show the 
elevation of the bottom of the piezometer, meaning that groundwater fell below this level. 
Values of change with > means that groundwater levels have dropped below the borehole 
intake, hence only the minimum levels of decline are shown.  

Piez.  
August 
2000 

August 
2001 

August 
2009 

April 
2011 

August 
2011 

August 
2012 

Change 
(m)  

Water table elevation (m)  

Groundwater seeps 

P132m 78.577 78.385 76.890   77.025 -1.552 

P42m 85.993 85.828 <84.975 <84.975   ->1.063 

P32m 82.283 82.227 81.270 81.275  <80.510 ->1.773 

GW3     77.771 77.506 -0.265 

Near margin 

P62m 91.486 91.178 <89.820 <89.820   ->1.971 

Moraine lakes 

WT A 81.161 80.951 <80.235    ->0.926 

GW1     78.948 <78.575 ->0.373 

GW2     75.582 75.592 -0.100 

P5     76.317 <75.71 ->0.606 

GW13     78.662 <78.147 >0.515 

Meltwater channels 

GW7 (5 m 
from the 
channel) 

    

69.680 69.610 -0.070 

PTA (40 m 
from the 
channel)     69.923 68.777 -1.146 

PTC (70 m 
away from 
channel) 

    

70.139 68.847 -1.292 
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Figure 4.6. Time series of changes in proglacial groundwater levels in western 
Skeiðarársandur (August 2000 to August 2012). 

Open shapes denote piezometers where groundwater levels have fallen below the intake. 
For the location of the piezometers please refer to Figure 3.8. The image was taken from 
Levy et al. (2015) 

 

4.5. Changes in proglacial water budget 
 

Changes in water budget (precipitation minus Potential Evaporation) can impact 

groundwater levels and the extent of groundwater seeps. Therefore, the annual and 

seasonal water budgets in western Skeiðarársandur were calculated in order to determine 

their roles in the changes in proglacial groundwater seeps and groundwater levels 

(objective 3). Temperature and precipitation data were obtained from the Icelandic 

Meteorological Office (IMO) station at Kirkjubæjarklaustur, located ~35 km west of the 

site. This station was chosen because it is the closest one whose records span through 

the whole study period (1986-2012). The meteorological data was smoothed using Order 

3 Moving Average (MA), which was chosen in order to minimize the losses of time periods 
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at the end of the time series, which is a major drawback associated with higher orders of 

MA (Makridakis et al., 1998).  

Potential Evaporation (PE) was calculated from the meteorological data using the 

Thornthwaite (1948) equation [Equation 4.1]. This method previously provided broadly 

comparable results to the more data-intensive Bowen Ratio Energy Budget (BREB) 

methods, and has been ranked 6th out of 14 equations in a study comparing different 

equations for determining PE (Rosenberry and LaBaugh, 2008). It was therefore chosen 

for this study due to its previous successful uses and low data requirements, as it only 

requires mean monthly temperatures.  
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Equation 4.1. Calculation of Potential Evapotranspiration (Thornthwaite, 1948) 

,  

Where E is evaporation (mm/day), Ta is the mean monthly air temperature (°C), and I is 

the Annual Heat Index (AHI), which is calculated as I=∑i, where i = (Ta/5)1.514, and d is the 

number of days in each month. Due to the sparse vegetation at the field site, transpiration 

was omitted from the calculations. Water budget was then calculated by subtracting PE 

from precipitation.  

The mean annual temperature at the Kirkjubæjarklaustur meteorological station during the 

study period (1986 to 2012) was 5.02 ± 0.52 °C. The mean annual precipitation was 1753 

± 229 mm (IMO, 2013). Precipitation was approximately three times higher than PE during 

the study period, resulting in a constantly positive annual water budget which ranged 

between 1076 and 1589 mm (Figure 4.7). The annual and most of the seasonal mean air 

temperature and water budgets have increased during the study period. However, 
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seasonal variability in water budget was observed, with the highest seasonal water 

budgets occurring in winter and autumn and the lowest in summer. During the full study 

period (1986-2012), winter and autumn water budgets increased by 117 and 284 mm 

respectively. Conversely, the increases in spring and summer water balance were much 

smaller (Table 4.3).  

The changes in annual and seasonal water budget during the main period of decline in the 

extent of groundwater seeps (1997-2012) showed a mixed trend, which differs from the 

general increases which were measured during the full study period (Table 4.3). The 

annual and autumn water budgets have increased substantially (350-430 mm), while 

winter and spring water budgets have increased by ~100 mm. Conversely, summer water 

budget declined by 110 mm. This is mainly due to lower summer precipitation rather than 

higher PE. However, despite these declines, the summer water budget still remained 

positive (Table 4.3).  

Table 4.3. Changes in the Moving Average (MA) of annual and seasonal temperature, 
precipitation, Potential Evaporation (PE), and water budget in the study area from 1986-2012 
and 1997-2012 (IMO, 2013).  

The seasonal distribution is as follow: Winter (Dec.-Feb.), Spring (March-May), Summer 
(June-Aug.), Autumn (Sept.-Nov).  

1986-2012 1997-2012 

 Start of 
period 

End of 
period 

Change Start of 
period 

End of 
period 

change 

 Temperature   Temperature   

Annual 4.63 5.71 1.08 5.04 5.62 0.58 

Winter 0.23 1.22 0.99 0.49 1.05 0.57 

Spring 3.59 5.27 1.68 4.02 4.77 0.75 

Summer 10.43 11.31 0.88 10.83 11.40 0.57 

Autumn 4.29 5.36 1.07 4.83 5.66 0.83 

 Precipitation(mm) Precipitation (mm) 

Annual  1548 1967 419 1667 2126 460 

Winter 448 598 150 468 714 246 

Spring 337 402 65 314 397 83 

Summer 324 369 45 453 346 -106 

Autumn 439 707 268 432 743 311 

 PE (mm) PE (mm) 

Annual  412 453 41 422 446 24 

Winter 8 21 13 15 21 6 

Spring 87 113 26 92 111 19 

Summer 208 210 2 205 207 2 

Autumn 99 102 3 110 107 -3 

 Water budget (mm) Water budget (mm) 
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Annual  1082 1460 378 1221 1654 433 

Winter 440 556 117 458 575 117 

Spring 250 287 36 229 332 102 

Summer 136 179 42 245 135 -110 

Autumn 340 624 284 320 672 351 

 

 

Figure 4.7. Moving Average (MA) of annual and seasonal water budget in western 
Skeiðarársandur (IMO, 2013).  

 

4.6. Interpretation and discussion  
 

This section describes the spatial distribution in the changes of proglacial groundwater 

levels and then discusses various hypotheses for the observed declines in proglacial 

groundwater levels and the extent of groundwater seeps.  
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4.6.1. The spatial distribution of changes in groundwater 
levels 

 

Groundwater levels in western Skeiðarársandur have declined between 2000 and 2012, 

with groundwater levels falling below the intake in most piezometers. However, these 

declines showed a considerable spatial variability (Table 4.2). The largest decline in 

groundwater levels between 2000 and 2009 was measured at P6, located near the 

Skeiðarárjökull margin, adjacent to an area of ice-cored moraines and stagnant ice (Table 

4.2, Figure 3.8). This fall in groundwater levels is accompanied by a reduction in the 

extent of the main groundwater seeps area (Figure 4.1-4.3). The importance of ice melt as 

a source for groundwater recharge increases with proximity to the glacial margin, as 

evidenced by δ18O and δD compositions (Robinson et al., 2009b). Therefore, the fall in 

groundwater levels at P6 could be indicative of declining recharge from glacial melt 

sources. Groundwater levels near the glacier margin previously showed large declines in 

autumn and early spring, seasons during which ablation is low (Robinson et al., 2008). 

This suggests that only a small component of the groundwater at these sites originates 

from subglacial melt, as such melt should not be significantly impacted by seasonal 

ablation (Flowers et al., 2003; Robinson et al., 2008). This suggests that the zone of dead 

and stagnant ice near the margin is the likely source of groundwater recharge during the 

summer months. The only location from the 2000 monitoring network where groundwater 

levels did not fall below the borehole intake is located near the remains of the main 

groundwater seep area (Table 4.2). The smallest annual (Figure 4.6) and seasonal 

variability in groundwater levels were also measured in this environment (Robinson, 

2003). The relatively small variability is also supported by observations of groundwater 

discharge in the form of seep areas, which suggest that the seeps are fed by a local 

groundwater flow system that is imposed on the regional one (Tóth, 1963; Robinson et al., 

2008). This small variability in groundwater level illustrates the relatively consistent water 
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supply which groundwater-fed systems provide (e.g. Tague and Grant, 2009; Muir et al., 

2011).  

Groundwater levels near lakes have generally declined, with levels falling below the 

borehole intake in many locations. These falls were coupled with substantial declines in 

lakes surface areas. The decline of groundwater levels near lakes has also shown 

considerable spatial variability. Lake A shrank continuously during the study period, and 

then completely dried out after 2007. Groundwater levels near Lake A also declined 

substantially (Table 4.1). Observations suggest that the area of Lake A consists of either a 

perched aquifer or an impermeable lake bed, underlain by either clay or buried ice 

(Robinson et al., 2008). This hypothesis is supported by observations of buried ice in 

Skeiðarársandur (Everest and Bradwell, 2003) and the complex and heterogeneous 

internal hydrology of moraines (Roy and Hayashi, 2009; Langston et al., 2011). It is 

suggested that the lake may have drained due to the failure of the underlying ice layer 

(Robinson et al., 2008). Groundwater levels in other piezometers near lakes, which were 

installed in 2011, have also fallen below the borehole intake (Table 4.2).  

Conversely, groundwater levels near GW2 Lake have shown different dynamics. The area 

of this lake declined by 44% since 1986 (Table 4.1). However, there is a much smaller fall 

in groundwater levels, with only a 0.1 m decline between August 2011 and 2012 (Table 

4.2). These differences illustrate the spatial variability in the patterns of decline in 

groundwater levels around lakes and in moraine basins in western Skeiðarársandur.  

 

4.6.2. Possible causes for the declines in groundwater 
levels and seeps 

 

This section suggests various hypotheses for the substantial declines in groundwater 

levels and in the extent of groundwater seeps in western Skeiðarársandur (objective 3). 
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The first suggested hypothesis for these observed declines is changes in proglacial water 

budget. Figure 4.7 and Table 4.3 show that the annual and most of the seasonal water 

budgets have increased over the study period, especially during winter and autumn. 

Conversely, summer water budgets have fallen by ~100 mm since 1997. The fall in 

summer water budget may partially explain the declines in groundwater seeps and levels 

(which have been measured in summer). However, this fall may be expected to be offset 

by the increases in winter and autumn precipitation. Higher rainfall can also increase 

groundwater recharge indirectly by enhancing glacial ablation (Wolfe and English, 1995), 

with rainfall becoming especially effective in debris-covered glaciers such as 

Skeiðarárjökull (e.g. Nield et al., 2013). The increase in autumn and winter precipitation 

may therefore be expected to increase groundwater recharge and storage. This suggests 

that changes in water balance are important but not the sole factors in the decline of 

groundwater levels and groundwater seeps.   

Glacier retreat is projected to substantially alter the hydrology of Vatnajökull, reducing 

runoff and diverting river routes. Such changes are also projected to impact subglacial 

groundwater systems (Flowers et al., 2003; 2005). Glacier retreat can lower the ice 

overburden pressure and hydraulic gradient, which will reduce groundwater flow 

(Haldorsen and Heim, 1999; Piotrowski, 2007). Such changes could be an important 

cause for the declines depicted in Figure 4.1-4.3. However, at present the effect of the 

glacially-induced hydraulic gradient on the proglacial zone is not fully understood.   

Changes in proglacial groundwater flow may also be caused by the lowering of the glacier 

bed and river outlets. Sandur development models suggest that glacier retreat leads to an 

upstream lowering of river equilibrium profile, which encourages fluvial incision and the 

formation of alluvial terraces (Thompson and Jones, 1986; Thompson, 1988). The 

lowering of the equilibrium profile would then direct flow into the lowest channel (e.g. 

Thompson, 1988). The impact of the lowering of the equilibrium profile can be augmented 

when glaciers retreat into subglacial overdeepenings. Such retreat can increase the 
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sensitivity of the proglacial zone to glacial margin fluctuations, where relatively small 

fluctuations in the position of the glacier margin cause fairly large changes in the upstream 

long profile of proglacial rivers (Marren and Toomath, 2013).  

The lowering of river outlets due to an overdeepening is a possible cause for the observed 

declines in groundwater seep extent and levels. Radio echo soundings have identified two 

principal overdeepenings associated with Skeiðarárjökull. The larger overdeepening 

extends from the glacier’s centreline to the eastern margin. The second one is located 

towards the western extremity of the margin (Figure 3.4B), associated with the drainage of 

the river Súla (Björnsson et al., 1999). However, neither of these overdeepenings impact 

the immediate study area. Therefore, whilst over-deepened basins are clearly influential in 

some parts of the glacier margin, it is unlikely that this specific part of the margin is 

significantly impacted by an overdeepening, and therefore the decline in groundwater 

levels are unlikely to be affected by this phenomenon.  

Groundwater recharge from meltwater rivers, through river-aquifer exchange, is an 

important control on proglacial groundwater levels (Cooper et al., 2002; Magnusson et al., 

2014). The location of meltwater rivers exerts an important control on such exchange; 

hence a reduction in river-aquifer exchange, due to changes in the position of meltwater 

rivers, provides another possible explanation for the observed changes in the proglacial 

groundwater systems. However, the location of the main Gígjukvísl and Súla river 

channels did not change considerably during the study period, which suggests that river-

aquifer exchange should not have decreased. Additionally, the recent drainage changes in 

Skeiðarársandur have substantially increased the discharge in the Gígjukvísl. These 

changes are expected to augment, rather than reduce, groundwater recharge through 

river-aquifer exchange. Therefore, although river-aquifer exchange has not been 

measured directly, its decrease is probably not the main cause for the declines depicted in 

Figure 4.1-4.3. 
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Deglaciation and isostatic uplift have been previously shown to impact topography, 

hydrology, hydrogeology, and ecology (Glaser et al., 2004; Solberg et al., 2008). The 

rates of vertical glacio-isostatic uplift in response to glacial retreat around southern 

Vatnajökull range between 9-25 mm/year (Pagli et al, 2007). These rates suggest that the 

study area has risen by 0.23 to 0.65 m during the study period (1986-2012) and between 

~0.14 m to 0.38 m during the main decline in groundwater seeps and levels (1997 to 

2012). However, even when the higher rates of these estimations are used, the uplift rates 

remain below the observed declines in most piezometers (Table 4.2). Hence, although 

glacio-isostatic uplift may have contributed to the decline in groundwater levels and seeps, 

it is probably not its main cause.  

The deposition of volcanic tephra buries groundwater seeps and deepens the distance 

between the water table and the surface, which reduces the aquifer’s responsiveness to 

precipitation. These processes may also explain some of the declines in groundwater 

levels and seeps in western Skeiðarársandur. Grímsvötn, situated under the Vatnajökull 

ice cap, ~40 km north of the site (Figure 3.2) is Iceland’s most active volcanic system in 

historical times (Thordarson and Larsen, 2007). During the study period, it has erupted in 

1996, 1998, 2004, and May 2011 (Jude-Eton et al., 2012). The eruption in May 2011 

released 0.6-0.8 km3 of tephra (Guðmundsson et al., 2012). Tephra deposits buried many 

groundwater-fed channels and seeps. Measurements taken at western Skeiðarársandur in 

August 2011 showed a wide spatial variability in the depths of tephra deposits. The mean 

depth of tephra deposits near piezometers was 0.055 (±0.031) m. The depth of tephra 

deposits near groundwater-fed channels and seeps exceeded 0.40 m. However, these 

measurements were obtained three months after the eruption, during which the tephra 

has been subjected to extensive fluvial and aeolian entrainment and deposition. In 

addition to the fairly transient nature of tephra deposition, groundwater levels have 

declined between August 2011 and August 2012 (Table 4.2), during which there was no 

volcanic activity. Therefore, although burial by tephra deposits can clearly have a localised 
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impact on groundwater seeps, it was not a major cause for the declines depicted in Figure 

4.1-4.3.  

 

4.6.3. Implications of the declines in groundwater seeps 
and levels 

 

This study observes substantial declines in the extent of proglacial groundwater seeps in 

an area of rapid glacial retreat. It is suggested that the major declines in proglacial 

groundwater levels and groundwater seeps have had major impacts on the terrestrial and 

aquatic ecology of Skeiðarársandur. This hypothesis is supported by field observations 

showing higher densities of vegetation associated with groundwater seep areas (Figure 

3.7) and highlighted the important ecological niches provided by groundwater-fed kettle 

holes (Robinson et al., 2009a). In addition, there is a wealth of literature highlighting the 

importance of groundwater contributions to increased aquatic diversity in proglacial areas 

(e.g. Milner and Petts, 1994; Crossman et al., 2011). This suggests that groundwater 

seeps form important microsites, which enhance terrestrial ecological establishment and 

provide ameliorated conditions from the frequent high sediment mobility, strong winds, 

and lack of fertile soils which often prevail in recently-deglaciated areas (Jumpponen et 

al., 1999; Marteinsdóttir et al., 2010; 2013).  

As proglacial groundwater flow, spring discharge, and groundwater contributions to runoff 

and storage are projected to alter due to glacial retreat (Haldorsen et al., 2010; Rutter et 

al., 2011; Blaen et al., 2014), these changes are projected to adversely impact proglacial 

ecosystems and possibly lead to the redistribution and extinction of endemic species 

(Brown et al., 2007a, b; Milner et al., 2009; Jacobsen et al., 2012; Blaen et al., 2013). 

Therefore, due to the importance of groundwater to proglacial ecology, it is suggested that 

further decline in groundwater levels and in the extent of groundwater seeps in 

Skeiðarársandur will adversely impact available water sources and sandur ecology. The 
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hypotheses for the controls and implications of long term glacier retreat on proglacial 

groundwater-surface water exchange are summarised by a conceptual model (Figure 

4.8).   

 

Figure 4.8. A conceptual model of the controls and implications of long term glacier 
fluctuations on proglacial groundwater-surface water exchange (from Levy et al., 2015). 

The dashed box shows suggested implications, which were not directly investigated in this 
study.  

 

4.7. Conclusions 
 

Western Skeiðarárjökull has retreated approximately 1 km during the study period (1986-

2012). This retreat was coupled with a decline of ~97% in the areas of groundwater seeps 

and many of the lakes at the site. Most of these declines took place after 1997, when the 
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rate of glacial retreat has increased by a threefold. Groundwater levels at the study area 

have also fallen substantially between 2000 and 2012, although the magnitude of these 

declines varies spatially. The largest declines were observed near the glacier margin. The 

smallest declines in groundwater levels were observed near current groundwater seeps. 

The annual water budget has increased substantially between 1986 and 2012. Seasonal 

water budgets have also increased in every season except summer, where it has 

declined.  

The geomorphology, hydrology and groundwater systems of Skeiðarársandur are 

substantially impacted by glacial fluctuations, surges, and jökulhlaups. The 1991 surge 

steepened the topography and transformed surface and subsurface drainage at 

Skeiðarársandur. The November 1996 jökulhlaup led to the formation of kettle holes and 

extensive erosion and deposition of sediment. Jökulhlaup deposits buried ~18% of the 

area of groundwater seeps that were mapped in 1986.   

It is suggested that the combination of jökulhlaups and changes in water budget and in the 

hydraulic gradient caused by glacier retreat, alongside vertical glacio-isostatic uplift is 

probably the cause for the observed declines in groundwater seeps and levels. However, 

further research is needed in order to verify and quantify the contribution of the different 

factors. Groundwater seeps support important ecological microsites in this harsh 

proglacial environment. A continuous decline in groundwater levels and seeps is therefore 

suggested to adversely impact Skeiðarársandur’s proglacial ecology (Levy et al., 2015).  
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5. Proglacial Hydrogeology  

5.1. Introduction  
 

The aim of this chapter is to describe the hydrogeological characteristics of the proglacial 

zones of Skaftafellsjökull and Skeiðarársandur such as hydraulic conductivity, aquifer 

volume, and groundwater discharge and velocity. These parameters are necessary for the 

understanding of horizontal and vertical groundwater flow and groundwater-surface water 

exchange. However, an extensive hydrogeological framework for Skeiðarársandur has 

already been provided (e.g. Bahr, 1997; Robinson, 2003; Robinson et al., 2008). 

Therefore, this study focuses on the aquifer characterisation the Skaftafellsjökull foreland.  

The hydrogeology of contemporary proglacial aquifers, such as the Skaftafellsjökull 

foreland (Figure 3.13) and Skeiðarársandur (Figure 3.4), is impacted by a variety of 

geomorphic and sedimentological processes. Glaciofluvial deposition associated with both 

ablation-driven and jökulhlaup-related discharge fluctuations are clearly of central 

importance, although glacial, glaciolacustrine and aeolian processes are also influential 

(Maizels, 1995; Marren, 2002a ; Robinson et al., 2008; Mountney and Russell, 2009). 

These primary depositional processes usually impact proglacial aquifers more than 

secondary processes such as compaction, cementation and dissolution. The 

hydrogeological characterisation described in this chapter is based on two approaches: 

(1) large-scale overview of the site’s hydrogeology based on the various geomorphic and 

sedimentological processes which impact the field site, and (2) a small-scale 

hydrogeological characterisation based on field and laboratory techniques.  

The main hydrogeological property that was investigated at this study was hydraulic 

conductivity, which describes the ease with which a medium transmits fluids (Freeze and 

Cherry, 1979). An accurate measurement of hydraulic conductivity is essential for the 

understanding of groundwater behaviour. However, despite its importance, the 



Chapter 5          Proglacial hydrogeology 
 

108 
 

measurement of hydraulic conductivity is a significant challenge in hydrogeology (e.g. 

Brassington, 2007). This challenge is enhanced in proglacial settings, due to the highly 

varied nature of depositional processes and associated sedimentary sequences which 

lead to high variability in hydrogeological parameters (e.g. Caballero et al., 2002; 

Robinson et al., 2008; Gremaud et al., 2009; Gremaud and Goldscheider, 2010; 

Magnusson et al., 2014; Cabj et al. 2014). This chapter compares between laboratory 

(Particle Size Analysis [PSA] and constant head permeameter) and field measurements 

(falling head [slug] tests) of hydraulic conductivity. The results were then used to compare 

the hydrogeology of Skaftafellsjökull with that of Skeiðarársandur and other proglacial 

environments.      

The specific objectives for this chapter are:  

1. To measure the spatial heterogeneity in hydraulic conductivity at the 

Skaftafellsjökull foreland using laboratory and field measurements. 

2. To compare between the different methods for determining hydraulic conductivity.  

3. To calculate the hydrogeological properties of the Skaftafellsjökull foreland:  

groundwater discharge, aquifer volume and groundwater velocity.  

5.2. Dominant geomorphic processes and 
hydrological environments at the 
Skaftafellsjökull foreland 

  

This section describes the dominant geomorphic processes at the Skaftafellsjökull 

foreland, notably glaciofluvial and glacial processes. These varied processes are the main 

cause for the high spatial variability in hydraulic conductivity at the site. In contrast to 

Skeiðarársandur, the Skaftafellsjökull foreland is mainly impacted by glacial processes, 
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such as moraine development, glaciofluvial processes (Marren, 2002b) rather than glacial 

surges and jökulhlaups.  

5.2.1. Glaciofluvial deposits 
 

Glaciofluvial deposits are deposited by meltwater streams which originate at the glacier 

margin. These deposits are generally composed of coarse sand and gravel size, which 

then becomes finer downstream (e.g. Anderson, 1989). Glaciofluvial deposits have high 

hydraulic conductivity, of around 1.00x100 to 1.00x102 m/day (Brassington, 2007). 

Therefore, coarse-grained glaciofluvial sediments form extensive aquifers in areas that 

were previously glaciated in North America (e.g. Burns et al., 2010; Bajc et al., 2014) and 

Europe (e.g. Bayer et al., 2011).  

The largest extent of glaciofluvial deposits at the Skaftafellsjökull foreland is associated 

with the active braid plain of the Skaftafellsá. This area consists of outwash and is 

characterised by active and relict braided channels, that reflect the lateral migration of the 

Skaftafellsá (Figure 5.1). The majority of the glaciofluvial deposits at the Skaftafellsjökull 

foreland originated from low-magnitude, high-frequency events, which are mainly 

controlled by ablation (e.g. Marren, 2002b). This is in stark contrast to Skeiðarársandur, 

where high magnitude, low frequency events play a major role in the deposition of sandur 

glaciofluvial deposits (e.g. Robinson et al., 2008). Fluctuations of the glacier margin are an 

important control on channel development and spacing at both Skeiðarársandur 

(Robinson et al., 2008) and the Skaftafellsjökull foreland, with drainage patterns and 

channel positions continuously changing  in response to advances and retreats of the 

margin (Marren, 2002b; Marren and Toomath, 2013; 2014). For instance, the ongoing 

retreat of Skaftafellsjökull has resulted in the abandonment of the western branch of the 

Skaftafellsá such that the eastern channel is the only active river draining the ice margin 

(Figure 5.1).  
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Figure 5.1. The Skaftafellsjökull foreland fieldsite (Vatnajökull National Park, 2007). 

Significant drainage changes have taken place since the image was taken. The main ones 
are the expansion and merging of the ice-contact lakes and drainage diversion causing the 
drying of the western branch of the Skaftafellsá. The black box shows the approximate 
location of Figure 3.11, which shows the dry branch of the Skaftafellsá.   

5.2.2. Glacial deposits 
 

Till is a sediment that has been entrained and deposited by glacial ice, with little or no 

sorting by water (e.g. Shaw, 1985). Till deposits are complex and can be highly 

heterogeneous, containing deposits with varied hydraulic properties (e.g. Anderson, 1989; 

Meriano and Eyles, 2009). The hydraulic conductivity of till can vary over seven orders of 

magnitude (Freeze and Cherry, 1979). The origin and secondary processes which impact 

till are important determinants of its hydraulic conductivity (e.g. Hendry, 1982; Stephenson 

et al., 1988). Till deposits can also contain extensive layers of fine grained material, which 

can form extensive aquitards (e.g. Meriano and Eyles, 2009). The dominant glacial 

landform at the Skaftafellsjökull foreland is moraines, which surround many of the lakes at 

the Northern and Southern Oasis. The internal hydrology of moraines is complex, and can 

include layers of low permeability (e.g. Langston et al., 2013), which can impact 
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groundwater flow and lake formation. Therefore, it is hypothesised that the groundwater 

flow through moraines will be highly variable. Field observations suggest that the main till 

deposits at the Skaftafellsjökull foreland are found in the Northern Oasis (Figure 5.2).  

 

Figure 5.2. Fine-grained deposits at the Northern Oasis.  

A. Sequence of fine-grained clay layers near Lake Lupin (Figure 5.1). B. An attempt to 
emplace piezometers at the Northern Oasis lakes. Notice the poor sorting of the deposits, 
which consist of fine sediments and boulders. The pit is located approximately 50 m from 
the lakeshore of Lake Lupin.  

 

5.2.3. Lacustrine processes 
 

Lacustrine deposits are generally fine grained and have low permeability (e.g. Domenico 

and Schwartz, 1998). These layers of fine sediment are likely to significantly impact the 

hydraulic conductivity of the lakes and impact lake-aquifer exchange (e.g. Blume et al., 

2013). Conversely, significant groundwater-lake exchange has been observed in 

lakeshores with coarse deposits, such as talus slopes (e.g. Hood et al., 2006; Roy and 

Hayashi, 2008).  
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Lakes and lake basins of various sizes are common features of glacier forelands, 

including the Skaftafellsjökull foreland (Figure 3.13). Confined topographic basins in which 

lakes can form can be created by a number of glacial processes including the erosion of 

overdeepenings (e.g. Marren and Toomath, 2013) and the melt-out of buried ice. They 

can also form with inter-moraine basins (e.g. Robinson et al., 2008). Glacial lakes 

connected with proglacial meltwater systems with high sediments loads are associated 

with relatively rapid sedimentation rates. Seasonal variations in meltwater discharge and 

sediment delivery to glacial lake basins can result in the formation of varves that are 

characteristic of glaciolacustrine sequences (e.g. Marren, 2002a). These typically 

comprise alternating layers of clay and silt-sand representing annual cycles. Lake basins 

that are not connected to surface meltwater rivers and that are in contrast fed by rainfall 

and groundwater are characterised by much lower turbidity and sedimentation rates. 

Lakeshores which are underlain by fine-grained deposits at the Skaftafellsjökull foreland 

are located in the Northern Oasis (Figure 5.1), in drying lakebeds at the western part of 

the Southern Oasis, and at the eastern shore of the Instrumented Lake (IL). Conversely, 

the western lakeshore of the IL is underlain by coarse glaciofluvial deposits. These 

differences suggest high variability in the hydraulic conductivity of lakeshores at the 

Skaftafellsjökull margin. In addition to the lakes in the Southern and Northern Oasis, the 

foreland of Skaftafellsjökull is also dominated by the ice-contact lake, which has been 

expanding substantially following the retreat of Skaftafellsjökull into an overdeepened 

basin (Marren and Toomath, 2013).  

5.2.4. Summary of depositional environments at the 
Skaftafellsjökull foreland  

 

The retreating of the Skaftafellsjökull foreland generates complex glaciofluvial, glacial, and 

lacustrine processes (Marren, 2002a). In contrast to Skeiðarársandur, the dominant fluvial 

regime at the Skaftafellsjökull foreland is generally controlled by ablation. Furthermore, 
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the Skaftafellsjökull foreland is not impacted by jökulhlaups and glacial surges. Most of the 

deposits at the Skaftafellsjökull foreland originate from glaciofluvial processes, till 

deposition, and lacustrine deposits (Marren and Toomath, 2013). This high variability in 

proglacial geomorphology is therefore expected to lead to a high variability in 

hydrogeological parameters.  

This overview provides a good understanding for the geomorphic processes and their 

associated environments which impact the Skaftafellsjökull foreland and the related 

deposits which are characteristic to these environments. In addition to the description of 

the dominant depositional and geomorphic processes the current study also took field and 

laboratory hydrogeological measurements to determine small-scale aquifer parameters. 

These results are important for the hydrogeological classification of the field site (objective 

ii) and for the understanding of groundwater exchange with rivers (objective iv) and lakes 

(objective v).   

 

5.3. Methods for determining hydraulic 
conductivity  

 

Hydraulic conductivity (K) describes the ability of a porous medium to transmit fluid 

through interconnected voids. Therefore, it represents the ease with which fluid flows 

through porous media (e.g. Freeze and Cherry, 1979). Hydraulic conductivity is a key 

hydrogeological parameter, and its accurate estimation is necessary for accurate 

calculations of groundwater flow, the assessment of groundwater-surface water 

interactions and baseflow (e.g. Soulsby et al., 2007; Song et al., 2009; Krause et al., 

2011a, b), and for understanding the transport of contaminants (e.g. Weatherill et al., 

2014). This study focuses on measuring hydraulic conductivity (objective ii) in order to 

delineate proglacial groundwater-surface water interaction, particularly the exchange 

between groundwater and rivers (objective iv) and lakes (objective v). 
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Within proglacial environments, hydraulic conductivity is impacted by large scale 

geological and geomorphic processes, such as glacier margin fluctuations and jökulhlaups 

(e.g. Robinson et al., 2008; Bajc et al., 2014). However, hydraulic conductivity is also 

controlled by the development and occurrence of smaller-scale features and processes 

such as fractures (Hendry, 1982, 1988) sand layers (Bradbury and Muldoon, 1990), and 

till oxidation (Hiscock and Najafi, 2011). For instance, observations from Alberta, Canada, 

have shown that fracture flow within a glacial till matrix with very low hydraulic conductivity 

(10-10 m/sec) can increase groundwater flow velocities by one to three orders of magnitude 

(Hendry, 1982). Within proglacial settings, hydraulic conductivity can be substantially 

reduced by low permeability features such as clay deposits and buried ice (e.g. Langston 

et al., 2011; Muir et al., 2011). 

However, despite the importance of hydraulic conductivity, its measurement in the field 

and the laboratory is complicated. Various methods exist for it, each with its merits and 

limitations [Table 5.1] (e.g. Freeze and Cherry, 1979; Odong, 2007).  

Table 5.1. Methods for determining hydraulic conductivity. Note that the scale of test 
increases down the table 

Method  Advantages Disadvantages 

Particle Size 
Analysis (PSA) 

 Low cost 

 Ease of repeatability  

 Different formulas relate to 
different grain sizes 

 Easy collection of samples 

 Relatively low 
environmental impact 

 High variability within the results, which 
are strongly dependant on the material 
and formula used.  

 The small scale of the test does not 
address preferential flow paths and 
aquifer heterogeneity.  

 Difficulty in obtaining representative 
samples of aquifer materials. 

Laboratory 
permeameter 
tests 

 Relative ease of obtaining 
samples. 

 High variability of results 

 packing and drainage along the side of 
the device can impact the results 

Single well 
response 
(slug) tests 

 Testing is done within the 
aquifer itself.  

 Simple performance and 
analysis 

 Relatively inexpensive 

 Only a small area is tested 

 Requires data loggers and piezometers 
that will fit them. 

 The injection of the ‘slug’ can impact well 
water 

 Difficult to implement in wells with high 
hydraulic conductivity 

Pumping tests  Integrates aquifer 
heterogeneities over larger 
scales 

 High costs 

 Time consuming 

 Requires piezometers 

 Difficult to implement in remote/sensitive 
areas. 
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The development of a good understanding of the hydrogeological framework for the 

Skaftafellsjökull foreland was a key goal for the current study (objective ii). However, the 

logistical requirements and costs associated with pumping tests ruled out this method. 

Due to their relative simplicity, low costs, and previous successful uses in proglacial 

environments, it was decided to use PSA (Robinson et al., 2008) slug tests (Cooper et al., 

2002; 2011), and laboratory permeameter (e.g. Mohanty et al., 1994) for the determination 

of hydraulic conductivity at the Skaftafellsjökull foreland. However, due to the relatively 

small area which slug tests impact and the difficulties in obtaining a representative sample 

for PSA and permeameter measurements, it was decided to use all methods and compare 

the results where applicable. The results of the slug tests were therefore compared with 

PSA results from “proxy locations” near the piezometers (section 5.4.3).  

5.3.1. Falling head (slug) tests 
 

Falling head tests are based on the addition of a volume of water (“slug”) into the well and 

the analysis of the dissipation of the change in head. This method has been previously 

used to determine the hydraulic conductivity of a proglacial outwash plain in Svalbard 

(Cooper et al., 2002; 2011). The slug tests for the current study were performed in the 

0.28 mm piezometers (GW, Figure 3.18), where pressure transducers fit. The procedures 

for the slug tests followed those recommended by Brassington (2007). Initially, 

groundwater level in the piezometer was measured manually. After the groundwater level 

was stable, a pressure transducer was then emplaced inside the piezometer, and 

suspended from the top. Approximately 1-2 litres of water were then added quickly, which 

instantly raised the water level and then began to dissipate. In order to ensure that the 

change in hydraulic head caused by the slug had dissipated completely and that 

groundwater returned to the level prior to the injection, groundwater levels were measured 

manually before the pressure transducer was taken out.  



Chapter 5          Proglacial hydrogeology 
 

116 
 

In addition to the general limitations of slug tests (Table 5.1), an additional problem at the 

Skaftafellsjökull foreland was the high hydraulic conductivities of the coarse-grained 

outwash deposits, in which groundwater levels returned very quickly to the levels prior to 

the slug injection. The quick recovery of groundwater levels made the calculation of the 

0.37 time lag a crude estimate (Brassington, 2007). In order to overcome this challenge, 

the tests were performed at least twice in each borehole. 

The analysis of the slug tests was based on the formula suggested by Hvorslev (1951), 

which was revised by Domenico and Schwartz (1998). Hydraulic conductivity was 

calculated from the results of the slug tests using Equation 5.1, found in Domenico and 

Schwartz (1998).  
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Equation 5.1. Slug test analysis for calculating hydraulic conductivity (modified from 
Hvorslev, 1951) 

 

K is hydraulic conductivity (m/day), r is the radius of the borehole (cm), L is the length of 

the screened section (m) and T0 is the basic time lag where the head ratio is 0.37 

(Hvorslev, 1951). T0 is determined by h/h0, where h0 is the maximum height of the slug 

and h is the head at the aquifer at time t. T0 was analysed by plotting time against head 

ratio on a semi-log paper, and finding the time which corresponded with the 0.37 of the 

head ratio. As suggested by Brassington (2007), an additional line, parallel to the original, 

was drawn when the origin did not go through the origin. The head ratio was than 

determined using the parallel line. Another important assumption of the Hvorslev (1951) 

method is that the screen is completely below the water table. In order to determine that, 
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the depth below water table in this study was compared with the height of the top of the 

screen. It was found that all the top of the screen was below the water table in all the 

observations at this study, hence, the usage of Equation 5.1 was valid.  

5.3.2. Particle Size Analysis (PSA)   
 

Particle Size Analysis (PSA) is based on the important relationship between particle size 

distribution and the hydraulic conductivity of a hydrogeological unit, which generally 

increases with coarser particles (e.g. Shepherd, 1989). PSA equations are usually based 

on a threshold grain size, of which a certain percentage of the sample is finer (Hazen, 

1892). For instance, the d10, the particle size at which 10% of the sample is finer, serves 

as the key input parameter in many PSA empirical relationships (e.g. Hazen, 1892; 

Krumbein and Monk, 1943; Carrier, 2003). Other equations which use a single parameter 

are based on the percentage of clay (Puckett et al., 1985) or sand and clay particles within 

a sample (e.g. Rawls and Brakensiek, 1989). However, the latter method is only 

applicable to soils with maximum 70% of sand. Hence, it is possibly not applicable to 

coarse-grained glaciofluvial sediments.  

The main advantages of PSA are its relatively easy and inexpensive sample collection 

and analysis. Additionally, the environmental impact of PSA is lower than that of methods 

which require piezometers (i.e. pumping tests, slug tests) (Table 5.1). However, PSA also 

has various limitations such as high variability in results, small scale representation of 

aquifer parameters, and strong dependence on the formula that is used (e.g. Brassington, 

2007; Ronayne et al., 2012). However, despite these limitations, PSA has been widely 

used in a variety of hydrogeological settings including fluvial environments (e.g. Song et 

al., 2009), desert alluvium (e.g. Alyamani and Sen, 1993) and proglacial outwash plains 

(e.g. Robinson et al., 2008).  
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PSA at the Skaftafellsjökull foreland was determined from sediment samples collected as 

close as possible to the water table (~0.60 m below ground). The samples were collected 

from lakeshores, relict glaciofluvial channels, the transect area, and from near the 

piezometers within the monitored area (Figure 3.13). PSA was obtained by a Coulter® 

LS230 laser Grain Size Analyser (GSA), which provides the volume percentage finer than 

the following grain sizes: 2, 1, 0.5, 0.25, 0.125, 0.063, 0.003, 0.001, 0.0005, 0.00025, 

0.000125, and 0.0000625 mm. However, some of the coarser samples were too angular 

to be analysed on the GSA. Therefore, the PSA for these samples were obtained by wet 

sieving, using mesh sizes of 2, 1, 0.5, 0.25, 0.125 and 0.063 mm. These samples 

contained a very small amount of material below 0.063 mm. Hence, analysis of finer 

particle sizes was not taken on these samples.  

This study compared between three PSA equations, which focus on different particle 

sizes: Hazen (1892), Puckett (1985), and Alyamani and San (1993). The Hazen (1892) 

method has been extensively used to estimate the hydraulic conductivity of clean sands, 

including those from glacial environments (e.g. Hazen, 1892; Robinson et al., 2008). The 

Hazen method estimates hydraulic conductivity based on Equation 5.2: 

 𝑲 = 𝑪(𝒅𝟏𝟎)𝟐
 

 

Equation 5.2 The Hazen equation (1892) 

    

Where K is hydraulic conductivity (m/day), C is a coefficient based on both grain size and 

sorting, and d10 is the particle size diameter (mm) of which 10% of the sample is finer. 

When comparing various PSA equations, Bradbury and Muldoon (1990) observed that the 

Hazen method consistently underestimated field-obtained results by one-two orders of 

magnitude. However, it also provided the closest results to laboratory measured values, 

despite a consistent overestimation by one order of magnitude. Additionally, Goodman 
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(1999) has also reported that the Hazen method predicted lower values and was more 

consistent than other methods which consider sorting, such as Krumbein and Monk 

(1943). In addition to its reported relative consistency, the Hazen method was also used in 

this study because of its previous usage in proglacial environments (e.g. Robinson et al., 

2008).  

In addition to the d10, the Hazen equation also includes an empirical coefficient (C), which 

is related to sediment grain size and sorting (Brassington, 2007). It has also been 

suggested that the C parameter is influenced by sediment compaction, with higher Hazen 

coefficient assigned to looser material (Uma et al., 1989). Although it is usually assumed 

that the coefficient is equal to 100, a review has shown that cited Hazen coefficients can 

range between 1 and 1000 (Carrier, 2003). However, values as high as 1300 have also 

been suggested (Brassington, 2007). The C coefficients which were used in the current 

study were 350 (lowest value suggested) for fine-grained sediments and 1000 for coarse-

grained sediments (Brassington, 2007).  

The Alyamani and Sen (A&S) (1993) equation was developed in order to overcome the 

bias problems associated with PSA equations that only use a single parameter. A&S have 

suggested that finer particles carry a higher physical impact on hydraulic conductivity, 

hence, the central tendency chosen in a one parameter equation is usually biased toward 

fine grain sizes. They also suggested that one parameter fails to fully represent the whole 

grain-size distribution curve. Therefore, a single parameter does not yield consistent 

results with respect to actual values of hydraulic conductivity (Alyamani and Sen, 1993). In 

order to overcome these limitations, they developed an alternative approach, which is 

based on a portion of the curve, using its slope, intercept and the difference between the 

d50 and d10 particles (Equation 5.3) (Alyamani and Sen, 1993). 
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𝐾 = 1300 [𝐼0 + 0.025(𝑑50 − 𝑑10)]2
 

Equation 5.3. The Alyamani and Sen (A&S) equation (1993).  

K denotes hydraulic conductivity (m/day), d50 and d10 are the grain sizes which are 10% 

and 50% coarser than the remaining of the sample, respectively. I0 (mm) is the grain size 

diameter where the d10 and d50 values intersect the horizontal axis (Figure 5.3).  

 

Figure 5.3. Determination of the I0 (the particle diameter which corresponds to the 
intersection of d10 and d50) from PSA data.  

The I0 is located where the dotted line crosses the x axis. 

The third equation for measuring hydraulic conductivity which was tested in this study has 

been developed by Puckett et al. (1985) (Equation 5.4).  

𝑲 = (𝟒. 𝟑𝟔 × 𝟏𝟎−𝟓) × 𝒆(−𝟎.𝟏𝟗𝟕𝟓×%𝒄𝒍)
 

Equation 5.4. The Puckett et al. equation (1985) 
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K is hydraulic conductivity (m/sec) and % cl is the percentage of the total sample that is 

finer than 0.002 mm. The obtained values from this equation were later converted to 

m/day. This method is specifically designed for sediment with high clay contents. It was 

chosen due to the high proportion of fine-grained sediment at the Northern Oasis and the 

eastern lakeshore of the Instrumented Lake. 

Sorting was calculated according to Equation 5.5 (Folk, 1986).  

𝜎1 = 𝛷84 − 𝛷16

4
+

𝛷95 + 𝛷5

6.6
 

Equation 5.5. Calculation of sediment sorting coefficient (after Folk, 1986).  

 

1 is the sorting coefficient and 1684, , 595,  are the phi values at the respective 84, 

16, 95, and 5 percentiles. These coefficients are accompanied by a verbal description of 

the sorting (Table 5.3, Appendix 3). 

5.3.3. Constant head permeameter 
 

Hydraulic conductivity for three samples from each hydrogeological environment 

(Northern Oasis, IL, Southern Oasis lakes, and the Outwash) were tested using a 

constant head permeameter following British Standard 1377 (1990). Each sample was 

emplaced in a glass chamber, where water saturated the sample from the top. Pipes 

connected to manometers were connected above and below the sample, in order to 

determine the difference in head. However, due to the low availability of samples, the 

sediment in the chamber was only ~1 cm thick, with gravel filling the rest of the chamber.  

Water fluxes through the chamber were then measured. These fluxes and head 
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differences then allowed Darcy’s Law to be used to calculate hydraulic conductivity 

(Equation 5.6). 

𝐾 = (
(

𝑉

𝑡
)×𝑙

(ℎ×𝐴)
)   

Equation 5.6. Calculation of hydraulic conductivity (K) using constant head permeameter 

 

Where K is hydraulic conductivity (cm/sec), v is the volume of water (mL), t is time (sec), l 

is the length of the sample (cm), h is the difference in head (cm), and A the cross 

sectional area (cm2). The results were then converted to m/day. 

5.4. Results for the determination of hydraulic 
conductivity 

 

5.4.1.  Spatial variability in grain size  
 

30 sediment samples for PSA were collected from the different hydrogeological 

environments at the Skaftafellsjökull foreland (Figure 5.4, Appendix 2): The Northern 

Oasis, the Southern Oasis lakes, the outwash, and the Instrumented Lake (IL). The 

Northern Oasis consists of the area between the two main channels of the Skaftafellsá 

meltwater river (Figure 5.1). This area contains several large lakes, which are receding 

(Figure 3.11), and large moraine complexes. It is mainly underlain by poorly sorted 

sediment, which consist of fine-grained deposits, cobbles, and boulders (Figure 5.2). The 

Southern Oasis contains  five main lakes, located south of the Skaftafellsá meltwater 

channel (Figure 5.1). These lakes are generally underlain by pebbles and coarse sands. 

However, some lakeshores are underlain by finer sediments. These lakes support large 

amount of flora and fauna. The IL is the northernmost lake within the Southern Oasis. It is 
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located in a depression, and is surrounded by moraines from the north, south and east. 

The lakeshores of the IL show a considerable variability in grain size (Tristram et al., 

2015). The eastern end is underlain by approximately 0.5 m of fine-grained deposits. The 

western lakeshore is underlain by similar deposits to those of the outwash, hence, it was 

included in the outwash. The outwash consists of active and relict glaciofluvial channels, 

underlain by coarse sand and cobbles deposits, which drained the retreating glacier 

margin of Skaftafellsjökull (Figure 5.1).  

 

Figure 5.4. Hydrogeological environments and the locations for PSA samples and slug tests 
at the Skaftafellsjökull foreland.  

PSA samples are denoted by black dots. Piezometers in which slug tests were performed 
are denoted with white triangles. The box in black dashed lines shows the approximate area 
of Insert B, which zooms in on the Southern Oasis area. The position of the Skaftafellsá 
channel has shifted since the image was taken. The position of the channel during the field 
season (June-August 2012) is denoted by the dashed blue line in B. The image was taken 
from Vatnajökull National Park, 2007.    

 

The procedures for the PSA are described in section 5.3.2. The PSA results show a high 

heterogeneity in grain size distribution at the Skaftafellsjökull foreland (Figure 5.5). The 
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samples from the Northern Oasis and the fine-grained lakeshore of the IL have narrow 

particle size distributions, which consist of very high proportion of fine grain size (<0.063 

mm). This is also illustrated by the narrow difference in particle size (0.060 mm) between 

their d10 (0.001-0.015 mm) and d90 (0.063 mm) particles (Table 5.2). Although only five 

samples were collected from the Northern Oasis, excavations suggest that extensive 

areas of this area site are underlain by poorly sorted deposits of fine-grained sediment 

and boulders (till) (Figure 5.2).    

In contrast to the fine-grained sediments at the Northern Oasis and the IL, the samples 

from the Southern Oasis lakes and the outwash were much coarser. For instance, the d10 

for the Southern Oasis lakes and the outwash are 0.070 mm and 0.30 mm, respectively 

(Figure 5.5). The coarsest grain size in the Southern Oasis lakes and outwash (~2 mm) 

are also substantially coarser than those from the IL and Northern Oasis (0.063 mm). 

Additionally, the range of the particle size distributions for these two environments was 

much wider (~1.7 mm) than that of the Northern Oasis and the fine-grained lakeshore of 

the IL (Table 5.2). These differences highlight the high sediment heterogeneity at the 

Skaftafellsjökull foreland.  
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Figure 5.5. Cumulative plot of Particle Size Analysis for the different hydrogeological 
environments at the Skaftafellsjökull foreland.  

The horizontal dashed grey lines show the corresponding d10, d50, and d90 for each 
environment. Note that only wet sieving was done on the S. Oasis lakes and Outwash 
samples, hence the lowest diameter is 0.063 mm. The brackets in the legend show the 
number of samples in each environment. 

Table 5.2. Mean grain size (mm) and standard deviation for the different hydrogeological 
environments at the Skaftafellsjökull foreland.  

The figures are based on the cumulative PSA distribution. The number of samples in each 
environment is in brackets. 

Grain size (mm) d10 d50 d90 

S. oasis lakes (8) 0.061±0.045 0.311±0.169 1.202±0.558 

N. Oasis (5) 0.001±0.001 0.016±0.018 0.081±0.088 

IL (6) 0.004±0.001 0.022±0.001 0.063±0.009 

Outwash (11) 0.190±0.127 0.834±0.322 1.720±0.236 

 

Sorting was calculated from the PSA results following the method of Folk (1986) (Equation 

5.5). The results for the sorting showed that all samples were between very well sorted to 

moderately well sorted (Table 5.3). The samples with high proportion of fine particles 

(Northern Oasis and the IL) were very well sorted. However, it is important to note that the 

values from the Northern Oasis did not include large clasts, which are prevalent in this till-
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dominated environment. Based on individual samples and the standard deviation, the 

highest variability in sorting was found in the Southern Oasis lakes (Table 5.3). 

Table 5.3. Mean sorting coefficients and standard deviation in different hydrogeological 
environments at the Skaftafellsjökull foreland. 

Spatial variability in sorting 

Hydrogeological environment Mean sorting coefficient Sorting description 

N. Oasis 0.041±0.038 Very well sorted 

S. Oasis lakes 0.421±0.198 Well sorted 

Fine-grained lakeshore of the IL 0.208±0.005 Very well sorted 

Outwash 0.584±0.041 Moderately well sorted 

.  

5.4.2. Comparison of hydraulic conductivity between 
the PSA equations  

 

The comparison of hydraulic conductivity estimations which were obtained from the three 

PSA equations and the slug tests is presented in Figure 5.6 and Table 5.4. The Alyamani 

and Sen (A&S) method obtained the highest mean hydraulic conductivity values (4.47x102 

m/day) and highest standard deviation (6.86x102 m/day), which exceeded the other 

methods by one to two orders of magnitude. The Puckett method had the lowest mean 

and standard deviation (1.29x100±1.28 m/day), which were one and two orders of 

magnitude lower than those obtained from the Hazen and A&S equations, respectively.  

The mean and standard deviation for the Hazen method and the slug tests were within the 

same order of magnitude (2.0x101 m/day).  
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Table 5.4. Mean and standard deviation of hydraulic conductivity from the different 
methods. The full data set is found in Appendix 4. 

 

The results for all the PSA samples and the falling head tests are presented in Figure 5.6. 

This shows that both the A&S and Hazen results had very high variability, which ranged 

over six and seven orders of magnitude, respectively. The slug tests and Puckett 

estimations ranged over three and four orders of magnitude, respectively. Conversely, the 

results from the permeameter testing only varied over two orders of magnitude  (Figure 

5.6). The slug tests had the highest minimum value (8.65 x 10-2 m/day), which exceeds the 

lowest minimum value estimated by the Hazen equation (1.14x10-4 m/day) by two orders 

of magnitude. The high minimum values obtained by the slug tests are probably explained 

by the coarse-grained substrates underlain by the piezometers in which slug tests were 

performed (Figure 5.4). The minimum Puckett and A&S estimations were within the same 

order of magnitude (1x10-2 m/day).  

Method Mean hydraulic conductivity (m/day) 

Hazen (30) 20.05±38.23 

Puckett (18) 1.29±1.28 

A&S (30) 447.36±686.79  

Slug tests (18) 19.26±19.64 

Constant head permeameter (12) 11.15±5.89 
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Figure 5.6. Hydraulic conductivity estimations from the three PSA equations and slug tests. 

This figure contains all samples. Please note the logarithmic scale. The results from the 
permeameter tests only varied over two orders of magnitude and, due to the logarithmic 
scale of the figure, have been omitted for clarity. The numbers of samples for each method 
are in brackets. The numbers above the box plots denote the mean and standard deviation 
of each method (m/day).  

The hydraulic conductivity values that were obtained from all of the samples are 

presented in Figure 5.6. However, some samples were not analysed by the Puckett 

method and slug tests. These omissions were due to the limited amount of piezometers 

where pressure transducers fit (slug tests) and to the very small proportion of sediment <2 

µm (Puckett method) in some environments, particularly in the outwash and Southern 

Oasis lakes. Therefore, in order to overcome this methodological challenge, and perform 

a more direct comparison, the results from samples where all three PSA methods were 

used (“direct comparison”) are presented in Figure 5.7.  

Similar to the results from all the samples (Figure 5.6), the direct comparisons between 

the methods also suggest a high variability in hydraulic conductivity between the different 

methods (Figure 5.7). The hydraulic conductivity values obtained from the direct 

comparison samples stretched over 3-6 orders of magnitude. The Puckett method had the 
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lowest mean and standard deviation (1.29x100 m/day), which were one and two orders of 

magnitude below those of Hazen and A&S, respectively. The mean hydraulic conductivity 

of each equation for the direct comparison (Figure 5.7) was within the same order of 

magnitude as that of the total number of samples (Figure 5.6). 

 

Figure 5.7. Direct comparison of hydraulic conductivity (m/day) for the three PSA equations. 

The numbers of samples for each method are in brackets. The numbers above the box plots 
denote the mean and standard deviation (m/day). Note the logarithmic scale.  

5.4.3. Slug tests 
 

Hydraulic conductivity estimations from the slug tests spanned over three orders of 

magnitude (1.12x10-1- 4.02x101 m/day) (Figure 5.6). The lowest hydraulic conductivity was 

estimated at GW8 (1.12x10-1 m/day), located in relatively fine-grained deposits near the IL. 

These estimates were very close to the Hazen PSA estimations from this area (1.00x10-1 

m/day). The relatively low hydraulic conductivity in this area is due to the high proportion 

of fine-grained deposits in this location, which gets periodically inundated by lake water. 

These inundations probably increase the deposition of fine- grained sediment, which 

reduce the hydraulic conductivity.  
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The hydraulic conductivity in the transect varied around two orders of magnitude (1x100-

1x101 m/day). The slug tests have shown that hydraulic conductivity increased away from 

the river, with the highest values estimated at T3 [Figure 5.4] (4.02x101 m/day). Hydraulic 

conductivity at the closest borehole to the river (T1) was an order of magnitude lower than 

at T3 (4.70x100 m/day). These values and spatial patterns are similar to those reported 

from other proglacial settings (e.g. Cooper et al., 2002; Magnusson et al., 2014). For 

instance, the hydraulic conductivity of the well located next to a meltwater channel in 

Svalbard was estimated at 3.81x100, and it increased with distance away from the channel 

(Cooper et al., 2002). Similar results were also reported from the forefield of the Damma 

Gletscher (Swiss Alps), where slug tests estimated hydraulic conductivity to vary between 

5.4x100 – 4.23x101 m/day (Magnusson et al., 2014).  

GW11 and GW12 are located between two moraines, in an area underlain by coarse 

glaciofluvial deposits and relict channels (Figure 5.1). The substrate where these 

piezometers are located is similar to that of the transect, albeit being located further from 

the river. The hydraulic conductivity at GW11 and GW12 was very similar (1.5x101 m/day). 

These results are also within the same order of magnitude as the hydraulic conductivity of 

T3, located in a coarse-grained substrate near the IL. The hydraulic conductivity at GW5, 

located in coarse-grained glaciofluvial deposits 38 m away from the Skaftafellsá, was 

1.51x100 m/day. Although this was the lowest hydraulic conductivity in the outwash, these 

results are within the same order of magnitude as the estimated hydraulic conductivity for 

T1 and T2 (Table 5.5). Additionally, the results of the slug test for T3 were within the same 

order of magnitude as the mean Hazen hydraulic conductivity for the outwash. In 

summary, the results of the slug tests were generally within the same order of magnitude 

as those obtained from the Hazen equation.  
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Table 5.5. Mean hydraulic conductivity and standard deviation for the slug tests.  

The brackets denote the number of samples. The table also presents comparison of PSA 
results from areas which were near the piezometers where slug tests were performed.  

Borehole Mean slug test hydraulic conductivity 
(m/day) 

GW8 (2) (relatively fine-grained lacustrine 
deposits) 

0.11±0.04 

GW5 (2) (glaciofluvial deposits) 1.51±0.3 

GW11 (1) (glaciofluvial deposits) 15.72 

GW12 (1) (glaciofluvial deposits) 14.42 

T1 (3) (glaciofluvial deposits) 4.70±0.4 

T2 (2) (glaciofluvial deposits) 9.06±4.7 

T3 (7) (glaciofluvial deposits) 40.16±14.3 

Hydraulic conductivity (m/day) Hazen Puckett A&S 

GW8 (1) 0.10 1.52 8.55 

Mean S.N. (3) (glaciofluvial deposits) 92.58 3.44 915.89 

Mean outwash (4) 61.01  1148.72 

 

5.4.4. Constant head permeameter 
 

Hydraulic conductivity estimations from the permeameter ranged between 4.97x100 and 

2.45x101 m/day. The mean K estimations from the permeameter was 1.15x101±5.89 

m/day, which lies within the same order of magnitude of the slug tests and Hazen 

estimations (Table 5.5). However, in contrast to the PSA, where substantial differences 

between the hydrogeological environments were observed, the results of the 

permeameter only stretched over two orders of magnitude (Figure 5.8).  
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Figure 5.8. Hydraulic conductivity estimates (m/day) obtained from constant head 
permeameter laboratory tests.  

The numbers above the box plots denote the mean and standard deviation of each method 
(m/day). Both sand and clay contained 6 samples. 

5.4.5. Choice of preferred method for estimating 
hydraulic conductivity 

 

The direct comparisons of the results shows that the mean hydraulic conductivity for the 

Puckett and A&S equations were generally the lowest and highest, respectively. The 

Hazen estimations were in the middle, with mean hydraulic conductivity an order of 

magnitude higher and lower than the Puckett and A&S estimations, respectively (Figure 

5.7). The estimations of hydraulic conductivity from the slug tests and permeameter were 

generally closest to the Hazen estimations (Table 5.5). However, the slug tests were only 

conducted in relatively coarse-grained areas. Conversely, the results from the Puckett and 

A&S were generally at least an order of magnitude lower and higher, respectively  (Table 

5.4When choosing the most appropriate method for the estimation of hydraulic 

conductivity, the main limitation of the A&S equation was its high estimations and 
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variability (Figure 5.6). The main limitation of the Puckett method is its unsuitability for 

areas containing low proportion of fine-grained sediments. The main limitation of the slug 

tests was its limited spatial coverage. Although the permeameter included samples from 

all hydrogeological environments, the differences between the different environments 

were small, failing to capture the expected heterogeneity in hydraulic conductivity of 

proglacial sediments that has been displayed by the PSA (Figure 5.6). It is suggested that 

this is due to limitations with the method, such as the need to emplace the sample on top 

of gravel layers, which leads to preferential flow paths, which increase the flow. In light of 

these limitations, it was therefore decided to use the hydraulic conductivity estimations 

which were obtained from the Hazen equation due to its past usage in similar 

environments (e.g. Robinson et al., 2008) and its nearest agreement to the falling-head 

tests.   

5.5. Spatial variability in hydraulic conductivity 
at the Skaftafellsjökull foreland  

 

This section describes the spatial variability in hydraulic conductivity at the 

Skaftafellsjökull foreland. These results are based on the Hazen PSA estimations of 

hydraulic conductivity. Similar to other studies from proglacial environments (e.g. 

Robinson et al., 2008; Bajc et al., 2014), the hydraulic conductivity at the Skaftafellsjökull 

margin has also shown wide spatial variability.  

The hydraulic conductivity estimations at the Skaftafellsjökull foreland varied over seven 

orders of magnitude (1x10-4 – 1x102 m/day), with large differences between the Northern 

and Southern Oasis (Figure 5.9). The lowest hydraulic conductivity was estimated in 

areas underlain by high proportion of fine-grained sediment such as the Northern Oasis 

lakes and the eastern lakeshore of the IL (Figure 5.9). The lowest mean hydraulic 

conductivity was measured in the Northern Oasis (approximately 7.28x10-3 m/day). These 

estimations were two orders of magnitude lower than the mean hydraulic conductivity for 
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the fine-grained lakeshore of the IL. The Northern Oasis also had the smallest variability in 

hydraulic conductivity. 

 

Figure 5.9. The spatial distribution in hydraulic conductivity (m/day) at the Skaftafellsjökull 
foreland. 

Note the logarithmic scale. These results are based on the results from the Hazen equation. 
The hydraulic conductivity of the Southern Oasis (dashed box) is shown in more detail 
within the black box. The position of the Skaftafellsá channel has shifted since the image 
was taken. The position of the channel during the field season (June-August 2012) is 
denoted by the blue dashed line. The image was taken from Vatnajökull National Park, 2007.   

 

The hydraulic conductivity estimations from the IL (7.28x10-3 m/day) and the Northern 

Oasis (3.79x10-4 m/day) exceeded the values suggested by Brassington (2007) for glacial 

clay by one and two orders of magnitude, respectively (Figure 5.9). Slug tests estimated 

that the hydraulic conductivity of till from the Burroughs Glacier in Alaska to be around 

1x10-2 m/day (Simpkins and Mickleson, 1990). However, these samples contained a high 

proportion of sand, which probably explains the hydraulic conductivity estimations being 

one-two orders of magnitude higher than those measured in the Skaftafellsjökull foreland. 

In contrast to the relatively high hydraulic conductivity of till reported from the Burroughs 
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Glacier, the hydraulic conductivity of clay-rich Quaternary glacial till deposits from East 

Anglia (3.46x10-4-4.23x10-6 m/day) were lower than those from the Skaftafellsjökull 

foreland (Hiscock and Tabatabi Najafi, 2011). Observations of glacial till from Shropshire 

were also lower than those from the Skaftafellsjökull foreland, with median hydraulic 

conductivity of approximately 1.73x10-5 m/day (Cuthbert et al., 2010). These estimates are 

between one and three orders of magnitude lower than the estimations from the IL and up 

to two orders of magnitude lower than the Northern Oasis (Figure 5.9).  

The hydraulic conductivity of till can vary over a very wide range, typically between 

8.64x10-3-8.64x103 m/day (Freeze and Cherry, 1979). Another summary has estimated an 

even higher variability, where hydraulic conductivity ranges between 6.91x10-7-1.73x103 

m/day (Piotrowski, 2007). The hydraulic conductivity of the IL is ranked at either the lower 

end of the ranges suggested by Freeze and Cherry (1979) or at the lower-mid range for 

that of Piotrowski (2007). The Northern Oasis estimations are an order of magnitude lower 

than the till estimates of Freeze and Cherry’s (1979) range and at the low-mid range of 

Piotrowski (2007). However, the low hydraulic conductivity of till from the Skaftafellsjökull 

foreland can be possibly attributed to its relatively young age, in which the impact of 

secondary processes (such as oxidation) is lower (e.g. Hiscock and Tabatabi Najafi, 

2011). These low hydraulic conductivity estimations and observations from the Northern 

Oasis (Figure 5.2) suggest that it is underlain by fine-grained sediments of low hydraulic 

conductivity. Furthermore, it is hypothesised that these lakes are perched above the 

regional groundwater system.  

The (geometric) mean hydraulic conductivity in the Southern Oasis is 1.21x100 m/day. 

The variability of hydraulic conductivity in the Southern Oasis ranges over seven orders of 

magnitude (Figure 5.9). This high variability in hydraulic conductivity can be illustrated at 

the IL, where hydraulic conductivity varied over five orders of magnitude (3.9x10-3-

9.26x101 m/day). However, intermediate hydraulic conductivities were estimated at GW8 

and L8. These locations have relatively high proportions of silt-sized sediment, which 
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possibly originated from temporary inundation by the lake. The hydraulic conductivity of 

lakeshores in the Southern Oasis are generally in the range of 1.00x100 to 1.00x101 

m/day. These areas are situated further away from the Skaftafellsá, and are also 

surrounded by moraines, which possibly shelter them from diurnal and seasonal 

fluctuations in meltwater discharge, which control sediment entrainment and deposition. K 

estimations for the Southern Oasis lakes were within the same order of magnitude as 

those for moraine lake basins from Skeiðarársandur [Table 5.6] (Robinson et al., 2008).  

The highest hydraulic conductivity at the Skaftafellsjökull foreland was estimated at the 

outwash areas, where hydraulic conductivity ranged between 1x101-1x102 m/day. The 

mean hydraulic conductivity for the outwash was 1.76x101 m/day (Table 5.6). This 

environment is mainly underlain by active and relict braided glaciofluvial channels, where 

the coarsest grain sizes (mean d10 of 0.19 mm)  were measured (Figure 5.5). The 

estimates of hydraulic conductivity from the outwash are within the same order of 

magnitude for glacial sands and gravels (Brassington, 2007). These estimates are also 

very close to estimates from the outwash areas of Skeiðarársandur (4.50x101 m/day) and 

are within the same order of magnitude as the hydraulic conductivity of proglacial 

channels at Skeiðarársandur (2.80x101 m/day) (Robinson et al., 2008). The hydraulic 

conductivity at the forefield of the Damma Gletscher forefield in Switzerland (Magnusson 

et al., 2014) is also within the same orders of magnitude as the current study (Table 5.6). 

Conversely, the hydraulic conductivity estimations of most samples from the 

Skaftafellsjökull outwash are higher by an order of magnitude than those of sandur 

deposits from Svalbard (5.19x100 m/day) (Cooper et al., 2002; 2011).  

 In summary, this section described the spatial variability in hydraulic conductivity at the 

different hydrogeological environments of the Skaftafellsjökull foreland. The results 

illustrate the high heterogeneity of hydraulic conductivity at the Skaftafellsjökull foreland, 

which was observed even on small spatial scales (e.g. between the lakeshores of the IL). 

These observations support previous studies which highlighted the high heterogeneity of 
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glacial deposits (e.g. Anderson, 1989; Bajc et al., 2014). This high variability also 

reiterates the importance of the sampling location and methodology for the determination 

of hydraulic conductivity (e.g. Ronayne et al., 2012). The estimations of hydraulic 

conductivity for the fine-grained areas from this site were either within the middle to low 

position in the range suggested by Piotrowski (2007) or slightly lower than the range 

suggested by Freeze and Cherry (1979). The hydraulic conductivity estimations for 

coarse-grained locations at the Skaftafellsjökull foreland are within the same order of 

magnitude as those reported from Skeiðarársandur (Robinson et al., 2008), the Swiss 

Alps (Magnusson et al., 2014) and the values suggested by Brassington (2007) [Table 

5.6]. 

Table 5.6. Comparison of hydraulic conductivity from glaciated and deglaciated catchments 

Study  Hydraulic conductivity 

(m/day) 

Skaftafellsjökull foreland (geometric mean)  

N. Oasis (5) 0.00038±0.001 

S. Oasis lakes (8) 1.42±2.54 

IL (6) 0.0073±0.01 

Outwash (11) 17.57±50.56 

Total Southern Oasis (25)  1.21±40.62 

Brassington (2007)  

Glacial sands and gravel 10-100s 

Glacial clay, till and varved clay 0.864 

Skeiðarársandur (Robinson et al., 2008)  

Moraines 11.6 (combined) 

Moraine relief 14.2 

Moraine seeps 7.1 

Moraine lake basins 16.8 

Proglacial basin, inundated by 1996 jökulhlaup, >0.5 km from the 
margin  

33.9 

Proglacial river channels 26.6 

Svalbard (Cooper et al., 2002; 2011)   

Well 1, sandur fluvial sed. Fine and silt on channel floodplain, 5 m from 
channel 

3.81 

Well 3, poorly sorted gravely sand moraine, 118m from channel 38.02 

Sandur sediment 5.19 

Moraine complex sediment 35.25 

Burroughs Glacier, Alaska (Simpkins and Mickleson (1990) Till. 57% 
sand, 36% silt, 7% clay 

0.086 

Clay rich Quaternary deposits, East Anglia (Hiscock and Najafi, 
2011) 

3.46X10
-4

-4.23x10
-6

m/day 
1.73x10

-5
 

Damma Gletscher  forefield (Swiss Alps) (Magnusson et al., 2014)  
Alpine proglacial channel, generally coarse (sand-cobbles) 

5.4-42.3m/day 

Proglacial moraine material, Canadian Rockies (Langston et al., 
2013) 

 
(8.64x10

1)
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5.6. Calculations of hydrogeological parameters 
for the Skaftafellsjökull foreland aquifer 

5.6.1. Equations for the calculations of aquifer 
parameters 

 

This section builds on the results from previous sections and other studies to calculate the 

aquifer volume, groundwater discharge, and groundwater velocity of the Skaftafellsjökull 

foreland aquifer. These parameters are important for understanding the regional proglacial 

groundwater flow systems.   

Groundwater discharge is governed by Darcy’s (1856) Law (Equation 5.7):  











dl

dh
KAQ

 

Equation 5.7. The calculation of groundwater discharge fluxes (Darcy, 1856).  

 

Where Q denotes groundwater flow flux (m3/day), K is the hydraulic conductivity (m/day) , 

A the flow cross-sectional area (m2), and dh/dl (unitless) the hydraulic gradient (Darcy, 

1856).  

Matrix properties are fundamentally important in determining groundwater flow. Porosity is 

the void space within the matrix, and is expressed as a percentage of the void volume 

over the total volume. Porosity is affected by both the initial depositional environment and 

secondary processes such as compaction, fracturing, and dissolution. Effective porosity is 

a key hydrogeological parameter, which describes the percentage of pores that are 

interconnected. Permeability describes the ease with which fluid can flow through a 

porous substrate. When fluid transport is considered, effective porosity serves as a better 

surrogate for permeability than total porosity (Domenico and Schwartz, 1998). 
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Groundwater flow equations usually address permeability by the hydraulic conductivity 

term, which is a function of both fluid properties (such as density and viscosity) and the 

substrate permeability. The dh/dl term (Equation 5.7) is the difference in hydraulic head 

over a distance, also known as the hydraulic gradient. The hydraulic gradient is derived 

from the total head (dh) (the sum of elevation head, pressure head and velocity head) 

over the distance between the measuring points (dl).  

The calculations of aquifer key parameters (objective 3) such as aquifer groundwater 

discharge (Equation 5.7), the volume of water in the aquifer (Equation 5.8), and 

groundwater velocity (Equation 5.9) can be made when the hydraulic conductivity, 

hydraulic gradient, porosity and aquifer dimensions are known or well estimated. The 

volume of groundwater within the aquifer is calculated by Equation 5.8: 

𝑉 = 𝑇 × 𝑊 × 𝐿 × 𝑆 

Equation 5.8. Calculation of aquifer volume 

               

V is the volume of groundwater in the aquifer (m3), T is aquifer thickness (m), W is aquifer 

width (m), L is aquifer length (m), and S is the specific yield (%), which is the amount of 

water that is drained from the aquifer in response to a drop in the groundwater table (e.g. 

Freeze and Cherry, 1979). Groundwater velocity is calculated by Equation 5.9: 

 




















l

h

K

v


 

Equation 5.9. Calculation of groundwater velocity.  
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Where v is groundwater velocity (m/day), K is hydraulic conductivity (m/day), α is effective 

porosity (%) and dh/dl is the hydraulic gradient (unitless).  

 

5.6.2. Choice of input parameters for the calculation of  
aquifer properties 

 

This section describes the rationale for choosing the input parameter for the calculations 

of hydraulic conductivity, hydraulic gradient, and aquifer thickness of the Skaftafellsjökull 

foreland (Equations 5.6-5.8). The chosen parameters for Equations 5.7-5.9 are 

summarised in Table 5.7. The chosen hydraulic conductivity (K) inputs were the mean 

Hazen from the Southern Oasis. In order to account for the variability of hydrogeological 

parameters at the site, all measurements from the Southern Oasis were used (outwash, 

lakes and IL), including those from the areas underlain by fine-grained areas (Figure 5.9). 

The calculations using Darcy’s Law also assumed that the aquifer is isotropic and 

homogenous (Freeze and Cherry, 1979).  

The difference in hydraulic head (dh) was mapped from the patterns of groundwater 

horizontal flow at the site, with groundwater flowing from high to low hydraulic heads. 

Similar to other proglacial environments (e.g. Bahr, 1997; Robinson et al., 2008), the 

regional groundwater flow at the Skaftafellsjökull foreland also flows away from the 

margin. Hence, groundwater generally flows from north to south. Additionally, a local 

groundwater system has been identified at the transect, between the River Skaftafellsá 

and the IL (Figure 5.1). The detailed description of groundwater levels and flow paths are 

given in Chapter 7. Having measurements of hydraulic head from near the glacier margin 

would of provided a better understanding of the hydraulic gradient at the site. However, 

this was not possible due to the difficulties in installing piezometers closer to the glacier 
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margin. Therefore, considering the north-south direction of the regional groundwater flow, 

the head difference (dh) component of the hydraulic gradient (dh/dl) was the mean 

difference in heads between the most northerly (GW10) and most southerly piezometers 

(GW8). The distance between these piezometers (dh) is 150 m (Figure 3.18).  

The estimation of aquifer thickness is one of the key parameters for calculating 

groundwater fluxes (Equation 5.7) and aquifer volumes (Equation 5.8) (e.g. Domenico and 

Schwartz, 1998). However, this study did not benefit from measurements of aquifer 

thickness which have been obtained from seismic geophysics (Guðmundsson et al., 2002; 

Robinson et al., 2008) or active layer depth in aquifers underlain by permafrost (Cooper et 

al., 2002; 2011). Previous geophysical measurements from the areas near the snouts of 

Skeiðarársandur and Svínafellsjökull suggested sediment depths of approximately 70-80 

m. Sediment depths then increase with distance from the margin, reaching between 200-

250 m at the coast (Guðmundsson et al., 2002). Other estimates from Svínafellsjökull also 

suggested similar depths to bedrock (Ó Dochartaigh, 2012, personal communication). 

Seismic data suggested that sediment depths to the southwest of the Skaftafellsjökull 

foreland, close to the Skeiðará bridge (Figure 3.2), are approximately 160-200 m 

(Guðmundsson et al., 2002). However, this location is further away from the glacier 

margin than the current field site, hence, these reported depths are possibly thicker. As 

the Skaftafellsjökull proglacial area is substantially smaller than Skeiðarársandur, and is 

not underlain by thick jökulhlaup deposits, it is assumed that the depth to bedrock at the 

Skaftafellsjökull foreland will be shallower. Since the geomorphic setting of Svínafellsjökull 

is similar to that of Skaftafellsjökull, it was decided to use 75 m for the aquifer thickness, 

as it is the middle value between the approximations of sediment depths reported from 

near the margin of Svínafellsjökull (Guðmundsson et al., 2002). The specific yield and 

porosity values for the current calculations were the same as used for Skeiðarársandur 

(Bahr, 1997; Robinson, 2003). These values were chosen because the hydraulic 
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conductivity at the Skaftafellsjökull foreland and Skeiðarársandur was within the same 

order of magnitude (Table 5.6). 

Table 5.7. Chosen parameters for the calculation of the hydrogeological properties of the 
Skaftafellsjökull foreland aquifer. 

Symbol Parameter Value source 

K Mean(geometric)  hydraulic 
conductivity (m/day) 

1.211 This study 

W Aquifer width (m) 1300 This study 

L Aquifer length (m) 2500 This study 

T Aquifer thickness (m) 75 This study 

A Cross sectional area [length x 
depth] (m

2
) 

97500 This study 

h Mean head difference (unitless) 0.544 This study 

l Length of head difference (m) 150 This study 

S Specific yield (%) 25 Brassington (2007) 

α Effective porosity (%) 45 Bahr (1997) 

5.6.3. Aquifer parameters of the Skaftafellsjökull 
foreland 

 

The results for the calculations of hydrogeological parameters are provided in Table 5.8. 

Groundwater velocity for the Southern Oasis (0.033 m/day) was an order of magnitude 

lower than that of Skeiðarársandur (0.21 m/day; Robinson, 2003). The groundwater 

discharge for the Skaftafellsjökull foreland (0.0496 m3/sec) was an order of magnitude 

lower than that calculated for Hoffelsandur, SE Iceland (Hjulström, 1955). Groundwater 

discharge estimates for Skeiðarársandur (3.7 m3/sec; Robinson, 2003) exceeded that of 

those from the current study by three orders of magnitude. The hydraulic conductivity 

used for Skeiðarársandur was within the same order of magnitude as this study. However, 

the aquifer volume for the Skaftafellsjökull foreland was three orders of magnitude lower 

than that of Skeiðarársandur (2.3x1010 m3; Robinson, 2003) (Table 5.8). The lower 
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estimations for the Skaftafellsjökull foreland are due to its substantially smaller aquifer 

size and narrower sediment layers, which are mainly due to the lack of jökulhlaups and 

the smaller sandur area. With regards to the contribution of groundwater discharge to 

catchment water balance, measurements from Skeiðarársandur suggest that the 

discharge of the glacial melt rivers (Churski, 1973) exceed the groundwater discharge by 

two orders of magnitude (Robinson, 2003). Small groundwater contributions to catchment 

water balance have also been reported from a sandur in Svalbard, where calculated 

subsurface fluxes accounted for only around 1% (11 mm) of the total annual water flux 

(Cooper et al., 2011). However, this catchment is underlain by permafrost, which 

substantially reduces the aquifer thickness and hydraulic conductivity, which subsequently 

reduces aquifer volume (Equation 5.8) and groundwater discharge (Equation 5.7).  

The main sources of uncertainty in these calculations are those associated with the 

determination of hydraulic conductivity and the estimation of aquifer thickness and specific 

yield at the Skaftafellsjökull foreland site. Due to these uncertainties, and the high spatial 

heterogeneity which was found at the Skaftafellsjökull foreland, the obtained groundwater 

discharge, velocity, and aquifer volume (Table 5.8) can only remain as plausible 

estimations. 

Table 5.8. Calculated aquifer parameters for the Southern Oasis. 

Regional groundwater discharge (Q)  4.28x10
2
 m

3
/day = 4.96x10

-3
 m

3
/sec = 1.56x10

6
 

m
3
/annum 

Volume of water stored in aquifer (V) 6.09x10
7 
m

3
 

Regional velocity (arithmetic) 0.033 m/day 
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5.7 Chapter conclusions 
 

This chapter provided a hydrogeological framework for the Skaftafellsjökull foreland field 

site (objective ii). This framework was based on both field and laboratory measurements 

and an evaluation of the relict and active depositional environments which impact the site. 

The hydraulic conductivity at the site was estimated from field (slug tests) and laboratory 

(PSA equations) techniques. The results suggested high variability in estimated values, 

with Hazen’s equation generally providing the lowest and least varied estimations. The 

results of the slug tests and permeameter were generally within the same order of 

magnitude as the Hazen estimations for coarse-grained samples. However, the 

permeameter failed to capture the substantial differences in hydraulic conductivity 

between the fine and coarse-grained samples. Due to these limitations, the Hazen results 

were chosen for the estimation of hydraulic conductivity.  

This study highlighted the high spatial heterogeneity in the hydrogeology of the 

Skaftafellsjökull foreland, with hydraulic conductivity ranging over seven orders of 

magnitude. This variability was especially pronounced between the Northern and 

Southern Oasis areas. The Northern Oasis is underlain by layers of fine-grained deposits, 

with low hydraulic conductivity (~1x10-4 m/d). Conversely, the Southern Oasis is much 

more heterogeneous, and contains areas of fine and coarse-grained sediments. The 

mean hydraulic conductivity for the Southern Oasis was 1.21x100 m/d. The outwash area 

had the highest hydraulic conductivity, impacted by the entrainment and deposition of 

coarse-grained sediment in the relict and active meltwater channels. However, areas of 

low hydraulic conductivity were also observed in the Southern Oasis, particularly around 

the IL. The calculated hydraulic conductivity reported in this chapter is generally similar to 

that reported from Skeiðarársandur and the Swiss Alps.  
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The groundwater discharge, velocity, and aquifer volume were lower than 

Skeiðarársandur (Robinson et al., 2008). However, despite the lower groundwater 

discharge and smaller aquifer at Skaftafellsjökull, the aquifer does store and transports 

substantial amount of groundwater. Understanding these hydrogeological parameters is 

important for the understanding of regional groundwater systems and dynamics, 

geochemical fluxes and groundwater-surface water exchange processes. The 

hydrogeological framework provided in this chapter provides a foundation for the 

understanding of groundwater dynamics and groundwater exchange with meltwater 

(objective iv) and lakes (objective v).  
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6. The Geochemistry and isotopic (H 

and 
18

O) composition of 
groundwater and surface water at 
the Skaftafellsjökull foreland 
 

6.1. Introduction 
 

This chapter describes the spatial and temporal variability in groundwater and surface 

water quality (sections 6.3 and 6.4) and stable isotope (δD and δ18O) composition (section 

6.5) at the Skaftafellsjökull foreland. Groundwater and surface water quality and isotopic 

composition are usually substantially different within catchments which are dominated by 

snow and icemelt (e.g. Robinson et al., 2009a, b). These differences have been 

previously used to investigate the configuration and seasonal evolution of the subglacial 

drainage system (e.g. Collins, 1978; Sharp, 1991; Tranter et al., 1993; 1996; Brown, 2002; 

Hindshaw et al., 2011), sources of groundwater recharge (e.g. Roy and Hayashi, 2008; 

2009; Robinson et al., 2009b), hydrological pathways (Boucher and Carey, 2010; Dragon 

and Marciniak, 2010; Carey et al., 2013; Marciniak et al., 2014), quantifying proglacial 

weathering,  and identifying solute sources (Tranter et al., 1993; 1997 Fairchild et al., 

1999a, b; Wadham et al., 2001; Pogge van Strandmann et al., 2006; 2008; Wimpenny et 

al., 2010, 2011). Water geochemistry and stable isotopes were also used to assess the 

impacts of climate change and glacier retreat on groundwater and surface water quality in 

regions dominated by ice and snow melt (Dragon and Marciniak, 2010; Fortner et al., 

2011; Okkonen and Kløve, 2012), and to investigate proglacial groundwater-surface water 

exchange (e.g. Ward et al.,1999; Brown et al., 2007a; Roy and Hayashi, 2008; 2009; 

Gooseff et al., 2013). Water quality and isotopic composition were therefore employed in 

this study in order to investigate the hydrological exchange between groundwater and 
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meltwater (objective iv) and groundwater and lakes (objective v) at the Skaftafellsjökull 

foreland. Water stable isotopes were used in this study to investigate the sources of  

recharge for groundwater and surface water at the Skaftafellsjökull foreland (objective iii). 

6.1.1. The mechanisms of proglacial geochemical 
weathering 
  

Glaciated catchments have high rates of chemical denudation, which are maintained by 

the rapid flow and large supply of meltwater, ample supply of fine-grained reactive 

material, and reactive mineral surfaces (Tranter, 1982; Tranter et al., 1993; Wadham et 

al., 2001; Cooper et al., 2002; Wolff-Boenisch et al., 2009; Wimpenny et al., 2010). These 

high rates are maintained despite the generally low temperatures, short residence time of 

liquid water and thin vegetation and soil cover commonly found in glaciated catchments 

(Tranter, 1982; Wongfun et al., 2013). The input of solutes from the chemical weathering 

of rock material into the proglacial zone leads to a sharp enrichment in solute fluxes over 

relatively short distances (e.g. Brown, 2002; Hindshaw et al., 2011). For instance, 

observations from Finsterwalderbreen, SW Svalbard, have reported a 30-47% increase in 

solute fluxes between the glacier margin and the catchment outlet, a distance of 

approximately 2.5 km (Wadham et al., 2001). Meltwater chemistry is dominated by low 

water contact times and highly incongruent weathering, which involves the formation of 

alteration products (Wadham et al., 2001; Cooper et al., 2002; Robinson et al., 2009b). 

The main cations in meltwaters are Ca2+, Na+, Mg2+, and K+. The main anions are SO4
2- 

and HCO3
- (e.g. Tranter et al., 1993). Meltwater solute concentrations are generally 

substantially lower than groundwater solute concentrations (e.g. Tranter et al., 1993; 

2002; Wadham et al., 2007). The greater solute concentrations in groundwater has been 

attributed to the longer residence time of groundwater, and high rock/water contact time 

and ratio (Tranter et al., 1993; Malard et al., 2001; Gooseff et al., 2003; 2006). 

Groundwater only contributes small amounts to the water balance of glaciated 
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catchments, with meltwater providing the most water (Cartwright and Harris, 1981; 

Fairchild et al., 1999a, b; Hodgkins et al., 2004; Cooper et al., 2011; Hindshaw et al., 

2011). However, due to its high solute concentrations, even small groundwater 

contributions substantially impact proglacial geochemistry and solute fluxes (Hodgkins et 

al., 1998; Harris et al., 2007; Levy et al., 2011; Gooseff et al., 2003; 2013).  

Chemical weathering in proglacial environments is dominated by several major processes. 

The initial reactions when snow and ice melt interact with glacial flour are carbonate 

(Equation 6.1.) and silicate hydrolysis (Equation 6.2). 

𝑪𝒂𝑪𝑶𝟑(𝒔) + 𝑯𝟐𝑶(𝒍) + 𝑪𝑶𝟐(𝒂𝒒) ↔ 𝑪𝒂(𝒂𝒒)
𝟐+ + 𝟐𝑯𝑪𝑶𝟑(𝒂𝒒)

−
  

Equation 6.1. Carbonate hydrolysis 

 

𝑪𝒂𝑨𝒍𝟐𝑺𝒊𝟐𝑶𝟖(𝒔) + 𝟐𝑪𝑶𝟐(𝒂𝒒) + 𝟐𝑯𝟐𝑶(𝒍) ↔ 𝑪𝒂(𝒂𝒒)
𝟐+  

+ 𝟐𝑯𝑪𝑶𝟑(𝒂𝒒)
− + 𝑯𝟐𝑨𝒍𝟐𝑺𝒊𝟐𝑶𝟖(𝒔)     

Equation 6.2. Silicate hydrolysis 

 

𝟒𝑭𝒆𝑺𝟐(𝒔) + 𝟏𝟔𝑪𝒂𝑪𝑶𝟑(𝒔) + 𝟏𝟓𝑶𝟐(𝒈) + 𝟏𝟒𝑯𝟐𝑶(𝒍)  ↔ 𝟏𝟔𝑪𝒂𝟐+(𝒂𝒒) +
𝟏𝟔𝑯𝑪𝑶𝟑

−(𝒂𝒒) + 𝟖𝑺𝑶𝟒
𝟐−(𝒂𝒒) + 𝟒𝑭𝒆(𝑶𝑯)𝟑(𝒔)                              

Equation 6.3. Coupled sulphide oxidation and carbonate dissolution 

  

The rates of kinetic dissolution for carbonates greatly exceed those of silicates. Field 

evidence from Haut Glacier d’Arolla (Swiss Alps) shows that, although the bedrock 

contained only trace amounts of carbonates and sulphides, the dissolution ratio of 

carbonate to silicates was around 5:1 (Tranter et al., 2002a, b). The coupling of carbonate 

dissolution and sulphide oxidation provides protons to solution, which then drive further 

carbonate dissolution and weathering (Equation 6.3) (e.g. Fairchild et al., 1999; Wadham 

et al., 2001; Tranter et al., 1996; Hodson et al., 2002; Tranter, 2003; Robinson et al., 

2009b). Coupled carbonate dissolution-sulphide oxidation was found to be the dominant 
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weathering mechanism in young proglacial sediments, even in catchments where 

carbonates and sulphides only occur in trace amounts (Cooper et al., 2002; Hindshaw et 

al., 2011). Therefore, coupled carbonate dissolution and sulphide oxidation (Equation 6.3) 

significantly impacts meltwater chemistry, even in catchments where carbonates are only 

found in trace concentrations (e.g. Raiswell and Thomas, 1984; Tranter et al., 2002; 

Hindshaw et al., 2011). When the reactive sulphide minerals are exhausted, silicate 

dissolution becomes the dominant process (Anderson et al., 2000; Wadham et al., 2001). 

However, this trend becomes less pronounced in catchments with high spatial variability in 

the availability of exposed sulphide minerals, such as those dominated by frequent glacier 

margin fluctuations and jökulhlaups (Robinson et al., 2009b). Although some of the factors 

that contribute to the high denudation rates are common in most proglacial settings, there 

is a significant spatial variability in proglacial geochemistry. This heterogeneity is 

attributed to differences in catchment geology (e.g. Hindshaw et al. 2011), age of 

substrate (e.g. Anderson et al., 2000), glacier thermal regime (e.g. Hodgkins et al., 1998), 

drainage patterns and hydrological connectivity (e.g. Boucher and Carey, 2010), and 

meteorological factors such as the amount of precipitation and evaporation (e.g. Cooper 

et al., 2002) .  

Proglacial solute concentrations in meltwaters have high temporal variability, which is 

strongly linked to the efficiency of the glacial drainage system. Solute concentrations are 

usually high at the start of the melting season, probably due to preferential leaching of 

solutes from the edges of snow crystals (e.g. Yde et al., 2008) and to the distributed 

configuration of the subglacial drainage system (e.g. Tranter et al., 1993). As the ablation 

season progresses, solute concentrations begin to fall due to the exhaustion of snowmelt 

and to the increasing efficiency of the glacial drainage, which reduces water/rock contact 

and solute acquisition. At the end of the melt season, solute concentrations increase, as 

distributed drainage and long water/rock contract becomes dominant again (Clow et al., 

2003; Gabet et al., 2010; Hindshaw et al., 2011; Kristiansen et al., 2013).  
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The mean chemical and physical denudation rate in Iceland is 37 t/km2/yr, which exceeds 

the mean continental rate by approximately 11 t/km2/yr (Berner and Berner, 1996; 

Gíslason, 2005). These high weathering rates are attributed to the combination of high 

relief, high runoff, abundance of reactive substrate and a lack of sedimentary traps 

(Gíslason, 2008). The chemistry of Icelandic rivers is controlled by variations in water 

source and discharge, chemical weathering, geothermal activity, atmospheric deposition, 

and vegetation (Gíslason and Arnorsson, 1993; Gíslason, 2005; Gíslason and 

Torssander, 2006; Flaathen and Gíslason, 2007; Eiriksdóttir et al., 2008; Sigfusson et al., 

2008; Óskarsdóttir et al., 2011). Volcanic eruptions also impact the chemistry of Icelandic 

groundwater and surface water, particularly by the deposition and dissolution of tephra 

(Flaathen et al., 2009; Olsson et al., 2013; Galeczka et al., 2014).  

Catchment lithology plays an important control on proglacial geochemistry, with high 

weathering rates occurring in catchments with reactive minerals (e.g. Rutter et al., 2011). 

The weathering rates of young rocks in Iceland exceed those of older ones (Louvat et al., 

2008). Skaftafellsjökull is located within the catchment of Öræfajökull, an ice-covered 

stratovolcano, which is located in the young neovolcanic zone in SE Iceland (Björnsson 

and Einarsson, 1990). The rock suite is mainly composed of subglacial pillow lava and 

hyaloclastite tuff, whose composition ranges from basalt to rhyolite. The rock suite of 

Öræfajökull contains high amounts of glassy basalt, which has been preferentially formed 

during subglacial eruptions (Prestvik, 1980; Selbekk and Trønnes, 2007). The weathering 

and dissolution rates of basaltic glass substantially exceed those of crystalline basalt, 

hence providing high solute fluxes to the catchment (Gíslason and Eugster, 1987, 

Gíslason et al., 2006; Pogge van Strandmann, 2008, Robinson et al., 2009b; Hindshaw et 

al., 2013).  
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6.1.2. The use of stable water isotopes (δ
18

O and δD) in 
hydrology 
 

Water stable isotopes (δ18O and δD) have been used extensively in glaciated catchments 

for the tracing of hydrological pathways and sources of recharge (e.g. Theakstone and 

Knudsen, 1996; Chiogna et al., 2014), to perform hydrograph separation (e.g. Fairchild et 

al., 1999b; Klaus and McDonnell, 2013), and in studies of paleohydrogeology (e.g. Hendry 

et al., 2013). The composition of water stable isotopes is determined by the atomic weight 

of the hydrogen and oxygen molecules, which sums the amount of protons and neutrons 

of each element. However, a small percentage of the molecules have higher atomic 

weight, due to higher number of neutrons (δ18O and δD). These differences in isotopic 

composition lead to different rates of reaction between the molecules, where the reactions 

of the heavy molecules (18O, 2H) are slower than those of the light ones (16O and 1H). 

These different rates of reaction lead to isotopic fractionation, which takes place as the 

lighter isotopes are preferentially removed into the vapour mass during evaporation from a 

water source. Conversely, the heavier isotopes are preferentially removed from the 

vapour phase during condensation and precipitation, which progressively depletes the 

vapour mass of its heavier isotopes as it moves further from its source of origin (Clark and 

Fritz, 1997) (Figure 6.1). The global distribution of water stable isotopes is based on the 

predictable relationship between δD and δ18O in precipitation, which is described by the 

Global Meteoric Water Line (GMWL) (Craig, 1961a, b). The GMWL is calculated using 

Figure 6.1. The increasing depletion of isotopic composition with increasing continentality 

and altitude (from Robinson, 2003).  

 

: δD = 8 (δ
18

O) + 10‰  

Equation 6.4. The Global Meteoric Water Line (GMWL).  
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Isotopic fractionation is strongly dependent on climatic factors such as humidity and 

temperature. Fractionation generally increases at low humidity and high temperature   

(Dansgaard, 1964; Rozanski et al., 1993; Clark and Fritz, 1997). Elevation impacts 

isotopic composition due to its impact on the formation of orographic precipitation, lower 

evaporation, and lower snow melt. Hence, the isotopic composition of precipitation 

generally becomes lighter with increasing elevation (Clark and Fritz, 1997; Jonsson et al., 

2009; Ohlanders et al., 2013; Flaim et al., 2014). The source of moisture for precipitation 

exerts an important control on the seasonal variability in isotopic composition, with 

multiple precipitation sources leading to higher variability in the isotopic composition of 

precipitation (Jeelani et al., 2010). Due to these aforementioned factors, the isotopic 

composition of precipitation becomes more depleted with increasing latitude, continentality 

and altitude (Figure 6.1) (e.g. Jeelani et al., 2010; Gooseff et al., 2013). 

 

Figure 6.1. The increasing depletion of isotopic composition with increasing continentality 
and altitude (from Robinson, 2003).  

 

The Local Meteoric Water Line (LMWL) is the line of best fit for the isotopic composition of 

precipitation at any given location (Gat et al., 2001). The LMWL provides a better 



Chapter 3  Field sites  

153 
 

representation for the isotopic composition of the precipitation that feeds the catchment 

than the GMWL because of the importance of local factors. Hence, it is useful in 

understanding the regional variability in the GMWL (e.g. Clark and Fritz, 1997). In middle 

and high latitudes, a seasonal variation along the LMWL is driven by temperature, with 

winter precipitation being more isotopically-depleted than during summer (e.g. Robinson 

et al., 2009a; Yang et al., 2013). Samples along the LMWL which plot on a slope lower 

than that of the GMWL can suggest isotopic enrichment due to post-condensation 

evaporation, which can occur when rain falls through a dry air column (Clark and Fritz, 

1997, Mayr et al., 2007). However, the LMWL can be sensitive to local disturbances and 

precipitation events.(e.g. Chiogna et al., 2014). 

The isotopic composition of groundwater (Kortelainen and Karhu, 2004; Jeelani et al., 

2010), streams (e.g. Burgman et al., 1987; Jeelani et al., 2010; Dahlke et al., 2014; Kong 

et al., 2014), and lakes (e.g. Roy and Hayashi, 2009; Jonsson et al., 2009; Gao et al., 

2014) in cold environments is substantially impacted by seasonality. Isotopic composition 

is generally more depleted in spring and summer, due to greater inputs from snow and 

icemelt, and becomes more isotopically heavier in autumn and winter, following increasing 

contributions from precipitation and baseflow. The seasonal isotopic variability of 

groundwater is generally less than that of surface water (e.g. Yang et al., 2013; Chiogna 

et al., 2014). The temporal variability in the isotopic composition of lakes is impacted by 

meteorological variability and by hydrological parameters such as lake morphometry, 

water residence times, storage capacity, drainage efficiency, groundwater contributions, 

and evaporation (Gonfiantini, 1986; Rozanski et al., 1993; Gat, 1996; Vitvar and Balderer, 

1997; Hammarlund et al., 2002; Darling, 2004; Edwards et al., 2004; Kortelainen and 

Karhu, 2004; Henderson and Shuman 2009; 2010; Zhou et al., 2008; 2013; Flaim et al., 

2014). The isotopic composition of lakes in cold regions is also substantially impacted by 

the degree of mixing within the water column, and the ice cover (Saulnier-Talbot et al., 

2007; Jonsson et al., 2009). 
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The Deuterium Excess (d-excess) measures the relative proportions of δD and δ18O 

within the water molecule (Equation 6.5), which represent an index of deviation from the 

GMWL, where d-excess is 10‰ (Dansgaard, 1964). The d-excess has been previously 

used to delineate sources of precipitation and to investigate the prominence of 

evaporation and melt-freeze cycles (e.g. Williams et al., 2006; Gooseff et al., 2006; 

Kristiansen et al., 2012).  

𝒅 − 𝒆𝒙𝒄𝒆𝒔𝒔 (‰) = 𝜹𝑫 − 𝟖 × (𝜹𝟏𝟖𝑶) 

Equation 6.5. Determination of Deuterium Excess (d-excess) 

 

The d-excess is controlled by physical conditions (air and sea surface temperature and 

humidity) at the ocean where precipitation originates (Merlivat and Jouzel, 1979). Hence, 

it reflects the prevailing conditions during the evolution and mixing which takes place as 

air masses travel to the site of precipitation (Merlivat and Jouzel, 1979; Froehlich et al., 

2002). In addition to the history of the air mass, the d-excess is strongly impacted by 

seasonality, changes in moisture sources, and kinetic effects (Fisher, 1991; Clark and 

Fritz, 1997; Froehlich et al., 2002; Kristiansen et al., 2012). Therefore, d-excess is higher 

in winter, due to the higher contrasts between sea surface and air temperature, which 

occur in winter, and lead to stronger kinetic effects during evaporation from local source 

regions. Conversely, d-excess is lower during summer due to the larger influence from 

warmer seas, which reduces the kinetic fractionation in which vapour is formed (Gat, 

1996; Clark and Fritz, 1997).  

The overall aim of this chapter is to identify the sources of recharge for the groundwater 

and surface water systems at the Skaftafellsjökull foreland (objective iii). The specific 

objectives of this chapter are:  
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1. To describe the spatial and temporal variability in groundwater and surface water 

geochemistry in the different hydro(geo)logical environments of the Skaftafellsjökull 

foreland.  

2. To describe the spatial variability of δ18O and δD composition of groundwater and 

surface water in the different hydro(geo)logical environments of the Skaftafellsjökull 

foreland.  

3. To identify the sources of groundwater and surface water recharge at the 

Skaftafellsjökull foreland using geochemical and stable isotope evidence.  

4. To investigate proglacial groundwater-surface exchange processes and mechanisms 

using water geochemistry and water stable isotopes.  

6.2. Methods 
 

6.2.1. Analysis of groundwater and surface water quality  
 

Temperature and Electrical Conductivity (EC) are important environmental parameters, 

which are monitored with relative ease and low cost (e.g. Hayashi, 2004). Temperature 

and EC can therefore be used to investigate groundwater-surface water exchange in 

proglacial environments (e.g. Crossman et al., 2011). Groundwater was extracted from 

the piezometers using a hand pump. Prior to sampling, three well volumes were purged, 

in order to ensure a representative sample (Brassington, 2007). In order to check that this 

amount was sufficient, groundwater EC was checked every 150 ml, until EC was stable 

(e.g. Brassington, 2007). These tests have shown that groundwater EC stabilised before 

three well volumes were purged (Figure 6.2). Hence, purging three well volumes was 

sufficient for obtaining a representative sample.  
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Figure 6.2. Purging experiments to determine the volume of groundwater needed to attain 
representative samples. 

These results were obtained from GW9 and GW8, where the required three well volumes 
were 1.14 L and 1.61 L, respectively.  

 

The samples were filtered in the field using a Fisher® filter kit, with filter paper pore size of 

0.47 µm. The filter paper was replaced after each sample. In order to prevent cross-

contamination between sites, all sampling apparatus were rinsed at least three times with 

representative sample water prior to sampling. The samples were then placed in new 30 

ml Fisher® HDPE Nalgene bottles, which were pre-contaminated with sample water and 

then filled to a positive meniscus. The bottles were sealed with Parafilm® and stored away 

from direct sunlight between two to six weeks. Upon returning to the laboratory, the 
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samples were refrigerated at 4°C. In order to prevent the adsorption of cations onto the 

bottle, samples intended for cation analysis were pre-acidified with 0.1 ml of 5% nitric acid 

(Brassington, 2007). The samples were analysed within four weeks upon their return to 

the laboratory.  

EC and temperature at this study were monitored using a handheld WTW Multiline P4 

EC/Temperature probe. The meter was calibrated with standard 1431 µS/cm solution prior 

to the start of the field season. The accuracy is within ±1 % of the measured value (WTW 

manual).
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 Since most samples at the Skaftafellsjökull foreland were below 300 μS/cm, the accuracy 

can be approximated to be around 2 μS/cm. The accuracy for the temperature 

measurements are 0.1°C. In addition to the manual measurements, groundwater 

temperature (±0.1°C) and EC (±20µS/cm) at T1-T3 and the Skaftafellsá were monitored 

using pressure transducers (Table 6.1). In order to prevent cross contamination between 

samples, all probes were also rinsed at least three times with representative sample water 

prior to measurements. 

Table 6.1. Analytical equipment, accuracy of equipment, and frequency of measurements 
taken in this study. 

 Parameter Equipment Accuracy Frequency of 
monitoring 

GW levels 
(automatic) 

Solinst Leveloggers ±0.001 m hourly 

Water temperature  Solinst Leveloggers ±0.1 °C  hourly 

Water EC Solinst Levelogger ±20 μS/cm  hourly 

GW levels (manual) Solinst dip meter ±0.003 m Twice a day 

GW temperature  WTW Multiline P4 
probe 

0.1 °C  Every time samples 
were obtained for 
geochemical analysis 

GW EC WTW Multiline P4 
probe 

2 μS/cm  Every time samples 
were obtained for 
geochemical analysis 

δD composition Cavity Ring-Down 
Spectroscope-Picarro 
L1102-i liquid 
analyzer 

±0.5 ‰   

δ
18

O composition Cavity Ring-Down 
Spectroscope-Picarro 
L1102-i liquid 
analyzer 

±0.1 ‰   

 

6.2.2. Analysis of major anions and cations  
 

Major cations (Ca2+, K+, Mg2+, Na+) were analysed on an Varian Vista MPX Inductive 

Coupled Plasma-Optical Emission Spectrometer (ICP-OES) at Keele University. The 

standards used were 10 and 100 mg/l. Major anions were analysed on an Ion 

chromatography DIONEX, using standards for 1, 5 and 10 mg/l for Cl-, NO3
-, F- and PO4

2- 

and 2, 10 and 20 mg/l for SO4
2-. PO4

2-,F-, NO3
- concentrations were below the limit of 
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detection (Table 6.2). The Limit of Detection (LoD) for cations and anions (Table 6.2) was 

determined by the mean concentration in the blanks ± standard deviations.     

Table 6.2. Limit of Detection and precision for major anions and cations.  

The detection limits and precision were obtained from analysis of blanks for all ions except 
for Na

+
, which was obtained from the manufacturer’s website.  

Anion Precision (%) Detection Limit (mg/l) 

Cl- 1.52 0.09 

SO4
2-   3.71 0.20 

Cations  

Ca2+ 0.77 0.42 

Mg2+ 3.15 0.16 

Na+ 2.95 0.2 (Varian, 2014) 

K+ 2.32 0.74 

 

Four field blanks were collected in order to determine the potential for contamination 

during sampling, storage and analysis. These blanks consisted of deionised water which 

was filtered and emplaced in bottles following the same procedures that were used for 

sampling groundwater and surface water. The blanks were then analysed for major 

cations and anions. Cation concentrations in all the blanks were below the detection limits. 

With the exception of one blank (0.27 mg/l), SO4
2- concentrations in all blanks were below 

the LoD. However, the field blanks had between 0.17-0.50 mg/l of Cl-. This indicates  

some contamination during sampling, storage or analysis. Drift was determined by 

analysing a sample at the start, middle and end of a batch (48 samples for the anions, 40 

samples for the cations). The drift for all anions and cations were below 2%. “Hangover” 

effects during the analysis were checked by emplacing vials containing deionised water 

after some samples. Cation concentrations in the deionised water were below detection 

limit. The mean Cl- concentration was 0.14±0.01 mg/l. This shows some “hangover” 

effects in the analysis of Cl- and SO4
2-.  



Chapter 6 Geochemistry and stable isotopes 

160 
 

6.2.3. Water stable isotopes (δD and δ
18

O) 
 

Samples for water stable isotopes (n=31) were collected from groundwater, lakes, and the 

meltwater river (section 6.5) on the 24-25/08/2012. The collected 20 ml water samples 

were analyzed for their δD and δ 18O composition at the Isotope laboratory at the 

Hydrology and Climate Unit, the Department of Geography, University of Zurich. In 

addition to the filtration in the field, all isotope samples were filtered prior to analysis with a 

0.45 μm filter (25 mm PTFE Syringe Filter, SimplepureTM USA) from which 1 ml was 

pipetted in a vial (1.5 ml 32×11.6 mm screw neck vials with cap and PTFE/silicone/PTFE 

septa). Samples were analyzed with a Cavity Ring-Down Spectroscope-Picarro L1102-i 

Liquid Analyser 1st generation analyzer, following the analyzing scheme of Penna et al. 

(2010). The precision of the instrument is  <0.5 ‰ for δ2H and < 0.1 ‰ for δ18O (Picarro 

Inc., 2008). Values are reported as δ-values in parts per thousand (‰) relative to Vienna 

Standard Mean Ocean Water (V-SMOW). The deviation of isotope ratios from the V-

SMOW standard (δ) was calculated using Equation 6.6 (Craig, 1961a).  

𝛿 = (
𝑅𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
) × 1000 

Equation 6.6. Deviation of isotope ratio from the V-SMOW standard.  

 

R is the isotope ratio (2H/1H and 18O/16O) in the sample and the standard (V-SMOW).  

6.3. Spatial and temporal variability in groundwater 
quality 
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Manual measurements of groundwater physicochemical parameters (section 6.2.1) and 

samples for geochemical analysis (section 6.2.2) were obtained from piezometers. The 

samples were collected during three sampling intervals, which took place around the 

10/07/2012, 26/07/2012, and 31/08/2012, with each interval lasting between one and two 

days (Figure 6.4). Water physicochemical parameters (Temperature and Electrical 

Conductivity [EC]) were measured during the same time as samples were collected for 

geochemical analysis.  

 

Figure 6.3. The field site and sampling points at the Skaftafellsjökull foreland.  

A. The hydro(geo)logical environments at the Skaftafellsjökull foreland. Groundwater 
samples are denoted in black and surface water sampling points are denoted in white. B. 
The piezometers where groundwater samples were collected (black triangles). The area of 
inset B is denoted by the black box in inset A. The position of the meltwater channel has 
shifted eastwards since the time of the image (Vatnajökull National Park, 2007). The position 
of the meltwater channel during the study (August 2012) is denoted by the dashed blue line.  
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Figure 6.4. Total daily precipitation (IMO, 2013), hydraulic heads at the Skaftafellsjökull 
foreland, and the sampling intervals for groundwater (white arrows) and surface water. 

The number of the intervals are marked. Surface water were sampled four times, with the 
extra interval (grey arrow) taking place on the 21/07/2012.  

 

6.3.1. Groundwater physicochemical parameters 
  

This section describes the temporal and spatial variability in groundwater temperature and 

EC. Temperature is an effective environmental tracer for groundwater-surface water 

exchange due to its relatively simple, economic, and robust measurements  (e.g. Westhoff 

et al., 2007; Hannah et al, 2009). Temperature tracing is especially effective when 

significant temperature differences exist between groundwater and surface water (e.g. 

Rossi et al., 2012). Such conditions were reported from various proglacial environments 

(e.g. Kristiansen et al., 2013), including the current study (Figure 6.5). In addition to the 

manual monitoring, groundwater and meltwater temperatures and EC at the transect 

(piezometers T1-T3) were also monitored automatically alongside hydraulic heads. The 
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current chapter only discusses the manual monitoring. The results from the automated 

monitoring from T1-T3 and the Skaftafellsá are discussed in Chapter 7. 

The spatial and temporal variability in groundwater and surface water temperature at the 

Skaftafellsjökull foreland is presented in Figure 6.6. The mean surface water temperature 

was higher than groundwater temperature by 3°C. However, surface water temperatures 

also had higher variability (Figure 6.5). The lowest groundwater temperatures were 

measured in the GW9 piezometer (depth of 1.45 m below ground), located 20 m away 

from the Skaftafellsá meltwater channel. The highest groundwater temperatures were 

measured in the piezometers around the Instrumented Lake (IL). However, groundwater 

temperatures were lower during sampling interval III (30/08/2012), particularly in 

piezometers which are located in the fine-grained lakeshores of the IL. Conversely, 

groundwater temperature near the Skaftafellsá (GW5 and GW9) during interval III were 

substantially higher than during previous intervals (Figure 6.6).  
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Figure 6.5. Boxplot of groundwater and surface water temperature (°C) and Electrical 
Conductivity (EC) [μS/cm].  

The comparison includes all groundwater (n=57) and surface water samples (n=78). The 
horizontal lines denote the minimum, Q1, Q3, and the maximum. The thick black line 
denotes the median. The mean and standard deviation are presented above each box. The 
dots denote outliers in the data. The full data set is found in Appendix 5. 

 

EC has also been previously used alongside temperature in the investigation of proglacial 

groundwater-surface water exchange. Similar to temperature, EC is also particularly 

effective for investigating proglacial groundwater-surface water exchange due to the 

significant differences between the end-members (Cirpka et al., 2007; Vogt et al., 2010; 

Hayashi et al., 2012; Schmidt et al, 2012). Groundwater and surface water EC at the 

Skaftafellsjökull foreland ranged between 20-210 µS/cm, with groundwater EC generally 

exceeding that of surface water (Figure 6.5). The spatial variability in groundwater and 
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surface water EC is presented in Figure 6.6. The lowest groundwater EC was measured 

at GW9 (~ 50 μS/cm). The highest EC was measured in the transect (~180 μS/cm at T1) 

and at GW5 (~210 μS/cm). The EC of most groundwater samples from the IL and the 

outwash ranged between 100-150 μS/cm. The temporal fluctuations in groundwater EC 

were generally below 10 μS/cm, except at the transect and GW9, where concentrations 

increased by ~30-40 μS/cm in August (Figure 6.6). 

Figure 6.6. Temperature and EC in the different hydrological environments of the 
Skaftafellsjökull foreland. 

Groundwater samples are denoted in black. Surface water samples are denoted in colour. 
The filled shapes mark measurements during interval III (31/08/2012).   

 

6.3.2. Spatial and temporal variability in groundwater 
solute concentrations  
 

This section describes the spatial and temporal variability in groundwater solute 

concentrations at the different hydrological environments of the Skaftafellsjökull foreland: 

near the meltwater river; groundwater from around the lakeshores of the Instrumented 
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Lake (IL); the transect, and the outwash (Figure 6.3). Substantial differences were 

measured between the geochemistry of groundwater and surface water, with solute 

concentrations in groundwater generally exceeding those in surface water (Figure 6.7).  

Ca2+ and Na+ were the dominant cations in both groundwater and surface water. The 

mean SO4
2- concentrations in groundwater exceeded those of Cl-. The mean Cl- 

concentrations in surface water exceeded those in groundwater (Table 6.3). The 

concentrations of the divalent (Ca2+ and Mg2+) and monovalent (Na+ and K+) were 

presented together, following the approach of other studies of proglacial geochemistry 

(e.g. Cooper et al., 2002). The concentrations of F-, NO3
- and PO4

2-  were generally below 

detection limit in most samples, and are not presented. Due to logistical constraints, 

HCO3
- was not measured at this study, although it is likely to be the dominant anion (e.g. 

Brown, 2003). Similar to other studies which have looked at geochemical aspects of 

proglacial groundwater-surface water interaction (e.g. Cooper et al., 2002) the data in the 

current study was not compensated for marine aerosols.  

 

Figure 6.7. Boxplot comparison of Ca
2+ 

+ Mg
2+

, SO4
2-

, Cl
-
, and Na

+ 
+ K

+
 concentrations (μeq/l) 

between groundwater and surface water.  
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This comparison includes all groundwater (n=57) and surface water (n=78) samples. More 
detailed descriptions of solute concentrations in the different hydrological environments 
are provided later in the chapter. The horizontal lines of the boxes denote the minimum, Q1, 
Q3, and the maximum. The thick black line denotes the median. The dots show outliers in 
the data. The mean and standard deviation (µeq/l) are presented above each box.   

 

The spatial variability in solute concentrations within the different hydrological 

environments is presented in Figure 6.8-6.10. Similar to the spatial distribution in EC, the 

lowest groundwater solute concentrations were also measured at GW9, located 20 m 

away from the Skaftafellsá meltwater channel (Figure 6.3). The highest solute 

concentrations were generally measured in the piezometers of the transect (T1-T3), which 

stretches between the Skaftafellsá and the IL (Figure 6.3). Statistical t-tests (one tail test, 

2.5% Significance Level [SL]) have shown that SO4
2-, Ca2++ Mg2+, and Na++ K+ 

concentrations in groundwater were significantly higher (p=<0.001) than the 

concentrations in surface water. Conversely, Cl- concentrations in groundwater were not 

significantly higher than those in surface water (p=0.831).  

 

Figure 6.8. SO4
2- 

and Cl
-
 concentrations (µeq/l) in groundwater and surface water at the 

Skaftafellsjökull foreland.  
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Black markers denote groundwater samples. Coloured markers denote surface water 
samples. The filled shapes mark solute concentrations during interval III (31/08/2012).  

 

Figure 6.9. SO4
2- 

and Ca
2+

+ Mg
2+

 concentrations (µeq/l) in groundwater and surface water at 
the Skaftafellsjökull foreland. 

Groundwater samples are denoted in black. Surface water samples are denoted in colour. 
The filled shapes mark solute concentrations during interval III (31/08/2012). The samples 
from T3 are within the dashed circle.  

 

Figure 6.10. SO4
2- 

and Na
+
+ K

+
 concentrations (µeq/l) in groundwater and surface water from 

the Skaftafellsjökull foreland.  
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Groundwater samples are denoted in black. Surface water samples are denoted in colour. 
The filled shapes mark solute concentrations during interval III (31/08/2012). The samples 
from T3 are within the dashed circle.  

Table 6.3. Mean and standard deviation of solute concentrations, EC, and temperature of 
groundwater and surface water at the Skaftafellsjökull foreland. 

The numbers in brackets denote the number of samples within each environment. A fuller 
description of the surface water solute concentrations and physicochemical parameters is 
provided in section 6.4.  

Solute concentration (µeq/l) SO4
2-

  Cl
-
 

  

Ca
2+

+Mg
2+

 

 
Na

+
+ K

+
  EC 

(μS/cm)  
Temperature 
(°C) 

Groundwater 

Transect (10) 243±96 140±6 1620±190 490±72 159±14 10.0±1.1 

Outwash (11) 176±42 130±17 1338±136 423±89 134±11 9.2±1.8 

Near river (6) 127±143 71±27 1070±711 348±147 125±72 8.1±2.8 

Inst. Lake (30) 144±27 132±12 1241±245 555±212 134±23 10.0±2.5 

Surface water 

River Skaftafellsá (7) 15±2 34±11 91±37 113±23 23±3 1±0.3 

N. Oasis lakes (17) 29±12 153±36 285±105 
 

298±167 
 

55±10 
 

16±1 
 

S. Oasis lakes (65) 62±27 138±21 1063±246 382±79 118±16 14±1 

 

Groundwater levels and geochemistry near the Skaftafellsá were investigated at GW9 and 

GW5, which are located 20 and 38 m away from the meltwater channel, respectively. The 

piezometers are located south of the transect, between the river Skaftafellsá and Swan 

Lake (perpendicular to the river meltwater channel) (Figure 6.3). The piezometers are 

underlain by coarse-grained deposits. The riverbank near GW9 is shallow (0.35 m high) 

and meltwater overspill was regularly observed during the field season. However, the 

frequency of such overflows fell in late August 2012, following a substantial decline in 

meltwater levels. 

Groundwater Cl-, Ca2++ Mg2+, and Na++ K+ concentrations near the Skaftafellsá were 

significantly higher (1 tail t test, 2.5% S.L., p=<0.001 to 0.011) than meltwater 

concentrations of these solutes (Figure 6.8-6.10). Conversely, groundwater SO4
2- 

concentrations were not significantly greater than meltwater concentrations (p=0.056). 

Despite the short distance between GW9 and GW5, substantial differences in 

groundwater solute concentrations were observed between these two piezometers. 

Groundwater from GW9 had the lowest EC, which ranged between 40-90 μS/cm (Figure 
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6.6) and solute concentrations. These values varied between 50-70 µeq/l Cl-, 20-63 µeq/l 

SO4
2- (Figure 6.8), 424-898 µeq/l Ca2++Mg2+ (Figure 6.9), and 179-312 µeq/l Na++ K+ 

(Figure 6.10). In contrast to the low solute concentrations at GW9, solute concentrations 

at GW5 were much higher, with most solute concentrations (except Cl-) approaching 

those measured at T3 and the more solute-rich groundwater from around the IL (Figure 

6.9, 6.10). However, Cl- concentrations at GW5 were lower than those measured in other 

groundwater environments (Figure 6.8). 

Groundwater solute concentrations near the river generally increased during the field 

season (Figure 6.11). Solute concentrations at GW9 increased slightly between intervals I 

and II. However, the changes in solute concentrations between intervals II and III (end of 

August 2012) were much larger, with solute concentrations increasing by 1.5 - 3 times. In 

contrast to the moderate increases between Intervals I and II at GW9, solute 

concentrations at GW5 have shown substantial and continuous increase during all three 

intervals (with the exception of Cl- concentrations between intervals I and II). However, the 

larger increases took place between intervals II and III. These increases in solute 

concentrations were followed by a substantial drop in river and groundwater levels which 

began around the 20/08/2012 (Figure 6.4). The SO4
2- (400 µeq/l) and Ca2++Mg2+ (2300 

µeq/l) concentrations which were measured at GW5 in August were abnormally high.  
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Figure 6.11. Temporal variability of solute concentrations in the piezometers near the 
meltwater channel (GW5 and GW9) between July-August 2012. 

 

The transect is located between the meltwater channel and the IL and is underlain by 

coarse glaciofluvial sediments (Figure 6.3). The depth of the three piezometers (T1-T3) 

varies between 1.6-1.8 m below ground. Groundwater solute concentrations in the 

transect were high. However, a considerable spatial variability between the three 

piezometers was observed, with high groundwater solute concentrations at T1 (27 m 

away from the Skaftafellsá channel) and T2 (54 m away from the channel) and lower 

concentrations at T3 (69 m away from the channel).  

The highest SO4
2- concentrations were measured at T1, where concentrations varied 

between 260 and 415 µeq/l. SO4
2- concentrations at T2 varied between 140-318 µeq/l. In 

contrast to the high SO4
2- concentrations at T1 and T2, the concentrations and range at T3 

(158-200 µeq/l SO4
2-) were substantially lower (Figure 6.8). Cl- concentrations at the 

transect exceeded most groundwater concentrations in the outwash area and around the 
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IL, with  mean Cl- concentrations of approximately 140 µeq/l in all three piezometers. 

Groundwater Ca2+ + Mg2+ concentrations in the transect were amongst the highest 

measured in this study, exceeding those from the outwash and around the IL. The highest 

mean concentrations of Ca2++ Mg2+ were measured at T1 (1681 µeq/l), followed by T2 

(1633 µeq/l) and T3 (1564 µeq/l) (Figure 6.9). The mean groundwater Na++ K+ 

concentrations in the transect (490 µeq/l) were also amongst the highest in the field site. 

However, the range and standard deviation at the transect were the smallest (Table 6.3). 

In contrast to SO4
2- and Ca2++ Mg2+, the highest mean Na++ K+ concentrations were 

measured at T3 (556 µeq/l), where mean concentrations exceeded those at T1 and T2 by 

approximately 100 µeq/l (Figure 6.10). 

Groundwater solute concentrations at the transect generally increased between sampling 

intervals I and II. Ca2++ Mg2+ concentrations increased in all three piezometers, with the 

highest overall increase (~300 µeq/l) measured at T2. The temporal variability in SO4
2- 

concentrations during this period was mixed. SO4
2- concentrations fell by approximately 

120 µeq/l at T1. Conversely, concentrations at T2 rose by approximately 80 µeq/l. Na++ K+ 

concentrations in all three piezometers have also increased slightly. Groundwater solute 

concentrations increased between Interval II and III at T1 and T2. Groundwater 

concentrations at T1 and T2 have increased by ~300 µeq/l Ca2++ Mg2+, approximately 120 

µeq/l SO4
2- and, ~60 µeq/l Na++ K+, respectively. Conversely, the changes in solute 

concentrations at T3 were substantially smaller (Figure 6.12).  
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Figure 6.12. Temporal variability in groundwater solute concentrations at the transect (T1-
T3) in July-August 2012.  

 

A considerable spatial variability in groundwater geochemistry has been observed 

between the fine and coarse-grained lakeshores of the Instrumented Lake (IL). Cl- and 

SO4
2- concentrations ranged between 95-155 and 110-223 µeq/l, respectively. Generally, 

groundwater SO4
2-  concentrations at the coarse-grained lakeshore [L1-4, L7, and the 

Sand Nest (S.N.)] exceeded groundwater SO4
2-  concentrations at the fine-grained 

lakeshore (L5, 6, Clay Nest [C.N.]). The highest concentrations of Cl- and SO4
2- were 

measured at L1, which is located in coarse-grained sediment. In contrast to the transect 

and the piezometers near the Skaftafellsá, the variability in Cl- concentrations around the 

IL generally exceeded that of SO4
2-. Most Cl- and SO4

2- IL groundwater concentrations are 

“clustered“ together, with concentrations of ~130-140 µeq/l Cl- and 100-135 µeq/l SO4
2-. 

However, Cl- and SO4
2- concentrations in some piezometers from the coarse-grained area 
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(L1, L2) and the fine-grained area (L7) exceeded the concentrations measured in the 

“cluster” (Figure 6.8).  

The Ca2++ Mg2+ concentrations of IL groundwater varied between 930-1550 µeq/l. In 

contrast to the distinct “cluster” of Cl- and SO4
2- concentrations (Figure 6.8), the Ca2++ 

Mg2+ concentrations were more scattered (Figure 6.9). The lowest Ca2++ Mg2+ 

concentrations were measured at L4, L6, and the Sand Nest (SN). Similar to the Cl- and 

SO4
2- concentrations, the highest Ca2++ Mg2+ concentrations were also measured at L1. 

The highest mean and standard deviation of Na++ K+ concentrations at this study were 

measured in the IL groundwater, where concentrations varied between 300-1100 µeq/l. 

This contrasts other solutes, where maximum concentrations were generally measured in 

the transect (Table 6.3). Groundwater concentrations of all solutes around the IL were 

significantly higher (one tail t test, 2.5%, p=<0.001) than the concentrations in the lake’s 

surface water (Figure 6.8-6.10).  

The temporal variability in groundwater solute concentrations around the IL has shown 

that Cl- concentrations generally fell during the season, with the lowest concentrations 

measured at interval III (end of August 2012). The declines in groundwater Cl- 

concentrations in the fine-grained lakeshore generally exceeded that of the coarse-

grained lakeshore. Conversely, groundwater SO4
2- concentrations around the IL generally 

rose during the season, with the highest concentrations measured in interval III. The 

highest increases in SO4
2- concentrations were measured at L1. The SO4

2- concentrations 

and temporal variability of the piezometers located in the fine-grained lakeshore were 

similar (Figure 6.13). Groundwater Ca2++ Mg2+ concentrations in most of the piezometers 

around the IL increased by approximately 50 µeq/l between intervals I and II. However, 

groundwater concentrations in most piezometers fell by approximately 140 µeq/l during 

Interval III (Figure 6.14). These falls in Ca2++ Mg2+concentrations contrasted the temporal 

dynamics which were observed in the transect and near the Skaftafellsá, where Ca2++ 

Mg2+ concentrations during interval III exceeded concentrations during interval II (Figure 
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6.11, 6.12). Groundwater Na++ K+ concentrations in some of the piezometers located in 

the coarse-grained lakeshore increased between interval I and II. Conversely, 

concentrations in piezometers emplaced in the fine-grained lakeshore remained similar. 

However, Na++ K+ concentrations in IL groundwater increased during Interval III, with 

concentrations rising by approximately 300 µeq/l and concentrations in many piezometers 

nearly doubling those measured during Interval II (Figure 6.14). These large increases 

contrast with the smaller increases (100 µeq/l) which were observed in the outwash 

(Figure 6.15), near the Skaftafellsá (Figure 6.11), and the transect (Figure 6.14). The Na++ 

K+ concentrations at the IL groundwater and surface water were similar (around 400 µeq/l) 

before interval III. However, while groundwater Na++ K+ concentration increased during 

interval III, Na++ K+ concentrations in IL surface water fell by approximately 50% (Figure 

6.16)  

 

Figure 6.13. Temporal variability in Cl
- 
and SO4

2-  
in IL groundwater (July-August 2012).  
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The fine-grained lakeshore is denoted with square and black lines. The coarse-grained 
lakeshore is denoted by triangles and grey lines.  

 

Figure 6.14. Fluctuations in IL groundwater concentrations of Ca
2+

+ Mg
2+ 

and Na
+
+ K

+
. 

The fine-grained lakeshore is denoted with squares and black lines. The coarse-grained 
lakeshore is denoted by triangles and grey lines.  

 

The outwash area is the closest hydrological environment to the Skaftafellsjökull glacier 

margin (~900 m). It is bordered by moraines to the north, east and south and by the 

Skaftafellsá channel in the west (Figure 6.3). The outwash area is underlain by coarse 

glaciofluvial deposits, with hydraulic conductivity of ~1.16x101  m/day (Figure 5.9). Four 

piezometers were installed in the outwash, open at depths of 1.36-1.80 m below ground 

level. GW10 is located north of the western section of the breached moraine, close to the 

river channel. The remaining three piezometers (GW11, GW12, and P12) are located 

between the breached moraine and the moraine located north of the IL (Figure 6.3).  
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Groundwater Ca2++ Mg2+ and SO4
2- concentrations in the outwash were lower than the 

transect, but exceeded groundwater concentrations from the IL and near the Skaftafellsá 

(Figure 6.9). Groundwater Cl- concentrations in the outwash were similar to those from the 

IL and the transect (Figure 6.8). Na++ K+ concentrations in the outwash were similar to 

those of IL groundwater (Figure 6.10). The highest SO4
2-, Ca2++ Mg2+, and Cl- 

concentrations in the outwash were measured at GW10 (Figure 6.8, 6.9). Conversely, 

Na++ K+ concentrations at GW10 did not substantially exceed those at GW11 and GW12 

(Figure 6.10).  

During interval I, groundwater Ca2++ Mg2+, Cl-, and SO4
2- concentrations in the outwash 

were close to those of the IL “cluster” and lower than solute concentrations in the transect. 

Concentrations then rose slightly during interval II. Similar to the transect and the 

piezometers near the river, hydraulic heads at the outwash area also fell by 0.06-0.20 m 

between intervals II and III. However, in contrast to the large increase in groundwater 

solute concentrations at these environments, the increases in the outwash were smaller. 

The largest increases were Ca2++ Mg2+ at GW11 and GW12 and Na++ K+ at P12. This 

pattern (a fall in Cl- and rise in SO4
2-) is similar to the patterns observed at the IL “cluster”. 

However, the increases in SO4
2- and Ca2++ Mg2+ concentrations at the outwash have 

extended the differences in groundwater concentrations between the two environments.   
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Figure 6.15. Groundwater solute concentrations in the outwash.  

 

6.3.3. Summary 
  

The lowest groundwater temperatures and EC were measured at GW9, located 20 m from 

the Skaftafellsá channel. The highest groundwater EC was measured at the transect (T1, 

located closest to the river) and GW5. Groundwater solute concentrations substantially 

exceeded those in the lakes and the meltwater river. The highest groundwater solute 

concentrations (Ca2++ Mg2+ and SO4
2- ) were generally measured in the transect. However, 

a considerable spatial variability was also observed in this area, with the lowest solute 

concentrations (and smallest temporal variability) found in T3 and highest at T1 (furthest 

and nearest the river, respectively). The highest Na++ K+ at the study were measured at 

the IL groundwater and T3.  
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6.4. Spatial and temporal variability in surface 
water quality and geochemistry 
 

This section describes the spatial and temporal variability in surface water 

physicochemical parameters and solute concentrations. Surface water samples were 

collected from the Skaftafellsá, Northern Oasis lakes, and Southern Oasis lakes (Figure 

6.3). The samples were collected during four sampling intervals, which took place around 

the 10/07/2012, 21/07/2012, 30/07/2012, and 25/08/2012 (Figure 6.4). The mean surface 

water concentrations of SO4
2- , Ca2++ Mg2+, and Na++ K+ were generally lower than 

groundwater concentrations. Conversely, Cl-  concentrations was higher than mean 

groundwater concentrations (Figure 6.7) 

Considerable spatial variability in surface water quality and solute concentrations has 

been observed between the different hydrological environments of the Skaftafellsjökull 

foreland. The lowest temperature and variability (~1°C) in surface water were measured in 

the meltwater river Skaftafellsá. The highest surface water temperatures were measured 

in the Northern Oasis lakes (14.4-17.7°C). During the last measurement campaign (end of 

August 2012), temperatures in the Southern Oasis lakes substantially fell by 3-10 °C. The 

lowest surface water EC was measured in the Skaftafellsá (~30 μS/cm) and the Northern 

Oasis lakes (~50-70 μS/cm). The EC in the Southern Oasis lakes ranged between ~100-

150 µS/cm. Within the Southern Oasis lakes, the highest temporal variability in EC was 

observed at the IL and Swan Lake, where EC fell by approximately 30 μS/cm in August 

(Figure 6.6) 

The lowest mean Cl- (34 µeq/l), SO4
2- (15 µeq/l), Ca2++ Mg2+ (91 µeq/l) and Na++ K+ (120 

µeq/l) concentrations and variability were also measured in the Skaftafellsá. After the 

Skaftafellsá, the Northern Oasis lakes had the lowest SO4
2- (<30 µeq/l), Ca2++ Mg2+ (<500 

µeq/l), and Na++ K+ (<250 µeq/l) concentrations. However, Cl-  concentrations in the 

Northern Oasis lakes were significantly higher than in the Southern Oasis lakes (one tail t 
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test, 2.5% S.L. p=0.999). Conversely, SO4
2-, Ca2++ Mg2+, and Na++ K+ concentrations in 

the Southern Oasis were significantly higher (1 tail t test, 2.5% SL, p=<0.001) than the 

concentrations in the Northern Oasis lakes (Figure 6.8-6.10).  

The highest solute concentrations and variability in surface water geochemistry were 

measured at the Southern Oasis lakes. The highest SO4
2- surface water concentrations 

(~100-120 µeq/l) were measured at Thin Lake, where Cl- and SO4
2- concentrations 

approached groundwater concentrations from the fine-grained (L5, L6, CN) lakeshore of 

the IL (Figure 6.8). Similar to the decline in groundwater Cl- and SO4
2-  around the IL in 

August, the concentrations of these solutes also fell at Thin Lake (Figure 6.16). The 

highest Ca2++ Mg2+ (~1550 µeq/l), Cl- (~170 µeq/l), and Na++ K+ (~ 430 µeq/l) 

concentrations in the Southern Oasis were measured at Heart Lake. Cl- concentrations at 

Heart Lake exceeded those measured in most groundwater samples (Figure 6.8). The 

variability in Cl- and SO4
2- concentrations at the IL and Swan Lake generally exceeded 

that of Heart, Thin and Island Lakes (Figure 6.16). The Cl- and SO4
2- concentrations at 

Swan Lake ranged between 60-155 µeq/l and 36-61 µeq/l, respectively. The Na++ K+ 

concentrations at the IL were ~400 µeq/l. These concentrations were similar to those in 

Thin and Island Lakes, and are slightly higher than those in Swan Lake (Figure 6.10). 

Ca2++ Mg2+ concentration in the Southern Oasis lakes showed  high spatial variability 

(Figure 6.9). The highest Ca2++ Mg2+ concentrations (~1500 µeq/l) were measured at 

Heart Lake, followed by Thin and Island Lakes (~1000-1200 µeq/l). These lakes also had 

smaller variability in Cl- and SO4
2- concentrations (Figure 6.8). Conversely, Ca2++ Mg2+ 

concentrations  at the IL and Swan Lake were much lower (~600-900 µeq/l) (Table 6.4).  
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Table 6.4. Mean solute concentrations and physicochemical parameters in different surface 
water bodies at the Skaftafellsjökull foreland.   

The numbers in brackets denote the number of samples within each environment (Figure 
6.3).  

 SO4
2-

 
(µeq/l)

  
 

Cl
-  

(µeq/l)
  
 

 
Ca

2+
+ Mg

2+
 

(µeq/l)  
Na

+ 
+ K

+ 

(µeq/l)
  
 

EC 
(μS/cm) 

Temperature 
(°C) 

River Skaftafellsá 
(7) 

15±2 34±11 91±37 
 

113±23 
 

23±3 
 

1±0 
 

N. Oasis lakes (17) 29±12 153±36 285±105 
 

298±167 
 

55±10 
 

16±1 
 

Southern Oasis 
lakes 

 

Instrumented Lake 
(12) 

49±34 104±44 875±69 
 

341±77 
 

107±13 14±3 
 

Swan lake (12) 46±7 135±35 759±97 315±95 
 

101±16 
 

15±3 
 

Island Lake (11) 57±15 
 

148±5 1157±124 378±29 
 

125±6 
 

15±3 
 

Thin Lake (9) 109±7 
 

131±7 1130±37 349±12 
 

116±5 
 

13±4 
 

Heart Lake (7) 48±6 
 

163±9 1399±234 503±188 
 

141±3 
 

13±2 
 

GWFS (3) 897±1344 161±28 2519±1887 529±253 231±162 12±2 

 

The temporal variability in surface water solute concentrations is presented in Figure 6.16, 

Figure 6.17. A considerable variability was observed in surface water concentrations of 

different solutes between intervals I and II (10/07-21/07/2012). Cl- and SO4
2- 

concentrations generally fell in all lakes, with the highest falls (84 µeq/l Cl- and 61 µeq/l 

SO4
2-) measured at the IL. The changes in Ca2++ Mg2+ concentrations varied, with a fall in 

Ca2++ Mg2+ concentrations at Swan (51 µeq/l) and Thin Lakes (67 µeq/l) and a rise at the 

IL (52 µeq/l), Island Lake (82 µeq/l), and the Skaftafellsá (30 µeq/l). Na++ K+ 

concentrations have also increased in all lakes except Thin Lake (Figure 6.16, 6.17). 

During interval II, hydraulic heads and lake levels at the site rose by ~0.10 m between the 

21/07 to the 30/07, coinciding with the season’s highest rainfall event (33 mm on the 

23/07/2012). Ca2++ Mg2+ concentrations in the IL, Swan and Thin Lakes increased by ~90 

µeq/l. Conversely, concentrations fell substantially at Island (-97 µeq/l) and Heart (-284 

µeq/l) Lakes. Cl- and SO4
2- concentrations at the IL have also increased. Na++ K+ 

concentrations at Heart Lake substantially increased by 250 µeq/l. Na++ K+ concentrations 
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at Thin Lake and the IL have increased by 20 µeq/l. Conversely, concentrations at Swan 

and Island Lakes fell by ~30 µeq/l Na++ K+ (Figure 6.16, 6.17).  

The field site was unmanned between 31/07/2012 and 23/08/2012. When monitoring was 

resumed, an increase of ~0.010-0.020 m was measured in groundwater and lake levels. 

The pressure transducers measured a substantial flood on the 13-14/08/2012, during 

which meltwater and hydraulic heads increased by approximately 0.50 m in 10-14 hours. 

In addition to the flood, two rainfall events of 20 mm (21/08/2012) and 12 mm 

(25/08/2012) also took place during this period. However, despite the flood and rainfall 

events, groundwater and lake levels quickly declined at the end of August. The changes in 

solute concentrations following these events has shown a considerable spatial variability. 

Solute concentrations at the IL and Swan Lake have fallen between intervals III and IV 

(Figure 6.16, 6.17). Smaller declines also took place at Thin Lake. Conversely, Ca2++ 

Mg2+ concentrations at Island and Heart Lake have increased by 64 µeq/l and 244 µeq/l, 

respectively. SO4
2- concentrations have also increased in these lakes. Na++ K+ 

concentrations at Heart Lake declined by 302 µeq/l (Figure 6.17) 
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Figure 6.16. Fluctuations in surface water Cl
-
 and SO4

2- 
concentrations.  

Please note the notation for the different hydrological environments: The Southern Oases 
lakes (diamonds), Northern Oasis lakes (circles), and the meltwater river Skaftafellsá 
(squares). Note that the measurements for the Northern Oasis lakes were only taken during 
sampling intervals I and II. The figure shows the mean concentration during each interval.  
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Figure 6.17. Fluctuations in surface water Ca
2+

+ Mg
2+ 

and Na
+
+ K

+ 
concentrations. 

Please note the notation for the different hydrological environments: the Southern Oasis 
lakes (diamonds), Northern Oasis lakes (circles), and the meltwater river Skaftafellsá 
(squares). Note that the measurements for the Northern Oasis lakes were only taken during 
sampling intervals I and II. The figure shows the mean concentration during each interval. 

 

In summary, this section described the spatial and temporal variability in surface water 

quality and geochemistry at the Skaftafellsjökull foreland. A considerable spatial variability 

has been observed between the river Skaftafellsá, the Northern Oasis lakes and the 

Southern Oasis lakes. The river Skaftafellsá had the lowest temperature, EC, and solute 

concentrations. The EC and solute concentrations at the Northern Oasis lakes was lower 

and less variable than that of the Southern Oasis lakes. However, Cl- concentrations were 

higher in the Northern Oasis lakes. The highest surface water concentrations of SO4
2- 

were measured at Thin Lake. The highest Cl-, Ca2++ Mg2+, and Na++ K+ were measured at 
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Heart Lake. Substantial declines in lake water temperature, EC, and solute concentrations 

were observed at the IL and Swan Lake during the sampling interval at the end of August. 

Conversely, these parameters have increased in the other lakes at the Southern Oasis.  

6.5. The δ
18

O and δD composition of groundwater 
and surface water at the Skaftafellsjökull 
foreland 

 

6.5.1. Introduction  
 

This section describes the spatial variability in the stable isotope composition of 

meltwater, groundwater, surface water, and precipitation. A total of 31 stable isotope 

samples were obtained from various groundwater and surface water locations at the field 

site: Skaftafellsá (n =6), Southern Oasis lakes (IL=2, Swan Lake=1, Thin Lake=2, Island 

Lake=2), the Ground Water Fed Stream (n =4 ) (GWFS), and piezometers (n =15). The 

piezometers which were sampled are: T1-T3 (transect), GW5 and GW9 (near the river 

channel), L1-L5 and the piezometer nests (the IL), and GW11, GW12, and P12 (the 

outwash). The samples were collected on the 24-25/08/2012, hence, after the flood of the 

Skaftafellsá (Chapter 7). The mean isotopic composition for the different hydrological 

environments in the Skaftafellsjökull foreland is presented in Table 6.5. The isotopic 

composition of precipitation, groundwater and surface water at the Skaftafellsjökull 

foreland is presented in Figure 6.18. The glacial melt end member is composed of the 

mean δ18O and δD composition for the Skaftafellsá (current study) and the isotopic 

composition of glacial ice from Skaftafellsjökull (n=4), which were obtained from Cook et 

al. (2010). The precipitation data was obtained from Robinson (2003). The rationale for 

using this data set is provided in section 6.5.2.  

The Local Meteoric Water Line (LMWL) at the Skaftafellsjökull foreland plots below the 

Global Meteoric Water Line (GMWL), but with a slightly steeper slope. The slopes of the 
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groundwater (6.87) and lakes (6.49) samples are much lower than that of the GMWL. 

Most of the groundwater, lakes, and the GWFS samples plot on the LMWL, with the 

isotopic composition ranging between  -7.7 to -8.6 δ18O and -41.0 to -59.0 δD. However, 

several groundwater (GW9, GW5, L2) and surface water samples from the IL and Swan 

Lake plot further down the LMWL, having a lighter isotopic composition. Conversely, the 

isotopic composition of the head of the GWFS and Island Lake plots below the LMWL. 

The glacial melt end-member and samples plot very close to the GMWL (Figure 6.18). 

Groundwater, lakes and the GWFS samples are significantly more isotopically heavy  than 

those of glacial melt (1 tail t test, 2.5% SL, p=<0.001).  

 

Figure 6.18. δD vs δ
18

O composition of groundwater and surface water at the 
Skaftafellsjökull foreland.  

The GMWL is denoted by the solid black line. The LMWL (dashed line) was calculated from 
the trend line of the isotopic composition of precipitation (equation shown). The end-
member for the isotopic composition precipitation and glacial melt are denoted in yellow.  
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Table 6.5. Mean isotopic composition of the different hydrological environments at the 
Skaftafellsjökull foreland.  

The number of samples in each environment is in brackets. Full data set is found in 
Appendix 6. 

 δ18O (‰) δD (‰) 

Glacial melt (10) -11.24±0.33 -77.9±2.0 

Lake surface water (6) -7.89±0.90 -58.9±5.9 

Groundwater(15) -8.03±0.67 -57.8±4.6 

GWFS (4) -7.25±0.87 -53.6±3.8 

Precipitation (59) -6.74±2.80 -49.2±24.3 

6.5.2. The isotopic composition of precipitation 
 

The reliable determination of the isotopic composition of precipitation and a LMWL 

requires precipitation samples that span over at least one year (Clark and Fritz, 1997). 

However, due to logistical constraints, stable isotope samples from local precipitation 

were not collected during this study. Therefore, in order to define the isotopic composition 

for precipitation, this study compared the isotopic composition of summer (June-August) 

precipitation from Skeiðarársandur (Robinson, 2003) with that of summer precipitation 

from the International Atomic Energy Agency (IAEA) station in Reykjavik, which forms part 

of the Global Network of Isotopes in Precipitation (GNIP). The isotopic composition of 

precipitation in Skeiðarársandur was determined from samples that were collected from 

several field stations during 1998, 2000, and 2001. The stations are located up to 20 km 

to the NW of the Skaftafellsjökull foreland field site. The IAEA data set contains the mean 

monthly isotopic composition of precipitation in Reykjavik from the years 1961-1976, 

1992-1999, 2000-2006, 2008, and 2009 (IAEA/WMO, 2014).  
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Figure 6.19. The isotopic composition of summer precipitation from Skeiðarársandur 
(Robinson 2003) and Reykjavik (IAEA/WMO, 2014).  

The figure also shows the LMWL for Reykjavik isotopic composition (red line), the GMWL 
(bold black line) and the LMWL (black dashed line) for Skeiðarársandur.  

 

The isotopic composition of precipitation from the two data sets is presented in Figure 

6.19. The slope of the Reykjavik precipitation LMWL was slightly lower than that of 

Skeiðarársandur. The intercept of the Reykjavik LMWL was much lower than that of 

Skeiðarársandur. The LMWL for both Skeiðarársandur and the Reykjavik data deviate 

from the GMWL along a slightly steeper slope below the GMWL. Table 6.5 shows that the 

mean isotopic composition for Skeiðarársandur precipitation (-6.74±2.80‰ δ18O and -

49.24± 24.27‰ δD) was more isotopically enriched than the Reykjavik precipitation          

(-7.60±1.35‰ δ18O and -56.57±11.31‰ δD). However, despite the smaller number of 

samples and shorter data set, the standard deviation and range for the Skeiðarársandur 

data is higher than the Reykjavik data (Table 6.5). This suggests that precipitation at the 

two sites is impacted by different sources (Clark and Fritz, 1997). The high variability in 

the isotopic composition of precipitation in Skeiðarársandur can also be attributed to the 

data being collected from field stations, where following all of the IAEA collecting protocols 
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was not always possible, making modifications by evaporation and contamination are 

more likely.  

Table 6.6. Summary of the isotopic composition of summer precipitation from 
Skeiðarársandur (Robinson, 2003) and Reykjavik (IAEA/WMO, 2014). 

 Note that the Reykjavik data shows the mean monthly isotopic composition.  

 δ18O (‰) δD (‰) 

Skeiðarársandur summer (59) -6.74± 2.80 -49.24± 24.27 

Reykjavik summer (77) -7.60± 1.35 -56.57± 11.31 

 Trend line of the LMWL 

Slope 8.51 8.07 

Intercept 8.12 4.74 

R2 0.964 0.933 

 

Each data set has its merits and limitations for being used for the determination of an end-

member isotopic composition for precipitation. The data from Skeiðarársandur provides a 

better representation for local precipitation at the study site. However, this data is 15 years 

old and more limited in number. This can be problematic, especially with regards to the 

high temporal variability of the isotopic composition of precipitation from Skeiðarársandur 

(Robinson, 2003). On the other hand, the Reykjavik data is more recent (up to 2009) and 

covers a much longer period than the Skeiðarársandur data. Quality control measures for 

the Reykjavik data are also assumed to be tighter. However, this data was collected ~350 

km from the field site. Additionally, the data from Skeiðarársandur was collected from 

individual precipitation events, whilst the Reykjavik data shows the mean monthly isotopic 

composition, which can mask finer temporal variability. Therefore, due to the proximity to 

the site, and the inclusion of individual events, rather than monthly mean isotopic 

composition, the isotopic composition of precipitation from Skeiðarársandur (Robinson, 

2003) was used in the current study.   
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6.5.3. Groundwater isotopic composition  
 

The spatial distribution of groundwater δ18O at the Skaftafellsjökull foreland is presented in 

Figure 6.20. The isotopic composition of groundwater at the Skaftafellsjökull foreland 

ranged between -10.00‰ to -7.42‰ δ18O and -71.1‰ to -53.2‰ δD (Table 6.5). The 

isotopically lightest groundwater was measured in the piezometers near the river (GW9 

and GW5). GW9, which is located 20 m from the Skaftafellsá meltwater channel, has the 

lightest groundwater isotopic composition, with -10.0‰ δ18O and -71.1‰ δD. The isotopic 

composition of GW5, located 38 m away from the meltwater channel was slightly heavier 

(-8.97‰ δ18O and -64.5‰ δD). However, it was still isotopically lighter than other 

groundwater samples in the catchment. Groundwater isotopic composition from the IL 

ranged between -7.5‰ to -8.4‰ δ18O and -55.0‰ to -61.7‰ δD. The heaviest isotopic 

composition was measured in L1, which is located in the coarse-grained lakeshore of the 

IL (-7.52 δ18O and -55.0 δD‰). The lightest isotopic composition from the IL groundwater 

was measured in L2, which is also located in the coarse-grained lakeshore (-8.44 δ18O‰ 

and -61.7 δD‰). However, apart from the L1 and L2, the isotopic composition of 

groundwater from the remaining piezometers was very similar (approximately -7.9 δ18O ‰ 

and -56.1 δD ‰). The spatial variability of groundwater isotopic composition in the 

outwash was smaller than the IL groundwater, with a very narrow range of 0.2 ‰ δ18O 

and 1.6 ‰ δD. Groundwater isotopic composition in the transect ranged between -7.4 to -

8.0 ‰ δ18O and -53.2 to -56.5 ‰ δD. The lightest isotopic composition in the transect was 

measured at T2. The heaviest isotopic composition was measured at T1, which is closest 

to the river (27 m) (Figure 6.20).  
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Figure 6.20. Spatial variability of δ
18

O in groundwater and surface water at the 
Skaftafellsjökull foreland.  

The sampling locations around the IL are included in detail in inset B (black dashed box). 
The image was taken from Vatnajökull National Park (2007). The Skaftafellsá meltwater 
channel has changed its location since the image was taken. The location of the meltwater 
channel when the samples were collected (August 2012) is denoted by the dashed blue line.  

 

6.5.4. The isotopic composition of surface water  
 

Substantial heterogeneity has been observed in the isotopic composition of surface water 

at the Skaftafellsjökull foreland (Figure 6.20, 6.21). The isotopic composition of surface 

water ranged between -5.9 to -11.9‰ ± 1.44‰ δ18O and -48.0 to -80.4± 9.40‰ δD. The 

river Skaftafellsá (n=6) had the most depleted isotopic composition (-11.06 ± 0.06 δ18O 

and -78.3 ± 0.4 δD‰) and the lowest standard deviation. The isotopic composition of lake 

surface water (n=6) ranged between -8.64 and -6.28‰ δ18O and -64.1 to -49.3‰ δD. The 

mean δ18O and δD for lake surface water was similar to that of groundwater (-8.00±0.90 

‰ δ18O and -58.5±5.9 ‰ δD). However, the standard deviation for groundwater was lower 
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(Table 6.5). The lightest isotopic composition of lake water was measured in the IL and 

Swan Lake (approximately -8.5‰ δ18O and -64‰ δD). The heaviest lake water isotopic 

composition was measured at Island Lake (-6.3‰ δ18O and -49.3‰ δD). The isotopic 

composition of Thin Lake lay between the compositions of Island Lake and the IL (Figure 

6.20) 

 

Figure 6.21. Groundwater and surface water EC vs. δ18O composition (after Lambs, 2004).  

Groundwater samples are denoted by the different rectangles.  

 

6.5.5. Spatial variability in Deuterium Excess (d-excess) 
 

The d-excess of groundwater and surface water at the Skaftafellsjökull foreland ranged 

between -0.39 and +10.60 ‰ (Figure 6.22). The highest values and lowest standard 

deviation of d-excess were measured in the Skaftafellsá, where values ranged between 

+9.5 to +10.6 ‰. Groundwater d-excess was generally higher than that of the lakes. 

However, high variability was measured in groundwater d-excess, where values ranged 

between +5.1 (L5) to +8.8 ‰ (GW9). Relatively high d-excess, of approximately +7.0‰ 
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was measured in some piezometers in the transect (T2), outwash (GW11), IL (L4), and 

near the river (GW5). However, the d-excess  in other piezometers within these 

environments were lower (+5.1 to +6.0‰).  

The d-excess values of surface water in the Southern Oasis lakes and GWFS (excluding 

the head of the GWFS) were generally lower (+4.4 to +5.4 ‰) than groundwater d-excess. 

However, the d-excess from the middle of the GWFS was +6.6‰. The lowest d-excess 

values were obtained from Island Lake (+1.0‰) and the head of the GWFS (-0.4‰) 

(Figure 6.22).  

 

Figure 6.22. The spatial variability of Deuterium Excess (‰) in groundwater and surface 
water at the Skaftafellsjökull foreland. 

The sampling locations from around the IL are included in detail in inset B, whose area is 
denoted by the black dashed box. The image was taken from LMI (2007). The Skaftafellsá 
meltwater channel has changed its location since the image was taken. The location of the 
meltwater channel when the samples were collected (August 2012) is denoted by the 
dashed blue line.  
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6.5.6. Summary  
 

The isotopic composition of groundwater at the Skaftafellsjökull foreland ranged between   

-10.00‰ to -7.42‰ δ18O and -71.1‰ to -53.2‰ δD. However, considerable spatial 

variability was observed in the isotopic composition of groundwater in the different 

hydrological environments. The isotopically lightest groundwater and highest d-excess 

was measured near the Skaftafellsá (GW9 and GW5). The isotopic composition of 

groundwater at GW9 was located on the GMWL while groundwater at GW5 was located 

further down the LMWL than most groundwater samples. The isotopic compositions of 

groundwater in the outwash, around the IL, and the transect were heavier than that of 

groundwater near the Skaftafellsá, with most samples located on the LMWL. A 

considerable variability was also observed in the isotopic composition of surface water. 

The Skaftafellsá had the most isotopically light composition and highest d-excess. From 

the Southern Oasis lakes, the IL and Swan Lake had more depleted isotopic compositions 

than Thin Lake and Island Lake. The head of the GWFS had the most isotopically heavy 

composition and lowest d-excess. However, apart from the head of the GWFS, the other 

samples from the GWFS had similar isotopic composition to that of the groundwater 

around the IL and the surface water of Thin Lake (Figure 6.18).   

6.6. Interpretation and discussion  
 

6.6.1. Sources of recharge at the Skaftafellsjökull 
foreland 
 

Water stable isotopes were used in this study to identify the sources of recharge for 

groundwater and surface water at the Skaftafellsjökull foreland. Using stable isotopes, 

local precipitation and glacial melt were previously identified as the main sources of 

groundwater recharge in Skeiðarársandur, where the impact of glacial melt diminished 
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with distance away from the glacier margin. However, this pattern was complicated by 

exchange between groundwater and meltwater rivers (Robinson et al., 2009b). The 

isotopic composition of groundwater, lakes and the GWFS at the Skaftafellsjökull foreland 

was significantly heavier than that of glacial melt (one tail t test, 2.5% S.L., p=<0.001). 

Additionally, the isotopic compositions of most groundwater and lake water samples were 

located on the LMWL (Figure 6.18). This suggests that local precipitation is the main 

source of recharge at the areas studied at the Skaftafellsjökull foreland (Clark and Fritz, 

1997; Jonsson et al., 2009). Island Lake and the head of the GWFS had the heaviest 

isotopic composition and lowest d-excess, which suggests that evaporation is significant 

at these sites. Conversely, the groundwater at GW9 and GW5, located near the 

Skaftafellsá, had lighter isotopic composition, close to that of glacial melt (Figure 6.20). 

This relatively light isotopic composition suggests higher proportions of meltwater at GW5 

and GW9 (Malard et al., 1999; Chiogna et al., 2014). The isotopic composition of 

groundwater and meltwater from the Skaftafellsjökull foreland was close to the isotopic 

composition in Skeiðarársandur (Robinson et al., 2009b). This is probably due to the 

similar sources of precipitation which impact both areas. The isotopic composition of both 

sites is generally more enriched than those reported from the Alps (Hindshaw et al., 

2011), Alaska (Crossman et al., 2011), Arctic Sweden (Dahlke et al., 2014), Greenland 

(Kristiansen et al., 2012), Antarctica (Gooseff et al., 2006; 2013), and the Andes (e.g. 

Ohlanders et al., 2013), where the latitude, altitude and continentality effects are more 

dominant than in the lowland sandurs of SE Iceland (e.g. Clark and Fritz, 1997).  

6.6.2. Controls on groundwater and surface waters 
geochemistry at the Skaftafellsjökull foreland  
 

This section investigates the major controls on groundwater and surface water 

geochemistry at the Skaftafellsjökull foreland. Similar to studies from other glacial 

environments, solute concentrations in groundwater at the Skaftafellsjökull foreland also 



Chapter 6 Geochemistry and stable isotopes 

196 
 

generally exceeded those in meltwater (Table 6.7, 6.8). Groundwater solute 

concentrations in the Skaftafellsjökull foreland generally exceeded those reported from 

Alaska (Anderson et al., 2000) and the Alps (Tranter et al., 2002; Hindshaw et al., 2011). 

This can be explained by the wide availability of reactive glassy basalts (e.g. Gíslason and 

Eugster, 1987) in the Skaftafellsjökull foreland in comparison to that in the Alps (Fairchild 

et al., 1999a, b; Hindshaw et al., 2011). Conversely, groundwater solute concentrations at 

the Skaftafellsjökull foreland are substantially lower than those reported from Svalbard 

and Antarctica (Table 6.7). The elevated solute concentrations in these catchments have 

been attributed to the formation, by evapoconcentration, and dissolution during the melt 

period, of efflorescent salts (e.g. Wadham et al., 2001). However, these processes do not 

appear to be significant in SE Iceland, due to the milder temperatures and high and 

frequent precipitation events (Robinson et al., 2009a). 

Volcanic and geothermal activity can also impact groundwater and surface water 

chemistry at the field sites. Skeiðarársandur is impacted by volcanic eruptions from the 

subglacial volcanoes beneath Vatnajökull. In addition to their hydrological and geomorphic 

impacts (e.g. Russell et al., 2006), such as jökulhlaups, these eruptions and associated 

geothermal systems may also have impacted the geochemistry of groundwater and 

surface water. For instance, the high concentrations and standard deviation of solute 

concentrations in eastern Skeiðarársandur groundwater (Table 6.7) and in the River 

Skeiðará (Table 6.8) suggest that this area is episodically impacted by geothermal water 

(Robinson et al., 2009a). Additionally, the deposition and subsequent dissolution of 

volcanic tephra, which weathers very quickly, can also increase solute concentrations in 

groundwater and surface water (e.g. Galeczka et al., 2014). In contrast to the 

aforementioned results from areas which are impacted by geothermal activity (e.g. 

Gíslason and Eugster, 1987b; Kristmannsdóttir et al., 2004), the EC, temperature and 

most solute concentrations of groundwater and surface water at the Skaftafellsjökull 

foreland are substantially lower (Table 6.7) . Hence, it is suggested that mixing with 
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geothermal water is probably not an important control on the proglacial geochemistry of 

groundwater and surface water at the Skaftafellsjökull foreland.  

Table 6.7. Solute concentrations in groundwater from various proglacial environments.  

The numbers in brackets shows the number of samples.  

Groundwater solute  
concentration (µeq/l) 

Cl-  SO4
2- Na+ K+ Mg2+ Ca2+ 

Skaftafellsjökull 
groundwater

1
 (59) 

126±24 166±73 482±169 17±18 153±63 1182±332 

Skeiðarársandur 
groundwater (West)

2
 

82±40 63±26 224±56*   388±137 

Skeiðarársandur 
groundwater (East)

2
 

116±52 300±197 481±134*   1873±1056* 

Lower Skeiðarársandur 
groundwater

2
 

339±193 114±57 536±144*    1031±389* 

W. Skeiðarár. GW
1 
(2011-

12) (20)  
153±74 319±573 336±137 8±5 144±163 408±274 

Groundwater seeps W. 
Skeiðarársandur 
(2011/12)

1
 

86±29 

 

54±42 

 

258±41 

 

2±2 

 

132±32  403±80 

 

Damma Glacier, Swiss 
Alps

3
 (12) 

98±251 13±7 17±7 25±12 21±15 85±58 

Haut Glacier d’Arolla, 
Swiss Alps

4
 (17)  

7±7 249±160 19±15 24±14 66±37 607±322 

Bench glacier, Alaska
5
 

(1) 
4 374 21 76 42 1054 

Mittivakkat Gletscher, 
SE  Greenland

6
 (4)  

296±103 316±117 358±327 43±11 177±60 241±113 

Finsterwalderbreen 
Glacier, Svalbard

7
 (60)  

200±99 7500±3600 220±91 76±52 3200±1300 6000±2200 

Finsterwalderbreen 
Glacier, Svalbard

8
 (40) 

ND 9890±4390 ND ND 3980±4360 7109±2650 

Ebba Valley, Central 
Spitsbergen

9
 (33) 

407±190 5501±4081 337±207 56±27 2160±868 7990±3440 

Rieperbreen-Foxfonna 
catchment, Svalbard10 (2)  

232±18 5423±463 5428±975 102±0 1444±64 2738±385 

Hornsund fjord region, 
south Spitsbergen, 
Svalbard

11
 (7) 

1573±1310 781±1114 1693±1532 62±41 1000±905 1122±1081 

Waterloo moraine, 
Canada

12
 (11)  

3361±3172 6355±6163 1888±1031 55±20 3584±2289 7300±4009 

Taylor Valley, Antarctica
13

 
(5) 

4577±3140 1616±1172 3198±1515 537±257 1773±1066 2933±1561 

Sources and hydrological setting: 1. Current study Skaftafellsjökull, SE Iceland 2. Robinson et al. 
(2009) 3. Hindshaw et al. (2011) 4. Tranter et al. (2002) Subglacial piezometers, Haut Glacier d’Arolla, 
Swiss Alps. 5. Anderson et al. (2005a) proglacial groundwater, 1.3 km from the glacier snout. 6. 
Kristiansen et al. (2012) Proglacial groundwater, Mittivakkat Gletscher, SE Greenland. 7. Wadham et al. 
(2001) Active Layer (AL) groundwater, Finsterwalderbreen Glacier, Svalbard. 8. Wadham et al. (2007) 
Active Layer (AL) groundwater, Finsterwalderbreen Glacier, Svalbard. 9. Dragon and Marciniak (2010). 
10. Rutter et al. (2011) springs at the Rieperbreen-Foxfonna catchment, Svalbard. 11. Olichwer et al. 
(2013) Permafrost groundwater in the Hornsund fjord region, south Spitsbergen, Svalbard. 12. Stotler 

et al. 2010. 13. Harris et al. (2007).  
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Table 6.8. Solute concentrations in meltwater from different proglacial settings. 

The numbers in brackets show the number of samples. However, this was not always 
available.  

Meltwater solute concentration 
(µeq/l) 

Cl- SO4
2- Na+ K+ Mg2+ Ca2+ 

World average
1
  160 170 220 33 280 670 

River Súla*
2
 (11) 54±12 43±9 275±55   340±67 

River Gígjukvísl*
2
 (n=8) 39±14 

 
76±51 
 

172±43 
 

  322±100 
 

Skeiðará*
2
 (13) 86±36 155±128 

 
565±345 
 

  1199±±739 
 

Skaftafellsá
3
 (7) 34±11 15±2 113±23 0±1 3±4 89±35 

River Virkisá (Iceland)
4
 166 ND 117 13 30 56 

River Fjallsárlón (S. Iceland)
4
 164 105 66 4 33 320 

Mittivakkat Gletscher 
meltwater, SE Greenland

5
 (16) 

40±5 
 

42±6 
 

43±6 
 

7±1 
 

32±6 
 

48±12 
 

Finsterwalderbreen glacier, 
Svalbard

6
 (40)  

 319±90 ND ND 225±42 
 

521±70  
 
 

Scott Turnerbreen Svalbard
7
 390 240 430 12 210 221 

Rieperbreen- Foxfonna, 
Svalbard

8
 (7)  

54±24 
  

3682±3768 657±333 
 

71±56 
 

905±1200 
 

2224±2182 
 

Kangerlussuaq region, W. 
Greenland

9 
Glacial rivers  

Non-glacial rivers 

4±1 
248±217 

30±9 
161±209 

26±12 
261±185 

18±5 
58±55 

23±4 
508±590 

72±13 
531±456 

Kuannersuit, Disko Island, 
Greenland

10
  

25 
 

9 
 

120 
 

2 
 

73 160 
 

Longyearbreen, Greenland
11 

(183)  

29-510 350-14900 130-2750 11-66 230-6290 210-6710 

Glacier de Tsanfleuron, 
Switzerland

12
  

5 118 5 6 91 640 

Alps Damma Gletscher, Swiss 
Alps

13
 (39) 

3±1 
 

12±6 
 

10±7 
 

10±6 
 

6±4 
 

31±15 
 

Haut Glacier d’Arolla, Swiss 
Alps

14
 (220)  

5±4 135±53 16±4 13±4 37±9 375±65 

Elliott Glacier meltwater 
Oregon

15
 (10) 

11±0 
 

52±3 
 

39±4 5±0 
 

43±2 
 

87±4 

Meltwater in the Peruvian 
Andes 
Cordillera Blanca

18 

 
 
154±248 

 
 
742±896 

 
 
248±287 

 
 
41±28 

 
 
214±239 

 
 
695±410 

Cordillera Negra tribuaries
18

.   
179±144 

 
631±692 

 
809±361 

 
72±54 

 
626±807 

 
1380±955 

Rio Santa
18 445±290 817±673 648±187 92±18 346±165 1475±460 

Taylor Valley, Antarctica
16

 (5) 459±411 
 

325±363 
 

387±263 
 

131±81 
 

274±214 
  

919±709 
  

Gangotri glacier, Himalayas, 
India

17
  

233±228 
 

674±155 
 

48±17 
 

44±22 
 

1314±620 
 

620±265 
 

Kennicott Glacier, Alaska
19 

1999 (60) 
2000 (93) 

 
36 
68 

 
262 
268 

 
63 
87 

 
14 
17 

 
160 
176 

 
932 
1002 

rock glacier outflow, Colorado 
Rockies

20
  

ND 1829 40 ND 329 1487 
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Sources and hydrological settings 1. Brown et al. (2002). 2. Robinson et al. (2009)* Na
+
 and K

+
 and 

Ca2+ and Mg2+ are presented as Na
+
+K

+
 and Ca

2+
+Mg

2+
, respectively.3. Current study 4. Pogge von 

Strandmann et al. (2008). 5. Kristiansen et al. (2013) 6. Wadham et al. (2007) Active Layer meltwater, 
Finsterwalderbreen glacier, Svalbard 7. Hodgkins et al. (1997) proglacial stream, Scott Turnerbreen 
glacier, Svalbard

 
 8. Rutter et al. (2011) proglacial streams, Rieperbreen- Foxfonna catchment, 

Svalbard 9. Wimpenny et al. (2010) Glacial and non-glacial river (rives are defined as rivers that are not 
directly linked to the ice sheet), Kangerlussuaq region, west Greenland.

 
10.

 
Yde et al. (2005) Subglacial 

outlet of a surging glacier, Kuannersuit, Disko Island, Greenland. 11. Yde et al. (2008). Bulk meltwater 
runoff from the entire melt season in 2004 (only range is given), Longyearbreen, Greenland. 12. 
Fairchild et al. (1994). 13. Hindshaw et al. (2011) 14. Tranter et al. (2002). 15. Fortner et al. (2009). 16. 
Harris et al. (2007). Proglacial streams Taylor Valley, Antarctica

 
17. Kumar et al. (2009). 18. Mark et al. 

(2008). 19. Anderson et al. (2003). 20. Williams et al. (2006). 

 

6.6.3. Spatial and temporal variability in river-aquifer 
exchange  
 

This section uses the spatial and temporal variability in groundwater and surface 

geochemistry and stable isotopes to infer proglacial river-aquifer exchange at the 

Skaftafellsjökull foreland (objective iv). In addition to the monitoring of groundwater and 

river levels (Chapter 7), river-aquifer exchange can also be investigated using water 

geochemistry and stable isotopes, with significant differences between groundwater and 

surface water suggesting low river-aquifer exchange (e.g. Roy and Hayashi, 2009; Dragon 

et al., 2010). Conversely, rivers and aquifers where high exchange takes place are 

expected to have similar geochemical and isotopic compositions (Hood and Berner, 2009; 

Wimpenny et al., 2010; Hindshaw et al., 2011). For instance, the recharge of groundwater 

by significant fluxes of diluted meltwater will lower groundwater solute concentrations (e.g. 

Anderson et al., 2003; Okkonen and Kløve, 2012; Carey et al., 2013). The current study 

used the fluctuations in groundwater and meltwater levels alongside geochemistry and 

stable isotopes in order to investigate river-aquifer exchange. The measured high 

variability in groundwater solute concentrations (sections 6.3, 6.4) and stable isotope 

composition (section 6.5) suggest that high variability in river-aquifer exchange at the 

Skaftafellsjökull foreland.  

The configuration of hydraulic heads and fluctuations at the Skaftafellsá and the transect 

suggest that groundwater flows away from the river, and that the river is recharging the 
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groundwater at the transect (i.e. a losing river stretch) (Chapter 7). However, groundwater 

and meltwater geochemistry and stable isotope compositions do not support this 

hypothesis. The solute concentrations and isotopic composition of transect groundwater 

were significantly different than those of the Skaftafellsá. Solute concentrations at the 

transect were high, particularly at T1, which is located closest to the meltwater channel 

(Figure 6.8-6.10). Additionally, groundwater at the transect also had heavy isotopic 

composition (Figure 6.20), which was close to the LMWL (Figure 6.18). The significant 

differences between groundwater and meltwater geochemistry and isotopic composition 

do not suggest high levels of exchange between meltwater and groundwater (e.g. 

Marciniak et al., 2014). Furthermore, the heavy groundwater isotopic composition at the 

transect (Figure 6.21) suggests that precipitation, rather than glacial melt, is the main 

source of groundwater recharge at the transect (e.g. Robinson et al., 2009b; Kristiansen 

et al., 2013).  

In contrast to the inferred low river-aquifer exchange at the transect, the water quality and 

stable isotopes suggest higher river-aquifer exchange at the piezometers located between 

the Skaftafellsá and Swan Lake (GW9 and GW5). Groundwater at GW9 had low EC 

(Figure 6.6), low solute concentrations (Figure 6.8-6.10), relatively light isotopic 

composition (Figure 6.20), and relatively high d-excess (Figure 6.22). These observations 

suggest that groundwater-meltwater exchange takes place in this piezometer.   

Groundwater solute concentrations at GW9 increased substantially in August (Figure 

6.11), which coincided with a decline in groundwater and meltwater levels (Chapter 7). 

This inverse relationship between meltwater levels and groundwater solute concentrations 

suggests that river stage is an important control on river-aquifer exchange, hence, an 

increase in river level is expected to lower groundwater solute concentrations due to 

increased exchange from the river to groundwater, and vice versa. Similar relationships 

between meltwater levels and solute concentrations have also been reported from various 

proglacial environments (e.g. Anderson et al., 2003; León and Pedrozo, 2014). Therefore, 
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the substantial increase in groundwater solute concentrations at GW9 in August (Figure 

6.11) which coincided with a fall in river and groundwater levels, suggest a fall in 

meltwater-aquifer exchange at this site.  

Groundwater isotopic composition at GW5, which is located 38 from the Skaftafellsá 

channel (Figure 6.3), was heavier than GW9, but lighter than the other groundwater 

samples at the site (Figure 6.20). This suggests that, although GW5 is influenced by 

meltwater, river-aquifer exchange dampens with distance from the channel (Cooper et al., 

2002; 2011). However, in contrast to the low solute concentrations at GW9, groundwater 

at GW5 had high solute concentrations and EC, particularly in August (Figure 6.6, 6.11). 

These high solute concentrations at GW5 appear to contradict the hypothesis of exchange 

with meltwater which is suggested by the stable isotope composition. However, these high 

solute concentrations could have been possibly caused by local contamination from 

wildlife or sheep which have been observed near the borehole on numerous occasions. 

Hence, the isotopic composition of GW5 still supports the hypothesis of meltwater-aquifer 

exchange at GW5. 

The reasons for the spatial variability in meltwater-groundwater exchange between the 

transect and at GW9 are not clear. The groundwater quality and stable isotope 

composition at GW9 suggests relatively high proportions of meltwater recharge. However, 

it is not clear how much of this is due to flooding and localised recharge from overbank 

flow of meltwater, which is facilitated at this location by the relatively shallow riverbank 

(0.35 m). Conversely, the river bank at the transect is approximately 1.0 m high, which 

reduces overland meltwater flow during normal ablation-controlled flow regime. The 

spatial variability in groundwater-surface water exchange can be investigated further using 

chemical tracers (e.g. Ward et al., 2013), which can be used to delineate the hydrological 

pathways of river-aquifer exchange at the site.  
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6.6.4. Lake-aquifer exchange 
 

In addition to river-aquifer exchange, groundwater and surface water geochemistry was 

also used to investigate lake-aquifer exchange at the Skaftafellsjökull foreland (objective 

v). The significant differences in solute concentrations between the lakes in the Northern 

and Southern Oasis suggest substantial differences in lake-aquifer exchange between the 

two areas. SO4
2-, Ca2++ Mg2+, and Na++ K+ concentrations in the Northern Oasis lakes 

were significantly lower than concentrations in the Southern Oasis (Figure 6.9, 6.10). 

Conversely, Cl- concentrations in the Northern Oasis lakes exceeded those in the 

Southern Oasis (Figure 6.8). It is suggested that these differences in lake solute 

concentrations are caused by the contrasting water sources of the lakes, which are 

controlled by the contrasting hydrogeology between the Northern and Southern Oasis 

lakes. The hydraulic conductivity of the Northern Oasis lakes is several orders of 

magnitude lower than that of the Southern Oasis (Figure 5.9). This impedes the 

connectivity between the Northern Oasis lakes and the aquifer and limits the discharge of 

solute-rich groundwater into the lakes (Kattlemann and Elder, 1991; Shaw et al., 2013).  

In addition to groundwater-surface water exchange, the geochemistry and isotope data 

also highlighted differences in the hydrological connectivity between the lakes in the 

Southern Oasis and the Skaftafellsá. Hydrological connectivity describes linkages 

between and within different components of the hydrological system (e.g. Pringle, 2003; 

Egozi and Lekach, 2014). The variability in hydrological connectivity at the site was 

demonstrated by the contrasting impacts of the August flood (13-14/08/2012) on lake 

water quality in the Southern Oasis. Measurements of lake water physicochemical 

parameters and solute concentrations which were taken 10 days after the flood have 

shown a substantial increase in lake turbidity and a fall in lake temperature, EC, and 

solute concentrations at the IL and Swan Lake (Figure 6.6,6.16, 6.17). Observations also 

suggest that fish numbers at the IL have declined after the flood, probably due to the 
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impact of meltwater on habitat conditions (e.g. Brown et al., 2007a) at the IL. In contrast to 

the aforementioned impacts of the flood on the IL and Swan Lake, lake temperature, EC, 

and solute concentrations at Thin, Island, and Heart Lakes either did not change or have 

risen after the flood (Figure 6.6, 6.16, 6.17). It is hypothesised that the observed changes 

in water quality at the IL and Swan Lake were probably due to the influx of meltwater 

during the flood. This hypothesis is also supported by the lighter isotopic composition of 

the IL and Swan Lake, which were sampled about 12 days after the flood (Figure 6.20).  

These observations in lake water quality and geochemistry between the IL and Swan 

Lake and the other lakes suggest that the flood has not impacted the latter lakes. 

Furthermore, it also suggests that the hydrological connectivity between the river and the 

IL and Swan Lake is higher than the connectivity between the river and the other lakes.  

6.7. Conclusions 
 

This chapter used water quality and stable water isotopes in order to delineate the 

sources of groundwater and surface water recharge at the Skaftafellsjökull foreland 

(objective iii). These techniques were also used to investigate the spatial and temporal 

dynamics of proglacial groundwater-surface water exchange at the site (objective iv and 

v). 

Similar to other proglacial environments, groundwater solute concentrations at the 

Skaftafellsjökull foreland generally exceeded those in surface water. The main control on 

solute concentrations at the Skaftafellsjökull foreland is catchment lithology, which is 

composed of highly soluble basaltic glass. The quick weathering of this lithology at the 

Skaftafellsjökull foreland contributes to higher groundwater solute concentrations than 

those reported from some proglacial catchments. However, due to the lack of formation 

and dissolution of efflorescent salts at the Skaftafellsjökull foreland, groundwater solute 

concentrations at this catchment were substantially lower than those reported from polar 

glacial environments. In contrast to eastern Skeiðarársandur, geothermal activity does not 
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appear to significantly impact groundwater and surface water geochemistry at the 

Skaftafellsjökull foreland. Using stable isotopes, precipitation was identified as the main 

source of recharge to groundwater in the catchment. However, recharge from meltwater 

was also identified in some locations. 

Substantial spatial and temporal heterogeneity in groundwater and surface water solute 

concentrations and stable isotope composition has been observed in the catchment. The 

high solute concentrations and relatively enriched isotopic composition suggest that river-

aquifer exchange at the transect is low. In contrast to the observations from the transect, 

low solute concentrations and light groundwater isotopic composition near the river (GW9) 

suggest higher proportions of meltwater, which diminishes with distance from the channel. 

However, it is not clear whether this meltwater originates from surface recharge during 

small overbank spills of the river. 

The spatial variability in aquifer-lake exchange at the Skaftafellsjökull foreland has been 

illustrated by the differences in water quality between the Northern and Southern Oasis 

lakes, with solute concentrations at the Southern Oasis significantly exceeding 

concentrations in the Northern Oasis lakes. These differences were attributed to the 

differences in aquifer-lake exchange, which are controlled by the contrasting 

hydrogeology between the two areas. It is suggested that the low hydraulic conductivity at 

the Northern Oasis impedes lake-aquifer exchange and the discharge of solute-rich 

groundwater into the lakes, leading to the lower solute concentrations in this area. In 

addition to groundwater-surface water exchange, this chapter also suggested high spatial 

variability in hydrological connectivity, illustrated by the differences in water quality and 

geochemistry between the Southern Oasis lakes following the Skaftafellsá flood.    
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7. River-aquifer exchange 

7.1. Introduction  

This chapter investigates the spatial and temporal variability and controls of proglacial 

river-aquifer exchange. Hydrological exchange between rivers and groundwater 

substantially impacts water levels, physicochemical parameters, biogeochemistry, water 

quality, and ecology (e.g. Brunke and Gonser, 1997; Krause et al., 2009; Hoehn and 

Maylan, 2009; Roy et al., 2011; Blaen et al., 2013). River-aquifer exchange can exhibit 

high spatial heterogeneity due to high variability in sediment properties and morphology 

(e.g. Hannah et al., 2009; Sawyer and Cardenas, 2009; Schmidt et al., 2012; Norman and 

Cardenas, 2014). These heterogeneities lead to high variability in hydraulic conductivity 

(e.g. Robinson et al, 2008, MacDonald et al., 2012; Langston et al, 2013), pressure 

gradients (Stonedahl et al., 2010), and hydrological connectivity (Ward et al., 1999; Storey 

et al,. 2003). The temporal variability in proglacial river-aquifer exchange is impacted by 

diurnal and seasonal variations in meltwater discharge (e.g. Cooper et al., 2002; Smerdon 

et al., 2005) and high magnitude, low frequency events such as floods and jökulhlaups 

(e.g. Cooper et al., 2002; Vogt et al., 2010)  

Previous studies of proglacial river-aquifer exchange have focused on groundwater and 

meltwater hydrochemistry (e.g. Dragon and Marciniak, 2010), catchment hydrology (e.g. 

Marciniak et al., 2014), and the impact of different water sources on proglacial ecology 

and biodiversity (e.g. Milner and Petts, 1994; Ward et al., 1999; Tockner et al., 2002; 

Brown et al., 2006; 2007a, b). However, the processes that control proglacial groundwater 

flow, storage and exchange with surface water are still not well understood (e.g. Cooper et 

al., 2002; Crossman et al., 2011; Langston et al., 2011; McClymont et al., 2012).  

This chapter aims to investigate the controls on the spatial and temporal variability of 

proglacial river-aquifer exchange. Section 7.2 describes the spatial and temporal 

variability in hydraulic heads at the Skaftafellsjökull margin, which were monitored 
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between 25/06-31/08/2012. The configuration of hydraulic heads was then used to 

delineate the proglacial groundwater flow systems at the Skaftafellsjökull foreland, with 

groundwater flowing from high to low heads (e.g. Freeze and Cherry, 1979). These results 

are added to the configuration of groundwater flow in Skeiðarársandur (Robinson et al. 

2008). Section 7.3 investigates the impacts of high frequency, low magnitude processes 

(precipitation and ablation) on river-aquifer exchange. This section is based on time series 

of meltwater and groundwater levels, temperature, and EC, which were measured at the 

Skaftafellsjökull foreland during the 2012 field season. Section 7.4 investigates the 

impacts of low frequency, high magnitude events (jökulhlaups) on proglacial river-aquifer 

exchange. This section is based on automated measurements of groundwater and 

meltwater levels, temperature, and EC, which were taken in western Skeiðarársandur 

during the 2011 field season (08/07-15/08/2011). The time series of meltwater and 

groundwater levels and physicochemical parameters from the two sites were then used 

alongside water geochemistry and stable isotopes composition (Chapter 6) to investigate 

the controls on proglacial river-aquifer exchange.  

The specific objectives for the chapter are:  

1. To delineate the horizontal and vertical groundwater flow directions at the 

Skaftafellsjökull foreland.  

2. To analyse the spatial and temporal patterns of proglacial river-aquifer  exchange.  

3. To analyse the control of low magnitude, high frequency events (precipitation, ablation) 

on proglacial river-aquifer exchange.  

4. To analyse the control of episodic (glacial outburst floods) events on proglacial river-

aquifer exchange.  

7.2. Groundwater flow at the Skaftafellsjökull 
foreland 

This section describes the groundwater flow directions and the groundwater flow systems 

at the Skaftafellsjökull foreland. Groundwater flow systems can form a nested hierarchy, 
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with local groundwater flow systems imposed on regional ones (e.g. Tóth, 1963). 

Observations of nested groundwater flow systems have also been reported from 

proglacial environments such as Skeiðarársandur (Robinson et al., 2008). The 

configuration of groundwater systems at the Skaftafellsjökull foreland was derived from 

the hydraulic heads which were monitored during the 2012 field season (25/06-

31/08/2012). Hydraulic heads were calculated from combining the elevation of the 

piezometer with groundwater levels, which were monitored daily in piezometers in the 

Southern Oasis (Figure 7.1) using a Solinst acoustic dip meter (accuracy of +0.005 m, 

section 3.5.3). The spatial distribution of hydraulic heads were then used to delineate 

groundwater flow system at the site, with groundwater flowing from high to low hydraulic 

heads (Freeze and Cherry, 1979). This section describes the fluctuations in hydraulic 

heads in the various hydrological environments at the Skaftafellsjökull foreland, which 

include the Instrumented Lake (IL) lakeshore, the outwash, and near the Skaftafellsá 

meltwater channel (GW5 and GW9). The results from the automated monitoring of 

meltwater and groundwater levels in the transect are presented in section 7.3.  
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Figure 7.1. Groundwater monitoring infrastructure at the Southern Oasis (Vatnajökull 
National Park, 2007).  

Piezometers (emplaced~1.6-1.8 m below ground surface) are denoted by black triangles. 
Note that the Skaftafellsá channel has migrated east since the date of the image (2007). The 
position of the river (meltwater) channel during the monitoring in June-August 2012 is 
marked by the dashed blue line. The figure also shows the location of the stilling well (MW) 
in the meltwater channel and the transect (piezometers T1-T3), where meltwater and 
groundwater levels, temperature, and EC were automatically monitored (section 7.3).  

 

7.2.1. Hydraulic heads at the Skaftafellsjökull foreland 
 

The fluctuations in hydraulic heads at the Skaftafellsjökull margin during the 2012 field 

season are presented in Figure 7.2. The fluctuation in hydraulic heads generally followed 

similar spatial trends across the observation network. Hydraulic heads were stable 

between 99.50 and 99.70 mAD until the 20/07/2012, when levels rose by approximately 

0.05 m. The rise in hydraulic heads followed several small (< 10 mm) precipitation events 

and an increase of ~0.15 m in river levels (Figure 7.3). Groundwater levels then rose by 

0.1-0.15 m in less than 24 hours after the largest precipitation event of the season on the 

22/07 (33.3 mm). Following this rainfall event, groundwater levels slowly declined. Manual 
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monitoring of groundwater levels was not performed between 31/07–23/08/2012. 

However, a flood was recorded on the 13-14/08/2012, during which groundwater levels 

have also substantially increased (Figure 7.3). When manual monitoring was resumed on 

the 23/08/2012, groundwater levels were at their highest levels. Despite minor rainfall 

events (<10 mm), groundwater levels declined continuously following the flood, reaching 

similar levels to those measured at the start of the monitoring period. Using the division of 

hydrogeological environments at the site (Figure 5.4), the remainder of this section 

describes the spatial and temporal distribution of fluctuations in hydraulic heads at 

different hydrogeological environments at the Skaftafellsjökull foreland: the outwash, the 

IL, and near the meltwater channel.   

 

Figure 7.2. Total daily precipitation (IMO, 2013) and elevation of hydraulic heads at the field 
site.  

For clarity, only the mean hydraulic heads are shown for the piezometers located in the 
coarse (L1-4, L8) and fine shores (L5-L7) of the Instrumented Lake (IL). Dashed lines denote 
days when measurements were not taken.  
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The outwash is composed of coarse-grained glaciofluvial deposits, with mean hydraulic 

conductivity of 6.1x101 m/day. However, some areas of the outwash are underlain by finer 

sediment, such as GW8, which is located in an area of relatively fine lacustrine deposits 

between the IL and Swan Lake, with hydraulic conductivity of 1.00x10-1 m/day. The 

fluctuations in hydraulic heads in the outwash ranged between 99.45 and 100.24 mAD 

(Figure 7.3). The highest hydraulic heads at the Skaftafellsjökull foreland were measured 

at GW10, which is the most northern borehole, located closest to the glacier margin 

(Figure 7.1). Hydraulic heads at GW10 ranged between 100.00 and 100.24 mAD, 

persistently exceeding heads in other piezometers by ~0.40-0.50 m. The lowest hydraulic 

heads, ranging between 99.48 m and 99.60 m, were measured at GW8. Intermediate 

levels of hydraulic heads were observed at GW11, GW12 and P12, where levels ranged 

between 99.60 and 99.90 m. GW11 and GW12 displayed very similar dynamics, with 

levels in GW11 exceeding GW12 by ~0.05 m. However, different dynamics were observed 

at P12, which is located between GW11 and GW12. For instance, the rise in hydraulic 

heads at P12 following the rainfall events around the 20/07/2012 was earlier and steeper 

than the rises in hydraulic heads in other piezometers. Groundwater levels at P12 then 

declined, and the response of groundwater in this piezometer to rainfall lags behind the 

main rainfall event and rise in river levels by approximately three days. Additionally, in 

contrast to the declines which were measured in other piezometers, groundwater levels at 

P12 also rose by ~0.17 m around 30/07/2012 (Figure 7.3)  
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Figure 7.3. Total daily precipitation, hydraulic heads at the outwash and mean daily levels of 
the meltwater river Skaftafellsá.  

The data for GW12 was very close to that of GW11(see text). Hence, it was omitted for 
clarity. The river levels are based the daily mean levels, which were monitored automatically 
(section 7.3).  

 

Figure 7.4 shows the temporal and spatial distribution of hydraulic heads around the IL, 

which were monitored in the L1-L8 piezometers. The fluctuations in hydraulic heads 

around the IL (Figure 7.4) generally followed similar patterns to the rest of the site (Figure 

7.2). However, spatial heterogeneity was observed around the lake, with hydraulic heads 

at the fine-grained lakeshore (L5-L7) persistently exceeding hydraulic heads at the 

coarse-grained (L1-L4, L8) lakeshore by approximately 0.15 m. Hydraulic heads around 
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the IL ranged between 99.48 and 99.65 mAD until the end of July. The fluctuations in 

hydraulic heads in all the piezometers were around 0.10 m, with higher fluctuations 

measured in the fine-grained lakeshore. Hydraulic heads rose gradually following the 

small rainfall events between 17-22/07/2012. However, the increase in groundwater levels 

at the fine-grained shore was sharper than the observed rise at the coarse-grained 

lakeshore (Figure 7.4). Hydraulic heads rose by approximately 0.10 m in less than 24 

hours after the rainfall event on the 23/07/2012 (33 mm), with the latest peaks measured 

in L6 and L7. Hydraulic heads then declined after the rainfall event. Following the small 

rainfall events (<5 mm) on the 25-27/07/2012, hydraulic heads in the fine-grained shore 

rose by approximately 0.05 m. Conversely, hydraulic heads at the coarse-grained shore 

remained at similar levels. Groundwater levels then declined until the end of 31/07/2012, 

when manual monitoring ceased for approximately three weeks. When manual monitoring 

was resumed on the 23/08/2012, hydraulic heads were at their highest levels, 

approximately 0.20 m higher than the measurements prior to the break in monitoring. 

However, despite a total of 38.3 mm of rainfall during the second monitoring period (23-

31/08) hydraulic heads around the IL declined rapidly (Figure 7.4), following the same 

trends as the rest of the piezometers at the site (Figure 7.2). By the end of the monitoring 

(31/08/2012), hydraulic heads around the IL have reached similar levels to those 

measured at the start of the season (Figure 7.4).  

 

. 
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Figure 7.4. Total daily precipitation (IMO, 2013), hydraulic heads around the IL and the mean 
daily level of the river Skaftafellsá.  

Mean meltwater levels were obtained from the automated measurements. Piezometers 
denoted in grey are located in the coarse-grained lakeshore. Piezometers denoted in black 
are located in the fine-grained lakeshore.  

 

Hydraulic heads were also monitored near the Skaftafellsá meltwater channel, at 

piezometers GW5 and GW9 (Figure 7.5), which are located 20 m (GW9) and 38 m (GW5) 

away from the channel (Figure 7.1). The hydraulic heads near the Skaftafellsá channel 

generally followed similar dynamics to those in the outwash and around the IL (Figure 

7.2). Hydraulic heads near the Skaftafellsá were around 99.60 mAD until the 22/07/2012. 

Following the rainfall between 20-23/07/2012, hydraulic heads then rose by approximately 

0.15 m. Hydraulic heads then declined by ~0.10 m around the 31/07/2012. When manual 

monitoring was resumed on the 23/08/2012, hydraulic heads at GW5 and GW9 were 

approximately 0.20 m higher than the levels at the end of July. The hydraulic heads at 

GW9 were generally 0.02-0.04 m higher than those at GW5, which suggests that 

groundwater flows away from the river. Figure 7.5 shows that groundwater levels followed 

the fluctuations in meltwater levels, albeit with a time lag. This suggests groundwater 
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recharge by meltwater. This hypothesis is also supported by the low groundwater water 

temperature, EC, and solute concentrations (Figure 6.6, 6.8-6.10) , and relatively depleted 

D and 18O isotopic composition (Figure 6.20). However, the entrance of meltwater into 

the aquifer can also be caused by overbank flow from the river (which has been observed 

during the season). Furthermore, disturbance of substrate near the piezometer can 

possibly serve as a preferential flow path for groundwater recharge.  

 

Figure 7.5. Daily mean river level and hydraulic heads (mAD) near the meltwater channel 
(GW5 and GW9). 

The daily mean river levels were calculated from the automated river level data. Dashed 
lines denote days when manual measurements were not taken. 
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7.2.2. Vertical groundwater flow  
 

The direction of vertical groundwater flow determines whether groundwater is discharging 

(upward flow) or recharging (downward flow), which is important when investigating 

groundwater-surface water exchange. Vertical groundwater flow can be inferred from 

hydraulic heads in piezometer nests in which the piezometers are open to the aquifer at 

different depths. A zone of groundwater discharge (upward groundwater flow) is defined 

where hydraulic head increases with depth. Conversely, a recharge zone (downward 

groundwater flow) is defined where hydraulic head decreases with depth. When the 

difference in water levels was less than two centimetres, a horizontal flow direction was 

inferred, in order to compensate for measurement errors (Drexler et al., 1999). Similar 

configurations and classifications have been used previously in various hydrogeological 

investigations, including proglacial environments (Robinson et al., 2008).  

Vertical groundwater flow at the Skaftafellsjökull foreland was determined from hydraulic 

heads in piezometer nests, which are open to the aquifer at different depths (0.50, 1.00, 

and 1.50 m below ground). The two piezometer nests were located in the fine-grained 

(CN) lakeshore and the coarse (SN) lakeshore of the IL (Figure 7.1). Hydraulic heads in 

the piezometer nests were measured during the same time intervals as the other manual 

measurements of hydraulic heads.  

The mean hydraulic heads at each piezometer were then used to infer the vertical 

groundwater flow direction in each nest. The results show groundwater discharge at all 

depths at the coarse-grained shore. In contrast, the results from the clay nest show 

downward groundwater flow in the deeper piezometers (100 and 150 cm) and 

groundwater discharge in the shallower piezometers (100 and 50 cm) (Figure 7.6).  
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Figure 7.6. Vertical groundwater flow direction at the Skaftafellsjökull foreland.  

The data is based on the distribution of vertical hydraulic heads at the sand and clay nests. 
The column on the right shows the depth of piezometer openings underneath the lakebed. 
The measurements are based on the mean hydraulic head (mAD) which were measured in 
each piezometer during the 2012 monitoring season.  

 

7.2.3. Configuration of proglacial groundwater flow at the  
Skaftafellsjökull foreland  

 

Groundwater flow systems can be divided into regional, intermediate, and local flow 

systems. Regional groundwater flow systems generally discharge into large water bodies 

such as the ocean and major river and lakes. Conversely, local groundwater systems flow 

to a nearby discharge location, such as lakes and streams (e.g. Tóth, 1963). The patterns 

and configuration of proglacial groundwater flow at the Skaftafellsjökull foreland (Figure 

7.7) was inferred from the spatial distribution in hydraulic heads with groundwater flowing 

from high to low hydraulic heads (e.g. Freeze and Cherry, 1979). 

The highest hydraulic heads were observed at GW10, which is the most northern 

piezometer in the monitoring network. Therefore, groundwater at the site flow from north 

to south, away from the glacier margin (Figure 7.7A). Similar patterns of groundwater flow 

away from the glacier margin have also been reported from alpine glaciers (e.g. Gremaud 

and Goldscheider, 2010) and proglacial outwash plains (Bahr, 1997; Robinson et al., 

2008). However, the hydraulic gradient at the site is shallow, as the difference in hydraulic 
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head between GW10 and GW8 is only 0.59 mAD (Figure 7.7). In addition to the regional 

groundwater flow, a local groundwater flow system, which is imposed on the regional 

groundwater flow system, has also been identified (e.g. Tóth, 1963; Robinson et al., 

2008). This system was identified at the transect, where groundwater flow from the 

Skaftafellsá towards the IL (west-east) (Figure 7.7B). The system seems to be controlled 

by river-groundwater interactions and moraines, which have been reported to impact 

groundwater-surface water exchange in various proglacial settings (e.g. Clow et al., 2003; 

Roy and Hayashi 2008; 2009; Cooper et al., 2011).  

 

Figure 7.7. Regional groundwater flow systems at the Skaftafellsjökull foreland.  

Hydraulic heads (mAD) are denoted in white. Regional groundwater flow is denoted by the 
solid black arrow. Local groundwater flow systems are denoted by the dashed black arrows. 
Note that the Skaftafellsá channel has migrated east since the date of the image (2007). The 
position of the channel during the monitoring in June-August 2012 is marked by the dashed 
blue line. The image was taken from Vatnajökull National Park (2007).  
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7.2.4. Summary  
 

Hydraulic heads generally followed similar patterns across the site. Hydraulic heads 

responded to precipitation, with heads increasing following the highest rainfall event 

during the field season (33 mm) on the 23/07/2012. Most hydraulic heads were at their 

highest levels when monitoring was resumed on the 23/08/2012. However, hydraulic 

heads quickly declined between the resuming and the end of monitoring (31/08/2012) 

(Figure 7.2). Vertical groundwater flow at the site was investigated in two piezometer 

nests, which were located in the eastern (fine-grained) and western (coarse-grained) 

lakeshore of the IL. The nest in the coarse-grained shore has shown upward flow in all 

depths. The nest in the fine-grained has shown upward flow at the shallower depths (0.50-

1.00 m) and downward flow at the deeper depths (1.00-1.50 m) (Figure 7.6). The regional 

groundwater flow system at the site is from north to south, away from the glacier margin. 

This configuration is consistent with observations from various proglacial settings. 

However, a local groundwater flow system, which flows between the Skaftafellsá and the 

IL, has also been identified (Figure 7.7).   

 7.3. The impact of high frequency, low magnitude 
processes on proglacial river-aquifer 
exchange  

 

This section investigates the impact of high frequency, low magnitude events 

(precipitation and ablation) on proglacial river-aquifer exchange. These impacts were 

investigated using time series of hourly meltwater (section 7.2.1) and groundwater levels 

(section 7.2.2.), temperature (section 7.2.3), and EC (section 7.2.4.), which were 

automatically monitored at the transect (T1-T3) between 18/06/2012-31/08/2012. The 

piezometers’ depths were between 1.6-1.8 m below ground level, in an area underlain by 

coarse glaciofluvial deposits. T1 is located closest to the meltwater channel (27 m) while 
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T3 is the furthest (69 m). Meltwater level, temperature, and EC were monitored in a stilling 

well, which is located approximately 20 m downstream of the western section of the 

breached moraine (Figure 7.1). The mean level, temperature, and EC for groundwater 

and meltwater are presented in . 

Table 7.1. Mean groundwater and meltwater levels, temperature and EC at the 
Skaftafellsjökull foreland and western Skeiðarársandur.  

 Level (mAD) Temperature (°C) EC (μS/cm)  

Skaftafellsjökull foreland   

T1 99.74±0.12 8.05±0.88 135±14 

T2 99.70±0.13 8.74±0.53 112±12 

T3 99.65±0.14 7.18±0.51 140±28 

Skaftafellsá  99.76±0.15 0.53±0.24 4±2 

Skeiðarársandur   

GW4 57.31±0.07 5.16±0.53 175±30 

Súla-Núpsvötn (from the IMO, 2013) 58.91±0.34 1.87±1.24 39±14 

7.3.1. Temporal variability in meltwater levels  
 

Groundwater-surface water exchange between the Skaftafellsá meltwater river and the 

aquifer was investigated by automated monitoring of meltwater levels and hydraulic heads 

in a transect of piezometers (T1-T3) (Figure 7.1). Similar configurations for the monitoring 

of proglacial river-aquifer exchange have been previously used in other proglacial 

environments (e.g. Cooper et al., 2002; Magnusson et al., 2014). The fluctuation in 

meltwater levels and hydraulic heads at the transect during the 2012 field season is 

shown in Figure 7.8, where the time series was divided into four intervals (I-1 to I-4).   

I-1- This interval was mainly dominated by high frequency, low magnitude ablation-

controlled diurnal variability, in which the Skaftafellsá levels displayed clear diurnal 

oscillations in response to changes in ablation. The river stage is increasing during the 
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first few days of monitoring, following small rainfall events of approximately 10 mm. 

meltwater levels then stabilised around 99.62 mAD on the 01/07/2012.  

I-2- This interval began with rising river levels on the 04/07/2012, during which meltwater 

levels rose by approximately 0.25 m. Air temperatures during this increase, rising from 

approximately 10 °C to 16 °C. River levels continued to rise by 0.12 m, reaching peak 

levels of 99.86 mAD on the 09/07/2012. The latter peak was followed by further increase 

of ~4 °C in air temperature, reaching 21.5 °C. However, no rainfall was measured during 

the rise in meltwater levels that took place between the 03-09/07/2012 (Figure 7.8). River 

levels stabilised and then fell to approximately 99.50 mAD on the 16/07/2012. The 

remainder of this interval was dominated by ablation-controlled diurnal flow regime, 

although an increase of approximately 0.15 m in river levels is observed around the 

23/07/2012. This increase coincided with 40 mm of rainfall, which fell between 19-

23/07/2012, including the season’s highest event (33 mm on the 23/07/2012). River levels 

then fell by approximately 0.10 m and then rose by the same level between 25-

30/07/2012. The river then followed an ablation-controlled flow regime between 30/07-

06/08/2012. Meltwater levels then increase continuously, with the initial increases in 

meltwater levels on the 06-08/08/2012 associated with an increase of approximately 4.0 

°C in air temperatures. However, meltwater levels continued to rise until the end of the 

interval despite a fall in air temperature. Meltwater levels were at 99.91 mAD at the end of 

the interval (Figure 7.8). 

I-3- This interval was marked by a substantial flood event, which starts on 1300 hours, 

13/08/2012 and peaked on 1700 hours,14/08/2012. River levels rose by approximately 

0.35 m in 34 hours during this event, peaking at 100.162 mAD. Meltwater levels declined 

by approximately 0.10 m after the flood, and then fluctuated diurnally until the 21/08/2012. 

The flood was not associated with major rainfall events nor abnormally high air 

temperature (maximum of 19 °C) (Figure 7.8). 
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I-4- This interval was dominated by a quick, continuous recession in river levels from the 

21/08/2012 until the end of the monitoring period (31/08/2012). The decline in river levels 

was also supported by field observations of falling meltwater levels and the exposure of a 

gravel bar in the channel. During interval 4, river levels declined by approximately 0.65 m, 

reaching a minimum of 99.40 mAD at the end of the monitoring season (Figure 7.8)  

 

Figure 7.8. Hourly mean meltwater, river levels and hydraulic heads for the transect. 

The Figure also shows total daily precipitation and mean air temperature during the study 
period (IMO, 2013). I1-I4 denote the four intervals to which the time series was divided (see 
text). The increase in meltwater levels around the 01/08/2012 is possibly due to the changing 
of the pressure transducer.  

 

7.3.2. Temporal variability in hydraulic heads at the 
transect 
  

The fluctuations in hydraulic heads at the transect are presented in Figure 7.8. With the 

exception of approximately 10 hours during the flood event (interval 3, Figure 7.8), 

hydraulic heads at T1 were the highest, followed by T2 and T3. Figure 7.8 shows that 

hydraulic heads respond closely to fluctuations in meltwater levels, with hydraulic heads 
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generally showing a dampened pattern of the fluctuations in meltwater levels during 

intervals 1 and 2. Hydraulic heads gradually rose from approximately 99.35 mAD (T3) and 

99.50 mAD (T1) to 99.55 mAD (T3) and 99.75 mAD (T1) at the end of interval 2. 

Groundwater and river levels rose substantially during the flood in Interval 3, with 

hydraulic heads rising by 0.40 m in approximately 27 hours. However, the rise in hydraulic 

heads lagged behind the rise in river levels by approximately 15-20 hours (Figure 7.8). 

The differences in hydraulic heads between the piezometers reduced to less than 0.05 m 

during the flood and the initial hours of recession. This included a brief period of 

groundwater flow reversal, where groundwater was flowing from T3 towards the river. 

Following the flood, river and groundwater levels have fallen by approximately 0.20 m until 

the end of Interval 3 on the 20/08/2012. Groundwater rose by approximately 0.15 m in the 

beginning of interval 4, following a similar rise in river levels. However, after this short 

increase meltwater and groundwater levels have declined continuously, with hydraulic 

heads falling by approximately 0.50 m since the start of interval 4. The head difference 

between the piezometers reduced to less than 0.02 m, although hydraulic heads at T1 

remained the highest (Figure 7.8). 

The fluctuations in hydraulic heads T1-T3 followed the general patterns of meltwater 

levels, albeit with a time lag, with the signal of meltwater fluctuations generally dampening 

with distance from the river channel (Figure 7.8). However, considerable spatial variability 

of the dampening of the meltwater signal has been observed between the three 

piezometers. Although T2 is located further (54 m) from the meltwater channel than T1 

(27 m), the dampening of meltwater signal at T2 was smaller than at T1. The largest 

attenuation of the meltwater level signal was observed was T3, 69 m away from the river 

channel. Additionally, the longest lag time between meltwater and hydraulic heads and the 

smallest diurnal fluctuations were also observed at T3 (Figure 7.8). These observations 

suggest that meltwater levels are an important control on hydraulic heads in the transect.  
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The attenuation of the meltwater signal was investigated using Cross Correlation Function 

(CCF) analysis, which were calculated using the program R. The CCF shows the 

interrelationship between the input and output series, where the delay between the 

maximum CCF and the time lag when the lag equal 0 shows the stress transfer velocity of 

the system. This can then be used to determine the lag time between two time series (Lee 

and Lee, 2000). CCF have been previously used in various hydrological environments for 

the analysis of hydrological time series (e.g. Panagopoulos and Lambrakis, 2006; Hannah 

et al., 2009; Krause et al., 2011b; Zhang et al., 2013). The CCF was used in the current 

study to show the lag time between meltwater levels and hydraulic heads in the transect. 

The different lag times between meltwater levels and hydraulic heads in each borehole 

(Table 7.2) also support the hypothesis of spatial heterogeneity in the coupling between 

river levels and hydraulic heads (Figure 7.8), with the lowest and highest lag time between 

meltwater levels and hydraulic heads measured at T2 and T3, respectively.   

Table 7.2. Lag time (in hours) between meltwater river levels and hydraulic head at the 
transect. 

Variables Lag time of hydraulic heads from 
meltwater levels (hours) 

T1 hydraulic heads (27 m away from 
channel) 

-6 

T2 hydraulic heads -4 

T3 hydraulic heads (54 m) -10 

 

7.3.3. Fluctuations in groundwater and meltwater 
temperature  
 

Groundwater and meltwater temperatures were automatically monitored in the same time 

intervals as water levels in the Skaftafellsá and the transect (Figure 7.9). The lowest and 

least variable water temperatures were measured in the river Skaftafellsá, which is mainly 

fed by icemelt from the Skaftafellsjökull glacier (Figure 7.1). The mean river temperature 
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during the study was 0.53±0.24°C. The diurnal fluctuations in meltwater temperatures 

were around 0.2-0.4°C. The highest mean groundwater temperatures were observed at 

T2, with the lowest mean temperatures and standard deviation measured at T3 (Table 

7.1). However, the maximum groundwater  temperatures were also measured at T3, 

during the flood. Groundwater temperatures in all three piezometers generally increased 

during the 2012 field season, with the highest temperatures generally measured during 

Interval 4 (Figure 7.9).   

 

Figure 7.9. Mean hourly meltwater, groundwater (T1-T3), and air temperature 21/06-
31/08/2012. 

Note that the time series for T2 starts on the 26/06/12. Note also the different scale for air 
temperature. Air temperatures was obtained from the Skaftafell met. Station (IMO, 2013).  

 

Groundwater temperature at T1 varied between 6.8 and 9.3 °C, with temperatures rising 

during the field season (Figure 7.10). Hydraulic heads at T1 generally followed the 

oscillations in meltwater levels between 25/06-01/07/2012 (Figure 7.8). However, the 

fluctuations in groundwater temperatures during this period were negligible. Following the 

small falls in river and groundwater levels (02/07-08/07/2012), groundwater temperatures 
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slowly rose by approximately 1.0 °C. Groundwater temperatures generally showed inverse 

dynamics to the oscillations in river levels, with groundwater temperatures rising (falling) 

when river levels fall (rise) (Figure 7.10). Groundwater temperatures rose from 7.5 to 9.0 

°C during interval 2. The oscillations in groundwater temperatures at T1 became negligible 

when river and groundwater levels rose after 06/08/2012. Groundwater temperatures 

were highest during the flood (~9.6°C), which was followed by a fall of 0.8°C after the 

flood (interval 3, Figure 7.10). Groundwater temperatures remained around 8.8 °C 

between the end of the flood and the end of interval 3 (14/08-20/08/2012). Groundwater 

temperatures varied between 9.0-9.4 °C during interval 4, following the recession in 

meltwater and groundwater levels. Apart from the short increase in groundwater 

temperature during the flood, the highest groundwater temperatures at T1 were measured 

during interval 4 (Figure 7.10).  

 

Figure 7.10. Mean hourly meltwater river level and groundwater levels and temperature at T1 
during the 2012 field season.   

Groundwater temperatures at T2 rose from 7.5°C at the start of monitoring to 9.2 °C at the 

end of the monitoring. Groundwater temperatures at T2 were opposite to the fluctuations 
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in meltwater and groundwater levels, with fall (rise) in water level followed by a rise (fall) in 

groundwater temperatures (Figure 7.11). Groundwater temperatures at T2 rose by 

approximately 1.0 °C at the start of interval 1. Groundwater temperatures then fell by 

approximately 0.65 °C at the beginning of interval 2, following the increase in meltwater 

and hydraulic heads. Groundwater temperatures then rose back to 8.3 °C following the fall 

in water levels. T2 was the only piezometer where groundwater temperatures fell during 

the flood, with temperatures decreasing by 0.3°C (Figure 7.11). Groundwater 

temperatures recovered within 16 hours after the flood. Groundwater temperatures at T2 

oscillated around 9.5 °C after the flood. However, the oscillations in groundwater 

temperature at T2 during Interval 4 were smaller than those observed prior to the flood 

(Figure 7.11)  

 

Figure 7.11. Mean hourly meltwater river level and groundwater levels and temperature at T2 
during the 2012 field season. 

 

The smallest variability and lowest groundwater temperatures were measured at T3 

(Figure 7.9). However, outliers of maximum temperatures have been recorded in this 



Chapter 7   River-Aquifer exchange 

227 
 

piezometer during the flood (Figure 7.10). Similar to T1, groundwater temperatures at T3 

also increased over the season. However, in contrast to the notable fluctuations of 

groundwater temperatures and levels at T1 and T2, the coupling between fluctuations in 

groundwater temperatures and levels at T3 was very small (Figure 7.12). Groundwater 

temperatures at T3 were approximately 6.3 °C at the start of interval 1. Temperatures then 

gradually increased, which coincided with a fall in meltwater levels, around the 

29/06/2012, reaching 6.75 °C by the end of the interval. Groundwater temperatures at T3 

rose by approximately 1.0°C between the start of interval 2 and the 30/07/2012, when 

temperature fell by approximately 0.65 °C when the pressure transducer was exchanged 

with the transducer in the Skaftafellsá. Following this drop in temperature, groundwater 

temperatures gradually rose, reaching 7.43 °C during the flood. Temperatures then 

dropped after approximately 20 hours from the start of the flood. Groundwater 

temperatures remained around 7.61 °C until the end of interval 3. During interval 4, the 

oscillations in groundwater temperature increase towards the end of measurements 

(Figure 7.12).  

 

Figure 7.12 Mean hourly meltwater river level and groundwater levels and temperature at T3 
during the 2012 field season.  
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7.3.4. Fluctuations in groundwater and meltwater EC  
 

The fluctuations in groundwater and meltwater EC during the 2012 field season are 

presented in Figure 7.13. The mean groundwater EC in all three piezometers is 

significantly different (5% confidence level, 2 tail test, p=<0.001) than the mean EC of 

meltwater. Similar to observations from other proglacial environments (e.g. Robinson et 

al., 2009a), meltwater EC at the Skaftafellsá was also the lowest and least varied. 

Meltwater EC fluctuated between 1 and 8 μS/cm, with no notable impact of fluctuations in 

river levels on EC. However, the meltwater EC time series ends on the 30/07/2012, when 

the pressure transducer at the stilling well was exchanged with the transducer at T3 

(hence the start of the EC measurements at T3 on that date). The pressure transducer 

which was used in the Skaftafellsá from 30/07/2012 only measured water level and 

temperature, hence, the impact of the flood in August on meltwater EC is unknown.  

 

Figure 7.13. Meltwater and groundwater EC at the Skaftafellsá and the transect. 

EC was monitored hourly between 28/06-29/08/2012. Meltwater EC was only measured 
between 26/06-30/07/2012. EC at T3 was only measured between 30/07-29/08/2012.  
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Groundwater EC was only measured at T1 and T2 before the 30/07/2012. During this 

time, EC at T1 exceeded EC at T2 by approximately 30 μS/cm. However, groundwater EC 

at T3 were the highest, exceeding groundwater EC at T1 by approximately 25 μS/cm 

between 30/07/2012 and the end of Interval 2 (Figure 7.13.  Groundwater EC at T1 was 

approximately 130 μS/cm during intervals 1 and 2, with fluctuations of up to15 μS/cm 

(Figure 7.14). EC at T1 was around 140 μS/cm at the beginning of interval 3. During the 

flood, EC has risen to 155 µS/cm in 14 hours. However, EC fell back to 140 μS/cm within 

30 hours. Following the flood, EC rose by approximately 10 μS/cm, peaking at 158 μS/cm 

at the end of interval 3. During interval 4, EC fell by approximately 15 μS/cm on the 

26/08/2012 and then rose back to 160 μS/cm (Figure 7.14).  

 

 

Figure 7.14. Meltwater river level, hydraulic head, and groundwater EC at T1. 

 

Groundwater EC at T2 fluctuated between 95 and 130 μS/cm (Figure 7.15). The lowest 

mean and smallest variability in groundwater EC were measured at T2 (Table 7.1). 

Groundwater EC fell by about 10 μS/cm between the start of measurements and the end 



Chapter 7   River-Aquifer exchange 

230 
 

of interval 1. EC gradually rose during interval 2, reaching 125 μS/cm around the 

02/08/2012. However, the fluctuations in EC were inverse to those in meltwater levels and 

hydraulic heads, with EC rising (falling) during fall (rise) in meltwater levels (Figure 7.15). 

During the gradual rise in meltwater levels at the end of interval 2, EC remained around 

125 μS/cm. The impact of the flood during interval 3 on groundwater EC at T2 was 

negligible. Following the flood, groundwater EC at T2 remained around 120 μS/cm until 

the end of interval 3. Groundwater EC at T2 rose during interval 4, reaching 133 μS/cm by 

the end of the monitoring period (Figure 7.15).   

 

Figure 7.15. Meltwater river levels, hydraulic heads, and groundwater EC at T2. 

Groundwater EC at T3 was only measured between 30/07-31/08/2012. Groundwater EC 

at T3 was the highest (approximately 150 μS/cm) during the ablation-controlled flow 

regime of interval 2 (Figure 7.16). EC at T3 also had the highest mean and standard 

deviation (Table 7.1). However, in contrast to the small changes in groundwater EC that 

were observed at T1 (Figure 7.14) and T2 during the flood (Figure 7.15), groundwater EC 

at T3 declined substantially during the flood, falling from 160 to 40 μS/cm in 24 hours. 

Following the flood, groundwater EC at T3 rose back to 150 μS/cm in around 100 hours, 
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where it remained until the end of interval 3. During interval 4, EC rose to 160 μS/cm 

around the 23/08/2012 and then fell to 130 μS/cm. An abrupt fall and recovery in 

groundwater EC at T3 (from 130 to 60 μS/cm in 24 hours) was also measured near the 

end of the monitoring period (Figure 7.16). 

 

Figure 7.16. Meltwater levels, hydraulic heads, and groundwater EC at T3. 

 

7.3.5. Interpretation  
 

Fluctuations in the levels of hydraulic heads and river-aquifer exchange can be caused by 

groundwater mounding, water table depression, variability in regional recharge, climatic 

variability, changes in transpiration, and changes in groundwater and surface water levels 

(e.g. Drexler et al,. 1999; Käser et al., 2009). Within proglacial environments, changes in 

ablation also exert important control on groundwater levels and river-aquifer exchange 

(e.g. Magnusson et al., 2014).  
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The highest hydraulic heads at the transect were measured at T1, followed by T2 and T3 

(Figure 7.8). This shows that groundwater flows away from the Skaftafellsá. Additionally, 

the west-east groundwater flow direction suggests that this area has a local groundwater 

flow system which is imposed on the north-south flowing regional groundwater system 

(Figure 7.7), in accordance with the model of Tóth (1963). 

The close response between hydraulic heads at the transect and fluctuations in meltwater 

levels shows that meltwater levels are an important control on groundwater levels. The 

response of hydraulic heads to fluctuations in meltwater levels has been observed in all 

three piezometers. However, the strength in the signals of hydraulic heads and meltwater 

levels generally diminished with distance away from the meltwater channel. The largest 

attenuation of the signal of meltwater level fluctuations was observed T3, located furthest 

piezometer from the channel (Figure 7.8). However, the smallest dampening has been 

observed at T2, located further away from the channel than T1. These observations are 

also supported by the CCF analysis, which showed that the longest lag time was at T3 

and the shortest at T2 (Table 7.2). This spatial variability suggests that distance from the 

channel is not the sole control on the dampening of the meltwater signal. Similar patterns 

of attenuation in river levels signal with distance away from the channel have been 

previously reported from catchments underlain by permafrost (Cooper et al., 2002; 2011), 

a proglacial forefield in the Swiss Alps (Magnusson et al., 2014), snowmelt-dominated 

catchments (Loheide and Lundquist, 2009), lowland floodplains (e.g. Jung et al., 2004; 

Vidon, 2012), and regulated rivers (e.g. Sawyer et al., 2009). 

The close response of hydraulic heads to fluctuations in meltwater level (Figure 7.8) 

possibly suggests that large fluxes of meltwater are entering the aquifer, leading to high 

groundwater-meltwater exchange at the transect. However, an alternative hypothesis is 

that the coupling between hydraulic heads and meltwater levels is caused by the 

propagation of a kinematic pressure wave, which impacts groundwater levels and 

dampens with distance from the channel (e.g. Sawyer et al., 2009; Magnusson et al., 
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2014). Close coupling of groundwater levels with fluctuations in surface water following 

the propagation of a pressure wave have been previously described from various 

hydrological settings, including the proglacial forefield of an Alpine valley glacier 

(Magnusson et al, 2014), snow-dominated catchments  (e.g. Loheide and Lundquist, 

2009), and lowland flood plains (e.g. Vidon, 2012).  

The extent of meltwater-groundwater exchange is pivotal for this study, as proglacial 

recharge sources exert an important control on groundwater levels, physicochemical 

parameters, and ecology (e.g. Brown et al., 2006a, b; Roy and Hayashi, 2008; 2009). The 

close dynamics between hydraulic heads and meltwater levels (Figure 7.8) suggest high 

levels of meltwater-aquifer exchange at the transect. However, there are contrasting 

reports in the literature with regards to the fluxes of groundwater-surface water exchange 

in sites where groundwater levels show close response to fluctuations in surface water. 

Some studies have suggested high level of river-aquifer exchange (e.g. Cooper et al., 

2002; Fritz and Arntzen, 2007; Loeheide and Lundquist, 2009). Conversely, other studies 

suggested negligible amount of exchange, suggesting that the coupling was caused by 

the propagation of a pressure wave, rather than actual surface water entering the aquifer 

(e.g. Magnusson et al., 2014). These controversies suggest that additional methods 

should be used in addition to fluctuations in groundwater and surface water levels (e.g. 

Käser et al., 2009; Welch et al., 2013; 2014). Therefore, in order to test the hypotheses of 

the causes for the coupling between groundwater and meltwater levels, the current study 

also used groundwater and meltwater physicochemical parameters (Figure 7.9, 7.13), 

geochemistry (Figure 6.8-6.10), and stable isotopes (Figure 6.18) in addition to the water 

levels data. Similar water quality and isotopic composition will suggest high level of mixing 

between groundwater and meltwater. Conversely, significantly different water quality and 

isotopic composition will suggest that mixing is low (e.g. Roy and Hayashi, 2009).   

Groundwater and meltwater temperature and EC at the Skaftafellsjökull foreland were 

significantly different, with groundwater temperature and EC higher than that of meltwater 
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(Table 7.1, Figure 7.9, 7.13). These observations are consistent with those reported from 

many proglacial settings (e.g. Robinson et al., 2009b; Brown et al., 2007a; Kristiansen et 

al., 2013). The fluctuations in groundwater temperature has shown coupling with 

groundwater and meltwater levels, particularly at T2, where groundwater temperatures fell 

(rose) in response to a rise (fall) in meltwater and groundwater levels. Additionally, T2 was 

also the only borehole where groundwater temperature have fallen during the flood 

(Figure 7.11). Conversely, groundwater temperatures at T1 and T3 generally rose during 

the season, alongside the increase in meltwater levels (Figure 7.11. This suggests low 

exchange between the Skaftafellsá and T1 and T3. The fluctuations in EC also do not 

support high exchange between meltwater and groundwater, as groundwater EC was 

approximately 100-150 μS/cm higher than meltwater (Figure 7.13. ). Additionally, EC 

fluctuations at T1 and T2 were fairly small and at times rose alongside groundwater and 

meltwater levels (Figure 7.14, 7.15), which does not suggest significant meltwater-

groundwater exchange. Conversely, T3 has shown different dynamics, particularly during 

the flood, where EC fell substantially (Figure 7.16). Substantial drops in EC following a 

large input of low EC meltwater following outburst floods have also been reported from 

Greenland (Kristiansen et al., 2013). The decline in EC at T3 during the flood therefore 

suggests higher mixing between meltwater and groundwater at T3 than at T1 and T2. 

However, since EC at T1 and T2 did not fall during the flood, it is suggested that the flood 

did not flow across the transect.  

In addition to temperature and EC, groundwater and meltwater solute concentrations and 

stable isotopes (Chapter 6) were also used to infer groundwater-meltwater exchange at 

the transect. Similar to water physicochemical parameters, similar solute concentrations 

and isotopic composition of meltwater and groundwater also suggest high meltwater-

groundwater exchange (e.g. Cooper et al., 2002). However, groundwater SO4
2-, Ca2++ 

Mg2+, and Na++ K+ concentrations were significantly higher than meltwater solute 

concentrations, particularly at T1 and T2 (Figure 6.8-6.9). Additionally, groundwater 
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isotopic composition at the transect was significantly heavier than that of meltwater, 

suggesting recharge from precipitation rather than meltwater (Figure 6.18). High recharge 

of groundwater by meltwater is expected to result in groundwater with low solute 

concentrations and light isotopic composition (e.g. Hodgkins et al., 1998; Wadham et al., 

2001). However, groundwater solute concentrations and isotopic composition at the 

transect were significantly different than those of meltwater. It is therefore suggested that 

meltwater-aquifer exchange at the transect is low, and that the close response of 

hydraulic heads to fluctuations in meltwater levels is caused by other mechanisms, 

possibly the propagation of a kinematic pressure wave, rather than significant recharge of 

the aquifer by meltwater.  

In addition to the impact of meltwater levels on groundwater levels, precipitation also 

impacted groundwater levels. The impact of seasonal and inter-annual variability of 

precipitation on groundwater and surface water levels at the Skaftafellsjökull foreland is 

illustrated by the substantial changes in lake levels. Following an unusually dry spring and 

summer in 2012, lake levels at the Skaftafellsjökull foreland were very low. However, 

precipitation in the winter of 2013 was substantially higher than the monthly mean (Figure 

3.15). Observations taken during a brief visit to the field site in July 2013 have shown that 

lake levels were substantially higher than in 2012 (Figure 7.17).  Hydraulic heads at the 

outwash and near the river were higher by approximately 0.25 m than in August 2012. 

Although the coarse temporal resolution of these observations (1 year) masks finer 

fluctuations in groundwater and surface water levels, it is suggested that precipitation is 

an important control on groundwater levels at the Skaftafellsjökull foreland.  
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Figure 7.17. Inter-annual changes in lake levels at Island Lake.  

  

In addition to the impact of precipitation on inter-annual variability in groundwater levels, 

the impact of precipitation on daily and weekly fluctuations in hydraulic heads was also 

observed. Hydraulic heads at the site generally rose after rainfall events (Figure 7.2). 

However, spatial variability in the response of hydraulic heads to precipitation was also 

observed, which is suggested to be strongly impacted by the high variability in hydraulic 

conductivity (K) at the field site (Figure 5.9). For instance, hydraulic heads at GW8, which 

is located in an area of fine lacustrine deposits (K= 0.14 m/day) had steeper rises and 

slower recession following rainfall events than hydraulic heads which are located in 

coarser deposits (Figure 7.2). These observations are also supported by studies from 

glaciated (Robinson et al., 2008; Magnusson et al., 2014) and deglaciated catchments 

(e.g. Rains, 2011) who reported similar responses of groundwater levels in areas of lower 

hydraulic conductivity to precipitation events.  
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The flood which took place on the 13-14/08/2012 was the main hydrological event during 

the 2012 field season, substantially impacting groundwater levels (Figure 7.8), 

physicochemical parameters (Figure 7.9, 7.13), and solute concentrations (Chapter 6). In 

addition to the impacts on groundwater at the transect, the flood also impacted water 

quality at the IL and Swan Lake, where turbidity increased and lake temperature and EC 

fell after the flood (Figure 6.6, 7.18). These observations show that in addition to 

precipitation, high discharge events are also important controls on proglacial groundwater-

surface water exchange. However, since the flood took place during the break in 

monitoring (13-14/08/2012), the investigation of its route had to be inferred from the 

automated measurements of hydraulic heads, groundwater temperatures and EC at the 

transect.  

Hydraulic heads in all three piezometers in the transect increased during the flood. 

However, the impact of the flood on groundwater temperature and EC varied substantially 

between the piezometers. Groundwater EC at T1 has risen by approximately 30 μS/cm 

and temperature increased by 0.5 °C during the flood. Conversely, groundwater 

temperature at T2 have fallen by 0.3 °C while EC declined negligibly. The largest impact 

of the flood on groundwater EC was observed at T3, where EC substantially fell by 110 

μS/cm (Figure 7.13). Conversely, groundwater temperatures at T3 have risen by 

approximately 0.4 °C during the flood. The differences in the impact of the flood on 

groundwater physicochemical parameters suggest that the flood possibly followed various 

flow paths. The relatively small impacts on groundwater physicochemical parameters at 

T1 suggest that the flood did not flow from west to east across the transect, as a quick rise 

in groundwater or overland flow in such manner is expected to have reduced the EC and 

temperature at T1 and T2. As the highest impacts were observed at T3, it is suggested 

that T3 was impacted by either overland flow or enhanced groundwater flow from the 

north, which possibly travelled preferentially through the breached moraine (Figure 7.18).  
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Figure 7.18. The impacts of the flood in August 2012 flood on lake water quality at the IL and 
Swan Lake.  

The figure shows the differences in lake turbidity in the IL before (July 2012) and after 
(August 2012) the flood. The dashed blue lines suggest the route of the flood, based on the 
differences in EC at T1 and T3.  

 

7.3.6. summary  
 

Meltwater and groundwater levels have risen at the beginning and middle of interval 2, 

following rainfall and an increase in air temperature. The main event during the field 

season was the flood on the 13-14/08/2012, during which groundwater and meltwater 

rose by approximately 0.5 m in 24 hours. Water levels then quickly receded following the 

flood. Hydraulic heads in the transect have shown close responsiveness to fluctuations in 

meltwater levels, which dampened with distance from the channel. The dampening of river 

levels signal with distance from the channel has been previously observed in various 

proglacial and non-glacial settings. However, despite the apparent coupling between 
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groundwater and meltwater levels, the geochemistry and isotopic composition of 

groundwater and meltwater were significantly different. It is therefore suggested that 

meltwater-aquifer exchange at the transect is low and that the coupling in levels is 

possibly caused by the propagation of a pressure wave rather than the actual exchange 

between groundwater and meltwater. The impacts of the flood have shown considerable 

spatial variability, with the highest impacts observed at T3. This suggests that the flood 

possibly travelled as overland flow from the north rather than in a west-east direction 

across the transect. The impact of precipitation on groundwater and surface water levels 

was illustrated on various time scales. The short term impacts of precipitation are 

illustrated by the rising in hydraulic heads following rainfall events. The inter-annual 

impacts of precipitation were illustrated by the changes in groundwater and lake levels 

between August 2012 and July 2013.   

7.4. The impact of jökulhlaup events on proglacial 
river-aquifer exchange 

 

This section investigates the impact of jökulhlaups (glacial outburst floods) on proglacial 

river-aquifer exchange. This was investigated at the river Núpsvötn-Súla, western 

Skeiðarársandur, where several small jökulhlaups were detected in July-August 2011. The 

Núpsvötn-Súla is formed by the confluence of the meltwater river Súla, which drains 

western Skeiðarárjökull and the river Núpsvötn, which is mainly fed by precipitation and 

snowmelt (Figure 7.19) (Churski, 1973; Guðmundsson et al., 2002). The river Súla is 

occasionally impacted by jökulhlaups which originate from Lake Grænalón, an ice 

marginal lake located to the west of Skeiðarárjökull, approximately 20 km to the north of 

the monitoring site (Figure 7.19) (Roberts et al., 2005). The lake is located in a subaerial 

valley, whose eastern end is dammed by the Skeiðarárjökull glacier. The glaciological 

conditions at Skeiðarárjökull therefore control the drainage and jökulhlaup generation from 
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Lake Grænalón (Roberts et al., 2005). The source of the outlet for jökulhlaups and their 

routing (subglacial or subaerial) has fluctuated over the years, which substantially altered 

jökulhlaup frequency. Drainage occurs approximately every 9 years when drained via the 

ice dam. Conversely, drainage occurs approximately once a year when drained via an ice 

buttress. Jökulhlaup frequency increased substantially during 2002-3, when five events 

occurred at approximately 30 day intervals (in 2002) and four jökulhlaup events occurred 

at approximately 40 day intervals (in 2003). The magnitude of these more frequent 

jökulhlaups, are substantially smaller than those controlled by the ice buttress (Roberts et 

al., 2005).  

The impact of jökulhlaups on river-aquifer exchange was investigated using time series of 

groundwater and meltwater levels, temperature, and EC. These variables were 

automatically monitored between 08/07-15/08/2011. The monitoring took place at the 

GW4 piezometer, located near the Route No. 1 bridge, and at the river Súla (IMO, 2013). 

GW4 was chosen to assess river-aquifer exchange at this site due to its proximity (~200 

m) to the Núpsvötn-Súla’s IMO gauging station (Figure 7.19). The hourly measurements 

of river levels, temperature and EC in this chapter were kindly provided by the IMO 

(2013). This site was also chosen due to its accessibility and the ease of installing shallow 

piezometers in the coarse-grained sandur deposits.   
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Figure 7.19. Location of the river Núpsvötn-Súla and the GW4 borehole. 

The map was taken from Skaftafell Sérkort 5 hiking map (2009). Published by Mál og 
menning/Forlagið 

 

7.4.1. Temporal variability in meltwater and groundwater 
levels 
 

Meltwater levels at the Súla generally fluctuated diurnally in response to changes in 

ablation. However, three low frequency, high magnitude episodic events, hypothesised to 

be small jökulhlaups, have also been detected. These jökulhlaups substantially impacted 

meltwater and groundwater levels. Hydraulic heads at GW4 varied between 57.20 and 

57.40 mAD. Initially, groundwater levels slowly declined, falling to 57.23 mAD on 
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11/07/2011 at 1000 hours. During event 1, the Súla levels rose by 1.20 m in 17 hours, 

from 58.77 mAD (11/07/2011 at 0800 hours) to 59.97 m on 12/07/2011 at 0100 hours. In 

comparison, the diurnal fluctuations at the Súla were approximately 0.15 m (Figure 7.20). 

Groundwater levels rose sharply during event 1, until levels stabilised at 57.38 mAD on 

1200 hours at 12/07/2011, approximately 10 hours after peak discharge in the Súla. 

Hydraulic heads have increased by 0.16 m over 26 hours during this event.  

Groundwater remained at the same levels until 16/07/2011, when levels began to decline. 

River levels fell by 0.88 m, reaching 59.09 mAD on 12/07/2011 at 1700 hours. River levels 

then fluctuated until returning to the levels prior to the event (58.78 mAD) at 1000 hours, 

15/07/2011. Meltwater fluctuations following the jökulhlaup were around 0.5 m. No 

significant rainfall was measured during this period (Figure 7.20). Water levels at the Súla 

then returned to an ablation-controlled flow regime, with diurnal fluctuations of 

approximately 0.15 m. hydraulic heads at GW4 declined gradually, although several minor 

increases (<0.05 m) were also observed. Groundwater levels reached a low of 57.22 m on 

29/07/2011. A small increase in river levels was observed between 1100 hours on 

26/07/2011 to 2200 hours  on 27/07/2011, where river levels have risen by 0.35 m. 

Groundwater levels have risen by approximately 0.07 m in response to this event (Figure 

7.20).  

Event 2 began at 0700 hours on 29/07/2011, when meltwater levels rose from 58.67 to 

60.03 mAD on 0100 hours on 30/07/2011. Following the jökulhlaup, groundwater levels 

rose from 57.22 mAD on 0800 hours on 29/07/2011 to 57.39 mAD on 0700 hours on 

30/07/2011. Meltwater levels have risen by 3.0 m in 10 hours during this event, which was 

the largest one recorded during the monitoring season. Groundwater levels have risen by 

0.17 m in 23 hours in response to this event. During this event, the increase in 

groundwater levels lagged beyond the river levels by approximately one hour. Following 

the second event, river levels have returned to an ablation-controlled regime (Figure 

7.20).  
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Event 3 began on the 04/08/2011. This event included three short episodes of rapid rise 

and fall in meltwater levels, during which the overall increase in meltwater levels was 1.19 

m (Figure 7.20). The second and third rises during event 3 were smaller in magnitude 

than the first. In contrast to Events 1 and 2, Event 3 did not have a significant impact on 

groundwater levels at GW4, as groundwater levels remained around 57.39 mAD, with a 

small recession (0.05 m) during the first increase of Event 3. After the third increase 

during Event 3, meltwater levels have returned to ablation-controlled flow regime, under 

which it remained until monitoring ended on the 12/08/2011. Groundwater levels have 

steadily declined after Event 3, reaching levels of 57.20 mAD by the end of the monitoring 

period (Figure 7.20). However, it is possible that the relatively stable groundwater levels 

between 29/07-10/08/2011 were due to a technical problem with the pressure transducer. 

Apart from the sharp increases in response to the jökulhlaups, it is also noticeable that, in 

contrast to the groundwater dynamics at the Skaftafellsjökull foreland (Figure 7.8), the 

groundwater level at GW4 does not show significant response to oscillations in river levels 

when the latter is under ablation-controlled flow regime.  
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Figure 7.20. River levels at the Núpsvötn-Súla (IMO, 2013), hydraulic heads at GW4, and total 
daily precipitation at Kirkjubæjarklaustur IMO (2013) station. 

The Figure also highlights the two different controls on the river flow regime: ablation-
controlled flow regime and the three small jökulhlaups events (see text).  

 

7.4.2. Temporal variability in groundwater and meltwater 
temperature 
 

Similar to the approach used at the Skaftafellsjökull foreland, river and groundwater 

temperature were used in addition to meltwater and hydraulic heads for the investigation 

of river-aquifer exchange in western Skeiðarársandur. The mean groundwater 

temperature at GW4 exceeded river temperature by approximately 3.3°C. Furthermore, in 

contrast to the small variability in meltwater temperature at the Skaftafellsá (Figure 7.9), 

water temperatures at the Súla were more variable than groundwater temperatures at 

GW4. The Súla temperatures were higher and more variable than the Skaftafellsá (Table 

7.1). However, despite the higher variability in Súla temperature, groundwater 
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temperatures at GW4 were lower than groundwater temperatures at the Skaftafellsjökull 

foreland (Table 7.1). The closest groundwater temperatures at the Skaftafellsjökull 

foreland to the temperatures at GW4 were those at GW9, where groundwater isotopic 

composition suggests recharge of meltwater recharge (Figure 6.20).  

Similar to the observations from the Skaftafellsjökull foreland (Figure 7.9), groundwater 

temperatures at GW4 also increased during the season. Groundwater temperature at 

GW4 at the start of the season was 4.20°C, with temperatures reaching 6.09°C by the end 

of the season. However, the daily oscillations in groundwater temperature at GW4 were 

substantially smaller (Figure 7.21) than groundwater temperature oscillations at the 

Skaftafellsjökull foreland (Figure 7.9).  

The increase in groundwater temperature at GW4 over the monitoring season has been 

very gradual. The main exceptions for this trend were after Event 1, when groundwater 

temperature rose by 0.15°C and following the increase in groundwater levels after Event 

2, when groundwater temperature rose by 0.6°C. In contrast to the dynamics of 

groundwater levels, which declined after the jökulhlaups (Figure 7.20), groundwater 

temperatures continued to rise, and did not return to the pre-jökulhlaup values (Figure 

7.21). 

The large fluctuations in meltwater temperature in the Núpsvötn-Súla were very different 

from the sustained, gradual increase in groundwater temperature during the season 

(Figure 7.21). Meltwater temperature showed an inverse relationship to the oscillations in 

river levels, with river temperature falling (rising) with rising (falling) river levels. These 

dynamics are also supported by the negative correlation coefficient (r = -0.437) between 

river level and temperature. The jökulhlaup events substantially lowered stream 

temperature, which fell by 2.58 °C after Event 1 and 4.42°C after Event 2 (Figure 7.21). In 

contrast, meltwater temperature oscillations under ablation-controlled conditions (i.e. 

between Events 1 and 2) were smaller (1.5-2°C). However, these oscillations were 
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substantially larger than those measured in the Skaftafellsá, which were approximately 

0.5°C (Figure 7.9).  

In contrast to the rapid response between jökulhlaups and hydraulic heads (Figure 7.20), 

the impact of oscillations in meltwater levels on groundwater temperatures was much 

smaller. Meltwater temperatures in the Súla were substantially lower than groundwater 

temperatures, particularly during jökulhlaups (Figure 7.21). Hence, an infiltration of large 

fluxes of meltwater is expected to lower groundwater temperature (e.g. Kristiansen et al., 

2013). However, groundwater temperature at GW4 actually rose between 0.2-0.6 °C after 

the jökulhlaups (Figure 7.21). The correlation between meltwater levels and groundwater 

temperatures at GW4 was weakly negative (r = -0.196).  

 

Figure 7.21. Meltwater levels and temperature at the Núpsvötn-Súla (IMO, 2013) and 
groundwater temperature at GW4.  
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7.4.3. Temporal variability in groundwater and meltwater 
EC  
 

Meltwater and groundwater EC in the river Súla and GW4 was higher than groundwater 

and meltwater EC at the Skaftafellsjökull foreland (Table 7.1). Groundwater EC at GW4 

was approximately 150 µS/cm during the start of the monitoring season. EC then rose 

sharply following Event 1 and the rise in groundwater levels, peaking to 204 µS/cm. 

During the ablation-controlled period, groundwater EC fluctuated around 160 µS/cm. 

Following Event 2, EC has risen by approximately 100 μS/cm, reaching 262 µS/cm. 

However, after event 2 EC declined rapidly. EC then rose again, although it did not reach 

the same values that were reached during the initial rise (Figure 7.22).  

Groundwater EC increased to 265 µS/cm following Event 2, and then rapidly fell to 195 

µS/cm. Groundwater EC fluctuated between 200 and 230 μS/cm between Events 2 and 3. 

However, in contrast to Events 1 and 2, where groundwater EC rose following the 

jökulhlaups, groundwater EC during Event 3 fell when meltwater levels rose. Groundwater 

EC declined by 80 μS/cm when the Súla returned to ablation-controlled flow regime after 

Event 3 (Figure 7.22). The correlation between groundwater levels and groundwater EC 

was strongly positive (r= +0.733). The correlation between meltwater levels and 

groundwater EC was also positive, though weaker (r= +0.257).  

Meltwater EC at the Súla was substantially lower than groundwater EC (Table 7.1), similar 

to the findings of previous research from Skeiðarársandur and other proglacial 

environments (e.g. Robinson et al., 2009b). Meltwater EC ranged between 25 to 35 μS/cm 

during ablation-controlled flow regime, where EC rose (fell) when meltwater levels fell 

(rose). However, meltwater EC was also substantially impacted by the jökulhlaups, with 

meltwater EC increasing by approximately 50 µS/cm during Event 1 and by approximately 

30 μS/cm during events 2 and 3 (Figure 7.22). The correlation between meltwater levels 

and EC was strongly positive (r= +0.816). Similar to groundwater temperature, meltwater  
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EC at the Súla (Figure 7.22) were also substantially higher and more variable than those 

observed in the Skaftafellsá in 2012 (Figure 7.13. ).  

 

Figure 7.22. Meltwater levels and EC at the river Núpsvötn-Súla (IMO 2013) and groundwater 
EC at GW4. 

 

7.4.4. Interpretation   
 

Various studies have looked at the hydrological, sedimentological, geomorphic and 

natural hazards implications of jökulhlaups (e.g. Russell et al., 2006; Robinson et al., 

2008; Emer and Vilímek, 2013). However, the impact of jökulhlaups on groundwater 

systems has not been well studied. The main impact of jökulhlaups on groundwater which 

was observed at this study was the quick increases in groundwater levels by 

approximately 0.20 m immediately following jökulhlaups (Figure 7.20). However, despite 
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these increases, the actual extent of river-aquifer exchange at GW4 is not clear. Similar to 

the observations from the Skaftafellsjökull foreland (Figure 7.8), close response between 

groundwater levels and fluctuations in meltwater levels during high discharge events has 

also been observed at GW4 (Figure 7.19). However, the substantial differences between 

meltwater and groundwater EC and temperature do not suggest significant meltwater-

groundwater exchange at GW4.  

Substantial differences were identified between groundwater and meltwater temperature 

at the Skaftafellsjökull foreland and in western Skeiðarársandur. However, the variability in 

meltwater temperatures at the Súla was higher than that of the Skaftafellsá (Table 7.1). 

Additionally, temperatures at the Súla fell substantially during the jökulhlaups (Figure 

7.21), which was not observed at the Skaftafellsá during high discharge conditions (Figure 

7.9). The higher temperatures at the Súla are possibly due to the larger distance from the 

glacier margin and the mixing with the rain/snow-fed river Núpsvötn (Guðmundsson et al., 

2002). However, despite the contrasting temperature dynamics and geomorphic 

processes between the Súla and the Skaftafellsá, fluctuations in meltwater levels were 

observed to be an important control on proglacial groundwater levels at both sites.  

Similar to the observations from the Skaftafellsjökull foreland, high river-aquifer exchange, 

which is suggested by the quick response of hydraulic heads to fluctuations in meltwater, 

is contested because of significantly different groundwater and meltwater EC and 

temperature at GW4.The propagation of substantial meltwater fluxes into the aquifer is 

expected to substantially reduce groundwater temperatures and EC (e.g. Roy and 

Hayashi, 2009). However, groundwater temperatures and EC at GW4 rise by 0.3-0.6 °C 

and 50-100 μS/cm, respectively, rather than fall, during the jökulhlaup events (Figure 

7.21). However, river EC is still lower by approximately 100 µS/cm than groundwater EC 

(Figure 7.22), which does not support high river-aquifer exchange at the site.  
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A possible hypothesis for the controversies between observed increases in groundwater 

levels and the changes in groundwater temperature and EC following jökulhlaups is the 

propagation of a kinematic pressure wave (e.g. Jung et al., 2004). Another hypothesis is 

the distance from the channel. GW4 is located approximately 200-250 m from the Súla 

channel, which is nearly three times the distance between the Skaftafellsá and the furthest 

borehole T3 (67 m). Studies from a sandur in Svalbard showed that the impacts of 

meltwater infiltration on groundwater geochemistry were substantially dampened in a well 

located 118 m from the meltwater channel (Cooper et al., 2002). It is therefore possible  

that, due to the distance from the channel, the only parameter which can be detected 

during jökulhlaups is the increase in hydraulic heads. However, changes in groundwater 

temperature and EC, which suggest the entrance of meltwater into the aquifer, might be 

detected closer to the channel.  

The increases in groundwater temperature and EC at GW4 during jökulhlaups can also be 

possibly attributed to piston flow (e.g. Geyh et al., 2000), where groundwater flows as a 

single parcel. This hypothesis suggests that groundwater, with relatively high EC and 

temperature, has been pushed horizontally towards GW4 by the jökulhlaups. However, 

there is insufficient evidence at this stage to define the cause for the changes in 

groundwater EC and temperature at GW4 following jökulhlaups.  

These preliminary results have highlighted the connection between jökulhlaups and 

groundwater levels. The impacts of jökulhlaups on groundwater levels which were 

highlighted in this study are important for the understanding of jökulhlaup processes and 

impacts and for the modelling and planning of mitigation strategies against their adverse 

impacts (Emmer and Vilimek, 2013).   

7.4.5. Summary  
 

This section investigated the impact of low frequency, high magnitude events 

(jökulhlaups) on groundwater levels, physicochemical parameters, and hydrological 
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exchange between the aquifer and the meltwater river Súla. Fluctuations in river level are 

generally ablation-controlled. However, the ablation-controlled flow regime was 

episodically interrupted by three distinct jökulhlaup events. These events have led to 

substantial increases in meltwater levels and EC and substantial falls in river 

temperatures. Hydraulic heads at GW4 also increased substantially following the 

jökulhlaups. Conversely, groundwater temperatures and EC have risen. The increase in 

hydraulic heads suggest high river-aquifer exchange at the site. However, penetration of 

meltwater into the aquifer is expected to have reduced groundwater temperatures and EC. 

It is therefore suggested that the increases in hydraulic heads were not caused by the 

entry of large fluxes of meltwater into the aquifer. Possible hypotheses for the observed 

changes in groundwater physicochemical parameters are the propagation of a pressure 

wave and piston flow. However, further work is needed in order to test these hypotheses.  

7.5. Discussion  

The observations from the Skaftafellsjökull foreland and the river Súla in western 

Skeiðarársandur  have shown that fluctuations in meltwater levels are an important control 

on hydraulic heads. However, despite the close response of hydraulic heads to 

fluctuations in meltwater levels, groundwater temperature, EC, solute concentrations, and 

isotopic composition were significantly different than that of meltwater. This suggests that 

groundwater-meltwater exchange at the transect is low. Previous studies from 

Skeidararansudr, which have used stable isotopes, identified ice melt and local 

precipitation as the main sources of groundwater recharge (Robinson et al., 2009a). The 

stable isotope composition of groundwater and surface water at the Skaftafellsjökull 

foreland suggest that precipitation is the dominant source for groundwater recharge 

(Figure 6.18). Precipitation was also identified as an important control on groundwater 

levels at the Skaftafellsjökull foreland (Figure 7.2). These observations have significant 

implications with regards to the impacts of climate change and glacier retreat on proglacial 

river-aquifer exchange, with the observations from this study suggesting that groundwater 
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recharge at this site will be more sensitive to changes in precipitation than to changes in 

meltwater caused by glacier retreat. Additionally, this chapter has also highlighted the 

impact of fluctuations in meltwater levels following high discharge events on proglacial 

groundwater levels. These impacts have been observed at both study sites, in spite of 

their different geomorphology and hydrology, suggesting that fluctuations in meltwater 

levels are an important control on proglacial groundwater levels and flow direction. The 

results of this chapter are summarised in a conceptual model of proglacial river-aquifer 

exchange (Figure 7.23).

 

Figure 7.23. Conceptual model of the controls and impacts of proglacial river/aquifer 
exchange. 
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7.6. Conclusions  

 

This chapter investigated groundwater flow direction and river-aquifer exchange at the 

Skaftafellsjökull foreland. The configuration of proglacial groundwater flow was inferred 

from the distribution in hydraulic heads. The regional groundwater flow system generally 

flows from North to South, away from the glacier margin. However, a local west-east 

groundwater flow system, which is superimposed on the regional groundwater flow 

system, has been identified at the transect. The general groundwater flow patterns are 

consistent with observations from other proglacial settings. Hydraulic heads at the 

Skaftafellsjökull foreland were responsive to rainfall events.  

Time series of meltwater and groundwater levels, temperature, and EC were used to 

investigate the controls of high frequency, low magnitude (precipitation and ablation) and 

episodic events (jökulhlaups) on proglacial river-aquifer exchange. Hydraulic heads 

followed the fluctuations in meltwater levels, albeit with a lag of 6-10 hours. The lag 

generally increased with distance from the channel. A large flood event in August 2012 

was the main hydrological event during the monitoring period, during which meltwater and 

groundwater levels rose by approximately 0.5 m. The meltwater flow regime was 

dominated by ablation, with meltwater levels rising (falling) with increasing (falling) air 

temperature. However, this relation was not straightforward, as some rises in meltwater 

levels, notably the flood in mid-August 2012, were not associated with a large rise in air 

temperature or large precipitation events. The close coupling between the fluctuations in 

meltwater and groundwater levels shows the impact of fluctuations in meltwater levels on 

groundwater levels and groundwater flow direction, suggesting high river-aquifer 

exchange. However, groundwater physicochemical parameters, solute concentrations, 

and isotopic composition contest this suggestion. It is hypothesised that the fluctuations in 

groundwater levels are caused by other processes, such as the propagation of a pressure 
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wave, rather than meltwater recharge of the aquifer. It is therefore suggested that 

meltwater-groundwater exchange at the transect is low. In contrast to the transect, solute 

concentrations and the isotopic composition of GW9 suggests proportions of meltwater in 

the groundwater. However, it is not clear whether this water originated from overbank 

flow. This chapter also highlighted the importance of precipitation to groundwater levels, 

particularly the impacts of spatial variability in hydrogeology on the response of 

groundwater levels to rainfall. The impacts of precipitation were observed at both short 

(daily-sub seasonal) and longer (inter-annual) time scales.  

 This chapter also investigated the impact of low frequency, high impact events 

(jökulhlaups) on river-aquifer exchange. The results have shown that groundwater levels 

~200-250 m away from the channel quickly rose by approximately 0.20 m following small 

jökulhlaup events. However, the temperature and EC data do not suggest that these 

increases were caused by meltwater recharge. It is therefore suggested that the observed 

increase in groundwater levels has been caused by other mechanisms such as the 

propagation of a kinematic pressure wave or piston flow. Hence, the exchange between 

meltwater and groundwater at the river Súla field site is low. However, the impact of 

fluctuations in meltwater levels on groundwater levels was reported from both sites, 

showing the important control of fluctuations in meltwater on proglacial groundwater 

levels.  
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8. Thermal and hydrogeological 
tracing of aquifer-lake exchange 

8.1. Introduction  
 

Groundwater contributions to lakes substantially impact the hydrology, ecology, and 

biogeochemistry of lakes (e.g. Winter, 1999; Hieber et al., 2001; Hood et al., 2006; Roy 

and Hayashi, 2009; Ala-aho et al., 2013; Neumann et al., 2013). Therefore, understanding 

and quantifying the exchange between groundwater and lakes is necessary for 

understanding nutrient fluxes into lakes (e.g. Sebok et al., 2013; Shaw et al., 2013), the 

impact of anthropogenic activities on water quality (e.g. Schmidt et al., 2010; Smerdon et 

al., 2012; Muellegger et al., 2013), and to improve catchment and water resources 

management, particularly in light of projected changes in climate and land use (e.g. 

Meinikmann et al., 2013).  

Proglacial aquifer-lake exchange is subjected to high spatial and temporal variability. The 

spatial variability in aquifer-lake exchange is strongly controlled by the heterogeneity in 

proglacial geomorphology and geology, which has been reported from an array of 

proglacial settings (e.g. Hannah and Gurnell, 2000; Smith et al., 2001), including the 

Skaftafellsjökull foreland (Chapter 5). In addition to geology and geomorphology, spatial 

variability in lake-aquifer exchange is also controlled by the degree of connectivity of the 

lake system to local and regional groundwater flow systems (Tóth, 1963; Winter 1999), 

topography, and position within the landscape (e.g. Campbell et al., 2004; Abnizova and 

Young, 2008; Ala-aho et al., 2013), lake stage (Smerdon et al., 2005), lakebed 

morphology and sedimentology (e.g. Rautio and Korkka-Niemi, 2011), the drainage 

area/lake area ratio (Schmidt et al., 2010), and climatic conditions (e.g. Roy and Hayashi, 

2008). Temporal heterogeneities in groundwater-lake exchange are mainly controlled by 

meteorological variability and water levels (e.g. Kirillin et al., 2013; Rosenberry et al., 
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2013). However, within proglacial settings, this variability is enhanced by the high diurnal, 

seasonal and annual variability of snowmelt, icemelt, and frozen ground (e.g. Hannah et 

al., 1999; 2000).  

Although the importance of groundwater-lake exchange is well recognised (e.g. Winter, 

2001; Krause et al., 2014), there have not been many studies which directly investigated 

groundwater-lake exchange in catchments which are dominated by snow and ice melt 

(Hood et al., 2006). Furthermore, there are controversies with regards to the magnitude of 

groundwater-lake exchange, with some studies suggesting aquifer-lake exchange to be 

negligible (Kattlemann and Elder, 1991; Michel et al., 2002; Winter, 2003). Conversely, 

other studies suggested groundwater-lake exchange to be significant. For instance, it has 

been suggested that groundwater contributed between 30-74% of water inflow into Lake 

O’Hara in the Canadian Rockies (Hood et al., 2006). Another study from the same 

watershed suggested that groundwater contributed at least 35-39% of inflow into Lake 

Hungabee (Roy and Hayashi, 2008). Significant groundwater contributions were also 

reported from Williams Lake, Minnesota, where groundwater seepage was calculated to 

contribute approximately 74% of the annual water input to the lake (LaBaugh et al., 1997). 

Other studies have also suggested groundwater-lake exchange to be significant although 

groundwater-lake exchange was not directly quantified (Campbell et al., 2004; Gurrieri 

and Furniss, 2004). 

Aquifer-lake exchange has been traditionally investigated using methods based on 

hydrological observations, such as seepage meters (e.g. Lee, 1977; Kalbus et al., 2006). 

However, the variability in hydrogeological parameters and logistical difficulties found in 

proglacial settings can limit the applicability of such methods (e.g. Langston et al., 2013). 

In order to overcome some of the challenges associated with these methods, temperature 

(heat) tracing has been extensively used in order to investigate groundwater-surface 

water exchange in rivers (e.g. Schneider et al., 2011) and lakes (e.g. Sebok et al., 2013). 
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This usage has increased substantially following the falling costs and improvements in the 

robustness of reliable temperature sensors. 

Heat transfer within sediment pore-water can take place by four methods: conduction, 

advection, convection, and radiation (e.g. Krause et al., 2012). Heat conduction involves 

the transfer of thermal energy by diffusive molecular motion. Conversely, both heat 

advection and convection involve the movement of the water itself. Heat transfer by 

radiation occurs when solar heat energy is adsorbed by the water column which 

propagates into the sediment pore-water (Constantz, 2008). The tracing of groundwater-

surface water exchange using heat is based on temperature anomalies at the river or lake 

bed, which may suggest areas of enhanced groundwater-surface water exchange. Hence, 

water temperature is an effective tracer for groundwater-surface water exchange in 

stream and lakebeds with substantial differences between groundwater and surface water 

temperatures. Such conditions are common in proglacial environments (e.g. Ward et al., 

1999; Kristiansen et al., 2013), including the Skaftafellsjökull foreland, where groundwater 

and surface temperature are significantly different (2 tails t test, 5% Significant Level 

(S.L.); p=<0.001) [Table 7.1]. The merits of temperature tracing are its ubiquity, robust and 

relatively inexpensive measurements (e.g. Keery et al., 2007), and the lack of possible 

contamination that is associated with chemical tracers (e.g. Constantz, 2008). 

Additionally, the thermal properties of sediment, which provide key inputs to the analytical 

solutions of heat transport equations, are much more narrowly constrained than the high 

variability that is associated with hydrogeological properties such as hydraulic conductivity 

(Lautz, 2010). Heat tracing can be used to investigate the direction (e.g. Anderson, 2005b; 

Anibas et al., 2009) and magnitude of groundwater-surface water exchange (e.g. Westhoff 

et al., 2007; Briggs et al., 2012; Kidmose et al., 2013).  

Proglacial lake-aquifer exchange at the Skaftafellsjökull foreland was investigated at the 

Instrumented Lake [IL] (Figure 3.19). This lake was chosen due to the substantial 

differences in hydrogeological parameters between its eastern (fine-grained) and western 
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(coarse-grained) lakeshores (Figure 5.9), which will increase the understanding of the 

controls of hydrogeological heterogeneity on aquifer-lake exchange. 

This study employed two techniques of temperature tracing: High spatial and temporal 

resolution mapping of lakebed temperatures at the IL was achieved using Fibre Optic-

Distributed Temperature Sensing (FO-DTS). Temperature anomalies at the lakebed were 

then used to infer the spatial and temporal patterns of aquifer-lake exchange. In addition 

to the FO-DTS, groundwater seepage into the lake was calculated from hourly 

measurements of pore-water temperatures which were obtained from three Vertical 

Temperature Profiles (VTP) around the IL (Tristram et al, 2015). However, due to the high 

variability in groundwater-surface water exchange, previous studies have recommended 

to use more than one method (e.g. LaBaugh, 1997; Hunt et al., 1996; McCallum et al., 

2014). Therefore, in addition to the VTP, groundwater seepage fluxes obtained from 

traditional hydrogeological measurements (Darcian fluxes) were also used to investigate 

proglacial aquifer-lake exchange at the Skaftafellsjökull foreland.  

This chapter aims to investigate the spatial and temporal patterns of hydrological 

exchange between groundwater and the IL. The specific objectives for this chapter are:  

1. To map lakebed temperatures and use temperature anomalies to investigate the spatial 

and temporal variability of aquifer-lake exchange at the IL.  

2. To quantify groundwater discharge to the IL using temperature tracing methods and 

Darcian fluxes.  

3. To compare between the temperature methods and hydrogeological methods of 

quantifying aquifer-lake exchange. 

4. To delineate the spatial variability of aquifer-lake exchange at the IL.   
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8.2. Methods for investigating proglacial-aquifer 
lake exchange 

8.2.1. Mapping of lakebed temperatures  

Temperature tracing requires monitoring of pore-water temperatures at high temporal and 

spatial resolutions, which is able to reveal temperature anomalies at the stream/lake bed 

(e.g. Malcolm et al., 2002). Such anomalies can then be used to infer the spatial and 

temporal dynamics of groundwater discharge into the lake/stream bed (e.g. Krause et al., 

2012). Lakebed temperatures at the IL were mapped using FO-DTS. This method uses 

Raman-backscatter of 10 nanosecond FO-DTS pulses laser beams, which originate from 

the absorption and re-emission of light energy at different wavelengths. The beams are 

sent along a fibre-optic cable and then get reflected back towards the sensor, located at 

the beginning of the cable. Using the speed of light and the time taken for the laser to 

return, the distance from where the laser has been reflected can then be calculated. The 

majority of the reflected light remains at the same wavelength. However, some of the light 

is reflected back at shorter (Anti-Stokes) and longer (Stokes) wavelengths than that of the 

original. The Anti-Stokes backscatter is linearly affected by temperature whereas the 

Stokes backscatter is negligibly affected by temperature. Therefore, the Stokes/Anti-

Stokes ratio can be used to measure temperature at any point along the cable. FO-DTS 

allows for both temporal and spatial temperature measurements to be recorded with 

resolutions of up to 0.01°C for every metre along the cable for up to 10,000 m (Selker et 

al., 2006 a). This technique has been increasingly used in various hydrological settings 

(Selker et al., 2006 a, b; Lowry et al, 2007; Tyler et al., 2009; Westhoff et al., 2011; 

Tristram et al., 2015).  

The current study applied a Sensornet Halo FO-DTS which measures temperature at high 

precision (0.05 °C) at 30 second intervals and a sampling resolution of 2 m (Sensornet 

2009). The survey deployed a 500 m long 2-channel fibre-optic cable (BruOutdoor, 

Brugg/CH). The FO-DTS setup used alternating single-ended measurements in clockwise 
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and anti-clockwise directions that were combined in a 2-way single ended averaging 

mode, as described by Krause and Blume (2013). The dynamic temperature calibration 

was performed using a calibration bath (water obtained from meltwater river), where 

temperatures were continuously monitored in the same time intervals as the FO-DTS 

measurements.  

The fibre-optic cable in the current study was installed at two depths: The upper cable was 

laid directly on the lakebed, while the other cable was buried manually at approximately 

0.10-0.15 m within the lakebed sediment. This design allowed a direct comparison 

between sediment temperatures within the lakebed (buried cable) and lakebed (upper 

cable) temperatures, which are potentially more influenced by surface water column 

temperatures. The fibre-optic cables were deployed around the circumference of the lake, 

at ~2 m distance from the lake shore (Figure 3.19). The buried cable was pushed into the 

sediment and spot checks indicated that the deployment depth remained constant during 

the course of the experiment. The FO-DTS monitoring of lakebed temperatures took place 

from 1200 hours on 24/06/2012 to 1300 hours on 25/06/2012. 

8.2.2. Calculation of groundwater fluxes from pore-water 
temperatures  
 

Groundwater fluxes into the IL were quantified using pore-water temperatures which were 

obtained from Vertical Temperature Profiles (VTP) (Figure 3.19). This technique has been 

previously used to investigate the interaction between streams (e.g. Hatch et al., 2006; 

Lautz, 2010; Briggs et al., 2012; 2013) and lakes (Kidmose et al., 2011; 2013). Pore-water 

temperatures at the lakebed were monitored between 1800 hours 20/06/2012 to 1400 

hours 28/07/2012 using automatic HOBO thermistors, with an accuracy of ±0.025 °C 

(Krause et al., 2011b). The thermistors were emplaced within perforated metal tubes, 

which provided protection and allowed groundwater infiltration and direct contact with the 

temperature sensor at specified depths. Each VTP location included three thermistors, 
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which were emplaced at 10 cm, 25 cm and 40 cm below the lakebed, following similar 

configuration to Krause et al. (2011b). Substantial sediment heterogeneity was observed 

between the three VTP locations. The northern (VTP1), eastern, and southern (VTP3) 

lakeshores are underlain by fine sediment, while the western side (VTP2) is underlain by 

coarse sands and gravels.  

Groundwater fluxes were calculated from pore-water temperatures using a 1-D model of 

vertical seepage fluxes (Equation 8.1) which has been previously used to investigate 

groundwater interaction with streams (e.g. Hatch et al., 2006; Lautz, 2010; Briggs et al., 

2012; 2013) and lakes (Kidmose et al., 2011; 2013; Tristram et al., 2015). The model is 

based on sinusoidal diurnal temperature oscillations within the sediment, where the 

dampening of the amplitude and phase shift with depth forms the basis for calculating the 

temperature variation as a function of time and depth (Stallman, 1965). These inputs can 

then be used to calculate groundwater seepage rates (Hatch et al., 2006; Lautz, 2010; 

Tristram et al., 2015). A particular advantage of this method is the need for knowing solely 

the vertical distance between the temperature sensors, rather than their absolute depth. 

This advantage removes complications that occur from changes in bed conditions due to 

scouring and sedimentation. The model is based on the assumptions of purely vertical 

flow, sinusoidal temperature fluctuations, and no thermal gradient at the lakebed (Hatch et 

al., 2006, Lautz, 2010). Intrinsically, these assumptions will be violated under non-ideal 

field conditions. However, this method was found robust to some of the violations of the 

assumptions particularly when groundwater flow is vertical (Lautz, 2010).  

The One-dimensional heat transport model (Equation 8.1) for quantifying groundwater 

fluxes (e.g. Hatch et al. 2006) is based on conduction, advection and dispersion.  
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Equation 8.1. The 1-D heat transport model 

   

T is temperature (°C), which is a variant of time (t, in sec) and depth (z, in m), κe is 

effective thermal diffusivity (m2/s), q is vertical seepage flux (m/s), and γ the ratio of heat 

capacity of the sediment matrix in the lakebed to the water heat capacity (Lautz 2010).  

Groundwater fluxes (q) (m/s) (Lautz, 2010) were calculated using Equation 8.2.  
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Equation 8.2. Quantification of groundwater fluxes 

  

ρc and ρcw denote heat capacity of sediment water matrix and water, respectively (J/(m3 

°C), Δz is the difference in depth between two thermistors at the lakebed (m), κe is the 

effective thermal diffusivity (m2/s), P is the period of temperature signal (sec), and Δϕ is 

the lag time (hours) between the maximum correlation of temperature between the 

uppermost and lower temperature sensors. The lag time was calculated by using the 

Cross Correlation Function (CCF) between the different temperature sensors (Hannah et 

al. 2009, Krause et al. 2011a, b). The CCF was calculated using R version 3.0.1. The α 

perimeter was calculated using Equation 8.3. 
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Equation 8.3. The alpha perimeter for quantifying heat fluxes 

 

V is the velocity of the thermal front (m/s), calculated using the ‘speed = distance/time’ 

equation, where distance is the depth to the logger sensor (m) and time is the lag time 

(hours) obtained by the CCF, following the analytical procedures of Tristram et al. (2015). 

The effective thermal diffusivity (κe) was calculated using Equation 8.4. 

c

e
e




 

 

Equation 8.4. Effective thermal diffusivity 

Table 8.1. The parameters used in equations 1-4 (Hillel, 2004, Lautz, 2010) for the calculation 
of seepage fluxes. The table shows calculations using parameters for fine (a) and coarse (b) 
sediments.  

Sediment property Units Value used in the 
equation 

Effective thermal conductivity λe (Lautz, 2010) (J/(s m °C)) 0.84
(a) 

1.67
(b)

 

Heat capacity of saturated sediment-fluid system (ρC) 
(Lapham, 1989) 

(J/(m
3 
°C)) 3.6x10

6 (a) 
3.1x10

6 (b)
 

Heat capacity of water (ρCW) (Lautz, 2010) (J/(m
3 
°C)) 4.2x10

6
 

Effective thermal diffusivity (κe) (Lapham, 1989, Lautz, 
2010) 

(m
2
 /s) 2x10

-7 (a)
 5x10

-7 (b)
 

   

 

λe is the effective thermal conductivity (J/(s m), and ρc is the heat capacity of the saturated 

sediment water matrix (J/(m3 °C) (Hatch et al. 2006). λe was obtained from stream studies 

concerning finer and coarser sediment (Lautz 2010) and ρc was obtained from Lapham 
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(1989). The parameters which were used in the equations are found in Table 8.1. The 

different grain size for each VTP, which was used in Equation 8.4, are presented in Table 

8.2. 

Table 8.2. Grain size variability for the different VTP locations. 

Sediment properties at the locations of the  Vertical Temperature Profiles 

Grain size (µm) VTP 1 
 

VTP 2 
 

VTP 3 
 

d10 4.93 15.37 5.12 

d50 21.91 175.70 22.43 

d90 54.58 1021.00 57.28 

8.2.3. Calculation of groundwater fluxes from 
hydrogeological measurements  
 

In addition to the temperature tracing, groundwater fluxes were also quantified using 

hydrogeological-based methods (Darcian fluxes). This method has been previously used 

to investigate groundwater-surface interaction in streams (e.g. Kennedy et al., 2010; 

Binley et al., 2013), wetlands (LaBaugh et al., 1997), and lakes (Blume et al., 2013). 

Darcian fluxes were calculated using hydraulic heads and hydraulic conductivity (Equation 

8.5).  

𝒒 = (
∆𝒉

∆𝒍
)  × 𝑲  

 

Equation 8.5. Calculation of Darcian fluxes  
 

q is the Darcian flux of groundwater discharge (m/day), (
∆ℎ

∆𝑙
) is the Vertical Hydraulic 

Gradient (VHG), and K is the saturated hydraulic conductivity (m/day). The hydraulic 

conductivity was determined by Particle Size Analysis of sediment samples using the 

Hazen method (section 5.4).  
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The Vertical Hydraulic Gradient (VHG) describes the ratio of the difference between the 

hydraulic head (mAD) in the piezometer and the lake stage (in mAD) [Δh] and the vertical 

distance between the lakebed and the midpoint of the screened section of the piezometer 

(m) [Δl]. The VHG shows the strength and direction of groundwater-surface water 

exchange. Positive VHG suggest that piezometric heads are higher than lake stage, 

implying groundwater discharge. Conversely, negative VHG suggests that the subsurface 

head is lower than the stage at the surface water, suggesting groundwater downwelling 

(e.g. Käser et al., 2009). VHG were previously used to investigate the interaction between 

groundwater and streams (e.g. Arntzen et al., 2006) and lakes (Rautio and Korkka-Niemi, 

2011). VHG at this study were calculated using hydraulic head measurements from the 

piezometer nests, installed at 0.50, 1.00 and 1.50 m below the lakebed at the fine-grained 

(Clay Nest [C.N.] and coarse-grained (Sand Nest [S.N.] lakeshores. The Sand Nest is 

located approximately 20 m from VTP 2 and the Clay Nest was located approximately 40 

m from VTP 1(Figure 3.19). The Darcian fluxes from the nests were then compared to the 

fluxes calculated from the VTP (objective 3). In order to provide a more comprehensive 

comparison between the methods, Darcian fluxes were also calculated from the 

piezometers located nearest [proxy locations] to VTP1 (C.N., L6), VTP2 (S.N.), and VTP3 

(L4, L5). The hydraulic conductivity for the proxy locations was calculated from the PSA of 

the respective VTP (Table 8.3).  

Table 8.3. Hydraulic conductivity (m/day) for the VTP locations and proxies 

VTP Piezometers used as proxy 
location for each VTP 

Hydr. conductivity (m/day) 

VTP 1  Sand Nest150 9.77x10
1
 

 Clay Nest 50 5.4x10
-3

 

 Clay Nest 100 3.5x10
-3

 

 Clay Nest 150 3.4x10
-3

 

 L6  8.5x10
-3

 

VTP 2 Sand Nest 50 1.23x10
2
 

 Sand Nest 100 5.64x10
1
 

VTP 3 L4  4.7x10
-2

 

 L5  4.7x10
-2

 



Chapter 8  Aquifer-lake exchange 

266 
 

 

8.3. FO-DTS monitoring of lakebed temperature 
 

The FO-DTS mapping of lakebed temperatures at the lakebed (the upper cable) and at 

0.10 m within the lakebed sediments (the buried cable) of the IL are presented in Figure 

8.1 and 8.2. The maps are separated into six 4-hour averaged data groups, which show 

clear diurnal patterns of temperature oscillations at both the lakebed and at 0.10 m within 

the lakebed. Temperatures at 0.10 m below the lakebed were colder, particularly between 

0400 and 0800 hours. The general dynamics of the mean temperature are similar, with a 

rise in mean temperature between 1200 and 2200 hours and a decline between 2200 and 

0400 hours. Temperatures were fairly stable between 0400-0800 hours, which was 

followed by a rise in temperatures until the end of the measurements (Figure 8.1, 8.2). 

The range of averaged spatial temperatures at the lakebed (11.5-21°C, range of 9.5 °C) 

and at 0.10 m depth (~11-20 °C, range of 9 °C) were similar. However, the variability in 

temperatures at the lakebed was larger than at 0.10 m below the lakebed. This was 

especially pronounced during the temperature decline between 22:00 - 08:00 hours, when 

average temperatures at the lakebed varied by up to 2.5°C (Figure 8.1). Conversely, the 

temperature variability at 0.10 m depth within the lakebed was less than 1 °C (Figure 8.2). 

The higher variability in temperatures at the upper cable is illustrated by the difference 

between the 5th and 95th percentile for each cable and by the smaller oscillations in mean 

temperature at the buried cable, particularly during the fall in temperatures between 2200 

and 0400 hours (Figure 8.3). These general similarities in the temperature dynamics 

between the two depths suggests some propagation of the surface water temperature 

signal into the sediment. However, the lower temperatures and variability at the buried 

cable suggest that the thermal patterns from the surface are dampened with depth.  
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Figure 8.1 FO-DTS monitored temperatures measured on top of the lakebed sediments 
(upper cable). 

The figure (from Tristram et al., 2015) shows 4 hour averages from 12:00 hours (24/06/2012) 
– 12:00 (25/06/2012). The 1, 2, 3 mark the respective locations of the Vertical Temperature 
Profiles (VTP).  
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Figure 8.2. FO-DTS monitored temperatures measured at 0.10 m depth within the lakebed 
sediments (buried cable). 

The figure (from Tristram et al., 2015) shows 4 hour averages from 12:00 hours (24/06/2012) 
– 12:00 (25/06/2012). The 1, 2, 3 mark the respective locations of the Vertical Temperature 
Profiles (VTP).   



Chapter 8  Aquifer-lake exchange 

269 
 

 

 

Figure 8.3. Mean, 5th and 95th Percentile of the FO-DTS surveys temperatures for lakebed 
sediments (upper cable) and 0.10 m depth within the lakebed sediments (buried cable). 

The surveys were conducted between 24/06/2012 12:00 to 25/06/2012 12:00 hrs (from 
Tristram et al., 2015). 

 

Figure 8.4 shows the spatial distribution of temperature deviation from the mean cable 

temperature at the upper and buried cables. These deviations are based on the mean 

temperature deviation of the full FO-DTS monitoring survey. This mapping shows 

substantial differences in the magnitude and spatial distribution of deviation from the 

mean temperature between the two depths (Figure 8.4). The range in the deviation of 

lakebed temperatures (the upper cable) from the spatial mean was approximately 0.3-0.6 

°C. However, the survey showed a discrete location (cold spot) in the eastern side of the 

lake where temperatures were approximately 1.8°C cooler than the spatial mean (Figure 
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8.4). In contrast to the narrow range of deviations from the mean at the lakebed, the 

temperature deviations at the buried cable were larger. The deviation from the spatial 

mean at the fine-grained lakeshore were highly variable, and varied between -1.3 to +0.3 

°C. Conversely, the deviations in the coarse-grained (western) lakeshore were more 

homogenous, and exceeded the mean temperature by approximately 0.4 °C. In addition to 

those broad patterns, Figure 8.4 also highlights two discrete cold spots at the buried 

cable, situated to the north and east of VTP1, where temperatures were approximately 1.7 

°C lower than the spatial mean (Figure 8.4). 

 

Figure 8.4. The averaged deviation from the mean temperature along the lakebed (upper 
cable) and at 0.10 m below the lakebed (buried cable).  

The data is based on the FO-DTS monitoring between 24/06-25/06/2012. 

8.4. Pore-water temperature dynamics at the IL  
 

Pore-water temperatures were monitored using HOBO temperature loggers which were 

arranged in three Vertical Temperature Profiles (VTP) (Figure 3.19). Each VTP consisted 

of three temperature probes which were inserted at three depths (0.10 m, 0.25 m, and 

0.40 m) below the lakebed. Strong diurnal oscillations in pore-water temperatures were 

observed in all three VTP locations. The largest temperature oscillations were observed at 
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0.10 m depth whilst oscillations at 0.40 m depth were negligible. This indicates that pore-

water thermal stability increases with depth (e.g. Krause et al., 2011b; Tristram et al., 

2015). The largest diurnal oscillations were observed at VTP2. The smallest differences in 

mean pore-water temperature between 0.10 m and 0.25 m (0.25 °C) and 0.25 m to 0.40 m 

depth (1.12 °C) were also measured at VTP2. The lowest diurnal oscillations were 

measured at VTP3 where absolute temperatures were generally higher than at VTP1 and 

VTP2. The mean diurnal oscillation of pore-water temperatures at 0.10 m depth at VTP1 

was 1.06°C. It then attenuated with depth to ~ 0.49°C at 0.25 m depth and ~0.23°C at 

0.40 m depth (Figure 8.5).  

 

Figure 8.5. Box plots of temperature at the three VTP.  

The horizontal lines denote the minimum, Q1, Q3, and the maximum. The thick grey line 
denotes the median. The figure shows the three depths (10, 25, 40 cm) in each VTP.  

 

Pore-water temperatures have corresponded to changes in air temperature (Figure 8.6). 

The response of pore-water temperatures at 0.10 m was the closest, followed by 0.25 m 

and 0.40 m. However, the 0.40 m below the lakebed showed a very damped response to 



Chapter 8  Aquifer-lake exchange 

272 
 

changes in air temperature. The differences in pore-water temperatures between 0.10 m 

and 0.25 m were more pronounced when air temperature was high. This is illustrated by 

the differences between pore-water temperature at 0.10 m and 0.25 m on the 21/06/2012 

(when air temperature rises) and the 30/06/2012, when air temperature falls (Figure 8.6). 

 

Figure 8.6. Mean hourly air temperature at the field site (green line) and pore-water 
temperatures at VTP 1-3.  

Air temperature was measured at the Skaftafell IMO (2013) station (situated approximately 5 
km from the fieldsite. The locations for each VTP are shown in Figure 3.15. 
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8.5. Quantification of groundwater fluxes 

8.5.1. Groundwater fluxes (temperature-based) obtained 
from VTP 
 

The daily groundwater fluxes (Figure 8.7) were calculated from each VTP using the 

methods of Tristram et al. (2015). Daily groundwater fluxes varied between 0.33 to 6.10 

m/day. The highest mean groundwater fluxes were calculated at VTP3 (). The mean fluxes 

at VTP2 exceeded those at VTP1 by 0.16 m/day. However, the standard deviation of 

groundwater fluxes at VTP2 was approximately 0.55 m/day lower than VTP1 and VTP3. 

The inputs for sediment thermal properties which were used in Equation 8.2-8.4 were 

adjusted in order to address the substantial differences in sediment grain size at the three 

locations (Table 8.1). However, despite the significant difference in grain size between the 

VTP locations, the calculated VTP fluxes in all three VTP were generally within the same 

order of magnitude (1x 100 m/day). Furthermore, an ANOVA analysis (at 5% confidence 

level, p=0.17) has shown that the mean seepage fluxes between the three VTP were not 

significantly different from each other. 

Table 8.4. Groundwater fluxes calculated from the VTP 

Groundwater flux 
(m/day) 

VTP1 (fine) VTP2 (coarse) VTP3 (fine) 

Mean 3.60±1.88 3.77±1.38 4.34±1.93 

Max. 6.10 5.31 6.10 

Min. 1.02 1.33 0.33 

 

The results of the VTP from the IL are compared against reported rates of groundwater 

fluxes which were obtained from pore-water temperatures in lakes located within 

deglaciated areas in Denmark and Finland. The groundwater fluxes which were calculated 

from the VTP in the IL were within the same orders of magnitude as the mean 

groundwater discharge fluxes which were calculated from temperature profiles in Lake 

Væng in Denmark (1.4x10-1 to 1.21x100 m/day), which is connected to an unconfined, 
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medium-coarse sands and gravels aquifer (Sebok et al., 2013). The mean groundwater 

fluxes based on temperature profiles in another study from Lake Væng were also within 

the same order of magnitude (1.5x10-1 m/day) (Kidmose et al., 2013). Groundwater 

discharge at this site has also showed clear seasonal variability, with winter fluxes (mean 

of 1.21x100 m/day) exceeding summer fluxes (1.6x10-1 m/day) by an order of magnitude 

(Sebok et al., 2013).  

 

Figure 8.7. Groundwater fluxes (m/day) from VTP1-VTP3.  

VTP1 and VTP3 are located in fine-grained sediment. Location VTP2 is located in coarse-
grained lakeshore.   
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8.5.2. Groundwater (Darcian) fluxes from 
hydrogeological measurements 

 

The Vertical Hydraulic Gradient (VHG) at the IL varied between +0.011 to +0.632 

(unitless). With the exception of L4 and L6 on the 31/08/2012, all the VHG during this 

study were positive. This implies continuous groundwater discharge into the lake (e.g. 

Rautio and Korkka-Niemi, 2011). The Darcian groundwater fluxes varied between 

1.52x10-4 and 1.7x101 m/day (Figure 8.8). In contrast to the relatively small variability (one 

order of magnitude) in the VTP fluxes (Figure 8.7), the Darcian fluxes showed substantial 

differences in groundwater discharge between the coarse (SN) and fine (CN, L4-6) 

grained lakeshores. Seepage fluxes at the coarse-grained lakeshore varied between 

2.56x100 and 7.08x100 ±2.59 m/day. The fluxes from the fine-grained lake shore varied 

between 1.52x10-4 and 3.02x10-2 ±0.002 m/day. Groundwater fluxes from the coarse-

grained lakeshore exceeded those from the fine-grained by approximately four to five 

orders of magnitude (Figure 8.8). The fluxes at the coarse-grained lakeshore were 

significantly higher (one tail t test, 2.5% significant level, p=<0.001) than those from the 

fine-grained lakeshore. In addition to these general patterns, the mean groundwater fluxes 

at the proxies for VTP3 (L4 and L5) were significantly different (two tails t test, 2.5% S.L. 

p=<0.001) and higher by an order to two orders of magnitude than the fluxes obtained 

from the proxies for VTP1 (Clay Nest and L6) (Table 8.5). Furthermore, groundwater fluxes 

at L4 and L5 were also more responsive to changes in lake levels showing a greater 

increase in flux with an increase in lake stage (Figure 8.8).  
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Table 8.5. Comparison between the Darcian and VTP groundwater fluxes 

The table compares the mean fluxes calculated from the VTP (in brackets) with the Darcian 
fluxes of the proxy location for each VTP. Note that the data for the piezometer nests is the 
mean flux from the three different depths. All locations had 17 samples.  

  VTP 1  

(3.60x10
0
 

±1.88)  

 VTP 1  

(3.60 
x10

0
±1.88) 

 VTP 2 
(3.77x10

0
±1.3

8) 

VTP3 (4.34 
x10

0
±1.93) 

 VTP3 (4.34 x10
0
±1.93) 

Proxy location Clay Nest   L6 Sand Nest L4 L5 

Mean Darcian  
Fluxes for the 
proxy (m/day) 

6.71x10
-4

± 
3.87x10

-4
 

5.58x10
-4

± 
4.37x10

-4
 

7.08x10
0
± 

2.59x10
0
 

3.48.259x10
-3
± 

8.62x10
-3

 
3.24x10

-3
± 

4.70x10
-3

 

 

The temporal variability of the Darcian fluxes has shown that these fluxes generally 

followed the changes in lake levels, notably the increase in lake levels around the 

24/07/2012, the increase in lake levels at the beginning of the second monitoring period 

(23/08/2012) and the decline in lake levels at the end of August (Figure 8.8). In summary, 

the seepage fluxes for the VTP were significantly higher than the Darcian fluxes 

calculated from the proxy locations for the VTP (Table 8.5). However, the variability in the 

Darcian fluxes was much higher than the VTP fluxes, with groundwater fluxes at the 

coarse-grained lakeshore substantially exceeding those from the fine-grained lakeshores 

(Figure 8.8). 
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Figure 8.8. Comparison of Darcian groundwater fluxes from the coarse-grained (filled black 
shapes) and fine-grained (grey shapes) lakeshores. Note the logarithmic scale. 

The different piezometers where the VHG were determined also served as proxy locations 
for fluxes obtained with VTP (see legend). The Figure also shows the temporal variability in 
groundwater fluxes, presented against the level of the IL. The gap between the 30/07/2012 
and the 24/08/2012 is due to the lack of manual measurements of lake levels during the 
period in which the field site was not manned.  

 

8.6. Discussion 
 

8.6.1. Method comparison between VTP and Darcian 
fluxes 
 

The current study combined temperature tracing of lakebed and lake pore-water 

temperatures with hydrogeological measurements for the investigation of the spatial and 

temporal dynamics of aquifer-lake exchange at the Instrumented Lake. Darcian fluxes, 

which are based on VHG, have been previously combined with seepage meters (e.g. 

Smerdon et al., 2005) and FO-DTS in order to investigate groundwater-lake exchange in 

rivers (Krause et al., 2012) and lakes (Blume et al., 2013). However, VHG in many of 
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these studies were only used as indicators for the direction of groundwater flow (e.g. 

Rautio and Korkka-Niemi, 2011; Kidmose et al., 2011). The only known study, to date, 

that has quantified groundwater fluxes using both VTP and Darcian fluxes obtained from 

VHG was done by Blume et al. (2013). 

The seepage fluxes which were calculated from the VTP temperature data were not 

significantly different between the three locations. This lack of significant differences is 

despite of the different sedimentology in each location (Table 8.2). Conversely, the 

groundwater fluxes which were calculated from hydrogeological measurements (Darcian 

fluxes) for the coarse-grained lake shore exceeded the fluxes from the fine-grained 

lakeshore by four orders of magnitude and were significantly different (Figure 8.8). Similar 

patterns, in which groundwater fluxes obtained from hydrogeological measurements are 

generally lower and more variable than fluxes obtained from temperature profiling, were 

also reported in the literature. A study from Lake Væng, Denmark, has shown that 

seepage meters and temperature tracing have yielded similar mean and maximum 

summer fluxes (1.6-6.2x10-1 m/day). However, the minimum fluxes for the seepage 

meters were lower than fluxes calculated from the temperature profiles by two orders of 

magnitude (2.7x10-3 m/day) (Sebok et al., 2013). Relatively high spatial variability in 

groundwater fluxes which were obtained from seepage meters has also been reported 

from Lake Pyhäjärvi, located in an esker aquifer in SW Finland, where groundwater fluxes 

varied over three orders of magnitude (4.05 x10-2  to 4.15 x100 m/day) (Rautio and Korkka-

Niemi, 2011). A study of hydrological exchange between groundwater and wetlands in SW 

Wisconsin has also shown that groundwater fluxes calculated using Darcy’s law were an 

order of magnitude lower (2.00x10-4 to 3.00x10-3 m/day) than fluxes estimated from 

temperature profiles and water balance modelling (1.00x10-3 to 1.10x10-2 m/day) (Hunt et 

al., 1996). Studies of river-aquifer exchange also reported substantial differences between 

fluxes obtained from hydrogeological methods and temperature tracing. For instance, 

investigations of river-aquifer exchange from the Munsan stream, Paju-si, South Korea, 
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where streambed hydraulic conductivity varied between four orders of magnitude 

(1.82x10-3 to 4.20x100 m/day), have shown that estimations based on Darcy’s Law were 

approximately three orders of magnitude lower than those based on temperature profiles 

(Hyun et al., 2011). However, contrasting results to the discrepancy between Darcian and 

temperature-based fluxes have also been reported. For instance, a different study from 

Lake Væng in Denmark reported that groundwater fluxes obtained from temperature 

profiles were very close to those obtained from seepage meters (3.00x10-3 to 7.45x100 

m/day) (Kidmose et al. 2013).  

The significant differences between the Darcian and the VTP fluxes suggest that the VTP 

fluxes were less sensitive to the substantial differences in sediment properties between 

the three locations (Table 8.2). These observations support previous research which 

reported that the range of sediment thermal properties (Equation 8.2-8.4) is much 

narrower and more confined than the range of hydrogeological parameters (e.g. 

Stonestrom and Constantz, 2003; Lautz, 2010). It is therefore suggested that the 

substantial differences between the Darcian fluxes are attributed to the high spatial 

variability in hydraulic conductivity around the IL (Figure 5.9), which is common within 

proglacial environments (e.g. Robinson et al., 2008).  

In addition to the results from the Skaftafellsjökull foreland, the impact of spatial variability 

in lakebed hydrogeology on aquifer-lake exchange has also been reported from Lake 

Opabin in the Canadian Rockies, where sections of the lake underlain by low permeability 

material were suggested as unlikely to contribute significant groundwater fluxes. 

Conversely, field evidence suggested that a large moraine served as the main source of 

groundwater to and from the lake (Roy and Hayashi, 2008). Studies from Lake 

Georgetown, a high elevation lake in Montana, reported substantial spatial variability in 

groundwater-lake exchange, which was attributed to the spatial differences in geology and 

sedimentology. Groundwater discharge into the lake took place in an area of fractured 

limestone. Conversely, no groundwater discharge was detected in areas underlain by 
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metasedimentary bedrock. These spatial differences in aquifer-lake exchange have also 

significantly impacted lake biogeochemistry and water quality (Shaw et al., 2013). The 

impact of spatial heterogeneity in hydrogeological parameters has also been reported 

from riverbeds. For instance, The spatial variability in Darcian fluxes from a streambed in 

Ontario which is underlain by sand and clay deposits, where hydraulic conductivity varied 

by four orders of magnitude, were up to five orders of magnitude (Conant, 2004). 

Therefore, the significant differences in groundwater fluxes at the IL (Figure 8.8) provide 

further evidence of the impact of high hydrogeological heterogeneity on the spatial 

variability in groundwater-surface water exchange. It is therefore suggested that the 

differences in the Darcian fluxes have been attributed to the differences in hydrogeological 

parameters around the IL (Figure 5.9). Furthermore, the small differences between the 

temperature-based fluxes suggest that, despite the adjustment of the perimeters in 

Equation 8.2 (Table 8.1), this method is not sensitive for the variability in lakebed 

sedimentology which occurs at the IL. This suggestion is also supported by numerical 

modelling of the impact of sediment heterogeneity on groundwater fluxes obtained from 

temperature data, which suggested that simple methods that analytically solve the heat 

flow equation fail to provide reliable exchange fluxes in areas of high sediment 

heterogeneity and significant contrasts in hydraulic conductivity (Schornberg et al., 2010). 

The discrepancy between the calculated fluxes from the VTP and the Darcian fluxes has 

significant implications on the interpretation of the dynamics of groundwater exchange 

with the IL. The fluxes obtained using VTP suggest that groundwater discharge around 

the lake is fairly homogenous (Figure 8.7), regardless of lakebed sediment characteristics 

(Table 8.2). Conversely, the Darcian fluxes suggest that groundwater discharge at the 

coarse-grained lakeshore is significantly higher than the fine-grained lakeshore (Figure 

8.8). Due to the control of hydraulic conductivity on aquifer-lake exchange (e.g. Roy and 

Hayashi) and in light of the high heterogeneity in hydrogeological parameters around the 

IL (Figure 5.9), it is suggested that the Darcian fluxes give a more accurate representation 
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of groundwater-lake exchange at the IL than the temperature-based fluxes, which do not 

reflect the variability in lakebed sedimentology. The heterogeneity in groundwater 

discharge is also supported by the FO-DTS survey, which suggests that enhanced 

groundwater discharge at the fine-grained lakeshore takes place through discrete zones, 

which were identified by the cold spots (Figure 8.4). The results obtained by the Darcian 

fluxes were therefore used for describing the spatial patterns of lake-aquifer exchange at 

the IL.   

8.6.2. Spatial patterns of proglacial aquifer-lake exchange  

The high resolution mapping of lakebed temperatures using FO-DTS and the 

quantification of groundwater seepage fluxes were used to delineate proglacial aquifer-

lake exchange at the IL. The FO-DTS mapping of lakebed and sediment temperatures 

highlighted distinct cold spots, which were located in the northern and eastern lakeshores 

(Figure 8.4). Groundwater temperatures at the site were significantly lower than lake 

temperatures (Table 6.3, 6.4). Hence, it is suggested that these cold-spots can be 

attributed to enhanced groundwater upwelling (Rautio and Korkka-Niemi, 2011; Sebok et 

al., 2013). As this area of the lake is underlain by approximately 0.50 m of fine-grained 

sediment with low hydraulic conductivity (Chapter 5), this detected upwelling possibly 

takes place through preferential flow paths within the confining clay layer (e.g. Conant, 

2004) or due to cracks in the fine-grained layer which were caused during the installation 

of the FO-DTS cable (e.g. Rosenberry et al., 2010; Blume et al., 2013). In addition to the 

cold spots below the lakebed in the eastern lakeshore, a cold spot which was also 

identified on the lakebed (the upper FO-DTS cable) has also been detected (Figure 8.4). 

However, this cold spot did not propagate underneath the lakebed, suggesting the lack of 

groundwater upwelling at this location. It is suggested that the colder temperature at this 

spot is possibly due to vegetation cover and a deeper lakebed (Tristram et al., 2015).  
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Groundwater and surface water geochemistry and stable isotope composition suggest 

that precipitation, rather than meltwater, is the dominant source of groundwater at the site 

(Chapter 6). Despite the small proportion of groundwater recharge from meltwater, the 

configuration of hydraulic heads in the transect has shown that groundwater flows towards 

the IL (Figure 7.8). This area has been identified as a local groundwater system, which is 

imposed on the regional groundwater flow system (Figure 7.7). The significantly-higher 

groundwater fluxes at the western (coarse-grained) lakeshore and the west-east flow 

direction of the local groundwater flow system suggest that this system feeds most of the 

groundwater discharge into the lake (Figure 8.9). The low seepage fluxes at the fine-

grained lakeshore (VTP1 and VTP3) suggest that the confining layer on that side impedes 

groundwater discharge into the lake in this area. The small fluxes at the fine-grained 

(eastern) lakeshore suggest that the small moraines that surround the IL from the North, 

East, and West do not contribute significant groundwater fluxes to the IL. This hypothesis 

is supported by observations of the complex internal hydrology of moraines (e.g. Langston 

et al., 2013; Bajc et al., 2014). However, further investigation is needed in order to 

determine the contribution of the moraines to lake hydrology. A conceptual model of the 

controls and impacts of proglacial aquifer/lake exchange is presented in Figure 8.10. 
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Figure 8.9. Schematic representation of recharge and aquifer-lake exchange at the IL. The 
model is not drawn to scale.  

 

Figure 8.10. A conceptual model of the controls and impacts of proglacial aquifer/lake 
exchange 
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8.7. Conclusions 
 

This study combined hydrogeological measurements (Darcian fluxes) with environmental 

temperature tracing techniques (FO-DTS and VTP) in order to delineate the spatial and 

temporal variability of aquifer-lake exchange and to quantify this exchange. Despite 

significant differences in hydraulic conductivity between the VTP locations, their mean 

groundwater fluxes were all within one order of magnitude, and not significantly different. 

Conversely, the Darcian fluxes from the coarse-grained lakeshore exceeded those from 

the fine-grained lakeshore by four orders of magnitude. These results support previous 

studies that reported similar discrepancies between groundwater fluxes obtained from 

temperature and hydrogeological measurements. The Darcian fluxes were therefore used 

to construct a conceptual model of river-aquifer-lake exchange at the Skaftafellsjökull 

margin.  

Groundwater discharge from the local groundwater flow system which flows from west to 

east (Chapter 7) appears to be the main source of groundwater for the IL. Aquifer-lake 

exchange at this lakeshore is relatively high. Conversely, the exchange at the fine-grained 

lakeshore is lower by several orders of magnitude. The temperature mapping of the 

lakebed suggests that groundwater-lake exchange at that lakeshore occurs in discrete 

locations, possibly through preferential flow paths. 
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9. Conclusions 

9.1. Summary of main findings  

This study investigated groundwater-surface water exchange in the proglacial zone of two 

retreating glaciers in SE Iceland. The findings of this study are important in light of the 

observed impact of groundwater-surface water exchange on proglacial hydrology, 

geomorphology and water quality. Furthermore, this study has also shown the importance 

of precipitation and glacier margin fluctuations, which are projected to alter due to climate 

change and glacier retreat.  

The first part of this study investigated the impact of fluctuations in glacier margin position 

on proglacial groundwater levels and the spatial extent of groundwater seeps (objective i). 

The western Skeiðarárjökull margin has retreated approximately 1 km between during the 

study period (1986-2012). Changes in the extent of groundwater seeps were mapped 

from aerial photographs, which showed a 97% decline in seep extent. The extent of seeps 

was also impacted by the November 1996 jökulhlaup, whose deposits buried 18% of the 

area of groundwater seeps at the site. Proglacial groundwater levels also substantially 

declined between 2000 and 2012, with observed declines exceeding 1.5 m in many 

locations, with groundwater levels in most piezometers falling below the intake. However, 

the decline in groundwater levels has shown considerable spatial variability.  

The regional groundwater flow at the Skaftafellsjökull margin is from north to south, away 

from the glacier margin. However, deviations from this pattern have also been identified. 

The main local groundwater system flows from west to east toward the Instrumented Lake 

(IL), perpendicular to the river Skaftafellsá. The PSA and slug tests results showed high 

variability in hydrogeological characteristics, caused by the different geomorphic 

processes which are active at this environment. The hydraulic conductivity (K) at the 

Skaftafellsjökull foreland varied over seven orders of magnitude. This high variability in 
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hydraulic conductivity has led to substantial heterogeneity in proglacial groundwater-

surface water exchange.  

Substantial differences in hydrogeology and water quality were observed between the 

Northern and Southern Oasis. The hydraulic conductivity at the Southern Oasis exceeded  

that of the Northern Oasis by five orders of magnitude. The solute concentrations at the 

Northern Oasis are significantly lower than that of the Southern Oasis. It is therefore 

hypothesised that the Northern Oasis is perched and mainly precipitation-fed. Hence, 

aquifer-lake exchange at the Northern Oasis is low.  

 Conversely, the Southern Oasis is generally underlain by glaciofluvial sediments, with 

mean hydraulic conductivity of ~2.51x101 m/day. It is suggested that the higher hydraulic 

conductivity led to substantial groundwater-lake exchange at the Southern Oasis lakes. 

However, high variability in hydrogeological parameters was also observed at the 

Southern Oasis, with some areas of the IL underlain by fine-grained deposits.   

The third part of this study investigated the sources of groundwater recharge (objective iii) 

and the temporal and spatial dynamics of hydrological exchange between meltwater, 

groundwater, and lakes (objectives iv and v). Groundwater levels at the transect, have 

shown high response to fluctuations in meltwater levels, with the response generally 

dampened with increasing distance from the river. These dynamics suggest high levels of 

exchange between the meltwater river and the aquifer.  

However, this hypothesis is contested by the substantial differences in water quality and 

stable isotope composition between transect groundwater and meltwater. Groundwater 

solute concentrations and isotopic composition at the transect were significantly higher 

and heavier, respectively. These significant suggest relatively low rates of aquifer-

meltwater exchange. It is therefore hypothesised that the coupling between the response 

in hydraulic heads and meltwater levels is due to other factors, such as the propagation of 

pressure waves, rather than actual entrance of water into the aquifer.  



Chapter 9  Conclusions 

287 
 

Similar dynamics of high response between hydraulic heads and fluctuations in meltwater 

levels alongside significantly different water quality were also observed at the river Súla in 

western Skeiðarársandur during small jökulhlaups. This suggests that, despite the 

different geomorphology of the two proglacial zones, fluctuations in meltwater levels are 

an important control on hydraulic heads during high discharge events. These processes 

have been observed at the Skaftafellsjökull foreland during both ablation-controlled 

meltwater flow regime and episodic floods. Conversely, the fluctuations in hydraulic heads 

at the river Súla were only observed during the small jökulhlaups. However, the lack of 

fluctuation in hydraulic heads between during ablation-controlled flow regime can possibly 

attributed to the distance of GW4 from the Súla channel (~ 250 m), which is larger than 

the distance at the Skaftafellsjökull foreland (69 m away for the furthest piezometer).  

Groundwater recharge sources were investigated using water stable isotopes (objective 

iii). Groundwater isotopic composition was generally heavier than that of meltwater, and 

located close to the composition of the LMWL. This suggests that precipitation is the main 

source for groundwater recharge at the Skaftafellsjökull foreland. The importance of 

precipitation in groundwater and surface water recharge has also been supported by the 

substantial differences in lake levels between the different precipitation levels in 2012 

(dry) and 2013 (very wet).  

The spatial variability in proglacial aquifer-lake exchange was investigated at the IL using 

temperature tracing and hydrogeological methods (objective v). The FO-DTS mapping 

revealed discrete points of colder-than-average temperatures. Due to the significant 

differences between groundwater and surface water temperatures, these spots were 

inferred as discrete locations of cold groundwater upwelling into the IL. The FO-DTS has 

also highlighted the differences between the eastern (fine-grained) and western (coarse-

grained) lakeshores. The temperatures at the coarse-grained lakeshores were relatively 

homogenous, suggesting a relatively uniform groundwater discharge. Conversely, the FO-

DTS detected two locations of which were approximately 1.8 °C cooler than the mean 
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temperature. It is suggested that these cold spots are discrete locations of enhanced 

groundwater upwelling, in contrast to the low upwelling in the rest of the fine-grained 

(eastern) lakeshore.  

Groundwater seepage into the IL was quantified using a temperature-based method 

(VTP) and hydrogeological measurements. Despite substantial differences in lakebed 

sedimentology between the three VTP locations, groundwater fluxes from all three VTP 

were within the same order of magnitude. Conversely, the Darcian fluxes from the coarse-

grained location exceeded those from the fine-grained locations by three orders of 

magnitude. These differences were attributed to the substantial heterogeneity in 

hydrogeological parameters around the IL. It is hypothesised that most groundwater in the 

lake originate from a local groundwater flow system. These observations highlight the 

relatively high exchange between the aquifer and the IL.    

9.2. Wider implications  

9.2.1. Spatial heterogeneity in proglacial hydrogeology 
 

This study highlighted the high spatial variability in proglacial hydrogeology. The variability 

in proglacial hydrogeology at the Skaftafellsjökull margin has been attributed to the range 

of glacial, glaciofluvial, and lacustrine processes operating (e.g. Marren 2002a, b; Marren 

and Toomath, 2013). In addition to the aforementioned processes, the hydrogeology and 

geomorphology of western Skeiðarársandur are also impacted by glacial surges, 

jökulhlaups and aeolian processes (e.g. Russell et al., 2006). This observed variability 

leads to high heterogeneity in proglacial groundwater-surface water exchange. 

The widely observed heterogeneity in hydrogeological parameters also imposes 

significant challenges for the numerical modelling of proglacial groundwater flow systems. 

Many groundwater flow models treat proglacial groundwater systems as homogenous 
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(e.g. Boulton and Dobbie 1993). However, the complexities and heterogeneities which 

have been reported from various proglacial settings, including the current study, suggest 

that these assumptions are usually violated. Furthermore, due to this heterogeneity, 

obtaining accurate data on groundwater flow rates and the hydraulic properties of 

proglacial deposits is a substantial challenge (Tague and Grant, 2009; Person et al., 2012; 

Langston et al., 2013). The hydrogeological parameters which were obtained at this study 

(Chapter 5), can therefore be used as boundary conditions and input parameters for 

numerical models of proglacial groundwater flow and groundwater-surface water 

exchange.  

9.2.2. Implications of climate change and glacier 
retreat on proglacial groundwater-surface 
water exchange 

 

Climate change models project a general increase in air temperatures and glacier retreat 

in regions dominated by snow and icemelt. These changes are projected to substantially 

impact the hydrology of such catchments (e.g. Barnett et al., 2005). Glacier retreat is 

projected to alter the composition of proglacial discharge, with increasing contributions 

from snowmelt, rainfall, and groundwater at the expense of icemelt (e.g. Blaen et al., 

2013; 2014). These changes are projected to have significant impacts on proglacial 

hydrology, biogeochemistry, physicochemical parameters and ecology (e.g. Cauvy-

Fraunié et al., 2013). Most climate models for Iceland also project an increase in 

precipitation and temperatures over the 21st century, with the highest increases during 

winter (e.g. Nawri and Björnsson, 2010). These changes are also projected to increase 

glacier retreat (e.g. Jóhannesson et al., 2006). In addition to its impact on the extent of the 

Icelandic icecaps, glacier retreat is also projected to alter proglacial hydrology (Flowers et 

al., 2003; 2005), hydrogeology (e.g. Robinson et al., 2008), and geomorphology (Marren 

and Toomath, 2013). Despite an initial increase, the falls in glacier volume and ice slope, 
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caused by glacier retreat, are expected to reduce meltwater generation (e.g. Flowers et 

al., 2005) and groundwater flow, caused by the shallower hydraulic gradient (e.g. 

Haldorsen and Heim, 1999; Haldorsen et al., 2010; 2012). A reduction in groundwater flow 

following glacial retreat has been hypothesised to be a major cause for the substantial 

decrease in the extent of groundwater seeps and groundwater levels in western 

Skeiðarársandur (Levy et al., 2015).  

In addition to glacier retreat, climate change projections also suggest an alteration in 

precipitation patterns and timing. These projections include an increase in the rain/snow 

ratio, which will increase winter runoff and reduce snow storage, and cause earlier 

snowmelt, which will lead to an earlier peak in runoff (e.g. Adam et al., 2009; Stewart et 

al., 2009). These impacts are projected to substantially alter surface water quality and the 

timing, magnitude and quality of groundwater recharge (e.g. Okkonen and Kløve, 2009; 

2010; 2012; Fortner et al., 2011).  

Precipitation has been identified as the main source of groundwater recharge at the 

Skaftafellsjökull foreland (section 6.5.1). In addition to the impacts on lake water balance, 

fluctuating lake levels, which are caused by fluctuations in precipitation, can also lead to 

small scale changes in lake hydrogeology. For instance, the dry conditions in 2012 led to 

a fall in lake levels, which exposed significant sections of the lakeshores. These 

exposures can lead to the desiccation of confining clay layers, with the newly forming 

cracks possibly forming preferential flow paths for groundwater upwelling (such as the 

cold spots at the IL [Figure 8.4]). The discharge of cold, nutrient-rich groundwater into the 

lake via such flow paths can impact lake physicochemical parameters and ecology (e.g. 

Roy et al., 2011).  
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9.2.3. Methodological implications 
 

Groundwater and surface water temperatures, geochemistry and stable isotopes provided 

effective, relatively low cost techniques to investigate various hydrological topics in an 

array of settings (e.g. Robinson et al, 2009a, b). This study has combined these methods 

with traditional hydrogeological methods and novel temperature tracing techniques in 

order to investigate the temporal and spatial dynamics of proglacial river-aquifer and lake-

aquifer exchange. These methods also showed spatial and temporal heterogeneities in 

the exchange between groundwater, rivers, and lakes and highlighted small scale 

variability such as preferential flow paths. However, this study has also highlighted the 

importance of using multiple methods when investigating groundwater-surface water 

exchange (Hunt et al., 1996; Blume et al., 2013). This was illustrated by the contrasting 

observations between the hydraulic heads (Chapter 7) and the geochemistry and isotopic 

data (Chapter 6) with regards to the level of aquifer-meltwater exchange. The importance 

of combining several methods has also been highlighted when investigating groundwater 

discharge around the IL, where temperature tracing and the hydrogeological methods 

provided contrasting results. In summary, the methods used in this study helped to 

unmask processes and increase the understanding of the complex temporal and spatial 

heterogeneity of proglacial groundwater-surface water exchange. However, 

hydrogeological methods should be corroborated by other methods, such as geochemical 

or temperature tracing.  

9.3. Further research 

This research has highlighted the controls and the high spatial and temporal heterogeneity 

of proglacial groundwater-surface water exchange. Additionally, it has also highlighted the 

importance of groundwater discharge to surface water bodies and the relatively transient 
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nature of proglacial groundwater-fed bodies. This study can be advanced further by 

pursuing further research:   

 The installation of deeper piezometers, especially closer to the glacier margin at 

Skaftafellsjökull, in order to improve the understanding with regards to the impact 

of glacier margin position on proglacial groundwater flow. Monitoring over longer 

time periods, particularly winter and spring, will also help to investigate 

groundwater dynamics during baseflow conditions and the impact of snowmelt on 

proglacial groundwater-surface water exchange.  

 Improved understanding of the hydrogeology of the site, particularly delineating the 

internal structures of proglacial landforms, such as moraines, and their impact on 

proglacial groundwater flow. This can be done using various geophysical 

techniques (e.g. Muir et al., 2011). 

 Further investigation of river-aquifer exchange. This can be done using tracers 

such as radon, in order to calculate groundwater residence times (e.g. Magnusson 

et al., 2014) and to improve the understanding with regards to the contribution of 

meltwater to groundwater and the lakes at the Skaftafellsjökull foreland.  

 Ecological survey of flora and fauna of the Skaftafellsjökull foreland. Due to the 

differences in aquifer-lake exchange between the Northern (inferred low aquifer-

lake exchange) and Southern Oasis lakes (inferred relatively high aquifer-lake 

exchange), an ecological survey will help to assess the impacts of the difference in 

groundwater contributions to the ecology of each site.   

 Numerical modelling of the impact of climate change and glacier retreat on 

proglacial groundwater-surface water exchange. 
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Appendices 
 

Western Skeiðarársandur  Elevation (mAD)   

datum 1-ZR P3 1m  west  Skaftafellsjökull Elevation (mAD) 

datum 1-ZR P32m east 82.62 T3 100.08 

datum 1-ZR P4 1st pipe 82.78 P11 99.92 

datum1-ZR P4 2nd pipe 86.14 L8 100.52 

datum- GW1 86.26 GW8 100.39 

datum1 AL P3100 80.14 L1 100.18 

datum1-AL P3150  79.56 L2 99.99 

datum1- P8 79.99 L3 100.14 

datum1-datum 2 (nr. GW2 lake) foresight 81.20 L4 100.15 

datum 2 -datum 1 (backsight) 95.36 L5 100.46 

datum2-GW2 94.17 L6 99.99 

datum3-GW2 76.61 L7 100.28 

datum3- P13 (western pipe) 76.94 Sand50 100.28 

datum3- P13 central pipe) 77.53 Sand100 100.26 

datum3-GW3 77.53 sand150old 100.37 

datum4-GW7 76.88 sand150new 100.29 

Skaftafellsjökull foreland 76.64 clay50 100.31 

GW10  clay100 100.45 

GW11 101.27 clay150 100.26 

P10 100.70 river 99.18 

P12 101.06   

GW12 101.11   

GW9 100.45   

GW5 100.07   

T1 100.23   

T2 100.61   

 100.48   

Appendix 1. List of piezometers in western Skeiðarársandur and the 
Skaftafellsjökull foreland.  

 



Appendices  

333 
 

 

 

Grain size distribution N. Oasis 

%< (mm) dead bird lake dry lake  
nr. Lake lupin 

L. Lupin  Muddy lake (N Oasis) Nort. Outlet Lake 

0.00 0.07 0.03 0.04 0.02 0.04 

0.00 1.42 0.64 0.96 0.42 0.91 

0.00 4.50 2.16 3.23 1.37 3.03 

0.00 9.00 4.71 7.10 2.88 6.46 

0.00 14.90 8.45 13.10 5.01 11.50 

0.00 32.83 17.33 30.40 10.43 25.50 

0.06 99.99 87.77 95.30 55.97 92.60 

0.13 100.00 94.13 98.57 73.23 95.83 

0.25 100.00 97.90 100.00 91.37 99.92 

0.50 100.00 99.40 100.00 98.97 100.00 

1.00 100.00 100.00 100.00 100.00 100.00 

2.00 100.00 100.00 100.00 100.00 100.00 

 

Grain size distribution S. Oasis 

%< (mm) SKF3 
(Island 
Lake) 

SKF1 
(head 
GWFR) 

Swan Lake 
stage board 
 

Heart 
Lake 

Thin 
Lake 

Island 
Lake 

GW8 L8 

0.00   0.02    0.01 0.00 

0.00   0.38    0.23 0.06 

0.00   1.26    0.76 0.21 

0.00   2.60    1.55 0.44 

0.00   4.33    2.57 0.74 

0.00   8.01    4.60 1.40 

0.06 7.60 8.95 70.10 10.00 7.20 10.20 55.43 12.03 

0.13 10.77 17.30 79.67 16.60 14.89 20.58 81.87 20.83 

0.25 21.69 38.37 85.63 35.20 29.29 35.35 97.33 37.77 

0.50 50.66 65.21 90.73 63.60 52.17 59.70 99.73 53.50 

1.00 77.64 82.31 97.13 82.80 74.85 82.46 99.97 74.87 

2.00 100.00 100.00 100.06 99.62 97.73 98.65 100.00 100.00 

 

Grain size distribution Instrumented Lake 

%< (mm) claynest_100 clay_nest_150 clay_nest CN_10 
cm 

L4 instrumented_lake 

0.00 0.02 0.02 0.02 0.00 0.00 0.02 

0.00 0.47 0.47 0.43 0.00 0.00 0.51 

0.00 1.53 1.55 1.41 0.00 0.00 1.65 

0.00 3.14 3.24 2.92 0.27 0.25 3.39 

0.00 5.22 5.41 4.87 2.60 2.41 5.54 
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0.00 9.69 9.78 8.69 5.47 5.23 9.67 

0.06 87.30 89.87 87.73 92.90 92.70 93.20 

0.13 94.67 96.70 96.97 98.90 100.00 98.77 

0.25 97.50 99.53 99.99 100.00 100.00 100.00 

0.50 98.60 99.90 100.00 100.00 100.00 100.00 

1.00 100.00 100.00 100.00 100.00 100.00 100.00 

2.00 100.00 100.00 100.00 100.00 100.00 100.00 

 

Grain size distribution outwash 

%< (mm) S.N. 100 S.N. 50 S.N. 150 SED2 SED3 SED4 SED5 SED6 SED7 SED8 river 
(VTP2) 

0.00 0.0 0.0 0.0        0.0 

0.00 0.0 0.0 0.0        0.0 

0.00 0.1 0.1 0.1        0.0 

0.00 0.2 0.1 0.1        0.1 

0.00 0.2 0.2 0.2        0.8 

0.00 0.5 0.5 0.4        1.8 

0.06 2.3 3.3 1.5 3.6 6.4 2.0 2.8 24.0 9.8 5.8 24.5 

0.13 4.7 5.3 2.4 8.8 7.2 2.0 4.4 33.0 13.6 8.0 39.9 

0.25 10.6 7.9 7.2 25.2 11.2 4.4 9.9 42.0 20.4 14.1 58.7 

0.50 23.4 13.8 19.2 57.4 24.1 17.1 27.3 55.0 33.6 30.3 70.2 

1.00 57.9 34.8 47.6 82.4 49.5 44.4 57.0 73.0 64.2 60.4 89.5 

2.00 100.0 100.0 100.1 98.3 96.1 96.3 99.0 96.0 99.0 99.6 100.0 

Appendix 2. Results of PSA for the different hydrological environments.  

 sorting 
Folk, 
1986 

sorting Folk, 
1986 

claynest_100 0.034 V.W 

clay_nest_150 0.028 V.W 

clay_nest_1 0.029 V.W 

CN (VTP1 location) 0.022 V.W 

L4 (VTP 3) 0.022 V.W 

dead bird lake_3 0.011 V.W 

dry lake nr. Lake 
lupin_1 

0.035 V.W 

GW8_1 0.063 V.W 

instrumented_lake_1 0.021 V.W 

L8_1 0.538 M.W 

lake_lupin 0.023 V.W 

muddy_lake_n_oasis_1 0.106 V.W 

n_outlet_lake_3 0.028 V.W 

sand_nest_100 0.541 M.W 

sand_nest_50_1 0.591 M.W 

sand_nest_150 0.596 M.W 

swan_lake_sb_1 0.145 M.W 
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Heart Lake 0.509 M.W 

Island Lake 0.516 M.W 

SED2 0.495 well sorted 

SED 3 0.607 M.W 

SED4 0.582 M.W 

SED5 0.618 M.W 

SED6 0.655 M.W 

SED7 0.617 M.W 

SED8 0.606 M.W 

Skf1 0.507 M.W 

SkF3 0.523 M.W 

Appendix 3. Sorting coefficient and description  

 

Hydraulic conductivity (m/day) 

  Hazen extremes (C=1) C=1300 Puckett Alyamani &Sen porosity 

N. Oasis 
(5) 

Dead Bird Lake 0.000114 3.26E-07 0.000424 0.005752 0.008885 0.280972 

 Dry Lake nr. Lake lupin 0.000555 1.59E-06 0.002063 0.122819 4.733348 0.258015 

 Lake Lupin 0.000184 5.26E-07 0.000683 0.0093 0.011268 0.274515 

 Muddy Lake N. Oasis 0.002746 7.85E-06 0.010199 0.479844 0.579627 0.257422 

 N Outlet Lake 0.000245 7E-07 0.00091 0.024478 0.01316 0.262228 

S. Oasis 
(8) 

Island Lake 22.5 0.0225 29.25  190.4966 0.313117 

 Swan Lake SB 0.006655 1.9E-05 0.02472 0.773876 0.14789 0.305277 

 Heart Lake  3.969E-03    0.322379 

 Thin Lake 3.969 0.003969 5.1597  216.1911  

 GW8 0.100601 0.000101 0.130781 1.517602 8.552657 0.338649 

 L8 2.383392 0.002383 3.09841 2.85517 482.8388 0.280823 

 SKF1 (head GWFR) 3.969 0.003969 5.1597  123.1631 0.322379 

 SKF3 (Island Lake) 7.225 0.007225 9.3925  334.4933 0.314267 

IL (6) clay nest 50 0.00536 1.53E-05 0.019908 0.677513 1.209398 0.298796 

 clay 100 0.003536 1.01E-05 0.013135 0.555723 1.206488 0.296433 

 clay 150 0.003422 9.78E-06 0.012712 0.545573 1.205006 0.295208 

 VTP1 (CN) 0.024275  0.032 0.773876 0.333823  

 VTP3 (L4) 0.026235  0.034 1.34 0.334162  

 Instr. Lake (clay end) 0.003615 1.03E-05 0.013426 0.55829 5.233988 0.30529 

Outwash 
(11) 

       

  61.00625 0.061006 79.30813  1148.722  

 SED2 40 0.04 52  272.8421 0.383774 

 SED3 140.625 0.140625 182.8125  1352.52 0.33837 

 SED4 62.5 0.0625 81.25  1936.903 0.388663 

 SED5 0.9 0.0009 1.17  1032.625 0.367327 

 SED6 3.969 0.003969 5.1597  191.3186 0.258299 

 SED7 15.625 0.015625 20.3125  765.1247 0.272804 
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 SED8 15.625 0.015625 20.3125  764.5264 0.312433 

 VTP2 (river) 0.236237 0.00024 0.31 2.66 30.8341  

 Sand Nest 50 123.5757 0.123576 160.6484 3.424074 1105.936 0.376413 

 Sand Nest 100 56.43792 0.056438 73.3693 3.403847 866.2724 0.36474 

 Sand Nest 150 97.71876 0.097719 127.0344 3.494672 775.4718 0.379709 

Appendix 4. Results of K using different PSA equations 

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

 

 

 

 
 

    Concentration (µeq/l )  

    Temp (°C)  EC Cl- SO4
2-  Ca2++ Mg2+

 

 

K++ Na+ 

AL011 08/07 GW8 8.7 115 136 107 1049 376 
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AL158 29/08 GW8 10.1 153 119 213 1497 610 

AL018 10/07 L1 piez 9.9 153 146 168 1493 539 

AL091 25/07 L1 piez 10.4 159 144 185 1522 601 

AL142 25/08 L1 piez 9.9 158 126 223 1274 845 

AL020 10/07 L2 10.3 182 141 161 1504 973 

AL143 25/08 L2 9.2 181 123 134 1258 1087 

AL021 10/07 L3 8.2 114 136 135 1105 319 

AL093 25/07 L3 8.4 117 135 126 1129 385 

AL144 25/08 L3 9.2 124 120 142 1237 649 

AL022 11/07 L8 12.1 130 141 126 1221 582 

AL092 25/07 L8 9.2 150 137 145 1283 740 

AL029 12/07 L4 piez 12.5 120 135 122 1138 342 

AL080 24/07 L4 piez 12.3 118 133 134 1163 361 

AL145 25/08 L4 piez 8 126 121 151 929 665 

AL024 11/07 L5 13.9 126 138 133 1266 356 

AL081 24/07 L5 piez 11 127 132 136 1291 373 

AL146 25/08 L5 9.5 128 116 146 1109 670 

AL015 10/07 L6 piez 12.4 115 140 125 1105 318 

AL094 25/07 L6 piez 6.5 118 134 140 1172 333 

AL147 25/08 L6 piez 8.3 105 94 110 931 744 

AL019 10/07 L7 13.1 139 155 129 1417 527 

AL082 24/07 L7 piez     137 146 1548 743 

AL025 11/07 sand50 14.1 193 143 181 2115 544 

AL141 25/08 sand nest50 9.8 135 111 125 923 757 

AL014 10/07 clay150 pipe 11.5 113 134 120 1005 355 

AL017 10/07 clay100 14.2 114 136 118 1132 384 

AL148 25/08 clay nest150 7.3 123 118 146 964 761 

AL111 28/07 spring at 
instr. Lake 

4.7 118 134 146 1205 344 

AL112 28/07 spring at 
instr. Lake 

5.3 119 135 137 1241 371 

AL003 08/07 T1 10.5 155 135 375 1526 433 

AL088 24/07 T1 8.9 155 136 258 1594 462 

AL153 28/08 T1 10.7 181 148 415 1923 497 

AL004 08/07 T2 11.6 132 137 141 1317 361 

AL089 24/07 T2 8.8 156 153 219 1649 415 

AL152 28/08 T2 10.9 179 136 318 1935 506 

AL005 08/07 T3 9.1 150 138 164 1461 525 

AL090 24/07 T3 8.5 161 137 158 1595 552 

AL151 28/08 T3 10.1 153 137 201 1555 551 

AL001 08/07 GW10 9.9 123 136 133 1184 353 

AL087 24/07 GW10 9 143 141 217 1497 421 

AL155 29/08 GW10 12.6 149 145 277 1540 443 

  09/07 GW11 7.7 120 135 145 1157 334 

AL086 24/07 GW11 7.1 126 134 164 1263 359 
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AL150 28/08 GW11 7.7 132 127 192 1345 421 

  09/07 GW12 
(barlogger 
pipe) 

9.4 121 135 140 1187 397 

AL085 24/07 GW12 
(barlogger 
pipe) 

7.9 124 132 154 1236 392 

AL154 28/08 GW12 
(barlogger 
pipe) 

9.4 135 130 187 1384 421 

AL095 26/07 P12 9.1 144 137 177 1487 439 

AL149 25/08 P12 8.3 152 121 189 1471 682 

AL026 11/07 P10 12.7 133 81 131 1307 411 

AL007 08/07 GW5 7.7 92 69 72 836 384 

AL084 24/07 GW5 9.4 138 69 145 1472 449 

AL157 29/08 GW5 11.5 209 123 405 2304 561 

AL008 08/07 GW9 4.7 49 50 23 424 179 

AL083 24/07 GW9 5.1 55 49 30 486 204 

AL156 29/08 GW9 10.3 91 63 88 898 312 

AL006 08/07 instr. lake, 
nr. Sand nest 

17.4 115 145 66 816 337 

AL016 10/07 instr, lake nr. 
Clay nest 

  114 145 68 816 348 

AL052 21/07 instr. Lake, 
nr. T3 

14.6 114 62 6 873 398 

AL053  N. side instr. 
Lake 

14.5 114 58 5 872 355 

AL054  inst. Lake, nr. 
Clay nest 

14.8 111 61 6 869 377 

AL055  inst. Lake, nr. 
L4 

14.4 114 62 6 857 353 

AL108 28/07 Instrumented 
lake 

14.4 112 146 81 948 399 

AL109  Instrumented 
lake 

15.2 112 146 82 958 399 

AL110  Instrumented 
lake 

14.5 111 146 82 963 371 

AL113  Instrumented 
lake 

16.1 112 149 85 967 394 

AL164 29/08 instrumented 
lake, by 
staging board 

7.9 80 61 53 788 180 

AL165  instrumented 
lake, nr. L5, 
l6 

11.3 80 64 52 778 184 

AL030 12/07 Swan Lake w. 
shore 

  110 152 45 786 290 

AL037 13/07 Swan Lake, E. 
shore 

18 110 154 61 824 335 

AL057 21/07 Swan lake, 
nw shore 

14.5 106 151 46 798 323 

AL058 21/07 swan lake, s. 
shore 

14.9 108 152 42 612 523 

AL059 21/07 swan lake, 
centre 

13.9 107 153 46 794 321 

AL060 21/07 swan lake, N. 
shore 

14.4 105 150 47 814 315 

AL114 28/07 Swan Lake 17.6 105 156 51 833 347 

AL115 28/07 Swan Lake 17.8 107 155 46 799 331 

AL116 28/07 Swan Lake 17.6 109 126 40 821 338 

AL117 28/07 Swan Lake 16.3 104 154 52 841 345 
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AL166 29/08 Swan Lake, 
nr. Stage 
board 

9.1 68 62 38 593 150 

AL167 29/08 swan lake, 
NE corner 

9.1 67 61 36 598 157 

AL033 12/07 Island Lake, 
S. section 

18.9 130 152 42 1087 363 

AL034 12/07 Island Lake, 
N. section 

20.7 136 161 60 1159 353 

AL063 23/07 Island lake, 
NE shore 

13.4 118 144 74 1192 372 

AL064 23/07 Island Lake, 
N. shore 

13.8 119 142 59 1496 455 

AL065 23/07 Island Lake, 
S. section 

14.9 121 146 36 1057 379 

AL066 23/07 Island Lake, 
W. shore 

14.8 118 144 43 1074 396 

AL135 30/07 Island Lake 14.3 127 145 60 1137 354 

AL136 30/07 Island Lake 14.2 130 149 44 1081 376 

AL137 30/07 Island Lake 15.1 126 149 49 1104 390 

AL170 31/08 Island Lake, 
opposite end 
to stage 
board 

9.5 126 150 78 1118 354 

AL171 31/08 Island lake, s. 
end, nr. 
Stage board, 
but deep 
water 

9.9 124 150 76 1224 368 

AL035 12/07 Thin Lake E. 
side 

15 118 136 106 1136 329 

AL036 12/07 Thin Lake W. 
side 

23.2 125 138 122 1178 356 

AL061 21/07 Thin Lake, E. 
shore 

11.4 113 132 104 1081 348 

AL062 21/07 thin Lake, W. 
shore 

13.6 118 130 110 1098 337 

AL132 30/07 Thin Lake 11.5 115 133 111 1175 360 

AL133 30/07 Thin Lake  15 120 134 113 1161 367 

AL134 30/07 Thin Lake 12.5 116 134 111 1143 360 

AL168 31/08 Thin Lake, nr. 
Stage board 

8.9 112 120 100 1092 344 

AL169 31/08 Thin Lake, 
shallow end 

10.3 107 119 102 1103 344 

AL067 23/07 Heart Lake, 
W. shore 

15 142 166 44 1505 437 

AL068 23/07 heart Lake, s. 
shore 

14 142 166 46 1483 445 

AL069 23/07 Heart Lake, 
N. end 

14.1 141 169 43 1486 460 

AL138 30/07 Heart Lake 15.5 144 170 46 1542 469 

AL139 30/07 Heart Lake 15.2 144 168 45 873 924 

AL172 31/08 Heart Lake 
(NE corner) 

10.1 135 150 58 1442 387 

AL173 31/08 Heart Lake, 
southernmos
t tip 

10.4 138 152 57 1460 401 

AL002 08/07 river 
Skaftafellsá 
(at stilling 
well) 

1.7 27 56 18 88 130 

AL070 23/07 river 
Skaftafellsá  

1.1 24 36 13 121 119 

AL071 23/07 river 
Skaftafellsá 

1 24 37 13 129 128 
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AL072 23/07 river 
Skaftafellsá 

1 24 36 15 112 133 

AL073 23/07 River 
Skaftafellsá 

0.8 22 24 13 107 120 

AL162 29/08 Skaftafellsá, 
nr. Staging 
well 

1.2 20 26 15 42 80 

AL163 29/08 Skaftafellsá, 
n. of 
moraine, nr. 
GW10 

1.2 20 26 16 40 81 

AL038 14/07 Dead Bird 
Lake 

14.7 71 60 21 379 674 

AL096 27/07 Dead Bird 
Lake 

17.5 66 188 44 389 273 

AL097 27/07 Dead Bird 
Lake 

15.4 56 170 41 344 222 

AL098 27/07 Dead Bird 
Lake 

14.4 47 151 37 300 196 

AL099 27/07 Dead Bird 
Lake 

14.7 47 151 38 298 198 

AL039 14/07 Little island 
lake 

16.7 49 169 17 175 247 

AL100 27/07 Little island 
lake 

17.7 48 194 28 192 240 

AL101 27/07 Little island 
lake 

16.9 48 193 25 202 250 

AL042 14/07 Lake Lupin 16.6 46 126 10 44 206 

AL105 27/07 Lupin Lake 16.8 55 175 25 217 206 

AL106 27/07 Lupin Lake 16.4 50 175 26 233 199 

AL107 27/07 Lupin Lake 16.4 47 174 25 234 214 

AL040 14/07 Twin Lake 16.4 57 139 12 361 225 

AL041 14/07 small lake nr. 
Twin Lake 

  81 85 10 487 263 

AL102 27/07 Twin Lake 15.4 58 149 42 380 218 

AL103 27/07 Twin Lake 15.4 58 151 44 302 710 

AL104 27/07 Twin Lake 15 58 151 45 310 527 

AL159 29/08 head of 
GWFR 

    193 2448 4698 821 

AL160 29/08 GWFR, 150 
downstream 
of AL159 

    144 128 1420 394 

AL161 29/08 GWFR. 
Towards the 
river 

    145 114 1439 372 

Appendix 5. water quality and solute concentrations 

 

Hydrological 
environment 

Location δ
18

O  δD  GMWL Det. 
Excess 

meltwater Skaftafellsá  -11.12 -78.92 -79.00 10.08 

 Skaftafellsá  -11.11 -78.64 -78.86 10.22 

 Skaftafellsá  -11.03 -77.99 -78.21 10.22 

 Skaftafellsá  -11.13 -78.40 -79.00 10.60 

 Skaftafellsá  -10.98 -78.35 -77.84 9.49 



Appendices  

341 
 

 Skaftafellsá  -11.03 -77.67 -78.22 10.56 

groundwater SKF T1 -7.42 -53.22 -49.37 6.15 

 SKF T2 -7.98 -56.49 -53.84 7.35 

 SKF T3 -7.50 -54.45 -49.96 5.52 

 SKF GW5 -8.97 -64.54 -61.78 7.24 

 SKF GW9 -10.00 -71.13 -69.98 8.85 

 SKF GW11 -8.00 -56.76 -53.98 7.21 

 SKF GW12 -7.89 -57.11 -53.15 6.04 

 SKF P12 -7.83 -56.48 -52.63 6.15 

 SKF L1 -7.52 -55.01 -50.17 5.16 

 SKF L2 -8.44 -61.70 -57.49 5.80 

 SKF L3 -7.80 -55.59 -52.43 6.84 

 SKF L4 -7.91 -56.10 -53.27 7.17 

 SKF L5 -7.75 -56.94 -52.01 5.07 

 SKF sand nest 50 -7.67 -55.05 -51.36 6.31 

 SKF sand nest 150 -7.80 -56.78 -52.41 5.63 

GWFR SKF Head GW FR -5.95 -47.97 -37.57 -0.39 

 SKF Mid GW FR -7.76 -55.50 -52.08 6.57 

 SKF GW-Creek -7.67 -55.54 -51.38 5.84 

 *SKF GW-Creek (PS) -7.64 -55.44 -51.13 5.69 

lakes SKF island Lake -6.28 -49.30 -40.28 0.98 

 SKF thin lake east -7.68 -56.10 -51.46 5.36 

 SKF thin lake west -7.65 -56.65 -51.23 4.58 

 SKF swan lake, w-shore -8.47 -63.35 -57.79 4.43 

 SKF lake nr., clay nest -8.64 -63.79 -59.12 5.33 

 SKF lake nr., sand nest -8.59 -64.08 -58.70 4.62 

Appendix 6. Stable isotope composition of groundwater and surface water at the 
Skaftafellsjökull margin.  


	etheses coversheet.pdf
	Levy PhD 2015.pdf

